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1. Motivation

1.1. Kα Plasma Diagnostics

In 1895, Wilhelm Conrad Röntgen was first discovering the X-rays in the Institute of
Physics of the University of Würzburg [1]. In 1915 Nobel Prize winners were William
Lawrence Bragg and William Henry Bragg. They were working on crystal structures
using X-rays [2]. X-ray is an electromagnetic radiation and most of X-rays have a
wavelength in the range between 1 pm to 10 nm. Kα emitting energy in the X-rays
energy of photons range is between 100 eV to 1 MeV corresponding to the wavelength
range between 1 pm to 10 nm. Modifications of emission K-line profiles due to a warm
dense plasma environment is a good tool for plasma diagnostics. The free electron density
of warm dense matter is located from 1020 cm−3 to 1024 cm−3 in the plasma diagnostic
process. Roughly plasmas are divided into low density plasma and high density plasma.
The low density plasma has density up to 1017 ions/cm3 and the high density plasma
has a density above from 1019 ions/cm3 [3]. For example: Tokamaks [4] and magnetic
confinement devices (i.e. International Thermonuclear Experimental Reactor (ITER
[5])) are low density plasmas. Plasma in Tokamak is confined to a toroidal device in
the magnetic field [4]. Recently years the fusion reaction researchers are focusing on the
nucleus of deuterium and tritium (D-T) fusion reaction in some plasma fusion research
[4, 5]. The higher density plasmas have the direct effect of the plasma environment on
the ions. Two examples are : spectral function of quasiparticle line shifts [6] and K-line
emission spectrum line profiles [7]. The hot plasmas in the microscopic atomic region
should consider more detail of the influence of the plasma environment for the ionic
potential, electron-electron interaction, electron-ion interaction and emission spectra of
the plasma [3]. X-rays spectra is used for diagnostics of plasmas at silicon solid state
density and we use the same method calculation argon solid state density in the present
works. Plasma parameters strongly affect the structure of the emitted Kα emission lines
shown in Ti Kα line [8]. Through the two different excitation of emitters (a) high energy
of intense laser [9, 10, 11, 12, 13] or (b) heavy ion beam [14, 15, 16] can be excited an
electron from ground state E0 to excited state Ei with one hole in the 1s shell (Kα initial
state). Then one photon emission from initial state Ei to final state Ef with one hole
in the 2p shell (Kα final state) including different emitter configurations are considered
in the Kα emission spectral line, see Fig. 1.1. We focus on Kα warm dense matter Si
and Ar irradiated emission spectral line. Kα photons are calculated from inner shell
ionization and excitation (4s, 3d, 3p, 3s) emission fluorescence. Kα emission on high Z
solids irradiated by intense laser pulses. The emission of photons from Bremsstrahlung
is calculated by acceleration of the hot electron with elastic collision or inelastic collision
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1. Motivation

Figure 1.1.: Kα fluorescence spectra emission process. Si the configuration of the ground
state is given by : 1s22s22p63s23p2. Emission of Si+ configuration of initial
state is given by: 1s12s22p63s23p2 and configuration of final state is given
by: 1s22s22p53s23p2.

processes [17].
In section 1.2 we will introduce some plasma parameters for describing the many-

particle systems depending on the temperature and free electron density in the plasma
diagnostics environment. In section 1.3 we will calculate the hydrogen plasma describing
the degree of ionization of plasma and we will look for the Mott effect in pressure
ionization. In section 1.4 we will describe the experiments of high energy laser Si Kα

experiment in subsection 1.4.1 . Ca6+ ion beam is penetrated into SiO2 aerogel. The
Kα fluorescence spectra are investigated in subsection 1.4.2. And in subsection 1.4.3 we
will describe the Argon high energy X-rays in the Ar droplets Kα experiment spectra.

1.2. Plasma Parameters and Plasma Effect

Plasma is one of the four fundamental states of matter (solid , liquid, gas and plasma) and
the most of plasmas are in the Universe. Solid particles are close together. Solid particles
can not move freely. Liquid particles are incompressible fluid conforming to a constant
volume. Gas particles are compressible fluid. Gas particles can move freely. Plasma
particles include electrons, ions and atoms. Plasma has a high enough temperature that
the greater part of atoms is ionized. For plasma diagnostics, the range of temperature is
mostly between 10 eV to several hundred eV. A plasma consists of ions at atomic number
Z, density of bounds electrons nb bonding in the core and density of free electrons ne
moving freely in the plasma. The solid atom density of isolated silicon is 5.0 · 1022 cm−3

and the solid atom density of isolated argon is 2.63 · 1022 cm−3. Through the parameter
of the degree of ionization α can be described some characters of plasma more detailed.
The ionization of charge states is described the number of electrons missing from each
atom. The average degree of ionization of a plasma is defined by [18]

α =
ne
ntotale

. (1.1)
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1.2. Plasma Parameters and Plasma Effect
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(a) The electron thermal wavelength Λe ∼ T−1/2.
At low temperature has a large electron ther-
mal wavelength than high temperature.

Si: Θ=1 at T=12.5eV
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(b) Si and Ar degenerate parameter. Si degener-
ate parameter =1 at T = 12.5 eV and Ar de-
generate parameter at T = 12.9 eV. Si solid
electron density is given by ne = 2.0 · 1023

cm−3. Ar solid electron density is given by
ne = 2.1 · 1023 cm−3.

Figure 1.2.: Electron thermal wavelength depends on temperature. Non-degenerate
plasma is in θ > 1 at higher temperature and degeneracy plasma is θ < 1
at lower temperature.

On the right side of Eq. (1.1) denominator ntotale is the density of total electrons and
numerator ne is the density of free electrons. The electron of bonding electrons nb on
nuclear is equal to the total electron density ntotale minus the density of free electrons ne
in the neutrality plasma system.

The other important plasma parameter is electron thermal wavelength Λe. The spatial
extension of the probability depends on the electron thermal wavelength Λe. Electron
thermal wavelength is defined by

Λe =

(
2π~2

mekBT

)1/2

. (1.2)

In dense plasmas, the electron thermal wavelength Λe has the same order as the mean
distance of electrons de. And de is proportional to density of free electrons de ∼ 1

(ne)1/3
.

There are non-degenerate plasmas and degenerate plasmas in quantum statistics. In case
neΛ

3
e � 1, we have non-degenerate plasmas. In case neΛ

3
e � 1, it is a strongly degenerate

plasma [18]. In Fig. 1.2a is shown the wavelength of free electrons is quickly decaying
with increasing temperature from T = 0 eV to T = 15 eV satisfied the degenerate
plasmas. When the temperature is higher than 15 eV the wavelength of free electrons
tends to smoothly decay and there are more free electrons satisfied the non-degenerate
plasmas, see Fig. 1.2a.

In strongly degenerate Fermi system at zero temperature the chemical potential equal
to Fermi energy is defined by

µ0
e =

~2

2me

(
3π2ne

)2/3
= EFermi. (1.3)
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1. Motivation
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Figure 1.3.: Si comparison the chemical potential of free electrons in degenerate ideal
Fermi gas (Red line) and non-degenerate ideal gas (Green line). The solid
blue line shows the thermal energy equals the Fermi energy at the degenerate
parameter of plasma equal to 1. The temperature higher than 20 eV have
the same behavior between Fermi Integral and ideal gas.

In Eq. (1.3) has electron mass me with free electron density ne.
The degenerate parameter of plasma θ is defined by

θ =
kBT

EFermi

. (1.4)

In Eq. (1.4) the thermal energy is kBT and the Fermi energy is Λe (3π2ne)
2/3

. If θ < 1
should use the Fermi distribution and if θ > 1 one can use the Boltzmann distribution.
In Fig. 1.2b shows the degenerate parameter θ in Si when temperature is higher than
12.5 eV and for Ar when temperature is higher than 12.9 eV one can use the Boltzmann
distribution. When Si temperature lower than 12.5 eV and for Ar when temperature
lower than 12.9 eV one can use the Fermi distribution.

Now let us consider a dimensionless chemical potential µ
kBT

to compare with degenerate
Fermi system and non-degenerate ideal system. In Fig. 1.3 is shown the dimensionless
chemical potential with different temperature on the degenerate Fermi system and non-
degenerate ideal system. The temperature under 10 eV should be considered degenerate
plasma and over the 20 eV both have the same behavior in dimensionless chemical
potential, see Fig. 1.3.

The electron coupling parameter of plasma Γe is defined by

Γe =
e2

4πε0rekBT
. (1.5)

In Eq. (1.5) re is the Wigner-Seitz radius and e2

4πε0re
is Coulomb potential. The weakly

coupled plasma is located at Γe ≤ 0.1 and strongly coupled plasma is located at Γe � 0.1.
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1.3. Hydrogen Plasma

The plasma frequency of electrons ωpl is defined by

ωpl =

√
nee2

ε0me

. (1.6)

In Eq. (1.6) ε0 is vacuum permittivity, ne is free electron density, me is the mass of the
electron.

The εRPA is the dielectric function of random phase approximation [6] in plasma. The
statically screened Coulomb potential is given by

V S
ab(q) =

Vab(q)

ε(q, 0)
. (1.7)

In Eq. (1.7) Vab(q) is the Coulomb potential and ε(q, 0) is the static dielectric function
defined by

ε(q, 0) = 1 +
~2κ2

q2
. (1.8)

Reflectivity Rω with the dielectric function of ε is given by

Rω =

∣∣∣∣√ε− 1√
ε+ 1

∣∣∣∣2 . (1.9)

In the case of the plasma frequency smaller than the X-rays frequency ωpl < ω and the
reflectivity Rω < 1 one has radiation propagation. In the case of the plasma frequency
bigger than the X-rays frequency ωpl > ω and the reflectivity Rω = 1 has no radiation
propagation. The power absorptivity [19] is given by

Aω = 1−Rω − Tω. (1.10)

In Eq. (1.10) shown Aω is power absorptivity, Rω is power reflectivity and Tω is power
transmissivity, respectively. When Rω ≈ 1 is corresponding to the Tω ≈ 0 and Aω ≈ 0
. The free electron density and temperature are two important factors in the plasma
diagnostics. The Si plasma and Ar plasma were located on the range of free electron
density ne from 1022 cm−3 to 1024 cm−3. We consider the temperature kBT from 10 eV
to 160 eV in the plasma. The plasma is generated in a high temperature of X-rays (100
eV - 1 MeV). So the most of the atoms are ionized and all molecular bonds are broken.

The classical plasma effect of long wavelength radiation [6] reduces to

lim
k→0

εRPA = 1− ωpl
2

ω2
. (1.11)

1.3. Hydrogen Plasma

An ideal neutral hydrogen Plasma is considered in thermodynamic equilibrium. The
hydrogen plasma is partially ionized describing by the degree of ionization α in Eq. (1.1).
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1. Motivation

In non-degenerate case, for the chemical potential of atoms µj in state |j〉, ( j = n, l,m;
principal quantum number n and the angular momentum quantum number l) is equal
to the chemical potential of free electrons µe addition to the chemical potential of the
protons µp. Then the chemical potential of atoms µj is given by

µj = µe + µp. (1.12)

In non-degenerate case, for the chemical potential of atoms µj depends on the density
nj. Bound state energies Ej(ne, T ) is defined by

Ej(ne, T ) = E0
j + ∆j(ne, T ). (1.13)

In Eq. (1.13) ∆j(ne, T ) is the self-energy shift. The thermal wavelength of the atoms
ΛH is given by

ΛH =

(
2π~2

MkBT

)1/2

. (1.14)

In Eq. (1.14),the mass of atoms is M , reduced Planck constant is ~ and the Boltzmann
constant is kB. The expression of the chemical potential of atoms µj in state |j〉 is given
by

µj = kBT ln

(
njΛ

3
He

βEj

(2se + 1)(2sp+1)

)
. (1.15)

The chemical potential of the free electrons is given by

µe = kBT ln

(
neΛ

3
e

2se + 1

)
+ ∆e. (1.16)

In Eq. (1.16) ∆e = µinte = κe2

2
is described interaction chemical potential of electrons

and the chemical of the free protons is given by

µp = kBT ln

(
npΛ

3
p

2sp + 1

)
+ ∆p. (1.17)

In Eq. (1.17) ∆p = µintp =
κe2p
2

is described interaction chemical potential of protons. We
arrange µj, µe, µp to Eq. (1.12) getting

nH
nenp

= Λ3
eσH(ne, T )eβ(∆e+∆p) = KH(ne, T ). (1.18)

In Eq. (1.18) is called the Saha equation. KH is the mass action constant and σH(ne, T )
is partition function given by

σH(ne, T ) =
∑
j

e−βEj(ne,T ). (1.19)

In case of an ideal hydrogen plasma, we consider the ground state E0
1 , and ignore

other excited states. The partition function can be written

σ0
H(ne, T ) = e−βE

0
1 . (1.20)

10



1.3. Hydrogen Plasma

When the self-energy shift is equal to 0, ∆i = 0 and there is no interaction of chemical
potentials, ∆e = ∆p = 0. The Saha equation can be rewritten

nH
n2
e

= Λ3
eσH(ne, T ) = Kid

H (ne, T ). (1.21)

In Fig. 1.4 shows the degree of ionization α with ntote on the different temperature
(15000 K, 30000 K, 50000 K). In an ideal hydrogen plasma, the degree of ionization α
is decreased to 0 at the high total electron density density ntote .

In case of a non-ideal hydrogen plasma, we consider the ground state E0
1 and ignore

other excited states. The partition function is described by

σ0
H(ne, T ) = e−βE

0
1+2∆2 . (1.22)

In Eq. (1.22) has ∆e = ∆p. The self-energy shift is equal to 0, ∆j = 0. The density of
electrons ne is equal to the density of protons np. So the Saha equation is given by

nH
n2
e

= Λ3
eσH(ne, T )e2∆eβ = KH(ne, T ). (1.23)

If the degree of ionization α is transited approach to the value α = 1. This means a
fully ionized plasma at the higher total electron density ntote , this effect called Mott effect
and the transition of density called Mott density. The KH(ne, T ) can exhibited jumping
at Mott densities from different total electron density ntote . But in the real situation,
there are partially ionized plasmas at high densities. So Planck and Larkin modify the
Saha equation are satisfied the real situation. Now, we introduce the effective ionization
energy

Ieffj (ne, T ) = |E0
j | −∆j + ∆e + ∆p. (1.24)

The Saha equation is simplified to [18]

Keff
H (ne, T ) = Λ3

e

∑
j

(
eβI

eff
j (ne,T )

)
. (1.25)

In math the problem of Mott effect comes from the first two terms of a power series

expansion of eβI
eff
j , Planck and Larkin consider subtraction of the first two terms in the

power series to deal with this problem. So the mass constant on Planck-Larkin is given
by

KPL
H (ne, T ) = Λ3

e

∑
j

(
eβI

eff
j (ne,T ) − 1− βIeffj (ne, T )

)
. (1.26)

When total electron density ntote higher than Mott density, we set the degree of ionization
α = 1 to modify. In Fig. 1.5 is a non-ideal hydrogen plasma considering α with ntote
at temperature 15000 K, 30000 K, 50000 K When effective ionization energy Ieffnl = 0
the bound state vanishes calling Mott effect (Mott 1961). Mott density describes the
pressure of ionization in a plasma. Using Planck-Larkin equation has continued at the
Mott density solved the Mott effect problem at T=15000 K.
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Figure 1.4.: The degree of ionization α as a function of the total electron density ntote
for different temperatures at the ground state energy in an ideal hydrogen
plasma.
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Figure 1.5.: The degree of ionization α as a function of the total electron density ntote for
different temperatures with the same interaction potential ∆e = ∆p at the
ground state energy from Planck-Larkin equation in a non-ideal hydrogen
plasma.
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1.4. Experiments

1.4. Experiments

1.4.1. Si and SiO2 Kα Fluorescence Spectra

In 2004, Zhenlin Liu et al. [13], have measured on a pure Si Kα X-rays fluorescence
spectra and Si compounds Kα X-rays fluorescence spectra in the low temperature under
1 eV using a high resolution double-crystal vacuum X-rays fluorescence spectrometer in
Japan. The Si Kα emission line was the resulting of electrons in the valence band shifts
the inner shell electrons in higher binding energy. Before this work, Graeffe et al., have
also measured Kα spectra from Si and SiO2 on a double-crystal spectrometer [12]. In
this working recording the peak position of Si Kα1 emission energy with fine structure
P1/2 was 1739.98 eV with the peak position of Si Kα2 (also fine structure P3/2) was
1734.98 eV, and the positive chemical shift of SiO2 for the Si Kα line relative to pure
Si was 0.62 eV. SiO2 have some oxide compounds influenced the chemical shift in the
experiment spectral line shift from pure silicon spectral line. The blue shift of X-rays
fluorescence lines is interpreted by the charges of the X-rays emission atom. Our work
focus on the pure silicon Kα emission fluorescence line in the plasma environment with
the high temperature 30 eV. The semi- empirical NIST data were showing the distance
of 0.591 eV between the fine structure of Si components [20]. In generally a plasma
of medium temperature and high density (warm dense matter) is created from bulk Si
and the greater part of atoms are ionized. The high energy of Kα x-rays is necessary to
penetrate and investigate the Si sample. Kα shifts due to chemical binding depending
on chemical surrounding, see Fig. 1.6. The chemical compounds are strongly influencing
the Kα emission profile.

In chapter 3 we want to pay attention to compare this experiment Si Kα X-ray fluores-
cence spectra with our theoretical Si Kα X-rays fluorescence spectra shown the plasma
screening reduced to negative shift (red shift).

1.4.2. Si KαL
xM y X-rays Satellites Recording SiO2 Aerogel

In 2010, O. Rosmej et al. [15, 16], have measured the heavy ion beam Ca projectiles
was penetrated into the low-density SiO2 aerogel having non equilibrium distribution
knockout of inner electrons. Si Kα X-rays emission spectra of the low-density SiO2

aerogel induced by Ca projectiles for penetration depth x and different energies E.
The stopping medium which low density SiO2 aerogel has described a level of the

L-shell ionization. The experiment result has shown with different depth x and different
energies E for x1 = 0.5 mm (E1 = 11.4 - 10.6 MeV/u) having more higher spectrum
intensity than x2=5 mm (E2 = 8.5 - 7.6 MeV/u) and x3 = 10 mm (E3 = 5.2 - 4.0
MeV/u), see Fig. 1.7. The Ca heavy ion beam was penetrated goto deep depths x losing
more energy E. The Si KαL

xMy X-rays spectra emitted satellites recording in Si target
more detailed, see[15, 16]. The Lorentzian width is 0.48 eV and Gaussian width is 1 eV
(instrumental profile). The Si KαL

xMy initial configuration schematic representation,
see Fig. 1.8. In contrast to pure Si, the chemical environment in Si compounds affects
the emitters resulting in a chemical shift for the Kα lines. The K-shell radiation of

13



1. Motivation

Laser

Si Sample

Figure 1.6.: Shifts due to chemical binding depending on chemical surrounding, mea-
sured by high-resolution Si Kα fluorescence spectra spectra of Si compounds.
Si Kα1 is 1739.98 eV and Kα2 is 1734.98 eV [13].

stopping media SiO2 is a useful plasma diagnostics. The Si inner shell vacancies of
L-shell and M-shell have the ionization of the outer shell electrons accompany on the
different KαL

NM0 or KαL
NM4 satellite lines, where N is a number of the vacancies

on L shell , M0 is (3s23p2 on M shell) and M4 is full ionization on M shell. In our
calculation we ignore the dynamical collision processes between heavy ions and atoms
but focus on the KαL

N satellite lines. All the different KαL
N satellite lines reflected the

different dynamical collision processes in the SiO2 aerogel target. The satellite energy
shifts increase with the number of the L-shell vacancies including some possible excited
states. The intensity ratio of all different KαL

N satellite lines is determined according
to their statistical weight (LS coupling) [21, 22] and the abundance of corresponding
emitters with respect to the plasma parameters. Si inner shell vacancies (L-shell) are
accompanied by ionization of the outer shell electrons (M-shell) resulting in different
KαL

NM0 or KαL
NM4 satellite lines, where N is a number of the vacancies in the

L-shell and M0 means on M-shell configuration of 3s23p2 and M4 is the fully ionized
M-shell on M-shell configuration of 0, respectively. To explain these complexes inner
shell effects all possible excited and ionized charge states should be considered.

