
Applications of

mathematical network theory

Habilitationsschrift

zur

Erlangung des akademischen Grades

doctor rerum naturalium habilitatus (Dr. rer. nat. habil.)

der Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Rostock

vorgelegt von

Thomas Kalinowski, geb. am 27.11.1980 in Pasewalk,

aus Rostock

Rostock, 8. Mai 2013

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2014-0181-2

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

Gutachter

Prof. Dr. Matthias Ehrgott
University of Auckland, Faculty of Engineering

Prof. Dr. Konrad Engel
Universität Rostock, Institut für Mathematik

Prof. Dr. Horst W. Hamacher
Universität Kaiserslautern, Fachbereich Mathematik

Datum der Verteidigung: 7. Juli 2014

for 传梅

Acknowledgements

The papers in this thesis have been written at the Institute for Mathematics of the
University of Rostock from 2007 to 2010, and at the School of Mathematical & Physical
Sciences of the University of Newcastle from 2010 to 2012. I thank all of my colleagues at
these institutions for their support and assistance, and for making me feel at home in both
places. In particular, I would like to express my gratitude to my academic teacher Konrad
Engel for the continuous support and for the reliable guidance with respect to every aspect
of my academic career over the last 15 years.

I thank all of my coauthors for the stimulating collaborations from which I learned a
lot. I am very grateful to Natashia Boland and the OR group in Newcastle for making me
feel welcome in Australia, and for making my time there highly enjoyable. In particular, I
thank Hamish Waterer for teaching me many things about applied mathematics and about
Newcastle’s pub culture. Special thanks go to Lanbo Zheng for being really good company
in the office and at other places.

A significant part of the work in this thesis was done in a project with the Hunter Valley
Coal Chain Coordinator (HVCCC) P/L, and this research benefited a lot from the valu-
able contributions of Jonathon Vandervoort, Rob Oyston, Tracey Giles, and the Capacity
Planning Team at HVCCC. I really appreciate their patience, support, and feedback.

I also thank Nina Narodytska, Uwe Leck and Ian Roberts for discussions on mathematics
completely unrelated to this thesis, but essential for keeping my mind in good working
condition.

Finally, I am deeply indebted to my family, and in particular to my parents, for always
supporting me.

v

Contents

Introduction to this thesis 1

Reducing the tongue-and-groove underdosage in MLC shape matrix decomposition

Thomas Kalinowski 33

Approximated MLC shape matrix decomposition with interleaf collision constraint

Thomas Kalinowski and Antje Kiesel 51

A minimum cost flow formulation for approximated MLC segmentation

Thomas Kalinowski 65

A dual of the rectangle-segmentation problem for binary matrices

Thomas Kalinowski 77

Scheduling arc maintenance jobs in a network to maximize total flow over time

Natashia Boland, Thomas Kalinowski, Hamish Waterer and Lanbo Zheng 91

Mixed integer programming based maintenance scheduling for the Hunter Valley
coal chain

Natashia Boland, Thomas Kalinowski, Hamish Waterer and Lanbo Zheng 123

Scheduling unit processing time arc shutdown jobs to maximize network flow over
time: complexity results

Natashia Boland, Thomas Kalinowski, Reena Kapoor and Simranjit Kaur 145

Incremental network design with shortest paths
Matthew Baxter, Tarek Elgindy, Andreas Ernst, Thomas Kalinowski and Martin

Savelsbergh 159

vii

Introduction to this thesis

This thesis is about applications of the mathematical theory of networks to practical
optimization problems. It is a cumulative thesis, and its main part consists of the papers
[1–8] which are already published or submitted for publication. In this introductory part of
the thesis it will be explained how the results in the attached papers are related. To this
end we provide an overview of some important results of network theory and explain how
they are used in the papers. We will also introduce the application areas that are covered by
the papers: optimal treatment planning in intensity modulated radiation therapy in [5–8],
and strategic and operational planning for supply chain networks in [1–4].

I would like to thank all of my coauthors for agreeing on including our joint papers. In
the following list I outline my own contributions to these papers in the order in which they
appear in this thesis.

• The method proposed in [8] is based on a combination of [79] and [54]. I had the idea
to apply the methods from [79] to the approximation problem introduced in [54], and
the details were worked out in discussions with Antje Kiesel.

• For the paper [4] I proved the NP-hardness of the problem (Proposition 1), and I
formulated preliminary versions of the heuristic algorithms described in Section 3 of
that paper, which were then refined as a result of discussions. For the experimental
part I did the runs with the commercial solver CPLEX that were used as a benchmark
for our different heuristics, and I also prepared the statistical analysis of the results,
i.e. the tables and diagrams in Section 4.

• For the paper [3] I made the observation that certain logical conditions for the avail-
ability of machines can be described by a network flow model, which is essential for
the mixed integer programming (MIP) approach presented in this paper. I formu-
lated an initial MIP model which was then refined in discussions with the coauthors
and industry partners. I implemented the model and analyzed the test results, where
again the experimental setup was changed several times after discussions with the
coauthors.

• For the paper [2] I did the analysis for the unit capacity case (Section 3) and the
special case of series-parallel networks (Proposition 5). For the remaining results in
Section 2 I was contributing to the discussions that led to the results and I simplified
the proofs and prepared the final presentation.

1

2 T. Kalinowski

• For the paper [1] I did the analysis of the two greedy heuristics (Section 6), and I
developed and analyzed an initial version of the approximation algorithm in Section 7
which was later simplified significantly by the coauthors.

1 Preliminaries on network problems

In this section, we collect some important results on network optimization problems related
to paths and flows and we indicate how these are used in the attached papers. Our present-
ation follows Part I of Schrijver’s book [113]. Many more details can be found there and
in other standard references on network flows such as the books of Ford and Fulkerson [68]
and Ahuja, Magnanti and Orlin [10].

A network (or directed graph) N = (V,A) is a pair consisting of a finite set V whose
elements are called nodes and a finite set A whose elements are called arcs. Any arc a is
associated with an ordered pair (u, v) ∈ V × V , and the nodes u and v are also denoted by
a− and a+, respectively. Throughout the cardinalities of V and A will be denoted by n and
m, respectively. We denote the set of arcs going into a note v by δin(v) and the set of arcs
leaving v by δout(v), or formally,

δin(v) = {a ∈ A : a+ = v}, δout(v) = {a ∈ A : a− = v}.

A walk in a network is a sequence (v0, a1, v1, a2, v2 . . . , ak, vk) alternating between nodes
v0, . . . , vk and arcs a1, . . . , ak such that a−i = vi−1 and a+i = vi for i = 1, . . . , k. A walk
with distinct nodes is called a path from v0 to vk (or a v0-vk-path), and a walk with distinct
nodes vi (i = 0, 1, . . . , k − 1) and vk = v0 is called a cycle.

1.1 The shortest path problem

Let l : A → R be a given function which we call length. This function extends to the
power set of A by l(X) =

∑
a∈X l(a) for X ⊆ A. In particular, identifying the walk

P = (v0, a1, v1, . . . , ak, vk) with the set of arcs {a1, a2, . . . , ak} we can speak of the length
l(P) of this walk. The basic version of the shortest path problem is the following: Given
a network (V,A), a length function l : A → R and two nodes s, t ∈ V , find a path that
minimizes the length over all paths from s to t. The idea underlying the classical algorithms
for this problem, the Dijkstra method and the Bellman-Ford method, is to start with a
labeling of the nodes given by d(s) = 0 and d(v) =∞ for all nodes v 6= s, and then iteratively
pick an arc a with a− = u, a+ = v and d(v) > d(u) + l(a) and relabel d(v) ← d(u) + l(a).
Provided there are no cycles of negative length, this procedure terminates with every node
v labeled with the minimum length of a path from s to v. How efficiently this general
framework can be implemented depends on properties of the length function.

Nonnegative arc lengths. The original algorithm of Dijkstra [46] solves the problem in
time O(n2), while in more efficient implementations using sophisticated data struc-
tures the run-time can be reduced: Using Fibonacci heaps the problem can be solved
in time O(m + n log n) [69], and using scaling techniques it can be done in time
O(m+ n

√
logL) [11] for integer arc lengths where L = max{l(a) : a ∈ A}.

Introduction to this thesis 3

Networks without cycles of negative length. The Bellmann-Ford algorithm, proposed
by Bellmann [21], Ford [64] and Moore [100], runs in time O(mn), and using scaling
techniques developed by Goldberg [71] the problem can be solved in timeO(

√
nm logL′)

for integer arc lengths where L′ = max{2,max{−l(a) : a ∈ A}}.

Arbitrary lengths. If cycles of negative length are allowed the problem is already NP-
complete even when all arcs have length −1.

If we are not only interested in the shortest path between two special nodes s and t but in
shortest paths between all pairs of nodes, we can run the Bellman-Ford algorithm n times
to obtain a run-time of O(n2m). A more efficient method, at least for dense networks, is
the Floyd-Warshall algorithm [63, 127] which runs in time O(n3). For sparse networks, the
faster methods of Johnson [78] and Bazaraa and Langley [20] can be combined with the
Fibonacci heap implementation of Dijkstra’s algorithm due to Fredman and Tarjan [69] to
solve the all-pairs shortest path problem in time O(n(m+ n log n)).

Building on the ideas of [79], shortest paths are used in the papers [5] and [8] to design
efficient algorithms for the optimization of treatment plans in intensity modulated radiation
therapy using multileaf collimators. This is described in more detail in Section 2.

The paper [1] deals with a variant of the shortest path problem as the first case of a
new class of network optimization problems which is introduced in this work: incremental
network problems. The basic idea is that arcs can be added to the network over time
(subject to budget constraints) and in each time period some network problem, for in-
stance a shortest path problem, has to be solved. The shortest path problem was chosen
as the first example for a detailed analysis, because it is among the simplest network op-
timization problems. Interestingly, the incremental version of the shortest path problem is
NP-complete already in very special cases, and consequently natural greedy heuristics are
analyzed and an approximation algorithm is derived. In this approximation algorithm, a
modified Bellman-Ford algorithm is used to determine the minimum length of a path after
adding at most k arcs. More details on incremental network design problems can be found
in Section 3.3.

1.2 The maximum flow problem

Let s and t be two special nodes, called the source and the sink respectively. A flow is a
function f : A→ R>0 that satisfies the flow conservation constraints∑

a∈δin(v)
f(a) =

∑
a∈δout(v)

f(a) for all v ∈ V \ {s, t}.

Extending f to the power set of A by f(X) =
∑

a∈X f(a) for X ⊆ A, the value of a the
flow f is defined to be

value(f) = f(δout(s))− f(δin(s))

which is easily seen to be equal to f(δin(t))− f(δout(t)). Given a capacity function c : A→
R>0 a flow f is called feasible if it satisfies f(a) 6 c(a) for all a ∈ A. The maximum flow
problem is to find, for a given network with capacity, a feasible flow of maximum value. An

4 T. Kalinowski

s-t-cut in a network with source s and sink t is a partition V = S ∪ T of the node set into
two parts such that s ∈ S and t ∈ T . The capacity of a cut is the sum of the capacities of
the arcs crossing from S to T , i.e.

c(S, T) =
∑

a∈A : a−∈S, a+∈T
c(a).

Theorem 1 (Max-Flow Min-Cut Theorem[44, 65]). The maximum value of a feasible flow
in a network with respect to a capacity function c equals the minimum capacity of an s-t-cut
in that network.

The proof idea for this theorem can be turned into an algorithm for solving the maximum
flow problem. The algorithm of Ford and Fulkerson [66] is based on an auxiliary network
Df , called the residual network, which can be associated with any feasible flow f . For an
arc a with associated node pair (u, v), let the reverse arc ā be associated with the node pair
(v, u). The node set of the residual network Df is the same as for the original network, and
it has the arc set Af = A+

f ∪A
−
f where

A+
f = {a : a ∈ A with f(a) < c(a)}, A−f = {ā : a ∈ A with f(a) > 0}.

The algorithm starts with the feasible flow given by f(a) = 0 for all a ∈ A and then
iteratively finds an s-t-path P in the residual network and pushes a sufficiently small amount
ε of flow along this path, which means that the flow on arcs in A+

f ∩ P is increased by ε

while the flow on arcs in A−f ∩ P is reduced by ε. This algorithm also ensures that for
integral capacities the resulting flow takes only integral values. The original algorithm is
guaranteed to terminate only for rational capacities and has a run-time of O(nmC) for
integral capacities where C = max{c(a) : a ∈ A}. Variants of this basic idea due to
Dinic [47] and Edmonds and Karp [49] work for arbitrary capacities and have a runtime of
O(nm2). The design of efficient methods for the max-flow problem has been a very active
research area leading to many beautiful results on algorithms and data structures, including
capacity scaling [49], dynamic trees [119] and the push-relabel method [72]. Recently,
Orlin [105] solved the long-standing open problem to develop an O(nm) algorithm for the
max-flow problem.

Maximum flow computations are crucial for the greedy heuristic that is proposed in [4]
for the annual maintenance scheduling of the Hunter Valley coal chain. This is a large
supply chain in which coal is transported from the mines to the vessels in the port via a
network consisting of rail track and different machines like stackers and reclaimers. Details
on this maintenance scheduling problem can be found in Section 3.2.

1.3 The minimum cost flow problem

In addition to the capacity function, let there be a cost function k : A → R, and let the
cost of a flow f be defined by

cost(f) =
∑
a∈A

k(a)f(a).

Introduction to this thesis 5

For a given value ϕ, the minimum cost flow problem is to find a flow of minimum cost
subject to value(f) = ϕ. It is convenient to reduce this to the minimum cost circulation
problem which is defined as follows. For a network with a capacity function c : A → R>0

and a demand function d : A → R, find a feasible circulation f of minimum cost, which is
a function f : A → R that satisfies d(a) 6 f(a) 6 c(a) for all a ∈ A, as well as the flow
conservation constraints ∑

a∈δin(v)
f(a) =

∑
a∈δout(v)

f(a) for all v ∈ V.

The min-cost flow problem can be reduced to the min-cost circulation problem by adding
an arc a with a− = t, a+ = s and d(a) = c(a) = ϕ and k(a) = 0. As for the max-flow
problem the residual network with arc set Af is useful. We can extend the cost function to
the arc set Af by putting k(ā) = −k(a) for all ā ∈ A−f . The following observation, which
is crucial for the development of algorithms solving the min-cost circulation problem, has
been made several times in different contexts (cf. Chapter 12 in [113]).

Theorem 2. A feasible circulation f has minimum cost among all feasible circulations if
and only if each cycle in Df has non-negative cost.

This gives a method to improve a given circulation f which is not optimal: choose a
negative cycle C in Df , increase f(a) by τ for arcs a ∈ A+

f ∩ C and decrease f(a) by τ

for arcs a with ā ∈ A−f ∩ C, where τ is chosen as large as possible such that f stays a
feasible circulation. Edmonds and Karp [49] use capacity-scaling to prove that for integer
capacities with maximum capacity C this problem can be solved in time O(n4 logC). The
first strongly polynomial algorithm (i.e. with a run-time bound depending only on m and
n) was developed by Tardos [123]. She reduces the problem to the solution of O(m2 log n)
maximum flow problems. Together with Orlin’s algorithm [105] for the maximum flow
problem this yields a run-time of O(m3n log n). The currently best run-time guarantee is
due to Orlin [103, 104] who reduces it to m log n shortest path problems which implies a
run-time of O(m log n(m+ n log n)).

In [7], a minimum cost flow formulation is used to approximately solve a matrix decom-
position problem that is again motivated by the treatment planning in intensity modulated
radiation therapy as described in Section 2.

2 Intensity modulated radiation therapy using multileaf col-
limators

The use of high energetic radiation is an important method in cancer treatment. In order to
destroy tumor cells, the patient is exposed to high energetic radiation. The linear accelerator
delivering the radiation is attached to a gantry which can be rotated about the treatment
couch (see Figure 1). Radiation is useful in cancer therapy because the repair mechanism
of cancer cells is less efficient than that of normal cells [115]. The method of intensity
modulated radiation therapy (IMRT), first proposed by Brahme [30], was developed in the

6 T. Kalinowski

Figure 1: A linear accelerator on a gantry. Figure 2: The leaf pairs of a multileaf col-
limator.

early 1990’s in order to make this treatment method more efficient. Today IMRT is a widely
used clinical treatment modality and a lot of research has been done on different aspects of
the optimal delivery of IMRT which turned out to be a highly complex planning problem.
We refer to the book of Webb [128] and the review paper of Bortfeld [28] for more details
on the many facets of radiation therapy planning. On a basic level, the objectives are to
ensure that the tumor receives a sufficiently high uniform dose while the damage to the
normal tissue is as small as possible, and in particular the functioning of critical organs in
the vicinity of the tumor is not affected. Due to the high complexity of the problem the
planning process is usually divided into three phases [50]: (1) the selection of the number
of beams and the directions from which radiation is delivered, (2) the selection of intensity
patterns for the directions determined in the first step, and (3) the selection of an efficient
way to deliver the intensity patterns. The first two steps (beam selection and intensity
profile optimization) can be combined into one optimization routine, which was done, for
instance, by Lee et al. [94], Preciado-Walters et al. [108] and Engel and Tabbert [55]. In
aperture-based methods [110, 114] all three steps are done in one phase and the optimization
is directly in terms of deliverable radiation fields.

Any treatment optimization starts with discretizing the patient body into so-called
voxels. The set of voxels is then partitioned into three sets: the clinical target volume, the
critical structures and the remaining tissue. There are certain dose constraints for each of
these parts: the dose in the target volume has to be sufficient to kill the cancerous cells and
the dose in the critical structures must not destroy the functionality of the corresponding
organs. Beam directions and intensity patterns are usually determined by inverse methods
based on physical models of how the radiation passes through a body [55, 76, 92, 111].
In this section, we will focus on the third step, the realization of given intensity patterns,
in particular using a multileaf collimator (MLC). An MLC consists of two banks of metal
leaves which block the radiation and can be shifted to form irregular shaped beams (Fig-
ure 2). With an MLC it is possible to form homogeneous fields of different shapes, and an
intensity modulated field can be delivered as a superposition of homogeneous fields. After

Introduction to this thesis 7

discretizing the beam into bixels we can assume that the required intensity pattern is given
as a nonnegative integer matrix A, where each row of the matrix corresponds to a leaf pair
of the MLC. There are two methods in IMRT using MLCs which differ in their technical
realization, but the mathematical methods used to determine optimal treatment plans are
similar. In the step–and–shoot mode the radiation is switched off whenever the leaves are
moving, and the intensity modulation is the result of superimposing a finite number of
homogeneous fields. In the dynamic mode [39, 85, 121, 122] the radiation is switched on
during the whole treatment, and the modulation is achieved by moving the leaves with
varying speed. The fluence at a particular point is proportional to the amount of time in
which the point is exposed to radiation, i.e. not blocked by one of the leaves. We consider
only the step–and–shoot mode, but the most common approach to the dynamic mode can
be seen as an imitation of this case (see [81] and the references therein). The problem
of finding optimal sequences of leaf positions was first studied by medical physicists [29,
70, 117, 131], but soon it got considerable attention in the mathematical optimization and
operations research communities, which is indicated by several survey papers [51, 81, 82].
In this section some important results on this problem are presented, in particular those
that are relevant to the work in the papers [5–8].

2.1 The MLC shape matrix decomposition problem

The principle of using an MLC in the step–and–shoot mode is illustrated in Figure 3. Our
aim is to determine a sequence of leaf positions and corresponding irradiation times such
that the given fluence distribution is realized. Suppose the given matrix has size m × n,
i.e. we consider m leaf pairs, and for each leaf there are n + 1 possible positions. Then
the leaf positions can be described by certain binary matrices of size m × n called shape
matrices, where a 0-entry means the radiation is blocked and a 1-entry means that the
radiation goes through. In the basic variant of the problem, the only requirement for shape

Beam 1 Beam 2

Beam 3

fluence fluence

fluence

Figure 3: Intensity modulation by superimposing 3 beams of different shapes. In each step
the left figure shows a leaf position and in the right figure the grey scale indicates the
accumulated fluence.

matrices is that each row has the consecutive-ones property, i.e. there are integers li and ri

8 T. Kalinowski

for i = 1, 2, . . . ,m such that

sij =

{
1 if li < j < ri,

0 otherwise.

For example the first leaf position in Figure 3 corresponds to the shape matrix
0 1 1 0
1 1 1 0
1 1 0 0
0 1 1 1


with leaf positions (l1, r1) = (1, 4), (l2, r2) = (0, 4), (l3, r3) = (0, 3) and (l4, r4) = (1, 5). The
superposition of differently shaped beams corresponds to a positive linear combination of
shape matrices, where the coefficient of a shape matrix measures how long the corresponding
field is applied. So any representation of the given fluence matrix A as a positive integer
linear combination of shape matrices is a feasible solution for our decomposition problem.
For instance:

A =


1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0

 = 2 ·


0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0

+


0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0

+


1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0

 . (1)

We denote the set of shape matrices by S, and consider decompositions of the form A =∑
S∈S uSS with uS ∈ N for all S ∈ S. There are two major objectives that have been

considered in the literature: the total beam-on time and the total setup time. The former
one is proportional to the sum of the coefficients in the decomposition, and the second one
can be measured by the number of beams, in other words the number of shape matrices used
in the decomposition. Let S0 denote the set of matrices with nonzero coefficient. We follow
the terminology introduced by Baatar et al. [18] and formulate two optimization problems,
the decomposition time (DT) problem and the decomposition cardinality (DC) problem

(DT) min

{∑
S∈S

uS : A =
∑
S∈S

uSS, uS ∈ N

}
, (2)

(DC) min

|S0| : S0 ⊆ S, A =
∑
S∈S0

uSS, uS ∈ N

 . (3)

More generally, the minimization of a weighted sum of decomposition time and decompos-
ition cardinality leads to the objective function∑

S∈S0
uS + α|S0|, (4)

for a nonnegative constant α. This objective function can be interpreted as the total
treatment time, where the parameter α depends on the used MLC and measures the average

Introduction to this thesis 9

setup time, i.e. the time needed to move the leaves and check the setting. In a still more
refined model, the varying setup time between different leaf positions can be taken into
account depending on the amount of required leaf motion [42, 77]. Consequently, the order
in which the beams are delivered becomes relevant and the corresponding objective function
is ∑

S∈S0
uS +

|S0|−1∑
i=1

µ(S(i), S(i+1)), (5)

where S(1), S(2), . . . , S(|S0|) is a permutation of the set of used shape matrices S0, and for
two shape matrices S and S′, µ(S, S′) is proportional to the time necessary to change the
setup of the MLC from the beam corresponding to S to the beam corresponding to S′.
It can be shown by small examples [18, 51, 81] (matrices of size 2 × 3) that the objective
functions (2) to (5) in general yield different optimal solutions. It has been observed that
the objective values can be significantly improved if it is allowed to rotate the collimator
by 90◦, thus interchanging the roles played by rows and columns [36, 48, 80].

The optimal value of (2) can be computed efficiently while the problem (3) is strongly
NP-complete. A common approach is to first compute the minimal DT, and then heurist-
ically search for a decomposition which realizes this DT and also has a small DC.

2.2 The decomposition time problem

Starting with Bortfeld et al. [29] and Galvin et al. [70], a number of algorithms for the shape
matrix decomposition problem have been proposed [43, 117, 131], some of them providing
the optimal DT while others use heuristic methods for both objectives DT and DC. A
more rigorous treatment of the problem, including mathematical optimality proofs, started
a few years later [9, 17, 18, 25, 52, 79, 84]. First we consider the version without additional
constraints, i.e. the leaves in different rows move independently, and then we discuss in
some detail two common constraints that are relevant in this thesis: the interleaf collision
constraint (ICC) and the tongue-and-groove constraint (TGC).

The unconstrained problem

A fundamental insight that was already the basis of the algorithm of Bortfeld et al. [29]
is that in the unconstrained case the decomposition problem can be solved for each row
independently, and the optimal DT for the whole matrix is the maximum of the optimal
DT s of the single rows. The optimality (in terms of DT) of both the sweep algorithm
from [29] and the geometry based algorithm of Siochi [117] have been proved several times:
based on network flow formulations by Ahuja and Hamacher [9], based on analyzing the
leaf trajectories inspired by dynamic MLC models by Kamath et al. [84] and based on an
explicit characterization of the minimal DT in terms of the matrix entries by Engel [52].
The best run-time bound for the unconstrained shape matrix decomposition problem comes
from the network flow argument of Ahuja and Hamacher [9].

Theorem 3 ([9]). The shape matrix decomposition problem for an m× n intensity matrix
A can be solved in time O(mn).

10 T. Kalinowski

We describe Engel’s characterization [52] of the optimal DT in more detail because it
motivates an approach to the DC problem described below, and in addition it can be seen
as an early version of the concepts underlying the papers [5, 7, 8]. For simplicity of notation
we add a 0-th and an (n + 1)-th column to the matrix A by setting ai,0 = ai,n+1 = 0 for
i = 1, 2, . . . ,m. The complexity of the matrix A is defined by c(A) = max

16i6m
ci(A) where the

i-th row complexity ci(A) is

ci(A) =
n∑
j=1

max{0, aij − ai,j−1}.

Theorem 4 ([52]). The minimal DT for a matrix A equals c(A).

The interleaf collision constraint (ICC)

In some of the commercially available MLCs leaf overtravel is forbidden. That means the
left leaf of row i and the right leaf of row i ± 1 must not overlap. In this case, a shape
matrix cannot contain two consecutive rows as follows:(

0 1 1 0 0 0 0
0 0 0 0 0 1 1

)
.

In terms of the left and right leaf positions this adds the constraints li < ri+1 and ri > li+1

for i = 1, . . . ,m− 1. Boland et al. [25] reduce the DT problem with ICC to a network flow
problem with side constraints. The network has O(mn2) nodes arranged in m layers, and
the nodes in layer i are labeled by (i, l, r) where (l, r) runs through the possible pairs of
left and right leaf positions, i.e. all pairs with 0 6 l < r 6 n + 1. The arcs are between
consecutive layers and represent the combinations of leaf positions that are allowed by the
ICC. In other words, the nodes (i, l, r) and (i+ 1, l′, r′) are connected by an arc if and only
if l < r′ and r > l′. In addition, there is a source D, which is connected to all nodes in the
first layer, and a sink D′ to which all nodes in the last layer are connected. Then shape
matrices correspond to paths from D to D′. Figure 4 shows the node set for the case m = 4,
n = 2 and two paths corresponding to the shape matrices

1 0
0 1
1 1
1 0

 and


0 1
1 1
1 0
0 1

 .

By identifying shape matrices with paths from D to D′ a shape matrix decomposition can
be interpreted as a D-D′-flow, where the flow value is the DT. This is the basis of the
polynomial algorithm for the DT problem proposed by Boland et al. [25].

Theorem 5 ([25]). The DT problem for a matrix A is equivalent to finding a D-D′-flow
of minimum value subject to the constraint that for every (i, j) ∈ [m] × [n] the total flow
through the nodes (i, l, r) with l < j < r equals aij. In particular the problem can be solved
in polynomial time.

Introduction to this thesis 11

301

401

201

101

302

402

202

102

303

403

203

103

312

412

212

112

313

413

213

113

323

423

223

123

D

D′

Figure 4: The shape matrix graph for m = 4 and n = 2 with two paths corresponding to
shape matrices.

In [5], a variant of the graph in Figure 4 is used in a heuristic approach to minimize the
DC in a shape matrix decomposition, taking into account both the ICC and the tongue-
and-groove constraint described below. The algorithms proposed by Baatar et al. [18]
and Kamath et al. [84] are based on the observation that max{0, ai,j+1 − aij} is a lower
bound for the time for which the left leaf has to be in position j, i.e. for the sum of
the coefficients of shape matrices with sij = 0 and si,j+1 = 1, and similarly for right leaf
positions. Introducing variables for the amounts by which these lower bounds are exceeded,
Baatar et al. [18] formulate a linear program and develop a combinatorial algorithm which
implies that the ICC increase the run-time by a factor of m.

Theorem 6 ([18]). The DT problem with ICC can be solved in time O(m2n).

Kamath et al. [84] describe a similar algorithm but with an optimality proof that works
only under the additional assumption that the MLC leaves move only from left to right.
An alternative approach to the decomposition time problem with ICC can be found in [79].
Generalizing Theorem 4, the minimal DT of a shape matrix decomposition with ICC can
be characterized as the maximal length of an s-t-path in the directed graph G = (V,A)
with node set V and arc set A defined as follows:

V = {s, t} ∪ [m]× [0, n+ 1],

A = {(s, (i, 0)) : i ∈ [m]} ∪ {((i, n+ 1), t) : i ∈ [m]}
∪ {((i, j), (i, j + 1)) : i ∈ [m], j ∈ [0, n]}
∪ {((i, j), (i+ 1, j)) : i ∈ [m− 1], j ∈ [n]}
∪ {((i, j), (i− 1, j)) : i ∈ [2,m], j ∈ [n]} .

12 T. Kalinowski

The length function l : A→ N is defined by

l(s, (i, 0)) = l((i, n+ 1), t) = 0 (i ∈ [m]),

l((i, j − 1), (i, j)) = max{0, aij − ai,j−1} (i ∈ [m], j ∈ [n+ 1]),

l((i, j), (i+ 1, j)) = −aij (i ∈ [m− 1], j ∈ [n]),

l((i, j), (i− 1, j)) = −aij (i ∈ [2,m], j ∈ [n]).

This graph is called the DT-ICC-graph for the matrix A. Figure 5 shows the DT-ICC-graph

s t

0

0

0

0

0

0

0

0

4 1 0 1 3 1 0

2 2 0 2 0 3 0

2 1 0 0 1 2 0

5 0 0 0 3 0 0

−2
−4

−4
−5

−1
0

−3
−1

−1
−4

−4
−5

−2
−2

−3
−4

−2
−1

−1
−3

−2
−1

−4
−4

−5
−2

−3
−3

−3
−2

−2
−1

−5
−2

−3
−4

Figure 5: A DT-ICC-Graph.

for the matrix

A =


4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

 .

Using duality the following min-max-characterization can be proved.

Theorem 7 ([79]). The minimal DT of a shape matrix decomposition of the matrix A equals
the maximum length of an s-t-path in the corresponding ICC shape matrix decomposition
graph.

This characterization of the minimal DT as a maximal path length is the basis of the
approach to the approximated shape matrix decomposition problem proposed in [8].

The tongue-and-groove constraint (TGC)

Another feature of many MLCs is the tongue–and–groove design [45, 129]. To prevent
leaking radiation through the gap between two adjacent leaves a tongue-and-groove design
is used which creates a small overlap of the regions covered by adjacent leaves. This overlap
can cause significant under-dosage effects, and many researchers have proposed mechanisms
to control these under-dosage effects [86, 97, 109, 117]. A natural strategy is to require that

Introduction to this thesis 13

aij 6 ai±1,j implies that in each of the used beams bixel (i ± 1, j) is open whenever bixel
(i, j) is open, or in terms of the shape matrices:

aij 6 ai−1,j ∧ sij = 1 =⇒ si−1,j = 1,

aij > ai−1,j ∧ si−1,j = 1 =⇒ sij = 1

for i = 2, . . . ,m and j = 1, . . . , n. These conditions will be called tongue-and-groove con-
straints (TGC) and they ensure that the overlap region between two adjacent bixels receives
the smaller of the two relevant doses. The method of Kamath et al. [84] can be modified
to solve the DT problem with TGC. Imitating the synchronization approach proposed by
van Santvoort and Heijmen [112] for MLCs in dynamic mode, this was done by Kamath
et al. [86] under the additional assumption of unidirectional leaf movement.

Theorem 8 ([86]). Assuming unidirectional leaf movement, shape matrix decompositions
with minimum DT can be determined in time O(m2n) for the problem with TGC as well
as for the problem with both constraints, ICC and TGC.

This theorem can be proved in the same way as Theorem 6. For the problem with ICC
and TGC the assumption of unidirectional leaf movement can be dropped: using the duality
based algorithm from [79] with a modified length function yields a decomposition with uni-
directional leaf movement which has minimum DT among all shape matrix decompositions
with ICC and TGC [5]. The complexity of the DT problem with TGC (but without ICC)
is still open.

Problem. Determine the computational complexity of the DT problem with TGC.

Note that Engelbeen and Kiesel [57] showed that for a binary input matrix A the DT
problem with TGC can be solved in time O(m2n2).

2.3 The decomposition cardinality problem

In contrast to the DT problem, the DC problem is already computationally hard for very
special cases as shown by Baatar et al. [18] and Collins et al. [38].

Theorem 9 ([18]). The DC problem (3) is strongly NP-hard for single row matrices.

Theorem 10 ([38]). The DC problem (3) is strongly NP-hard for single column matrices.

The proofs of these two hardness results proceed by reduction from 3-Partition and
Positive NotAllEqual-3Sat, respectively. Using the reduction from 3-Partition,
Bansal et al. [19] prove that the DC problem cannot be well approximated. More precisely,
it is APX-hard, which means that there exists a positive ε such that, unless P = NP , there
is no polynomial time algorithm with an approximation ratio 1 + ε.

Theorem 11 ([19]). The DC problem is APX-hard even for a single row with entries
polynomially bounded in n.

The approaches that have been proposed to overcome this hardness can be roughly
classified into three types.

14 T. Kalinowski

Heuristics. Most of the early algorithms heuristically search for a decomposition with a
small DC among all decompositions with the minimum DT. This can be seen as lex-
icographic minimization for the bi-objective problem to minimize the pair (DT,DC).
For instance, a greedy strategy derived from the characterization of the minimal DT
in Theorem 4 is used by Engel [52]: While the intensity matrix A is nonzero, find the
maximal integer u such that there exists a shape matrix S with c(A−uS) = c(A)−u
and A−uS still nonnegative, and continue with A−uS. The same strategy is applied
in [79] for the decomposition with ICC, and in [5] for ICC and TGC. A similar greedy
idea is used by Baatar et al. [18] for the decomposition with ICC. The algorithm of
Baatar et al. [16] takes this approach a step further: instead of extracting a single
shape matrix, each iteration step consists of the extraction of a set of shape matrices
with the maximum coefficient. Gunawardena et al. [73] describe a multiple start local
search heuristic using results of Engel [52]. An approach using ideas from compu-
tational geometry is developed by Chen et al. [33–35]. This method builds on the
geometric interpretation of intensity maps as a 3-D “mountain” made of unit cubes
which goes back to Siochi [117]: The base of the mountain representing an m × n-
matrix A is an m × n-rectangle and on the square (i, j) there is a pile of aij unit
cubes. Then the DC problem corresponds to the decomposition of such a mountain
into polytopes build from unit cubes which represent the fields that can be delivered
by the MLC.

Approximation algorithms. There have been some attempts to obtain algorithms with
a guaranteed approximation ratio. An algorithm of Bansal et al. [19] is shown to have
approximation ratio 24/13 for the single row case. Building on this, approximation
algorithms for general matrices were developed by Luan et al. [96] and extended by
Biedl et al. [23]. The approximation guarantee obtained is in terms of the maximum
value L and the maximum row difference D which are defined as (recall ai0 = ai,n+1 =
0 for all i)

L = max{aij : (i, j) ∈ [m]× [n]},
D = max{|aij − ai,j−1| : i ∈ [m], j ∈ [n+ 1]}.

One of the algorithms in [23] has run-time O(mn2h logD) and approximation ratio
24
13(logD + 1).

Exact algorithms. More recently, there was some more activity in the area of exact al-
gorithms for the problem. The integer programming approach of Langer et al. [93] is
computationally feasible only for very small instances. The combinatorial algorithm
in [83] solves the problem in time O(mn2L+2) where L is the maximal entry of the
input matrix A. This is polynomial for fixed L, but computational tests show that the
method is not efficient enough to tackle problems of practical relevance. The same is
true for the combined integer and constraint programming model of Baatar et al. [15],
the constraint programming approach of Ernst et al. [58] and the mixed integer pro-
gramming model of Wake, Boland and Jennings [126]. Another integer program-
ming model was developed by Taşkın et al. [124], and their algorithm, combining

Introduction to this thesis 15

integer programming decomposition and combinatorial search techniques, was shown
to be capable of solving real-world problems within practicable computational limits.
Moreover, the model is flexible in that additional constraints like ICC and TGC can
be easily included. There has also been some work on worst case run-time bounds
for exact algorithms. Cambazard et al. [31] show that the problem for a single row is
fixed parameter tractable for the parameter L. In particular, there is a shortest-path
based algorithm with run-time O(p(L)2n), where p(L) is the number of unordered
partitions of L as a sum of positive integers. Based on this they propose two hy-
brid methods [32] using Lagrangian relaxation and column generation, respectively.
Finally, Biedl et al. [22] present an algorithm with an improved asymptotic run-
time analysis. In particular, they show that the DC problem can be solved in time
O(mnL/2(1/2−ε)(H−1)) for every ε > 0.

2.4 Approximative shape matrix decomposition

The input data for the shape matrix decomposition problem is a matrix A which is the
result of optimizing beam directions and dose distributions. The algorithms producing the
matrix A are based on simplified models of the radiation physics which do not capture
all the dosimetric details. Thus it makes sense to think of the entries of A as having an
error bar attached. In addition, the exact shape matrix decomposition of A might imply a
prohibitively large DT. These considerations motivate the question for the minimum DT in
a segmentation of a matrix that approximates the matrix A in some sense. The investigation
of this problem was proposed first by Engel and Kiesel [54]. More precisely, the problem
introduced in this paper is looking for a matrix B that lexicographically minimizes the
following two objectives:

1. the minimum DT of a shape matrix decomposition of the matrix B, and

2. the total change, defined as
∑

(i,j)∈[m]×[n]
|aij − bij |.

The condition that B approximates A is reflected by the constraints that |aij − bij | 6 δ for
all (i, j) ∈ [m] × [n] where δ is an input parameter. Engel and Kiesel [54] solved this for
the unconstrained case, and their algorithm has a run-time bound of O(δ3mn2). In [8] the
min-max-characterization of the optimal DT for the problem with ICC from Theorem 7 is
used to derive an algorithm for determining the minimum DT of an approximation matrix in
time O(δ2mn2). For the total change minimization this paper suggests a heuristic approach.
The complete bi-objective problem is considered in [7]. This paper presents a minimum cost
network flow formulation for the dual of the problem to find a shape matrix decomposition
with minimum total change subject to the condition that the DT equals a prescribed value,
for instance the smallest possible one which can be determined according to [8]. From this
formulation an algorithm is derived which solves the problem in time O(m2n2 log2(mn)).
Another approximation problem, motivated by known dosimetric shortcomings of certain
radiation field forms, is treated by Kiesel and Gauer [88], where the set of allowed shape
matrices is restricted to matrices that correspond to field shapes with good dosimetric
properties. In many cases this restriction makes an exact shape matrix decomposition

16 T. Kalinowski

impossible, hence an approximation is necessary. A related but more general problem is
investigated by Engelbeen et al. [56] where a number of results on hardness of approximation
are derived. The more general problem is to find, for an input set S of binary m × n-
matrices (for instance the set of dosimetrically acceptable shape matrices in [88]), the best
approximation of a given matrix A as a positive linear combination of elements of S.

2.5 Decomposition into rectangle matrices

It is an interesting problem to study the shape matrix decomposition problem for smaller
classes of binary matrices. In the IMRT application, intensity modulation without an MLC
leads to the problem of decomposing the intensity matrix A into binary matrices whose 1-
entries form a rectangle [41, 130]. For binary input matrices this is a well studied problem in
computational geometry [59, 95, 102, 120]. For matrices with arbitrary nonnegative integer
entries the problem was investigated by Engel [53]. For the special case of matrices with
two rows his maximum flow formulation leads to a combinatorial algorithm which runs in
time O(n2). For more than two rows an integer programming formulation is presented and
an efficient algorithm based on the revised simplex method is described. The paper [53]
ends with a list of open problems concerning the integrality gap of rectangle decomposition
problems. The second of these problems asks for a proof of the conjecture that for binary
input matrices this integrality gap vanishes, and this problem is settled in [6].

3 Dynamic network problems

In this section, we collect results about network problems with an additional time aspect.
In Section 3.1 we describe some of the main results in the area of flows over time, and
in Section 3.2 we provide some background on the scheduling problem studied in [2], [3]
and [4] where the objective is to maximize the total flow through a network over a given
time horizon. Finally, Section 3.3 contains the description of a new class of network design
problems, introduced in [1], where a network is built over a number of time periods, and the
aim is to arrange the construction process in such a way, that not only the ultimate network
is optimal, but also the intermediate networks that are available in each time period.

3.1 Flows over time

Many real-world systems that are modeled by a mathematical network, such as transport-
ation or telecommunication networks, have a time component which is not reflected in the
basic models presented in Section 1. There are several ways to introduce a temporal di-
mension into the standard flow problems: the arcs can have associated transit times, or
the network specifications like capacities and costs might change over time. Such temporal
aspects in flow problems can be captured using the concept of flow over time (also called
dynamic flow) which was introduced by Ford and Fulkerson [67, 68] in the following form:
given a network with transit times on the arcs, determine the maximum flow that can be
sent from a source s to a sink t in T time units. In [67] this problem is reduced to the
computation of a static minimum cost circulation in the extended network obtained by

Introduction to this thesis 17

adding an arc from t to s, and interpreting the transit times as costs. The correctness of
the algorithm follows from a generalization of the Max-Flow Min-Cut Theorem (Theorem
1) using the appropriate notion of an s-t-cut over time. In contrast, the dynamic version
of the minimum cost flow problem is NP-complete which was shown by Klinz and Woe-
ginger [90], but it can be solved in pseudo-polynomial time using time-expanded networks.
A time expanded network corresponding to the network (V,A) contains copies of every
node v ∈ V for different points in time, and an arc a = (v, w) ∈ A with transit time τa is
replaced by arcs joining the copy of v for time i with the copy of w for time i + τa. The
minimum cost flow problem over time has a fully polynomial-time approximation scheme
based on condensed time-expanded networks introduced by Fleischer and Skutella [62]. For
a comprehensive overview of the large area of flows over time we refer to the the survey
papers of Aronson [14], Powell et al. [107] and Kotnyek [91], as well as the expository book
chapter of Skutella [118].

In the problems relevant to this thesis the transit times are neglected, but the concept of
a flow over time makes sense also for zero transit times. Suppose the goal is to send certain
amounts of flow between different source-sink pairs and the capacity of the network is not
sufficient to satisfy all demands. Then looking for a collection of flows such that their sum
satisfies all demands is a flow over time problem which was studied by Hajek and Ogier [74]
and Fleischer [60]. Another situation where flow over time with zero transit times naturally
occurs is when the input data (capacities and costs) changes over time [12, 13, 75, 99, 106].
In the problem studied in the papers [2], [3] and [4], the capacities are piecewise constant
as a function of time. Variants of the maximum flow problem with piecewise constant
capacities were investigated by Ogier [101] and Fleischer [61]. In contrast to their work,
in the problem described in Section 3.2, the piecewise constant capacities are not given as
input, but depend on the scheduling decisions that are made while solving the problem.

3.2 Maintenance scheduling for the Hunter Valley Coal Chain

The port of Newcastle, NSW, Australia, is the world’s largest coal exporting facility, used
for shipping around 80 different brands of coal from about 40 mines owned by 11 producers.
Four train haulage operators bring the coal from the mines to three coal loading termin-
als. The inland portion of the coal export chain, following the path of the Hunter river,
is the Hunter Valley Coal Chain (HVCC, see Figure 6). In 2009, the Hunter Valley Coal
Chain Coordinator Limited (HVCCC, http://www.hvccc.com.au) was founded as an in-
dependent legal entity to plan and coordinate the daily operations as well as the long term
strategic planning of coal producers and service providers. The book chapter of Boland and
Savelsbergh [26] provides an excellent overview on the history of the HVCCC, as well as on
a variety of challenging optimization problems that have been identified and that are in the
focus of highly active research. These range from detailed models for the daily operational
planning [24, 37], over medium term planning problems as the annual maintenance schedul-
ing [3, 4], to decision support tools for the long term strategic planning of infrastructure
expansion to satisfy increasing demand [27, 116].

The necessary steps to bring the coal from the mines to the ships in the port can be
coarsely described as follows. From load points associated with one or more mines, the

http://www.hvccc.com.au

18 T. Kalinowski

Figure 6: The Hunter Valley Coal Chain ([26], see also http://www.hvccc.com.au).

coal is transported to the terminal by train. Upon arrival, a train dumps its contents at
a dump station, and it is then transported to a pad where it is added to a stockpile by a
stacker. It usually must dwell on the pad for up to ten days before the ship is available for
loading. Reclaimers are used to reclaim the coal which is then transferred to a berth on
a conveyor. Finally, it is loaded onto a ship with a ship loader. The structure of the coal
chain is schematically shown in Figure 7.

Mine
Stockpiles

Coal producers
Track owners

Train haulage operators Terminal operators Port corporation

Terminal
Stockpiles

Mines
Load
points

Train haulage

Track infrastructure

Dump stations/
Stackers

Reclaimers/
Ship loaders

Ships

Figure 7: Schematic view of the Hunter Valley Coal Chain (adapted from [40]).

The problem discussed in the papers [3] and [4] is motivated by the annual maintenance
planning process carried out by the HVCCC. Supply chain components such as railway
track sections, terminal equipment and load points have to undergo regular preventive and
corrective maintenance, causing a significant loss in system capacity (up to 15%). The

http://www.hvccc.com.au

Introduction to this thesis 19

HVCCC had observed that careful scheduling of the maintenance jobs – good alignment of
them – could reduce the impact of maintenance on the network capacity, and established a
regular planning activity to carry it out, called “capacity alignment”.

The starting point of the work in [4] is the observation that the movement of the coal
through the system can be viewed as a flow in a network, where the nodes are load-points
at the mines and junctions in the railway network, and arcs are railway track sections or
certain pieces of equipment at the terminals. In this model any maintenance job causes
a temporary capacity reduction on the corresponding arc, so the evaluation of a fixed
maintenance schedule with respect to the total annual throughput is a maximum flow
over time problem with piecewise constant capacities, and this reduces to a sequence of
independent maximum flow problems, one for each time interval of constant capacities.
More formally, an optimization problem called maximum total flow with flexible arc outages
(MaxTFFAO) is introduced. An instance of this problem is given by

• a network (V,A) with a source s ∈ V and a sink t ∈ V ,

• a time horizon T , and

• a list J of jobs, where a job j is specified by its associated arc aj , its processing time
pj , its release date rj ∈ [T − pj + 1], and its deadline dj ∈ [rj + pj − 1, T].

A solution of the problem is specified by start times Sj ∈ [rj , dj − pj + 1] for the jobs j ∈ J .
The arc aj is not available for carrying flow in the pj time periods Sj , Sj +1, . . . , Sj +pj−1.
In order to evaluate a solution, we denote the set of available arcs at time i by Ai, i.e.

Ai = A \ {a : a = aj for some j ∈ J with Sj 6 i 6 Sj + pj − 1}.

The value of the solution (Sj)j∈J is
∑T

i=1 Fi where Fi is the maximum value of an s-t-
flow in the network (V,Ai). By reduction from 3-Partition, it can be shown that this
problem is hard even when the network contains only one node except s and t, a so-called
transshipment node.

Theorem 12 ([4]). The problem MaxTFFAO is strongly NP-complete even for a network
with a single transshipment node.

In [4], several improvement heuristics are presented. They are based on a local search
where the neighbourhood of a solution consists of all solutions that can be obtained by
changing the start time of at most one job. Dual information from the maximum flow
problems for evaluating the current solution is used to identify jobs for which changing the
start time can improve the objective.

A special case of the problem MaxTFFAO is studied [2]: an arc can be associated
with at most one job, all processing times and release dates are equal to 1, and all deadlines
are equal to T . Thus the release dates and deadlines are no constraints, and the job set
can be identified with a subset of the arc set. Consequently, the problem can be stated as
follows: given a network and a subset J ⊆ A of arcs that have to undergo maintenance
for exactly one time period in the time horizon, what is the maximum flow that can be

20 T. Kalinowski

pushed through the network? The proof of Theorem 12 in [4] shows that this special case
is strongly NP-complete. In [2] several problem characteristics are identified that influence
the complexity.

Theorem 13 ([2]). If all arcs have capacity 1 then the problem can be solved in polynomial
time.

Theorem 14 ([2]). Already for a network with a single transshipment node and a time
horizon of two periods it is NP-hard to decide if scheduling all jobs at the same time is
optimal.

Theorem 15 ([2]). For series parallel networks and fixed time horizon, there is a pseudo-
polynomial algorithm.

In [3] the HVCC is considered in much more operational detail. A large-scale mixed
integer programming model for the maintenance scheduling problem is presented which
takes into account the following aspects.

1. The coal is stored at the terminal, typically between three and ten days.

2. In reality, not every maintenance job makes the corresponding arc completely unavail-
able. In some cases, the capacity is reduced only by a certain amount.

