Etablierung eines in vitro Modells kultivierter Granulosazellen zur Untersuchung der Genregulation während der Transition vom dominanten zum prä-ovulatorischen Follikel im Rind

Dissertation

zur

Erlangung des akademischen Grades *doctor rerum naturalium* (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Rostock

vorgelegt von

Anja Baufeld geb. am 03.01.1986 in Halle (Saale) aus Rostock

Rostock, Oktober 2015

Gutachter:	PD Dr. Jens Vanselow Leibniz-Institut für Nutztierbiologie (FBN) Institut für Fortpflanzungsbiologie Abteilung Experimentelle Reproduktionsbiologie
	Prof. Dr. Reinhard Schröder Universität Rostock Institut für Biowissenschaften Abteilung Genetik
	Prof. Dr. Katarina Jewgenow Leibniz-Institut für Zoo- und Wildtierforschung (IZW) im Forschungsverbund Berlin e.V. Abteilung für Reproduktionsbiologie
Datum der Abgabe:	06.10.2015
Datum der Verteidigung:	13.05.2016

Inhaltsverzeichnis

Abkürzungsverzeichnis	IV
Zusammenfassung	
1. Einleitung	
1.1. Hintergrund	3
1.2. Sexualzyklus des Rindes	4
1.3. Morphologie und Physiologie des reifenden Follikels	6
1.4. Steroidogenese und Genregulation während der Follikelreifu	ıng7
1.4.1. Hormonsynthese im Reifungsprozess	7
1.4.2. LH-abhängige Regulation diverser Gene	8
1.4.3. Signalkaskaden der Follikulogenese	
1.5. Epigenetische Modulation im Verlauf der Follikelreifung	
1.6. In vitro Modelle zur Untersuchung der Follikulogenese	15
2. Methoden	
2.1. Gewinnung der Granulosazellen aus dem Ovar	
2.2. Cryo-Konservierung der aspirierten Granulosazellen	
2.3. Zellkultur von Granulosazellen	
2.4. Zell-Viabilitätstest	
2.5. Zellzählung nach Kultur	
2.6. Hormonkonzentrationsmessung aus kultiviertem Medium	
2.7. Immunfluoreszenzfärbung kultivierter Granulosazellen	
2.8. Western Blot Analyse	
2.9. Isolation der RNA aus kultivierten Granulosazellen	
2.10. Gleichzeitige Isolation von RNA und DNA	
2.11. Photometrische Konzentrationsbestimmung von RNA bzw	. DNA23
2.12. cDNA-Synthese mittels Reverser Transkription	24
2.13. Reinigung der cDNA	24
2.14. Quantitative Real-Time PCR	
2.14.1. Absolute Quantifizierung	

	2.1	4.2.	Erstellung von genspezifischen Standards für die Eichkurve in der	
			qPCR	27
	2.15.	DN	A-Methylierungsanalyse	29
	2.16.	Nut	tzung von Referenzgenen zur relativen Transkriptquantifizierung	30
	2.17.	Mic	roarray Analyse mittels des Bovine GeneChip [®] 1.0 ST Array	31
	2.18.	Sta	tistische Auswertung	32
3.	Erge	bnis	se	33
	3.1. I	dent Micro	ifizierung von LH-abhängigen Markergenen anhand einer mRNA barray Analyse	33
	3.2. E	Etabl Gran	lierung eines steroidaktiven Zellkulturmodells von bovinen ulosazellen	34
	3.2	.1.	Steroidaktivität in Abhängigkeit von der Zellkulturdauer	35
	3.2	.2.	Kultivierung der Zellen auf Matrixproteinen	35
	3.3. [Diffe	renzierung von kultivierten Granulosazellen	37
	3.3	.1.	Wirkung von LH in der serumfreien Granulosazellkultur	37
	3.3	.2.	Einfluss von Serum auf kultivierte Granulosazellen	39
	3.3	.3.	Zelldichte-abhängige Veränderungen in der Granulosazellkultur	42
	3.4. l	Jrsa	chen des Zelldichte-Effekts in Kultur	51
	3.4	.1.	Einfluss von konditioniertem Medium aus Kulturen mit hoher	
			Zelldichte	51
	3.4	.2.	Untersuchung des PKA-Signalwegs	52
	3.4	.3.	Untersuchung der Cadherin-Catenin Signalkaskade	58
4.	Diskı	ussic	on	62
	4.1. E	Erfol Gran	greiche Validierung von Markergenen der frühen Luteinisierung in der ulosazellkultur	62
	4.2. E	Erfolo Gran	greiche Etablierung eines Zellkulturmodells Estradiol-aktiver ulosazellen	64
	4.3. [Die F	Responsivität von Granulosazellen gegenüber LH ist in vitro abhängig	
	١	/on c	der ursprünglichen Follikelgröße	66
	4.4. \$	Seru	mzusatz führt zu einer Transformation boviner Granulosazellen in vitro	68

4.5. Initiierung eines frühen post-LH Status durch die Erhöhung der Z Kultur	elldichte in69
4.6. Die Zelldichte-abhängige Differenzierung von kultivierten Granulo ist nicht bedingt durch lösliche Faktoren der Zellen	osazellen 74
4.7. PKA und Cadherin-Catenin vermittelte Signalübertragungswege beteiligt an der Zelldichte-abhängigen Veränderung der Genexpr kultivierten, bovinen Granulosazellen	sind nicht ession in 74
4.8. Schlussfolgerungen und Ausblick	79
Literaturverzeichnis	81
Abbildungsverzeichnis	91
Tabellenverzeichnis	93
Anhang	A
Vergleich der hohen und niedrigen Zelldichte in Kultur mittels einer Mi	croarray
Analyse	A
Lösungen und Puffer	P
Chemikalien und Kits	T
Verbrauchsmaterial	W
Geräte und Software	W

Abkürzungsverzeichnis

A4	Androstendion
aGC	antrale Granulosazellen
AK	Antikörper
α-MEM	α-Minimal Essential Medium
BSA	Bovines Serum Albumin
bzw.	beziehungsweise
cAMP	zyklisches AMP
CCND2	cyclin D2
cDNA	komplementäre DNA
CL	Corpus luteum/Gelbkörper
CO ₂	Kohlenstoffdioxid
CpG	Cytosin-phosphatidyl-Guanin
CYP11A1	cytochrome P450, family 11, subfamily A, polypeptide 1
CYP17A1	cytochrome P450, family 17, subfamily A, polypeptide 1
CYP19A1	cytochrome P450, family 19, subfamily A, polypeptide 1;
	aromatase
d.h.	das heißt
dNTP	Desoxyribonukleosidtriphosphate
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
E2	17-β Estradiol
EDTA	Ethylendiamintetraessigsäure
ERK1/2	extracellular signal-regulated Kinase 1/2
EtBr	Ethidiumbromid
EZM	Extrazelluläre Matrix
FDR	false discovery rate
FKS	Fötales Kälberserum
FSH	Follikelstimulierendes Hormon
FSHR	follicle stimulating hormone receptor (FSH Rezeptor)
GAPDH	glycerinaldehyd-3-phosphate dehydrogenase
GTE Puffer	Glucose-Tris-EDTA Puffer
GnRH	Gonadotropin Relasing Hormon
GSK3	Glykogensynthase-Kinase 3
H-89	N-[2-[[3-(4-Bromophenyl)-2-propenyl]amino]ethyl]-5-
	isoquinolinesulfonamide

hCG	Humanes Choriongonadotropin
HEPES	2-(4-(2-Hydroxyethyl)-1-piperazinyl)-ethansulfonsäure
HRP	Horseradish peroxidase
HSD3B1	hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid
	delta-isomerase 1 (3-Beta-hydroxysteroid Dehydrogenase)
i.d.R.	in der Regel
IGF 1	Insulin-like growth factor 1
IPTG	Isopropyl-β-D-thiogalactopyranosid
KAc	Kaliumacetat
LH	Luteinisierendes Hormon
LHCGR	luteinizing hormone/choriogonadotropin receptor (LH Rezeptor)
max.	maximal
mGC	murale (membranständige) Granulosazellen
MTS	3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
	sulfophenyl)-2H-tetrazolium
MW	Molekulargewicht
n	Anzahl
NaCl	Natriumchlorid
NAD(P)H	Nicotinsäureamid-Adenin-Dinukleotid(-Phosphat)
NaOH	Natriumhydroxid
NEA	Nicht essentielle Aminosäuren
o.ä.	oder ähnliches
P1.1	Promotor 1.1 (des Gens CYP19A1)
P2	Promotor 2 (des Gens CYP19A1)
P4	Progesteron
PBS	Phosphat gepufferte Saline
PCNA	proliferating cell nuclear antigen
PCR	Polymerase-Ketten-Reaktion
PEG	Polyethylenglycol
PI3-K	Phosphoinositid-3-Kinase
PKA	Proteinkinase A
PKB/Akt	Proteinkinase B
PKC	Proteinkinase C
PTGS2	prostaglandin-endoperoxide synthase 2
PTX3	pentraxin 3
PVDF	Polyvinylidenfluorid
qPCR	Quantitative PCR

RGS2	regulator of G-protein signaling 2
RIA	Radioimmunassay
Ripa Puffer	Radioimmunpräzipitations-Assay Puffer
RNA	Ribonukleinsäure
RPLP0	ribosomal protein, large, P0
RT	Raumtemperatur
S.	siehe
SDS	Natriumdodecylsulfat
SDS-PAGE	SDS-Polyacrylamid-Gelelektrophorese
SEM	Standardfehler
тс	Thekazellen
Vgl.	Vergleich
VNN2	vascular non-inflammatory molecule 2 (vanin 2)
Vol	Volumen
WB	Western Blot
Wnt	Wingless (Wg) / Integration-1 (Int-1)
X-Gal	5-Brom-4-chlor-3-indoxyl-β-D-galactopyranosid

Zusammenfassung

Eine präzise Regulation der Follikulogenese auf morphologischer, physiologischer und molekularer Ebene ist für die weibliche Fruchtbarkeit von entscheidender Bedeutung. Besonders die morphologische und physiologische Umstrukturierung des Follikels während der Transition vom dominanten über den prä-ovulatorischen Follikel zum Gelbkörper, die durch eine erhöhte LH (Luteinisierendes Hormon) Ausschüttung initiiert wird, erfordert eine räumlich d.h. Zelltyp-spezifisch und zeitlich genau abgestimmte Regulation der Genexpression. Die Untersuchung der zugrunde liegenden molekularen Mechanismen erfordert die Etablierung von Zellkulturmodellen, die den natürlichen Prozessen möglichst nahe kommen.

In der vorliegenden Arbeit wurde ein Zellkultursystem entwickelt und etabliert, welches geeignet ist, Granulosazellen des Rinderfollikels unter Erhalt wichtiger physiologischer Eigenschaften über mehrere Tage zu kultivieren. Die Steroidhormonsynthese und die Expression ausgewählter Markergene der Follikulogenese dienten dabei als Indikatoren. Es konnte zunächst nachgewiesen werden, dass der Serumzusatz zu einer untypischen Transformation der Zellen führte und somit keine optimale Imitation der in vivo Situation erlaubt. Außerdem wurde deutlich, dass die Herkunft der Zellen aus Follikeln unterschiedlicher Größe einen entscheidenden Einfluss hat. Zellen aus großen (> 9 mm) nicht aber solche aus kleinen Follikeln (< 6 mm) reagierten auf eine Stimulation mit LH, verloren aber in Kultur rasch und endgültig ihre Fähigkeit zur Estradiolsynthese. Dagegen regenerierte sich diese Fähigkeit bei Zellen aus kleinen Follikeln in der Langzeitkultur. Überraschenderweise zeigte sich außerdem, dass eine Erhöhung der Zelldichte zu starken Veränderungen der physiologischen und molekularen Eigenschaften der Zellen führte, die einem sehr frühen Stadium der Luteinisierung ähnelten.

In weiteren Untersuchungen wurde der zugrunde liegende Mechanismus der Zelldichte-induzierten Luteinisierung untersucht. Aus den vorliegenden Ergebnissen kann geschlussfolgert werden, dass die Proteinkinase A nicht an diesem Effekt beteiligt ist, obwohl diese bekanntermaßen eine Rolle bei der Luteinisierung spielt. Ebenso konnte die Hypothese, dass intensivierte Zell-Zell-Kontakte zu einer Catenin- und Cadherin-Umstrukturierung führen und für die Zelldichte induzierten Effekte eine Rolle spielen könnte, in ersten Versuchen nicht bestätigt werden.

Zusammenfassend werden in dieser Arbeit Zellkulturmodelle boviner Granulosazellen beschrieben, die unterschiedliche physiologische Stadien von Granulosazellen

darstellen um Signalkaskaden zu untersuchen, die an der Transition vom dominanten über den prä-ovulatorischen Follikel bis hin zum Gelbkörper von Bedeutung sind.

1. Einleitung

1.1. Hintergrund

In der Tierzucht ist das Verständnis von Prozessen, die der Fortpflanzung zugrunde liegen von zentraler Bedeutung. Besonders in Betrieben mit hoher Milchleistung kommt es aufgrund von Fruchtbarkeitsstörungen zu beträchtlichen ökonomischen Verlusten. Es ist bekannt, dass die Züchtung auf das Merkmal hohe Milchleistung hier zu Problemen geführt hat. Bei diesen Milchrind-Rassen treten vermehrt Euterkrankheiten auf, die Lebenserwartung ist gesunken und es sind zunehmend Fruchtbarkeitsprobleme zu verzeichnen (Butler 2003; Butler and Smith 1989; Dillon et al. 2006; Walsh et al. 2011). Aus diesem Sachverhalt ergibt sich eine der zentralen Fragestellungen der Reproduktionsbiologie, die sich mit der Aufklärung der an der weiblichen Fertilität beteiligten Mechanismen beschäftigt. Ein Schwerpunkt liegt hier in dem genauen Verständnis der Follikelreifung innerhalb des Ovars, welche letztendlich eine Befruchtung der Oozyte zur Folge hat. Reproduktionsprobleme können unter anderem auf verschiedene Abweichungen während der Follikelreifung, auch Follikulogenese genannt, zurückgeführt werden und anhand derer klassifiziert werden. Eine häufige Störung ist die Zystenbildung, wobei ein großer Follikel nicht zur Ovulation kommt und somit keine Oozyte für eine erfolgreiche Befruchtung frei gibt, sondern als Zyste persistiert (Kesler and Garverick 1982; Vanholder et al. 2006). Oftmals ist die Zystenbildung mit einem endokrinen Ungleichgewicht der Hypothalamus-Hypophysen-Gonaden-Achse der Progesteronausschüttung verbunden (Gümen and Wiltbank 2002; Hatler et al. 2003; Silvia et al. 2002), kann aber unter Umständen auch durch einen unzureichenden LH-Stimulus entstehen (Vanholder et al. 2006).

Die Follikulogenese stellt einen elementaren Bestandteil des weiblichen Sexualzyklus dar. Dieser ist in seinem Ablauf weitestgehend aufgeklärt, jedoch zeigt sich bei näherer Betrachtung, dass gerade intermediäre Schritte noch nicht vollständig verstanden worden sind. Demzufolge ist es von großer Bedeutung die zugrunde liegenden Mechanismen zu identifizieren. In den vorangegangenen Jahren konnten immense Erkenntnisse in Bezug auf die Follikelreifung in den unterschiedlichsten Spezies erlangt werden. Interessanterweise hat sich das Rind nicht nur aus landwirtschaftlicher Sicht als zentrales Untersuchungsobjekt etabliert, sondern auch im Hinblick auf den Erkenntnisgewinn für die Humanmedizin. Die Zyklusbedingungen zwischen Mensch und Rind sind in vielen Bereichen vergleichbar (Adams and Pierson 1995; Adams *et al.*

2012). Daher erhofft man sich aus den gewonnenen Einsichten aus dem Rind Rückschlüsse auf menschliche Fertilitätsprobleme zu erlangen.

1.2. Sexualzyklus des Rindes

Im Allgemeinen kann der Sexualzyklus des Rindes in vier Phasen unterteilt werden: Proestrus, Estrus, Metestrus und Diestrus. Im Rind ist zudem eine Einteilung aufgrund der ovariellen Funktion sinnvoll, bestehend aus einer follikulären und einer lutealen Phase. Die follikuläre Phase beinhaltet den Proestrus und Estrus, die Zeit der sexuellen Rezeptivität. Die luteale Phase beschreibt die Zeit, in der ein aktiver Gelbkörper, auch Corpus luteum genannt, vorzufinden ist (Ball *et al.* 2004).

Abbildung 1: Vereinfachte schematische Darstellung der Follikulogenese. Unter dem Einfluss von FSH wachsen mehrere Follikel heran. Ein flüssigkeitsgefüllter Follikel wird selektiert und wird als dominanter Follikel klassifiziert, der Estradiol sekretiert. Infolge des LH-Stimulus findet die Ovulation statt, wodurch die Oozyte freigesetzt wird. Die im Follikel vorhandenen Granulosa- und Thekazellen bilden den Gelbkörper (Corpus luteum). Granulosa- und Thekazellen des reifenden Follikels sind orange dargestellt, luteinisierte Zellen (hervorgehend aus Granulosa- und Thekazellen) sind gelb dargestellt. atret. atretisch; CL Corpus luteum; Foll., Follikel; luteol. luteolytisch; prä-ovul. prä-ovulatorisch.

Der Sexualzyklus beginnt mit der Ausschüttung des Gonadotropin Releasing Hormons (GnRH) des Hypothalamus, wodurch wiederum die Freisetzung des Follikelstimulierenden Hormons (FSH) ausgelöst wird, welches von der Adenohypophyse sekretiert wird. FSH stimuliert das Wachstum einer im Ovar befindlichen Kohorte von

4

Follikeln bis hin zum antralen, flüssigkeitsgefüllten Stadium (schematisch dargestellt in Abbildung 1). Es schließt sich die Selektion eines Follikels an, der im Folgenden als dominanter Follikel bezeichnet wird und bis hin zur Ovulation reift (Hennet and Combelles 2012). Die verbleibenden Follikel werden atretisch und vollständig abgebaut. Der dominante Follikel synthetisiert Estradiol, wobei die Ausschüttung mehrere unterschiedliche Veränderungen in der Kuh nach sich zieht. So kommt es zu physiologischen Veränderungen des Reproduktionstraktes, die eine Trächtigkeit begünstigen oder auch zum typischen Sexualverhalten der Kuh führen (Ball et al. 2004). Die Sekretion von Estradiol führt einerseits über eine negative Rückkopplung im Hypothalamus zu einer Reduzierung der FSH Ausschüttung und initiiert andererseits die Freisetzung des Luteinisierenden Hormons (LH). Der prä-ovulatorische LH Anstieg stimuliert den Prozess der Ovulation, bei welchem die Oozyte aus dem Follikel freigesetzt wird. Dieser Zeitpunkt markiert den ersten Tag eines Zyklus. Gleichzeitig initiiert der Stimulus den Luteinisierungsprozess der verbliebenen Zellschichten des Follikels, an dessen Ende die Bildung des Gelbkörpers (Corpus luteum) steht. Dieser bildet sich aus den im Follikel verbleibenden steroidogenen somatischen Zellen der Follikelwand, bestehend aus der Granulosa- und Thekazellschicht. Der Gelbkörper, welcher Progesteron sekretiert, entsteht um den vierten Zyklustag und bleibt bis zum 17. Tag des Zyklus vorhanden. Durch die erhöhte Progesteronkonzentration kann der Uterus auf eine mögliche Trächtigkeit vorbereitet werden. Gleichzeitig wird zunächst die Entwicklung und finale Reifung von weiteren Follikeln verhindert. Dementsprechend sind im Rind mehrere Follikelreifungswellen beschrieben worden wie das Schema in Abbildung 2 zeigt (Adams et al. 2008; Forde et al. 2011). Innerhalb eines Zyklus werden zwei bis drei Reifungswellen durchlaufen, in welchen mehrere Follikel heranwachsen. Im Folgenden kommt es zur Selektion eines dominanten Follikels mit typischer Physiologie. Jedoch wird durch einen aktiven Gelbkörper die Reifung bis hin zur Ovulation verhindert, sodass diese Follikel im Prozess der Atresie wieder abgebaut werden. Wenn es nicht zu einer Befruchtung der Oozyte gekommen ist, wird der Gelbkörper ab dem 17. Zyklustag durch den Prozess der Luteolyse abgebaut. Die damit einhergehende Absenkung des Progesteronspiegels ermöglicht daraufhin die Ovulation eines herangereiften dominanten Follikels.

Abbildung 2: Schema der Follikelreifungswellen. Das Schema verdeutlicht den Follikeldurchmesser in Abhängigkeit vom Zyklustag. Eine Kohorte von Follikeln wächst heran, wobei ein Follikel daraus selektiert wird. Dieser dominante Follikel kann bei Vorhandensein eines aktiven Gelbkörpers nicht zur Ovulation reifen und wird daraufhin atretisch. Die Kreise stellen die Follikel dar, wobei wachsende bzw. selektierte Follikel mit durchgezogenen Linien dargestellt sind, atretische Follikel weisen eine gestrichelte Linie auf. Die Ovulation bzw. Gelbkörperbildung zeigt sich durch einen grau hinterlegten Follikel mit Pfeil. Gleiche Farben weisen auf Follikel einer Reifungswelle hin. (verändert nach (Forde *et al.* 2011)).

1.3. Morphologie und Physiologie des reifenden Follikels

Grundlage der weiblichen Fertilität ist das Heranwachsen eines dominanten Follikels im Zusammenspiel mit der zyklischen Reifung der Oozyte und die anschließende Ovulation. Der Follikel im Ovar weist eine typische Morphologie auf, wie in Abbildung 3 gezeigt (Adams *et al.* 2008; Hennet and Combelles 2012). Der primordiale Follikel besteht zum größten Teil aus der Oozyte, die von einigen wenigen Follikelzellen und Stromazellen umgeben ist. Im weiteren Verlauf des Reifungsprozesses wachsen die Zellschichten und die Zona pellucida um die Oozyte wird ausgebildet. Im Stadium des späten prä-antralen Follikels können eindeutig zwei steroidaktive Zellschichten voneinander unterschieden werden: Granulosa- und Thekazellen. Granulosazellen befinden sich in einem mehrschichtigen lockeren Gewebe im Inneren des Follikels, während sie durch eine Basallamina von der Thekazellschicht getrennt werden. Im Verlauf des weiteren Wachstums des Follikels bildet sich im Inneren ein flüssigkeitsgefüllter Raum, das Antrum. In der letzten Phase des Wachstums, in der von einem prä-ovulatorischen Follikel die Rede ist, hat sich das Antrum weiterhin vergrößert und die Granulosazellen befinden sich in einem lockeren Zellverband an der Innenseite der Basallamina. Die Oozyte und weitere Granulosazellen bilden den Kumulus-Oozyten-Komplex, welcher an einer Seite des Follikels aufzufinden ist.

Abbildung 3: Morphologie eines Follikels in der Wachstumsphase. Aus Histology. A Text and Atlas 3rd Ed. p. 681 Fig. 22.3. (verändert nach Ross 1995).

1.4. Steroidogenese und Genregulation während der Follikelreifung

1.4.1. Hormonsynthese im Reifungsprozess

Granulosa- und Thekazellen sind steroidaktive Zellen und somit in der Lage Hormone zu synthetisieren. Die Synthese von Estradiol im dominanten Follikel oder auch Progesteron im Gelbkörper wird durch diese Zellen bewerkstelligt. Dabei konnte aezeiat werden. dass die Synthesekaskade beginnend beim Cholesterin kompartimentiert wird (Hillier et al. 1994). Die Zwei-Zell-Hypothese beschreibt den Sachverhalt, dass Thekazellen Cholesterin über Progesteron bis hin zum Zwischenprodukt Androstendion synthetisieren. Androstendion wird im Folgenden über die Basallamina hinweg zu den Granulosazellen transportiert. Hier erfolgt die weitere Umsetzung zu 17- β -Estradiol (s. Abbildung 4). Diese Hypothese kann durch die Genaktivität vereinzelter Schlüsselenzyme bestätigt werden. In den Thekazellen können keine Gentranskripte von CYP19A1, welches das Schlüsselenzym Aromatase für die Synthese von Estradiol kodiert, nachgewiesen werden. Gleichzeitig ist keinerlei Aktivität des Gens CYP17A1, dessen Enzym die Synthese zu Androstendion durchführt, in Granulosazellen detektierbar (Bao et al. 1997a).

Abbildung 4: Schemata zur Steroidhormonsynthese. Die Synthesekaskade zeigt die Umwandlung von Cholesterin bis hin zu Estradiol mit den jeweiligen Enzymen, die einen Syntheseschritt katalysieren. Gleichzeitig sind die Gene aufgeführt, die das entsprechende Enzym kodieren. Syntheseort bis zur Bildung von Androstendion sind die Thekazellen. Im Anschluss erfolgt die Synthese zu Estradiol in den Granulosazellen des Follikels.

1.4.2. LH-abhängige Regulation diverser Gene

Während der Follikelreifung unterliegt die Steroidhormonsynthesekaskade einer kontinuierlichen Kontrolle. So werden die entsprechenden Enzyme vor allem durch die Regulation ihrer Genexpression kontrolliert (Bao and Garverick 1998). Wie in Absatz 1.2 bereits erläutert, synthetisiert der dominante Follikel Estradiol, wobei alle Gentranskripte der Synthesekaskade im Follikel detektiert werden können. Dabei ist die Kompartimentierung von CYP19A1 in den Granulosazellen und CYP17A1 in den Thekazellen zu beobachten (Bao et al. 1997a; Bao et al. 1997b; Hillier et al. 1994). Durch den Einfluss von LH wird über die Genaktivität die Hormonproduktion sehr stark beeinflusst. Schon in der Transition zum prä-ovulatorischen Follikel finden eine Reihe an Veränderungen statt, die vor allem auf der Genexpressionsebene zu beobachten sind. So werden zunächst die Gene der Steriodkaskade herunterreguliert. Von einer Regulation sind noch viele weitere Gene betroffen, die nicht direkt im Zusammenhang mit der Hormonproduktion stehen, aber Veränderungen bewirken, die zur Ovulation führen. So konnte schon in früheren Studien eine Hochregulation von PTGS2 beobachtet werden, einem Gen, welches für die Cyclooxygenase-2 kodiert und bekanntermaßen bei inflammatorischen Prozessen beteiligt ist (Sirois 1994). Ähnliche Beobachtungen konnten in einer Arbeit gezeigt werden, die sich ebenfalls mit der Transition vom dominanten und prä-ovulatorischen Follikeln beschäftigte (Nimz et al. 2009). In dieser Studie zeigte sich die Veränderung des Expressionsprofils durch den Einfluss von LH in den unterschiedlichen Zellschichten des Follikels. Es konnte gezeigt werden, dass in vivo durch LH Gene der Steroidogenese, wie CYP19A1 und CYP11A1, sowie solche, die für die Rezeptoren der gonadotropen Hormone und Wachstumshormone kodieren, FSHR, LHCGR und GHR, signifikant in Granulosazellen herunterreguliert werden. Gleichzeitig konnte eine deutliche Hochregulation des Gens PTGS2 beobachtet werden.

Ein genomweiter Vergleich der Genexpression zwischen dominanten und präovulatorischen Follikeln in Form einer mRNA Microarray Analyse offenbarte eine ganze Reihe weiterer Gene, die im Verlauf dieses wichtigen Differenzierungsschrittes reguliert werden (Christenson *et al.* 2013). Die Studie untersuchte die verschiedenen Zellschichten der antral und membranständig gelegenen Granulosazellen, sowie der Thekazellen getrennt voneinander. In Abbildung 5 ist die Verteilung der durch LH regulierten Gene dargestellt. Dabei konnten in den antralen Granulosazellen eine Vielzahl an hoch- und herunterregulierten Genen identifiziert werden, die in einem großen Teil mit signifikant veränderten Transkripten der membranständigen Granulosazellen übereinstimmten. Interessant war auch der Befund, dass in Granulosazellen etwa 25%, in Thekazellen aber nur 2% aller aktiv exprimierten Gene durch LH reguliert wurden.

Abbildung 5: Venn Diagramm zur proportionalen Darstellung der durch LH signifikant veränderten Hybridisierungssignale in antralen (aGC) und membranständigen (mGC) Granulosazellen bzw. Thekazellen (TC). Die Zahlen repräsentieren die Anzahl an regulierten Genen, wobei Angaben in Klammern die direkte Anzahl an hoch- (\uparrow) oder herunterregulierten (\downarrow) Genen aufzeigt. Aus (Christenson *et al.* 2013).

Diese Analyse, durchgeführt in einem Partnerlabor (Ansprechpartner: Dr. Lane K. Christenson, Department of Molecular & Integrative Physiology University of Kansas Medical Center, Kansas, USA), diente als Ausgangpunkt der vorliegenden Arbeit. Aufgrund dieser Analyse konnten Gene ausgewählt werden, welche als Markergene für die Veränderung vom dominanten zum prä-ovulatorischen Follikel dienten (siehe Abschnitt 3.1).

1.4.3. Signalkaskaden der Follikulogenese

Das Hypophysenhormon FSH spielt eine essentielle Rolle für die Steuerung der Follikulogenese. Bei zu geringer FSH Ausschüttung, wird der Follikel atretisch, bei einer verstärkten Ausschüttung hingegen verläuft die Entwicklung hin zur Dominanz (Findlay and Drummond 1999). In der Follikelreifung ist kaum ein anderer Ligand von ähnlich ausschlaggebender Bedeutung, der eine solche regulatorische Kapazität besitzt. Es ist jedoch möglich, dass intraovarielle Faktoren die FSH-Wirkung modulieren können und somit Abschnitte der Entwicklung steuern.

Der gonadotrope Rezeptor für FSH ist ein 7-Transmembran-Rezeptor. Diese Proteine weisen eine typische Charakteristik auf, indem 7 transmembrane Elemente die Zellmembran durchziehen. Oftmals werden diese Rezeptoren auch als G-gekoppelte Rezeptoren beschrieben, da ihre Signalweiterleitung mit heterotrimeren G-Proteinen verbunden ist. Im Anschluss an die Aktivierung der G-Proteine werden weitere Effektoren aktiviert, wie z.B. die Adenylylcyclase, die den intrazellulären cAMP-Spiegel erhöht. Durch die größere Verfügbarkeit von cAMP können diverse Kinasen aktiviert werden, darunter auch die Proteinkinase A bzw. C (Pierce et al. 2002; Simoni et al. 1997). In mehreren Studien konnte bereits nachgewiesen werden, dass diese Signalkaskaden während der Follikelreifung durch FSH initiiert werden und die Differenzierung bzw. Proliferation von Granulosazellen vorantreiben (Escamilla-Hernandez et al. 2008; Hunzicker-Dunn et al. 2012; Liu et al. 2010; Silva et al. 2006). Im Falle der FSH-Wirkung geht man hauptsächlich davon aus, dass die Proteinkinase A aktiviert wird, welche wiederum zur Phosphorylierung von verschiedenen Transkriptionsfaktoren führt und somit die Genaktivität von z.B. CYP19A1 oder LHCGR positiv beeinflusst. Eine PKA-Aktivierung bewirkt gleichzeitig eine verstärkte Expression des Wachstumsfaktors IGF-1, welcher bekanntermaßen für die Differenzierung von Granulosazellen von Bedeutung ist (Makarevich et al. 2004). Jedoch konnten neuere Erkenntnisse zeigen, dass die FSH-Wirkung nicht allein durch den PKA-Signalweg verläuft, sondern auch zusätzlich über den PKB/Akt Weg (Gonzalez-Robayna et al. 2000). Des Weiteren kann auch die Signalweiterleitung über andere Proteine, wie z.B. PI3K oder auch ERK1/2 nicht ausgeschlossen werden (Hunzicker-Dunn and Maizels 2006; Wayne et al. 2007). Zusammengenommen ergibt sich aus bisher bekannten Daten ein großes globales Netzwerk der Signalübertragung innerhalb des Follikels sowohl in der Wachstumsphase, als auch später während der Ovulation und anschließenden Luteinisierungsphase.

Der für die Ovulation entscheidende Einfluss entsteht durch die Ausschüttung von LH aus der Hypophyse. Die Signalübertragung von LH verläuft ähnlich wie bei FSH über den passenden Rezeptor, kodiert durch das Gen *LHCGR*. Der LH Rezeptor ist ebenfalls ein G-Protein gekoppelter Rezeptor, der sich durch 7 transmembrane Helices auszeichnet und dem FSH Rezeptor strukturell sehr ähnlich ist. Somit kann auch hier die Aktivierung bzw. Regulation über den intrazellulären cAMP-Spiegel mit Aktivierung der Proteinkinasen angenommen werden. Dieser Zusammenhang wurde von anderen Arbeitsgruppen bereits beschrieben. So zeigten Morris and Richards (1995) in Granulosazellen der Ratte, dass die LH-Stimulation die Aktivierung der Proteinkinase A, sowie der Proteinkinase C zur Folge hat. Die Luteinisierung konnte im Anschluss an den LH-Stimulus durch entsprechende Inhibitoren der Kinasen blockiert werden. (Karlsson *et al.* 2010) bestätigten diese Beobachtung und beschrieben die Reorganisation des Actins durch Cofilin aufgrund der PKA-Aktivierung, während Cofilin unter anderem notwendig ist, um die Progesteron Produktion zu initiieren. Gleichzeitig wurde über eine Aktivierung von ERK1/2 spekuliert, die wiederum notwendig ist, um der zuvor ablaufenden FSH-Wirkung entgegen zu wirken und für einen korrekten Ablauf der Ovulation zu sorgen (Fan *et al.* 2009).

Bei beiden Rezeptoren ist bekannt, dass sich die Signaltransduktion über die Erhöhung des intrazellulären cAMP-Spiegels mit anschließender Aktivierung der PKA vollzieht. Aus diesem Zusammenhang stellt sich die Frage, in wie weit sich die Rezeptoren für FSH und LH unterscheiden bzw. welche nachgeschaltete Aktivierung differenziert verläuft, damit das korrekte Zellschicksal der Granulosazellen initiiert wird. In der Literatur werden bis dato weitgehend isolierte Untersuchungen angestellt. Oftmals beziehen sich die Studien auf meist nur einen der beiden Sachverhalte abhängig von einem Zellkultursystem oder der in vivo Situation.

Auch der Einfluss von weiteren Signalwegen konnte bereits gezeigt werden. So wurde dem Wnt-Signalweg ebenfalls eine große Rolle in Verlauf der Follikelreifung zugeschrieben (Richards *et al.* 2002). Von diesem Signalweg ist bekannt, dass er in frühen Entwicklungsstadien von zentraler Bedeutung ist (Cadigan and Nusse 1997; Logan and Nusse 2004), aber auch im weiteren Verlauf der Entwicklung eines Organismus eine Rolle spielt. Grundlegend wird durch das Signalmolekül Wnt, einem extrazellulären Liganden, eine Signalkaskade initiiert, die zur Freisetzung von β -Catenin innerhalb der Zelle führt und die Transkription positiv beeinflussen kann. Die Aktivierung von β -Catenin geschieht vor allem durch dessen Freisetzung aus dem Abbaukomplex, bestehend aus Axin, GSK3 und weiteren Proteinen. Dadurch kann β -Catenin in den Zellkern gelangen und als Co-Faktor der Transkription die Expression von verschiedenen Zielgenen beeinflussen. Mittlerweile wird neben anderen auch dem Wnt-Signalweg eine wichtige intra-ovarielle Funktion zugeschrieben. So scheint schon die Entwicklung zum Ovar oder Hoden in der frühen Embryonalentwicklung durch Wnt-Proteine beeinflusst zu werden, da Ovarien von Mäusen mit einer Wnt4-Mutation Anomalitäten zeigten und Strukturen im Ovar aufwiesen die eher Tubuli des Hodens ähnelten (Vainio *et al.* 1999). Weiterhin konnte gezeigt werden, dass in kultivierten Granulosazellen der Maus *Wnt2* exprimiert wurde und die Lokalisation von β -Catenin sowie die Fähigkeit zur Proliferation der Zellen bedeutend beeinflusste (Wang *et al.* 2010).

Catenine sind zudem in der Nähe der Zellmembran aufzufinden. Sie bilden einen Proteinkomplex mit dem membranständigen Cadherin aus. Cadherine sind für die Bildung von Zell-Zellkontakten von essentieller Bedeutung und ermöglichen die Ausbildung von adhärenten Verbindungen zwischen zwei Zellen (Geiger et al. 1985). Dabei entsteht ein Proteinkomplex an der Membran aus β-Catenin, welches zudem αund y-Catenin rekrutiert und eine stabile Verbindung mit dem Cytoskelett über Actin aufbaut. Ist β-Catenin nicht in dieser Einheit gebunden kann es analog der Wnt-Signalkaskade in den Zellkern gelangen, um die Transkription von Zielgenen zu initiieren. Allerdings konnte dieser Zusammenhang auch bereits umgekehrt beobachtet werden. Durch die Aktivierung über Wnt2 ist eine Rekrutierung des β-Catenins an der Zellmembran nachgewiesen worden, was wiederum zur Ausbildung von adhärenten Zellverbindungen führt (Wang et al. 2010). Gleichzeitig wurde in Granulosazellen beschrieben, dass die FSH Regulation des primordialen Follikels mit einer spatiotemporären Cadherin-Expression und -Aktion verbunden ist (Wang and Roy 2010), sodass eine Wirkung über β-Catenin erfolgen kann. Ein Einfluss von Catenin in der Follikulogenese ist insoweit nachgewiesen, dass die Aktivität des Gens die FSH- und LH-Wirkung beeinflussen kann, ebenso wie die Estrogensynthese (Fan et al. 2010; Parakh et al. 2006). In welchem Maße die Signalwege in der konkreten Transition vom dominanten zum prä-ovulatorischen Follikel beteiligt sind, steht weiterhin zur Diskussion.

1.5. Epigenetische Modulation im Verlauf der Follikelreifung

Zur Aktivierung bzw. Inaktivierung von Genen bedient sich die Zelle verschiedener epigenetischer Mechanismen, die keine Veränderung der DNA-Sequenz darstellen, jedoch einen direkten oder indirekten Einfluss auf die DNA-Struktur haben können. Prinzipiell wird durch diese Mechanismen die Erreichbarkeit der DNA für die Transkription beeinflusst. Die Wichtigkeit ergibt sich vor allem aus der Spezifität unterschiedlicher Zellen bzw. Geweben. Zwar besitzen alle Zellen die genetische Voraussetzung für die Erfüllung aller Aufgaben eines Organismus, aber erst durch die Aufgabenteilung kann eine hochkomplexe Funktionalität entstehen. Für solch eine

Einleitung

Aufgabenteilung ist die Stilllegung oder auch die Aktivierung bestimmter Gene von essentieller Bedeutung (Bird 2002; Li 2002; Morgan *et al.* 2005). Diese Möglichkeit bietet sich durch Mechanismen der Epigenetik und kann gut durch den Vergleich einer Leberzelle mit einer Granulosazelle anhand der Expression des *CYP19A1* Gens verdeutlicht werden. Die Leber ist kein Gewebe mit Steroidaktivität und benötigt somit auch keine Transkripte bzw. Proteine der Aromatase, weshalb dieses Gen in Leberzellen stillgelegt wird. Die im Follikel befindlichen Granulosazellen wiederum sind Zellen mit höchster Steroidaktivität und benötigen für ihre physiologische Funktionalität *CYP19A1*-Transkripte und auch das Enzym, wodurch das Gen für den Transkriptionsapparat und andere Faktoren zugänglich sein muss. Die Zugänglichkeit des Chromatins bzw. dessen Kondensationsgrad wird durch die chemische Modifikation der DNA selbst (DNA-Methylierung), sowie der Histonproteine (Methylierung, Acetylierung etc.) reguliert.

Die DNA-Methylierung stellt eine direkte Veränderung einzelner Basen der DNA dar. Der Base Cytosin kann ein Methylrest angefügt werden, wenn sie in einem spezifischen Basenverbund mit Guanin vorzufinden ist (CpG). Oftmals treten solche Basenpaarungen vermehrt hintereinander auf und werden als CpG-Inseln definiert. Die Methylierung führt im Anschluss zu einer Bindung von Proteinfaktoren, die spezifisch Methylcytosin erkennen. Durch die weitere Akkumulation von Proteinen kommt es zu einer Verdichtung der Nukleosomen, was wiederum die Unerreichbarkeit der DNA für die RNA-Polymerase nach sich zieht (Bird 2002). Innerhalb der Entwicklung von Organismen können DNA-Methylierungen vor allem gewebe-spezifisch beobachtet werden und führen zu einer dauerhaften Stilllegung bestimmter Gene (Ng and Bird 1999). Im Fall des Gens CYP19A1 konnten unterschiedliche Beobachtungen während der Follikulogenese gemacht werden. Zunächst befinden sich innerhalb des Promotors 2, welcher als Granulosa-spezifisch beschrieben wurde (Vanselow et al. 2001), keine CpG-Inseln, es konnten nur vereinzelte Methylierungsstellen um den Transkriptionsstart herum identifiziert werden, die je nach ihrer Position zu diesem nummeriert sind (siehe Abbildung 6). Untersuchungen zeigen, dass der Promotor 2 von CYP19A1 in Granulosazellen nahezu unmethyliert vorliegt, während der gleiche Promotor in Lutealzellen methyliert ist, was auf eine Stilllegung des Gens durch de novo DNA-Methylierung hinweist (Spitschak and Vanselow 2012; Vanselow et al. 2005; Vanselow et al. 2010). Weiterhin konnte gezeigt werden, dass die DNA-Methylierung nicht direkt nach dem LH-Stimulus in vivo auftritt (Vanselow et al. 2010) sondern erst im Laufe der Gelbkörperbildung (Spitschak and Vanselow 2012), was die Aussage einer de-novo-Methylierung von CYP19A1 weiterhin unterstützt.

