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Abstract
Switched systems are a subclass of hybrid systems that allow for the direct con-
trol of the switching instants and the choice of the active subsystem or mode
at any time. This thesis deals with the solution of optimal control problems
for switched systems. Solutions to this kind of hybrid optimal control prob-
lem include the optimal continuous control inputs as well as optimal discrete
decisions. In the first part, practical algorithms for the solution are evalu-
ated in terms of performance and robustness. The methods evaluated include
existing algorithms such as dynamic programming as well as self-developed
algorithms. The indirect variation of extremals appraoch is expanded for the
use in switched systems. The suitability of this approach is limited, as it is
highly sensitive to the guess of the initial costate. However, in some cases, the
method can be fast and reliable. A method that circumvents this difficulty
by combining direct and indirect approaches is proposed as well. The algo-
rithm is rather slow but very robust and insensitive to the initial guesses of
continuous control and switching sequence. Additionally, a method based on
embedding is proposed for switched systems with state jumps. An interesting
application of switched systems in the automotive industry are nowadays hy-
brid vehicles. In the second part of this thesis, hybrid vehicles are modeled as
switched systems and switched optimal control problems are formulated for the
optimal operation of a hybrid vehicle over a given cycle. It is then evaluated,
which method is appropriate for the solution of these hybrid optimal control
problems for different model-depths. A method that allows for obtaining cal-
ibration parameters for rule-based energy managements directly from hybrid
optimal control theory is proposed as well as a predictive energy management
that is based on the solution of a hybrid optimal control problem during the
operation of the vehicle.

Hybrid Systems, Switched Systems, Optimal Control, Hybrid vehicles, En-
ergy Management



Zusammenfassung
Geschaltete Systeme sind eine Unterklasse der hybriden Systeme, bei denen es
möglich ist, die Schaltzeiten und das aktive Subsystem bzw. den aktiven Mo-
dus direkt und zu jeder Zeit zu bestimmen. Diese Arbeit behandelt die Lösung
von Optimalsteuerungsproblemen für geschaltete Systeme. Die Lösung eines
solchen Optimalsteuerungsproblemes beinhaltet sowohl die optimale kontinu-
ierliche Steuerung, als auch die optimalen diskreten Entscheidungen. Im ersten
Teil werden praxisnahe Algorithmen zur Lösung von Optimalsteuerungsproble-
men dieser Art in Bezug auf Leistungsfähigkeit und Robustheit bewertet. Die
bewerteten Methoden beinhalten dabei ebenso Methoden, die bereits aus der
Literatur bekannt sind, wie neuartige Methoden. Das indirekte Schießverfah-
ren wird auf geschaltete Systeme erweitert. Die Einsetzbarkeit dieser Methode
ist jedoch eingeschränkt, da die Konvergenz des Verfahrens sehr stark von der
Schätzung des Anfangswertes der Adjungierten abhängt. In einigen Fällen ist
diese Methode jedoch robust und schnell. Ein Verfahren, das diese Schwach-
stelle umgeht, indem direkte und indirekte Lösungsverfahren kombiniert wer-
den, wird ebenfalls vorgeschlagen. Zusätzlich wird eine Methode basierend auf
der Relaxierung der diskreten Systemanteile sowie der Zustandssprünge be-
schrieben. Ein interessanter Anwendungsfall von geschalteten Systemen in der
Automobilindustrie sind heutige Hybridfahrzeuge. Im zweiten Teil dieser Ar-
beit werden Hybridfahrzeuge als geschaltete Systeme modelliert und geschal-
tete Optimalsteuerungsprobleme für den optimalen Betrieb auf vorgegebenen
Zyklen formuliert. Es wird dann bewertet, welche Algorithmen für die Lösung
von hybriden Optimalsteuerungsproblemen mit unterschiedlichen Modelltiefen
geeignet sind. Eine Methode, mit der Applikationsparameter für regelbasierte
Betriebsstrategien direkt aus der Lösung des hybriden Optimalsteuerungspro-
blem erhalten werden können, wird ebenso vorgeschlagen, wie eine Betriebss-
trategie, die auf der Lösung eines hybriden Optimalsteuerungsproblems im
Fahrbetrieb basiert.

Hybride Systeme, Geschaltete Systeme, Optimale Steuerung, Hybridfahr-
zeuge, Betriebsstrategie
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Chapter 1

Introduction

Hybrid Systems occur naturally in many technical applications as well as in
applications from natural sciences as biology or chemistry. Whenever a system
has continuous control inputs, but at the same time can make discrete deci-
sions or switch between different subsystems, the system can be modeled as a
hybrid system. A simple example of a discrete decision may be the ON/OFF
decision of some heating system. More complex decisions are gear choices or
different modes of operation of the internal combustion engine in automotive
applications. It is due to this frequent appearance in daily-life that the research
interest in hybrid systems is steadily growing. In this thesis, the focus is on
switched systems, a subclass of hybrid systems that switch between subsystems
or modes only in response to a command. This subclass covers a great range
of technical problems. Early works on hybrid systems were already performed
by Witsenhausen [1966] and Seidman [1987] but especially over the last two
decades, significant progress has been achieved in the field of hybrid system
analysis. Among others, the fields of research include the modeling (Branicky
et al. [1994]) and stability of hybrid systems (Xu [2001], Lygeros et al. [2003],
Goebel et al. [2009]). However, the main focus in the literature is on optimal
control. Hybrid systems are usually controlled by a continuous control law
and a superimposed discrete automaton. It is often of major interest, to define
a control law for the continuous control as well as for the discrete automa-
ton, that leads to a desired behavior. Engineers and Scientists often strive for
minimizing a given cost function that can resemble time, energy, money or
their respective combinations. The task of finding the controls that achieve
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this is denominated as optimal control problem, or more specifically, as hybrid
optimal control problem, when the underlying system is a hybrid system. The
research efforts in this area include the theoretical analysis of hybrid optimal
control problems to derive necessary conditions for optimal control (Seidman
[1987], Sussmann [1999], Piccoli [1989], Shaikh [2004], Riedinger et al. [1999],
Riedinger et al. [2003], Dmitruk and Kaganovich [2008], Passenberg et al.
[2011]). In chapter 2, a general model description for hybrid systems and
for switched systems is given and an overview of established necessary con-
ditions for switched optimal control is given. Many approaches for solving
switched optimal control problems are based on these conditions. Algorithmic
development for hybrid systems was treated, among others, in the works of
Hedlund and Rantzer [2002], Bengea and DeCarlo [2003], Alamir and Attia
[2004], Shaikh [2004], Sager [2005] and Axelsson et al. [2008]. Even though
optimal control of non-hybrid systems is well-researched and many powerful
algorithms exist, the methods cannot readily be transferred to the hybrid con-
text. Likewise, the well established methods for discrete optimization are not
suitable, when the discrete decisions interact with continuous controls. The
algorithmic development in this thesis concentrates on problems formulated
for switched systems (switched optimal control problems), where the switch-
ing between discrete states can be triggered by external commands and no
autonomous switching is present. Further, the focus is on switched optimal
control problems that exhibit a strong time-dependent component, which is
often the case for automotive applications due to the fact that environmental
conditions can vary strongly depending on the current vehicle position. In
chapter 3, existing algorithmic approaches are regarded in terms of suitability
for technical problems. Self-developed algorithms are presented, that include
indirect approaches (approaches that are based on necessary conditions for
hybrid optimal control), direct methods (methods that reduce the continuous
control problem to a nonlinear optimization problem) and combined methods.
Each algorithm is suitable for problems of different complexity. The results
are compared to results obtained with existing algorithms. Even though in
general no implementable control law is obtained from the solution of a hybrid
optimal control problem, the solution can be a first step to define controller
and automaton parameters.
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A practical automotive application of hybrid optimal control theory consti-
tute nowadays hybrid vehicles. The term "hybrid" in "hybrid vehicles" does
not refer to the existence of continuous and discrete dynamics but to the fact,
that the system has more than one energy storage and energy converter. In
most cases, the additional energy storage will be a high-voltage battery and
the converter an electrical motor/generator. This adds new degrees of freedom
in the control of the powertrain, such as shifting of the operation points of the
converters or different drive modes. The newly gained degrees of freedom can
be controlled to improve the overall system efficiency. The improvement of ef-
ficiency and the corresponding reduction of fuel consumption is a timely topic,
since the reduction of crude-oil-use and green-house gas emissions is one of
the major challenges of our time. Accordingly, a growing research area has
been established, that focuses on optimal control of hybrid vehicles. Among
many others, these works were performed by Paganelli et al. [2002], Guzzella
and Sciarretta [2005], Liu and Peng [2006], Stockar et al. [2011] and Sivertsson
et al. [2011]. However, the determination of optimal controls is complicated by
the fact, that the system inputs include continuous controls as well as several
discrete decisions and because of the strong interaction between these inputs,
a separate optimization will yield inferior results than a combined approach.
Consequently, a hybrid vehicle can be modeled as a hybrid system in the math-
ematical sense, which is seldomly regarded in the literature. The calibration
process for hybrid vehicles can be a cumbersome task if no systematic calibra-
tion approach is applied. Fortunately, the progress in hybrid optimal control
theory allows for the mathematical derivation of calibration parameters as well
as for the development of new functional approaches for improving the vehicle’s
performance. In chapter 4, two models of different depth for a parallel hybrid
vehicle configuration are formulated as hybrid systems. The first one includes
representations of the electrical and the mechanical subsystem, whereas the
second model also incorporates a detailed thermodynamic model of the inter-
nal combustion engine and the exhaust system as well as an emissions model.
Switched optimal control problems are then formulated in chapter 4.2 for these
models and the algorithms from chapter 3 are applied.



4

The solution can be helpful for the calibration process of hybrid vehicles,
as it can serve as a rough guideline for a specific cycle. Yet, the step of
transferring the solution into calibration parameters for the electronic control
unit is non-trivial. It is shown in chapter 4.3, that look-up tables for rule-
based energy-managements can be derived directly from the problem solution.
The theory of hybrid optimal control also suggests new functional approaches.
As such, a predictive energy management is described in chapter 4.4 that
makes the solution of a switched optimal control problem amenable for online-
implementation in the electronic control unit. This is only possible, when a
profile of the driving route is known to the electronic control unit. A prediction
based on data from modern navigation systems is made to obtain an estimation
of this profile. Using hybrid optimal control theory for calibration and function
development for hybrid vehicles significantly reduces the time required for a
high-quality calibration and has led to significant fuel-savings, as is shown by
simulations as well as real-world measurements.
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1.1 Contribution and Previous Publications

To the best knowledge of the author, this thesis contains the following original
contributions:

• The already established results on the relationship between Lagrange
multipliers and costate trajectory for direct shooting and collocation are
extended to switched systems. It is demonstrated that the approximated
costate also includes an approximation of the jump condition stated in
the necessary conditions for switched optimal control

• A two-stage approach that solves a continuous optimal control prob-
lem with fixed switching schedule using a direct method. The Lagrange
multipliers returned by the nonlinear program solver are then used to ap-
proximate the costate and to evaluate necessary conditions of optimality.
The switching sequence is altered, based on an achievable descent in the
Hamiltonian function at a time instant

• The application of this method to the complex optimal control problem
of optimal catalytic converter heat-up. A detailed model of a hybrid
vehicle’s powertrain including thermal aspects is used for the formulation
of a switched optimal control problem with a high number of states. It
is demonstrated that the two-stage approach can efficiently solve this
demanding problem

• The general embedding principle that relaxes the discrete state to a con-
tinuous control variable is enhanced for systems with state jumps. The
jump function is reformulated such that it is continuous but not continu-
ously differentiable everywhere and hence, the switched optimal control
problem with discontinuous state trajectory is transcribed to a nons-
mooth nonlinear program

• A theoretical justification for the derivation of look-up tables for the
energy management of hybrid vehicles by minimization of the Hamilto-
nian function with respect to discrete variables. The results were derived
in the literature using the concept of equivalent fuel consumption min-
imization. In this monograph, the derivations are based on necessary
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conditions for optimality of a switched system and the validity of these
conditions is discussed

• The efficient implementation of an indirect shooting algorithm for the
solution of a switched optimal control problem that aims at the fuel-
optimal operation of a hybrid vehicle over a given cycle. Based on this
algorithm, a predictive energy management feasible for implementation
on common electronic control units taking into account continuous as
well as discrete decisions is developed and tested.

Most of the results in this thesis were published previously in peer-reviewed
journal articles or conference proceedings. The following publications contain
material that can also be found in this thesis. The use of the indirect shooting
method as it is described in 3.5.2 for the solution of switched optimal control
problems was presented in

M. Schori, T.J. Boehme, B. Frank, and M. Schultalbers. Solution of a hybrid
optimal control problem for a parallel hybrid vehicle. In 7th IFAC Symposium
on Advances in Automotive Control (AAC), Tokyo, pages 109–114, 2013b.

The use of Pontryagin’s Minimum Principle for hybrid systems for the calcu-
lation of ready-to-implement look-up tables (section 4.3) was published in

M. Schori, T.J. Boehme, B. Frank, and M. Schultalbers. Calibration of parallel
hybrid vehicles based on hybrid optimal control theory. In Proceedings of the
9th IFAC Symposium on Nonlinear Control Systems, Toulouse, France, pages
475–480, 2013c.

The method combining indirect and direct methods for the solution of switched
optimal control problems (section 3.5.3) was explained in the journal article

M. Schori, T.J. Boehme, U. Becker, and M. Schultalbers. Verfahren zur Lö-
sung von hybriden Optimalsteuerungsproblemen und deren Anwendung auf
den Betrieb von Hybridfahrzeugen. at Automatisierungstechnik, 61(12):831–
840, 2013a.

The use of the combined method to solve a complex switched optimal control
problem to find optimal controls for the heating process of a three-way-catalyst
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(section 4.2.3) is described in

M. Schori, T.J. Boehme, T. Jeinsch, and M. Schultalbers. Optimal catalytic
converter heating in hybrid vehicles. In SAE Technical Paper 2014-01-1351,
2014b.

The embedding method with relaxation of the jump function to approximate
a solution to switched optimal control problems with state jumps as it is de-
scribed in section 3.6.2 was proposed in

M. Schori, T.J. Boehme, B. Frank, and M. Schultalbers. Control optimization
of discontinuous hybrid systems using embedding. In Preprints of the 12th
International Workshop on Discrete Event Systems, pages 326–331, 2014a.

An overview of the application of switched optimal control theory to hybrid
vehicles and the derivation of calibration parameters as well as a first descrip-
tion of the predictive energy management in section 4.4 is given in

M. Schori, T.J. Boehme, B. Frank, and B. Lampe. Optimal calibration of map-
based energy management for plug-in parallel hybrid configurations: a hybrid
optimal control approach. IEEE Transactions on Vehicular Technology, 2015,
accepted for publication.

A more detailed description of the predictice energy management was pub-
lished in

M. Schori, T.J. Boehme, T. Jeinsch, and M. Schultalbers. A robust predictive
energy management for plug-in hybrid vehicles based on hybrid optimal con-
trol theory. In Proceedings of the American Control Conference, accepted for
publication, 2015b.

The derivation of the costate from the solution of a switched optimal control
problem with fixed switching sequence with direct methods (section 3.3.6) is
given in

M. Schori, T.J. Boehme, T. Jeinsch, and B. Lampe. Costate approximation
from direct methods for switched systems with state jumps. In Proceedings of
the European Control Conference, accepted for publication, 2015a.
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Chapter 2

Hybrid Systems and Hybrid
Optimal Control

2.1 System Definition

Hybrid systems are a class of dynamical systems that somehow incorporate
behaviors typical for continuous dynamical systems and for discrete event sys-
tems. As an example may serve an electrical circuit where current and voltage
can change continuously over time but can also change discontinuously when
a switch is opened or closed (Goebel et al. [2009]). Both system classes have
their specific ways of representation, such as discrete automata for discrete
event systems and differential equations for purely continuous systems. Many
physical systems exhibit both kinds of dynamical behavior and the respective
model needs to incorporate both types of dynamics (Riedinger et al. [2003]).

Many different notations for describing hybrid systems are explained in the
literature. A wide overview of the different modeling approaches is given in
Branicky et al. [1994] and Branicky et al. [1998]. In this thesis, a general model
description is used, as proposed in Riedinger et al. [1999] and Riedinger et al.
[2003].

Hybrid systems are a generalization of conventional systems, that can be
modeled by a single differential equation

ẋ = f(x(t), u(t), t). (2.1)

A discrete state q(t) ∈ Q = {1, . . . , Q} is added to the system description,

9
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that defines the activity of a subsystem or mode. In the literature, q is also
often referred to as location. The overall system shares a common state vector
x(t) ∈ Rn but the vector field, that governs the state’s evolution, depends
on the discrete state. For each discrete state q ∈ Q, one vector field fq :
Rn+m × [t0, tf ] → Rn is defined. The system switches between these vector
fields, depending on the current value of the discrete state q(t). The overall
system’s differential equation can then be written as

ẋ = fq(t)(x(t), u(t), t). (2.2)

Herein, u(t) ∈ Rm is the continuous control input. In most cases, u will be
subject to constraints and hence, it is assumed that u may take on values
from the convex set Uq ⊂ Rm. Throughout the thesis, the initial time will
be set as t0 = 0 and the initial state x(t0) = x0 will be assumed as given.
The times, where the discrete state q, and therefore the right-hand-side term
in (2.2), changes, are denominated as t−j and t+j , where the former refers to
the time right before a change and the latter to the time right after a change.
The subscript j enumerates the number of switching and the total number of
discontinuous changes in q is denoted as l. A system, starting at the initial
hybrid state (x(t0), q(t0)) will then evolve according to the differential equation
ẋ = fq(t0)(x(t), u(t), t), until a switching occurs at a switching time t1. The
switching is induced by a transition in the piecewise constant function q(t).
This transition is modeled using the function Π : Rn ×Q×D × [t0, tf ]→ Q:

q(t+j ) = Π(x(t−j ), q(t−j ), d(t−j ), tj), (2.3)

that captures two different kinds of characteristic behavior in hybrid systems:
Autonomous switching and controlled switching. On autonomous switching,
the discrete state q changes, when the state encounters a switching mani-
fold of the form C(q−,q+)(x(t), t) = 0. On controlled switching, q changes
discontinuously due to a commanded change in the discrete control variable
d ∈ D = {1, . . . , D} (Shaikh [2004]).

Often, the state x(t) is absolutely continuous. In many cases, however, the
state may exhibit discontinuities, when a switching occurs. These discontinu-
ities can be modeled with the help of Q2 jump functions δ(q−,q+) : Rn×[t0, tf ]→
Rn:

x(t+j ) = x(t−j ) + δ(q−,q+)(x(t−j ), tj). (2.4)
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For q− = q+, δ(q−,q+)(x(t−j ), tj) = 0 holds. For a given time tj and a state
x(t−j ), the function values δ(q−,q+) that resemble the height of a jump ∆xj =
x(t+j )−x(t−j ) for a transition from one discrete state to another can be arranged
in a table:

1 2 · · · Q

1 0 δ(1,2)(x, t) · · · δ(1,Q)(x, t)
2 δ(2,1)(x, t) 0 · · · δ(2,Q)(x, t)
... ... ... . . . ...
Q δ(Q,1)(x, t) δ(Q,2)(x, t) · · · 0

Table 2.1: Height of the jump ∆x as given by the function values δ(q−,q+) for
a given state x at time t arranged in a table

A sketch of the discrete phenomena controlled switching, autonomous switch-
ing and state jump is depicted in Fig. 2.1. Controlled state jumps, where the
height of the jump is a control variable, are also reported in the literature but
will not be covered in this thesis (see for instance S.A. Attia [2007]).

x1

x2

x1

x2

x1

x2

controlled 
switch

switching manifold

state jump

evolution 
according to f1

evolution 
according to f2

Figure 2.1: Hybrid phenomena, from left to right: Controlled switching, state
jump and autonomous switching (Passenberg [2012])

2.2 Switched Systems

Of particular interest in this thesis are systems, that exhibit controlled switch-
ing only. In this case, the discrete state q(t) can be chosen freely at any time
from the set Q. In some cases, a reformulation of the problem can be helpful:
The Boolean vector σ(t) ∈ {0, 1}Q is introduced that defines which discrete
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state q is active at time t. To assure that only one discrete state is active at
any time, the constraint

Q∑
q=1

σq(t) = 1, ∀t ∈ [t0, tf ], (2.5)

where σq refers to the q-th entry in the vector σ, must be fulfilled and is added
to the system description. The system’s differential equation F : Rn×{0, 1}Q×
Uq × [t0, tf ]→ Rn can then be written (Xu [2001]) as

ẋ = F (x(t), σ(t), u(t), t) =
Q∑
q=1

σq · fq(x(t), u(t), t). (2.6)

With an enhanced control vector ρ ∈ Uq×{0, 1}Q, that contains the continuous
as well as the discrete decisions,

ρ(t) = [u(t), σ(t)], (2.7)

the system can be written in the conventional form

ẋ = F (x(t), ρ(t), t). (2.8)

However, it should be noted, that the set of feasible controls ρ(t) is no longer
convex.

2.3 Hybrid Execution and Switching Sequence

Definition 2.1: An execution of a switched system is defined by the tuple
(T ,D,X ,Z). Herein

• T = (t0, t1, . . . , tl, tf ) is a strictly increasing sequence of switching times
including the initial and final time

• D = (q0, . . . , ql) is a sequence of discrete states, such that q(t) = qj, ∀ t ∈
[tj, tj+1)

• X = (X0, . . . ,Xl) is a sequence of state trajectories that evolve according
to

ẋ = fqj
(x(t), u(t), t) (2.9)

in the interval [tj, tj+1) and fulfill the state jump condition x(t+j ) =
x(t−j ) + δ(q−,q+)(x(t−j ), tj), j = 1, . . . , l
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• Z = (Z0, . . . ,Zl) is a sequence of control trajectories that satisfy Zj ×
[tj, tj+1)→ Uqj

Definition 2.2: A switching sequence is defined as the tuple

Θ = ((t0, q0)), (t1, q1), . . . , (tl, ql)), (2.10)

where the pairs tj and qj are taken pairwise from T and D in Definition 2.1.

2.4 Example

Given the two vector fields f1(x) and f2(x)

f1(x) =
−3 · x1 + 0.2 · x2

2 · x1 − 0.5 · x2

 (2.11)

f2(x) =
−3 · (x1 + 1) + 0.2 · (x2 + 1)

2 · (x1 + 1)− 0.5 · (x2 + 1)

 , (2.12)

a hybrid execution of ẋ = fq(t)(x(t)) is depicted in Fig. 2.2. Starting at
x = [−1,−1]T , the state evolves to the stationary point x = [0, 0]T of f1.
At t1 = 10s, the discrete state switches from q(t−1 ) = 1 to q(t+1 ) = 2 in
response to a commanded switch and consequently, the active vector field
switches from f1(x) to f2(x). No state-jump is in this case implied with the
switching (δ(q−,q+) = 0 ∀q−, q+ ∈ Q) and therefore the state x(t) remains con-
tinuous but clearly not continuously differentiable at t1. After the switching,
the state evolves to the stationary point x = [−1,−1]T of f2.

