
 

 

 

The network of signaling pathways  

Analysis of the Notch and Wnt signaling pathway in the 

differentiation of human neural progenitor cells  

 

Dissertation 

zur 

Erlangung des akademischen Grades 

doctor rerum naturalium (Dr. rer. nat.) 

der Mathematischen-Naturwissenschaftlichen Fakultät 

der Universität Rostock 

 

 

vorgelegt von 

Carolin Mußmann geb. Mahler 

geb. am 14.04.1986 in Neustadt am Rübenberge 

Rostock, 14.01.2014 

  

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2015-0044-6

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext



 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 
 

 
Gutachter: 

 

1. Gutachter:  

Prof. Dr. Reinhard Schröder, 

Institut für Biowissenschaften Abt. Genetik, Universität Rostock 

 

2. Gutachter: 

Prof. Dr. Arndt Rolfs, 

Albrecht-Kossel-Institute for Neuroregeneration, Universität Rostock 

 

Datum der Einreichung:  14. Januar 2014 

Datum der Verteidigung:  05. Dezember 2014 

 



Erklärung 

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig angefertigt 

und ohne fremde Hilfe verfasst habe, keine außer den von mir angegebenen Hilfsmitteln und 

Quellen dazu verwendet habe und die den benutzten Werken inhaltlich und wörtlich 

entnommenen Stellen als solche kenntlich gemacht habe. 

 

 

Rostock, 14.01.2014______________________________ 

    (Carolin Mußmann) 

 



Content  I 

Content 

1 Introduction .....................................................................................................................1 

1.1 Stem cells .................................................................................................................1 

1.1.1 Neural Progenitor Cells .....................................................................................2 

1.2 Regulation of the neuronal differentiation .................................................................3 

1.2.1 The Wnt pathways .............................................................................................4 

1.2.2 The Notch pathway ......................................................................................... 11 

1.2.3 The BMP pathway ........................................................................................... 14 

1.2.4 The JAK/STAT3 pathway ............................................................................... 16 

1.3 Aim of the study ..................................................................................................... 17 

2 Materials and Methods .................................................................................................. 20 

2.1 Materials ................................................................................................................ 20 

2.1.1 Technical equipment ....................................................................................... 20 

2.1.2 Software .......................................................................................................... 21 

2.1.3 Consumables ................................................................................................... 21 

2.1.4 Chemicals ....................................................................................................... 22 

2.1.5 Antibodies ....................................................................................................... 23 

2.1.6 Oligonucleotides ............................................................................................. 25 

2.1.7 Vectors ............................................................................................................ 27 

2.1.8 Enzymes .......................................................................................................... 28 

2.1.9 Bacterial strains and media .............................................................................. 28 

2.1.10 Cell lines and media ........................................................................................ 29 

2.1.11 Cell culture media, buffers and supplements .................................................... 29 

2.2 Methods ................................................................................................................. 32 

2.2.1 Cell culture ...................................................................................................... 32 

2.2.2 Protein analysis ............................................................................................... 35 

2.2.3 Molecular biological methods.......................................................................... 38 

3 Results .......................................................................................................................... 42 

3.1 Generation of expression vectors ............................................................................ 42 

3.1.1 Generation of pCAGGS-hHES1 ...................................................................... 42 

3.1.2 Generation of pCAGGS-hHES5 ...................................................................... 43 

3.2 The Notch pathway in ReNcell VM cells ................................................................ 44 

3.2.1 Inhibition of the Notch pathway ...................................................................... 45 

3.2.2 Activation of the Notch pathway ..................................................................... 46 



Content  II 

3.3 The effect of Wnt-3a in the differentiation of ReNcell VM cells ............................. 48 

3.3.1 Modulation of the Notch target genes by Wnt-3a ............................................. 49 

3.3.2 The additive effect of Wnt-3a treatment and Notch inhibition .......................... 50 

3.3.3 Time dependency of Wnt-3a/DAPT effects on neurogenesis ........................... 54 

3.4 The mechanism behind the Wnt-3a effect ............................................................... 57 

3.4.1 Analysis of the Wnt pathway dependency........................................................ 58 

3.4.2 Analysis of the Notch pathway dependency ..................................................... 63 

3.4.3 Analysis of the BMP pathway dependency ...................................................... 69 

3.4.4 Analysis of the JAK/STAT3 pathway dependency .......................................... 73 

3.5 Induced pluripotent stem cell derived neural progenitor cells (iPS-NPCs) ............... 77 

3.5.1 The Notch pathway in iPS-NPCs ..................................................................... 78 

3.5.2 The effect of Wnt-3a in differentiating iPS-NPCs ............................................ 78 

3.5.3 The Wnt-3a and DAPT effect in the differentiation of iPS-NPCs ..................... 80 

4 Discussion ..................................................................................................................... 82 

4.1 Generation of pCAGGS-hHES vectors ................................................................... 82 

4.2 The Notch pathway in ReNcell VM cells ................................................................ 83 

4.3 The effect of Wnt-3a treatment and Notch inhibition in the differentiation of ReNcell 

VM cells ........................................................................................................................... 85 

4.4 Time dependency in the differentiation of ReNcell VM cells .................................. 89 

4.5 The mechanism behind the Wnt-3a effect ............................................................... 90 

4.5.1 Wnt pathway dependency ................................................................................ 91 

4.5.2 Notch pathway dependency ............................................................................. 93 

4.5.3 BMP pathway dependency .............................................................................. 95 

4.5.4 JAK/STAT3 pathway dependency ................................................................... 96 

4.6 Induced pluripotent stem cell derived neural progenitor cells (iPS-NPCs) ............... 98 

4.7 ReNcell VM cells ................................................................................................... 99 

4.8 Outlook ................................................................................................................ 100 

5 Summary ..................................................................................................................... 102 

6 Literature ......................................................................................................................... I 

7 Appendix ......................................................................................................................... I 

7.1 ReNcell VM cells ..................................................................................................... I 

7.2 iPS-NPCs ................................................................................................................. I 

7.3 Efficiency of transfection and lipofection of ReNcell VM cells ............................... II 

7.4 Generation of pCAGGS-HA-HES vectors ............................................................... II 



Content  III 

7.4.1 Generation of pCAGGS-HA-hHES1 ................................................................ II 

7.4.2 Generation of pCAGGS-HA-hHES5 ............................................................... III 

7.5 Treatment of ReNcell VM cells with Dkk-1 .......................................................... IV 

 



Abbreviation  I 

 

Abbreviations: 

%   percent 

(R)-SMADs  receptor regulated SMADs 

°C    degree Celsius 

AD   Alzheimer disease 

ADAM   A disintegrin and metalloproteinase 

AICAR  5-aminoimidazole-4-carboxamide-1-D-ri-bofuranoside 

AKos   Albrecht-Kossel-Institute 

AP2   adaptor protein 2 

APC   adenomatous-polyposis-coli 

ASCL1   Mash1 

AXIN2   axin inhibition protein 2 

bFGF    basic fibroblast growth factors 

bHLH   basic helix-loop-helix 

BMP   Bone morphogenetic proteins 

bp   base pair(s) 

BSA    bovine serum albumin 

CADASIL cerebral autosomal dominant arteriopathy with subcortical infarcts and 

leukoencephalopathy 

CAG   chicken β-actin promoter 

CAMKII  calmodulin-dependent kinase II 

CBP   CREB binding protein 

cDNA    copy DNA 

CIAP   calf intestine alkaline phosphatase 

CK1α   casein kinase 1α  

cLSM   confocal laser scanning microscope 

CNS    central nervous system 

Co-A   coactivators 

Co-R   corepressor 

CSL   CBF-1, Suppressor of Hairless, Lag-2 

Ct    cycle threshold 

d   day(s) 

DAAM   Dishevelled-associated activator of morphogenesis 1 

DAG   1,2 diacylglycerol 

DAPI   4′,6-Diamidin-2-phenylindol 

DAPT   N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl ester 



Abbreviation  II 

 

DCC   deleted in colorectal cancer 

Dkk1    Dickkopf1 

Dll   Delta-like 

DMEM   Dulbecco’s modified eagle medium 

DMSO   dimethylsulfoxide 

DNA    desoxyribonucleic acid 

dNTP   deoxyribonucleotide 

Dvl   Dishevelled 

E    embryonic stage 

E. coli   Escherichia coli 

EDTA   ethylendiamin-tetraacetat 

EGF   epidermal growth factor 

EGFR   epidermal growth factor receptor 

EGTA    ethylene glycol tetraacetic acid 

ER   endoplasmatic reticulum 

ERBB4  v-erb-a erythroblastic leukemia viral oncogene homolog 4 

ESC    embryonic stem cells 

et al.    et alii 

FACS    fluorescence activated cell sorting 

FCS   fetal calf serum 

Fz   Frizzled 

G6PD   Glucose-6-phosphate dehydrogenase deficiency 

GAPDH  Glyceraldehyde 3-phosphate dehydrogenase 

GFAP   glial fibrillary acidic protein 

GFP   green fluorescent protein 

GRPs   glial restricted precursors 

GSK3   glycogen synthase kinase 3 

h   hour(s) 

h   human 

HA   hemagglutinin-tag 

HAT   acetyltransferases  

HBSS   Hank`s balanced salt solution 

HDAC   histone deacetylase 

HEK293H  human embryonic kidney 293H 

HES   hairy and enhancer of split 

HLH   helix-loop-helix 



Abbreviation  III 

 

HSA   human serum albumin 

IC   immunochemistry 

ICD   intracellular domain 

ID   inhibitor of differentiation  

IgG   immunoglobulin G 

int-1   integration 1 

IP3   inositol 1,4,5-triphosphate 

iPSCs   induced pluripotent stem cells 

IPTG   Isopropyl-β-D-thiogalactopyranosid 

JAG   Jagged 

JAK   Janus family kinases 

JAK-I-1  JAK-Inhibitor 1 

JNK   JUN-N-terminal kinase 

kDa   kilo Dalton 

LB-medium  Luria-Bertani broth medium 

LEF   lymphoid enhancing factor 

LIF   leukemia inhibitory factor 

LRP5/6  LDL receptor-related proteins 5 and 6 

m   mouse 

MAM   Mastermind 

MAPK p38  mitogen-activated protein kinase pathway p38 

MASH1  ASCL1 

min   minute(s) 

Mio   Million 

ml    milliliter 

mRNA   messenger RNA 

MS   Multiple Sclerosis 

MSCs   Mesenchymal Stem Cells 

MVBs   multivesicular bodies 

N-cadherin  neural cadherin 

NECD   notch extracellular domain 

NFAT   nuclear factor associated with T cells 

ng   nanogramm 

NICD   Notch intracellular domain 

nm   nanometer 

NP-40   detergent 



Abbreviation  IV 

 

NPCs   Neural Progenitor Cells 

NSCs   Neural Stem Cells 

NTM   Notch transmembrane fragment 

PBS   phosphate buffered saline 

PCR   polymerase chain reaction 

PFA   paraformaldehyde 

PIP2   phosphatidylinositol (4,5)-bispho-sphate 

PKC   protein kinase C 

PLC   phospholipase C 

PPIP   phospholipid phosphatidyl inositol 4,5-bisphosphate 

PSM   presomitic mesoderm 

pSTAT3  phospho-STAT3 

PTK7   Tyrosine-protein kinase-like 7 

qRT-PCR  quantitative real-time PCR 

RAC1   Ras-related C3 botulinum toxin substrate 1 

Rap7   receptor-associated protein 7 

RHOA   Ras homologous A 

RIPA buffer  radioimmunoprecipitation buffer 

RNA   ribonucleic acid 

ROCK   RHO kinase 

ROR   receptor orphan  

RYK   transmembrane receptor tyrosine kinase 

S1/2/3   cleavage sites1/2/3 

S100β   “soluble in 100 % saturated ammonium sulfate solution” 

S33Y   stabilized β-catenin 

SB21   SB216763 

SDS   sodium dodecyl sulfate 

sec   second(s) 

sFRPs   secreted Fz-related proteins 

Shh   sonic hedgehog 

siRNA   small interfering RNA 

SOX2   RY-related HMG-box gene 2 

SRC   non-receptor tyrosine kinase 

STAT3   Signal transducer and activator of transcription 3 

T705   tyrosine 705 phosphorylation 

TAS   Trichostatin A 



Abbreviation  V 

 

TCF   T cell factor 

TGF-β   transforming growth factor β 

TLE   transducin-like enhancer of split 

Tuj1   class III β-tubulin 

V   Voltage 

WB   western blot 

wg   wingless 

WHO   World Health Organization 

Wnt   wingless/integration 1 

WST   Cell Proliferation Reagent 

ZFP423  zinc-finger protein 423 

μ    micro 

 



Introduction  1 

 

 
 

1 Introduction 

The neurodegenerative diseases are defined by the European Commission as hereditary and 

sporadic conditions which are characterized by progressive nervous system dysfunction. They 

include diseases such as Alzheimer Disease (AD), Degenerative Nerve Diseases, Epilepsy, 

Stroke, Parkinson Disease, Multiple Sclerosis (MS), Huntington Disease and others. 

Alzheimer disease is here chosen to illustrate the impact of neurodegenerative diseases on the 

human society. The World Health Organization (WHO) revealed AD as the fourth highest 

source of overall disease burden in the high-income countries (WHO statistics, table 13). All 

these diseases have the degeneration of neuronal cells in common. In addition, injuries can 

also lead to neuronal deletions. The fact that the capacity for neural regeneration is limited in 

evolutionarily higher organisms including humans, leads to the requirement of replacement of 

nerve cells in humans. The replacement of neural cells by stem cells or induced pluripotent 

stem cells is highly discussed to be an emerging approach to treat neurodegenerative diseases 

(Steward et al., 2013).  

 

1.1 Stem cells 

Stem cells are defined by their ability to self-renew as well as their ability to differentiate into 

multiple cell types (Zhu et al., 2013), and therefore can serve as a source for cell replacement 

of damaged neurons. Stem cells are able to self-renew by symmetric division and differentiate 

by asymmetric cell divisions (Martin-Rendon and Watt, 2003). Stem cells are classified by 

their potency to develop into other cell types, as totipotent, pluripotent, and multipotent. 

Totipotent stem cells have the ability to differentiate into every cell type of an organism and 

are resulting out of a fertilized ovum (zygote) and their daughter cells up to the fourth cell 

division. Pluripotent cells, for example embryonic stem cells (ESC), have the ability to give 

rise to all three germ layers: mesoderm, ectoderm and endoderm (Loebel et al., 2003). 

Multipotent stem cells are cells which are restricted to differentiate into cell types depending 

on their cell source (Korbing and Estrov 2003).  

Traditionally, as a source of neural stem cells for replacement purposes, have served adult 

stem cells isolated from the hippocampus and subventricular zone (Steward et al., 2013). But 

due to the low amount of adult stem cells it was needed to establish other stem cell sources, 

including human embryonic stem cells (hESCs) and human induced pluripotent stem cells 

(hiPSCs). Especially the method of hiPSC generation is a great breakthrough to improve the 
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production of mature neuronal cell types from a patient-specific somatic cell source and, 

therefore, negate the ethical and immune-rejection concerns. 

 

1.1.1 Neural Progenitor Cells 

Neural stem cells can divide into neural progenitor cells (NPCs) which are more restricted in 

their differentiation potential and can be found in the hypothalamus, the dentate gyrus of the 

hippocampus, the forebrain, the subventricular zone, and the subgranular zone of the dentate 

gyrus (Temple and Alvarez-Byulla, 1999). They derive out of the neural tube which forms the 

central nervous system and differentiate due to mesodermal initiated signaling (Kandel et al., 

2000). NPCs have the ability to differentiate into neurons which are classified by the 

expression of the neuronal specific β-tubulin Tuj1 (also known as class III β-tubulin) which is 

able to heterodimerize with α-tubulins to form microtubules, which are essential components 

of the cytoskeleton. In addition, differentiating NPCs express HuC/D. Hu proteins are RNA-

binding proteins who stabilize specific target mRNAs (Perrone-Bizzozero and Bird 2013). 

Furthermore, they can differentiate into glial cells, like the myelinating oligodendrocytes 

which express the surface antigene O4 and into astrocytes, which are positive for the calcium 

binding protein S100β (Perrone-Bizzozero and Bird 2013).  

Differentiation of NPCs is controlled by a multitude of different pathways, which regulate the 

neurogenesis as well as gliogenesis. Understanding these mechanisms will definitely provide 

the basis for directing differentiation of human NPCs for clinical applications. 

 

1.1.1.1 ReNcell VM cells 

Most of the knowledge how NPCs differentiate is based on murine models. Therefore, the 

cells of choice for identifying the pathways underlying neuronal differentiation are human 

neuronal progenitor cells, like the ReNcell VM cells, which have defining properties: self-

renewal, human origin, multipotency, fast growth, virtually unlimited availability, and they 

are suitable for molecular manipulation. These cells have the ability to differentiate into 

multiple neuronal cell types and make them attractive as powerful tools in research. ReNcell 

VM cells are a v-myc retrovirally immortalized human cell line and were derived from the 

ventral midbrain of a 10-week old male fetus (Donato et al., 2007). Recent studies have 

shown that v-myc induction can enhance the self-renewal of neural progenitors derived from 
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fetal human brain with no tumorigenic potential either in vitro or in vivo and creates 

karyotypically stable cell lines (Kim et al., 2012). This cell line is able to differentiate after 3 

days into HuC/D and Tuj1 positive neurons (Morgan et al., 2009; Hübner et al., 2010; 

Schmöle et al., 2010). Furthermore, proliferating cells express the neuronal marker Nestin 

(Donato et al., 2007) - an intermediate filament expressed in many neural precursor cells 

(Lendahl et al., 1990) - and SOX2 (SRY-related HMG-box gene 2; Donato et al., 2007) which 

is a known transcription factor expressed in neural precursor/stem cells (Episkopou 2005; 

Jiang et al., 2008). For phase contrast pictures see appendix 7.1. 

 

1.1.1.2 Induced pluripotent stem cell derived neural precursor cells (iPS-NPCs) 

By reprogramming somatic cells into pluripotent state using defined transcription factors, 

Yamanaka´s group provided a new basis for cell replacement therapy using stem cells 

(Takahashi and Yamanaka, 2006). This method enabled the generation of induced pluripotent 

stem cells with abilities comparable to that of embryonic stem cells, but without the ethical 

and immune-rejection concerns. Therefore, the iPSCs are widely used for patient-specific 

analyzes of different diseases (Ito et al., 2012). Moreover, recently a substantial function of 

them in pre-clinical models of ischemic brain injury has been revealed (Zhu et al., 2013). 

The here used iPS-NPCs were derived via dual SMAD inhibition by using the human iPS cell 

line hFib2-iPS5 (Park et al., 2008; Trilck et al., 2013). Cells are positive for the stem cell 

markers Nestin and SOX2, like ReNcell VM cells. In addition, they are able to differentiate 

into HuC/D positive cells after 18 days of growth factor removal. For phase contrast pictures 

see appendix 7.2. 

 

1.2 Regulation of the neuronal differentiation  

The neural induction starts with the development of the neural plate out of the ectoderm of the 

blastocyst, which afterwards forms the neural tube. Out of the front part of the neural tube the 

forebrain and midbrain arise while the hindbrain and the spinal cord resulting out of the back 

part of the neural tube. Differentiation is initiated by defined temporal sequences from the 

mesoderm (Kandel et al., 2000). These temporal sequences are widely conserved in vertebrate 

species (Bayer and Altmann, 1991). Diverse studies have revealed numerous signaling 

pathways that control the temporal sequences and discovered that the effects on neuronal 
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progenitor cells are highly dynamic, depending on the stage of development and the local 

niche (Denham et al., 2009). The main pathways which are regulating the differentiat ion and 

analyzed in this work are the Wnt signaling pathway, the Notch pathway, the BMP pathway 

and the JAK/STAT3 pathway. All of these pathways regulate target genes, representing 

different basic helix-loop-helix (bHLH) transcription factors. These factors form hetero 

dimers with ubiquitously expressed bHLH E proteins, such as E12 and E47, through their 

HLH domain. Hetero dimers bind to DNA through their basic domain and activate the 

transcription of genes that have E boxes in their promoter region (Hsieh, 2012).  

 

1.2.1 The Wnt pathways 

The Wnt signaling pathway plays an important role in the development of the central nervous 

system. Wnts are required for early patterning by acting as posteriorising signal, for the 

development of neural progenitor cells, cell proliferation, for cell fate determination, and stem 

cell renewal (Ciani and Salinas, 2005). Furthermore, the Wnt signaling pathway is 

substantially involved in neuronal polarization (Habib et al., 2013), neuronal migration, axon 

guidance, dendrite development, and synapse formation (Inestrosa and Arenas, 2010). 

Strikingly, the effect of Wnt is strongly depended on time and vicinity, for example it can 

either induce or repress the growth of human breast cancers depending on molecular pathways 

which are expressed in the affected cells (Green et al., 2013). 

The Wnt pathway is named for its ligands and was discovered more than 30 years ago. 

Sharma and Chopra described in 1976 Drosophila melanogaster mutants that exposed 

reduced or absent wings and named this gene wingless (wg) (Sharma and Chopra 1976). 

Later, in 1984 Nusse and Varmus identified the gene int-1, short for integration 1, which 

induced mouse mammary tumors, which revealed to be a homolog of wg (Nusse et al., 1984). 

The names were merged into the today well known Wnt. The Wnt ligands are secreted 

glycoproteins with 19 known family members which are highly conserved among animal 

species (van Amerongen and Nusse, 2009). Many Wnt proteins are posttranslational modified 

by glycosylation and palmitoylation as shown for Wnt-3a (Willert et al., 2003, Takada et al., 

2006).  

A variety of different Wnt signaling pathways is known and on the basis of early studies, they 

have been classified as either canonical (β‑catenin dependent) or non-canonical  
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(β‑catenin independent). However, this classification is not appropriate, due to the fact that 

various cross talks are known in different cellular contexts (Niehrs, 2012).  

The best described pathway is the β-catenin dependent pathway afterwards follows the  

β-catenin independent pathways; the PCP (planar cell polarity) pathway and the Ca
2+

 

pathway. But there are more than 15 different Wnt-receptors and co-receptors, and the 

specific combination of these together with 19 different Wnt ligands determines the 

downstream pathway and the effect on the cell, whereas the main part seems to depend on the 

co-receptor (Figure 1; Niehrs, 2012).  

 

 

Figure 1: Overview of major Wnt pathways, receptors and co-receptors. PCP= planar cell polarity, LRP= 

LDL receptor-related proteins, ROR= receptor orphan, RYK= transmembrane receptor tyrosine kinase, MUSK= 

muscle-specific receptor kinase, PRK7= Tyrosine-protein kinase-like 7 .Diagram from Niehrs, 2012. 

 

Wnt ligands can activate more than one pathway at the same time. For example, Wnt-3a can 

activate both, the β-catenin dependent pathway and the Ca
2+

 pathway in human articular 

chondrocytes, with distinct transcriptional targets (Nalesso et al., 2011).  

In addition, the Wnt pathways are known to interact with a variety of different other 

pathways. The glycogen synthase kinase 3 (GSK3) for example has potentially 20 % of all 

proteins in a cell as substrates and can therefore likely affect plenty of other signaling 

pathways (Taelmann et al., 2010).  

 

1.2.1.1 The β-catenin dependent pathway 

When the β-catenin dependent pathway is not activated, β-catenin is targeted for ubiquitin-

mediated proteasome degradation of the E3 ubiquitin ligase complex (Figure 2, A). This 

targeting is performed by the β-catenin destruction complex, consisting of the scaffold 

proteins axin inhibition protein (AXIN), adenomatous-polyposis-coli (APC), GSK3, and 

casein kinase 1α (CK1α). In the active state, this destruction complex is inhibited (Figure 2, 

B). This leads to an increase of active β-catenin in the cytosol and its translocation into the 
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nucleus, where it triggers the transcription of Wnt target genes by association with the 

transcription factor T cell factor/lymphoid enhancing factor (TCF/LEF; Gordon and Nusse, 

2006).  

 

 

Figure 2: Simplified scheme of the β-catenin dependent Wnt pathway. A: Glycogen synthase kinase 3 

(GSK3) phosphorylates β‑catenin, which triggers its degradation. B: In the presence of Wnt ligand, the 

destruction complex (comprising GSK3, CK1α, AXIN and APC) is recruited to the Wnt–receptor complex and 

inactivated. This allows β‑catenin to accumulate and translocate to the nucleus, where it activates the 

transcription of target genes under the control of T cell factor (TCF), among others. Modified diagram from 

Niehrs, 2012. 

 

In detail, Wnt ligands bind to members of the Frizzled (Fz) family of seven transmembrane 

domain receptors, which are G-protein-coupled receptors (Koval et al., 2011). In addition, 

Wnts bind to the single-pass transmembrane co-receptors LDL receptor-related proteins 5 and 

6 (LRP5/6; He et al., 2004), which results in the phosphorylation of LRP5/6, the activation of 

cytoplasmatic protein Dishevelled (Dvl) and the production of phosphatidylinositol (4,5)-

bisphosphate (PIP2; Pan et al., 2008). Increased PIP2 induces oligomerization and clustering 
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of LRP5/6, furthermore, it forms a signalosome which recruits AXIN and Axin-bound GSK3 

complexes to the cell surface (Zeng et al., 2008 and Tanneberger et al., 2011). This, and the 

fact that AXIN is the scaffold protein that directly binds to many of the involved components 

and brings them within close proximity to each other, makes it to the limiting component of 

the β-catenin destruction complex (Lee et al., 2003). Furthermore, clathrin and adaptor 

protein 2 (AP2) are required for the formation of LRP6 signalosomes (Kim et al., 2013). 

Taelman et al., 2010 clearly showed a sequestration of the Wnt induced receptor signaling 

complex, the signalosom, into multivesicular bodies (MVBs) which are positive for the 

lysosomal marker Rap7. In addition, they found that GSK3 is sequestered into the lumen of 

these MVBs, thus blocking its ability to affect its target substrates in the cytoplasm such as β-

catenin (Figure 3). 

The phosphorylated cytoplasmic domain of LRP6 is able to bind and therefore inhibit the 

GSK3. This inhibition of the GSK3 activity leads to blocking of the β-catenin 

phosphorylation which is now able to translocate into the nucleus and bind to the TCF/LEF. 

TCF binds to the Wnt-responsive element [CCTTTGWW (W can be either T or A)] and starts 

the expression of the Wnt target genes like AXIN2 (Wu et al., 2009, Hatzis et al., 2008). In 

addition, there is a verity of studies showing that diverse DNA-binding transcription factors 

(e.g. SMAD3) bind to β-catenin to activate or repress β-catenin dependent Wnt target genes. 

