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1. Motivation, aim, and outline

Winds are the largest source of momentum acting on the oceans surface layer. In the Benguela

upwelling system (BUS), the wind forcing is of particular importance because the southeast trade

winds drive upwelling. As a consequence, nutrients are transported into the euphotic zone and stim-

ulate primary production. This signal propagates through the food web. The state of the Benguela

ecosystem and its productivity depends highly on the biogeochemical characteristics of the upwelling

water originating typically from a depth of 100 to 200 meter. This in turn is impacted by the vertical

current component and the characteristics of the source water. Its composition is largely affected by

the meridional velocity as the two main central water masses enter the BUS from opposite direc-

tions. The structure of both the meridional and the vertical velocity depends on the strength and

spatial shape of the wind forcing. Remotely sensed wind data that is available for a few years in high

spatial resolution reveals that the wind patterns are very pronounced and persistent in the BUS. The

prevailing meridional winds exhibit spatial inhomogeneities in the order of a few 100 km that result

in a wind stress curl (WSC) and a wind divergence. Moreover, the wind forcing exhibits temporal

variations. Wind pulses of about two to ten days duration overlay the annual and semi-annual cycle

of the forcing.

The present study aims at understanding the coastal currents response in the BUS to spatial and

temporal variations of the wind forcing. This may provide new insights in how the wind impacts

the ecosystem conditions on the southwest African shelf. In addition, the results of this study may

help improving general circulation models (GCMs) by understanding their dynamical shortcomings

in eastern boundary upwelling systems.

In order to investigate the basic physical processes in the currents response to the wind forcing,

an analytical model is applied. In contrast to most theoretical studies on eastern boundary systems

that focus mainly on cross-shore variations of the wind field, this model takes into account zonal and

meridional variations of the forcing. The model wind mimics hereby observations and can be adjusted

by the choice of parameters. An idealized numerical box model is used to verify the outcome of the

analytical model. The results are combined with the data from an oceanic GCM and observations

and used to explain the impact of spatial and temporal changes of the wind forcing on the currents

response. The study focuses hereby on three major aspects of the BUS: the seasonality of the

meridional transport along the southwest African coast, the cross-shore advection in the very northern

BUS, and the spatial and seasonal variation of the upwelling.

The study is organized as follows: a brief introduction to the most important characteristics of the

BUS and the theory of eastern boundary upwelling systems is given in chapter 2. In chapter 3, an
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analytical theory for the BUS is developed taking into account spatial inhomogeneities of the wind

forcing. Chapter 4 is dedicated to the introduction of two numerical models that are used throughout

this study. In chapter 5, the results of the analytical model, the numerical models and observations

are combined to investigate the response of the coastal currents in the BUS to changes in the wind

forcing. Finally, a summary including the most important results of this study is given in chapter

6.
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2. General introduction

2.1. The Benguela upwelling system

2.1.1. Location and boundaries

The BUS is an area on the shelf of southwest Africa extending approximately from 15°S to 34°S. The

BUS is among the four major eastern boundary upwelling systems in the world oceans, Chavez and

Messie (2009). Cold upwelled water supplies the euphotic zone with nutrients stimulating high primary

production in those systems. The fact that the BUS is meridionally bounded by warm water systems

makes it unique among these major upwelling areas, Shannon and Nelson (1996). The persistence

and strength of upwelling in the BUS varies with latitude. Areas of intense upwelling are located off

Cape Frio (18.4°S) and Lüderitz (26.4°S). The Lüderitz upwelling cell divides the BUS itself into two

subsystems: the northern and the southern BUS, Hutchings et al. (2009).

To the north, the BUS is bounded by the Angola-Benguela front (ABF) located roughly between

15°S and 17°S. Its position varies seasonally. The ABF can be found farthest north in austral winter

and most south during summer, Meeuwis and Lutjeharms (1990). The southern boundary of the

BUS can be regarded as the area of the Agulhas current retroreflection near the Cape of Good Hope

(34.4°S). A map showing some important geographic features of the Benguela region as well as the

bathymetry of that area is presented in figure 2.1.

A comprehensive review of the BUS was presented by Shannon and Nelson (1996) and Shillington

(1998).

2.1.2. Circulation and water masses

The large scale circulation in the South-East Atlantic is dominated by the northwestward flowing

Benguela Current (BC) that is the eastern boundary current of the South Atlantic and the east-

ern branch of the subtropical gyre. The upper level circulation in the South Atlantic is described

in Peterson and Stramma (1991). The interaction of the BUS with the subtropical gyre and the

subtropical cell was addressed in Lass and Mohrholz (2008). Interaction happens for instance by

poleward outbreaks of the Angola Current (AC) carrying suboxic waters with high nutrients along

the African shelf into the northern BUS.
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The cross-shelf communication of the BUS with the open ocean and the BC is governed by the

Ekman offshore transport in the mixed layer, the onshore subthermocline rectification flow, eddies,

Rossby waves, and filaments. Recent observations of a filament in the northern BUS based on high

resolution hydrographic data was presented by Muller et al. (2013). The offshore transport associated

with that filament was in the order of 3 Sv (1 Sv = 106 m3 s−1) and substantially larger than the

integrated Ekman offshore transport. Studies on the characteristics of Rossby waves in the South

Atlantic are rare. Reason et al. (1987) used a numerical model to investigate the properties of first

mode annual-period baroclinic Rossby waves in the interior South Atlantic Ocean. The WSC maxima

off the Namibian coast were identified to be a hot spot in the generation of long Rossby waves. The

sea level variability and Rossby wave dynamics in the South Atlantic based on a few years of remotely

sensed sea level data were analyzed by Le Traon and Minster (1993) and Witter and Gordon (1999).

The impact of Rossby waves on the sea level and chlorophyll a concentration anomaly in the South

Atlantic was studied by Gutknecht et al. (2010).

The current patterns in the BUS consist of locally forced (through wind stress) and remote (wave

induced) signals. The impact of both on the longshore currents in the BUS is often discussed in the

frame of positive temperature anomalies referred to as Benguela Niños. Those events are the largest

scale and lowest frequency instance of variability observed in the BUS, Shillington et al. (2006).

Positive temperature anomalies during the recent twenty years have been observed for instance

in the years 1995 and 2001, e.g. Gammelsrød et al. (1998), Rouault et al. (2007). Using results

from a coupled GCM, Richter et al. (2010) showed that meridional wind stress anomalies along the

southwest African coast play a crucial role in the development of positive temperature anomalies

in the BUS. Florenchie et al. (2003) found by the help of an ocean GCM that Benguela Niños

are generated by specific wind stress events in the west-central equatorial Atlantic. Those events

trigger coastal Kelvin waves produced by equatorial Kelvin waves that reach the eastern boundary

and propagate poleward. They carry the signal alongshore as subsurface temperature anomalies into

the BUS. Observations of coastally trapped waves in the southern BUS were presented by Schumann

and Brink (1990).

There are two distinct central water masses in the BUS: the South Atlantic Central Water (SACW)

of tropical origin and the Eastern South Atlantic Central Water (ESACW) which has its origin in

the Cape region. The SACW is warm, oxygen poor but nutrient rich, whereas the ESACW is oxygen

rich but nutrient depleted. The SACW is transported by the southward extension of the AC, that is

the eastern branch of the Angola Gyre, into the BUS. Model studies and field data demonstrate the

existence of SACW up to 27°S, Fennel et al. (2012). The ESACW is brought into the BUS by the

northward directed coastal branch of the BC. The modeled mixing of different tracers representing

the two central water masses is shown in figure 2.2. Mohrholz et al. (2008) showed that the oxygen

concentration on the southwest African shelf depends highly on the water mass composition, i.e. the

proportion of the two central water masses. This in turn depends on the strength and direction of

the longshore currents. In austral summer, the poleward flow transports SACW into the northern

BUS, whereas during winter, the water mass composition is dominated by ESACW, Mohrholz et al.

(2008).
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Figure 2.1. Map of the Benguela region that
shows the approximate location of Cape Frio
(CF), Lüderitz (Lue), Cape of Good Hope (CH),
and the Angola-Benguela front (ABF). The
color encodes the water depth [m] derived from
the ETOPO5 data set. The 300 m and 1000 m
depth contours are shown.

Figure 2.2. Modeled mixing of tracers in-
jected in the equatorial undercurrent (represent-
ing SACW, orange) and near the Cape of Good
Hope (ESACW, blue) after about 12 years of
model integration, redrawn from Fennel et al.
(2012).

2.1.3. Wind field

The BUS is characterized by coastal upwelling, Shillington (1998). The upwelling is a consequence

of the divergence of the Ekman offshore transport which in turn is driven by the southeast trade

winds. These winds are part of the anticlockwise circulation around the center of the South Atlantic

anticyclone, also referred to as the St. Helena high pressure system, e.g. Lass and Mohrholz (2008),

Shannon and Nelson (1996). The South Atlantic anticyclone is maintained throughout the year but

undergoes seasonal shifts in position as the Intertropical Convergence Zone moves seasonally in

latitude, Shannon (1985).

Since 2008, a climatology of ocean winds derived from spatially high resolved (0.25°) remotely sensed

data for the period of September 1999 to October 2009 is available (Scattered Climatology of Ocean

Winds, SCOW; downloaded at http://cioss.coas.oregonstate.edu/scow/), Risien and Chelton (2008).

This data reveals very pronounced and persistent patterns in the meridional wind stress and the WSC

in the Benguela region. Figure 2.3 shows the meridional wind stress derived from that climatology

for the months of January and July. There are two regions of intensified meridional wind stress in

the vicinity of the coast: the area off Cape Frio and off Lüderitz. Further more, the Cape region is
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(a) January (b) July

Figure 2.3. Mean meridional wind stress [N m−2] in the BUS for January and July derived from SCOW.

governed by strong meridional wind stress in January. Between these spots of enhanced wind stress,

a band of less strong wind stretches along the coast. The mean meridional wind stress close to the

coast is stronger in July than in January north of about 24°S and vice versa south of that parallel.

The meridional wind stress decreases rapidly north of about 16°S that can be clearly seen in the

climatological data for July. The mean meridional wind stress component increases with increasing

offshore distance along the entire coast of the BUS. The resulting zonal gradient in the meridional

wind stress contributes substantially to the very persistent negative (cyclonic) WSC found in the

BUS. An estimated seasonal cycle of WSC in eastern boundary regions based on historical surface

marine wind reports was first presented by Bakun and Nelson (1991). The authors described the

negative WSC patterns in the BUS shaped as a wedge extending from about 20°S narrowing to

the south. The meridional extent of the area with negative WSC migrated seasonally. It reached its

most limited poleward extent in austral winter when it is not stretching further south than about

25°S. The mean WSC derived from the SCOW is shown in figure 2.4 for the month of January

and July. The basic patterns coincide with those described by Bakun and Nelson (1991). A band

of stronger, negative WSC extends from Cape Frio to the Cape region in January. In contrast, the

area of mean negative WSC is more wedge like shaped in July with its smallest offshore extent at

about 32°S. To the west of the area of negative WSC, a region of positive WSC attaches in both

month.
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(a) January (b) July

Figure 2.4. Mean WSC [10−4 N m−2 km−1] in the BUS for January and July derived from SCOW.

The strength of the annual and semi-annual cycle of the wind forcing varies spatially within the

BUS. Lass and Mohrholz (2008) calculated the Fourier coefficients of the annual and semi-annual

component of the meridional wind stress from remote sensing data in the South Atlantic. They

found that the annual cycle is very exposed along the South African coast. In contrast, the semi

annual cycle of the meridional wind stress is small compared to the annual mean except for a very

limited area off Cape Frio. The monthly mean meridional wind stress at two spots in the northern

and southern BUS is presented in figure 2.5. The meridional wind stress component in the southern

BUS has a maximum in austral spring (November) and a minimum in winter (June) with a distinct

seasonal cycle. The wind stress in the northern BUS has a tendency to biannual maxima occurring in

autumn (May) and spring (October) and a minimum in summer (January).

2.2. Theory of eastern boundary upwelling systems

There are many theoretical studies that address wind driven eastern boundary flows, among them

Anderson and Gill (1975), Hurlburt and Thompson (1973), Suginohara and Kitamura (1984), Mc-

Creary and Chao (1985), and Philander and Yoon (1982). These studies use numerical models while

analytical models are employed for instance in McCreary (1981) and Fennel (1999). Based on those

studies, the response of an easterly bounded coastal ocean to a spatially homogeneous wind that

is switched on at a certain time can be described as follows: in the first phase, immediately after

7



Figure 2.5. Monthly mean meridional wind stress [N m−2] in the northern BUS off Cape Frio (black) and in
the southern BUS off Lüderitz (blue) derived from SCOW.

the onset of the wind, the wind drives an accelerating equatorward coastal jet (CJ) in the vicinity

of the coast. As long as the winds are uniform in alongshore direction, the response in that phase

is two-dimensional (independent of the longshore coordinate), Philander and Yoon (1982). Hence,

the upwelling at the coast is fed into the Ekman offshore transport. A second phase is introduced

by the arrival of Kelvin waves which are excited at the edges of the wind band and run poleward

trapped by the coast. After a time span the Kelvin waves need to reach a certain location in the

forced area, the acceleration of the CJ and the upwelling is stopped at this spot. Moreover, these

waves introduce a poleward undercurrent (PUC). The wind stress is now balanced by an alongshore

pressure gradient, and the Ekman rectification flow supplies the PUC. Since Kelvin waves stop the

upwelling, only temporal variations of the wind field can excite new upwelling events, Fennel (1999).

In reality, coastline irregularities, such as capes and bays, generate Kelvin waves in a manner similar

to the longshore wind stress variability, Crépon et al. (1984). If the spherical shape of the earth is

considered, the response is modified by the β-effect. The final stage to establish equilibrium condi-

tions is now associated with the dispersion of the coastal currents into Rossby waves, Philander and

Yoon (1982).

The response of the coastal ocean becomes even more complex if spatial and temporal distributions of

wind stress over the upwelling region are considered. Several studies have shown that the existence

of a WSC significantly alters the coastal circulation and strongly affects the upwelling as well as

the longshore velocity, e.g. Hurlburt and Thompson (1973), McCreary and Chao (1985). Using a

numerical model on the northern hemisphere in the β-plane approximation, Hurlburt and Thompson

(1973) found that positive WSC in the coastal upwelling zone reduces the surface jet and enhances the

PUC. McCreary et al. (1987) indicated, using as well a numerical model on the β-plane, that WSCs

might be a reason for surface currents against the local wind off California. Fennel and Lass (2007)

and Fennel et al. (2012) showed that this effect can also be explained in the f -plane approximation.

Contrary to coastal upwelling, WSC driven upwelling (through Ekman pumping) is not influenced by

coastally trapped waves. This illustrates the special meaning of WSC patterns in upwelling systems

since this mechanism is able to maintain upwelling independent of Kelvin waves. Hence, the existence

and strength of the WSC may also influence biological processes as well as the large scale ocean

circulation. Rykaczewski and Checkley (2008) found that the production of Pacific sardine varies

with the strength of the WSC over the past six decades in the California Current Ecosystem. Kanzow
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et al. (2010) argued that the seasonal varying strength of the WSC induced Ekman pumping on

the eastern boundary of the Atlantic may be the reason for seasonal fluctuations of the Atlantic

Meridional Overturning Circulation.
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3. Analytical modeling of the Benguela

upwelling system

Although analytical models are often highly idealized to ensure their tractability, they are well

suited for studying principle physical processes. Most realistic simulations of the oceans circula-

tion, however, can be achieved by advanced numerical models based on the full set of primitive

equations.

As an eastern boundary upwelling system, the BUS is well suited for analytical modeling. The prevail-

ing winds are basically meridional and the BUS is located at small latitudes but sufficiently far away

from the equator. In order to design the analytical model appropriately, it is necessary to examine

typical temporal and spatial scales of the system. This is done in the next section before the response

of the BUS to a switch-on wind (on the f -plane) and a seasonally varying wind (on the β-plane) is

derived.

3.1. Temporal and spatial scales

3.1.1. Temporal scales

An example of a time series of the meridional wind speed off the Namibian coast derived from remote

sensing data is shown in figure 3.1. The data reveals wind fluctuations with periods of roughly ten

to 14 days that can be considered as a sudden switch-on of the wind superimposing a constant

wind field. The ocean responses with a variety of different waves to such wind pulses. The dispersion

Figure 3.1. Exemplary time series of the meridional wind speed component [m s−1] at 12°E, 22°S for the
year 2005 derived from remote sensing data.
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Figure 3.2. Dispersion relation of inertial waves, Kelvin waves, and planetary waves (Rossby waves). Note
the logarithmic scale on the axis of ordinates.

relation of some of these waves is shown in figure 3.2. Inertial waves exist only for frequencies above

the inertial frequency f . This frequency corresponds to an inertial period of roughly 30 hours in the

BUS. Between internal and planetary waves (Rossby waves) exists a large spectral gap in the mid-

latitudes. Planetary waves occur only below a critical frequency ωc = Rnβ
2 , e.g. Gill (1982), which

corresponds to a period of about 150 days in the BUS. Kelvin waves, however, are non-dispersive

and exist at all frequencies and wavelengths. They are a substantial part of the response to wind

forcing as they adjust equilibrium conditions to the coastal ocean. The time scale of this adjustment

process is the time Kelvin waves need to cross the wind band. This temporal scale can be estimated

by

Tk =
a

cn
.

Here, a is the length of the wind band and cn = NH
nπ is the phase speed of Kelvin waves that is

proportional to the water depth H and the Brunt-Väisälä frequency (BVF) N in the case of vertically

constant stratification, see section 3.2.2. Assuming a length of the wind band of 1000 km and a first

mode phase speed of c1 = 2 m s−1, it takes about 58 days for the ten gravest modes to cross the

wind band.

The temporal scale for the geostrophic adjustment of the currents through inertial waves is roughly

the inertial period. The time scale of Kelvin waves to cross the wind band is about ten times

greater than the inertial period and well below the critical period of Rossby waves. The geostrophic

adjustment of the ocean to new wind events happens therefore very fast compared to the adjustment

by Kelvin waves. Rossby waves, however, do not play a role on that time scale. Hence, the adjustment

process through inertial waves is neglected in the analytical model. The response to a switch-on

wind is studied using an analytical model operating in a spectral band covering the sub-inertial

domain above the critical frequency of Rossby waves. The response of the BUS to a switch-on

wind using an analytical model in the f -plane approximation is derived and discussed in the next

section.
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In contrast to the response on times scales of a few ten days, upwelling on a seasonal time scale

will be considerably influenced by the β-effect because the seasonal time scale exceeds the critical

period of Rossby waves. The response of the coastal ocean to a seasonal varying wind stress using

the β-plane approximation is presented and discussed in section 3.4.

3.1.2. Spatial scales

The Rossby Radius is an important length scale and the typical offshore scale of CJs in upwelling

systems. In analytical models using an idealized eddy viscosity approach, friction is assumed to be

inverse proportional to the Rossby Radius, e.g. Fennel (1999). The n-th mode Rossby Radius is

calculated by

Rn =
cn

f
.

Another important characteristic of the phase speed cn becomes apparent. Additionally to the tem-

poral scale (through the travel time of Kelvin waves), the phase speed cn determines a spatial scale

by the Rossby Radius Rn.

Maps showing the barotropic (external) and the first baroclinic (internal) Rossby Radius in the South

Atlantic were presented by Houry et al. (1987). The external (first internal) Rossby Radius ranges

from 5000 km (60 km) around the area of Cape Frio to less than 1000 km (20 km) in the Cape region.

The decrease of the Rossby Radius with increasing latitude is certainly due to the β-effect. Due to

the cross-shelf gradient of the water depth H (that is mirrored in the phase speed, see above), a

cross-shelf gradient of the Rossby Radius may exist. Hence, the Rossby Radii on the shelf are smaller

than in the interior Atlantic.

3.2. The model ocean

3.2.1. The model configuration

We consider an ocean on the southern hemisphere of constant depth H that is bounded to the east

by a north-south stretching straight coast idealized as a vertical wall. The coast is located along

the y-axis, i.e. x = 0. The model ocean is infinite to the north, south, and west. A sketch of the

analytical model domain is shown in figure 3.3

To include frictional effects, the model uses a linear friction rate often referred to as Rayleigh friction.

This friction allows to obtain tractable analytical solutions and helps to highlight the importance of

friction for the dynamical balances of the oceans response to wind forcing, Fennel (1999). The

background stratification of the model ocean is assumed to be constant, and the wind forcing enters

the ocean as a volume force evenly distributed over a mixed layer.
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Figure 3.3. Sketch of the analytical model domain. The model is bounded to the east by a coast idealized
as a vertical wall. The bottom is assumed to be flat. The forced area is shaded in the left panel. Its position
and shape can be adjusted, see section 3.3.2.

3.2.2. The model equations

The model is based on the linear, hydrostatic Boussinesq equations for an ocean on the southern hemi-

sphere that is forced only in meridional direction, see e.g. Fennel and Lass (1989),

(∂t + r)u+ fv + ∂xp = 0, (3.1a)

(∂t + r) v − fu+ ∂yp = Y, (3.1b)

∂z (∂t + r) p+N2w = 0, (3.1c)

∂xu+ ∂yv + ∂zw = 0. (3.1d)

Here u, v, and w are the zonal (cross-shore), meridional (alongshore), and vertical current com-

ponents. Further, p is the perturbation pressure divided by the density, f is the magnitude of the

Coriolis parameter, r is a linear friction rate, and N was the BVF. The wind forcing in meridional

direction is represented by Y . The symbols ∂x, ∂y, ∂z, and ∂t denote partial derivatives with respect

to the zonal, meridional, vertical, and time coordinate.