Abbildung 6: Schematische Darstellung der DNA-Methylierungsstellen des CYP19A1 Promotors. Rot markierte Sterne symbolisieren einzelne CpG-Stellen mit ihrer relativen Position zum Transkriptionsstart (Pfeil). Ebenfalls angegeben ist der Translationsstart (ATG). Modifiziert aus (Vanselow *et al.* 2010).

Es wird angenommen, dass die DNA-Methylierung im Zusammenspiel mit anderen epigenetischen Regulationsmechanismen, wie den diversen Histonmodifikationen einen Einfluss auf die Chromatinstruktur hat (Grunstein 1997; Jenuwein and Allis 2001; Nan et al. 1998). Durch die Veränderungen an der DNA oder den Histonen kommt es entweder zu einer Kondensation oder Auflockerung des Chromatins. Kondensiertes Chromatin weist dabei im Allgemeinen auf stillgelegte Gene hin, während das aufgelockerte Chromatin für die RNA-Polymerase erreichbar ist, sodass die Transkription initiert werden kann. Nichtsdestotrotz gibt es einige wenige Hinweise darauf, dass diese Mechanismen nicht direkt miteinander verbunden sind (Garrick et al. 1996). In einer Studie von Nimz et al. (2010) wurde dieser Umstand im Follikel näher untersucht. Die Untersuchung beinhaltete einen Vergleich zwischen dominanten und prä-ovulatorischen Follikeln. Dabei konnte beobachtet werden, dass eine Kondensation des Chromatins im Promotorbereich von CYP19A1 bereits kurz nach dem LH-Stimulus erfolgt. Aufgrund der zuvor dargestellten Daten (Spitschak and Vanselow 2012; Vanselow et al. 2010) scheint es im Follikel kurz nach LH zu einer Chromatinkondensation ohne vorangehende oder gleichzeitige DNA-Methylierung zu kommen.

Zusammengenommen ist für den Follikel folgendes Szenario denkbar: Der Einfluss von LH führt zu einer Herunterregulation verschiedenster Gene der Steroidkaskade in den Granulosazellen, deren Ursache in der gleichzeitig beobachteten Chromatinkondensation liegen könnte. Wie am Beispiel des *CYP19A1* Gens gezeigt wurde, kommt es einige Tage später im Gelbkörper zu einer de-novo DNA Methylierung, die dann möglicherweise für die dauerhafte Stilllegung dieses Gens sorgt (Spitschak and Vanselow 2012).

1.6. In vitro Modelle zur Untersuchung der Follikulogenese

Die der Follikulogenese zugrunde liegenden molekularen Mechanismen sind bislang nur teilweise bekannt. Eine genaue Einsicht in diese Vorgänge, vor allem in die Beteiligung verschiedener intrazellulärer Signalwege, ist im lebenden Organismus nicht einfach möglich. Untersuchungen an Zellkulturmodellen sind deshalb unverzichtbar.

In der Literatur werden verschiedene Kultivierungstechniken beschrieben, in denen ganze Follikel in vitro reifen (Eppig and O'Brien 1996; Gutierrez et al. 2000). Hierbei steht vor allem die vermehrte biotechnologische Gewinnung von Oozyten für anschließende in vitro-Fertilisationen im Vordergrund. Zahlreiche weitere Studien befassen sich dagegen mit der Entwicklung von Zellkultursystemen für die verschiedenen Zelltypen des Ovars. So werden Systeme in unterschiedlichen Spezies beschrieben, die entweder nur Granulosa- bzw. Thekazellen in vitro kultivieren (Amsterdam et al. 1988; Barbieri et al. 1983; Berndtson et al. 1995; Gutierrez et al. 1997; Hamel et al. 2005), aber auch solche, die beide Zelltypen in Co-Kulturen halten (Gregoraszczuk et al. 2008; Orisaka et al. 2006; Qiu et al. 2014). Insgesamt zeigt sich eine sehr große Vielfalt an Techniken. Selbst bei der alleinigen Betrachtung von Granulosazellkulturen ist eine hohe Diversität an verwendeten Kulturmedien und Zusätzen zu sehen. Viele in der Literatur beschriebene Zellkulturmodelle haben oft den Nachteil, dass die Estradiolaktivität der Zellen in Kultur nicht mehr gewährleistet ist. Um die Transition vom dominanten zum prä-ovulatorischen Follikel in vitro nachzustellen, ist dieser Parameter jedoch von grundlegender Bedeutung. Aus diesem Grund sollte das von Gutierrez et al. (1997) vorgestellte Modell einer serumfreien Langzeit-Kultivierung von bovinen Granulosazellen in dieser Arbeit weiter entwickelt werden.

2. Methoden

2.1. Gewinnung der Granulosazellen aus dem Ovar

Die Ovarien stammten in der Regel von Kühen der Rasse Deutsche Holstein und wurden von Schlachttieren im institutseigenen Schlachthaus oder dem kommerziellen Schlachthof (Teterower Fleisch GmbH, Teterow) gewonnen. Es erfolgte eine sofortige Überführung der Ovarien in kaltes 1x PBS, versetzt mit Penicillin (100 IU), Streptomycin (0,1 mg/ml) und Amphotericin (0,5 µg/ml). Durch kurzes Waschen in PBS wurden anhaftende Blutreste entfernt. Die Ovarien wurden kurz vor der Aspiration mit 70 %-igem Alkohol zur oberflächlichen Keimreduktion behandelt. Im Anschluss wurde die Follikelflüssigkeit mit Hilfe einer Spritze und einer 18 G-Kanüle aus den Follikeln aspiriert. Bei der Aspiration erfolgte eine Klassifizierung der Follikel nach ihrer Größe: kleine Follikel bis 6 mm Durchmesser und große Follikel ab 9 mm Durchmesser. Die aspirierten Zellen wurden in 1x PBS (versetzt mit Antibiotika) bis zur Bestimmung der Lebendzellzahl gesammelt. Die Unterscheidung vitaler und toter Zellen erfolgte mittels des Trypanblau-Ausschlussverfahrens. Der Farbstoff kann nur in bereits tote Zellen, deren Zellmembran zerstört ist, eindringen und die Zellen erscheinen unter dem Mikroskop blau. Lebende Zellen mit einer intakten Membran sind ungefärbt und erscheinen hell im mikroskopischen Bild. Mit Hilfe einer Neubauer-Zählkammer konnten die lebenden Zellen ausgezählt werden. 15 µl der gesammelten Zellsuspension wurden mit 1 – 2 µl Trypanblau gemischt und in die Zählkammer gegeben. Mit Hilfe der Berechnungsgrundlage

gezählte Zellzahl × Gesamtvolumen Zellsuspension $(ml) \times 10^4$

ergab sich die Gesamtzellzahl der Suspension.

2.2. Cryo-Konservierung der aspirierten Granulosazellen

Für eine flexiblere Versuchsplanung war es wichtig eine Möglichkeit der Cryo-Konservierung der Zellen nutzen zu können. Die in unserem Labor neu etablierte Cryo-Konservierung ermöglichte die Lagerung der Granulosazellen auch über einen längeren Zeitraum in Flüssigstickstoff-Tanks. Die aspirierten Zellen wurden bei 1000 x g für 3 min bei Raumtemperatur zentrifugiert. Das Zellpellet wurde anschließend in einer Gefrierschutzlösung, bestehend aus 10 % DMSO und 90 % FKS gelöst. Das Einfrieren bei -20 °C in einer dickwandigen Styroporbox führte zum langsamen Herunterkühlen der Zellen und gewährleistet nur minimale Beschädigungen der Zellen. Nach 24 Stunden bei -20 °C erfolgte die weitere Lagerung der Cryo-Röhrchen in der Styroporbox für erneute 24 h bei -80 °C. Im Anschluss konnten die Cryo-Röhrchen in die Stickstoff-Tanks transferiert werden.

2.3. Zellkultur von Granulosazellen

Frisch aspirierte Zellen wurden bei $1000 \times g$ für 3 min zentrifugiert. Das Zellpellet wurde anschließend in α -MEM gelöst. Mit Zellen, die aus der Cryo-Konservierung in die Kultur gebracht wurden, wurde analog verfahren. Hierbei war es wichtig, schnell zu verfahren, um das Zellgift DMSO sowie das Serum von den Zellen zu entfernen. Es ist sinnvoll, die Cryo-konservierten Zellen sofort in etwas Medium zur Verdünnung zu geben und sofort zu zentrifugieren. Gegebenenfalls, abhängig von der ausgebrachten Zelldichte oder Behandlung, können die Zellen auch vor der Zentrifugation aufgeteilt werden.

Für Expressionsanalysen oder auch DNA-Methylierungsanalysen erfolgte eine Kultivierung der Granulosazellen in 24-Well Platten. Diese weisen eine Fläche von ca. 2 cm^2 pro Well auf. Routinemäßig wurden 1×10^5 Zellen pro Well nach Collagenbeschichtung ausgebracht. Die Beschichtung erfolgte mit 150 µl Collagen R (0,02 %), sodass 75 µl/cm² verteilt wurden. Nach einer Trocknung über Nacht und einer kurzen UV-Bestrahlung unter der Sterilwerkbank waren die Platten verwendbar. Ebenso war eine Lagerung bei 4 °C für einige Tage möglich.

Proben unter unterschiedlicher Kultivierungsbedingung wurden als Triplikate angesetzt und im weiteren Verlauf getrennt voneinander behandelt. Die Granulosazellen wurden in 500 μl α-MEM kultiviert. In dem Medium sind weiterhin folgende Zusätze vorhanden: L-Glutamin (2 mM), Natriumbicarbonat (0,084 % oder 10 mM), BSA (0,1 %), HEPES (20 mM), Natriumselenit (4 ng/ml), Transferin (5 µg/ml), Insulin (10 ng/ml), nicht essentielle Aminosäuren (1 mM), Penicillin (100 IU) und Streptomycin (0,1 mg/ml). Für verschiedene Kultivierungsbedingungen wurden weitere Zusätze verwendet und kurz vor Beginn der Kultur dem Medium zugegeben. So wurden in der Kulturbedingung "Estradiol-aktiv" FSH (20 ng/ml), R³ IGF-1 (50 ng/ml) und Androstendion (A4, 2 μM) hinzugefügt, während in weiteren Kulturbedingungen LH (20 ng/ml) oder auch FKS (1 – 5 %) dem Medium hinzugefügt wurden. Versuche mit weiteren Zusätzen sind an entsprechender Stelle nochmals hervorgehoben. Die Kultivierung der Zellen erfolgte in einem Brutschrank bei 37 °C und einer CO₂-Zufuhr von 5 %. Die Granulosazellen wurden, wenn nicht anders beschrieben, für neun Tage kultiviert, wobei das Medium alle 48 h ausgetauscht wurde. Der Medienwechsel erfolgte nicht vollständig, d.h. 30 % des Mediums verblieben in der Kulturschale, während 70 % ausgetauscht wurden. Die Zusätze FSH, R³ IGF-1 und A4 wurden hierbei allerdings für das gesamte Medienvolumen von 500 µl berechnet.

Die Morphologie der Granulosazellen wurde während der Zellkulturdauer fortlaufend beobachtet. Dazu wurde das Mikroskop Nikon TMS (Nikon, Düsseldorf) verwendet, unter Verwendung des Phasenkontrast-Verfahrens mit einem 10x Objektiv. Repräsentative Ausschnitte der Zellkultur konnten mit Hilfe einer Kamera (Nikon Coolpix5000) aufgenommen werden.

2.4. Zell-Viabilitätstest

Zur Durchführung des Zell-Viabilitätstests wurde der CellTiter 96[®] AQ_{ueous} One Solution Cell Proliferation Assay von Promega genutzt. Inhalt der Lösung ist ein MTS Tetrazolium Salz, welches durch NADPH bzw. NADH in ein farbliches Formazan umgebildet wird. Durch die quantitative Detektierung war es möglich einen Rückschluss auf die Anzahl der lebenden Zellen in der Kultur zu erhalten. Für eine Messung wurden 20 µl der Reaktionslösung zu den in 100 µl Medium kultivierten Zellen gegeben. Nach einer ein-stündigen Inkubation bei 37 °C und 5 % CO₂ erfolgte die Absorptionsmessung in einem Plattendetektor (Beckman Coulter DTX880). Dazu wird die Kulturschale 10 s im Plattendetektor geschüttelt und sofort im Anschluss bei einer Wellenlänge von 450 nm vermessen. Zur optimalen Messung ist es sinnvoll die Granulosazellen von Beginn an in 96-Well Platten zu kultivieren, wobei die Zellzahl auf die geringere Fläche von 0,36 cm² angepasst werden muss.

2.5. Zellzählung nach Kultur

Die direkte Bestimmung der Zahl vitaler Zellen nach Kultur erforderte das Ablösen der Zellen. Dazu wurden die Zellen mit Hilfe von Trypsin (0,5 % in 1x PBS mit 2 mM EDTA) bei 37 °C und 5 % CO_2 von der Zellkulturschale gelöst. Sobald sich alle Zellen vom Substrat abgelöst hatten, wurde die Reaktion sofort mit serumhaltigem Medium abgestoppt. Vitale Zellen wurden analog der bereits beschriebenen Methode des Trypanblau-Ausschlusses gezählt.

2.6. Hormonkonzentrationsmessung aus kultiviertem Medium

Die Konzentrationsmessung von Progesteron erfolgte mittels eines optimierten direkt kompetitiven ³H-Radioimmunassay (RIA) (Schneider and Brüssow 2006). Es wurde der Tracer [1,2,6,7-3H(N)]progesteron von PerkinElmer, sowie ein per Chromatographie gereinigter Antikörper genutzt. Die Radioaktivitätsmessung wurde in einem Flüssigszintillationsdetektor mit einem integrierten RIA-Kalkulationsprogramm durchgeführt. Dabei wurden für die intra- und interassay Variationskoeffizienten die Werte 7,6 und 9,8 % angegeben. Das Detektionslimit lag bei 7 pg/ml. Zur Analyse von Progesteron wurde das Medium 1:40 in RIA-Puffer (1x PBS + 0,1% Gelatine) verdünnt und 10 µl in der Messung als Duplikat eingesetzt. Die Estradiolkonzentration wurde mit Hilfe des modifizierten kompetitiven ³H-RIA bestimmt. Als Tracer fungierte [2,4,6,7-3H]estradiol-17 β von GE Healthcare. Die intra- und interassay Variationskoeffizienten wurden mit 6,9 und 9,9 % angegeben. Das Limit für die Estradioldetektion lag bei 3 pg/ml. Im Falle von Estradiol wurde die Messung mit dem unverdünnten Medium in Duplikaten durchgeführt. Die erhaltenen Konzentrationen wurden auf den DNA-Gehalt der Zellen relativiert, um Schwankungen durch die Zellzahl auszugleichen.

2.7. Immunfluoreszenzfärbung kultivierter Granulosazellen

Zur qualitativen Darstellung ausgewählter Proteine mittels Immunfluoreszenz wurden Granulosazellen wie zuvor beschrieben, allerdings auf Glasplättchen in 24-Well Zellkulturschalen, kultiviert. Diese wurden analog der Zellkulturplatten mit Collagen R beschichtet, um vergleichbare Wachstumsbedingungen zu ermöglichen. Um ein vorzeitiges Ablösen der Zellen zu verhindern, musste die Kulturzeit auf diesen Plättchen jedoch auf 6 Tage verkürzt werden. Im Anschluss an die Zellkultur erfolgte eine Fixierung der Zellen mittels Paraformaldehyd. Dazu wurden die Zellen zunächst mit 1x PBS gewaschen und anschließend 20 min bei 4 °C in 4 %igem Paraformaldehyd fixiert. Eine Lagerung der Zellen kann bei 4 °C in 0,9 % NaCl und 0,01 % Natriumazid erfolgen. Die Färbung wurde nach folgender Prozedur durchgeführt: Zunächst wurden die Zellen bei Raumtemperatur mit 1x PBS gewaschen und anschließend 2 min mit dem entsprechenden Puffer permeabilisiert. Es erfolgte ein dreimaliges Waschen mit dem IF-Waschpuffer. Im Weiteren wurden die Zellen für 30 min mit Roti-Block 1:50 behandelt, um die Zellen für die Bindung mit dem primären Antikörper vorzubereiten. Der primäre Antikörper wurde in entsprechender Verdünnung (s. Tabelle 1) über Nacht bei 4 °C auf die Zellen gegeben für eine optimale Bindung. Am nächsten Tag wurde nicht gebundener Antikörper durch viermaliges Waschen mit dem IF-Waschpuffer von den Zellen entfernt. Der passende sekundäre Antikörper wurde für 2 Stunden bei Raumtemperatur auf die Zellen gegeben und ungebundener

Antikörper anschließend ebenfalls durch viermaliges Waschen wieder entfernt. Weiterhin erfolgte eine Zellkernfärbung mit dem Kernfarbstoff To-Pro3 für 30 min bei Raumtemperatur, wobei auch hier ungebundener Farbstoff durch Waschen (4x) im Nachhinein entfernt wurde. Zuletzt wurden die Zellen ein weiteres Mal 20 min in 2 % Paraformaldehyd fixiert und mit Hilfe von Glyceringelatine zur Mikroskopie eingedeckelt. Die immunhistochemisch gefärbten Granulosazellen wurden mit einem Laser-Scanning-Mikroskop (LSM) untersucht. Dazu wurde das LSM 5 Pascal (Carl Zeiss, Jena) mit dem Objektiv Plan-Neofluar 40x/1.3 DIC Oil verwendet. Die Fluoreszenz-Aufnahmen wurden für Cadherin mit einer konfokalen Blendeneinstellung von 64 µm aufgenommen, während für Catenin und P-Catenin 180 µm genutzt wurden.

Tabelle 1: Übersicht verwendeter Antikörper und des Kernfarbstoffes für die Immunfluoreszenz.

Antikörper	Art	Quelle AK	Verdünnung	Bestell-Nr.	Ex	Em
Anti-pan Cadherin	1°	Maus	1:200	ab6528		
β-Catenin	1°	Kaninchen	1:100	CellSignaling		
				#9562		
Phospho-β-Catenin	1°	Kaninchen	1:100	CellSignaling		
				#9561		
Alexa Fluor [®] 546 F(ab') ₂	2°	Ziege	1:200	A11071	556	573 nm
Fragment (goat anti-rabbit)					nm	
Alexa Fluor [®] 488 F(ab') ₂	2°	Ziege	1:40	A11017	488	519 nm
Fragment (goat anti-					nm	
mouse)						
Kernfarbstoff TO-PRO [®] 3	-	-		T3605	642	661 nm
					nm	

AK, Antikörper; 1°, primärer Antikörper; 2°, sekundärer Antikörper; Ex, max. Exzitation; Em, max. Emission

2.8. Western Blot Analyse

Zur quantitativen Analyse der Proteine β-Catenin und P-β-Catenin wurden Granulosazellen, die in unterschiedlicher Dichte kultiviert wurden, mittels Western Blot Analyse untersucht. Die Kultivierung erfolgte wie bereits beschrieben, jedoch ebenfalls in einer verkürzten Kulturdauer von 6 Tagen für einen optimaleren Vergleich von Immunfluoreszenz- und Western Blot-Daten. Die kultivierten Zellen wurden mit PBS gewaschen und 40 µl des 1x Ripa-Puffers (CellSignaling, Leiden, Belgien) hinzugegeben und die Granulosazellen mit Hilfe eines Gummischabers von der Kulturschale abgelöst und in ein 1,5 ml-Reaktionsgefäß überführt. Es erfolgte eine dreimalige Homogenisation mit dem Labsonic M für 20 s. Dabei wurde mit jeweils 5 µl 1x Ripa-Puffer nachgespült und die Proteinlösungen kurz anzentrifugiert. Es erfolgte eine Quantifizierung des Gesamtproteingehalts mit Hilfe des Protein Quantification Assays von Macherey Nagel nach Vorschrift. Dazu wurden 20 µl der Proteinlösung mit 40 µl des Puffers PSB in 96-Well Mikrotiterplatten gegeben. Anschließend wurden 40 µl des Quantification Reagenz QR hinzu pipettiert und für 30 min inkubiert. Zuletzt erfolgten die photometrische Messung bei 570 nm und eine Berechnung der Proteinkonzentration anhand einer analog erstellten BSA Verdünnungsreihe. Anhand des Gesamtproteingehalts wurde das zu verwendende Volumen der einzelnen Proteinprobenlösungen berechnet, damit gleiche Mengen an Protein im Western Blot Elektrophoresegel eingesetzt werden konnten. Das Volumen der Proteinlösungen wurde auf 12 µl mit Ripa-Puffer aufgefüllt und zusätzlich mit 4 µl des 3x Blue Loading Puffers versetzt. Dieser Ansatz wurde durch vortexieren gemischt, 3 min gekocht bei 95 °C und in einer konventionellen SDS-PAGE (10 % Trenn- und 5 % Sammelgel) aufgetrennt. Die vertikale Elektrophorese begann zunächst bei 20 mA bis die Proteine das Trenngel erreicht hatten und wurde bei 30 mA für ca. eine Stunde zu Ende geführt bis die untere Lauffront erreicht war. Die aufgetrennten Proteine wurden bei 68 mA (2 mA pro cm² Membran) für eine Stunde per Elektroblot auf eine PVDF-Membran übertragen, die zuvor in 1x Towbin Transferpuffer getränkt wurde (Towbin et al. 1979). Für das Immunoblotting wurde das SNAP i.d.[®] Protein Detection System von Millipore genutzt. Zur Vermeidung von unspezifischen Bindungen wurde die Membran in 0,5 % Blocking Milch in TBST-Puffer geblockt und es folgten dreimalige Waschschritte in 30 ml TBST-Puffer. Anschließend wurde die Membran mit dem primären Antikörper (s. Tabelle 2) für 10 min bei Raumtemperatur in TBST mit 1 % BSA inkubiert. Nach dreimaligem Waschen (30 ml TBST) der Membran erfolgte die Inkubation mit dem sekundären Antikörper für 10 min bei Raumtemperatur (s. Tabelle 2) in TBST versetzt mit 0,5 % Blocking Milch. Die Membranen wurden erneut gewaschen und mit Hilfe der ECL Prime Western Blot Detection Reagenz (1 – 4 min) wurden die HRP markierten Antikörper mittels Chemilumineszenz detektiert. Die Visualisation erfolgte mit Hilfe des Raytest Kamerasystems. Eine Beladungskontrolle erfolgte durch den Nachweis von Tubulin auf der gleichen Membran.

Antikörper	Art	Quelle AK	Verdünnung	Bestell-Nr.	MW
β-Catenin	1°	Kaninchen	1:800	CellSignaling	92
				#9562	kDa
Phospho-β-	1°	Kaninchen	1:400	CellSignaling	92
Catenin				#9561	kDa
Tubulin, HRP-	1°	Kaninchen	1:1000	CellSignaling	55
markiert				#5346	kDa

lgG, HRP-	2°	Ziege	1:2400 (β-Catenin) CellSignaling -	
markiert (anti-			1:1200 (Phospho-β- #7074	
rabbit)			Catenin)	

AK, Antikörper; 1°, primärer Antikörper; 2°, sekundärer Antikörper; MW, Molekulargewicht Proteine

2.9. Isolation der RNA aus kultivierten Granulosazellen

Für Expressionsanalysen im Anschluss an die Zellkultur wurde die Gesamt-RNA isoliert. Dazu wurde das Medium vollständig entfernt und die Zellen mit 1x PBS gewaschen. Die RNA-Isolation erfolgte mit dem NucleoSpin[®] RNA II Kit (Macherey-Nagel). Der im Kit enthaltene Lysispuffer (RA1) konnte direkt in der Zellkulturplatte verwendet werden. Für ein Well einer 24-Well Platte wurden 100 µl des Lysispuffers benötigt, der zusätzlich mit 1 % Mercaptoethanol versetzt wurde (1 µl auf 100 µl Lysispuffer). Nach einer kurzen Inkubationszeit lösten sich die Zellen ab und konnten zur Homogenisierung in die vorbereiteten NucleoSpin® Filter überführt werden. Im Anschluss erfolgte eine Zentrifugation für 1 min bei 11.000 x g und Raumtemperatur (RT). Der Filter wurde verworfen und zu dem Lysat wurden 100 µl (1 Vol) des 70 %igen Ethanols zugegeben und durch Auf- und Abpipettieren durchmischt. Das Lysat wurde auf die NucleoSpin[®] RNA II Säule transferiert. Es erfolgte ein weiterer Zentrifugationsschritt (30 s, 11.000 x g, RT). Dieser führt zur Bindung der RNA an die Säule. Der Zusatz von 350 µl eines Membran-Entsalzungspuffers (MDB) mit anschließender Zentrifugation (30 s, 11.000 x g, RT) machte die nachfolgende DNase Reaktion effektiver. Zur Vorbereitung der vollständigen Eliminierung von DNA wurden 90 µl des rDNase Reaktionspuffers mit 10 µl der gelösten rDNase gemischt. Daraus wurden 95 µl direkt mittig auf die Silicamembran der Säule pipettiert und für 15 min bei RT inkubiert. Nach der Inkubationszeit folgten Waschschritte direkt auf der Säule. Der erste Schritt nutzte den Waschpuffer RA2 (200 µl) und eine Zentrifugation, wie bereits beschrieben. Für den zweiten und dritten Schritt wurde der Waschpuffer RA3 genutzt. Im zweiten Waschschritt wurden 600 µl des Puffers verwendet und anschließend wie vorher zentrifugiert. Der dritte Schritt benötigte 250 µl Puffer und die Zentrifugation wurde auf 2 min verlängert, um gleichzeitig die Silicamembran zu trocknen. Zuletzt erfolgte die Elution mit dem im Kit enthaltenen RNase-freien Wasser (40 – 60 µl) und anschließender Zentrifugation (1 min, 11.000 x g, RT) in ein nuclease-freies Reaktionsgefäß (1,5 ml). Die isolierte RNA kann bei -20 °C für längere Zeit gelagert werden.

2.10. Gleichzeitige Isolation von RNA und DNA

Zur Isolation von DNA und RNA für die gleichzeitige Analyse der DNA Methylierung und Genexpression wurde das AllPrep DNA/RNA Mini Kit von Qiagen genutzt. Auch hier erfolgte die Zelllyse direkt in der Kulturschale. Nach dem Entfernen des Mediums und Waschen mit 1x PBS wie bereits beschrieben, wurden 100 µl des Lysispuffers RLT, welcher mit 1 % Mercaptoethanol (1 µl) versetzt wurde, in die Zellkulturschale gegeben. Zur Homogenisierung wurde das Lysat auf eine QIAshredder Säule (Qiagen) überführt und für 2 min bei maximaler Geschwindigkeit zentrifugiert. Das homogenisierte Lysat wurde anschließend auf die AllPrep DNA Säule gegeben und für 30 s bei mindestens 8.000 x g zentrifugiert. Es sollte keine Flüssigkeit mehr auf der Säule sein. Gegebenenfalls musste der Zentrifugationsschritt wiederholt werden. Die AllPrep DNA Säule bindet die DNA in ihrer Membran, während die RNA im Durchfluss enthalten ist. Zu diesem wurden 100 µl (1 Vol) 70 %-igen Ethanols hinzu gegeben und durch Auf- und Abpipettieren durchmischt. Dieses Lysat wird auf die RNeasy Säule gegeben und zentrifugiert (15 s, \geq 8.000 x g, RT). Es folgten drei Waschschritte beginnend mit dem Puffer RW1 (700 µl) und einer Zentrifugation wie zuvor. Im zweiten und dritten Schritt wurden jeweils 500 µl des Puffers RPE verwendet und wie vorher zentrifugiert. Lediglich beim letzten Schritt wurde die Zentrifugationszeit auf 2 min verlängert, um das Trocknen der Membran zu gewährleisten. Die Elution erfolgte in ein mitgeliefertes 1,5 ml-Reaktionsgefäß mit 50 µl RNase-freiem Wassers und einer Zentrifugation von 1 min bei \ge 8.000 x g. Die RNA konnte anschließend bei -20 °C über längere Zeit gelagert werden. Nach der Isolation der RNA erfolgte die Weiterbearbeitung mit der zurückgestellten DNA. Auf die Säule wurden 500 µl des Puffers AW1 gegeben und zentrifugiert (15 s, \geq 8.000 x g, RT). Im nächsten Schritt wurden 500 µl vom Puffer AW2 auf die Säule pipettiert und zentrifugiert (2 min, ≥ 8.000 x g, RT). Letztlich erfolgte die Elution mit dem Puffer EB (50 µl). Dieser sollte mittig auf die Membran pipettiert werden und bei RT für eine Minute einwirken (für eine bessere Ausbeute konnte die Inkubationszeit bis auf 10 min erhöht werden). Durch die folgende Zentrifugation (1 min, \geq 8.000 x g, RT) wurde die DNA in ein 1,5 ml-Reaktionsgefäß eluiert. Der Elutionsschritt konnte für eine bessere Ausbeute ebenfalls wiederholt werden, indem der bereits durchgelaufene Puffer erneut auf die Säule geladen wird. Die erhaltene DNA konnte bei 4 °C gelagert oder sofort für die DNA Methylierungsreaktion weiterverarbeitet werden.

2.11.Photometrische Konzentrationsbestimmung von RNA bzw. DNA

Zur Bestimmung der Konzentration von Nukleinsäurelösungen wurde ein NanoDrop1000 Spectrophotometer (Thermo Scientific) genutzt. Für das Gerät sind 1 – 2 µl Probenlösung ausreichend, um eine verlässliche Konzentrationsmessung durchzuführen. Im dazu gehörigen Computerprogramm müssen die entsprechenden Einstellungen der zu vermessenden Lösung eingestellt werden. Im Fall von RNA und DNA wurde die Option "Nukleinsäurelösungen" gewählt. Im Weiteren wurde vor der Messung der Faktor für RNA (40) bzw. der Faktor für DNA (50) eingestellt, damit die ausgeführte Berechnung korrekt erfolgen konnte. Als Leerwert wurde der jeweilige Puffer genutzt, in dem die Nukleinsäurelösung gelöst war.

2.12. cDNA-Synthese mittels Reverser Transkription

Für die cDNA-Synthese wurde die isolierte RNA als Template genutzt. Es ist sinnvoll bei einem vergleichenden experimentellen Ansatz die eingesetzte RNA-Menge der jeweiligen Probenansätze aufeinander abzugleichen (100 – 300 ng RNA pro Reaktion). Für den Reaktionsablauf wurde die gewünschte Menge an RNA in destilliertem Wasser verdünnt, so dass am Ende ein Volumen von 16,5 µl entsteht. Diesem Ansatz wurden 1 µl eines Random Hexamer Primer Gemisches (100 ng/µl) und 1 µl eines Oligo-(dT) Primers (50 ng/µl) hinzugegeben. Im Anschluss erfolgte eine 5-minütige Inkubation bei 70 °C zur Auflösung von Sekundärstrukturen. Für die Reverse Transkription wurden in einem Mastermix 5 µl des RT-Puffers, M-MLV Reverse Transkriptase (Promega, später GeneOn) und 0,5 µl dNTP-Mix vorgelegt. Von dem RT-Mastermix wurden dann 6,5 µl zu dem RNA und Primer Gemisch pipettiert. Der komplette Reaktionsansatz (25 µl) wurde eine Stunde bei 42 °C inkubiert. In dieser Zeit ist die Reverse Transkriptase in der Lage ausreichend RNA in cDNA umzuschreiben.

2.13. Reinigung der cDNA

Die synthetisierte cDNA wurde sofort im Anschluss mit Hilfe des High Pure PCR Product Purification Kits von Roche gereinigt. Dies wurde durchgeführt, um Primerreste, Enzymreste o.ä. aus dem Reaktionsansatz zu entfernen, die bei der nachfolgenden PCR einen störenden Einfluss haben könnten. Der Reaktionsansatz aus der Reversen Transkription (25 µl) wurde dazu bis auf 100 µl mit RNase-freiem Wasser aufgefüllt. Es wurden 500 µl des Bindepuffers hinzu gegeben, gut gemischt und auf den High Pure Filter pipettiert und zentrifugiert (1 min, max. Geschwindigkeit, RT). Es folgten zwei Waschschritte mit dem entsprechenden Puffer, zuerst mit 500 µl und dann mit 200 µl. Die Zentrifugation erfolgte wie bereits beschrieben. Zuletzt wurden 50 μ l Elutionspuffer mittig auf den Filter pipettiert und zentrifugiert. Die so gereinigte DNA enthielt winzige Glasfibrillen aus der Membran, die bei der Expressionsmessung störend sind. Zur Entfernung dieser wurde die eluierte cDNA-Lösung nochmals für 2 min bei maximaler Geschwindigkeit zentrifugiert. Im Anschluss wurde die cDNA in je 11 μ l (4x) aliquotiert. Die cDNA konnte über mehrere Monate bei -80 °C gelagert werden.

2.14. Quantitative Real-Time PCR

Für die guantitative Real-Time PCR wurde das Kit SensiFastTM SYBR No-ROX (Bioline) mit einem genspezifischen Primerpaar (Stammkonzentration 25 µM) wie in Tabelle 3 aufgelistet genutzt. Je Ansatz wurden 0,25 und 0,5 µl cDNA in einem Gesamtreaktionsvolumen von 12 µl amplifiziert, wobei die unterschiedlichen Verdünnungen in nachfolgenden Berechnungen berücksichtigt wurden. Die Reaktion wurde in einem LightCylcer[®] 480 (später in LightCycler[®] 96) der Firma Roche durchgeführt mit folgenden Zyklusbedingungen: Vorinkubation bei 95 °C für 5 min, 40 Zyklen mit einer Denaturierung bei 95 °C für 20 s, Annealing bei 60 °C für 15 s, Elongationsphase bei 72 °C für 15 s und einer Einzelpunkt-Fluoreszenzmessung für 10 s. Letzter Programmpunkt war die Aufnahme einer Schmelzkurve, um die Reinheit der synthetisierten Produkte sicherzustellen. Zudem wurden die PCR-Prudukte in einem 3 %-igen Agarosegel (Ethidiumbromid gefärbt) auf die korrekte Fragmentlänge hin untersucht. Zur Berechnung der ursprünglich eingesetzten Kopienzahl der cDNA wurde eine Eichkurve aus unterschiedlichen Konzentrationen eines externen Standards für jedes Gen erstellt. Dabei handelte es sich um klonierte PCR-Produkte, die in einer Verdünnungsreihe (5x10⁻¹² – 5x10⁻¹⁶ g DNA/Reaktion) jeweils frisch mit amplifiziert wurden.

Gen		Sequenz	Länge	Accession No.	
		Sequenz	(bp)		
GAPDH	for	AGCGAGATCCTGCCAACATCAAG	221	NM_001034034	
	rev	GCAGGAGGCATTGCTGACAATCT			
RPLP0	for	TGGTTACCCAACCGTCGCATCTGTA	142	NM_001012682	
	rev	CACAAAGGCAGATGGATCAGCCAAG			
CYP19A1	for	GCTTTTGGAAGTGCTGAACCCAAGG	172	NM_174305	
	rev	GGGCCCAATTCCCAGAAAGTAGCTG			
CYP19A1	for	TGCCCTTCAAAGGACTTATCACAACCA	240	NM_174305	
P1.1	rev	GGGCCCAATTCCCAGAAAGTAGCTG			

CYP19A1	for	TGGGGATTTTCTAATTTTTCCACTCTTCTGA	252	NM_174305
P2	rev	GGGCCCAATTCCCAGAAAGTAGCTG		
CYP11A1	for	AGAGAATCCACTTTCGCCACATC	237	NM_176644
	rev	GGTCTTTCTTCCAGGTTCCTGAC		
HSD3B1	for	TGTTGGTGGAGGAGAAGGATCTG	208	NM_174343
	rev	GCATTCCTGACGTCAATGACAGAG		
FSHR	for	TCACCAAGCTTCGAGTCATCCCAAA	189	NM_174061
	rev	TCTGGAAGGCATCAGGGTCGATGTA		
LHCGR*	for	GCATCCACAAGCTTCCAGATGTTACGA	205	NM_174381
	rev	GGGAAATCAGCGTTGTCCCATTGA		
PTGS2	for	TACAGCACTTGAGTGGCTATCAC	317	NM_174445
	rev	CTGGTCAATTGAAGCCTTTGATAC		
STAR	for	TTGTGAGCGTACGCTGTACCAAG	236	NM_174189
	rev	CTGCGAGAGGACCTGGTTGATG		
RGS2	for	AAGCCCAGCTGTGGTCAGAAGCATT	127	NM_001075596
	rev	TCTTCACAGGCCAGCCAGAATTCAA		
VNN2	for	TCCCACAGCTTGGATGAACGTTTTG	267	NM_001163920
	rev	TAGGCACTCCAATTCATGGCTGGTG		
PTX3	for	TTTGTGCGCTCTGGTCTGCAGTGT	164	NM_001076259
	rev	CATGGTGAAGAGCTTGTCCCACTCG		
TIMP1	for	CGCAGCTCAGGCCCTGCCGCCATCG	138	NM_174471
	rev	AGGCTCGGCTGGGGGCTGTGAGCCA		
ADAMTS1	for	CACTGTGCAGTGGGCGCCGCGGGA	199	NM_001101080
	rev	CCGGGCCGCCACGGAGAACAAGGTCAG		
PCNA	for	GTGAACCTGCAGAGCATGGACTCGT	192	NM_001034494
	rev	CGTGTCCGCGTTATCTTCAGCTCTT		
CCNB2	for	AAACGTCGTGCGTGTCAACGAGAA	129	NM_174264
	rev	GAGGCAAGCTCCTGGATGGCTTTT		
CCND2	for	CGCAGGGCCGTGCCGGACGCCAAC	279	NM_001076372
	rev	CACGGCCCCCAGCAGCTGCAGATGG		

for, Vorwärts Primer; rev, Rückwärts Primer; P1.1, Promotor 1.1; P2, Promotor 2

* Die Primer für *LHCGR* befinden sich außerhalb der Region von bekannten Splicingvarianten des Gens, sodass bei einer Messung alle Transkripte erfasst werden.

2.14.1. Absolute Quantifizierung

Im Anschluss an die Quantifizierung erfolgte die Berechnung der Kopienzahl je eingesetzte RNA-Menge (in μ g). Diese wurde durch die von der LightCycler[®] Software anhand der mitgeführten Eichkurve generierten Transkriptkonzentrationen (in μ g/ μ I), das Volumen der Reversen Transkription (V_{RT}; in μ I), der in der RT eingesetzten RNA-Menge (in μ g), unter Berücksichtigung der cDNA-Menge und dazugehörigen Verdünnungen (VF) und der Avogadrozahl (bezogen auf das jeweilige, als externer Standard eingesetzte Plasmid; in Moleküle/g) wie folgt berechnet:

$$Kopien/\mu g_{RNA} = Transkriptkonzentration [^{\mu g}/_{\mu l}] \times \frac{V_{RT}}{Menge_{RNA}[\mu g] \times VF} \times Avogadrozahl$$

Wie in Abschnitt 2.12 beschrieben, wurde die Reverse Transkription in 25 μ l durchgeführt (= V_{RT}). Durch den Bezug der Avogadrozahl auf das eingesetzte Plasmid ergab sich folgende direkte Berechnung:

$$Kopien/\mu g_{RNA} = Transkriptkonzentration \left[\mu g/\mu l\right] \times \frac{25 \ \mu l}{Menge_{RNA}[\mu g] \times VF} \times 2,83 \cdot 10^{17}$$

Die Verdünnungsfaktoren (VF) 0,25 bzw. 0,5 waren jeweils in Abhängigkeit der eingesetzten cDNA-Menge in der qPCR für die Berechnung zu wählen.

2.14.2. Erstellung von genspezifischen Standards für die Eichkurve in der qPCR

Die genspezifischen Standards für die quantitative Real-Time PCR wurden in mehreren Teilschritten generiert. Zunächst erfolgte eine standardisierte PCR mit genspezifischen Primern (Tabelle 3) unter folgenden Reaktionsbedingungen: initiale Denaturierung bei 94 °C für 5 min, 30 Zyklen mit einer Denaturierung bei 95 °C für 1 min, dem Annealing bei 60 °C für 1 min, einer Elongationsphase bei 70 °C für 2 min; abschließend erfolgte die terminale Elongationsphase bei 70 °C für 5 min bis die Reaktionsansätze auf 6 °C abgekühlt wurden. Die PCR-Produkte wurden auf einem 3 %-igen Agarosegel auf ihre Größe hin überprüft. Bei erfolgreicher Amplifikation erfolgte im nächsten Schritt die Klonierung dieser Produkte in den pGEM[®]-T Vektor (Promega). Dazu wurden in einer Ligationsreaktion 5 µl des mitgelieferten Puffers mit dem PCR-Produkt (1 µl bis max. 3,5 µl; je nach Bandenintensität im Gel) mit destilliertem Wasser (in Abhängigkeit vom eingesetzten Volumen des PCR-Produktes; max. 2,5 µl) und 0,5 µl des T-Vektors miteinander gemischt. Der Ansatz wurde für 10 min bei 65 °C inkubiert und im Anschluss sofort auf Eis transferiert. Es erfolgte die Zugabe der T4-Ligase (1 µl je Reaktionsansatz) mit einer anschließenden Inkubation von mind. einer Stunde bei Raumtemperatur (weiterhin möglich ist eine Inkubation bei 4 °C über Nacht).