2.5 Switched Optimal Control Problems

A switched optimal control problem (SOCP) can be formulated as

min
u(t)∈Uq ,q(t)∈Q

φ(x(tf )), (2.13)

where φ : Rn → R is a cost function of Mayer type, subject to the system
description (2.2) and (2.4) and the final state constraint ψ : Rn → Rn

ψ(x(tf )) = 0. (2.14)
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Figure 2.2: Example of a switched system

Remark 2.1: Several other forms of cost functions exist but can generally
be converted to Mayer form, so that a wide range of problems can be covered
with this formulation. This is exemplarily shown for a cost function of Bolza
type, that consists of a final state cost Ψ : Rn → R and a set of Q Lagrange
terms Lq : Rn+m × [t0, tf ]→ R:

J = Ψ(x(tf )) +
∫ tf

t0
Lq(t)(x(t), u(t), t)dt. (2.15)

By introducing an additional state xn+1 with the initial condition xn+1(t0) = 0,
and therefore increasing the system’s dimension by 1, this cost function type
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can be easily formulated as Mayer term:

˙̂x =



ẋ1
...
ẋn

ẋn+1

 =
fq(t)
Lq(t)

 (2.16)

The cost function then becomes

φ(x̂(tf )) = Ψ(x(tf )) + xn+1(tf ). (2.17)

Remark 2.2: Until now, the final time tf has been assumed to be fixed.
However, if the final time is to be free, this can be achieved via the following
transformation: The state vector is enhanced by a state xn+1, with the time-
derivative ẋn+1 = 0 and the initial value xn+1(t0) = tf . The enhanced state x̃
then evolves over the relative time interval τ ∈ [0, 1] according to

˙̃x =



ẋ1
...
ẋn

ẋn+1

 =
fq(t)(x(τ), u(τ), τ) · xn+1(τ)

0

 . (2.18)

Remark 2.3: In many technical scenarios, a switching requires a certain
amount of energy and frequent switching should be avoided. This is often
incorporated, by adding a switching cost term Ĵ to the cost function:

Ĵ =
l∑

j=1
Ω(q−,q+)(x(t−j ), t−j ) (2.19)

Herein Ω is a set ofQ2 mappings Ω(q−,q+) : Rn×[t0, tf ]→ R with Ω(q−,q+)(x(t−j ), t−j ) =
0 for q− = q+. Switching cost can be easily incorporated into the formulation
of the SOCP with Mayer term and a switched system with state jumps by
adding a state xn+1 with

xn+1(t0) = 0 (2.20)

ẋn+1 = 0 (2.21)

and varying the jump function δ as follows:

δ̂(q−,q+)(x(t−j ), tj) =
 δ(q−,q+)(x(t−j ), tj)

Ω(q−,q+)(x(t−j ), t−j )

 . (2.22)

The final state xn+1(tf ) is then added to the cost function.
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Remark 2.4: Some solution methods require an optimal control problem to
be formulated as Bolza problem without final state constraint. The final state
constraint ψ(x(tf )) can then included as a soft constraint in the final state
penalty term Ψ(x(tf )). A common way of defining Ψ is the term ∑n

i=1Kψ,i ·
(ψi(x(tf )))2, where Kψ,i are sufficiently large penalty parameters.

2.6 Necessary Conditions for Switched Opti-
mal Control

Formulations of Pontryagin’s Minimum Principle (PMP, Pontryagin et al.
[1962]), that were originally developed for the case, where no discrete vari-
ables exist, can be widely employed for hybrid systems as well. Hence, it is
beneficial to define the Hamiltonian function

Hq(t)(x(t), p(t), u(t), t) = p(t)T · fq(t)(x(t), u(t), t), (2.23)

where the elements in the row-vector p(t) ∈ Rn are called costates. It should
be noted that due to the possibility of reformulating the system equation as
in (2.6), the Hamiltonian function can also be written as

H(x(t), p(t), u(t), σ(t), t) = p(t)T · F (x(t), u(t), σ(t), t). (2.24)

The Hamiltonian system be defined as

ẋ =
(
∂Hq(t)(x(t), p(t), u(t), t)

∂p

)T
(2.25)

ṗ = −
(
∂Hq(t)(x(t), p(t), u(t), t)

∂x

)T
. (2.26)

2.6.1 Further Assumptions

Most proof techniques are based on needle variations and require some further
assumptions on differentiability, continuity and boundedness. The following
properties are assumed for all systems in this thesis:

• The vector fields fq fulfill a uniform Lipschitz condition ||fq(x1, u, t) −
fq(x2, u, t)|| ≤ Kf · ||x1 − x2||, x1, x2 ∈ Rn, u ∈ Uq, q ∈ Q for some
Lipschitz-constant Kf <∞
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• The input control functions Zj : [tj, tj+1] → Uqj
are bounded and mea-

surable and the sets of feasible controls Uq are convex

• There exist constants Kφ < ∞ and 1 ≤ ς ≤ ∞ such that the cost
function satisfies |φ(x)| ≤ Kφ · (1 + ||x||ς)

• The functions fq(x, u, t), φ(x) and δ(q−,q+)(x, t) fulfill fq, φ, δ ∈ C2 with
respect to the input arguments x, u, t

Remark 2.5: For the necessary conditions in the subsequent section to hold,
the condition fq, φ, δ ∈ C1 is sufficient. However, for superlinear convergence
to a local optimum of nonlinear programming methods, which are used in
direct solution methods, the functions are required to be twice continuously
differentiable (Broyden et al. [1973]).

Remark 2.6: In general, for hybrid systems with autonomous switching, the
condition that no Zeno-behavior (see Zhang et al. [2001]) occurs in an execution
of the system is demanded. However, this is not an issue for switched systems
as a switching can only be triggered via an external command. Only a finite
number of switching times l is allowed in this thesis.

2.6.2 Conditions for Discontinuous States

Some early results on necessary conditions for hybrid optimal control of sys-
tems with discontinuities in the state trajectory were given by Sussmann [1999].
A more readable version of most of these results is given in Riedinger et al.
[2003]. A slight extension was obtained by Passenberg et al. [2011]. A proof
by reformulating a hybrid optimal control problem into a conventional optimal
control problem is given by Dmitruk and Kaganovich [2008].

Theorem 1: The following conditions must hold in order for the tuple (x, p, q, u)
to be an optimal hybrid execution:

• The tuple (x, p, q, u) satisfies the Hamiltonian system (2.25) and (2.26)

• The minimum condition

Hq(t)(x(t), p(t), u(t), t) = min
u∈Uq

Hq(t)(x(t), p(t), u, t) (2.27)

holds for almost any t ∈ [t0, tf ]
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• At the final time tf the transversality condition

pT (tf ) = ∂φ(x(tf ))
∂x(tf )

+ µT
∂ψ(x(tf ))
∂x(tf )

, (2.28)

is fulfilled, where µ ∈ Rn is a vector of Lagrange multipliers

• At a switching time tj, the following jump conditions are satisfied

pT (t−j ) = pT (t+j ) ·
(
I +

∂δ(q−,q+)(x(t−j ), tj)
∂x(t−j )

)
(2.29)

Hq(t−j )(t−j ) = −pT (t+j ) ·
∂δ(q−,q+)(x(t−j ), tj)

∂tj
+Hq(t+j )(t+j ) (2.30)

where I is a unity matrix of dimension n.

Proof: The complete proof of the necessary conditions for a problem with final
state constraints requires needle variations. The proof based on this technique
can be found in the works Sussmann [1999] and Passenberg et al. [2011]. An
easier way of deriving the minimization condition as well as the jump conditions
of the Hamiltonian and the costate for problems of Bolza type is described by
Riedinger et al. [2003] using a dynamic programming argument: Consider a

t0 t1 tf

x(t1
-)

x(t1
+)

t

x(t)

Figure 2.3: Example trajectory with one switching

hybrid optimal control problem

min
u(t)∈Uq ,q(t)∈Q

∫ tf

t0
L(x(t), u(t), t)dt+ Ψ(x(tf )). (2.31)

There exists one switching at t1 from q(t−1 ) = 1 to q(t+1 ) = 2, as shown in
Figure 2.3. Caused by the switching, a state jump from x(t−1 ) to x(t+1 ) with
the height δ(1,2)(x(t−1 ), t1) occurs. For the purpose of abbreviation, we define

x(t+1 ) = x(t−1 ) + δ(1,2)(x(t−1 ), t1) ≡ ϕ(x(t−1 ), t1). (2.32)
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For t ∈ (t1, tf ], the value function V2 gives the optimal cost for a trajectory
starting at the point (x(t), t):

V2(x(t), t) = min
u(t)∈U2

{∫ tf

t
L(x(t), u(t), t)dt+ Ψ(x(tf ))

}
. (2.33)

The value function for the time range t ∈ [t0, t1) can then be defined via the
dynamic programming argument

V1(x(t), t) = min
u(t)∈U1

{∫ t1

t0
L(x(t), u(t), t)dt+ V2(x(t+1 ), t1)

}
(2.34)

= min
u(t)∈U1

{∫ t1

t0
L(x(t), u(t), t)dt+ V2(ϕ(x(t−1 ), t−1 ), t1)

}
.

For t→ t1, (2.34) yields

V1(x(t−1 ), t1) = V2(ϕ(x(t−1 ), t1), t1) (2.35)

and hence a new purely continuous optimal control problem can be formulated
for [t0, t1):

min
u(t)∈U1

{∫ t1

t0
L(x(t), u(t), t)dt+ V1(x(t−1 ), t1)

}
. (2.36)

From the Hamilton-Jacobi-Bellman (HJB) equations for the continuous parts
[t0, t1) and (t1, tf ], the following relations are well known (Clarke and Vinter
[1987], Vinter [1988]):

pT (t) = ∂V1(x(t), t)
∂x(t) , H2(t) = −∂V1(x(t), t)

∂t
, t ∈ [t0, t1) (2.37)

pT (t) = ∂V2(x(t), t)
∂x(t) , H1(t) = −∂V2(x(t), t)

∂t
, t ∈ (t1, tf ]. (2.38)

Forming the partial derivatives of V1(x(t−1 ), t1) with respect to x(t−1 ) and t1

and using (2.35), the following conditions are obtained:

pT (t−1 ) = ∂V1(x(t−1 ), t1)
∂x(t−1 ) = ∂V2(ϕ(x(t−1 ), t1)

∂ϕ(x(t−1 ), t1) · ∂ϕ(x(t−1 ), t1)
∂x(t−1 )

= ∂V2(x(t+1 , t1)
∂x(t+1 ) ·

(
I + ∂δ(1,2)(x(t−1 ), t1)

∂x(t−1 )

)
(2.39)

= pT (t+1 ) ·
(
I + ∂δ(1,2)(x(t−1 ), t1)

∂x(t−1 )

)
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H1(t−1 ) = −∂V1(x(t−1 ), t1)
∂t−1

(2.40)

= −∂V2(ϕ(x(t−1 ), t1)
∂ϕ(x(t−1 ), t1) · ∂ϕ(x(t−1 ), t1)

∂t1
− ∂V2(ϕ(x(t−1 ), t1)

∂t1

= −∂V2(x(t+1 ), t1)
∂x(t+1 ) ·

∂δ(1,2)(x(t−1 ), t1)
∂t1

− ∂V2(x(t+1 ), t1)
∂t1

(2.41)

= −pT (t+1 ) · ∂δ(1,2)(x(t−1 ), t1)
∂t1

+H2(t+1 ).

According to the PMP for continuous systems, the control u(t) must fulfill

u(t) = arg min
u∈U1
H1(x(t), p(t), u(t), t), ∀ t ∈ [t0, t−1 ] (2.42)

u(t) = arg min
u∈U1
H2(x(t), p(t), u(t), t), ∀ t ∈ [t+1 , tf ] (2.43)

and the transversality condition (2.28) at tf . The proof can be extended for
an arbitrary finite number of switching times.

2.6.3 Conditions for Continuous States

Necessary conditions for switched systems without jumps in the state trajec-
tory are derived in Riedinger et al. [1999], Xu [2001] and Shaikh [2004]:

Theorem 2: The following conditions must hold in order for the tuple (x, p, q, u)
to be an optimal hybrid execution with absolutely continuous state x:

• The tuple (x, p, q, u) satisfies the Hamiltonian system (2.25) and (2.26)

• The minimum condition

Hq(t)(x(t), p(t), u(t), t) = min
u∈Uq ,q∈Q

Hq(x(t), p(t), u, t) (2.44)

holds for almost any t ∈ [t0, tf ]

• At the final time tf the transversality condition

pT (tf ) = ∂φ(x(tf ))
∂x(tf )

+ µT
∂ψ(x(tf ))
∂x(tf )

, (2.45)

where µ ∈ Rn is a vector of Lagrange multipliers
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• At a switching time tj, the following jump conditions are satisfied

p(t−j ) = p(t+j ) (2.46)

Hq(t+j )(t+j ) = Hq(t−j )(t−j ) (2.47)

Proof: The system can be reformulated as described in (2.6). Since the state
trajectory is absolutely continuous, the continuous version of the PMP (Pon-
tryagin et al. [1962]) can be applied. In this case, the fact is exploited that
no requirements on the convexity of the set of feasible controls is made in the
continuous PMP formulation (Xu [2001]).

2.6.4 State Constraints

An overview of different necessary conditions for the case, where constrained
arcs of the state variable x(t) appear in the solution of a continuous optimal
control problem is given by Jacobsen et al. [1972]. These conditions are in
general not applicable to hybrid systems due to the possible discontinuities in
the state trajectory. State constrained arcs are therefore not regarded in this
thesis. Some of the algorithms however, allow for the suboptimal treatment of
state constraints.



22



Chapter 3

Algorithms for Solving Hybrid
Optimal Control Problems

3.1 Overview and State-of-the-Art

By now, no standard approach for solving hybrid optimal control problems
(HOCP) exists and due to the strongly varying problem structures, that can be
formulated as HOCPs, it is unlikely that a uniform approach will be developed.
Most algorithms make strong requirements to the system and the problem
formulation. For instance, some approaches are valid only for systems that
exhibit autonomous switching only, others are suitable for problems that allow
for controlled switching only. In most cases, the state will be required to be
absolutely continuous. In this thesis, practical algorithms for the solution of
SOCPs are regarded. Section 3.5 covers algorithms for the solution of SOCPs
without state jumps, whereas section 3.6 contains algorithms for problems with
state jumps. An excellent overview of existing approaches to solve HOCPs
is given by Passenberg [2012] and the procedures are classified into direct
methods, indirect methods and dynamic programming. Another survey on
the progress in hybrid optimal control can be found in the work of Xu and
Antsaklis [2003]. Many of the approaches mentioned will also appear in this
thesis, however, it is preferred to use the following classification of algorithms:

1. Discretization of the continuous controls and the continuous dynamics
and application of methods for the solution of multistage decision pro-
cesses

23
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2. Relaxation of the discrete controls and application of methods for the
solution of purely continuous optimal control problems

3. Two-step procedures that alternate between optimizing the continuous
variables and adapting the switching sequence.

3.1.1 Multi-Stage Decision Processes

The major part of algorithms, that can be assigned to the first class, is based
on dynamic programming (DP) for solving the multistage decision process.
Multi-stage decision processes can be described as a sequence of steps, where
each step involves making a decision S, that might lead to change from the
state Xk to a state Xk+1 that is associated to a cost E. Bellman’s principle
of optimality (Bellman [1957]) then states that the optimal cost V at instant
k with state Xk is given by

V (Xk, k) = min
S

{
E(S,Xk) + V (Xk+1, k + 1)

}
. (3.1)

The principle also exists in a continuous formulation, the Hamilton-Jacobi-
Bellman equation. This partial differential equation can seldomly be solved
but is often used for deriving necessary conditions for hybrid optimal control, as
was done in section 2.6.2 or to derive algorithms for optimizing hybrid control
systems (Hedlund and Rantzer [1999], Xu and Antsaklis [2000a]). Still, for a
practical application of DP for hybrid systems, an appropriate discretization
of the time range and the state space is required, such that the differential
equation can be approximated by a difference equation and the system can
be expressed as a multi-stage decision process. A practical description of the
algorithm for solving optimal control problems for systems without the hybrid
notion can be found in the book of Kirk [1970]. The algorithm systematically
explores the state space using a backwards recursion. Because of the discrete
nature of the transformed model, enhancing the algorithm for switched systems
and SOCPs is straightforward. The main difference as compared to DP for
conventional systems is a generalization of states and controls, such that the
discrete dynamics can be included, as was acknowledged by Branicky and
Mitter [1995]. DP, when applied to the solution of SOCPs has several beneficial
properties, compared to other methods: Due to the exploration of the entire
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state space, the solution will be globally optimal with respect to the chosen
discretization. Another advantage is the property, that the complexity of the
algorithm grows only linearly with the number of discrete states. It is also
able to incorporate switching cost, as noted by Gerdts [2012], and to take
autonomous switching into account (Rungger [2011]). A practical algorithm
description for solving a discretized SOCP with state jumps will be given later
in this chapter. Soft state constraints can be imposed via penalty functions.
On the other hand, the complexity rises exponentially with the dimension of
the continuous state vector x and quickly exceeds feasible time and memory
limitations. This attribute is generally called the "curse of dimensionality".

3.1.2 Relaxation Methods

Relaxation methods use a reformulation of the original problem, such that a
new problem formulation has more desirable properties. This refers to the
existence of the discrete variables in the system, that prevents the use of stan-
dard solution procedures. The approaches proposed by Bengea and DeCarlo
[2003] and Sager [2005] share the same idea of relaxing the discrete Boolean
input variable σ ∈ {0, 1}Q to σ ∈ [0, 1]Q. The control set V̂ = Uq × [0, 1]Q is
now a convex set if Uq is convex. The relaxed system ẋ = F (x(t), ρ(t), t), ρ ∈ V̂
is then purely-continuous and a conventional optimal control problem can be
formulated and solved, which is in the works mentioned above performed via
a direct shooting or direct collocation method. In many cases, the solution to
this problem will yield a control trajectory, that is of bang-bang type with re-
spect to the discrete control and therefore satisfies σ ∈ {0, 1}Q. In some cases,
however, singular solutions may occur that do not fulfill this condition. In this
case, Bengea and DeCarlo [2003] suggest, that a binary feasible trajectory can
be calculated, that is arbitrarily close to the obtained state trajectory. Sager
[2005] analyzes different rounding strategies to obtain a suboptimal solution.
A treatment of error bounds for a rounding strategy can be found in the article
of Sager et al. [2012]. A different strategy for dealing with singular solutions
can be appending complementary constraints to the nonlinear program. For a
system with two discrete states, the respective constraint for any time instant
can be written as σ1(t) ⊥ σ2(t), which means that either σ1(t) or σ2(t) is zero
at time t. This constraint can be introduced as a soft constraint, by penalizing
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the non-fulfillment of the complementary condition, or as a hard constraint in
the nonlinear program. An overview of different functions that can be used for
implementing the complementary constraint is given by Leyffer [2006]. Un-
fortunately, these functions lead to numerical difficulties, as they are usually
non-convex and in many cases locally not continuously differentiable.

3.1.3 Two-Stage Approaches

Most two-stage approaches exploit one of the two facts:

1. The optimization of the continuous controls in any interval [tj, tj+1) does
not involve discrete variables and can therefore be solved with standard
methods.

2. If for the entire time interval [t0, tf ] the discrete state trajectory q(t) is
fixed, again, the problem can be solved with standard methods.

Xu and Antsaklis [2000b] describe a general two-stage procedure. In the
first stage, the continuous controls u are optimized. The second step involves
optimizing the switching times tj and varying the switching-order and varying
the total number of switchings. No specific procedure for the variation of the
switching sequence is mentioned. In a different work of the same authors (Xu
and Antsaklis [2000a]), a derivative of the value function with respect to the
switching time is derived and a gradient descent approach is employed to alter
the switching times.

The HMP[MCS]-algorithm proposed by Shaikh [2004] is based on an initial
guess of the switching times tj and the states at the switching times x(tj).
For each segment [tj, tj+1), a purely continuous optimal control problem is
solved and the trajectories x(t), p(t) are assembled for the entire time span
[t0, tf ]. Based on the differences in the costate and the Hamiltonian of the
assembled trajectories at the switching time p(t+j )− p(t−j ) and H(t+j )−H(t−j ),
the states x(tj) and the respective times are varied until the absolute values
of the differences fulfill a lower bound condition.

In the work of Alamir and Attia [2004], a first initial guess of the discrete
state q and of the control inputs u is made and the corresponding state tra-
jectory x and costate trajectory p are calculated, such that the Hamiltonian
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function value can be computed for any time-instant. In the next step, opti-
mized control inputs u and q are computed for each time instant, such that
the Hamiltonian function is minimized for each time instant. A penalty fac-
tor added to the Hamiltonian function stabilizes the algorithm by reducing
successive variations of the system inputs over the iterations.

The approach proposed by Nüesch et al. [2014] alternates between solving
a nonlinear program for finding the continuous controls and solving a dynamic
programming problem for obtaining a switching sequence. In the dynamic
programming problem, the cost function is composed of the sum of the Hamil-
tonians at all time instants and a term for the switching cost. The costate p
is assumed to be constant for the specific case regarded.

Egerstedt et al. [2006] and Axelsson et al. [2008] start with an assumed
switching sequence and then optimize the length of each interval [tj, tj+1) with-
out modifying the order of the sequence. Nonlinear programming is used for
the first step. In a second step, the switching sequence is modified by insert-
ing a mode, where a specifically derived derivative of the cost function with
respect to the insertion of a mode does not vanish.

Another two-stage approach is the reduction of the SOCP to a mixed-integer
nonlinear program (MINLP). Tree search algorithms can be applied to find the
optimal discrete input variables, while for every branch of the tree, a nonlinear
program has to be solved to determine the optimal continuous variables. This
type of problem is NP-hard, which means that it will most likely not be
solvable in polynomial time. When SOCPs are converted to MINLPs, the
number of discrete variables is in general very high and hence, this type of
approach will for most cases be unfeasible. Many efforts have been made on
a reduction of the search tree’s size. Sager [2005] gives a wide overview of
methods for solving MINLPs and their application to HOCPs.

A method for problems that have an upper bound on the number of switch-
ings is proposed in the work of Sager et al. [2011]. An embedded optimal
control problem is solved using a nonlinear programming solver. To find a
switching schedule that satisfies the upper bound on the number of switch-
ings, a mixed integer linear program is solved that minimizes a distance to
the relaxed switching schedule obtained from the solution of the embedded
problem but fulfills the integer conditions as well as the condition imposed on
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the number of switchings.

3.2 Discretization

The problems of interest in this thesis will seldomly have an analytical so-
lution and therefore need to be treated numerically. To make the problems
amenable for numerical computations, a certain discretization of the problem
is required. The problem discretization will have a major effect on the quality
of the solution and on the computation time and consequently, care has to be
taken when choosing the discretization method as well as the discretization
parameters. We restrict our considerations to explicit one-step methods of the
Runge-Kutta class. The lowest-order method of this class is the explicit Euler
method, which is used in the description of the algorithms due to its simplicity.

In some scenarios, the discrete approximation might fail to converge to the
original continuous formulation for infinitesimal time sampling. Section 3.3.5
gives an overview of established convergence theorems, however the problem
cannot fully be answered for the problems regarded in this thesis.

Remark 3.1: To allow for more compact and clearer descriptions of the al-
gorithms in this section, the notation f(x, q, u, t) is used to denote the vector
field fq(x, u, t) of the hybrid system and δ(q−, q+, x, t) instead of δ(q−,q+)(x, t)
to define the state jump at a switching.

