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1. Introduction 

1.1 Periodontal regeneration 

1.1.1 Tooth Morphogenesis  

In the past decades, a wealth of information has become available shedding light on the 

processes of teeth evolution. It is now widely accepted that odontogenesis begins in the 

sixth week of embryonic development with the formation of the primary dental laminae 

(odontogenic bands). These odontogenic bands are thickened U-shaped epithelial ridges 

along the processes of the developing jaws (Smith 2003). Teeth morphogenesis is 

regulated by sequential and reciprocal inductive interactions between the oral 

epithelium and the underlying neural crest-derived mesenchymal cells 

(ectomesenchyme) of the developing first branchial arch (Martens 2013). These 

interactions result in teeth formation (Fig. 1.1.1) through a series of different stages 

(lamina stage, bud stage, cap stage, and bell stage), mediated by numerous growth 

factors including members of the fibroblast growth factor (FGF) and transforming 

growth factor beta (TGF-β) superfamilies (Kettunen 2000; Nadiri 2004). It has recently 

become evident that more than 300 genes, mainly involved in regulation of cellular 

communication, may be associated with odontogenesis and the differentiation of dental 

tissues (Thesleff 2006). 

 

 

Figure 1.1.1 Schematic illustration showing different stages of human tooth formation  

  (Tucker 2004). 
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The oral epithelium is speculated to produce the first inductive signals to initiate 

odontogenesis (Modino 2005). However, the crucial role of cranial neural crest-derived 

cells in teeth evolution has been demonstrated in animal models, where transplantation 

of mice neural crest cells into chicken embryos allowed growth of tooth germs in vivo 

(Mitsiadis 2003). Hence, the contributions of each tissue, oral epithelium and 

ectomesenchyme, remain enigmatic and have been the basis of numerous debates 

(Hammarström 1996; Ten Cate 1996). 

The classical theory suggests that interactions and signals exchanged between epithelial 

and mesenchymal cells result in the segregation of dental epithelium into an outer layer 

of enamel (enamel organ) formed by ameloblasts, while dental papilla and follicle are 

supposed to be ectomesenchymal derivates. Particularly, dental papilla, located in the 

central chamber of the developing tooth bud, gives rise to dentin-forming odontoblasts 

and the dental pulp. 

Dental follicle is described as a loose ectomesenchymally-derived connective tissue sac 

surrounding the enamel organ and dental papilla of the tooth germ (Schroeder 1986; 

Moxham 1995; Ten Cate 1997). Anatomically, dental follicle consists of three layers: 

the dental follicle proper (associated with the tooth), the perifollicular mesenchyme 

(associated with the bone) and an intermediate layer of loose connective tissue. Dental 

follicle plays a central role in tooth eruption, as demonstrated by animal studies 

showing that removal of dental follicle from teeth prevented their eruption (Cahill 

1980). The developmental potential of dental follicle was extensively studied in 

numerous tooth transplantation experiments (Hoffman 1966; Ten Cate 1970; Palmer 

1987). It has been demonstrated that dental follicle harbours progenitor cells able to 

give rise to all components of the periodontium, including cementoblasts, periodontal 

ligament fibroblasts and osteoblasts (Diekwisch 2001; Morsczeck 2005; Yao 2008; 

Dieu 2009). However, the precise role of dental follicle in the differentiation and 

maturation of these tissues remains unclear because of the proximity to other embryonic 

tissues, as the Hertwig’s epithelial root sheath (Hoffman 1960; MacNeil 1993). 
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1.1.2 Anatomy of the periodontal ligament 

The periodontium is a complex organ consisting of epithelial, connective and 

mineralized tissues that invest and support the tooth (Pitaru 1994). The structures 

comprising the periodontium include cementum, periodontal ligament (PDL), alveolar 

bone and the gingival (Fig. 1.1.2). Structural integrity and interaction between these 

tissues are required for the proper function of the periodontium (Nanci 2013). Its 

primary role is the attachment of teeth to the alveolar bone and distribution of forces to 

surrounding bone by tooth loads. The periodontium serves also as a sensory organ, 

important for the positioning of the jaws during mastication and occlusion (Trulsson 

2006).  

 

Figure 1.1.2 Schematic illustration showing structures of the periodontium (Bird 2002). 

The integral part of the periodontium is the periodontal ligament, a soft, specialized 

connective tissue situated between the cementum and the alveolar bone. Periodontal 

ligament is adapted to the adjacent tissues by so-called principal fibers. These are 

collagenous fibers mainly consisting of collagen type I, III and XII being arranged in 

definite and distinct bundles and anchored in cementum or bone (Sharpey’s fibers). The 

average width of PDL ranges from 0.21 mm at 11 to 16 years of age to 0.15 mm at 51 

to 67 years, and has a hourglass shape with the narrowest area at the mid root level 

(Nanci 2013). The width of the ligament is dependent on vascularity, cell mitotic 

activity and fiber number and can adapt to forces in cases of decreased occlusal load or 

hyperfunction (Van der Velden 2004). 
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The periodontal ligament contains a unique assortment of cells including osteoblasts, 

cementoblasts, osteoclasts, multipotent stem cells, epithelial cell rests of Malassez, 

macrophages and fibroblasts, which are the most abundant cell population (Carranza 

2003). Periodontal ligament fibrobasts are responsible for the synthesis of collagen and 

its assembly into collagen fibers and contribute to the continuous remodeling taking 

place in the ligament. Particularly, periodontal ligament fibrobasts are considered to be 

mechanoresponsive and transmit mechanical forces to the supporting alveolar bone 

(Wescott 2007). This load transduction is thought to initiate a process associated with 

changes in bone architecture needed for tooth movement and adaptation to changing 

mechanical loads (Diercke 2011). This process is termed bone remodeling and is 

characterized by continuous bone resorption and new bone formation that is mainly 

controlled by osteoblasts (Sandy 1993). Moreover, the periodontal ligament includes 

neurovascular structures that are responsible for the sensory and nutritive function of 

PDL. Concretely, PDL includes endothelial cells, which line the numerous blood 

vessels that provide nutrients to cementum and alveolar bone. The periodontal nerve 

branches contain a mixture of myelinated and non-myelinated axons (Nakamura 1986) 

transmitting mechanical stimuli able to evoke various oral reflexes (Shi 2005). Finally, 

it is widely accepted that periodontal ligament cells play a crucial role in homeostasis, 

healing and regeneration of the periodontium (Shimono 2003; Scanlon 2011; Yu 2013). 

This potential has been in focus of periodontal research over the past few decades 

(Melcher 1976; Nyman 1982).  

 

1.1.3 Periodontal disease  

Periodontal disease is a bacterially induced inflammatory disease of the periodontium. 

It is characterized by the progressive destruction of periodontal tissues that eventually 

leads to the loosening and subsequent loss of teeth (Fig. 1.1.3). It represents one of the 

major dental diseases that affect human populations worldwide at high prevalence rates. 

Specifically, it is estimated that over 47% of the adult USA population is affected from 

periodontitis (Burt 2005), while 28.5% of tooth extractions in Germany are attributed to 

the disease (Glockmann 2011). Consequently, periodontal disease can significantly 

affect patients’ quality of life and lead to both financial and health related risks 

(Petersen 2005). Recent cross-sectional epidemiological studies have demonstrated that 
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at global level improvement of periodontal health can be possible over time (Hugoson 

2008). Nevertheless, according to a report of the World Health Organization (WHO), 

10 - 15% of world populations still suffer from severe periodontitis, an advanced form 

of the disease (Petersen 2005). Alarming is, also, the fact that diverse forms of 

periodontal diseases affect children, adolescents and young adult populations around 

the world (Albandar 2002).  

 

     

Figure 1.1.3 Radiographs featuring (A) healthy and (B) diseased periodontal tissues. Arrows 

indicate margins of the alveolar bone. 

 

Periodontal disease was first described by Gottlieb as a degenerative disorder leading to 

a diffuse atrophy of the alveolar bone (Gottlieb 1928). Until the early 80s, the term 

periodontosis, coined by Orban and Weinman, was used to denote the non-

inflammatory status of the disease (Orban 1942). Advances in dental research have 

fundamentally changed our understanding of the periodontal diseases (Baer 1971). It 

has been demonstrated that periodontitis is an inflammatory disease mainly caused by 

the presence of oral microbial biofilms. Since the first characterization of dental biofilm 

by van Leeuwenhoek in 1683 a great effort has been made to identify the microbiota at 

sites of periodontal lesions (Dobell 1958) and to determine the composition of perio-

pathogenic biofilms (Holt 2005). A microbial-shift from mostly Gram-positive to 

mostly Gram-negative species is supposed to lead the transition process from 

periodontal health to periodontal disease (Darveau 2010). Moreover, it has been 

speculated that specific bacteria or their consortia may be responsible for the initiation 

and progression of periodontal disease. Specifically, the ‘red complex’, consisting of 

Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, has been 

proposed as a ‘disease-related’ network of pathogenic bacteria, being strongly related to 

chronic periodontitis (Socransky 1998). Nevertheless, the impact of polymicrobial 

communities on the development and progression of the disease remains unclear. 

A. B. 
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Over the last few decades, the key role of immune host response has been in focus of 

studies on the expression of periodontitis (Darveau 1997). Results of clinical studies 

challenged the idea that direct effects of bacterial toxins or enzymes were sufficient for 

the induction of periodontitis (Hirschfeld 1978; McFall 1982). These observations were 

further confirmed by longitudinal epidemiologic analyses on patients susceptibility to 

periodontal infections (Hugoson 1982; Lindhe 1983). While the etiology of 

periodontitis is bacterial, it has become evident that an inadequate host inflammatory-

immune response to periodontal pathogens is responsible for the disruption of tissue 

homeostasis in the pathogenesis of the disease (Van Dyke 2008; Darveau 2010). 

According to current literature, the destruction of periodontal tissues is neutrophil-

mediated and may lead to chronic inflammatory processes (Van Dyke 2003). Thus, 

genetic polymorphisms in cytokine expression or polymorphonuclear leukocytes 

(PMNs) dysfunctions have been associated with periodontitis (Kornman 1998; Kinane 

2001). Further, periodontal diseases were linked with major systemic diseases such as 

cardiovascular diseases, rheumatoid arthritis and diabetes (Beck 2000; Garcia 2001; 

Mealey 2006; Preshaw 2013). Such associations may reflect the presence of common 

underlying pathogenic mechanisms between periodontitis and general health and 

remain to be clarified (Armitage 2009). 

 

1.1.4 Periodontal therapy 

The ultimate goal of periodontal treatment is the restoration of homeostasis between 

periodontium and oral microbiota, the long-term maintenance of clinical periodontal 

attachment levels and the regeneration of lost periodontal supporting tissues (Van Dyke 

2008). The conventional periodontal treatment involves the mechanical removal of the 

pathogenic dental biofilm by scaling and root planing (SRP). This therapeutic concept 

has proven to be the gold standard approach in the treatment of chronic periodontitis 

(Sanz 2012). Its efficacy is well documented in a plethora of studies (Badersten 1981, 

1984; Lindhe 1984; Kaldahl 1988).  

In a large-scale retrospective study, Van der Weijden et al. (Van der Weijden 2002) 

demonstrated successful clinical outcomes such as probing depth reduction and gain of 

clinical attachment after subgingival debridement. Furthermore, a meta-analysis 

conducted by Hung et al. demonstrated the positive effects of SRP in the reduction of 
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probing depth and stabilization of attachment loss, after treatment of medium and deep 

periodontal defects (Hung 2002). Analyses of subgingival plaque samples revealed 

alterations in the composition of subgingival microflora after SRP (Mousquès 1980; 

Müller 1986). Particularly, Haffajee et al. confirmed a decrease in prevalence of P. 

gingivalis and other periopathogenic bacteria at sites of improved periodontal 

attachment levels post-therapy (Haffajee 1997) However, histological analyses of 

healed periodontal tissues reveal in most of the cases the presence of an epithelial lining 

along the treated root surfaces of the teeth, instead of true periodontal regeneration 

(Caton 1993). Moreover, it has been showed that clinical outcomes of SRP may vary 

greatly and are dependent on several parameters such as the extent and severity of 

disease and patient's compliance with plaque control (Page 1997; Sanz 2012). 

Technological advances and a better understanding of the biology of periodontal tissues 

enabled the introduction of modifications in standard periodontal treatment. New 

debridement technologies (Tunkel 2002), full-mouth disinfection protocols (Quirynen 

1995) antibiotic administration (Haffajee 2003), implantation of autografts, allografts 

and alloplastic materials (Sculean 2008), chemical root conditioning (Maruyama 2008), 

growth factors (Raja 2009) and guided tissue regeneration (Sculean 2004) represent 

some of the therapies or techniques that have been introduced in the conventional 

periodontal treatment protocol (Fig. 1.1.4). These adjunctive methods used either alone 

or in combination may result in some cases in histological evidence of bone repair 

(Sculean 2008). However, the results in clinical applications are marginal and vary 

greatly, depending on the anatomy of periodontal defects or the amount of resident vital 

periodontal ligament (Blumenthal 1993). In conclusion, these advanced therapeutic 

interventions have proved to be insufficient to attain complete and predictable 

regeneration of the periodontium (Becker 1999; Bartold 2000; Chen 2010). 