Im Anschluss wurde zur Vervielfältigung des Vektors eine Transformation in *E. coli* Bakterien durchgeführt. Dazu wurden die kompetenten Bakterien auf Eis aufgetaut und 5 µl des Ligationsansatzes wurden vorsichtig hinzu pipettiert. Es schloss sich eine

Methoden

Inkubation auf Eis für 20 min an. Daraufhin wurden die Bakterien einem Hitzeschock ausgesetzt, der zur Aufnahme des Plasmids führt. Dieser wurde für 45 – 50 s bei 42 °C im Wasserbad durchgeführt. Nachfolgend wurde der Transformationsansatz auf Eis für weitere 2 min inkubiert. Bevor die Bakterien ausplattiert wurden, erfolgt eine 30-minütige Erholungsphase in 400 µl SOC-Medium bei 37 °C. Das Ausplattieren auf LB-Agarplatten, versetzt mit Ampicillin, IPTG und X-Gal, wurde unter einer dafür vorgesehenen Sterilwerkbank durchgeführt, die über Nacht bei 37 °C inkubiert wurden. Am Folgetag konnten positive Klone durch die Blau-Weiß-Selektion identifiziert und vermehrt werden. Dazu wurden die weiß erscheinenden Kolonien mit Hilfe eines sterilen Zahnstochers von der Agarplatte gepickt und in ein 15 ml Zentrifugenröhrchen mit 2 ml LB-Medium (versetzt mit Ampicillin) überführt. Diese Flüssigkultur wurde erneut über Nacht bei 37 °C inkubiert.

Die Flüssigkultur wurde in ein 1,5 ml-Reaktionsgefäß umgefüllt und für eine Minute bei maximaler Geschwindigkeit zentrifugiert. Daraufhin konnte das überstehende Medium entfernt werden. Das verbliebene Zellpellet wurde in 200 µl GTE-Puffer resuspendiert, anschließend wurden 300 µl einer NaOH/SDS-Lösung hinzugefügt und durch invertieren gemischt. Nach einer 5-minütigen Inkubation auf Eis wurden 300 µl 3 M KAc zugegeben und wie zuvor gemischt. Es folgte eine weitere Inkubation für 5 min auf Eis in deren Anschluss das Gemisch bei maximaler Geschwindigkeit für 10 min zentrifugiert wurde. Der Überstand wurde in ein neues 1,5 ml-Reaktionsgefäß überführt, mit 4,75 µl eines RNaseA/RNaseT1-Mixes versehen und für 60 min bei 37 °C inkubiert. Im Anschluss erfolgte eine Fällung mit Chloroform und Isopropanol. Dazu wurden 400 µl Chloroform hinzugegeben und 100 x invertiert. Nach einer Zentrifugation bei 13.500 x g für 10 min wurde die obere wässrige Phase in ein neues 1,5 ml-Reaktionsgefäß überführt und es folgte eine Fällung mit 1 Vol Isopropanol. Nach kurzem Mischen durch Invertieren wurde für 10 min bei maximaler Geschwindigkeit zentrifugiert und der Überstand abgegossen. Das entstandene Plasmidpellet wurde mit 70 % igem Ethanol (500 µl) gewaschen. Beim Entfernen des restlichen Ethanols mit einer Pipette sollte darauf geachtet werden, dass das Pellet nicht berührt wird. Nach einer kurzen Trocknungsphase konnte das Pellet in 32 µl Reinstwasser gelöst werden. Der anschließende Restriktionsverdau mit Eco52I ermöglichte eine Kontrolle des eingefügten Fragments und dessen Größe. Dazu wurde 1 µl der isolierten Plasmid-DNA in einem Gesamtansatz von 15 µl eingesetzt. Das bedeutet, dass zusätzlich 1,5 µl 10x Eco52l Puffer und 0,5 µl des Restriktionsenzyms Eco52l eingesetzt wurden. Die Inkubation erfolgte für 2 h bei 37 °C. Danach erfolgte die Analyse der Fragmentgröße mit Hilfe eines 3 % iges Agarosegels. Von den positiv erscheinenden Plasmid-Isolaten wurden 3 – 5 zur weiteren Aufreinigung für die Sequenzierung

28
ausgewählt. Die Reinigung erfolgte durch die Zugabe von ¼ Vol 4 M NaCl und darauffolgend 1 Vol 13 %igen PEG8.000. Es folgte eine Inkubation für 20 min auf Eis mit einer anschließenden Zentrifugation für 15 min und 4 °C bei maximaler Geschwindigkeit. Das DNA-Pellet wurde durch Zugabe von 500 µl 70 %igen Ethanols gewaschen und zum Abschluss in 20 µl 10 mM Tris (pH 7,5) gelöst.

Durch Bestimmen der DNA-Konzentration konnte die optimale Konzentration für die Sequenzierungsanalyse eingestellt werden. Es werden 250 ng Plasmid-DNA (gelöst in 8 µl 10 mM Tris/HCI-Puffer) in der Sequenzierreaktion benötigt, die mit SP6 und T7 Standardprimern durchgeführt wurde. Dabei wurde das BigDye Terminator Cycle (LifeTechnologies) Sequencing Ready Reaction Kit 1.1 mit folgenden Zyklusbedingungen genutzt: Prä-Inkubation bei 96 °C für 60 s, 25 Zyklen von Denaturierung bei 96 °C für 10 s, Annealing für 5 s und Elongation bei 60 °C für 4 min. Diese PCR-Produkte wurden mittels Sephadex Säulen gereinigt und in einem 3130 Genetic Analyzer der Firma LifeTechnologies analysiert.

2.15. DNA-Methylierungsanalyse

Die Analyse des DNA Methylierungsstatus wurde mit Hilfe der direkten Bisulfitsequenzierung durchgeführt. Isolierte genomische DNA wurde mit dem EZ DNA Methylation-Gold Kit (Zymo Research) modifiziert. Bei der Modifikation wurden ausschließlich unmethylierte Cytosine in Uracil umgewandelt, methylierte Cytosine bleiben unverändert. Da die modifizierte DNA vor der Sequenzierung über PCR amplifiziert wurde, erscheint modifiziertes Cytosin in der Sequenz nicht als Uracil, sondern als Thymin. Für die Modifikation wurden 130 µl der CT Conversion Reagenz zu 20 µl einer DNA-Lösung gegeben und gemischt. Die Reaktion wurde bei 98 °C für 10 min gestartet und bei 64 °C für 2,5 h durchgeführt. Abschließend erfolgte eine Abkühlung auf 4 °C. Die Reinigung begann mit der Äqulibrierung der Zymo-Spin IC Säule mit 600 µl des M-Binde-Puffers. Weiterhin wurde die Modifikationsreaktion hinzugegeben und gemischt und anschließend bei maximaler Geschwindigkeit für 30 s zentrifugiert. Durch die Zugabe von 100 µl des M-Wasch-Puffers und analoger Zentrifugation wurde die Lösung gewaschen. Anschließend wurden die Sulfongruppen an der DNA entfernt durch eine 15 – 20-minütige Reaktion mit 200 µl des M-Desulphonation-Puffers auf der Säule. Es folgte eine Zentrifugation wie beschrieben und zwei weitere Waschschritte mit 200 µl des entsprechenden Puffers. Schlussendlich wurden 10 µl des M-Elutions-Puffers mittig auf die Säule pipettiert und in einem 1,5 ml-Reaktionsgefäß durch Zentrifugation gesammelt. Mit dieser gereinigten modifizierten DNA erfolgte eine PCR zur Gewinnung von genspezifischen Amplifikaten. In der PCR wurden die HotStarTag Plus Polymerase (Qiagen) und genspezifische Primer (25 µM; Tabelle 4) unter folgenden Zyklusbedingungen genutzt: Prä-Inkubation von 5 min bei 95 °C, 45 – 48 Zyklen mit einer Denaturation bei 95 °C für 75 s, einem Annealing bei 53 °C für 75 s und einer Elongationsphase bei 72 °C von 2 min. Durch die Analyse im 3 %igen EtBr-gefärbten Agarosegel wurde das Amplifikat auf die richtige Fragmentlänge hin überprüft. Für die anschließende Sequenzierung müssen die PCR-Produkte zunächst gereinigt werden. Dazu wurde das bereits beschriebene Verfahren mit dem Kit High Pure PCR Purification von Roche angewendet. Bei dieser Sequenzierung wurden 5 pg pro 100 bp analysierter Fragmentlänge in der Sequenzierreaktion benötigt. Die eigentliche Sequenzierung erfolgte analog den bereits beschriebenen Bedingungen. Der Annealing-Schritt fand hierbei mit genspezifischen Primern und der entsprechenden Temperatur statt (s. Tabelle 4). Die abschließende Auswertung erfolgte mit Hilfe der generierten Daten des Sequenziergeräts unter Nutzung der Epigenetic sequencing methylation software (ESME, (Lewin et al. 2004)). Es wurde quantitativ das Verhältnis der methylierten gegenüber den unmethylierten Cytosinen an einzelnen CpG-Stellen, die als weitgehend ausschließliche Zielsequenzen für Methylierung gelten, identifiziert.

Con		Soguenz		Accession
Gen		Sequenz	(bp)	No.
CYP19A1	me for	GAGGTTTTGAGAATGTTTTAGTGATG	506	NC_007308
	me rev	ТААААААТССССААААТАТАСАТТТААААС		
	seq	GAAATTTGGTTTTTAATTGAGAATTTAG		

|--|

me for; me rev, Vorwärts- und Rückwärtsprimer zur Amplifikation Bisulfit-modifizierter genomischer DNA; seq, Primer für die Bisulfit Direkt-Sequenzierung

2.16. Nutzung von Referenzgenen zur relativen Transkriptquantifizierung

Bei der relativen Quantifizierung wurden die erhaltenen Werte auf ein Referenzgen bezogen. Als Referenzgene wurden in dieser Arbeit zwei unterschiedliche Gene genutzt: *GAPDH* und *RPLPO*. *GAPDH* als Glycolyse-assoziiertes Gen ist in jeder Zelle vorzufinden und durch die essentielle Bedeutung der Glycolyse auch in jeder Zelle aktiv. Jedoch ist es möglich, dass gerade aufgrund von unterschiedlichen Stoff-

wechselaktivitäten in verschiedenen Kulturbedingungen die Expression des Gens *GAPDH* beeinflusst wird. Dadurch ist die Nutzung des Gens als Referenz nur eingeschränkt möglich, obwohl es in vielen anderen Studien oftmals zur Normalisierung genutzt wurde (Mamluk *et al.*, 1998; Nimz *et al.*, 2009). In der vorliegenden Arbeit wurde zunächst ebenfalls das Gen *GAPDH* als Referenz genutzt, jedoch wurden im Verlauf der Arbeit weitere Gene untersucht, die sich als Referenzgene eignen könnten. Ein sehr stabiles Gen konnte mit *RPLP0* identifiziert werden. Dieses Gen kodiert für einen Teil (P0) der großen 60S Untereinheit der Ribosomen und ist daher stabiler in seiner Expression als ein Gen, welches in einem Stoffwechselweg involviert ist. Im späteren Verlauf der Experimente wurde fast ausschließlich *RPLP0* als Referenz genutzt, nichtsdestotrotz sind in dieser Arbeit auch Ergebnisse präsentiert, die sich auf *GAPDH* beziehen. Durch die bereits beschriebene absolute Quantifizierung (s. 2.14.1) war eine Bewertung der Eignung der verschiedenen Referenzgene möglich.

2.17. Microarray Analyse mittels des Bovine GeneChip[®] 1.0 ST Array

Zur genomweiten Erfassung der jeweiligen Expressionsprofile von Granulosazellen, die bei geringer (1,0x10⁵ Zellen/Well) bzw. hoher Dichte (10,0x10⁵ Zellen/Well) kultiviert wurden, wurde eine mRNA Microarray Analyse genutzt. Für diese Analyse wurden der Bovine GeneChip[®] 1.0 ST Array der Firma Affymetrix verwendet. Die RNA wurde in einem kooperierenden Labor der Universität Rostock (Ansprechpartner: Dr. Dirk Koczan, Institut für Immunologie, Universitätsmedizin Rostock) nach Herstellerangaben verarbeitet (GeneChip® Expression 3'Amplifikation One-Cycle Target Labeling and Control Reagents; Affymetrix, St. Clara, CA, USA). Die RNA-Proben wurden in dem GeneChipR Hybridization Oven über Nacht auf die Arrays hybridisiert. Die Analyse der Hybridisierungssignale erfolgte mit dem Affymetrix GeneChip Scanner 3000. Die erhaltenen Dateien (CEL Format) konnten mit Hilfe der Software Expression Console (Affymetrix) ausgewertet werden. Hierbei erfolgte eine Normalisierung, Hintergrundreduktion und Genlevel-Zusammenfassung nach der RMA-Methode (Robust Multichip Average) (Irizarry et al. 2003). Weitere statistische Auswertungen und auch Clusteranalysen erfolgten mit der Transcriptome Analysis Console 2.0 (Affymetrix). Hierbei wurde eine Expressionsveränderung (Fold Change) von 1,5 bzw. -1,5 festgelegt und ein P-Wert von 0,05 nach ANOVA und FDR Analyse als statistische Schwellenwerte festgelegt.

31

2.18. Statistische Auswertung

Die statistische Auswertung erfolgte mit Hilfe des Programms SigmaPlot 12.0 Statistical Analysis System (Jandel Scientific, San Rafael, CA, USA). Die Korrelationen der Microarray Analysen mit den qPCR Daten wurden mit der Pearson-Korrelation (Pearson-Product-Moment) berechnet. Die Expressionsanalysen und Hormonkonzentrationen nach der Zellkultur wurden mit dem t-Test oder der einfaktoriellen Varianzanalyse (ANOVA, Holm-Sidak-Methode) auf signifikante Unterschiede geprüft und an entsprechender Stelle gekennzeichnet. Das Limit für die Signifikanz wurde bei P<0,05 festgesetzt.

3. Ergebnisse

3.1. Identifizierung von LH-abhängigen Markergenen anhand einer mRNA Microarray Analyse

In einem kooperierenden Labor der University of Kansas Medical Center (Kansas, USA; Ansprechpartner: Dr. Lane K. Christenson, Department of Molecular & Integrative Physiology) wurden mRNA Microarray Analysen durchgeführt, die den dominanten mit dem prä-ovulatorischen Follikel, vor und nach der LH Ausschüttung, genomweit miteinander verglichen. Der untersuchte LH-Effekt in vivo zeigte einerseits die bereits bekannte Herunterregulation von Genen, wie *CYP19A1*, *CYP11A1* oder auch der gonadotropen Rezeptoren für FSH und LH (*FSHR* und *LHCGR*) (Nimz *et al.* 2010). Andererseits konnten Gene identifiziert werden, die einer signifikanten Hochregulation durch LH unterliegen. Im Fall von *VNN2* (vanin 2), welches generell bei Entzündungsreaktionen, oxidativem Stress und Zellmigration eine Rolle spielt (Kaskow *et al.* 2012), konnte die LH abhängige Hochregulation erstmalig beschrieben werden (s. Tabelle 5). Eine Validierung der Microarray Daten erfolgte über eine quantitative Real-Time PCR, für welche getestete Primer bereits in der Arbeitsgruppe vorhanden waren oder noch von publizierten mRNA Sequenzen abgeleitet und im Assay geprüft werden mussten (s. Tabelle 5 mit Stern markierte Gene).

	Λ	lioroorrov			aDCD		Korrolationa
	N	licioanay			4FCK		KUITEIallUIIS-
	aGC	mGC	TC	aGC	mGC	TC	koeffizient
CYP19A1	-1657,6	-591,4	-518,3	-1531,0	-2749,5	-2638,2	0,893
CYP11A1	-5,7	-3,1	-2,0	-7,8	-4,8	-4,2	0,835
HSD3B1	-1,2	-1,7	1,3	-1,1	-1,6	1,1	0,887
PCNA	-4,1	-2,9	-1,3	-2,2	-3,6	-1,8	0,806
PTGS2	693,2	2648,1	108,1	753,4	164,4	13,1	0,943
LHCGR	-11,9	-19,2	-6,3	-23,4	-72,1	-16,8	0,953
STAR	16,4	1,4	-2,5	19,7	-1,4	-3,8	0,960
FSHR	-3,9	-3,8	-1,9	-2,8	-7,4	-2,2	0,913
CCNB2*	-12,9	-8,0	-1,3	-8,2	-11,4	-1,8	0,824
CCND2*	-70,7	-28,2	-2,6	-4,5	-29,4	-2,8	0,898
RGS2*	104,8	91,9	6,7	112,8	118,3	5,0	0,879
PTX3*	1218,1	612,2	95,8	50,7	16,4	67,8	0,920
VNN2*	182,4	221,8	74,8	130,9	167,7	42,4	0,971

 Tabelle
 5:
 Vergleich
 der
 Microarray
 und
 qPCR
 Daten.
 Dargestellt
 ist
 jeweils
 die

 Expressionsveränderung (Fold Change) der Gene in den verschiedenen Zellschichten des Follikels durch den Einfluss von LH.
 Solution
 Solution

							Ergebnisse
TIMP1*	140,3	23,7	6,2	18,4	6,1	2,1	0,851
ADAMTS1*	8,1	16,2	3,7	4,1	6,3	2,2	0,840

aGC, antrale Granulosazellen; mGC, murale Granulosazellen; TC, Thekazellen; *, neu erarbeitetes qPCR-Assay; *P*<0,001 für alle berechneten Korrelationen; modifiziert aus (Christenson *et al.* 2013).

Bei dem Vergleich der Daten, die durch Microarray Analyse bzw. durch quantitative PCR gewonnen wurden, zeigte sich eine sehr hohe Übereinstimmung in der LH induzierten Regulation einzelner Gene. Dieser Fakt wird durch den Korrelations-koeffizienten (berechnet nach der Pearson Korrelation in Tabelle 5) deutlich. Hierbei zeigt sich eine signifikante positive Korrelation (Werte > 0,8; P<0,001) der Messdaten.

Anhand dieser Daten konnten Gene identifiziert werden, welche für die zu etablierenden Zellkulturen als Marker eingesetzt werden können. Die Auswahl solcher Gene ist essentiell für die Beurteilung einer Zellkultur. Besondere Bedeutung fiel nach der Microarray Analyse auf Gene, welche in vivo durch LH hochreguliert wurden. Als Markergene in der Zellkultur neu etabliert wurden *RGS2*, *PTX3* und *VNN2*, welchen eine starke Hochregulation durch LH nachgewiesen werden konnte. Des Weiteren wurde das Zyklusgen *CCND2* (Cyclin D2) als Marker für die Zellzyklusregulation bzw. Proliferation verwendet, da dieses Gen im Verlauf der Follikulogenese essentiell ist und ebenso einer Regulation durch FSH unterliegt (Muniz *et al.* 2006; Sicinski *et al.* 1996).

3.2. Etablierung eines steroidaktiven Zellkulturmodells von bovinen Granulosazellen

In der vorliegenden Arbeit stand die Transition des Follikels vom dominanten, Estradiol produzierenden Follikel über den prä-ovulatorischen bis hin zum Progesteron produzierenden Gelbkörper im Fokus. Aus diesem Grund war es unerlässlich, die Eigenschaft der Steroidaktivität von Granulosazellen in vitro zu erhalten. In der Literatur wurden verschiedene Kultursysteme für bovine Granulosazellen beschrieben (Henderson *et al.* 1987). Jedoch nur unter serumfreien Bedingungen und einer zusätzlichen Stimulation durch FSH und IGF-1, sowie dem Zusatz von Androstendion als Substrat für die Estradiolsynthese, konnte eine nennenswerte Steroidaktivität erreicht werden (Gutierrez *et al.* 1997; Hamel *et al.* 2005). Deshalb wurde in dieser Arbeit gezielt ein serumfreies Kulturmodell entwickelt und etabliert, welches weiterhin die Möglichkeit bietet, die Differenzierung von Granulosazellen zu beobachten.

3.2.1. Steroidaktivität in Abhängigkeit von der Zellkulturdauer

Die Wahl der Zellkulturdauer war maßgeblich bedingt durch die Steroidaktivität der Granulosazellen in vitro. Es war unerlässlich zu überprüfen, wie sich die *CYP19A1*-Expression im Verlauf der Zellkultur entwickelt. Durch diesen Vorversuch (ohne Replikate) konnte gezielt eine Kulturdauer für weitere Untersuchungen gewählt werden. In der folgenden Abbildung 7 ist zu sehen, dass zu Beginn der Kultur (Tag 1 – 3) keine bzw. nur eine sehr geringe Expression des Gens *CYP19A1* detektierbar war. Ab dem 4. Tag in Kultur stieg die Expression kontinuierlich an und erreichte einen Höhepunkt am 8. Tag. Am neunten Tag sank die Expression bereits wieder auf das Niveau des siebten Tages zurück. Aus diesen Daten zeigte sich, dass eine Kulturlänge von 7 – 9 Tagen zu wählen ist, da hier die höchste *CYP19A1*-Expression nachweisbar war. Für die meisten folgenden Experimente wurde eine Kulturdauer von 9 Tagen gewählt.

Abbildung 7: Entwicklung der CYP19A1-Expression im Verlauf der Kultur. Die serumfrei kultivierten Granulosazellen zeigten einen Anstieg der Expression von *CYP19A1* nach mehreren Tagen. Die relative Transkriptmenge bezogen auf *GAPDH* ist zusätzlich mit der Transkriptmenge der korrespondierenden frisch isolierten Granulosazellen ins Verhältnis gesetzt worden (kein statistischer Test durchgeführt).

3.2.2. Kultivierung der Zellen auf Matrixproteinen

Die serumfreie Zellkultur wies einen typischen fibroblasten-ähnlichen Phänotyp auf, der bereits für das Rind (Gutierrez *et al.* 1997) und das Schaf (Amsterdam *et al.* 1988) beschrieben wurde. Es war nicht die komplette Kulturschale mit Granulosazellen bewachsen. Es konnten immer wieder freie Flächen in der Kultur beobachtet werden. Gleichzeitig konnte eine Bildung von Zellaggregaten beobachtet werden, wobei sich die Granulosazellen zusammenlagerten ohne die freien Flächen komplett zu besiedeln (s. Abbildung 8a).

Im Folgenden sollte die Hypothese geprüft werden, dass Granulosazellen in der Kultur Matrixproteine zur Anheftung an der Zellkulturschale bevorzugen, da bereits in der

Follikelflüssigkeit Matrixproteine nachgewiesen werden konnten (McArthur *et al.* 2000). Dazu wurde das Protein Collagen R verwendet.

Abbildung 8: Morphologie von Granulosazellen auf unbeschichtetem und Collagen-beschichtetem Untergrund. Die Granulosazellen wurden 9 Tage mit FSH, IGF-1 und A4 kultiviert. Es zeigten sich Zellaggregate von fibroblasten-ähnlichen Zellen. a) Granulosazellen auf der unbeschichteten Plastikoberfläche ließen weite Bereiche der Oberfläche frei, b) während Granulosazellen auf Collagenbeschichteten Platten sich stärker auf der Oberfläche verteilten. Skala 100 µm. Verändert nach (Baufeld and Vanselow 2013).

In den unbeschichteten Kulturschalen (Abbildung 8a) waren deutlich weniger Zellen und wesentlich mehr unbewachsene Flächen zu beobachten als in den Collagenbeschichteten Kulturschalen (Abbildung 8b). Gleichzeitig zeigte sich, dass die fibroblasten-ähnlichen Zellen in der beschichteten Kulturschale nach 9 Tagen etwas abgeflachter erscheinen, was auf eine bessere Anhaftung an das Substrat hinweist (Abbildung 8 Vgl. Ausschnittsbilder). Die Auswertung der Zellzählung (Abbildung 9a) zeigte, dass die eingesetzte Zellzahl zu Beginn der Kultur von 1,0x10⁵ Zellen/Well ausschließlich mit der Collagenbeschichtung aufrecht erhalten werden konnte. In unbeschichteten Kulturschalen sank die Zellzahl am Ende der Kulturzeit bis auf die Hälfte (0,5x10⁵ Zellen/Well) ab. Die Viabilitätsmessung (Abbildung 9b) zeigte signifikant höhere Absorptionsraten in Collagen-beschichteten Platten. Somit konnte eine höhere Anzahl lebender Zellen nach Collagenbeschichtung nachgewiesen werden.

Abbildung 9: Anzahl und Viabilität von Granulosazellen auf unbeschichteten (schwarz) und Collagen-beschichteten (grau) Kulturplatten. a) Die Zählung vitaler Zellen (Trypanblau-Ausschluss) wies in Collagen-beschichteten Platten (grau) serumfrei kultivierter Granulosazellen eine höhere Anzahl an lebenden Zellen nach. b) Die Zellviabilitätsmessung zeigte eine erhöhte Enzymaktivität, was gleichbedeutend mit einer höheren Anzahl an lebenden Zellen in Collagen R-beschichteten Platten im Vergleich zu unbeschichteten Zellkulturschalen war. Aufgetragen sind Mittelwerte und Standardfehler, signifikante Unterschiede sind durch Sterne markiert (n=6; *P*<0,05; t-Test). Aus (Baufeld and Vanselow 2013)

3.3. Differenzierung von kultivierten Granulosazellen

Im Weiteren war es Ziel einen prä-ovulatorischen, hormonaktiven Differenzierungsstatus der Granulosazellen in vitro zu erreichen, der der physiologischen Situation in vivo weitestgehend entspricht. Ferner sollte dann untersucht werden, welche Faktoren eine Zelldifferenzierung in Richtung Luteinisierung zur Folge hatten.

3.3.1. Wirkung von LH in der serumfreien Granulosazellkultur

3.3.1.1. Einfluss von LH auf Granulosazellen kleiner Follikel

In vivo erfolgt die Initiierung der Luteinisierung durch den Einfluss von LH. Somit wurden Granulosazellen in vitro mit LH stimuliert, um eine Differenzierung zu erreichen. Dazu wurden die Zellen zusätzlich zu den Substanzen FSH, IGF-1 und Androstendion 12 – 24 Stunden vor Ende der Kultur mit 20 ng/ml LH behandelt. Die gewählte Konzentration entspricht dem LH-Stimulus, wie er in vivo beobachtet wurde (Adams *et al.* 2008).

Abbildung 10: Expression von Markergenen der Luteinisierung nach 12- bzw. 24-stündiger LH-Stimulation von serumfrei kultivierten Granulosazellen aus kleinen Follikeln. Die Expression zeigte keine typische Regulation, wie sie in vivo nach LH beschrieben wurde. Die Transkriptmenge wurde auf *GAPDH* und die korrespondierenden Werte des frisch isolierten Zellpools normalisiert. Die Transkriptmenge des Gens *LHCGR* konnte nicht auf einen Frisch-Wert bezogen werden, da dort keine Expression des Gens nachweisbar war. Mittelwerte und Standardfehler sind gezeigt (n=3; *P*<0,05; t-Test). Verändert aus (Baufeld and Vanselow 2013)

Es konnte keine luteinisierungs-spezifische Änderung der ausgewählten Markergene, wie *CYP19A1, FSHR* und *LHCGR* beobachtet werden (Abbildung 10a-c), welche in vivo durch den LH-Stimulus rapide absinken (Nimz *et al.* 2009). In der Kultur konnte dieser Effekt im Vergleich zur Kontrolle (graue Balken) nicht bzw. nur tendenziell beobachtet werden. Es zeigte sich eine signifikante Herunterregulation des Gens *LHCGR* nach einer 24-stündigen Stimulation, jedoch war nach 12 Stunden eher eine gegenteilige Tendenz zu erkennen. *CYP19A1* war nach 12-stündiger LH-Stimulation signifikant erniedrigt, jedoch nicht mehr nach 24 Stunden. Das Gen *RGS2* unterlag keiner Regulation (Abbildung 10d), obwohl dasselbe in vivo deutlich hochreguliert wurde (Christenson *et al.* 2013).

3.3.1.2. Einfluss von LH auf Granulosazellen großer Follikel

Der fehlende LH-Effekt bei kultivierten Granulosazellen, die aus kleinen Follikeln isoliert wurden, warf die Frage auf, wie Granulosazellen aus großen Follikeln (> 9 mm Durchmesser) auf eine LH-Stimulation reagieren. Diese Zellen sind i.d.R. stark Estradiol-aktiv. Die Zellkulturdauer wurde stark verkürzt auf maximal 2 Tage, da eine Reifung der Zellen zum Estradiol-aktiven Status bereits in vivo vorausging. Die

Granulosazellen wurden zusätzlich von Beginn der Kultur an mit LH (20 ng/ml) stimuliert.

Die Transkriptmengen der Markergene *CYP19A1* und *LHCGR* (Abbildung 11a, b) sanken im Verlauf der Zellkultur ab. Trotzdem konnte durch LH zu unterschiedlichen Zeitpunkten ein zum Teil signifikanter Expressionsabfall beobachtet werden. Transkripte der Gene *RGS2* und *VNN2* (Abbildung 11d, e) zeigten auch in vitro eindeutig einen Expressionsanstieg durch LH. Das Gen *HSD3B1* (Abbildung 11c), welches für das Schlüsselenzym der Progesteronsynthese kodiert, erhöhte sich tendenziell im Verlauf der Kultur, besonders deutlich aber nach 48 Stunden. Die Stimulation mit LH offenbarte dagegen keine klare Veränderung auf Transkriptebene.

Abbildung 11: LH-Effekt auf kultivierte Granulosazellen aus großen Follikeln. Durch den Zusatz von LH (schwarze Balken) im Vergleich zur Kontrolle (graue Balken) wurden luteinisierungs-spezifische Veränderungen im Expressionsprofil hervorgerufen. Es sind Mittelwerte und Standardfehler aufgetragen. Signifikante Unterschiede der unterschiedlichen Behandlungen sind durch Sterne markiert (n=3; *P*<0,05; t-Test) und signifikante Veränderungen im Verlauf der Kultur durch Buchstaben aufgezeigt (n=3; *P*<0,05; ANOVA). Aus (Baufeld and Vanselow 2013)

3.3.2. Einfluss von Serum auf kultivierte Granulosazellen

In anderen Studien wurde fötales Kälberserum (FKS) in vitro als Luteinisierungsinitiator genutzt (Montano *et al.* 2009; Shimizu *et al.* 2009). Deshalb wurden im Folgenden unterschiedliche Konzentrationen von FKS in der Kultur getestet. Die Morphologie, der im serumhaltigen Medium kultivierten Zellen unterscheidet sich deutlich von Zellen im serumfreien Medium (Abbildung 12). Durch die Zugabe von FKS wuchsen die Zellen nach 9-tägiger Kultur konfluent zusammen. Es bildete sich ein Monolayer mit epithelialem Charakter unabhängig von der eingesetzten FKS-Konzentration

(Abbildung 12a-c). Die Bildung von Zellaggregaten konnte hier nicht beobachtet werden.

Abbildung 12: Morphologie serumhaltiger und serumfreier Granulosazellkultur nach 9-tägiger Kultur. Serum-behandelte Zellen (a-c) bildeten in Kultur einen Monolayer der epithelialen Zellen ähnelt. Serumfrei kultivierte Zellen dagegen wiesen einen fibroblasten-ähnlichen Phänotyp mit der Tendenz zur Aggregatbildung, auf (d). Skala 100 μm.

Die Immunfluoreszenz an fixierten Granulosazellen zeigte weitere morphologische Unterschiede zwischen serumhaltig und serumfrei kultivierten Zellen. Zur Analyse wurde das Protein Cadherin genutzt, welches membranständig ist und somit ein klares Bild über die Zellgrenzen ermöglicht. Der pan-Cadherin Antikörper ermöglicht eine Darstellung aller vorhandener Cadherine einer Zelle.

Es zeigten sich erneut Unterschiede in der Morphologie der Zellen. Serumfrei kultivierte Granulosazellen wiesen einen fibroblasten-ähnlichen Phänotyp auf (s. Abbildung 13a), zu erkennen durch verlängerte Zellausläufer. Weiterhin konnte kein flächendeckendes Wachstum beobachtet werden. Die Lokalisation der Cadherine war eindeutig auf die Membran begrenzt und zeigte eine gleichmäßige Ausprägung. Serumhaltig kultivierte Zellen erschienen eher kubisch und bildeten kaum größere Zellausläufer (s. Abbildung 13b). Die Cadherine waren vorwiegend an der Membran

der Zellen lokalisiert. Es zeigte sich zudem eine stärkere Verzahnung der Zellen untereinander, erkennbar durch eine in Zick-Zack-Form erscheinende Cadherin-Färbung.

Abbildung 13: Cadherin Immunfluoreszenz von Granulosazellen in serumfreier (a) und serumhaltiger (b) Kultivierung. Die Zellen wurden nach 6-tägiger Kultur für eine Immunfluoreszenzanalyse fixiert und die Cadherin Lokalisation durch einen pan-Cadherin Antikörper nachgewiesen (grün), während die Zellkerne mit dem Kernfarbstoff To-Pro3 nachgewiesen worden (blau). Skala 50 µm.

Die Estradiol- und Progesteronkonzentration im Medienüberstand serumfrei und serumhaltig kultivierter Granulosazellen wurde weiterhin miteinander verglichen. In serumfrei kultivierten Zellen konnte eine nennenswerte Estradiol- und Progesteronproduktion nachgewiesen werden (Tabelle 6). Dem Serum ausgesetzte Granulosazellen zeigten dagegen keine Sekretion von Estradiol. Gleichzeitig war die Progesteronkonzentration signifikant geringer im Vergleich zu serumfrei kultivierten Zellen.

Tabelle 6: Relative Steroidhormonkonzentration nach 9-tägiger serumfreier bzw. serum	haltiger
Kultur.	

	Estradiol	Progesteron
Serumfrei	0,0151 (± 0,00176)	1,157 (± 0,0552)
Serumhaltig (5 % FKS)	0,0000 (± 0,0000)	0,276 (± 0,0171)
Р	< 0,001	< 0,001

normalisiert auf den DNA-Gehalt der Granulosazellen; Mittelwerte (± Standardfehler); n=3; t-Test

Die Analyse ausgewählter Markergene zeigte eine deutliche Verbindung zur Verwendung von FKS in Kultur. Gene, wie *CYP19A1*, *FSHR* und *LHCGR*, waren durch den Serum-Zusatz signifikant erniedrigt (Abbildung 14a-c). Andere Markergene, wie *PTGS2*, *RGS2* und *VNN2* (Abbildung 14d-f), wurden ebenfalls signifikant geringer exprimiert, im Gegensatz zur in vivo Situation, wo diese Gene durch den LH-Stimulus hochreguliert werden (Christenson *et al.* 2013; Nimz *et al.* 2009).

Abbildung 14: Expressionsanalyse ausgewählter Markergene unterschiedlicher FKS-Konzentrationen im Vergleich zur serumfreien Kultivierung (Kontrolle). Die Expression analysierter Markergene ist durch den Zusatz von Serum geringer. Relative Transkriptmengen wurden bezogen auf *GAPDH* und auf die dazugehörigen Werte der Pools frisch isolierter Granulosazellen (ausgenommen *LHCGR*, da keine messbare Expression in frischen Granulosazellen vorhanden war). Mittelwerte und Standardfehler sind dargestellt und Sterne zeigen signifikante Unterschiede (n=3; *P*<0,05; ANOVA).

3.3.3. Zelldichte-abhängige Veränderungen in der Granulosazellkultur

In einer Studie von Portela *et al.* (2010) wurde die Abhängigkeit der Progesteronsynthese von der Zelldichte beschrieben. Dieser Versuchsansatz diente als Vorlage für die hier vorgestellte Zellkultur. Die Granulosazellen wurden in serumfreien Medium in den folgenden Dichten ausgesät: $1,0x10^5$, $2,5x10^5$, $5,0x10^5$ und $10,0x10^5$ Zellen pro Well. Die Kultivierung erfolgte in 24-Well Platten, sodass eine Fläche von ca. 2 cm² bewachsen wurde.

Morphologisch zeigte sich erneut ein fibroblasten-ähnlicher Phänotyp (Abbildung 15) der serumfrei kultivierten Zellen. Granulosazellen kultiviert in einer niedrigen Dichte (1,0x10⁵; Abbildung 15a) lagerten sich zu kleineren Aggregaten zusammen. Gleichzeitig konnte eine Verteilung der Zellen in den Kulturschalen beobachtet werden

(Abbildung 15c). Granulosazellen, die bei höherer Dichte (10,0x10⁵) kultiviert wurden, wiesen mehr Zellaggregate auf (Abbildung 15b und d, Pfeile). Nichtsdestotrotz wuchsen die Zellen kultiviert in höherer Dichte nicht konfluent zusammen. Es konnten auch hier freie Flächen der Kulturschale identifiziert werden.

Abbildung 15: Vergleich der serumfreien Granulosazellkultur in unterschiedlicher Zelldichte. Die Zellen wurden für 9 Tage mit den Zusätzen FSH, IGF-1 und A4 kultiviert. **a & c)** Die Kultivierung von 1,0x10⁵ Zellen pro Well zeigte einen fibroblasten-ähnlichen Phänotyp, der auch bei **b & d)** einer Zelldichte von 10,0x10⁵ sichtbar war. Es konnten bei der Zellkultur in höherer Dichte zudem mehr Zellaggregate beobachtet werden (Pfeile). Skala 100 μm.

Eine Hormonmessung des Medienüberstandes repräsentiert die Estradiol- bzw. Progesteronproduktion der Granulosazellen in vitro (Abbildung 16). Die Estradiolkonzentration erreichte ein Maximum bei einer Zelldichte von 2,5x10⁵ Zellen/Well. Die Progesteronkonzentration stieg signifikant durch die Erhöhung der Zelldichte in Kultur an.

Abbildung 16: Relative Estradiol- (E2) und Progesteronkonzentration (P4) nach 9-tägiger Granulosazellkultur. Die Zellen wurden serumfrei in unterschiedlicher Zelldichte kultiviert und die Konzentration der Hormone im Medium bestimmt. Die Konzentrationen wurden auf den DNA-Gehalt der Zellen relativiert; Mittelwerte und Standardfehler sind gezeigt und Buchstaben zeigen signifikante Unterschiede auf (n=3; *P*<0.05; ANOVA). Verändert aus (Baufeld and Vanselow 2013)

Die Analyse ausgewählter Markergene zeigte eine differenzielle Regulation der Granulosazellen aufgrund unterschiedlicher Zelldichten in Kultur (Abbildung 17). Die Gene *CYP19A1*, *FSHR*, *LHCGR*, *HSD3B1* und *CCND2* wurden mit Erhöhung der Zelldichte in der Kultur geringer exprimiert (Abbildung 17a-c, e, k). Dabei war im Falle von *CYP19A1*, *LHCGR* und *HSD3B1* ein kontinuierlich sinkender Verlauf zu erkennen. Bei *FSHR* und *CCND2* zeigte sich ein rapider Abfall der Expression von 2,5x10⁵ Zellen/Well zu 5,0x10⁵ Zellen/Well. Die relative Transkriptmenge von *VNN2* stieg mit Erhöhung der Zelldichte in Kultur stetig an (Abbildung 17i). Die Expression von *CYP11A1*, *PTGS2* und *PTX3* erreichte ein Maximum bei 2,5x10⁵ Zellen/Well (Abbildung 17d, f, g). *RGS2* war ab 2,5x10⁵ Zellen/Well signifikant erhöht und erreichte eine Art Plateau (Abbildung 17h). Die Expression des Proliferationsmarkers *PCNA* sank mit Erhöhung der Zelldichte in Kultur schrittweise ab (Abbildung 17j).

Abbildung 17: Relative Transkriptmenge von ausgewählten Markergenen in serumfreier Zellkultur unterschiedlicher Dichte. Granulosazellen wurden 9 Tage mit FSH, IGF-1 und A4 kultiviert. Es wurde die jeweils angegebene Zellmenge pro Well ausgesät. Die Transkriptmenge ist relativ zu *GAPDH* und zum korrespondierenden frisch isolierten Zellpool gezeigt. Mittelwerte und Standardfehler sind aufgetragen und signifikante Unterschiede durch Buchstaben aufgezeigt (n=3; *P*<0,005; ANOVA). Aus (Baufeld and Vanselow 2013)

Im Rind wurden verschiedene Promotoren des Gens *CYP19A1* identifiziert, die eine gewebe-spezifische Aktivität zeigen. Dabei entstehen Transkripte mit unterschiedlichen 5'UTR, die sich über spezifische Primer nachweisen lassen. Im Ovar ist hauptsächlich der Promotor P2 aktiv, während in der Placenta vornehmlich der Promotor P1.1 aktiv ist (Fürbass *et al.* 1997; Vanselow *et al.* 2001).