3.2.1 Runge-Kutta Discretization

A time grid is defined as a strictly increasing sequence of times tk, k = 1, . . . , N

t0 = t1 < t2 < · · · < tN = tf (3.2)

that are concatenated in the discrete time vector t

t = [t1, t2, . . . , tN ]. (3.3)

The not necessarily equidistant sampling time interval hk is defined as

hk = tk+1 − tk, k = 1, . . . , N − 1. (3.4)
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The control is discretized via a set of N−1 functions Ξk : Rc× [tk, tk+1)→ Rm

u(t) = Ξk(θk, t), t ∈ [tk, tk+1) (3.5)

that define the control at time t ∈ [tk, tk+1) depending on a parameter vector
θ ∈ Rc. Piecewise constant and piecewise linear approximations schemes are
described by von Stryk [1995] and an extended overview can be found in the
book of Betts [2010]. Due to the piecewise constant nature of the discrete state
trajectory q(t), a respective piecewise constant approximation scheme is used:

q(t) = qk, t ∈ [tk, tk+1). (3.6)

Throughout the thesis, it is assumed that a transition in the discrete state can
only take place on a sampling time tk. The set of discretized values qk is stored
in the vector

q = [q1, q2, . . . , qN−1]. (3.7)

Subject to the time discretization, for a given control parameter matrix

θ = [θ1, θ2, . . . , θN−1], (3.8)

an approximation of the state trajectory can be calculated using a numer-
ical solver for differential equations. Runge-Kutta methods are a family of
one-step-methods for the solution of initial value problems that calculate the
state value’s approximation for the successive sampling time according to the
recursive relation

xk+1 = xk + Γf (xk, qk, θk, tk, hk) + δ(qk, qk+1, xk, tk), (3.9)

where

Γf (xk, qk, θk, tk, hk) = hk ·
K∑
j=1

aj · fkj , k = 1, . . . , N − 1. (3.10)

The subscript f in Γf expresses, that the function is passed as an argument
to the solver Γ such that arbitrary function evaluations can be performed by
the solver in the interval [tk, tk + hk). The parameters fkj are estimations of
the function value f in the interior of the interval [tk, tk+1] and are recursively
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calculated by

fkj = f(xi,j, qk, uj, tj) (3.11)

xi,j = xk + hk ·
K∑
i=1

bj,i · fki (3.12)

tj = tk + hkρj (3.13)

uj = Ξk(θk, tj). (3.14)

The coefficients aj, ρj and bj,i are obtained from the butcher-array of the
respective Runge-Kutta method. The butcher-arrays for most methods and
their respective convergence order can be found in most textbooks on numerical
mathematics (for instance Dahmen and Reusken [2008] and Freund and Hoppe
[2011]). In this thesis, all considerations are restricted to explicit Runge-Kutta
methods that fulfill bj,i = 0 for i ≥ j. The set of discretized states can then be
assembled in the matrix

x = [x1, x2, . . . , xN ]. (3.15)

3.2.2 Explicit Euler Discretization

The most basic solver in the Runge-Kutta family is the explicit Euler method.
It has the lowest computational demand but also the lowest convergence order
O(h). Coupled with a piecewise constant control approximation, this method
yields very compact definitions that will be helpful in the remainder of the
thesis to keep the algorithm descriptions compact. Yet, an extension for higher
order solvers is in most cases straightforward. Given the piecewise constant
control approximation

u(t) = uk, t ∈ [tk, tk+1), (3.16)

where the elements uk are stored in the control matrix

u = [u1, u2, . . . , uN−1], (3.17)

the recursion for the computation of the states is given by

xk+1 = xk + f(xk, qk, uk, tk) · hk + δ(qk, qk+1, xk, tk), k = 1, . . . , N − 1.
(3.18)
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3.3 Direct Solution with Fixed Switching

Direct methods solve optimal control problems by applying an appropriate
discretization scheme and hence transforming the continuous control problem
into a nonlinear optimization problem (nonlinear programming problem, NLP)
with a finite number of variables, assembled in the optimization vector y =
[y1, y2, . . . , yNy ]. This process is often referred to as a "direct transcription".
Different transcription methods exist, among them direct shooting, multiple
shooting and collocation methods. An early framework for a multiple-shooting
algorithm is proposed by Bock and Plitt [1984]. Direct methods became more
popular, due to the progress made in the development of algorithms for the
solution of nonlinear optimization problems. The application of nonlinear
programming methods for the solution of purely-continuous optimal control
problems is well described in Betts [2010]. Direct methods can be advantageous
over indirect methods due to their larger convergence area, which reduces the
difficulty of initialization. They are also able to incorporate state constraints
without requiring a predefined sequence of constrained and unconstrained arcs
(von Stryk and Bulirsch [1992]).

3.3.1 Nonlinear Programming

Definition 3.1: A nonlinear program can be formulated as

min χ(y) (3.19)

ci(y) ≤ 0, i ∈ I (3.20)

ci(y) = 0, i ∈ E , (3.21)

where ci with i ∈ E = {1, . . . , lE} are equality constraints and ci with i ∈ I =
{lE + 1, . . . , lE + lI} are inequality constraints.

Nonlinear program solvers intend to iteratively find a point that satisfies a
set of necessary conditions, known as Karush-Kuhn-Tucker conditions (KKT-
conditions). With the definition of the Lagrangian function L : RNy×RlE+lI →
R

L(y, µ) = χ(y) +
lE+lI∑
i=1

µici(y), (3.22)

these conditions can be stated as follows:
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Definition 3.2: If a point y fulfills a linear inequality constraint qualifica-
tion (LICQ), meaning that the gradients ∇ci(y) of the active constraints are
linearly independent and there is a vector of Lagrange multipliers µ with the
components µi, i ∈ E ∪ I such that the following conditions hold (y, µ):

∇yL(y, µ) = 0 (3.23)

ci(y) = 0, ∀i ∈ E (3.24)

ci(y) ≤ 0, ∀i ∈ I (3.25)

µi ≤ 0, ∀i ∈ I (3.26)

µici(y) = 0, ∀i ∈ E ∪ I, (3.27)

then y is called a KKT-Point.

The proof of the necessary conditions, summarized in the KKT-conditions,
can be found in the textbooks of Gill et al. [1981] and Nocedal and Wright
[2006]. Major progress in solving NLPs was made with the development of
Sequential Quadratic Programming (SQP) by Wilson [1963] and further im-
provements were achieved among others by Powell [1987]. Today, interior point
(IP) methods are steadily growing in importance. IP methods have their origin
in constrained linear programming but have soon been extended to the non-
linear case. A survey of the historic developments is given by Forsgren et al.
[2003]. Especially when a high number of inequality constraints is present, IP
methods can outperform SQP-Methods. For a general overview of nonlinear
programming and its application, we refer to Gill et al. [1981], a book including
more recent developments was written by Nocedal and Wright [2006].

3.3.2 Direct Shooting

When direct shooting is applied as transcription method, the optimization
vector y contains the discrete control parameters θ. In the case of the explicit
Euler discretization scheme with piecewise constant control approximation,
this is reduced to y = u. A function evaluation of the cost function and of
the final state constraints requires the knowledge of the final state. The initial
state x1 = x0 and the switching sequence q as well as the time grid t are fixed
boundary conditions and therefore omitted in the following equations. For a
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given set of parametrized controls θ, the final state xN can be computed with
the Runge-Kutta solver. The NLP can be written as

min
θ

φ(xN(θ)) (3.28)

ψ(xN(θ)) = 0 (3.29)

cku(uk(θk, k)) ≤ 0, k = 1, . . . , N − 1. (3.30)

The control restraint cku ∈ C2 : Rm → Rm is chosen such that cku(uk(θk, k)) ≤ 0
when uk ∈ Uqk , k = 1, . . . , N − 1. Additional conditions on the parameters
θ as for example the condition that u(tk) be continuous and continuously dif-
ferentiable, when a higher order polynomial approximation is used for Ξ, can
also be imposed.

Remark 3.2: The choice of the constraints cku as mentioned above does not
guarantee that the control is feasible in the entire interval [tk, tk+1) but only
on the boundary of the interval.

3.3.3 Collocation

In contrast to the direct shooting method, where only the controls are included
in the optimization vector y, collocation methods add the discretized state vec-
tor x as well. To enforce the fulfillment of the differential equation constraint,
the terms (3.32) and (3.33) are added as constraints in the NLP-formulation.
The NLP can then be stated as

min
θ,x

φ(xN) (3.31)

xk+1 − xk − Γf (xk, θk, k)− δ(xk, k) = 0, k = 1, . . . , N − 1 (3.32)

x1 − x0 = 0 (3.33)

ψ(xN) = 0 (3.34)

cku(uk(θk, k)) ≤ 0, k = 1, . . . , N − 1. (3.35)

3.3.4 Comparison of Direct Shooting and Collocation

The use of collocation approaches was for a long time prevented by the high
number of variables in the optimization vector. In comparison to the direct
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shooting method, where only the control parameters are contained in this
vector, the additional discrete state representation enhances the number of
elements by N · n. Looking at the numerical solution procedure, this will
require more function evaluations for the gradient estimation and significantly
more memory for storing the Hessian matrix. This disadvantage however can
be circumvented by exploiting sparse structures of the problem that occur
naturally due to the fact that many variables in the optimization vector are
independent of each other. On the one hand, this can reduce the number of
required function evaluations for the gradient calculation (Betts and Huffman
[1999]), on the other hand, sparse matrix algebra can be applied for solving the
quadratic sub-problem in the SQP-procedure. Another practical advantage of
collocation methods, that is often disregarded, is the avoidance of the recursive
solution of the initial value problem. Recursive function calls bring along
a certain overhead, whereas the collocation approach allows much more for
vectorized function evaluations and therefore avoids this type of overhead. In
some cases, the gradient estimation can therefore be less costly despite the
fact that the number of variables is higher. The main challenge so far remains
to develop a sparse Hessian update formula. Some promising approaches exist
(for instance Yamashita [2008]) but were not yet fully implemented during
this thesis. Therefore, the algorithms proposed in this thesis that imply a
direct solution approach are based on direct shooting methods but can easily
be transferred to collocation.

3.3.5 Convergence Results

An important question is, whether the discrete approximation of a hybrid op-
timal control problem converges to the continuous formulation for hk → 0, k =
1, . . . , N − 1. For the specific type of systems regarded in this thesis, this
question cannot fully be answered with the convergence results established in
the literature so far. A detailed convergence analysis for the discrete approx-
imation of purely continuous optimal control problems was already addressed
by Mordukhovich [1978] and was enhanced later (Mordukhovich [2006]). The
main result is that for optimal control problems without final state constraint,
convergence can be guaranteed under mild assumptions, whereas for problems
with final state constraint, an additional continuity requirement for the con-
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trol is necessary. This requirement is also made in the convergence analysis
of Gerdts [2012] but can be problematic, when the discrete state is relaxed to
a continuous control variable. In this case a bang-bang solution is expected
and therefore the control will not be continuous. A convergence rate for the
approximation of a discrete initial value problem for hybrid systems with state
jumps is derived in the works of Tavernini [1987] and Tavernini [2009]. This
convergence rate however is only valid, when a variable time grid is used as
proposed by the author. Hence, the results cannot be used for the case of a
fixed time-grid as applied in this thesis. In the following, it is assumed that the
discrete approximations of the formulated SOCPs converge to their continuous
counterpart.

3.3.6 Recovering the Costate from a Direct Shooting

One of the major disadvantages of direct methods for the solution of the op-
timal control problem is the fact that the costate is not obtained from the
solution in a direct manner. However, knowledge of the costate can be very
helpful as it allows for the evaluation of the fulfillment of necessary conditions
and in many cases, the costate can provide helpful insight into the structure
of the solution. On the other hand, indirect methods provide the costate tra-
jectory as part of the solution but may not be applicable since a good initial
guess of the costate is hard to achieve. A more elegant way is the solution
of the discretized optimal control problem using direct methods and therefore
omitting the inclusion of the costate in the solution procedure and then recov-
ering the costate from the solution of the problem. Methods for obtaining the
costate from a direct solution were proposed by Enright and Conway [1992]
and von Stryk [1995] for collocation approaches and by Büskens [1998] for a
direct shooting method. The following derivation of the costate partially fol-
lows the reasoning of Büskens [1998]. To our best knowledge, systems with
state jumps have not been regarded before. To allow for compact descriptions,
the following abbreviations are introduced:

fk ≡ f(xk, qk, uk, tk) (3.36)

δk ≡ δ(qk, qk+1, xk, tk). (3.37)
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Using the explicit Euler procedure, for approximating a solution to the initial
value problem, one step can be calculated by the recursive relation

xk+1 = xk + fkhk + δk. (3.38)

The following relations can then be derived:

∂xk+1

∂xk
= I + ∂fk

∂xk
hk + ∂δk

∂xk
(3.39)

∂xk+1

∂uk
= ∂fk

∂uk
hk, (3.40)

where I is the unity matrix of dimension n. The derivative of the final state
xN with respect to any preceding state xk and the derivative of the final state
to a preceding control uk can be obtained from the chained derivatives

∂xN

∂xk
= ∂xN

∂xN−1 . . .
∂xk+1

∂xk
(3.41)

∂xN

∂uk
= ∂xN

∂xk+1
∂xk+1

∂uk
. (3.42)

The Lagrangian function can be written as

L = φ(xN) + νTψ(xN) +
N−1∑
k=1

(ηk)T cku(uk). (3.43)

The final state xN is a function of the discretized controls u, and the Jacobian
with respect to the controls at time instant k can be derived as

∂L
∂uk

= ∂L
∂xN

∂xN

∂uk
+ ηk

∂cku
∂uk

. (3.44)

Theorem 3: The derivative of the Lagrangian function L with respect to a
state xk is an approximation of the costate at time instant k:

(p̃k)T ≡ ∂L
∂xk

. (3.45)

Proof: To proof this theorem, it is sufficient to show that p̃N fulfills transver-
sality condition (2.45) and that any preceding p̃k can be calculated outgoing
from p̃N by solving an initial value problem backwards using (2.26). For p̃N ,
we have

(p̃N)T = ∂L
∂xN

= ∂φ

∂xN
+ νT

∂ψ

∂xN
, (3.46)
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which is an approximation of transversality condition (2.45). If the above
theorem holds, then

(p̃k)T = ∂L
∂xk

= ∂L
∂xN

∂xN

∂xk
= (p̃N)T ∂x

N

∂xk
(3.47)

is valid and forming the difference between two consecutive values p̃k+1 and
p̃k, the following result is obtained

(p̃k+1)T − (p̃k)T = ∂L
∂xN

(
∂xN

∂xk+1 −
∂xN

∂xk

)
(3.48)

= ∂L
∂xN

∂xN

∂xk+1

(
I − ∂xk+1

∂xk

)

= (p̃k+1)T
(
I − ∂xk+1

∂xk

)

= (p̃k+1)T
(
I −

(
I + ∂fk

∂xk
hk + ∂δk

∂xk

))

⇒ (p̃k)T = (p̃k+1)T + (p̃k+1)T ∂f
k

∂xk
hk + (p̃k+1)T ∂δ

k

∂xk
,

which clearly is a backwards explicit Euler approximation to the differential
equation of the costate (2.26) including jump condition (2.29). It should be
noted, that the Jacobian ∂δk

∂xk contains nonzero values only, if qk+1 6= qk.
Applying the KKT-condition (3.23) yields

∂L
∂uk

= ∂L
∂xN

∂xN

∂xk+1
∂xk+1

∂uk
+ (ηk)T ∂c

k
u

∂uk
(3.49)

= (p̃k+1)T ∂x
k+1

∂uk
+ (ηk)T ∂c

k
u

∂uk

= (p̃k+1)T ∂f
k

∂uk
hk + (ηk)T ∂c

k
u

∂uk
= 0

which is a neccessary condition for the fulfillment of Hamiltonian minimization
condition (2.27).

3.3.7 Recovering the Costate from Collocation

In a much more direct manner, the costate can be derived when using the
collocation method with an explicit Euler discretization scheme.
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Proof: Defining the Lagrangian as

L = φ(xN) + νTψ(xN) + µT (x0 − x1) (3.50)

+
N−1∑
k=1

(p̃k+1)T (xk + fkhk + δk − xk+1)

+
N−1∑
k=1

(ηk)T cku(uk),

the derivative with respect to the discretized states yields
∂L
xN

= ∂φ

∂xN
+ νT

∂ψ

∂xN
− (p̃N)T (3.51)

∂L
x1 = (p̃2)T

(
I + ∂f 1

∂x1h
1 + ∂δ1

∂x1

)
− (p̃1)T − µT (3.52)

and for k = 2, . . . , N − 1 we have
∂L
xk

= (p̃k+1)T
(
I + ∂fk

∂xk
hk + ∂δk

∂xk

)
− (p̃k)T . (3.53)

The derivative with respect to the controls at each time instant is given by
∂L
∂uk

= (p̃k+1)T ∂f
k

∂uk
hk + (ηk)T ∂c

k
u

∂uk
= 0. (3.54)

From (3.51), again the approximation of transversality condition (2.45) is ob-
tained with

(p̃N)T = ∂φ

∂xN
+ νT

∂ψ

∂xN
(3.55)

and (3.54) is, as before, a necessary condition for the fulfillment of Hamiltonian
minimization condition (2.27). The difference equation for two consecutive
costates is obtained from (3.53) as

(p̃k)T = (p̃k+1)T + (p̃k+1)T ∂f
k

∂xk
hk + (p̃k+1)T ∂δ

k

∂xk
, k = 2, . . . , N − 1, (3.56)

which equals the result obtained for the direct shooting approach.

Remark 3.3: The Lagrange multipliers for appending the fulfillment of differ-
ence equation (3.32) to the Lagrangian are an approximation of the costates.
Consequently, when the collocation approach is used, the approximated costate
can be obtained readily from the solution of the nonlinear program, since most
nonlinear program solvers return the Lagrange multipliers at the solution. This
is an advantage over the direct shooting method, where an additional finite
differencing procedure is required (3.45), to obtain the costates.
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3.4 Indirect Solution with Fixed Switching

When the switching schedule q is given, the problem of finding optimal trajec-
tories x and u can be formulated as two-point boundary value problem that
can be solved using indirect shooting methods. An early algorithm can be
found in the work of Kirk [1970] and more complex problems can be solved
using the algorithm developed by Oberle and Grimm [2001]. An expanded
state vector is defined as follows:

y(t) =
x(t)
p(t)

 , y(t0) =
x(t0)
p(t0)

 . (3.57)

Between two switchings, the enhanced state obeys the differential equation law

ẏ = G(y(t), q(t), u(t), t) =
 f(x(t), q(t), u(t), t)
−
(
∂H(x(t),q(t),u(t),t)

∂x

)T
 . (3.58)

At a switching time tj, jumps in both, state trajectory as well as costate
trajectory occur:

x(t+j ) = x(t−j ) + δ(q(t−j ),q(t+j ))(x(t−j ), tj) (3.59)

pT (t−j ) = pT (t+j ) ·
(
I +

∂δ(q−,q+)(x(t−j ), tj)
∂x(t−j )

)
. (3.60)

Discretizing the time between two consecutive switching times (tj, tj+1) ap-
propriately, the trajectory of y can be approximated with the Runge-Kutta
solver:

yk+1 = yk + ΓG(yk, qk, uk, tk, hk). (3.61)

Repeating this for all time intervals j = 0, . . . , l and applying (3.59) and (3.60)
at the switching times, a full approximation of the trajectory y in the time
interval [t0, tf ] is obtained. Please note that (3.60) involves the solution of a
linear system of equations. The control u(t) is at every step determined by
minimizing the Hamiltonian function

u(t) = arg min
u∈Uq(t)

H(y(t), q(t), u, t). (3.62)

In most cases, an analytical solution of the minimization problem will not be
possible and therefore numerical minimization procedures have to be applied.
The task is well-suited for SQP-methods.
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Solving this initial value problem (IVP) will require the knowledge of the
initial costate p(t0). The initial costate however will be unknown and hence
needs to be found. At the final time tf , a solution to the control problem has
to satisfy transversality condition (2.28) as well as the final state constraint
ψ(x(tf )) = 0. These are concatenated in the vector

Υ(y(tf ), µ) =
 ψ(x(tf ))
p(tf )− ∂φ(x(tf ))

∂x(tf ) − µ
T ∂ψ(x(tf ))

∂x(tf )

 = 0. (3.63)

Due to the fact that p(t0) is unknown and that y(tf ) is partially constrained,
the problem of finding an initial costate p(t0) that fulfills Υ(y(tf ), µ) = 0 is
called a two-point boundary value problem. Since y(tf ) is a function of p(t0),
the problem can be written as Υ(p(t0), µ) = 0. When this nonlinear function
can be solved using an appropriate solver, the solution of the control problem
is obtained as well.

Remark 3.4: The nonlinear function Υ(p(t0), µ) in the given form is of dimen-
sion 2n according to the size of the vector [p(tf ), µ]T but in most cases, the
dimension can be reduced by evaluating the transversality conditions (2.28)
and the differential equation governing the costate evolution (2.26).

3.5 Algorithms for Systems with Continuous
States

In this section, practical algorithms will be presented, that aim at approxi-
mating a solution to an SOCP defined for a system with absolutely continuous
state and hence δ(q−,q+) = 0 ∀ q−, q+ ∈ Q. This subclass of the switched
systems defined in section 2.1 benefits from much stronger necessary condi-
tions. The most important difference is, that beneath the continuous control
u(t) the discrete state q(t) must minimize the Hamiltonian function. Another
difference is the continuity of the costate on a change of the discrete state.

3.5.1 Embedding

The embedding approach is based on the representation of the hybrid system
by the differential equation (2.6) and on a relaxation of the Boolean vector
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σ ∈ {0, 1}Q to the compact set σ ∈ [0, 1]Q. It is assumed, that the continuous
control variable may be chosen from a unique set W instead of separate sets
Uq for each discrete state. In practical scenarios, this will often be the case. In
other cases, a new control variable u′ can be introduced as well as a set of Q
functions Λq : W → Uq that perform a respective transformation. The vector
fields fq(x(t), u(t), t) are then modified to fq(x(t),Λq(u′(t)), t). The control
vector concatenates the new control u′ and the switching variable σ

ρ(t) = [u′(t), σ(t)] (3.64)

and may take on values from the compact set W × [0, 1]Q. The system can
now be treated as a conventional system without hybrid phenomena and be
solved with direct methods, such as the direct shooting method. σ(t) is best
approximated as a piecewise constant function. The problem can then be
formulated as:

min
ρ

φ(x̂N(ρ)) (3.65)

ψ(x̂N(ρ)) = 0 (3.66)
Q∑
q=1

σkq − 1 = 0, k = 1, . . . , N − 1 (3.67)

−σk ≤ 0, k = 1, . . . , N − 1 (3.68)

σk − 1 ≤ 0, k = 1, . . . , N − 1 (3.69)

cρ(ρ) ≤ 0. (3.70)

The state x̂ is used to illustrate that the state trajectory was obtained with a
modified system description.

Definition 3.3: A discrete state trajectory σ is called binary feasible, if σk ∈
{0, 1}Q, k = 1, . . . , N − 1 and constraint (3.67) is satisfied.