 

 

 

Figure 1.1.4 Schematic illustration of guided tissue regeneration technique (Chen 2010). 
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1.1.5 Rationale for regenerative periodontal therapy  

In recent years, great improvement has been made in understanding the cellular and 

molecular events involved in the formation and regeneration of periodontal tissues. 

Interestingly, it has been demonstrated that dental tissues contain populations with 

characteristics of postnatal stem cells (Hynes 2012). The identification of these 

multipotent cells has stimulated interest in the potential use of cell-based therapies as 

prospective alternatives to existing therapeutic approaches for the repair and 

regeneration of the periodontium (Bartold 2006). 

Aim of regenerative periodontal therapy is the predictable restoration of the 

periodontium, including the formation of periodontal ligament, cementum with 

inserting periodontal ligament fibres and alveolar bone that have been lost due to 

periodontal disease or dental trauma (Polimeni 2006). From a biological perspective, 

one of the critical requirements for successful therapeutic approaches is the 

repopulation of the periodontal wound by ex vivo expanded progenitor populations or 

the mobilization of endogenous progenitor cells capable of promoting regeneration 

(Ivanovski 2006). 

Dental-derived stem cells are putative candidates for restoration of the complex 

ultrastructure and the dynamic function relationships between the periodontal 

components that are important for normal tissue homeostasis. Numerous animal studies 

have proved the regenerative potency of these cell populations in vivo (Trofin 2013).  

However, one of the growing concerns in dental research is the exposure of dental-

derived progenitor cells to the endotoxin-rich microenvironment of periodontal pockets 

(Morsczeck 2012). This may affect many cell properties such as self-renewal, 

differentiation potential, production of cytokines and extracellular matrix (ECM) 

compounds secretion. Moreover, Sorrell and Caplan demonstrated that multipotent cell 

grafts might trigger regenerative processes through direct commitment together with 

paracrine communication with resident cell populations and infiltrating inflammatory or 

antigen-presenting cells (Sorrell 2010). These interactions provide a regenerative 

microenvironment for destructed adult tissues to limit the area of damage and to impel a 

self-regulated regenerative response (Caplan 2007). Hence, a better understanding of 

cell behavior at sites of inflammation appears to be a key strategy for the development 

of new approaches for periodontal regeneration. 
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1.2 Human dental follicle progenitor cells 

1.2.1 Stem cells of non-dental origin 

In recent years, tissue engineering has emerged as a promising approach that could 

enable regeneration of diseased tissues, by cell transplantation with or without scaffolds 

(Langer 1993). The potential use of tissue engineering approaches are endless, and 

range from preclinical generation of cardiac valve substitutes, to ex vivo construction of 

nasal cartilages, or even to whole organ substitutes such as liver (Stock 2001). Beside 

the restricted actual clinical feasibility, pilot studies highlight great prospects for future 

stem cell-based tissue engineering techniques. This progress is mostly attributed to the 

advances in stem cell biology and recognition of the unique biological properties of 

stem cells (Eberli 2006). 

 

 

 

Figure 1.2.1 Graphic illustration of the two main characteristics of stem cells. 

 

Stem cells are defined by their capacity to self-renew and differentiate into multiple cell 

lineages (Fig. 1.2.1). One of the most studied adult stem cell types are mesenchymal 

stem cels (MSCs) (Pittenger 1999). Friedenstein et al. first described bone marrow stem 

cells (BMSCs) as a heterogeneous population of multipotent cells derived from bone 

marrow aspirates with the ability to adhere to plastic surfaces and form colonies of 

fibroblastic-like cells within the first days of cultivation (Friedenstein 1970, 1976). 

Although MSCs were originally isolated from bone marrow, similar populations of 

mesenchymal precursors were isolated from other tissues, including adipose tissue (Zuk 

2001), amniotic fluid (Roubelakis 2011), fetal liver (Fiegel 2006) and umbilical cord 
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blood (Kögler 2004). Recent studies indicated that MSCs are able to differentiate not 

only into cells of the mesoderm lineage, but also into endoderm and neuroectoderm 

lineages, including neurons (Sanchez-Ramos 2000), hepatocytes (Schwartz 2002) and 

endothelia (Janeczek Portalska 2012). MSCs can be easily isolated and have a high 

expansion potential and genetic stability giving unlimited pool of transplantable cells 

(Wang 2012). In addition, MSCs are able to migrate to sites of tissue injury and have 

immunosuppressive properties that can be crucial for successful autologous as well as 

heterologous transplantations (Le Blanc 2005). MSCs are already utilized in several 

fields of regenerative medicine. Indeed, MSCs have been successfully integrated in 

orthopaedic therapeutical interventions facilitating the repair of bone (Mankani 2001) 

and cartilage (Murphy 2003). Furthermore, BMSCs have been proposed as candidates 

for cell-based cardiac regeneration therapies (Stamm 2003; Tongers 2011; Donndorf 

2013). 

Although human BMSCs are not isolated from oral tissues, they have already been 

extensively studied as putative candidates regarding the regenaration of periodontal 

tissues. Kawaguchi et al. observed in an animal model that BMSCs transplanted into 

Class III furcation lesions, were able to form new cementum, bone and periodontal 

ligament in the periodontal osseous defects (Kawaguchi 2004). In an in vivo study, 

Hasegawa et al. used BMSCs labeled with green fluorescent protein, and confirmed that 

after transplantation BMSCs could survive and differentiate into periodontal tissue cells 

(Hasegawa 2006). It has been proposed that BMSCs are able to sense biological signals, 

interact with the local microenvironment and contribute to the regeneration of 

periodontal tissues (Yang 2010). Clinical trials using autologous BMSCs 

transplantation in periodontal defects combined with platelet-rich plasma showed 

positive clinical outcomes (Yamada 2006). However, these approaches require an 

invasive bone marrow aspiration procedure in a secondary clinic and are associated 

with donor site complications (Chen 2012). 

Apart from bone marrow, adipose-derived stem cells (ASCs) have also been 

investigated in periodontal regeneration studies. ASCs exhibit stable growth kinetics in 

vitro and possess multilineage differentiation ability, while having similar phenotype 

and genotype to those of BMSCs and DPSCs at the transcriptional level (Hung 2011) 

(Izadpanah 2006; Zhu 2008). Several animal models have already confirmed the 

potential of ASCs to promote periodontal regeneration in situ (Tobita 2008, 2010). 
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The use of embryonic stem cells (ESCs) has been newly proposed as an alternative 

source for regenerative medicine, because of their combined abilities of unlimited 

expansion and pluripotency. The differentiation capacity of human ESCs towards 

periodontal ligament cells were recently evaluated in vitro (Inanç 2009). However, the 

clinical application of these unique cell types raises serious ethical and safety concerns. 

Finally, the induced pluripotent stem cell (iPSCs) technology represents a major hope 

associated with the development of personalised cell therapies for treating human 

disease, as periodontitis (Hynes 2013). This technological advance allows the 

generation of pluripotent cells by nuclear reprogramming of adult cells via genetic 

manipulation or introduction of multiple transcription factors (Takahashi 2006; Huangfu 

2008). Duan et al. have recently demonstrated that iPSCs combined with enamel matrix 

derivatives (EMD) could be valuable candidates for periodontal tissue engineering 

approaches (Duan 2011). Alternative approaches, as the newly proposed method of 

stimulus-triggered acquisition of pluripotency (STAP), could enhance these therapeutic 

attempts. STAP technology is based on cell nuclear reprogramming triggered by 

external stimuli such as a transient low-pH stressor (Obokata 2014). Nevertheless, 

researchers should overcome several biological unknowns, technical hurdles and safety 

concerns in order to integrate nuclear reprogrammed mammalian cells in clinical 

therapeutic approaches (Csete 2010). 

 

1.2.2 Dental-derived progenitor cells 

During the last decades, rapid progress in dental research has shed light on the 

molecular and cellular biology of periodontal tissue development. The identification of 

undifferentiated multipotent cells in the developing, but also in the mature periodontal 

ligament has inspired researchers to use them in cell-based regenerative approaches 

(Cho 2000). These multipotent cell populations retain the potential to differentiate into 

osteoblasts, cementoblasts and fibroblasts (McCulloch 1984). Experimental studies in 

mice suggest that periodontal ligament stem cells (PDLSCs) niches are perivascular 

sites in the periodontal ligament and adjacent endosteal spaces (Gould 1977; 

McCulloch 1987). According to an animal study in rats, Roberts et al. suggested that 

PDLSCs undergo a vascularly oriented differentiation during migration to the bone and 

cemental surfaces (Roberts 1987). Apart from resident PDLSCs, ex vivo-explanted 
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PDLSCs are, also, able to promote regeneration of typical cementum/ periodontal 

ligament-like structures (Seo 2004). 

Until now, numerous animal models have confirmed the capacity of PDLSCs to 

regenerate PDL tissues in vivo (Liu 2008b; Ding 2010). Specifically, Lang et al. 

demonstrated the formation of periodontal ligament-like connective tissues with 

orientated fiber bundles attached to both host bone and root, after replantation of 

PDLSCs-covered roots in a large animal model (Lang 1995). Kim et al. conducted in 

vivo studies providing further insides in the sequential histological changes during 

periodontal tissue regeneration by hPDLSCs (Kim 2012). Based on these promising 

preclinical results, PDLSCs were first candidates for tissue engineering techniques.  

At present, PDLSCs, as well as BMSCs, are used as main cell sources for periodontal 

regeneration (Feng 2010; Hoogduijn 2013). Nevertheless, the results of such 

therapeutical interventions remain marginal and unpredictable. Interestingly, recent 

findings suggest that PDLSCs proliferation and differentiation potential may be 

influenced by donor age and microenvironment factors (Zheng 2009). Such 

observations highlight the need of cautious interpretation of study results. Further 

elucidation of the molecular mechanisms governing stem cell differentiation could 

improve cell-mediated therapeutical approaches against periodontal disease (Chen 

2012). 

Newly identified dental-derived stem cells have been proposed as alternative cell 

sources. In particular, multipotent cells have been successfully isolated from several 

dental tissues as dental pulp (Gronthos 2000), dental follicle (Morsczeck 2005), 

exfoliated deciduous teeth (Miura 2003) and root apical papilla (Sonoyama 2006). A 

plethora of in vitro and in vivo studies on dental-derived stem cells provide evidence of 

their multi-differentiation capacity and their potential role in periodontal regeneration 

(Chen 2012). 
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1.2.3 Dental follicle progenitor cells  

Advances in the field of periodontal regeneration facilitated the development of cell-

based periodontal therapies. Recently identified dental-derived stem cells have been 

proposed as putative candidates for such therapeutical approaches. Specifically, dental 

follicle stem cells represent a population of precursor cells originating from the loose 

ectomesenchyme-derived connective tissue sac that surrounds the developing tooth 

germ prior to eruption (Ten Cate 1997). After the extraction of impacted third molars, 

dental follicles are commonly discarded as medical waste. However, DFPCs can be 

isolated from extracted dental follicles for research purposes, thus representing an easily 

accessible cell source. 

 

 

 

Figure 1.2.3 Panoramic radiograph of a 17 years old patient showing wisdom tooth follicle. 

Dental follicle is considered as a source of multipotent cells with the ability to generate 

all periodontal tissues, namely cementum, bone and PDL (Honda 2010). These 

precursor cells are present in dental follicle at various stages of differentiation (Luan 

2006; Yao 2008). Handa et al. first reported the presence of progenitor cells in animal 

dental follicle. In their study, cultured bovine dental follicle progenitor cells (DFPCs) 

were able to form cementum tissues and fibroblasts in vivo (Handa 2002). In 2005, 

Morsczeck et al. were able to isolate multipotent cells from dental follicles of human 

impacted third molars and described their stem cell characteristics (Morsczeck 2005). 

Subsequent investigations on human and animal DFPCs shed light to their regenerative 

potential. In particular, several studies demonstrated that DFPCs have a fibroblast-like 

morphology, are plastic-adherent and show excellent proliferation rates (Guo 2012). 

Until now there is no rigid expression pattern of stemness-related genes (Kemp 2005). 