Die Analyse von Promotor-spezifischen Transkripten des Gens *CYP19A1* diente zur Einschätzung der Promotoraktivität in Kultur. Granulosazellen kultiviert in geringer Dichte zeigten eine deutliche Prävalenz von P2 Transkripten. P1.1 Transkripte wurden in weitaus geringerem Maße exprimiert (s. Tabelle 7). Das Verhältnis von P2 zu P1.1 Transkripten sank mit Erhöhung der Zelldichte ab, beginnend bei der 6,981-fachen Menge bis hin zu 0,158. Die Expression von *CYP19A1* Transkripten ausgehend vom Promotor P2 war in Zellen kultiviert in hoher Dichte signifikant erniedrigt im Vergleich zu Granulosazellen kultiviert in geringer Dichte. Die Aktivität ausgehend von P1.1 wurde in weitaus geringerem Maße reguliert.

 Tabelle 7: Relative Menge von CYP19A1
 Transkripten ausgehend von den Promotoren P2 und P1.1

 nach Granulosazellkultur bei unterschiedlichen Zelldichten.

	1,0x10 ⁵	2,5x10 ⁵	5,0x10 ⁵	10,0x10 ⁵
P2	2,620 (± 0,063) ^a	1,62 (± 0,490) ^b	0,037 (± 0,008) ^c	0,013 (± 0,007) ^c
P1.1	0,385 (± 0,047) ^a	0,31 (± 0,022) ^a	0,176 (± 0,010) ^b	0,067 (± 0,008) ^c
P2/P1.1	6,981 (± 0,811) ^a	5,60 (± 2,122) ^a	0,212 (± 0,046) ^b	0,158 (± 0,091) ^b
			· · · · · · · · · · · · · · · · · · ·	

Transkriptmenge bezogen auf das Referenzgen *GAPDH*; Mittelwerte $x10^{-3}$ (± Standardfehler); n=3; ANOVA; Buchstaben weisen auf signifikante Unterschiede zwischen den verschiedenen Zelldichten hin. Aus (Baufeld and Vanselow 2013)

Da sich das Gen CYP19A1 durch die Erhöhung der Zelldichte in Kultur sehr stark reguliert zeigte, wurde untersucht, ob sich die Promotormethylierung unter diesen Kulturbedingungen unterscheidet. Bekanntermaßen kann die Methylierung eines Promotors die Stilllegung des Gens zur Folge haben. Im Promotor P2 von CYP19A1, der unter den hier beschriebenen Kulturbedingungen stark reguliert erschien (siehe oben), konnten in vorherigen Studien einzelne CpG-Stellen, aber keine zusammenhängenden CpG-Inseln identifiziert werden (Vanselow et al. 2005; Vanselow et al. 2010). Für die Methylierungsanalyse wurden drei CpG-Stellen in unmittelbarer Nähe des Transkriptionsstarts untersucht. Diese sind in Abbildung 18a durch Sterne markiert und ihre Positionen relativ zum Transkriptionsstart (Pfeil) gezeigt. Des Weiteren sind repräsentative Sequenzen dieses Promotorbereiches nach Bisulfit Modifikation aus Zellen, die bei geringer (1,0x10⁵ Zellen/Well) und bei hoher Dichte (10,0x10⁵ Zellen/Well) kultiviert wurden, gezeigt (Abbildung 18b, c). Die Methylierungsstellen sind gelb hervorgehoben. Die Analyse durch die direkte Bisulfitsequenzierung offenbarte keine Methylierung der bekannten CpG-Stellen nach 9-tägiger Granulosazellkultur unabhängig von der Zelldichte. In vivo konnte eine de novo Methylierung des Promotors P2 in luteinisierten Granulosazellen des Gelbkörpers erst einige Tage nach dem LH-Stimulus detektiert werden (Spitschak and Vanselow 2012). Eine mitgeführte Kontrolle aus Lebergewebe, in welchem keine *CYP19A1*-Expression nachweisbar war, wies dagegen einen hohen Methylierungsgrad von 85 – 100 % auf (Abbildung 18d).

Abbildung 18: DNA-Methylierungsanalyse der Promotorregion des Gens *CYP19A1.* Im oberen Schema sind die proximalen Methylierungsstellen (Sterne) von *CYP19A1* in Bezug auf den Transkriptionsstart (Pfeil) gezeigt **(a)**. Der Methylierungsgrad (%) der einzelnen CpG-Stellen (gelb hervorgehoben) wurde durch die Auswertung von Sequenzen aus der Direktsequenzierung von PCR Produkten nach Direkter Bisulfitsequenzierung ermittelt. Sowohl in der Granulosazellkultur niedriger als auch hoher Dichte konnte keine DNA-Methylierung beobachtet werden **(b-c)**, während eine Kontrolle aus Lebergewebe einen hohen Methylierungsgrad (85 – 100 %) zeigte **(d)**. Verändert aus (Baufeld and Vanselow 2013)

Im Weiteren erfolgte eine globale Transkriptomanalyse, welche zum Vergleich der Expression von Granulosazellen kultiviert in geringer $(1,0x10^5$ Zellen/Well) und hoher Dichte $(10,0x10^5$ Zellen/Well) diente. Aus den durch mRNA Microarray Analyse generierten Daten konnte eine Vielzahl weiterer Gene identifiziert werden, die sich herunter- bzw. hochreguliert zeigten (s. Anhang A). Es wurden 669 herunter- und 906 hochregulierte Gene identifiziert, bei denen eine signifikante Expressionsveränderung (Fold Change) > 1,5 bzw. < -1,5 zu beobachten war (*P*<0,05; FDR<0,05).

Eine Gruppierung der regulierten Gene anhand ihres Expressionsprofils erfolgte mit Hilfe einer Clusteranalyse. Ziel ist es, Gemeinsamkeiten und Unterschiede in großen Datensätzen zu finden. Einzelne Cluster entstehen durch Verschmelzung aufgrund der Ähnlichkeit der Datensätze zueinander, woraus sich ein Dendrogramm ergibt. Die zusätzliche Darstellung in Form einer "Heat Map" ermöglicht die Einschätzung über die Richtung der Expressionsveränderung. Die Farbskala definiert in Blau schwach exprimierte bzw. in Rot stark exprimierte Gene. In der Clusteranalyse sind in den Spalten die einzelnen RNA-Proben (3 je Kultivierungsbedingung) dargestellt. Eine Reihe stellt ein different exprimiertes Gen dar. Sowohl die einzelnen RNA-Proben als auch die Gene wurden hierarchisch gruppiert. Dabei zeigte sich eine deutliche Trennung der Proben aus den beiden unterschiedlichen Kultivierungsbedingungen (Abbildung 19). Gezeigt wird dies durch das obere Dendrogramm: Bedingung 1 (geringe Zelldichte in Kultur; orange) und Bedingung 2 (hohe Zelldichte in Kultur; grün). Das Probenset einer Kultivierungsbedingung offenbarte nur geringe Schwankungen.

Abbildung 19: Hierarchische Clusteranalyse different exprimierter Transkripte aus Granulosazellen kultiviert in unterschiedlicher Zelldichte. Eine starke Differenzierung zwischen den RNA-Proben der unterschiedlichen Kultivierungsbedingungen war zu erkennen (orange, geringe Zelldichte bzw. grün, hohe Zelldichte). Die Clusteranalyse wurde mit der Transcriptome Analysis Console 2.0 durchgeführt. Die Skala zeigt schwach (blau) bis stark (rot) exprimierte Gene. Fold Change < -1,5 bzw. > 1,5 und *P*<0,05 bzw. FDR<0,05.

Der Scatter Plot (s. Abbildung 20) erlaubte einen Überblick über die Expressionshöhe aller gemessenen Gene in Bezug auf die beiden unterschiedlichen Kulturbedingungen. Aufgetragen ist die mittlere Signalstärke jedes einzelnen Gens in allen Proben unter den beiden Kulturbedingungen entlang der Abszisse bzw. Ordinate. Je ähnlicher die Werte sind, desto eher nähern sie sich einer Diagonalen zwischen den beiden Achsen. Demnach sind die Gene im grau markierten Bereich nicht signifikant verschieden hinsichtlich ihrer Expression. Die Signifikanzgrenze wurde dabei bei einer Expressionsveränderung (Fold Change) > 1,5 bzw. <-1,5 festgelegt (*P*<0,05 und FDR<0,05). Einzelne Gene, bei denen diese Grenze über- bzw. unterschritten wurde, wurden als hoch- bzw. herunterreguliert definiert, was durch die Farben Rot und Grün dargestellt ist. Insgesamt zeigte sich, dass durch die Kultur in hoher Zelldichte mehr Gene hoch- als herunterreguliert waren.

Abbildung 20: Gegenüberstellung der Expressionsveränderungen in Granulosazellen kultiviert bei hoher und geringer Zelldichte. Die mittlere Signalstärke unter beiden Kultivierungsbedingungen wurde gegeneinander aufgetragen. Bei hoher Zelldichte hochregulierte Gene sind rot dargestellt, während herunterregulierte Gene grün angezeigt werden. Fold Change < -1,5 bzw. > 1,5 und *P*<0,05 bzw. FDR<0,05.

Ein Vergleich der Expressionsdaten ausgewählter Transkripte aus der Microarray Analyse, sowie aus qPCR Messungen zeigte eine hohe Übereinstimmung (s. Abbildung 21). Das Gen *CYP19A1* wies anhand der qPCR Messung einen Fold Change von -11,09 und im Microarray von -7,02 auf. Andere Gene, wie *PTGS2* und *PCNA*, hatten einen Fold Change < 1,5 bzw. > -1,5 im Microarray und wurden deshalb als kaum bis nicht reguliert charakterisiert (s. Abbildung 21 gestrichelte Linie). In der qPCR Messung bestätigte sich diese Einschätzung zumeist. Es gab allerdings auch Ausnahmen. So zeigte z.B. das Gen *HSD3B1* in der qPCR eine signifikante Expressionsveränderung von -2,34, aber nicht in der Microarray Analyse. In ihrer Tendenz stimmten die beiden Messmethoden aber auch im Falle nicht signifikanter Unterschiede zwischen den beiden unterschiedlichen Kulturbedingungen überein.

Abbildung 21: Vergleich der Microarray Analyse mit der qPCR Messung. Die Microarray Analyse konnte durch die qPCR Ergebnisse bestätigt werden. Der Fold Change (FC) bezieht sich auf den Vergleich zwischen Zellkulturen hoher und geringer Zelldichte. Die gestrichelte Linie stellt einen FC von 1,5 bzw. -1,5 dar.

Die nachfolgende Tabelle 8 zeigt für jedes zuvor aufgeführte Gen die Expressionsveränderung (FC) aus der qPCR Messung und der Microarray Analyse. Gleichzeitig ist der Korrelationskoeffizient aufgeführt, woraus sich eine sehr hohe Korrelation (> 0,8) zwischen der qPCR- und Microarray-Messung offenbarte. Lediglich das Gen *PTGS2* wies eine etwas geringere Korrelation von 0,780. Diese war allerdings ebenfalls signifikant positiv.

Gen	qPCR*	Microarray*	Korrelations- koeffizient
CYP19A1	-11,09	-7,02	0,987
CYP11A1	1,65	1,24	0,975

Tabelle 8: Fold Change (FC) und Korrelation zwischen qPCR Messung und Microarray Analyse.

HSD3B1	-2,43	-1,20	0,977
FSHR	-5,97	-4,64	0,992
LHCGR	-4,12	-2,35	0,979
PTGS2	1,09	1,27	0,780
RGS2	4,84	3,30	0,991
VNN2	7,75	5,88	0,989
PTX3	3,95	3,02	0,958
PCNA	-1,16	-1,18	0,829
CCND2	-1,69	-1,37	0,959

*Eine Normalisierung der qPCR Daten erfolgte mit dem Referenzgen *RPLP0* und Microarray Signale wurden mit der RMA-Methode korrigiert; *P*<0,05 für alle berechneten Korrelationen.

3.4. Ursachen des Zelldichte-Effekts in Kultur

Bisherige Daten ließen vermuten, dass eine Veränderung der Granulosazellen allein aufgrund der Erhöhung der Zelldichte in Kultur einsetzt. Es stellte sich im Weiteren die Frage, durch welchen zellulären Mechanismus dieser Effekt erzielt wurde.

3.4.1. Einfluss von konditioniertem Medium aus Kulturen mit hoher Zelldichte

Zunächst wurde die Hypothese überprüft, dass die Granulosazellen in Kultur lösliche Substanzen sekretieren und somit die Zelldifferenzierung eingeleitet wird. Dazu wurde der Einfluss von konditioniertem Medium aus Kulturen mit hoher Zelldichte auf die Genexpression von Zellen kultiviert in geringer Dichte untersucht. Medienüberstände, die aus einer Kultivierung mit hoher Zelldichte stammten, wurden sofort eingefroren und anschließend bei in geringer Dichte kultivierten Granulosazellen eingesetzt. Vergleichend wurde die Genexpression unbehandelter Zellen, kultiviert in geringer und hoher Dichte, analysiert.

Durch den Einsatz von Zelldichte-konditioniertem Medium wurde die *CYP19A1*-Expression kaum beeinflusst (Abbildung 22a). Die Erhöhung der Zelldichte in Kultur führte erneut zu einer Verringerung der *CYP19A1*-Expression. Die Expression des Markergens *RGS2* stieg durch konditioniertes Medium an (Abbildung 22b). Durch die Erhöhung der Zelldichte konnte jedoch ein weitaus höherer Anstieg beobachtet werden.

Abbildung 22: Der Einfluss von Zelldichte-konditioniertem Medium auf Granulosazellen in Kultur. Durch die Verwendung von konditioniertem Medium aus Kulturen mit hoher Zelldichte konnte kaum ein Effekt auf Granulosazellen beobachtet werden. Kontrolle war die serumfreie Granulosazellkultur in geringer Dichte; kond., konditioniertes Medium wurde mit frischem Medium im Verhältnis 1:1 zu den Zellen gegeben; Zelldichte, Zellen wurden bei hoher Dichte kultiviert und als Positivkontrolle mitgeführt. Dargestellt sind die Mittelwerte mit SEM und es erfolgte eine Normalisierung auf *RPLP0* und ein zusätzlicher Abgleich auf den korrespondierenden frisch isolierten Zellpool bei der Messung des Gens *RGS2* (n=3; *P*<0,005; ANOVA).

3.4.2. Untersuchung des PKA-Signalwegs

3.4.2.1. Einsatz von Aktivatoren der PKA in Kultur

Die durch LH vermittelte Granulosazelldifferenzierung steht unter anderem im Zusammenhang mit der Signalübertragung durch die Proteinkinase A (PKA) (Morris and Richards 1995). Es sollte nachfolgend geklärt werden, ob dieser Mechanismus auch bei der Dichte-induzierten Differenzierung eine Rolle spielt. Granulosazellen wurden initial für 8 Tage serumfrei mit den Zusätzen FSH, IGF-1 und Androstendion kultiviert. Am achten Tag erfolgte jeweils die Behandlung mit den cAMP-Analogons 6-Bnz-cAMP und 8-Bromo-cAMP. Die Veränderung der Granulosazellen wurde anhand des Expressionsmusters im Vergleich zur unbehandelten Kontrolle untersucht. Beide Substanzen wurden in verschiedenen Konzentrationen von 0,1 mM bis 1 mM eingesetzt um die optimale Konzentration für anschließende Experimente zu bestimmen.

Das Markergen *CYP19A1* wurde durch geringere Konzentrationen von 6-Bnz-cAMP kaum beeinflusst (s. Abbildung 23a). Erst ab einer Konzentration von 0,5 mM ließ sich eine inhibierende Tendenz erkennen, die mit einer Konzentration von 1 mM den größten Abfall zeigte. Ein ähnlicher Verlauf war bei der Expression der Rezeptoren für FSH und LH zu erkennen (Abbildung 23b, c). Jedoch zeigte sich schon bei einer geringeren Konzentration ein signifikanter Einfluss auf *FSHR* in vitro. Die maximale Herunterregulation war hier ebenfalls bei 1 mM 6-Bnz-cAMP zu beobachten. Das Markergen *RGS2* wurde durch die Erhöhung der Konzentration stärker exprimiert mit

dem größten Effekt bei einer Konzentration von 1 mM 6-Bnz-cAMP (Abbildung 23d). Für nachfolgende Versuche wurde eine Konzentration von 1 mM verwendet.

Abbildung 23: Einfluss des PKA-Aktivators 6-Bnz-cAMP auf Granulosazellen in vitro. Die Zellen wurden nach einer 8-tägigen serumfreien Kultur für 24 Stunden mit dem Aktivator 6-Bnz-cAMP behandelt. Kontrolle war die unbehandelte serumfreie Kultur. Die Expressionsanalyse zeigte einen starken Einfluss des Aktivators auf die Granulosazellen bei hoher 6-Bnz-cAMP Konzentration. Die Transkripte wurden auf das Referenzgen *RPLP0* und die Werte der frisch isolierten Granulosazellen bezogen. Mittelwerte mit Standardfehlern sind dargestellt und Buchstaben zeigen signifikante Unterschiede auf (n=3; *P*<0,05; ANOVA).

Die Stimulation für 24 Stunden mit einem weiteren PKA-Aktivator, 8-Bromo-cAMP, zeigte ähnliche Effekte. Die Expressionsdaten zeigten eine tendenzielle Abnahme der Transkripte von *CYP19A1* (Abbildung 24a). Das Gen *FSHR* wurde in Abhängigkeit der 8-Bromo-cAMP Konzentration signifikant geringer exprimiert (Abbildung 24b). Die Transkripte des Gens *LHCGR* konnten durch den Einfluss des Aktivators nicht mehr nachgewiesen werden und sind deshalb nicht dargestellt. Die Markergene *RGS2* und *VNN2* zeigten einen Expressionsanstieg (Abbildung 24c, d). Analog zu *FSHR* konnte eine Dosisabhängigkeit beobachtet werden.

Abbildung 24: Einfluss des PKA-Aktivators 8-Bromo-cAMP auf Granulosazellen im Vergleich zur serumfreien Kontrolle. Eine 24-stündige Stimulation zum Ende der Kulturzeit mit 8-Bromo-cAMP (0,1 – 1 mM) zeigte einen deutlichen Einfluss auf die Expression ausgewählter Markergene. Dargestellt sind Mittelwerte mit Standardfehlern in Bezug auf das Referenzgen *RPLP0* und den korrespondierenden Pool frisch isolierter Zellen. Durch Buchstaben werden signifikante Unterschiede aufgezeigt (n=3; *P*<0,05; ANOVA).

3.4.2.2. Einsatz eines Inhibitors der Proteinkinase A

Ein selektiver Inhibitor der Proteinkinase A ist die Substanz H-89, welche in der katalytischen Untereinheit der Kinase eine kompetitive Bindung aufbaut und somit eine ATP-Bindung verhindert (Chijiwa *et al.* 1990, Engh *et al.* 1996). In der Granulosazellkultur wurden die Zellen analog vorheriger Versuche 24 Stunden vor Ende der Kulturdauer mit H-89 behandelt. In der Konzentrationsreihe von 5 – 10 μ M H-89 konnte bei keinem Markergen ein signifikanter Unterschied zur Kontrolle festgestellt werden (Abbildung 25). Die Transkriptanalyse des Gens *CYP19A1* ließ nur eine minimal steigende Tendenz mit der Erhöhung der Konzentration vermuten (Abbildung 25a). Auch das Gen *RGS2* zeigte eine tendenzielle Dosis-Wirkungs-Beziehung (Abbildung 25d). Jedoch konnte dies in Wiederholungsversuchen nicht bestätigt werden.

Abbildung 25: Expressionsanalyse nach PKA-Inhibition mit H-89. Nach einer initialen 8-tägigen serumfreien Kultur wurden die Zellen für 24 Stunden mit H-89 behandelt. Dabei konnten keinerlei nennenswerte Effekte beobachtet werden. Die Messung der Transkripte wurde auf das Referenzgen *RPLP0* und den korrespondierenden frisch isolierten Zellpool bezogen. Als Kontrolle diente die serumfreie Granulosazellkultur. Dargestellt sind die Mittelwerte mit Standardfehlern (n=3; keine signifikanten Unterschiede).

Ob der PKA Inhibitor H-89 in dem hier verwendeten Kulturmodell überhaupt wirksam ist, wurde mit Hilfe einer Kurzzeitkultur von Granulosazellen aus großen Follikeln überprüft. In diesen konnte ein LH-Effekt beobachtet werden (s. Abschnitt 3.3.1.2). Es ist deshalb zu erwarten, dass dieser Effekt durch die Verwendung von H-89 geringer ausfallen sollte. Deshalb wurden Granulosazellen aus großen Follikeln (> 9 mm) für 24 Stunden kultiviert und mit 20 ng/ml LH und H-89 behandelt. Eine unbehandelte Zellkultur diente als Kontrolle.

Innerhalb der Kultur konnte ein Effekt des PKA-Inhibitors auf das Referenzgen *RPLP0* beobachtet werden (nicht gezeigt). Die Analyse weiterer Referenzgene unter anderem *GAPDH*, zeigte einen ähnlichen Einfluss. Somit konnte kein Abgleich mit einem Referenzgen erfolgen, da dies zu einer Verfälschung der Daten geführt hätte. Da in der quantitativen Real-Time PCR jeweils ein externer Standard mitgeführt wurde (s. Abschnitt 2.14.1), konnte trotz allem eine Analyse erfolgen. Eine Relativierung wurde nur auf die Expression des korrespondierenden frisch isolierten Zellpools durchgeführt. Dabei konnte zunächst ein LH-Effekt beobachtet werden (s. Tabelle 9), der mit einer Herunterregulation der Gene *CYP19A1* und *FSHR* bzw. einer Hochregulation des

Gens *RGS2* verbunden war. Der Zusatz des PKA-Inhibitors H-89 führte teilweise zu einer Aufhebung des LH-Effekts, ersichtlich bei dem Markergen *CYP19A1*. Bei hoher H-89-Konzentration wurde das Expressionslevel der Kontrolle wieder erreicht. Die Expression von *RGS2* sank auf ein deutlich niedrigeres Niveau als in der Kontrolle. Das Gen *FSHR* zeigte eher einen gegenteiligen Effekt. Durch den Zusatz von H-89 konnte der LH-Effekt nicht blockiert werden, die Transkriptmenge sank weiter ab.

	CYP19A1	FSHR	RGS2
Kontrolle	0,0133 (± 0,0035)	0,1910 (± 0,0548)	1,3263 (± 0,2785)
LH-Stimulation	0,0067 (± 0,0003)	0,0851 (± 0,0030)	2,3507 (± 0,2950)
LH & 5 µM H-89	0,0083 (± 0,0007)	0,0737 (± 0,0226)	2,4961 (± 0,8680)
LH & 10 µM H-89	0,0113 (± 0,0006)	0,0428 (± 0,0034)*	0,4901 (± 0,0828)
LH & 15 µM H-89	0.0168 (± 0.0027)	0.0498 (± 0.0130)*	0.3830 (± 0.0948)

Tabelle 9: Wirkung des PKA-Inhibitors H-89 auf LH-behandelte Granulosazellen aus großen Follikeln in einer Kultur über 24 Stunden.

Die Expressionslevel (± SEM) wurden auf den korrespondierenden frisch isolierten Zellpool korrigiert; Sterne zeigen signifikante Unterschiede (n=3, P<0,05, ANOVA).

3.4.2.3. Zusammenhang des Zelldichte-Effekts und der Proteinkinase A Aktivität

Es konnte gezeigt werden, dass eine Konzentration von 1 mM der beiden PKA-Aktivatoren zu einem Effekt innerhalb der Granulosazellkultur führte. Im Folgenden wurden die PKA-Aktivatoren im Zusammenhang mit der niedrigen und hohen Zelldichte in Kultur näher untersucht. Ziel war es, einen Einblick zu bekommen, in wie weit der PKA-Signalweg bei dem Zelldichte-Effekt eine Rolle spielt.

Betrachtet wurde der Zelldichte-Effekt in einer unbehandelten Kontrolle sowie nach einer 24-stündigen Behandlung mit den PKA-Aktivatoren gegen Ende der Kultur. Sowohl in der Kontrolle als auch in den behandelten Zellen konnte der Dichte-Effekt nachgewiesen werden (s. Abbildung 26). Wie erwartet, wurden die Markergene *CYP19A1* und *FSHR* zum Teil signifikant niedriger bei erhöhter Zelldichte in Kultur exprimiert (Abbildung 26a, b). *RGS2* zeigte dagegen einen signifikanten Expressionsanstieg. Durch die Substanz 6-Bnz-cAMP wurden *CYP19A1* und *FSHR* bzw. *RGS2* bereits in geringer Dichte kultivierten Zellen signifikant schwächer bzw. stärker exprimiert. Dieser Effekt konnte auch in bei hoher Dichte kultivierten Granulosazellen beobachtet werden, mit Ausnahme von *CYP19A1*. Interessanterweise wurde das Gen *RGS2* von dem Aktivator 6-Bnz-cAMP so stark beeinflusst, dass die relative Transkriptmenge um mehr als das 20fache anstieg (Abbildung 26c).

Abbildung 26: Einfluss des PKA-Aktivators 6-Bnz-cAMP und der Zelldichte auf die Granulosazellkultur. Es erfolgte eine serumfreie Kultivierung für 9 Tage in unterschiedlichen Zelldichten mit einer 24-stündigen Stimulation mit 6-Bnz-cAMP (1 mM). Ein Abgleich erfolgte mit dem Referenzgen *RPLP0* sowie den Transkripten des frisch isolierten Zellpools. Signifikante Unterschiede durch die Zelldichte sind mit einem Stern gekennzeichnet, während signifikante Unterschiede zwischen den verschiedenen Behandlungen durch einen Buchstaben gekennzeichnet sind (n=3; t-test; *P*<0,05).

Ein analog durchgeführtes Experiment mit dem PKA-Aktivator 8-Bromo-cAMP offenbarte ein ähnliches Expressionsmuster (nicht gezeigt). Der Zelldichte-Effekt ist weiterhin zu erkennen. Zusätzlich zeigte sich durch den Einsatz von 8-Bromo-cAMP ein Absinken bzw. Anstieg der Gene *CYP19A1*, *FSHR* bzw. *RGS2*.

Eine Inhibition der Proteinkinase A erfolgte mit der Substanz H-89 bei einer Konzentration von 15 µM. Die Kulturbedingungen wurden analog den Bedingungen der PKA-Aktivatoren gestaltet: eine initiale 9-tägige Kultur und einer Behandlung mit H-89 24 Stunden vor Ende der Kulturzeit.

Wie erwartet konnte der Zelldichte-Effekt beobachtet werden (s. Abbildung 27). Die Expression der Gene *CYP19A1*, *FSHR* bzw. *RGS2* sank signifikant ab bzw. stieg an. Die Behandlung mit dem PKA-Inhibitor H-89 offenbarte keinen nennenswerten Effekt bei geringer Zelldichte. Bei Granulosazellen kultiviert in hoher Dichte und zusätzlicher Behandlung mit H-89, zeigte sich eine niedrigere bzw. höhere Expression von *FSHR* bzw. *RGS2* (Abbildung 27b, c). Vergleichend mit dem Zelldichte-Effekt waren diese Veränderungen aber eher gering.

Abbildung 27: Genexpression in Granulosazellkultur bei unterschiedlicher Dichte und unter dem Einfluss des PKA-Inhibitors H-89. Die Zellen wurden serumfrei für 9 Tage in unterschiedlicher Dichte kultiviert und 24 Stunden vor Ende der Kultur mit H-89 (15 μM) behandelt. Die Expressionsanalyse ist relativ auf das Referenzgen *RPLP0* und die Expression des korrespondierenden frisch isolierten Zellpools dargestellt. Signifikante Unterschiede der Zelldichte sind durch einen Stern markiert und Unterschiede durch die H-89 Behandlung werden durch die Buchstaben gezeigt (n=3; t-test; *P*<0,05).

3.4.3. Untersuchung der Cadherin-Catenin Signalkaskade

Neben der PKA-Signaltransduktion könnten weitere Signalwege bei der Zelldichtevermittelten Differenzierung eine Rolle spielen. So könnten direkte Zell-Zell Interaktionen über die Cadherin-Catenin Signalkaskade von Bedeutung sein.

Um dies näher zu untersuchen, wurden Immunfluoreszenzanalysen durchgeführt, die die Lokalisation der Proteine Cadherin, Catenin und phosphoryliertem Catenin (P-Catenin) unter den verschiedenen Kulturbedingungen aufzeigen sollten. Zur Quantifizierung wurde eine Western Blot Analyse durchgeführt. Für beide Analysen wurde die Kulturdauer auf 6 Tage verkürzt. Dies war methodisch bedingt, um ein vorzeitiges Ablösen der Granulosazellen auf beschichteten Glasplättchen zu verhindern. Als Vergleich diente eine serumhaltige Granulosazellkultur.

Abbildung 28: Repräsentative Ausschnitte der Immunfluoreszenz von kultivierten Granulosazellen. Nach 6-tägiger serumfreier bzw. serumhaltiger Kultur wurden die Proteine Cadherin (grün, a-c), Catenin (rot, d-f) und P-Catenin (rot, g-i) nachgewiesen. Die Zellkerne wurden mit Hilfe des Farbstoffs To-Pro3 nachgewiesen, für eine deutlichere Darstellung der P-Catenin Immunfluoreszenz jedoch bei den Aufnahmen g-i nicht gezeigt. Die Aufnahmen wurden mit Hilfe eines Laser Scanning Mikroskops erstellt. Skala 50 µm, bzw 25 µm in den inserierten Aufnahmen.

Mit Hilfe der Immunfluoreszenz konnten die Proteine Cadherin, Catenin und auch P-Catenin innerhalb der Granulosazellen nachgewiesen werden (s. Abbildung 28). Es gab keine erkennbaren Unterschiede zwischen den Kulturen bei niedriger und hoher Zelldichte. Cadherin (s. Abbildung 28a-c) war membranständig lokalisiert. Wie erwartet, zeigten serumfrei kultivierte Granulosazellen einen fibroblasten-ähnlichen Phänotyp, während serumhaltig kultivierte Zellen eine deutliche Verzahnung untereinander aufwiesen. Das Protein Catenin konnte membranständig, aber auch im Zellplasma identifiziert werden (s. Abbildung 28d-f). Interessanterweise konnte diese Verteilung deutlich in den serumhaltig kultivierten Zellen nachgewiesen werden. In serumfrei kultivierten Granulosazellen war eine etwas geringere Lokalisation an der Zellmembran sichtbar. Gleichzeitig zeigte sich eine auffällige Färbung regelrechter Protein-Spots um und in dem Zellkern (s. Abbildung 28d-e Pfeile und Ausschnittsvergrößerungen). Trotzdem konnte hier durch die Veränderung der Zelldichte in Kultur kaum ein Unterschied festgestellt werden. Phosphoryliertes Catenin war nur recht schwach nachweisbar (Abbildung 28g-i). Es konnten weiterhin keine Unterschiede zwischen Granulosazellen kultiviert in unterschiedlicher Dichte identifiziert werden. Lediglich serumhaltig kultivierte Zellen schienen eine geringere Menge an P-Catenin aufzuweisen als serumfrei kultivierte Zellen.

Zur quantitativen Bestimmung wurden Catenin und P-Catenin in kultivierten und in frisch isolierten Zellen zusätzlich im Western Blot analysiert. Als Ladekontrolle für die aufgetragenen Proteinmengen im Gel diente das Protein Tubulin (55 kDa).

Abbildung 29: Catenin- und Phospho-Catenin Gehalt in Granulosazellen. Serumfrei (Spur 1 und 2) und serumhaltig kultivierte Granulosazellen (Spur 3) nach 6-tägiger Kultur wurden auf ihren Catenin und P-Catenin Gehalt hin quantifiziert. Als weitere Kontrolle dienten frisch isolierte Zellen des korrespondierenden Zellpools (Spur 4), während eine nahezu gleichmäßige Beladung durch Tubulin gezeigt wurde.

Catenin (92 kDa) konnte sowohl unter serumhaltigen als auch serumfreien Kulturbedingungen nachgewiesen werden (Abbildung 29). In frisch isolierten Granulosazellen konnte vergleichend eine etwas geringere Menge des Catenins identifiziert werden. Dies war auf ein geringeres Probenvolumen aufgrund des begrenzten Ausgangsmaterials zurück zu führen. Die Tubulinkontrolle (55 kDa) verdeutlichte diesen Umstand. P-Catenin (92 kDa) konnte in den verschiedenen Kulturbedingungen nicht nachgewiesen werden. Auch durch die Verlängerung der Detektionszeit (nicht gezeigt) war kein P-Catenin zu identifizieren. Die frisch isolierten

Zellen dagegen wiesen phosphoryliertes Catenin auf und konnten somit als Positivkontrolle für die Antikörperdetektion dienen.

4. Diskussion

4.1. Erfolgreiche Validierung von Markergenen der frühen Luteinisierung in der Granulosazellkultur

Die Microarray Analyse war Ausgangspunkt der vorliegenden Arbeit. Es entstand ein Überblick über die Veränderungen der Genexpressionsprofile von Follikelzellen kurz vor und nach der prä-ovulatorischen LH-Ausschüttung (Christenson *et al.* 2013). Wie schon in Abschnitt 1.4.2 einleitend erläutert, zeigten sich in den antralen Granulosazellen insgesamt 2741 Gene als signifikant differenziell exprimiert. In den muralen Granulosazellen wurden 2417 Gene und in den Thekazellen lediglich 226 Gene different exprimiert. Diese Diskrepanz offenbarte, dass vor allem die Veränderungen in den Granulosazellen maßgeblich an den bevorstehenden LH-abhängigen morphologischen und physiologischen Veränderungen beteiligt sind. Die Thekazellen sind in ihrer Funktion insgesamt nicht zu vernachlässigen, jedoch zeigte sich hier, dass eine Fokussierung auf Granulosazellen in in vitro Versuchen sinnvoll ist.

In einer anderen Studie von Gilbert *et al.* (2011) wurden ähnlich den hier dargestellten Ergebnissen Expressionsprofile von Granulosazellen vor und nach dem LH Stimulus miteinander verglichen. Interessanterweise waren lediglich 121 LH-regulierte Gene in beiden Studien identisch. Der Umstand, dass in der Studie von Gilbert *et al.* (2011) *PTGS2* 22 Stunden nach LH nicht hochreguliert war, warf jedoch Fragen auf, da gerade *PTGS2* schon frühzeitig als Markergen während der Follikulogenese identifiziert wurde (Liu *et al.* 1997; Sirois 1994). Bei genauerer Analyse konnten einige Unterschiede festgestellt werden, was vermutlich auf den experimentellen Ansatz zurückzuführen war. Die Granulosazellen wurden bei Gilbert *et al.* (2011) durch ein Superovulations-Protokoll gewonnen. Granulosa- und Thekazellen in der hier vorgestellten Analyse wurden durch die Beobachtung per Ultrasonographie und einer anschließenden Hormonbehandlung gesammelt. So entstand immer nur ein präovulatorischer Follikel pro Tier, um die in vivo Situation so nah wie möglich nachzuahmen.

Durch die Microarray Analyse konnten Gene, die für nachfolgende Zellkultur Versuche als Markergene etabliert werden sollten, identifiziert werden. Gene, die in der Steroidhormonsynthesekaskade von Bedeutung sind (z.B. *CYP19A1*, *CYP11A1*) oder auch die Gene der Gonadotropinrezeptoren *FSHR* und *LHCGR* konnten, wie erwartet, als reguliert identifiziert werden, da eine LH-abhängige Regulation dieser Gene in anderen Studien bereits beschrieben wurde (Bao and Garverick 1998; Nimz *et al.* 2009). Interessanterweise konnte ebenso eine Vielzahl an hochregulierter Gene mit Hilfe der Microarray Analyse identifiziert werden, wie z.B. *RGS2* (regulator of G protein signaling 2) oder auch *PTX3* (pentraxin 3). In diesem Zusammenhang wurde das Gen *VNN2* (vanin 2) erstmalig als durch LH reguliert beschrieben (Christenson *et al.* 2013).

Zur Klärung der Validität der Microarray-Daten, wurde die Transkriptmenge einzelner Gene mit Hilfe der quantitativen Real-Time PCR überprüft. Für einige Gene musste zunächst eine Einarbeitung eines qPCR-Assays erfolgen (s. Tabelle 5, mit Stern markiert). Daraufhin konnte in einem direkten Vergleich zwischen Microarray- und qPCR Analyse die Regulation ausgewählter Markergene bestätigt werden. Dies zeigten sehr hohe und signifikante Korrelationskoeffizienten (über 0,8) beim Vergleich beider Analyseverfahren. In Anbetracht dieser Zusammenhänge konnte die Microarray Analyse validiert werden. Somit können die Microarray-Daten für zukünftige Analysen bzw. Fragestellungen in Bezug auf die Veränderungen der Genexpressionsprofile vom dominanten zum prä-ovulatorischen Follikel herangezogen werden.

Eine Regulation durch LH wurde bei einigen ausgewählten Genen bereits beschrieben. So wurde TIMP1 (tissue inhibitor of metalloproteinases 1), das bekanntermaßen die extrazelluläre Matrix während der Ovulation remodelliert (Mann et al. 1991), in verschiedenen Studien an Ratten eine Hochregulation durch LH nachgewiesen (Li and Curry, Jr. 2009; Mann et al. 1991; Mann et al. 1993). Weitere Proteine, welche mit der extrazellulären Matrix interagieren, sind ADAM Metallopeptidasen, kodiert durch z.B. ADAMTS1. Diese Proteinfamilie steht im Zusammenhang mit der Gewebebildung, Inflammationsprozessen oder auch Zellmigration (Apte 2004; Blelloch et al. 1999; Kuno et al. 1997). Dem Gen ADAMTS1 konnte weiterhin eine Verbindung mit der Fertilität in verschiedenen Spezies nachgewiesen werden, die sich vor allem durch eine Expressionserhöhung nach einem LH-Stimulus zeigte (Espey et al. 2000; Fortune et al. 2009; Yung et al. 2010). Das Gen PTX3 ist ebenfalls bei inflammatorischen Prozessen beteiligt, indem es Pathogene identifiziert und zur Immunantwort beiträgt (Garlanda et al. 2005). Gleichzeitig konnte in dieser Studie auch ein essentieller Zusammenhang mit der weiblichen Fertilität von Menschen und Mäusen aufgezeigt werden. Dabei zeigte sich, dass das Protein Ptx3 notwendig ist für den Aufbau einer intakten Cumulus-Matrix und somit die Oozytenkompetenz beeinflussen kann. Eine weitere Studie zeigte die Subfertilität in *PTX3^{-/-}* Knock-Out Mäusen und die Hochregulation der *PTX3* Expression in Abhängigkeit vom LH Stimulus (Varani et al. 2002). Das Gen RGS2 konnte ebenfalls als durch LH hochreguliert nachgewiesen werden (Ujioka et al. 2000). Diese Studien belegen die Regulation einzelner Gene durch LH, welche wiederum durch die hier dargestellten Microarray und qPCR Daten eindeutig bestätigt werden. Mit diesem

Hintergrund konnte ein verlässliches Bild der Regulation der durch LH regulierten Gene mit Hilfe des Microarrays gewonnen werden. Das Gen *VNN2* (vanin 2) wurde bis vor kurzem nicht als LH reguliert beschrieben (Christenson *et al.* 2013). Mit Hilfe der Microarray Analyse und der anschließenden Validierung konnte die gesicherte Erkenntnis gewonnen werden, dass dieses Gen stark durch LH beeinflusst wird. *VNN2* gehört zu einer kleinen Familie von Genen, die eine Glycosylphosphatidylinositol-Ankersequenz aufweisen (Suzuki *et al.* 1999). Soweit bekannt, sind die funktionellen Proteine der *VNN*-Familie die einzigen Bekannten in Säugern mit einer Panthetheinase Aktivität um Vitamin B5 oder auch Cysteamin zu synthetisieren, welches zum Schutz vor oxidativen Stress dient (Kaskow *et al.* 2012). Interessanterweise wurde bereits ein Zusammenhang zwischen oxidativen Stress und der Fertilität hergestellt, wobei reaktive Sauerstoffspezies (ROS) möglicherweise am Ovulationprozess beteiligt sind und dabei vermehrt auftreten, jedoch gleichzeitig die Oozytenkompetenz negativ beeinflussen können (Fujii *et al.* 2005; Tamura *et al.* 2008).

4.2. Erfolgreiche Etablierung eines Zellkulturmodells Estradiolaktiver Granulosazellen

Die Einarbeitung eines stabilen und reproduzierbaren Zellkulturmodells für Granulosazellen stellte eine weitere Grundlage dieser Arbeit dar. Aus der Literatur war weitestgehend bekannt, dass eine funktionelle Kultur der Zellen serumfrei erfolgen sollte (Gutierrez *et al.* 1997; Hamel *et al.* 2005). Dabei sind für die Stimulierung der steroidogenen Aktivität die Zusätze FSH und IGF-1 essentiell (Gutierrez *et al.* 1997; Hamel *et al.* 2000), wobei IGF-1 die FSH-Wirkung verstärkt (Mani *et al.* 2010; Monniaux *et al.* 1994). Auch die Zugabe von Androstendion ist von großer Bedeutung, da die Granulosazellen nicht in der Lage sind, diese Vorstufe des Estradiols selbst zu synthetisieren. Die Zwei-Zell-Hypothese (Hillier *et al.* 1994) erklärt die Tatsache, dass nur die äußere Thekazellschicht im Follikel in der Lage ist das Gen *CYP17A1* und das entsprechende Enzym zu synthetisieren. Demzufolge ist es unverzichtbar Androstendion in einer Granulosazellkultur einzusetzen, wenn das Zellkulturmodell den physiologischen Status in vivo weitestgehend nachahmen soll.