If the trajectory obtained for the control σ is binary feasible, the state x̂
is a valid approximation for the optimal discretized state trajectory x. In the
case, where this condition is not fulfilled, the arcs where σk /∈ {0, 1}Q are
denoted as singular arcs. An approximation for a binary feasible trajectory
can then be obtained using different strategies. Sager [2005] recommends the
application of a combination of rounding strategies for the switching variable
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σ, switching time optimizations and a penalty term homotopy and provides
detailed algorithms.

Remark 3.5: The dimension of the optimization vector ρ can be reduced by
defining σkQ = 1−∑Q−1

q=1 σ
k
q and omitting the constraint (3.67).

Remark 3.6: As desired, σk will tend to the boundary of [0, 1]Q for most
k = 1, . . . , N − 1. NLP-solvers based on active-set methods will require a lot
of iterations, until the optimal active set is found and will hence require much
more computation time. NLP-solvers that use an interior-point approach for
solving the quadratic sub-problem or use an overall interior-point approach will
perform much better on embedded problems unless the active-set method uses
a good warm-start method for determining the initial active-set. However, for
interior-point methods, binary feasibility will only be achieved up to a certain
tolerance, as the barrier-function approach will prevent an exact fulfillment.

3.5.2 Indirect Shooting

The indirect shooting algorithm in section 3.4 can easily be extended for a
free switching schedule in the case of an absolutely continuous state x by
using condition (2.44) as an indicator on which discrete state to use at a given
time step. The idea was roughly sketched by Riedinger et al. [2005] and is
justifiably not covered in detail, due to problems of convergence. Yet, for
certain problems, the algorithm is still an interesting and especially efficient
alternative.

The high-level task remains to find a vector of initial costates p(t0) = p1

and a vector µ that fulfill the final state condition Υ(xN , pN , µ) = 0. The main
modification consists in the determination of the discrete state qk to be applied
at each time step along with the determination of the continuous control uk

at the same time-step. This is done in two stages:

1. For each q ∈ Q, an optimal continuous control uq is determined that
minimizes the Hamiltonian function for the given discrete state

2. In the second stage, the discrete state qk is chosen that minimizes the
Hamiltonian function by comparing the function values for all q ∈ Q
using the respective continuous controls uq. Applying the discrete state
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qk that minimizes the Hamiltonian function, and the control uk = uqk ,
the state xk+1 can be computed using an appropriate solver for the initial
value problem.

The pseudo code of the functions required for the implementation of the al-
gorithm is given below. An explicit Euler method is used for obtaining an
approximation to the state trajectory. The function nonlinfun is the non-
linear function to be solved. Depending on the input p1, the function ivp,
that solves the initial value problem, is called. In this function, the control
uk and the discrete state qk are calculated at each time step k, as explained
above. The function call hgrad in the function ivp computes the gradient
of the Hamiltonian function with respect to the state that can be approxi-
mated using finite differencing. One of the major weaknesses of most indirect
methods is the necessity of estimating an initial guess of the costate’s initial
value. As the costate usually has no physical interpretation, this can be a hard
task, especially, when the dimension n is high. The algorithm provided in the
next section will cope with this challenge. If a sufficiently accurate guess of
the initial costate can be made, the indirect shooting algorithm will be very
fast. It also has the advantageous property that no initial estimation of the
switching sequence needs to be made and that the computing time depends
only linearly on the discretization N and on the number of discrete states Q.
Not included in the algorithm description is the numerical method for solving
the nonlinear equation nonlinfun. A diversity of solvers is usually included
in any scientific computing environment. Special care has to be taken when
choosing the solver. In many cases, gradient based methods will fail due to the
many sources of round-off error in the function ivp. There is also no guaran-
tee that Υ is differentiable with respect to p1. The application of gradient free
methods for high dimensions n however is often very slow. If the dimension
is n = 1, the nonlinear function Υ can usually reduced to a scalar function
and regula-falsi methods can be applied, that iteratively partition an inter-
val around the solution, until a lower error bound is fulfilled. These methods
perform very robustly and compete with gradient based methods in terms of
speed. A very efficient implementation is the Pegasus method (Dowell and
Jarratt [1972]) that will converge superlinearly for many functions.
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1: function nonlinfun(p1, µ, x1, t)
2: x, u, p, q ← ivp(p1, x1, t)
3: d← Υ(xN , pN , µ)
4: return d, x, u, p, q, µ

5: end function
6:

7: function ivp(p1, x1, t)
8: for k ← 1, N − 1 do
9: for all q ∈ Q do

10: uq ← arg minu∈Uq H(xk, q, pk, u, tk)
11: end for
12: qk ← arg minq∈QH(xk, q, pk, uq, tk)
13: uk ← uqk

14: xk+1 ← xk + f(xk, qk, uk, tk) · (tk+1 − tk)
15: pk+1 ← pk − hgrad(xk, qk, pk, uk, tk) · (tk+1 − tk)
16: end for
17: return x, u, p, q

18: end function

Algorithm 1: Nonlinear function to be solved for the two-point boundary value
problem

3.5.3 Combining Direct and Indirect Methods

As has been mentioned in the previous section, making an initial guess of the
costate can be difficult for many practical problems and the use of the indirect
shooting algorithm can be impaired by this difficulty. One of the beneficial
characteristics of direct methods is that for a predefined switching sequence,
the optimal control problem can be solved efficiently and robustly. No costate
is required in the solution procedure but the costate can be recovered from the
solution after the termination of the algorithm, as has been shown in section
3.3.6. With an approximation of the costate at hand, the necessary conditions
for an optimal hybrid execution can be reviewed and the switching sequence
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be altered, based on an appropriately chosen criterion.
A valid criterion is the largest gradient with respect to the insertion of a new
mode q. Assume Θ = ((t0, q0), (t1, q1), (t2, q2)) to be an optimal switching
sequence with respect to the switching times tj (Figure 3.1). Consider the
insertion of an additional mode q∗ for a time interval ∆t centered at time t∗

with t1 < t∗− 1
2∆t and t∗ + 1

2∆t < t2, such that the new switching schedule is
written Θ̂ = ((t0, q0), (t1, q1), (t∗−∆t, q∗), (t∗+∆t, q1), (t2, q2)). The insertion of
the new mode may yield an additional reduction of the cost function. Egerstedt

t1 t2t* t3

q

tt0

q0

q1

q*

q2

t*-   Δt1

2
t*+   Δt1

2

Figure 3.1: Insertion of the mode q∗ in the interval [t∗ − 1
2∆t, t∗ + 1

2∆t]

et al. [2006] and Axelsson et al. [2008] provide a gradient of the cost function
with respect to the length of the time interval as follows:

∂φ

∂∆t = pT (t∗) · (fq∗(x(t∗), u(t∗), t∗)− fq1(x(t∗), u(t∗), t∗))

= Hq∗(x(t∗), p(t∗), u(t∗), t∗)−Hq1(x(t∗), p(t∗), u(t∗), t∗). (3.71)

The derivation of the gradient is based on a derivative of the cost functional
with respect to a switching time. This type of gradient was also derived by
Xu and Antsaklis [2000a] and Kamgarpour and Tomlin [2012]. The insertion
of a mode q∗ may yield a decrease in the cost function value, when ∂φ

∂∆t < 0.
It is therefore desirable to alter the switching sequence, where the difference
(3.71) has the lowest negative value. Based on this observation, the following
two-stage algorithm is introduced:

1. In the first stage, a direct method is applied for finding the optimal
continuous control inputs for an initial guess of the switching sequence.
Once the NLP-solver terminates, a discrete state x, the controls u as well
as a set of Lagrange multipliers γ are obtained for the assumed switching
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sequence q. With the results from section 3.3.6, an approximation of the
costate p is calculated

2. In the second stage, the switching schedule q is altered, based on the
evaluation of the necessary conditions. The schedule is altered at the
instant k, where the largest descent in the Hamiltonian function can be
achieved by altering q at this instant.

The algorithm alternates between these two stages, until a termination crite-
rion is fulfilled. As such criterion may serve ∆Hmax > ε, where ∆Hmax is the
largest difference between the current Hamiltonian at one of the time instants
k and any other Hamiltonian calculated for a different q at the same instant.

Remark 3.7: Other termination criteria might be necessary and can include
a maximum number of iterations. Due to the fact that the costate p only is an
approximation, numerical errors may prevent the fulfillment of the termination
criterion ∆Hmax > ε.

The overall algorithm consists of three functions. The main function comb-
method accepts an initial guess of q and uses an NLP-solver to find optimized
control inputs u for this switching sequence. The solver iteratively calls the
function ivp to calculate the state trajectory such that the cost function and
constraints can be evaluated. It should be noted that the function ivp differs
from the function of the same denominator in the previous section in that it
does not approximate the costate trajectory. It is also more flexible, as it can
be started at arbitrary instants k for a given initial value xk. This will allow
for a faster approximation of the costate in the function costate. After the
completion of the nonlinear-optimization, the state vector x is computed for
the optimized controls and the given switching sequence. As a side-product
the Lagrange-multipliers γ are also returned by the NLP-solver. The func-
tion costate then calculates an approximation of the costate vector p using
one-sided finite differencing to evaluate equation (3.45).

Remark 3.8: A more efficient way would be to calculate pN only and then
use (2.26) to calculate the remaining values pk (Büskens [1998]). However
this would require more coding, whereas this functional approach offers great
flexibility. The for-loops are also parallelizable such that the required time-
span is usually acceptable.
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Once p is returned to the main function combmethod, the minimum Hamil-
tonian function values Hk

q can be computed for every time instant k and for
every discrete state q and are compared against the current Hamiltonian func-
tion values Hk

act. The combination of indices k and q are determined that yield
the largest decrease in the Hamiltonian function at a time instant k. The
switching schedule is then altered respectively. These steps are repeated until
the termination criterion is fulfilled. The overall algorithm is rather slow, since
the switching schedule is altered at one instant k only on each iteration. Nu-
merical experiments, where more than one instant were modified during each
iteration have worked in some cases but have failed to converge in others and
hence this approach cannot be generally recommended.
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1: function combmethod
2: Define ε, qinit, uinit, x1, t
3: q ← qinit

4: u← uinit

5: ∆Hmax ←∞
6: while ∆Hmax > ε do
7: u, γ ← nlp(q, u, t)
8: x← ivp(q, u, t, x1, 1)
9: p← costate(x, q, u, t, γ)

10: for k ← 1, N − 1 do
11: for all q ∈ Q do
12: Hk

q ← minu∈Uq H(xk, q, pk, u, tk)
13: ukq ← arg minu∈Uq H(xk, q, pk, u, tk)
14: end for
15: Hk

act ← Hk
qk

16: end for
17: i, j ← maxq,k(Hk

act −Hk
q )

18: qj ← i

19: uj ← uji

20: ∆Hmax ← Hj
act −Hj

i

21: end while
22: return x, u, p, q

23: end function
24:

25: function ivp(q, u, t, xs, s)
26: for k ← s,N − 1 do
27: xk+1 ← xk + f(xk, qk, uk, tk) · (tk+1 − tk)
28: end for
29: return x

30: end function
31:

32: function costate(x, q, u, t, γ)
33: L ← φ(xN) + γTψ(xN)
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34: for k ← 1, N do
35: for l← 1, n do
36: x+ ← xk

37: x+
l ← x+

l + ε

38: x̃← ivp(q, u, t, x+, k)
39: L+ ← φ(x̃N) + γTψ(x̃N)
40: pkl ← (L+ − L)/ε
41: end for
42: end for
43: return p

44: end function

Algorithm 2: Algorithm combining indirect and direct methods

3.6 Algorithms for Systems with Discontinu-
ous States

3.6.1 Dynamic Programming

The major challenge in optimal control of switched systems is the occurrence
of discrete variables. Many algorithms for the solution of optimal control prob-
lems, as they will be presented in the next chapters, use gradient information
to compute an optimal trajectory. Dynamic programming however searches
a discrete space for an optimal solution and uses the Bellman principle to
reduce the dimension of the problem. Expanding this discrete search space
by an additional discrete state, as it is present in switched systems is rather
straighforward. The general idea of applying DP for the solution of hybrid
optimal control problems was formulated by Branicky and Mitter [1995] and
an algorithm for problems with switching cost was given by Gerdts [2012]. An
introduction to DP for purely continuous systems is given in Appendix A.1.
In order to formulate the algorithm for switched DP, the problem formulation
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has to be altered as Bolza problem without final state constraint

min
u(t)∈Uq ,q(t)∈Q

∫ tf

t0
L(x(t), u(t), t)dt+ Ψ(x(tf )) (3.72)

(3.73)

as described in Remark 2.4. Similar formulations are used by Gerdts [2012].
The major difference to the DP algorithm for purely continuous system is a
generalization of the state vector z and of the control vector w, which are
enhanced as follows:

z =
q
x

 , w =
∆q
u

 (3.74)

The new control input ∆q = qk+1− qk allows for controlling the switching and
may take on values from the set Bq ≡ {∆q : q + ∆q ∈ Q} and consequently,
the admissible concatenated controls are contained in the set Wq = Uq × Bq.
Let the discrete state equation be given by

zk+1 = zk + g(zk, wk, tk) (3.75)

(3.76)

with

g(zk, wk, tk) =
 ∆q
f(zk, wk, tk) · hk + δ(∆q, zk, tk)

 . (3.77)

The value function to be minimized is defined as

V (x1, t1) = Ψ(zN) +
N−1∑
k=1

L(zk, wk, tk) · hk, (3.78)

so that the discrete Bellman equation can be written as

V (zk) = min
wk

{
L(zk, wk, tk) · hk + V (zk+1)

}
= min

wk

{
L(zk, wk, tk) · hk + V (g(zk, wk, tk))

}
. (3.79)

To outline the DP algorithm in a compact form, some definitions need to be
made in advance:

Gx is a finite grid of the state space

Gz = Q×Gx is a finite grid of the assembled state

Gw(q) is a grid of controls of the set of feasible controls Wq.

(3.80)
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The main function hybdynprog has the task of storing the cost of an optimal
trajectory from a given state zk at instant k to the instant N . The respective
cost as well as the extended controls w are stored for each generalized state zk

on the grid Gz. This is done via a backwards recursion: The cost at instant
k = N is calculated by evaluating the final state penalty term Ψ for every grid
point in Gz. Moving backwards from N − 1 to 1, for every state on Gz, all the
controls in Gw(q) are applied and the states z+ obtained are calculated. An
optimal policy is then chosen, that minimizes (3.79). To approximate V (zk+1),
an interpolation of the cost for the consecutive instant k+1 is performed. The
optimal policy w is then stored in W and the optimal cost in V . Once the
Matrices V and W are completely filled, an optimal trajectory, starting from
the initial state z0 can be recovered by interpolating the optimal policy from
the matrix W . The policy is applied and the next state zk+1 calculated, for
which the same actions are repeated. These steps are performed in the function
dptrajectory.

Remark 3.9: In practice, the inner loop in the function hybdynprog can be
avoided by vectorization or can be accelerated via parallelization, which will
yield a significant performance gain of the algorithm.

Remark 3.10: The computational demand grows linearly with the discretiza-
tion rate of each continuous state. To reduce the range, in which the state
needs to be discretized, it is helpful to compute the reachable set of states in
advance. A method for computing this set for hybrid systems is described by
Althoff et al. [2010].

As noted in the introduction of this chapter, DP suffers from the so called
curse of dimensionality. The size of the grid Gz grows exponentially with the
dimension n, which will effect both, memory use and computation time ex-
ponentially. The advantages of the dynamic programming solution, whenever
applicable, are the global optimality with respect to the chosen discretization
and the fact that memory demand and computing time depend only linearly
on the number of discrete states Q.
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1: function hybdynprog
2: Define Gz, Gw(q), t
3: V N ← Ψ(Gz)
4: for k ← N − 1,−1, 1 do
5: for all zi ∈ Gz do
6: for all wj ∈ Gw(qi) do
7: z+ ← zi + g(zi, wj, tk)
8: Cj ← L(zi, wj, tk) · hk+ intp(Gz, V k+1, z+)
9: end for

10: j∗ ← arg minj Cj
11: V k

i ← Cj∗

12: W k
i ← wj∗

13: end for
14: end for
15: return V,W

16: end function
17:

18: function dptrajectory(V , W , Gz, x1, t)
19: q1 ← arg minq intp(Gz, V 1, [q x1]T )
20: z1 ← [q1 x1]T

21: for k ← 1, N − 1 do
22: wk ← intp(Gz, W k, zk)
23: zk+1 ← zk + g(zk, wk, tk)
24: end for
25: return w, z

26: end function

Algorithm 3: Dynamic programming algorithm

Remark 3.11: Due to the interpolation in the function dptrajectory, the
discrete state may take on values q /∈ Z and hence q /∈ Q. In this case, the
discrete state needs to be rounded to the nearest q ∈ Q.
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3.6.2 Embedding with Relaxation of the State Jump

The main idea of the embedding method described in section 3.5.1 is the
relaxation of the discrete states to obtain a purely continuous approximation
of the SOCP. This approach cannot directly be transferred to the case where
state jumps are present. The reason for this is that the function δ(q−,q+) has a
proper definition only on the non-convex set Q×Q× Rn × [t0, tf ].

Definition 3.4: A switching is called binary feasible from q− to q+, q− 6= q+

if the following conditions are satisfied

q−, q+ ∈ Q (3.81)

σkq =


0, q ∈ Q \ q−

1, q = q−
(3.82)

σk+1
q =


0, q ∈ Q \ q+

1, q = q+
(3.83)

Our aim is to formulate a relaxed initial value problem as follows:

x̂k+1 = x̂k +
Q∑
q=1

σq · f(x̂k, q, uk, tk) · hk + δ̂(σk, σk+1, x̂k, tk), (3.84)

Herein, δ̂ is a convexified jump function with the following properties:

• δ̂(σk, σk+1, x̂k, tk) = 0, if σk = σk+1

• δ̂(σk, σk+1, x̂k, tk) = δ(q−,q+)(xk, tk), if a binary feasible switching from q−

to q+ occurs

• δ̂ is defined on the convex set [0, 1]Q × [0, 1]Q × Rn × [t0, tf ]

The first property demands that no jump occurs, when two consecutive vec-
tors σ are equal and hence there is no switching that could lead to a jump.
The second property requires the relaxed jump function to take on the same
values as the original jump function for a binary feasible switching. The third
property assures that σkq can take on values from the convex set [0, 1] during
the numerical optimization. Defining

∆k = σk+1 − σk (3.85)

∆+ = max(0,∆k) (3.86)

∆− = max(0,−∆k), (3.87)
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and as ||∆+||1 the 1-norm of the vector ∆k, a function δ̂ that fulfills the above
stated requirements can be given by

δ̂(∆k, xk, tk) =


∑Q
i=1,j=1

∆+
i ·∆

−
j

||∆+||1 · δ(i,j)(xk, tk), ||∆+||1 > 0

0, ||∆+||1 = 0,
(3.88)

Remark 3.12: If ∑Q
q=1 σ

k
q = 1 and ∑Q

q=1 σ
k+1
q = 1, then ∑Q

q=1 ∆k
q = 0 holds.

Figure 3.2: Exemplary jump function δ̂ for a system with three subsystems on
the surface ∆1 + ∆2 + ∆3 = 0

Figure 3.2 depicts the values of the relaxed jump-function δ̂ on the surface
∆1 + ∆2 + ∆3 = 0 for a system with n = 1 and Q = 3 and the original
jump-functions

δ(1,2) = 2 δ(1,3) = 0

δ(2,1) = 0 δ(2,3) = 5 (3.89)

δ(3,1) = 3 δ(3,2) = 0.

A switching from qk = 2 to qk+1 = 3 corresponds to a switching from σk =
[0 1 0]T to σk+1 = [0 0 1]T . For ∆k = σk+1 − σk = [0 − 1 1], the
height of the jump δ(2,3) = 5 is exactly represented.
An embedded optimal control problem can then be defined as in (3.65)-(3.70)
and using (3.84) to solve the initial value problem for a given parameter set
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ρ. The problem is passed to an appropriately chosen NLP-solver. However,
the solver needs to be carefully selected. The function δ̂ is continuous and
piecewise linear in ∆i and therefore not continuously differentiable at ∆q =
0, i ∈ {1, . . . , Q} as can be noted from the partial derivatives

∂(∆+
i )

∂∆j

=


0, i 6= j

0, i = j,∆i < 0

1, i = j,∆i > 0.

(3.90)

∂(∆−i )
∂∆j

=


0, i 6= j

0, i = j,∆i > 0

−1, i = j,∆i < 0

(3.91)

∂(||∆+||1)
∂∆i

=


−1, ∆i < 0

1, ∆i > 0.
(3.92)

A piecewise linear approximation was chosen to promote binary feasible solu-
tions of the resulting nonlinear program.

Definition 3.5: The set of sub-gradients is the convex hull of the limits of
gradients of a function evaluated at sequences that converge towards the point
of non-differentiability (Lemaréchal [1989]).

The sets of sub-gradients for ∆+,∆− and ||∆+||1 are given by
∂(∆+

i )
∂∆j

∈ [0, 1], i = j,∆i = 0 (3.93)

∂(∆−i )
∂∆j

∈ [−1, 0], i = j,∆i = 0 (3.94)

∂(||∆+||1)
∂∆i

∈ [−1, 1], i = j,∆i = 0. (3.95)

Optimization methods commonly used for smooth nonlinear programs may
fail when the objective function or the constraints are not continuously dif-
ferentiable everywhere. This failure can have several reasons, among them
(Lemaréchal [1989], Sagastizábal [1997]):

• The objective function is for smooth methods usually approximated by
a linear or quadratic model. These models are undefined when encoun-
tering points where the gradient does not exist and close to these points,
the model can be a poor approximation



56

• Stopping tests, that implement the norm of the gradient at a current
iterate as stopping criterion cannot be used since the gradient might not
exist at an optimal point

• Calculating derivatives by finite differencing may yield poor approxima-
tions of the sub-gradient and should therefore be avoided on non-smooth
problems.

