Asymmetric hydrogenation and hydroformylation of 1,1-disubstituted olefins

Dissertation
zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)
angefertigt
an der Mathematisch-Naturwissenschaftlichen Fakultät
an der Universität Rostock

vorgelegt von

Lutz Domke
geboren am 13. Dezember 1984 in Rostock

Rostock, April 2014

Die vorliegende Arbeit wurde von Oktober 2010 bis März 2014 an der MathematischNaturwissenschaftlichen Fakultät der Universität Rostock angefertigt.

Einreichung der Dissertation:

1. Gutachter: Prof. Dr. Armin Börner, Institut für Chemie, Universität Rostock, Deutschland.
2. Gutachter: Prof. Dr. Montserrat Diéguez, Departament de Quimica Fisica í Inorganica, Universitat Rovira í Virgili, Tarragona, Spanien.

Erklärung

Ich gebe folgende Erklärung ab:

1. Die Gelegenheit zum vorliegenden Promotionsvorhaben ist mir nicht kommerziell vermittelt worden. Insbesondere habe ich keine Organisation eingeschaltet, die gegen Entgelt Betreuerinnen/Betreuer für die Anfertigung von Dissertationen sucht oder die mir obliegenden Pflichten hinsichtlich der Prüfungsleistungen für mich ganz oder teilweise erledigt.
2. Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig angefertigt und ohne fremde Hilfe verfasst habe. Dazu habe ich keine außer den von mir angegebenen Hilfsmitteln und Quellen verwendet und die den benutzten Werken inhaltlich und wörtlich entnommenen Stellen habe ich als solche kenntlich gemacht.
3. Ich habe ein Verfahren zur Erlangung des Doktorgrades bisher weder an der Universität Rostock noch an einer anderen wissenschaftlichen Einrichtung beantragt. Die vorliegende Dissertation wurde bisher weder im Ausland noch im Inland in gleicher oder ähnlicher Form einer anderen Prüfungsbehörde vorgelegt.

Rostock, den 25. April 2014
Lutz Domke

Danksagung:

Ich danke meinem Betreuer Herrn Prof. Dr. Armin Börner für die Aufnahme in seinen Arbeitskreis, die herausfordernde, aber auch interessante Themenstellung sowie das geschenkte Vertauen und den Freiraum für die eigenständige Laborarbeit.

Ich danke dem gesamten Arbeitskreis für die freundliche Aufnahme und das angenehme Arbeitsklima, sowohl im Labor an der Universität als auch am Leibniz-Institut für Katalyse e.V.

Herrn Dr. Jens Holz danke ich für viele interessante Diskussionen sowie nützlichen Tipps und Tricks während des Laboralltags.

Für die gute Zusammenarbeit bezüglich der Synthese von Substraten, Vorstufen und Liganden, aber auch für das ein oder andere Gespräch während der Kaffeepausen möchte ich mich recht herzlich bei Frau Heike Borgwaldt, Frau Dr. Susan Lühr und Frau Dr. Natalia V. Dubrovina bedanken.

Herrn Dr. Eduard B. Benetskiy danke für die gute kollegiale Zusammenarbeit und Laboratmosphäre sowie anregenden Diskussionen während seiner Zeit in Rostock.

Frau Prof. Dr. Montserrat Diéguez und Herrn Dr. Oscar Pàmies danke ich für die überaus freundliche Aufnahme an der Universitat Rovira í Virgili in Tarragona/Spanien, die Hilfe und Unterstützung während meines dreimonatigen Aufenthaltes sowie die ständigen Bemühungen mir das Leben im Labor dort so angenehm wie möglich zu gestalten.

In diesem Zusammenhang seien ebenso Marc Magre Rosich und alle Doktoranden des Arbeitskreises genannt, die mich herzlich in ihre Gruppe aufgenommen haben und mit denen ich eine schöne gemeinsame Zeit in Katalonien verlebt habe - in als auch außerhalb des Labors.

Ich bedanke mich vielmals bei Frau Brigitte Goronzi für die Aufnahme unzähliger (Langzeit-) NMRSpektren, die während meiner Promotion angefallen und vermessen worden sind, und bei Herrn Dr. Dirk Michalik für die Hilfe und Unterstützung bei NMR-Problemen.

Vielen Dank gilt den Mitarbeitern des Servicebereiches des Leibniz-Institutes für Katalyse e.V., im Besonderen Frau Dr. Christine Fischer, Frau Susann Buchholz und Frau Susanne Schareiner für die Messung zahlreicher GC-, HPLC- und MS-Proben und Frau Astrid Lehmann für die Messung von Elementaranalysen.

Mein größter Dank gilt jedoch meiner Familie, die mich in jederlei Hinsicht bedingungslos untertützt hat und bei der ich immer ein offenes Ohr, aufmunternde Worte oder einen guten Ratschlag fand.

Index

1 Introduction and task formulation 1 -
2 General section 4 -
2.1 Hydrogenation 4 -
2.1.1 Principles and generals 4 -
2.1.2 Enantioselective hydrogenation of olefins in industry 5 -
2.2 Hydroformylation 7 -
2.2.1 Principles and generals 8 -
2.2.2 Asymmetric hydroformylation 11 -
2.2.2.1 Potential industrial application of asymmetric hydroformylation 11 -
2.2.2.2 Enantioselective hydroformylation of 1,1-disubstituted olefins 13 -
2.3 Ligands - 15 -
2.3.1 Phosphines - 15 -
2.3.2 Phosphites - 16 -
2.3.3 Phosphine-phosphites and -phosphoramidites -17-
2.4 Isomerization 18-
3 Results and discussion 19 -
3.1 Hydrogenation 19-
3.1.1 Preparation of lactic acid derivatives 19 -
3.1.1.1 Synthesis of 2-trimethylsilyloxy methyl acrylate and crotonate 19-
3.1.1.2 Asymmetric hydrogenation of 2-trimethylsilyloxy methyl acrylate and crotonate. - 20 -
3.1.2 Preparation of chiral N, O-acetals -23-
3.1.2.1 Synthesis of N, O-ketene acetals - 25 -
3.1.2.2 Asymmetric hydrogenation of N, O-ketene acetals 26-
3.1.3 Preparation of β^{2}-amino acid derivatives ${ }^{[82]}$ 30 -
3.1.3.1 Synthesis of dehydro β^{2}-homoalanine derivatives -31-
3.1.3.2 Enantioselective hydrogenation of dehydro β^{2}-homoalanine derivatives -32-
3.1.3.3 Synthesis of chiral secondary products -36-
3.2 Hydroformylation -37-
3.2.1 Preparation of functionalized β^{2}-homoalanine derivatives -37-
3.2.1.1 Asymmetric hydroformylation of dehydro β^{2}-homoalanine derivatives -37-
3.2.2 Preparation of chiral 3-aryl-3-phosphorylated propanals 40 -
3.2.2.1 Synthesis of α-phosphorylated vinyl arenes 40 -
3.2.2.2 Initial asymmetric hydroformylation of dimethyl(1-phenylvinyl)phosphonate 41 -
3.2.2.3 Synthesis of non-commercial and new ligands 44 -
3.2.2.4 Asymmetric hydroformylation with non-commercial and new ligands $53-$
3.2.2.5 HP-NMR experiments 59 -
3.2.2.6 Scope of the asymmetric hydroformylation of α-phosphorylated vinyl arenes 62 -
3.2.2.7 Outlook 64 -
3.2.3 Preparation of enantioenriched 3-phenyl butanal 64-
3.2.3.1 Asymmetric hydroformylation of α-methyl styrene $65-$
4 Summary and outlook 69 -
5 Appendix 73 -
5.1 Experimental section 73-
5.1.1 Materials and methods 73 -
5.1.1.1 General remarks -73-
5.1.1.2 Methods for the compound characterization and analysis 73-
5.1.2 Synthesis methods 74 -
5.1.2.1 Synthesis of 2-[(trimethylsilyl)oxy] esters 74 -
5.1.2.2 Synthesis of N, O-acetals. 76-
5.1.2.3 Synthesis of β^{2}-homoalanine derivatives and secondary products 77 -
5.1.2.4 Synthesis of functionalized β^{2}-homoalanine derivatives 86-
5.1.2.5 Synthesis of 3-aryl-3-phosphorylated propanals 87-
5.1.2.6 Synthesis of bidentate phosphorus ligands 97-
5.1.2.7 Synthesis of 3-phenylbutanal 130 -
5.2 List of abbreviations 132-
5.3 Applied ligands in this dissertation 137 -
5.4 Supplementary information. 140 -
5.5 References - 142 -

1 Introduction and task formulation

Chirality is the property of an object that does not allow to result in itself after implementation of any symmetry operation. Two enantiomers ${ }^{i}$ of a chiral object, for instance a chiral molecule, behave to each other like an image and a mirror image (Figure 1).

Figure 1. Chirality of a molecule: both compounds behave to each other like an image and a mirror image and cannot be aligned.

When a prochiral compound is transformed into a chiral one, both enantiomers can be formed. ${ }^{\text {ii }}$ They have same physical and chemical properties like melting point, boiling point or solubility, iii but they have the characteristic to rotate linear polarized light with the same amplitude but to opposite directions. When enantiomers interact with other chiral compounds, diastereomers are formed. However, these diastereomers have different physical and chemical properties. Everywhere in living nature consisting mainly of homochiral compounds, the formation of such diastereomers plays a crucial role. Typical examples are the interaction of chiral aroma compounds with chiral receptors in the human nose (mainly proteins) or the effect of chiral pharmaceuticals on any biological chiral receptors in the body. Another example is the interaction of chiral agrochemicals with chiral receptors in plants. An instance of a chiral drug, in which both enantiomers have different therapeutic effects, is illustrated in Figure 2. Darvon is an analgesic agent; its enantiomer Novrad has an antitussive effect.

Darvon analgesic

Novrad antitussive

Figure 2. Enantiomers and their different properties: Darvon and Novrad.
This situation has led to a revolution in the pharmaceutical industry, because now the individual effect of each enantiomer has to be tested and proved. ${ }^{\text {iv }}$ With the help of the eudismic ratio, ${ }^{\text {i }}$ statements about

[^0]the pharmacological activity of the mixture of both enantiomers of a drug can be made. It also explains why it is often so important to prepare exclusively one stereoisomer.
There are many different opportunities to obtain enantiomerically pure compounds, which proved to be successful in recent years. One of the oldest but still powerful method is resolution of diastereomers. Starting from the produced racemic mixture, both enantiomers are converted into diastereomers with the help of enantiomerically pure chiral excipients. ${ }^{\text {ii }}$ These diastereomers can be separated by crystallization or chromatography. The corresponding pure enantiomer is finally yielded by separation from its excipient. Unfortunately, the maximum yield of the desired enantiomer can only reach 50%, because usually one form is needed and the other is unwanted (waste).
It is spoken of the chiral pool when naturally occurring chiral building blocks are used to constitute the desired optically pure compounds. However, these compounds are limited to their natural occurrence and fixed configuration of the starting material.
The stoichiometric asymmetric synthesis utilizes a chiral auxiliary ${ }^{\text {iii }}$ that enables the substrate to be bound and consequently converted diastereoselectively. After separation from the auxiliary, the desired product occurs enantiomerically pure. But, this way is often uneconomical, since stoichiometric amounts of a chiral excipient are required and its separation turns out to be problematic. The most effective method for the preparation of enantiomerically pure compounds is asymmetric catalysis. With the help of a relatively small amount of a chiral catalyst (e.g. enzyme, metal complex etc.), substrates can be converted into one required enantiomer with excellent stereoselectivity. Supplementary, mild and thus economical reaction conditions make an application on industrial-scale very attractive.
Enantioselective hydrogenation as well as enantioselective hydroformylation are two important kinds of catalysis to obtain enantiomerically pure compounds. Depending on the reagent, they undergo different pathways in their catalytic cycles, as illustrated in Scheme 1.

Scheme 1. Starting from the olefin, the σ-alkyl-metal-complex is formed by addition of the catalyst. This complex reacts either with hydrogen to yield an alkane (hydrogenation) or with carbon monoxide and hydrogen to generate an aldehyde (hydroformylation). In the case of β-hydride elimination, isomerization occurs.

The σ-alkyl-metal-complex is considered as a pivotal intermediate for the whole dissertation. It can react with hydrogen to form the saturated compound. Reaction with syngas leads to the aldehyde.

[^1]β-Hydride elimination affords the isomerized olefin. By application of prochiral compounds, hydrogenation and hydroformylation, respectively, give rise to chiral products.
Despite of the usage of different reaction gases (hydrogen and a mixture of carbon monoxide and hydrogen [e.g. syngas]) and of leading to different reaction products (alkanes and aldehydes), enantioselective hydrogenation and enantioselective hydroformylation have following similarities:

- metal catalysts are used (e.g. rhodium, ruthenium, cobalt, iridium, palladium)
- olefins are used as substrates
- chelating chiral phosphorus ligands (especially trivalent phosphorus compounds) are used
- high enantioselectivities can be reached
- high atom economy: small molecules are added and practically no waste is produced
- hydrogenation can occur as a side reaction accompanied by the hydroformylation

These facts make clear that both ways of catalysis are of special interest for synthesis chemists, because starting from the same substrates a vast variety of products can be achieved by minor changes of reaction conditions.
The task of this dissertation was to test and explore the ability to hydrogenate and hydroformylate 1,1-disubstituted olefins and to reach a significant enantiomeric excess (ee) of the resulting chiral products. The particular challenge was that substrates chosen herein were seldom or never in the focus of asymmetric catalysis. The results should be optimized by varying the reaction conditions and by the synthesis and application of novel chiral ligands. Thus, the goal was to find elegant or alternative routes to a range of enantiomerically pure compounds by catalysis.

2 General section

2.1 Hydrogenation

Hydrogenation, in general, is the addition of hydrogen to a multiple (double or triple) bond of an organic molecule in the presence of a catalyst (Scheme 2).

Scheme 2. Hydrogenation of alkynes to alkenes and finally to alkanes.

It is not necessarily limited to carbon-carbon multiple bonds, but also for carbon-heteroatom multiple bonds, e.g. carbon-nitrogen and carbon-oxygen bonds. As a hydrogen source molecular hydrogen is usually applied, but other hydrogen donors (isopropanol, formic acid derivatives) have been utilized in transfer hydrogenation. The $\mathrm{H}-\mathrm{H}$ bond energy is $434 \mathrm{~kJ} / \mathrm{mol},{ }^{[2]}$ therefore a catalyst is required to lower the dissociation energy. Usually, it is distinguished between heterogeneous and homogeneous hydrogenation. While for heterogeneous hydrogenation the catalyst is not soluble in the reaction medium and at least two phases exist, the latter is characterized by existence of the catalyst and the substrate in one phase. ${ }^{\text {i }}$
On a large industrial-scale, the heterogeneously catalyzed hydrogenation is of greater importance compared to the homogeneous. However, when stereoselectivity is aimed in a reaction, homogeneous catalysis is the first choice. ${ }^{[3]}$ This preference can be rationalized by the better reproducibility of molecular defined catalyst preparation and reaction. Depending on the nature of the substrate and on the choice of the catalyst, the homogeneously catalyzed hydrogenation can be divided into an asymmetric and non-asymmetric version.

2.1.1 Principles and generals

Asymmetric hydrogenation is meant when a prochiral substrate (e.g. olefin, ketone or imine) is transferred into a saturated chiral product with formation of at least one stereogenic center. As catalysts a wide range of transition metal complexes have been used. Rhodium, ruthenium and iridium are proved to be especially powerful for this purpose.
Polar groups, located next to the double bond, are beneficial for the asymmetric hydrogenation of olefins since such groups allow an efficient electronic and steric stereodifferentiation. ${ }^{\text {ii }}$ On the other hand, such heteroatoms may additionally coordinate to the metal center. As a result, chelates are formed, which further reduce the conformational flexibility.
1,1-Disubstituted, 1,1,2-trisubstituted (internal) and 1,1,2,2-tetrasubstituted olefins can be hydrogenated enantioselectively. The mechanism for the Rh-catalyzed hydrogenation of 1,1-disubstituted olefins ${ }^{[5]}$ differs from the Ru-catalyzed hydrogenation in the manner of the addition of hydrogen as shown by Noyori for the example of prochiral (2-acetamidomethyl)acrylate (MAA). ${ }^{[5 a]}$

[^2]In principle, both enantiomers can be yielded equally. What stereoisomer is favored most can be qualitatively explained with the stereodifferenting manner of coordination of the substrate to the catalyst. With the help of the quadrant rule, ${ }^{[6]}$ the favorable orientation of the coordinated olefin is concluded. This can be clarified with the example of (R, R)-Me-DuPhos, a diphosphine in which two phosphorus atoms are part of a chiral phosphacycloalkane. The phosphine units are connected by an achiral scaffold. ${ }^{[7]}$ If one imagines the rhodium catalyst bearing the bidentate ligand and divide it into four quadrants, both methyl groups of each ring can be assigned to one quadrant (Figure 3).

(R, R)-Me-DuPhos

unfavorable orientation

favorable orientation

Figure 3. (R, R)-Me-DuPhos, the quadrant rule of the ligand coordinated to rhodium and the two orientations how the substrate can coordinate.

In the case of (R, R)-Me-DuPhos, quadrant 1 as well as quadrant 4 are "occupied"; the two others are "empty". Depending on what side the substrate approaches, two diastereomers can be formed. ${ }^{i}$ In a consequence, steric repulsion is minimized when the substrate coordinates in such a way that larger substituents do not interact with one of the blocked quadrants. Thus, only one substrate-complex is favored that finally leads to a single enantiomer. However, this model does not explain why more steric hindered ligands do not mandatorily generate highest enantioselectivities for a substrate.
A quantitative concept, derived from kinetic investigations, is the famous Halpern-mechanism, ${ }^{\mathrm{ii}}$ which differentiates between two diastereomeric catalyst-substrate-complexes. ${ }^{[8]}$ This so-called major-minor concept is based on the assumption that both diastereomers are formed at the beginning of the catalytic cycle: the thermodynamically favored (major) complex and the thermodynamically unfavored (minor) complex. Since the former is much more stable toward the reaction with hydrogen, it reacts more slowly to the corresponding enantiomeric product than the latter. In the result, the predominantly formed enantiomer derives from the minor-pathway. ${ }^{[5 a, 8]}$

2.1.2 Enantioselective hydrogenation of olefins in industry

Up to now, a large number of large- or small-scale processes, applying asymmetric hydrogenation, have been conducted in industry. ${ }^{[9]}$ Until 2012, the synthesis of chiral Metolachlor, ${ }^{\text {,iii }}$ one of the most important grass herbicides for use in maize, represented the largest process for asymmetric catalysis (Scheme 3). ${ }^{[10]}$
The stereoselective hydrogenation of MEA-imine to (S)-NAA marks the key step in the synthesis of (S)-Metolachlor developed by Ciba-Geigy. Starting from MEA-imine, what is derived from the reaction of methoxyacetone and 2-methyl-6-ethyl aniline (MEA), the (S)-NAA can be attained in

[^3]79 \%ee with almost full conversion. The target benchmark ${ }^{i}$ was significantly exceeded through a TOF $>400^{\prime} 000 \mathrm{~h}^{-1}$ and a TON $>2^{\prime} 000^{\prime} 000$.

Scheme 3. Stereoselective hydrogenation of MEA-imine to (S)-NAA and subsequent transformation into (S)-Metolachlor.

Since 2012, the hydrogenation of citral to achieve citronellal has superseded the Metolachlor-process as the largest industrial process with more than $20^{\prime} 000 \mathrm{t} / \mathrm{a}$. This is the key step for the synthesis of L-menthol at BASF (Scheme 4). Remarkably, a typical "hydroformylation catalyst" is used, which is prepared from a reaction of the precursor with CO. Also in the subsequent hydrogenation, a small concentration of CO in the hydrogen stream has to be maintained. ${ }^{[11]}$

Scheme 4. Enantioselective hydrogenation of citral to Citronellal and final conversion to L-Menthol.

A very recent example, which is of particular economic and medicinal importance, is the diastereoselective hydrogenation of Artemisinic acid. The substrate is produced with the assistance of genetically modified yeast. Subsequent hydrogenation with a diphenyl-diphosphine-based ruthenium catalyst gives the product in high diastereoselectivity that is then converted to Artemisinin. ${ }^{\text {ii }}$

[^4]

Figure 4. Synthesis of Artemisinin: the diastereoselective hydrogenation of Artemisinic acid to yield Dihydroartemisinic acid represents the key step.

Also 1,1-disubstituted olefins, considered in this thesis, are used as starting material for the production of enantiomerically pure hydrogenation products, such as L-DOPA ${ }^{[12]}$ (Figure 5). The syntheses of (S)-Naproxen and (S)-Ibuprofen (Figure 5), which could be also realized by asymmetric hydrogenation, do not play an important role on an industrial-scale due to the poor accessibility of the substrates.

L-DOPA

(S)-Naproxen

(S)-Ibuprofen

Figure 5. l-DOPA, (S)-Naproxen and (S-Ibuprofen derived from 1,1-disubstituted olefins as precursors.

2.2 Hydroformylation

The hydroformylation is formally a reaction of an alkene with hydrogen $\left(\mathrm{H}_{2}\right)$ and carbon monoxide (CO) under formation of an aldehyde (Scheme 5).

Scheme 5. Hydroformylation of olefins.

[^5]This reaction was discovered by Roelen at Ruhrchemie in $1938^{[13]}$ in the framework of investigation on the Fischer-Tropsch-synthesis and is nowadays one of the biggest and most important reactions in homogeneous catalysis worldwide with ca. $10.8 \mathrm{Mt} / \mathrm{a}$ (2002). ${ }^{[14]}$
Its products (aldehydes, alcohols, esters) are applied in many fields of daily life, especially as detergents and surfactants, as plasticizers in the polymer chemistry or as cosmetics (Figure 6). ${ }^{[15]}$

Figure 6. Hydroformylation products and their application.

2.2.1 Principles and generals

Contrary to the hydrogenation, in hydroformylation the double bond is not attacked by two (equal) atoms (H), but is formally linked to a hydrogen atom and a formyl group. Due to this fact, two regioisomers can result for a terminal olefin with a carbon chain number longer than two (when isomerization is omitted): linear aldehydes, whereby the carbonyl group is linked to the terminal position (n-aldehydes), or branched (iso-) aldehydes, which result from an attack on the interior side of the double bond. The generally accepted catalysis mechanism was established by Wilkinson and co-workers (Scheme 6, dissociative mechanism). ${ }^{[16]}$

Scheme 6. Dissociative mechanism for the hydroformylation of a terminal olefin and the formation of regioisomers according to Wilkinson.

Starting from the triganol bipyramidal complex $\mathrm{HRh}\left(\mathrm{PPh}_{3}\right)_{3}(\mathrm{CO})$, the quadratic planar hydridecomplex $\mathrm{HRh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})\left(\right.$ a) is formed by dissociation of one PPh_{3}-molecule. One coordination side is now vacant to bind the alkene under formation of a π-complex (b). The σ-complex is formed by insertion. At this point, two routes are possible depending on what carbon atom the metal-alkyl bond is established. Without isomerization the n-alkyl-metal-complex leads in the last step to the terminal aldehyde, whereas the branched intermediate gives rise to the iso-aldehyde (c or \mathbf{c}^{\prime}). When a further CO-molecule is taken up, the trigonal bipyramidal complex is formed (\mathbf{d} or \mathbf{d}^{\prime}). Insertion of CO results in the formation of the quadratic planar $\mathrm{Rh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})\left(\right.$ acyl)-complex (carbonylation to \mathbf{e} or $\mathbf{e}^{\mathbf{\prime}}$). Oxidative addition of hydrogen gives complex \mathbf{f} and \mathbf{f}^{\prime}, respectively. On hydrogenolysis, the linear or the branched aldehyde are liberated and the unsaturated $\mathrm{HRh}\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{CO})$-complex (a) is regenerated that closes the catalytic cycle.
What regioisomer is mostly favored depends on many factors, such as nature of the ancillary ligand, reaction conditions and structure of the substrate.
One can assume that bulky ligands as well as an increased concentration of ligand lead to an enhanced amount of linear aldehyde. Steric congestion around the rhodium results in an overfull complex that consequently coordinates to the less hindered side of the olefin. Usually, the formyl group is not linked
to a tertiary C-atom, which is expressed in Keulemans' rule. ${ }^{[17]}$ However, this empirical rule could be disproved for a few examples. ${ }^{[18]}$
As already pointed out, organic ligands have a great influence on the success of the reaction. They can determine reactivity, regioselectivity as well as stereoselectivity and affect the amount of side products (chemoselectivity), too. Most important parameters are their sterically demanding and electronic properties. Tolman developed a model to measure the steric demand that enables a comparison of several ligands with regard to their size. This concept of a cone angle (θ) is based on the measurement of the angle, what emerges between the arms of the axis from metal to the outer edge of one substituent, starting from the metal as apex. ${ }^{[19]}$ Originally, the distance between the metal center and the coordinating atom, that bears all substituents, is defined as $2.28 \AA$ (Figure 7).
The steric demand of bidentate ligands can be described with the natural bite angle $\left(\beta_{n}\right)$, which was suggested by Casey and Whiteker. ${ }^{[20]}$ Hereby, the angle, spanned between both donor atoms and the metal, is measured while the chelating ligand coordinates (Figure 7). The concept was proved in detail with xanthene-based diphosphines (XantPhos-type ligands). ${ }^{[21]}$

Figure 7. Tolman's cone angle (θ) and the natural bite angle $\left(\beta_{\mathrm{n}}\right)$.

In Figure 8 are given some bite angles of characteristic bidentate ligands. ${ }^{[22]}$
bite angles of bidentate ligands

Figure 8. Bite angles of selected bidentate ligands.
The bite angle has an decisive influence on the regioselectivity. ${ }^{[23]}$ The larger it is, the more increases the possibility that the ligand adopts ee-coordination (equatorial-equatorial), whereas ea-coordination (equatorial-apical) is especially favored when the ligand has only a small bite angle. ${ }^{[22 a]}$
When chiral ligands are used, asymmetric hydroformylation (AHF) can be achieved. ${ }^{[24]}$ The goal is to get predominantly a single enantiomer. Depending on the alkenes (monosubstituted, 1,2-, or 1,1-disubstituted) submitted to the reaction, different chiral aldehydes can be obtained. For terminal
olefins only the branched product is chiral, whereas the linear aldehyde is achiral. Internal and also 1,1-disubstituted olefins can give chiral products for both regioisomers (Scheme 7).

Scheme 7. (Asymmetric) hydroformylation of terminal, internal and 1,1-disubstituted olefins and their hydroformylation products.

2.2.2 Asymmetric hydroformylation

During the last three decades, asymmetric hydroformylation ${ }^{[18 a, 25]}$ has been developed as an elegant process ${ }^{[26]}$ to convert prochiral olefins into enantiomerically pure aldehydes in one step. They serve as a lucrative starting material for a large number of interesting compounds. Despite of great investigations and a huge number of chiral phosphorus ligands, ${ }^{[25 a, b]}$ that have been established in rhodium-catalyzed asymmetric hydroformylation, the range of potential substrates is limited to monosubstituted ${ }^{[25 a, 27]}$ and 1,2 -disubstituted ${ }^{[28]}$ olefins.

2.2.2.1 Potential industrial application of asymmetric hydroformylation

Today, asymmetric hydroformylation does not play a considerable role in industry. Main reasons are the low productivity of the catalysts and, in several cases, the poor accessibility of the substrates. Nevertheless, some approaches, developed on small-scale, desire attention. For example, (R)-Flurbiprofen, (S)-Ketoprofen and (S)-Tiaprofenic acid (Figure 9) could be synthesized starting from the relevant vinyl aromatics by hydroformylation and final oxidation. ${ }^{[29]}$ This method could represent an alternative compared to the enantioselective hydrogenation (see above), because starting vinyl compounds can be synthesized with much less efforts in comparison to relevant 2-substituted acrylates. In the same manner, the preparation of enantiopure Naproxen and Ibuprofen has been taken into consideration.

(R)-Flurbiprofen

(S)-Ketoprofen

(S)-Tiaprofenic acid

Figure 9. Examples for the application of enantioselective hydroformylation: (R)-Flurbiprofen, (S)-Ketoprofen and (S)-Tiaprofenic acid.

The competition for the optimal asymmetric access can also be illustrated with the so-called "Roche aldehyde" in hand. Usually, this compound is prepared by asymmetric hydrogenation and subsequent two step conversion of the formed "Roche ester". ${ }^{[30]}$ An approach, which is based on the asymmetric hydroformylation, should be shorter. ${ }^{i}$ Indeed, with a Rh catalyst, based on (S, S, S)-BisDiazaPhos, the branched aldehyde was achieved, starting from the corresponding O-silylether, in excellent enantioselectivities (up to 97%). In 2012, this synthesis route was up-scaled ${ }^{[31]}$ (Scheme 8).

Scheme 8. An alternative synthetic strategy to the "Roche aldehyde" by asymmetric hydroformylation.
Also, the asymmetric hydroformylation of structurally related allyl cyanide gives access to some important pharmaceuticals developed by Merck and Ono Pharmaceuticals. Researchers from Dowpharma, using a $\mathrm{Rh} /(R, R)$-Kelliphite catalyst under mild conditions, were able to achieve a b / l ratio of $20 / 1$ and an enantioselectivity of 80% for the desired chiral aldehyde. (Scheme 9). ${ }^{[27 \mathrm{7a}]}$ Thus, prior results, obtained from $\mathrm{Rh} /(R, S)$-BINAPHOS, could be improved enormously. ${ }^{\text {ii }}$ Up-scaling to ca. 1 mol-scale of substrate was possible after optimization of the reaction conditions.

[^6]

Scheme 9. Asymmetric hydroformylation of allyl cyanide and subsequent steps to pharmaceutically interesting compounds.
Asymmetric hydroformylation of vinyl acetate is another example of potential application in fine chemistry. The reaction on a $150-180 \mathrm{~g}$-scale was performed with a rhodium catalyst based on (S, S, S)-BisDiazaPhos and proceeds with $>90 \%$ conversion and a TOF of 19 '400 h^{-1} ($\mathrm{TON}=99^{\prime} 962$). ${ }^{[33]}$ Starting from the chiral aldehyde, obtained with 96.8% ee, subsequent transformations, e.g. to chiral 1,2-amino alcohols, were possible (Scheme 10).

Scheme 10. Asymmetric hydroformylation of vinyl acetate and subsequent transformation.

2.2.2.2 Enantioselective hydroformylation of 1,1 -disubstituted olefins

Up to now, the enantioselective hydroformylation of 1,1 -disubstituted substrates was much less investigated. ${ }^{[18 b-d, 24,28 a, 34]}$ First work was done by Consiglio and Morandini in 1985. ${ }^{[34 a]}$ Hydroformylation of α-methyl styrene using both, $\mathrm{PtCl}_{2} / \mathrm{SnCl}_{2}$ and different rhodium catalysts, led either with (S, S)-ChiraPhos or (R, R)-DIOP to poor ee-values of maximum 21%. Although extraordinarily long reaction times (up to 70 h) were applied, only low to moderate conversions were noted. In 2004, Takahashi obtained 3-phenylbutanal as product deriving from α-methyl styrene with $\left[\left(\operatorname{Rh}(\operatorname{cod})_{2}(\mathrm{OAc})\right]_{2}\right.$ and a self-prepared diphosphite ligand in 46.2% ee, what is highest up to now. ${ }^{[346]}$ However, the conversion was quite poor (15%).
In 1987, Stille and co-workers described the reaction of methyl methacrylate with syngas. ${ }^{[34 c]} \mathrm{A}$ $[(-)$-BPPM $] \mathrm{PtCl}_{2} / \mathrm{SnCl}_{2}$ catalyst was employed, ${ }^{[35]}$ which required strongly elevated syngas pressures $(18.3 \mathrm{MPa})$ and also long reaction times $(50 \mathrm{~h})$ to provide the linear aldehyde with low to moderate enantioselectivities, but little conversions. Both parameters showed opposing tendencies: increasing the conversion by changing the ratio of partial pressures of hydrogen to carbon monoxide lowered the enantioselectivity and vice versa. Also a few (hydrogenation) by-products were observed, but the selectivity still remained superb.

In the same year, Kollár et al. expanded the scope for the asymmetric hydroformylation of 1,1 -disubstituted olefins to α-alkyl acrylates as well as itaconates. ${ }^{[34 d]}$ However, the reaction was still performed with a $\mathrm{PtCl}_{2} / \mathrm{SnCl}_{2}$ catalyst using chiral DIOP as ligand that likewise required high syngas pressures (8 MPa) to be stable. Lowering the temperature from $100^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ resulted in much better enantioselectivities (up to 82%), but enormously affected the yield of the chiral aldehyde. Furthermore, under these conditions, also competitive and undesirable hydrogenation became more significant.
In 1988, Kollár published the results of the asymmetric hydroformylation of different substrates, including α-methyl styrene, methyl methacrylate and methyl itaconate, based on a platinum-tin catalyst using BDPP as ligand. Next to significant amounts of hydrogenation products, low yields of the desired aldehydes were obtained with mediocre enantioselectivities. ${ }^{[34 e]}$
In 1990, this working group published some results for the asymmetric hydroformylation of a few acrylates and acrylamides while testing some Pt, Pd and Rh catalysts. However, medium success with respect to enantioselectivity was achieved. ${ }^{[34]]}$
In the same year, Gladiali reported the first rhodium-catalyzed asymmetric hydroformylation of (2-acetamidomethyl)acrylate, but surprisingly, only the branched aldehyde was formed (against Keulemans' rule) with a good yield (up to 90%) and enantioselectivity of about 50%. Improved ee's could be realized with a lower temperature $\left(30^{\circ} \mathrm{C}\right)$, what required a much longer reaction time and was accompanied with a loss of reactivity. ${ }^{[18 a-c]}$
The great breakthrough in the rhodium-catalyzed hydroformylation of 1,1-disubstituted olefins was realized by Landis and co-workers in 2010. ${ }^{[28 a]}$ They established the hydroformylation of a $N-(1-$ alkyl)vinyl phthalimide as a novel and efficient route to a chiral β^{3}-aminoaldehyde. The catalyst was prepared from $\operatorname{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ with a self-prepared (S, S, S)-BisDiazaPhos as ligand. The rhodium catalyst allowed a mild reaction regime with low syngas pressure (1 MPa) and moderate temperature, what led to high selectivity to the linear chiral aldehyde in good enantioselectivity (up to 74%). Next to the aldehyde, significant amounts of the isomerization product were detected (Scheme 11).

Scheme 11. Asymmetric hydroformylation of a N-(1-alkyl)vinyl phthalimide.
Wang and Buchwald showed that the regioselectivity is dependent on the nature of the substrate. However, high enantioselectivities could be reached in both cases. ${ }^{[18 d, 24 a]}$
A wide scope of α-alkyl acrylates were submitted to the rhodium-catalyzed reaction with (R, R)-BenzP* and (R, R)-QuinoxP* as ligands. ${ }^{[24 a, 348]}$ Primarily, they achieved only low yields of aldehyde with a large amount of hydrogenated substrate, what they could counteract with a higher ratio of the hydrogen to carbon monoxide partial pressure without losing any enantioselectivity. With this reaction system ee-values up to 94% were reached that was highest until then (Scheme 12).

Scheme 12. Asymmetric hydroformylation of α-alkyl acrylates.
Furthermore, Wang and Buchwald found a highly enantioselective way for the synthesis of optically pure 2-trifluoromethyllactic acid (TFMLA) based on enantioselective hydroformylation (Scheme 13). ${ }^{[18 d]}$

Scheme 13. Asymmetric hydroformylation to produce Soloshonok acid.
As main product the internal aldehyde was found against Keulemans' rule. Applying both commercially available P-chiral ligands (R, R, S, S)-DuanPhos and (R, R)-QuinoxP* they could reach ee's up to 92%. For the lactic acid derivative, that can be utilized for the production of the so-called Soloshonok acid, it was possible to raise the enantiomeric excess to $>99 \%$ by crystallization.
Quite recently, Zhang and co-workers presented an elegant catalytic route to γ^{3}-amino acids based on the rhodium-catalyzed asymmetric hydroformylation of prochiral allyl phthalimides (Scheme 14). ${ }^{[246]}$

Scheme 14. Asymmetric hydroformylation of prochiral allyl phthalimides.
While testing commercially available ligands they found (S, S)-Ph-BPE as the most appropriate: excellent ee-values up to 95% were achieved, albeit a relative high amount of rhodium ($2 \mathrm{~mol} \%$) and a high loading with ligand ($10 \mathrm{~mol} \%$) were used. However, moderate conversions and significant hydrogenation rates still remained a problem.
Not least, this substrate class is extremely difficult to be converted enantioselectively. Controlling the chemo-, regio- and stereoselectivity, it is still a great challenge to be solved.

2.3 Ligands

2.3.1 Phosphines

Chiral phosphines were the first ligands introduced for the asymmetric hydrogenation by the pioneers Horner and Knowles. ${ }^{[36]}$ Through the years, more and more phosphine ligands with either a

[^7]stereogenic phosphorus atom ${ }^{[37]}$ or stereogenic centers located at their backbone ${ }^{[38]}$ have been applied for the asymmetric hydrogenation. By using other forms of chirality, deriving form e.g. a chiral axis, ${ }^{[39]}$ a wide scope of ligands could be prepared. This type of ligand is easily tuneable with respect to the electronic properties and steric demand. ${ }^{[40]}$ Since the early 1990s, phospholane ligands ${ }^{[44]}$ have been of interest to the asymmetric hydrogenation. By modification of the phospholane rings by polar groups, ${ }^{\text {i }}$ an opportunity was created to improve their solubility in the solvent. ${ }^{[388,42]}$
Quite recently, ligands like diphospholane (S, S, S)-BisDiazaPhos ${ }^{[43]}$ and also P-chiral (R, R)-QuinoxP ${ }^{*[44]}$ and (R, R)-BenzP ${ }^{*[45]}$ (Figure 10) were efficiently used in asymmetric hydroformylation.

Figure 10. Ligands for asymmetric hydroformylation: (S, S, S)-BisDiazaPhos, (R, R)-QuinoxP* and (R, R)-BenzP*.

2.3.2 Phosphites

As generally known, in contrast to phosphines, organophosphite ligands are weak σ-donors, but strong π-acceptors. This property facilitates the dissociation of CO from a metal center and the subsequent insertion into the Rh-acyl bond. As a consequence, the rate of hydroformylation is enhanced. ${ }^{[25 \mathrm{c}]}$
Their relatively simple synthesis from alcohols and their stability toward oxidation make them valuable for an application. However, this type of ligands is usually more prone to hydrolysis. Noteworthy, the number of commercially available and successfully applied chiral diphosphite ligands ${ }^{[25 a]}$ is limited up to now.
In 1992, Babin and Whiteker from Union Carbide reported a chiral diphosphite named (R, R)-Chiraphite (Figure 11) ${ }^{[46]}$ It is prepared from $(2 R, 4 R)$-pentane-2,4-diol and bears bulky achiral biphenols at the phosphorus atoms. By varying the biphenol substituents, bearing different sterically demanding and electronical groups in ortho- and para-position at the P-atoms, the ligand library could be easily expanded. (R, R)-Chiraphite-based rhodium-complexes manage the enantioselective hydroformylation of various alkenes with ee's up to 90%. ${ }^{[46]}$
When the chirality was shifted from the backbone to the substituent at the phosphorus, further classes of chiral diphosphites became available. (S, S)-Kelliphite (Figure 11) with an achiral biphenol as backbone and bulky biphenols at the phosphorus atoms, deriving from chiral BIPHEN- H_{2}, was first mentioned by Whiteker in 2004. ${ }^{[27 a]}$ Compared to its relatives it was most efficient with respect to regio- and enantioselectivities in asymmetric hydroformylation of allyl cyanide ${ }^{[27 a]}$ as well as vinyl acetate. ${ }^{[47]}$

[^8]

Figure 11. Commercially available chiral diphosphites: (R, R)-Chiraphite and (S, S)-Kelliphite.

2.3.3 Phosphine-phosphites and -phosphoramidites

A breakthrough in asymmetric hydroformylation was achieved by Takaya and Nozaki by introducing BINAPHOS in 1991 (Figure 12), a chiral phosphine-phosphite with binaphthyl backbone. ${ }^{[48]}$ This ligand shows excellent ee's for a wide range of substrates ${ }^{[28 b, 48-49]}$ and combines high enantioselectivity, as known from phosphines, with the superior activity, a property of the phosphite moiety. ${ }^{[22 a]}$
Zhang and co-workers published the phosphine-phosphoramidite YanPhos (Figure 12) derived from BINAPHOS, where one oxygen atom was replaced by an EtN-fragment. ${ }^{[50]}$ It even shows better stereodifferentiation for many substrates. Unfortunately, regioselectivities were as moderate as for hydroformylation of both, styrene and vinyl acetate, executed by BINAPHOS.
The recently introduced ($S_{a x}, S, S$)-BobPhos ${ }^{\text {i }}$ by Clarke is a non-symmetric phosphine-phosphite ligand that possesses a chiral axis as well chiral phospholane unit. With this ligand high enantioselectivities up to 93% could be attained for the branched aldehyde starting from different terminal alkenes ${ }^{[51]}$ as well as an unusually high regioselectivity in the enantioselective hydroformylation of vinyl arenes (b/l $=79,92 \% e e) .{ }^{[52]}$

(R, S)-BINAPHOS
Takaya

(R, S)-YanPhos
Zhang

($S_{a x}, S, S$)-BobPhos Clarke

Figure 12. Chiral phosphine-phosphite and -phosphoramidite ligands: (R, S)-BINAPHOS, (R, S)-YanPhos and ($S_{a x}, S, S$)-BobPhos.

[^9]
2.4 Isomerization

Isomerization of olefins frequently accompanies hydrogenation and hydroformylation. Functional groups can support the migration of an olefin. Hereby, three principal mechanisms can be differentiated: the metal hydride addition-elimination mechanism (alkyl mechanism), ${ }^{[53]}$ reaction via a π-allyl metal hydride intermediate (allyl mechanism) ${ }^{[54]}$ and isomerization of allylamines or allyl alcohols. For the topic, considered herein, the latter is of greater relevance and shown in Scheme 15. ${ }^{[55]}$ It can also be used in an asymmetric version. ${ }^{[56]}$

(a)

Scheme 15. Mechanism of the rhodium-catalyzed isomerization with allylamine.

Starting from the cationic quadratic planar complex $\operatorname{Rh}(\mathrm{PP} \text {-ligand)(S) })_{2}$, one solvent molecule S is replaced by the amine. In a consequence, the σ-complex (a) is formed. By dissociation of the second solvent ligand β-hydride elimination occurs and one hydride is transferred to rhodium. As a result, the π-complex (b) is generated. Due to the conjugation of the double bond, facile rearrangement happens and the hydride is retransferred to the coordinated amine. Both, the nitrogen and the olefin coordinate simultaneously to the rhodium (c). When a further allylamine binds to the metal (d), the enamine is released and the π-complex (b) is formed back by β-hydride elimination to restart the catalytic cycle.

3 Results and discussion

3.1 Hydrogenation

3.1.1 Preparation of lactic acid derivatives

For the last years, the demand of enantiomerically pure lactic acid has increased enormously. Its importance as a building block for the synthesis of biodegradable chiral polylactic acids (PLAs) can be explained by a range of applications similar to the one of polyethylene terephthalate (PET). ${ }^{[57]}$ Nowadays, enantiopure lactic acid is generally derived from sugar feedstocks by fermentation. Undoubtedly, chemical synthesis and particularly asymmetric hydrogenation present an interesting alternative to this route, especially in terms of efficiency and sustainability. The latter has found a broad range of application in industry as environmentally friendly technology in the synthesis of chiral compounds. ${ }^{[99,58]}$ Homogeneous catalysts, such as rhodium, ruthenium and iridium, based on chiral phosphorus ligands play a crucial role for this task. ${ }^{[59]}$
Enantiopure lactic acid and its derivatives have been synthesized via asymmetric hydrogenation starting from corresponding pyruvates. ${ }^{[60]}$ Burk recently published the results of a highly enantioselective hydrogenation of the unsaturated lactate precursor α-acetoxy ethyl acrylate (up to $>99 \%$ ee using DuPhos as ligand). ${ }^{[6]]}$ Schäffner et al. were able to extend the ligand library to a wide range of structurally related compounds and reached ee-values up to $98 \%{ }^{[62]}$ With Rh catalysts based on ligands of the cat A Sium ${ }^{\circledR} \mathrm{M}$ series, full conversions were achieved in propylene carbonate (PC) as economically benign solvent (Scheme 16).

Scheme 16. Asymmetric hydrogenation of lactic acid precursors.

3.1.1.1 Synthesis of 2-trimethylsilyloxy methyl acrylate and crotonate

Prochiral 2-trimethylsilyloxy methyl acrylate was prepared from readily available methyl pyruvate and chlorotrimethylsilane in the presence of triethylamine according to the procedure of Bäckvall. ${ }^{[63]}$ The silicon attacks the oxygen and, consequently, the double bond rearranges under formation of the corresponding TMS-protected compound 1a. After filtration from ammonium chloride and aqueous work-up, the desired product 1a could be obtained from Kugelrohr distillation as colorless oil in 99% yield.
Starting from methyl 2-oxobutanoate, the homologue O-trimethylsilyl-protected olefin $\mathbf{1 b}$ is yielded in 94% after Kugelrohr distillation as colorless oil (Scheme 17). Both compounds tend to polymerize, but can be stored at $5^{\circ} \mathrm{C}$ for a few days.

Scheme 17. Preparation of prochiral 2-trimethylsilyloxy methyl acrylate 1a and 2-trimethylsilyloxy methyl crotonate $\mathbf{1 b}$: $(i) 1.6 \mathrm{eq} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DCM}$, r.t., 18 h .

3.1.1.2 Asymmetric hydrogenation of 2-trimethylsilyloxy methyl acrylate and crotonate

2-Trimethylsilyloxy methyl acrylate $\mathbf{1 a}$ served as a test substrate for the asymmetric hydrogenation using a variety of catalysts and conditions (Scheme 18). The absolute configuration of the hydrogenation product was compared to enantiomerically pure O-TMS-protected methyl lactates prepared by an alternative pathway ${ }^{i}$ (Table 1).

Scheme 18. Hydrogenation of prochiral 2-trimethylsilyloxy methyl acrylate $\mathbf{1 a}$.

Table 1. Initial trials of the asymmetric hydrogenation of prochiral 1a with $[\mathrm{Rh}(\mathrm{PP}-l i g a n d)($ cod $)] \mathrm{BF}_{4} .^{\text {a }}$

Entry	Ligand	$\mathrm{ee}^{\text {b }}$ [\%]
1	(R, R)-DIPAMP	rac
2	(R)-BINAP	rac
3	(S, S)-Me-BPE	n.d. ${ }^{\text {c }}$
4	(S, S)-Me-DuPhos	$1(S)$
5	cat A Sium ${ }^{\text {® }} \mathrm{MQF}(R)$	6 (R)
6	(R)-MeO-BIPHEP	$2(R)$
7	1,1'-Bis[(2R,5R)-2,5-di-isopropylphospholano]ferrocene	3 (R)
8	(R, S)-dppf'bp	$1(S)$

${ }^{\mathrm{a}} 1.0 \mathrm{mmol}$ of 1a, $[\mathrm{Rh}(\mathrm{PP}-$ ligand $)(\operatorname{cod})] \mathrm{BF}_{4} 10.0 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of THF, $40^{\circ} \mathrm{C}, 1.5 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,20 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Full conversion was observed in all cases, determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy; ee-values were determined by GC analysis; absolute configurations were compared to synthesized enantiomerically pure O-silylated methyl lactates.
${ }^{\text {c }}$ No hydrogenation product could be detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy due to decomposition.
The asymmetric hydrogenation of 1a was performed in THF at a temperature of $40^{\circ} \mathrm{C}$ and under a hydrogen atmosphere of 1.5 MPa . In all cases, full conversion could be detected via NMR. However, lactates, which were achieved from the hydrogenation with rhodium catalysts, based on ligands like (R, R)-DIPAMP or (R)-BINAP, were obtained as racemates (entries 1,2$)$. Rh/Me-DuPhos, as a preferred catalyst for the enantioselective hydrogenation of structurally related α-acetoxy acrylates, ${ }^{[61]}$ was also unable to induce any significant stereoselectivity (entry 4). Ligands, that have different electronic and steric properties, such as cat A Sium ${ }^{\circledR} \mathrm{MQF}(R)$ (entry 5) and (R)-MeO-BIPHEP (entry 6), respectively, do not crucially affect the stereodiferrentiation. Subsequently, we switched to ruthenium and iridium as metals (Table 2).

[^10]Table 2. Initial trials of the asymmetric hydrogenation of $\mathbf{1 a}$ with ruthenium and iridium. ${ }^{\text {a }}$

Entry	Precatalyst	$\boldsymbol{T}\left[{ }^{\circ} \mathrm{C}\right]$	p [MPa]	Yield ${ }^{\text {b }}$ [\%]	ee ${ }^{\text {c }}$ [\%]
1	(R)-BINAP-RuCl ${ }_{2}$	40	1.5	6	31 (S)
2	[$\mathrm{Ru}(p$-cymene $)\left((R)\right.$ - C_{3}-TunePhos $\left.) \mathrm{Cl}\right] \mathrm{Cl}$	40	1.5	48	56 (S)
3	Crabtree's catalyst	40	1.5	57	1 (S)
4	(R)-BINAP-RuCl ${ }_{2}$	50	5.0	98	47 (S)
5	[$\mathrm{Ru}(p$-cymene $)\left((R)\right.$ - C_{3}-TunePhos $\left.) \mathrm{Cl}\right] \mathrm{Cl}$	50	5.0	>99	53 (S)
6	Crabtree's catalyst	50	5.0	54	rac
$7^{\text {d }}$	(R)-BINAP-RuCl ${ }_{2}$	60	10.0	>99	52
$8{ }^{\text {e }}$	(R)-BINAP-RuCl ${ }_{2}$	60	10.0	>99	49
$9^{\text {d }}$	$\left[\mathrm{Ru}(p\right.$-cymene $)\left((R)\right.$ - C_{3}-TunePhos $\left.) \mathrm{Cl}\right] \mathrm{Cl}$	60	10.0	>99	52
$10^{\text {e }}$	$\left[\mathrm{Ru}(p\right.$-cymene $)\left((R)\right.$ - C_{3}-TunePhos $\left.) \mathrm{Cl}\right] \mathrm{Cl}$	60	10.0	>99	45

${ }^{\text {a }} 1.0 \mathrm{mmol}$ of 1a, precatalyst $10.0 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of THF, $T, p, \mathrm{~S} / \mathrm{Rh}=100,20 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{\text {c }}$ Ee-values were determined by GC analysis; absolute configurations were compared to synthesized enantiomerically pure O-silylated methyl lactates.
${ }^{\text {d }}$ Reaction was performed in DCM.
${ }^{\mathrm{e}}$ Reaction was performed in toluene.
Starting with ruthenium, (R)-BINAP as well as $(R)-\mathrm{C}_{3}$-TunePhos were tested with substrate 1a. Under the same conditions, the yield of the product was quite low in comparison with that from the rhodiumcatalyzed reaction, although promising ee-values of 31% and 56%, respectively, were reached.
Encouraged by this result, an attempt to promote the reaction with higher temperature and higher hydrogen pressure was made. The yield of the desired chiral lactate could be improved from 6% to 98% with (R)-BINAP- RuCl_{2} as precatalyst, while the enantioselectivity reached 47% (entry 4). For the reaction with $\left[\mathrm{Ru}(p\right.$-cymene $)\left((R)-\mathrm{C}_{3}\right.$-TunePhos $\left.) \mathrm{Cl}\right] \mathrm{Cl}$, a higher conversion was detected, too, but the ee-value slightly dropped (entry 5). At both temperatures, almost no effect on the yield and eevalue in the hydrogenation of $\mathbf{1 a}$ could be noted when Crabtree's iridium catalyst was employed (entries 3,6).
Additionally, the reaction was run with both ruthenium catalysts at a higher temperature, higher hydrogen partial pressure and in two solvents. At a temperature of $60^{\circ} \mathrm{C}$ and a hydrogen atmosphere of 10 MPa , the enantiomeric excesses were approximately of the same values for both ligands in DCM and toluene, respectively.
The Ru-catalyzed hydrogenation of $\mathbf{1 a}$, using $(R)-\mathrm{C}_{3}$-TunePhos, was also tested in a range of solvents owning varied polarity (Table 3).

Table 3. Screening of solvents for the asymmetric hydrogenation of $\mathbf{1 a}$ with $\left[\mathrm{Ru}(p-c y m e n e)\left((R)-\mathrm{C}_{3}-\mathrm{TunePhos}\right) \mathrm{Cl}\right] \mathrm{Cl}^{\text {a }}{ }^{a}$

Entry	Solvent	ee $^{\mathbf{b}}[\mathbf{\%}]$
1	THF	$53(S)$
2	Toluene	$55(S)$
3	EtOAc	$55(S)$
4	MeOH	$3(R)$
5	$\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}$	$28(S)$

${ }^{\text {a }} 1.0 \mathrm{mmol}$ of $\mathbf{1 a},\left[\mathrm{Ru}(p\right.$-cymene $)\left((R)-\mathrm{C}_{3}\right.$-TunePhos $\left.) \mathrm{Cl}\right] \mathrm{Cl} 10.0 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of solvent, $50^{\circ} \mathrm{C}, 5.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,20 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Full conversion was observed in all cases, determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy; ee-values were determined by GC analysis; absolute configurations were compared to synthesized enantiomerically pure O-silylated methyl lactates.

Unpolar solvents, such as toluene, do not have a significant influence on the enantioselectivity of the reaction (entry 2), as opposed to THF. When the more polar solvent EtOAc is used, the enantiomeric excess is still at the same level (of 55% ee). For the effect of solvents it can be concluded that the more polar it is the lower the ee-value of the product is (entries 4,5). Protic solvents do affect the stereoselectivity negatively. Interestingly, for methanol the opposite stereoisomer is favored, even though to only a minor degree. This makes clear that the solvent has an enormous influence on the success of the reaction.

With this result in hands, we screened the most successful precatalysts, $\left[\mathrm{Ru}(p\right.$-cymene $)\left((R)\right.$ - $\mathrm{C}_{3}{ }^{-}$ TunePhos) Cl$] \mathrm{Cl}$ as well as (R) - $\mathrm{BINAP}-\mathrm{RuCl}_{2}$, in the asymmetric hydroformylation of $\mathbf{1 b}$ (Scheme 19, Table 4).

Scheme 19. Hydrogenation of prochiral 2-trimethylsilyloxy methyl crotonate 1b.

Table 4. Asymmetric hydrogenation of $\mathbf{1 b}$ with $\left[\mathrm{Ru}(p\right.$-cymene $)\left((R)\right.$ - C_{3} - TunePhos$\left.) \mathrm{Cl}\right] \mathrm{Cl}$ and $(R)-\mathrm{BINAP}-\mathrm{RuCl}_{2}$ in different solvents. ${ }^{\text {a }}$

Entry	Precatalyst	Solvent	Conversion $^{\text {b }}[\%]$
1	$\left[\mathrm{Ru}(p\right.$-cymene $)\left((R)-\mathrm{C}_{3}\right.$-TunePhos $\left.) \mathrm{Cl}\right] \mathrm{Cl}$	THF	-
2	$\left[\mathrm{Ru}(p\right.$-cymene $)\left((R)-\mathrm{C}_{3}\right.$-TunePhos $\left.) \mathrm{Cl}\right] \mathrm{Cl}$	EtOAc	-
3	$\left[\mathrm{Ru}(p\right.$-cymene $)\left((R)-\mathrm{C}_{3}\right.$-TunePhos $\left.) \mathrm{Cl}\right] \mathrm{Cl}$	Toluene	-
4	$\left[\mathrm{Ru}(p\right.$-cymene $)\left((R)-\mathrm{C}_{3}\right.$-TunePhos $\left.) \mathrm{Cl}\right] \mathrm{Cl}$	PC	-
5	$(R)-\mathrm{BINAP}-\mathrm{RuCl}_{2}$	THF	-
6	$(R)-\mathrm{BINAP}-\mathrm{RuCl}_{2}$	EtOAc	-
7	$(R)-\mathrm{BINAP}^{2} \mathrm{RuCl}_{2}$	Toluene	-
8	(R)-BINAP-RuCl	PC	-

${ }^{\text {a }} 0.5 \mathrm{mmol}$ of $\mathbf{1 b}$, precatalyst $5.0 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of solvent, $50^{\circ} \mathrm{C}, 8.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,20 \mathrm{~h}$.
${ }^{\mathrm{b}}$ No conversion was determined in any case by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
To our amazement, both ruthenium catalysts showed no activity in the asymmetric hydrogenation of 2-trimethylsilyloxy methyl crotonate $\mathbf{1 b}$ at $50^{\circ} \mathrm{C}$ and 8 MPa hydrogen pressure in all tested solvents. Thus, we moved to other catalytic systems developed from ruthenium precursors, while using THF as solvent (Table 5).

Table 5. Asymmetric hydrogenation of $\mathbf{1 b}$ with different catalysts in THF. ${ }^{\text {a }}$

Entry	Precatalyst	Yield ${ }^{\text {b }}$ [\%]	ee ${ }^{\text {c }}$ [\%]
1	$\left[\mathrm{Ru}\left(p\right.\right.$-cymene)((R) - C_{3}-TunePhos) Cl$] \mathrm{Cl}$	9	6 (-)
2	$\mathrm{RuCl}_{3}+(R)-4-\mathrm{Tol-BINAP}$	<5	6 (-)
3	$\mathrm{RuCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)+(R)$-4-Tol-BINAP	8	11 (-)
4	$\mathrm{Ru}(\text { methylallyl })_{2}($ cod $)+(R)-4-\mathrm{Tol-BINAP}$	$_^{\text {d }}$	n.d.
5	$\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{COO}\right)_{2}(\mathrm{cod})+(R)-4-$ Tol-BINAP	$_^{\text {d }}$	n.d.
6	$\mathrm{RuCl}_{3}+(R)$-MeO-BIPHEP	<5	9 (+)
7	$\mathrm{RuCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)+(R)$-MeO-BIPHEP	<5	4 (-)
8	$\mathrm{Ru}(\text { methylallyl })_{2}($ cod $)+(R)-\mathrm{MeO}-\mathrm{BIPHEP}$	28	12 (+)
9	$\mathrm{Ru}\left(\mathrm{CF}_{3} \mathrm{COO}\right)_{2}(\mathrm{cod})+(R)$-MeO-BIPHEP	$-^{\text {d }}$	n.d.
10	$[\operatorname{Rh}((S)$-BINAP $)(\operatorname{cod})] \mathrm{BF}_{4}$	9	3 (+)
11	$\left[\mathrm{Rh}\left(\mathrm{cat} A \mathrm{Sium}^{\text {® }} \mathrm{MQF}(R)\right)(\mathrm{cod})\right] \mathrm{BF}_{4}$	41	5 (-)
12	$\left[\operatorname{Rh}(\mathbf{A})(\mathrm{cod}) \mathrm{BF}_{4}{ }^{\text {e }}\right.$	82	rac
13	$[\mathrm{Rh}(\mathbf{B})(\mathrm{cod})] \mathrm{BF}_{4}{ }^{\text {e }}$	16	1 (-)

${ }^{\mathrm{a}} 0.5 \mathrm{mmol}$ of $\mathbf{1 b}$, precatalyst $5.0 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of THF, $80^{\circ} \mathrm{C}, 8.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,20 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{\text {c }}$ Ee-values were determined by GC analysis.
${ }^{\mathrm{d}}$ No O-TMS-protected hydrogenation product could be detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy due to decomposition.
${ }^{\mathrm{e}}$ Ligands \mathbf{A} and \mathbf{B} were recently prepared in the research group of Prof. Börner and shown in Chapter 5.3.
Unfortunately, $\left[\mathrm{Ru}(p\right.$-cymene $\left.)\left((R)-\mathrm{C}_{3}-\mathrm{TunePhos}\right) \mathrm{Cl}\right] \mathrm{Cl}$ gave only a low yield and a negligible enantioselectivity of 6% (entry 1). When (R)-4-Tol-BINAP was tested with different Ru precursors, it was not able to decisively raise both, yield and ee-value (entries 2-5), or the product decomposed.

Hydrogenation with (R)-MeO-BIPHEP catalyst did also not succeed with respect to conversion and the enantiomeric excess was still poor (entries 6-9).
The rhodium-catalyzed hydrogenation of $\mathbf{1 b}$ was also verified. $\left[\mathrm{Rh}\left(\operatorname{cat} A S \mathrm{Sium}{ }^{\circledR} \mathrm{MQF}(R)\right)\left(\mathrm{cod}^{\mathrm{M}}\right)\right] \mathrm{BF}_{4}$ and $[\operatorname{Rh}(\mathbf{A})(\operatorname{cod})] \mathrm{BF}_{4}$ yielded best conversions up to 82% (entry 12), but the stereodiscrimination was poor in all cases (entries 10-13).
It can be summarized that the asymmetric hydrogenation of O-trimethylsilyoxy methyl acrylate was accomplished successfully to reach complete conversion. With a Ru catalyst the corresponding O-TMS-protected lactate was obtained in 55% ee that was attained for the first time for this type of product. When the crotonate was applied to the reaction instead of the acrylate, no conversion was noted. Adapting more drastic conditions, conversions up to 82% could be reached, but the stereodifferentiation still remained low. The relatively small difference in the structure of both substrates seems to have a great influence on reactivity as well as enantioselectivity.

3.1.2 Preparation of chiral \mathbf{N}, \mathbf{O}-acetals

Chiral N, O-acetals often represent essential fragments of a whole range of natural products and pharmaceuticals. ${ }^{[64]}$ The stereochemical importance of the N, O-acetal subunit, related to the biological activity, is significant and well known today. ${ }^{[64-65]}$
$(-)$-Quinocarcin as one representative, found in a culture broth of Streptomyces melunovinuceus, is a pentacyclic tetrahydroisoquinoline alkaloid that contains a chiral oxazolidine subsequence (Figure 13). ${ }^{[66]}$ This compound shows activity against Gram-positive bacteria in vitro and is moreover antiproliferative against lymphocytic leukemia. ${ }^{[66 a-d]}$ Therefore, it is a promising candidate as antitumor antibiotic..$^{[66 a, b e]}$ Psymberin and Myclamide individuals, belonging to the pederin family, possess a N, O-acetal substructure as well, but only the oxygen is part of a ring and nitrogen is exocyclic. ${ }^{[67]}$ For example, Myclamide E, what belongs to the family of protein synthesis inhibitors, ${ }^{[65 a, 68]}$ can be isolated from the sponge Mycale hentscheli. ${ }^{[69]}$ The myclamide family shows remarkable cytotoxic, ${ }^{[70]}$ antitumor, ${ }^{[68, b]}$ antiviral, ${ }^{[69]}$ immunosuppressive, ${ }^{[71]}$ antifungal and nematocidal activities. ${ }^{[72]}(-)$-Zampanolide ${ }^{[73]}$ and Perinadine $\mathrm{A}^{[74]}$ have an acyclic hemiaminal and N, O-acetal structure, respectively, where both heteroatoms are part of the ring structure.
Next to their natural occurrence, N, O-acetals are used as key intermediates as well. These compounds can be transformed into reactive N-imines and subsequently easily attacked by various nucleophiles. In this context, they play an important role for the synthesis of Discorhabdin A. ${ }^{[75]}$
Although some different method ${ }^{[76]}$ were already developed for the preparation of N, O-acetals, however, the synthesis of chiral acyclic ${ }^{[64]}$ and cyclic ${ }^{[77]} \mathrm{N}, \mathrm{O}$-aminal derivatives is limited to an enantioselective Mannich-type reaction catalyzed by a chiral Brønsted acid, ${ }^{[78]}$ up to now.