Due to the large number of TCF binding sites and numerous transcriptional co-regulators, it is 

clear that the gene expression may induce dramatic changes in the cell (Cadigan, 2012). In 

ReNcell VM cells, for example, the treatment of Wnt-3a leads to an induction of AXIN2 

(Hübner et al., 2010). 

In addition, β-catenin is a constitutively expressed protein connecting cadherin cell adhesion 

molecules to the cytoskeleton (Aberle et al., 1996). Furthermore, there are evidences which 

support potential influence of cadherins on Wnt signaling. Some studies demonstrating that 

proteolytic cleavage of cadherins by proteases such as ADAM10 and presenilin-1  

(γ-secretase) is able to release β-catenin and therefore activates transcription of β-catenin 

dependent Wnt target genes (Reiss et al., 2005, Uemura et al., 2006).  

There are plenty of substances which are able to inhibit the β-catenin dependent Wnt 

pathway. One of the best described is Dickkopf-1 (Dkk-1) which binds the co-receptor 

LRP5/6 and blocks its interaction with Wnt ligands (Semenov et al. 2001; Mao et al. 2002). 

Recently, X-ray crystal structure analysis revealed that the extracellular region of LRP6 binds 

to the C-terminal domain of Dkk1 (Ahn et al. 2011; Cheng et al. 2011). In addition, secreted 
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Fz-related proteins (sFRPs) are able to bind and sequester Wnt ligands to block their 

association with Wnt-receptors (Bovolenta et al., 2008). Another way to modulate the β-

catenin dependent Wnt pathway is to inhibit GSK3 with a small molecule named SB216763 

which was extensively analyzed in our work group (Schmöle et al., 2010). 

 

 

 

Figure 3: Scheme of the β-catenin dependent Wnt signaling through the sequestration of GSK3 inside 
MVBs. Binding of GSK3 to the Wnt-receptor complex sequestrates GSK3 inside small intraluminal MVB 

vesicles, causing its cytosolic substrates such as β-catenin and many other proteins to become stabilized. The 

initial GSK3 molecules are recruited to the receptor complex bound to Axin, ensuring that the GSK3 fraction 

bound to the destruction complex is depleted first. Diagram from Taelman et al., 2010. 

 

1.2.1.2 The β-catenin independent pathways 

The β-catenin independent pathways are named due to their independency of β-catenin. The 

best described pathways are the PCP pathway and the Ca
2+

 pathway. In addition, an 
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increasing number of other pathways are starting to emerge which are named after the specific 

combination of essential receptor and ligand (e.g. Wnt-5a-ROR-, RYK-Wnt-, PTK7-Wnt- 

pathways etc.). Increasing evidences suggesting that in vertebrates the PCP and Wnt-5a–ROR 

signaling pathways substantially overlap (Ho et al., 2012). 

 

The PCP pathway 

The PCP pathway is essential for the organization of multicellular structures and tissue 

remodeling as well as the control of polarized cell migration and coordinated cell movements. 

The Wnt ligand binds to a combination of Frizzeld and a co-receptor (e.g. ROR or RYK) 

which leads to an activation of Ras-related C3 botulinum toxin substrate 1 (RAC1) and 

subsequently of JUN-N-terminal kinase (JNK) which starts the transcription of the PCP target 

genes (Figure 4). Furthermore, the small GTPase Ras homologous A (RHOA) is activated 

through activated Dishevelled associated activator of morphogenesis (DAAM), which in turn 

activate RHO kinase (ROCK) and therefore modulates actin polymerization (Nomachi et al., 

2008, Schlessinger et al., 2009). While the RYK dependent PCP signaling can activate the β-

catenin dependent signaling (Berndt et al., 2011), the ROR2 dependent signaling inhibits the  

β-catenin dependent pathway (Winkel et al., 2008). The list of additionally factors which 

cooperate with the core PCP genes is continually expanding (Dworkin et al., 2011). 

Furthermore, the γ-secretase can cleave the RYK receptor and induce the target genes of the 

RYK-Wnt pathway (Lyu et al., 2008).  
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Figure 4: Scheme of the planar cell polarity (PCP) pathway. PCP signaling triggers activation of the small 

GTPases RHOA and RAC1, which in turn activate RHO kinase (ROCK) and JUN-N-terminal kinase (JNK), 

respectively, leading to actin polymerization and microtubule stabilization. Diagram from Niehrs, 2012. 

 

The Ca
2+

 dependent pathway 

The second β‑catenin independent pathway that has been described is the Wnt-Ca
2+

 pathway. 

Here, the Wnt ligands bind to Frizzled and defined co-receptors (Figure 1) which activate 

phospholipase C (PLC). Subsequently, this activation leads to a short-lived increase of the 

intracellular signaling molecules inositol 1,4,5-triphosphate (IP3), 1,2 diacylglycerol (DAG), 

and Ca
2+

 (Figure 5). This elevation of secondary messengers - which are derived from 

membrane-bound phospholipid phosphatidyl inositol 4,5-bisphosphate (PPIP) - promotes the 

release of calcium ions from the endoplasmatic reticulum (ER). The Ca
2+

 release activates 

calmodulin-dependent kinase II (CAMKII), Calcineurin and protein kinase C (PKC; Kühl et 

al., 2000). CAMKII and PKC are able to inhibit the β-catenin dependent pathway (De et al., 

2011). PKC activates CDC42 subsequently induce actin polymerization. In contrast the 
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activation of Calcineurin by Ca
2+ 

induced the transcriptional regulator nuclear factor 

associated with T cells (NFAT) and its target genes (Saneyoshi et al., 2002). 

 

 

Figure 5: The Wnt- Ca
2+

 pathway. Wnt binding to Frizzeld and co-receptors activates Ca2+- and Calmodulin-

dependent kinase II (CAMKII), protein kinase C (PKC) and Calcineurin. Calcineurin activates nuclear factor of 

activated T cells (NFAT), which regulates the transcription of genes controlling cell fate and cell migration. The 

Ca2+ pathway inhibits β‑catenin signaling. Diagram from Niehrs, 2012. 

 

1.2.2 The Notch pathway 

The Notch signaling pathway is well known as an important signaling mechanism for 

communication between neighboring cells which is essential for specification of neuronal 

identity, division, survival and migration. This pathway plays a major role in the process of 

the lateral inhibition which regulates the differentiation of an initially homogenous cell 

population into distinct cell types (Kopan et al., 2009, Kageyama et al., 2009). Furthermore, 

the Notch pathway is associated with human diseases such as cerebral autosomal dominant 
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arteriopathy, subcortical infarcts and leukoencephalopathy (CADASIL) and certain cancers 

(Louvi et al., 2012). 

In the Notch signaling pathway are usually two cells involved. One cell expresses the Notch 

ligands Delta-like (Dll1, 3, and 4) and/or Jagged (JAG1 and JAG2) while the second cell 

expresses at least one of the four receptors (Notch1–4). The Notch receptor has three cleavage 

sites (S1, S2, S3). The first cleavage (S1) occurs during maturation and trafficking to the cell 

surface membrane which converts the notch polypeptide into a heterodimer, composed of the 

notch extracellular domain (NECD), the transmembrane fragment (N
TM

) and the intracellular 

domain (NICD). This Notch receptor is now, upon Dll1 activation, cleaved by ADAM-family 

metalloproteases at site 2 (S2) which releases NECD. Finally, Notch is cleaved by presenilin 

proteases of the γ-secretase complex progressively from site 3 (S3) to site 4 (S4; Fortini et al., 

2009). The cleaved intracellular domain of the notch receptor (NICD) is released from the cell 

membrane and translocates to the nucleus, where it associates with the DNA binding protein 

RBP-Jκ (Figure 6). The transcriptional coactivator Mastermind (MAM) then recognizes the 

NICD/RBPjκ interface, and this triprotein complex recruits additional coactivators (Co-A) to 

activate the transcription of Notch target genes. In the absence of NICD, RBP-J may associate 

with ubiquitous corepressor (Co-R) proteins and histone deacetylases (HDACs) to repress 

transcription of some target genes (Kopan et al., 2009, Imayoshi et al., 2013).  

The best described target genes of the Notch pathway are the HES and related HEY genes 

which encode a family of basic helix–loop–helix (bHLH) transcriptional repressors. They 

inhibit the transcription of their target genes, such as MASH1 (ASCL1) and Neurogenins by 

directly binding to the specific promotor or by dominant negative function on E protein 

availability, thereby preventing undifferentiated precursor cells from achieving differentiated 

phenotypes (Kageyama et al., 1997). Among the target genes, HES5 expression has been 

shown to be mostly dependent on notch signaling. Other notch target genes, including HES1, 

HES3, and HES7, are also regulated by signaling pathways other than notch signaling 

(Androutsellis-Theotokis et al., 200; Wall et al., 2009; Niwa et al., 2007). Moreover, the 

target genes expression oscillates in various cell types, such as fibroblasts, NSCs, and 

embryonic stem cells (Kageyama et al., 2009). In somitogenesis, they are periodically 

expressed in a wave-like fashion initiating at the posterior end and moving towards the 

anterior region of the presomitic mesoderm (PSM), where every wave leads to the generation 

of a pair of somites (Kageyama et al., 2012).  
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Figure 6: Scheme of the Notch signaling pathway. The Notch receptor is activated by binding to a ligand 

presented by a neighboring cell. A conformational change, then, exposes site 2 (S2) in Notch for cleavage by 

ADAM metalloproteases. γ-secretase then cleaves the Notch transmembrane domain progressively from site 3 
(S3) to site 4 (S4) to release the Notch intracellular domain (NICD). Subsequently, NICD enters the nucleus 

where it associates with the DNA-binding protein RBP-Jκ and starts the transcription of the target genes. 

Diagram from Guo et al., 2011.  

 

The main point in Notch activation is the release of the Notch intracellular domain by cutting 

the Notch receptor with a γ-secretase. To inhibit γ-secretase activity the small molecule 

DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl ester) is widely 

used (Ong et al., 2006, Nelson et al., 2006). But it inhibits not only the release of the Notch 

intracellular domain but also affects other γ-secretases, which can lead to multifarious 

ramifications (Bay and Pfaff, 2011). Another approach to inhibit the Notch signaling pathway 

is the downregulation of the co-transcription factor MAM. In contrast, the transcription factor 

RBP-J is difficult to efficiently downregulate due to its long protein half-life (Kopan et al., 

2009). 
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1.2.3 The BMP pathway 

Bone morphogenetic proteins (BMPs) are members of the transforming growth factor β 

(TGF-β) superfamily (Miyazono et al., 2010). BMPs were originally described as factors that 

induce bone formation (Urist, 1965). Meanwhile, they were described to play a role in various 

cell types and tissues and controlling embryogenesis and the formation and maintenance of 

the nervous system including dendritic and axonal growth, synapse formation and 

stabilization etc. (Mehler et al., 1997, Chen et al., 2004).  

The BMPs are with 33 members the largest subfamily of the TGF-β superfamily. They are 

able to signal through a canonical SMAD dependent pathway (TGF-β/BMP ligands, receptors 

and SMADs) and a non-canonical SMAD independent pathway (e.g. mitogen-activated 

protein kinase pathway p38, MAPK p38). The specific ligand-receptor combinations to 

activate these non-canonical pathways and specific signaling outcomes are still in discussion 

and need to be studied. 

In the canonical pathway, the BMPs bind to a heterotetrameric complex of transmembrane 

receptors known as type I and II serine/threonine kinase receptors (Mueller et al., 2012). A 

ligand-receptor specific combination of interaction is still in discussion and seems to be cell 

type dependent (Hinck, 2012). The activation of type I receptors leads to a phosphorylation of 

receptor regulated (R)-SMADs (SMAD1, 2, 3, 5, and 8) which induce the formation of a 

multimeric complex composed out of R-SMADs and SMAD4 that translocate into the nucleus 

where it starts the transcription of BMP target genes (Figure 7; Feng et al., 2005, Hill, 2009). 

The main target genes of the BMP pathway are the inhibitor of differentiation 1 and 3 (ID1 

and ID3) which are HLH transcription factors. They lack the basic region which makes them 

unable to bind to DNA but dimerization of IDs with other bHLH leads to an inhibition of the 

DNA binding ability of the bHLH transcription factors (Norton, 2000). Moreover, IDs not 

only inhibit transcriptional function but also promote the degradation of neurogenic bHLH by 

sequestering ubiquitous E proteins (Vinals et al., 2004). Takizawa et al. (2003) described that 

ID and HES play a major role in the negative effects of BMPs on differentiation of neuronal 

precursors.  

There are several known molecules which are able to inhibit the BMP pathway. The most 

frequent used is Noggin which binds to the BMP ligand and therefore impairs the binding to 

the receptor and inhibits the SMAD1, 5, 8, and MAPK p38 (Yu et al., 2008). The compound 

C (Dorsomorphin) is a potent inhibitor of AMP-activated protein kinase (AMPK) and inhibits 

BMP4 induced signaling and does not affect MAPK p38 (Yu et al., 2008). The small 
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molecule SB431542 inhibits ALK1 as well as ALK7 and therefore SMAD2 and 3 (Inman and 

Hill, 2002). In addition, the inhibitory SMADs, SMAD6 and SMAD7, block BMP signaling 

by preventing phosphorylation of R-SMADs by binding to active receptor complexes 

(Derynck and Zhang, 2003). Another known mechanism is the degradation of SMADs 

through the ubiquitin proteasome pathway or by mitogen-activated protein (MAP) kinase and 

GSK3 phosphorylation (Wicks et al., 2006, Fuentealba et al., 2007).  

 

 

Figure 7: Simplified scheme of the BMP pathway. BMP ligands bind to the BMP receptors BMPR1 and 

BMPR2. Phosphorylated BMPR1 subsequently phosphorylates SMAD1, SMAD5 and SMAD8, which associate 

with SMAD4 and enter the nucleus, where they regulate gene expression. The BMP signal can be blocked by 

extracellular antagonists, such as Noggin, which bind BMP ligands and prevent their association with the BMP 

receptors. Diagram from Hardwick et al., 2008. 

 

Moreover, BMPs were described to promote astrocytic differentiation together with leukemia 

inhibitory factor (LIF) by activating astrocyte specific promotors through a STAT3-

p300/CBP-SMAD1 complex (Nakashima et al., 1999). Scholl et al. (2012) revealed that the 

ability of BMPs and STAT3 to promote astrogliogenesis dependends on the histone 

acetylation/deacetylation machinery. This machinery regulates the chromatin structure and 

therefore is essential for the regulation of gene transcription. Chromatin is dynamically 
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regulated through a variety of mechanisms and enzymes including the histone 

acetyltransferases (HAT) and deacetylases (HADAC). This will finally lead to an open or 

closed nucleosomal DNA structure and therefore enables transcription factors to bind to 

promotors and regulate transcription. The inhibiton of HDAC by TSA (Trichostatin A) leads 

to an increase of STAT3 levels (Scholl et al., 2012), which in turn regulates together with 

BMP the astrogliogenesis (Nakashima et al., 1999). 

In addition, the BMP pathwaywas described to affect plenty of different other pathways and 

proteins, for example HES5 (Nakashima et al., 2001) and SMAD was discovered to interact 

with Dvl-1 in mouse MSCs (Liu et al., 2006). Moreover, Masserdotti et al. (2010) revealed 

that the zinc-finger protein ZFP423 triggers a cooperative interaction between NICD and the 

SMAD complex, which leads to a strong activation of HES5. Finally, AXIN can facilitate 

TGF-β signaling by presenting SMAD3 to the type I TGF-β receptor (Furuhashi et al., 2001). 

 

1.2.4 The JAK/STAT3 pathway 

Signal transducer and activator of transcription 3 (STAT3) belongs to a family of seven 

transcription factors which are able to modulate a variety of biological processes like cell 

growth, inflammation, embryological development, and axonal regeneration in the spinal cord 

(Qiu et al., 2005).  

STAT3 is activated in response to growth factors, cytokines, and hormones. Binding of these 

ligands to the epidermal growth factor receptor (EGFR) activates Janus kinase (JAK), which 

phosphorylates STAT3 at tyrosine 705 (Figure 8). This phosphorylation leads to a 

dimerization and translocation of STAT3 into the nucleus where the dimer is able to trigger 

STAT3 target genes Bcl-xL, cyclin D1, c-myc, Twist and Survivin (Dziennis and Alkayed, 

2008). Another mechanism of STAT3 activation is the phosphorylation by non-receptor 

tyrosine kinases such as SRC and activation by G-protein coupled receptors (Ram and 

Iyengar, 2001). The STAT3 signaling can be inhibited through an inhibition of JAK e.g. the 

substance JAK-Inhibitor 1 which inhibits the phosphorylation of STAT3 by JAK (Pedranzini 

et al., 2006). In contrast, the activation and translocation of STAT3 can be activated with the 

small molecule 5-aminoimidazole-4-carboxamide-1-D-ri-bofuranoside (AICAR; Zang et al., 

2008). 
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Figure 8: Scheme of the JAK/STAT3 pathway. STAT3 is activated downstream of receptor tyrosine kinases 

(e.g., EGFR), cytokine receptors via associated Janus family kinases (JAKs). Transcriptional induction of 

cytokines and EGF ligands can lead to autocrine stimulation and sustained STAT3 phosphorylation. After 

phosphorylation, STAT3 dimerizes and translocates to the nucleus, where STAT3 dimers directly regulate gene 

expression of transcriptional targets including Bcl-xL, cyclin D1, c-myc, Twist and Survivin. Diagram from 

Macias et al., 2013 

 

1.3 Aim of the study 

Hübner et al. (2010) demonstrated the induction of the β-catenin dependent Wnt pathway by 

treatment of Wnt-3a and transfection with Wnt-3a as well as stabilized β-catenin 

overexpression plasmid in the human neural progenitor cell line (ReNcell VM). However, 

only Wnt-3a but not overexpression of stabilized β-catenin led to an increase of neuronal 

differentiation as judged by HuC/D and Tuj1 positive cells. In addition, pharmacological 

inhibition of Notch signaling in these cells resulted in increased neuronal differentiation 

suggesting an important role for the Notch pathway in controlling neuronal differentiation. 

Moreover, further studies revealed that Wnt-3a, in contrast to stabilized β-catenin, was able to 

modulate Notch target genes HES1/HES5 and GFAP in ReNcell VM cells (Rayk Hübner, 

personal communication). These data pointed out a mechanism by which Wnt-3a 

independently of β-catenin increases neuronal differentiation, which may be based on Notch 

target gene modulation. 
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Therefore the aim of this study was at first to verify the active Notch pathway in 

differentiating ReNcell VM cells by pharmacological inhibition with DAPT. The 

differentiating cells should be treated with DAPT and analyzed via FACS to detect the 

amount of cells positive for the glial marker GFAP, S100β and neuronal marker Tuj1 and 

HuC/D, and by qRT-PCR to analyze the mRNA levels of the Notch target genes HES1 and 

HES5 as well as the neurogenic MASH1 and the glial marker GFAP. This will, in addition, 

reveal the importance of the Notch pathway in the differentiation of ReNcell VM cells. The 

detection of the mRNA levels will be useful due to the fact that there are no post-translational 

modifications known which would regulate these genes independent of their mRNA levels. In 

contrast, the activation of the Notch pathway by overexpression of the Notch intracellular 

domain 1 (NICD1) should prove through a rescue experiment the Notch dependency of DAPT 

and simultaneously emphasize the importance of Notch in the differentiation of human neural 

progenitor cells.  

The second step is to verify the effect of Wnt-3a on Notch target genes HES1 and HES5 by 

treatment of ReNcell VM cells with recombinant Wnt-3a and to extend the analysis by 

detecting the mRNA levels of MASH1 and GFAP. Furthermore, the effect of Wnt-3a on the 

amount of the cells for the marker Tuj1, HuC/D, S100β and GFAP should be measured via 

FACS. Due to the fact that Wnt-3a as well as DAPT are able to reduce HES5 and affect the 

differentiation of neural progenitor cells, it will be analyzed if this effect is additive. In 

addition, the time dependency of this effect should be further evaluated by analyzing time 

points between 1 and 72 hours of differentiation and by determining the time frame where 

progenitor cell differentiation can be modulated by Wnt-3a and other substances.  

Because we found Wnt-3a to regulate HES genes independent of β-catenin it was the aim of 

this study to reveal the underlying mechanism. Therefore, it should be investigated if 

upstream proteins of the β-catenin dependent pathway are involved in the Wnt-3a effect. 

Single components of the Wnt pathway should be inhibited through specific inhibitors to 

analyze their impact in the differentiation. SB216763 should be used to inhibit GSK3, Dkk-1 

to inhibit Wnt-3a - LRP5/6 interactions and sFRP1 to impair the connection between Frizzled 

and Wnt. The inhibition of these interactions will reveal if they are essential for the effect of 

Wnt-3a. In addition, the dependency of the Wnt-3a effect on single Notch pathway 

components should be determined by overexpression of NICD1, HES1 and HES5 in order to 

reveal their importance for the Wnt-3a effect and for the differentiation of ReNcell VM cells.  
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Moreover, other pathways should be analyzed which potentially might link Wnt-3a and the 

modulation of Notch target genes. It was, for example, hypothesized that Wnt-3a may act via 

inhibition of BMP. To assess that possibility, it should be analyzed whether inhibition of this 

pathway using Noggin, Dorsomorphin and SB431542 is able to mimic the Wnt-3a effect. 

Since SMAD1 is known to modulate together with STAT3 the level of GFAP (Nakashima et 

al., 1999), on this account, a potential modulation of the STAT3 activity should be assessed 

via western blot analysis. For analysis of the JAK/STAT3 pathway in ReNcell VM cells the 

pSTAT3 activator AICAR and inhibitor Jak-Inhibitor-1 should be investigated. If an active 

JAK/STAT3 pathway is detectable, nuclear pSTAT3 in Wnt-3a and DAPT treated cells 

should be quantified. 

Moreover, to rule out the possibility that the observed Notch modulations and the effect on 

neuronal differentiation are not strictly a cell-type specific phenomenon a second, neural cell 

system based on iPS cells should be utilized. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Technical equipment 

Table 1: Technical equipment 

Type Name Supplier 

agarose gel chamber Mini-SubII Bio-Rad 

balance MCBA 100 Sartorius 

cell counter CASY Innovatis 

cell culture microscope Eclipse TS100 Nikon 

centrifuge Z383K Hermle 

centrifuge Z233MK-2 Hermle 

centrifuge Universal 30 RF Hettich 

centrifuge Microfuge 16 Beckman Coulter 

centrifuge Avanti J-25 Beckman Coulter 

FACS FACSCalibur Becton Dickenson 

fluorescence microscope Biozero Keyence 

fluorescence microscope Eclipse TS200 Nikon 

gel documentation camera C-5050 Olympus 

gel documentation system TransilluminatorBioview biostep 

heating block Thermomixer eppendorf 

incubator WTC Binder 

incubator T6 Heraeus 

nucleofector NucleofectorII Amaxa 

PCR-Cycler GeneAmp9700 ABI 

PCR-Cycler Mastercycler eppendorf 

pH-meter  Mettler Toledo 

pipets Reference eppendorf 

plate reader Magellan Tecan 

power supplies PowerPacHC Bio-Rad 

real-time PCR Cycler LightCyclernano 1.0 Roche 
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SDS-PAGE chamber Criterion Bio-Rad 

semi-dry transfer chamber Trans-Blot SD Bio-Rad 

shaker KM-2Akku Edmund Bühler 

shaker K2-50 Noctua 

shaker Titramax 100 Heidolph 

spectrophotomteter Ultrospec3100pro Amersham 

sterile working bench Antares 48 Sterile 

vortexer MS1 IKA 

water bath AL12 Lauda 

 

2.1.2 Software 

ArgusX1  

BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html) 

BLAST (http://www.ncbi.nlm.nih.gov/BLAST/) 

CellQuest Pro (BD Biosciences) 

GIMP 2 (www.gimp.org) 

Microsoft Office 2010 

Vector NTI Advance 11 

NCBI database (http://www.ncbi.nlm.nih.gov/) 

MultAlin (http://multalin.toulouse.inra.fr/multalin/) 

Reverse Complement tool (http://www.bioinformatics.org/sms/rev_comp.html) 

 

2.1.3 Consumables 

Table 2: Consumables 

Type Size/Specification Supplier 

bacteria culture tubes 15 ml Falcon 

bacteria culture plates 9 cm Greiner 

cell culture pipets 5,10, 25 ml Greiner 

cell culture plasticware 96-,48-,24-,6-well,T-75 Greiner 

cell culture plasticware 48-,24-,6-well Sarstedt 

cell culture plasticware 4-well Nunc 
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FACS tubes 5 ml Falcon 

gloves nitrile Kimberly-Clark 

LightCycler strips  Roche 

nitrocellulose membrane Hybond-ECL Amersham 

PCR reaction tubes 0.2 ml Biozym 

pipet tips 10, 100, 1000 µl Eppendorf, Biozym, Sarstedt 

reaction tubes 1.5, 2 ml Eppendorf, Sarstedt 

reaction tubes 15, 50 ml Falcon, Sarstedt 

sterile filter units 0.22 µM Millipore 

Whatmanpaper 58x58 cm Schleicher und Schüll 

 

2.1.4 Chemicals 

Often used chemicals were purchased with „pro analysis“ grade and were supplied if not 

otherwise stated by Calbiochem, Fluka, Merck, Sigma and Roth. 

