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Abstract 

 Ethylene is one of the most important petrochemically derived monomers that is  

used as a feedstock for the production of a variety of commercially useful chemical 

products such as plastics, fibres, resins, polymers, packaging materials and so on. 

Global consumption of ethylene is reported to be over 130 MMT in 2012, which is 

expected to reach 155 MMT by 2015. These numbers clearly demonstrate the 

commercial importance of ethylene in the global market. At present, ethylene is 

commercially produced mainly via steam cracking of naphtha and ethane feedstocks, 

which is an endothermic process operating at high temperatures (700-900 °C) 

consuming a lot of energy and also possess some thermodynamic limitations. In 

addition, CO, H2, CH4, C2H2, C3+ compounds are formed as by products during such 

process, which in turn lead to difficulties in their separation and purification. However, 

the addition of an oxidant such as O2 to the reaction mixture allows performing 

exothermic oxidative dehydrogenation (ODH) seeming to be one of the more 

attractive alternative routes for the production of ethylene in one step. Because this 

ODH approach is an exothermic reaction and can be operated at relatively low 

temperatures (300-600 °C) thus requiring less energy input compared with the 

traditional production routes mentioned above. In addition, the presence of oxidant 

(e.g. O2) in the feed gas certainly suppresses the coke formation to a large extent 

and thereby improves the long-term stability. 

 A wide of range of catalytic materials have been evaluated as potential catalysts 

for the ODHE. A multicomponent MoVTeNbO mixed oxide system with an optimum 

Mo-V-Te-Nb formulation of 1: 0.15: 0.16: 0.17 is reported to give an ethane 

conversion higher than 80% with a selectivity to ethylene above 80% at 350-400 °C 

and atmospheric pressure. The most intensively studied catalysts are supported 

early-transition metal oxides, i .e., mainly V and Mo oxides due to their ability to 

provide lattice oxygen for hydrogen abstraction from alkanes and finally yielding 

desired alkenes via Mars-van Krevelen redox mechanism. The catalytic activity and 

selectivity of supported vanadia catalysts are significantly affected by the nature of 

supports because of their different physico-chemical properties like thermal stability, 

acid-base properties, porosity (surface areas), active phase-support interactions, 

oxygen storage capacity, reducibility and so on. More recently, NiO based catalysts 

have also received considerable research attention due to their unique ability of 



exhibiting high reactivity at relatively low temperatures (300-450 °C) and thereby 

enhanced selectivity of olefins as well.  

 In view of this, this thesis is mainly aimed at preparation, characterization, and 

catalytic testing of five different series of catalysts for the ODHE. Different types of 

vanadia based catalysts using various catalyst carriers such as V2O5/Nb2O5,  

V2O5/Al-x and V2O5/TiO2 and additionally Ni-Nb based ones, for instance promoted 

Ni-Nb-M-O (M=Cr, Mo, W) catalysts were prepared by impregnation and evaporation 

methods, respectively. All these catalysts were characterized by several physico-

chemical techniques for better understanding of their properties. The catalytic 

performance of these solids was evaluated towards the ODHE in a fixed bed quartz 

reactor at 500-600 °C for supported vanadia samples and 300-450 °C for Ni-Nb-M-O 

catalysts. Special emphasis is devoted to gain deeper insights on the physico-

chemical characteristics of the catalysts in relation to their activity/selectivity 

properties. Some highlights on the results obtained from every series are briefly 

described below. 

 For V2O5/Nb2O5 catalysts with varying V2O5 contents (5-20 wt%), it has been 

observed that the catalytic activity and selectivity are found to depend strongly on the 

nature of vanadium oxide species formed and the surface enrichment of vanadium in 

the near-surface-region. These two properties in turn strongly depend on the content 

of vanadium in the catalysts. At low V2O5 content (≤10 wt%), monomeric and 

oligomeric VOx species were formed while more polymeric species were found 

(similar to bulk V2O5 sample) at higher loadings as shown by UV-vis-DRS studies. 

XPS revealed that pronounced enrichment of vanadium occurs in the near-surface-

region in the samples with low vanadia contents. Among all, 10 wt% V2O5/Nb2O5 

catalyst has displayed the superior performance (X = 28%, S = 38% at 600 °C) due 

to clear enrichment of vanadium in the near-surface-region and formation of optimum 

amount of monomeric/oligomeric VOx species. Based on this result, 10 wt% V2O5 has 

been selected as an optimum loading and used in all further studies. 

 The investigations on exploring the nature of alumina support using 10 wt% V2O5 

as an optimum loading (i.e. V2O5/Al2O3 series with five with different types of Al2O3 

supports) revealed that the nature of the Al2O3 source showed a significant influence 

on the catalytic performance of the solids. Among all catalysts investigated, the high 

surface area -alumina based catalyst displayed the best performance in the ODHE 



due to the high dispersion of VOx species over the support surface. On the other 

hand, low surface area -Al2O3 but also low surface area -Al2O3 supported catalysts 

exhibited high ethane conversion but low selectivity to ethylene because of the 

existence of bulky V2O5 particles. In addition, a recently described low-surface area 

ball-milled alumina containing a high amount of penta-coordinated Al sites was also 

included in this study. This special alumina supported V2O5 catalyst astonishingly 

displayed a quite good performance in the ODHE despite its small surface area. 

Such behaviour can be ascribed mainly to the presence of penta-coordinated Al 

surface sites acting as anchors for preferentially monomeric and low-oligomeric VOx 

species leading to a prime dispersion. 

 In further studies, the effect of oxide support material (Nb2O5, TiO2, Al2O3) on the 

activity and selectivity behavior of vanadia catalysts (10 wt% V2O5) was examined. 

The nature of the support has shown substantial influence on the catalytic 

performance in the ODHE reaction. This phenomenon could be attributed to the 

dispersion of VOx species on the support, strength of metal-oxide and support 

interactions, acidity characteristics, reducible properties, nature of VOx species 

formed etc. It has been noticed that Lewis acidity seems to play a key role on the 

performance. The best V2O5 catalyst supported on Al2O3 with highest surface area 

yield the highly dispersed monomeric vanadia species resulting in the superior 

catalytic performance in the ODHE reaction. 

 In addition, Ni-Nb-O based catalysts were further modified by three promoters, i.e.  

Cr, Mo, W (Ni: Nb: M atomic ratio of 1: 0.176: 0.1), that belong to the same group of 

elements but showing different d-characters. Compared with that of parent Ni-Nb-O 

solid, the promoted Ni-Nb-M-O (M: Cr, Mo, W) samples didn’t show any changes in 

XRD patterns particularly in terms of crystalline behaviour and phase composition. 

However, considerable differences could be noticed concerning BET surface area 

data, reducibility, acidity characteristics as well as surface composition. Among the 

three auxi liaries used, Cr promoted Ni-Nb-Cr-O displayed relatively superior catalytic 

performance in the ODHE to ethylene, yielding in an ethane conversion of 26% and 

an ethylene selectivity of ca.65% at 420 °C. Ni-Nb-O and promoted Ni-Nb-M-O (M: 

Cr, Mo, W) catalysts were also further tested in the ODH of ethane in the presence of 

CO2 with an intention to improve activity and/or selectivity. The introduction of CO2 

into the reactant feed mixture is found to improve the selectivity of ethylene 



considerably but resulted in a marginal loss of activity. Among all, Ni-Nb-Cr-O solid 

revealed an ethylene selectivity of ca.85% at slightly less ethane conversion. 

 On the whole, it can be concluded that the content of vanadia, nature of 

support, type of VOx species formed and their dispersion on the support surface, 

acidity characteristics, reducibility, surface compostion etc. are some of the key 

parameters that need to be controlled carefully to achieve enhanced performance of 

the catalysts  



Zusammenfassung 

 Ethylen, eins der wichtigsten Monomere der Petrochemie, dient als 

Basischemikalie in der Herstellung einer Vielzahl von Produkten. Beispiele sind 

Kunststoffe, Fasern, Harze, Polymere, Verpackungsmaterialien und einige mehr.  Der 

globale Verbrauch 2012 betrug 130 Megatonnen bei einem erwarteten Anstieg auf 

155 Megatonnen bis 2015. Diese Zahlen verdeutlichen die wirtschaftliche Bedeutung 

von Ethylen im Weltmarkt. Hauptproduktionsweg ist derzeit das Steamcracken von 

Naphtha und Ethan. Ein thermodynamisch limitierter, energieintensiver, endothermer 

Prozess der bei Temperaturen von 700-900°C durchgeführt wird. Als Nebenprodukte 

entstehen CO, H2, CH4, C2H2 sowie C3+-Verbindungen. Dies zieht Abtrenn- und 

Reinigungsschritte nach sich. Die Zumischung eines Oxidationsmittels (O2) eröffnet 

als alternativen Reaktionsweg die exotherme oxidative Dehydrierung (ODH) von 

Ethan. Da es sich bei der ODH um eine exotherme Reaktion handelt, kann die 

Reaktion bei vergleichsweise niedrigen Temperaturen von 300 bis 600 °C 

durchgeführt werden. Im Vergleich mit herkömmlichen Herstellungsverfahren 

bedeutet das eine deutliche Energieeinsparung. Des Weiteren unterdrückt O2 die 

Koksbildung und führt daher zu verbesserten Katalysatorstandzeiten.  

 Eine große Bandbreite verschiedener Materialien wurde als Katalysator in der 

ODH von Ethan (ODHE) getestet. Ein mehrkomponentiges MoVTeNbO-

Mischoxidsystem (optimales Verhältnis 1: 0.15: 0.16: 0.17) führt zu Ethanumsätzen 

von mehr als 80% bei Selektivitäten zu Ethylen von über 80% bei 350-400°C und 

Atmosphärendruck. Besonderes Augenmerk richtete sich auf Trägerkatalysatoren 

früher Übergangsmetalloxide. Aufgrund ihrer Eigenschaft, in einem Mars-van 

Krevelen-Mechanismus, Gittersauerstoff zur H-Abstraktion aus Alkanen 

bereitzustellen fiel die Wahl hauptsächlich auf V und Mo-Oxide. Die katalytische 

Aktivität und Selektivität geträgerter Vanadiumoxid-Katalysatoren verändert sich für 

unterschiedliche Trägermaterialien signifikant. Merklichen Einfluss haben dabei unter 

anderem folgende Eigenschaften des Trägermaterials: thermische Stabilität, Zahl 

und Stärke saurer und basischer Zentren, Porosität (Oberfläche und Porenvolumen), 

elektronische Wechselwirkungen zwischen Träger und Aktivkomponente, 

Sauerstoffspeicherkapazität, Redoxpotential. Aktuell erfahren NiO-basierte 

Katalysatoren erhöhte Aufmerksamkeit. Hier werden hohe Aktivitäten bei 

vergleichsweise niedrigen Temperaturen von 300-450 °C und zugleich guten Olefin-



Selektivitäten berichtet. Zur Vermeidung der Totaloxidation von Ethan in Gegenwart 

von Sauerstoff wurde der Einsatz von Kohlendioxid als mildes Oxidationsmittel 

erwogen. Dieses Vorgehen verspricht neben einer Minderung der Totaloxidation 

auch höhere Selektivitäten. Der vielversprechende Effekt einer CO2 Beimischung in 

der ODH von Alkanen ist literaturbekannt. Eine weitere Verbesserung der 

katalytischen Kenngrößen NiO-basierter Systeme durch CO2 Beimischung ist nicht 

auszuschließen.  

 Vor diesem Hintergrund besteht die Aufgabenstellung dieser Arbeit in der 

Herstellung, Charakterisierung und katalytischen Austestung von fünf ODHE-

Katalysator-Serien. Vanadiumoxidbasierte V2O5/Nb2O5, V2O5/Al-x, V2O5/TiO2 sowie 

Ni-Nb basierte (promotierte Ni-Nb-M-O (M=Cr, Mo, W)) Katalysatoren wurden durch 

Imprägnierungs- und Einengungsverfahren hergestellt. Sämtliche Katalysatoren 

wurden durch mehrere physikalisch-chemische Methoden charakterisiert. 

Katalytische Tests wurden in Festbett-Quarzreaktoren bei 500-600°C (VOx) bzw. 

300-450°C (NiNb-M-O) durchgeführt. Eine Beimischung von CO2 wurde für Ni-Nb-M-

O Katalysatoren getestet. Besondere Beachtung wurde der detaillierten 

physikochemischen Charakterisierung der Katalysatoren zur Erlangung von 

Auussagen zu Struktur-Aktivitäts-Beziehungen beigemessen. Ausgewählte 

Ergebnisse der verschiedenen Testserien werden hier zusammengefasst.  

 V2O5/Nb2O5 Katalysatoren mit unterschiedlichem V2O5-Gehalt (5-20 wt%): 

Aktivität und Selektivität hängen stark von der Art der gebildeten Vanadiumoxid-

Spezies und der Anreicherung von Vanadium in Oberflächennähe ab. Diese beiden 

Eigenschaften fußen ihrerseits auf dem Vanadiumgehalt der Katalysatoren. Unter 

allen Getesteten zeigte die Probe mit 10 wt% V2O5/Nb2O5 die beste katalytische 

Leistung (X = 28%, S = 38% bei 600 °C). Dies liegt in der Anreicherung von 

Vanadium in Oberflächennähe und der Bildung einer optimalen Menge an 

monomeren/oligomeren VOx Spezies begründet. Ausgehend von diesem Ergebnis 

wurden alle folgenden Studien mit dieser  Probe durchgeführt. 

 Die Natur des Al2O3-Trägers hatte ebenfalls einen großen Einfluss auf die 

katalytische Aktivität. Dies wurde anhand von Messungen an 10 wt% V2O5 auf 5 

verschiedenen Al2O3 Trägern nachgewiesen. Unter allen untersuchten Katalysatoren 

zeigten die auf -Al2O3 basierten Festkörper die besten Ergebnisse aufgrund der 

hohen Dispersität des Vanadiumoxids. Andererseits zeigten Katalysatoren, die -



Al2O3 und -Al2O3 niedriger Oberfläche nutzten, hohe Ethanumsätze, jedoch 

schlechte Ethylenselektivitäten aufgrund der nachweislich vorhandenen V2O5 Partikel. 

Außerdem wurde ein kürzlich beschriebenes, kugelgemahlenes Aluminiumoxid 

niedriger Oberfläche getestet. Erstaunlicherweise zeigte der entsprechend geträgerte 

V2O5-Katalysator eine sehr gute ODHE-Aktivität, trotz der kleinen spezifischen 

Oberfläche. Das Verhalten kann hauptsächlich den pentakoordinierten 

Aluminiumspezies an der Oberfläche zugeschrieben werden. Hier wird bevorzugt 

monomeres und niederoligomeres VOx gebunden. Dies führt zu hervorragender 

Dispersität.  

 Weitere Untersuchungen hatten insbesondere den Einfluss des oxidischen 

Trägers (Nb2O5, TiO2, Al2O3) auf die Aktivität und Selektivität der 

Vanadiumoxidkatalysatoren (10 wt% V2O5) zum Gegenstand. Hier zeigte sich ein 

substanzieller Einfluss auf die katalytischen Kenngrößen der ODHE-Reaktion. Das 

Phänomen konnte der Dispersität verschiedener VOx Spezies auf dem Träger, der 

Stärke der Träger-Metalloxid-Wechselwirkungen, Säurestärken, Reduzierbarkeit etc. 

zugeschrieben werden. Es wurde erkennbar, dass die Lewis-Säurestärke eine 

Schlüsselrolle zu spielen scheint. Der beste V2O5 Katalysator geträgert auf 

oberflächenaktiviertem Al2O3 mit der höchsten spezifischen Oberfläche ergab 

hochdisperse monomere Vanadiumoxidspezies. Dies führte zu der besten 

katalytischen Aktivität.  

 Außserdem wurden Ni-Nb-O basierte Katalysatoren durch Promotoren modifiziert.  

Dazu wurden: Cr, Mo, W (Ni: Nb: M Molverhältnis von 1: 0.176: 0.1) eingesetzt. Die 

Promotoren gehören zur selben Elementgruppe, zeigen jedoch unterschiedlichen d-

Charakter. Unter den 3 Auxiliaren zeigten die Cr-promotierten Ni-Nb-Cr-O die besten 

Eigenschaften. Es wurde ein Ethanumsatz von 26% und eine Ethylenselektivität von 

ca. 65% bei einer Temperatur von 420 °C erreicht. Ni-Nb-O und promotierte Ni-Nb-

M-O (M: Cr, Mo, W) Katalysatoren wurden ebenfalls bezüglich ihrer ODHE-Aktivität 

in Anwesenheit von CO2 getestet. Die Beimischung von Kohlendioxid führte zu 

verbesserten Selektivitäten für  Ethylen bei marginalem Aktivitätsrückgang. Unter 

allen getesteten Katalysatoren zeigte Ni-Nb-Cr-O eine Ethylenselektivität von ca. 85% 

bei geringfügig niedrigerem Ethanumsatz.  
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Structure of the thesis 

The thesis is separated into seven chapters. 

Chapter 1 contains a general introduction on ethylene manufacture and application, 

the motivation and the objective of the current study, a comprehensive literature 

review on useful ODHE catalysts including the general introduction of vanadia and 

molybdena based catalysts, the Ni-Nb-M-O mixed metal oxide catalysts and their 

advantages in selective oxidation reaction, the motivation on a third metal dopant into 

Ni-Nb-O catalysts and an introduction of CO2 admixture in the reaction feed. 

Chapter 2 gives a summary on experimental issues including the solids preparation 

methods, basic characterization techniques, and the introduction about the reaction 

setup and evaluation of the catalysts for the oxidative dehydrogenation of ethane to 

ethylene. 

Chapter 3 shows the catalytic data obtained by using Nb2O5 supported vanadia 

catalysts. The catalytic performance of those catalysts is evaluated with the help of 

BET-SA, ICP, UV-vis, XRD, XPS, FTIR, TEM in detail. 

Chapter 4 deals with the catalytic data obtained from catalytic performance tests 

over different alumina supported vanadia catalysts. The catalytic performance of 

those catalysts is evaluated with the help of the methods mentioned above. 

Chapter 5 compares the catalytic data obtained from different supported vanadia 

catalysts and their characterization using the techniques listed above.  

Chapter 6 presents the catalytic data obtained by Ni-Nb-M-O mixed metal oxide 

catalysts with and without CO2 admixture under the same reaction conditions (T, 

GHSV), along with the solid state characterization to show the correlation between 

the nature of catalysts and different catalytic performance. 

Chapter 7 summarizes the results of the investigations and gives some conclusions 

and an outlook for future research on the oxidative dehydrogenation of ethane to 

ethylene. 
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1. Introduction and literature survey 

This chapter contains a general introduction on the manufacture and application of 

ethylene, the motivation and the objective of the current study. Furthermore, a 

comprehensive literature review on useful ODHE catalysts including a general 

introduction on vanadia based catalysts, Ni-Nb-O mixed metal oxide catalysts and 

their advantages in selective oxidation reactions. Moreover, this chapter reports on 

the motivation of the incorporation of a third metal dopant into Ni-Nb-O catalysts and 

an introduction on the admixture of CO2 to the reaction feed. 
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1.1 Ethylene - commercial manufacture, application, demand  

 Ethylene is one of the most important building blocks in the worldwide 

petrochemical industry (Fig. 1-1). About 80% of ethylene produced in the world is 

used for the manufacture of various commercially important chemicals such as vinyl 

acetate, vinyl chloride, ethylene oxide, ethyl benzene, linear higher olefins and so on 

[e.g.1]. It is also a key raw material for the production of numerous polymers such as 

synthetic lubricants, plasticisers, surfactants, detergents and so on. All these 

chemicals play an important role in our daily life.  

    

Fig. 1-1. Ethylene capacities and main applications 

 USA is the highest exporter while China is the highest importer of ethylene. 

Although ethylene consumption growth dropped to around one per cent in 2012 as a 

result of the on-going economic problems around the world, the ethylene market is 

growing at a rate of ~3% per year [2, 3, 4]. In addition, one should also note that 

ethylene production and consumption is relatively less affected on the whole during 

global economic recession compared to other petrochemicals. In 2012, the worldwide 

ethylene consumption is estimated to be >130 MMT, which is expected to reach over 

140 MMT by 2015. However, the worldwide ethylene production capacities from all 

units in 2012 are 150 MMT that would increase to 165 MMT by 2015. This means an 

operation rate of around 87% is recorded. Despite 1% decrease of global 

consumption in 2012 due to economic downturn in China, the global demand on the 

whole for ethylene is expected to grow by ~3% per year over a period of next five 

years. In other words, the global demand for ethylene would grow more or less at the 

same level as that of World GDP average growth rate (i.e. 3%). The largest Chinese 

market will continue to grow at a rate of 8-10% per year for next 5 years at least and 
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becomes the main driver in ethylene consumption, particularly polyethylene and 

ethylene glycol use in packaging, fibre and plastic industries (Fig. 1-1). 