(-)-Quinocarcin

Psymberin

Myclamide E

(-)-Zampanolide

Perinadine A

Figure 13. N, O-Acetals as fragments in naturally occurring compounds: (-)-Quinocarcin, Psymberin, Myclamide E, (-)-Zampanolide and Perinadine A.

The hydrogenation of N, O-ketene acetals, ${ }^{\text {i }}$ that can be easily prepared with commercially available reagents, still remains hardly touched so far. In literature there are only two examples for the diastereoselective hydrogenation of a $N, O-$ ketene acetal on Pd / C. ${ }^{[79]}$
Hartley et al. examined the heterogeneous hydrogenation of N-acyl-oxazolone to get chiral oxazolidinones. Disappointingly, the isolated yield of this mixture of diastereomers was only 44%. ${ }^{[79 a]}$ A substituted 1,3-oxazolidine was hydrogenated heterogeneously by Easton and co-workers with Pd / C. They investigated the stepwise hydrogenation of a N, O-ketene acetal possessing an additional C-C double bond, but only a low yield of the product was reached. ${ }^{[79 b]}$
The asymmetric hydrogenation of N, O-ketene acetals has never been accomplished before. It illustrates a great challenge, but could also open new possibilities to get enantiopure N, O-acetals. Via asymmetric hydrogenation we intended to incorporate a chiral group into a substrate that operates as auxiliary, in order to achieve a diastereoselective alkylation afterwards (Scheme 20).

Scheme 20. Generation of a chemical auxiliary via asymmetric hydrogenation followed by diastereoselective alkylation.

[^11]
3.1.2.1 Synthesis of $\boldsymbol{N}, \boldsymbol{O}$-ketene acetals

At first, it was tried to prepare a prochiral N, O-ketene acetal from malonyl chloride and 2-pyrrolidone in toluene under reflux for 5 h . Either trials with or without aqueous work-up failed. It can be speculated that additional water acts as a nucleophile and leads to ring opening of the resulting N, O-ketene acetal. Subsequently, it was necessary to perform the reaction without aqueous work-up.
The reaction in the presence of triethylamine as a base and stirring for 24 h at room temperature was likewise not successful: the starting amide was recovered. Using malonyl diethylester instead of the more reactive chloride, what does not release hydrogen chloride gas, could not be accomplished. Obviously, the 1,3 -dicarbonyl compound is stabilized by a shift of the double bond, what makes it less reactive (Scheme 21).
Changing from malonyl to 2,2-dimethyl malonyl and oxalyl chloride, this rearrangement was prevented, but the desired products could only be obtained in traces from the reaction with 2-pyrrolidone and triethylamine at room temperature (Scheme 21, the reaction with oxalyl chloride is omitted). Furthermore, without aqueous work-up, triethylammonium chloride could not be separated completely from the product by filtration, what led back to a reaction without using any base to avoid annoying salt formation.

Scheme 21. Trials for the preparation of a N, O-ketene acetal: (i) toluene, reflux, 5 h or 3.0 eq $\mathrm{Et}_{3} \mathrm{~N}$, toluene, r.t., 24 h ; (ii) toluene, reflux, 9 h .

When oxalyl chloride and acetanilide were refluxed in carbon disulfide for 16 h , gas evolution was detected. The product was identified as the mono-attacked acyclic intermediate (92%). To ensure ring formation and finally to yield the desired N, O-ketene acetal the reaction time was prolonged to 24 h and benzene was used as solvent with a higher boiling point (Scheme 22).

Scheme 22. Synthesis of N, O-ketene acetals 3a,b: (i) CS_{2}, reflux, 16 h ; (ii) benzene, reflux, 24 h .

Starting from acetanilide and oxalyl chloride in benzene, a brownish precipitate evolved when the reaction mixture was heated under reflux for 24 h . In addition, gas evolution could be obtained. After cooling to room temperature, the solvent was evaporated to yield a puce solid. Purification of the raw
material by column chromatography over silica did not yield final N, O-ketene acetal 3a, due to decomposition. For that reason, the solid was distilled under vacuum to give 78% of $\mathbf{3 a}$ as a white solid.
Employing the same procedure for the symmetric diacetamide ${ }^{i}$ and oxalyl chloride gave 77% of $\mathbf{3 b}$ as a white solid. Both compounds are moisture-sensitive, ${ }^{\text {ii }}$ but can be stored under argon at $5^{\circ} \mathrm{C}$.
Because reactions with unsymmetric imides would always result in a mixture of both regioisomeres, which is laborious to separate, it was tried to prepare a N-unsubstituted N, O-ketene acetal while substitution at the nitrogen should be realized in a further step. Indeed, no product could be isolated from the reaction of oxalyl chloride and acetamide (Scheme 23).

Scheme 23. Synthesis of a N-unsubstituted N, O-ketene acetal: (i) benzene, reflux, 24 h .

3.1.2.2 Asymmetric hydrogenation of \boldsymbol{N}, O-ketene acetals

The studies were initiated by running the hydrogenation with N, O-ketene acetals $\mathbf{3 a}, \mathbf{b}$, what possess a phenyl and an acetyl group, respectively, at the nitrogen atom. First of all, the racemic products were isolated from the hydrogenation with heterogeneous rhodium on charcoal (Scheme 24).

Scheme 24. Hydrogenation of N, O-ketene acetals 3a,b.

The starting material was dissolved in THF and hydrogenated with $2.5 \mathrm{~mol} \% \mathrm{Rh} / \mathrm{C}$ catalyst at room temperature and under 0.3 MPa of hydrogen atmosphere for 20 h . The pure product could be obtained quantitatively after separation from the catalyst by filtration and evaporation of the solvent.
Ketene acetals are not stable toward Lewis acids ${ }^{[76 a]}$ and undergo ring opening in the presence of a catalytic amount of acid and a nucleophile. ${ }^{[790,81]}$ Consequently, especially the proper choice of the solvent is very important. For the asymmetric hydrogenation of this substrate aprotic polar solvents, such as THF or DCM, reveal to be appropriate. They enable the complete solubility of both, substrate and catalyst. Moreover, they are not acidic like methanol and do not react as a nucleophile to cleave the N, O-ketene acetal via ring opening.
As described before, the N, O-ketene acetals are moisture-sensitive and decomposition can already appear after prolonged standing. For this purpose, a blank test was run to verify the robustness toward the reaction conditions. First of all, 1 mmol of the olefin $\mathbf{3 b}$ and $1 \mathrm{~mol} \%$ of the achiral catalyst $[\mathrm{Rh}(\mathrm{dppb})(\mathrm{cod})] \mathrm{BF}_{4}$ were dissolved in 4 mL of DCM and the solution was stirred at room temperature under an atmosphere of argon $(0.1 \mathrm{MPa})$ for 20 h . It could be noticed that the initial yellowish solution

[^12]became yellow, but it was possible to recover the starting material completely. It could be confirmed that the substrate and a homogeneous rhodium catalyst are stable together in solution, even though traces of already formed (acetic) acid are present.
In addition, it was examined, whether the olefin is stable under increased temperature under a hydrogen atmosphere. Two samples of ketene acetal $\mathbf{3 b}$ (each of 1 mmol) were dissolved in THF, temperate to $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$, respectively, and stirred for 15 h under 5 MPa of an H_{2}-atmosphere. As a result, only traces of the corresponding hydrogenation product $\mathbf{4 b}$ could be detected by ${ }^{1} \mathrm{H}$ NMR while the N, O-ketene acetal $\mathbf{3 b}$ remained stable and was recovered quantitatively.
In an initial test series, an achiral homogeneous rhodium precatalyst $[\mathrm{Rh}(\mathrm{dppb})(\mathrm{cod})] \mathrm{BF}_{4}$ was used to determine the activity toward the transformation of $\mathbf{3 b}$ (Table 6).

Table 6. Hydrogenation of $\mathbf{3 b}$ with $1 \mathrm{~mol} \%[\mathrm{Rh}(\mathrm{dppb})(\mathrm{cod})] \mathrm{BF}_{4}$ in THF. ${ }^{\mathrm{a}}$

Entry	$\boldsymbol{T}\left[{ }^{\circ} \mathbf{C}\right]$	$\boldsymbol{p}[\mathbf{M P a}]$	Yield $^{\mathbf{b}}[\mathbf{\%}]$
1	40	5.0	Traces
2	40	8.0	Traces
3	60	1.0	-
4	60	2.0	-
5	60	5.0	Traces
6	60	8.0	Traces

${ }^{\text {a }} 1.0 \mathrm{mmol}$ of $\mathbf{3 b},[\mathrm{Rh}(\mathrm{dppb})(\mathrm{cod})] \mathrm{BF}_{4} 10.0 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of THF, $T, p, \mathrm{~S} / \mathrm{Rh}=100,3 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
In principle, almost no conversion could be detected with $1 \mathrm{~mol} \%$ of $[\mathrm{Rh}(\mathrm{dppb})(\mathrm{cod})] \mathrm{BF}_{4}$ precatalyst at $40^{\circ} \mathrm{C}$ and pressures of 5 MPa and 8 MPa , respectively (entries 1,2). At a temperature of $60^{\circ} \mathrm{C}$, but lower pressures, no product can be determined. Even at higher pressures of 5 MPa or 8 MPa , only traces of the desired N, O-acetal $\mathbf{4 b}$ were found via ${ }^{1} \mathrm{H}$ NMR (entries 5,6). Subsequently, the chiral Rh precatalysts $[\operatorname{Rh}((R)-\mathrm{BINAP})(\mathrm{cod})] \mathrm{BF}_{4}$ and $[\mathrm{Rh}((S, S)-\mathrm{Me}-\mathrm{DuPhos})(\mathrm{cod})] \mathrm{BF}_{4}$ were tested in two solvents (THF and DCM) at $60^{\circ} \mathrm{C}$ and 5 MPa hydrogen pressure (Table 7).

Table 7. Asymmetric hydrogenation of $\mathbf{3 b}$ with $1 \mathrm{~mol} \%[\mathrm{Rh}(\mathrm{PP}-$ ligand $)(\mathrm{cod})] \mathrm{BF}_{4} .{ }^{\text {a }}$

Entry	Ligand	Solvent	Yield $^{\mathbf{b}}[\%]$	ee [\%]
1	(R)-BINAP	THF	-	n.d.
2	(R)-BINAP	DCM	-	n.d.
3	(S, S)-Me-DuPhos	THF	-	n.d.
4	(S, S)-Me-DuPhos	DCM	-	n.d.

${ }^{\mathrm{a}} 0.5 \mathrm{mmol}$ of $\mathbf{3 b}$, precatalyst $5.0 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of solvent, $60^{\circ} \mathrm{C}, 5.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,20 \mathrm{~h}$.
${ }^{\mathrm{b}}$ No yield was determined in any case by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
By means of these results it can be seen that no hydrogenation took place in any solvent under the given conditions. Consequently, more drastic reaction conditions were chosen. The temperature was set to $100^{\circ} \mathrm{C}$ and the hydrogen pressure to 10 MPa . THF, having a higher boiling point, was used as reaction solvent instead of DCM (Table 8).

Table 8. Asymmetric hydrogenation of 3b with $1 \mathrm{~mol} \%$ catalyst in THF. ${ }^{\text {a }}$

Entry	Precatalyst	Yield $^{\mathbf{b}}[\mathbf{\%}]$	ee [\%]
1	$[\mathrm{Rh}((R)$-BINAP $)(\operatorname{cod})] \mathrm{BF}_{4}$	-	n.d.
2	$[\mathrm{Rh}((R, R)-\mathrm{Me}-\mathrm{DuPhos})(\operatorname{cod})] \mathrm{BF}_{4}$	-	n.d.
3	$\left[\mathrm{Ru}(p\right.$-cymene $)(R)-\mathrm{C}_{3}-$ TunePhos $\left.) \mathrm{Cl}\right] \mathrm{Cl}$	-	n.d.
4	(R)-BINAP-RuCl	-	n.d.

[^13]Both, rhodium (entries 1,2) as well as ruthenium catalysts (entries 3,4) showed no activity under these conditions. Despite of the variation of the temperature, hydrogen pressure and solvent, the desired product could not be attained. Only the enhancement of the amount of the catalyst from $1 \mathrm{~mol} \%$ to $5 \mathrm{~mol} \%$ promised first positive results as illustrated in Table 9.

Table 9. Initial trials of the asymmetric hydrogenation of 3b with $5 \mathrm{~mol} \%$ catalyst in THF. ${ }^{\text {a }}$

Entry	Precatalyst	p [MPa]	Yield ${ }^{\text {b }}$ [\%]	ee ${ }^{\text {c }}$ [\%]
$1^{\text {d }}$	$[\mathrm{Rh}((R)$-BINAP $)(\operatorname{cod})] \mathrm{BF}_{4}$	5.0	36	9 (+)
2	$[\mathrm{Rh}((R)-\mathrm{BINAP})(\mathrm{cod})] \mathrm{BF}_{4}$	8.0	60	$8(+)$
3	[$\mathrm{Rh}((R)-\mathrm{MeO}-\mathrm{BIPHEP})(\operatorname{cod})] \mathrm{BF}_{4}$	8.0	36	$11(+)$
4	$[\mathrm{Rh}((S, S)-\mathrm{Me}-\mathrm{DuPhos})(\mathrm{cod})] \mathrm{BF}_{4}$	8.0	8	26 (+)
5	$[\operatorname{Rh}((S, S)-\mathrm{Et}-\mathrm{BPE})(\operatorname{cod})] \mathrm{BF}_{4}$	8.0	25	$50(+)$
6	$\left[\operatorname{Rh}\left((S, S)\right.\right.$-Et-FerroTANE $\left.{ }^{\circledR}\right)($ cod $\left.)\right] \mathrm{BF}_{4}$	8.0	19	rac
7	$\left[\mathrm{Rh}\left((R, S)\right.\right.$-JosiPhos)(cod)] BF_{4}	8.0	96	70 (+)
8	$\left[\mathrm{Ru}(p\right.$-cymene $)(R)-\mathrm{C}_{3}$-TunePhos) Cl$] \mathrm{Cl}$	8.0	2	n.d.
9	(R) - $\mathrm{BINAP}-\mathrm{RuCl}_{2}$	8.0	4	n.d.
10	$\operatorname{Ir}\left((S, S)-\mathrm{Ph}_{2} \mathrm{PThrePHOX}\right)(\mathrm{cod})$	8.0	Traces	n.d.

${ }^{\text {a }} 0.5 \mathrm{mmol}$ of 3b, precatalyst $25.0 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of THF, $40^{\circ} \mathrm{C}, p, \mathrm{~S} / \mathrm{Rh}=20,72 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{\text {c }}$ Ee-values were determined by GC analysis.
${ }^{\mathrm{d}}$ Reaction time was 20 h .
Taken into account that ee-values frequently can be increased by lowering the temperature, the asymmetric hydrogenation of $\mathbf{3 b}$ was run in THF at $40^{\circ} \mathrm{C}$. The Rh-catalyzed hydrogenation with (R)-BINAP as ligand was performed at 5 MPa and 36% of the corresponding acetal $\mathbf{4 b}$ could be detected in ${ }^{1} \mathrm{H}$ NMR, but with only poor enantioselectivity (entry 1). To increase the reactivity, the pressure was set to 8 MPa and the reaction time was expanded to 72 h while the temperature remained unchanged. The isolated yield could be improved to 60% without remarkable changes in terms of enantioselectivity (entry 2). For further test series, the hydrogen pressure was regulated to 8 MPa permanently to ensure satisfying yields.
The hydrogenation with the structurally similar $\mathrm{Rh} /(R)$-MeO-BIPHEP did not engender any significant improvement of the enantioselectivity (11% ee) and showed even worse results in the reactivity under the same conditions (entry 3$)$. $[\mathrm{Rh}((S)-\mathrm{Me}-\mathrm{DuPhos})(\operatorname{cod})] \mathrm{BF}_{4}$ produced only a very low yield of the acetal $\mathbf{4 b}$, but the enantiomeric excess was improved to 26% (entry 4). A higher ee-value of 50% was reached with a rhodium catalyst based on the structurally similar ligand (S, S)-Et-BPE (entry 5). The best result was attained with the $\mathrm{Rh} /(R, S)$-JosiPhos catalyst. A yield of 96% of product $\mathbf{4 b}$ and highest enantiomeric excess of 70% were reached for the first time (entry 7). Two Ru-complexes and one Ircomplex were also used in the asymmetric hydrogenation of $\mathbf{3 b}$, but without success (entries 8-10). Encouraged by the result of the $\mathrm{Rh} /(R, S)$-JosiPhos catalyst, a series of commercially available ferrocene-based ligands (Figure 14) was screened for the asymmetric hydrogenation of 3b.

(R, S)-JosiPhos-type
(R, S)-JosiPhos $\quad \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{cHex}$
(R, S)-JosiPhos-1 $\quad \mathrm{R}^{1}=c \mathrm{Hex}, \mathrm{R}^{2}=t \mathrm{Bu}$
(R, S)-JosiPhos-2 $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{cHex}$
(R, S)-JosiPhos-3 $\quad \mathrm{R}^{1}=4-\mathrm{MeO}-3,5-\mathrm{di}-\mathrm{Me}-\mathrm{Ph}$ $R^{2}=3,5-x y|y|$

(R, R)-WalPhos-type
(R, R)-WalPhos-1 $\quad \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=3,5-\mathrm{di}^{-} \mathrm{CF}_{3}-\mathrm{Ph}$

(S,R)-JosiPhos-type
(S, R)-JosiPhos- $4 \quad \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=t \mathrm{Bu}$

(S,S,R)-MandyPhos-type
(S,S,R)-MandyPhos-1 $\quad \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{cHex}$
(S, S, R)-MandyPhos-2 $\quad \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Ph}$

Figure 14. Applied ferrocene-based ligands for the asymmetric hydrogenation of N, O-ketene acetal $\mathbf{3 b}$.
The hydrogenation was performed with the previously set conditions ($40{ }^{\circ} \mathrm{C}, 8 \mathrm{MPa}$ hydrogen atmosphere) (Table 10).

Table 10. Screening of ferrocene-based ligands for the asymmetric hydrogenation of $\mathbf{3} \mathbf{b}$ with $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}$ in $\mathrm{THF}^{\text {a }}$

Entry	Ferrocene-based ligand	Yield ${ }^{\text {b }}$ [\%]	ee ${ }^{\text {c }}$ [\%]
1	(R, S)-JosiPhos	90	70 (+)
2	(R, S)-JosiPhos-1	86	$20(+)$
3	(R, S)-JosiPhos-2	87	17 (-)
4	(R, S)-JosiPhos-3	51	$53(-)$
5	(S, R)-JosiPhos-4	81	$35(+)$
6	(R, R)-WalPhos-1	97	48 (+)
7	(S, S, R)-MandyPhos-1	29	14 (+)
8	(S, S, R)-MandyPhos-2	37	16 (-)
0.5 mm $\mathrm{S} / \mathrm{Rh}=20$ ${ }^{\mathrm{b}}$ Isolated Ee-value	1 of $\mathbf{3 b},\left[\operatorname{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4} 25.0$ 72 h . ields after Kugelrohr distillation were determined by GC analys	e-based ligan	$4 \mathrm{~mL} \text { of }$

Various substituents at the phosphorus atom of the ferrocene-based ligands have different influences on the progress of the reaction as well as on the stereoselectivity. Starting with the ligands from the JosiPhos family, the runs showed very good conversion rates and yielded up to 90% of the desired product (entries 1-3). An influence of the P-substituents can also be noted. Interestingly, opposed stereoisomers are preferably formed while using two ligands with the same stereodescriptor (entries 2,3). When steric demanding phenyl groups were linked to the phosphorus, the reactivity decreased while a moderate enantioselectivity was reached (53%, entry 4).
Changing to the structurally similar WalPhos-type ligand with strongly electron withdrawing $\mathrm{CF}_{3}{ }^{-}$ groups at the phenyl ring, full conversion was observed (entry 6). A yield of 97% of the product $\mathbf{4 b}$ was isolated with an ee-value of 48% (entry 6).
Hydrogenation, catalyzed by Rh/MandyPhos-type ligands, gave the acetal in only low yield with negligible enantiomeric excesses (entries 7,8).

The (R, S)-JosiPhos ligand induced the best result with respect to enantioselectivity. Consequently, an attempt to optimize the reaction by variation of the solvent was carried out. Because the amount of catalyst was significantly high, we attempted to minimize the substrate/rhodium ratio, simultaneously (Table 11).

Table 11. Asymmetric hydrogenation of $\mathbf{3 b}$ with $[\operatorname{Rh}((R, S)$-JosiPhos $)(\operatorname{cod})] \mathrm{BF}_{4} .^{\text {a }}$

Entry	Solvent	$\mathbf{S} / \mathbf{R h}$	$\boldsymbol{T}\left[{ }^{\circ} \mathbf{C}\right]$	$\boldsymbol{p}[\mathbf{M P a}]$	Yield $^{\mathbf{b}}[\mathbf{\%}]$	ee $^{\mathbf{c}}[\mathbf{\%}]$
1	THF	20	40	8.0	90	$70(+)$
2	DCM	20	40	8.0	64	$45(+)$
3	EtOAc	20	40	8.0	86	$14(+)$
4	Toluene	20	40	8.0	25	$31(+)$
5	THF	40	50	10.0	10	$18(+)$
6	DCM	40	50	10.0	24	$11(+)$
7	EtOAc	40	50	10.0	23	$4(+)$
8	Toluene	40	50	10.0	19	$8(+)$

${ }^{\text {a }} 0.5 \mathrm{mmol}$ of $\mathbf{3 b}$, $[\mathrm{Rh}((R, S)$-JosiPhos)(cod)]BF4 $12.5-25.0 \mu \mathrm{~mol} \mathrm{H}, 4 \mathrm{~mL}$ of solvent, $T, p, \mathrm{~S} / \mathrm{Rh}, 72 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Isolated yields after Kugelrohr distillation.
${ }^{\text {c }}$ Ee-values were determined by GC analysis.
It can be seen that the solvent has a dramatic influence on the reaction rate. DCM and EtOAc as well as toluene diminish the conversion and seem to have a negative influence on the stereoselectivity of the reaction.
When the amount of catalyst was reduced to $2.5 \mathrm{~mol} \%$, the isolated yield of the desired N, O-acetal $\mathbf{4 b}$ along with its enantiomeric excess declined dramatically in all solvents, even at $50^{\circ} \mathrm{C}$ and 10 MPa hydrogen pressure.
In conclusion, this synthesis strategy promotes chiral N, O-acetals, what can be achieved by a simple two step preparation from inexpensive bulk chemicals. The asymmetric hydrogenation of one representative of the family of N, O-ketene acetals was carried out for the first time and delivered a chiral N, O-acetal in 70% ee and excellent yield of 96% by using a commercially available Rh catalyst under mild conditions.
The final functionalized N, O-acetals can be processed further and used for the construction of biologically active compounds.

3.1.3 Preparation of β^{2}-amino acid derivatives ${ }^{[82]}$

For many years, enantiopure β^{2}-amino acids have played an important role in biochemistry and medicine. These structures can be found as building blocks in several natural products, but also in pharmaceuticals and fine chemicals. ${ }^{[83]} \beta^{2}$-Homoalanine, as simplest representative of chiral β^{2}-amino acids, is a substructure (unit C) of naturally occurring cyclic depsipeptides and can be found inter alia in cryptophycins ${ }^{[84]}$ (Figure 15). These compounds are active as antibiotics and display strong cytotoxic activity that is why they are used as promising candidates of anticancer agents. ${ }^{[85]}$
Chiral 3-amino-2-methylpropanol, derived from β^{2}-homoalanine by reduction of the carboxyl group, can be employed as a synthon for the synthesis of Cyclamenol A. ${ }^{[86]}$ This macrolactame inhibits leukocyte adhesion to endothelial cells and is one of rare non-carbohydrates or peptides of this class. ${ }^{[87]}$ It possesses an anti-inflammatory and anti-infective activity and is used for symptoms related to asthma, arthritis and strokes. ${ }^{[88]}$

β^{2}-Homoalanine

Cryptophycin-1

3-Amino-2-methylpropanol

Cyclamenol A

Figure 15. Structures of β^{2}-homoalanine and 3-amino-2-methylpropanol as building blocks for natural compounds Cryctophycin-1 and Cyclamenol A.

Up to now, the synthesis of enantiomerically pure β^{2}-homoalanine derivatives have mainly been focused on starting material from the chiral pool, ${ }^{[84,87]}$ however, alternative routes, such as chiral resolution ${ }^{[88]}$ and stereoselective alkylation, ${ }^{[90]}$ exist, too.
The asymmetric hydrogenation of dehydro β^{2}-homoalanine has an interesting potential, especially on large industrial-scale. Compared to a great number of routes to β^{3}-homoalanine derivatives, ${ }^{[83,91]}$ the accessibility of chiral β^{2}-homoalanine and its representatives via catalysis is limited. ${ }^{[92]}$ The preparation of those compounds by the asymmetric hydrogenation of functionalized allylamides was rarely examined in the past and with varying degree of success. ${ }^{[93]}$
Some publications exist, wherein N-phthaloyl-protected olefins were converted with rhodium or ruthenium catalysts and high stereoselectivity. ${ }^{[93 \mathrm{a}-\mathrm{e}]}$ Those publications have in common that noncommercial phosphorus ligands were used, synthesized with much effort. With respect to the subsequent cleavage of the large N-phthalimido protecting group, a considerable amount of organic waste is produced, what is disadvantageous in terms of atom efficiency and application on industrialscale.
Qiu et al. examined the asymmetric hydrogenation of N-benzyloxy-protected α-aminomethyl acrylates with commercial $[\mathrm{Rh}(E t-D u P h o s)(c o d)] \mathrm{BF}_{4}$ as precatalyst and reached ee's up to $83 \%{ }^{[937]} N$-Bocprotected allylamides were employed in asymmetric hydrogenation by Stephan et al. using a selfprepared chiral ligand related to DIPAMP, called t Bu-SMS-Phos. ${ }^{[93 g]}$
Furthermore, to the best of our knowledge, there is only one example for the asymmetric hydrogenation of N-acetyl derivatives. Robinson et al. performed a reaction with commercially available (R, R)-Me-BPE, but reached poor enantioselectivities (up to 33%). Moreover, long reaction times were required. ${ }^{[93 \mathrm{~h}]}$
Working group of Börner investigated the preparation of N-benzyl- and N-Boc-protected alkyl 2-aminomethyl-3-aryl-propanoates via a Rh-catalyzed asymmetric hydrogenation, ${ }^{[93 i]}$ but the synthesis of simple enantiopure β^{2}-homoalanine by asymmetric hydrogenation still remains a challenge.

3.1.3.1 Synthesis of dehydro $\boldsymbol{\beta}^{2}$-homoalanine derivatives

First of all, starting from methyl and ethyl acrylate, respectively, 2-hydroxymethyl acrylates 5a,b could be synthesized in a Baylis-Hillmann reaction with an excess of paraformaldehyde. ${ }^{[94]}$ These
compounds were obtained in $43 \%(\mathbf{5 a})$ and $70 \%(\mathbf{5 b})$ yield, respectively, as colorless, viscous oils after column chromatography. Compound $\mathbf{5 a}$ served as educt for the synthesis of N-acetyl-protected derivative 6a by reaction with acetonitrile in the presence of methanesulfonic acid. The nitrogen attacks the terminal side of the $\mathrm{C}=\mathrm{C}$ bond and the double bond rearranges by elimination of water. After aqueous work-up and subsequent flash chromatography, 6a yielded as white solid in 47%. ${ }^{[95]}$ This compound is hygroscopic and can be stored for several days under argon at $-20^{\circ} \mathrm{C}$.
When Baylis-Hillmann adducts 5a,b were reacted with tribromo phosphine, the corresponding halogenated olefins 7a,b could be isolated in 89% and 67%, respectively. ${ }^{[96]}$ By reaction with di-tertbutyl iminodicarboxylate, they were transferred into the di- N-Boc-protected derivatives $\mathbf{6 b}, \mathbf{c}$, which were isolated without further purification (95% and 99% yield). When these compounds were treated with scandium(III) triflate, the monoprotected compounds $\mathbf{6 d , e}$ were formed. Both could be obtained in 84% yield after column chromatography. ${ }^{[97]}$

Scheme 25. Synthesis of varying N-protected, prochiral dehydro β^{2}-homoalanine derivatives 6a-e: (i) 1.0 eq DABCO , dioxane/water ($v: v 1: 1$), r.t., 72 h ; (ii) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $60^{\circ} \mathrm{C} \rightarrow 110^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (iii) $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} \rightarrow$ r.t., 2 h ; (iv) 1.5 eq $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, r.t., 72 h ; (v) THF, r.t., 24 h.

3.1.3.2 Enantioselective hydrogenation of dehydro $\boldsymbol{\beta}^{2}$-homoalanine derivatives

Methyl 2-(acetamidomethyl)acrylate $\mathbf{6 a}$ was exemplarily taken as a test substrate for asymmetric hydrogenation. Catalysts were prepared from a commercially available precatalyst of the type $[\mathrm{Rh}(\mathrm{PP}-\mathrm{ligand})(\mathrm{cod})] \mathrm{BF}_{4}$ under hydrogen atmosphere and in the presence of the prochiral substrate with a substrate/rhodium ratio (S/Rh) of 100/1 (Scheme 26).

Scheme 26. Asymmetric hydrogenation of dehydro β^{2}-homoalanine derivative $\mathbf{6 a}$.

Ligands, previously proved for the asymmetric hydrogenation of structurally similar compounds, were chosen. ${ }^{[93 f, \text {,i] }]}$ In general, the reaction with chiral diphospholane ligands showed most promising results (Table 12).

Table 12. Initial trials of the asymmetric hydrogenation of $\mathbf{6 a}$ with $[\mathrm{Rh}(\mathrm{PP}-$ ligand $)(\operatorname{cod})] \mathrm{BF}_{4}{ }^{\text {a }}$

Entry	Ligand	Solvent	p [MPa]	ce ${ }^{\text {b }}$ [\%]
$1^{\text {c }}$	(S, S, R, R)-TangPhos	MeOH	2.5	29 (S)
2	(S, R)-JosiPhos	MeOH	2.5	$28(R)$
3	(S, S)-Et-DuPhos	MeOH	2.5	$92(R)$
4	cat A Sium ${ }^{\text {® }} \mathrm{MQF}(R)$	MeOH	2.5	57 (S)
5	(S, S)-Me-BPE	MeOH	2.5	29 (R)
$6^{\text {d }}$	cat $A S$ ium ${ }^{\text {® }} \mathrm{MQF}(R)$	MeOH	0.1	21 (S)
$7{ }^{\text {e }}$	cat A Sium ${ }^{\text {® }} \mathrm{MQF}(R)$	DCM	0.1	89 (S)
8	cat A Sium ${ }^{\text {® }} \mathrm{MQF}(R)$	DCM	2.5	>99 (S)
9	cat $A S$ ium ${ }^{\text {® }} \mathrm{MQF}(R)$	THF	2.5	23 (S)
$10^{\text {c }}$	(S, S, R, R)-TangPhos	DCM	2.5	14 (S)
11	(S, S)-Me-DuPhos	DCM	2.5	5 (R)
12	(S, S)-Et-DuPhos	DCM	2.5	68 (R)
13	(S, S)-iPr-DuPhos	DCM	2.5	rac
14	(S, S)-Me-BPE	DCM	2.5	$41(R)$

${ }^{\mathrm{a}} 0.33 \mathrm{mmol}$ of $6 \mathrm{a},\left[\mathrm{Rh}\right.$ (PP-ligand)(cod)]BF4 $3.3 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of solvent, $25^{\circ} \mathrm{C}, 0.1 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,20 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Full conversion was observed in all cases, determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy; ee-values were determined by GC analysis.
${ }^{\text {c }}$ Side product 9 a (vide infra) was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (6% and 22%).
${ }^{d}$ Reaction time was 6 h .
${ }^{\mathrm{e}}$ Reaction time was 20 min .
All reactions proceeded with full conversion. When the hydrogenation was performed in methanol, ligands like (S, S, R, R)-TangPhos and (S, R)-JosiPhos gave only poor enantioselectivities (entries 1,2). Hydrogenation with (S, S)-Et-DuPhos as ligand resulted in the best stereodifferentiation with 92 \%ee (entry 3). Structurally related ligands could not improve the stereoselectivity under the same conditions (entries 4,5). Changing to THF and DCM, respectively, enormously affected the stereoselectivity. Highest ee-values could be achieved with a $\operatorname{Rh}\left[\operatorname{cat} A S i u m{ }^{\circledR} \mathrm{MQF}(R)\right]$ precatalyst in $\mathrm{DCM}^{[9 \text { a] }}$ (entry 8) when the hydrogen pressure was 2.5 MPa . A comparison between the structurally similar ligand DuPhos and cat $A \operatorname{Sium}^{8} \mathrm{MQF}(R)$ shows only a slight difference in the steric, but the more in the electronic structure. While the phosphorus atoms of the DuPhos ligand are attached to a benzene ring, cat A Sium ${ }^{\circledR} \mathrm{MQF}(R)$ possesses a four-membered ring as backbone bearing four strong electron withdrawing fluorine atoms. Therefore, the electron density at the phosphorus is reduced, what has a positive effect on the asymmetric hydrogenation. An enantiomeric excess up to $>99 \%$ could be reached. In some cases, also the isomerized side product $9 \mathbf{a}$ was detected (entries 1,10).
With the $\operatorname{Rh}\left[\operatorname{cat} A S i u m{ }^{\circledR} \mathrm{MQF}(R)\right]$ precatalyst in hand we tried to optimize other reaction parameters (time, pressure of $\mathrm{H}_{2}, \mathrm{~S} / \mathrm{Rh}$) (Table 13).

Table 13. Optimization of the reaction conditions for the asymmetric hydrogenation of $\mathbf{6 a}$ with $\left[\mathrm{Rh}\left(\operatorname{cat} A\right.\right.$ Sium $\left.\left.^{\circledR}{ }^{\circledR} \mathrm{MQF}(R)\right)(\operatorname{cod})\right] \mathrm{BF}_{4}$ in DCM. ${ }^{\text {a }}$

Entry	$\mathbf{S} / \mathbf{R h}$	$\boldsymbol{p}[\mathbf{M P a}]$	$\boldsymbol{t}[\mathbf{h}]$	Conversion $^{\mathbf{b}} \mathbf{[\%]}$	ee $^{\mathbf{c}}[\mathbf{\%} \mathbf{\%}]$
1	100	2.5	20	>99	>99
2	200	2.5	1.5	>99	>99
3	500	2.5	4.5	>99	>99
4	500	2.5	0.2	>99	>99
$5^{\text {d }}$	1000	2.5	4.5	>99	54
6	1000	5.0	4.5	99	11
$7^{\text {d }}$	2000	5.0	20	89	69
$8^{\text {d }}$	1000	15.0	20	89	39
$9^{\text {d }}$	1500	15.0	20	75	12
$10^{\text {d }}$	1750	15.0	20	64	18
$11^{\text {d }}$	2000	15.0	20	>99	99
$12^{\text {e }}$	300	5.0	3		

${ }^{\text {a }} 0.33 \mathrm{mmol}$ of $\mathbf{6 a},\left[\mathrm{Rh}\left(\operatorname{cat} A \operatorname{Sium}^{\circledR} \mathrm{MQF}(R)\right)(\operatorname{cod})\right] \mathrm{BF}_{4} 0.17-3.3 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of $\mathrm{DCM}, 25^{\circ} \mathrm{C}, p, \mathrm{~S} / \mathrm{Rh}, t$.
${ }^{\mathrm{b}}$ Conversions were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{\text {c }}$ Ee-values of the (S)-enantiomer were determined by GC analysis.
${ }^{\mathrm{d}}$ Side product 9a (vide infra) was observed by ${ }^{1} \mathrm{H}$ NMR spectroscopy (4-15 \%).
${ }^{\mathrm{e}} \mathrm{Up}$-scale to 1.0 g of substrate.
At first, we reduced the amount of the catalyst and increased the substrate/rhodium ratio from 100/1 to 500/1, while adjusting the reaction time, simultaneously (entries 1-4). Fortunately, no decline in the conversions or enantioselectivities was noted. Even with a ratio of $\mathrm{S} / \mathrm{Rh}=500$ the reaction time could be drastically reduced to 20 min without any loss of yield of the desired product (entry 4). Further increase of the S / Rh ratio to $1000 / 1$ influenced the selectivity (54% ee, entry 5). This can be rationalized by the fact that the external double bond migrates and isomeric olefins $(E)-\mathbf{9 a}$ and $(Z)-\mathbf{9 a}$ are formed (the shifts of the signals in ${ }^{1} \mathrm{H}$ NMR can be compared to those of the ethyl ester, ${ }^{[93 a]}$ (Scheme 27). It can be supposed that these enamides are hydrogenated likewise but with lower enantioselectivity, what decreases the overall enantiomeric excess. Both isomers, (E)-9a and (Z)-9a, could be identified in the final mixture, what gives evidence for this assumption.
To avoid any loss of stereoselectivity, when a S / Rh ratio of $1000 / 1$ is used, the H_{2}-pressure was increased to 5 MPa (entry 6). With a lower catalyst amount, the conversion and also the enantioselectivity declined (entries 7-11). Up-scaling to 1 g of the substrate was successfully accomplished at a S / Rh ratio of 300 (entry 12). With the optimized conditions it was possible to hydrogenate N-Boc-protected substrates 6b-e (Table 14).

Table 14. Scope of the asymmetric hydrogenation of $\mathbf{6 b - e}$ with $\left[\operatorname{Rh}\left(\operatorname{cat} A \operatorname{Sium}^{\circledR} \mathrm{MQF}(R)\right)(\operatorname{cod})\right] \mathrm{BF}_{4}$ in $\mathrm{DCM}^{\text {a }}$

Entry	Substrate	p [MPa]	$t[\mathrm{~h}]$	Conversion ${ }^{\text {b }}$ [\%]	ee ${ }^{\text {c }}$ [\%]
1	6b	2.5	20	38	77 (+)
2	6b	5.0	20	55	$75(+)$
3	6c	2.5	20	34	$81(+)$
4	6c	5.0	20	43	73 (+)
$5^{\text {d }}$	6d	2.5	1	39	91 (S)
$6^{\text {d }}$	6d	2.5	3	45	90 (S)
$7{ }^{\text {d }}$	6d	2.5	20	42	87 (S)
$8^{\text {d }}$	6d	5.0	3	42	83 (S)
9	6d	5.0	20	>99	83 (S)
$10^{\text {e }}$	6d	8.0	20	>99	94 (S)
$11^{\text {d }}$	6d	1.0	3	52	86 (S)
$12^{\text {d }}$	6 e	2.5	1	83	89 (S)
13	6 e	2.5	3	>99	88 (S)
14	6 e	2.5	20	>99	87 (S)
15	6 e	5.0	3	>99	83 (S)
16	6 e	1.0	3	>99	91 (S)
17	6e	0.1	3	>99	$96(S)$

${ }^{\text {a }} 0.33 \mathrm{mmol}$ of substrate, $\left[\mathrm{Rh}\left(\right.\right.$ cat A Sium $\left.\left.{ }^{\circledR} \mathrm{MQF}(R)\right)(\operatorname{cod})\right] \mathrm{BF}_{4} 3.3 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of $\mathrm{DCM}, 25^{\circ} \mathrm{C}, p, \mathrm{~S} / \mathrm{Rh}=100, t$.
${ }^{\mathrm{b}}$ Conversions were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{c}$ Absolute configuration of $\mathbf{6 b}$ and $\mathbf{6 c}$ could not be determined clearly. The sign of the specific rotation was positive. The positive sign of the specific rotation for $\mathbf{6 d}$ and $\mathbf{6 e}$ corresponds to their (S)-enantiomers; ee-values were determined by GC or HPLC analysis.
${ }^{\mathrm{d}}$ Side products 9 d and 9 e (vide infra) were observed by ${ }^{1}$ H NMR spectroscopy (3-15 \%).
${ }^{\mathrm{e}} \mathrm{S} / \mathrm{Rh}=50$.
In general, the asymmetric hydrogenation of di- N-Boc-protected acrylates $\mathbf{6 b}, \mathbf{c}$ proved to be more difficult (entries 1-4). The conversions of these substrates were only moderate although the reactions were performed for 20 h . Doubling the pressure from 2.5 to 5 MPa slightly raised the conversion, however, affected the enantioselectivity (entries 2,4). For these substrates only moderate ee-values could be reached. Changing to the mono- N-Boc-protected substrate 6d led to improved enantioselectivities, but the conversions were still low, despite of extension of the reaction times (entries 5-7). Full conversion was reached with a hydrogen pressure of 5 MPa without any side reactions after 20 h (entry 9). Unfortunately, the enantioselectivity fell to 83%. The best result (full conversion, $94 \% \mathrm{ee}$) was reached with a hydrogen pressure of 8 MPa and a substrate/rhodium ratio of 50 (entry 10).
For ethyl acrylate $\mathbf{6 e}$ full conversion was already achieved after 3 h at a hydrogen pressure of 2.5 MPa . (entry 13). When the H_{2}-pressure was increased to 5 MPa , the enantioselectivity dropped to 83%. Finally, a lower hydrogen pressure of 1 MPa and 0.1 MPa , respectively, had a positive effect on the stereoselectivity (91% ee and 96% ee). Furthermore, in some cases, the external double bond migrates to the internal position to form (E) - and (Z)-isomers as already mentioned for $\mathbf{6 a}$ (Scheme 27). These corresponding enamides $9 \mathbf{d}, \mathbf{e}$ could be found in the final mixtures up to $3-15 \mathrm{~mol} \%$ (entries $5-8,11,12$). This effect could be observed especially in solvents like THF and MeOH. In asymmetric hydrogenation this isomerization causes incomplete hydrogenation and also drastically reduced enantioselectivities. ${ }^{\text {i }}$ Surprisingly, an enantiomeric excess of only 4% was detected when the hydrogenation of $\mathbf{6 d}$ was performed with $\mathrm{Rh} /(S, S)$-Et-DuPhos under standard conditions $\left(25{ }^{\circ} \mathrm{C}\right.$, $2.5 \mathrm{MPa}, 20 \mathrm{~h}$) in methanol. 85% of the substrate were converted, but at least 10% thereof isomerized (not shown in Table 14).

[^14]

Scheme 27. Asymmetric hydrogenation of derivatives 6a-e and concomitant isomerization.

3.1.3.3 Synthesis of chiral secondary products

N-Acetyl-protected 3-amino-2-methylpropanol ${ }^{[99]}$ 10a can be generated by reduction of N-acetyl derivative 8a. Therefore, this compound served as a model substrate with $>99 \%$ ee, which was taken from the enantioselective hydrogenation of $\mathbf{6 a}$ (Table 12, entry 8). At first, the ester group was selectively reduced by using LiAlH_{4} at $0^{\circ} \mathrm{C}$ within 2 h to give corresponding alcohol 10a. Fortunately, under these conditions, the N-acetyl group was not affected and the chiral integrity remained almost intact (98 \%ee, Scheme 28).

Scheme 28. Reduction of the ester group of chiral hydrogenation product 8a: (i) THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

When the reaction time was extended to 4 h , the N-acetyl moiety was also reduced to give (S)-3-(ethylamino)-2-methylpropan-1-ol (10a', 11% visible in the crude mixture together with 10a).
The N-Boc-protected ester 8e ($96 \% \mathrm{ee}$, Table 14, entry 17) could be likewise reduced with LiAlH_{4} at $0^{\circ} \mathrm{C}$ within 5 h to give amino alcohol 10b. The enantiomeric excess of O-acetyl derivative 13, obtained by in situ treatment of $\mathbf{1 0 b}$ with acetyl chloride, retained in comparison to ester $\mathbf{8 e}(95 \%$ ee, Scheme 29).
To remove the N-Boc-protection group of $\mathbf{1 0 b}$ the alcohol was treated with trifluoroacetic acid in dichloromethane to yield the corresponding chiral deprotected ammonium salt $\mathbf{1 2}$ of the amino alcohol with 95-96 \%ee. Alternatively, the N-Boc group of ester $\mathbf{8 e}$ could be removed firstly when treated with $\mathrm{HCl} /$ dioxane. Hydrochloride $\mathbf{1 1}$ of the amino acid ester was generated this way under complete preservation of the enantioselectivity (96% ee). Followed reduction of the ester group was performed
with LiAlH_{4} and NaBH_{4}, respectively. Unfortunately, the reaction was accompanied by the formation of several by-products and did not yield the corresponding alcohol.

Scheme 29. Further reactions of chiral hydrogenation product $\mathbf{8 e}$: (i) THF, $0^{\circ} \mathrm{C} \rightarrow$ r.t., 5 h ; (ii) dioxane, r.t., 2 h ; (iii) DCM, r.t., 3 h .

In conclusion, it was possible to prepare enantiopure 2 -methyl $-\beta$-alanine (β^{2}-homoalanine) derivatives via enantioselective hydrogenation by using the commercially available precatalyst $\left(\left[\operatorname{Rh}\left(\operatorname{cat} A\right.\right.\right.$ Sium $\left.\left.\left.^{\circledR} \mathrm{MQF}(R)\right)(\operatorname{cod})\right] \mathrm{BF}_{4}\right)$ under mild conditions. Furthermore, this route tolerates different ester groups as well as different N-protecting groups. This fact is especially precious with regard to the great variation possibilities for the construction of peptides and potential biologically active compounds.
It was also possible to transform the β^{2}-homoalanine into chiral N-protected 3-amino-2methylpropanol derivatives to get a valuable building block.

3.2 Hydroformylation

3.2.1 Preparation of functionalized $\boldsymbol{\beta}^{2}$-homoalanine derivatives

The successful asymmetric hydrogenation of dehydro β^{2}-homoalanine derivatives prompted us to undertake more investigations, what led to the asymmetric hydroformylation of this substrate class. Independently, what side of the double bond is mainly attacked, we expected a chiral carbonyl compound that could serve as a building block for a range of interesting functionalized compounds (e.g. chiral substituted mixed malonic acid ester).

3.2.1.1 Asymmetric hydroformylation of dehydro $\boldsymbol{\beta}^{2}$-homoalanine derivatives

From the hydroformylation of methyl 2-(acetamidomethyl)acrylate 6a, different products can result. Next to both aldehydes, $\mathbf{1 4}$ (branched aldehyde) and $\mathbf{1 5}$ (linear aldehyde), the hydrogenation product $\mathbf{8 a}$ as well as the isomerized olefins $(E)-\mathbf{9 a}$ and (Z)-9a should be taken into consideration (Scheme 30).

Scheme 30. Hydroformylation of dehydro β^{2}-homoalanine derivative $\mathbf{6 a}$.
We started our trials with non-asymmetric hydroformylation and used achiral phosphine and phosphite ligands under several conditions (Table 15).

Table 15. Initial trials of the Rh-catalyzed non-asymmetric hydroformylation of $\mathbf{6 a} .^{\text {a }}$

Entry	Ligand	$\boldsymbol{T}\left[{ }^{\circ} \mathrm{C}\right]$	p [MPa]	$14^{\text {b }}$ [\%]	15 ${ }^{\text {b }}$ [\%]	$\begin{aligned} & 8 \mathbf{8 a}^{\mathbf{b}} \\ & {[\%]} \\ & \hline \end{aligned}$	$\begin{aligned} & (E)-9 \mathbf{a}^{\mathrm{b}} \\ & {[\%]} \end{aligned}$	$\begin{aligned} & (Z)-9 a^{b} \\ & {[\%]} \end{aligned}$
1	PPh_{3}	100	5.0	-	-	-	17	83
2	$\mathrm{P}(\mathrm{OPh})_{3}$	60	2.0	5	-	-	9	86
$3^{\text {c }}$	BiPhePhos	60	2.0	4	-	15	16	66
$4^{\text {d }}$	$\mathrm{P}(\mathrm{OPh})_{3}$	30	2.0	50	-	4	5	41

${ }^{\text {a }} 1.0 \mathrm{mmol}$ of $6 \mathrm{a}, \mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 10.0 \mu \mathrm{~mol}$, ligand $30.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $T, p, \mathrm{~S} / \mathrm{Rh}=100,21 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Full conversion was observed in all cases; yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{c}$ Ligand $12.0 \mu \mathrm{~mol}$.
${ }^{\mathrm{d}}$ Reaction time was 65 h ; ligand $60.0 \mu \mathrm{~mol}$.
In a first trial, the hydroformylation was performed at $100^{\circ} \mathrm{C}$ and under syngas atmosphere of 5 MPa with $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ and triphenylphosphine as ligand. Although full conversion occurred, neither aldehydes nor the hydrogenation product were detected. The substrate was completely converted into the isomerized (E) - and (Z)-olefin (entry 1). Under milder conditions ($60^{\circ} \mathrm{C}, 2 \mathrm{MPa}$ syngas), using the monodentate ligand triphenylphosphite, 95% of the isomerization product were generated, but also a small amount of the iso-aldehyde could be detected. When the bidentate BiPhePhos was employed, 15% of hydrogenation product $\mathbf{8 a}$ were formed, but the quantity of the branched aldehyde was still low and the linear aldehyde could not be determined at all. Unfortunately, the isomerization products represented the main part of the product mixture (82%, entry 3).
While reducing the temperature to $30^{\circ} \mathrm{C}$, the reaction time was extended to 65 h to ensure full conversion. When $\mathrm{Rh} / \mathrm{P}\left(\mathrm{OPh}_{3}\right)_{3}$ was used, the amount of the isomerized olefins could be reduced to $5 \%((E)-\mathbf{9 a})$ and $41 \%((Z)-9 \mathbf{a})$, respectively, whereas the amount of the branched aldehyde raised up to 50%.
When trisubstituted olefin (E)-9a was hydoformylated with the rhodium catalyst, using triphenylphosphine at $100^{\circ} \mathrm{C}$ and 5 MPa , no reaction occurred and the starting material was recovered quantitatively (${ }^{1} \mathrm{H}$ NMR, not shown in Table 15). This makes clear that the isomerized olefin does not react further to the aldehyde under the given conditions.
The asymmetric variant of the hydroformylation of $\mathbf{6 a}$ was performed under mild conditions (Table 16). At first, we accomplished the reaction at $60^{\circ} \mathrm{C}$ with a range of commerically available bidentate phosphorus ligands. Afterwards, these trials were repeated at $30^{\circ} \mathrm{C}$ to see any differences, especially in the degree of isomerization and enantioselectivity.

Table 16. Initial trials of the Rh-catalyzed asymmetric hydroformylation of $\mathbf{6 a}$ with commercial ligands. ${ }^{\text {a }}$

Entry	Ligand	$\begin{aligned} & \boldsymbol{T} \\ & {\left[{ }^{\circ} \mathbf{C}\right]} \end{aligned}$	$\begin{aligned} & t \\ & {[\mathrm{~h}]} \end{aligned}$	$\begin{aligned} & \text { Conv. }{ }^{\text {b }} \\ & \text { [\%] } \end{aligned}$	$\begin{aligned} & 144^{b} \\ & {[\%]} \end{aligned}$	$\begin{aligned} & 15^{b, c} \\ & {[\%]} \end{aligned}$	$\begin{aligned} & \mathbf{8 a}^{\mathbf{b}} \\ & {[\%]} \end{aligned}$	$\begin{aligned} & \hline(E)- \\ & 9 \mathbf{a}^{\mathrm{b}} \\ & {[\%]} \\ & \hline \% \end{aligned}$	$\begin{aligned} & \hline(Z)- \\ & 9 \mathbf{a}^{\mathbf{b}} \\ & {[\%]} \\ & \hline \% \end{aligned}$	$\begin{aligned} & \mathbf{e e}^{\mathrm{d}} \\ & {[\%]} \end{aligned}$
1	(S, S)-DIOP	60	21	100	28	-	2	21	48	18 (+)
2	$\begin{aligned} & (R, R)- \\ & \text { DIPAMP } \end{aligned}$	60	21	100	12	-	72	4	12	18 (-)
3	$(R, R) \text {-Me- }$ DuPhos	60	21	95	20	-	25	20	30	1 (-)
4	(S, S) - ChiraPhos	60	21	100	10	-	57	6	27	n.d.
5	$(R, R)-$ Chiraphite	60	21	100	4	-	47	10	39	n.d.
6	$\begin{aligned} & (R, R)- \\ & \text { QuinoxP* } \end{aligned}$	60	21	99	89	-	6	4	-	10 (-)
7	(R, R, S) - BisDiazaPhos	60	21	100	13	-	-	20	67	2 (-)
8	(S, S)-DIOP	30	65	70	51	-	2	4	13	33 (+)
9	$\begin{aligned} & (R, R)- \\ & \text { DIPAMP } \end{aligned}$	30	65	86	2	-	63	6	15	n.d.
10	$\begin{aligned} & (R, R) \text {-Me- } \\ & \text { DuPhos } \end{aligned}$	30	65	88	<1	<1	77	4	6	n.d.
11	(S, S) ChiraPhos	30	65	79	4	-	42	5	28	n.d.
12	$\begin{aligned} & (R, R)- \\ & \text { QuinoxP* } \end{aligned}$	30	65	79	13	<1	35	10	21	$1(+)$
13	$(R, R)-$ Chiraphite	30	65	76	6	<1	44	7	19	n.d.
14	$(R, R)-$ Kelliphite	30	65	100	4	1	55	10	30	4 (+)
15	(R, R)-Ph-BPE	30	65	100	4	-	65	6	25	$6(+)$
${ }^{\mathrm{a}} 0.5 \mathrm{mmol}$ of $6 \mathrm{a}, \mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}$, $\mathrm{PP}-\mathrm{ligand} 6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $T, 2.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100, t$. ${ }^{b}$ Conversions and yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{c}$ Due to the small amount in the final mixture, the amount of the linear aldehyde (15) was determined by integration of the characteristic signal for the proton of the aldehyde group $(\delta=9.39 \mathrm{ppm})$ in ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{\text {d }}$ Ee-values of the branched aldehyde (14) were determined by GC analysis.										

It can be summarized that the hydroformylation reactions, performed at $60^{\circ} \mathrm{C}$, provided almost full conversion in all cases (entries 1-7). When (S, S)-DIOP was used as ligand, the isomerization products can be observed next to the branched aldehyde. The enantiomeric excess of $\mathbf{1 4}$ was poor (18% ee). When (R, R)-DIPAMP was employed to the reaction, the isomerization was suppressed, but competitive hydrogenation eventuated (72 \%). Hydroformylation with (R, R) - Me-DuPhos as well as with (S, S)-ChiraPhos as ligand emerged with either a significant amount of isomerized or hydrogenated substrate. Additionally, a disatisfactionary amount of the desired aldehyde and no considerable stereodifferentiation could be obtained (entries 3,4). Ligand (R, R)-QuinoxP* induced a good selectivity toward the formation of the branched aldehyde, however, the ee-value was negligible (10% ee). Interestingly, only a small amount of the hydrogenation product was detected and isomerization hardly occurred (entry 6). The $\mathrm{Rh} /(R, R, S)$-BisDiazaPhos catalyst has a pronounced property to isomerize 6a. Furthermore, the yield of almost racemic iso-aldehyde was poor (13 \%).
With a reduced temperature $\left(30^{\circ} \mathrm{C}\right)$, but longer reaction time, full conversion could not be detected in any case. For (S, S)-DIOP, these conditions seem to have a positive effect on the yield of the branched aldehyde (51 \%). Also the enantiomeric excess increased to 33%. Hydrogenation and also isomerization were repressed to minor side reactions. Obviously, a lower temperature suppressed isomerization, but it forced hydrogenation in some cases (entries 9-11).

For both chiral diphosphines (R, R)-QuinoxP* and (R, R)-Ph-BPE as well as the diphosphites (R, R)-Chiraphite and (R, R)-Kelliphite, low temperature does not have a positive effect on the enantioselectivity so that almost racemic mixtures were detected (entries 12-15).
In a short summary it can be concluded that $\mathbf{6 a}$ is a poor substrate for asymmetric hydroformylation. Because of an additional methylene group, located next to the olefin, the double bond can easily rearrange that leads to a three-fold and therefore thermodynamically more stable olefin. The isomerized olefin does not undergo hydroformylation. Furthermore, reduction of the temperature had a great influence on the conversions of $\mathbf{6 a}$, but required very long reaction times.
For that reason, we expanded our examination in the asymmetric hydroformylation of α-substituted styrenes, which cannot isomerize.

3.2.2 Preparation of chiral 3-aryl-3-phosphorylated propanals

For a long time, chiral phosphorus compounds have become more and more important to chemical application and attracted special attention. Next to the valuable role of chiral phosphines in the metalcatalyzed asymmetric catalysis, phosphonic acids are used as pharmaceuticals and pesticides. ${ }^{[100]}$
Among a variety of organocatalytic asymmetric hydrophosphination of cinnamaldehyde derivatives, ${ }^{[101]}$ the preparation of chiral phosphonates, using this method, were exclusively discussed by Córdova and co-workers in 2008. ${ }^{[101 a]}$ Although they reached ee's up to 95% for corresponding phosphine oxides, which were also synthesized, the enantioselectivities for the phosphonates were quite low (up to 14% ee, Figure 16).

Figure 16. Organocatalytic asymmetric hydrophosphination of cinnamaldehyde derivatives by Córdova.
This prompted us to find another route for the preparation of 3-aryl-3-phosphorylated propanals. Herein we disclose the first example of the rhodium-catalyzed asymmetric hydroformylation of α-phosphorylated vinyl arenes.

3.2.2.1 Synthesis of α-phosphorylated vinyl arenes

Prochiral phosphonic acids were prepared from substituted acetophenones or 2-acetonaphthone and phosphorus trichloride in the presence of concentrated acetic acid under reflux. In case of $2^{\prime}, 4^{\prime}, 6{ }^{\prime}$ trimethylacetophenone, no product could be isolated under these conditions. These vinyl compounds were transformed into the corresponding esters by stirring with an excess of trialkyl orthoformate at $50^{\circ} \mathrm{C}$ for 2 h , followed by column chromatography, according to the procedure of Genêt. ${ }^{[102]}$ The prochiral phosphonates 16a-g were attained as colorless oils and white solids in $41-84 \%$ yield (Scheme 31).

Scheme 31. Preparation of phosphonates 16a-g: (i) HOAc, $0^{\circ} \mathrm{C} \rightarrow$ r.t., 16 h , then $\mathrm{H}_{2} \mathrm{O}$, reflux, 2 h ; (ii) $100^{\circ} \mathrm{C}, 2 \mathrm{~h}$.

For the synthesis of 4-methoxy derivative $\mathbf{1 6 h}$, another synthesis was used. According to the procedure of Ding, ${ }^{[103]}$ trans-4-methoxy- β-nitrostyrene was reacted with trimethyl phosphite over 9 d at room temperature to yield $\mathbf{1 6 h}$ as a yellowish oil after column chromatography in 69% (Scheme 32).

Scheme 32. Preparation of phosphonate 16h: (i) DME, r.t., 9 d.
Furthermore, the phosphine oxide derivative $\mathbf{1 6 i}$ was prepared from phenylacetylene and diphenylphosphine oxide in the presence of $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}$ and dppe ($7 \mathrm{~mol} \%$). The reaction mixture was stirred at $100^{\circ} \mathrm{C}$ for 14 h and the product could be obtained after column chromatography as a white solid in 73% yield (Scheme 33). ${ }^{[104]}$

Scheme 33. Preparation of phosphine oxide 16i: (i) $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 7 \mathrm{~mol} \%$ dppe, toluene, $100^{\circ} \mathrm{C}$, 14 h .

3.2.2.2 Initial asymmetric hydroformylation of dimethyl(1-phenylvinyl)phosphonate

We initiated our studies with non-asymmetric hydroformylation of dimethyl(1phenylvinyl)phosphonate 16a (Scheme 34). Next to both regioisomeric aldehydes, the hydrogenation product has to be taken into consideration, but no isomerization can occur. This minimizes the range of products and allows a greater variation of reaction conditions (Table 17).

Scheme 34. Hydroformylation of prochiral 16a.
Table 17. Initial trials of the Rh-catalyzed non-asymmetric hydroformylation of 16a. ${ }^{\text {a }}$

Entry	Ligand	T [$\left.{ }^{\circ} \mathrm{C}\right]$	p [MPa]	Conv. ${ }^{\text {b }}$ \%]	$17 \mathrm{a}^{\text {b }}$ [\%]	$18 a^{\text {b }}$ [\%]	19a ${ }^{\text {b }}$ [\%]
1	-	100	1.0	75	60	-	15
$2^{\text {c }}$	Alkanox ${ }^{\circledR} 240$	100	1.0	100	85	<1	15
3	BiPhePhos	100	1.0	93	83	<1	9
4	XantPhos	100	1.0	>99	90	1	9
$5^{\text {c }}$	Alkanox ${ }^{\circledR} 240$	100	2.0	95	78	3	14
6	BiPhePhos	100	2.0	>99	90	<1	9
7	XantPhos	80	2.0	68	58	3	7
8	XantPhos	80	1.0	91	81	2	8
$9{ }^{\text {d }}$	BiPhePhos	100	1.0	95	86	-	9
$10^{\text {c }}$	Alkanox ${ }^{\circledR} 240$	50	2.0	81	24	49	8
11	BiPhePhos	50	2.0	22	15	5	2

${ }^{\mathrm{a}} 0.5 \mathrm{mmol}$ of 16a, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}$, ligand $6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $T, p, \mathrm{~S} / \mathrm{Rh}=100,21 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.
${ }^{\mathrm{c}}$ Ligand $15.0 \mu \mathrm{~mol}$.
${ }^{\text {d }}$ Reaction was performed with a partial pressure ratio $\mathrm{CO} / \mathrm{H}_{2}=2: 1$.
Firstly, it was tried to perform the hydroformylation with $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ and without any organic ligand. Surprisingly, at $100^{\circ} \mathrm{C}$ and syngas atmosphere (1 MPa), a reaction took place. After 21 h , the racemic linear aldehyde as well as the hydrogenation product could be determined with 60% and 15% yield, respectively (entry 1). By using the monodentate ligand Alkanox ${ }^{\circledR}$ 240, full conversion was reached with a better chemoselectivity toward the formation of the linear aldehyde (85%), while the hydrogenation was still competitive under these conditions. Rhodium catalysts based on BiPhePhos and XantPhos diminished the degree of hydrogenation, while the conversion was kept at the same level (entries 3,4). Doubling the syngas pressure to 2 MPa in combination with a reaction temperature of $100{ }^{\circ} \mathrm{C}$ had no significant effect on the reactivity and yield of the desired product. When the ratio of the partial pressures of carbon monoxide to hydrogen was changed to $2: 1$, the results with BiPhePhos remained nearly the same (entry 9). The rate of the reaction faded enormously when the temperature was reduced to $50{ }^{\circ} \mathrm{C}(2 \mathrm{MPa}$ syngas pressure, entry 11$)$. At the same time, an increased amount of the branched aldehyde was noted (up to 49%, entry 10).
Our work was continued with the asymmetric hydroformylation of the α-phosphorylated olefin 16a (Table 18).