To complete the system of equations (3.1), boundary conditions on the surface and the bottom as

well as on the eastern boundary and far away from the coast are needed. We choose them to be on

the zonal velocity u,

u(x = 0) = 0 and u(−∞) = 0, (3.2)
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i.e. there is now flow through the eastern boundary and the zonal velocity far away from the forced

area shall vanish. The vertical boundary conditions on w read

w(z = 0) =
1

g
(∂t + r) p and w(−H) = 0. (3.3)

They state that sea level changes are mirrored in the vertical velocity and that there is no flow

through the bottom.

The technique of solving the linear, hydrostatic Boussinesq equations analytically is described in

detail in Fennel and Lass (1989). The basic idea is the separation of the vertical coordinate in the

equations (3.1) by expanding the dynamical quantities u, v, w, Y , and p into a series of vertical

eigenfunctions,

φ(x, y, z, t) =
∞∑

n=0

φn(x, y, t)Fn(z). (3.4)

These vertical eigenfunctions Fn’s are then subject to the vertical eigenvalue problem

(
Z + λ2

n

)
Fn(z) = 0 (3.5)

that rises from the combination of equation (3.1c) and (3.1d). The operator Z is defined as

Z := ∂z
1

N(z)2
∂z.

The vertical boundary conditions for Fn(z) follow from (3.3) and (3.1c) and read

∂zFn(0) +
N2(0)

g
Fn(0) = 0 and ∂zFn(−H) = 0.

The vertical eigenvalue problem (3.5) can not be solved analytically in general as it depends on the

vertical structure of the BVF N(z). Assuming a constant profile for N simplifies the solution of the

vertical eigenvalue problem to

F0 ≈ 1√
H

and λ0 =
1√
gH

for n = 0

and

Fn(z) =

√
2

H
cos

(
nπz

H

)
and λn =

nπ

NH
for n ≥ 1.

Note that λn = c−1
n is the inverse phase speed of Kelvin waves, and hence, the n-th mode Rossby

Radius becomes Rn = λ−1
n f−1.
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3.3. Response to a switch-on wind on the f-plane

3.3.1. Formal solution

A formal solution of the oceans response based on the equations (3.1) has been presented in Fennel

et al. (2012). Its derivation is outlined in this subsection. After expansion into vertical eigenfunctions

of the set (3.1) and Fourier transformation (FT) w.r.t. y and t,

Ψ(κ, ω) =

∫ ∞

−∞
Ψ(y, t)e−iωt+iκy dt

2π

dy

2π
, (3.6)

where Ψ stands for the quantities u, v, w, p, and Y , an equation for the zonal velocity un can easily

be derived,

∂2
xun − α2

nun =

(
iκ

iω
+ λ2

nf

)
Yn. (3.7)

Here, α2
n = κ2 +R−2

n −λ2
nω

2 and ω = ω+ ir. A solution for the zonal velocity un is found applying

the technique of Green’s function to the inhomogeneous, linear, second order differential equation

(3.7). The Green’s function obeys

∂2
xGn(x, x′) − α2

nGn(x, x′) = δ(x− x′). (3.8)

The solution of this equation is derived elsewhere, e.g. Fennel and Lass (1989). It reads

Gn(x, x′) =
1

2αn
(eαn(x+x′) − e−αn|x−x′|). (3.9)

In the frame of the β-plane approximation, equation (3.7) would be completed by the term − β
iω∂xun.

Furthermore, (3.9) changes to

Gn(x, x′) = e− iβ

2ω
(x−x′) 1

2αn
(eαn(x+x′) − e−αn|x−x′|). (3.10)

The formal solution of the oceans response on the f -plane according to Fennel et al. (2012)

is

un(x, κ, ω) =
iκ

iω
Gn ∗ ∂x′Yn +

1

f
R−2

n Gn ∗ Yn, (3.11a)

vn(x, κ, ω) = − 1

iω
∂xGn ∗ ∂x′Yn − λn

−i
λnω + κ

1

Rn
e

x+x′

Rn ∗ Yn, (3.11b)

pn(x, κ, ω) =
f

iω
Gn ∗ ∂x′Yn +

−i
λnω + κ

1

Rn
e

x+x′

Rn ∗ Yn. (3.11c)

The long wave approximation (LWA), i.e. κRn ≪ 1, has been applied to the Green’s function for

small frequencies, i.e. ω ≈ 0, when deriving the Kelvin wave poles κ = −λnω in the set (3.11).
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Expressions like Gn ∗ Yn denote convolution integrals of the Green’s function with the wind forcing

function,

Gn ∗ Yn =

∫ 0

−∞
Gn(x, x′)Yn(x′) dx′.

The set of equations (3.11) represents a formal solution of the oceans response depending on the

meridional wind forcing function Yn and the involved parameters. Both are specified in the next

subsection.

3.3.2. Forcing function and parameter choices

Since the prevailing winds in the BUS are directed alongshore the model is forced by a meridional

wind only,

Y (x, y, z, t) =
v2

∗
Hmix

θ(z +Hmix)T (t)Q(y)Π(x). (3.12)

The wind varies in both meridional and zonal direction. Moreover, the wind is considered to en-

ter the ocean as a volume force evenly distributed over an upper mixed layer of thickness Hmix.

Here, the square of the friction velocity v2
∗ that is proportional to the meridional wind stress com-

ponent τy was introduced. The model wind is switched on at a certain time t = 0 being constant

hereafter,

T (t) = Θ(t). (3.13)

The shape of the forcing functions Π(x) and Q(y) follows observations based on remotely sensed

data. Figure 3.4 presents a zonal section of the meridional wind stress along 23°S for the months

of January and July. A wind maximum that is closer to the coast in January than in July is clearly

observed. Up to a distance of 600 km to the coast, both wind profiles can be approximated by a

cosine function of the type

Π(x) = θ(x+ L+ l) cos(b (x+ l)) (3.14)

where b = π
2L controls the wave length of the cosine function. The location of the wind maximum

is determined by the parameter l that is in the range of 0 ≤ l ≤ L. The distance from the coast

to the offshore edge of the wind band is L + l. Typical values for these parameters derived from

observations are in the range of 280 km ≤ l ≤ 410 km and 330 km ≤ L ≤ 600 km. Unless otherwise

stated, we use a value of L = 500 km which lies well between the observed ones for January and July.

The value of l is varied throughout the study in order to investigate its influence, i.e. the strength

of the wind stress and WSC near the coast, on the currents response. It is worth noting that the

cosine approach takes into account the phase opposition of wind stress and WSC in the northern

BUS.

Two alongshore profiles of the mean meridional wind stress, one in the vicinity of the coast and the

other located two degrees offshore, are shown in figure 3.5 for July. The offshore located profile has a

dome-shaped structure with low wind stress south of about 32°S and north of about 12°S. The inshore

profile reveals two distinct wind peaks that compare to the wind maxima off Cape Frio and Lüderitz
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shown in figure 2.3. Following the remotely sensed data of the meridional wind stress, we choose a

meridional wind profile that is symmetric and centered around the x-axis,

Q(y) = θ(a− |y|) cos(κ0y). (3.15)

Here, κ0 = π
2a controls the wave length of the cosine function and 2a is the meridional extent of the

wind band. In this model, we choose a = 500 km. The spatial shape of the wind forcing is presented

in figure 3.6 for two different values of the parameter l.

The FT of the meridional wind forcing (3.12) w.r.t. y and t and expansion into vertical modes

gives

Yn(x, κ, ω) =
v2

∗
hn
T (ω)Q(κ)Π(x) (3.16)

where

1

h0
=

√
1

H
for n = 0

and

1

hn
=

√
2

H

sin(nπ
H Hmix)

nπ
H Hmix

for n ≥ 1.

The FT of T (t) yields

T (ω) =
i

ω + iǫ
with ǫ → +0. (3.17)
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The magnitude of the Coriolis parameter is f = 6 · 10−5 s−1, and the friction parameter r = 0.02f .

The square of the friction velocity is v2
∗ = 0.8 cm2 s−2 which represents a mean meridional wind stress

of τy ≈ 0.8 N m−2. The water depth is H = 1000 m and the mixed layer depth Hmix = 20 m. The

first internal Rossby Radius is chosen to be R1 = 50 km as long as otherwise stated. A comprehensive

list of the chosen parameters involved in the analytical f -plane model is given in table A.1 in the

appendix A.

3.3.3. Calculation of the convolution integrals

In order to calculate the response of the coastal ocean we need to estimate the convolution integrals

R−2
n Gn ∗ Π, Gn ∗ ∂x′Π, and 1

Rn
e

x+x′

Rn ∗ Π in the formal solution (3.11). The detailed calculation of

these integrals is presented in the appendix B.1. They read on the f -plane

An(x, κ, ω) := R−2
n Gn(x, x′) ∗ Π(x′)

=
R−2

n

α2
n + b2

(
eαnx cos(bl) +

b

2αn

(
eαn(x−L−l) − e−αn|x+L+l|

)
− Π(x)

)
, (3.18)

Bn(x, κ, ω) := Gn(x, x′) ∗ ∂x′Π(x′)

=
1

α2
n + b2

(
−eαnxb sin(bl) − b

2

(
eαn(x−L−l) − sign(x+ L+ l)e−αn|x+L+l|

)
− ∂xΠ(x)

)
,

(3.19)

Cn(x) :=
1

Rn
Π(x) ∗ e

(x+x′)
Rn

=
1

1 +R2
nb

2

(
e

x
Rn (cos(bl) + bRn sin(bl)) + bRne

(x−L−l)
Rn

)
. (3.20)

The convolution integrals An and Bn cover the oceans response at all time scales and wave

lengths. The wave numbers b and κ in the denominator of these integrals suggests an impact of

the wind scales on the currents response at all frequencies. Before we derive a solution in the

subinertial frequency domain, we therefore investigate the response in the near-inertial frequency

range.

3.3.4. Near-inertial response

The response of the coastal ocean in the near-inertial frequency domain includes inertial oscillations

and inertial waves. We chose exemplary for the near-inertial response the term f−1R−2
n Gn ∗ Yn in

(3.11a) and neglect all exponential terms in the convolution integral (3.18). These exponential terms

correspond to inertial waves that are excited at the boundary of the model domain and propagate

westward. Behind the waves, the geostrophic balance is established, see e.g. Kundu et al. (1983).

We consider only contributions of poles like

un ∝ − v2
∗
hn

1

fR2
n

Π(x)

∫∫
1

α2
n + b2

Q(κ)T (ω)eiκy−iωt dκ

2π

dω

2π
. (3.21)
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The inverse FT w.r.t. κ leads to the calculation of the integral

∫
Q(κ)

1

κ2 + ζ2
n

eiκy dκ

2π
(3.22)

where ζ2
n := λ2

nf
2 − λ2

nω
2 + b2. The above integral is calculated with the help of the convolution

theorem

F(f(κ) · g(κ)) =

∫
f(y′)g(y − y′)dy′

where we choose f(y′) = Q(y′). This leads to the calculation of the integral

∫
1

κ2 + ζ2
n

eiκy dκ

2π
=

1

2ζn

(
Θ(y)e−ζny + Θ(−y)eζny

)
=

1

2ζn
e−ζn|y|

where Jordan’s lemma together with the Residue theorem has been applied. We find for (3.22)

∫
Q(κ)

1

κ2 + ζ2
n

eiκy dκ

2π
=

1

ζ2
n + κ2

0

[
Q(y) +

κ0

ζn

1

2

(
e−ζn|y+a| + e−ζn|y−a|

)]
. (3.23)

The part of the response depending on the meridional coordinate consists of the sum of the wind

forcing function Q(y) and a rectification around the northern and southern boundary of the wind

field,

Mn(y) := Q(y) + Sn(y)

with

Sn(y) :=
κ0

ζn

1

2

(
e−ζn|y+a| + e−ζn|y−a|

)
.

This rectification is small in general as will be shown in section 3.3.5. In the near-inertial frequency

domain, the exponential terms in (3.23) correspond to inertial waves propagating meridionally away

from the boundaries of the wind band, i.e. at y = ±a, and involve branch points at ζn = 0. Once

more, we neglect the wave contribution but consider the first term in (3.23) including the pole

ζ2
n = −κ2

0. The inverse FT w.r.t. ω leads to the calculation of the integral

∫
λ−2

n

ω2 − ∆2
n

i

ω + iǫ
e−iωtdω

2π
= Θ(t)

−1

λ2
n(r2 + ∆2

n)

(
1 − e−rt

(
r

∆n
sin(∆nt) − cos(∆nt)

))
. (3.24)

Here, the frequency

∆n = f
√

1 +R2
n(b2 + κ2

0)

was introduced. This frequency corresponds to the frequency of inertial oscillations. It is enhanced

by the wave numbers of the forcing field b and κ0 and becomes mode dependent through the Rossby

Radius Rn. Such a frequency enhancement is often referred to as "blue shift". This phenomenon is

known from studies of the oceans response to moving fronts where the "blue shift" depends on the

ratio of the inertial wave phase speed and the speed of the moving front, e.g. Kundu and Thomson

(1985), Fennel and Lass (1989). The frequency ∆n is presented in figure 3.7 as a function of the

zonal wind scale L and the Rossby Radius Rn. In general, the zonal scale of the wind forcing exceeds

the Rossby Radius, i.e. R2
nb

2 ≪ 1. Therefore, the frequency shift is weak and the frequency ∆n is
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Figure 3.7. Inertial wave frequency ∆n normalized by f as a function of the zonal wind scale L and the
Rossby Radius Rn.

still near-inertial. But the "blue shift" becomes more apparent if the Rossby Radius Rn increases and

the zonal scale of the wind band L decreases. For typical values of R1 = 50 km and L = 500 km,

the inertial frequency is ∆1 ≈ 1.02 f . If the zonal scales of the wind band are further reduced the

inertial frequency increases to ∆1 & 1.08 f for L ≤ 200 km.

Using (3.24), the near-inertial response of the zonal velocity apart from boundary effects can be

written as

un = − 1

f
Yn

1

(1 +R2
n(b2 + κ2

0))(1 + r2∆−2
n )

(
1 − e−rt

(
r

∆n
sin(∆nt) + cos(∆nt)

))
.

Noting that R2
n(b2 + κ2

0) ≪ 1 and r∆−1
n ≪ 1, we find an approximate expression for the zonal

velocity in the near-inertial frequency domain,

un(x, y, t) ≈ − 1

f
Yn(x, y, t)

(
1 − e−rt cos(∆nt)

)
.

The response consists of the Ekman flow overlayed by inertial oscillations with frequency ∆n. Since

these oscillations are mode dependent the vertical structure of the response is affected. The frequency

is highest at the bottom which leads to an upward phase propagation, see Kundu and Thomson

(1985).

The discussion of the near-inertial response is of course not complete because inertial waves were

not considered. But the evaluation of the corresponding integrals is quite complicated and not the

focus of this study.

3.3.5. Subinertial response

In order to derive the response in the subinertial frequency domain, we have to compute the con-

tribution of the pole ω = 0 arising from (3.17). Here, the denominator of the convolution integrals
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(3.18) and (3.19) becomes α2
n + b2 = λ2

nf
2 + κ2 + b2 provided that r ≪ f . It can be rewritten

to κ2 + ζ2
n where ζ2

n := λ2
nf

2 + b2. For the inverse FT in An and Bn, we apply the LWA, i.e.

κ2 ≪ R−2
n , to the convolution integrals. However, contrary to Fennel et al. (2012), we apply the

LWA only to the exponents, but we keep the poles κ2 = −ζ2
n in the convolution integrals and

consider

An(x, κ) =
R−2

n

κ2 + ζ2
n

(
e

x
Rn cos(bl) +

bRn

2

(
e

(x−L−l)
Rn − e

− |x+L+l|
Rn

)
− Π(x)

)
, (3.25)

Bn(x, κ) =
1

κ2 + ζ2
n

(
−be

x
Rn sin(bl) − b

2

(
e

(x−L−l)
Rn − sign(x+ L+ l)e− |x+L+l|

Rn

)
− ∂xΠ(x)

)
.

(3.26)

A solution in the frequency domain can be derived by applying the inverse FT to the formal solution

(3.11). These calculations are presented in the subsequent subsection.

Response in the frequency domain

The inverse FT of the formal solution for un, vn, and pn demands the calculation of the Fourier

integrals ∫
Q(κ)

1

κ2 + ζ2
n

eiκy dκ

2π
(3.27)

and ∫
Q(κ)

iκ

κ2 + ζ2
n

eiκy dκ

2π
. (3.28)

The integral (3.27) has been calculated in the previous subsection, see equation (3.23). We found

that the response depending on the meridional coordinate consists of the sum of the wind forcing

function Q(y) and a rectification around the northern and southern edge of the wind field denoted

as

Sn(y) =
κ0

ζn

1

2

(
e−ζn|y+a| + e−ζn|y−a|

)
.

Since the integral (3.28) is the derivative of the integral (3.27) w.r.t. y it simply amounts to

1

ζ2
n + κ2

0

∂yMn(y) =
1

ζ2
n + κ2

0

(∂yQ(y) + ∂ySn(y)) (3.29)

where

∂ySn(y) =
κ0

2

(
sign(y + a)e−ζn|y+a| + sign(y − a)e−ζn|y−a|

)
.

Applying the LWA also to the denominator of the convolution integrals would lead to Sn = 0.

Including the rectification Sn, the response becomes mode dependent. We find for the first baroclinic

mode S1 ≤ k0
ζ1

≈ R1κ0 ≈ 0.15 with the maximum value at the northern and southern edge of the

wind field. Thus, the absolute values of the baroclinic velocities and the pressure become slightly

enhanced around the meridional boundaries of the wind field. The rectification in the middle of the

wind band is negligible since the meridional extent of the wind band exceeds the meridional trapping
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Figure 3.8. Comparison of the functions Q(y) and Mn(y) and κ−1∂yQ(y) and κ−1∂yMn(y) for the first
baroclinic mode.
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Figure 3.9. Same as figure 3.8 but for the barotropic mode. The meridional trapping scale in S0(y) is a
tenth of the barotropic Rossby Radius R0.

scale, i.e. a ≫ ζ−1
n = Rn√

b2R2
n+1

≈ Rn. Remarkably, the zonal wave number of the wind band b

determines the meridional trapping scale of the currents around the meridional boundaries of the

forcing field. The shape of the functions Mn(y) and κ−1∂yMn(y) are compared to the function

Q(y) and κ−1∂yQ(y) in figure 3.8 for the first baroclinic mode. The difference between the forcing

functions Q(y) and the function Mn(y) (or their derivatives) is small in the middle of the wind band,

but the smoothing effect around the northern and southern borders is obvious.

The rectification for the barotropic mode is S0 ≤ k0
ζ0

≈ 0.5 and thus higher than for the baroclinic

modes. Since the barotropic trapping scale exceeds the meridional scale of the chosen wind band,

i.e. ζ−1
0 ≈ R0 > |y + a|, the velocities in the middle of the wind band are enhanced by S0 ≈ 0.2.

Therefore, including the term Sn in the solution would give preference to the barotropic mode.

However, the barotropic Rossby radius depends highly on the water depth which is with H = 1000 m

chosen to be relatively large in this model. Anyway, reducing the barotropic trapping scale R0 to a

tenth of its original value keeps the correction Sn ≈ 0 in the middle of the wind band, see figure 3.9.

But the smoothing around the boundaries of the wind field is still ensured.
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The inverse FT of the formal solution for vn and pn demands also the calculation of the Fourier

integral

In(y, ω) :=

∫ −i
ωλn + κ

Q(κ)eiκy dκ

2π
(3.30)

containing the Kelvin wave response. The calculation is presented in the appendix B.2, and the

solution reads

In(y, ω) =
κ0

λ2
nω

2 − κ2
0

(
Θ(a− y)eiλnω(a−y) + Θ(−a− y)eiλnω(−a−y)

−Θ(a− |y|)
(
iλnω

κ0
cos(κ0y) + sin(κ0y)

))
. (3.31)

From the definition of the integral In, equation (3.30), follows immediately

Q(y) = (∂y + iλnω)In(y, ω). (3.32)

Having carried out the inverse FT w.r.t. κ, the solution for the zonal and meridional velocity as well

as for the pressure in the frequency domain can be summarized as follows:

un(x, y, ω) =
v2

∗
hn
T (ω)

(
1

iω
Bn(x)∂yMn(y) +

1

f
An(x)Mn(y)

)
, (3.33a)

vn(x, y, ω) =
v2

∗
hn
T (ω)

(
− 1

iω
∂xBn(x)Mn(y) − λnIn(y, ω)Cn(x)

)
, (3.33b)

pn(x, y, ω) =
v2

∗
hn
T (ω)

(
f

iω
Bn(x)Mn(y) + In(y, ω)Cn(x)

)
. (3.33c)

The convolution integrals An and Bn read

An(x) =
R−2

n

κ2
0 + ζ2

n

(
e

x
Rn cos(bl) +

bRn

2

(
e

(x−L−l)
Rn − e

− |x+L+l|
Rn

)
− Π(x)

)
, (3.34)

Bn(x) =
1

κ2
0 + ζ2

n

(
−be

x
Rn sin(bl) − b

2

(
e

(x−L−l)
Rn − sign(x+ L+ l)e− |x+L+l|

Rn

)
− ∂xΠ(x)

)
.