Even though no proof of convergence exists, quasi-Newton methods have in
many cases shown to perform well on non-smooth problems. A wide overview
of literature on the successful use of these methods via numerical experiments
is given in Lewis and Overton [2012], among them Luks̆an and Vlc̆ek [1999].
However, the procedure for determining the gradients might need to be adapted
as well due to the undefined gradients where kinks occur. As has been men-
tioned above, finite-differencing may yield an approximation of the gradient
that is outside of the set of sub-gradients. Automatic differentiation (Rall
[1981]) in combination with a black-box-method, that heuristically defines the
gradient from the set of sub-gradients where a function is not continuously
differentiable, can be applied to avoid this situation (Lemaréchal [1989]).
In many cases, binary unfeasible arcs will exist in the solution returned by
the NLP-solver. In this case, a method for obtaining a (suboptimal) solu-
tion that fulfills the binary constraint needs to be applied. Several methods
exist in the literature for solving mixed integer programs that use a relaxed
problem as helper problem, such as branch and bound or cutting planes (for
an overview, see Grossmann and Kravanja [1993]). In most cases, where the
mixed integer program is the result of a transcription from a hybrid system,
the dimension of the integer vector σ is rather high. Searching the entire tree is
of combinatorial complexity and therefore rarely possible. We therefore apply
a heuristic rounding strategy to obtain a suboptimal solution for the mixed
integer program.
The tuples J and A are introduced that define constraints to be respected,
when solving the NLP. The tuple J contains index-pairs (k, q), k = 1, . . . , N−
1, q ∈ Q and the tuple A contains values a from the set {0, 1}. For each pair
of elements from J and A, the constraint

σkq = a (3.96)
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is additionally imposed. Initially, both tuples are empty and the NLP is solved.
The tuples are then extended in two steps: The first step is a rounding step
that rounds all σkq > 1 − ε for 0 < ε � 1 to 1 and all σkq < ε to 0. The
rounded values are then imposed as additional constraints. In the second step,
the index pair (q, k) /∈ J is found that has the largest distance |0.5− σkq |. For
this index pair, σkq is also rounded to zero or one, depending on which value
is closer. The second step can be repeated r times. Choosing r ∈ N higher
will speed up the algorithm but may yield inferior results. The same is valid
for the value of ε. With the newly defined constraints, the NLP is then solved
again. The algorithm stops, when all σkq are constrained. This strategy is a
greedy algorithm (Turau [2009]), as it does not revise the elements in J and
A once they are part of the sets. Greedy algorithms are rather local in nature
but in return often much faster than algorithms that seek globally optimal
solutions and often they provide satisfying results. A subsequent switching
time optimization could be used to refine the solution. The pseudo-code of
this algorithm can be written as follows:
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1: function roundopt
2: define r ∈ N and 0 < ε� 1
3: J ,A ← ∅
4: while not all (k, q) ∈ J do
5: u, σ ← nlp(J , A)
6: for all k = 1, . . . , N − 1, q ∈ Q do
7: if σkq ≥ (1− ε) and (q, k) /∈ J then
8: J ← J ∪ (k, q)
9: A ← A∪ 1

10: else if σkq ≤ ε and (q, k) /∈ J then
11: J ← J ∪ (k, q)
12: A ← A∪ 0
13: end if
14: end for
15: for l← 1, r do
16: i, j = max(q,k)/∈J |0.5− σkq |
17: J ← J ∪ (i, j)
18: if σji > 0.5 then
19: A ← A∪ 1
20: else
21: A ← A∪ 0
22: end if
23: end for
24: end while
25: return u, σ

26: end function

Algorithm 4: Greedy rounding strategy



59

3.7 Examples

3.7.1 Continuous State without Final State Constraints

The following example was used by Xu and Antsaklis [2004] and was also
applied by Shaikh [2004] to demonstrate the algorithms proposed in the re-
spective works. The system description in it’s original form is given by the
two vector fields

f1 =
 0.6 1.2
−0.8 3.4

x+
1

1

u, f2 =
 4 3
−1 0

x+
 2
−1

u. (3.97)

The optimal control problem consists in finding a hybrid execution that mini-
mizes the functional

J = 1
2 · (x1(tf )− 4)2 + 1

2 · (x2(tf )− 2)2 + 1
2 ·
∫ tf

t0
(x2(t)− 2)2 + u2(t)dt

(3.98)

over the time interval t ∈ [0, 2]. The initial state is x(t0) = [0 2]T . To comply
with the scheme in this thesis, an additional state is introduced to incorporate
the Lagrangian term of the functional above, as has been described in section
2.5. The system can then be written as

f1 =


0.6x1 + 1.2x2 + u

−0.8x1 + 3.4x2 + u

(x2 − 2)2 + u2

 , f2 =


4x1 + 3x2 + 2u
−x1 − u

(x2 − 2)2 + u2

 (3.99)

and the cost function as

φ(x(tf )) = 1
2 · (x1(tf )− 4)2 + 1

2 · (x2(tf )− 2)2 + 1
2 · x3(tf ). (3.100)

The cost function value obtained by Xu and Antsaklis [2004] and Shaikh [2004]
is J ≈ 9.766. The algorithms applied to the same problem in this thesis
find a very different trajectory that yields a lower value of the cost function
φ(x(tf )) = J as it can be seen in Table 3.1. As time discretization of N = 200
was chosen, which yields a discrete time interval of hk = h = 0.01s. As
discretization method, the explicit Euler discretization scheme was employed.
The combined method finds the lowest value of the cost function, followed by
the indirect shooting algorithm and the embedding method. By evaluating the
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transversality condition (2.45) for the given system, the costate p3 is found to
be p3(tf ) = p3(t) = 0.5. Therefore, only the initial costates p1(t0) and p2(t0)
are variables to the nonlinear equation solver. For these, the condition

Υ(p(t0)) =
p1(tf )− (x1(tf )− 4)
p2(tf )− (x2(tf )− 2)

 = 0 (3.101)

must be fulfilled. Solving this nonlinear equation is the main problem in the in-
direct shooting algorithm. As initial guess for the costate p(t0) = [1 5 0.5]T

was estimated, which is close to the value obtained p(t0) ≈ [1.036 4.74 0.5].
The convergence region of the initial guess is rather limited. For p(t0) =
[3 7 0.5], the algorithm does not converge to a solution that fulfills a lower
error bound ΥTΥ < 10−5. Even for the starting values close to the final val-
ues, a residual of ΥTΥ = 0.57288 remains, which explains the inferior value of
the cost function, compared to the much more complex combined method. As
solver for the nonlinear equation, Matlab’s global newton-type method fsolve
was used and the golden section search method fminbnd was implemented to
find the minimum of the Hamiltonian function.
The embedding method yields the weakest result in terms of the cost function
value achieved and the trajectories x(t) deviate visibly from the trajectories
obtained with the other methods. However it performs very stable and finds a
good solution in feasible time. Especially the requirements on the initial guess
of both, control u and σ are rather low in this case. The control guess was set
to uk = −2, k = 1, . . . , N − 1, the switching variable to σk = [0.5 0.5]T , k =
1, . . . , N − 1. As solver for the resulting nonlinear optimization problem, the
Matlab function fmincon was utilized with the implemented SQP-option.
The best cost function value is obtained by the combined method, yet this
method requires by far the most computation time, due to the fact, that the
switching sequence is altered at only one time-instant at each iteration of
the main procedure. As initial guess for the switching function, qk = 2, k =
1, . . . , 100, qk = 1, k = 101, . . . , 200 was used. The evolution of the switching
function over the iterations can be seen for a similar example in the next
section in Figure 3.4.
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φ(x(tf )) tcomp[s]

Indirect shooting 5.1419 64
Embedding 5.5711 296
Combined method 5.1270 839

Table 3.1: Comparison of cost function value and computation time
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Figure 3.3: Control and state trajectories obtained for Example 1 with the
indirect shooting method, embedding and the combined method
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3.7.2 Continuous State with Final State Constraints

The SOCP in the previous section does not include any final state constraints.
To test the algorithms on a problem with final state constraints, the soft con-
straints for the states x1(tf ) and x2(tf ) are removed and replaced by the final
state constraints

ψ1(x(tf )) = x1(tf )− 4 = 0 (3.102)

ψ2(x(tf )) = x2(tf )− 2 = 0. (3.103)

The cost function is altered to

φ(x(tf )) = 1
2 · x3(tf ). (3.104)

The nonlinear equation to solve for the indirect shooting algorithm becomes

Υ(p(t0)) =
x1(tf )− 4
x2(tf )− 2

 = 0. (3.105)

As has been observed in the very similar previous problem, the indirect shoot-
ing algorithm does not fully converge to a solution that fulfills ΥTΥ < 10−5

but a small residual remains. In this case, this does not only lead to an inferior
solution but to a non-fulfillment of the imposed constraints. The deviations
from the final state constraints can be seen in Table 3.2. Due to the non-
fulfillment of these constraints, the cost function results of the indirect shoot-
ing algorithm cannot be directly compared to the very similar results of the
embedding approach and the combined method. Both of the latter methods
obtain a solution that fulfills the final state constraints up to a very narrow tol-
erance. The difference in the cost function value is smaller than in the previous
example but again, the combined method performs better than the embedding
method. Looking at the computation time, embedding is again much faster
than the combined method. The numerical settings, such as starting values
where necessary are entirely set as in the previous example.
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φ(x(tf )) tcomp[s] ψ1(x(tf )) ψ2(x(tf ))

Indirect shooting 5.3052 32 0.0673 −0.0346
Embedding 5.3797 274 0.16 · 10−12 0.34 · 10−12

Combined method 5.3555 1099 0.26 · 10−9 −0.1 · 10−9

Table 3.2: Comparison of cost function value, computation time and fulfillment
of the final state constraint

0 0.5 1 1.5 2

1
1.5

2

q(
t)

0 1 2 3 4
0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

x
1
(t)

x 2(t
)

 

 

0 0.5 1 1.5 2

1
1.5

2

q(
t)

0 0.5 1 1.5 2

1
1.5

2

q(
t)

0 0.5 1 1.5 2

1
1.5

2

q(
t)

0 0.5 1 1.5 2

1
1.5

2

q(
t)

t [s]

Iteration 1
Iteration 3
Iteration 20
Iteration 80
Iteration 120

0 20 40 60 80 100 120

0

20

40

60

φ(
x(

t f))

0 20 40 60 80 100 120
0

1000

2000

Iteration

∆ 
H

m
ax
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of the combined method
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Figure 3.5: Control and state trajectories obtained for Example 2 with the
indirect shooting method, embedding and the combined method

3.7.3 Discontinuous State

In the following example (introduced by Siburian [2004] and used also by
Gerdts [2012]), no continuous control is present. The system is only influenced
by discrete decisions. The second state exhibits jumps whenever the discrete
state changes. As in the previous section, the problem was reformulated to fit
into the hybrid system description used in this thesis. The system description
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is given by the three vector fields

f1 =
 1(

sin
(
π
2 t
)
− x1

)2

 , f2 =
 −1(

sin
(
π
2 t
)
− x1

)2

 , f3 =
 2t(

sin
(
π
2 t
)
− x1

)2

 ,
(3.106)

and the jump function

δ(q−,q+) =


[0 0.0001]T , q− 6= q+

[0 0]T , q− = q+.
(3.107)

The cost function to be minimized is

φ(x(tf )) = x2
1(tf ) + x2(tf ). (3.108)

As expected, the dynamic programming algorithm obtains a slightly better
solution, which is the global optimum with respect to the chosen discretization.
In this example, the state x1 is discretized in the interval [−3, 3] with 4000
steps. The second state does not need to be discretized as it is a Lagrangian
state and therefore only accumulates the running cost. The embedding with
relaxation of the discontinuity yields a slightly inferior cost function value due
to the fact that it deviates from the optimal switching sequence at t ≈ 1 s but
it requires only a third of the computation time. This difference will be much
stronger, when a higher number of continuous states is present in the problem.
The solution obtained after the first nonlinear programming iteration is binary
unfeasible and therefore the greedy rounding scheme is applied. Overall, 27
rounding iterations are needed, until a binary feasible solution is achieved.
The evolution of the switching variable σ at different iterations is depicted in
Figure 3.7.

φ(x(tf )) tcomp[s]

Dynamic Programming 0.032286 1514
Embedding 0.032889 421

Table 3.3: Comparison of cost function value and computation time
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Figure 3.6: Control and state trajectories obtained for Example 3 with dynamic
programming and embedding
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Chapter 4

Hybrid Vehicles

Increasing prices for crude oil, growing environmental concerns as well as
stronger legislative requirements have caused a strong need for the development
of new powertrain architectures for reducing the emissions of carbon-dioxide
and other combustion products that are harmful to the environment and/or to
the human health. One of those developments constitute hybrid vehicles, that
have attained considerable progress over the last years. In this type of power-
train architecture, an additional energy source and an additional converter are
added to the conventional powertrain with fuel tank and internal combustion
engine (ICE). In most cases, the secondary energy source will be a high voltage
battery and the additional converter be at least one electrical motor/generator
(MG). The vehicle is then called a hybrid electric vehicle (HEV). If the vehicle
can be recharged externally, using the local power grid, the vehicle can be
referred to as a plug-in hybrid vehicle (PHEV). Several different layouts exist
that differ in how the energy from the thermal path and the electrical path
is coupled (see for instance Hofmann [2010] for an overview). The additional
complexity of the powertrain brings along new degrees of freedom, that can
be used to improve the overall efficiency of the powertrain and hence can be
described as additional control inputs for the system. These degrees of free-
dom comprise continuous controls as well as discrete decisions and therefore
the overall system constitutes a hybrid system and should be modeled respec-
tively. It should be pointed out, that the term "hybrid" in "hybrid vehicle"
does not necessarily refer to the existence of discrete phenomena but to the
fact that at least two energy storages and converters exist. The hybrid pow-

67



68

ertrain is usually controlled by a controller structure that consists of several
layers. The upper-layer control structure that is responsible for determining
the desired power-split, the drive mode and the desired gear in order to im-
prove the overall efficiency is called energy management. Because of the wide
range of possible parameters, defining such an energy management can be a
cumbersome task. Compared to heuristic approaches, the use of analytical
methods, as for example optimal control theory, can significantly reduce this
burden and yield much better results. In section 4.1, models of a hybrid vehi-
cle will be described. Based on these models, SOCPs with different boundary
conditions will be formulated in section 4.2 and the efficient application of
the algorithms explained in the previous chapter will be demonstrated. In
section 4.3, it will be shown how the existing hybrid optimal control theory
can be used to calculate lookup-tables for a rule-based energy management
automatically from a SOCP-solution. The theory can also be used to develop
new functional approaches for further reducing emissions. In chapter 4.4, a
predictive energy management will be detailed that solves a hybrid optimal
control problem online in the vehicle.

4.1 Modeling Hybrid Vehicles as Switched
Systems

K0 K1ICE

MG

Tice Tgbx
Tmg

+ -

HV-Battery

Twh

Figure 4.1: Sketch of a parallel hybrid powertrain configuration with clutches
K0 and K1 and an automatic gearbox

During the operation of hybrid-vehicles, several continuous decisions as well as
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discrete decisions can be made to obtain a desired operation set-point. Contin-
uous controls may for instance include a large set of parameters of the internal
combustion engine, such as ignition angle, throttle, crank-shaft positions and
many others. Discrete decisions can imply the gear choice of an automatic
transmission, different clutch-states as well as several discrete parameters in
the operation of the ICE, such as the activation of the charge-motion-valve. A
model, containing all these decisions and their effect on the system would be
very expensive in terms of computation time and would require a large set of
information that is usually not easily available in early stages of the automo-
tive calibration process. It is therefore advisable, to carefully select the control
parameters and states needed in a model and to define the required depth of
the model. The basic operation parameters of the ICE will in most cases be
well defined, before the calibration process of the energy management for hy-
brid vehicles begins. These parameters can consequently be assumed as given
and the required model dimension is significantly reduced. In this section, two
models for hybrid vehicles will be described. Both models are quasi-steady
in terms of some dynamics, as for instance the vehicle-motion. The velocity
of the vehicle will hence not be assumed as a state but as a time-dependent
boundary-condition. This helps to further reduce the dimension of the model.
The first model is based on the quasi-steady torque and speed relations in a
hybrid vehicle and uses the torque-split between ICE and MG as continuous
control input and a drive-mode (hybrid or pure electric) as well as the gear
selection as discrete control input. This model allows for the optimization of
these parameters under the assumption that the vehicle is warmed-up. Yet,
this can not always be assumed. Especially over the rather short cycles applied
for homologation purposes, the thermodynamic influence especially on the ICE
cannot be entirely disregarded, since the heat-up process amounts for a signif-
icant part of the entire drive-cycle. Additionally, some constraints apply that
largely depend on thermodynamic conditions. Especially noxious emissions
are strongly limited by the diverse legislations and cannot be disregarded in
the calibration process. The second model includes the most important ther-
modynamic states and has the ignition angle as additional control variable to
control the heat-up of the three-way catalytic converter (TWC).
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4.1.1 Quasi-Steady Model

The following model is described for a parallel hybrid vehicle architecture with
a six-speed automatic gearbox, as it can be seen in Figure 4.1. Using the model
for different powertrain architectures, however, is straightforward. The model
is based on a back-wards approach, meaning that a drive-cycle is assumed
in advance and the torque and speed required at the wheel are calculated
based on the predefined drive-cycle. Very similar models were derived by
Wei [2004], Guzzella and Sciarretta [2007], de Jager et al. [2013] and others.
The proposed models have in common the quasi-steady relationships between
the interacting torques and a simple short circuit analogy for modeling the
electrical subsystem. The highly nonlinear efficiencies or related information
such as fuel mass flow or electrical power, are stored differently. Willans-line
methods are are often used (Wei [2004]). In this thesis, we prefer the storage of
such highly nonlinear functions as blended splines or as tensor-product spline.
A method for defining these functions is given in Appendix A.2.
Based on the given trajectories v(t) > 0 ∀t and s(t), where v(t) is the vehicle
velocity and e(t) is the road inclination angle, the required wheel-torque Twh(t)
and wheel-speed ωwh can be calculated as

Twh(t) = Tdrag(t) + Tincl(t) + Tacc(t) (4.1)

Tdrag(t) = c0 + c1 · v(t) + c2 · v2(t) (4.2)

Tincl(t) = m · g · e(t) (4.3)

Tacc(t) = m · v̇(t) (4.4)

ωwh(t) = v(t)
rwh

. (4.5)

The terms Tdrag, Tincl and Tacc refer to the torque required to compensate
for the drag caused by rolling-resistance, aerodynamic drag, frictional losses
and others, the torque due to road inclination and the torque required for
a given acceleration, respectively. The parameters m and rwh represent the
vehicle mass and the wheel-radius. The drag coefficients c0, c1 and c2 are
usually determined during a coast-down experiment by fitting the polynomial
to the measured velocity-profile. In automotive practice, it is more common to
store the rotational speeds as revolutions per minute instead. The respective



71

transformation can be easily performed as follows:

n = ω · 60 s
2π · 1 min (4.6)

The gearbox input torque Tgbx(t) and the gearbox input speed ωgbx are then
determined using the gear ratio ιgbx and adding the frictional gearbox losses
Tgbx,loss, given by a lookup-table. Both depend on the selected gear at time t,
κ(t) ∈ {1, 2, . . . , 6}:

Tgbx(t) = Twh(t)
ιgbx(κ(t)) + Tgbx,loss(κ(t), Twh(t), ωwh(t)) (4.7)

ωgbx(t) = ωwh(t) · ιgbx(κ(t)). (4.8)

At any time t, the gearbox input torque must be provided in sum by ICE and
MG:

Tgbx(t) = Tmg(t) + Tice(t). (4.9)

The given powertrain allows for pure electric driving by opening the clutch K0
and therefore separating the ICE from the active powertrain. Drag losses of
the ICE are avoided in electric drive mode. The active drive mode at time t
can be identified by a discrete decision ζ ∈ {0, 1}:

ζ(t) =


0, electric drive mode

1, hybrid drive mode.
(4.10)

The speeds of MG and ICE can then be determined as

ωmg(t) = ωgbx(t) (4.11)

ωice,q(t) =


0, ζ = 0

ωgbx(t), ζ = 1.
(4.12)

The torque-split between MG and ICE in (4.9) provides a continuous degree
of freedom that can be used as control input to the system. The definition of
the control u(t) is herein somewhat arbitrary and hence the definition

u(t) = Tice(t) (4.13)
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is made. The set of feasible controls can then be defined as

Uζ =


{0}, ζ = 0

[Tice,min(ωice), Tice,max(ωice)], ζ = 1.
(4.14)

The discrete state q(t) implies the decisions ζ(t) and κ(t). The definition

q(t) = 6 · ζ(t) + κ(t) (4.15)

assigns a unique value q(t) ∈ {1, 2, . . . , 12} to each possible combination of
drive mode and gear selection. The fuel volume flow β̇ of the internal com-
bustion engine depends on the engine speed, torque and the brake specific fuel
consumption bsfc for a given engine operating point:

β̇ = γ · Tice(u(t)) · ωice,q(t)(t) · bsfc
(
Tice(u(t)), ωice,q(t)(t)

)
. (4.16)

The constant γ includes several natural constants and the bsfc is here given
by a mapping that is twice continuously differentiable with respect to the
continuous control variable. In many cases in this thesis, it will be necessary
to store measured information as a smooth function, due to the requirement
of differentiability for many optimization algorithms. In Appendix A.2, a
method for obtaining such functions based on a set of measured points will be
explained. The electrical system can be modeled using a simple circuit analogy
with internal resistance, as it can be seen in Figure 4.2. The battery power

Ri Voc

I

Figure 4.2: Open circuit analogy applied as battery model

Pbat is the sum of the electrical power of the MG and the power Paux required
to supply the auxiliary devices in the vehicle that additionally require some
amount of electrical energy:

Pbat,q(t)(u(t), t) = −Pmg,q(t)(u(t), t)− Paux(t). (4.17)

Herein the electrical power of the MG is again given by a twice differentiable
function Pmg(t)(Tmg, ωmg). Considering the losses caused by the battery’s in-
ternal resistance Ri, the sum of powers in the electrical circuit yields

Pbat,q(t)(u(t), t)−Ri(ξ(t)) · I2(t) = Voc(ξ(t)) · I, (4.18)
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where Voc is the open circuit voltage of the battery, whose dependence of the
state of charge ξ is given by a smooth function. Solving this equation for I
yields

Iq(t)(·) =
−Voc(ξ(t)) +

√
V 2
oc(ξ(t)) + 4Ri · Pbat,q(t)(u(t), t)

2Ri(ξ(t))
. (4.19)

The internal resistance’s dependence on ξ can for many modern battery types
be disregarded. Only for very low values of ξ, the internal resistance rises
quickly but in the remaining range, the resistance is nearly constant. The time
derivative of the state of charge of the high voltage battery ξ(t) is proportional
to the battery current I:

ξ̇ = 1
Qbat

· Iq(t)(ξ(t), u(t), t). (4.20)

Qbat denotes the total capacity of the battery. For further reference in this
thesis, the overall hybrid system model is denoted as

M1 : ẋ =
β̇
ξ̇

 = fq(t)(x(t), u(t), t). (4.21)

For the consideration of a vehicle’s energy management, a start of the ICE can
for most vehicles without significant loss of accuracy be assumed to be executed
within one time-instant. An engine-start will require some additional torque
of ICE and/or MG whereas an engine-stop is usually performed by cutting of
fuel and therefore no additional energy is needed for the stop, nor is any kinetic
energy recuperated. The additional energy for the start is modeled with the
jump-function

δ(ζ−,ζ+) =


[∆β ∆ξ]T , ζ− = 0 ∧ ζ+ = 1

0, otherwise,
(4.22)

where ∆β and ∆ξ are the respective measured jumps that result from an
engine start.
A plot of the deviations of the model from the respective measurements is
depicted in Fig. 4.3. The validation was performed for the mechanical sub-
system by providing the velocity of three drive cycles (FTP, US06 and NEFZ)
and comparing the measured gearbox input torque for a specified gear-sequence
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with the torque calculated by the model. For validation of the electrical sub-
system, the MG-torque and MG-speed were fed to the model and the resulting
ξ-trajectory is compared with a measured trajectory. It should be pointed out,
that ξ can actually not be measured but is estimated by the battery manage-
ment system based on an observer. Both, the mechanical subsystem as well
as the electrical subsystem can be modeled with sufficient accuracy. An ob-
servable deviation between measured and calculated final state of charge can
be noticed for the US06 cycle. Due to model errors, a solution obtained from
an optimal control problem with a final state constraint must not necessarily
fulfill this final state constraint in a measurement.
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Figure 4.3: Validation of the models for the mechanical and electrical subsys-
tem for three different drive cycles.

