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ABSTRACT 

During the last decade, intense research in the field of neural stem cell development has 

been provided relevant information about both proliferation and differentiation of 

progenitor cells. The mechanisms that trigger the elaboration of specific cell phenotypes are 

of great interest but largely unknown. It was suggested that gap junctional intercellular 

communication (GJIC) and connexin (Cx) proteins play a crucial role in the development of 

neural progenitors. However, the mechanisms of cell-cell coupling in regulating cell fate 

during embryogenesis are poorly understood.  

To elucidate the role of GJIC in proliferation and differentiation, we used a human neural 

progenitor cell line derived from the ventral mesencephalon that enabled us to study 

alterations in GJIC and Cx expression in a time-dependent manner throughout the whole 

process of differentiation.  

Using fluorescence recovery after photobleaching (FRAP) we found that neural progenitors 

are coupled via gap junctions (GJs). Moreover, dye coupling was extensive in proliferating 

cells but diminished after the induction of differentiation as indicated by a 2.5-fold increase 

of the half-time of fluorescence recovery. Notably, recovery half-time strongly decreased in 

the later stage of differentiation by 5-fold.  

Western blot analysis revealed the presence of at least three different Cx isotypes, namely 

Cx43, Cx31 and Cx59. Although all Cxs were found to show different expression patterns, 

only Cx43 demonstrated a time-dependent expression profile that was similar to the 

alteration of GJIC. Accordingly, confocal microscopy revealed Cx43 as the main GJ-forming 

protein in ReNcell VM197. Interestingly, large amounts of cytoplasmic Cx43 were retained 

mainly in the Golgi network during proliferation but decreased when differentiation was 

induced.  

Pharmacological blockage of GJIC demonstrated a strong impact of cell-cell coupling on 

proliferation and neuronal cell fate. While cell growth was inhibited by 15%, the elaboration 

of neuronal phenotypes was reduced by 25%. A specific role for Cx43 on progenitor 

development was investigated by down-regulation of Cx43, leading to a marked decrease of 

functional cell-cell coupling by 60%. Upon Cx43 knockdown, both the number of S-phase 

cells and neuronal differentiation efficiency were reduced by 50%.  

Furthermore, the epidermal growth factor (EGF) was found to maintain the high level of 

Cx43 in proliferating progenitors. Likewise, GJIC was stimulated by EGF due to an increase of 

GJ plaques formation. Conversely, knockdown of Cx43 using small interfering RNA (siRNA) 

abolished the mitogenic activity of EGF, resulting in a 50% decrease of the proliferation rate.  
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Taken together, our findings provide a dual function of Cx43 and GJIC in the neural 

development of ReNcell VM197 human progenitor cells. 1) GJIC accompanied by high Cx43 

expression is necessary to maintain cells in a proliferative state by mediating the mitogenic 

activity of growth factors. 2) Additionally, gap junctional coupling is required to complete 

neuronal differentiation, including the establishment of a neural network. However, 

uncoupling of cells is crucial in the early stage of differentiation during the exit from cell 

cycle and cell fate commitment12.  
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1 INTRODUCTION 

1.1 STEM CELLS 

Stem cells in the mammalian body represent a remarkable cell population that is crucial for 

tissue organization and development. Although the concept of stem cells was already 

theoretically postulated in the 19th century, the isolation of mouse embryonic stem cells (ES 

cells) was firstly described in 1981 (Evans & Kaufmann, 1981; Martin, 1981). There is no 

doubt that research on human cells profited substantially from the experiences gained by 

the work with mouse cells. However, despite many similarities, results obtained with mouse 

ES cells are not fully applicable to human ES cells. Thus, the first isolation of ES stem cells, 

derived from human tissue was an important step in stem cell research (Thomson, 1998).  

The key feature of stem cells is their capability to choose between self-renewal state and 

multilineage differentiation (Odorico et al., 2001). Embryonic stem cells, originated from the 

inner cell mass of the blastocyst during early embryogenesis, demonstrated pluripotency i.e. 

giving rise to all distinct cell types. Human ES cells express telomerase activity and several 

specific markers, including octamer-binding protein, CD9 and SOX2 (Mimeault & Batra, 

2006). ES cells can be triggered to differentiate into certain progenitors or mature cells of 

ectodermal, endodermal and mesodermal germ layers (Odorico et al., 2001).  

Further development rapidly declines the frequency of ES cells due to the formation of 

restricted progenitors or terminally differentiated cells. However, a few cells retain their 

stem cell behaviour in postnatal individuals and become a reserve precursor cell. These 

tissue-specific adult stem cells possess a multipotent character and thus their differentiation 

ability is restricted to certain cell lineages (Mimeault et al., 2007). In contrast to ES cells, 

adult stem/progenitor cells are required to maintain tissue homeostasis and contribute to 

regeneration and repair of damaged tissue by replacement of specialized mature cells within 

the tissue they reside (Young & Black, 2004).  

1.2 NEURAL PROGENITOR CELLS 

For many years it was believed that the adult brain represents a static entity without self-

renewal capacity and that the generation of neurons was limited to the prenatal stage of 

neural development. Nowadays, it is well accepted that the formation of neurons and glial 

cells and their integration into the complex brain circuitry occurs during all stages of 

development, giving evidence for a pool of neural precursor cells in the central nervous 

system. In the embryo, neural progenitors have been found to be located in different parts 

of the developing brain, including hippocampus, cerebellum or cerebral cortex (Temple, 

2001). In the adult brain both the subventricular zone of the lateral ventricle and the 
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subgranular zone of the hippocampal dentate gyrus have been shown to contain progenitors 

capable to induce neuron and glial cell formation (Martino & Pluchino, 2006). The process of 

differentiation and maturation, emanating from neural progenitors, depends on several 

parameters that regulate the fate of progeny. Cell-cell interactions were shown to influence 

the maintenance, activation and differentiation of stem cells (Doetsch, 2003). A prominent 

role was assumed for astrocytes that were found to stimulate neurogenesis of precursor 

cells. Due to their meandering cell protrusions and branches, astrocytes can translate signals 

between the vasculature system and other cells. Additionally, they are highly coupled via 

gap junctions (GJs), which promotes the propagation of signalling within a stem cell cluster 

(Doetsch, 2003).  

To gain deeper insight into the behaviour of neural progenitors and to reveal the 

mechanisms of stem cell differentiation, several neural stem cell lines have been generated 

by viral introduction of immortalized genes (c-myc, v-myc) in concert with growth factor 

stimulation (Donato et al., 2007; De Filippis et al., 2008; Villa et al., 2009). Growth factors 

such as epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) are 

commonly used as mitogens to maintain neural stem cell lines in a proliferative state. Upon 

removal of growth factors these cell lines undergo differentiation along distinct cell lineages 

(Zhao et al., 2004).  

As in vitro models, immortalized cell lines possess different features, making them superior 

to primary cell cultures. They are characterized by cellular and genetic homogeneity and can 

be produced in large quantities. Further, deoxyribonucleic acid (DNA) modifications are 

much more feasible compared to primary precursors and gene expression can be maintained 

over passages (Vescovi & Snyder, 1999). Based on these advantages, immortalized cell lines 

are a good tool to study the development of neural precursors. Using HiB6 cells, a cell line 

originally isolated from the E16 rat brain, it was demonstrated that the protein kinase A 

pathway is critical for the hippocampal neurogenesis (Kim et al., 2002). Furthermore, to 

elucidate the detailed mechanism responsible for neural migration, researchers derived 

benefits from the migratory properties of the ST14A clone, obtained from the E14 striatum 

of rat (Cacci et al., 2003). However, neural stem cell lines are not only used to study neuronal 

differentiation, but also help to reveal the cellular defects underlying neurodegenerative 

diseases (Ehrlich et al., 2001). Moreover, immortalized neural stem cells have been 

discovered to be suitable for testing cell toxicity of biomaterials. Considering transplantation 

of neural progenitors, biomaterials were suggested to support the adherence, differentiation 

and migration of engrafted cells. Thus, biocompatibility of these materials, like polymers or 

nanofibres, is an important issue that can be addressed by the use of neural progenitor cell 

lines (He et al., 2010; Bhang et al., 2012). In summary, these findings give a general idea 
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about the possibilities that are provided by immortalized neural stem cells and highlight 

their importance in regenerative medicine. 

1.3 THERAPEUTIC VALUE OF NEURAL PROGENITOR CELLS 

Neurodegenerative diseases such as Parkinson´s disease, Alzheimer´s diseases or stroke are 

characterized by a loss of region-specific neurons due to progressive cell death. Regenerative 

medicine has been faced with the development of strategies to prevent neuronal deficiency 

and to promote functional recovery. The use of neural stem cells may provide a promising 

tool for cell replacement therapies and tissue engineering approaches, but it seems to be 

quite difficult for transplanted cells to differentiate under the “mature” conditions of the 

adult brain. However, many studies have been successfully demonstrated that stem cell 

based therapy could be applied to treat several human diseases (Lindvall et al., 2004). 

Transplantation of fetal, mesencephalic tissue into the brain of patients suffering from 

Parkinson´s disease showed that neuronal replacement can work in in the human central 

nervous system (Kordower et al., 1995). Work on animal models support the notion about 

the great potential of neural stem cells in tissue protection and replacement of damaged 

cells when engrafted into degenerated regions of the brain. For example, the immortalized 

cell line RN33B was shown to survive up to 24 weeks after transplantation into the cerebral 

cortex. Subsequent differentiation resulted in the formation neuron, capable of firing action 

potentials and receiving input from other synapses (Shihabuddin et al., 1995; Englund et al., 

2002). Surprisingly, the functional recovery resulting from transplantation of neural stem 

cells does not correlate with the number of transplantation-derived newly generated 

neurons, suggesting additional positive bystander effects of engrafted neural progenitors 

(Richardson et al., 2005; Ryu et al., 2005). 

As mentioned above, neurodegenerative diseases like Parkinson´s diseases are caused by a 

loss of dopaminergic neurons. Thus, researchers have been encouraged to reinforce the 

capability of neural progenitors to differentiate into neuronal phenotypes to increase the 

therapeutic value for Parkinson`s diseases animal models. Following genetic modification, 

inducing overexpression of certain enzymes and transcription factors relevant for neuronal 

development, neural stem cells were found to generate more dopaminergic neurons (Ryu et 

al., 2005; Li et al., 2007). Moreover, transplantation into the striatum of parkinsonian rats 

markedly improved their behaviour compared to the control individuals.  

A role of neural progenitors was also proposed for the treatment of central nervous system 

traumata. Apart from the direct damage of neural tissue, brain traumata are accompanied 

by secondary effects, which arisen from the toxic effects of several modulators and enhance 

the initial brain damage. Glutamate, calcium and nitric were identified to impair the ability of 
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neural tissue for regeneration und increase neuronal cell death (Lynch & Dawson, 1994). 

Immortalized neural progenitors were shown to survive and differentiate after injection in 

damaged brain tissue, despite the critical conditions such as high glutamate and cytokine 

concentration (Riess et al., 2002). To improve these benefits, neural progenitors were 

induced to express neurotrophic factors, which support the neuroprotective effects and 

functional recovery of animals suffering from traumatic injury (Bakshi et al., 2006). The HiB5 

progenitor clone that has been retrovirally transduced to produce nerve growth factor was 

demonstrated to increase the cognitive and neuromotor function and decreased apoptosis 

of host hippocampal neurons (Philips et al., 2001). 

Advances have also been made in stem cell-based therapy of spinal cord injuries to repair 

tissue damage. Transplantation of immortalized neural stem cells into injured rat spinal cord 

can stimulate the extensive growth of host axons by secretion of trophic factors that 

positively influence their environment (Lu et al., 2003). In addition, neural stem cell clones 

were reported to share similar properties as radial glial. They migrate into the injured spinal 

cord and protect host cells from accumulation of macrophages and loss of axons and myelin 

(Hasegawa et al., 2005). 

Beside their application in the treatment of neurological disorder, neural stem cell lines are 

able to suppress tumour growth. Upon co-transplantation with tumours into animals, neural 

stem cells demonstrated enhanced migration towards the cancer cells that even occurred as 

neural progenitors were injected into peripheral vasculatures (Brown et al., 2003; Staflin et 

al., 2004). This homing capacity is an important feature for potential anti-cancer therapies to 

directly deliver therapeutic agents into the tumour.  

Researchers have made an effort to isolate and characterize neural stem cells in order to 

blaze the trail for their future career in regenerative medicine. The findings above give 

evidence that neural progenitor cell lines hold enormous potential for the treatment of 

neurodegenerative diseases. However, their clinical application requires precise knowledge 

about the mechanisms that govern the elaboration of neuronal and non-neuronal 

phenotypes. This in turn may help to identify a practical and effective strategy for specifically 

stimulating neuronal differentiation of progenitors, which is crucial for the treatment of 

Parkinson´s or Alzheimer´s disease. 

1.4 THE DIVERSITY OF CELL JUNCTIONS 

Proper cell adhesion and intercellular communication are essential for the development of 

multicellular tissues and organisms as cell fate determination of stem cells is regulated by 

them (Tsai & McKay, 2000; Fuchs et al., 2004). Cell-cell contacts are provided by three 
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different types of protein complexes, called cell junctions: 1) tight junctions, 2) adherens 

junctions and desmosoms and 3) GJs.  

Tight junctions are close contacts between adjacent cells and thus create a primary barrier 

to diffusion of solutes via the intercellular pathway (Powell, 2012). Additionally, they 

maintain cell polarity by preventing lateral diffusion of cellular membrane proteins. Tight 

junctions are mainly composed of occludins and claudins and are found in epithelial and 

endothelial cells where they are located in the apical part of the cell, along the intercellular 

cleft respectively (Dejana, 2004). 

Adherens junctions and desmosomes are located below tight junctions and belong to the 

anchoring junctions, which transmit mechanical stability. While adherens junctions are 

mainly linked to the actin cytoskeleton, desmosomes were shown to interact with 

intermediate filaments (Nagafuchi, 2001).  

While tight junctions and anchoring junctions provide mechanical resistance, GJs are channel 

forming cell-cell contacts that allow direct communication between neighbouring cells. The 

direct connection of cytoplasm of adjacent cells enables the exchange of ions and molecules. 

GJs were found in most vertebrate tissue, except for some terminally differentiated cells like 

skeletal muscle cells, erythrocytes, circulating lymphocytes, and mature sperm cells (Meşe et 

al., 2007; Rackauskas et al., 2010). 

1.5 STRUCTURE OF GJS 

1.5.1 CONNEXINS IN VERTEBRATES 

Connexins (Cxs) are a family of structurally related transmembrane proteins that are able to 

form a channel inside the plasma membrane to connect the cytoplasm of adjacent cells. To 

date, 20 members of the Cx gene family have been identified in the mouse and 21 in the 

human genome (Söhl & Willecke, 2004). The expression of Cxs is very variable and can 

change during the development of different tissues. Among all Cx isotypes, Cx43 has been 

found to be the most abundant Cx in vertebrates, indicating an important function for 

cellular development. All Cxs share a similar structural topology that is characterized by 4 

alpha helical transmembrane domains (M1-4, Figure 1A) connected by 2 extracellular loops, 

1 intracellular loop linking M2 and M3 and a cytoplasmic N-and C-terminal region (Figure 1). 

Although the third transmembrane domain was proposed to be the major channel-lining 

segment, there was evidence for a contribution by amino acids sequences of other domains 

of the Cx protein (Zhou et al., 1997; Fleishman et al., 2004). The extracellular loops are 

involved in cell-cell interactions between GJ hemichannels of two neighbouring cells. Three 

highly conserved cysteine residues enable the formation of disulphide bonds, which are 

crucial for proper gap junctional communication (Maeda & Tsukihara, 2011). The C-terminal 
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domain and the intracellular loop show great diversity in terms of sequence and length 

within the connexin family. However, the C-terminus contains different important 

phosphorylation sites that are important for the regulation of connexin degradation, 

transport or GJ assembly (Krutovskikh & Yamasaki, 2000).  

Cx isotypes can be classified by their degree of homology and length of the cytoplasmic loop 

(Willecke et al., 2002) or by their molecular mass (ranging from 23 to 62kD), which is the 

more common nomenclature and also used in this thesis.  

1.5.2 GJ – THE INTERCELLULAR CHANNEL 

GJs are specialized protein structures in the plasma membrane that contain clusters of 

channels, mediating direct communication between adjacent cells. They allow diffusional 

exchange of small molecules up to a molecular mass of 1kD, including metabolites, ions, 

second messengers or siRNA (Evans & Martin, 2002). GJ channels consist of 2 connexons 

(hemichannels), each provided by one of the neighbouring cells (Figure 1B). A connexon is 

formed by the oligomerization of 6 Cx proteins, transported to the cell surface through 

microtubules and finally fused to the plasma membrane. Hemichannels can either exist as a 

non-junctional channel or diffuse into the areas of cell-cell contacts where it forms a 

Figure 1 Molecular organization and topology of a GJ plaque. (A) Cx proteins consist of 4 membrane 
spanning domains (M1-M4), connected by 1 cytoplasmic and 2 extracellular loops that are crucial for 
docking. S-S represents conserved cysteine disulphide bonds. Cx proteins vary mainly in their C- and N-
terminal region. (B) Hemichannels, formed by 6 Cx subunits, can dock to each other and establish a GJ 
channel. Three different types of GJs are known, depending on their molecular composition. 1) 
homomeric/homotypic, 2) heteromeric and 3) heterotypic. Homotypic and heterotypic GJs are composed 
of two identical or two different hemichannels. Homomeric or heteromeric hemichannels comprise one or 
more Cx isotypes. (adapted from Söhl et al., 2005) 
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complete GJ channel with a connexon of the adjacent cell. The expression of different 

connexin isotypes results in a great variance of GJ channel composition. Connexons can 

consist of either one single Cx isoform leading to homomeric connexons or they contain 

different connexin types and form heteromeric structures (Meşe et al., 2007). The diversity 

of GJ channels is enhanced by the possibility that hemichannels can connect to homomeric 

or heteromeric hemichannels resulting in homotypic channels, or connexons can form 

heterotypic channels by docking to different homomeric or heteromeric connexons. 

However, several studies have shown that certain isoforms do not interact with each other, 

determining connexin oligomerization and GJ formation as a connexin isotype specific 

process (Falk et al., 1997; Segretain & Falk, 2004). Once a single GJ channel has formed, 

clustering leads to the establishment of large GJ plaques that can contain up to many 

thousands of GJs with several micrometres in size (Segretain & Falk, 2004). 

1.6 THE CONNEXIN LIFE CYCLE – GJ FORMATION, REMOVAL AND 

DEGRADATION 

Remarkably, Cxs proteins have a short half-life of only a few hours (Beardslee et al., 1998; 

Hervé et al., 2007). It is proposed that this short lifespan enables rapid response to 

physiological changes by in- or decreasing gap junctional intercellular communication (GJIC). 

Thus, alterations in Cx expression, assembly and degradation allow regulation beside the 

channel opening and closure mechanisms that are associated with channel gating 

(Bukauskas & Verselis, 2004). Figure 2 schematically illustrates the different steps of the Cx 

life cycle, including synthesis, GJ formation and degradation. Consistent with classical 

integral membrane proteins, Cx are synthesized by involvement of the endoplasmic 

reticulum (ER). During integration into the ER membrane Cxs obtain their final functional 

transmembrane topology (Falk, 2000). The location of subsequent connexin oligomerization 

into connexons is controversially discussed and seems to depend on specific Cx isotypes. Cx 

assembly has been demonstrated to occur in the ER (Falk et al., 1997). However, Cx43 and 

Cx46 were also reported to be present as monomers in the ER and Golgi network and 

assembly only started during their residence in the trans-Golgi Network (Musil & 

Goodenough, 1993; Koval et al., 1997). Further studies are required to solve the question 

which compartment is involved in the final oligomerization of Cxs. After exiting the ER, 

connexons pass the ER-Golgi-intermediate compartment before entering the Golgi stacks 

and the trans-Golgi network (Laird, 1996). However, other studies suggest a Golgi-

independent pathway for Cx26 transport (George et al., 1999; Martin et al., 2001). 

Trafficking of assembled Cxs to the cell surface is mediated by microtubules and actin 

filaments (Olk et al., 2009). Once fused with the membrane, connexons freely diffuse until 
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docking with a connexon from the adjacent cell to form a GJ channel. The clustering into GJ 

plaques is a very rapid and dynamic process, whereas renewal occurs from the outer margin 

of the GJ plaques as revealed by studies using green fluorescent protein-tagged Cx (GFP-Cx) 

(Lauf et al., 2002). As GJ coupling is not directly correlated to the clear microscopic 

observations of GJ plaques, small GJ clusters or even individual GJ channels will also 

contribute to functional coupling. Alternatively, connexons may also act as hemichannels, 

allowing molecule exchange between the extra – and intracellular space. Degradation starts 

with the internalization of the entire GJ or a fragment of it. As GJs cannot be separated again 

into connexons under physiological conditions, they are removed from the centre of the 

plaque by internalization into vesicular double-membrane structures, so-called annular 

junctions (Laird, 1996). Once internalized, further degradation involves lysosomal and 

proteasomal degradation pathways (Segretain & Falk, 2004). However, other pathways of GJ 

internalization may coexist that did not require the formation of annular junctions  

(Laird, 1996).  