Table 18. Initial trials of the Rh-catalyzed asymmetric hydroformylation of $\mathbf{1 6 a}$ with commercial ligands. ${ }^{\text {a }}$

Entry	Ligand	$\begin{aligned} & \mathrm{T} \\ & {\left[{ }^{\circ} \mathrm{C}\right]} \end{aligned}$	$\begin{aligned} & p \\ & {[\mathrm{MPa}]} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Conv. }{ }^{\text {b }} \\ & {[\%]} \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \mathbf{a}^{\mathbf{b}} \\ & {[\%]} \\ & \hline \end{aligned}$	$\begin{aligned} & 18 \mathbf{a}^{\mathbf{b}} \\ & {[\%]} \\ & \hline \end{aligned}$	$\begin{aligned} & 19 \mathbf{a}^{\text {b }} \\ & {[\%]} \\ & \hline \end{aligned}$	ee ${ }^{\text {c }}$ [\%]
1	(S, S)-DIOP	100	1.0	95	86	7	2	9 (-)
2	(R, R)-DIPAMP	100	1.0	60	41	7	13	5 (-)
3	(R, R)-Me-DuPhos	100	1.0	58	35	6	16	1 (-)
4	(S, S)-BDPP	100	1.0	80	>33	>7	>14	21 (-)
5	(R)-MeO-BIPHEP	100	1.0	6	3	<1	2	n.d.
6	(R)-SynPhos	100	1.0	16	14	<1	2	rac
7	(R)-DifluorPhos	100	1.0	16	15	-	<1	rac
8	(R)- C_{3}-TunePhos	100	1.0	28	27	-	1	rac
9	(R)-4-Tol-BINAP	100	1.0	16	13	<1	2	2 (-)
10	(R, R)-Quinox ${ }^{*}$	100	1.0	98	35	7	56	$21(+)$
11	(S, S)-BenzP*	100	1.0	98	17	7	74	$21(+)$
12	(R, R, R, S-BisDiazaPhos	100	1.0	98	83	11	5	$3(+)$
13	(R, R)-Chiraphite	100	1.0	84	72	<1	11	$2(+)$
14	(R, R)-Kelliphite	100	1.0	85	78	<1	6	rac
15	(R, S)-JosiPhos	100	1.0	23	12	2	9	16 (+)
16	(S, S)-BDPP	80	1.0	20	11	4	5	5 (-)
17	(R, R)-Chiraphite	80	1.0	43	37	<1	6	$1(+)$
18	(R, R)-Kelliphite	80	1.0	77	71	<1	5	rac
19	(R, R)-Ph-BPE	80	1.0	45	2	29	14	$37(+)$
20	(S, S)-DIOP	60	3.0	21	5	16	<1	13 (-)
21	(S, S)-BDPP	60	3.0	3	<1	2	<1	n.d.
22	(R, R, R, S)- Bisdiazaphos	60	3.0	7	3	3	1	13 (+)
23	(R, R)-Chiraphite	60	3.0	24	19	3	2	rac
24	(R, R)-Kelliphite	60	3.0	13	11	1	1	rac
25	(R, R) - $\mathrm{Ph}-\mathrm{BPE}$	60	3.0	4	-	4	<1	n.d.

${ }^{\text {a }} 0.5 \mathrm{mmol}$ of 16a, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}, \mathrm{PP}$-ligand $6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $, T, p, \mathrm{~S} / \mathrm{Rh}=100,21 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.
${ }^{c}$ Ee-values of the linear aldehyde (17a) were determined by GC analysis.
Starting with (S, S)-DIOP, we promptly reached 95% of conversion with a good chemo- and regioselectivity. Unfortunately, the resulting 86% of the linear aldehyde were only of a low ee-value (entry 1). Trials with (R, R)-DIPAMP and (R, R)-Me-DuPhos did not succeed. In the runs at $100^{\circ} \mathrm{C}$ and 1.0 MPa pressure of syngas atmosphere only low conversions were observed with low regioselectivity and a high amount of the hydrogenation product (entries 2,3). When the catalysis was examined with structurally similiar ligands like (R)-MeO-BIPHEP, (R)-SynPhos, (R)-DifluorPhos or (R) - C_{3} TunePhos, no significant difference in the reactivity could be obtained (entries 5-8). The hydroformylation yielded low amounts of the aldehydes. In all cases, the ee-values were zero. Obviously, electronic differences within ligands do not play any role in the stereodifferentiation. Catalysts with P-chiral ligands (R, R)-QuinoxP* and (S, S)-BenzP* produced a huge amount of the hydrogenation product. The linear aldehyde arose with an ee-value of 21% for both runs. Trials with the diphosphine ligand (R, R, S)-BisDiazaPhos as well as the chiral diphosphites (R, R)-Chiraphite and (R, R)-Kelliphite resulted either in a higher concentration of the branched aldehyde or of the hydrogenation product, but almost no stereodiscrimination was noted (entries 12-14). When the temperature was reduced to $80^{\circ} \mathrm{C}$, the reactivity of the catalyst decreased for all applied ligands. Surprisingly, the enantioselectivity dropped by application of (S, S)-BDPP, too (entry 16). Using (R, R) -Ph-BPE as ligand, the regioselectivity was reversed. 29% yield of the branched aldehyde was formed compared to only 2% of the linear one. With this ligand the highest ee-value of 37% could be reached until then.
Further reduction of the temperature to $60^{\circ} \mathrm{C}$ (and an increased syngas pressure to 3 MPa) resulted in poor or even no conversion. The increased amount of the branched aldehyde is also indicative and is in
accordance with the published results for other hydroformylations. ${ }^{[17 a]}$ With (S, S)-DIOP and (R, R, S)-BisDiazaPhos a slightly enhanced enantiomeric excess of the linear aldehyde can be registered. Due to the poor performance of the commercial ligands, we entered a project aimed to synthesize non-commercial as well as new ligands.

3.2.2.3 Synthesis of non-commercial and new ligands

The number of commercially available bidentate ligands, which are successful candidates in asymmetric hydroformylation, is limited up to now. With the exception of some diphosphines only Chiraphite and Kelliphite represent chiral diphosphites that found application nowadays (see Chapter 2.3.2).
Since diastereomerically pure BINAPHOS is not supplied by fine chemical traders, we prepared it in a five-step synthesis ${ }^{[48,105]}$ (Scheme 35). According to the procedure of Hayashi and co-workers ${ }^{[105]}$ the hydroxyl groups of enantiomerically pure (R)-BINOL were transformed into triflate groups with trifluoroacetic anhydride in the presence of pyridine (pathway i). Resulting bistriflate 20a was isolated as white solid in quantitative yield. Compound 20a was then coupled with diphenylphosphine oxide ${ }^{i}$ in the presence of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and dppb and in conjunction with an excess of Hünig's base. Monophosphine oxide 20b could be isolated only in low yield (maximum 33%, pathway i i). ${ }^{\text {ii }}$ The other triflate group could be converted into a hydroxyl group by treatment with 3 M NaOH in dioxane/methanol at room temperature for 16 h . Phosphine oxide 20c was isolated in almost quantitative yield as a white solid (pathway iii). The phosphine oxide was reduced to a phosphine (20d) by treatment with an excess of trichlorosilane and triethylamine at $100^{\circ} \mathrm{C}$ in toluene for 16 h . The phosphine yielded in 82% as a white solid (pathway $i v$). This compound was reacted with either the chlorophosphite of (S)-BINOL or (R)-BINOL ${ }^{\text {iii }}$ and a slight excess of triethylamine. The products, (R, S)-BINAPHOS (47%, 20e) and (R, R)-BINAPHOS (40%, 20f), emerged as white solids after column chromatography over alumina (pathway v) as described by Takaya. ${ }^{[88]}$

[^15]

Scheme 35. Synthesis of (R, S) - and (R, R)-BINAPHOS ($\mathbf{2 0 e}$ and 20f): (i) 3.5 eq pyridine, DCM, $0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{r} . \mathrm{t}$, 6 h ; (ii) $5 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc}) 2$, $5 \mathrm{~mol} \% \mathrm{dppb}, 4.0$ eq Hünig's base, DMSO, $100^{\circ} \mathrm{C}, 20 \mathrm{~h}$; (iii) dioxane/methanol (v:v 1:1), r.t., 16 h ; (iv) 7.2 eq $\mathrm{Et}_{3} \mathrm{~N}$, toluene, $100^{\circ} \mathrm{C}, 16 \mathrm{~h}$; (v) 2.5 eq Et ${ }_{3} \mathrm{~N}$, toluene, $0^{\circ} \mathrm{C} \rightarrow$ r.t., 16 h .

In addition, some chiral diphosphite ligands could be prepared based on different aromatic diols. (S) - and (R)-BINOL, respectively, was coupled with the chlorophosphites of (R)-BINOL (2.1 eq) when the reaction was stirred at room temperature for 16 h in the presence of an excess of triethylamine. The (R, S, R)- and (R, R, R)-diphosphite were isolated as white solids in 95% (21a) and 93% (21b) after column chromatography over alumina (Scheme 36).

Scheme 36. Synthesis of diphosphite ligands 21a,b: (i) 5.0 eq $\mathrm{Et}_{3} \mathrm{~N}$, toluene, $0^{\circ} \mathrm{C} \rightarrow$ r.t., 16 h .
When achiral 4,4',6,6'-tetra-tert-butyl-2,2'-biphenol ${ }^{i}$ and 4,4'-di-methoxy-6,6'di-tert-butyl-2,2'biphenol ${ }^{\text {ii }}$ were employed as backbones to the reaction, non-symmetric diphosphites were obtained. The reaction with the chlorophosphite of (R)-BINOL yielded 21c and 21d, respectively, under the same conditions as for the prior synthesized diphosphite ligands 21a,b. Compounds 21c and 21d showed unexpected two signals in a relation of 1:1 in the ${ }^{31} \mathrm{P}$ NMR, what means that they do not have chemical equivalent phosphorus atoms and, consequently, transesterfication might has taken place (Scheme 37). ${ }^{[110]}$ Both compounds could be isolated as white solids after column chromatography over alumina in 94% (21c) and 97% (21d) yield, respectively.

[^16]

Scheme 37. Synthesis of diphosphite ligands 21c,d: (i) 5.0 eq $\mathrm{Et}_{3} \mathrm{~N}$, toluene, $0^{\circ} \mathrm{C} \rightarrow$ r.t., 16 h .
When 4,4'-di-methoxy-6,6'-di-tert-butyl-2,2'-biphenol was reacted with the chlorophosphite of (R)-BINOL in the presence of n-BuLi at $-20^{\circ} \mathrm{C}$, symmetric diphosphite ligand 21e yielded in 61% as a white solid (Scheme 38).

21e

Scheme 38. Synthesis of diphosphite ligand 21e: (i) 1.0 eq n-BuLi, toluene, $-20^{\circ} \mathrm{C} \rightarrow$ r.t., 16 h .
Furthermore, new bidentate chiral phosphite-phosphoramidite ligands were prepared on the basis of readily accessible amino alcohols and chiral as well as non-chiral diols.
Although L-(-)-ephedrine was already suggested as a backbone for phosphite-phosphoramidite ligands in the literature, ${ }^{[111]}$ they have never been synthesized in combination with enantiomerically pure BINOL. We used it as starting material for the construction of phosphite-phosphoramidite 22a. It was reacted with 2.1 eq of the chlorophosphite of (S)-BINOL and 5.0 eq of triethylamine. Stirring at room temperature for 16 h yielded $\mathbf{2 2}$ a as a white solid after column chromatography over alumina (52%, Scheme 39).

--(-)-Ephedrine

Scheme 39. Synthesis of phosphite-phosphoramidite 22a with (S)-BINOL based on l-(-)-ephedrine (i) 5.0 eq $\mathrm{Et}_{3} \mathrm{~N}$, toluene, $0^{\circ} \mathrm{C} \rightarrow$ r.t., 16 h .

According to this procedure $\mathrm{L}-(-)$-ephedrine was also treated with the chlorophosphite of (R)-BINOL to yield 22b as a white solid (65%). Because the ligands, derived from (R)-BINOL, were especially promising for the asymmetric hydroformylation of 16a (see Chapter 3.2.2.4), other 1,2-amino alcohols were taken into consideration (Scheme 40).

Scheme 40. Synthesis of phosphite-phosphoramidites 22b-e with (R)-BINOL based on different 1,2-amino alcohols: (i) 5.0 eq $\mathrm{Et}_{3} \mathrm{~N}$, toluene, $0^{\circ} \mathrm{C} \rightarrow$ r.t., 16 h .

In conclusion, five new phosphite-phosphoramidite compounds 22a-e could be prepared with yields of 28-81\% (Table 19).

Table 19. Synthesis of phosphite-phosphoramidites 22a-e based on different 1,2-amino alcohols. ${ }^{\text {a }}$

Entry	Amino alcohol	$\mathbf{R}^{\mathbf{1}}$	$\mathbf{R}^{\mathbf{2}}$	$\mathbf{R}^{\mathbf{3}}$	BINOL 2	Product	Yield $^{\mathbf{b}}[\%]$
1	L-(-)-Ephedrine	Me	Me	Ph	(S)-BINOL	$\mathbf{2 2 a}$	52
2	(R)-2-Aminobutan-1-ol	H	Et	H	(R)-BINOL	$\mathbf{2 2 b}$	65
3	2-(MINOL	22c	28				
4	$(-)$-Pseudoephedrine	Me	H	H	(R)-BINOL	22d	36
5	Me	Ph	(R)-BINOL	22e	81		

${ }^{\text {a }} 1.0 \mathrm{mmol}$ of 1,2 -amino alcohol, 2.1 mmol of chlorophosphite of enantiopure $\mathrm{BINOL}, 5.0 \mathrm{mmol} \mathrm{Et} 3 \mathrm{~N}$, toluene, $0^{\circ} \mathrm{C} \rightarrow$ r.t., 16 h .
${ }^{\mathrm{b}}$ Isolated yields after column chromatography over alumina
Amino sugar-based bidentate ligands have been prepared by Diéguez and co-workers recently. ${ }^{[112]}$ All of them have in common that a hydrogen is linked to the nitrogen atom (secondary amine). For this
reason, we focused on the synthesis of N-alkylated phosphite-phosphoramidites based on 1,2-Odiprotected α-D-xylofuranose. α-D-Ribofuranose as backbone faded away from our spotlight due to the poor performance in the asymmetric hydroformylation of $\mathbf{1 6 a}$ (see Chapter 3.2.2.4).
Starting from open-chain D-(+)-xylose, the hydroxyl groups were protected by isopropylidene groups according to the procedure of Kartha. ${ }^{[13]}$ Therefore, the sugar was dissolved in acetone and a small portion of iodine was added as an activator. Stirring at room temperature for 16 h and common aqueous work-up gave 96% of protected α-D-xylofuranose 23a as a yellowish solid (pathway i, Scheme 41). In this compound, the original hydroxyl groups are protected by differently sized 1,3dioxo rings. Because a six-membered 2,2-dimethyl-1,3-dioxane is less stable than a five-membered 2,2-dimethyl-1,3-dioxolane toward acidic conditions, ${ }^{[114]}$ selective deprotection is possible. ${ }^{\text {i }}$ The acetal, involving C-3 and C-5, could be cleaved when 23a was stirred in an aqueous solution of sulphuric acid at room temperature for 16 h . Neutralization and filtration over Celite yielded 1,2-O-diprotected α-Dxylofuranose 23b as a yellowish viscous oil (92%, pathway $i i) .{ }^{[115]}$ Subsequent transformation of the hydroxyl group at C-5 into a leaving group (tosylate) was realized when 23b was stirred with tosyl chloride in pyridine at room temperature for 16 h . After aqueous work-up a mixture of mono- und ditosylated crude product could be obtained, what was separated by recrystallization. At $-20{ }^{\circ} \mathrm{C}$ the monotosylated compound 23c precipitated and could be isolated as a white solid in 60% yield after filtration (pathway iii). ${ }^{[166], i i}$
The amino xylose derivatives 24b-g were prepared from protected 5 -tosyl- α-D-xylofuranose $\mathbf{2 3 c}$ and a variety of primary amines. A $\mathrm{S}_{\mathrm{N}} 2$-reaction occurs at $\mathrm{C}-5$ that is attacked by the nucleophilic amine. The reaction was either performed without a solvent at $60^{\circ} \mathrm{C}$ (for $\left.\mathbf{2 4 b}\right)^{[117]}$ or in isopropanol under reflux (for 24c-g). ${ }^{[18]}$ Aqueous work-up (except for 24b) and column chromatography yielded 24b-g as yellowish solids (pathway $i v$). The yields are given in Table 20. Product $\mathbf{2 4 g}$ was synthesized and characterized for the first time.

[^17]

Scheme 41. Synthesis of amino xylose derivatives 24b-g: (i) I_{2}, r.t., 16 h ; (ii) $0.8 \% \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{MeOH}$, r.t., 16 h ; (iii) pyridine, DCM, $0^{\circ} \mathrm{C} \rightarrow$ r.t., 16 h ; (iv) neat, $60^{\circ} \mathrm{C}, 24 \mathrm{~h}$ or isopropanol, reflux, 24 h .

Table 20. Synthesis of amino xylose derivatitives $\mathbf{2 4 b} \mathbf{- g}$ based on xylose derivative $\mathbf{2 3 c}$. $^{\text {a }}$

Entry	Amine	R	Product	Yield $^{\mathbf{b}}[\mathbf{0}]$
$1^{\text {c }}$	Isopropylamine	$i \operatorname{Pr}$	$\mathbf{2 4 b}$	61
2	tert-Butylamine	$t \mathrm{Bu}$	$\mathbf{2 4 c}$	41
3	Cyclohexylamine	$c \mathrm{Hex}$	$\mathbf{2 4 d}$	63
4	Aniline	Ph	$\mathbf{2 4 e}$	86
5	Benzylamine	Bn	$\mathbf{2 4 f}$	61
6	$(S)-\alpha-M e t h y l-b e n z y l a m i n e ~$	$(S)-\alpha-\mathrm{Me}-\mathrm{Bn}$	$\mathbf{2 4 g}$	99

${ }^{\text {a }} 10.0-15.0 \mathrm{mmol}$ of 23c, $40.0-60.0 \mathrm{mmol}$ of amine, isopropanol, $60^{\circ} \mathrm{C}, 24 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Isolated yields after column chromatography over silica.
${ }^{c}$ A large excess of amine was used instead of a solvent. Reaction was performed under reflux.
Amino xylose derivatives 24b-g served as starting material for a range of new bidentate phosphitephosphoramidite ligands. According to the procedure of Diéguez et al. ${ }^{[112 a, b]}$ it was first tried to couple the N - as well as O-moiety, simultaneously, with the chlorophosphite of enantiopure BINOL using pyridine as a base. Starting from $\mathbf{2 4 b}, 12$ eq of pyridine and 2.2 eq of the chlorophosphite of (S)-BINOL, only the signal for the chlorophosphite could be detected in ${ }^{31} \mathrm{P}$ NMR after stirring at room temperature for 16 h . Therefore, the solution was heated to $100^{\circ} \mathrm{C}$ and stirred for the same time again. In ${ }^{31} \mathrm{P}$ NMR a signal at $\delta=145.3 \mathrm{ppm}$ appeared, what was assigned to the O-phosphorylated product. Based on these results it can be concluded that the alkylated N-moiety of the amino xylose is not acidic enough to be deprotonated by pyridine, even at higher temperature. Consequently, it required a change to a stronger base, e.g. triethylamine. Amino alcohol $\mathbf{2 4 b}$ was reacted with the (S)-BINOL chlorophosphite in the presence of 5 eq of triethylamine at room temperature for 16 h . After column chromatography over basic silica, phosphite-phosphoramidite $\mathbf{2 5 b}$ could be isolated as a white solid (35%). The ${ }^{31} \mathrm{P}$ NMR spectrum was characterized by a doublet at $\delta=151.4 \mathrm{ppm}$ and a doublet at $\delta=153.3 \mathrm{ppm}$ for the phosphite- and phosphoramidite- P.
Increasing the reaction temperature to $50{ }^{\circ} \mathrm{C}$, the yield of $\mathbf{2 5 b}$ could be raised to 76%. With this improvement, 12 new phosphite-phosphoramidites (25a-g and 26b,d-g) were synthesized with yields up to 97% (Scheme 42, Table 21).

Scheme 42. Synthesis of xylose-based phospite-phosphoramidites 25a-g and 26b,d-g: (i) 5.0 eq EtsN, toluene, $0{ }^{\circ} \mathrm{C} \rightarrow 50^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

Table 21. Synthesis of phosphite-phosphoramidites $\mathbf{2 5 a - g}$ and 26b,d-g based on amino xylose derivatives 24a-g. ${ }^{\text {a,i }}$

Entry	Amino xylose	R	BINOL	Product	Yield ${ }^{\text {b }}$ [\%]
1	24a	Me	(S)-BINOL	25a	85
$2^{\text {c }}$	24b	$i \operatorname{Pr}$	(S)-BINOL	25b	35
3			(S)-BINOL	25b	76
4			(R)-BINOL	26b	90
5	24c	$t \mathrm{Bu}$	(S)-BINOL	25c	29
6	24d	$c \mathrm{Hex}$	(S)-BINOL	25d	97
7			(R)-BINOL	26d	97
8	24 e	Ph	(S)-BINOL	25e	33
9			(R)-BINOL	26e	33
10	24f	Bn	(S)-BINOL	$25 f$	81
11			(R)-BINOL	$26 f$	85
12	24g	(S)- $\alpha-\mathrm{Me}-\mathrm{Bn}$	(S)-BINOL	25g	89
13			(R)-BINOL	26 g	62

${ }^{\text {a }} 1.0 \mathrm{mmol}$ of 24a-g, 2.2 mmol of chlorophosphite of enantiopure BINOL, 5.0 mmol Et 3 N , toluene, $0^{\circ} \mathrm{C} \rightarrow 50^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Isolated yields after column chromatography over basic silica.
${ }^{\mathrm{c}}$ The reaction was stirred at room temperature for 16 h .
Additionally, phosphite-phosphoramidites with non-equal substituents at both phosphorus atoms were prepared based on amino xyloses $\mathbf{2 4 b} \mathbf{g}$. Introducing two different groups makes a reaction over two steps necessary. At first, the monophosphite was prepared followed by the coupling of the second chlorophosphite to the N-moiety.
Starting from amino xylose 24b, 4.6 eq of pyridine and 1.1 eq of the chlorophosphite of (S)-BIPHEN- $\mathrm{H}_{2}{ }^{\mathrm{ii}}$ in toluene, the reaction was stirred at $80^{\circ} \mathrm{C}$ for 16 h . Column chromatography over silica with 2% of triethylamine in toluene yielded 85% of a white solid. The added base is necessary, inter alia, to ensure that the generated ammonium group of the xylose is retransformed into an amino

[^18]group. ${ }^{i}$ One can assume that pyridine is less basic than the amino group of the sugar so that the N -moiety of the xylose is preferentially protonated during the reaction. To isolate phosphite $\mathbf{2 7 a}$, instead of its ammonium salt, a stronger base than pyridine is needed for the deprotonation. According to this procedure three new monophosphites $\mathbf{2 7 a} \mathbf{- c}^{\text {cii }}$ were prepared as white solids in $62-85 \%$ yield (Table 22, entries 1-3).
With amino sugar $\mathbf{2 4}$, monophosphites $\mathbf{2 7 d}, \mathbf{e}$ could only be isolated as crude ammonium salts (Table 22 , entries 4,5). Purification by recrystallization as well as column chromatography (with additional $\mathrm{Et}_{3} \mathrm{~N}$) failed. For that reason they were directly used for further reactions.

24a $\mathrm{R}=i \mathrm{Pr}$ 24g $\mathrm{R}=(\mathrm{S})-\alpha-\mathrm{Me}-\mathrm{Bn}$

27a-c

27d,e

Scheme 43. Synthesis of xylose-based monophosphites 27a-c and 27d,e: (i) 4.6 eq pyridine, toluene, $0^{\circ} \mathrm{C} \rightarrow 80^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

Table 22. Synthesis of monophosphites 27a-e based on amino xylose derivatives 24a,g. ${ }^{\text {a }}$

Entry	Amino xylose	R	Aromatic diol	Product	Yield ${ }^{\text {b }}$ [\%]
1	24a	$i \operatorname{Pr}$	(S)-BIPHEN- H_{2}	27a	85
2			(R)-BIPHEN- H_{2}	27b	76
3			bisDBP	27c	62
4	24g	(S)- $\alpha-\mathrm{Me}-\mathrm{Bn}$	(S)-BINOL	27d	$99^{\text {c }}$
5			(R)-BINOL	27e	$98^{\text {c }}$

${ }^{\text {a }} 2.0 \mathrm{mmol}$ of $\mathbf{2 4 a}, \mathbf{g}, 2.2 \mathrm{mmol}$ of chlorophosphite of (enantiopure) aromatic diol, 4.6 mmol pyridine, toluene, r.t. $\rightarrow 80^{\circ} \mathrm{C}$, 16 h .
${ }^{\mathrm{b}}$ Isolated yields after column chromatography over alumina.
${ }^{\text {c }}$ The crude product of the ammonium salt was isolated without further purification.
Monophosphites 27a-e were used as starting material for the synthesis of mixed phosphitephosphoramidites. Corresponding to the preparation of phosphite-phosphoramidites 25a-g and

[^19]$\mathbf{2 6 b}, \mathbf{d - g}$, respectively (see above), the reaction was performed with 5.0 eq of triethylamine and 1.1 eq of the chlorophosphite of enantiopure BINOL. Stirring at $50^{\circ} \mathrm{C}$ for 16 h yielded 28a-f as white solids (starting from $\mathbf{2 7 a - c}$) after column chromatography over silica.
To prepare phosphite-phosphoramidite xyloses with varying BINOL units at the phosphorus of the O-side and different diols at the phosphorus of the N-moiety, crude products $\mathbf{2 7 d}$, e were treated with 2.0 eq of triethylamine and stirred at $50{ }^{\circ} \mathrm{C}$ for 16 h . Precipitated ammonium chloride could be removed by filtration. The ${ }^{1} \mathrm{H}$ NMR spectrum of the crude material reveals that both singlets at $\delta=11.01 \mathrm{ppm}$ and 11.40 ppm disappeared and thus an evidence for the free amino function. Purification by recrystallization or by column chromatography failed so that they were directly converted into the corresponding phosphite-phosphoramidites 28g-i (see above, Scheme 44, Table 23).

\[

$$
\begin{array}{ll}
\text { 27a } & \mathrm{R}=i \mathrm{Pr}, \mathrm{HO}-\mathrm{OH}=(S)-\mathrm{BIPHEN}-\mathrm{H}_{2} \\
\text { 27b } & \mathrm{R}=i \mathrm{Pr}, \mathrm{HO}-\mathrm{OH}=(\mathrm{R})-\mathrm{BIPHEN}-\mathrm{H}_{2} \\
\text { 27c } & \mathrm{R}=i \mathrm{Pr}, \mathrm{HO}-\mathrm{OH}=\text { bisBDP } \\
\text { 27d } & \mathrm{R}=(S)-\alpha-\mathrm{Me}-\mathrm{Bn}, \mathrm{HO}-\mathrm{OH}=(S)-\mathrm{BINOL} \\
\text { 27e } & \mathrm{R}=(S)-\alpha-\mathrm{Me}-\mathrm{Bn}, \mathrm{HO}-\mathrm{OH}=(R)-\mathrm{BINOL}
\end{array}
$$
\]

$$
\begin{aligned}
& \text { 28a } \mathrm{R}=\mathrm{iPr}, \mathrm{HO}-\mathrm{OH}=(\mathrm{S})-\mathrm{BIPHEN}-\mathrm{H}_{2} \\
& \mathrm{HO}-\mathrm{OH}=(S)-\mathrm{BINOL} \\
& \text { 28a } \begin{aligned}
\mathrm{R}=\mathrm{iPr}, \mathrm{HO}-\mathrm{OH} & =(S)-\mathrm{BIPH} \\
\mathrm{HO}-\mathrm{OH} & =(S)-\text { BINOL }
\end{aligned} \\
& \text { 28b } \mathrm{R}=i \mathrm{Pr}, \mathrm{HO}-\mathrm{OH}=(\mathrm{S})-\mathrm{BIPHEN}-\mathrm{H}_{2} \\
& \mathrm{HO}-\mathrm{OH}=(R)-\mathrm{BINOL} \\
& \text { 28c } \mathrm{R}=i \mathrm{Pr}, \mathrm{HO}-\mathrm{OH}=(\mathrm{R})-\mathrm{BIPHEN}-\mathrm{H}_{2} \\
& \mathrm{HO}-\mathrm{OH}=(S)-\mathrm{BINOL} \\
& \text { 28d } \mathrm{R}=i \mathrm{Pr}, \mathrm{HO}-\mathrm{OH}=(R)-\mathrm{BIPHEN}-\mathrm{H}_{2} \\
& \mathrm{HO}-\mathrm{OH}=(R)-\mathrm{BINOL} \\
& \text { 28e } \mathrm{R}=i \mathrm{Pr}, \mathrm{HO}-\mathrm{OH}=\text { bisBDP } \\
& \mathrm{HO}-\mathrm{OH}=(S)-\mathrm{BINOL} \\
& 28 \mathrm{f} \text { R }=i \mathrm{Pr}, \mathrm{HO}-\mathrm{OH}=\mathrm{bisBDP} \\
& \mathrm{HO}-\mathrm{OH}=(R)-\mathrm{BINOL} \\
& \text { 28g } \mathrm{R}=(S)-\alpha-\mathrm{Me}-\mathrm{Bn}, \mathrm{HO}-\mathrm{OH}=(S)-\text {-BINOL } \\
& \mathrm{HO}-\mathrm{OH}=(R)-\mathrm{BINOL} \\
& \text { 28h } \mathrm{R}=(\mathrm{S})-\alpha-\mathrm{Me}-\mathrm{Bn}, \mathrm{HO}-\mathrm{OH}=(S)-\mathrm{BINOL} \\
& \mathrm{HO}-\mathrm{OH}=\mathrm{bisBDP} \\
& 28 i \mathrm{R}=(S)-\alpha-\mathrm{Me}-\mathrm{Bn}, \mathrm{HO}-\mathrm{OH}=(R)-\mathrm{BINOL} \\
& \mathrm{HO}-\mathrm{OH}=(S)-\mathrm{BINOL}
\end{aligned}
$$

Scheme 44. Synthesis of xylose-based mixed phosphite-phosphoramidites 28a-i: (i) 4.0 eq $\mathrm{Et}_{3} \mathrm{~N}$, toluene, $0^{\circ} \mathrm{C} \rightarrow 50^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

Table 23. Synthesis of mixed phosphite-phosphoamidites 28a-i based on monophosphites 27a-e. ${ }^{\text {a }}$

Entry	Monophosphite	R	Aromatic diol	Product	Yield ${ }^{\text {b }}$ [\%]
1	27 a	(S)-BIPHEN- H_{2}	(S)-BINOL	28a	43
2			(R)-BINOL	28b	76
3	27b	(R)-BIPHEN- H_{2}	(S)-BINOL	28c	62
4			(R)-BINOL	28d	73
5	27c	bisDBP	(S)-BINOL	28e	71
6			(R)-BINOL	$28 f$	89
7	27d	(S)-BINOL	(R)-BINOL	28g	$35^{\text {c }}$
8			bisDBP	28h	$24^{\text {c }}$
9	27e	(R)-BINOL	(S)-BINOL	$28 i$	$21^{\text {c }}$
10			bisDBP	28j	- ${ }^{\text {c }}$

a $0.33-0.5 \mathrm{mmol}$ of 27a-e, $0.36-0.55 \mathrm{mmol}$ of chlorophosphite of (enantiopure) aromatic diol, $1.6-2.6 \mathrm{mmol} \mathrm{Et}_{3} \mathrm{~N}$, toluene, $0^{\circ} \mathrm{C} \rightarrow 50^{\circ} \mathrm{C}, 16 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Isolated yields after column chromatography over basic silica.
${ }^{\text {c }}$ Isolated yield over two steps after column chromatography over basic silica.

3.2.2.4 Asymmetric hydroformylation with non-commercial and new ligands

After widening the set of ligands, we continued the hydroformylation trials of 16a. All conditions remained the same as chosen for the preliminary attempts of asymmetric hydroformylation discussed above (see Chapter 3.2.2.2).
At first, (R, S) - and (R, R)-BINAPHOS (20e and 20f) and the ligands, derived from 1,2-amino alcohols, were tested (Table 24).

Table 24. Screening of the Rh-catalyzed asymmetric hydroformylation of $\mathbf{1 6 a}$ with self-prepared phosphorus ligands. ${ }^{\text {a }}$

Entry	Ligand	p [MPa]	Conv. ${ }^{\text {b }}$ [\%]	17a ${ }^{\text {b }}$ [\%]	18a ${ }^{\text {b }}$ [\%]	19a ${ }^{\text {b }}$ [\%]	ee ${ }^{\text {c }}$ [\%]
1	20e	1.0	57	51	3	3	$41(+)$
2	$20 f$	1.0	42	39	1	2	3 (-)
3	22a	1.0	69	64	1	4	23 (-)
4	22b	1.0	99	96	1	1	46 (+)
5	22c	1.0	69	64	1	5	24 (+)
6	22d	1.0	63	59	1	3	26 (+)
7	22e	1.0	97	93	2	2	$24(+)$
$8^{\text {d }}$	22b	1.0	63	60	1	2	34 (+)
$9{ }^{\text {e }}$	22b	1.0	31	28	1	2	43 (+)
10	22b	0.5	99	96	<1	3	44 (+)
11	22b	5.0	67	52	13	2	$32(+)$
$12^{\text {f }}$	22b	3.0	36	25	11	<1	51 (+)
13^{8}	22b	1.0	11	6	5	<1	$47(+)$

${ }^{\mathrm{a}} 0.5 \mathrm{mmol}$ of 16a, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}$, PP-ligand $6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $80^{\circ} \mathrm{C}, p, \mathrm{~S} / \mathrm{Rh}=100,21 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.
${ }^{\mathrm{c}}$ Ee-values of the linear aldehyde (17a) were determined by GC analysis.
${ }^{d}$ The reaction was performed in EtOAc.
${ }^{\mathrm{e}}$ The reaction was performed in DCM.
${ }^{\mathrm{f}}$ The reaction was performed at $60^{\circ} \mathrm{C}$.
${ }^{g}$ The reaction was performed at room temperature for 63 h .
The rhodium-catalyzed reaction with (R, S)-BINAPHOS (20e) revealed only a mediocre enantioselectivity (41% ee) with a poor conversion rate (entry 1). Diastereomeric (R, R)-BINAPHOS $\mathbf{2 0 f}$ showed even worse results in both aspects (entry 2).
The reaction with 22a gave only a moderate conversion (69%) with low enantioselectivity of 23% ee. However, the rhodium catalyst with L-(-)-ephedrine-based phosphite-phosphoramidite 22b showed first promising results. The highest ee-value of 46%, quantitative conversion and excellent selectivity to the linear aldehyde could be reached for the first time (entry 3). Encouraged by this result,
structurally related ligands 22c-e, bearing (R)-BINOL, were employed. They induced good to very good chemo- and regioselectivities to the linear aldehyde on the one hand, but the enantioselectivities were still poor (entries 5-7). A comparison of the results of ligands 22b and 22e shows that a change of the configuration at carbon $\mathrm{C}-1 \quad(\mathrm{~L}-(-)$-ephedrine and (-)-pseudoephedrine) affected the enantioselectivity. Furthermore, the hydroformylation, using 22b, was also performed in EtOAc and DCM, but led to no improvement (entries 8,9). Therefore, we switched back to toluene as solvent and ran the asymmetric hydroformylation at different pressures. At a syngas pressure of 0.5 MPa , no changes of reactivity as well as enantioselectivity could be noted (entry 10). A higher pressure had a negative influence (entry 11). A lower temperature had a slightly positive effect on the stereodiscrimination, but the reactivity decreased, simultaneously (entries 12,13).
During these screenings it was also possible to perform the asymmetric hydroformylation of 16a in the research group of Prof. Diéguez (Table 25). The provided set of sugar-based ligands is illustrated in Figure 17.

$\begin{array}{ll}\text { L4c } & X=N H, Y=O \\ \text { L5c } & X=O, Y=N H\end{array}$
L6a-c,e-h
L7b, c

L8d-g

Figure 17. Provided set of sugar-based ligands used in the asymmetric hydroformylation of 16a.

Table 25. Screening of the Rh-catalyzed asymmetric hydroformylation of $\mathbf{1 6 a}$ with sugar-based phosphorus ligands L1-8. ${ }^{\text {a }}$

Entry	Ligand	Conv. ${ }^{\text {b }}$ [\%]	17a ${ }^{\text {b }}$ [\%]	$18 \mathrm{a}^{\text {b }}$ [\%]	$19 \mathrm{a}^{\text {b }}$ [\%]	$\mathrm{ec}^{\mathrm{c}}[\mathbf{\%}]$
1	L1b	33	27	1	5	1 (+)
2	L2b	70	63	2	5	rac
3	L2c	18	15	2	2	17 (+)
4	L2d	100	81	<1	19	rac
5	L2e	100	98	<1	2	37 (-)
6	L2f	100	98	<1	1	30 (+)
7	L3c	85	58	-	27	$2(+)$
8	L4c	81	68	-	13	5 (-)
9	L5c	76	54	-	22	2 (+)
10	L6a	>99	96	<1	3	7 (-)
11	L6b	59	52	1	6	rac
12	L6c	52	45	1	6	rac
13	L6e	100	>99	<1	1	46 (-)
14	L6f	100	98	<1	2	9 (-)
15	L6g	66	51	<1	14	4 (+)
16	L6h	100	81	-	19	3 (+)
17	L7b	48	40	4	4	6 (+)
18	L7c	49	40	5	4	14 (+)
19	L8d	2	1	-	<1	n.d.
20	L8e	77	74	<1	3	4 (+)
21	L8f	100	96	<1	4	11 (-)
22	L8g	3	2	-	1	25 (+)
$23^{\text {d }}$	L6e	85	82	3	<1	51 (-)
$24^{\text {e }}$	L6e	24	21	2	-	56 (-)
$25^{\text {e }}$	L2e	35	33	1	<1	45 (-)

${ }^{\text {a }} 0.5 \mathrm{mmol}$ of 16a, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}$, PP-ligand $6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $80{ }^{\circ} \mathrm{C}, 1.0 \mathrm{MPa}$, $\mathrm{S} / \mathrm{Rh}=100,21 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.
${ }^{\text {c }}$ Ee-values of the linear aldehyde (17a) were determined by GC analysis.
${ }^{\mathrm{d}}$ The reaction was performed at $60^{\circ} \mathrm{C}$.
${ }^{\mathrm{e}}$ The reaction was performed at $40^{\circ} \mathrm{C}$.
The asymmetric hydroformylation was first started with the diphosphite ligand L1b, based on α-Dribofuranose, what bears a non-chiral biphenol at both phosphorus atoms. ${ }^{\text {i }}$ An almost racemic mixture of the linear aldehyde with a comparatively high amount of hydrogenation product could be obtained and, furthermore, the conversion was low (33%). To see any influence of an additional stereogenic center at the C-5 carbon ligands of type $\mathbf{L} 2$ were employed to the reaction. The α-D-allofuranosebased ligands showed either modest to poor conversion rates (entries 2,3) or disappointing chemoselectivity (entry 4). In all cases, the ee-values were pretty low. However, trials performed with L2e and L2f, respectively, showed excellent yields of the linear aldehyde and moreover promising ee's.
When phosphite-phosphoramidite ligands L3c, L4c and L5c (with an opposing chirality at C-3) were used, low ee-values yielded. Moreover, hydrogenation became a strong competitive reaction (entries 7-9).
Changing to α-D-xylofuranose-based ligands $\mathbf{L 6}$ resulted in excellent conversion for some trials (entries $10,13,14,16$), but ee-values still remained low except for ligand L6e. Highest chemo-, regioand stereoselectivity (46% ee) could be observed. Surprisingly, when ligands L6g,h were applied, having TMS-groups at the $3,3^{\prime}$-positions of the BINOLs, the enantioselectivity was affected. Additionally, it promoted the hydrogenation (entries 15,16). Structurally related ligands L7 and L8

[^20]gave only small to moderate conversions (except for $\mathbf{L 8 f}$). The additional methyl group at C-5, independently on the carbon atom configuration, seems to have a negative influence on the enantioselectivities of $\mathbf{1 7 a}$ (entries 17-22).
At last, further trials with ligands L2e and L6e at lower temperatures ($60{ }^{\circ} \mathrm{C}$ and $40{ }^{\circ} \mathrm{C}$) were performed and showed best ee-values. The enantioselectivities slightly increased from 46% ee to 56% ee and from 37% ee to 45% ee, respectively. Certainly, the conversion rates stagnated, but no loss of chemo- and regioselectivity could be determined (entries 23-25).
Based on the promising results achieved with L6e, structurally related phosphite-phosphoramidites were synthesized (see Chapter 3.2.2.3) and tested for the asymmetric hydroformylation of 16a (Table 26).

Table 26. Screening of the Rh-catalyzed asymmetric hydroformylation of 16a with self-prepared xylose-based phosphitephosphoramidite ligands $\mathbf{2 5 a}, \mathbf{b}, \mathbf{d}-\mathbf{g}$ and $\mathbf{2 6 b}, \mathbf{d}-\mathbf{g}{ }^{\text {a }}{ }^{\text {a }}$

Entry	Ligand	Conv. [\%]	$17 \mathrm{a}^{\mathrm{b}}$ [\%]	18a ${ }^{\text {b }}$ [\%]	$19 \mathrm{a}^{\mathrm{b}}$ [\%]	$\mathrm{ee}^{\text {c }}$ [\%]
1	25a	97	93	1	2	6 (+)
2	25b	>99	97	<1	2	$12(+)$
3	25d	99	95	<1	3	$11(+)$
4	25 e	96	92	2	2	6 (+)
5	$25 f$	>99	97	1	2	$12(+)$
6	25g	>99	97	<1	2	19 (+)
7	26b	100	96	1	3	55 (-)
8	26d	98	94	1	4	46 (-)
9	26e	100	97	<1	3	48 (-)
10	$26 f$	100	96	<1	3	53 (-)
11	26 g	100	96	<1	3	$52(-)$
${ }^{\text {a }} 0.5 \mathrm{mmol}$ of 16a, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}$, $\mathrm{PP}-$ ligand $6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $80{ }^{\circ} \mathrm{C}, 1.0 \mathrm{MPa}$ $\mathrm{S} / \mathrm{Rh}=100,21 \mathrm{~h}$. ${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy. ${ }^{\mathrm{c}}$ Ee-values of the linear aldehyde (17a) were determined by GC analysis.						

Using ligands 25a,b,d-g, based on (S)-BINOL, excellent conversions and regioselectivities to the linear aldehyde were observed, whereas hydrogenation could be suppressed. Unfortunately, the stereodifferentiation was negligible (entries 1-6). The reaction with ligands $\mathbf{2 6 b}, \mathbf{d - g}$, bearing the (R)-BINOL fragment, led to moderate ee-values (up to 55%). Different alkyl substituents at the nitrogen have only a small influence on the conversion, regio- and enantioselectivity. Optimizations were undertaken while using $\mathbf{2 6 f}$ as ligand (Table 27).

Table 27. Optimization of the Rh-catalyzed asymmetric hydroformylation of 16a with ligand 26f. ${ }^{\text {a }}$

Entry	$\boldsymbol{T}\left[{ }^{\circ} \mathbf{C}\right]$	Conv. $^{\mathbf{b}}[\mathbf{\%}]$	$\mathbf{1 7 a}^{\mathbf{b}}[\mathbf{\%}]$	$\mathbf{1 8 a}^{\mathbf{b}}[\mathbf{\%}]$	$\mathbf{1 9 a}^{\mathbf{b}}[\mathbf{\%}]$	ee $^{\mathbf{c}}[\%]$
1^{d}	80	100	96	<1	3	$53(-)$
2^{e}	80	25	23	<1	2	$57(-)$
3	60	95	89	3	3	$61(-)$
4	50	90	84	3	3	$62(-)$
5	40	54	48	4	2	$63(-)$

${ }^{\mathrm{a}} 0.5 \mathrm{mmol}$ of 16a, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}, \mathbf{2 6 f} 6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $T, 1.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,21 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.
${ }^{\text {c }}$ Ee-values of the linear aldehyde (17a) were determined by GC analysis.
${ }^{\mathrm{d}}$ Reaction was performed in EtOAc.
${ }^{\mathrm{e}}$ Reaction was performed in DCM.
The reaction, performed in EtOAc, gave almost the same results as in toluene from any point of view. When DCM was used as solvent the conversion decreased dramatically to 25%, although the enantioselectivity slightly increased (entry 2). When the temperature was lowered to $60{ }^{\circ} \mathrm{C}$, the reactivity remained almost unchanged, while the stereoselectivity could be improved to 61%
(entry 3). Further temperature decrease to $50^{\circ} \mathrm{C}$ was accompanied by a slight decline of conversion, but did not influence the ee-value. At $40^{\circ} \mathrm{C}$, the yield of the linear aldehyde seriously dropped to 48% (entries 4,5).
In the end, mixed phosphite-phosphoramidite ligands $\mathbf{2 8 a} \mathbf{- g}, \mathbf{i}$ were also tested in the asymmetric hydroformylation of $\mathbf{1 6 a}$ (Table 28).

Table 28. Screening of the Rh-catalyzed asymmetric hydroformylation of 16a with self-prepared xylose-based mixed phosphite-phosphoramidite ligands 28a-g,i. ${ }^{\text {a }}$

Entry	Ligand	Conv. ${ }^{\text {b }}$ [\%]	17a ${ }^{\text {b }}$ [\%]	18a ${ }^{\text {b }}$ [\%]	19a ${ }^{\text {b }}$ [\%]	ee ${ }^{\text {c }}$ [\%]
1	28a	49	44	-	5	7 (-)
2	28b	47	42	<1	5	5 (-)
3	28 c	53	50	1	2	10 (-)
4	28d	83	75	1	7	1 (+)
5	28 e	54	50	<1	3	4 (+)
6	$28 f$	64	59	<1	5	12 (-)
7	28 g	>99	89	<1	10	12 (-)
8	28 i	97	80		17	$31(+)$

${ }^{\text {a }} 0.5 \mathrm{mmol}$ of 16a, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}$, PP-ligand $6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $80{ }^{\circ} \mathrm{C}, 1.0 \mathrm{MPa}$, $\mathrm{S} / \mathrm{Rh}=100,21 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.
${ }^{\text {c }}$ Ee-values of the linear aldehyde (17a) were determined by GC analysis.
All ligands with different diol rests at both phosphorus atoms generated significant amounts of the hydrogenation product. Moreover, they showed disappointingly low activities, except for 28g,i. With these two ligands, almost full conversions resulted. A considerable stereodifferentiation could not be obtained in any case (maximum 31% ee).
The product, dimethyl (3-oxo-1-phenylpropyl)phosphonate 17a, has a slightly acidic hydrogen atom at the chiral center. For that reason, it should be taken into consideration that the enantioselectivity might deteriorate during the reaction. To ensure that this undesired side reaction does not happen samples were taken at certain periods and examined with regard to conversion, yields and especially ee-values. A model reaction of the asymmetric hydroformylation of $\mathbf{1 6 a}$ was performed with $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ and $26 f$ in toluene at $80^{\circ} \mathrm{C}$ under 1 MPa syngas atmosphere (according to Table 26, entry 10).

Figure 18. Conversion and yields of the products of the asymmetric hydroformylation of 16a with $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ and $\mathbf{2 6 f}$ over time.

The diagram shows the dependence of the conversion and the yield as a function of reaction time. At a time point of $2 \mathrm{~h}, 82 \%$ of the starting material were consumed and after approximately 8 h almost full conversion was reached (the black curve). The level of the branched aldehyde was constantly low ($<1 \%$, the red curve) over the whole reaction time. After 2 h , the hydrogenation adjusted to an amount of ca. 3% of the final product mixture (the green curve). The β-aldehyde is formed at the beginning of the reaction and after $7-8 \mathrm{~h}$, no changes in the formation rate could be detected (the blue curve). Furthermore it can be noted that no decomposition of any product took place after 8 h of reaction (at $80^{\circ} \mathrm{C}$ and syngas atmosphere). Additionally, the enantiomeric excess of linear aldehyde $\mathbf{1 7 a}$ was verified at each time.

Figure 19. Enantiomeric excess of $\mathbf{1 7 a}$ as product of the asymmetric hydroformylation of $\mathbf{1 6 a}$ with $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ and $\mathbf{2 6 f}$ over time
It can be concluded that the ee-value remained almost constant after a time of 2 h . When full conversion of the substrate was reached (after ca. 7-8 h), e.g. when the maximum amount of the linear aldehyde was formed, the ee-value did not change ($52-53 \%$) so that racemization of $\mathbf{1 7 a}$ can be excluded.

3.2.2.5 HP-NMR experiments

Furthermore, it was also possible to record HP-NMR spectra of the catalytic active species ${ }^{i}$ for the representative ligand $\mathbf{2 6 f}$. Therefore, $\mathrm{HRh}(\mathbf{2 6 f})(\mathrm{CO})_{2} \mathbf{2 9}$ was prepared in situ under hydroformylation conditions to analyze, what configuration the ligand adopts in the complex (Scheme 45).

Scheme 45. Formation of the catalytically active hydridorhodium phosphite-phosphoramidite dicarbonyl-complex $\operatorname{HRh}(\mathbf{2 6 f})(\mathrm{CO})_{2} 29$.
1.0 Eq of phosphite-phosphoramidite ligand $\mathbf{2 6 f}$ was added to 1.0 eq of $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. This solution was purged with 1.0 MPa syngas and shaken at $80^{\circ} \mathrm{C}$ for 21 h . Subsequently, the solution

[^21]was measured under atmospheric pressure and indicated the formation of $\mathrm{HRh}(\mathbf{2 6 f})(\mathrm{CO})_{2}$-complex 29 (Table 29). The ${ }^{1} \mathrm{H}$ NMR spectrum, shown in Figure 21, illustrates the characteristic region for the hydride.

Figure 20. ${ }^{31} \mathrm{P}$ NMR for the hydridorhodium phosphite-phosphoramidite dicarbonyl-complex $\mathrm{HRh}(\mathbf{2 6 f})(\mathrm{CO})_{2} \mathbf{2 9}$.

Figure 21. ${ }^{1} \mathrm{H}$ NMR for the hydridorhodium phosphite-phosphoramidite dicarbonyl-complex $\mathrm{HRh}(\mathbf{2 6 f})(\mathrm{CO})_{2} 29$.

Table 29. ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR data for $\mathrm{HRh}(\mathbf{2 6 f})(\mathrm{CO})_{2}$-complex 29. ${ }^{\text {a }}$

$\boldsymbol{\delta}(\mathbf{P}(\mathbf{1}))$	$\boldsymbol{\delta}(\mathbf{P}(\mathbf{2}))$	${ }^{1} \boldsymbol{J}_{\mathbf{P}(1)-\mathrm{Rh}}$	${ }^{1} \boldsymbol{J}_{\mathbf{P}(2)-\mathrm{Rh}}$	${ }^{2} \boldsymbol{J}_{\mathbf{P}(1)-\mathbf{P}(\mathbf{2})}$	$\boldsymbol{\delta}(\mathbf{H})$	${ }^{2} \boldsymbol{J}_{\mathbf{H}-\mathbf{P}(1)}$	${ }^{2} \boldsymbol{J}_{\mathbf{H}-\mathbf{P}(2)}$	${ }^{1} \boldsymbol{J}_{\mathbf{H}-\mathrm{Rh}}$
$\mathbf{1 7 1 . 9}(\mathrm{dd})$	$180.9(\mathrm{dd})$	190.1	233.3	124.7	$-9.61(\mathrm{ddd})$	88.0	6.0	2.0

${ }^{\text {a }}$ Prepared in toluene- d_{8}; NMR spectra were recorded under atmospheric conditions at room temperature; chemical shift δ in ppm; coupling constant J in Hz .

In ${ }^{31} \mathrm{P}$ NMR spectrum a set of two double doublets can be seen. They result from two non-equivalent phosphorus atoms, which couple to each other and also to rhodium. The signals appear at $\delta(\mathrm{P}(1))=171.9 \mathrm{ppm}$ and at $\delta(\mathrm{P}(2))=180.9 \mathrm{ppm}$. The coupling constants for ${ }^{31} \mathrm{P}(1)-{ }^{103} \mathrm{Rh}$ is ${ }^{1} J_{\mathrm{P}(1)-\mathrm{Rh}}=190.1 \mathrm{~Hz}$, what neither corresponds to a complete equatorial nor to a complete apical coordination. ${ }^{[21 \mathrm{a}]}$ The coupling constant between ${ }^{31} \mathrm{P}(2)-{ }^{103} \mathrm{Rh}$ equals ${ }^{1} J_{\mathrm{P}(2)-\mathrm{Rh}}=233.2 \mathrm{~Hz}$ and is typical for an equatorial coordination of the phosphorus to rhodium. ${ }^{[21 \mathrm{a}]}$
The ${ }^{31} \mathrm{P}(1)-{ }^{31} \mathrm{P}(2)$ coupling constant is ${ }^{2} J_{\mathrm{P}(1)-\mathrm{P}(2)}=124.7 \mathrm{~Hz}$. This is lower than for an ideal bisequatorial coordination of both phosphorus atoms, what ranges between $235-240 \mathrm{~Hz},{ }^{[21 a]}$ but higher than for equatorial-axial complexes $(0-70 \mathrm{~Hz})$. The observation might suggest that there is a dynamic equilibrium between ee- and ea-coordination that leads to an averaged value for the chemical shifts (δ) and the coupling constant $\left({ }^{2} J_{\mathrm{P}(1)-\mathrm{P}(2)}\right.$, Scheme 46). Another aspect, what has to be considered, is the possible formation of a distorted trigonal bipyramidal hydridorhodium dicarbonyl species with ee-coordination. ${ }^{[120]}$

Scheme 46. Equilibrium of two rhodium-complexes with equatorial-equatorial (ee) and equatorial-apical (ea) coordination of the bidentate ligand.

The reason, why there is only one double doublet for each phosphorus instead of the estimated double set of double doublets, is the fast exchange of the position of the phosphorus, which cannot be determined on the NMR time scale. ${ }^{[25 c]}$
In the ${ }^{1} \mathrm{H}$ NMR spectrum, a doublet of double doublets at $\delta(\mathrm{H})=-9.60 \mathrm{ppm}$ is visible that can be assigned to the apical position of the hydride. The coupling constant for ${ }^{1} \mathrm{H}-{ }^{31} \mathrm{P},{ }^{2} J_{\mathrm{H}-\mathrm{P}(1)}=88.0 \mathrm{~Hz}$, is an averaged value ${ }^{[25 c]}$ between the characteristical one for an equatorial ($J<10 \mathrm{~Hz}$) and an axial coordination ($J=140-200 \mathrm{~Hz}^{[21 \mathrm{a}]}$). Therefore, it can be assigned to the coupling between the hydride and the phosphorus $\mathrm{P}(1)$. The other coupling constant mounts to ${ }^{2} J_{\mathrm{H}-\mathrm{P}(2)}=6.0 \mathrm{~Hz}$. It is typical for an equatorial coordination and belongs to the coupling between the hydride and the phosphorus $\mathrm{P}(2)$. The value of ${ }^{1} \mathrm{H}-{ }^{103} \mathrm{Rh}$ is ${ }^{1} J_{\mathrm{H}-\mathrm{Rh}}=2.0 \mathrm{~Hz}$ is usual. ${ }^{[120 \mathrm{a}]}$
In conclusion, it can be summarized that the values for ${ }^{2} J_{\mathrm{H}-\mathrm{P}}$ and ${ }^{2} J_{\mathrm{P}(1)-\mathrm{P}(2)}$ indicate a fast exchange between ee- and ea-coordination, but no dominant geometry can be supposed. One phosphorus atom changes its position and is located at the equatorial as well as the apical position in the trigonal bipyramidal-complex.

3.2.2.6 Scope of the asymmetric hydroformylation of α-phosphorylated vinyl arenes

We tried to expand the scope to a variety of substrates $\mathbf{1 6 b} \mathbf{- i}$ for the asymmetric hydroformylation (Scheme 47). The reaction was performed with the L-(-)-ephedrine-based ligand 22b and the α-D-xylose- and amino xylose-based ligands L6e and 26f, respectively. A temperature of $80^{\circ} \mathrm{C}$ and a syngas pressure of 1 MPa were chosen as reaction conditions.

Scheme 47. Scope of the asymmetric hydroformylation of $\mathbf{1 6 b} \mathbf{- i}$.

Table 30. Scope of the Rh-catalyzed asymmetric hydroformylation of 16b-i with ligands 22b, L6e and 26f. ${ }^{\text {a }}$

Entry	Substrate	Ligand	Conv. ${ }^{\text {b }}$ [\%]	$17^{\text {b }}$ [\%]	$18^{\text {b }}$ [\%]	$19^{\text {b }}$ [\%]	ee ${ }^{\text {c }}$ [\%]
1	16b	22b	72	67	<1	4	n.d. ${ }^{\text {d }}$
2	16b	L6e	90	80	-	10	n.d. ${ }^{\text {d }}$
3	16b	$26 f$	100	95	1	4	n.d. ${ }^{\text {d }}$
4	16h	22b	77	75	<1	1	n.d. ${ }^{\text {d }}$
5	16h	L6e	79	75	<1	3	n.d. ${ }^{\text {d }}$
6	16h	$26 f$	100	99	<1	1	n.d. ${ }^{\text {d }}$
7	16c	22b	72	60	2	10	n.d. ${ }^{\text {d }}$
8	16c	L6e	97	81	-	16	n.d. ${ }^{\text {d }}$
9	16c	$26 f$	>99	94	1	4	n.d. ${ }^{\text {d }}$
10	16d	22b	67	62	<1	4	$17(+)$
11	16d	L6e	94	89	<1	5	$3(+)$
12	16d	$26 f$	100	96	<1	3	$36(-)$
13	16e	22b	65	58	1	6	$17(+)$
14	16e	L6e	98	88	1	10	$1(+)$
15	16e	$26 f$	100	95	1	4	$35(-)$
16	16 f	22b	66	57	1	9	$19(+)$
17	16 f	L6e	97	89	<1	7	$2(+)$
18	16 f	$26 f$	100	95	1	4	$37(-)$
19	16 g	22b	99	97	<1	2	n.d. ${ }^{\text {d }}$
20	16 g	L6e	90	86	<1	3	n.d. ${ }^{\text {d }}$
21	16 g	$26 f$	>99	95	<1	5	n.d. ${ }^{\text {d }}$
22	16i	22b	83	74	-	9	n.d. ${ }^{\text {d }}$
23	16i	L6e	97	67	-	30	n.d. ${ }^{\text {d }}$
24	16i	26 f	100	89	-	11	n.d. ${ }^{\text {d }}$

${ }^{\text {a }} 0.5 \mathrm{mmol}$ of substrate, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}$, PP-ligand $6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $80^{\circ} \mathrm{C}, 1.0 \mathrm{MPa}$, $\mathrm{S} / \mathrm{Rh}=100,21 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.
${ }^{\text {c }}$ Ee-values of the linear aldehyde (17) were determined by GC analysis.
${ }^{\mathrm{d}}$ Up to now, the degree of enantioselectivity could not be determined, even not by application of different GC and HPLC columns.

As a general tendency, best conversions of the substrates and yields to the corresponding aldehydes were observed with $\mathbf{2 6 f}$.
The hydroformylation of substrates $\mathbf{1 6 b}$ and $\mathbf{1 6 h}$, which have electron donating groups (methyl group for $\mathbf{1 6 b}$, [$+I$-effect] or methoxy group for $\mathbf{1 6 h}$ [$+M$-effect]) in the para-position of the aryl ring, resulted in full conversions with ligand $\mathbf{2 6 f}$ (entries 3,6). Stereoselectivities were not indicated, because the enantiomers could not be separated.
For substrates 16d-f, possessing electron withdrawing groups in the para-position of the aryl ring (different halogens, $-I$-effect), hydroformylation with ligand $\mathbf{2 2 b}$ gave moderate conversions (ca. 70%), but low ee-values (entries $10,13,16$). Moreover, trials with L6e as ligand resulted in almost full conversion, but hydrogenation occurred up to 10% and the stereodifferentiation was surprisingly poor. When ligand $\mathbf{2 6}$ was used, very good rates to the linear aldehyde were achieved, however, the maximum of the reached enantiomeric excess was only 37%.
When diethyl phosphonate $\mathbf{1 6 g}$ was submitted to the reaction, results with these three ligands were comparable to those of the dimethyl phosphonate 16a. The ethyl group does not seem to have a great influence on conversion, regio-, chemoselectivity. A yield of 95% for the linear aldehyde was reached with ligand 26f. A stereoselectivity was not determined, because both enantiomers could not be separated (entries 19-21). In the reaction of phosphine oxide 16i, having a different steric environment at the phosphorus atom (phenyl instead of alkoxy groups), the hydrogenation was promoted (up to 30%, (entries 22-24). Obviously, the steric demanding phenyl groups shield the double bond so that only small molecules $\left(\right.$ like $\left.\mathrm{H}_{2}\right)$ can attack, what leads to enhanced hydrogenation.

3.2.2.7 Outlook

The synthesis of enantiopure 3-aryl-3-phosphorylated propanals will remain an interesting task since a range of interesting structures can be derived. For example, both, phosphine oxide and aldehyde group in 17i, could be reduced to give the corresponding hydroxy phosphine compound, which may serve itself as ligand or on the way to more sophisticated ligands (Scheme 48).

Scheme 48. Subsequent transformations starting from phosphine oxide 17i.
Moreover, the aldehyde can also be converted into a variety of functionalized compounds, e.g. alcohols, amines and carbon acids and their derivatives.

3.2.3 Preparation of enantioenriched 3-phenyl butanal

3-Phenyl butanal has a grassy, fresh and floral odor. ${ }^{\text {i }}$ Together with several derivatives, such as Florhydral ${ }^{\circledR}$, ii it is used as fragrance in all areas of perfumery, due to its great intensity.
The scaffold of enantiomerically pure 3-phenyl butanal becomes apparent as substructure of 3-aryl γ aminobutyric acid and can be found, for example, in Phenibut (Figure 22). Its (R)-enantiomer is pharmacologically active and shows anxiolytic effects in humans and animals. It is used for posttraumatic stress disorder, anxiety and insomnia, but also for treatment of alcoholism (withdrawal). ${ }^{[121]}$ The structurally related derivative (R)-Baclofen is a specific agonist at the $\mathrm{GABA}_{\mathrm{B}}$-receptor of mammals. It is applied for treatment of spasticity and acts as a muscle relaxant. ${ }^{[122]}$
(R)-Rolipram (Figure 22) has an antidepressive, ${ }^{[123]}$ antipsychotic, ${ }^{[124]}$ anti-inflammatory, immunosuppressive, ${ }^{[125]}$ and anti-tumor effect. ${ }^{[126]}$

[^22]
(R)-Phenibut $\mathrm{R}=\mathrm{H}$ (R)-Baclofen $\mathrm{R}=\mathrm{Cl}$

(R)-Rolipram

Figure 22. Chiral pharmaceuticals derived from 3-phenyl butanal: (R)-Phenibut, (R)-Baclofen and (R)-Rolipram.

Up to now, a variety of different synthetic strategies for the synthesis of chiral 3-phenyl butanal have been tested with more or less success with respect to yield and selectivity. Early research was focused on the diastereoselective addition of different organometallic compounds to allylamines, ${ }^{[127]}$ allyl ethers, ${ }^{[128]} \alpha, \beta$-unsaturated aldimines, ${ }^{[129]}$ acetals ${ }^{[130]}$ or oxazolidines ${ }^{[131]}$ using diverse chiral auxiliars. Moreover, copper-catalyzed 1,4 -addition ${ }^{[132]}$ became attractive, too.
Another method for the preparation is based on the enantioselective isomerization of β-methyl cinnamyl alcohol. With a homogeneous rhodium-complex as catalyst, ${ }^{[133]}$ excellent yields and up to 75% ee could be reached. However, high amounts of catalyst were needed. The ruthenium- ${ }^{[134]}$ and iridium-catalyzed ${ }^{[135]}$ reactions generated high ee's, but only moderate yields.
The asymmetric transfer hydrogenation of β-methyl cinnamaldehyde, using the Hantzsch ester, ${ }^{[136]}$ illustrated another route to yield 3 -phenyl butanal with enantioselectivities up to $94 \%{ }^{[137]}$ In this context, other hydrogen sources were employed, too, but competitive hydrogenation to the unsaturated alcohol could not be suppressed. ${ }^{[138]}$
Asymmetric hydroformylation of α-methyl styrene, a cheap and available compound from large industrial-scale, ${ }^{\text {i }}$ represents a suitable alternative to get chiral 3-phenyl butanal as well as its derivatives.