1.4.3. Argon X-ray Spectrum

In 2012, P. Neumayer et al. [9], have measured the PHELIX Laser power 2.5 J through
in an argon droplet of 20 µm diameter recording in X-rays spectra emitted lines at the
GSI Helmholtz Center, see Fig. 1.9 and they were using the theoretical code FLYCHK
fitting the series of Kα emission spectral lines [9] . This argon experiment is a high

14



1.4. Experiments

Ion Beam

aerogel

XX

Figure 1.7.: 11.4 MeV/u Ca6+ ion beam projectiles penetrating into different depths of
low-density SiO2 aerogel target. Kα satellite emission transitions 2p → 1s
with N holes in the L shell. KαL

N lines of Si atoms are influenced by the
environment of oxygen atoms [15, 16].

Figure 1.8.: Schematic representation for different Si emission initial configurations on
KαL

0M0, KαL
1M0 and KαL

5M4 of Kα satellites initial configurations. The
configuration of KαL

0M0 is 1s12s22p63s22p2. The configuration of KαL
1M0

is 1s12s22p53s23p2. The configuration of KαL
5M4 is 1s12s22p1. [15].

energy laser producing the plasma effect in the series of Kα emission spectral line model
is suitable to experiment. In the Ar spectra experiment for the charge states 1+ to 9+
is about 20 eV to 30 eV apart and the charge states 10+ ... 14+ is about 20 eV to 30
eV apart with the total spectrometer covered the range of the Ar K-shell emission lines
from 2940 eV to 3120 eV [9]. With lower laser energy 0.01 J one can not see the charge
states 10+ ... 14+ the satellites effect but with a high laser energy 2.4 J has the stronger
satellites effect of the charge states 10+ ... 14+ in experimental result [9].

In our theoretical model the bulk Ar can be roughly described with an isolated ionic
emitter and accompany to increasing temperature getting greater part of atoms are
ionized in the plasma environment. Plasmas was produced by high power laser can have
high electron temperatures and electron densities. From the charge states 1+ to 9+
in the M shell, the effect of M-shell electrons have a similar chemical environment in
the Kα spectral line. From the charge states 10+ to 14+ in the L shell with different
holes accompany with KαL

N (N holes in L shell) satellite lines. The lowest binding
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1. Motivation

energies could be included self-energy shift ∆ and plasma composition is from ionization
equilibrium with the Saha equation in the thermodynamic equilibrium. In our spectral
function is Lorentz profile convoluted Gaussian instrument function depending on plasma
parameters with different temperature. We Compare our theoretical spectra line with the
spectral line calculation by FLYCHK [25]. Knowing exactly the charge distribution of
argon is essential in studying X-rays KL lines. In this aspect, the blue shift measurement
in X-rays fluorescence spectra was a good promising method.

In describing the different initial states and final states we will describe the LS coupling
for Si and Ar in the Quantum Fermi system in chapter 2. In section 2.2 we will use
Roothaan-Hartree-Fock (RHF) wave functions calculating the screening effect within an
ion-sphere model with Bunge wave function. The Roothaan-Hartree-Fock with atomic
orbitals expressed the Slater-type functions. The advantages of RHF to be more accurate
could readily be incorporate into some codes for atomic calculations. In section 2.3 we
will describe Roothaan Hartree Fock (RHF) with Gaussian 03. The different excitation
and ionization probabilities of the electronic L-shell and M-shell lead to a charge state
distribution.

Laser Ar droplet beam

1+...9+

10+ 11+ 12+  14+ 13+

Ka spectrum

Figure 1.9.: Ar intense-laser pulses irradiated individual argon droplets. Kα spectral
region from 2940 eV to 3100 eV. KL-transitions of argon at different charge
state. Ar1+...9+ ,Ar10+, Ar11+,Ar12+,Ar13+ and Ar14+ [9].
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2. Line Shift due to Excitation and
Ionization

Boltzmann (1844 - 1906) was described of macroscopic systems into the microscopic
statistical ensembles [26]. Statistical mechanics deals with a large number of particles
in the microscopic physics. Classical statistics describe N particles in the phase space
including three dimensional spatial coordinates r1, · · · , r3N and three dimension mo-
mentum coordinates p1, · · · ,p3N . The classical statistics particles motion of the overall
system are through a phase space trajectory curve in the phase space [26]. In statistical
quantum mechanics, the probability of finding a plasma particle at the spatial space r
and the momentum space p with wave function ψ is defined by

dP (rp) = |ψp(r)|2 dr. (2.1)

In order to consider the many-particle system we need an approximation of many-
particles wave function instead of numerical many-particle Schrödinger wave functions.
Roothaan Hartree Fock wave function method is a useful approximation many-particle
wave function (1951) [30, 28, 29]. We use Roothaan Hartree Fock approximation wave
functions solving many-particle system in quantum systems. The ab initio Gaussian 03
(G03) chemical code [34, 32, 33] is a good approximation of Hartree-Fock energy. Using
G03 describes the energy eigenstates of ionization energy and excited energies of excited
states in the specified ionic configurations in our cases. We calculate with Hund’s rules
(1927 devised by Friedrich Hund) for lowest energy of a configuration [21, 22]. The
electrons could describe with spin statistics theorem applying Fermi-Dirac statistics. In
section 2.1 we will introduce the Many body systems with Hartree Fock approximation.
In section 2.2 we will introduce the Roothaan Hartree Fock (RHF) with the Bunge wave
function. In section 2.3 the Roothaan Hartree Fock (RHF) with ab initio Gaussian 03.

2.1. Many Body Systems and Hartree Fock
Approximation

In the quantum system has introduced some different quantum numbers to describe the
specified charge states of silicon and argon. The principal quantum number n: describes
the different electron shell or energy levels, on K-shell n = 1, on L-shell n = 2, and on
M-shell n = 3. The angular momentum quantum number l is defined from 0 to n − 1.
The l describes the sub-shell or different quantum orbits, on the s-orbital l = 0, on
p-orbital l = 1, on d-orbital l = 2, and on f-orbital l = 3. The total electronic orbital
angular momentum quantum number l can be described with the corresponding letter.
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2. Line Shift due to Excitation and Ionization

0 1 2 3 4 5
s p d f g h

Figure 2.1.: Si of electron of orbital. There is one electron transition from 2p to 1s shell
in the Kα fluorescence emission spectral line. K shell has 1s and K shell has
2s and 2p. M shell has 3s, 3p, 3d and 4s. The transition from 2s to 1s is
forbidden by selection rule.

The magnetic quantum number ms is defined from −l,−l+1, ...0, ..., l−1, l. The spin
number describes spin up 1/2 or spin down −1/2 [22, 23, 24]. In Fig. 2.1 shows the
scheme of Kα emission configuration Si+ with 13 electrons in the different atom orbits.
The Si+ configuration of initial state is 1s12s22p63s22p2 and configuration of final state
is 1s22s22p53s22p2. The Kα emission configuration of initial state Si+ on 3p excited
state is 1s12s22p63s22p13p1 and the configuration of final state Si+ on 3p excited state
is 1s22s22p53s22p13p1. The Kα emission configuration of initial state Si+ on 3d excited
state is 1s12s22p63s22p13d1 and the configuration of final state Si+ on 3d excited state
is 1s22s22p53s22p13d1. The Kα emission configuration of initial state Si+ on 4s excited
state is 1s12s22p63s22p14s1 and the configuration of final state Si+ on 4s excited state
is 1s22s22p53s22p14s1. The Si Kα non-perturbative emission energies seeing in section
2.3.1.

The atom number Z of Ar is 18. There are 2 electrons in K-shell, 8 electrons in L-
shell, and 8 electrons in the M-shell in the Ar ground state. The Ar Kα non-perturbative
emission energies seeing in section 2.3.2.

Each electron is assigned to a one-electron wave function. Each electron includes the
spatial coordinate and spin coordinate assigned to a one-electron wave function. At
many-electron system has an approximation method to get the lowest energy of the
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2.1. Many Body Systems and Hartree Fock Approximation

ground state and excited states with a trial wave function introduced by the variation
approximation method.

E[Ψ] ≡ 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

≥ E0. (2.2)

In Eq. (2.2) Ψ is a trial wave function and Eq. (2.2) is called Rayleigh method [23, 24].
The Hamiltonian is defined by

Ĥ = T̂ + V̂ . (2.3)

In Eq. (2.3) shows kinetic energy T̂ with potential energy V̂ . We use a complete set |n〉
of commutator observables

〈Ψ|Ĥ|Ψ〉 =
∑
n

〈Ψ|n〉〈n|Ĥ|Ψ〉 =
∑
n

〈Ψ|n〉En〈n|Ψ〉. (2.4)

The normalized factor is 〈Ψ|Ψ〉 =1. The energy level of the hydrogen atom is given by
[22],

En = −
(

mee
4

32π2ε20~2

)
1

n2
, n = 1, 2, · · · . (2.5)

In Eq. (2.5) me is the electron mass, e is the elementary charge, ~ is the reduced Planck
constant, ε0 is the vacuum permittivity. And Eq. (2.5) describes the energy levels of
the atom En ∝ − 1

n2 . That is if n → ∞ then En going to zero. The ionization energy
was defined by an electron removal from energy state En to energy state E∞ getting
the energy difference −(E∞ − En). Now we pay attention to an approximation of the
many-particle system of Hartree-Fock approximation model [29, 22]. Hartree-Fock is
a self-consistent field (SCF) method to find resolutions for non-relativistic Schrödinger
equation in the stationary states. An antisymmetric operator of fermion Â− can be
described by sum all of the permutation operators P̂ in the N fermion system:

Â− =
1√
N !

∑
P

(−1)P P̂ . (2.6)

The non-relativistic Hamiltonian H of N electrons is given by

Ĥ = Ĥ(1, 2, 3, ..., N). (2.7)

In Eq. (2.7) parentheses describe the degree of freedom on spatial orbital and spin
orbital from one electron to Nth electron. At one electron orthonormal particle wave
function is also called a molecular spin orbit (MSO).

ϕi(k) = ϕi(r̂k)χi(msk). (2.8)

In Eq. (2.8) k denotes the particle of number k, index i is an eigenstate of particles, rk
is spatial part and msk is spin part. The wave function of many particle products all
of one particle orthonormal particle wave function involving minimizing Rayleigh ration
for the lowest Energy.

Ψ = ϕ1(1)ϕ2(2)...ϕN(N). (2.9)
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2. Line Shift due to Excitation and Ionization

The total electron wave functions Ψ can describe with Slater determinant

Ψ =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ1(2) · · · ϕ1(N)
ϕ2(1) ϕ2(2) · · · ϕ2(N)

...
...

. . .
...

ϕN(1) ϕN(2) · · · ϕN(N)

∣∣∣∣∣∣∣∣∣ .
The Slater determinant describes all of the permutations at all possible ϕi(k) sets,

even ones with a plus sign, the odd ones with a minus sign and the normalization condi-
tion 〈Ψ|Ψ〉 = 1. In closing electron shells, the occupied electrons must satisfy the Pauli
principle. The Pauli principle means no two identical fermions to occupy in a same
quantum state. There is no possible two row elements or two column elements in a same
quantum state in the Slater determinant. In open electron shells, the Slater determinant
is a linear combination with different statistical factor on the components. The varia-
tional theory requires minimization of energy at the wave function. The Hamiltonian
Eq. (2.3) consists of single particle and two particles Coulomb interaction contribution
rewritten.

Ĥ = Ĥ(1) + Ĥ(2) =
N∑
i=1

Ĥi +
N∑

i,j=1,
i>j

Ĥij (2.10)

=
N∑
i=1

(
− ~2

2m
∇2
i −

Ze2

4πε0r̂i

)
+

N∑
i,j=1,
i>j

e2

4πε0r̂ij
. (2.11)

In Eq. (2.10) the first term is a single particle Hamiltonian including of kinetic energy
and nuclear Coulomb potential. The second term is Coulomb repulsive interaction of
two electrons. Now we discuss more detailed Coulomb interaction splitting to the direct
interaction and exchange interaction by [27]

E[ϕ] = 〈Ψ|H|Ψ〉 =
N∑
i=1

2Ii +
N∑
i,j

[2Jij −Kij] (2.12)

Ii =

∫
dr1ϕ

∗
i (r1)H1ϕi(r1), (2.13)

Ji,j =

∫
dr1dr2ϕ

∗
i (r1)ϕ∗j(r2)H12ϕi(r1)ϕj(r2) (2.14)

Ki,j =

∫
dr1dr2ϕ

∗
i (r1)ϕ∗j(r2)H12ϕi(r2)ϕj(r1). (2.15)

In Eq. (2.14) Ji,j is the direct term of the Coulomb potential and in Eq. (2.15) Ki,j is
an exchange term in the Coulomb interaction.
We introduce Russell-Saunders coupling scheme to describe the state of atom in many
electrons. Russell-Saunders coupling scheme includes the total spin Ŝ, the total orbital
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2.1. Many Body Systems and Hartree Fock Approximation

angular momentum L̂, and the total angular momentum Ĵ .

Ŝ = ŝ1 + ŝ2, ŝ1 + ŝ2 − 1, ..., |ŝ1 − ŝ2|
L̂ = l̂1 + l̂2, l̂1 + l̂2 − 1, ..., |l̂1 − l̂2|
Ĵ = ĵ1 + ĵ2, ĵ1 + ĵ2 − 1, ..., |ĵ1 − ĵ2|.

Ĵ =
∑
i

ĵi = L̂+ Ŝ =
∑
i

l̂i +
∑
i

ŝi. (2.16)

In Eq. (2.16) the core electrons of a closed shell can neglect because J is zero. In 1927,
Friedrich Hund had devised Hund’s rules [21, 22] in the lowest energy of a configuration.
There are three rules in Hund’s rules. The first rule is the electrons in a closed shell and
there is a maximum multiplicity 2S + 1 (called g-factors). The second rule describes
the two electrons locate in the different shell, S and L considering maximal for a given
multiplicity in the lowest energy. The third rule is the level with the lowest J at half-
filled or less at outer sub-shell in the lowest energy. The third rule considers the energy
shifts due to spin-orbit coupling. The spin-orbit coupling effects on spectra. The silicon
and argon g-factors in the ground and excited state (2p,3s,3p,3d,4s) are shown in Tab.
2.1.

Charge gd ex(4s) (3d) (3p) (3s) (2p) Charge gd ex(4s) (3d) (3p) (3s) (2p)
Si 5 5 9 Si+ 4 2 6

Si2+ 1 3 7 5 Si3+ 2 2 6 4
Si4+ 1 9 7 5 Si5+ 4 10 8 6
Si6+ 5 9 7 5 Si7+ 4 10 8 6
Si8+ 5 9 7 5 Si9+ 4 6 4 2
Si10+ 1 7 3 5 Si11+ 2 6 2 4
Si12+ 1 7 3 5

Charge gd ex(4s) (3d) (3p) (3s) (2p) Charge gd ex(4s) (3d) (3p) (3s) (2p)
Ar 1 5 9 Ar+ 4 6 10

Ar2+ 5 5 9 Ar3+ 4 6 10
Ar4+ 5 5 9 Ar5+ 4 2 6
Ar6+ 1 3 7 Ar7+ 2 2 6 7
Ar8+ 1 9 8 5 Ar9+ 4 10 7 6
Ar10+ 5 9 8 5 Ar11+ 4 10 7 6
Ar12+ 5 9 4 5 Ar13+ 4 6 5 2

Table 2.1.: Silicon and argon statistical factors (dg: ground state, ex: excited states)
with different charge states.

We use LS coupling for Si and Ar statistical factor calculation, for example: l = 1,
s = 1

2
, j = 3

2
or l = 1, s = 1

2
, j = 1

2
. Fine structure describes the splitting of the spectral

lines of atoms and influences the Kα emission line at splitting off P3/2 or P1/2. In the
next section we will pay attention to Roothaan Hartree Fock (RHF) with the Bunge
wave function.
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2. Line Shift due to Excitation and Ionization

2.2. Roothaan Hartree Fock with Bunge Wave Function

Si atom including 14 electrons are bounded to the nucleus in a many body system. Ar
atom including 18 electrons are bounded to the nucleus in a many body system. We
use the self-consistent Roothaan-Hartree-Fock approximation method to solve the many
body systems. The unperturbed Hamiltonian H0 includes each single particle Hamil-
tonian, the Coulomb interaction potential and the exchange potential in Hartree-Fock
approximation, see Eq. (2.10), Eq. (2.14) and Eq. (2.15). RHF wave functions calculate
ground state and excited states of neutral with ionized atoms from He through Xe (Z
= 2 - 54) [28, 29]. The nucleus is considered keeping in a fixed position and the motion
of electrons on the orbits are neglected. Roothaan Hartree Fock is an approximation to
the conventional Hartree Fock wave functions with radial atomic orbitals Rnl

Rnl =
∑
j

SjlCjln. (2.17)

In Eq. (2.17) Cjln collects the orbital expansion coefficients, see App. 2.2, the radial
atomic orbitals are expanded as a finite superposition of primitive radial functions Sjl

Sjl = Njlr
(nj l−1)e(−Zjlr). (2.18)

In Eq. (2.18) njl is the effective principal quantum number, l is the azimuthal quantum
number and Zjl is orbital exponent coefficients, see Tab. 2.2. The normalization factor

Njl =
(2Zjl)

njl+1/2

[(2njl)!]1/2
. (2.19)

The Bunge wave function combines the radial term and sphere angle term

ϕnlm(r, θ, φ) = Rnl(r) ·Ylm(θ, φ) (2.20)

=
∑
j

SjlCjln ·Ylm(θ, φ) (2.21)

=
∑
j

Njlr
(nj l−1)e(−Zjlr)Cjln ·Ylm(θ, φ). (2.22)

The Roothaan Hartree Fock equations [28, 29] are self-consistent-field equations get-
ting minimizing energy,

Fclosed ·C = E · S ·C (2.23)

Fopen ·C = E · S ·C (2.24)

In Eq. (2.23), Fclosed is the closed shell Fock matrices, Fopen is the open shell Fock
matrices, S is overlap matrix, C is the orbital expansion coefficients Cjln and E is vector
holds the different orbital energies. The Argon parameters, see Tab. 2.3 and 2.4.