 At present, the industrial methods for ethylene production are steam cracking of 

hydrocarbon feedstocks, with additional manufacture  from fluid-catalytic-cracking 

(FCC) and catalytic dehydrogenation of paraffins [5], in general. These processes 

operate at temperatures between 500 and 900 °C, depending upon the raw materials, 

which consume a lot of energy and also possess some thermodynamic limitations [6]. 

In addition, CO, H2, CH4, C2H, C3+ compounds are formed as by products during 

such processes, which in turn lead to difficulties in their separation and purification. It 

also limits the ethylene selectivity and favors carbon deposition on the active sites [7]. 

Furthermore, in thermal cracking at high temperatures (typically in the range of 450-

750 °C) and pressures (up to 70 bar) large amounts of unwanted solid coke are 

formed [1]. Alternatively, steam cracking is also a large industrial process in which 

saturated hydrocarbons are broken down into smaller ones, often unsaturated 

hydrocarbons. It is the principal industrial method for the production of light olefins 

(e.g. ethylene and propylene). Similar to thermal cracking, the steam cracking also 

has some disadvantages such as (i) the reaction is highly endothermic depending 

upon the raw materials [1], (ii) coking problem is significant in the furnace and in the 

transfer line exchanger, (iii) deactivation of the catalyst and (iv) the more heavier the 

feedstock the more the formation of undesired products occurs [8]. Due to these 

problems, there is a real need to develop a new technology devoted to a more 

efficient ethylene production. 

1.2 Oxidative dehydrogenation of ethane (ODHE) 

 The oxidative dehydrogenation (ODH) of alkanes to the corresponding olefins 

[e.g. 9, 10, 11] becomes to be an attractive route due to several advantages such as 

the use of cheap ethane or propane from natural gas sources. The addition of O2 to 

the reaction mixture allows performing the exothermic ODH (∆RH = -105 kJ/mol 

ethane). So it can be operated at relatively low temperatures (350-600 °C) thus 

requiring less energy input compared with the traditional production routes mentioned 

above. The presence of oxygen also lowers the thermodynamic restrictions for 

dehydrogenation activity, reduces the coke formation to a large extent and thereby 

improves the long-term stability. In addition, the catalyst regeneration step (decoking) 
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is not necessary in the production process, because the catalyst regeneration occurs 

in situ by the presence of oxygen in the reactant feed itself. Thus, the ODHE over 

redox catalysts is an attractive alternative method to the current thermal / steam 

cracking processes for ethylene production [e.g.12, 13, 14].  

 In the ODHE, there are mainly three potential reactions (Fig.1-2), the selective 

ODH of ethane to desired ethylene (R. 1), total oxidation of ethane to COx (R. 2) and 

consecutive oxidation of ethylene to COx (R. 3). However, the formation of certain 

amounts of thermodynamically favoured products (e.g. COx and H2O) cannot be 

excluded and hence the yield of ethylene achieved on most of the catalysts applied is 

still not very satisfactory. Therefore the key issue of ethylene production by the 

ODHE is linked to develop a catalytic system, which is capable to selectively convert 

ethane to ethylene and meanwhile prevent the ethane total oxidation and ethylene 

consecutive oxidation to COx.  

 

Fig. 1-2. Main reaction paths running in the ODHE reaction 

 Literature survey reveals that a wide range of catalytic active materials have 

been studied as potential catalysts for the ODHE [4, 12, 13, 15, 16, 17]. In recent 

investigations, the most widely used catalysts for the ODH are supported early-

transition metal oxides, i.e., mainly V and Mo oxides [18, 19, 20, 21]. López Nieto and 

co-workers have developed a multicomponent MoVTeNbO mixed oxide system with 

an optimum Mo-V-Te-Nb formulation of 1: 0.15: 0.16: 0.17 giving a selecti vity to 

ethylene above 80%, ethane conversion is reported to be higher than 80% and about 

75% ethylene yield at 350-400 °C and atmospheric pressure [ 22, 23 ]. Besides, 
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Heracleous and Lemonidou have reported on NiNbOx mixed oxides leading to an 

ethylene yield of 46% and 90% selectivity to ethylene at 400 °C [24]. Gaab et al. 

reported on ethylene yields up to 77% reached over molten alkali metal salts (Li, Na, 

and K chlorides) supported on Dy2O3/MgO [25]. The application of such chloride 

containing catalysts can also produce different Cl-containing by-products that might 

not jam subsequent vinyl chloride manufacture, for example. However, the work-up 

for other uses at industrial scale makes the process more expensive, unattractive, 

complex and also create environmental unfriendly issues.  

 Overall, the yield of ethylene obtained by the ODHE on most of the catalysts is 

not very satisfactory because of the weakly reactive of ethane, which could be 

attributed to the absence of lone electron pairs, empty orbitals, and polarity in their C-

H bonds [26]. Currently, the ODHE is still under development and needs to breed 

more active catalyst system and optimized reaction conditions for its commercial 

implementation.  

1.3 Supported vanadia catalysts in the ODHE 

 Supported catalysts represent the largest group of heterogeneous catalysts, in 

which small amounts of active materials, especially metals, are applied to another 

solids, the so-called supports. This kind of catalyst is of major economic importance, 

especially in refinery technology and the chemical industry. Supported catalysts are 

heterogeneous catalysts. 

 Supports such as SiO2, Al2O3, Nb2O5 and so on, were initially considered as 

inert substance to provide a high surface area to carry the active metal oxide phase 

or to improve the mechanical strength of the catalyst material. Generally the catalytic 

activity and selectivity of supported catalyst are significantly affected by using of 

different supports because of their different physical and chemical properties like 

thermal stability, acid-base properties, different surface area, oxygen storage 

capacity and reducibility and so on. The effects of support oxide material properties 

on the activity and selectivity of supported metal oxide catalysts have been receiving 

more and more attentions since last decades [27, 28, 29, 30, 31, 32]. The interaction 

between surface metal oxide species with the oxide support called metal -support 

effect and/or strong metal-support interaction (SMSI) [29, 30], which strongly affect 
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the dispersion and morphology of the metal particles is probably due to various 

physical and chemical effects [27]: 

- Electronic effects: electron transfer up to formation of chemical bonds 

- Adhesive forces (van der Waals forces) 

- Formation of reduced support species on the metal surface 

- Formation of new phases at the boundary surface 

 Weckhuysen et al. have reported that among all different supported metal oxide 

catalysts 28% (expressed as a percentage of the total number of papers) are vanadia 

catalysts based on an extensive open literature search in the period 1967-2000 [29]. 

Supported vanadium oxide catalysts constitute a very important class of catalytic 

materials and have been extensively used in a large number of catalytic processes. 

Since they are well known to be active in the selective oxidation of alkanes and 

alkenes [33, 34, 35 , 36], selective catalytic reduction of NOx with NH3 [37, 38 ], 

oxidation of o-xylene to phthalic anhydride [39,40], decomposition of isopropylalcohol 

[ 41 ], total oxidation of benzene [ 42 ], ammoxidation of hydrocarbons and other 

organic substrates [43, 44], the oxidative dehydrogenation (ODH) of alkanes [21, 45, 

46, 47, 48 ], as well as many other industrial processes.  

 The catalytic performance of supported vanadia catalyst is significantly 

determined by the variability in geometric and electronic structure of surface 

vanadium oxide species. For example, vanadia based catalysts have achieved an 

acceptably good ethylene selectivity in the ODHE that is mainly due to the ability of 

isolated/polymeric vanadia species to provide lattice oxygen for hydrogen removal 

from alkanes yielding alkenes via redox cycle (i.e. Mars-van Krevelen mechanism) 

[20, 49]. The deposition of vanadium oxide species on a support can result in several 

types of vanadium oxides [29, 32, 50, 51] including monovanadate and polyvanadate. 

At low vanadium oxide loading, the isomeric vanadia species are assumed to 

predominantly appear (Fig. 1-3a). VO4 is the base unit in tetrahedrally coordinated 

structure consisting of a V=O double bond and three bridge V-O-sc (with sc the 

support cation) bonds linked to the support. With increasing the vanadium oxide 

loadings the dimeric or polymeric vanadia species are formed (Fig. 1-3b), which can 

be explained by the condensation of the monomeric species. The chains of vanadium 

ions building up a one-dimensional and then two-dimensional over-layer of supported 

vanadium oxides are developed with further rise of the vanadium oxide loadings until 
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the surface of the support is completely covered and a monolayer of vanadia species 

is formed (Fig. 1-3c). In addition to the monovanadate and polyvanadate, when the 

monolayer coverage is exceeded the formation of three-dimensional vanadium 

oxides V2O5 crystallites (Fig. 1-3d), and mixed metal oxide phases with the support, 

or a combination of the above-mentioned molecular structures can occur. 

 

Fig. 1-3. Schematic representation of the formation of surface vanadia species a) 

isolated vanadia species, b) dimeric/polymeric vanadia species, c) monolayer vanadia 

species, d) crystalline V2O5 particles above monolayer vanadia species 

 However, the metal oxide-support effect is not well studied and therefore not 

well understood yet. Moreover the relationship between the structure of surface 

vanadia species and their catalytic activity for the ODHE is also not very clearly 

understood so far.  

 Many different oxide supports such as SiO2, Al2O3, Nb2O5, TiO2 were used for 

vanadia based catalysts in ODHE. Nb2O5 was firstly used as a support for V2O5 for 

the ODHE in our work [21], which was however mostly used as active component in 
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many cases of catalysts for the ODH. As shown by Viparelli et al. [52], the selectivity 

to propylene in the ODH of propane increased when niobium was associated to 

vanadium at low V/Nb ratios. The enhanced effect of Nb on the catalytic performance 

in the ODHE was also illustrated in a Cr-Al-Nb catalyst reported by Liu et al [53]. 

Nb2O5 supported V2O5 catalyst were also used in the selective oxidation of propylene 

to acrolein [32, 54] and vapour phase ammoxidation of toluene to benzonitrile [55]. 

 TiO2 supported catalysts were also commonly studied in the ODHE. Ciambelli 

et al. reported on TiO2 supported vanadyl phosphate catalysts [56] for the ODHE and 

claimed that the reducibility and acidity of vanadium phosphate is strongly enhanced 

by deposition on TiO2 with respect to the bulk phase. This TiO2 supported catalysts 

are active and selective in the ODHE to ethylene in the temperature range of 450-

550 °C. Heracleous et al. [20] revealed the TiO2 supported V2O5 catalyst exhibit 

superior activity but inferior selectivity than the corresponding Al2O3 supported 

vanadia catalyst.   

 Alumina is the most wildly used support, which has been used extensively as 

adsorbent [e.g. 57], active catalyst [e.g. 58], catalyst support [e.g. 59] and also for 

numerous other applications in many industries. It occurs in various crystallographic 

modifications, among which the - and -phases are the most important solids used 

in catalysis compared with the other six polymorphs of Al2O3 (i.e., , ,,, and  

phases). As earlier as 1963, Maciver et al. have reported that - and -phases of 

Al2O3 possess characteristically distinct chemisorption properties [ 60 ] and the 

catalytic activity of the -phase of Al2O3 usually turns out to be higher than that of -

phase of the catalysts due to diverging characteristics such as acidic properties or 

BET surface area, for example. Moreover, -phase of Al2O3 is commonly used as 

catalyst support, which allows the dispersion of metal species like vanadium cations 

as vanadium oxide monolayer on its surface. As mentioned before, the catalytic 

activity of supported metal oxide catalysts  could be significantly affected by the 

different properties of the support. Zhang et al. [61] have reported the application of 

various types of alumina supported nickel oxide catalysts for the ODHE reaction. The 

different physical properties of supports have shown a clear influence on the 

dispersion of nickel oxide over the support and thereby catalytic performance as well. 

More recently, Düvel et al. have presented a structurally disordered -Al2O3 with a 
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controllable amount of pentacoordinated Al sites [ 62 ], which was mechanically 

treated in a planetary mill to initiate the transformation of - into - phase under 

ambient conditions. During such phase transformation, 5 -fold coordinated Al3+ 

centres were created on the surface of -alumina, and these sites are expected to act 

as binding sites for active catalyst phases, for example the industrially important 

catalyst system Pt/-Al2O3 [63, 30]. Considering this issue of generation of penta-

coordinated Al sites and their potential benefits of higher activity and selectivity, such 

alumina is also used in the present study as one of the supports for vanadia based 

catalysts in the ODHE reaction. 

1.4 Ni-Nb-O mixed metal oxide catalysts in the ODHE 

 Most promising low temperature catalysts reported so far for the ODH of ethane 

to ethylene are based on multicomponent mixed oxides (e.g. MoVTeNbO) that work 

at 340-400 °C exhibiting about 75% ethylene yields [23]. Further modification to 

MoVTeNbO catalyst was carried out by Millet and co-workers [64,46] by addition of 

silica to the starting slurry during the preparation and changing the final heat 

treatment conditions [64]. The addition of silica increases the conversion without 

modifying the selectivity to ethylene and the final heat treatment decreases the 

ethane conversion but increases the ethylene selectivity [64]. Some research efforts 

have also been focussed on the application of Ni-based catalysts that also work at 

low temperatures for the ODH of short alkanes [65, 66, 67]. Schuurman et al. [66] 

investigated the ODHE over unsupported metal catalyst from group VIII at low 

temperature and revealed that unsupported Fe, Co and Ni gave interesting results. 

However, when temperature increased the selectivity towards ethylene remained 

nearly constant for nickel whilst ethylene selectivity decreased for Co and Fe, making 

Ni-based catalysts the most attractive candidate for the ODHE reaction. Supported 

NiO and promoted Ni-M-O catalysts were also intensively studied for the ODHE 

reaction. According to Zhang [68] there are two kinds of active oxygen species (the 

more active one and less active one) on the fresh Al2O3 supported NiO catalyst. 

However, only less active oxygen species exist on the treated NiO/Al2O3 catalyst, 

which can only convert ethane to ethylene. Zhang [69] also claimed that highly 

dispersed NiO on support prefers to convert ethane to ethylene and large crystal NiO 

on support prefers to convert ethane to carbon dioxide. Heracleous et al. [ 70 ] 
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reported that Nb promoted Ni-M-O/Al2O3 catalyst showed enhanced reactivity toward 

ethane by more than 50% while maintaining the high ethylene selectivity. Later on 

Heracleous and Lemonidou synthesized a series of Ni-M-O mixed metal oxides and 

tested them in the ODHE. They found that its selectivity can be significantly improved 

by the addition of another metal that can reduce the formation undesired electrophi lic 

oxygen species on the surface being responsible for the total oxidation of ethane and 

consecutive oxidation of ethylene to carbon oxides both running in parallel. The best 

performance was reached by Ni0.85Nb0.15O at 400 °C resulting in ca.45% ethylene 

yield under optimised conditions [24, 71]. The enhanced catalytic activity of NiO 

based catalysts with Nb dopant was related to the favourable ionic radii, valency and 

electron-donor properties of niobium cations filling the cationic vacancies and/or 

substituting nickel atoms in the NiO lattice, forming a Ni-Nb solid solution and a highly 

distorted Nb-rich amorphous phase and therefore reduce the structural defects in NiO 

resulting in high selectivity to ethylene [24, 71, 72, 73].  

 More recently, López Nieto’s research group studied the ODHE to ethylene over 

Ni-Ce-O mixed oxide catalyst [12] and claimed enhanced activity. Such increase in 

the catalytic activity is attributed to the increased surface area by the addition of 

CeO2, as well as the changes in the nature of Ni sites. They also explored W [13] and 

Sn [74] promoted NiO catalyst in the ODHE and concluded that the interaction of NiO 

particles with WOx  nanoparticles seems to be an important factor in the improvement 

of the selectivity to ethylene, probably blocking the active and nonselective sites of 

pure nickel oxide, similarly to Ni-Nb-O catalysts. While the highly improved catalytic 

behaviour of SnO2-promoted NiO catalyst could be explained by several 

modifications such as a decrease in the crystal size and modification of surface Ni 

species, which favours a lower reducibility and/or a lower presence of electrophi lic 

oxygen species. Comparing MoVTeNbO [22, 23] and Ni-Nb-O [4, 24, 71], both these 

catalyst systems work at low temperatures (≤ 400 °C), but having some advantages 

and disadvantages. The first one gives superior performance, but it is a multi-

component system involving rather complex synthesis procedures being guarded by 

various patents [75, 76]. Alternatively, Ni-Nb-O catalyst is somehow less active, but it 

is a simple system that can be easily prepared. Considering the simplicity of this Ni-

Nb-O system, we are intended to further enhance its performance by the 

incorporation of some suitable redox promoters.  
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 From previous investigations dealing with other oxidation reactions, we have 

observed that the promoters (for instance Cr, Mo, Fe etc.) clearly enhanced both the 

activity and selectivity of VPO catalysts [77, 78]. Based on earlier experience, we 

would like to extend such knowledge to the present ODHE reaction and apply some 

selected redox promoters (e.g. Cr, Mo, W) that are expected to show positive 

influence and thereby improve the catalytic properties of Ni-Nb-O system.  

1.5 Introduction of CO2 in the ODHE 

 So far the most commonly used oxidant in the ODH is oxygen. The 

thermodynamically favoured reaction of ethane total oxidation and consecutive 

oxidation of ethylene to carbon oxides might occur easily. However, carbon dioxide, 

as one of the greenhouse gases, has also been considered as a mild oxidant in 

recent times. The application of CO2 in the ODH could be considered as another 

route for increasing selectivity and to avoid total oxidation. The promising effect of 

CO2 in the ODHE was first reported by Wang et al. [79]. They reported the promoting 

effect of CO2 in the ODH at T≤650 °C, CO2 either formed during reaction or added to 

the system increases the selectivity for the desired hydrocarbon products during the 

ODHE over Li+/MgO catalysts. The improved selectivities are attributed to the 

poisoning effect of CO2 on the secondary reactions of alkyl radicals with the active 

centers on the surface of catalysts [79]. Nakagawa et al. tested various metal oxide 

catalysts in dehydrogenation of ethane to ethylene in the presence/absence of CO2 

[80] and found that gallium oxide is the most effective catalyst, giving 18.6% ethylene 

yield with a selectivity of 94.5% in the presence of CO2 at 650 °C. The activity of this 

Ga2O3 catalyst in the presence of CO2 was twice that in the absence of CO2. Some 

other catalysts have also been proposed for the ODHE to ethylene with the presence 

of CO2 [81, 82]. It was proved that CO2 can enhance the dehydrogenation of ethane 

[83, 84, 85] and propane [86, 87], but the reaction temperature was mostly above 

700 °C [ 88 ]. As mentioned earlier, NiO-based catalysts can be applied at low 

temperatures in the ODHE reaction, therefore the introduction of CO2 into this 

reaction system could probably further improve the NiO-based catalyst performance. 

In addition, the ODH of alkanes carried out in the presence of CO2 would be a more 

benign process for both the environment and economics if the catalysts are efficient 

enough to make the process commercially attractive.  
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1.6 Motivations and aims of the thesis 

 The main goal of the present study in general is to develop highly active and 

selective catalysts for the ODHE to ethylene. Based on this purpose, two different 

series of catalyst were studied, i.e. supported vanadia and promoted Ni-Nb-O-based 

catalysts.  

 Supported vanadia catalyst: 

i) Apply Nb2O5 as a support for V2O5 catalysts, and evaluate the influence of 

V2O5 loading from 5-20 wt% on the catalytic performance of V2O5/Nb2O5 

catalysts in the ODHE to ethylene. 

ii) Investigate different types of alumina-support including  and  alumina with 

different surface areas, as well as the ball milled -alumina on the catalytic 

performance of vanadia catalysts for the ODHE. For this aim vanadia 

content will be fixed at 10 wt%.  

iii) Include TiO2 as support for vanadia catalyst for further study the effects of 

support on the properties of vanadia catalysts, the formation of vanadia 

species, as well as their activity and selectivity ability in the ODHE. 

iv) Discuss the effect of the nature of the support and the impact of vanadia 

species in the light of a detailed characterization of the physic-chemical 

properties of the catalysts by N2 adsorption, ICP, TGA, XRD, XPS, TPR, 

FTIR, and TEM. 