3. There are constraints on which jobs can be done simultaneously, for instance due to
availability of equipment or workforce, or due to safety reasons.

4. The capacities of the machines at the terminal are not independent. For instance,
there are stackers whose stacking capacity depends on the dump station from which
it gets the coal.

5. In practice, the maintenance scheduling does not start from scratch, but from prelim-
inary schedules prepared by the individual service providers like railway companies
and terminal operators. In addition to maximizing the total throughput, it is desirable
that the optimized schedule deviates as little as possible from the initial schedule.

The first point is captured by introducing special nodes representing the pads where the
coal is stored at the terminals. In these nodes flow can be stored which is a well studied
concept in research on flows over time (cf. [91]). This can be interpreted as introducing a
time expanded network which has a copy of the original network for each time period and
the networks for consecutive time periods are linked by arcs connecting the copies of the
storage nodes. The second point makes it necessary to introduce binary variables for pairs
(a, ρ) of an arc a and a ratio ρ, indicating if the arc a is affected by a job which reduces its
capacity by a factor of ρ ∈ [0, 1]. This is possible because there are only very few possible
values for ρ. The third point can be modelled by introducing clique constraints that ensure
that from a set of jobs at most one job is processed at any given time. For the fourth point,
it is established that for every terminal in the HVCCC instance the logic of the operations
can be captured by a network model, although the one-to-one correspondence between arcs

Introduction to this thesis 21

Dump stations Stackers Pads Reclaimers Ship loaders Berths

q
s

A

B

C

D

D1

D2

D3

D2

D3

S1

S2S3

S4

S5

S6

S5

S6

S3

S4

R1

R2

R3

R4

Sl1

Sl2

Sl3

B1

B2

B3

B4

Figure 8: A terminal network. Arcs with the same label represent the same piece of equip-
ment.

and machines has to be given up. Figure 8 shows the most complicated terminal. For the
fifth point, a two-stage approach is proposed. In the first phase, the total throughput is
maximized without taking into account the initial schedule. In the second phase, the MIP
is changed in two ways. (i) The objective is changed from maximizing the throughput to
minimizing the number of jobs whose start time differs from the one in the initial schedule.
(ii) A lower bound for the total throughput is added to ensure that the total throughput
for the optimized schedule is sufficiently close to the value found in the first phase.

Because the planning horizon in the practical problem is a whole year and the main-
tenance jobs are scheduled at a time scale of a half hour, the MIP is too large to be solved
directly. A method based on solving smaller subproblems is proposed to deal with this
difficulty. Starting from any feasible solution, the values of all variables which model events
outside a certain time window are fixed, and the resulting smaller model is solved. After
updating the values for the variables that are not fixed, the time window is moved, and the
procedure is iterated. The paper reports on extensive computational tests of this strategy.

3.3 Incremental network design problems

Another area where a temporal aspect naturally occurs in a network optimization context
is network design. This fundamental class of optimization problems has a rich research
tradition, and it is a very general framework, containing a variety of important problems as
special cases. Magnanti and Wong [98] give an extensive overview of models and algorithms
with a focus on applications in transportation planning, and Kerivin and Mahjoub [87] sur-
vey design problems for telecommunication networks. Recently, in the area of transportation
network planning there has been a growing interest in network design in multiple stages [89,
125]. This is very natural in a context where for instance a road network is expanded over

22 T. Kalinowski

several years, and properties of the intermediate steps in the expansion process have to be
taken into account in addition to the final result. A class of problems that captures this
basic idea is introduced in [1]. An incremental network design problem can be associated
with any network optimization problem like shortest path, maximum flow, etc. In the basic
version, an instance of an incremental network design problem is given by a network (V,A),
a time horizon T ∈ N, and a partition A = Ae ∪Ap of the arc set into the set Ae of existing
arcs and the set Ap of potential arcs. For a complete instance specification, there must be
given some additional information like costs, capacities and budgets. The interpretation is
that in the beginning of the planning horizon the network is (V,Ae) and the potential arcs
in Ap represent the expansion options, i.e. they can be added to the network (possibly at a
cost). In addition to limiting the expansion per time period by the cost structure, there can
also be explicit budgets. The task is to decide, for each time period i = 1, 2, . . . , T , which
arcs are added. The objective is to optimize the cumulative value which is obtained as the
sum of the values for the associated network problem when it is solved on the network that
has been build up to time i for i = 1, 2, . . . , T .

After defining this general problem class, the paper [1] deals with the special case where
the underlying problem is the shortest path problem, the time horizon equals the number
of potential arcs, and the budget constraint is that at most one arc can be added per time
period. This problem is called Incremental network design problem with shortest paths
(IND-SP) [1]:

Instance. A network (V,A), a source node s ∈ V and a sink node t ∈ V , a partition
A = Ae ∪Ap, a length function l : A→ R>0, and the time horizon T = |Ap|.

Solution. A permutation (a1, . . . , aT) of Ap.

Value.
T∑
i=1

Li where Li is the length of a shortest s-t path in the network (V,A∪{a1, . . . , ai}).

We call a shortest s-t-path in (V,Ae) an initial shortest path and denote its length by L0.
Similarly, a shortest s-t-path in (V,Ae ∪Ap) is called ultimate shortest path and has length
LT which is independent of the solution (a1, . . . , aT).

Theorem 16 ([1]). The problem IND-SP is NP-hard.

Two natural greedy strategies for the problem IND-SP are to

1. build an ultimate shortest path as quickly as possible, and

2. always build arcs that lead to a shorter path as quickly as possible.

In [1], it is shown that there are instances where both strategies, thus also the combined
strategy that takes the better of the two solutions, are performing arbitrary bad in compar-
ison to the optimal solution. On the other hand, a 4-approximation algorithm is derived
which is based on scaling the gap between the lengths of the initial shortest path and the
ultimate shortest path. Let ∆ = L0 − LT denote this gap. Then O(log ∆) paths are con-
structed whose lengths are bounded by LT + ∆/2i for i = 1, 2, . . . , blog2 ∆c. In an initial

Introduction to this thesis 23

step this algorithm requires the computation of shortest s-t-paths containing at most k po-
tential arcs for each k = 1, 2, . . . , T . The run-time of this step can be bounded by O(Tn3)
which dominates the run-time of the complete algorithm, thus giving the following result.

Theorem 17 ([1]). A 4-approximation for the problem IND-SP can be computed in time
O(Tn3).

Papers in this thesis

[1] Matthew Baxter, Tarek Elgindy, Andreas T Ernst, Thomas Kalinowski and Martin
WP Savelsbergh. “Incremental network design with shortest paths”. In: European
Journal of Operational Research 238.3 (2014), pp. 675–684. doi: 10.1016/j.ejor.
2014.04.018.

[2] N. Boland, T. Kalinowski, R. Kapoor and S. Kaur. “Scheduling unit processing
time arc shutdown jobs to maximize network flow over time: complexity results”. In:
Networks 63.2 (2014), pp. 196–202. doi: 10.1002/net.21536.

[3] N. Boland, T. Kalinowski, H. Waterer and L. Zheng. “Mixed integer programming
based maintenance scheduling for the Hunter Valley Coal Chain”. In: Journal of
Scheduling 16.6 (2013), pp. 649–659. doi: 10.1007/s10951-012-0284-y.

[4] N. Boland, T. Kalinowski, H. Waterer and L. Zheng. “Scheduling arc maintenance
jobs in a network to maximize total flow over time”. In: Discr. Appl. Math. 163
(2014), pp. 34–52. doi: 10.1016/j.dam.2012.05.027.

[5] T. Kalinowski. “Reducing the tongue–and–groove underdosage in MLC shape matrix
decomposition”. In: Algorithmic Operations Research 3.2 (2008), pp. 165–174.

[6] T. Kalinowski. “A dual of the rectangle-segmentation problem for binary matrices”.
In: The Electronic Journal of Combinatorics 16 (2009), R89.

[7] T. Kalinowski. “A minimum cost flow formulation for approximated MLC segment-
ation”. In: Networks 57.2 (2011), pp. 135–140. doi: 10.1002/net.20394.

[8] T. Kalinowski and A. Kiesel. “Approximated MLC shape matrix decomposition
with interleaf collision constraint”. In: Algorithmic Operations Research 4.1 (2009),
pp. 49–57.

Other references

[9] R.K. Ahuja and H.W. Hamacher. “A Network Flow Algorithm to Minimize Beam-On
Time for Unconstrained Multileaf Collimator Problems in Cancer Radiation Ther-
apy”. In: Networks 45.1 (2005), pp. 36–41. doi: 10.1002/net.20047.

[10] R.K. Ahuja, T.L. Magnanti and J.B. Orlin. Network flows. Englewood Cliffs, NJ:
Prentice Hall, 1993.

[11] R.K. Ahuja, K. Mehlhorn, J.B. Orlin and R.E. Tarjan. “Faster Algorithms for the
Shortest Path Problem”. In: Journal of the ACM 37.2 (1990), pp. 213–223.

http://dx.doi.org/10.1016/j.ejor.2014.04.018
http://dx.doi.org/10.1016/j.ejor.2014.04.018
http://dx.doi.org/10.1002/net.21536
http://dx.doi.org/10.1007/s10951-012-0284-y
http://dx.doi.org/10.1016/j.dam.2012.05.027
http://www.combinatorics.org/Volume_16/PDF/v16i1r89.pdf
http://dx.doi.org/10.1002/net.20394
http://dx.doi.org/10.1002/net.20047

24 T. Kalinowski

[12] E.J. Anderson, P. Nash and A.B. Philpott. “A class of continuous network flow
problems”. In: Mathematics of Operations Research 7.4 (1982), pp. 501–514. doi:
10.1287/moor.7.4.501.

[13] E.J. Anderson and A.B. Philpott. “Optimisation of flows in networks over time”. In:
Probability, statistics and optimisation. Ed. by F.P. Kelly. Wiley Ser. Prob. Math.
Statist. Wiley, 1994, pp. 369–382.

[14] J.E. Aronson. “A survey of dynamic network flows”. In: Annals of Operations Re-
search 20.1 (1989), pp. 1–66. doi: 10.1007/BF02216922.

[15] D. Baatar, N. Boland, S. Brand and P. Stuckey. “Minimum cardinality matrix de-
composition into consecutive-ones matrices: CP and IP approaches”. In: Proc. 4th
CPAIOR 2007. Ed. by P. Van Hentenryck and L. Wolsey. Vol. 4510. LNCS. Springer,
2007, pp. 1–15. doi: 10.1007/978-3-540-72397-4.

[16] D. Baatar, N. Boland, R. Johnston and H.W. Hamacher. “A new sequential extrac-
tion heuristic for optimizing the delivery of cancer radiation treatment using multileaf
collimators”. In: INFORMS Journal on Computing 21.2 (2009), pp. 224–241. doi:
10.1287/ijoc.1080.0288_1.

[17] D. Baatar and H.W. Hamacher. “New LP Model for Multileaf Collimators in Radi-
ation Therapy”. Contribution to the conference ORP3, University of Kaiserslautern.
2003.

[18] D. Baatar, H.W. Hamacher, M. Ehrgott and G.J. Woeginger. “Decomposition of
integer matrices and multileaf collimator sequencing”. In: Discr. Appl. Math. 152.1-
3 (2005), pp. 6–34. doi: 10.1016/j.dam.2005.04.008.

[19] N. Bansal, D. Coppersmith and B. Schieber. “Minimizing Setup and Beam-On Times
in Radiation Therapy”. In: Proc. 9th WS on Approximation Algorithms for Com-
binatorial Optimization Problems APPROX’06. Ed. by J. Dı́az, K. Jansen, J.D.P.
Rolim and U. Zwick. Vol. 4110. LNCS. Springer, 2006, pp. 27–38. doi: 10.1007/
11830924_5.

[20] M.S. Bazaraa and R.W. Langley. “A dual shortest path algorithm”. In: SIAM
Journal on Applied Mathematics 26.3 (1974), pp. 496–501. doi: 10.1137/0126047.

[21] R. Bellman. “On a Routing Problem”. In: Quarterly of Applied Mathematics 16
(1958), pp. 87–90.

[22] T. Biedl, S. Durocher, C. Engelbeen, S. Fiorini and M. Young. “Faster optimal
algorithms for segment minimization with small maximal value”. In: Discr. Appl.
Math. 161.3 (2013), pp. 317–329. doi: 10.1016/j.dam.2012.09.011.

[23] T. Biedl, S. Durocher, H.H. Hoos, S. Luan, J. Saia and M. Young. “A note on
improving the performance of approximation algorithms for radiation therapy”. In:
Information Processing Letters 111.7 (2011), pp. 326–333. doi: 10.1016/j.ipl.
2010.12.011.

http://dx.doi.org/10.1287/moor.7.4.501
http://dx.doi.org/10.1007/BF02216922
http://dx.doi.org/10.1007/978-3-540-72397-4
http://dx.doi.org/10.1287/ijoc.1080.0288_1
http://dx.doi.org/10.1016/j.dam.2005.04.008
http://dx.doi.org/10.1007/11830924_5
http://dx.doi.org/10.1007/11830924_5
http://dx.doi.org/10.1137/0126047
http://dx.doi.org/10.1016/j.dam.2012.09.011
http://dx.doi.org/10.1016/j.ipl.2010.12.011
http://dx.doi.org/10.1016/j.ipl.2010.12.011

Introduction to this thesis 25

[24] N. Boland, D. Gulczynski and M. Savelsbergh. “A stockyard planning problem”. In:
EURO Journal of Transportation and Logistics (2013), pp. 1–40. doi: 10.1007/

s13676-012-0011-z.

[25] N. Boland, H. W. Hamacher and F. Lenzen. “Minimizing beam-on time in cancer
radiation treatment using multileaf collimators”. In: Networks 43.4 (2004), pp. 226–
240. issn: 0028-3045. doi: 10.1002/net.20007.

[26] N. Boland and M. Savelsbergh. “Optimizing the Hunter Valley coal chain”. In: Supply
Chain Disruptions: Theory and Practice of Managing Risk. Ed. by H. Gurnani, A.
Mehrotra and S. Ray. Springer-Verlag London Ltd., 2011, pp. 275–302.

[27] N. Boland, M. Savelsbergh and H. Waterer. “Shipping Data Generation for the
Hunter Valley Coal Chain”. submitted. 2013.

[28] T.R. Bortfeld. “IMRT: a review and preview”. In: Phys. Med. Biol. 51 (2006), R363–
R379. doi: 10.1088/0031-9155/51/13/R21.

[29] T.R. Bortfeld, D.L. Kahler, T.J. Waldron and A.L. Boyer. “X–ray field compensation
with multileaf collimators”. In: Int. J. Radiat. Oncol. Biol. Phys. 28 (1994), pp. 723–
730. doi: 10.1016/0360-3016(94)90200-3.

[30] A. Brahme. “Optimization of stationary and moving beam radiation therapy tech-
niques”. In: Radiother. Oncol. 12 (1988), pp. 129–140. doi: 10.1016/0167-8140(88)
90167-3.

[31] H. Cambazard, E. O’Mahony and B. O’Sullivan. “A shortest path-based approach
to the multileaf collimator sequencing problem”. In: Proc. 6th CPAIOR 2009. Ed. by
W.-J. van Hoeve and J.N. Hooker. Vol. 5574. LNCS. Springer, 2009, pp. 41–55. doi:
10.1007/978-3-642-01929-6_5.

[32] H. Cambazard, E. O’Mahony and B. O’Sullivan. “Hybrid methods for the multileaf
collimator sequencing problem”. In: Proc. 7th CPAIOR 2010. Ed. by A. Lodi, M.
Milano and P. Toth. Vol. 6140. LNCS. Springer, 2010, pp. 56–70. doi: 10.1007/978-
3-642-13520-0_9.

[33] D. Chen, X. Hu, S. Luan, C. Wang and X. Wu. “Geometric algorithms for static leaf
sequencing problems in radiation therapy”. In: International Journal of Computa-
tional Geometry & Applications 14 (2004), pp. 311–339. doi: 10.1142/S0218195904001494.

[34] D. Chen, X. Hu, S. Luan, X. Wu and C. Yu. “Optimal terrain construction problems
and applications in intensity-modulated radiation therapy”. In: Algorithmica 42.3
(2005), pp. 265–288. doi: 10.1007/s00453-005-1169-7.

[35] D. Chen, X.S. Hu, S. Luan, S.A. Naqvi, C. Wang and C.X. Yu. “Generalized geomet-
ric approaches for leaf sequencing problems in radiation therapy”. In: International
Journal of Computational Geometry & Applications 16 (2006), pp. 175–204. doi:
10.1142/S0218195906001999.

[36] Y. Chen, Q. Hou and J.M. Galvin. “A graph-searching method for MLC leaf sequen-
cing under constraints”. In: Medical physics 31 (2004), p. 1504. doi: 10.1118/1.
1737512.

http://dx.doi.org/10.1007/s13676-012-0011-z
http://dx.doi.org/10.1007/s13676-012-0011-z
http://dx.doi.org/10.1002/net.20007
http://dx.doi.org/10.1088/0031-9155/51/13/R21
http://dx.doi.org/10.1016/0360-3016(94)90200-3
http://dx.doi.org/10.1016/0167-8140(88)90167-3
http://dx.doi.org/10.1016/0167-8140(88)90167-3
http://dx.doi.org/10.1007/978-3-642-01929-6_5
http://dx.doi.org/10.1007/978-3-642-13520-0_9
http://dx.doi.org/10.1007/978-3-642-13520-0_9
http://dx.doi.org/10.1142/S0218195904001494
http://dx.doi.org/10.1007/s00453-005-1169-7
http://dx.doi.org/10.1142/S0218195906001999
http://dx.doi.org/10.1118/1.1737512
http://dx.doi.org/10.1118/1.1737512

26 T. Kalinowski

[37] R. Clement. “MIP models for scheduling the operations for a coal loading facility”.
In: Proc. 44th ORSNZ conference. 2009, pp. 139–148.

[38] M.J. Collins, D. Kempe, J. Saia and M. Young. “Nonnegative integral subset repres-
entations of integer sets”. In: Information Processing Letters 101.3 (2007), pp. 129–
133. doi: 10.1016/j.ipl.2006.08.007.

[39] D.J. Convery and M.E. Rosenbloom. “The generation of intensity-modulated fields
for conformal radiotherapy by dynamic collimation”. In: Physics in Medicine and
Biology 37.6 (1992), pp. 1359–1374. doi: 10.1088/0031-9155/37/6/012.

[40] Hunter Valley Coal Chain Coordinator. Overview Presentation. http://www.hvccc.
com.au/Communications/Miscellaneous%20Presentations/HVCCC%20Overview%

202012.pdf (13th March 2013). 2012.

[41] J. Dai and Y. Hu. “Intensity-modulation radiotherapy using independent collimators:
an algorithm study”. In: Medical physics 26 (1999), pp. 2562–2570. doi: 10.1118/
1.598794.

[42] J. Dai and W. Que. “Simultaneous minimization of leaf travel distance and tongue-
and-groove effect for segmental intensity-modulated radiation therapy”. In: Phys.
Med. Biol. 49.23 (2004), pp. 5319–5331. doi: 10.1088/0031-9155/49/23/009.

[43] J. Dai and Y. Zhu. “Minimizing the number of segments in a delivery sequence
for intensity-modulated radiation therapy with a multileaf collimator”. In: Medical
physics 28 (2001), pp. 2113–2120. doi: 10.1118/1.1406518.

[44] G.B. Dantzig and D.R. Fulkerson. “On the max-flow min-cut theorem of networks”.
In: Linear inequalities and related systems. Ed. by H.W. Kuhn and A.W. Tucker.
Vol. 38. Annals of Mathematics Studies. Princeton University Press, 1956, pp. 215–
221.

[45] J. Deng, T. Pawlicki, Y. Chen, J. Li, S.B. Jiang and C.M. Ma. “The MLC tongue-
and-groove effect on IMRT dose distributions”. In: Phys. Med. Biol. 46.4 (2001),
pp. 1039–1060. doi: 10.1088/0031-9155/46/4/310.

[46] E.W. Dijkstra. “A note on two problems in connexion with graphs”. In: Numerische
Mathematik 1.1 (1959), pp. 269–271.

[47] E.A. Dinic. “Algorithm for solution of a problem of maximum flow in networks with
power estimation”. In: Soviet Math. Dokl. 11.5 (1970), pp. 1277–1280.

[48] X. Dou, X. Wu, J. Bayouth and J. Buatti. “The matrix orthogonal decomposition
problem in intensity-modulated radiation therapy”. In: Proc. 12th annual interna-
tional conference on Computing and Combinatorics COCOON 2006. Ed. by D.Z.
Chen and D.T Lee. Vol. 4112. LNCS. Springer, 2006, pp. 156–165. doi: 10.1007/
11809678.

[49] J. Edmonds and R.M. Karp. “Theoretical improvements in algorithmic efficiency for
network flow problems”. In: Journal of the ACM 19.2 (1972), pp. 248–264.

http://dx.doi.org/10.1016/j.ipl.2006.08.007
http://dx.doi.org/10.1088/0031-9155/37/6/012
http://www.hvccc.com.au/Communications/Miscellaneous%20Presentations/HVCCC%20Overview%202012.pdf
http://www.hvccc.com.au/Communications/Miscellaneous%20Presentations/HVCCC%20Overview%202012.pdf
http://www.hvccc.com.au/Communications/Miscellaneous%20Presentations/HVCCC%20Overview%202012.pdf
http://dx.doi.org/10.1118/1.598794
http://dx.doi.org/10.1118/1.598794
http://dx.doi.org/10.1088/0031-9155/49/23/009
http://dx.doi.org/10.1118/1.1406518
http://dx.doi.org/10.1088/0031-9155/46/4/310
http://dx.doi.org/10.1007/11809678
http://dx.doi.org/10.1007/11809678

Introduction to this thesis 27

[50] M. Ehrgott, Ç. Güler, H.W. Hamacher and L. Shao. “Mathematical optimization
in intensity modulated radiation therapy”. In: Annals of Operations Research 175.1
(2010), pp. 309–365. doi: 10.1007/s10479-009-0659-4.

[51] M. Ehrgott, H.W. Hamacher and M. Nußbaum. “Decomposition of matrices and
static multileaf collimators: A survey”. In: Optimization in medicine. Ed. by C.J.S.
Alves, P.M. Pardalos and L.N. Vicente. Springer, 2008, pp. 25–46.

[52] K. Engel. “A new algorithm for optimal multileaf collimator field segmentation”. In:
Discr. Appl. Math. 152.1-3 (2005), pp. 35–51. doi: 10.1016/j.dam.2004.10.007.

[53] K. Engel. “Optimal matrix-segmentation by rectangles”. In: Discr. Appl. Math. 157.9
(2009), pp. 2015–2030. doi: 10.1016/j.dam.2008.12.008.

[54] K. Engel and A. Kiesel. “Approximated matrix decomposition for IMRT planning
with multileaf collimators”. In: OR Spectrum 33.1 (2011), pp. 149–172. doi: 10.
1007/s00291-009-0168-5.

[55] K. Engel and E. Tabbert. “Fast Simultaneous Angle, Wedge, and Beam Intensity
Optimization in Inverse Radiotherapy Planning”. In: Optimization and Engineering
6.4 (2005), pp. 393–419. doi: 10.1007/s11081-005-2065-3.

[56] C. Engelbeen, S. Fiorini and A. Kiesel. “A closest vector problem arising in radiation
therapy planning”. In: Journal of combinatorial optimization 22.4 (2011), pp. 609–
629. doi: 10.1007/s10878-010-9308-8.

[57] C. Engelbeen and A. Kiesel. “Binary matrix decompositions without tongue-and-
groove underdosage for radiation therapy planning”. In: Algorithmic Operations Re-
search 5.2 (2010), pp. 119–132.

[58] A.T. Ernst, V.H. Mak and L.R. Mason. “An exact method for the minimum cardin-
ality problem in the treatment planning of intensity-modulated radiotherapy”. In:
INFORMS Journal on computing 21.4 (2009), pp. 562–574. doi: 10.1287/ijoc.
1080.0308.

[59] L. Ferrari, P.V. Sankar and J. Sklansky. “Minimal Rectangular Partitions of Digitized
Blobs”. In: Computer Vision, Graphics and Image Processing 28 (1984), pp. 58–71.
doi: 10.1016/0734-189X(84)90139-7.

[60] L. Fleischer. “Faster algorithms for the quickest transshipment problem”. In: SIAM
journal on Optimization 12.1 (2001), pp. 18–35. doi: 10.1137/S1052623497327295.

[61] L. Fleischer. “Universally maximum flow with piecewise-constant capacities”. In:
Networks 38.3 (2001), pp. 115–125. doi: 10.1002/net.1030.

[62] L. Fleischer and M. Skutella. “Quickest flows over time”. In: SIAM Journal on Com-
puting 36.6 (2007), pp. 1600–1630. doi: 10.1137/S0097539703427215.

[63] R.W. Floyd. “Algorithm 97: shortest path”. In: Communications of the ACM 5.6
(1962), p. 345.

[64] L.R. Ford. Network Flow Theory. Tech. rep. Paper P-923. Santa Monica, California:
RAND Corporation, 1956.

http://dx.doi.org/10.1007/s10479-009-0659-4
http://dx.doi.org/10.1016/j.dam.2004.10.007
http://dx.doi.org/10.1016/j.dam.2008.12.008
http://dx.doi.org/10.1007/s00291-009-0168-5
http://dx.doi.org/10.1007/s00291-009-0168-5
http://dx.doi.org/10.1007/s11081-005-2065-3
http://dx.doi.org/10.1007/s10878-010-9308-8
http://dx.doi.org/10.1287/ijoc.1080.0308
http://dx.doi.org/10.1287/ijoc.1080.0308
http://dx.doi.org/10.1016/0734-189X(84)90139-7
http://dx.doi.org/10.1137/S1052623497327295
http://dx.doi.org/10.1002/net.1030
http://dx.doi.org/10.1137/S0097539703427215

28 T. Kalinowski

[65] L.R. Ford and D.R. Fulkerson. “Maximal flow through a network”. In: Canadian
Journal of Mathematics 8.3 (1956), pp. 399–404.

[66] L.R. Ford and D.R. Fulkerson. “A simple algorithm for finding maximal network
flows and an application to the Hitchcock problem”. In: Canadian Journal of Math-
ematics 9 (1957), pp. 210–218.

[67] L.R. Ford and D.R. Fulkerson. “Constructing maximal dynamic flows from static
flows”. In: Operations Research 6.3 (1958), pp. 419–433. doi: 10.1287/opre.6.3.
419.

[68] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton, N.J.: Princeton Univ.
Press, 1962.

[69] M.L. Fredman and R.E. Tarjan. “Fibonacci heaps and their uses in improved network
optimization algorithms”. In: Journal of the ACM 34.3 (1987), pp. 596–615. doi:
10.1145/28869.28874.

[70] J.M. Galvin, X.G. Chen and R.M. Smith. “Combining multileaf fields to modulate
fluence distributions”. In: Int. J. Radiat. Oncol. Biol. Phys. 27 (1993), pp. 697–705.
doi: 10.1016/0360-3016(93)90399-G.

[71] A.V. Goldberg. “Scaling algorithms for the shortest paths problem”. In: SIAM
Journal on Computing 24.3 (1995), pp. 494–504. doi: 10.1137/S0097539792231179.

[72] A.V. Goldberg and R.E. Tarjan. “A new approach to the maximum-flow problem”.
In: Journal of the ACM 35.4 (1988), pp. 921–940. doi: 10.1145/48014.61051.

[73] A.D.A. Gunawardena, W. D’Souza, L.D. Goadrich, R.R. Meyer, K.J. Sorensen, S.A.
Naqvi and L. Shi. “A difference-matrix metaheuristic for intensity map segmentation
in step-and-shoot IMRT delivery”. In: Phys. Med. Biol. 51.10 (2006), pp. 2517–2536.
doi: 10.1088/0031-9155/51/10/011.

[74] B. Hajek and R.G. Ogier. “Optimal dynamic routing in communication networks
with continuous traffic”. In: Networks 14.3 (1984), pp. 457–487. doi: 10.1002/net.
3230140308.

[75] J. Halpern. “A generalized dynamic flows problem”. In: Networks 9.2 (1979), pp. 133–
167. doi: 10.1002/net.3230090204.

[76] H.W. Hamacher and K.-H. Küfer. “Inverse radiation therapy planning – a multiple
objective optimization approach”. In: Discr. Appl. Math. 118 (2002), pp. 145–161.
doi: 10.1016/S0166-218X(01)00261-X.

[77] J. Jing, R. Cao, Y. Wu, G. Li, H. Lin, M. Cheng, X. Pei, W. Kong and G. Li.
“Improved Model on Minimizing Static Intensity Modulation Delivery Time”. In:
2nd International Conference on Biomedical Engineering and Informatics. IEEE.
2009, pp. 1–4. doi: 10.1109/BMEI.2009.5305406.

[78] D.B. Johnson. “Efficient algorithms for shortest paths in sparse networks”. In: Journal
of the ACM 24.1 (1977), pp. 1–13.

http://dx.doi.org/10.1287/opre.6.3.419
http://dx.doi.org/10.1287/opre.6.3.419
http://dx.doi.org/10.1145/28869.28874
http://dx.doi.org/10.1016/0360-3016(93)90399-G
http://dx.doi.org/10.1137/S0097539792231179
http://dx.doi.org/10.1145/48014.61051
http://dx.doi.org/10.1088/0031-9155/51/10/011
http://dx.doi.org/10.1002/net.3230140308
http://dx.doi.org/10.1002/net.3230140308
http://dx.doi.org/10.1002/net.3230090204
http://dx.doi.org/10.1016/S0166-218X(01)00261-X
http://dx.doi.org/10.1109/BMEI.2009.5305406

Introduction to this thesis 29

[79] T. Kalinowski. “A duality based algorithm for multileaf collimator field segmentation
with interleaf collision constraint”. In: Discr. Appl. Math. 152.1-3 (2005), pp. 52–88.
doi: 10.1016/j.dam.2004.10.008.

[80] T. Kalinowski. “Reducing the number of monitor units in multileaf collimator field
segmentation”. In: Phys. Med. Biol. 50.6 (2005), pp. 1147–1161. doi: 10.1088/0031-
9155/50/6/008.

[81] T. Kalinowski. “Realization of intensity modulated radiation fields using multileaf
collimators”. In: Information Transfer and Combinatorics. Ed. by R. Ahlswede et al.
Vol. 4123. LNCS. Springer-Verlag, 2006, pp. 1010–1055. doi: 10.1007/11889342_65.

[82] T. Kalinowski. “Multileaf collimator shape matrix decomposition”. In: Optimization
in Medicine and Biology. Ed. by G.J. Lim and E.K. Lee. Auerbach Publishers Inc.,
2008, pp. 249–282.

[83] T. Kalinowski. “The complexity of minimizing the number of shape matrices subject
to minimal beam-on time in multileaf collimator field decomposition with bounded
fluence”. In: Discr. Appl. Math. 157.9 (2009), pp. 2089–2104. doi: 10.1016/j.dam.
2008.06.027.

[84] S. Kamath, S. Sahni, J. Li, J. Palta and S. Ranka. “Leaf sequencing algorithms for
segmented multileaf collimation”. In: Phys. Med. Biol. 48.3 (2003), pp. 307–324. doi:
10.1088/0031-9155/48/3/303.

[85] S. Kamath, S. Sahni, J. Palta and S. Ranka. “Algorithms for optimal sequencing
of dynamic multileaf collimators”. In: Phys. Med. Biol. 49.1 (2004), pp. 33–54. doi:
10.1088/0031-9155/49/1/003.

[86] S. Kamath, S. Sartaj, J. Palta, S. Ranka and J. Li. “Optimal leaf sequencing with
elimination of tongue–and–groove underdosage”. In: Phys. Med. Biol. 49 (2004), N7–
N19. doi: 10.1088/0031-9155/49/3/N01.

[87] H. Kerivin and A.R. Mahjoub. “Design of survivable networks: A survey”. In: Net-
works 46.1 (2005), pp. 1–21. doi: 10.1002/net.20072.

[88] A. Kiesel and T. Gauer. “Approximated segmentation considering technical and
dosimetric constraints in intensity-modulated radiation therapy with electrons”. In:
preprint (2010). arXiv:1005.0898.

[89] B.J. Kim, W. Kim and B.H. Song. “Sequencing and scheduling highway network
expansion using a discrete network design model”. In: The Annals of Regional Science
42.3 (2008), pp. 621–642. doi: 10.1007/s00168-007-0170-2.

[90] B. Klinz and G.J. Woeginger. “Minimum-cost dynamic flows: The series-parallel
case”. In: Networks 43.3 (2004), pp. 153–162. doi: 10.1002/net.10112.

[91] B. Kotnyek. An annotated overview of dynamic network flows. Tech. rep. 4936. http:
//hal.inria.fr/inria-00071643/ (20 February 2013). INRIA, 2003.

http://dx.doi.org/10.1016/j.dam.2004.10.008
http://dx.doi.org/10.1088/0031-9155/50/6/008
http://dx.doi.org/10.1088/0031-9155/50/6/008
http://dx.doi.org/10.1007/11889342_65
http://dx.doi.org/10.1016/j.dam.2008.06.027
http://dx.doi.org/10.1016/j.dam.2008.06.027
http://dx.doi.org/10.1088/0031-9155/48/3/303
http://dx.doi.org/10.1088/0031-9155/49/1/003
http://dx.doi.org/10.1088/0031-9155/49/3/N01
http://dx.doi.org/10.1002/net.20072
http://arxiv.org/abs/1005.0898
http://dx.doi.org/10.1007/s00168-007-0170-2
http://dx.doi.org/10.1002/net.10112
http://hal.inria.fr/inria-00071643/
http://hal.inria.fr/inria-00071643/

30 T. Kalinowski

[92] K.-H. Küfer, A. Scherrer, M. Monz, F. Alonso, H. Trinkaus, T. Bortfeld and C.
Thieke. “Intensity-modulated radiotherapy–A large scale multi-criteria programming
problem”. In: OR spectrum 25.2 (2003), pp. 223–249. doi: 10.1007/s00291-003-
0125-7.

[93] M. Langer, V. Thai and L. Papiez. “Improved leaf sequencing reduces segments of
monitor units needed to deliver IMRT using multileaf collimators”. In: Med. Phys.
28 (2001), pp. 2450–2458. doi: 10.1118/1.1420392.

[94] E.K. Lee, T. Fox and I. Crocker. “Integer programming applied to intensity-modulated
radiation therapy treatment planning”. In: Annals of Operations Research 119.1
(2003), pp. 165–181. doi: 10.1023/A:1022938707934.

[95] W. Lipski, E. Lodi, F. Luccio, C. Mugnai and L. Pagli. “On two dimensional data
organization II”. In: Fund. Informaticae 2 (1979), pp. 245–260.

[96] S. Luan, J. Saia and M. Young. “Approximation algorithms for minimizing segments
in radiation therapy”. In: Information processing letters 101.6 (2007), pp. 239–244.
doi: 10.1016/j.ipl.2006.10.003.

[97] S. Luan, C. Wang, D.Z. Chen, X.S. Hu, S.A. Naqvi, X. Wu and C.X. Yu. “An
improved MLC segmentation algorithm and software for step-and-shoot IMRT de-
livery without tongue-and-groove error”. In: Med. Phys. 33 (2006), pp. 1199–1212.
doi: 10.1118/1.2188823.

[98] T.L. Magnanti and R.T. Wong. “Network design and transportation planning: Mod-
els and algorithms”. In: Transportation Science 18.1 (1984), pp. 1–55. doi: 10.1287/
trsc.18.1.1.

[99] E. Minieka. “Maximal, lexicographic, and dynamic network flows”. In: Operations
Research 21.2 (1973), pp. 517–527. doi: 10.1287/opre.21.2.517.

[100] E.F. Moore. “The shortest path through a maze”. In: Proc. International Symposium
on the Theory of Switching, Part II. Ed. by H. Aiken. Vol. XXX. The Annals of the
Computation Laboratory of Harvard University. Harvard University Press, 1959,
pp. 285–292.

[101] R.G. Ogier. “Minimum-delay routing in continuous-time dynamic networks with
piecewise-constant capacities”. In: Networks 18.4 (1988), pp. 303–318. doi: 10.1002/
net.3230180405.

[102] T. Ohtsuki. “Minimum dissection of rectilinear regions”. In: Proc. IEEE Symposium
on Circuits and Systems. 1982, pp. 1210–1213.

[103] J.B. Orlin. “A faster strongly polynomial minimum cost flow algorithm”. In: Proc.
20th ACM symposium on Theory of computing, STOC 1988. ACM. 1988, pp. 377–
387. doi: 10.1145/62212.62249.

[104] J.B. Orlin. “A faster strongly polynomial minimum cost flow algorithm”. In: Oper-
ations research 41.2 (1993), pp. 338–350. doi: 10.1287/opre.41.2.338.

[105] J.B. Orlin. “Max flows in O(nm) time or better”. accepted for STOC 2013, online:
http://jorlin.scripts.mit.edu/docs/papersfolder/O(nm)MaxFlow.pdf. 2013.

http://dx.doi.org/10.1007/s00291-003-0125-7
http://dx.doi.org/10.1007/s00291-003-0125-7
http://dx.doi.org/10.1118/1.1420392
http://dx.doi.org/10.1023/A:1022938707934
http://dx.doi.org/10.1016/j.ipl.2006.10.003
http://dx.doi.org/10.1118/1.2188823
http://dx.doi.org/10.1287/trsc.18.1.1
http://dx.doi.org/10.1287/trsc.18.1.1
http://dx.doi.org/10.1287/opre.21.2.517
http://dx.doi.org/10.1002/net.3230180405
http://dx.doi.org/10.1002/net.3230180405
http://dx.doi.org/10.1145/62212.62249
http://dx.doi.org/10.1287/opre.41.2.338
http://jorlin.scripts.mit.edu/docs/papersfolder/O(nm)MaxFlow.pdf

Introduction to this thesis 31

[106] A.B. Philpott. “Continuous-time flows in networks”. In: Mathematics of Operations
Research 15.4 (1990), pp. 640–661. doi: 10.1287/moor.15.4.640.

[107] W.B. Powell, P. Jaillet and A. Odoni. “Stochastic and dynamic networks and rout-
ing”. In: Handbooks in Operations Research and Management Science. Ed. by M.O.
Ball, T.L. Magnanti, C.L. Monma and G.L. Nemhauser. Vol. 8. Handbooks in Op-
erations Research and Management Science. Elsevier, 1995. Chap. 3, pp. 141–295.
doi: 10.1016/S0927-0507(05)80107-0.

[108] F. Preciado-Walters, R. Rardin, M. Langer and V. Thai. “A coupled column gener-
ation, mixed integer approach to optimal planning of intensity modulated radiation
therapy for cancer”. In: Mathematical Programming B 101.2 (2004), pp. 319–338.
doi: 10.1007/s10107-004-0527-6.

[109] W. Que, J. Kung and J. Dai. “’Tongue-and-groove’effect in intensity modulated
radiotherapy with static multileaf collimator fields”. In: Phys. Med. Biol. 49.3 (2004),
pp. 399–405. doi: 10.1088/0031-9155/49/3/004.

[110] H.E. Romeijn, R.K. Ahuja, J.F. Dempsey and A. Kumar. “A Column Generation
Approach to Radiation Therapy Treatment Planning Using Aperture Modulation”.
In: SIAM J. on Optimization 15.3 (2005), pp. 838–862. issn: 1052-6234. doi: 10.
1137/040606612.

[111] H.E. Romeijn, R.K. Ahuja, J.F. Dempsey and A. Kumar. “A new linear program-
ming approach to radiation therapy treatment planning problems”. In: Operations
Research 54.2 (2006), pp. 201–216. doi: 10.1287/opre.1050.0261.

[112] J.P.C. van Santvoort and B.J.M. Heijmen. “Dynamic multileaf collimation without
tongue-and-groove underdosage effects”. In: Phys. Med. Biol. 41.10 (1999), pp. 2091–
2105. doi: 10.1088/0031-9155/41/10/017.

[113] A. Schrijver. Combinatorial optimization: polyhedra and efficiency. Vol. 24. Algorithms
and Combinatorics. Springer, 2003.

[114] D.M. Shepard, M.A. Earl, X.A. Li, S. Naqvi and C. Yu. “Direct aperture optimiz-
ation: a turnkey solution for step-and-shoot IMRT”. In: Medical physics 29 (2002),
pp. 1007–1018. doi: 10.1118/1.1477415.

[115] D.M. Shepard, M.C. Ferris, G.H. Olivera and T.R. Mackie. “Optimizing the delivery
of radiation therapy to cancer patients”. In: SIAM Review 41.4 (1999), pp. 721–744.
doi: 10.1137/S0036144598342032.

[116] G. Singh, D. Sier, A.T. Ernst, O. Gavriliouk, R. Oyston, T. Giles and P. Welgama.
“A mixed integer programming model for long term capacity expansion planning: A
case study from The Hunter Valley Coal Chain”. In: European Journal of Operational
Research (2012). doi: 10.1016/j.ejor.2012.01.012.

[117] R.A.C. Siochi. “Minimizing static intensity modulation delivery time using an in-
tensity solid paradigm”. In: Int. J. Radiat. Oncol. Biol. Phys. 43 (1999), pp. 671–
680. doi: 10.1016/S0360-3016(98)00430-1.

http://dx.doi.org/10.1287/moor.15.4.640
http://dx.doi.org/10.1016/S0927-0507(05)80107-0
http://dx.doi.org/10.1007/s10107-004-0527-6
http://dx.doi.org/10.1088/0031-9155/49/3/004
http://dx.doi.org/10.1137/040606612
http://dx.doi.org/10.1137/040606612
http://dx.doi.org/10.1287/opre.1050.0261
http://dx.doi.org/10.1088/0031-9155/41/10/017
http://dx.doi.org/10.1118/1.1477415
http://dx.doi.org/10.1137/S0036144598342032
http://dx.doi.org/10.1016/j.ejor.2012.01.012
http://dx.doi.org/10.1016/S0360-3016(98)00430-1

32 T. Kalinowski

[118] M. Skutella. “An introduction to network flows over time”. In: Research Trends in
Combinatorial Optimization (2009), pp. 451–482. doi: 10.1007/978-3-540-76796-
1.

[119] D.D. Sleator and R.E. Tarjan. “A data structure for dynamic trees”. In: Journal
of computer and system sciences 26.3 (1983), pp. 362–391. doi: 10.1016/0022-
0000(83)90006-5.

[120] V. Soltan and A. Gorpinevich. “Minimum Dissection of a Rectilinear Polygon with
Arbitrary Holes into Rectangles”. In: Discrete Computat. Geometry 9 (1993), pp. 57–
79. doi: 10.1007/BF02189307.

[121] S.V. Spirou and C.S. Chui. “Generation of arbitrary intensity profiles by dynamic
jaws or multileaf collimators”. In: Medical Physics 21 (1994), pp. 1031–1041. doi:
10.1118/1.597345.

[122] R. Svensson, P. Kallman and A. Brahme. “An analytical solution for the dynamic
control of multileaf collimators”. In: Phys. Med. Biol. 39.1 (1999), p. 37. doi: 10.
1088/0031-9155/39/1/003.

[123] É. Tardos. “A strongly polynomial minimum cost circulation algorithm”. In: Com-
binatorica 5.3 (1985), pp. 247–255. doi: 10.1007/BF02579369.

[124] Z.C. Taşkın, J.C. Smith, H.E. Romeijn and J.F. Dempsey. “Optimal multileaf col-
limator leaf sequencing in IMRT treatment planning”. In: Operations research 58.3
(2010), pp. 674–690. doi: 10.1287/opre.1090.0759.

[125] S.V. Ukkusuri and G. Patil. “Multi-period transportation network design under de-
mand uncertainty”. In: Transportation Research Part B: Methodological 43.6 (2009),
pp. 625–642. doi: 10.1016/j.trb.2009.01.004.

[126] G. Wake, N. Boland and L. Jennings. “Mixed integer programming approaches to
exact minimization of total treatment time in cancer radiotherapy using multileaf
collimators”. In: Computers & Operations Research 36.3 (2009), pp. 795–810. doi:
10.1016/j.cor.2007.10.027.

[127] S. Warshall. “A theorem on Boolean matrices”. In: Journal of the ACM 9.1 (1962),
pp. 11–12. doi: 10.1145/321105.321107.

[128] S. Webb. Intensity-modulated radiation therapy. Taylor & Francis, 2001.

[129] S. Webb, T. Bortfeld, J. Stein and D. Convery. “The effect of stair-step leaf trans-
mission on the tongue-and-groove problem in dynamic radiotherapy with a multileaf
collimator”. In: Phys. Med. Biol. 42.3 (1999), pp. 595–602. doi: 10.1088/0031-
9155/42/3/011.

[130] Steve Webb. “Intensity-modulated radiation therapy using only jaws and a mask”.
In: Phys. Med. Biol. 47.2 (2002), p. 257. doi: 10.1088/0031-9155/47/2/306.

[131] P. Xia and L. Verhey. “Multileaf collimator leaf–sequencing algorithm for intensity
modulated beams with multiple static segments”. In: Med. Phys. 25 (1998), pp. 1424–
1434. doi: 10.1118/1.598315.

http://dx.doi.org/10.1007/978-3-540-76796-1
http://dx.doi.org/10.1007/978-3-540-76796-1
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1007/BF02189307
http://dx.doi.org/10.1118/1.597345
http://dx.doi.org/10.1088/0031-9155/39/1/003
http://dx.doi.org/10.1088/0031-9155/39/1/003
http://dx.doi.org/10.1007/BF02579369
http://dx.doi.org/10.1287/opre.1090.0759
http://dx.doi.org/10.1016/j.trb.2009.01.004
http://dx.doi.org/10.1016/j.cor.2007.10.027
http://dx.doi.org/10.1145/321105.321107
http://dx.doi.org/10.1088/0031-9155/42/3/011
http://dx.doi.org/10.1088/0031-9155/42/3/011
http://dx.doi.org/10.1088/0031-9155/47/2/306
http://dx.doi.org/10.1118/1.598315

Reducing the tongue-and-groove underdosage in MLC shape

matrix decomposition∗

Thomas Kalinowski

Abstract

We present an algorithm for optimal step-and-shoot intensity modulated radiation
therapy minimizing tongue-and-groove effects. Adapting the concepts of [7] we charac-
terize the minimal decomposition time as the maximal weight of a path in a properly
constructed weighted digraph. We also show that this decomposition time can be real-
ized by a unidirectional plan, thus proving that the algorithm of Kamath et al. [9] is
monitor unit optimal in general and not only for unidirectional leaf movement. Our
characterization of the minimal decomposition time has the advantage that it can be
used to derive a heuristic for the reduction of the number of shape matrices following
the ideas of [7].

Key words: leaf sequencing, radiation therapy optimization, intensity modulation, mul-
tileaf collimator, IMRT

2000 MSC: 92C50, 90C90

1 Introduction

An important method in cancer treatment is the use of high energetic radiation. In order to
kill tumor cells the patient is exposed to radiation that is delivered by a linear accelerator
whose beam head can be rotated about the treatment couch. Inevitably the healthy tissue
surrounding the tumor is also exposed to some radiation. So the problem arises to arrange
the treatment in a way such that the tumor receives a sufficiently high uniform dose while the
damage to the normal tissue is as small as possible. The standard approach to this problem
is as follows. First the patient body is discretized into so called voxels. The set of voxels
is then partitioned into three sets: the clinical target volume, the critical structures and
the remaining tissue. There are certain dose constraints for each of these parts. Basically
the dose in the target volume has to be sufficient to kill the cancerous cells and the dose
in the critical structures must not destroy the functionality of the corresponding organs.
The determination of a combination of radiation fields is usually done by inverse methods
based on certain physical models of how the radiation passes through a body. In the early
1990s the method of intensity modulated radiation therapy (IMRT) was developed in order
to obtain additional flexibility. Using a multileaf collimator (MLC) it is possible to form
homogeneous fields of different shapes. By superimposing some homogeneous fields an

∗Algorithmic Operations Research 3(2):165–174, 2008

33

34 T. Kalinowski

intensity modulated field is delivered. An MLC consists of two banks of metal leaves which
block the radiation and can be shifted to form irregularly shaped beams (Figure 1).

Figure 1: The leaf pairs of a multileaf collimator (MLC).

The most common approach in treatment planning is to divide the optimization into two
phases. At first, a set of beam angles and corresponding fluence matrices are determined. In
a second step a sequence of leaf positions for the MLC for each of the angles is determined
that yields the desired fluence distribution. Very recently there have been attempts to
combine both steps into one optimization routine [5, 12].