Nevertheless, a broad set of markers has been proposed to define stem cell cultures. 
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Similar to other stem cell populations, DFPCs express CD10, CD13, CD29, CD44, 

CD53, CD59, CD73, CD90 and CD105, and do not express CD34, CD45, or HLA-DR 

(Lindroos 2008; Huang 2009). Demonstration of self-renewal ability and multilineage 

differentiation capacity are additional indications of stem cell phenotype. Indeed, it has 

been proven that DFPCs are able to form single cell-derived colonies and differentiate 

into several lineages, when induced by special media in vitro (Yao 2008). 

Moreover, the regeneration potential of DFPCs has been supported by a series of animal 

experiments. Recently, Yokoi et al. demonstrated in an animal model the ability of 

DFPCs to regenerate the periodontal ligament in vivo (Yokoi 2007). Further, Guo et al. 

investigated the potential of dental follicle stem cells to contribute to the formation of 

the tooth root (Guo 2012). Interestingly, DFPCs combined with treated dentin matrix 

(TDM) scaffolds contributed to the formation of root-like tissues with a pulp-dentin 

complex and a periodontal ligament connecting a cementum-like layer to host alveolar 

bone (Guo 2012). Recent data indicate that dental follicle cells induced by Hertwig’s 

epithelial root sheath cells may form periodontal tissues in vivo through epithelial-

mesenchymal interactions (Bai 2011). However, the mechanisms governing DFPCs 

regeneration potency remain to be elucidated.  

 

1.3 Porphyromonas gingivalis 

1.3.1 General characteristics 

Porphyromonas gingivalis (formerly Bacteroides gingivalis) is a Gram-negative, non-

motile, asaccharolytic bacterium. It requires anaerobic conditions for growth, exhibits 

both cocco-bacillary to short rod morphologies and forms smooth to rough colony 

morphotypes (Reynolds 1989; Haffajee 1994). The species belongs to the black-

pigmented Bacteroides group and can form brown to black colonies when cultured in 

blood agar plates (Oliver 1921). The black pigmentation of P. gingivalis colonies is 

correlated to the accumulation of hemin (oxidized form of heme) on its cell surface (Liu 

2004; Smalley 2008). Furthermore, it is postulated that heme has a profound effect on 

virulence of P. gingivalis, as when grown under hemin-limited conditions, it becomes 

less virulent (McKee 1986; Lewis 1999).  
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When considering its role in the establishment of multispecies subgingival biofilm 

communities, P. gingivalis is classified as a late colonizer, capable to adhere to oral 

surfaces and interact synergistically with antecedent biofilm inhabitants (Capestany 

2008; Kolenbrander 2011). The species is intensively invasive, as demonstrated in 

several in vitro studies (Sandros 1993; Weinberg 1997; Houalet-Jeanne 2001). 

Particularly, P. gingivalis is able to invade and remain viable in host cells (Andrian 

2006; Amano 2007), while suppressing host cell apoptosis (Yilmaz 2008; Yao 2010). 

The major ecological habitat of P. gingivalis is the gingival sulcus. Moreover, the 

organism can be detected in tongue coat, tonsils, oral mucous membranes and saliva 

samples (Zambon 1981; Danser 1996; Tanaka 2004). In addition to the oral niches, P. 

gingivalis can also spread systemically and be found in distant sites as demonstrated for 

atheromatous plaques (Kozarov 2006), osteomyelitis lesions (Welkerling 2006), 

amniotic cavity (León 2007), respiratory tract (Scannapieco 1999; Mojon 2002) and 

cerebrospinal fluid (Iida 2004). 

Therefore, the biological significance of the species has been in focus of research in the 

last decades. The potential effects of P. gingivalis on several host cell types, including 

not only oral epithelial cells and fibroblasts, but also dendritic cells, macrophages, 

neutrophils, endothelial cells have been extensively discussed in previous reviews 

(Kantarci 2002; Amano 2003; Bélanger 2006; Cutler 2006; Hajishengallis 2007; Kinane 

2008; Sheets 2008; Yilmaz 2008). The impact of several perio-pathogenic bacteria, as 

P. gingivalis, on BMSCs and dental-derived stem cells has been recently demonstrated, 

thus revealing new insights into the interactions between live bacteria and multipotent 

stem cells (Kriebel 2013). 

 

1.3.2 Association with periodontal disease  

The oral cavity is habitat for a plethora of bacterial species. Specifically, it is estimated 

that the oral microflora consists of more than 700 different bacterial species, which 

normally coexist in commensal harmony with the host (Moore 1994; Aas 2005). 

Despite the enormous diversity of the oral microbiome, only some of these species are 

considered to have an impact on the initiation and progression of periodontitis (Paster 

2006). 
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In recent years, the use of advanced techniques for identification of microorganisms, in 

combination with the relative non-invasive nature of sampling, facilitated the 

conduction of thorough analyses of the oral microbiota in both health and disease 

(Haffajee 2008). These studies led to the identification of P. gingivalis as a major 

contributor to periodontal disease and member of the ‘red complex’ pathogens, 

comprising T. forsythia and T. denticola (Socransky 1992; Lamont 1998; Holt 2005). 

Specifically, several studies based on in vivo experimental models demonstrated that P. 

gingivalis may induce dysbiosis, or a microbial shift in the commensal composition, 

ultimately leading to periodontitis (Baker 2000; Page 2007; Hasturk 2007; 

Hajishengallis 2011). Increased incidence of P. gingivalis is positively correlated to 

destructive forms of periodontal disease (Van Winkelhoff 2002; Kawada 2004). 

Besides, reduced levels of P. gingivalis are associated with clinical improvement at 

diseased sites after periodontal treatment (Haffajee 1997; Takamatsu 1999; Ximénez-

Fyvie 2000; Fujise 2002). 

Even though a large body of evidence on the pathogenic role of P. gingivalis in disease 

formation exists, the pathogenesis of infection is still not fully understood (Yilmaz 

2008). Hence, the proposed idea of using P. gingivalis as a prognostic marker for 

periodontitis is open to dispute (Leonhardt 2011). Remarkably, studies on the 

composition of subgingival species in or on the sulcular gingival epithelial cells showed 

no significant differences in the levels of P. gingivalis in the epithelial samples obtained 

from healthy or diseased subjects (Colombo 2006, 2007). Indeed, it has been recently 

proposed that the oral epithelium of healthy subjects, may exhibit a natural tolerance 

towards oral microbiota (Jump 2004; Rudney 2006). Parallely, the notion that P. 

gingivalis may act as an opportunist, that under certain circumstances is able to subvert 

host defence, is now well established (Bostanci 2012). In conclusion, the sophisticated 

mechanisms behind the reciprocal interactions between perio-pathogenic bacteria and 

host cells appear to be highly complex and remain to be elucidated (Curtis 2005; 

Yilmaz 2008). 
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1.3.3 P. gingivalis LPS 

It is widely accepted that P. gingivalis produces a range of potential virulence factors. 

These exhibit multiple functions and are part of the proposed survival strategies of P. 

gingivalis into the host (Holt 2005). Specifically, a major virulence factor of P. 

gingivali  is its capsular polysaccharide (CPS), also known as K-antigen (Brunner 

2010). It is demonstrated to be involved in the modulation of host immune mechanisms 

by circumvention of phagocytosis (Singh 2011). Further, gingipains of P. gingivalis are 

extracellular cysteine proteases, also present in soluble form (Bostanci 2012). 

Gingipains are demonstrated to possess proteolytic and adhesion domains and are 

involved not only in the degradation or cleavage of host cell proteins, but also the 

attachment of P. gingivalis to the tissues (Potempa 2000; Curtis 2005; Sheets 2008). 

Adhesins such as fimbriae, haemagglutinins, a putative invasin (haloacid dehalogenase 

family phosphoserine phosphatase) and a variety of toxic by-products (e.g. ammonia) 

are also included in the panel of the organism virulence factors (Yilmaz 2008). 

The major component of the outer membrane of P. gingivalis is LPS, an endotoxin and 

common characteristic of all Gram-negative bacteria. The long polysaccharide chains of 

LPS are able to stimulate the complement system and provoke the release of pro-

inflammatory molecules, thus initiating host immune responses (Siqueira 2007). 

Moreover, LPS plays a crucial role in maintenance of bacterial structural integrity and 

establishment of selective permeability barrier to noxious compounds or nutrient 

molecules (Shoji 2002; Nikaido 2003). Therefore, LPS is supposed to be essential for 

the survival of P. gingivalis within host cells (Jain 2010).  

Structurally, LPS comprises three domains: an O-antigen, a core oligosaccharide (OS) 

and lipid A. The O-antigen may be a long polysaccharide that comprises the outermost 

domain of the LPS molecule and forms the external surface of the bacterium. The 

structure of O-antigen is highly variable and immunogenic. Thus, O-serotyping is used 

to distinguish between sub-species of bacteria according to O-antigen composition 

(Sims 2001). The core OS contains a vast variety of glycoforms and is typically 

composed of two domains, the outer and inner core being directly attached to the O-

antigen and lipid A, respectively (Paramonov 2009). The inner-most component of 

LPS, the hydrophobic lipid A, is embedded in the bacterial outer membrane of Gram-

negative cell wall and serves as an anchor for LPS. It is suggested that P. gingivalis 
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lipid A may be responsible for the strong innate immune response at sites of infection 

(Wang 2002). Interestingly, P. gingivalis is able to synthesize a variety of lipid A 

structures, as result of its exposure to several environmental conditions. Thus, it is 

demonstrated that high concentrations of hemin, at sites of severe periodontal 

inflammation may provoke the production of antagonistic lipid A that is able to activate 

host cell receptors (Jain 2010). Hence, the heterogenous structure of lipid A could 

explain the binding of P. gingivalis LPS to several cognate TLR receptors and the 

activation of differential immune signalling pathways (Bostanci 2012).  

 

1.3.4 Target cell receptors of P. gingivalis LPS 

In general, cells recognize the presence of bacteria and bacterial components via so-

called pattern recognition receptors (PRRs). Specifically, PRRs sense typical patterns of 

microbial molecules, known as pathogen-associated molecular patterns (PAMPs) 

(Janeway 1989). Toll-like receptors (TLRs) are the first identified and best-

characterized group among the human PRRs. The family of TLRs contains to date 10 

members in humans (Staquet 2011). TLRs are type I transmembrane proteins and are 

able to recognize a wide range of PAMPs (Kawai 2011). Upon PAMP engagement, 

TLRs are able to trigger transcriptional or post-translational cellular responses (Vance 

2009). In fact, P. gingivalis LPS may induce the production pro-inflammatory cytokines 

such as tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1), IL-6, and IL-8 in host 

cells (Wang 2002; Zhou 2005; Hamedi 2009). Especially, LPS sensing via TLRs is 

considered to play a critical role in signal transduction at sites of periodontal 

inflammation (Wang 2002). 

Two members of the Toll-like receptor family, TLR2 and TLR4, have been identified 

as possible signaling receptors of P.gingivalis LPS (Darveau 2004). These receptors 

have been detected in gingival epithelium and connective tissue samples (Beklen 2008). 

Moreover, TLR2 and TLR4 are demonstrated on many cell types including immune 

cells, macrophages and dendritic cells (Schuman 1990; Wright 1990; Flo 2001; Kaisho 

2002). According to a large body of evidence, TLR4 is documented as a specific 

receptor for most bacterial LPS (Noreen 2012). Particularly, several in vitro and in vivo 

experimental studies have demonstrated P. gingivalis LPS as potent agonist of TLR4 

(Ogawa 2002; Sawada 2007; Kumada 2008; Zhang 2008). Further, TLR2 has been 
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identified as a predominant receptor for P. gingivalis LPS, even though it is mainly 

involved in the recognition of lipoproteins, lipoteichoic acid and peptidoglycans 

(Siqueira 2007). Interestingly, in vivo studies in TLR2 or TLR4 knock-out mice 

demonstrated the induction of bone loss after P. gingivalis treatment via TLR2, but not 

TLR4 (Hirschfeld 2001; Burns 2006). On the contrary, other experimental studies 

suggested the activation of both TLR2 and TLR4 which, nevertheless, can lead to 

activation of different signalling cellular cascades (Bainbridge 2001; Zhou 2005). These 

contradicting results could be explained by the ability of P. gingivalis to alter its lipid A 

structure. This LPS modification could modulate its binding affinity to TLRs resulting 

in opposing host innate immune responses and increased survival chance for the species 

(Bostanci 2012). 

 

1.4 Hypothesis statement 

The rapid advancements in the field of dental research over the last few years could 

deliver the promise of tissue regeneration through stem cells. The demand for novel 

therapies against inflammatory diseases, like periodontitis, has created the need for a 

better understanding of the behaviour of progenitor cells in sites of bacterial infection. 