 

 Ni-Nb-O based catalyst: 

v) Further modify the parent Ni-Nb-O catalyst with different promoters (Me = 

Cr, Mo, W) aimed to enhance the activity for ethane conversion and 

selectivity in ethylene. 

vi) Test the ODHE reaction in the absence and presence of O2 / CO2 in the 

reactant feed over Ni-Nb-O and promoted Ni-Nb-Me-O (Me = Cr, Mo, W) 

catalysts to check the effect of CO2-admixture on the catalytic performance 

of Ni-Nb-O based catalysts in the ODHE. 

vii) Interpret the different properties and catalytic performance among promoted 

Ni-Nb-Me-O and parent Ni-Nb-O catalyst with the aid of different 

characterization techniques i.e. BET-SA, ICP, XRD, TPR, Py-FTIR, XPS. 
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2. Experimental methods and equipment 

This chapter gives a summary on several experimental issues including the solids 

preparation methods, basic characterization techniques, and the introduction of the 

reaction setup and the evaluation of the catalysts for the oxidative dehydrogenation 

of ethane to ethylene. 
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2.1 Methods of solid catalyst preparation 

 Depending on the structure and method of synthesis, solid catalyst can be 

divided into three main groups [89], i.e. carrier-free (bulk) catalyst, supported catalyst 

and coated catalyst. The preparation of solid catalysts consists of many physical and 

chemical steps. The conditions in each step have a decisive influence on the catalyst 

properties. For supported catalyst, once the active composition and support were 

determined the catalyst properties and activity strongly depends on every steps of the 

preparation process. Supported catalysts could be prepared via several methods, i.e. 

impregnation, ion-exchange, adsorption and deposition-precipitation [29, 90,  91, 92, 

93, 94], endowing the catalyst with different physical and chemical properties such as 

surface area, pore volume, formation of different active species on the surface of 

support and so on. 

 

Scheme 2-1. Manufacture of supported catalysts by impregnation method 

 With regard to the preparation of supported vanadium oxide catalysts, the most 

simple and widely used preparation technique is the impregnation method (Scheme 

2-1). In this procedure, a certain volume of an aqueous or non-aqueous solution 

containing a vanadium precursor is contacted with an inorganic oxide support. Two 

main impregnation procedures can be distinguished, depending on the volume of 

solution: wet impregnation and incipient wetness impregnation. In wet impregnation 

the support is dipped into an excess amount of solution. Later on the excess amount 

of solvent is removed by a rota vapor under reduced pressure. In incipient wetness 

impregnation the support is contacted with the solution containing active phase 

precursor of appropriated concentration which is equal to the total known pore 
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volume of the support, or slightly less. This allows a precise control of the active 

phase composition on the support [29, 90]. 

 The next step in the catalyst preparation process is very often a thermal 

treatment including generally drying and calcination steps [90, 91, 92], which is 

essential in all wet chemical processes. This leads to solvent-free materials and 

causes vanadia compounds anchored on the oxide support with the oxidation states 

of vanadia reaching their desired values. Moreover, in order to obtain desired surface 

area, pore structure, as well as different type active phase, the drying and calcination 

process should be well controlled by using suitable drying/calcination temperature, 

heating rate, atmosphere air and so on. 

2.1.1 Preparation of V/Nb catalysts 

 A series of V2O5/Nb2O5 catalysts (V/Nb) with various V2O5 loadings (5 to 20 

wt%) was prepared by the wet impregnation method. Required amounts of aqueous 

solutions containing ammonium metavanadate (99%, Alfa Aesar) and oxalic acid 

dihydrate (99%, Sigma-Aldrich) were prepared initially. Such solution was heated at 

60 °C under continuous stirring for 80 min to ensure complete dissolution and good 

mixing. In every case, a fixed amount of oxalic acid dihydrate (NH4VO3: (COOH)2 = 1: 

1.5 mole ratio) was added to dissolve ammonium metavanadate easily and 

completely. Later on, this solution was impregnated onto the support, Nb2O5 

(commercial sample supplied by CBMM, Brazil). The excess solvent was then 

removed under reduced pressure using a rota vapor, and the resulting solids were 

oven dried at 120 °C for 16 h. Finally, the oven dried samples  were calcined at 

600 °C for 6 h in air. The obtained catalysts were denoted as 5V/Nb-f, 10V/Nb-f, 

15V/Nb-f and 20V/Nb-f, where the number 5 to 20 indicates the nominal proportion 

(wt%) of V2O5 in the catalyst. Additionally, pure V2O5 was prepared by calcining 

NH4VO3 at 600 °C for 6 h in air. All the catalysts were crushed and sieved to the 

desired fraction of 1.0 to 1.25 mm size and used for the activity tests. And the spent 

catalysts were denoted as 5V/Nb-s, 10V/Nb-s, 15V/Nb-s and 20V/Nb-s. 
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Scheme 2-2. Schematic representation of preparation of V/Nb V/Al and V/Ti catalysts 

2.1.2 Preparation of V/Al and V/Ti catalysts 

 The theoretical amount of vanadium pentoxide was fixed at 10 wt% irrespective 

the different type of alumina used. 

 Different types of Al2O3 supported V2O5 catalysts were prepared by wet 

impregnation technique (Scheme 2-2). NH4VO3 was used as a precursor for V2O5 

and the content of V2O5 was fixed at 10 wt%. NH4VO3 was dissolved into deionized 

water together with oxalic acid at a mole ratio of NH4VO3: (COOH)2 = 1: 1.5 under 

stirring at 60 °C to ensure complete dissolution and formation of a vanadium-

containing solution. Five different types of alumina (samples denoted as Al-x with x = 

1-5) with varying surface areas such as (1) high-energy ball milled -Al2O3 with an 

extraordinari ly high amount of penta-coordinated Al sites prepared according to ref 

[62]. (BET-SA = 5.8 m2/g), (2) -Al2O3 (SASOL, Germany; BET-SA = 5.2 m2/g), (3) -

Al2O3 (Engelhard Italiana, S.p.A., BET-SA = 102 m2/g), (4) -Al2O3 (CONDEA 

Chemie GmbH, Germany; BET-SA = 201 m2/g) and (5) -Al2O3 (CONDEA Chemie 

GmbH, Germany; BET-SA = 294 m2/g) were used as supports. Subsequently, the 

above described V-containing solution was impregnated on to these five different 

alumina supports. The samples were denoted as V/Al-x (x= 1-5), where x refers to 

the above stated source of alumina support. The excess solvent was then removed 

under reduced pressure using a rotavapor then oven dried at 120 °C overnight 

(samples denoted as V/Al-x-od). Finally all the samples were calcined at 600 °C in air 

for 6 h (samples denoted as V/Al-x-f). All the catalysts were crushed and sieved to 

the desired fraction of 1.0 to 1.25 mm size and used for the activity tests. Spent 

samples were denoted as V/Al-x-s. 
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 The TiO2 (Crenox GmbH, Germany) supported vanadia catalyst with 10 wt% 

theoretical amount of vanadium pentoxide was also prepared by wet impregnation 

technique (Scheme 2-2). The procedure was the same as that of V/Al-x catalyst. This 

catalyst was then crushed and sieved to the fraction of 1.0 to 1.25 mm size and 

evaluated in the ODHE tests. V/Ti-f V/Ti-od and V/Ti-s are represented to fresh oven 

dried and spent catalyst respectively. 

2.1.3 Preparation of Ni-Nb-M-O (M: Cr, Mo, W) catalysts 

 A series of mixed Ni-Nb-M-O (M = Cr, Mo, W) catalysts, with constant Ni: Nb: M 

atomic ratio of 1: 0.176: 0.1 were prepared by using the evaporation method [4]. 

Doing so, aqueous solutions containing nickel nitrate hexahydrate (Alfa Aesar) and 

ammonium niobium oxalate (Aldrich) with different promoter sources such as i) 

chromium nitrate nonahydrate (Sigma-Aldrich) for Cr, ii) ammonium molybdate 

tetrahydrate (Alfa Aesar) for Mo, and iii) ammonium tungsten oxide pentahydrate 

(Alfa Aesar) as W source were mixed together in a desired proportion and heated at 

70 °C under continuous stirring for 1 h to ensure complete dissolution and good 

mixing of the starting compounds. Then the solvent was gradually evaporated under 

reduced pressure using rota vapour, and the as-received solids were oven dried at 

120 °C for 18 h, followed by calcination at 450 °C in synthetic air (20.5% O2 in N2) for 

5 h. This series catalyst were also crushed and sieved to the fraction of 1.0 to 1.25 

mm size and evaluated in the ODHE tests. The as-received solid were denoted Ni-

Nb-M-O-f and Ni-Nb-M-O-s for fresh and spent catalysts respectively.  

 

Scheme 2-2. Schematic of preparation of Ni-Nb-M-O (M: Cr, Mo, W) catalysts 
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2.1.4 Catalysts prepared and tested in the ODHE 

A list of all the catalysts prepared and tested in the ODHE is given in Table 2-1.  

Table 2-1. Catalysts and denotation tested in the ODHE  

Code Catalyst Composition Denotation 

1 5 wt% V2O5 (sa: Nb2O5) 5V/Nb 

2 10 wt% V2O5 (sa: Nb2O5) 10V/Nb 

3 15 wt% V2O5 (sa: Nb2O5) 15V/Nb 

4 20 wt% V2O5 (sa: Nb2O5) 20V/Nb 

5 10 wt% V2O5 (sa: Al2O3-1 high-energy ball milled -Al2O3) V/Al-1 

6 10 wt% V2O5 (sa: Al2O3-2 -Al2O3 SASOL, Germany) V/Al-2 

7 10 wt% V2O5 (sa: Al2O3-3 -Al2O3 Engelhard Italiana, S.p.A.) V/Al-3 

8 10 wt% V2O5 (sa: Al2O3-4 -Al2O3 CONDEA Chemie GmbH) V/Al-4 

9 10 wt% V2O5 (sa: Al2O3-5 -Al2O3 (CONDEA Chemie GmbH) V/Al-5 

10 10 wt% V2O5 (sa: TiO2) V/Ti 

11 Ni: Nb = 1: 0.176 (atomic ratio) Ni-Nb-O 

12 Ni: Nb: Cr = 1: 0.176: 0.1 (atomic ratio) Ni-Nb-Cr-O 

13 Ni: Nb: Mo = 1: 0.176: 0.1 (atomic ratio) Ni-Nb-Mo-O 

14 Ni: Nb: W = 1: 0.176: 0.1 (atomic ratio) Ni-Nb-W-O 

a: support 
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2.2 Characterization of fresh and spent catalysts 

 Both the physical and the chemical structure properties of a catalyst must be 

known if relationships between the structure of the catalyst and activity, selectivity 

and lifetime have to be revealed. The physicochemical characteristics of all these 

catalysts (fresh and spent) presented above were studied by the following techniques. 

The catalytic performance test is included in this figure because it can be  regarded as 

a kind of characterization with respect to catalytic activity and selectivity. 

 

Scheme 2-4. Typical techniques for catalyst characterization 

2.2.1 BET surface area and pore volume 

 The surface area measurement of catalyst reveals information on surface area 

pore size distribution and pore volume. This technique can be used to predict the 

efficiency of metal dispersion, porosity of catalyst as a method of assessing the 

efficiency of catalyst supports and promoters. In the present work the total surface 

areas and pore volume of the samples were determined by BET (Brunauer, Emmett 

and Teller) techniques using a NOVA 4200e device (Quantachrome Instruments) by 

N2 adsorption at -196 °C. Prior to the measurement, the samples were evacuated for 

2 h at 200 °C to remove physisorbed water.  

2.2.2 Inductively coupled plasma optical emission spectroscopy (ICP-OES) 

 The elemental compositions were determined by ICP-OES using a Varian 715-

ES ICP-emission spectrometer, which is a highly sensitive analytical technique for 

elemental determination and based on the principles of atomic emission. The 

samples were dissolved in a mixture of HF and aqua regia and then treated in a 
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microwave assisted sample preparation apparatus at 200 °C and 60 bar. Later on 

data analysis was performed on a TruSpec CHNS Micro analyzer (Leco). 

2.2.3 Thermal gravimetric analysis (TGA) 

 Thermal gravimetric analysis (TGA) is a technique whereby the weight of a 

substance, in heated or cooled environment at a controlled rate, is recorded as a 

function of time or temperature. The TGA determinations were carried out on a TG 

apparatus NETZSCH STA 449F3. A stream of air at a flow rate of 25 mL/min was 

used as the reactive atmosphere. The samples weighed about 10 mg. The 

temperature was increased from 20 °C to 1000 °C at a rate of 5 K/min. 

2.2.4 Temperature-programmed reduction (TPR) 

 Temperature programmed reduction (TPR) profiles were recorded in a range 

from r.t. to 900 °C at a heating rate of 10 K/min on a Micromeritics AC2920 

instrument. Prior to TPR measurement, all the samples were pretreated under 5% 

O2/He up to 450 °C with a rate at 20 K/min and kept at this temperature for 0.5 h then 

cool down to r.t. After this, 5% H2/Ar was passed through the sample tube during the 

measurement and increase the temperature from r.t. to 900 °C with a rate at 10 

K/min. 

2.2.5 Pyridine Fourier transform infrared spectroscopy (Py-FTIR) 

 Pyridine was used as probe molecule to examine the surface acidity of the 

present samples. The pyridine adsorbed FTIR (Py-FTIR) measurements in 

transmission mode were performed on a Bruker Tensor 27 instrument equipped with 

a heatable and evacuable homemade reaction cell with CaF2 windows connected to 

a gas-dosing and evacuation system. The sample powders were pressed into self-

supporting wafers with a diameter of 20 mm and a weight of ca. 50 mg. Before 

pyridine adsorption, the samples were pre-treated by heating in synthetic air up to 

400 °C for 10 min and then subsequent cooling to r.t. and evacuation. Pyridine was 

adsorbed at r.t. until saturation. Then the reaction cell was evacuated, and the 

pyridine adsorbate spectrum was recorded. The desorption of pyridine was followed 

by heating the sample in vacuum up to 400 °C and recording spectra every 50 °C. 

Generally, difference spectra were evaluated by subtracting the respective spectrum 

of the pre-treated sample from the adsorbate spectrum. 
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2.2.6 Ultraviolet–visible spectroscopy (UV-vis) 

 UV-vis diffuse reflectance spectroscopy (UV-vis-DRS) was mainly deployed to 

uncover vanadium coordination states of the present V/N catalysts using an AvaSpec 

2048 fibre optic spectrometer (Avantes) equipped with an AvaLight-DHS light source 

and a reflection probe. UV-vis spectra were deconvoluted into Gaussian bands by 

GRAMS program (Galactic Industries Corporation). 

2.2.7 X-ray diffraction (XRD) 

 The X-rays can penetrate deep into the materials and provide information about 

the bulk structure. XRD powder patterns at ambient conditions were recorded in 

transmission mode using Cu Kα radiation (λ = 1.5406 Å) in the 2θ range of 10-60° 

(step width: 0.25°, 25 sec per step) on a Stoe STADI P diffractometer, equipped with 

a linear Position Sensitive Detector (PSD). Processing and assignment of the powder 

diffraction patterns was done using the software WinXpow (Stoe) and the Powder 

Diffraction File (PDF) database of the International Centre of Diffraction Data (ICDD). 

2.2.8 X-ray photoelectron spectroscopy (XPS) 

 X-ray photoelectron spectroscopy (XPS) is performed to gain information about 

the oxidation state, surface composition, as well as atomic ratios of the elements 

present in the near-surface-region of the catalysts due to shifts in the binding 

energies. XPS analysis was carried out using a VG ESCALAB 220iXL instrument 

with AlK radiation (E = 1486.6 eV). The samples were fixed by using a double 

adhesive carbon tape on a stainless steel sample holder. The peaks were fitted by 

Gaussian-Lorentzian curves following a Shirley background subtraction. 

2.2.9 Transmission electron microscopy (TEM) 

 Transmission electron microscopy (TEM) is useful for indicating the size of the 

supported metal crystallites in nm scale and it provides the information related to the 

morphology, composition and distribution. TEM measurements were performed using 

a JEM-ARM200F (JEOL) high-resolution electron microscope operated at a voltage 

of 200 kV, aberration-corrected by a CESCOR (CEOS) for the scanning transmission 

(STEM) applications. The microscope is equipped with a JED-2300 (JEOL) energy-

dispersive X-ray-spectrometer (EDXS) for chemical analysis, which is operated with 
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spot size 6c and a 40 µm condenser aperture. Catalysts samples were deposited on 

a carbon coated grid (mesh 300) and transferred to the microscope. 

2.3 Catalytic tests 

 All the catalysts prepared in this work were tested in the ODHE reaction using 

the same set up. Scheme 2-5 shows the flow diagram of the ODHE set up.  

 

Scheme 2-5. Flow diagram of the ODHE set up  

2.3.1 Activity tests of different supported vanadia based catalysts 

 The activity measurements of the gas phase the ODHE over V/Nb, V/Al-x, V/Ti 

and catalysts were conducted in a fixed bed quartz reactor (i.d. 17 mm) at ambient 

pressure and at temperatures ranging from 500 to 600 °C. The reactant gases such 

as ethane (99%) and synthetic air (20.5% O2 in N2) used were supplied from the 

commercially available compressed gas cylinders (Air Liquide) and used without 

further purification. The flow rates of these gases were controlled using mass flow 

controllers. Two thermocouples were placed; one at the center of the oven to monitor 

the outside temperature of the reactor and the other at the middle of catalyst bed to  

indicate the temperature of the reaction. The reactor was filled with 1 g of catalyst 

particles (1-1.25 mm fraction) that were diluted with one equivalent (wt/wt) of quartz 

beads of the same size to achieve isothermal operation. The reactant feed was then 

introduced into the reactor and the reaction was performed, at a constant residence 

time of ~1.0 to 1.1 s and a gas hourly space velocity (GHSV) of ~3250 to 3545 h-1. 
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For the determination of the activity of the catalysts as a function of temperature, the  

W/F ratio was kept constant at 0.92 g/cm3·s-1. The reactor off-gas composition 

containing mainly ethane and ethylene was analysed by off-line GC equipped with 

FID using CP-PoraBOND-Q column. The total oxidation products such as CO and 

CO2 were estimated on-line using a non-dispersive infrared NGA 2000 gas analyser 

(Rosemount). The carbon balance was calculated based on ethane concentration at 

the inlet of the reactor. 

2.3.2 Activity tests of Ni-Nb-O and Ni-Nb-M-O (M: Cr, Mo, W) catalysts 

 The activity measurements of Ni-Nb-M-O mixed metal oxide catalyst in gas 

phase ODHE were also conducted in the same reactor as V/Nb, V/Al-x and V/Ti 

catalysts. CO2 was introduced into the reactant gas in order to study the effect of 

CO2-admixture on the performance of Ni-Nb-M-O catalysts in the ODHE. The 

reactant gases such as C2H6, O2, CO2 (with mole ratios of 1: 1.4-0: 2.1-0) and N2 

used as diluent to keep total flow at 3.9 l/h were supplied from commercially available 

compressed gas cylinders (Air Liquide) and used without further purification. The flow 

rates of these gases were set using mass flow controllers. The reactor was filled with 

1.1 g of catalyst (sieve fraction of 1-1.25 mm) and equal amount (wt.) of quartz beads 

of the same size to achieve isothermal operation. The reactant feed was then 

introduced into the reactor in appropriate amounts by means of the mass flow 

controllers. The reaction was performed in the temperature range from 300 to 450 °C, 

at a residence time of ~1.0 to 1.1 s and a gas hourly space velocity of ~3250 to 3545 

h-1 that depends upon the volume of catalyst for similar amount but the catalytic tests 

were carried out under identical conditions. For the determination of the activity of the 

catalysts as a function of temperature, the W/F ratio was kept constant at 1.02 g 

s/cm3. The desired products and total oxidation product were also analyzed by off-

line GC equipped with flame ionisation detector (FID) using a CP-PoraBOND-Q 

column and on-line using non-dispersive infrared analyser, respectively.  
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3. ODHE over V2O5/Nb2O5 catalysts 

Chapter 3 shows the catalytic data obtained by using Nb2O5 supported vanadia 

catalysts. The catalytic performance of those catalysts is evaluated with the help of 

BET-SA, ICP, UV-vis, XRD, XPS, FTIR, TEM in detail. 
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3.1 General studies on V2O5/Nb2O5 catalyst in the ODHE 

V2O5/Nb2O5 catalysts with various V2O5 contents were prepared by 

impregnation and characterized by various techniques in detail. Oxidative 

dehydrogenation of ethane was carried out in a fixed bed quartz reactor at  500-

600 °C. XPS analysis indicated a clear enrichment of vanadium on the near-surface-

region and UV-vis diffuse reflectance spectroscopy revealed the nature of VOx 

structures formed. It can be seen clearly from Fig. 3 -1 that 10 wt% V2O5/Nb2O5 

catalyst has displayed the superior performance (X = 28%, S = 38% at 600 °C) due 

to enrichment of vanadium in the near-surface-region and formation of optimum 

amount of monomeric/oligomeric VOx species. 