The probability of radial wave function is defined by

r2 |Rnl(r)|2 = r2

∫
dθdφ sin(θ) |ϕnlm(r, θ, φ)|2 . (2.25)
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2.2. Roothaan Hartree Fock with Bunge Wave Function

njl Zjl C1s C2s C3s njl Zjl C2p C3p
1S 19.5017 0.377006 0.064222 0.023528 2P 15.7304 0.015661 -0.001966
1S 11.7539 0.454461 -0.472631 -0.136207 2P 7.2926 0.196557 -0.057175
2S 16.9664 0.200676 0.055383 0.019663 2P 4.6514 0.510448 -0.068127
2S 6.3693 0.00149 0.233799 0.074362 2P 3.3983 0.303956 -0.114298
2S 4.5748 0.001201 0.781919 0.122580 3P 12.0786 0.025586 -0.001976
2S 3.3712 -0.000454 0.96627 0.206180 3P 2.0349 0.003153 0.263703
3S 36.5764 -0.000507 0.000257 0.000048 3P 1.3221 0.000167 0.522698
3S 2.4996 0.000103 -0.001832 -0.319063 3P 0.9143 0.000156 0.314467
3S 1.6627 -0.000053 0.000879 -0.562578
3S 1.1812 0.000013 -0.000033 -0.280471

Table 2.2.: Silicon:njl,Zjl,Cjln [28, 29].

njl Zjl C1s C2s C3s njl Zjl C2p C3p
1S 25.5708 0.316405 0.079148 0.035512 2P 26.6358 0.002436 0.00185
1S 15.6262 0.542760 -0.507823 -0.181267 2P 12.7337 -0.114774 -0.042064
2S 22.3994 0.167691 0.059900 0.026500 2P 7.3041 -0.503175 -0.095603
2S 10.5300 0.000408 -0.026389 0.006280 2P 5.3353 -0.427033 -0.194233
2S 7.0534 0.002431 0.832638 0.111836 3P 20.7765 0.009669 0.005891
2S 5.4120 -0.000861 0.295522 0.385604 3P 3.3171 -0.004825 0.366141
3S 46.7052 -0.000422 0.000217 0.000070 3P 2.0947 0.000231 0.526490
3S 3.7982 0.000066 0.002203 -0.376901 3P 1.3780 -0.000098 0.249866
3S 2.5495 -0.000061 0.001423 -0.593561
3S 1.7965 0.000009 0.000186 -0.229971

Table 2.3.: Argon:njl,Zjl,Cjln [28, 29]

In Eq. (2.25) the area of probability is
∫∞

0
r2 |Rnl(r)|2 = 1 The probability of Si radius

wave function with the different orbits, see Fig. 2.2. We see the 1s wave function
location in radial distance from the nucleus of 0 aB to 0.4 aB, 2s and 2p wave functions
are located from 0 aB to 1.0 aB, 3p and 3s wave functions are very small contribution
inside of aB = 1. The probability of Ar radius wave function with the different orbits,
see Fig. 2.3. We see the 1s wave function location in radial distance from the nucleus
of 0 aB to 0.4 aB, 2s and 2p wave functions are located from 0 aB to 1.0 aB, 3p and 3s
wave functions are very small contribution inside of aB = 1.

The Si ground state energy of RHF was -288.8543622 Hartree and Si ground state
energy of Exact HF was -288.8543624 Hartree (1 Hatree= 1 a.u. = 27.2113961 eV). The

E 1s 2s 3s 2p 3p
-118.610349 -12.322152 -1.277352 -9.571464 -0.591016

Table 2.4.: Orbital energy of Argon [28, 29]
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2. Line Shift due to Excitation and Ionization
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Figure 2.2.: Si radial probability distributions r2 |Rnl(r)|2 of the Bunge wave functions.
Including 1s, 2s, 2p, 3s, 3p, 3d and 4s orbitals. 3d and 4s have a very small
contribution.
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Figure 2.3.: Ar radial probability distributions r2 |Rnl(r)|2 of the Bunge wave functions.
Including 1s, 2s, 2p, 3s, 3p, 3d and 4s orbitals. 3d and 4s have a very small
contribution.
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2.3. Roothaan Hartree Fock with Gaussian 03

Ar ground state energy of RHF was -526.8175122 Hartree and Si ground state energy of
Exact HF was -526.8175126 Hartree shows the RHF energy is less than 1 MeV in error
[29]. Energy = 1H(1 + me

mnuclear
)−1 with me electron mass and mnuclear nuclear mass. We

get Roothaan-Hartree-Fock ground state atomic wave functions from [28, 29, 30].
In section 3.3.2 we will use Bunge wave function on the perturbation Hamiltonian Kα

initial wave function Ψ1s and final wave function Ψ2p calculating perturbative screening
plasma potential.

2.3. Roothaan Hartree Fock with Gaussian 03

Another well presentation RHF is the linear combinations of ab initio Gaussian 03 basis
functions. The ab initio G03 program is used for molecular electronic structure to give
the lowest spin unrestricted Hartree-Fock (UHF) energy for the ground state of the atom.
We calculate self-consistent RHF description of isolated ionic emitter H0. The Hartree
Fock energy is defined by

Frϕi(r) = εiϕi(r), i = 1, ..., N. (2.26)

And the Fock term Fr is given by

Fr = − ~2

2m
∇2

r −
Ze2

4πε0r
+
∑
j

2Jj(r)−Kj(r). (2.27)

In Eq. (2.27) shows the direct interaction potential Jj(r) and the exchange interaction
potential Kj(r). The RHF wave function is given by

ϕnlm(r) =
∑
j

Cnlm,jXj(r). (2.28)

In Eq. (2.28) shows the Xj(r) =
∑

g Kj,gGg(r) combination Gauss parameter Gg(r, lx, ly, lz).
In APP. Tab. A.2, A.3, A.4 show Kj,g and Gg(r) in the silicon case. Recently ab initio
Gaussian 03 codes was calculated integral over Cartesian Gaussian for Gaussian orbits
instead of spherical harmonic Gaussian. The conversion relationship between normal-
ized Cartesian and pure spherical harmonic Gaussian in [31]. Cartesian Gaussian orbits
were presented

G(r, lx, ly, lz, α) = N(lx, ly, lz, α)xlxylyzlze−αr
2

. (2.29)

In Eg. (2.29) shows the angular momentum l = lx + ly + lz and the normalization

factor N(lx, ly, lz, α) =
[

(2lx!)(2ly !)(2lz !)π3/2

lx!ly !lz !(αl+3/2)(22l)

]−1/2

[31]. We use 3-21G* (19 basis functions)

[32] calculating argon specific charge states of unperturbed ground state and specified
unperturbed excited states (3p, 3d, 4s) in chemical ab initio code G03. The 3-21G*
self-consistent molecular-orbital could applying from H atom to Xe atom. The name of
3-21G* means a linear combination of three Gaussian primitives and valence functions
split into two and one Gaussian parts for the inner-shell basis function with * notation
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2. Line Shift due to Excitation and Ionization

has a polarization functions on Na-Ar only more detailed, see [32]. We use Aug-cc-pVTZ
(50 basis functions )[34] calculating Ar specified charge states of unperturbed ground
state and specified unperturbed excited states (3p, 3d, 4s). The AUG-cc-pVTZ is used
in correlated molecular calculations for Na-Ar atoms having the valence polarization
function included in (5s, 4p, 2d, 1s) basis sets more detailed is shown in [34].

2.3.1. Silicon using 3-21G* Basis

At 3-21G* basis, there are 19 basis functions (bf), 33 primitive Gaussian (pg), 19 Carte-
sian basis functions, 8 alpha electrons and 6 beta electrons. For example, at Si ground
state the Energy is -287.392361589 eV on 3-21G* basis. In App. A.3, there are alpha
occupied eigenvalues (a.o.), 11 alpha virtual eigenvalues (a.v.) and 6 beta occupied
eigenvalues (b.o.), 13 beta virtual eigenvalues (b.v.) in 3-21G* basis.
The first order of ionization energy of Si defined by removed an electron from the Si
atom in the gaseous state defined by

Si→ Si+ + e− (2.30)

the second order of ionization energy of Si is defined by

Si+ → Si2+ + e− (2.31)

and continuing in this manner for the higher order values. The first order binding energy
of Si combines the ion and 14 electrons in the atomic bound system. The second order
binding energy of Si combines the ion and 13 electrons in the atomic bound system. The
second order binding energy of Si can get from

The first order binding energy − The first order ionisation energy. (2.32)

In Eq. (2.32) as the removed electrons can no longer screen the core the remaining
electrons are bound the stronger and more energy is needed to remove the next electron.
In Fig. 2.4a are only energies of the ground state of the corresponding ion, however
energies of excited ions show a similar behavior. At N = 10 is due to the fact that for
larger N there are still electrons in the M-shell which are much less bound than L-shell
electrons. The results for different ionization stages are shown in Fig. 2.4b. From Si+

to Si4+ the ionization of the outermost electron occurs in the M-shell, then from Si5+ to
Si9+ in the L-shell. Again there is a massive rise in the energies when more and more
inner electrons are removed. In order to calculate KαL

N line emissions, we use again the
Gaussian 03 code. The program is used to determine the energies of the ion in initial
and final configuration, respectively. The emission energy is then the difference of those
two values. We compare our result of the first emission energy (KαL

0M0) with different
experimental and theoretical values in Tab. 2.5. The range of the given Si Kα values
is 1740 ± 1 eV. Our results agree to vary well with those findings. The Kα emission
energies of different charge states of Si. Ionization from Si+ to Si4+ occurs in the M-shell,
from Si5+ to Si9+ in the L-shell, see Fig. 2.5.
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2.3. Roothaan Hartree Fock with Gaussian 03
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(a) Binding energy of Si(14−N)+ ions obtained by
G03. There are 4 electrons in the M shell
having similar binding energy.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Number of bound electrons (N) 

-500

-400

-300

-200

-100

0

E
n
er

g
y
  
[e

V
]

3-21G*

(b) The ionization energy of Si(14−N)+ ions ob-
tained by G03.

Figure 2.4.: Energy values for different charge states of the ground state Si getting by
G03 3-21G* basis set.
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Figure 2.5.: Kα emission energies of different charge states of Si. Ionization from Si+ to
Si4+ occurs in the M-shell with Kα emission energy around 1740 eV, from
Si5+ to Si9+ in the L-shell with larger Kα emission energy.
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2. Line Shift due to Excitation and Ionization

Kα1 [eV] Kα2 [eV]
1741.2 [35] 1741.2 [35]
1741.2 [35] 1739.7 [35]
1739.985 [35] 1739.394 [35]
1740 [12] 1739.4 [12]
1739.98 [13] 1739.48 [13]
1739.98 [20] 1739.47 [20]
1739.89 (this work) 1739.299 (this work)

Table 2.5.: Different experimental and theoretical values for Kα1 and Kα2 . The Kα

initial configuration is 1s12s22p63s23p2 and the Kα final configuration is
1s22s22p53s23p2. Last stated values are our results.

Si KαL
NM0 (0< N< 5) satellite lines correspond to radiative decays of atomic states

with no hole in the M-shell, N holes in the L-shell and one hole in the K-shell. Si
KαL

NM4 (0< N< 5) satellite lines correspond to radiative decays of atomic states with
4 holes in the M-shell (i.e. the M-shell is fully ionized), N holes in the L-shell and one
hole in the K-shell. In Fig. 2.6 shows the SiO2 experiment results shown in section
1.4.2 [16] describes the Multi-Configuration Dirac Fock approximation to calculate the
M4 and M0. We see the M4 behavior far away from experiment than M0 because
the screening effect from M shell (4 electrons occupied in M shell) and M0 is a little
away from experiment because the experiment SiO2 having Si components describing
KαL

NM0 (0< N< 5) satellite line.
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Figure 2.6.: Kα emission energies of different charge states of Si. Experimental val-
ues [15, 16] compared with theoretical values [16] obtained from multi-
configuration Dirac-Fock approximation (MCDF).

The Tab. 2.6 compares theoretical and experimental results of [35] with our calcula-
tions of KαLN (N=0-6). Shown are the satellite energy shifts with respect to KαL

0. In
Fig. 2.7 shows the M4 using the Aug-cc-pVTZ basis set and 3-21G* basis set including
some different configuration excited emission energies. We see the KαL

0M4 = 1746.59
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2.3. Roothaan Hartree Fock with Gaussian 03

eV in Aug-cc-pVTZ basis set and KαL
0M4 = 1743.205 eV in 3-21G* basis set. The

distance of each segment is roughly 16 eV of the KαL
0M4 satellites emission lines.

Moreover, we plotted the both theoretical results for M4 in Fig. 2.8a as well as for
M0 in Fig. 2.8b. We achieved a good agreement with the results of Rzadkiewicz et
al., which apply MCDF calculations to determine the different emission energies. Fur-
ther, our results are in the order of the experimentally measured satellite energies of
emissions due to heavy ion collisions with the silicon target. Of course, there occur a
lot of dynamical processes during the collisions resulting in different emitter configu-
rations within a changing plasma environment at different target depth. In order to
resemble the measurements we will neglect the dynamical collisions, but a warm dense
plasma environment to the emission satellites calculated so far. Silicon consider the
different configurations of the emitting Si ion (1s12s22pα, α = 6, 5, 4) that corresponds
to KαL

N , N = 0, 1, 2. In order to observe KαL
N lines, we use Gaussian 03 codes to

calculate the atomic states. The shift to higher emission energies is known as blue line
shift due to ionization [27]. Synthetic spectra have been evaluated and compared with
experimental data. As the KαL

Nspectra are emitted from a silicon plasma, we are able
to infer plasma parameters by studying the line profiles.

satellite M4 [35] M4 this work M0[35] M0 this work experiment [35]
KαL

0 1743.21 1739.89

KαL
1 16.8 18.45 11.9 12.25 9.7±1.0

KαL
2 32.0 32.32 25.4 24.24 22.7±0.9

KαL
3 48.8 48.95 40.4 37.2 36.2±1.0

KαL
4 67.4 69.61 57.1 58.8 50.9±1.2

KαL
5 88.0 89.15 75.8 75.7 64.8±1.6

Table 2.6.: Satellite energy shifts with respect to KαL
0.

2.3.2. Argon using Aug-cc- pVTZ Basis

The basis set should be suitable chosen for the ground state of energy and excited states
of energies. At Aug-cc- pVTZ basis set,there are 50 basis functions (bf), 119 primitive
Gaussian (pg), 59 Cartesian basis functions. 8 alpha electrons 6 beta electrons. α-
orbitals: occupied 8 eigenvalues (a.o.) and virtual 42 eigenvalues (a.v.), β-orbitals:
occupied 6 eigenvalues (b.o.) and virtual 44 eigenvalues (b.v.). For showing the G03
is a suitable method we compare our ionization energy with different theoretical values
in Fig. 2.9 showing R. D. Cowan (1981) data from [36] and LANL data from [37] very
well. In Fig. 2.9 shows the ionization energy of the M shell having similar distance to
the next stage for Kα calculate the electrons in the M shell occupied an outside shell
more easy ionization, see Tab. 2.7.

In Fig. 2.10a shows the different states of binding energies, for the charge states 0 to
8+ have similar binding energies between -14000 eV to -14500 eV in the M shell. At
the L shell beginning from 9+ to 14+ have sharply increasing binding energy between
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2. Line Shift due to Excitation and Ionization

Number N of L-shell vacancies

Figure 2.7.: Kα emission energies of different charge states of Si. Comparing the Aug-
cc-pVTZ and 3-21G* basis set with theoretical data. Excited configurations
are possible considering. Theoretical data with KαL

0 are from [35].

(a) KαL
NM4 (no electrons in the M-shell). (b) KαL

NM0 (4 electrons in the M-shell
3s23p2).

Figure 2.8.: Comparison of KαL
N satellite energy shifts with respect to KαL

0. Theoret-
ical data taken from [35] are shown in Fig. 2.6.
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2.3. Roothaan Hartree Fock with Gaussian 03

Ar+ Ar2+ Ar3+ Ar4+ Ar5+ Ar6+ Ar7+

-14.57 1 -26.37 1 -39.391 -58.49 1 -73.93 1 -90.30 1 -121.881

-15.76 2 -27.63 2 -40.742 -59.81 2 -75.02 2 -91.01 2 -124.32 2

-15.56 3 -27.44 3 -40.473 -59.05 3 -74.71 3 -91.26 3 -123.22 3

Ar8+ Ar9+ Ar10+ Ar11+ Ar12+ Ar13+ Ar14+

-142.42 1 -422.56 1 -480.40 1 -540.25 1 -622.20 1 -685.36 1 -749.41 1

-143.46 2 -422.45 2 -478.69 2 -538.96 2 -618.262 -686.112 -755.752

-143.70 3 -422.153 -479.65 3 -540.123 -619.273 -686.283 -757.33 3

Table 2.7.: Ionization energy [eV] with different ground state using Aug-cc-pVTZ.
1this work 2R. D. Cowan(1981) [36]. 3LANL Atomic Physics Codes [37].
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Figure 2.9.: Ionization energy for the different ground state of comparing with Ar(18−N)

ions different theoretical values.
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2. Line Shift due to Excitation and Ionization
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(a) Binding energy of Ar(18−N)+ ions obtained by
G03. There are 8 electrons in the M shell hav-
ing similar binding energy.
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(blue curve) by G03.

Figure 2.10.: Energy values for different charge states of the ground state Ar.

-13500 eV to -10000 eV and have similar binding energies separated distance between
two different charges. In Fig. 2.10b shows the different ground states of the ionization
energies and the different excited states of excited energies. And in Fig. 2.10b the blue
line shows the ground state energies have a sharp gap between the last charge state of
M shell to beginning L shell. The excited energies of 3d excited state and 3p excited
state have the very similar excited energies. From excited energies of 3p, 3d and 4s
describe the electron on M shell excited not existed the gap between charge state 8+ to
9+ strongly depending the M shell state ionization energies. Because we take the outer
electron from an outer shell excited to 3p, 3d or 4s state for getting the different state
excited state energies, this outer electron in the M shell has closed ionization energies
like in the M shell
The cold Kα emission energy is 2957 eV getting by NIST. [9]. Ar Kα radiation emission
energies see Fig. 2.11. The fluorescence spectra Kα1 and Kα2 are comparing in Tab. 2.9
the ground state of different charge states, see Tab. 2.8. Different Kα satellite emissions
originate from different configurations of the emitting Ar ions.

Ar+ Ar2+ Ar3+ Ar4+ Ar5+ Ar6+ Ar7+

2957.12 2957.10 2958.09 2959.07 2961.01 2962.07 2965.65
Ar8+ Ar9+ Ar10+ Ar11+ Ar12+ Ar13+ Ar14+

2966.70 2969.03 2993.08 3017.96 3023.01 3054.59 3086.60

Table 2.8.: Emission energy [eV] with different ground state using aug-cc-pVTZ.

In order to calculate KαL
N line emissions, we use again the Gaussian 03 code. The

program is used to determine the energies of the ion in initial and final configuration,
respectively. The emission energy is then the difference of those two values. From Ar+

to Ar8+ the ionization of the outermost electron occurs in the M-shell, then from Ar9+
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2.3. Roothaan Hartree Fock with Gaussian 03

Kα1 [eV] Kα2 [eV]
P. Palmeri et al.[52] Theo. 2958.70 2956.60
P. Palmeri et al.[52] Theo. 2957.90 2955.90
P. Palmeri et al.[52] Theo. 2957.68 2955.56
NIST[20] Exp. 2957.68 2955.56

Table 2.9.: Different experimental and theoretical values for Kα1 and Kα2 [eV].
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Figure 2.11.: Ar Kα emission energies calculating excited states of 3d (black curve) ex-
cited states of 4s and 3s (green curve), excited states of 3p (red curve) and
ground states of Ar(18−N)+ ions (blue curve) by G03.

to Ar14+ in the L-shell. The shift of Ar emission line (blue line shift) is due to ionization
[27]. The Ar+ to Ar9+ have similar emission energies. In Fig 2.11 shows the charge state
from 1+ to 8+ in M shell have closely emission between 2950 eV to 2970 eV and the
charge state from 9+ to 14+ have a larger energy distance in L shell. We consider also
3p, 4s and 3d excited state energies in our model. These excited states have the different
configurations the the outside shell. In chapter 3 we need more detailed using different
configurations in the screening potential with perturbation Hamiltonian.
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3. Line Shift due to Plasma
Environment

3.1. Green Function Approach to Dense Plasmas

A systematic many body approach would give the observed line spectra, see [8]. In
this chapter we will introduce the thermodynamic Green function with some diagram
methods using the operators of second quantization for describing the many-particle
systems such as the Coulomb system. The Green function is an efficient method for
the description of interacting many body systems. For instance, a rigorous approach to
Debye screening is possible holding in dilute classical Coulomb systems [38].