 

Table 3: Buffers and solutions 

Type Compostion / Supplier 

Buffers for agarose gel electrophoresis 

6x DNA loading dye fermentas 

50x TAE 

 

2 M Tris-HCl, pH 8.0, 1 M acetic acid, 

50 mM EDTA 

Lysis buffers for cell extracts 

RIPA buffer (radioimmunoprecipitation 

buffer) 

20 mMTris pH 7.4, 137 mMNaCl, 0.1% SDS, 

0.1 % sodiumdesoxycholate, 1 % Triton X-100, 

10 % glycerol, 2 mM EDTA, 1 mM EGTA, 

1 mMNaF, 20 mM sodiumpyrophosphate plus 

protease and phosphatase inhibitor cocktail 

(Roche) 

Solutions for western blot 

5x Sample buffer 50 mMTris, 2 % SDS, 5 % glycerol, 

5 % β-mercaptoethanol, 0.2 mg/ml bromphenol 
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blue  

10x SDS electrophoresis buffer  250 mM Tris, 188 mM glycine, 3.5 mM SDS 

SDS Transfer buffer 48 mM Tris, 39 mM glycine, 3.5 mM SDS,  

20 % methanol 

Blocking solution TBST with 2 % or 5 % BSA (Roth) 

Blocking solution TBST with 5 % skim milk powder (Sigma) 

TBS 20 mM Tris-HCl, 150 mM NaCl, pH 7.6 

TBST TBS with 0.1 % Tween 20 

Solutions for FACS analysis and immunocytochemistry 

PBS (w/o Mg, Ca) Biochrom 

FACS fixing solution 1 % PFA in PBS 

FACS saponin buffer 0.5 % BSA, 0.5 % saponin, 0.02 % NaN3 in 

PBS 

FACS wash buffer 0.5 % BSA, 0.02 % NaN3 in PBS 

IC blocking buffer 5 % normal goat serum, 0.3 % Triton-X100 in 

PBS 

IC antibodyincubationbuffer 1 %  normal goat serum in PBS 

Mounting medium with DAPI VectaShield 

 

Table 4: Kits 

Type Supplier 

BCA Protein Assay Kit Pierce 

Endo-Free Plasmid Maxi Kit Qiagen 

FastLane cDNA Kit Qiagen 

GFX purification Kit GE healthcare 

Nucleofection Kit V Lonza 

T4 DNA Ligase Kit Promega 

ZYPPY Plasmid Mini Kit Zymo Research 

 

2.1.5 Antibodies 

Antibodies for FACS analysis, immunocytochemistry or western blot. 
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Table 5: Primary antibodies 

Target Type Company Application Dilution 

β-actin mouse monoclonal IgG1 Sigma (AC-15) WB 1:10.000 

Tuj1 mouse monoclonal IgG1 
Santa Cruz  

(sc-51670) 

FACS, IC 1:100 

1:500 

Flag-tag mouse monoclonal IgG1 Sigma (F1804) WB 1:10.000 

GAPDH mouse monoclonal IgG1 Abcam (ab8245) WB 1:10.000 

GAPDH rabbit polyclonal IgG Santa Cruz (FL-335) WB 1:1000 

GFAP rabbit polyclonal IgG Dako (Z0334) 
FACS, IC, 

WB 
1:500 

HuC/D mouse monoclonal IgG1 
Invitrogen 

 (A-21271) 

FACS 
1:100 

HES5 rabbit polyclonal IgG 
Lifespan Biosciences 

(LS-C136917) 

WB 
1:1000 

HES1 rabbit polyclonal IgG abcam (ab71559) WB 1:1000 

Lamin A/C mouse monoclonal IgG1 BD (612162) WB 1:1000 

pGSK3β (Ser9) rabbit polyclonal IgG 
Cell Signaling 

(9336) 

WB 
1:1000 

pSTAT3 

(Tyr705) 
rabbit monoclonal IgG 

Cell Signaling 

(9139) 

WB 
1:2000 

S100β rabbit polyclonal IgG Dako (Z0311) FACS, IC 1:500 

STAT3 
mouse monoclonal 

IgG2a 

Cell Signaling 

(9145) 

WB 
1:2000 

HA-tag mouse monoclonal IgG1 Cell Signaling (6E2) WB 1:10.000 

negative 

control 
normal mouse IgG Santa Cruz (sc-2025) 

FACS, IC 
1:100 

negative 

control 
normal rabbit IgG Santa Cruz (sc-2027) 

FACS, IC 
1:100 

NICD1 

(Val1744) 
rabbit monoclonal IgG 

Cell Signaling 

(4147) 

WB 
1:1000 
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Table 6: Secondary antibodies 

 

2.1.6 Oligonucleotides 

Oligonucleotide sequences were from references if indicated and were obtained from MWG 

Biotech AG or from Qiagen. Stock solutions (100 µM) of primers in water were stored at 

-20 °C. 

 

Table 7: Oligonucleotides for sequencing 

Name Purpose Sequence 5’-3’ 

T7_fw 
Sequencing of pcDNA3.1/HisA 

/ pGEM-T easy 
TAATACGACTCACTATAGGG 

SP6_rc 
Sequencing of pcDNA3.1/HisA 

/ pGEM-T easy 
ATTTAGGTGACACTATAG 

pCAGGS-fw Sequencing of pCAGGS TTCCTACAGCTCCTGGGCAACG 

pCAGGS-rc Sequencing of pCAGGS TCAGATGCTCAAGGGGCTTC 

 

 

non-phospho-β-

catenin 

(Ser33/37/Thr41) 

rabbit polyclonal IgG 
Cell Signaling 

(4270) 

WB 

1:1000 

Target Host Conjugate Company Application Dilution 

rabbit IgG goat Alexa Fluor 680 Invitrogen (A-21076) WB 1:10.000 

mouse IgG goat Alexa Fluor 680 Invitrogen (A-21057) WB 1:10.000 

rabbit IgG goat IRDye 800 Rockland (611-131-122) WB 1:10.000 

mouse IgG goat IRDye 800 Rockland (610-131-003) WB 1:10.000 

mouse IgG goat Alexa Fluor 488 Invitrogen (A11029) FACS, IC 1:1000 

rabbit IgG goat Alexa Fluor 647 Invitrogen (A21245) FACS, IC 1:1000 
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Table 8: Oligonucleotides for cloning 

Target 

name 
Purpose 

Forward primer sequence 5’-3’ 

Reverse primer sequence 5`-3` 

Annealing 

temperature  

hHES1 
pCAGGS-

hHES1 

tctcgagttgaccaccATGCCAGCTGATATAATGGAGAAAAAT 

AGCCAGGGCATTGGTTATCAGTTCCGCCACGG 

64,2 °C 

hHES1 
pCAGGS-

HA-hHES1 

tctcgagttgaccaccATGggctacccatatgatgttccagattacgctCCAGCTGATATAATGGAGAAAAAT 

AGCCAGGGCATTGGTTATCAGTTCCGCCACGG 

51,6 °C 

hHES5 
pCAGGS-

hHES5 

tctcgagttgaccaccATGGCCCCCAGCACTGTG 

AGCCAGGGCATTGGTTATCACCAGGGCCGCC 

64,2 °C 

hHES5 
pCAGGS-

HA-hHES5 

TctcgagTTGACCACCATGGGCTACCCATATGATGTTCCAGATTACGCTGCCCCCAGCACTGTG 

AGCCAGGGCATTGGTTATCACCAGGGCCGCC 

64,2 °C 

ctcgag = XhoI restriction site 

ccannnnnntgg = BstXI restriction site 

 

Table 9: Oligonuclrotides for quantitative real-time PCR 

Gene 

name 

Annealing 

temp. 

 

Ampliconlenght 

[bp]/melting 

temp. [°C] 

Forward primer sequence 5’-3’ 

Reverse primer sequence 5’-3’ 

Reference 

hAXIN2 55 °C 202/86 
AGTCAGCAGAGGGACAGGAA 

AGCTCTGAGCCTTCAGCATC 
Hübner 2010 

hG6PD 55 °C 191/88 
ATCGACCACTACCTGGGCAA 

TTCTGCATCACGTCCCGGA 

http://medgen.

ugent.be/rtpri

merdb/ ID: 

1031 

hGFAP 55 °C 158/84 
CGATCAACTCACCGCCAACA 

GTGGCTTCATCTGCTTCCTGTC 

Böhm et al., 

2003 

hHES1 60 °C 100/88 proprietary 

Qiagen, Cat. 

No. 

QT00039648 

hHES5 55 °C 232/90 
TCAGCCCCAAAGAGAAAAAC 

TAGTCCTGGTGCAGGCTCTT 

Chen et al., 

2006 

http://medgen.ugent.be/rtprimerdb/
http://medgen.ugent.be/rtprimerdb/
http://medgen.ugent.be/rtprimerdb/
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hID1 55 °C 127/86 proprietary 

Qiagen, Cat. 

No. 

QT00230650 

hID3 55 °C 101/86 proprietary 

Qiagen, Cat. 

No. 

QT01673336 

hMASH1 55 °C 66/55 proprietary 

Qiagen, Cat. 

No. 

QT00237755 

 

2.1.7 Vectors 

Table 10: Cloning-, reporter and -expression vectors 

Name 

Insert / 

total size 

[bp] 

Properties Reference 

pCAGGS 4790 PCAG 
J. Luo, 

AKos 

pCAGGS-HES1 984/4790 hHES1 this work 

pCAGGS-HES5 525/4790 hHES5 this work 

pCAGGS-HA-HES1 1011/4790 hHES1 tagged N-terminally with HA-Tag this work 

pCAGGS-HA-HES5 552/4790 hHES5 tagged N-terminally with HA-Tag this work 

pCAGGS-GFP 723/5534 mutGFP, PCAG 
J. Luo, 

AKos 

pCAGGS-NICD1 2500/4790 mouse notch intracellular domain 1 
Addgene 

26891 

pCAGGS-mS33Y β-

catenin-HA 
2387/7178 

mS33Y β-catenin tagged C-terminally with 

HA-Tag 

Hübner et 

al., 2010 

pCAGGS-mWnt3a-

HA 

1116/5842 

 

mWnt-3a tagged C-terminally with HA-

Tag 

Hübner et 

al., 2010 

pGEM-T easy 3015  cloning vector, blue/white screening Promega 
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pCMV6-XL4-HES1 4700 hHES1 
Origene 

SC301536 

pCMV6-XL4-HES5 4700 hHES5 
Origene 

SC116707 

pmaxGFP 3486 PCMV, maxGFP Amaxa 

 

2.1.8 Enzymes 

Enzymes (polymerases, restriction enzymes, ligases, phosphatases) were purchased from 

Promega, New England Bioloabs, Fermentas, Stratagene and Qiagen. 

 

2.1.9 Bacterial strains and media 

As host bacterium the E. coli K12 derived strain JM109 with genotype e14–(mcrA–) recA1 

endA1 gyrA96 thi-1 hsdR17 (rK
–
mK

+
) supE44 relA1 (lac-proAB) [F´ traD36 

proABlacI
q
ZM15] (Promega) was used.  

 

Table 11: Bacterial media 

Type Supplier Composition 

LB-medium Roth 15 g/l H2O, autoclave 

LB-agar Roth 25 g/l H2O, autoclave 

 

If needed for selection, 100 µg/ml ampicillin (Roth) or 25 µg/ml kanamycin (Roth) were 

added after autoclaving. For blue/white screening, 1 mM IPTG (Roth) and X-Gal (Invitrogen) 

were added after autoclaving. 
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2.1.10  Cell lines and media 

Table 12: Eukaryotic cell lines and media 

Line Type Proliferation medium Reference 

HEK293H human embryonic kidney DMEM 4.5 g/l glucose 

10 % FCS 

1x Pen/Strep 

Invitrogen 

ReNcell VM human ventral-midbrain 

derived neural precursor 

cells, v-myc immortalized 

DMEM/F12 

10 ng/ml bFGF 

20 ng/ml EGF 

2 mMGlutaMax, 

1xB27, 10 U/ml heparin 

sodium salt, 50 µg/ml 

gentamycin 

ReNeuron/Millipore 

iPS-NPC iPS-derived Neural 

progenitor cells 

(Human iPS cell line 

hFib2-iPS5; Park et al., 

2008) 

DMEM/F12; 

Neurobasal Medium 1:1 

1x N2 supplement 

1x B27 

2 mMGlutaMax, 0,25x 

Pen/Strep 

10 ng/ml bFGF/EGF 

Derived from 

hFib2-iPS5; 

(Park et al., 2008) 

NPCs derived by: 

Dr. R. Hübner as 

described (Trilck et 

al., 2013)  

 

2.1.11 Cell culture media, buffers and supplements 

Table 13: Culture media and buffers 

Type Supplier 

B27 Invitrogen 

Benzonase Merck 

bFGF Roche/ GlobalStem 

DMEM (Dulbecco`s Modified Eagle 

Medium) 4.5 g/l glucose 

Invitrogen 

DMEM/F12 Invitrogen 

EGF Roche 
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FCS (fetal calf serum) Invitrogen 

Gentamycin Invitrogen 

HBSS (Hank`s balanced salt solution) Invitrogen 

heparin sodium salt Invitrogen 

HSA (human serum albumin) OctaPharma 

mouse laminin Trevigen 

N2 Invitrogen 

Neurobasal medium Invitrogen 

noggin Fc- chimera R&D 

normal goat serum Invitrogen 

Pen/Strep 100x PAA 

Poly-D-ornithine Sigma 

Poly-L-ornithine Sigma 

Trypsin/Benzonase solution 25 U/ml Benzonase in Trypsin-EDTA  

Trypsin/EDTA  Invitrogen 

Trypsin-Inhibitor Sigma 

Trypsin-inhibitor/Benzonase 1 % HSA , 25 U/ml Benzonase, 0,55 mg/ml 

trypsin-inhibitor in DMEM/F12 

 

If not dissenting indicated supplements were used with following concentrations. 

Table 14: Supplements 

Substance Solvent Stock Solution End Solution Supplier 

AB199 (IM12) DMSO 10 mM 3 µM M. Beller, LIKAT 

AICAR H2O 250 mM 1 mM Santa Cruz 

DAPT DMSO 10 mM 5 µM Sigma 

DMSO  100 % 

depending on 

compared substance 

(0,2 % -4 %) 

Sigma 

Dorsomorphin DMSO 10 mM 1 µM Sigma 

HSA PBS 0,1 % 0,001 % OctaPharma 

Jak-Inhibitor-1 DMSO 1 mM 1 µM Santa Cruz 

recombinant HSA 100 µg/ml 400 ng/ml R&D 
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human Dkk1 

recombinant 

human Noggin 
PBS 250 µg/ml 500 ng/ml R&D 

recombinant 

human sFRP1 
HSA 100 µg/ml 500 ng/ml R&D 

recombinant 

mouse Wnt-3a 
HSA 100 µg/ml 100 ng/ml R&D 

SB216763 DMSO 10 mM 3 µM Sigma 

SB431542 DMSO 10 mM 20 µM Sigma 
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2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Cultivation of ReNcell VM cells 

ReNcell VM cells were initially provided by ReNeuron (Guildford, UK) and are distributed 

now from Millipore (Billerica, USA). It is a v-myc retrovirally immortalized human cell line 

and was derived from the ventral midbrain of a 10-week old male fetus. The cells were 

cultivated in cell culture flasks at 37 °C with 5 % CO2 and 20 % O2. For growing as adherent 

monolayers cell culture flasks needed to be coated with Laminin (10 µg/ml). For coating it 

was diluted 1:100 in ice-cold DMEM:F12 and incubated with culture plastic ware for at least 

one hour at 37 °C. Laminin was removed by washing with pre-warmed DMEM:F12. Cells 

were cultivated in proliferation medium and passaged when reaching around 70 % 

confluence. Therefore, cells were washed with pre-warmed HBSS and incubated with 

Trypsin/Benzonase until detaching. Reaction was stopped by adding Trypsin 

inhibitor/Benzonase. The suspension was centrifuged for 5 min at 100 x g at room 

temperature. The supernatant was discharged and the cell pellet was resuspended in pre-

warmed proliferation medium. A defined number (Table 15) of cells were seeded in Laminin 

coated culture vessels.  

Differentiation was induced by withdrawal of growth factors. Therefore, cells were washed 

with pre-warmed HBSS and incubated with differentiation medium at 37 °C for up to 3 days. 

ReNcell VM cells are able to differentiate into neurons, astrocytes and oligodendrocytes 

(Donato et al., 2007, Hübner et al., 2010 and Morgan et al., 2010). 

 

2.2.1.2 Cultivation of HEK293H 

HEK293H cells were grown as adherent monolayers at 5 % CO2, 20 % O2 at 37 °C and were 

passaged when reaching around 80 % confluence. Cells were washed with pre-warmed PBS 

(Biochrom) and incubated with Trypsin/EDTA (Invitrogen) until detaching. Reaction was 

stopped by adding medium. The suspension was centrifuged for 5 min at 100 x g at room 

temperature. The supernatant was discharged and the cell pellet was resuspended in pre-

warmed medium. A defined number (Table 15) of cells were seeded in culture vessels. 
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2.2.1.3 Cultivation of iPS cell derived neuronal progenitor cells (iPS-NPCs) 

Human iPS cell line hFib2-iPS5 (Park et al., 2008), was maintained on a layer of mitotically 

inactivated murine embryonic fibroblasts (GlobalStem) and cultured as described (Trilck et 

al., 2013) and manually passaged every 5-7 days. iPS routine cell culture was carried out by 

Michaela Trilck and Rayk Hübner (AKos). 

iPS-NPCs were derived via dual SMAD inhibition. Cells were obtained after 10 days of 

differentiation in N2B27 medium containing Neurobasal, DMEM/F12, 1xN2 supplement, 

1xB27 supplement and GlutaMax (all from Invitrogen) complemented with human 

recombinant noggin Fc- chimera (500 ng/ml; R&D) and SB431542 (20 μM; Sigma). After 10 

days, Noggin and SB431542 were omitted from the medium and 10 ng/ml hEGF (Roche) and 

hFGF-2 (GlobalStem) were included. After 14 days appearing rosette clusters were manually 

isolated using a hooked glass needle. Clusters were gently triturated using Tryp/Benz and 

reaction was stopped with Trit/Benz. iPS-NPCs were cultured on Poly-L-ornithin (15 µg/ml) 

/Laminin (10 µg/ml) coated dishes for 3–5 days (medium was changed every day) until 70 % 

confluence and passaged as described (2.2.1.1). Differentiation was induced by washing the 

cells with HBSS followed by withdrawal of growth factors FGF2 and EGF from the medium 

at a confluence of 70 %.  

 

2.2.1.4 Cultivation of E. coli 

E. coli was cultivated at 37 °C and 200-250 rpm on a rotatory shaker in LB-medium with 

appropriate antibiotics in Erlenmeyer vials or polystyrene tubes. For storage of bacterial 

clones 0.8 ml of culture was mixed with 0.2 ml glycerol and stored at -80 °C. For seeding, a 

small amount of the glycerol stock was added into 5 ml of fresh LB medium with appropriate 

antibiotics. 

 

2.2.1.5 Measuring and seeding of cell numbers  

For cell number measurement 50 µl of cell suspension was added to 10 ml CASYton and 

analyzed by CASY cell counter (Innovatis, Reutlingen, Germany) with the appropriate 

program. The seeded cell numbers are shown in Table 15. 
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Table 15: Seeding cell numbers 

Cell line Vessel size Cell number/ 

Experiment 

Proliferation time 

ReNcell VM 6-well (greiner) 250.000/treatment 

350.000/transfection 

48 h 

ReNcell VM 4-well (Nunc) 

24-well (greiner) 

100.000/treatment 

150.000/transfection 

24 h 

ReNcell VM 96-well (greiner) 5.000/treatment 48 h 

HEK293H 4-well (Nunc) 

24-well (greiner) 

200.000/transfection 24 h 

iPS-NPCs 4-well (Nunc) 

24-well (greiner) 

 24 h 

iPS-NPCs 6-well (greiner)  48 h 

 

2.2.1.6 Transfection of ReNcell VM cells 

ReNcell VM cells were transfected by Nucleofaction (Lonza, Cologne, Germany). Briefly, 

cells were resuspended in 100 µl of Nucleofection solution (Kit V) mixed with 2-4 µg 

plasmid/1 Mio cells and transfected with program X-001 according to the manufacturer´s 

instructions. Cells were plated on Laminin coated vessels up to 70 % confluence and were 

differentiated upon withdrawal of growth factors. The transfection efficiency was about 90 % 

using positive control pmaxGFP (Lonza) as judged by microscopy (see appendix 7.1). 

 

2.2.1.7 Transfection of HEK293H cells 

For Transfection of HEK293H cells, 24 h cultivated cells were washed with pre-warmed PBS 

and incubated with medium without antibiotics (Table 15). 2 h later cells were transfected 

with 1 to 2 µg of plasmid with Lipofectamine 2000 according to the manufacturer´s 

instructions. After 6 h of incubation at 37 °C, medium was changed to medium containing 

antibiotics. The transfection efficiency was about 95 %, using positive control pCAGGS-GFP 

as judged by microscopy (see appendix 7.1).  
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2.2.1.8 Transformation and selection of E. coli 

50 µl of competent cells were thawed on ice and 1 to 5 µl of DNA was added, incubated on 

ice for 5 min, plated onto LB-agar plates (37 °C) with appropriate antibiotics and incubated 

overnight at 37 °C in an incubator (Heraeus, Hanau, Germany). For blue/white screening, 

1 mM IPTG and X-Gal were added to agar medium. For selection of transformed cells, single 

white colonies were picked, grown overnight in 6 ml LB-medium with appropriate antibiotics 

and were further analyzed.  

 

2.2.1.9 Treatment of cells 

For treatment of ReNcell VM cells and NPCs, cells were washed with pre-warmed HBSS. 

Differentiation was induced by withdrawal of growth factors and simultaneously cells were 

treated - if not otherwise indicated - once with substances (Table 14). In experiments using 

iPS-NPCs, medium was changed every 2 days, without additional treatment. 

 

2.2.1.10 WST-1 assay 

For cell viability measurement the colorimetric assay WST-1 (Roche, Penzberg, Germany) 

was used that determines the enzyme activity of mitochondrial dehydrogenases, which cleave 

a tetrazolium substrate resulting in colored formazan. The enzyme activity correlates with the 

metabolic activity of viable cells (Hipper and Isenberg, 2000). 5.000 ReNcell VM cells were 

plated on Laminin coated 96-well plates in proliferation media and treated after 4 hours of 

incubation at 37 °C with substances. Cell viability was analyzed after 48 h by adding 10 µl 

WST-1 reagent per well and 2 h incubation at 37 °C. The optical density at 450 nm 

wavelength was determined using genios microplate reader (Tecan, Crailsheim, Germany). 

650 nm was used as reference wavelength. Six wells per condition were measured. 

 

2.2.2 Protein analysis 

2.2.2.1 Preparation of total cell lysates and protein measurement 

Cells were harvested as described and lysed in ice cold RIPA buffer containing protease and 

phosphatase inhibitor cocktails (Roche) for 15 min on ice, slightly shaking. Suspension was 
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centrifuged at 15.000 g for 15 min at 4 °C and the supernatant was stored at -80 °C. Protein 

concentrations were measured using the bicinchoninic acid assay (BCA, Pierce, Rockford, IL, 

USA) according to manufacturer`s instructions using a plate reader (Tecan). 

 

2.2.2.2 Preparation of nuclear cell lysates  

Cells were washed twice with ice-cold PBS and then harvested with 1 ml ice-cold PBS, 

scraped with a cell scraper and centrifuged for 10 sec. The pellet was triturated 5 times with 

1 ml ice-cold 0.1 % NP40-PBS, the remainder was pop-spun for 10 sec and the supernatant 

was transferred in a new tube, this was the cytoplasmic fraction. Next, the pellet was 

resuspended with 1 ml ice-cold 0.1 % NP40-PBS, afterwards, the remainder was centrifuged 

for 10 sec and the supernatant was discarded. For SDS-PAGE sample preparation, remaining 

pellets were mixed with 200 µl 1x sample buffer, sonificated twice for 5 sec, placed on ice 

and were subsequently boiled for 5 min. 

 

2.2.2.3 Western blot 

For protein analysis via western blot a defined amount of protein was mixed with 5x sample 

buffer and incubated for 5 min at 95 °C. Samples were loaded on a vertical Tris-HCl gel with 

4-15 % acrylamide concentration gradient (Criterion Precast, Bio-Rad) and were run in a 

Criterion Cell (Bio-Rad) at 100-120 V until the running front of the gels reached the bottom. 

The prestained peqGOLD marker IV (PEQLAB, Erlangen, Germany) was used as molecular 

weight marker. Proteins were transferred via a Semi-dry blotting system (Trans-BlotSD, Bio-

Rad) onto nitrocellulose membranes (Hybond-ECL, Amersham) at 200 mA for 1,5 h. 

Membranes were blocked with blocking solution (2 % BSA or 5 % milk) in TBST for 1 h 

followed by incubation with primary antibodies overnight at 4 °C on a shaker. Blots were 

washed 3 times for 5 min with TBST and incubated in darkness with appropriate fluorescent 

secondary antibodies for 1 h. Afterwards membranes were washed 3 times for 5 min with 

TBS, air-dried and stored in the dark. To visualize and quantify proteins the Odyssey infrared 

imaging system (LI-COR Biosciences GmbH, Bad Homburg, Germany) was used. The 

membranes were scanned at a wavelength of 700 nm for Alexa Fluor 680-labeled antibodies 

and at a wavelength of 800 nm for IRDye 800CW-labeled antibodies, respectively using 
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Odyssee software version 1.2. Values from total cell lysates were normalized to GAPDH 

which was used as a loading control. Nuclear cell lysates were normalized to Lamin A/C.  

 

2.2.2.4 FACS analysis 

To analyze proteins in different cell populations FACS analysis was used. Therefore cells 

were differentiated in 6-well plates, harvested and fixed with 1 % PFA in PBS for 15 min at 

room temperature. After centrifugation at 100 x g at 4 °C, the pellet was resuspended in 

500 µl FACS-Wash buffer and stored at 4 °C. 

For staining, cells were centrifuged at 100 x g at 4 °C and the pellet was resuspended in 25 µl 

saponin buffer containing diluted primary antibodies and incubated for two hours at room 

temperature on a shaker. As negative control, cells were incubated with normal mouse and 

normal rabbit IgG. Cells were washed with 300 µl saponin buffer and resuspended in 25 µl 

saponin buffer containing appropriate secondary antibodies. The samples were incubated for 

one hour in darkness at room temperature with gentle shaking. Cells were washed with 300 µl 

saponin buffer, resuspended in 500 µl FACS wash buffer and stored in the dark at 4 °C until 

analysis. 

50.000 cells per sample were counted and analyzed using FACSCalibur (BectonDickinson, 

San Jose, USA) in combination with CellQuest Pro software. Cell debris was filtered out of 

the data set prior to analysis. Gates were set referred to cells stained with negative control 

antibodies. 

 

2.2.2.5 Immunocytochemistry 

For immunocytochemistry cells were cultured on coverslips and fixed on them with 4 % PFA 

in PBS for 15 min at room temperature. Afterwards, cells were washed with PBS and 

conserved with 0.02 % NaN3 in PBS at 4 °C. Following blocking and permeabilization with 

IC blocking buffer for 30 min, cells were incubated for 30 min with primary antibodies 

diluted in IC antibody incubation buffer. Cells were washed 3 times with PBS and incubated 

for 30 min at room temperature in darkness with secondary antibodies diluted in IC antibody 

incubation buffer. Afterwards, cells were washed with PBS and covered with mounting 

medium containing DAPI (VectaShield). Slips were plated on object plates, sealed using nail 

polish and stored at 4 °C in the dark until analysis. Staining without primary antibodies served 
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as a control for background staining. Fluorescent images were generated by using a Biozero 

microscope (Keyence). 