 

Fig. 3-1. Comparison of Nb2O5 supported V2O5 catalysts with various V2O5 loading 

3.2 Characterization results of V/Nb catalysts 

3.2.1 Texture data and catalyst composition 

 Surface areas, pore volumes and elemental analysis results of V2O5/Nb2O5 

catalysts and both the pure oxides are presented in Table 3-1. The supplied niobia 

reveals a BET surface area of 21 m2/g whereas the one of the homemade vanadia is 

much lower (6.3 m2/g). It can be seen from the table that both the surface areas (18 

to 4 m2/g) and pore volumes (0.052 to 0.008 cm3/g) of the V/Nb catalysts are 

observed to decrease continuously with increase in V2O5, as expected. This is mainly 

due to the formation of an increased proportion of various types of oxides of 

vanadium progressively blocking the access to the surface of the carrier. By 
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comparing the surface areas between fresh and spent samples, one can notice that 

the surface areas are not significantly altered in the spent solids compared to their 

corresponding fresh ones. Additionally, the contents of V2O5 estimated in all the 

catalysts from ICP are in good agreement with those of nominal values (Table 1). 

Table 3-1 

BET-surface areas and pore volumes of V2O5/Nb2O5 catalysts with different V2O5 

loadings received from ICP 

Cat. Code BET-SA (m2/g) Pore volume (cm3/g) V2O5 (wt%)* 

Fresh Spent Fresh Spent Fresh Spent 

5V/Nb 17.8 15.1 0.052 0.046 4.8 4.8 

10V/Nb 16.8 16.7 0.053 0.086 9.6 10.2 

15V/Nb 10.5 11.5 0.014 0.073 14.8 15.1 

20V/Nb 4.1 6.2 0.008 0.010 20.1 20.2 

V2O5 6.3 - 0.005 - - - 

Nb2O5 21.0 - 0.021 - - - 

* received from ICP-OES elemental analysis 

3.2.2 X-ray diffraction 

 XRD patterns of fresh and spent V/Nb catalyst samples with varying V2O5 

loadings are shown in Figs. 3-2a and b. It is clear from Fig. 3-2a that no XRD 

reflections corresponding to crystalline vanadium oxides are present in the solid with 

5 wt% V2O5 loading. This result implies that the vanadia is finely dispersed on the 

support and may also be present in X-ray amorphous form up to this loading. 

However, weak reflections belonging to V2O5 crystallites can be seen from 10 wt% 

V2O5 loading onwards. As expected, the intensity of these reflections is increasing 

with increase in V2O5 content of the solids. Another notable observation is that the 

intensity of the reflections corresponding to Nb2O5 support is decreased gradually 

with increasing concentration of vanadia in the catalysts, probably due to a masking 

effect owing to the increased coverage of V-oxides on niobia with increase in the 

content of vanadia. Similar such effect was also observed earlier on V2O5/TiO2 

(anatase) catalysts [95]. Comparing the XRD patterns of fresh solids with those of 

spent ones (cf. Fig. 3-2b); no considerable differences could be noticed between 

them in terms of phase composition and crystallinity. 



3. ODHE over V2O5/Nb2O5 catalysts 

28 

 

 

Fig. 3-2a. X-ray diffraction patterns of fresh V/Nb catalysts with varying V2O5 

loadings (Nb2O5 and V2O5 patterns for comparison) 

 

 

Fig. 3-2b. X-ray diffraction patterns of spent V/Nb catalysts with varying V2O5 

loadings (Nb2O5 patterns for comparison) 

3.2.3 UV-vis diffuse reflectance spectroscopy 

 UV-vis-DRS was used to elucidate the nature of various VOx species in the 

present V/Nb catalysts. After high temperature calcination (600 °C) and with varying 

concentration of V2O5, different vanadium oxide species could be present in these 

catalysts in several VOx  structures such as isolated monomeric tetrahedral VO4 

species (O=V-(O-sup)3) [96], one-dimensional polymeric surface species connected 

by V-O-V bonds in distorted tetrahedral coordination, two-dimensional polymeric 

species in octahedral coordination and bulk V2O5. 
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 In general, UV-vis-DRS is a useful method to obtain information about the local 

geometry and bonding environment of the vanadium ions; with increasing 

coordination number a shift in the band position (oxygen to vanadium charge-transfer 

bands) to lower energy (higher wavelength) is expected [97, 98]. This technique also 

allows to distinguish tetrahedral and octahedral vanadium species. UV-vis spectra of 

the present V2O5/Nb2O5 fresh samples and the pure vanadia and niobia solids are 

illustrated in Fig. 3-3. The shape of 5V/Nb and 10V/Nb curves are similar, so as 

15V/Nb and 20V/Nb. However, a red shift was observed with increasing V2O5 content. 

A visible shoulder appeared in particular in the higher loading catalysts (15V/Nb and 

20V/Nb) at higher wavelength (>300 nm), which is due to the formation of higher 

concentration of oligomeric/polymeric VOx species [ 99 , 100 ]. To determine the 

structure of the vanadia species in more detail, the UV-vis spectra of all the samples 

have been deconvoluted. As a result, five bands (with Gaussian line shape) are 

obtained for each UV-vis spectrum of niobia supported vanadia samples (cf. Fig. 3-3). 

The three bands appeared in all the catalysts irrespective of V2O5 loading around 230, 

250 and 280 nm are ascribed to isolated monomeric tetrahedral vanadium species 

[101]. The band at ca. 315 nm (cf. Fig. 3-3) is assigned to oligomeric distorted 

tetrahedral vanadium oxide species [97]. The intensity of this band is observed to 

increase with rise in V2O5 content. Additionally, a broad band at around 380 nm could 

be attributed to the aggregated vanadium entities in octahedral coordination. Two 

bands appeared above 400 nm only in case of pure V2O5, which are certainly due to 

the presence of bulk vanadium oxides. The comparison of the UV-vis spectra of all 

the catalysts clearly showed that the formation of oligomeric vanadium oxide species 

is increasing with rising vanadia content of the catalysts.  

 Unlike V2O5, the pure Nb2O5 shows all the bands (three bands) below 300 nm 

(see Fig. 3-3), which is in good agreement with those reported by Yan and Xue [102]. 

The appearance of bands below 300 nm (maximum intensity at 236 nm) might be 

due to formation of O-Nb2O5 (orthorhombic) phase [103], it can also be seen from the 

XRD pattern of Nb2O5, all peaks can be indexed to the orthorhombic Nb2O5 phase. 
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Fig. 3-3. UV-vis-DR spectra of the fresh V/Nb catalysts with varying V2O5 loadings 

along with pure V2O5 and Nb2O5 (Measured: solid lines; Deconvoluted: dashed lines; 

vertical line at 315 nm points to oligomeric species peak maxima region) 

3.2.4 X-ray photoelectron spectroscopy 

 XPS analysis was performed to gain information about the oxidation state, 

surface composition as well as atomic ratios of the elements present in the near-

surface-region of the catalysts due to shifts in the binding energies [104, 105, 106]. 

On the basis of the literature data [104, 107], the XPS V2p3/2 peaks of the supported 

vanadia samples at 517.0 and 516.9 eV can be assigned to V5+ oxidation state 

considering the well-known variation of the binding energies of pentavalent vanadium 

in dependence of its environment. XP spectra of the present fresh and spent 

V2O5/Nb2O5 catalysts with varying V2O5 loadings are depicted in Figs.3-4a and b. XP 

spectra of all fresh solids show the presence of vanadium in +5 oxidation state. The 

value of  (i.e. the energy difference between the binding energy levels of O1s and 

that of V2p3/2) also provides further indication that the vanadium is present in +5 

oxidation state in all the fresh samples (cf. Table 3-2). In other words, the value of  

remained almost constant at 12.7 eV irrespective of V2O5 content of the catalysts. 

Moreover, a shift in the binding energies with increasing V content towards higher 
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values could be observed, in particular for the spent samples (see Fig. 3-4b). A 

possible explanation could be given by different interactions between V and Nb. For 

the low V content of 5 wt%, this interaction should be more significant, e.g. the major 

part of V ions interacts with Nb ions, whereas for the higher loadings, the increased 

formation of oligomeric & polymeric VOx species (V-O-V interactions) could be 

expected. However, no considerable shift in case of O1s peak is noticed particularly 

in the fresh samples with varying V2O5 contents (Fig. 3-4a). But such considerable 

shift towards higher binding energy value of O1s peak is observed with rise in 

vanadia content of the spent catalysts (Fig. 3-4b) indicating the formation of different 

types of oxygen species (probably some hydroxyl groups) in these spent solids by 

the influence of severe reaction conditions and reactant feed composition. 

 

Fig. 3-4a. XP spectra of the fresh V/Nb catalysts with varying V2O5 loadings 

Table 3-2 

Result of XPS studies of V/Nb catalysts 

Cat. Code E O1s/eV FWHM1 E V2p3/2/eV FWHM 2 

5V/Nb-f3 529.2 2.25 516.5 2.10 12.7 

10V/Nb-f 529.6 2.81 516.9 2.45 12.7 

20V/Nb-f 529.3 1.75 516.7 2.23 12.6 

5V/Nb-s4 529.1 2.18 516.3 2.72 12.8 

10V/Nb-s 529.7 1.80 517.0 2.18 12.7 

20V/Nb-s 530.3 1.80 517.2 2.81 13.1 

1 FWHM is Full Width at Half Maximum; 2  is the energy difference between O1s and V2p3/2 peaks 

3 f—fresh catalyst, 4 s—spent catalyst 
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Fig. 3-4b. XP-spectra of the spent V/Nb catalysts with varying V2O5 loadings 

 Fig. 3-5 compares the bulk (estimated by ICP) vs. near-surface (XPS) V/Nb 

ratios in both the fresh and spent solids. It is quite obvious from the figure that the 

V/Nb surface ratios of fresh samples are significantly higher than the corresponding 

bulk ratios showing a clear enrichment of vanadium in the near-surface-region 

independent on the V content. Such near-surface-region enrichment is much more 

pronounced in case of 5V/Nb and 10V/Nb catalysts compared to the highest loading 

catalyst (i.e. 20V/Nb). This is more likely due to the formation of different types of 

vanadium oxide species in these solids with varying V-contents as evidenced from 

UV-vis spectra. Such differences in the nature of near-surface VOx species have 

shown clear impact on the catalytic performance. For instance, the amount of 

oligomeric VOx species is somehow higher in 10 wt% than 5 wt% and hence this 

catalyst displayed superior catalytic performance as shown below. Coming to the 

highest loading (20V/Nb), this sample lacks pronounced surface enrichment of V and 

additionally it forms more polymeric type of VOx species and is in the direction of bulk 

V2O5. In view of this, the 20V/Nb sample displayed inferior performance, which is 

however comparable to that of pure V2O5 (see below). It can also be seen clearly that 

both the V/Nb near-surface ratio and bulk ratio increased with increasing V2O5 

loading, as expected. 
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Fig. 3-5. Comparison of bulk to near-surface-region V/Nb ratios for fresh and spent 

catalysts as a function of V2O5 loading 

 For the spent catalysts, the surface V/Nb ratios are slightly decreased 

compared to their corresponding fresh ones. Such decrease is more pronounced for 

the higher-loading catalyst. Possible reasons for this observation might be due to (i) 

the covering of a part of the V species by coke deposits, (ii) by the migration of V into 

the Nb support or (iii) the formation of larger three-dimensional polymeric VOx 

species. However, the formation of very low or almost no coke deposits in the spent 

catalysts was observed and hence we can exclude the first possibility of covering 

VOx species by coke. Especially, for the high V loading, the formation of bulk-like VOx 

species can be expected during time-on-stream. However, one should note that such 

decrease of V in the near-surface-region is not due to loss (leaching) of vanadium 

from the catalyst that is however evidenced from the ICP analysis of V-content in the 

spent solids. Careful observation of XPS and UV-vis-DRS results revealed that the 

near-surface enrichment of vanadium and the nature of VOx species formed in the 

catalysts play a key role on the catalytic performance. 

3.3 Catalytic activity of V/Nb catalysts in the ODHE reaction 

 Figs. 3-6a and b depict the conversion of ethane and yield of ethylene as a 

function of V2O5 loading at three different reaction temperatures (500, 550 and 

600 °C). Both the V2O5 loading and the reaction temperature have shown a strong 

influence on the conversion of ethane and yield of ethylene. The target product is 

ethylene while the by-products formed are only total oxidation products (i.e. COx). 
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With rise in reaction temperature, both the conversion of ethane and the yield of 

ethylene are commonly increased in every case irrespective of vanadia loading. As 

shown in Fig. 3-6a, the conversion of ethane has been increased with V2O5 loading 

up to 15 wt% and then decreased with further rise in V2O5 (cf. 20V/Nb). In other 

words, the conversion of ethane is increased from 22 to 31% and then decreased to 

25%, when the comparison is made at the same reaction temperature of 600 °C. The 

behaviour of 20V/Nb solid is more or less comparable with that of pure V2O5 sample 

probably due to formation of similar type of VOx species in both the cases. The 

formation of different types of vanadia species that strongly depends on vanadia 

loading (cf. UV-vis results) seems to play a crucial role on the catalytic properties of 

the catalysts. In respect of the yield of ethylene (cf. Fig. 3 -6b), it shows somewhat 

comparable tendency as that of conversion of ethane at all temperatures studied. 

The yield of ethylene progressively increased up to 10 wt% V2O5 loading, which 

remained at comparable level until 15 wt% V2O5 loading (despite increase in 

conversion at this loading) and then decreased considerably at higher V2O5 loadings. 

On the whole, the 10V/Nb catalyst at T = 600 °C displayed the best yield of 11% with 

no considerable coke formation after 9 hours-on-stream activity tests. Taking into 

account of UV-vis and XPS results, it can be explained that the enhanced 

performance of 10V/Nb solid is due to i) formation of higher amount of oligomeric 

distorted tetrahedral VOx species and ii) the presence of optimum amount of VOx 

species along with clear enrichment of vanadium in the near-surface-region.  

 

Fig. 3-6a. Influence of V2O5 loading on conversion of ethane (Reaction conditions: 

mole ratios: C2H6: O2: N2 = 1: 0.68: 2.65, GHSV = 3250 h-1, 500-600 °C,   = 1.1 s, cat.: 1 g) 
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Fig. 3-6b. Influence of V2O5 loading on the yield of ethylene (Reaction conditions: 

mole ratios: C2H6: O2: N2 = 1: 0.68: 2.65, GHSV = 3250 h-1, 500-600 °C,   = 1.1 s, cat.: 1 g)  

 As expected, pure Nb2O5 exhibited poor performance (X = 12% & Y = 4% at 

600 °C), while the pure V2O5 also displayed relatively low conversion of ethane (22% 

at 600 °C) and low selectivity of ethylene (27%). The activity and selectivity of pure 

V2O5 is quite comparable with that of 20V/Nb catalyst (cf. Figs. 3-6a and b). 

3.4 Summary and Conclusion 

 The catalytic activity and selectivity is found to depend strongly on the nature of 

vanadium oxide species and the surface enrichment of vanadium in the near-surface-

region. These two properties in turn unquestionably depend on the content of 

vanadium in the catalysts. At low V2O5 loading (≤10 wt%), monomeric & oligomeric 

VOx species were formed while more polymeric species were found similar to bulk 

V2O5 sample at higher loadings as shown by UV-vis-DRS studies. XPS revealed that 

pronounced enrichment of vanadium occurs in the near-surface-region in the 

samples with low vanadia contents. Among all the catalysts, 10 wt% V2O5 on Nb2O5 

has given the best catalytic performance with no considerable coke formation after 9 

hours on-stream. 
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4. ODHE to ethylene over supported V2O5 catalysts: 

The effect of the nature of alumina support on the 

catalytic performance 

Chapter 4 deals with the evaluation of the data obtained from catalytic performance 

tests over different alumina supported vanadia catalysts. The catalytic performance 

of those catalysts is discussed with respect to the results of several characterization 

methods such as N2-physisorption, ICP, UV-vis, XRD, XPS, Py-FTIR, TEM in detail. 

 

 

  



4. ODHE: The effect of the nature of alumina support 

38 

 

4.1 General studies on the effect of different types of Al2O3 

supports on the properties of supported V2O5 catalysts 

 A series of V2O5/Al2O3 catalysts with fixed content of V2O5 (10 wt%) but different 

types of Al2O3 supports with varying surface areas were prepared by impregnation 

technique and tested for the oxidative dehydrogenation of ethane (ODHE) in a fixed 

bed quartz reactor in the temperature range from 500 to 600 °C. The nature of the 

Al2O3 source revealed a significant influence on the catalytic performance of the 

solids. Among all catalysts investigated, high surface area -alumina based catalyst 

showed the best performance in ODHE due to the high dispersion of vanadia species 

over the support surface. Otherwise, low surface area -Al2O3 but also -Al2O3 

supported catalysts exhibited high ethane conversion but low selectivity to ethylene 

because of the existence of bulky V2O5 particles. In addition, a recently described 

low-surface area alumina containing a high amount of penta-coordinated Al sites was 

included in the study. This special alumina supported V2O5 catalyst displayed a quite 

good performance in ODHE despite its small surface area. Such behaviour can be 

ascribed mainly to the presence of penta-coordinated Al surface sites acting as 

anchors for preferentially monomeric and low-oligomeric VOx species leading to a 

prime dispersion. 

4.2 Characterization of V2O5 catalysts supported on different type 

of Al2O3  

4.2.1 BET-surface area and solid composition 

 Surface areas, vanadium contents and bulk as well as near-surface-region 

elemental analysis data of V/Al-x catalysts are presented in Table 4-1. Interestingly, 

the BET-SA of fresh V/Al-1-f is significantly increased compared to its parent pure 

support (i.e. from 5.8 to 18.3 m2/g), while the surface area decreased in other cases. 

The increase in surface area of V/Al-1-f might be due to the reformation of a part of 

the -Al2O3 into the -AlO(OH) phase due to the contact with the water during the 

course of its preparation by wet impregnation method and drying at elevated 

temperatures afterwards where the reformation probably takes place. Düvel et al. [62] 

investigated the phase transformation of -Al2O3 into -Al2O3 by means of high-

energy ball-milling. The authors followed the progress of this transformation by 27Al 

MAS NMR spectroscopy at high magnetic field (17.6 T) and claimed the formation of 
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a high fraction (20%) of unsaturated penta-coordinated Al ions that may act as 

anchoring sites for catalytically active materials [62]. By comparing the surface areas 

between fresh and spent samples, one can notice that the surface areas are not 

significantly altered in the spent solids compared to their corresponding fresh ones.  

 Additionally, the contents of V2O5 estimated in all the catalysts from ICP are in 

good agreement with those of nominal values (cf. Table 4-1). Moreover, the near-

surface-region V/Al ratios obtained from XPS measurements are significantly higher 

than that of bulk V/Al ratios calculated from ICP results indicating a clear enrichment 

of VOx species in the near-surface-region of catalysts irrespective of the type of 

alumina support used. The bulk V/Al ratios are more or less the same between fresh 

and spent catalysts within experimental errors. However, with an exception of V/Al-2-

s, the near-surface-region V/Al ratios were observed to be decreased for spent 

catalysts compared to that of fresh catalysts, i.e. vanadium species moved 

downwards into the bulk. In case of V/Al-2-s, the originally present large VOx particles 

on the low-surface area -Al2O3 sample could be redispersed in the course of the 

high ODHE temperature causing a higher near-surface-vanadium concentration in 

the spent sample. 

Table 4-1 

The physical characteristics of the catalysts and different type of alumina support 

Cat. 