(3.35)

The integral Cn is presented in (3.20). The response in the time domain is derived in the following

subsection.

Response in the time domain

The inverse FT of the set (3.33) w.r.t. ω leads to the estimation of the integrals

∫
1

iω
T (ω)e−iωt dω

2π
= −Θ(t)

r

(
1 − e−rt

)
(3.36)

and

Jn(y, t) :=

∫
T (ω)In(y, ω)e−iωt dω

2π
.
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From the definition of the integral Jn follows directly

(∂y − (∂t + r)λn)Jn(t, y) = Q(y)Θ(t). (3.37)

The detailed calculation of Jn is presented in the appendix B.2. The result is

Jn(y, t) =
Θ(t)Θ(a− |y|)
λnr(1 +

κ2
0

r2λ2
n

)

(
cos(κ0y) − κ0

rλn
sin(κ0y) − e−rtΨn

(
y +

t

λn

))

+
Θ(a− y)Θ(t− λn(a− y))

λnr(1 +
κ2

0
r2λ2

n
)

(
κ0

rλn
e−rλn(a−y) + e−rtΨn

(
y +

t

λn

))

+
Θ(−a− y)Θ(t− λn(−a− y))

λnr(1 +
κ2

0
r2λ2

n
)

(
κ0

rλn
e−rλn(−a−y) − e−rtΨn

(
y +

t

λn

))
(3.38)

where

Ψn

(
y +

t

λn

)
:= cos

(
κ0

(
y +

t

λn

))
− κ0

rλn
sin

(
κ0

(
y +

t

λn

))

was introduced for convenience. The quantity Jn describes the CJ and Kelvin wave dynamics (in the

time domain) that is an important part of the oceans response to wind forcing. We elaborate on

it when investigating the vertical currents. For the case of homogeneous wind stress in meridional

direction, i.e. Q(y) = 1 and therefore Q(κ) = δ(κ), the integral In = − i
ωλn

and consequently the

integral Jn converges to (3.36). The Kelvin waves vanish from the alongshore response that now

basically consists of a jet that develops with time.

We summarize here the solution for the horizontal currents and the pressure in the time do-

main:

un(x, y, t) =
v2

∗
r hn

Θ(t)

(
−
(
1 − e−rt

)
∂yMn(y)Bn(x) + rMn(y)

1

f
An(x)

)
, (3.39a)

vn(x, y, t) =
v2

∗
r hn

(
Θ(t)

(
1 − e−rt

)
Mn(y)∂xBn(x) − rλnJn(y, t)Cn(x)

)
, (3.39b)

pn(x, y, t) =
v2

∗
r hn

(
−Θ(t)

(
1 − e−rt

)
fMn(y)Bn(x) + rJn(y, t)Cn(x)

)
. (3.39c)

For consistency, the approximation ζ2
n+κ2

0 ≈ R−2
n +b2 is applied to the denominator of the convolution

integrals An and Bn. As a result, these integrals achieve the same denominator as Cn, and we

find

An(x) =
1

1 + b2R2
n

(
cos(bl)e

x
Rn +

bRn

2

(
e

x−L−l
Rn − e

− |L+l+x|
Rn

)
− Π(x)

)
,

Bn(x) =
R2

n

1 + b2R2
n

(
−b sin(bl)e

x
Rn − b

2

(
e

x−L−l
Rn − sign(x+ L+ l)e− |x+L+l|

Rn

)
− ∂xΠ(x)

)
,

Cn(x) =
1

1 +R2
nb

2

(
(cos(bl) + bRn sin(bl)) e

x
Rn + bRne

x−L−l
Rn

)
.
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The calculation of the derivative ∂xBn(x) in (3.39b) is straightforward,

∂xBn(x) =
bRn

1 +R2
nb

2

(
−e

x
Rn sin(bl) − 1

2

(
e

x−L−l
Rn + e

−|x+L+l|
Rn

)
+ bRnΠ(x)

)
.

The response depending on the meridional coordinate Mn in (3.39) is

Mn(y) = Q(y) +
κ0

ζn

1

2

(
e−ζn|y+a| + e−ζn|y−a|

)
.

The derivative ∂yMn and the function Jn was presented in (3.29) and (3.38), respectively.

The convolution integrals An, Bn, and Cn fulfill the relations

∂xAn = R−1
n Cn +R−2

n Bn, (3.40a)

∂xBn = An − Cn + Π. (3.40b)

Combining both equations gives

∂2
xBn −R−2

n Bn = ∂xΠ, (3.41)

R2
n∂

2
xAn −An = Π. (3.42)

Alternatively, these relations can be derived by multiplying (3.8) with ∂x′Y (x′) or Y (x′), respectively,

and integrating from −∞ to 0 afterwards.

As the horizontal boundary conditions (3.2) demand, the convolution integrals An and Bn vanish at

the coast and far offshore, i.e. at x = 0 and at x → −∞. In the case of zero WSC, i.e. L → ∞ and

consequently b → 0, we find

An → e
x

Rn Π(0) − Π(x),

Bn → 0,

Cn → e
x

Rn Π(0).

The equations (3.39) describe the response of the ocean for every single mode n. In order to

gain a solution involving all modes, the mode summation according to (3.4) must be carried out.

This is done by the help of numerical calculations where maximal mode numbers of nmax = 200

for the cross-shore currents and nmax = 800 for the longshore currents and the pressure were

used.
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Consistency of the solution

In the frame of the applied approximations, the equations (3.39) are a solution of the set

fvn + ∂xpn = 0, (3.43a)

(∂t + r) vn − fun + ∂ypn = Yn, (3.43b)

∂xun + ∂yvn + λ2
n (∂t + r) pn = 0. (3.43c)

This system describes the oceans state after the adjustment by inertial waves. We point out that the

presented response is an approximate solution of the set (3.43) as long as the rectification term Sn is

included. Applying the LWA also to the denominator of the convolution integrals An and Bn would

lead to Sn = 0. This procedure yields an exact solution of the set (3.43) as presented by Fennel

et al. (2012). In that approach, however, the response of the zonal velocity is partly governed by the

term ∂yQ due to the occurrence of the meridional wave number κ in equation (3.11a). This results

in sharp edges at the boundaries of the wind band as shown by figure 3.8.

Another possibility of avoiding sharp edges in the response would be using an exponential function

of the type Q(y) ∝ e−y2
instead of a wind forcing that includes the Heaviside function. However,

this would put the error function into play in the calculation of the integral (3.30). Therefore, we

dismissed this option.

Vertical currents

The vertical velocity can be calculated from the pressure field by the help of equation (3.1c) that

reads

wn(x, y, t) = − 1

N2
∂z (∂t + r) pn(x, y, t).

Performing the mode summation

w(x, y, z, t) = − 1

N2

∞∑

n=1

∂zFn(z) (∂t + r) pn(x, y, t)

gives

w(x, y, z, t) = v2
∗
H

Hmix

∞∑

n=1

2λ2
n

π2n2
sin

(
nπ

H
Hmix

)
sin

(
nπ

H
z

)

· (−fMn(y)Bn(x)Θ(t) + (∂t + r)Jn(y, t)Cn(x)) . (3.44)

We neglect hereby the barotropic mode (n = 0) since it is diminished by the very fast barotropic

Kelvin wave anyway. Further, we used

− 1

N2
∂zFn(z) =

Hλ2
n

nπ

√
2

H
sin

(
nπ

H
z

)
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and
1

hn
=

√
2

H

sin
(

nπ
H Hmix

)

πn
H Hmix

.

The term (∂t + r)Jn(y, t) in (3.44) can be estimated from (3.38), and we find

(∂t + r)Jn(y, t) =
Θ(t)Θ(a− |y|)
λn

(
1 +

κ2
0

r2λ2
n

) κ0

rλn

(
λnr

κ0
cos(κ0y) − sin(κ0y) + e−rtΦn

(
y +

t

λn

))

+
Θ(a− y)Θ(t− λn(a− y))

λn

(
1 +

κ2
0

r2λ2
n

) κ0

rλn

(
e−rλn(a−y) − e−rtΦn

(
y +

t

λn

))

+
Θ(−a− y)Θ(t− λn(−a− y))

λn

(
1 +

κ2
0

r2λ2
n

) κ0

rλn

(
e−rλn(−a−y) + e−rtΦn

(
y +

t

λn

))
(3.45)

where we define

Φn

(
y +

t

λn

)
:= sin

(
κ0

(
y +

t

λn

))
+

κ0

rλn
cos

(
κ0

(
y +

t

λn

))
.

The quantity (3.45) describes the Kelvin wave dynamics of the vertical velocity component. In order

to highlight the role of these waves on the upwelling dynamics, we evaluate the inviscid case of (3.45)

and find

∂tJn(y, t) ∝ Θ(t)Θ(a− |y|) cos

(
κ0

(
y +

t

λn

))

− Θ(a− y)Θ(t− λn(a− y)) cos

(
κ0

(
y +

t

λn

))

+ Θ(−a− y)Θ(t− λn(−a− y)) cos

(
κ0

(
y +

t

λn

))
.

The upwelling inside the wind band ceases completely after a time span tn = aλn. This is the time

scale each Kelvin wave mode emanated at the northern boundary of the forcing area needs to cross

the wind band. Kelvin waves excited at the southern boundary (∝ Θ(−a− y)) export the upwelling

into the unforced region. If non-zero friction is considered Kelvin waves do not stop the upwelling

completely.

3.3.6. Discussion of the response

The response of the coastal ocean to a sudden onset of a meridionally and zonally varying wind

on the f -plane was presented in (3.39) and will be discussed in this subsection. The response of

the velocity components and the pressure consists basically of two terms. The one describes the

WSC dynamics governed by the terms including Bn and ∂xBn and is denoted by the affix "curl"

hereafter. The other depicts the coastal dynamics that is a consequence of the coastal inhibition. It

is governed by the terms proportional to An or Cn denoted by the affix "coast". This notation is

related to the source of these terms rather than to its zonal relevance. The shape of the convolu-

29



tion integrals along the zonal coordinate is presented in figure 3.10 and discussed throughout this

subsection.

Zonal velocity

The coastal dynamics of the zonal velocity

ucoast
n ∝ − 1

f
Mn(y)An(x) ≈ − 1

f
Mn(y)

(
Π(x) − Π(0)e

x
Rn

)
(3.46)

fulfills the eastern boundary condition (EBC), i.e. u = 0 at x = 0, and is governed by the Ekman

transport

uEkm
n ≈ − 1

f
Mn(y)Π(x)

away from the eastern boundary, i.e. for x < −Rn. The WSC dynamics of un and vn is obviously

geostrophically balanced which entails

∂xu
curl
n + ∂yv

curl
n = 0.

The divergence of the coastal zonal velocity

∂xu
coast
n = −∂zwn − ∂yv

coast
n

is balanced by the divergence of the vertical velocity and the coastal contribution of the longshore

velocity as can be shown by the help of equation (3.40a).

As long as the wind forcing is homogeneous in alongshore direction, i.e. there is no divergence of the

meridional wind stress, the zonal velocity component consists only of the coastal contribution. If the

wind field is divergent, the term

ucurl
n ∝ −1

r
∂yMn(y)Bn(x) ≈ −1

r
∂yMn(y)R2

n (∂xΠ(x) − ∂xΠ(0)) (3.47)

contributes to the response. Here, the notation ∂xΠ(0) = ∂xΠ|x=0 was introduced. Obviously, the

WSC term fulfills the EBC as well. The importance of the WSC dynamics relative to the Ekman

offshore transport is determined basically by the spatial scales of the wind field and the Rossby

Radius. The meridional scale of the wind field at which the WSC term becomes important can be

estimated from the equations (3.46) and (3.47),

κ0 & R−2
n b−2 r

f
b.
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Noting that R−2
1 b−2 ≈ 40 and r = 0.02 f we find κ0 & 0.8 b. Hence, the long shore wind scale a

must be in the order of (or smaller) than the zonal scale L. Apart from the edges of the wind band,

the WSC contribution to the zonal velocity is

ucurl
n ∝ ∂yMn(y)∂xΠ(x).

If this contribution becomes relevant, it introduces an onshore flow in the south-western and north

eastern quadrant of the wind patch and an offshore flow in the two others. It is worth noting that

the WSC term does not contribute to the overall zonal transport in the wind patch if Q(a) = Q(−a)

since ∫ a

−a
ucurl

n dy ∝
∫ a

−a
∂yMn(y) dy = 0.

This is especially the case when the wind band is symmetric in meridional direction.

In contrast to the Ekman currents that are steady right after the onset of the wind, the WSC dynamics

develops with time,

ucurl
n ∝ Θ(t)

(
1 − e−rt

)
.

The time scale of adjusting equilibrium conditions for that term is the inverse friction parameter. It

is of the order of r−1 ≈ 10 d.

Meridional velocity

The coastal contribution to the longshore velocity in the vicinity of the coast in the case of l ≈ L

(high WSC) is

vcoast ∝ Cn ∝ bRn

1 + b2R2
n

e
x

Rn .

The WSC term contribution is

vcurl ∝ ∂xBn(x) ∝ − bRn

1 + b2R2
n

e
x

Rn .

Both terms compete with each other for their relevance in shaping the coastal alongshore currents.

The WSC term induces an alongshore jet in opposite direction to the coastal dynamics. A similar jet

can be expected around the western edge of the wind field where

∂xBn(x ≈ l + L) ∝ −
(
e

x−L−l
Rn + e

−|x+L+l|
Rn

)
.

For the case of low WSC, i.e. l ≈ 0, we find

vcoast ∝ Cn(x) ∝ 1

1 + b2R2
n

e
x

Rn

whereas the WSC contribution is negligible. The coastal alongshore velocity tends to be dominated

by the gravest modes even more if the WSC is strong.
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The WSC induced alongshore transport between the coast and an offshore spot is determined

by ∫ 0

x
vcurl dx′ ∝

∫ 0

x
∂x′Bn dx

′ = −Bn(x)

because Bn(0) = 0 and thus southward directed between x = −l and x = 0.

Vertical velocity

The vertical velocity is composed of terms representing coastal upwelling and WSC induced upwelling.

The maximum of the coastal upwelling is located at the coast, i.e. x = 0, and the response is trapped

by the Rossby Radius,

wcoast
n ∝ Cn ∝ e

x
Rn .

The WSC driven upwelling wcurl ∝ Bn(x) is zero at the coast. The location of its maximum depends

on the Rossby Radius and on the shape of the wind field,

∂xBn ∝ bRnΠ(x) − sin(bl)e
x

Rn = 0.

The intersection of the functions bRnΠ(x) and sin(bl)e
x

Rn marks the location of maximum WSC

driven upwelling along the x-axis. A numerical approach shows that the maximum of the WSC

driven vertical velocity can be found about two to four times of the Rossby Radius R1 west of the

eastern boundary. A minimum of the vertical velocity related to WSC induced downwelling can be

found in the same distance east of the offshore edge of the wind band. The corresponding maxima

and minima of Bn can be clearly seen in figure 3.10. The location of maximum WSC induced

upwelling is associated with the western edge of the poleward directed meridional flow induced by

the WSC.

32



−1200 −1000 −800 −600 −400 −200 0

−1

−0.5

0

0.5

1

x [km]

 

 

An

Bn

Cn

∂xBn

(a) Rn = 50 km

−1200 −1000 −800 −600 −400 −200 0

−1

−0.5

0

0.5

1

x [km]

 

 

An

Bn

Cn

∂xBn

(b) ) Rn = 20 km

Figure 3.10. Zonal shape of the normalized functions An, Bn, Cn, and ∂xBn for two different Rossby Radii
and l = 500 km.
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3.4. Response to a seasonally varying wind on the β-plane

3.4.1. The pressure equation

On the β-plane, we use a Green’s function for the pressure since the boundary conditions are simple

on p and it is easy to find u, v, and w once p is known, LeBlond and Mysak (1978). We start with

the set of equations (3.1) and derive an equation for p alone,

L (∂t + r) [∆p+ LZp] + β
((
f2 − (∂t + r)2

)
∂xp+ 2f (∂t + r) ∂yp

)
=

L (−f∂xY + (∂t + r) ∂yY ) − 2βf (∂t + r)Y. (3.48)

This is the pressure equation representing the inertial and planetary wave response of the ocean to

meridional wind forcing on the β-plane, see LeBlond and Mysak (1978). Here L := (∂t + r)2 + f2

and ∆ = ∂2
x + ∂2

y is the Laplace operator and β is the variation of the Coriolis parameter with

latitude according to the β-plane approach, i.e. f = f0 + βy. The Coriolis parameter f is assumed

to vary only little, i.e. f0 ≫ βy. While equation (3.48) is complicated for arbitrary time scales it can

be simplified for processes with frequencies much smaller than the inertial frequency (ω < f). We

assume (∂t + r) ≪ f and thus L ≈ f2. Then equation (3.48) simplifies to

(∂t + r)
[
∆p+ f2

Zp
]

+ β∂xp = −f∂xY + (∂t + r) ∂yY.

The term 2β
f (∂t + r)Y was hereby considered to be small. Neglecting furthermore the forcing term

(∂t + r) ∂yY on the right hand side of (3.48) because of (∂t + r) < f , we consequently end up with

a differential equation for the pressure

(∂t + r)
[
∆p+ f2

Zp
]

+ β∂xp = −f∂xY. (3.49)

An EBC for (3.49) can be derived combining (3.1a), (3.1b), and the EBC on u (3.2) to

(∂t + r) ∂xp− f∂yp = −fY at x = 0. (3.50)

The western boundary condition for the pressure p is chosen to be

(∂t + r) p = 0 at x = −∞. (3.51)

Alternatively, equation (3.49) can be derived by methods of perturbation (quasi-geostrophic) theory

where the velocity and the pressure are decomposed into geostrophic and ageostrophic components,

e.g. Gill (1982). The pressure in (3.49) then represents the geostrophic pressure that can be written

in terms of a stream function ψ =
pg

f0
such that

ug = ∂yψ and vg = ∂xψ.
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From the EBC ug = 0 follows ∂yψ = 0 at the coast, i.e. the eastern boundary coincides with a

stream line. Therefore, one can choose

pg = 0 at x = 0. (3.52)

After expansion into eigenfunctions according to (3.4) and FT w.r.t. y and t we find for (3.49) and

(3.50)

∂2
xpn − β

iω
∂xpn − (κ2 +R−2

n )pn =
f

iω
∂xYn (3.53)

and

∂xpn + ξpn =
f

iω
Yn at x = 0. (3.54)

Here, ω = ω + ir and ξ = κ f
ω was introduced for convenience.

Inserting the ansatz ei(kx+κy−ωt) into the homogeneous and inviscid version of (3.49) in the frame

of the LWA yields the linear dispersion relation of Rossby waves,

ωn(k) =
−βk

k2 +R−2
n
. (3.55)

The calculation of the pressure pn according to the equations (3.53) and (3.54) is presented in the

following subsections after specifying the forcing functions.

3.4.2. Forcing function and parameter choices

The spatial wind forcing functions on the β-plane agree with those presented in section 3.3.2. How-

ever, in order to study the oceans response to time changes in the wind forcing, we choose now a

periodic function of the type

T (t) = 1 + T̂ cos(ω0t). (3.56)

The amplitude of the periodic function is typically T̂ = 0.2 according to the seasonal cycle observed

in field data, see figure 2.5. The forcing frequency is ω0 = 2π
365 d ≈ 2 · 10−7 s−1. The Fourier transform

of (3.56) is represented by

T (ω) = 2πδ(ω) + T̂ π
(
δ(ω + ω0) + δ(ω − ω0)

)
. (3.57)

The values of the parameters used in the β-plane model are mostly consistent to those used on

the f -plane. But the choice of the friction parameter r in the analytical model is crucial and will

be discussed throughout this study. As long as otherwise stated, we use a friction parameter of

r = 10−3 f in order to enhance the zonal trapping scale of Rossby waves. The variation of the

Coriolis parameter with latitude is assumed to be β = 2 · 10−11 m−1 s−1. A comprehensive list of

the chosen parameters involved in the analytical β-plane model is given in table A.2 in the appendix

A.
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3.4.3. Source representation of the pressure

A source representation of the pressure pn can be found using Green’s functionKn which obeys

∂2
xKn(x, x′) − β

iω
∂xKn(x, x′) − (κ2 +R−2

n )Kn(x, x′) = δ(x− x′) (3.58)

according to the differential equation (3.53). The calculation of the Green’s function Kn is presented

in the appendix C.1. It reads

Kn(x, x′) =
1

2αn
e− iβ

2ω
(x−x′)

(
ξ − a2

ξ + a1
eαn(x+x′) − e−αn|x−x′|

)
(3.59)

where a1 = − iβ
2ω + αn and a2 = iβ

2ω + αn and

αn(ω) =




i β

2ω

√
1 − ω2

ω2
c

|ω| < ωc
√

1
R2

n
− β2

4ω2 |ω| > ωc




.

Here, ωc = βRn

2 is the critical (maximum) frequency for Rossby waves. The mode number indicating

subscript n has been dropped in the quantities a1, a2, and ωc for convenience.