In this paper we concentrate on the second step, the shape matrix decomposition prob-
lem. Suppose we have fixed the beam angles from which the radiation is released, and for
each of the beam angles we are given a fluence distribution that we want the patient to be
exposed to. After discretizing the beam into bixels we can assume that the fluence distribu-
tion is given as a nonnegative integer m nmatrix A. Each row of the matrix corresponds to
a pair of leaves of the MLC, and the entry aij represents the required fluence at bixel (i, j).
When the MLC is used in the so called stepandshoot mode the given fluence distribution is
realized by superimposing a number of differently shaped homogeneous fields coming from
different combinations of the leaf. For example, Figure 2 shows a sequence of leaf positions
for the matrix

A =


1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0

 = 2 ·


0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0

+


0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0

 +


1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0

 (1)

where the shading indicates the region which is covered by the leaves.

The problem of realizing a given intensity matrix A leads to the problem of representing
A as a positive integer combination of certain (0, 1)-matrices, called shape matrices, which

Reducing the tongue-and-groove underdosage in MLC shape matrix decomposition 35

2 MU 1 MU 1 MU

Figure 2: A realization of the intensity matrix A using an MLC. The numbers below the
leaf positions indicate the number of monitor units required.

represent the possible leaf positions. So the realization in Figure 2 corresponds to the
decomposition in (1). In order to compare different decompositions of an intensity map
we consider two quantities (where we adopt the terminology of [1]). For a decomposition
A =

∑t
k=1 ukS

(k), the sum of the coefficients is proportional to the total irradiation time and
is called decomposition time, DT =

∑1
k=1 uk. The number k of used shape matrices, called

decomposition cardinality (DC), influences the total treatment time due to the setup time
between the delivery of different shapes. Our objectives in constructing a decomposition are
to minimize both DT and DC. In this paper we consider two additional constraints that
come from the technical restrictions in many of the available MLCs. The interleaf collision
constraint (ICC) forbids the overlapping of opposite leaves in adjacent rows. Another
restriction is due to the tongue-and-groove leaf arrangement of the MLCs (see Figure 3).
There is a narrow strip in the border region between two adjacent rows that is covered by

Radiation

Figure 3: The tongue-and-groove design of the leaves of an MLC.

both leaves and this may lead to underdosage effects in these regions, as is illustrated in
Figure 4 for the fluence matrix A = (2 3

3 4).

In order to minimize these effects we require that aij 6 ai+1,j implies that bixel (i+1, j)
is exposed whenever bixel (i, j) is exposed (similarly for i − 1 instead of i + 1). Thus
we assure that the overlap region of two bixels always receives the smaller one of the
relevant doses. We say that a shape matrix decomposition of A satisfies the tongue-and-

36 T. Kalinowski

3

1

1

2

1

1

tongue-and-groove underdosage tongue-and-groove underdosage

leaf sequence with leaf sequence without

Figure 4: Two different realizations of the same fluence matrix. The numbers next to the
leaf positions indicate the irradiation times for the corresponding beams. In the left version
the overlap between bixels (1, 1) and (2, 1) receives no radiation at all.

groove constraint (TGC) if this condition holds for all used shape matrices. This intuitive
concept of minimizing underdosage is made more precise in Lemma 1 below. Of course,
when the total delivery time increases due to adding the TGC, the total leakage radiation
through closed leaves also increases, so there might be a tradeoff between reduction of TG-
underdosage and increasing leakage. But numerical experiments indicate that the increase
of delivery time compared to the unconstrained case is rather small.

Starting with [3] and [6] several algorithms were proposed for the shape matrix de-
composition problem [1, 2, 4, 8, 13, 14]. Methods for eliminating the tongue-and-groove
underdosage were presented in [9, 10, 11]. The algorithm from [9] is DT -optimal, as is shown
for unidirectional plans in [9] and will be proved without restriction for the leaf movement
direction in the present paper. Adapting the approach of [4], in [7] we characterized the
minimal DT for the decomposition with ICC as the maximal weight of a path in a certain
digraph. In this paper we further modify this approach such that the TGC is included. In
addition, we derive a greedy heuristic for the reduction of the number of shape matrices
and present some numerical test results.

2 Mathematical formulation of the DT-decomposition prob-
lem with ICC and TGC

Throughout the rest of the paper, for a natural number n, [n] denotes the set {1, 2, . . . , n}
and for natural numbers m 6 n, [m,n] denotes the set {m,m+1, . . . , n}. In this section we
formulate the shape matrix decomposition problem and give a min-max-characterization of
the optimal solution very similar to the one used in [7]. We start with a formal characteriz-

Reducing the tongue-and-groove underdosage in MLC shape matrix decomposition 37

ation of the shape matrices that are allowed in a decomposition of a given intensity matrix
A.

Definition 1. Let A be an intensity matrix. A shape matrix is an m× n-matrix S = (sij)
with entries from {0, 1}, such that there exist integers li, ri (i ∈ [m]) with the following
properties:

li < ri (i ∈ [m]), (2)

sij =

{
1 if li < j < ri

0 otherwise
(i ∈ [m], j ∈ [n]), (3)

ICC: li < ri+1, ri > li+1 (i ∈ [m− 1]). (4)

A shape matrix is called an A-shape matrix if in addition

TGC:

{
aij 6 ai+1,j ∧ sij = 1 =⇒ si+1,j = 1 (i ∈ [m− 1], j ∈ [n]),
aij 6 ai−1,j ∧ sij = 1 =⇒ si−1,j = 1 (i ∈ [2,m], j ∈ [n]).

(5)

A shape matrix decomposition of an intensity matrix A is a representation

A =

t∑
k=1

ukS
(k) (6)

with positive integers uk and A-shape matrices S(k) (k ∈ [t]), the decomposition time
(DT) of this decomposition is

∑t
k=1 uk and shape matrix decomposition problem is to

find, for given A, a shape matrix decomposition with minimal DT . We want to give
aprecise description of the sense in which condition (5) ensures that the TG-underdosage is
minimized. For this purpose we define the tongue and groove error of a decomposition (6)
at bixel (i, j) by

T (i, j) = min{aij , ai+1,j} −
t∑

k=1

uks
(k)
ij s

(k)
i+1,j .

The sum in the right hand side of this equation is the total fluence delivered to the overlap
between rows i and i+ 1 in column j, because this overlap is open in the kth shape if and

only if s
(k)
ij = s

(k)
i+1,j = 1. This sum is at most min{aij , ai+1,j}:

aij =
t∑

k=1

uks
k
ij 6

t∑
k=1

uks
k
ijs

k
i+1,j ,

and similarly for ai+1,j . Thus T (i, j) > 0 and every positive value of T (i, j) indicates an
underdosage. The following lemma states that the underdosage is minimized for every (i, j)
if all the shape matrices satisfy condition (5).

Lemma 1. For a decomposition A =
∑t

k=1 ukS
(k) with shape matrices S(k), we have

T (i, j) = 0 for all (i, j) ∈ [m1]× [n] if and only if every shape matrix S(k) (5).

38 T. Kalinowski

Proof. By symmetry, we may assume aij 6 ai+1,j . We obtain T (i, j) = 0 iff and only if

aij =
t∑

k=1

uks
(k)
ij =

t∑
k=1

uks
(k)
ij s

(k)
i+1,j ,

and this is the case if and only if s
(k)
i+1,j = 1 whenever s

(k)
ij = 1.

In order to characterize the minimal DT we use a similar approach as in [7]. We construct
a digraph G = (V,E) as follows.

V = {0, 1} ∪ ([m]× [0, n+ 1]) , E = E1 ∪ E2 ∪ E3 ∪ E4 where

E1 = {(0, (i, 0)) : i ∈ [m]} ∪ {((i, n+ 1), 1) : i ∈ [m]},
E2 = {((i, j), (i+ 1, j)) : i ∈ [m− 1], j ∈ [n− 1]},
E3 = {((i, j), (i− 1, j)) : i ∈ [2,m], j ∈ [n− 1]},
E4 = {((i, j − 1), (i, j)) : i ∈ [m], j ∈ [n+ 1]}.

Here 0 and 1 serve as starting and end point, respectively, and the vertices in [m] × [n]
correspond to the entries of A. The two extra columns [m] × {0} and [m] × {n + 1} have
the purpose to simplify the notation: they assure that for every (i, j) ∈ [m]× [n] there are
vertices (i, j − 1) and (i, j + 1). Without this, in several of the arguments below, it would
be necessary to treat the first and the last column seperately (then 0 and 1 would have to
play the role of (i, 0) and (i, n+ 1), respectively). To be able to treat the first and the n-th
column exactly as the remaining columns, we also put ai,0 = ai,n+1 = 0 (i ∈ [m]). Observe
that we omit the vertical arcs ((i, n), (i ± 1, n)) in the n-th column: this is to make the
vertex (i, n) of any (0, 1)-path unique. This is no loss of generality, because we will see that
we are interested only in (0, 1)-paths of maximal weight, the weights of vertical arcs are
nonpositive and the arcs right of column n have weight 0. We define the weight function
w : E → Z:

w(0, (i, 0)) = w((i, n+ 1), 1) = 0 (i ∈ [m]),

w((i, j), (i+ 1, j)) = min{0, ai+1,j − aij} (i ∈ [m− 1], j ∈ [n− 1]),

w((i, j), (i− 1, j)) = min{0, ai−1,j − aij} (i ∈ [2,m], j ∈ [n− 1]),

w((i, j − 1), (i, j)) = max{0, aij − ai,j−1} (i ∈ [m], j ∈ [n+ 1]).

Example 1. Figure 5 shows the digraph G corresponding to the matrix A =

(
4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

)
.

The following theorem, which is proved in Sections 3 and 4, is the main result of this
paper and the basis of the decomposition algorithm.

Theorem 1. The minimal DT of a shape matrix decomposition of a nonnegative matrix A
equals the maximal weight of a (0, 1)−path in G.

Reducing the tongue-and-groove underdosage in MLC shape matrix decomposition 39

0 1

0

0

0

0

0

0

0

0

4 1 0 1 3 1 0

2 2 0 2 0 3 0

2 1 0 0 1 2 0

5 0 0 0 3 0 0

0
−2

0
−1

−1
0

−2
0

0
−3

0
0

0
−1

−1
0

0
−2

−1
0

−3
0

0
0

−1
0

−1
0

−3
0

Figure 5: The digraph G corresponding to matrix A.

For convenience we denote this maximal weight by c(A):

c(A) = max{w(P) : P is a (0, 1)− path in G}. (7)

Observe that the results from [4] and [7] can be seen as characterizations of the minimal
DT in terms of maximal path weights for different variants of the problem corresponding
to manfacturer specific restrictions.

• MLC without restriction of leaf movement: use the graph G without the vertical arcs.

• MLC with interleaf collision but without tongue and groove: use the same graph G,
but with modified weights for the vertical arcs.

So the only case that cannot be treated in this framework is an MLC with tongue and
groove and without interleaf collision.

3 The lower bound

In this section we show that the maximal weight of a (0, 1)−path in G is a lower bound for
the DT of a decomposition of A, thus proving the first half of Theorem 1. The basic idea of
the proof is a combination of the arguments in [1] and [9], the main difference to [9] being
that we do not require the leaf sequence to be unidirectional. For our argument below we
need an exact description of how the numbers

α(i, j)← max{w(P) : P is a (0, (i, j))− path in G}

can be computed. This description is given in Algorithm 1. The underlying principle can be
described as follows. We proceed columnwise. Assuming we have already determined the
values in column j − 1 we initialize column j with α(i, j)← α(i, j − 1) +w((i, j− 1), (i, j)).

40 T. Kalinowski

Algorithm 1 Computation of the numbers α(i, j)

for i = 1, . . . ,m do α(i, 1)← ai1
for j = 2, . . . , n+ 1 do

for i = 1, . . . ,m do α(i, j)← α(i, j − 1) + w((i, j − 1), (i, j))
for i = 2, . . . ,m do

if α(i, j) < α(i− 1, j) + w((i− 1, j), (i, j)) then
α(i, j)← α(i− 1, j) + w((i− 1, j), (i, j))

if α(i− 1, j) < α(ij) + w((i+ 1, j), (i, j)) then Update(i− 1)

Function Update(k)
α(k, j)← α(k + 1, j) + w((k + 1, j), (i, j))
if k > 2 and α(k − 1, j) < α(kj) + w((k, j), (k − 1, j)) then Update(k − 1)

After that we modify these values in order to satisfy the conditions

α(i, j) > α(i− 1, j) + w((i− 1, j), (i, j)) for i ∈ [2,m],

α(i, j) > α(i+ 1, j) + w((i+ 1, j), (i, j)) for i ∈ [m− 1].

Now the statement of the following lemma is obvious.

Lemma 2. Algorithm 1 computes the numbers α(i, j) in time O(m2n).

Suppose A =
∑t

k=1 S
(k) is a shape matrix decomposition of A. We characterize the

shape matrix S(k) by its left and right leaf positions l
(k)
i and r

(k)
i (i ∈ [m]). For (i, j) ∈

[m]× [n+ 1], let Lij denote the set of indices k with l
(k)
i < j, and similarly, let Rij denote

the set of indices k with r
(k)
i 6 j. More formally,

Lij = {k ∈ [t] : l
(k)
i < j}, Rij = {k ∈ [t] : r

(k)
i 6 j}.

Then |Lin| is the number of shape matrices which contribute to row i, and maxi∈[m] |Lin| is
a lower bound for the DT . In the next lemma we collect some simple observations about
the sets Lij and Rij .

Lemma 3. 1. For (i, j) ∈ [m]× [n], Rij ⊆ Lij and |Lij \Rij | = aij.

2. For (i, j) ∈ [m]× [n], |Lij | > |Li,j−1|+ max{0, aij − ai,j−1}.

3. For (i, j) ∈ [2,m]× [n], Ri−1,j ⊆ Lij and Rij ⊆ Li−1,j.

4. For (i, j) ∈ [2,m]× [n],

ai−1,j 6 aij =⇒ Li−1,j \Ri−1,j ⊆ Lij \Rij

ai−1,j > aij =⇒ Li−1,j \Ri−1,j ⊇ Lij \Rij

Reducing the tongue-and-groove underdosage in MLC shape matrix decomposition 41

Proof. The first statement is a simple consequence of the facts that r
(k)
i 6 j implies l

(k)
i < j

and that s
(k)
ij = 1 if and only if k ∈ Lij \Rij . The second statement is clear if aij 6 ai,j−1,

since Li,j−1 ⊆ Lij . If aij > ai,j−1, there must be at least aij−ai,j−1 shape matrices S(k) with

s
(k)
ij = 1 and s

(k)
i,j−1 = 0. For these shape matrices we have l

(k)
i = j − 1, so k ∈ Lij \ Li,j−1

and this proves the second claim. Using the ICC we obtain the first inclusion in the third
statement:

k ∈ Ri−1,j =⇒ r
(k)
i−1 6 j =⇒ l

(k)
i < j =⇒ k ∈ Lij ,

and similarly the second one. For the fourth statement, assume ai−1,j 6 aij . Using the
TGC we obtain

k ∈ Li−1,j \Ri−1,j =⇒ s
(k)
i−1,j = 1 =⇒ s

(k)
ij = 1 =⇒ k ∈ Lij \Rij .

This gives the first implication, and the second one is proved similarly. �
Next, we show that the numbers α1(i, j) bound the cardinalities |Lij | from below.

Lemma 4. For (i, j) ∈ [m]× [n], we have α(i, j) 6 |Lij |.

Proof. We proceed by induction. For j = 1, α(i, 1) = ai1 and the claim is obvious, since we

need at least ai1 shape matrices with l
(k)
i = 0. Suppose the statement of the lemma is false,

and let j be the index of the first column where, for some row i, we have α(i, j) > |Lij |.
From Lemma 3 we get

|Lij | > |Li,j−1|+ max{0, aij − ai,j−1} > α(i, j − 1) + w((i, j − 1), (i, j)).

Hence after the initialization of column j in Algorithm 1 (line 3), we still have α(i, j) 6 |Lij |
for all i ∈ [m]. Now let i be the index of the row where the claim of the lemma is violated
for the first time when the algorithm is running. Consider this first violation and assume it
occurs in line 6 of Algorithm 1. The case that it occurs in the function Update(k) is treated
analogously.

Case 1. ai−1,j 6 aij . In this case w((i − 1, j), (i, j)) = 0, hence the updating step of the
algorithm is α(i, j)← α(i− 1, j). By (iii) and (iv) in Lemma 3 we have

Ri−1,j ⊆ Lij and Li−1,j \Ri−1,j ⊆ Lij .

Hence Li−1,j ⊆ Lij , and consequently α(i, j) = α(i − 1, j) 6 |Lij |, contradicting the
assumption that the step leads to a violation of the claim.

Case 2. ai−1,j > aij . Now the considered step is α(ij)← α(i− 1, j)− (ai−1,j − aij). Again
by (iii) and (iv) from Lemma 3,

Ri−1,j ⊆ Lij and Lij \Rij ⊆ Li−1,j \Ri−1,j .

This implies (using (i) from Lemma 3)

|Lij | > |Ri−1,j |+ |Lij \Rij | = (|Li−1,j | − ai−1,j) + aij

> α(i− 1, j)− ai−1,j + aij = α(i, j),

contradicting the assumption. �

42 T. Kalinowski

Lemma 4 shows that the numbers α(i, n) (i ∈ [m]) are lower bounds for the DT . We state
this conclusion as a lemma.

Lemma 5. For any shape matrix decomposition of an intensity matrix A, we have

DT > max
i∈[m]

α(i, n) = c(A).

4 The algorithm

We compute a shape matrix decomposition of A according to Algorithm 2. This is essentially
a reformulation of the algorithm of Kamath et al. [9], but we need it in this form in order
to show that our characterization of the minimal DT in Theorem 1 is correct.

Algorithm 2 DT-optimal shape matrix decomposition

for t = 1, . . . , c(A) do
for i = 1, . . . ,m do

l
(t)
i ← max{j ∈ [0, n] : α(i, j) < t or j = n}
r
(t)
i ← min{j ∈ [n+ 1] : α(i, j) > t+ aij or j = n+ 1}

for (i, j) ∈ [m]× [n] do

s
(t)
ij ←

{
1 if l

(t)
i < j < r

(t)
i

0 otherwise

Lemma 6. From Algorithm 2 we obtain a shape matrix decomposition of A with DT = c(A).

Proof. Clearly, the DT of the sum of shape matrices returned by the algorithm is c(A).
We divide the proof of the theorem into three parts.

Claim 1. The matrices S(t) form indeed a decomposition of A, that means A =
∑c(A)

t=1 S
(t).

Fix some (i, j) ∈ [m]× [n]. We have(
l
(t)
i < j ⇐⇒ α(i, j) > t

)
and

(
r
(t)
i > j ⇐⇒ α(i, j) < t+ aij

)
.

Together we obtain s
(t)
ij = 1 ⇐⇒ α(i, j) − aij < t 6 α(i, j), hence

∑c(A)
t=1 s

(t)
ij = aij , and

this proves the claim.

Claim 2. The matrices S(t) satisfy the ICC.

Assume the claim is false. That means, for some t ∈ [c(A)] and i ∈ [m − 1], l
(t)
i > r

(t)
i+1 or

r
(t)
i 6 l

(t)
i+1. We consider only the first case, since the second one can be treated similarly.

We put j = r
(t)
i+1. By construction and our assumption, we have

α(i, j) < t and α(i+ 1, j) > t+ ai+1,j .

Reducing the tongue-and-groove underdosage in MLC shape matrix decomposition 43

But on the other hand,

α(i, j) > α(i+ 1, j) + w((i+ 1, j), (i, j)) = α(i+ 1, j) + min{0, aij − ai+1,j},

thus α(i, j) > t, and this contradiction proves the claim.

Claim 3. The matrices S(t) satisfy the TGC.

Suppose aij 6 ai+1,j and s
(t)
ij = 1, or equivalently l

(t)
i < j < r

(t)
i . By construction, this

implies

t 6 α(i, j) < t+ aij . (8)

Observe, that

w((i, j), (i+ 1, j)) = 0 and w((i+ 1, j), (i, j)) = aij − ai+1,j ,

since aij 6 ai+1,j . Using (8), we obtain the bounds

α(i+ 1, j) > α(i, j) + w((i, j), (i+ 1, j)) = α(i, j) > t and

t+ aij > α(i, j) > α(i+ 1, j) + w((i+ 1, j), (i, j))

t+ aij > α(i+ 1, j) + (aij − ai+1,j).

Hence t 6 α(i+ 1, j) < t+ ai+1,j , and according to Algorithm 2, s
(t)
i+1,j = 1. Thus the first

TGC is satisfied, and the second one is proved similarly. �
Together, Lemmas 5 and 6 prove Theorem 1.

5 Minimizing the number of shape matrices

The problem of minimizing the number of shape matrices is NP-hard even for a single row
intensity matrix [1]. So it is natural to look for a heuristic approach that yields decom-
positions with a small number of shape matrices in a reasonable time even if optimality
is not always reached. In [7] we used a greedy strategy in order to find a decomposition
with minimal DT and a small number of shape matrices for MLCs with ICC but neglecting
the TGC. This method can be modified to respect the TGC. In order to characterize the
maximal coefficient u for which there is an A-shape matrix S, such that uS can be a term
in a DT -optimal decomposition of A, we need the following lemma.

Lemma 7. Let A =
∑k

t=1 utS
(t) be a decomposition of A (i.e. the S(t) are A-shape

matrices), and put A(0) = A and A(t) = A −
∑t

t′=1 ut′S
(t′) for t ∈ [k]. Then, for every

t ∈ [k] we have

• s(t)ij = 1 and s
(t)
i+1,j = 0 ⇒ a

(t−1)
ij > a(t−1)i+1,j + u (i ∈ [m− 1], j ∈ [n]),

• s(t)ij = 1 and s
(t)
i−1,j = 0 ⇒ a

(t−1)
ij > a(t−1)i−1,j + u (i ∈ [2,m], j ∈ [n]).

44 T. Kalinowski

Informally speaking, if we consider the sequence of matrices starting with A and sub-
tracting one by one the S(t) taking S(t) exactly ut times, the lemma claims that in each step
we subtract an A′-shape matrix, where A′ is the resulting matrix after the previous step.

Proof. Assume the contrary and let t be the first index where one of the two claims fails to
be true. By symmetry, we assume

s
(t)
ij = 1, s

(t)
i+1,j = 0, a

(t−1)
ij < a

(t−1)
i+1,j + u.

Since S(t) is an A-shape matrix, the TGC implies aij > ai+1,j . From our assumption we

obtain a
(t)
ij < a

(t)
i+1,j , hence

s
(t′)
ij = 0 and s

(t′)
i+1,j = 1

for some t′ > t, contradicting the assumption that S(t′) is an A-shape matrix.

We call a pair (u, S) of a positive integer u and an A-shape matrix S an admissible
segmentation pair, if

• A− uS is nonnegative,

• sij = 1 and si+1,j = 0 ⇒ aij > ai+1,j + u (i ∈ [m− 1], j ∈ [n]),

• sij = 1 and si−1,j = 0 ⇒ aij > ai−1,j + u (i ∈ [2,m], j ∈ [n]),

• c(A− uS) = c(A)− u.

Now we proceed exactly as in [7]: we find an admissible segmentation pair (u, S) with
maximal u and continue with A− uS until we reach the zero matrix. In order to derive an
upper bound for the coefficient u in an admissible segmentation pair (u, S), we use an idea
from [2] and identify the set of segments with the set of paths from D to D′ in the layered
digraph Γ = (W,F), constructed as follows. The vertices in the i−th layer correspond to
the possible leaf positions in row i (1 6 i 6 m) and two additional vertices D and D′ are
added:

W = {(i, l, r) : i ∈ [m], l ∈ [0, n], r ∈ [l + 1, . . . , n+ 1]} ∪ {D,D′}.

Between two vertices (i, l, r) and (i+1, l′, r′) there is an arc if the corresponding leaf positions
are consistent with the ICC, i.e. if l′ < r and r′ > l. In addition, the arc set F contains all
arcs from D to the first layer and from the last layer m to D′, so

F = F+(D) ∪ F−(D′) ∪
m−1⋃
i=1

F+(i), where

F+(D) = {(D, (1, l, r)) : (1, l, r) ∈W},
F−(D) = {((m, l, r), D′) : (m, l, r) ∈W},
F+(i) = {((i, l, r), (i+ 1, l′, r′)) : l′ < r, r′ > l}.

Reducing the tongue-and-groove underdosage in MLC shape matrix decomposition 45

There is a bijection between the possible leaf positions and the paths from D to D′ in Γ.
This is illustrated in Fig. 6 which shows the paths in Γ for m = 4, n = 2, corresponding to
the shape matrices (

1 0
0 1
1 1
1 0

)
(straight lines) and

(
0 1
1 1
1 0
0 1

)
(dashed lines).

For each vertex (i, l, r) let u0(i, l, r) denote an upper bound for the coefficient in an ad-

301

401

201

101

302

402

202

102

303

403

203

103

312

412

212

112

313

413

213

113

323

423

223

123

D

D′

Figure 6: The vertices of Γ for m = 4, n = 2 and two (D,D′)-paths.

missible segmentation pair (u, S) where S is a shape matrix with li = l and ri = r. Then
any admissible segmentation pair (u, S) corresponds to a path

D, (1, l1, r1), (2, l2, r2), . . . , (m, lm, rm), D′

with the following properties.

• For i ∈ [m], u0(i, li, ri) > u.

• For i ∈ [m− 1] and j ∈ [n],

li < j 6 li+1 or ri+1 6 j < ri =⇒ aij > ai+1,j + u,

li+1 < j 6 li or ri 6 j < ri+1 =⇒ ai+1,j > aij + u.

If we have good upper bounds u0(i, l, r), this yields a considerable reduction of the set of
shape matrices that have to be considered in the search an admissible segmentation pair.
In our implementation we used the bound from the following lemma.

46 T. Kalinowski

Lemma 8. For i ∈ [m], let gi = c(A)−
∑n

j=1 max{0, aij −ai,j−1}, and suppose (u, S) is an
admissible segmentation pair with parameters li, ri (i ∈ [m]). Then for i ∈ [m],

u 6 gi if ri = li + 1 (9)

u 6 min{gi + max{0, ai,r−1 − air}, gi + max{0, ai,l+1 − ail},
1
2 (gi + max{0, ai,l+1 − ail}+ max{0, ai,r−1 − air})} if ri > li + 1. (10)

Proof. For brevity of notation, let dij = max{0, aij − ai,j−1} for (i, j) ∈ [m] × [n].
Observe that

∑n
j=1 dij is just the weight of the path

0, (i, 0), (i, 1), . . . , (i, n), (i, n+ 1), 1

in G. The fact that (u, S) is an admissible segmentation pair implies,

n∑
j=1

d′ij 6 c(A)− u, (11)

where A′ = (a′ij) = A− uS and d′ij = max{0, a′ij − a′i,j−1}. If ri = li + 1, a′ij = aij for all j
and this implies (9). For (10), observe that

d′i,li+1 = di,li+1 −min{u, di,li+1},
d′i,ri = di,ri + max{0, u−max{0, ai,ri−1 − airi}},
d′ij = dij for j 6∈ {li+1, ri}.

With (11) we obtain

n∑
j=1

dij −min{u, di,li+1}}+ max{0, u−max{0, ai,ri−1 − airi}}} 6 c(A)− u,

hence
u−min{u, di,li+1}+ max{0, u−max{0, ai,ri−1 − airi}} 6 gi

and this implies (10). �
Algorithm 3 summarizes our greedy approach for the construction of a DT -optimal

shape matrix decomposition with a small DC.

Reducing the tongue-and-groove underdosage in MLC shape matrix decomposition 47

Algorithm 3 DT-optimal shape matrix decomposition with reduced DC

while A 6= 0 do
Determine the complexity c(A) and the numbers u0(i, l, r) for
i ∈ [m], l ∈ [0, n], r ∈ [n+ 1] according to Lemma 8
u← max{k : There is a path P from D to D′ in Γ

with u0(i, l, r) > k for all (i, l, r) ∈ P}
complete←false
while (not complete) do

for the paths P in Γ with u0(i, l, r) > k for all (i, l, r) ∈ P do
Let S be the shape matrix corresponding to P
if (u, S) is an admissible segmentation pair then

complete←true
if (not complete) then u← u− 1

A← A− S

6 Test results

We implemented Algorithm 3 in C++ and computed decompositions for 15× 15−matrices,
where the entries are chosen uniformly and independently from {0, . . . , L}. Table 1 shows
the results for different values of L, where for each row of the table we averaged over 1000
sample matrices. In the second column we have the average DT , which is the same as for

L DT DC (plain) DC (reduced) CPU time (sec)

4 21.2 21.0 18.0 93

7 34.9 34.2 24.1 276

10 48.2 46.3 28.1 399

13 61.7 57.9 31.2 556

16 74.8 68.2 33.5 647

Table 1: Test results for random 15× 15-matrices with entries from {0, . . . , L}.

the algorithm of Kamath et al. [9]. The third column shows the DC of a decomposition
according to Algorithm 2 (or equivalently the algorithm of Kamath et al.). Clearly, this
algorithm just aims at minimizing the DT without taking the DC into account, hence the
DC almost equals the DT . In the fourth column we have the DC of the decompositions
according to Algorithm 3, and we see that this approach yields considerable savings in terms
of the number of used shape matrices. The CPU times (on a 2GHz workstation with 2GB
RAM) in the third columns show that the algorithm is practicable for intensity matrices of
the considered size (note that the times are for the decomposition of 1000 matrices, so the
average time for a single matrix is still below a second). But of course the backtracking for

48 T. Kalinowski

determining the maximal value of u becomes very slow for larger matrices, and more efficient
methods are needed for matrix dimensions of practical relevance. In order to evaluate the
influence of the TGC, in Table 2 we compare results for different types of constraints.

L unconstrained only ICC ICC and TGC

DT DC DT DC DT DC

4 17.9 10.9 19.5 14.5 21.2 18.0

7 29.5 13.1 31.7 18.2 34.9 24.1

10 40.9 14.7 43.8 20.7 48.2 28.1

13 52.4 15.8 55.7 22.5 61.7 31.2

16 63.8 16.8 67.7 24.0 74.8 33.5

Table 2: Test results for random 15×15-matrices with entries from {0, 1, . . . , L} for different
types of constraints.

Finally, we also tested our algorithm with 13 clinical matrices, each with 10 fluence
levels. The results are shown in Table 3. The computation times for these matrices were
negligible (less than a second).

unconstrained only ICC ICC and TGC

no. size DT DC DT DC DT DC

1 10× 11 16 8 16 8 17 11

2 10× 9 16 7 16 8 19 13

3 9× 9 20 8 20 10 20 12

4 9× 9 19 8 19 11 21 15

5 10× 8 15 7 18 9 19 11

6 9× 9 17 9 17 9 19 11

7 10× 8 18 7 18 10 21 12

8 14× 12 22 9 22 10 25 14

9 14× 10 26 10 30 15 34 19

10 14× 10 22 9 23 13 28 15

11 15× 10 22 10 22 11 25 16

12 15× 11 23 10 23 12 23 16

13 14× 10 23 9 24 11 27 17

Table 3: Test results for random 15×15-matrices with entries from {0, 1, . . . , L} for different
types of constraints.

Clearly, the addition of the TGC causes an increase in the DT and in the DC. Further
investigations are necessary in order to evaluate the potential tradeoff between DT (and
corresponding leakage) and tongue-and-groove underdosage.

Reducing the tongue-and-groove underdosage in MLC shape matrix decomposition 49

7 Conclusion

We have presented an algorithm for MLC shape matrix decomposition taking into account
the interleaf collision constraint and eliminating tongue-and-groove underdosage effects. We
proved that our algorithm is optimal with respect to the total number of monitor units,
thus completing the argument of [9] where the optimality was proved only for unidirectional
schedules. In addition, we derived a heuristic approach to the reduction of the number of
shape matrices. Two open questions arise immediately and are the subject of ongoing
research. 1. Is there a nice characterization for the minimal decomposition time if we have
no interleaf constraint but still want to eliminate tongue-and-groove underdosage? 2. What
about a computationally more efficient heuristic for the decomposition cardinality?

References

[1] D. Baatar, H.W. Hamacher, M. Ehrgott and G.J. Woeginger. “Decomposition of in-
teger matrices and multileaf collimator sequencing”. In: Discr. Appl. Math. 152.1-3
(2005), pp. 6–34. doi: 10.1016/j.dam.2005.04.008.

[2] N. Boland, H. W. Hamacher and F. Lenzen. “Minimizing beam-on time in cancer
radiation treatment using multileaf collimators”. In: Networks 43.4 (2004), pp. 226–
240. issn: 0028-3045. doi: 10.1002/net.20007.

[3] T.R. Bortfeld, D.L. Kahler, T.J. Waldron and A.L. Boyer. “X–ray field compensation
with multileaf collimators”. In: Int. J. Radiat. Oncol. Biol. Phys. 28 (1994), pp. 723–
730. doi: 10.1016/0360-3016(94)90200-3.

[4] K. Engel. “A new algorithm for optimal multileaf collimator field segmentation”. In:
Discr. Appl. Math. 152.1-3 (2005), pp. 35–51. doi: 10.1016/j.dam.2004.10.007.

[5] K. Engel and E. Tabbert. “Fast Simultaneous Angle, Wedge, and Beam Intensity
Optimization in Inverse Radiotherapy Planning”. In: Optimization and Engineering
6.4 (2005), pp. 393–419. doi: 10.1007/s11081-005-2065-3.

[6] J.M. Galvin, X.G. Chen and R.M. Smith. “Combining multileaf fields to modulate
fluence distributions”. In: Int. J. Radiat. Oncol. Biol. Phys. 27 (1993), pp. 697–705.
doi: 10.1016/0360-3016(93)90399-G.

[7] T. Kalinowski. “A duality based algorithm for multileaf collimator field segmentation
with interleaf collision constraint”. In: Discr. Appl. Math. 152.1-3 (2005), pp. 52–88.
doi: 10.1016/j.dam.2004.10.008.

[8] S. Kamath, S. Sahni, J. Li, J. Palta and S. Ranka. “Leaf sequencing algorithms for
segmented multileaf collimation”. In: Phys. Med. Biol. 48.3 (2003), pp. 307–324. doi:
10.1088/0031-9155/48/3/303.

[9] S. Kamath, S. Sartaj, J. Palta, S. Ranka and J. Li. “Optimal leaf sequencing with
elimination of tongue–and–groove underdosage”. In: Phys. Med. Biol. 49 (2004), N7–
N19. doi: 10.1088/0031-9155/49/3/N01.

http://dx.doi.org/10.1016/j.dam.2005.04.008
http://dx.doi.org/10.1002/net.20007
http://dx.doi.org/10.1016/0360-3016(94)90200-3
http://dx.doi.org/10.1016/j.dam.2004.10.007
http://dx.doi.org/10.1007/s11081-005-2065-3
http://dx.doi.org/10.1016/0360-3016(93)90399-G
http://dx.doi.org/10.1016/j.dam.2004.10.008
http://dx.doi.org/10.1088/0031-9155/48/3/303
http://dx.doi.org/10.1088/0031-9155/49/3/N01

50 T. Kalinowski

[10] S. Luan, C. Wang, D.Z. Chen, X.S. Hu, S.A. Naqvi, X. Wu and C.X. Yu. “An improved
MLC segmentation algorithm and software for step-and-shoot IMRT delivery without
tongue-and-groove error”. In: Med. Phys. 33 (2006), pp. 1199–1212. doi: 10.1118/1.
2188823.

[11] W. Que, J. Kung and J. Dai. “’Tongue-and-groove’effect in intensity modulated ra-
diotherapy with static multileaf collimator fields”. In: Phys. Med. Biol. 49.3 (2004),
pp. 399–405. doi: 10.1088/0031-9155/49/3/004.

[12] H.E. Romeijn, R.K. Ahuja, J.F. Dempsey and A. Kumar. “A Column Generation
Approach to Radiation Therapy Treatment Planning Using Aperture Modulation”.
In: SIAM J. on Optimization 15.3 (2005), pp. 838–862. issn: 1052-6234. doi: 10.
1137/040606612.

[13] R.A.C. Siochi. “Minimizing static intensity modulation delivery time using an intens-
ity solid paradigm”. In: Int. J. Radiat. Oncol. Biol. Phys. 43 (1999), pp. 671–680.
doi: 10.1016/S0360-3016(98)00430-1.

[14] P. Xia and L. Verhey. “Multileaf collimator leaf–sequencing algorithm for intensity
modulated beams with multiple static segments”. In: Med. Phys. 25 (1998), pp. 1424–
1434. doi: 10.1118/1.598315.

http://dx.doi.org/10.1118/1.2188823
http://dx.doi.org/10.1118/1.2188823
http://dx.doi.org/10.1088/0031-9155/49/3/004
http://dx.doi.org/10.1137/040606612
http://dx.doi.org/10.1137/040606612
http://dx.doi.org/10.1016/S0360-3016(98)00430-1
http://dx.doi.org/10.1118/1.598315

Approximated MLC shape matrix decomposition with

interleaf collision constraint∗

Thomas Kalinowski Antje Kiesel

Abstract

Shape matrix decomposition is a subproblem in radiation therapy planning. A given
fluence matrix A has to be decomposed into a sum of shape matrices corresponding to
homogeneous fields that can be shaped by a multileaf collimator (MLC). We solve the
problem of minimizing the delivery time for an approximation of A satisfying certain
prescribed bounds, under the additional condition that the used MLC requires the
interleaf collision constraint.

Key words: Intensity modulated radiation therapy (IMRT); multileaf collimator; com-
binatorial optimization; programming involving graphs

2010 MSC: 90C35, 92C50, 90C90

1 Introduction

In modern cancer therapy radiation is used to destroy the tumor tissue. At the same
time one has to minimize the damage to the healthy tissue, and in particular to sensible
structures or organs at risk. Intensity modulated radiation therapy was introduced in order
to improve the quality of radiation treatment. In clinical practice it is common to use
a linear accelerator which can release radiation from different directions (Figure 1). In
addition, a multileaf collimator (MLC) (Figure 2) can be used to protect certain parts of
the irradiated area.

For the treatment planning, the first step is to determine a set of directions (typically
3–9), from which radiation is released, given by positions of the isocenter, table angles
and gantry angles [5, 12]. In a second step, for each direction the fluence distribution is
optimized, subject to required dose distribution in the target. The final step is to determine,
for each fluence distribution, a corresponding sequence of MLC leaf positions. Recently,
there have been attempts to formulate the optimization problem more globally [5, 13], but
most of the widely used treatment planning systems model the three steps independently.
In this paper we consider the last step for the MLC in the so called step-and-shoot mode.
This means the radiation is switched off while the leaves are moving, and so the generated
intensity modulated field is just a superposition of finitely many homogeneous fields which
are shaped by the MLC. The two most important objectives in the optimization problem

∗Algorithmic Operations Research 4(1):49–57, 2009

51

52 T. Kalinowski, A. Kiesel

Figure 1: A linear accelerator. Figure 2: Leaf pairs of a multileaf collimator.

are the total irradiation time, or delivery time (DT), and the number of used fields, or
decomposition cardinality (DC). Starting with [2] and [6] there have been proposed several
algorithms for this problem [3, 10, 14, 15], taking into account additional machine dependent
constraints as the interleaf collision constraint [1, 7] or the tongue-and-groove constraint [11]
(see [9] or [8] for a survey).

All of these algorithms start with the given fluence matrix A and construct a sequence
of leaf positions realizing this matrix. But from a practical point of view there seem to be
some doubts if it is reasonable to consider every entry aij as fixed once and for all. First, the
matrix A is a result of numerical computations which are based on simplified physical models
of how the radiation passes through the patients body, and second, the representation of
A as a superposition of homogeneous fields is also based on model assumptions which are
not strictly correct, for instance the dose delivered to an exposed bixel depends on the
shape of the field. So it might be sufficient, to realize (in our model) a matrix that is
close to A. It is a natural question, how much the delivery time can be reduced by giving
only an approximate representation of A satisfying certain minimum and maximum dose
constraints. As an immediate consequence, the next problem arises: find an approximation
with this optimal DT which is as close as possible to A. These questions have been answered
for unconstrained MLCs in [4], and in the present paper we generalize the ideas from this
reference to MLCs with interleaf collision constraint.

In Section 2 we give an precise statement of the problem, Section 3 reviews an exact
algorithm for shape matrix decomposition with interleaf collision constraint, in Section 4 we
present our graph-theoretical characterization of the minimal DT of an approximation with
a constructive proof, in Section 5 we show how the total change can be reduced heuristically,
and the final Section 6 contains some test results.

2 Notation and problem formulation

Throughout the rest of the paper, for a natural number n, [n] denotes the set {1, 2, . . . , n}
and for integers m < n, [m,n] denotes the set {m,m + 1, . . . , n}. For integers a, we also

Approximated MLC shape matrix decomposition 53

use the notation a+ for the nonnegative part, defined by

a+ =

{
a if a > 0,

0 otherwise.

Our starting point is an m × n−matrix A with nonnegative integer entries. The entry aij
represents the desired fluence at bixel (i, j). In addition, for each entry (i, j) we have lower
and upper bounds aij and aij , such that

0 6 aij 6 aij 6 aij .

Definition 1 (Feasible Approximation). Any integer matrix B with

aij 6 bij 6 aij

is called feasible approximation of A. The total change TC(B) of a feasible approximation
B is defined by

TC(B) =

m∑
i=1

n∑
j=1

|bij − aij |.

The homogeneous fields that can be shaped by the MLC are described by binary matrices
of size m× n which we call shape matrices.

Definition 2 (Shape matrix). An m × n matrix S is a shape matrix if there are pairs of
integers (li, ri) (i = 1, . . . ,m), such that the following conditions are satisfied:

1. sij =

{
1 if li < j < ri,

0 otherwise.

2. li < ri+1 and ri > li+1 for all i ∈ [m− 1].

The second condition in Definition 2 is called interleaf collision constraint (ICC). It
ensures the left leaf of row i and the right leaf of row i± 1 do not overlap, which is required
by some widely used MLCs, for instance the Elekta MLC. An MLC leaf sequence for A
corresponds to a representation of A as a weighted sum of shape matrices.

Definition 3 (Shape matrix decomposition). A shape matrix decomposition of A is a rep-
resentation of A as a positive integer combination of shape matrices

A =

k∑
t=1

utS
(t).

The delivery time (DT) of this decomposition is just the sum of the coefficients,

DT =

k∑
t=1

ut.

54 T. Kalinowski, A. Kiesel

Example 1. For the shape matrix decomposition
1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0

 = 2 ·


0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0

+


0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0

 +


1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0


we have DT = 4.

Now we formulate three optimization problems.

MinDT. Find a shape matrix decomposition A =
∑k

t=1 utS
(t) such that DT =

∑k
t=1 ut is

minimal.

Approx-MinDT. Find a feasible approximation B and a shape matrix decomposition
B =

∑k
t=1 utS

(t) such that DT =
∑k

t=1 ut is minimal.

Approx-MinDT-TC. Find a feasible approximation B and a shape matrix decomposition
B =

∑k
t=1 utS

(t) such that DT =
∑k

t=1 ut is minimal, and under this condition TC(B)
is minimal.

The first problem MinDT is the exact decomposition problem which can be solved by
several efficient algorithms [1, 7, 10]. The idea underlying one of these algorithms is reviewed
in the next section because it is the basis for our approach to the second problem Approx-
MinDT. Finally, we observe that the second part of each of the problems Approx-MinDt
and Approx-MinDT-TC, the search for the shape matrix decomposition, can be ignored
safely, because, once the matrix B is fixed, we can apply any exact decomposition algorithm
to complete the task.

3 Review of the exact decomposition

The basis of our approach is a characterization of the minimal DT of a decomposition with
ICC as the maximal weight of a q − s−path in the following digraph G = (V,E) [7, 8].

V = {q, s} ∪ [m]× [0, n+ 1],

E = {(q, (i, 0)) : i ∈ [m]} ∪ {((i, n+ 1), s) : i ∈ [m]}
∪ {((i, j), (i, j + 1)) : i ∈ [m], j ∈ [0, n]}
∪ {((i, j), (i+ 1, j)) : i ∈ [m− 1], j ∈ [n]}
∪ {((i, j), (i− 1, j)) : i ∈ [2,m], j ∈ [n]} .

In order to avoid case distinctions, we add two columns to our matrix and put

ai0 = ai,n+1 = 0 (i ∈ [m]).

Approximated MLC shape matrix decomposition 55

Now we can define arc weights by

w(q, (i, 0)) = w((i, n+ 1), s) = 0 (i ∈ [m])

w((i, j − 1), (i, j)) = max{0, ai,j − ai,j−1} (i ∈ [m], j ∈ [n+ 1])

w((i, j), (i+ 1, j)) = −aij (i ∈ [m− 1], j ∈ [n])

w((i, j), (i− 1, j)) = −aij (i ∈ [2,m], j ∈ [n]).

We call this graph the DT-ICC-graph for A. Figure 3 shows the DT-ICC-graph for the
matrix

A =


4 5 0 1 4 5
2 4 1 3 1 4
2 3 2 1 2 4
5 3 3 2 5 3

 .

q s

0

0

0

0

0

0

0

0

4 1 0 1 3 1 0

2 2 0 2 0 3 0

2 1 0 0 1 2 0

5 0 0 0 3 0 0

−2 −4
−4 −5

−1
0
−3 −1

−1 −4
−4 −5

−2 −2
−3 −4

−2 −1
−1 −3

−2 −1
−4 −4

−5 −2
−3 −3

−3 −2
−2 −1

−5 −2
−3 −4

Figure 3: The DT-ICC-Graph for matrix A.

Definition 4. Let A be an intensity matrix, and let G be the DT-ICC-graph for A. The
maximal weight of a q − s−path in G is called ICC-complexity of A and denoted by c(A).
More formally,

c(A) = max{w(P) : P is a q − s− path in G.}.

Using this definition the main result of [7] can be formulated as follows.

Theorem 1. The minimal DT of a decomposition of A with ICC equals c(A).

4 Approximation

To simplify our notation, for each (i, j) ∈ [m]× [n] we introduce the interval of acceptable
fluence values

Iij =
[
aij , aij

]
, aij 6 aij 6 aij .

56 T. Kalinowski, A. Kiesel

We want to find a matrix B such that

bij ∈ Iij for (i, j) ∈ [m]× [n] and c(B)→ min .

We follow an approach from [4] and replace every vertex (i, j) ∈ [m] × [n] by |Iij | copies,
i.e. by the set

Vij = {(i, j)} × Iij .
In order to avoid case distinctions in the discussion below we also replace the vertices in
columns 0 and n+ 1 by

Vi0 = {(i, 0, 0)} and Vi,n+1 = {(i, n+ 1, 0)}.

An arc ((i, j), (i, j + 1)) in the DT-ICC-graph G is replaced by the complete bipartite
graph Vij × Vi,j+1, and similarly for the arcs ((i, j), (i ± 1, j)). The weights of the arcs
((i, j, k), (i, j + 1, l)) should model the approximation matrix B if we choose bij = k and
bi,j+1 = l, and similarly for the other arc types. Hence we define the arc weights by

w(q, (i, 0, 0)) = 0 (i ∈ [m]),

w((i, n+ 1, 0), s) = 0 (i ∈ [m]),

w((i, 0, 0), (i, 1, k)) = k (i ∈ [m], k ∈ Ii1),
w((i, n, k), (i, n+ 1, 0)) = 0 (i ∈ [m], k ∈ Iin),

w((i, j − 1, k), (i, j, l)) = (l − k)+ (i ∈ [m], j ∈ [n], k ∈ Ii,j−1, l ∈ Iij),
w((i, j, k), (i+ 1, j, l)) = −k (i ∈ [m− 1], j ∈ [n], k ∈ Iij , l ∈ Ii+1,j),

w((i, j, k), (i− 1, j, l)) = −k (i ∈ [2,m], j ∈ [n], k ∈ Iij , l ∈ Ii−1,j).

In order to determine the minimal complexity of an approximation matrix we compute
numbers W (i, j, k) such that

W (i, j, k) = max
{

min
l
W (i, j − 1, l) + (k − l)+,

min
l
W (i− 1, j, l)− l, min

l
W (i+ 1, j, l)− l

}
.

The intuitive idea is that for every feasible approximation B with bij = k, the maximal
weight of a q − (i, j)−path in the DT-ICC-graph for B is at least W (i, j, k). The numbers
W (i, j, k) can be computed efficiently (complexity O(m2n∆2), where ∆ denotes any upper
bound for |Iij |) as described in Algorithm 1. Again, in order to avoid case distinctions at
the boundaries, we add the values

W (0, j, 0) = W (m+ 1, j, 0) = a0j = am+1,j = 0 (j ∈ [n]).

Definition 5. The ICC-approximation complexity of A (with respect to the given intervals
Iij) is defined by

c̃(A) = max
i

min
k
W (i, n, k).

Approximated MLC shape matrix decomposition 57

Clearly, c̃(A) is a lower bound for the ICC-complexity of a feasible approximation of
A. We will show that this bound is sharp by an explicit construction of an approximation
matrix B. For the last column we put

bin =

{
ain if W (i, n, ain) 6 c̃(A),

max{k : W (i, n, k) 6 c̃(A)} otherwise.