Ein anderer Aspekt zeigte sich in Abbildung 7, welche sich auf die Dauer der Granulosazellen in Kultur bezieht. Es konnte gezeigt werden, dass die *CYP19A1* Expression von Tag zu Tag in Kultur anstieg. Demzufolge ist anzunehmen, dass zu Beginn der Zellkultur nur eine geringe Menge Estradiol synthetisiert werden kann. Da es das Ziel dieser Arbeit war, die Funktionalität von Granulosazellen einschließlich ihrer steroidogenen Kapazität in Kultur möglichst genau nachzustellen, ist aufgrund der
Genexpression von CYP19A1 der Schluss zulässig, dass die Zellen eine Kulturdauer von 8 – 9 Tagen benötigen, um ihrer eigentlichen Funktion erneut nachzukommen. In anderen Studien wurden die Granulosazellen zumindest 6 Tage kultiviert, um eine nennenswerte Estradiolproduktion zu gewährleisten (Amsterdam et al. 1988; Silva and Price 2000). An dieser Stelle könnte darüber spekuliert werden, dass Granulosazellen während ihrer Reifung auch in vivo ein paar Tage benötigen bis sie die gesamte Estradiolaktivität hervorbringen können. Dieser These spricht jedoch eine weitere Beobachtung entgegen. In Kultur kann nur eine geringere Aktivität des Gens CYP19A1 als in frisch isolierten Zellen beobachtet werden. Die über gPCR erhaltenen Messwerte wurden neben einer Normalisierung auf GAPDH zusätzlich auf die Transkriptmenge von unkultivierten Zellen bezogen. Dabei zeigte sich, dass nur ca. 25 % des Expressionslevels in Kultur erreicht werden konnten. Dieses Phänomen wurde in weiteren Zellkulturen erneut beobachtet. In Zusammenhang mit dem beobachteten Verlauf der CYP19A1-Expression ist anzunehmen, dass die Kultivierung im Allgemeinen ein Stressfaktor für die Zellen ist. Es ist somit denkbar, dass sich die Granulosazellen zunächst an die Kulturbedingungen anpassen müssen. Eine physiologische Estradiol-aktive Zellkultur kann somit erst nach einigen Tagen erreicht werden.

Auch die Herkunft der Zellen spielt eine entscheidende Rolle bei der Kultivierung. Eigene Vorversuche zeigten, dass es relevant ist, aus welchen Follikeln die Granulosazellen isoliert werden. Nur Zellen aus kleinen Follikeln (< 6 mm) können über die Dauer von 9 Tagen kultiviert werden und synthetisieren dann wieder Aromatase bzw. *CYP19A1*. Werden die Zellen jedoch aus großen Follikeln (> 9 mm) isoliert, ist über dieselbe Dauer der Kultur die *CYP19A1* Expression nicht mehr nachweisbar (nicht gezeigt). Dies lässt darauf schließen, dass Granulosazellen im großen Follikel in ihrer Differenzierung bereits so weit fortgeschritten sind, dass sie in vitro nicht mehr dazu angeregt werden können, Aromatase zu synthetisieren.

Das Anwachsen von Granulosazellen in Kultur kann durch eine Beschichtung der Zellkulturplatten mit Collagen begünstigt werden (s. Abschnitt 3.2.2). Dieses Protein ist in vivo ein wichtiger Bestandteil der extrazellulären Matrix (EZM), an die sich Zellen anheften. Im Follikel wird die Theka- und Granulosazellschicht ebenfalls von einer Basallamina bestehend aus Matrixmolekülen voneinander getrennt. Eine Studie konnte zeigen, dass extrazelluläre Matrixproteine auch in der Follikelflüssigkeit vorkommen und die Granulosazellen umgeben (McArthur *et al.* 2000). Die Morphologie der Granulosazellen wies auf einen positiven Effekt der Collagen-Beschichtung auf das Anwachsen und die Verteilung der Zellen in Kultur hin. Die Abbildung 8 zeigt einen

repräsentativen Bildausschnitt und lässt erkennen, dass sich die Granulosazellen in unbeschichteten Zellkulturschalen offensichtlich nicht flächendeckend anheften können. Dies weist auf eine Bevorzugung von Zell-Zell- gegenüber Zell-Substrat-Interaktionen hin bzw. ist weiterhin sogar als teilweise Substratvermeidung interpretierbar. Eine Viabilitätsmessung der Zellen nach 9-tägiger Kultur offenbarte höhere Absorptionsraten in Collagen-beschichteten Platten und wies damit auf eine erhöhte Zellaktivität, einhergehend mit einer höheren Überlebensrate, hin (s. Abbildung 9). Ähnliche Aussagen wurden in früheren Studien getroffen, die sich auf eine Überlebensfähigkeit verbesserte Interaktion. und auch Proliferation von Granulosazellen beziehen (Berkholtz et al. 2006; Huet et al. 2001). Allein aufgrund der Bestimmung der vitalen Zellen nach der Kulturperiode kann kein Rückschluss auf eine erhöhte Proliferationsrate gezogen werden. Es zeigte sich lediglich eine signifikant höhere Zellzahl in der Collagen-beschichteten Kultivierung im Vergleich zu den Zellen, die direkt auf der Plastikoberfläche anwuchsen. Die gemessene Zellzahl in Collagenbeschichteter Kultivierung nach der Kulturdauer entspricht der Anzahl an Zellen die zu Beginn in Kultur ausgesät wurden. Dies weist darauf hin, dass die Zellen unter diesen Kulturbedingungen kaum bis gar nicht proliferieren (Amsterdam et al. 1988).

4.3. Die Responsivität von Granulosazellen gegenüber LH ist in vitro abhängig von der ursprünglichen Follikelgröße

Neben der Etablierung einer Estradiol-aktiven Zellkultur war Bestandteil dieser Arbeit das Zellkultursystem weiter zu entwickeln um eine Differenzierung der Zellen in vitro zu erreichen. Eine naheliegende Hypothese war eine Initiierung der Differenzierung mit Hilfe von LH zu bewirken. Dieses Hormon ist in vivo maßgeblich an einer Änderung der Expression von Steroidgenen beteiligt (Bao *et al.* 1997a; Nimz *et al.* 2009).

Anhand der Genexpression konnte aber kein luteinisierungs-spezifischer Effekt unter dem Einsatz von LH in kultivierten Granulosazellen aus kleinen Follikeln detektiert werden. Dies zeigte sich in einem nahezu unveränderten Expressionsprofil der Gene *CYP19A1, FSHR, LHCGR* und *RGS2* (s. Abbildung 10). Durch diese Ergebnisse wurde deutlich, dass die hier entwickelte Zellkultur geeignet ist, um vor allem den frühen Status der Follikelreifung nachzuahmen. Jedoch ist dieses Kultursystem vermutlich unzureichend für den letzten Schritt der Differenzierung kurz vor dem LH-Stimulus. In vivo werden Zellen der Granulosa im dominanten Follikel LH-responsiv und sind in der Lage den Stimulus zu verarbeiten. In Kultur erlangen Granulosazellen aus kleinen Follikeln diese Fähigkeit aber nicht. Ein entscheidender Faktor ist die Gegenwart von funktionalen LH-Rezeptoren auf der Zelloberfläche. Das Transkript des

Rezeptors war in der Kultur nachweisbar, wenn oftmals auch nur sehr schwach. Einerseits ist es möglich, dass die Mengen des gebildeten Rezeptors in vitro nicht ausreichend sind, um die LH-Responsivität der Granulosazellen zu gewährleisten. Andererseits sollte die Synthese bis hin zum Protein nicht außer Acht gelassen werden. Die Ergebnisse spiegeln Genexpressionsprofile wider, geben allerdings keine Information über die tatsächlich gebildeten Proteine. Somit ist es möglich, dass in dem vorgestellten Kultursystem kein funktionaler Rezeptor gebildet wurde. Eine Studie von Nogueira *et al.* (2007) offenbarte unterschiedliche Splicing-Varianten von *LHCGR* Transkripten. Die Synthese nicht funktionaler Proteine könnte also ebenfalls für die fehlende Responsivität verantwortlich sein. Die hier eingesetzten Primer für *LHCGR* in der qPCR diskriminieren nicht zwischen den verschiedenen Transkriptvarianten. Es wurde durch die Primer ein Bereich des Gens abgedeckt, der in allen bislang bekannten Splicing-Varianten vorhanden ist.

In eigenen Vorversuchen hatte sich gezeigt, dass die Herkunft der Granulosazellen eine entscheidende Rolle in der Kultur spielt. Granulosazellen aus großen Follikeln ab einem Durchmesser von 9 mm weisen bereits gut nachweisbare LH Rezeptoren auf (Bao and Garverick 1998). Wie zu erwarten, waren deshalb Granulosazellen aus Follikeln mit einem Durchmesser von 9 mm auch in vitro durch LH stimulierbar. Die Zellen wurden sofort zu Beginn der Kultur mit LH behandelt und nach verschiedenen Stimulationszeiten untersucht. Anhand der Expressionsanalyse war ein deutlicher LH-Effekt zu erkennen. So zeigten sich wichtige Markergene herunterreguliert (CYP19A1 und LHCGR), während andere eine deutliche Hochregulation durch LH zeigten (RGS2 und VNN2). Daraus kann geschlussfolgert werden, dass Granulosazellen aus großen Follikeln LH-responsiv sind und diese Eigenschaft auch in vitro zeigen. Gleichzeitig zeigte sich aber auch innerhalb der unbehandelten Kontrollkultur eine sinkende Transkriptmenge vereinzelter Markergene im Verlauf der Zellkultur. Nichtsdestotrotz war die Herunterregulation durch den Einsatz von LH verstärkt. Die Abnahme der CYP19A1 Expression ist gegensätzlich zu dem beobachteten Verlauf der Granulosazellkultur aus kleinen Follikeln (s. Abbildung 7). Anhand dieser Daten zeigte sich, dass dieses Kultursystem nur bedingt geeignet ist, um Fragestellungen zu zugrunde liegenden Mechanismen der LH-induzierten Differenzierung in vitro zu untersuchen.

4.4. Serumzusatz führt zu einer Transformation boviner Granulosazellen in vitro

Die Behandlung von kultivierten Granulosazellen mit Serum (FKS) führte zu einer drastischen Veränderung der Zellen. Bereits morphologisch unterschieden sich diese sehr stark von Estradiol-aktiven Zellen (s. Abbildung 12). Serum-behandelte Granulosazellen bildeten einen Monolayer mit epithelialem Charakter. Innerhalb von wenigen Tagen (3-4 Tage) wuchsen sie zu einer konfluenten Zellschicht, die den Boden der Kulturschale bedeckte. Eine Aggregatbildung der Zellen konnte nicht beobachtet werden. Dies weist auf eine mögliche Kontaktinhibition hin, welche typisch für epitheliale Zellen ist. Nur die muralen Granulosazellen, welche sich direkt an der Basallamina befinden, besitzen epithelialen Charakter. Der Zellverbund im wachsenden Follikel ist jedoch sehr locker strukturiert ohne die Eigenschaften eines Epithelgewebes (Williams and Erickson 2012). Diese Vermutung wird durch eine Studie gestützt, die nachgewiesen hat, dass Granulosazellen der Maus typische Epithelmarker wie E-Cadherin fehlen (Mora et al. 2012). Weiterhin konnte beobachtet werden, dass ovarielle Tumorzellen bzw. Zelllinien generiert aus Granulosazellen morphologisch epitheliale Charakteristiken entwickeln (Chapekar and Malik 1991; Kwan et al. 1996). Hier vorgestellte Analysen zur Lokalisation und Ausprägung von Cadherin konnten keinen genauen Aufschluss über diese Fragestellung geben, da eine Färbung mit einem pan-Cadherin Antikörper durchgeführt wurde, der sowohl E- als auch N-Cadherine färbt. Trotzdem waren deutliche Unterschiede in der Cadherin Immunfluoreszenz erkennbar (s. Abbildung 13). Es scheint innerhalb der mit Serum behandelten Kultur zu einer stärkeren Verzahnung der Zellen untereinander zu kommen, was einen epithelialen Charakter der Zellen nahe legt. Serumfrei kultivierte Granulosazellen wiesen zwar ebenfalls eine deutliche Färbung des Cadherins in der Zellmembran auf, jedoch ist die Vernetzung zwischen den Zellen nicht so stark ausgeprägt, was eher einem lockeren Zellverband entsprechen würde. Zusammengenommen deuten diese Beobachtungen darauf hin, dass sich Granulosazellen durch den Zusatz von Serum in Kultur stark verändern.

Neben dem drastischen Unterschied in der Morphologie zeigten sich auch weitere Veränderungen physiologischer Natur. So konnte kein Estradiol im Medienüberstand nachgewiesen werden und auch Progesteron lag in deutlich geringeren Konzentrationen als in der serumfreien Kontrolle vor (s. Tabelle 6).

An dieser Stelle ist noch zu erwähnen, dass die gemessene Progesteron-Konzentration in der serumfreien Kultur deutlich über dem Niveau der Estradiol-Konzentration nachzuweisen war. Dieses Phänomen zeigt, dass die vorgestellte Estradiol-aktive Zellkultur nur zum Teil die Situation in vivo imitieren kann. In anderen Studien, die die physiologische Aufrechterhaltung von Granulosazellen in Kultur beschrieben, wurde diese Diskrepanz ebenfalls beobachtet (Gutierrez *et al.* 1997; Hamel *et al.* 2005). In Zusammenhang mit den weiterhin beobachteten Expressionsdaten fiel auf, dass die *CYP19A1*-Expression in Kultur ebenfalls auf einem wesentlich geringerem Niveau als in vivo beobachtet wurde (s. Abbildung 14a). Dadurch lässt sich eine nur relativ geringe Estradiol-Konzentration erklären.

Die Analyse der Expressionsprofile unter Serumzusatz wies ebenfalls auf eine unerwünschte Transformation der Zellen hin, die nicht der in vivo Situation früher Luteinisierung entsprach (s. Abbildung 14). Obwohl Gene, wie *CYP19A1* und *FSHR* durch Serum luteinisierungs-ähnlich herunterreguliert wurden im Vergleich zur Estradiol-aktiven Kultur, wurden andere Markergene nicht entsprechend reguliert. So waren *RGS2* und *VNN2* ebenfalls herunterreguliert, obwohl diese Gene in vivo durch LH hochreguliert werden (Christenson *et al.* 2013; Ujioka *et al.* 2000).

Alle aufgeführten Charakteristiken der Granulosazellkultur mit Serumsupplementation lassen den Schluss zu, dass diese Substanz nicht geeignet ist, um die Transition des dominanten zum prä-ovulatorischen Follikel in vitro nachzustellen. Interessanterweise wurde in anderen Studien diese Differenzierung der Granulosazellen durch FKS angenommen (Montano *et al.* 2009; Shimizu *et al.* 2009). In beiden Studien wurden in der Zellkultur 10 % FKS eingesetzt, was deutlich über der Konzentration der hier vorgestellten Experimente liegt. Aufgrund der steigenden Progesteronkonzentration wurde ein Rückschluss auf die Luteinisierung der Zellen in vitro gezogen. Es erfolgte keine Normalisierung mit dem DNA-Gehalt oder der Zellzahl. Es ist somit möglich, dass der Anstieg der Progesteronkonzentration auf eine größere Zellzahl durch Proliferation zurückzuführen ist, welche ebenfalls beobachtet wurde (Shimizu *et al.* 2009). So war auch der Proliferationsmarker *PCNA* bei Serumzusatz in der vorliegenden Arbeit deutlich erhöht (s. Abbildung 14).

4.5. Initiierung eines frühen post-LH Status durch die Erhöhung der Zelldichte in Kultur

In einer früheren Studie von Portela *et al.* (2010) wurde ein Zusammenhang zwischen der Estradiol- bzw. Progesteronsynthese und der Zelldichte beschrieben. In dieser Studie wurde geschlussfolgert, dass durch die Dichte unterschiedliche Phänotypen von Granulosazellen in Kultur generiert werden können. Ausgehend von diesem Zusammenhang sollte das System näher untersucht werden. In der vorliegenden

Arbeit wurden für die Granulosazellkultur Zellmengen gewählt, die denen der Studie und gleichzeitig vorherigen Erfahrungen entsprachen. Es wurde eine Zellzahl von 1,0x10⁵ Zellen je Well gewählt, was einer Zelldichte von 0,5x10⁵ Zellen je cm² entspricht. Diese Zellzahl wurde schrittweise erhöht bis hin zur zehnfachen Menge von 10,0x10⁵ Zellen/Well.

Granulosazellen zeigten unabhängig von der Zelldichte eine fibroblasten-ähnliche Struktur. Dies konnte in vorherigen Versuchen bzw. früheren Studien bereits beobachtet werden (Gutierrez et al. 1997; Hamel et al. 2005). Auffällige Unterschiede zwischen den Kulturen in niedriger und hoher Zelldichte bestanden vor allem in der Anzahl der gebildeten Zellaggregate. Granulosazellen kultiviert bei hoher Dichte wiesen wesentlich mehr Zellaggregate auf als Zellen kultiviert bei geringer Dichte. Trotzdem konnten in der Zellkulturschale noch freie, nicht bewachsene Flächen beobachtet werden. Dieses Verhalten der Zellen lässt vermuten, dass sie den Kontakt untereinander bevorzugen. In vivo spielen Granulosazellen eine bedeutende Rolle bei der Versorgung der Oozyte. Der entstehende Kumulus-Oozyten-Komplex ist dabei von zentraler Bedeutung. Im Verlauf der Entwicklung wächst der Komplex und lagert sich einseitig im flüssigkeitsgefüllten Follikel an. An dieser Stelle sind Zell-Zell-Interaktionen von entscheidender Bedeutung um diese morphologische und auch physiologische Rolle zu erfüllen (Hennet and Combelles 2012). Es ist also denkbar, dass durch eine erhöhte Zelldichte in Kultur die Zell-Zellkontakte gefördert werden und somit die Zelldifferenzierung eingeleitet wird.

Um diese These weiter zu stützen bedarf es einer Analyse weiterer Parameter. Eine Hormonmessung von Estradiol und Progesteron gab Aufschluss über die Steroidaktivität der Zellen. Anhand einer positiven Messung der Steroidhormone konnte eine De-Differenzierung der Zellen in vitro ausgeschlossen werden. Die Estradiolproduktion von kultivierten Granulosazellen stieg zunächst mit einer Erhöhung der Zelldichte in Kultur an, sank dann jedoch in Abhängigkeit von der Zelldichte in Kultur auf den Ausgangswert ab. Hier ließ sich bereits ein Zusammenhang mit der Expression von CYP19A1 erkennen, welche ebenfalls mit Erhöhung der Zelldichte in Kultur absank (Abbildung 17a). Obwohl die Transkriptmenge kontinuierlich sank, stieg die Estradiolkonzentration zunächst an. Diese Diskrepanz kann auf zusätzliche Ebenen der Regulation zwischen dem Gentranskript und dem Endprodukt zurückzuführen sein. Post-transkriptionale Regulationen oder auch die Regulation der Enzymaktivität wären möglich. Die Progesteronkonzentration zeigte einen gegenteiligen Effekt, indem mit einem Anstieg der Zelldichte in Kultur auch höhere Progesteronmengen nachweisbar waren. Die Gene HSD3B1 und CYP11A1, beides Schlüsselenzyme für die Progesteronsynthese, waren jedoch herunterreguliert mit Erhöhung der Zelldichte in Kultur (Abbildung 17d, e). Somit ist ein direkter Zusammenhang zwischen der Genexpression und Hormonsynthese nur schwer zu erklären (Portela *et al.* 2010). In vivo kommt es zu einer Anreicherung von Progesteron nach dem LH Stimulus, da vor allem die nachfolgenden Syntheseschritte bis hin zur Estradiolbildung nicht mehr erfolgen (Bao and Garverick 1998). Für die Zellkultur ist diese Erklärung jedoch nicht anwendbar, da Estradiol in weitaus niedrigeren Konzentrationen nachweisbar war als Progesteron (Gutierrez *et al.* 1997; Hamel *et al.* 2005; Portela *et al.* 2010). Somit sind auch hier weitere regulatorische Mechanismen denkbar, die die Enzymaktivität oder aufgeworfen, in wie weit eine in vivo gemessene Progesteronkonzentration die Produktion selbiger widerspiegelt (Campbell *et al.* 1996). Hier wird aufgeführt, dass Progesteron im Follikel stets in andere Hormonprodukte umgewandelt wird und daher ein Rückschluss auf die tatsächliche Progesteronproduktion nicht erfolgen kann.

Weitere Schlüsse über das Zellkultursystem ermöglichte die Analyse der Genexpression. Hier konnte eine deutliche Veränderung im Expressionsprofil beobachtet werden, vergleichbar mit den Expressionsveränderungen, die zwischen dem dominanten und prä-ovulatorischen Follikel in vivo (Christenson et al. 2013; Nimz et al. 2009) aufgezeigt wurden. Schlüsselenzyme der Hormonsynthese wie CYP19A1 und HSD3B1 wurden durch die Erhöhung der Zelldichte in Kultur signifikant herunterreguliert (Abbildung 17a, e), während CYP11A1 einen Expressionsanstieg bei 2,5x10⁵ Zellen/Well zeigte (Abbildung 17d). Die Transkripte der Gonadotropinrezeptoren FSHR und LHCGR, sowie der Proliferationsmarker PCNA wurden signifikant geringer in Zellen kultiviert in hoher Dichte exprimiert (Abbildung 17b, c, j). Die Transkripte des Zellzyklus Regulators Cyclin D2, CCND2, waren deutlich niedriger in Zellkulturen hoher Dichte ab 5,0x10⁵ Zellen/Well exprimiert (Abbildung 17k). Auch in murinen Granulosazellen konnte nach einem artifiziellen hCG Stimulus eine Herunterregulation CCND2 beobachtet werden (Robker and Richards 1998). Die von Expressionserniedrigung von PCNA und CCND2 in Granulosazellen kultiviert in hoher Zelldichte lässt auf eine sehr geringe Proliferationstätigkeit der Zellen unter diesen Bedingungen schließen. Tatsächlich konnte auch in vivo gezeigt werden, dass Granulosazellen des prä-ovulatorischen Follikels kaum noch proliferieren (McNatty 1981). Gleichzeitig zeigte sich eine signifikante Hochregulation der Gene PTX3, RGS2 und VNN2 (Abbildung 17g-i), die auch in vivo als durch LH reguliert beschrieben wurden (Christenson et al. 2013; Richards 2001; Ujioka et al. 2000; Varani et al. 2002; Wu et al. 2008). Vor allem den Genen PTX3 und VNN2 wird eine Bedeutung bei inflammatorischen Prozessen zugewiesen (Garlanda et al. 2005; Nitto and Onodera

71

2013). Auch die durch LH induzierte Ovulation wird mit einem Entzündungsprozess verglichen. Demnach ist eine Hochregulation entzündungsrelevanter Gene zu erwarten, was auch in vitro unter Bedingungen hoher Zelldichte zu beobachten war. Die beobachtete Herunterregulation der *CYP19A1* Transkripte des Promotors P2 und der nahezu unveränderten Expressionen der Transkripte des Promotors P1.1 ähnelte der Situation in vivo deutlich (Lenz *et al.* 2004). Zusammengenommen lässt die Expressionsanalyse darauf schließen, dass sich die Zellen aufgrund einer Erhöhung der Zelldichte in Kultur in Richtung Luteinisierung differenzieren.

Die transiente Herunterregulation von Transkripten, die elementar für die Progesteronsynthese sind, wie CYP11A1 und HSD3B1 erfolgt in vivo kurz nach dem LH Stimulus (Nimz et al. 2009). Im weiteren Verlauf der Gelbkörperbildung werden diese Gene stark hochreguliert (Lenz et al. 2004). Zusammen mit den hier vorgestellten Daten wird deutlich, dass die Erhöhung der Zelldichte in Kultur vermutlich nur einen frühen post-LH Status, jedoch nicht den vollständig luteinisierten Status imitieren kann. Diese Annahme wird auch durch die Untersuchung des Methylierungsstatus der Promotorregion P2 von CYP19A1 gestützt. Relevante Methylierungsstellen um den Transkriptionsstart wiesen in kultivierten Zellen sowohl bei geringer als auch hoher Zelldichte keine Methylierung auf. Dieser Zustand trifft ebenso auf frisch isolierte Zellen der Granulosazellschicht aus kleinen, großen dominanten und sogar präovulatorischen Follikeln zu (Vanselow et al. 2005; Vanselow et al. 2010). Ein erhöhter Methylierungsstatus konnte in vivo erst in luteinisierten Granulosazellen des Gelbkörpers einige Tage nach dem LH Stimulus identifiziert werden (Spitschak and Vanselow 2012).

In dem hier beschriebenen in vitro Modell zeigte sich anhand der Genexpressionsprofile eine Differenzierung der kultivierten Granulosazellen, ähnlich den Veränderungen, die bei der Transition vom dominanten zum frühen präovulatorischen Follikel zu beobachten sind. Interessanterweise wird diese Transition nicht durch diverse Zellkultursupplementationen, wie z.B. LH erreicht. Obwohl LH in vivo als ausschlaggebend für die Differenzierung des Follikels und der darin befindlichen Granulosazellen beschrieben wird, scheint in vitro auch die Veränderung von anderen Parametern wie der Zelldichte ausreichend zu sein um in den Granulosazellen zumindest teilweise ein frühes Luteinisierungsstadium zu induzieren. Ausgehend von dieses Daten könnte folgende Schlussfolgerung gezogen werden: Eine erhöhte Zelldichte in der Kultur führt zu veränderten Zell-Zell Interaktionen, die eventuell Bestandteil der durch LH induzierten Prozesse sind. Im in vitro System ist es möglich, diese Interkationen direkt nachzustellen ohne eine Beteiligung von LH.

72

Mit Hilfe einer Microarray Analyse wurde die globale Genexpression von Granulosazellen kultiviert in geringer und hoher Zelldichte miteinander verglichen. Es konnte gezeigt werden, dass die unterschiedlichen Kultivierungsbedingungen auch differente Expressionsmuster nach sich zogen. Die Veränderung des Expressionslevels (FC) zeigte mindestens eine signifikante Erhöhung um das 1,5fache des Expressionslevels (FC > 1,5) bei 906 Genen, während eine signifikante Herunterregulation (FC < -1,5) bei 669 Genen beobachtet werden konnte. Demzufolge ist die Aussage gerechtfertigt, dass die Kultivierungsbedingung unter erhöhter Zelldichte einen großen Effekt auf die Genexpression von Granulosazellen in Kultur hat. Die in vivo Microarray Analyse, welche Granulosazellen des dominanten und präovulatorischen Follikel miteinander verglich, offenbarte eine stärkere Regulation (Christenson et al. 2013). Hierbei zeigte sich, dass das vorgestellte Zellkultursystem nur zum Teil eine in vivo Situation nachahmen kann. Verdeutlicht wurde dies an der Expressionsveränderung des Gens PTGS2. In vivo war PTGS2 im dominanten Follikel nahezu nicht nachweisbar. Im prä-ovulatorischen Follikel dagegen konnte ein starker Anstieg verzeichnet werden, einhergehend mit einer hohen Expressionsveränderung (FC). In vitro konnte PTGS2 bereits in der Estradiol-aktiven Kultur in geringer Zelldichte detektiert werden. Die Expressionsveränderung von PTGS2 aufgrund der Erhöhung der Zelldichte in Kultur fiel geringer aus. Insgesamt konnte aber gezeigt werden, dass das Zellkultursystem in wesentlichen physiologischen Merkmalen mit der in vivo Situation übereinstimmt.

Ein Unterschied in der Höhe der Expressionsveränderungen zwischen der in vivo und in vitro Microarray Analyse kann möglicherweise auch methodisch erklärt werden. Während in der in vivo Studie das GeneChip® Eukaryotic Target Labeling Assay verwendet wurde, wurden die Daten der in vitro Analyse mit dem Bovine Gene 1.0 ST Array generiert.

Die erfolgreich generierten Daten aus dem Microarray können als Ausgangspunkt weiterer Fragestellungen herangezogen werden. So können Untersuchungen folgen, die sich z.B. auf die Verteilung der regulierten Gene innerhalb von Signalwegen fokussieren. Interessant wäre auch zu klären, wie weit gewisse Signalwege oder Netzwerke einer Regulation durch die Erhöhung der Granulosazelldichte in Kultur unterliegen.

4.6. Die Zelldichte-abhängige Differenzierung von kultivierten Granulosazellen ist nicht bedingt durch lösliche Faktoren der Zellen

Eine Ursache der Veränderungen der kultivierten Granulosazellen aufgrund der erhöhten Zelldichte könnte durch Sekretion von biologisch aktiven Komponenten entstehen. So könnte ein Einfluss auf die Expression erklärt werden, wenn die Zellen in erhöhter Zellzahl vermehrt lösliche Faktoren ausscheiden.

Um diese Hypothese zu überprüfen, wurde Medium verwendet, welches durch Zellen kultiviert bei hoher Dichte konditioniert wurde. Bei geringer Zelldichte kultivierte Granulosazellen wurden anschließend mit diesem konditioniertem Medium behandelt. Um dennoch eine ausreichende Versorgung der Zellen mit Nährstoffen zu gewährleisten, wurde dieses konditionierte Medium im Verhältnis 1:1 mit frischem Medium versetzt. Die Expressionsanalyse offenbarte nur geringe Unterschiede, die sich vor allem bei der Transkriptanalyse des Gens RGS2 zeigte. CYP19A1 wurde nicht durch Zelldichte-konditioniertes Medium beeinflusst. Dieser Zusammenhang lässt vermuten, dass der beobachtete Zelldichte-Effekt nicht durch Effektoren bestimmt wird, die sich aufgrund einer erhöhten Zelldichte im Kulturmedium akkumulieren. Viel mehr scheinen andere Mechanismen zu wirken, die letztendlich die Transition in einen frühen post-LH Status begünstigen. Durch den hier aufgeführten Ausschluss von bioaktiven Substanzen im Medienüberstand liegt eine Verbindung zu aktivierenden oder auch inhibierenden Signalwegen nahe, die aufgrund einer erhöhten Zelldichte in Kultur einen Einfluss auf die Genexpression haben. Auslöser der Veränderungen in der Zellkultur sind dabei vermutlich Zell-Zell-Kontakte, die in erhöhter Menge und Intensität innerhalb der Zellaggregate in der Kultur der hohen Zelldichte entstehen und im Anschluss Signaltransduktionswege initiieren können.

4.7. PKA und Cadherin-Catenin vermittelte Signalübertragungswege sind nicht beteiligt an der Zelldichte-abhängigen Veränderung der Genexpression in kultivierten, bovinen Granulosazellen

In früheren Studien konnte der Einfluss von unterschiedlichen Signalwegen in der Follikulogenese bereits beschrieben werden (Richards *et al.* 1995; Richards *et al.* 2002). Dabei scheint es, dass die Aktivierung der Proteinkinase A eine der wichtigsten Signaltransduktionswege innerhalb des Follikels darstellt. Sowohl bei der Signalübertragung von FSH an seinen Rezeptor wird die PKA-Signalkaskade aktiviert

Diskussion

(Escamilla-Hernandez *et al.* 2008; Hunzicker-Dunn *et al.* 2012) als auch bei der Initiierung der Luteinisierung durch LH (Morris and Richards 1995). Da in beiden Fällen der Signaltransduktion völlig unterschiedliche Zellschicksale aktiviert werden, stellt sich die Frage, worin der Unterschied beider Signalwegsaktivierungen besteht. Verschiedene Studien vertreten die Hypothese, dass neben dem PKA-Signalweg noch weitere Signalwege aktiviert werden. So wird z.B. über ein Zusammenspiel mit der PKC-Signalkaskade (Yamashita *et al.* 2014) aber auch mit dem Phosphoinositid-3-Kinase (PI3-K) Weg spekuliert (Hunzicker-Dunn and Maizels 2006; Wayne *et al.* 2007).

Der in dieser Arbeit vorgestellte Zelldichte-Effekt, der eine luteinisierungs-ähnliche Änderung des Expressionsprofils nach sich zieht, sollte im Zusammenhang mit der PKA Signaltransduktion näher untersucht werden. Die Aktivierung des PKA-Signalweges erfolgte mit Hilfe von 6-Bnz-cAMP bzw. 8-Bromo-cAMP, wie es in anderen Studien ebenfalls erfolgreich gezeigt wurde (Denner *et al.* 1990; Kopperud *et al.* 2003; Schwede *et al.* 2000). Beide Substanzen stellen ein Analogon des natürlich vorhandenen cAMPs dar, welche die Proteinkinase A selektiv initiieren. Die Inhibition dagegen erfolgte mit der Substanz H-89, die ebenfalls sehr selektiv wirkt. H-89 bindet innerhalb der ATP-Tasche der katalytischen Untereinheit und verhindert somit eine Signaltransduktion (Huang *et al.* 2010). In Granulosazellen konnte durch andere Arbeitsgruppen eine Inhibition mit Hilfe dieses Stoffes gezeigt werden (Escamilla-Hernandez *et al.* 2008; Silva *et al.* 2006).

Eine Aktivierung der Proteinkinase A veränderte die Expression innerhalb der 9tägigen Granulosazellkultur signifikant. Durch den Zusatz von 6-Bnz-cAMP und auch 8-Bromo-cAMP wurden ausgewählte Markergene wie CYP19A1, FSHR und auch LHCGR stark herunterreguliert. Weitere Marker der frühen Luteinisierung, wie RGS2 und VNN2 zeigten dagegen einen Anstieg in ihrer Expression, ähnlich einer LHinduzierten Hochregulation (Christenson et al. 2013; Sayasith et al. 2013; Ujioka et al. 2000). Diese Beobachtung konnte vorherige Studien zur PKA Aktivierung bestätigen (Makarevich et al. 2004; Wu and Wiltbank 2001). Es scheint, dass durch eine Aktivierung der Proteinkinase A kultivierte Granulosazellen in einen luteinisierungsähnlichen Status differenzieren. In wie weit zusätzliche physiologische Parameter diese These stützen können, müsste in zukünftigen Analysen noch genauer geklärt werden. Die Inhibition der Proteinkinase A führte in der Langzeitkultur nicht zu erkennbaren Veränderungen des Expressionsprofils (siehe Abbildung 25). Die Wirksamkeit von H-89 konnte aber in einem Kurzzeitkultursystem mit Granulosazellen aus großen Follikeln nachgewiesen werden. Im Gegensatz zu Granulosazellen aus kleinen bis mittleren Follikeln konnten in diesen Zellen direkte LH-Effekte beobachtet werden (s. Abbildung 11). Ist diese Wirkung mit der Proteinkinase A assoziiert, sollte ein Inhibitor wie H-89 den beobachteten LH-Effekt blockieren können. Tatsächlich zeigte eine 24-stündige Stimulation der Zellen mit LH und auch H-89 in Bezug auf die CYP19A1-Expression eine Dosis-abhängige Wirkung. Bei einer Konzentration von 15 µM H-89 konnte ein vorliegender LH-Effekt komplett aufgehoben werden. Auch die Analyse des Gens RGS2 zeigte eine Aufhebung des LH-Effekts bei dieser Konzentration, die sogar die Expression des Gens auf ein geringeres Transkriptniveau sinken ließ als es in der Kontrolle beobachtet wurde (siehe Tabelle 9). Jedoch konnten solche Beobachtungen nicht für jedes Gen getroffen werden. FSHR schien eher gegenteilig beeinflusst zu werden. Über den Hintergrund dieser Regulationsart lässt sich hierbei nur spekulieren. Denkbar wäre ein Zusammenhang zwischen der Proteinkinase A und der FSH-Stimulation. Ein Einfluss eines Inhibitors auf die FSHR Expression kann nicht ausgeschlossen werden, da andere Studien bereits über die Aktivierung der PKA durch FSH diskutierten (Escamilla-Hernandez et al. 2008; Hunzicker-Dunn et al. 2012). Die Signaltransduktion über FSH führt auch zur Expressionserhöhung des eigenen Rezeptors, FSHR. Sobald die Proteinkinase A inhibiert wird, kann eventuell dieser Signaltransduktionsweg nicht ablaufen und es kommt zu einer Herunterregulation des Gens. Aufgrund der diversen Möglichkeiten des PKA-Signalweges, der sowohl in der FSH-, als auch in der LH-Wirkung entscheidende Positionen einnehmen kann, ist eine endgültige Schlussfolgerung allein aufgrund des Expressionsprofils recht schwierig. Nichtsdestotrotz scheint eine Aktivierung der PKA ein luteinisierungs-ähnliches Profil nach sich zu ziehen, wie es in vivo ebenfalls beobachtet werden konnte (Bao and Garverick 1998; Christenson et al. 2013; Nimz et al. 2009).

Die vorgestellten Ergebnisse legen nahe, dass weniger die Aktivierung der Proteinkinase A als vielmehr andere Signalwege den beobachteten Zelldichte-Effekt in Kultur vermitteln (siehe Abbildung 26). Zwar wurde durch die PKA Aktivierung ein deutlicher Expressionsabfall von CYP19A1 beobachtet, jedoch wurde durch die Erhöhung der Zelldichte in Kultur dieser Abfall verstärkt. Analog zeigte sich ein solcher Effekt bei der Transkriptanalyse des Gens RGS2 in Form eines Expressionsanstiegs. Anhand dieser Daten ist ein synergistischer Effekt zwischen der erhöhten Zelldichte und einer PKA-Aktivierung in vitro anzunehmen, was auch anhand der starken Hochregulation des Gens RGS2 zu erkennen war. Die Inhibition der Proteinkinase A hatte keinerlei Einfluss auf das Zellkultursystem. Eine Expressionsänderung aufgrund einer erhöhten Zelldichte konnte weiterhin beobachtet werde. Somit war es nicht möglich, den Zelldichte-Effekt durch eine Inhibition der PKA aufzuheben. Dies lässt luteinisierungs-ähnlichen darauf schließen. dass die Veränderungen in Granulosazellen kultiviert bei hoher Dichte nicht über den PKA Signaltransduktionsweg vermittelt werden. Vermutlich wirken andere noch unbekannte Mechanismen, die zumindest zu einer beginnenden Differenzierung der Zellen in vitro führen.

Die Luteinisierung in vivo wird nicht allein durch eine Aktivierung der verschiedenen Proteinkinasen bewirkt. Es agieren eine Vielzahl weiterer Signalwege (Richards and Pangas 2010) um die komplexen Veränderungen im Ovar während der Follikulogenese zu initiieren. So zeigten verschiedene Studien, dass auch der Wnt-Signalweg von Bedeutung ist. In Knockout Studien mit Mäusen konnte gezeigt werden, dass vor allem Wnt-4 eine Bedeutung in der weiblichen Fertilität zuzumessen ist (Boyer et al. 2010; Vainio et al. 1999). Das Signalmolekül Wnt ist ein extrazellulärer Ligand, der zwischen einzelnen Zellen eines Gewebes Signale weiterleiten kann. Somit ist es denkbar, dass dieser Mechanismus in dem in vitro beobachteten Zelldichte-Effekt eine Rolle spielt. Dabei lag der Schwerpunkt der Untersuchungen auf
ß-Catenin innerhalb der Signalkaskade. Ein weiterer Mechanismus wurde in Verbindung mit β-Catenin untersucht. Der Cadherin-Catenin-Komplex, welcher zur Ausbildung von adhärenten Verbindungen zwischen zwei Zellen führt, könnte bei dem Zelldichte-Effekt in Kultur eine Rolle spielen. Dabei wurden mit Hilfe von einer Immunfluoreszenz-Färbung und einem Western Blot folgende Hypothesen überprüft: In Granulosazellen kultiviert bei geringer Dichte gibt es nur wenige bzw. vereinzelte adhärente Verbindungen zwischen den Zellen. In Zellen kultiviert bei hoher Dichte dagegen werden durch die Nähe der Zellen mehr Zell-Zell-Kontakte ausgebildet. Somit wäre zu erwarten, dass in der Immunfluoreszenz ein Unterschied in der Cadherin-Lokalisation zu sehen ist, in Form von vermehrten Spots an der Membran zwischen den Zellen. Weiterhin ist davon auszugehen, dass auch β -Catenin vermehrt an ähnlicher Stelle vorzufinden ist, da die Cadherin-Wirkung auf die Genexpression über diese Proteine vermittelt wird (Gumbiner 2000). Bezüglich des der Eigenschaft β-Catenins als Transkriptionsregulator ist durch die Bindung an der Zellmembran von einer geringeren Transkriptionsaktivierung von Zielgenen auszugehen. Somit ist eine vorwiegende Verteilung des β -Catenins an der Membran zu erwarten. Es stehen damit weniger Proteine im Zellinneren zur Verfügung, die für den Ablauf des Wnt-Signalweges notwendig sind (Heuberger and Birchmeyer 2010, Fagotto 2013). Diese Hypothese geht einher mit bekannter Expressionsregulation durch β -Catenin. So wird das Gen Cyclin D2 (CCND2) unter anderem durch β-Catenin reguliert (Kioussi et al. 2002). In Granulosazellen kultiviert bei hoher Dichte konnte bereits eine geringere Expression nachgewiesen werden, was im Zusammenhang mit einem nicht aktivierten Wnt-Signalweg oder der Rekrutierung des β -Catenins an der Zellmembran stehen könnte. Ein guantitativer Unterschied des β-Catenins im Zellinneren zwischen den verschiedenen Kultivierungsbedingungen kann auf eine Verbindung mit dem Wnt-

Diskussion

Signalweg hindeuten, indem ein verstärkter Abbau von β -Catenin erfolgt. β -Catenin wird in seiner phosphorylierten Form (P-Catenin) einem Abbaukomplex zugeführt (Logan and Nusse 2004). In der Arbeit von Heuberger and Birchmeyer (2010) wird zudem darüber spekuliert, wie die Regulation von β -Catenin als Adhäsionsfaktor und Transkriptionsregulator erfolgt. So wird einerseits auch ein Einfluss des jeweiligen Phosphorylierungsepitops aufgezeigt, was wiederum in einer unterschiedlichen Bindungsaffinität zu Cadherin oder beteiligten Proteinen des Wnt-Signalweges resultiert. Das mit dem hier verwendeten Antikörper analysierte Phosphorylierungsepitop des β -Catenins favorisiert die Bindung mit GSK3 und fördert somit die Degradation. Die Detektion von unterschiedlichen Mengen des P-Catenins zwischen den verschiedenen Kultivierungsbedingungen könnte die These eines intensiveren Abbaus stützen.