Setting β to zero in (3.59) yields the Green’s function for the pressure on the f -plane,

Kn(x, x′)
β→0
=

1

2αn

(
ξ − αn

ξ + αn
eαn(x+x′) − e−αn|x−x′|

)
(3.60)

where α2
n

β→0
= κ2 +R−2

n . In contrast to the Green’s function for the cross-shore component, equation

(3.60) includes the explicit Kelvin pole in the frame of the LWA,

1

ξ + αn

β→0
=

ω

f(κ+ λnω)
.

With the help of ξ−a2

ξ+a1
= 1 − 2αn

ξ+a1
equation (3.59) can be reformulated to

Kn(x, x′) = Gn(x, x′) − 1

ξ + a1
ea1xea2x′

(3.61)

whereGn is the Green’s function for the zonal velocity un on the β-plane, see equation (3.10).

A source representation of pn in terms of the Green’s function Kn is derived in the appendix C.2. It

reads

pn(x, ω, κ) =
f

iω
(Kn ∗ ∂x′Yn −Kn(x, 0)Yn(0)) . (3.62)

The expression Kn ∗ ∂x′Yn stands for the convolution integral

Kn ∗ ∂x′Yn =

∫ 0

−∞
dx′Kn(x, x′)∂x′Yn(x′).
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Moreover, we find from equation (3.61)

Kn(x, 0)Yn(0) =
ea1x

ξ + a1
Yn(0)

because of Gn(x, 0) = 0.

3.4.4. Calculation of the response

Calculation of the convolution integrals

The calculation of the pressure pn according to (3.62) demands the calculation of the convolution

integral Kn ∗ ∂x′Π. We find

Kn ∗ ∂x′Π = Gn(x, x′) ∗ ∂x′Π(x′) − 1

ξ + a1
ea1x

∫ 0

−∞
ea2x′

∂x′Π(x′)dx′ (3.63)

with the help of equation (3.61). The integral BR
n := Gn ∗ ∂x′Π is calculated in the appendix B.1

and reads

BR
n (x, ω) = − b

2αn

[(
a2

a2
2 + b2

+
a1

a2
1 + b2

)
ea1x sin(bl) +

( −b
a2

2 + b2
+

b

a2
1 + b2

)
ea1x cos(bl)

− Θ(x+ L+ l)

((
a2

a2
2 + b2

+
a1

a2
1 + b2

)
sin(b(x+ l)) +

( −b
a2

2 + b2
+

b

a2
1 + b2

)
cos(b(x+ l))

)

+
a2

a2
2 + b2

ea1xe−a2(L+l) + Θ(−x− L− l)
a1

a2
1 + b2

ea1(x+L+l) − Θ(x+ L+ l)
a2

a2
2 + b2

e−a2(x+L+l)
]
.

(3.64)

The second contribution in (3.63) amounts to

1

ξ + a1
ea1x

∫ 0

−∞
ea2x′

∂x′Π(x′)dx′ =
1

ξ + a1

b ea1x

a2
2 + b2

(
a2 sin(bl) − b cos(bl) + a2e

−a2(L+l)
)
. (3.65)

Moreover, we need to estimate the contribution at the eastern boundary of the model domain in

(3.62),

Kn(x, 0)Π(0) =
1

2αn
e− iβ

2ω
x
(
ξ − a2

ξ + a1
eαnx − eαnx

)
cos(bl) = − 1

ξ + a1
ea1x cos(bl) (3.66)

where a1 + a2 = 2αn was used.

Response in the x-κ-ω-domain

From equation (3.62), we find the response of the pressure,

pn(x, κ, ω) =
v2

∗
hn
Q(κ)T (ω)

(
f

iω
BR

n (x, ω) +
f

iω

1

ξ + a1
CR

n (x, ω)

)
(3.67)
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where CR
n (x, ω) originates from the sum of (3.66) and (3.65),

CR
n (x, ω) =

a2

a2
2 + b2

(
b sin(bl) + a2 cos(bl) + be−a2(L+l)

)
ea1x. (3.68)

The first term in (3.67) that is proportional to BR
n fulfills the quasi-geostrophic EBC (3.52). The

second term
f

iω

1

ξ + a1
CR

n (x, ω)

fulfills the EBC (3.50), i.e. the boundary condition for time scales where the dynamics of Kelvin

waves need to be considered.

An equation for the meridional velocity component vn can be obtained through the geostrophic

balance (3.43a),

vn(x, κ, ω) =
v2

∗
hn
T (ω)Q(κ)

(
− 1

iω
∂xB

R
n (x, ω) − 1

iω

1

ξ + a1
∂xC

R
n (x, ω)

)
(3.69)

where ∂xC
R
n (x, ω) = a1C

R
n (x, ω).

An expression for the zonal currents un can be derived following the relation (3.1b), and we

find

un(x, κ, ω) =
v2

∗
hn
T (ω)Q(κ)

(
iκ

iω
BR

n (x, ω) +
1

f
AR

n (x, ω)

)
(3.70)

where

AR
n (x, ω) =

1

2αn

[(
ba2

2

a2
2 + b2

− ba2
1

a2
1 + b2

)
ea1x sin(bl) +

(
a3

2

a2
2 + b2

+
a3

1

a2
1 + b2

)
ea1x cos(bl)

−Θ(x+ L+ l)

((
ba2

2

a2
2 + b2

− ba2
1

a2
1 + b2

)
sin(b(x+ l)) +

(
a3

2

a2
2 + b2

+
a3

1

a2
1 + b2

)
cos(b(x+ l))

)

+
ba2

2

a2
2 + b2

ea1xe−a2(L+l) − Θ(−x− L− l)
ba2

1

a2
1 + b2

ea1(x+L+l)

−Θ(x+ L+ l)
ba2

2

a2
2 + b2

e−a2(x+L+l)

]
. (3.71)

Response in the frequency domain

Performing the inverse FT w.r.t. κ in (3.67) leads us to the integral

IR
n (y, ω) =

∫ ∞

−∞

−iQ(κ)

κ+ ω
f a1

eiκy dκ

2π
. (3.72)

Its structure is similar to the integral (3.30) that governs the dynamics of alongshore Kelvin waves,

except for the factor a1
f that accompanies ω. Treating the integral (3.72) formerly, we need to close

the contour in the upper or lower complex κ-plane. Hereby, the sign of ωa1 controls the location

of the pole in the complex plane and, consequently, the propagation direction of the waves with
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wave number ω
f a1. Assuming a southward propagation of these waves demands Im(ωa1) > 0. This

condition can be evaluated in the case of long Rossby waves, i.e. a1 ≈ − iω
βR2

n
, see equation (3.78), and

we find r2 > ω2. This result implies that a southward propagation of Kelvin waves can be achieved

only, if the friction parameter is greater than the forcing frequency. Obviously, this condition can not

be fulfilled in the inviscid limit which points to an inconsistency.

Actually, we have to acknowledge that Kelvin waves act on timescales much shorter than those of

Rossby waves as pointed out already in section 3.1.1. Hence, the longshore dynamics is adjusted

within a relatively small period of time by Kelvin waves, see e.g. Philander and Yoon (1982). The

time scale Kelvin waves need to cross the forced area is a few days corresponding to high frequencies.

In that frequency range, i.e. ω ≫ ωc = βRn

2 , we find

ω

f
a1 ≈ ω

f

(
iβ

2ω
+R−1

n

)
=

(
i
ωc

ω
+ 1

)
ω

f
R−1

n ≈ ω

f
R−1

n = λnω.

Applying this approximation, the integral (3.72) converges to the corresponding integral on the

f -plane (3.30) by using temporal scaling arguments. As a result, the coastal ocean is adjusted by

Kelvin waves at all times modified only by the seasonal cycle and the westward propagation of Rossby

waves.

The fact that Kelvin waves exist independently of the β-effect can be demonstrated by deriving a

wave equation for the meridional velocity component (or the pressure) from the homogeneous and

inviscid version of the set (3.1) near the eastern boundary, i.e. u ≈ 0,

c2
n∂

2
yv − ∂2

t v = 0.

This Kelvin wave equation was obtained without creating any β-terms.

In the case of homogeneous wind forcing in meridional direction, i.e. Q(κ) = δ(κ), the integral

(3.72) converges to f
iωa1

. In accordance to the f -plane results meridional wave propagation van-

ishes.

Summary of the solution

The response of the horizontal velocity components and the pressure in the frequency domain can

be summarized as follows:

un(x, y, ω) =
v2

∗
hn
T (ω)

(
1

iω
BR

n (x, ω)∂yQ(y) +
1

f
AR

n (x, ω)Q(y)

)
, (3.73a)

vn(x, y, ω) =
v2

∗
hn
T (ω)

(
− 1

iω
∂xB

R
n (x, ω)Q(y) − 1

f
In(y, ω)∂xC

R
n (x, ω)

)
, (3.73b)

pn(x, y, ω) =
v2

∗
hn
T (ω)

(
f

iω
BR

n (x, ω)Q(y) + In(y, ω)CR
n (x, ω)

)
. (3.73c)
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The convolution integrals (3.71), (3.64), and (3.68) can be reformulated to

AR
n (x, ω) =

1

HN

[(
R−4

n

(
1 + b2R2

n

)
− b2β2

ω2

)
cos(bl)ea1x − b3β

iω
sin(bl)ea1x

−Θ(x+ L+ l)

((
R−4

n

(
1 + b2R2

n

)
− b2β2

ω2

)
cos(b(x+ l)) − b3β

iω
sin(b(x+ l))

)]

+
b

2αn

[
a2

2

a2
2 + b2

e−a2(L+l) (ea1x − Θ(x+ L+ l)e−a2x)− Θ(−x− L− l)
a2

1

a2
1 + b2

ea1(x+L+l)

]

(3.74a)

and

BR
n (x, ω) = − b

HN

[
R−2

n

(
1 +R2

nb
2
)

sin(bl)ea1x − b
β

iω
cos(bl)ea1x

−Θ(x+ L+ l)

(
R−2

n

(
1 +R2

nb
2
)

sin(b(x+ l)) − b
β

iω
cos(b(x+ l))

)]

− b

2αn

[
a2

a2
2 + b2

e−a2(L+l) (ea1x − Θ(x+ L+ l)e−a2x)+ Θ(−x− L− l)
a1

a2
1 + b2

ea1(x+L+l)
]

(3.74b)

and

CR
n (x, ω) =

a2

a2
2 + b2

ea1x
(
b sin(bl) + a2 cos(bl) + be−a2(L+l)

)
. (3.74c)

Hereby, a common denominator HN = (a2
1 + b2)(a2

2 + b2) = R−4
n (1+ b2R2

n)2 − b2β2

ω2 was introduced.

Furthermore, the relations

a1a2 = R−2
n ,

a1 + a2 = 2αn, and a1 − a2 =
β

iω
,

a2
1 + a2

2 = 2R−2
n − β2

ω2 , and a2
1 − a2

2 = 2αn
β

iω
,

a3
1 + a3

2 = 2αn

(
R−2

n − β2

ω2

)
,

were used during the reformulation process. It is worth noting that in contrast to the f -plane results

the convolution integrals depend on the frequency ω through the β-effect.

The convolution integrals fulfill the equations

∂xA
R
n =

β

iω
∂xB

R
n +R−2

n BR
n + ∂xC

R
n , (3.75a)

∂xB
R
n = AR

n − CR
n + Π (3.75b)
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that converge to the equations (3.40) in the case of β → 0 and consequently ∂xC
R
n

β→0
= R−1

n Cn.

Combining the relations (3.75) yields

(
∂2

x − β

iω
∂x −R−2

n

)
BR

n (x) = ∂xΠ(x), (3.76)

and from (3.53), (3.73c), and (3.75) follows

(
∂2

x − β

iω
∂x −R−2

n

)
CR

n (x) = 0.

Vertical velocity component

The response of the vertical velocity wn in the frequency domain is calculated using the Fourier

transform of (3.1c) that reads

wn(x, y, ω) =
iω

N2
∂zpn(x, y, ω). (3.77)

Inserting the pressure pn and performing the mode summation according to (3.4) gives for the

baroclinic modes (n ≥ 1)

w(x, y, z, ω) = −v2
∗
H

Hmix

∞∑

n=1

2λ2
n

π2n2
sin

(
nπ

H
Hmix

)
sin

(
nπ

H
z

)

· T (ω)
(
fBR

n (x, ω)Q(y) + iωIn(y, ω)CR
n (x, ω)

)
.

Consistency of the solution

The analytical β-plane model is designed to cover a broad frequency band below the inertial frequency.

The coastal oceans response to such forcing includes Kelvin waves that act on time scales of a few

ten days and planetary waves that act on time scales of hundred days. Both types of waves can

not be combined in a consistent linear theory that is uniformly valid at all frequencies. The reason

therefore may be too many approximations while deriving the pressure equation (3.49). Hence, the

presented solution (3.73) does not solve the set (3.1) exactly, but it is a good approximation that

combines Kelvin and Rossby waves in the oceans response.

3.4.5. Discussion of the response in the frequency domain

The basic structure of the solution (3.73) is similar to the f -plane case. It contains the response of

the ocean to the WSC regime and the coastal dynamics separately. The convolution integrals AR
n ,

BR
n , and CR

n pass over to the corresponding functions on the f -plane in the limit β → 0. Since β

does not occur in other quantities than the convolution integrals, the solution (3.73) passes over to

the set (3.39). The same result can be achieved in the high frequency case, i.e. ω → f , because
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of a1/2
ω→f
= R−1

n . Thus, the high frequency limit of the presented β-plane response is the f -plane

solution.

In contrast to the f -plane case, the convolution integrals (3.74) contain two different response parts.

The one is the direct wind driven flow restricted to the area of the wind band containing those terms

proportional to the forcing function Π(x) or its derivative ∂xΠ(x). The other is the indirect response

through waves excited at the edges of the forced region, i.e. terms proportional to ea1x or ea2x. Here,

the expressions ea1x describe long Rossby waves that travel westward into the open ocean with wave

number k1 = −ia1. These waves are either emanated at the coast or at the offshore edge of the

forcing area. The latter waves are proportional to Θ(−x− L− l). The term e−a2x represents short

Rossby waves excited at the offshore edge of the wind band traveling with wave number −k2 = −ia2

eastward into the forced region. The amplitude of the short Rossby waves is very small compared to

the long ones excited at the offshore edge of the wind band as long as the zonal scale of the wind

forcing exceeds the Rossby Radius,

a1

a2
1 + b2

>
a2

a2
2 + b2

⇒ R2
nb

2 < 1.

For frequencies well below the critical frequency of Rossby waves, i.e. ω < ωc, we can develop the

root in the wave number a1 into a power series,

a1 =
iβ

2ω

(
−1 +

√
1 − ω2

ω2
c

)
≈ iβ

2ω

(
−1 +

(
1 − 1

2

ω2

ω2
c

))
= − iω

βR2
n

. (3.78)

From that follows k1 = − ω
βR2

n
in the inviscid case. In the long wave limit, Rossby waves are obviously

non-dispersive. The above performed approximation is referred to as the long Rossby wave approx-

imation (LRWA). For the steady state response, i.e. ω = 0, we find a1 = r
βR2

n
which is the inverse

trapping scale of long Rossby waves in zonal direction. The trapping scale exceeds the zonal scale

of the wind band, i.e. βR2
n

r > l. Consequently, the Rossby wave terms contribute to the response in

the interior forcing area, i.e. x ≈ −l, as demonstrated by the example of the WSC driven vertical

velocity

wcurl
n ∝ ∂xΠ(x) − ∂xΠ(0)e

r

βR2
n

x
. (3.79)

It changes its sign in the interior wind band due to the term ∂xΠ(x), but the specific location is

controlled by the trapping scale in the exponential term. Since the trapping scale decreases with

increasing mode number the location of change of sign is located further offshore for higher order

mode numbers. Otherwise, an increase of the friction parameter decreases the trapping scale. The

near coastal limit for the change of direction in the case of a high friction is then x = −l controlled

by the term ∂xΠ(x) in (3.79).
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3.4.6. An analytical approach to the response in the time domain

The derivation of the oceans response in the time domain is not straightforward as on the f -plane

since the convolution integrals depend on the frequency ω. To access an approximate solution in

the time domain we rewrite the convolution integrals (3.74a) and (3.74b) neglecting the third line

terms,

AR
n (x, ω) ≈ −Π(x) + Π(0)ea1x

+
bR2

n

1 + b2R2
n

1

(ω2 − γ2
n)

(
ω2b(Π(x) − ea1xΠ(0)) + iωγn(∂xΠ(x) − ea1x∂xΠ(0))

)
,

(3.80)

BR
n (x, ω) ≈ R2

n

1 + b2R2
n

−1

(ω2 − γ2
n)

(
ω2(∂xΠ(x) − ea1x∂xΠ(0)) − iωγnb(Π(x) − ea1xΠ(0))

)
. (3.81)

Here, the frequency

γn =
βb

b2 +R−2
n

(3.82)

was introduced. It combines the zonal scale of the wind forcing and the Rossby Radius with the

change of the Coriolis parameter to a temporal scale. The frequency γn vanishes notably on the

f -plane, i.e. for β = 0, and for homogeneous wind forcing in cross-shore direction, i.e. for b = 0. The

frequency γn depends mainly on the Rossby Radius. Its influence on γn is presented in figure 3.11.

The frequency γn is in the range of the forcing frequency ω0 but smaller than the critical Rossby

wave frequency ωc. Notice the similarity of γn to the linear Rossby wave dispersion relation (3.55).

The zonal wave number k in (3.55) is simply replaced by the wave number b representing the zonal

scale of the wind field in (3.82).

In this section, the response of the ocean to a switch-on wind and a periodic forcing in the time

domain is studied exemplary for the leading term in the convolution integral BR
n that impacts

pressure and vertical velocity. The leading term in the case of strong WSC, i.e. l ≈ L, in (3.81)

is
R2

n

1 + b2R2
n

iω

ω2 − γ2
n

(∂xΠ(x) − ∂xΠ(0)ea1x) . (3.83)

Here, the factor (iω)−1 from (3.73c) was included.

Switch-on wind

In a first approach, we neglect the wave term in equation (3.83) and discuss the response to a

switch-on wind. Using (3.17) yields the Fourier integral

∫
i

ω + iǫ

iω

ω2 − γ2
n

e−iωtdω

2π
= Θ(t)

r

r2 + γ2
n

(
1 + e−rt

(
γn

r
sin(γnt) − cos(γnt)

))
. (3.84)

Notice the similarity to the integral (3.24) that is part of the response to spatially inhomogeneous

wind stress in the near-inertial frequency range. The frequency ∆n in (3.24) is replaced by γn here.
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Figure 3.11. Rossby frequency γn and critical
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forcing frequency ω0 versus the Rossby Radius
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n versus the

Rossby Radius Rn.

The response represented by (3.84) consists of a time independent part overlayed by a damped

oscillation. The damping constant of the oscillation is the friction parameter r. In contrast to the

inertial oscillations where ∆n > f ≫ r, the frequency γn is in the order of the friction parameter r

for Rn ≈ 30 km, see figure 3.12. The damping ratio r
γn

is mainly controlled by the Rossby Radius Rn

through the Rossby oscillation frequency γn. For values lower than Rn ≤ 30 km, i.e. on the shelf, for

higher order mode numbers, or higher latitudes, the oscillations are over-damped since the damping

ratio r
γn
> 1. For higher values of the Rossby Radii, as can be found for instance towards the open

ocean, the oscillations are under-damped, i.e. r
γn
< 1.

An approximate response of the wave terms in (3.83) can be achieved for long Rossby waves. The

inverse FT w.r.t. ω in the frame of the LRWA yields the integral

∫
i

ω + iǫ

−iω
ω2 − γ2

n

e−iωte
− iω

βR2
n

xdω

2π

= −Θ

(
t+

x

cn

)
r

r2 + γ2
n

(
e

r

βR2
n

x
+ e−rt

(
γn

r
sin

(
γn

(
t+

x

cn

))
− cos

(
γn

(
t+

x

cn

))))
.

The response of the Rossby wave term consists of a time independent part, i.e. e
r

βR2
n

x
, trapped to

the coast by the trapping scale βR2
n

r and long Rossby waves that travel westward with group speed

cn = −βR2
n. These waves are damped by the time scale r−1. Hence, the trapping scale is the distance

long Rossby waves travel in the time span r−1. Typical first mode phase speeds of long Rossby waves

are in the order of c1 ≈ 0.05 m s−1.
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Periodic forcing

The transient response to a periodic forcing of the term (3.83) is evaluated by using the forcing

function (3.57). Once more, the wave term in (3.83) is neglected in a first approach. The Fourier

integral reads then

∫
T (ω)

iω

ω2 − γ2
n

e−iωtdω

2π
=

r

r2 + γ2
n

+ T̂
ω0(ω2

0 + r2 − γ2
n) sin(ω0t) + r(ω2

0 + r2 + γ2
n) cos(ω0t)

(ω2
0 + r2)2 − 2γ2

n(ω2
0 − r2) + γ4

n

.