Code 

BET-SA / m2/g V2O5 / wt% V/Al (ICP) V/Al (XPS) 

fresh spent supporta nominal ICPb fresh spent fresh spent 

V/Al-1 18.3 17.9 5.8 10.0 10.3 0.07 0.08 0.32 0.22 

V/Al-2 5.0 4.5 5.2 10.0 10.9 0.13 0.10 0.25 3.12 

V/Al-3 79.1 57.5 102 10.0 9.7 0.06 0.07 0.39 0.17 

V/Al-4 181.9 161.8 201 10.0 10.0 0.06 0.07 0.27 0.09 

V/Al-5 258.5 191.5 294 10.0 12.3 0.08 0.09 0.13 0.12 

a corresponding to different type of alumina support 

b measured by ICP-OES 
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4.2.2 Thermo gravimetric analysis (TGA) 

 The TGA curves of the oven dried V/Al-x-od samples are depicted in Fig. 4-1. It 

is clear that the weight loss is depending upon the nature of the alumina support 

applied. The -Al2O3 supported catalyst (V/Al-2) has shown the lowest weight loss 

(ca. 8%) while the V/Al-5 with the highest surface area -Al2O3 showed the highest 

weight loss (ca. 30%). The weight loss occurs primarily in two steps: the first one 

(<200 °C) corresponds to the removal of physically adsorbed water, dehydroxylation 

of catalyst surface and also partly to the initial decomposition of NH4VO3 (AMV), 

which starts at 175 °C. According to Tang et al. [108], the conversion of AMV into 

V2O5 runs in three steps such as i) AMV changes first to (NH4)2V4O11 at ca. 175 °C, 

ii) transformation to (NH4)V3O8 in the second step at around 220 °C and iii) final 

formation of V2O5 in the third step at 350 °C and even higher for total transformation. 

The second and major weight loss occurs in the temperature range from >200-

400 °C due to the decomposition of ammonium metavanadate and its further 

transformation into X-ray-amorphous and/or crystalline VOx species (V2O5 phase, 

probably) according to the changes described above. In the case of  high surface 

area -Al2O3 support, this major weight loss is extended up to 450 °C, where a 

maximum weight loss (~30%) is recorded. However, no further weight loss is 

observed beyond 450 °C. This result also indicates the good thermal stability beyond 

450 °C and particularly under the applied reaction conditions. Based on this 

observation, and also considering the reaction temperature range, the calcination 

temperature of these catalysts is fixed at 600 °C. 
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Fig. 4-1. TGA curves of the oven dried supported vanadia catalysts using different 

types of alumina 

4.2.3 X-ray diffraction 

 The XRD patterns of the fresh and spent catalysts are shown in Figs. 4 -2a and  

4-2b. It is clear from Fig. 4-2a that no reflections corresponding to crystalline V2O5 

phase are present in the -alumina supported catalysts, while clearly distinct 

crystalline reflections belonging to larger V2O5 crystallites could be seen in the case 

of V/Al-2-f (i .e. -Al2O3 supported catalyst). This result implies that the vanadia is 

finely dispersed on the -alumina supports but V2O5 crystallites can be seen only in 

the -alumina supported catalyst due to its lower specific surface area.  

 

Fig. 4-2a. X-ray diffraction patterns of fresh supported vanadia catalysts using 

different types of alumina 
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Fig. 4-2b. X-ray diffraction patterns of fresh supported vanadia catalysts using 

different types of alumina 

 Another notable observation is that the reflections corresponding to V2O5 

disappeared in the spent catalyst (V/Al-2-s), probably due to redispersion or 

reduction of V5+ species during the course of the reaction. These results are also 

backed by the inspection of the near-surface region showing a dramatically increased 

V/Al ratio (cf. Table 4-1). Comparing the XRD patterns of the four fresh -alumina 

supported catalysts with those of spent ones, no considerable differences could be 

noticed in terms of phase composition and crystallinity. 

4.2.4 UV-vis diffuse reflectance spectroscopy 

 UV-vis was used to obtain information on the nature of the VOx species formed 

in the present V/Al catalysts. A fter high temperature calcination (600 °C), the 

vanadium oxide species could be present in these catalysts in several VOx structures 

such as isolated monomeric tetrahedral VO4 species (O=V-(O-sup)3), one-

dimensional polymeric surface species connected by V-O-V bonds in distorted 

tetrahedral coordination, two-dimensional polymeric species in octahedral 

coordination and bulk V2O5 [96]. 

 UV-vis diffuse reflectance spectra of V/Al-x-f fresh samples plus that of pure 

bulk V2O5 for better comparison are illustrated in Fig. 4-3a. It seems that V/Al-1-f 

revealed a high proportion of the monomeric VOx species. Compared to the V/Al-1-f 

sample, a red shift was observed in case of the other four catalysts, which is more 
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pronounced in case of the V/Al-2-f and V/Al-3-f samples compared to the V/Al-4-f and 

V/Al-5-f solids. This shift in the band position (oxygen to vanadium charge-transfer 

bands) to lower energy (higher wavelength) indicated the increasing coordination 

number of the vanadia species [97, 98]. In addition, a visible shoulder appeared in 

the spectrum of the V/Al-2-f solid (-Al2O3 supported) at 350 nm and higher 

wavelength 475 nm, which is due to the formation of a higher concentration of the 

oligomeric/polymeric VOx species as well as aggregated vanadia species in 

octahedral coordination. The existence of these species is due to the presence of 

larger crystallites as identified by XRD. 

 

Fig. 4-3a. UV-vis spectra of the fresh supported vanadia catalysts using different 

types of alumina along with pure V2O5 

 The UV-vis spectra have been deconvoluted to several bands with Gaussian 

line shape (Fig. 4-3b) to determine the structure of the vanadia species in more detail. 

With the exception of V/Al-2-f, all these deconvoluted bands exclusively appeared 

below 400 nm irrespective of the type of alumina support. This result revealed the 

formation of monomeric (<300 nm) and polymeric/oligomeric VOx species (between 

300-400 nm) in these solids [109]. There was one additional band which appeared at 

475 nm only in case of V/Al-2-f sample, indicating the presence of bulk V2O5 as 

already stated above. The UV-vis spectrum of the V/Al-2-f sample is quite similar to 

that of a pure V2O5 sample indicating the formation of a similar type of VOx species in 

both the cases. 
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 It is clear that the formation of oligomeric vanadium oxide species is decreasing 

in the following order V/Al-2-f > V/Al-3-f > V/Al-4-f > V/Al-5-f > V/Al-1-f. With the 

exception of V/Al-1-f, the decreasing tendency was found to be in opposite direction 

with the BET-SA value. The unique vanadia dispersion of V/Al-1-f might be attributed 

to the modified structure of -Al2O3 support containing unsaturated penta-coordinated 

Al ions, which might act as efficient anchoring sites for active species such as VOx  in 

this study preventing the formation of larger vanadia units. 

 

Fig. 4-3b. Deconvoluted UV-vis spectra of the fresh V/Al-x catalysts along with pure 

V2O5 (Measured: solid lines; Deconvoluted: dashed lines; vertical line at 400 nm points 

to oligomeric species peak maxima region). 

4.2.5 X-ray photoelectron spectroscopy  

 XPS analyses were performed to gain information about the oxidation state and 

the chemical composition of the near-surface-region as well as their atomic ratios 

[105, 106]. The results of the fresh and spent alumina supported vanadia catalysts 

are depicted in Figs. 4-4a and b. In addition, the value of  (i.e. the energy difference 

between the binding energy of the O1s level and that of V2p3/2) is also given. The 

results show the presence of vanadium in +5 oxidation state in all fresh solids with 

evidence of V2p3/2 peaks located at 517.0 eV (Fig. 4-4a) [21, 107]. Moreover, the 
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the vanadium is present in +5 oxidation state in all the fresh samples. On the other 

hand, the intensity of the peak corresponding to V2p3/2 decreased particularly in the 

spent -Al2O3 supported solids compared to their corresponding fresh samples. In 

contrast, the spent -Al2O3 supported catalyst (V/Al-2-s) revealed an increased 

intensity of the V2P3/2 peak. This result is probably due to a redispersion of larger 

V2O5 crystallites into smaller units reflecting a higher near-surface concentration. The 

V/Al ratio also increased due to covering of the initially “free” alumina surface by 

vanadia species (cf. Table 1). Besides this, there was also a considerable increase in 

the value of  of spent V/Al-1-s and V/Al-3-s solids compared to their corresponding 

fresh ones (Fig. 4-4b). It was reported by Mendialdua et al. [107] that the decreased 

degree of oxidation could be correlated to larger values of the binding energy 

difference. Therefore the vanadia species might be reduced from V5+ in fresh 

catalysts to V+4 in spent catalysts especially on the surface of spent V/Al-1-s catalyst 

with a  value of 14.4 eV, which is typical for VO2 [107, 110]. 

 

Fig. 4-4a. XP spectra of the fresh supported vanadia catalysts using different types of 

alumina 
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Fig. 4-4b. XP spectra of the spent supported vanadia catalysts using different types 

of alumina 
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Fig. 4-5a. Py-FTIR spectra of fresh V/Al-x catalysts 

 Additionally, the integral intensity of BS and LS as well as the LS-to-BS ratio 

were depicted in Fig. 4-5b, where integral intensities of the characteristic bands at 

1538 cm-1 for BS and 1448 cm-1 for LS are normalized to the BET surface area of 

the corresponding samples. Both the Brønsted and Lewis acidity of V/Al-x-f catalysts 

are varied with changing the nature of alumina support. The V/Al-1-f and V/Al-3-f 

catalysts showed comparable Brønsted acidity higher than that of V/Al-4-f and V/Al-5-

f samples, which possessed the same Brønsted acidity. The Lewis acidity of all 

alumina supported vanadia catalysts is much higher than their Brønsted acidity. In 

terms of integral intensity ratio of Lewis acid to Brønsted acid, it decreased in the 

following order: V/Al-3-f < V/Al-1-f < V/Al-5-f < V/Al-4-f. This difference in 

concentration of LS and BS in turn shows clear differences on the performance of 

different V/Al-x catalysts in ethylene formation via ODHE reaction. 
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Fig. 4-5b. Comparison of the number of Brønsted and Lewis acid sites and LS/BS 

intensity ratio on the surface of the fresh V/Al-x catalysts. 

4.2.7 Transmission electron microscopy (TEM) 

 Fig. 4-6 depicts some micrographs of three typical alumina supported vanadia 

catalysts. The TEM analyses showed that the nature of the alumina support 

determines the morphology, composition and size of vanadium species and their 

distribution over the support. The vanadium oxides formed are uniformly distributed 

over the surface of the support in case of V/Al-1-f sample (Fig. 4-6a). Obviously no 

larger particles can be seen even in 10 nm scale. Moreover, the V/Al atomic ratios 

are found to be mostly uniform and remain at 1: 1. Otherwise, it could be clearly seen 

from Fig. 4-6b (300 nm scale) that highly aggregated vanadium oxide particles were 

formed in case of sample V/Al-3-f. The VOx particle morphology and its composition 

were observed completely different from the V/Al-1-f sample. Here in this V/Al-3-f 

sample, we found a plate-like morphology for the VOx particles and also the 

composition was sometimes V-rich (i.e. V: Al = 1: 0.01) and sometimes Al-rich (i.e. V: 

Al = 1: 11) pointing to a not homogeneous distribution of VOx species. This result is 

mainly due to the small BET-SA leading to a V-rich region containing bigger vanadia 

particles. These seem to be responsible for the high activity in ethane conversion and 

low selectivity to ethylene obtained on this catalyst as discussed below. Fig. 4-6c 

depicts the morphology and composition of the V/Al-5-f catalyst (30 nm scale). It is 

obvious from the electron micrograph that the deposited vanadia is nicely distributed 

on the surface of the support. In most regions, the composition of V and Al are 
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remained unchanged and very uniform, i.e. a V/Al ratio of 1: 8-16 was found constant 

throughout. This highly distributed vanadia species could be related to the higher 

ethylene selectivity in ODHE reaction over such V/Al-5-f catalyst. 

 

Fig. 4-6. TEM images of fresh V/Al-1-f (a), V/Al-3-f (b) and V/Al-5-f (c) samples (the 

given V/Al ratios belong to the marked square areas). 

 The STEM-EDX mapping results provided more visible information on the 

morphology of V/Al-x samples. It can be seen from Fig. 4-7a that on the region I of 

V/Al-3-f catalyst there are less traces of Al, it is an intermixed V and O, both 

homogeneous in elemental distribution the whole particle area, gives hints to the 

formation of big size of vanadium oxide species in this V rich region (I). In the region 

II Al rich particles exists. Figs. 4-7b depicted the STEM-EDX mapping results of V/Al-

5-f catalysts and indicated that vanadia species are well dispersed in this alumina 

support probably due to the high surface area.  
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Fig. 4-7a. i)HAADF-STEM image, ii)V-K, iii)Al-K, iv)O-K EDXS elemental maps of 

V/Al-3 catalyst 

 

Fig. 4-7b. i)HAADF-STEM image, ii)V-K, iii) Al-K, iv)O-K EDXS elemental maps of 

V/Al-5 catalyst 

4.3 Catalytic activity of V/Al catalysts in the ODHE reaction  

 Fig. 4-8a depicts an increasing ethane conversion with temperature over 

supported V/Al-x-f catalysts in the ODHE, as expected. The nature of alumina has 

shown a visible influence on the catalytic performance. Quite interestingly, V/Al-1-f 

solid displayed a reasonably good performance despite its low surface area. Such 

promotional effect of this particular alumina can be ascribed to the presence of a high 

amount of coordinatively unsaturated Al sites in this support. In contrast, the V/Al-2-f 

and V/Al-3-f catalysts showed highest ethane conversion. This higher activity was 

probably due to the presence of crystalline vanadium pentoxide species, which were 

aggregated in the V-rich regions of the V/Al-3-f catalyst as evidenced by the TEM 

analysis. To support this view, the XRD patterns showed the presence of reflections 

belonging to V2O5 crystallites only in case of the V/Al-2-f catalyst. Moreover, the UV-

vis results also revealed the formation of bulk vanadia species in V/Al-2-f sample 

responding to its higher activity in ethane conversion. With respect to the other three 

-Al2O3 (V/Al-1-f, V/Al-4-f, V/Al-5-f) supported vanadia catalysts, on the basis of 

different characterization techniques, it could be concluded that monomeric with little 

portion of polymeric vanadium oxide spices were mainly formed and well dispersed in 
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these three -Al2O3 supported vanadia catalysts. These types of highly dispersed 

vanadia species play a crucial role on selectivity to ethylene at the expense of ethane 

conversion. In addition, the geometry and the structure of the Al2O3 support also 

seem to play an important role on the formation of V-oxide nanostructures and 

thereby catalytic properties as well. To be brief, in -Al2O3, the Al-ions are 

octahedrally coordinated by oxygen while in the -Al2O3 phase the Al-ions are 

distributed among tetrahedral and octahedral sites [62]. Such differences in the 

structure of parent Al2O3 support can show considerable influence on the formation 

and distribution of VOx species after impregnation of V-precursor on to the Al2O3 

surface. Subsequently the nature of VOx species formed certainly affect the activity 

and selectivity properties to a large extent.  

 

Fig. 4-8a Ethane conversion as a function of temperature in the ODH of ethane over 

V/Al-x catalysts (conditions: C2H6: O2: N2=1: 0.7: 2.7; GHSV= ~3250-3270 h-1; = 1.1 s; 

T= 500-600 °C) 

 Fig. 4-8b displays the selectivity to ethylene; V/Al-2-f and V/Al-3-f catalysts, 

which showed highest ethane conversion, gave the lowest ethylene selectivity 

compared with the other three -Al2O3 supported catalysts. The V/Al-4-f catalyst 

revealed the highest ethylene selectivity, which showed the highest integral intensity 

ratio of Lewis acid sites to Brønsted acid sites. It can be deduced from careful 

observation that the ethylene selectivity was increased in the order of V/Al-2-f < V/Al-

3-f < V/Al-1-f < V/Al-5-f < V/Al-4-f which is in line with the integral intensity ratio 

values of LS to BS in V/Al-x-f catalysts (cf. Fig. 4-8c). It can be assumed that the 
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concentration of LS and BS of alumina supported vanadia catalysts showed a 

promotional effect on the selectivity of ethylene. 

 

Fig. 4-8b Ethylene selectivity as a function of temperature in the ODH of ethane over 

V/Al-x catalysts (conditions: C2H6: O2: N2=1: 0.7: 2.7; GHSV= ~3250-3270 h-1; = 1.1 s; 

T= 500-600 °C) 

 

Fig. 4-8c. Influence of LS to BS ratio on selectivity to ethylene in the ODHE reaction 

over V/Al-x catalysts (conditions: C2H6: O2: N2 = 1: 0.7: 2.7; GHSV= ~3250-3270 h-1; = 

1.1 s; T= 600 °C) 
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Fig. 4-9. Comparison of catalytic performance of different V/Al-x catalysts at 600 °C 

(conditions: C2H6: O2: N2=1: 0.7: 2.7; GHSV= 3270 h-1; = 1.1 s) 

 Fig. 4-9 compares the best activity performance of each V/Al-x-f catalyst at 

600 °C. Among all aluminas investigated, it can be clearly seen that the -Al2O3 

containing a high amount of penta-coordinated Al sites (V/Al-1-f) displayed a 

surprisingly enhanced performance compared to V/Al-2-f (-Al2O3 support, BET-SA: 

5.2 m2/g) and V/Al-3-f (-Al2O3 support, BET-SA = 102 m2/g), but quite comparable 

performance to the two other -Al2O3 supports with BET surface areas of 201 m2/g 

and 294 m2/g, respectively. The V/Al-1-f catalyst exhibited an ethane conversion of 

34.1% and ethylene yield of 15.4%, respectively, being close to the values seen for 

V/Al-5-f. The catalytic performances of V/Al-4-f and V/Al-5-f solids are probably 

related to the well distributed monomeric and oligomeric vanadia species caused by 

the higher surface area of the parent supports. 

4.4 Conclusions 

 The nature of the alumina support used has shown a substantial influence on 

the type of the VOx species formed their dispersion, acidity characteristics, 

morphology as well as surface composition. The characterization results revealed 

that the fresh V/Al-x-f catalysts are quite stable in the reaction temperature range 

from 500 to 600 °C. XRD reflections corresponding to V2O5 could only be seen in the 

case of the -alumina supported V/Al-2-f sample due to its lowest surface area and 

poor dispersion compared with the other samples. UV-vis deconvolution and TEM 
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images also gave hints on the existence of bulk V2O5 species in the V/Al-2-f catalyst. 

It can also be concluded that the loaded vanadium oxide species were well dispersed 

on the V/Al-1-f, V/Al-4-f and V/Al-5-f catalysts. XPS results provided clear hints on the 

presence of vanadium in +5 oxidation state in all fresh V/Al-x-f catalysts. Py-FTIR 

showed that both the Lewis and Brønsted acid sites exist in all catalysts, but the 

amount of Lewis sites is dominating. 

 The activity test results revealed that among the five aluminas, V/Al-4-f gave the 

best performance (X-ethane = 35% and S-ethylene = 48%) at 600 °C while the V/Al-

2-f showed a poor behaviour only (X-ethane = 50% and S-ethylene = 13%). This 

latter result was mainly due to a very low surface area of V/Al-2-f solid and 

consequently poor VOx dispersion; the opposite was seen in case of V/Al-4-f. 

Amazingly, the penta-coordinated aluminium-containing V2O5 catalyst (i.e. V/Al-1-f) 

gave an ethane conversion of 35% and selectivity to ethylene of 45 %, respectively.  

 Further work points to stabilizing the high proportion of penta -coordinated 

aluminium in aluminas and, probably to reach such effects with higher BET-SA 

materials for increasing deposition of monomeric and oligomeric VOx species for 

more effective oxidation catalysts. 
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5. Marked effect of the support on the catalytic 

performance of V2O5 catalysts in the ODHE to ethylene 

Chapter 5 compares the catalytic data obtained by different supported vanadia 

catalysts (V/Nb, V/Ti, V/Al-BM, V/Al-HS) with the aid of BET-SA, ICP, UV-vis, XRD, 

XPS, FTIP, TEM, TPR etc. in detail. 
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5.1 General studies on effect of the support on the catalytic 

performance of V2O5 catalysts in the ODHE to ethylene 

 The ODHE to ethylene was performed over a series of vanadia-based oxides 

with a fixed 10 wt% vanadia loading on different types of supports (V2O5/Nb2O5, 

V2O5/TiO2 and V2O5/Al2O3). The physicochemical properties of catalysts were 

characterized by TGA, ICP, BET, XRD, FTIR, XPS and TEM techniques. The nature 

of support significantly influences the catalytic performance in the ODHE to ethylene 

reaction, which could be attributed the different strength of metal-oxide and support 

interaction. Despite constant V2O5 loading (10wt%) in every case, the phase 

composition, reducibility, acidity characteristics, nature of VOx species formed are 

found to be considerably different, which however depend strongly on the type of 

support used. The changes in these properties have shown substantial impact on the 

catalytic performance. Among all, the V2O5 catalyst supported on Al2O3 (with highest 

surface area) yielded the highly dispersed monomeric vanadia species resulting in 

the superior catalytic performance in the ODHE to ethylene reaction. 