For j < n, we assume that the entries bi,j+1 are already determined, and put

bij = max
{
k : W (i, j, k) + (bi,j+1 − k)+ 6W (i, j + 1, bi,j+1)

}
.

Example 2. We consider the following fluence matrix A with c(A) = 8.

A =

(
4 0 0
0 0 4

)
We choose the upper and lower bound such that |bij−aij | 6 1 for every (i, j). The intervals
and an optimal approximation are(

[3, 5] [0, 1] [0, 1]
[0, 1] [0, 1] [3, 5]

)
, B =

(
3 1 0
1 1 3

)
with c(B) = 4. Our algorithm obtains matrix B as follows. First we compute the numbers
W (i, j, k), and obtain, for each (i, j), a vector(

Wi,j,aij ,Wi,j,aij+1, . . . ,Wi,j,aij

)
.

These vectors are collected in the following array.

(3, 4, 5) (3, 3) (3, 3)
(0, 1) (2, 2) (4, 5, 6).

Thus the optimal DT is
max{min{3, 3},min{4, 5, 6}} = 4.

For the third column we choose b13 = 0 and b23 = 3. For the entry (1, 2) we have

W (1, 2, 0) + w((1, 2, 0), (1, 3, 0)) = W (1, 2, 1) + w((1, 2, 1), (1, 3, 0)) = W (1, 3, 0).

We choose the maximal possible value b12 = 1. Observe that b12 = 0 is indeed not possible,
since it leads to an increased DT. For entry (2, 2) we have

W (2, 2, 0) + w((2, 2, 0), (2, 3, 3)) = 2 + 3 > W (2, 3, 3),

so here b22 = 1 is the only possible choice. Similarly, we get b11 = 3 and b21 = 1. Clearly,
the latter one can be replaced by 0.

In order to prove that our method is correct, we need some simple properties of the
numbers W (i, j, k).

58 T. Kalinowski, A. Kiesel

Lemma 1. For every (i, j) ∈ [m] × [n] and every k such that (i, j, k), (i, j, k + 1) ∈ Vij we
have

W (i, j, k) 6W (i, j, k + 1) 6W (i, j, k) + 1. (1)

Furthermore, W (i, j, k + 1) = W (i, j, k) + 1 iff

W (i, j, k) = W (i, j − 1, l) + (k − l)+
for some l ∈ Ii,j−1 with l 6 k.

Proof. Since
W (i, j − 1, l) + (k − l)+ 6W (i, j − 1, l)− (k + 1− l)+

and using the definition of the W (i, j, k), we conclude W (i, j, k) 6 W (i, j, k + 1). On the
other hand, we have

W (i, j, k) = max
{

min
l
W (i, j − 1, l) + (k − l)+,

min
l
W (i− 1, j, l)− l, min

l
W (i+ 1, j, l)− l

}
> max

{
min
l
W (i, j − 1, l) + (k + 1− l)+,

min
l
W (i− 1, j, l)− l, min

l
W (i+ 1, j, l)− l

}
− 1

= W (i, j, k + 1)− 1,

where equality occurs iff W (i, j, k) = W (i, j − 1, l) + (k − l)+ and k > l.

The next lemma is the key step of our argument. It asserts that the chosen bij do not
lead to conflicts inside the columns.

Lemma 2. For all j and all i ∈ [m− 1], we have

W (i, j, bij)− bij 6W (i+ 1, j, bi+1,j),

and for all j and all i ∈ [2,m], we have

W (i, j, bij)− bij 6W (i− 1, j, bi−1,j).

Proof. We only show the first statement, since the second one can be proved similarly.
Suppose the statement is false, i.e.

W (i, j, bij)− bij > W (i+ 1, j, bi+1,j).

By construction, there is some k ∈ Iij such that W (i, j, k)− k 6W (i+ 1, j, bi+1,j).

Case 1. k < bij . Let δ = bij − k > 0. By Lemma 1 we have

W (i, j, k) >W (i, j, bij)− δ.

But now we obtain

W (i, j, k)− k > (W (i, j, bij)− δ)− (bij − δ) > W (i+ 1, j, bi+1,j),

and this is the required contradiction.

Approximated MLC shape matrix decomposition 59

Case 2. k > bij . Let δ = k − bij > 0. By construction of the numbers bij ,

W (i, j, bij) + (bi,j+1 − bij)+ 6W (i, j + 1, bi,j+1) ,

W (i, j, bij + 1) + (bi,j+1 − (bij + 1))+ > W (i, j + 1, bi,j+1) .

Using Lemma 1, this is possible only if

W (i, j, bij + 1) = W (i, j, bij) + 1.

Using Lemma 1 repeatedly, we obtain

W (i, j, k) = W (i, j, bij) + δ.

But together this implies W (i, j, k)−k = W (i, j, bij)−bij , which is a contradiction.

Now let G be the DT-ICC-graph for B. Denote by α1(i, j) the maximal weight of a
q − (i, j)−path in G. Note that the numbers α1(i, j) can be computed similarly to the
numbers W (i, j, k). Clearly, α1(i, 1) = bi1, and the procedure for column j > 1 is described
in Algorithm 2.

Lemma 3. For all (i, j) we have α1(i, j) 6W (i, j, bij).

Proof. We use induction on j. For j = 1 the claim is obvious:

α1(i, 1) = W (i, 1, bi1) = bi1.

Now let j > 1. After the initialization of the numbers α1(i, j) in the first loop of Algorithm
2 we obtain for every i,

α1(i, j) = α1(i, j − 1) + (bij − bi,j−1)+
6W (i, j − 1, bi,j−1) + (bij − bi,j−1)+ 6W (i, j, bij).

We just have to check that this inequalities remain valid in every updating step. Suppose
the first violation occurs when we replace α1(i, j) by α1(i± 1, j)− bi±1,j . In this case,

α1(i, j) = α1(i± 1, j)− bi±1,j 6W (i± 1, j, bi±1,j)− bi±1,j 6W (i, j, bij),

where the last inequality is Lemma 2. So the statement of the lemma remains valid.

By Lemma 3 (and Theorem 1), matrix B allows a decomposition with DT 6 c̃(A) and
this implies the following theorem.

Theorem 2. The minimal DT of a decomposition of a feasible approximation of A equals
c̃(A) and an approximation matrix B realizing this DT can be constructed as described above
in time O(m2n∆2).

Proof. The only thing that is left to prove is the complexity statement. For this it is sufficient
to note that the computation of the numbers W (i, j, k) dominates the computation time,
since this has complexity O(m2n∆2) as can be seen immediately from Algorithm 1. But
after the numbers W (i, j, k) have been computed we look at every entry (i, j) only once and
in order to fix bij we have to do at most |Iij | comparisons. So the matrix B is determined
in time O(mn∆) and this concludes the proof.

60 T. Kalinowski, A. Kiesel

Algorithm 1 Computation of the numbers W (i, j, k)

for i ∈ [m] do W (i, 0, 0) = 0
for j = 1 to n do

for i ∈ [m] do
for all k do
W (i, j, k) = minlW (i, j − 1, l) + (k − l)+

for i = 2 to m do
for all k do
W (i, j, k) = max

{
W (i, j, k),minlW (i− 1, j, l)− l

}
for i′ = i− 1 downto 1 do

for all k do
W (i′, j, k) = max

{
W (i′, j, k),minlW (i′ + 1, j, l)− l

}

Algorithm 2 Computation of the numbers α1(i, j) for fixed j

for i ∈ [m] do
α1(i, j) = α1(i, j − 1) + (bij − bi,j−1)+

for i = 2 to m do
α1(i, j) = max {α1(i, j), α1(i− 1, j)− bi−1,j}

for i′ = i− 1 downto 1 do
α1(i

′, j) = max
{
α1(i

′, j), α1(i
′ + 1, j)− bi′+1,j

}

Approximated MLC shape matrix decomposition 61

5 Reducing the total change

The construction described in Section 4 leads to an approximation B with minimal delivery
time, but a large total change TC(B). The reason is, that we put

bij = max {k : W (i, j, k) + (bi,j+1 − k) 6W (i, j + 1, bi,j+1)} ,

even if none of the vertices (i, j, k) is critical, i.e. part of a q-s-path of maximal weight in the
DT-ICC-graph of a feasible approximation of A. Thus, the aim is to find an approximation
with the same delivery time, but smaller total change. Clearly, we can replace bij by a
value b′ij with bij < b′ij 6 aij in the case bij < aij , respectively with aij > b′ij > bij in the
case aij > bij , if this decision does not increase the maximal weight of a q-s-path in the
DT-ICC-graph.

Let therefore G be the DT-ICC-graph of B and let α1(i, j) denote the maximal weight
of a q-(i, j)-path in G. Similarly, let α2(i, j) denote the maximal weight of an (i, j)-s-path
in G. The values α2(i, j) can be computed similarly as the numbers α1(i, j).

Definition 6. Let B be a feasible approximation of A. For (i, j) ∈ [m]× [n], an integer b
is called (i, j)−feasible (with respect to B) if the following conditions are satisfied.

1. b ∈ Iij .

2. α1(i, j − 1) + (b− bi,j−1)+ + (bi,j+1 − b)+ + α2(i, j + 1) 6 c̃(A).

3. i = 1 or α1(i, j − 1) + (b− bi,j−1)+ − b+ α2(i− 1, j) 6 c̃(A).

4. i = m or α1(i, j − 1) + (b− bi,j−1)+ − b+ α2(i+ 1, j) 6 c̃(A).

5. i = 1 or α1(i− 1, j)− bi−1,j + (bi,j+1 − b)+ + α2(i, j + 1) 6 c̃(A).

6. i = m or α1(i+ 1, j)− bi+1,j + (bi,j+1 − b)+ + α2(i, j + 1) 6 c̃(A).

7. i ∈ {1,m} or α1(i− 1, j)− bi−1,j − b+ α2(i+ 1, j) 6 c̃(A).

8. i ∈ {1,m} or α1(i+ 1, j)− bi+1,j − b+ α2(i− 1, j) 6 c̃(A).

In other words, b is (i, j)−feasible iff we can replace bij by b without destroying the
DT−optimality of B. Fig 4 illustrates the different possibilities for a path to pass through
vertex (i, j). Each of these possibilities corresponds to one of the conditions 2 through 8 in
Definition 6.

We propose a heuristic, formally described in Algorithm 3, to reduce the total change.
Clearly, the application of this algorithm can be iterated until no more changes occur.

62 T. Kalinowski, A. Kiesel

(i, j − 1) (i, j) (i, j + 1)

(i, j − 1) (i, j)

(i+ 1, j)(i, j − 1) (i, j)

(i− 1, j)

(i+ 1, j)

(i, j) (i, j + 1)(i− 1, j)

(i, j) (i, j + 1)

(i− 1, j)

(i, j)

(i+ 1, j) (i+ 1, j)

(i, j)

(i− 1, j)

Figure 4: The seven different types of paths that are affected by the choice of bij .

Algorithm 3 Heuristic for total change minimization

for j = 1 to n do
for i = 1 to m do

if bij < aij and bij + 1 is (i, j)−feasible then bij + +
if bij > aij and bij − 1 is (i, j)−feasible then bij −−
Update the numbers α1(k, l) and α2(k, l)

6 Test Results

In this section we demonstrate the DT-reduction obtained by the methods from Section 4
and the total change reduction using the heuristic approach from Section 5. We use matrices
of size 15×15 and 30×30 with random entries aij ∈ {0, 1, . . . , L} for L ∈ {8, 12, 16}. In our
tests we choose the upper and lower bounds for the entries such that each entry is changed
by at most 2, i.e. we put

aij = (aij − 2)+, aij = aij + 2.

For each L, we construct decompositions of 1000 matrices, and compute the average min-
imal delivery time c̃(A) and the total change according to our algorithm from Section 4.
Finally, we analyse the total change reduction, that can be achieved using Algorithm 3.
The results are shown in Table 1 and 2. For comparison we include the minimal DT for
exact decomposition with ICC [7]. Columns ‘DT1’ and ‘DT2’ contain the average delivery
times for the exact and for the approximated decomposition, respectively. Columns ‘TC1’
and ‘TC2’ contain the total change values before and after the application of Algorithm 3.
Our algorithms are completely practicable. On a 3GHz workstation, the computations for
the last row, i.e. for the decomposition of 1000 matrices of size 15 × 15 with entries from
{0, 1, . . . , 16} took only 5 seconds for m = n = 15 and less than a minute for m = n = 30.

Approximated MLC shape matrix decomposition 63

L DT1 DT2 TC1 TC2

8 35.7 14.6 329.1 188.7

12 51.8 29.2 358.3 140.8

16 67.7 44.6 373.9 112.8

Table 1: Test results for m = n = 15.

L DT1 DT2 TC1 TC2

8 67.7 24.5 1360.0 837.2

12 97.9 51.4 1484.3 651.3

16 127.7 79.9 1546.2 505.4

Table 2: Test results for m = n = 30.

Basically, we can draw two conclusions from our results.

1. The approximation approach leads to an significant DT-reduction: for L = 16, allow-
ing a change of at most 2 for each entry reduces the DT by more than 30%.

2. Our heuristic leads to a large total change reduction: for L = 16 the total change can
be reduced by almost 60%.

7 Summary and discussion

We presented an efficient method to minimize exactly the decomposition time in approxim-
ated MLC shape matrix decomposition with interleaf collision constraint. We also described
a heuristic for reducing the total approximation error, and demonstrated the proposed al-
gorithms on randomly generated matrices. The obvious next problem, which is the subject
of ongoing research, is to find an exact algorithm for the minimization of the total change.

References

[1] D. Baatar, H.W. Hamacher, M. Ehrgott and G.J. Woeginger. “Decomposition of in-
teger matrices and multileaf collimator sequencing”. In: Discr. Appl. Math. 152.1-3
(2005), pp. 6–34. doi: 10.1016/j.dam.2005.04.008.

[2] T.R. Bortfeld, D.L. Kahler, T.J. Waldron and A.L. Boyer. “X–ray field compensation
with multileaf collimators”. In: Int. J. Radiat. Oncol. Biol. Phys. 28 (1994), pp. 723–
730. doi: 10.1016/0360-3016(94)90200-3.

[3] K. Engel. “A new algorithm for optimal multileaf collimator field segmentation”. In:
Discr. Appl. Math. 152.1-3 (2005), pp. 35–51. doi: 10.1016/j.dam.2004.10.007.

[4] K. Engel and A. Kiesel. “Approximated matrix decomposition for IMRT planning
with multileaf collimators”. In: OR Spectrum 33.1 (2011), pp. 149–172. doi: 10.

1007/s00291-009-0168-5.

[5] K. Engel and E. Tabbert. “Fast Simultaneous Angle, Wedge, and Beam Intensity
Optimization in Inverse Radiotherapy Planning”. In: Optimization and Engineering
6.4 (2005), pp. 393–419. doi: 10.1007/s11081-005-2065-3.

http://dx.doi.org/10.1016/j.dam.2005.04.008
http://dx.doi.org/10.1016/0360-3016(94)90200-3
http://dx.doi.org/10.1016/j.dam.2004.10.007
http://dx.doi.org/10.1007/s00291-009-0168-5
http://dx.doi.org/10.1007/s00291-009-0168-5
http://dx.doi.org/10.1007/s11081-005-2065-3

64 T. Kalinowski, A. Kiesel

[6] J.M. Galvin, X.G. Chen and R.M. Smith. “Combining multileaf fields to modulate
fluence distributions”. In: Int. J. Radiat. Oncol. Biol. Phys. 27 (1993), pp. 697–705.
doi: 10.1016/0360-3016(93)90399-G.

[7] T. Kalinowski. “A duality based algorithm for multileaf collimator field segmentation
with interleaf collision constraint”. In: Discr. Appl. Math. 152.1-3 (2005), pp. 52–88.
doi: 10.1016/j.dam.2004.10.008.

[8] T. Kalinowski. “Multileaf collimator shape matrix decomposition”. In: Optimization
in Medicine and Biology. Ed. by G.J. Lim and E.K. Lee. Auerbach Publishers Inc.,
2008, pp. 249–282.

[9] T. Kalinowski. “Realization of intensity modulated radiation fields using multileaf
collimators”. In: Information Transfer and Combinatorics. Ed. by R. Ahlswede et al.
Vol. 4123. LNCS. Springer-Verlag, 2006, pp. 1010–1055. doi: 10.1007/11889342_65.

[10] S. Kamath, S. Sahni, J. Li, J. Palta and S. Ranka. “Leaf sequencing algorithms for
segmented multileaf collimation”. In: Phys. Med. Biol. 48.3 (2003), pp. 307–324. doi:
10.1088/0031-9155/48/3/303.

[11] S. Kamath, S. Sartaj, J. Palta, S. Ranka and J. Li. “Optimal leaf sequencing with
elimination of tongue–and–groove underdosage”. In: Phys. Med. Biol. 49 (2004), N7–
N19. doi: 10.1088/0031-9155/49/3/N01.

[12] G.J. Lim, M.C. Ferris, S.J. Wright, D.M. Shepard and M.A. Earl. “An optimization
framework for conformal radiation treatment planning”. In: INFORMS Journal on
Computing 19.3 (2007), pp. 366–380. doi: 10.1287/ijoc.1060.0179.

[13] H.E. Romeijn, R.K. Ahuja, J.F. Dempsey and A. Kumar. “A Column Generation
Approach to Radiation Therapy Treatment Planning Using Aperture Modulation”.
In: SIAM J. on Optimization 15.3 (2005), pp. 838–862. issn: 1052-6234. doi: 10.
1137/040606612.

[14] R.A.C. Siochi. “Minimizing static intensity modulation delivery time using an intens-
ity solid paradigm”. In: Int. J. Radiat. Oncol. Biol. Phys. 43 (1999), pp. 671–680.
doi: 10.1016/S0360-3016(98)00430-1.

[15] P. Xia and L. Verhey. “Multileaf collimator leaf–sequencing algorithm for intensity
modulated beams with multiple static segments”. In: Med. Phys. 25 (1998), pp. 1424–
1434. doi: 10.1118/1.598315.

http://dx.doi.org/10.1016/0360-3016(93)90399-G
http://dx.doi.org/10.1016/j.dam.2004.10.008
http://dx.doi.org/10.1007/11889342_65
http://dx.doi.org/10.1088/0031-9155/48/3/303
http://dx.doi.org/10.1088/0031-9155/49/3/N01
http://dx.doi.org/10.1287/ijoc.1060.0179
http://dx.doi.org/10.1137/040606612
http://dx.doi.org/10.1137/040606612
http://dx.doi.org/10.1016/S0360-3016(98)00430-1
http://dx.doi.org/10.1118/1.598315

A Minimum Cost Flow Formulation for Approximated MLC

Segmentation∗

Thomas Kalinowski

Abstract

Shape matrix decomposition is a subproblem in radiation therapy planning. A
given fluence matrix A has to be written as a sum of shape matrices corresponding
to homogeneous fields that can be shaped by a multileaf collimator (MLC). We solve
the problem of finding an approximation B of A satisfying prescribed upper and lower
bounds for each entry. The approximation B is determined such that the corresponding
fluence can be realized with a prescribed delivery time using a multileaf collimator with
an interleaf collision constraint, and under this condition the distance between A and
B is minimized.

Keywords: intensity modulated radiation therapy, multileaf collimator, minimum cost
flows

1 Introduction

Radiation therapy is an important method in cancer treatment. Basically, the aim is to
destroy the tumor while minimizing the damage to the healthy tissue, in particular to
sensitive structures or organs at risk. In clinical practice it is common to use a linear
accelerator which can release radiation from different directions. In addition, a multileaf
collimator (MLC) can be used to cover certain parts of the irradiated area. An MLC consists
of two banks of metal leaves that are arranged pairwise such that each pair consists of a
left leaf and a right leaf which can be moved into the radiation beam from their respective
sides. Figure 1 illustrates how an MLC can be used to modulate the intensity. The subject
of the present paper is one step of the treatment planning for an MLC in the step-and-shoot
mode. That term means the radiation is switched off while the leaves are moving, so the
task is to determine finitely many fields such that their superposition yields the required
fluence. The two main optimization goals considered in the literature are the minimization
of the delivery time (DT) and minimization of the number of used shapes. This problem
has been considered by many authors (see [8] and the references therein). There are many
algorithms for this task, using different reformulations of the problem and including different
technological constraints, such as the interleaf collision constraint (ICC) and the tongue-and-
groove constraint. In [5] it was suggested to decompose an approximation of A. This might
be necessary if the delivery time for an exact decomposition of A is prohibitively large. It is

∗Networks 57, 135–140, 2011, doi:10.1002/net.20394

65

http://dx.doi.org/10.1002/net.20394

66 T. Kalinowski

2 1 1

Figure 1: Generating an intensity modulated radiation field by superimposing three homo-
geneous fields shaped by an MLC. The shaded areas are the regions covered by MLC leaves,
the numbers indicate for how long the corresponding field is irradiated, and the greyscales
in the rightmost square show the total fluence distribution.

further justified by the fact that A is a result of numerical computations based on simplified
models, so there should be an error interval attached to each entry. There are two natural
objectives for this approximation problem. First, the delivery time for the approximation
matrix should be small and second, a given delivery time should be realized by changing
A as little as possible. Both of these problems were solved for single row matrices (and
consequently in general for MLCs with independent rows) in [5]. In this paper we consider
MLCs that have an interleaf collision constraint, which means that an overlap between
opposite leaves in consecutive rows is not allowed. Given a fluence matrix A and upper and
lower bounds for the entries of the approximation matrix, the minimal possible delivery
time of an approximation was determined in [9], where the authors also described a heuristic
method for the reduction of the distance between A and the approximation matrix B (to
be defined later). The main result of the present paper is a minimum cost flow formulation
of the exact minimization of this distance. In Section 2 we give a precise formulation
of the approximation problem and we introduce some notation. Section 3 contains our
main result: the approximation problem is dual to a minimum cost flow problem. Finally,
Section 4 contains some computational results.

2 Problem formulation

Throughout the paper we use the standard notation

[k] = {1, 2, . . . , k}, [k, l] = {k, k + 1, . . . , l}

for integers k and l with k 6 l. As in [9], we start with a fluence matrix A of size m × n,
and two matrices A and A containing the lower and upper bounds for the entries:

0 6 aij 6 aij 6 aij (i, j) ∈ [m]× [n].

Definition 1 (Feasible Approximation). Any integer matrix B with

aij 6 bij 6 aij ((i, j) ∈ [m]× [n])

A Min Cost Flow Formulation for Approximated MLC Segmentation 67

is called feasible approximation of A. The total change TC(B) of a feasible approximation
B is defined by

TC(B) =
m∑
i=1

n∑
j=1

|bij − aij |.

The homogeneous fields that can be shaped by the MLC are described by binary matrices
of size m× n which we call shape matrices.

Definition 2 (Shape matrix). An m × n matrix S is a shape matrix if there are pairs of
integers (li, ri) (i ∈ [m]), such that the following conditions are satisfied:

1. sij =

{
1 if li < j < ri,

0 otherwise.

2. li < ri+1 and ri > li+1 for all i ∈ [m− 1].

The first condition is just stating that for each row i, there are a left leaf covering bixels
(i, 1), . . . , (i, li) and a right leaf covering bixels (i, ri), . . . , (i, n), while the bixels (i, li +
1), . . . , (i, ri − 1) are exposed to radiation. The second condition is called the interleaf
collision constraint (ICC). It ensures the left leaf of row i and the right leaf of row i± 1 do
not overlap, which is required by some widely used MLCs. An MLC leaf sequence for A
corresponds to a representation of A as a weighted sum of shape matrices.

Definition 3 (Shape matrix decomposition). A shape matrix decomposition of A is a rep-
resentation of A as a positive integer linear combination of shape matrices

A =
k∑

t=1

utS
(t).

The delivery time (DT) of this decomposition is just the sum of the coefficients,

DT =
k∑

t=1

ut.

Example 1. For the shape matrix decomposition(
1 3 3 0
0 2 4 1
1 1 4 4
3 3 1 0

)
= 2 ·

(
0 1 1 0
0 0 1 0
0 0 1 1
1 1 0 0

)
+

(
0 1 1 0
0 1 1 0
1 1 1 1
0 0 0 0

)
+

(
1 0 0 0
0 1 1 1
0 0 1 1
1 1 1 0

)
,

corresponding to Figure 1, we have DT = 4.

There are 3 natural optimization problems [9].

MinDT. Find a shape matrix decomposition A =
∑k

t=1 utS
(t) such that DT =

∑k
t=1 ut is

minimal.

Approx-MinDT. Find a feasible approximation B and a shape matrix decomposition
B =

∑k
t=1 utS

(t) such that DT =
∑k

t=1 ut is minimal.

68 T. Kalinowski

Approx-MinTC. For a given delivery time c̃, find a feasible approximation B and a shape
matrix decomposition

B =
k∑

t=1

utS
(t) (1)

such that
∑k

t=1 ut 6 c̃, and under this condition TC(B) is minimal.

The first problem MinDT is the exact decomposition problem which can be solved by
several efficient algorithms [3, 7, 10]. The second problem Approx-MinDT was solved
in [9]. In the present paper we consider the third problem Approx-MinTC. Throughout
the paper, we will always assume that the problem is feasible. In practice that can be
realized by solving Approx-MinDT first. This yields the minimal possible value for c̃,
and for each value as least as large Approx-MinTC is feasible.

3 A solution of the problem Approx-MinTC

We start by formulating an LP model for Approx-MinTC. Since we are only interested
in the sum of the coefficients, we may assume that all the coefficients ut in (1) are equal
to 1 (allowing the same shape matrix S(t) for different values of t). We introduce variables
Lij and Rij for (i, j) ∈ [m] × [n]. Formally, if the shape matrix S(t) in the decomposition

B =
∑k

t=1 S
(t) is determined by the parameters (l

(t)
i , r

(t)
i) for i ∈ [m], our variables are

Lij =
∣∣∣{t : l

(t)
i < j

}∣∣∣ , and Rij =
∣∣∣{t : r

(t)
i 6 j

}∣∣∣ .
In other words, the variable Lij is the number of shapes where bixel (i, j) is not covered
by the left leaf, while Rij counts the shapes where bixel (i, j) is covered by the right leaf.
Obviously, this gives bij = Lij−Rij . In addition, we introduce the variables xij = |aij− bij |
for (i, j) ∈ [m] × [n]. Now we can formulate Approx-MinTC for a given delivery time c̃
as an LP. To clarify our notation we also write down the dual variables for the constraints.

min
m∑
i=1

n∑
j=1

xij (2)

Li,j+1 − Lij > 0 αij > 0 ((i, j) ∈ [m]× [n− 1]), (3)

−Lin > −c̃ αin > 0 (i ∈ [m]), (4)

Ri,j+1 −Rij > 0 βij > 0 ((i, j) ∈ [m]× [n− 1]), (5)

Ri1 > 0 βi0 > 0 (i ∈ [m]) (6)

Rij − Lij > −aij yij > 0 ((i, j) ∈ [m]× [n]) , (7)

Lij −Rij > aij zij > 0 ((i, j) ∈ [m]× [n]), (8)

Lij −Ri+1,j > 0 uij > 0 ((i, j) ∈ [m− 1]× [n]), (9)

Lij −Ri−1,j > 0 vij > 0 ((i, j) ∈ [2,m]× [n]), (10)

Rij − Lij + xij > −aij pij > 0 ((i, j) ∈ [m]× [n]), (11)

Lij −Rij + xij > aij qij > 0 ((i, j) ∈ [m]× [n]). (12)

A Min Cost Flow Formulation for Approximated MLC Segmentation 69

By definition, the variables Lij and Rij should be nonnegative. We do not want to require
this explicitly in the LP since we want to have equality constraints in the dual, but note that
nonnegativity is implied: constraints (6) together with (5) force all the variables Rij to be
nonnegative, and from (8) it follows that also Lij > 0 for all (i, j) ∈ [m]× [n]. Constraints
(3), (5) and (9), (10) are consequences of the inclusions

{t : l
(t)
i < j} ⊆ {t : l

(t)
i < j + 1}, {t : r

(t)
i 6 j} ⊆ {t : r

(t)
i 6 j + 1}

{t : r
(t)
i+1 6 j} ⊆ {t : l

(t)
i 6 j}, {t : r

(t)
i−1 6 j} ⊆ {t : l

(t)
i 6 j},

where the inclusions in the second row follow from the interleaf collision constraint. The
constraints (7) and (8) ensure that aij 6 bij 6 aij , while (4) is the constraint that the
total number of shapes is at most c̃. Finally, constraints (11) and (12) are equivalent to
xij > |aij − bij |, and the objective is to minimize the sum of all the deviations |aij − bij |.

We remark that the values Lij and Rij do not uniquely determine the shape matrix
decomposition, because in the transformation from the shape matrices S(t) to the cardinal-
ities Lij and Rij we lost some information. It is even not completely obvious that a solution
of the LP always yields a feasible decomposition. But fortunately, a natural approach to
construct appropriate shape matrices works: we define shape matrices S(t) such that the
leaves move only from left to right as t increases. More precisely, for a given solution of the
problem (2)–12) we consider the sets Lij = [Lij] and Rij = [Rij] for (i, j) ∈ [m] × [n] and
put

s
(t)
ij =

{
1 if t ∈ Lij \ Rij

0 otherwise
((i, j) ∈ [m]× [n], t ∈ [L]) ,

where L = max{Lin : i ∈ [m]}. These matrices have the first property required in
Definition 2 with parameters

l
(t)
i = 0 for t 6 Li1 (i ∈ [m]), (13)

r
(t)
i = 1 for t 6 Ri1 (i ∈ [m]), (14)

l
(t)
i = j − 1 for Li,j−1 < t 6 Lij ((i, j) ∈ [m]× [2, n]), (15)

r
(t)
i = j for Ri,j−1 < t 6 Rij ((i, j) ∈ [m]× [2, n]). (16)

For t > Lin, there is a zero row in the i-th row of S(t), which can be realized by parameters

l
(t)
i = n and r

(t)
i = n + 1. The interleaf collision constraint l

(t)
i < r

(t)
i+1 is satisfied for every

t ∈ [L] and every i ∈ [m− 1]. If l
(t)
i = 0 this is obvious. Otherwise we have l

(t)
i = j − 1 for

some j ∈ [2, n + 1]. Then t > Li,j−1 > Ri+1,j−1, and consequently r
(t)
i+1 > j. The interleaf

collision constraint l
(t)
i < r

(t)
i−1 is proved similarly. Finally, using (7) and (8) we have

bij =
L∑

t=1

s
(t)
ij = |Lij \ Rij | = Lij −Rij ∈

[
aij , aij

]
.

70 T. Kalinowski

Now we dualize the LP (2)– (12) to obtain the problem TC-Dual:

max
m∑
i=1

n∑
j=1

(
− aijpij + aijqij + aijzij − aijyij

)
− c̃

m∑
i=1

αin (17)

Lij : −αij + αi,j−1 + qij − pij + zij

−yij + uij + vij = 0 ((i, j) ∈ [m]× [2, n]), (18)

Li1 : −αi1 + qi1 − pi1 + zi1 − yi1
+ui1 + vi1 = 0 (i ∈ [m]), (19)

Rij : −βij + βi,j−1 − qij + pij − zij
+yij − ui−1,j − vi+1,j = 0 ((i, j) ∈ [m]× [n− 1]), (20)

Rin : βi,n−1 − qin + pin − zin + yin

−ui−1,n − vi+1,n = 0 ((i, j) ∈ [m]× [n− 1]), (21)

xij : pij + qij 6 1 ((i, j) ∈ [m]× [n]). (22)

Formally, we would have to write down several of the constraints for i = 1 and i = m
separately, since in these cases the variables ui−1,j and vij (resp. uij and vi+1,j) are missing.
In order avoid an unnecessary blowup of the formalism, we use the convention that

u0j = umj = v1,j = vm+1,j = 0 (j ∈ [n]).

Clearly, the objective (17) is equivalent to minimizing

m∑
i=1

n∑
j=1

(
aijpij − aijqij − aijzij + aijyij

)
+ c̃

m∑
i=1

αin, (23)

and we will see that TC-Dual is equivalent to the problem of finding a Q − S−flow of
minimum cost in the following network N . The node set V of the underlying digraph
consists of two nodes (i, j, 0) and (i, j, 1) for each bixel (i, j) ∈ [m]× [n] and two additional
nodes Q and S:

V = {Q,S} ∪ {(i, j, k) : (i, j) ∈ [m]× [n], k ∈ {0, 1}} .

The arc set E is constructed corresponding to the variables in TC-Dual. From node Q,
there is an outgoing arc to every node (i, 1, 0) with corresponding flow variable βi0. For
the nodes (i, j, 1) with (i, j) ∈ [m] × [n − 1], we have an outgoing arc to (i, j + 1, 1) with
corresponding flow variable αij and two outgoing arcs to (i, j, 0) corresponding to flow
variables pij and yij . Similarly, the nodes (i, n, 1) have two outgoing arcs to (i, n, 0) with
flow variables pin and yin, but their outgoing arc with flow variable αin goes to S. From a
node (i, j, 0) with (i, j) ∈ [m]× [n− 1], we have an arc to (i, j + 1, 0) with flow variable βij
and two arcs to (i, j, 1) with flow variables qij and zij . For nodes (i, n, 0) with i ∈ [m] the
arc to the sink which would correspond to βin is missing, but we still have the two arcs to
(i, n, 1) with flow variables qin and zin. In addition, for (i, j, 0), if i < m, there is an arc to

A Min Cost Flow Formulation for Approximated MLC Segmentation 71

Q

S

(1, 1, 0) (1, 2, 0) (1, 3, 0) (1, 4, 0)

(1, 1, 1) (1, 2, 1) (1, 3, 1) (1, 4, 1)

(2, 1, 0) (2, 2, 0) (2, 3, 0) (2, 4, 0)

(2, 1, 1) (2, 2, 1) (2, 3, 1) (2, 4, 1)

Figure 2: The digraph for the network model of the problem TC-Dual for a 2× 4−matrix.

Q

(i, 1, 0)

(i, 1, 1)

(i, j, 0)

(i, j, 1)

(i, j + 1, 0)

(i, j + 1, 1)

(i, n, 0)

(i, n, 1)

S

βi0

αij

βij

qijzij

pij yij

qinzin

pin
yin

αin

(1, j, 0)

(1, j, 1)

(i− 1, j, 0)

(i− 1, j, 1)

(i, j, 0)

(i, j, 1)

(i+ 1, j, 0)

(i+ 1, j, 1)

(m, j, 0)

(m, j, 1)

vij uij

ui−1,j vi+1,j

Figure 3: The structure of the digraph for the network model of the problem TC-Dual.

(i + 1, j, 1) with flow variable vi+1,j , and for i > 1 there is an arc to (i − 1, j, 1) with flow
variable ui−1,j .

This digraph is illustrated in Figures 2 and 3. The capacity function is very simple:
The arcs with flow variables pij and qij have capacity 1, and all the other arcs have infinite
capacities. The cost function is defined such that the cost of a flow is precisely the objective
function (23). Identifying the arcs with their corresponding flow variables, this can be
described as follows. For (i, j) ∈ [m]× [n], the costs of the arcs pij , qij , zij and yij are aij ,
−aij , −aij and aij , respectively. For i ∈ [m], the cost of arc αin is c̃. All the other arcs
have zero cost.

Since the arcs pij and qij form a cycle of zero cost, we may assume that pijqij = 0 for
every (i, j) ∈ [m]× [n]. Under this assumption constraints (22) correspond to the capacity
constraints for the arcs pij and qij , while the constraints (18)–(21) are the flow conservation
constraints at the nodes x ∈ V \ {Q,S}. So we have proved the following theorem.

Theorem 1. The problem TC-Dual is equivalent to the minimum cost Q−S−flow problem

72 T. Kalinowski

in the network N .

By standard results from network flow theory [1], we obtain a solution of Approx-
MinTC from a flow φ : E → N of minimum cost as follows. The residual network on the
node set V with arc set E′ and cost function cost′ : E′ → Z is defined by

φ(xy) < capacity(xy) =⇒ xy ∈ E′, cost′(xy) = cost(xy),

φ(xy) > 0 =⇒ yx ∈ E′, cost′(yx) = −cost(xy).

Recall that Lij and Rij are the dual variables of the flow conservation constraints in (i, j, 1)
and (i, j, 0), respectively, so we can determine them as the negative distances (with respect
to cost′) from Q to (i, j, 1) and (i, j, 0), respectively. We obtain the approximation matrix
B by bij = Lij −Rij , and a shape matrix decomposition B =

∑k
t=1 S

(t) with

s
(t)
ij =

{
1 if l

(t)
i < j < r

(t)
i ,

0 otherwise,
((i, j) ∈ [m]× [n])

where the parameters l
(t)
i and r

(t)
i are determined according to (13)–(16).

Example 2. We illustrate the method for m = 1, n = 6. Suppose we are given the following
matrices A, A and A:(

5 3 3 1 5 5
)
,
(
4 2 2 0 4 4

)
,
(
6 4 4 2 6 6

)
.

For matrix A the minimal delivery time is 9, and we want to have an approximation matrix
B with a delivery time of 6. The network is shown in Figure 4. The labels on the arcs are
the nonzero costs, so a unit flow along the dashed path has cost −3, while a unit flow along
the dotted path costs −1. The sum of these two unit flows has a cost of −4 and is optimal.
A shortest path tree in the residual network is shown in Figure 5, and the corresponding

Q S

6

−5

−4
5 6

−3

−2

3 4

−3

−2

3 4

−1

0

1 2

−5

−4

5 6

−5

−4

5 6

Figure 4: The network for the example.

approximation is

B =
(
4 3 3 2 4 4

)
=
(
1 0 0 0 0 0

)
+
(
1 1 1 0 0 0

)
+ 2

(
1 1 1 1 1 1

)
+ 2

(
0 0 0 0 1 1

)

A Min Cost Flow Formulation for Approximated MLC Segmentation 73

0

0

−4

−1

−4

−1

−4

−2

−4

−2

−6

−2

−6

0

6

3 2−4 −4

Figure 5: A shortest path tree in the residual network.

We conclude this section with a quick complexity analysis. We have reduced the total
change optimal approximation of a matrix of size m×n to a minimum cost flow problem in
a network with 2mn+ 2 nodes and 8mn− 2n arcs. Thus, according to [12, 13] the running
time of the resulting algorithm is bounded by O

(
(mn)2 log2(mn)

)
. For comparison, without

the interleaf collision constraint the approximation problem can be solved in time O(mn2)
if the differences aij − aij are bounded [5].

4 Test results

We did some computational experiments with a C++-implementation of our algorithm.
We did not implement the minimum cost flow algorithm with the theoretically optimal
complexity bound. Instead we used the implementation of a primal network simplex method
from [11].

We generated matrices of sizes 15×15 and 30×30 with random entries from {0, 1, . . . , L}
(independent, uniformly distributed) for L ∈ {8, 12, 16}. The lower and upper bounds were
chosen such that a maximal change of ±2 is possible for each entry, in other words, we put

aij = max{0, aij − 2}, aij = aij + 2

for all (i, j) ∈ [m] × [n]. The results are shown in Table 1, where we averaged over 1000

m = n = 15 m = n = 30

L DT1 DT2 TC1 TC2 time DT1 DT2 TC1 TC2 time

8 35.7 14.5 188.7 165.3 2 67.7 24.5 837.2 713.9 11

12 51.9 29.3 140.8 125.8 2 97.9 51.4 651.3 559.5 15

16 67.6 44.3 112.8 102.0 3 127.8 79.9 505.4 430.7 17

Table 1: Test results for random matrices.

matrices for each triple (m,n,L). Columns ‘DT1’ and ‘DT2’ contain the average decom-
position times for the exact and the approximated decomposition, respectively. For the
minimal possible delivery time c̃, we computed the total change using the heuristic ap-
proach from [9] (column ‘TC1’) and with our exact method (column ‘TC2’). The final

74 T. Kalinowski

column ‘time’ contains the computation time (in seconds) for the approximated decom-
position of 1000 matrices on a 3GHz workstation with 16GB RAM. We also tested our
algorithm for two sets of practical matrices that were used in [2] and [4] and can be found
online [6]. The first set contained 20 matrices of size 20×20 with entries from {0, 1, . . . , 15},
and the second one consisted of 20 matrices of size 40× 40 with entries from {0, 1, . . . , 10}.
The averaged results are shown in Table 2, where the computation time for the whole table

set DT1 DT2 TC1 TC2

1 83.6 51.0 227.0 204.4

2 108.9 47.9 1387.4 1180.7

Table 2: Test results for real-world matrices.

was less than a second. Figure 6 illustrates the tradeoff between delivery time and total

0 200 400 600 800 1000 1200 1400
TC

DT

40

50

60

70

80

90

100

bbbbbbbbbbbbbbbbbbbbbbbbbbb
bb

bb
bb

bb
bb

bb
bb

bb
bb

bb
bb
bb
bb
bb
bb
bb
b

Figure 6: The tradeoff between delivery time and total change.

change for one of the 40× 40−matrices from [6].

5 Summary and discussion

We formulated the approximated MLC shape matrix decomposition with minimal total
change as a minimum cost flow problem. This formulation allows us to include the interleaf
collision constraint into the model. We demonstrated that this problem can be solved very
efficiently using a standard implementation of the network simplex algorithm.

We want to conclude the paper with a short discussion of the relevance of our approxima-
tion approach. In some sense, the shape matrix decomposition problem could be considered
as solved, since there are many efficient algorithms, even including additional technological
constraints. But of course, there is room for improvement. We suggest the following two
problems that might arise from a practical point of view.

A Min Cost Flow Formulation for Approximated MLC Segmentation 75

1. What happens if the delivery time for a leaf sequence obtained by some exact algorithm
is considered to be too large for clinical practice?

2. There are certain dosimetric effects of small or narrow fields which are not captured
in the mathematical model underlying the standard algorithms. This could lead to
significant differences between the planned and the delivered fluence.

We think that the “smoothing” of the fluence that is achieved by our approximation has a
positive effect in both of these contexts. It has already been shown that the delivery time
can be reduced considerably. Intuitively, the approximation also reduces the number of
necessary small shapes with bad dosimetric properties. This deserves further investigations.

References

[1] R.K. Ahuja, T.L. Magnanti and J.B. Orlin. Network flows. Englewood Cliffs, NJ:
Prentice Hall, 1993.

[2] D. Baatar, N. Boland, S. Brand and P. Stuckey. “Minimum cardinality matrix de-
composition into consecutive-ones matrices: CP and IP approaches”. In: Proc. 4th
CPAIOR 2007. Ed. by P. Van Hentenryck and L. Wolsey. Vol. 4510. LNCS. Springer,
2007, pp. 1–15. doi: 10.1007/978-3-540-72397-4.

[3] D. Baatar, H.W. Hamacher, M. Ehrgott and G.J. Woeginger. “Decomposition of in-
teger matrices and multileaf collimator sequencing”. In: Discr. Appl. Math. 152.1-3
(2005), pp. 6–34. doi: 10.1016/j.dam.2005.04.008.

[4] H. Cambazard, E. O’Mahony and B. O’Sullivan. “A shortest path-based approach to
the multileaf collimator sequencing problem”. In: Proc. 6th CPAIOR 2009. Ed. by
W.-J. van Hoeve and J.N. Hooker. Vol. 5574. LNCS. Springer, 2009, pp. 41–55. doi:
10.1007/978-3-642-01929-6_5.

[5] K. Engel and A. Kiesel. “Approximated matrix decomposition for IMRT planning
with multileaf collimators”. In: OR Spectrum 33.1 (2011), pp. 149–172. doi: 10.

1007/s00291-009-0168-5.

[6] A. Holder. Intensity map repository. online repository. http://holderfamily.dot5hosting.
com/aholder/oncology/software/IntensityMaps (12 March 2013). 2009.

[7] T. Kalinowski. “A duality based algorithm for multileaf collimator field segmentation
with interleaf collision constraint”. In: Discr. Appl. Math. 152.1-3 (2005), pp. 52–88.
doi: 10.1016/j.dam.2004.10.008.

[8] T. Kalinowski. “Realization of intensity modulated radiation fields using multileaf
collimators”. In: Information Transfer and Combinatorics. Ed. by R. Ahlswede et al.
Vol. 4123. LNCS. Springer-Verlag, 2006, pp. 1010–1055. doi: 10.1007/11889342_65.

[9] T. Kalinowski and A. Kiesel. “Approximated MLC shape matrix decomposition with
interleaf collision constraint”. In: Algorithmic Operations Research 4.1 (2009), pp. 49–
57.

http://dx.doi.org/10.1007/978-3-540-72397-4
http://dx.doi.org/10.1016/j.dam.2005.04.008
http://dx.doi.org/10.1007/978-3-642-01929-6_5
http://dx.doi.org/10.1007/s00291-009-0168-5
http://dx.doi.org/10.1007/s00291-009-0168-5
http://holderfamily.dot5hosting.com/aholder/oncology/software/IntensityMaps
http://holderfamily.dot5hosting.com/aholder/oncology/software/IntensityMaps
http://dx.doi.org/10.1016/j.dam.2004.10.008
http://dx.doi.org/10.1007/11889342_65

76 T. Kalinowski

[10] S. Kamath, S. Sahni, J. Li, J. Palta and S. Ranka. “Leaf sequencing algorithms for
segmented multileaf collimation”. In: Phys. Med. Biol. 48.3 (2003), pp. 307–324. doi:
10.1088/0031-9155/48/3/303.

[11] A. Löbel. MCF 1.3 – A network simplex implementation. Available for academic use
free of charge at http://www.zib.de. 2004.

[12] J.B. Orlin. “A faster strongly polynomial minimum cost flow algorithm”. In: Proc.
20th ACM symposium on Theory of computing, STOC 1988. ACM. 1988, pp. 377–
387. doi: 10.1145/62212.62249.

[13] J.B. Orlin. “A faster strongly polynomial minimum cost flow algorithm”. In: Opera-
tions research 41.2 (1993), pp. 338–350. doi: 10.1287/opre.41.2.338.

http://dx.doi.org/10.1088/0031-9155/48/3/303
http://www.zib.de
http://dx.doi.org/10.1145/62212.62249
http://dx.doi.org/10.1287/opre.41.2.338

A dual of the rectangle-segmentation problem for binary

matrices∗

Thomas Kalinowski

Abstract

We consider the problem to decompose a binary matrix into a small number of
binary matrices whose 1-entries form a rectangle. We show that the linear relaxation of
this problem has an optimal integral solution corresponding to a well known geometric
result on the decomposition of rectilinear polygons.

MSC: 90C27, 90C46

1 Introduction

In the context of intensity modulated radiation therapy several decomposition problems
for nonnegative integer matrices have been considered. One of these is the decomposi-
tion into a small number of binary matrices whose 1-entries form a rectangle. There is
an example showing that in general the linear relaxation of this problem has no optimal
integral solution [1]. On the other hand, the same paper contains an algorithm based on
the revised simplex method that uses only very few Gomory cuts. In computational ex-
periments, this algorithm provided exact solutions for matrices of reasonable size in short
time. In the present paper we consider the special case that the input matrix is already
binary: A ∈ {0, 1}m×n. In this case the integer optimization problem is equivalent to a well
studied geometric problem: the decomposition of a rectilinear polygon into the minimal
number of rectangles. Our main result is that the minimal number of rectangles in such a
decomposition equals the optimal objective in the relaxed matrix decomposition problem.
In other words, the integrality gap vanishes, provided the input matrix is binary. This
solves Problem 2 of [1].

2 Notation and problem formulation

Let A be a binary matrix of size m× n. A rectangle matrix is an m× n−matrix S = (sij)
such that for some integers k1, k2, l1 and l2 with 1 6 k1 6 k2 6 m and 1 6 l1 6 l2 6 n, we
have

sij =

{
1 if k1 6 i 6 k2 and l1 6 j 6 l2,

0 otherwise.

∗The Electronic Journal of Combinatorics 16:R89, 2009

77

http://www.combinatorics.org/Volume_16/PDF/v16i1r89.pdf

78 T. Kalinowski

The rectangle segmentation problem is the following:

RSP. Find a decomposition A = S1 + · · ·+St with rectangle matrices S1, . . . , St such that
t is minimal.

A linear relaxation of this problem ist the following.

RSP-Relax. Find a linear combination A = x1S1 + · · · + xtSt with rectangle matrices
S1, . . . , St and 0 6 xi 6 1 for i = 1, . . . , t such that x1 + · · ·+ xt is minimal.

The integral problem RSP can be formulated in a geometric setup as follows. We associate
A with a rectangular m×n-array of unit squares in the plane. The set P = {(i, j) : aij = 1}
corresponds to a rectilinear polygon whose boundary consists of line segments with integer
coordinates. Clearly, a solution of the problem RSP is precisely the decomposition of
P into the minimal number of rectangles. In order to state the solution to the polygon
decomposition problem we need some notation. Let N , c and k be the number of vertices,
connected components and holes of P , respectively. This notation has to be clarified by two
remarks (see Figure 1 for illustrations).