(3.85)

The response to the periodic forcing consists of a time independent contribution overlayed by

an oscillating signal with forcing frequency ω0. The response can be rewritten to be proportional

to

cos(ω0t− φn)

where φn is the phase angle between forcing and response,

φn = arctan

(
ω0

r

(
1 − 2γ2

n

ω2
0 + r2 + γ2

n

))
. (3.86)

The phase angle φn is mainly controlled by the ratio of the forcing frequency ω0 and the friction

parameter r. The argument in (3.86) is positive for small Rossby Radii, i.e. Rn ≤ 20 km, as the

second term in (3.86) can be neglected. In this case, the phase angle is in the order of 0.40π.

Thus, the response lags the forcing by about 70 days in this example. For higher Rossby Radii, the

argument in (3.86) decreases and the phase angle between forcing and the response decreases as

well.

The integral including the wave terms in the frame of the LRWA can be calculated similar to (3.85)

by replacing t by t+ x
cn

in the exponent,

∫
T (ω)

iω

ω2 − γ2
n

e−iωte
− iω

βR2
n

xdω

2π
=

r

r2 + γ2
n

e
r

βR2
n

x

+ T̂ e
r

βR2
n

xω0(ω2
0 + r2 − γ2

n) sin
(
ω0

(
t+ x

cn

))
+ r(ω2

0 + r2 + γ2
n) cos

(
ω0

(
t+ x

cn

))

(ω2
0 + r2)2 − 2γ2

n(ω2
0 − r2) + γ4

n

.

The response now consists of Rossby waves with the forcing frequency ω0 and the phase speed cn.

The phase shift between forcing and response depends now additionally on the zonal coordinate

x,

∝ cos

(
ω0

(
t+

x

cn

)
− φn

)
.

It is worth noting that the vertical velocity is related to the pressure field by the time derivative. The

phase angle for w in the transient solution therefore changes to

φw
n = φp

n +
π

2
.
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3.4.7. The numerical evaluation of the response in the time domain

The complete transient response to a periodic forcing can be obtained by calculating the imaginary

and real parts of the convolution integrals numerically. In order to receive a solution in the time

domain, we need to Fourier transform the equations (3.73) w.r.t. ω,

Υ(t) =

∫
T (ω)Υ(ω)e−iωt dω

2π

where T is the wind forcing function, see (3.57), and Υ stands for any of the quantities AR
n , BR

n , CR
n ,

and In, or a combination of these. Performing the above integration yields

Υ(t) = Υ(0) +
T̂

2

(
Υ(ω0)e−iω0t + Υ(−ω0)eiω0t

)
= Υ(0) + T̂ Re(Υ(ω0)e−iω0t) (3.87)

where we used that Υ(ω0) = Υ∗(−ω0). Hereby, the asterisk denotes the complex conjugate. Notice

that

a2
1/2 = −k2

1/2, k1/2(−ω0) = −k∗
1/2(ω0), k2

1/2(−ω0) = k2∗
1/2(ω0),

α∗
n(ω0) = αn(−ω0), iω(ω0) = (iω(−ω0))∗.

From (3.87) it can be seen that the oceans response consists of a steady state signal and a seasonal

cycle with the amplitude T̂ . Averaging the response over one forcing period T0 = 2π
ω0

yields the steady

state response,

Υ(t) =
1

T0

∫ T0

0
Υ(t)dt = Υ(0) +

1

iω0
T̂ Re

(
Υ(ω0)(e−iω0T0 − 1)

)
= Υ(0)

since the transient of the solution vanishes.

3.4.8. Steady state of the inviscid ocean

In this section, we study the response of the currents and the pressure in the inviscid and stationary

regime, i.e. r = 0 and ω = 0. This equilibrium state corresponds to a Sverdrup regime adjusted in

the wake of a Rossby wave. First of all, we investigate the response of the terms associated with

the short Rossby waves and those terms related to long Rossby waves emitted at the offshore edge

of the wind band. These terms are the third row terms in (3.74a) and (3.74b). We find numeri-

cally

a1
ω,r→0

= 0 and a2
ω,r→0

= ∞
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that is consistent with (3.78). Therefore, all exponential terms tend to one and, moreover, the

amplitudes vanish,

1

2αn

a2

a2
2 + b2

=
a−2

2

(a1 + a2)(a−1
2 + a−3

2 b2)

ω,r→0
= 0,

1

2αn

a1

a2
1 + b2

=
a1

(a1 + a2)(a2
1 + b2)

ω,r→0
= 0.

From (3.81) it can now easily be seen that

1

iω
BR

n (x, ω)
ω,r→0

= − 1

β
(Π(x) − Π(0)) (3.88)

and

1

iω
∂xB

R
n (x, ω)

ω,r→0
= − 1

β
∂xΠ(x). (3.89)

Moreover, we find for the convolution integral CR
n

CR
n (x)

ω,r→0
= Π(0) (3.90)

because of
a2

2

a2
2 + b2

=
1

1 + a−2
2 b2

ω,r→0
= 1 and

a2

a2
2 + b2

ω,r→0
= 0.

The function AR
n gives

AR
n (x, ω)

ω,r→0
= −Π(x) + Π(0) (3.91)

because of (3.75b). In the stationary and inviscid regime follows ∂yIn(y) = Q(y) from the definition

of the integral In. Finally, we find the stationary solution for the horizontal current components and

the meridional derivative of the pressure

un(x, y) = −
(

1

β
∂y +

1

f

)
(Yn(x, y) − Yn(0, y)) , (3.92a)

vn(x, y) =
1

β
∂xYn(x, y), (3.92b)

∂ypn(x, y) = −∂y

(
f

β
(Yn(x, y) − Yn(0, y))

)
+ Yn(0, y). (3.92c)

We point out that the analytical β-plane model reproduces the Sverdrup balance (3.92b) in the

inviscid and stationary limit. Moreover, the currents in the stationary and inviscid regime are fully

horizontal because of (3.1c). The equations (3.92) solve the stationary and inviscid version of the

set (3.43), i.e.

fvn + ∂xpn = 0,

−fu+ ∂ypn = Yn,

∂xun + ∂yvn = 0.
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Notice that ∂yvn = −∂x( β
f2 + 1

f ∂y)pn on the β-plane.
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4. Numerical modeling of the Benguela

upwelling system using MOM4

Numerical ocean models provide a useful tool to study the global ocean dynamics. Moreover, they

can be extremely helpful by overcoming sparse field data. Two different numerical ocean models

are used in this study. They are both based on the sub-release MOM4p1 of the Modular Ocean

Model (MOM) that solves the hydrostatic Boussinesq equations on a spherical grid, see Griffies

(2007).

While the one numerical model used in this study is a full realistic model driven by realistic winds and

involving realistic topography, the other is designed as an idealized box model suitable for closing the

gap in complexity between the analytical model and the realistic model or field observations. Both

models are described shortly in the following two sections.

4.1. An idealized box model

The domain of the idealized box model is an enclosed, rectangular basin covering the area of 20°W

to 0° and 10°S to 30°S. Whereas the latitude of the model covers roughly the latitude of the BUS,

the choice of the longitude is somehow arbitrary. The model has a flat bottom and a straight coast

as the eastern boundary located along the prime meridian. The horizontal grid resolution is 0.1°. The

model is forced by a meridional wind stress of artificial shape corresponding to that of the analytical

model. The wind forcing is symmetric around 20°S. Typical scales of the wind forcing with respect

to the analytical model are L = a = 5°. The variable l can be varied between zero and five degrees.

The zonal width of the wind band therefore is variable between five and ten degrees depending on

the choice of the parameter l. The model domain of the numerical box model is presented together

with the shape of the wind forcing in figure 4.1a.

At the latitude of 20°S, the length of 100 km equals ruffly one degree of longitude, and one degree

of latitude equals about 111 km. Hence, the zonal scale of the forced area is comparable to that of

the analytical model. In contrast, the meridional extent of the forcing area is roughly 100 km larger

than that of the analytical model.

The water depth in the model is 1000 m and the water column is resolved by 200 equally spaced

vertical layers. The initial stratification is horizontally and vertically homogeneous. This is achieved

by using a constant potential temperature of 15 ◦C throughout the model domain and a linearly
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increasing salinity from 35 g kg−1 at the surface to 39 g kg−1 at the bottom. This results in a constant

stratification of N ≈ 8 · 10−3 s−1.

Except for the wind forcing, there is no ocean-atmosphere interaction in the model. Therefore, vertical

mixing in the box model is represented by constant mixing coefficients instead of an advanced vertical

mixing scheme.

4.2. A realistic model

The realistic numerical model is designed as a regional ocean GCM. It consists of a physical model

based on MOM4p1 and an embedded biogeochemical model on the base of ERGOM, see Fennel and

Neumann (2004). The biogeochemical model is described in Schmidt and Eggert (2012), and the

physical model is described in Herzfeld et al. (2011). However, this study analyzes only the physical

results of the model.

4.2.1. Spatial and temporal discretization

The model domain stretches from the equatorial belt to the southern tip of Africa and from 10°W to

the African coast, see figure 4.1b. This choice ensures to include the influence of equatorial currents

and the SACW to the north as well as the ESACW to the south. The model grid consists of 382

and 273 cells in meridional and zonal direction, respectively. The horizontal resolution is highest on

the shelf of Namibia and Angola where the grid cells have an approximate width of eight kilometers.

This is in the order of the first internal Rossby Radius on the southwest African shelf. The vertical

resolution is represented by 89 layers stretching with increasing depth. The highest vertical grid

resolution is three meters and can be found in the top layer. The model is based on an Arakawa

B-grid where the velocities are computed at the corners and the tracers, such as temperature or

salinity, at the center of the grid cells.

The temporal discretization of the model uses mode splitting which takes into account the different

time scales of barotropic and baroclinic processes. The baroclinic time step is chosen to be 1200 s,

whereas the barotropic time step is 100 times larger.

4.2.2. Open boundary data

The model domain is connected to the ocean by two open boundaries: to the west and to the south.

The data for the sea level, temperature, and salinity at these boundaries is derived from a global ocean

GCM – the ECCO-model (http://www.ecco-group.org/). The boundary values for nutrients and oxy-

gen are time independent and originate from the World Ocean Atlas (WOA).

The discharge of the 33 most important rivers along the model coast is considered.
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(a) Box model (b) Realistic model

Figure 4.1. Domain of the numerical box model and the realistic numerical model. The color in (a) encodes
an example of the meridional wind stress τy using L = 5° and l = 4° whereas in (b) the grid cell area [km2]
is shaded.
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The bathymetry of the model is based on the ETOPO5 data set with a five minute spatial resolu-

tion.

4.2.3. Atmospheric forcing

The surface fluxes are calculated from model data of the National Centers for Environmental Pre-

diction (NCEP). The wind forcing of the model is critical since the NCEP atmospheric model has

a coarse spatial resolution of 1.875°, and remote sensing data exhibits usually a coarse temporal

resolution. Therefore, wind stress data from an NCEP model and remote sensing data from the

Quick Scatterometer (QuikSCAT) is combined to gain synthetic wind fields that have both high

spatial (1/4°) and temporal (6 h) resolution. Since 2009 daily averaged wind stress fields from the

Advanced Scatterometer (ASCAT) are used since the QuikSCAT mission ended. The switch of the

wind products used for the atmospheric forcing of the model must be kept in mind when analyzing

the model output. Bentamy et al. (2012) compared data from both scatterometers during their pe-

riod of overlap (11/2008 to 11/2009) and found a persistent underestimation of ASCAT winds with

respect to QuikSCAT.

4.2.4. Initialization

The model was initialized in the year 1999 with salinity and temperature data taken from the ECCO

model. The initial nutrient and oxygen values originate from the WOA.

4.2.5. Computation

The computation of the model is performed at the North-German Supercomputing Alliance (HLRN).

Until today, there exist several model runs covering the years 1999 to 2012. Usually, five-day averages

of the model output are stored. In order to gain temporally higher resolved data, the data can be

recomputed.

From the model output, a climatology of the most important physical and ecological data was

calculated. In order to avoid a possible shift in the response due to the switch of the wind forcing

products in the year 2009 the climatology was limited to the period of 2000 to 2008. Monthly averages

presented throughout this study are based on that climatology.

4.2.6. Validation

Since the model is constantly developed further the validation of the results is an ongoing process.

The latest validation of the model was performed by Muller (2013) who compared the general current

pattern as well as the salinity and temperature distribution from the numerical model output with

mooring data, remote sensing fields, and data from the WOA. Muller (2013) found that the model
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is able to simulate regional patterns and features across the Benguela region sufficiently well. In

particular, the model represents the seasonal cycle of the currents appropriately. Nevertheless, some

shortcomings of the model performance were reported. A time series of current data from a long term

mooring on the shelf of Namibia suggested a possible overestimation of northward flow by the model

and an underestimation of the poleward transport. Furthermore, a positive sea surface temperature

(SST) bias of up to 2 K compared to remote sensing data was found in the northern BUS. A possible

reason for this bias may be the coarse spatial resolution of the NCEP atmospheric forcing data that

leads to wrong heat fluxes at the surface.
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5. Current patterns in the Benguela upwelling

system

5.1. The meridional currents

The basic response of the longshore flow to the sudden onset of a wind in eastern boundary upwelling

systems is governed by an equatorward directed CJ in the mixed layer above a poleward directed

undercurrent. Previous studies showed that these currents are modified if zonal variations of the wind

stress are considered, e.g. Hurlburt and Thompson (1973), Johnson (1976), McCreary et al. (1987),

Fennel and Lass (2007). The southward flow is strengthened and the PUC seems to near the surface.

The observed surface poleward flow is often referred to as a counter current since it flows against

the local wind.

The aim of this section is describing the interplay between Kelvin waves and zonally and meridionally

varying wind stress in shaping the meridional flow along the coast of the BUS.

5.1.1. Near-surface patterns of the meridional currents

A horizontal view on the meridional surface currents derived from the analytical f -plane model 50

days after the onset of the wind is presented in figure 5.1. The wind maximum is located 425 km

offshore of the eastern boundary which results in a strong WSC near the coast. The meridional near-

surface currents comprise a southward intensifying, equatorward directed CJ and a weak poleward

flow in the northern half. This poleward flow is driven by the strong WSC. The development of

these patterns can be explained as follows: Kelvin waves are emanated at the northern edge of

the forced area immediately after the onset of the wind; these waves travel southward and arrest

the developing CJ at earlier stages (and therefore less strength) in the north due to their shorter

traveling time. To the south, where the CJ has more time to develop, the CJ overcompensates the

WSC driven poleward flow. Therefore, the CJ strengthens to the south while the poleward flow

at the surface weakens. Southward propagating Kelvin waves are also responsible for the export

of the CJ south of the forcing area, i.e. for y ≤ −500 km. Away from the eastern boundary, the

meridional velocity increases and reaches a local maximum in the vicinity of the wind maximum at

x = −425 km.

A southward intensification of the CJ in the BUS is demonstrated by the dynamic topography derived

from CTD data recorded during April and May 2004, see figure 5.2. The isobars in ten meter depth
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Figure 5.1. Near-surface meridional currents v

[cm s−1] from the analytical f -plane model at 10
m depth 50 days after the onset of the wind. The
wind maximum is located at x = −425 km. Neg-
ative currents (poleward directed) are shaded
gray. The equatorward directed CJ intensifies
to the south. The poleward surface flow in the
north is a consequence of the WSC.
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Figure 5.2. Dynamic topography [m] in ten me-
ter depth derived from CTD data recorded dur-
ing April and May 2004. The figure is redrawn
from Mohrholz et al. (2008). The southward
narrowing isobars imply a southward intensifi-
cation of the equatorward directed geostrophic
currents.

narrow to the south implying an intensification of the zonal pressure gradient. This in turn results in

a southward intensification of the alongshore geostrophic currents.

However, the mean shape of the meridional flow in the BUS can barely be covered by observations.

Numerical simulations can help to overcome this data gap. The mean meridional velocity in the

surface layer (10 m) from the realistic numerical model is presented in figure 5.3 for January and

July. The model data shows an equatorward directed CJ in the surface layer that is much more

pronounced in July than in January. Beside that, a clear southward intensification of the CJ in both

months is observed. In January, a surface poleward counter current is present seaward of the CJ. It

stretches from 18°S to about 28°S. In July, the poleward directed surface current is poorly developed.

The seasonal and interannual variation of the meridional transport and its relation to the wind forcing

will be investigated in section 5.2.

Both the intensification of the CJ and the weakening of the poleward surface counter current to the

south is predicted by the results of the analytical model. These findings suggest that the observed

patterns of the poleward surface and subsurface flow in the BUS develop independently of the

southward continuation of the AC along the African coast.

56



(a) January (b) July

Figure 5.3. Mean meridional currents [m s−1] in the surface layer (10 m) derived from the realistic numerical
model for January and July. The southward intensifying CJ near the coast is more pronounced in July. In
January, a poleward directed surface current adjacent to the CJ is observed.

5.1.2. Vertical pattern of the meridional currents

The mean meridional velocity from the realistic numerical model along five zonal transects from 16°S

to 28°S is presented in figure 5.4. The equatorward directed CJ in the vicinity of the coast and the

PUC are clearly observed. The PUC is strongest in summer and at the northernmost section where

it reaches close to the surface. This is in accordance with the near-surface pattern of the meridional

velocity presented in figure 5.3. The zonal sections reveal a southward deepening and weakening of

the PUC in the BUS that has recently been reported by Veitch et al. (2010) and Muller (2013). The

deepening is more apparent during winter (JJA) at the southernmost section when the poleward flow

is limited to depth greater than 200 m.

The deepening of the PUC may be explained by noting that it is established by southward traveling

coastal Kelvin waves. As the gravest wave modes are associated with the highest phase speeds,

they reach further south than higher order modes. Therefore, only the gravest modes are involved

in the generation of the PUC at higher latitudes. Following this concept, the vertical structure of

the meridional currents along the latitude can be displayed as a function of the involved number of

modes. A cumulative sum of the first twenty modes contributing to the meridional velocity near the

eastern boundary is presented in figure 5.5. The minimum flow representing the core of the PUC

is marked by dots. The data reveals a clear shoaling of the PUC the more modes get involved. In

other words: the flow minimum can be found at higher depth if only the gravest modes contribute

to the currents. These modes are associated with the highest vertical scales. These findings are in

accordance with Philander and Yoon (1982). In the case of R1 = 50 km, at least three modes are

necessary to establish a minimum below the surface layer in the analytical model results. A decrease

of the baroclinic Rossby Radius deepens and weakens the poleward alongshore currents, see figure
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(a) DJF

(b) JJA

Figure 5.4. Mean meridional velocity [m s−1] in the BUS through five different zonal sections between 16°S
and 28°S during summer (DJF) and winter (JJA) taken from Muller (2013). The data reveals a southward
deepening of the PUC.

5.5b. This makes sense since the Rossby Radius decreases if the stratification decreases; and the

currents should become more barotropic in regimes where the stratification is weak, McCreary and

Chao (1985).

The PUC exhibits seasonal variations concerning its mean depth. It is located deeper in winter than

in summer especially south of 19°S, see figure 5.4. This corresponds to the seasonal variation of the

stratification. Since the mean stratification is weaker in winter than in summer, and consequently the

Rossby Radius is smaller, the PUC can be found at higher depth in winter.

The data presented in figure 5.4 also reveals an offshore migration of the PUC at higher latitudes

that is more apparent in winter than in summer. This peculiarity may also be explained by the vertical

mode structure of the meridional currents. The PUC gets less tightly trapped to the coast at higher

latitudes when only the gravest modes are involved, Clarke (1989).

Basic properties of the vertical meridional flow pattern in the BUS may be explained by the vertical

mode structure of the currents. Nevertheless, there may be various other reasons for the south-

ward deepening and offshore migration of the PUC. For instance, topographic effects may play
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Figure 5.5. Cumulative sum of the first twenty modes contributing to the meridional velocity v [cm s−1] from
the analytical f -plane model. The currents were calculated closed to the eastern boundary in the middle of
the wind band, i.e. at y = 0, x = −10 km, for two different Rossby Radii. The wind maximum is located at
x = −400 km. The minimum flow representing the core of the PUC is marked by dots. The core of the PUC
can be found at higher depth if only the gravest modes are involved.

a role since width and steepness of the shelf vary with latitude. Furthermore, the β-effect and

the conservation of potential vorticity must be taken into account as proposed by Veitch et al.

(2010).

5.1.3. Response to zonal variation of the forcing

The meridional velocity is shaped by an interplay of the coastal and the WSC dynamics as shown by

results of the analytical model. The flow pattern in the vicinity of the coast are determined by the

strength of the wind stress and the WSC near the eastern boundary. Both wind stress and WSC can

be modified in the analytical model with the variation of the distance of the wind maximum to the

coast.

Figure 5.6 presents the meridional velocity from the analytical f -plane model along the cross-shore

coordinate x as a function of the distance of the wind maximum to the coast l. The strength

of the WSC at the eastern boundary hereby increases with increasing l, whereas the wind stress

weakens. The flow patterns are calculated for two different depth levels. At ten meters depth, a

strong equatorward directed CJ (v > 20 cm s−1) exists in the vicinity of the coast for low values

of l. This jet weakens for increasing WSC until it is overcompensated by the WSC driven poleward

flow for values of l & 450 km. The surface counter current becomes apparent seaward of the CJ at

l ≈ 420 km and further increases in strength and offshore extension with increasing WSC. For a small

range of l, the counter current and the CJ exist side by side. The poleward flow reaches its maximal

offshore extent of about 100 km at l = 500 km, i.e. when the WSC is strongest. The flow at 100

m depth is governed by the PUC in the vicinity of the coast. It has a constant offshore extent for

l . 400 km. For greater values of l the offshore scale increases to an extend that is similar to that in

the surface layer.
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Figure 5.6. Meridional velocity v [cm s−1] from the analytical f -plane model as a function of the distance of
the wind maximum to the eastern boundary l and the zonal coordinate x for two depth levels 20 days after
the onset of the wind. The currents are calculated in the middle of the wind band, i.e. at y = 0. Negative
currents (poleward directed) are shaded gray. High WSC, i.e. for l & 420 km, introduces a poleward flow
beside the PUC that is observed at z = 100 m in the very vicinity of the coast.