  

Figure 2 Overview about the Cx life cycle. (1) Cxs insert into the ER where they commonly reach their 
final folded state. (2) On trafficking to the Golgi network Cxs proteins oligomerize into hemichannels. (3) 
After microtubule-dependent transport to the cell surface, (4) connexons of adjacent cells can either dock 
to each other to form a GJ channel or exist as hemichannel, connecting intra- and extracellular space. (5) 
After a few hours, GJs or fragments of GJs are internalized into one of two neighboring cells as annular 
junctions and further degraded in lysosomes. (6) However, other mechanisms of GJ degradation may 
coexist where connexons enter the cell by the classical endocytic pathway. (adapted from Naus & Laird, 
2010) 
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1.7 FUNCTIONS OF CONNEXINS 

1.7.1 FUNCTIONS WITHOUT JUNCTIONS – GJ-INDEPENDENT ACTIVITY OF 

CONNEXINS 

Many studies have been done elucidating the function of connexins as GJ forming proteins 

that mediate the exchange of molecules between connected cells. However, Cxs may also 

act in a channel independent manner by direct or indirect interaction with a variety of 

different proteins. 

Cxs were found to play a role in the regulation of the cytoskeleton. Elias et al. (2007) 

reported that interaction of Cxs with the actin cytoskeleton is necessary for the migration of 

neuronal precursor cells along radial fibres during brain development. Accordingly, 

administration of 1-octanol (1-oct) and 18-α-glycyrrhetinic acid, two well-known GJ blockers, 

induce disorganization of actin stress-fibres in astrocytes (Yamane et al., 1999). 

Furthermore, knockout of Cx43 in cardiac neural crest cells impaired the actin organization 

and reduced cell migration and directionality (Xu, 2001). Although the precise mechanisms 

of actin regulation are quite unknown, it was suggested that drebrin and zonula occludens-1 

(ZO-1) protein may act as a linker between the C-terminal tail of Cxs and actin filaments 

(Giepmans, 2004). However, several studies have also indicated a direct interaction of Cxs 

and the cytoskeleton as observed for tubulin. Gap junctional Cx43 directly interacts with α- 

and β-tubulin in the cell periphery, regulating the dynamic of microtubules (Giepmans et al., 

2001).  

Beside ZO-1, Cxs may also associate with other cell-cell contact proteins. E-cadherin and α-

catenin colocalized with newly formed GJs, indicating a close relationship between adherens 

junction and GJ formation (Fujimoto et al., 1997). Moreover, Cx was suggested to regulate 

cell development by interaction with β-catenin, a key protein of the Wnt signalling pathway 

(Ai et al., 2000). The role of Cxs in cell signalling is further supported by studies showing 

strong proximity with Caveolin in Lipid Rafts that are important in clustering signalling 

molecules to ensure proper signal transduction (Schubert et al., 2002). Proteins of the CCN 

(CeflO/Cyr61 and NOV) group were also found to interact with Cxs (Fu et al., 2004). 

Members of the CCN family are required for diverse biological processes, including 

differentiation, adhesion and migration.  

The examples mentioned demonstrate that Cxs can regulate cellular processes in a way that 

is not exclusively linked to their GJ-forming ability. Although many different binding partners 

have been identified the C-terminal domain of Cx seems to be mainly involved in mediating 

these protein interactions.  
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1.7.2 CHANNEL-DEPENDENT FUNCTIONS - REGULATION OF GJ ACTIVITY 

As noted before, GJs connect the cytoplasm of adjacent cells and mediate the exchange of 

ions, second messengers and metabolites including inositol trisphosphate, ATP (adenosine 

triphosphate) or glutamate (Rackauskas et al., 2010). Due to this electrical and chemical 

communication GJs are important regulators for tissue and organ coordination (Evans & 

Martin, 2002). Cx expression is cell- and tissue-dependent and Cx diversity as well as their 

combinatorial complexity in hemichannels and GJs leads to a great multiplicity of channels 

with unique properties concerning conductance, gating and permeability (Meşe et al., 2007). 

Selective permeability can be visualized using fluorescent tracers that might only diffuse 

across GJ channels and therefore provide a suitable tool for studying GJIC (Elfgang et al., 

1995). Selective permeability has been reported for inositol polyphosphates (Niessen et al., 

2000) or ADP/ATP and is dictated by several parameters, including molecular weight, size, 

shape and net charge of the crossing molecule (Goldberg et al., 2004). As GJs have a slightly 

negative charge, a preference could be observed for cations (L. Harris, 2001). Additionally, 

the interaction between Cxs and other molecules can affect channel selectivity. It has been 

shown, that cyclic adenosine monophosphate and cyclic guanosine monophosphate close 

specific channels while other nucleotides do not induce a change of permeability (Bevans & 

Harris, 1999). The extent of gap junctional communication is also regulated by voltage, 

which is particularly prominent in excitable cells. Depending on Cx composition, GJ closure 

can either be induced by hyperpolarization or upon depolarization (González et al., 2007). 

Further, calcium, an important ion that mediates different cellular processes, also regulates 

GJ activity. The closure of GJs by calcium during certain pathological conditions prevents 

depolarization and leakage of metabolites by uncoupling of damaged cells (Rackauskas et al., 

2010). Although it is not clear whether calcium acts directly or indirectly on GJs, there has 

been evidence for an involvement of calmodulin in calcium-mediated channel gating 

(Peracchia et al., 2000). Chemical gating of GJs is also affected by, H+ ions, whereas 

sensitivity of GJs is dependent on Cx isoform and cell type (Francis et al., 1999). Thus, 

variation of the intracellular pH results in altered cell-cell coupling most probably due to 

direct protonation of histidine residues located in the carboxyl tail of the Cx protein 

(Rackauskas et al., 2010). 

Many cellular events were shown to require phosphorylation, leading to a change of protein 

conformation and activity. A large number of Cxs are known to be phosphoproteins that are 

commonly phosphorylated by several protein kinases on serine, threonine and tyrosine 

residues of the cytoplasmic C-tail or the cytoplasmic loop (Lampe & Lau, 2000; Urschel et al., 

2006). Phosphorylation of Cxs induces changes of the molecular protein structure, which 

affects channel behaviour, including the unitary conductance and mean open time (Moreno 
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et al., 1992; Cottrell et al., 2002). In addition, phosphorylation has also been discussed to be 

linked to GJ assembly, internalization and degradation (Solan & Lampe, 2005; Laird, 2006).  

The channel-dependent function of Cxs is not exclusively restricted to its role as a GJ-forming 

protein. As hemichannels in the plasma membrane, Cxs provide a pathway for the release or 

uptake of molecules and ions between the intracellular and extracellular environment, 

indicating its physiological importance in signalling functions and cellular homoeostasis. 

Their permeability characteristics are similar to that of GJs (Stout et al., 2004). However, in 

contrast to GJs, which remain mostly in an open state, hemichannels were found to have a 

low open probability under resting conditions that can be increased by certain stimuli 

(Goodenough & Paul, 2003). Previous studies have shown that Cx hemichannels can be 

opened by low extracellular calcium concentration, membrane depolarization, mechanical 

stress, activation of purinergic receptors or intracellular activity of kinases (Trexler et al., 

1996; Stout et al., 2004; Cotrina et al., 2008). Yet, the mechanistic principles of the gating 

processes still have to be elucidated. Several experiments have been performed to 

investigate the kinds of molecules capable to pass hemichannels, and an important finding 

was the paracrine release of ATP, resulting from a reduction of the extracellular calcium level 

(Braet et al., 2003; Coco et al., 2003). Consistently, several different messenger molecules 

were also suggested to pass hemichannels such as glutamate, nicotinamide adenine 

dinucleotide or prostaglandins (Bruzzone et al., 2001; Parpura et al., 2004; Cherian et al., 

2005). In astrocytes, 15% of the entirely expressed Cx43 was found to be located in 

hemichannels in non-junctional membrane areas (Retamal et al., 2006). These observations 

and the fact that hemichannels allow regulated release of signaling molecules indicate a 

strong biological importance in mediating glial-glial or neuron-glial interactions within neural 

networks. 

1.7.3 ROLE OF CONNEXINS IN CELL PROLIFERATION 

A pronounced role of Cxs in cell growth has been assumed soon after the discovery of gap 

junctional coupling (Loewenstein, 1968). Later on, several studies reported that cell growth 

is inhibited by intercellular communication and that GJ blockage increased proliferation rate, 

suggesting that cell growth correlates inversely with the extent of cellular communication 

(Mehta et al., 1986; Loewenstein & Rose, 1992; Tabernero et al., 2001). Consistently, cells 

exposed to mitogens responded with inhibition of cell communication (Maldonado et al., 

1988; Moorby et al., 1995), leading to the assumption that adjacent cells have to decrease 

gap junctional contacts before entering mitosis. Likewise, Cx was found to regulate 

proliferation in tumour cells. While cancer cells demonstrated reduced GJIC (Yamasaki et al., 
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1995), forced Cx expression inhibited proliferation, supposing a role for Cxs in tumour 

suppression (Zhu et al., 1991; Mehta et al., 1999).  

However, the regulation of proliferating events by Cxs is controversially discussed and a 

large number of studies have observed a stimulating function of Cxs and GJIC on cell growth. 

Cx43 null astrocytes showed a reduced growth rate compared to wild-type cells that were 

characterized by extensive GJIC, mediated by Cx43-formed GJs (Naus et al., 1997). 

Moreover, in neural progenitors Cx43 and GJIC were demonstrated to be crucial for 

maintaining cells in a proliferative state when cultured in the presence of growth factors. 

Conversely, inhibition of GJIC abolished the mitogenic activity of growth factors resulting in 

an increased cell death (Cheng et al., 2004). Growth factors like bFGF, in turn, can promote 

Cx43 expression and increase the level of GJIC (Nadarajah et al., 1998). Thus, proper cell-cell 

coupling is necessary for the signalling of mitogens, suggesting a function of GJIC in providing 

cell synchrony and regulation of proliferation and cell contiguity. These different findings 

support the hypothesis that Cxs and GJs exhibit their effect on proliferation in a cell-type-

dependent manner. Although the underlying mechanism that controls Cx functionality has 

not been revealed, the C-terminus seems to play a major role in the selective activity of Cx 

proteins (Dang et al., 2003). 

1.7.4 ROLE OF CONNEXINS IN NEURAL DIFFERENTIATION AND 

DEVELOPMENT 

Many previous reports have demonstrated a link between GJIC and differentiation, 

indicating that Cxs and GJ-mediated intercellular communication is required for both cellular 

development and tissue differentiation. GJIC plays a critical role during embryogenesis, as 

cell-cell coupling in the developing embryo enables the formation of communication 

compartments and developmentally important domains (Kalimi & Lo, 1988; Bagnall et al., 

1992; Dahl et al., 1996). These different compartments allow the establishment of 

morphogen gradients and the electrical and metabolic synchronization, which is important 

for embryo patterning and proper differentiation (Levin, 2002). The specific and coordinated 

functions of Cx proteins and gap junctional coupling during development are emphasized by 

the fact that Cxs are differentially regulated during differentiation. Keratinocytes 

demonstrated an altered Cx expression pattern while their differentiation and migration 

through the epidermal layers (Butterweck et al., 1994). Similar data were obtained for neural 

tissue. The detection of Cxs in the developing and mature rat brain revealed that Cx 

composition changes during the differentiation process. While Cx26 largely disappeared 

from the immature brain after 3-6 weeks, the level of Cx32 increased (Dermietzel et al., 

1989). This might suggest a correlation between expressed Cxs and specific steps in neural 

development. Cxs expressed at the early stage might indicate their involvement in 



  INTRODUCTION 

 
13 

 

coordinated migration of dopaminergic and other cells from the ventricular zone to other 

areas in the developing brain. High prenatal levels could give evidence for a pronounced role 

in gap junctional coupling of neurons (Leung et al., 2002).  

Neural development starts from a certain cell population within the embryo that is capable 

to differentiate into neurons and glial cells. These neural progenitors were found to require 

proper GJIC and Cx expression for their development into neural phenotypes. Neural stem 

cells express several Cx isotypes and are capable to communicate via GJs (Wong et al., 2008). 

Moreover, Cx levels and the extent of GJIC vary during their differentiation. In the 

developing neocortex, both neuroblasts and proliferating cells are highly coupled with each 

other, whereas differentiated cells demonstrate low GJIC (Lo Turco & Kriegstein, 1991; 

Bittman et al., 1997). In a human teratocarcinoma cell line that is similar to neural 

precursors and able to differentiate into post-mitotic neurons, Cx43 protein level and dye 

coupling progressively decreased after induction of differentiation and were absent in 

differentiated neurons (Bani-Yaghoub et al., 1997). Furthermore, GJ blockage led to a 

decreased number of differentiated neurons (Bani-Yaghoub, Underhill, et al., 1999). 

Accordingly, Cx36 can regulate the cell fate of neural progenitors towards the neuronal 

lineage (Hartfield et al., 2011). However, Cxs also influence the differentiation of non-

neuronal cell types. The lack of Cx43 expression was found to induce a deficiency in 

oligodendrocyte differentiation and an increase in astrocytes (Wong et al., 2008) . 

As the reader can appreciate, GJs and Cxs are crucial regulators of development and 

indispensable for neural differentiation including cell fate commitment. The challenge is now 

to unravel the mechanisms by which Cxs contribute to neural development of human neural 

progenitors. 
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1.8 AIM OF THE STUDY 

During the last few years, neural stem cells have become of great interest for regenerative 

medicine by providing the possibility of different therapeutically useful cell types. One major 

aspect in stem cell research deals with the question which cellular events trigger cell fate 

commitment during the differentiation process of neural progenitors. Precise knowledge 

about the mechanisms that control the elaboration of neuronal phenotypes may provide a 

powerful approach for therapies of neurodegenerative diseases. Several findings led to the 

assumption that Cxs and gap junctional communication might be involved in neural 

progenitor development. In this study, we used an immortalized neural human progenitor 

cell line to gain deeper insight into the role of Cx-mediated intercellular communication 

during proliferation and differentiation. In particular, we wanted to address the following 

main questions: 

 

 Are ReNcell VM197 human neural progenitors coupled via GJs? And if so, is there 

a difference in the extent of intercellular communication between proliferating 

progenitors and differentiated cells? 

  

 What Cx isotypes mediate gap junctional communication in neural progenitors? 

Further we asked whether Cx expression may change after induction of 

differentiation. 

 

 Does Cx–mediated cell-cell coupling affect the proliferative ability of neural 

progenitors and can it regulate neuronal cell fate? 
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2 MATERIAL AND METHODS 

2.1 CULTIVATION AND DIFFERENTIATION OF ReNcell VM197 

All experiments were performed using the human neural progenitor cell line ReNcell VM197 

(Millipore, Schwalbach, Germany, SCC008 ReNeuron, Ltd, Guilford, UK). This cell line was 

derived from the ventral midbrain of a 10-week-old human fetus and immortalized by 

retroviral transduction with v-myc. In this study ReNcell VM197 grows as monolayer in the 

presence of the growth factors EGF and bFGF. Cells have a doubling time of 25-30h and are 

able to rapidly differentiate into neural phenotypes after growth factor removal.  

Cells were cultivated as described previously (Hoffrogge et al., 2006). Briefly, cells were 

grown on laminin coated culture vessels in media containing DMEM/F12 (Dulbecco's 

Modified Eagle's Medium) supplemented with B27 media supplement, 2mM glutamine, 10 

units/ml heparin and 50µg/ml gentamycin (all Invitrogen, Karlsruhe, Germany) and 

maintained at 37°C in 5% CO2 humid atmosphere. For proliferation, 20ng/ml EGF and 

10ng/ml bFGF were added (Invitrogen). Cells were passaged at confluence of 70-80% every 

3-4 d. To avoid changes in differentiation characteristics, cells were only used up to passage 

30. Cells were differentiated according to standard differentiation protocol, where 

differentiation was induced by withdrawal of growth factors (Donato et al., 2007) at a 

confluence of approximately 70%.  

Sub-confluent cell layers were passaged by using trypsin EDTA (in HBSS without Ca2+ and 

Mg2+; Invitrogen; benzonase, 25U/ml, Merck, Darmstadt, Germany) for 3min at 37°C, 

followed by addition of trypsin inhibitor (0.55mg/ml trypsin inhibitor, Sigma-Aldrich, 

Steinheim, Germany; 1% human serum albumin, Grifols, Langen, Germany; benzonase 

25U/ml; in DMEM/F12) to stop the reaction. After centrifugation at 126g for 5min, cells were 

resuspended in 1ml proliferation medium, counted and seeded at desired cell density. For 

most experiments, cells were grown for 2-4d before differentiation was initialized. 

For microscopy studies, cells were cultured on glass coverslips that were flame-treated for 

sterilization, followed by incubation with poly-D-lysine (Sigma) overnight. After removal of 

poly-D-lysine, coverslips were washed with dH2O, sterilized by irradiation with UV light for 

20min and air-dried. All cell culture flasks, well plates and coverslips were coated with 

laminin (dilution 1:100 in DMEM/F12, Trevigen, Eching, Germany) for at least 4h to facilitate 

cell attachment. 
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2.2 siRNA TRANSFECTION 

Down regulation of Cx43 gene expression was carried out using Cx43 siRNA (Sigma). 

Different transfection parameters were tested to estimate best transfection efficiency, 

including low cytotoxicity. Finally, proliferating cells were transfected with 100nM Cx43 

siRNA and mock siRNA by electroporation with the Neon Transfection System (Invitrogen, 

1300V, width 10ms, 3 pulses) according to the manufacturer’s instructions. Cells were 

cultured for another 2d in the presence of growth factors before used for further 

experiments. 

2.3 MTT-ASSAY  

The MTT assay is a calorimetric test to estimate the viability and proliferation of cells. This 

assay is based on the reduction of the yellow tetrazole MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) to purple formazan in living cells by an enzymatic reaction 

(Mosmann, 1983). The absorbance correlates with the cell viability and can be quantified by 

measuring the OD at 550nm. 

For analysing cytotoxicity of 5(6)-carboxyfluorescein diacetate (CFL) cells were cultured in 

96-well plates. Different concentrations of CFL were applied either to proliferating cells or on 

2d differentiated cells. CFL was diluted in 200μl growth- or differentiation medium per well 

(8 wells per concentration) and incubated at 37°C for 5h. Two hours before CFL-exposure 

ended, 0.5 mg/ml MTT solution (Roth, Karlsruhe, Germany) was added to each well. After 

incubation, medium was removed and formazan crystals were solubilized by adding 100μl 

DMSO (Sigma) containing 10% SDS and 0.6% acetic acid (Roth). Finally, culture plates were 

mixed on a plate shaker and extinction was measured at 550nm versus blank (only DMSO-

lysis buffer) using an EL 808 Ultra Microplate Reader (Bio-Tek Instruments Inc., Highland 

Park, USA, 158840). Estimation of cytotoxicity was calculated and statistically analysed by 

MS Excel 2010 (Microsoft). 

2.4 MICROSCOPIC ANALYSIS OF RENCELL VM197 

2.4.1 CELL FIXATION AND IMMUNOLABELLING FOR CONFOCAL 

FLUORESCENCE MICROSCOPY 

The whole process of fixation and antibody labelling was performed at room temperature. 

For microscopic studies cells were grown in 24-well plates on glass coverslips and fixed with 

phosphate buffered saline (PBS; 10x: 80 g/l NaCl, 1.5 g/l Na2HPO4 x 2 H2O, all AppliChem, 2 

g/l KCl, 2 g/l KH2PO4, all Sigma; all in dH2O; pH 7.4) containing 4% paraformaldehyde (Sigma) 
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for 20min. Afterwards, paraformaldehyde was quenched using PBS containing 50mM NH4Cl 

(Roth) for 10min.  

In case of Golgi staining, proliferating cells were transfected with Golgi-GFP (20 particles per 

cell) for 24h and, if required, differentiated for further experiments. Fixation was performed 

as described above. Expression of the Golgi protein N-acetylgalactosaminyltransferase-2 was 

carried out as outlined by the manufacturer (Invitrogen). If necessary, fixed cells were 

permeabilised by incubation with PBS containing 0.2% Triton X-100 (Sigma) for 5min. 

Generally, Cxs were labelled without previous permeabilization. To reduce unspecific 

binding, cells were treated with 1% gelatin (Sigma, in PBS) for 1 hour, followed by labelling 

with a primary antibody (see Table 1) diluted in 1% gelatin (in PBS) for 1 hour. Subsequently, 

cells were rinsed twice in 0.2% gelatin (in PBS) for 5min and incubated with appropriate 

secondary antibodies (see Table 1) diluted in 1% gelatin for 45min. 

Cell nuclei or actin cytoskeleton were stained with Hoechst and 1µg/ml phalloidin 

tetramethylrhodamine isothiocyanate (TRITC), respectively. After rinsing in 0.2% gelatin, PBS 

and dH2O, cells were mounted on microscope slides using ProLong® Gold antifade reagent 

(Invitrogen). 

For Triton X-100 in situ extraction of Cxs (Musil & Goodenough, 1991; Xu, 2001), cells were 

incubated with PBS containing 0.5% paraformaldehyde and 0.3% Triton X-100 for 15min on 

an orbital shaker, followed by postfixation with 4% paraformaldehyde in PBS for additional 

15min. Subsequently, cells were immunolabelled as described above.  

antibody host dilution supplier and Cat.nr. 

primary    

anti-α-tubulin mouse 1:1000 Sigma, T5168 

anti-β(II) tubulin-FITC mouse 1:80 Abcam, ab25770 

anti-nestin mouse 1:400 BD, Heidelberg, Germany, 611658 

anti-connexin 31 mouse 1:300 Sigma, WH0002707M1 

anti-connexin 43 rabbit 1:400 Abcam, ab11370 

anti-connexin 59 rabbit 1:100 Sigma, SAB1300563 

anti-Human Neuronal 

Protein (HuC/D) 

mouse 1:300 Invitrogen, A21271 

anti-EGF receptor mouse 1:200 Santa Cruz, sc-73511 

anti-ZO-1- Alexa Fluor®594 mouse 1:200 Invitrogen, 339194 
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glial fibrillary acid 

protein(GFAP)-Cy3 

mouse 1:500 Sigma, C9205 

secondary    

anti-mouse Alexa 

Fluor®488 and 594 

goat 1:300 Invitrogen, A11001 and A11032 

anti-rabbit Alexa Fluor®488 

and 594 

rabbit 1:300 Invitrogen, A11034 and A11012 

fluorescent dyes  dilution supplier and Cat.nr. 