Specially, P. gingivalis has been considered as protagonist in the initiation and 

development of inflammatory processes leading to periodontitis (Hamada 1994; Tobias 

1997). Particularly, P. gingivalis LPS is supposed to able to stimulate inflammatory 

cytokine production and bone resorption. Most studies on cellular effects of 

periodontopathic bacteria focused on gingival fibroblasts (Wang 2002; Tardif 2004; 

Herath 2011) and periodontal ligament cells (Seo 2012), which are mostly involved in 

the remodelling of the periodontium. Also osteoclasts, a key cell population involved in 

bacteria-induced bone destruction, have been in focus of research (Chen 2001; Scheres 

2011). Nevertheless, only few studies have been done so far investigating the influence 

of bacterial components on osteoblast progenitors (Loomer 1994, 1995; Kadono 1999). 

Further, Chang et al. investigated dental pulp stem cells treated with LPS and detected 

activation of NF-κB (Chang 2005), while Yamagishi et al. analyzed the effects of 

P.gingivalis LPS on dental pulp stem cell differentiation ability (Yamagishi 2011). Till 

now most studies on DFPCs have focused on cell characterization and tissue 

regeneration potential (Bai 2011; Jung 2011; Guo 2012; Yang 2012). Nevertheless, 

little is known about the impact of bacteria on DFPCs properties. 
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Here we hypothesized that DFPCs are able to sense and respond to P. gingivalis LPS. 

Further, DFPCs responses were speculated to be differential in comparison to other 

populations of multipotent cells. Aim of the study was to investigate the possible 

influence of LPS on cell proliferation, gene expression, wound healing capability and 

cytokine production of DFPCs. In this context, DFPCs were compared with early 

passages of bone marrow-derived stem cells (BMSCs), a well-studied class of adult 

stem cells. 

 

 

 

Figure 1.4 Experimental design of the study. 
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2. Materials and Methods 

2.1 Cell isolation and culture 

2.1.1 Isolation and culture of human DFPCs and BMSCs 

Human impacted third molars (n = 6) were surgically removed and collected from 

patients (aged 17 to 23 years) at the Rostock university school of dental medicine. 

Patient inclusion and exclusion criteria are shown in Table 2.1.1. Patients must have 

met all the criteria to be eligible for participation in the study. Written informed consent 

was obtained from all patients or their legally authorized representatives, following 

approved guidelines set by the commission of ethics of Rostock university school of 

medicine (Reg.Nr: A 2010 87). 

       Inclusion criteria 

- patients had to be between fifteen (15) and twenty five (25) years old 

- patients required surgical extraction of impacted third molars because of medical reasons 

independent of this research project 

       Exclusion criteria 

- patients with wisdom teeth under periodontal or endodontic treatment 

- patients with developmental dental anomalies (e.g. tooth fusion or genimation) 

- patients having any systemic diseases (e.g. diabetes mellitus) 

 

Table 2.1.1 Patient inclusion and exclusion criteria. 

Teeth extractions were conducted under local anesthesia by a team of two cooperating 

oral surgeons. After elevation of a full-thickness flap, maxillar/ mandibular bone over 

the impacted teeth was excised by round diamond burs (head dia 2.3 to 2.9 mm) under 

irrigation with sterile saline, to prevent tissue damage. During sample collection, 

operators avoided contact with oral mucosa thus minimizing bacterial contamination 

risks. The freshly extracted tissues were immediately placed into sterile plastic tubes 

containing ice-cold basic culture medium (aMEM) supplemented with 1% of penicillin 

streptomycin and transferred to the laboratory within 30 minutes in a sealed plastic box. 

On arrival at the laboratory the specimens were placed in 60 mm tissue culture dishes 

for further manipulations under aseptic conditions provided by a laminar flow cabinet. 
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Dental follicles were separated from teeth by the use of sterile curettes and a pair of 

fine-tipped forceps. After extensive washes with PBS, follicle tissues were minced into 

0.5 to 2 mm pieces with a single-use scalpel and digested in culture medium 

supplemented with 0.1 U/ mL collagenase and 0.8 U/ mL dispase for 1 hour at 37°C. 

Explants were then transferred to T-25 cell culture flasks and cultivated in a 

mesenchymal stem cell growth medium (MSCGM) at 37°C in a 5% CO2 humidified 

atmosphere. Single cells attached to the plastic surface within 24 hours and non-

adherent cells were removed by gently washing the plates three times with PBS. 

Finally, fresh culture medium was added and cells were left for incubation (Fig. 2.1.1). 

 

 

 

Figure 2.1.1 Schematic overview of DFPCs isolation procedure. 

 

Human mesenchymal stem cells processed from bone marrow aspirates of human adult 

volunteers (n = 8) were generously provided by the Reference and Translation Center 

for Cardiac Stem Cell Therapy (RTC) at Rostock University. Informed consent was 

obtained from all patients according to the Declaration of Helsinki. BMSCs were 

isolated according to the standard isolation protocol of the RTC laboratory (Gaebel 

2011). After isolation, BMSCs were cultivated in MSCGM under standard culture 

conditions and served as an experimental control group. 

 

Material description Type Company 

articain solution Ultracain 2% DS Sanofi-Aventis 

round diamond burs  2.3 to 2.9 mm dia Komet Dental 

scalpel blade  Nr 10, 15 Henry Schein Dental 

scalpel handle 12.5 cm length Henry Schein Dental 

root elevator 2mm round-tip Henry Schein Dental 

tissue 

extraction 
enzymatic 

digestion 
DFPCs 

isolation 
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Material description Type Company 

periosteal elevator 6.5 mm round-tip Henry Schein Dental 

gracey curette 1/2 Hu-Friedy 

collagenase / dispase 0.1 U/mL / 0.8 U/mL Roche 

cell culture flasks  Cellstar, T-25 Greiner Bio-One 

petri dishes Cellstar, 60 mm dia Greiner Bio-One 

penicillin 100 U/ mL PAA 

streptomycin 100 μg/ mL PAA 

αMEM with L-Glutamine  PAN-Biotech 

MSCGM culture medium Lonza 

PBS with Ca and Mg PAN-Biotech 

 

 

2.1.2 Cell culture of human DFPCs and BMSCs 

Cell culture was performed under sterile conditions in a 5% CO2 incubator at 37 °C. All 

cell culture manipulations were done under a laminar flow hood. Work surfaces were 

wiped down with 70% ethanol before and after each use. Inside the hood all work was 

done with sterile pipette tips. All supplies and reagents that came into contact with the 

cell cultures were sterile. Solutions were divided into small aliquot tubes whenever 

possible in order to reduce the possibility of microbial contamination. Cultures were 

inspected every 2 to 3 days under a phase contrast microscope (magnification 400x) for 

signs of contamination. Any contaminated cell cultures were immediately discarded. 

Cells seeded in culture flasks grew in mesenchymal stem cell growth medium 

supplemented with 1% of penicillin and streptavidin. Culture medium was replaced 

every 2 to 3 days until cells reached 70 - 80% optical confluence. In order to produce 

large number of cells for the subsequent experiments, cell passaging was required. 

Thus, culture media were removed from flasks and cells were washed twice with PBS. 

Pre-warmed 0.05%/ 0.02% (w/ v) trypsin/ EDTA solution was added and cells were 

incubated for 7 minutes to detach. After incubation, a 9fold volume of pre-warmed 

culture medium was added to stop trypsin reaction and cells were carefully resuspended 

to a single cell suspension. Then cell suspension was transferred to a 15 mL conical 
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tube and centrifuged at 300 g for 10 minutes. After centrifugation, supernatants were 

removed and cells were aspirated and resuspended in fresh culture medium. Cell 

number was determined with a hemocytometer. For that 10 µL of cell suspension was 

stained with trypan blue (0.4% w/ v in PBS) and introduced into the sink of the 

chamber to be counted under the microscope (100x magnification). Cell number was 

calculated according to the following formula: C = N x D x 10 4, where C stands for the 

number of viable cells/ mL, N is the average number of viable cells counted in 10 

subgrids (1.0 mm³), D is the dilution factor, and 10 4 is the hemocytometer correction 

factor. After counting cells were placed into new flasks at a density of 200 cells/ cm². 

Cells from passages 1 to 3 were used for the subsequent in vitro experiments. 

 

Material description Type Company 

laminar flow hood Herasafe Thermo Scientific 

centrifuge Heraeus Multifuge 1 SR Thermo Scientific 

hemocytometer T728.1 Carl Roth 

Trypan bleu solution, 0.4% Sigma-Aldrich 

mikroscope DMLB Leica 

cell culture flasks  Cellstar, T-75/ -125 flasks  Greiner Bio-One 

cell culture tubes  polystyrene, 15/ 50 mL Greiner Bio-One 

aliquot tubes safe - lock, 0.5/ 1.5/ 2 mL Eppendorf 

trypsin/ EDTA 0.05% / 0.02% (w/ v) PAA 

carbon dioxide incubator APT.Line CB Binder 

mikroscope Axiovert 40 CFL Carl Zeiss 

water bath W6 Medingen 

gloves KC500 purple nitrile Kimberly-Clark 

pipettes  Research, 0.5 - 1000 μL Eppendorf  

pipettor Easypet Eppendorf 

pipette tips Cellstar, 10 μL – 25 mL Greiner Bio-One 

ethanol solution, 70 % University Central Pharmacy 
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2.1.3 Cryopreservation of cells 

Cryopreservation was used for creating cell stocks ready for use in the subsequent 

experiments. Prior to cryopreservation cells were trypsinized and cell suspensions were 

processed for cell counting. After determining viable cell density, cells were transferred 

to 15 mL tubes and were pelleted by centrifugation at 300 g for 7 minutes at 24°C. Then 

cell pellets were resuspended in freezing solution consisting of 10% DMSO and 

transferred to 2 mL labeled cryogenic vials at a concentration of 10
6
 cells per mL. The 

aspiration of cells in DMSO supplemented solution before freezing is critical for the 

prevention of cell damages due to ice crystal formation. According to a slow rate 

cooling protocol cryovials were placed upright for 4 hours in a -20°C freezer before 

being transferred to a -80°C freezer. After at least 24 hours in the -80°C freezer, cells 

were finally transferred to liquid nitrogen for long-term storage. 

To thaw frozen cell suspensions, cryovials containing cells were rapidly thawed by 

submersion in a 37°C water bath for 1 - 2 minutes with constant agitation. Rapid 

thawing was critical because it prevented the recrystallization of ice crystals as the 

temperature rose, thus enhancing cell viability after cryopreservation (Seki 2008). 

Thawed cell solutions were transferred to sterile 15 mL tubes containing 9 mL of pre-

warmed culture medium, pelleted at 300 g for 10 minutes at 37°C and resuspended in 5 

mL of fresh culture medium.Then cell suspensions were transferred to T-75 cell culture 

flasks containing 10 mL of medium and were cultured under standard culture 

conditions. 

 

Material description Type Company 

cryogenic tubes Nunc CryoTubes Sigma-Aldrich 

cell freezing medium Gibco’s Recovery Invitrogen 

laboratory freezer set at –20°C Kirsch 

laboratory freezer set at –80°C  Kirsch 

water bath W6 Medingen 
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2.2 In vitro cell characterization  

After isolation by plastic adherence, DFPCs and BMSCs were characterized in vitro 

based on morphology, clonogenic potency, proliferative activity, multilineage 

differentiation capacity and expression of a specific set of cell surface marker proteins 

(Fig. 2.2).  

 

 

Figure 2.2 Overview of in vitro cell characterization. 

 

2.2.1 Colony forming assay 

Human DFPCs and BMSCs at passage 1 were cultured to sub-confluence. After 

counting, single-cell suspensions were seeded at low densities (30 cells per cm²) into 6-

well plates. Cells were cultured in MSCGM to form colonies. Culture medium was 

replaced every 3 to 4 days and cells were monitored microscopically for overgrowth. 

After 12 days of incubation, culture medium was removed; cells were fixed with 4% 

PFA for 10 minutes at room temperature and subsequently washed with distilled water. 