The poleward surface counter current that is often observed in field data and model results is explained

by the analytical model on the f -plane. However, it must be pointed out that the spatial scales of

the wind field at which that current occurs as well as the offshore scales of the poleward flow do

not seem realistic. Moreover, the response is very sensitive to small shifts of the wind field. Using

the example of January, the distance of the wind maximum to the coast is in the order of about

300 km at 23°S, see figure 3.4. In fact, a poleward surface current is clearly observed in model data

at ten meter depth and stretching about 100 km offshore in January, see figure 5.3a. A solution

to this contradiction is provided by the β-effect, see figure 5.7. The meridional flow patterns on

the β-plane agree basically with those on the f -plane, although the overall poleward flow on the

β-plane is enhanced. This is consistent with the results of McCreary and Chao (1985) who found

that the β-effect acts to significantly weaken the equatorward flow and to slightly increase the

poleward currents. The poleward counter current on the β-plane occurs already for l & 250 km, i.e.

for lower WSC values as on the f -plane. The offshore extent of the poleward flow is about 150 km

for l = 300 km and in the order of the observed values for January. The maximal offshore extent of

the poleward surface flow increases to x ≈ −300 km on the β-plane due to an enhanced trapping

scale. Moreover, the response is not as sensitive to zonal changes of the wind field compared to the

f -plane results.

The WSC introduces a poleward flow beside the PUC. Since the poleward surface current does not

develop as a second cell or core beside the PUC it appears as a surfacing of the PUC. In fact,

however, the surface counter current and the PUC result from different mechanisms as shown in

the theoretical considerations in section 3.3.6. Whereas the PUC is introduced by Kelvin waves, the

WSC driven poleward flow is not affected by coastal waves.
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Figure 5.7. Same as 5.6 but for the stationary part of the meridional velocity on the β-plane. The friction
parameter is r = 0.02 f . Negative currents (poleward directed) are shaded gray. The WSC induced poleward
flow is observed already for lower WSC values on the β-plane, and the overall poleward directed flow is
enhanced.

Results from the analytical models show that the existence of a WSC in eastern boundary upwelling

systems increases the overall poleward flow. The poleward directed currents in the surface layer

do not result from the β-effect since they can be explained by the help of the f -plane model.

Nevertheless, the β-effect is needed to explain the currents structure using realistic scales of the

wind field.

5.2. Temporal variability of the meridional transport

Results from the preceding section showed that there is a close connection between the meridional

currents and the strength of the wind stress and the WSC. In this section, the response of the

meridional transport to the seasonal cycle of the wind stress and the WSC in the BUS is studied.

The investigations are based on data of the realistic numerical model and remotely sensed wind

data.

Referring to Muller (2013), the meridional transport between the coast and the 300 m isobath is

calculated and presented in figure 5.8a. The region north of 20°S was excluded from the calculation

since the shelf becomes very steep there and the area between the coast and the 300 m isobath consists

of only very few grid cells. The meridional transport is positive throughout the year south of 28°S but

exhibits minima in the summer and maxima in the winter. North of that parallel, the direction of the

meridional transport varies seasonally. It is directed southward in the summer and northward during

winter. That distinct seasonal cycle is consistent with field observations, see Mohrholz et al. (2008).

In most years, there exist biannual minima from October to November and February to March in

the data. The meridional transport in the BUS exhibits strong interannual variations. A period of

strong northward transport during the years 2000 to 2002 is followed by the years 2003 and 2004
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(a) Meridional transport (b) WSCA

Figure 5.8. Smoothed time series of the meridional transport [Sv] between the coast and the 300 m isobath
and the WSCA [10−4 N m−2 km−1] averaged over the same region. Notice that a positive WSCA corresponds
to low values of absolute WSC. The meridional transport is in phase with the WSC except for a region
between 25°S and 27°S. Even the biannual cycle of the WSC is mirrored in the meridional transport.

where the equatorward transport is rather weak. As a consequence, the seasonal variation during that

period is relatively small. Long term data from a mooring located on the shelf at about 23°S confirms

that the meridional transport in the year 2004 was exceptional negative compared to other years (V.

Mohrholz, personal communication). The meridional transport is relatively homogeneous along the

latitude north of about 25°S, but that latitude seems to denote a "boundary" at which, especially

in the summer, the absolute meridional transport changes remarkably throughout the whole time

series. Such latitudinal differences in the transport may of course rise from topographic variations

along the shelf. South of about 28°S, the meridional transport is directed northward at all times.

The change in direction between the seasons north of 28°S suggests a high seasonal variability in the

cross-shore transport between 28°S and 26°S which is in accordance with findings of Muller (2013).

The confluence zone between 26°S and 28°S coincides with the latitude to witch the existence of

tropical SACW has been observed in model and field data, see e.g. Fennel et al. (2012) and Gordon

et al. (1995).

In order to investigate the connection between the meridional transport and the WSC, a time series

of the WSC anomaly (WSCA) along the latitude is shown in figure 5.8b. The data reveals a distinct

seasonal cycle that is surprisingly uniform along the latitude regarding the latitudinal differences in

the seasonal cycle of the wind stress. The WSCA is in the order of about 25 percent of the observed

values for the WSC, compare to figure 2.4. The WSCA is in phase with the meridional transport

except for a region between 25°S and 27°S where the WSC exhibits a high temporal variability. This

region coincides with the location of the Lüderitz upwelling cell, where the wind maximum can be

found close to the coast throughout all seasons, see figure 2.3. Positive values of the WSCA (referring

to small absolute values of negative WSC) correspond to northward meridional transport, whereas
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(a) (b)

Figure 5.9. Smoothed time series of the meridional transport [Sv] (black, left axis) compared to (a) the WSC
[10−4 N m−2 km−1] (red, right axis) and (b) the meridional wind stress [N m−2] (blue, right axis) at 24°S.
The wind stress changes its phase in winter 2003/2004. This may explain the weak poleward flow around
that time.

a negative WSCA is linked to poleward transport. There is also a biannual cycle in the WSC most

pronounced north of about 24°S. It leads to minima in the WSCA around November and March

observed most clearly during the years 2005 to 2007. These minima correspond to the biannual

minima found in the meridional transport.

An example of the presented time series of the meridional transport and the WSCA is plotted in figure

5.9a at 24°S. The long term averaged meridional transport through that latitude is directed southward

and amounts to about −0.16 Sv. The time series suggests again that there is a close coupling between

the strength of the WSC and the strength and direction of the meridional transport along the shelf.

A weak WSC leads to an equatorward transport, whereas strong values of (negative) WSC lead to a

poleward transport.

Nevertheless, the WSCA does not explain the conspicuous interannual variations of the meridional

transport. Since these variations are most pronounced during periods of northward transport (winter)

the strength of the wind stress may provide an explanation. A smoothed time series of the meridional

wind stress is presented in figure 5.9b. The data reveals a higher temporal variability than observed

in the WSC. The seasonal cycle of wind stress and WSC, however, compare but exhibit a phase

opposition concerning their strength, i.e. their absolute values. Small absolute WSC values correspond

to maxima in the meridional wind stress. Therefore, high wind stress in winter corresponds to a

northward transport. In winter 2003/2004, the wind stress changes its phase by about half a year

and exhibits a maximum around December 2003 where a minimum is supposed. This wind stress

maximum corresponds to the lowest southward transport in summer observed in the time series.

From 2006 on, the wind is again in phase with the seasonal cycle of the WSC. Assuming that the

wind stress drives a northward, whereas the WSC drives a southward meridional transport, a phase

shift of the wind stress by about half a seasonal cycle would lead to weaker northward transport

in winter and weaker southward transport in summer in the BUS. This mechanism may provide an

explanation for the observed interannual variations in the meridional transport. Nevertheless, remote

effects such as coastally trapped waves may also play a role in causing interannual variabilities of the

meridional transport.
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Lass and Mohrholz (2008) reported biannual maxima in the coastal sea level elevation along the

southwest African coast in September to November and February to April and related them to an

equatorial Kelvin wave and a freshwater surplus in the eastern tropical Atlantic. These maxima match

with observed biannual minima in the meridional transport presented in this study. Indeed, this fact

does not contradict the findings of Lass and Mohrholz (2008) since a positive sea surface anomaly

is geostrophically balanced by a southward transport anomaly. However, this study suggests that the

meridional transport and the sea level variation in the BUS are triggered by the WSC. Interannual

variations in the meridional transport may be explained by variations of the phase and strength of

the wind stress.

5.3. Cross-shore circulation in inhomogeneous wind fields

5.3.1. General patterns

Spatial inhomogeneities of the wind field in both meridional and zonal direction introduce a contri-

bution to the zonal velocity beside the Ekman transport and its rectification in the subsurface layer,

see section 3.3.6. This additional component was referred to as WSC dynamics although it is linked

as well to the divergence of the wind field. The major aim of this section is to elucidate the role of

both the Ekman and the WSC regime in shaping the zonal velocity.

The near-surface zonal velocity from the analytical model is compared to the outcome of the numerical

box model in figure 5.10. The presented data is an average over the first ten days after the onset of the

wind. The averaging filters out inertial effects in the numerical model data that are not captured by the

analytical model. For comparability, the analytical model results are averaged over the same period of

time. The near-surface zonal currents in the analytical model results are negative almost throughout

the entire forcing area since they are dominated by the Ekman offshore transport, see figure 5.10a. In

the southern half of the wind patch, the offshore flow faces an onshore transport caused by the WSC

dynamics. In contrast, in the northern half of the wind band, the Ekman transport is supported by

an offshore flow. The resulting zonal surface currents exhibit a clear north-south asymmetry. In the

numerical box model, the WSC dynamics is rather weak compared to the analytical model results,

see figure 5.10b. This is clearly seen in the weaker onshore transport in the southern half resulting in

less distortion of the isotachs in the forced area. The different representation of the WSC dynamics

in both models can have many causes. Beside the fact that various approximations went into the

calculations of the analytical model results, both models are not comparable one-to-one in many

respects. Friction, for instance, is parametrized in a different way in the numerical model compared

to the analytical model. The mixed layer depth and the stratification may also differ slightly. Enhanced

friction would reduce the influence of the WSC dynamics on the zonal flow, see equation (3.47), and

a shallower mixed layer depth would strengthen the Ekman transport. Another reason for the different

representation of the WSC dynamics in both models may be due to the fact that the meridional extent

of the wind band in the numerical model is slightly larger than in the analytical model, see section 4.1.

This leads as well to an underestimation of the WSC dynamics in the numerical model. Nevertheless,
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Figure 5.10. Near-surface zonal velocity u [cm s−1] at 7.5 m depth from the analytical f -plane model and
the numerical box model averaged over the first ten days after the onset of the wind. The wind maximum
is located at x = −400 km. The latitude in (b) has been centered and normalized by the length of the wind
band for comparability with figure 5.12. Negative currents are shaded gray.

the effect of the WSC dynamics on the zonal currents is reproduced by the numerical model not

least because of the strict north-south flow separation west of the wind band.

A meridional section of the zonal velocity from the analytical model 100 km off the eastern boundary

is shown in figure 5.11a. As discussed already, the flow in the mixed layer is dominated largely by

the Ekman offshore transport. Below the surface mixed layer, the currents are governed by the WSC

dynamics that separates the response in a northern half where the flow is directed offshore and a

southern half where the flow is onshore directed. The zero isotach separating those regions is slightly

shifted to the north due to a small onshore contribution of the Ekman rectification flow along the

whole transect. This contribution to the currents below the mixed layer is also the reason why the

onshore directed flow in the south is stronger than the offshore currents in the northern half. The

currents below the mixed layer are dominated by the barotropic signal because the WSC dynamics

is proportional to the square of the Rossby Radius, see equation (3.47).

The vertically integrated and normalized velocity in the mixed layer and the layer below is shown in

figure 5.11b together with the forcing function in meridional direction and its derivative. The data

reveals again that the zonal circulation in the mixed layer is basically proportional to the wind forcing,

whereas the dynamics below the mixed layer is linked to the divergence of the wind forcing. The

northward shift of the mixed layer maximum flow against the wind maximum is a typical characteristic

of the interplay of the WSC and the Ekman regime. Another peculiarity in that system is the shift

of the sub-surface integrated flow maxima and minima from the edges of the wind band towards the

wind maximum.
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Figure 5.11. (a) Zonal velocity u [cm s−1] from the analytical f -plane model along a meridional transect, i.e.
at x = −100 km, 20 days after the onset of the wind. Only the upper half of the water column is shown for
clarity. The wind maximum is located at x = −100 km. Negative currents are shaded gray. (b) Comparison
of the normalized vertically averaged zonal currents presented in (a) in the mixed layer (0 to 20 m) and the
layer below (20 to 300 m) to the wind forcing functions Q and κ−1∂yQ.

5.3.2. Response to a varying length of the wind band

Since the response of the ocean that is related to the WSC is proportional to the divergence of

the wind field, the meridional scale of the wind band should influence the zonal currents. The

analytical model predicts an enhanced contribution of the WSC dynamics to the zonal velocity if

the meridional scale of the wind band decreases, see section 3.3.6. This would express, for instance,

in an intensification of the surface onshore flow in the southern half of the wind band. In order to

evaluate the analytical model results in that respect, two runs with the numerical box model for two

different lengths of the wind band were performed.

A horizontal view on the near-surface zonal currents from these model runs is shown in figure 5.12.

The latitude is centered and scaled by the length of the wind band for comparability purposes. In

order to evaluate the different time evolution of the WSC dynamics and the Ekman transport by the

way, the results have been averaged this time over the days 10 to 20 after the onset of the wind.

Whereas the Ekman transport adjusts immediately after the onset of the wind, the WSC dynamics

develops with a time constant being the friction rate (r−1 ≈ 10 d), see section 3.3.6. A comparison
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Figure 5.12. Near-surface zonal velocity u [cm s−1] at 7.5 m depth from the numerical box model averaged
over the days ten to twenty after the onset of the wind for two different lengths of the wind band. The wind
maximum is located at 4°W and the western edge of the wind band at 9° W. The latitude has been centered
and normalized by the length of the wind band for comparability. Negative currents are shaded gray.

of the figures 5.10b and 5.12a confirms the analytical model results in that respect since the onshore

transport in the southern half of the wind band is stronger as more time elapsed after the onset of

the wind.

The zonal velocity at the southwestern corner of the wind band is remarkably increased when the

length of the wind band is decreased, see figure 5.12. The offshore transport in the southeast of

the model domain is weakened. Consequently, the convergence zone between the onshore and the

offshore flow in the southern half is shifted towards the coast. Moreover, the offshore flow in the

northwestern forcing area increased slightly, and in the northeast, the onshore flow (that is also part

of the WSC regime) increases.

As a summary it may be stated that inhomogeneities of the wind field in both meridional and

zonal direction modify the classical picture of the zonal currents in upwelling systems. The dynamics

caused by the inhomogeneity of the wind field introduces an onshore (offshore) flow in the southern

(northern) half of the wind band. Whereas the flow in the mixed layer is basically governed by the

Ekman currents, the WSC dynamics dominates below the mixed. The smaller the wind scales, the

more important the WSC contribution becomes.

5.4. Cross-shore dynamics in the very northern Benguela upwelling

system

The results of the analytical theory show that there is a distinct north-south asymmetry of the zonal

flow in systems with high inhomogeneities in the wind stress. This may be a reason for the remarkably
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northward spreading of cold upwelled water that can often be seen in remotely sensed SST data,

e.g. Fennel et al. (2012). Indeed, the existence of a frontal band (detected in SST and chlorophyll a

data) appearing to be more diffusive in the northern BUS than in the southern was already reported

by Shannon (1985). However, there is no indication for a persistent surface onshore flow in the

southern BUS from observations or the realistic numerical model. As the coast of southwest Africa

is not strictly orientated meridionally and, more importantly, changes its orientation, computing the

onshore velocity component along the entire coast of the BUS is not trivial. Apart from that, a

likely reason why this peculiarity is not observed is the meridional scale of the winds in the BUS.

As estimated in section 3.3.6, the meridional scales of the wind band at which the WSC dynamics

becomes important for the zonal velocity must be comparable to (or smaller) than the zonal wind

scales. If we consider the zonal wind scales in the BUS to be determined by the WSC, the meridional

scales must not exceed a few hundred kilometers. Thus, the effect of the WSC dynamics on the zonal

velocity in the entire BUS can assumed to be weak. But the situation might be different in regions

of enhanced meridional wind stress close to the coast that are characterized by high wind stress

divergence such as off Lüderitz and in the Cape Frio region, see figure 3.5. Therefore, this section is

dedicated to the investigation of the cross-shore dynamics and its relation to the wind forcing in the

Cape Frio region.

5.4.1. The Cape Frio cell

The area between 15°S and 19°S located off Cape Frio is referred to as the Cape Frio cell (CFC)

in this study. The CFC can be considered as the northern gate to the BUS for tropical waters. The

poleward surface and subsurface continuation of the AC transports nutrient rich and oxygen poor

SACW through that region into the northern Benguela ecosystem. The dynamics in the CFC are

therefore highly relevant for the biogeochemical conditions on the shelf of southwest Africa. Recent

comparisons of the cross-shelf and along shelf transport budgets in the northern BUS based on realistic

model data presented by Muller (2013) show that the annual mean cross-shelf transport between

16°S and 19°S is nearly of the same amount as the longshore transport through 16°S but exhibits a

higher seasonal variability. These findings suggest an enhanced influence of the cross-shelf transport

on the ecosystem variability in comparison with the meridional currents.

The CFC is characterized by a very pronounced and persistent wind patch with a mean wind maximum

located at about 17°S in a distance of about 50 to 100 km to the coast, see figure 2.3. It has a

meridional extent of about 400 to 500 km. The shelf in that region is very narrow and steep and

changes drastically to the south, see figure 2.1.

5.4.2. Zonal currents in the Cape Frio cell from observations and model data

Beside the poleward continuation of the AC, a partly offshore bending of that flow between 15°S

and 19°S is indicated in several studies but not discussed, e.g. Mohrholz et al. (2001), John et al.

(2004), Colberg and Reason (2006). However, field data is very rare in that region and observations
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Figure 5.13. Remotely sensed meridional wind stress component [N m−2] off Cape Frio averaged from April
to May 2004. The wind mimics the typical forcing conditions with a wind maximum around 17°S located
about 100 km off the coast.

are mostly based on meridionally oriented transects that follow the cross-shelf gradients, e.g. Lass

et al. (2000), Mohrholz et al. (2001).

A map of the dynamic ocean topography derived from CTD data in the northern BUS was presented

already in figure 5.2. This data suggests a negative geostrophically balanced zonal current compo-

nent north of about 17°S and an onshore contribution south of that parallel. The meridional wind

component derived from remote sensing data during that time is shown in figure 5.13. The wind

conditions mimic the typical forcing condition in that region. A wind maximum at about 17°S in a

distance of about 100 km to the coast is observed. The wind drops sharply to the north and south

of the maximum resulting in high wind stress divergence.

A possibility to receive an impression of the mean currents in the CFC is provided by the mean dynamic

ocean topography (MDOT). The MDOT is derived from the mean sea surface height by subtracting

the geoid, Maximenko et al. (2009). It represents the ocean topography that is balanced by the

mean barotropic geostrophic currents. Data covering the years 1992 to 2002 was downloaded from

the Asia Pacific Data-Research Center (http://apdrc.soest.hawaii.edu/projects/DOT) to compute

the geostrophic zonal velocity in the CFC. The result is shown in figure 5.14a. In the data, an area

of westward flow from about 17.5°S to 16°S can be recognized northward of an area of intense

onshore flow although the spatial resolution is coarse and data in the vicinity of the coast is missing.

A better spatial resolution of the geostrophic zonal velocity can be derived using realistic model

data. The geostrophic zonal velocity was calculated from the mean sea surface elevation of the

years 2000 to 2008 and is presented in figure 5.14b. The data has been removed along a coastal

strip to exclude ageostrophic effects like the Ekman currents. Although both data cover different

periods, the model data is in accordance with the general structure of the MDOT. Only the area of

negative zonal flow south of 19°S in the model outcome stretches further onshore compared to the

observations.
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(a) MDOT (b) Realistic numerical model

Figure 5.14. Mean barotropic geostrophic zonal velocity [m s−1] off Cape Frio calculated from the mean
dynamic ocean topography (MDOT) and from the mean sea surface height of the realistic numerical model.
The data in (b) has been removed along a coastal strip to exclude ageostrophic effects. The data reveals an
offshore flow around 17°S and an area of onshore transport south of it.