The state of a plasma is determined by the complete set of observables c1 · · · cN in the
N particle system. Here c1 · · · cN are the complete single particle observables that from
a complete basis in the Hilbert space

|c1 · · · cN〉. (3.1)

In Eq. (3.1), c1 includes, for instance, position parameter r1 , the z component of spin
sz1 or the momentum parameter p1 on the c1 plasma particle. In the following, the
single particle c1 would be an electron or an ion in the plasma. The N particles are
indistinguishable particles in the quantum system. The spin statistics postulate [18]
introduce a space of states of Fermi antisymmetric particles |c1 · · · cN〉−and a space of
the states of Bose symmetric particles |c1 · · · cN〉+ describing each identical particles.
The quantum states can be given by Eq. (3.1)

|c1 · · · cN〉± =
1√
N !
a†(c1) · · · a†(cN)|0〉. (3.2)

In Eq. (3.2), |0〉 is the vacuum state (no particles), a†(c) is a creation operator and a(c)
is an annihilation operator . The N particles completeness relation in the Fock space is

∑
N

∫
dc1 · · · dcN |c1 · · · cN〉±〈cN · · · c1| = 1. (3.3)

The creation and annihilation operators satisfy the commutation rules of commutators
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3. Line Shift due to Plasma Environment

for Boson particles and anti-commutators for Fermi particles,[
a(c), a(c

′
)
]
∓

= 0 (3.4)[
a†(c), a†(c

′
)
]
∓

= 0 (3.5)[
a(c), a†(c

′
)
]
∓

= δ(c− c′). (3.6)

In these commutation rules Eq. (3.4), the brackets [...]− denotes commutator and [...]+
denotes anti-commutator.

We consider electro-neutral plasmas

e
Z∑

m=0

mnm − ene = 0. (3.7)

Eq. (3.7) nm is the particle density of the m-fold charged ions, the charge is me. An
unperturbed plasma has no external field. We use the second quantization to describe the
quantum system. A single-particle Hamiltonian is shown in Eq. (2.3). In the beginning
we set interaction potential V = 0 and kinetic energy equals Ek = ~2k2

2m
considering a

single particle contribution. The single-particle Hamiltonian is [6]:

H(1) =
∑
k

Ekc
+
k ck. (3.8)

In Eq. (3.8) describes the annihilation operator ck, creation operator c+
k and the occu-

pation number are described as nk = c+
k ck. In many electron system, we use fermionic

operator a with a+. The Fermionic particle number is

N =
∑
k

〈a+
k ak〉 =

∑
k

fk (3.9)

with ideal Fermi distribution

fk =
1

eβ(Ek−µ) + 1
. (3.10)

The anti-commutators are

{ak, a+
k′}+ = aka

+
k′ + a+

k′ak = δkk′ (3.11)

{a+
k , a

+
k′}+ = {ak, ak′}+ = 0. (3.12)

In an ideal Bose gas system the Bosonic particle number NB is

NB =
∑
k

〈b+
k bk〉 =

∑
k

gk. (3.13)

The commutators are [
bk, b

+
k′

]
− = bkb

+
k′ − b

+
k′bk = δkk′ (3.14)[

b+
k , b

+
k′

]
− = [bk, bk′ ]− = 0. (3.15)
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3.1. Green Function Approach to Dense Plasmas

The ideal Bose distribution is given by

gk =
1

eβ(Ek−µ) − 1
. (3.16)

The single Fermi particle average has four different forms;

〈a+
i a

+
j 〉 = 0 (3.17)

〈aiaj〉 = 0 (3.18)

〈a+
i aj〉 = δij

1

eβ(Ei−µ) + 1
= δijfi (3.19)

〈aia+
j 〉 = δij

1

e−β(Ei−µ) + 1
= δij(1− fi). (3.20)

In dense plasma system, the total Hamiltonian consists of a diagonal single particle
operator H(1) , two particle operator H(2), · · · with more particles contribution.

H = H(1) +H(2) + · · · (3.21)

=
∑
k

Ekc
+
k ck +

1

2

∑
k1k2,k′1k

′
2

Vk1k2,k′1k′2c
+
k1
c+
k2
ck′2ck′1 + · · · . (3.22)

The mean value observable A in the state |ψ〉 at a system in the quantum statistics can
be described with density operator ρ. For pure ensemble, the density operator is given
by

ρ = |ψ〉〈ψ| (3.23)

and the mean value of observation

〈A〉 = 〈ψ|A|ψ〉 = Tr(ρA). (3.24)

At mixed ensemble the density operator is

ρ =
∑
i

pi|ψi〉〈ψi| (3.25)

with
∑

i pi = 1 ( sum all of the probability ) and the mean value of an observable is

〈A〉 =
∑
i

pi〈ψi|A|ψi〉 = Tr(ρA). (3.26)

The total energy of the ions consists of kinetic energy and potential energy: E =
Ek +En [3]. Considering the grand canonical ensemble at energy and particle exchange
interaction system. The grand canonical partition function is given by

σG(T, V, µ) = Tre−(H−µN)/kBT . (3.27)

We could use the pressure and partition function relation in the thermodynamic system

p(µ, T ) =
kBT

V
lnσG(T, V, µ). (3.28)
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3. Line Shift due to Plasma Environment

The Eq. (3.28) describes the pressure. The density is

n(µ, T ) =
∂

∂µ
p(µ, T ). (3.29)

The density matrix of the grand canonical ensemble is

ρG =
e−(H−µN)/(kBT )

σG
(3.30)

=
e−β(H−µN)

Tre−β(H−µN)
. (3.31)

The entropy of the grand canonical ensemble is a function of temperature

SG = −kB〈log ρG〉. (3.32)

[26]. In the more general many particles case, the entropy can be decomposed

S = S(0) + S(1) + S(2) + ... (3.33)

= lnZ +
∑
k

s
(1)
k c+

k ck +
∑

k1k2,k
′
1k
′
2

s
(2)

k1k2,k
′
1k
′
2

c+
k1
c+
k2
ck′2
ck′1

+ .... (3.34)

A charged particle interact with a large number of surrounding charged particles due
to screening in the plasma environment. For considering real quantum gases with an
interaction potential V , the method reduces to ideal quantum gases with a perturbation
theory. In time-dependent perturbation theory introduces the Dyson series with a time-
ordering operator T [· · · ] and τ ≥ τ1 ≥ τ2 ≥ · · · .

eA+B = eA +

∫ 1

0

dτe(1−τ)ABeτA +

∫ 1

0

dτ

∫ τ

0

dτ1e
(1−τ)ABe(τ−τ1)ABeτ1A + · · · . (3.35)

In two particles fermion system, there are total entropy operator S = S(0) +S(1) +S(2),
The one particle contribution is

S(1) = β
∑

1

(E1 − µ)a+
1 a1. (3.36)

The two particles Coulomb potential is given by

S(2) =
1

2
β
∑

12,1′2′

V (12, 1
′
2
′
)a+

1 a
+
2 a2′a1′ . (3.37)

Using interaction picture perturbation theory is

A(τ) = UI(0, τ)AI(τ)UI(τ, 0) (3.38)

with time evolution operator

UI(τ, τ
′
) = eS

(1)τ

e−S(τ−τ ′ )eS
(1)τ
′

. (3.39)
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3.1. Green Function Approach to Dense Plasmas

The evolution operators are

UI(0, τ) = eS
(1)0eSτe−S

(1)τ (3.40)

UI(τ, 0) = eS
(1)τe−Sτe−S

(1)0. (3.41)

Then
AI(τ) = e(S(0)+S(1))τA(0)e−(S(0)+S(1))τ = eS

(1)τA(0)e−S
(1)τ . (3.42)

The complete evolution is

A(τ) = eSτA(0)e−Sτ . (3.43)

Eq. (3.39) can be rewritten with the time ordering T

UI(τ, τ
′
) =

∞∑
n=0

(−1)n
1

n!

∫ τ

τ ′
dτ1 · · ·

∫ τ

τ ′
dτnT

[
S(2)(τ1) · · ·S(2)(τn)

]
. (3.44)

The thermodynamic Green function is defined as

G1(1τ, 1
′
τ
′
) = −Tr{ρT

[
a1(τ)a+

1 (τ
′
)
]
} (3.45)

using Eq. (3.33) with ρ = e−(S(1)+S(2))

Tr{e−(S(1)+S(2))}
.

The free single-particle Green function is given by

G0
1(11

′
, izν) =

δ11′

izν − (E1 − µ)
. (3.46)

In Eq. (3.46), the δ11′ (meaning δp1s1c1izν1,p1′ s1′ c1′ izν1′ ) with p1 is the momenta of the

Figure 3.1.: Single particle Green function.

incoming particle, p1′ is outgoing particle, s1 and c1 their respective spin and species.
The term δ(ω − E1(p)) has E1(p) the single-particle energies.

zν =
πν

β
, ν = ±1,±3,±5 · · · for Fermions, ν = 0,±2,±4 · · · for Bosons, (3.47)

with the Matsubara frequencies zν . We define εk = E1 − µ and Eq. (3.46) is described
more simple form G0

1(k, izµ) = 1
izν−εk

. The Feynman free single-particle Green function
see Fig. 3.1.

The free two-particle Green function can describe two-particle bound states for the
Feynman diagram of two particles, see Fig. 3.2 [39].
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1
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2'

Figure 3.2.: Two particle Green function.

In Eq. (3.37) the Coulomb interaction potential reads in Fourier space

V (q) =
1

Ω

∫
d3reiqrV (r). (3.48)

In Eq. (3.48) Ω is volume. Coulomb potential is represented as a Feynman diagram by
a broken line, see Fig. 3.3. The charge is the vertex that connects the interaction line
with the free propagator.

Figure 3.3.: Coulomb potential Green function.

In lowest (first) order with respect to the Coulomb interaction we obtain the Hartree
Fock approximation see in Fig. 3.4a Hartree diagram. The Hartree contribution [6] could
be written

Hartree =
1

β

(
1

2π

)3

(2s+ 1)
∑
zµ

∫
d3k′G0

1(k, izν) ·G0
1(k′, izµ) ·G0

1(k, izν) · V (0,0)

(3.49)

=
1

izν − εk
· (2s+ 1)

∫
d3k′

(2π)3
f(εk′) · V (0) · 1

izν − εk
. (3.50)

In Fig. (3.4b) is Fock diagram. The Fock contribution [6] could be written

Fock = − 1

β

(
1

2π

)3∑
zµ

∫
d3k′G0

1(k, izν) ·G0
1(k′, izµ) ·G0

1(k, izν) · V (k− k′, iωλ)

(3.51)

= − 1

izν − εk

∫
d3k′

(2π)3
f(εk′) · V (k− k′) · 1

izν − εk
. (3.52)

The Hartree Fock self energy is shown in Fig. 3.5

ΣHF
1 (k) =

∫
d3k′

(2π)3
((2s+ 1)V (0)− V (k− k′)) f(ε

′

k). (3.53)

The Hartree-Fock approximation describes the motion of particles ignoring collisions in
the mean field. The Hartree-Fock approximation is the first order contribution to the
Montroll-Ward approximation given in the section 3.4.
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Figure 3.4.: Feynman diagrams corresponding to Hartree Fock approximation.
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Figure 3.5.: Hartree Fock self energy expressed by Feynman diagrams.

3.2. Dynamical Screening and Quasiparticle Concept

The hydrogen plasma is described by Eq. (1.16) and Eq. (1.17). Now we consider
many-particle effect in Si and Ar. The chemical potential can be also written

µc = µidc + µintc

= kBT ln

(
ncΛ

3
c

gc

)
+ ∆c.

(3.54)

µidc is the ideal degenerate chemical potential and ∆c considers the interaction with the
other plasma particles. In lowest order it is given by the Hartree-Fock self-energy with
screened interaction. The rigid shift approximation (Zimmermann 1988) is described the
interaction screening potential ∆c equal to the quasi particle shift ∆(p, µ). We combine
the free particle part and the bound particle part. The free particle part is given by the
Fermi distribution Eq. (3.10). The quasiparticle distribution could be described by

fc(p) =
1

eβ(p2/2m+∆(p,µ)−µ) ± 1
. (3.55)

In Eq. (3.55), ∆(p, µ) is quasi-particle shift. The number density in thermodynamic
equilibrium is defined by

n(µ, T ) = (2s+ 1)

∫
dp

(2π)3

1

eβ(p2/2m+∆(p,µ)−µ) ± 1
. (3.56)

The pressure of the plasma is obtained by

p(µ, T ) =

∫ µ

−∞
n(µ

′
, T )dµ

′
. (3.57)

41



3. Line Shift due to Plasma Environment

Using Eq. (3.55) into Eq. (3.57) we get the equation of state for the pressure in free
quasiparticle approximation

p(µ, T ) = kBT

∫
dp

(2π)3
ln
(

1± e−β(p2/2m+∆(p,µ)−µ)
)
. (3.58)

Now we consider the single particle partition function. In general, the particles (ions)
have internal states of motions. The internal partition function associated with inter-
nal states is σintc (statistical weight). The internal partition function is described with
different configurations on excited states, bound state and their degeneration factors.

µc = kBT ln

(
ncΛ

3
c

σintc

)
. (3.59)

Assuming ∆ = ∆(p, µ) with the quasi-particle shifts ∆(p, µ), the single particle energy

is E(p) = p2

2m
+ ∆. In the rigid shift approximation, the chemical potential equals

to the ideal chemical potential µid with the interaction part of chemical potential µint.
The shift ∆ means the interaction part µint of the chemical potential [18]. For charged

plasma particles of species c, the quasi-particle shift has the value ∆c = −κce2c
2

. The full
propagator including self energy is described by G1(1, izν) = 1

izν−ε1−Σ1(1,izν)
, see Fig. 3.6.

εk = ~2k2

2m
−µ. The self energy is one test particle located at r = v0t and interacting with

of all particles of the surrounding plasma. The self energy is also the potential energy of
test particle and contains the screening effect in the plasma, as lowest (Montroll-Ward)
approximation.

Figure 3.6.: Full propagator including self energy Feyman picture.

3.3. Ion-Sphere-Model

We consider here only Si in different ionization states m. A plasma consists of ions,
electrons and photons. The electrons are divided to bound electrons, bound to a single
ion, and free electrons moving freely in the plasma. We consider homogeneous plasmas.
The ions of charge number m = 0, 1, · · · , Z (charge em) have the particle number density
nm. We denote m the charge of the ion, neutral m = 0 and m = Z fully ionized. [3].

nc =
Z∑

m=0

nm. (3.60)

The requirement of charge neutrality in the plasma, the electron density ne is defined
according to

ne =
Z∑

m=0

mnm. (3.61)
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3.3. Ion-Sphere-Model

The average charge state is denoted by Z̄ and Z̄ = ne
nc

. Z̄ depends on the temperature
and the density. Ion sphere with ion sphere radius Rc (also called Wigner-Seitz Radius),
for every ion has the same average volume Vc defined

Vc =
1

nc
=

4π

3
R3
c . (3.62)

We give some special relations with Fermi-Dirac distribution [3](Eliezer,1986;Landau
and Lifshitz,1959)

fp(p)dp =
1

π2~3

p2dp

1 + exp[(p2/2m− µe)/kBTe]
(3.63)

and energy distributions

fE(E)dE =

√
2

π2

(mc2)3/2

(~c)3

E1/2dE

1 + exp[(E − µ)/kBTe]
. (3.64)

We can introduce the Fermi integrals,

Fν(x) =
1

Γ(ν + 1)

∞∫
0

tν

et−ν + 1
dt. (3.65)

Some properties in Fermi integrals, Γ(ν + 1) = νΓ(ν), Γ(1/2) =
√
π and

d

dx
Fν(x) = Fν−1(x). (3.66)

with x = eµe/kBT . If x � 1, x = eµe/kBT we find the lowest approximation Fν(x) = x.
In particular, we get

neλ
3
e

2
=

2√
π

∞∫
0

√
t

et−µe/(kBTe) + 1
dt. (3.67)

The electron temperature Te, chemical potential of electrons µe and total electron
density is,

ne = 2
(mc2Te)

3/2

√
2π2(~c)3

F1/2(
µe
Te

). (3.68)

In the low temperature limit Te → 0, the momentum distribution reduces to

fp(p)dp =

{
0, wenn p2/2m > µ

p2dp/(π2~3), wenn p2/2m < µ
(3.69)

the energy distribution reduces to

fE(E)dE =

{
0, wenn E > µ

(
√

2/π2)[(mc2)3/2/(~c)3]E1/2dE, wenn E < µ
(3.70)
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3. Line Shift due to Plasma Environment

and the lower temperature limit of the chemical potential becomes

µ =
(~c)2

2mc2
(3π2ne)

2/3. (3.71)

In the limit µ → −∞ is the Fermi-Dirac distribution or the Boltzmann-Maxwell
distribution.

The time scale on the atomic scale in hot plasmas is connected to the plasma frequency
(Spitzer, 1962), (me � mi fully ionized ions with charge eZ)

ω =

[
4πe2ne
me

(
1 + Z

me

mi

)]1/2

≈
(

4πe2ne
me

)1/2

. (3.72)

3.3.1. The Debye-Hückel Theory

The Debye-Hückel theory [3] describes the screening of the nuclear electrostatic potential
by the bound electrons and the free electrons. The screened potential of a m-fold charged
ion (charge em) with a screening factor S(r) from the Coulomb potential is defined by

Vm(r) =
me

r
S(r) (3.73)

The screening factor S(r) means the modification of the Coulomb potential. In the limit
cases, S(r → 0) = 1 and S(r → ∞) = 0, we use the Boltzmann statistical distribution
Eq. (3.55) for the ion density

nm(r) = nmexp

(
−emV (r)

kBT

)
(3.74)

and the electron density,

ne(r) = neexp

(
eV (r)

kBT

)
. (3.75)

The Poisson equation for zero charge density around an external electrical charge Z0e
introduced into the plasma is given by

∇2V (r) = 0. (3.76)

Consider a structureless pointlike ion with nuclear charge m0e at r = 0 in the plasma
with finite charge density. The Poisson equation that describes the electric potential
around the ion is,

∇2V (r) = −4πe

(
N∑
m0

mnm(r)− ne(r)

)
. (3.77)

In the parentheses including the first term from the ion density and the second term
from the electron density. When satisfying the condition eV (r)

kBT
� 1, the Eq. (3.75) can

be expanded with respect to eV
kBT

in a Taylor series, to get an approximate from keeping
first order term only,
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3.3. Ion-Sphere-Model

∇2V (r) = 4πe

[
Z∑

m=0

mnm

(
1− emV (r)

kBT

)
− ne

(
1 +

eV (r)

kBT

)]

= V (r)
4πe2

kBT

[
Z∑

m=0

m2nm + ne

]
.

(3.78)

We define the Debye screening length by D (κ = 1
D

)

D =

√√√√kBT

4πe2

1[∑Z
m=0m

2nm + ne

] . (3.79)

The Poisson equation can be reduced to

∇2V (r) =
V (r)

D2
. (3.80)

We calculate the homogeneous isotropic steady state and we find plasma independent
of time of average electron density and average ion density, do not have a preferential
direction and only depend on the radius r. Assume an ion is located at r = 0 using
spherical symmetry isotropic and replacing V (r) by screening factor S(r) = rV (r)/(Ze).
The Poisson operator is.

∇2V (r) =
1

r2

∂

∂r

(
r2∂V

∂r

)
d2S

dr2
=

1

D2
S(r)

(3.81)

with boundary conditions at r = 0 with S(r = 0) = 1 and r →∞ solving the S(r) is,

S(r) = e−r/D. (3.82)

Thus the Debye-Hückel potential results:

V (r) =
Z0e

4πε0r
e−r/D. (3.83)

The Debye sphere is defined as the sphere around the central ion with radius is D. D
depends on the ion density (ensemble over charge state nm at the average partial density)
and electron density. Eq. (3.83) can be written as potential of an electron (SI units)

U(r) = −Zeffe
2

4πε0r
e−κr, (3.84)

κ =

√
nee2

ε0kBT
(3.85)
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3. Line Shift due to Plasma Environment

with D = 1
κ
. Then we get

∆E(1) =

〈
φ| −

Zeffe
2 1

2
κ2

4πε0r
|φ
〉
. (3.86)

Using the self consistent RHF wave functions calculate the Kα emission energy using
the shift of final state (φ2p) described by

∆E2p = 〈φ2p| −
Zeffe

2 1
2
κ2

4πε0r
|φ2p〉

= −Zeffe
2κ2

8πε0

∫ ∞
0

drr3|R2p(r)|2.
(3.87)

The energy shift of the initial state (φ1s) is given by

∆E1s = 〈φ1s| −
Zeffe

2 1
2
κ2

4πε0r
|φ1s〉

= −Zeffe
2κ2

8πε0

∫ ∞
0

drr3|R1s(r)|2.
(3.88)

The Kα emission shift energy can be written as

∆E2p−>1s(kBT, ne) = −Zeffe
2κ2

8πε0

(∫ ∞
0

drr3|R2p(r)|2 −
∫ ∞

0

drr3|R1s(r)|2
)

(3.89)

with screening potential effect.