The total number of colonies was determined microscopically, by scoring aggregates of 

more than 50 cells. Percentages of colony-forming efficiency (CFE) were calculated as 

follows: 

CFE (%) = (no. of colonies formed/ no. of cells seeded) x 100% 

 

Material description Type Company 

cell culture flasks  Cellstar, T-75/ -125 flasks  Greiner Bio-One 

MSCGM Culture medium Lonza 

PFA powder Sigma-Aldrich 

mikroscope Axiovert 40 CFL Carl Zeiss 

cell culture cell isolation 

cells 

Plastic adherence 

Morphology 

Clonogenic potency 

Proliferative activity 

Differentiation capacity 

Surface marker expression 

 

 

 

 

 

 

Dental follicle 

Bone marrow 
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2.2.2 3-2, 5-Diphenyltetrazolium bromide (MTT) dye reduction assay 

Cell metabolic activity was determined by MTT assays. Single-cells were seeded in 96-

well plates at a density of 1 x 10
3
 cells per well in MSCGM. Wells containing only 

culture medium served as blank controls for non-specific dye reduction. For 

measurement, 200 µL MTT solution was added to each well to a final concentration of 

0.5 mg/ mL. After 4 hours of incubation at 37°C, culture medium was removed and 

purple formazan crystals were dissolved in 100 µL DMSO. Absorbance was measured 

at 550 nm (test wavelength) and 655 nm (reference wavelength) using a microplate 

reader. Raw data were expressed as percentages of viability according to the following 

formula: 

Cell viability (%) = (OD550 – OD655, sample/ OD550 – OD655, control) x 100% 

 

Material description Type Company 

multiwell cell culture plates 96 wells Greiner Bio-One 

MSCGM culture medium Lonza 

microplate reader Model 680 Bio-Rad Lab 

MTT powder Sigma-Aldrich 

DMSO solution Carl Roth 

 

2.2.3 In vitro functional differentiation assay 

The ability of human DFPCs and BMSCs to differentiate into multiple mesenchymal 

lineages was determined using a human mesenchymal stem cell functional 

identification kit according to the instructions of the manufacturer. Observation of cell 

morphology changes and cytological staining were used to verify cell differentiation 

capacity toward three mesodermal lineages.  

According to the adipogenesis protocol sterile coverslips were inserted into wells of a 

24-well plate. Then 3.7 x 10⁴ cells were seeded in each well and were cultured in 

αMEM (0.5 mL/ well). When 100% confluency was reached, adipogenic differentiation 

was induced by culturing cells for 14 days in αMEM with 10% HSA, 1% penicillin-

streptomycin, and adipogenic supplement containing hydrocortisone, 
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isobutylmethylxanthine, and indomethacin in 95% ethanol. Adipogenic differentiation 

medium was freshly prepared and replaced (0.5 mL/ well) every 3 - 4 days. The 

appearance of lipid vacuoles could be monitored by microscopic examination 7 - 9 days 

after adipogenic induction. On 14th day adipocytes were fixed with 4% PFA (0.5 mL/ 

well) for 10 minutes at room temperature and subsequently washed twice with PBS (1 

mL/ well). 

Oil droplets in the cultures were identified by staining cells with Oil Red O. For lipid 

staining, Oil red O was diluted in 60% isopropanol for 15 minutes at 37°C and were 

filtered through a 0.2 μm syringe driven filter. Cell samples were incubated in dye 

solution (0.5 mL/ well) for 45 minutes at room temperature and then rinsed twice with 1 

mL PBS to remove redundant Oil red O, before nuclear staining with DAPI (5 minutes, 

room temperature). Then coverslips were inverted onto a microscope slide containing 

10 µL of mounting media. Excess mounting media was removed with fiber-free tissue 

wipers, without disturbing the coverslip. The edges of each coverslip were sealed with 

regular transparent nail polish and were left to dry for 10 minutes. Cells were then ready 

for microscopic viewing. Images were obtained using a light microscope with a video 

camera attachment. 

For osteogenic differentiation, 7.4 x 10³ cells were seeded on coverslips inserted into 

wells of a 24-well plate. Cells were cultured in αMEM (0.5 mL/ well) until 50 - 70% 

confluence was reached. Then, osteogenic differentiation was induced by culturing cells 

for 14 days in αMEM  with 10% HSA, 1% penicillin-streptomycin, and osteogenic 

supplement containing dexamethasone, ascorbate-phosphate, and β-glycerolphosphate. 

Osteogenic differentiation medium was freshly prepared and replaced (0.5 mL/ well) 

every 3 - 4 days. On 14th day, osteocytes were fixed with 4% PFA (0.5 mL/ well) for 

10 minutes at room temperature and were subsequently washed twice with PBS (1 mL/ 

well). 

Calcium containing precipitates were visualized after staining with 2% aqueous 

Alizarin red S adjusted to a pH of 4.2 with ammonium hydroxide. Cell samples were 

incubated in dye solution (0.5 mL/ well) for 15 minutes at room temperature in the dark 

and then rinsed twice with 1 mL PBS to remove redundant Alizarin red S, before 

nuclear staining with DAPI (5 minutes, room temperature). Then coverslips were 

mounted on microscope slides as described above, and were examined by microscopy. 
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For chondrogenic differentiation, 25 x 10⁴ cells were transferred in a 15 mL conical 

tube for centrifugation at 200 g for 5 minutes at room temperature. Then cells were 

resuspended in 1 mL DMEM/ F-12 and centrifugated at 200 g for 5 minutes at room 

temperature. After discarding the medium, cells were resuspended in 0.5 mL of 

chondrogenic differentiation medium consisting of DMEM/ F-12 basal medium with 

1% penicillin-streptomycin, 1% ITS supplement and chondrogenic supplement 

containing dexamethasone, ascorbate-phosphate, proline, pyruvate, and TGF-β3 and 

centifugated once again at 200 g for 5 minutes at room temperature. After loosing the 

cap of the tube to allow gas exchange, pelleted cells were cultured for 21 days at 37°C 

in a 5% CO2 humidified atmosphere protected from light. Chondrogenic differentiation 

medium was freshly prepared and replaced (0.5 mL/ tube) every 2 - 3 days. After 21 

days, chondrocyte pellets were fixed with 4% PFA for 20 minutes at room temperature 

and were subsequently washed with 1 mL of PBS for 5 minutes. For frozen sectioning, 

cell pellets were cryo-embedded in tissue freezing medium and stored at -80°C. Cell 

pellets were cut by a cryostat-microtome and frozen sections (5 µm thick) were 

mounted onto microscope slides and placed in sealed slide boxes at -20°C until needed. 

Sections were stained with 0.1% aqueous Safranin O (0.5 mL/ well) to visualize 

sulfated proteoglycans. Cell samples were incubated in dye solution (0.5 mL/ well) for 

5 minutes at room temperature in the dark and then rinsed twice with 1 mL PBS to 

remove redundant Safranin O. Coverslips were then mounted on microscope slides as 

described above, and examined by microscopy for chondrogenic differentiation. 

 

Material description Type Company 

human mesenchymal stem cell functional identification kit  R & D Systems 

multiwell cell culture plates 24 wells  Greiner Bio-One 

coverslips 13mm dia Menzel 

cell culture tubes  polystyrene, 15 mL Greiner Bio-One 

αMEM with L-Glutamine  PAN-Biotech 

DMEM/ F-12 with L-Glutamiine PAN-Biotech 

HSA solution, 20%, low salt CSL Behring 

Oil Red O powder  Sigma-Aldrich 
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Material description Type Company 

Alizarin red S powder  Sigma-Aldrich 

Safranin O powder  Sigma-Aldrich 

ammonium hydroxide solution  Avantor Performance Materials 

isopropanol solution Avantor Performance Materials 

fine dosage syringe Omnifix-F B. Braun 

syringe driven filters Millex PVDF, 0.2 μm Millipore 

needles  23 Gauge BD Microlance 

Ph-meter MP220 Mettler Toledo 

mounting medium Glycergel, aqueous Dako 

tissue freezing medium Tissue-Tek Sakura Finetek 

cryostat-microtome CM 1900 Leica 

microscope slides plain Marienfeld-Superior 

tissue wipers Kimtech science Kimberly-Clark 

microscope SP2 Confocal Microscope Leica 

digital camera DC 200 Leica 

 

2.2.4 Cell staining for immunofluorescence 

The differentiation capacity toward different cell lineages was verified further by 

immunostaining for specific markers that are fatty acid binding protein (FABP-4) for 

adipocytes, osteocalcin for osteocytes and aggrecan for chondrocytes. 

Antibody Description Company  

Primary antibody goat anti-mouse FABP-4 

mouse anti-human osteocalcin 

goat anti-human aggrecan  

R& D Systems 

R & D Systems 

R & D Systems 

Secondary antibody anti-mouse AlexaFluor 488 

anti-goat AlexaFluor 488  

Invitrogen 

Invitrogen 

Nuclear stain DAPI Invitrogen 

 

Table 2.2.4 Antibodies for immunofluorescence microscopy. 
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Prior staining, cells were fixed with 4% PFA (0.5 mL/ well) for 10 minutes at room 

temperature and were subsequently washed twice with PBS (1 mL/ well). Then cells 

were washed three times with 0.5 mL of 1% HSA in PBS for 5 minutes. Prior antibody 

incubation cells were permeabilized and blocked cells with 0.5 mL of 0.3% TritonX-

100, 1% HSA, 10% horse serum in PBS at room temperature for 45 minutes. After 

blocking, cells were incubated with 300 μL/ well of antibody working solution 

overnight at 5°C. Primary antibodies were diluted in PBS containing 1% HSA and 10% 

horse serum to a final concentration of 10 μg/ mL. Negative controls were performed 

using PBS containing 1% HSA and 10% horse serum with no primary antibody added. 

Followingly, cells were washed three times with 0.5 mL of PBS containing 1% HSA for 

5 minutes and incubated with secondary antibodies (300 μL/ well) diluted in PBS with 

1% HSA at in the dark for 60 minutes at room temperature. For background staining 

control samples were incubated with secondary antibody only. After incubation cells 

were washed with 0.5 mL of PBS containing 1% HSA for 5 minutes to remove 

redundant antibodies. For nuclear staining cells were stained with DAPI (5 minutes, 

room temperature). Then coverslips were mounted on microscope slides, as described 

above, and were examined by a microscope equipped with fluorescence optics. The 

primary and secondary antibodies used in the study are listed in Table 2.2.4. 

 

Material description Type Company 

PFA powder Sigma-Aldrich 

HSA solution, 20%, low salt CSL Behring 

donor horse serum heat-inactivated, 10% PAA 

TritonX-100   solution, 0.3% Carl Roth 

microscope DMLB Leica 

digital camera DC 200 Leica 

 

2.2.5 Fluorescence-activated cell sorter analysis 

DFPCs and BMSCs were analyzed for surface marker expression by fluorescence-

activated cell sorter (FACS) analysis. Cells were detached from culture flasks, counted, 

suspended in ice-cold buffer (1x PBS supplemented with 0.5%BSA and 2mM EDTA) 

and transferred in 1.5 mL aliquot tubes (50.000 cells/ tube). Single-cell suspensions 
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were incubated for 30 minutes at 4°C protected from light with saturating levels of 

monoclonal anti-human antibodies (Table 2.2.5). For indirect marker detection, cells 

labelled with CD90-biotin were additionally incubated with V450-Streptavidin 

secondary antibody for 20 minutes at 4°C in the dark. FcR Blocking Reagent was 

employed to reduce unspecific antibody binding. Background fluorescence was 

excluded using unlabeled cells and cells incubated with isotype-matched antibodies 

(Table 2.2.5). 

Antibody Conjugate Isotype Company  

CD14 V450  mouse IgG2b   BD Biosciences 

CD29 APC mouse IgG1   BD Biosciences 

CD44  PerCP-Cy5.5 mouse IgG2b   BD Biosciences 

CD45  V500 mouse IgG1   BD Biosciences 

CD73 PE mouse IgG1   BD Biosciences 

CD90-biotin Streptavidin-V450 mouse IgG1   BD Biosciences 

CD105  Alexa Fluor 488 mouse IgG1  AbD Serotec 

TLR2 FITC mouse IgG2a   eBioscience 

TLR4 Alexa Fluor 488 mouse IgG2a    eBioscience 

 

Table 2.2.5 Antibodies for analytical fluorescence-activated cell sorting. 

 

After washing cells were transferred into FACS tubes and were analysed using a flow 

cytometer. Dead cells were excluded using a dead cell staining kit. After acquisition of 

light scattering and fluorescence data for each sample, the resulting information could 

be analyzed utilizing computer specific software that was associated with the flow 

cytometer. A minimum of 10.000 events were recorded per sample. 

Material description Type Company 

BSA lyophilized powder Sigma-Aldrich 

EDTA solution Sigma-Aldrich 

FcR Blocking Reagent  human Miltenyi Biotec 
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Material description Type Company 

LIVE/DEAD Fixable Dead Cell Stain Kit Invitrogen 

FACS tubes 5 mL polystyrene, round-bottom BD Biosciences 

Vortex mixer  Vortex Genie 2 Scientific Industries 

pipetboy acu  IBS Integra Biosciences 

flow cytometer BD FACS LSR II  BD Biosciences 

data analysis software  FACSDiva 6 BD Biosciences 

 

 

2.3 LPS treatment 

After cell characterization both DFPCs and BMSCs were assayed for their ability to 

sense and respond to P.gingivalis LPS. Concretely, cells were treated with several doses 

of LPS in several time periods. Cells responses were analyzed in terms of cell viability, 

TLR2 and TLR4 expression, in vitro wound healing capacity and IL-6 secretion. 

 

 

 

Figure 2.3 Overview of in vitro cell characterization after LPS treatment. 