Hoechst 2495 (1mg/ml)  1:1000 Sigma, 862096 

Phalloidin TRITC  1:500 Sigma, P1951 

fluorescent protein based 

reagent 

  
 

Golgi-GFP  20 particles 

per cell 

Invitrogen, C10592 

Table 1 Antibodies and fluorescent dyes used for immunolabelling. 

 

2.4.2 QUANTITATIVE ANALYSIS OF PROLIFERATION  

Proliferation analysis was performed using EdU (5-ethynyl-2’-deoxyuridine, Invitrogen), a 

nucleoside analogue of thymidine that is incorporated into the DNA during S-phase, allowing 

quantitative estimation of proliferating cells. Detection of EdU is based on a copper-

catalysed click reaction between an alkyne group of EdU and an azide group conjugated to a 

fluorescent dye (Alexa Fluor®594, Invitrogen, Karlsruhe, Germany).  

For proliferation analysis cells were cultured on glass coverslips and exposed to 5µM EdU for 

2h. After fixation and permeabilization with 0.2% Trion X-100, cells were incubated for 

30min in EdU reaction buffer containing 1µM Alexa Fluor®594 carboxamido-6-Azidohexanyl 

(Invitrogen), 100mM TrisHCl (Sigma, pH 7.9), 2mM copper sulphate and 100mM ascorbic 

acid (all Roth). Finally, cells were mounted in ProLong® Gold antifade reagent. For 

microscopic quantification EdU positive cells were counted out of at least 1000 cells in three 

independent experiments and the percentage was calculated using MS Excel. 
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2.4.3 QUANTITATIVE ANALYSIS OF NEURONAL DIFFERENTIATION AND 

UNCOUPLING EXPERIMENTS 

To study neuronal development in ReNcell VM197 cells were labelled for the neuron specific 

markers β(III) tubulin and HuC/D. Neurons were quantified by counting of HuC/D and β(III) 

tubulin positive cells out of at least 2000 cells in three independent experiments. 

Pharmacological inhibition of GJIC was achieved with 50µM and 100µM carbenoxolone (CBX) 

diluted in distilled water and 500µM 1-oct. For analysing the effect of GJ blockage on 

proliferation cells were exposed to the uncoupling agents for 24h and subjected to EdU-

staining as described above. To assess the impact of GJIC on neuronal differentiation cells 

were grown to 70% confluence before differentiation was induced and incubated with CBX 

or 1-oct, followed by fixation after 24, 48, 72 and 96h and staining for β(III) tubulin and 

HuC/D. To ensure constant concentration conditions differentiation media containing CBX or 

1-oct was replaced every day. Neurons were quantified  

2.4.4 MICROSCOPIC IMAGE ACQUISITION OF FIXED CELLS 

Fluorescent images of fixed cells were obtained using a Nikon A1 confocal imaging system 

with a 40x or 60x/NA 1.4 oil objective (Nikon, Japan). Images were acquired from z-stacks of 

30 images with 0.25µm thickness of each section. Finally, maximum projections were 

created with Nikon NIS Elements software. For protein expression analysis of Triton X-100 

extracted Cx43, parameter settings (pinhole size, gain, offset, laser intensity and section 

thickness) were kept constant for image acquisition of all time points. 

For surface rendering of confocal z-stacks, Imaris software (V6.0-6.3, Bitplane, Zurich, 

Switzerland) was used. Surfaces were created on the basis of fluorescence intensity signals. 

2.5 LIVE CELL IMAGING STUDIES 

2.5.1 LONG-TERM ANALYSIS OF NEURAL DIFFERENTIATION  

Morphological alterations during the differentiation process of ReNcell VM197 were 

observed by differential interference contrast (DIC)-confocal microscopy. Cells were seeded 

on 4-well LabTek chambers and differentiation was induced as cell confluence reached 70%. 

Images were taken every 10min for 4d by use of the Nikon A1 imaging system with a 40x or 

60x/NA 1.4 oil objective (Nikon).  

2.5.2 FLUORESCENCE RECOVERY AFTER PHOTOBLEACHING  

To study GJIC cells were loaded with 20µM CFL for 25min (Sigma), followed by rinsing with 

Hanks´ balanced salt solution (Invitrogen). Fluorescence recovery after photobleaching 
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(FRAP) measurements were performed by using a Nikon A1 confocal imaging system 

equipped with a CO2 cage incubator (Nikon, Japan) and images were obtained with a 60x/NA 

1.4 oil objective. A single cell within a cluster was bleached for 50 sec using a 488nm laser 

beam and recovery of fluorescence was recorded at 30 sec intervals for a total of 10min. 

Two unbleached cells in the same visual field were selected as reference to subtract the loss 

of fluorescence due to photobleaching during the acquisition process. Subsequent analysis 

of recorded frame sequences was done by Nikon NIS Elements Software (Nikon), including 

reference correction and background subtraction. The fluorescence intensity of every 

timepoint was normalized to the average prebleach and postbleach intensity (Abbaci et al., 

2007). Halftime of recovery (thalf) was calculated by fitting the fluorescence recovery curve to 

the following exponential equation: ))(^1()( teAtF   , where   is the time [s] after 

photobleaching, )(tF is the normalized fluorescence intensity [%], A  is the asymptotic value 

which the final fluorescence intensity reaches.   is the fitted parameter that is used to 

calculate the corresponding thalf by the equation /)5.0ln( . Graph fitting and thalf 

calculations were performed by use of GraphPadPrism5 software (GraphPad Prism, Inc., San 

Diego, CA, USA). All FRAP measurements were performed on 30-50 cells per experiment and 

repeated at least three times.  

2.5.3 PLASMID PREPARATION AND TRANSFECTION 

The red fluorescent protein-Cx43 (RFP-Cx43) plasmid was originally obtained as a gift from 

PD Dr. Irina Majoul, Institute of Biology Centre for Structural & Cell Biology in Medicine, 

University of Lübeck, Germany. Plasmid amplification of RFP-Cx43 and yellow fluorescent 

protein-α-tubulin (YFP-α-tubulin; Clontech, CA, USA) was carried out using chemically 

competent E.coli One Shot®TOP10 (Invitrogen) according to the manufactures protocol.  

For plasmid isolation transformed E.coli were centrifuged at 2800g for 15min, resuspended 

in 600µl dH2O and lysed by incubation with 600µl 2x lysis buffer (1% SDS (Invitrogen), 0.14M 

NaOH and 25mM EDTA (all Sigma)) for 5min. Subsequently, lysed bacteria were diluted in 

300µl 2M MgCl2 (Applichem) and centrifuged at 27000g for 5min at 4°C. After addition of 

300µl 5M sodium acetate (Sigma), lysates were placed on ice for 10min and subjected to 

centrifugation at 42000g for 10min at 4°C. The supernatant was collected, diluted with 5% 

polyethylene glycol (stock solution 30%, Roth) and incubated on ice for 2h. Following 

centrifugation at 20000g for 20min at 4°C, plasmids were resuspended in 0.4ml TE buffer 

and 1ml 99% ethanol and incubated overnight at -20°C. Afterwards, eluted DNA was pelleted 

by centrifugation at 20000g for 20min at 4°C, resuspended in 70% ethanol and centrifuged 

again. Pellet was dried and suspended in 20µl TE-buffer, including 1µg/ml RNAse. DNA 
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concentration was estimated according to its optical density at 260nm using a UV-

spectrophotometer (Thermo scientific, Rochester, NY, USA). 

Plasmid transfection into ReNcell VM197 was performed using the electroporation device 

GenePulser II (BioRad). Cells were washed with pre-warmed HBSS (Invitrogen), trypsinized as 

described above and centrifuged at 126g for 5min at room temperature. For each 

transfection 2x106 cells were transferred in separate tubes and centrifuged again, followed 

by resuspension in 100µl electroporation buffer containing 140mM Na2PO4, 5mM KCl, 10mM 

MgCl2; pH 7.4. Finally, 4µg plasmid were added and incubated for 3min at room 

temperature. Electroporation was performed in a 0.2cm electroporation cell (Lonza, Basel, 

Switzerland) with two subsequent electric shocks in a GenePulser II: (1) 1000V for 0.1-

0.2msec; GenePulser parameters: U = 0.95kV, capacity = 10μF; (2) 100V for 15-30msec; 

GenePulser parameters: U = 0.1kV, capacity = 0.5μF x 1000 at ”high cap” setting. After 

electroporation 500µl growth medium were added and cells were seeded on 4 well LabTek 

chambers for live cell imaging analysis  

2.5.4 ANALYSIS OF MICROTUBULE-DEPENDENT CX43 MOVEMENT 

For live cell imaging studies of Cx43 movement, cells were double transfected with RFP-

tagged Cx43 and YFP-tagged α-tubulin as described in 2.5.3. Cells were seeded on LabTek 

chambers and cultured for a least 1d to allow plasmid transcription and analysed with a 

Nikon A1 imaging system as mentioned in 2.5.1. For visualization of RFP-Cx43 and YFP-α-

tubulin constructs, fluorophores were excited with a 488nm (YFP) and 594nm (RFP) laser 

beam. To maintain cell viability cells were kept at 37°C in 5% CO2 atmosphere. Calculation of 

particle velocity was done by computational tracking of Cx43 vesicles using the Nikon NIS 

elements software. 

2.6 BIOCHEMISTRY 

2.6.1 PURIFICATION OF MEMBRANE-BOUND CX43 

Membrane fractions were isolated according to an adapted protocol reported by Hand et al., 

(2002). All steps of preparations were performed on ice and with pre-chilled buffer solutions. 

Cells, grown in 2x T75 culture flasks, were rinsed with Tris-EGTA buffer containing 5mM Tris, 

1mM EGTA, 1mM PMSF (all Sigma); pH 8.5. The solution was removed and cells were 

scraped in the presence of Tris-EGTA buffer containing 0.25mM sucrose (Sigma). Cells were 

collected by centrifugation at 126g for 10min at 4°C and pellet was suspended in 1ml Tris-

EGTA buffer supplemented with 8.7% sucrose, 1mM EDTA, 10mM triethanolamine (all 

Sigma) ), 10mM acetic acid (Roth); pH 7.4. Cell lysis was supported by pipetting up and down 
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using a syringe with a 25G needle and subsequently approved by microscopic evaluation. 

Lysates of two flasks were pooled together and centrifuged at 126g for 10min at 4°C to 

separate membrane fraction (supernatant). A three-step gradient was prepared containing 

2.6ml of 50% sucrose solution at the bottom step and 4.2ml of 27% sucrose solution at the 

middle step. Finally, 2ml of the sample were layered on top. The gradient was 

ultracentrifuged at 192000g for 2h at 4°C and the 27%/50% interface was collected into a 

new tube and diluted 1:1 with Tris-EGTA buffer. The crude membrane fraction was spun 

down at 86000g for 30min at 4°C. The pellet was resuspended in 200µl Tris-EGTA buffer and 

centrifuged again to remove 8.7% sucrose, followed by suspension in 100µl Tris-EGTA. 

Samples were lyophilized for 4h using a vacuum centrifuge and pellet was suspended in 50µl 

dH2O. Protein concentration was estimated using Pierce BCA Protein Assay Kit (Thermo 

Scientific). Finally, samples were diluted 1:4 in 4x SDS buffer containing 0.25M Tris (Sigma), 

40% glycerin (AppliChem, Darmstadt, Germany), 20% β-mercaptoethanol (Bio-Rad, Munich, 

Germany), 10% sodium dodecyl sulphate (SDS) (Invitrogen), 0.01% bromphenol blue sodium 

salt (Serva, Heidelberg, German); pH 6.8) and boiled for 5min at 98°C. 

2.6.2 PREPARATION OF TOTAL CELL LYSATES AND DETERGENT EXTRACTION 

OF CX43 

For preparation of total lysates, cells cultured in 6-well plates were washed twice with PBS 

and lysed in 200µl 2xSDS buffer (see 2.6.1), followed by sonication and boiling for 5min at 

98°C.  

For Triton X-100 extraction of Cx43, cells were cultured in T75 culture flasks. Preparation of 

lysates was carried out on ice and with pre-chilled buffer solutions. Cells were rinsed with 

PBS, followed by scraping and subsequent centrifugation at 126g for 10min at 4°C. Cell 

disruption was induced by suspension of the cell pellet with 500µl lysis buffer containing 

150mM NaCl (AppliChem); 1mM Na3O4V (Acros/ThermoFisher Scientific, Rochester, USA); 

1mM EDTA, 1mM EGTA, 1mM NaF, 1% Triton X-100, 1mM PMSF, 1μg/ml Pepstatin, 1μg/ml 

Aprotinin, 1μg/ml Leupeptin (all Sigma). Prior subsequent centrifugation, 166µl sample was 

retained as total cell lysate, whereas the remaining lysate was subjected to 

ultracentrifugation at 100000g for 30min at 4°C. Triton X-100 soluble fraction (supernatant) 

was collected and Triton X-100 insoluble pellet was suspended in 100µl lysis buffer. Samples 

were lyophilized and suspended in 50µl dH2O and Protein concentration was estimated using 

Pierce BCA Protein Assay Kit (Thermo Scientific). For sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE), samples were diluted 1:4 in 4x SDS sample 

buffer. 
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2.6.3 SDS-PAGE AND IMMUNOASSAY 

Proteins were separated by SDS-gel electrophoresis using 10% polyacrylamide gel 

(separation gel: 13.33ml 30% acrylamide; 10ml 4x separation gel buffer; 16.47 ml dH2O; 

140μl TEMED (Sigma); 64μl 12.5% ammonium peroxide sulphate in dH2O, Acros, Nidderau, 

Germany) and 4% stacking gel (0.575ml 30% acrylamide; 1.25ml 4x loading gel buffer; 

3.109ml dH2O; 46μl TEMED; 20μl 12.5% ammonium peroxide sulphate). A gel 

electrophoresis chamber (Mighty Small 200 Hoefer electrophoresis device; GE Healthcare, 

Solingen, Germany) was filled with running buffer (10x: 0.25mM Tris; 1.92M glycine; 1% SDS 

(Sigma); in dH2O.; pH 8.2), gels were loaded with specific samples and constant 20mA for 

each gel was applied for 60-70min. 

After separation of lysates by SDS-PAGE, proteins were transferred onto nitrocellulose 

membrane by tank blotting and detected using protein specific antibodies. Acrylamide gel, 

NC membrane, filter papers and fibre pads were equilibrated in blot buffer containing 

200mM glycine; 25mM Tris and 20% methanol (AppliChem; in dH2O; pH 8.6) for 20min and 

assembled according to the manufacturer´s instructions with the Mini Trans-Blot 

Electrophoretic Transfer Cell (Bio-Rad). Proteins were transferred onto NC-membrane at 

constant 30V overnight. Successful transfer was controlled by staining with Ponceau S 

solution (3% trichloroacetic acid, Merck; 0.1% Ponceau S, Sigma) for 3min , followed by 

washing with dH2O to remove excessive Ponceau S. Membranes were treated for 1 hour 

with TTBS (10x: 100mM Tris; 1.49mM NaCl; 1% Tween® 20, Sigma; in dH2O; pH 7.4) 

containing 5% non-fat dry milk (AMPI, New Ulm, USA) in order to block unspecific binding 

sites, followed by washing with TTBS 3 times for 5min. Subsequently, membranes were 

incubated with primary antibodies (see Table 2) diluted in TTBS including 5% non-fat dry milk 

for 2h at room temperature. After rinsing with TTBS 3 times, membranes were incubated 

with horseradish-conjugated secondary antibody (see Table 2) diluted in TTBS containing 

2.5% non-fat dry milk and washed 3 times with TTBS and TBS. Bound antibodies were 

detected with ECL western blot detection reagent (GE Healthcare, Freiburg, Germany). 

Finally, membranes were exposed to light sensitive films (GE Healthcare), which were 

developed (Kodak Professional D-19 Developer, Sigma-Aldrich, Hamburg, Germany and 

fixative, Filmfabrik Wolfen, Germany) and scanned for quantification. The quantification of 

proteins signals was performed by ImageJ software (NIH/USA). Whole lanes were selected 

and grey levels were measured automatically. All samples were normalized to the loading 

control α-tubulin or actin. To illustrate the presence of Cx43, Cx31 and Cx59 in ReNcell 

VM197 (Figure 8B), the membrane was simultaneously incubated with three different Cx 

antibodies. However, antibody specificity was tested before by separate incubation of the 

membrane to exclude cross reactivity. 
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antibody host dilution supplier and Cat.nr. 

primary    

anti-α-tubulin mouse 1:400000 Sigma, T5168 

anti-β-actin mouse 1:250000 Sigma, A5441 

anti-Cx31 rabbit 1:400 Sigma, SAB1100240 

anti-Cx43 rabbit 1:8000 Abcam, Cambridge, UK, ab11370 

anti-Cx59 rabbit 1:100 Abcam, ab86414 

anti-Cx36 goat 1:200 Santa Cruz, Heidelberg, Germany, 

sc-14904 

anti-Cx45 goat 1:200 Santa Cruz, sc-7679 

secondary    

anti-mouse IgG, 

horseradish peroxidase 

(HRP) 

sheep 1:10000 GE Healthcare, Munich, Germany, 

Cat. NA931V 

anti-rabbit IgG, HRP goat 1:80000 Sigma, A9169 

anti-goat IgG, HRP donkey 1:50000 Santa Cruz, sc-2020 

Table 2 Antibodies used for immunoblotting. 

 

2.7 STATISTICAL ANALYSIS 

All results are shown as mean ± standard error of mean (SEM) of at least three independent 

experiments. Statistical significance between two parameters was estimated with student´s 

t-test. Time-dependent protein expression patterns and FRAP data, including timeline 

analysis and calculated halftimes, were analysed by one-way ANOVA. Statistical significance 

between fluorescence recovery curves was calculated by two-way ANOVA. Post-hoc test was 

performed using Bonferroni´s test for multiple comparisons between proliferating and 

differentiated cells or untreated and treated cells. For analysing statistical significance of 

neuronal differentiation, post-hoc test was carried out for multiple comparisons between 1d 

differentiated cells and 2-5d differentiated cells. The probability levels considered as 

statistically significant were *P≤0.05, **P≤0.01, ***P≤0.001. Calculations were made with 

GraphPadPrism5 software (GraphPad Prism, Inc.) or MS Excel (Microsoft, Redmond, WA, 

USA). 
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3 RESULTS 

3.1 CHARACTERIZATION OF ReNcell VM197  

In the present study we determine a role for GJIC in proliferation and differentiation of 

human neural progenitors using the immortalized human progenitor cell line ReNcell 

VM197. This cell line is well characterized and has been used in several studies where it was 

shown to be a simple and accepted model to investigate different aspects of neural 

differentiation in vitro (Lange et al., 2011; Mazemondet et al., 2011). ReNcell VM197 is able 

to readily differentiate into neurons and glial cells within 3d after growth factor removal, a 

fact that allows long term analysis of different stages of differentiation.  

The differentiation process is accompanied by strong morphological changes of the cellular 

architecture that finally results in the establishment of a dense neural network. Long-term 

DIC-confocal microscopy of ReNcell VM197 undergoing differentiation demonstrated the 

alterations in cell morphology (Figure 3). While proliferating progenitors were characterized 

by a plump and round cellular shape, induction of differentiation led to the development of 

long cell protrusions and cell branches within 1d (Figure 3a-b). Proceeding differentiation 

finally resulted in the formation of a stable meshwork after 3-4d.   

Figure 3 Neural differentiation of ReNcell VM197. Long-term DIC-microscopy of differentiating 
ReNcell VM197 demonstrated strong morphological changes after induction of differentiation. While 
proliferating progenitors showed a round cellular shape (a), growth factor removal induced the formation 
of cell protrusions within 1d (b). Progressive cell branching was observed after 2d (c), which resulted in 
the formation of a dense neural meshwork after 3d (d), Bar 50µm. 
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Figure 4 Altered expression of progenitor and neural differentiation markers during ReNcell 
VM197 development. (A) Proliferating ReNcell VM197 progenitors demonstrated strong expression of 
the neural precursor marker nestin (0d). However, as cells were induced to differentiate, expression of 
nestin decreased (1d-3d). Cells were labelled with anti-nestin antibody. Nuclei were stained with Hoechst, 
Bar 20µm (B) Rapid Neuronal and glial cell differentiation in ReNcell VM197. Proliferating progenitors 
showed no differentiated phenotypes (0d). Induction of differentiation by growth factor removal led to 
the formation of neurons and glial cells beginning after 1d (b). An increasing number of neurons and glial 
cells was observed after 2d and a dense neural network was established after 5d of differentiation (c, d). 
(C) Microscopic quantification revealed an increase of the neuron number over time, reaching a maximum 
value of 10-12% at the end of differentiation after 4-5d. Cells were stained for β(III) tubulin (green) and 
GFAP (red). Nuclei were stained with Hoechst, Bar 50µm. Graph represents data of 3 independent 
experiments, shown as mean±SEM. Time course of neuronal development was analysed by one way 
ANOVA P<0.0001, followed by Bonferroni post-hoc test. Bar 20µm 
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The expression of nestin, a class VI filament protein, is a common feature of neural 

progenitors, indicating their undifferentiated and self-renewal state. Proliferating ReNcell 

VM197 demonstrated strong nestin expression, which was progressively decreased as 

differentiation proceeded (Figure 4A). After differentiation, nestin expression was replaced 

by the expression of glial and neuronal-specific proteins. Therefore, cells were 

immunolabeled with anti-glial fibrillary acidic protein (GFAP), a glial specific marker and anti-

β(III) tubulin to reveal neuronal phenotypes. As shown in Figure 4B, proliferating progenitors 

were characterized by the absence of neural markers. After the removal of growth factors, 

the majority of progenitors differentiated into glial cells, with branches forming a network 

soon after 1d of differentiation (Figure 4B, b). Moreover, neuronal cells were found that 

expand above the glial carpet and whose number increased as differentiation proceeded 

(Figure 4B, b-d). Microscopic quantification revealed a rising number of neurons during 

differentiation, reaching a maximum value of 10-12% after 4d, which indicates the 

completion of neuronal development (Figure 4C). 