3.3.2. Thomas-Fermi Model

The Thomas-Fermi mode (TF)[3] has been developed mainly for zero temperature in
statistical description. The TF model describes in our approach the ionic potential in
hot plasmas at the high-Z material. The ion sphere is confined to a nucleus of charge
Z located at r = 0, and Z electrons include bound electrons and free electrons. The
total potential is zero on and beyond the boundaries of the ion sphere of Thomas-Fermi
model. The Poisson equation is,

∇2V (r) = −4πe [Zδ(r)− ne(r)]

= 4πenfree(r) + 4πnbound − 4πZeδ(r).
(3.90)

We solve the nuclear part ∇2Vn(r) = −4πeZδ(r) and we use the Dirac delta function

∇2

(
1

r

)
= −4πδ(r). (3.91)

Directly we get the nuclear potential

Vn(r) =
Ze

r
. (3.92)
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3.3. Ion-Sphere-Model

We solve the electron part∇2Ve(r) = 4πene(r) . We use Helmholtz’s Theorem∇2V (r) =

−k(r) with V (r) = 1
4π

∫ k(r)

|r−r′ |d
3r
′
. The electron potential is given by

Ve(r) = −
∫
V

ene(r)

|r− r′|
d3r

′
. (3.93)

Assuming spherical symmetry around the nucleus reduces the ne(r) = ne(r) isotropic.
The denominator is expanded to Legendre Polynomials (Abramowitz and Stegun, 1965)

1

|r− r′ |
=
∞∑
k=0

rk<
rk+1
>

Pk(cos θ). (3.94)

The r< is the smaller of r and r
′
. The r> is the larger of r and r

′
. The electron

contribution is written by

Ve(r) = −e
∞∑
k=0

∫ ∞
0

∫ π

0

∫ 2π

0

dφ sin θdθr
′2
dr
′
ne(r

′
)
rk<
rk+1
>

Pk(cos θ). (3.95)

We use the orthogonality conditions of the Legendre polynomials with P0(x)=1,∫ π

0

dθ sin θPk(cos θ) =

∫ 1

−1

dxPk(x)P0(x)

=
2

2k + 1
δk,0

= 2δk,0.

(3.96)

The electron potential is reduced to

Ve(r) = −2πe
∞∑
k=0

2δk,0

∫ ∞
0

r
′2
dr
′
ne(r

′
)
rk<
rk+1
>

= −4πe

∫ ∞
0

ne(r
′
)
r
′2
dr
′

r>

= −4πe

(
1

r

∫ r

0

ne(r
′
)r
′2
dr
′
+

∫ R

r

ne(r
′
)r
′
dr
′
)
.

(3.97)

Using boundary condition of ion sphere at r = R on ion sphere. We assume the charge
neutrality requirement

Z =

∫ R

0

ne(r, µ)d3r. (3.98)

The electron potential turns out Ve(R) = −Ze
R

. The nuclear potential is at r = R is
Vn(R) = Ze

R
. The total potential vanishes on the ion sphere boundaries

V (R) = Vn(R) + Ve(R) = 0. (3.99)
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3. Line Shift due to Plasma Environment

The Fermi-Dirac electron momentum distribution in a plasma with a local electric micro-
fieldgiven by Vr is given by

fe(r, p)dp =
1

π2~3

p2dp

1 + e[p2/2m−eV (r)−µ]/kBT
(3.100)

Integrating over the momenta in Fermi-Dirac distribution we get the electron density

ne(r) =

∫
dpfe(r, p) (3.101)

=
(2mkBTe)

3/2

2π2~3

∫ ∞
0

x1/2dx

1 + exp(x− y)
(3.102)

=
2

λ3
F1/2

(
eV (r) + µ

kBTe

)
(3.103)

with x = p2

2mkBTe
and y = eV (r)+µ

kBTe
.

nef (r) = ne,f =
Zf

4πR3
i /3

(3.104)

Ve,f = −4πene,f

(
1

r

∫ r

0

r′
2

dr′ +

∫ Ri

r

r′dr′
)

(3.105)

= −3eZf
R3
i

1

r

 r′
3

3

∣∣∣∣∣
r

0

+
r′

2

2

∣∣∣∣∣
Ri

r

 =
−3eZf

2Ri

[
1− 1

3

(
r

Ri

)2
]

(3.106)

= −eZf
2R

(
3− r2

R2

)
(3.107)

with the Wigner-Seitz radius R which is the boundary of the ion sphere.
The total Hamiltonian H = H0 +H ′ consists of the unperturbed Hamiltonian H0 and

the perturbation H ′ describes the plasma effect defined by

H ′ = −e[φ(r)− φ(r, ne = 0)]. (3.108)

Due to the screening of the free electrons surrounding the nucleus and the bound elec-
trons the energy levels and hence the emission energies are shifted. Assuming ϕi is the
wave function of the initial and ϕf describes the final level of the electron transition (2p
→ 1s), the spectral line shift can be calculated in first order perturbation theory as

∆E(1) =< ϕi|H
′ |ϕi > − < ϕf |H

′ |ϕf > . (3.109)

Here again we applied the Bunge wave functions given in section 2.2. As a result we
obtain line shifts in dependence on both the plasma temperature kBT and the average
free electron density ne. Keeping the total density fixed at the bulk value, we can relate
kBT and ne according to the plasma composition as discussed in chapter 4.
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(a) Si isolated line shift in dependence of free
electron density for the temperatures T = 40
eV (orange curve), T = 30 eV (red curve)
and T = 20 eV (blue curve).
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(b) Ar isolated line shift in dependence of free
electron density for the temperatures T =
150 eV (black curve), T = 100 eV (pink
curve), T = 40 eV (orange curve) and T =
20 eV (blue curve). For low temperatures the
red shift is large.

Figure 3.7.: Red shift of Kα energies due to the plasma effect in dependence of average
free electron density ne and plasma temperature kBT . Negative shift of
emission energies due to the plasma effect.

Fig. 3.7 shows the Si and Ar spectral line shift in dependence of the free electron
density for three different temperatures. The shift is negative, which means the emission
energies are reduced due to the plasma environment. This effect is referred to as red
plasma polarization shift and can be explained as follows: First, the free electrons screen
the nucleus resulting in lower values of binding energies. As the bound state energies
are negative, the energy levels are shifted to higher energies. Second, as the 1s level
is localized closer to higher energies to the nucleus than 2p, it is more affected by the
screening of the nucleus and thus experiences the larger shift. Finally, as the emission
energy is given by the difference of the two involved levels the spectral line is red shifted to
lower energies. The red shift increases with rising free electron density as the screening of
the nucleus rises as well. However, the redshift decreases with rising plasma temperature.
This is due to the fact that the self-consistently determined free electron density within
the ion sphere is not constant but radially dependent. A screening cloud of free electrons
is formed around the nucleus and the density dilutes for larger radii. However, the higher
the temperature the more spatially extended (’smeared out’) is this screening cloud and
the less is the actual free electron density close to the nucleus, resulting in a lower red
shift.
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3. Line Shift due to Plasma Environment

3.4. Random Phase Approximation and Montroll Ward
Approximation

The quantum statistical approach to screening RPA (random phase approximation) [6]
is the lowest order summand of the polarization function Π(q, izµ) shown in Fig. 3.8.

Π(q, izµ) = −Ω

β
(2s+ 1)(−1)

∫
d3p

(2π)3

∑
zλ

(
1

izλ−εp
· 1

izλ − izµ − εp−q

)
. (3.110)

Figure 3.8.: Random phase approximation for the polarization function.

The single-particle energy is equal to kinetic energy in addition to the corresponding
self-energy

E(p) =
p2

2m
+ ∆(p). (3.111)

The screening equation is given from the single particle propagator to the self-energy and
the polarization function Π(q, izµ) is included all of irreducible diagrams. The screening
potential is defined by

V s
ab(q, izµ) = Vab(q) +

∑
cd

Vac(q)Πcd(q, izµ)V s
db(q, izµ). (3.112)

In the special case that Π is diagonal in the particle species. We have Πcd(q, izµ) =
Πcc(q, izµ)δcd. For the longitudinal dielectric function result is ε(q, izµ) = 1−

∑
c Vcc(q)Πcc(q, izµ).

The screening potential can be reduced to

V s
ab(q, izµ) =

Vab(q)

ε(q, izµ)
. (3.113)

The frequency of the polarization function corresponds to even Matsubara frequen-
cies and the polarization function has bosonic character. The polarization function is
Π(q, izµ). We consider the dielectric function only with in RPA approximation and take
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3.4. Random Phase Approximation and Montroll Ward Approximation

Figure 3.9.: Screening equation V s
ab(q, izµ).

izµ → ~(ω + i0) [6]. The RPA dielectric function is given by

εRPA(q, ~ω) = 1−
∑
c

Vcc(q)Π
RPA
cc (q, ~(ω + i0)) (3.114)

= 1−
∑
c

Vcc(q)(2sc + 1)Ω

∫
d3p

(2π)3

f(εc,p−q)− f(εc,p)

~(ω + i0) + εc,p−q − εc,p
. (3.115)

In the low density plasmas the Debye screening follows. In the case T → 0 in the
strongly degenerate plasmas can be obtained by the Thomas-Fermi approximation.

We need this term for later Montroll Ward approximation.

Figure 3.10.: Screening equation Π(q, izµ).

Montroll-Ward approximation

Figure 3.11.: Montroll-Ward approximation.

The real part of the dielectric function is given by

Reε(q, ω) = 1 +
∑
a,sza

4π~2e2
a

q2
P
∫

dp

(2π~)3

fa(p + q)− fa(p)

~ω + Ea(p)− Ea(p + q)
. (3.116)
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Integral over angular part,

Reε(qω,Rt) = 1− 2π
∑
a,sza

ma
4π~2e2

a

q2
P
∫ ∞
−∞

dp

(2π~)3
pfa(p,Rt)

1

2q
(3.117){

ln
(
paB
~ −

qaB
2~ −

maωaB
q

)
+ ln

(
paB
~ −

qaB
2~ + maωaB

q

)
.
}

(3.118)

[18] The real part of the self energy can be decomposed into a Hartree-Fock self energy
term and the real part of the Montroll-Ward self energy,

ReΣa(p, ω) = ΣHF
a (p) + ReΣMW

a (p, ω). (3.119)

The pressure equation can be written with Hartree term, Hartree-Fock term and
Montroll-Ward term

p− p0 = pH + pHF + pMW. (3.120)

The ideal pressure is p0 =
∑

a
2sa+1
βΛ3

a
I3/2(βµa). The pressure of Hartree-Fock term is

pHF({µa}) =
∑
a

2sa + 1

Λ4
a

e2
a

∫ βµa

−∞
dxI2

−1/2(x). (3.121)

The µa is chemical potential. The pressure of Montroll-Ward term combined with the
RPA dielectric function is

pMW = ±
∫
dλ

λ

dp

(2π)3

dω

2π
nB(ω){Imε−1(pω) + Imε(pω)} (3.122)

= −
∫

dp

(2π)3

∫ ω

0

dω

2π
coth

β~ω
2
.
[
arctan Imε(pω)

Reε(pω)
− Imε(pω).

]
. (3.123)

See [18], so that

p = p0 + pHF + pMW (3.124)

=
∑
a

2sa + 1

βΛ3
a

I3/2(βµa) +
∑
a

2sa + 1

Λ4
a

e2
ae

2
a

∫ βµa

−∞
dxI2

−1/2 (3.125)

−
∫

dp

(2π)3

∫ ω

0

dω

2π
coth

β~ω
2
.
[
arctan Imε(pω)

Reε(pω)
− Imε(pω).

]
. (3.126)

The density function is na = ∂p
∂µa

. Derivation the equation of pressure gives

na = ln
2sa + 1

Λ3
a

I1/2(βµa) +
2sa + 1

Λ4
a

βe2
aI

2
−1/2(βµa) +

∂

∂µa
pMW. (3.127)

In the low density limit, the pressure can be approximated to

βpMW =
κ3

12π
− 1

4
π3/2

∑
ab

zazbλ
3
abζ

2
ab. (3.128)
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The ζab = −β eaeb
λab

= − eaeb
~

√
2mab
kT

is Born parameter. The total pressure expansion in

fugacity form can be written [18]

βp(zc) =
∑
a

za +
κ3

12π
+ 2π

∑
ab

zazbλ
3
ab

{
− δab

2sa+1

(√
π

4
+ ζab

2

)
−
√
π

8
ζ2
ab.
}

(3.129)

The density is given by

na(z) = za +
κ3

8π
+ 2π

∑
b

zazbλab13
{
−
√
π

8
ζ2
ab −

δab
2sa+1

(√
π

4
+ ζab

2

)
.
}

(3.130)

The chemical potential is given by

µa =µid
a −

κe2

2
− 2π

∑
b

nbλ
3
ab

{
−
√
π
ζ2ab
8
− δab

2sa+1

(√
π

4
+ ζab

2

)}
(3.131)

= ln
neλ
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ee
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(3.132)

[18].
The electron-electron quasi-particle shift of Montroll-Ward approximation can be writ-

ten as

∆MW
e = ∆DH

e +

√
2π2neλee

4

8(kBT )2
− neλ

3
e

8
√

2
+
neλ

2
ee

2

4kBT
. (3.133)
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Figure 3.12.: Montroll-Ward (red curve) and Debye Hückel (blue curve) self energy for
different temperatures on electron electron interaction shift in the plasma
environment. At temperatures above 30 eV both curves have the same
behavior.
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3. Line Shift due to Plasma Environment

Fig. 3.12 shows the self energy with respect to the temperature in Debye-Hückel (DH)
and Montroll-Ward (MW) approximation. At the higher temperature both curves show
the same behavior. But it is seen, that the dynamical terms in the Montroll-Ward
approximation gives corrections to the Debye-Hückel theory for lower temperatures.
However, coming close to the degeneracy limit Θ = kBT

EFermi
≈ 1 both approximations fail.

Taking degeneracy into account a more thorough ansatz has to be made applying Fermi
distributions and integrals.
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4. Plasma Composition

In the classical non-degenerate case, the contribution of the discrete energy spectrum of
the excited ions to the partition function is given by
σe(T ) =

∑
i gie

−Ei/T with statistical factor gi and energy of state of ionization Ei. For
the continuous energy we have in the non-degenerate case for the canonical partition
function of N electrons the partition function contribution of the continuous energy
spectrum

σe =
1

N !

[
2
∫
dV
∫∫∫

exp
[
− 1

2mekBT
(p2
x + p2

y + p2
z)
]
dpxdpydpz

(2π~)3

]N
= 2NV N

(
mekBT

2π~2

)3N/2

= 2N
1

N !

(
V

λ3

)N
.

(4.1)

In Eq. (4.1) the mass of electron is me, N is the number of electrons, the factor 2 comes
from the spin states of the electron, λ is thermal wave length, V is the volume of the
system and the single particle energy is Ei = 1

2me
(p2
x + p2

y + p2
z).

In the classical non-degenerate case, the total energy of ions consists of the kinetic
energy Ek and the potential energies Eb. The total energy is E = Ek + Eb. The
contribution of the kinetic energy partition function is

σi,k =
1

N !

[∫
dV
∫∫∫

exp
[
− 1

2mikBT
(p2
x + p2

y + p2
z)
]
dpxdpydpz

(2π~)3

]N
=

1

N !
V N

(
mikBT

2π~2

)3N/2

.

(4.2)

The contribution of potential energy Eb to the partition function due to the binding
energy of the ionic state.

σi =
∑
n

exp

(
−Ei,n
kBT

)
. (4.3)

In Eq. (4.3), the bound state has the mass of ion mi. The total partition function is
given by

σi(T ) = σi,k · σi,b

=
1

N !
V N

(
mikBT

2π~2

)3N/2∑
n

exp

(
−Ei,n
kBT

)
.

(4.4)
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4. Plasma Composition

The Wigner-Seitz radius R is defined by R =
(

3
4πne

)1/3

. The ion sphere has the

radius R when one electron charge is considered for each ion corresponding to ion-
electron potential in the plasma. The energy of electron-ion quasi-particle shift is given
by [27]

∆ei
e = −Zione

2

4πε0R
= −e

2

ε0

(
Zion
4π

)2/3 (ne
3

)1/3

. (4.5)

The partition function of electron-ion contributes as

σine (m) = 2mexp

[
1

kBT

(
e2

ε0

(
Zion
4π

)2/3 (ne
3

)1/3
)]

(4.6)

The effective Zion is defined by sum of all number of ionisiation steps.

(Zion)2/3 =
m∑
x=1

(x)2/3

with the m: number of ionisiation steps then the internal partition function can be
written as

σine (m) = 2mexp

[
1

kBT

e2

(4π)2/3ε0

(ne
3

)1/3
m∑
x=1

x2/3

]
. (4.7)

The electron-electron quasi-particle energy shift due to the Montroll-Ward term in

addition to the ideal particle term µide = neΛ3
e

2
and the Debye term ∆DH

e = − e2

2

√
nee2

ε0kBT

in the partition function (3.133), see also [27].
The total partition function follows as

σine (m) = 2m exp

[
−∆MW

e

kBT

]m
exp

[
1

kBT

e2

(4π)2/3ε0

(ne
3

)1/3
m∑
x=1

x2/3

]
. (4.8)

4.1. Internal Partition Function

The internal partition function describes the statistical weight of the respective particles
of plasma depending on the individual temperature. In general the composition of the
plasma was calculated by the degree of ionization of the internal partition function
using coupled Saha equation within a partially ifig:gonized plasma in local thermal
equilibrium. Continuum lowering of ionization was included in self energy contribution
to the chemical potentials and the renormalized Planck Larkin expression [40]. We apply
the basic approximation of the Saha equation of hydrogen plasma [18] to the M-shell
ions (Si and Ar) in our model. In the chemical picture we have a mixture of particles:
atoms A0 of Ar or Si, all different m-fold charge states of ions Am and electrons e. In
chemical equilibrium the chemical potentials satisfy µAm = µAm+1 + µe. The chemical

potential for each component c is µc = kBT ln ncΛ3
c

σinc
. Using the free electron statistical
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4.1. Internal Partition Function

factor ge = 2 and the thermal wavelength of the m + 1 ionization stage assuming the
same on the m stage, with ΛAm+1 = ΛAm we derive

nAm+1ne
nAm

=
2

Λ3
e

σinAm+1

σinAm
. (4.9)

Equation (4.9) can be written via the coupled Saha equation with

nAm =

[
2

neΛ3
e

]m
σinAm

σinA0

nA0 . (4.10)

We calculate beginning from the solid bulk density in the plasma environment with
different temperatures,

nsolid =
z∑
0

nAm . (4.11)

Now we consider the internal partition function of the hydrogen atom by the all possible
bound states in the quantum statistical system [18].

σin,boundH =
∑
nl

(2l + 1) exp

[
− Enl
kBT

]
. (4.12)

The symbol of principal quantum number is n and the symbol of angular quantum
number is l with l ≤ n − 1. The binding energies of bound atom Enl could be vanish
with the pressure of ionization due to the plasma screening effect. A more detailed
approach may be given according to the Beth-Uhlenbeck formula that describes the
internal partition function with binding energies and continuum contribution.