1. If P can be decomposed into two or more polygons which intersect pairwise in isol-
ated vertices these vertices are counted twice and we consider the parts as different
connected components.

2. Similarly, if the boundary of a hole intersects the outer boundary or another hole only
in isolated vertices these vertices are counted twice.

P1 P2

Figure 1: Two polygons. The parameters are N = 8, c = 2 and k = 0 for P1, and N = 10,
c = 1, k = 1 for P2.

We call a vertex of P convex if the interior angle at this vertex is 90◦ and concave if it is
270◦. A chord of P is a line segment that lies completely inside P , connects two concave
vertices and is parallel to one of the coordinate axes. The chords parallel to the x-axis and
the y-axis are called horizontal and vertical, respectively. We associate a bipartite graph
G = (H ∪ V,E) with P . The vertex sets H and V are the sets of horizontal and vertical
chords, respectively, and two chords are connected by an edge if they intersect (Figure 2).
Let α be the maximal cardinality of an independent set in the graph associated to P . The
following theorem of Lipski et al. (which was reproved by several authors), characterizes
the minimal number of rectangles in a decomposition of P .

Theorem 1 ([2, 3, 4]). The minimal number of rectangles in a decomposition of P equals

N

2
− c+ k − α.

A dual of the rectangle-segmentation problem for binary matrices 79

a

b

c

d

1

2
3 4

a 1

b 2

c 3

d 4

Figure 2: The graph associated to a polygon.

We want to show that there is no integrality gap in the rectangle segmentation problem
for binary matrices. This can be done by proving that the optimal objective value for
RSP-Relax is at least N

2 − c+ k−α. In order to do this we will present a feasible solution
for the dual problem with exactly this objective value. For a binary matrix A, the set of
variables in RSP-Relax corresponds to the set of rectangles that are completely contained
in P . Indexing these rectangles by the numbers 1, . . . , T , i.e. S(1), . . . , S(T) are precisely
the rectangle matrices whose 1-entries are contained in P , we can reformulate RSP-Relax
as follows.

T∑
t=1

s
(t)
ij xt = 1 for (i, j) ∈ P,

xt > 0 for t = 1, . . . , T,

T∑
t=1

xt → min .

Dualizing, we obtain the problem RSP-Dual:

k2∑
i=k1

l2∑
j=l1

yij 6 1 for [k1, k2]× [l1, l2] ⊆ P,∑
(i,j)∈P

yij → max .

This dual problem has a nice interpretation. The polygon P is considered as a set
of unit squares and we want to fill these squares with numbers such that the sum over
every rectangle contained in P is bounded by 1, and the total sum is maximized under this
constraint. We start with a simple observation which allows us to restrict our attention to
dual solutions of a special type. Let R be the set of rectangles into which P is decomposed

80 T. Kalinowski

when the boundary lines at the concave vertices are extended until they meet the opposite
boundary of P . For an illustration see Figure 3, where |R| = 16 and, for instance, the
big square in the middle is the element [2, 4] × [4, 6] ∈ R. We call the elements of R basic
rectangles. The following lemma asserts that we may assume that only in the upper left

1 2 3 4 5 6 7 8 9

8

7

6

5

4

3

2

1

Figure 3: Decomposition of a polygon P into basic rectangles.

corner of a basic rectangle the entry of y is nonzero.

Lemma 1. Suppose y′ = (y′ij)(i,j)∈P is feasible for RSP-Dual, and define y as follows.
For every [i1, i2]× [j1, j2] ∈ R put

yij =


i2∑

i′=i1

j2∑
j′=j1

y′i′j′ for (i, j) = (i1, j1),

0 for (i, j) ∈ ([i1, i2]× [j1, j2]) \ {(i1, j1)} .

Then y is also feasible, and the objective value for y is the same as for y′.

Proof. Let R := [k1, k2]× [l1, l2] ⊆ P , and let R0 denote the set of basic rectangles having
their upper left corner in R. More formally,

R0 = {[i1, i2]× [j1, j2] ∈ R : (i1, j1) ∈ R}.
The union of the elements of R0 is a rectangle R′ = [k′1, k

′
2]× [l′1, l

′
2] ⊆ P with

k2∑
i=k1

l2∑
j=l1

yij =

k′2∑
i=k′1

l′2∑
j=l′1

y′ij .

Figure 4 illustrates the step from R to R′ for R = [2, 5]× [3, 7] and R′ = [3, 6]× [3, 8]. Now
the feasibility of y′ implies

k2∑
i=k1

l2∑
j=l1

yij 6 1,

and consequently, the feasibility of y. The final statement about the objective values is
obvious.

A dual of the rectangle-segmentation problem for binary matrices 81

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9

Figure 4: The transition from R to R′. The upper left corners of the elements of R0 are
shaded in the left drawing.

Clearly, a solution y of the form described in Lemma 1 can be identified with the function

g : R → R, [k1, k2]× [l1, l2] 7→ yk1,l1 .

This is illustrated in Figure 5, where all the values of g are in {0,±1}. It will turn out
that these special values are sufficient to define an optimal solution for RSP-Dual. The

1

1−11

1

0

1

1

1

1

−1

0

0 0

0

0

1

0

0

1 0

0

0

0

0

0

−1

0

0

1

−1

1

−1

0

1

−1

1

Figure 5: An example solution for RSP-Dual.

same argument as in the proof of Lemma 1 shows that for checking the feasibility of such a
function g it is sufficient to consider the constraints for rectangles that are unions of basic
rectangles. We call these rectangles essential.

3 The case α = 0

Let us assume α(G) = 0, i.e. P has no chords at all. We fix an orientation for the lines
that are used to decompose P into basic rectangles. The orientation is defined by pointing
away from the concave vertices towards the interior of P (see Figure 6 for an illustration).

82 T. Kalinowski

Figure 6: The orientation of the boundaries
of the basic rectangles.

Figure 7: The intersection points.

We will define the values g(R) for basic rectangles R depending on the orientation of the
boundary of R. First, we need some additional notation. The vertices of basic rectangles
that are either in the interior of P or concave vertices of P are called intersection points.
The set of all intersection points is denoted by I. In Figure 7 the intersection points are
marked by dots.

Definition 1. A vertex a of an essential rectangle A ⊆ R is called a source (with respect
to A) if the two line segments on the boundary of A that start from a are oriented away
from a. In addition, let q(A) ∈ {0, 1, 2} be the number of sources for A.

Now we can define a function g : R → {0,±1} which turns out to be an optimal solution
for RSP-Dual:

g(R) = 1− q(R) (R ∈ R). (1)

In order to show the feasibility of this function we observe that the value extends to essential
rectangles.

Lemma 2. For any essential rectangle A ⊆ R, we have∑
R∈A

g(R) = 1− q(A).

In particular, g : R → {0,±1} defines a feasible solution for RSP-Dual.

Proof. We proceed by induction on |A|. For |A| = 1, the statement is precisely the definition
of g. For |A| > 1, A is the union of two rectangles A1 ∪ A2 as indicated in Figure 8. By
induction, we have ∑

R∈Ai

g(R) = 1− q(Ai) (i ∈ {1, 2}).

The vertices a, b, c and d are sources for A iff they are sources for the respective Ai. The
vertex e is not a source for any of the considered rectangles. Finally, it is easy to see that

A dual of the rectangle-segmentation problem for binary matrices 83

d

a b

ce

f

A1 A2

Figure 8: The induction step in the proof of Lemma 2.

f is a source in precisely one of the rectangles Ai, because it is an intersection point. This
yields q(A) = q(A1) + q(A2)− 1, hence∑

R∈A
g(R) =

∑
R∈A1

g(R) +
∑
R∈A2

g(R) = (1− q(A1)) + (1− q(A1))

= 1− q(A).

We observe that every intersection point a is a source for exactly one basic rectangle
with vertex a. Hence by a simple double counting argument, the objective value for the
function g is ∑

R∈R
g(R) = |R| −

∑
R∈R

q(R) = |R| − |I|.

Our next lemma shows that g is indeed an optimal solution.

Lemma 3. The objective value for g equals the upper bound from the minimal decomposition
of P into rectangles. In other words,

|R| − |I| = N

2
− c+ k.

Proof. Clearly, we may assume c = 1. We proceed by induction on the objective value
h := N

2 − 1 + k. The value h = 1 is possible only if P is a single rectangle, and in this case
|R| − |I| = 1 − 0 = 1. If h > 0, P has at least one concave vertex. Let a be a concave
vertex such that no concave vertex is right of a. Along the vertical line through a we cut
the polygon P into two polygons P1 and P2. The three possible situations are illustrated
in Figure 9.

For i ∈ {1, 2}, let Ni and ki be the numbers of vertices and holes of the respective
polygons, Ri the sets of basic rectangles, Ii the sets of intersection points, and let hi =
Ni/2− 1 + ki be the corresponding objective values.

Case (a). We have N = N1 +N2− 2 and k = k1 + k2, thus h = h1 + h2. So h1 and h2 are
smaller than h and we can apply the induction hypothesis to P1 and P2. Let t be the
number of intersection points for P that are not in I1 ∪ I2. Clearly, these points lie
on the horizontal or on the vertical line through a, as indicated in Figure 10. Let t1

84 T. Kalinowski

P1

P2

(a)

a

a

P1

P2

(b)

a

P1

P2

(c)

Figure 9: The possible cuts (dotted lines) in the proof of Lemma 3.

Figure 10: The new intersection points in
Case (a).

Figure 11: The new intersection points in
Case (c).

be the number of new intersection points on the vertical line, except a itself, and let
t2 be the number of new intersection points on the horizontal line (including a), so
t = t1 + t2. In P , P2 is divided into t1 + 1 basic rectangles (which gives t1 additional
basic rectangles), and exactly t2 basic rectangles of P1 are cut into two parts. We
obtain

|R| = |R1|+ |R2|+ t, |I| = |I1|+ |I2|+ t,

and the claim follows by induction.

Case (b). As in case (a), h = h1+h2, and we can apply the induction hypothesis to P1 and
P2. Again, we see that every new intersection point (all on the vertical line through
a) creates a new basic rectangle, and the argument is completed as before.

Case (c). This time we have N = N1 +N2− 4 and k = k1 + k2 + 1, but again h = h1 +h2,

A dual of the rectangle-segmentation problem for binary matrices 85

so the induction hypothesis applies. Again the t new intersection points lie on the
vertical line through a, and P2 is divided into t + 1 basic rectangles (see Figure 11),
and this concludes the proof.

4 The general case

In this section we show how the general case can be handled. In the first subsection we
describe the solution g in the general case, while the second subsection is devoted to the
proof of the main theorem.

4.1 Definition of the solution

In order to define the solution as in (1), we have to put an orientation on the chords. To
fix such an orientation let Q = H0 ∪ V0 be an independent set of size |Q| = α(G), where
H0 ⊆ H and V0 ⊆ V . In addition, let H1 = H \ H0 and V1 = V \ V0. By maximality of
Q and Hall’s theorem, H1 can be matched into V0, and V1 can be matched into H0. Let
M ⊆ (H0 × V1) ∪ (H1 × V0) be such a matching, i.e. |M | = |H1| + |V1|. Let Q0 ⊆ Q be
the subset of vertices that are not matched in M . In particular, we have α = |Q0| + |M |.
We call the elements of Q0 isolated chords. Now the vertical and horizontal isolated chords
are oriented from top to bottom and from left to right, respectively. For an edge xy ∈ M ,
we direct every segment of the chords x and y towards the intersection point of x and y.
Figure 12 illustrates this for the polygon in Figure 2 where the underlying matching is
M = {a1, b2, c3} and the isolated chords are 4 and d (see Figure 2 for the labeling of the
chords). Now we can define g : R → {0,±1} by g(R) = 1− q(R) as before.

Figure 12: The orientation in the general case.

4.2 Proof of the main theorem

When we try to prove the feasibility of g by induction on |A| as in Lemma 2, a problem
arises in the case that f is the endpoint of a horizontal isolated chord as indicated in the

86 T. Kalinowski

left hand side of Figure 13. Then f is not a source for any of the rectangles A1 and A2.

d

a b

ce

f

A1 A2

d

a b

ce

f

A1 A2

Figure 13: The problem in the induction step for the feasibility of g (and its solution).

The right hand side of the same figure shows a solution for this problem: we just extend the
orientation to the first segment of the boundary immediately following the isolated chord.
Of course, we have to do this for every isolated chord. Observe that in Figure 12 this is
done for both isolated chords (which are 4 and d in this example). After this modification
the argument for Lemma 2 proves the following general version.

Lemma 4. For any essential rectangle A ⊆ R, we have∑
R∈A

g(R) = 1− q(A).

In particular, g : R → {0,±1} defines a feasible solution for RSP-Dual.

Now it remains to prove the optimality of g. There are some special intersection points:
the points where two chords meet which are matched in M . Clearly, these are never a
source for any incident basic rectangle. But each of the remaining intersection points is a
source for precisely one basic rectangle. So we obtain the objective value∑

R∈R
g(R) = |R| − |I|+ |M |.

Lemma 5. We have

|R| − |I|+ |M | = N

2
− c+ k − α.

Proof. As in the proof of Lemma 3 we may assume c = 1. We proceed by induction on α.
The case α = 0 was treated in Section 3. So assume α > 0, let Q be some independent set
of chords of size |Q| = α, and choose any chord ab ∈ Q (w.l.o.g. horizontal). Now we cut
the polygon P along the chord ab. We have to distinguish two different cases: either the
cut divides P into two polygons P1 and P2, or P stays connected, but the number of holes
decreases by 1 (see Figure 14 and 17).

Case 1 (Figure 14). For i ∈ {1, 2}, denote the parameters of Pi by Ni, ki and αi. Sim-
ilarly, the corresponding sets of basic rectangles and intersection points are denoted
by Ri and Ii, respectively. Observe that Pi inherits a maximum independent set Qi

and a corresponding Matching Mi from P : Qi is the set of chords in P that are also

A dual of the rectangle-segmentation problem for binary matrices 87

a

b

P1

P2

a b

P1

P2

Figure 14: A cut dividing P into two parts (Case 1).

chords in Pi, and Mi is the set of elements xy ∈M such that x and y are both in Qi.
We have

N = N1 +N2, k = k1 + k2, α = α1 + α2 + 1.

Hence, by induction, it is sufficient to prove that

|R| − |I|+ |M | = (|R1| − |I1|+ |M1|) + (|R2| − |I2|+ |M2|) . (2)

Let T be the set of intersection points on the chord ab. This set splits into three
subsets. For i ∈ {1, 2}, we put

Ti := {u ∈ T : u is a vertex of an element of Ri,

but not of an element of R3−i.},
and in addition T3 = T \ (T1 ∪ T2). Observe that T3 is the set of points where the
chord ab meets other chords. For instance, in Figure 15, we have

T1 = {a1, a3}, T2 = {a2, a4}, T3 = {a5, a6}.
Next we define a function φ : T1 ∪ T2 → N. For u in T1, let φ(u) be the number of

intersection points for P on the vertical line through u lying below u. Similarly, for u
in T2, let φ(u) be the number of intersection points for P on the vertical line through
u lying above u. In both cases, the point u itself is included. In the example from
Figure 15, we have φ(a1) = 4, φ(a2) = 2 and φ(a3) = φ(a4) = 3 (see Figure 16). The
function φ counts the intersection points of P that are not intersection points of P1

or P2:
|I| = |I1|+ |I2|+

∑
c∈T1∪T2

φ(c) + |T3|. (3)

On the other hand, φ can be used to count the additional basic rectangles. The
vertical line through u ∈ T1 divides φ(u) basic rectangles of P2 into two parts, and the
vertical line through u ∈ T2 divides φ(u) basic rectangles of P1 into two parts, hence

|R| = |R1|+ |R2|+
∑

u∈T1∪T2

φ(u). (4)

88 T. Kalinowski

a1 a2 a3 a4

a5 a6

Figure 15: The intersection points on the
cutting chord.

a1 a2 a3 a4

a5 a6

Figure 16: The additional intersection
points.

The matching M can be written as a disjoint union M = M1 ∪M2 ∪M3 as follows.
For i ∈ {1, 2}, Mi is the set of edges xy ∈M such that x ∈ H, y ∈ V , the chord y does
not intersect ab, and both vertices of y are in Pi. This is consistent with the above
description of the matchings M1 and M2. The remaining matching edges xy ∈ M
such that x ∈ H, y ∈ V , and the chord y intersects ab, are collected in M3. Clearly,
for every such matching edge xy ∈ M3, the vertical chord y intersects the chord ab
in some point from T3. On the other hand, for every point a′ ∈ T3, the chord y that
intersects ab in a′ does not belong to our maximal independent set Q, so it is matched
in M . Consequently, there is a one-to-one correspondence between M3 and T3, and
we obtain

|M | = |M1|+ |M2|+ |T3|. (5)

Putting together equations (3), (4) and (5), we obtain

|R| − |I|+ |M | =

|R1|+ |R2|+
∑

u∈T1∪T2

φ(u)


−

|I1|+ |I2|+ ∑
u∈T1∪T2

φ(u) + |T3|

 + (|M1|+ |M2|+ |T3|) .

This is (2), and thus concludes the proof in this case.

Case 2 (Figure 17). Essentially the proof is the same as in Case 1. For the parameters
of P ′, we obtain

N ′ = N, k′ = k − 1, α′ = α− 1.

So induction applies to P ′, and we have to show that

|R| − |I|+ |M | = |R′| − |I ′|+ |M ′|. (6)

A dual of the rectangle-segmentation problem for binary matrices 89

a

b

P P ′

Figure 17: A cut that kills a hole (Case 2).

As before, T is the set of intersection points on the chord ab. In analogy to Case 1, T1
is the set of u ∈ T such that u sees a concave vertex when it looks upwards, but u does
not see a concave vertex when it looks downwards. Similarly, T2 is the set of u ∈ T such
that u sees a concave vertex when it looks downwards, but u does not see a concave vertex
when it looks upwards, and finally T3 = T \ (T1 ∪ T2), the set of points where ab meets
other chords. For u ∈ T1, let φ(u) be the number of intersection points on the vertical line
through u lying below u, and for u ∈ T2, let φ(u) be the number of intersection points on
the vertical line through u lying above u (in both cases we include u itself). By the same
counting arguments as in Case 1 we obtain

|I| = |I ′|+
∑

u∈T1∪T2

φ(u) + |T3|,

|R| = |R′|+
∑

u∈T1∪T2

φ(u),

|M | = |M ′| − |T3|.
These equations imply (6), and this concludes the proof.

As a consequence of Lemmas 4 and 5, we obtain that g solves RSP-Dual.

Theorem 2. The function g : R → {0,±1} with g(A) = 1 − q(A) defines an optimal
solution for RSP-Dual.

Corollary 1. There is no integrality gap in the rectangle segmentation problem for binary
input matrices.

References

[1] K. Engel. “Optimal matrix-segmentation by rectangles”. In: Discr. Appl. Math. 157.9
(2009), pp. 2015–2030. doi: 10.1016/j.dam.2008.12.008.

[2] L. Ferrari, P.V. Sankar and J. Sklansky. “Minimal Rectangular Partitions of Digitized
Blobs”. In: Computer Vision, Graphics and Image Processing 28 (1984), pp. 58–71.
doi: 10.1016/0734-189X(84)90139-7.

http://dx.doi.org/10.1016/j.dam.2008.12.008
http://dx.doi.org/10.1016/0734-189X(84)90139-7

90 T. Kalinowski

[3] W. Lipski, E. Lodi, F. Luccio, C. Mugnai and L. Pagli. “On two dimensional data
organization II”. In: Fund. Informaticae 2 (1979), pp. 245–260.

[4] T. Ohtsuki. “Minimum dissection of rectilinear regions”. In: Proc. IEEE Symposium
on Circuits and Systems. 1982, pp. 1210–1213.

Scheduling arc maintenance jobs in a network to maximize

total flow over time∗

Natashia Boland Thomas Kalinowski Hamish Waterer Lanbo Zheng

Abstract

We consider the problem of scheduling a set of maintenance jobs on the arcs of a
network so that the total flow over the planning time horizon is maximized. A mainten-
ance job causes an arc outage for its duration, potentially reducing the capacity of the
network. The problem can be expected to have applications across a range of network
infrastructures critical to modern life. For example, utilities such as water, sewerage
and electricity all flow over networks. Products are manufactured and transported via
supply chain networks. Such networks need regular, planned maintenance in order to
continue to function. However the coordinated timing of maintenance jobs can have
a major impact on the network capacity lost to maintenance. Here we describe the
background to the problem, define it, prove it is strongly NP-hard, and derive four local
search-based heuristic methods. These methods integrate exact maximum flow solutions
within a local search framework. The availability of both primal and dual solvers, and
dual information from the maximum flow solver, is exploited to gain efficiency in the
algorithms. The performance of the heuristics is evaluated on both randomly generated
instances, and on instances derived from real-world data. These are compared with a
state-of-the-art integer programming solver.

1 Introduction

We consider a problem in which a network with arc capacities is given, together with, for
each arc of the network, a set of maintenance jobs that need to be carried out on the
arc. Each maintenance job has a duration, and a time window during which it must start.
A maintenance job cannot be pre-empted; once started it will continue for its duration.
This situation could arise in a range of network infrastructure settings, for example, when
considering maintenance on pipe sections in a water network, or track sections in a rail
network. Such maintenance causes network arc outages, leading to capacity reduction in
the network. Here we measure network capacity as the value of the maximum flow in the
network. This has the advantage of being the simplest way of measuring network capacity.
It is also the approach taken by our industry partner in the application that motivated this
research. The objective of the problem is to schedule all the maintenance jobs so that the
total flow over time is maximized.

∗Discrete Applied Mathematics 163, 34–52, doi:10.1016/j.dam.2012.05.027

91

http://dx.doi.org/10.1016/j.dam.2012.05.027

92 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

We were led to consider this problem through our collaboration with the Hunter Valley
Coal Chain Coordinator Limited (HVCCC). The Hunter Valley Coal Chain (HVCC) consti-
tutes mining companies, rail operators, rail track owners and terminal operators, together
forming the world’s largest coal export facility. In 2008, the throughput of the HVCC was
about 92 million tonnes, or more than 10% of the world’s total trade in coal for that year.
The coal export operation generates around $15 billion in annual export income for Aus-
tralia. As demand has increased significantly in recent years and is expected to increase
further in the future, efficient supply chain management is crucial. Our industry partner,
the HVCCC was founded to enable integrated planning and coordination of the interests of
all involved parties, so as to improve the efficiency of the system as a whole. More details
on the HVCC can be found in [1].

The problem discussed in this paper was motivated by the annual maintenance planning
process carried out by the HVCCC. Supply chain components such as railway track sec-
tions, terminal equipment and load points have to undergo regular preventive and corrective
maintenance, causing a significant loss in system capacity (up to 15%). The HVCCC had
observed that careful scheduling of the maintenance jobs – good alignment of them – could
reduce the impact of maintenance on the network capacity, and established a regular plan-
ning activity to carry it out, called “capacity alignment”. Currently capacity alignment for
the approximately 1500 maintenance jobs planned each year is a labour-intensive, largely
manual process, achieved by iterative negotiation between the HVCCC and the individual
operators.

The HVCCC currently uses an automated rule-based calculator to evaluate the quality
of candidate maintenance schedules. In-depth analysis of both the calculator and the HVCC
coal handling system revealed this to be well modelled as a maximum flow problem in a
network in which the coal flows from the mines to the ships. The arcs represent the relevant
pieces of infrastructure: load points, rail track and different machines at the terminals. A
maintenance job on a piece of the infrastructure simply means that the corresponding arc
cannot carry any flow for the duration of the job. The natural objective is to schedule
the maintenance tasks such that the total flow over the time horizon is maximized. This
corresponds to, e.g., annual throughput capacity of the HVCC.

The maintenance jobs themselves are scheduled initially according to standard equip-
ment requirements, which typically dictate particular types of maintenance jobs be per-
formed at particular time points. After discussions with the maintenance planners, it
emerged that they would be prepared to move the jobs, usually for intervals of plus or
minus 7 days, in order to achieve better overall throughput of the system. We initially
expected there would be some inter-maintenance constraints, for example, that a type of
job carried out at four-week intervals could not be carried out more than 5 weeks apart.
But the maintenance planners were not concerned about this issue, and preferred the simple
assumption that jobs could not deviate more than some fixed number of days around their
initial scheduled time. This gives rise to a simple release date and due date job scheduling
structure.

The problem of scheduling maintenance jobs in a network so as to maximize the total
flow over time has some aspects of dynamic maximum flow. The concept was introduced
by Ford and Fulkerson [5]: given a network with transit times on the arcs, determine the

Scheduling arc maintenance jobs in a network to maximize total flow over time 93

maximum flow that can be sent from a source to a sink in T time units. In the application
of interest to us, there are no transit times on arcs, but the capacities vary over time. This
leads to a different type of dynamic flow problem. Variations of the dynamic maximum flow
problem with zero transit times are discussed in [3, 8, 9], while piecewise constant capacities
are investigated by Ogier [14] and Fleischer [4]. For a comprehensive survey on dynamic
network flow problems we refer the reader to [11, 18], and for a recent, very general treatment
of maximum flows over time to [10]. For a given maintenance schedule, the capacities on
the arcs jump between zero and their natural capacity, and so are piecewise constant. Thus
the problem of evaluating a maintenance schedule could be viewed as a dynamic maximum
flow problem of this type. However, in our case the piecewise constant function is a function
of the maintenance schedule, and hence of the schedule decision variables. This makes our
problem quite different.

The problem does have a superficial resemblance to machine scheduling problems (see,
e.g., the book by Pinedo [15]), but there is no underlying machine, and the association of
jobs with network arcs and a maximum flow objective give it quite a different character.
Classical machine scheduling seeks to carry out jobs as quickly as possible (in some sense).
The maximum flow objective motivates quite different strategies. For example, if arcs are
“in sequence” in some sense, it is better to overlap the corresponding maintenance jobs in
time as much possible, whereas if they are “in parallel”, it is better to schedule them with
as little overlap as possible.

There is also some resemblance to network design problems (fixed charge network flows),
see e.g. Nemhauser and Wolsey [12] and references therein, but in such problems the arcs
are either designed in, or out, of the network in a single-period setting. Even a multi-period
variant (see for example the recent work of Toriello et al. [19]) would not capture the need
for consecutive period outages implied by a maintenance activity.

An emerging research area that also blends network flow and scheduling elements arises
in restoration of network services in the wake of a major disruption. For example, Nurre et
al. [2] schedule arc restoration tasks so as to maximize total weighted flow over time. They
consider dispatch rule based heuristics and integer programming approaches. The latter
performed well in sewerage, small power infrastructure, and emergency supply chain cases,
solving most instances to optimality in a matter of seconds, but the heuristic was competitive
in terms of more quickly finding good quality solutions. The heuristic was also especially
effective in a large power infrastructure case, finding nearly as good solutions as the exact
approach in far less time (see also [13]). We note that the scheduling part of the problem
considered in [2] is more similar to a classical scheduling setting than ours is: the restoration
activity for each arc needs to be scheduled on a machine, (work group), and one wants to
complete all jobs as quickly as possible.

Thus although there are connections of our problem to existing problems, we believe
that this is the first time that the problem has been considered. We believe it has a wide
range of natural applications, a very attractive structure, with tractable special cases (a few
of which we discuss), and some interesting extensions. We thus hope that this paper will
stimulate further research on the problem and its variants. Our contributions in this paper
are first to define and introduce the problem, prove it is strongly NP-hard, and discuss some
tractable special cases. We then propose four different local search heuristics. The heuristics

94 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

integrate exact maximum flow solutions within a local search framework, exploiting the max
flow objective function structure, the availability of both primal and dual solvers, and dual
information, to gain efficiency in the algorithms. The heuristics proved to be very effective
on both randomly generated and real-world instances, significantly out-performing a pure
integer programming approach, particularly on larger, harder problems.

The paper is organized as follows. In Section 2, the problem is formally defined, for-
mulated as an integer program, and proved to be NP-hard. We also outline some tractable
special cases. In Section 3, our local search algorithms for solving the problem are presented.
Section 4 contains computational results on randomly generated test instances, as well as
on two instance derived from real world data. Finally, we summarize the paper in Section 5
and point out some directions for further investigation.

2 Problem Definition and Complexity Results

Throughout we use the notation [k, l] = {k, k+ 1, . . . , l} and [k] = {1, 2, . . . , k} for k, l ∈ Z.
Let (N,A, s, s′, u) be a network with node set N , arc set A, source s and sink s′, and
capacities ua ∈ N for a ∈ A. Also, for a node v ∈ N let δ−(v) and δ+(v) denote the set of
arcs entering and leaving node v, respectively. We consider the network over a time horizon
[T]. A maintenance job j is specified by its associated arc aj ∈ A, its processing time
pj ∈ N, its release date rj ∈ [T], and its deadline dj ∈ [T]. Let J be a set of maintenance
jobs, and let let Ja denote the set of jobs j ∈ J with aj = a. For each job j ∈ J we have to
choose a start time Sj ∈ [rj , dj − pj + 1] within the time window for the job. In our model,
jobs cannot be preempted, i.e. scheduling a maintenance job to start at time Sj makes the
arc aj unavailable at times Sj , Sj + 1,. . . , Sj + pj − 1. Thus for a given maintenance job
schedule (Sj)j∈J , the arc a has capacity zero at time t if for some j ∈ Ja, t ∈ [Sj , Sj+pj−1],
and ua otherwise, for each time t ∈ [T]. The problem we consider is to schedule a set J of
maintenance jobs so as to maximize the total throughput over the interval [T], i.e. so as to
maximize the sum over t of the flows that can be sent from s to s′ in the network, given the
arc capacities at time t ∈ [T] implied by the maintenance schedule. In this paper we assume
unlimited resources in terms of workforce and machines, i.e. all jobs could be processed
at the same time as far as their time windows allow. It is in principle straightforward to
add constraints, for instance limiting the number of jobs requiring use of a given resource
processed at any given time. We did not do that because in the HVCCC context the input
for the optimization consists of initial maintenance schedules for the different parts of the
system (rail network and terminals) with relevant resource constraints already taken into
account.

For this paper we make the additional assumption that the different jobs associated
with an arc do not overlap, i.e. we assume that for any two jobs j and j′ on arc a,
[rj , dj] ∩ [rj′ , dj′] = ∅. This assumption can be made without loss of generality, as the
general case can be reduced to this case by replacing any arc violating the assumption by a
path, distributing the intersecting jobs among the arcs of the path. The reason for making
the assumption is to simplify the presentation of the heuristics below: the local effect of
moving a job j (i.e. the effect on the capacity of the arc associated with j) depends only

Scheduling arc maintenance jobs in a network to maximize total flow over time 95

on job j.

We formally define the problem via an integer programming formulation, which we also
use to provide a baseline for computational testing. We introduce the following variables.

• For a ∈ A and t ∈ [T]

– φat ∈ R+ is the flow on arc a over time interval t,

– xat ∈ {0, 1} indicates the availability of arc a at time t. These variables are not
strictly needed, but are included for convenience.

• For j ∈ J and t ∈ [rj , dj − pj + 1], yjt ∈ {0, 1} indicates if job j starts at time t.

Now we can write down the problem maximum total flow with flexible arc outages (MaxTFFAO).

z = max
T∑
t=1

∑
a∈δ+(s)

φat (1)

s.t.
∑

a∈δ−(v)
φat −

∑
a∈δ+(v)

φat = 0
(
v ∈ N \ {s, s′}, t ∈ [T]

)
, (2)

φat 6 uaxat (a ∈ A, t ∈ [T]) , (3)

dj−pj+1∑
t=rj

yjt = 1 (j ∈ J) , (4)

xat +

min{t,dj}∑
t′=max{rj ,t−pj+1}

yjt′ 6 1 (a ∈ A, t ∈ [T], j ∈ Ja) . (5)

The objective (1) is to maximize the total throughput. Constraints (2) and (3) are flow
conservation and capacity constraints, respectively, (4) requires that every job j is scheduled
exactly once, and (5) ensures that an arc is not available while a job is being processed.

Example 1. Consider the network in Figure 1 over a time horizon T = 6 with the job list
given in Table 1. Figure 2 shows that the total throughput can vary significantly depending
on the scheduling of the jobs. Observation of this example shows that, all other things
being equal, it is better for jobs on arcs that are “in series” to overlap as much as possible,
and for jobs on arcs that are “in parallel” to overlap as little as possible. Thus the job on d
should overlap as little as possible with the jobs on e and f , which should overlap as much
as possible, and the job on a should overlap as much as possible with those on e and f .
This is achieved in the second schedule in Figure 2. Of course the situation is more complex
for general networks, but the insight can be useful.

96 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

s s′

b (2) c (2)

a (1)

e (2) f (2)

d (1)

Figure 1: An example network. Capacities
are indicated in brackets.

j arc pj rj dj

1 a 3 1 5

2 d 2 2 5

3 e 2 2 5

4 f 2 3 6

Table 1: Example job list.

a
b
c
d
e
f

2 2 0 0 1 1
a
b
c
d
e
f

3 2 2 1 1 3

Figure 2: Two schedules for the example problem. In the horizontal direction, we have the 6
unit time intervals, and in the vertical direction there are the 6 arcs. The shaded rectangles
indicate the jobs, and below the x-axis is the maximum flow for each time period. The left
schedule yields a total flow of 6, while for the right schedule we obtain a total flow of 12.

Next we observe that the problem MaxTFFAO is strongly NP-hard, suggesting that
in order to tackle instances of practical relevance efficient heuristics might be needed.

Proposition 1. The problem MaxTFFAO is strongly NP-hard.

Proof. Reduction from 3-partition (see [6]).

Instance. B ∈ N, u1, . . . , u3m ∈ N with B/4 < ui < B/2 for all i and
3m∑
i=1

ui = mB.

Problem. Is there a partition of [3m] into m triples (i, j, k) with ui + uj + uk = B?

The corresponding network has 3 nodes: s, v and s′. There are 3m arcs from s to v with
capacities ui (i = 1, . . . , 3m) and one arc from v to s′ with capacity (m− 1)B (see Fig. 3).

There is one job with unit processing time for each arc from s to v, with release dates
rj = 1 and deadlines dj = m for all j. It is easy to see that the 3-partition instance has a
positive answer if and only if there is a schedule allowing a total flow of m(m−1)B. If there
is a 3-partition then the i-th of the m triples corresponds to three jobs to be processed in
time period i.

We conclude this section with some remarks on certain special cases.

1. If the network is a directed path and all the jobs have release date rj = 1 and deadline
dj = T , it is optimal to start all jobs at the same time, say Sj = 1 for all j. This

Scheduling arc maintenance jobs in a network to maximize total flow over time 97

u1 u2

u3

u3m−1

u3m

(m− 1)Bb

b

b

Figure 3: The network for the NP-hardness proof.

follows since the max flow equals the minimum of the arc capacities if all arcs are
available, and 0 otherwise. So

min
a∈A

ua ·
(
T −max

j∈J
pj

)
is an upper bound for the objective z which is attained for the described solution. More
generally, if

⋂
j∈J [rj , dj − pj + 1] 6= ∅, any element t of this intersection determines

an optimal solution by putting Sj = t for all j ∈ J .

2. In general, if the network is a path and all jobs have unit processing time, the problem
is equivalent to the vertex cover problem on the hypergraph with vertex set [T] and
edge set {[rj , dj] : j ∈ J}. This is a 0-1 integer programming problem with an
interval matrix as coefficient matrix. So it is totally unimodular and can be solved
efficiently by linear programming. Another interpretation of this case is that we are
looking for a smallest set of time periods, such that all jobs can start at a time given
in the set.

3. Inspired by the construction in the hardness proof in Proposition 1, we can ask under
what conditions an instance of MaxTFFAO with unit processing times and jobs that
can move freely (rj = 1 and dj = T) is optimally solved by scheduling all jobs at the
same time. For a set A′ ⊆ A of arcs let zA′ denote the max flow in the network with
arc set A \A′. Then scheduling all jobs at the same time is always optimal iff

∀A1, A2 ⊆ A A1 ∩A2 = ∅ =⇒ z∅ + zA1∪A2 > zA1 + zA2 . (6)

The if part follows, since if the implication is true, and we are given a solution schedul-
ing jobs at times t1 6= t2, we can always shift all the jobs scheduled at t2 to t1 without
decreasing the objective function. Conversely, if there are disjoint arc sets A1 and
A2 with z∅ + zA1∪A2 < zA1 + zA2 , then for an instance with one job on every arc in
A1 ∪ A2, it is better to schedule the jobs on A1 at a different time than the jobs on
A2. Note that the first example of the directed path is a special case of this.

4. Using the characterization (6), we can generalize the path example. Suppose the
network N − s′ (i.e. the original network without the sink) is a tree, all arcs pointing

98 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

away from the source, and in the full network precisely the leaves of this tree are
connected to the sink. Assume also that there are no bottlenecks, i.e. for every node
v 6= s the capacity of the arc entering v is at least as large as the sum of the capacities
of the arcs leaving v. Under these conditions (6) is satisfied, so freely movable jobs
with unit processing times should be scheduled at the same time.

3 Local search for MaxTFFAO

3.1 Evaluating the objective function

We consider a solution of MaxTFFAO to be specified by the start time indicator variables
yjt for all jobs j ∈ J . For given y, the values xat can be fixed by

xat = 1−max
j∈Ja

min{t,dj−pj+1}∑
t′=max{rj ,t−pj+1}

yjt′ ,

and then the best solution for the given y can be determined by solving T max flow problems.
As a local search framework requires the frequent evaluation of the objective function, we
try to make use of the problem structure to design a more efficient method. The following
four simple observations indicate potential for such an improvement.

1. A time interval with constant network structure requires only a single max flow com-
putation.

2. If there is a change in the network between time t and time t + 1, the solution for t
can be used as a warm start for t+1. As a consequence, the objective function can be
evaluated by solving at most 2|J |+ 1 max flow problems, and if this number is really
necessary, consecutive networks differ in exactly one arc.

3. To update the flows after a change of the schedule we can restrict our attention to the
time intervals where the network structure actually changed due to the modification.
That means the effect of local changes in the schedule can be determined by solving
a short sequence of max flow problems on very similar networks.

4. How the similarity of the networks for different time periods can be used depends
on the way the max flow problems are solved. In our LP based implementation
(see discussion in Section 3.2 for details) it is natural to reoptimize from the current
solution using the primal simplex method if an arc is added and the dual simplex
method if an arc is removed.

To make this more precise we introduce more notation for the start times associated with
a solution vector y: Let Sj(y) be the start time of job j, i.e. Sj(y) is the unique t with
yjt = 1. If there is no danger of confusion we will omit the argument y in the notation and
just write Sj . Now we can associate with each solution a set of times

R = {Sj , Sj + pj : j ∈ J} ∪ {1, T + 1}

Scheduling arc maintenance jobs in a network to maximize total flow over time 99

containing exactly the set of times t such that there is a change of capacity on at least one
arc between time t− 1 and time t. The times t = 1 and t′ = T + 1 can be interpreted this
way by adding virtual networks at times 0 and T + 1 with zero capacities. We denote the
elements of R by

1 = t0 < t1 < · · · < tM−1 < tM = T + 1.

The set [ti−1, ti − 1] is called time slice i and its length is denoted by li = ti − ti−1. The
time slicing is illustrated in Figure 4. In this setup the above observations imply that the

time slice 1 time slice i time slice M

t0 = 1 t1 ti−1 ti tM−1 tM = T + 1

Figure 4: Time slicing.

objective function can be evaluated as described in Algorithm 1.

Algorithm 1 Objective evaluation.

Input: Schedule given by Sj for j ∈ J
R = {Sj , Sj + pj : j ∈ J} ∪ {1, T + 1} = {1 = t0 < t1 < · · · < tM−1 < tM = T + 1}
Construct the network (N,A, s, s′, u)
for i = 1 to M do

Update upper bounds of the flow variables according to the outages in time slice i
(Re)solve the network flow problem and store the max flow zi

Output: z =
M∑
i=1

zi · li

3.2 Moving single jobs

The feasible region is the set of all binary vectors y = (yjt)j∈J,rj6t6dj satisfying (4). Note
that the generation of an initial solution is easy, as we can choose arbitrary start times in
the corresponding time windows. A simple neighbourhood is one that is induced by single
job movements:

N1(y) =
{
y′ : Sj(y

′) 6= Sj(y) for at most one job j
}
.

The size of this neigbourhood is

|N1(y)| = 1 +
∑
j∈J

(dj − pj − rj + 1) .

In the following we give a characterization of the optimal neighbours, implying an exact
method to determine an optimal neighbour.

100 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

3.2.1 Preliminary considerations

Moving a job from its current start time Sj to another start time S′j has two different effects:

1. For any time t ∈ [Sj , Sj + pj − 1] \ [S′j , S
′
j + pj − 1] the arc aj is released and we gain

capacity on this arc which could lead to an increase in the max flow for time t.

2. For any time t ∈ [S′j , S
′
j +pj−1]\ [Sj , Sj +pj−1] we lose the arc, and if it has positive

flow in the current max flow, the max flow for time t might decrease.

In order to characterize the impact of a job movement on the objective value we introduce
the following parameters measuring the effect of changing the availability status of arc a in
time slice i for all a ∈ A and i ∈ [M]:

• z+ai is the max flow in the network of time slice i, with arc a added (with capacity ua)
if it is missing in the current solution.

• z−ai is the max flow in the network of time slice i, with arc a removed if it is present
in the current solution.

We start with some simple observations.

• z−ai 6 zi 6 z+ai for all a ∈ A and i ∈ [M].

• xat = 1 for t ∈ [ti−1, ti − 1] =⇒ z+ai = zi.

• xat = 0 for t ∈ [ti−1, ti − 1] =⇒ z−ai = zi.

• For an unavailable arc a (i.e. xat = 0 for t ∈ [ti−1, ti − 1]), releasing arc a increases
the max flow by ∆+

ai := z+ai − zi.

• For an available arc a (i.e. xat = 1 for t ∈ [ti−1, ti − 1]), removing arc a decreases the
max flow by ∆−ai := zi − z−ai.

To efficiently calculate the net effect on the objective, ∆j(S
′
j), of moving a job j from start

time Sj to start time S′j , one need only consider the set of time slices τ+j (S′j), defined to be
those which are covered by [Sj , Sj + pj − 1] and that will be (at least partially) uncovered
by the move, and the set of time slices τ−j (S′j), defined to be those which are not covered
by [Sj , Sj + pj − 1] but that will be (at least partially) covered by [S′j , S

′
j + pj − 1]. We also

need for each i ∈ τ+j (S′j) ∪ τ−j (S′j), the length of the time slice covered by [S′j , S
′
j + pj − 1],

denoted by l−ij(S
′
j). Then

∆j(S
′
j) =

∑
i∈τ+j (S′j)

∆+
ai · (li − l−ij(S′j))−

∑
i∈τ−j (S′j)

∆−ai · l−ij(S′j). (7)

Provided ∆+
ai and ∆−ai have been calculated for the appropriate time slices, it is thus straight-

forward to calculate ∆j(S
′
j) for any j and S′j , and hence to determine an optimal neighbour.

Scheduling arc maintenance jobs in a network to maximize total flow over time 101

Proposition 2. Finding an optimal neighbour of the given schedule (Sj)j∈J is equivalent
to

max
{

∆j(S
′
j) : j ∈ J, S′j ∈ [rj , dj − pj + 1]

}
.

If ∆j(S
′
j) 6 0 for all pairs (j, S′j), there is no improving solution in the neighbourhood of

the current schedule.

3.2.2 The basic method

Proposition 2 immediately suggests a local search strategy: compute ∆j(S
′
j) for (a subset

of) all pairs (j, S′j), choose one or more pairs with a high value of this bound, perform the
corresponding changes of the schedule, and iterate. This could be done naively by first
calculating ∆+

ai and ∆−ai for each time slice i and arc a. The formula (7) shows that we can
then easily calculate ∆j(S

′
j) as required. This approach would appear at first sight to be

computationally prohibitive, requiring the solution of two max flow problems to calculate
z+ai and z−ai for each arc a and time slice i. A number of mitigating factors make this
approach more attractive than appearances suggest. First, each arc in a given time slice is
either missing or present in the current solution, and so from observations in the previous
section, one of z+ai and z−ai is given by zi; it is only for the other that a max flow problem
needs to be solved. More importantly,

1. if an arc is added in a time slice where it was previously blocked, the flow stays primal
feasible but might no longer be optimal, and

2. similarly, if an arc with nonzero flow is taken out, the dual stays feasible.

Thus the maximum flow problems to be solved in calculating z+ai and z−ai can use a primal
(dual) method respectively “hot started” from the existing solution for the time slice i.
We also observe from (7) that only jobs j with ∆+

aji
> 0 for some time slices i covered by

[Sj , Sj + pj − 1] can be moved to give a better solution: these are the promising jobs. So
we should first determine ∆+

ai to discover the promising jobs, and then only calculate ∆−ai
values as needed for these jobs. Furthermore, ∆+

ai can only be positive if the reduced cost of
arc a in the maximum flow problem is positive; otherwise it must be zero. Thus even if the
arc is missing from the network, as long as it is included in the original max flow calculation
(with zero capacity), and we use a max flow method which makes reduced costs available,
we can avoid further max flow calculations (z+ai can simply be set to zi if the reduced cost
of a in time slice i is not positive).

Algorithm 2 describes how the effects ∆+
ai (adding an arc) and ∆−ai (blocking an arc)

are determined. We do not make explicit here how z+ai and z−ai are calculated, since these
depend on the specific max flow method used; these implementation issues are discussed
in Section 4.1.2. Finally, Algorithm 3 describes the complete procedure of the greedy
rescheduling algorithm which will be denoted by GreedyResched. In our implementation
we use the following three stopping criteria:

1. a time limit,

2. 100 iterations without improvement, and

102 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Algorithm 2 Effects of change.

PromisingJobs= ∅
for i = 1 to M do

Aout
i = {a ∈ A : xat = 0 for t ∈ [ti−1, ti − 1]}

for a ∈ Aout
i do

∆+
ai = z+ai − zi

if ∆+
ai > 0 then

Add the job j with aj = a and time window containing slice i to PromisingJobs

for j ∈ PromisingJobs do
Put i0 = min{i : ti > rj} and i1 = max{i : ti 6 dj + 1} − 1
for i = i0 to i1 do ∆−aji = zi − z−ai

Output:∆+
ai – benefit (per time unit) of releasing arc a in time slice i

∆−ai – loss (per time unit) of removing arc a in time slice i
PromisingJobs – set of jobs whose movement could give an improvement

Algorithm 3 GreedyResched.

Initialize time slicing and flow problems (Algorithm 1)
while not STOP do

Determine PromisingJobs and the values ∆+
ai and ∆−ai (Algorithm 2)

for j ∈ PromisingJobs and S′j ∈ [rj , dj − pj + 1] do calculate ∆j(S
′
j)

if maxj,S′j ∆j(S
′
j) < 0 then STOP

else
Choose (j, S′j) with maximal ∆j(S

′
j)

Update time slicing and and resolve the max flow problems with changed input data

3. 2 consecutive iterations without improvement and only a single pair (j, S′j) with
∆j(S

′
j) = 0.

The reason for the last criterion is that in this situation the algorithm just alternates between
two solutions having the same objective value.

3.2.3 Variations

Here we present some natural modifications of the algorithm GreedyResched.

Randomization. Instead of choosing the best neighbour in each iteration one can choose
randomly from a set of candidates, similar to the strategy applied in the construction phase
of greedy randomized adaptive search procedures [16]. More precisely, we order the pairs
(j, S′j) by nonincreasing value of ∆j(S

′
j) and choose randomly from the first k of this list

Scheduling arc maintenance jobs in a network to maximize total flow over time 103

(uniformly distributed), where k depends on the total number of possibilities, for instance
with K = #{(j, S′j) : ∆j(S

′
j) > 0} denoting the number of moves with nondecreasing

objective value we can take

k = max {min {κ1,K} , dκ2Ke} ,
where κ1 ∈ N and κ2 ∈ {κ ∈ R : 0 6 κ 6 1} are parameters of the algorithm. After satisfy-
ing the stopping criterion, we can restart the algorithm from the initial solution, iterate this,
and finally choose the best solution from all runs. We denote this randomized variant by
GreedyRandResched(κ1, κ2). In Figure 5 we plot the behaviour of K in GreedyResched for
the randomly generated instances we used in our computational experiments (see Section 4).
For these experiments we choose (κ1, κ2) = (5, 0.15). Some further possible modifications

Figure 5: Number of possible moves, i.e. pairs (j, S′j) with ∆j(S
′
j) > 0.

to randomization are as follows.