3.2 GJIC IN ReNcell VM197 

3.2.1 GJIC MEASUREMENT BY FRAP MICROSCOPY  

To investigate the extent of GJIC in neural progenitors, we performed FRAP microscopy using 

CFL, a tracer that is often used to analyse functionality of GJs. Once inside the cell, the non-

fluorescent form of CFL is hydrolysed by intercellular esterases to a membrane-impermeable 

fluorescent anion that is retained by the cell and can only diffuse via GJs. A prerequisite of 

Figure 5 Cytotoxicity of CFL in proliferating and differentiated ReNcell VM197. Proliferating or 3d 
differentiated cells were loaded with different concentrations of CFL for 5h and subjected to MTT assay. 
(A) In proliferating progenitors CFL exerts its cytotoxic effect at a concentration of 100µM. (B) No 
cytotoxic effects of CFL on cell viability were detected in differentiated cells. Graphs represent data of 3 
independent experiments, shown as mean±SEM. Statistical differences were calculated by Student´s t-test, 
***P<0.001. 
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fluorescent dyes in live cell imaging is the absence of cytotoxic effects that cause cell 

damage and alter cellular physiology. To avoid undesired side effects of the fluorescent 

probe and to ensure accurate FRAP measurements, we initially tested cell toxicity of CFL by a 

calorimetric MTT assay. As cell sensitivity can change during differentiation, both 

proliferating and 3d differentiated cells were loaded with different concentrations of the 

fluorescent probe for 5h. CFL was found to exhibit its cytotoxic effect on proliferating cells at 

a concentration of 100µM (Figure 5A). In contrast, no effect on cell viability was detected in 

differentiated cells (Figure 5B). Based on these data, all FRAP experiments were performed 

with CFL at a concentration of 20µM to exclude cytotoxic effects. 

As demonstrated in Figure 6A, a selected cell within a cluster of cells was photobleached by 

an argon laser and diffusion-dependent fluorescence recovery was recorded for 10min.   

Figure 6 FRAP microscopy as a tool to analyse GJIC. (A) Cells were loaded with CFL, followed by 
photobleaching of a selected cell (red frame) within a cluster of cells. Fluorescence recovery was 
recorded for 10min. (B) Typical course of fluorescence recovery of a bleached cell under control 
conditions due to GJ-mediated CFL diffusion from adjacent cells. Background intensity (purple frame) 
and intensity within a reference cell (blue frame) were recorded to encompass bleaching effects caused 
by the acquisition process. (C, D) No fluorescence recovery was observed in bleached single cells, 
indicating that recovery was dependent on dye diffusion from neighboring cells, Bar 20μm. 
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Background fluorescence (purple frame) and fluorescence intensity of a reference cell (blue 

frame) were measured to include the loss of fluorescence induced by the acquisition process 

(Figure 6A). Since the hydrolysed form of CFL might only diffuse across GJs, the time course 

of fluorescence recovery, shown in Figure 6B, represents a distinct feature for the extent of 

GJIC of a cell population. Bleaching of a single cell without any adjacent cells did not result in 

fluorescence recovery (Figure 6C, D). These data clearly demonstrate that fluorescence 

recovery measured by FRAP was exclusively arisen from dye diffusion of neighbouring cells 

into the bleached area. Thus, this microscopic technique is an appropriate tool to study the 

intercellular communication via GJs in neural progenitors. 

3.2.2 GJIC ALTERS DURING DIFFERENTIATION OF ReNcell VM197 

Next, we carried out a detailed long-term temporal analysis of GJIC during the differentiation 

process. FRAP microscopy analysis revealed strong dye coupling when cells were kept in a 

proliferative state in the presence of EGF and bFGF (Figure 7A). However, induction of 

differentiation by withdrawal of growth factors led to a profound decrease of GJIC within the 

first 24h (Figure 7A). This early stage of differentiation is characterized by the exit from cell 

cycle and crucial for initiating cell fate commitment (Galderisi et al., 2003). Proceeding 

differentiation characterized by glial cell formation and neuronal maturation was 

accompanied by an increase of GJIC. Moreover, dye coupling was even 1.5-fold stronger 

than observed in proliferating progenitors (Figure 7A), indicating a higher degree of 

intercellular communication. The comparison of calculated halftimes by analysis of 

fluorescence recovery curves confirmed the different extent of cell coupling in ReNcell 

VM197 (Figure 7B, C). Compared to proliferating cells, the speed of fluorescence recovery 

declined by more than 50% after differentiation was initialized. However, proceeding 

differentiation resulted in a stronger cell-cell coupling that increased the flow through of CFL 

into the bleached cell. This different, time-dependent modulation of GJIC implies its 

importance for proper differentiation in neural progenitor cells. The observed modulation of 

GJIC directly reflects the change of GJ channel activity. This would encompass either a switch 

of selective channel permeability or the rearrangement of GJ plaques by regulating Cx43 

gene expression or degradation processes (Cottrell et al., 2002; Rackauskas et al., 2010). 
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3.3 EXPRESSION OF CXS DURING DIFFERENTIATION OF ReNcell 

VM197 

3.3.1 SCREENING FOR DIFFERENT CX ISOTYPES 

As gap junctional coupling requires the presence of Cxs, we wanted to confirm the kinetic 

profile of GJIC at the molecular level by analysing Cx expression throughout the whole 

process of differentiation. Due to several reports, showing the presence of different Cx 

isoforms in embryonic stem cells and human neural tissue (Nadarajah et al., 1997; Söhl & 

Willecke, 2004; Huettner et al., 2006; Wörsdörfer et al., 2008), we initially screened for the 

Figure 7 Alterations in cell-cell coupling during proliferation and differentiation. (A) Dye coupling 
was measured by FRAP. GJIC was strong in proliferating neural progenitors, but decreased after 
differentiation was induced, followed by an increase in the later stage of differentiation. Graph represents 
fluorescence recovery values after 10min. (B) Average fluorescence recovery curves of proliferating cells 
(0d) and differentiated progenitors (1d, 3d, 8d) confirm the different extent of GJIC. (C) Halftimes of 
recovery were calculated by fitting datasets to an exponential equation, indicating the speed of recovery 
during differentiation. Graphs represent data of ≥3 independent experiments, shown as mean±SEM. Time 
course of GJIC and halftimes of recovery were analysed by one-way ANOVA P<0.0001. Differences 
between fluorescence recovery curves were estimated using two-way ANOVA P<0.0001. Multiple 
comparisons were performed using Bonferroni post-hoc test. Halftimes of recovery were calculated by 
data fitting as described in material and methods. 
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expression of Cx31, Cx36, Cx43, Cx45 and Cx59 in proliferating ReNcell VM197 progenitors. 

Western blot data give evidence for the presence of only three different Cx isotypes, namely 

Cx43, Cx31 and Cx59 (Figure 8A, B). Note, three phosphorylation states were found for Cx43, 

as indicated by three different bands. As shown in Figure 8A, most of Cx43 is 

unphosphorylated, while a smaller amount is present in the P1- and P2-form. Cell 

immunolabelling with different antibodies confirmed the presence of these three Cxs and 

showed high levels of Cx43 expression, compared to Cx31 and Cx59 (Figure 8C). Based on 

these data, detailed time-dependent gene expression analysis of whole cell lysates was 

performed, showing specific expression pattern for each Cx isotype during the 

differentiation process. 

3.3.2 CXS ARE DIFFERENTIALLY EXPRESSED DURING NEURAL 

DIFFERENTIATION  

Cx43. Expression of Cx43 was monitored for 10d and we observed a dynamic change of Cx43 

expression during proliferation and differentiation. Proliferating cells showed a high 

expression level of Cx43, but it was down-regulated by 80% after the induction of 

Figure 8 Expression of Cxs in proliferating progenitors. (A) Screening for several Cx isotypes revealed 

the expression of Cx43, Cx31 and Cx59. (B) Western blot image, showing the presence of Cxs in the same 

lysate. (C) Confocal microscopy of Cx-labeled cells demonstrated high levels of Cx43 in proliferating 

progenitors. Cells were immunolabeled with Cx antibodies and nuclei were stained with Hoechst, Bar 

20µm. 
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differentiation. However, expression of Cx43 showed a 2.5-fold re-increase after 5d when 

neural differentiation was completed (Figure 9A). The dynamic expression pattern of Cx43 

was visualized by immunofluorescence microscopy (Figure 9B). Proliferating cells that were 

labeled with Cx43 antibody demonstrated strong fluorescence intensity (Figure 9B, a) that 

progressively declined within 4d of differentiation (Figure 9B, b-c), followed by a marked 

increase (Figure 9B, e-f).  

Figure 9 Expression of Cx43 during proliferation and differentiation. (A) Detailed time-dependent 
analysis showed progressive down-regulation of Cx43 protein during the first days of differentiation. 
However, gene expression of Cx43 increased with proceeding differentiation after 4-5d. (B) Confocal 
microscopy of proliferating progenitors and differentiated cells confirmed western blot results and 
indicated cytoplasmic and membranous localization of Cx43 in ReNcell VM197, Bar 20µm. Graph 
represents data of 4 independent experiments, shown as mean±SEM, one-way ANOVA, P<0.0001 , 
followed by Bonferroni post-hoc test. 
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Cx31. A similar dynamic course of gene expression was detected for Cx31. The level of Cx31 

decreased by 40% within the first 2d after growth factor removal. Indeed, this reduction of 

gene expression was less pronounced compared to Cx43 (Figure 10A). Proceeding 

differentiation of neural progenitors induced a consistent up-regulation of Cx31, which 

resulted in a 3.5-fold increase of the protein level in the late stage of differentiation. These 

alterations in the expression profile were supported by confocal microscopy of Cx31-labeled 

cells. As demonstrated in Figure 10B the fluorescence signal of Cx31 was reduced when 

differentiation was initialized (Figure 10, a-c). However, fluorescence intensity progressively 

increased after 6d.  

Cx59. Compared to western blot data obtained for Cx43 and Cx31, Cx59 protein expression 

showed no pronounced alterations during the differentiation process (Figure 11A). Although 

these data give evidence for a wave-like expression pattern, we did not detect significant 

changes between tested timepoints. In contrast to these results, microscopic analysis 

demonstrated a slight decrease of Cx59 after growth factor removal that persisted up to 6d 

of differentiation (Figure 11B, a-d). As shown for Cx31 and Cx43, fluorescence intensity of 

Cx59 increased in the late stage of differentiation.  

Comparison of the time-dependent Cx expression patterns and the dynamic behaviour of 

gap junctional coupling during differentiation revealed that protein levels of Cx43 and Cx31 

changed in way that is similar to the GJIC profile obtained by FRAP microscopy (Figure 

6Figure 9Figure 10). However, the gene expression kinetic did not exactly reflect the changes 

in cell-cell coupling that occur during the differentiation process. The observed decrease of 

Cx43 level was more dramatic as the reduction of GJIC, whereas up-regulation of Cx43 in the 

late stage of differentiation was less pronounced than the increase of gap junctional 

communication. Furthermore, the alteration of the Cx43 level showed a 3d delay compared 

to the GJIC profile. A 1d delay was detected for Cx31, which was down-regulated by 40% 

within the first 2d of differentiation (Figure 10). The subsequent, progressive increase of 

Cx31 was stronger, but slower compared to the GJIC profile. Indeed, this 1d delay of the 

Cx31 expression pattern was shorter than observed for Cx43. While Cx31 and Cx43 were 

found to share similar expression profiles, no significant changes of the protein level were 

detected for Cx59. However, the temporal correlation of both the expression of Cx43 and 

Cx31 and GJIC might suggest a modulating function of these Cxs for GJ coupling during 

neural differentiation.  
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Figure 10 Expression of Cx31 during proliferation and differentiation. (A) Time-dependent western 
blot analysis demonstrated a down-regulation of Cx31 during the first 2d of differentiation. As 
differentiation proceeded, Cx31 protein level increased, reaching a 4-fold up-regulation after 10d. (B) 
Confocal microscopy of proliferating progenitors and differentiated cells showed similar alteration in 
protein expression as revealed by western blotting, Bar 20µm. Graph represents data of 3 independent 
experiments, shown as mean±SEM, one-way ANOVA, P<0.01, followed by Bonferroni post-hoc test. 
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Figure 11 Expression of Cx59 during proliferation and differentiation. (A) Time-dependent analysis 

of full cell lysates by western blotting showed no significant changes in Cx59 expression during the 

differentiation of neural progenitors. (B) However, microscopic observations of proliferating and 

differentiated cells suggested a down-regulation of Cx59 after induction of differentiation and subsequent 

increase of Cx59 protein level in the late stage of differentiation, Bar 20µm. Graph represents data of 3 

independent experiments, shown as mean±SEM, one-way ANOVA, P>0.05. 

 



RESULTS 

 

 
36 

 

3.3.3 CX EXPRESSION IN NEURONS AND GLIAL CELLS 

Specific Cx isoforms are differentially expressed during the development in different cell 

types. As ReNcell VM197 can differentiate into neurons and glial cells, we investigated the 

presence of Cx proteins in non-neuronal and neuronal cells. Therefore, cells were 

differentiated for 4d and stained for GFAP and β(III) tubulin to distinguish neurons and glial 

phenotypes. Confocal images, presented in Figure 12A, show that fluorescence signals of all 

Cxs were obtained in glial cells throughout the whole cell body, including cell protrusions. 

Neurons were also found to express all three Cx isotypes (Figure 12B), indicating that Cx 

expression was not restricted to certain cell types during differentiation. 

Figure 12 Expression of Cxs in glial cells and neurons. (A) Double labelling of cells with glial-specific 
anti-GFAP (red) and anti-Cx (green) demonstrated the expression of Cx43, Cx31 and Cx59 in non-neuronal 
cells. (B) Cxs were also found in neurons as shown by Cx (red) and neuronal β(III) tubulin labelling 
(green). (a) Cx, (b) GFAP or β(III) tubulin, (c) DNA, (d) merged, Bar 20µm. 
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3.3.4 INTRACELLULAR AND SUBCELLULAR DISTRIBUTION OF CXS 

3.3.4.1 CYTOPLASMIC DISTRIBUTION OF CXS 

As Cx proteins are not exclusively involved in GJ formation and therefore not only located in 

the cell membrane, the analysis of whole cell lysates (Figure 9-11) might not exactly 

represent the amount of Cxs within GJ plaques. Thus, we focused on the intra- and 

subcellular distribution of expressed Cxs in ReNcell VM197. 

Cx43. Cx43 was distributed throughout the whole cell in both proliferating and differentiated 

ReNcell VM197 progenitors (Figure 9). Notably, we observed a strong accumulation in a 

region near the nucleus that was particularly prominent in proliferating cells. Based on 

several studies reporting an involvement of the Golgi-network in Cx life cycle, we assumed 

the Golgi apparatus as a subcellular store for Cx43 (Das Sarma et al., 2001; Kennedy et al., 

2003). This was confirmed by incubation with Golgi-GFP that targets the human Golgi-

resident enzyme N-acetylgalactosaminyltransferase 2. Confocal images presented in Figure 

13A show that both Cx43 and the Golgi network colocalized to the same perinuclear region 

of the cell (Figure 13A, proliferating cells). As differentiation was induced the number of cells 

containing strong intracellular accumulations of Cx43 drastically declined (Figure 13A, 3d). 

However, a recharge of these intracellular Golgi-stores was observed in the later stage of 

differentiation when Cx43 is up-regulated (Figure 13A, 8d). This indicates that an 

intracellular pool of Cx43 is retained in the Golgi-network, especially in proliferating 

progenitors, which is depleted when differentiation is induced.  

Cx31. Microscopic observations of Cx31-immunolablled cells showed a similar intracellular 

distribution pattern as observed for Cx43 (Figure 13B). However, while most of Cx31 is 

accumulated in the Golgi-apparatus, only a small portion of intracellular Cx31 is distributed 

throughout the cytoplasm (Figure 13B, proliferating cells). Induction of differentiation by 

removal of growth factors resulted in a depletion of the Golgi-stores that were refilled as 

differentiation proceeded (Figure 13B, 3d, 8d). 

Cx59. In contrast to Cx43 and Cx31, which were mainly located in the Golgi network, Cx59 

demonstrated a uniform, ubiquitous distribution pattern (Figure 13C). Neither in 

proliferating progenitors nor in differentiated cells Cx59 proteins were found to accumulate 

and colocalize with the Golgi-apparatus. 
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Figure 13 Intracellular localization of Cxs in proliferating and differentiated cells. (A) In proliferating 
progenitor cells Cx43 was found to be located in the Golgi-apparatus, shown by colocalization of Cx43 and 
Golgi-GFP. A weak signal of Cx43 in the Golgi area was detected in early differentiated cells (3d), which re-
increased as differentiation proceeded (8d). (B) Cx31 also accumulates in the Golgi network in proliferating 
cells. Accumulation disappeared in the early stage of differentiation (3d) and re-established with continuing 
differentiation (8d). (C) Cx59 showed ubiquitous distribution pattern with no accumulations in proliferating 
and differentiated cells. Cells were incubated with Golgi-GFP (b, green), fixed and co-stained with Cx antibodies 
(c, red) and Hoechst (a), Bar 20µm. 
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To further define the subcellular localization of Cxs, proliferating progenitors were treated 

with Brefeldin A (BFA) for 30min prior immunolabelling to stimulate disruption of the Golgi-

network (Figure 14). The bright, perinuclear fluorescence of Cx43 and Cx31 (arrows) 

disappeared, resulting in a diffuse staining pattern (asterisks) after BFA incubation due to 

dispersion of Cx molecules throughout the cytoplasm. As Cx59 did not accumulate in a 

perinuclear compartment, administration of BFA only induced a decrease of fluorescence 

intensity. The effect of BFA on the Golgi-Network was visualized by Golgi-GFP transfection, 

showing disassembly of GFP-tagged Golgi stacks after BFA incubation (inserted images). 

These results support our finding that most of the intracellular Cx43 and Cx31 were located 

in the Golgi apparatus, which suggest that both Cxs might be trafficking through the 

secretory pathway and probably assemble in the trans-Golgi-network. 

 

 

  

Figure 14 Effect of Golgi disruption on Cx distribution. While control cells showed strong 
accumulations of Cx43 and Cx31 in the Golgi apparatus (arrows), treatment with the Golgi-disrupting 
agent BFA caused strong dispersion of Cx43 and Cx31 throughout the cytoplasm (asterisks). Minor 
changes in cellular distribution were observed for Cx59. BFA only induced a decrease in fluorescence 
intensity. Inserted images show Golgi-GFP labelled cell when untreated or treated with BFA. Cells were 
incubated with Golgi-GFP (green), fixed and co-stained with Cx43 antibody (red) and Hoechst (a), Bar 
20µm. 
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3.3.4.2 INVOLVEMENT OF CXS IN GJ AND HEMICHANNEL FORMATION 

As shown by FRAP microscopy, neural progenitor cells were able to communicate by 

functional GJs and demonstrated expression of three Cx isotypes (Figure 7, 8). Therefore, we 

clarified the role of Cxs in GJ formation. Musil and Goodenough showed that most of the Cx 

already assembled in GJs is phosphorylated and resistant to Triton-X solubilization (Musil 

and Goodenough, 1991). We performed a Triton X-100 in situ extraction assay using 0.3% 

Triton X-100 in the fixative to remove unphosphorylated, cytoplasmic Cx and to clearly 

delineate membrane-bound Cx. As determined by confocal microscopy, bright spots of Cx43 

were predominantly located in regions of cell-cell contacts, indicating the formation of GJ 

plaques in the plasma membrane of proliferating progenitors (Figure 15).This was confirmed 

by double immunolabelling with ZO-1, a cell junction protein that was previously reported to 

interact with gap junctional Cx43 (Giepmans, 2006). The slice view and DIC-overlay revealed 

that Cx43 plaques were clearly located between adjacent cells (arrows). In contrast, only 

few, small dots of Cx31 had been identified between neighbouring cells, colocalized with ZO-

1 (Figure 15). Further, number, size and intensity of Cx31-formed GJs were distinctly reduced 

when compared with the Cx43 staining pattern. The extraction by Triton X-100 induced 

complete removal of Cx59, indicating that Cx59 is not involved in GJ formation (Figure 15). 

In addition to GJ formation, Cxs can also be incorporated into the plasma membrane to form 

hemichannels and thus regulating the shuttling between the cytoplasm and the extracellular 

space. To distinguish between intracellular Cx and Cx-hemichannels located in the plasma 

membrane, we performed confocal microscopy, followed by 3D reconstruction. Compared 

to GJ plaques, hemichannels are smaller in size and difficult to detect by microscopic imaging 

(Figure 16A). Therefore, we applied surface rendering based on the fluorescence signal 

obtained by co-staining of the actin cytoskeleton (Figure 16, white surface) and Cx (red dots). 