 

2.2.3 Molecular biological methods 

2.2.3.1 Polymerase chain reaction (PCR) 

For primer testing colony PCR and optimizing PCR conditions HotStartTaq (Qiagen) was 

used in combination with the gradient cycler (Eppendorf). For cloning purposes the 

proofreading blend Herculase II (Stratagene, La Jolla USA) was used in combination with the 

ABI cycler. Colony PCR was run with HotStartTaq on the ABI cycler in combination with the 

sequencing primers for pCAGGS (Table 7). 

 

Table 16: PCR Mixes 

Compound HotStartTaq Herculase II 

buffer - 5 µl (5 x) 

enzyme 10 µl (MasterMix) 0,25 µl (5 U/µl) 

dNTPs (10 mM) - 0,5 µl 

primer (10 pmol/µl) 0,8 µl 1 µl 

template (ca. 10 ng/µl) 1 µl 2 µl 

H2O 7,2 µl 15 µl 

DMSO 1 µl 1,25 µl 

 

Table 17: Cycling conditions 

Cycler  Eppendorf (HotStartTaq) ABI (Herculase II) 

Step Temperature Time Temperature Time 

denaturation 95 °C 15 min 98 °C 4 min 

denaturation 94 °C 30 sec 98 °C 20 sec 

annealing 60±10 °C 30 sec see Table 8 20 sec 

extension 72 °C 60 sec 72 °C 23 sec 
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2.2.3.2 Agarose gel electrophoresis 

To generate gels, 1-2 % agarose (Biozym) was dissolved in 1xTAE buffer and heated in a 

microwave. Ethidium bromide (1 µg/ml working concentration) was added and gels were 

poured into prepared gel chambers. DNA samples were mixed with appropriate volume of  

6x loading dye (Fermentas, St.-Leon-Roth, Germany). Gels were run at 100 V and 

photographed using UV gel documentation system (Herolab/biostep) in combination with a 

digital camera sytem (C-5050; Olympus, Japan). Size estimation of DNA fragments was done 

by using the GeneRuler DNA Ladder Mix (Fermentas). 

 

2.2.3.3 Isolation and purification of DNA 

To isolate vectors from E. coli cultures, the ZYPPY Plasmid Mini Kit (Zymo Research) was 

used. 6 ml of culture were centrifuged for 5 min at 14.000 g at room temperature and 

processed according to manufacturer’s instructions. For large-scale purification of DNA, the 

Endo-Free Plasmid Maxi Kit (Qiagen, Hilden, Germany) was used according to 

manufacturer`s instructions. DNA was resuspended in endotoxin-free TE-buffer to yield a 

concentration of ~1 µg/µl. Vectors were sterile filtered (0.22 µM) and stored at -20 °C. 

For purification of DNA fragments from solutions or gels, the GFX purification Kit (GE 

healthcare, Munich, Germany) was used according to manufacturer’s instructions. DNA was 

eluted in 30 µl H2O.  

 

2.2.3.4 Photometric DNA concentration measurement 

DNA concentration and purity was estimated by measuring absorption at 260 and 280 nm 

using a spectrophotometer (Ultrospec 3100pro, Amersham, Munich, Germany).  

 

2.2.3.5 Digestion, dephosphorylation and ligation of DNA  

For digestion the FastDigest enzymes (Fermentas) were used. Therefore 500 ng of DNA was 

incubated with 0,5 µl of each enzyme together with appropriate amount of buffer and water 

for 20 min at 37 °C.  
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To avoided re-ligation, vectors were dephosphorylated by adding 1 µl of calf intestine 

alkaline phosphatase (CIAP, Promega, USA) and appropriate amount of reaction buffer and 

were incubated for 30 min at 37 °C. 

For ligation, 50 ng of linearized and dephosphorylated vector together with a 3-fold molar 

amount of fragment were incubated overnight at 4 °C or for 4 h at room temperature with  

T4 DNA ligase (T4 DNA Ligase Kit, Promega) 

 

2.2.3.6 Sequencing of DNA 

To check the identity of DNA, the purified DNA samples were sequenced at Qiagen 

Sequencing Service (Qiagen, Hilden) or MWG (eurofinsmwg|operon, Ebersberg). Sequences 

were aligned and analyzed using MultAlin software. 

 

2.2.3.7 cDNA synthesis 

To generate cDNA the FastLane cDNA Kit (Qiagen) was used according to manufacturer’s 

instructions. Briefly, cells were grown in a 24 or 96-well plate and were washed with 200 µl 

or 100 µl FCW buffer, respectively. After 10 min incubation with 80 µl or 16 µl FCP buffer, 

lysates were stored at -80 °C. The lysates were used to synthesize cDNA according to 

manufacturer’s instructions with the exception, that only half amount of the buffers was used 

per sample due to cost-effective reasons. 

 

2.2.3.8 Quantitative real-time PCR (qRT-PCR) 

For quantitative real-time PCR a LightCycler Nano 1.0 (Roche) was used in combination with 

FastStart Essential DNA Green Master Mix (Roche) according to manufacturer’s instructions. 

For primer information see Table 9. The primer efficiency was calculated by plotting the Cq-

values against the cDNA amounts of a serial diluted positive control (human total brain 

cDNA, Clontech). As a template, 1 µl cDNA generated with FastLane Cell cDNA Kit 

(Qiagen) was used. All samples were run in duplicates and as a negative control template was 

omitted from the reaction. For cycling parameters see Table 18. PCR products were verified 

by melting point analysis and by size in agarose gel electrophoresis. Relative changes of 

mRNA amount were calculated using the delta-delta Ct method (Pfaffl et al., 2000). Amount 
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of mRNA of interest was normalized to the housekeeping gene Glucose-6-phosphate-

dehydrogenase (G6PD) and was calculated as relative changes compared to control. 

 

Table 18: Cycling parameters 

Step Temperature Time 

denaturation 95°C 10 min 

denaturation 95 °C 20 sec 

annealing See Table 9 20 sec 

extension 72 °C 23 sec 

melting curve 60-95 °C  

 

2.2.3.9 Statistical analysis  

Statistical evaluation was carried out using the two-tailed Student’s t-test with Excel software 

(Microsoft, USA). Difference was considered to be statistically significant p ≤ 0.05. 
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3 Results 

3.1 Generation of expression vectors 

For overexpression in ReNcell VM cells the backbone plasmid pCAGGS was used. pCAGGS 

contains a CAG promoter (Niwa et al., 1991) which has been shown to drive efficient 

expression in ReNcell VM cells compared to other promoters like CMV (Hübner et al., 2010 

and data not shown). In addition, HA-HES plasmids were generated (see appendix 7.1). 

 

3.1.1 Generation of pCAGGS-hHES1 

To amplify hHES1 the plasmid pCMV6-XL4-HES1 (Origene) was used as a template, 

together with the forward primer which includes the XhoI restriction site and the reverse 

primer which includes the BstXI restriction site. After amplification of hHES1 (Figure 9, A) 

the insert was purified and ligated into pGEM-T easy (Promega) for subsequent blue/white 

screening and selection. Positive clones were analyzed by digestion with EcoRI, expected 

fragments were ca. 3000 bp and 981 bp (Figure 9, B). All positive clones were sequenced and 

used for insert production. The purified insert was ligated into pCAGGS and resulting clones 

were analyzed by colony PCR. Consequential positive clones were sequenced and transfected 

in ReNcell VM cells. The expression of HES1 was tested via western blot analysis. Therefore, 

transfected ReNcell VM cells were proliferated for 24 h after transfection and then 

differentiated for 24 h. Western blot analysis revealed a specific band at ca. 25 kDa (Figure 9, 

D). The predicted size of hHES1 is 30 kDa, the variance may be due to alternative splicing of 

HES (Hirata et al., 2000).  
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Figure 9: Generation ofpCAGGS-hHES1. A: Product of hHES1 amplification (M=DNA ladder). B: Digestion 

of pGEM-T easy-hHES1 by EcoRI; expected fragments were 3000 bp and 981 bp. C: Plasmid map of pCAGGS-

hHES1. D: Western blot of pCAGGS-hHES1 transfected ReNcell VM cells after 24 h of differentiation, 

pCAGGS-GFP transfected cells were used as control and GAPDH as loading control. 

 

3.1.2 Generation of pCAGGS-hHES5 

To amplify hHES5 the plasmid pCMV6-XL4-HES5 (Origene) was used as a template, 

together with the forward primer which includes XhoI restriction site and the reverse primer 

which includes a BstXI restriction site. After amplification of hHES5 (Figure 10, A) the insert 

was purified and ligated into pGEM-T easy (Promega) for subsequent blue/white screening 

and selection. Positive clones were analyzed by digestion with EcoRI, expected fragments 

were ca. 3000 bp and 550 bp (Figure 10, B). All positive clones were sequenced and used for 

insert production. The purified insert was ligated into pCAGGS and resulting clones were 

analyzed by colony PCR. Consequential, positive clones were sequenced and transfected in 

ReNcell VM cells. The expression of Hes5 was tested via western blot analysis. Therefore, 

transfected ReNcell VM cells were proliferated for 24 h after transfection and then 

differentiated for 24 h. Western blot analysis revealed a specific band at ca. 20 kDa (Figure 

10, D). This fits to the predicted size of 19 kDa of hHES5. 
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Figure 10: Generation of pCAGGS-hHES5. A: Product of hHES5 amplification (M=DNA ladder). 
B: Digestion of pGEM-T easy-hHES5 with EcoRI; expected fragments were 3000 bp and 550 bp. C: Plasmid 

map of pCAGGS-hHES5. D: Western blot of pCAGGS-hHES5 transfected ReNcell VM cells after 24 h of 

differentiation, pCAGGS-GFP transfected cells were used as control and GAPDH as loading control. 

 

3.2 The Notch pathway in ReNcell VM cells 

It was shown before in several different organisms and cell lines, that the Notch pathway is 

decidedly important in the neuronal differentiation (Ables et al., 2011). The main point in 

Notch activation is the release of the Notch intracellular domain by cutting the Notch receptor 

with a γ-secretase. To demonstrate an active Notch pathway in differentiating ReNcell VM 

cells, the γ-secretase activity was inhibited by the widely used small molecule DAPT (N-[N-

(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine-t-butyl ester) as shown before in other 

systems (Ong et al., 2006, Nelson et al., 2006). It inhibits not only the release of the Notch 

intracellular domain but also affects other γ-secretases, which can lead to multifarious 

ramifications (Bay and Pfaff 2011). Therefore, cells were differentiated and simultaneously 

treated with 5 µM DAPT (Hübner, 2010) at 0 h. In addition, in other experiments, the Notch 

pathway was activated by overexpression of Notch intracellular domain 1 (NICD1). NICD1 

was described as the most prominent Notch intracellular domain in mice neuronal cells (Ables 

et al., 2010). The following experiments were performed to elucidate the impact of Notch 

signaling on the cell fate of differentiating ReNcell VM cells. 
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3.2.1 Inhibition of the Notch pathway 

Treatment of ReNcell VM cells with DAPT for 3 days of differentiation led to an increased 

net like growth pattern (Figure 11, A), which was not observable in control treated cells 

(solvent DMSO). Western blot analysis showed a decrease of endogenous NICD1 level after 

3 h of DAPT treatment, while the control protein level GAPDH (Glyceraldehyde 3-phosphate 

dehydrogenase) was not affected (Figure 11, B).  

The main target genes of the Notch pathway are the basic helix-loop-helix (bHLH) 

transcription factors hairy and enhancer of split 1 and 5 (HES1 and HES5; Bailey et al., 

1995). Both are expressed in ReNcell VM cells and were able to be down regulated by DAPT 

treatment (Figure 11, C and D). Strikingly the HES1 mRNA level was less affected than the 

HES5 level. NICD seemed to have a stronger effect on HES5 than on HES1 regulation. 

Furthermore, both target genes responded fast (already after 2 h of treatment) and continuing 

(up to 72 h of treatment), which suspects a direct and permanent regulation. A detection of the 

endogenous HES1 and HES5 protein level reduction via western blot was, due to the low 

protein level, not possible. 

HES1 and HES5 are described to induce the glial fibrillary acidic protein (GFAP) (Kabos et 

al., 2004, Kamakura et al., 2004) and reduce expression of proneural genes like MASH1 

(ASCL1), Neurogenin 1, and Neurogenin 2 (Castella et al., 1999, Kageyama 2009). DAPT 

was able to decrease the GFAP mRNA level after 12 h up to 72 h of treatment (Figure 11, E). 

This indicated a indirect regulation of GFAP by DAPT over the Notch target genes HES1 

and/or HES5 in ReNcell VM cells. Upregulation of MASH1 mRNA by DAPT after 6 h up to 

24 h of treatment also indicated a indirect regulation of MASH1 by HES1 and/or HES5. The 

detection of Neurogenin 1 and 2 mRNA levels in ReNcell VM cells via qRT-PCR was not 

possible due to very low mRNA level (data not shown).  

Thus, DAPT was able to inhibit the endogenous Notch pathway in ReNcell VM cells 

apparently by reduction of NICD1, which leads to a reduction of the Notch target genes HES1 

and HES5. Moreover, DAPT was able to reduce GFAP and induce MASH1 mRNA levels.  
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Figure 11: Inhibition of the Notch pathway by DAPT. Analysis of ReNcell VM cells in differentiation A: 

Phase contrast of 3 days differentiated cells treated with DMSO or DAPT, respectively. Scale bar 100 µm. B: 

Western blot analysis of Notch intracellular domain 1 (NICD1) under 3 h DAPT treatment. C-F: qRT-PCR of 

HES1 (C), HES5 (D), GFAP (E) and MASH1 (F) in cells treated with DAPT. Data are normalized to DMSO 

treated cells (time point control, indicated as black line). Data are presented as means ± SEM from at least three 

independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

3.2.2 Activation of the Notch pathway 

The plasmid pCAGGS-NICD1 encoded for the cleaved Notch intracellular domain 1 

(110 kDa) and therefore was used to activate the Notch pathway. It was transfected in 

ReNcell VM cells and the overexpression of NICD1 was validated by western blot using a 

specific antibody against NICD1 after 24 h of transfection (Figure 12, A). The NICD1 

antibody detects endogenous levels of the Notch intracellular domain 1 only when released by 

cleavage between Gly1753 and Val1754. qRT-PCR analysis revealed at the same time point 

an 2-fold induction of HES5 and a slightly reduction of HES1 mRNA levels (Figure 12, B). 

Therefore, HES5 seems to be the main target of the Notch intracellular domain 1. 
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To demonstrate the Notch specificity of the DAPT effect, a rescue experiment was performed. 

Therefore, NICD1 and GFP as control were overexpressed in ReNcell VM cells for 3 days of 

differentiation. Simultaneously, the cells were treated with DAPT or DMSO as control. The 

percentage of cells positive for the neuronal marker HuC/D and Tuj1 or the stem cell/ glial 

marker GFAP were measured by flow cytometry. DAPT treatment of GFP transfected control 

cells showed a clear increase in the percentage of cells positive for the neuronal marker 

HuC/D and Tuj1 (Figure 12, C and D). The amount of cells positive for HuC/D increases 

from 8 % up to 23 % and cells positive for Tuj1 from 3 % up to 15 %. Under DAPT treatment 

the percentage of GFP transfected control cells positive for GFAP was not significantly 

affected, but clearly decreased by tendency (Figure 12, E). Conversely, activation of Notch 

signaling via overexpression of NICD1 in ReNcell VM cells resulted in a reduction of cells 

positive for the neuronal marker HuC/D and Tuj1 (Figure 12, C and D). The amount of 

DMSO treated cells positive for HuC/D decreased from 8 % (GFP transfected control cells) to 

4 % (NICD1 transfected cells), cells positive for Tuj1 decreased from 3 % (GFP transfected 

control cells) to 1 % (NICD1 transfected cells). In contrast, an induction of GFAP positive 

cells by NICD1 overexpression was not observable (Figure 12, E). The increase of cells 

positive for neuronal marker by DAPT treatment could be prevented by NICD1 

overexpression (Figure 12, C and D). In this case, the induction was reduced to nearly control 

levels of positive cells. Furthermore, the percentage of DAPT treated cells positive for GFAP 

was induced by NICD1 transfected cells compared to GFP transfected cells. A regulation of 

the glial marker S100β was not observable (data not shown). 

In summary, the NICD1 overexpression was able to activate the Notch pathway by increasing 

HES5 mRNA level. In addition, DAPT was able to induce cells positive for neuronal markers 

like HuC/D and Tuj1 and reduced cells positive for GFAP by tendency. NICD1 

overexpression largely abolished the DAPT effect on differentiating ReNcell VM cells and 

therefore underscores the specificity of DAPT as an inhibitor of the Notch pathway.  
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Figure 12: Activation of the Notch pathway in ReNcell VM cells rescued neuronal differentiation. A: 
Western blot analysis of Notch intracellular domain 1 (NICD1) of cells transfected with pCAGGS-NICD1 or 

control vector pCAGGS-GFP, harvested after 24 h of differentiation. B: qRT-PCR of HES1 and HES5 in NICD1 

transfected cells, harvested after 24 h of differentiation. Data are normalized to GFP transfected cells (indicated 

as black line). C-E: Flow cytometric data showing percentages of NICD1 or GFP transfected cells positive for 

HuC/D (C), Tuj1 (D) and GFAP (E) differentiated for 3 days in the presence of DAPT or DMSO as control. 

Data are presented as means ± SEM from at least three independent experiments. *p<0.05, **p<0.01, *** 

p<0.001 compared to time point control. 

 

3.3 The effect of Wnt-3a in the differentiation of ReNcell VM cells 

As previously shown, Wnt-3a overexpression was able to increase the neuronal differentiation 

in ReNcell VM cells (Hübner et al., 2010). To verify this result, ReNcell VM cells were 

treated with 100 ng/ml of recombinant Wnt-3a and the expression of the neuronal markers 

HuC/D and Tuj1, the mature glial marker S100β and the stem/glial marker GFAP were 

analyzed after 3 days of differentiation via flow cytometry.  

Wnt-3a treatment resulted in an increase in neuronal marker HuC/D (Figure 13, A) from 8 % 

up to 13 % and in an increase of Tuj1 positive cells (Figure 13, B) from 5 % up to 8 %. The 

glial marker S100β was not significantly affected by Wnt-3a treatment (Figure 13, C). 

Simultaneously, the percentage of cells positive for GFAP decreased under Wnt-3a treatment 

(Figure 13, D) from 74 % to 60 %. 

In summary, Wnt-3a treatment was able to induce neurogenesis in ReNcell VM cells and 

coincidentally reduced the stem/glial marker GFAP, while S100β was not significantly 

affected. 
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Figure 13: Induction of neurogenesis in ReNcell VM cells by Wnt-3a treatment. Flow cytometric data 

showing percentages of Wnt-3a treated cells positive for HuC/D (A), Tuj1 (B), S100β (C) and GFAP (D) 

differentiated for 3 days in the presence of Wnt-3a or HSA as control. Data are presented as means ± SEM from 

at least three independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

3.3.1 Modulation of the Notch target genes by Wnt-3a 

To get a deeper insight into the regulation of the Notch target genes by Wnt-3a, a time series 

analysis was performed in which differentiating ReNcell VM cells were treated for 1 h up to 

72 h with 100 ng/ml of Wnt-3a. Afterwards, an analysis of the mRNA levels of HES1, HES5, 

GFAP and MASH1 was performed by qRT-PCR (Figure 14).  

Wnt-3a treatment resulted in an increase of HES1 at 2 h, 6 h and 8 h but this effect was lost in 

later time points where no regulation was detected (Figure 14, A). In contrast, HES5 was 

rapidly downregulated by Wnt-3a after 2 h up to 24 h except of 8 h and 12 h of treatment 

(Figure 14, B) with a surprisingly strong regulation after 24 h. Interestingly, HES5 mRNA 

levels seemed to oscillate under Wnt-3a treatment, in combination with a time frame without 

significantly regulation between 8 h and 12 h. After 30 h up to 72 h a regulation was no 

longer observable. Strikingly, GFAP mRNA levels were significantly downregulated not until 

6 h but constantly up to 72 h of treatment with exception of 20 h and 30 h. The proneural gene 

MASH1, in contrast, was upregulated after 24 h of Wnt-3a treatment, interestingly at the same 

time point when the strongest HES5 mRNA downregulation was observed.  
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In summary, Wnt-3a was able to induce HES1 mRNA level only in early time points while 

HES5 mRNA level was downregulated. Both Notch target genes seemed to be directly 

affected by Wnt-3a but were differentially regulated in time span and direction. The later 

regulation of GFAP led to the suggestion, that GFAP is an indirect target of Wnt-3a. The 

potentially mediator of this effect is HES5, because of its fast and continuous downregulation 

compared to HES1. Simultaneously, MASH1 was upregulated after 24 h of Wnt-3a treatment, 

which was the same time point when Wnt-3a had a strong effect on HES5 mRNA level.  

 

 

Figure 14: Modulation of Notch target genes in ReNcell VM cells by Wnt-3a. qRT-PCR of HES1 (A), HES5 

(B), GFAP (C) and MASH1 (D) in cells treated with Wnt-3a. Data are normalized to HSA treated cells (time 

point control, indicated as black line). Data are presented as means ± SEM from at least three independent 

experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

3.3.2 The additive effect of Wnt-3a treatment and Notch inhibition 

Due to the fact that DAPT treatment as well as Wnt-3a treatment resulted in a downregulation 

of HES5 and GFAP mRNA levels, it arose the question, whether combined treatment is able 

to intensify the single effects. Therefore ReNcell VM cells were differentiated for up to 72 h 

under 5 µM DAPT and 100 ng/ml Wnt-3a treatment. mRNA levels of HES1, HES5, GFAP, 
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and MASH1 were compared to 5 µM DAPT treatment to illustrate the additive effect of  

Wnt-3a.  

Addition of Wnt-3a was able to induce the HES1 mRNA level after 2 h of treatment 

compared to DAPT alone. But after 6 h and 48 h, Wnt-3a addition led to a decrease of HES1 

mRNA while in other time points no significant regulation was detectable (Figure 15, A). 

Simultaneously, HES5 mRNA level was stronger downregulated by Wnt-3a in addition to its 

downregulation by DAPT alone (Figure 15, B). This regulation appeared already after 2 h up 

to 48 h of treatment except of 20 h and 30 h. Interestingly, double treatment with DAPT and 

Wnt-3a acted in the same time frame like Wnt-3a alone. Similar to HES5, GFAP mRNA level 

were decreased under double treatment and showed already after 3 h a significant and strong 

downregulation up to 72 h except of 12 h to 24 h (Figure 15, C). In contrast, double treatment 

resulted in no significant additive effect on MASH1 mRNA level. At 24 h time point 

however, Wnt-3a addition led to MASH1 upregulation by tendency. 

 

 

Figure 15: Modulation of Notch target genes in ReNcell VM cells by DAPT+Wnt-3a qRT-PCR of HES1 

(A), HES5 (B), GFAP (C) and MASH1 (D) in cells treated with DAPT+Wnt-3a. Data are normalized to DAPT 

treated cells (time point control, indicated as black line). Data are presented as means ± SEM from at least three 

independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 
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Thus, Wnt-3a was clearly able to affect the HES5 and GFAP mRNA levels in addition to 

DAPT alone. Precisely, Wnt-3a was able to downregulate GFAP as well as HES5 in addition 

to DAPT, but did have no significant additional effect on HES1 and MASH1 mRNA levels. 

But it was a slight upregulation of MASH1 mRNA by tendency supposable. 

FACS analysis of 3 days differentiated cells positive for the neural marker HuC/D and Tuj1 

revealed no significant induction of positive cells under DAPT+Wnt-3a treatment compared 

to only DAPT treated cells (Figure 16, A and B), which fits well with the MASH1 mRNA 

analysis. Simultaneously, the inductive effect of DAPT treatment on ReNcell VM cells 

positive for neural markers HuC/D and Tuj1 (Figure 12, C and D) was verified for treated (but 

not transfected, like Figure 12) cells compared to DMSO treated control cells. S100β was not 

affected by DAPT or DAPT+Wnt-3a treatment (Figure 16, C). In contrast, GFAP was clearly 

decreased by DAPT compared to DMSO from 74 % to 58 % and especially by DAPT+ 

Wnt-3a (down to 40 %) compared to DMSO as well as DAPT treatment alone (Figure 16, D).  

 

 

Figure 16: Induction of Neurogenesis in ReNcell VM cells by DAPT+Wnt-3a treatment. Flow cytometric 

data showing percentages of DAPT and DAPT+Wnt-3atreated cells positive for HuC/D (A), Tuj1 (B), S100β 

(C) and GFAP (D) differentiated for 3 days in the presence of DAPT and DAPT+Wnt-3a or DMSO as control. 
Data are presented as means ± SEM from at least three independent experiments. *p<0.05, **p<0.01, *** 

p<0.001 compared to time point control. 
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In summary, only DAPT was able to increase cells positive for HuC/D and Tuj1 compared to 

DMSO. But only GFAP was significantly downregulated by DAPT compared to DMSO and 

by DAPT+Wnt-3a compared to DMSO as well as DAPT. 

Similar to the FACS data, immunocytochemistry cLSM-pictures (confocal laser scanning 

microscope) showed an increase in cells positive for Tuj1 when treated with Wnt-3a 

compared to HSA (Figure 17, A and B) and DAPT compared to DMSO (Figure 17, C and D). 

In addition, the amount of cells positive for GFAP decreased under DAPT and DAPT+Wnt-

3a treatment compared to DMSO treated cells (Figure 17, C, D and E). Moreover, under 

DAPT treatment a net like growth pattern was observable (Figure 17, D) which got more 

distinct by treatment with DAPT+Wnt-3a (Figure 17, E). This net like structure of these cells 

led to a thicker cell layer where more cells were grown over each other and did not build a 

monolayer anymore. Therefore it was not possibly to count the cells or nuclei. Interestingly, 

GFAP positive cells were only encountered in the inner part of the net like structure while 

Tuj1 positive cell branches were visibly across the whole surface.  

 

Figure 17: Induction of neurogenesis in ReNcell VM cells. Immunocytochemistry of cells positive for DAPI 

(blue), Tuj1 (green) and GFAP (red) differentiated for 3 days in the presence of Wnt-3a (B), DAPT (D) and 

DAPT+Wnt-3a (E) or HSA (A) and DMSO (C) as control. Representative pictures were acquired by cLSM in 

the center of Microscopy of the University of Rostock with help of Heiko Lemcke.  
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3.3.3 Time dependency of Wnt-3a/DAPT effects on neurogenesis 

As shown before, Wnt-3a, DAPT as well as DAPT+Wnt-3a were able to induce neurogenesis 

and to reduce GFAP, mRNA levels as well as amount of positive cells, compared to their 

controls. All substances were acting very fast but only Wnt-3a seemed to lose its effect after 

24 h of treatment but nevertheless it was able to upregulate neuronal markers after 3 days of 

differentiation. These data led to the question whether Wnt-3a and DAPT are able to induce 

neurogenesis even if they are not present during the whole differentiation period. Therefore, 

ReNcell VM cells were differentiated for 3 days and were treated only for 3 h, 6 h, 24 h, 48 h 

and 72 h. After treatment cells were washed and differentiated for up to 3 days without 

substances.  