 

2.3.1 LPS treatment and cytotoxicity assay 

Ultrapure LPS from P.gingivalis was obtained commercially and were used at final 

concentrations of 0, 1, 10 and 50 μg/ mL in MSCGM. To determine the cytotoxic 

effects of LPS, MTT assays were performed as described above (Section 2.2.2). 

Material description Type Company 

P.gingivalis LPS ultrapure InvivoGen 

MSCGM culture medium Lonza 

LPS treatment 

P.gingivalis LPS 

Cell viability 

TLR2 and TLR4 expression 

In vitro wound healing ability 

IL-6 secretion 
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2.3.2 RNA extraction and complementary DNA synthesis 

Total RNA was extracted from cells using an RNA purification kit at room temperature 

according to the manufacturer’s instructions. Samples of 1 x 10
7

 cells were lysed and 

homogenized in the presence of a highly denaturing guanidine-thiocyanate-containing 

buffer. This buffer leads to immediate inactivation of RNases, ensuring purification of 

intact RNA. Then ethanol was added to provide appropriate binding conditions and the 

sample was applied to a spin column. Total RNA were bound to column membrane and 

contaminants were efficiently washed away. RNA was then eluted in 20 - 30 μL RNase-

free water. All bind, wash, and elution steps were performed by centrifugation at 22 – 

25°C in a standard microcentrifuge set at 300 g. Genomic DNA contamination was 

eliminated using an on-column DNA digestion kit. The total RNA concentration and 

purity was determined by a spectrophotometer. Complementary DNA was synthesized 

from 2 µg of total RNA using oligo(dT)15 primer, dNTPs (10 mM), rRNAsin 

ribonuclease inhibitor, DTT (0.1 M), 5 x first-strand buffer (250 mM Tris-HCl, 375 

mM KCl, 15 mM MgCl2) and 200 U/ μL SuperScript III Reverse Transcriptase in a 20 

μL reaction volume. Annealing was performed by a thermocycler for 5 minutes at 65°C 

with rapid cooling at 4°C. Then reverse transcription was carried out for 60 minutes at 

55°C, followed by 15 minutes at 70°C, with a final cool down to 4°C. 

 

Material description Type Company 

oligo(dT)15 primer solution Promega 

ribonuclease inhibitor rRNAsin Promega 

10mM dNTPs solution Invitrogen 

reverse Transcriptase SuperScript III  Invitrogen 

RNA purification kit RNeasy mini kit Qiagen 

on-column DNA digestion kit RNase-free DNase set Qiagen 

centrifuge Heraeus Primo R   Thermo Scientific 

spectrophotometer NanoDrop ND-1000 Thermo Scientific 

thermocycler  MJ Mini  Bio-Rad Lab 

vortex mixer  Galaxy mini VWR 
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2.3.3 Quantitative real-time PCR  

Quantitative real-time PCR (qRT-PCR) was performed with a real-time PCR system 

using TaqMan Gene Expression Assays according to the instructions of the 

manufacturer. Reaction mixtures included specific primers for TLR2 and TLR4. Human 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was used for normalization of 

each sample (housekeeping gene). Relative gene expression of TLRs was determined 

based on the threshold cycle (CT) values. Only CT values less than 35.5 were included. 

Results were normalized according to the formula: ∆CT = CT target gene - CT GAPDH. ∆CT 

values of samples were averaged and relative gene expression of LPS - treated cells(s) 

and calibrator(c) sample (i.e. untreated cells) were calculated following the delta/delta 

calculation method (2־ 
(∆∆Ct (s) - ∆∆Ct (c)

). Relative gene expression of the calibrator sample 

is always one. Standart error (SE) of normalized target gene expression relative to 

GAPDH was calculated from the initial SEs of target gene and GAPDH. Each sample 

was tested in quadruplicate. Calculations were performed with spreadsheet software. 

 

Material description Type Company 

Real-Time PCR System  StepOnePlus Applied Biosystems 

TaqMan Gene Expression Assay TLR2, Hs01014511_m1  Applied Biosystems 

TaqMan Gene Expression Assay TLR4, Hs00152939_m1  Applied Biosystems 

TaqMan Gene Expression Assay GAPDH, Hs99999905_m1 Applied Biosystems 

TaqMan Universal Master Mix No AmpErase UNG Applied Biosystems 

spreadsheet software  Microsoft Excel  Microsoft Windows 

 

2.3.4 TLR expression by FACS 

To determine the expression of TLR2 and TLR4 on DFPCs and BMSCs, cells were 

treated with 50 μg/ mL P. gingivalis LPS for 24 hours and FACS analysis were 

performed as described above (Section 2.2.5). Antibodies used in the assay are shown 

in Table 2.3.4.  
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Antibody Conjugate Isotype Company  

TLR2 FITC mouse IgG2a   eBioscience 

TLR4 Alexa Fluor 488 mouse IgG2a   eBioscience 

 

Table 2.3.4 Antibodies for analytical fluorescence-activated cell sorting. 

 

2.3.5 In vitro wound healing assay 

An established in vitro wound healing model was used for the study of cell wound 

healing rates. DFPCs and BMSCs were cultured in 24-well plates until they reached 

90% confluence. Afterwards, a disposable plastic pipette tip (200 μL) was used to 

prepare a scratch across the monolayer of cells. Intact cells were gently washed twice 

with PBS to remove debris created by wounding and culture medium was added for the 

remainder of incubation. The extent of repopulation of the wound area was assessed for 

up to 24 hours by live imaging, processed by ELYRA PS.1 LSM-780. The latter is a 

confocal video-microscopy station, equipped with a motorized stage incubator for 

automated sample positioning and accurate control of air temperature and carbon 

dioxide concentrations, set at 37°C and 5% CO2, respectively. The use of a controlled 

large incubator, enclosing the entire stage and objectives, allowed the stable long-term 

video imaging of live cells. The sequential images were captured by a CCD video 

camera every 3 minutes, thus allowing the real-time observation of the in vitro healing 

process. During the assay, cells from the edges of the wounded area migrated toward 

the wound. The average wound dimensions were measured using graphic editing 

software. In order to determine the migratory activity of LPS-treated cells, rates of 

wound healing were calculated at several time points; normalized to untreated controls 

and finally expressed as percentages of cell migratory activity. 

Material description Type Company 

microscope  ELYRA PS.1 LSM-780 Carl Zeiss 

CCD video camera AxioCam MR  Carl Zeiss 

graphics editing software ZEN2011 software Carl Zeiss 

graphics editing software AxioVision Rel 4.5 SP1 Carl Zeiss 

computer Extensa 3002 WLMi   Acer 
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2.3.6 Detection of IL-6 by enzyme linked immunosorbent assay (ELISA) 

For quantitative detection of human IL-6 in cell cultures, supernatants collected from 

LPS-treated as well as untreated DFPC and BMSC cultures were analyzed by a 

commercially available sandwich ELISA kit. According to the instructions of the 

manufacturer, 96-well immunoplates were coated overnight at 4°C with 100 μL of 

coating buffer containing anti-human IL-6 capture antibody (diluted 1:100 in PBS). 

After removing the coating buffer plates were blocked with 300 μL of blocking solution 

at room temperature for 1 hour. Then blocking solution (containing PBS and 4% HSA) 

was poured off and 100 μL of culture supernatants was placed in wells at room 

temperature for 1 hour. After washing 5 times with wash solution (containing PBS and 

0.1% Tween20), 100 μL of biotinylated detector antibody (anti-human IL-6, diluted 

1:100 in reagent diluent) was placed in each well at room temperature for 1 hour. Serial 

dilutions of human recombinant IL-6 standard, whose concentrations spanned an 

effective assay range (8 - 1000 pg/ mL), were included in each well plate to obtain a 

standard curve. Wells containing culture medium only served as blank controls for 

nonspecific antibody binding. After washing, 100 μL of streptavidin diluted 1:8000 in 

reagent diluent was placed in each well for 30 minutes and incubated in the dark at 

room temperature. After washing, 100 μL of TMB substrate was added into each well, 

followed by incubation at room temperature for 20 minutes. The development of the 

colour reaction was controlled and as it was sufficiently proceeded 50 μL stop solution 

(2N hydrochloric acid) was added. Absorbance values were measured at 450 nm by a 

microplate reader. The quantity of IL-6 was calculated as the change in absorbance 

values which were proportional to the amount of protein captured in wells. For the 

standard curve, the absorbance values for different known concentrations of IL-6 

standard were plotted and a best-fit line drawn through the points. The unknown 

concentrations of samples tested at the same time could be determined by reference to 

the standard curve. To estimate the relative amount of IL-6 assayed culture supernatants 

the absorbance values of the samples were compared to the absorbance values of 

standard IL-6. 
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Material description Type Company 

ELISA kit human interleukin-6 ImmunoTools 

Multiwell cell culture plates Nunc Maxisorp, 96 wells  Thermo Scientific 

Tween20 viscous liquid Sigma-Aldrich 

Streptavidin-HRP solution, 1.25 mg/ mL Invitrogen 

TMB substrate/ stop solution solution Sigma-Aldrich 

 

2.4 Statistical analysis 

The experiments were performed in at least three independent repeats for each cell 

population. All results are presented as means ± standard error (SE). Statistical analyses 

were performed utilizing the SigmaStat 3.5 software package. Differences were 

considered statistically significant at p < 0.05. 

 

Material description Type Company 

statistical software SigmaStat 3.5 Systat Software 

computer VGN-NS21M Sony 
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3. Results 

3.1 Cell characterization 

3.1.1 Isolation and culture of DFPCs 

In the present study, human DFPCs were obtained from freshly extracted dental follicle 

tissues (n = 6). Cells were isolated by their ability to adhere to a plastic substratum. 

Non-adherent cells were discarded 2 - 3 days after isolation. Only a low number (n = 3 -

5) of attached single cells were able to grow and form primary cultures. DFPCs were 

characterized by a flattened, spindle-shaped, fibroblast-like morphology with multiple 

processes (Fig 3.1.1). DFPCs were cultivated in stem cell growth medium under 

standard culture conditions and reached 80% confluency in 3 weeks. Parallely, human 

BMSCs, isolated from bone marrow aspirates by plastic adherence, showed similar 

morphological features and were cultured under the same conditions as DFPCs. In the 

subsequent experiments DFPCs properties were analyzed and compared to BMSCs, a 

population of non-dental origin multipotent cells. 

 

  
 

Figure 3.1.1 Microscope images showing typical (A) DFPCs and (B) BMSCs morphology, 100x. 

 

3.1.2 Clonogenic and proliferative properties of DFPCs 

First passage DFPCs and BMSCs were evaluated for their ability to form colonies. 

Single-cell suspensions of both cell populations were seeded at low densities. After 12 

days in culture the total number of colonies was determined microscopically. The 

colony forming efficacy (CFE) of cells derived from dental follicle tissues was 20.4 ± 

2.8%, while the incidence of BMSCs CFE (5.3 ± 1.5%) was significantly lower ( p < 

0.05) (Fig. 3.1.2a). 

A. B. 
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Figure 3.1.2a Representative light microscope images of a DFPCs colony after (A) 1 day, (B) 4 days 

and (C) 7 days of cultivation, 100x magnification. (D) Colony forming efficiency of 

DFPCs and BMSCs; DFPCs n = 5, BMSCs n = 4, values represent means ± SE, *p < 

0.05 (Student’s t-test). 

 

Cell proliferation of both DFPCs and BMSCs was assessed by continuous 4-day MTT 

assays. Results were expressed as percentages of cell viability and corresponding 

growth curves were plotted. Statistical analysis revealed no significant differences 

between the proliferation rates of both cell populations (Fig. 3.1.2b).  

 

 

Figure 3.1.2b Cell proliferation rates of DFPCs and BMSCs assessed by MTT dye reduction assay; 

DFPCs n = 5, BMSCs n = 4, values represent means ± SE. 
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3.1.3 Immunophenotypic characterization of DFPCs 

In order to determine the phenotypic profile of DFPCs, fluorescence-activated cell 

sorting (FACS) was performed. A typical panel of stem cell markers was used to 

identify surface antigens of cultured DFPCs. According to results DFPCs exhibited a 

strongly positive expression of a variety of surface markers (CD29, CD44, CD73, 

CD90 and CD105). DFPCs failed to react with hematopoietic markers CD14 (monocyte 

and granulocyte marker) and CD45 (common leukocyte antigen). Analysis of surface 

epitopes by FACS is shown in Figure 3.1.3. The immunophenotypic analysis of BMSCs 

revealed similar results (data not shown) (Mark 2013). 