1. Instead of going back to the initial solution each time the stopping criterion is met,
we can collect the intermediate solutions with a large value of K (indicating many
improving directions) in a solution pool, and choose the starting point for each run
from the solution pool (randomly or deterministically).

2. If the computation time until reaching the stopping criterion is large the following
combination of the ideas underlying GreedyResched and GreedyRandResched might
be beneficial.

(a) Do a small number, say k1, improvements randomly choosing from the improving
moves (as in GreedyRandResched).

(b) Repeat the step (a) a small number, say k2, times.

(c) Choose the best of the k2 solutions obtained and continue with step (a).

Testing the effectiveness of these further ideas will be the subject of future research.

104 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Making several moves at a time. In order to speed up the progress of the method
we can do several moves corresponding to pairs (j, S′j) with nonnegative value of ∆j(S

′
j)

simultaneously, if they do not affect the same time slices. This can be implemented by
looping over the list of pairs (j, S′j), ordered by nonincreasing ∆j(S

′
j), and choosing a pair

if its affected time slices do not overlap with those of the pairs already chosen. The benefit
of this approach is that it saves recalculations of the values ∆j(S

′
j), which may be relatively

expensive. An iteration of this algorithm can be considered as a greedy accumulation of
GreedyResched steps, and so we denote the algorithm by GreedyAccResched. We also
consider a randomized version of this approach. While the list of pairs (j, S′j), ordered by
nonincreasing ∆j(S

′
j), is non-empty, we choose at random a pair from the first k in the list,

and then remove from the list all pairs with affected time slices overlapping those of the
chosen pair, before looping again to choose a random pair from the first k. We call this the
GreedyRandAccResched algorithm.

3.3 Moving multiple jobs

Clearly, there are some limitations in the approach to consider only movements of single jobs.
It is easy to construct examples where no single job movement yields an improvement, but
moving two jobs at the same time does. However, the benefit of moving jobs simultaneously
is only of interest if the jobs interact, in the sense of overlapping in time. We thus propose
to search neighbourhoods of the form:

Ñj0(y) =
{
y′ : Sj(y

′) 6= Sj(y) only for jobs j ∈ J(j0)
}
,

for some j0 ∈ J , where J(j0) is the set of jobs whose time window (plus processing time)
overlaps with that of j0, i.e.

J(j0) = {j ∈ J : [rj , dj] ∩ [rj0 , dj0] 6= ∅}.

The size of Ñj0(y) is
∏
j∈J(j0)(dj − pj − rj + 2). This is exponential in the number of jobs

that have at least two possible start times and overlap with j0. In particular, the instance
used in the proof of Proposition 1 has the property that all job pairs overlap. Thus in
general it is NP-hard to optimize over this neighbourhood, and we propose to explore it via
a randomized approach as follows.

We consider each job in turn as the base job, j0, and systematically search a selection
C(j0) ⊆ [rj0 , dj0] of its possible start times. Our idea is that C(j0) should start small,
allowing a “rough” exploration of the alternatives, and increase as the algorithm progresses,
thus refining the search. We explain this more precisely later. For each possible start time
S′j0 ∈ C(j0), we would like to know how “good” that choice of start time is, taking into
account interactions of j0 with other jobs, i.e. we would like to find the best y′ such that
Sj(y

′) 6= Sj(y) only for jobs j ∈ J(j0). Equivalently, we would like to simultaneously
optimize the start times of all jobs in J(j0), finding a local optimum with respect to j0.
However we expect that doing so would be prohibitive in terms of computational time. Thus
we sample from a restricted neighbourhood, restricting the possible start times of jobs in
J(j0) \ {j0} heuristically, using the intuition that jobs should either overlap as little, or as

Scheduling arc maintenance jobs in a network to maximize total flow over time 105

much, as possible to get best results. To see where this intuition comes from consider two
arcs a and a′ with the property that every source-sink path through a also contains a′. If
these are the only two arcs with maintenance jobs it is clearly best possible to maximize the
overlap between jobs on these arcs. On the other hand, if there is no path containing both
arcs a and a′, then the total throughput is maximized when the jobs overlap is minimized.
Each j ∈ J(j0) \ {j0} has a set of (up to four) possible start times C(j), so that either the
job’s start or end aligns with the start or end of job j0, (assuming j0 starts at S′j0). This
choice of C(j) is motivated by the fact that in general, there is always an optimal solution
such that for every job j one of the following is true.

• Job j starts at its earliest possible start time rj , or

• job j starts at its latest possible start time dj − pj + 1, or

• there is a job j′ that starts at the same time Sj = Sj′ , or

• there is a job j′ that ends at the same time Sj + pj − 1 = Sj′ + pj′ − 1, or

• there is a job j′ such that the start of job j aligns with the end of job j′, i.e. Sj =
Sj′ + pj′ , or

• there is a job j′ such that the end of job j aligns with the start of job j′, i.e. Sj +pj =
Sj′ .

We simply sample randomly from the neighbourhood σ times, choosing the best, for σ
an algorithm parameter. This randomized method for moving multiple jobs, denoted by
RandMultiJob, is described more formally in Algorithm 4.

To implement the method the choice of the candidate start sets C(j0) has to be specified.
For our experiments, C(j0) consists of k evenly spaced elements in the interval [rj , dj], where
k ∈ N. k starts small (at k = 1), and increases by one whenever no improvement has been
found for a number of consecutive iterations. In our experiments, we use |J | iterations for
the increment criterion. Since each job may be the base job multiple times for the same
value of k, we want to avoid choosing the same subset of start times every time. Thus we
include a mechanism for cycling through sets of k evenly spaced points, modulo the time
window width. More precisely, in the m-th run through the outer loop of Algorithm 4, we
put

• W = dj0 − pj0 − rj0 + 2 (width of the time window of job j0),

• θ = b(W − 1)/kc, and

• C(j0) =

{
{rj0 + (m+ iθ) (mod W) : i = 0, . . . , k − 1} if θ > 1,

[rj0 , dj0 + pj0 + 1] if θ = 1.

Note that W and θ vary with j0, but we forgo using a j0 subscript to improve readability.
To illustrate how this works, consider the case that W = 7, k = 3 and take rj0 = 1. Then
θ = 2 and when m ≡ 0 (mod W) we get C(j0) = {1, 3, 5}, when m ≡ 1 (mod W) we get

106 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Algorithm 4 RandMultiJob.

Input: A feasible solution (Sj)j∈J with objective value z and parameter σ

while not Stop do
for j0 ∈ J do

choose a subset C(j0) ⊆ [rj0 , dj0 − pj0 + 1]
J(j0) = {j ∈ J : [rj , dj] ∩ [rj0 , dj0] 6= ∅}
Put S = (Sj)j∈J(j0)
for S′j0 ∈ C(j0)

for j ∈ J(j0) \ {j0} do
set C(j) = [rj , dj − pj + 1] ∩

{
S′j0 , S

′
j0
− pj , S′j0 + pj0 , S

′
j0

+ pj0 − pj + 1
}

repeat
for j ∈ J(j0) \ {j0} do

if C(j) 6= ∅ do choose random S′j from C(j) else S′j = Sj
compute the objective z′ for starting job j at time S′j for all j ∈ J(j0)

if z′ > z then replace S by (S′j)j∈J(j0) and z by z′

until done σ times

if enough consecutive iterations with no improvement have passed then increase k

Output: An improved solution (Sj)j∈J

C(j0) = {2, 4, 6}, when m ≡ 2 (mod W) we get C(j0) = {3, 5, 7}, when m ≡ 3 (mod W)
we get C(j0) = {1, 4, 6}, etc.

In future work, we will consider allowing σ to vary during the course of the algorithm,
by making it dependent on the size of the neighbourhood Ñj0(y) at the current solution y,
so that more samples are taken from larger neighbourhoods.

4 Computational Experiments

In this section we report on the results of computational tests of our proposed algorithm
variants. The first subsection is concerned with randomly generated instances, while the
second subsection contains results for two instances coming from real world data.

4.1 Randomly generated instances

We first describe how our random test instances have been generated, then we present the
details of the experiments that have been run, and finally, we compare the performance of
the considered algorithms.

Scheduling arc maintenance jobs in a network to maximize total flow over time 107

4.1.1 Instance generation

Our tests are carried out for a time horizon with T = 1, 000. We need to generate net-
works and job lists. We generate eight different networks using the RMFGEN generator of
Goldfarb and Grigoriadis [7]. For parameters a, b, c1 and c2 the generated network has a2b
nodes arranged in b frames of a2 nodes each. The capacities between frames are randomly
chosen from [c1, c2], while all capacities inside frames are c2a

2. We generated 8 different
networks for the parameter pairs

(a, b) ∈
{

(2, 3), (2, 4), (3, 2), (3, 3), (3, 4), (4, 2), (4, 3), (4, 4)
}

with c1 = 10 and c2 = 20.

In order to generate a job list for a given network, for each arc we first choose α, the
number of jobs. Then we divide the time horizon into α equal subintervals, each of them
associated with one of the jobs to be created. For each job we choose a processing time
and a number of start time candidates randomly. Finally, we choose a random release date,
making sure that it is compatible with the job being completed in its subinterval. This is
made more precise in Algorithm 5 where the input parameters are

• X — set of possible number of jobs per arc,

• Y — set of possible processing times, and

• Z — set of possible sizes for start time windows.

Algorithm 5 Generate JobList (X,Y, Z) (X,Y, Z ⊆ N)

for a ∈ A do
Initialize Ja = ∅
choose random α ∈ X and put µ = bT/αc
for η = 1 to α do

choose random β ∈ Y and γ ∈ Z
choose random r ∈ {1, 2, . . . , µ− β − γ + 2}
add job with processing time β, release date rj = (η − 1)µ+ r
and deadline rj + β + γ − 2 to Ja

Let α, β and γ be the maximum elements of X, Y and Z, respectively. In order to
guarantee feasible job lists we must have

(γ + β − 1)α 6 T.

As the number of binary variables in the MIP model (1)–(5) is determined by the sizes of
the time windows we decided to focus on studying the influence of the set Z. So we fix
X = [5, 15], Y = [10, 30] and test two variants for Z.

108 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

1. There are a variety of time window sizes: Z1 = [1, 35] (the first instance set).

2. All time windows are large: Z2 = [25, 35] (the second instance set).

For each network and each triple (X,Y, Zi) we generated 10 instances, giving a total of
160 instances. The network sizes and the average numbers of jobs obtained in this way
are shown in Table 2. In Tables 3 and 4 we report the average problem sizes for the MIP

Small networks Large networks

Network Nodes Arcs Jobs Network Nodes Arcs jobs

1 12 32 303.2 5 36 123 1159.8

2 16 44 421.0 6 32 92 870.7

3 18 57 542.4 7 48 176 1674.2

4 27 90 847.5 8 64 240 2278.0

Table 2: The sizes of the random networks.

formulation (1)–(5).

Network # Rows # Columns # Nonzeros # Binaries Root relaxation solution time (s)

1 50,810 69,925 226,402 36,925 0.5

2 69,714 95,381 312,255 50,381 1.4

3 87,589 122,784 404,722 64,784 1.6

4 137,141 192,544 638,215 101,544 7.0

5 187,607 262,799 886,817 138,799 21.4

6 145,025 197,037 658,174 104,037 5.5

7 265,983 375,552 1,278,099 198,552 37.8

8 361,293 511,157 1,746,054 270,157 92.1

Table 3: Average problem sizes for the first instance set (Z = [1, 35]).

4.1.2 Experimental setup

Each of the generated instances is solved by the following methods:

Algorithm CPX. CPLEX with default settings applied to the formulation (1)–(5),

Algorithm GR. GreedyResched using CPLEX to solve the max flow subproblems,

Algorithm GRR. GreedyRandResched (Section 3.2.3) with parameters (κ1, κ2) = (5, 0.15),

Algorithm GAR. GreedyAccResched (Section 3.2.3),

Algorithm GRAR. GreedyRandAccResched (Section 3.2.3) with the same parameter val-
ues as for GRR, and

Algorithm RMJ σ. RandMultiJob with parameter σ.

Scheduling arc maintenance jobs in a network to maximize total flow over time 109

Network # Rows # Columns # Nonzeros # Binaries Root relaxation solution time (s)

1 57,763 75,215 322,204 42,215 1.1

2 79,481 102,783 448,435 57,783 5.8

3 100,483 132,480 583,899 74,480 1.4

4 157,521 207,922 920,092 116,922 33.6

5 214,415 283,148 1,257,642 159,148 427.8

6 165,634 212,561 944,456 119,561 204.6

7 303,721 404,331 1,800,871 227,331 207.5

8 413,640 550,940 2,469,028 309,940 828.7

Table 4: Average problem sizes for the second instance set (Z = [25, 35]).

For ease of implementation, and so as to more readily exploit reduced cost information,
and access primal and dual algorithm variants, we decided to solve the max flow sub-
problems in the algorithms GreedyResched, GreedyRandResched, GreedyAccResched and
GreedyRandAccResched using CPLEX as LP solver instead of implementing combinator-
ial algorithms. The following three remarks on the implementation of Algorithm 2, which
underlies the three greedy approaches, are based on the observations in Section 3.2.2.

1. The value ∆+
ai is computed only if the reduced cost of the arc a is positive in the

current solution for time slice i as otherwise there is no potential for improvement.

2. For calculating the values z+ai, i.e. the gain obtained by adding in arc a, we use the
primal simplex method starting from the current max flow for time slice i.

3. For calculating the values z−ai, i.e. the loss due to taking out arc a, we use the dual
simplex method starting from the current max flow for time slice i.

For GreedyResched, we also note that among the pairs (j, S′j) with maximal value of ∆j(S
′
j)

it is always possible to choose one causing at most one time slice split. A simple way to
achieve this is to choose the pair with the smallest S′j : This ensures that S′j or S′j+pj is one of
the breakpoints ti in the current time slicing. We use this approach in our implementation.
For RandMultiJob we solve the max flow problems using the implementation of the push-
relabel algorithm in the Boost library [17]. Here we don’t take advantage of the similarities
between the networks of different time slices, but we still use the third observation in Section
3.1 that after changing the schedule we only have to reevaluate the flow for time slices that
are actually affected by the change. We experimented with σ = 1, 2, 4 and 8. We found that
results for σ = 8 were dominated by the other values, and that whilst σ = 4 did give better
values than σ = 1 or 2 on a very small proportion of instances, it did not give the best value
over all algorithms for any instance (random or real world). Thus we only present detailed
results for σ = 1 and 2.

For all algorithms, we impose a time limit of 30 minutes, and all of them start with an
initial solution given by

Sj =

⌊
rj + dj

2

⌋
.

110 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

All computations are done on a Dell PowerEdge 2950 with dual quad core 3.16GHz Intel
Xeon X5460 processors and 64GB of RAM running Red Hat Enterprise Linux 5. CPLEX
v12.1 was running in deterministic mode using a single thread.

4.1.3 Results

As a performance measure to compare algorithms we use the relative gap between the
algorithm’s solution value and the best known solution value over all algorithms. If the
best known solution value for an instance I is zbest and the current algorithm returns z, its
performance measure on that instance is given by

P(I) =
zbest − z
zbest

.

In Figures 6 to 9, we plot for CPLEX and the Greedy algorithms the proportion of instances
for which the solution found by the algorithm is within a factor of 1 − τ of the best, for
increasing values of τ , i.e. we plot

1

n
·# {I : I instance with P(I) 6 τ}

as a function of τ , where n is the total number of instances (in our case 80 for each instance
set). Note that for the 5 minute plots (Figures 6 and 8) we take zbest to be the best known
solution over all algorithms after 30 minutes. Tables 5 and 6 contain the average number

Figure 6: Performance profiles for the first
instance set (Z = [1, 35]) with computation
time limited to 5 minutes.

Figure 7: Performance profiles for the first
instance set (Z = [1, 35]) with computation
time limited to 30 minutes.

of max flow problems solved for each of the local search algorithms and every network. For
algorithms GR and GAR we also report the run times, GRR, GRAR and RMJ 2 ran for
the whole 30 minutes. Tables 7 to 10 provide information about the relative gaps (average
and maximal) and the numbers of instances where each algorithm found the best solution,
for all algorithms. Here the relative gap is computed as (z′ − z)/z′ where z′ is the best

Scheduling arc maintenance jobs in a network to maximize total flow over time 111

Figure 8: Performance profiles for the second
instance set (Z = [25, 35]) with computation
time limited to 5 minutes.

Figure 9: Performance profiles for the second
instance set (Z = [25, 35]) with computation
time limited to 30 minutes.

GR GRR GAR GRAR RMJ 2

Network Time(s) mf calls mf calls Time(s) mf calls mf calls mf calls

1 12 210 31,296 17 179 16,500 96,618

2 25 351 22,741 30 287 13,772 74,739

3 25 460 29,168 40 344 16,386 61,270

4 128 1,256 15,201 100 677 9,681 38,703

5 308 2,007 10,693 324 1,247 7,320 25,605

6 115 838 11,574 115 585 7,041 37,588

7 524 2,984 8,871 519 2,010 6,146 14,827

8 825 3,256 6,607 605 1,540 4,090 8,276

Table 5: Average numbers of max flow problems (divided by 1,000) for the first instance
set (Z = [1, 35]).

upper bound obtained by CPLEX in 30 minutes, and z is the objective value of the best
solution found by the considered algorithm in the respective time (5 or 30 minutes).

We make the following observations.

• For the first instance set CPLEX outperforms all other algorithms, but on the large
networks the heuristics, in particular GreedyAccResched and GreedyRandAccResched,
arequite good in providing a reasonably good solution in a short time. The 5 minute
performance profiles both show the distinct advantage of GreedyAccResched and
GreedyRandAccResched over the other methods for short run times. For long run
times, the 30 minute performance profiles show CPLEX to be the clear winner for the
first instance set, with GreedyRandResched and GreedyRandAccResched best for the
second instance set.

112 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

GR GRR GAR GRAR RMJ 2

Network time [sec] mf calls mf calls time [sec] mf calls mf calls mf calls

1 14 321 37,818 12 214 30,966 83,170

2 36 627 28,411 23 382 25,900 65,355

3 28 724 38,786 26 490 32,253 54,133

4 160 1,982 19,304 84 1,129 19,702 35,745

5 367 2,928 13,907 229 1,966 7,793 23,858

6 197 1,762 15,022 96 776 7,603 33,656

7 709 4,704 11,133 499 3,485 5,714 14,388

8 956 4,723 8,147 536 2,334 3,808 8,056

Table 6: Average numbers of max flow problems (divided by 1000) for the second instance
set (Z = [25, 35]).

• For the second instance set, on the small networks CPLEX is still superior, but on
the larger networks, the local search heuristics outperform CPLEX, with all heuristics
giving solutions with smaller gaps on average for all (large) instances over short run
times, and all Greedy heuristics giving smaller gaps on average over long run times –
significantly smaller for 3 out of the 4 (largest) networks.

• Comparing GreedyResched and GreedyAccResched we see that in all cases it pays
off to save the time for reevaluating the possible moves after each step and thus being
able to make more moves in the same amount of time. A similar observation applies
to GreedyRandResched and GreedyRandAccResched, but the benefits of the latter are
less pronounced.

• Across the board, randomized greedy algorithms give better results than their non-
random counterparts, due to the possibility to escape local minima.

• RandMultiJob performs better with σ = 1 than 2, particularly for larger networks
in the second instance set, and for the first instance set, with the shorter run time.
On the first instance set with the longer run time, the two are difficult to separate,
but σ = 2 gives better results on more networks, and in particular does better on
the difficult case of the sixth network. As might be expected, the RandMultiJob

algorithms show more significant improvement than the greedy heuristics when given
more run time. However in no case do the RandMultiJob algorithms outperform the
greedy heuristics. (Hence we omit their profiles from Figures 6 to 9, to avoid cluttering
them.)

4.2 Instances derived from real world data

The real world maintenance scheduling problem is complicated by additional constraints
imposed, for example, by daylight restrictions, availability of equipment or labour force
to carry out the maintenance, incompatibility issues between jobs, or conflicts with other

Scheduling arc maintenance jobs in a network to maximize total flow over time 113

1 2 3 4 5 6 7 8

avg gap 0.0 0.4 0.3 1.1 3.0 3.7 3.9 12.9

CPX max gap 0.1 0.8 1.7 2.6 6.1 4.6 5.4 20.2

best sol 10 10 9 10 7 10 8 3

avg gap 2.1 2.8 1.9 1.6 2.3 4.9 2.1 3.3

GR max gap 4.1 4.0 3.5 1.9 2.5 5.5 2.7 5.3

best sol 0 0 0 0 0 0 0 0

avg gap 1.5 2.0 1.6 1.5 2.4 4.1 2.4 3.7

GRR max gap 2.2 3.1 2.4 2.0 2.7 5.2 3.1 6.1

best sol 0 0 0 0 0 0 0 0

avg gap 1.5 2.0 1.5 1.4 2.1 4.0 1.5 1.5

GAR max gap 1.9 2.4 2.2 1.6 2.5 4.8 1.9 2.2

best sol 0 0 1 0 2 0 2 6

avg gap 1.4 1.8 1.4 1.4 2.0 3.8 1.5 1.5

GRAR max gap 1.8 2.2 2.2 1.6 2.4 4.2 1.8 2.2

best sol 0 0 1 0 1 0 0 1

avg gap 3.0 5.1 2.0 4.5 7.3 11.1 5.2 5.7

RMJ 1 max gap 4.9 7.1 2.8 6.9 8.5 12.5 6.5 7.6

best sol 0 0 0 0 0 0 0 0

avg gap 2.5 4.6 1.9 4.8 7.3 11.2 5.3 5.9

RMJ 2 max gap 3.8 6.0 2.6 7.1 8.1 13.2 6.7 8.0

best sol 0 0 0 0 0 0 0 0

Table 7: Average and maximal relative gaps and number of best solutions found on the first
instance set, Z = [1, 35] (runtime 5 minutes).

users of the infrastructure. All of this can be modelled in an MIP framework and taken
into account in a local search, both of which are the subject of ongoing work. For the
present paper, we ignore the additional constraints and conduct some experiments on pure
MaxTFFAO instances derived from real world data. The network shown in Figure 10 is
a simplified version of the real situation. We generate two instances using the maintenance
job lists and the actual maintenance schedules for 2010 and 2011. These job lists contain
1, 457 and 1, 234 jobs, respectively. Based on the level of detail occurring in practice, we use
a time discretization of 1 hour, leading to instances with time horizons T = 365 ·24 = 8, 760.
The processing times vary between an hour and several days, while 75% of the jobs have a
processing time between 1 and 18 hours. For every job we assume a time window of two
weeks, i.e. dj = rj + pj + 14 · 24− 2 for all j. This model leads to really large problems as
indicated in Table 11, containing the problem sizes. As a start solution we used a snapshot
of the HVCCC maintenance scheduling process. We increased the time limit to 2 hours,
and the results are shown in Figures 11 and 12. For clarity, the same results for CPLEX
and a selection of the better algorithms is given in Figures 13 and 14.

114 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

1 2 3 4 5 6 7 8

avg gap 0.0 0.2 0.3 0.3 1.6 2.0 0.9 2.8

CPX max gap 0.0 0.4 1.7 0.8 2.8 2.7 2.1 6.1

best sol 10 10 9 10 7 10 8 3

avg gap 2.1 2.8 1.9 1.6 2.3 4.9 1.6 1.6

GR max gap 4.1 4.0 3.5 1.9 2.5 5.5 2.1 2.3

best sol 0 0 0 0 0 0 0 0

avg gap 1.4 1.7 1.5 1.4 2.0 3.7 1.4 1.5

GRR max gap 2.2 2.2 2.3 1.9 2.3 4.9 2.0 2.2

best sol 0 0 0 0 0 0 0 0

avg gap 1.5 2.0 1.5 1.4 2.1 4.0 1.5 1.5

GAR max gap 1.9 2.4 2.2 1.6 2.5 4.8 1.9 2.2

best sol 0 0 1 0 2 0 2 6

avg gap 1.3 1.7 1.4 1.3 2.0 3.7 1.4 1.5

GRAR max gap 1.7 2.1 2.2 1.5 2.4 4.2 1.8 2.2

best sol 0 0 1 0 1 0 0 1

avg gap 2.9 5.0 2.0 3.9 6.3 9.9 4.2 4.6

RMJ 1 max gap 4.9 6.9 2.8 5.7 6.8 11.9 5.7 6.2

best sol 0 0 0 0 0 0 0 0

avg gap 2.5 4.5 1.8 3.9 6.3 9.5 4.2 4.6

RMJ 2 max gap 3.8 5.9 2.6 6.1 7.0 11.0 5.0 6.5

best sol 0 0 0 0 0 0 0 0

Table 8: Average and maximal relative gaps and number of best solutions found on the first
instance set, Z = [1, 35] (runtime 30 minutes).

We observe that the MIP seems to be really hard. For the 2010 data, CPLEX finds
one integer solution with better objective value than the start solution, and for 2011 no
improving solution can be found at all. Confirming the results for the random instances,
the greedy approaches perform very well in terms of finding high quality solutions quickly.
The impacts, i.e. the annual capacity reductions due to maintenance, for the start solutions
were 37.6Mt (2010) and 32.5 Mt (2011). Table 12 shows the impact reductions achieved by
the different algorithms. We note two features that seem to be different to the behaviour
for the random instances.

1. Randomization does not always improve the greedy heuristics. Of course, looking at
two instances is very limited evidence, but for the 2011 data the randomized variants
give slightly worse results. GreedyAccResched gives the best result for this instance.

2. RandMultiJob keeps improving even after 2 hours, while the other local search strategies
seem to get trapped in local optima comparatively early. Both σ = 1 and 2 values
give better results than any of the greedy heuristics or CPLEX for the 2010 instance,

Scheduling arc maintenance jobs in a network to maximize total flow over time 115

1 2 3 4 5 6 7 8

avg gap 0.1 3.9 0.0 6.3 20.5 21.9 16.1 17.0

CPX max gap 0.4 6.2 0.1 11.0 25.3 39.5 22.8 24.8

best sol 10 10 10 9 0 3 0 0

avg gap 1.8 4.0 1.6 1.9 3.4 8.2 2.5 3.6

GR max gap 2.5 4.7 2.1 2.8 4.6 10.0 3.4 5.6

best sol 0 0 0 0 1 0 0 2

avg gap 1.4 3.2 1.2 1.9 3.5 7.7 2.6 4.0

GRR max gap 2.1 4.0 1.4 2.7 4.8 10.8 3.2 5.8

best sol 0 0 0 0 1 2 0 1

avg gap 1.4 3.4 1.2 1.8 2.9 7.7 1.4 1.3

GAR max gap 2.3 4.5 1.4 2.5 3.5 9.1 1.8 1.9

best sol 0 0 0 0 7 3 4 4

avg gap 1.3 3.0 1.2 1.8 2.8 7.7 1.4 1.4

GRAR max gap 2.3 3.9 1.4 2.4 3.5 9.4 1.8 1.9

best sol 0 0 0 1 1 2 6 3

avg gap 2.0 6.5 1.4 4.6 8.1 15.3 5.1 4.9

RMJ 1 max gap 3.0 8.2 1.7 8.3 9.3 18.8 5.9 6.6

best sol 0 0 0 0 0 0 0 0

avg gap 1.9 6.5 1.4 4.7 8.2 15.5 5.0 5.0

RMJ 2 max gap 2.8 8.2 1.7 8.7 10.0 18.4 5.9 6.6

best sol 0 0 0 0 0 0 0 0

Table 9: Average and maximal relative gaps and number of best solutions found on the
second instance set, Z = [25, 35] (runtime 5 minutes).

with σ = 2 giving the best result overall.

116 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

1 2 3 4 5 6 7 8

avg gap 0.0 1.9 0.0 1.6 7.4 8.9 6.6 13.3

CPX max gap 0.1 3.3 0.1 4.9 10.8 14.2 10.1 18.3

best sol 10 10 10 9 0 3 0 0

avg gap 1.8 4.0 1.6 1.9 3.1 8.2 1.5 1.3

GR max gap 2.5 4.7 2.1 2.8 4.1 10.0 2.0 1.6

best sol 0 0 0 0 1 0 0 2

avg gap 1.3 3.1 1.2 1.8 2.8 7.2 1.4 1.3

GRR max gap 1.8 3.9 1.4 2.5 3.5 9.0 1.8 1.5

best sol 0 0 0 0 1 2 0 1

avg gap 1.4 3.4 1.2 1.8 2.9 7.7 1.4 1.3

GAR max gap 2.3 4.5 1.4 2.5 3.5 9.1 1.7 1.9

best sol 0 0 0 0 7 3 4 4

avg gap 1.3 3.0 1.2 1.7 2.8 7.3 1.4 1.3

GRAR max gap 1.8 3.8 1.4 2.3 3.5 8.5 1.8 1.9

best sol 0 0 0 1 1 2 6 3

avg gap 2.0 6.4 1.4 3.9 7.0 13.9 4.1 4.0

RMJ 1 max gap 3.0 8.2 1.6 7.2 7.9 17.4 5.2 5.8

best sol 0 0 0 0 0 0 0 0

avg gap 1.9 6.2 1.3 3.8 7.1 14.1 4.2 4.0

RMJ 2 max gap 2.8 8.2 1.7 7.0 8.2 17.1 4.9 5.7

best sol 0 0 0 0 0 0 0 0

Table 10: Average and maximal relative gaps and number of best solutions found on the
second instance set, Z = [25, 35] (runtime 30 minutes).

Rows # Columns # Nonzeros # Binaries Root relaxation solution time (s)

2010 2,741,944 3,317,433 13,500,830 1,775,673 3,823

2011 2,735,919 3,310,352 13,226,945 1,768,592 7,154

Table 11: Problem sizes for the instances derived from real world data.

Scheduling arc maintenance jobs in a network to maximize total flow over time 117

Figure 10: The HVCC network. The circled parts of the network represent the flow of coal
through terminal handling equipment. The rest represents the rail network, sourcing coal
from 33 coal load points.

Figure 11: Progress for the 2010 data. Figure 12: Progress for the 2011 data.

118 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Figure 13: Progress for the 2010 data (selec-
ted algorithms).

Figure 14: Progress for the 2011 data (selec-
ted algorithms).

2010 2011

Impact (Mt) Reduction (%) Gap (%) Impact (Mt) Reduction (%) Gap (%)

CPX 28.9 22.9 7.8 32.5 0.0 13.4

GR 26.4 29.6 6.1 19.8 39.0 4.9

GRR 25.6 31.8 5.5 20.3 37.5 5.2

GAR 25.4 32.3 5.4 19.8 39.1 4.9

GRAR 25.0 33.4 5.1 19.9 38.7 4.9

RMJ 1 24.8 33.9 4.9 20.5 36.8 5.4

RMJ 2 24.6 34.6 4.8 20.4 37.3 5.3

Table 12: Impact reduction obtained by the different local search strategies. The column
labeled “Gap” contains the relative gap to the best known upper bound from CPLEX.

Scheduling arc maintenance jobs in a network to maximize total flow over time 119

5 Future directions

We want to point out three directions for further investigation, other than those already
indicated in the paper.

1. A natural idea is to develop the local search towards a Greedy Randomized Adaptive
Search Procedure (GRASP) [16]. That means, instead of using a fixed start solution,
start solutions are constructed in a randomized greedy manner.

2. As the general problem is NP-hard, it is interesting to look for special cases (special
in terms of the network structure and/or in terms of properties of the job list) that
can be solved efficiently.

3. In the other direction, there might be generalizations of the problem that are worth
studying, for instance allowing

• arbitrary subsets of [T] as sets of possible start times (not only intervals [rj , dj]),
and

• job processing to only reduce the arc capacity by some fraction, rather than
taking it out completely.

The former arises in the Hunter Valley coal chain application in respect of rail track
maintenance, where crews must work during daylight hours of the working week. The
latter obviously arises in contexts such as highway maintenance, where lane closures
and slow-downs come into effect.

These examples of possible future directions illustrate what an exciting new problem we
believe maximum total flow with flexible arc outages to be, with great potential for both
theoretical and practical development.

Acknowledgment

We like to acknowledge the valuable contributions of Jonathon Vandervoort, Rob Oyston,
Tracey Giles, and the Capacity Planning Team from the Hunter Valley Coal Chain Coordin-
ator (HVCCC) P/L. Without their patience, support, and feedback, this research could not
have occurred. We also thank the HVCCC and the Australian Research Council for their
joint funding under the ARC Linkage Grant no. LP0990739. Furthermore, we are very
grateful to the anonymous referees for their helpful comments and suggestions.

References

[1] N. Boland and M. Savelsbergh. “Optimizing the Hunter Valley coal chain”. In: Supply
Chain Disruptions: Theory and Practice of Managing Risk. Ed. by H. Gurnani, A.
Mehrotra and S. Ray. Springer-Verlag London Ltd., 2011, pp. 275–302.

120 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

[2] B. Cavdaroglu, J.E. Mitchell, S.G. Nurre, T.C. Sharkey and W.A. Wallace. Restoring
infrastructure systems: An integrated network design and scheduling problem. Tech.
rep. www.rpi.edu/~sharkt/RIS.pdf (13 November 2011). Rensselaer Polytechnic
Institute, 2010.

[3] L. Fleischer. “Faster algorithms for the quickest transshipment problem”. In: SIAM
journal on Optimization 12.1 (2001), pp. 18–35. doi: 10.1137/S1052623497327295.

[4] L. Fleischer. “Universally maximum flow with piecewise-constant capacities”. In: Net-
works 38.3 (2001), pp. 115–125. doi: 10.1002/net.1030.

[5] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton, N.J.: Princeton Univ.
Press, 1962.

[6] M.R. Garey and D.S. Johnson. Computers and intractability, a guide to the theory of
NP–completeness. W.H. Freeman, 1979.

[7] D. Goldfarb and M.D. Grigoriadis. “A computational comparison of the Dinic and
network simplex methods for maximum flow”. In: Annals of Operations Research 13.1
(1988), pp. 81–123. doi: 10.1007/BF02288321.

[8] B. Hajek and R.G. Ogier. “Optimal dynamic routing in communication networks
with continuous traffic”. In: Networks 14.3 (1984), pp. 457–487. doi: 10.1002/net.
3230140308.

[9] B. Hoppe and É. Tardos. “Polynomial time algorithms for some evacuation problems”.
In: Proc. 5th ACM-SIAM symposium on discrete algorithms SODA 1994. Society for
Industrial and Applied Mathematics. 1994, pp. 433–441.

[10] R. Koch, E. Nasrabadi and M. Skutella. “Continuous and discrete flows over time”.
In: Mathematical Methods of Operations Research 73.3 (2011), pp. 301–337. doi: 10.
1007/s00186-011-0357-2.

[11] B. Kotnyek. An annotated overview of dynamic network flows. Tech. rep. 4936. http:
//hal.inria.fr/inria-00071643/ (20 February 2013). INRIA, 2003.

[12] G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. John
Wiley & Sons, 1988.

[13] S.G. Nurre and T.C. Sharkey. “Restoring infrastructure systems: An integrated net-
work design and scheduling problem”. In: Proceedings of the 2010 Industrial Engin-
eering Research Conference. 2010.

[14] R.G. Ogier. “Minimum-delay routing in continuous-time dynamic networks with piecewise-
constant capacities”. In: Networks 18.4 (1988), pp. 303–318. doi: 10.1002/net.

3230180405.

[15] M.L. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.

[16] L.S. Pitsoulis and M.G.C. Resende. “Greedy randomized adaptive search procedures”.
In: Handbook of applied optimization. Ed. by P.M. Pardalos and M.G.C. Resende.
Oxford University Press, 2002, pp. 168–183.

www.rpi.edu/~sharkt/RIS.pdf
http://dx.doi.org/10.1137/S1052623497327295
http://dx.doi.org/10.1002/net.1030
http://dx.doi.org/10.1007/BF02288321
http://dx.doi.org/10.1002/net.3230140308
http://dx.doi.org/10.1002/net.3230140308
http://dx.doi.org/10.1007/s00186-011-0357-2
http://dx.doi.org/10.1007/s00186-011-0357-2
http://hal.inria.fr/inria-00071643/
http://hal.inria.fr/inria-00071643/
http://dx.doi.org/10.1002/net.3230180405
http://dx.doi.org/10.1002/net.3230180405

Scheduling arc maintenance jobs in a network to maximize total flow over time 121

[17] J.G. Siek, L.-Q. Lee and A. Lumsdaine. The Boost Graph Library: User Guide and
Reference Manual. C++ In-Depth. Addison-Wesley Professional, 2001.

[18] M. Skutella. “An introduction to network flows over time”. In: Research Trends in
Combinatorial Optimization (2009), pp. 451–482. doi: 10.1007/978-3-540-76796-1.

[19] A. Toriello, G. Nemhauser and M. Savelsbergh. “Decomposing inventory routing prob-
lems with approximate value functions”. In: Naval Research Logistics 57.8 (2010),
pp. 718–727. doi: 10.1002/nav.20433.

http://dx.doi.org/10.1007/978-3-540-76796-1
http://dx.doi.org/10.1002/nav.20433

122 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Mixed integer programming based maintenance scheduling for

the Hunter Valley coal chain∗

Natashia Boland Thomas Kalinowski Hamish Waterer Lanbo Zheng

Abstract

We consider the scheduling of the annual maintenance for the Hunter Valley Coal
Chain. The coal chain is a system comprising load points, railway track and different
types of terminal equipment, interacting in a complex way. A variety of maintenance
tasks have to be performed on all parts of the infrastructure on a regular basis in order
to assure the operation of the system as a whole. The main objective in the planning of
these maintenance jobs is to maximize the total annual throughput. Based on a network
flow model of the system we propose a mixed integer programming formulation for this
planning task. In order to deal with the resulting large scale model which cannot be
solved directly by a general purpose solver, we propose two steps. The number of binary
variables is reduced by choosing a representative subset of the variables of the original
problem, and a rolling horizon approach enables the approximation of the long term
(i.e. annual) problem by a sequence of shorter problems (for instance monthly).

Keywords. maintenance scheduling, coal supply chain, capacity alignment, net-
work flow, mixed integer programming

1 Introduction

The Hunter Valley Coal Chain (HVCC) consists of mining companies, rail operators, rail
track owners and terminal operators, together forming the world’s largest coal export facil-
ity. In 2008, the throughput of the HVCC was about 92 million tonnes, or more than 10 per
cent of the world’s total trade in coal for that year. The coal export operation generates
around $15 billion in annual export income for Australia. As demand has increased signific-
antly in recent years and is expected to increase further in the future, efficient supply chain
management is crucial. Our industry partner, the Hunter Valley Coal Chain Coordinator
Limited (HVCCC) was founded to enable integrated planning and coordination of the in-
terests of all involved parties, so as to improve the efficiency of the system as a whole. More
details on the HVCC can be found in [4].

In this paper we are concerned with the infrastructure that is necessary to bring the coal
all the way from the mining areas in the Hunter Valley onto vessels transporting it to the
final destination. The coal has to go by rail to one of the terminals in the port of Newcastle,
where it is assembled and finally loaded onto a vessel. There is a natural subdivision of the
chain into three parts.

∗Journal of Scheduling 16(6), 649–659, doi:10.1007/s10951-012-0284-y

123

http://dx.doi.org/10.1007/s10951-012-0284-y

124 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

1. The rail network between the load points at the mines and the terminals.

2. The inbound part of the terminals. The coal is unloaded from the trains at dump
stations, transported to the stockyard via conveyor belts and stacked onto pads in the
stockyard.

3. The outbound part of the terminals. The coal is reclaimed from the stockyard, and
loaded onto the vessel at the berth.

We discuss the annual maintenance planning process carried out by the HVCCC. Supply
chain components such as railway track sections and terminal equipment have to undergo
regular preventive and corrective maintenance, causing a significant loss in system capacity
(up to 15%). The HVCCC had observed that careful scheduling of the maintenance jobs –
good alignment of them – could reduce the impact of maintenance on the network capacity,
and establish a regular planning activity to carry it out, called “capacity alignment”. Cur-
rently capacity alignment for the approximately 1,500 maintenance jobs planned each year
is a labour-intensive, largely manual process, achieved by iterative negotiation between the
HVCCC and the individual operators. The items whose maintenance is considered in the
process come in three groups corresponding to the above partition of the coal chain:

1. railway track sections,

2. terminal inbound, in particular, dump stations and stackers, and

3. terminal outbound, in particular, reclaimers, ship loaders and berths.

The HVCCC currently uses an impact calculator written in a business rules management
system to evaluate the quality of proposed maintenance schedules. This calculator is integral
to the HVCCC Capacity Model, a software developed by the HVCCC. For a given set
of maintenance activities, it determines three numbers: a rail track impact, a terminal
inbound impact and a terminal outbound impact. The total system impact is taken to
be the maximum of these three numbers. Summing over the time intervals of constant
maintenance yields a single total impact for the full time horizon. In-depth analysis of rules
for the terminal impacts and the HVCC coal handling system revealed that the rules can
be well captured by solving maximum flow problems in certain networks. The arcs in these
networks represent the different terminal machines, and a maintenance job simply means
that the corresponding arc cannot carry any flow for the duration of the job. The railway
track network is represented very coarsely in the HVCCC impact calculator. Basically, the
impact of a track section outage is taken to be the sum of the expected demands (scaled to
the duration of the outage) of the load points L with the property that the outage prevents
trains from going between L and the terminals. This is motivated by the fact that, due to
the tree structure of the rail network, there is a unique route from each load point to each
terminal, and the terminals are very close to each other. This means that as long as the
railway is not a bottleneck the sum of the affected load point demands corresponds indeed
to the reduction of the system capacity. In the future, with increasing demands the rail
network will become a bottleneck, so it is more accurate to model it also as a network,

MIP based maintenance scheduling for the HVCCC 125

the nodes representing junctions and the arcs representing track sections. The additional
conceptual advantage of having network models for all parts of the system is that they can
easily be connected to capture the interaction between different parts. In particular, the
link between the inbound and the outbound part of the coal chain is an important feature
of our proposed model that is missing in the current impact calculator. So the buffering
function of the stockyard, where the coal typically stays for between three and ten days,
can be taken into account. This has the potential to enable more efficient coordination of
inbound and outbound outages.

The maintenance jobs are scheduled initially according to standard equipment require-
ments, which typically dictate particular types of maintenance jobs to be performed at
particular time points. Initial schedules are produced by the providers (track owners and
terminal operators) more or less independently of each other. Based on this an iterat-
ive process begins, in which the coordinator evaluates the schedule, works out options for
modifications that can release capacity, and negotiates these proposed changes with the
providers. The purpose of our model is to support this process by providing an efficient
way to explore and evaluate a variety of different rescheduling options.

Our paper is organized as follows. After a brief review of the relevant literature in
Section 2, Section 3 contains a precise definition of the considered maintenance scheduling
problem. This includes the underlying network model, the form of the given initial main-
tenance schedule, and the rescheduling rules that have to be followed by the optimizer. In
Section 4, a mixed integer programming (MIP) formulation is given, and Section 5 con-
tains two heuristic reduction steps necessary in order to make the problem computationally
tractable. Computational results for two different real world data sets are presented in Sec-
tion 6, and the final Section 7 contains concluding remarks and some directions for further
investigation.

2 Literature Review

Maintenance in general is an essential activity of many production and transportations
systems, and in many cases accounts for a significant part of the cost of the operation.
Maintenance is usually categorized as either preventive or corrective. The former is a regu-
lar, planned activity, whereas the latter is carried out in response to a failure or breakdown.
A third category, known as predictive maintenance, concerns the use of measurement to
predict and diagnose equipment condition. We refer the reader to Sharma et al. [13] for an
overview of maintenance activities and their optimization. In this work we are concerned
with planning preventive maintenance activities.

Much of the literature on preventive maintenance concerns identification of maintenance
policies: how often to perform each type of maintenance, or under what conditions. In
addition to the review of Sharma et al. [13], we refer the reader to the review of Budai et
al. [6], which recognizes the significant advantages that can be realized in taking into account
the impact on production when planning maintenance. This paper categorizes approaches as
either taking into account the production impact of maintenance in maintenance planning,
taking into account resource implications (e.g. manpower) in maintenance scheduling, and

126 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

production planning subject to maintenance requirements. Three streams of research are
identified: those focused on costing maintenance activity, those investigating the impact of
carrying out maintenance at opportune moments (when a breakdown or other interruption
has occurred), and those which schedule maintenance in line with production. The HVCCC
process has elements of the first and third: (1) the “cost” of a maintenance plan is assessed
in terms of its impact on throughput, and is used to compare alternative plans; and (2)
by seeking to re-time maintenance (align it, discussed further in the next paragraph), the
HVCCC is seeking to schedule maintenance in line with production.

In our work, the preventive maintenance policy is already set, which yields initial sched-
ules for all components of the system. Rail and terminal equipment have initial maintenance
schedules largely directed by their corresponding maintenance policy. However the mainten-
ance policies do not determine the times for individual maintenance events exactly. There
is some flexibility which can be exploited to re-time certain jobs, or align them, so as to
reduce the impact of the maintenance on the system capacity. Most of the literature that
considers scheduling maintenance in line with production addresses maintenance policy set-
ting. Exceptions occur in power generation, when maintenance outages must be scheduled,
for example, as in [8, 9]. These are primarily concerned with minimizing the overall cost of
maintenance and generation, while ensuring generation is sufficient to meet demand; in our
context, by contrast, the cost of maintenance activities is fixed, and we want to maximize
system capacity. Other exceptions can be found in the transport sector, for example, buses
or airlines. These usually focus on the resource implications of maintenance, as in [10]
and [11], or on how to cover the scheduled transport operations while still meeting main-
tenance requirements, as in [1]. The focus is on scheduling maintenance for the transport
equipment, as opposed to the infrastructure over which it moves; the latter is closer to our
case of interest.

Rail track and road maintenance does address transport infrastructure, and a number
of interesting studies are available, particularly for rail maintenance, see, for example, [5].
In these cases, the focus is on minimizing the disruption to scheduled activities, not on
maximizing the number of trains that could be pushed through the system; the latter
would be closer to the situation of interest to us. However there are still some relevant
papers: we discuss the most closely relevant and recent one, that of Budai et al. [7], in some
detail further below.

In production systems, which perhaps more closely resemble the HVCCC situation,
multi-component system maintenance would appear to be relevant, since it is the interac-
tion of subsystems and their maintenance schedules that produces the benefit of alignment.
Multi-component maintenance models are defined to be those in which a system consists
of multiple units (equipment or machines) that may depend on each other economically,
stochastically or structurally (see [12] and references therein). Economic dependence is
focussed on the direct cost of the maintenance activity, and whether or not carry out main-
tenance on multiple units simultaneously can decrease costs, e.g. via economies of scale, or
increase them, e.g. via the need to employ extra resources. Stochastic dependence concerns
the failure probabilities and whether or not these are related across units. Structural de-
pendence applies, for example, when the part needing maintenance is inside or connected
to other components, so in order to have maintenance on one component, others may also

MIP based maintenance scheduling for the HVCCC 127

need maintenance, or at the least dismantling. Clearly these latter two types are not rel-
evant to the HVCCC situation: here the failure probabilities are already accounted for in
the preventive maintenance policies, which are set, and any structural connection between
maintenance tasks simply implies a constraint, indicating that some maintenance tasks
must be scheduled together. Neither of these addresses the primary mechanism of interest:
that the alignment of maintenance tasks (by re-timing) can release capacity in the system.
Clearly economic benefit is realized by releasing capacity, thus we would hope that work
categorized under economic dependence would address the HVCCC context. However that
does not seem to be the case, and all work highlighting the economic benefits of mainten-
ance scheduling in multi-component systems focusses on the direct costs of the maintenance
activities themselves, not on the consequent production benefits. We thus believe that a
third type of economic dependence warrants attention, and that is when scheduling main-
tenance tasks either together or apart affects the production capacity, and hence realizable
revenue, of the system.

The only work we are aware of which articulates the benefits of alignment as identified
in our context is that of [7] on preventive scheduling of railway track maintenance. As in
our context, maintenance is planned over a finite time horizon. They consider maintenance
of two types: routine work and projects. The former are cyclic, with given period, and so
are not similar to the situation we consider. The projects are similar: input data is a list of
maintenance projects, and for each, its duration, together with its earliest and latest start
time. However these are relatively infrequent (for each type, performed once every 6 months
to a year), and a major part of the contribution of their paper is to explore the interaction
between projects and routine work, which is an interesting challenge. Their objective is
to minimize the combination of track possession costs, which reflect the train schedule
disruption, and the direct costs of the maintenance activities. In our setting, the latter are
irrelevant, but the former could be viewed as a proxy for track capacity. They recognize
that by clustering jobs at the same time, the track possession cost may be minimized: this
corresponds to one type of alignment in our context. Since their model focusses on a single
link in the network, the other type is not noticed. They develop an integer programming
model, and for the scale of problem they consider (15 types of maintenance over a 3-4 year
horizon), the solution times are too long, indeed for their randomly generated problems
over 2-year horizons, less than 30% of instances are solved within three hours. Thus they
consider a restricted integer program, and four heuristics, to get good quality solutions in
reasonable time.