σin =
∑
nl

(2l + 1) exp

[
− Enl
kBT

]
+

∫
dEp exp

[
− Ep
kBT

]∑
l

(2l + 1)
1

π

dδl(Ep)

dEp
. (4.13)

The scattering phase shifts δl(Ep) depend on the energy Ep = p2

2m
of kinetic energy

of free electrons. The first term of right side of Eq. (4.13) describes bound effect of
atom that disappear at Enl → 0 and the second term describes scattering states of
continuum states. The first term in the bound quantum states and second term effect
describes contribution of continuum quantum states. Using a Taylor expansion we get

exp
[
− Enl
kBT

]
= 1 − Enl

kBT
± · · · solving the case Enl → 0 useful the residual higher order

term exp
[
− Enl
kBT

]
− 1 + Enl

kBT
. Ignoring the scattering term we rewrite Eq. (4.13)

σin,PL =
∑
nl

(2l + 1)

(
exp

[
− Enl
kBT

]
− 1 +

Enl
kBT

)
. (4.14)

Eq. (4.14) is the famous Planck Larkin internal partition function proposed by Planck,
Brillouin, Vedenov and Larkin in 1957 [18]. Between the mth ionization stage of ion
with energy EAm

0 to the m + 1 ionization stage of the ion energy EAm+1

0 we have some
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4. Plasma Composition

possible excited states ∆EAm

i (e.q. 3p, 3d, 4s) of the valence electron. The ionization
energy of the m stage of the ion is EAm

i = EAm+1

0 + ∆EAm

i and then is exploited to∑
i exp

[
−EA

m

i

kBT

]
= exp

[
−EA
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0
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]∑
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m

i

kBT

]
. The internal Planck Larkin equa-

tion (4.14) can be written

σin,PLAm = gAm exp
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=
∑
i

gAm exp

[
−E
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0

kBT

](
exp

[
∆Em

i

kBT

]
− 1− Em

i

kBT

)
. (4.16)

gAm is the statistical factor of the mth excitation stage of the ion stage and each different
state m of gAm calculates by LS coupling of the open shell ions. LS coupling can use not
just each state of ions but also for each excited state of ions in the 3p, 3d or 4s state of
the M shell. The Saha equation (4.10) can be described

nAm+1ne
nAm

=
2

Λ3
e

gAm+1

gAm
exp

[
−∆Em

i

kBT

]
. (4.17)

The Em
ion was calculated by ab initio code Gaussian 03 with Aug-cc-pVTZ basis set of

Ar and 3-21G* basis set of Si. The chemical ab initio Gaussian does not consider the
fine structure components for the eigen energies of Kα. In 2009, A. Sengebusch was
applying the internal partition function of Ti and Cl [40].

Fig. 4.1 shows the Si plasma composition from the temperature 20 eV to 100 eV
using the coupled Saha self-consistent calculation in local thermal equilibrium. Going to
Fig. 4.1a shows as function of the temperature of the plasma contributions from Si-like
to B-like ions. We consider the total probability equal to 1 at each temperature with
different compositions. Going to Fig. 4.1b shows the free electron density as function of
the temperature. Higher temperature has a higher free electron density in the plasma.

Fig. 4.2 shows the Ar plasma composition for temperatures 10 eV to 170 eV. Going to
Fig. 4.2a shows as function of the temperature of the plasma the contributions from Ar-
like to B-like ions with total probability equal to 1. In Fig. 4.2a when the temperature
is bigger than 50 eV L shell ionization (from Ne) occurrence. Increasing temperature
has more free electron densities. This also means the temperature less than 50 eV is the
stronger effect on Kα for an important plasma diagnostics process. From temperature
60 eV to 80 eV we have a bigger weight of plasma composition for Ar10+, 70 eV to 100
eV is for Ar11+, 110 eV to 130 eV is for Ar12+, 130 eV to 150 eV is for Ar13+ and 150
eV to 170 eV is for Ar14+. In Fig. 4.2b shows Ar free electron density ne depending on
temperature calculated from Ar bulk density. In the range of 10 eV to 50 eV we have
stronger contributions to the composition from M shell electrons (Ar-Like to Na-Like).

4.2. FLYCHK

The FLYCHK code considers the local thermodynamic equilibrium model with Boltz-
mann statistics and Saha ionization distribution. The FLYCHK code has calculated the
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(a) Composition Ionization of Si at solid atom
density of silicon is 5.0·1022 cm−3 as func-
tioon of T . We use the Saha equation and
the Planck Larkin partition function iter-
ated the stages (from Si-like to B-like) of
the internal partition function. In M-shell
electrons (Si, Al, Mg, Na) at temperature
20 eV to 100 eV have small contribution.
Each temperature with different composi-
tions has the total probability 1.
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(b) Si comparing the plasma composition in Fig.
(a) shows the free electron density ne depend-
ing on temperature from T = 20 eV , ne =
2.0 · 1023 cm−3 to T = 100 eV, ne = 4.0 · 1023

cm−3. Corresponding the increasing tempera-
ture has more increasing free electron densities.

Figure 4.1.: Si self-consistent calculation assuming local thermal equilibrium conditions
showing rising ionization with rising temperature.

ionization distributions of plasmas. For the calculation of plasma spectroscopy the FLY-
CHK is a suited computer code and the users need just give some simple parameters [41].
Some advantages of FLYCHK are simple and fast. For running code does not need any
atomic data input because the data are stored internally. This code focuses on K-shell
spectra for low Z ions from Z=2 to Z=26. We use the argon charge state distribution
for non-local thermodynamic equilibrium (NLTE) also called collisional-radiative (CR)
model calculation at NIST [42]. CR model are calculated by solving multi-level ioniza-
tion self-consistent with the Saha equation in a radiation field. The radiation transport
equation of CR brings in non-local contributions to population distribution calculations.
CR modeling can be used to diagnose laser-produced plasmas in X-rays spectroscopy.
Plasmas produced by high-power lasers in some eV to keV with electron densities as
high as the range of 1021cm−3 to 1025cm−3 [42]. The advantages of FLYCHK makes
it possible to analyze complex plasma processes quickly in Kα spectroscopic measure-
ments and help us to understand the plasma states with fixed electron density Ne. In
Fig. 4.3a the Si plasma composition is shown with different charge states corresponding
to different temperature using FLYCHK. The temperature at 30 eV for Ne = 1023cm−3

(green line) is suitable to compare with our plasma composition, see Fig. 4.1b. In Fig.
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(b) Ar comparing the plasma composition in Fig
(a) shows the free electron density ne de-
pending on temperature. Corresponding the
increasing temperature has more increasing
free electron densities. Increasing temperature
from 10 eV to 30 eV have sharply free electron
density ne increasing corresponding the ioniza-
tion states (Ar-Like to Na-like) in M shell and
go to the (Ne- like to B-like) L-shell have more
smoothly free electron density ne increasing.

Figure 4.2.: Ar self-consistent calculation assuming local thermal equilibrium conditions
determined rising ionization with rising temperature.

4.3b the blue line describes the free electron density 1022cm−3 and the red line describes
the electron density is 1023 cm−3 with different temperature and corresponding to the
charge states of plasma. The red line has higher free electron density than the blue line.
We can see the higher temperature going to smaller charge state than the blue line.
The FLYCHK uses the non-local thermodynamic equilibrium and our model uses lo-
cal thermodynamic equilibrium with the coupled Saha equation with the Planck Larkin
equation for continuing ionization energy of charge state.

In Fig. 4.3b we compare our plasma composition on the different charge states com-
paring with FLYCHK. We see here our result in the lower temperature (< 50 eV) to give
the behavior like FLYCHK a free electron density 1022 cm−3 and in the higher tempera-
ture (50 eV < T < 170 eV) the behavior close to the FLYCHK the free electron density
1023 cm−3. The result is quite good, because in our model the free electron density is a
parameter depending on temperature for fixed solid electron density.
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Figure 4.3.: Si and Ar ionization distribution with temperature calculation by FLYCHK.
Using the charge state distribution for non-local thermodynamic equilibrium
calculation at NIST.
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5. Synthetic Spectra

We use the self-consistent Roothann-Hartree-Fock approximation of Si and Ar wave
function for the unperturbed emitter, see section 2.2 and section 2.2. The total Hamil-
tonian H = H0 +H ′ consists of the unperturbed Hamiltonian H0 and the perturbation
H ′ which describes the plasma effect. Assuming ϕi is the wave function of the initial and
ϕf of the final level of the electron transition (2p → 1s), the spectral line shift can be
calculated with Bunge wave functions. The line shifts are dependent on both the plasma
temperature kBT and the average free electron density ne, see section 3.3.2. The total
internal partition function is given by Eq. (4.8). We consider the renormalized Planck
Larkin Eq. (4.15). Then we use coupled Saha equation with Planck-Larkin equation to
get Eq. (4.17). To construct synthetic spectra from the so far determined shifted emis-
sion energies every line (as well as its fine structure components) is assigned a Lorentz
profile with natural line width γ and maximum intensity Imax will discuss in section 5.1.
The central line position E0 is assumed to be the position of the p3/2 component of the
transition. To take into account fine structure splitting, we add the p1/2 components
semi-emprically. Finally, the Lorentzians are summed up and convoluted with a Gaus-
sian profile of width Γ to take into account instrumental broadening of measurements
what will be discussed in section 5.2.

5.1. Radiative Transitions with Einstein Coefficients

Bremsstrahlung is continuous radiation due to acceleration of free electrons. We focus
on transitions of bound electrons between two atomic levels. The transitions of bound
electrons between the various energy levels of atomic system could emit radiation. Using
spectroscopic measurement the energy level structure of atoms can be determined. We
will calculate the theoretical energy level structure of atoms for plasma diagnostics taking
into account the plasma environment. We consider spontaneous transitions from the
state Ei to state Ef . For Kα, see Fig. 1.1 the electron in the upper level (1s one hole)
with the initial the initial state configuration energy Ei can decay spontaneously to
the lower level Ef (2p one hole) getting the final state configuration energy Ef with
the emission of a photon whose frequency is h · νif . The Kα fluorescence emission was
recorded to [45]

Ei − Ef = h · νif . (5.1)

In the thermal equilibrium the ratio of number of atoms Ni
Nf

can be described with

the upper energy level of density ni and the lower energy level of density nf in the
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Boltzmann distribution [43]

Ni

Nf

=
gi
gf

exp [−(Ei − Ef )/T ] =
gi
gf

exp(−h · νif/T ). (5.2)

These bound electrons level i and f are not single quantum states but in the degenerate
states gi and gf . The energy density is in thermal equilibrium given by the blackbody
radiation

ρ(ν) =
8πhν3

c3 [exp(hν/T )− 1]
. (5.3)

The energy transition conservation in an equilibrium of the total rate transition from i
to f is equal

[Aif +Bifρ(νif )]Ni = Bfiρ(νif )Nf . (5.4)

The spontaneous transition probability per unit time denoted Aij. The probability of
absorption per unit time is given by Bfiρ(νif ) and the probability of emission per unit
time could write Bifρ(νif ). These three coefficients Aif , Bfi, Bif are called Einstein
coefficients for the bound electrons transition. The relationship between these three
Einstein coefficients Aif , Bfi, Bif is given by Eq. (5.4) and gfBfi = giBif . The Sij is an
atomic dipole moment [43] called in spectroscopy the transition strength with degenerate
states mi and mf

Sif =

∣∣∣∣∫ ψ∗i rψfd
3r

∣∣∣∣2 (5.5)

=
∑
mi,mf

|〈i,mi|D|f,mf〉|2 . (5.6)

The D is the dipole operator. Einstein coefficient of emission is given by

Bif =
2π2e2

3ε0~2

∣∣∣∣∫ ψ∗i rψfd
3r

∣∣∣∣2 . (5.7)

The i is the initial state, and f is the final state. Aif is independent from an external
radiation field. The spontaneous Emission depends only on the wave functions of tran-
sition from Ei to Ef . The average power of emission from state Ei with the Ni atoms
are described by

〈P 〉 = Ni · Aif · h · νif . (5.8)

Aif is the spontaneous transition probability given by [45]

Aif =
2e2ω3

if

3ε0c3h

∣∣∣∣∫ ψ∗i rψfd
3r

∣∣∣∣2 . (5.9)

We conbine the Eq. (5.7) with Eq. (5.9) to get the relation

Aif =
8πhν3

if

c3
Bif (5.10)
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with ωif = 2πνif , ~ = h
2π

. The emission energy E0 is equal to h · νif or ~ · ωif with
ωif = E0

~ . So the spontaneous transition probability of Einstein coefficient is given by
[45]

〈P 〉 = Ni · Aij · h · νif

= Ni ·
2e2ω3

if

3ε0c3h

∣∣∣∣ 1

Ω0

∫
ψ∗i rψfd

3r

∣∣∣∣2 · h · νif
= Ni ·

2e2ω4
if

3ε0c32π

∣∣∣∣ 1

Ω0

∫
ψ∗i rψfd

3r

∣∣∣∣2
= Ni ·

2e2E4
0

3ε0c3~42π

∣∣∣∣ 1

Ω0

∫
ψ∗i rψfd

3r

∣∣∣∣2
= NiE0Aif .

The single Lorentz profile is assigned to a single emission line given by

f(E,E0, γ/2, Imax) =
Imax(γ/2)2

(E − E0)2 + (γ/2)2
. (5.11)

In the center of the Lorentz profile is the emission energy E0. It can dependent on
plasma shift. The height of the profile is found by Imax corresponding emitters in
intensity maximum and γ/2 is the half-width in Lorentzian function. The maximum
intensity is mainly given by the emitter abundance in the plasma. We determine all
intensities relative to a reference state according to [27, 45],

Imax
Iref

=
NiE0A

NrefE
ref
0 Aref

' ni
nref

(
E0

Eref
0

)4

. (5.12)

ni is the density of particles. We set a reference transition Iref to relative the maximum
intensity of the Lorentz profile Imax. The central position is determined by the position
of each p3/2 component of spectral lines. We use fine structure splitting and get p1/2

component on each spectral line. The fine structure splitting of silicon is 0.591 eV. The
maximum intensity considers to corresponding to the component p3/2 with a statistical
weight 2J +1, and the other states in the outer and inner open shells consider also with
a statistical weight 2J +1 to get their intensity. The statistical weight 2J+1 satisfied
the singlet-triplet-factor for each component on p3/2 and p1/2. The singlet-triplet-factor
influence the height of the intensity of each peak.

5.2. Line Broadening

The emission spectral lines emitted by bound-bound transitions show line broadening
which is important for the plasma diagnostics. Lorentzian linewidth γ and instrumental
Gaussian width Γ have to be considered. The Lorentzian linewidth γ is also called natural
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line broadening. Now let us explain the natural line broadening from the quantum states
of an atom. In the quantum states have discrete energies of different energy states. The
atomic system have interaction with electromagnetic fields due to small spread in energy.
The lifetime τ of the atom in an upper state is finite due to spontaneous transitions to
lower quantum states. The effective energy spread in the quantum state is given by [43]

∆E w
h

2πτ
. (5.13)

In Eq. (5.13) the lifetime τ is getting by the sum of all spontaneous transitions 2
τ

=∑
f Aif . The frequency is equal to ∆ν = 1

2πτ
. The shape of the broadened line is the

shape of the energy broadening in the Lorentz profile. The Lorentzian line shape of
natural broadening could be rewritten by [43]

I(ν) = I(ν0)
1

1 + [(ν − ν0)2πτ ]2
. (5.14)

In Eq. (5.14) the natural broadening we use the experiment natural broadening in our
calculation and the full width at half maximum is called FWHM. The lifetime is defined
by ∆ν1/2 = 1

πτ
. FWHM arising from the Doppler shift of parameter frequency ν is

defined by [43],[44].

∆ν1/2 = 2ν0(vta/c)(2 ln 2)1/2. (5.15)

The factor 2 is from the definition of life time τ included to provide a standard form of
the line profile. Doppler shift describes the thermal particle motion

∆ν = ν − ν0 =
ν0v

c
. (5.16)

In Eq. (5.16) shows c is light velocity and v is the particle velocity. The Maxwellian
velocity distribution is described by

I(ν) = I(ν0) exp

[
−(ν − ν0)2c2

2v2
taν

2
0

]
. (5.17)

In Eq. (5.17) has the relationship from temperature kBTa and atomic mass ma on an
emitting atom v2

ta = kBTa
ma

and in Eq. (5.17) of right side shows the Gaussian line profile.

We added all of the individual spectral lines of Lorentz profile and convoluted with a
Gaussian instrument function to satisfy the resolution of spectrometer in the experiment.

I(E) =

∫ ∞
−∞

dzI(E + z)
1√

2πΓ2
exp

[
− z2

2Γ2

]
. (5.18)

Using Eq. (5.18) we calculate the silicon spectra shown in section 5.3 and argon
spectra seeing section 5.4.
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5.3. Silicon Spectra
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(a) Theoretical Si KαL
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(b) Theoretical and experimental [13] Si Kα spec-
tra.

Figure 5.1.: Si spectrum considering the ground state and satellite emission lines from
excited state of 4s and excited state of 3d, fine structure splitting is taken
into account for statistical factors of different excited states, see Tab. 2.1.

5.3. Silicon Spectra

We calculated synthetic silicon Kα spectra at a plasma temperature of 30 eV and the Si
atom bulk density ntot = 5 ·1022 cm−3. The Gaussian width was fixed from instrumental
profile ΓG = 0.13 eV [12] and the Lorentzian distribution linewidth was fixed γ = 0.43
eV [12] in our calculation.

We considered different L-shell satellites for two different M-shell configurations: KαL
NM0

and KαL
NM4 for N = 0, ..., 4, respectively. The experimental results for Kα spectra of

Si, SiO2 have shown that the environment affects all Kα emission lines and their different
satellite lines [15, 13, 16]. In Fig. 5.1a shows the 6 single Kα emission lines including
ground state, 3d excited states and 4s excited states with fine structure. We see the
strongest peak coming from the ground state of Si13+. The emission energy of Kα of
ground state has a higher intensity than excited states. In Fig. 5.1b we compare this
spectrum with experimental data from [13]. Comparing the line shapes we obtained a
good agreement of theoretical and experimental data. Both spectra show a double peak
structure due the fine splitting components. Fine structure P3/2 and P1/2 influence the
intensity and peak position. Si spectra (T =30 eV) has a red shift comparing with cold
Si Kα experiment (T ∼ 1 eV).

Let us now investigate KαL
0M0 4 electrons are in the outer shell (M-shell), see Tab.

A.6. KαL
NM4 has no electrons in the outer shell (M-shell), see Tab. A.7. The M-shell

is fully ionized. Each additional L-shell hole leads to a rather large line shift to higher
energies since core screening is reduced massively.

The KαL
NM0 and KαL

NM4 spectrum are shown in the Fig. 5.2a and Fig. 5.2b.
Going to Fig. 5.2a KαL

NM0 with holes (N =0,1,2,3,4) in the full vacancies M shell in
the logarithmic scaling. The intensity is strongest in KαL

0 decreases with holes in the
L shell. With increasing number of holes reduces the intensity and the peak shifts to
the right side because the blue shift effect is stronger in the plasma. Because depending
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(a) Si KαL
NM0 (N = 0,1,2,3,4) with full va-

cancies on M shell and x holes in the L shell
at temperature 30 eV. The peak of emission
energy in 1740 eV is KαL

0M0, the peak of
emission energy in 1755 eV is KαL

1M0, ...
and the peak of emission energy in 1780 eV
is KαL

4M0. Through increasing holes in the
L shell shift the peak to the right side of in-
creasing Kα emission energy.
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(b) Si KαL
NM4 (N = 0,1,2,3,4) with 4 occupied

electrons in the shell and x holes in the L shell
at temperature 30 eV. The peak of emission
energy in 1743 eV is KαL

0M4, the peak of
emission energy in 1760 eV is KαL

1M0, ...
and the peak of emission energy in 1812 eV
is KαL

4M0. Through increasing holes in the
L shell shift the peak to the right side of in-
creasing Kα emission energy.