 Nb2O5, TiO2, Al2O3 (high surface area 294 m2/g) and ball-milled Al2O3 supported 

catalysts are denoted by V/Nb, V/Ti, V/Al-HS and V/Al-BM, respectively.  

5.2 Characterization studies of different 10 wt% V2O5 catalysts 

supported on different carriers  

5.2.1 Structure properties 

 The thermo gravimetric analysis curves of oven dried supported vanadia 

samples are illustrated in Fig 5-1. The weight loss observed in each vanadia sample 

is found to depend on the nature of alumina support applied. The V/Ti had the lowest 

weight loss (ca. 7 %) while the V/Al-HS showed the highest weight loss (~30 %). It 

can be observed that the weight loss occurred in two steps in case of V/Nb, V/Ti and 

V/Al-BM samples and three steps in that of V/Al-HS solids. The weight loss at low 

temperatures (<120 °C) corresponds to the liberation of physically adsorbed water. 

The maximum weight loss appeared between 120 to 360 °C due to the 

decomposition of ammonium metavanadate. It is known that the decomposition of 

NH4VO3 begins even at 175 °C and involves three stages in the process of 

transformation NH4VO3 of into V2O5. More details on the steps involved in the 
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conversion of ammonium metavanadate into vanadia can be found elsewhere 

[108].In case of V/Al-HS sample, the weight loss continued up to a temperature of 

490 °C. However, no weight loss is occurred beyond 500 °C in all the supported 

vanadia samples irrespective of the type of support used. This result clearly indicates  

the good thermal stability of different supported vanadia catalysts. Based on this 

observation and also considering the reaction temperature, the calcination of all 

these solids is fixed at 600 °C for 6 h in air.  

 

Fig. 5-1  TGA of 10 wt% V2O5 catalysts with varying supports 

Table 5-1. 

The physical characteristics of the catalysts and different type of support 

cat.  

code 

BET-SA (m2/g) pore volume (cm3/g) support BET-SA 

(m2/g) 

pore volume 

(cm3/g) 

V2O5 wt% (ICP) 

fresh Spent fresh    spent fresh spent 

V2O5 6.3 - 0.021 - - - - - - 

10V/Ti 14.5 16.7 0.022 0.139 TiO2 59.2 0.177 9.1 8.8 

10V/Nb 16.8 16.7 0.053 0.086 Nb2O5 21.0 0.021 9.6 10.2 

10V/Al-BM 18.3 17.9 0.057 0.034 -Al2O3 5.8 0.012 10.3 11.2 

10V/Al-HS 258.5 191.5 0.513 0.455 -Al2O3 294 0.310 12.3 12.2 

 

 Table 5-1 presents the surface area, pore volume and bulk composition of 

supported vanadia catalysts on different metal oxide carriers. The results revealed 

that supporting vanadium pentoxide on different metal oxides used in this work 

significantly affects both the surface areas (14.5 – 258.5 m2/g) and pore volumes 
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(0.022 – 0.513 cm3/g) that of course strongly depend upon the parent support. As 

expected, the surface areas decreased considerably compared to the pure supports. 

However, V/Al-BM samples seem to be an exception to this generally expected 

phenomenon, where the surface area is increased substantially compared to its pure 

support (Al-BM). The reason for this deviation could be explained on the basis of its 

origin. In fact, the surface area of 10V/Al-BM sample is increased from 5.8 to 18.3 

m2/g, which might be due to the reformation of a part of the -Al2O3 into -AlO(OH) 

when it comes in contact with the water used during the preparation by wet 

impregnation (excess solvent) method. Interestingly, there were no big differences in 

the surface areas between fresh and spent 10V/Ti, 10V/Nb and 10V/Al-BM catalysts; 

however, there was a large decrease in case of 10V/Al-HS sample. In addition, the 

bulk vanadium pentoxide content in all the fresh catalysts was found to be around 9.6 

- 10.3 wt%, which is in line with their corresponding theoretical values. 

 

Fig. 5-2a. X-ray diffraction patterns of the fresh 10 wt% V2O5 catalysts with 

varying supports 

 X-ray diffraction patterns of both fresh and spent 10 wt% V2O5 catalysts with 

varying supports are depicted in Figs. 5-2a and 2b. For better comparison, the pure 

V2O5 was also included in X-ray diffraction patterns of fresh catalysts. It can be 

clearly seen that the minor reflections corresponding to vanadia pentoxide phase are 

only appeared in V/Ti and V/Nb samples. On the other hand, no such reflections 

corresponding to crystalline V2O5 could be observed in the other two alumina 

supported vanadia catalysts (V/Al-BM and V/Al-HS). Nonetheless, the presence of 
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V2O5 in X-ray amorphous form in these two samples cannot be excluded. These 

results also suggest that the VOx species are more crystalline in V/Ti and V/Nb solids, 

while they are finely dispersed on alumina supported samples. Quite interestingly, 

despite low surface area of Al-BM solid, the crystalline V2O5 is absent, which points to 

the effective active phase support interaction. That is again due to the presence of 

penta-coordinated Al sites in this solid. Moreover, the minor reflections of vanadia 

pentoxide appeared in the fresh catalysts are found to be disappeared in both the 

spent V/Ti and V/Nb catalysts. Further, no considerable changes could be noticed 

between the fresh and spent catalysts of V/Al-BM and V/Al-HS solids. 

 

Fig. 5-2b. X-ray diffraction patterns of the spent 10 wt% V2O5 catalysts with varying 

supports 

 The UV-Vis raw spectra of fresh vanadia catalysts supported on different host 

metal oxides were illustrated in Fig. 5-3a, which provides the information about the 

local geometry and the nature of VOx  species formed in the present supported 

vanadia catalysts. Additionally, the deconvoluted UV-Vis spectra of the same 

samples are presented in Fig. 5-3b. For comparison, the pure V2O5 is also shown in 

these figures (Figs. 5-3a and 3b). The bands appeared below 350 nm are generally 

ascribed to the existence of monomeric or one-dimensional VOx species with four 

coordination number in tetrahedral environment. With increasing the coordination 

number, a red shift to higher wavelength is observed. The bonds between 350 – 400 

nm can be attributed to the polymeric vanadia species, which is surrounded by five 

oxygen ligands in square pyramid geometry. In case of crystalline vanadium 
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pentoxide, where the vanadium ions are located in the centre of a distorted 

octahedron, the UV-Vis bands are usually appeared at round 450 nm. The 

reflectance band at 467 nm gives rise to the typical orange-brown colour of vanadia 

pentoxide. According to this general information, it is evident from Fig. 5-3b that the 

vanadia species on the surface of all these catalysts contain both the 

monomeric/polymeric VOx species in different proportions that is clearly reflected by 

the UV-Vis bands appeared below 400nm (Figs. 5-3a and 3b). V/Al-BM contains 

mainly monomeric VOx species with four coordination numbers in tetrahedral form, 

while there is a small portion of polymeric vanadia species in a square pyramid form 

were observed on the surface of Nb2O5 support. In case of Al-HS supported sample 

two band maxima appeared at 235 nm and 300 nm, respectively. However, this band 

is also further extended to 400 nm. The first and second bands are purely due to 

formation of monomeric VOx species, while the extension of this band further to 400 

nm indicates the presence of small amounts of polymeric VOx species in this sample 

(V/Al-HS). Nevertheless, due to its high surface area, this sample exhibited high 

dispersion and easily reducible VOx compared to all other solids. Such high 

dispersion and better reducible properties will be discussed below separately in TPR 

discussion. As can be seen from Fig. 5-3b, the UV-Vis spectra of pure V2O5 is 

considerably different from the spectra of supported samples. It clearly showed the 

presence of an intense band centered around 450 nm (Fig. 5-3b) due to its highly 

crystalline nature, which is however completely absent in the supported samples. The 

different nature of supports used in this work plays a crucial role in directing the 

structure of the vanadia with the formation of different vanadia species dispersed on 

the surface of support resulting in different catalytic performance, which will be 

discussed separately in the following sections. 
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Fig. 5-3a. UV-vis-DR spectra of the fresh 10 wt% V2O5 catalysts with varying supports 

along with pure V2O5 

 

Fig. 5-3b. UV-vis-DR spectra of the fresh 10 wt% V2O5 catalysts with varying supports 

along with pure V2O5 (Measured: solid lines; Deconvoluted: dashed lines) 
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 The FT-IR spectra of (fresh) supported vanadia catalysts and pure V2O5 are 

shown in Fig. 5-4a. It is clear from Fig. 5-4a that the bands appeared at 1022 cm-1, 

1029 cm-1 and 1013 cm-1 in case of V/Nb, V/Ti and V2O5 are assigned to V+5=O 

stretching vibrations. The bridge V-O-V stretching vibrations are reflected by the band 

at 813 cm-1 in the spectra of V2O5 solid. Surprisingly, no visible vibrations could be 

seen in case of V/Al-BM and V/All-HS samples. This observation can be explained on 

the basis of effective active phase-support interaction and enhanced dispersion of 

VOx over these two samples. XRD also gave good supporting evidence for this 

observation. Interestingly, the FT-IR spectra of spent V/Nb, V/Al-BM and V-Al-HS 

samples did not show any considerable changes compared that of corresponding 

fresh ones. Another notable difference in case of spent of V/Ti catalyst is that the 

bond at 1029 cm-1 appeared in the fresh samples seemed to be shifted to higher 

wavenumber (i.e. at 1066 cm-1) in the spent solid (Fig. 5-4b). 

 

Fig.5-4a. FTIR spectra of the fresh 10 wt% V2O5 catalysts with varying supports 

500 600 700 800 900 1000 1100 1200

 

 

 10V/Nb

 10V/Ti

 10V/Al-BM

 10V/Al-HS

 V
2
O

5

T
ra

n
s
m

is
s
io

n

Wavenumber (cm
-1
)

579

813

888

972
1022

1029

1013



5. ODHE: Marked effect of the support on the catalytic performance 

63 

 

 

Fig.5-4b. FTIR spectra of the spent 10 wt% V2O5 catalysts with varying supports 

 The XP-spectra of O1s and V2p3/2 region of the fresh and spent catalysts are 

displayed in Figs. 5-5a and 5b, respectively. For the fresh samples, XPS V2p3/2 

peaks are located at around 517 eV in all the catalysts, which can be attributed to the 

presence of vanadium in V+5 oxidation state. Moreover, the values of  (i.e. the 

energy difference between O1s and V2p3/2 peaks) are also varied between 12.7 and 

13.2 eV (Table 5-2), which provides further evidence that the vanadium oxide species 

in all these four supported vanadia catalysts are present in +5 oxidation state. Even 

though marginal changes in the V2p3/2 peak width and position is observed in V/Nb 

V/Al-BM and V/Al-HS samples, no changes in the peak shape could be observed. 

However, a much broader V2p3/2 peak in lower intensity for TiO2 supported sample, 

compared with other three supported catalysts, was obtained. This might be due to 

high enrichment of V in the near-surface-region. On the other hand, the O1s peaks of 

samples are slightly shifted from 529 to 530 eV, respectively. 
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Fig. 5-5a. XP spectra of the fresh 10 wt% V2O5 catalysts with varying supports 

 

Fig. 5-5b. XP spectra of the spent 10 wt% V2O5 catalysts with varying supports 

 In case of the XP-spectra for spent catalysts (Fig. 5-5b), there are only small 

changes in O1s position compared to their corresponding fresh ones. However, the 

shape of O1s peaks for spent catalysts are similar to the relative fresh ones with the 

exception of TiO2 supported spent sample which becomes much sharper. However, 

in all spent catalysts, the intensity of V2p3/2 peaks decrease to certain extent 

especially for Al2O3 and TiO2 supported catalysts but a small extent for Nb2O5 

supported sample. Regarding to the value of  (Table 5-2), considerable changes 

only occurred in Al2O3 supported catalysts and the  value of ball-milled -Al2O3 

supported catalyst increased from 13.2 to 14.4 eV showing the reduction of V+5 to V+4 

species.  

540 535 530 525 520 515 510 505

530.3

516.5

516.5

517.3

529.2

 

 

 V/Al-HS

 V/Al-BM

 V/Ti

 V/Nb

In
te

n
s

it
y

 /
 a

.u
.

Electron Binding Energy / eV

O1s V2p O1s

V2p
3/2529.7

530.3

517.1

540 535 530 525 520 515 510 505

517.1

530.1

517.3

516.8

531.2

530.8
 V/Al-HS

 V/Al-BM

 V/Ti

 V/Nb

 

 

In
te

n
s
it

y
 /
 a

.u
.

Electron Binding Energy / eV

O1s V2p O1s

V2p
3/2

529.7

517.0



5. ODHE: Marked effect of the support on the catalytic performance 

65 

 

Table 5-2 

Results of XPS studies and comparison of V/s ratio in bulk and surface region 

Cat. * / eV V/s** (XPS) V/s (ICP) 

 fresh spent fresh spent fresh spent 

V/Nb 12.7 12.7 0.29 0.25 0.16 0.17 

V/Ti 13.2 13.0 0.31 0.34 0.10 0.10 

V/Al-BM 13.2 14.4 0.32 0.22 0.07 0.08 

V/Al-HS 13.0 13.5 0.13 0.12 0.08 0.09 

*: is the energy difference between O1s and V2p3/2 peaks 

**:s - support cation 

 Table 5-2 also represents the ratio of V/s (s: support cation) both from the bulk 

and surface region characterized by ICP and XP-spectra techniques, respectively. It 

can be seen clearly from Table 5-2 that the vanadium enriched in the near-surface-

region irrespective different type of supports. The surface V/s ratios of V/Nb, V/Ti and 

V/Al-BM samples are more or less the same probably due to the similar surface 

areas of these catalysts. In contrast in case of higher surface area of Al-HS support, 

the surface V/s ratio is much lower. This might be due to the presence of high 

amount of Al atoms due to its high surface area but constant number of V atoms in 

every case due to constant loading. This seems to be more probable reason for the 

relatively low V/s ratio. On the other hand, this solid exhibits high dispersion of VOx 

species. If we compare the spent samples, a considerable decrease of surface V/s 

ratio could be observed only in case of ball-milled -Al2O3 sample, which can be 

attributed to the probable migration of vanadium species to sub surface layers. 

Moreover the difference in  value between fresh and spent V/Al-BM sample also 

provide further information about the changes of vanadia species on the surface of 

this ball-milled -Al2O3 support. 

5.2.2 Morphological studies 

 Figs. 5-6a, 6b, 6c and d present the electron micrographs, HAADF-STEM 

images as well as energy dispersive X-ray (EDX) analysis of supported vanadia 

catalysts. The nature of the support has shown a significant effect on the morphology 

and size of vanadium species distributed on the support. The TEM and HAADF-
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STEM images of V/Nb sample are illustrated in Figs. 5-6a. It could be seen from Fig. 

5-6a that the distribution of VOx is not uniform, i.e. sometimes V-enriched and in 

some regions Al is enriched and hence the ratio of V/Al is also not uniform. STEM-

EDX mapping is a very useful technique to study the composition of the particles 

seen from TEM. The results from the STEM-EDX mapping showed that the enriched 

regions of vanadia species.  

 

Fig. 5-6a. i) HAADF-STEM image, ii) Nb-L, iii) V-K, iv) EDXS elemental maps of V/Nb 

catalyst 

 In case of TiO2 supported vanadia catalyst, the presence of small amount of 

tungsten could also be detected in TEM images, which is due to its presence in the 

parent TiO2 support. And the formation of needle-like structures (i.e. typical 

morphology for V2O5) of crystalline vanadium pentoxide particles in this TiO2 

supported catalyst due to the agglomeration of vanadia species in TiO2 support with 

low surface area. The observation of existence of crystalline vanadium pentoxide 

species found by TEM images of V/Ti catalyst is in good agreement of the XRD and 

UV-Vis results. Both the existence of tungsten and vanadia pentoxide species in V/Ti 

catalyst seems to display different catalytic performance of V/Ti catalyst.  
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Fig. 5-6b. Transmission electron micrographs and i) HAADF-STEM image, ii) Ti-K, iii) 

V-K, iv) W-M, EDXS elemental maps of V/Nb catalyst fresh V/Ti sample 
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particles were found. The atomic ratios of V to Al are mostly 1:1 and this ratio is 
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can be seen in V/Al-BM catalysts that could be probably attributed to the unusual 
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properties of this ball-milled -alumina support, with which the vanadia species could 

be well anchored due to high amount of penta coordinated Al sites.  

 

Fig. 5-6c. Transmission electron micrographs and EDX analysis of V/Nb catalyst 

fresh V/Al sample and the atomic ratio of V2O5 to Al2O3 

 Figs. 5-6d depicts the morphology and composition of the V/Al-HS catalyst with 

the highest surface area (294 m2/g). The STEM-EDX mapping results indicated that 

vanadia species are well dispersed in this alumina support probably due to the high 

surface area of support. The V to Al ratios were also found to be uniform throughout. 

This highly distributed vanadia species could be related to the lower ethane 

conversion and higher ethylene selectivity in the ODHE reaction over V/Al-HS 

catalyst, which will be discussed in the following sections. 
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Fig. 5-6d. Transmission electron micrographs, the atomic ratio of V2O5 to Al2O3 and i) 

HAADF-STEM image, ii) V-K, iii) Al-K, iv) O-K, EDXS elemental maps of V/Nb catalyst 

fresh V/Al-HS sample 
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from Fig. 5-7a that all the catalysts contain both Lewis and Brønsted sites in different 

proportions, which however the distribution of LS and BS strongly depends on the 

type of support used. Between the two, Lewis acidity dominates in all samples. 

Among them, V/Al-HS solid exhibit the highest intensity of the band at 1450 cm-1 

compared to others and hence enhanced Lewis acidity as well.  

 

Fig. 5-7a. Py-FTIR spectra of supported 10 wt% V2O5 catalysts with varying supports 

 

Fig. 5-7b. Lewis to Brønsted acid sites ratio of supported 10 wt% V2O5 catalysts with 

varying supports 

 Fig. 5-7b illustrates the integral intensity of Brønsted and Lewis acid sites of 

vanadia catalysts, which are considerably varied with changing the nature of support. 
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increase from V/Nb to V/Al-HS sample. The increasing intensity ratio of Lewis to 

Brønsted acid sites is found to be in the following the order: V/Nb < V/Ti < V/AL-BM < 

V/Al-HS. The differences in the integral intensity ratios of different supported vanadia 

catalysts in turn showed different catalytic performance in the ODH of ethane to 

ethylene reaction. From these results, it appears that acidity characteristics in 

particular Lewis sites seem to play a key role on the performance. 