4.1.2 Thermodynamic Model

The model described in the previous section is only valid for a heated-up engine
with cooling-water temperatures of well above 330 K. The heating-process
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itself cannot be further investigated using this simplified model. Therefore, in
this section, a much more detailed model is described that also incorporates a
thermodynamic model. In the beginning of any drive cycle, certain attention
needs to be paid to heating the TWC in the exhaust system since only above a
given temperature threshold, the TWC operates with acceptable efficiency. A
common measure to achieve a quick heat-up is the retardation of the ignition-
angle, which leads to higher exhaust enthalpies at the cost of lower combustion
efficiencies. To allow for very late ignition angles, a homogen-split (HSP)
injection scheme is commonly used (Basshuysen [2013]), as opposed to the
standard injection scheme (STD). Additional degrees of freedom during the
TWC-heating come from the states of the clutches K0 and K1. In contrast
to the model in the previous section, the ICE is not necessarily switched off,
when K0 is open but the engine can be operated in idling mode. The overall
discrete decisions are summarized in Table 4.1.

q K0 K1 ICE onoff Injection scheme

1 Closed Open On HSP
2 Open Closed On HSP
3 Closed Closed On HSP
4 Open Closed Off None
5 Closed Closed On STD

Table 4.1: Discrete decisions made at any time t for a given value q(t)

The modes for q ∈ {1, 2, 3} are modes designed specifically for the TWC-
heating, q = 4 is the pure electric drive mode and q = 5 denotes the conven-
tional hybrid drive mode. To reduce the already very high model complexity,
the gearbox is not regarded in the system description. Instead, measured tra-
jectories of ngbx and Tgbx serve as time-dependent boundary conditions. For
the engine speed

ωice(t) =


0, q(t) ∈ {4}

ωidle, q(t) ∈ {1, 2}

ωgbx(t), q(t) ∈ {3, 5}

(4.23)
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applies and for the MG-speed

ωmg(t) =


ωidle, q(t) ∈ {1}

ωgbx(t), q(t) ∈ {2, 3, 4, 5}.
(4.24)

Again, the gearbox input torque has to be supplied in sum by ICE and MG
and hence the condition

Tgbx(t) = Tice(t) + Tmg(t) (4.25)

holds. The vector of continuous control inputs comprises the relative cylinder
charge mcyl and the ignition angle α:

u(t) =
mcyl(t)
α(t)

 (4.26)

The convex sets of feasible controls are defined as

Uq =

u
∣∣∣∣∣
 mcyl,min(ωice)
αmin,q(mcyl, ωice)

 ≤ u ≤

 mcyl,max(ωice)
αmax,q(mcyl, ωice)

 . (4.27)

For HSP injection, the ignition angle can usually be retarded much more, such
that the set of feasible controls is larger for q ∈ {1, 2, 3}. For electric drive
mode Uq = {0} applies. Based on these control variables, the engine output
torque Tice is formed as follows: An optimal ignition angle is given by the
smooth functions g1 and g2, depending on whether HSP or standard injection
is active. Throughout this section, smooth mappings will be denoted as gi.

αopt(t) =


g1(mcyl(t), ωice(t)), q(t) ∈ {1, 2, 3}

g2(mcyl(t), ωice(t)), q(t) ∈ {5}
(4.28)

Applying the optimal ignition angle would yield a theoretically optimal torque

Tαopt(t) = g3(mcyl(t), ωice(t)). (4.29)

Deviating from the optimal ignition angle leads to a decrease in combustion
efficiency

ηdα(t) = g4(αopt(t)− α(t)) (4.30)
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which in turn reduces the inner engine torque

Tα(t) = Tαopt(t) · ηdα(t). (4.31)

The engine output torque is then obtained by subtracting the temperature-
dependent frictional torque Tl

Tice(t) = Tα(t)− Tl(ϑcw). (4.32)

Herein, the cooling water temperature ϑcw is used to express the temperature-
dependence. In general the oil-temperature would be a better measure to
express the internal friction loss but this would require the introduction of an
additional state. Assuming a constant air-fuel-ratio λ, the fuel volume flow is
proportional to the air-mass-flow ṁair passing the cylinder.

β̇ = 1
λ
· γ · ṁair(mcyl, ωice) (4.33)

Again, γ is a product of different natural constants. The electrical subsystem
is modeled completely analogously to the preceding section with the simple
circuit model. The thermodynamics of the system are modeled using a system
of three temperature states

ϑ(t) =


ϑcw(t)
ϑcyl(t)
ϑtwc(t)

 (4.34)

describing the temperatures of the cooling water, cylinder and manifold
and TWC. The intermediate state ϑcyl is a state that combines the wall-
temperatures of several elements in the exhaust system, as for instance cylin-
der, outlet valve and manifold. Modeling each pipe-element in the exhaust
system with a separate state would again lead to a very high system dimen-
sion, which is to be avoided. The raw exhaust temperature is given by a
mapping

ϑexh(t) = g4(mcyl(t), ωice(t)). (4.35)

Retarding the ignition angle α leads to an increase of the exhaust temperature
and the respective correction factors obtained from measurements are given
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by g5 for HSP and by g6 for standard injection:

ϑexh,corr(t) =


ϑexh(t) · g5(mcyl(t), ωice(t)), q(t) ∈ {1, 2, 3}

ϑexh(t) · g6(mcyl(t), ωice(t)), q(t) ∈ {5}.
(4.36)

Due to temperature losses to cylinder wall, exhaust valves and exhaust man-

TWC

Turbine
Manifold

ϑexh,corr ϑturb

ϑtwc

Figure 4.4: Sketch of the elements in the exhaustsystem regarded in the model

ifold wall, the gas temperature in the manifold is reduced to

ϑman(t) = ϑexh,corr(t)− p1 · (ϑexh,corr(t)− ϑcyl(t)) (4.37)

and the evolution of the temperature state ϑcyl is governed by the differential
equation

ϑ̇cyl = p2 · (ϑexh,corr(t)− ϑcyl(t))− p3 · (ϑcyl(t)− ϑcw(t)). (4.38)

Here and in the following, the parameters pi include heat capacities, heat
transfer coefficients and natural constants. Further, the gas temperature in
the exhaust system is reduced in the turbine and the reduction is described by

ϑturb = g7(ṁexh, ϑman) · ϑman. (4.39)

It is assumed that the injected fuel has only a minor effect on the exhaust mass
flow and therefore ṁexh = ṁair holds. The catalytic converter temperature can
finally be modeled by the differential equation

ϑ̇twc(t) = p4 · (ϑturb(t)− ϑtwc(t))− p5 · (ϑtwc(t)− ϑamb). (4.40)

Exothermic reactions caused by unburnt hydrocarbon also play a role in the
temperature increase, when the TWC-light-off temperature is reached. As we
are mostly interested in the heating behavior, before the light-off temperature
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is reached, exothermic reactions are not considered. The time derivative of the
cooling water temperature is given by the energy flow balance

ϑcw(t) = p7 · (Pfuel(t)− Pice(t)− τ̇exh(t)− τ̇amb(t)), (4.41)

where Pfuel, τ̇exh, τ̇amb denote the energy flows due to combustion, losses to the
exhaust and to the environment, respectively. Pice is the mechanical power of
the ICE:

Pfuel(t) = Hl · ṁfuel(t) (4.42)

τ̇exh(t) = p8 · ṁexh(t) · ϑman(t) (4.43)

τ̇amb(t) = p9 · (ϑcw(t)− ϑamb(t)) (4.44)

Pice(t) = Tice(t) · ωice(t). (4.45)

Hl denotes the lower heating value of the fuel and ṁfuel the fuel mass flow.
Noxious emissions modeling has been a growing research area for many years.
The calculation times of most detailed emission models however, are still too
high for optimization purposes. On the other hand, it is well known that
quasi-steady map-based models do not provide sufficient accuracy to achieve
quantitatively reliable results (Silva et al. [2006]). As a consequence, artificial
states Zi are introduced that resemble the emission components at least qual-
itatively. For every emission component i ∈ {1, . . . , E}, a state governed by
the differential equation

Żi = ṁe,i(mcyl(t), ωice(t), q(t)) · (1− ηconv(ϑtwc(t))) (4.46)

with the initial state Zi(t0) = 0 is added to the system description. The
function ṁe,i(mcyl(t), ωice(t), q(t)) is a map of raw emissions that may addi-
tionally depend on the injection scheme applied and ηconv is the temperature
dependent conversion efficiency of the TWC. The conversion efficiency can be
approximated by an arcus tangens function as follows (Kum et al. [2011]):

ηconv(ϑtwc) = 1
π
·
(

arctan
(
ϑtwc − ϑlo

s1

)
+ π

2

)
. (4.47)

The parameters ϑlo and s1 are the light-off temperature and a fitting parameter,
respectively. The average conversion efficiency of the emission component i in
the interval [t0, t] can be expressed by

ηtwc(t) = 1− Zi(t)
me,i(t)

. (4.48)



81

The overall model is then given by the hybrid system

M2 : ẋ =



β̇

ξ̇

ϑ̇cw

ϑ̇cyl

ϑ̇twc

Ż1
...
ŻE

ṁ1
...
ṁE



= fq(t)(x(t), u(t), t). (4.49)

Figure 4.5 shows a comparison of the temperature trajectories ϑtwc and ϑcw

with the respective measured trajectories obtained for measured inputs of
q(t),mcyl(t) and α(t). The heat-up procedure can be modeled with high ac-
curacy. At higher temperatures ϑtwc � 550 K, the exothermic reactions in
the catalytic converter have a significant impact on the TWC-temperature.
The modeling of these chemical reactions however is rather difficult. Since
the heat-up process itself up to this temperature is of the biggest interest, the
model is still sufficiently reliable.
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Figure 4.5: Comparison of the results of the thermodynamic model compared
to two measurements
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4.2 Solution of SOCPs for Hybrid Vehicles

The aim of an energy management system for hybrid vehicles is to control the
degrees of freedom present in a given architecture, to minimize a certain cost
function. In the majority of the cases, the cost function will resemble the fuel
consumption over a drive cycle. Additional constraints can be present that
shall impose limits on noxious emissions or on the state of charge at the end of
the drive cycle. The energy management determines the set-point values for
each element of the powertrain that can be controlled up to some degree. A
lower-layer control structure is responsible for realizing these set-point values.
Computational methods have become inalienable in the calibration process
due to the high number of calibration parameters available in today’s electronic
control units. A first step towards the definition of an energy management sys-
tem can be the solution of a respectively formulated optimal control problem.
One large field of research is the use of optimal control theory to define such
energy managements. The use of Pontryagin’s Minimum Principle to solve an
optimal control problem was proposed by Rousseau et al. [2007], Serrao and
Rizzoni [2008], Kim et al. [2009], Stockar et al. [2011], Kim et al. [2011] and
others. These works share the common approach to model the operation of a
hybrid vehicle with a model similar to the quasi-steady model in section 4.1.1
and reduce the problem to finding the initial value of the costate. In Serrao
and Rizzoni [2008], battery aging is additionally included in the problem for-
mulation. A closely related field of research are Equivalent Fuel Consumption
Minimization Strategies (ECMS), initially proposed by Paganelli et al. [2002]
and enhanced by Sciarretta et al. [2004], Chen and Salman [2005], Musardo
et al. [2005], among others. The strategy is based on the instantaneous mini-
mization of a sum of fuel mass flow and weighted electrical power. This sum
equals the Hamiltonian function for the PMP, if the model is set up corre-
spondingly. The weighting factor for the electrical power is called equivalence
factor and is usually assumed to be constant. In the Hamiltonian function,
the costate can be interpreted as weighting factor. It will be shown in section
4.2.2 that the costate can be assumed to be constant without significant loss
of accuracy. The indirect shooting method can be applied to determine the
equivalence factor analogously to the initial costate value. The relationship
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between ECMS and the PMP was described by Kim et al. [2011]. Dynamic
programming is also widely applied to solve the problem for the quasi-steady
model, often to compare the results of ECMS/PMP with the global optimum
with respect to a chosen discretization (Karbowski et al. [2006], Rousseau
et al. [2007], de Jager et al. [2013]). In the work of Kum et al. [2011], dy-
namic programming is used to solve a much more complex optimal control
problem considering thermodynamic and emission constraints. Discrete phe-
nomena have attained less attention in the literature on energy management.
The use of embedding for solving a system with two modes is encouraged
by Uthaichana et al. [2008]. Gear changes as well as engine starts and their
respective costs are included in the two-stage algorithm proposed by Nüesch
et al. [2014]. The development of algorithms for the solution of SOCPs in the
recent years however, allows for the efficient solution of many problems. The
choice of the applied algorithm must be made specifically for each model, as
will be shown in this section.

4.2.1 Problem Formulations

Given a vehicle configuration and a corresponding model, the optimal opera-
tion of a HEV over a given drive cycle can be formulated as SOCP. If a solution
to this problem can be found, the solution will contain the optimal continu-
ous controls, the optimal switching sequence and the optimal state trajectories
over the time interval [t0, tf ]. At first glance, the solution will be cycle specific
and involve a feed-forward control only. An exception is dynamic program-
ming, where the value function V (xk, tk) and the control function W (xk, tk)
contain the optimal cost and controls for any state on the grid Gz at time
instant tk. It will later be shown that even though the problem was solved
for one specific cycle, the solution can still be used for the general calibration
of hybrid vehicles and for the development of predictive energy managements.
Different drive cycles are used worldwide to asses the fulfillment of legisla-
tive requirements of a specific vehicle. Thus, the optimal operation of HEVs
over these drive cycles is of particular interest. In Europe, the New European
Drive Cycle (NEDC) is used for this purpose, whereas in the USA the Federal
Test Procedure (FTP) is applied. Each of these drive-cycles is defined by a
given trajectory v(t), t ∈ [0, tcyc], where tcyc denotes the total length of the
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drive-cycle. When the vehicle to be tested possesses a high-capacity electric
energy storage, it is usually demanded, that the amount of energy stored in
the storage be balanced over the entire cycle:

ξ(0)− ξ(tcyc) ≡ 0. (4.50)

Therefore this condition is regarded as a final state constraint in most of the
problem formulations. Four different SOCPs are defined in this section with
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Figure 4.6: New European Drive Cycle velocity profile and measured gearbox
input torque and input shaft speed for a given gear sequence

varying model complexity. Problems P1-P3 are based on the NEDC drive
cycle. A solution to problem P1 contains the optimal drive-mode decision ζ(t)
and the optimal torque-split between MG and ICE. The gear selection κ(t) is
performed before the optimization via a predefined strategy. State-jumps are
not considered in P1.

P1 :=



minζ(t)∈{0,1},u(t)∈Uq β(tf )

subject toM1

ψ(x(tf )) = 0.5− ξ(tf ) = 0

ξ(t0) = 0.5

β(t0) = 0

δ(ζ−,ζ+) = 0 ∀ ζ−, ζ+ ∈ {0, 1}.

(4.51)
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Figure 4.7: First hill of the Federal Test Procedure: Velocity profile and mea-
sured gearbox input torque and input shaft speed for a given gear sequence

Problem P2 additionally aims at finding the optimal gear selection κ(t). The
gear selection found will often be rather unrealistic, due to many additional
constraints, such as driving comfort, that are hard to account for in a math-
ematical model. Problem P2 is therefore of rather academic interest and has
only minor practical relevance. As in P1 state-jumps are disregarded.

P2 :=



minζ∈{0,1},κ∈{1,...,6},u(t)∈Uq β(tf )

subject toM1

ψ(x(tf )) = 0.5− ξ(tf ) = 0

ξ(t0) = 0.5

β(t0) = 0

δ(ζ−,ζ+) = 0 ∀ ζ−, ζ+ ∈ {0, 1}.

(4.52)

Problem P3 is similar to P1 except for the fact that a state jump is considered,
as the ICE starts. An engine start will here lead to a decrease in the state of
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charge ξ and to an increase in the fuel consumption β:

P3 :=



minζ(t)∈{0,1},u(t)∈Uq β(tf )

subject toM1

ψ(x(tf )) = 0.5− ξ(tf ) = 0

ξ(t0) = 0.5

β(t0) = 0

δ(ζ−,ζ+) from (4.22).

(4.53)

Problem P4 uses the much more complex model M2 and is formulated over
the first phase of the FTP cycle as it is shown in Fig. 4.7. The aim is to find
a strategy for optimally heating up the engine and the exhaust system. The
boundary conditions for the SOCP are formulated differently. It is imposed
that the ICE be heated up to at least 353 K at time tf . Not the entire driving
cycle is regarded but tf is chosen such that 0 < tf < tcyc. It is therefore not
necessary, to demand a fixed value ξ(tf ) as ξ needs to be balanced at time tcyc
but not for t ∈ (0, tf ). However, if the state of charge ξ(tf ) has a low value,
more charging has to be done over the remaining cycle with t ∈ (tf , tcyc]. The
function Brem(ξ(tf ) − ξ(tcyc)) gives the fuel consumption for the remaining
cycle, depending on the difference between ξ(tf ) and the target value ξ(tcyc).
The function is shown in Fig. 4.8. Since it is demanded that the ICE be heated
up sufficiently at tf , the function can be easily set up by solving a SOCP for
the time range (tf , tcyc] with the simpler modelM1. This is done on a grid of
ξ(tf ). Between the grid values, a cubic spline interpolation is performed. The
cost function is then defined as

B(x(tf )) = β(tf ) +Brem(ξ(tf )). (4.54)
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One emission component is regarded, which is resembled by the state Z(t) and
an upper bound on Z(tf ) is imposed. State-jumps are not considered:

P4 :=



minq(t)∈{1,...,5},u(t)∈Uq B(x(tf ))

subject toM2

ψ1(x(tf )) = 353 K− ϑcw(tf ) ≤ 0

ψ2(x(tf )) = Z(tf )− Zmax ≤ 0

ξ(t0) = 0.345

β(t0) = 0

ϑcw(t0) = ϑcyl(t0) = ϑtwc = 293 K.

(4.55)
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Figure 4.8: Function Brem(ξ(tf )− ξ(tcyc)) that provides the optimal fuel con-
sumption for the remaining drive cycle t ∈ (tf , tcyc], depending on the difference
ξ(tf )− ξ(tcyc)

4.2.2 Evaluation of Necessary Conditions

Evaluating the necessary conditions is helpful as it can provide useful insight
into the problem structure and hence facilitate the choice of an appropriate
algorithm for the solution of the SOCP. Especially for the problems P1-P3, the
necessary conditions yield some interesting results that can be used to simplify
the problem. The Hamiltonian function for the modelM1 is defined as

Hq(t)(x(t), p(t), u(t), t) = pT (t) · fq(t)(x(t), u(t), t) (4.56)

= p1(t) · β̇q(t)(u(t), t) + p2(t) · ξ̇q(t)(x(t), u(t), t).
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Evaluating the transversality condition, the time derivative of the costates
results to

ṗ1 = −∂Hq(t)(x(t), p(t), u(t), t)
∂β(t) = 0 (4.57)

ṗ2 = −∂Hq(t)(x(t), p(t), u(t), t)
∂ξ(t) = − 1

Qbat

∂Iq(t)(x(t), u(t), t)
∂ξ(t) . (4.58)

Hence, the first costate remains constant. The total variation over a given
interval [t0, tf ] of the second costate will also be small, since the last term in
the second costate’s time derivative yields

∂Iq(t)(x(t), u(t), t)
∂ξ(t) = ∂Iq(t)(x(t), u(t), t)

∂Voc(t)
· dVoc(ξ(t))

dξ(t) . (4.59)

For modern batteries, the last term in this equation takes on very small values,
caused by the minor dependence of the open-circuit voltage of the state of
charge. Due to the fact that ∂δ

∂x
= 0 and ∂δ

∂t
= 0, the Hamiltonian as well as

the costate are continuous on a switching:

p(t+j ) = p(t−j ) (4.60)

Hq(t+j )(t+j ) = Hq(t−j )(t−j ). (4.61)

The final value of the first costate can then be calculated as

p1(tf ) =
∂
(
φ(x(tf ) + µTψ(x(tf )

)
∂β(tf )

= 1. (4.62)

Thus the first costate can be disregarded in the Hamiltonian and with the
definition

p(t) ≡ p2(t), (4.63)

H can be written as

Hq(t)(x(t), p(t), u(t), t) = β̇q(t)(u(t), t) + p(t) · ξ̇q(t)(x(t), u(t), t). (4.64)

If state jumps are not considered (δ(ζ−,ζ+) = 0 ∀ ζ−, ζ+ ∈ {0, 1}), the Hamil-
tonian needs to be minimized by both continuous control u(t) and discrete
state q(t) at almost any time t. If state jumps may occur, this is not a nec-
essary condition. In this case the Hamiltonian needs to be minimized by the
continuous control only at almost any t.
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4.2.3 Solving the SOCPs

Embedding and indirect shooting are both appropriate methods for solving the
optimal control problem P1. The indirect shooting method strongly benefits
from the fact, that there is only one costate and that this costate remains
nearly constant over the entire time-interval. The burden of finding an initial
guess p(t0) that is in acceptable proximity to the true initial value, that leads
to fulfillment of the final state constraint (4.51), is reduced, since for different
vehicle configurations and different cycles, the costate is in similar ranges.
Consequently the indirect shooting algorithm is a very efficient and easy to
apply solution method for problem P1. Nevertheless, special care has to be
taken, when minimizing the Hamiltonian function. The Hamiltonian may
exhibit multiple local minima. One way, to reduce the chance of converging
to a local minimum in the solution procedure is to calculate the Hamiltonian
function value on a rough grid first and then use the lowest value as an initial
value for the minimization procedure. The equation Υ(p(t0)) = 0 has only one
variable and can consequently be solved efficiently using regula-falsi methods.
In this case, the Pegasus method (Dowell and Jarratt [1972]) was applied.
Embedding attains comparable results in terms of the cost function value but
requires significantly more computation time, as can be seen in Table 4.2. For
all methods and all problems P1-P4, a time discretization with hk = h = 0.5 s
was used. DP can also be employed to P1 and yields nearly equal results as
the indirect shooting methods but requires much more computation time. In
this case, DP should only be employed to validate a solution obtained with the
indirect shooting approach. The state space of ξ was discretized with 10000
elements in the interval [0.4, 0.6].
The solutions obtained with all methods exhibit frequent switching, due to the
neglected jumps in fuel consumption and state of charge caused by a switch-
ing. Even if the jumps in fuel and electrical energy storage are of minor
importance, this is an unrealistic scenario as frequent engine starts will dete-
riorate the driving comfort and augment the engine wear. Nevertheless, if the
indirect shooting method is applied, a realistic estimator of the initial costate
is obtained that can be useful for the calibration of hybrid vehicles, as will be
shown in section 4.3.
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φ(x(tf ))[ml] tcomp[s]

Indirect shooting 496.9 29.39
Embedding 497.9 1899.4
Dynamic programming 496.9 4386.5

Table 4.2: Comparison of cost function value and computation time for P1
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Figure 4.9: Solution of problem P1 obtained with the indirect shooting method
and the embedding method

Solving P2 with embedding is complicated by the high dimension of the discrete
state vector Q = 12, which leads to a very large size of the optimization vector
and to a high probability of singular arcs in the solution, where the solution
is binary unfeasible. Indirect shooting however, can be applied reliably. The
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computation time increases only linearly with the number of discrete states Q.
The solution of P2 is shown in Figure 4.10. It was obtained in a computation
time of tcomp = 150 s and a cost function value of φ(x(tf )) = 496.1 ml was
achieved. It can be noted that there are very frequent gear changes and that
often the highest gear possible is selected during the optimization. There are
many more constraints, such as driving comfort, that cannot be accounted for
with the proposed model and are therefore not included in the optimization.
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Figure 4.10: Solution of problem P2 obtained with the indirect shooting
method

Due to the discontinuities in the state trajectory on a switching, problem P3

cannot be solved using methods for continuous states as the indirect shooting
method, the embedding approach or the combined method. DP is an adequate
solution method for P3, as the dimension of the continuous state vector can
be reduced to 1. The state β is a Lagrangian state and hence does not need
to be gridded. Consequently, the global optimum with respect to a chosen
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discretization of the state ξ can be found by DP in a feasible amount of time.
Embedding with relaxation of the state jump and the greedy rounding scheme
also yields comparable results but this method has in this case a slightly longer
computation time. Yet, it has more potential for reducing the computation
time by transcribing the problem as a collocation problem instead of a direct
shooting problem and by exploiting the sparse problem structure. Additionally,
the computation time can be further reduced, if automatic differentiation is
used instead of finite differencing, to calculate the gradients at each iteration
of the NLP-solver.
A comparison of the results can be seen in Fig. 4.11. In the solution obtained
by the embedding approach, the third ICE start is omitted. To compensate
for this, the ICE torques are chosen higher, whenever the ICE is started.
Except for the omitted start, the remaining switching sequence is identical.
The difference in the fuel consumption is within acceptable bounds. Figure
4.12 depicts the evolution of the relaxed switching variable σ1, where σ1 =
1 represents hybrid drive mode, over the iterations of the greedy rounding
scheme. After iteration 40, σ1 takes on values σ1 ≈ 0.49 at t ≈ 580 s. This
demonstrates that the switching is in this case nearly singular, meaning that
the decision of an engine start at this point has only a minor effect on the total
fuel consumption. The height of the jump at an engine start was assumed to be
[∆β ∆ξ]T = [0.65 ml −0.00013]T . The state discretization for the dynamic
programming method was chosen as in P1.