After 24 h treatment with DAPT and DAPT+Wnt-3a treatment, Tuj1 showed the first 

induction of positive cells (Figure 18, A). Since the standard deviation was untypically high in 

some time points a clear distinction was difficult. But an increase in cells positive for Tuj1 in 

long compared to short substance-exposure was supposable. Interestingly, HuC/D was the 

only marker which was affected when treated for short time frames. It showed already after 

3 h of treatment an increase in positive cells when treated with Wnt-3a, DAPT or 

DAPT+Wnt-3a compared to HSA or DMSO (Figure 18, B). The amount of positive cells was 

only increasing if cells were treated longer with substances. Strikingly, no difference in 

HuC/D positive cells was detectable between 48 h of treatment compared to 72 h. Similar to 

Tuj1, GFAP was initially regulated after at least 24 h of treatment with DAPT+Wnt-3a 

compared to DMSO. Between 48 h and 72 h there were no clear differences visible under 

DAPT or DAPT+Wnt-3a treatment, only Wnt-3a compared to HSA treatment showed after 

72 h the first significant downregulation of GFAP positive cells (Figure 18, C). Surprisingly, 

S100β showed after 48 h a downregulation of positive cells by DAPT+Wnt-3a treatment 

compared to DMSO as well as DAPT. This is the only time that a significant regulation of 

S100β was detectable (Figure 18, D).  

In summary, HuC/D is a very early neuronal marker which is modifiable by treatments with 

short time frames. In contrast, Tuj1 and GFAP needed at least 24 h to be regulated by DAPT 

and DAPT+Wnt-3a, while Wnt-3a alone needed 72 h to modulate GFAP. The downregulation 

of S100β by DAPT+Wnt-3a was visible in all time points beginning from 24 h by tendency 

but it was only significant at 48 h.  
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Figure 18: Time dependency of ReNcell VM cell treatment. Flow cytometric data showing percentages of 

cells positive for Tuj1 (A), HuC/D (B), GFAP (C) and S100β (D) differentiated for 3 days in the presence of 

HSA, Wnt-3a, DMSO, DAPT and DAPT+Wnt-3a. Cells were treated at time point 0 h and were washed after 

3 h, 6 h, 24 h, 48 h or 72 h, respectively. Data are presented as means ± SEM from at least three independent 

experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

To further analyze the fast increase of HuC/D positive cells under DAPT and DAPT+Wnt-3a 

treatment, ReNcell VM cells were differentiated and treated for 1 day instead of 3 days. After 

just 1 day of differentiation a significant increase of HuC/D positive cells was visible when 

treated with DAPT compared to DMSO or treated with DAPT+Wnt-3a compared to DMSO 

as well as DAPT (Figure 19). In contrast, 1 day of differentiation was not sufficient to give 

rise to Tuj1 positive cells and no differences were observable for the marker GFAP and 

S100β (data not shown). 

This underlines that HuC/D is a very early marker of neurogenesis in ReNcell VM cells and is 

useful to predict early progenitor cell fate.  

 

Figure 19: HuC/D positive ReNcell VM cells after 24 h of differentiation under treatment. Flow cytometric 

data showing percentages of cells positive for HuC/D (A) differentiated for 1 day in the presence of HSA,  
Wnt-3a, DMSO, DAPT and DAPT+Wnt-3a. Data are presented as means ± SEM from at least three independent 

experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

Not only is the duration of treatment is important for the differentiation but also the point 

when the treatment starts. Taking this into account, ReNcell VM cells were treated after 18 h, 

24 h and 66 h of differentiation with HSA, Wnt-3a, DMSO, DAPT and DAPT+Wnt-3a until a 

total length of 72 h of differentiation.  

Interestingly, only DAPT+Wnt-3a were able to induce Tuj1 positive cells when treated after 

18 h of differentiation (Figure 20, A). Later in differentiation no regulation is detectable. 

HuC/D positive cells were able to be induced after 18 h and even after 24 h of differentiation 
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(Figure 20, B). In this case, the percentage of positive cells under Wnt-3a treatment was after 

18 h of differentiation as high as after treatment for full 72 h (Figure 18, B). In contrast, 

DAPT and DAPT+Wnt-3a treated cells were induced only up to 15 % instead of 40 % and 

28 % instead of 58 %. Thus, DAPT compared to Wnt-3a needed to act at the beginning of the 

differentiation to develop its whole potential. In contrast, no regulation of GFAP or S100β 

was observable in all time points (Figure 20, C and D).  

In summary, Wnt-3a as well as DAPT displayed a time frame where they were able to 

influence the differentiation of ReNcell VM cells. This time frame starts at the differentiation 

induction and seemed to end at 48 h after differentiation.  

 

 

Figure 20: Time dependency of ReNcell VM cell treatment. Flow cytometric data showing percentages of 

cells positive for Tuj1 (A) HuC/D (B), GFAP (C) and S100β (D) differentiated for 3 days in the presence of 

HSA, Wnt-3a, DMSO, DAPT and DAPT+Wnt-3a. Cells were treated at time point 18 h, 24 h, or 66 h after start 

of differentiation, respectively. Data are presented as means ± SEM from at least three independent experiments. 

*p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

3.4 The mechanism behind the Wnt-3a effect 

Wnt-3a was shown before to modulate different pathways, e.g.Notch and BMP, depended on 

cell type and vicinity (Peignon et al., 2011). In addition, Hübner et al. (2010) showed that the 

activation of the Wnt pathway in ReNcell VM cells by Wnt-3a but also that overexpression of 

stabilized β-catenin could activate Wnt signaling as assessed by target gene analysis. 
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However, β-catenin overexpression was not sufficient to increase neuronal differentiation in 

ReNcell VM cells (Hübner et al., 2010). Moreover, it was not able to modulate Notch target 

genes HES1/HES5 or GFAP (Rayk Hübner, personal communication). These results 

suggested a mechanism resulting in increased neuronal differentiation which is independent of 

β-catenin and lead to the question: which other pathway(s) is/are involved in the Wnt-3a 

mediated modulation of HES1 and HES5, as well as downregulation of GFAP, which are 

accompanied by an increase in neuronal differentiation of ReNcell VM cells?  

To analyze the mechanism behind the Wnt-3a effect and the involved pathways, at first the 

Wnt pathway and its main proteins were tried to be excluded to be essential for the signalling. 

Afterwards the relevance of the Notch, BMP (Bone Morphogenetic Protein) and the 

JAK/STAT3 pathway was analyzed. Wnt ligands were already described to affect the Notch 

and BMP pathway, but STAT3 was only known to be modulated by HES1 and/or HES5 

(Kamakura et al., 2004). 

 

3.4.1 Analysis of the Wnt pathway dependency 

As described before, the effect of Wnt-3a on the Notch target genes and the differentiation of 

the ReNcell VM cells are independent of β-catenin (see 1.3). This leads to the question if the 

effect is only independent of β-catenin or independent of the whole β-catenin dependent Wnt 

pathway. In addition, a crosstalk between Wnt and Notch pathway was already described in 

1999 by Cooper and colleagues. They postulated that Fz/Dvl promotes activity of the Notch 

ligand Delta and inhibits Notch receptor activity in R3 Drosophila melanogaster eyes. In 

2009 Ribeiro et al. described that GSK3β phosphorylation of Notch2 inhibits transcription of 

the Notch target gene HES1. Furthermore, while Wnt signaling inhibits GSK3β, and since 

overexpression of Wnt-1 upregulates HES1, Espinosa et al. (2003) suggested that Notch 

phosphorylation by GSK3β regulates cross-talk between the Notch and Wnt pathways. This 

leads to the suggestion that Wnt-3a may modulate the Notch pathway in ReNcell VM cells via 

Wnt-pathway-proteins upstream of β-catenin. To answer these questions, the impact of 

upstream proteins like GSK3β, LRP6 and Frizzeld were analyzed. 

3.4.1.1 GSK3 dependency 

One of the main points of the Wnt pathway activation is the inhibition of GSK3 by Wnt-3a, 

where the exact mechanism is still under discussion (Metcalfe and Bienz, 2011). There are 

also small molecules available like SB216763 and IM12 which are able to specifically inhibit 
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GSK3 and therefore activating the β-catenin dependend Wnt pathway (Schmöle et al., 2010). 

IM12 was described before by Schmöle et al., 2010. If the Wnt-3a effect depends solely on 

GSK3 these small molecules would be able to mimic the effect.  

Treatment of cells with SB216763 significantly induced the mRNA level of Wnt target gene 

AXIN2 after 3 h and 6 h and after 12 h and 24 h by tendency (Figure 21, A) thus 

demonstrating GSK3 inhibition .While Wnt-3a was able to induce HES1 mRNA level (Figure 

14, A) SB216763 reduced it after 3 h, 8 h and 24 h (Figure 21, B). Interestingly, HES5 was 

induced after 6 h of treatment but reduced after 8 h and 24 h (Figure 21, C). However, GFAP 

was slightly reduced only after 24 h compared to control treated cells (Figure 21, D).  

In summary, SB216763 was able to induce the Wnt pathway as judged by increasing AXIN2 

mRNA level. HES1 was reduced and HES5 was slightly induced at an early time point but 

reduced in later time points, while GFAP was not affected until 24 h after treatment and was 

subsequently marginally reduced.  

 

 

Figure 21: Modulation of genes in ReNcell VM cells by GSK3 inhibition via SB216763. qRT-PCR of 

AXIN2 (A), HES1 (B),HES5 (C) and GFAP (D) in cells treated with SB216763. Data are normalized to DMSO 

treated cells (time point control, indicated as black line). Data are presented as means ± SEM from at least three 

independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 
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As shown before, Wnt-3a was able to induce the neural marker HuC/D and Tuj1 and reduced 

the stem/glial marker GFAP but did not affect the glial marker S100β. To further analyze the 

impact of GSK3, 3 days differentiated ReNcell VM cells were stained for the mentioned 

markers.  

The amount of cells positive for the neural marker HuC/D and Tuj1 of IM12 or SB216763 

treated ReNcell VM cells was not significantly induced but slightly by tendency (Figure 22, A 

and B). Furthermore, there was no difference between the amount of cells positive for GFAP 

treated cells and control cells (Figure 22, D). Strikingly, SB216763 as well as IM12 were able 

to significantly reduce S100β positive cells (Figure 22, C).  

In conclusion, inhibition of GSK3 was not able to mimic the effect of Wnt-3a on 

differentiating ReNcell VM cells.  

 

 

Figure 22: Modulation of ReNcell VM cells by GSK3β inhibitors. Flow cytometric data showing percentages 
of IM12 and SB216763 treated cells positive for HuC/D (A), Tuj1 (B), S100β (C) and GFAP (D) differentiated 

for 3 days in the presence of IM12, SB216763 or DMSO as control. Data are presented as means ± SEM from at 

least three independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 
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3.4.1.2 LRP5/6 dependency 

Low-density lipoprotein receptor-related proteins 5/6 are the best described co-receptors of 

the β-catenin dependent Wnt signaling pathway. They form receptor complexes with Frizzled 

and the ligand Wnt-3a. This interaction is able to be blocked by Dickkopf-related protein 1 as 

shown by Munji et al. (2011) in cortical intermediate progenitors. Therefore, Dkk-1 was used 

to analyze whether Wnt-LRP5/6 interaction would be required to influence HES gene 

regulation. If this effect is independent of LRP5/6, an inhibition by Dkk-1 would not inhibit 

Wnt-3a effects on HES gene expression and vice versa. The Wnt target gene AXIN2 was 

maximally increased in ReNcell VM cells upon 3 h of Wnt-3a treatment (Hübner et al., 2010). 

A concentration of 400 ng/ml of Dkk-1 was chosen, since this concentration appeared to 

efficiently inhibit the Wnt-3a induced AXIN2 upregulation and the increase of cytosolic β-

catenin compared to other concentrations (Kathleen Müller, 2012). Higher concentration 

failed to maximize the effect. Therefore, the cells were differentiated and, after pretreatment 

for 1 h with Dkk-1, treated with Wnt-3a (100 ng/ml) for additional 3 h.  

Wnt-3a treatment induced to a 20-fold increase of AXIN2 transcript levels while Dkk-1 was 

significantly able to inhibit this induction down to 7-fold (Figure 23). In addition, Wnt-3a 

decreased GFAP levels down to 0.7-fold as well as HES5 down to 0.8-fold, while HES1 was 

not significantly affected, but increased by tendency. Strikingly, Dkk-1 mediated inhibition of 

signaling did not affect the downregulating effect of Wnt-3a on HES5 and GFAP. In contrast, 

Wnt-3a +Dkk-1 treatment was able to significantly further downregulate HES5 compared to 

Wnt-3a treatment. 
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Figure 23: Modulation of genes in ReNcell VM cells by Dkk-1 (400 ng/ml). qRT-PCR of AXIN2, GFAP, 

HES1 and HES5 in cells treated for 3 h with 100 ng/ml Wnt-3a or Dkk-1+Wnt-3a. Data are normalized to HSA 

treated cells (time point control, indicated as black line). Data are presented as means ± SEM from at least three 

independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

3.4.1.3 Frizzled dependency 

The Frizzled receptors are one part of the receptor complex which is required for the 

activation of the β-catenin dependent Wnt pathway, but also are involved in β-catenin 

independent Wnt pathways (Kikuchi et al., 2009). The secreted Frizzled related protein 1 

(sFRP1) is able to inhibit the interaction of Wnt-3a to its receptor Frizzled (Wawrzak et al., 

2007). 500 ng/ml was used to inhibit the Wnt-3a derived AXIN2 induction, where higher 

concentrations were not able to maximize the effect, 6 h of treatment was chosen due to the 

fact, that there was the best AXIN2 reduction detectable by sFRP1 (data not shown). Cells 

were differentiated and treated with sFRP1+Wnt-3a (100 ng/ml) for 6 h. 

Wnt-3a induced AXIN2 expression after 6 h of treatment up to 10-fold and this was 

significantly reduced by sFRP1 down to 5-fold (Figure 24). In addition, neither Wnt-3a nor 

sFRP1+Wnt-3a were able to significantly affect the mRNA level of GFAP and HES1 after 6 h 

of treatment, but both decreased GFAP and increased HES1 by tendency. Interestingly, the 

Wnt-3a evoked reduction of HES5 was not significantly affected by sFRP1 but was increased 

by tendency from 0.3-fold to 0.5-fold.  

In summary, sFRP1 was able to reduce the Wnt-3a induced upregulation of AXIN2 but did 

not significantly influence the modulation of GFAP, HES1 or HES5 mRNA levels.  
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Figure 24: Modulation of genes in ReNcell VM cells by sFRP1 (500 ng/ml). qRT-PCR of AXIN2, GFAP, 
HES1 and HES5 in cells treated for 6 h with Wnt-3a or sFRP1+Wnt-3a. Data are normalized to HSA treated 

cells (time point control, indicated as black line). Data are presented as means ± SEM from at least three 

independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

3.4.2 Analysis of the Notch pathway dependency 

As described before, the effect of DAPT on ReNcell VM cells depends on the Notch 

intracellular domain 1 (NICD1). It was further analyzed whether Wnt-3a also depends on 

NICD1. Furthermore, HES1 as well as HES5 were overexpressed to show their relevance in 

the Wnt-3a effect on neuronal differentiation. 

 

3.4.2.1 Notch1 dependency 

To further analyze the impact of the Notch pathway, NICD1 overexpressing cells were treated 

with Wnt-3a.  

NICD1 overexpression reduced the amount of positive cells for the neural marker HuC/D and 

Tuj1 in control as well as in Wnt-3a treated cells (Figure 25, A and B). Interestingly, in 

control treated cells NICD1 overexpression lead to a slightly increase in GFAP positive cells 

compared to control transfected cells. As described above, DAPT was not able to increase 

NICD1 transfected cells positive for neural markers compared to DMSO treated cells. The 

increase of HuC/D positive cells treated with DAPT compared to control might be explained 
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by the fact that not all cells were transfected and the non-transfected-cells were still able to 

respond to DAPT.  

As long as NICD1 was overexpressed, neither DAPT nor Wnt-3a was able to increase 

neurogenesis as judged by Tuj1 positive cells. This led to the suggestion that the DAPT as 

well as Wnt-3a effect on neuronal differentiation depended on the NICD1. 

 

 

Figure 25: NICD1 overexpression in ReNcell VM cells. Flow cytometric data showing percentages of 

pCAGGS-NICD1 transfected cells positive for HuC/D (A), Tuj1 (B), and GFAP (C) differentiated for 3 days in 

the presence of Wnt-3a (100 ng/ml), DAPT (5 µM), or HSA, DMSO as control. Data are presented as means ± 

SEM from at least three independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point 

control. 

 

3.4.2.2 HES5 dependency 

The suggestion that DAPT as well as Wnt-3a effects on neuronal differentiation depend on 

the Notch intracellular domain 1 lead to the question which NICD1 target gene may be 

responsible for the observed effect. Because Kageyama et al. (2008) showed that NICD was 

not able to inhibit neurogenesis without HES1 and HES5. As shown above, NICD1 was able 

to increase HES5 (Figure 12, B). Therefore, HES5 was overexpressed in ReNcell VM cells to 

investigate if HES5 is able to reverse the effects of Wnt-3a and DAPT in the differentiating 

cells.  

HES5 overexpressing ReNcell VM cells were treated with HSA, Wnt-3a, DMSO, and DAPT 

and were compared to GFP transfected cells. Strikingly, overexpression of HES5 efficiently 

inhibited the differentiation of the cells. After 3 days of differentiation the cells displayed 

clearly proliferation morphology and not the typical neuron like morphology with long axons 

and small and defined cell bodies (Figure 26).  
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Figure 26: Overexpression of HES5 in ReNcell VM cells. Phase contrast of 3 days differentiated cells 

transfected with HES5 or GFP as control, respectively. Scale bar 100 µm. 

 

The overexpression of HES5 led to a decrease of Tuj1 as well as HuC/D positive cells 

compared to GFP transfected cells (Figure 27, A and B). In the case of the HuC/D positive 

cells, HES5 not only was able to inhibit the effect of Wnt-3a and DAPT, namly the induction 

of neurogenesis but also reversed this effect (Figure 27, B). Simultaneously, the amount of 

cells positive for Tuj1 under DAPT treatment was also reduced by HES5 overexpression 

(Figure 27, A). Interestingly, HES5 transfected cells positive for GFAP were increased 

compared to GFP transfected cells, but only under Wnt-3a treatment (Figure 27, C). The 

increase of HES5 transfected cells positive for GFAP was also not significant but visibly by 

tendency. The same was true for Tuj1 positive cells under Wnt-3a treatment; they were, in 

this experiment, not significantly increased by Wnt-3a compared to HSA as seen in 

experiments described above. Simultaneously, there were no differences detectable in cells 

positive for S100β (Figure 27, D). 
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Figure 27: HES5 overexpression in ReNcell VM cells. Flow cytometric data showing percentages of hHES5 
transfected cells positive for Tuj1 (A), HuC/D (B), GFAP (C) and S100β (D) differentiated for 3 days in the 

presence of Wnt-3a (100 ng/ml), DAPT (5 µM) or HSA, DMSO as control. Data are presented as means ± SEM 

from at least three independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

In addition, qRT-PCRs were performed to analyze the effects of HES5 on HES1, GFAP and 

MASH1. Overexpression of HES5 in ReNcell VM cells led to a strong, down to 0.1 fold, 

reduction of HES1 mRNA level already 24 h after transfection, which was the time point (0 h) 

of induction of differentiation, until 72 h of differentiation (Figure 28, A). The mRNA level of 

the proneural gene MASH1 was reduced after 0 h up to 72 h as well (Figure 28, C). 

Surprisingly, the level of GFAP mRNA was also reduced by HES5 overexpression at all time 

points (Figure 28, D). This seemed to be in contrast to the flow cytometric data, where the 

amount of GFAP positive cells was increased (Figure 27, C). Overexpression of HES5 was, in 

addition, clearly detectable by the up to 370-fold increase of HES5 mRNA (Figure 28, B) and 

in western blot analysis (Figure 10). 

In summary, HES5 was able to strongly reduce neuronal differentiation which was also 

accompanied by MASH1 mRNA reduction. Interestingly, HES5 was able to reduce HES1 

levels and strongly reduced GFAP mRNA level. 
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Figure 28: Modulation of genes in ReNcell VM cells by HES5 overexpression. qRT-PCR of HES1 (A), 

HES5 (B), MASH1 (C) and GFAP (D) in cells transfected with hHES5. Data are normalized to GFP transfected 

cells (time point control, indicated as black line). Data are presented as means ± SEM from at least three 

independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

3.4.2.3 HES1 dependency 

As described above, NICD1 was able to induce HES5 and slightly reduce HES1 (Figure 12, 

B). In addition, it was shown that the effect of Wnt-3a and DAPT seemed to depend on 

NICD1 as well as HES5. This arose the question what impact HES1 may have on the 

differentiation of ReNcell VM cells and whether HES1 may be a mediator of the effects of 

Wnt-3a and DAPT. To answer this question, HES1 transfected cells were treated with HSA, 

Wnt-3a, DMSO and DAPT as control. GFP transfected cells served as control. 

In general, HES1 overexpression led to a significant reduction of Tuj1 as well as HuC/D 

positive cells compared to GFP control transfected cells (Figure 30, A and B). This reduction 

was not as strong as the reduction caused by HES5 transfected cells (see Figure 27). This fits 

well to the slight inhibition of the differentiation of ReNcell VM cells by HES1 compared to 

HES5 as judged by phase contrast microscopy (Figure 29).  
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Figure 29: Overexpression of HES1 in ReNcell VM cells. Phase contrast of 3 days differentiated cells 

transfected with HES1 or GFP as control, respectively. Scale bar 100 µm. 

 

Interestingly, the number of HES1 transfected cells positive for HuC/D were still able to be 

induced by Wnt-3a as well as DAPT compared to control treated cells (Figure 30, B). Even if 

this induction was not as high as GFP control transfected cells, it led to the suggestion that the 

Wnt-3a and DAPT effect may be independent of HES1. Overexpression of HES1 in 

combination with Wnt-3a treatment led to a significant induction of GFAP positive cells 

compared to GFP transfected and Wnt-3a treated cells (Figure 30, C). In all other treatments, 

an induction was only visible by tendency. HES1, furthermore, significantly induced the 

amount of S100β positive cells in HSA control treated cells (Figure 30, D). This effect was 

not detectable in other treatments.  

 

Figure 30: HES1 overexpression in ReNcell VM cells. Flow cytometric data showing percentages of hHES1 
transfected cells positive for Tuj1 (A), HuC/D (B), GFAP (C) and S100β (D) differentiated for 3 days in the 

presence of Wnt-3a, DAPT or HSA, DMSO as control. Data are presented as means ± SEM from at least three 

independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 
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HES1 overexpression led to a strong increase in HES1 (mRNA level: Figure 31, A; protein: 

Figure 9) and to a reduction of HES5 (Figure 31, B). Despite the fact that HES1 was still 

increased after 72 h the reduction of HES5 was lost after 72 h of differentiation. MASH1 

mRNA level was also decreased by HES1 overexpression but was lost after 72 h of 

differentiation (Figure 31, C). Similar to that, GFAP levels were decreased up to 24 h of 

differentiation but at the level of control treated cells after 72 h (Figure 31, D).  

In summary, HES1 reduced HES5, GFAP and MASH1 transcript levels but after 72 h they 

were no longer regulated by HES1. HES1 furthermore reduced the neuronal differentiation 

and increased S100β positive cells in HSA control treated cells. However, its effects on 

ReNcell VM differentiation were weaker than those observed in HES5 overexpression 

experiments.  

 

 

Figure 31: Modulation of genes in ReNcell VM cells by HES1 overexpression. qRT-PCR of HES1 (A), 

HES5 (B), MASH1 (C) and GFAP (D) in cells transfected with hHES1. Data are normalized to GFP transfected 

cells (time point control, indicated as black line). Data are presented as means ± SEM from at least three 

independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

3.4.3 Analysis of the BMP pathway dependency 

The bone morphogenetic protein pathway is not only known to regulate bone formation, but 

also plays a major role in diverse diseases, during embryonic development and in adult tissue 

homeostasis (Bandyopadhyay et al., 2013). Furthermore, BMP is able to modulate the 
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differentiation of neural stem cells (Song et al., 2011). Nakashima et al. (2005) described an 

inhibition of the BMP target gene ID1 by Wnt-3a treatment in C2C12 cells. In addition, it was 

shown that BMP2 enhance Notch induced transcriptional activation of HES5 in mouse 

neuroepithelial cells (Takizawa et al., 2003). This led to the suggestion that Wnt-3a may be 

able to inhibit the BMP pathway in ReNcell VM cells, thereby potentially regulating the 

differentiation independently of β-catenin.  

 

3.4.3.1 Effect of Wnt-3a on the BMP pathway 

The best described target genes of the BMP pathway are the bHLH transcription factors 

inhibitor of differentiation 1 and 3 (ID1 and ID3; Obayashi et al., 2009). To verify a BMP 

inhibition by Wnt-3a, these target genes were analyzed.  

Wnt-3a treatment of ReNcell VM cells led to a significant reduction of ID1 as well ID3 after 

3 h, 6 h and 8 h (Figure 32, A and B). The reduction was lost after 24 h of treatment on ID1, 

but ID3 was slightly induced after 24 h of Wnt-3a treatment.  

In summary, Wnt-3a was able to reduce the BMP target genes ID1 and ID3 for up to 8 h 

significantly but lost its effect after 24 h of treatment. These data indicated that BMP 

signaling was active in these cells and Wnt-3a was able to inhibit this pathway. 

 

 

Figure 32: Modulation of BMP target genes in ReNcell VM cells by Wnt-3a. qRT-PCR of ID1 (A) and ID3 

(B), in cells treated with Wnt-3a. Data are normalized to HSA treated cells (time point control, indicated as black 

line). Data are presented as means ± SEM from at least three independent experiments. *p<0.05, **p<0.01, *** 

p<0.001 compared to time point control. 

 

3.4.3.2 Inhibition of the BMP pathway 

Due to the fact that Wnt-3a was at least able to reduce ID1 and ID3 up to 8 h after induction 

of differentiation, it was aimed to mimic the Wnt-3a effect by inhibiting the BMP pathway 
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with known inhibitors. In addition, HES5 and GFAP were analyzed to check if the inhibition 

of BMP is able to modulate Notch target genes in the same manner as Wnt-3a. 