Figure 5.2.: Si spectrum with satellite emission lines.

the law of mass action KαL
0M4 has a stronger contribution than KαL

1M4 and so on
in KαL

N satellites. At a fixed density of free electrons for the red shift decreases with
increasing temperature. The Fig. 5.3 shows a spectrum with all KαL

NM4 and KαL
NM0

component spectrum in logarithmic scale with different holes in L shells in the 30 eV
temperature. Compared with the experimental results from [13] where the plasma is
generated by intense heavy ion beams, we calculated a spectrum that qualitatively re-
samples the satellite lines created by the different dynamic collision processes in the
target. To also obtain quantitative results the various plasma conditions created along
the heavy ion path and integrated in the experimental spectrum have to be considered
in the calculation.

5.4. Argon Spectra

Argon has atomic number 18, 8 outer electrons are in the M shell and solid density
2.63·1022 cm−3. Argon plasma was produced with irradiating individual argon droplets
of 20 µm diameters with the laser pulse energy of 2.5J [9]. The spectrometer covered
the range of the Ar K-shell emission from 2950 eV to 3100 eV, see in Fig. 1.9. In the
Ar spectra experiment for the charge states 1+ to 9+ is about 20-30 eV apart and the
charge states 10+ ... 14+ is about 20-30 eV apart. The spectrometer covered the Ar
K-shell emission range and hydrogen-like argon [9].

In 2012, P. Neumayer et al. [9] have measured the PHELIX Laser power 2.5 J through
in an argon droplet of 20 µm diameter recording in X-rays spectra emitted lines at the

68



5.4. Argon Spectra
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Figure 5.3.: Comparing theoretical Si KαL
0M4 (red line) with KαL

0M0 (blue line) emis-
sion energies (shifted by plasma) at the temperature of 30 eV. KαL

0M4 (red
line) have more large emission energies than KαL

0M0 (blue line) emission
energies because KαL

0M0 have more strong plasma screening effect.

GSI Helmholtz Center, see Fig. 1.9 and they were using the theoretical code FLYCHK
fitting the series of Kα emission spectral lines [9] . The Lorentzians are summed up and
convoluted with a Gaussian profile of width Γ to take into account instrumental broad-
ening of measurements. The experimental Ar spectra were convoluted with instrument
function (FWHM 7 eV) and the temperature of spectral fitting up to 160 eV [9]. We use
Ar instrumental Gaussian width Γ = 7 eV in Gaussian profile convoluted the Lorentz
profile with Lorentzian linewidth γ = 1 eV including the emission energies of excited
states (3s, 3p, 3d, and 4s). Our Kα series emission spectrum lines from temperature 10
eV to 170 eV in Fig. 5.4. We saw the Ar spectra in 10 eV having main contributions
in the ion charge state Ar1+···9+ corresponding the same configuration of initial state
1s12s22p6 and less contributions in the ion charge state from 10+ of the initial state
1s12s22p5, 11+ of the initial state 1s12s22p4, 12+ of the initial state 1s12s22p4,12+ of
the initial state 1s12s22p3, 13+ of the initial state 1s12s22p2 and 14+ of the initial state
1s12s22p1. Temperature 10 eV, 20 eV, 30 eV ,40eV and 50eV contribute strongly to
Kα peak of Ar1+···9+ in the range of emission energy 2950 eV to 2975 eV. Seeing Fig.
4.3b can correspond to the Ar plasma charge states in the different temperature. Ar
spectra of temperature 60 eV has beginning large contribution in Ar10+ and 80 eV has
beginning large contribution in Ar11+ and Ar12+ the two peaks are very close. Ar spectra
of temperature 110 eV has beginning contribution in Ar13+ and Ar14+. At the higher
temperature 150 eV, 160 eV and 170 eV have a more larger contribution at Ar14+. Focus
on the temperature 110 eV shows the Kα peak Ar1+···9+ the energy range from 2950 eV
to 2970 eV, Ar10+ from 2980 eV to 3000 eV, Ar11+ from 3000 eV to 3020 eV, Ar12+ from
3015 eV to 3030 eV, Ar13+ from 3040 eV to 3060 eV and Ar14+ from 3070 eV to 3090
eV. At temperature 10 eV shows the peak around the 2958 eV good fitting cold plasma
with low density Kα because the red shift on plasma screening is very weak. In Fig. 5.4
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5. Synthetic Spectra

we could not separate the fine structure splitting of Ar that Kα is 2.01 eV of Kα1 and
Kα2 .

5.5. Optimal Temperature Distributions to Reproduce
Experimental Spectra of Ar

We use the statistical χ2 testing [53] comparing our argon theoretical spectra with exper-
iment spectra. The chi-square statistic is computed by the sum of the observed values
(theoretical values) minus the expected values (experimental values) squared divided by
the absolute expected values (experimental values) writing as

χ2 =
∑
E

(Itheo(E)− Iexp(E))2

|Iexp(E)|
. (5.19)

The Eq. (5.19) shows χ2 = 0 meaning each theoretical intensity of energy equal to the
experimental intensity of energy Itheo(E) = Iexp(E) and the theoretical values are totally
fully fitting experiment values. Increasing the χ2 values means more discrepancy of
theoretical intensity and experimental intensity. The theoretical spectra from Fig. 5.4 are
normalized. We read the experiment spectra data from [9] and normalize the experiment
spectra. In Fig. 5.5a combines the normalized theoretical spectra (blue curve) with the
Ar weights of the spectra from 10 eV to 160 eV from Fig. 5.5b and experimental
spectra (red curve) getting χ2 = 0.51. The Ar1+···9+ has a larger theoretical FWHM
than experimental FWHM. We calculate the constant weights temperature distribution
theoretical spectra from Fig. 5.4 then we compare our the experimental spectra with
experimental spectra in Fig. 5.6a getting χ2 = 1.2. Fig. 5.6b we use the weights of
temperature distribution (using FLYCHK) from [9] theoretical spectra from Fig. 5.4
then we compare our experimental spectra with spectra getting χ2 = 1.58. Comparing
the χ2 from Fig. 5.5a, Fig. 5.6a and Fig. 5.6b we know the weights of temperatures is
well in Fig. 5.5b then normal weights. And the weight of temperature distribution (using
FLYCHK) from [9] is not the best suitable in our theoretical spectra. For good fitting
the Ar1+···9+ we take the Lorentzian linewidth γ = 1 eV convoluted small instrumental
Gaussian width Γ = 3 eV. The Fig. 5.7a we calculate Ar spectra with the Ar weights
of the spectra from 10 eV to 160 eV from Fig. 5.7b besser fitting with χ2 = 0.34
then instrumental Gaussian width Γ = 7 eV at Kα of Ar1+···9+ with experiment curve.
We compare the Ar12+, Ar13+ and Ar14+ with experiment getting the theoretical peaks
shift in the right side of experiment peaks, see Fig. 4.3b the charge state of Ar13+

and Ar14+ corresponding to high temperature (more than 150 eV). The Fig. 5.7b weight
distribution has a stronger contribution on the temperature 20 eV, 30 eV, 150 eV and 160
eV. But the weight distribution in [9] has a stronger contribution on the temperature 50
eV, 60 eV, 150 eV and 160 eV. The Fig. 5.8a we calculate the same weight on the spectra
temperature distribution getting χ2 = 0.54. The Fig. 5.8b we calculate the weight
from [9] on the spectral temperature distribution getting χ2 = 0.61 and showing the
Ar1+···9+ is shifted to the right side of the spectral spectrum the Ar10+ Ar11+, Ar10+ with
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Ar11+ having large intensity than experiment. We calculate the different temperature
distribution of weights helping understand the experiment process. The Fig. 5.9 we
compare these three different spectra and we find the Ar10+ Ar11+, Ar12+ , Ar13+ and
Ar14+ the peak position not different but Ar1+···9+ the peak position is very different.

In Fig. 5.10 Ar spectra of temperature with instrumental Gaussian width Γ is 3 eV
and Lorentzian linewidth γ is 1 eV. Comparing with the K1+···9+

α getting chi-square is
0.055. The Fig. 5.10 we calculate the Kα on the temperature 30 eV our theoretical peak
shifting right to experimental peak. We calculate the different temperatures 25 eV, 27
eV, 28 eV and 30 eV to find the well experiment peak at the specific temperature, see
Fig. 5.11.

We apply a superposition of our spectra for different temperatures to model the ex-
perimental results obtained by Neumayer et al. [9]. To obtain the best fit the weight
of the different spectra is determined within a variational approach using the method of
least squares. Results for the best fit and the corresponding temperature distribution
are shown in Fig. 5.12 and Fig. 5.13, respectively.

The superimposed spectrum shows a good agreement especially for the M-shell satel-
lites. Since the position of the main peak is rather sensitive to temperature we chose
not only a 10 eV grid but inserted some intermediate temperatures between 20 eV and
30 eV. At a first glimpse the agreement with the L-shell satellites is less satisfying. The
peaks are at correct positions but the widths seem to small. We attribute this to our
approximation of the natural line widths. We use only one value for γ which implies
the same lifetime for all considered states. But especially highly ionized and excited
states experience shorter lifetimes and hence show a larger natural width. Accordingly
the L-shell emission lines would blur and give a better fit of the energy spectrum above
2980 eV.
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5. Synthetic Spectra

Figure 5.4.: Ar instrumental Gaussian width Γ is 7 eV and Lorentzian linewidth γ is 1
eV from temperature T=10 eV to T=170 eV emission energies with different
charge states.
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(a) Ar spectra with KL transitions of different
charge states. Instrumental Gaussian width
Γ is 7 eV and Lorentzian linewidth γ is 1 eV.
Using chi-square test compare spectra (blue
curve) with experimental values (red curve).
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(b) Ar Weights of spectra from (a) blue curve at
different temperatures from 10 eV to 160 eV.

Figure 5.5.: (b) is the weights to obtain the (a) Ar spectra comparing experiment curve
chi-square is 0.51.
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(a) Ar spectra with KL transitions of different
charge states. Instrumental Gaussian width
Γ is 7 eV and Lorentzian linewidth γ is 1 eV
with the same weights of temperatures (from
10 eV to 160 eV). Using chi-square test com-
pare spectra (blue curve) with experimental
values (red curve).
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(b) Ar spectra with KL transitions of different
charge states. Instrumental Gaussian width
Γ is 7 eV and Lorentzian linewidth γ is 1 eV.
with the weight distribution of temperatures
(from 10 eV to 160 eV) [9]. Using chi-square
test compare spectra (blue curve) with exper-
imental values (red curve).

Figure 5.6.: Using the same weights to obtain the (a) Ar spectra comparing experiment
curve chi-square is 1.2. Using the weights [9] to obtain the (b) Ar spectra
comparing experiment curve chi-square is 1.58.

73



5. Synthetic Spectra

Ar , EXP

1+...9+

10+ 11+12+ 13+

14+

Ar, Χ
2

=0.34, G=3, U=1

2940 2960 2980 3000 3020 3040 3060 3080
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Photon Energy @eVD

in
te

ns
it

y
@a

rb
.u

.D

(a) Ar spectra with KL transitions of different
charge states. Instrumental Gaussian width
Γ is 3 eV and Lorentzian linewidth γ is 1 eV.
Using chi-square test compare spectra (blue
curve) with experimental values (red curve).
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(b) Ar Weights of spectra from (a) blue curve at
different temperatures from 10 eV to 160 eV.

Figure 5.7.: (b) is the weights to obtain the (a) Ar spectra comparing experiment curve
chi-square is 0.34.
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(a) Ar spectra with KL transitions of different
charge states. Instrumental Gaussian width
Γ is 3 eV and Lorentzian linewidth γ is 1 eV
with the same weights of temperatures (from
10 eV to 160 eV). Using chi-square test com-
pare spectra (blue curve) with experimental
values (red curve).

Ar , EXP

1+...9+

10+ 11+12+

13+

14+

Χ
2

=0.61, G=3, U=1, Distr. @1D

2940 2960 2980 3000 3020 3040 3060 3080
0.000

0.005

0.010

0.015

0.020

0.025

0.030

Photon Energy @eVD

in
te

ns
ity

@a
rb

.u
.D

(b) Ar spectra with KL transitions of different
charge states. Instrumental Gaussian width
Γ is 3 eV and Lorentzian linewidth γ is 1 eV.
with the weight distribution of temperatures
(from 10 eV to 160 eV) [9]. Using chi-square
test compare spectra (blue curve) with exper-
imental values (red curve).

Figure 5.8.: Using the same weights to obtain the (a) Ar spectra comparing experiment
curve chi-square is 0.54. Using the weights [9] to obtain the (b) Ar spectra
comparing experiment curve chi-square is 0.61.
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Figure 5.9.: Comparing with all of the different weight distribution with experimental
values. Ar spectra with KL transitions of different charge states. Instru-
mental Gaussian width Γ is 3 eV and Lorentzian linewidth γ is 1 eV with
the same weights of temperatures (from 10 eV to 160 eV).
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Figure 5.10.: Ar spectra of temperature with instrumental Gaussian width Γ is 3 eV
and Lorentzian linewidth γ is 1 eV. Comparing with the K1+···9+

α getting
chi-square is 0.055
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Ar , 28eV
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Figure 5.11.: Ar spectra of temperature with instrumental Gaussian width Γ is 3 eV and
Lorentzian linewidth γ is 1 eV on the temperature 25 eV, 27 eV, 28 eV
and 30 eV.
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Figure 5.12.: Best fit of superposition of theoretical spectra and space-time-integrated
measurements of Neumayer et al. [9].
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Figure 5.13.: Temperature distribution which gives the best fit of theoretical and exper-
imental spectra. The relative weights are determined via the method of
least squares.
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6. Conclusions

Kα X-ray emissions strongly depend on the ion configuration and emitter environment.
Red energy shifts are caused by plasma environment. They are stronger with higher
free electron density and increasing temperature. Blue energy shifts are due to different
emitter configurations. In the high temperature plasma has the same screening effect
on Debye Hückel and Montroll-Ward model, because the higher order self energy in
the Montroll-Ward has less contribution in the higher temperatures. Assume the quan-
tum dipole transition is one point in the classical case for calculating high temperature
plasma. Using Plank-Larkin renormalization to the bound state systems of ions of Si for
the k-th ionization stage we solved the continuum problem (Mott effect) in the classical
case. For the different temperature Si Kα or satellite lines we discuss the plasma effect
depending on temperature.

Red energy shifts in Ar are depending on the free electron density and temperature
, see Fig. 5.4 showing T=10 eV has smaller red shift than T=170 eV corresponding
experiment [9] peak position. Wave functions as well as energy values were calculated
using the ab initio G03 code Aug-cc-pVTZ basis set, see Fig. 2.9. The plasma effect
was considered within a perturbative approach by the Ion Sphere model and we use the
Planck-Larkin sum of bound states at continuous ionization. We presented synthetic
spectra that are able to resemble emissions from various L-and M-shell configurations.
We compare our plasma composition with FLYCHK, see Fig. 4.3b. Fig. 4.1 and Fig.
4.2 show the plasma composition depending on temperature. Fig. 5.4 shows our spectral
lines with temperature from 10 eV to 170 eV getting the fitting with experiment [9] in
Fig. 5.10.

In section 5.5 we use the statistical χ2 testing [53] comparing our argon theoretical
spectra with experiment spectra to fit test experimental data and theoretical data.

The Lorentzians are summed up and convoluted with a Gaussian profile of width Γ
to take into account instrumental broadening of measurements. The experimental Ar
spectra were convoluted with instrument function (FWHM 7 eV) and the temperature
of spectral fitting up to 160 eV [9]. We use Ar instrumental Gaussian width Γ = 7 eV
in Gaussian profile convoluted the Lorentz profile with Lorentzian linewidth γ = 1 eV
including the emission energies of excited states (3s, 3p, 3d, and 4s). Our Kα series
emission spectrum lines from temperature 10 eV to 170 eV in Fig. 5.4. The temperature
distribution we obtain is similar to the theoretical results of Neumayer et al.[9]: a two-
peaked curve with the first focus at lower temperatures of some 10 eV, the second focus
at more than 100 eV higher temperatures and a less pronounced region in between.
However, there is a significant difference between the distribution of Neumayer et al.
and the results shown here: our first focus lies at about 20 eV lower plasma temperature.
This difference is due to the different results of the composition calculations. The Fig.
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5.12 results for undisturbed peak positions are rather the same, showing blue shifted
emission energies as described above. But as we obtain higher degrees of ionization at
lower temperatures, we also see the blue shift of emission energies at lower temperatures
and hence we obtain a temperature of about 25 eV instead of 50 eV to fit the main peak
of the measured spectrum. Neumayer et al. discussed several mechanisms like resistive
heating or radiative heating that might help to explain the absence of temperatures below
50 eV. However, our results suggest that these influences might not be as substantial as
the authors assumed. Further, the broadening of the lines is different in both approaches.
Using our parameter values for the broadening of all lines in general gives a too large
width for the main peak (Ar+ to Ar9+) and a too small width for the higher lying peaks.
A more detailed discussion of the width would improve the agreement between theory
and experimental data. In particular, the low minima between the theoretical peaks
will be possibly smeared out. A quantum statistical approach to the line width would
be desirable. This kind off approaches are well elaborated for H-like systems but need
further development for mid-Z materials.