In this paper, we do not have cyclic maintenance tasks, but we do consider simultaneous
scheduling over the whole system, not a single link. Most significantly, the cost of the
schedule is not a simple linear function such as the track possession cost. Instead, because of
the system-wide effects, and the interdependence of subsystems in achieving system capacity,
we require solution of an optimization model to determine the impact of a combination of
maintenance tasks at scheduled times. Also important is the treatment of time. Budai et
al. [7] are able to use a fairly coarse time discretization (weeks), needing only the order of
100 periods in their model. In our context, maintenance tasks have start time specified to
the nearest 15 minutes in some cases, (to the nearest hour in others), and are of the order
of hours to days in duration. Thus we need to address the challenge of how to handle time

128 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

without leading to an extremely large number of variables.
A simplified version of the problem considered in the present work has been introduced in

a more abstract setting in [3]. That paper omits some of the complicating constraints specific
to the coal chain maintenance scheduling to arrive at a problem that might be applied in
different network related contexts. Even more simplified special cases (unit processing time
jobs with arbitrary start times) are studied from a computational complexity viewpoint
in [2]. In contrast, the present work focuses on modelling the actual problem of the planners
at HVCCC as closely as possible, and proposes solutions of immediate practical relevance.

To conclude, we believe our paper makes a quite unique contribution to the maintenance
optimization literature. It considers a multi-component system, where maintenance activ-
ities on the components can be scheduled so as to produce economic benefit of a new type,
not previously considered. It exploits a relationship between production and maintenance
in what appears to be a new way. There does not seem to be any prior work that considers
scheduling maintenance activities so as to maximize the production capacity of the system,
unless one interprets minimizing track possession costs in rail track maintenance in that
light, and in that case we see our paper makes further significant new contributions. In
particular, maintenance is scheduled system-wide and the objective is a complex function
of the interaction of the system as a whole, not a simple linear function. Furthermore, we
provide insights and ideas for handling scheduling problems of this type when maintenance
tasks are of widely varying durations, and their start times are fine-grained relative to the
planning time horizon.

We expect the models and methods presented here to have broader applicability beyond
the HVCC: they could be applied in any setting in which production is reasonably mod-
elled as a flow in a network, throughput (total production rate) is the key objective to be
maximized, and regular maintenance needs to be scheduled on network components. Most
mining supply chains, whether for coal, iron ore, or other minerals, well fit this description.
Applications to other bulk goods supply chains, such as for fertilizer or wheat, are also
likely to be possible.

3 Problem description

In this section we set the scene. The first subsection contains details on the underlying
network while the second subsection introduces the actual scheduling problem.

3.1 The network model

The network representing the HVCC consists of subnetworks for railway track and for
terminals.

1. The railway track network has nodes for load points and for junctions, and the arcs
represent rail track sections.

2. There are two terminal networks whose arcs correspond to terminal equipment.

The full network is shown in Figure 1. The ellipses indicate the terminals and the part

MIP based maintenance scheduling for the HVCCC 129

Figure 1: The HVCC network. The terminal subnetworks are indicated by ellipses. For the
rail network, rectangular nodes represent junctions while load points correspond to circle
nodes.

outside of them is the rail network, where square nodes represent junctions while circle
nodes are load points. The load point nodes are included in Figure 1 just for illustration.
In the actual model they are identified to form a single source node, and for every load point
there is a corresponding arc linking the source to the respective junction. The capacities
of these load point arcs are the demand forecasts, which may vary over the time horizon.
Arcs between junctions have capacities determined by the number of trains that can pass
the corresponding piece of track per day.

For the terminal modelling we focus on Terminals 1 and 2, as Terminal 3 was commis-
sioned only recently, and we did not implement a more detailed model yet. Both of the first
two terminals have a column of four larger nodes in the middle, representing the pads on
the stockyard where coal can be stored. In fact, real world operation can be reflected quite
accurately by requiring that the coal has to stay on the pad for a certain time. This dwelling
time is restricted to be between two parameters D1 and D2 which might be taken to be
three and ten days to capture what typically happens in practice. The inbound and the
outbound part of the terminals are to the left and to the right of the pad nodes, respectively.
Labeled arcs represent terminal machines where the labels “D”, “S”, “R”, “SL” and “B”
stand for dump station, stacker, reclaimer, ship loader and berth, respectively. Note that
in the Terminal 1 network there are arcs labeled D2 and D2′, both corresponding to the
same dump station, and similarly for dump station 3 and stackers 3 to 6. This is necessary
to capture the following aspect of the operational practice at the terminal. The six stackers
are grouped into four stacker streams: {1, 2}, {3}, {4} and {5, 6}. A stream is available if
at least one of its stackers is available. The inbound capacity is determined by the following

130 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

rules, where c1 = 85, c2 = 17.5 and c3 = 15 are capacity parameters.

1. Every dump station can be combined with every stacker stream.

2. The basic capacity of a (dump station, stacker stream)-pair is c1.

3. Every combination of dump station 2 or 3 with a stacker stream different from {1, 2}
(high-throughput pair) releases an additional capacity of c2.

4. If the number of available dump stations is greater than or equal to the number of
available stacker streams, and exactly one of the stackers 1 and 2 is available, there
is a reduction of c3 due to inefficiency.

For the given values of the capacity parameters, the inbound capacity of Terminal 1 can be
characterized more formally as follows. For i ∈ {1, 2, 3} and j ∈ {1, 2, . . . , 6}, let ai and bj
indicate the availability of dump station i and stacker j, respectively, i.e.

ai =

{
1 if dump station i is available,

0 otherwise,

bj =

{
1 if stacker j is available,

0 otherwise.

Then the inbound capacity equals the optimal value of the integer program (1)–(10).

max c1y1 + c2y2 − c3y3 (1)

s.t. x12 6 b1 + b2, (2)

x56 6 b5 + b6, (3)

y1 6 a1 + a2 + a3, (4)

y1 6 x12 + b3 + b4 + x56, (5)

y2 6 a2 + a3, (6)

y2 6 b3 + b4 + x56, (7)

3y3 > (a1 + a2 + a3)− y1 + 2x12 − (b1 + b2), (8)

x12, x56, y3 ∈ {0, 1}, (9)

y1 ∈ {0, 1, 2, 3}, y2 ∈ {0, 1, 2}. (10)

By (2) and (3), x12 and x56 are the indicator variables for the availability of the streams
{1, 2} and {5, 6}, respectively. Constraints (4) and (5) make y1 a bound for the number
of available (dump station, stacker)-pairs, and similarly, y2 bounds the number of available
high-throughput pairs by (6) and (7). Finally, (8) ensures that y3 = 1 if and only if the
inefficiency condition holds, because in this case

2 > (a1 + a2 + a3)− y1 > 0 and 2x12 − (b1 + b2) = 1.

In order for this characterization to be valid (i.e. the equivalence between the four inbound
capacity rules and the integer program (1)–(10)), certain assumptions on the parameters

MIP based maintenance scheduling for the HVCCC 131

c1, c2 and c3 are necessary. For instance, if c3 were larger than c1, the availability of stacker
1 does not enforce x12 = 1: In the situation

a1 = a2 = a3 = b1 = b3 = b4 = 1, b2 = b5 = b6 = 0,

the optimal solution of (1)–(10) is

x12 = x56 = y3 = 0, y1 = y2 = 2

with objective value 2(c1 + c2), while the capacity determined according to the rules is
3c1 + 2c2 − c3: There are three (dump station, stacker stream)-pairs available, two of them
high-throughput, but one of them inefficient.

We conclude, that the operational terminal logic is captured by the following capacities
on the inbound arcs in the network for Terminal 1:

• capacity 85 for arcs D1, D2, D3, S3, S4, S5, S6,

• capacity 70 for arcs S1 and S2, and

• capacity 17.5 for arcs D2′, D3′, S3′, S4′, S5′, S6′.

Using these types of considerations, where the one explained in detail is by far the most
involved, the full terminal network structure including capacities can be derived.

3.2 Maintenance scheduling

The initial schedules from the track owners and the terminal operators are given as a list of
maintenance jobs. Every entry of this list consists of the name of the asset to be maintained,
the start and the end time of the maintenance activity, and possibly an additional entry
indicating the type of work to be done. At the terminals an outage simply makes the
corresponding arcs unavailable for the job’s duration. In most cases that means the deletion
of a single arc, but in some cases for Terminal 1 two arcs may be affected as described in the
previous subsection. For the rail network a single asset can be associated with a sequence
of arcs in the network, and the effect of the outage on the capacity can be specified for each
of the affected arcs separately. For instance, if there is double track available an outage
might reduce the capacity to 50%, while on a single track it is reduced to zero. There are
also certain track inspection jobs that do not block the track completely for their whole
duration, but still cause delays. The effect of these jobs is taken into account by small
capacity reductions: the exact value of this reduction is given as input data based on the
practical experience of maintenance planners at HVCCC and lies typically between 10%
and 20%.

For a fixed schedule, we can collect the start and end times of the jobs and order the
list of all these times. This defines a partition of the time horizon into intervals of constant
maintenance activity. We call this partition the time slicing associated with the schedule,
and the intervals time slices. In order to measure the quality of the schedule we construct a
time expanded network containing one copy of the basic network per time slice. Flows in this

132 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

network represent total tonnes of coal transported during the time slice. The network copies
for consecutive time slices are connected via arcs linking the corresponding copies of pad
nodes. Flows on these linking arcs represent coal present on the pads at the transition time
between the time slices. The arc capacities in a time slice are taken to be the capacities of
the basic network – which express upper bounds on the rate of flow in each arc – discounted
by the capacity reduction factor for any maintenance job occurring on the arc during the
time slice, and multiplied by the length of the time slice. The results are upper bounds on
the amount of coal that can move along each arc during the time slice. We solve a max
flow problem in this expanded network, the value of which is interpreted as a measure for
the total system capacity. We take this as our primary optimization objective. In fact, it
is more complicated than a pure max flow problem, as there are side constraints from the
requirement that the coal stays on the ground for some time.

In discussions with the maintenance planners, it emerged that they would be prepared
to move the jobs, usually for intervals of plus or minus 7 days. We initially expected there
would be some inter-maintenance constraints, for example, that a type of job carried out at
4-weekly intervals could not be carried out more than 5 weeks apart. But the maintenance
planners were not concerned about this issue, and preferred the simple assumption that jobs
could not deviate more than some fixed number of days around their initial scheduled time.
The arising optimization problem is to take an input schedule and modify it according to
certain rules such that the total system capacity is maximized. The scheduling rules can
be summarized as follows.

1. No job can be moved by more than 7 days.

2. Major track outages (rail outages with a duration of more than 24 hours) must not
be moved.

3. The track inspection jobs and jobs with certain specific work type tags must not be
moved.

4. Rail jobs initially scheduled on a weekday (Monday to Friday) have to stay on a
weekday.

5. Rail jobs initially scheduled between 7:00am and 4:30pm have to stay in this time
window.

6. Jobs on the same item that do not overlap in the initial schedule are not allowed to
overlap in the optimized schedule.

7. Some jobs on stackers and reclaimers have an associated so-called washdown job which
immediately precedes them. These job pairs can only be moved together.

Our primary objective is to maximize the throughput, but from a practical point of view
it is also desirable not to deviate too much from the initial input schedule, as this was
the result of independent decision processes of the providers. So the final goal should be
to treat the maintenance scheduling in a bi-objective framework with the objectives total
throughput and (weighted) number of job movements. As a first step in that direction we

MIP based maintenance scheduling for the HVCCC 133

propose a lexicographic optimization: in a two-phase approach we first maximize the total
throughput and then minimize the number of moved jobs subject to a lower bound on the
throughput.

4 A mixed integer programming formulation

In this section we present a MIP formulation of the maintenance scheduling problem de-
scribed in Section 3. Let (N,A, s, s′, u) denote the network with node set N , arc set A,
source s and sink s′, and capacities ua ∈ R+ for a ∈ A. We denote the set of incoming and
outgoing arcs of a node v ∈ V by δ−(v) and δ+(v), respectively. Recall that the source s
replaces the load point nodes in Figure 1. In addition, let NP ⊆ N denote the set of nodes
corresponding to the pads on the terminal stockyards. They are special in that they allow
the storage of flow, and each of them has associated upper and lower capacities ulowerv and
uupperv , representing the acceptable variation of the amount of coal on the pad. We represent
the considered time horizon by a real interval [0, T] where time is measured in days, so for
the complete annual problem, T = 365. A maintenance job j is specified by

• its arc set Aj ⊆ A with associated capacity reduction factors ρja ∈ [0, 1] for a ∈
Aj , meaning that during the processing of job j the capacity of arc a is reduced to
(1− ρja)ua,

• a processing time pj ∈ R+,

• a finite set of possible start times Sj ⊆ [0, T], and

• an initial start time S0
j ∈ Sj .

Note that the first five scheduling rules listed in Section 3.2 will not appear as constraints in
the MIP as they can be enforced by simply restricting the sets Sj appropriately. Scheduling
a job to start at time Sj ∈ Sj reduces the capacity of arcs a ∈ Aj in the time interval
[Sj , Sj + pj]. We have to schedule a set J of maintenance jobs in such a way that the total
throughput over the interval [0, T] is maximized. We denote the set of job pairs that are not
allowed to overlap due to rule 5 by R ⊆

(
J
2

)
, and we call a maximal clique C in the graph

with vertex set J and edge set R a conflict clique. Then the scheduling rule just says that
for any conflict clique C, at any point of time at most one of the jobs in C can be processed.

In order to formulate the MIP, we need some more notation. Let T = {0 = t0 < t1 <
· · · < tM = T} be the set of all times relevant for the problem, i.e.

T =
(
[0, T] ∩ Z

)
∪
⋃
j∈J

⋃
a∈Aj

Sj ∪ (Sj + pj) .

Note that this implicitly defines M , the number of possible time slices that could occur in
the resulting maintenance schedule. We require T to contain all integers in the time horizon
in order to control the daily balances of in- and outflow at the stockyard. As for a fixed
schedule, this is a time slicing. In fact, it is a refinement of the time slicing associated with
the initial schedule (assuming that the initial start time of job j is contained in Sj for every
job j). Now we can define the variables of the model.

134 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

• For a ∈ A and i ∈ [M], xai ∈ R+ is the flow on arc a in the i-th time slice [ti−1, ti].

• For v ∈ NP and i ∈ [0,M], xvi ∈ R+ is the pad level at time ti.

• For v ∈ NP and d, d′ ∈ [T] with d′− d ∈ {D1, D1 + 1, . . . , D2} (mod T), Xdd′
v ∈ R+ is

the amount of flow entering node v on day d and leaving on day d′.

• For j ∈ J and t ∈ Sj , yjt is the indicator variable for job j starting at time t, i.e.

yjt =

{
1 job j starts at time t,

0 otherwise.

• For a ∈ A, i ∈ [M] and impact factor γ, the variable wiaγ ∈ {0, 1} indicates if in time
slice i arc a is affected by a job with impact γ, i.e.

wiaγ ∈ {0, 1} =


0 if arc a between ti−1 and ti is affected

by a job with reduction factor γ,

1 otherwise.

In order to formulate the constraints it is convenient to denote the set of relevant jobs for
an arc a ∈ A by Ja , i.e. Ja = {j ∈ J : a ∈ Aj}, and the set of possible capacity discount
(impact) factors by Πa = {ρja : j ∈ Ja}. We can now write down a MIP for the maintenance
scheduling problem. At first, our objective is to maximize the total flow

max z =
M∑
i=1

∑
a∈δ+(s)

xai (11)

subject to the following constraints.

Flow conservation constraints. Except at source and sink and at the pad nodes, where
flow between time slices is possible, we have flow conservation per time slice. For
every node v ∈ N \ (NP ∪ {s, s′}) and every i ∈ [M], we have∑

a∈δ−(v)

xai −
∑

a∈δ+(v)

xai = 0, (12)

and for v ∈ NP , i ∈ [M] ∑
a∈δ−(v)

xai −
∑

a∈δ+(v)

xai

 = xvi − xv,i−1. (13)

We also include periodic boundary conditions

xvM = xv0 (v ∈ NP) (14)

in this group of constraints.

MIP based maintenance scheduling for the HVCCC 135

Capacity constraints. There are arc capacities

xai 6 ua(ti − ti−1)(1− γ(1− wiaγ))

= ua(ti − ti−1)(1− γ) + ua(ti − ti−1)γwiaγ (15)

for all a ∈ A, i ∈ [M] and impact factors γ ∈ Πa. Note that this constraint and the
use of the w variables exposes the fixed charge network flow structure in the problem.
The job start indicator variables are linked to the impact indicators via constraints

wiaγ 6 1−
∑

t∈Sj : ti−pj6t6ti−1

yjt (16)

for all arcs a ∈ A, all impact factors γ ∈ Πa, all time slice indices i ∈ [M] and all jobs
j ∈ J with ρja = γ. In addition, we have node capacities

ulowerv 6 xvi 6 uupperv (17)

for all v ∈ NP and i ∈ [M]. Note that these are the only lower bounds on flow in the
model, so a flow of zero on all arcs, and a flow which is between these bounds and
identical for all variables linking a storage node across time slices, provides a feasible
solution.

Scheduling constraints. Every job has to be scheduled exactly once, and the processing
periods of incompatible jobs must not overlap.∑

t∈Sj

yjt = 1 (j ∈ J) , (18)

∑
j∈C

∑
t∈Sj

t<ti6t+pj

yjt 6 1 (i ∈ [M], C conflict clique), (19)

Dwell time constraints. The values of the flow variables xai determine the total daily
in- and outflows at the pad nodes. Now the inflow of day d has to leave between day
d + D1 and day d + D2. This is enforced by the nonnegativity of the variables Xdd′

v

and the constraints

d+D2∑
d′=d+D1

Xdd′
v =

∑
i : dtie=d

∑
a∈δ−(v)

xai, (20)

d−D1∑
d′=d−D2

Xd′d
v =

∑
i : dtie=d

∑
a∈δ+(v)

xai (21)

for v ∈ NP and d ∈ {1, 2, . . . , T}.

136 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Variable domains. The flow variables are nonnegative reals and the job start indicators
are binary.

xai, xvi, X
dd′
v > 0 (a ∈ A, v ∈ NP , i ∈ [M],

d, d′ ∈ [T]), (22)

yjt ∈ {0, 1} (j ∈ J, t ∈ Sj), (23)

wiaγ ∈ {0, 1} (a ∈ A, i ∈ [M], γ ∈ Πa). (24)

In a second phase we change the objective function to maximize the number of jobs starting
at their initially scheduled start time S0

j :

max
∑
j∈J

yjS0
j
, (25)

and we add a lower bound for the total throughput, i.e. a constraint of the form

M∑
i=1

∑
a∈δ+(s)

xai > B, (26)

where the bound B is a function of the best objective value obtained in the first phase. For
our computational experiments we just multiplied the maximal throughput by 0.999.

5 Solution strategies

In Section 4 we formulated a large scale MIP for the maintenance scheduling of the HVCC.
In this section we present some strategies for coping with this large problem. We focus on
Phase 1 of the lexicographic optimization, i.e. on the maximization of the total throughput,
as this is the primary objective in practice. For the annual planning more than 2,000 jobs
have to be scheduled. After some preprocessing taking into account the rules described in
Section 3.2 (fixed jobs, washdowns, etc.) there are still about 1,000 jobs contributing binary
variables yjt. In practice, jobs are scheduled by the half-hour or on even finer time scales.
If this is accurately modelled, allowing every half-hour in the time window as a potential
start time, a job without additional daylight or weekday constraints has about 14 ·48 = 672
potential start times, corresponding to binary variables. In Subsection 5.1 we describe a
heuristic method to choose a representative subset of the start times. Even with these
reduced candidate start time sets initial computational test reveal that the problem for the
complete annual time horizon cannot be solved by simple application of a commercial MIP
solver (in our case CPLEX 12.3). On the other hand, we obtain promising results if the
problem is restricted to a shorter time horizon. This motivates a rolling horizon approach
to the full problem as is described in Subsection 5.2.

5.1 Reducing the number of potential start times

Intuitively, focussing on two jobs j and j′, it seems one would always try to minimize their
overlap or to maximize their overlap. Consider for example the three arcs in Figure 2. If j

MIP based maintenance scheduling for the HVCCC 137

Figure 2: Three arcs from a network. Capacities are indicated by arc labels.

and j′ operate on arcs (1, 3) and (3, 4), respectively, they should be scheduled to overlap as
much as possible, while jobs on arcs (1, 3) and (2, 3) should be separated. To give a more
specific example, suppose the processing times are pj = 2 and pj′ = 3 and the candidate
start time sets are Sj = {1, 2} and Sj′ = {2, 3}.

1. If the arcs for j and j′ are (1, 3) and (3, 4) it is a good idea (at least locally) to schedule
both jobs to start at time Sj = Sj′ = 2, giving a total capacity of 2 ·12+3 ·0+12 = 36
over the time interval [0, 6].

2. If the arcs for j and j′ are (1, 3) and (2, 3) the local analysis suggests to schedule the
jobs to start at times Sj = 1 and Sj′ = 3 with a total capacity of 1 ·12+2 ·9+3 ·7 = 51
over the time interval [0, 6].

Of course the situation becomes more complicated with more jobs involved. But still, the
intuition is that there should be an optimal schedule with the property that every job j
starts at its earliest or at its latest possible start time, or its start or completion time
coincides with the start or completion time of some other job j′. For networks without
storage at nodes, this intuition can be converted into a rigorous argument, which is the
subject of ongoing research. For the present work we adopt a more pragmatic viewpoint
and generate candidate start time sets Sj by a heuristic based on the described intuition.
Let J0 ⊆ J be the set of jobs that are not fixed by a scheduling rule. For j ∈ J0, we initialize
Sj with the initial start time S0

j and the earliest and latest possible start times, i.e. S0
j ± 7.

For j ∈ J \ J0, clearly Sj = {S0
j }. Then we iteratively add candidate start times to the sets

Sj that could potentially align job j with the start or end of some job j′. In order to keep
the sets Sj reasonably small we ensure that every job gets at most 2 candidate start times
per day. The details of this procedure are given in Algorithm 1.

5.2 A rolling horizon approach

Computational tests revealed that even after the reduction of the number of binary variables
the complete annual problem is very hard. As the performance on restrictions of the problem
to shorter time horizons is better, the iterative solution of smaller subproblems is a natural
approach to solving the problem, which is also supported by the intuition that rescheduling
of a job should have mainly local effects: the system’s performance in September should be
largely independent of rescheduling of jobs in March. This suggests the following approach.
Fix the binary start indicator variables for all jobs outside a time window [t, t′] and fix all

138 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Algorithm 1 Generating start time sets.

for j ∈ J0 do Sj ←
{
S0
j , S

0
j − 7, S0

j + 7
}

S ←
⋃
j∈J Sj × {j}

while not STOP do
for j ∈ J0 do

for (t, j′) ∈ S with j′ 6= j do
for t′ ∈ {t, t+ pj′ , t− pj , t+ pj′ − pj} do

if t′ is a feasible start time for job j and
∣∣Sj ∩ [bt′c, bt′ + 1c

]∣∣ < 2 then
Add t′ to Sj and (t′, j) to S

if none of the sets Sj changed then STOP

flow variables outside a slightly larger time window [t − δ, t + δ], solve the resulting MIP,
shift the time windows by some value σ,and iterate. The whole procedure is described more
precisely in Algorithm 2.

Algorithm 2 The rolling horizon algorithm.

Parameters: w – inner time window width
δ – margin between inner and outer time window
σ – time window shift

Initialize the MIP (11)–(24)
for j ∈ J do

for t ∈ Sj do
if t = S0

j then yjt ← 1 else yjt ← 0

Generate an initial solution from the current values of the variables yjt
while not STOP

t← 0; t′ ← w
while t′ < T do

fix all binary variables for jobs j outside [t, t′]
fix all continuous variables for time slices outside [t− δ, t′ + δ]
solve the problem
update the start times of jobs j that are not fixed
unfix all fixed variables
t← t+ σ; t′ ← t′ + σ

6 Computational Results

In this section we present computational results for two real world data sets. We use the
raw schedules for the years 2010 and 2011 as inputs. The capacities for the load point arcs

MIP based maintenance scheduling for the HVCCC 139

are determined from the annual capacity forecast numbers for these years. They specify for
every load point on a quarterly level the expected daily demands. For 2010 this amounts
to a total daily demand of 375kt and for 2011 it is 475kt in total. After preprocessing, the
2010 schedule contains 1,277 jobs (197 of them fixed), and for 2011 there are 986 jobs (159
of them fixed). Figure 3 shows the distribution of the processing times.

Figure 3: Distributions of the job processing times.

All our computations are done on a Dell PowerEdge R710 with dual hex core 3.06GHz
Intel Xeon X5675 Processors and 96GB RAM running Red Hat Enterprise Linux 6. CPLEX
v12.3 is used in deterministic mode with a single thread.

From the 2010 and 2011 data we obtain eight quarterly and two annual instances. For
each of these instances we compare the performance of CPLEX with default settings on the
complete problem to the rolling horizon heuristic in Algorithm 2 with parameters w = 15,
δ = 10 and σ = 10 (all times in days). For the quarterly problems, we impose a time limit
of six hours for each phase. In the rolling horizon algorithm the time limit of six hours is
the stopping criterion for the while loop in Algorithm 2, and for each CPLEX call we use a
time limit of 25 minutes. For the annual problems we increase the time limit per phase to
24 hours, and the time limit per CPLEX call to 40 minutes. The results are presented in
Tables 1 and 2. Table 1 shows the relative improvements in throughput that are obtained by
the two methods as well as an upper bound for the throughput gain. More precisely, if the
total througput for the initial schedule is zinit, the best schedules for the two methods give
throughput values zfull and zrolling, respectively, and the best upper bound from CPLEX on

140 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Full problem Rolling horizon Upper bound

2010 Q1 2.21% 3.01% 4.14%

2010 Q2 1.90% 2.77% 3.28%

2010 Q3 1.70% 2.73% 3.10%

2010 Q4 1.47% 1.82% 2.27%

2010 full 1.61% 2.61% 3.40%

2011 Q1 2.24% 2.53% 2.60%

2011 Q2 1.58% 2.73% 2.96%

2011 Q3 2.39% 3.92% 4.27%

2011 Q4 1.49% 2.13% 2.90%

2011 full 0.00% 1.77% 2.76%

Table 1: Throughput improvements in Phase 1. All numbers are relative improvements
compared to the initial schedule that is used as a start solution. The last column contains
upper bounds for the throughput gains.

the whole quarterly problem is zbound, then the reported numbers are

zfull − zinit

zinit
,

zrolling − zinit

zinit
,

zbound − zinit

zinit
.

Note that the total throughput is about 120 megatonnes for 2010 and 140 megatonnes
for 2011, so an improvement of 1% corresponds to an additional throughput of 1.2 million
tonnes and 1.4 million tonnes, respectively. So the improvement obtained with our model
makes a significant difference in practice. Table 2 contains results on the numbers of moved
jobs. We make the following observations. For all ten instances the rolling horizon approach
yields a significantly larger total throughput than CPLEX on the complete problem. For
the full problem, the number of moved jobs can be reduced significantly in Phase 2, while
for the rolling horizon method in nine of the ten instances we do not find any alternative
schedule with a smaller number of moved jobs that yields at least 99.9% of the throughput
achieved in Phase 1. In Phase 2 the difference between “full problem” and “rolling horizon”
is that the “full problem” has a weaker lower bound on the throughput from the result of
Phase 1. A comparison of the lower bound columns “LB” in Table 2 indicates that there
might be a tradeoff between throughput and the number of moved jobs which should be
studied in more detail in future work.

MIP based maintenance scheduling for the HVCCC 141

Full problem Rolling horizon

Total P1 P2 LB P1 P2 LB

2010 Q1 342 284 20 14 289 39 26

2010 Q2 384 324 29 17 319 319 41

2010 Q3 293 248 60 16 242 242 40

2010 Q4 266 215 43 15 200 200 26

2010 full 1,277 1,049 1,049 46 1,040 1,040 108

2011 Q1 247 189 18 12 184 184 16

2011 Q2 257 198 11 10 207 207 32

2011 Q3 268 219 16 13 218 218 45

2011 Q4 222 175 17 11 257 257 23

2011 full 986 0 0 0 704 704 40

Table 2: Numbers of moved jobs. We report the total number of jobs (column “Total”),
the numbers of moved jobs for the final schedule after Phase 1 and Phase 2 (columns “P1”
and “P2”) and the lower bound for the number of moved jobs to achieve the throughput
that is enforced in Phase 2 (column “LB”).

7 Concluding remarks

In this paper we present a MIP model for the maintenance scheduling at the HVCC, where
the primary objective is to maximize the throughput, and the secondary objective is to
minimize deviations from a given initial schedule. The resulting large scale problems can-
not be solved directly, so efficient solution strategies are needed. We propose an iterative
approach based on solving subproblems obtained by fixing most of the binary variables.
Our computational tests show that this rolling horizon approach outperforms plain CPLEX
in terms of the obtained total throughput. Also the experimental results indicate a tradeoff
between throughput and the number of moved jobs.

Clearly, more work is necessary in order to improve the performance of the model. Our
experiments indicate that the initial LP bounds are rather weak, so adding appropriate
cutting planes is a promising approach. Another option for reducing the complexity of
the problem is to put an explicit bound on the number of moved jobs. This seems to
be a reasonable direction, especially as one outcome of discussions with the maintenance
planners was that the option to add more specific constraints on the set of allowed job
movements is a desirable feature. Another step towards a tool that is applicable in practice
is the development of a true bi-objective framework to find (or at least approximate) the
set of efficient solutions for the objectives “total throughput” and “number of schedule
modifications”.

142 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Acknowledgement We like to acknowledge the valuable contributions of Jonathon Vander-
voort, Rob Oyston, Tracey Giles, and the Annual Capacity Alignment Team from the
Hunter Valley Coal Chain Coordinator (HVCCC) P/L. Without their patience, support,
and feedback, this research could not have occurred. We also thank the HVCCC and
the Australian Research Council for their joint funding under the ARC Linkage Grant no.
LP0990739.

References

[1] C. Barnhart, N.L. Boland, L.W. Clarke, E.L. Johnson, G.L. Nemhauser and R.G.
Shenoi. “Flight string models for aircraft fleeting and routing”. In: Transportation
Science 32.3 (1998), pp. 208–220. doi: 10.1287/trsc.32.3.208.

[2] N. Boland, T. Kalinowski, R. Kapoor and S. Kaur. “Scheduling unit processing time
arc shutdown jobs to maximize network flow over time: complexity results”. In: Net-
works 63.2 (2014), pp. 196–202. doi: 10.1002/net.21536.

[3] N. Boland, T. Kalinowski, H. Waterer and L. Zheng. “Scheduling arc maintenance
jobs in a network to maximize total flow over time”. In: Discr. Appl. Math. 163 (2014),
pp. 34–52. doi: 10.1016/j.dam.2012.05.027.

[4] N. Boland and M. Savelsbergh. “Optimizing the Hunter Valley coal chain”. In: Supply
Chain Disruptions: Theory and Practice of Managing Risk. Ed. by H. Gurnani, A.
Mehrotra and S. Ray. Springer-Verlag London Ltd., 2011, pp. 275–302.

[5] G. Budai and R. Dekker. “An overview of techniques used in planning railway in-
frastucture maintenance”. In: Proceedings of IFRIMmmm (maintenance modelling
and management) Conference. Ed. by W. Geraerds and D. Sherwin. 2002, pp. 1–8.

[6] G. Budai, R. Dekker and R.P. Nicolai. “Maintenance and production: a review of
planning models”. In: Complex Systems Maintenance Handbook, Part D. Ed. by
K.A.H. Kobbacy and D.N.P. Murthy. Series in Reliability Engineering. Springer, 2008.
Chap. 13, pp. 321–344. doi: 10.1007/978-1-84800-011-7.

[7] G. Budai, D. Huisman and R. Dekker. “Scheduling preventive railway maintenance
activities”. In: Journal of the Operational Research Society 53 (2006), pp. 1035–1044.
doi: 10.1057/palgrave.jors.2602085.

[8] D. Frost and R. Dechter. “Optimizing with Constraints: A Case Study in Scheduling
Maintenance of Electric Power Units”. In: Proc. 5th International Symposium on
Artificial Intelligence and Mathematics. 1998, pp. 1–20.

[9] D. Frost and R. Dechter. “Optimizing with constraints: a case study in scheduling
maintenance of electric power units”. In: Proc. 5th Int. Conf. on Principles and
Practice of Constraint Programming – CP 1998. Ed. by M. Maher and J.-F. Puget.
Vol. 1520. LNCS. Springer, 1998, p. 469. doi: 10.1007/3-540-49481-2.

[10] A. Haghani and Y. Shafahi. “Bus maintenance systems and maintenance scheduling:
model formulations and solutions”. In: Transportation Research Part A: Policy and
Practice 36.5 (2002), pp. 453–482. doi: 10.1016/S0965-8564(01)00014-3.

http://dx.doi.org/10.1287/trsc.32.3.208
http://dx.doi.org/10.1002/net.21536
http://dx.doi.org/10.1016/j.dam.2012.05.027
http://dx.doi.org/10.1007/978-1-84800-011-7
http://dx.doi.org/10.1057/palgrave.jors.2602085
http://dx.doi.org/10.1007/3-540-49481-2
http://dx.doi.org/10.1016/S0965-8564(01)00014-3

MIP based maintenance scheduling for the HVCCC 143

[11] G. Keysan, G.L. Nemhauser and M.W.P. Savelsbergh. “Tactical and operational plan-
ning of scheduled maintenance for per-seat, on-demand air transportation”. In: Trans-
portation Science 44.3 (2010), pp. 291–306. doi: 10.1287/trsc.1090.0311.

[12] R.P. Nicolai and R. Dekker. “Optimal maintenance of multi-component systems: a
review”. In: Complex Systems Maintenance Handbook, Part D. Ed. by K.A.H. Kob-
bacy and D.N.P. Murthy. Series in Reliability Engineering. Springer, 2008. Chap. 11,
pp. 263–286.

[13] A. Sharma, G.S. Yadava and S.G. Deshmukh. “A literature review and future per-
spectives on maintenance optimization”. In: Journal of Quality in Maintenance En-
gineering 17.1 (2011), pp. 5–25. doi: 10.1108/13552511111116222.

http://dx.doi.org/10.1287/trsc.1090.0311
http://dx.doi.org/10.1108/13552511111116222

144 N. Boland, T. Kalinowski, H. Waterer, L. Zheng

Scheduling unit processing time arc shutdown jobs to

maximize network flow over time: complexity results∗

Natashia Boland Thomas Kalinowski Reena Kapoor Simranjit Kaur

Abstract

We study the problem of scheduling maintenance on arcs of a capacitated network
so as to maximize the total flow from a source node to a sink node over a set of time
periods. Maintenance on an arc shuts down the arc for the duration of the period in
which its maintenance is scheduled, making its capacity zero for that period. A set of
arcs is designated to have maintenance during the planning period, which will require
each to be shut down for exactly one time period. In general this problem is known
to be NP-hard. Here we identify a number of characteristics that are relevant for the
complexity of instance classes. In particular, we discuss instances with restrictions on
the set of arcs that have maintenance to be scheduled; series parallel networks; capacities
that are balanced, in the sense that the total capacity of arcs entering a (non-terminal)
node equals the total capacity of arcs leaving the node; and identical capacities on all
arcs.

Introduction

Many real life systems can be viewed as a network with arc capacities, supporting the flow of
a commodity. For example, transportation networks, or supply chains, may on occasion be
viewed this way. We were motivated by a particular coal export supply chain [4], in which
maximizing throughput is a key concern. Whilst this suggests a maximum flow model
would be appropriate, in fact, the real network is not static: capacities change over time,
and in particular, some arcs are shut down for maintenance at certain times. Often there is
some flexibility in the time when maintenance jobs can be scheduled. Every maintenance
schedule will incur some loss in the total throughput of the network. To obtain maximum
throughput, it is important to select the schedule that leads to minimum loss of flow. For
example consider the network in Figure 1 with three nodes {s, v, t}, three arcs {a, b, c} and
given arc capacities. The total throughput possible in two time periods when no arcs are
on maintenance is 14 units. Suppose that arc a and b have to go on maintenance for a unit
period of processing time in a time horizon of two periods. The two possible schedules are
either put both the arcs a and b on maintenance together in the first time period giving a
total throughput of 7 units in two time periods or put the arc a in first time period and
arc b in second time period giving the total throughput of 9 units in the two time periods.

∗Networks 63(2), 196–202, 2014, doi:10.1002/net.21536

145

http://dx.doi.org/10.1002/net.21536

146 N. Boland, T. Kalinowski, R. Kapoor, S. Kaur

s
v

a

5

4

b
7

c

Figure 1: Example network.

Clearly the second schedule is better than the first one as it is giving less loss of flow. This
leads to a model in which arc maintenance jobs need to be scheduled so as to maximize the
total flow in the network over time [1, 2, 3].

In this paper we consider the case of this problem in which all maintenance jobs have
unit processing time. The problem is defined over a network N = (V,A, s, t, u) with node set
V , arc set A, source s ∈ V , sink t ∈ V and nonnegative integral capacity vector u = (ua)a∈A.
Note that we permit parallel arcs, i.e. there may exist more than one arc in A having the
same start and end node, so A is a multiset. By δ−(v) and δ+(v) we denote the set of
incoming and outgoing arcs of node v, respectively. We consider this network over a set of
T time periods indexed by the set [T] := {1, 2, . . . , T}, and our objective is to maximize
the total flow from s to t. In addition, we are given a subset J ⊆ A of arcs that have to be
shut down for exactly one time period in the time horizon. In other words, there is a set of
maintenance jobs, one for each arc in J , each with unit processing time. Our optimization
problem is to choose these outage time periods in such a way that the total flow from s to
t is maximized. More formally, this can be written as a mixed binary program as follows:

max z =
T∑
i=1

 ∑
a∈δ+(s)

xai −
∑

a∈δ−(s)

xai

 (1)

s.t. xai 6 ua a ∈ A \ J, i ∈ [T], (2)

xai 6 uayai a ∈ J, i ∈ [T], (3)

T∑
i=1

yai = T − 1 a ∈ J, (4)∑
a∈δ−(v)

xai =
∑

a∈δ+(v)

xai v ∈ N \ {s, t}, i ∈ [T], (5)

xai > 0 a ∈ A, i ∈ [T], (6)

yai ∈ {0, 1} a ∈ J, i ∈ [T], (7)

where xai > 0 for a ∈ A and i ∈ [T] denotes the flow on arc a in time period i, and
yai ∈ {0, 1} for a ∈ J and i ∈ [T] indicates when the arc a is not shut down for maintenance
in time period i, i.e. yai = 0 in the period i in which the outage for arc a is scheduled.

To the best of our knowledge, Boland et al. [1, 2, 3] initiated study on the problem with
general processing times. In [1, 2], the coal supply chain application, which has a number
of additional side constraints, is modelled and solved using a rolling time horizon mixed
integer programming approach. In [3], the complexity of the general problem is established,

Scheduling unit processing time arc shutdown jobs 147

and four local search heuristics are developed and compared. We are not aware of any
other studies on this problem. Several authors have studied dynamic network flows. For
instance [6] studied the problem of finding the maximum flow that can be sent from a source
to a sink in T time units, in a network with transit times on the arcs. Variations of the
dynamic maximum flow problem with zero transit times are discussed in [5], [8], and [9].
None of these have a scheduling component. Machine scheduling problems have received
a great deal of attention in the literature [10], but in the problem we study here, there is
no underlying machine, and the association of jobs with network arcs and a maximum flow
objective give it quite a different character. The closest work we can find is that in the recent
paper of Tawarmalani and Li [11], which considers multiperiod maintenance scheduling over
a network, in which the objective is based on multicommodity flows (with origin-destination
demands, but without arc capacities), there is a limit on the number of arcs that can be
shut down in any one period, and the network’s structure is restricted to a tree. Complexity
results are provided for linear networks, with a polynomial algorithm in the case of (nearly)
uniform commodity demands, and a proof that the case of general demands is strongly
NP-hard. Integer programming models are also considered, and polyhedral analysis carried
out. The lack of previous attention to the trade-off between maintenance scheduling and
network flow reduction in the literature is also noted in [11].

Our key contribution in this paper is an analysis of how the complexity of the problem
depends on important characteristics: (i) the case that the set of arcs with a job contains a
minimum cut of the network, (ii) balanced networks, in which the capacity into and out of
each (non-terminal, i.e. transhipment) node is equal, (iii) networks that are series-parallel,
(iv) the number of time periods is treated as a fixed parameter, and (v) the case that
all arcs have the same capacity. We show for case (i) that it is optimal to schedule all
jobs in the same time period, and that this is also true if the network is both balanced
and series-parallel. However if the network is balanced but not necessarily series-parallel,
then the problem is strongly NP-hard. We provide an approximation ratio for scheduling
all jobs in the same time period in the general case, which shows this is asymptotically
optimal as T approaches infinity. For case (iv), we show that even if T = 2 and the network
contains only a single transhipment node, the problem is weakly NP-hard, and we give
an algorithm for series-parallel networks that has pseudopolynomial complexity for T fixed
(but is exponential in T). In case (v), if all arcs have the same capacity, we prove that
the problem can be reduced to a maximum flow problem and T additional linear programs,
and hence can be solved in polynomial time. In this case it is not necessarily optimal to
schedule all jobs at the same time.

The paper is organized as follows. Section 1 contains a discussion of cases of the network
with a single transhipment node. In Section 2 we explore general networks, and in Section
3 we consider the case that all arcs have the same capacity. Finally, in Section 4 we suggest
some future directions for study of this problem.

148 N. Boland, T. Kalinowski, R. Kapoor, S. Kaur

1 Networks with single transhipment node

The problem in general is NP-hard [3]. In this proof, the reduction gave rise to a network
with a single transhipment node, which was not balanced, and in which the set of arcs with
associated jobs did not contain a minimum cut. This left open the complexity of the cases
that all arcs in a minimum cut have an associated outage, or the network is balanced. This
section gives a result that describes a class of networks with single transhipment node that
covers the above-mentioned cases and is easy to resolve. Consider a network having only
one transhipment node, say v. Let

C−1 =
∑

a∈δ−(v)

ua, C+
1 =

∑
a∈δ+(v)

ua,

C−2 =
∑

a∈δ−(v)\J

ua, C+
2 =

∑
a∈δ+(v)\J

ua.

If all jobs are scheduled at the same time, say in time period 1, we obtain a total throughput
of

min
{
C−2 , C

+
2

}
+ (T − 1) min

{
C−1 , C

+
1

}
.

On the other hand, using
∑

a∈δ−(v)∩J

ua = C−1 − C−2 and
∑

a∈δ+(v)∩J

ua = C+
1 − C+

2 we obtain

an upper bound of

min
{
TC−2 + (T − 1)(C−1 − C−2), TC+

2 + (T − 1)(C+
1 − C+

2)
}

= min
{
C−2 + (T − 1)C−1 , C

+
2 + (T − 1)C+

1

}
.

If (i) C−1 6 C+
1 and C−2 6 C+

2 or (ii) C+
1 6 C−1 and C+

2 6 C−2 then the upper bound equals
the lower bound, and this proves the following sufficient optimality condition.

Proposition 1. If (i) C−1 6 C+
1 and C−2 6 C+

2 or (ii) C+
1 6 C−1 and C+

2 6 C−2 , then it is
optimal to schedule all jobs at the same time.

As a simple consequence we note that in the following situations it is optimal to schedule
all jobs at the same time:

• C−1 = C+
1 , so the network is balanced, or

• C−1 6 C+
1 and J ⊇ δ−(v), or

• C+
1 6 C−1 and J ⊇ δ+(v).

For a time horizon of two time periods the problem asks for a partition of the job set
J = J1 ∪ J2 into two parts such that the total flow is maximized, i.e. we want to find

max
J1∪J2=J

min

 ∑
a∈δ−(v)\J1

ua,
∑

a∈δ+(v)\J1

ua

+ min

 ∑
a∈δ−(v)\J2

ua,
∑

a∈δ+(v)\J2

ua


 .

The following proposition shows that it is NP-hard to decide if the trivial partition J1 = J
and J2 = ∅ is optimal.

Scheduling unit processing time arc shutdown jobs 149

Proposition 2. For a network with one transhipment node and a time horizon of two
periods it is NP-hard to decide if it is optimal to schedule all jobs at time 1.

Proof. Reduction from Partition (see [7]). An instance is given by a set D = {d1, . . . , dm}
of positive integers with

∑m
i=1 di = 2B, and the problem is to decide if there is a partition

D = D1 ∪ D2 such that
∑

d∈D1
d =

∑
d∈D2

d = B. We consider the network shown in
Figure 2 where every arc except the bold arc from v to t has an associated job. Scheduling

s t

v

2d1

2d2
b

b

b

2dm

2B − 1

2B − 1

1

Figure 2: The network for the reduction from Partition. Arcs are labeled with capacities.

all jobs at time 1 gives a total flow of 4B − 1. A total flow of 4B is possible if and only if
there is a flow of 2B in each time period, and this is equivalent to a positive solution for
the Partition instance.

The reduction from Partition suggests the use of dynamic programming to obtain a
pseudopolynomial algorithm for the single node problem. This is indeed possible, and in
fact can be done more generally for series-parallel networks. This more general approach is
presented in the next section (see Corollary 1).

2 General Networks

In this section we explore complexity issues for networks with more than one transhipment
node and also discuss some of its tractable subclasses. We start with a lemma generalizing
the upper bound in the single node case.

Lemma 1. Let S ⊆ A be any s-t cut in the network. The objective value for problem
(1) – (7) is bounded above by

T
∑
a∈S\J

ua + (T − 1)
∑
a∈S∩J

ua.

Proof. Since S is a cut, the total flow over the whole time horizon is bounded above by

T∑
i=1

∑
a∈S

xai =
∑
a∈S

T∑
i=1

xai =
∑
a∈S\J

T∑
i=1

xai +
∑
a∈S∩J

T∑
i=1

xai 6
∑
a∈S\J

Tua +
∑
a∈S∩J

(T − 1)ua,

by the combination of (2) — (4). The result follows.

150 N. Boland, T. Kalinowski, R. Kapoor, S. Kaur

As an immediate consequence we obtain that the problem is tractable when the set of
arcs that have to undergo maintenance contains a minimum cut.

Proposition 3. If J contains a minimum cut S of the network then it is optimal to schedule
all jobs at the same time.

Proof. Since S is a minimum cut, the maximum flow in any period in which no maintenance
is scheduled is

∑
a∈S ua, so scheduling all jobs at time 1 gives a total flow of (T−1)

∑
a∈S ua,

which achieves the upper bound from Lemma 1.

In Section 1, we showed that the case of single-node networks with balanced capacities
is easy. The following theorem shows that the balanced property alone is not enough.

Proposition 4. The problem is strongly NP-hard for balanced networks.

Proof. Reduction from 3-Partition (see [7]). A 3-Partition instance is given by an
integer B and a set {d1, . . . , d3m} of integers with B/4 < di < B/2 for all i and

∑3m
i=1 di =

mB. The problem is to decide if there is a partition of the set {d1, . . . , d3m} into m triples
such that the sum of each triple equals B. Consider the network shown in Figure 3, where
the arc labels indicate capacities, and the bold arcs don’t have jobs associated with them.
Also let the time horizon be T = m. By Lemma 1 applied to the cut ({s}, {v1, v2, t}), the

s t

v1

v2

d1

d2
b

b

b

d3m−1

d3m

B

B
b

b

b

B

B

(m− 1)B

(m− 1)B

m arcs

Figure 3: The network for the reduction from 3-Partition.

total flow is bounded by

T (m− 1)B + (T − 1)
3m∑
i=1

di = 2m(m− 1)B.

To achieve the bound 2m(m− 1)B the arc (s, v2) is at capacity in every time period. This
implies that we have to schedule exactly one job on the arcs between v2 and t in each time
period. Now flow conservation in node v2 implies that the flow on the arc (v1, v2) is zero
in every time period. Considering the cut ({s, v1, v2}, {t}) the bound 2m(m − 1)B can be
achieved only if the arc (v1, t) is at capacity in every time period. Using flow conservation in
node v1 we can now conclude that in order to achieve the bound 2m(m−1)B it is necessary

Scheduling unit processing time arc shutdown jobs 151

and sufficient to send in each time period (m− 1)B units of flow from s to v1, and this can
be done if and only if the answer for the 3-Partition instance is YES.