There are three well described substances to inhibit the BMP pathway. Noggin binds the 

ligand BMP2, 4 and 7 and therefore inhibits the SMAD1, 5, 8 and MAPK p38 (Yu et al., 

2008). Dorsomorphin inhibits BMP4 induced signaling and does not affect MAPK p38 (Yu et 

al., 2008). SB431542 inhibits the TGF-β signaling pathway and therefore SMAD2 and 3 

(Inman and Hill, 2002).  

 

Noggin 

Noggin (500 ng/ml; Yu et al., 2008) was able to reduce the amount of ID1 mRNA levels 

already after 3 h down to 0,2-fold und up to 24 h of treatment (Figure 33, A). ID3 was also 

reduced however less strongly down to 0,4-fold after 3 h of treatment but similarly up to 24 h 

(Figure 33, B). Interestingly, Noggin reduced HES5 after 3 h of treatment down to 0,8-fold 

afterwards it increased HES5 over to 2-fold after 8 h and 24 h of treatment (Figure 33, C). 

GFAP instead was only faintly downregulated by Noggin after 8 h (Figure 33, D) but no 

regulation was detectable in all other time points. To clarify if Noggin was able to modulate 

the cell fate of ReNcell VM cells the amount of cells positive for the markers Tuj1, HuC/D, 

GFAP and S100β was analyzed. Noggin was not able to increase neurogenesis like Wnt-3a; 

instead it significantly decreased the amount of cells positive for the neural marker HuC/D 

(Figure 33, E). Simultaneously, the marker Tuj1 was reduced by Noggin treatment only by 

tendency (Figure 33, F) and S100β and GFAP were not affected (Figure 33, G and H).  

 

Figure 33: Modulation of ReNcell VM cells by Noggin. A-D: qRT-PCR of ID1 (A), ID3 (B),HES5 (C) and 

GFAP (D) in cells treated with Noggin. Data are normalized to HSA treated cells (time point control, indicated 

as black line). E-H: Flow cytometric data showing percentages of treated cells positive for HuC/D (E), Tuj1 (F), 
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S100β (G) and GFAP (H) differentiated for 3 days in the presence of Noggin or HSA as control. Data are 

presented as means ± SEM from at least three independent experiments. *p<0.05, **p<0.01, *** p<0.001 

compared to time point control. 

 

Dorsomorphin alias Compound C 

Dorsomorphin (1 µM; Yu et al., 2008) was able to reduce ID1 in all analyzed time points to 

0,4-fold (3 h of treatment) and to 0,7-fold at 8 h of treatment (Figure 34, A). In comparison, 

ID3 was similar down regulated after 3 h and 6 h of treatment but Dorsomorphin lost its 

impact on ID3 after 8 h and 24 h (Figure 34, B). Interestingly, neither HES5 nor GFAP was 

affected by Dorsomorphin treatment (Figure 34, C and D). But there was a significant 

reduction of HuC/D was well as Tuj1 positive cells under Dorsomorphin treatment (Figure 

34, E and F). The numbers of cells positive for the marker S100β and GFAP were not affected 

(Figure 34, G and H). 

 

 

Figure 34: Modulation of ReNcell VM cells by Dorsomorphin. A-D: qRT-PCR of ID1 (A), ID3 (B), HES5 

(C) and GFAP (D) in cells treated with Dorsomorphin. Data are normalized to DMSO treated cells (time point 

control, indicated as black line). E-H: Flow cytometric data showing percentages of treated cells positive for 

HuC/D (E), Tuj1 (F), S100β (G) and GFAP (H) differentiated for 3 days in the presence of Dorsomorphin or 

DMSO as control. Data are presented as means ± SEM from at least three independent experiments. *p<0.05, 

**p<0.01, *** p<0.001 compared to time point control. 

 

SB431542 

The impact of SB431542 on ReNcell VM cells was analyzed by FACS, to investigate the 

main effect: the modulation of differentiation. SB431542 slightly reduced the amount of cells 
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positive for HuC/D and Tuj1 by tendency (Figure 35, A and B) but did not affect S100β or 

GFAP (Figure 35, C and D).  

In summary, Wnt-3a as well as Noggin and Dorsomorphin were able to inhibit the BMP 

pathway alike. But the inhibition pattern of Wnt-3a and Dorsomorphin, with the loss of ID3 

inhibition after 24 h, was equal. Nevertheless, neither Noggin nor Dorsomorphin nor 

SB431542 were able to increase neurogenesis like Wnt-3a or reduce GFAP positive cells. But 

interestingly, Noggin as well as Dorsomorphin was able to reduce cells positive for HuC/D. 

 

 

Figure 35: Modulation of ReNcell VM cells by SB431542. Flow cytometric data showing percentages of 

SB431542 treated cells positive for HuC/D (A), Tuj1 (B), S100β (C) and GFAP (D) differentiated for 3 days in 

the presence of SB431542 or DMSO as control. Data are presented as means ± SEM from at least three 
independent experiments. *p<0.05, **p<0.01, *** p<0.001 compared to time point control. 

 

3.4.4 Analysis of the JAK/STAT3 pathway dependency 

As described above, one of the effects of Wnt-3a and DAPT was the modulation of the 

neuronal differentiation and GFAP positive cells in ReNcell VM cells. The neuronal 

differentiation and GFAP are both regulated by transcription factors like HES5. Another well 

described transcription factor, which regulates GFAP together with HES5 (Nakashima et al., 

1999, Kamakura et al., 2004) and therefore is able to regulate neurogenesis, is the signal 

transducer and activator of transcription 3 (STAT3). In 2006 Hao and colleagues 

demonstrated that Wnt-3a was able to upregulate STAT3 in mouse embryonic stem cells. 

Furthermore, Fragoso et al. (2012) identified Wnt-3a as an activator of STAT3, where an 

upregulation of phosphorylated STAT3 at Tyr 705, in the retinal pigment epithelium ARPE-

19 cell line was abserved. This led to the suggestion that Wnt-3a could act through the 

activation of pSTAT3. 
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3.4.4.1 Activation and inhibition of pSTAT3 in ReNcell VM cells 

The first step to show an active STAT3 signaling pathway in ReNcell VM cells was to detect 

both the total STAT3 and the active form of STAT3, pSTAT3; at TYR705. Due to the fact, 

that STAT3 is a transcription factor which forms dimers and subsequently translocates into 

the nucleus (Darnell et al., 1994) the second step was to detect nuclear pSTAT3. This 

activation and translocation can be activated with the small molecule AICAR (Zang et al., 

2008) and be inhibited by Jak-Inhibitor-1 (Pedranzini et al., 2006). 

In total cell lysates of differentiating ReNcell VM cells was a strong STAT3 as well as a faint 

pSTAT3 signal detectable (Figure 36, A). Furthermore, a pSTAT3 signal was slightly 

inducible by AICAR while STAT3 was not affected. Simultaneously, a modulation of STAT3 

or pSTAT3 using the Jak-Inhibitor-1 was not detectable in total cell lysates (Figure 36, A). 

Therefore, nuclear levels of pSTAT3 and STAT3 were analyzed. There were no differences 

detectable in STAT3 levels (data not shown). But after 30 min of AICAR treatment was an 

increase of pSTAT3 detectable (Figure 36, B) while Jak-Inhibitor-1 decreased the amount of 

pSTAT3 by tendency.  

 

 

Figure 36: pSTAT3 and STAT3 in ReNcell VM cells. Western blot analysis of pSTAT3 and STAT3 in 

ReNcell VM cells in differentiation A: Western blot analysis of total protein lysates under 30 min H2O, AICAR, 

DMSO or Jak-Inhibitor-1 (Jak-I-1) treatment. B: Quantification of western blot analysis of nuclear pSTAT3 in 

cells treated for 30 min with H2O, AICAR, DMSO or Jak-Inhibitor-1 (Jak-I-1). Data are normalized to Lamin 

A/C (control set to 100 %). Data are presented as means ± SEM from three independent experiments. 

 

STAT3 together with HES5 is able to induce GFAP and inhibit neurogenesis in rat and mouse 

NSCs (Gu et al., 2005, Cao et al., 2010). This led to the question, what effect a treatment with 

AICAR and Jak-Inhibitor-1 may have on differentiating ReNcell VM cells.  

Strikingly, AICAR reduced the amount of cells positive for the neuronal marker HuC/D 

(Figure 38, A) and Tuj1 (Figure 38, B) drastically from 7 % of control cells, down to less than 
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1 %. Simultaneously, GFAP positive cells increased from 75 % up to 90 % (Figure 38, D), 

while S100β was not affected (Figure 38, C). Interestingly, treatment with Jak-Inhibitor-1 

resulted in no significant changes in the amount of cells positive for the analyzed markers, 

however neuronal markers were reduced by tendency (Figure 38, A to D). Phase contrast 

microscopy analysis revealed undifferentiated cells as assessed by cell morphology of 

ReNcell VM cells compared to control cells which fits well with the observed reduction of 

neuronal markers (Figure 37). In contrast, cells treated with AICAR revealed no differences in 

their morphology compared to control cells (data not shown). 

 

 

Figure 37: Treatment of ReNcell VM cells with Jak-Inhibitor-1 (Jak-I-1). Phase contrast of 3 days 

differentiated cells treated with 4 µM Jak-Inhibitor-1 or DMSO as control, respectively. Scale bar 100 µm. 

 

 

Figure 38: Modulation of ReNcell VM cells by AICAR and Jak-Inhibitor-1. Flow cytometric data showing 

percentages of AICAR or Jak-Inhibitor-1 treated cells positive for HuC/D (A), Tuj1 (B), S100β (C) and GFAP 

(D) differentiated for 3 days in the presence of AICAR, Jak-Inhibitor or H2O or DMSO as control. Data are 
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presented as means ± SEM from at least three independent experiments. *p<0.05, **p<0.01, ***p<0.001 

compared to time point control. 

 

3.4.4.2 Does the Wnt or Notch pathway modulate pSTAT3? 

The phosphorylation and translocation of transcription factors is fast and delicate. The 

analyzed time point was chosen by the fact that after 6 h Wnt-3a as well as DAPT were able 

to modulate GFAP levels. Analysis of the pSTAT3 level in nuclear cell extracts of ReNcell 

VM cells treated with Wnt-3a detected no significant changes compared to control cells 

(Figure 39). Treatment with DAPT instead led to a significant decrease of pSTAT3 compared 

to DMSO from 100 % down to 32 %. A similar downregulation was observable by treatment 

with DAPT+Wnt-3a (Figure 39). 

 

 

Figure 39: Modulation of pSTAT3 by Wnt-3a and DAPT. Western blots of nuclear pSTAT3 in cells treated 

for 6 h with HSA, Wnt-3a, DMSO, DAPT or DAPT+Wnt-3a were quantified. Data are normalized to Lamin A/C 

(HSA and DMSO control set to 100 %). Data are presented as means ± SEM from three independent 

experiments. *p<0.05, **p<0.01, ***p<0.001 compared to time point control. 

 

Since DAPT was able to reduce pSTAT3, but Wnt-3a had no effect and AICAR was able to 

induce pSTAT3, it was analyzed whether AICAR was able to rescue the effect of DAPT on 

neurogenesis.  

ReNcell VM cells were treated with DAPT and DAPT+AICAR for 3 days of differentiation. 

Afterwards, the amount of positive cells for the marker HuC/D, Tuj1, GFAP, and S100β was 

analyzed. Interestingly, AICAR was able to rescue the neuronal induction of DAPT. It 

reduced the amount of cells positive for HuC/D from 33 % down to 3 % (Figure 40, A) and 
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the Tuj1 positive cells from 20 % down to 1 % (Figure 40, B). Simultaneously, AICAR in 

combination with DAPT increased the amount of cells positive for S100β compared to DAPT 

alone (Figure 40, C). In addition, AICAR rescued the effect of DAPT on GFAP positive cells 

and increased the amount of positive cells up to 98 % from 70 % of DAPT or 85 % of DMSO 

treated cells, respectively (Figure 40, D).  

In summary, DAPT was able to reduce nuclear pSTAT3 levels while Wnt-3a had no effect on 

pSTAT3 levels. Furthermore, AICAR was able to effectively inhibit the effect of DAPT on 

neuronal differentiation and on the numbers of cells positive for GFAP.  

 

Figure 40: Modulation of ReNcell VM cells by AICAR and DAPT. Flow cytometric data showing 

percentages of treated cells positive for HuC/D (A), Tuj1 (B), S100β (C) and GFAP (D) differentiated for 3 days 

in the presence of AICAR+DAPT or H2O or DMSO as control. Data are presented as means ± SEM from at least 

three independent experiments. *p<0.05, **p<0.01, ***p<0.001 compared to time point control. 

 

3.5 Induced pluripotent stem cell derived neural progenitor cells (iPS-

NPCs) 

Signaling pathways are known to have different outcomes depending on the cellular context 

and time dependency. To verify the results observed using ReNcell VM cells and to clarify 
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that it is not a cell type depending phenomenon, another cell model was used. This model is 

based on neural progenitor cells (NPCs) which were derived from induced pluripotent stem 

cells (iPSC). These cells do express the same neural markers like ReNcell VM cells, Nestin 

and SOX2 (Trilck et al., 2013), and are able to differentiate into neuronal cells. Therefore, this 

cell line was ideal to verify the results obtained using the human neural progenitor cell line 

ReNcell VM.  

 

3.5.1 The Notch pathway in iPS-NPCs 

To demonstrate active Notch pathway in iPS-NPCs, DAPT was used to inhibit the Notch 

pathway. Similar to the ReNcell VM cell treatment, iPS-NPCs were treated once after 

induction of differentiation with 5 µM DAPT and HES1/HES5 mRNA levels were analyzed 

by qRT-PCR after 3 h, 6 h and 24 h. These time points were chosen because the first 24 h of 

differentiation seemed to be most important for the cell fate at least in ReNcell VM cells. 

DAPT was able to reduce the HES1 (Figure 41, A) as well as the HES5 (Figure 41, B) mRNA 

levels. Strikingly, DAPT was able to reduce HES5 obviously more potent than HES1 levels, 

which was also observable in ReNcell VM cells (Figure 11). In the analyzed time points in 

NPCs no MASH1 or GFAP mRNA levels were detectable.  

 

 

Figure 41: Inhibition of the Notch pathway in iPS-NPCs. qRT-PCR of HES1 (A) and HES5 (B), in cells 

treated with DAPT. Data are normalized to DMSO treated cells (time point control, indicated as black line). Data 

are presented as means ± SEM from at least three independent experiments. *p<0.05, **p<0.01, ***p<0.001 

compared to time point control. 

 

3.5.2 The effect of Wnt-3a in differentiating iPS-NPCs 

As described before AXIN2 is one of the main target genes of the Wnt signaling pathway, 

therefore it was used to confirm the activation of the Wnt pathway in NPCs upon Wnt-3a 
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treatment. Furthermore, the effect of Wnt-3a on the Notch target genes HES1 and HES5 was 

analyzed. 

Wnt-3a was able to significantly increase AXIN2 in iPS-NPCs (Figure 42, A) as well as in 

ReNcell VM cells (Hübner et al., 2010). Likewise it induced HES1 mRNA level after 3 h and 

6 h (Figure 42, B) while HES5 levels were decreased after 6 h of treatment (Figure 42, C). 

Notably, HES1 induction was, compared to ReNcell VM cells, remarkably stronger and HES5 

downregulation less prominent. Regrettably the standard deviations in some time points were 

very high. In addition, Wnt-3a treatment led to an increase of the active form of β-catenin 

(non-phosphorylated at SER33/37/THR41) in total cell lysates analyzed via western blot 

(Figure 42, D). Thus, Wnt-3a was able to induce the β-catenin dependent signaling pathway, 

which led to an increase of active β-catenin and afterwards an induction of AXIN2. 

In summary, Wnt-3a was able to activate the β-catenin dependent Wnt pathway and induced 

HES1 and reduced HES5 mRNA levels after 6 h of treatment. 

 

 

Figure 42: Activation of the Wnt pathway and modulation of Notch target genes by Wnt-3a in iPS-NPCs. 

qRT-PCR of AXIN2 (A), HES1 (B) and HES5 (C) in cells treated with Wnt-3a (100 ng/ml). Data are 

normalized to HSA treated cells (time point control, indicated as black line). Data are presented as means ± SEM 

from at least three independent experiments. *p<0.05, **p<0.01, ***p<0.001 compared to time point control. D: 

Western blot analysis of active non-phospho-β-catenin (n-p-β-catenin) under 6 h of Wnt-3a treatment. 
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3.5.3 The Wnt-3a and DAPT effect in the differentiation of iPS-NPCs 

To verify the ReNcell VM cell results, iPS-NPCs were treated in combination with  

Wnt-3a plus DAPT and were compared to DAPT alone to illustrate the additive effect of Wnt-

3a even to DAPT. Therefore the cells were treated once at the induction of differentiation 

with substances and the medium was changed every 48 h. In addition, the effects of Wnt-3a 

and DAPT treatment on the cell fate of iPS-NSCs were analyzed by detecting cells positive 

for the neuronal marker HuC/D, the mature glial marker S100β and the stem cell/glial marker 

GFAP. In the case of iPS-NPCs, GFAP has to be seen as a glial marker, in contrast to ReNcell 

VM cells, due to the fact that neither GFAP positive cells were detectable nor GFAP mRNA 

levels via qRT-PCR in proliferating cells (data not shown).  

As described before, HES1 was reduced upon DAPT treatment, but could be induced by Wnt-

3a+DAPT compared to DAPT alone after 3 h and 6 h of treatment (Figure 43, A). There was 

no Wnt-3a+DAPT induced regulation detectable after 24 h of treatment compared to DAPT 

alone, which was the same pattern as with Wnt-3a treatment alone (Figure 42, B). The double 

treatment with Wnt-3a+DAPT compared to DAPT alone had its most prominent effect on 

HES5 mRNA level after 6 h of treatment (Figure 43, B). Which was the same time point were 

Wnt-3a alone was able to reduce HES5 most of all. Interestingly, Wnt-3a only in combination 

with DAPT was able to reduce HES5 after 3 h and 24 h significantly compared to DAPT 

single treatment, while Wnt-3a alone was not able to reduce it compared to HSA (Figure 42, 

C). DAPT as well as Wnt-3a+DAPT were able to significantly reduce the amount of cells 

positive for the glial marker GFAP compared to DMSO (Figure 43, E). But the effect of 

DAPT and Wnt-3a+DAPT was most prominent in S100β positive cells (Figure 43, D). S100β 

was significantly reduced by Wnt-3a+DAPT down to 20 % compared to DAPT treated cells 

(30 %) or DMSO treated cells (47 %). A significant reduction of S100β upon Wnt-3a 

treatment was not detectable but a tendency was observable. Surprisingly, there were no 

differences of HuC/D positive cells detectable (Figure 43, E). 

In summary, Wnt-3a alone was not able to significantly modulate the fate of differentiating 

iPS-NPCs. But Wnt-3a+DAPT induced HES1 while HES5 was reduced compared to DAPT. 

In addition the double treatment was able to reduce the glial marker GFAP and S100β 

significantly compared to DMSO; whereas the already high amount of HuC/D positive cells 

was not changed. 

 



Results  81 

 
 

 

Figure 43: Modulation of genes in iPS-NPCs. A-B: qRT-PCR of HES1 (A) and HES5 (B) in cells treated with 

DAPT+Wnt-3a. Data are normalized to DAPT treated cells (time point control, indicated as black line). C-E: 

Flow cytometric data showing percentages of treated cells positive for GFAP (C), S100β (D) and HuC/D (E) 
differentiated for 18 days in the presence of Wnt-3a, DAPT, DAPT+Wnt-3a or DMSO or HSA as control. Data 

are presented as means ± SEM from at least three independent experiments. *p<0.05, **p<0.01, ***p<0.001 

compared to time point control. 
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4 Discussion 

The most challenging diseases of humankind are the neurodegenerative diseases, since 

degeneration of neurons is irreversible and often lethal. Currently, we are not able to cure 

diseases like stroke or spinal cord injuries. A promising approach is the stem cell therapy. But 

at the moment there is, due to the fragmentary knowledge of differentiation of human neural 

stem and progenitor cells, no successful therapy availably (Martino and Pluchino, 2006).  

Differentiation of NPCs is controlled by a multitude of different pathways and their crosstalk, 

which regulates the neurogenesis as well as gliogenesis. Understanding these mechanisms 

will definitely provide the basis for directing differentiation of human NPCs for clinical 

applications. However, most of the knowledge is based on murine models and derived cell 

systems. Therefore, the cells of choice for identifying the pathways underlying neuronal 

differentiation are human neural progenitor cells like ReNcell VM cells, which have two 

defining properties: self-renewal and multipotentiality. These cells have the ability to 

differentiate into multiple neuronal cell types. ReNcell VM cells are a v-myc retrovirally 

immortalized human cell line and were derived from the ventral midbrain of a 10-week old 

male fetus (Donato et al., 2007). This cell line is able to differentiate after 3 days into S100β 

positive astrocytes and into HuC/D and Tuj1 positive neurons. Furthermore, proliferating cells 

express the neuronal marker Nestin and SOX2 as well as GFAP. 

The glial fibrillary acidic protein (GFAP) belongs to the intermediate filaments which are 

regulated developmentally and tissue-specific. It was mainly described as a marker protein for 

mature astrocytes (Gomes et al., 1999). However, recent findings reveal GFAP, in addition, as 

a marker for neural stem cells. For example Garcia et al., 2004 clearly showed that GFAP-

expressing progenitors are the principle source of constitutive neurogenesis in adult mouse 

forebrain. Furthermore, GFAP gene deletion seems not to have a distinct effect on 

neurogenesis or gliogenesis in mice (Gomi et al., 1995, Pekny et al., 1995). In the here used 

ReNcell VM cells GFAP is already expressed in proliferation and therefore cannot 

exclusively be seen as a mature astroglial marker. On this account GFAP was used as a 

marker for neural stem and progenitor cells.  

 

4.1 Generation of pCAGGS-hHES vectors 

The generation of pCAGGS-hHES vectors was successful, but due to the fact that at the 

beginning of this work the hHES proteins were not detectable in western blot analysis, it was 
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tried to add a HA-tag to the hHESs to facilitate detection. At first, expression vectors with an 

N-terminal tag were produced, because Kamakura et al. (2004) were able to overexpress N-

terminal tagged GST-HES fusion proteins in mouse E13 neuroepithelia cells. Afterwards, 

good working antibodies were obtained and the protein levels were again analyzed by western 

blot, but HA-hHES failed to be higher expressed than non-tagged vectors in ReNcell VM 

cells. While pCAGGS-HA-hHES5 was able to verify the protein size of hHES5 (Figure 49), 

hHES1 failed to be expressed using pCAGGS-HA-hHES1 (Figure 48). It is possible that the 

HA-tag inhibits the correct HES1 folding subsequently inducing its rapid degradation and 

therefore was not visible in western blot analysis.  

 

4.2 The Notch pathway in ReNcell VM cells 

To activate the Notch pathway the Notch transmembrane receptor has to be cleaved at two 

different sites. One is located at the outside of the membrane and releases the Notch 

extracellular domain (S2-cleavage) and the second is located at the inside of the membrane 

(S3-cleavage), which releases the Notch intracellular domain (NICD). This NICD can 

translocate to the nucleus and induce the transcription of the target genes like HES1 and 

HES5. There are 4 described Notch receptors in mammals and each release a different 

intracellular domain (1-4), in addition, NICDs are acting context depended (Bay, 2006). In 

human esophageal keratinocytes it was indicated, that NICD1 siRNA is able to downregulate 

HES5 mRNA levels (Ohashi et al., 2010). While Breunig et al. (2007) were able to classify 

NICD1 as an important Notch intracellular domain in GFAP positive mouse hippocampal 

cells, there is no such classification for human neural progenitor cells.  

Detection of the Notch intracellular domain 1 in differentiating ReNcell VM cells via western 

blot (Figure 11, B) suggested a regulatory role for NICD1 in human neural progenitor cells. 

This suggestion was supported by the activation as well as inhibition of NICD1 and its effect 

on neurogenesis. Precisely, NICD1 overexpression significantly reduced the amount of cells 

positive for neuronal markers (HuC/D and Tuj1; Figure 12, C and D). In contrast, the known 

Notch inhibitor DAPT increased the amount of cells positive for neuronal markers and 

decreased the amount of GFAP positive cells (Figure 12). Reduction of Notch target genes 

HES1/HES5 upon pharmacological inhibition of Notch signaling using DAPT (Figure 11) 

revealed that Notch signaling is active in ReNcell VM cells and controls neuronal 

differentiation. This was described before in other cell systems like hESC-derived NESs by 

Woo et al. (2009) and Borghese et al. (2010). 
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DAPT is a small molecule which is able to inhibit a variety of γ-secretases. Therefore, it 

inhibits not only the release of the Notch intracellular domain but also affects other proteins, 

which leads to multifarious ramifications. On that account, a rescue experiment verified the 

specific Notch depended effect. In this experiment the induction of neurogenesis by DAPT 

was rescued by overexpression of NICD1 (Figure 12). Simultaneously, the reduction of 

GFAP positive cells by DAPT was also rescued by NICD1 overexpression. Over all, DAPT 

reduced the mRNA level of the Notch target genes HES1 and HES5 significantly. 

Interestingly, HES5 was stronger affected than HES1 (Figure 11). This phenomenon has been 

shown before by Nelson et al. (2007) in chicken E4.5 retinal explants, where DAPT reduced 

HES5 levels (15-fold) more than HES1 levels (2-fold). Furthermore, Hartl et al. (2008) 

revealed that in mouse E13.5 (peak of neurogenesis) Notch1 protein and ICD were 

downregulated in the same magnitude like HES5, while HES1 was upregulated. In contrast, 

the activation of the Notch pathway by overexpression of NICD1 led not only to an augment 

of NICD1 but also induced the expression of HES5 while HES1 was decreased (Figure 12). 

This demonstrates a clear regulation of HES5 transcript levels by NICD1, but arises the 

question if NICD1 alone regulates HES1. A similar observation was made by Haupt et al. 

(2012), where the introduction of NICD1 into mouse and human neural stem cells resulted in 

a higher increase of HES5 than HES1. In addition, it was shown before that HES1 is not 

solely regulated by Notch (Kageyama et al., 2008). Moreover it is able to be modulated by 

other pathways (for example Shh; Wall et al., 2009) and by basic helix loop helix 

transcription factors, for example HES5 or itself (Takebayashi et al., 1994, Kageyama et al., 

2009). In contrast, Wu et al., 2002 showed a downregulation of HES5 by HES1 

overexpression in rat E14.5 spinal cord cells, which underlines a bilateral interaction.  