3.2.3.1 Asymmetric hydroformylation of α-methyl styrene

The reaction under hydroformylation conditions can give chiral aldehyde 30, branched (achiral) aldehyde 31 and hydrogenation product cumene (Scheme 49). In principle, an interesting competition in the reaction pathways between the preferred terminal aldehyde, according to Keulemans' rule, and the iso-product due to the α-regiodirecting effect of the styrene can be expected (Figure 23).

Figure 23. Regioselective binding of the CHO-group.

Since we aimed to get the chiral product, we started promptly with chiral rhodium catalysts (Table 31).

[^23]

Scheme 49. Asymmetric hydroformylation of α-methyl styrene.
Table 31. Initial trials of the Rh-catalyzed asymmetric hydroformylation of α-methyl styrene with commercial ligands. ${ }^{a}$

Entry	Ligand	Conv. $^{\mathbf{b}} \mathbf{[\%]}$	$\mathbf{3 0}^{\mathbf{b}} \mathbf{[\%]}$	$\mathbf{3 1}^{\mathbf{b}} \mathbf{[\%]}$	Cumene $^{\mathbf{b}} \mathbf{[\%]}$	$\mathbf{e e}^{\mathbf{c}} \mathbf{[\%]}$
1	(S, S)-DIOP	94	90	1	3	rac
2	(S, S)-BDPP	83	80	1	3	rac
3	(R)-SynPhos	71	69	1	1	$1(-)$
4	(R, R)-Me-DuPhos	35	31	1	3	rac
5	(S, S)-ChiraPhos	76	66	<1	10	$1(+)$
6	(R, R)-DIPAMP	18	14	1	3	rac
7	(R)-DifluorPhos	69	64	2	3	rac
8	(R, R)-Ph-BPE	70	65	2	3	$9(+)$
9	(R, R)-QuinoxP*	43	18	14	11	$15(-)$
10	(S, S)-BenzP*	100	86	-	14	rac
11	(R, R)-Chiraphite	87	85	1	2	$1(+)$
12	(R, R)-Kelliphite	95	92	<1	3	$1(-)$

${ }^{\text {a }} 0.5 \mathrm{mmol}$ of α-methyl styrene, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}, \mathrm{PP}-$ ligand $6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $80^{\circ} \mathrm{C}$, $1.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,21 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{\text {c }}$ Ee-values of the linear aldehyde (30) were determined by GC analysis.
According to the hydroformylation of 16a we adopted the conditions (amount of catalyst, temperature, pressure, time) and started with $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ and commercially available chiral ligands. At $80^{\circ} \mathrm{C}$ and under 1 MPa syngas atmosphere, conversions from 18% to 94% were obtained (entries 1-7). The formation of the linear aldehyde was privileged, however, small amounts of the branched aldehyde and the hydrogenation product were found in all cases. With rhodium catalysis, based on these ligands, it was not able to induce any chirality in the final product; almost racemic mixtures of 3-phenyl butanal were determined.
When recently successful ligands in the asymmetric hydroformylation (see Chapter 2.2.2.2) were applied, no improvements could be achieved: with (R, R)-Ph-BPE a moderate conversion (70 \%) with poor enantioselectivity (9% ee) was obtained (entry 8). (R, R)-QuinoxP* and (S, S)-BenzP* gave the linear aldehyde in only 15% ee and as a racemic mixture, respectively (entries 9,10).
The reaction with diphosphites, such as (R, R)-Chiraphite and (R, R)-Kelliphite, resulted in good conversions and excellent regioselectivities. Nevertheless, both ligands were not able to induce considerable enantioselectivities as well (entries 11,12). The unsatisfying results prompted us to switch to our self-prepared ligands (Table 32).

Table 32. Screening of the Rh-catalyzed asymmetric hydroformylation of α-methyl styrene with self-prepared diphosphite ligands 21a-e and phosphite-phosphoramidite ligand 22b. ${ }^{\text {a }}$

Entry	Ligand	Conv. ${ }^{\text {b }}$ [\%]	30 ${ }^{\text {b }}$ [\%]	$31{ }^{\text {b }}$ [\%]	Cumene ${ }^{\text {b }}$ [\%]	ee ${ }^{\text {c }}$ [\%]
1	21a	97	97	<1	-	2 (+)
2	21b	97	96	1	-	33 (-)
3	21c	76	75	1	-	$8(-)$
4	21d	74	73	1	-	4 (-)
5	21e	91	90	<1	1	$18(-)$
6	22b	87	85	2	-	10 (-)

${ }^{\text {a }} 0.5 \mathrm{mmol}$ of α-methyl styrene, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}$, PP-ligand $6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $80{ }^{\circ} \mathrm{C}$, $1.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,21 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{c}$ Ee-values of the linear aldehyde (30) were determined by GC analysis.
We started our trials with chiral diphosphites 21a-e and obtained conversions up to 97%. However, the rhodium catalysts, based on these structurally related ligands, varied in reactivity and stereodifferentiation. Excellent chemo- and regioselectivities were attained in all cases (entries 1-5). When 21b was employed, a good enantioselectivity for the linear aldehyde was observed (33% \%ee). L-(-)-Ephedrine-based phosphite-phosphoramidite 22b gave a satisfying conversion accompanied by a poor ee-value of 10% (entry 6).
Finally, we performed the asymmetric hydroformylation of α-methyl styrene using the xylose-based ligands (Table 33).

Table 33. Screening of the Rh-catalyzed asymmetric hydroformylation of α-methyl styrene with self-prepared xylose-based phosphite-phosphoramidite ligands $\mathbf{2 5 a}, \mathbf{d}-\mathbf{g}, 26 \mathrm{~d}-\mathrm{g}$ and $\mathbf{2 8 a} \mathbf{- g}$, i. $^{\text {a }}$

Entry	Ligand	Conv. ${ }^{\text {b }}$ [\%]	30 ${ }^{\text {b }}$ [\%]	31 ${ }^{\text {b }}$ [\%]	Cumene ${ }^{\text {b }}$ [\%]	e ${ }^{\text {c }}$ [\%]
1	25a	83	81	1	1	23 (+)
2	25d	92	88	1	3	10 (+)
3	25e	88	86	1	1	$12(+)$
4	$25 f$	82	80	1	1	$36(+)$
5	25g	96	95	<1	-	39 (+)
6	26d	86	83	2	1	14 (-)
7	26e	93	91	1	1	8 (-)
8	$26 f$	91	89	2	-	14 (-)
9	26 g	91	87	2	2	20 (-)
10	28a	67	63	1	3	$11(-)$
11	28b	65	63	1	<1	$9(-)$
12	28c	74	72	2	-	15 (-)
13	28d	96	93	1	2	rac
14	28e	46	45	1	-	$2(-)$
15	$28 f$	58	57	<1	-	5 (-)
16	28g	98	92	1	5	16 (-)
17	28i	91	87	1	3	$18(+)$

${ }^{\text {a }} 0.5 \mathrm{mmol}$ of α-methyl styrene, $\operatorname{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}$, PP-ligand $6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $80^{\circ} \mathrm{C}$, $1.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,21 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{\text {c }}$ Ee-values of the linear aldehyde (30) were determined by GC analysis.
First of all, it could be noted that the substituents at the N-moiety of ligands $\mathbf{2 5}$ and $\mathbf{2 6}$ have a crucial effect on the hydroformylation of α-methyl styrene and this fact is in contrast to the reaction of 16a. When a rhodium catalyst was used, what is based on 26a (containing $N-\mathrm{Me}$), 23 \%ee for the linear aldehyde were reached (entry 1). Ligands with more sterically demanding substituents at the nitrogen atom, such as cyclohexyl and phenyl (represented in $\mathbf{2 5 d}$ and $\mathbf{2 5 e}$, respectively), gave lower enantioselectivities (entries 2,3). Surprisingly, ligand 25f, bearing a benzyl group at the nitrogen,
managed to induce a stereoselectivity of 36% (entry 4) that could be slightly exceeded by application of $\mathbf{2 5 g}$ (39% ee, entry 5).
For all these ligands, conversions up to 96% and very good yields (up to 95%) to the desired 3-phenyl butanal were attained.
Hydroformylation with ligands, bearing (R)-BINOLs at both phosphorus atoms ($\mathbf{2 6 d} \mathbf{- g}$), showed similar results with respect to reactivity and regioselectivity. However, lower enantioselectivities were detected in all cases (entries 6-9).
When mixed xylose-based phosphite-phosphoramidites were used, varying conversions were obtained depending on the substituents at the phosphorus atoms. Among these trials, only ligands $\mathbf{2 8 d}$ and $\mathbf{2 8 g}$ induced high yields of linear aldehyde (93% and 92%, respectively, entries 13,16). Unfortunately, no general tendency can be recognized, how the substituents at the phosphorus atoms are related to reactivity as well as to the stereocontrol of the chiral catalyst.
Summarizing, it can be said that α-methyl styrene was hydroformylated yielding 95% of the desired linear aldehyde. This product could be obtained in 39 \%ee using the self-prepared ligand $\mathbf{2 5 g}$.

4 Summary and outlook

The general aim of this thesis consisted in the examination of the asymmetric hydrogenation and the hydroformylation of 1,1-disubstituted olefins as an alternative approach to the synthesis of new or known chemical compounds or substructures.
First part of this dissertation was devoted to the asymmetric hydrogenation of functionalized olefins. With the hydrogenation of trimethylsilylated dehydro lactate, a new strategy to the synthesis of an O-protected lactic acid derivative could be established. In this context, different catalyst precursors were tested and the performance of the superior system was optimized with respect to yield and stereodifferentiation. Catalysts, recently applied for structurally related substrates, did not perform successfully. Noteworthy, a corresponding three-fold substituted olefin did not react under the optimized conditions. Even a more severe reaction regime afforded only inferior results. A broader catalyst screening, preferentially based on high-throughput screening, could probably give more promising results. Unfortunately, such devices were not accessible during this thesis.
In addition, the stereoselective hydrogenation of a cyclic N, O-ketene acetal was examined, what represented a great challenge, since this class of olefins was not hydrogenated asymmetrically, yet.
Among numerous catalyst precursors tested, a (R, S)-JosiPhos-based rhodium system gave superior results after optimization of the reaction parameters. By evaluation of further ligands within this ferrocene-based ligand family, no improvements could be achieved. Resulting cyclic N, O-acetal was isolated in an excellent yield with good enantioselectivity.
A further aspect of this thesis was the asymmetric hydrogenation of dehydro β^{2}-homoalanine derivatives. One compound of this class served as a model substrate and was treated with rhodium catalysts using a variety of ligands. With the help of a commercially available ligand, developed in the research group of Prof. Börner, an excellent enantioselectivity and yield could be reached. Further trials with other substrates of this class could be worked out. They showed convincing results as well and proved the wide range of application of this method. In addition, two newly generated β^{2}-homoalanine derivatives served as starting material for further transformations. Selectively, the ester- as well as the N-protecting group could be reduced and further converted, respectively, under preservation of the chiral center to finally yield chiral 1,3-amino alcohols (Scheme 50).

Scheme 50. Asymmetric hydrogenation of 1,1-disubstituted olefins and subsequent transformations.

A further part of this thesis consisted of the synthesis of novel, chiral phosphorus ligands and their application in the asymmetric hydroformylation of 1,1-disubstituted olefins. Next to the preparation of non-commercial ligands, such as (R, S) - and (R, R)-BINAPHOS, chiral diphosphites, based on various aromatic diols, were synthesized. The preparation of phosphite-phosphoramidites, derived from 1,2-amino alcohols, was successful and provided five new ligands, which were tested in asymmetric hydroformylation. Furthermore, in cooperation with the research group of Prof. Diéguez (Universitat Rovira í Virgili in Tarragona/Spain), six xylose-based amines were prepared in a four-step synthesis, which were then used as starting material for the synthesis of bidentate phosphite-phosphoramidite ligands on the other hand (12 new compounds). A two-step reaction enabled at first the preparation of monophosphites (three new compounds), which were then converted into mixed phosphitephosphoramidites. In this manner, nine new ligands were synthesized and tested in asymmetric hydroformylation (Scheme 51).

Scheme 51. Synthesis of new diphosphites and phosphite-phosphoramidites.
By means of a precatalysts based on a self-prepared xylose-based phosphite-phosphoramidite ligand, HP-NMR experiments were undertaken. The resulting data provided information about the formed hydridorhodium-complex and led to some assumptions of the preferred coordination geometry of the bidentate ligand to the metal.
The asymmetric hydroformylation of a dehydro β^{2}-homoalanine derivative led mainly to isomerization. The desired branched aldehyde could be obtained in maximum 33% ee.
Furthermore, an α-phosphorylated styrene derivative was hydroformylated to yield predominately the linear aldehyde. By screening of a set of sugar-based ligands, the desired product resulted convincingly. Optimization, with respect to the conditions and also the application of new selfprepared ligands, led to an excellent yield and promising stereoselectivity. The scope could be extended to eight different substituted α-phosphorylated vinyl arenes and one phosphine oxide derivative.
The asymmetric hydroformylation of α-methyl styrene delivered the linear aldehyde in a very good yield and a moderate enantioselectivity while the reaction was performed with a self-prepared xylosebased phosphite-phosphoramidite ligand (Scheme 52).
In this context, all substrates, with the exception of α-methyl styrene, were self-prepared.

Scheme 52. Asymmetric hydroformylation of 1,1disubstituted olefins.

In this thesis performed hydrogenation and hydroformylation reactions display a practical alternative to already existing synthesis strategies. Because of the relatively simple transition between both types of reaction, a wide range of various compounds can be easily achieved. Regarding to 1,1 -disubstituted olefins, it becomes clear that these compounds possess a great potential, especially in the field of enantioselective hydroformylation. However, up to now, it is a great challenge to handle reactivity as well as chemo-, regio- and stereoselectivity that requires additional investigations in future.

5 Appendix

5.1 Experimental section

5.1.1 Materials and methods

5.1.1.1 General remarks

All non-aqueous reactions were carried out in oven-dried glassware under an argon atmosphere in order to exclude oxygen and/or water (Schlenk techniques were applied). Solvents for the reactions were dried and distilled by standard methods or purchased in extra dry quality from Sigma Aldrich ${ }^{\circledR}$. All chemicals, which were employed, were purchased from a commercial source (SIGMA ALDRICH ${ }^{\circledR}$, Alfa AESAR ${ }^{\circledR}$, ABCR) and used as received.

5.1.1.2 Methods for the compound characterization and analysis

${ }^{1} \mathrm{H}$ NMR spectroscopy:

Bruker AVANCE 300 III ($\mathrm{f}=300 \mathrm{MHz}$) and Bruker AVANCE 250 II ($\mathrm{f}=250 \mathrm{MHz}$). All chemical shifts δ are given in ppm. All coupling constants are indicated as J and given in Hz. References: tetramethylsilane TMS ($\delta=0.00 \mathrm{ppm}$) was taken as internal standard. Chemical shifts for deuterated solvents: $\delta=7.26 \mathrm{ppm}$ for $\mathrm{CDCl}_{3}, \delta=7.16 \mathrm{ppm}$ for $\mathrm{C}_{6} \mathrm{D}_{6}, \delta=5.32 \mathrm{ppm}$ for $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and $\delta=3.31 \mathrm{ppm}$ for $\mathrm{CD}_{3} \mathrm{OD}$. Peak characterization: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{ddd}=$ doublet of double doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{dq}=$ double quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Aromatic hydrogen atoms are abbreviated as $\mathrm{CH}-\mathrm{Ar}$.

${ }^{13} \mathrm{C}$ NMR spectroscopy:

Bruker AVANCE 300 III ($\mathrm{f}=75 \mathrm{MHz}$) and Bruker AVANCE 250 II ($\mathrm{f}=63 \mathrm{MHz}$). All chemical shifts δ are given in ppm. All coupling constants are indicated as J and given in Hz. References: tetramethylsilane TMS ($\delta=0.00 \mathrm{ppm}$) was taken as internal standard. Chemical shifts for deuterated solvents: $\delta=77.00 \mathrm{ppm}$ for CDCl_{3} and $\delta=128.06 \mathrm{ppm}$ for $\mathrm{C}_{6} \mathrm{D}_{6}, \delta=54.00 \mathrm{ppm}$ for $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ and $\delta=49.15 \mathrm{ppm}$ for $\mathrm{CD}_{3} \mathrm{OD}$. Peak characterization: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $t=$ triplet, $q=$ quartet, $m=$ multiplet, $b r=$ broad. DEPT method was used for determining the presence of primary, secondary, tertiary and quaternary carbon atoms. Aromatic carbon atoms are abbreviated as $\mathrm{CH}_{\mathrm{Ar}}$ and C_{Ar}.

${ }^{19}$ F NMR spectroscopy:

Bruker AVANCE 300 III ($\mathrm{f}=282 \mathrm{MHz}$). All chemical shifts δ are given in ppm. All coupling constants are indicated as J and given in Hz . References: trichlorofluoromethane $\mathrm{CFCl}_{3}(\delta=0.00 \mathrm{ppm}$) was taken as internal standard. Peak characterization: $s=$ singlet, $d=$ doublet.

${ }^{31} \mathrm{P}$ NMR spectroscopy:

Bruker AVANCE 300 III ($\mathrm{f}=121 \mathrm{MHz}$) and Bruker AVANCE 250 II ($\mathrm{f}=101 \mathrm{MHz}$). All chemical shifts δ are given in ppm. All coupling constants are indicated as J and given in Hz. References: phosphoric acid $\mathrm{H}_{3} \mathrm{PO}_{4}(\delta=0.00 \mathrm{ppm})$ was taken as internal standard. Peak characterization: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{br}=$ broad.

Mass spectrometry (MS):

Finnigan MAT 95-XP (ThermoElectron, EI, 70 eV) and Agilent-6890 with Agilent-5973 mass spectrometer.

High resolution mass spectrometry (HRMS):

Agilent 6210 E1969A TOF. Only the measurements with an average deviation from the theoretical mass of $\pm 2 \mathrm{mDa}$ were accounted as correct.

Gas chromatography (GC):

Agilent-7890A with flame ionization detector (FID).

High pressure liquid chromatography (HPLC):

HP 1100 (Hewlett Packard) with diode array detector (DAD).

Elemental analysis (EA):

C/H/N/S-Microanalysator TruSpec CHNS (Leco).

Polarimetry:

Gyromat-HP High Precision Digital Automatic Polarimeter (Kernchen, Germany). The length of the cuvettes were $1_{1}=10 \mathrm{~mm}$ and $1_{2}=20 \mathrm{~mm}$; the wavelength is $\lambda=589 \mathrm{~nm}$.

Melting point determination (mp):

Micro-Hot-Stage Galen ${ }^{\text {TM }}$ III Cambridge Instruments. The melting points were not corrected.

5.1.2 Synthesis methods

5.1.2.1 Synthesis of 2-[(trimethylsilyl)oxy] esters

General procedure for the synthesis of α, β-unsaturated methyl esters $\mathbf{1 a , b}$
The α-keto ester (1.0 eq) is dissolved in dichloromethane ($1 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) and chlorotrimethylsilane (1.4 eq) is added. Then, triethylamine (1.6 eq) is added dropwise to the solution, which is stirred at room temperature for 16 h . After this time, pentane is added and the organic layer is
washed with water (twice) and brine. The organic phase is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and purified by distillation to give $\mathbf{1 a , b}$.

Methyl 2-[(trimethylsilyl)oxy]acrylate (1a) ${ }^{[140]}$

Starting from methyl pyruvate ($5.11 \mathrm{~g}, 50 \mathrm{mmol}$) and $\mathrm{TMSCl}(7.10 \mathrm{~g}, 65 \mathrm{mmol})$ in DCM (50 mL), the product 1a was isolated as a colorless oil ($8.63 \mathrm{~g}, 99 \%$) after distillation ($T=53^{\circ} \mathrm{C}, p=15 \mathrm{mbar}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.23\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.77\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.88(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=1.2 \mathrm{~Hz}\right), 5.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2},{ }^{2} J_{\mathrm{H}-\mathrm{H}}=1.2 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-0.1\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 52.1\left(\mathrm{OCH}_{3}\right), 104.0\left(\mathrm{CH}_{2}\right), 146.9\left(\mathrm{CCH}_{2}\right)$, 164.9 (C=O).

Methyl 2-[(trimethylsilyl)oxy]but-2-enoate (1b)

Starting from methyl 2 -oxobutanoate ($1.74 \mathrm{~g}, 15 \mathrm{mmol}$) and TMSCl (2.68 g , $21 \mathrm{mmol})$ in DCM $(15 \mathrm{~mL})$, the product $\mathbf{1 b}$ was isolated as a colorless oil $(2.65 \mathrm{~g}$, 94%) after distillation ($T=74^{\circ} \mathrm{C}, p=30 \mathrm{mbar}$).

Anal. calcd for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{Si}$: C, $51.03 ; \mathrm{H}, 8.56$. Found: C, $51.06 ; \mathrm{H}, 8.59 \%$.
HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{O}_{3} \mathrm{Si}: 189.09415$, found 189.09402 .
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.21\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.70\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 3.74$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $6.13\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.4\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 11.3\left(\mathrm{CH}_{3}\right), 51.8\left(\mathrm{OCH}_{3}\right), 118.4(\mathrm{CH}), 141.3$ (C-O), 165.2 (C=O).

General procedure for the synthesis of 2-[(trimethylsilyl)oxy] esters 2a,b

The substrate (1.0 eq) and the Rh precatalyst ($1 \mathrm{~mol} \%$) are transferred into a glass vial, which is placed into a stainless steel autoclave. The solvent ($4 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) is added under an argon atmosphere and the autoclave is purged with argon (three times) followed by hydrogen (three times). The indicated reaction conditions (H_{2}-pressure, temperature and reaction time) are adjusted by an automatic program. After stirring for the adjusted time, the mixture is concentrated under reduced pressure. The enantiomeric excess is determined by GC analysis. A racemic mixture of $\mathbf{2 b}$, as sample for the quantitative and qualitative analysis, is prepared by the hydrogenation of $\mathbf{1 b}$ with $10 \% \mathrm{Pd} / \mathrm{C}$ in THF.

Methyl 2-[(trimethylsilyl)oxy]propanoate (2a) ${ }^{[141]}$

${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-0.1\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 21.4\left(\mathrm{CH}_{3}\right), 51.7\left(\mathrm{OCH}_{3}\right), 68.2(\mathrm{CH}), 174.1$ ($\mathrm{C}=\mathrm{O}$).
Separation of enantiomers by GC on Chiraldex $\beta-\mathrm{PM}(50 \mathrm{~m} \times 0.25 \mathrm{~mm}), 80 / 15-8-180 ; \mathrm{t}_{\mathrm{R}}=10.5 \mathrm{~min}$ for $(+)$-enantiomer and $t_{R}=10.7 \mathrm{~min}$ for $(-)$-enantiomer.

Methyl 2-[(trimethylsilyl)oxy]butanoate (2b)

Anal. calcd for $\mathrm{C}_{8} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Si}$: C, 50.49 ; H, 9.53. Found: C, $50.30 ; \mathrm{H}, 9.51 \%$.
HRMS (ESI) calculated for $\mathrm{C}_{8} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{Si}$: 191.32060, found 191.32073.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.13\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.93\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.68-1.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.11\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{H}-\mathrm{A}}=7.5 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{B}}=4.9 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.2\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 10.4\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{2}\right), 51.9\left(\mathrm{OCH}_{3}\right), 68.5$ (CH), $173.9(\mathrm{C}=\mathrm{O})$.

Separation of enantiomers by GC on Chiraldex $\beta-\mathrm{PM}(50 \mathrm{~m} \times 0.25 \mathrm{~mm}), 75 / 20-8-180 ; \mathrm{t}_{\mathrm{R}}=17.0 \mathrm{~min}$ for $(+)$-enantiomer and $t_{R}=17.3 \mathrm{~min}$ for (-)-enantiomer.

5.1.2.2 Synthesis of $\boldsymbol{N}, \boldsymbol{O}$-acetals

General procedure for the synthesis of 2-methylene-3-substituted-oxazolidine-4,5-diones 3a,b
The corresponding amide (1.0 eq) is dissolved in benzene $(0.5 \mathrm{~mL} / 1.0 \mathrm{mmol}$ amide) and heated to $60^{\circ} \mathrm{C}$. Oxalyl chloride (1.08 eq) is added dropwise and the mixture is then refluxed for 24 h . After this time, it is cooled to room temperature and concentrated in vacuo. Kugelrohr distillation of the residue gives $\mathbf{3 a}$,b.

2-Methylene-3-phenyloxazolidine-4,5-dione (3a)

Starting from acetanilide ($9.46 \mathrm{~g}, 70 \mathrm{mmol}$) and oxalyl chloride $(9.52 \mathrm{~g}, 75 \mathrm{mmol})$ in benzene $(35 \mathrm{~mL})$, the product $\mathbf{3 a}$ was isolated as a white solid ($10.32 \mathrm{~g}, 78 \%)$ after Kugelrohr distillation $\left(T=120-130{ }^{\circ} \mathrm{C}, p=0.1 \mathrm{mbar}\right)$.

Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{NO}_{3}$: C, 63.49; H, 3.73. Found: C, 63.30; H, 3.71%.
HRMS (ESI) calculated for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{3}$: 190.17487, found 190.17491.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=4.16\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=4.8 \mathrm{~Hz}\right), 4.53\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}\right.$, ${ }^{2} J_{\mathrm{A}-\mathrm{B}}=4.8 \mathrm{~Hz}$), 7.36-7.40 (m, 2H, CH-Ar), 7.48-7.60 (m, 3H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=75.5\left(\mathrm{CH}_{2}\right), 126.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.0\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.1\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $130.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 147.2\left(\mathrm{CCH}_{2}\right), 149.8(\mathrm{C}=\mathrm{O}), 154.1(\mathrm{C}=\mathrm{O})$.

3-Acetyl-2-methyleneoxazolidine-4,5-dione (3b)

Starting from diacetamide $(5.06 \mathrm{~g}, 50 \mathrm{mmol})$ and oxalyl chloride $(6.80 \mathrm{~g}, 54 \mathrm{mmol})$ in benzene $(25 \mathrm{~mL})$, the product $\mathbf{3 b}$ was isolated as a white solid $(6.00 \mathrm{~g}, 77 \%)$ after Kugelrohr distillation ($T=120-140^{\circ} \mathrm{C}, p=0.2$ mbar).

Anal. calcd for $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NO}_{4}$: C, 46.46; H, 3.25. Found: C, 46.30; H, 3.20%.
HRMS (ESI) calculated for $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NO}_{4}: 156.02914$, found 156.02899.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}_{3}\right), 4.83\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=4.1 \mathrm{~Hz}\right), 5.56$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=4.2 \mathrm{~Hz}\right.$).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=26.2\left(\mathrm{CH}_{3}\right), 83.7\left(\mathrm{CH}_{2}\right), 142.1\left(\mathrm{CCH}_{2}\right), 150.4(\mathrm{C}=\mathrm{O}), 152.8$ (C=O), $167.7(\mathrm{C}=\mathrm{O})$.

General procedure for the asymmetric hydrogenation of 2-methylene-3-substituted-oxazolidine-4,5diones 3a,b

The substrate (1.0 eq) and Rh precatalyst ($1 \mathrm{~mol} \%$) are transferred into a glass vial, which is placed into a stainless steel autoclave. The solvent ($8 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) is added under an argon atmosphere and the autoclave is purged with argon (three times) followed by hydrogen (three times). The indicated reaction conditions (H_{2}-pressure, temperature and reaction time) are adjusted by an automatic program. After stirring for the adjusted time, the mixture is concentrated under reduced pressure. The enantiomeric excess is determined by GC analysis. Racemic mixtures of $\mathbf{4 a}, \mathbf{b}$, as samples for the quantitative and qualitative analysis, are prepared by the hydrogenation of $\mathbf{3 a}, \mathbf{b}$ with $10 \% \mathrm{Pd} / \mathrm{C}$ in THF.

2-Methyl-3-phenyloxazolidine-4,5-dione (4a)

Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{3}$: C, $62.82 ; \mathrm{H}, 4.74$. Found: C, $62.92 ; \mathrm{H}, 4.80 \%$.
HRMS (ESI) calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NO}_{3}$: 192.06552, found 192.06540.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.65\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=5.6 \mathrm{~Hz}\right), 6.20(\mathrm{q}$, $\left.1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=5.6 \mathrm{~Hz}\right), 7.35-7.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.45-7.53(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$.
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=20.7\left(\mathrm{CH}_{3}\right), 84.8(\mathrm{CH}), 122.2\left(2 \mathrm{CH}_{\text {Ar }}\right), 128.2\left(\mathrm{CH}_{\text {Ar }}\right), 129.8$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 133.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 150.7(\mathrm{C}=\mathrm{O}), 158.3(\mathrm{C}=\mathrm{O})$.

3-Acetyl-2-methyloxazolidine-4,5-dione (4b)

Anal. calcd for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{NO}_{4}$: C, 45.86; H, 4.49. Found: C, 46.02 ; H, 4.54%.
HRMS (ESI) calculated for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}_{4}: 158.04478$, found 158.04489 .
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.77\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=5.1 \mathrm{~Hz}\right), 2.64(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.06\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CH},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=5.1 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=21.3\left(\mathrm{CHCH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right), 84.5(\mathrm{CH}), 151.5(\mathrm{C}=\mathrm{O}), 157.0$ ($\mathrm{C}=\mathrm{O}$), 169.0 ($\mathrm{C}=\mathrm{O}$).

Separation of enantiomers by GC on CP-Chirasil-Dex CB ($25 \mathrm{~m} \times 0.32 \mathrm{~mm}$), isotherm $150{ }^{\circ} \mathrm{C}$; $t_{R}=7.1 \mathrm{~min}$ for $(+)$-enantiomer and $t_{R}=8.5 \mathrm{~min}$ for $(-)$-enantiomer.

5.1.2.3 Synthesis of $\boldsymbol{\beta}^{2}$-homoalanine derivatives and secondary products

General procedure for the synthesis of alkyl (2-hydroxymethyl)acrylates 5a,b
Paraformaldehyde (1.0 eq), alkyl acrylate (3.0 eq) and DABCO (1.0 eq) are dissolved in dioxane:water $(2 \mathrm{~mL} / 1.0 \mathrm{mmol}$ paraformaldehyde, $v: v 1: 1)$ and stirred at room temperature for 72 h . The mixture is dissolved in MTBE and the organic phase is separated, washed with water and brine (twice) and finally dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer is concentrated in vacuo and purified, if necessary, by column chromatography to give $\mathbf{5 a , b}$.

Methyl (2-hydroxymethyl)acrylate (5a) ${ }^{[142]}$

$\mathrm{HO}_{2} \mathrm{Me}$ Starting from paraformaldehyde $(9.0 \mathrm{~g}, 0.3 \mathrm{~mol})$, methyl acrylate $(77.5 \mathrm{~g}, 0.9 \mathrm{~mol})$ and DABCO $(33.7 \mathrm{~g}, 0.3 \mathrm{~mol})$ in dioxane: $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL})$, the product was isolated as a white solid $(15.0 \mathrm{~g}, 43 \%)$ after column chromatography $($ cyclohexane $/ E t O A c=4: 1$ to $2: 1)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.32(\mathrm{brs}, 1 \mathrm{H}, \mathrm{OH}), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.33\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $5.85\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right), 6.25\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=51.9\left(\mathrm{OCH}_{3}\right), 62.5\left(\mathrm{OCH}_{2}\right), 125.9\left(\mathrm{CH}_{2}\right), 139.3(\mathrm{C}), 166.8$ ($\mathrm{C}=\mathrm{O}$).

Ethyl (2-hydroxymethyl)acrylate $\mathbf{5 b}^{[142]}$

$\mathrm{HO}^{\mathrm{CO}} \mathrm{Et}$ Starting from paraformaldehyde $(9.0 \mathrm{~g}, 0.3 \mathrm{~mol})$, ethyl acrylate $(90.1 \mathrm{~g}, 0.9 \mathrm{~mol})$ and DABCO $(33.7 \mathrm{~g}, 0.3 \mathrm{~mol})$ in dioxane: $\mathrm{H}_{2} \mathrm{O}(600 \mathrm{~mL})$ the product was isolated as a colorless liquid ($28.0 \mathrm{~g}, 70 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.23\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 3.11($ brs, $1 \mathrm{H}, \mathrm{OH}), 4.15(\mathrm{q}$, $\left.2 \mathrm{H}, \mathrm{OCH}_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 4.24\left(\mathrm{brs}, 2 \mathrm{H}, \mathrm{OCH}_{2}\right), 5.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right), 6.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.0\left(\mathrm{CH}_{3}\right), 60.7\left(\mathrm{OCH}_{2}\right), 61.8\left(\mathrm{OCH}_{2}\right), 125.1\left(\mathrm{CH}_{2}\right), 139.6$ (C), $166.2(\mathrm{C}=\mathrm{O})$.

Diethyl 2,2'-oxybis(methylene)diacrylate (5b')

Next to ethyl (2-hydroxymethyl)acrylate $\mathbf{5 b}$, the formation of diethyl 2,2'oxybis(methylene)diacrylate $\mathbf{5} \mathbf{b}^{\prime}$ could be observed as a side product (ca. $9 \mathrm{~mol} \%$); this can be cleaved into two molecules of $\mathbf{1 b}$ under acidic conditions in the next step.
HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{5}$ 243.1227, found 243.12252.
HRMS (ESI) calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{5}$ 265.10464, found 265.10492.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.22\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 4.14\left(\mathrm{q}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 4.15\left(\mathrm{~s}, 4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 5.82\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right), 6.24\left(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.0\left(2 \mathrm{CH}_{3}\right), 60.6\left(2 \mathrm{OCH}_{2}\right), 68.7\left(2 \mathrm{OCH}_{2}\right), 125.6\left(2 \mathrm{CH}_{2}\right)$, 137.0 (2C), $165.7(2 \mathrm{C}=\mathrm{O})$.

Procedure for the synthesis of methyl (2-acetamidomethyl)acrylate (6a)

Methyl (2-hydroxymethyl)acrylate $\mathbf{5 a}(7.0 \mathrm{~g}, 60.3 \mathrm{mmol})$ is dissolved in acetonitrile (250 mL) and the solution was stirred at $60^{\circ} \mathrm{C}$. Methanesulfonic acid ($162 \mathrm{~mL}, 2.5 \mathrm{~mol}$) is dropped into the solution within 15 min . The reaction mixture is then heated to $110^{\circ} \mathrm{C}$ and stirred for additional 6 h at this temperature. The solution is cooled to $0^{\circ} \mathrm{C}$ and diluted in water. The pH -value is adjusted to $7-8$ by adding solid $\mathrm{K}_{2} \mathrm{CO}_{3}$. After extraction with diethyl ether $(2 \times 100 \mathrm{~mL})$, the organic phase is washed with brine $(50 \mathrm{~mL})$ and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer is concentrated in vacuo and purified by flash chromatography (cyclohexane $/ \mathrm{EtOAc}=4: 1$ to $2: 1$) to yield $\mathbf{6 a}$ as a white solid ($4.50 \mathrm{~g}, 47 \%$).
$\ngtr \mathrm{CO}_{2} \mathrm{Me}$ Anal. calcd for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{3}: \mathrm{C}, 53.49 ; \mathrm{H}, 7.05 ; \mathrm{N}, 8.91$. Found: C, $53.73 ; \mathrm{H}, 6.97 ; \mathrm{N}$, 8.99 \%.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.95\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) 3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.04$ (brd, $2 \mathrm{H}, \mathrm{NCH}_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.1 \mathrm{~Hz}$), $5.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right), 6.22($ brs, $1 \mathrm{H}, \mathrm{NH}), 6.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=23.2\left(\mathrm{CH}_{3}\right), 40.5\left(\mathrm{NCH}_{2}\right), 51.9\left(\mathrm{OCH}_{3}\right), 127.1\left(\mathrm{CH}_{2}\right), 136.4$ (C), $166.7(\mathrm{C}=\mathrm{O}), 169.9(\mathrm{C}=\mathrm{O})$.

General procedure for the synthesis of alkyl (2-bromomethyl)acrylates 7a,b

Alkyl (2-hydroxymethyl)acrylate 5a,b (2.0 eq) is dissolved in diethyl ether ($1 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) and phosphorus tribromide (1.0 eq) is added slowly at $0^{\circ} \mathrm{C}$ via syringe to the stirred solution. The mixture is heated to room temperature and stirred for further 2 h . After cooling to $0^{\circ} \mathrm{C}$, water is slowly added. The crude product is extracted with diethyl ether (three times), the combined organic phases are washed with brine (twice) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer is concentrated in vacuo and purified, if necessary, by Kugelrohr disitillation to give 7a,b.

Methyl (2-bromomethyl)acrylate (7a) ${ }^{\text {[96a] }}$

Starting from methyl (2-hydroxymethyl)acrylate 5a (18.58 g, 160 mmol) and PBr_{3} $(21.65 \mathrm{~g}, 80 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$, the product $7 \mathbf{a}$ was isolated as a yellowish liquid and used without further purification $(12.80 \mathrm{~g}, 89 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.12\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 5.91(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right), 6.27\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=29.2\left(\mathrm{CH}_{2} \mathrm{Br}\right), 52.1\left(\mathrm{OCH}_{3}\right), 129.1\left(\mathrm{CH}_{2}\right), 137.1(\mathrm{C}), 165.1$ ($\mathrm{C}=\mathrm{O}$).

Ethyl (2-bromomethyl)acrylate (7b) ${ }^{[96 b]}$

$\Longrightarrow \mathrm{CO}_{2} \mathrm{Et}$ Starting from ethyl (2-hydroxymethyl)acrylate $\mathbf{5 b}(20.82 \mathrm{~g}, 160 \mathrm{mmol})$ and PBr_{3} $(21.65 \mathrm{~g}, 80.0 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(80 \mathrm{~mL})$, the product $7 \mathbf{b}$ was isolated as a colorless liquid after Kugelrohr distillation ($\left.10.30 \mathrm{~g}, 67 \%, T=81-84^{\circ} \mathrm{C}, p=4 \mathrm{mbar}\right)$.

Anal. calcd for $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{BrO}_{2}$: C, 37.33; H, 4.70; Br, 41.39. Found: C, 37.33; H, 4.53; Br, 41.67%.
MS (EI, $70 \mathrm{eV}, m / z$): $194[\mathrm{M}+2]^{+}, 14 ; 192[\mathrm{M}]^{+}, 14 ; 166\left[\mathrm{M}+2-\mathrm{C}_{2} \mathrm{H}_{4}\right]^{+}, 97 ; 164\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4}\right]^{+}, 97 ; 149$ $\left[\mathrm{M}+2-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right]^{+}, 62 ; 147\left[\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right]^{+}, 62 ; 113[\mathrm{M}-\mathrm{Br}]^{+}, 58 ; 39\left[\mathrm{C}_{3} \mathrm{H}_{3}\right]^{+}, 100$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.29\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 4.15\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right.$, $\left.J_{\mathrm{H}-\mathrm{H}}=0.8 \mathrm{~Hz}\right), 4.23\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 5.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right), 6.29\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.1\left(\mathrm{CH}_{3}\right), 29.3\left(\mathrm{CH}_{2} \mathrm{Br}\right), 61.2\left(\mathrm{OCH}_{2}\right) 128.9\left(\mathrm{CH}_{2}\right), 137.5$ (C), $164.7(\mathrm{C}=\mathrm{O})$.

General procedure for the synthesis of alkyl 2-\{[bis(tert-butoxycarbonyl)amino]methyl $\}$ acrylates $\mathbf{6 b , \mathbf { c }}$

Alkyl (2-bromomethyl)acrylate $\mathbf{7 a , b}(1.0 \mathrm{eq})$ is added in one portion to a suspension of di-tert-butyl iminodicarboxylate (1.0 eq) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{eq})$ in acetonitrile ($1 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate). The mixture is stirred at room temperature for 72 h . The solution is treated with brine and extracted with
ethyl acetate (three times). The combined organic phases are washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer is concentrated in vacuo to give $\mathbf{6 b}, \mathbf{c}$.

Methyl 2-\{[bis(tert-butoxycarbonyl)amino]methyl\}acrylate ($\mathbf{6 b})^{[97 a]}$
$\mathrm{CO}_{2} \mathrm{Me}$ Starting from methyl (2-bromomethyl)acrylate 5a (4.42 g, 24.7 mmol), $\mathrm{Boc}_{2} \mathrm{NH}$ $(5.37 \mathrm{~g}, 24.7 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.12 \mathrm{~g}, 37.1 \mathrm{mmol})$ in $\mathrm{MeCN}(25 \mathrm{~mL})$, the product $\mathbf{6 b}$ was isolated without further purification as an off-white solid ($7.40 \mathrm{~g}, 95 \%$, $\mathrm{mp} 68-69{ }^{\circ} \mathrm{C}$).
Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{6}$: C, 57.13; H, 7.99; N, 4.44. Found: C, $57.07 ; \mathrm{H}, 7.76 ; \mathrm{N}, 4.24 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.44\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.41(\mathrm{t}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2}, J_{\mathrm{H}-\mathrm{H}}=1.8 \mathrm{~Hz}\right), 5.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right), 6.23\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=27.9\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 46.1\left(\mathrm{NCH}_{2}\right), 51.8\left(\mathrm{CH}_{3}\right), 82.6\left(2 C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $123.4\left(\mathrm{CH}_{2}\right), 136.6(\mathrm{C}), 152.1(2 \mathrm{C}=\mathrm{O}), 166.1(\mathrm{C}=\mathrm{O})$.

Ethyl 2-\{[bis(tert-butoxycarbonyl)amino]methyl $\}$ acrylate ($\mathbf{6 c}$)

Starting from ethyl (2-bromomethyl)acrylate $\mathbf{5 b}(4.73 \mathrm{~g}, 24.5 \mathrm{mmol})$, Boc ${ }_{2} \mathrm{NH}(5.33 \mathrm{~g}$, $24.5 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(5.08 \mathrm{~g}, 36.8 \mathrm{mmol})$ in $\mathrm{MeCN}(25 \mathrm{~mL})$, the product 6 c was isolated without further purification as a colorless oil $(8.00 \mathrm{~g}, 99 \%)$.
Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{2} \mathrm{NO}_{6}$: C, 58.34; H, 8.26; N, 4.25. Found: C, 58.06; H, 8.02; N, 4.05 \%.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.27\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right) ; 1.44\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $4.19\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 4.42\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{NCH}_{2}, J_{\mathrm{H}-\mathrm{H}}=1.8 \mathrm{~Hz}\right), 5.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right), 6.22(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.1\left(\mathrm{CH}_{3}\right), 27.9\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 46.1\left(\mathrm{NCH}_{2}\right), 60.7\left(\mathrm{OCH}_{2}\right), 82.6$ $\left(2 C\left(\mathrm{CH}_{3}\right)_{3}\right), 122.9\left(\mathrm{CH}_{2}\right), 136.9(\mathrm{C}), 152.1(2 \mathrm{C}=\mathrm{O}), 165.7(\mathrm{C}=\mathrm{O})$.

General procedure for the synthesis of alkyl 2-\{[[tert-butoxycarbonylamino]methyl\}acrylate 6d,e

N-Diprotected acrylate 6b,c (1.0 eq) is dissolved in tetrahydrofuran ($5 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) and scandium triflate (0.1 eq) is added in one portion. After stirring at room temprature for 3 h , the mixture is concentrated in vacuo and ethyl acetate is added. The organic phase is washed with water and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer is concentrated in vacuo and purified by flash chromatography to give 6d,e.

Methyl 2-\{[(tert-butoxycarbonyl)amino]methyl $\}$ acrylate ($\mathbf{6 d})^{[97 a]}$

Starting from methyl 2-\{[bis(tert-butoxycarbonyl)amino]methyl\}acrylate 6b (6.31 g, $20.0 \mathrm{mmol})$ and $\mathrm{Sc}(\mathrm{OTf})_{3}(984 \mathrm{mg}, 2.0 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$, the product $\mathbf{6 d}$ was isolated as a pale yellow oil ($3.60 \mathrm{~g}, 84 \%$) after column chromatography (cyclohexane/EtOAc $=4: 1$).
Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{4}$: C, $55.80 ; \mathrm{H}, 7.96 ; \mathrm{N}, 6.51$. Found: C, $55.54 ; \mathrm{H}, 7.72 ; \mathrm{N}, 6.31 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.88($ brd, 2 H , $\left.\mathrm{NCH}_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.3 \mathrm{~Hz}\right), 5.05($ brs, $1 \mathrm{H}, \mathrm{NH}), 5.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right) 6.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=28.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $41.5\left(\mathrm{NCH}_{2}\right), 51.8\left(\mathrm{OCH}_{3}\right)$, $79.3\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right) \text {, }}\right.$ $126.2\left(\mathrm{CH}_{2}\right), 137.0(\mathrm{C}), 155.6(\mathrm{C}=\mathrm{O}), 166.5(\mathrm{C}=\mathrm{O})$.

Ethyl 2-\{[tert-butoxycarbonylamino]methyl $\}$ acrylate ($\mathbf{6 e})^{[143]}$

Starting from ethyl $2-\{[$ bis(tert-butoxycarbonyl)amino]methyl\}acrylate $6 \mathbf{c}(6.59 \mathrm{~g}$, $20.0 \mathrm{mmol})$ and $\mathrm{Sc}(\mathrm{OTf})_{3}(984 \mathrm{mg}, 2.0 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$, the product $6 \mathbf{6}$ was isolated as a pale yellow oil ($3.90 \mathrm{~g}, 84 \%$) after column chromatography (cyclohexane/EtOAc = 19:1 to 9:1).
Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{4}$: C, 57.63; H, 8.35; N, 6.11. Found: C, $57.79 ; \mathrm{H}, 8.13 ; \mathrm{N}, 5.91 \%$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.26\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right.$), $1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.91$ (brd, 2 H , $\left.\mathrm{NCH}_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.1 \mathrm{~Hz}\right), 4.17\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 5.01($ brs, $1 \mathrm{H}, \mathrm{NH}), 5.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right)$, $6.19\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.1\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 41.5\left(\mathrm{NCH}_{2}\right), 60.7\left(\mathrm{OCH}_{2}\right) 79.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right)$, $125.9\left(\mathrm{CH}_{2}\right), 137.3(\mathrm{C}), 155.6(\mathrm{C}=\mathrm{O}), 166.1(\mathrm{C}=\mathrm{O})$.

General procedure for the asymmetric hydrogenation of dehydro β^{2}-amino acrylates $\mathbf{6 a}$-e

The substrate (1.0 eq) and Rh precatalyst ($1 \mathrm{~mol} \%$) are transferred into a glass vial, which is placed into a stainless steel autoclave. The solvent ($12 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) is added under an argon atmosphere and the autoclave is purged with argon (three times) followed by hydrogen (three times). The indicated reaction conditions (H_{2}-pressure, temperature and reaction time) are adjusted by an automatic program. After stirring for the adjusted time, the mixture is concentrated under reduced pressure. The enantiomeric excess is determined by HPLC or GC analysis. Racemic mixtures of 8a-e, as samples for the quantitative and qualitative analysis, are prepared by the hydrogenation of $\mathbf{6 a - e}$ with $10 \% \mathrm{Pd} / \mathrm{C}$ in methanol.

(S)-Methyl-3-acetamido-2-methylpropanoate (8a)

$$
\begin{aligned}
& { }^{\prime \prime \prime} . \mathrm{CO}_{2} \mathrm{Me} \quad[\alpha]_{\mathrm{D}}^{24}=+45.5\left(c 1.00, \mathrm{CHCl}_{3}\right),>99 \% \mathrm{ee} \text {. } \\
& \text { HRMS (ESI) calculated for } \mathrm{C}_{7} \mathrm{H}_{14} \mathrm{NO}_{3} 160.09682 \text {, found 160.09691. } \\
& \text { HRMS (ESI) calculated for } \mathrm{C}_{7} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{Na} \text { 182.07876, found 182.07909. }
\end{aligned}
$$

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.14\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right.$), $1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.67$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.24\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{NCH}_{2}\right), 3.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{NCH}_{2}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.21$ (brs, 1 H , NH).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.8\left(\mathrm{CH}_{3}\right), 23.2\left(\mathrm{CH}_{3}\right), 39.4\left(\mathrm{NCH}_{2}\right), 41.6\left(\mathrm{CHCH}_{3}\right), 51.9$ $\left(\mathrm{OCH}_{3}\right), 170.3(\mathrm{C}=\mathrm{O}), 176.0(\mathrm{C}=\mathrm{O})$.
Separation of enantiomers by GC on Lipodex E ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$), 100/30-8-180/10; $\mathrm{t}_{\mathrm{R}}=15.1 \mathrm{~min}$ for $(+)$-enantiomer and $\mathrm{t}_{\mathrm{R}}=16.6 \mathrm{~min}$ for $(-)$-enantiomer. The assignment of absolute configuration to the GC-peaks was determined by deprotection of (S)-8d and subsequent N-acetylation to (S)-8a.

Methyl 3-[bis(tert-butoxycarbonyl)amino]-2-methylpropanoate (8b)
$\mathrm{CO}_{2} \mathrm{Me}$ HRMS (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{27} \mathrm{NNaO}_{6}$ 340.17306, found 340.17298.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.08\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 1.44(\mathrm{~s}$, $\left.18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.58\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{NCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=14.1 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{A}}=6.8 \mathrm{~Hz}\right), 3.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.81\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{NCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=14.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{B}}=7.6 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.5\left(\mathrm{CHCH}_{3}\right), 27.9\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 39.1\left(\mathrm{CHCH}_{3}\right), 48.6\left(\mathrm{NCH}_{2}\right)$, $51.6\left(\mathrm{OCH}_{3}\right), 82.4\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 152.4(2 \mathrm{C}=\mathrm{O}), 175.0(\mathrm{C}=\mathrm{O})$.

Separation of enantiomers by HPLC on AD-H $(150 \times 4.6 \mathrm{~mm})$, heptane $/ \mathrm{EtOH}=95: 5$, rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=7.1 \mathrm{~min}$ for $(-)$-enantiomer and $\mathrm{t}_{\mathrm{R}}=7.8 \mathrm{~min}$ for $(+)$-enantiomer.

Ethyl 3-[bis(tert-butoxycarbonyl)amino]-2-methylpropanoate (8c)
$\mathrm{CO}_{2} \mathrm{Et}$ HRMS (ESI) calculated for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NNaO}_{6}$ 352.17306, found 352.17298.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.09\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.19(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.45\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.77\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.59(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=14.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{A}}=7.1 \mathrm{~Hz}\right), 3.81\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=14.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{B}}=7.4 \mathrm{~Hz}\right), 4.05$ (q, $2 \mathrm{H}, \mathrm{OCH}_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.0\left(\mathrm{CH}_{3}\right), 14.5\left(\mathrm{CHCH}_{3}\right), 27.9\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 39.0\left(\mathrm{CHCH}_{3}\right)$, $48.6\left(\mathrm{NCH}_{2}\right), 60.4\left(\mathrm{OCH}_{2}\right), 82.4\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 152.4(2 \mathrm{C}=\mathrm{O}), 174.6(\mathrm{C}=\mathrm{O})$.

Separation of enantiomers by HPLC on Reprosil $100(250 \times 4.6 \mathrm{~mm})$, heptane $/ \mathrm{EtOH}=99: 1$, rate $=0.5 \mathrm{~mL} / \mathrm{min} ; \mathrm{t}_{\mathrm{R}}=24.5 \mathrm{~min}$ for $(-)$-enantiomer and $\mathrm{t}_{\mathrm{R}}=28.0 \mathrm{~min}$ for $(+)$-enantiomer.

(S)-Methyl 3-[(tert-butoxycarbonyl)amino]-2-methylpropanoate (8d) ${ }^{[144]}$

$[\alpha]_{\mathrm{D}}^{22}=+23.3\left(c 1.20, \mathrm{CHCl}_{3}\right), 94$ \%ee.
HRMS (ESI) calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na} 240.12063$, found 240.12080 .
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.12\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.39(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.15-3.32\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.96($ brs, 1 H , NH).
${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.6\left(\mathrm{CHCH}_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 39.9\left(\mathrm{CHCH}_{3}\right), 42.9\left(\mathrm{NCH}_{2}\right)$, $51.7\left(\mathrm{OCH}_{3}\right), 79.2\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 155.9(\mathrm{C}=\mathrm{O}), 175.7(\mathrm{C}=\mathrm{O}) \text {. }}^{\text {. }}\right.$

Separation of enantiomers by GC on Chiraldex $\beta-\mathrm{PM}(50 \mathrm{~m} \times 0.25 \mathrm{~mm}), 110 / 22-8-180 ; \mathrm{t}_{\mathrm{R}}=31.5 \mathrm{~min}$ for (+)-enantiomer and $t_{R}=31.7 \mathrm{~min}$ for $(-)$-enantiomer.

(S)-Ethyl 3-[(tert-butoxycarbonyl)amino]-2-methylpropanoate (8e)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.13\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.22(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.39\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 3.15-3.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.11$ (q, $2 \mathrm{H}, \mathrm{OCH}_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}$), 4.93 (brs, $1 \mathrm{H}, \mathrm{NH}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.1\left(\mathrm{CH}_{3}\right), 14.6\left(\mathrm{CHCH}_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $39.9\left(\mathrm{CHCH}_{3}\right)$, $42.9\left(\mathrm{NCH}_{2}\right), 60.5\left(\mathrm{OCH}_{2}\right), 79.2\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 155.9(\mathrm{C}=\mathrm{O}), 175.4(\mathrm{C}=\mathrm{O})$.

Separation of enantiomers by GC on Lipodex E ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$), 90/40-8-180/10; $\mathrm{t}_{\mathrm{R}}=43.8 \mathrm{~min}$ for $(+)$-enantiomer and $t_{R}=44.1 \mathrm{~min}$ for $(-)$-enantiomer.

(E)-Methyl 3-acetamido-2-methylacrylate ((E)-9a)

$\mathrm{CO}_{2} \mathrm{Me}$ In some cases, (E)-methyl 3-acetamido-2-methylacrylate $(E)-\mathbf{9 a}$ was visible as a side product in the final mixture after the hydrogenation of $\mathbf{6 a}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.76\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CCH}_{3},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.4 \mathrm{~Hz}\right), 2.10(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.94\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{NCH},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=11.9 \mathrm{~Hz}\right), 8.43($ brs, $1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=10.6\left(\mathrm{CCH}_{3}\right), 23.1\left(\mathrm{CH}_{3}\right), 51.4\left(\mathrm{OCH}_{3}\right), 107.3\left(\mathrm{CCH}_{3}\right), 132.2$ $(\mathrm{NCH}), 168.4(\mathrm{C}=\mathrm{O}), 168.5(\mathrm{C}=\mathrm{O})$.

(Z)-Methyl 3-acetamido-2-methylacrylate ((Z)-9a)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.77\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CCH}_{3},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.4 \mathrm{~Hz}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.29\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{NCH},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=11.0 \mathrm{~Hz}\right), 10.30(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=15.8\left(\mathrm{CCH}_{3}\right), 23.5\left(\mathrm{CH}_{3}\right), 51.4\left(\mathrm{OCH}_{3}\right), 104.3\left(\mathrm{CCH}_{3}\right), 134.6(\mathrm{NCH})$, $168.1(\mathrm{C}=\mathrm{O}), 168.9(\mathrm{C}=\mathrm{O})$.
(E)-Methyl 3-[(tert-butoxycarbonyl)amino]-2-methylacrylate ((E)-9d)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.73\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CCH}_{3},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.3 \mathrm{~Hz}\right)$, $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.60\left(\mathrm{brd}, 1 \mathrm{H}, \mathrm{NCH},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=11.4 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=10.1\left(\mathrm{CCH}_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 51.3\left(\mathrm{OCH}_{3}\right), 81.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $104.8\left(\mathrm{CCH}_{3}\right), 134.2(\mathrm{NCH}), 151.8(\mathrm{C}=\mathrm{O}), 168.7(\mathrm{C}=\mathrm{O})$.

(Z)-Methyl 3-[(tert-butoxycarbonyl)amino]-2-methylacrylate ((Z)-9d)

${ }^{13} \mathrm{C}$ NMR spectrum could not be analyzed due to the small amount in the final reaction mixture.

(E)-Ethyl 3-[(tert-butoxycarbonyl)amino]-2-methylacrylate ($(E)-9 \mathbf{e})$

 was visible as a side product in the final mixture after the hydrogenation of $\mathbf{4 e}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta(\mathrm{ppm})=1.28\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 1.51(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.81\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CCH}_{3},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.2 \mathrm{~Hz}\right), 4.16\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 7.76($ brd, 1 H , $\mathrm{NCH},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=11.3 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR spectrum could not be analyzed due to its small amount in the final reaction mixture.

(Z)-Ethyl 3-[(tert-butoxycarbonyl)amino]-2-methylacrylate ((Z)-9e)

In some cases, (Z)-Ethyl 3-[(tert-butoxycarbonyl)amino]-2-methylacrylate (Z)-9e was visible as a side product in the final mixture after the hydrogenation of $\mathbf{6 e}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta(\mathrm{ppm})=1.29\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 1.40(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.76\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CCH}_{3},{ }^{4} J_{\mathrm{H}-\mathrm{H}}=1.2 \mathrm{~Hz}\right), 4.16\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 6.92$ (brs, 1 H , $\mathrm{NCH})$.
${ }^{13} \mathrm{C}$ NMR spectrum could not be analyzed due to its small amount in the final reaction mixture.

Procedure for the synthesis of (S)-N-(3-hydroxy-2-methylpropyl)acetamide (10a)

(S)-Methyl 3-acetamido-2-methylpropanoate $\mathbf{8 a}(318 \mathrm{mg}, 2.0 \mathrm{mmol},>99 \% e e)$ is dissolved in tetrahydrofuran $(15 \mathrm{~mL})$ and $\mathrm{LiAlH}_{4}(228 \mathrm{mg}, 6.0 \mathrm{mmol})$ is added slowly at $0{ }^{\circ} \mathrm{C}$. The solution is stirred at room temperature for 2 h and then quenched with water $(0.3 \mathrm{~mL}), 2 \mathrm{M} \mathrm{NaOH}(0.3 \mathrm{~mL})$ and finally water $(0.9 \mathrm{~mL})$ again. The resulting white precipitate is filtered off and washed several times with dichloromethane. The combined organic phases are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo. Column chromatography (EtOAc) yields 10a as a pale yellow oil ($150 \mathrm{mg}, 57 \%$).

$[\alpha]_{\mathrm{D}}^{24}=+21.6\left(c 1.00, \mathrm{CHCl}_{3}\right), 98$ \%ee.
HRMS (ESI) calculated for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2}$ 132.10191, found 132.10210.
HRMS (ESI) calculated for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{2} \mathrm{Na} 154.08385$, found 154.08407.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.83\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.0 \mathrm{~Hz}\right), 1.75\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $3.06\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{NCH}_{2}\right), 3.25\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{NCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=11.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{B}}=7.1 \mathrm{~Hz}\right), 3.30(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}_{\mathrm{A}}-\mathrm{OCH}_{2}$), $3.48\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{OCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=11.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{B}}=4.3 \mathrm{~Hz}\right.$), 3.78 (brs, $1 \mathrm{H}, \mathrm{OH}$), 6.85 (brs, $1 \mathrm{H}, \mathrm{NH}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.5\left(\mathrm{CHCH}_{3}\right), 22.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.6\left(\mathrm{CHCH}_{3}\right), 42.1\left(\mathrm{NCH}_{2}\right)$, $64.4\left(\mathrm{OCH}_{2}\right), 171.9(\mathrm{C}=\mathrm{O})$.

Separation of enantiomers by GC on Lipodex E ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$), 100/30-8-180/10; $\mathrm{t}_{\mathrm{R}}=39.0 \mathrm{~min}$ for $(+)$-enantiomer and $t_{R}=39.2 \mathrm{~min}$ for $(-)$-enantiomer.
(S)-3-(Ethylamino)-2-methylpropan-1-ol (10a')

When the reaction time was extended by further 2 h at room temperature, the reduction of the acetyl group became visible in the NMR spectra of the crude mixture and thus the formation of (S)-3-(ethylamino)-2-methylpropan-1-ol 10a' (ca. 11%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.75\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right), 1.03(\mathrm{t}, 3 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.89\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.48-2.67\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}\right), 2.80\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{OCH}_{2}\right)$, $3.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{OCH}_{2}\right)$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.8\left(\mathrm{CHCH}_{3}\right), 14.8\left(\mathrm{CH}_{3}\right), 33.8\left(\mathrm{CHCH}_{3}\right), 44.0\left(\mathrm{NCH}_{2}\right), 55.7$ $\left(\mathrm{NCH}_{2}\right), 70.3\left(\mathrm{OCH}_{2}\right)$.

Procedure for the synthesis of (S)-tert-butyl (3-hydroxy-2-methylpropyl)carbamate (10b) ${ }^{[145]}$

Ethyl 3-[(tert-butoxycarbonyl)amino]-2-methylpropanoate $\mathbf{8 e}(694 \mathrm{mg}, 3.0 \mathrm{mmol}, 96 \% e e)$ is dissolved in tetrahydrofuran $(30 \mathrm{~mL})$ and $\mathrm{LiAlH}_{4}(342 \mathrm{mg}, 9.0 \mathrm{mmol})$ is added slowly at $0{ }^{\circ} \mathrm{C}$. The solution is stirred at this temperature for 1 h , warmed to room temperature and stirred for additional 4 h . The reaction mixture is then quenched with water $(0.35 \mathrm{~mL}), 2 \mathrm{M} \mathrm{NaOH}(0.35 \mathrm{~mL})$ and finally water (1 mL) again. The resulting white precipitate is filtered off and washed several times with dichloromethane. The combined organic phases are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated in vacuo. Column chromatography (cyclohexane/EtOAc $=4: 1$ to $1: 1$) yields $\mathbf{1 0 b}$ as a colorless oil (400 mg , $69 \%)$. Enantiomeric excess is determined by derivatization to $\mathbf{1 3}$.

$[\alpha]_{\mathrm{D}}^{23}=+13.7\left(c 1.00, \mathrm{CHCl}_{3}\right), 95 \%$ ee.
HRMS (ESI) calculated for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{Na} 212.12571$, found 212.12573.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.83\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.0 \mathrm{~Hz}\right), 1.39(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH} 3), 2.99\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{OCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=14.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{A}}=6.8 \mathrm{~Hz}\right), 3.19$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{OCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=14.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{B}}=3.8 \mathrm{~Hz}\right), 3.30\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{NCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=11.6 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{A}}=7.0 \mathrm{~Hz}\right), 3.50\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{NCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=11.6 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{B}}=4.4 \mathrm{~Hz}\right), 3.50($ brs, $1 \mathrm{H}, \mathrm{OH}), 4.93$ (brs, 1H, NH).
${ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.3\left(\mathrm{CHCH}_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 36.2\left(\mathrm{CHCH}_{3}\right), 42.7\left(\mathrm{NCH}_{2}\right)$, $64.4\left(\mathrm{OCH}_{2}\right), 79.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 157.3(\mathrm{C}=\mathrm{O})$.

Procedure for the synthesis of (S)-ethyl 3-amino-2-methylpropanoate hydrochloride (11)

To ethyl 3-[(tert-butoxycarbonyl)amino]-2-methylpropanoate $\mathbf{8 e}(1.30 \mathrm{~g}, 5.6 \mathrm{mmol}, 96 \% \mathrm{ee})$ is added a solution of $4 \mathrm{M} \mathrm{HCl}_{(\mathrm{g})}$ in dioxane at room temperature. After stirring for 2 h , the solution is concentrated in vacuo to yield the crude hydrochloride 11 as a colorless thick syrup ($750 \mathrm{mg}, 80 \%$). An enantiomeric excess of 96% was determined by GC analysis after derivatization to the N-Bocderivative $8 \mathbf{e}$ by addition of 3.0 eq of $\mathrm{Boc}_{2} \mathrm{O} / \mathrm{Et}_{3} \mathrm{~N}$ to a solution of $\mathbf{1 1}$ in dichloromethane.