As the actin network spans the whole cell and is linked to the plasma membrane, it 

represents an appropriate marker for determining the cell surface area. We found that large 

amounts of Cx43 were closely attached to the cell membrane, suggesting the presence of 

Cx43 hemichannels in ReNcell VM197. In contrast, Cx31 and Cx59 were not located at the 

cell surface area (Figure 16).  

These microscopic observations identified Cx43 as the main channel forming protein in 

ReNcell VM197, including both GJ and hemichannel formation. However, only a small 

portion of the entire expressed Cx43 and was transported to the membrane and contributed 

to the establishment of GJ and hemichannels, whereas most Cx remained in the cytosol and 

the Golgi apparatus.  
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Figure 15 Localization of Cxs in GJ plaques. The removal of cytoplasmic Cx by Triton X-100 allowed 
clear delineation of GJ plaques between adjacent cells. Double immunolabelling of Cx and ZO-1, another 
GJ-associated protein, and subsequent confocal analysis of recorded z-stacks including DIC-overlay 
confirmed the presence of GJs at cell borders (arrows). Note the colocalization of bright Cx43 spots and 
ZO-1 at cell borders. Less GJ-forming activity was observed for Cx31. Cx59 exhibited no resistance to 
Triton X-100, indicating no involvement in GJ coupling. Cells were subjected to Triton X-100 extraction as 
described in material and methods, followed by immunolabelling with Cx antibody (green) and cy3-
conjugated ZO-1 antibody (red), nuclei were stained with Hoechst, Bar 20µm. 
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Figure 16 Hemichannel formation in proliferating progenitors. Cells were immunolabelled for Cxs 
and actin to reveal the cell surface area, followed by confocal 3-D reconstruction. Subsequent surface 
rendering allowed the visualization of Cx proteins (red dots) closely attached to the cell surface (white 
surface). In contrast to Cx31 and Cx59, Cx43 was found to localize close to the membrane, which indicates 
the presence of hemichannels. Note that the size of surface-bound Cx43 dots was increased for better 
visualization of hemichannels. Cells were labelled with Cx43 antibody (green), Rhodamine/Phalloidin 
(red) and Hoechst, Bar 20 µm  
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3.4 CX43 – A KEY PLAYER IN GJIC OF ReNcell VM197 

3.4.1 NEURAL DIFFERENTIATION INDUCED ALTERATIONS OF GAP 

JUNCTIONAL CX43 

We have shown that the extent of gap junctional coupling changed during the differentiation 

process and that Cx43 expression was characterized by a similar time-dependent pattern 

(Figure 7, 9). Due to the fact that Cx43 is the main GJ-forming protein and therefore might 

be a key protein in regulating GJIC, we carried out time-dependent expression analysis of 

triton-insoluble, gap junctional Cx43 to compare both the entire expressed connexin and 

connexin located in GJs. First, we performed biochemical analysis of cytosolic and 

membrane fractions to confirm our confocal data, revealing the localization of Cx43 proteins 

in the plasma membrane (Figure 15). As presented in Figure 17A, Cx43 was detected in both 

membrane and cytosolic fraction. Accuracy of membrane isolation was verified by detection 

of E-cadherin, a transmembrane protein that was only found in the membrane fraction. 

Moreover, we observed a minor signal of cytoskeletal α-tubulin, giving also evidence for 

successful membrane fractionation.  

The solubility of non-phosphorylated and phosphorylated forms of Cx43 in Triton X-100 was 

proven by western blot analysis of total cell lysates that were subjected to treatment with 

Triton X-100. Subsequent ultracentrifugation allowed separation into soluble and insoluble 

fractions. Compared to total cell lysates, Triton X-100-soluble fractions showed less amounts 

of phosphorylated Cx43 in both proliferating and differentiated cells (Figure 17B). In 

contrast, the phosphorylated form of Cx43, which is mainly located within GJ plaques, was 

resistant to detergent extraction. These data confirmed that unphosphorylated Cx is rather 

sensitive to detergent extraction than the phosphorylated forms of Cxs. 

In order to investigate changes in expression and distribution of gap junctional Cx43, Triton 

X-100 extracted cells were stained with anti-Cx43 and subjected to 3D image analysis to 

quantify fluorescence intensity. As confocal images demonstrated, most Triton-X resistant 

Cx43 was found in proliferating cells (Figure 17C, 0d). However, the amount of membranous 

Cx43 was reduced after growth factor removal as cells started to undergo differentiation 

(Figure 17C, 2d-6d). After 4d differentiated neural progenitors showed an increasing signal of 

detergent-resistant Cx43 (Figure 17C, 4d-10d), but Cx43 spots were smaller in size and less 

pronounced compared to those observed in proliferating cells. Quantitative analysis, 

summarized in Figure 17D, illustrated in detail the time-dependent alterations of 

fluorescence intensity. Neural differentiation induced a decrease of gap junctional Cx43 by 

70% that was maintained up to 4d of differentiation, followed by a progressive 2-fold re-

increase of protein expression as differentiation proceeded. These time-dependent 

alterations of Triton X-100 resistant Cx43 are similar to the expression pattern of the entire 
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expressed Cx43 (Figure 9, 17), indicating that the regulation of Cx43 expression directly 

affects the incorporation of Cx proteins into GJs, which in turn results in a change of gap 

junctional communication. 

 

  

Figure 17 Expression of gap junctional Cx43 during proliferation and differentiation. (A) Western 
blot analysis of cytoplasmic (CF) and membrane fractions (MF) demonstrated the presence of membrane-
bound Cx43 in proliferating progenitors. E-cadherin and α-tubulin were used as control to ensure proper 
fractionation (B) Western blotting confirmed the effect of Triton X-100 extraction on Cx43 in proliferating 
and differentiated cells. While total cell lysates (T) and Triton-insoluble fractions (I) contained large 
amounts of phosphorylated (P) and non-phosphorylated (NP) Cx43, Triton X-100-soluble fractions (S) 
showed a reduced signal for the phosphorylated form due to its detergent insolubility. (C) Confocal 
microscopy of Cx43 labelled cells revealed that most Triton X-100 insoluble Cx43 was found in (0d) 
proliferating cells. Induction of differentiation led to a decrease of gap junctional Cx43 (2d-4d), followed 
by an increase in the later stage of differentiation (6d-10d). (D) Microscopic quantification of confocal 
images indicated strong reduction of GJ bound Cx43 as differentiation was initialized and a subsequent 
progressive increase up to 10d of differentiation. Cellular fractionation and western blotting were 
performed as described in material and methods. Cells were labelled with Cx43 antibody (red) and 
Hoechst, Bar 20µm. Graph represents data of three independent experiments, one-way ANOVA, P<0.0001, 
followed by Bonferroni post hoc test. 
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3.4.2 MICROTUBULE-DEPENDENT TRANSPORT OF CX43 

As the cytoskeleton is an important player in mediating the transport of proteins that traffic 

through the secretory pathway, we analysed the involvement of microtubules in Cx43 

movement. Thus, cells were treated with the microtubule-depolymerizing agent nocodazole 

(10µM), fixed and labeled with anti-Cx43 antibody. Under control conditions Cx43 was 

distributed throughout the whole cell body and strongly accumulated in the Golgi 

network (Figure 18). 

Administration of nocodazole induced pronounced changes in Cx43 distribution, leading to a 

loss of intracellular accumulations and a diffuse staining pattern (Figure 18). Inserted images 

demonstrated the effect of nocodazole on microtubule behaviour. While microtubules 

formed a dense network in control cells, nocodazole treatment resulted in depolymerisation 

and complete disruption of microtubule filaments. The susceptibility of Cx43 distribution to 

nocodazole indicates that Cx43 behaviour and transport are directly influenced by the 

microtubule network. 

The movement of Cx43 vesicles along microtubules was demonstrated by live cell imaging of 

proliferating and differentiated cells expressing Cx43-tagged RFP and α-tubulin-tagged YFP. 

Figure 18B presents a recorded frame sequence revealing the microtubule-dependent 

transport of Cx43. The Images illustrate the track of movement of two selected particles over 

time. To visualize the covered distance, Cx43 vesicles were marked by arrows and their 

starting points are shown as bars. Computational tracking analysis demonstrated that 

particles moved along microtubules at an average velocity of 0.62 µm/s. The speed of Cx43 

movement remained constant during differentiation as both proliferating and differentiated 

cells showed no significant changes in velocity (Figure 18C). Direct involvement of the 

cytoskeleton was emphasized by the fact that inhibition of microtubule dynamics by 

colchicine did markedly reduce the average particle velocity by 70% (Figure 18D). Taken 

together, these data suggest that Cx43 interacts with microtubules for transporting Cx 

vesicles from the Golgi-apparatus throughout the cytoplasm and to the plasma membrane. 
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Figure 18 Involvement of microtubules in Cx43 distribution and transport. (A) Compared to 
control cells, treatment with the microtubule depolymerizing agent nocodazole for 1 hour induced a 
loss of Cx43 accumulations leading to a diffuse staining pattern. Inserted images approve the effect of 
nocodazole on microtubules. As untreated cells showed a dense microtubule network, drug 
administration resulted in complete disruption. Cells were labelled with Cx43 (green) and α-tubulin 
antibody (red). Nuclei were stained with Hoechst, Bar 20µm. (B) Movement of Cx43-tagged RFP 
vesicles in proliferating progenitors along YFP-tagged microtubules. Two selected vesicles were 
labeled by red and blue arrows. Begin of movement was marked with yellow and green bars, Bar 
20µm. (C) Quantification of computational vesicle tracking revealed an average velocity of 0.62 µm/s, 
which was constant in proliferating and differentiated cells. (D) Incubation with colchicine, a 
microtubule-depolymerizing agent, distinctly reduced the average speed of Cx43 vesicle movement. 
Graphs represent data of 3 independent experiments, shown as mean±SEM. Statistical differences 
were calculated by Student´s t-test (***P<0.001) 
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3.5 IMPACT OF GJIC AND CX43 ON PROLIFERATION AND NEURONAL 

DIFFERENTIATION OF ReNcell VM197 

3.5.1 PHARMACOLOGICAL INHIBITION OF GJIC  

As shown in section 3.2.2, GJIC is differentially modulated in human neural progenitors 

during differentiation and the dynamic Cx expression is involved in mediating this effect. This 

implies a pronounced role of proper gap junctional coupling in proliferation and in particular 

in the neuronal differentiation process.  

The administration of uncoupling agents enabled us to study the effect of impaired 

communication on cell growth and neuronal development. Here we used two well-

established GJ blockers, including CBX and 1-oct to inhibit GJIC. We initially evaluated the 

efficiency of used blockers in affecting intercellular communication. CBX was found to inhibit 

GJIC by 20% when applied at a concentration of 50µM (Figure 19). The increase of CBX 

concentration to 100µM enhanced the effect of GJ blockage, resulting in a reduction of GJ 

coupling by 60%. Administration of 1-oct, an uncoupling agent belonging to the chemical 

group of alcohols, also impaired GJIC. FRAP data showed that cell-cell coupling decreased by 

25% when cells were treated with 500µM 1-oct. 

Based on this data, we wanted to ascertain if reduced GJIC affects the proliferation of 

ReNcell VM197 neural progenitors. Thus, cells were incubated with CBX and 1-oct for 24h 

and treated with EdU, a nucleoside analogue that is incorporated into the DNA during S-

phase, which indicates the extent of proliferation (Figure 20A). Results, presented in  

Figure 19 Pharmacological Inhibition of GJIC in proliferating progenitors. (A) Treatment with CBX 
and 1-oct significantly reduced the extent of gap junctional coupling in proliferating cells. (B) Average 
fluorescence recovery curves indicate the reduced speed of dye flux as GJ-blockers were applied. Graphs 
represent data of 3 independent experiments, shown as mean±SEM. Statistical differences were calculated 
by (A) Student´s t-test (**P<0.01, ***P<0.001) or (B) two-way ANOVA P<0.001 followed by Bonferroni 
post hoc test. 
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Figure 20B indicated a significant decrease of EdU-positive cells after CBX exposure by 11-

16%. By contrast, 1-oct did not exhibit an inhibiting effect on cell growth.  

Next, we investigated the impact of GJIC on neuronal differentiation. Cells were 

differentiated for 4d in the presence of CBX and 1-oct, followed by microscopic 

quantification of neuronal phenotypes that were recognized by labelling of β(III) tubulin and 

HuC/D (Figure 20C). In order to maintain GJ blockage during the entire course of the 

experiment, differentiation medium containing CBX and 1-oct was replaced every day. As 

seen in Figure 20D, we detected approximately 25% fewer neurons after 4d in cells 

incubated with the CBX. While CBX influenced neural cell fate at concentrations of 50µM and 

100 µM, 1-oct was not able to induce reduction of the neuronal number. Although both CBX 

and 1-oct were shown to inhibit GJIC, only CBX was found to decrease the proliferation rate 

and impaired the elaboration of neuronal phenotypes. However, these results suggest the 

requirement of proper GJIC for the regulation of proliferation and neuronal development in 

neural progenitors.  
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Figure 20 Pharmacological inhibition of GJIC affects proliferation and neuronal differentiation. (A) 
Cells were either left untreated (a) or incubated with 50µM CBX (b), 100µM CBX (c) and 500µM 1-oct (d) 
for 24h, followed by incubation with EdU (red) to analyse proliferation, Bar 20µm. (B) Microscopic 
quantification revealed a significantly reduced incorporation of EdU in cells treated with the GJ blocker 
CBX. However, no proliferation-inhibiting effect was observed for 1-oct. (C) For analysing the effect on 
neuronal development, cells were differentiated for 4d in the presence of CBX (b, c) and 1-oct (d). 
Subsequent visualization of neurons by immunolabelling demonstrated impaired elaboration of neuronal 
phenotypes in CBX treated cells. (D) Incubation with 50µM and 100µM CBX reduced the neuron number 
by 25%. In contrast,1-oct did not affect neuronal development. Cells were labelled with neuron specific 
anti-HuC/D and anti-β(III) tubulin. Nuclei were stained with Hoechst, Bar 20µm. Graphs represent data of 
3 independent experiments, shown as mean±SEM. Statistical differences were calculated by Student´s t-
test (*P<0.05;**P<0.01;***P<0.001). 
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3.5.2 IMPACT OF CX43 ON PROLIFERATION AND DIFFERENTIATION  

As some functions of Cx43 are not attributed to its ability to form GJs and to mediate the 

intercellular exchange of molecules, we performed knockdown experiments using Cx43 

siRNA to study the specific role of Cx43 in proliferation and differentiation of neural 

progenitors. This allows us to encompass both the channel-dependent and channel-

independent function of this protein.  

3.5.2.1 VALIDATION OF KNOCKDOWN EFFICIENCY 

Initially, different transfection parameters were evaluated to prevent an electroporation-

induced increase of cell death. Proliferating progenitor cells were transfected by 

electroporation and subjected to differentiation conditions after 2d. To validate knockdown 

efficiency, we carried out western blot analysis, revealing down regulation of Cx43 by 80% in 

proliferating progenitors transfected with Cx43 siRNA (Figure 21A). Moreover, the 

knockdown was stable throughout the tested time course up to 4d after differentiation was 

induced. Immunolabelling with anti-Cx43 antibody showed a distinct reduction of 

fluorescence intensity in proliferating and differentiated Cx43 knockdown cells, which 

corresponds to our western blot data (Figure 21B). For functional validation, FRAP 

microscopy was performed to demonstrate the impact on gap junctional coupling. As mock 

transfected cells showed unaltered dye recovery in photobleached cells, knockdown of Cx43 

distinctly decreased fluorescence recovery (Figure 21C). Analysis of pooled data 

demonstrated that dye recovery was markedly inhibited by 50% when Cx43 was down-

regulated (Figure 21D). Average fluorescence recovery curves confirmed the different speed 

of GJ-dependent dye diffusion, showing a much slower influx of CFL into Cx43-siRNA 

transfected cells (Figure 21D). These results confirmed our microscopic observations, 

suggesting Cx43 as the major GJ-forming protein and highlight the involvement of Cx43 in 

ensuring the dynamic changes of GJIC in the differentiation process of human neural 

progenitors.  

3.5.3  EFFECT OF CX43 KNOCKDOWN ON GROWTH FACTOR-DEPENDENT 

PROLIFERATION  

After verifying the impact of Cx43 knockdown on GJIC, we investigated the importance of 

Cx43 for cell growth of neural progenitors. Cell differentiation is always accompanied by 

changes in the cell cycle, leading to a stop of cell-division and G1/0-arrest. Initially, we 

analysed the alteration of proliferation rate that occurred as cells undergo differentiation 

under control conditions. Proliferating cells were induced to differentiate by the removal of  
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Figure 21 Effect of Cx43 knockdown on GJIC in proliferating and differentiated progenitor cells. 
(A, B) Proliferating cells were transfected with Cx43 siRNA. As determined by western blotting and 
confocal microscopy of Cx43 labeled cells, knockdown efficiency was about 75% in both proliferating and 
4d differentiated cells, Bar 50µm. (C) As revealed by FRAP analysis GJIC was distinctly reduced by 45% in 
knockdown cells, Bar 20µm. (D) While fluorescence recovery was strong in control cells loaded with CFL, 
it was impaired in Cx43 siRNA transfected cells. Inserted graphs illustrate the fluorescence recovery 
during measurement, showing the reduction of GJIC in Cx43 knockdown cells. Graphs represent data of 3 
independent experiments, shown as mean±SEM. Statistical differences in Cx43 expression and GJIC  
between mock and knockdown cells were calculated by Student´s t-test **P<0.01, ***P<0.001. 
Fluorescence recovery curves were analysed by two-way ANOVA, P<0.0001, followed by Bonferroni post-
hoc test. 
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growth factors and subjected to an EdU-assay after 24h (Figure 22A). As cells were 

maintained in the presence of bFGF and EGF, 40-50% of cells were found to incorporate EdU  

into the DNA. However, differentiation led to a strong decrease of cell division. The number 

of S-phase cells was markedly reduced by 50% after 12h and proliferation almost stopped 

after 1d, indicated by less than 1% EdU-positive cells (Figure 22B).  

As ReNcell VM197 is kept in a proliferative state by both EGF and bFGF, we assumed that 

Cx43 might affect cell proliferation by mediating the mitogenic activity of these growth 

factors. Cx43 knockdown cells were either cultured in complete proliferation medium or in 

EGF or bFGF alone, followed by EdU treatment and subsequent microscopic quantification of 

S-phase cells. Compared to mock control, down-regulation of Cx43 caused a 40-50% 

decrease of cell growth under all culture conditions, suggesting Cx43 as an important 

positive regulator for cell growth by mediating the proliferative effects of bFGF and EGF 

(Figure 22C). 

The finding that Cx43 stimulates proliferation encouraged us to investigate whether 

knockdown of Cx43 influences the stop of cell division after initializing differentiation by 

growth factor removal. Interestingly, siRNA-mediated down-regulation caused contradictory 

effects in differentiated cells. While down-regulation of Cx43 in proliferating progenitors 

reduced the number of EdU positive cells, a 9-fold increase of EdU positive cells was 

detected after 1d of differentiation (Figure 22D).  

Taken together, this points to a major role of Cx43 in regulating proliferation of neural 

progenitors. Our data lead to the assumption that Cx43 might have opposite effects on cell 

growth under different conditions. In proliferating progenitors Cx43 is needed to promote 

growth factor-driven proliferation. However, under differentiation conditions, Cx43 was 

found to support the exit from the cell cycle, preventing cells from further proliferation. As 

pharmacological inhibition of GJIC only induced a slight decrease of the proliferation rate, 

Cx43 seems to control cell growth by a mechanism that is not exclusively attributed to their 

GJ-forming activity. 
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Figure 22 Cx43 regulates proliferation. Proliferation rate was measured using an EdU-assay. (A) Under 
control conditions the ability of cells to incorporate EdU (red) decreased as differentiation was induced. 
(B) Microscopic quantification revealed a progressive decline of mitotic cells, resulting in a complete stop 
of proliferation after 2d. (C) Proliferating progenitors were transfected with Cx43 siRNA and cultured in 
both EGF and bFGF or in EGF or bFGF alone. EdU-assay showed that siRNA-mediated knockdown of Cx43 
resulted in an inhibition of cell growth by 50%-60% under all tested proliferation conditions. (D) 
However, down-regulation of Cx43 impaired the stop of proliferation as cells were induced to 
differentiate. In 1d differentiated cells Cx43 knockdown produced a 9-fold increase of mitotic cells 
compared to mock control. Cells were incubated with EDU and labelled with Alexa594®, Bar 20µm. Graph 
represents data of 3 independent experiments, shown as mean±SEM. Statistical differences were analysed 
by (B) one-way ANOVA, P<0.0001, followed by Bonferroni´s post hoc test or (C, D) Student´s t-test, 
***P<0.001. 
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3.5.3.1 EFFECT OF CX43 KNOCKDOWN ON NEURONAL CELL FATE 

Beside its regulating function on proliferation, Cx43 was also found to influence neuronal cell 

fate. Proliferating progenitors were transfected with Cx43-siRNA and subjected to 

differentiation conditions. We monitored the amount of neurons during 4d of differentiation 

by double labelling of β(III) tubulin and HuC/D positive cells. Fluorescence images acquired 

by confocal microscopy showed the impaired differentiation in ReNcell VM197 (Figure 23A). 

While cells were able to establish a dense neuronal network under control conditions, Cx43 

knockdown prevented the formation of such a network. In control cells, the percentage of 

neurons progressively increased with continuing differentiation, reaching a maximum value 

of 10-12% (Figure 23B). Cells lacking Cx43 due to siRNA transfection demonstrated a slower 

increase of β(III) tubulin positive cells over time. Moreover, the number of neurons was 

markedly decreased by 50-65% compared to mock control (Figure 23B). Similar to our 

proliferation analysis, knockdown of Cx43 induced more powerful effects than inhibition of 

GJIC by pharmacological blockage. Thus, Cx43 might also exert its effect on neuronal cell fate 

by a channel-independent activity. 