 

 

 

CD14 CD29 CD44 CD45 CD73 CD90 CD105 

0 ± 0% 99.8 ± 0.02% 99.7 ± 0.08% 0 ± 0.02% 98.7 ± 0.5% 82.4 ± 1.6% 82.9 ± 6.2% 

 

 

Figure 3.1.3 (A) Immunophenotyping of human DFPCs by flow cytometry after staining for specific 

CD surface markers. DFPCs were positive for typical stem cell markers CD29, CD44, 

CD73, CD90 and CD105. No expression of haematopoietic markers CD14 and CD45 

was detected. Bright areas indicate CD marker isotope controls. (B) Surface marker 

expression values are presented in percentages; n = 3, values represent means ± SE. 

A. 

B. 

CD14 CD29 CD44 CD45 

CD73 CD90 CD105  

Isotope control 

 

Marker expression 
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3.1.4 Differentiation potential of DFPCs  

The multipotency of DFPCs was verified by in vitro functional differentiation assays. 

DFPCs were cultured in various induction media and their ability to differentiate 

towards multiple lineages was evaluated. Adipogenic induction was apparent by the 

accumulation of lipid-rich vacuoles within the cells, when cells were placed in 

adipogenic medium for 2 weeks. Differentiation became evident after 7 - 9 days after 

induction and most adipocytes were observed near the well center. Lipid droplet 

formation in adipocytes was verified by Oil Red O staining (Fig. 3.1.4a) and 

immunostaining (Fig. 3.1.4d). When placed in osteogenic differentiation medium for 2 

weeks, cells formed mineralization nodules, as revealed by Alizarin red staining (Fig. 

3.1.4b) and immunostaining (Fig. 3.1.4e). The calcium deposits were scattered 

throughout the cell moonolayer as single mineralized clusters.Finally, culturing cells 

into chondrogenesis induction medium for 3 weeks resulted in the development of 

chondrocyte pellets. Safranin O staining (Fig. 3.1.4c) revealed a homogeneous 

distribution of sulfated proteoglycans within the cell pellets matrix and was confirmed 

by positive immunostaining (Fig. 3.1.4f). Immunostaining negative controls, applied in 

the absence of primary antibody, did not stain (data not shown). BMSCs used in the 

study were also able for multiple mesodermal lineage differentiation (Mark 2013). 

 

      

      

Figure 3.1.4 Multiple mesodermal lineage differentiation capacity of DFPCs in vitro.    

Adipogenesis was confirmed by Oil Red O staining (a) and immunostaining (d), 400x. 

Osteogenesis became evident after Alizarin Red staining (b) and immunostaining (e), 

100x. Chondrogenesis was verified by Safranin O staining (c) and immunostaining (f), 

10x; n = 3. 

a. 

f. e. d. 

c. b. 
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3.2 LPS treatment 

3.2.1 LPS cytotoxic effects on DFPCs 

To verify whether LPS evokes cytotoxicity effects on DFPCs and BMSCs, cell viability 

was examined by MTT assays. Interestingly, cell viability of both populations was not 

affected, even when cells were treated with a high LPS dosage (50 μg/ mL) or for a 

long period (72 hours) (Fig. 3.2.1). 

 

 

Figure 3.2.1 Cell viability rates of DFPCs and BMSCs assessed by MTT dye reduction assay; 

DFPCs n = 7, BMSCs n = 6. 

 

3.2.2 TLR2 and TLR4 expression in DFPCs 

The expression of TLR2 and TLR4 in both DFPCs and BMSCs was comparatively 

analyzed. The gene and protein expression levels of TLRs were determined by qRT-

PCR and flow cytometry, respectively. 

According to the results, both cell populations expressed low levels of TLR2 and TLR4 

mRNA. Notably, the mRNA levels of TLR4 expression were significantly higher when 

compared to TLR2 gene expression (p < 0.05). The expression of TLR4 was higher in 

BMSCs compared to DFPCs (p < 0.05). Further, TLR2 and TLR4 gene expression was 

tested in cells stimulated for 24 hours with 50 μg/ mL P. gingivalis LPS. This high dose 

LPS treatment did not influence the expression level of TLR2 mRNA, whereas gene 

expression of TLR4 was significantly downregulated (p < 0.05, Fig. 3.2.2a). 
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Figure 3.2.2a (A) Relative gene expression of TLR2 and TLR4 analysed by qRT-PCR. Histogram 

scale is inverted, so that higher bars represent higher levels of mRNA; DFPCs n = 4, 

BMSCs n = 3, values represent means ± SE, *p < 0.05 (Student’s t-test). (B) Gene 

expression fold change of TLR2 and TLR4 after LPS treatment. Data were analyzed by 

the delta/delta calculation method; DFPCs n = 4, BMSCs n = 3, values represent means 

± SE, *p < 0.05, **p < 0.01 (Student’s t-test). 

 

The expression of TLR2 and TLR4 was confirmed also at protein level for both DFPCs 

and BMSCs. According to FACS analysis, both cell populations expressed low levels of 

TLR2 and TLR4 (Fig. 3.2.2b). Protein levels of TLR4 were significantly higher than 

TLR2 on DFPCs (p < 0.001). The expression of TLR4, but not TLR2, was upregulated 

on LPS-treated BMSCs (p < 0.05). Finally, TLR2 and TLR4 protein expression on 

DFPCs was not significantly affected by LPS treatment. 

 

Figure 3.2.2b (A) Protein expression of TLR2 and TLR4 in DFPCs and BMSCs was evaluated by 

flow cytometry. Representative FACS histograms of TLR2 and TLR4 expression are 

shown. (B) TLR2 and TLR4 were expressed at low levels on both DFPCs and BMSCs. 

The expression of TLR2 was significantly lower than TLR4. The TLRs expression 

level of DFPCs was not significantly influenced by LPS treatment, while the expression 

of TLR4 on LPS-treated BMSCs was elevated; DFPCs n = 5, BMSCs n = 4, values 

represent the means ± SE, *p < 0.05, **p = 0.01, ***p < 0.001 (Student’s t-test). 
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3.2.3 Migration potential of DFPCs 

To test whether LPS can affect cell migration, DFPC as well as BMSC cultures were 

subjected to in vitro scratch assays. This assay allows the observing of the healing 

process in vitro. Data analysis indicated that cells migrated in a linear fashion. As 

shown in Figure 3.2.3, LPS-treated DFPCs had a 43.5% higher migratory capacity 

compared to untreated controls (p < 0.05), suggesting that LPS may promote DFPCs 

basal motility. Interestingly, LPS treatment had no significant impact (p > 0.05) on 

BMSCs migration rates. 

 

 

 

Figure 3.2.3 (A) Representative images of in vitro wound healing scratch assay. After scratching a 

confluent cell monolayer of cells, surrounding cells migrated into the scratched area 

(time after scratching is indicated). White lines represent wound edges at t = 0 hour. 

Dotted red lines represent wound dimensions during cell migration at three different 

time points, 10x. (B) Migratory activity rates after LPS treatment. Average wound 

dimensions were measured at several time points; data were normalized to untreated 

controls and results were expressed as percentages of migratory activity; DFPCs n = 4, 

BMSCs n = 3, values represent means ± SE, *p < 0.05 (Student’s t-test). 
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3.2.4 IL-6 secretion by DFPCs 

Next, LPS induced IL-6 secretion was analyzed by examining culture supernatants of 

both cell types. No IL-6 could be measured in the supernatants of DFPCs. In all tested 

samples the detected signal was never higher than that of medium control. On the 

contrary, BMSCs produced IL-6 (Fig. 3.2.4). Cytokine secretion by BMSCs was 

upregulated after 24 hours of LPS treatment in a dose-independent manner (p > 0.05). 

Treatments for 72 hours also led to elevated IL-6 secretion, which was also independent 

from the LPS dosage used (p > 0.05). These results suggest that BMSCs produced daily 

approx. 300 pg/ mL of IL-6. Interestingly, cytokine secretion seemed to reach a plateau 

of approx. 1600 pg/ mL, even by high LPS concentration. It is also important to 

mention that the elevated cytokine production by BMSCs was not due impaired cell 

viability, as this was not affected by any LPS treatment. 

 

 

 

Figure 3.2.4 Histograms show IL-6 secretion by DFPCs and BMSCs, measured after 24 hours (A) 

and 72 hours (B) of LPS stimulation by ELISA. Limit of detection was 8 pg/ mL. Each 

sample was tested in triplicate; DFPCs n = 3, BMSCs n = 5, values represent means ± 

SE, p > 0.05 (Student’s t-test). 
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4. Discussion 

Dental follicle progenitor cells represent a population of multipotent cells derived from 

the loose ectomesenchyme-derived connective tissue surrounding the developing tooth 

germ prior to eruption (Ten Cate 1997). Here, human DFPCs were isolated from freshly 

extracted dental follicle tissues of wisdom teeth by applying previously developed 

methodology (Morsczeck 2005). 

 

4.1 Cell characterization 

Human DFPCs, as BMSCs, represent a heterogeneous population of cells with the 

capacity to adhere to plastic surfaces and form clonogenic, fibroblastic-like colonies 

(Morsczeck 2005; Honda 2010).  

The high colony forming efficiency and proliferation of DFPCs has already been 

reported in studies comparing DFPCs to other dental-derived stem cells (Jo 2007; 

Tomic 2011; Schilardi 2012). These characteristics are attributed to the high telomerase 

activity in DFPCs (Guo 2013). Here, in comparison to BMSCs, DFPCs showed a higher 

colony-forming efficiency, but same proliferation rates. The origin of DFPCs could be 

an explanation for their superior clonogenic potential (Gronthos 2000; Jo 2007; 

Schilardi 2012), as DFPCs are obtained from developing tissues (dental follicle). On the 

contrary, source of BMSCs are matured tissues (bone marrow aspirates) at a later 

developmental state with a lower incidence of clonogenic cells (Gronthos 2003). 

Proliferation potential of DFPCs might be affected by the in vitro culture conditions, 

which also results in changes of cell/ culture morphology (De Sá Silva 2012). Thus, the 

fact, that the CFE rates of both cell populations may be influenced by the differential 

isolation protocols, should be taken into account. 

The present study demonstrated the multilineage differentiation capacity of DFPCs in 

vitro. Interestingly, although osteogenic differentiation capacity of DFPCs is well 

documented in vitro (Morsczeck 2005; Honda 2010), the ability of DFPCs to 

differentiate along the adipogenic and chondrogenic pathway have been controversially 

discussed. These conflicting results have been attributed to the inherent variability of 

DFPCs populations (Lindroos 2008; Haddouti 2009; Honda 2011; Mori 2012). It is 

suggested that the heterogeneity of DFPCs could in fact be reflective of the cell 
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maturity stage along the adipogenic and chondrogenic differentiation pathways (Luan 

2006; Guo 2013). Here, DFPCs were demonstrated to have the ability to differentiate 

towards the osteogenic, adipogenic and chondrogenic lineage, when cultured with 

special induction media, as already reported in the literature (Kemoun 2007; Jo 2007; 

Yagyuu 2010; Tomic 2011). 

Further, both DFPCs and BMSCs were analyzed for expression of typical stem cell 

markers by flow cytometry. In accordance with reports from the literature (Nauta 2007; 

Huang 2009; Gaebel 2011), DFPCs and BMSCs were identified as CD29, CD44, CD73 

and CD105 positive cells. Both cell populations expressed these cell markers with 

similar high intensity while no expression of CD14 (monocyte and granulocyte marker) 

and CD45 (common leukocyte antigen) was observed. Thus, together with the 

multilineage differentiation potential of DFPCs, the minimal criteria for defining 

DFPCs as multipotent mesenchymal stem cells were fulfilled (Dominici 2006). 

 

4.2 Effects of P.gingivalis LPS on DFPCs in vitro 

4.2.1 Effects on cell viability 

In this study several concentrations of P.gingivalis LPS (0, 1, 10 and 50 μg/ mL) and 

three time points (0, 24 and 72 hours) were used in order to determine the effects on cell 

viability of both DFPCs and BMSCs. It is already demonstrated that the concentrations 

and compositions of subgingival microflora vary greatly depending on the local micro-

environmental conditions (Socransky 2005). Thus, P.gingivalis LPS concentration used 

here was thought to be superoptimal to resemble the high LPS concentrations likely to 

be found in the subgingival plaque of periodontal pockets. Besides, this experimental 

model may allow us to support the clinical meaning of our in vitro study. 

Interestingly, P.gingivalis LPS had no statistically significant influence on both cell 

populations - independent from LPS dose used and treatment duration. These results are 

in agreement with previous literature reports demonstrating the low cytotoxic activity of 

P.gingivalis LPS (Kadono 1999; Mo 2008; Wang 2010; Zhang 2010; Sipert 2013). This 

fact could be explained by the low endotoxic potencies of P.gingivalis LPS in 

comparison to lipopolysaccharide derived from enteric bacteria, like Escherichia coli 

(Horiba 1989; Dixon 2005; Muthukuru 2005; Belibasakis 2007; Kocgozlu 2009; Jain 
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2010; Jotwani 2010). Specifically, P.gingivalis LPS is characterized by the unique 

structure of lipid A (Millar 1986; Ogawa 2007), which is also supposed to be 

responsible for the weak immunogenic properties of P.gingivalis (Darveau 1998; Liu 

2008a). 