$[\alpha]_{\mathrm{D}}^{23}=+11.4(c 0.56, \mathrm{MeOH}), 96 \%$ ee.
HRMS (ESI) calculated for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{NO}_{2}$ 132.10191, found 132.1021.
HRMS (ESI) calculated for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NNaO}_{2}$ 154.08385, found 154.08407.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.23\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.0 \mathrm{~Hz}\right), 1.27\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.0 \mathrm{~Hz}\right) 2.95-3.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHCH} 3\right.$ and $\left.\mathrm{NCH}_{2}\right), 4.15\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{OCH}_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.0 \mathrm{~Hz}\right), 6.48$ (brs, $1 \mathrm{H}, \mathrm{OH}), 8.10\left(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH}_{3}{ }^{+}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.0\left(\mathrm{CH}_{3}\right), 15.1\left(\mathrm{CHCH}_{3}\right), 37.1\left(\mathrm{CHCH}_{3}\right), 41.9\left(\mathrm{NCH}_{2}\right), 61.4$ $\left(\mathrm{OCH}_{2}\right), 174.0(\mathrm{C}=\mathrm{O})$.

Procedure for the synthesis of (S)-3-amino-2-methylpropan-1-ol trifluoroacetate (12)

To a solution of (S)-tert-butyl (3-hydroxy-2-methylpropyl)carbamate $\mathbf{1 0 b}$ ($189 \mathrm{mg}, 1.0 \mathrm{mmol}$) in dichloromethane $(5 \mathrm{~mL})$ is added trifluoroacetic acid $(1.5 \mathrm{~mL})$. The solution is stirred at room temperature for 3 h and then concentrated in vacuo. The crude product $\mathbf{1 2}$ is isolated as a colorless, viscous oil ($164 \mathrm{mg}, 81 \%$).

HRMS (ESI) calculated for $\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}^{+} 90.09134$, found 90.09184 .
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta(\mathrm{ppm})=-76.5(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta(\mathrm{ppm})=0.97\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right), 2.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right)$, $2.85\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{NCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=12.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{A}}=6.0 \mathrm{~Hz}\right), 3.00\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{NCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=12.7 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{B}}=7.6 \mathrm{~Hz}\right), 3.64\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{OCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=10.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{A}}=7.8 \mathrm{~Hz}\right), 3.64\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{OCH}_{2}\right.$, $\left.{ }^{2} J_{\mathrm{A}-\mathrm{B}}=10.8 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{B}}=4.6 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta(\mathrm{ppm})=14.4\left(\mathrm{CHCH}_{3}\right), 35.0\left(\mathrm{CHCH}_{3}\right), 45.0\left(\mathrm{NCH}_{2}\right), 66.6\left(\mathrm{OCH}_{2}\right)$, $118.2\left(\mathrm{q}, \mathrm{CF}_{3}, J_{\mathrm{C}-\mathrm{F}}=287 \mathrm{~Hz}\right), 162.9\left(\mathrm{q}, \mathrm{C}=\mathrm{O}, J_{\mathrm{C}-\mathrm{F}}=38.0 \mathrm{~Hz}\right)$.

Procedure for the synthesis of (S)-3-[(tert-butoxycarbonyl)amino]-2-methylpropyl acetate (13)
Racemic alcohol $\mathbf{1 0 b}(75 \mathrm{mg}, 0.4 \mathrm{mmol})$ is dissolved in dichloromethane $(2 \mathrm{~mL})$ and the mixture is cooled to $0^{\circ} \mathrm{C}$. Triethylamine ($60 \mathrm{mg}, 0.6 \mathrm{mmol}$) and then acetyl chloride ($39 \mathrm{mg}, 0.5 \mathrm{mmol}$) are added at $0^{\circ} \mathrm{C}$. The mixture is stirred for 1 h , warmed to room temperature and stirred for further 2 h . The solution is then concentrated in vacuo and the residue is purified by chromatography (cyclohexane/EtOAc $=4: 1$) to yield $\mathbf{1 3}(40 \mathrm{mg}, 46 \%)$ as a colorless oil.

HRMS (ESI) calculated for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{Na} 254.13628$, found 254.13605.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.91\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right), 1.40(\mathrm{~s}$, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.04$ (brd, $2 \mathrm{H}, \mathrm{NCH}_{2}$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.5 \mathrm{~Hz}\right), 3.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{OCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=11.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{A}}=6.2 \mathrm{~Hz}\right), 3.98\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{OCH}_{2}\right.$, $\left.{ }^{2} J_{\mathrm{A}-\mathrm{B}}=11.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{B}}=5.4 \mathrm{~Hz}\right), 4.75(\mathrm{brs}, 1 \mathrm{H}, \mathrm{NH})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=14.3\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right), 28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 33.4\left(\mathrm{CHCH}_{3}\right), 43.3$ $\left(\mathrm{NCH}_{2}\right), 66.7\left(\mathrm{OCH}_{2}\right), 79.2\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 156.0(\mathrm{C}=\mathrm{O}), 171.2(\mathrm{C}=\mathrm{O})$.
Separation of enantiomers by GC on Lipodex E ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$).

5.1.2.4 Synthesis of functionalized $\boldsymbol{\beta}^{2}$-homoalanine derivatives

General procedure for the asymmetric hydroformylation of methyl (2-acetamidomethyl)acrylate ($6 \mathbf{a}$)
The substrate $(1.0 \mathrm{eq}), \operatorname{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(1 \mathrm{~mol} \%)$ and the ligand $(1.2 \mathrm{~mol} \%)$ are transferred into a vial, which is placed into a stainless steel autoclave. The solvent ($8 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) is added under an argon atmosphere and the autoclave is purged with argon (three times) followed by syngas (three times). The indicated reaction conditions (syngas pressure, temperature and reaction time) are adjusted by an automatic program. After stirring for the adjusted time, the mixture is cooled to room temperature, depressurized and concentrated in vacuo. The reaction mixture is analyzed by ${ }^{1} \mathrm{H}$ NMR.

The enantiomeric excess is determined by GC analysis. A racemic mixture of $\mathbf{1 4}$, as sample for the quantitative and qualitative analysis, is prepared by the hydroformylation of 6 a with $1 \mathrm{~mol} \%$ $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ and $6 \mathrm{~mol} \% \mathrm{P}(\mathrm{OPh})_{3}$ in toluene.

Methyl 3-acetamido-2-formyl-2-methylpropanoate (14)

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 2.08\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.91$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), 6.29 (brs, $1 \mathrm{H}, \mathrm{NH}$), $9.56(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$.
${ }^{13} \mathrm{C}$ NMR spectrum could not be analyzed due to the small amount in the final reaction mixture.

Separation of enantiomers by GC on Lipodex E ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$), 100/30-8-180/10; $\mathrm{t}_{\mathrm{R}}=31.4 \mathrm{~min}$ for $(+)$-enantiomer and $t_{\mathrm{R}}=31.6 \mathrm{~min}$ for $(-)$-enantiomer.

5.1.2.5 Synthesis of 3-aryl-3-phosphorylated propanals

General procedure for the synthesis of 1-aryl-1-phosphorylated ethenes 16a-g

The corresponding acetophenone or 2-acetonaphthone (1.0 eq) is placed in 3-necked flask and it is cooled to $0^{\circ} \mathrm{C}$. Phosphorus trichloride (1.4 eq) is added via dropping funnel and the mixture is stirred at room temperature for 1 h . Then, it is cooled to $0{ }^{\circ} \mathrm{C}$ again and acetic acid (2.5 eq) is added via dropping funnel. The solution is stirred at room temperature for 16 h . After that time, ice is added so that a white solid precipitates. The mixture is stirred at room temperature for 16 h . Water is then distillied off (oil bath, $160^{\circ} \mathrm{C}$), hot aqueous $\mathrm{HCl}(0.4 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) is added in one portion and the solution is refluxed for 2 h . After cooling to room temperature, the corresponding phosphonic acid precipitates, what is filtered off and dried in vacuo. The solid is used in a further step without purification.
1.0 Eq of the corresponding phosphonic acid is mixed with trimethyl orthoformate and triethyl orthoformate (4.5 eq), respectively, and the solution is stirred at $100^{\circ} \mathrm{C}$ for 30 min . Then, formed methyl formate and methanol (or ethyl formate and ethanol) are distilled off and the solution is refluxed for further 90 min . The mixture is cooled to room temperature, concentrated in vacuo and purified by column chromatography to give $\mathbf{1 6 a - g}$.

Dimethyl (1-phenylvinyl)phosphonate (16a) ${ }^{[146]}$

Starting from acetophenone ($12.2 \mathrm{~g}, 100 \mathrm{mmol}$), $\mathrm{PCl}_{3}(19.2 \mathrm{~g}, 140 \mathrm{mmol})$ and HOAc ($15.0 \mathrm{~g}, 250 \mathrm{mmol}$), (1-phenylvinyl)phosphonic acid could be obtained as an off-white solid ($16.0 \mathrm{~g}, 87 \%$). Starting from the phosphonic acid ($5.0 \mathrm{~g}, 27.2 \mathrm{mmol}$) and trimethyl orthoformate $(13.00 \mathrm{~g}, 122.2 \mathrm{mmol})$, the product $16 a$ was isolated as a yellowish liquid ($4.00 \mathrm{~g}, 69 \%$) after column chromatography (EtOAc).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=19.8(\mathrm{~s})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.70\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=11.1 \mathrm{~Hz}\right), 6.15\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right.$, $\left.J_{\mathrm{A}-\mathrm{P}}=46.2 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.4 \mathrm{~Hz}\right), 6.30\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}, J_{\mathrm{B}-\mathrm{P}}=22.2 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.4 \mathrm{~Hz}\right), 7.27-7.35(\mathrm{~m}, 3 \mathrm{H}$, CH-Ar), 7.45-7.49 (m, 2H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=52.6\left(\mathrm{~d}, 2 \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 127.3\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 128.3\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 128.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 132.3\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=8.1 \mathrm{~Hz}\right), 136.4(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=11.8 \mathrm{~Hz}\right), 138.5\left(\mathrm{~d}, \mathrm{CCH}_{2}, J_{\mathrm{C}-\mathrm{P}}=175.2 \mathrm{~Hz}\right)$.

Dimethyl (1-(p-tolyl)vinyl)phosphonate (16b)

Starting from 1 -(p-tolyl)ethanone $(13.4 \mathrm{~g}, 100 \mathrm{mmol}), \mathrm{PCl}_{3}(19.2 \mathrm{~g}$, $140 \mathrm{mmol})$ and HOAc ($15.0 \mathrm{~g}, 250 \mathrm{mmol}$), (1-(p-tolyl)vinyl)phosphonic acid could be obtained as an off-white solid (19.8 g, 99%). Starting from the phosphonic acid $(4.96 \mathrm{~g}, 25.0 \mathrm{mmol})$ and trimethyl orthoformate $(11.94 \mathrm{~g}$, 112.5 mmol), the product $\mathbf{1 6 b}$ was isolated as a yellowish liquid (2.30 g , 41%) after column chromatography (EtOAc).

Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}: \mathrm{C}, 58.41$; $\mathrm{H}, 6.68$. Found: C, $58.15 ; \mathrm{H}, 6.43 \%$.
HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}$ 226.07533, found 226.07498.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=20.2(\mathrm{~s})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.69\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=11.1 \mathrm{~Hz}\right), 6.12$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}, J_{\mathrm{A}-\mathrm{P}}=46.4 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.4 \mathrm{~Hz}\right), 6.26\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}, J_{\mathrm{B}-\mathrm{P}}=22.1 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.4 \mathrm{~Hz}\right)$, $7.12\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.8 \mathrm{~Hz}\right), 7.35-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$.
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=20.9\left(\mathrm{CH}_{3}\right), 52.4\left(\mathrm{~d}, 2 \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 127.0\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.9 \mathrm{~Hz}\right), 129.0\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 131.4\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=8.1 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=11.7 \mathrm{~Hz}\right), 138.1(\mathrm{~d}$, $\left.C C_{2}, J_{\mathrm{C}-\mathrm{P}}=174.3 \mathrm{~Hz}\right), 138.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right)$.

Dimethyl (1-(naphthalen-2-yl)vinyl)phosphonate (16c)

Starting from 1-(naphthalen-2-yl)ethanone $(8.5 \mathrm{~g}, 50 \mathrm{mmol}), \mathrm{PCl}_{3}(9.6 \mathrm{~g}$, $70 \mathrm{mmol})$ and HOAc ($7.5 \mathrm{~g}, 125 \mathrm{mmol}$), (1-(naphthalen-2-yl)vinyl)phosphonic acid could be obtained as an off-white solid ($11.1 \mathrm{~g}, 96 \%$). Starting from the phosphonic acid ($5.86 \mathrm{~g}, 25.0 \mathrm{mmol}$) and trimethyl orthoformate $(11.94 \mathrm{~g}$, $112.5 \mathrm{mmol})$, the product $\mathbf{1 6 c}$ was isolated as a yellowish liquid ($3.80 \mathrm{~g}, 60 \%$) after column chromatography (EtOAc).

Anal. calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P}: \mathrm{C}, 64.12 ; \mathrm{H}, 5.77$. Found: C, $64.64 ; \mathrm{H}, 6.13 \%$.
HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{P} 262.07533$, found 262.07504 .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=19.9(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.59\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=11.1 \mathrm{~Hz}\right), 6.12\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right.$, $\left.J_{\mathrm{A}-\mathrm{P}}=45.9 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.2 \mathrm{~Hz}\right), 6.26\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}, J_{\mathrm{B}-\mathrm{P}}=22.0 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.2 \mathrm{~Hz}\right), 7.27-7.30(\mathrm{~m}, 2 \mathrm{H}$, CH-Ar), 7.44-7.47 (m, 1H, CH-Ar), 7.62-7.71 (m, 3H, CH-Ar), 7.87 (brs, 1H, CH-Ar).
${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=52.3\left(\mathrm{~d}, 2 \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=5.5 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}\right)$, $126.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 127.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $132.7\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=7.7 \mathrm{~Hz}\right), 132.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 138.2\left(\mathrm{~d}, C \mathrm{CH}_{2}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=175.0 \mathrm{~Hz}\right)$.

Dimethyl (1-(4-fluorophenyl)vinyl)phosphonate (16d)

Starting from 1-(4-fluorophenyl)ethanone ($6.9 \mathrm{~g}, 50 \mathrm{mmol}$), $\mathrm{PCl}_{3}(9.6 \mathrm{~g}$, $70 \mathrm{mmol})$ and HOAc ($7.5 \mathrm{~g}, 125 \mathrm{mmol}$), (1-(4-fluorophenyl)vinyl)phosphonic acid could be obtained as a white solid ($8.8 \mathrm{~g}, 87 \%$). Starting from the phosphonic acid $(5.06 \mathrm{~g}, 25.0 \mathrm{mmol})$ and trimethyl orthoformate $(11.94 \mathrm{~g}$, 112.5 mmol), the product $\mathbf{1 6 d}$ was isolated as a yellowish liquid ($4.00 \mathrm{~g}, 70 \%$)
after column chromatography (EtOAc).
Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FO}_{3} \mathrm{P}: \mathrm{C}, 52.18 ; \mathrm{H}, 5.25$. Found: C, $52.22 ; \mathrm{H}, 5.29 \%$.
HRMS (EI) calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{FO}_{3} \mathrm{P} 230.05026$, found 230.05011 .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=19.4(\mathrm{~s})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.67\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=11.1 \mathrm{~Hz}\right), 6.07\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right.$, $\left.J_{\mathrm{A}-\mathrm{P}}=45.8 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.2 \mathrm{~Hz}\right), 6.24\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}, J_{\mathrm{B}-\mathrm{P}}=22.0 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.2 \mathrm{~Hz}\right), 6.93-7.00(\mathrm{~m}, 2 \mathrm{H}$, CH-Ar), 7.39-7.45 (m, 2H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=52.5\left(\mathrm{~d}, 2 \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 115.3\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}, J=21.7 \mathrm{~Hz}\right)$, $129.0\left(\mathrm{~m}, 2 \mathrm{CH}_{\mathrm{Ar}}\right), 131.9\left(\mathrm{dd}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=7.9 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{F}}=1.1 \mathrm{~Hz}\right), 132.3\left(\mathrm{dd}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{C}-\mathrm{F}}=3.5 \mathrm{~Hz}\right), 137.4\left(\mathrm{~d}, \mathrm{CCH}_{2}, J_{\mathrm{C}-\mathrm{P}}=176.3 \mathrm{~Hz}\right), 162.8\left(\mathrm{dd}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{F}}=248.1 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right)$.

Dimethyl (1-(4-chlorophenyl)vinyl)phosphonate (16e)

Starting from 1-(4-chlorophenyl)ethanone ($15.5 \mathrm{~g}, 100 \mathrm{mmol}$), $\mathrm{PCl}_{3}(19.2 \mathrm{~g}$, 140 mmol) and HOAc ($15.0 \mathrm{~g}, 250 \mathrm{mmol}$), (1-(4chlorophenyl)vinyl)phosphonic acid could be obtained as a white solid (20.8 g , 95%). Starting from the phosphonic acid ($5.47 \mathrm{~g}, 25.0 \mathrm{mmol}$) and trimethyl orthoformate ($11.94 \mathrm{~g}, 112.5 \mathrm{mmol}$), the product $\mathbf{1 6 e}$ was isolated as a yellowish liquid ($5.20 \mathrm{~g}, 84 \%$) after column chromatography (EtOAc).
Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClO}_{3} \mathrm{P}$: C, 48.70; H, 4.90. Found: C, 48.64; H, 4.83%.
HRMS (EI) calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{ClO}_{3} \mathrm{P} 246.02071$, found 246.02024.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=19.2(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.68\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=11.1 \mathrm{~Hz}\right), 6.10\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right.$, $\left.J_{\mathrm{A}-\mathrm{P}}=45.7 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.3 \mathrm{~Hz}\right), 6.26\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}, J_{\mathrm{B}-\mathrm{P}}=22.0 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.2 \mathrm{~Hz}\right), 7.24-7.28(\mathrm{~m}, 2 \mathrm{H}$, CH-Ar), 7.37-7.40 (m, 2H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=52.5\left(\mathrm{~d}, 2 \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 128.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.5(\mathrm{~d}$, $\left.2 \mathrm{CH}_{\mathrm{Ar}}\right), 132.3\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=7.6 \mathrm{~Hz}\right), 134.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 134.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right)$, $137.4\left(\mathrm{~d}, \mathrm{CCH}_{2}, J_{\mathrm{C}-\mathrm{P}}=176.6 \mathrm{~Hz}\right)$.

Dimethyl (1-(4-bromophenyl)vinyl)phosphonate (16f)

Starting from 1-(4-bromophenyl)ethanone ($19.9 \mathrm{~g}, 100 \mathrm{mmol}), \mathrm{PCl}_{3}(19.2 \mathrm{~g}$, 140 mmol) and $\mathrm{HOAc}(15.0 \mathrm{~g}, 250 \mathrm{mmol})$, (1-(4bromophenyl)vinyl)phosphonic acid could be obtained as a white solid (26.1 g , 99%). Starting from the phosphonic acid ($6.58 \mathrm{~g}, 25.0 \mathrm{mmol}$) and trimethyl orthoformate ($11.94 \mathrm{~g}, 112.5 \mathrm{mmol}$), the product $\mathbf{1 6 f}$ was isolated as a yellowish liquid ($4.50 \mathrm{~g}, 62 \%$) after column chromatography (EtOAc).
Anal. calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrO}_{3} \mathrm{P}: \mathrm{C}, 41.26 ; \mathrm{H}, 4.16$. Found: C, 41.57; H, 4.14%.
HRMS (EI) calculated for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{BrO}_{3} \mathrm{P} 289.97019$, found 289.96088.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=19.1(\mathrm{~s})$.
${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.70\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=11.1 \mathrm{~Hz}\right), 6.13\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right.$, $\left.J_{\mathrm{A}-\mathrm{P}}=45.8 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.0 \mathrm{~Hz}\right), 6.30\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}, J_{\mathrm{B}-\mathrm{P}}=22.0 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.0 \mathrm{~Hz}\right), 7.32-7.35(\mathrm{~m}, 2 \mathrm{H}$, CH-Ar), 7.42-7.45 (m, 2H, CH-Ar).
${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=52.6\left(\mathrm{~d}, 2 \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 122.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right)$, $128.9\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 131.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 132.5\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=7.7 \mathrm{~Hz}\right), 135.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 137.7\left(\mathrm{~d}, \mathrm{CCH}_{2}, J_{\mathrm{C}-\mathrm{P}}=177.2 \mathrm{~Hz}\right)$.

Diethyl (1-phenylvinyl)phosphonate (16g) ${ }^{[146]}$

Starting from the phosphonic acid $(4.60 \mathrm{~g}, 25.0 \mathrm{mmol})$ and triethyl orthoformate $(16.67 \mathrm{~g}, 112.5 \mathrm{mmol})$, the product $\mathbf{1 6 g}$ was isolated as a yellowish liquid $(4.02 \mathrm{~g}$, 67%) after column chromatography (EtOAc).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=17.0(\mathrm{~s})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.27\left(\mathrm{t}, 6 \mathrm{H}, 2 \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right)$, 4.00-4.19 (m, $\left.4 \mathrm{H}, 2 \mathrm{OCH}_{2}\right), 6.14\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}, J_{\mathrm{A}-\mathrm{P}}=45.8 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.5 \mathrm{~Hz}\right), 6.33(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}, J_{\mathrm{B}-\mathrm{P}}=22.0 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.5 \mathrm{~Hz}\right), 7.24-7.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.30-7.37(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$, 7.50-7.54 (m, 2H, CH-Ar).
${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=16.2\left(\mathrm{~d}, 2 \mathrm{CH}_{3}, J_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right), 62.2\left(\mathrm{~d}, 2 \mathrm{OCH}_{2}, J_{\mathrm{C}-\mathrm{P}}=5.5 \mathrm{~Hz}\right)$, $127.4\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.5 \mathrm{~Hz}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 131.7\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=8.3 \mathrm{~Hz}\right), 138.6(\mathrm{~d}$, $\left.\mathrm{CCH}_{2}, J_{\mathrm{C}-\mathrm{P}}=174.4 \mathrm{~Hz}\right), 159.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right)$.

Procedure for the synthesis of dimethyl (1-(4-methoxyphenyl)vinyl)phosphonate (16h)
trans-4-Methoxy- β-nitrostyrene $(3.58 \mathrm{~g} 20.0 \mathrm{mmol})$ is dissolved in dimethyl ether $(20 \mathrm{~mL})$ and trimethyl phosphite $(2.73 \mathrm{~g}, 22.0 \mathrm{mmol})$ is added slowly via syringe. The mixture is stirred at room temperature for 9 d . Then, it is concentrated in vacuo and the resulting oil is purified by column chromatography (heptane $/ \mathrm{EtOAc}=3: 1$) to yield $\mathbf{1 6 h}$ as a yellowish liquid ($3.32 \mathrm{~g}, 69 \%$).

Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{P}$: C, 54.55; H, 6.24. Found: C, $54.21 ; \mathrm{H}, 5.95 \%$.
HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{P} 242.07025$, found 242.07003.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=20.4(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.72\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{P}}=11.1 \mathrm{~Hz}\right), \quad 3.80 \quad\left(\mathrm{~s}, \quad 3 \mathrm{H}, \quad \mathrm{PhOCH}_{3}\right), \quad 6.11 \quad\left(\mathrm{dd}, \quad 1 \mathrm{H}, \quad \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right.$, $\left.J_{\mathrm{A}-\mathrm{P}}=46.4 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.4 \mathrm{~Hz}\right), 6.24\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}, J_{\mathrm{B}-\mathrm{P}}=22.1 \mathrm{~Hz}, J_{\mathrm{A}-\mathrm{B}}=1.4 \mathrm{~Hz}\right), 6.85-6.88(\mathrm{~m}, 2 \mathrm{H}$, CH-Ar), 7.42-7.47 (m, 2H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=52.6\left(\mathrm{~d}, 2 \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 55.2\left(\mathrm{PhOCH}_{3}\right), 113.9$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 130.7\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=8.8 \mathrm{~Hz}\right), 136.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=11.6 \mathrm{~Hz}\right)$, $139.8\left(\mathrm{~d}, \mathrm{CCH}_{2}, J_{\mathrm{C}-\mathrm{P}}=174.4 \mathrm{~Hz}\right)$.

Procedure for the synthesis of diphenyl(1-phenylvinyl)phosphine oxide (16i) ${ }^{[147]}$

Phenylacetylene ($536 \mathrm{mg}, 5.3 \mathrm{mmol}$), diphenylphosphine oxide (1.01 g , 5.0 mmol), palladium(II) acetate ($56 \mathrm{mg}, 0.25 \mathrm{mmol}$) and dppe $(139 \mathrm{mg}, 0.35 \mathrm{mmol})$ are dissolved in toluene $(20 \mathrm{~mL})$ and the mixture is stirred at $100^{\circ} \mathrm{C}$ for 14 h . After cooling to room temperature, it is concentrated in vacuo to
yield product 16i as a yellowish liquid ($0.88 \mathrm{~g}, 73 \%)$ after column chromatography (heptane/EtOAc = 1:1).

${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=128.2\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 128.2,128.3,128.4$, $128.5,131.7\left(\mathrm{~d}, 2 \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=104.1 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=9.2 \mathrm{~Hz}\right), 132.0,132.1,144.4(\mathrm{~d}, \mathrm{C}$, $J_{\mathrm{C}-\mathrm{P}}=93.6 \mathrm{~Hz}$).

General procedure for the asymmetric hydroformylation of 1-aryl-1-phosphorylated ethenes 16a-i

The substrate (1.0 eq), $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(1 \mathrm{~mol} \%)$ and the ligand ($1.2 \mathrm{~mol} \%$) are transferred into a vial, which is placed into a stainless steel autoclave. The solvent ($8 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) is added under an argon atmosphere and the autoclave is purged with argon (three times) followed by syngas (three times). The indicated reaction conditions (syngas pressure, temperature and reaction time) are adjusted by an automatic program. After stirring for the adjusted time, the mixture is cooled to room temperature, depressurized and concentrated in vacuo. The reaction mixture is analyzed by ${ }^{31} \mathrm{P}$ - and ${ }^{1} \mathrm{H}$ NMR. The enantiomeric excess is determined by GC analysis. Racemic mixtures of $\mathbf{1 7 a - i}$, as samples for the quantitative and qualitative analysis, are prepared by the hydroformylation of 16a-i with $1 \mathrm{~mol} \% \mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ and $5 \mathrm{~mol} \%$ Alkanox ${ }^{\circledR} 240$ in toluene.

Dimethyl (3-oxo-1-phenylpropyl)phosphonate (17a)

Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{P}: \mathrm{C}, 54.55 ; \mathrm{H}, 6.24$. Found: C, $54.68 ; \mathrm{H}, 6.33 \%$.
HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{P}$ 242.07025, found 242.07001.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=29.6(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.49\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.6 \mathrm{~Hz}\right), 3.68\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.8 \mathrm{~Hz}\right), 3.70-3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.22-7.38(\mathrm{~m}, 5 \mathrm{H}$, CH-Ar), 9.65 (m, 1H, CHO).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=37.1\left(\mathrm{~d}, \mathrm{CH}, J_{\mathrm{C}-\mathrm{P}}=141.2 \mathrm{~Hz}\right), 43.7\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right)$, $52.7\left(\mathrm{~d}, \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.4 \mathrm{~Hz}\right), 53.5\left(\mathrm{~d}, \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}\right), 127.5\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.2 \mathrm{~Hz}\right), 128.6(\mathrm{~d}$, $\left.2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 128.9\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=6.5 \mathrm{~Hz}\right), 134.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=7.2 \mathrm{~Hz}\right), 198.4(\mathrm{~d}, \mathrm{CHO}$, $J_{\mathrm{C}-\mathrm{P}}=15.1 \mathrm{~Hz}$).

Separation of enantiomers by GC on Lipodex E ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$), 80/30-8-200/10; $\mathrm{t}_{\mathrm{R}}=55.2 \mathrm{~min}$ for $(+)$-enantiomer and $\mathrm{t}_{\mathrm{R}}=55.6 \mathrm{~min}$ for $(-)$-enantiomer.

Dimethyl (3-oxo-1-(p-tolyl)propyl)phosphonate (17b)

Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{P}: \mathrm{C}, 56.25 ; \mathrm{H}, 6.69$. Found: C, $56.64 ; \mathrm{H}, 6.88 \%$.
HRMS (EI) calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{P} 256.08590$, found 256.08545 .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=29.8(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.30\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=2.0 \mathrm{~Hz}\right)$,
3.03-3.14 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.49\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.5 \mathrm{~Hz}\right), 3.66\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.7 \mathrm{~Hz}\right)$, 3.68-3.78 (m, 1H, CH), 7.08-7.13 (m, 2H, CH-Ar), 7.20-7.24 (m, 2H, CH-Ar), 9.63 (m, 1H, CHO).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=21.0\left(\mathrm{CH}_{3}\right), 36.9\left(\mathrm{~d}, \mathrm{CH}, J_{\mathrm{C}-\mathrm{P}}=141.6 \mathrm{~Hz}\right), 43.8\left(\mathrm{~d}, \mathrm{CH}_{2}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 52.9\left(\mathrm{~d}, \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 53.7\left(\mathrm{~d}, \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}\right), 128.8\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right), 129.5\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 137.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=3.2 \mathrm{~Hz}\right), 198.7\left(\mathrm{~d}, \mathrm{CHO}, J_{\mathrm{C}-\mathrm{P}}=15.5 \mathrm{~Hz}\right)$.

Dimethyl (1-(naphthalene-2-yl)-3-oxopropyl)phosphonate (17c)

Anal. calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{P}: \mathrm{C}, 61.64 ; \mathrm{H}, 5.86$. Found: C, 61.30; H, 5.81%.
HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{P} 292.08590$, found 292.08573.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=29.4(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.20-3.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.48(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.4 \mathrm{~Hz}\right), 3.69\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.7 \mathrm{~Hz}\right), 3.87-4.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.41-7.51(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.76-7.82$ (m, 4H, CH-Ar), 9.67 (m, 1H, CHO).
${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=37.3\left(\mathrm{~d}, \mathrm{CH}, J_{\mathrm{C}-\mathrm{P}}=141.2 \mathrm{~Hz}\right), 43.9\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right)$, $52.8\left(\mathrm{~d}, \mathrm{CH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.2 \mathrm{~Hz}\right), 53.6\left(\mathrm{~d}, \mathrm{CH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}\right), 126.1\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 126.2(\mathrm{~d}$, $\left.\mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 126.7\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 127.5\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 127.7\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 127.9\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=8.3 \mathrm{~Hz}\right), 128.4\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}\right), 132.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 132.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 133.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 198.4(\mathrm{~d}, \mathrm{CHO}$, $J_{\mathrm{C}-\mathrm{P}}=15.2 \mathrm{~Hz}$).

Dimethyl (1-(4-fluorophenyl)-3-oxopropyl)phosphonate (17d)

Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{FO}_{4} \mathrm{P}$: C, 50.78; H, 5.42. Found: C, 50.55; H, 5.11%.
HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{FO}_{4} \mathrm{P} 260.06083$, found 260.06042.
${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-114.6(\mathrm{~d}, J=5.1 \mathrm{~Hz})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=29.4(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.04-3.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.54\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.6 \mathrm{~Hz}\right)$, $3.71\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.8 \mathrm{~Hz}\right), 3.74-3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 6.99-7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.31-7.38(\mathrm{~m}$, 2H, CH-Ar), 9.67 (m, 1H, CHO).
${ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=36.3\left(\mathrm{~d}, \mathrm{CH}, J_{\mathrm{C}-\mathrm{P}}=142.1 \mathrm{~Hz}\right), 43.9\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=1.8 \mathrm{~Hz}\right)$, $52.9\left(\mathrm{~d}, \mathrm{CH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 53.6\left(\mathrm{~d}, \mathrm{CH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.0 \mathrm{~Hz}\right), 115.6\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=21.5 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{C}-\mathrm{F}}=2.6 \mathrm{~Hz}\right), 130.4-130.6\left(\mathrm{~m}, 2 \mathrm{CH}_{\mathrm{Ar}}\right), 162.1\left(\mathrm{dd}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{F}}=246.8 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=3.5 \mathrm{~Hz}\right), 172.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=19.5 \mathrm{~Hz}\right), 198.2\left(\mathrm{~d}, \mathrm{CHO}, J_{\mathrm{C}-\mathrm{P}}=15.4 \mathrm{~Hz}\right)$.

Separation of enantiomers by GC on Lipodex E ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$), 140/40-6-180/30; $\mathrm{t}_{\mathrm{R}}=48.2 \mathrm{~min}$ for $(+)$-enantiomer and $t_{R}=48.7 \mathrm{~min}$ for (-)-enantiomer.

Dimethyl (1-(4-chlorophenyl)-3-oxopropyl)phosphonate (17e)

Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClO}_{4} \mathrm{P}$: C, 47.76; H, 5.10. Found: C, 47.87; H, 5.25%. HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClO}_{4} \mathrm{P} 276.03127$, found 276.03208.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=29.1(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=3.03-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.54(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.7 \mathrm{~Hz}\right), 3.70\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.7 \mathrm{~Hz}\right), 3.72-3.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.30(\mathrm{~m}, 4 \mathrm{H}$, CH-Ar), 9.67 (m, 1H, CHO).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=36.6\left(\mathrm{~d}, \mathrm{CH}, J_{\mathrm{C}-\mathrm{P}}=141.9 \mathrm{~Hz}\right), 43.9\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right)$, $53.0\left(\mathrm{~d}, \mathrm{CH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.4 \mathrm{~Hz}\right), 53.8\left(\mathrm{~d}, \mathrm{CH}_{3}, J_{\mathrm{C}-\mathrm{P}}=6.8 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 130.3(\mathrm{~d}$, $\left.2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=7.5 \mathrm{~Hz}\right), 133.6\left(\mathrm{~m}, \mathrm{C}_{\mathrm{Ar}}\right), 198.1\left(\mathrm{~d}, \mathrm{CHO}, J_{\mathrm{C}-\mathrm{P}}=15.3 \mathrm{~Hz}\right)$.

Separation of enantiomers by GC on Lipodex E ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$), 140/40-6-180/30; $\mathrm{t}_{\mathrm{R}}=48.5 \mathrm{~min}$ for $(+)$-enantiomer and $t_{R}=49.0 \mathrm{~min}$ for $(-)$-enantiomer.

Dimethyl (1-(4-bromophenyl)-3-oxopropyl)phosphonate (17f)

Anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrO}_{4} \mathrm{P}: \mathrm{C}, 41.14 ; \mathrm{H}, 4.39$. Found: C, 41.53 ; H, 4.77%.
HRMS (EI) calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{BrO}_{4} \mathrm{P}$ 319.98076, found 319.98051.
${ }^{31} \mathrm{P}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=29.9(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.01-3.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.51(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.6 \mathrm{~Hz}\right), 3.67\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.7 \mathrm{~Hz}\right), 3.71-3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 7.18-7.25(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.40-7.45 (m, 2H, CH-Ar), 9.63 (m, 1H, CHO).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=36.6\left(\mathrm{~d}, \mathrm{CH}, J_{\mathrm{C}-\mathrm{P}}=142.1 \mathrm{~Hz}\right), 43.7\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right)$, $53.0\left(\mathrm{~d}, \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.4 \mathrm{~Hz}\right), 53.7\left(\mathrm{~d}, \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}\right), 121.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 130.6(\mathrm{~d}$, $\left.2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right), 131.8\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 134.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 198.0(\mathrm{~d}, \mathrm{CHO}$, $J_{\mathrm{C}-\mathrm{P}}=15.2 \mathrm{~Hz}$).

Separation of enantiomers by GC on Lipodex E ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$), 140/40-6-180/30; $\mathrm{t}_{\mathrm{R}}=48.6 \mathrm{~min}$ for $(+)$-enantiomer and $t_{R}=49.3 \mathrm{~min}$ for $(-)$-enantiomer.

Diethyl (3-oxo-1-phenylpropyl)phosphonate ($\mathbf{1 7 g}$)

Anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{P}: \mathrm{C}, 57.77 ; \mathrm{H}, 7.09$. Found: C, $57.51 ; \mathrm{H}, 6.82 \%$.
HRMS (EI) calculated for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{4} \mathrm{P} 270.10155$, found 270.10122.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=27.2(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.12\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 1.29$ $\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 3.06-3.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.69-4.17\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}\right.$ and $\left.2 \mathrm{OCH}_{2}\right), 7.23-7.40$ (m, 5H, CH-Ar), 9.68 (m, 1H, CHO).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=16.0\left(\mathrm{~d}, \mathrm{CH}_{3}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 16.3\left(\mathrm{~d}, \mathrm{CH}_{3}, J_{\mathrm{C}-\mathrm{P}}=5.9 \mathrm{~Hz}\right), 37.7$ $\left(\mathrm{d}, \mathrm{CH}, J_{\mathrm{C}-\mathrm{P}}=141.4 \mathrm{~Hz}\right), 43.8\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 62.1\left(\mathrm{~d}, \mathrm{OCH}_{2}, J_{\mathrm{C}-\mathrm{P}}=7.4 \mathrm{~Hz}\right), 62.8\left(\mathrm{~d}, \mathrm{OCH}_{2}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}\right), 127.4\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.4 \mathrm{~Hz}\right), 128.5\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 129.0\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=6.5 \mathrm{~Hz}\right), 135.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}\right), 198.8\left(\mathrm{~d}, \mathrm{CHO}, J_{\mathrm{C}-\mathrm{P}}=15.3 \mathrm{~Hz}\right)$.

Dimethyl (1-(4-methoxyphenyl)-3-oxopropyl)phosphonate (17h)

Anal. calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{P}: \mathrm{C}, 52.94 ; \mathrm{H}, 6.29$. Found: C, $52.64 ; \mathrm{H}, 6.08 \%$.
HRMS (EI) calculated for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{O}_{5} \mathrm{P}$ 272.08081, found 272.08058.
${ }^{31} \mathrm{P}\{1 \mathrm{H}\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=29.8(\mathrm{~s})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=3.00-3.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.49(\mathrm{~d}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.6 \mathrm{~Hz}\right), 3.67\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=10.7 \mathrm{~Hz}\right), 3.77(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{PhOCH}_{3}$), 3.73 (m, 1H, CH), 6.85 (m, 2H, CH-Ar), 7.24-7.28 (m, 2H, CH-Ar), 9.64 (m, 1H, CHO).
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=36.5\left(\mathrm{~d}, \mathrm{CH}, J_{\mathrm{C}-\mathrm{P}}=142.3 \mathrm{~Hz}\right), 43.9\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=1.8 \mathrm{~Hz}\right)$, $52.8\left(\mathrm{~d}, \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.8 \mathrm{~Hz}\right), 53.6\left(\mathrm{~d}, \mathrm{OCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}\right), 55.1\left(\mathrm{~s}, \mathrm{PhOCH}_{3}\right), 114.2\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 126.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=7.3 \mathrm{~Hz}\right), 130.0\left(\mathrm{~d}, 2 \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right), 159.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 198.7\left(\mathrm{~d}, \mathrm{CHO}, J_{\mathrm{C}-\mathrm{P}}=15.7 \mathrm{~Hz}\right)$.

3-(Diphenylphosphoryl)-3-phenylpropanal (17i)

Anal. calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}: \mathrm{C}, 75.44 ; \mathrm{H}, 5.73$. Found: C, $75.69 ; \mathrm{H}, 5.81 \%$.
HRMS (EI) calculated for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2} \mathrm{P}$ 334.11172, found 334.11159 .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=32.9(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=2.98-3.09\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2}\right), 3.33-3.45$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2}$), 4.20-4.27 (m, 1H, CH), 7.18-7.61 (m, 13H, CH-Ar), 7.92-7.99 (m, 2H, CH-Ar), 9.64 (m, 1H, CHO).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=40.0\left(\mathrm{~d}, \mathrm{CH}, J_{\mathrm{C}-\mathrm{P}}=68.2 \mathrm{~Hz}\right), 43.9\left(\mathrm{CH}_{2}\right), 127.3\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.0\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $129.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.8 \mathrm{~Hz}\right), 131.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.2\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $131.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.5\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 131.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 135.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 198.9\left(\mathrm{~d}, \mathrm{CHO}, J_{\mathrm{C}-\mathrm{P}}=13.3 \mathrm{~Hz}\right)$.

Dimethyl (1-oxo-2-phenylpropan-2-yl)phosphonate (18a)

Dimethyl (1-oxo-2-(p-tolyl)propan-2-yl)phosphonate (18b)

Dimethyl (2-(naphthalene-2-yl)-1-oxopropan-2-yl)phosphonate (18c)

Dimethyl (2-(4-fluorophenyl)-1-oxopropan-2-yl)phosphonate (18d)

Dimethyl (2-(4-chlorophenyl)-1-oxopropan-2-yl)phosphonate (18e)

Dimethyl (2-(4-bromophenyl)-1-oxopropan-2-yl)phosphonate (18f)

Diethyl (1-oxo-2-phenylpropan-2-yl)phosphonate (18g)

Dimethyl (2-(4-methoxyphenyl)-1-oxopropan-2-yl)phosphonate (18h)

Dimethyl (1-phenylethyl)phosphonate (19a)

${ }^{13} \mathrm{C}$ NMR spectrum could not be analyzed due to the small amount in the final reaction mixture.

Dimethyl (1-(p-tolyl)ethyl)phosphonate (19b)

Dimethyl (1-(naphthalene-2-yl)ethyl)phosphonate (19c)

Dimethyl (1-(4-fluorophenyl)ethyl)phosphonate (19d)

r

F

Dimethyl (1-(4-chlorophenyl)ethyl)phosphonate (19e)

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=31.4(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra could not be analyzed due to the small amount in the final reaction mixture.

Dimethyl (1-(4-bromophenyl)ethyl)phosphonate (19f)

Diethyl (1-phenylethyl)phosphonate (19g)

Dimethyl (1-(4-methoxyphenyl)ethyl)phosphonate (19h)

Diphenyl(1-phenylethyl)phosphine oxide (19i)
Ph $,{ }^{11},-\mathrm{Ph}$
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=33.6(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra could not be analyzed due to the small amount in the final

5.1.2.6 Synthesis of bidentate phosphorus ligands

Procedure for the synthesis of (R)-(1,1'-binaphthalene)-2,2'-diyl bis(trifluoromethanesulfonate) (20a) ${ }^{[105]}$
(R)-BINOL ($2.00 \mathrm{~g}, 7.0 \mathrm{mmol}$) is dissolved in dichloromethane (45 mL) and pyridine (2.0 mL , 25.0 mmol) is added. The solution is cooled to $0^{\circ} \mathrm{C}$ and trifluoroacetic anhydride ($2.5 \mathrm{~mL}, 15.0 \mathrm{mmol}$) is added dropwise. Thus, the mixture is stirred at room temperature for 6 h , concentrated in vacuo and dissolved in ethyl acetate (50 mL). The organic layer is washed with 5% aqueous HCl , saturated NaHCO_{3}-solution and finally with brine (each 10 mL). The organic phase is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and purified by column chromatography (heptane/dichloromethane $=1: 1$) to give 20a as a white solid ($3.85 \mathrm{~g}, 100 \%$).

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=-74.6(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.24-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.39-7.44(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.56-7.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 8.01$ (m, 2H, CH-Ar), 8.15 (m, 2H, $\mathrm{CH}-\mathrm{Ar}$).

Procedure for the synthesis of $(R)-2^{\prime}$-(diphenylphosphoryl)-[1,1'-binaphthalen]-2-yl trifluoromethanesulfonate ($\mathbf{2 0 b}{ }^{[105]}$

In a pressure tube the derivative $\mathbf{2 0 a}(4.80 \mathrm{~g}, 8.7 \mathrm{mmol})$, diphenylphosphine oxide $(3.52,17.4 \mathrm{mmol})$, palladium(II) acetate ($99 \mathrm{mg}, 0.44 \mathrm{mmol}$) and dppb ($186 \mathrm{mg}, 0.44 \mathrm{mmol}$) are dissolved in dimethyl sulfoxide (40 mL) and Hünig's base ($4.51 \mathrm{~g}, 34.9 \mathrm{mmol}$) is added in one portion. The solution is heated to $100^{\circ} \mathrm{C}$ and stirred for 20 h . After cooling to room temperature, the resulting solution is dissolved in ethyl acetate (50 mL) and washed with water $(2 \times 20 \mathrm{~mL})$. The organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography (hexane/EtOAc $=1: 1$) yields 20b as a white solid ($1.73 \mathrm{~g}, 33 \%$).

${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=-74.6(\mathrm{~s})$.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=28.1(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=7.00(\mathrm{~m}, \mathrm{CH}-\mathrm{Ar}), 7.14-8.03(\mathrm{~m}, 21 \mathrm{H}$, $\mathrm{CH}-\mathrm{Ar})$.

Procedure for the synthesis of $(R)-\left(2^{\prime}\right.$-hydroxy-[1, 1^{\prime}-binaphthalen]-2-yl)diphenylphosphine oxide $(\mathbf{2 0 c})^{[105]}$
Phosphine oxide 20b ($520 \mathrm{mg}, 0.86 \mathrm{mmol}$) is dissolved in dioxane:methanol ($6 \mathrm{~mL}, v: v 2: 1$) and 3 M NaOH -solution $(5 \mathrm{~mL})$ is added. The reaction mixture is stirred at room temperature for 16 h . The resulting solution is acidified with concentrated aqueous HCl to $\mathrm{pH}=1$ and then extracted with ethyl acetate $(2 \times 10 \mathrm{~mL})$. The organic layer is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo and purified by column chromatography (heptane: $\mathrm{EtOAc}=1: 1$) to give 20c as a white solid ($390 \mathrm{mg}, 96 \%$).

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=30.8(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=6.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.68-7.98(\mathrm{~m}, 21 \mathrm{H}$, CH-Ar).

Procedure for the synthesis of $(R)-2^{\prime}$-(diphenylphosphino)-[1, 1^{\prime}-binaphthalen]-2-ol (20d) ${ }^{[105]}$
Phosphine oxide 20c ($275 \mathrm{mg}, 0.58 \mathrm{mmol}$) is dissolved in toluene (6 mL) and triethylamine is added ($431 \mathrm{mg}, 4.26 \mathrm{mmol}$). The solution is cooled to $0^{\circ} \mathrm{C}$ and trichlorosilane ($402 \mathrm{mg}, 2.97 \mathrm{mmol}$) is added dropwise. The reaction mixture is warmed to $100^{\circ} \mathrm{C}$ and stirred for 16 h . After cooling to room temperature, the resulting solution is dissolved in diethyl ether (5 mL) and quenched with a few drops of saturated NaHCO_{3}-solution. The layer is filtrated over Celite, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Column chromatography (heptane:EtOAc $=3: 1$) yields 20d as a white solid ($217 \mathrm{mg}, 82 \%$).

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-13.2(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=6.75(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 6.99-7.36(\mathrm{~m}, 15 \mathrm{H}$, CH-Ar), 7.45-7.55 (m, 2H, CH-Ar), 7.80 (m, 1H, CH-Ar), 7.89-7.96 (m, 3H, CH-Ar).

General procedure for the synthesis of (R, S) - and (R, R)-BINAPHOS 20e, \mathbf{f}

1.05 Eq of enantiopure BINOL are suspended in phosphorus trichloride ($1.5 \mathrm{~mL} / 1.0 \mathrm{mmol} \mathrm{BINOL}$), 2-3 drops of N-methyl-2-pyrrolidone are added and the solution is heated to $75{ }^{\circ} \mathrm{C}$ for 5 min . The resulting HCl gas is derived from the reaction vessel by using a bubble counter (slight argon stream!). The now clear solution is cooled to room temperature, concentrated and dried azeotropically with toluene (three times). Thus, the in situ prepared chlorophosphite is dissolved in toluene ($5 \mathrm{~mL} / 0.33 \mathrm{mmol} \mathrm{BINOL}$). 1.0 Eq of azeotropically dried phosphine 20d is dissolved in toluene ($5 \mathrm{~mL} / 0.33 \mathrm{mmol}$ substrate) and triethylamine (2.5 eq) is added. This solution is added slowly to the chlorophosphite solution at $0^{\circ} \mathrm{C}$ over 5 min and the mixture is kept at this temperature for 5 min . The reaction solution is then stirred at room temperature for 16 h . After this time, it is concentrated in vacuo and the residue is purified by column chromatography (alumina, toluene) to give $\mathbf{2 0 e} \mathbf{f}$ as a white solid.

(R, S)-BINAPHOS (20e) ${ }^{[48]}$

Starting from (S)-BINOL ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$), phosphine 20d $(150 \mathrm{mg}, 0.33 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(88 \mathrm{mg}, 0.90 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$, the product $\mathbf{2 0 e}$ was isolated as a white solid $(120 \mathrm{mg}$, 47 \%).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=-13.6\left(\mathrm{~d}, \mathrm{PPh}_{2}\right.$, $\left.J_{\mathrm{P}-\mathrm{P}}=26.4 \mathrm{~Hz}\right), 146.4\left(\mathrm{~d}, \mathrm{O}-\mathrm{P}, J_{\mathrm{P}-\mathrm{P}}=26.4 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=6.51-6.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$, 6.70-7.76 (m, 33H, CH-Ar).

(R, R)-BINAPHOS (20f) ${ }^{[48]}$

Starting from (R)-BINOL ($100 \mathrm{mg}, 0.35 \mathrm{mmol}$), phosphine 20d $(150 \mathrm{mg}, 0.33 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(88 \mathrm{mg}, 0.90 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$, the product 20 f was isolated as a white solid (100 mg , 39 \%).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=-13.4\left(\mathrm{~d}, \mathrm{PPh}_{2}\right.$, $\left.J_{\mathrm{P}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 145.0\left(\mathrm{~d}, \mathrm{O}-\mathrm{P}, J_{\mathrm{P}-\mathrm{P}}=9.0 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=5.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$, 6.68-8.03 (m, 33H, CH-Ar).

General procedure for the synthesis of diphosphites 21a-d

2.1 Eq of enantiopure BINOL are suspended in phosphorus trichloride ($1.5 \mathrm{~mL} / 1.0 \mathrm{mmol}$ BINOL), 2-3 drops of N-methyl-2-pyrrolidone are added and the solution is heated to $75^{\circ} \mathrm{C}$ for 5 min . The resulting HCl gas is derived from the reaction vessel by using a bubble counter (slight argon stream!). The now clear solution is cooled to room temperature, concentrated and dried azeotropically with toluene (three times). Thus, the in situ prepared chlorophosphite is dissolved in toluene ($10 \mathrm{~mL} / 2.1 \mathrm{mmol} \mathrm{BINOL}$). 1.0 Eq of azeotropically dried aromatic diol is dissolved in toluene ($10 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) and triethylamine (5.0 eq) is added. This solution is added slowly to the chlorophosphite solution at $0{ }^{\circ} \mathrm{C}$ over 5 min and the mixture is kept at this temperature for 5 min . The reaction solution is then stirred at
room temperature for 16 h . After this time, it is concentrated in vacuo and the residue is purified by column chromatography (alumina, toluene) to give 21a-d as white solids.
(1S)-2,2'-Bis[(11bR)-dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yloxy]-1,1'-binaphthalene (21a)

Starting from (R)-BINOL ($601 \mathrm{mg}, 2.1 \mathrm{mmol}$), (S)-BINOL $(286 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(506 \mathrm{mg}, 5.0 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$, the product 21a was isolated as a white solid $(866 \mathrm{mg}$, $95 \%, \mathrm{R}_{\mathrm{f}} 0.90$).

Anal. calcd for $\mathrm{C}_{60} \mathrm{H}_{36} \mathrm{O}_{6} \mathrm{P}_{2}$: C, 78.77; H, 3.97. Found: C, 78.90; H, 4.11%.

HRMS (EI) calculated for $\mathrm{C}_{60} \mathrm{H}_{6}{ }_{6} \mathrm{O}_{6} \mathrm{P}_{2}$ 914.19816, found 914.19795.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=145.4(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=5.92(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$, ${ }^{4} J_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}$), 7.18-8.17 (m, 34H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta(\mathrm{ppm})=121.2\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 121.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 121.6\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 122.4\left(2 \mathrm{C}_{\mathrm{Ar}}\right)$, $123.0\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 124.0\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 124.9\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 125.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.1\left(4 \mathrm{CH}_{\mathrm{Ar}}\right), 126.3$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(4 \mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 129.3\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, $130.3\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 131.1\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 131.3\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 131.6\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 132.7\left(2 \mathrm{C}_{\mathrm{Ar}}\right)$, $134.2\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 147.0\left(2 \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 147.3\left(2 \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 148.3\left(2 \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right)$.
$(1 R)-2,2^{\prime}-\operatorname{Bis}[(11 \mathrm{~b} R)$-dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yloxy]-1,1'-binaphthalene (21b) ${ }^{[148]}$

Starting from (R)-BINOL ($601 \mathrm{mg}, 2.1 \mathrm{mmol}$), (R)-BINOL $(286 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(506 \mathrm{mg}, 5.0 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$, the product 21b was isolated as a white solid (848 mg , $93 \%, \mathrm{R}_{\mathrm{f}} 0.92$).
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=144.6(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=6.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$, $\left.{ }^{4} J_{\mathrm{H}-\mathrm{H}}=8.9 \mathrm{~Hz}\right), 7.07-7.35(\mathrm{~m}, 22 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$, $\left.{ }^{4} J_{\mathrm{H}-\mathrm{H}}=8.9 \mathrm{~Hz}\right), 7.64-7.90(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$.
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=121.1\left(\mathrm{~m}, 2 \mathrm{CH}_{\mathrm{Ar}}\right), 121.7$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 121.9\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 122.4\left(\mathrm{~m}, 4 \mathrm{C}_{\mathrm{Ar}}\right), 124.3\left(\mathrm{~m}, 2 \mathrm{C}_{\mathrm{Ar}}\right), 124.6$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 125.1\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 125.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.1$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.2\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(4 \mathrm{CH}_{\mathrm{Ar}}\right), 128.1\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, $129.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.0\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.3\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.8\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 131.0\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 131.4\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 132.3\left(2 \mathrm{C}_{\mathrm{Ar}}\right)$, $132.7\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 134.3\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 147.0\left(2 \mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{O}\right), 147.6\left(\mathrm{~m}, 2 \mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{O}\right), 148.5\left(\mathrm{~m}, 2 \mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{O}\right)$.
(11bR)-4-\{[$(R)-2^{\prime}-((2,4,8,10$-Tetra-tert-butyldibenzo[d,f]][1,3,2]dioxaphosphepin-6-yl)oxy)-[1,1'-binaphthalen]-2-yl]oxy , dinaphtho[2,1-d:1',2'-ff[1,3,2]dioxaphosphepine (21c)

Starting from (R)-BINOL ($601 \mathrm{mg}, 2.1 \mathrm{mmol}$), 4,4',6,6'-tetra-tert-butyl-2,2'-biphenol ($411 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(506 \mathrm{mg}$, $5.0 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$, the product 21 c was isolated as a white solid ($977 \mathrm{mg}, 94 \%, \mathrm{R}_{\mathrm{f}} 0.91$).
$[\alpha]_{\mathrm{D}}^{26}=-188.0\left(c 0.79, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{68} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{P}_{2}$: C, 78.59; H, 6.21. Found: C, 78.90; H, 6.42 \%.

HRMS (EI) calculated for $\mathrm{C}_{68} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{P}_{2}$ 1038.41726, found 1038.41702.
${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ NMR (101 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=135.2$ (s), 144.6 (s).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=1.00\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.00\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 6.04(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}, J=8.8 \mathrm{~Hz}), 7.09-7.61\left(\mathrm{~m}, 20 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right)$, 7.84-8.12 (m, 7H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=31.2\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 31.2\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 31.6\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.6\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.5\left(\mathrm{~d}, 2 C\left(\mathrm{CH}_{3}\right)_{3}, J_{\mathrm{C}-\mathrm{P}}=6.5 \mathrm{~Hz}\right), 121.3\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=12.2 \mathrm{~Hz}\right), 122.1\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.0 \mathrm{~Hz}\right), 122.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.6\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=9.8 \mathrm{~Hz}\right), 123.1(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 123.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.5 \mathrm{~Hz}\right), 123.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}\right), 124.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 125.0(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.8$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.4$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right)$, $133.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 134.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 141.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 141.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 146.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.5 \mathrm{~Hz}\right), 146.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right)$, $146.8\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 147.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 148.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.5 \mathrm{~Hz}\right), 148.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 149.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $J_{\mathrm{C}-\mathrm{P}}=7.1 \mathrm{~Hz}$).
(11bR)-4-\{[(R)-2'-((4,8-Di-tert-butyl-2,10-dimethoxydibenzo[d,f][1,3,2]dioxaphosphepin-6-yl)oxy)-[1,1'-binaphthalen]-2-yl]oxy $\}$ dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine (21d)

Starting from (R)-BINOL (601 mg, 2.1 mmol), 4,4'-di-methoxy-6,6'-di-tert-butyl-2,2'-biphenol ($359 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(506 \mathrm{mg}, 5.0 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$, the product 21d was isolated as a white solid ($961 \mathrm{mg}, 97 \%, \mathrm{R}_{\mathrm{f}} 0.92$).
$[\alpha]_{\mathrm{D}}^{26}=-132.1\left(c \quad 0.54, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{62} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{P}_{2}$: C, 75.45; H, 5.31. Found: C, 75.27; H, 5.04 \%.

HRMS (EI) calculated for $\mathrm{C}_{62} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{P}_{2}$ 986.31319, found 986.31301 .
${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ NMR (121 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=138.5(\mathrm{~s})$, 144.5 (s).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta(\mathrm{ppm})=0.97\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.03\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.72(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}, J=6.1 \mathrm{~Hz}), 6.54(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}, J=5.1 \mathrm{~Hz}$, $J=3.1 \mathrm{~Hz}), 6.78(\mathrm{dd}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}, J=6.5 \mathrm{~Hz}, J=3.1 \mathrm{~Hz}), 7.13-7.49\left(\mathrm{~m}, 14 \mathrm{H}, \mathrm{CH}_{\mathrm{Ar}}\right), 7.58(\mathrm{~d}, 1 \mathrm{H}$, CH-Ar, $J=8.9 \mathrm{~Hz}$), 7.67 (dd, $1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}, J=8.9 \mathrm{~Hz}, J=1.0 \mathrm{~Hz}$), 7.84-7.95 (m, 5H, CH-Ar), 8.03 (d, $1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}, J=8.3 \mathrm{~Hz}$), 8.12 (d, $1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}, J=8.9 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=30.5\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, J_{\mathrm{C}-\mathrm{p}}=2.1 \mathrm{~Hz}\right), 30.6\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 34.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 35.0\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 55.5\left(2 \mathrm{OCH}_{3}\right), 112.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 112.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 113.9$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 114.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.8\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=10.7 \mathrm{~Hz}\right), 121.4\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=10.9 \mathrm{~Hz}\right), 121.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, $122.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 122.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.5 \mathrm{~Hz}\right), 122.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right), 124.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 124.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.1\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.9\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 129.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $130.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 132.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 133.3$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 134.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 134.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 141.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 141.4(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}\right), 142.7\left(2 \mathrm{C}_{\mathrm{Ar}}\right) 147.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 147.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right), 148.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=7.8 \mathrm{~Hz}\right), 148.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 155.4\left(2 \mathrm{C}_{\mathrm{Ar}}\right)$.

Procedure for the synthesis of $\left(11 \mathrm{~b} R, 11 \mathrm{c}^{\prime} R\right)-4,4^{\prime}$-[(3,3'-Di-tert-butyl-5,5'-dimethoxy-[1, 1^{\prime}-biphenyl]-2,2'-diyl)bis(oxy)]didinaphtho[2,1-d:1', $\left.2^{\prime}-f\right][1,3,2]$ dioxaphosphepine (21e)
$294 \mathrm{mg}(1.02 \mathrm{mmol})$ of (R)-BINOL are suspended in phosphorus trichloride $(1.5 \mathrm{~mL}), 2-3$ drops of N -methyl-2-pyrrolidone are added and the solution is heated to $75^{\circ} \mathrm{C}$ for 5 min . The resulting HCl gas is derived from the reaction vessel by using a bubble counter (slight argon stream!). The now clear solution is cooled to room temperature, concentrated and dried azeotropically with toluene (three times). Thus, the in situ prepared chlorophosphite is dissolved in toluene (3 mL). $180 \mathrm{mg}(0.5 \mathrm{mmol})$ of azeotropically dried 4,4'-di-methoxy-6,6'-di-tert-butyl-2,2'-biphenol is dissolved in toluene (2 mL) and the solution is cooled to $-20^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.63 \mathrm{~mL}, 1.0 \mathrm{mmol})$ is added and the mixture is warmed to room temperature over 30 min and stirred for futher 90 min . This solution is added slowly to the chlorophosphite solution and stirred at room temperature for 16 h . After this time, it is concentrated in vacuo and the residue is purified by column chromatography (alumina, toluene) to give 300 mg of $\mathbf{2 1 e}$ as a white solid ($61 \%, \mathrm{R}_{\mathrm{f}} 0.93$).

$[\alpha]_{D}^{25}=-106.1\left(c 0.59, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{62} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{P}_{2}$: C, 75.45; H, 5.31. Found: C, 75.12; H, 5.22 \%.

HRMS (EI) calculated for $\mathrm{C}_{62} \mathrm{H}_{52} \mathrm{O}_{8} \mathrm{P}_{2}$ 986.31319, found 986.31299.
${ }^{31} \mathrm{P}\{1 \mathrm{H}\}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=146.4(\mathrm{~s}), 146.5$ (s).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=1.33\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.63\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 6.83-7.70 (m, 28H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=30.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.1$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $35.5\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 36.0\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 55.2\left(\mathrm{OCH}_{3}\right), 55.4\left(\mathrm{OCH}_{3}\right), 114.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 115.8\left(\mathrm{CH}_{\mathrm{Ar}}\right) \text {, }}\right.$ $116.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 122.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.3\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 123.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 125.0(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}\right), 125.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 125.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.4$
$\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7$ $\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 129.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 133.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.4\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 143.9\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $144.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 144.6\left(\mathrm{~m}, \mathrm{C}_{\mathrm{Ar}}\right) 145.4\left(\mathrm{~m}, \mathrm{C}_{\mathrm{Ar}}\right), 147.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 147.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 148.9\left(\mathrm{~m}, \mathrm{C}_{\mathrm{Ar}}\right), 149.2\left(\mathrm{~m}, \mathrm{C}_{\mathrm{Ar}}\right)$, 155.6 (C_{Ar}), 155.8 (C_{Ar}).