The decrease in neuronal efficiency led us to study whether cells that failed to differentiate 

into neurons might have an alternative cell fate. The labelling of cells using anti-GFAP 

antibodies revealed that both Cx43 knockdown and mock cells establish the same dense 

glial-network after induction of differentiation (Figure 24A). Additionally, we monitored the 

expression of the neural progenitor marker nestin and observed a progressive decrease 

during differentiation, showing that both control and knockdown cells lost their progenitor 

cell character and left the proliferative state (Figure 24B). These data indicate that Cx43 

knockdown neither disturbs gliogenesis nor prevents neural progenitors from 

differentiation. 
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Figure 23 Cx43 regulates neuronal cell fate. (A) Proliferating progenitors were transfected with 
Cx43 siRNA and subjected to differentiation conditions. Cx43 knockdown markedly reduced the 
number of neurons and prevented the formation of a neuronal network as revealed by double labeling 
of β(III) tubulin (green) and HuC/D positive cells (red), Bar 50µm (B) Subsequent microscopic 
quantification of β(III) tubulin positive cells showed an decrease of neurons by more than 50% from 
the beginning of differentiation. Graph represents data of 3 independent. Statistical differences were 
calculated by Student´s t-test, ***P<0.001. 
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Figure 24 Effect of Cx43 knockdown on glial cell differentiation and nestin expression. (A) Cx43 
knockdown did not affect gliogenesis. A dense glial multilayer network was established in control and 
knockdown cells after the induction of differentiation. (B) The expression pattern of nestin was similar 
in both mock and knockdown cells. As nestin was strongly expressed in proliferating cells, 
differentiation led to progressive down-regulation, Bar 20µm. 
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3.6 ROLE OF EGF IN THE REGULATION OF CX43 BEHAVIOR  

3.6.1 EGF AS A MODULATOR OF CX43 EXPRESSION 

The strong dynamic alterations in Cx43 expression and distribution during differentiation of 

ReNcell VM197 led us to investigate possible mechanisms that are involved in mediating 

these dynamic changes. According to our western blot data (Figure 9) the protein level of 

Cx43 declined once differentiation was induced by removal of bFGF and EGF. This suggests a 

growth factor-dependent regulation of Cx43. To address this issue, cells were subjected to 

different growth conditions and Cx43 levels were estimated by western blotting. As 

expected, complete removal of growth factors for 1d decreased the amount of Cx43 by 75% 

compared to cells cultured in the presence of both EGF and bFGF (Figure 25A). We also 

observed a similar reduction of protein expression when cells were treated with bFGF alone. 

However, incubation with medium containing EGF maintained the amount of Cx43 and 

prevented down-regulation. Immunolabelling with Cx43 antibody and subsequent confocal 

microscopy supported the finding that EGF promoted Cx43 expression under proliferation 

conditions (Figure 25B). While fluorescence intensity was markedly reduced in differentiated 

cells (Figure 25B, b) and in cells treated with bFGF (Figure 25B, c), administration of EGF 

alone (Figure 25B, d) maintained a similar high Cx43 expression as observed in cells, grown in 

complete proliferation medium (Figure 25B, a). 

To verify the stimulating effect of EGF on Cx43 expression, cells were cultured in the absence 

of growth factors, in complete proliferation medium or in bFGF alone for 1d, followed by 

additional treatment with 20ng/ml EGF for 5h. As shown in Figure 26, incubation with EGF 

for 5h promoted Cx43 expression in differentiated cells and in cells cultured in bFGF. The 

latter ones demonstrated a 3.5-fold increase of the Cx43 level compared to control cells 

where no EGF was applied (Figure 26A, B). Interestingly, we found that EGF induced a 9-fold 

up-regulation of Cx43 in 1d differentiated cells, suggesting that EGF also transduced its 

mitogenic signal to cells that had left the proliferative state. Taken together, these data 

provide evidence for a stimulating function of EGF on Cx43 expression under proliferation 

conditions. This is in agreement with our finding showing a strong decrease of Cx43 after 

induction of neural differentiation by removal of EGF and bFGF. However, the mechanism 

for the observed up-regulation in the late stage of differentiation remains elusive. 
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Figure 25 Growth factor dependent regulation of Cx43 expression in neural progenitors. 
(A) Compared to progenitors grown in complete proliferation medium, culturing cells in bFGF alone or in 
the absence of growth factors reduced the expression of Cx43 to 50%. However, treatment with EGF alone 
was sufficient to maintain strong Cx43 expression. (B) Confocal images confirmed these observations, 
showing similar levels of Cx43 in proliferating cells (a) and EGF treated cells (d). Incubation without 
growth factors (b) or with bFGF alone (c) resulted in a decreased Cx43 level. Cells were cultured in 
different growth conditions for 1d, followed by immunolabelling with Cx43 antibody. Nuclei were stained 
with Hoechst, Bar 20µm. Graph represents data of 3 independent experiments, shown as mean±SEM. 
Statistical differences were calculated by Student´s t-test *P< 0.5, **P<0.01. 
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Figure 26 EGF stimulates the expression of Cx43. Cells were cultured in complete proliferation 
medium, in differentiation medium without growth factors and in bFGF alone (control) for 1d, followed 
by additional treatment with EGF for 5h (+EGF). (A) EGF stimulated the expression of Cx43 in 
differentiated cells and in bFGF cultured cells. Note, EGF induced a 8-fold up-regulation of Cx43 in 
differentiated cells. (B) Western blot results were confirmed by confocal microscopy of cells labelled 
with Cx43 antibody, showing a pronounced increase of fluorescence intensity after EGF-stimulation of 
differentiated and bFGF cultured cells, Bar 20µm. Graph represents data of 3 independent experiments, 
shown as mean±SEM. Statistical differences were calculated by Student´s t-test *P<0.05, **P<0.01. 
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3.6.2 EGF STIMULATES CX43 EXPRESSION VIA AN EGFR-DEPENDENT 

PATHWAY 

Next, we asked why differentiated cells showed a stronger response to EGF concerning Cx43 

expression than proliferating progenitors (Figure 26). The signalling cascade induced by 

growth factors usually starts with the receptor-ligand interaction. It is well known that EGF 

transduces its signal via a receptor specific pathway (Lo et al., 2006). Confocal microscopy of 

fluorescent-labeled proliferating cells revealed that the EGF receptor (EGFR) exhibits a spot-

like distribution pattern throughout the whole cell (Figure 27). Using additional fluorescence 

labelling of the actin cytoskeleton and 3D-image reconstruction, EGFR-spots were found to 

be located at the cell surface (Figure 27, merged). Surprisingly, detailed time-dependent 

protein expression analysis gave evidence for an increasing expression of EGFR after 

induction of differentiation (Figure 28). EGFR was massively up-regulated during the 

differentiation process, reaching a maximum value after 8d, which was 60-fold higher 

compared to proliferating cells (Figure 28A). The alterations in gene expression were 

confirmed by confocal microscopy showing a progressive increase of the EGFR level after 

initializing differentiation (Figure 28B).  

By culturing cells under different conditions, EGF removal was identified as the trigger for 

the up-regulation of EGFR (Figure 28C). No significant differences in EGFR expression were 

found in cells cultured in complete proliferation media or in EGF alone. As EGF was removed 

and cells were induced to proliferate only in the presence of bFGF, EGFR expression 

demonstrated a 13-fold increase that was much stronger compared to differentiated cells 

where EGFR was 5-fold up-regulated (Figure 28C). This indicates that only EGF and not bFGF 

regulates the level of EGFR when cells are kept in a proliferative state. While the 

administration of EGF supressed the expression of its own receptor, the removal triggered 

the up-regulation of EGFR during neural differentiation.  

Figure 27 Localization of EGFR in proliferating progenitors. EGFR demonstrated a spot-like 
distribution pattern throughout the whole cell. Inserted 3D-image revealed that EGFR is located at the cell 
surface. Proliferating progenitors were labeled with EGFR-antibody (green). Actin was stained with 
Rhodamine/Phalloidin (red) to visualize cell borders. DNA was stained with Hoechst, Bar 20µm. 
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Figure 28 EGF regulates the expression of EGFR. (A) Western blot analysis showed a massive increase 
of EGFR after induction of differentiation, resulting in a 60-fold up-regulation after 8d. (B) Confocal 
microscopy of proliferating cells (a), 2d, (b) 4d (c) and 8d (d) differentiated cells confirmed the increasing 
level of EGFR. (C) The increase of EGFR expression was triggered by EGF removal. Culturing cells in 
complete proliferation medium and in EGF alone did not alter EGFR expression. However, treatment with 
bFGF alone resulted in an up-regulation that was even higher than observed in differentiated cells, 
suggesting that EGF negatively regulates the expression of its own receptor. Cells were immunolabelled 
with EGFR-antibody and Hoechst, Bar 20µm. Graphs represent data of 3 independent experiments, shown 
as mean±SEM. Time-dependent EGFR expression was analysed by one-way ANOVA, P<0.0001, followed by 
Bonferroni post hoc test. Data presented in (C) were analysed by Student´s t-test *P<0.05, **P<0.005. 
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The use of AG1478, a potent EGFR-kinase inhibitor, enabled us to demonstrate that EGF acts 

on Cx43 expression via EGFR. Therefore, cells were cultured in bFGF for 1d to attenuate EGF-

dependent growth control, followed by pre-treatment with AG1478 for 2h and subsequent 

adminstration of EGF for 5h (Figure 29). Confocal imaging of cells labelled with anti-Cx43 

antibody and western blot data showed that EGF enhanced the expression of Cx43 when 

applied to bFGF cultured cells (Figure 29A, B). However, pre-treatment with the EGFR-

inhibitor completley counteracted the stimulationg effect of EGF and retained the level of 

Cx43 similar to that observed in cells cultured in bFGF alone (Figure 29).  

Figure 29 Effect of EGFR inhibition on Cx43 expression. (A) Compared to cells treated with bFGF alone 
alone (a) additional administration of EGF (b) increased the level of Cx43. Pre-treatment with the EGFR-
inhibitor AG1478 (c) counteracted the stimulating effect of EGF, indicating the involvement of an EGFR-
dependent pathway in the regulation of Cx43 expression. Cells were stained with anti-Cx43 antibody and 
Hoechst, Bar 20µm. (B) Quantitative estimation of Cx43 expression by western blotting demonstrated 
that AG1478 abolished the effect of EGF, resulting in a similar level of Cx43 as shown for bFGF cultured 
cells (con). Graph represents data of 3 independent experiments, shown as mean±SEM. Statistical 
differences were calculated by Student´s t-test ***P<0.001. 
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These data indicate that Cx43 expression in proliferating progenitors is mainly regulated by 

EGF via an EGFR-dependent pathway. Moreover, the high level of EGFR after EGF-removal 

might explain the strong impact of EGF on Cx43 expression in differentiated cells (Figure 26). 

3.6.3 FUNCTIONAL REGULATION OF CX43 BY EGF 

As EGF treatment was shown to enhance Cx43 expression, we evaluated a possible impact of 

EGF on GJIC by FRAP-microscopy. We assumed that EGF-induced up-regulation of Cx43 

might promote gap junctional coupling due to increased GJ plaques formation. Compared to 

proliferating progenitors grown in EGF and bFGF, GJIC was significantly decreased by 35% 

when cells were cultured in bFGF alone (Figure 30A). However, addition of EGF for 3h 

recovered GJIC to the same extent as observed in proliferating control cells. The fact that 

EGF promoted intercellular communication was verified by administration of AG1487. The 

EGFR-inhibitor completely counteracted the effect of EGF, resulting in a similar low level of 

GJIC as shown for bFGF cultured cells. The average fluorescence recovery curves, presented 

in Figure 30B, demonstrated significant inhibition of gap junctional coupling by EGF 

withdrawal or EGFR blockage. Accordingly, the comparison of the speed of recovery showed 

a 2-3-fold increase of recovery halftime after removal of EGF or treatment with AG1478 

(Figure 30C).    

We already demonstrated that Cx43 is up-regulated by EGF (Figure 25, 26). Using confocal 

microscopy of Trion X-100 extracted cells, we found that EGF also increased the amount of 

gap Junctional Cx43 (Figure 31). High amounts of large GJ plaques were observed in cells 

grown in the presence of EGF and bFGF (Figure 31a) or in EGF alone (Figure 31c). In contrast, 

removal of EGF strongly reduced the amount of Triton X-100-insoluble Cx43 (Figure 31b). 

Similar images were acquired when AG1478 was applied to prevent transduction of the EGF 

signal (Figure 31d).  

Taken together, EGF was found to exhibits its stimulating impact on GJIC by increasing the 

number of functional GJs formed by Cx43.  
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Figure 30 EGF affects GJIC in ReNcell VM197. (A) FRAP analysis revealed that treatment with bFGF 
alone reduced GJIC compared to proliferating cells cultured in both bFGF and EGF. While incubation with 
EGF for 3h stimulated GJIC, pre-treatment with the EGFR inhibitor AG1478 abolished this effect. (B) 
Average fluorescence recovery curves of cells treated different growth media. (C) Halftimes of recovery 
were calculated by fitting data sets to an exponential equation, indicating a decrease of dye diffusion in 
cells cultured in bFGF alone or pre-treated with AG1487. Graphs represent data of 3 independent 
experiments, shown as mean±SEM. Statistical differences were calculated by (A,C) Student´s t-test 
(*P<0.05; **P<0.01, ***P<0.001) or (B) two-way ANOVA P<0.001 followed by Bonferroni post hoc test. 
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Figure 31 Effect of EGF on gap junctional Cx43. Compared to cells cultured in the presence of both 
growth factors (a) and EGF alone (c), the amount of Triton X-100-resistant Cx43 drastically declined when 
cells were grown in bFGF (b). Treatment with AG1487 (d) diminished EGF-induced effects, resulting in a 
reduced number and size of Cx43-formed GJs. Cells were cultured in different growth condition for 1d and 
subjected to Triton X-100 extraction. Cells were labelled with Cx43 antibody and Hoechst, Bar 20µm. 
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3.7 SUMMARY 

This work provides evidence for a prominent role of Cx43 and Cx-mediated intercellular 

communication in regulating the proliferation and differentiation of human neural 

progenitor cells. We showed that neural differentiation was accompanied by dynamic 

alterations in gap junctional coupling. As cells were kept in a proliferative state, the extent of 

GJIC was maintained at a high level. However, induction of differentiation caused strong 

inhibition of intercellular communication by 50%, followed by a re-increase in the late stage 

of differentiation, resulting in a more extensive dye coupling as observed in proliferating 

cells. 

Although Cx31 and Cx59 were also expressed by ReNcell VM197, Cx43 was found to be the 

major GJ-forming protein, which modulates the changes in GJIC during neural development. 

According to the GJIC profile, proliferating cells demonstrated high expression of Cx43 that 

was distributed throughout the whole cell with strong accumulation in the Golgi network. 

Neural differentiation resulted in a decline of Cx43 expression by 80% that re-increased in 

the late stage of differentiation.  

Pharmacological blockage and knockdown experiments using Cx43 siRNA revealed an 

important function of Cx43, acting on proliferation and differentiation in a channel-

independent and channel-dependent manner. While GJ blockage reduces proliferation rate 

by 16%, knockdown of Cx43 decreased the number of S-phase cells by 50%, suggesting that 

Cx43 mediated the mitogenic activity of bFGF and EGF. Additionally, we found a strong 

influence of GJIC and Cx43 on neuronal efficiency. Similar to proliferation analysis, 

pharmacological blockage reduced neuronal number to a lower extent than Cx43 

knockdown. Upon transfection with Cx43 siRNA, we detected a profound decrease of 

neuronal cells by 50-60%, indicating a strong impact of Cx43 on neuronal cell fate. 

We identified EGF as a positive regulator of GJIC that up-regulates Cx43 and thus increases 

the number of GJ plaques in the plasma membrane. Culturing cells in the absence of EGF or 

EGFR-blockage retained Cx43 expression at a low level and reduced the extent of GJIC.  

. 
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4 DISCUSSION 

4.1 ReNcell VM197 – AN IN VITRO MODEL SYSTEM TO STUDY THE 

ROLE OF GJIC DURING NEURAL DEVELOPMENT 

The effect of Cx-mediated GJIC on neural differentiation was analysed using the human 

embryonic neural progenitor cell line ReNcell VM197. Embryonic progenitor cells derived 

from the early midbrain have similar properties in cell coupling that occur during 

development. A number of studies had been shown ReNcell VM197 as a simple and 

accepted model for investigating different aspects of the neural differentiation process in 

vitro (Morgan et al., 2009; Hübner et al., 2010; Lange et al., 2011; Mazemondet et al., 2011). 

This cell line is easy to manipulate, including high transfection efficiency. ReNcell VM197 

allows rapid and controlled differentiation (within days) at a high degree of reproducibility 

that facilitates long-term study of all different stages of neuronal differentiation. 

Moreover, the cell line demonstrates a broad similarity to primary neural progenitors. Cells 

are maintained in a self-renewal and proliferative state in the presence of EGF and bFGF. 

This is in agreement with several reports, showing that mitogen treatment of primary 

progenitors stimulates proliferation and repress differentiation (Johe et al., 1996; Tropepe et 

al., 1999; Seaberg & van der Kooy, 2002). As cells were kept under proliferation conditions, 

we detected a strong expression of nestin (Figure 4), a common marker for identifying 

neural progenitor cells in vivo and in vitro (Lendahl et al., 1990; Mignone et al., 2004; Crespel 

et al., 2005). 

Moreover, cells can specifically be induced to undergo terminal differentiation at any time 

by removal of growth factors, resulting in the elaboration of neuronal and glial cell 

phenotypes, similar to primary precursors (Johe et al., 1996; Dhara & Stice, 2008). While 

differentiation of primary cells lasts several weeks (Reubinoff et al., 2001), formation of 

neuronal and glial phenotypes in ReNcell VM197 is already observed after 1d (Figure 4). The 

fact that immortalized neural progenitors represent a genetically homogenous cell 

population with an expandable developmental window is also an important benefit of this 

cell line.  

Pharmacological inhibition of GJIC impaired neuronal differentiation of ReNcell VM197, 

resulting in a lower number of neuronal phenotypes (Figure 20). These data are consistent 

with several previous reports, indicating an important role of GJIC in neural differentiation 

(Lo Turco & Kriegstein, 1991; Bittman et al., 1997; Bechberger, et al., 1999; Fields & Stevens-

Graham, 2002).Thus, ReNcell VM197 is an appropriate and convenient to use cell model for 

investigating the impact of gap junctional coupling on neural development. 
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4.2 ALTERATIONS IN GJ COUPLING ARE MODULATED BY DYNAMIC 

CHANGES OF CX EXPRESSION  

4.2.1 GJIC AND CX43 ARE DOWN-REGULATED AFTER INDUCTION OF 

DIFFERENTIATION 

Neural differentiation in the developing brain is a complex process that is known to be 

mediated by several intrinsic pathways, by extracellular signals and by cell-cell contacts that 

can all be regulated by Cx proteins (Gage, 2000; Reubinoff et al., 2001; Belliveau et al., 

2006). This regulation can be either achieved by the channel-dependent function of Cx as a 

GJ component or by direct signalling activity of Cx proteins, which in turn affects the 

differentiation process (Moorby & Patel, 2001; Wong et al., 2008). A variety of different Cx 

isotypes was found in stem cells and neural tissue (Nadarajah et al., 1997; de Rivero Vaccari 

et al., 2007). Cx43 was shown to be the most abundant Cx protein that is widely distributed 

throughout the central nervous system, i.e. in human stem cells, neurons, astrocytes and 

oligodendrocytes (Rouach et al., 2002; Huettner et al., 2006). Due to their ability to mediate 

transport of nucleotides, second messengers, ions or metabolites, GJs allow metabolic and 

electrical homeostasis and facilitate the flow of information between adjacent cells. This 

enables the coordination and synchronization of several processes such as cell growth, 

death, survival and differentiation (Krutovskikh & Yamasaki, 2000; Tabernero et al., 2001).  

In the present study we provide evidence for a pronounced role of Cxs and gap junctional 

communication in regulating both the proliferation and neural differentiation of human 

neural progenitor cells. We analysed in detail the time-dependent changes in GJIC and Cx 

expression that occur as cells undergo differentiation. Using FRAP microscopy we 

demonstrated a dynamic change in GJ coupling of ReNcell VM197 under proliferation and 

differentiation conditions (Figure 7). While proliferating progenitors showed extensive dye 

coupling, GJIC was strongly reduced upon initiation of differentiation. This is consistent with 

studies using a human pluripotential teratocarcinoma cell line NT2/D1, where retinoic acid 

treatment caused neuronal differentiation that was accompanied by a decrease of dye 

coupling (Bani-Yaghoub et al., 1997; Bani-Yaghoub, Bechberger, et al., 1999). However, the 

requirement of decreasing GJIC for differentiation is not only limited to neural cells. Brissette 

et al. (1994) reported that the intercellular transfer of GJ-permeable dyes is significantly 

reduced during the differentiation of keratinocytes. Our observation that undifferentiated 

ReNcell VM197 demonstrated extensive GJIC points to an important role of gap junctional 

coupling in growth factor dependent proliferation of human neural progenitors (discussed in 

4.3). 
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The extent of GJIC can be controlled by several cellular mechanisms. Changes in Cx 

expression affect the amount and composition of functional GJs, which in turn modulates 

intercellular communication (Kanaporis et al., 2008). We showed that Cx43, Cx31 and Cx59 

are expressed by ReNcell VM197, whereas Cx43 mainly contributed to GJ formation (Figure 

8, 15). During the last decades Cx43 was identified as the most widely expressed Cx isomer. 