Die Analyse der einzelnen Proteine offenbarte jedoch kaum Unterschiede zwischen den verschiedenen Kultivierungsbedingungen. Das membranständige Cadherin konnte sowohl in Zellen kultiviert bei geringer als auch hoher Dichte sehr gut an der Membran lokalisiert werden, wobei keinerlei Intensivierung in der Kultivierung der hohen Zelldichte zu sehen war. Die Hypothese, dass es zu einer lokalen Vermehrung der Cadherine und somit zur Ausbildung von adhärenten Verbindungen kommt, kann durch diese Analyse nicht gestützt werden. Auch die unveränderte Lokalisation von β-Catenin im Zellinneren und an der Membran wies nicht darauf hin, dass vermehrt Zell-Zell-Kontakte unter Bedingungen hoher Zelldichte gebildet wurden. Der quantitative zwischen den Granulosazellen kultiviert in unterschiedlichen Dichten. Auch in diesem Fall kann die oben formulierte Hypothese nicht bestätigt werden. Ein Grund von fehlenden Unterschieden könnte unter Umständen aber auch methodischer Natur sein. Während der Zellkultur bilden vor allem Granulosazellen kultiviert bei hoher Dichte größere Zellhaufen aus. Es kann nicht vollständig ausgeschlossen werden, dass gerade diese Zellhaufen bei der Immunfluoreszenz nachteilig sind, da die Antikörper nicht in jede Zelle gelangen können. Zudem könnten durch das Eindeckeln zum Mikroskopieren Artefakte der Zellen innerhalb der Zellaggregate entstehen, die eine Auswertung erschweren. Doch auch eine andere Studie konnte zeigen, dass sich die Konzentration von β-Catenin während der Follikelreifung in Granulosazellen der Ratte nicht änderte (Sundfeldt et al. 2000). Sie beschrieben lediglich eine Reduktion von α-Catenin aufgrund eines artifiziellen hCG-Stimulus. Die Expression von E-Cadherin konnte dagegen nur in Granulosazellen des prä-antralen Follikels nachgewiesen werden. Weiterhin unterstützt ein vorgestelltes Schemata von Fan et al. (2010) zur FSH- und LH-Wirkung im Zusammenhang mit β -Catenin die hier gezeigten Ergebnisse.

78

Dabei wird β-Catenin sowohl in proliferierenden Zellen, d.h. FSH-aktiven Zellen als Transkriptionsregulator dargestellt, als auch luteinisierenden, LH-aktiven Zellen. Der Unterschied zwischen FSH- und LH-Wirkung wird nach Ansicht von Fan *et al.* (2010) durch zusätzliche Signalkaskaden bewirkt, die zur Initiierung unterschiedlicher Zielgene führen.

4.8. Schlussfolgerungen und Ausblick

In dieser Arbeit konnte erfolgreich ein Estradiol-aktives Zellkultursystem von bovinen Granulosazellen etabliert und weiter entwickelt werden. Zunächst konnte anders als dies frühere Untersuchungen nahe legten, gezeigt werden, dass keine luteinisierungsähnliche Differenzierung der Granulosazellen durch Serumzusatz in vitro erfolgt. Ein direkter LH-Effekt konnte in vitro nur an Zellen isoliert aus großen Follikeln nachgewiesen werden. Zellen kleiner bis mittelgroßer Follikel reagierten dagegen nicht auf LH, zeigten aber deutliche Anzeichen früher Luteinisierung allein durch die Erhöhung der Zelldichte unabhängig von LH Zusatz. Diese Beobachtungen konnten erfolgreich publiziert werden (Baufeld and Vanselow 2013). Eine mRNA Microarray Analyse offenbarte zudem deutliche Unterschiede der Expressionsprofile unter unterschiedlichen Kultivierungsbedingungen. Eine Analyse der möglicherweise beteiligten Signalwege mit Hilfe der Software Ingenuity Pathway Analysis (IPA; Qiagen) könnte in anschließenden Untersuchungen einen Hinweis auf zugrunde liegende Mechanismen des Zelldichte-Effekts geben. In einem ersten Versuchsansatz konnte zunächst ausgeschlossen werden, dass bei höherer Dichte kultivierte Granulosazellen biologisch aktive Komponenten sezernieren, die die beobachteten Effekte zur Folgen haben. Dadurch rückten Signaltransduktionswege, die während der Follikulogenese eine Rolle spielen, in den Fokus. Aus den vorgelegten Daten konnte ein synergistischer Effekt zwischen der Proteinkinase A Aktivierung und der Zelldichte in Kultur beobachtet werden. Jedoch konnte die luteinisierungs-ähnliche Veränderung der Zellen aufgrund der Zelldichte nicht auf die Proteinkinase A zurückgeführt werden. Auch eine Verbindung mit der Cadherin-Catenin Signalkaskade konnte zunächst nicht belegt werden. Der Einfluss dieses Signalweges sollte trotzdem weiterhin untersucht werden z.B. in Verbindung mit einem Inhibitor der Glykogensynthase-Kinase 3 (GSK3). Auch andere Signaltransduktionswege sollten nicht außer Acht gelassen werden, die sich aus einer Analyse der Microarray Daten mit Hilfe von IPA ergeben bzw. ebenfalls in der Follikelreifung von Bedeutung sind (z.B. Proteinkinase C). Somit könnte ein umfassenderer Überblick entstehen, wie die LH-unabhängige Differenzierung von Granulosazellen in vitro durch Erhöhung der Zelldichte realisiert wird und ob ähnliche Effekte auch in vivo eine Rolle spielen.

Literaturverzeichnis

Adams, G. P., Jaiswal, R., Singh, J., and Malhi, P. (2008). Progress in understanding ovarian follicular dynamics in cattle. *Theriogenology* **69**, 72-80.

Adams, G. P., and Pierson, R. A. (1995). Bovine model for study of ovarian follicular dynamics in humans. *Theriogenology* **43**, 113-20.

Adams, G. P., Singh, J., and Baerwald, A. R. (2012). Large animal models for the study of ovarian follicular dynamics in women. *Theriogenology.* **78**, 1733-48.

Amsterdam, A., May, J. V., and Schomberg, D. W. (1988). Synergistic effect of insulin and follicle-stimulating hormone on biochemical and morphological differentiation of porcine granulosa cells in vitro. *Biol. Reprod.* **39**, 379-90.

Apte, S. S. (2004). A disintegrin-like and metalloprotease (reprolysin type) with thrombospondin type 1 motifs: the ADAMTS family. *Int. J. Biochem. Cell Biol.* **36**, 981-5.

Ball P. J. H.; Peters A. R. (2004). 'Reproduction in Cattle.' 3rd edition. Blackwell Publishing: Cornwall. ISBN 1-4051-1545-9

Bao, B., and Garverick, H. A. (1998). Expression of steroidogenic enzyme and gonadotropin receptor genes in bovine follicles during ovarian follicular waves: a review. *J Anim. Sci.* **76**, 1903-21.

Bao, B., Garverick, H. A., Smith, G. W., Smith, M. F., Salfen, B. E., and Youngquist, R. S. (1997a). Changes in messenger ribonucleic acid encoding luteinizing hormone receptor, cytochrome P450 side chain cleavage, and aromatase are associated with recruitment and selection of bovine ovarian follicles. *Biol. Reprod.* **56**, 1158-68.

Bao, B., Garverick, H. A., Smith, G. W., Smith, M. F., Salfen, B. E., and Youngquist, R. S. (1997b). Expression of messenger ribonucleic acid (mRNA) encoding 3betahydroxysteroid dehydrogenase delta4,delta5 isomerase (3beta-HSD) during recruitment and selection of bovine ovarian follicles: identification of dominant follicles by expression of 3beta-HSD mRNA within the granulosa cell layer. *Biol. Reprod.* **56**, 1466-73.

Barbieri, R. L., Makris, A., and Ryan, K. J. (1983). Effects of insulin on steroidogenesis in cultured porcine ovarian theca. *Fertil. Steril.* **40**, 237-41.

Baufeld, A., and Vanselow, J. (2013). Increasing cell plating density mimics an early post-LH stage in cultured bovine granulosa cells. *Cell Tissue Res.* **354**, 869-80.

Berkholtz, C. B., Shea, L. D., and Woodruff, T. K. (2006). Extracellular matrix functions in follicle maturation. *Semin. Reprod. Med.* **24**, 262-9.

Berndtson, A. K., Vincent, S. E., and Fortune, J. E. (1995). Low and high concentrations of gonadotropins differentially regulate hormone production by theca interna and granulosa cells from bovine preovulatory follicles. *Biol. Reprod.* **52**, 1334-42.

Bird, A. (2002). DNA methylation patterns and epigenetic memory. *Genes & Dev.* **16**, 6-21.

Blelloch, R., Anna-Arriola, S. S., Gao, D., Li, Y., Hodgkin, J., and Kimble, J. (1999). The gon-1 gene is required for gonadal morphogenesis in Caenorhabditis elegans. *Dev. Biol.* **216**, 382-93.

Boyer, A., Lapointe, E., Zheng, X., Cowan, R. G., Li, H., Quirk, S. M., DeMayo, F. J., Richards, J. S., and Boerboom, D. (2010). WNT4 is required for normal ovarian follicle development and female fertility. *FASEB J.*

Butler, W. R. (2003). Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows. *Livest Prod Sci* **83**, 211-8.

Butler, W. R., and Smith, R. D. (1989). Interrelationships between energy balance and postpartum reproductive function in dairy cattle. *J. Dairy Sci* **72**, 767-83.

Cadigan, K. M., and Nusse, R. (1997). Wnt signaling: a common theme in animal development. *Genes Dev.* **11**, 3286-305.

Campbell, B. K., Scaramuzzi, R. J., and Webb, R. (1996). Induction and maintenance of oestradiol and immunoreactive inhibin production with FSH by ovine granulosa cells cultured in serum-free media. *Journal of Reproduction and Fertility* **106**, 7-16.

Chapekar, T. N., and Malik, A. K. (1991). The AIMS/GRXVIII cell line: 'spontaneous' transformation of hormonally induced primary cells derived from goat ovarian granulosa. *Pathobiology*. **59**, 345-50.

Chijiwa, T., Mishima, A., Hagiwara, M., Sano, M., Hayashi, K., Inoue, T., Naito, K., Toshioka, T., Hidaka., H. (1990). Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. *J Biol Chem.* **265**, 5267-72.

Christenson, L. K., Gunewardena, S., Hong, X., Spitschak, M., Baufeld, A., and Vanselow, J. (2013). Research resource: preovulatory LH surge effects on follicular theca and granulosa transcriptomes. *Mol. Endocrinol.* **27**, 1153-71.

Denner, L. A., Weigel, N. L., Maxwell, B. L., Schrader, W. T., and O'Malley, B. W. (1990). Regulation of progesterone receptor-mediated transcription by phosphorylation. *Science.* **250**, 1740-3.

Dillon, P., Berry, D. P., Evans, R. D., Buckley, F., and Horan, B. (2006). Consequences of genetic selection for increased milk production in European seasonal pasture based systems of milk production. *Livest Sci* **99**, 141-58.

Engh, R. A., Girod, A., Kinzel, V., Huber, R., Bossemeyer, D. (1996). Crystal structures of catalytic subunit of cAMP-dependent protein kinase in complex with isoquinolinesulfonyl protein kinase inhibitors H7, H8, and H89. Structural implications for selectivity. *J Biol Chem.* **271**, 26157-64.

Eppig, J. J., and O'Brien, M. J. (1996). Development in vitro of mouse oocytes from primordial follicles. *Biol. Reprod.* **54**, 197-207.

Escamilla-Hernandez, R., Little-Ihrig, L., Orwig, K. E., Yue, J., Chandran, U., and Zeleznik, A. J. (2008). Constitutively active protein kinase A qualitatively mimics the effects of follicle-stimulating hormone on granulosa cell differentiation. *Mol. Endocrinol.* **22**, 1842-52.

Espey, L. L., Yoshioka, S., Russell, D. L., Robker, R. L., Fujii, S., and Richards, J. S. (2000). Ovarian expression of a disintegrin and metalloproteinase with thrombospondin motifs during ovulation in the gonadotropin-primed immature rat. *Biol. Reprod.* **62**, 1090-5.

Fagotto, F. Looking beyond the Wnt pathway for the deep nature of β -catenin. (2013). *EMBO Rep.* **14**, 422-33.

Fan, H. Y., Liu, Z., Shimada, M., Sterneck, E., Johnson, P. F., Hedrick, S. M., and Richards, J. S. (2009). MAPK3/1 (ERK1/2) in ovarian granulosa cells are essential for female fertility. *Science*. **324**, 938-41.

Fan, H. Y., O'Connor, A., Shitanaka, M., Shimada, M., Liu, Z., and Richards, J. S. (2010). Beta-catenin (CTNNB1) promotes preovulatory follicular development but represses LH-mediated ovulation and luteinization. *Mol. Endocrinol.* **24**, 1529-42.

Findlay, J. K., and Drummond, A. E. (1999). Regulation of the FSH Receptor in the Ovary. *Trends Endocrinol. Metab.* **10**, 183-8.

Forde, N., Beltman, M. E., Lonergan, P., Diskin, M., Roche, J. F., and Crowe, M. A. (2011). Oestrous cycles in Bos taurus cattle. *Anim Reprod. Sci* **124**, 163-9.

Fortune, J. E., Willis, E. L., Bridges, P. J., and Yang, C. S. (2009). The periovulatory period in cattle: progesterone, prostaglandins, oxytocin and ADAMTS proteases. *Anim Reprod.* **6**, 60-71.

Fujii, J., luchi, Y., and Okada, F. (2005). Fundamental roles of reactive oxygen species and protective mechanisms in the female reproductive system. *Reprod. Biol. Endocrinol.* **3:43.**, 43.

Fürbass, R., Kalbe, C., and Vanselow, J. (1997). Tissue-specific expression of the bovine aromatase encoding gene uses multiple transcriptional start sites and alternative first exons. *Endocrinology* **138**, 2813-9.

Garlanda, C., Bottazzi, B., Bastone, A., and Mantovani, A. (2005). Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. *Annu. Rev. Immunol.* **23**, 337-66.

Garrick, D., Sutherland, H., Robertson, G., and Whitelaw, E. (1996). Variegated expression of a globin transgene correlates with chromatin accessibility but not methylation status. *Nucleic Acids Res.* **24**, 4902-9.

Geiger, B., Volk, T., and Volberg, T. (1985). Molecular heterogeneity of adherens junctions. *J. Cell Biol.* **101**, 1523-31.

Gilbert, I., Robert, C., Dieleman, S., Blondin, P., and Sirard, M. A. (2011). Transcriptional effect of the LH surge in bovine granulosa cells during the peri-ovulation period. *Reproduction.* **141**, 193-205.

Gonzalez-Robayna, I. J., Falender, A. E., Ochsner, S., Firestone, G. L., and Richards, J. S. (2000). Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-Induced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. *Mol. Endocrinol.* **14**, 1283-300.

Gregoraszczuk, E. L., Ptak, A., Karniewska, M., and Ropstad, E. (2008). Action of defined mixtures of PCBs, p,p'-DDT and its metabolite p,p'-DDE, on co-culture of

porcine theca and granulosa cells: steroid secretion, cell proliferation and apoptosis. *Reprod. Toxicol.* **26**, 170-4.

Grunstein, M. (1997). Histone acetylation in chromatin structure and transcription. *Nature* **389**, 349-52.

Gumbiner, B. M. (2000). Regulation of cadherin adhesive activity. *J. Cell Biol.* **148**, 399-404.

Gümen, A., and Wiltbank, M. C. (2002). An alteration in the hypothalamic action of estradiol due to lack of progesterone exposure can cause follicular cysts in cattle. *Biol. Reprod.* **66**, 1689-95.

Gutierrez, C. G., Campbell, B. K., and Webb, R. (1997). Development of a long-term bovine granulosa cell culture system: induction and maintenance of estradiol production, response to follicle- stimulating hormone, and morphological characteristics. *Biol. Reprod.* **56**, 608-16.

Gutierrez, C. G., Ralph, J. H., Telfer, E. E., Wilmut, I., and Webb, R. (2000). Growth and antrum formation of bovine preantral follicles in long-term culture in vitro. *Biol. Reprod.* **62**, 1322-8.

Hamel, M., Vanselow, J., Nicola, E. S., and Price, C. A. (2005). Androstenedione Increases Cytochrome P450 Aromatase Messenger Ribonucleic Acid Transcripts in Non-Luteinizing Bovine Granulosa Cells. *Mol. Reprod. Dev.* **70**, 175-83.

Hatler, T. B., Hayes, S. H., Laranja da Fonseca, L. F., and Silvia, W. J. (2003). Relationship between endogenous progesterone and follicular dynamics in lactating dairy cows with ovarian follicular cysts. *Biol. Reprod.* **69**, 218-23.

Henderson, K. M., McNatty, K. P., Smith, P., Gibb, M., O'Keeffe, L. E., Lun, S., Heath, D. A., and Prisk, M. D. (1987). Influence of follicular health on the steroidogenic and morphological characteristics of bovine granulosa cells in vitro. *J. Reprod. Fertil.* **79**, 185-93.

Hennet, M. L., and Combelles, C. M. (2012). The antral follicle: a microenvironment for oocyte differentiation. *Int. J. Dev. Biol.* **56**, 819-31.

Heuberger, J., Birchmeier, W. (2010). Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. *Cold Spring Harb. Perspect. Biol.* **2**, a002915

Hillier, S. G., Whitelaw, P. F., and Smyth, C. D. (1994). Follicular Oestrogen Synthesis - The Two-Cell, Two- Gonadotrophin Model Revisited. *Mol. Cell Endocrinol.* **100**, 51-4.

Huang, W. C., Zhau, H. E., and Chung, L. W. (2010). Androgen receptor survival signaling is blocked by anti-beta2-microglobulin monoclonal antibody via a MAPK/lipogenic pathway in human prostate cancer cells. *J. Biol. Chem.* **285**, 7947-56.

Huet, C., Pisselet, C., Mandon-Pepin, B., Monget, P., and Monniaux, D. (2001). Extracellular matrix regulates ovine granulosa cell survival, proliferation and steroidogenesis: relationships between cell shape and function. *J. Endocrinol.* **169**, 347-60.

Hunzicker-Dunn, M., and Maizels, E. T. (2006). FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. *Cell Signal.* **18**, 1351-9.

Hunzicker-Dunn, M. E., Lopez-Biladeau, B., Law, N. C., Fiedler, S. E., Carr, D. W., and Maizels, E. T. (2012). PKA and GAB2 play central roles in the FSH signaling pathway to PI3K and AKT in ovarian granulosa cells. *Proc. Natl. Acad. Sci. U. S. A.* **109**, E2979-E2988.

Irizarry, R. A., Hobbs, B., Collin, F., Beazer-Barclay, Y. D., Antonellis, K. J., Scherf, U., and Speed, T. P. (2003). Exploration, normalization, and summaries of high density oligonucleotide array probe level data. *Biostatistics* **4**, 249-64.

Jenuwein, T., and Allis, C. D. (2001). Translating the histone code. *Science*. **293**, 1074-80.

Karlsson, A. B., Maizels, E. T., Flynn, M. P., Jones, J. C., Shelden, E. A., Bamburg, J. R., and Hunzicker-Dunn, M. (2010). Luteinizing hormone receptor-stimulated progesterone production by preovulatory granulosa cells requires protein kinase A-dependent activation/dephosphorylation of the actin dynamizing protein cofilin. *Mol. Endocrinol.* **24**, 1765-81.

Kaskow, B. J., Proffitt, J. M., Blangero, J., Moses, E. K., and Abraham, L. J. (2012). Diverse biological activities of the vascular non-inflammatory molecules - the Vanin pantetheinases. *Biochem. Biophys. Res. Commun.* **417**, 653-8.

Kesler, D. J., and Garverick, H. A. (1982). Ovarian cysts in dairy cattle: a review. *J. Anim Sci.* **55**, 1147-59.

Kioussi, C., Briata, P., Baek, S. H., Rose, D. W., Hamblet, N. S., Herman, T., Ohgi, K. A., Lin, C., Gleiberman, A., Wang, J., Brault, V., Ruiz-Lozano, P., Nguyen, H. D., Kemler, R., Glass, C. K., Wynshaw-Boris, A., and Rosenfeld, M. G. (2002). Identification of a Wnt/Dvl/beta-Catenin --> Pitx2 pathway mediating cell-type-specific proliferation during development. *Cell* **111**, 673-85.

Kopperud, R., Krakstad, C., Selheim, F., and Doskeland, S. O. (2003). cAMP effector mechanisms. Novel twists for an 'old' signaling system. *FEBS Lett.* **546**, 121-6.

Kuno, K., Kanada, N., Nakashima, E., Fujiki, F., Ichimura, F., and Matsushima, K. (1997). Molecular cloning of a gene encoding a new type of metalloproteinasedisintegrin family protein with thrombospondin motifs as an inflammation associated gene. *J. Biol. Chem.* **272**, 556-62.

Kwan, I., Farookhi, R., Huynh, H. T., Murphy, B. D., Turner, J. D., and Downey, B. R. (1996). Steroidogenic properties of a spontaneously established porcine granulosa cell line (PGC-2). *Mol. Reprod. Dev.* **45**, 299-307.

Lenz, S., Pöhland, R., Becker, F., and Vanselow, J. (2004). Expression of the bovine Aromatase Cytochrome P450 gene (Cyp19) is primarily regulated by promoter 2 in bovine follicles and by promoter 1.1 in corpora lutea. *Mol. Reprod. Dev.* **67**, 406-13.

Lewin, J., Schmitt, A. O., Adorjan, P., Hildmann, T., and Piepenbrock, C. (2004). Quantitative DNA methylation analysis based on four-dye trace data from direct sequencing of PCR amplificates. *Bioinformatics.* **20**, 3005-12.

Li, E. (2002). Chromatin modification and epigenetic reprogramming in mammalian development. *Nature Reviews Genetics* **3**, 662-73.

Li, F., and Curry, T. E., Jr. (2009). Regulation and function of tissue inhibitor of metalloproteinase (TIMP) 1 and TIMP3 in periovulatory rat granulosa cells. *Endocrinology* **150**, 3903-12.

Liu, H. Y., Zeng, W. D., Cao, A. L., and Zhang, C. Q. (2010). Follicle-stimulating hormone promotes proliferation of cultured chicken ovarian germ cells through protein kinases A and C activation. *J. Zhejiang. Univ Sci. B.* **11**, 952-7.

Liu, J., Carriere, P. D., Dore, M., and Sirois, J. (1997). Prostaglandin G/H synthase-2 is expressed in bovine preovulatory follicles after the endogenous surge of luteinizing hormone. *Biol. Reprod.* **57**, 1524-31.

Logan, C. Y., and Nusse, R. (2004). The Wnt signaling pathway in development and disease. *Annu. Rev. Cell Dev. Biol.* **20:781-810.**, 781-810.

Makarevich, A. V., Sirotkin, A. V., and Genieser, H. G. (2004). Action of protein kinase A regulators on secretory activity of porcine granulosa cells in vitro. *Anim Reprod. Sci.* **81**, 125-36.

Mamluk, R., Chen, D., Greber, Y., Davis J.S., Meidan, R. (1998). Characterization of messenger ribonucleic acid expression for prostaglandin F2 alpha and luteinizing hormone receptors in various bovine luteal cell types. *Biol. Reprod.* **58**, 849-56.

Mani, A. M., Fenwick, M., Cheng, Z., Sharma, M., Singh, D., and Wathes, C. (2010). IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells. *Reproduction.*

Mann, J. S., Kindy, M. S., Edwards, D. R., and Curry, T. E., Jr. (1991). Hormonal regulation of matrix metalloproteinase inhibitors in rat granulosa cells and ovaries. *Endocrinology* **128**, 1825-32.

Mann, J. S., Kindy, M. S., Hyde, J. F., Clark, M. R., and Curry, T. E., Jr. (1993). Role of protein synthesis, prostaglandins, and estrogen in rat ovarian metalloproteinase inhibitor production. *Biol. Reprod.* **48**, 1006-13.

McArthur, M. E., Irving-Rodgers, H. F., Byers, S., and Rodgers, R. J. (2000). Identification and immunolocalization of decorin, versican, perlecan, nidogen, and chondroitin sulfate proteoglycans in bovine small-antral ovarian follicles. *Biol. Reprod.* **63**, 913-24.

McNatty, K. P. (1981). Hormonal correlates of follicular development in the human ovary. *Aust. J. Biol. Sci* **34**, 249-68.

Monniaux, D., Pisselet, C., and Fontaine, J. (1994). Uncoupling between proliferation and differentiation of ovine granulosa cells in vitro. *J. Endocrinol.* **142**, 497-510.

Montano, E., Olivera, M., and Ruiz-Cortes, Z. T. (2009). Association between leptin, LH and its receptor and luteinization and progesterone accumulation (P4) in bovine granulosa cell in vitro. *Reprod. Domest. Anim.* **44**, 699-704.

Mora, J. M., Fenwick, M. A., Castle, L., Baithun, M., Ryder, T. A., Mobberley, M., Carzaniga, R., Franks, S., and Hardy, K. (2012). Characterization and significance of adhesion and junction-related proteins in mouse ovarian follicles. *Biol. Reprod.* **86**, 153, 1-153,14.

Morgan, H. D., Santos, F., Green, K., Dean, W., and Reik, W. (2005). Epigenetic reprogramming in mammals. *Hum. Mol. Genet.* **14 Spec No 1:R47-58.**, R47-R58.

Morris, J. K., and Richards, J. S. (1995). Luteinizing hormone induces prostaglandin endoperoxide synthase-2 and luteinization in vitro by A-kinase and C-kinase pathways. *Endocrinology* **136**, 1549-58.

Muniz, L. C., Yehia, G., Memin, E., Ratnakar, P. V., and Molina, C. A. (2006). Transcriptional regulation of cyclin D2 by the PKA pathway and inducible cAMP early repressor in granulosa cells. *Biol. Reprod.* **75**, 279-88.

Nan, X., Ng, H.-H., Johnson, C. A., Laherty, C. D., Turner, B. M., Eisenman, R. N., and Bird, A. (1998). Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. *Nature* **393**, 386-9.

Ng, H. H., and Bird, A. (1999). DNA methylation and chromatin modification. *Curr. Opin. Genet. Dev.* **9**, 158-63.

Nimz, M., Spitschak, M., Fuerbass, R., and Vanselow, J. (2010). The preovulatory luteinizing hormone surge is followed by downregulation of *CYP19A1*, *HSD3B1* and *CYP17A1* and chromatin condensation of the corresponding promoters in bovine follicles. *Mol. Reprod. Dev.* **77**, 1040-8.

Nimz, M., Spitschak, M., Schneider, F., Fürbass, R., and Vanselow, J. (2009). Down-regulation of genes encoding steroidogenic enzymes and hormone receptors in late preovulatory follicles of the cow coincides with an accumulation of intrafollicular steroids. *Domest. Anim Endocrinol.* **37**, 45-54.

Nitto, T., and Onodera, K. (2013). Linkage between coenzyme a metabolism and inflammation: roles of pantetheinase. *J. Pharmacol. Sci* **123**, 1-8.

Nogueira, M. F., Buratini, J., Jr., Price, C. A., Castilho, A. C., Pinto, M. G., and Barros, C. M. (2007). Expression of LH receptor mRNA splice variants in bovine granulosa cells: changes with follicle size and regulation by FSH in vitro. *Mol. Reprod. Dev.* **74**, 680-6.

Orisaka, M., Mizutani, T., Tajima, K., Orisaka, S., Shukunami, K., Miyamoto, K., and Kotsuji, F. (2006). Effects of ovarian theca cells on granulosa cell differentiation during gonadotropin-independent follicular growth in cattle. *Mol. Reprod. Dev.* **73**, 737-44.

Parakh, T. N., Hernandez, J. A., Grammer, J. C., Weck, J., Hunzicker-Dunn, M., Zeleznik, A. J., and Nilson, J. H. (2006). Follicle-stimulating hormone/cAMP regulation of aromatase gene expression requires beta-catenin. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 12435-40.

Pierce, K. L., Premont, R. T., and Lefkowitz, R. J. (2002). Seven-transmembrane receptors. *Nat. Rev. Mol. Cell Biol.* **3**, 639-50.

Portela, V. M., Zamberlam, G., and Price, C. A. (2010). Cell plating density alters the ratio of estrogenic to progestagenic enzyme gene expression in cultured granulosa cells. *Fertil. Steril.* **93**, 2050-5.

Qiu, M., Liu, J., Han, C., Wu, B., Yang, Z., Su, F., Quan, F., and Zhang, Y. (2014). The influence of ovarian stromal/theca cells during in vitro culture on steroidogenesis, proliferation and apoptosis of granulosa cells derived from the goat ovary. *Reprod. Domest. Anim.* **49**, 170-6.

Richards, J. S. (2001). Perspective: the ovarian follicle--a perspective in 2001. *Endocrinology* **142**, 2184-93.

Richards, J. S., Fitzpatrick, S. L., Clemens, J. W., Morris, J. K., Alliston, T., and Sirois, J. (1995). Ovarian cell differentiation: A cascade of multiple hormones, cellular signals, and regulated genes. *Recent Progress in Hormone Research* -254.

Richards, J. S., and Pangas, S. A. (2010). The ovary: basic biology and clinical implications. *J Clin. Invest.* **120**, 963-72.

Richards, J. S., Russell, D. L., Ochsner, S., Hsieh, M., Doyle, K. H., Falender, A. E., Lo, Y. K., and Sharma, S. C. (2002). Novel signaling pathways that control ovarian follicular development, ovulation, and luteinization. *Recent Prog Horm Res* **57**, 195-220.

Robker, R. L., and Richards, J. S. (1998). Hormone-induced proliferation and differentiation of granulosa cells: a coordinated balance of the cell cycle regulators cyclin D2 and p27Kip1. *Mol. Endocrinol.* **12**, 924-40.

Ross M. H.; Kaye G. I.; Romrell L. J. (1995). 'Histology. A Text and Atlas.' 3rd edition. Williams & Wilkins: Baltimore, MD. ISBN 0-683-09401-7

Sayasith, K., Sirois, J., and Lussier, J. G. (2013). Expression, regulation, and promoter activation of Vanin-2 (VNN2) in bovine follicles prior to ovulation. *Biol. Reprod.* **89**, 98.

Schneider, F., and Brüssow, K. P. (2006). Effects of a preovulatory administered depot gonadotrophin-releasing hormone agonist on reproductive hormone levels and pregnancy outcome in gilts. *Reprod. Fertil. Dev.* **18**, 857-66.

Schwede, F., Maronde, E., Genieser, H., and Jastorff, B. (2000). Cyclic nucleotide analogs as biochemical tools and prospective drugs. *Pharmacol. Ther.* **87**, 199-226.

Shimizu, T., Sudo, N., Yamashita, H., Murayama, C., Miyazaki, H., and Miyamoto, A. (2009). Histone H3 acetylation of StAR and decrease in DAX-1 is involved in the luteinization of bovine granulosa cells during in vitro culture. *Mol. Cell Biochem.* **328**, 41-7.

Sicinski, P., Donaher, J. L., Geng, Y., Parker, S. B., Gardner, H., Park, M. Y., Robker, R. L., Richards, J. S., McGinnis, L. K., Biggers, J. D., Eppig, J. J., Bronson, R. T., Elledge, S. J., and Weinberg, R. A. (1996). Cyclin D2 is an FSH-responsive gene involved in gonadal cell proliferation and oncogenesis. *Nature*. **384**, 470-4.

Silva, J. M., Hamel, M., Sahmi, M., and Price, C. A. (2006). Control of oestradiol secretion and of cytochrome P450 aromatase messenger ribonucleic acid accumulation by FSH involves different intracellular pathways in oestrogenic bovine granulosa cells in vitro. *Reproduction.* **132**, 909-17.

Silva, J. M., and Price, C. A. (2000). Effect of follicle-stimulating hormone on steroid secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and cholesterol side-chain cleavage in bovine granulosa cells in vitro. *Biol. Reprod.* **62**, 186-91.

Silvia, W. J., Hatler, T. B., Nugent, A. M., and Laranja da Fonseca, L. F. (2002). Ovarian follicular cysts in dairy cows: an abnormality in folliculogenesis. *Domest. Anim Endocrinol.* **23**, 167-77.

Simoni, M., Gromoll, J., and Nieschlag, E. (1997). The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. *Endocr. Rev.* **18**, 739-73.

Sirois, J. (1994). Induction of prostaglandin endoperoxide synthase-2 by human chorionic gonadotropin in bovine preovulatory follicles in vivo. *Endocrinology.* **135**, 841-8.

Spitschak, M., and Vanselow, J. (2012). Bovine large luteal cells show increasing de novo DNA methylation of the main ovarian CYP19A1 promoter P2. *Gen. Comp Endocrinol.* **178**, 37-45.

Sundfeldt, K., Piontkewitz, Y., Billig, H., and Hedin, L. (2000). E-cadherin-catenin complex in the rat ovary: cell-specific expression during folliculogenesis and luteal formation. *J. Reprod. Fertil.* **118**, 375-85.

Suzuki, K., Watanabe, T., Sakurai, S., Ohtake, K., Kinoshita, T., Araki, A., Fujita, T., Takei, H., Takeda, Y., Sato, Y., Yamashita, T., Araki, Y., and Sendo, F. (1999). A novel glycosylphosphatidyl inositol-anchored protein on human leukocytes: a possible role for regulation of neutrophil adherence and migration. *J. Immunol.* **162**, 4277-84.

Tamura, H., Takasaki, A., Miwa, I., Taniguchi, K., Maekawa, R., Asada, H., Taketani, T., Matsuoka, A., Yamagata, Y., Shimamura, K., Morioka, H., Ishikawa, H., Reiter, R. J., and Sugino, N. (2008). Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. *J. Pineal Res.* **44**, 280-7.

Towbin, H., Staehelin, T., and Gordon, J. (1979). Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. *Proc. Natl. Acad. Sci. U. S. A* **76**, 4350-4.

Ujioka, T., Russell, D. L., Okamura, H., Richards, J. S., and Espey, L. L. (2000). Expression of regulator of G-protein signaling protein-2 gene in the rat ovary at the time of ovulation. *Biol. Reprod.* **63**, 1513-7.

Vainio, S., Heikkila, M., Kispert, A., Chin, N., and McMahon, A. P. (1999). Female development in mammals is regulated by Wnt-4 signalling. *Nature*. **397**, 405-9.

Vanholder, T., Opsomer, G., and de, K. A. (2006). Aetiology and pathogenesis of cystic ovarian follicles in dairy cattle: a review. *Reprod. Nutr. Dev.* **46**, 105-19.

Vanselow, J., Fürbass, R., Zsolnai, A., Kalbe, C., Said, H. M., and Schwerin, M. (2001). Expression of the aromatase cytochrome P450 encoding gene in cattle and sheep. *Journal of Steroid Biochemistry and Molecular Biology* **79**, 279-88.

Vanselow, J., Pöhland, R., and Fürbass, R. (2005). Promoter 2 derived *Cyp19* expression in bovine granulosa cells coincides with gene-specific DNA hypomethylation. *Mol Cell Endocrinol* **233**, 57-64.

Vanselow, J., Spitschak, M., Nimz, M., and Fürbass, R. (2010). DNA Methylation Is Not Involved in Preovulatory Down-Regulation of CYP11A1, HSD3B1, and CYP19A1 in Bovine Follicles But May Play a Role for Permanent Silencing of CYP19A1 in Large Granulosa Lutein Cells. *Biol. Reprod.* **82**, 289-98.

Varani, S., Elvin, J. A., Yan, C., DeMayo, J., DeMayo, F. J., Horton, H. F., Byrne, M. C., and Matzuk, M. M. (2002). Knockout of pentraxin 3, a downstream target of growth differentiation factor-9, causes female subfertility. *Mol. Endocrinol.* **16**, 1154-67.

Walsh, S. W., Williams, E. J., and Evans, A. C. (2011). A review of the causes of poor fertility in high milk producing dairy cows. *Anim Reprod. Sci* **123**, 127-38.

Wang, C., and Roy, S. K. (2010). Expression of E-cadherin and N-cadherin in perinatal hamster ovary: possible involvement in primordial follicle formation and regulation by follicle-stimulating hormone. *Endocrinology*. **151**, 2319-30.

Wang, H. X., Li, T. Y., and Kidder, G. M. (2010). WNT2 regulates DNA synthesis in mouse granulosa cells through beta-catenin. *Biol. Reprod.* **82**, 865-75.

Wayne, C. M., Fan, H. Y., Cheng, X., and Richards, J. S. (2007). Follicle-stimulating hormone induces multiple signaling cascades: evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are critical for granulosa cell differentiation. *Mol. Endocrinol.* **21**, 1940-57.

Williams, C. J., and Erickson, G. F. (2012). Morphology and Physiology of the Ovary. pp. 1-33.

Wu, Y. L., Chuang, H. H., Kou, Y. R., Lee, T. S., Lu, S. H., Huang, Y. C., Nishi, Y., and Yanase, T. (2008). Regulation of LH receptor and PGF2alpha receptor signaling by the regulator of G protein signaling 2 (RGS2) in human and mouse granulosa cells. *Chin J. Physiol.* **51**, 282-91.

Wu, Y. L., and Wiltbank, M. C. (2001). Transcriptional regulation of cyclooxygenase-2 gene in ovine large luteal cells. *Biol. Reprod.* **65**, 1565-72.

Yamashita, Y., Okamoto, M., Ikeda, M., Okamoto, A., Sakai, M., Gunji, Y., Nishimura, R., Hishinuma, M., and Shimada, M. (2014). Protein kinase C (PKC) increases TACE/ADAM17 enzyme activity in porcine ovarian somatic cells, which is essential for granulosa cell luteinization and oocyte maturation. *Endocrinology*. **155**, 1080-90.

Yung, Y., Maman, E., Konopnicki, S., Cohen, B., Brengauz, M., Lojkin, I., Dal, C. M., Fadini, R., Dor, J., and Hourvitz, A. (2010). ADAMTS-1: a new human ovulatory gene and a cumulus marker for fertilization capacity. *Mol. Cell Endocrinol.* **328**, 104-8.