This work shows that NICD1 and DAPT, and therefore Notch, not only regulate the target 

genes HES1 and HES5 but also the GFAP and the proneural gene MASH1 (ASCL1; Figure 

11 and Figure 12). In addition, a clear downregulation of GFAP, on mRNA level as well as in 

FACS analysis, by DAPT and the rescue of the protein level by NICD1 overexpression were 

observed. Strikingly, the regulation of HES1 as well as HES5 by DAPT is very fast, within 

2 h, while GFAP is significantly inhibited not until 12 h (Figure 11). This suggests a direct 

regulation of HES but not a direct regulation of GFAP. The temporal delay suspects a direct 

regulation of HES, which in turn leads to a regulation of GFAP by HES. This assumption was 

confirmed in E14.5 rat glial restricted precursors by Wu et al. (2002) and in primary mouse 

neuroepithelial cells by Kamakura et al. (2004) as well as in mouse mesencephalic neural 



Discussion  85 

 
 

crest cells by Ijuin et al. (2008). In contrast, Ge et al. (2002) professed a direct regulation of 

GFAP by CSL (RBP-J; CBF1/Su(H)/Lag-1) in rat cortical NPCs, but simultaneously 

predicted a cell context dependent mechanism of GFAP regulation. So it is possible, that 

Notch can activate GFAP by a direct binding of CSL to the GFAP promoter in rat cortical 

NPCs but not directly in human fetal ventral midbrain derived ReNcell VM cells.  

There is a variety of proneural genes in neural progenitors known to be negatively regulated 

by HES, like MASH1 (ASCL1), Neurogenin 1, and Neurogenin 2. These genes are known to 

drive NPCs to a neuronal differentiation (Castella et al., 1999, Kageyama et al., 2009). In 

ReNcell VM cells only MASH1 mRNA level was able to be detected via qRT-PCR, 

Neurogenin 1 and 2 levels could not be quantified due to very low mRNA levels (data not 

shown). The time delay between MASH1 regulation and the start of DAPT treatment (6 h; 

Figure 11) suggests an indirect regulation of MASH1 by HES. Precisely, HES1 and HES5 

were described to inhibit MASH1 function by competitively binding to its heterodimeric 

bHLH partners E12 and E47 (Nakashima et al., 2001). In contrast, Kageyama et al. (2008) 

reckoned a direct binding of HES factors to MASH1, which leads to heterodimers who were 

not able to bind DNA. In both ways a reduction of HES leads to an augment of free and 

therefore active MASH1 which in turn can drive NPCs in a neuronal differentiation. 

 

4.3 The effect of Wnt-3a treatment and Notch inhibition in the 

differentiation of ReNcell VM cells 

Wnt-3a was previously known as a classical “canonical” (β-catenin dependent-) Wnt pathway 

ligand. In this “canonical” pathway Wnt-3a binds to the receptor Frizzeld and to the co-

receptor LRP6 to inhibit the destruction complex and stabilizes β-catenin (Gordon and Nusse 

2006; Angers and Moon 2009). But Avila et al. (2010) detected that Wnt-3a can also activate 

the “non-canonical” Ca
2+

 dependent pathway in mature hippocampal rat neurons.  

Our working group was able to show, that Wnt-3a activates the β-catenin dependent Wnt 

pathway (Hübner et al., 2010, Mazemondet et al., 2011) as well as (the β-catenin 

independent) Ca
2+

 pathway (personal communication: V. Talabatulla) in ReNcell VM cells. In 

addition, Wnt-3a was able to increase the neuronal differentiation of ReNcell VM cells, 

shown in Wnt-3a overexpressing cells and cells treated with recombinant protein. In detail, 

Wnt-3a augmented HuC/D and Tuj1 positive cells, while stabilized β-catenin failed to mimic 

this effect (Hübner et al., 2010). This led to the suggestion of a β-catenin independent effect 

of Wnt-3a on ReNcell VM cells. In this work, the induction of the neuronal differentiation by 
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treatment with recombinant Wnt-3a was confirmed (Figure 16). In addition, a reduction of 

GFAP was detectable, while S100β was not affected (Figure 16). Similar results were 

detected via Wnt-3a transfection, where the transcript levels of the stem cell marker Nestin 

were reduced by Wnt-3a overexpression but not by overexpression of S33Y, the stabilized 

form of β-catenin (Hübner et al., 2010). This suggests that Wnt-3a increases the neuronal 

differentiation by reducing the stem-cell-ness of ReNcell VM cells and therefore pushing the 

cells to differentiation.  

Simultaneously, Wnt-3a modulated the Notch target genes HES1 and HES5. As outlined 

above, HES genes are known to regulate neurogenesis as well as gliogenesis in a plurality of 

different cell models (Ohtsuka et al., 2001; Wu et al., 2002; Kageyama et al., 2008). Precisely, 

HES5 was downregulated after 3 h up to 24 h with a short period without a significant 

downregulation at 8 h and 12 h of treatment (Figure 14). In contrast, HES1 was upregulated in 

early time points (2 h, 6 h and 8 h) and not significantly regulated in later time points (Figure 

14). Compared to Hirsch et al. (2007), where the HES5 mRNA levels were regulated in the 

same way, while HES1 levels were decreased after 24 h-treatment with Wnt-3a in neonatal 

mouse cortical neural progenitors. The differences may be occurring due to the source of the 

cell lines and the different cell contexts. Furthermore, HES1 is known to be modulated by 

different pathways such as the Wnt signaling pathway in a cell context dependent manner 

(Peignon et al., 2011), this interaction may cause the differential regulation. While Jörgi et al. 

(2002) described, that it is possible that differentiation is initiated by a short-lived 

upregulation of HES1 (in PC12 cells), DAPT treatment, which induced a fast and strong 

downregulation of HES1, clearly resulted in a marked increase in neuronal differentiation. 

This displays that the short induction of HES1 is not mandatory for the differentiation in 

ReNcell VM cells. But the strong, fast and consistent modulation of HES5 led to the 

suggestion, that it is directly regulated by Wnt-3a and is important for the neural 

differentiation. Furthermore, it seems to be sufficient to downregulate HES5 for 24 h to 

influence the differentiation as seen by Wnt-3a treatment.  

The mRNA level of GFAP was significantly downregulated by Wnt-3a after 6 h (Figure 14, 

C). This short time delay of 6 h may be due to an indirect regulation of GFAP. As outlined 

before, GFAP is in the majority of cases directly upregulated by HES5 and only in a second 

plain by Wnt-3a. But compared to the HES5 mRNA levels, GFAP levels did not get back to 

control levels after 24 h, instead, they kept downregulated. In sum, these data show that Wnt-

3a induces a temporary HES5 downregulation which in consequence potentially leads to a 
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reduction of GFAP. This effect may be caused by a disruption of the HES oscillation. It is 

known, that the oscillation of HES genes is important such as for a functional segmentation 

clock, but also occurs in the proliferation and differentiation of stem cells (Kageyama et al., 

2007, Kageyama et al., 2012). In addition, Nakaya et al. (2005) described Wnt-3a as a 

modulator of this segmentation clock, by regulating the Delta/Notch pathway. But in 

comparison, DAPT was not able to reduce GFAP in a stronger way than Wnt-3a, despite it 

had a stronger effect on HES5 mRNA levels at all-time points. This suggests that HES5 may 

be a mediator of the Wnt-3a effect but does not solely regulate GFAP, which is also 

observable by HES5 overexpression where GFAP mRNA levels were reduced (Figure 27). It 

is also possible, that the disruption of the putative HES5 oscillation led to a more prominent 

effect when it occurs at an early time point (up to 24 h) and when the oscillation is restored 

after 24 h. To further analyze the effect of the HES oscillation on differentiation it would be 

needed to do single cell analysis. Due to the fact, that ReNcell VM cells are not synchronized, 

an oscillation would likely not be detected by total mRNA or protein level analysis.  

Interestingly, MASH1 significantly increases after 24 h of Wnt-3a treatment, when HES1 is 

no longer upregulated but HES5 displayed its strongest downregulation (Figure 14). On the 

first glance this would suggests a HES5 dependent regulation of MASH1 and not a HES1 

dependent regulation, as it was described by Kageyama et al. (2008). But Fischer et al. (2007) 

reported a model in which HES1 is able to be an activator of MASH1 by binding to the 

transcriptional co-factor CBP or, in contrast, be a repressor by binding to the transcriptional 

co-factor TLE. The fact that MASH1, HES1 and HES5 were stronger affected by DAPT than 

by Wnt-3a, leads to the suggestion that MASH1 is a direct target of HES and, while HES is a 

target of Wnt-3a, only an indirect target of Wnt-3a. In this case, it is not possible to 

discriminate which HES regulates MASH1 or if both are necessary. Further analysis with a 

specific knockdown of HES1 and/or HES5 may reveal an answer to that question. 

Unfortunately, a knockout of one of the two HES genes in mice did not lead to a phenotype, 

only double knockout mice exhibit premature neurogenesis (Hatakeyama et al., 2004), which 

may be due to a potential compensatory effect.  

While Wnt-3a is able to modulate Notch target genes and DAPT is more potent to do that, it 

arises the question if it is able to act in addition to DAPT. A direct regulation of Notch by 

Wnt-3a is not probabilistic to be the solely modulator of the “Wnt-3a-effect” on neuronal 

differentiation, because Wnt-3a was able to modulate the Notch target genes in reverse 

directions and GFAP in a more secular way than DAPT. Therefore, the cells were treated in 
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combination with Wnt-3a and DAPT and were compared to DAPT single treatment. This 

method visualizes the additive effects of Wnt-3a on target genes compared to DAPT (Figure 

15). Strikingly, Wnt-3a was still able to upregulate HES1 mRNA level after 2 h of treatment 

despite the downregulation of HES1 using DAPT. In total, HES1 mRNA was 3-fold 

upregulated compared to DAPT single treatment, respectively, around 1.5-fold compared to 

HSA/DMSO. But after 6 h and 48 h, Wnt-3a reduced the HES1 mRNA level even further 

than DAPT alone. So there is an additive effect of Wnt-3a on HES1 mRNA detectable, but its 

effect seems to be time dependent. In contrast, the downregulation of HES5 mRNA was 

further decreased by Wnt-3a, compared to DAPT alone, in nearly all time points analyzed. 

This shows a more distinct impact of Wnt-3a on HES5 than on HES1 mRNA levels. Together 

with the observation that DAPT had also a more potent effect on HES5 than on HES1, HES5 

seems to be straighter regulated than HES1 in differentiating ReNcell VM cells. 

The GFAP mRNA level was already after 3 h of double treatment with DAPT+Wnt-3a 

significantly downregulated compared to DAPT alone (Figure 15). This implies a strong 

additive effect of Wnt-3a on the regulation of not only direct Notch target genes, but also on 

the proposed indirect target of Notch, namly GFAP. In addition, the effect on mRNA level 

was verified with FACS analysis, where the DAPT+Wnt-3a treated cells positive for GFAP 

were significantly decreased compared to DMSO as well as compared to DAPT (Figure 16). 

Simultaneously, Wnt-3a had no additive effect on the mRNA level of the proneural gene 

MASH1 (Figure 15) and nor on the amount of cells positive for the neuronal markers HuC/D 

and Tuj1 compared to DAPT single treatment (Figure 16). But in both cases was a 

tangentially increase detectable, which was significantly when compared to DMSO. The Wnt-

3a effect and the additive effect of Wnt-3a compared to DAPT treated neural progenitor cells 

is described for the first time in this work. This outstanding decrease of GFAP positive cells 

in combination with the highest increase of cells positive for the neuronal markers is a 

remarkably step forward to drive NPCs to neurons instead of glial cells. In conclusion, Wnt-

3a seemed to have a straight effect on HES5, which in turn had a straight effect on GFAP and 

MASH1, which finally regulated the fate of differentiating ReNcell VM cells to an increase in 

neuronal differentiation and a decrease of GFAP (Figure 16). In contrast, DAPT had a more 

potent effect on HES1 and HES5 and maybe, therefore, a stronger effect on MASH1 and on 

the differentiation to neurons but affected GFAP less potent than Wnt-3a. This lead to the 

suggestion that Wnt-3a upregulates the neuronal differentiation by reduction of the stemness, 

which can act in addition to the DAPT-induced increase of neurogenesis. 
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4.4 Time dependency in the differentiation of ReNcell VM cells 

The cells were treated once with Wnt-3a (100 ng/ml) at the beginning of differentiation (time 

point 0 h), this may be the reason why Wnt-3a lost its impact on HES genes after 24 h. 

Taelman et al. (2010) clearly showed a sequestration of the Wnt induced receptor signaling 

complex into multivesicular bodies but were not able to finally discover the fate of the Wnt 

ligand. They found a co-localization of the multivesicular bodies and Rab7, a lysosomal 

marker, which may led to the suggestion that the Wnt ligand can be degraded in the 

lysosomes and therefore depleted. Taken together, Wnt-3a may lose its impact on target genes 

because it was depleted during differentiation. 

It is widely known that the output of the Wnt signaling pathway and also of the Notch 

pathway is extremely cell context dependent. In addition, the time plays a major role, too. 

This led to the analysis of the time dependency of the “DAPT/Wnt-3a effect” on 

differentiating ReNcell VM cells, which was not described before in the literature and, 

therefore, is a complete new experimental design. Cells were treated once with substances, 

these were washed out after an indicated time period and after a total of three days of 

differentiation cells were analyzed. All cells were differentiated for three days but with a 

changing time frame of differentiation, in combination with substances. In all analyzed 

markers the first significant effects were detectable after 24 h of treatment, while the strongest 

effects were reached after 48 h of treatment (Figure 18). This reveals a time frame were the 

substances are able to effect the differentiation of ReNcell VM cells. In sum, the cells have to 

be treated for at least 24 h to direct them into a neuronal fate. A longer treatment of 48 h, 

results in a stronger effect, but a treatment for 72 h did not resulte in a further augment. This 

suggests that the effect is saturated after 48 h and a further increase is unlikely.  

The differences between the two neuronal markers HuC/D and Tuj1 are of interest. While the 

first Tuj1 positive cells were detectable after treatment for 24 h, the first HuC/D positive cells 

were observable after treatment for 3 h, where all cells were differentiated for 3 days (Figure 

18). This indicates HuC/D as a very fast and sensitive neuronal marker. Hu proteins are RNA-

binding proteins to stabilize specific target mRNAs, HuC and HuD are, therefore, the earliest 

markers of the neuronal cell lineage (Perrone-Bizzozero and Bird 2013). In contrast Tuj1 is a 

β-tubulin which is able to heterodimerize with α-tubulins to form microtubules, which are 

essential components of the cytoskeleton. And it is a marker for terminally differentiated 

neurons of the central and peripheral nervous system (Perrone-Bizzozero and Bird, 2013). 

Therefore, the time-dependent differences of the neuronal markers are due to the different 
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source of the protein-marker. This means, a RNA-binding protein is usually faster affected by 

a cellular signal than a cytoskeleton protein and therefore a faster and more sensitive marker 

for changes in cell fate. This was, in addition, visible by cells differentiated for only 24 h. 

There was the significant effect of treatment detectable, precisely DAPT and DAPT+Wnt-3a 

were able to increase the amount of HuC/D positive cells compared to control (Figure 19). 

Interestingly, the only significant reduction of S100β was detectable after 48 h of treatment 

with DAPT+Wnt-3a compared to DMSO (Figure 18). The effect was lost after 72 h of 

treatment due to the high standard deviation. But it shows that double treatment can have an 

effect on astrocytes and led not only to an increase of cells positive for neuronal markers.  

To increase the neuronal differentiation, the cells needed to be treated right after the start of 

differentiation with the substances. After 18 h of differentiation the cells were able to change 

the differentiation program to neuronal differentiation, demonstrated by the increase of 

HuC/D positive cells, but were not able to finally differentiate into more mature -Tuj1 

positive cells (Figure 20). As described above, HuC/D is an early marker for neuronal 

differentiation and therefore can be seen as a marker which is able to detect the beginning 

changes in neuronal differentiation. Tuj1, on the other hand, is a marker for more mature 

neuronal differentiation and therefore detects the final amount of mature neurons, 

respectively, the final outcome of the differentiation. The treatment did not have any effect on 

the amount of mature neurons, if treated after 24 h or 66 h (Figure 20). Simultaneously, the 

amount of cells positive for S100β and GFAP were not affected when treated after the start of 

differentiation. In summary, the cells have to be treated at the beginning of differentiation to 

significantly increase the amount of mature neurons and decrease the amount of GFAP 

positive cells. This shows that the cells need time to react on the treatment and also to run the 

whole differentiation program to finally differentiate into mature neurons.  

 

4.5 The mechanism behind the Wnt-3a effect 

The two major pathways controlling neuronal and glial differentiation are the Wnt and Notch 

Signaling pathways (Kunke et al., 2009; Kageyama et al., 2005). Over the past years, it 

became obvious that crosstalk of these pathways is fundamental in controlling events during 

vertebrate and non-vertebrate development. This work assessed the role of Notch signaling 

and its crosstalk with the Wnt/β-catenin pathway in the human neural progenitor cell line 

ReNcell VM.  



Discussion  91 

 
 

4.5.1 Wnt pathway dependency 

Our group previously showed that Wnt-3a as well as stabilized β-catenin and inhibition of 

GSK3 activate target genes of the Wnt/β-catenin pathway in ReNcell VM cells (Hübner et al., 

2010; Mazemondet et al., 2011; Schmöle et al., 2010). Hübner et al. (2010) revealed 

moreover that Wnt-3a, but not stabilized β-catenin, is able to increase neurogenesis. In 

addition, stabilized β-catenin was not able to modulate Notch target genes HES1/HES5 or 

GFAP (Rayk Hübner, personal communication). This leads to the suggestion, that Wnt-3a 

may modulate the Notch pathway in ReNcell VM cells over Wnt-pathway-proteins upstream 

of β-catenin. 

The main Wnt-pathway-protein upstream of β-catenin, which is known to be able to modulate 

a variety of different proteins such as SMAD1 and Notch, is GSK3β (Ribeiro et al., 2009). 

Taelman et al. (2010) detected that over 20 % of the proteome containing three or more 

consecutive potential GSK3 sites. Furthermore, Espinosa et al. (2003) suggested that Notch 

phosphorylation by GSK3β regulates crosstalk between the Notch and Wnt pathways. While 

Wnt-3a inhibits the GSK3β, its inhibition with small molecules should mimic the effects of 

Wnt-3a. But in ReNcell VM cells the inhibition of GSK3β by SB216763 and IM12 was not 

able to mimic the effect. While SB216763 was able to increase the mRNA level of AXIN2, it 

did not augment the mRNA levels of HES1, did not reduce HES5 or GFAP levels (Figure 21) 

in the same way like Wnt-3a and did not increase the amount of cells positive for HuC/D and 

Tuj1 or reduced the amount of GFAP positive cells (Figure 22). Interestingly, SB216763 

reduced HES1 as well as HES5 mRNA levels in later time points and reduced the amount of 

cells positive for the mature astrocyte marker S100β. In summary, SB216763 did not mimic 

the effect of Wnt-3a and therefore seemed not to be the link between the Wnt and Notch 

pathway in ReNcell VM cells. While Taelman et al. (2010) described stabilized β-catenin as 

an inducer of the sequestration of the signaling complex (containing Wnt-3a, LRP6 as well as 

GSK3β) and while this sequestration inhibits GSK3β, confirms the inhibition of GSK3 that 

the Wnt-3a effect is independent of β-catenin.  

There are plenty of different Wnt pathways known in the literature. Beside the best described 

pathway the β-catenin dependent pathway there are, in addition, a rising number of β-catenin 

independent pathways described. The main β-catenin independent pathways are the PCP- and 

Ca
2+

-pathway but there are additional downstream events triggered by Wnts in combination 

with Frizzled or specific co-receptors like ROR and RYK (Niehrs 2012). In all described β-
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catenin dependent pathways the co-receptor LRP5/6 is involved. The binding of Wnt to the 

co-receptor LRP5/6 can be inhibited in NPCs by Dkk-1 (Munji et al., 2011).  

In ReNcell VM cells the effect of Wnt-3a on the mRNA level of Notch target genes is not 

inhibited by Dkk-1 while AXIN2 is significantly decreased (Figure 23). In addition, the 

induction of HuC/D and Tuj1 positive cells by Wnt-3a is as well not inhibited by Dkk-1 (see 

appendix 7.5). Furthermore, Dkk-1 treatment led to an additional decrease of HES5 mRNA 

level. This additional effect suggests a competitive mechanism of Wnt-3a in which Wnt-3a, 

can activate the β-catenin dependent pathway by binding to LRP and simultaneously activates 

the unknown “β-catenin, GSK3 and LRP independent” pathway. These two pathways are in 

competition with each other for the Wnt-3a ligand. One can speculate that Dkk-1 inhibits the 

“β-catenin, GSK3 and LRP dependent” pathway, thus raising the level of Wnt-3a available to 

activate the “β-catenin, GSK3 and LRP independent” pathway which further decreases HES5. 

A similar effect was described by Nalesso et al. (2011). They found that Wnt-3a can 

simultaneously activate the β-catenin dependent pathway and the Ca
2+

 pathway with distinct 

and independent outcomes in human articular chondrocytes.  

In contrast, the inhibition of the Wnt-3a and Frizzled receptor interaction by sFRP1 did not 

significantly modulate HES5 mRNA level compared to control, but increased it by tendency 

(Figure 24). To more clearly verify the impact of Frizzled in this pathway a better AXIN2 

inhibition is needed to get a better view of the dependencies. Nevertheless, these data suggest 

a Wnt-3a effect which is not trigged by LRP or GSK3 neither by β-catenin. But it leads to the 

suggestion of an activation of a β-catenin independent pathway by Wnt-3a which was already 

demonstrated by V. Talabattula (personal communication) who was able to induce Calcium 

signaling by Wnt-3a treatment in ReNcell VM cells. In addition, the increase of components 

of the PCP pathway in differentiating cells suggested a possibly active or activatable pathway 

(Mazemondet et al., 2010). In addition, it is highly improbable RYK dependent due to the fact 

that it is activated by the cleavage of a γ-secreatase which releases its intracellular domain and 

starts transcription after translocation into the nucleus (Lyu et al., 2008). If the Wnt-3a effect 

depends on this pathway DAPT would inhibit this cleavage and, therefore, no additive effect 

of Wnt-3a and DAPT compared to DAPT would be detectable. In contrast, DAPT would 

inhibit the effect of Wnt-3a on the RYK dependent pathway. 

In sum, the effect of Wnt-3a is independent of β-catenin, of the upstream protein GSK3β, of 

the co-receptor LRP5/6 and seems to be independent of the receptor Frizzled. Up to now there 
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is no pathway known in which Wnt is able to activate a pathway independent of Frizzled, 

therefore, independency of Frizzled should be verified.  

4.5.2 Notch pathway dependency 

As described before, the effect of DAPT on ReNcell VM cells depends on the Notch 

intracellular domain 1 (NICD1). In addition, the effect of Wnt-3a depends as well as DAPT 

effects on NICD1. As long as NICD1 was overexpressed, neither DAPT nor Wnt-3a was able 

to increase neurogenesis (Figure 25). This led to the suggestion that the DAPT as well as the 

Wnt-3a effect on neuronal differentiation depends on the Notch intracellular domain 1, which 

was able to augment HES5 while HES1 was decreased and without HES1 and HES5, NICD 

was unable to inhibit neurogenesis (Kageyama et al., 2008). To verify this effect of the 

NICD1, HES1 and HES5 were overexpressed. The overexpression of HES5 led to an 

inhibition of the neuronal differentiation of ReNcell VM cells (Figure 27). The inhibitory 

effect of HES5 on differentiation was described before in NSCs by Kageyama et al. (2008) 

and in rat embryonic neural stem cells by Liu et al. (2010). In contrast, DAPT, which inhibits 

HES5, was described to reduce proliferation and increase differentiation (Nelsen et al., 2007, 

Borghese et al., 2010). This was shown in the reduction of the stem cell marker GFAP in 

ReNcell VM cells. Unfortunately, the reduction of Wnt-3a+DAPT treated GFP-transfected 

cells positive for GFAP compared to HES5 overexpressing cells under control-treatment was 

not significant (Figure 27). This may be due to the experimental procedure since cells were 

transfected and transfected cells generally showed a higher amount of cells positive for 

GFAP.  

Interestingly, the overexpression of HES1 inhibited the differentiation of the progenitor cells 

(Figure 30) but not to the same extent like HES5, while the amounts of HES transcripts in the 

overexpressing cells were similar. This led to the suggestion that HES5 had a stronger effect 

on differentiation than HES1. Furthermore, overexpression of HES5 (Figure 27) resulted in a 

stronger decrease of HuC/D and Tuj1 positive cells compared to HES1 overexpressing cells 

(Figure 30). In addition, the substances DAPT and Wnt-3a were still able to increase the 

amount of HuC/D positive cells when HES1 is overexpressed (Figure 30). In contrast, HES5 

overexpressing cells were not affected by the substances (Figure 27). These data strongly 

suggest that HES5 is a modulator of the effect of Wnt-3a as well as DAPT. Simultaneously, 

the mRNA levels of HES5 and HES1 correlate with each other. Precisely, HES1 

overexpression leads to a reduction of HES5 (Figure 31) and vice versa (Figure 28). The 

bilateral interaction of HES proteins was described before in mouse C3H10T1/2 cells by 
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Takebayashi et al. (1994) and in mouse spinal cord by Wu et al. (2002). But Hatakeyama et 

al. (2004), in addition, described that the HES proteins were able to compensate each other. 

But, it is the first time that this effect is verified in human neuronal progenitor cells. This may 

explain that the HES1 overexpressing cells did have a decreased amount of Tuj1 and HuC/D 

positive cells, despite HES5 was downregulated. Moreover, HES5 (Figure 28) as well as 

HES1 (Figure 31) overexpressing cells showed the expected downregulation of MASH1 

mRNA levels. This fits to the upregulation of MASH1 under DAPT treatment (Figure 11), 

where in contrast the HES1 and HES5 mRNA levels were downregulated. Unfortunately, due 

to the potential compensatory effect and the bilateral interaction it was not possible to finally 

clarify which HES regulates MASH1. The MASH1 regulation is controversially discussed in 

literature. Cao et al. (2010) revealed a HES5 dependent regulation of MASH1 in striatal 

tissues from E14-E15 mouse embryos, while Zhang et al. (2009) described that HES1 

repressed the transcription of MASH1 in mouse NPCs from the anterior subventricular zone. 