It was found to be expressed in at least 34 different tissues, including neuronal and non-

neuronal cell types (Rackauskas et al., 2010). Several studies demonstrated the presence of 

Cx43 in brain tissue, including embryonic mouse neural progenitors, astrocytes and neurons 

(Nadarajah et al., 1997; Simbürger et al., 1997; Rash et al., 2001; Duval et al., 2002).  

In contrast, Cx31 is mainly located in skin and the inner ear and little is known about its 

function in neural development (Evans & Martin, 2002). Jungbluth et al. (2002) described the 

expression of Cx31 in certain subpopulations within the mouse embryonic hindbrain. A role 

for Cx31 in neurite outgrowth, a characteristic feature of neuronal differentiation, was 

shown by Unsworth and colleagues using the human SH-SY5Y neuroblastoma cell line 

(Unsworth et al., 2007). However, this effect on neuronal differentiation was not associated 

with the channel-dependent function of Cx31.  

In addition to Cx43 and Cx31, Cx59 was also revealed to be expressed in ReNcell VM197 

(Figure 8. As one of two Cxs, Cx59 is restricted to human tissue, since no orthologous 

connexin was found in the rodent genome. Although little is known about this recently 

discovered Cx, there has been evidence for the localization of Cx59 in the human retina, 

which is considered by researchers as the “natures brain slice” (Söhl et al., 2010). Compared 

to Cx43 and Cx31, the expression pattern of Cx59 exhibited no significant changes during the 

differentiation process (Figure 11). This might suggest that Cx59 does not affect neural 

differentiation in ReNcell VM197 in a serious manner.  

 

The observed changes in GJIC after induction of differentiation by growth factor removal 

strongly correlated with a decrease of Cx43 and Cx31 expression (Figure 7, 9, 10) Alhough 

the expression pattern of Cx31 is similar to the GJIC profile, we detected only few amounts 

of membrane-bound gap junctional Cx31 (Figure 15). Thus, we excluded a pronounced role 

of Cx31 in gap junctional coupling of ReNcell VM197. In contrast, Cx43 is the most prominent 

Cx and we could demonstrate that down-regulation resulted in decreased dye coupling most 

likely due to impaired GJ plaques formation (Figure 21). This suggests Cx43 as a key target 

protein in the regulation of intercellular trafficking via GJs.  

Changes in Cx expression seem to correlate with distinct steps of neural differentiation. 

Previous reports demonstrated a dynamic Cx expression rather than constant levels of Cx 

during neural development (Gulisano et al., 2000; Xia et al., 2000; Leung et al., 2002). In the 
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developing brain, Cxs were shown to be down-regulated when cells start to differentiate 

(Rozental et al., 1998; Leung et al., 2002). These considerations strongly suggest a reciprocal 

relationship between the extent of GJ coupling and Cx43 expression, respectively, and the 

development of neural phenotypes. As ReNcell VM197 neural progenitors can rapidly 

differentiate into neurons and glial cells, cell fate commitment already occurs in the first 

24h, when gap junctional coupling was reduced (Figure 4, 7). The early stage of 

differentiation is characterized by exiting from the cell cycle, switch to G1/0 phase and 

triggering the elaboration of specialized neural phenotypes (Galderisi et al., 2003). This 

indicates a regulatory function of Cxs and GJs on the cell cycle. A possibility that was 

confirmed by Bittman et al. (1997), reporting that reduced cell coupling decreased the 

probability of cells to enter S-phase during neurogenesis. Consequently, the G1 phase is 

prolonged, which promotes neural differentiation. This is in agreement with the observation 

that the level of ReNcell VM197 in G1/0 reached 96 % within the first 24h of differentiation 

(Mazemondet et al., 2011). Studies on human lung fibroblasts also described the importance 

of proper GJIC for cell cycling, showing that GJ closure by cisplatin was associated with a G1 

arrest and initiation of premature senescence (Zhao et al., 2004). Since GJs provide a 

pathway for direct signalling of cell cycle regulating molecules, the decrease of GJIC in 

differentiating ReNcell VM197 cells could restrain signal transduction, which promotes cell 

cycle exit. A possible candidate that can be transferred via GJs and regulate cellular 

processes includes calcium. It was demonstrated by our group that calcium levels change as 

differentiation is initialized, indicating its importance for neural differentiation (unpublished 

data). Additionally, it was found that increased intercellular trafficking of calcium facilitates 

the G1 cell cycle block in human hepatoma cells (Liu et al., 2009). Moreover, other second 

messengers such as inositol trisphosphate and cyclic adenosine monophosphate are known 

to be determinants for cell cycling. However, the mechanisms beyond Cx43-mediated cell 

cycle regulation are also related to the channel –independent function of Cxs, resulting from 

direct and indirect interactions with different cell cycle-involved proteins (Omori & 

Yamasaki, 1999; Qin et al., 2002; Johnstone et al., 2010). 

The switch in Cx43 expression that occurred as ReNcell VM197 was subjected to 

differentiation conditions might also suggest an interaction between Cx43 and several key 

homeostasis proteins. Previous studies have reported that proteins of the Wnt family are 

crucial for the maintenance of proliferation and for triggering differentiation of neural 

progenitors (Muroyama et al., 2002; Hirabayashi et al., 2004; Davidson et al., 2007). The 

importance of Wnt-signalling in regulating cellular behaviour was also shown in ReNcell 

VM197 (Hübner et al., 2010; Lange et al., 2011). Wnt molecules transduce the signal via β-

catenin, which is a key player of the Wnt cascade, acting as a transcription regulating factor 
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(Moon et al., 2002). Once the Wnt pathway has activated, β-catenin is accumulated in the 

cytosol and transported to the nucleus, where it can regulate a number of genes that code 

for cell cycle regulators like cyclin D1 and c-myc (Davidson et al., 2009; MacDonald et al., 

2009). Using ReNcell VM197, Mazemondet et al. (2011) gave evidence for an increase of 

nuclear β-catenin after induction of differentiation that enhanced by exogenous stimulation 

with Wnt molecules. As Cx43 was shown to interact with β-catenin at cell-cell contact areas, 

we assume that the observed high amount of Cx43 in proliferating cells (Figure 9) reduced 

the pool of free β-catenin available for Wnt signalling (Ai et al., 2000). Consequently, 

sequestration of β-catenin from the Wnt pathway by Cx43 might prevent the Wnt driven 

neural differentiation. Interestingly, the Cx43 gene itself is controlled by Wnt, as indicated by 

association of β-catenin with the promoter of Cx43 (Xia et al., 2010). These data suggest a 

bidirectional regulation between Wnt/β-catenin signalling and Cx43 expression, which in 

turn influences the development of neural progenitors.  

4.2.2 COMPLETION OF NEURAL DIFFERENTIATION REQUIRES UP-

REGULATION OF GJIC AND CX43 

Strikingly, we found a distinct re-increase of dye coupling with proceeding differentiation 

(Figure 7). Likewise, Cx43 expression increased in the late stage of differentiation, supporting 

the notion that Cx43 modulates gap junctional coupling in ReNcell VM197. Real time PCR 

analysis of Cx43 mRNA expression during rat-midbrain development revealed similar 

alterations, showing a decrease of Cx43 mRNA, followed by up-regulation in the late stage of 

differentiation and mature brain (Leung et al., 2002). However, this dynamic expression 

pattern of Cx43 has not been reported before in human neural progenitors. Compared to 

undifferentiated progenitors where GJIC is needed to keep them in a proliferative state, we 

hypothesize that gap junctional coupling is now required for establishing a functional neural 

network. Beside metabolic coupling, GJs provide electrotonic interconnections between 

neurons and glial cells (Bennett & Zukin, 2004). Proper GJIC was found to synchronize the 

Na+ level of hippocampal astrocytes, which serves to coordinate the physiological responses 

that depends on Na+ ions and membrane potentials (Rose & Ransom, 1997). Moreover, the 

frequency of oscillations of the membrane potential in glial networks was shown to 

modulate the activity of neuronal cells (Alvarez-Maubecin et al., 2000a). In neurons, GJs 

form electrical synapses that may contribute to generation, maintenance and 

synchronization of neuronal firing patterns (Nagy et al., 2004). Note that only 10-12% of cells 

differentiate into neurons (Figure 4B, C). Thus, the extent of coupling measured by FRAP 

mainly relies on glial cell communication. Studies performed in cultures and brain slices have 

demonstrated that astrocytes form a functional syncytium through gap junctional coupling 
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(Dermietzel & Spray, 1998; Giaume & Venance, 1998). A leading part for astrocytic GJs has 

been attributed to calcium signalling (Giaume & Venance, 1998; Verkhratsky et al., 1998; 

Weissman et al., 2004). The propagation of calcium waves allows transduction of 

information within the glial network and it was shown to be involved in neuronal activity 

(Verkhratsky et al., 1998). This raises the possibility that the re-increase of GJIC after 2d 

(Figure 7) is important to ensure an accurate exchange of calcium ions between mature glia 

cells, which promotes the establishment of proper glial-neuron interactions and participates 

in signalling functions of the neuronal network. Although the majority of ReNcell VM197 

progenitors acquire a glial cell fate, we do not exclude the involvement of neurons in GJIC of 

differentiated neural progenitors, since neurons were also demonstrated to interact via GJs 

(Nagy et al., 2004; Söhl et al., 2005).  

However, the expression profile of Cx43 does not exactly correspond to the kinetic profile of 

GJIC. The re-increase of the Cx43 level was distinctly smaller than the re-increase of GJIC 

during the late phase of differentiation (Figure 7, 9). Moreover, the increase of gap 

junctional coupling was accompanied by a delayed up-regulation of Cx43. As mentioned 

above, several studies have shown that specific Cx subtypes can be differentially expressed 

during differentiation which results in altered cell-cell coupling (Dermietzel et al., 1989; 

Nadarajah et al., 1997; Cina et al., 2007). Based on western blot data and subsequent 

analysis by immunofluorescence microscopy we now provide evidence for the presence of 2 

more Cxs in ReNcell VM197 neural progenitors, namely Cx59 and Cx31 (Figure 8). Thus, the 

difference between the dynamic profiles of GJIC and the Cx43 level might result from an 

altered expression of Cx59 and Cx31 that modulates GJIC, which in turn may contribute to 

proper neural differentiation. Expression analysis showed a marked up-regulation of Cx31 

after 3d of differentiation (Figure 10). However, very small amounts of Cx31 and the absence 

of Cx59 in GJs, suggested that these Cxs are not involved in channel-dependent functions 

(Figure 15). The large variety of Cx isotypes in neural progenitor populations and the 

alteration of Cx expression during neural development indicate the presence of further, 

unknown Cxs that might control GJIC in ReNcell VM197. Beside transcriptional regulation, GJ 

gating can be influenced more rapidly by changing the phosphorylation status of Cxs 

(Kanemitsu & Lau, 1993; Lampe & Lau, 2000). Likewise, Cx composition, pH or voltage can 

affect junctional conductance (Francis et al., 1999; Kanaporis et al., 2008). Alterations of 

these parameters during differentiation may lead to selective activation of GJs, so that they 

become functional under certain physiological conditions. This might also explain why up-

regulation of Cx43 protein at the end of neural differentiation (5-8d) is not accompanied by 

an additional increase of gap junctional communication in ReNcell VM197. 
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4.3 ROLE OF GJIC AND CX43 IN PROLIFERATION 

4.3.1 EGF REGULATES GJIC AND CX43 EXPRESSION 

Several different soluble factors are present in the developing brain, regulating proliferation 

and differentiation of neural progenitors. These comprise neurotrophins, neurotransmitters, 

extracellular matrix proteins and growth factors (Cattaneo & McKay, 1990; Davis & Temple, 

1994; LoTurco et al., 1995; Kuhn et al., 1997). Here, we used bFGF and EGF to maintain 

neural progenitors in a proliferative state. Beside its role in driving proliferation, growth 

factor signalling can also modulatory affect functional activity and expression of Cx proteins 

and GJIC (Maldonado et al., 1988; Rozental et al., 1998). EGF is a powerful mitogen that is 

capable of stimulating cell growth, cell survival and differentiation (Carpenter & Cohen, 

1979; Yamada et al., 1997). It was found to be synthesized in several regions of the brain, 

e.g. hippocampus, cortex and cerebellum, where it mediates cell growth (Yamada et al., 

1997). Moreover, it plays a pivotal role in the proliferation of neural stem cells, derived from 

embryonic or adult brain (Reynolds et al., 1992; Gritti et al., 1995). Using radioimmunoassay, 

EGF was detected at concentrations ranging from 0.33 to 0.99ng/ml wet weight of adult 

brain tissue (Schaudiessb et al., 1989). Although a non-physiological dose of EGF was used 

for culturing ReNcell VM197 progenitors, previous stem cell studies for proliferation or 

differentiation revealed that cells grown in EGF at concentrations up to 50ng/ml maintain 

their physiological self-renewal and neural differentiation potential (Kitchens et al., 1994; Yu 

et al., 2006; Hartfield et al., 2011). In our study, treatment with 20ng/ml EGF maintained the 

expression of Cx43 at high level. Moreover, additional incubation with EGF was shown to up-

regulate Cx43, which in turn increased GJIC (Figure 25, 26). The impact of EGF on GJ coupling 

is controversially discussed for a number of different cell types, including neural and non-

neural cells. Ueki et al. (2001) found that EGF caused down-regulation of Cx43 in cortical 

rodent astrocytes. This is supported by studies with HEK cells and liver epithelial cells, where 

EGF was demonstrated to inhibit Cx43-mediated gap junctional communication (Cameron et 

al., 2003; Leithe & Rivedal, 2004). Similar observations were made by Park and colleagues, 

showing a negative effect of EGF on GJIC in embryonic mouse stem cells (Park et al., 2008). 

Conversely, EGF is known to induce an enhancement of gap junctional communication and 

Cx43 expression in kidney epithelial cells and granulosa cells (Vikhamar et al., 1998; Kennedy 

et al., 2003). Although less studies have implicated EGF in stimulating GJIC of stem cells, it 

was reported that additional treatment with mitogens in neural progenitors can promote 

Cx43 expression and GJIC (Nadarajah et al., 1998). In agreement with these findings, we 

identified EGF as a positive regulator for Cx43 expression in human neural progenitor cells 

that increase gap junctional coupling under proliferating conditions (Figure 30). 
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The findings above suggest that EGF exerts its effects on GJIC in a cell type-dependent 

manner. Although the mechanism of action is not well understood, two major principles 

were found to control cell-cell coupling: 1) through synthesis, degradation and incorporation 

of Cx proteins in the plasma membrane or 2) by local regulation of the gating of existing GJs. 

Our results demonstrated that EGF-induced up-regulation of Cx43 expression and led to an 

increased insertion of newly synthesized Cx43 proteins in the plasma membrane (Figure 

26Figure 31). However, there are additional regulatory mechanisms that can change GJ 

permeability more rapidly than alterations at the protein level. Phosphorylating events were 

demonstrated to be important in regulating Cx processing and function. A number of Cxs, 

including Cx43, 31, 50 and 56 are phosphorylated in the C-terminal region that is located in 

the cytoplasm (Lampe & Lau, 2000). We found that EGF transduced its signal via an EGFR-

dependent pathway (Figure 29) that is known to recruit and phosphorylate/activate a 

number of important signalling elements such as phospholipase C or MAP kinases (Lo et al., 

2006). In vitro studies gave evidence that Cx43 is a substrate of these kinases and 

phosphorylation can influence GJIC in a positive or negative manner (Sáez et al., 1998; 

Lampe et al., 2000). The phosphorylation of specific serine sites in the Cx43 protein can 

attenuate GJIC very quickly (Kanemitsu & Lau, 1993). In contrast, phosphorylation is 

important to maintain cell-cell coupling as the majority of gap junctional Cx43 was found to 

be phosphorylated. Nevertheless, EGF-stimulated phosphorylation might occur over the 

basal level of serine phosphorylation and thus led to changes in GJ permeability. However, 

we assume that EGF achieves positive changes in GJ conductance by up-regulation of Cx43 

rather than by phosphorylation.  

4.3.2 GJIC MAINTAINS NEURAL PROGENITORS IN A PROLIFERATIVE STATE 

Previous studies have shown that proliferating neural progenitors communicate via GJs and 

pharmacological blockage, using halothane or 1-oct, decreased the number of cells entering 

S-phase (Bittman et al., 1997; Cai et al., 1997). This relationship between mitogenic activity 

of neural progenitors and gap junctional coupling is also supported by our data. Proliferation 

of ReNcell VM197 progenitors was maintained by administration of both bFGF and EGF at 

concentrations that were generally used for culturing of neural progenitors (Kitchens et al., 

1994; Yu et al., 2006; Hartfield et al., 2011). The fact that proliferating cells demonstrated 

strong Cx43 expression, accompanied by extensive GJIC, highlights its importance for proper 

GJ coupling during cell growth (Figure 7, 9). Moreover, we demonstrated that the presence 

of EGF in the culture media was associated with a high expression level of Cx43 (Figure 26). 

Treatment with the well-known GJ blocker CBX significantly reduced the mitogenic effects of 
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EGF and bFGF on proliferating neural progenitors most probably due to reduced GJ coupling 

(Figure 20).  

Although many studies reported about a growth factor-dependent regulation of Cxs and 

GJIC, less is known about an involvement of Cxs in mediating the proliferative effects of EGF 

and bFGF, which allows self-renewal of neural progenitors. However, it is possible that 

mitogens or survival factors induced by bFGF/EGF can be transferred via GJs to repress 

neural differentiation and promote proliferation. The requirement of cell-cell interactions for 

precursor cell growth was confirmed by the fact that singly dissociated cells from the mouse 

embryo demonstrated no proliferative activity in the absence of growth factors, whereas 

those in clusters proliferate for several days before undergoing differentiation (Ghosh & 

Greenberg, 1995). Consistently, the effect of bFGF was found to be only evident when cells 

are in contact with each other. A relationship between growth factors and Cx43 in ReNcell 

VM197 was proven by the fact that EGF stimulated Cx43 expression, leading to increased GJ 

plaques formation (Figure 26, 30, 31). Moreover, the proliferative activity of both EGF and 

bFGF was reduced as cells were transfected with Cx43 siRNA (Figure 22). This is in agreement 

with observations made by Cheng and colleagues showing that the mitogenic activity of 

bFGF increased as proliferating progenitors were cultured at high density and GJ blockage 

abolished this effect (Cheng et al., 2004). Hence, we assume that Cx43 promotes the growth 

factor driven proliferation of neural progenitors due to a signalling mechanism that requires 

the presence of gap junctional cell-cell contacts.  

The exchange of molecules between adjacent cells is predominately dependent on the 

diameter of the GJ channel and thus the intercellular transfer is limited to molecules up to 

1kD in size. The identity of compounds that are transported via GJs and promote the survival 

of neural progenitors is largely unknown. However, some small molecules were suggested to 

be involved in mediating growth factor signalling via GJs, including calcium and ATP. The 

former one is a central key player in the signal transduction system of neural stem cells that 

can easily pass GJs (Pearson et al., 2004) .EGF and bFGF were shown to elevate calcium 

levels in several different cell types, e.g. neural crest neurons and ganglion neurons (Distasi 

et al., 1995, 1998; Munaron et al., 1995; Ma & Sansom, 2001). Accordingly, triggering of 

calcium responses by growth factors was found to be critical in maintaining the self-renewal 

state of rodent neural precursors (Maric et al., 2003). Calcium-imaging studies in the 

developing retina revealed that GJs orchestrate proliferation of progenitors by propagation 

of calcium, indicating that functional GJs are required for calcium signalling (Pearson et al., 

2004).  

Like calcium, ATP is also capable to cross GJ channels and trigger cell growth-specific events 

in connected cells. Nucleotides represent an important type of extracellular ligands that are 
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indispensable for neural development, including regulation of migration, proliferation and 

differentiation (Neary & Zimmermann, 2009). In addition, nucleotides were reported to 

interact with growth factor receptor-dependent pathways. Neural stem cells, cultured in the 

presence of bFGF and EGF, demonstrated an increase of proliferation when ATP was co-

applied (Mishra et al., 2006). Moreover, this mitogenic effect of ATP were also observed in 

astrocytes and radial glia (Fields & Stevens-Graham, 2002; Weissman et al., 2004). Most 

studies have revealed that ATP exerts its stimulating effect on proliferation mainly by an 

extracellular mechanism. GJ hemichannels that connect intra- and extracellular spaces 

represent an important source for ATP release in neural progenitors (Pearson et al., 2005). In 

astrocytes, ATP is released via hemichannels that comprise Cx43, similar to the 

hemichannels found in our cell line (Figure 16) (Stout et al., 2002). In summary, these 

findings raise the possibility for a Cx43-dependent transport of ATP between adjacent cells 

or into the extracellular environment, which promotes the growth factor-dependent 

proliferation of neural progenitor cells. 

 

The impact of GJ coupling on cell growth was analysed using pharmacological GJ blockage 

and Cx43 knockdown. Both treatment with CBX and Cx43 knockdown reduced GJIC to a 

similar extent (50-60%, Figure 19, 21). Interestingly, siRNA-mediated gene silencing resulted 

in much stronger decrease of cell growth than observed after treatment with CBX. These 

data led us to assume that growth factor signalling in neural progenitors is also affected by a 

mechanism that is unrelated to the channel function of Cx43. This functional activity in the 

control of proliferation seems to be mediated by several interactions between Cx43 and 

other important proteins that possess signal transduction abilities. We found that ZO-1 

colocalized with Cx43 in GJ plaques (Figure 15). ZO-1 has been linked to regulation of cell 

cycle progression and proliferation by activating gene transcription (Balda et al., 2003; 

Sourisseau et al., 2006). Although ZO-1 was originally reported as a tight junction protein, 

the interaction with a number of Cxs is now well characterized (Giepmans, 2004). It was 

proposed that ZO-1 serves as a scaffold protein, recruiting other yet unidentified signalling 

molecules, which arise from growth factor stimulation (Giepmans & Moolenaar, 1998). Thus, 

reduction of Cx43 by gene knockdown might prevent proper proliferation due to impaired 

ZO-1 mediated growth factor signalling. 