General procedure for the synthesis of 1,2-amino alcohol-based phosphites-phosphoramidites 22a-e

2.1 Eq of enantiopure BINOL are suspended in phosphorus trichloride ($1.5 \mathrm{~mL} / 1.0 \mathrm{mmol}$ BINOL $), 2-3$ drops of N-methyl-2-pyrrolidone are added and the solution is heated to $75^{\circ} \mathrm{C}$ for 5 min . The resulting HCl gas is derived from the reaction vessel by using a bubble counter (slight argon stream!). The now clear solution is cooled to room temperature, concentrated and dried azeotropically with toluene (three times). Thus, the in situ prepared chlorophosphite is dissolved in toluene ($10 \mathrm{~mL} / 2.1 \mathrm{mmol}$ BINOL $)$. 1.0 Eq of azeotropically dried amino alcohol is dissolved in toluene ($10 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) and triethylamine (5.0 eq) is added. This solution is added slowly to the chlorophosphite solution at $0{ }^{\circ} \mathrm{C}$ over 5 min and the mixture is kept at this temperature for 5 min . The reaction solution is then stirred at room temperature for 16 h . After this time, it is concentrated in vacuo and the residue is purified by column chromatography (alumina, toluene) to give 22a-e as a white solid.
(11bS)- $N-\{(1 R, 2 S)-1-[(11 \mathrm{~b} S)$-Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yloxy]-1-phenylpropan-2-yl $\}$ - N-methyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine (22a)

Starting from (S)-BINOL $(601 \mathrm{mg}, 2.1 \mathrm{mmol}),(1 R, 2 S)-$ (-)-ephedrine ($165 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ (506 mg , 5.0 mmol) in toluene (20 mL), the product 22a was isolated as a white solid ($412 \mathrm{mg}, 52 \%, \mathrm{R}_{\mathrm{f}} 0.90$).
$[\alpha]_{D}^{23}=+292.6\left(c 0.70, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{50} \mathrm{H}_{3} \mathrm{NO}_{5} \mathrm{P}_{2}$: C, $75.66 ; \mathrm{H}, 4.70 ; \mathrm{N}, 1.76$.
Found: C, 75.64; H, 5.08; N, 1.96 \%.
HRMS (EI) calculated for $\mathrm{C}_{50} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{P}_{2} 793.21415$, found 793.21325 .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=142.7(\mathrm{~s}), 148.5(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.50\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 2.14\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 3.77-3.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 5.18\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CHPh},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=8.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=8.3 \mathrm{~Hz}\right)$, 6.97-7.95 (m, 29H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=16.1\left(\mathrm{~d}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=6.3 \mathrm{~Hz}\right), 27.6\left(\mathrm{~d}, \mathrm{NCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right.$), $58.4\left(\mathrm{dd}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=41.7 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=4.6 \mathrm{~Hz}\right), 79.1\left(\mathrm{dd}, \mathrm{CHPh}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 121.8$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 121.9\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 122.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}\right), 123.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.7 \mathrm{~Hz}\right), 124.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 124.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 124.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.0\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.1\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.9$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 130.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right)$, $132.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 132.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 132.8\left(\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 139.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 147.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 148.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.4 \mathrm{~Hz}\right), 149.3\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 150.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right)$.
$(11 \mathrm{~b} R)-N-\{(1 R, 2 S)-1-[(11 \mathrm{~b} R)$-Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yloxy]-1-phenylpropan-2-yl $\}$ - N-methyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine (22b)

1.76. Found: C, $75.56 ;$ H, $4.96 ; \mathrm{N}, 1.78 \%$.

Starting from (R)-BINOL $(601 \mathrm{mg}, 2.1 \mathrm{mmol}),(1 R, 2 S)$ -(-)-ephedrine $(165 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(506 \mathrm{mg}$, $5.0 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$, the product 22 b was isolated as a white solid ($518 \mathrm{mg}, 65 \%, \mathrm{R}_{\mathrm{f}} 0.89$).
$[\alpha]_{D}^{23}=-290.0\left(c 0.70, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{50} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{P}_{2}$: C, 75.66; H, 4.70; N ,

HRMS (EI) calculated for $\mathrm{C}_{50} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{P}_{2} 793.21415$, found 793.21271.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=141.5(\mathrm{~s}), 143.9(\mathrm{~s})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=1.22\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 2.21\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 3.86-4.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 5.48\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CHPh},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=9.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.6 \mathrm{~Hz}\right)$, 6.85-7.66 (m, 29H, CH-Ar).
${ }^{13} \mathrm{C} \mathrm{NMR}\left(63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=14.8\left(\mathrm{~d}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 28.5\left(\mathrm{~d}, \mathrm{NCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.9 \mathrm{~Hz}\right)$, $58.3\left(\mathrm{dd}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=35.3 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 81.7\left(\mathrm{dd}, \mathrm{CHPh}, J_{\mathrm{C}-\mathrm{P}}=17.5 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right), 122.2$ $\left(\mathrm{d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 122.4\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 122.7\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 122.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right)$, $123.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 124.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 124.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(3 \mathrm{CH}_{\mathrm{Ar}}\right)$, $127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(4 \mathrm{CH}_{\mathrm{Ar}}\right), 129.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right)$, $133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 140.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 148.1(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}\right), 148.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right), 150.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=0.8 \mathrm{~Hz}\right), 150.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=6.4 \mathrm{~Hz}\right)$.
$(11 \mathrm{~b} R)-N-\{(2 R)-1-[(11 \mathrm{~b} R)$-Dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yloxy]butan-2-
$\mathrm{yl}\}$ dinaphtho [2,1- $\left.d: 1^{\prime}, 2^{\prime}-f\right][1,3,2]$ dioxaphosphepin-4-amine (22c)

Starting from (R)-BINOL (601 mg, 2.1 mmol$)$, $(R)-(-)$-2-amino-1-butanol ($89 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ $(506 \mathrm{mg}, 5.0 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$, the product 22 c was isolated as a white solid ($200 \mathrm{mg}, 28 \%, \mathrm{R}_{\mathrm{f}} 0.92$).
$[\alpha]_{\mathrm{D}}^{24}=-492.5\left(c \quad 0.45, \mathrm{CHCl}_{3}\right)$.
HRMS (EI) calculated for $\mathrm{C}_{44} \mathrm{H}_{33} \mathrm{NO}_{5} \mathrm{P}_{2}$ 717.18285,
found 717.18320 .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=138.8(\mathrm{~s}), 151.4(\mathrm{~s})$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.70\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.4 \mathrm{~Hz}\right), 1.06-1.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.92-3.04 (m, $\left.1 \mathrm{H}, \mathrm{CHCH}_{2}\right), 3.40\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=10.0 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, J=4.3 \mathrm{~Hz}\right), 3.79$ (ddd, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=10.1 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=4.3 \mathrm{~Hz}$), 6.89-7.65 (m, 24H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=10.4\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{~d}, \mathrm{CHCH}_{2}, J_{\mathrm{C}-\mathrm{P}}=3.8 \mathrm{~Hz}\right), 53.1\left(\mathrm{dd}, \mathrm{CHCH}_{2}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=19.7 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=4.7 \mathrm{~Hz}\right), 68.8\left(\mathrm{dd}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=3.7 \mathrm{~Hz}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 122.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.2(\mathrm{~d}$, $\left.\mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 122.3\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 122.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 124.2$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0$
$\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4$ $\left(4 \mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\text {Ar }}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.8\left(\mathrm{CH}_{\text {Ar }}\right), 130.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.8 \mathrm{~Hz}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, 3 \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 148.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}\right), 148.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right), 149.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 150.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right)$.
(11b $R)-N-\{2-[(11 \mathrm{~b} R)$-Dinaphtho[2,1-d:1',2'f][1,3,2]dioxaphosphepin-4-yloxy]ethyl $\}-N-$ methyldinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-amine (22d)

Starting from (R)-BINOL ($601 \mathrm{mg}, 2.1 \mathrm{mmol}$), 2-(methylamino)ethanol ($75 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($506 \mathrm{mg}, 5.0 \mathrm{mmol}$) in toluene (20 mL), the product 22d was isolated as a white solid ($250 \mathrm{mg}, 36 \%, \mathrm{R}_{\mathrm{f}} 0.84$).
$[\alpha]_{\mathrm{D}}^{24}=-506.7\left(c 0.72, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{43} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{P}_{2}$: C, 73.40; H, 4.44; N, 1.99. Found: C, 73.35; H, 3.51; N, 2.21%.
HRMS (EI) calculated for $\mathrm{C}_{43} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{P}_{2} 703.16720$, found 703.16781.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=138.5(\mathrm{~s}), 149.4(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=2.16\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{P}}=5.4 \mathrm{~Hz}\right), 2.60-2.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.06-3.18 (m, 1H, CH ${ }_{2}$), 3.44-3.53 (m, 1H, CH2 $), 3.71-3.81\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), ~ 6.90-7.69(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$.
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=32.6\left(\mathrm{~d}, \mathrm{CH}_{3}, J_{\mathrm{C}-\mathrm{P}}=4.6 \mathrm{~Hz}\right), 50.2\left(\mathrm{dd}, \mathrm{NCH}_{2}\right), 62.8\left(\mathrm{brs}, \mathrm{OCH}_{2}\right)$, $122.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.2\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 122.4\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 122.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.3(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 123.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 124.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0$ $\left(\mathrm{CH}_{\text {Ar }}\right), 125.3\left(\mathrm{CH}_{\text {Ar }}\right), 125.3\left(\mathrm{CH}_{\text {Ar }}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\text {Ar }}\right), 126.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(4 \mathrm{CH}_{\text {Ar }}\right), 128.6$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.0$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 133.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.5\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $133.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 148.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 149.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 150.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=0.8 \mathrm{~Hz}\right), 150.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.7 \mathrm{~Hz}\right)$.
$(11 \mathrm{~b} R)-N-\left\{(1 R, 2 R)-1-\left[(11 \mathrm{~b} R)\right.\right.$-Dinaphtho $\left[2,1-d: 1^{\prime}, 2^{\prime}-f\right][1,3,2]$ dioxaphosphepin-4-yloxy $]-1-$
phenylpropan-2-yl $\}$ - N-methyldinaphtho $\left[2,1-d: 1^{\prime}, 2^{\prime}-f\right][1,3,2]$ dioxaphosphepin-4-amine (22e)

Starting from (R)-BINOL ($601 \mathrm{mg}, 2.1 \mathrm{mmol}),(1 R, 2 R)$ -$(-)$-pseudoephedrine ($165 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($506 \mathrm{mg}, 5.0 \mathrm{mmol}$) in toluene (20 mL), the product 22e was isolated as a white solid ($640 \mathrm{mg}, 81 \%, \mathrm{R}_{\mathrm{f}} 0.90$).
$[\alpha]_{D}^{25}=-89.7\left(c \quad 0.63, \mathrm{CHCl}_{3}\right)$.
HRMS (EI) calculated for $\mathrm{C}_{50} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{P}_{2} 793.21415$,
found 793.21475 .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=138.4(\mathrm{~s}), 145.0(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.52\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.1 \mathrm{~Hz}\right), 1.50\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{P}}=14.4 \mathrm{~Hz}\right), 2.75-2.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 4.50\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{CHPh},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=9.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=3.1 \mathrm{~Hz}\right)$, 6.71-7.95 (m, 29H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=14.4\left(\mathrm{~d}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=7.0 \mathrm{~Hz}\right), 27.9\left(\mathrm{~d}, \mathrm{NCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=12.9 \mathrm{~Hz}\right)$, $61.5\left(\mathrm{~d}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 92.6\left(\mathrm{~d}, \mathrm{CHPh}, J_{\mathrm{C}-\mathrm{P}}=10.1 \mathrm{~Hz}\right), 121.0\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=14.1 \mathrm{~Hz}\right), 121.9$ $\left(\mathrm{d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=6.7 \mathrm{~Hz}\right), 122.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.8 \mathrm{~Hz}\right), 122.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 124.8$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right), 125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.1$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.3\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(4 \mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $129.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 134.8\left(\mathrm{C}_{\mathrm{Ar}}\right) 135.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 139.6\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $147.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 148.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right), 148.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=7.2 \mathrm{~Hz}\right), 151.4$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.7 \mathrm{~Hz}\right)$.

Procedure for the synthesis of (-)-1,2:3,5-di- O-isopropylidene- α-D-xylofuranose (23a) ${ }^{[149]}$

$\mathrm{D}-(+)$-Xylose $(1.5 \mathrm{~g}, 10.0 \mathrm{mmol})$ is dissolved in acetone $(90 \mathrm{~mL})$ and iodine is added $(450 \mathrm{mg}$, 1.8 mmol). The reaction mixture is stirred at room temperature for 16 h . After this time, saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$-solution is added until the mixture becomes colorless to yellowish. The organic solvent is removed in vacuo and the residue is extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo yields 2.21 g of $\mathbf{2 3 a}(96 \%)$ as a yellowish solid.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.37(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.00-4.11(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4$ and $2 \mathrm{H}-5), 4.31(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3, J=2.5 \mathrm{~Hz}), 4.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 6.02$ (d, $1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.8 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=18.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 28.7}\right.$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 60.0(\mathrm{C}-5), 71.6(\mathrm{C}-3), 73.2(\mathrm{C}-4), 84.4(\mathrm{C}-2), 97.5\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 105.1(\mathrm{C}-1), 111.6}\right.$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right)$.

Procedure for the synthesis of 1,2-O-(methylethylidene)- α-D-xylofuranose (23b) ${ }^{[149]}$

Protected α-D-xylose $23 \mathrm{a}(2.0 \mathrm{~g}, 8.7 \mathrm{mmol})$ is dissolved in methanol (12 mL) and aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$-solution is added $(0.8 \%, 12 \mathrm{~mL})$. The reaction mixture is stirred at room temperature for 16 h . After this time, solid BaCO_{3} is added to neutralize the mixture. The solution is filtrated over Celite and then washed with methanol and ethyl acetate. Concentration in vacuo yields 1.52 g of $\mathbf{2 3 b}$ (92%) as a yellowish, viscous oil.

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.49(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 3.97-4.11 (m, 2H, 2H-5), 4.17-4.21 (m, 1H, H-4), $4.31(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-3)$, $4.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 6.00\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=26.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 60.6$ (C-5), $76.7(\mathrm{C}-3), 79.0(\mathrm{C}-4), 85.4(\mathrm{C}-2), 104.9(\mathrm{C}-1), 111.6\left(C\left(\mathrm{CH}_{3}\right)_{2}\right)$.

Procedure for the synthesis of 1,2-di- O-isopropylidene-5- O-tosyl- α-D-xylofuranose (23c) ${ }^{[149]}$

Diprotected α-D-xylose 23b $(1.50 \mathrm{~g}, 7.9 \mathrm{mmol})$ is dissolved in pyridine $(3.73 \mathrm{~g}, 47.2 \mathrm{mmol})$ and cooled to $0^{\circ} \mathrm{C}$. To this solution is added dropwise tosyl chloride ($1.53 \mathrm{~g}, 8.0 \mathrm{mmol}$) in dichloromethane (6 mL) via dropping funnel. After complete addition, the reaction mixture is warmed to room temperature and stirred for further 16 h . After this time, water is added and the layer is
extracted with dichloromethane ($3 \times 3 \mathrm{~mL}$). The combined organic phases are washed with aqueous $\mathrm{HCl}(0.1 \mathrm{M}, 3 \mathrm{~mL})$ and dried with over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation under reduced pressure yields a residue, which consists of mono- and ditosylated product. The crude is dissolved in a small amount of dichloromethane, petroleum ether is added and the solution is kept at $-20^{\circ} \mathrm{C}$ for 2 h . The precipitated product 23 c could be separated by filtration to yield a white solid ($1.63 \mathrm{~g}, 60 \%$).

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=1.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.46(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.10-4.19(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.27-4.35(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4$ and $2 \mathrm{H}-5), 4.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.5 \mathrm{~Hz}\right), 5.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.5 \mathrm{~Hz}\right)$, 7.33-7.82 (m, 4H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=21.5\left(\mathrm{CH}_{3}\right), 26.2\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 26.7}\right.$
$\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 66.6(\mathrm{C}-5), 74.4(\mathrm{C}-3), 77.5(\mathrm{C}-4), 84.9(\mathrm{C}-2), 104.9(\mathrm{C}-1), 111.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 128.0}\right.$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.0\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 145.2\left(\mathrm{C}_{\mathrm{Ar}}\right)$.

Procedure for the synthesis of 5 -deoxy-5- N-isopropylamino-1,2-O-isopropylidene- α-Dxylofuranose (24b) ${ }^{[150]}$

1,2-Di-O-isopropylidene-5-O-tosyl- α-D-xylofuranose $23 \mathrm{c}(3.45 \mathrm{~g}, 10.0 \mathrm{mmol}$) and isopropylamine $(20 \mathrm{~mL})$ are stirred in a pressure tube at $60^{\circ} \mathrm{C}$ for 24 h . The reaction mixture is cooled to room temperature and concentrated in vacuo. The residue is taken up in dichloromethane (50 mL), washed with saturated NaHCO_{3}-solution, water and finally with brine (each 20 mL). The organic phase is dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo to give 24b as a yellowish solid ($1,42 \mathrm{~g}, 61 \%$) after column chromatography ($\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=97: 3$).

${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.07\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.3 \mathrm{~Hz}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.77(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right), 2.97\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=12.8 \mathrm{~Hz},{ }^{3} J_{4-5 \mathrm{~A}}=1.2 \mathrm{~Hz}\right), 3.38(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=12.8 \mathrm{~Hz},{ }^{3} J_{4-5 \mathrm{~B}}=3.5 \mathrm{~Hz}\right), 4.20-4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.28(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}-3, J=2.9 \mathrm{~Hz}$), 4.48 (d, $1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}$), $5.95(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1$, $\left.{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=22.3\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 22.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.8$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 46.8(\mathrm{C}-5), 48.6\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 76.9(\mathrm{C}-3), 78.2(\mathrm{C}-4), 86.1(\mathrm{C}-2), 105.1(\mathrm{C}-1), 111.3$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right)$.

General procedure for the synthesis of 5- N -alkylamino-5-deoxy-1,2- O -isopropylidene- α-Dxylofuranose $\mathbf{2 4 c - g}$
1.0 Eq of 1,2-di- O-isopropylidene-5-O-tosyl- α-D-xylofuranose 23c and the corresponding amine (4.0 eq) are dissolved in isopropanol ($2 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate). The mixture is heated to reflux and stirred for 24 h . After cooling to room temperature, it is concentratetd in vacuo. The residue is treated with saturated NaHCO_{3}-solution and extracted with diethyl ether (three times). The combined organic phases are dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give $\mathbf{2 4 c} \mathrm{c}$ after column chromatography ($\mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=9: 1$).

5-N-tert-Butylamino-5-deoxy-1,2-O-isopropylidene- α-D-xylofuranose (24c) ${ }^{[150]}$

Starting from tert-butylamine $(4.39 \mathrm{~g}, 60.0 \mathrm{mmol})$ and $1,2-\mathrm{di}-O$ -isopropylidene-5-O-tosyl- α-D-xylofuranose $\mathbf{2 3 c}(5.17 \mathrm{~g}, 15.0 \mathrm{mmol}$) in isopropanol (30 mL), the product $\mathbf{2 4 c}$ was isolated as an off-white solid ($1.52 \mathrm{~g}, 41$ \%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.31(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.95\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=12.7 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{4-5 \mathrm{~A}}=1.2 \mathrm{~Hz}\right), 3.35\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=12.7 \mathrm{~Hz},{ }^{3} J_{4-5 \mathrm{~B}}=3.5 \mathrm{~Hz}\right), 4.21-4.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.27$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-3, J=2.9 \mathrm{~Hz}), 4.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 5.94\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=26.2\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 26.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 41.4(\mathrm{C}-5), ~}^{\text {, }}\right.$

5-Deoxy-5- N -cyclohexylamino-1,2- O-isopropylidene- α-D-xylofuranose ($\mathbf{2 4 d}$) ${ }^{[150]}$

Starting from cyclohexylamine $(4.00 \mathrm{~g}, 40.0 \mathrm{mmol})$ and 1,2-di- $O-$ isopropylidene-5-O-tosyl- α-D-xylofuranose 23 c ($3.45 \mathrm{~g}, 10.0 \mathrm{mmol}$) in isopropanol $(20 \mathrm{~mL})$, the product $\mathbf{2 4 d}$ was isolated as an off-white solid ($1.70 \mathrm{~g}, 63 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=0.98-1.29\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right), 1.31(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.47\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.55-1.61\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 1.68-1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.82-1.92(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.35-2.46\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}, 3.00\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=12.9 \mathrm{~Hz},{ }^{3} J_{4-5 \mathrm{~A}}=1.3 \mathrm{~Hz}\right), 3.46\right.$ $\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=12.9 \mathrm{~Hz},{ }^{3} J_{4-5 \mathrm{~B}}=3.5 \mathrm{~Hz}\right), 4.19-4.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-3$, $J=2.9 \mathrm{~Hz}), 4.48\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 5.95\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C} \operatorname{NMR}\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=24.7,24.7,25.9\left(\mathrm{CH}_{2}\right), 26.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 32.8 \text {, }}\right.$ $33.1\left(\mathrm{CH}_{2}\right), 45.5(\mathrm{C}-5), 56.3\left(\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 77.0(\mathrm{C}-3), 78.3(\mathrm{C}-4), 86.1(\mathrm{C}-2), 105.1(\mathrm{C}-1), 111.4$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right)$.

5-Deoxy-5- N -phenylamino-1,2- O-isopropylidene- α-D-xylofuranose (24e) ${ }^{[112 \mathrm{c}]}$

Starting from aniline ($3.73 \mathrm{~g}, 40.0 \mathrm{mmol}$) and 1,2-di- O-isopropylidene-5-O-tosyl- α-D-xylofuranose 23c (3.45 g, 10.0 mmol) in isopropanol $(20 \mathrm{~mL})$, the product $\mathbf{2 4 e}$ was isolated as an off-white solid ($2.27 \mathrm{~g}, 86 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.50(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.61\left(\mathrm{~d}, 2 \mathrm{H}, 2 \mathrm{H}-5,{ }^{3} J_{4-5}=4.0 \mathrm{~Hz}\right), 3.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.32$ (d, 1H, H-3, $J=2.8 \mathrm{~Hz}$), 4.38-4.43 (m, 1H, H-4), 4.55 (d, 1H, H-2, $\left.{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 6.02\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 6.79-6.90(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.20-7.26(\mathrm{~m}, 2 \mathrm{H}$, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=26.1\left(\mathrm{C}_{\left(\mathrm{CH}_{3}\right)}\right)$, $26.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 44.0(\mathrm{C}-5), 77.1(\mathrm{C}-3), 77.3$ $(\mathrm{C}-4), 85.6(\mathrm{C}-2), 104.9(\mathrm{C}-1), 111.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 115.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 120.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 146.71020}\right.$ $\left(\mathrm{C}_{\mathrm{Ar}}\right)$.

5-Deoxy-5- N -benzylamino-1,2-O-isopropylidene- α-D-xylofuranose 24f ${ }^{[150]}$

Starting from benzylamine ($4.29 \mathrm{~g}, 40.0 \mathrm{mmol}$) and 1,2 -di- $O-$ isopropylidene-5-O-tosyl- α-D-xylofuranose $\mathbf{2 3 c}(3.45 \mathrm{~g}, 10.0 \mathrm{mmol})$ in isopropanol (20 mL), the product $\mathbf{2 4 f}$ was isolated as an off-white solid ($1.70 \mathrm{~g}, 61 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.47(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.00\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=13.0 \mathrm{~Hz},{ }^{3} J_{4-5 \mathrm{~A}}=1.4 \mathrm{~Hz}\right), 3.40\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5\right.$, $\left.{ }^{2} J_{5 A-5 \mathrm{~B}}=12.9 \mathrm{~Hz},{ }^{3} J_{4-5 \mathrm{~B}}=3.6 \mathrm{~Hz}\right), 3.78\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=3.2 \mathrm{~Hz}\right), 4.21-4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.29(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}-3, J=2.2 \mathrm{~Hz}), 4.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.6 \mathrm{~Hz}\right), 5.95\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.6 \mathrm{~Hz}\right) 7.26-7.37(\mathrm{~m}, 5 \mathrm{H}$, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=26.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)\right)$, $27.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right) 2\right), 48.1(\mathrm{C}-5), 54.0\left(\mathrm{CH}_{2}\right)$, 77.3 $(\mathrm{C}-3), 78.5(\mathrm{C}-4), 86.3(\mathrm{C}-2), 105.5(\mathrm{C}-1), 111.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.1\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, 139.0 (C_{Ar}).

5-Deoxy-5-N-(S)- α-methybenzylamino-1,2-O-isopropylidene- α-D-xylofuranose (24g)

Starting from $(S)-(-)$ - α-methylbenzylamine $(4.85 \mathrm{~g}, 40.0 \mathrm{mmol})$ and $1,2-$ di- O-isopropylidene-5-O-tosyl- α-D-xylofuranose 23c ($3.45 \mathrm{~g}, 10.0 \mathrm{mmol}$) in isopropanol $(20 \mathrm{~mL})$, the product $\mathbf{2 4 g}$ was isolated as a yellowish, viscous oil ($2.90 \mathrm{~g}, 99 \%$).

$$
[\alpha]_{\mathrm{D}}^{26}=+5.0\left(c 1.26, \mathrm{CHCl}_{3}\right) .
$$

Anal. calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4}$: C, 65.51; H, 7.90; N, 4.77. Found: C, $65.20 ; \mathrm{H}, 8.01 ; \mathrm{N}, 4.95 \%$.
HRMS (ESI) calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4} 294.16998$, found 294.16984.
HRMS (ESI) calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na} 316.15193$, found 316.15178.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.39\left(\mathrm{dd}, 3 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right)$, $1.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.90\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=12.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{A}-5 \mathrm{~A}}=1.4 \mathrm{~Hz}\right), 3.18\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5\right.$, $\left.{ }^{2} J_{5 A-5 \mathrm{~B}}=12.9 \mathrm{~Hz},{ }^{3} J_{4-5 B}=3.8 \mathrm{~Hz}\right), 3.72\left(\mathrm{q}, 1 \mathrm{H}, \mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 4.17-4.20(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.30$ $(\mathrm{d}, 1 \mathrm{H}, \mathrm{H}-3, J=2.9 \mathrm{~Hz}), 4.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 5.95\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 7.20-7.38$ (m, 29H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=23.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)\right)$, $26.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $26.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 46.3(\mathrm{C}-5)$, $58.1\left(\mathrm{CHCH}_{3}\right), 76.9(\mathrm{C}-3), 77.2(\mathrm{C}-4), 85.9(\mathrm{C}-2), 105.0(\mathrm{C}-1), 111.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 126.1\left(\mathrm{CH}_{\text {Ar }}\right), 127.4}\right.$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 143.7\left(\mathrm{C}_{\mathrm{Ar}}\right)$.

General procedure for the synthesis of amino xylose-based diphosphites $\mathbf{2 5 a} \mathbf{- g}$ and $\mathbf{2 6 b}, \mathbf{d}-\mathbf{g}$

2.2 Eq of enantiopure BINOL are suspended in phosphorus trichloride ($1.5 \mathrm{~mL} / 1.0 \mathrm{mmol}$ BINOL), 2-3 drops of N-methyl-2-pyrrolidone are added and the solution is heated to $75^{\circ} \mathrm{C}$ for 5 min . The resulting HCl gas is derived from the reaction vessel by using a bubble counter (slight argon stream!). The now clear solution is cooled to room temperature, concentrated and dried azeotropically with toluene (three times). Thus, the in situ prepared chlorophosphite is dissolved in toluene ($8 \mathrm{~mL} / 2.2 \mathrm{mmol}$ BINOL) and triethylamine is added ($5 \mathrm{mmol} / 2.2 \mathrm{mmol}$ BINOL). 1.0 Eq of azeotropically dried amino sugar 24b-g is dissolved in toluene ($8 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) and triethylamine (5.0 eq) is added. This solution is added slowly to the chlorophosphite solution at $0^{\circ} \mathrm{C}$ over 5 min and the mixture is kept at this temperature for 5 min . The reaction solution is then stirred at $50^{\circ} \mathrm{C}$ for 16 h . After this time, the
mixture is cooled to room temperature and concentrated in vacuo. The residue is purified by column chromatography (basic silica, toluene) to give 25a-g and 26b,d-g, respectively.

3,5-Bis-(S)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N-methylamino-1,2- O-isopropylidene- α -D-xylofuranose (25a)

Starting from (S)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), 5-Deoxy-5-N-methylamino-1,2-O-isopropylidene- α-D-xylofuranose $\quad(203 \mathrm{mg}$, $1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene (16 mL), the product 25 a was isolated as a white solid ($703 \mathrm{mg}, 85 \%, \mathrm{R}_{\mathrm{f}} 0.23$).
$[\alpha]_{\mathrm{D}}^{26}=+335.0\left(c 0.53, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{49} \mathrm{H}_{39} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 70.75; H, 4.73; N, 1.68. Found: C, 69.89; H, $5.00 ;$ N, 1.55%.

HRMS (ESI) calculated for $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{NO}_{8} \mathrm{P}_{2}$ 832.22237, found 832.22174.

HRMS (ESI) calculated for $\mathrm{C}_{49} \mathrm{H}_{39} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 854.20431, found 854.20402.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=146.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 154.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=4.0 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.48\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{P}}=5.5 \mathrm{~Hz}\right), 3.41\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=19.2 \mathrm{~Hz}, J=14.7 \mathrm{~Hz}, J=8.1 \mathrm{~Hz}\right), 3.82\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5\right.$, $J=9.9 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}), 4.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 4.43-4.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.64(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3$, ${ }^{3} J_{3-\mathrm{P}}=9.3 \mathrm{~Hz}, J=2.6 \mathrm{~Hz}$), $5.76\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right.$), 6.83-7.74 (m, 24H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=26.2\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 33.9\left(\mathrm{~d}, \mathrm{CH}_{3}, J_{\mathrm{C}-\mathrm{P}}=3.9 \mathrm{~Hz}\right), ~}^{\text {, }}\right.$ $49.5\left(\mathrm{~d}, \mathrm{C}-5, J_{5-\mathrm{P}}=36.2 \mathrm{~Hz}\right), 78.4\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=5.9 \mathrm{~Hz}\right), 80.8(\mathrm{~m}, \mathrm{C}-4), 84.7(\mathrm{C}-2), 105.5(\mathrm{C}-1), 111.8$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 121.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.1\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 122.5\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 122.7\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $123.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 123.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.8 \mathrm{~Hz}\right), 124.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 124.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(3 \mathrm{CH}_{\mathrm{Ar}}\right)$, $130.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.1$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 133.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 147.7(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 148.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 150.2\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right) 150.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=4.5 \mathrm{~Hz}\right)$.

3,5-Bis-(S)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N-isopropylamino-1,2- O-isopropylidene-α-D-xylofuranose (25b)

Starting from (S)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), 5-Deoxy-5-N-isopropylamino-1,2-O-isopropylidene- α-D-xylofuranose 24b
$(231 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $(16 \mathrm{~mL})$, the product $\mathbf{2 5 b}$ was isolated as a white solid (653 mg , $76 \%, \mathrm{R}_{\mathrm{f}} 0.45$).
$[\alpha]_{D}^{25}=+427.9\left(c 0.58, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{51} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 71.24; H, 5.04; N, 1.63. Found: C, 71.17; H, 5.36; N, 1.14 \%.

HRMS (ESI) calculated for $\mathrm{C}_{51} \mathrm{H}_{44} \mathrm{NO}_{8} \mathrm{P}_{2}$ 860.25367, found 860.25257.

HRMS (ESI) calculated for $\mathrm{C}_{51} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 882.23561, found 882.23446.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=153.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 154.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=5.0 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.32\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 1.33\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 3.27\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.5 \mathrm{~Hz}\right.$, $J=9.4 \mathrm{~Hz}, J=6.3 \mathrm{~Hz}), 3.70\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.5 \mathrm{~Hz}, J=6.1 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}\right), 3.85(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.08\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 4.49-4.57(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-4), 5.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1$, ${ }^{3} J_{1-2}=3.7 \mathrm{~Hz}$), 6.80-7.76 (m, 24H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=23.0\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=9.6 \mathrm{~Hz}\right), 23.6\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=7.0 \mathrm{~Hz}\right)$,
 (d, C-3, $\left.J_{3-\mathrm{P}}=10.8 \mathrm{~Hz}\right), 82.4(\mathrm{~m}, \mathrm{C}-4), 84.5\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 105.2(\mathrm{C}-1), 111.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right)}\right)$, $122.2\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 122.3\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 122.5\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 123.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 123.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right), 124.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, $128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $130.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.1$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 133.4\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 147.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right)$, $148.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 150.3\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 150.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=4.8 \mathrm{~Hz}\right)$.

3,5-Bis-(S)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5-N-tert-butylamino-1,2-O-isopropylidene-α-D-xylofuranose ($\mathbf{2 5 c}$)

Starting from (S)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), $5-\mathrm{N}$-tert-butylamino-
5-Deoxy-1,2-O-isopropylidene- α-D-xylofuranose $\quad \mathbf{2 4 c} \quad(245 \mathrm{mg}$, $1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $(16 \mathrm{~mL})$, the product $\mathbf{2 5 c}$ was isolated as a white solid ($250 \mathrm{mg}, 29 \%, \mathrm{R}_{\mathrm{f}} 0.41$).

HRMS (ESI) calculated for $\mathrm{C}_{52} \mathrm{H}_{46} \mathrm{NO}_{8} \mathrm{P}_{2}$ 874.26932, found 874.26741.

HRMS (ESI) calculated for $\mathrm{C}_{52} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 896.25126, found 896.24942.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=140.8(\mathrm{~s}), 143.6(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR ($\left.250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.31(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.62\left(\mathrm{~d}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 3.26(\mathrm{ddd}, 1 \mathrm{H}$, $\mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=16.1 \mathrm{~Hz}$), 3.78 (ddd, $1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=16.0 \mathrm{~Hz}$), 3.88 (d, $\left.1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 4.54-4.57\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3\right.$ and H-4), $5.43\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right)$, 6.69-7.75 (m, 24H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR (63 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 31.6\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \text {, }\right.}\right.$ $\left.J_{\mathrm{C}-\mathrm{P}}=15.8 \mathrm{~Hz}\right), 42.7\left(\mathrm{~d}, \mathrm{C}-5, J_{5-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 56.2\left(\mathrm{~d}, C\left(\mathrm{CH}_{3}\right)_{3}, J_{\mathrm{C}-\mathrm{P}}=22.0 \mathrm{~Hz}\right), 78.6(\mathrm{~d}, \mathrm{C}-3$, $\left.J_{3-\mathrm{P}}=12.5 \mathrm{~Hz}\right), 84.2(\mathrm{C}-4), 84.3(\mathrm{C}-2), 104.9(\mathrm{C}-1), 111.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 122.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.2\left(\mathrm{CH}_{\mathrm{Ar}}\right) \text {, }}\right.$ $122.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.5\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 122.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.9 \mathrm{~Hz}\right), 123.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right)$, $124.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.4 \mathrm{~Hz}\right), 124.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.1\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right)$, $127.8\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.6\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}_{\mathrm{Ar}}\right) 130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $131.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.8 \mathrm{~Hz}\right), 133.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 133.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 147.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right), 148.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right), 150.5\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 151.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right)$.

3,5-Bis-(S)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N -cyclohexylamino-1,2-O-isopropylidene- $\alpha-\mathrm{D}-\mathrm{xylofuranose}$ (25d)

Starting from (S)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), 5-Deoxy-5-N-cyclohexylamino-1,2-O-isopropylidene- α-D-xylofuranose $\quad \mathbf{2 4 d}$ $(272 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $(16 \mathrm{~mL})$, the product $\mathbf{2 5 d}$ was isolated as a white solid (875 mg , $97 \%, \mathrm{R}_{\mathrm{f}} 0.50$).
$[\alpha]_{D}^{26}=+402.0\left(c \quad 0.75, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{54} \mathrm{H}_{47} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.07; H, 5.26; $\mathrm{N}, 1.56$. Found: C, 72.10; H, 5.27; N, 1.39 \%.

HRMS (ESI) calculated for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{NO}_{8} \mathrm{P}_{2}$ 900.28497, found 900.28466.

HRMS (ESI) calculated for $\mathrm{C}_{54} \mathrm{H}_{4} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 922.26691, found 922.2662.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=153.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=3.9 \mathrm{~Hz}\right), 155.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=3.9 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=0.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.88-1.14\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 1.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 1.55-1.72 (m, 2H, CH2), 1.77-1.93 (m, 2H, CH $)_{2}$, 2.11-2.24 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.24-3.47 (m, $2 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5$ and $\left.\mathrm{C} H\left(\mathrm{CH}_{2}\right)_{2}\right), 3.73\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.4 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}\right), 4.07(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2$, $\left.{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 4.52-4.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3\right.$ and H-4), $5.58\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 6.82-7.79(\mathrm{~m}, 24 \mathrm{H}$, CH-Ar).
${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=25.8\left(\mathrm{CH}_{2}\right), 26.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.7\left(2 \mathrm{CH}_{2}\right), 26.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 34.2$ $\left(\mathrm{d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=9.9 \mathrm{~Hz}\right), 35.2\left(\mathrm{~d}, \mathrm{CH}_{2}, J_{\mathrm{C}-\mathrm{P}}=7.8 \mathrm{~Hz}\right), 44.1\left(\mathrm{~d}, \mathrm{C}-5, J_{5-\mathrm{P}}=6.1 \mathrm{~Hz}\right), 58.6\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=23.0 \mathrm{~Hz}\right), 78.3\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=10.9 \mathrm{~Hz}\right), 82.6(\mathrm{~m}, \mathrm{C}-4), 84.5\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=1.0 \mathrm{~Hz}\right), 105.2(\mathrm{C}-1)$, $111.6\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 122.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 123.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 124.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.0\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 133.4\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 147.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}} \mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.9 \mathrm{~Hz}\right), 148.6(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.6 \mathrm{~Hz}\right), 150.5\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 150.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right)$.

3,5-Bis-(S)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5-N-phenylamino-1,2-O-isopropylidene- α -D-xylofuranose (25e)

Starting from (S)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), 5-Deoxy-5-N-phenylamino-1,2-O-isopropylidene- α-D-xylofuranose 24 e (265 mg , $1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $(16 \mathrm{~mL})$, the product 25e was isolated as a white solid ($291 \mathrm{mg}, 33 \%, \mathrm{R}_{\mathrm{f}} 0.27$).
$[\alpha]_{\mathrm{D}}^{25}=+150.9\left(c 0.53, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{54} \mathrm{H}_{41} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.56; H, 4.62; $\mathrm{N}, 1.57$. Found: C, 72.23; H, 4.44; N, 1.47 \%.

HRMS (EI) calculated for $\mathrm{C}_{54} \mathrm{H}_{41} \mathrm{NO}_{8} \mathrm{P}_{2} 893.23019$, found 893.22940.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=146.3(\mathrm{~s}), 150.8(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.13(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.80\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=14.6 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}\right.$, $J=3.2 \mathrm{~Hz}), 4.06-4.15\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5\right), 4.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.6 \mathrm{~Hz}\right), 4.43-4.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.58$ (dd, $1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3-\mathrm{P}}=8.5 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}$), $5.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 6.82-7.73$ (m, 29H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR ($\left.63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=26.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 46.7(\mathrm{C}-5), 77.6(\mathrm{~m}, \mathrm{C}-4), 79.2$ $\left(\mathrm{d}, \mathrm{C}-3, J_{3-\mathrm{P}}=6.5 \mathrm{~Hz}\right), 84.5(\mathrm{C}-2), 104.8(\mathrm{C}-1), 111.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 122.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.3}\right.$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 123.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 124.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.4 \mathrm{~Hz}\right), 124.9$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}\right) 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 126.7$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right) 128.7\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 129.6$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.5\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 133.5(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 144.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=20.0 \mathrm{~Hz}\right), 147.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 148.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.9 \mathrm{~Hz}\right), 149.7\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 150.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.5 \mathrm{~Hz}\right)$.

3,5-Bis-(S)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N-benzylamino-1,2-O-isopropylidene- α -D-xylofuranose (25f)

Starting from (S)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), 5-Deoxy-5-N-benzylamino-1,2-O-isopropylidene- α-D-xylofuranose $\mathbf{2 4 f}$ (279 mg , $1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene (16 mL), the product $\mathbf{2 5 f}$ was isolated as a white solid ($731 \mathrm{mg}, 81 \%, \mathrm{R}_{\mathrm{f}} 0.60$).
$[\alpha]_{D}^{27}=+319.2\left(c 0.80, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{55} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.76; H, 4.77; N, 1.54. Found: C, 72.92 ; H, $4.80 ; \mathrm{N}, 1.50 \%$.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{44} \mathrm{NO}_{8} \mathrm{P}_{2}$ 908.25367, found 908.25315.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na} 930.23561$, found 930.23403.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=152.2(\mathrm{~s}), 152.3(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.39(\mathrm{ddd}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=19.3 \mathrm{~Hz}, J=15.1 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}\right), 3.61\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.1 \mathrm{~Hz}\right), 4.23(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{H}-2,{ }^{3} J_{1-2}=3.8 \mathrm{~Hz}\right), 4.30\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{NCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=14.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{A}-\mathrm{P}}=10.4 \mathrm{~Hz}\right.$), $4.45(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3$, $\left.{ }^{3} J_{3-\mathrm{P}}=9.4 \mathrm{~Hz}, J=2.6 \mathrm{~Hz}\right), 4.53-4.61\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{NCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=14.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{B}-\mathrm{P}}=6.3 \mathrm{~Hz}\right), 4.64-4.69$ (m, 1H, H-4), 5.69 (d, 1H, H-1, ${ }^{3} J_{1-2}=3.8 \mathrm{~Hz}$), 6.83-7.74 (m, 29H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=26.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.0\left(\mathrm{~d}, \mathrm{C}-5, J_{5-\mathrm{P}}=23.2 \mathrm{~Hz}\right)$, $50.3\left(\mathrm{~d}, \mathrm{CH}_{2} \mathrm{Ph}, J_{\mathrm{C}-\mathrm{P}}=14.1 \mathrm{~Hz}\right), 78.9\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=13.6 \mathrm{~Hz}\right), 82.9(\mathrm{~m}, \mathrm{C}-4), 84.4(\mathrm{~d}, \mathrm{C}-2$, $\left.J_{2-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 105.7(\mathrm{C}-1), 111.8 \quad\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 122.1\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 122.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 123.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 123.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 124.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 124.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right)$, $125.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 131.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.6\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 133.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 133.5$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 139.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 147.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 148.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 150.1\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 150.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=4.4 \mathrm{~Hz}\right)$.

3,5-Bis-(S)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5-N-(S)- α-methylbenzylamino-1,2-O-isopropylidene- α-D-xylofuranose ($\mathbf{2 5 g}$)

Starting from (S)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), 5 -Deoxy-5-N-(S)- $\alpha-$ methylbenzylamino-1,2-O-isopropylidene- α-D-xylofuranose $\quad \mathbf{2 4 g}$ $(294 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $(16 \mathrm{~mL})$, the product $\mathbf{2 5 g}$ was isolated as a white solid (824 mg , $89 \%, \mathrm{R}_{\mathrm{f}} 0.36$).
$[\alpha]_{\mathrm{D}}^{23}=+313.8\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.96; H, 4.92; N, 1.52. Found: C, 72.92; H, 5.88; N, 1.25%.

HRMS (ESI) calculated for $\mathrm{C}_{56} \mathrm{H}_{46} \mathrm{NO}_{8} \mathrm{P}_{2}$ 922.26932, found 922.26841 .

HRMS (ESI) calculated for $\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 944.25126, found 944.2514.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=149.7(\mathrm{~s}), 156.1(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.80\left(\mathrm{dd}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=3.8 \mathrm{~Hz}\right), 3.02\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}-5},{ }^{2} J_{5 \mathrm{~A}-\mathrm{BB}}=15.2 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}\right), 3.52$ (ddd, 1H, HB-5, ${ }^{2} J_{5 \mathrm{~A}-\mathrm{SB}}=15.2 \mathrm{~Hz},{ }^{3} J_{5 \mathrm{~B}-\mathrm{P}}=2.9 \mathrm{~Hz},{ }^{3} J_{5 \mathrm{~A}-\mathrm{H}}=2.9 \mathrm{~Hz}$), $3.98\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.8 \mathrm{~Hz}\right.$), $4.27\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3-\mathrm{P}}=8.9 \mathrm{~Hz}, J=2.6 \mathrm{~Hz}\right), 4.52-4.56(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.06\left(\mathrm{dq}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{P}}=14.2 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.1 \mathrm{~Hz}\right), 5.50\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.8 \mathrm{~Hz}\right), 6.80-7.77(\mathrm{~m}, 29 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=23.2\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right), J_{\mathrm{C}-\mathrm{P}}=30.4 \mathrm{~Hz}\right), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.8$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.5(\mathrm{C}-5), 59.6\left(\mathrm{~d}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=23.7 \mathrm{~Hz}\right), 78.8\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=15.8 \mathrm{~Hz}\right), 83.0(\mathrm{~m}, \mathrm{C}-4)$, $84.1(\mathrm{C}-2), 105.5(\mathrm{C}-1), 111.5\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 122.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.5\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $122.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 123.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 124.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 125.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.9\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 130.1\left(\mathrm{CH}_{\mathrm{Ar}}\right) 130.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $131.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.3\left(\mathrm{C}_{\mathrm{Ar}}\right) 131.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 133.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 133.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.4$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 144.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 147.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 148.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.9 \mathrm{~Hz}\right), 150.4\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 151.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O} J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right)$.

3,5-Bis-(R)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N-isopropylamino-1,2-O-isopropylidene-α-D-xylofuranose (26b)

Starting from (R)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), 5-Deoxy-5-N-isopropylamino-1,2-O-isopropylidene- α-D-xylofuranose 24b
($231 \mathrm{mg}, 1.0 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $(16 \mathrm{~mL})$, the product 26b was isolated as a white solid (777 mg , $90 \%, \mathrm{R}_{\mathrm{f}} 0.25$).
$[\alpha]_{\mathrm{D}}^{27}=-392.0\left(c 0.71, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{51} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 71.24; H, 5.04; N, 1.63. Found: C, 71.16; H, 5.08; N, 1.10 \%.

HRMS (ESI) calculated for $\mathrm{C}_{51} \mathrm{H}_{44} \mathrm{NO}_{8} \mathrm{P}_{2}$ 860.25367, found 860.25359.

HRMS (ESI) calculated for $\mathrm{C}_{51} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 882.23561, found 882.2354.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=151.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=8.3 \mathrm{~Hz}\right), 153.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=8.4 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=1.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.08\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 1.12$ (d, $\left.3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.42\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=16.4 \mathrm{~Hz}\right.$, $J=10.1 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}), 3.68-3.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5\right.$ and $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 4.43-4.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-4)$, $4.61\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 5.81\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 6.82-7.80(\mathrm{~m}, 24 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=22.3\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{p}}=6.6 \mathrm{~Hz}\right), 23.3\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 26.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.7\left(\mathrm{~d}, \mathrm{C}-5, J_{5-\mathrm{P}}=20.9 \mathrm{~Hz}\right), 48.2\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=15.7 \mathrm{~Hz}\right), 79.0\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=11.9 \mathrm{~Hz}\right), 81.8(\mathrm{~m}, \mathrm{C}-4), 85.0\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=3.1 \mathrm{~Hz}\right), 105.2(\mathrm{C}-1)$, $111.9\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 121.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 123.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.6 \mathrm{~Hz}\right), 124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right)$, $125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, $127.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $130.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 131.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 133.3$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 133.5\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 147.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}\right), 148.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.5 \mathrm{~Hz}\right)$, $150.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.9 \mathrm{~Hz}\right), 150.6\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right)$.

3,5-Bis-(R)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5-N-cyclohexylamino-1,2-O-isopropylidene- α-D-xylofuranose (26d)

Starting from (R)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), 5-Deoxy-5-N-cyclohexylamino-1,2-O-isopropylidene- α-D-xylofuranose $\quad \mathbf{2 4 d}$ $(272 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $(16 \mathrm{~mL})$, the product $\mathbf{2 6 d}$ was isolated as a white solid (876 mg , $97 \%, \mathrm{R}_{\mathrm{f}} 0.33$).
$[\alpha]_{D}^{22}=-298.6\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{54} \mathrm{H}_{47} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.07; H, 5.26; N, 1.56. Found: C, 72.06; H, 5.12; N, 1.49 \%.

HRMS (ESI) calculated for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{NO}_{8} \mathrm{P}_{2}$ 900.28497, found 900.28497.

HRMS (ESI) calculated for $\mathrm{C}_{54} \mathrm{H}_{47} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na} 922.26691$, found 922.26696.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=151.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=10.1 \mathrm{~Hz}\right), 155.0\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=10.2 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.73\left(\mathrm{~m}, 3 \mathrm{H}, 1.5 \mathrm{CH}_{2}\right), 1.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.23-1.36(\mathrm{~m}, 2 \mathrm{H}$, CH_{2}), $1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.57-1.70\left(\mathrm{~m}, 3 \mathrm{H}, 1.5 \mathrm{CH}_{2}\right), 1.84-1.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.14-3.27(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}\right), 3.38-3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5\right), 3.74\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.4 \mathrm{~Hz}, J=12.1 \mathrm{~Hz}, J=3.3 \mathrm{~Hz}\right)$, $4.51-4.56(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-4), 4.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.6 \mathrm{~Hz}\right), 5.82\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right)$, 6.82-7.79 (m, 24H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR (63 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=25.8\left(\mathrm{CH}_{2}\right)$, $26.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.6\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{2}\right), 27.1$
 (d, $\left.\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=12.5 \mathrm{~Hz}\right), 78.9\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 82.0(\mathrm{~m}, \mathrm{C}-4), 85.0\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=3.3 \mathrm{~Hz}\right)$, $105.2(\mathrm{C}-1), 111.9\left(C_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 121.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.7\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 123.3\left(\mathrm{~d}, \mathrm{C} \mathrm{C}_{\mathrm{Ar}}\right.\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 123.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.5 \mathrm{~Hz}\right)$, $125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, $127.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $130.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 133.3(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.0 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 147.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 148.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 150.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.5 \mathrm{~Hz}\right), 150.6\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right)$.

3,5-Bis- $(R)-\left[\left(1,1^{\prime}\right.\right.$-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N-phenylamino-1,2- O-isopropylidene- α -D-xylofuranose (26e)

Starting from (R)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), 5-Deoxy-5- N -phenylamino-1,2-O-isopropylidene- α-D-xylofuranose $\mathbf{2 4 e}$ (265 mg , $1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $(16 \mathrm{~mL})$, the product 26e was isolated as a white solid ($291 \mathrm{mg}, 33 \%, \mathrm{R}_{\mathrm{f}} 0.18$).
$[\alpha]_{\mathrm{D}}^{26}=-265.2\left(c 0.50, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{54} \mathrm{H}_{41} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.56; $\mathrm{H}, 4.62 ; \mathrm{N}, 1.57$. Found: C, 72.25 ; H, 4.51; N, 1.66 \%.

HRMS (EI) calculated for $\mathrm{C}_{54} \mathrm{H}_{41} \mathrm{NO}_{8} \mathrm{P}_{2}$ 893.23019, found 893.23177.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=146.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=8.9 \mathrm{~Hz}\right)$, $147.7\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=9.0 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.87-4.11(\mathrm{~m}, 2 \mathrm{H}$, $2 \mathrm{H}-5), 4.33-4.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.45\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3-\mathrm{P}}=9.6 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}\right), 4.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2$, $\left.{ }^{3} J_{1-2}=3.6 \mathrm{~Hz}\right), 5.69\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.6 \mathrm{~Hz}\right), 6.82-7.70(\mathrm{~m}, 29 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$.
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=26.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.8\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 47.4\left(\mathrm{~d}, \mathrm{C}-5, J_{5-\mathrm{P}}=16.1 \mathrm{~Hz}\right)$, $78.5(\mathrm{~m}, \mathrm{C}-4), 78.8\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=8.5 \mathrm{~Hz}\right), 84.9\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 104.9(\mathrm{C}-1), 112.0\left(C\left(\mathrm{CH}_{3}\right)_{2}\right)$, $121.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 123.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz} \mathrm{C} \mathrm{Cr}_{\mathrm{Ar}}\right), 124.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.0 \mathrm{~Hz}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.1$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.8$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 129.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.0 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 143.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=12.5 \mathrm{~Hz}\right), 147.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.8 \mathrm{~Hz}\right), 148.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 149.9\left(\mathrm{C}_{\left.\mathrm{Ar}^{-}-\mathrm{O}\right), 150.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.6 \mathrm{~Hz}\right) . . . ~}^{\text {. }}\right.$

3,5-Bis-(R)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N-benzylamino-1,2- O-isopropylidene- α -D-xylofuranose (26f)

Starting from (R)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), 5-Deoxy-5- N -benzylamino-1,2-O-isopropylidene- α-D-xylofuranose $\mathbf{2 4 f}$ (279 mg , $1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $(16 \mathrm{~mL})$, the product $26 f$ was isolated as a white solid ($770 \mathrm{mg}, 85 \%, \mathrm{R}_{\mathrm{f}} 0.23$).
$[\alpha]_{\mathrm{D}}^{25}=-263.1\left(c 0.31, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{55} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.76; H, 4.77; N, 1.54. Found: C, 72.85 ; H, 4.88; N, 1.45%.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{44} \mathrm{NO}_{8} \mathrm{P}_{2}$ 908.25367, found 908.25397.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 930.23561, found 930.23455.

[^24]${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=1.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.42$ (ddd, 1 H , $\left.\mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.1 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}\right), 3.67\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{NCH}_{2},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=15.4 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}\right), 3.78-3.92$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5$), $4.37\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3-\mathrm{P}}=10.2 \mathrm{~Hz}, J=2.6 \mathrm{~Hz}\right), 4.53-4.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-\mathrm{NCH}_{2}\right.$ and $\left.\mathrm{H}-4\right)$, $4.63\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 5.87\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.6 \mathrm{~Hz}\right), 6.81-7.70(\mathrm{~m}, 27 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.84$ (m, 1H, CH-Ar), 8.05 (m, 1H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=26.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 45.6\left(\mathrm{~d}, \mathrm{C}-5, J_{5-\mathrm{P}}=36.5 \mathrm{~Hz}\right)$, $48.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 76.3(\mathrm{~m}, \mathrm{C}-4), 79.1\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 85.4\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=1.9 \mathrm{~Hz}\right), 105.2(\mathrm{C}-1)$, $111.8\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 121.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 123.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.9 \mathrm{~Hz}\right), 124.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 124.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.8\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(4 \mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.6\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.4\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.1(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 138.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 147.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=1.8 \mathrm{~Hz}\right), 148.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.5 \mathrm{~Hz}\right), 150.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 150.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right)$.

3,5-Bis-(R)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5-N-(S)- α-methylbenzylamino-1,2-O-isopropylidene- α-D-xylofuranose ($\mathbf{2 6 g}$)

Starting from (R)-BINOL ($630 \mathrm{mg}, 2.2 \mathrm{mmol}$), 5 -deoxy-5- $N-(S)$ - $\alpha-$ methylbenzylamino-1,2-O-isopropylidene- α-D-xylofuranose $\quad \mathbf{2 4 g}$ $(294 \mathrm{mg}, 1.0 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.01 \mathrm{~g}, 10.0 \mathrm{mmol})$ in toluene $(16 \mathrm{~mL})$, the product $\mathbf{2 6 g}$ was isolated as a white solid (570 mg , $62 \%, \mathrm{R}_{\mathrm{f}} 0.15$).
$[\alpha]_{\mathrm{D}}^{24}=-386.4\left(c 0.73, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.96; H, 4.92; $\mathrm{N}, 1.52$. Found: C, 73.07; H, 4.93; N, 1.44 \%.

HRMS (ESI) calculated for $\mathrm{C}_{56} \mathrm{H}_{46} \mathrm{NO}_{8} \mathrm{P}_{2}$ 922.26932, found 922.26877.

HRMS (ESI) calculated for $\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 944.25126, found 944.25027.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=150.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=17.1 \mathrm{~Hz}\right), 151.2\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=17.1 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=1.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.53(\mathrm{~d}, 3 \mathrm{H}$, $\mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}$), $3.39-3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5\right), 3.64-3.76\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~S}-5 \mathrm{~B}}=15.1 \mathrm{~Hz}\right.$, $J=11.3 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}$), 4.30-4.34 (m, 2H, H-3 and H-4), $4.55\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 4.90-5.02$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 5.77\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 6.78-7.81(\mathrm{~m}, 29 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$.
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=20.7\left(\mathrm{~d}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{p}}=12.1 \mathrm{~Hz}\right), 26.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 27.2}\right.$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 43.6\left(\mathrm{~d}, \mathrm{C}-5, J_{5-\mathrm{P}}=18.9 \mathrm{~Hz}\right), 54.7\left(\mathrm{~d}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=14.0 \mathrm{~Hz}\right), 78.6\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=11.9 \mathrm{~Hz}\right)$, $80.7(\mathrm{~m}, \mathrm{C}-4), 85.0\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 105.2(\mathrm{C}-1), 111.8\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 121.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.2\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $122.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 123.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 123.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 124.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right)$, $124.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.9\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.3\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 133.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 133.3$
$\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 133.5\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 143.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 147.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=1.8 \mathrm{~Hz}\right)$, $148.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 150.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=6.2 \mathrm{~Hz}\right), 150.3\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right)$.

General procedure for the synthesis of amino xylose-based monophosphites 27a-c

1.1 Eq of the corresponding chlorophosphite of the aromatic diol are dissolved in toluene $(5 \mathrm{~mL} / 1.1 \mathrm{mmol}$ chlorophosphite) and pyridine (2.3 eq) is added. 1.0 Eq of azeotropically dried amino sugar 24b is dissolved in toluene ($5 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) and pyridine (2.3 eq) is added. The chlorophosphite solution is added slowly to the sugar solution at $0{ }^{\circ} \mathrm{C}$ over 5 min and the mixture is kept at this temperature for 5 min . The reaction solution is warmed to $80^{\circ} \mathrm{C}$ and stirred for 16 h . After this time, the mixture is cooled to room temperature and concentrated in vacuo. The residue is purified by column chromatography (alumina, toluene/ $\mathrm{Et}_{3} \mathrm{~N}=97: 3$) to give 27a-c.

3-(S)-[(3,3'-Di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-deoxy-5-N-
isopropylamino-1,2-O-isopropylidene- α-D-xylofuranose (27a)

Starting from (S)-(-)-5,5',6,6'tetramethyl-3,3'-di-tert-butyl-1,1'-biphenyl-2,2'-diol ($390 \mathrm{mg}, 1.1 \mathrm{mmol}$), 5-Deoxy-5- N-isopropylamino-$1,2-O$-isopropylidene- α-D-xylofuranose $\mathbf{2 4 b}$ ($231 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pyridine ($364 \mathrm{mg}, 4.6 \mathrm{mmol}$) in toluene (10 mL), the product 27 a was isolated as a white solid ($360 \mathrm{mg}, 59 \%, \mathrm{R}_{\mathrm{f}} 0.55$).
$[\alpha]_{\mathrm{D}}^{26}=-329.0\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{NO}_{6} \mathrm{P}: \mathrm{C}, 68.49 ; \mathrm{H}, 8.54 ; \mathrm{N}, 2.28$. Found: C, 68.33; H, 8.87; N, 2.25%.

HRMS (EI) calculated for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{NO}_{6} \mathrm{P} 613.35268$, found 613.35339 .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=140.9(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.92\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.2 \mathrm{~Hz}\right), 0.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $0.98\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.2 \mathrm{~Hz}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.57\left(\mathrm{br}, 18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.70(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.05(\mathrm{dd}, 1 \mathrm{H}$, $\mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=11.8 \mathrm{~Hz},{ }^{3} J_{4-5 \mathrm{~A}}=6.3 \mathrm{~Hz}$), $3.11\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{SB}}=11.8 \mathrm{~Hz},{ }^{3} J_{4-5 \mathrm{~B}}=6.8 \mathrm{~Hz}\right), 4.08$ (d, $1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}$), $4.42\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}-4,{ }^{3} J_{3-4}=2.7 \mathrm{~Hz}\right), 4.91\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3-\mathrm{P}}=8.1 \mathrm{~Hz}\right.$, $J=2.7 \mathrm{~Hz}), 5.78\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.8 \mathrm{~Hz}\right), 7.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=16.6\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right), 23.1$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.4\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.8\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 31.7\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right) \text {, }}^{\text {, }}\right.$ $31.9\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),} 35.0\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 35.2\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right),} 46.1(\mathrm{C}-5), 49.3\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 77.9(\mathrm{C}-3), 80.5(\mathrm{~d} \text {, }\right.}\right.\right.$ $\left.\mathrm{C}-4, J_{4-\mathrm{P}}=5.6 \mathrm{~Hz}\right), 84.7(\mathrm{C}-2), 105.3(\mathrm{C}-1), 111.2\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.7(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.2 \mathrm{~Hz}\right), 132.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.8 \mathrm{~Hz}\right), 132.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right), 133.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 135.0(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 135.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.0 \mathrm{~Hz}\right), 138.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 138.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 145.5(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.5 \mathrm{~Hz}\right), 145.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right)$.

3-(R)-[(3,3'-Di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-deoxy-5-N-isopropylamino-1,2-O-isopropylidene- α-D-xylofuranose (27b)

Starting from $\quad(R)-(+)-5,5^{\prime}, 6,6$ '-tetramethyl-3,3'-di-tert-butyl-1, 1^{\prime} -biphenyl-2,2'-diol ($390 \mathrm{mg}, 1.1 \mathrm{mmol}$), 5-Deoxy-5- N-isopropylamino-1,2- O-isopropylidene- α-D-xylofuranose $\mathbf{2 4 b}$ ($231 \mathrm{mg}, 1.0 \mathrm{mmol}$) and pyridine ($364 \mathrm{mg}, 4.6 \mathrm{mmol}$) in toluene $(10 \mathrm{~mL})$, the product $\mathbf{2 7 b}$ was isolated as a white solid ($383 \mathrm{mg}, 62 \%, \mathrm{R}_{\mathrm{f}} 0.58$).
$[\alpha]_{\mathrm{D}}^{25}=+334.2\left(c 1.00, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{NO}_{6} \mathrm{P}$: C, 68.49; H, 8.54; N, 2.28. Found: C, 68.42; H, 8.36; N, 2.11 \%.

HRMS (ESI) calculated for $\mathrm{C}_{35} \mathrm{H}_{53} \mathrm{NO}_{6} \mathrm{P} 614.3605$, found 614.36048 .
HRMS (ESI) calculated for $\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{NO}_{6} \mathrm{PNa} 636.34245$, found 636.34294 .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=144.7(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.77\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.2 \mathrm{~Hz}\right), 0.83\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.2 \mathrm{~Hz}\right), 1.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)^{2}, 1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.56(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.34(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), \quad 2.64\left(\mathrm{dd}, \quad 1 \mathrm{H}, \quad \mathrm{H}_{\mathrm{A}}-5, \quad{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=11.6 \mathrm{~Hz}, \quad{ }^{3} J_{4-5 \mathrm{~A}}=7.3 \mathrm{~Hz}\right), \quad 2.71 \quad\left(\mathrm{dd}, \quad 1 \mathrm{H}, \quad \mathrm{H}_{\mathrm{B}}-5\right.$, $\left.{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=11.6 \mathrm{~Hz},{ }^{3} J_{4-5 \mathrm{~A}}=6.5 \mathrm{~Hz}\right), 4.57\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}-4,{ }^{3} J_{3-4}=2.8 \mathrm{~Hz}\right), 4.69\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.0 \mathrm{~Hz}\right)$, $4.79\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3-\mathrm{P}}=11.4 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}\right), 5.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 7.17(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$, 7.26 (s, 1H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=16.3\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right), 20.5\left(\mathrm{CH}_{3}\right), 23.2$ $\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.3\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.6\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 31.9$
 $80.8\left(\mathrm{~d}, \mathrm{C}-4, J_{4-\mathrm{P}}=2.3 \mathrm{~Hz}\right), 85.0\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=2.8 \mathrm{~Hz}\right), 105.5(\mathrm{C}-1), 112.0\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.6\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 131.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 132.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right), 133.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.8 \mathrm{~Hz}\right), 134.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 135.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right)$, $138.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 138.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 145.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 145.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right)$.

3-[(3,3',5,5'-Tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-deoxy-5- N -isopropylamino-1,2- O -isopropylidene- α-D-xylofuranose (27c)

Starting from 3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'-diol (904 mg, 2.2 mmol), 5-Deoxy-5- N -isopropylamino-1,2- O -isopropylidene- α-Dxylofuranose 24b ($462 \mathrm{mg}, 2.0 \mathrm{mmol}$) and pyridine (728 mg , $9.2 \mathrm{mmol})$ in toluene $(20 \mathrm{~mL})$, the product $\mathbf{2 7 c}$ was isolated as a white solid ($950 \mathrm{mg}, 71 \%, \mathrm{R}_{\mathrm{f}} 0.50$).
$[\alpha]_{\mathrm{D}}^{25}=+15.5\left(c 0.45, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{NO}_{6} \mathrm{P}: \mathrm{C}, 69.93 ; \mathrm{H}, 9.03 ; \mathrm{N}, 2.09$. Found: C, 68.89; H, 8.65; N, 2.23 \%.