φ(x(tf ))[ml] tcomp[s]

Dynamic programming 505.75 9922
Embedding 506.02 11563

Table 4.3: Comparison of cost function value and computation time for P3
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Figure 4.11: Comparison of the results for P3 obtained with dynamic program-
ming and the embedding with relaxed jump function approach
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Problem P4 is a much more complex problem than P1-P3 due to its high
dimension of the continuous state vector as well as the high number of discrete
states. Indirect shooting is unlikely to yield a solution because of its low
convergence region. It is also a difficult task to find a guess of the initial
costate values that will converge to solution satisfying the boundary conditions.
Applying embedding to the problem will lead to a large optimization vector
due to the high number of discrete states. Using the combined method, a
solution could be found in an acceptable time range.
To evaluate the effect of different bounds on the artificial emission component
Z, optimizations were performed with three different upper bounds Zmax,1 =
Zref , Zmax,2 = 1.1·Zref , Zmax,3 = 1.2·Zref to see, how a less stringent constraint
on emissions affects the continuous controls as well as the switching function.
The results can be seen in Fig. 4.13. It can be noted that a lower upper bound
leads to an only slightly decreased time-span used for TWC-heating but to
a significant retardation of the ignition angle, which causes a faster TWC-
heating. TWC-heating is mostly performed during idle with the K0 closed
and the MG connected (q(t) = 1). As soon as a TWC-temperature with a
good conversion efficiency is attained, the ignition angles tend to the lower
bound to increase combustion efficiency. The base ignition angle was set as
lower limit. The late ignition angles also lead to lower values of ξ at the end
of the catalytic heating process, since a lower output torque is provided by the
ICE. During TWC-heating, the exhaust mass flow is constrained, as high mass
flows decrease the catalytic converter efficiency. In the solution, the relative
cylinder charge tends to the respective bound.
The approximated costates are also depicted in Figure 4.13. The costates offer
in this case a physical interpretation. Whenever the costate for a respective
state is low, increasing the corresponding state at this point is more beneficial
than at other times. Increasing the TWC-temperature ϑtwc early in the cycle is
recommended to quickly achieve good conversion efficiencies. Once the light-
off temperature is reached, a further increase of the temperature has hardly
any effect. The costate tends to zero, as soon as the light-off temperature is
exceeded.
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4.3 Causal Energy Management of Hybrid Ve-
hicles

The solution of optimal control problems is only a first step in the definition
of an energy management for hybrid vehicles. The solution of SOCPs online
during the vehicle operation is usually prevented by the very limited com-
putational performance available in today’s electronic control units (ECUs).
Especially direct methods are difficult to implement due to the high memory
requirements needed for storing the Jacobian and Hessian matrices. Most en-
ergy management systems for hybrid vehicles still rely on rule-based control
strategies because of the ease of implementation and the low computational
demand. Energy managements that only use the current state of the vehicle,
consisting of all values that can be measured or estimated at a certain time t
to determine the set-values for the powertrain, are called causal. If estimated
future information is also used to define the current set-values, the energy man-
agement is called predictive. The literature provides a wealth of possible ways
to implement causal energy managements. In the work of Lin et al. [2001],
the results of a cycle-specific solution obtained by dynamic programming are
used for the manual definition of rules. A very similar approach was chosen
by Karbowski et al. [2006]. A rule based energy management based on a fuzzy
logic controller was proposed by Schouten et al. [2002].
Over the last decade, research in this area has more and more focused on
analytical methods. The most attention has been paid to the PMP and the re-
lated ECMS. The use of these approaches is appealing due to the fact that the
high-dimensional optimization problem is reduced to solving a nonlinear equa-
tion and hence to finding a feasible costate value. The problem is additionally
simplified by assuming the costate to be constant. An evaluation of the effect
of this assumption will be given later in this section. If the costate is known,
the optimal controls that lead to a desired final state of charge for a specific
drive cycle are entirely defined, if only continuous controls are regarded. The
problem then remains to define a costate value without knowledge of the drive
cycle. Kim et al. [2009] suggest to select the costate based on heuristically
defined values that represent the drive pattern. A learning procedure that
corrects the costate value, when a lower or upper bound for the state of charge
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is hit, is described in the work of Chen and Salman [2005]. A study on the re-
lationship between different road-type events and the costate value that leads
to a charge-sustaining operation of the HEV was performed by Gong et al.
[2011].

4.3.1 Calculation of Look-up-Tables

With a known costate, the optimal continuous controls can be found by min-
imization of the Hamiltonian function at each time instant via a numerical
procedure. Despite the fact, that the minimization problem will for most pow-
ertrain architectures involve only a single variable, the numerical procedure is
not ready-to-implement on today’s ECUs. In this section, we derive, how the
look-up tables (LUTs) storing the optimal continuous controls as well as opti-
mal discrete controls can be automatically generated. The idea of storing the
minimum of the Hamiltonian function with respect to the continuous control
was also proposed by Chen and Salman [2005] in the context of ECMS. Also
with the ECMS-formulations, it was extended to the gear-choice by Siverts-
son et al. [2011] but without theoretical justification. In Fig. 4.14, a sketch
of an LUT-based energy management is depicted. The reference values κ̂, ζ̂
and T̂mg, supplied to the lower level controller structure are herein determined
by LUTs. Based on the current driving condition that is represented by the
torque-demand at the wheel and the current wheel-speed, a gear recommen-
dation is made based on a LUT. If this gear is actually used will depend on
many more conditions. These rather practical aspects are not regarded in this
thesis. With a gearbox model, the gearbox input torque and speed can then
be calculated and based on these values a recommendation for the drive-mode
is again obtained from a LUT. If hybrid drive mode is selected, the torque-
split between MG and ICE finally needs to be determined. The respective
MG-torque is stored in a table.
These LUTs can be obtained from the solution of the SOCP in a straightfor-
ward manner. As has been demonstrated in section 4.2.2, the costate variation
over the entire cycle will in general be negligible, when the variation of ξ is
small and it will also be continuous on a switching (see (4.60)). But also for
larger variations of ξ, p(t) will remain nearly constant. A constant costate can
also be assumed in the solution procedure of the indirect shooting method.
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Figure 4.14: LUTs defining the MG-torque in hybrid drive mode for different
costate values

The minor effect of this assumption is demonstrated in Figure 4.15, where the
evolution of ξ(t) and p(t) is compared with and without the constant costate
assumption for two different vehicles over a longer drive cycle and a large dif-
ference between ξ(t0) and ξ(tf ). The effect on the fuel consumption is hardly
noticeable as is shown in Table 4.4. A constant costate is widely assumed in
the literature for purely continuous optimal control problems (Guzzella and
Sciarretta [2005], Kim et al. [2011]).

fuel consumption [ml] for
varying p

fuel consumption [ml] for
constant p

Vehicle 1 869.1 870.3
Vehicle 2 1271.8 1276.1

Table 4.4: Effect of the constant costate assumption on the fuel consumption

Consequently, an important result of the solution to problem P1 is the value
of the costate p(t) ≈ p(t0). Once the costate is known, the value of the Hamil-
tonian function only depends on the gearbox input torque Tgbx, the gearbox
input shaft speed ωgbx, and the engine torque Tice:

H(p, Tice, ωgbx, Tgbx). (4.65)
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Figure 4.15: Comparison of p(t) and ξ(t) with and without constant costate
assumption

LUTs can be calculated by minimization of the Hamiltonian function with
respect to each continuous or discrete argument. The minor dependence of
the battery current I on the state of charge ξ can be neglected to reduce the
number of dimensions of the respective LUTs. It is shown in Sivertsson et al.
[2011], that saving the controls on a discrete grid has only minor effects on
the fuel consumption. Consequently, a LUT as a function of instantaneous
engine speed and engine torque during engine load shifting (ζ(t) = 1) can be
generated for suboptimal values of T̂ice(ωgbx, Tgbx) by calculating

T̂ice(ωgbx, Tgbx) ≡ arg min
u(t)∈U

H(p, u, ωgbx, Tgbx, p) (4.66)

on a grid of (pgbx, Tgbx). In the next step, the LUT for the suboptimal choice
of the drive mode ζ(t) can be calculated by

ζ̂(ωgbx, Tgbx) ≡ arg min
ζ(t)∈{0,1}

H(p, Tice, ωgbx, Tgbx) (4.67)

on the same grid. In the definition above, for ζ = 1, Tice is determined from
the LUT T̂ice(ωgbx, Tgbx), otherwise Tice = 0 applies.



101

Remark 4.1: From observations it appears that for each combination ωgbx and
p, there is a torque threshold Tstart(ωgbx, p) such that H(p, T̂ice(ωgbx, Tgbx), ζ =
1, ωgbx, Tgbx) has a lower value than H(p, Tice = 0, ζ = 0, ωgbx, Tgbx) if and only
if Tgbx > Tstart(ωgbx, p). The recommended drive mode can then be described
via a speed-depending torque threshold map T̂start. When the driver demand
Tgbx exceeds Tstart(p, ωgbx), an ICE-start is demanded.

For both drive modes, recommended gears κ can be calculated over a grid of
(Twh, ωwh) as follows:

κ̂(Twh, ωwh) ≡ arg min
κ∈K
H(p, κ, Tice, ωwh, Twh). (4.68)

Again, for ζ = 1, Tice(ωgbx, Tgbx) = T̂ice(ωgbx, Tgbx), and for ζ = 0, Tice = 0
applies. Figure 4.16 depicts LUTs for the suboptimal determination of the
torque-split in hybrid drive mode. Instead of saving T̂ice, it is more common
in automotive practice to store the MG-torque T̂mg. This transformation can
be easily done using (4.9). Figure 4.17 depicts the start-torque thresholds for
different costate values and Figure 4.18 shows LUTs with recommended gears
κ̂ for a given costate value.

4.3.2 Evaluation and Implementation

Equations (4.67) and (4.68) can only be justified by necessary conditions of
optimality when state jumps are disregarded, since for the case where discon-
tinuities occur in the state trajectory, the minimization of the Hamiltonian
function by the discrete inputs is not a necessary condition (cf. (2.27) and
(2.44)). However, practical experience has shown that the LUTs derived from
these equations can be used in combination with hystereses and delay times
to obtain results close to the results calculated offline using hybrid dynamic
programming. The hysteresis and delay parameters can be found by applying
gradient free optimization methods. The LUT T̂ice(·) can usually be imple-
mented in a PHEV without further modification. This map will lead to a
charge sustaining behavior only for specific cycles. Therefore several maps are
calculated for different values of the costate that need to be stored in the ECU.
Modern PHEVs can leave the choice of an operating mode to the driver. A
general depleting mode that intends to minimize the fuel used over an un-
known route until the next recharge facility is available can be implemented,



102

0
2000

4000
6000

0
100

200
300

−150

−100

−50

0

n
gbx

 [min−1]

p = −170

T
gbx

 [Nm]

T
m

g [N
m

]

0
2000

4000
6000

0
100

200
300

−150

−100

−50

0

n
gbx

 [min−1]

p = −160

T
gbx

 [Nm]

T
m

g [N
m

]

0
2000

4000
6000

0
100

200
300

−150

−100

−50

0

n
gbx

 [min−1]

p = −155

T
gbx

 [Nm]

T
m

g [N
m

]

0
2000

4000
6000

0
100

200
300

−150

−100

−50

0

n
gbx

 [min−1]

p = −150

T
gbx

 [Nm]

T
m

g [N
m

]

Figure 4.16: LUTs defining the MG-torque in hybrid drive mode for different
costate values

by using a constant costate obtained from the solution of an SOCP over a
representative cycle and a low value for ξ(tf ) as the boundary condition. To
reliably deplete the battery to its minimum state of charge, a predictive energy
management strategy is necessary as it will be described in the next section.
To determine the recommended gears, additional constraints such as limita-
tions due to driving comfort apply. These factors (e.g. human perception,
debounce hysteresis, and so forth) are hard to account for in a mathematical
solution. As a consequence, the gear recommendations cannot always be fol-
lowed. In this case, it has shown to be helpful to evaluate the effect of deviating
from the recommended solution. If the values from the LUTs are used, (4.61)
holds and the Hamiltonian is continuous during a change in the piecewise con-
stant switching function as, for instance, during a transition from one drive
mode to another or at gear changes. When deviating from the recommended
transitions, a difference in the Hamiltonian

∆H = H(t+j )−H(t−j ) (4.69)

occurs. The meaning of this difference is twofold: On the one hand, it consti-
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Figure 4.18: LUTs defining the optimal gear selection for a given driver request

tutes a deviation from the optimality conditions. On the other hand, with the
interpretation of the Hamiltonian as the weighted sum of battery current and
fuel mass flow, it is indicated that a control with lower value of this weighted
sum exists, but cannot be used because of some unknown constraint. The
value of ∆H can be depicted over gearbox input torque and speed for a given
costate. Figure 4.19 shows the absolute value |∆H| depending on ngbx and
Tgbx between electric and hybrid drive mode. The recommended switching is
where the difference vanishes. If this recommended switching cannot be fol-
lowed, Figure 4.19 allows for an evaluation of the effects. A deviation from
the recommended switching is more acceptable when the value of |∆H| is low,
which is more the case for lower engine speeds than for higher speeds.
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4.4 A Predictive Energy Management

The solution of optimal control problems is on the one hand usually prevented
by the limited computing capacity of the ECU. On the other hand, the solution
is based on a predefined drive cycle given by the trajectories of velocity v(t)
and road slope e(t), which are generally unknown on real driving missions. It is
however possible, to predict the trajectories based on the information provided
by an intelligent traffic system (ITS) as it is included in many recent navigation
systems (Ress et al.). The developments in this area are continuously growing
such that more and more additional road information will be known to the
ECU. With the help of this finite set of information, an estimation of the
trajectories can be made and these estimations can be used for solving the
OCP. The existence of discrete phenomena makes the problems harder to solve.
However, it was shown in section 4.2, that the indirect shooting method is
highly efficient on the problems P1 and P2. At the same time, as shown
in section 4.3, the optimal controls for a given costate and a given driving
situation can easily be stored in LUTs without significant loss of accuracy.
These facts make the implementation of a control strategy that is based on
the solution of a SOCP online in the vehicle possible.
In the literature on hybrid vehicle control, model-predictive control is often
used for a rather short prediction horizon, as in the works of Back [2005] and
Borhan et al. [2009]. It appears, however, that strategies, based on PMP or
ECMS, grow here in importance as well. Many approaches based on finding
the costate for a purely continuous OCP are explained in the literature. A
general framework for the adaptive control using ECMS by periodically up-
dating the costate, based on a prediction of the driving profile, is described in
Musardo et al. [2005]. In Lee et al. [2012], the velocity profile is predicted, and
using the average requested wheel-power, the costate is chosen from a table.
In the work of Kermani et al. [2012], a model predictive controller is imple-
mented to determine the costate over a predicted driving profile. A predictive
energy management that also incorporates discrete decisions is proposed by
Johannesson et al. [2009]. Herein, the optimization of the clutch-states and
the optimization of the continuous controls are performed in two stages. Dy-
namic programming and approximate dynamic programming are employed for
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the optimizations.
The predictive energy management in this thesis uses an indirect shooting
method to solve an SOCP similar to problem P1, involving the torque-split as
continuous control input and the drive-mode as discrete decision. The gear-
selection strategy is not regarded in the SOCP but is defined according to the
heuristic gear-selection strategy, as it is implemented in the vehicle.
The strategy is implemented as a depleting strategy and is employed when the
target destination provides a charging facility and the total driving distance
exceeds the electrical range for the current state of charge. In this case the
entire electrical energy can be depleted but the ICE has to be started several
times, to prevent the battery from falling below its minimum value before the
target destination is reached. It is the task of the energy management system,
to define when the ICE is started and to define the torque split. However, the
predictive energy management can be generalized to any situation, where a
certain target value of ξ has to be attained over a predictable cycle.

4.4.1 Overview of the Control Strategy

As depicted in Fig. 4.20, the predictive control strategy consists of the follow-
ing elements:

• The ITS provides information on speed limit, slope and obstacles that
might require a stopping of the car

• A driver-model uses this set of information to calculate a predicted ve-
locity profile over the given distance. A vehicle-model then calculates
the required gearbox input torque and angular velocity

• A reference trajectory ξref (s) for the battery’s state of charge and for the
costate pref (s) is then calculated by solving an SOCP

• Depending on the deviation of ξ(t) to the predicted value ξref (s(t)), an
offset ∆p(t) is calculated by a PI-control law to assure that the reference
trajectory is being followed

• Based on the current value p(t) = pref (s(t)) + ∆p(t) and the current
driving condition, the instantaneous controls (drive-mode and torque-
split) are determined
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Figure 4.20: Control strategy for the predictive energy management

4.4.2 Driver Model

Since dynamic memory allocation is in general not supported in today’s ECUs,
the reference trajectory is calculated over a grid of constant sizeN in the spatial
domain

0 = s1 < s2 < · · · < sN = sdist, (4.70)

where the total length of the driving cycle sdist is obtained from the navigation
system. The position instances sk, k = 1, . . . , N are stored in the vector

s = [s1, s2, . . . , sN ]. (4.71)

The grid is chosen to be equidistant and hence

∆s = sk+1 − sk = const. (4.72)

applies. Task of the driver model is to generate a realistic velocity profile
v(sk) from the information provided by the navigation system. A Markov
chain model as proposed by Gong et al. [2011] is in general desirable, as it
is able to reflect the statistical behavior in the real profile. However, the
expenditure for the determination of the respective transition matrices is quite
high and the matrices would require a high amount of storage in the ECU.
Dynamic programming is used by Lee et al. [2012] to minimize a weighted
sum of driving energy, time and acceleration to define the velocity profile.
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Dynamic programming, even for only one state, would require a major part
of the ECU’s capacity. Therefore, we use an approach proposed by Treiber
and Kesting [2010] that was developed for the purpose of traffic analysis. The
model uses a set of differential equations that imitates the driver’s behavior in
certain driving scenarios and is originally described in the time domain. These
equations can be transferred to the spatial domain by dividing the right-hand
side of the differential equation by v. This becomes clear, when considering
the following transformation:

dv

ds
= dv

dt
· dt
ds

= dv

dt
· 1
v
. (4.73)

Depending on the current driving situation d, where d = 1 indicates accel-
eration, d = 2 deceleration to a lower speed limit and d = 3 deceleration to
standstill, the velocity’s spatial derivative is given by

dv

ds
=



e
v
· (1− ( v

vlim
)δ), d = 1

− e
v
· (1− (vlim

v
)δ), d = 2

1
h·v · (

v2

2·srem
)2, d = 3.

(4.74)

The driving situation d is determined by a discrete automaton, that chooses the
respective scenario based on the distance to the next speed limit or obstacle,
that might require a vehicle stop. The constants e and h represent typical
accelerations and decelerations, respectively, and the constant δ determines,
when the acceleration is reduced when approaching the target speed vlim. In
the time domain, this model was also applied by Boehme et al. [2013]. As can
be noticed from measurements, the velocity often exhibits oscillations around
the speed limit. To account for these oscillations, the sum of l cosines with
different amplitudes Ai, angular velocities ωi and phase shifts φi is added to
the speed limit vsign

vlim = vsign +
l∑

i=1
Ai(vsign) · cos(ωi · tk + φi). (4.75)

The amplitudes, frequencies and phase shifts can be identified from measure-
ments via Fourier analysis. With equation (4.74), an IVP can be solved using
the explicit Euler approach as follows:

vk+1 = max(ε, vk + dv

ds
·∆s). (4.76)
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The constant ε is a lower bound for the speed. This is necessary, since (4.74)
is not defined for v = 0. Knowing velocity v and position s, the corresponding
values for the time t and acceleration a can be approximated by

tk+1 = tk + ∆s
vk

(4.77)

ak = vk+1 − vk

tk+1 − tk
. (4.78)

The first N − 1 values of vk, tk and ak are then stored in the vectors

v = [v1, v2, . . . , vN−1] (4.79)

t = [t1, t2, . . . , tN−1] (4.80)

a = [a1, a2, . . . , aN−1]. (4.81)

In general, some discrepancy exists between the predicted and the measured
velocity profile. Especially in dense traffic situations, the actual velocity will
be lower than the predicted velocity. Yet, the robust controller design can
cope with these inaccuracies. This will be demonstrated later in this chapter
by providing the results of detailed robustness tests.
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Figure 4.21: Estimated velocity profile over a given drive cycle

In discretized form, the SOCP can be formulated as

min
ζ,u

βN (4.82)

subject to the constraints

ζk ∈ {0, 1} (4.83)

uk ∈ Uk (4.84)

ξmin ≤ ξk ≤ ξmax (4.85)

ψ = ξN− ξmin = 0, (4.86)
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where ξmin, ξmax are bounds for the state of charge. ξmin also is the desired
target for ξ at the end of the trip.