Abbildungsverzeichnis

Abbildung 1:	Vereinfachte schematische Darstellung der Follikulogenese	4
Abbildung 2:	Schema der Follikelreifungswellen.	6
Abbildung 3:	Morphologie eines Follikels in der Wachstumsphase	7
Abbildung 4:	Schemata zur Steroidhormonsynthese	8
Abbildung 5:	Venn Diagramm zur proportionalen Darstellung der durch LH signifikant	
	veränderten Hybridisierungssignale in antralen (aGC) und	
	membranständigen (mGC) Granulosazellen bzw. Thekazellen (TC)	9
Abbildung 6:	Schematische Darstellung der DNA-Methylierungsstellen des CYP19A1	
	Promotors	14
Abbildung 7:	Entwicklung der CYP19A1-Expression im Verlauf der Kultur	35
Abbildung 8:	Morphologie von Granulosazellen auf unbeschichtetem und Collagen-	
	beschichtetem Untergrund	36
Abbildung 9:	Anzahl und Viabilität von Granulosazellen auf unbeschichteten (schwarz)	
	und Collagen-beschichteten (grau) Kulturplatten	37
Abbildung 10:	Expression von Markergenen nach 12- bzw. 24-stündiger LH-Stimulation	
	von serumfrei kultivierten Granulosazellen aus dem kleinen Follikel	38
Abbildung 11:	LH-Effekt auf kultivierte Granulosazellen aus dem großen Follikel	39
Abbildung 12:	Morphologie serumhaltiger und serumfreier Granulosazellkultur nach 9-	
	tägiger Kultur	40
Abbildung 13:	Cadherin Immunofluoreszenz von Granulosazellen in serumfreier (a) und	
	serumhaltiger (b) Kultivierung	41
Abbildung 14:	Expressionsanalyse ausgewählter Markergene unterschiedlicher FKS-	
	Konzentrationen im Vergleich zur serumfreien Kultivierung (Kontrolle)	42
Abbildung 15:	Vergleich der serumfreien Granulosazellkultur in unterschiedlicher	
	Zelldichte	43
Abbildung 16:	Relative Estradiol- (E2) und Progesteronkonzentration (P4) nach 9-tägiger	
	Granulosazellkultur	44
Abbildung 17:	Relative Transkriptmenge von ausgewählten Markergenen in serumfreier	
	Zellkultur unterschiedlicher Dichte	45
Abbildung 18:	DNA-Methylierungsanalyse der Promotorregion des Gens CYP19A1	47
Abbildung 19:	Hierarchische Clusteranalyse different exprimierter Transkripte aus	
	Granulosazellen kultiviert in unterschiedlicher Zelldichte	48
Abbildung 20:	Gegenüberstellung der Expressionsveränderung von Granulosazellen	
	kultiviert bei hoher und geringer Zelldichte	49
Abbildung 21:	Vergleich der Microarray Analyse mit der qPCR Messung	50
Abbildung 22:	Der Einfluss von Zelldichte-konditioniertem Medium auf Granulosazellen in	
	Kultur	52
Abbildung 23:	Einfluss des PKA-Aktivators 6-Bnz-cAMP auf Granulosazellen in vitro	53

Abbildung 24:	Einfluss des PKA-Aktivators 8-Bromo-cAMP auf Granulosazellen im	
	Vergleich zur serumfreien Kontrolle	54
Abbildung 25:	Expressionsanalyse nach PKA-Inhibition mit H-89	55
Abbildung 26:	Einfluss des PKA-Aktivators 6-Bnz-cAMP und der Zelldichte auf die	
	Granulosazellkultur	57
Abbildung 27:	Expressionsanalyse der Zelldichte-Granulosazellkultur unter dem Einfluss	
	des PKA-Inhibitors H-89	58
Abbildung 28:	Repräsentative Ausschnitte der Immunofluoreszenz von kultivierten	
	Granulosazellen	59
Abbildung 29:	Catenin- und Phospho-Catenin Gehalt in Granulosazellen	60

Tabellenverzeichnis

Tabelle 1:	Übersicht verwendeter Antikörper und des Kernfarbstoffes für die	
	Immunfluoreszenz.	.20
Tabelle 2:	Auflistung der genutzten Antikörper für den Western Blot	.21
Tabelle 3:	Liste der genspezifischen Primer für die quantitative Real-Time PCR	.25
Tabelle 4:	Primer für die Amplifikation und Sequenzierung modifizierter DNA	.30
Tabelle 5:	Vergleich der Microarray und qPCR Daten. Dargestellt ist jeweils die	
	Veränderung (Fold Change) der Gene in den verschiedenen Zellschichten des	
	Follikels durch den Einfluss von LH	.33
Tabelle 6:	Relative Steroidhormonkonzentration nach 9-tägiger serumfreier bzw.	
	serumhaltiger Kultur	.41
Tabelle 7:	Relative Menge von CYP19A1 Trankripten ausgehend von den Promotoren	
	P2 und P1.1 nach Granulosazellkultur bei unterschiedlichen Zelldichten	.46
Tabelle 8:	Fold Change (FC) und Korrelation zwischen qPCR Messung und Microarray	
	Analyse.	.50
Tabelle 9:	Wirkung des PKA-Inhibitors H-89 auf LH-behandelte Granulosazellen aus	
	großen Follikeln in einer Kultur über 24 Stunden.	.56
Tabelle 10:	906 hochregulierte Gene aufgrund der Erhöhung der Zelldichte in vitro.	A
Tabelle 11:	669 herunterregulierte Gene aufgrund der Erhöhung der Zelldichte in Kultur	I

Anhang

Vergleich der hohen und niedrigen Zelldichte in Kultur mittels einer Microarray Analyse

Tabelle 10: 906 hochregulierte Gene aufgrund der Erhöhung der Zelldichte in vitro.

	haha	aorinao	FC	ANOVA	FDR p-		haha	aorinao	FC	ANOVA	FDR p-
Gene	Dichte	Dichte	(hoch	p-value	value	Gene	Dichte	Dichte	(hoch	p-value	value
Symbol	Signal	Signal	vs.	(hoch vs.	(hoch vs.	Symbol	Signal	Signal	vs.	(hoch vs.	(hoch vs.
	orginal	eignai	gering)	gering)	gering)		orginar	orginal	gering)	gering)	gering)
НВА	576,03	10,78	53,48	0,000009	0,002959	FGR	81,57	16,91	4,81	0,000297	0,009200
AHSG	781,44	21,41	36,57	0,000037	0,004135	KIAA1217	125,37	26,17	4,79	0,000028	0,004135
LOXL2	639,15	33,59	19,01	0,000005	0,002760	AK5	30,70	6,45	4,78	0,000006	0,002760
TGM2	324,03	19,03	17,07	0,000006	0,002760	CABP1	61,82	13,09	4,70	0,000441	0,011207
KRT18	522,76	31,56	16,63	0,000060	0,004760	C27H8orf4	548,75	119,43	4,61	0,000004	0,002760
NRN1	142,02	10,20	13,97	0,000039	0,004198	FGF11	145,01	31,56	4,57	0,000203	0,007835
UPP1	156,50	11,31	13,77	0,000056	0,004638	EDNRB	104,69	23,26	4,50	0,000065	0,004917
EGLN3	272,48	21,26	12,82	0,000006	0,002760	FABP7	74,54	16,56	4,50	0,000123	0,006276
IL33	278,20	22,01	12,59	0,000028	0,004135	DHRS3	415,87	93,05	4,48	0,000083	0,005577
KRT8	418,77	34,78	12,02	0,000054	0,004595	SPON2	81,01	18,13	4,48	0,000187	0,007551
LPL	1082,39	111,43	9,74	0,000013	0,003294	F5	548,75	123,64	4,45	0,000002	0,002757
CDKN1C	266,87	27,86	9,63	0,000045	0,004479	LOXL4	57,68	13,09	4,43	0,000006	0,002760
CHAC1	200,85	20,97	9,56	0,000037	0,004135	FAM65B	70,03	16,34	4,30	0,000115	0,006132
IL1RN	319,57	36,50	8,75	3,20E-07	0,002757	NDRG1	1269,46	294,07	4,29	0,000021	0,003940
SYT17	103,25	12,30	8,37	0,000045	0,004479	SLC2A3	1722,16	404,50	4,24	0,000126	0,006324
SLC38A4	74,03	9,65	7,67	0,000025	0,004115	JAKMIP1	29,86	7,11	4,19	0,000010	0,002999
CLDN5	184,82	26,17	7,05	0,000046	0,004479	RANBP3L	52,71	12,64	4,19	0,000315	0,009380
PTGES	699,41	99,04	7,05	0,000052	0,004551	BEX2	28,84	6,92	4,18	0,001313	0,018697
LOX	66,72	9,51	7,04	0,000033	0,004135	DHRS3	157,59	37,79	4,17	0,000265	0,008753
NCALD	604,67	88,65	6,84	0,000052	0,004551	NAP1L5	171,25	41,36	4,15	0,000032	0,004135
GFRA2	359.54	53.08	6.77	0.000033	0.004135	LIMS2	154.34	37.27	4.14	0.000059	0.004760
SEMA5A	704.28	104.69	6.72	0.000038	0.004198	RAB33A	530.06	128.89	4.11	0.000007	0.002760
EMP1	60.55	9.19	6.57	0.000002	0.002757	RASGRP1	714.11	173.65	4.11	0.000021	0.003880
GPR183	122.79	18.77	6.54	0.000028	0.004135	SEMA3F	191.34	47.18	4.06	0.000100	0.005977
PPP1R3C	143.01	23.10	6.22	0.000007	0.002760	SLC6A9	120.26	29.65	4.05	0.000042	0.004291
ST8SIA4	290.02	47 18	6 16	0.000099	0.005948	LTC4S	147.03	36.76	4 02	0.000308	0.009330
CAL B1	60.55	9.85	6 12	0.001258	0.018274	DGKK	34 78	8 69	3 99	0.000426	0.011014
CXCR4	95.01	15 78	6.02	0.000011	0.003063	TNC	71.51	18.00	3 98	0.000056	0.004638
TMEM150C	122 79	20.53	6.00	0.000007	0.002760	TRIB3	41 93	10,00	3 98	0.000788	0.014478
VNN2	96 34	16 34	5 88	0,0000075	0.005217		210.84	53 45	3 95	0,000700	0,014470
FAM107A	284.05	48 84	5.83	0,000070	0,000217	DPP6	64.89	16 56	3 91	0,000040	0,004200
SEMA3D	106.89	18 51	5 80	0,000004	0,004000	PROKR2	34 78	8 94	3.88	0,000074	0.015961
	75 58	13.18	5 75	0,000171	0.00/135	[12911099]	200 38	5/ 10	3 85	0,000340	0.007617
GXVI T2	69.07	12 30	5.64	0,000007	0,004100	DKIB	138 14	36.00	3.84	0,000132	0,007017
	00,07 00,51	16 11	5,63	0,000002	0,004020	BOLA	83.20	21 71	3,04	0,000023	0,004004
	235 57	41.03	5,00	0,000000	0,00780	SSTP1	128.80	21,71	3,05	0,000071	0,004155
	116 16	20.68	5,02	0,000000	0,002700	TSDAN12	101 13	26.01	3,01	0,000071	0,003130
	95.04	20,00	5,01	0,000039	0,004190	FCL 2	02 07	20,91	3,11	0,000517	0,011995
STC2	07.04	17.40	5,40	0,000002	0,002757	DVCD1	250.57	22,32	3,70	0,000780	0,014430
100100337	97,01	17,75	5,40	0,000007	0,002700	FIGRI	259,57	09,55	3,75	0,000557	0,012035
076	36,76	6,73	5,46	0,00008	0,002760	CNTNAP1	43,41	11,63	3,73	0,000494	0,011771
ACHE	82,71	15,24	5,41	0,000096	0,005857	COL15A1	88,65	23,92	3,71	0,000048	0,004547
CDA	109,14	20,39	5,33	0,000029	0,004135	NOXRED1	814,63	219,79	3,71	0,001725	0,021813
PDLIM3	151.17	29.24	5.18	0,000003	0,002757	BOLA	145.01	39.40	3.68	0,000321	0,009482
ADAMTS20	48.17	9.38	5.13	0,000004	0,002760	TGFB1	433.53	117.78	3.66	0,000018	0,003791
ALPL	630.35	125.37	5.04	0,000342	0,009832	H19	879.17	240.52	3.65	0,000443	0,011229
NELL2	122 79	24 76	4.97	0.000132	0.006428	ALDH1L2	388.02	106.89	3.64	0.000203	0.007829
CHRNA2	130 69	26.35	4.96	0.000025	0.004115	CNTN5	34 30	9.38	3.64	0.000516	0.011995
LGR5	40,22	8,11	4,96	0,000033	0,004135	SNTB1	93,70	25,81	3,64	0,000017	0,003592

	h e h e		FC	ANOVA	FDR p-		h e h e		FC	ANOVA	FDR p-
Gene	Dichte	Dichte	(hoch	p-value	value	Gene	Dichte	Dichte	(hoch	p-value	value
Symbol	Signal	Signal	vs.	(hoch vs.	(hoch vs.	Symbol	Signal	Signal	vs.	(hoch vs.	(hoch vs.
			gering)	gering)	gering)				gering)	gering)	gering)
IGFBP3	100,43	27,67	3,63	0,000019	0,003791	PLCXD3	38,32	13,00	2,95	0,000194	0,007659
CA9	48,50	13,45	3,61	0,000567	0,012343	SLC16A3	604,67	207,94	2,91	0,000115	0,006132
DLC1	91,77	25,46	3,60	0,000036	0,004135	DAPP1	35,75	12,30	2,90	0,001644	0,021246
FAM196A	170,07	47,50	3,60	0,000003	0,002757	GCAT	105,42	36,76	2,87	0,000013	0,003307
ADAM8	124,50	34,54	3,59	0,001149	0,017467	LMCD1	37,01	12,91	2,87	0,000798	0,014571
FBLN1	666,29	188,71	3,55	0,000082	0,005566	F3	155,42	54,19	2,86	0,000911	0,015595
GULO	91,14	25,81	3,54	0,001143	0,017419	NDP	410,15	144,01	2,86	0,000035	0,004135
INSL3	512,00	145,01	3,51	0,000046	0,004479	LPIN1	315,17	110,66	2,85	0,000033	0,004135
GPRIN3	147,03	41,93	3,50	0,000426	0,011014	ARNTL2	26,35	9,25	2,84	0,001228	0,018035
PPAP2C	174,85	50,21	3,49	0,000073	0,005177	LOC100848 920	37,01	13,09	2,84	0,001514	0,020342
FABP5	111,43	32,00	3,47	0,001027	0,016588	PTPRU	118,60	41,93	2,84	0,000136	0,006519
SERPINB5	130,69	38,05	3,42	0,000104	0,006015	SLC1A5	39,95	14,03	2,84	0,000970	0,016170
THY1	122,79	36,00	3,41	0,000118	0,006199	MYO10	130,69	46,21	2,83	0,000013	0,003331
СТН	82,14	24,08	3,39	0,001596	0,020966	TIAM1	110,66	39,12	2,82	0,000433	0,011099
PCSK1	84,45	24,93	3,38	0,000002	0,002757	LOC515149	101,83	36,25	2,81	0,000945	0,015961
TMEM26	240,52	71,51	3,38	0,000039	0,004198	ERO1L	308,69	109,90	2,80	0,000418	0,010894
CPNE8	166,57	49,52	3,37	0,000010	0,002999	IF130	362,04	128,89	2,80	0,000101	0,005977
DBC1	109,90	32,45	3,37	0,000089	0,005750	EMP3	198,09	71,01	2,79	0,000043	0,004355
RELN	20,25	6,02	3,37	0,000029	0,004135	ANGPTL4	85,04	30,48	2,78	0,000299	0,009218
NPTX2	155,42	46,21	3,36	0,000299	0,009228	LRRN3	24,59	8,82	2,78	0,000111	0,006130
RASGRF2	27.47	8.22	3,35	0.003030	0.030049	BTBD6	302.33	109.14	2,77	0.001404	0.019498
LOC100337	00.04	0.75		0.004040	0.047040	DDUNES	000.00	00.07	0.77	0,000000	0.000057
041	29,24	0,75	3,34	0,001213	0,017919	PRUNEZ	232,32	03,07	2,77	0,000020	0,003657
TNFRSF10	508,46	153,28	3,32	0,000172	0,007281	CAMK1D	78,25	28,44	2,76	0,000008	0,002760
D BGS2	72 50	22.22	3 30	0 000644	0.012001	EAM167A	21 70	11 47	2.76	0 001221	0.010025
	202.00	22,32	3,30	0,000044	0,013091	TAC2	20 04	10.41	2,70	0,001231	0,016035
SLUTA4	101.93	30.70	3,30	0,000038	0,004720	DOCK11	191 02	65.80	2,70	0,000150	0,000374
	155 42	47 18	3,30	0,000090	0,003303	PGS1	101,02	7 11	2,75	0,000132	0,000804
	133.44	40.70	3 27	0,000013	0,000791	TNERSE21	135 30	40.52	2,74	0,000035	0,00000
SI C7A11	83.87	25.63	3 27	0,000003	0,00-130	C2H2orf72	22 78	+9,52 8.40	2,70	0,000000	0,002700
SDC1	188 71	58 /0	3.23	0,000107	0,000001		87 / 3	32.00	2,72	0,000024	0,004000
BMD4	36.76	11 30	3 22	0,000100	0,000022		265.03	07.68	2,72	0,000402	0,011505
EDB/11 3	54 95	17 15	3 20	0,000441	0,011207	SEPDINE1	200,00	11 47	2,12	0,000000	0,004001
	404 50	128.00	3,20	0,000001	0,002757		60 55	22 32	2,72	0,002313	0,020374
ARRB1	86.82	27 47	3 16	0,000001	0.002760	CPXM1	133 44	49 52	2,71	0.000170	0.007275
	78.25	2/ 03	3 15	0,000585	0.012476	[12913227]	17 30	6.45	2,70	0.001344	0.010027
	97.01	31 12	3 14	0,000670	0.012335	KCTD15	31 34	11 63	2,69	0,001044	0,010027
FTNK2	99.73	31 78	3 13	0.000091	0.005750	IFIT1	20.82	7 78	2,67	0.002921	0.029448
NR4A1	195.36	62.68	3 13	0.000160	0.007059	SPINT1	43 71	16 45	2 67	0.001259	0.018274
CA2	71 51	23 10	3.09	0.000026	0.004135	BHLHE41	202 25	76 11	2.66	0.000362	0.010146
HEBP1	410 15	133 44	3.09	0.000020	0.003857	HPGDS	13 00	4 89	2.66	0.001336	0.018928
RAB3C	35.02	11 47	3.06	0.000584	0.012476	MBNL3	60.55	22 78	2.66	0.000014	0.003347
DOC2B	119.43	39.12	3.05	0.000620	0.012799	SERPINA14	48.50	18.25	2.66	0.000032	0.004135
PIRT	51.98	17.03	3.05	0.003425	0.032066	CD44	163 14	61.82	2.63	0.000125	0.006324
ADAM12	119 43	39.40	3.04	0.000029	0.004135	CDH17	109 14	41 64	2.63	0.000006	0.002760
PTGIS	556 41	183 55	3.04	0 000245	0.008521	GLT25D2	57 68	21.86	2.63	0.000284	0 009049
	639 15	209.38	3 04	0.000001	0.002757		27.28	10.41	2 62	0 000099	0.005953
KCNK3	109.90	36 25	3.03	0.001637	0.021196	C1QTNF3	600 49	229 13	2.62	0.000030	0.004135
PTX3	137 19	45 25	3.02	0.001541	0.020530	DPT	19.56	7 46	2.62	0.000757	0.014283
ITGA1	30.70	10,20	3 00	0.000680	0.013462	нк2	1009 90	388.02	2 62	0,000003	0.002760
P2RY1	60.97	20 25	3.00	0.000072	0.005156	GPR83	61 39	23 43	2 61	0.001474	0.020122
CTGF	1698 45	568 10	2 99	0.000003	0.002757	IFITM5	60 55	23.26	2 60	0.001007	0.016482
PID1	225 97	75 58	2 99	0.000003	0.002757	S100A13	94 35	36 25	2 60	0.000192	0.007617
LOC616942	56 10	18 77	2,98	0.000423	0.010979	FGF2	154 34	59.30	2.59	0.000023	0.004080
PHYHIP	43 11	14 42	2 98	0.000013	0.003294	HBZ	36 25	14 03	2 59	0.000834	0.014935
SEL1L3	424 61	143 01	2,98	0.000025	0.004115	SPOCK2	319 57	124 50	2.58	0.000524	0.012035
ANGPT2	66.72	22.47	2.96	0.000491	0.011749	MYB	25.81	10.06	2.57	0.000857	0.015169
CSPG5	66,26	22,32	2,96	0,000883	0,015402	S1PR3	20,97	8,17	2,57	0,002280	0,025563

	hohe	aerinae	FC	ANOVA	FDR p-		hohe	aerinae	FC	ANOVA	FDR p-
Gene	Dichte	Dichte	(hoch	p-value	value	Gene	Dichte	Dichte	(hoch	p-value	value
Symbol	Signal	Signal	VS. gering)	(hoch vs.	(hoch vs.	Symbol	Signal	Signal	VS. gering)	(hoch vs.	(hoch vs.
SI CO2A1	56 10	21.86	2 57	0.000335	0.000730	TOM1L1	221 32	93 70	2 35	0.00065	
TIMP3	1016.93	21,00	2,57	0,000333	0,009730	MXRA5	221,32	93,70	2,33	0,000000	0,004907
TMEM37	125.37	48 84	2,57	0.002092	0.024336	ST8SIA2	23 75	10 13	2,34	0.000037	0.004135
		00,01	_,0.	0,002002	0,021000	TNFRSF10	20,70		2,04	0,000007	0,001100
[12915201]	754,83	294,07	2,57	0,000007	0,002760	Α	140,07	59,71	2,34	0,000255	0,008661
ERRFI1	205,07	79,89	2,56	0,000772	0,014397	CARHSP1	630,35	272,48	2,33	0,000010	0,002999
LBH	156,50	61,39	2,55	0,000767	0,014362	GRIA1	24,08	10,34	2,33	0,001400	0,019464
PRR5L	106,89	41,93	2,55	0,000428	0,011014	GYG2	101,13	43,41	2,33	0,000114	0,006132
TRIM36	22,94	9,00	2,55	0,000531	0,012035	HTRA3	59,71	25,63	2,33	0,003613	0,032927
ARSI	25,28	9,92	2,54	0,005749	0,043014	NOV	40,22	17,27	2,33	0,000063	0,004861
EREG	164,28	64,45	2,54	0,000814	0,014725	SHC3	50,91	21,86	2,33	0,000282	0,009037
PTPRN	215,27	84,45	2,54	0,001273	0,018365	GALNT12	103,25	44,63	2,32	0,000012	0,003288
RHBDF2	157,59	62,25	2,53	0,001960	0,023392	JAM2	666,29	288,01	2,32	0,000045	0,004479
CRYBB1	445,72	177,29	2,52	0,000157	0,006992	MRAP	74,03	31,78	2,32	0,001583	0,020897
GFI1	67,18	26,54	2,52	0,002207	0,025067	TF	66,72	28,64	2,32	0,000126	0,006324
IGF2	250,73	99,73	2,52	0,000115	0,006132	CBS	89,26	38,59	2,31	0,002494	0,026793
	199,47	79,34	2,52	0,000560	0,012281	CHRNA3	50,21	21,86	2,31	0,000428	0,011019
	102,54	40,79	2,52	0,003617	0,032932	GAL	24,76	10,70	2,31	0,000113	0,006130
214	130,69	51,98	2,51	0,000867	0,015270	HHAT	129,79	56,10	2,31	0,000073	0,005188
PAQR7	256,00	101,83	2,51	0,000121	0,006219	PSAT1	639,15	278,20	2,31	0,000305	0,009303
S100A4	13,83	5,54	2,50	0,001123	0,017251	FMOD	560,28	243,88	2,30	0,000301	0,009240
[12895762]	576,03	230,72	2,50	0,000429	0,011019	ACTA2	290,02	126,24	2,29	0,000032	0,004135
EPHX2	141,04	56,89	2,49	0,000161	0,007080	TNFSF18	296,11	129,79	2,29	0,000024	0,004083
FSD1	106,15	42,81	2,49	0,000228	0,008360	ARRDC2	54,95	24,25	2,28	0,000160	0,007059
RCAN1	300,25	120,26	2,49	0,000460	0,011385	CA13	46,21	20,39	2,28	0,001083	0,016996
FGF23	31,34	12,64	2,48	0,006345	0,045619	ZNF395	75,06	33,13	2,28	0,000109	0,006101
	69,07	27,86	2,48	0,002228	0,025253	BLA-DQB	65,34	28,84	2,27	0,001074	0,016904
SLC/A5	139,10	55,72	2,48	0,000246	0,008521		326,29	144,01	2,27	0,000036	0,004135
	76,11	30,70	2,47	0,000164	0,007080	SIRPA	74,54	32,90	2,27	0,000240	0,008500
	171 25	69 55	2,41	0,000000	0,0000007	TNFRSF10	151 17	66 72	2,21	0,000770	0.007617
CSRP2	461.44	188 71	2,40	0,000073	0.004551	A AGTR1	20.82	9.25	2,21	0,000103	0.002760
100529423	82 71	33 59	2 45	0,000002	0.002960		184 82	82 14	2 26	0.000394	0.010562
MYCN	44.02	18,13	2.44	0.000090	0.005750	PRKCDBP	237.21	104.69	2.26	0.000279	0.009023
BDH1	81.57	33.59	2.42	0.000090	0.005750	RGS4	99.73	44.02	2.26	0.000190	0.007617
SERPING1	112,99	46,53	2,42	0,000232	0,008437	HBEGF	85,04	37,79	2,25	0,000104	0,006003
SEPT5	149,09	61,82	2,41	0,000172	0,007281	HTR1F	17,03	7,57	2,25	0,000526	0,012035
GPR68	67,18	27,86	2,41	0,000004	0,002760	KCTD16	29,04	12,91	2,25	0,000369	0,010243
NDUFA4L2	797,86	333,14	2,41	0,003407	0,031959	PAPPA	122,79	54,57	2,25	0,000083	0,005577
[12911433]	596,34	247,28	2,41	0,000022	0,004059	RYR1	30,91	13,74	2,25	0,000133	0,006466
GTPBP2	265,03	110,66	2,39	0,001494	0,020256	SLC30A10	54,19	23,92	2,25	0,000797	0,014571
IL4R	396,18	165,42	2,39	0,000433	0,011095	SLCO4A1	50,56	22,47	2,25	0,001031	0,016588
CMPK2	83,87	35,26	2,38	0,000254	0,008645	NLGN2	333,14	149,09	2,24	0,000273	0,008894
GREM1	61,82	25,99	2,38	0,000059	0,004757	PLCL1	39,67	17,75	2,24	0,000522	0,012035
HSD17B1	43,71	18,25	2,38	0,001003	0,016465	APLP1	120,26	53,82	2,23	0,000284	0,009049
OLFM3	22,01	9,19	2,38	0,000669	0,013335	ABCC3	76,11	34,30	2,22	0,000103	0,006003
PCYT2	519,15	218,27	2,38	0,000256	0,008663	SRPX2	202,25	91,14	2,22	0,000218	0,008231
СТН	71,51	30,06	2,37	0,004117	0,035067	TNIK	172,45	77,71	2,22	0,000017	0,003592
SLC17A9	68,12	28,64	2,37	0,002325	0,025801	[12797921]	23,75	10,70	2,22	0,005809	0,043198
SULT4A1	32,90	13,93	2,37	0,000036	0,004135	MAOB	45,89	20,82	2,21	0,000130	0,006395
VSNL1	19,84	8,40	2,37	0,000585	0,012476	DHH	46,85	21,26	2,20	0,000365	0,010170
	109,90	46,21	2,37	0,000114	0,006132	FAM49A	433,53	196,72	2,20	0,000130	0,006395
ALBP1	39,95	16,91	2,36	0,000096	0,005857	GKB10	56,10	25,63	2,20	0,000031	0,004135
	36,00	15,35	2,36	0,001247	0,018170	PI15	233,94	106,15	2,20	0,000226	0,008328
1901181	307,09	112.04	2,36	0,000002	0,002/5/		272,48	123,64	2,20	0,002133	0,024588
JOP.1	205,03	70.70	2,36	0,000204	0,000/44	3004 ATD1P2	1209,40	310,03	2,20	0,0000007	0,004981
F 0112	265.02	112 24	2,30	0,001/88	0.0022194	FAM/3A	121.04	51,50	2,19	0,000112	0,000130
[12004000]	200,03	112,21	2,30	0,000204	0,000/44		121,94	00,72	2,19	0,000390	0,010344

	hoho	aorinao	FC	ANOVA	FDR p-		hoho	aorinao	FC	ANOVA	FDR p-
Gene	Dichte	Dichte	(hoch	p-value	value	Gene	Dichte	Dichte	(hoch	p-value	value
Symbol	Signal	Signal	vs.	(hoch vs.	(hoch vs.	Symbol	Signal	Signal	vs.	(hoch vs.	(hoch vs.
-	olgilai	olgilai	gering)	gering)	gering)		olgilai	olgilai	gering)	gering)	gering)
ΙΤΡΚΑ	689,78	315,17	2,19	0,000185	0,007508	ME3	44,32	21,26	2,08	0,000114	0,006132
PLXND1	48,84	22,32	2,19	0,000099	0,005953	CRMP1	122,79	59,71	2,07	0,000034	0,004135
PXDC1	149,09	68,12	2,19	0,000086	0,005657	GPR27	23,26	11,24	2,07	0,001527	0,020444
STX3	424,61	194,01	2,19	0,000093	0,005806	MARCH3	319,57	154,34	2,07	0,000056	0,004638
TRPM2	48,17	22,01	2,19	0,000180	0,007395	PAQR9	21,71	10,41	2,07	0,000244	0,008521
CRABP2	1458,23	670,92	2,18	0,000054	0,004595	RAB3C	32,67	15,78	2,07	0,001367	0,019207
CA10	74,03	34,06	2,17	0,000108	0,006073	RNF19B	69,55	33,59	2,07	0,000144	0,006659
EFNB2	67,65	31,12	2,17	0,000029	0,004135	CABLES2	147,03	71,01	2,06	0,000162	0,007080
MATN2	257,78	119,43	2,17	0,000020	0,003857	ITGA11	17,51	8,51	2,06	0,001773	0,022142
ADAMTS14	53,08	24,59	2,16	0,000758	0,014283	JAG1	235,57	113,77	2,06	0,001348	0,019072
ADAMTSL1	41,64	19,29	2,16	0,000098	0,005921	DUSP7	112,21	54,57	2,05	0,003308	0,031532
BHLHE40	1807,78	831,75	2,16	0,000160	0,007059	FGF18	23,26	11,39	2,05	0,000012	0,003182
GOLM1	873,10	404,50	2,16	0,000126	0,006324	PDGFRB	215,27	105,42	2,05	0,000935	0,015891
KCNG3	143,01	66,26	2,16	0,000366	0,010180	ARHGEF25	91,77	44,94	2,04	0,000140	0,006596
TSPAN18	199.47	92.41	2.16	0.000486	0.011720	FAM57A	302.33	148.06	2.04	0.000076	0.005274
[12914747]	15.45	7.16	2.16	0.000529	0.012035	IFITM3	643.59	315.17	2.04	0.002448	0.026492
CPED1	230 72	106 89	2.15	0 000144	0.006659	MPV17L	14 52	7 11	2.04	0 001154	0.017505
CPT1B	83.87	38.85	2 15	0.001260	0.018274	PGF	32.67	16.00	2 04	0.000593	0.012543
MAN1C1	102 54	47 50	2 15	0.000085	0.005657	BCI 2	155.42	76 64	2.03	0.000557	0.012244
MXI1	268 73	125.37	2,10	0,000000	0.00/135	PTGER	380.04	187.40	2,00	0,000675	0,012244
SI C7A1	200,73	114 56	2,15	0,000020	0,004100	[12011107]	143.01	70.03	2,00	0,000073	0,013401
NPPC	16.01	7 90	2,13	0,001045	0,021240	ET 72261	70.02	24 70	2,00	0,000024	0,005566
	77 74	7,09	2,14	0,004050	0,030091	B1.75501	17.20	34,70	2,02	0,000082	0,005500
	121.60	50,50	2,13	0,000010	0,0000001		20.65	0,07	2,02	0,001074	0,010904
PSPH	131,60	01,02	2,13	0,000990	0,010351	INZES	29,05	14,03	2,01	0,001164	0,017720
STARD13	55,72	25,99	2,13	0,000039	0,004198	666	59,30	29,65	2,01	0,001483	0,020178
COL1A1	203,66	96,34	2,12	0,001495	0,020256	LRRC1	257,78	128,00	2,01	0,000066	0,004946
ELTD1	133,44	63,12	2,12	0,000183	0,007457	RNF24	192,67	95,67	2,01	0,000576	0,012417
FBP1	42,81	20,25	2,12	0,000349	0,009930	TLL2	256,00	127,12	2,01	0,001980	0,023524
FN1	916.51	433.53	2.12	0.000018	0.003791	AACS	261.38	130.69	2.00	0.000176	0.007309
GPR39	22.63	10.63	2.12	0.005465	0.041654	BAG2	222.86	111.43	2.00	0.000024	0.004115
PLA2G3	111.43	52.71	2.12	0.001781	0.022180	BCAT1	57.28	28.64	2.00	0.002127	0.024569
SLC38A5	75.06	35.26	2.12	0.002265	0.025458	ММР9	29.04	14.52	2.00	0.001027	0.016588
TAGLN	245.57	115.36	2.12	0.000041	0.004246	[12915197]	23.26	11.63	2.00	0.000668	0.013327
VEGFA	1871.53	885.29	2.12	0.000077	0.005358	FGD5	88.03	44.32	1.99	0.000185	0.007508
ICOSLG	79.89	37 79	2.11	0.003318	0.031573	FGF9	28.05	14 12	1.99	0 000532	0.012035
100507426	153 28	73.01	2 11	0.000206	0.007912	HIPK4	80.45	40.50	1 99	0.000715	0.013828
NPR	61.39	29.04	2 11	0.001265	0.018302	KCNMA1	160,90	81.01	1 99	0.000379	0.010392
PCDH15	15.89	7 57	2 11	0.002115	0.024488	SESN2	57.68	29.04	1 99	0.002122	0.024538
PMFPA1	243.88	115.36	2 11	0.000839	0.014970	EPHA3	24 25	12 21	1 98	0.001134	0.017297
GPCPD1	182 28	86.82	2 10	0.000033	0.004135	DACT1	576.03	292.04	1 97	0.000201	0.007792
00534506	326.20	155 / 2	2,10	0,000000	0,004100	EIE4EBD1	308.60	156 50	1 97	0.001514	0,007702
	308 69	147.03	2 10	0 000294	0.009169	FUT11	418 77	212 31	1 97	0.000088	0.005698
SH2B2	102 54	19 94	2,10	0,000234	0,003103		13.03	7.06	1,57	0,000000	0,000000
TDST2	357.05	170.07	2,10	0,0007.39	0,014203	SEDDINI1	22.04	11.63	1,57	0,000570	0,043333
	30.05	10.03	2,10	0,000000	0,002700		22,34	132.51	1,57	0,000570	0,012334
ADCTT	39,95	19,05	2,09	0,000030	0,004331		239,37	152,51	1,50	0,000099	0,013704
DDIT4	530,06	254,23	2,09	0,000132	0,006428	865	56,10	28,84	1,96	0,001000	0,016416
HILPDA	109,90	52,71	2,09	0,000044	0,004395	PODXL2	71,51	36,50	1,96	0,003529	0,032502
KIAA0408	88,03	41,93	2,09	0,000011	0,003105	THRB	85,04	43,41	1,96	0,000155	0,006964
MVD	237,21	113,77	2,09	0,002027	0,023842	FAM129B	380,04	195,36	1,95	0,000814	0,014725
PIK3CG	37,79	18,13	2,09	0,002255	0,025412	GINS4	55,33	28,44	1,95	0,001210	0,017901
ULBP27	242,19	115,36	2,09	0,000004	0,002760	PKD2L1	36,76	18,90	1,95	0,000222	0,008276
ZEB1	89.88	42.81	2.09	0,000209	0,007996	PLXNA2	809.00	413.00	1.95	0,000177	0,007319
AIF1L	530.06	254.23	2.08	0.000096	0.005857	TSPAN13	477.71	245.57	1.95	0.003307	0.031532
CREB3L1	221 32	106 15	2.08	0.004104	0.035029	C2CD4B	10 78	5 58	1.94	0.000967	0.016158
DDIT3	233 94	112 21	2.08	0.000300	0.009228	IGF2BP2	21 86	11 31	1.94	0.000003	0.002757
FAR2	22 78	10 93	2.08	0.000641	0.013055	DCHS1	230 72	119 43	1.93	0.001488	0.020238
GMNC	15.35	7.36	2 08	0.001596	0.020966	MIR228411	99 73	51 63	1 93	0.000852	0.015113
LANCL3	24 93	11.96	2.08	0.001195	0.017803	PDE4C	24 08	12 47	1.93	0.001893	0.022867
	,00	,00	_,00	-,	-,		,00	, .,	.,	-,-0.000	-,

	haha	aorinao	FC	ANOVA	FDR p-		haha	aorinao	FC	ANOVA	FDR p-
Gene	none Dichto	geringe Dichto	(hoch	p-value	value	Gene	none Dichto	geringe Dichto	(hoch	p-value	value
Symbol	Signal	Signal	vs.	(hoch vs.	(hoch vs.	Symbol	Signal	Signal	vs.	(hoch vs.	(hoch vs.
	Olgilai	Olgilai	gering)	gering)	gering)		Olghai	Olgridi	gering)	gering)	gering)
SYTL2	88,65	45,89	1,93	0,000546	0,012146	SCG2	335,46	182,28	1,84	0,000229	0,008383
ARL4C	77,71	40,22	1,92	0,000428	0,011014	COL5A1	89,88	49,18	1,83	0,000201	0,007792
BASP1	349,71	182,28	1,92	0,000005	0,002760	CXADR	170,07	93,05	1,83	0,000259	0,008682
CHRNB1	66,26	34,54	1,92	0,000547	0,012149	LMO2	216,77	118,60	1,83	0,000118	0,006211
ITPK1	634,73	330,84	1,92	0,000198	0,007734	MPI	240,52	131,60	1,83	0,001578	0,020870
LIPE	41,07	21,26	1,92	0.003328	0,031614	PREX1	33,13	18,00	1,83	0,000768	0,014362
LOC100296	440.40	00.05		0.000000	0.000000	0.104	004 70	0.40 74		0.000047	0.000000
849	119,43	62,25	1,92	0,000226	0,008328	CLIC1	634,73	349,71	1,82	0,000217	0,008228
LRRC71	103,25	53,82	1,92	0,000257	0,008675	COL6A3	25,11	13,83	1,82	0,000150	0,006864
CCDC3	49,18	25,81	1,91	0,001805	0,022295	FABP3	1418,35	781,44	1,82	0,000004	0,002760
HES4	61,39	32,00	1,91	0,007122	0,049075	FZD8	102,54	56,49	1,82	0,000974	0,016201
HSPA1A	216,77	113,77	1,91	0,001385	0,019321	HPCAL1	114,56	63,12	1,82	0,000529	0,012035
ITGA4	298.17	156.50	1.91	0.001223	0.018004	MYO1E	199.47	109.90	1.82	0.000153	0.006919
PFKL	1060 11	552 56	1.91	0 001635	0.021183	NR0B2	30,91	17 03	1.82	0 000218	0 008228
PEKP	807.64	467.88	1 91	0,000306	0.010568	SEMA7A	146.02	80.45	1.82	0.000821	0.01/810
	77 17	40.50	1 01	0,000330	0,010300		107 10	70.02	1 91	0,000021	0,01-010
	100.00	40,50	1,91	4.005.07	0,010392	OFRINGA	127,12	70,03	1,01	0,003073	0,030292
PRDAS	120,20	03,12	1,91	1,29E-07	0,002757	SERINC2	410,15	225,97	1,01	0,002070	0,029104
PRKX	199,47	103,97	1,91	0,000446	0,011237	SFRP1	16,91	9,32	1,81	0,000617	0,012793
SPRY4	63,56	33,13	1,91	0,000610	0,012722	SLC2A4	36,25	19,97	1,81	0,001019	0,016578
[12912521]	10,27	5,39	1,91	0,000709	0,013776	ANK3	15,78	8,75	1,80	0,002662	0,027847
ADAMTS1	119,43	62,68	1,90	0,001195	0,017803	ATP2B3	20,82	11,55	1,80	0,000721	0,013865
FAM159A	38,59	20,25	1,90	0,002645	0,027779	IRAK3	23,10	12,91	1,80	0,004600	0,037388
MAP3K8	40,22	21,11	1,90	0,004196	0,035409	MFAP2	28,64	15,89	1,80	0,004102	0,035028
SERINC2	162,02	85,63	1,90	0,005794	0,043168	PMP22	254,23	141,04	1,80	0,000128	0,006365
BGN	15,78	8,34	1,89	0,004805	0,038458	PTGER2	23,26	12,91	1,80	0,000624	0,012849
BRP44L	209,38	110,66	1,89	0,000104	0,006015	RYR2	25,46	14,12	1,80	0,000306	0,009311
CEBPG	227,54	120,26	1,89	0,000487	0,011720	TFCP2L1	30,48	16,91	1,80	0,001746	0,021927
НВМ	14,83	7,84	1,89	0,005153	0,040094	[12911305]	37,27	20,68	1,80	0,001226	0,018025
SI C2A1	1064 57	1038,2	1 90	0 000632	0.012023	EAIM2	51 63	28.84	1 70	0.006041	0 048347
SLOZAT	1904,37	9	1,09	0,000032	0,012923		51,05	20,04	1,75	0,000941	0,040347
VSTM4	36,00	19,03	1,89	0,000661	0,013257	GNG4	21,56	12,04	1,79	0,000012	0,003182
ARNTL	101,13	54,19	1,88	0,000672	0,013369	MAP3K13	117,78	65,80	1,79	0,000266	0,008775
FASN	1618,00	861,08	1,88	0,000533	0,012035	MBOAT2	461,44	257,78	1,79	0,000409	0,010804
GLIPR2	195,36	103,97	1,88	0,001255	0,018253	NRP2	18,90	10,56	1,79	0,001059	0,016809
LOC787392	89,88	47,50	1,88	0,001355	0,019133	PAFAH1B3	442,64	249,00	1,79	0,000726	0,013908
SLC13A3	101,13	53,82	1,88	0,001074	0,016904	PTGER3	10,48	5,86	1,79	0,002002	0,023714
[12750655]	247,28	131,60	1,88	0,000561	0,012281	RELL1	152,22	84,45	1,79	0,000562	0,012292
KHDRBS3	57,28	30,70	1,87	0,000449	0,011258	RNF165	70,52	39,40	1,79	0,002819	0,028846
MERTK	418,77	224,41	1,87	0,000146	0,006693	SNAP91	95,67	53,45	1,79	0,000015	0,003552
MGC127538	30,91	16,56	1,87	0,000451	0,011258	CSPG4	37,53	21,11	1,78	0,006263	0,045253
SV2B	22.78	12.21	1,87	0.001690	0.021600	FAM70A	109.14	61.39	1,78	0.000091	0.005750
TGFBI	70.03	37.53	1.87	0.000087	0.005694	KIAA1147	14.72	8.28	1.78	0.003068	0.030272
CORIN	51.27	27.67	1.86	0.000113	0.006130	LOC522631	142.02	79.89	1.78	0.000002	0.002757
FAM174B	34 54	18 64	1.86	0.000063	0.004861	MIF	315 17	177 29	1.78	0.004108	0.035029
LOC100337	01,01	10,01	.,	0,000000	0,001001		010,11	111,20	.,. •	0,001100	0,000020
132	54,57	29,45	1,86	0,004097	0,035008	PDK1	792,35	445,72	1,78	0,000107	0,006025
MAP4K2	128,00	69,07	1,86	0,002360	0,026040	PRKCB	81,01	45,57	1,78	0,001225	0,018025
PLXDC2	1573,76	849,22	1,86	0,000029	0,004135	PTRF	130,69	74,03	1,78	0,000626	0,012869
SOX9	99,73	53,82	1,86	0,000785	0,014465	RIPK4	24,42	13,74	1,78	0,000331	0,009688
SRD5A1	172,45	92,41	1,86	0,000524	0,012035	TWIST1	57,68	32,45	1,78	0,005013	0,039446
CCDC64	16.45	8.88	1.85	0.001260	0.018274	UCP2	158.68	89.26	1.78	0.000049	0.004548
F2RI 1	32.22	17 39	1 85	0.003675	0.033132	[12913153]	9.92	5 58	1 78	0.000016	0.003552
KCN 12	16 53	25 11	1.85	0,000070	0.015821		36.25	20.53	1 77	0,000010	0,000002
I TRD1	1136.20	613 11	1,05	0,000525	0,011021		66 72	20,00	1 77	0,000000	0,001000
	1130,20	44.00	1,00	0,000000	0,011921		260.72	37,53	4 77	0,001029	0,021152
WAP SKY	21,01	14,93	1,85	0,000381	0,010407		200,/3	152,22	1,77	0,000244	0,008521
PUE10A	/2,50	39,12	1,85	0,000146	0,006693	KAMP1	34,30	19,43	1,77	0,003152	0,030734
SYT12	25,28	13,74	1,85	0,002661	0,027847	RGCC	53,82	30,27	1,77	0,001752	0,021977
TNFAIP8	25,99	14,03	1,85	0,005625	0,042324	SMAD7	123,64	69,55	1,77	0,000192	0,007617
C19H17orf7	52,71	28,64	1,84	0,000534	0,012035	SNX7	101,83	57,68	1,77	0,000747	0,014151
	267.00	100 47	4.04	0.000000	0.005007	RONTO	101.00	F7 00	4 70	0.000500	0.040407
MIHFD2	367,09	199,47	1,84	0,00069	0,005027	B3GN19	101,83	57,68	1,76	0,000580	0,012467