5.2.4 Reducibility properties 

 The reducibility of different supported vanadia catalysts of the present study can 

be evaluated by examining the temperature-programmed reduction (TPR) profiles. It 

is well-known that low reduction temperatures correspond to a high degree of V 

dispersion [112, 113, 114]. Monomeric vanadyl species are more easily reducible 

compared to the polymeric and crystalline vanadia species. Fig. 5 -8 shows the TPR 

profiles obtained for the present vanadia based catalysts supported on different 

oxides. The reduction temperatures are observed to be clearly dependent on the type 

of support applied. The current TPR profiles are found to be substantially different 

from each other despite constant V2O5 content in every case. Such differences can 

be ascribed to the differences in the nature of active phase-support interaction, type 

of VOx species formed and the reducibility of these species. The profile of V/Al-HS 

sample exhibits a main intensive reduction peak at 490 °C, which is the lowest 

reduction temperature compared to all other vanadia catalysts indicating the easily 

reducible nature of VOx species formed in this sample. In addition, this sample 

showed only one reduction peak, which hints to the assumption that the VOx species 

is highly dispersed on the surface of V/Al-HS catalyst. We assign the reduction peak 

appeared at 490 °C in V/Al-HS solid is due to reduction of monomeric and/or the 

highly dispersed vanadia species. Besselmann et al. [113] also found a peak at 

487 °C in their TPR measurements and ascribed such peak to reduction of 

monomeric and dispersed VOx species that are obviously present as a monolayer in 

strong interaction with the support. Our results are in good agreement with them. The 

V/Al-BM sample showed the reduction peak at 543 °C together with a shoulder 

around 490 °C, which is indicative of presence of monomeric and polymeric vanadia 

species that get reduced at different temperatures. The TiO2 and Nb2O5 supported 

vanadia catalysts displayed quite different reduction profiles compared with that of 

Al2O3 supported catalysts, both in terms of shape and peak intensity. More than one 
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reduction peaks at much higher reduction temperatures were observed for V/Ti and 

V/Nb catalysts. Although the TPR patterns are rather sensitive to the experimental 

conditions like apparatus, heating rate, sample weight and so on, the number of 

peaks and position differs in the publications. In case of V/Ti and V/Nb catalysts 

multiple reduction peaks appeared at varying temperatures from 539 to 781 °C. The 

other two reduction peaks of V/Ti catalyst at 539 and 640 °C can be attributed to the 

monomeric and polymeric vanadia species respectively. The reduction temperatures 

at 575 and 702 °C in the pattern of V/Nb catalyst are probably due to the reduction of 

polymeric and large three-dimensional vanadium oxide species. The peak at 702 to 

781 °C can be ascribed to the reduction of crystalline vanadia pentoxide according to 

the reported TPR value for bulk vanadium pentoxide [112]. The existence of 

crystalline vanadium pentoxide in V/Ti catalyst was also proved by the UV-Vis XRD 

and TEM results. A shift in reduction temperature from 490 °C (on V/Al-HS) to 575 °C 

(on V/Nb) is certainly due to the change in the nature of VOx species formed on 

varying catalyst supports. 

 

Fig. 5-8. Temperature programmed reduction curves of fresh 10 wt% V2O5 catalysts 

with varying supports 

5.3 Catalytic results 

 Figs. 5-9a and 9b show the variation of ethane conversion and ethylene 
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activity of vanadia catalysts, compared with the bulk vanadium pentoxide, was 

significantly enhanced by depositing vanadia on another oxide support. However, the 

catalytic performance of supported vanadia catalysts differs considerably due to the 

different nature of support applied. As mentioned before, the nature of the oxide 

support influences the redox and acid-base properties, as well as dispersion of the 

vanadia species, which in turn affect the catalyst activity. It is known that the ODH of 

ethane to ethylene proceeds via Mars-van Krevelen mechanism and therefore 

effective redox cycle needs to be maintained and the more easily reducible catalyst, 

the higher the activity performance should be. The TPR results revealed that the 

V/Al-HS catalyst is more easily reducible followed by V/Al-BM, V/Ti and V/Nb. 

However, among all the supports used in this work, the ethane conversion was 

increased in the following order: V/Nb < V/Al-BM < V/Al-HS < V/Ti. The highest ability 

on ethane conversion obtained by TiO2 supported vanadia catalyst might be due to 

the formation of crystalline vanadium pentoxide and/or the presence of tungsten 

observed by the TEM images. It is known that the tungsten is also a redox 

component and its presence in small amounts enhances the conversion; however the 

acidity, dispersion and reducible properties are also crucial for selectivity. Due to lack 

of those properties, this V/Ti solid exhibit poor seelctivity compared to V/Al-HS and 

V/Al-BM solids. 

 

Fig. 5-9a. Ethane conversion over different supported 10 wt% V2O5 catalyst at 

different reaction temperatures 
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supported vanadia catalysts is presented in Fig. 5-9b. TiO2 supported catalyst 

showed the worst selectivity even lower than that of bulk V2O5. The selectivity of 

other vanadia catalysts showed the same tendency as their corresponding activity for 

ethane conversion. Taking into account of the acidity property of vanadia catalysts 

deposited on different supports, it appears that the distribution of Lewis and Brønsted 

acid sites is an important parameter that can significantly affect both activity and/or 

selectivity properties in the ODHE to ethylene reaction. Moreover, the integral 

intensity ratios of Lewis to Brønsted acid sites revealed further hints on the 

relationship between activity performance of these vanadia catalysts and the crucial 

effect of Lewis and Brønsted acid sites. It can be concluded that, the higher intensity 

ratio of Lewis acid site to Brønsted acid site provides the superior catalytic 

performance. The reason for the unexpected performance of V/Ti catalyst, by 

comparing the behaviour of V/Ti catalyst and bulk V2O5, can be therefore deduced to 

the existence of tungsten, which is enriched in the edge of V/Ti catalyst particles. The 

most striking result is the good catalytic behaviour of V/Al-BM sample, which is 

supported on a ball-milled -Al2O3. Even though this catalyst has much lower surface 

area but showed a comparable activity performance with that of V/Al-HS catalyst. 

The ball-milled -Al2O3 support contained about 20% penta coordinated Al sites, 

which seem to be responsible for its improved performance.  

 

Fig. 5-9b. Ethylene selectivity over different supported 10 wt% V2O5 catalyst at 

different reaction temperature 
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5.4 Summary and Conclusion 

 The nature of the support has shown a remarkable influence on the structure, 

surface areas, type of VOx species formed, redox, and acid-base properties of 

several vanadia catalysts. The changes in these properties in turn revealed 

significant impact on the catalytic performance. At 10 wt% loading of vanadia, the 

minor X-ray reflections of V2O5 are only exist in V/Ti sample indicating the high 

crystallinity of vanadia species in this sample compared to others. On the other hand, 

no crystalline V2O5 could be found in V/Al-BM and V/Al-HS samples. This indicates 

the well dispersion of vanadia species in these so lids, which is however further 

proved by the results from TEM, HAADF-STEM and EDX. Such microscopic results 

depict the different degree of dispersion of vanadia species on different supports. In 

case of V,Al-BM, the V/Al ratio at 1:1 are frequently observed throughout the sample 

while Al rich region also exists sometimes. The crystalline V2O5 particles display the 

needle-like morphology in V/Ti samples UV-Vis results provide good supporting 

evidence for the presence of crystalline V2O5 and the nature of monomeric/polymeric 

vanadia species that are varied in different proportions. The concentration of these 

species is however found to depend strongly on the type support applied. Mainly 

monomeric species together with small amouts of oligomeric VOx species were 

observed in these solids. 

 Among all the supported vanadia catalysts studied in this work, the vanadium 

oxide possesses +5 oxidation state in all the fresh catalysts independent of type of 

support applied. The vanadia species in two different types of Al2O3 supports are 

more easily reducible than that of TiO2 and Nb2O5 supported ones, according to the 

TPR results. Py-FTIR spectra revealed the presence of both Lewis and Brønsted acid 

sites in all the samples. However, Lewis acidity dominates I all samples.  The Lewis 

acid site intensity increases in the following order: < V/Nb < V/Al-BM  V/Ti < V/Al-HS. 

The nature of oxide carrier significantly influenced the activity and selectivity 

properties of the present vanadia based catalysts in the ODHE reaction. The yield of 

ethylene is followed the order: V/Ti < V/Nb < V/Al-BM  V/Al-HS, which is in line with 

the reducibility and acidity characteristics of the catalysts. The ratio of integral integral 

intensity of Lewis and Brønsted acid sites seem to play a vital role on the ethylene 

selectivity. The higher the ratio of Lewis/ Brønsted sites, the higher selectivity of 
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ethylene. On the whole, it can be stated that the nature of catalyst support is an 

important parameter that needs to be carefully selected for obtaining enhanced 

performance of the catalysts. 
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6. Effect of the metal dopant M and CO2-admixture on the 

ODHE to ethylene over Ni-Nb-M-O catalysts 

Chapter 6 presents the catalytic data obtained over Ni-Nb-M-O mixed metal oxide 

catalysts with and without CO2 admixture under the same reaction conditions (T, 

GHSV), along with the solid state characterization to show the correlation between 

the nature of catalysts and different catalytic performance. 
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6.1 General studies on Ni-Nb-O and modified Ni-Nb-M-O (M: Cr, Mo, 

W) catalysts in the ODHE reaction 

 Ni-Nb-O based catalysts are known for high activity and selectivity towards the 

oxidative dehydrogenation of ethane (ODHE) to ethylene. The parent Ni -Nb-O 

catalyst used in this work showed an ethylene yield of 32%. This solid was further 

modified by three dopants, i.e. Cr, Mo, W (Ni: Nb: M atomic ratio of 1: 0.176: 0.1), 

that belong to the same group of elements showing different d -characters, with 

respect to further improve the activity and/or selectivity. However, the activity results 

of the doped solids revealed a clear reduced activity compared to the original Ni -Nb-

O catalyst during the ODHE. Although X-ray diffraction didn’t show any changes in 

crystalline behaviour, BET surface area data, reducibility, acidity characteristics as 

well as surface composition of Ni-Nb-M-O revealed significant deviations. Anyway, 

among the three dopants used, Cr displayed relatively superior catalytic performance 

compared to the other two yielding in an ethane conversion of 26% and an ethylene 

selectivity of ca.65% only. In addition, the introduction of CO2 into the reactant feed 

mixture is found to improve the selectivity of ethylene in the ODHE. Ni-Nb-Cr-O solid 

revealed an ethylene selectivity of ca.85% at slightly less ethane conversion. 

6.2 Characterization results of fresh and spent Ni-Nb-O and Ni-Nb-

M-O (M: Cr, Mo, W) bulk catalyst 

6.2.1 BET-surface area, pore volumes and catalyst composition 

 Table 6-1 lists the BET surface areas of all fresh and spent samples; for 

comparison, the surface area of pure NiO solid is also included. A considerable 

increase in the surface area upon introduction of dopant can be found. It can also be 

seen that the surface areas of Ni-Nb-M-O catalysts are observed to depend on the 

nature of dopants but varied in the range from ~55 to 75 m2/g. The surface areas of 

the spent samples are somewhat decreased compared to their corresponding fresh 

samples. On the other hand, the pore volumes of the samples are also found to vary 

in the range from 0.100 to 0.250 cm3/g, respectively. Furthermore, the metal contents 

estimated by ICP in all the catalysts are shown in Table 6-2. Additionally, near-

surface region composition of calcined solids obtained from XP-spectra is also 

presented in Table 6-2 but discussed below. 
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Table 6-1 

BET-surface areas and pore volumes of different Ni-Nb-M-O catalysts 

Cat. Code BET-SA (m2/g) Pore volume (cm3/g) 

Fresh Spent Fresh Spent 

NiO 9.4 - - - 

Ni-Nb-O 58.0 50.2 0.105 0.103 

Ni-Nb-Cr-O 53.7 49.0 0.176 0.175 

Ni-Nb-Mo-O 73.7 62.9 0.144 0.180 

Ni-Nb-W-O 68.5 59.3 0.239 0.193 

 

Table 6-2  

Bulk and near-surface region composition of Ni-Nb-M-O (M: Cr, Mo, W) catalysts 

Cat.Code ICP measured composition (at%) XPS measured composition (at%) 

  Ni Nb M Ni Nb M 

Ni-Nb-O 1.0 0.119 - 1.0 0.131 - 

Ni-Nb-Cr-O 1.0 0.108 0.10 1.0 0.082 0.186 

Ni-Nb-Mo-O 1.0 0.113 * 1.0 0.050 0.111 

Ni-Nb-W-O 1.0 0.119 * 1.0 0.029 0.037 

Nominal composition: Ni: Nb: M = 1: 0.176: 0.1 (atomic ratio), *:not determined 

6.2.2 X-ray diffraction 

 Powder X-ray diffraction (XRD) was used to identify the crystalline phases 

formed in the calcined catalysts. Fig. 6-1a illustrates the XRD patterns of fresh Ni-Nb-

M-O samples with varying dopants (Cr, Mo and W) plus that of parent Ni-Nb-O. It can 

be clearly seen that in all these Ni-Nb-M-O samples as well as Ni-Nb-O mixed oxides, 

the XRD analysis exhibits only diffraction peaks corresponding to a crystalline ‘NiO- 

like’ phase [4] in cubic structure with a lattice constant of a = 4.18 Å being in good 

agreement with the reported data (JCPDS 47-1049). Incorporation of an additional 

metal into Ni-Nb-O parent solid caused a decrease in the intensity of XRD reflections. 

Such decrease is however clearly depended upon the type of dopant used, i.e. the 

heavier the dopant, the lower the intensity. However, there were no reflections of new 

crystalline phase observed corresponding to these three dopants. 
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Fig. 6-1a X-ray diffraction patterns of the fresh Ni-Nb-O and Ni-Nb-M-O catalysts 

with varying dopants (M: Cr, Mo, W) 

 

Fig. 6-1b X-ray diffraction patterns of the spent Ni-Nb-O and Ni-Nb-M-O catalysts (M: 

Cr, Mo, W) 

 Fig. 6-1b depicts the XRD patterns of the spent Ni-Nb-M-O catalysts. It can be 

seen that there were changes between the fresh and the spent catalysts of both Ni -

Nb-O and promoted Ni-Nb-M-O (M: Cr, Mo, W). It has been noticed that in all the 

solids containing dopants (Ni-Nb-Cr-O, Ni-Nb-Mo and Ni-Nb-W-O) only an additional 

weak broad reflection appeared at 2θ = 12° and an extremely weak one at 2θ = 27° 

in case of Ni-Nb-W-O samples. This reflection can be ascribed to an amorphous 

niobium oxide-rich phase [115]. 
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6.2.3 Py-FTIR 

 Pyridine-FTIR spectra of Ni-Nb-M-O (M: Cr, Mo, W) calcined solids as well as 

parent Ni-Nb-O are depicted in Fig. 6-2. The bands appeared at 1445, 1602 and 

1604 cm-1 can be exclusively assigned to pyridine coordinatively bound to oxygen 

vacancies as Lewis acidic sites (LS). Interestingly in all the samples, only LS are 

present while no Brønsted sites (BS) were found. Nevertheless, some differences in 

their band intensities could be noticed, which however depend upon the nature of 

dopant applied. The integral intensity of LS of Ni-Nb-O oxide is 0.11/m2. This value is 

increased by introducing Cr, Mo or W into the host oxide of Ni-Nb-O. Ni-Nb-Cr-O 

showed the highest amount of LS with an integral intensity value of 0.23/m2 

compared to Ni-Nb-W-O (0.17/m2) and Ni-Nb-Mo-O (0.15/m2). 

 

Fig. 6-2 Pyr-FTIR spectra of the fresh Ni-Nb-O and Ni-Nb-M-O catalysts with varying 

dopants (M: Cr, Mo, W) 

6.2.4 TPR reflection 

 The TPR profiles of pure Ni-Nb-O and the doped Ni-Nb-M-O (M: Cr, Mo, W) 

samples are shown in Fig. 6-3a and the comparison of fresh and spent Ni-Nb-Cr-O 

sample is depicted Fig. 6-3b. Ni-Nb-O exhibits a broad reduction peak with a 

maximum at ~356 °C and a reduction shoulder at somewhat higher temperature 

(~400-450 °C). According to Heracleous and Lemonidou, the main reduction peak 

could be attributed to the reduction of Ni-O-Ni bonds and the broad shoulder to the 

removal of oxygen from Ni-O-Nb bonds [116]. The introduction of an additional metal 

dopant significantly modified the reduction profiles and causes a shift in the main 
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reduction peak to higher temperatures, which is certainly due to the interaction 

between the incorporated metal and the host metal. However, after reaction (i.e. in 

the spent Ni-Nb-Cr-O samples) the intensity of both the main peak and the weak 

peak is somewhat decreased (Fig. 6-3b). On the whole, it can be stated that the 

reducible properties of the catalysts are considerably affected by the type of dopant 

incorporated into the parent Ni-Nb-O solid. 

 

Fig. 6-3a TPR profiles of fresh Ni-Nb-O and Ni-Nb-M-O catalysts with varying dopants 

(M: Cr, Mo, W) 

 

Fig. 6-3b TPR profiles of fresh and spent Ni-Nb-Cr-O 
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6.2.5 XP-spectra 

 XPS was used to provide information about the oxidation state and the chemical 

environment of the elements being present in the near-surface region of the solids. 

The Ni 2p XP-spectra of Ni-Nb-M-O (M: Cr, Mo, W) together with Ni-Nb-O are 

portrayed in Fig. 6-4a. The Ni 2p3/2 spectra of all samples (Fig. 6-4a) are typical for 

Ni2+ with a main peak at 854.9 eV (in case of Ni-Nb-O, i t is appeared at 854.6 eV), 

and a broad satellite centred at around 861 eV [117]. From this, it can be deduced 

that the Ni-Nb-M-O samples exhibit the similar nickel species (Ni+2) irrespective of 

type of dopant used. However, an additional shoulder appeared at 856.1 eV only in 

the parent Ni-Nb-O solid, which is vanished in the promoted catalysts. Some reports 

[e.g. 118] claimed that the appearance of a peak at a binding energy value of 856.1 

eV is due to the formation of Ni+3 species. Nevertheless, such Ni+3 species are very 

much unstable and hence the existence of such species in our case seem to be more 

unlikely. The XP-spectra of Nb 3d are presented in Fig. 6-4b. A doublet peak at 

binding energies appeared at 207.5 and 210 eV can be assigned to Nb5+, which is 

commonly present in both parent Ni-Nb-O and metal M (Cr, Mo, W) modified Ni-Nb-

M-O samples. It can also be seen from Fig. 6-4b that the addition of dopant has 

some effect on the binding energy of Nb and particular the shape of the peak. The 

doublet peak becomes somewhat broader depending upon the dopant along with 

slight shift in the binding energy to higher value. Among the three, the Cr dopant 

influences Nb only slightly, whereas the Nb 3d spectrum of the Mo catalyst displays 

much broader peaks. 
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Fig. 6-4a Ni 2p XP-spectra of the fresh Ni-Nb-O and Ni-Nb-M-O catalysts with varying 

dopants (M: Cr, Mo, W) 

 

Fig. 6-4b Nb 3d XP-spectra of the fresh Ni-Nb-O and Ni-Nb-M-O catalysts (M: Cr, Mo, 

W) 

 The XP-spectra of the dopant elements such as Cr 2p, Mo 3d and W 4f are 

presented in Fig. 6-4c. The spectrum of Cr 2p shows to the presence of chromium in 

+3 oxidation state [119]. In fact, two peaks appear in the XP-spectra at 576.9 eV and 

586.0 eV corresponding to Cr 2p3/2 and Cr 2p1/2, respectively. The binding energy of 

the Mo 3d5/2 peak is at 232.1 eV, which is certainly due to Mo+6 oxidation state. This 

result is in good agreement with that of the literature for molybdena in the highest 

oxidation state [120, 121]. In the case of Ni-Nb-W-O catalyst, the peaks for W 4f7/2 at 

36.0 eV and W 4f5/2 at 37.7 eV indicate the presence of tungsten in +6 oxidation state 

[122, 123]. However, no indication for the presence of the lower valance states of Mo 
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and W ions could be observed in the present promoted catalysts. Just to summarise, 

XP-spectra revealed the existence of Cr3+, Mo6+ and W6+ in Ni-Nb-Cr-O, Ni-Nb-Mo-O 

and Ni-Nb-W-O, respectively.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6-4c XP-spectra of the fresh Ni-Nb-M-O catalysts: i) Cr 2p, ii) Mo 3d and iii) W 4f 

 Both the near-surface region composition estimated by XPS and the bulk 

composition determined by ICP are compared in Table 6-2. It can be clearly seen 

that the near-surface metal enrichment clearly depends upon the nature of the 

dopant used. It is found that the Nb/Ni and the M/Ni ratios are considerably 

decreased in the near-surface region with changing dopant from 3d to 5d. However, 

the parent Ni-Nb-O solid has shown still higher value of surface Nb/Ni ratio (0.13) 

compared to promoted samples. Such changes in the values of surface Nb/Ni ratios 
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can show substantial influence on the catalytic performance, which will be discussed 

in the following sections. 

6.3 Catalytic results 

 All the Ni-Nb-O and Ni-Nb-M-O (M: Cr, Mo, W) catalyst samples were tested 

both in absence and presence of CO2 in the feed gas. First tests were performed in 

absence of CO2 under the following reaction conditions, i.e. C2H6: O2: N2 = 1: 0.7: 2.7 

under steady state conditions in a temperature window of 300-450 °C with a constant 

W/F (1.02 g s/cm3). Later on, the influence of CO2 admixture in the reactant flow at a 

ratio of C2H6: O2: CO2: N2 = 1: 0.5: 0.9: 2 was explored but under the same 

conditions as in the first case.  