4.4.3 Solving the SOCP

The SOCP is solved by applying the indirect shooting approach. The most
expensive operation in this algorithm is the minimization of the Hamiltonian,
to find the optimal continuous control input. It is therefore beneficial, to
perform this operation offline for a given vehicle and to store the information in
the LUTs T̂mg(p, Tgbx, ωgbx) and T̂start(p, ωgbx). This can be done by calculating
the LUTs described in section 4.3 for a range of values of the costate. Thus, the
operation of finding the minimum of the Hamiltonian function is reduced to a
computationally cheap interpolation. The mode-sequence ζ is then defined as
follows:

ζk =


1, ωkgbx ≥ T̂start(p, ωkgbx)

0, ωkgbx < T̂start(p, ωkgbx)
k = 1, . . . , N − 1. (4.87)

Once the IVP has been solved, function (4.86) can be evaluated and the initial
guess of p1 can be improved. The SOCP is therefore reduced to solving the
scalar nonlinear equation

ψ(p1) = ξN(p1)− ξmin = 0. (4.88)

As in the offline solution, the Pegasus method is used and performs efficiently
and robustly on this equation.
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Figure 4.22: Predicted velocity and optimal engine start sequence with respect
to the prediction. Deviations to the measured trajectory of v and the measured
start sequence can be noticed
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4.4.4 State Constraints

When the discrete solution-trajectory ξ contains an arc for which

ξk < ξmin (4.89)

applies, an interior point-condition is added to the optimal control problem,
as proposed in de Jager et al. [2013]. The spatial instant sk,min that has the
lowest value ξk is identified and the interior-point condition

ψ1 = ξk,min − ξmin = 0 (4.90)

is added to the SOCP formulation. The SOCP is then resolved, first solved over
the interval [s1, sk,min] with (4.90) as final state constraint and then over the
interval [sk,min, sN ] with ξmin as initial value and (4.86) as final state constraint.
The procedure is depicted in Fig. 4.23. The black trajectory contains an
arc that falls below a lower bound ξmin = 0.2. The spatial instant sk,min is
identified that has the lowest value ξk,min. An interior point condition is then
inserted that requires this point to be on the lower state bound
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Figure 4.23: Procedure for obtaining a suboptimal trajectory fulfilling the state
constraint

4.4.5 Controller and Instantaneous Controls

Several uncertainties in the trajectory planning make a controller inalienable,
among them model error and error due to discretization. The most influential
uncertainty, however, is the driver behavior, which can be only roughly pre-
dicted. The costate p can well be used as control variable, as it has a direct
influence on the torque-split as well as on the start torque. A lower value of



112

the costate will lead to earlier engine starts and higher load torques. A simple
PI-controller can fulfill the task of disturbance rejection. Small deviations from
the planned ξ-trajectory are acceptable. Thus, the gains of proportional path
and integral path are kept rather low, which has shown to be advantageous
for the fuel consumption. The instantaneous controls can be determined, us-
ing the look-up tables T̂mg and T̂start defined in the previous section with the
corrected costate

p(t) = pref (s(t)) + ∆p(t) (4.91)

and the current driving condition Tgbx(t), ωgbx(t). Since the value ξ(t) is only
estimated in the real-world vehicle and the estimation is corrected from time
to time, jumps in the trajectory may occur. Due to the low controller gains,
this will not cause instabilities.
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p(s) for four measurements over the same cycle with different initial charging
states
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4.4.6 Implementation and Results

The strategy is implemented in a PHEV with a battery capacity of 7.5 kWh.
As prototyping unit, a dSPACEMicroAutobox is used. The route is discretized
with N = 10000. The calculation of the reference trajectory on the MicroAu-
tobox takes between 16 and 26 seconds, depending on the number of iterations
needed, to solve (4.86). In the final implementation, the costate p is assumed
to be constant, since the variation over the entire cycle is negligible as com-
pared to the controller offset ∆p. The finite differencing step to approximate
the derivative of the Hamiltonian function with respect to ξ can therefore be
disregarded. To avoid frequent engine-starts, a hysteresis around Tstart is de-
fined and turn-on/turn-off-delays are implemented. The target value ξmin is
set to 0.2. As test-cycle, a route of 75 km in the area of Gifhorn, Germany is
used, that contains a balanced scenario of urban, rural and highway driving
situations.
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Figure 4.25: Diversity of recorded velocity profiles for the test drive cycle

The test-drives were conducted by different drivers and during different day-
times to investigate the robustness towards deviations from the predicted driv-
ing profile. Figure 4.24 depicts the reference trajectories and the measured tra-
jectories for ξ of four measurements. The reference trajectories can be followed
and the desired state of charge ξ(sdist) is reached with a narrow tolerance of
±1.2 % in all tested cases. Even though the predicted velocity profile is close
to the measured profile, the controller has to correct the costate visibly.
In addition to the real-world tests, simulations were performed. To verify the
robustness of the strategy against model errors, the drag parameters b0, b1 and
b2 were disturbed with an equally distributed factor w ∈ [0.9, 1.1]. The factor
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is applied to the simulated vehicle, but is not used in the prediction. Despite
the model error, ξ(sdist) − ξmin = 0 is still fulfilled with a narrow tolerance,
as can be seen on the left side of Fig. 4.26. From the scatter plot, it can be
noted, that the distribution of the fuel consumption can be directly linked to
the gearbox input energy

Egbx =
∫ tf

t0
Tgbx · ωgbx ·

1 h
3600 sdt (4.92)

required to propel the vehicle, which is also varied caused by the disturbance
of the drag coefficients. To survey the robustness against different drivers
and traffic situations, simulations were performed over 22 recorded velocity
profiles. The partially unpredictable diversity in the profiles can be noticed in
Fig. 4.25. The predicted velocity profile generated by the ITS and the driver
model does not reflect driver types nor does it include information on traffic
density. Consequently, it predicts the same velocity profile each time. The
effect on ∆ξ is in this case stronger, but still within acceptable bounds, as can
be seen on the right side in Fig. 4.26.
Figure 4.27 depicts the operation points of the ICE of four measurements in
the efficiency map. Especially during the highway-drive, where higher engine
speeds occur, the ICE operates with nearly optimal efficiency. This is also
the case for lower speeds, where the spread is slightly higher due to the less
constant driving conditions in urban or rural driving situations.
Figure 4.28 shows a comparison of the ICE torques selected by the predictive
energy management and the fully optimal solution obtained with DP. The mea-
surement was provided to the DP-procedure such that the same boundary con-
ditions apply and the velocity profile and the gear sequence are exactly known.
Hence, the Figure shows, how the predictive energy management should have
performed, if the cycle was perfectly known. As the prediction still deviates
from the actual cycle, deviations from the optimal solution cannot be avoided.
However, the results are very close in terms of engine start sequence and the en-
gine torques chosen. The difference in fuel consumption between fully optimal
solution and the measurement was in all cases below 2 %.
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Figure 4.27: ICE efficiencies obtained with the predictive energy management
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Chapter 5

Conclusion and Outlook

5.1 Conclusion

Many automotive systems can be modeled as switched systems as they involve
discrete dynamics along with continuous dynamics. It is often of interest to find
the control inputs and the switching sequence that minimize a given functional.
The corresponding task can be defined as a Switched Optimal Control Problem.
In this thesis, practical algorithms were applied to solve SOCPs for switched
systems. One of the simplest algorithms, the indirect shooting algorithm is in
most cases not applicable as the convergence region is very limited. Even for
the simple examples provided in section 3.7, convergence was only achieved,
when the first guess of the initial costate is very close to the optimal initial
costate. Yet, applications exist, where this algorithm outperforms other algo-
rithms by far, as has been demonstrated for the hybrid vehicle model. The
embedding approach is very simple to implement but has in the numerical
experiments attained inferior results than other algorithms. The computation
times were somewhere between the indirect shooting method, if it converges,
and the combined method. Yet, it still has the potential for significant re-
duction of the computation time by applying one or more of the following
measures:

• Calculation of the gradients using automatic differentiation

• Using a collocation approach and sparse algebra for solving the quadratic
sub-problem.
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This applies for all methods that involve the solution of a nonlinear program
and hence also for the combined method. This method has proven to obtain
very good results on different problems. The computation time will still be
quite high, due to the fact that the switching sequence is altered at only
one time instant per main iteration. Further numerical investigations and
experiments may improve the algorithm by alternating the switching sequence
at more than one instant.
If the state exhibits jumps on a switching, the solvability of the SOCP is
considerably impaired. Dynamic programming can in this case find the
globally optimal solution with respect to a chosen discretization. While the
dimension of the discrete state vector enters only linearly in the computation
time for DP, the dimension of the continuous state vector increases the
computational demand exponentially and hence reduces the general applica-
bility of DP. In that case, embedding with relaxation of the jump function
can yield a suboptimal solution that will in many cases be only slightly
inferior than the global optimum. Dynamic programming has the potential
to reduce the computation time by vectorization of the inner loops of the
algorithm or by parallelization. When used for the hybrid vehicle example,
the computation time could be reduced by more than 70 % using vectorization.

Optimal control of hybrid vehicles is a timely topic in the automotive indus-
try and a big challenge. A lot of progress has already been made in terms of
optimal control of the continuous inputs. In this thesis, the algorithms for the
solution of SOCPs were applied to different problems arising from the calibra-
tion of HEVs. The problems were successfully solved and it is demonstrated,
that for different problem formulations, different algorithms are most suitable.
The necessary conditions for hybrid optimal control and the results of the
HOCP can be used to calculate a set of calibration parameters for rule-based
energy management systems. Many of these parameters can directly be trans-
ferred to the electronic control unit, others need further tuning. This is caused
by the limitation of the mathematical models that do not include aspects like
driving comfort.
It was demonstrated that the indirect shooting method is applicable on a
prototyping unit and that the computational demand is no burden for the



119

implementation on an electronic control unit. This was achieved by storing
the minimum of the Hamiltonian function on a grid of its input values. With
a prediction of the drive cycle, as it can be obtained with the help of an
intelligent traffic system and a driver-model, the indirect shooting method can
be used to implement a predictive energy management that allows for the
controlled depleting of the battery. The predictive energy management has
been implemented in a plug-in hybrid vehicle close to series production and
has yielded excellent results in terms of fuel consumption and robustness.

5.2 Outlook

Further research in the area of switched systems will include

• Further reduction of the computation times, especially for the solution
of nonlinear programs. Automatic differentiation and exploiting sparse
matrix structures have the potential of significant reduction of the com-
putation times

• The inclusion of state constraints. Experiments have shown that meth-
ods based on a direct approach, such as the combined method, are able
to incorporate state constraints easily. The theoretical foundation how-
ever is questionable, since necessary conditions for optimal control of
dynamical systems with constrained arcs cannot be transferred to hy-
brid dynamical systems

• Sensitivity analysis. Not all operating conditions of a vehicle can be
captured with a single model and constant parameters. Changing envi-
ronmental conditions, aging or different load conditions will occur. The
question of how the continuous controls as well as the switching sequence
need to be adapted if certain vehicle parameters change could be an-
swered using the theory of sensitivity analysis.

In the area of hybrid vehicle control, future work will involve driver classifi-
cation and cycle analysis. It was demonstrated, that for near-optimal control
of hybrid vehicles, the determination of the costate is the major challenge.
For a known drive cycle, a predicted velocity profile can be generated. If the
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driver can be classified and respective parameters for the driver model can
be estimated, the quality of this prediction can be even more improved. If
no prediction of the future drive cycle is available, the past driving behavior
could be consulted to determine an appropriate costate value that leads to
charge-sustaining behavior.



Appendix A

Appendix

A.1 Dynamic Programming for Purely Con-
tinuous Systems

Consider an optimal control problem

min
u(t)

Φ(x(t), u(t), t) (A.1)

Φ(x(t), u(t), t) =
∫ tf

t0
L(x(t), u(t), t)dt+ Ψ(x(tf )) (A.2)

ẋ = f(x(t), u(t), t) (A.3)

x(t0) = x0 (A.4)

The task is to find the optimal control law u(t) with its corresponding optimal
state trajectory x(t) over the interval t ∈ [t0, tf ], which minimizes the objective
function (A.1).

Theorem 4 (Principle of Optimality): If (x(t), u(t)) is an optimal solution to
the optimal control problem (A.1-A.4) starting at x(t0), passing through x(t1)
for an arbitrary t1 ∈ [t0, tf ] and ending at x(tf ), then the partial trajectory
from x(t1) to x(tf ) is also optimal with respect to the same problem formulation
and x(t1) as initial condition.

The principle of optimality is defined for general multi-stage decision processes
in Bellman [1957]. For continuous optimal control problems, a definition of this
principle, as well as an extensive description of the algorithmic application can
be found in the works of Kirk [1970] and Föllinger and Roppenecker [1988].
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To formulate the Principle of Optimality in a mathematical way, it is helpful
to introduce the value function V (x(t), t) that provides the optimal cost for a
trajectory starting at time t and the state x(t):

V (x(t), t) = min
u(t)

{∫ tf

t
L(x(t), u(t), t)dt+ Ψ(x(tf ))

}
(A.5)

An analytical solution for this function will be hard to find but it will be
amenable for numerical computations. For an arbitrary t1 ∈ [t0, tf ], it can
then be stated

V (x(t0), t0) (A.6)

= min
u(t)

{∫ t1

t0
L(x(t), u(t), t)dt+

∫ tf

t1
L(x(t), u(t), t)dt+ Ψ(x(tf ))

}
(A.7)

= min
u(t)

{∫ t1

t0
L(x(t), u(t), t)dt+ V (x(t1), t1)

}
, (A.8)

where x(t1) is obtained by integration as follows:

x(t1) = x(t0) +
∫ t1

t0
f(x(t), u(t), t)dt. (A.9)

Hence, the OCP is split into parts. Instead of seeking the controls over the
entire cycle, an optimal control problem is solved over a smaller interval and
the value function gives the cost for the remaining cycle. This procedure can be
applied on arbitrary small intervals. Given a time grid t, the same procedure
can theoretically be employed to determine the Value function for one time
instant tk and a given state x(tk):

V (x(tk), tk) = min
u(t)

{∫ tk+1

tk
L(x(t), u(t), t)dt+ V (x(tk+1), tk+1)

}
. (A.10)

Applying an explicit Euler discretization to this equation yields

V (xk, tk) = min
uk

{
L(xk, uk, tk) · hk + V (xk+1, tk+1)

}
, (A.11)

where the consecutive state xk+1 is given by

xk+1 = xk + f(xk, uk, tk) · hk (A.12)

and hk = tk+1 − tk. Equation (A.11) is called the discrete Bellman equation.
In this problem formulation, we are expecting the value function V (xk+1, tk+1)
to be known. As has been mentioned before, an analytical formulation of the
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value function will seldomly be available. A workaround is the application of
a backwards recursion scheme and a gridding of the state x on a rectangular
grid Gx. The aim of the dynamic programming algorithm is, to calculate the
value function on every point on the grid t × Gx. The value function for xN

can easily be evaluated on this grid, since

V (xN , tN) = Ψ(xN) (A.13)

applies. For the time instant tN−1, the discrete Bellman equation (A.11) can
then be written

V (xN−1, tN−1) = min
uN−1

{
L(xN−1, uN−1, tN−1) · hN−1 + V (xN , tN)

}
(A.14)

Herein, V (xN , tN) is defined on the grid Gx. For any point that falls between
the grid points, an appropriate interpolation scheme can be used, such that
the function can be assumed to be entirely defined over the boundaries of
the grid. Consequently, the control uN−1 that minimizes the discrete Bellman
equation can be determined. The common procedure is to grid the controls on
Gu, evaluate the Bellman equation for each point on this grid and then select
the control that minimizes V (xN−1, tN−1). This procedure is repeated at time
instant N − 1 for any point on Gx. For each state, the value V (xN−1, tN−1)
is saved and the corresponding optimal control is saved in a similar structure
U(xN−1, tN−1). With V (xN−1, tN−1) being defined on the grid, we can move
one step backwards to N − 2 and repeat the same procedure. To allow for
more compact formulations, we define

g(xk, uk, tk) = xk + f(xk, uk, tk) · hk. (A.15)

such that the algorithm can be summarized as follows:

1: function dynprog
2: Define Gx, Gu, t
3: V N ← Ψ(Gx)
4: for k ← N − 1,−1, 1 do
5: for all xi ∈ Gx do
6: for all uj ∈ Gu do
7: x+ ← xi + g(xi, uj, tk)
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8: Cj ← L(xi, uj, tk) · hk+ intp(Gx, V k+1, x+)
9: end for

10: j∗ ← arg minj Cj
11: V k

i ← Cj∗

12: Uk
i ← uj∗

13: end for
14: end for
15: return V, U

16: end function

Algorithm 5: Dynamic programming algorithm
The procedures intp(X, Y, x) perform an interpolation over a grid X with
the corresponding grid values Y at the points x. This is neccessary as the
consecutive states x+ are unlikely to fall on grid points.
Once the functions V and U are defined on the on the grid t × Gx with the
procedure dynprog, optimal trajectories x and u can be recovered with the
procedure dptrajectory:

1: function dptrajectory(V , U , Gx, x1, t)
2: for k ← 1, N − 1 do
3: uk ← intp(Gx, Uk, xk)
4: xk+1 ← xk + g(xk, uk, tk)
5: end for
6: return u, x

7: end function

Algorithm 6: Calculating a specific optimal trajectory
For a given starting point (t1, x1), the optimal control u1 is determined from
U(x1, t1). This will again require an interpolation, as x1 is not necessarily on
the state grid. Using this control, the consecutive state xk+1 is computed using
(A.15). This is repeated until k = N − 1.
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A.2 Smooth Function Representation

To achieve reliable results, it is required to use a precise vehicle model. The
efficiencies of the individual powertrain elements are usually determined from
measurements and need to be stored in some form for later evaluation in the
optimization procedure. This function can be expressed as g(px, py) with the
grid defining column vectors px and py and is subject to the following require-
ments:

• The optimization is gradient based, hence the function g should be twice
continuously differentiable in the direction for which gradients are needed

• The optimization procedure needs a high amount of function evaluations.
Consequently, the evaluation needs to be fast

• Measured data are usually subject to noise, which might prevent con-
vergence of the optimization. The function should smooth the measured
data up to a desired extent.

In the literature, Willans-line-methods or interpolation schemes are often used
(Wei [2004]). However, the former is usually prone to considerable precision
loss, while the latter only fulfills the conditions of differentiability, when a
very costly spline interpolation scheme is used. Thus, a two-step approach is
adopted, that satisfies the requirements mentioned above:

1. As a first step, a smooth surface on an equidistant grid is generated from
the measured data

2. In the second step, a surface spline is generated that exactly represents
the surface on the grid points. The coefficients of the splines are saved
for later evaluation.

A.2.1 Smooth Surface Generation

The main interest in the first step is to span a smooth surface over a set
of points given by the column vectors sx and sy and the column vector with
corresponding measured values b, each of them having the dimension Rlm . The
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surface is to be defined on an equidistant grid of the size lpx×lpy . Using a radial
basis function for interpolation, any point on the surface can be calculated by

zi(px, py) =
lm∑
i=1

π(di(px, py)) · wi, (A.16)

where di is the distance of the grid point (px, py) to (sx,i, sy,i) and the center
of the radial basis function π(d). The parameters wi can be found by solving
the linear system

Π(D)w = b, (A.17)

where the matrix Π(D) ∈ Rlm×lm contains the function values Πi,j = π(Di,j)
of the radial basis function. The matrix entry Di,j indicates the distance of
the two points (sx,i, sy,i) and (sx,j, sy,j). We follow Sandwell [1987] in using the
radial green function

π(d) = |d|2 · (ln |d| − 1) (A.18)

for its minimum curvature and its smooth and stable extrapolation properties.
The interpolation is additionally enhanced with a configurable regularizer as
implemented in D’Errico [2010]. The regularization is given by the linear
equation

PBz = 0, (A.19)

where B is a sparse quadratic matrix of dimension lpx · lpy × lpx · lpy that gives
the finite differences of second order for the grid point values when multiplied
with the column vector z. The diagonal matrix P with the same dimension
allows for an individual weighting of the regularization for every value in z.
At the same time, we require the values in z to be built of the sum of the lm
weighted radial basis functions, which can be expressed by the linear system

Π(Dz)w = b, (A.20)

where Dz ∈ Rlpx lpy×lm is a matrix that contains the distances of the grid points
to the centers of the basis functions. Concatenating the variables w and z in
the column vector

p =
[
w z

]T
(A.21)
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and defining

A =
Π(D) 0

0 PB

 , b =
b

0

 , C =
[
Π(Dz) −I

]
, (A.22)

where I is the unity matrix, the regularized interpolation problem can then be
formulated as a linear quadratic constrained optimization problem

min
p
||Ap− b||2 (A.23)

Cp = 0 (A.24)

that can be solved with standard methods.

A.2.2 Analytical Representation

From the previous step, a smooth surface is obtained and represented as a
finite set of points on an equidistant grid. This surface is to be converted to
an analytic representation g(px, py). If during the optimization gradients for
both parameters px and py are needed, the coefficients for a tensor product
spline as in de Boor [2001] are stored in a data structure for later evaluation.
If only one parameter px or py is needed for gradient calculation, we use 1-
dimensional blended splines, which allow for a much faster evaluation and fulfill
the C2-condition in the required direction. The information for the blended
spline is stored as a set of 1-dimensional splines over the grid points. For
evaluation of the points between these splines, a linear interpolation of the
neighboring spline coefficients is performed and the spline then evaluated. This
dramatically reduces the time needed for an evaluation of the function g(px, py)
to one polynomial evaluation.
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Theses

• The solution of switched optimal control problems poses special require-
ments to a solution procedure, such that standard approaches for purely
continuous optimal control problems cannot be applied without further
adaptation

• The solution method needs to be selected carefully after a detailed anal-
ysis of the underlying system and the problem formulation

• The indirect shooting method can be extended for switched systems with-
out state jumps without extensive modifications

• The use of the indirect shooting method is, as it is the case for purely
continuous problems, often prevented by the strong sensitivity towards
the first guess of the initial costate value

• The weaker necessary conditions for optimal control and the jump con-
ditions of the costate prevent the use of the indirect shooting method for
systems with state jumps

• An approximation of the costate, including the jump conditions, can
be obtained from the solution of an optimal control problem via direct
methods with fixed switching sequence

• The proposed combined method uses the advantages of both, indirect
and direct methods, and is therefore a robust solution procedure

• When state jumps are present, dynamic programming will be able to find
the globally optimal solution with respect to the chosen discretization.
Yet, for systems with high dimension of the continuous state, the use
will be prevented by the curse of dimensionality

• For systems with high dimension of the continuous state, the embedding
approach with relaxation of the jump function can be a procedure for
obtaining slightly suboptimal solution, while other methods may fail

• Direct solution methods still have significant potential for reduction of
the computation time by using a collocation approach and exploiting the
sparsity structures of the resulting nonlinear program
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• The energy conversion in hybrid vehicles can be modeled with very good
accuracy, such that model-based calibration can be applied

• With the help of optimal control theory, many aspects in the calibration
of hybrid vehicles can be facilitated and the quality of the results can be
improved

• A large set of calibration parameters for rule-based energy management
systems in hybrid vehicles can be calculated analytically using the theory
of switched optimal control

• The process of catalytic converter heating in hybrid vehicles can be mod-
eled using a switched system formulation and the correspondingly formu-
lated optimal control problem can be solved with the combined method

• With minor simplifications, the indirect shooting method can be applied
for the solution of a switched optimal control problem on an electronic
control unit for the development of a predictive energy management

• The velocity profile for a given route can be estimated with good accuracy
based on information available in modern navigation systems

• The estimated velocity profile can then be used to formulate and solve a
switched optimal control problem

• The predictive energy management proposed is able to reliably deplete
the battery to a given value over the predicted driving route

• The predictive energy management is highly robust against model errors
for the driver and for the vehicle model

• The energy management achieves nearly optimal fuel consumption,
which can be demonstrated by comparing the results with dynamic pro-
gramming solutions over the known drive cycle
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