Ocean GCMs offer the opportunity to directly investigate the mean currents. The mean zonal velocity

from the realistic numerical model is shown for the area around Cape Frio in figure 5.15. The averaged

surface (0 to 30 m) and subsurface (30 to 300 m) currents are hereby displayed separately and the

mean flow direction is indicated by arrows. The surface zonal velocity is presumably dominated by

the Ekman transport and therefore negative in the entire CFC. The flow is strongest in a broad zonal

band between about 16°S and 18°S. This band is associated with the westward deflection of the

southward flow along the Angolan coast as the arrows indicate. The same band of negative zonal

flow associated with a partly westward bending of the AC can be observed in the subsurface layer,

although the velocity is rather weak and the mean flow is not strictly directed eastward. Moreover, the

arrows indicate a partly southward recirculation into a band of positive zonal velocity that stretches

from the coast up to 19°S and 8°W.

The mean vertical patterns of the cross-shore flow in the CFC are investigated along a meridional

transect derived from the realistic numerical model for August, see figure 5.16. The data shows an

offshore flow stretching over almost the whole water column north of 17°S with the strongest values

found in the surface layer. This offshore flow is probably supplied by the westward bending branch

of the AC. South of 17°S, the flow is directed offshore in the surface layer and onshore below. The

location of zero velocity below the mixed layer coincides roughly with the location of the mean wind

maximum in the CFC.

The vertical and near-surface patterns of the mean zonal velocity off Cape Frio observed in field data

and numerical model data compare well to the findings of the analytical model. This strengthens the

idea that the wind forcing is crucial for shaping the zonal currents in that region. Thus, the spatial

shape of the wind patch off Cape Frio has an important impact on the cross-shelf exchange and
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(a) 0 to 30 m (b) 30 to 300 m

Figure 5.15. Mean zonal velocity [m s−1] off Cape Frio from the realistic numerical model averaged over the
surface layer (0 to 30 m) and the layer below (30 to 300 m). The mean flow direction is indicated by arrows.
The band of offshore flow around 17°S in the layer of 30 to 300 m is related to a partly westward bending of
the southward flow along the African coast.
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Figure 5.16. Mean zonal velocity [cm s−1] from the realistic numerical model along 11°E in August. Only
the upper 500 meters are shown for clarity. Negative currents are shaded gray.

the penetrability of tropical waters along the coast into the BUS. The wind forcing off Cape Frio

may modify the southward advected SACW not only by upwelling, see Mohrholz et al. (2001), but

also by transporting water of tropical origin from the shelf westward replacing it by water of more

oceanic character. Nevertheless, it still needs some work to relate possible seasonal and interannual

variations of the zonal transport to the shape and strength of the wind forcing in the Cape Frio

cell.

The crucial role of the wind forcing off Cape Frio may provide an explanation, among others, for up-

per ocean temperature biases that are often observed in coupled GCMs along the southwest African

coast, see Xu et al. (2013) and references therein. An underestimation of the meridional and zonal

inhomogeneities of the wind field in the CFC may lead to an erroneous representation of the zonal
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Figure 5.17. Zonal sections of the vertical velocity w [10−4 cm s−1] from the analytical f -plane model 50
days after the onset of the wind in the middle of the wind band, i.e. y = 0, and near the southern edge, i.e.
y = −400 km. The wind maximum is located at x = −400 km. Negative currents are shaded gray.

currents in that region. This in turn may lead to an overshooting of the AC and an overestimated ad-

vection of warm, tropical waters into the BUS as reported by Xu et al. (2013).

5.5. Upwelling dynamics

5.5.1. General patterns

As pointed out in section 2.2 there are two main upwelling mechanism that play a role in the BUS.

Coastal upwelling is driven by the Ekman divergence in the vicinity of the coast and is influenced by

coastally trapped waves. WSC driven upwelling, however, acts independently of the coastal inhibi-

tion. This section investigates the spatial patterns of the vertical velocity related to both upwelling

mechanism. Elucidating the relative importance of WSC driven and coastal upwelling in the BUS is

another aim of this section.

Two zonal sections of the vertical velocity from the analytical f -plane model are presented in figure

5.17. The data was calculated at two different latitudes 50 days after the onset of the wind. At both

latitudes, the maximum upwelling can be found in the vicinity of the coast. The vertical velocity

here reaches values of more than 10−3 cm s−1. In the middle of the wind band, i.e. at y = 0, the

vertical velocity exceeds values of 1 cm s−1 up to 300 km offshore. These currents are related to the

WSC. Near the southern edge of the wind band, i.e. at y = −400 km, where the wind stress (and

consequently the WSC) is weaker, the upwelling is limited to the near coastal area. Although the

wind stress is weaker near the southern edge of the wind band, the vertical velocity in the vicinity

of the coast is enhanced compared to the values in the middle of the wind band. This is a result of

Kelvin waves that carry the upwelling signal southward, see also Fennel et al. (2012). The vertical

velocity is positive for x > −l, i.e. for the region where the WSC is negative, and downwelling occurs

where the WSC is positive, i.e. for x < −l. The highest velocity values in the offshore half of the

wind band can be found towards the edge of the wind band where the WSC is strongest and in the

vicinity of the mixed layer. Notice that the response pattern of the WSC driven upwelling would be

almost symmetric around x = −l if l = L.
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Figure 5.18. Zonal sections of the steady state vertical velocity w [10−4 cm s−1] from the analytical β-plane
model for two different friction parameter. The wind maximum is located at x = −400 km. Negative currents
are shaded gray. In contrast to the f -plane results, the zero isotach is tilted. The tilting is reduced if friction
increases.
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Figure 5.19. First and second mode contribution to the steady state vertical velocity w [10−5 cm s−1] from
the analytical β-plane model. Negative currents are shaded gray. The vertically oriented zero isotach is shifted
onshore for higher order modes since the zonal trapping scale of Rossby waves decreases.

The steady state vertical velocity on the β-plane is shown in figure 5.18. The steady state response

on the β-plane corresponds to the equilibrium state adjusted by Rossby waves after the onset of

the wind. In contrast to the f -plane solution, the response on the β-plane is not strictly connected

to the shape of the wind forcing. In particular, the upwelling area reaches slightly further offshore

than the wind maximum located at x = −l. Moreover, the zero isotach (oriented vertically on the

f -plane) is tilted. The vertical structure of the vertical velocity component including the tilting can

be explained regarding the response as a sum of modes. The sign of the first mode response is

uniform throughout the water column being negative in the western and positive in the eastern part,

see figure 5.19a. The sign changes at a certain location, i.e. at x ≈ −700 km in this example. The

second mode changes its sign further onshore at x ≈ −560 km, see figure 5.19b. This is a result of

the fact that the trapping scale is mode dependent and exceeds the zonal wind scale on the β-plane,

see section 3.4.5. The higher the mode number the smaller the trapping scale and the closer the

vertically oriented zero isotach comes to the coast. Additionally, the second mode becomes zero in

the middle of the water column, i.e. at 0.5H. The vertical velocity in the upper water column is

negative (positive) in the western (eastern) part and vice versa for the lower water column. Adding

the second to the first mode extends the negative velocity area in the upper water column to the

east and the positive area in the lower water column to the west. At the same time, the second order

mode introduces an area of negative vertical velocity to the lower water column in the eastern part.

Therefore, the basic pattern in figure 5.18a can not be reproduced by involving only the two gravest

modes. Calculations including higher order modes reveal that these modes contribute substantially
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Figure 5.20. Zonal section of the vertical velocity [10−4 cm s−1] from the numerical box model in the middle
of the wind band averaged over one year after the onset of the wind. The wind maximum is located at 4°W.
The results compare well to the findings of the analytical model. The tilting of the zero isotach is clearly
observed.

to the response. Since enhanced friction reduces the zonal trapping scale, see section 3.4.5, the

downwelling area should be shifted towards the eastern boundary with increasing friction on the

β-plane. Moreover, the differences of the trapping scale between the single modes increase with an

increase of the friction parameter. The tilt of the zero in the response should therefore become less

pronounced. In fact, both processes are captured by the results presented in figure 5.18b. Here, a

friction parameter of 0.02f has been used. Notice that the response gets closer to the f -plane results

as the friction is enhanced.

Coastal upwelling is not captured in the β-plane results when friction is set to relatively small

values, see figure 5.18a. This is a consequence of less damping of Kelvin waves that are known

to reduce and export coastal upwelling to the south. A higher friction parameter, however, lim-

its the influence of Kelvin waves and the upwelling intensity near the cost increases, see figure

5.18b.

A zonal section of the mean vertical velocity derived from the numerical box model is presented in

figure 5.20. The result of the numerical simulation corroborates the analytical solution regarding its

shape and absolute values. The positive upwelling area stretches slightly further offshore than the

location of the wind maximum at 4°W in the numerical results. The tilt of the zero isotach is clearly

observed. The downwelling is strongest near the offshore edge of the wind band, i.e. at 9°W, and

an area of intense upwelling in the vicinity of the coast is observed. However, the areas of slight

negative vertical velocity between about 3°W and 0° in the lower water column are not captured by

the results of the analytical model.

An example of a zonal section of the mean vertical velocity from the realistic numerical model at

24°S is shown in figure 5.21. The mean WSC at that latitude is negative up to about 11.8°E and

positive further offshore (not shown). The upwelling has two maxima: one in the vicinity of the coast

and another around the shelf edge at about 13.3°E. The upwelling area stretches up to about 10.1°E

close to the surface and thus further offshore than the area of negative WSC. Adjacent to that area,

a region of negative vertical velocity can be found which is deepening to the west. It can be stated
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Figure 5.21. Example of the mean vertical velocity [10−4 cm s−1] from the realistic numerical model along
24°S. Only the upper 1000 meter of the water column are shown. The basic structure of the mean vertical
currents corresponds to the results of the analytical model and the numerical box model.

that the basic patterns of the vertical velocity from the realistic numerical model coincide with the

results from the analytical model and the idealized box model.

As mentioned in section 2.1.3, there exists an area of positive WSC inducing downwelling adjacent

to the coastal strip of negative WSC along the whole BUS. The downwelling in the negative WSC

area may be a mechanism of modifying future thermocline waters when moved to the coast by

the subsurface onshore transport. For sure, the cross-shelf circulation is not two-dimensional in the

coastal ocean and the longshore currents must be taken into account when investigating the cross-

shelf dynamics. An estimation of the horizontal circulation on the shelf can be obtained from long

term mooring data recorded off Walvis Bay. Progressive vector diagrams derived from those data

show an eastward displacement of about 600 km in 21 month (approx. 640 d) at 40 meter depth and

a corresponding southward displacement of about 400 km, see Mohrholz et al. (2008). The ratio of

net eastward to southward displacement from this example is 3 to 2. Assuming that the meridional

scale of the BUS is much greater than the distance of the downwelling area to the coast, waters

from the downwelling region may reach the coastal areas by the Ekman rectification flow. Of course,

this estimation is very rough. The mooring data is limited to one spot on the shelf and the velocity

field may be different further offshore. Moreover, the downwelling process depends on the buoyancy

fluxes of the offshore drifting surface water. Rapid heating of these water masses by solar insolation

may hamper downwelling. In contrast slow heating may support convection, and consequently, cold

surface water can be shifted below warm oceanic waters. However, there are no observations so far

that support the idea of the downwelling mechanism being involved in modifying future thermocline

waters on the shelf of the BUS.

5.5.2. Seasonal variation of the different upwelling mechanism

Upwelling studies in the BUS mostly focus on coastal upwelling and its effect on SST, e.g. Hagen

et al. (2001), Cole and Villacastin (2000). A reason therefore may be its easy detectability in remotely

sensed data where upwelling is mirrored as a band of cold water along the coast. WSC driven

upwelling, however, expresses in a slow doming of the thermocline which is instantly "destroyed" by
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mixed layer turbulence. This fact makes it difficult to detect this process by measurements. Since

both upwelling mechanism have a different impact on the condition of marine ecosystems and their

productivity it is important to determine the relative contribution of both mechanism to the vertical

velocity and their seasonality, Rykaczewski and Checkley (2008). The fact that wind stress and WSC

exhibit a phase opposition in the northern BUS leads to the question whether stronger WSC driven

upwelling in summer may compensate weaker coastal upwelling.

In this section, analytical calculations are used to estimate the relative contribution of coastal and

WSC driven upwelling and their seasonal variation in the BUS. The calculations are performed with

realistic winds based on remotely sensed data. The coastal upwelling contribution is estimated using

the analytical model presented in this study whereby meridional and zonal variations of the wind

stress are neglected. As a consequence, the model gets independent of the alongshore coordinate and

the mode summation can be performed analytically, see Fennel and Lass (1989). The water depth in

the vicinity of the coast is assumed to be H = 100 m. The vertically averaged BVF near the coast

was estimated from the realistic numerical model to be in the range of 0.8 · 10−2 to 1.2 · 10−2 s−1.

A slight seasonal variation of the stratification was assumed in the analytical model approach. The

vertical velocity that is related to the WSC driven upwelling can be estimated at the bottom of the

mixed layer by

w(Hmix) =
1

fρ0
(∂xτy − ∂yτx) ,

e.g. Gill (1982). Here, ρ0 = 1025 kg m−3 is a mean density of the ocean, and τy and τx are the wind

stress components in meridional and zonal direction, respectively. The mixed layer depth is assumed

to be Hmix = 25 m.

Numerical circulation models cover both processes, coastal and WSC driven upwelling. Therefore,

their results can be used to verify the analytical approach of calculating coastal and WSC driven

upwelling separately. Moreover, they allow a more general view on the upwelling dynamics since they

include also the impact of coastally trapped waves and Rossby waves. The analytical estimation of

the mean vertical velocity as a sum of coastal and WSC driven upwelling is compared to the results

from the realistic numerical model for January in figure 5.22. The results compare well with respect

to the cross-shelf distribution of the vertical velocity component. The highest upwelling intensity

(> 6 · 10−5 m s−1) can be found in the vicinity of the coast in both the analytical approach and the

numerical model. A band of less strong vertical velocities (≈ 10−5 m s−1) between the coast and the

300 m isobath is also captured by both results. This band is related to the WSC driven upwelling.

Nevertheless, both results exhibit differences concerning the alongshore distribution of the vertical

velocity patterns. Whereas the high upwelling intensity in the Cape Frio cell is captured appropriately

by the analytical approach, it underestimates the vertical velocities in the Lüderitz upwelling cell.

This shortcoming is even more striking for July, see figure 5.23. In general, coastal upwelling in the

northern BUS is much stronger in July in both approaches. But the coastal upwelling south of the

Cape Frio upwelling cell is highly underrepresented in the analytical results. In contrast to January,

upwelling is almost in the entire BUS confined to the coast in July. Only off Cape Frio does WSC
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(a) Analytical approach (b) Numerical model

Figure 5.22. Mean vertical velocity [10−5 m s−1] from an analytical approach combining coastal and WSC
driven upwelling compared to the results from the realistic numerical model for January at z = 25 m. The 100
m and 300 m depth contours are shown. The vertically averaged BVF was assumed to be N = 1.2 · 10−2 s−1.
The analytical approach reproduces the band of WSC induced upwelling between the coast and the 300 m
depth contour.

driven upwelling play a major role. It expresses in a northward widening wedge shaped cell that is

reproduced by the analytical results.

Absolute differences in the upwelling strength between the analytical approach and the numerical

model can be attributed to the high idealization of the analytical model and the parameter choice.

Differences in the alongshore distribution may be explained by remote effects since both results are

based on the same wind forcing. The fact that the analytical approach reproduces coastal upwelling

off Cape Frio appropriately, but fails in doing so southward of that cell, suggests that coastally

trapped waves play a crucial role in exporting upwelling from that area southwardly. As the shelf

widens to the south, an interplay with topographic features may also be relevant. Kelvin waves, for

instance, slow down if the water depth decreases, and this may lead to a cumulation of upwelling

similar to what Fennel et al. (2010) observed in the central Baltic Sea. What can be given as a

conclusion of the comparison is that estimating the vertical velocities related to coastal upwelling

from an idealized analytical model is difficult. WSC driven upwelling, however, is represented fairly

well by the analytical approach. This leads to the assumption that the best estimate of the coastal

upwelling strength in the BUS may be achieved from the numerical model by simply subtracting the

WSC driven upwelling contribution calculated analytically.

In order to investigate the impact of both upwelling mechanism on the water composition in the

mixed layer, the mean vertical velocity component at 25 meter depth is integrated zonally starting at

the coast. The result depicts the offshore cumulated vertical transport (CVT) that is the amount of

water transported into the mixed layer. The CVT related to both upwelling processes is presented in
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(a) Analytical approach (b) Numerical model

Figure 5.23. Same as figure (5.22) but for July. The vertically averaged BVF was assumed to be N =
0.8 · 10−2 s−1. The analytical approach reproduces coastal upwelling off Cape Frio appropriately but fails in
doing so southward of that cell.

figure 5.24 for January. As stated above, coastal upwelling is assumed to be represented by the vertical

velocity from the realistic numerical model subtracted by the WSC driven upwelling contribution.

The CVT related to WSC driven and coastal upwelling is of the same order of magnitude (about

0.5 m2 s−1) in the vicinity of the shelf edge. But here, cumulated WSC driven upwelling is about two

times higher than coastal upwelling. The CVT related to the WSC shows slight maxima between

22°S and 24°S and around 26°S and 27°S. These maxima are located in a distance of about 300

to 400 km to the coast. Along the shelf break, the cumulated WSC driven upwelling is more or less

homogeneous. In contrast, the cumulated coastal upwelling exhibits a higher latitudinal variability

with maxima off Cape Frio, between 24°S and 26°S and south of 28°S. The sum of cumulated WSC

driven and coastal upwelling (represented by the results of the realistic numerical model) is shown

in figure 5.24c. The total CVT is highest off Cape Frio and south of 22°S with values of about

1 m2 s−1. In order to highlight seasonal differences in the cumulated upwelling, the results for July

are presented in figure 5.25. In contrast to January, cumulated WSC driven upwelling is of slightly

smaller values than coastal upwelling almost everywhere along the shelf in July. The CVT related to

coastal upwelling is dominant in a region north of 20°S, whereas between 20°S and 24°S cumulated

coastal upwelling is of less importance. In summer, the sum of cumulated WSC driven and coastal

upwelling is slightly higher than in winter.

The presented approach of calculating WSC driven and coastal upwelling with realistic wind fields

independently of each other has some shortcomings. The estimation of WSC driven upwelling as-

sumes a constant mixed layer depth which in reality exhibits spatial and temporal variations. And

the stratification in the vicinity of the coast has been assumed to be spatially homogeneous which

is certainly not the case. Nevertheless, the presented results can be regarded as an estimate demon-
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(a) WSC (b) Coastal (c) WSC + coastal

Figure 5.24. Comparison of the offshore cumulated vertical transport [m2 s−1] through z = 25 m related
to WSC driven and coastal upwelling for January. WSC driven upwelling is estimated analytically, whereas
coastal upwelling is assumed to be represented by the vertical velocity from the realistic numerical model
subtracted by the WSC driven upwelling contribution.

strating that cumulated WSC driven upwelling is of the same order as coastal upwelling and even

exceeds its contribution almost everywhere along the shelf in January. The results suggest that WSC

driven upwelling can compensate weaker coastal upwelling in summer. Upwelling indices that are

based only on the spatial extent of cold upwelled water may therefore suffer a strong bias. Future

upwelling studies need to consider WSC driven upwelling as an important mechanism of modifying

the water composition in the euphotic layer in the BUS.
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(a) WSC (b) Coastal (c) WSC + coastal

Figure 5.25. Same as figure 5.24 but for July
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6. Summary

This study investigates the response of the Benguela upwelling system to spatial and temporal changes

of the wind forcing. For that purpose, an analytical model based on the linear, hydrostatic Boussinesq

equations was applied. The model is forced by a meridionally and zonally varying alongshore wind

stress. The spatial shape of the model wind follows observations and can be adjusted by the choice

of parameters. Concerning the temporal variations of the wind forcing, two cases were realized: the

forcing by a switch-on wind (on the f -plane) and by a seasonally varying wind stress (β-plane). An

idealized numerical box model is used to verify the analytical results. The f -plane case allows an

exact analytical solution of the model equations in the frame of the long wave and the low frequency

approximation, whereas for the β-plane model only an approximate solution can be achieved. Hereby

was assumed that the coastal ocean is adjusted by Kelvin waves at all times, and that only seasonal

variations of the wind field and westward propagating Rossby waves modify this state. Although the

analytical model is mainly designed for the sub-inertial domain, some features of the response to a

spatially inhomogeneous wind forcing in the near-inertial frequency range are illuminated. It turned

out that the frequency of inertial oscillations experiences a "blue shift" that depends on the spatial

scales of the wind forcing. The response of Rossby waves to a switch-on wind is affected in a similar

manner by the wind field. The analytical model results are combined with the output of an ocean

GCM and observations to elucidate some important aspects of the BUS: the dynamical reasons for

the spatial patterns of the meridional currents, the temporal variability of the meridional transport

and its relation to the local wind forcing, the zonal currents in the Cape Frio cell, and the relative

importance of coastal and WSC driven upwelling.

The present study corroborates previous findings by showing that a zonally varying wind stress

modifies the classical picture of eastern boundary currents and the upwelling dynamics. The existence

of a cyclonic WSC introduces a poleward flow beside the PUC. This flow overcompensates the

equatorward directed CJ in the mixed layer in the very northern part of the wind patch. The CJ

itself intensifies to the south since the influence of Kelvin waves on it decreases. The poleward

flow, however, weakens and deepens southward which may be explained by the modal structure of

the meridional currents. Observational evidence of these peculiarities in the BUS from numerical

simulations and field data is presented in this study.