The inclusion of plasma effects, especially shifts and the merging of bound states with
the continuum, is important to discuss the composition of the plasma and the density of
free electrons. We have shown that such effects have significant influence on the inferred
temperature distribution. In the present work we did not attempt to describe the origin
of the inferred temperature profile. For this purpose kinetic codes and hydrodynamic
simulations are inevitable. In general, K-alpha spectroscopy is an interesting means of
plasma diagnostic and gives a rough profile of the temperature distribution which can be
made even more precisely in future calculations. We will consider also higher densities
of the plasma, the effects of dynamical collisions with the plasma electrons and the
fluctuations of the ionic microfield on the line shifts and widths have to be considered.
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A. Appendix

A.1. Atomic Units [a.u.] and Some Constants

Electron mass : me = 1
Elementary charge : e = 1
Reduced Planck’s constant : ~ = h/2π = 1
Coulomb’s constant : c = 1/(4πε0) = 1
Bohr radius: a0 = 5.29177249×10−9 cm
Hartree energy: Eh = 27.2113961 eV
Electric constant: ε0 = 1/(4π)

A.2. Gaussian Basis Functions for Si

orbital Function orbital Function orbital Function

1S
∑3

i=1 d1s,ie
−α1,ir

2
3PX

∑2
i=1 d3p,ixe

−α3,ir
2

4PZ d4pze
−α4r2

2S
∑3

i=1 d2s,ie
−α2,ir

2
3PY

∑2
i=1 d3p,iye

−α3,ir
2

5XX d5dx
2e−α5r2

2PX
∑3

i=1 d2p,ixe
−α2,ir

2
3PZ

∑2
i=1 d3p,ize

−α3,ir
2

5YY d5dy
2e−α5r2

2PY
∑3

i=1 d2p,iye
−α2,ir

2
4S d4se

−α4r2 5ZZ d5dz
2e−α5r2

2PZ
∑3

i=1 d2p,ize
−α2,ir

2
4PX d4pxe

−α4r2 5XY d5dxye
−α5r2

3S
∑2

i=1 d3s,ie
−α3,ir

2
4PY d4pye

−α4r2 5XZ d5dxze
−α5r2

5YZ d5dyze
−α5r2

Table A.1.: 3-21G* Basis Functions for Si.
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A. Appendix

i α1,i d1s,i α2,i d2s,i

1 0.9106550D+03 0.6608223959D-01 0.3667160000D+02 -0.1045110359D+00
2 0.1373360D+03 0.3862286469D+00 0.8317290000D+01 0.1074100369D+00
3 0.2976010D+02 0.6723793854D+00 0.2216450000D+01 0.9514463269D+00
i d2p,i α3,i d3s,i d3p.i

1 0.1133550147D+00 0.1079130000D+01 -0.3761078795D+00 0.6710299112D-01
2 0.4575780593D+00 0.3024220000D+00 0.1251649599D+01 0.9568828734D+00
3 0.6074270787D+00
i α4,i d4s,i d4p,i α5,i

1 0.9333920000D-01 0.1000000000D+01 0.1000000000D+01 0.4500000000D+00
i d5d,i

1 0.1000000000D+01

Table A.2.: 3-21G* Basis Functions for Si α and d parameters.

a.o. -68.38198 -6.13038 -4.23246 -4.23246 -4.22298
-0.61378 -0.29721 -0.29721

a.v. -0.00079 0.40910 0.48446 0.48446 0.51608
0.76469 0.76469 0.78291 0.78291 0.79023
2.56061

b.o. -68.37305 -6.11987 -4.21881 -4.20513 -4.20513
-0.45658

b.v. 0.03117 0.07314 0.07314 0.44928 0.52977
0.56696 0.56696 0.83751 0.84796 0.84796
0.88425 0.88425 2.58575

Table A.3.: 3-21G* beta eigenvalues (occupied orbits and virtual orbits).
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A.2. Gaussian Basis Functions for Si

a.o. -68.89543 -6.17381 -4.28959 -4.28959 -4.27877
-0.61618 -0.29263 -0.29263

a.v. -0.01454 0.06490 0.07066 0.07066 0.08130
0.14772 0.14772 0.15018 0.15018 0.15085
0.43771 0.43771 0.43998 0.43998 0.44773
0.44773 0.45123 0.45926 0.46197 0.48562
0.48579 0.48579 0.48878 0.48878 0.49472
0.49472 1.27501 1.27745 1.27745 1.28519
1.28519 1.42418 1.42597 1.42597 1.43135
1.43135 1.44033 1.44033 2.49289 2.49289
2.49701 2.53851

b.o. -68.88471 -6.16129 -4.27314 -4.25828 -4.25828
-0.46156

b.v. 0.01197 0.03411 0.03411 0.07596 0.09259
0.11367 0.11367 0.16327 0.16623 0.16623
0.17646 0.17646 0.47454 0.48342 0.49689
0.49689 0.49689 0.49689 0.49819 0.49920
0.50733 0.50733 0.50997 0.50997 0.52066
0.52066 0.52261 0.52261 1.29865 1.30737
1.30737 1.33527 1.33527 1.45040 1.45503
1.45503 1.46904 1.46904 1.49305 1.49305
2.50805 2.53917 2.53917 2.56279

Table A.4.: 8 alpha occupied eigenvalues (a.o.) and 42 alpha virtual eigenvalues (a.v.)
and 6 beta occupied eigenvalues (b.o.)and 44 beta virtual eigenvalues (b.v.)
in Aug-cc-PVTZ.
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A.3. Coulomb Potential

The many particles system is described by Hamiltonian,

H =
N∑
i=1

p2
i

2m
+
∑
i<j

V (ri − rj). (A.1)

The coulomb interaction potential

V (q) =
1

Ω

∫
d3reiqrV (r). (A.2)

We consider the coulomb interaction at local in time and the interaction has no dispersive
with spin conserving in coordinate space. k is wave number and σ is spin.

V (12, 1
′
2
′
) = V (k1k2,k1′k2′ )δσ1σ1′ δσ2σ2′ . (A.3)

Using Fourier transform 〈r|k〉 = 1√
Ω
eikr and ortho-normality relation 〈r1r2|r

′
1r
′
2〉 =

δ3(r1 − r1′ )δ
3(r2 − r2′ ). The coulomb potential V (k1k2,k1′k2′ ) = 〈k1′k2′ |k1k2〉 can ex-

pand

V (k1k2,k1′k2′ ) =
∑
r
1
′

∑
r
2
′

∑
r1

∑
r2

〈k1
′ |r1′ 〉〈k2′ |r2′ 〉〈r

′

1r
′

2|V|r1r2〉〈r1|k1〉〈r2|k2〉. (A.4)

V (k1k2,k1′k2′ ) =

(
1

Ω

)2 ∫
d3r1

∫
d3r2

∫
d3r1′

∫
d3r2′e

−ik
1
′ r

1
′ e−ik2

′ r
2
′

· e1e2

4πε0|r1 − r2|
δ3(r1 − r1′ )δ

3(r2 − r2′ )e
ik1r1eik2r2 .

V (k1k2,k1′k2′ ) =

(
1

Ω

)2 ∫
d3r1

∫
d3r2e

−ik
1
′ r1e−ik2

′ r2 e1e2

4πε0|r1 − r2|
eik1r1eik2r2 (A.5)

=

(
1

Ω

)2 ∫
d3r1

∫
d3r2e

i(k1−k1
′ )r1ei(k2−k2

′ )r2 e1e2

4πε0|r1 − r2|
. (A.6)

In homogeneity space consider coulomb potential depends on the relative vector between
the interacting particles. Let relative coordinate is rrel = ρ = r1 − r2.

V =

(
1

Ω

)2 ∫
d3(r1 − r2)ei(k1−k1

′ )(r1−r2) e1e2

4πε0|r1 − r2|

∫
d3r2e

i(k1−k1
′+k2−k2

′ )r2 . (A.7)
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A.3. Coulomb Potential

Using δ̃(k) = 1
2π

∫∞
−∞ dxe

ik·x to get

δ̃(k1 − k1′ + k2 − k2′ ) =

(
1

2π

)3 ∫ ∞
−∞

d3r2e
i(k1−k1

′+k2−k2
′ )r2 (A.8)

from discontinuing space to continuing space
∑
→
∫
d3r2 = 8π3

Ω
.

So
∫
d3r2e

i(k1−k1
′+k2−k2

′ )r2 = Ωδ(k1 − k1′ + k2 − k2′ ). We can use a spherical coordi-

nate system to solve the first part
∫
d3r2e

i(k1−k1
′+k2−k2

′ )r2 .

(1) =

(
1

Ω

)2 ∫ ∞
−∞

d3ρei(k1−k1
′ )·ρ e1e2

4πε0ρ
Ωδ(k1 − k1′ + k2 − k2′ ) (A.9)

=
1

Ω

∫ 2π

0

∫ π

0

∫ ∞
0

ρ2sinθdθdφei(k1−k1
′ )ρcosθ e1e2

4πε0ρ
δ(k1 − k1′ + k2 − k2′ )dρ (A.10)

=
e1e2

4πε0Ω
2π

∫ π

0

∫ ∞
0

ρsinθdθei(k1−k1
′ )ρcosθδ(k1 − k1′ + k2 − k2′ )dρ. (A.11)

The partial differential equation sets cos θ = z, dz = dcosθ = − sin θdθ to get

V (k1k2,k1′k2′ ) =
e1e2

2ε0Ω

∫ ∞
0

∫ π

0

ρ sin θdθei(k1−k1
′ )ρ cos θδ(k1 − k1′ + k2 − k2′ )dρ

(A.12)

=
e1e2

2ε0Ω

∫ ∞
0

∫ 1

−1

ρdzei(k1−k1
′ )ρzδ(k1 − k1′ + k2 − k2′ )dρ (A.13)

The part
∫ 1

−1
dzei(k1−k1

′ )ρz = e
i(k1−k

1
′ )ρz

i(k1−k1
′ )

∣∣∣1
−1

= e
i(k1−k

1
′ )ρ−e

−i(k1−k
1
′ )ρ

i(k1−k1
′ )ρ

. So

V (k1k2,k1′k2′ ) =
e1e2

2ε0Ω

∫ ∞
0

ei(k1−k1
′ )ρ − e−i(k1−k1

′ )ρ

i(k1 − k1′ )
δ(k1 − k1′ + k2 − k2′ )dρ (A.14)

=
e1e2δ(k1 − k1′ + k2 − k2′ )

2ε0Ωi(k1 − k2)

∫ ∞
0

ei(k1−k1
′ )ρ − e−i(k1−k1

′ )ρdρ. (A.15)

Using sin(z) = eiz−e−iz
2i

and z = (k1 − k1′ )ρ. The term
∫∞

0
ei(k1−k1

′ )ρ − e−i(k1−k1
′ )ρdρ

reduces to
∫∞

0
2i sin(k1 − k1′ )dρ = 2i

(k1−k1′ )
cos(k1 − k1′ )ρ

∣∣∣∞
0

= 2i
(k1−k1

′ )
. The coulomb

potential is equal to

Vk1k2;k′1k
′
2

=
e1e2

ε0Ω(k1 − k1′ )
2
δ(k1 − k1′ + k2 − k2′ )δσ1σ′1δσ2σ′2 . (A.16)

The coulomb interaction collective dynamical screening behavior in the plasmas and
later Debye was invented a screened potential called Debye potential .

The incoming wave number ki and outgoing wave number k′i and their spin σi, σ
′
i .

We consider a local density (r1 = r′1, r2 = r′2) with a relative distance |r2−r1|. The spin,
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A. Appendix

species and momentum q = k1 − k′1 are conserving interaction. The interaction propa-
gator V (1, 2; 1′2′), with the vertices Γ(11′) and Γ(22′). Γ(11′) =

∑
q e1δσ1σ1′δc1c1′δp1+q,p′1

,
and Γ(22′) =

∑
q e2δσ2σ2′δc2c2′δp2+q,p′2

.

V (12, 1′2′) =
∑
q

Γ(11′)V (q)Γ(22′) = e11′
1

Ωε0q2
e22′ . (A.17)

The Eq. (A.17) is the Coulomb interaction in a plasma description of strongly coupled
plasmas.
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A.4. Debye Potential

A.4. Debye Potential

In this subsection, we will consider the Debye potential in the plasma screening en-
vironment. A test particle charge e has a velocity v0 induced to the charge density
ρ0(r, t) = eδ(r − v0t) This test particle with charge e will polarize into plasma and
induced a charge density ρind(r, t) =

∑
c ρ

ind
c (r, t) [18]. These induced charge could be

charges, free electrons and bound electrons describing in index c. The Poisson equation
was combined the test particle part and induced part,

∇2φeff(r, t) = −4π

{
eδ(r− v0t) +

∑
c

ρind
c (r, t)

}
. (A.18)

the effective screening potential could be writte

φeff(k,ω) =
φtest(k, ω)

ε(k, ω)
. (A.19)

In Eq. (A.4), ε is the dielectric function in the plasma.
The Debye potential at spatial space is given by

V (r1r2, r1′r2′ ) =
e1e2

4πε0|r1 − r2|
e−κ|r1−r2|δ(r1 − r1′ )δ(r2 − r2′ ) (A.20)

κ = 1
rD

is Debye screening length.
At a non-degenerate plasma the mean kinetic energy is proportional to kBT . At very

high temperature has no bound electrons and the plasma becomes ideal plasma
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A.5. 3-21G* Binding energy and Kα Emission energy for
different charge states of Si (in eV)

(eV) Si14 Si13 Si12 Si11 Si10 Si9

-7820.34 -7812.57 -7796.75 -7765.06 -7720.66 -7554.43
Si8 Si7 Si6 Si5 Si4 Si3 Si2

-7347.36 -7098.09 -6792.04 -6442.39 -6048.83 -5582.95 -5069.67

Table A.5.: Binding energy for different charge states of Si (in eV).

Initial Conf. 1s12s22p63s23p2 1s12s22p53s23p2

Final Conf. 1s22s22p53s23p2 1s22s22p43s23p2

Energy Kα1 1739.6 1751.2
Energy Kα2 1739.0 1750.7
Initial Conf. 1s12s22p43s23p2 1s12s22p33s23p2 1s12s22p23s23p2

Final Conf. 1s22s22p33s23p2 1s22s22p23s23p2 1s22s22p13s23p2

Energy Kα1 1763.2 1778.4 1788.8
Energy Kα2 1762.7 1777.8 1788.2

Table A.6.: Emission energies for different configuration of emitter with occupied elec-
trons M shell M0 (in eV).

Initial Conf. 1s12s22p6 1s12s22p5 1s12s22p4 1s12s22p3 1s12s22p2

Final Conf. 1s22s22p5 1s22s22p4 1s22s22p3 1s22s22p2 1s22s22p1

Energy Kα1 1742.9 1761.3 1775.2 1791.8 1812.4
Energy Kα2 1742.3 1760.7 1774.6 1791.2 1811.8

Table A.7.: Emission energies for different configuration of emitter with empty M shell
M4 (in eV).
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A.6. Landau Damping

A.6. Landau Damping

Using the Dirac identity 1
ω±iε = ∓iπδ(ω) + P

ω
in the {εRPA(q, ~(ω + i0))}. The disconti-

nuity due to a pole at ~ω = εc,p − εc,p−q. To get imaginary part Im{εRPA(q, ~(ω + i0))},

Im{εRPA(q, ~(ω + i0))}. (A.21)

=
∑
c

π
e2
c

ε0q2
(2sc + 1)

∫
d3p

(2π)3
[f(εc,p−q)− f(εc,p)] · δ(~ω + εc,p−q − εc,p). (A.22)

=
∑
c

π
e2
c

ε0q2
(2)·
[∫

d3p

(2π)3
f(εc,p−q)δ(~ω + εc,p−q − εc,p)−

∫
d3p

(2π)3
f(εc,p)δ(~ω + εc,p−q − εc,p)

]
.

(A.23)

Setusing p
′
= p− q and rename p = p

′

=
∑
c

π
e2
c

ε0q2
(2) ·

∫
d3p

(2π)3
f(εc,p) [δ(~ω + εc,p − εc,p+q)− δ(~ω + εc,p−q − εc,p)] . (A.24)

Using δ(ax) = 1
|a|δ(x), εc,p = ~2p2

2mc
, εc,p±q = ~2(p±q)2

2mc
to resolve the δ term.

δ(~ω + εc,p−q − εc,p) = δ

(
~ω +

~2(p2 − 2pq cos θ + q2)

2mc

− ~2p2

2mc

)
(A.25)

= δ(
mc~ω
mc

− ~2pq cos θ

mc

+
~2q2

2mc

) (A.26)

=
m

~2
δ

(
mcω

~
− pq cos θ +

q2

2

)
(A.27)

=
m

~2pq
δ

(
− cos θ +

mcω

~pq
+

q

2p

)
. (A.28)

We defined δ(~ω + εc,p−q − εc,p) = mc
~2pqδ

(
cos θ − mcω

~pq −
q
2p

)
≡ mc

~2pqδ1 and δ(~ω + εc,p −

εc,p+q) = mc
~2pqδ

(
cos θ − mcω

~pq + q
2p

)
≡ mc

~2pqδ2. The form Im{εRPA(q, ~(ω+ i0))} reduced to

=
∑
c

π
e2
c

ε0q2
2π

(2sc + 1)

(2π)3

∫ ∞
0

dp

∫ 1

−1

d cos θp2f(εc, p)
mc

~2pq
[δ2 − δ1]. (A.29)

Because cos θ ∈ [−1; 1] and the two δ functions only contribute if |mcω~pq ±
q
2p
| ≤ 1⇒ |mcω~q ±
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q
2
| ≤ p. They just change the limits in the two integrations [6]: Im{εRPA(q, ~(ω + i0))}

=
∑
c

2π2 e
2
cmc

ε0~2q3

(2sc + 1)

(2π)3

[∫ ∞
|mcω~q −

q
2
|
dppf(εc,p)−

∫ ∞
|mcω~q + q

2
|
dppf(εc,p)

]
(A.30)

=
∑
c

(2π)2 e
2
cmc

ε0~2q3

∫ |mcω~q + q
2
|

|mcω~q −
q
2
|
dp

p

1 + e
β
(

~2p2
2mc
−µc

) (A.31)

=
∑
c

e2
cm

2
c

4πε0β~4q3
(2sc + 1) ln

∣∣∣∣∣∣∣∣∣∣
1 + e

−β

 ~2

2mc(mcω~q −
q
2)

2
−µc



1 + e
−β

 ~2

2mc(mcω~q +
q
2)

2
−µc



∣∣∣∣∣∣∣∣∣∣
. (A.32)
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A.6. Landau Damping

bf 1 , α1 11pg;d1s bf 2, α2 11 pg;d2s

0.2549000000D+06 0.6259454587D-04 0.2549000000D+06 0.4011785433D-06
0.3819000000D+05 0.4862070436D-03 0.3819000000D+05 0.3058719263D-05
0.8690000000D+04 0.2548609738D-02 0.8690000000D+04 0.1502997647D-04
0.2462000000D+04 0.1060105144D-01 0.2462000000D+04 0.4502390871D-04
0.8048000000D+03 0.3692994503D-01 0.2913000000D+03 -0.1266002594D-02
0.2913000000D+03 0.1076356905D+00 0.1136000000D+03 -0.1006734813D-01
0.1136000000D+03 0.2483387413D+00 0.4675000000D+02 -0.4737784997D-01
0.4675000000D+02 0.3917442532D+00 0.1982000000D+02 -0.9744253676D-01
0.1982000000D+02 0.3030081137D+00 0.7708000000D+01 0.9449527074D-01
0.7708000000D+01 0.5545673652D-01 0.3340000000D+01 0.5426692785D+00
0.3340000000D+01 -0.7135272198D-02 0.1402000000D+01 0.4752526204D+00

bf 3 ,α3 11 pg; d3s bf 4, α4 1 pg;d4s

0.2549000000D+06 -0.9639289733D-08 0.4387000000D+00 0.1000000000D+01
0.3819000000D+05 -0.6815112801D-07 bf 5, α5 1 gp;d5s

0.8690000000D+04 -0.5430989250D-07 0.7944000000D-01 0.1000000000D+01
0.2462000000D+04 -0.2225080935D-05 bf 6-8, α6 6 gp; d6p

0.2913000000D+03 -0.3675111577D-04 0.4815000000D+03 0.2085549471D-02
0.1136000000D+03 0.1916046946D-04 0.1139000000D+03 0.1667619837D-01
0.1982000000D+02 0.2219009176D-02 0.3623000000D+02 0.7753893526D-01
0.7708000000D+01 -0.3738426098D-02 0.1334000000D+02 0.2313987378D+00
0.3340000000D+01 -0.6219870833D-01 0.5252000000D+01 0.4239367733D+00
0.1402000000D+01 -0.3088697837D+00 0.2120000000D+01 0.4277947460D+00
0.2070000000D+00 0.1139437590D+01

bf 9-11α7 6 pg;d7p bf 12-14, α8 1 pg; d8p

0.4815000000D+03 0.1088933479D-04 0.8561000000D+00 0.1000000000D+01
0.1139000000D+03 -0.1312701062D-03 bf 15-17, α9 1 gp; d9p

0.1334000000D+02 -0.6072647947D-02 0.7889000000D-01 0.1000000000D+01
0.5252000000D+01 -0.3540085610D-02 bf 18-22, α10 1 gp; d10d

0.2120000000D+01 -0.5109971270D-01 0.1590000000D+00 0.1000000000D+01
0.2528000000D+00 0.1014431383D+01

bf 23-27, α11 1 pg; d11d bf 28-34, α12 1 pg; d12f

0.4810000000D+00 0.1000000000D+01 0.3360000000D+00 0.1000000000D+01
bf 35, α13 1 pg;d13s bf 36-38,α14 1 pg;d14p

0.3300000000D-01 0.1000000000D+01 0.2370000000D-01 0.1000000000D+01
bf 39-43, α15 1 pg; d15d bf44-50, α16 1 pg; d16f

0.5560000000D-01 0.1000000000D+01 0.1250000000D+00 0.1000000000D+01

Table A.8.: Aug-cc-pVTZ (5D, 7F) standard basis function for Si.
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[1] A. Haase, et al, Röntgen Centennial X-rays in Natural and Life Sciences, (World
Scientific Publishing Co. Pte. Ltd.) (1997).

[2] The Nobel Prize in Physics 1915,
http://www.nobelprize.org/nobel prizes/physics/laureates/1915/

[3] David Salzmann, Atomic Physics in Hot Plasmas, (Oxford University Press) (1998).

[4] J. Wesson, et. al, Tokamaks 4 Edition, (Oxford University Press) (2011).

[5] Eoropean Fusion Development Agreement (EFDA) ,
http://www.efda.org/fusion/
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