In contrast, Fischer et al. (2007) suspected that HES1 can function as an activator as well as 

an inhibitor of MASH1 depending on the present co-transcription factors. Precisely, they 

suppose that HES1 in combination with TLE (transducing-like enhancer of split) repress 

MASH1 and HES1 in combination with CBP (CREB binding protein) activates MASH1. In 

sum, without a deletion of HES1 or HES5 it will not be possibly to clarify wich HES is 

responsible for MASH1 regulation and even than it is difficulte to answer that question due to 

their compensatory effect. Therefore the MASH1 poromotor has to be analyzed to verify 

which HES binds to it. 

Strikingly, the GFAP mRNA levels were clearly decreased by HES1 (Figure 31) and HES5 

(Figure 28) overexpressing cells. However, the amount of GFAP positive cells was not 

affected (Figure 27 and Figure 30). It was suggested that decreased HES5 levels would lead to 

a decrease of GFAP as shown by Kabos et al. (2002) and Wu et al. (2002). In addition, Ijuin 

et al. (2008) reported that HES1 and HES5 overexpression induces GFAP expression in 

mouse mesencephalic neural crest cells, which were also GFAP positive in proliferation as 

ReNcell VM cells. This contradicts the results in ReNcell VM cells. The decrease of GFAP 

mRNA level was detectable at all time points between 0 h and 72 h and is not in line with the 

not changed amount of cells positive for GFAP. The differences may be due to the distinct 

methods used, the flow cytomeric analysis counts only positive cells but does not show a 

downregulation of the amount of GFAP protein in GFAP positive cells (data not shown). A 

feedback regulation is partially possible, due to the fact that GFAP mRNA level was 
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downregulated in all time points but the amount of positive cells was not changed after 3 days 

of differentiation. If a feedback regulation of GFAP would be true in ReNcell VM cells, this 

would lead to the suggestion that GFAP proteins have a very long half-life. Interestingly, 

Rolland et al. (1990) analyzed the expression and turnover of GFAP in astroglial primary 

cultures. They found via radioactive labeling two pools of GFAP, the first one was a fast 

decaying pool with a half-life of 16-18 h and the second was a stable one with a half-life of 5-

6 days. It is possible that the overexpression of HES1 and HES5 led to a decrease of the 

mRNA level of GFAP, but the amount of cells positive for GFAP was not affected due to the 

protein half-life of 5-6 days. To check this hypothesis the amount of cells positive for GFAP 

should be analyzed after 6-7 days. It is not much known about the different GFAP pools, but 

they may occur due to distinct splice variations of GFAP. Thomsen et al. (2013) revealed that 

at least two of the 8 known splice variants have distinct subcellular localization patterns. In 

this work a qRT-PCR primer was used which is able to detect all splice variations without the 

variation GFAPγ. Therefore it can be speculated that GFAPγ may be the upregulated protein 

which is measured by flow cytometry while its mRNA level was not able to be detected.  

 

4.5.3 BMP pathway dependency 

The target genes ID1 and ID3 are the best described target genes of the BMP pathway 

(Obayashi et al., 2009). They were described to be regulated not only by BMP but 

additionally by Wnt-3a in C2C12 cells (Nakashima et al, 2005). Precisely, Fuentealba et al. 

(2007) revealed that GSK marked SMAD1 for degradation by phosphorylation. In contrast, 

Guo et al. (2009) described that Wnt-3a activates, over AXIN2 induction, the BMP inhibitor 

SMAD7. In ReNcell VM cells, Wnt-3a was not only able to decrease ID1 but, in addition, 

ID3 (Figure 32). However, inhibition of the BMP pathway was not able to mimic the effect of 

Wnt-3a. There are three well described substances to inhibit the BMP pathway. Noggin binds 

the ligand BMP2, 4 and 7 and therefore inhibits the SMAD1, 5, 8 and MAPK p38 (Yu et al., 

2008). Dorsomorphin inhibits BMP4 induced signaling and does not affect MAPK p38 (Yu et 

al., 2008). SB431542 inhibits the TGF-β signaling pathway and therefore SMAD2 and 3 

(Inman and Hill, 2002). Noggin led to an increase of HES5 mRNA level and simultaneously 

decreased the amount of HuC/D positive cells (Figure 33). Dorsomorphin did not affect HES5 

or GFAP mRNA levels but reduced the amount of cells positive for HuC/D and Tuj1 (Figure 

34). SB431542 treatment, in addition, was not able to affect the differentiation of ReNcell 

VM cells (Figure 35). This clearly showed that HES5 is not solely mandatory for the decision 



Discussion  96 

 
 

if cells differentiate into neurons or not, otherwise the HES5 mRNA level would be 

augmented by Dorsomorphin alike by Noggin treatment. In sum, the reduction of ID1 and/or 

ID3 did not led to the increase of cells positive for neuronal marker by Wnt-3a treatment, due 

to the fact that ID reduction by BMP inhibitor led to a decrease of neurons. The differences 

between the inhibitors Noggin and Dorsomorphin may be due to the different inhibitory 

mechanisms. While Noggin binds the ligand BMP2, 4 and 7 and therefore inhibits the 

SMAD1, 5, 8 and MAPK p38, Dorsomorphin inhibits BMP4 induced signaling and does not 

affect MAPK p38 (Yu et al., 2008). But when the inhibition of ID led to a decrease of neurons 

it arises the question whether the Wnt-3a induced ID reduction counteracts the induction of 

neuronal differentiation. Thus ID1 and ID3 may have a compensatory role in regulating 

neuronal differentiation.  

 

4.5.4 JAK/STAT3 pathway dependency 

The signal transducer and activator of transcription 3 (STAT3) was described to negatively 

regulate the neuronal differentiation by regulating, in combination with other transcription 

factors, proneural genes and to stimulate astrogliogenesis by activating GFAP (Rajan et al., 

1998 Nakashima et al., 1999). STAT3 is a transcription factor which, upon phosphorylation at  

Tyr 705 forms dimers and translocates to the nucleus (Darnell et al., 1994). Therefore an 

analysis via qRT-PCR would not be useful compared to other transcription factors which are 

not known to be regulated by posttranslational modifications like the bHLH genes HES1, 

HES5 and MASH1. In addition, no post-translational modifications are known for GFAP. The 

activation and translocation can be triggerd with the small molecule AICAR (Zang et al., 

2008) and inhibited by Jak-Inhibitor-1 (Pedranzini et al., 2006).  

At first, the detection of phosphorylated STAT3 in ReNcell VM cells demonstrated an active 

JAK/STAT3 pathway (Figure 36). In addition, AICAR was able to activate STAT3 and led to 

an augment of pSTAT3 in the nucleus, while Jak-Inhibitor-1 was only able to decrease the 

amount of pSTAT3 by tendency (Figure 36). Interestingly, cells treated with Jak-Inhibitor-1 

showed a less differentiated phenotype than control cells (Figure 37). Constitutively active 

STAT3 was observed in a large number of human tumors stimulating cell proliferation and 

preventing apoptosis. The inhibition with Inhibitor 2 ((E)-2-cyano-N-[(S)-1-phenylethyl]-3-

(pyridin-2-yl) acrylamide), in contrast, led to an induction of apoptosis in glioma cells 

(Swiatek-Machado et al., 2012). In ReNcell VM cells an obvious increase of apoptosis was 

not detectable via microscopy analysis, but an apoptosis assay would maybe reveal clearer 
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results. In addition, AICAR was able to strongly reduce the amount of cells posit ive for the 

neuronal marker HuC/D and Tuj1 while Jak-Inhibitor-1 only reduced them by tendency 

(Figure 38). In contrast, the amount of GFAP positive cells were increased by AICAR but not 

affected by Jak-Inhibitor-1 treatment (Figure 38).  

In sum, pSTAT3 was found in ReNcell VM cells and AICAR was able to induce the 

phosphorylation of STAT3 at Tyr 705 and the subsequent dimerization and translocation to 

the nucleus. The activation of the STAT pathway led to a decrease of neuronal differentiation 

and an increase of GFAP positive cells. This shows that the JAK/STAT3 pathway is active, is 

able to be modulated in ReNcell VM cells and its activation inhibits differentiation.  

The γ-secretase inhibitor DAPT inhibits the Notch pathway and, therefore, reduces the 

amount of HES1 and HES5 in ReNcell VM cells (Figure 11). Kamakura et al. (2004) revealed 

that STAT3 is an effector of HES1 and HES5 mediated astrocytic differentiation in mice. 

They described HES as scaffolding proteins that induces STAT3 phosphorylation by JAK2 

and, therefore, induces GFAP expression. This work revealed that the treatment with DAPT 

leads to a reduction of pSTAT3 (Figure 39) which maybe caused by the inhibition of HES1 

and HES5. In contrast, the inhibition of PKC using the inhibitor GF109203X in ReNcell VM 

cells (Hübner, 2010), which subsequently activates the phosphorylation of pSTAT3 

(Mattagajasingh et al., 2012), leads to an increase of Tuj1 and HuC/D positive cells. This 

underlines the impact of pSTAT3 on the differentiation of human neural progenitor cells. 

Furthermore, AICAR was able to inhibit the effect of DAPT on differentiating ReNcell VM 

cells (Figure 40). A small augment of pSTAT3 caused by AICAR seems therefore, to be able 

to inhibit the strong effect of DAPT. In sum data suggest, that the inhibitory effect of DAPT 

on the notch pathway is able to increase the neurogenesis by reduction of the active, while 

post-translational phosphorylated, STAT3. In contrast, the regulation of Wnt-3a seems to be 

independent of the post-translational phosphorylation of STAT3 because it did not 

significantly affect pSTAT3 (Figure 39). 

Doubtful is the fact that GFAP is mainly regulated by STAT3, due to the fact that in ReNcell 

VM cells Wnt-3a (Figure 13) downregulates GFAP mRNA level stronger than DAPT (Figure 

11). If STAT3 would primarily regulate the transcription of GFAP a decrease of pSTAT3 

would lead to a decrease of GFAP mRNA. But the decrease of pSTAT3 was only detected by 

DAPT treated cells (Figure 39) and the decrease of GFAP mRNA was stronger and faster by 

Wnt-3a treated cells compared to DAPT treated cells. This contradicts the mechanism of a 

mainly by STAT3 regulated GFAP. It can be speculated that this contradicting regulation may 
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be due to the two different GFAP pools with different half-lifes. Hypothetically, DAPT may 

downregulate the stable GFAP pool over pSTAT3, which is detectable by FACS but not by 

qRT-PCR due to the splice variant GFAPγ. Wnt-3a, in contrast, maybe downregulates only 

the instable GFAP pool, GFAP mRNA levels without the GFAPγ, over a yet unknown 

mechanism.  

 

4.6 Induced pluripotent stem cell derived neural progenitor cells (iPS-

NPCs) 

To verify that the described effects in ReNcell VM cells are not a cell-type specific 

phenomenon a second cell line was used. This cell line consists of neural progenitor cells 

which were derived from induced pluripotent stem cells. These cells express the same neural 

markers like ReNcell VM cells, Nestin and SOX2, and are able to differentiate into neuronal 

cells. 

This work revealed that iPS-NPCs exhibit an active Notch pathway, detectable by HES1 and 

HES5 expression, which is able to be inhibited by DAPT (Figure 41). Interestingly, DAPT 

reduced the mRNA level of HES5 stronger than the HES1 mRNA level. These results are in 

common with the ReNcell VM cell results (Figure 11). But in contrast to ReNcell VM cells, 

the inhibition of HES1 and HES5 by DAPT did not change the amount of HuC/D positive 

cells and therefore had no detectable effect on neurogenesis in iPS-NPCs (Figure 43). This 

may be due to the high standard deviations or because of the already high (37 %) number of 

HuC/D positive cells compared to that 8 % of the ReNcell VM cells and suggest a saturating 

effect. The inhibition of the Notch pathway, furthermore, decreased the amount of cells 

positive for the glial marker S100β and GFAP (Figure 43). The amount of cells positive for 

the glial marker GFAP is, compared to ReNcell VM cells, strongly reduced, where 80 % of 

ReNcell VM cells and 14 % of iPS-NPCs are positive. This reduction may occur due to the 

fact that GFAP is a stemness marker in ReNcell VM cells and is already detectable in 

proliferating cells. In iPS-NPCs GFAP is solely a glial marker and may increase during 

differentiation length (Qian et al., 2000). The regulation of S100β by DAPT and DAPT+Wnt-

3a in iPS-NPCs (Figure 43) is a clear difference compared to ReNcell VM cells (Figure 11 

and Figure 15) and may be cell type specific. Another difference between ReNcell VM cells 

and iPS-NPCs is the speed of differentiation. While ReNcell VM cells need three days to 

differentiate into cells with neuronal morphology expressing neuronal markers, iPS-NPCs 

need at least 17 days. Since iPS-NPCs differentiated only for 48 hours in the presence of Wnt-
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3a –afterwards the medium was changed-, this treatment duration may not be sufficient to 

promote the effect on neuronal differentiation. Thus iPS-NPCs have to be treated in the whole 

time of differentiation which means to treat them after every change of medium again.  

Moreover, iPS-NPCs were able to respond to Wnt-3a. Precisely, Wnt-3a treatment led to an 

increase of active non-phosphorylated β-catenin protein, an augment of AXIN2 mRNA and to 

an induction of HES1 mRNA and a reduction of HES5 mRNA (Figure 42). These data 

demonstrate that Wnt-3a was able to activate Wnt/beta-catenin signaling accompanied by 

modulation of Notch pathway which was similar to ReNcellVM cells. In contrast, Wnt-3a was 

not able to affect the amount of cells positive for glial and/or neuronal markers (Figure 43). 

This may be due to high standard deviations, especially the cells positive for the glial markers 

were at least decreased by tendency. Furthermore, the additive effect of DAPT+Wnt-3a was 

similarly observable in iPS-NPCs (Figure 43) as well as in ReNcell VM cells (Figure 15). In 

both cell lines, Wnt-3a intensified the effects on HES1 and HES5 mRNA levels compared to 

DAPT treatment alone. This shows that even if Wnt-3a alone is not able to modulate HES 

genes and markers as effective as in ReNcell VM cells, the combinatory treatment is, like in 

ReNcell VM cells, able to strongly increase the effect of DAPT. The combination of DAPT 

and Wnt-3a, therefore, seems to activate an important mechanism of the neuronal 

differentiation in neural progenitor cells.  

In sum, the modulation of HES1 and HES5 by Wnt-3a and DAPT+Wnt-3a in ReNcell VM 

cells were verified in iPS-NPCs but the effect on neuronal markers was not confirmed. Tomita 

et al. (2001) revealed that in the absence of proneural genes such as MASH1 the neuronal 

differentiation is inhibited and neural stem cells remain in earlier stages. Thus, the absence of 

MASH1 may be the reason that the amount of cells positive for the neuronal marker HuC/D 

was not changed.  

 

4.7 ReNcell VM cells  

ReNcell VM cells are a v-myc retrovirally immortalized human cell line and were derived 

from the ventral midbrain of a 10-week old male fetus. V-myc is the viral homologe of c-myc 

and is the most potent transforming gene known. The potency of neural progenitors to 

differentiate is not influenced by v-myc. But a v-myc transformation inhibits the potential to 

diffentiate under treatment with substances like retinoic acid (Lee et al 1999). There is no Wnt 

or Notch mediated regulation of v-myc known. However, Liu et al., 2011 showed that c-myc 

is stimulated by Wnt-3a in intestinal epithelial cells (IEC-6) through LRP6 and β-catenin. 
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This result does not influence the veracity of this work due to the fact that the Wnt-3a effect 

shown in this work is not mediated through LRP6 and β-catenin. It is not known if the 

overexpression of v-myc is able to modulate the Wnt pathway. Recently Zinin et al., 2014 

discovered a negative regulation of Notch1, HES1 and HES5 by c-myc in radial glial 

precursors. In this work Notch1 is detactable in v-myc retrovirally transfected cell line 

(ReNcell VM cells) and seems not be strongly downregulated by v-myc. This maybe indicates 

a celltype specific regulation. In addition, HES1 and HES5 were detectable in ReNcell VM 

cells on RNA levels and protein levels.  

In sum, ReNcell VM cells are a fast differentiating cell line of neural progenitor cells. The 

speed of proliferation and differentiation is maybe due to the v-myc transfection, but it is 

unclear if v-myc is able to modulte the Wnt and Notch pathway. Therefore in this study was 

also a second cell line used, the induced pluripotent stem cell derived neural progenitor cells 

which showed similar results like the ReNcell VM cells. This shows that the v-myc 

overexpression is not essential for the descriped Wnt-3a effect. 

 

4.8 Outlook 

The ReNcell VM cells are fast differentiating cells which are able to express neuronal 

markers and show the typical neuronal morphology after three days of differentiation. In 

contrast, iPS-NPCs need at least 17 days to differentiate. Due to the short treatment periode of 

48 hours – afterwards the medium was changed - iPS-NPCs neuronal differentiation was not 

affected by treatment with Wnt-3a and DAPT. Thus iPS-NPCs have to be treated in the whole 

time of differentiation which means to treat them after every change of medium again. This 

could be done with conditioned medium from Wnt-3a overexpressing cells to reduce costs. 

To confirm HES5 as the main mediator of the Wnt-3a and DAPT effect on neuronal 

differentiation, a specific knockdown of HES1 and/or HES5 is needed. Even if a knockout of 

one of the two HES genes in mice did not lead to a phenotype (Hatakeyama et al., 2004) may 

lead a knockout in neuronal precursor cells to a significant difference in neuronal 

differentiation and/or in MASH1 mRNA levels. 

The inhibition of the Wnt-3a and Frizzled receptor interaction by sFRP1 did not significantly 

modulate HES5 mRNA level compared to control, but increased it by tendency (Figure 24). 

To more clearly verify the impact of Frizzled in this pathway a better AXIN2 inhibition is 

needed to get a better view of the dependencies. In addition an independency of Frizzled 

should be verified by a Frizzled knock out, because up to now there is no pathway known in 
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which Wnt is able to activate a pathway independent of Frizzled. This would be a completely 

new pathway induced by Wnt-3a. 
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5 Summary 

The aim of this study was to shed light on the poorly understood network of signaling 

pathways which are responsible for the cell fate determination and differentiation of human 

neural progenitor cells initiated by Wnt-3a treatment and Notch pathway inhibition.  

Wnt-3a was not only able to induce the β-catenin dependent Wnt pathway, but also regulated 

the Notch target genes HES1 and HES5 in a β-catenin independent manner, while stabilized 

β-catenin was not able to modulate them. Furthermore, Wnt-3a differentially regulated HES1 

and HES5 independent of the Notch pathway while additive to the inhibition of Notch by 

DAPT. This regulation was independent of the β-catenin dependent pathway, because it was 

independent of GSK3β inhibition, independent of the formation of a Wnt-3a-LRP6-Frizzled 

receptor complex and independent of the inhibition of the BMP signaling pathway which is 

known to be initiated by Wnt ligands through β-catenin. This all suggested a β-catenin 

independent mechanism and therefore an activation of the β-catenin independent pathway by 

Wnt-3a. In sum, Wnt-3a activated a signaling cascade which activated HES1 transcription and 

inhibited HES5 and subsequently inhibited GFAP and increased MASH1 transcription while 

the phosphorylation level of STAT3 was not affected by Wnt-3a. The involved receptor 

combination is still unknown but was independent of LRP6 and possibly of Frizzeld. 

Simultaneously, using iPS-NPCs in this study revealed for the first time that the modulation 

of the Notch target genes by Wnt-3a is a common mechanism in human neural progenitor 

cells. 

Wnt-3a was able to downregulate GFAP and upregulate MASH1 mRNA level which were not 

solely dependent on the modulation of HES5. Moreover, GFAP seemed to be stronger 

regulated by Notch inhibition through DAPT which in turn was strongly dependent on 

phosphorylated STAT3. AICAR, the inducer of pSTAT3, in contrast, could rescue the effect 

of DAPT on the amount of cells positive for GFAP. HES5, in the meantime, seemed to be 

involved in the glial differentiation but did not solely regulate the neuronal differentiation. 

Furthermore, HES5 seems to be regulated mainly by Notch and in ReNcell VM cells at least 

by NICD1, while HES1 was not solely modulated by Notch. 

In the differentiation of ReNcell VM cells Wnt-3a was able to repress BMP pathway target 

genes, but this reduction was not responsible for the increase in neuronal differentiation since 

the inhibition of BMP signaling led to a decrease of cells positive for neuronal markers. This 
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suggests that Wnt-3a simultaneously initiated pro- and antineurogenic signal cascades which 

underlines that the final outcome of differentiation strongly depends on the cell context. 

The differentiation of ReNcell VM cells needs 3 days to establish the maximal numbers of 

cells positive for the neuronal markers HuC/D and Tuj1. To modulate this process the first 

hours are crucial, 24 h after induction of differentiation the treatment is not anymore sufficient 

to increase neurogenesis. This demonstrates a defined time window for the modulation of the 

differentiation of ReNcell VM cells. 

In sum, the combined treatment with Wnt-3a and DAPT and the thereout resulting increase of 

cells positive for neuronal markers and decrease of stemness marker is an outstanding step 

forward to drive NPCs from an undifferentiated state to neurons instead of glial cells which is 

a prerequisite for cell based therapies utilizing neuronal cells. 

 

Figure 44: Simplified scheme of the crosstalk between Wnt-3a and the Wnt, BMP and 

Notch pathway in hNPCs. Blue: Wnt pathway components: when Wnt-3a binds to Frizzled 

and LRP5/6, GSK3β is phosphorylated and inactivated. This allows β‑catenin to accumulate 

and translocate to the nucleus, where it activates the transcription of target genes like AXIN2. 

SB216763 can be used to inhibit GSK3β like Wnt-3a and S33Y is a stabilized form of β‑
catenin which is able to activate target genes upon overexpression. Red: BMP pathway 

components: Wnt-3a is able to inhibit the BMP pathway which does not lead to increased 

neuronal differentiation in hNPCs. BMP can also be inhibited by Dorsomorphin, SB431542 

and Noggin. Green: Notch pathway components: The notch receptor is cleaved by γ-secretase 

to release NICD which translocates to the nucleus and starts transcription of the target genes 

HES. 
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7 Appendix 

7.1 ReNcell VM cells 

 

Figure 45: Phasecontrast picture of ReNcell VM cells in proliferation and differentiation. A: Phasecontrast 

of proliferating ReNcell VM cells. B: Phasecontrast of 3 days differentiated ReNcell VM cells. 

 

7.2 iPS-NPCs 

 

Figure 46: Phasecontrast picture of iPS-NPCs in proliferation and differentiation. A: Phasecontrast of 

proliferating iPS-NPCs. B: Phasecontrast of 18 days differentiated iPS-NPCs. 
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7.3 Efficiency of transfection and lipofection of ReNcell VM cells 

  

Figure 47: Efficency of transfection and lipofection. A: Transfection of 1 Mio ReNcell VM cells with 

pCAGGS-GFP, 24 h after transfection of 4 µg plasmid DNA. B: Lipofection of 0,2 Mio HEK293H with 

pCAGGS-GFP, 24 h after lipofection of 4 µg plasmid DNA. 

 

7.4 Generation of pCAGGS-HA-HES vectors 

7.4.1 Generation of pCAGGS-HA-hHES1 

To amplify hHES1 the plasmid pCMV6-XL4-HES1 (origene) was used as a template, 

together with the forward primer which includes the XhoI restriction site in combination with 

a HA-Tag and the reverse primer which includes a BstXI restriction site. After amplification 

of HA-hHES1 (Figure 48, A) the insert was purified and ligated into pGEM-T easy (Promega) 

for subsequent blue/white screening and selection. Positive clones were analyzed by digestion 

with BstXI and XhoI, expected fragments were ca. 3000 bp and 1011 bp (Figure 48, B). All 

positive clones were sequenced and used for insert production. The purified insert was ligated 

into pCAGGS and resulting clones were analyzed by colony PCR. Consequential positive 

clones were sequenced and transfected in ReNcell VM cells. The expression of N-terminally 

HA-tagged hHES1 was tested via western blot analysis. Therefore, transfected ReNcell VM 

cells were proliferated for 24 h after transfection and then differentiated for 24 h. Western blot 

analysis revealed no specific band neither by HA antibody nor by HES1 antibody (Figure 48, 

D). 
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Figure 48: Generation of pCAGGS-HA-hHES1. A: Product of HA-hHES1 amplification (M=DNA ladder). 

B: Digestion of pGEM-T easy-HA-hHES1 with XhoI and BstXI; expected fragments were 3000 bp and 1011 bp. 

C: Plasmid map of pCAGGS-HA-hHES1. D: Western blot of pCAGGS-HA-hHES1 transfected ReNcell VM 

cells after 24 h of differentiation detected by HA antibody, pCAGGS-GFP transfected cells were used as control. 

 

7.4.2 Generation of pCAGGS-HA-hHES5 

To amplify hHES5 the plasmid pCMV6-XL4-HES5 (origene) was used as a template, 

together with the forward primer which includes the XhoI restriction site in combination with 

a HA-Tag and the reverse primer which includes a BstXI restriction site. After amplification 

of HA-hHES5 (Figure 49, A) the insert was purified and ligated into pGEM-T easy (Promega) 

for subsequent blue/white screening and selection. Positive clones were analyzed by digestion 

with BstXI and XhoI, expected fragments were ca. 3000 bp and 590 bp (Figure 49, B). All 

positive clones were sequenced and used for insert production. The purified insert was ligated 

into pCAGGS and resulting clones were analyzed by colony PCR. Consequential positive 

clones were sequenced and transfected in ReNcell VM cells. The expression of N-terminally 

HA-tagged hHES1 was tested via western blot analysis. Therefore, transfected ReNcell VM 

cells were proliferated for 24 h after transfection and then differentiated for 24 h. Western blot 

analysis revealed a very weak band at 20 kDa (Figure 49, D), which was consistent with the 

pCAGGS-hHES5 vector. 
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Figure 49: Generation of pCAGGS-HA-hHES5. A: Product of HA-hHES5 amplification (M=DNA ladder). 

B: Digestion of pGEM Teasy-HA-hHES5 with XhoI and BstXI; expected fragments were 3000 bp and 590 bp. 

C: Plasmid map of pCAGGS-HA-hHES5. D: Western blot of pCAGGS-HA-hHES5 transfected ReNcell VM 

cells after 24 h of differentiation, pCAGGS-GFP transfected cells were used as control. 

 

7.5 Treatment of ReNcell VM cells with Dkk-1 

 

Figure 50: Analysis of Wnt-3a and Dkk-1 treated ReNcell VM cells Flow cytometric data showing 

percentages of Wnt-3a and Dkk-1 treated cells positive for HuC/D and Tuj1 (A) and GFAP and S100β (B) 

differentiated for 3 days in the presence of Wnt-3a+Dkk-1 (Dkk-1) or Wnt-3a alone as control. Data are 

presented as means ± SEM from two independent experiments.  
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