Data from an ocean GCM reveals that the meridional transport in the BUS exhibits a pronounced

seasonality with high interannual variations. The seasonal cycle may be triggered by the strength

of the WSC. The transport is slightly directed northward in summer when the WSC is weakest and

southward in winter when the WSC is strongest. The long term averaged transport is negative in
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the northern and positive in the southern BUS. Biannual minima in the WSC data are mirrored in

the meridional transport and the coastal sea level. Interannual variations of the transport may be

explained by the phase and strength of the meridional wind stress.

Analytical model results show that the zonal currents are, similar to the meridional flow, affected by

spatial inhomogeneities of the wind field. The presence of a WSC and wind divergence introduces a

flow beside the offshore directed Ekman transport and its onshore rectification below the mixed layer.

The WSC driven current is directed onshore (offshore) in the southern (northern) half of the forcing

area. Whereas the surface currents are dominated by the Ekman transport, the flow below the mixed

layer is governed by the WSC dynamics. The spatial wind scales at which this contribution becomes

relevant are limited to a very few hundred kilometers. These findings are used for investigating the

cross-shelf dynamics in the very northern BUS – the Cape Frio cell. This region is characterized by

a very localized and persistent wind forcing. A partly westward bending of the AC in the area of

Cape Frio was indicated by previous studies. This study presents some observations of this feature

together with an onshore flow below the mixed layer on the southern ramp of the wind patch. We

propose the dynamical reason for these pattern to be the strong spatial inhomogeneity of the wind

forcing.

The outcome of the analytical model reproduces the two main upwelling mechanism in the BUS:

coastal upwelling that is confined to the coast and WSC driven upwelling localized within a band of

a few 100 kilometers width off the coast. Analytical model results show that the vertical structure

of the velocity field changes if the β-effect is considered because the trapping scale of Rossby waves

exceeds the band of negative WSC. The relative importance of coastal and WSC driven upwelling

and their seasonal and spatial variation is estimated by an analytical approach using observed wind

fields. This approach is compared to the output of the realistic numerical model. Absolute differences

are attributed to the high idealization of the analytical approach and the choice of the parameters;

whereas differences in the alongshore distribution highlight the impact of coastally trapped waves

on the vertical velocity. The comparison suggests that Kelvin waves play a crucial role in exporting

upwelling from the Cape Frio cell southwardly (into a region governed by less wind forcing). Moreover,

the comparison leads to the assumption that the best estimate of the coastal upwelling strength in

the BUS may be achieved from the numerical model by simply subtracting the upwelling contribution

of the WSC. It can be stated that cumulated WSC driven upwelling is in the same order of magnitude

as coastal upwelling and can compensate weaker coastal upwelling in summer.

Since the present study examines the role of wind forcing in the BUS in a rather qualitative manner,

it leaves scope for further investigations related to the quantification of the demonstrated processes.

Some aspects that may be emphasized in future studies are: a quantification of the wind stress

and WSC driven meridional advection and the relative importance of remote effects on the longshore

currents; an improved understanding of the impact of coastally trapped waves on the spatial upwelling

distribution in the BUS; a quantification of the impact of the cross-shore dynamics in the Cape Frio

cell on the water mass composition and the ecosystem condition along the southwest African shelf.

The availability of spatially high resolved wind data in the vicinity of the coast is absolutely essential

for all of these issues.

82



A. List of analytical model parameters

Table A.1. List of parameters in the analytical f -plane model

Parameter Meaning Input value Unit

f Coriolis parameter 6 · 10−5 s−1

r Friction parameter 0.02 f s−1

R1 First mode internal Rossby Radius 50 km

R0 External Rossby Radius
√

gH
f ≈ 1650 km

H Water depth 1000 m
Hmix Mixed layer depth 20 m
v2

∗ Squared friction velocity 0.8 cm2 s−2

N Brunt-Väisälä frequency πR1f
H ≈ 9 · 10−3 s−1

2L Width of the wind band (zonal direction) 1000 km
2a Length of the wind band (meridional direction) 1000 km

Table A.2. List of parameters in the analytical β-plane model. Parameters from the f -plane model are valid
as long as otherwise stated.

Parameter Meaning Input value Unit

β Latitudinal variation of the Coriolis parameter f 2 · 10−11 m−1 s−1

r Friction parameter 10−3 f s−1

ω0 Forcing frequency 2 · 10−7 s−1

T̂ Wind amplitude of the seasonal cycle 0.2 −
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B. Calculation of certain important integrals

B.1. The convolution integrals Gn ∗ Π, Gn ∗ ∂x′Π, and 1
Rn

e
x+x

′

Rn ∗ Π

We solve the convolution integrals

Gn ∗ Π =

∫ 0

−∞
dx′Gn(x, x′)Π(x′), (B.1)

Gn ∗ ∂x′Π =

∫ 0

−∞
dx′Gn(x, x′)∂x′Π(x′), (B.2)

on the β-plane with the Green’s function

Gn(x, x′) = e− iβ

2ω
(x−x′) 1

2αn

(
eαn(x−x′) − e−αn|x−x′|

)
.

The integrals (B.1) and (B.2) can be divided into four integrals each by using the relation

−|x− x′| =

{
−x+ x′ |x| ≤ |x′|
x− x′ |x′| ≤ |x|

}
.

We find for (B.1)

Gn ∗ Π =
1

2αn

(
ea1x

∫ 0

−(L+l)
ea2x′

cos(b(x′ + l))dx′

−Θ(x+ L+ l)e−a2x
∫ x

−(L+l)
ea2x′

cos(b(x′ + l))dx′

−Θ(−x− L− l)ea1x
∫ 0

−(L+l)
e−a1x′

cos(b(x′ + l))dx′

−Θ(x+ L+ l)ea1x
∫ 0

x
e−a1x′

cos(b(x′ + l))dx′
)

where

a1 = − iβ

2ω
+ αn and a2 =

iβ

2ω
+ αn.

The substitution s = x′+l converts the single integrals to integrals of the type

∫
eas cos(bs)ds =

eas

a2 + b2
(a cos(bs) + b sin(bs))
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that can be solved in a straightforward manner. Adding the single integrals afterwards, the convolution

integral reads

Gn ∗ Π =
1

2αn

[(
ba2

2

a2
2 + b2

− ba2
1

a2
1 + b2

)
ea1x sin(bl) +

(
a3

2

a2
2 + b2

+
a3

1

a2
1 + b2

)
ea1x cos(bl)

−Θ(x+ L+ l)

((
ba2

2

a2
2 + b2

− ba2
1

a2
1 + b2

)
sin(b(x+ l)) +

(
a3

2

a2
2 + b2

+
a3

1

a2
1 + b2

)
cos(b(x+ l))

)

+
ba2

2

a2
2 + b2

ea1xe−a2(L+l) − Θ(−x− L− l)
ba2

1

a2
1 + b2

ea1(x+L+l) − Θ(x+ L+ l)
ba2

2

a2
2 + b2

e−a2(x+L+l)

]
.

(B.3)

The integral (B.2) can be solved analogously making use of the integral

∫
eas sin(bs)ds =

eas

a2 + b2
(a sin(bs) − b cos(bs)).

The calculation yields

Gn ∗ ∂x′Π = − b

2αn

[(
a2

a2
2 + b2

+
a1

a2
1 + b2

)
ea1x sin(bl) +

( −b
a2

2 + b2
+

b

a2
1 + b2

)
ea1x cos(bl)

− Θ(x+ L+ l)

((
a2

a2
2 + b2

+
a1

a2
1 + b2

)
sin(b(x+ l)) +

( −b
a2

2 + b2
+

b

a2
1 + b2

)
cos(b(x+ l))

)

+
a2

a2
2 + b2

ea1xe−a2(L+l) + Θ(−x− L− l)
a1

a2
1 + b2

ea1(x+L+l) − Θ(x+ L+ l)
a2

a2
2 + b2

e−a2(x+L+l)
]
.

(B.4)

During the derivation of the convolution integrals the relations

Θ(x)e−x + Θ(−x)ex = Θ(x)e−|x| + Θ(−x)e−|x| = (Θ(x) + Θ(−x))e−|x| = e−|x|, (B.5)

Θ(x)e−x − Θ(−x)ex = Θ(x)e−|x| − Θ(−x)e−|x| = (Θ(x) − Θ(−x))e−|x| = sign(x) e−|x| (B.6)

were used.

The convolution integral
1

Rn
e

x+x′

Rn ∗ Π =
1

Rn

∫ 0

−∞
dx′e

x+x′

Rn Π(x′)

is calculated in the same manner as the integral (B.1). The calculation gives

1

Rn
e

x+x′

Rn ∗ Π =
1

1 +R2
nb

2

(
e

x
Rn (cos(bl) + bRn sin(bl)) + bRne

(x−L−l)
Rn

)
.

B.2. The integrals In and Jn

We solve the Fourier integral

In(y, ω) =

∫ −iQ(κ)

ωλn + κ
eiκy dκ

2π
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with the help of the convolution theorem and find

In =

∫ a

−a
cos(κ0y

′)Θ(y′ − y)eiλnω(y′−y)dy′.

We have to distinguish now three different cases depending on the value of y:

In(y, ω) =





0 for y > a

Θ(−y − a)

∫ a

−a
cos(κ0y

′)eiλnω(y′−y)dy′ for y < −a

Θ(a− |y|)
∫ a

y
cos(κ0y

′)eiλnω(y′−y)dy′ for − a < y < a.

Thus, we find for the integral

In(y, ω) = Θ(−y − a)
−1

κ2
0 − λ2

nω
2

(
eiλnω(a−y) (iλnω cos(κ0a) + κ0 sin(κ0a))

−e−iλnω(a+y) (iλnω cos(κ0a) − κ0 sin(κ0a))
)

+ Θ(a− |y|) −1

κ2
0 − λ2

nω
2

(
eiλnω(a−y) (iλnω cos(κ0a) + κ0 sin(κ0a))

− (iλnω cos(κ0y) + κ0 sin(κ0y))) . (B.7)

We use cos(κ0a) = 0 and sin(κ0a) = 1 and consequently (B.7) simplifies to

In(y, ω) =
κ0

λ2
nω

2 − κ2
0

(
Θ(a− y)eiλnω(a−y) + Θ(−a− y)eiλnω(−a−y)

−Θ(a− |y|)
(
iλnω

κ0
cos(κ0y) + sin(κ0y)

))
. (B.8)

The integral

Jn(y, t) =

∫
T (ω)In(ω, y)e−iωt dω

2π

can be divided into four single integrals writing

Jn(y, t) = Θ(a− y)H1 + Θ(−a− y)H2 − Θ(a− |y|) (H3 cos(κ0y) +H4 sin(κ0y)) . (B.9)

The calculation of H3 and H4 is straightforward and gives

H3 =

∫
iλnω

λ2
nω

2 − κ2
0

i

ω + iǫ
e−iωtdω

2π
=

Θ(t)

λ2
nr

2 + κ2
0

(
rλn − e−rt

(
rλn cos

(
κ0

λn
t

)
− κ0 sin

(
κ0

λn
t

)))

H4 =

∫
κ0

λ2
nω

2 − κ2
0

i

ω + iǫ
e−iωtdω

2π
=

Θ(t)

λ2
nr

2 + κ2
0

(
−κ0 + e−rt

(
rλn sin

(
κ0

λn
t

)
+ κ0 cos

(
κ0

λn
t

)))
.

Adding both integrals according to (B.9), we find

cos(κ0y)H3 + sin(κ0y)H4 =
Θ(t)

λnr
(
1 +

κ2
0

r2λ2
n

)
(

cos(κ0y) − κ0

rλn
sin(κ0y) − e−rtΨn

(
y +

t

λn

))
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where

Ψn

(
y +

t

λn

)
= cos

(
κ0

(
y +

t

λn

))
− κ0

rλn
sin

(
κ0

(
y +

t

λn

))
(B.10)

was introduced for convenience.

The calculation of the integrals H1 and H2 compares to the calculation of the integral H3. We

find

H1 =

∫
κ0

λ2
nω

2 − κ2
0

i

ω + iǫ
eiλnω(a−y)e−iωtdω

2π

=
Θ(t− λn(a− y))

λ2
nr

2 + κ2
0

(
−κ0e

−rλn(a−y) + e−rt
(
rλn sin

(
κ0

λn
(t− λn(a− y))

)

+κ0 cos

(
κ0

λn
(t− λn(a− y))

)))

and

H2 =

∫
κ0

λ2
nω

2 − κ2
0

i

ω + iǫ
eiλnω(−a−y)e−iωtdω

2π

=
Θ(t+ λn(a+ y))

λ2
nr

2 + κ2
0

(
−κ0e

rλn(a+y) + e−rt
(
rλn sin

(
κ0

λn
(t+ λn(a+ y))

)

+κ0 cos

(
κ0

λn
(t+ λn(a+ y))

)))
.

Both integrals can be simplified using the identities

cos

(
κ0

(
t

λn
± a+ y

))
= cos (±κ0a) cos

(
κ0

(
t

λn
+ y

))
− sin (±κ0a) sin

(
κ0

(
t

λn
+ y

))

= ∓ sin

(
κ0

(
t

λn
+ y

))

and

sin

(
κ0

(
t

λn
± a+ y

))
= sin(±κ0a) cos

(
κ0

(
t

λn
+ y

))
+ cos(±κ0a) sin

(
κ0

(
t

λn
+ y

))

= ± cos

(
κ0

(
t

λn
+ y

))
.

Rewriting H1 and H2 using (B.10) yields

H1 =
Θ(t− λn(a− y))

λnr
(
1 +

κ2
0

r2λ2
n

)
(

− κ0

rλn
e−rλn(a−y) + e−rtΨn

(
y +

t

λn

))
,

H2 =
Θ(t+ λn(a+ y))

λnr
(
1 +

κ2
0

r2λ2
n

)
(

− κ0

rλn
erλn(a+y) − e−rtΨn

(
y +

t

λn

))
.
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Finally, we sum up the single integrals to find

Jn(y, t) =
Θ(t)Θ(a− |y|)
λnr(1 +

κ2
0

r2λ2
n

)

(
cos(κ0y) − κ0

rλn
sin(κ0y) − e−rtΨn

(
y +

t

λn

))

+
Θ(a− y)Θ(t− λn(a− y))

λnr(1 +
κ2

0
r2λ2

n
)

(
κ0

rλn
e−rλn(a−y) + e−rtΨn

(
y +

t

λn

))

+
Θ(−a− y)Θ(t+ λn(a+ y))

λnr(1 +
κ2

0
r2λ2

n
)

(
κ0

rλn
e−rλn(−a−y) − e−rtΨn

(
y +

t

λn

))
. (B.11)
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C. Deriving the formal solution for pn

C.1. Calculation of the Green’s function Kn

The Green’s function for the pressure obeys the equation

∂x
2Kn(x, x′) − β

iω
∂xKn(x, x′) − (κ2 +R−2

n )Kn(x, x′) = δ(x− x′) (C.1)

with the boundary conditions

∂xKn(0, x′) + ξKn(0, x′) = 0 and Kn(−∞, x′) → 0. (C.2)

The variable ξ = κ f
ω has been introduced in section 3.4.1. The basic idea of calculating the Green’s

function is to compose it from two linearly independent solutions K<
n (x, x′) and K>

n (x, x′) for the

intervals x = [−∞, x′[ and x =]x′, 0], respectively,

Kn(x, x′) = K<
n (x, x′)Θ(x′ − x) +K>

n (x, x′)Θ(x− x′).

Let Φ and Ψ be now two linearly independent solutions of the homogenous differential equation

(C.1), where Ψ fulfills the boundary condition at x = −∞ and Φ at x = 0. Then, the functions

K<
n (x, x′) and K>

n (x, x′) can be constructed in the way that,

K>
n (x, x′) =

Ψ(x′)Φ(x)

W (x′)
,

K<
n (x, x′) =

Ψ(x)Φ(x′)
W (x′)

,

where W (x) = Ψ∂xΦ−Φ∂xΨ is the Wronski determinant, see Fennel and Lass (1989). Hence, using

the ansatz

Φ(x) = e− iβ

2ω
xϕ(x) and Ψ(x) = e− iβ

2ω
xψ(x) (C.3)

the Green’s function can be calculated by

Kn(x, x′) =
e− iβ

2ω
(x+x′)

W (x′)

(
ϕ(x)ψ(x′)Θ(x′ − x) + ψ(x)ϕ(x′)Θ(x− x′)

)
. (C.4)
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We now have to estimate the functions Φ and Ψ. Inserting (C.3) in the homogenous version of (C.1)

and the corresponding boundary conditions (C.2) yields

∂2
xϕ− α2

nϕ = 0 and ∂xϕ(0) +

(
ξ − i

β

2ω

)
ϕ(0) = 0 (C.5)

and

∂2
xψ − α2

nψ = 0 and ψ(−∞) = 0, (C.6)

where α2
n = κ2 +R−2

n − β2

4ω2 . A solution for (C.5) and (C.6) can be derived using the ansatz ψ(x) =

Aeαnx +Be−αnx and ϕ(x) = A cosh(αnx) +B sinh(αnx). Then follows

ψ(x) = eαnx,

ϕ(x) =
1

2

[
eαnx + e−αnx − 1

αn

(
ξ − iβ

2ω

) (
eαnx − e−αnx)

]

and the Wronski determinant amounts to

W (x) = Ψ∂xΦ − Φ∂xΨ = e− iβ

ω
x (ψ(x)∂xϕ(x) − ϕ(x)∂xψ(x)) = e− iβ

ω
x
(
iβ

2ω
− ξ − αn

)
. (C.7)

In order to calculate the two solutions K<
n (x, x′) and K>

n (x, x′), we need to estimate the products

ϕ(x′)ψ(x) and ψ(x′)ϕ(x) which give

ϕ(x′)ψ(x) =
1

2αn

[
eαn(x+x′)

(
αn − ξ +

iβ

2ω

)
+ e−αn(x′−x)

(
αn + ξ − iβ

2ω

)]
,

ψ(x′)ϕ(x) =
1

2αn

[
eαn(x+x′)

(
αn − ξ +

iβ

2ω

)
+ e−αn(x−x′)

(
αn + ξ − iβ

2ω

)]
.

Inserting them and the Wronski determinant (C.7) into (C.4) by using the relation (B.5) we finally

find the Green’s function for the pressure

Kn(x, x′) =
1

2αn
e− iβ

2ω
(x−x′)

(
eαn(x+x′)

iβ
2ω + αn − ξ
iβ
2ω − αn − ξ

− e−αn|x−x′|
)
. (C.8)

C.2. Source representation for pn

In order to derive a source representation for the pressure pn, we define a differential operator Dn

from equation (3.58) as

Dn(x) := ∂2
x − β

iω
∂x − (κ2 +R−2

n ).

The forcing term on the RHS of (3.53) is defined as

Fn :=
f

iω
∂xYn.
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Then, we can write (3.58) and (3.53) as

Dn(x′)Kn(x, x′) = δ(x− x′),

Dn(x′)pn(x′) = Fn(x′).

Multiplying the first equation with pn(x′) and the second with Kn(x, x′) and subtracting the second

from the first gives

pn(x′)Dn(x′)Kn(x, x′) −Kn(x, x′)Dn(x′)pn(x′) = pn(x′)δ(x− x′) −Kn(x, x′)Fn(x′).

Integrating this equation from −∞ to 0 and rearranging yields

pn(x) = −
∫ 0

−∞

[
p(x′)Dn(x′)Kn(x, x′) −Kn(x, x′)Dn(x′)pn(x′)

]
dx′ +

∫ 0

−∞
Kn(x, x′)Fn(x′)dx′.

Integration by parts twice gives

pn(x) = −
[
Kn(x, x′)∂x′pn(x′) − pn(x′)∂x′Kn(x, x′) − β

iω
Kn(x, x′)pn(x′)

]0

−∞

+

∫ 0

−∞
Kn(x, x′)Fn(x′)dx′.

We use now the boundary conditions of the Green’s function Kn, see (C.2), and the pressure pn and

find

pn(x) = − f

iω
Kn(x, 0)Y (0) − pn(x, 0)

(
β

iω
Kn(x, 0) + ξKn(x, 0) + ∂x′Kn(x, x′)|x′=0

)

+

∫ 0

−∞
Kn(x, x′)Fn(x′)dx′.

The Term pn(x, 0)
(

β
iωKn(x, 0) + ξKn(x, 0) + ∂x′Kn(x, x′)|x′=0

)
vanishes because of ∂x′Kn(x, x′)|x′=0 =

− (ξ + a1 − a2)Kn(x, 0) and β
iω = a1 − a2. Further note that

Kn(x, 0) = −ea1x 1

ξ + a1
,

∂x′Kn(x, x′) = ea1x
(

1 − a2

ξ + a1
ea2x′

)
,

∂x′Kn(x, x′)|x′=0 = ea1x
(
ξ + a1 − a2

ξ + a1

)
.

Finally, we end up with a source representation for the pressure

pn(x) = − f

iω
Kn(x, 0)Y (0) +

f

iω
Kn ∗ ∂x′Yn

where

Kn ∗ ∂x′Yn =

∫ 0

−∞
Kn(x, x′) ∂x′Yn(x′) dx′.
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