 

4.2.2 Effects on TLR2 and TLR4 expression 

In order to unveil DFPCs responsiveness to LPS, analyses of TLR2 and TLR4 

expression were performed. According to our results, DFPCs express both TLR2 and 

TLR4 in mRNA and protein levels. Tomic et al. also demonstrated the expression of 

TLR3 and TLR4 on human DFPCs (Tomic 2011). Parallely, the expression of TLR2 

and TLR4 was confirmed in BMSCs. These results are in accordance to recent studies 

showing the expression of TLRs in MSCs (Liotta 2008; DelaRosa 2010). Further, 

Pevsner-Fischer et al. confirmed the expression of functional TLRs by analyzing the 

responses of MSCs to TLR agonists (Pevsner-Fischer 2007).  

Here, the impact of LPS treatment on the expression of mRNA encoding for TLR2 and 

TLR4 was comparatively evaluated in DFPCs and BMSCs. The significant down-

regulation of TLR4 mRNA in both cell populations might be part of an adaptive 

mechanism of cells being exposed to bacteria, as already proposed (Mo 2008). On 

protein level the expression of TLR4 was significantly elevated only on LPS-treated 

BMSCs, while the expression levels of TLR4 in DFPCs remained unchanged. Activated 

TLRs are supposed to deliver signals produced by injured tissues, thus contributing to 

host immune response and tissue repair processes (Wang 2002). Hwa Cho et al. already 

proposed the idea that activation of hMSCs through TLR ligands may alter their TLR 

expression pattern and stem cell fate (Hwa Cho 2006). The fact that LPS treatment did 

not influence significantly the expression of TLRs by DFPCs might signal the tolerant 

character of this cell population in the presence of toxins. Nevertheless, the underlying 

mechanism for this tolerizing phenomenon is not yet known. 

Notably, LPS did not influence the TLR2 gene expression in both cell populations, 

whereas the expression of TLR4 was significantly altered. These results support the 

idea that LPS could be recognized through TLR4 (Darveau 2004), as TLR2 is supposed 

to be mainly responsible for lipoprotein and lipopeptide sensing (Jin 2008). On the 
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contrary, Bainbridge et al. reported that P.gingivalis LPS may activate both TLR2 and 

TLR4 in human embryonic kidney cells (Bainbridge 2002). However, the same study 

demonstrated the heterogeneity of P.gingivalis LPS used in the experiments. These 

controversial data might be explained by the differential experimental approaches and 

emphasize the complexicity of signaling cascades that activate TLRs. 

 

4.2.3 Effects on cell migration potential 

The innate regenerative potential of the periodontium has been extensively investigated 

and clearly appears to be dependent on wound management (Ivanovski 2006). Current 

research focuses on identifying biologic factors that favor migration and proliferation of 

stem cells, thus promoting healing and regeneration of the periodontium (Fuseler 2012; 

Felthaus 2013). A profound understanding of biological and clinical variables could be 

critical for the effective optimization and increased predictability of periodontal-

regenerative therapies (Polimeni 2006). 

In fact, migration to the appropriate site of injury is considered to be critical for the 

therapeutic efficacy of stem cells (DelaRosa 2010; Vertelov 2013). It is proposed that 

migratory activity of stem cells is strongly dependent on their local or systemic 

inflammatory context (Ponte 2007). Several studies have already described an 

enhancement of MSCs mobility after stimulation with TLR agonists. Waterman et al. 

suggest that MSC polarization could be an explanation to the effect of TLR stimulation 

and its downstream consequences on the migratory properties of stem cells (Waterman 

2010). Another study on human BMSCs supports the notion that the stimulation of 

BMSCs with TLR agonists led to the activation of downstream signaling pathways, 

including NF-κB, Akt and MAPK (Tomchuck 2008). Park et al, also, demonstrated that 

LPS may promote the migration ability of murine odontoblast-like cells via TLR4 

through the ERK and PI3/Akt signaling pathways (Park 2011). 

In this context, we sought to analyze the effects of TLR stimulation on the migration 

rates of DFPCs by an in vitro wound healing model. Interestingly, LPS treatment 

enhanced significantly the wound healing efficiency of DFPCs compared to the 

untreated controls. These data suggest a positive impact of LPS on the mobility of 

DFPCs, which could play a pivotal role in tissue repair processes. On the contrary, LPS 
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treatment had no significant impact on the migration rates of BMSCs in this study. The 

differential migration rates of DFPCs and BMSCs could be explained by the proposed 

theory that responses to TLR ligands are cell-type specific (Lundberg 2007). The fact 

that DFPCs originate from developing tissues (dental follicle) may also provide an 

explanation for their enhanced migratory potential upon stimulation (Gronthos 2000). 

 

4.2.4 Effects on IL-6 secretion 

There are numerous signalling molecules involved in cell migration. Signaling 

pathways that control migration of MSCs, involve chemoattractant-receptor axes and 

intracellular signalling pathways. Moreover, extracellular matrix and biophysical 

factors play important role in guiding migration of MSCs (Li 2011). IL-6 is a 

multifunctional cytokine, involved in the initiation of host inflammatory processes 

against periodontal pathogens, leading to periodontal bone loss (Graves 2008). Indeed, 

high levels of IL-6 have been associated with the presence of chronic periodontitis in 

patients (Nibali 2011). Besides, the direct induction of IL-6 secretion after cell 

stimulation with P.gingivalis LPS is well documented (Steffen 2000; Imatani 2001; 

Feldman 2011; Herath 2011; Zhao 2012).  

Here we focused on the possible role of IL-6 in the migration of LPS-treated DFPCs. 

Recent reports support the notion that secreted IL-6 may act in a paracrine fashion on 

MSCs, thus enhancing migratory potential and cell survival (Schmidt 2006; Rattigan 

2010; Tsai 2012). Remarkably, the analysis of IL-6 secretion showed no cytokine 

sekretion by DFPCs, as previously reported (Morsczeck 2012). These results could 

imply that DFPCs do not participate in the initiation of inflammatory processes and 

retain a tolerant character under the influence of toxins. Further, it could be assumed 

that IL-6 was not responsible for the enhanced migratory activity of LPS-treated 

DFPCs. The exact mechanisms leading DFPCs migration remain to be elucidated. On 

the contrary, the secretion of IL-6 by BMSCs was elevated after LPS treatment. 

Raicevic et al. already demonstrated that MSCs responsiveness to TLR ligands may 

cause alterations of their cytokine secretion profile (Raicevic 2010). These data may 

support the idea that TLR signalling is involved in the production of IL-6 by MSCs, as 

part of their pro-inflammatory shift, at sites of inflammation (Frost 2005; Pevsner-

Fischer 2007; DelaRosa 2010; Waterman 2010). 
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5. Conclusions 

In conclusion, analysis of data presented here indicates that DFPCs represent a 

population of multipotent cells with unique properties. According to the results, DFPCs 

shared common properties with BMSCs, but also significant differences in their 

biological responses. Thus, DFPCs were highly clonogenic and proliferative, while 

expressing same stem cell surface markers, as BMSCs. Furthermore, it was 

demonstrated that both DFPCs and BMSCs were positive for TLR2 and TLR4 

expression. Notably, LPS treatment provoked differential responses in both cell 

populations. In case of TLRs, their expression in DFPCs seemed to remain unchanged 

after LPS treatment. On the contrary, TLR4 expression in BMSCs was significantly 

upregulated. Further, LPS treatment resulted in elevation of DFPCs migration rates. 

Nevertheless, DFPCs did not produce IL-6 even under the influence of LPS. These 

results let us speculate that the enhanced migratory ability of DFPCs was not IL-6 

driven. On the contrary, BMSCs were responsive to LPS by showing higher levels of 

IL-6 production. Moreover, the in vitro wound healing ability of BMSCs was not 

affected either by LPS stimulation or by the elevated levels of IL-6.  

According to the above results, we suggest that DFPCs are able to response to bacterial 

LPS. However, DFPCs seem to retain a tolerant character under the influence of toxins. 

We speculate that DFPCs may not actively participate in the initiation of immune 

response of the host. The enhanced cell viability and wound healing rates of LPS-

treated DFPCs may indicate the applicability of this cell population in cell-based 

regenerative approaches. A better understanding of DFPCs behavior in sites of infection 

is needed to support this tempting conception. 
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6. Summary 

 

Periodontitis represents one of the major oral health burdens worldwide. It is a 

bacterially induced inflammatory disease, characterized by the destruction of tooth-

supporting tissues. Particularly, certain bacteria strains, such as Porphyromonas 

gingivalis, are believed to be greatly involved in the initiation and progression of the 

disease. Thus, conventional periodontal treatments are based on root surface 

debridement and disinfection of diseased periodontal tissues. Nevertheless, these 

therapeutic approaches have proved to be insufficient to attain complete and predictable 

regeneration of the periodontium. 

Currently, much progress has been made in understanding the cellular and molecular 

events involved in formation of the periodontium. The presence of multipotent cells in 

dental tissues has been demonstrated. These cell populations are proposed as suitable 

candidates for cell-based periodontal therapies. Specifically, dental follicle is 

considered as source of multipotent cells. Experimental studies have shown that dental 

follicle progenitor cells (DFPCs) may support repair and regeneration of the 

periodontium in vivo. Thus, DFPCs have been proposed as biological grafts for cell-

based therapies. Nevertheless, it is speculated that delivery of DFPCs in bacterially 

colonized periodontal pockets may cause alterations in their functional and phenotypic 

profile. 

Aim of this study was to investigate the ability of DFPCs to sense and respond to 

P.gingivalis lipopolysaccharide (LPS). The influence of LPS on DFPCs was evaluated 

in terms of cell viability, TLR2 and TLR4 expression, migratory capacity and IL-6 

secretion. Additionally, DFPCs properties were compared to bone marrow stem cells 

(BMSCs), a well-studied class of adult stem cells.  

Human DFPCs were isolated from dental follicle tissues of freshly extracted wisdom 

teeth. After testing their multipotent characteristics, DFPCs were treated with different 

doses of P.gingivalis LPS at several time periods. Toll-like receptors (TLR) 2 and 4 are 

believed to be essential for the recognition of P.gingivalis LPS. The analysis by qRT-

PCR and flow cytometry indicated that DFPCs, similar to BMSCs, expressed low levels 

of both TLR2 and TLR4 at gene and protein level, respectively. Concretely, the 

expression of TLRs in DFPCs remained unchanged after LPS treatment, while TLR4 
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expression in LPS-treated BMSCs was significantly upregulated. According to in vitro 

scratch assays, LPS treatment resulted in elevation of DFPCs migration rates that is 

essential for wound healing processes. Furthermore, assays on the secretion of 

interleukin-6 (IL-6), a pro-inflammatory cytokine and potent stimulator of cell 

migration, have been undertaken. Interestingly, the levels of IL-6 secretion of DFPCs 

and BMSCs remained unchanged after LPS treatment. Finally, conduction of MTT 

assays demonstrated no influence of LPS on viability rates of both cell populations. 

Taken together, these results suggest that DFPCs were able to sense and respond to P. 

gingivalis LPS. However, DFPCs seemed to retain a tolerant, non-inflammatory 

character under the influence of toxins. On the other hand, the enhanced wound healing 

rates of LPS-treated DFPCs may indicate the applicability of this cell population as 

biological graft in cell-based regenerative approaches. Further in vivo studies are 

needed to support this tempting conception. Conclusively, this study provides new 

insights into understanding the physiological role of dental-derived progenitor cells in 

sites of periodontal infection. 
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7. Thesis statements 

 

1. Dental follicle progenitor cells (DFPCs) are able to sense and respond to 

Porphyromonas gingivalis lipopolysaccharide (LPS). 

2. DFPCs responses to P. gingivalis LPS are differential in comparison to bone 

marrow stem cells (BMSCs). 

3. DFPCs, similar to BMSCs, express low levels of both Toll-like receptors (TLR) 

2 and TLR4, which are believed to be essential for the recognition of 

P.gingivalis LPS. 

4. LPS treatment has no impact on TLR2 and TLR4 expression by DFPCs, while 

TLR4 expression in LPS-treated BMSCs is significantly upregulated. 

5. According to in vitro wound healing assays, LPS treatment results in elevation 

of DFPCs migration rates. 

6. LPS treatment has no impact on DFPCs secretion levels of interleukin-6 (IL-6), 

a pro-inflammatory cytokine and potent stimulator of cell migration. 

7. DFPCs have the potential to promote periodontal wound healing under the 

influence of toxins. 
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