 

Fig. 6-5 Effect of CO2 admixture on the activity and selectivity of Ni-Nb-O and Ni-Nb-

M-O catalysts (M: Cr, Mo, W) (reaction conditions: T = 450 °C, C2H6: O2: CO2: N2 = 1: 0.7: 

0: 2.7 (without CO2), C2H6: O2: CO2: N2 = 1: 0.5: 0.9: 2.0 (with CO2), cat. wt. = 1.1 g GHSV 

= 3250-3545 h-1,   = 1 to 1.1 s) 

 The catalytic results for parent Ni-Nb-O and promoted Ni-Nb-M-O (M: Cr, Mo, W) 

in absence and presence of CO2 under the conditions mentioned above (T = 450 °C) 

are shown in Fig. 6-5. Surprisingly, the modified Ni-Nb-M-O (M: Cr, Mo, W) catalysts 

did not exhibit positive improvement on catalytic activity. Both ethane conversion and 

ethylene selectivity decreased to some extent. This negative effect could be 

attributed to the declined reduction ability of the promoted Ni-Nb-M-O samples than 

that of parent Ni-Nb-O oxide. On the other hand, the doping of Cr, Mo and W can 

tune the accommodation of Nb in the host NiO oxide, which in turn influences their 

0

20

40

60

80

100

with CO2

without CO2

Ni-Nb-O

%

Ni-Nb-M-O catalyst

 

 

 

 X-C
2
H

6

 S-C
2
H

4

Ni-Nb-Cr-O Ni-Nb-Mo-O Ni-Nb-W-O Ni-Nb-O Ni-Nb-Cr-O Ni-Nb-Mo-O Ni-Nb-W-O



6. Effect of the metal dopant M and CO2 mixture over Ni-Nb-M-O catalyst 

87 

 

activity in the ODHE. XP-spectra also give further hints on the changes in the surface 

composition, particularly the decrease in Nb concentration in the near-surface-region 

depending on dopant used. The near-surface-region Nb/Ni ratio drops in the 

following order: Ni-Nb-O > Ni-Nb-Cr-O > Ni-Nb-Mo-O > Ni-Nb-W-O. Anyway, it has 

been clearly observed that a high concentration of Nb in the near-surface-region 

leads to enhanced activity. Considering the reduced activity and selectivity of 

promoted catalysts, it could therefore be deduced that the amount of Nb in the near-

surface-region plays a crucial role on the ODH activity of ethane over Ni-Nb-oxide-

based catalysts. This observation was also well supported by the investigations of 

Heracleous and Lemonidou and the best catalytic performance was obtained by 

Ni0.85Nb0.15O in their work [116, 124].  

 Among these three dopants of the same group applied, Cr promoted catalyst 

exhibited better performance compared to other two components. This means, the 

increase in d-character of the dopant (from 3d to 5d) has shown an adverse effect on 

the conversion of ethane as well as on the selectivity of ethylene (see Fig. 6-5). 

According to the characterization results, the better performance of Cr promoted Ni -

Nb-Cr-O samples could be related to its higher acidity and the presence of easily 

reduced Ni-O-Cr species. In general, it looks that the near-surface region Ni/Nb ratio 

(Ni/Nb near-surface ratio: Ni-Nb-O = 7.6, Ni-Nb-Cr-O = 12.2, Ni-Nb-Mo-O = 20, Ni-

Nb-W-O = 35) plays a crucial role for the catalytic properties of the solids. Besides, 

high surface enrichment of Nb as well as Cr was observed in case of Cr promoted 

catalyst (i.e. Ni-Nb-Cr-O) compared to other two dopants applied.  

 Fig. 6-5 also compares the results in presence of CO2 on the catalytic 

performance under the same reaction conditions mentioned above at 450 °C. For 

parent Ni-Nb-O catalyst, the introduction of CO2 caused a drop of the ethane 

conversion but an increase in selectivity to ethylene to a small extent from 77% 

without CO2 to 81% with CO2. However, it is evident that the CO2 admixture to the 

reactant feed commonly caused a slight decrease in the conversion of ethane but 

considerably improved the selectivity of ethylene in case of three metal promoted Ni -

Nb-M-O catalysts. For instance, in case of the best catalyst (i.e. Ni-Nb-Cr-O) among 

these three promoted catalysts, the CO2 admixture improved the selectivity to 

ethylene from 63% to 84% while ethane conversion is slightly reduced from 26% to 

21%. Similar such tendency is also observed with the other two dopants. Addition of 



6. Effect of the metal dopant M and CO2 mixture over Ni-Nb-M-O catalyst 

88 

 

CO2 to the reactant feed mixture is expected to cover some unselective electrophi lic 

oxygen species and hereby improve the selectivity of ethylene. Moreover, CO2 is 

heavier than O2 and hence it can also limit the oxygen diffusion across the catalyst 

bed. Furthermore, nature of dopant also displayed considerable influence on the 

activity and selectivity behaviour of the catalysts. Such differences in the 

performance can also be ascribed to adsorption properties o f dopant elements. Our 

results are in good agreement with those reported by Wang et al. [125] claimed that 

the enhanced selectivity to ethylene could be related to the poisoning effect of CO2 in 

the ethane conversion by inhibiting the reactions between alkyl radicals with the 

active site on catalyst surface. Similar such effect of CO2 admixture can also be 

expected here in the present study on improving the selectivity of ethylene. The other 

possible reasons could be i) CO2 is a by-product of this reaction, and hence it is 

already present in the product mixture, and admixture of additional CO2 might shift 

the equilibrium and as a result selectivity is improved while the activity is slightly lost 

and ii) addition of CO2 might block the unselective sites (e.g. more reactive 

electrophilic oxygen species, probably by forming some kind of surface carbonates) 

and also inhibit and/or affect the formation of alkyl radicals [125] and thereby rate of 

C2H5∙ radicals and their subsequent transformations are influenced to a certain extent, 

resulting in reduced ethane conversion. 

 From the standpoint of effect of CO2 admixture and in view of the best 

performance obtained on Ni-Nb-Cr-O catalyst in comparison with other solids, this 

particular catalyst was further used in additional catalytic tests with changing ratio of 

C2H6: O2: CO2: N2. The objective was to study the influence of amount of CO2 in 

reactant flow on the activity and selectivity of the catalyst. Besides, the intention was 

also to identify the optimum reaction conditions. 

 Figs. 6-6a and 6b illustrate the conversion of ethane and selectivity to ethylene 

obtained over Ni-Nb-Cr-O catalyst in the ODHE. As expected, in absence of O2 in the 

feed, almost no conversion of ethane could be achieved in the reaction temperature 

region investigated. However, with increase in O2 concentration in the feed mixture, 

the conversion of ethane has been increased drastically from 0.4 (in absence of O2) 

to 53.8% (at C2H6: O2 = 1: 1.4 mole ratio). On the other hand, ethylene selectivity is 

increased with rise in temperature only up to 400 °C and then decreased with further 

increase in temperature to 450 °C, which however strongly depends upon the O2 
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concentrations in the reactant feed mixture. It should be noted that the selectivity 

increased progressively with temperature up to the stoichiometric oxygen 

concentration (C2H6: O2 = 1: 0.5). However, when the oxygen concentration 

increased beyond the stoichiometric amount, the excess of O2 clearly promotes the 

total oxidation and thereby increases consecutive oxidation of both the ethane and 

ethylene to carbon oxides. As a result, the selectivity to ethylene is reduced 

considerably. Therefore, the O2 concentration close to stoichiometric condition is an 

important parameter for the better catalytic performance of Ni-Nb-Cr-O catalysts.  

 

Fig. 6-6a Effect of O2/CO2 ratios on ethane conversion at different temperatures over 

Ni-Nb-Cr-O catalyst (reaction conditions: T = 300-450 °C, GHSV = 3545 h-1,   = 1 s, cat. 

wt. = 1.1 g) 

 Furthermore, it can be stated that both the increase in O2 concentration and 

simultaneous increase in reaction temperature caused an adverse effect on ethylene 

selectivity but promotional effect on the conversion of ethane. It can also be observed 

from Figs. 6-6a and 6b that the selectivity is relatively higher in presence of CO2 in 

the reactant feed mixture. Even though the activation of ethane is difficult in absence 

of oxygen in the feed, but the addition of CO2 certainly has shown a clear 

improvement in the selectivity of ethylene. It is further proved that the poisoning effect 

of CO2 presence on ethane conversion [125], resulting in lower ethane conversion 

and enhanced ethylene selectivity. 
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Fig. 6-6b Effect of O2/CO2 ratio on ethylene selectivity at different temperatures over 

Ni-Nb-Cr-O catalyst (reaction conditions: T = 300-450 °C, GHSV = 3545 h-1,   = 1 s, cat. 

wt. = 1.1 g) 

 Later on, the effect of a varying CO2 concentration was also investigated at 

constant O2 concentration (C2H6: O2 = 1: 0.7) being close to stoichiometric condition. 

Fig. 6-7a depicts that the variations of ethane conversion as a function of 

temperature over Ni-Nb-Cr-O catalyst. It can be seen that at temperature below 

350 °C, the CO2-admixiture does not influence the conversion to a considerable 

extent. However, from 350 °C onwards, a clear effect can be found. As expected, the 

conversion is increased with temperature to a great extent up to 400 °C and then 

remained more or less constant. This levelling-off appears to be due to non-

availability of surplus oxygen in the reaction mixture. Actually from 400 °C, the O2 

was completely consumed. On the other hand, at the fixed O2 concentration in the 

feed, increase in CO2 ratio, a slight decrease in ethane conversion was noticed 

because of the poisoning effect of CO2 on the reaction between the C2H5 radicals 

and the surface active sites as claimed elsewhere [125]. However, the selectivity to 

ethylene showed an inverse tendency compared to the ethane conversion as a 

function of temperature (cf. Fig. 6-7b), i.e. the selectivity to ethylene was increased 

considerably with increasing CO2-admixture. In all cases, the highest selectivity to 

ethylene was recorded at 420 °C. 
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Fig. 6-7a Effect of CO2 proportion on ethane conversion at different temperatures 

over Ni-Nb-Cr-O catalyst (reaction conditions: T = 300-450 °C, GHSV = 3545 h-1,   = 1 s, 

cat. wt. = 1.1 g) 

 

Fig. 6-7b Effect of CO2 proportion on ethylene selectivity at different temperatures 

over Ni-Nb-Cr-O catalyst (reaction conditions: T = 300-450 °C, GHSV = 3545 h-1,   = 1 s, 

cat. wt. = 1.1 g) 

 The important parameters such as ethane conversion and ethylene selectivity at 

420 °C are portrayed in Fig. 6-8 as a function of different CO2/O2 ratios. It is evident 

that the selectivity to ethylene increased with an enlarged proportion of CO2 admixed 

from ~60% to close to 70%, i.e. with rise in CO2/O2 ratio from 0 to 3. However, the 

high conversion is obtained at a CO2/O2 ratio of 1. Considering these two parameters 

such as conversion of ethane and selectivity to ethylene it can be inferred that the 
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CO2-admixture has a promotional effect on the selectivity to ethylene but marginal 

negative effect on the conversion of ethane. These effects observed on the impact of 

CO2 concentration in the feed might be due to the elimination of H2 generated by 

dehydrogenation via reverse water gas shift reaction [ 126]. The highest ethylene 

selectivity was attained at 420 °C with a C2H6: O2: CO2: N2 ratio of 1: 0.7: 2.1: 0.6, 

under these conditions a long-term stability test over the Ni-Nb-Cr-O catalyst was 

carried out. The results are presented in Fig. 6-9. This long-term test was done in two 

days, i.e. 11 h on the first day and 10 h on the next day, which are however labelled 

in the diagram accordingly. Therefore, it is obvious from Fig. 6-9 that both the 

conversion and selectivity were not considerably affected over a period of 21 hours-

on-stream. These results clearly show the high stability of Ni-Nb-Cr-O catalyst in the 

ODHE under the reaction conditions applied. 

 

Fig. 6-8 Comparison of ethane conversion and ethylene selectivity over Ni-Nb-Cr-O 

at different CO2/O2 ratios at 420 °C (Reaction conditions: T = 420 °C, GHSV = 3545 h-1,   

= 1 s, cat. wt. 1.1 g) 
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Fig. 6-9 Long term performance of Ni-Nb-Cr-O catalyst (reaction conditions: T = 

420 °C, C2H6: O2: CO2: N2 = 1: 0.7: 2.1: 0.6, GHSV = 3545 h-1,   = 1 s, cat. wt. 1.1 g) 

6.4 Summary and Conclusion 

 The nature of the dopant M (Cr, Mo, W) has shown substantial influence on the 

surface areas, acidity characteristics, reducible properties as well as near -surface 

region composition of Ni-Nb-M-O catalyst. All these parameters in turn play a key role 

on the catalytic performance resulting in reduced ethane conversion and ethylene 

selectivity compared with parent Ni-Nb-O catalyst. Furthermore, among these three 

M (Cr, Mo, W) modified catalysts the d-character of dopant displayed a clear adverse 

impact on the catalytic properties. In this work, particularly Cr exhibited better 

performance compared to Mo and W as dopants. It could be deduced that the better 

performance of Cr promoted Ni-Nb-Cr-O samples could be related to its high surface 

enrichment of Cr and Nb and the presence of easily reducible Ni-O-Cr species 

besides its higher acidity. The catalytic results also revealed that the temperature of 

reaction, the concentration of O2, presence of CO2 and reactant mole ratios have 

shown considerable influence on the catalytic performance . Anyway, the tests have 

shown that a dilution of Nb sites in the near-surface region and/or a displacement 

downwards to the bulk reveal a negative effect on the catalytic performance. 

 The activation of ethane in the presence of CO2 but in the absence of oxygen is 

difficult in the studied temperature range and hence almost no conversion of ethane 

could be noticed. But the addition of CO2 to the reactant feed mixture exhibits 

appreciable effect on the catalytic performance of Ni-Nb-M-O solids with enhanced 
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ethylene selectivity at slight decrease of ethane conversion. It could be therefore 

attributed to the shifted equilibration as well as poisoning effect of present CO2 on 

ethane conversion by inhibiting the reactions between radicals (e.g. C2H5·) and the 

surface active sites. 
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7. Overall summary and outlook  

 This chapter summarizes the results of the investigations and gives some 

conclusions and an outlook for future research on the oxidative dehydrogenation of 

ethane to ethylene. 

 V2O5 based catalysts supported on different oxide carriers, i.e. Nb2O5, different 

types of Al2O3 and TiO2, displayed differentiating catalytic performances in the 

oxidative dehydrogenation of ethane. The catalytic activity and selectivity over 

V2O5/Nb2O5 catalysts with varying V2O5 contents (5-20 wt%) were found to depend 

strongly on the nature of vanadium oxide species formed and the surface enrichment 

of vanadium in the near-surface-region. At low V2O5 content (≤10 wt%), monomeric 

and oligomeric VOx species were formed while more polymeric species were found 

(similar to bulk V2O5 sample) at higher loadings as shown by UV-vis-DRS studies. 

XPS revealed that the pronounced enrichment of vanadium occurs in the near-

surface-region in the samples with low vanadia contents. Among all, 10 wt% 

V2O5/Nb2O5 catalyst has displayed the superior performance (X = 28%, S = 38% at 

600 °C) due to the clear enrichment of vanadium in the near-surface-region and the 

formation of an optimum amount of monomeric and oligomeric VOx species, 

respectively. Based on this result, 10 wt% V2O5 has been selected as an optimum 

loading and used in all further studies. 

 The nature of alumina support has shown a substantial influence on the type of 

VOx species formed, their dispersion, acidity characteristics, morphology as well as 

surface composition. The characterization results revealed that the present V/Al-x-C 

catalysts are quite stable under the reaction temperature range from 500 to 600 °C. 

XRD reflections corresponding to V2O5 could only be seen in the case of the -

alumina supported V/Al-2-C sample due to its lowest surface area and poor vanadia 

dispersion compared with the other samples. UV-Vis spectra deconvolution and TEM 

images also gave hints on the existence of bulky V2O5 species in the V/Al-2-C 

catalyst. It can also be concluded that the loaded vanadium oxide species were well 

dispersed on the V/Al-1-C, V/Al-4-C and V/Al-5-C catalysts. XPS results provided 

clear hints on the presence of vanadium in +5 oxidation state in all fresh V/Al-x-C 

catalysts. Py-FTIR showed that both the Lewis and Brønsted acid sites exist in all 

catalysts, but the amount of Lewis sites is dominating. Activity results revealed that 
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among the five aluminas, V/Al-4-C gave the best performance (X-ethane = 35% and 

S-ethylene = 48%) at 600 °C while the V/Al-2-C showed poor behaviour (X-ethane = 

50% and S-ethylene = 13%). This result was mainly due to a very low surface area of 

V/Al-2-C solid and consequently poor VOx dispersion; the opposite was seen in case 

of V/Al-4-C. Amazingly, the penta-coordinated aluminium-containing V2O5 catalyst 

(i.e. V/Al-1-C) gave an ethane conversion of 35% and selectivity to ethylene of 45 %, 

respectively.  

 Further work points to stabilizing the high proportion of penta-coordinated 

aluminum in aluminas and, probably to reach such effects using further materials but 

with higher surface areas for an increasing deposition of monomeric and oligomeric 

VOx species for more effective oxidation catalysts. 

 The comparison of different oxide support material on the activity and selectivity 

behavior of vanadia catalysts (10 wt% V2O5) revealed that the nature of the support 

has shown a significant influence on the catalytic performance in the ODHE reaction. 

This phenomenon could be attributed to the dispersion of VOx species on the support, 

strength of metal-oxide and support interactions, acidity characteristics, reducible 

properties, nature of VOx species formed etc. The highly dispersed monomeric 

vanadia species on Al2O3 with high surface area could be responsible for the superior 

catalytic performance in the ODHE reaction. The yield of ethylene over different 

supported vanadia catalysts is followed the order: V/Ti < V/Nb < V/Al-BM  V/Al-HS, 

which is in line with the reducibility and acidity characteristics of the catalysts. The 

ratio of integral integral intensity of Lewis and Brønsted acid sites seem to play a vital 

role on the ethylene selectivity. The higher the ratio of Lewis/ Brønsted sites, the 

higher the selectivity to ethylene.  

 On the whole, it can be concluded that the content of vanadia, the nature of 

support, the type of VOx species formed and their dispersion on the support surface, 

the acidity characteristics, reducibility, surface composition etc. are some of the key 

parameters that need to be controlled carefully to achieve enhanced performance of 

the catalysts. 

 Additionally, Ni-Nb-O based bulk catalysts were further modified by three dopants, 

i.e. Cr, Mo, W (Ni: Nb: M atomic ratio of 1: 0.176: 0.1), that belong to the same group 

of elements but showing different d-characters. Compared with that of parent Ni-Nb-
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O solid, the doped Ni-Nb-M-O (M: Cr, Mo, W) samples did not show any changes in 

the XRD patterns particularly in terms of crystalline behaviour and phase composition. 

However, considerable differences could be noticed concerning BET surface area 

data, reducibility, acidity characteristics as well as surface composition. Among the 

three auxi liaries used, Cr promoted Ni-Nb-Cr-O displayed relatively superior catalytic 

performance in the ODHE to ethylene, yielding in an ethane conversion of 26% and 

an ethylene selectivity of ca.65% at 420 °C. Ni-Nb-O and promoted Ni-Nb-M-O (M: 

Cr, Mo, W) catalysts were also further tested in the ODH of ethane in the presence of 

CO2 with with an intention to improve activity and/or selectivity. The introduction of 

CO2 into the reactant feed mixture is found to improve the selectivity of ethylene 

considerably but resulted in a marginal loss of activity. Among all, Ni-Nb-Cr-O solid 

revealed an ethylene selectivity of ca.85% at slightly less ethane conversion. 

 With regard to the future research attempts related to Ni-Nb-M-O catalysts, a 

deeper study and more attention are necessary to understand the role of different 

dopants M, which has changed the physicochemical properties and catalytic 

performance of Ni-Nb-O catalyst. 

 The ODHE is indeed an important reaction and highly demanding from 

commercial point of view. It also presents unique opportunities for fundamental 

research that makes a significant contribution to society. Even though a great deal 

has already been achieved in the field of oxidation, the productivity of alkene by the 

over present catalyst is still far away from commercial application. Moreover 

unwanted total oxidation always competes with that of selective oxidation towards 

desired products. Therefore new approaches and new attempts are certainly 

necessary to discover novel catalyst compositions capable of activating alkanes at 

relatively low temperatures with high alkene selectivity. Furthermore, rational 

approaches need to be worked out yet to sequence various functionalities in the 

direction of developing novel, attractive, and eco-friendly oxidation processes. 
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