Cx43 was also reported to directly bind α- and β-tubulin and microtubules at the cell 

periphery were shown to terminate at Cx43-formed GJs (Giepmans et al., 2001). 

Consistently, we gave evidence for a relationship between Cx43 and the microtubule 

cytoskeleton as revealed by administration of nocodazole that caused both disruption of 

microtubules and severe changes in Cx43 distribution (Figure 18). As microtubules form a 
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dense network and span from the plasma membrane to the nucleus, they provide a suitable 

system for the directional flow of information. EGF and bFGF transduce their signal by 

different extracellular regulated kinases that interact with microtubules in vivo and in vitro 

(Mandelkow et al., 1992; Reszka et al., 1997). Hence, alterations in microtubule properties 

will change the efficiency of growth factor signal transmission. It is undisputed that Cx 

vesicles are transported along microtubules throughout the whole cell. However, there is 

increasing evidence for an influence of Cx binding on tubulin dynamics. Microtubules were 

found to grow more frequently to Cx43 membrane plaques, where they persist 3.5 times 

longer (Shaw et al., 2007). Cx43 mutants, lacking the tubulin binding domain demonstrated 

altered cytoskeletal architecture, which emphasizes a modulating function of Cx43 in 

microtubule behaviour that in turn might affect protein kinases activated by EGF/bFGF 

(Francis et al., 2011). 

In the context of the findings above, our data led to the assumption that Cx43 positively 

influences bFGF and EGF-mediated proliferation in neural progenitors by a mechanism that 

is quite different from its channel-forming properties. Most of the channel-independent 

functions of Cx43 were associated with the cytoplasmic C-terminal tail, suggesting it as a 

regulatory region for Cx43-mediated cell growth. Truncation of the C-terminus of Cx43 

maintained GJIC, indicating that it is not essential for GJ formation, including assembly, 

membrane insertion and gating (Omori & Yamasaki, 1999). However, several studies 

demonstrated an impact of extra- and intracellular signals on GJ gating that was mediated by 

the C-terminus (Liu et al., 1993; Homma et al., 1998). Interestingly, the C-terminus of Cx43 

has also been shown to be localized in the nucleus. Exogenous expression of the C-terminal 

portion of Cx43 in transformed HeLa cells and cardiomyocytes revealed the ability of the C-

terminus to enter the nucleus and affect proliferation (Dang et al., 2003). This indicates a 

possible role for Cx43 in regulating the expression of cell growth-regulatory genes by 

interacting directly or indirectly with chromatin or transcription-factor complexes. Although, 

there is no data about the influence of the carboxyl-tail on gene transcription in neural 

progenitors, EGF or bFGF might induce cleavage of Cx43, resulting in the release of the C-

terminus fragment that is translocated into the nucleus to activate or inhibit specific target 

genes. Accordingly, using microarray, several growth-regulatory genes were identified that 

are synergistically expressed with Cx43 (Kardami et al., 2007).  

Additionally, Cxs were found to control gene expression by sequestration of transcription 

factors in the cytoplasm. Thus, changes in Cx expression alter the balance between factors 

bound to Cx and those free to activate genes in the nucleus. This was reported for the Wnt 

pathway that is known to regulate proliferation and differentiation in neural stem cells (Viti 

et al., 2003; Zechner et al., 2003). The transcription factor β-catenin is the key protein in the 
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Wnt-cascade and it directly binds to Cx43 (Giepmans, 2004). Wnt and growth factor 

signalling cross regulate each other by several mechanisms, which alter the intracellular 

distribution of β-catenin (Ciruna & Rossant, 2001; Huber & Weis, 2001). Israsena et al. (2004) 

reported that treatment with bFGF can control the expression of β-catenin which promotes 

the self-renewal state of neural precursors. Hence, binding of unbound β-catenin by Cx43 

might represent a mechanism that controls growth factor-induced signal transduction. This 

is in agreement with the finding that the level of β-catenin in the nucleus of ReNcell VM197 

neural progenitors augmented after removal of EGF and bFGF (Mazemondet et al., 2011), 

accompanied by a strong decrease of Cx43 expression (Figure 9). The lower level of Cx43 in 

the cell might result in a higher amount of unbound β-catenin, which facilitates the nuclear 

shuttling and gene regulation. 

Likewise, the transcription factor ZONAB colocalizes with ZO-1 and Cx43 in neural cell types 

(Kardami et al., 2007). ZONAB interacts with gap junctional Cx via the linker ZO-1 (Vinken et 

al., 2011), and colocalization of the later ones was demonstrated in proliferating ReNcell 

VM197 (Figure 15). ZONAB was found to accumulate in the nucleus and bind to promoter 

regions of genes encoding a number of proteins responsible for proliferation, including cyclin 

D1 or cdk4 (Dbpa et al., 2006). Although these indications might point to an involvement of 

Cx43 in regulating the transcriptional efficiency of ZONAB by sequestration, there are no 

reports showing alteration in ZONAB activity upon treatment with EGF or bFGF. Additional 

studies are required to unravel whether Cx binding of ZONAB is involved in growth factor 

signalling.  

In summary, the high expression level of Cx43 in proliferating neural progenitors is 

suggested to promote the undifferentiated and proliferative state. On the one hand, GJs 

provide a pathway that mediates the mitogenic activity of EGF and bFGF. The increased gap 

junctional coupling allowed intercellular exchange of survival factors that are either related 

or unrelated to growth factor signalling. On the other hand, Cx43 facilitates the signal 

transduction process induced by EGF and bFGF by a channel-independent mechanism that 

encompasses the interaction with several important signalling proteins.  

4.4 CX43 INFLUENCES NEURONAL DIFFERENTIATION IN NEURAL 

PROGENITORS 

One hallmark in the formation of a functional neural network during development is the 

generation of correct cell types in the appropriate region of the central nervous system. This 

process of neural cell fate determinations is controlled by different extra and intracellular 

signals (Cepko et al., 1996; Edlund & Jessell, 1999). Emerging evidence suggests that Cxs, in 

particular their GJ-forming ability, are involved in cell fate decisions of neural stem cells. 
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Approximately half of the 21 Cxs were found to be expressed in the central nervous system 

and they are differentially regulated during neural development with specific expression 

patterns dependent on stage of development and cell type (Huettner et al., 2006). Neural 

progenitors maintained in culture are capable to differentiate into neurons and astrocytes, 

similar to the neural development in the brain. In this study, we showed that neuronal 

differentiation of ReNcell VM197 is accompanied by dynamic alterations of GJIC (Figure 4, 7), 

which suggests that the extent of GJ coupling is an important factor for the elaboration of 

neuronal phenotypes. This was confirmed by pharmacological inhibition of GJIC, leading to a 

decrease in neuronal efficiency by 25% (Figure 19). Our observations are supported by the 

group of Bani-Yaghoub et al. (1999), using the human pluripotential teratocarcinoma cell line 

NT2/D1, which possesses many features of neuronal progenitor cells. They demonstrated 

that administration of CBX represses the ability of cells to acquire a neuronal cell fate. 

Consistently, GJ blockage also interferes with astroglial and neuronal differentiation of P19 

embryo carcinoma cells (Bani-Yaghoub, Underhill, et al., 1999). In proliferating mouse neural 

progenitors, CBX was reported to induce alterations in cell density and cellular morphology 

(Duval et al., 2002). In contrast, these negative effects of GJ blockage were not detected 

when cells were allowed to differentiate. The finding indicates that proper GJIC might be 

crucial for the early stage of neural development when cells leave their proliferative state 

and undergo differentiation.  

 

How GJ coupling can modulate the differentiation process and trigger the elaboration of 

certain cell types is controversially discussed in literature. Since GJs provide a pathway that 

allows flux of information, specific molecules can cross GJ channels and activate signal 

cascades in the target cell, leading to cell fate determination. The small amino acid taurine 

might be an attractive candidate for a cell fate regulator that can be transferred via GJs 

between adjacent cells (Spoerri et al., 1990; Wu et al., 2005). It has been proposed that 

taurine acts as trophic factor in the retina and in the central nervous system, promoting the 

survival of neuronal phenotypes (Chen et al., 1998). Additionally, taurine induced an 

increase of neurons, formed during the differentiation process of mouse neural progenitors, 

which is similar to the development of human progenitors. This suggests a possible 

involvement of taurine in ReNcell VM197 differentiation.  

Further, there is emerging evidence that GJs are permeable for small RNAs, which can 

regulate important aspects of development and physiology by controlling gene expression 

(Pasquinelli & Ruvkun, 2002; Bartel et al., 2004; Valiunas et al., 2005). MicroRNAs were 

demonstrated to be expressed in embryonic stem cells where they were attributed to the 

control of self-renewal and pluripotency (Suh et al., 2004; Wolvetang et al., 2007). 
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Exogenously-induced alterations of the small RNA processing complex impaired cell cycle 

progression, leading to a decrease of proliferation rate compared to the wildtype cells 

(Murchison et al., 2005). Moreover, microRNAs were found to be required for the effective 

gene silencing of stem cell markers as cells undergo differentiation (Wang et al., 2007). The 

transfer of RNA oligonucleotides occurs in a Cx-specific manner. While GJs formed by Cx32 

and Cx26 are not permeable to siRNA, channels composed of Cx43 allow passage of these 

oligonucleotides (Valiunas et al., 2005). We have found that Cx43 acts as a major GJ-forming 

protein in ReNcell VM197 (Figure 15, 21), raising the possibility for a gap junctional shuttling 

of small RNAs in human neural progenitors that influences transcription of genes coding for 

proteins critical in progenitor proliferation and neural development. 

Although we did not observe a strong increase of apoptotic cells upon Cx43 knockdown, we 

cannot exclude the possibility that down-regulation resulted in an increase of neuronal cell 

death rather than in altered cell fate decisions. Hence, this might imply a neuroprotective 

function of GJIC in neural progenitors. Under control conditions ReNcell VM197 was shown 

to differentiate into two distinct cell types 1) neurons and 2) glial cells, identified by 

β(III) tubulin and GFAP. Approximately 10-12% of cells differentiated into neurons, whereas 

88-90% acquired a glial cell fate (Figure 4C). In differentiated progenitors, these large 

amounts of glial cells formed an extensive syncytium in which neurons were embedded 

(Figure 4B). Functional assays have demonstrated that cytoplasms of astrocytes and neurons 

are coupled via GJs (Alvarez-Maubecin et al., 2000b). Glial-neuron interactions have been 

implicated in neuroprotection, suggesting that the observed decrease of neurons upon Cx43 

knockdown (Figure 23) might also result from a loss of intercellular coupling between early 

neuronal and non-neuronal cells (Kirchhoff et al., 2001). Even though we did not show 

specific dye coupling between neurons and glial cells, we gave evidence for the expression of 

the GJ-forming protein Cx43 in both GFAP and β(III) tubulin positive cells (Figure 12), which is 

consistent with several previous reports (Bittman & LoTurco, 1999; Rouach et al., 2002; Nagy 

et al., 2004). The neuroprotective impact of glial GJIC was investigated by comparison of 

neuronal sensitivity to oxidative stress. The blockage of gap junctional coupling in glial cells 

increased neuronal cell death after exposure to oxidative agents (Blanc et al., 1998). In 

accordance, using a mixed neural culture of neurons and Cx43-deficient astrocytes, Naus et 

al. (2001) were able to clarify a correlation between astrocytic GJs and neuronal viability. It 

was suggested that GJIC impede cell death by shuttling of survival factors between healthy 

cells and their dying neighbours or by dilution of toxic substances via GJs (Nakase et al., 

2003; Contreras et al., 2004).  

Taken together, our data enabled us to propose a model that implies a dual function of GJIC 

during the neural differentiation process of human embryonic progenitors (Figure 32). In 
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proliferating progenitors, strong GJIC is necessary to maintain the self-renewal state by 

mediating the proliferative effects of growth factors. As growth factors like EGF and bFGF 

induce an increase of intracellular mitogenic molecules, GJs enable the rapid exchange of 

these molecules within coupled progenitor populations that in turn enhances their 

proliferative activity. In contrast, GJ coupling is reduced in the early stage of differentiation, 

which facilitates the exit from cell cycle and cell fate commitment to specific neural 

phenotypes. However, a re-increase of GJIC is necessary to complete neural differentiation 

and allow the establishment of a functional neural network. GJs may provide a pathway for 

the exchange of ions, metabolites and other molecules capable to modulate certain 

properties of the neural network, including electrotonic coupling or cell composition. 

Figure 32 Proposed model for a dual function of GJIC in the development of human neural 
progenitors. In proliferating progenitors, GJIC is required to maintain cells in a self-renewal state by 
mediating the proliferative effects of growth factors. Growth factor-induced signaling produces an 
increase of mitogenic molecules that are exchanged via GJs and enhance proliferation in coupled neural 
progenitors. In the early stage of differentiation GJIC is reduced, which facilitates both the exit from cell 
cycle and cell commitment to either a glial or neuronal lineage. However, a late re-increase of GJIC is 
necessary to complete differentiation and allow the establishment of a functional neural network, by 
providing a pathway for the exchange of ions, metabolites and other important molecules that modulates 
the neural network. 
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This model only encompasses the channel-forming ability of Cx proteins, but several reports 

also implicated a modulating function of Cxs on neuronal differentiation that is not directly 

correlated with GJ coupling and molecule exchange between adjacent cells. We 

demonstrated that down-regulation of Cx43 by siRNA induced more severe effects on 

neuronal development than pharmacological inhibition of GJIC. Although both CBX 

treatment and knockdown of Cx43 decreased GJIC in a similar extent, impaired Cx43 

expression reduced the neuronal number by 50%, which was 2 times stronger as observed 

after pharmacological blockage (Figure 19, 20, 21, 23). Our findings are in agreement with 

data showing an involvement of Cx43 in neuronal differentiation of embryonic cells that was 

not associated to its channel-forming activity (Santiago et al.,2010). Accordingly, Cx36 was 

also reported to influence neuronal cell fate. While shRNA-mediated knockdown of Cx36 

decreased the number of neurons, overexpression increased neurogenesis (Hartfield et al., 

2011). It was suggested that the presence of Cxs might enhance the amount of cell-cell 

contacts, which in turn stimulates neuronal differentiation. Using multipotent cortical stem 

cells, Tsai and colleague revealed a strong impact of cell density on cell-type composition 

and Cx43 was identified as an important molecule that is involved in cell-cell contact 

mediated signalling (Tsai & McKay, 2000; Parekkadan et al., 2008). 

The ability of Cx43 to directly or indirectly interact with a number of proteins supports the 

notion of Cx43 as a mediator in cell signalling events (Giepmans, 2006). As reviewed by 

Edlund & Jessell (1999), cell fate decisions in progenitor cells are driven by growth factors, 

neurotrophic factors, cytokines and other soluble or insoluble cues and Cxs themselves can 

be regulated by them. Thus, alterations in Cx43 expression may change the way in which 

neural progenitor cells respond to extracellular signals resulting in altered cell fate decisions 

as we observed by a reduced neuron number in Cx43-deficient cells (Figure 23). The nerve 

growth factor was reported to promote the survival and differentiation of neurons in the 

central and peripheral nervous system via a mechanism that includes the phosphorylation of 

Cx43 and a subsequent increase of GJIC (Cushing et al., 2005). Although, there is no data 

about endogenous regulation of nerve growth factor and its receptor in ReNcell VM197 

development, these findings support the hypothesis that Cx43 might mediate neurotrophin 

signalling in human progenitors. As discussed above, neuronal differentiation of ReNcell 

VM197 progenitors is largely driven by Wnt signalling (Mazemondet et al., 2011). Due the 

interaction with β-catenin, Cx43 is suggested to be part of the signal transduction process 

that lead to cell fate determination (Giepmans, 2006).  

In summary, our data suggest an important role for Cx43 in regulating the development of 

human neural progenitor cells. Although GJs provide an important pathway for small 

diffusible cell fate regulators, neuroprotective molecules and metabolites, Cx43 also 
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mediates neural differentiation in a channel-independent manner by direct protein-protein 

interactions. 

4.5 PERSPECTIVES  

Investigations on human neural embryonic cells are still at an early stage and intense 

research is required to elucidate the mechanisms that trigger differentiation and ensure 

proper communication within a cell population. We have demonstrated ReNcell VM187 as 

suitable in vitro model to study the impact of Cxs and gap junctional communication on 

neural development. Cx43 and GJs were found to play a major role in cell growth and 

differentiation of ReNcell VM197. However, additional data is needed to clarify the 

involvement of other Cx isotypes in the development of neural progenitors of the ventral 

midbrain. Screening for Cxs revealed the presence of at least three different Cxs. Although 

we provide extensive data for an involvement of Cx43 in neural differentiation, the precise 

functions of Cx31 and Cx59 remain elusive. The expression pattern of Cx31 showed an 

increase during differentiation, indicating a role of Cx31 in neural development. Since 

confocal microscopy revealed no/less amounts in GJ plaques, these Cxs might exert its 

effects by a channel-independent mechanism. Co-localization analysis will clarify potential 

interaction candidates, which provide basis for further investigations.  

Interestingly, the expression of these two Cxs in human tissue derived from the central 

nervous system has not been reported before. Cx31 is known to be expressed especially in 

the skin and in the inner ear, but it is also present in human embryonic stem cells (Evans & 

Martin, 2002; Huettner et al., 2006). Mutations in Cx31 have been attributed to peripheral 

neuropathy, which might imply possible functions in neural development (López-Bigas et al., 

2001). However, expression of Cx31 is unlikely to be essential for neuronal differentiation as 

Cx31 knockout mice show no altered neuronal development or behaviour. It was assumed 

that Cx31 deficiency can be compensated by other Cxs (Plum et al., 2001). Nevertheless, 

Cx31 was found to increase during differentiation of neuroblastoma cells and it affected 

neurite outgrowth (Unsworth et al., 2007). Knockdown experiments or overexpression of 

Cx31 have to be performed to create evidence for an involvement of Cx31 in neurite 

outgrowth or cell migration in human neural progenitors.  

We showed that GJIC is crucial to mediate the mitogenic activity of EGF in proliferating 

progenitors. Moreover, the strong extent of GJIC in differentiated cells indicates an increase 

of molecule shuttling in neuronal networks. However, we did not address the key question 

what kinds of molecules are transferred via GJs to maintain the cells in a proliferative state, 

promoting cell survival or regulate cell fate. This is a difficult question to answer as the 

number of molecules capable of passing GJs and altering proliferative activity or cell fate is 
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enormous. Further, whether these cues act as a death or survival factor might depend on 

the cell type and environmental conditions of the cell that receives the signal. For example, 

Ca2+ is an important modulating second messenger that was shown to trigger development 

and differentiation, but also stimulates apoptosis (Berridge et al., 1998). The notion that cell 

fate regulators are transferred via GJs is supported by the finding that communicating cells 

die in clusters (Krysko et al., 2005). Consistently, GJs were found to enhance neuronal 

vulnerability to traumatic brain injury, probably by shuttling of pro-apoptotic cues. In 

contrast, pharmacological blockage of GJIC decreased the extent of post-traumatic cell death 

and prevented the spread of injury (Frantseva et al., 2002). As discussed above taurine and 

siRNA have also been assumed to act as cell fate modulators that cross GJs to reach adjacent 

cells and affect neural differentiation (Chen et al., 1998; Valiunas et al., 2005). The precise 

identification of these signalling molecules is a prerequisite for a specific exogenous-induced 

increase of differentiation towards the neuronal lineage or a reduction of cell death when 

cell replacement therapy is the strategy of choice in the treatment of brain injuries or 

neurological disorders (Lindvall et al., 2004). Future work will now involve the development 

of therapeutic strategies to reduce the secondary effects caused by traumatic brain injuries 

and to maximize functional recovery (Rozental et al., 2001). 

Initially, Cxs were thought to be the only proteins capable to form channels between 

adjacent cells. However, a novel group of proteins, called pannexins (Panxs), was recently 

identified to share similar functions with Cxs (D’hondt et al., 2009). Panxs are abundantly 

expressed in the vertebrate nervous system, but they were shown to be involved in 

hemichannel formation rather than in GJ formation (Scemes et al., 2009). There is emerging 

evidence that ATP-release, previously reported to occur via Cx-hemichannels, is 

predominately mediated by Panxs hemichannels (D’hondt et al., 2009). However, little is 

known about the biology of Panxs in neural stem cells. In addition to Cxs, Panxs were shown 

to be up-regulated during the development of hippocampal neural progenitors. Moreover, 

they were assumed to be necessary for proper neuronal differentiation and proliferation 

(Swayne et al., 2010; Wicki-Stordeur et al., 2012). Unfortunately, it is difficult to 

experimentally distinguish between Cx- and Panxs channels as specific blockers are not 

available and cells can express several isoforms of Panxs and Cxs. This raises the possibility 

that channel functions, actually attributed to Cxs, are mediated by Panx proteins. Thus, 

further studies are now needed to increase the knowledge about the properties of Panx 

channels in neural stem cells. Moreover, future work should address the question how they 

are regulated during neural development or how Panxs themselves are capable to alter the 

differentiation process.
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