HRMS (ESI) calculated for $\mathrm{C}_{39} \mathrm{H}_{61} \mathrm{NO}_{6} \mathrm{P}$ 670.4231, found 670.42314.
HRMS (ESI) calculated for $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{NO}_{6} \mathrm{PNa} 692.40505$, found 692.40366.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (121 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=149.0(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.89\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.2 \mathrm{~Hz}\right), 0.91\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.2 \mathrm{~Hz}\right), 1.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.38(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.57\left(\mathrm{br}, 18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.96\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=11.7 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{4-5 \mathrm{~A}}=6.4 \mathrm{~Hz}\right), 3.04\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=11.7 \mathrm{~Hz},{ }^{3} J_{4-5 \mathrm{~B}}=6.9 \mathrm{~Hz}\right), 4.48-4.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-4), 4.92\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3-\mathrm{P}}=9.8 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}\right), 5.85\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 7.37(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{CH}-\mathrm{Ar}, J_{\mathrm{H}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 7.38\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}, J_{\mathrm{H}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 7.59\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar},{ }^{5} J_{\mathrm{H}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 7.61$ $\left(\mathrm{d}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar},{ }^{5} J_{\mathrm{H}-\mathrm{P}}=2.5 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=23.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 23.4\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.7$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $31.5\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right)$, $31.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $31.6\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.7\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.7\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.8\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 46.1(\mathrm{C}-5), 49.2\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 77.8(\mathrm{~d}, \mathrm{C}-3$, $\left.J_{3-\mathrm{P}}=4.4 \mathrm{~Hz}\right), 80.7\left(\mathrm{~d}, \mathrm{C}-4, J_{4-\mathrm{P}}=4.4 \mathrm{~Hz}\right), 84.9\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 105.3(\mathrm{C}-1), 111.6\left(C\left(\mathrm{CH}_{3}\right)_{2}\right)$, $124.6\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 133.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 133.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 140.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 140.9(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 146.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=6.4 \mathrm{~Hz}\right), 146.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right), 147.2\left(\mathrm{~d}, 2 \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.7 \mathrm{~Hz}\right)$.

General procedure for the synthesis of amino xylose-based diphosphites 28a-f

1.1 Eq of enantiopure BINOL are suspended in phosphorus trichloride ($1.5 \mathrm{~mL} / 1.0 \mathrm{mmol}$ BINOL), 2-3 drops of N-methyl-2-pyrrolidone are added and the solution is heated to $75^{\circ} \mathrm{C}$ for 5 min . The resulting HCl gas is derived from the reaction vessel by using a bubble counter (slight argon stream!). The now clear solution is cooled to room temperature, concentrated and dried azeotropically with toluene (three times). Thus, the in situ prepared chlorophosphite is dissolved in toluene ($15 \mathrm{~mL} / 1.1 \mathrm{mmol}$ BINOL) and triethylamine is added ($2.5 \mathrm{mmol} / 1.1 \mathrm{mmol} \mathrm{BINOL}) .1 .0 \mathrm{Eq}$ of azeotropically dried amino monophosphite $\mathbf{2 7 a - c}$ is dissolved in toluene ($15 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) and triethylamine (2.5 eq) is added. This solution is added slowly to the chlorophosphite solution at $0{ }^{\circ} \mathrm{C}$ over 5 min and the mixture is kept at this temperature for 5 min . The reaction solution is stirred at $50^{\circ} \mathrm{C}$ for 16 h . After this time, the mixture is cooled to room temperature and concentrated in vacuo. The residue is purified by column chromatography (basic silica, toluene) to give 28a-f.

3-(S)-[(3,3'-Di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-(S)-[(1, 1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N-isopropylamino-1,2- O-isopropylidene- α-D-xylofuranose (28a)

Starting from (S)-BINOL ($128 \mathrm{mg}, 0.45 \mathrm{mmol}$), 3-(S)-[(3,3'-di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-deoxy-5- N -isopropylamino-1,2- O-isopropylidene- α-D-xylofuranose $\mathbf{2 7 a}(250 \mathrm{mg}, 0.41 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(206 \mathrm{mg}, 2.0 \mathrm{mmol})$ in toluene $(12 \mathrm{~mL})$, the product $\mathbf{2 8 a}$ was isolated as a white solid (162 mg , $43 \%, \mathrm{R}_{\mathrm{f}} 0.64$).
$[\alpha]_{\mathrm{D}}^{26}=-12.3\left(c 0.35, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 71.18; $\mathrm{H}, 6.84 ; \mathrm{N}, 1.51$. Found: C, 71.15; H, 6.87; N, 1.38 \%.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{64} \mathrm{NO}_{8} \mathrm{P}_{2}$ 928.41017, found 928.41011.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 950.39211, found
950.39249.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{~K} 966.36605$, found 966.36708 .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=138.3(\mathrm{~s}), 153.1(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=0.93\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.04\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 1.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.51(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.14(\mathrm{ddd}, 1 \mathrm{H}$, $\mathrm{H}_{\mathrm{A}}-5, J=19.4 \mathrm{~Hz},{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.8 \mathrm{~Hz}, J=8.3 \mathrm{~Hz}$), $3.44\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.7 \mathrm{~Hz}, J=10.6 \mathrm{~Hz}\right.$, $J=2.5 \mathrm{~Hz}), 3.59-3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H\left(\mathrm{CH}_{3}\right) 2,{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 4.57\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{\mathrm{I}-2}=3.0 \mathrm{~Hz}\right), 4.64(\mathrm{dd}$, $\left.1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3-\mathrm{P}}=9.8 \mathrm{~Hz}, J=2.6 \mathrm{~Hz}\right), 4.71-4.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 5.96\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right)$, 6.87-7.14 (m, 4H, CH-Ar), 7.20 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.25 (s, 1H, CH-Ar), 7.42-7.72 (m, 8H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=16.6\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right)$, $20.5\left(\mathrm{CH}_{3}\right)$, $22.3(\mathrm{~d}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=3.0 \mathrm{~Hz}\right), 23.1\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=4.1 \mathrm{~Hz}\right), 26.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.6(\mathrm{~d}$, $\left.\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right)$, $31.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.9\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $35.1\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $42.5(\mathrm{~d}, \mathrm{C}-5$, $\left.J_{5-\mathrm{P}}=30.2 \mathrm{~Hz}\right), 47.3\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=6.3 \mathrm{~Hz}\right), 78.2\left(\mathrm{~d}, \mathrm{C}-3, J_{\mathrm{C}-\mathrm{P}}=4.1 \mathrm{~Hz}\right), 82.2(\mathrm{~m}, \mathrm{C}-4), 84.6(\mathrm{~d}$, $\left.\mathrm{C}-2, J_{\mathrm{C}-\mathrm{P}}=4.2 \mathrm{~Hz}\right), 105.3(\mathrm{C}-1), 112.0\left(C_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 122.6\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 122.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}} \text {, }\right.}\right.$ $\left.J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 123.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 124.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(3 \mathrm{CH}_{\mathrm{Ar}}\right), 130.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.2\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $131.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 131.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 133.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.3$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.8 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 134.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 135.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 138.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 138.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 145.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 145.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 150.5$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 151.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.7 \mathrm{~Hz}\right)$.

3-(R)-[(3,3'-Di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-(S)-[(1,1'-
binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N -isopropylamino- $1,2-\mathrm{O}$-isopropylidene- α-D-xylofuranose (28b)

Starting from (S)-BINOL ($128 \mathrm{mg}, 0.45 \mathrm{mmol}$), 3-(R)-[(3,3'-di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-deoxy-5-N-isopropylamino-1,2-O-isopropylidene- α-D-xylofuranose $27 \mathrm{a}(250 \mathrm{mg}, 0.41 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(206 \mathrm{mg}, 2.0 \mathrm{mmol})$ in toluene $(12 \mathrm{~mL})$, the product $\mathbf{2 8 b}$ was isolated as a white solid (233 mg , $62 \%, R_{f} 0.52$).
$[\alpha]_{\mathrm{D}}^{26}=+456.4\left(c 0.56, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 71.18; H, 6.84; $\mathrm{N}, 1.51$. Found: C, 71.06; H, 6.80; N, 1.50 \%.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{64} \mathrm{NO}_{8} \mathrm{P}_{2}$ 928.41017, found 928.40949.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na} 950.39211$, found 950.39192.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{~K} 966.36605$, found 966.3667.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=140.1\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=9.5 \mathrm{~Hz}\right), 149.8\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=9.5 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.26\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right)$, $1.30\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right), 1.32\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.48(\mathrm{~s}, 9 \mathrm{H}$,
$\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.14(\mathrm{ddd}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.5 \mathrm{~Hz}, J=9.9 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}\right), 3.65\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.5 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}\right.$, $J=4.6 \mathrm{~Hz}), 3.81\left(\mathrm{dq}, 1 \mathrm{H}, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{P}}=18.5 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 3.95\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right)$, 4.48-4.52 (m, $1 \mathrm{H}, \mathrm{H}-4), 4.69\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3-\mathrm{P}}=6.3 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}\right), 5.49(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1$, ${ }^{3} J_{1-2}=3.7 \mathrm{~Hz}$), 6.86-6.93 (m, 2H, CH-Ar), 7.00-7.19 (m, 4H, CH-Ar), 7.42-7.79 (m, 8H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=16.5\left(\mathrm{CH}_{3}\right), 16.7\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right), 22.8(\mathrm{~d}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=9.0 \mathrm{~Hz}\right), 23.5\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=6.7 \mathrm{~Hz}\right), 25.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.6(\mathrm{~d}$,
 $49.2\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{p}}=26.4 \mathrm{~Hz}\right), 77.3(\mathrm{C}-3), 82.7(\mathrm{~m}, \mathrm{C}-4), 84.7(\mathrm{C}-2), 105.2(\mathrm{C}-1), 111.2$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 122.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.7\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 123.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 125.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right)$, $124.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.7 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.4 \mathrm{~Hz}\right), 132.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=0.6 \mathrm{~Hz}\right), 133.4\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 134.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.0 \mathrm{~Hz}\right), 135.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=0.8 \mathrm{~Hz}\right), 138.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 138.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.4 \mathrm{~Hz}\right), 145.4\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 145.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 150.4$ $\left(\mathrm{C}_{\mathrm{Ar}^{-}} \mathrm{O}\right), 150.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=4.7 \mathrm{~Hz}\right)$.

3-(S)-[(3,3'-Di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-(R)-[(1, 1^{\prime} '-
binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N-isopropylamino-1,2- O-isopropylidene- α-D-xylofuranose
(28c)

Starting from (R)-BINOL (103 mg, 0.36 mmol$), 3-(S)$-[(3,3'-di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-deoxy-5- N -isopropylamino-1,2- O-isopropylidene- α-D-xylofuranose 27b ($200 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(165 \mathrm{mg}, 1.6 \mathrm{mmol})$ in toluene $(10 \mathrm{~mL})$, the product 28 c was isolated as a white solid $(230 \mathrm{mg}$, $76 \%, \mathrm{R}_{\mathrm{f}} 0.52$).
$[\alpha]_{\mathrm{D}}^{27}=+23.5\left(c 0.52, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 71.18; H, 6.84; N, 1.51. Found: C, 71.01; H, 6.70; N, 1.59 \%.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{64} \mathrm{NO}_{8} \mathrm{P}_{2}$ 928.41017, found 928.40979.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 950.39211, found
950.39186.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=144.9(\mathrm{~s}), 155.8(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.07\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.8 \mathrm{~Hz}\right)$, $1.08\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.41\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.51\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.58(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.62-3.73(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ and $\left.2 \mathrm{H}-5\right), 4.12\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 4.59-4.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.85(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3$, $\left.{ }^{3} J_{3-\mathrm{P}}=7.0 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}\right), 5.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 6.87-7.14(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.19(\mathrm{~s}, 1 \mathrm{H}$, CH-Ar), 7.22 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.43-7.74 (m, 8H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=16.5\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right), 20.3\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right), 22.4(\mathrm{~d}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=4.6 \mathrm{~Hz}\right), 23.3\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 26.0\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.7(\mathrm{~d}$,
 $\left.J_{5-\mathrm{P}}=29.4 \mathrm{~Hz}\right), 47.5\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=7.9 \mathrm{~Hz}\right), 77.9(\mathrm{C}-3), 80.7(\mathrm{~m}, \mathrm{C}-4), 84.8(\mathrm{~d}, \mathrm{C}-2$,
$\left.\left.J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 105.1(\mathrm{C}-1), 111.2\left(\mathrm{CH}_{3}\right)_{2}\right), 122.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}\right)$, $124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.4 \mathrm{~Hz}\right), 124.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, $128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right), 131.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.7 \mathrm{~Hz}\right), 132.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right), 133.1\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 134.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.8 \mathrm{~Hz}\right), 135.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=0.8 \mathrm{~Hz}\right), 138.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 138.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 145.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.6 \mathrm{~Hz}\right), 145.6(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 150.6\left(\mathrm{C}_{\mathrm{Ar}^{-}}-\mathrm{O}\right), 150.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.8 \mathrm{~Hz}\right)$.

3-(R)-[(3,3'-Di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-(R)-[(1, $1^{\prime}-$
binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N-isopropylamino-1,2- O-isopropylidene- α-D-xylofuranose (28d)

Starting from (R)-BINOL ($132 \mathrm{mg}, 0.46 \mathrm{mmol}), 3-(R)-[(3,3 '$-di-tert-butyl-5,5',6,6'-tetramethyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-deoxy-5- N -isopropylamino-1,2- O-isopropylidene- α-D-xylofuranose
27b $(260 \mathrm{mg}, 0.42 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(214 \mathrm{mg}, 2.2 \mathrm{mmol})$ in toluene $(12 \mathrm{~mL})$, the product $\mathbf{2 8 d}$ was isolated as a white solid (285 mg , $73 \%, \mathrm{R}_{\mathrm{f}} 0.58$).
$[\alpha]_{\mathrm{D}}^{26}=-356.0\left(c 0.42, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, $71.18 ; \mathrm{H}, 6.84 ; \mathrm{N}, 1.51$. Found: C, 70.78 ; H, 6.79; N, 1.51%.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{64} \mathrm{NO}_{8} \mathrm{P}_{2}$ 928.41017, found 928.41003.

HRMS (ESI) calculated for $\mathrm{C}_{55} \mathrm{H}_{63} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 950.39211, found
950.39183.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=144.9(\mathrm{~s}), 155.8(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=0.96\left(\mathrm{~d}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.6 \mathrm{~Hz}\right), 1.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.46(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.50\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.57\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.03$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.25\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.12\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.8 \mathrm{~Hz}, J=10.8 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}\right)$, $3.32-3.44\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5, J=18.0 \mathrm{~Hz},{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.8 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}\right), 3.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right)$, $4.54-4.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.65\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3-\mathrm{P}}=10.0 \mathrm{~Hz}, J=2.6 \mathrm{~Hz}\right), 5.85(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 6.87-7.14(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}) 7.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.46-7.55(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-\mathrm{Ar})$, 7.52 (s, 1H, CH-Ar), 7.59 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.62-7.67 (m, 2H, CH-Ar), 7.70-7.80 (m, 2H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=16.6\left(\mathrm{CH}_{3}\right), 16.8\left(\mathrm{CH}_{3}\right), 20.4\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 22.4(\mathrm{~d}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=4.2 \mathrm{~Hz}\right), 22.8\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=4.8 \mathrm{~Hz}\right), 26.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.5(\mathrm{~d}$, $\left.\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} J_{\mathrm{C}-\mathrm{P}}=4.9 \mathrm{~Hz}\right) 31.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.9\left(\mathrm{C}_{3} \mathrm{CH}_{3}\right), 35.2\left(\mathrm{CH}_{3}\right)_{3}\right), 42.7\left(\mathrm{~d}, \mathrm{C}-5, J_{5-\mathrm{P}}=31.6 \mathrm{~Hz}\right)$, $47.5\left(\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 77.7\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=7.1 \mathrm{~Hz}\right), 82.1(\mathrm{br}, \mathrm{C}-4), 84.9\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=4.2 \mathrm{~Hz}\right), 105.2(\mathrm{C}-1)$, $111.8\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 122.6\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 123.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 124.7(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right), 124.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 129.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.1$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.3 \mathrm{~Hz}\right), 131.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 133.0(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.7 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 134.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.0 \mathrm{~Hz}\right), 135.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=0.9 \mathrm{~Hz}\right), 138.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 138.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 145.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=6.5 \mathrm{~Hz}\right), 145.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 150.6\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 150.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right)$.

3-[(3,3',5,5'-Tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-(S)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N-isopropylamino-1,2- O-isopropylidene- α-D-xylofuranose (28e)

Starting from (S)-BINOL ($158 \mathrm{mg}, 0.55 \mathrm{mmol}$), $3-\left[\left(3,3^{\prime}, 5,5\right.\right.$ '-tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-deoxy-5- N -isopropylamino-1,2-O-isopropylidene- α-D-xylofuranose 27e $(335 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(253 \mathrm{mg}, 2.6 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL}$), the product 28 e was isolated as a white solid (350 mg , $71 \%, \mathrm{R}_{\mathrm{f}} 0.67$).
$[\alpha]_{\mathrm{D}}^{25}=+353.8\left(c 0.48, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{59} \mathrm{H}_{71} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.00; H, 7.27; N, 1.42. Found: C, 71.96; H, 7.67; N, 1.41 \%.

HRMS (ESI) calculated for $\mathrm{C}_{59} \mathrm{H}_{72} \mathrm{NO}_{8} \mathrm{P}_{2}$ 984.47277, found 984.47214.

HRMS (ESI) calculated for $\mathrm{C}_{59} \mathrm{H}_{71} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 1006.45471, found
1006.45459.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=150.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 153.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=5.3 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.26(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.28\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.32\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 1.36(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.53\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.17\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.6 \mathrm{~Hz}\right.$, $J=9.7 \mathrm{~Hz}, J=6.1 \mathrm{~Hz}$), $3.58-3.66\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.5 \mathrm{~Hz}, J=6.1 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}\right.$), $3.84(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C} H\left(\mathrm{CH}_{3}\right)_{2}\right), 4.28\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} \mathrm{~J}_{1-2}=3.6 \mathrm{~Hz}\right), 4.54-4.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.66(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3$, $\left.{ }^{3} J_{3-\mathrm{P}}=7.9 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}\right), 5.51\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{3-\mathrm{P}}=3.6 \mathrm{~Hz}\right), 6.84-7.14(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.34(\mathrm{~s}, 1 \mathrm{H}$, CH-Ar), 7.34 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$), 7.43-7.65 (m, 9H, CH-Ar), 7.75-7.78 (m, 1H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=22.9\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=9.2 \mathrm{~Hz}\right), 23.6\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$,
 $\left(\mathrm{C}_{\left.\left(C H_{3}\right)_{3}\right),} 34.7 \quad\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)\right.$, $34.7 \quad\left(C\left(\mathrm{CH}_{3}\right)_{3}\right)$, $35.5 \quad\left(C_{\left(\mathrm{CH}_{3}\right)_{3}, 35.8 \quad\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 42.8 \quad(\mathrm{~d}, \mathrm{C}-5 \text {, }}\right.$ $\left.J_{5-\mathrm{P}}=7.0 \mathrm{~Hz}\right), 49.3\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=26.0 \mathrm{~Hz}\right), 77.3\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=4.3 \mathrm{~Hz}\right), 82.9(\mathrm{~m}, \mathrm{C}-4), 84.7$ (C-2), $105.3(\mathrm{C}-1), 111.6\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 122.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.6\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 123.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}\right), 124.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.3\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right)$, $133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 134.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.7 \mathrm{~Hz}\right), 140.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 141.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.1 \mathrm{~Hz}\right)$, $145.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 146.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{p}}=8.7 \mathrm{~Hz}\right), 146.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 147.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 150.4$ $\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 150.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=4.8 \mathrm{~Hz}\right)$.

3-[(3,3',5,5'-Tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-(R)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N -isopropylamino-1,2- O-isopropylidene- α-D-xylofuranose (28f)

Starting from (R)-BINOL ($158 \mathrm{mg}, 0.55 \mathrm{mmol}$), $3-\left[\left(3,3^{\prime}, 5,5\right.\right.$ '-tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl)phosphite]-5-deoxy-5- N -
isopropylamino-1,2-O-isopropylidene- α-D-xylofuranose 27c $(335 \mathrm{mg}, 0.50 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(253 \mathrm{mg}, 2.5 \mathrm{mmol})$ in toluene $(15 \mathrm{~mL}$), the product $\mathbf{2 8 f}$ was isolated as a white solid ($440 \mathrm{mg}, 89 \%$, $\mathrm{R}_{\mathrm{f}} 0.67$).
$[\alpha]_{\mathrm{D}}^{27}=-99.7\left(c 0.68, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{59} \mathrm{H}_{71} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.00; H, 7.27; N, 1.42. Found: C, 72.23; H, 7.98; N, 1.38 \%.

HRMS (ESI) calculated for $\mathrm{C}_{59} \mathrm{H}_{72} \mathrm{NO}_{8} \mathrm{P}_{2}$ 984.47277, found 984.47261.

HRMS (ESI) calculated for $\mathrm{C}_{59} \mathrm{H}_{71} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 1006.45471, found
1006.45455.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=149.3\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=9.5 \mathrm{~Hz}\right), 154.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=9.6 \mathrm{~Hz}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=1.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.06\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=7.0 \mathrm{~Hz}\right)$, $1.06\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.6 \mathrm{~Hz}\right), 1.26\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.53(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.58\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.51-3.76\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$ and $\left.2 \mathrm{H}-5\right), 4.53(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2$, $\left.{ }^{3} J_{1-2}=3.6 \mathrm{~Hz}\right), 4.58-4.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 4.78\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3 \mathrm{P}}=8.6 \mathrm{~Hz}, J=2.4 \mathrm{~Hz}\right), 5.72(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}$), 6.84-7.14 (m, 4H, CH-Ar), 7.31-7.32 (m, 1H, CH-Ar), 7.37-7.38 (m, 1H, CH-Ar), 7.43-7.63 (m, 8H, CH-Ar), 7.69-7.76 (m, 2H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=22.5\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{p}}=4.9 \mathrm{~Hz}\right), 23.3\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 26.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $27.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$, $31.6\left(4 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $34.7\left(2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $35.7\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right) \text {, }}\right.$ $35.8\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 42.6\left(\mathrm{~d}, \mathrm{C}-5, J_{5-\mathrm{P}}=28.9 \mathrm{~Hz}\right), 47.6\left(\mathrm{~d}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, J_{\mathrm{C}-\mathrm{P}}=8.2 \mathrm{~Hz}\right), 77.9(\mathrm{~d}, \mathrm{C}-3$, $\left.J_{3-\mathrm{P}}=3.9 \mathrm{~Hz}\right), 81.2(\mathrm{~m}, \mathrm{C}-4), 84.8\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=3.2 \mathrm{~Hz}\right), 105.1(\mathrm{C}-1), 111.6\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 122.7(\mathrm{~d}$, $\left.\mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 122.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 124.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.6(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}\right), 124.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.9\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.4(\mathrm{~d}$, $\left.\mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 133.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 133.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.7 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=4.0 \mathrm{~Hz}\right), 140.8\left(\mathrm{C}_{\mathrm{Ar}}\right), 140.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 146.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=4.3 \mathrm{~Hz}\right), 146.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 147.2\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 150.6\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 150.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=6.0 \mathrm{~Hz}\right)$.

General procedure for the synthesis of amino xylose-based mixed diphosphites 28g-i

1.1 Eq of enantiopure BINOL are suspended in phosphorus trichloride ($1.5 \mathrm{~mL} / 1.0 \mathrm{mmol}$ BINOL), 2-3 drops of N-methyl-2-pyrrolidone are added and the solution is heated to $75^{\circ} \mathrm{C}$ for 5 min . The resulting HCl gas is derived from the reaction vessel by using a bubble counter (slight argon stream!). The now clear solution is cooled to room temperature, concentrated and dried azeotropically with toluene (three times). Thus, the in situ prepared chlorophosphite is dissolved in toluene ($5 \mathrm{~mL} / 1.1 \mathrm{mmol}$ BINOL) and pyridine (2.3 eq) is added. 1.0 Eq of azeotropically dried amino sugar $\mathbf{2 4 g}$ is dissolved in toluene $(5 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) and pyridine (2.3 eq) is added. The chlorophosphite solution is added slowly to the sugar solution at $0{ }^{\circ} \mathrm{C}$ over 5 min and the mixture is kept at this temperature for 5 min . The reaction solution is warmed to $80^{\circ} \mathrm{C}$ and stirred for 16 h . After this time, the mixture is cooled to room temperature and concentrated in vacuo. Because the residue can not be purified by column
chromatography or recrystallization, crude products $\mathbf{2 7 d}, \mathbf{e}$ are used in the next step without further purification.
1.1 Eq of the corresponding chlorophosphite of the aromatic diol are dissolved in toluene $(10 \mathrm{~mL} / 1.1 \mathrm{mmol}$ chlorophosphite) and triethylamine (2.0 eq) is added. 1.0 Eq of the crude $\mathbf{2 7 d} \mathbf{e} \mathbf{e}$ is dissolved in toluene ($10 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) and triethylamine (2.0 eq) is added. The chlorophosphite solution is added slowly to the sugar solution at $0^{\circ} \mathrm{C}$ over 5 min and the mixture is kept at this temperature for 5 min . The reaction solution is warmed to $50^{\circ} \mathrm{C}$ and stirred for 16 h . After this time, the mixture is cooled to room temperature and concentrated in vacuo. The residue is purified by column chromatography (basic silica, toluene) to give $\mathbf{2 8 g} \mathbf{- i}$.

3-(S)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-(R)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5- N -α-methyl-benzylamino-1,2-O-isopropylidene- α-D-xylofuranose ($\mathbf{2 8 g}$)

Starting from (S)-BINOL ($158 \mathrm{mg}, 0.55 \mathrm{mmol}),(R)$-BINOL $(158 \mathrm{mg}$, 0.55 mmol , 5-Deoxy-5- $\mathrm{N}-(\mathrm{S})$ - α-methylbenzylamino-1,2- O -isopropylidene- α-D-xylofuranose $\mathbf{2 7 d}$ ($147 \mathrm{mg}, 0.5 \mathrm{mmol}$), pyridine $(182 \mathrm{mg}, 2.3 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.0 \mathrm{mmol})$ in toluene, the product $\mathbf{2 8 g}$ was isolated as a white solid ($161 \mathrm{mg}, 35 \%, \mathrm{R}_{\mathrm{f}} 0.28$).
$[\alpha]_{\mathrm{D}}^{26}=+12.1\left(c \quad 0.37, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.96; H, 4.92; N, 1.52. Found: C, 73.09; H, 4.82; N, 1.30 \%.

HRMS (ESI) calculated for $\mathrm{C}_{56} \mathrm{H}_{46} \mathrm{NO}_{8} \mathrm{P}_{2}$ 922.26932, found 922.26902 .

HRMS (ESI) calculated for $\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 944.25126, found 944.2511.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=147.4\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=4.8 \mathrm{~Hz}\right), 148.7$ (brs).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=0.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.40\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.62(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.7 \mathrm{~Hz}\right), 3.32-3.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5\right), 3.75\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.5 \mathrm{~Hz}, J=9.1 \mathrm{~Hz}\right.$, $J=2.8 \mathrm{~Hz}), 4.22-4.26(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ and H-3), 4.36-4.40(m, $1 \mathrm{H}, \mathrm{H}-4), 4.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 5.60(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}$), 6.81-6.91 (m, 4H, CH-Ar), 7.00-7.16 (m, 5H, CH-Ar), 7.19-7.80 (m, 20H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=21.5\left(\mathrm{~d}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=15.7 \mathrm{~Hz}\right), 26.5\left(\mathrm{C}^{2}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.1$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.6\left(\mathrm{~d}, \mathrm{C}-5, J_{5-\mathrm{P}}=10.9 \mathrm{~Hz}\right), 55.6\left(\mathrm{CHCH}_{3}\right), 78.8\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=13.2 \mathrm{~Hz}\right), 81.0(\mathrm{~m}, \mathrm{C}-4)$, $\left.84.7\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 105.4(\mathrm{C}-1), 111.5\left(\mathrm{CH}_{3}\right)_{2}\right), 121.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.6\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $122.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 123.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.6 \mathrm{~Hz}\right), 123.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.2 \mathrm{~Hz}\right), 124.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right)$, $124.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.1 \mathrm{~Hz}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, $126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.2\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.8\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(4 \mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $131.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.6\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(2 \mathrm{C}_{\mathrm{Ar}}\right), 133.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.4 \mathrm{~Hz}\right), 133.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 133.5$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 143.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 147.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=2.5 \mathrm{~Hz}\right), 148.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.3 \mathrm{~Hz}\right), 150.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=6.4 \mathrm{~Hz}\right), 150.3\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right)$.

3-(S)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-[(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'-
diyl)phosphite]-5-deoxy-5-N- α-methyl-benzylamino-1,2-O-isopropylidene- α-D-xylofuranose (28h)

Starting from (S)-BINOL ($158 \mathrm{mg}, 0.55 \mathrm{mmol}$), 3,3',5,5'-tetra-tert-butyl-(1,1'-biphenyl)-2,2'-diol ($226 \mathrm{mg}, 0.55 \mathrm{mmol}$), 5 -deoxy-$5-\mathrm{N}-(\mathrm{S})$ - α-methylbenzylamino-1,2-O-isopropylidene- α-Dxylofuranose 27d ($147 \mathrm{mg}, 0.5 \mathrm{mmol}$), pyridine (182 mg , $2.3 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.0 \mathrm{mmol})$ in toluene, the product $\mathbf{2 8 h}$ was isolated as a white solid ($125 \mathrm{mg}, 24 \%, \mathrm{R}_{\mathrm{f}} 0.58$).
$[\alpha]_{\mathrm{D}}^{24}=+85.7\left(c 0.47, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{64} \mathrm{H}_{73} \mathrm{NO}_{8} \mathrm{P}_{2}: \mathrm{C}, 73.47 ; \mathrm{H}, 7.03 ; \mathrm{N}$, 1.34.Found: C, 73.77; H, 7.06; N, 1.10 \%.

HRMS (ESI) calculated for $\mathrm{C}_{64} \mathrm{H}_{74} \mathrm{NO}_{8} \mathrm{P}_{2}$ 1046.48842, found 1046.48817.

HRMS (ESI) calculated for $\mathrm{C}_{64} \mathrm{H}_{73} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 1068.47036, found
1068.47042.

HRMS (ESI) calculated for $\mathrm{C}_{64} \mathrm{H}_{73} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{~K}$ 1084.4443, found 1084.44515.
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=126.7(\mathrm{~s}), 138.2(\mathrm{~s})$.
$\left.{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=1.03-1.06\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \text { and } \mathrm{CHCH}\right)_{3}\right), 1.23\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$, $1.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.29\left(\mathrm{~s}, 18 \mathrm{H}, 2 \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 2.45$ (ddd, $1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5$, $\left.{ }^{2} J_{5 A-5 \mathrm{~B}}=14.1 \mathrm{~Hz}, J=6.1 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}\right), 2.67-2.71\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=14.1 \mathrm{~Hz}\right), 3.23-3.32(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CHCH}_{3}$), $3.70-3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.38$ (brs, $\left.1 \mathrm{H}, \mathrm{H}-4\right), 4.44\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right.$), $5.87(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}$), 6.83-6.88 (m, 1H, CH-Ar), 6.98-7.11 (m, 7H, CH-Ar), 7.28-7.80 (m, 13H, $\mathrm{CH}-\mathrm{Ar}$).
${ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=21.9\left(\mathrm{~d}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=19.1 \mathrm{~Hz}\right), 26.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.9$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 31.3\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, J_{\mathrm{C}-\mathrm{P}}=2.7 \mathrm{~Hz}\right), 31.5\left(\mathrm{~d}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 31.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 31.6$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.6\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 34.7\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.5\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 35.6\left(C\left(\mathrm{CH}_{3}\right)_{3}\right), 39.5(\mathrm{C}-5), 58.5(\mathrm{~d}$, $\left.C \mathrm{HCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=28.8 \mathrm{~Hz}\right), 72.2\left(\mathrm{~d}, \mathrm{C}-3, J_{3-\mathrm{P}}=3.4 \mathrm{~Hz}\right), 73.6(\mathrm{C}-4), 85.3\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=3.8 \mathrm{~Hz}\right), 105.4$ $(\mathrm{C}-1), 111.4\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), 120.3\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=14.1 \mathrm{~Hz}\right), 122.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 122.8\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}} \text {, }\right.}\right.$ $\left.J_{\mathrm{C}-\mathrm{P}}=8.4 \mathrm{~Hz}\right)$, , $124.5\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 124.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.1 \mathrm{~Hz}\right), 125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.7$ $\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.1\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.4$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 129.3\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.2\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 131.4$ $\left(\mathrm{C}_{\mathrm{Ar}}\right), 133.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=3.8 \mathrm{~Hz}\right), 133.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.4 \mathrm{~Hz}\right), 134.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 135.2\left(\mathrm{C}_{\mathrm{Ar}}\right), 140.9\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $141.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 143.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right), 146.1\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=6.6 \mathrm{~Hz}\right), 146.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=6.3 \mathrm{~Hz}\right), 146.9\left(\mathrm{~d}, 2 \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=4.7 \mathrm{~Hz}\right), 148.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 150.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $J_{\mathrm{C}-\mathrm{P}}=5.7 \mathrm{~Hz}$).

3-(R)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-(S)-[(1,1'-binaphthyl-2,2'-diyl)phosphite]-5-deoxy-5-N-α-methyl-benzylamino-1,2-O-isopropylidene- α-D-xylofuranose (28i)

Starting from (R)-BINOL ($158 \mathrm{mg}, 0.55 \mathrm{mmol}$), ((S)-BINOL (158 mg , 0.55 mmol), 5-Deoxy-5-N-(S)- α-methylbenzylamino-1,2-O-isopropylidene- α-D-xylofuranose $27 \mathrm{e}(147 \mathrm{mg}, 0.5 \mathrm{mmol})$, pyridine $(182 \mathrm{mg}, 2.3 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(202 \mathrm{mg}, 2.0 \mathrm{mmol})$ in toluene $(5 \mathrm{~mL})$, the product $\mathbf{2 8 i}$ was isolated as a white solid ($97 \mathrm{mg}, 21 \%, \mathrm{R}_{\mathrm{f}} 0.28$).
$[\alpha]_{\mathrm{D}}^{26}=-49.6\left(c 0.28, \mathrm{CHCl}_{3}\right)$.
Anal. calcd for $\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{P}_{2}$: C, 72.96; H, 4.92; N, 1.52. Found: C, 72.54; H, 5.21; N, 1.28 \%.

HRMS (ESI) calculated for $\mathrm{C}_{56} \mathrm{H}_{46} \mathrm{NO}_{8} \mathrm{P}_{2}$ 922.26932, found 922.26866 .

HRMS (ESI) calculated for $\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{Na}$ 944.25126, found 944.2506.

HRMS (ESI) calculated for $\mathrm{C}_{56} \mathrm{H}_{45} \mathrm{NO}_{8} \mathrm{P}_{2} \mathrm{~K} 960.22520$, found 960.22543 .
${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(121 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=133.1(\mathrm{~s}), 145.8(\mathrm{~s})$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=1.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.88(\mathrm{dd}, 3 \mathrm{H}$, $\left.\mathrm{CHCH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{P}}=3.2 \mathrm{~Hz}\right), 3.08\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-5,{ }^{2} J_{5 \mathrm{~A}-5 \mathrm{~B}}=15.2 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}\right)$, $3.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-5\right), 4.31\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-3,{ }^{3} J_{3-\mathrm{P}}=9.8 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}\right), 4.49-4.53(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2$ and H-4), 5.07-5.20 (m, 1H, CHCH 3), $5.79\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=3.7 \mathrm{~Hz}\right), 6.60-7.14(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}), 7.18-7.83(\mathrm{~m}$, $20 \mathrm{H}, \mathrm{CH}-\mathrm{Ar}$).
${ }^{13} \mathrm{C}$ NMR ($63 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta(\mathrm{ppm})=26.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 26.7\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right), 30.2\left(\mathrm{CHCH}_{3}\right), 45.7(\mathrm{C}-5), 59.2$ $\left(\mathrm{d}, \mathrm{CHCH}_{3}, J_{\mathrm{C}-\mathrm{P}}=22.4 \mathrm{~Hz}\right), 79.8(\mathrm{C}-3), 83.3(\mathrm{~m}, \mathrm{C}-4), 84.4\left(\mathrm{~d}, \mathrm{C}-2, J_{2-\mathrm{P}}=1.6 \mathrm{~Hz}\right), 105.2(\mathrm{C}-1), 111.7$ $\left(C\left(\mathrm{CH}_{3}\right)_{2}\right), 121.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.0\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 122.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 122.1\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.7 \mathrm{~Hz}\right), 122.4\left(\mathrm{~d}, \mathrm{CH}_{\mathrm{Ar}}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 122.7\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=2.0 \mathrm{~Hz}\right), 124.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 124.9\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}\right), 125.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.2\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $125.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 125.5\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=5.4 \mathrm{~Hz}\right), 126.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 126.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.3\left(\mathrm{CH}_{\mathrm{Ar}}\right)$, $127.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.8\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.4\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.6\left(\mathrm{CH}_{\mathrm{Ar}}\right), 128.7\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, $128.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right)$, $128.8\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 130.5\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 130.9\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.0\left(\mathrm{CH}_{\mathrm{Ar}}\right), 131.2\left(\mathrm{C}_{\mathrm{Ar}}\right)$, $131.5\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.0\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.1\left(\mathrm{C}_{\mathrm{Ar}}\right), 132.8\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 133.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.1 \mathrm{~Hz}\right), 133.3$ $\left(\mathrm{d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.5 \mathrm{~Hz}\right), 144.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}, J_{\mathrm{C}-\mathrm{P}}=1.3 \mathrm{~Hz}\right), 147.3\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right.$, $\left.J_{\mathrm{C}-\mathrm{P}}=1.2 \mathrm{~Hz}\right), 149.4\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=6.8 \mathrm{~Hz}\right), 150.3\left(\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}\right), 151.2\left(\mathrm{~d}, \mathrm{C}_{\mathrm{Ar}}-\mathrm{O}, J_{\mathrm{C}-\mathrm{P}}=5.2 \mathrm{~Hz}\right)$.

5.1.2.7 Synthesis of 3-phenylbutanal

General procedure for the asymmetric hydroformylation of α-methyl styrene
The substrate (1.0 eq), $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}(1 \mathrm{~mol} \%)$ and the ligand $(1.2 \mathrm{~mol} \%)$ are transferred into a vial, which is placed into a stainless steel autoclave. The solvent ($8 \mathrm{~mL} / 1.0 \mathrm{mmol}$ substrate) is added under an argon atmosphere and the autoclave is purged with argon (three times) followed by syngas (three times). The indicated reaction conditions (syngas pressure, temperature and reaction time) are adjusted by an automatic program. After stirring for the adjusted time, the mixture is cooled to room temperature, depressurized and concentrated in vacuo. The reaction mixture was analyzed by ${ }^{1} \mathrm{H}$ NMR. The enantiomeric excess is determined by GC analysis. A racemic mixture of $\mathbf{3 0}$, as sample for the quantitative and qualitative analysis, is prepared by the hydroformylation of α-methyl styrene with $1 \mathrm{~mol} \% \mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}$ and $5 \mathrm{~mol} \% \mathrm{PPh}_{3}$ in toluene.

3-Phenylbutanal (30) ${ }^{[151]}$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.32\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right), 2.66$ $\left(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{A}}-\mathrm{CH},{ }^{2} J_{\mathrm{A}-\mathrm{B}}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{A}}=6.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{A}}=2.1 \mathrm{~Hz}\right), 2.76(\mathrm{ddd}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{B}}-\mathrm{CH}_{2},{ }^{3} J_{\mathrm{A}-\mathrm{B}}=16.9 \mathrm{~Hz},{ }^{3} J_{\mathrm{H}-\mathrm{B}}=6.7 \mathrm{~Hz},{ }^{4} J_{\mathrm{H}-\mathrm{B}}=2.0 \mathrm{~Hz}\right), 3.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, 7.15-7.34 (m, 5H, CH-Ar), $9.71\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{CHO},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=2.1 \mathrm{~Hz}\right)$.
${ }^{13} \mathrm{C}$ NMR $\left(63 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=22.4\left(\mathrm{CH}_{3}\right), 34.5(\mathrm{CH}), 51.9\left(\mathrm{CH}_{2}\right), 126.7\left(\mathrm{CH}_{\mathrm{Ar}}\right), 127.0$ $\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 128.9\left(2 \mathrm{CH}_{\mathrm{Ar}}\right), 145.7\left(\mathrm{C}_{\mathrm{Ar}}\right), 201.9(\mathrm{CHO})$.

Separation of enantiomers by GC on Lipodex E ($25 \mathrm{~m} \times 0.25 \mathrm{~mm}$), 90/25-6-180; $\mathrm{t}_{\mathrm{R}}=13.5 \mathrm{~min}$ for $(+)$-enantiomer and $t_{R}=13.5 \mathrm{~min}$ for (-)-enantiomer.

2-Methyl-2-phenylpropanal (31) ${ }^{[152]}$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.47\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right), 7.26-7.42(\mathrm{~m}, 5 \mathrm{H}$, CH-Ar), 9.51 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$).
${ }^{13} \mathrm{C}$ NMR spectrum could not be analyzed due to the small amount in the final reaction mixture.

Cumene ${ }^{[153]}$

${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=1.24\left(\mathrm{~d}, 6 \mathrm{H}, 2 \mathrm{CH}_{3},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=6.9 \mathrm{~Hz}\right), 2.93(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH})$, 6.75-7.10 (m, 5H, CH-Ar).
${ }^{13} \mathrm{C}$ NMR spectrum could not be analyzed due to the small amount in the final reaction mixture.

5.2 List of abbreviations

\bigcirc	Degree(s)
a	Year(s)
α	Specific rotation
Å	Angstrom(s)
Ac	Acetyl
Anal. calcd	Analytical calculated
Ar	Aromatic or aryl
asym.	Asymmetric
b / l	Branched to linear
β_{n}	Natural bite angle
eq	Equivalent
BASF	Badische Anilin und Sodafabrik
Bn	Benzyl
Boc	tert-Butoxycarbonyl
br	Broad
Bu	Butyl
$n-\mathrm{BuLi}$	normal-Butyl lithium
c	Concentration
C	Carbon
${ }^{\circ} \mathrm{C}$	Degree Celsius
cat.	Catalyst
$c \mathrm{Hex}$	Cyclohexyl
conv.	Conversion
D	Spectrum line of sodium at 589 nm or deuterium
d	Double or doublet or deuterated
δ	Chemical shift
Da	Dalton
DABCO	1,4-Diazabicyclo[2.2.2]octane
DCM	Dichloromethane
DEPT	Distortionless enhancement by polarization transfer
DMF	N, N-Dimethylformamide
DMSO	Dimethyl sulfoxide
ea	Equatorial-apical
ee	Equatorial-equatorial or enantiomeric excess
e.g.	exempli gratia (for example)
EI	Electron ionization
ESI	Electrospray ionization
Et	Ethyl
et al.	et alii (and others)
$\mathrm{Et}_{3} \mathrm{~N}$	Triethylamine
EtOAc	Ethyl acetate
$\mathrm{Et}_{2} \mathrm{O}$	Diethyl ether
eV	Electronvolt
f	Frequency
g	Gram(s) or gaseous
GC	Gas chromatography
h	Hour(s)
H	Hydrogen or proton
HPLC	High pressure liquid chromatography
HP-NMR	High pressure NMR
HRMS	High resolution mass spectrometry
Hünig's base	N, N-Diisopropylethylamine
Hz	Hertz
i	iso

$i \mathrm{Pr}$	Isopropyl
J	Coupling constant
J	Joule
1	Length
L	Liter(s)
λ	Wavelength
LDA	Lithium diisopropylamide
m	Meter(s) or multiplet
M	Metal
$[\mathrm{M}]^{+}$	Molpeak
m / z	Mass to charge
min	Minute(s)
Me	Methyl
MeCN	Acetonitrile
mol	Mole(s)
mp	Melting point
MS	Mass spectrometry
MTBE	Methyl tert-butyl ether
n	normal
n.d.	Not determined
Naph	Naphthyl
NMP	N-Methyl-2-pyrrolidone
NMR	Nuclear magnetic resonance
OTf	Triflate (trifluoromethanesulfonate)
p	Pressure
Pa	Pascal
PC	Propylene carbonate
pH	Pondus hydrogenii
Ph	Phenyl
ppm	Part(s) per million
R	Organic rest
rac	Racemic
R_{f}	Response factor
r.t.	Room temperature
s	Singlet
S	Solvent or substrate
θ	Tolman's cone angle
t	Ton(s)
t	tert or time
$t \mathrm{Bu}$	tert-Butyl
T	Temperature
THF	Tetrahydrofuran
TMS	Trimethylsilyl or tetramethylsilane
TOF	Turnover frequency or time of flight
TON	Turnover number
q	Quartet
v	Volume
vs.	versus

acac
Alkanox ${ }^{\circledR} 240$
(S, S)-BDPP
(S, S)-BenzP*
(R, R)-BenzP*
(S)-BINAP
(R)-BINAP
(R)-4-Tol-BINAP
(R, S)-BINAPHOS
(R, R)-BINAPHOS
(S)-BINOL
(R)-BINOL
(S)-BIPHEN- H_{2}
(R)-BIPHEN- H_{2}
(R)-MeO-BIPHEP

BiPhePhos
BISBI
bisDBP
(S,S,S)-BisDiazaPhos
(R, R, S)-BisDiazaPhos
($S_{a x}, S, S$)-BobPhos
(S, S)-Me-BPE
(S, S)-Et-BPE
(S, S)-Ph-BPE
(R, R)-Ph-BPE
(-)-BPPM
cat $A S$ ium ${ }^{\circledR} \mathrm{MQF}(R)$
(S,S)-Chiraphite
(R, R)-Chiraphite
(S, S)-ChiraPhos
cod
Crabtree's catalyst
(R)-DifluorPhos
(S, S)-DIOP
(R, R)-DIPAMP
dppb
dppe
dppf
(R, S)-dppf ${ }^{7} \mathrm{bp}$
$=(R, S)$-JosiPhos-4

Acetyl acetonato
Tris(2,4-di-tert-butylphenyl)phosphite
($2 S, 4 S$)-(+)-2,4-Bis(diphenylphosphino)pentane
(S,S)-(-)-1,2-Bis(tert-butylmethylphosphino)benzene
$(R, R)-(+)-1,2-B i s($ tert-butylmethylphosphino)benzene
(S)-(-)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthalene
$(R)-(+)-2,2^{\prime}-$ Bis(diphenylphosphino)-1,1'-binaphthalene
$(R)-(+)-2,2^{\prime}-B i s(d i-p-t o l y l p h o s p h i n o)-1,1 '$-binaphthalene
$(11 \mathrm{~b} S)-4-\left\{\left[(R)-2^{\prime}-(D i p h e n y l p h o s p h i n o)-[1,1 '-b i n a p h t h a l e n]-2-\right.\right.$ yl]oxy $\}$ dinaphtho[2,1- $\left.d: 1^{\prime}, 2^{\prime}-f\right][1,3,2]$ dioxophosphepin
$(11 \mathrm{~b} R)-4-\left\{\left[(R)-2^{\prime}-(\right.\right.$ Diphenylphosphino)-[1,1'-binaphthalen]-2-
yl]oxy $\}$ dinaphtho[2,1- $\left.d: 1^{\prime}, 2^{\prime}-f\right][1,3,2]$ dioxophosphepin
(S)-(-)-1,1'-Binaphthalene-2,2'-diol
(R)-(+)-1, 1^{\prime}-Binaphthalene-2,2'-diol
(S)-5,5',6,6'-Tetramethyl-3,3'-di-tert-butyl-1,1'-biphenyl-2,2'-diol
(R)-5,5',6,6'-Tetramethyl-3,3'-di-tert-butyl-1,1'-biphenyl-2,2'-diol
$(R)-(+)-2,2^{\prime}$-Bis(diphenylphosphino)-6,6'-dimethoxy-1,1'-biphenyl
6,6'-[(3,3'-Di-tert-butyl-5,5'-dimethoxy-1,1'-biphenyl-2,2'-
diyl)bis(oxy)]bis(dibenzo[$d, f][1,3,2]$ dioxaphosphepin)
2,2'-Bis[(diphenylphosphino)methyl]-1,1'-biphenyl
3,3',5,5'-Tetra-tert-butyl-1,1'-biphenyl-2,2'-diol
2,2',2",2"'-(1,2-Phenylenebis[(1S,3S)-tetrahydro-5,8-dioxo-1 H -
[1,2,4]diazaphopholo[1,2-a]pyridazine-2,1,3(3H)-triyl])tetrakis(N -[(1S)-1-phenylethyl])benzamide
2,2',2",2"'-(1,2-Phenylenebis[(1R,3R)-tetrahydro-5,8-dioxo-1 H -
[1,2,4]diazaphopholo[1,2-a]pyridazine-2,1,3(3H)-triyl])tetrakis(N -
[(1S)-1-phenylethyl])benzamide
(11aS)-4,8-Di-tert-butyl-6-\{[(2S,5S)-2,5-diphenylphospholan-1-
yl]methoxy\}-1,2,10,11-
tetramethyldibenzo $[d, f][1,3,2]$ dioxophosphepin
(-)-1,2-Bis[(2S,5S)-2,5-dimethylphospholano]ethane
(-)-1,2-Bis[(2S,5S)-2,5-dimethylphospholano]ethane
$(+)-1,2-\operatorname{Bis}[(2 S, 5 S)-2,5-d i p h e n y l p h o s p h o l a n o] e t h a n e$
(-)-1,2-Bis $[(2 R, 5 R)-2,5-d i p h e n y l p h o s p h o l a n o] e t h a n e ~$
($2 S, 4 S$)- N-(tert-Butoxycarbonyl)-4-(diphenylphosphino)-2-
[(diphenylphosphino)methyl]pyrrolidine
(-)-1,2-Bis[(2R,5R)-2,5-dimethylphospholanyl]-3,3,4,4-tetrafluoro-1cyclobutene
(-)-6,6'- $\{[(1 S, 3 S)-1,3$-Dimethyl-1,3-propanedyl]bis(oxy) \} bis[4,8-bis(tert-butyl)-2,10-dimethoxy-bibenzo[d,f][1,3,2]dioxaphosphepin $(+)-6,6 '-\{[(1 R, 3 R)-1,3$-Dimethyl-1,3-propanedyl]bis(oxy) $\}$ bis[4,8-bis(tert-butyl)-2,10-dimethoxy-bibenzo[d,f][1,3,2]dioxaphosphepin $(2 S, 4 S)-(-)-2,4-$ Bis(diphenylphosphino)butane
1,5-Cyclooctadiene
(1,5-Cyclooctadiene)(pyridine)(tricyclohexylphosphine)-iridium(I) hexafluorophosphate
(R)-(-)-5,5'-Bis(diphenylphosphino)-2,2,2',2'-tetrafluoro-4,4'-bi-1,3benzodioxole
(4S,5S)-(+)-4,5-Bis(diphenylphosphinomethyl)-2,2-dimethyl-1,3dioxolane
$(R, R)-(-)-1,2-B i s[(2-m e t h o x y p h e n y l)($ phenylphosphino $)]$ ethane
1,4-Bis(diphenylphosphino)butane
1,4-Bis(diphenylphosphino)ethane
1,1'-Bis(diphenylphosphino)ferrocene
(R)-1-[(S)-2-(Diphenylphosphino)ferrocenyl]ethyldi-tertbutylphosphine
(R, R, S, S)-DuanPhos
(S, S)-Me-DuPhos
(R, R)-Me-DuPhos
(S, S)-Et-DuPhos
(S,S)-iPr-DuPhos
(S, S)-Et-FerroTANE ${ }^{\circledR}$
(S, R)-JosiPhos
(R, S)-JosiPhos
(R, S)-JosiPhos-1
(R, S)-JosiPhos-2
(R, S)-JosiPhos-3
(S,R)-JosiPhos-4
(S, S)-Kelliphite
(R, R)-Kelliphite
(S,S,R)-MandyPhos-1
(S,S,R)-MandyPhos-2
(R, R)-Quinox ${ }^{*}$ *
(R)-DTBM-SegPhos
(R)-SynPhos
(S,S,R,R)-TangPhos
(S, S)- $c \mathrm{Hex}_{2} \mathrm{PThrePHOX}$
$(S, S)-\mathrm{Ph}_{2} \mathrm{PThrePHOX}$
(R)- C_{3}-TunePhos
(R, R)-WalPhos-1
XantPhos
(R, S)-XyliPhos
(R, S)-YanPhos
L1b
L2b
L2c
L2d

L2e
(1R,1'R,2S,2'S)-2,2'-Di-tert-butyl-2,3',2,3'-tetrahydro, $1 H, 1$ ' H -
(1, 1^{\prime})biisophosphindolyl
(+)-1,2-Bis[(2S,5S)-2,5-dimethylphospholano]benzene
(-)-1,2-Bis[(2R,5R)-2,5-dimethylphospholano]benzene
(+)-1,2-Bis[(2S,5S)-2,5-diethylphospholano]benzene
(-)-1,2-Bis[(2S,5S)-2,5-diisopropylphospholano]benzene
(-)-1,1'-Bis[(2S,4S)-2,4-diethylphosphotano]ferocene
(S)-1-[(R)-2-
(Diphenylphosphino)ferrocenyl]ethyldicyclohexylphosphine (R)-1-[(S)-2-
(Diphenylphosphino)ferrocenyl]ethyldicyclohexylphosphine
(R)-1-[(S)-2-(Dicyclohexylphosphino)ferrocenyl]ethyldi-tertbutylphosphine
(R)-1-[(S)-2-
(Dicyclohexylphosphino)ferrocenyl]ethyldicyclohexylphosphine
(R)-1-\{(S)-2-[Bis(4-methoxy-3,5-
dimethylphenyl)phosphino]ferrocenyl\} ethyldi(3,5-xylyl)phosphine
(S)-1-[(R)-2-(Diphenylphosphino)ferrocenyl]ethyldi-tertbutylphosphine
$(S, S)-(+)-6,6{ }^{\prime}-\left[\left(1,1^{\prime}\right.\right.$-Biphenyl-2,2'-diyl)bis(oxy)]bis[4,8-di-tert-butyl-1,2,10,11-tetramethyl]dibenzo[d,f][1,3,2]dioxaphosphepin $(R, R)-(-)-6,6$ '-[(1,1'-Biphenyl-2,2'-diyl)bis(oxy)]bis[4,8-di-tert-butyl-
1,2,10,11-tetramethyl]dibenzo[d,f][1,3,2]dioxaphosphepin
(S,S')-1,1'-Bis(dicyclohexylphosphino)-2,2'-bis[(R)- α -
(dimethylamino)benzyl]ferrocene
$\left(S, S^{\prime}\right)$-1, 1'-Bis[(R)- α-(dimethylamino)benzyl]-2,2'-
bis[diphenylphosphino)ferrocene
$(R, R)-(-)-2,3-B i s(t e r t-b u t y l m e t h y l p h o s p h i n o) q u i n o x a l i n e ~$
$(R)-(-)-5,5^{\prime}-\mathrm{Bis}[\mathrm{di}(3,5-\mathrm{di}-t e r t-$ butyl-4-methoxyphenyl)phosphino]-
4,4'-bi-1,3-benzodioxole
$(R)-(+)-6,6 '$ 'Bis(diphenylphosphino)-2,2',3,3'-tetrahydro-5,5'-bi-1,4benzodioxin
($1 S, 1^{\prime} S, 2 R, 2^{\prime} R$)-1,1'-Di-tert-butyl-(2,2')-diphospholane
\{Dibenzyl[(4S,5S)-5-methyl-2-phenyl-4,5-dihydro-4oxazolyl]methyl\}dicyclohexylphosphinite
\{Dibenzyl[(4S,5S)-5-methyl-2-phenyl-4,5-dihydro-4oxazolyl]methyl\} diphenylphosphinite
(R)-1,13-Bis(diphenylphosphino)-7,8-dihydro-6 H dibenzo $[f, h][1,5]$ dioxonin
$(R)-1-\{(R)-2-[2-(D i p h e n y l p h o s p h i n o) p h e n y l] f e r r o c e n y l\} e t h y l b i s[3,5-$ bis-(trifluoromethyl)phenyl]phosphine
4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene
$(R)-1-\{[(S)$-2-Diphenylphosphino]ferrocenyl $\}$ ethylbis(3,5dimethylphenyl)phosphine
(11bS)-N-[(R)-2'-(Diphenylphosphino)-[1,1'-binaphthalen]-2-yl]- N -ethyldinaphtho[2,1-d:1', $\left.2^{\prime}-f\right][1,3,2]$ dioxaphosphepin-4-amine 3,5-Bis[(3,3'-di-tert-butyl-5,5'-dimethoxy-1,1'-biphenyl-2,2'-diyl)phosphite]-1,2- O-isopropylidene- α-D-ribofuranose 3,5-Bis[(3,3'-di-tert-butyl-5,5'-dimethoxy-1,1'-biphenyl-2,2'-diyl)phosphite]-1,2- O-isopropylidene- α-D-allofuranose 3,5-Bis[(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl)phosphite]-1,2-O-isopropylidene- α-D-allofuranose 3,5-Bis[(3,3'-bistrimethylsilyl-1,1'-biphenyl-2,2'-diyl)phosphite]-6-deoxy-1,2- O-isopropylidene- α-D-allofuranose 3,5-Bis $\{[(S)$-1, 1'-binaphthyl-2,2'-diyl $]$ phosphite $\}$-6-deoxy-1,2-O-isopropylidene- α-D-allofuranose

L2f	3,5-Bis \{[(R)-1,1'-binaphthyl-2,2'-diyl]phosphite\}-6-deoxy-1,2-O-isopropylidene- α-D-allofuranose
	3,5-Bis[(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'-
L3c	diyl)phosphite]-3-amine-3-deoxy-1,2-O-isopropylidene- α-Dribofuranose
	3,5-Bis[(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'-
L4c	diyl)phosphite]-3-amine-3-deoxy-1,2-O-isopropylidene- α-Dxylofuranose
	3,5-Bis[(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'-
L5c	diyl)phosphite]-5-amine-5-deoxy-1,2-O-isopropylidene- α-Dxylofuranose
L6a	3,5-Bis[(1,1'-biphenyl-2,2'-diyl)phosphite]-1,2-O-isopropylidene- α-Dxylofuranose
L6b	3,5-Bis[(3,3'-di-tert-butyl-5,5'-dimethoxy-1,1'-biphenyl-2,2'-diyl)phosphite]-1,2-O-isopropylidene- α-D-xylofuranose
L6c	3,5-Bis[(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'- diyl)phosphite]-1,2- O-isopropylidene- α-D-xylofuranose
L6e	$3,5-\mathrm{Bis}\left\{\left[(S)-1,1^{\prime}\right.\right.$-binaphthyl-2,2'-diyl $]$ phosphite $\}-1,2-O-$ isopropylidene- α-D-xylofuranose
L6f	3,5-Bis $\{[(R)-1,1$ '-binaphthyl-2,2'-diyl $]$ phosphite $\}-1,2-O-$ isopropylidene- α-D-xylofuranose
L6g	3,5-Bis $\{[(S)$-3,3'-bistrimethylsilyl-1,1'-binaphthyl-2,2'diyl]phosphite $\}$-1,2- O-isopropylidene- α-D-xylofuranose
L6h	3,5-Bis \{[(R)-3,3'-bistrimethylsilyl-1,1'-binaphthyl-2,2'diyl]phosphite $\}$-1,2- O-isopropylidene- α-D-xylofuranose
L7b	3,5-Bis[(3,3'-di-tert-butyl-5,5'-dimethoxy-1,1'-biphenyl-2,2'-diyl)phosphite]-6-deoxy-1,2- O-isopropylidene- β-L-idofuranose
L7c	3,5-Bis[(3,3',5,5'-tetra-tert-butyl-1,1'-biphenyl-2,2'-diyl)phosphite]-6-deoxy-1,2-O-isopropylidene- β-L-idofuranose
L8d	3,5-Bis[(3,3'-bistrimethylsilyl-1,1'-biphenyl-2,2'-diyl)phosphite]-6-deoxy-1,2-O-isopropylidene- α-D-glucofuranose
L8e	3,5-Bis $\{[(S)$-1,1'-binaphthyl-2,2'-diyl]phosphite \}-6-deoxy-1,2-O-isopropylidene- α-D-glucofuranose
L8f	3,5-Bis $\left\{\left[(R)-1,1^{\prime}\right.\right.$-binaphthyl-2,2'-diyl $]$ phosphite $\}-6-$ deoxy-1,2-O-isopropylidene- α-D-glucofuranose
L8g	3,5-Bis $\{[(S)$-3,3'-bistrimethylsilyl-1,1'-binaphthyl-2,2'diyl]phosphite $\}$-6-deoxy-1,2- O-isopropylidene- α-D-glucofuranose
A	1,2-Bis[(4R,5S,6S,7R)-5,6-dimethoxy-4,7-dimethyl-1,3,2-dioxophosphepan-2-yl)ethane
B	(S)-1,4-Bis(diphenylphosphino)butan-2-amine
	$\{(S)$-2-[2-((R, R)-2,5-Dimethylphospholan-1-yl)phenyl]-4-isopropyl-
C	4,5-dihydrooxazole\}(1,5-cyclooctadiene)iridium(I) hexafluorophosphate
D	Dichloro $\left[(R)-2,2^{\prime}-\right.$ bis(diphenylphosphino)-1,1'-binaphthyl1 $[(R, R)$-1,2diphenylethane diamine]ruthenium(II)
E	Dichloro[(S)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl $][(S, S)$-1,2diphenylethane diamine]ruthenium(II)
F	Dichloro[(S)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl $][(R, R)-1,2-$ diphenylethane diamine]ruthenium(II)
G	($1 S, 1$ 'S)-(9,9-Dimethyl-9H-xanthene-4,5-diyl)bis[phenyl $(o-$ tolyl)phosphine]
H	(1S,1'S)-(9,9-Dimethyl-9H-xanthene-4,5-diyl)bis[(2methoxyphenyl)(phenyl) phosphine]
I	(1S,1'S)-(9,9-Dimethyl-9H-xanthene-4,5-diyl)bis(naphthalen-2yl(phenyl)phosphine]

5.3 Applied ligands in this dissertation

Figure 24. Applied achiral ligands in this dissertation.

1,1'-Bis[(2R,5R)-2,5-d isopropylphospholano]ferrocene

(R,S)-dppftbp

(S, S)-Me-BPE $\quad R=M e$ (S, S)-Et-BPE $\quad R=E t$

(R, R)-Ph-BPE

(S,S)-Me-DuPhos $\mathrm{R}=\mathrm{Me}$
(S, S)-Et-DuPhos $\quad \mathrm{R}=\mathrm{Et}$
(S,S)-iPr-DuPhos $\mathrm{R}=\mathrm{iPr}$

(R, R)-Me-DuPhos

catASium ${ }^{\circledR} \mathrm{MQF}(R)$

(R,R,S)-BisDiazaPhos

(R, R)-Chiraphite

(S,S)-cHex ${ }_{2}$ PThrePHOX

$(S, S)-\mathrm{Ph}_{2} \mathrm{PThrePHOX}$

Crabtree's catalyst

c

E

F

Figure 25. Applied ligands in this dissertation.