As already mentioned, not all instances of the general balanced network are hard. The
single-node variant is easy and is in fact a special case of a series-parallel network. Note
that the network constructed in the above NP-hardness proof is not series-parallel. We
show below (Proposition 5) that indeed the case of series-parallel balanced networks is easy.
However we first make precise our definition of series-parallel. Throughout this paper, by
series-parallel network we mean a two-terminal series-parallel network : a network that
has a single source and single sink and is constructed by a sequence of series and parallel
compositions starting from single arcs. For two networks N1 and N2 the parallel composition
of N1 and N2 is obtained by identifying the source node s1 and sink node t1 of N1 with the
source node s2 and sink node t2 of N2, respectively. The series composition of N1 and N2

is obtained by identifying the sink node t1 of N1 with the source node s2 of N2. We denote
these compositions by N1 ⊕P N2 and N1 ⊕S N2, respectively. The next proposition shows
that series-parallel balanced networks are tractable.

Proposition 5. If the network is series-parallel and balanced then it is optimal to schedule
all jobs at the same time.

Proof. For a network N = (V,A, s, t, u) and a subset J ⊆ A let FN,J denote the maximum
flow value in the network N = (V,A \ J, s, t, u |A\J). The statement that it is optimal to
schedule all jobs at the same time is equivalent to

FN,J∪J ′ + FN,∅ > FN,J + FN,J ′

for all J, J ′ ⊆ A (see [3]). We prove the proposition by induction on the structure of the
graph. The claim holds for the base case of a single arc. So assume that N is a series-parallel
network that is not a single arc. Then N = N1 ⊕P N2 or N = N1 ⊕S N2 for some smaller
networks Ni = (Vi, Ai, si, ti, ui) (i ∈ {1, 2}), and by induction

FNi,Ji∪J ′i + FNi,∅ > FNi,Ji + FN,J ′i

for all Ji, J
′
i ⊆ Ai. Now let J, J ′ ⊆ A = A1 ∪ A2 be arbitrary and put Ji = J ∩ Ai and

J ′i = J ′ ∩Ai for i ∈ {1, 2}.

Case 1. N = N1 ⊕P N2. Then

FN,J∪J ′ + FN,∅ = FN1,J1∪J ′1 + FN1,∅ + FN2,J2∪J ′2 + FN2,∅

> FN1,J1 + FN1,J ′1
+ FN2,J2 + FN2,J ′2

= FN,J + FN,J ′ .

Case 2. N = N1 ⊕S N2. By the assumption that N is balanced, we have FN,∅ = FN1,∅ =
FN2,∅, and we denote this common value by F . Now

FN,J∪J ′+F = min{FN1,J1∪J ′1 , FN2,J2∪J ′2}+F > min{FN1,J1+FN1,J ′1
, FN2,J2+FN2,J ′2

}
> min{FN1,J1 , FN2,J2}+ min{FN1,J ′1

, FN2,J ′2
} = FN,J + FN,J ′ .

152 N. Boland, T. Kalinowski, R. Kapoor, S. Kaur

Since scheduling all jobs in the same period seems to be optimal in some cases, we now
ask how well it performs as an approximation algorithm in the general case.

Proposition 6. Scheduling all jobs in the same period gives an approximation ratio no less
than (T−1)

T .

Proof. Let z∗ denote the optimal value and z̃ denote the throughput obtained by scheduling
all arcs in the same period. Clearly z̃ > (T − 1)F and z∗ 6 TF , so

z̃

z∗
>
T − 1

T
.

Thus scheduling all jobs in the same period is asymptotically optimal in the sense that
the approximation ratio approaches 1 as T tends to infinity. In general the analysis in
the proof of Proposition 6 is tight as can be seen by considering the network in Figure 4
where all arcs have unit capacity and the set J of arcs with a job is the set of the two arcs
from s to v. Then scheduling both outages at the same time yields a total throughput of
T − 1 while for T > 2 the outages can be scheduled in different time periods which yields
a total throughput of T , and the approximation ratio in this case is (T − 1)/T . For certain

s t

v

Figure 4: A network where the bound of Proposition 6 is tight.

instances the analysis of the approximation ratio can be slightly improved. For this let

L = (T − 1)F + min
S∈S

∑
a∈S\J

ua, U = min
S∈S

(
T
∑
a∈S

ua −
∑
a∈S∩J

ua

)

where the minima are over the the set S of all s-t-cuts in the network. Clearly, L is the
objective value for scheduling all jobs in the same time period, and from Lemma 1 it follows
that U is an upper bound for the optimal objective value. Thus L/U is a lower bound for
the approximation ratio, and since L > (T − 1)F and U 6 TF this is at least as good as
the bound from Proposition 6. Note that this generalizes Proposition 3: if J contains a min
cut S then both of the minima in the definitions of L and U are obtained for S, and we get
L = U = (T − 1)F , the approximation ratio is 1, in other words it is optimal to schedule
all jobs in the same time period.

Next we present an algorithm for general series-parallel networks, which for the instance
used in the proof of Proposition 2 coincides with the well known dynamic programming
algorithm for Partition. With feasible values for the binary variables yai (a ∈ J , i ∈ [T]) we
can associate a vector zy = (zyi)i=1,...,T where zyi denotes the maximum flow in the network
with arc set A \ {a : yai = 0}. By symmetry we may assume that zy1 > zy2 > · · · > zyT .
Our algorithm exploits the fact that many different maintenance schedules y may give rise
to the same vector zy to gain efficiency over naive enumeration of schedules. The algorithm

Scheduling unit processing time arc shutdown jobs 153

computes the possible vectors z for subnetworks of the network N , starting from single arcs.
To do this we use sp-trees which encode the construction of series-parallel networks. An
sp-tree for a series-parallel network N is a full binary tree in which the leaves correspond
to the arcs of N , any internal node corresponds to the composition of its two child nodes,
and the type of composition (series or parallel) is indicated by a node label (‘S’ or ‘P’,
respectively). Figure 5 shows a network and the corresponding sp-tree. Recognition of

s t
v1

a

b

c

d

S

P P

a b c d

Figure 5: A series-parallel network and the corresponding sp-tree.

series-parallel networks and construction of an sp-tree can be done in linear time [12]. So
assume we are given the sp-tree with node set V = L ∪ W, where L is the set of leaves
and W is the set of internal nodes. The set W is partitioned into level sets Wi where Wi

is the set of internal nodes at distance i from the root. Let d be the largest index such
that Wd 6= ∅. The lists of possible maximum flow vectors z are initialized at the leaves by
assigning a list with a single element to the leaf corresponding to arc a. The unique element
in this list is (ua, ua, . . . , ua, 0) if a ∈ J and (ua, ua, . . . , ua, ua) if a 6∈ J . Then the lists for
the internal nodes are computed going up in the tree as described in Algorithm 1. The list
generated for each node v ∈ V is denoted by Lv. This algorithm returns the maximum total
throughput, and it is easy to see how to keep track of corresponding schedules for all the
elements of the lists in the internal nodes.

Example 1. Suppose for the network in Figure 5 the capacities are ua = 4, ub = 1,
uc = ud = 2, the set of arcs with a job is J = {a, b, c}, and the time horizon is T = 3.
Figure 6 illustrates how the lists for the internal nodes are computed. The optimal vector

S

P P

{(4, 4, 0)} {(1, 1, 0)} {(2, 2, 0)} {(2, 2, 2)}

{(5, 5, 0), (5, 4, 1)} {(4, 4, 2)}

{(4, 4, 0), (4, 2, 0), (4, 4, 1), (4, 2, 1)}

Figure 6: Computation of the possible maximum flow vectors.

154 N. Boland, T. Kalinowski, R. Kapoor, S. Kaur

Algorithm 1 Maximizing total throughput for series-parallel networks

for v ∈ L do
Let a ∈ A be the arc corresponding to v
if a ∈ J then Lv ← {(ua, ua, . . . , ua, 0)} else Lv ← {(ua, ua, . . . , ua, ua)}

for i = d, d− 1, . . . , 0 do
for v ∈ Wi do

Lv ← {} /* initialize empty list*/
Let u and w be the child nodes of v
for each z ∈ Lu, z′ ∈ Lw and π a permutation of {1, 2 . . . , T} do

if v is a parallel composition node then
for i ∈ [T] do z′′i = zi + z′π(i)

else /* v is a series composition node */
for i ∈ [T] do z′′i = min{zi, z′π(i)}

sort the components of z′′ in non-increasing order
if z′′ 6∈ Lv then add z′′ to Lv

Let v be the root node of the sp-tree and return max
z∈Lv

T∑
i=1

zi

in the root node is (4, 4, 1) giving a total throughput of 9, and this can be obtained by
scheduling the job on arc b for the second time period and the jobs for arcs a and c for the
third time period.

Bounding the runtime of Algorithm 1 we obtain the following complexity result.

Proposition 7. For series-parallel networks with m arcs the problem can be solved in time
O
(
mT T+3/2e−T log(T)(mB + 1)2T

)
, where B is an upper bound for the capacities.

Proof. The entries of the vectors in the lists at the internal nodes are bounded by mB, hence
every list can contain at most (mB + 1)T elements. Thus the loop over (z, z′) ∈ Lu × Lw
and permutations π is over at most T !(mB+ 1)2T elements. Inside this loop is another one
giving an additional factor T , and a sorting operation which is at most a factor of T log(T).
With the use of hash tables, checking z′′ is not already in the list prior to insertion will not
worsen the complexity of operations inside this loop, which is thus T log(T). In total there
are m− 1 internal nodes, thus the runtime is O(T log(T)T !(mB+ 1)2T (m− 1)) from which
the result follows when T ! is bounded using Stirling’s formula.

Corollary 1. For series-parallel networks and fixed time horizon T the problem can be
solved in time O

(
m(mB)2T

)
.

We add two remarks on an efficient implementation of Algorithm 1.

1. Any vector z that is dominated by another vector z′ in the list, meaning that zi 6 z′i
for all i ∈ {1, 2 . . . , T}, can be removed immediately.

Scheduling unit processing time arc shutdown jobs 155

2. In the loop over (z, z′) ∈ Lu × Lw and permutations π it is necessary to loop over
all permutations only if the entries of the vectors z and z′ are pairwise distinct. An
efficient implementation detects the occurrence of multiple entries and restricts the
range of the considered permutations accordingly.

3 Networks with all arcs having unit capacity

In this section we study the case that the capacity of every arc equals 1. We can aggregate
all time periods and solve a standard max flow problem to get an upper bound. The max
flow problem is

max
∑

a∈δ+(s)

Xa −
∑

a∈δ−(s)

Xa (8)

s.t.
∑

a∈δ+(v)

Xa =
∑

a∈δ−(v)

Xa v ∈ N \ {s, t}, (9)

Xa 6 T a ∈ A \ J, (10)

Xa 6 T − 1 a ∈ J, (11)

Xa > 0 a ∈ A. (12)

We will show that this upper bound is actually tight. This follows by induction once we
can find a max flow X∗ and cover all the arcs carrying flow T by a collection of arc disjoint
s-t-paths. Given any max flow we can reduce the flow along any cycles carrying flow, and
we can remove arcs with zero flow. So in order to prove that the upper bound is tight it is
sufficient to prove the following result.

Proposition 8. Let (V,A, s, t) be an acyclic network with source s ∈ V and sink t ∈ V ,
and suppose X∗ : A→ [T] satisfies the flow conservation constraints∑

a∈δ−(v)

X∗a =
∑

a∈δ+(v)

X∗a for all v ∈ V \ {s, t}.

Then there is a collection P of arc-disjoint s-t-paths such that A∗ ⊆ ⋃P∈P P , where A∗ =
{a ∈ A : X∗a = T} is the set of arcs carrying flow T .

Proof. We consider the following binary program, in which (ξa)a∈A induces a set of arc-
disjoint s-t-paths:

max
∑
a∈A∗

ξa (13)

s.t.
∑

a∈δ+(v)

ξa −
∑

a∈δ−(v)

ξa = 0 v ∈ V \ {s, t}, (14)

ξa ∈ {0, 1} a ∈ A. (15)

We have to prove that the optimal objective value for the problem (13) — (15) is |A∗|. The
flow conservation constraints (14) form a network matrix, hence we do not lose anything by

156 N. Boland, T. Kalinowski, R. Kapoor, S. Kaur

relaxing integrality, i.e. we can replace (15) by 0 6 ξa 6 1 for all a ∈ A. The dual problem
can be written in the form

min
∑
a∈A

ηa (16)

s.t. πv − πw + ηa > 0 a = (v, w) ∈ A \A∗, (17)

πv − πw + ηa > 1 a = (v, w) ∈ A∗, (18)

πs = πt = 0, (19)

ηa > 0 a ∈ A. (20)

A feasible solution with objective value |A∗| is given by πv = 0 for all v ∈ V , ηa = 0 for
a ∈ A \ A∗, and ηa = 1 for a ∈ A∗. In order to prove our claim we have to check that |A∗|
is a lower bound, i.e. that

∑
a∈A ηa > |A∗| for every feasible solution. To see this let P ′

be any decomposition of the flow X∗ into paths, that is a collection of s-t-paths such that
every arc a is contained in exactly X∗a paths P ∈ P ′. Adding up constraints (17) and (18)
over the arcs of any path P ∈ P ′, we obtain

∑
a∈P

ηa > |P ∩A∗|, hence

∑
a∈A

X∗aηa =
∑
P∈P ′

∑
a∈P

ηa >
∑
P∈P ′
|P ∩A∗| = T |A∗|.

Finally, using X∗a 6 T for all a ∈ A,∑
a∈A

ηa >
∑
a∈A

X∗a
T
ηa > |A∗|.

To summarize, if ua = 1 for all a ∈ A then the problem can be reduced to solving
the max flow problem (8) – (12) followed by T instances of (the linear relaxation of) the
problem (13) – (15). Consequently, these instances can be solved in time polynomial in the
size of the network and the time horizon T .

Remark 1. It is straightforward to generalize the result of this section to the problem
where every arc can have several unit processing time jobs which must not overlap. The
only necessary modification in this case is to replace the right-hand side of constraint (11)
by T −ma where ma is the number of jobs that have to be scheduled on arc a.

4 Future Work

It would be interesting to find a more combinatorial proof of Proposition 8, rather than
resorting to solution of linear programs. A combinatorial proof may suggest combinatorial
algorithms for constructing the arc-disjoint paths that cover all arcs with flow T . Practical
algorithms for more general problems are also of interest.

Scheduling unit processing time arc shutdown jobs 157

References

[1] N. Boland, T. Kalinowski, H. Waterer and L. Zheng. “An optimisation approach to
maintenance scheduling for capacity alignment in the Hunter Valley coal chain”. In:
Proc. 35th APCOM Symposium: Applications of Computers and Operations Research
in the Minerals Industry. Ed. by E.Y. Baafi, R.J. Kininmonth and I. Porter. The
Australasian Institute of Mining and Metallurgy Publication Series 11. Wollongong,
Australia, 2011, pp. 887–897.

[2] N. Boland, T. Kalinowski, H. Waterer and L. Zheng. “Mixed integer programming
based maintenance scheduling for the Hunter Valley Coal Chain”. In: Journal of
Scheduling 16.6 (2013), pp. 649–659. doi: 10.1007/s10951-012-0284-y.

[3] N. Boland, T. Kalinowski, H. Waterer and L. Zheng. “Scheduling arc maintenance
jobs in a network to maximize total flow over time”. In: Discr. Appl. Math. 163 (2014),
pp. 34–52. doi: 10.1016/j.dam.2012.05.027.

[4] N. Boland and M. Savelsbergh. “Optimizing the Hunter Valley coal chain”. In: Supply
Chain Disruptions: Theory and Practice of Managing Risk. Ed. by H. Gurnani, A.
Mehrotra and S. Ray. Springer-Verlag London Ltd., 2011, pp. 275–302.

[5] L. Fleischer. “Universally maximum flow with piecewise-constant capacities”. In: Net-
works 38.3 (2001), pp. 115–125. doi: 10.1002/net.1030.

[6] L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton, N.J.: Princeton Univ.
Press, 1962.

[7] M.R. Garey and D.S. Johnson. Computers and intractability, a guide to the theory of
NP–completeness. W.H. Freeman, 1979.

[8] B. Hajek and R.G. Ogier. “Optimal dynamic routing in communication networks
with continuous traffic”. In: Networks 14.3 (1984), pp. 457–487. doi: 10.1002/net.
3230140308.

[9] B. Hoppe and É. Tardos. “Polynomial time algorithms for some evacuation problems”.
In: Proc. 5th ACM-SIAM symposium on discrete algorithms SODA 1994. Society for
Industrial and Applied Mathematics. 1994, pp. 433–441.

[10] M.L. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2012.

[11] Mohit Tawarmalani and Yanjun Li. “Multi-period maintenance scheduling of tree
networks with minimum flow disruption”. In: Naval Research Logistics (NRL) 58.5
(2011), pp. 507–530. doi: 10.1002/nav.20455.

[12] Jacobo Valdes, Robert E Tarjan and Eugene L Lawler. “The recognition of series
parallel digraphs”. In: Proc. 11th ACM symposium on Theory of computing, STOC
1979. ACM. 1979, pp. 1–12. doi: 10.1145/800135.804393.

http://dx.doi.org/10.1007/s10951-012-0284-y
http://dx.doi.org/10.1016/j.dam.2012.05.027
http://dx.doi.org/10.1002/net.1030
http://dx.doi.org/10.1002/net.3230140308
http://dx.doi.org/10.1002/net.3230140308
http://dx.doi.org/10.1002/nav.20455
http://dx.doi.org/10.1145/800135.804393

158 N. Boland, T. Kalinowski, R. Kapoor, S. Kaur

Incremental network design with shortest paths∗

Matthew Baxter Tarek Elgindy Andreas Ernst Thomas Kalinowski
Martin Savelsbergh

Abstract

We introduce a class of incremental network design problems focused on investigating
the optimal choice and timing of network expansions. We concentrate on an incremental
network design problem with shortest paths. We investigate structural properties of op-
timal solutions, we show that the simplest variant is NP-hard, we analyze the worst-case
performance of natural greedy heuristics, and we derive a 4-approximation algorithm.

1 Introduction

Consider a network optimization problem, e.g., a shortest path problem, a maximum flow
problem, or a traveling salesman problem. Next, assume that this optimization problem
has to be solved in a number of consecutive time periods and that in each time period the
value of an optimal solution is recorded, e.g., the cost of an s − t path, the value of an
s − t flow, or the cost of a TSP tour. Let the objective be to minimize or maximize the
total cost or value over the planning horizon. At this point, that simply means solving
the network optimization problem and multiplying the value of an optimal solution with
the number of time periods in the planning horizon. It becomes more interesting when
a budget is available in each time period to expand the network, i.e., to build additional
links. Expanding the network may improve the cost or value of an optimal solution to the
network optimization problem in future time periods and thus may improve the total cost
or value over the planning horizon. However, deciding which links to build and the sequence
in which to build them is nontrivial. In part, because in some situations the benefits of
building a link will only materialize when other links have been built as well, e.g., adding a
single link to the network does not lead to a shorter TSP tour, but adding two links to the
network does.

We introduce a class of incremental network design problems focused on the optimal
choice and timing of network expansions given that these network expansions impact the
value a solution to an optimization problem that is solved on the network in each of the
periods of the planning horizon. We concentrate on the incremental network design problem
with shortest paths. We investigate structural properties of optimal solutions, we show that
even the simplest variant is NP-hard, we establish a class of instances that can be solved in

∗European Journal of Operational Research 238(3), 675–684, 2014, doi:10.1016/j.ejor.2014.04.018

159

http://dx.doi.org/10.1016/j.ejor.2014.04.018

160 M. Baxter, T. Elgindy, A. Ernst, T. Kalinowski, M. Savelsbergh

polynomial time, we analyze the worst-case performance of natural greedy heuristics, and
we derive a 4-approximation algorithm.

Even though single-stage or single-period network design problems have been studied
extensively, multi-stage or multi-period network design problems, which occur just as often
in practice, have received much less attention. We hope that our investigation demonstrates
that multi-period network design problems present interesting challenges and can produce
intriguing and surprising results.

The remainder of the paper is organized as follows. In Section 2, we introduce the class
of incremental network design problems. In Section 3, we present a brief literature review.
In Section 4, we introduce the incremental network design problem with shortest paths. In
Sections 5 and 6, we analyze the complexity of the incremental network design problem with
shortest paths, and we explore the performance of natural greedy heuristics, respectively.
In Section 7, we develop a 4-approximation algorithm for the incremental network design
problem with shortest paths. Finally, in Section 8, we discuss possible extensions and future
research.

2 A Class of Incremental Network Design Problems

Incremental network design problems have two characteristic features: a design feature,
since we are deciding which arcs will be part of a network, and a multi-period feature, since
the ultimate network design is built over a number of time periods.

The general structure of an incremental network design problem is as follows. We are
given a network D = (N,A) with node set N and arc set A = Ae ∪ Ap, where Ae contains
existing arcs and Ap contains potential arcs. Each arc a ∈ A has a capacity Ca. Let T be
the planning horizon. A budget Bt is available in every time period t ∈ {1, . . . , T}. The
budget can be used to build potential arcs a ∈ Ap, which will be available for use in the
following period. For each potential arc a ∈ Ap, there is an associated build-cost ca 6 B.
Let yta be a 0-1 variable indicating whether arc a ∈ Ap has been built in or before time
period t, with all potential arcs initially unbuilt (y0

a = 0). Thus, yta − yt−1
a = 1 indicates

that arc a is built in time period t and can be utilized in period t+ 1. In every time period,
a network optimization problem P has to be solved over the usable arcs in time period t,
i.e., the existing arcs and the potential arcs that have been built before time period t. Let
xta represent the flow on arc a ∈ A in time period t ∈ {1, . . . , T} in an optimal solution to
the network optimization problem. Let F (P) define the “structure” of feasible solutions to
the network optimization problem, i.e., the set of constraints imposed on the flow variables
(that it has to be an s − t path, s − t flow, a TSP tour, etc.). The value of an optimal
solution to the network optimization P in time period t is function of the flows on the arcs
in that period and denoted by c(xt). The objective is to minimize the total cost over the
planning period. Thus, the generic formulation of an incremental network design problem

Incremental Network Design with Shortest Paths 161

is as follows:

min
∑

t∈{1,...,T}
c(xt)+

∑
t∈{1,...,T},a∈Ap

ca(y
t
a − yt−1

a)

s.t. xt ∈ F (P) for all t ∈ {1, . . . , T},
xta 6 Cay

t−1
a for all a ∈ Ap, t ∈ {1, . . . , T},∑

a∈Ap

ca(y
t
a − yt−1

a) 6 Bt for all t ∈ {1, . . . , T},

yta > yt−1
a for all a ∈ Ap, t ∈ {2, . . . , T}

An incremental network design problem has characteristics in common with network
design problems and with dynamic facility location problems. A brief review of some rel-
evant literature is given below.

3 Literature review

Network design is a fundamental optimization problem and has a rich research tradition.
The seminal paper by Magnanti and Wong [8] discusses many of its features, applications,
models, and algorithms, with an emphasis on network design in transportation planning.
Kerivin and Mahjoub [5] survey many of network design problems studied in telecommu-
nications. The paper by Magnanti and Wong [8] mentions “Time Scale” as one of charac-
teristics of a network design problem that can vary in different planning environments, e.g.,
transportation and water resource design decisions have long-term effects whereas commu-
nication system designs frequently are more readily altered. Not withstanding, the paper
focuses exclusively on single-period or single-stage network design problems. Recently, the
interest in multi-period or multi-stage network design problems in the area of transporta-
tion planning has picked up, partly because it better meets practitioners needs, as in many
environments network design decisions span planning periods of up to 25 years and the in-
termediate network configurations are of concern as well as the final network configuration
(see for example [6] and [11]). A class of network design problems where construction over
time has been studied extensively is dynamic facility location (the recent review of Arabani
and Farahani [1] is completely dedicated to dynamic facility location).

Studying approximation algorithms for network design problems has been popular as
well, especially in the computer science community. Two prime examples are the papers by
Goemans et al. [3] and Gupta et al. [4]. These approximation algorithms are for single-period
network design problems. Multi-period or incremental approximation has been introduced
in the context of facility location by Mettu and Plaxton [9]. They consider a situation
where a company is building facilities in order to supply its customers, but because of
capital considerations, the company will build the facilities over time. The question asked
is whether the company can plan its future expansion in such a way that when it has opened
the first k facilities, it is close, in value, to that of an optimal solution in which any choice of
k facilities is opened. This problem is known as the incremental k-median problem. More
formally, in the incremental k-median problem, we are given the input of the k-median

162 M. Baxter, T. Elgindy, A. Ernst, T. Kalinowski, M. Savelsbergh

problem without the parameter k and must produce a sequence of the facilities. For each k,
consider the ratio of the cost of opening the first k facilities in the ordering to the cost of an
optimal k-median solution. The goal of the problem is to find an ordering that minimizes
the maximum of this ratio over all values of k. See Lin et al. [7] for more on incremental
optimization problems.

This brief literature review has covered areas of research that are relevant to the study
of the class of incremental network design problems introduced in this paper. The review
identified survey papers on single-period network design, recent papers discussing the prac-
tical importance of investigating multi-period network design, and fundamental papers on
approximation algorithms for network design.

For the remainder of the paper, we focus on one particular incremental network design
problem, namely the incremental network design problem with shortest paths (INDP-SP).

4 The Incremental Network Design Problem with Shortest
Paths

We are given a network D = (N,A) with node set N (|N | = n) and arc set A = Ae ∪ Ap
(|A| = m), where Ae is the set of existing arcs and Ap is the set of potential arcs, as well
as a source s ∈ N and sink t ∈ N . For each arc a ∈ A, we are given a length la > 0.
Let T = |Ap| + 1 be the planning horizon. In every time period, we have the option to
expand the usable network, which initially consists of only the existing arcs, by “building”
a single potential arc a ∈ Ap, which will be available for use in the following period. In
every period, the cost (or length) of a shortest s − t path is incurred (using only usable
arcs, i.e., existing arcs and potential arcs that have been built in previous periods). The
objective is to minimize the total cost over the planning horizon. Note that the length of
the planning horizon ensures that every potential arc can be built. This also implies that a
shortest s− t path in D will always be built. We will refer to such a shortest s− t path as
an ultimate shortest s− t path to distinguish it from a shortest s− t path in a time period,
which depends on the potential arcs that have been built up to and including that period.
Note that there may be many ultimate shortest paths in the network, and the sequence of
potential arcs built in an optimal solution may not be unique. This problem is related to,
but also quite different from, shortest path re-optimization problems as studied by Gallo [2]
and extended by Pallottino and Scutellà [10].

An example. Consider the network shown in Figure 1, where solid arcs represent ex-
istingarcs and dashed arcs represent potential arcs. A path of length 52 can be built in
three periods and the ultimate shortest path of length 4 can be constructed in 4 periods.
However, the optimal solution is to first build arcs a, b, and c to give a path of length 54,
and then to build arcs d, e, and f to complete the ultimate shortest path for a total cost
over the planning horizon of 3174.

We start by observing a useful property of an optimal solution. Let T̄ denote the time
period in which an ultimate shortest path is completed in an optimal solution.

Incremental Network Design with Shortest Paths 163

s t
1 1 1 1

1 3

1

50

1000

s t
a

b c

s t
d e f

Figure 1: An example.

Observation 1. Let (a1, a2, . . . , aT̄) be an optimal sequence of potential arcs to build
(ai ∈ Ap). Let (P1, P2, . . . , PT̄ , PT̄+1) be a sequence of associated shortest paths, where Pi
is the path used while ai is being constructed. Let ci be the cost of path Pi. By grouping
paths with identical costs, we obtain subsequences S1, S2, . . . , SK . Let PSi denote a path
associated with subsequence Si. Let ASi denote the potential arcs built during subsequence
Si. Then we have

ASi = PSi+1 ∩Ap \ (PS1 ∪ · · · ∪ PSi) for i = 1, . . . ,K − 1.

Proof. Each arc aj for j = 1, . . . , T̄ must contribute to the construction of some path PSi

with i ∈ {1, . . . ,K}, otherwise an improved solution is obtained by simply removing aj
from (a1, a2, . . . , aT̄). Furthermore, suppose there exist j and j′ with j < j′ and i and i′

with i < i′ such that aj′ contributes to the construction of path PSi and aj contributes to
the construction of path PSi′ , but not to the construction of paths PSk

with k ∈ {i, i +
1, . . . , i′ − 1}. By interchanging aj and aj′ , the paths PSk

with k ∈ {i, i+ 1, . . . , i′ − 1} are
completed earlier, while all other paths are completed at the same time, which reduces the

164 M. Baxter, T. Elgindy, A. Ernst, T. Kalinowski, M. Savelsbergh

total cost.

Thus, the problem can be viewed as seeking a sequence of potential arcs to build, but
also as seeking a sequence of paths to be constructed, and the last property establishes that
in an optimal solution any potential arc that is built before an ultimate shortest path is
completed will be part of the next shortest path.

5 Complexity

Since the shortest path problem is polynomially solvable, the complexity of the incremental
network design problem with shortest paths is not obvious. The following theorem shows
that even the simplest variant of the incremental network design problem with shortest
paths as defined above is NP-hard.

Theorem 1. The incremental incremental network design problem with shortest paths is
NP-hard.

Proof. Reduction from 3-SAT. Consider an instance of 3-SAT with m clauses, i.e., c1 ∧ c2 ∧
· · · ∧ cm, each of which contains three literals, i.e., ci = (li1 ∨ li2 ∨ li3), where each literal is
a Boolean variable xj or its negation. Let there be n Boolean variables. We construct the
instance of the incremental network design problem with shortest paths given in Figure 2.
As before, existing arcs are shown as solid arcs and potential arcs are shown as dashed arcs.
Let Mm = 1, Mm−1 = 2, . . ., M1 = m, M0 = m+ 1 and I = d (m+1)(n+1)

2 e+ 1, and all other
arcs have a cost of 0. Observe that initially there is only a single path from s to t with
cost I. Next observe that a shorter path of length M0 can be constructed in n periods by
building one of the two potential arcs associated with a variable xi (i.e., xi or ¬xi) for each
of the n variables. Next observe that a path from the source to the sink associated with
clause ci requires that at least one of the potential arcs associated with the literals in ci has
to be build and that the cost of such a path is Mi. It is now easy to see that if the instance
of SAT-3 can be satisfied, a solution to the incremental shortest path problem with value
nI + (n+ 1)M0 +M1 +M2 + · · ·+Mm exists (all but n of the potential arcs, all associated
with the Boolean variables, will be build and the ultimate shortest path, with length 0, will
be used in the last in periods). Furthermore, if the instance of 3-SAT cannot be satisfied,
a solution with strictly greater value will be obtained. Note that sequence of potential arcs
through nodes s1, s2, . . . , sn is introduced to ensure that it is always advantages to build n
potential arcs associated with the Boolean variables before building a path associated with
a clause.

Even though the incremental network design problem with shortest paths is NP-hard,
we next show that there exist special cases which are polynomially solvable. Consider the
special case of disjoint paths graphs, in which the arcs a ∈ A form node-disjoint paths from
s to t. More specifically, consider a disjoint paths graph with r + 1 paths P0, P1, . . . , Pr.
Because the paths are disjoint, the order in which the potential arcs on a path are build is
immaterial. Therefore, for i ∈ {0, 1, . . . , r}, let qi denote the number of potential arcs on
Pi, and, as before, let ci denote the cost of path Pi. It is easy to see that if ci > cj and

Incremental Network Design with Shortest Paths 165

...

¬x1x1

¬x2x2

¬xnxn

s1 s2
...

sn c1 c2
...

cm

to l11

to l12

to l13

to l21

to l22

to l23

to lm1

to lm2

to lm3

I

M0 M1

M2

Mm

s

t

Figure 2: Instance of INDP-SP used in the reduction from 3-SAT.

166 M. Baxter, T. Elgindy, A. Ernst, T. Kalinowski, M. Savelsbergh

qi > qj , then the path Pi will not be constructed in an optimal solution. Therefore, we may
assume that 0 = q0 < q1 < · · · < qr and c0 > c1 > · · · > cr. We construct an auxiliary
digraph D̄ with node set {0, 1, . . . , r + 1}. An arc set of (r, r + 1) with weight cr, and arcs
(i, j) for 0 6 i < j 6 r with weights

w(i, j) = qjci + (

j−1∑
k=i+1

qk)cr.

The paths from 0 to r in D̄ are in one-to-one correspondence to solutions of the given
disjoint paths instance: a path (0 = i0, i1, . . . , is = r) corresponds to building the paths
Pi1 , Pi2 , . . . , Pis in this order, and the weight of the path in D̄ equals the objective value for
the disjoint paths instance. Note that qijcij−1 for j = 1, . . . , s captures the cost of build-
ing path Pij and (

∑
i∈{1,...,r}\{i1,i2,...,is} qi)cr captures the cost incurred after the ultimate

shortest path has been built. Thus, we have proved the following result.

Proposition 1. An instance associated with a disjoint paths graph with r + 1 paths and
characterized by vectors (q1, . . . , qr) and (c0, . . . , cr) can be solved in time O(r2).

In the following proposition, we completely characterize the instances associated with
disjoint paths graphs where all potential arcs need to be build.

Proposition 2. For an instance associated with a disjoint paths graph with r+ 1 paths and
characterized by vectors (q1, . . . , qr) and (c0, . . . , cr) all potential arcs have to be built in any
optimal solution if and only if

(qi+1 − qi)ci−1 + qicr > qi+1ci (1)

for all i ∈ {1, 2, . . . , r − 1}.
Proof. Suppose the inequality (1) holds for all i ∈ {1, . . . , r} and there is an optimal solution
with I ⊆ {1, . . . , r} being the set of indices i such that Pi is built in this solution. Writing
I = {i1 < i2 < · · · < is = r} and putting i0 = 0, the optimal objective value is

f(I) =
s∑

k=1

qikcik−1
+ cr

 ∑
i∈{1,...,r}\I

qi + 1


Suppose there is some i ∈ {1, . . . , r− 1} with i 6∈ I. Then we may assume that i = il − 1 >
il−1 for some l ∈ {1, . . . , s} and the objective value for the index set I ′ = I ∪ {i} is

f(I ′) = f(I)− (qi+1 − qi)cil−1
+ qi+1ci − crqi < f(I)

and this contradicts the optimality of I.
Conversely, suppose I = {1, 2, . . . , r} is the index set of the paths build in the unique

optimal solution with objective value f(I) and that there is an i ∈ {1, . . . , r − 1} violating
(1). The objective value for building the paths with with indices in I ′ = I \ {i} is

f(I ′) = f(I) + (qi+1 − qi)ci−1 − qi+1ci + qicr 6 f(I)

contradicting the assumption that all paths have to be build in any optimal solution.

Incremental Network Design with Shortest Paths 167

One possible way to satisfy the condition in Proposition 2 is to put qi = i for i =
0, 1, 2, . . . , r, and to define cr recursively by cr = 0 and ci−1 = (i + 1)ci + 1 for i =
r − 1, r − 2, . . . , 0. This is illustrated in Figure 3 for r = 5.

s t

c0 = 153

c4 = 1

c3 = 6

c2 = 25

c1 = 76

Figure 3: An instance associated with a disjoint paths graph in which all potential arcs
need to be build in an optimal solution.

6 Greedy Heuristics

Two simple natural greedy heuristics are to

1. Always build arcs that lead to a shorter s− t path as quickly as possible (H1); and

2. Build an ultimate shortest path as quickly as possible (H2).

Next, we show that the performance of both these heuristics, as well as of the heuristic
where we take the best of the two solutions (H3), can be bad. Let the sequence (ck) be
given by values c0 = 1, c1 = 1, c2 = 4, and the recursion ck = 5ck−1 − 3ck−2 for k > 2.

Lemma 1. We have ck =
k−1∑
i=1

(i+ 2)ck−i + c0 for all k.

168 M. Baxter, T. Elgindy, A. Ernst, T. Kalinowski, M. Savelsbergh

Proof. Induction on k. For k 6 2 it’s easy to check, and for k > 2 we get

ck = 5ck−1 − 3ck−2 = 3ck−1 + 2

(
k−2∑
i=1

(i+ 2)ck−1−i + c0

)
− 2ck−2 −

(
k−3∑
i=1

(i+ 2)ck−2−i + c0

)

= 3ck−1 + 4ck−2 +

(
k−2∑
i=2

2(i+ 2)ck−1−i −
k−3∑
i=1

(i+ 2)ck−2−i

)
+ c0

= 3ck−1 + 4ck−2 +

(
k−1∑
i=3

2(i+ 1)ck−i −
k−1∑
i=3

ick−i

)
+ c0

=
k−1∑
i=1

(i+ 2)ck−i + c0.

Now consider the instance given in Figure 4. We have T = |Ap|+ 1 = 2 + 3 + · · ·+ (k+

ck−1

ck−2

c0

ck − 1
ck − 2 ck − T/2 + 1

ck − T/2

ck

b b b

b b b

b

b

b

b

b

b

Figure 4: Instance on which natural greedy heuristics perform bad.

1) + T/2 + 1, hence T = (k + 1)(k + 2). We compare the following three strategies

1. H1, i.e. build the bottom path first, and then the remaining paths from bottom to
top;

2. H2, i.e., build only the top path; and

3. Build all paths except the bottom one.

Incremental Network Design with Shortest Paths 169

For large enough k, we can bound the corresponding objective function values as follows.

1. For H1 we get

T/2∑
i=0

(ck − i) + (ck − T/2) +

k−1∑
i=1

(i+ 2)ck−i + c0 =

(
T

2
+ 3

)
ck −

T (T + 2)

8
− T

2
> kck.

2. For H2 we get

(k + 1)ck + (T − k − 1)c0 > kck.

3. For the third strategy we get

2ck +
k−1∑
i=1

(i+ 2)ck−i + c0 +
T

2
c0 = 3ck +

T

2
c0 6 4ck.

This implies that the two simple natural greedy heuristics produce solutions with values
that are at least k

4 times the optimal value for this instance. The above shows that the two
simple natural greedy heuristics do not provide constant-factor approximation algorithms.

7 Approximation Algorithm

For k = 0, 1, . . . , T , let dk deonte the cost of the shortest path from source to sink using at
most k arcs from Ap. The value of dk can be computed using the modified Bellman-Ford
algorithm shown in Algorithm 1, where dk(u, v) is the cost of a shortest u − v path using
at most k arcs from Ap. Set ∆′ = dT to be the cost of an ultimate shortest path, and
∆ = d0 − dT be the cost of the initial shortest path, less the cost of an ultimate shortest
path.

Algorithm 1 k-costs from the source.

for k = 0, . . . , T do
if k = 0 then

dk(s, s)← 0
dk(s, v)←∞ for all v 6= s

else
dk(s, v)← dk−1(s, v) for all v ∈ N
for a = (v, w) ∈ Ap do

dk(s, w)← min {dk(s, w), dk(s, v) + ca}
for i = 1, . . . , n do

for a = (v, w) ∈ Ae
dk(s, w)← min {dk(s, w), dk(s, v) + ca}

return dk(s, t) as dk for all k

170 M. Baxter, T. Elgindy, A. Ernst, T. Kalinowski, M. Savelsbergh

Denote the value of κi as the minimum number of arcs that need to be constructed
to obtain an s − t path with cost less than ∆′ + ∆

2i
. For convenience, we also introduce

parameters k0 = κ0 and ki = κi− κi−1 for i > 1, which gives κi = k0 + k1 + · · ·+ ki. Let K
be the minimal index k with dk = dT , and r be the smallest integer with dK−1 > ∆′ + ∆

2r .
This gives κr = k0 + k1 + · · ·+ kr = K.

Algorithm 2 Approximately solving the incremental network design problem with shortest
paths.

Compute the values dk using Algorithm 1
K ← min{k : dk = dT }
I = {i such that ki > 0}
for i = 0, . . . , r do

κi ← min{k : dk < dT + (d0 − dT)/2i}
j ← 0 {number of added arcs}
A← ∅ {set of added arcs}
for i ∈ I do

Determine an s-t path P of cost dκi using at most κi arcs from Ap
for a ∈ (P ∩Ap) \A do

j ← j + 1
aj ← a

A← A ∪ {a}
Build arcs a1, a2, . . . , aj in that order.

The approach that is taken in Algorithm 2, is to firstly determine the smallest number
of arcs that can be constructed such that cost of a shortest s− t path is less than ∆

2i
+ ∆′

for each i = 0, 1, . . . , r. This defines the values of κi and ki. If ki > 0, then ∆
2i

+ ∆′ provides
a lower bound on the cost incurred while constructing a path that has ki more potential
arcs than the previously used shortest s− t path. Furthermore, ∆

2i−1 +∆′ provides an upper
bound on the cost incurred while constructing a path that has ki more potential arcs then
the previously used shortest s − t path. The number of arcs that must be constructed to
complete this path depends on the number of arcs previously constructed on the s− t path
that is utilized. The lower bound on the number of arcs that need to be constructed is
ki, and the upper bound is given by κi. The upper bound represents the case where the
path is disjoint, and requires all potential arcs in the path to be constructed. In Figure 5,
these two cases refer to the top branch and the bottom r+ 1 branches respectively. We can
combine the bounds on both the number of arcs constructed and their cost to obtain upper
and lower bounds on the solution returned by Algorithm 2.

Lower bound A cost of at least ∆′ is incurred every time period so the baseline cost
is T∆′. As a lower bound, ∆

2i
is incurred for ki periods, while constructing the path that

has ki more potential arcs than the previously used shortest s − t path. The total cost of

construction is bounded below by L = T∆′ +
∑
i∈I

ki
∆

2i
.

Incremental Network Design with Shortest Paths 171

Upper bound Again, the baseline cost is T∆′. As an upper bound, ∆
2i−1 is incurred for κi

periods, while constructing the path that has ki more potential arcs than the previously used

shortest s−t path. The total cost of construction is bounded above by U = T∆′+
∑
i∈I

κi
∆

2i−1
.

Combining these two bounds, we can bound the approximation ratio of Algorithm 2.

Proposition 3. Algorithm 2 is a 4-approximation for the incremental network design prob-
lem with shortest paths.

Proof. We can now demonstrate that Algorithm 2 is a 4-approximation, by showing that
U 6 4L:

U = T∆′ +
∑
i∈I

κi
∆

2i−1
= T∆′ +

∑
i∈I

 i∑
j=0

kj

 ∆

2i−1


= T∆′ +

r∑
j=0

 ∑
i∈I, i≥j

∆

2i−1

 kj

 6 T∆′ +
r∑
j=0

∆

2j−2
kj 6 4T∆′ + 4

r∑
j=0

∆

2j
kj = 4L.

The worst case behaviour for this algorithm can be observed in Figure 5. The optimal
solution is to build the upper path which gives an objective value of

2 · 2r + k
(
2r−1 + 2r−2 + · · ·+ 21 + 20

)
= (k + 2)2r − k.

But Algorithm 2 builds the other paths from top to bottom and this yields

2r +

r+1∑
i=1

(ik + 1)(2r−i+1 − 1) = (4k + 3)2r − k (r + 2)(r + 3)

2
− k − r − 2.

Now the claim follows since for sufficiently large k = r,

(4k + 3)2r − k (r + 2)(r + 3)

2
− k − r − 2 > (4− ε) [(k + 2)2r − k] .

8 Conclusions and Extensions

In this paper, we have introduced a class of incremental network design problems and studied
one member of the class, the incremental network design problem with shortest paths, in
more detail. We have established that the problem is NP-hard, but have also identified
a polynomially solvable special case. Natural greedy heuristics have been analyzed and a
4-approximation algorithm has been developed.

A natural extension to the variant of the incremental network design problem with
shortest paths considered in this paper is obtained by introducing arc construction costs
and construction budgets. In that case, we are also given for each arc a ∈ Ap a construction
cost c̄a and for each period t a budget Bt and the option to expand the network in each

172 M. Baxter, T. Elgindy, A. Ernst, T. Kalinowski, M. Savelsbergh

2r
2r−1 2r−2 2r−3 21 20

2 k k k k
b b b

b b b

1

k + 1

2k + 1

(r − 2)k + 1

(r − 1)k + 1

rk + 1

2r − 1

2r−1 − 1

2r−2 − 1

22 − 1

21 − 1

20 − 1

b

b

b

b

b

b

b

b

b

Figure 5: Instance on which Algorithm 2 performs badly. A dashed arc with label i indicates
a path of i potential arcs, and a solid arc with label i indicates an existing arc with cost i.
All potential arcs and the unlabeled solid arcs have zero cost.

period by building potential arcs a ∈ Ap subject to the constraint that the construction
costs do not exceed the budget. As before, the objective is to minimize the total cost over
the planning period, which now includes construction costs and shortest s− t path costs.

Another natural extension is to consider multiple commodities, where each commodity
i requires one unit of flow to be send from source si to sink ti. This incremental network
design problem with multi-commodity flows can be uncapacitated, i.e., there is no limit on
the flow on an arc, or capacitated, where the flow on arc has to be less than or equal to
a given capacity. When the capacity is equal to one for all arcs, the subproblem in each
period reduces to finding arc-disjoint paths.

Rather than considering network expansion, we can consider network maintenance. A
class of multi-period network maintenance problems can be defined in a similar way to
the class of incremental network design problems. In this setting, arcs are required to
undergo maintenance, either once or with a certain frequency, and when an arc undergoes
maintenance it is unavailable and cannot be used in the network optimization problem that
has to be solved each period. This class of multi-period network maintenance problems also
offers a rich environment for further research.

Incremental Network Design with Shortest Paths 173

Finally, it is not difficult to formulate incremental network design problems and multi-
period network maintenance problems as integer programs. We are currently exploring
whether integer programming formulations of the incremental network design problem with
shortest paths and the incremental network design problem with multi-commodity flows are
computationally tractable and whether valid or facet inducing inequalities can be derived
from the multi-period structure.

References

[1] A.B. Arabani and R.Z. Farahani. “Facility location dynamics: An overview of classi-
fications and applications”. In: Computers & Industrial Engineering (2011), pp. 408–
420. doi: 10.1016/j.cie.2011.09.018.

[2] G. Gallo. “Reoptimization procedures in shortest path problem”. In: Decisions in
Economics and Finance 3.1 (1980), pp. 3–13.

[3] M.X. Goemans, A.V. Goldberg, S. Plotkin, D.B. Shmoys, E. Tardos and D.P. Willi-
amson. “Improved approximation algorithms for network design problems”. In: Proc.
5th ACM-SIAM symposium on Discrete algorithms SODA 1994. Society for Industrial
and Applied Mathematics. 1994, pp. 223–232.

[4] A. Gupta, A. Kumar and T. Roughgarden. “Simpler and better approximation al-
gorithms for network design”. In: Proc. 35th ACM symposium on Theory of computing
STOC 2003. ACM. 2003, pp. 365–372. doi: 10.1145/780542.780597.

[5] H. Kerivin and A.R. Mahjoub. “Design of survivable networks: A survey”. In: Net-
works 46.1 (2005), pp. 1–21. doi: 10.1002/net.20072.

[6] B.J. Kim, W. Kim and B.H. Song. “Sequencing and scheduling highway network
expansion using a discrete network design model”. In: The Annals of Regional Science
42.3 (2008), pp. 621–642. doi: 10.1007/s00168-007-0170-2.

[7] G. Lin, C. Nagarajan, R. Rajaraman and D.P. Williamson. “A general approach for
incremental approximation and hierarchical clustering”. In: SIAM Journal on Com-
puting 39.8 (2010), pp. 3633–3669. doi: 10.1137/070698257.

[8] T.L. Magnanti and R.T. Wong. “Network design and transportation planning: Models
and algorithms”. In: Transportation Science 18.1 (1984), pp. 1–55. doi: 10.1287/
trsc.18.1.1.

[9] R.R. Mettu and C.G. Plaxton. “The online median problem”. In: SIAM Journal on
Computing 32.3 (2003), pp. 816–832. doi: 10.1137/S0097539701383443.

[10] S. Pallottino and M.G. Scutellà. “A new algorithm for reoptimizing shortest paths
when the arc costs change”. In: Operations Research Letters 31.2 (2003), pp. 149–160.
doi: 10.1016/S0167-6377(02)00192-X.

[11] S.V. Ukkusuri and G. Patil. “Multi-period transportation network design under de-
mand uncertainty”. In: Transportation Research Part B: Methodological 43.6 (2009),
pp. 625–642. doi: 10.1016/j.trb.2009.01.004.

http://dx.doi.org/10.1016/j.cie.2011.09.018
http://dx.doi.org/10.1145/780542.780597
http://dx.doi.org/10.1002/net.20072
http://dx.doi.org/10.1007/s00168-007-0170-2
http://dx.doi.org/10.1137/070698257
http://dx.doi.org/10.1287/trsc.18.1.1
http://dx.doi.org/10.1287/trsc.18.1.1
http://dx.doi.org/10.1137/S0097539701383443
http://dx.doi.org/10.1016/S0167-6377(02)00192-X
http://dx.doi.org/10.1016/j.trb.2009.01.004

174 M. Baxter, T. Elgindy, A. Ernst, T. Kalinowski, M. Savelsbergh