5.4 Supplementary information

Table 34. Asymmetric hydrogenation of 1a with different catalysts in THF. ${ }^{\text {a }}$

Entry	Catalyst	Yield $^{\mathbf{b}}[\mathbf{\%}]$	ee $^{\mathbf{c}}[\%]$
$1^{\mathbf{d}}$	$\mathbf{C}^{\mathbf{e}}$	31	$1(S)$
2	$\mathbf{D}^{\mathbf{e}}$	16	$4(S)$
3	$\mathbf{E}^{\mathbf{e}}$	6	$2(R)$
4	$\mathbf{F}^{\mathbf{e}}$	6	$9(S)$
5	$\mathrm{Ir}\left((S, S)-\mathrm{Ph}_{2} \mathrm{PThrePHOX}\right)(\operatorname{cod})$	69	$4(R)$
6	$\operatorname{Ir}\left((S, S)-c \mathrm{Hex}_{2} \mathrm{PThrePHOX}\right)(\operatorname{cod})$	67	$4(S)$

${ }^{\text {a }} 1.0 \mathrm{mmol}$ of 1 a , catalyst $10.0 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of THF, $50^{\circ} \mathrm{C}, 5.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,20 \mathrm{~h}$.
${ }^{\mathrm{b}}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
${ }^{\text {c }}$ Ee-values were determined by GC analysis; absolute configurations were compared to synthesized enantiomerically pure O-silylated methyl lactate.
${ }^{\mathrm{d}}$ Reaction was performed at $40^{\circ} \mathrm{C}$ and 1.5 MPa .
${ }^{\mathrm{e}}$ Catalysts C-F were recently prepared in the research group of Prof. Börner and shown in Chapter 5.3.

Table 35. Rh-catalyzed asymmetric hydroformylation of $\mathbf{6 a}$ with non-commercial and new ligands. ${ }^{a}$

Entry	Ligand	$\begin{aligned} & \text { Conv. }^{\text {b }} \\ & {[\%]} \\ & \hline \end{aligned}$	$\begin{aligned} & 14^{\mathrm{b}} \\ & {[\%]} \end{aligned}$	$\begin{aligned} & 15^{\mathrm{b}, \mathrm{c}} \\ & {[\%]} \end{aligned}$	$\begin{aligned} & 8 \mathbf{8 a}^{\mathrm{b}} \\ & {[\%]} \end{aligned}$	(E) $-9 \mathrm{a}^{\mathrm{b}}$ [\%]	(Z)-9ab ${ }^{\text {b }}$ [\%]	ee ${ }^{\text {d }}[\%]$
1	20 f	100	1	<1	62	10	26	n.d.
2	21a	100	30	-	22	24	24	rac
3	22b	100	11	-	74	5	10	rac
4	$\mathrm{G}^{\text {f }}$	53	2	<1	32	4	15	n.d.

[^25]Table 36. Rh-catalyzed asymmetric hydroformylation of 16a. ${ }^{\text {a }}$

Entry	Ligand	Conv. ${ }^{\text {b }}$ [\%]	$17 \mathrm{a}^{\text {b }}$ [\%]	$18 \mathrm{a}^{\text {b }}$ [\%]	$19 \mathrm{a}^{\text {b }}$ [\%]	ee^{c} [\%]
$1^{\text {d }}$	(S, S)-DIOP	64	<1	-	63	n.d.
$2{ }^{\text {e }}$	(S, S)-DIOP	56	48	<1	7	4 (-)
$3^{\text {f }}$	(S, S)-DIOP	50	35	3	11	7 (-)
4	(S, S)-DIOP/ $\mathrm{PPh}_{3}(1: 1)$	72	52	9	11	8 (-)
$5^{\text {d }}$	(R, R)-QuinoxP*	93	36	2	55	10 (-)
$6^{\text {g }}$	(R, R)-QuinoxP*	64	21	8	34	16 (-)
$7^{\text {h }}$	(R, R)-QuinoxP*	17	1	2	14	23 (-)
$8^{\text {d }}$	(S, S)-BenzP*	68	34	4	29	$2(+)$
9	(S, S)-ChiraPhos	42	21	3	18	$24(+)$
10	21a	>99	97	<1	3	15 (-)
11^{g}	21a	67	64	1	2	19 (-)
$12^{\mathrm{h}, \mathrm{i}}$	21a	12	9	3	<1	14 (-)
$13^{\text {e }}$	21a	62	59	1	2	$12(-)$
$14^{\text {k }}$	21a	39	37	1	1	$22(-)$
15^{1}	21a	79	75	1	3	$11(-)$
16^{m}	21a	66	62	<1	4	$3(-)$
17	21b	>99	94	<1	6	6 (-)
18^{g}	21b	85	80	2	3	$8(-)$
19	21c	69	64	<1	5	$14(-)$
$20^{\text {g }}$	21c	13	12	<1	<1	$19(-)$
21	21d	66	63	<1	2	$10(-)$
$22^{\text {g }}$	21d	16	14	<1	<1	$10(-)$
$23^{\text {g }}$	21e	32	30	<1	1	$3(-)$
24	$\mathrm{G}^{\mathbf{n}}$	65	59	1	5	$11(+)$
$25^{\text {g }}$	$\mathbf{G}^{\mathbf{n}}$	45	40	2	2	$28(+)$
$26^{\text {h,o }}$	$\mathrm{G}^{\mathbf{n}}$	46	37	6	3	41 (+)
27^{8}	$\mathbf{H}^{\mathbf{n}}$	71	62	2	8	4 (-)
$28^{\text {g }}$	$\mathbf{I}^{\mathbf{n}}$	89	77	2	10	$11(-)$

${ }^{\text {a }} 0.5 \mathrm{mmol}$ of 16a, $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}, \mathrm{PP}-l i g a n d ~ 6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $100{ }^{\circ} \mathrm{C}, 1.0 \mathrm{MPa}$, $\mathrm{S} / \mathrm{Rh}=100$, 21 h .
${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{31} \mathrm{P}$ NMR spectroscopy.
${ }^{\mathrm{c}}$ Ee-values of the linear aldehyde (17a) were determined by GC analysis.
${ }^{\mathrm{d}}$ Reaction was performed with a partial pressure ratio $\mathrm{CO} / \mathrm{H}_{2}=1: 5$.
${ }^{\mathrm{e}}$ Reaction was performed in THF.
${ }^{\mathrm{f}}$ Reaction was performed with $\left[\mathrm{Rh}(\operatorname{cod})_{2}\right] \mathrm{BF}_{4}$.
${ }^{\mathrm{g}}$ Reaction was performed at $80^{\circ} \mathrm{C}$.
${ }^{\mathrm{h}}$ Reaction was performed at $60^{\circ} \mathrm{C}$.
${ }^{\mathrm{i}}$ Reaction was performed under 3.0 MPa .
${ }^{\mathrm{k}}$ Reaction was performed in DCM.
${ }^{1}$ Reaction was performed in EtOAc.
${ }^{m}$ Reaction was performed in heptane.
${ }^{\mathrm{n}}$ Ligands G-I were recently prepared in the research group of Prof. Börner and shown in Chapter 5.3.
${ }^{\circ} \mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 25.0 \mu \mathrm{~mol}$, ligand $30.0 \mu \mathrm{~mol}$.

5.5 References

[1] Tranter, G. E. Mol. Phys. 1985, 56, 825-838.
[2] Catalysis from A to Z - A Concise Encyclopedia; Cornils, B., Herrmann, W. A., Schlögl, R., Wong, C.-H., Eds; WILEY-VCH: Weinheim, 2003.
[3] Angewandte homogene Katalyse; Behr, A., Eds; WILEY-VCH: Weinheim, Germany, 2008.
[4] (a) Pfaltz, A.; Blankenstein, J.; Hilgraf, R.; Hörmann, E.; McIntyre, S.; Menges, F.; Schönleber, M.; Smidt, S. P.; Wüstenberg, B.; Zimmermann, N. Adv. Synth. Catal. 2003, 345, 33-45. (b) Cui, X.; Burgess, K. Chem. Rev. 2005, 105, 3272-3296. (c) Källström, K.; Munslow, I.; Andersson, P. G. Chem. Eur. J. 2006, 12, 3194-3200. (d) Roseblade, S. J.; Pfaltz, A. Acc. Chem. Res. 2007, 40, 1402-1411. (e) Mazuela, J.; Verendel, J. J.; Coll, M.; Schäffner, B.; Börner, A.; Andersson, P. G.; Pàmies, O.; Diéguez, M. J. Am. Chem. Soc. 2009, 131, 12344-12353.
[5] (a) Kitamura, M.; Tsukamoto, M.; Bessho, Y.; Yoshimura, M.; Kobs, U.; Widhalm, M.; Noyori, R. J. Am. Chem. Soc. 2002, 124, 6649-6667. (b) Gridnev, I. D.; Imamoto, T. Acc. Chem. Res. 2004, 37, 633-643.
[6] Koenig, K. E.; Sabacky, M. J.; Bachmann, G. L.; Christopfel, W. C.; Barnstorff, H. D.; Friedman, R. B.; Knowles, W. S.; Stults, B. R.; Vineyard, B. D.; Weinkauff, D. J. Ann. N.Y. Acad. Sci. 1980, 333, 16-22.
[7] Blaser, H.-U.; Malan, C.; Pugin, B.; Spindler, F.; Steiner, H.; Studer, M. Adv. Synth. Catal. 2003, 345, 103-151.
[8] Halpern, J. Science 1982, 217, 401-406.
[9] (a) Asymmetric Catalysis on Industrial Scale; 1st ed.; Blaser, H. U., Federsel, H.-J., Eds; WILEY-VCH: Weinheim, Germany, 2004. (b) Asymmetric Catalysis on Industrial Scale; 2nd ed.; Blaser, H.-U., Federsel, H.-J., Eds; WILEY-VCH: Weinheim, Germany, 2010.
[10] Blaser, H. U.; Hanreich, R.; Schneider, H. D.; Spindler, F.; Steinacher, B. In Asymmetric Catalysis on Industrial Scale; 1st ed.; Blaser, H. U., Schmidt, S., Eds; WILEY-VCH: Weinheim, Germany, 2004; pp 55-70.
[11] (a) Jäkel, C.; Paciello, R.; BASF SE, Christoph Jaekel, Rocco Paciello; WO2006040096, 2006. (b) SchmidtLeithoff, J.; Jäkel, C.; Paciello, R.; BASF SE; EP2139835, 2008. (c) Heydrich, G.; Gralla, G.; Rauls, M.; SchmidtLeithoff, J.; Ebel, K.; Krause, W.; Oehlenschläger, S.; Jäkel, C.; Friedrich, M.; Bergner, E. J.; Kashani-Shirazi, N.; Paciello, R.; BASF; US20100249467, 2009.
[12] (a) Selke, R. In Asymmetric Catalysis on Industrial Scale; 1st ed.; Blaser, H. U., Schmidt, S., Eds; WILEY-VCH: Weinheim, Germany, 2004; pp 39-53. (b) Knowles, W. S. In Asymmetric Catalysis on Industrial Scale; 1st ed.; Blaser, H. U., Schmidt, S., Eds; WILEY-VCH: Weinheim, Germany, 2004; pp 23-38. (c) Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions; Blaser, H.-U., Schmidt, E., Eds; WILEY-VCH: Weinheim, Germany, 2004.
[13] Cornils, B.; Herrmann, W. A.; Rasch, M. Angew. Chem. 1994, 106, 2219-2238.
[14] Industrielle organische Chemie; Arpe, H.-J., Eds; WILEY-VCH: Weinheim, Germany, 2007.
[15] (a) Whiteker, G. T.; Cobley, C. J. Top. Organomet. Chem. 2012, 42, 35-46. (b) 75 JAHRE OXO-SYNTHESE; Frey, G., Dämbkes, G., Eds; Klartext: Essen, Germany, 2013.
[16] (a) Osborn, J. A.; Wilkinson, G.; Young, J. F. Chem. Commun. (London) 1965, 17-17. (b) Evans, D.; Osborn, J. A.; Wilkinson, G. J. Chem. Soc. 1968, 3133-3142.
[17] (a) Clarke, M. L.; Roff, G. J. Chem. Eur. J. 2006, 12, 7978-7986. (b) Keulemans, A. I. M.; Kwantes, A.; van Bavel, T. Recl. Trav. Chim. Pays-Bas 1948, 67, 298-308.
[18] (a) Botteghi, C.; Paganelli, S.; Schionato, A.; Marchetti, M. Chirality 1991, 3, 355-369. (b) Gladiali, S.; Pinna, L. Tetrahedron: Asymmetry 1990, 1, 693-696. (c) Gladiali, S.; Pinna, L. Tetrahedron: Asymmetry 1991, 2, 623-632. (d) Wang, X.; Buchwald, S. L. J. Org. Chem. 2013, 78, 3429-3433.
[19] Tolman, C. A. Chem. Rev. 1977, 77, 313-348.
[20] (a) Casey, C. P.; Whiteker, G. T. Isr. J. Chem. 1990, 30, 299-304. (b) Casey, C. P.; Whiteker, G. T.; Melville, M. G.; Petrovich, L. M.; Gavney Jr, J. A.; Powell, D. R. J. Am. Chem. Soc. 1992, 114, 5535-5543.
[21] (a) van Leeuwen, P. W.; Kamer, P. C.; Reek, J. N.; Dierkes, P. Chem. Rev. 2000, 100, 2741-2770. (b) Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Acc. Chem. Res. 2001, 34, 895-904.
[22] (a) Homogenous Catalysis: Understanding the Art; van Leeuwen, P. W. N. M., Eds; Kluwer Academic: Dordrecht, 2004. (b) Ferrocenes: Ligands, Materials and Biomolecules; Stepnicka, P., Eds; WILEY-VCH: Weinheim, Germany, 2008.
[23] van Leeuwen, P. W. N. M.; Kamer, P. C. J.; Reek, J. N. H. Pure Appl. Chem. 1999, 71, 1443-1452.
[24] (a) Wang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2011, 133, 19080-19083. (b) Zheng, X.; Cao, B.; Liu, T.-1.; Zhang, X. Adv. Synth. Catal. 2013, 355, 679-684.
[25] (a) Klosin, J.; Landis, C. R. Acc. Chem. Res. 2007, 40, 1251-1259. (b) Gual, A.; Godard, C.; Castillón, S.; Claver, C. Tetrahedron: Asymmetry 2010, 21, 1135-1146. (c) Rhodium Catalyzed Hydroformylation; van Leeuwen, P. W. N. M., Claver, C., Eds; Kluwer Arcademic: Dordrecht, 2002. (d) Agbossou, F.; Carpentier, J.-F.; Montreux, A. Chem. Rev. 1995, 95, 2485-2506.
[26] (a) Franke, R.; Selent, D.; Börner, A. Chem. Rev. 2012, 112, 5675-5732. (b) Gusevskaya, E. V.; Jiménez-Pinto, J.; Börner, A. ChemCatChem 2014, 6, 382-411.
[27] (a) Cobley, C. J.; Gardner, K.; Klosin, J.; Praquin, C.; Hill, C.; Whiteker, G. T.; Zanotti-Gerosa, A.; Petersen, J. L.; Abboud, K. A. J. Org. Chem. 2004, 69, 4031-4040. (b) Nozaki, K.; Sakai, N.; Nanno, T.; Higashijima, T.; Mano, S.; Horiuchi, T.; Takaya, H.; V, K. U. J. Am. Chem. Soc. 1997, 119, 4413-4423. (c) Nozaki, K.; Itoi, Y.; Shibahara, F.; Shirakawa, E.; Ohta, T.; Takaya, H.; Hiyama, T. J. Am. Chem. Soc. 1998, 120, 4051-4052. (d) Cobley, C. J.; Froese, R. D. J.; Klosin, J.; Qin, C.; Whiteker, G. T.; Abboud, K. A.; Uni, V.; Gaines, V. Organometallics 2007, 26, 2986-2999. (e) Erre, G.; Enthaler, S.; Junge, K.; Gladiali, S.; Beller, M. J. Mol. Catal. A: Chem. 2008, 280, 148-155. (f) Axtell, A. T.; Klosin, J.; Whiteker, G. T.; Cobley, C. J.; Fox, M. E.; Jackson, M.; Abboud, K. A. Organometallics 2009, 28, 2993-2999. (g) Robert, T.; Abiri, Z.; Wassenaar, J.; Sandee, A. J.; Romanski, S.; Neudörfl, J. r.-M.; Schmalz, H.-G. n.; Reek, J. N. H. Organometallics 2010, 29, 478-483. (h) Wassenaar, J.; de Bruin, B.; Reek, J. N. H. Organometallics 2010, 29, 2767-2776.
[28] (a) McDonald, R. I.; Wong, G. W.; Neupane, R. P.; Stahl, S. S.; Landis, C. R. J. Am. Chem. Soc. 2010, 132, 14027-14029. (b) Sakai, N.; Nozaki, K.; Takaya, H. J. Chem. Soc., Chem. Commun. 1994, 395-396. (c) Kollár, L.; Farkas, E.; Bâtiu, J. J. Mol. Catal. A: Chem. 1997, 115, 283-288. (d) Watkins, A. L.; Hashiguchi, B. G.; Landis, C. R. Org. Lett. 2008, 10, 4553-4556. (e) Mazuela, J.; Coll, M.; Pàmies, O.; Diéguez, M. J. Org. Chem. 2009, 74, 5440-5445. (f) Worthy, A. D.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. J. Am. Chem. Soc. 2010, 132, 14757-14759. (g) Chikkali, S. H.; Bellini, R.; Berthon-Gelloz, G.; van der Vlugt, J. I.; de Bruin, B.; Reek, J. N. H. Chem. Commun. (Camb.) 2010, 46, 1244-1246. (h) Clemens, A. J. L.; Burke, S. D. J. Org. Chem. 2012, 77, 2983-2985.
[29] (a) Giordano, C.; Villa, M.; Panossian, S. In Chirality in Industry; Collins, A. N., Sheldrake, G. N., Crosby, J., Eds; WILEY-VCH: Chichester, U. K., 1992; pp 303-312. (b) Tanaka, R.; Nakano, K.; Nozaki, K. J. Org. Chem. 2007, 72, 8671-8676.
[30] (a) Jeulin, S.; Ayad, T.; Ratovelomanana-Vidal, V.; Genêt, J.-P. Adv. Synth. Catal. 2007, 349, 1592-1596. (b) Holz, J.; Schäffner, B.; Zayas, O.; Spannenberg, A.; Börner, A. Adv. Synth. Catal. 2008, 350, 2533-2543.
[31] Wong, G. W.; Landis, C. R. Org. Synth. 2012, 89, 243-254.
[32] Lambers-Verstappen, M. M. H.; de Vries, J. G. Adv. Synth. Catal. 2003, 345, 478-482.
[33] Thomas, P. J.; Axtell, A. T.; Klosin, J.; Peng, W.; Rand, C. L.; Clark, T. P.; Landis, C. R.; Abboud, K. A. Org. Lett. 2007, 9, 2665-2668.
[34] (a) Consiglio, G.; Morandini, F.; Scalone, M.; Pino, P. J. Organomet. Chem. 1985, 279, 193-202. (b) Ojima, I.; Takai, M.; Takahashi, T.; Mitsubishi Chemical Corporation, Iwao Ojima, Takayoshi Takahashi, Masaki Takai, Research Foundation for the State University of New York WO2004078766, 2004. (c) Parrinello, G.; Stille, J. K. J. Am. Chem. Soc. 1987, 109, 7122-7127. (d) Kollár, L.; Consiglio, G.; Pino, P. J. Organomet. Chem. 1987, 330, 305-314. (e) Kollár, L.; Bakos, J.; Tóth, I.; Heil, B. J. Organomet. Chem. 1988, 350, 277-284. (f) Consiglio, G.; Kollár, L.; Kölliker, R. J. Organomet. Chem. 1990, 396, 375-383. (g) Uhlemann, M.; Börner, A. ChemCatChem 2012, 4, 753-754. (h) Breit, B. Angew. Chem. Int. Ed. 1996, 35, 2835-2837. (i) Alper, H.; Zhou, J.-Q. J. Org. Chem. 1992, 57, 3729-3731. (j) Lee, C. W.; Alper, H. J. Org. Chem. 1995, 60, 499-503.
[35] Achiwa, K. J. Am. Chem. Soc. 1976, 98, 8265-8266.
[36] Knowles, W. S.; Sabacky, M. J. Chem. Commun. (London) 1968, 1445-1446.
[37] (a) Knowles, W. S.; Sabacky, M. J.; Vineyard, B. D. J. Chem. Soc., Chem. Commun. 1972, 10-11. (b) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachmann, G. L.; Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946-5952.
[38] (a) Fryzuk, M. D.; Bosnich, B. J. Am. Chem. Soc. 1977, 99, 6262-6267. (b) Dang, T. P.; Kagan, H. B. Chem. Commun. 1971, 481-481.
[39] (a) Trost, B. M.; Vaultier, M.; Santiago, M. L. J. Am. Chem. Soc. 1980, 102, 7932-7934. (b) Sayo, N.; Zhang, X.; Ohmoto, T.; Yoshida, A.; Yokozawa, T.; Takasago International Corporation; US005693868, 1997.
[40] (a) Schmid, R.; Foricher, J.; Cereghetti, M.; Schönholzer, P. Helv. Chim. Acta 1991, 74, 370-389. (b) Zhang, Z.; Qian, H.; Longmire, J.; Zhang, X. J. Org. Chem. 2000, 65, 6223-6226. (c) Duprat de Paule, S.; Jeulin, S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P. Tetrahedron Lett. 2003, 44, 823-826. (d) Jeulin, S.; Duprat de Paule, S.; Ratovelomanana-Vidal, V.; Genêt, J.-P.; Champion, N.; Dellis, P. Angew. Chem. Int. Ed. 2004, 43, 320-325.
(a) Burk, M. J.; Feaster, J. E.; Harlow, R. L. Organometallics 1990, 9, 2653-2655. (b) Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518-8519.
[42] Holz, J.; Quirmbach, M.; Schmidt, U.; Heller, D.; Stu, R.; Bo, A. J. Org. Chem. 1998, 63, 8031-8034.
[43] Clark, T. P.; Landis, C. R.; Freed, S. L.; Klosin, J.; Abboud, K. A. J. Am. Chem. Soc. 2005, 127, 5040-5042.
[44] Imamoto, T.; Nishimura, M.; Koide, A.; Yoshida, K. J. Org. Chem. 2007, 72, 7413-7416.
[45] Yamamoto, Y.; Koizumi, T.; Katagiri, K.; Furuya, Y.; Danjo, H.; Imamoto, T.; Yamaguchi, K. Org. Lett. 2006, 8, 6103-6106.
[46] Babin, J. E.; Whiteker, G. T.; Union Carbide; WO1993003839, 1993.
[47] (a) Cobley, C. J.; Klosin, J.; Qin, C.; Whiteker, G. T. Org. Lett. 2004, 6, 3277-3280. (b) Cobley, C. J.; Klosin, J.; Qin, C.; Whiteker, G. T. Org. Lett. 2005, 7, 1197-1197.
[48] Sakai, N.; Satoshi, M.; Nozaki, K.; Takaya, H. J. Am. Chem. Soc. 1993, 115, 7033-7034.
[49] (a) Higashizima, T.; Sakai, N.; Nozaki, K.; Takaya, H. Tetrahedron Lett. 1994, 35, 2023-2026. (b) Nanno, T.; Sakai, N.; Nozaki, K.; Takaya, H. Tetrahedron: Asymmetry 1995, 6, 2583-2591. (c) Horiuchi, T.; Ohta, T.; Takaya, H. Chem. Commun. 1996, 155-156.
[50] Yan, Y.; Zhang, X. J. Am. Chem. Soc. 2006, 128, 7198-7202.
[51] Noonan, G. M.; Fuentes, J. A.; Cobley, C. J.; Clarke, M. L. Angew. Chem. Int. Ed. 2012, 51, 2477-2480.
[52] Noonan, G. M.; Cobley, C. J.; Mahoney, T.; Clarke, M. L. Chem. Commun. (Camb.) 2014, 50, 1475-1477.
[53] (a) Tolman, C. A. J. Am. Chem. Soc. 1972, 94, 2994-2999. (b) Hendrix, W. T.; Rosenberg, J. L. J. Am. Chem. Soc. 1976, 98, 4850-4852.
[54] Casey, C. P.; Cyr, C. R. J. Am. Chem. Soc. 1973, 95, 2248-2253.
[55] Inoue, S.-I.; Takaya, H.; Tani, K.; Otsuka, S.; Sato, T.; Noyori, R. J. Am. Chem. Soc. 1990, 112, 4897-4905.
[56] Christiansen, A.; Börner, A. In Handbook of CH Transformations; Dyker, G., Eds; WILEY-VCH: Weinheim, Germany, 2005; pp 430-438.
[57] (a) Garlotta, D. J. Polym. Environ. 2002, 9, 63-84. (b) Gattin, R.; Copinet, A.; Bertrand, C.; Couturier, Y. J. Polym. Environ. 2002, 9, 11-17. (c) Numata, K.; Srivastava, R. K.; Finne-Wistrand, A.; Albertsson, A.-C.; Doi, Y.; Abe, H. Biomacromolecules 2007, 8, 3115-3125.
[58] (a) Ohkuma, T.; Kitamura, M.; Noyori, R. In Catalytic Asymmetric Synthesis; Ojima, I., Eds; WILEY-VCH: New York, 2000; pp 1-110. (b) Transitions Metals for Organic Synthesis; 2nd ed.; Beller, M., Bolm, C., Eds; WILEYVCH: Weinheim, Germany, 2004. (c) Handbook of Homogeneous Hydrogenation; de Vries, J. G., Elsevier, C. J., Eds; WILEY-VCH: Weinheim, Germany, 2007.
[59] Phosphorus Ligands in Asymmetric Catalysis; 1st-3rd ed.; Börner, A., Eds; WILEY-VCH: Weinheim, Germany, 2008.
[60] (a) Takahashi, H.; Morimoto, T.; Achiwa, K. Chem. Lett. 1987, 16, 855-858. (b) Kitamura, M.; Ohkuma, T.; Inoue, S.; Sayo, N.; Kumobayashi, H.; Akutagawa, S.; Ohta, T.; Takaya, H.; Noyori, R. J. Am. Chem. Soc. 1988, 110, 629-631. (c) Mashima, K.; Kusano, K.-H.; Sato, N.; Matsumura, Y.-I.; Nozaki, K.; Kumobayashi, H.; Hori, Y.; Ishizaki, T.; Akutagawa, S.; Takaya, H. J. Org. Chem. 1994, 59, 3064-3076. (d) Benincori, T.; Brenna, E.; Sannicolò, F.; Trimarco, L.; Antognazzab, P.; Cesarotti, E. J. Chem. Soc., Chem. Commun. 1995, 685-686. (e) Benincori, T.; Brenna, E.; Sannicolo, F.; Trimarco, L.; Antognazza, P.; Cesarotti, E.; Demartin, F.; Pilati, T. J. Org. Chem. 1996, 61, 6244-6251. (f) Naili, S.; Suisse, I.; Mortreux, A.; Agbossou, F.; Ali, M. A.; Karim, A. Tetrahedron Lett. 2000, 41, 2867-2870. (g) Boaz, N. W.; Debenham, S. D.; Mackenzie, E. B.; Large, S. E. Org. Lett. 2002, 4, 2421-2424. (h) Boaz, N. W.; Mackenzie, E. B.; Debenham, S. D.; Large, S. E.; Ponasik Jr, J. A. J. Org. Chem. 2005, 70, 1872-1880. (i) Qiu, L.; Kwong, F. Y.; Wu, J.; Lam, W. H.; Chan, S.; Yu, W.-Y.; Li, Y.-M.; Guo, R.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2006, 128, 5955-5965. (j) Wang, C.-J.; Sun, X.; Zhang, X. Synlett 2006, 2006, 1169-1172. (k) Jahjah, M.; Alame, M.; Pellet-Rostaing, S.; Lemaire, M. Tetrahedron: Asymmetry 2007, 18, 2305-2312.
[61] Burk, M. J.; Kalberg, C. S.; Pizzano, A. J. Am. Chem. Soc. 1998, 120, 4345-4353.
[62] (a) Schäffner, B.; Holz, J.; Börner, A.; ThyssenKrupp Uhde GmbH; EP2141145, 2007. (b) Schäffner, B.; Andrushko, V.; Holz, J.; Verevkin, S. P.; Börner, A. ChemSusChem 2008, 1, 934-940.
[63] Leijondahl, K.; Borén, L.; Braun, R.; Bäckvall, J.-E. Org. Lett. 2008, 10, 2027-2030.
[64] Li, G.; Fronczek, F. R.; Antilla, J. C. J. Am. Chem. Soc. 2008, 130, 12216-12217.
[65] (a) Richter, A.; Kocienski, P.; Raubo, P.; Davies, D. E. Anticancer Drug Des. 1997, 8, 217-227. (b) Jiang, X.; Williams, N.; De Brabander, J. K. Org. Lett. 2007, 9, 227-230.
[66] (a) Tomita, F.; Takahashi, K.; Shimizu, K.-i. J. Antibiot. 1983, 463-467. (b) Takahashi, K.; Tomita, F. J. Antibiot. 1983, 468-470. (c) Tomita, F.; Takahashi, K.; Tamaoki, T. J. Antibiot. 1984, 1268-1272. (d) Allan, K. M.; Stoltz, B. M. J. Am. Chem. Soc. 2008, 130, 17270-17271. (e) Wu, Y.-C.; Liron, M.; Zhu, J. J. Am. Chem. Soc. 2008, 130, 7148-7152.
[67] Mosey, R. A.; Floreancig, P. E. Nat. Prod. Rep. 2012, 29, 980-995.
[68] (a) Burres, N. S.; Clement, J. J. Cancer Res. 1989, 49, 2935-2940. (b) Venturi, V.; Davies, C.; Singh, A. J.; Matthews, J. H.; Bellows, D. S.; Northcote, P. T.; Keyzers, R. A.; Teesdale-Spittle, P. H. J. Biochem. Mol. Toxicol. 2012, 26, 94-100. (c) Lee, K.-H.; Nishimura, S.; Matsunaga, S.; Fusetani, N.; Horinouchi, S.; Yoshida, M. Cancer Sci. 2005, 96, 357-364.
[69] Perry, N. B.; Blunt, J. W.; Munro, M. H. G. J. Am. Chem. Soc. 1988, 110, 4850-4851.
[70] (a) Ogawara, H.; Higashi, K.; Uchino, K.; Perry, N. B. Chem. Pharm. Bull. (Tokyo) 1991, 39, 2152-2154. (b) Hood, K. A.; West, L. M.; Northcote, P. T.; Berridge, M. V.; Miller, J. H. Apoptosis 2001, 6, 207-219.
[71] Galvin, F.; Freeman, G. J.; Razi-Wolf, Z.; Benacerraf, B.; Nadler, L.; Reiser, H. Eur. J. Immunol. 1993, 23, 283-286.
[72] (a) Tsukamoto, S.; Matsunaga, S.; Fusetani, N.; Toh-e, A. Tetrahedron 1999, 55, 13697-13702. (b) Vuong, D.; Capon, R. J.; Lacey, E.; Gill, J. H.; Heiland, K.; Friedel, T. J. Nat. Prod. 2001, 64, 640-642.
[73] Troast, D. M.; Porco Jr, J. A. Org. Lett. 2002, 4, 991-994.
[74] (a) Sasaki, M.; Tsuda, M.; Sekiguchi, M.; Mikami, Y.; Kobayashi, J. i. Org. Lett. 2005, 7, 4261-4264. (b) Lai, D.; Brötz-Oesterhelt, H.; Müller, W. E. G.; Wray, V.; Proksch, P. Fitoterapia 2013, 91, 100-106.
[75] Harayama, Y.; Yoshida, M.; Kamimura, D.; Wada, Y.; Kita, Y. Chem. Eur. J. 2006, 12, 4893-4889.
[76] (a) Bates, R. W.; Boonsombat, J.; Lu, Y.; Nemeth, J. A.; Sa-Ei, K.; Song, P.; Peiling Cai, M.; Cranwell, P. B.; Winbush, S. Pure Appl. Chem. 2008, 80, 681-685. (b) Rech, J. C.; Floreancig, P. E. Org. Lett. 2003, 5, 1495-1498. (c) Huang, X.; Shao, N.; Palani, A.; Aslanian, R. Tetrahedron Lett. 2007, 48, 1967-1971. (d) Kiren, S.; Shangguan, N.; Williams, L. J. Tetrahedron Lett. 2007, 48, 7456-7459. (e) Wan, S.; Green, M. E.; Park, J.-H.; Floreancig, P. E. Org. Lett. 2007, 9, 5385-5388. (f) Ménard-Moyon, C.; Taylor, R. J. K. Eur. J. Org. Chem. 2007, 2007, 3698-3706. (g) Piri, F.; Moghaddama, M. B. F.; Karimi, B. Electron. J. Chem. 2007, 4, 519-522. (h) Ko, C.; Hsung, R. P. Org. Biomol. Chem. 2007, 5, 431-434.
[77] Vellalath, S.; Corić, I.; List, B. Angew. Chem. Int. Ed. 2010, 49, 9749-9752.
[78] (a) Uraguchi, D.; Terada, M. J. Am. Chem. Soc. 2004, 126, 5356-5357. (b) Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566-1568.
[79] (a) Charles, I.; Latham, D. W. S.; Hartley, D.; Oxford, A. W.; Scopes, D. I. C. J. Chem. Soc., Perkin Trans. 1 1980, 1139-1146. (b) Dillard, R. D.; Easton, N. R. J. Org. Chem. 1966, 31, 2580-2584.
[80] Al-Awadi, N. A.; Al-Bashir, R. F.; El-Dusouqui, O. M. E. J. Chem. Soc. Perk. Trans. 2 1989, 579-581.
[81] Pakrashi, S. C.; Chakravarty, A. K. J. Org. Chem. 1974, 39, 3828-3831.
[82] Lühr, S.; Holz, J.; Zayas, O.; Seidelmann, O.; Domke, L.; Börner, A. Tetrahedron: Asymmetry 2013, 24, 395-401.
[83] (a) Enantioselective Synthesis of beta-Amino Acids; Juaristi, E., Soloshonok, V. A.: Hoboken, New Jersey, 2005. (b) Abele, S.; Seebach, D. Eur. J. Org. Chem. 2000, 1-15. (c) Porter, E. A.; Wang, X.; Lee, H.-s.; Weisblum, B. Nature 2000, 404, 2000-2000. (d) Pseudo-Peptides In Drug Discovery; Nielsen, P. E., Eds; WILEY-VCH: Weinheim, Germany, 2004.
[84] (a) Barrow, R. A.; Hemscheidt, T.; Liang, J.; Paik, S.; Moore, R. E.; Tius, M. A. J. Am. Chem. Soc. 1995, 117, 2479-2490. (b) Tius, M. A. Tetrahedron 2002, 58, 4343-4367. (c) Ding, Y.; Rath, C. M.; Bolduc, K. L.; Hakansson, K.; Sherman, D. H. J. Am. Chem. Soc. 2011, 133, 14492-14495.
[85] Eggen, M.; Georg, G. I. Med. Res. Rev. 2002, 22, 85-101.
[86] Nazaré, M.; Waldmann, H. Angew. Chem. 2000, 112, 1171-1174.
[87] Nazaré, M.; Waldmann, H. Chem. Eur. J. 2001, 7, 3363-3376.
[88] Stereoselective Synthesis of Drugs and Natural Products; Andrushko, V., Andrushko, N., Eds; WILEY-VCH: New York, 2013.
[89] Shustov, G. V.; Rauk, A. Tetrahedron: Asymmetry 1996, 7, 699-708.
[90] (a) Juaristi, E.; Quintana, D.; Balderas, M.; Garcia-Perez, E. Tetrahedron: Asymmetry 1996, 7, 2233-2246. (b) Agami, C.; Cheramy, S.; Dechoux, L.; Melaimi, M. Tetrahedron 2001, 57, 195-200. (c) Gutiérrez-Garcia, V. M.; Reyes-Rangel, G.; Munoz-Muniz, O.; Juaristi, E. Helv. Chim. Acta 2002, 85, 4189-4199. (d) Beddow, J. E.; Davies, S. G.; Ling, K. B.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem. 2007, 5, 2812-2825.
[91] (a) Holz, J.; Zayas, O.; Jiao, H.; Baumann, W.; Spannenberg, A.; Monsees, A.; Riermeier, T. H.; Almena, J.; Kadyrov, R.; Börner, A. Chem. Eur. J. 2006, 12, 5001-5013. (b) Zhu, G.; Chen, Z.; Zhang, X. J. Org. Chem. 1999, 64, 6907-6910. (c) Heller, D.; Holz, J.; Drexler, H.-J.; Lang, J.; Drauz, K.; Krimmer, H.-P.; Börner, A. J. Org. Chem. 2001, 66, 6816-6817. (d) Holz, J.; Monsees, A.; Jiao, H.; You, J.; Komarov, I. V.; Fischer, C.; Drauz, K.; Börner, A. J. Org. Chem. 2003, 68, 1701-1707. (e) Reetz, M. T.; Li, X. Angew. Chem. Int. Ed. 2005, 44, 2959-2962. (f) Landert, H.; Spindler, F.; Wyss, A.; Blaser, H.-U.; Pugin, B.; Ribourduoille, Y.; Gschwend, B.; Ramalingam, B.; Pfaltz, A. Angew. Chem. Int. Ed. 2010, 49, 6873-6876. (g) Wu, Y.; Qi, S.-B.; Wu, F.-F.; Zhang, X.-C.; Li, M.; Wu, J.; Chan, A. S. C. Org. Lett. 2011, 13, 1754-1757. (h) Pignataro, L.; Boghi, M.; Civera, M.; Carboni, S.; Piarulli, U.; Gennari, C. Chem. Eur. J. 2012, 18, 1383-1400. (i) Imamoto, T.; Tamura, K.; Zhang, Z.; Horiuchi, Y.; Sugiya, M.; Yoshida, K.; Yanagisawa, A.; Gridnev, I. D. J. Am. Chem. Soc. 2012, 134, 1754-1769.
[92] Eilitz, U.; Leßmann, F.; Seidelmann, O.; Wendisch, V. Tetrahedron: Asymmetry 2003, 14, 189-191.
[93] (a) Saylik, D.; Campi, E. M.; Donohue, A. C.; Jackson, R. W.; Robinson, A. J. Tetrahedron: Asymmetry 2001, 12, 657-667. (b) Zupancic, B.; Mohar, B.; Stephan, M. Org. Lett. 2010, 12, 1296-1299. (c) Huang, H.; Liu, X.; Deng, J.; Qiu, M.; Zheng, Z. Org. Lett. 2006, 8, 3359-3362. (d) Deng, J.; Hu, X.-P.; Huang, J.-D.; Yu, S.-B.; Wang, D.-Y.; Duan, Z.-C.; Zheng, Z. J. Org. Chem. 2008, 73, 2015-2017. (e) Wieland, J.; Breit, B. Nat. Chem. 2010, 2, 832-837. (f) Guo, Y.; Shao, G.; Li, L.; Wu, W.; Li, R.; Li, J.; Song, J.; Qiu, L.; Prashad, M.; Kwong, F. Y. Adv. Synth. Catal. 2010, 352, 1539-1553. (g) Zupancic, B.; Mohar, B.; Stephan, M. Org. Lett. 2010, 12, 3022-3025. (h) Elaridi, J.; Thaqi, A.; Prosser, A.; Jackson, W. R.; Robinson, A. J. Tetrahedron: Asymmetry 2005, 16, 1309-1319. (i) Lühr, S.; Holz, J.; Zayas, O.; Wendisch, V.; Börner, A. Tetrahedron: Asymmetry 2012, 23, 1301-1319.
[94] (a) Yu, C.; Liu, B.; Hu, L. J. Org. Chem. 2001, 66, 5413-5418. (b) Aranha, R. M.; Bowser, A. M.; Madalengoitia, J. S. Org. Lett. 2009, 11, 575-578.
[95] (a) Basavaiah, D.; Satyanarayana, T. Chem. Commun. (Camb.) 2004, 32-33. (b) Hoen, R.; Tiemersma-Wegman, T.; Procuranti, B.; Lefort, L.; de Vries, J. G.; Minnaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2007, 5, 267-275.
[96] (a) Kippo, T.; Fukuyama, T.; Ryu, I. Org. Lett. 2011, 13, 3864-3867. (b) Tong, X.; Lai, J.; Guo, B.-H.; Huang, Y. J. Polym. Sci. A Polym. Chem. 2011, 49, 1513-1516.
[97] (a) Huck, J.; Duru, C.; Roumestant, M. L.; Martinez, J. Synthesis 2003, 2003, 2165-2168. (b) Huck, J.; Receveur, J.-M.; Roumestant, M.-L.; Martinez, J. Synlett 2001, 2001, 1467-1469.
[98] Takagi, M.; Yamamoto, K. Tetrahedron 1991, 47, 8869-8882.
[99] Brown, P.; Southgate, R. Tetrahedron Lett. 1986, 27, 247-250.
[100] (a) Moonen, K.; Laureyn, I.; Stevens, C. V. Chem. Rev. 2004, 104, 6177-6215. (b) Xu, B.; Hammond, G. B. Angew. Chem. 2005, 117, 7570-7573. (c) Palacios, F.; Alonso, C.; de Los Santos, J. M. Chem. Rev. 2005, 105, 899-931. (d) Ma, J.-A. Chem. Soc. Rev. 2006, 35, 630-636.
[101] (a) Ibrahem, I.; Hammar, P.; Vesely, J.; Rios, R.; Eriksson, L.; Córdova, A. Adv. Synth. Catal. 2008, 350, 1875-1884. (b) Ibrahem, I.; Rios, R.; Vesely, J.; Hammar, P.; Eriksson, L.; Himo, F.; Córdova, A. Angew. Chem. 2007, 119, 4591-4594. (c) Carlone, A.; Bartoli, G.; Bosco, M.; Sambri, L.; Melchiorre, P. Angew. Chem. Int. Ed. 2007, 46, 4504-4506. (d) Chen, Y.-R.; Duan, W.-L. Org. Lett. 2011, 13, 5824-5826.
[102] Henry, J. C.; Lavergne, D.; Ratovelomanana-Vidal, V.; Genêt, J. P. Tetrahedron Lett. 1998, 39, 3473-3476.
[103] Dong, K.; Wang, Z.; Ding, K. J. Am. Chem. Soc. 2012, 134, 12474-12477.
[104] Cheruku, P.; Paptchikhine, A.; Church, T. L.; Andersson, P. G. J. Am. Chem. Soc. 2009, 131, 8285-8289.
[105] Uozumi, Y.; Tanahashi, A.; Lee, S.-Y.; Hayashi J. Org. Chem. 1993, 58, 1945-1948.
[106] Kabat, M. M.; Garofalo, L. M.; Daniewski, a. R.; Hutchings, S. D.; Liu, W.; Okabe, M.; Radinov, R.; Zhou, Y. J. Org. Chem. 2001, 66, 6141-6150.
[107] Korostylev, A.; Selent, D.; Monsees, A.; Borgmann, C.; Börner, A. Tetrahedron: Asymmetry 2003, 14, 1905-1909.
[108] Straub, B. F.; Wrede, M.; Schmid, K.; Rominger, F. Eur. J. Inorg. Chem. 2010, 2010, 1907-1911.
[109] van der Vlugt, J. I.; Hewat, A. C.; Neto, S.; Sablong, R.; Mills, A. M.; Lutz, M.; Spek, A. L.; Müller, C.; Vogt, D. Adv. Synth. Catal. 2004, 346, 993-1003.
[110] (a) Piras, I.; Jennerjahn, R.; Jackstell, R.; Baumann, W.; Spannenberg, A.; Franke, R.; Wiese, K.-D.; Beller, M. J. Organomet. Chem. 2010, 695, 479-486. (b) Mikhel, I. S.; Dubrovina, N. V.; Shuklov, I. A.; Baumann, W.; Selent, D.; Jiao, H.; Christiansen, A.; Franke, R.; Börner, A. J. Organomet. Chem. 2011, 696, 3050-3057.
[111] Pàmies, O.; Diéguez, M. Chem. Eur. J. 2008, 14, 944-960.
[112] (a) Diéguez, M.; Ruiz, A.; Claver, C. Tetrahedron: Asymmetry 2001, 12, 2827-2834. (b) Raluy, E.; Claver, C.; Pàmies, O.; Diéguez, M. Org. Lett. 2007, 9, 49-52. (c) Diéguez, M.; Ruiz, A.; Claver, C. Tetrahedron: Asymmetry 2001, 12, 2861-2866.
[113] Kartha, K. P. R. Tetrahedron Lett. 1986, 27, 3415-3416.
[114] (a) Stereochemistry of Carbon Compounds; Eliel, E. L., Wilen, S. H., Eds; McGraw Hill Book Company: New York, 1962. (b) Aksnes, G.; Albriktsen Acta Chem. Scand. 1965, 19, 920-930.
[115] Tipson, S. R.; Isbell, H. S.; Stewart, J. E. J. Res. Natl. Bur. Stand. 1959, 62, 257-282.
[116] Loh, W.; Chevron Research Company; US4554010, 1984.
[117] Jin, Y.; Just, G. J. Org. Chem. 1998, 63, 3647-3654.
[118] Nakano, H.; Yokoyama, J.-I.; Fujita, R.; Hongo, H. Tetrahedron Lett. 2002, 43, 7761-7764.
[119] Aikawa, K.; Mikami, K. Chem. Commun. (Camb.) 2012, 48, 11050-11069.
[120] (a) Buisman, G. J. H.; Martin, M. E.; Vos, E. J.; Klootwijk, A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Tetrahedron: Asymmetry 1995, 6, 719-738. (b) van der Slot, S. C.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Fraanje, J.; Goubitz, K.; Lutz, M.; Spek, A. L. Organometallics 2000, 19, 2504-2515. (c) Diéguez, M.; Pàmies, O.; Ruiz, a.; Castillón, S.; Claver, C. Chem. Eur. J. 2001, 7, 3086-3094.
[121] Shulgina, G. I. Pavlov. J. Biol. Sci. 1986, 21, 129-140.
[122] (a) Mezler, M.; Müller, T.; Raming, K. Eur. J. Neurosci. 2001, 13, 477-486. (b) Dzitoyeva, S.; Dimitrijevic, N.; Manev, H. Proc. Natl. Acad.Sci. USA 2003, 100, 5485-5490.
[123] (a) Wachtel, H. Neuropharmacology 1983, 22, 267-272. (b) Bobon, D.; Breulet, M.; Gerad-Vandenhove, M. A.; Guiot-Goffioul, F.; Plomteux, G.; Sastre-y-Hermández, M.; Schratzer, M.; Troisfontaines, B.; von Frenckell, R.; Wachtel, H. Eur. Arch. Psychiatry Neurol. Sci. 1988, 238, 2-6. (c) Zhu, J.; Mix, E.; Winblad, B. CNS Drug Rev. 2001, 7, 387-398.
[124] (a) Maxwell, C. R.; Kanes, S. J.; Abel, T.; Siegel, S. J. Neuroscience 2004, 129, 101-107. (b) Kanes, S. J.; Tokarczyk, J.; Siegel, S. J.; Bilker, W.; Abel, T.; Kelly, M. P. Neuroscience 2007, 144, 239-246.
[125] Sommer, N.; Löschmann, P. A.; Northoff, G. H.; Weller, M.; Steinbrecher, A.; Steinbach, J. P.; Lichtenfels, R.; Meyermann, R.; Riethmüller, A.; Fontana, A. Nat. Med. 1995, 1, 244-248.
[126] (a) Semmler, J.; Wachtel, H.; Endres, S. Int. J. Immunopharmacol 1993, 15, 409-413. (b) Chen, T. C.; Wadsten, P.; Su, S.; Rawlinson, N.; Hofman, F. M.; Hill, C. K.; Schönthal, A. H. Cancer Biol. Ther. 2002, 1, 268-276.
[127] Ahlbrecht, H.; Bonnet, G.; Enders, D.; Zimmermann, G. Tetrahedron Lett. 1980, 21, 3175-3178.
[128] Mukaiyama, T.; Hayashi, H.; Miwa, T.; Narasaka, K. Chem. Lett. 1982, 1637-1640.
[129] (a) Hashimoto, S.-I.; Yamada, S.-I.; Koga, K. Chem. Pharm. Bull. (Tokyo) 1979, 27, 771-782. (b) Tomioka, K.; Shindo, M.; Koga, K. J. Am. Chem. Soc. 1989, 111, 8266-8268. (c) Shindo, M.; Koga, K.; Tomioka, K. J. Org. Chem. 1998, 63, 9351-9357.
[130] Mangeney, P.; Alexakis, A.; Normant, J. F. Tetrahedron Lett. 1986, 27, 3143-3146.
[131] (a) Besace, Y.; Berlan, J.; Pourcelot, G.; Huche, M. J. Org. Chem. 1983, 247, 11-13. (b) Berlan, J.; Besace, J.; Stephan, E.; Cresson, P. Tetrahedron Lett. 1985, 26, 5765-5768. (c) Berlan, J.; Besace, Y. Tetrahedron 1986, 42, 4767-4776.
[132] Palais, L.; Babel, L.; Quintard, A.; Belot, S.; Alexakis, A. Org. Lett. 2010, 12, 1988-1991.
[133] (a) Tanaka, K.; Qiao, S.; Tobisu, M.; Lo, M. M.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 9870-9871. (b) Tanaka, K.; Fu, G. C. J. Org. Chem. 2001, 66, 8177-8186.
[134] Arai, N.; Sato, K.; Azuma, K.; Ohkuma, T. Angew. Chem. Int. Ed. 2013, 52, 7500-7504.
[135] (a) Mantilli, L.; Gérard, D.; Torche, S.; Besnard, C.; Mazet, C. Angew. Chem. Int. Ed. 2009, 48, 5143-5147. (b) Li, J.-Q.; Peters, B.; Andersson, P. G. Chem. Eur. J. 2011, 17, 11143-11145.
[136] (a) Yang, J. W.; Hechavarria Fonseca, M. T.; Vignola, N.; List, B. Angew. Chem. Int. Ed. 2004, 44, 108-110. (b) Zhao, G.-L.; Córdova, A. Tetrahedron Lett. 2006, 47, 7417-7421. (c) MacMillan, D.; Ouellet, S.; Tuttle, J.; California Institute Of Technology; US20080125310, 2006. (d) Akagawa, K.; Akabane, H.; Sakamoto, S.; Kudo, K. Org. Lett. 2008, 10, 2035-2037. (e) Maeda, H.; Hori, Y.; Takasago International Corporation; WO2010140636, 2010. (f) Ebner, C.; Pfaltz, A. Tetrahedron 2011, 67, 10287-10290.
[137] Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32-33.
[138] (a) Kanazawa, Y.; Nishiyama, H. Synlett 2006, 2006, 3343-3345. (b) Maeda, H.; Yamada, S.; Itoh, H.; Hori, Y. Chem. Commun. (Camb.) 2012, 48, 1772-1774.
[139] Hock, H.; Lang, S. Ber. Dtsch. Chem. Ges. 1944, 77, 257-264.
[140] Hoffman, R. V.; Johnson, M. C.; Okonya, J. F. J. Org. Chem. 1997, 62, 2458-2465.
[141] Nuñez, S. A.; Yeung, K.; Fox, N. S.; Phillips, S. T. J. Org. Chem. 2011, 76, 10099-10113.
[142] Pautigny, C.; Jeulin, S.; Ayad, T.; Zhang, Z.; Genêt, J.-P.; Ratovelomanana-Vidal, V. Adv. Synth. Catal. 2008, 350, 2525-2532.
[143] Janecki, T.; Wasek, T.; Olczak, J. Synlett 2006, 2006, 1507-1510.
[144] Salamonczyk, G. M.; Han, K.; Guo, Z.-w.; Sih, C. J. J. Org. Chem. 1996, 61, 6893-6900.
[145] Zhang, X.; Cao, B.; Yu, S.; Zhang, X. Angew. Chem. Int. Ed. 2010, 49, 4047-4050.
[146] Wang, D.-Y.; Hu, X.-P.; Deng, J.; Yu, S.-B.; Duan, Z.-C.; Zheng, Z. J. Org. Chem. 2009, 74, 4408-4410.
[147] Kawaguchi, S.-i.; Nagat, S.; Nomoto, A.; Sonoda, M.; Ogawa, A. J. Org. Chem. 2008, 73, 7928-7933.
[148] Baker, M. J.; Pringle, P. G. J. Chem. Soc., Chem. Commun. 1991, 1292-1293.
[149] Ferreira, S. B.; Sodero, A. C. R.; Cardoso, M. F. C.; Lima, E. S.; Kaiser, C. R.; Silva Jr, F. P.; Ferreira, V. F. J. Med. Chem. 2010, 53, 2364-2375.
[150] Cho, B. T.; Kim, N. J. Chem. Soc., Perkin Trans. 1 1996, 2901-2907.
[151] Denmark, S. E.; Amishiro, N. J. Org. Chem. 2003, 68, 6997-7003.
[152] Iwama, T.; Ogawa, M.; Kataoka, T.; Muraoka, O.; Tanabe, G. Tetrahedron 1998, 54, 8941-8974.
[153] Cahiez, G.; Foulgoc, L.; Moyeux, A. Angew. Chem. Int. Ed. 2009, 48, 2969-2972.

[^0]: ${ }^{i}$ These are compounds with the same chemical constitution, but they cannot be aligned due to a different physical configuration.
 ${ }^{i i}$ The 1:1-mixture of two enantiomers is called "racemate" or "racemic mixture".
 ${ }^{\text {iii }}$ Noteworthy, at a level of very small energies, differences of about $10^{-14} \mathrm{~J} / \mathrm{mol}$ have been calculated, which is one possible rationalization for the development of homochirality on earth. ${ }^{[1]}$
 ${ }^{\text {iv }}$ The discussion about the effect of both enantiomers of thalidomide was crucial for this consideration.

[^1]: ${ }^{i}$ The eudismic ratio describes the difference in the pharmalogical activity of both enantiomers in a drug. It represents the quotient of the activity or affinity of the pharmacological effective enantiomer (eutomer) to the activity or affinity of the less or non-effective enantiomer (distomer).
 ${ }^{\text {ii }}$ Usually chiral excipients are compounds of natural origin, for instance tartaric acid, sugars, alkaloides, etc.
 ${ }^{\text {iii }}$ A chiral auxiliary is a chemical compound, what is incorporated into a reaction to control the stereoselectivity. After completion of the reaction the auxiliary is separated from the product and can be reused.

[^2]: ${ }^{i}$ It should be taken into consideration that a system consisting of a gas and a liquid also represents a two-phase system, which should be assigned to heterogeneous catalysis. Usually, this differentiation is not done in catalysis.
 ${ }^{\text {ii }}$ However, there are some examples of the successful Ir-catalyzed enantioselective hydrogenation of unfunctionalized substrates. Unlike Rh- and Ru-diphosphine-complexes they do not require the presence of a coordinating group near the $\mathrm{C}=\mathrm{C}$ bond, so even purely alkyl-substituted olefins could be hydrogenated with high enantioselectivity. Recent works were published by Pfaltz, Andersson and Diéguez. ${ }^{[4]}$

[^3]: ${ }^{i}$ In the case of a C_{2}-symmetric ligand (e.g (R, R)-Me-DuPhos), both possibilities for the coordination of the ligand result in the same geometry of the catalyst.
 ii The Halpern-mechanism is also called "major-minor concept".
 iii For both enantiomers of Metolachlor it exists also two atropisomers resulted by a chiral axis. Both atropisomers of (S)-Metolachlor exhibit the same biological activity, while the other ones (for (R)-Metolachlor) are inactive.

[^4]: ${ }^{\text {i }}$ The main goal for the synthesis of (S)-Metolachlor was to reach TOF's $>10^{\prime} 000 \mathrm{~h}^{-1}$, TON's >50 ' 000 and ee's $\geq 80 \%$.
 ${ }^{\text {ii }}$ The development of the technical process was financed by the Bill-and-Melinda-Gates-foundation and shall contribute to the reconvalescence of millions of humans suffer from Malaria in Africa.

[^5]: ${ }^{i}$ The hydroformylation is also known as "oxo synthesis".

[^6]: ${ }^{i}$ A price of $\$ 0.04 / \mathrm{g}$ for allyl alcohol compared to that of the "Roche ester" $(\$ 14 / \mathrm{g})$ emphasizes the importance of asymmetric hydroformylation to yield the "Roche aldehyde". ${ }^{[31]}$
 ${ }^{\text {ii }}$ The rhodium-catalyzed hydroformylation of allyl cyanide gave only a b / l ratio of $72 / 28$ and 66% ee with (R, S)-BINAPHOS as ligand. ${ }^{[32]}$

[^7]: ${ }^{\text {i }}$ Soloshonok acid is a nucleophilic glycine equivalent for the synthesis of α-amino acids

[^8]: ${ }^{\text {i }}$ Chiral BasPhos and RoPhos (Börner) are two examples of ligands, which show an increased solubility in water in comparison to chiral Me-Duphos due to additional polar groups at the phospholane units.

[^9]: i The name "BobPhos" is derived from "Best of both of phosphorus ligands" and means a combination of both advantages coming from the BIPHEN- H_{2}-scaffold of Kelliphite and the phospholane unit of $\mathrm{Ph}-\mathrm{BPE}$. Since $\mathrm{Rh} /$ Kelliphite is high active under mild conditions even for internal aldehydes, $\mathrm{Rh} / \mathrm{Ph}-\mathrm{BPE}$ displays a robust catalyst precursor that gives high enantioselectivies for terminal alkenes.

[^10]: ${ }^{\text {i }}$ Enantiomerically pure (S) - and $(R)-O$-TMS-protected methyl lactate, respectively, was prepared by reaction of its corresponding chiral lactate with TMSCl in the presence of $\mathrm{Et}_{3} \mathrm{~N}$.

[^11]: ${ }^{\text {i }}$ A N, O-ketene acetal is an olefin that bears an electron donating nitrogen and an oxygen atom at the same carbon of the double bond.

[^12]: ${ }^{i}$ Diacetamide was prepared by the reaction of acetamide and acetyl chloride with pyridine as base to yield 85% of a white solid according to the procedure of Al-Awadi et. al. ${ }^{[80]}$
 ${ }^{\text {ii }}$ Both N, O-ketene acetals have a slight odor of acetic acid while standing on air.

[^13]: ${ }^{\text {a }} 0.5 \mathrm{mmol}$ of $\mathbf{3 b}$, precatalyst $5.0 \mu \mathrm{~mol}, \mathrm{H}_{2}, 4 \mathrm{~mL}$ of THF, $100^{\circ} \mathrm{C}, 10.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100,20 \mathrm{~h}$.
 ${ }^{\mathrm{b}}$ No yield was determined in any case by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

[^14]: ${ }^{\text {i }}$ Such migration was already described by Yamamoto with the related N-methoxycarbonyl substrate. ${ }^{[98]}$

[^15]: ${ }^{i}$ Diphenylphosphine oxide was prepared by stirring chloro diphenylphosphine in 1 M HCl and isolated as a white solid in 98% yield. ${ }^{[106]}$
 ${ }^{\text {ii }}$ The reaction was repeated a few times with different batches of the starting material. For instance, diphenylphosphine oxide from Sigma Aldrich ${ }^{\circledR}$ as well as $\mathrm{Pd}(\mathrm{OAc})$ from different suppliers were used, but did not lead to any improvement of the yield.
 ${ }^{\text {iii }}$ To prepare the chlorophosphite of enantiopure BINOL in situ the diol was suspended in phosphorus trichloride, 2-3 drops of NMP were added and the suspension was heated to $75^{\circ} \mathrm{C}$ for 5 min until it became clear. Evaporation yielded the desired chlorophosphite as a pale yellow solid. ${ }^{[107]}$

[^16]: i 4,4 ',6,6'-Tetra-tert-butyl-2,2'-biphenol was prepared from 2,4-di-tert-butylphenol and MnO_{2} in heptane. Stirring under reflux for 3.5 h yielded an off-white solid in 85%. ${ }^{[108]}$
 ii 4,4'-Di-methoxy-6,6'-di-tert-butyl-2,2'-biphenol was prepared from 3-tert-butyl-4-hydroxyanisole, KOH and $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ in methanol. Strirring at room temprature for 5 h yielded an off-white solid in 98%. ${ }^{[109]}$

[^17]: i "Orthogonality" or "orthogonal protection" is a strategy for the deprotection of functional groups independendly of each other.
 ${ }^{\text {ii }}$ A large quantity of $\mathbf{2 3 c}$ was provided by the research group of Prof. Diéguez at Universitat Rovira í Virgili in Tarragona/Spain.

[^18]: ${ }^{\text {i }}$ Amino-xylose 24a was provided by the research group of Prof. Diéguez at Universitat Rovira í Virgili in Tarragona/Spain.
 ${ }^{i i}$ To prepare the chlorophosphite of enantiopure BIPHEN- H_{2} or bisDBP, respectively, in situ, the aromatic diol was dissolved in toluene, an excess of pyridine was added and the solution was stirred for 16 h at $80^{\circ} \mathrm{C}$. Filtration from the pyridinium salt, followed by evaporation of the solvent yielded the desired chlorophosphite as a pale yellow solid.

[^19]: ${ }^{i}$ The pyridine keeps the reaction medium basic and works partly as a proton sponge, too.
 ii The three monophosphite ligands 27a-c were synthesized in cooperation with Marc Magre Rosich from research group of Prof. Diéguez at Universitat Rovira í Virgili in Tarragona/Spain.

[^20]: ${ }^{i}$ However, due to the chirality of the sugar backbone, it can be assumed that, especially in the metal-complexes, a certain configuration is preferred. This effect of tropos ligands, becoming atropos, has been observed for example with chiral Ru-diamine-complexes bearing 2,2'-biphenyl diphosphines as a counter-ligand. ${ }^{[119]}$

[^21]: ${ }^{\text {i }}$ HP-NMR experiments were performed in cooperation with Dr. Baumann at Leibniz-Institut für Katalyse e.V. in Rostock/Germany and Prof. Diéguez at Universitat Rovira í Virgili in Tarragona/Spain.

[^22]: ${ }^{i}$ 3-Phenyl butanal is also known as hyacinth butanal or Triferal ${ }^{\circledR}$.
 ${ }^{\text {ii }}$ The chemical name for Florhydral ${ }^{\circledR}$ (floral butanal) is 3-(3-isopropylphenyl)butanal. Currently, Florhydral ${ }^{\circledR}$ is predominantly supplied by Givaudan SA.

[^23]: ${ }^{i} \alpha$-Methyl styrene is a side product in the cumene process. ${ }^{[139]}$

[^24]: ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta(\mathrm{ppm})=143.6\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=5.0 \mathrm{~Hz}\right), 150.9\left(\mathrm{~d}, J_{\mathrm{P}-\mathrm{P}}=5.0 \mathrm{~Hz}\right)$.

[^25]: ${ }^{\mathrm{a}} 0.5 \mathrm{mmol}$ of $\mathbf{6 a}, \mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2} 5.0 \mu \mathrm{~mol}$, PP-ligand $6.0 \mu \mathrm{~mol}, \mathrm{CO} / \mathrm{H}_{2}=1: 1,5 \mathrm{~mL}$ of toluene, $30^{\circ} \mathrm{C}, 2.0 \mathrm{MPa}, \mathrm{S} / \mathrm{Rh}=100$, 63 h .
 ${ }^{\mathrm{b}}$ Conversions and yields were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy.
 ${ }^{\mathrm{c}}$ Due to the small amount in the final mixture, the amount of the linear aldehyde (15) was determined by integration of the characteristic signal for the proton of the aldehyde group $(\delta=9.39 \mathrm{ppm})$ in ${ }^{1} \mathrm{H}$ NMR spectroscopy.
 ${ }^{\mathrm{d}}$ Ee-values of the branched aldehyde (14) were determined by GC analysis.
 ${ }^{\mathrm{f}}$ Ligand \mathbf{G} was recently prepared in the research group of Prof. Börner and shown in Chapter 5.3.