	hohe	aerinae	FC	ANOVA	FDR p-		hohe	aerinae	FC	ANOVA	FDR p-
Gene	Dichte	Dichte	(hoch	p-value	value	Gene	Dichte	Dichte	(hoch	p-value	value
Symbol	Signal	Signal	VS. gering)	(hoch vs.	(hoch vs.	Symbol	Signal	Signal	VS. gering)	(hoch vs.	(hoch vs.
LOC100297			gernig)	genng)	genng)				gernig)	genng)	genng)
185	99,73	56,89	1,76	0,000176	0,007309	CDKN2D	50,91	29,86	1,71	0,000130	0,006395
MFSD2A	56,89	32,22	1,76	0,000042	0,004289	CTTNBP2	49,87	29,24	1,71	0,000037	0,004135
PIM1	183,55	104,69	1,76	0,001786	0,022194	CYTIP	23,59	13,74	1,71	0,003638	0,032967
PTPRR	140,07	79,34	1,76	0,000317	0,009395	GPR50	362,04	210,84	1,71	0,001192	0,017803
SCN1B	46,85	26,54	1,76	0,000102	0,005999	HMGCR	1530,73	897,64	1,71	0,000026	0,004115
SYN3	89,26	50,91	1,76	0,000777	0,014438	HYI	200,85	117,78	1,71	0,000227	0,008343
CPNE4	59,71	34,06	1,75	0,001509	0,020340	ISG12(B)	85,63	50,21	1,71	0,001745	0,021927
FGF13	12,82	7,31	1,75	0,003563	0,032675	ITGA6	596,34	347,29	1,71	0,000391	0,010554
FSTL4	111,43	64,00	1,75	0,001691	0,021606	KCNK13	72,50	42,22	1,71	0,003044	0,030138
GPRC5B	1136,20	648,07	1,75	0,000016	0,003552	LDHA	1314,23	765,36	1,71	0,005872	0,043526
MAPK13	50,21	28,64	1,75	0,001417	0,019591	NAALAD2	20,82	12,21	1,71	0,006795	0,047622
PLN	47,50	27,28	1,75	0,000807	0,014681	P4HA3	424,61	249,00	1,71	0,000156	0,006980
PRSS23	219,79	125,37	1,75	0,000258	0,008675	SLC36A4	87,43	50,91	1,71	0,001907	0,022981
TUBB2B	270,60	155,42	1,75	0,004999	0,039412	TM7SF2	996,00	584,07	1,71	0,002092	0,024336
ATF4	744,43	427,57	1,74	0,000234	0,008441	[12784684]	61,39	35,75	1,71	0,000426	0,011014
BACH2	57,68	33,13	1,74	0,002104	0,024407	B3GALT2	272,48	160,90	1,70	0,001278	0,018400
KIF1A	23,75	13,74	1,74	0,004411	0,036505	CSTB	879,17	519,15	1,70	0,000047	0,004491
LOC100139 161	25,46	14,62	1,74	0,001104	0,017153	GPR123	26,72	15,78	1,70	0,006168	0,044834
MRCL	32,45	18,64	1,74	0,000225	0,008328	VILL	16,34	9,65	1,70	0,002175	0,024900
MST4	28,64	16,56	1,74	0,001704	0,021718	BCAM	292,04	172,45	1,69	0,002723	0,028204
PCDH19	13,74	7,89	1,74	0,002377	0,026117	CAPG	216,77	128,00	1,69	0,002873	0,029092
TNFSF4	298,17	171,25	1,74	0,000533	0,012035	CLEC14A	7,78	4,59	1,69	0,003061	0,030232
[12902863]	196,72	112,99	1,74	0,001116	0,017197	GABBR2	61,39	36,25	1,69	0,004729	0,038019
[12911109]	224,41	128,89	1,74	0,001352	0,019105	GNE	213,78	126,24	1,69	0,000718	0,013832
DHODH	106,15	61,39	1,73	0,000516	0,011995	GRK5	59,30	35,02	1,69	0,000779	0,014438
DOCK3	72,50	41,93	1,73	0,001932	0,023213	HDAC11	56,10	33,13	1,69	0,003179	0,030843
GYS1	362,04	209,38	1,73	0,000339	0,009781	NFIL3	97,68	57,68	1,69	0,005593	0,042230
ITIH4	25,28	14,62	1,73	0,004095	0,035005	PPP1R14A	55,33	32,90	1,69	0,000594	0,012543
JUND	150,12	86,22	1,73	0,001109	0,017196	UFSP1	128,89	76,64	1,69	0,001172	0,017626
MIR2382	229,13	133,44	1,73	0,000659	0,013244	WSCD1	50,56	30,06	1,69	0,001961	0,023392
RND3	786,88	455,09	1,73	0,000073	0,005174	ZPBP2	85,63	50,56	1,69	0,000140	0,006591
RNF125	113,77	65,80	1,73	0,001415	0,019591	ABCC9	8,46	5,06	1,68	0,001816	0,022350
SLC5A6	82,14	47,50	1,73	0,000361	0,010128	ACSS1	36,76	21,86	1,68	0,000615	0,012765
51KJ9	45,89	26,54	1,73	0,000064	0,004878	GASO	39,40	23,43	1,68	0,000347	0,009901
TOKU	31,56	18,25	1,73	0,000581	0,012476		51,63	30,70	1,68	0,000829	0,014884
1300	101,02	104,09	1,73	0,001444	0,019070		1002,09	929,30	1,00	0,000111	0,000130
	202,40	147,03	1,72	0,001710	0,021790		07,20 162.14	07.01	1,00	0,000450	0,011200
BCI 3	63 12	36.76	1,72	0,001000	0,010007		35 75	21.26	1,00	0,000324	0,009504
	32 90	10 16	1,72	0,004230	0,033010	SAMDA	36.25	21,20	1,00	0,001134	0,017303
CXCR7	77 17	44 94	1 72	0.006443	0.046031	[12912737]	522 76	310.83	1,00	0.000286	0,009066
CYP4411	6.82	3 97	1 72	0,000440	0.021246		308 03	237 21	1,00	0.000531	0,000000
FAH	84 45	49 18	1.72	0.000569	0.012354	ARSA	88 65	52 71	1.67	0.002264	0.025458
FHOD3	62.68	36 25	1.72	0.000245	0.008521	CNTNAP2	32 45	19 43	1.67	0.000039	0.004198
FSTL3	1160.07	670.92	1.72	0.001527	0.020444	COMMD6	491.14	294.07	1.67	0.000112	0.006130
GCNT4	12.21	7.11	1.72	0.003428	0.032066	ENPP1	163.14	97.68	1.67	0.000845	0.015020
GFRA4	32,90	19,03	1,72	0,002938	0,029540	KLF6	218,27	131,60	1,67	0,000122	0,006225
KBTBD5	20,11	11,71	1,72	0,002827	0,028869	MAML3	167,73	100,43	1,67	0,000158	0,007035
KCTD12	118,60	68,59	1,72	0,001413	0,019586	NDNF	484,38	288,01	1,67	0,000191	0,007617
LIF	52,71	30,48	1,72	0,005503	0,041843	NEDD9	100,43	59,71	1,67	0,002315	0,025732
NOLC1	147,03	85,63	1,72	0,000008	0,002760	SHOX2	9,25	5,50	1,67	0,000907	0,015567
PHLDB2	67,18	39,12	1,72	0,000082	0,005566	SLC12A3	27,86	16,68	1,67	0,000349	0,009930
RCN3	512,00	298,17	1,72	0,000654	0,013214	SLC9A7	464,65	278,20	1,67	0,000708	0,013772
XYLT1	156,50	91,14	1,72	0,000570	0,012354	SNRNP25	213,78	127,12	1,67	0,000320	0,009463
[12901612]	298,17	173,65	1,72	0,000120	0,006214	SVIL	82,71	49,52	1,67	0,000036	0,004135
BNIP3	2134,97	1243,3 م	1,71	0,000071	0,005156	TDRKH	16,91	10,20	1,67	0,002697	0,028021
C8H9orf43	16,34	9,51	1,71	0,002192	0,024958	ADAMTS17	245,57	148,06	1,66	0,001762	0,022055

	hoho	aorinao	FC	ANOVA	FDR p-		hoho	goringo	FC	ANOVA	FDR p-
Gene	Dichte	Dichte	(hoch	p-value	value	Gene	Dichte	Dichte	(hoch	p-value	value
Symbol	Signal	Signal	vs.	(hoch vs.	(hoch vs.	Symbol	Signal	Signal	vs.	(hoch vs.	(hoch vs.
	orginal	olgilai	gering)	gering)	gering)		olgilai	orginal	gering)	gering)	gering)
CDH7	11,71	7,06	1,66	0,000677	0,013436	OLFML2B	79,34	49,18	1,62	0,000241	0,008500
DCT	8,57	5,17	1,66	0,000592	0,012533	PDE8B	67,65	41,64	1,62	0,002124	0,024553
GPX7	1002,93	604,67	1,66	0,002208	0,025067	PRDM1	11,16	6,87	1,62	0,000961	0,016142
NEGR1	32,90	19,84	1,66	0,001577	0,020870	RHOD	52,71	32,45	1,62	0,000019	0,003841
PANK3	427,57	257,78	1,66	0,000006	0,002760	тмссз	230,72	143,01	1,62	0,000889	0,015441
SPRY1	250,73	152,22	1,66	0,003202	0,030950	[12914897]	38,05	23,43	1,62	0,000557	0,012244
WWTR1	171,25	103,25	1,66	0,000706	0,013744	ABHD12	1074,91	666,29	1,61	0,000337	0,009738
ZNF259	533,74	319,57	1,66	0,000014	0,003350	C1H21orf91	330,84	205,07	1,61	0,000327	0,009620
BEAN1	39,67	23,92	1,65	0,000536	0,012035	CAMK1G	210,84	131,60	1,61	0,000712	0,013808
GPR124	56,49	34,06	1,65	0,000490	0,011736	CD83	256,00	158,68	1,61	0,000594	0,012543
LOC506989	120,26	72,50	1,65	0,000307	0,009330	DDR2	84,45	52,35	1,61	0,004485	0,036806
SEMA3C	167,73	101,83	1,65	0,001987	0,023590	DUS3L	56,10	34,78	1,61	0,002975	0,029715
SLC16A6	16,56	9,99	1,65	0,000091	0,005750	FSD1L	38,05	23,59	1,61	0,004162	0,035299
SNAP25	83,87	50,91	1,65	0,001583	0,020897	GPT2	302,33	188,71	1,61	0,000081	0,005551
TMEM204	34,54	20,97	1,65	0,003903	0,034206	INSIG1	1176,27	734,19	1,61	0,000593	0,012543
TMEM97	689,78	418,77	1,65	0,000007	0,002760	LOC509911	4,59	2,85	1,61	0,004912	0,039024
[12910704]	21,41	13,00	1,65	0,001534	0,020487	PPP1R3B	103,25	64,00	1,61	0,000245	0,008521
ASB13	62,25	37,79	1,64	0,000967	0,016158	SLC4A7	167,73	104,69	1,61	0,005155	0,040094
DDT	157,59	96,34	1,64	0,003080	0,030306	SMYD2	333,14	206,50	1,61	0,001230	0,018035
FAT4	51,63	31,56	1,64	0,000020	0,003857	SPRYD3	167,73	103,97	1,61	0,003991	0,034466
JUNB	274,37	167,73	1,64	0,000784	0,014465	[12914919]	9,38	5,82	1,61	0,006530	0,046424
LOXL1	46,85	28,64	1,64	0,000225	0,008328	ACSL1	172,45	107,63	1,60	0,000335	0,009730
LTB4R	25,81	15,78	1,64	0,006708	0,047242	AK1	110,66	69,55	1,60	0,001057	0,016809
MEODO	005 07	407.40		0.004007	0.001404	C21H14orf7	04.05	50.00	4.00	0.000400	0.000574
MFSD6	225,97	137,19	1,04	0,001007	0,021424	9	94,35	56,69	1,60	0,000136	0,006574
PFKFB3	149,09	90,51	1,64	0,003356	0,031750	C23H6orf14	43,71	27,28	1,60	0,000693	0,013618
DCD	605.00	445.07	4.64	0.000176	0.007200		500.00	260.65	4 60	0.000002	0.000757
	776.05	413,07	1,04	0,000170	0,007309		104 60	509,05 65.24	1,00	0,000003	0,002757
DASEE	0 51	5.04	1,04	0,000311	0,011970		202 66	107 10	1,00	0,000130	0,000370
	204.07	179.53	1,04	0,001713	0,021701	ITEG2	112 21	70.03	1,00	0,001071	0,010904
	294,07	8.04	1,04	0,000240	0,000500	100514750	78.25	10,03	1,00	0,000019	0,030300
SLC33F1	14,52	2 00	1,04	0,001410	0,019591		10,23	261.39	1,00	0,000047	0,004491
3200401	4,03	1243.3	1,04	0,001370	0,020070		410,77	201,50	1,00	0,000240	0,000021
ACSS2	2033,85	4	1,63	0,000166	0,007125	PABPC1L	12,82	8,00	1,60	0,001502	0,020296
BCAT2	155,42	95,01	1,63	0,003110	0,030420	PKIA	855,13	533,74	1,60	0,000164	0,007080
CDKN2B	35,02	21,41	1,63	0,002554	0,027243	PMVK	85,04	53,08	1,60	0,000222	0,008276
GADD45A	60,97	37,53	1,63	0,000344	0,009859	PPAPDC3	916,51	572,05	1,60	0,000302	0,009264
GADD45B	229,13	141,04	1,63	0,000212	0,008035	RBPMS	106,89	67,18	1,60	0,002834	0,028875
HSD17B12	709,18	433,53	1,63	0,000040	0,004221	TNIP1	140,07	87,43	1,60	0,001133	0,017297
HSD17B7	374,81	229,13	1,63	0,000741	0,014057	WNT11	34,54	21,56	1,60	0,000487	0,011720
MOB2	60,97	37,53	1,63	0,000701	0,013721	[12717836]	61,39	38,32	1,60	0,000923	0,015767
NKAIN3	164,28	100,43	1,63	0,000164	0,007080	APOPT1	136,24	86,22	1,59	0,002146	0,024672
PRSS35	59,71	36,50	1,63	0,001762	0,022055	CREG2	29,45	18,51	1,59	0,005762	0,043072
TMEM119	26,54	16,34	1,63	0,006999	0,048543	DBNDD2	106,15	66,72	1,59	0,001771	0,022140
TMTC4	105,42	64,89	1,63	0,000001	0,002757	DUSP4	18,13	11,39	1,59	0,000140	0,006591
VDR	24,59	15,03	1,63	0,005782	0,043129	EDEM1	280,14	176,07	1,59	0,000339	0,009781
ACAD10	177,29	109,14	1,62	0,001056	0,016809	GTF2IRD1	76,11	47,84	1,59	0,000857	0,015169
ADAMTSL1	34,54	21,26	1,62	0,000670	0,013335	H1F0	374,81	237,21	1,59	0,000396	0,010568
CDC42EP1	168,90	103,97	1,62	0,006164	0,044821	LOC538483	78,25	48,84	1,59	0,003850	0,034008
COL4A1	156,50	96,34	1,62	0,001955	0,023390	MGST1	826,00	519,15	1,59	0,001280	0,018418
DDIT4L	40,79	25,28	1,62	0,003384	0,031866	MT2A	548,75	344,89	1,59	0,002607	0,027575
DLL1	24,42	15,14	1,62	0,007194	0,049296	NTN4	526,39	330,84	1,59	0,000048	0,004547
EGR1	374,81	230,72	1,62	0,000313	0,009365	RNF122	89,88	56,49	1,59	0,001089	0,017053
EPS8	19,70	12,13	1,62	0,002469	0,026629	RORA	313,00	196,72	1,59	0,000999	0,016416
GPR176	40,79	25,28	1,62	0,001096	0,017108	ACAT2	1408,55	891,44	1,58	0,000060	0,004760
GRIA3	1060,11	652,58	1,62	0,000003	0,002757	BEND5	29,24	18,38	1,58	0,002475	0,026668
IGDCC4	164,28	101,13	1,62	0,001605	0,021025	CHRNA7	16,45	10,41	1,58	0,006644	0,046979
MSTN	30,27	18,77	1,62	0,003388	0,031888	DUSP10	44,02	27,86	1,58	0,000968	0,016158
NAB2	59,71	36,76	1,62	0,006671	0,047062	FXYD1	233,94	148,06	1,58	0,005623	0,042318
			FC	ANOVA	FDR p-				FC	ANOVA	FDR p-
------------	---------	---------	---------	-----------	-----------	-------------	---------	---------	---------	-----------	-----------
Gene	hohe	geringe	(hoch	p-value	value	Gene	hohe	geringe	(hoch	p-value	value
Symbol	Dichte	Dichte	vs.	(hoch vs.	(hoch vs.	Symbol	Dichte	Dichte	vs.	(hoch vs.	(hoch vs.
	Signal	Signal	gering)	gering)	gering)		Signal	Signal	gering)	gering)	gering)
GPR162	11,88	7,52	1,58	0,001607	0,021025	C17H4orf29	512,00	330,84	1,54	0,001055	0,016809
LMO7	55,33	35,02	1,58	0,004174	0,035299	FAM163A	34,78	22,47	1,54	0,005802	0,043174
LOC513388	79,89	50,91	1,58	0,000710	0,013778	GPR98	13,09	8,46	1,54	0,003391	0,031894
LONRF1	98,36	62,25	1,58	0,003470	0,032298	JPH1	85,63	55,72	1,54	0,000259	0,008682
NPHP3	67,65	43,11	1,58	0,003263	0,031268	KDM1B	135,30	87,43	1,54	0,003001	0,029897
PARM1	714,11	451,94	1,58	0,000079	0,005450	METRNL	70,03	45,25	1,54	0,000267	0,008788
SLC43A3	390.72	247.28	1.58	0.001586	0.020897	MRPL45	265.03	171.25	1.54	0.000417	0.010894
[12900935]	177 29	111 43	1.58	0 000334	0 009727	RUNX2	474 41	308 69	1.54	0 001381	0 019296
ASCC1	393 44	250 73	1 57	0.001095	0.017108	SHISA4	194 01	126 24	1 54	0.006477	0.046169
ATE3	74.03	47 18	1 57	0.001824	0.022384	SI C25A1	1120 56	720 11	1 54	0.004567	0.037250
COL 5A1	003 80	576.03	1 57	0,001024	0,022004		01 14	58 80	1 54	0,004007	0,0072004
COLSAI	303,09	10.04	4.57	0,000704	0,013730	TRRC	7.57	1 00	1,54	0,000030	0,013004
EGRZ	31,34	19,84	1,57	0,006677	0,047087	TRPC3	7,57	4,89	1,54	0,003657	0,033046
ENKUR	17,75	11,31	1,57	0,000495	0,011788	IRPC5	143,01	93,05	1,54	0,000464	0,011396
GALE	61,82	39,40	1,57	0,002363	0,026040	[12875228]	9,99	6,50	1,54	0,004229	0,035578
GNAL	16,68	10,63	1,57	0,001791	0,022203	[12915425]	136,24	88,03	1,54	0,001802	0,022282
KIRREL2	20,11	12,91	1,57	0,000209	0,007999	AGAP3	113,77	74,03	1,53	0,000600	0,012615
LOC100336	916,51	584,07	1,57	0,002310	0,025716	BMP6	93,05	60,97	1,53	0,002849	0,028962
870						0.11/	0-0.40		4		
ORAIZ	99,73	63,56	1,57	0,001230	0,018035	СНКА	252,48	165,42	1,53	0,003184	0,030852
SAT1	1782,89	1136,2	1,57	0,000053	0,004554	CHRNE	31,34	20,39	1,53	0,002963	0,029636
[12897264]	36 50	23.26	1 57	0 001637	0 021196	CI CN4	99 73	65 34	1 53	0 001096	0 017108
C22H3orf67	75.06	10,20	1 56	0,001007	0,027020		40 17	21.24	1 53	0,001000	0,017100
C22H30H07	102.54	40,17	1,50	0,002079	0,027920	CPNE4	40,17	12.04	1,55	0,000172	0,007201
CCDC156	102,54	00,00	1,50	0,000105	0,007500	CPZ	19,70	12,91	1,55	0,005516	0,041000
ECI1	340,14	218,27	1,56	0,000821	0,014810	EIV1	163,14	106,89	1,53	0,000718	0,013832
GUSZ	123,64	79,34	1,56	0,000716	0,013828	GBE1	522,76	340,14	1,53	0,002953	0,029616
GALN11	596,34	382,68	1,56	0,000108	0,006073	IMPA2	25,11	16,45	1,53	0,003916	0,034270
охт	2164,77	1389,1	1,56	0,000655	0,013225	LOC100335	308,69	202,25	1,53	0,000087	0,005694
DNE157	162.02	103.07	1 56	0 000152	0 006884	233 DAK6	35 75	23 /3	1 53	0 000602	0 012632
SI C39A13	115 36	74.03	1,56	0.001969	0,000004	PCDHB5	16.22	10.63	1,50	0.005041	0,012002
52033A13	000.04	140.00	1,50	0,001000	0,022700	DCC7DD	0.06	F 04	4 50	0,000041	0,039020
[12911095]	233,94	149,09	1,50	0,000269	0,009069		0,00	125.20	1,55	0,000778	0,014430
	50,97	39,40	1,55	0,000741	0,014057		207,94	135,30	1,55	0,002014	0,023750
ANGELI	75,06	48,50	1,55	0,002293	0,025623	RNF144A	112,99	74,03	1,53	0,002732	0,028260
APOLD1	17,15	11,08	1,55	0,000560	0,012281	SSPN	218,27	142,02	1,53	0,003446	0,032158
BDNF	22,32	14,32	1,55	0,000764	0,014335	SUOX	648,07	421,68	1,53	0,000728	0,013923
BT.105273	72,00	46,53	1,55	0,006479	0,046171	TMEM22	25,99	17,03	1,53	0,007174	0,049214
CYP51A1	861,08	552,56	1,55	0,002722	0,028204	WWC2	203,66	133,44	1,53	0,000512	0,011982
DCXR	58,08	37,53	1,55	0,002106	0,024412	APOA1	192,67	127,12	1,52	0,001458	0,019982
FAM83A	22,94	14,72	1,55	0,002234	0,025271	BICC1	8,40	5,50	1,52	0,006444	0,046031
FLOT1	494,56	319,57	1,55	0,001548	0,020597	EGLN1	634,73	415,87	1,52	0,000110	0,006115
KIAA0284	78,79	50,91	1,55	0,002162	0,024793	FAM107B	8,06	5,31	1,52	0,006622	0,046877
LOC782892	22,63	14,52	1,55	0,004862	0,038732	GCNT2	14,83	9,78	1,52	0,001007	0,016482
LRCH1	97,68	62,68	1,55	0,000078	0,005368	GRASP	32,90	21,71	1,52	0,001248	0,018170
PIH1D1	171,25	110,66	1,55	0,000172	0,007281	KLHL36	60,97	40,22	1,52	0,006163	0,044821
	20.53	13 27	1 55	0.003786	0 033673	LOC100337	6.87	4 53	1 52	0 001932	0 023213
	20,00	10,21	1,00	0,000700	0,000070	102	0,07	1,00	1,02	0,001002	0,020210
PTGFRN	461,44	298,17	1,55	0,000874	0,015313	LOC786625	31,12	20,53	1,52	0,004133	0,035159
SBNO2	115,36	74,54	1,55	0,001289	0,018462	MIR2318	9,58	6,28	1,52	0,002996	0,029852
SLIT3	24,42	15,78	1,55	0,005334	0,041005	NDST3	14,62	9,58	1,52	0,003253	0,031194
TFR2	28,64	18,51	1,55	0,000046	0,004479	PDGFRL	16,80	11,08	1,52	0,002021	0,023785
TKTL1	17,27	11,16	1,55	0,004329	0,036125	PIK3CD	36,00	23,59	1,52	0,002148	0,024683
TMEM45A	685,02	442,64	1,55	0,000462	0,011385	SETBP1	11,79	7,73	1,52	0,001606	0,021025
VASH2	104,69	67,18	1,55	0,001974	0,023478	TBL2	148,06	97,01	1,52	0,003095	0,030357
[12911395]	44,32	28,64	1,55	0,001568	0,020807	[12911073]	156,50	102,54	1,52	0,000956	0,016094
[12915337]	15,14	9,78	1,55	0,000574	0,012397	SEPT3	24,08	16,00	1,51	0,007239	0,049475
ABHD12B	35,75	23,26	1.54	0,001360	0,019186	A2M	1016.93	675.59	1.51	0,001108	0,017196
	2022.25	1323,3	4 = 4	0.000400	0.007040	ACMO	50.04	00.00	4 = 4	0.004700	0.004745
AULT	2033,85	7	1,54	0,000169	0,007248	AGMU	50,21	33,36	1,51	0,001708	0,021745
ADAMTS10	32,45	21,11	1,54	0,000758	0,014283	C10RF173	14,12	9,38	1,51	0,006066	0,044411

Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)	Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)
CERS6	187,40	123,64	1,51	0,000007	0,002760	NAMPT	290,02	192,67	1,51	0,001725	0,021813
CPNE7	24,76	16,45	1,51	0,003474	0,032314	NUDT4	362,04	238,86	1,51	0,001410	0,019554
FRMD4A	54,57	36,25	1,51	0,000556	0,012237	PTPN5	73,01	48,17	1,51	0,003184	0,030852
INPP4B	83,29	54,95	1,51	0,002978	0,029740	RAI14	448,82	296,11	1,51	0,000237	0,008486
IQSEC1	53,82	35,75	1,51	0,001154	0,017505	SERPINB8	206,50	137,19	1,51	0,002404	0,026317
LOC100849 021	39,95	26,54	1,51	0,002754	0,028416	TMEM220	116,97	77,71	1,51	0,004074	0,034888
MOXD1	17,03	11,31	1,51	0,001352	0,019105	[12911035]	13,09	8,63	1,51	0,005080	0,039804

Zahlen in eckigen Klammern stellen die Transcript ID des Arrays dar, ermöglichten jedoch keine Annotation; FC, Fold Change

Tabelle 11: 669 herunterregulierte Gene aufgrund der Erhöhung der Zelldichte in Kultur.

Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)	Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)
TXNIP	13,00	1031,12	-79,50	0,000014	0,003410	CENPA	45,57	138,14	-3,02	0,007276	0,049633
PAG11	46,53	719,08	-15,47	0,000020	0,003857	CENPE	31,56	94,35	-3,00	0,000164	0,007080
ARRDC4	56,89	464,65	-8,13	0,000006	0,002760	LPCAT2	32,45	95,67	-2,95	0,000118	0,006211
CYP19A1	11,96	83,87	-7,02	0,000103	0,005999	TLR6	48,50	143,01	-2,93	0,000279	0,009022
PIK3R3	16,91	111,43	-6,55	0,000103	0,005999	CHN1	48,84	141,04	-2,89	0,000138	0,006574
LOC512293	8,94	49,18	-5,49	0,001836	0,022461	[12899207]	19,97	57,28	-2,87	0,004323	0,036081
XDH	15,14	81,01	-5,36	0,000026	0,004135	EEPD1	112,99	324,03	-2,87	0,000041	0,004257
SLC43A2	166,57	820,30	-4,91	0,000002	0,002757	[12912551]	39,12	112,21	-2,86	0,002695	0,028009
NRG1	6,82	33,13	-4,87	0,000093	0,005813	SLC44A3	34,06	97,01	-2,86	0,000273	0,008894
SUSD4	53,45	257,78	-4,83	0,000004	0,002760	HIST1H2AD	78,25	221,32	-2,84	0,000068	0,005023
ASPN	4,59	21,86	-4,77	0,000114	0,006132	MKI67	43,41	122,79	-2,83	0,000113	0,006130
FSHR	26,17	121,10	-4,64	0,000225	0,008328	DLGAP5	31,12	87,43	-2,81	0,001120	0,017220
DHRS9	30,27	139,10	-4,59	0,000010	0,002999	GSTA5	123,64	347,29	-2,81	0,000246	0,008521
INHA	71,01	321,80	-4,53	0,000230	0,008402	HIST1H2AH	38,05	106,89	-2,80	0,001521	0,020386
ANO3	24,42	102,54	-4,20	0,002169	0,024838	KNTC1	16,45	45,57	-2,79	0,000065	0,004923
SRGN	491,14	2019,80	-4,09	0,000091	0,005750	APOD	38,85	107,63	-2,78	0,000269	0,008805
OMD	5,13	20,97	-4,06	0,000104	0,006015	KIF4A	22,32	62,25	-2,78	0,001421	0,019620
[12914277]	56,10	224,41	-4,01	0,000480	0,011646	BUB1	21,86	60,55	-2,77	0,001046	0,016765
SST	23,26	90,51	-3,90	0,000526	0,012035	CDK1	20,68	57,28	-2,76	0,001892	0,022867
RASL11B	68,12	257,78	-3,78	0,000041	0,004253	KIF20A	58,49	159,79	-2,75	0,000235	0,008441
KCNAB1	31,34	117,78	-3,77	0,000072	0,005156	LGMN	153,28	415,87	-2,72	0,000074	0,005188
NDC80	17,03	63,12	-3,69	0,000290	0,009095	MUM1L1	78,25	213,78	-2,72	0,000688	0,013549
ARHGAP11	19,70	72,50	-3,68	0,000907	0,015567	PRC1	46,53	125,37	-2,70	0,000378	0,010386
CYP2C87	11.16	41.07	-3.68	0.000760	0.014291	CCNA2	56.89	152.22	-2.68	0.001479	0.020155
PPAP2B	51,63	184,82	-3,58	6,14E-07	0,002757	PIH1D2	5,78	15,45	-2,67	0,000486	0,011720
H4	60,55	216,77	-3,57	0,000515	0,011995	ASPM	27,28	72,00	-2,64	0,000838	0,014970
SPTLC3	42,81	144,01	-3,38	0,000280	0,009023	NUSAP1	7,57	19,97	-2,64	0,003180	0,030843
CSF1	18,38	60,55	-3,30	0,000019	0,003841	EXO1	8,88	23,43	-2,63	0,001737	0,021891
ROBO2	90,51	298,17	-3,27	0,000058	0,004729	DPYD	13,55	35,26	-2,62	0,001040	0,016702
[12906506]	7,36	24,08	-3,26	0,006804	0,047641	FAM72A	8,69	22,78	-2,62	0,001696	0,021661
LOC537655	12,82	41,64	-3,26	0,000043	0,004355	ASB15	10,34	26,91	-2,61	0,002624	0,027660
TOP2A	60,97	196,72	-3,23	0,000503	0,011908	ATOH8	45,25	117,78	-2,60	0,000122	0,006244
OAS1Y	11,79	37,79	-3,21	0,000725	0,013908	MIS18BP1	22,32	58,08	-2,60	0,001193	0,017803
GRB14	136,24	427,57	-3,15	0,000306	0,009311	QRFPR	12,47	32,45	-2,60	0,000862	0,015225
CNIH3	23,75	74,54	-3,14	0,000517	0,011995	CASP4	41,36	107,63	-2,59	0,003649	0,033021
CASC5	23,26	72,00	-3,10	0,002206	0,025067	KIF11	41,07	106,15	-2,57	0,004783	0,038379
KIF18A	17,88	55,33	-3,10	0,002625	0,027663	SPC25	9,71	24,93	-2,57	0,000513	0,011982
BUB1B	25,99	79,89	-3,08	0,000077	0,005358	CENPF	31,12	79,34	-2,56	0,000418	0,010894
ACE2	8,34	25,46	-3,06	0,000146	0,006693	FANCD2	14,83	38,05	-2,56	0,000546	0,012146
MYO5C	9,13	27,86	-3,04	0,000535	0,012035	RARRES1	78,25	200,85	-2,56	0,000385	0,010446

Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)	Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)
SESN3	91,77	233,94	-2,55	0,000524	0,012035	[12911023]	10,63	23,26	-2,19	0,000048	0,004547
ORM1	7,73	19,56	-2,53	0,001670	0,021445	LOC100297	4,99	10,93	-2,19	0,002308	0,025707
РВК	48,84	122,79	-2,51	0,003503	0,032417	TBC1D8	56,89	125,37	-2,19	0,000037	0,004135
SPAG5	20,82	52,35	-2,51	0,000384	0,010446	CHST8	102,54	222,86	-2,18	0,002189	0,024935
MEF2C	43,71	109,14	-2,50	0,000881	0,015382	FAM171B	257,78	564,18	-2,18	0,000031	0,004135
CDC20	36,50	91,14	-2,49	0,000258	0,008682	IFI27	72,50	156,50	-2,17	0,001466	0,020069
DEPDC1	22,47	55,72	-2,49	0,002240	0,025326	MASTL	15,78	34,30	-2,17	0,001302	0,018583
SLC6A6	21,41	53,45	-2,49	0,000152	0,006884	POLQ	9,92	21,56	-2,17	0,000183	0,007465
KIF2C	15,45	38,05	-2,47	0,003376	0,031814	TLR1	43,71	95,01	-2,17	0,000446	0,011237
IBSP	7,26	17,88	-2,46	0,002009	0,023750	KIF15	15,78	34,06	-2,16	0,002393	0,026230
TAF9B	89,88	219,79	-2,46	0,000430	0,011051	CNNM2	36,76	78,79	-2,15	0,000046	0,004479
ESCO2	30,48	74,54	-2,44	0,002651	0,027812	DCLRE1B	113,77	245,57	-2,15	0,000120	0,006214
	458,25	1120,56	-2,44	0,000163	0,007080	EXOSC10	227,54	487,75	-2,15	0,000047	0,004491
MAP3N3	44,02	106,89	-2,43	0,001158	0,017507	LOC507471	36,00	016 77	-2,15	0,002540	0,027144
	46 53	112 21	-2,43	0,000052	0,004551		38.05	210,77	-2,15	0,001207	0,010402
ASB16	53.08	12,21	-2,40	0,000005	0,040000	CXHXorf22	7 67	16 45	-2,14	0.003095	0.030357
HIST1H1C	26.17	62.68	-2.40	0.000112	0.006130	HEG1	224.41	477.71	-2.14	0.000599	0.012612
VNN1	15,24	36,50	-2,40	0,003039	0,030105	NUF2	28,44	60,97	-2,14	0,005938	0,043836
IFT81	32,00	76,64	-2,39	0,003947	0,034368	ANLN	77,17	165,42	-2,13	0,003943	0,034368
RRM2	65,80	157,59	-2,39	0,001534	0,020487	ASF1B	49,52	105,42	-2,13	0,001482	0,020176
DAB2	300,25	714,11	-2,38	0,000017	0,003650	FAM64A	15,78	33,59	-2,13	0,003574	0,032729
REL	45,89	109,14	-2,38	0,002188	0,024935	FCGRT	78,25	166,57	-2,13	0,000309	0,009335
EXO5	31,12	74,03	-2,37	0,001319	0,018762	DTX3L	33,82	71,51	-2,12	0,000042	0,004291
ST3GAL6	19,03	45,25	-2,37	0,003334	0,031655	ITGA8	16,68	35,26	-2,12	0,000311	0,009365
MELK	30,70	72,50	-2,36	0,001248	0,018170	AR	159,79	337,79	-2,11	0,000001	0,002757
CAMKMT	38,05	89,88	-2,35	0,000194	0,007659	NCAPH	38,85	82,14	-2,11	0,000731	0,013962
	6,96	16,34	-2,35	0,000440	0,011207	PIK3R1	639,15	1341,84	-2,11	0,000047	0,004491
	16.01	177,29	-2,34	0,000709	0,013776	WDR35	48,84	102,54	-2,11	0,005721	0,042902
	53.08	39,40 123.64	-2,34	0,000052	0,004551	LUC527300	29,00	65.80	-2,10	0,000972	0,010192
CDKN3	42 52	98.36	-2,32	0,002000	0.028699	ENPP5	245 57	512.00	-2,03	0,000007	0,005819
GLIPR1	52.35	121.10	-2.32	0.000036	0.004135	HOXC4	13.36	27.86	-2.09	0.000036	0.004135
KIAA0319	9,06	20,97	-2,32	0,000072	0,005158	CKAP2	93,70	195,36	-2,08	0,001207	0,017887
PRKAG3	70,52	163,14	-2,32	0,000182	0,007431	DRAM2	99,04	205,07	-2,08	0,001052	0,016809
ZNF704	145,01	337,79	-2,32	0,000025	0,004115	TIGD2	14,52	30,06	-2,08	0,000525	0,012035
KIAA0101	21,11	48,84	-2,31	0,000406	0,010756	[12726406]	14,12	29,24	-2,07	0,006152	0,044814
PRR11	17,63	40,79	-2,31	0,000290	0,009095	FANCI	32,00	66,26	-2,07	0,001724	0,021813
AIG1	15,89	36,50	-2,30	0,000241	0,008500	PARP9	7,78	16,11	-2,07	0,000063	0,004865
RPS26	18,00	41,36	-2,30	0,004019	0,034648	RBM43	41,64	86,22	-2,07	0,007015	0,048606
[12893857]	18,38	42,22	-2,28	0,005039	0,039622	TEX15	30,48	63,12	-2,07	0,000442	0,011207
HJURP	18,38	41,93	-2,28	0,001249	0,018170		21,26	43,71	-2,06	0,000016	0,003592
	10,00	30,50	-2,21	0,001106	0,017190		00,70 00,72	205.07	-2,06	0,004350	0,030207
	36.00	45,25	-2,27	0,000055	0,013214		99,73 70.52	205,07	-2,05	0,000255	0,000039
CKAP2L	35,51	79.89	-2,27	0.000872	0.015277	LOC783491	5 10	10.48	-2,05	0.006533	0,012343
KIF23	47.84	108.38	-2.26	0.001948	0.023365	TMEM62	61.39	126.24	-2.05	0.001103	0.017153
NEK2	9,19	20,68	-2,26	0,000470	0,011499	MOB3B	22,47	45,57	-2,04	0,000060	0,004760
LOC517139	19,56	44,02	-2,25	0,002103	0,024405	PUS10	33,82	68,59	-2,04	0,000868	0,015270
TSPAN15	19,03	42,81	-2,25	0,001836	0,022461	ACSL6	34,06	69,07	-2,03	0,000264	0,008744
HSPA4L	31,12	70,03	-2,24	0,004857	0,038729	POLE2	15,45	31,12	-2,02	0,004397	0,036425
TRIB2	237,21	533,74	-2,24	0,000260	0,008700	SLC16A14	61,82	125,37	-2,02	0,000116	0,006153
UBE2C	119,43	266,87	-2,23	0,000084	0,005603	SPATA6L	7,89	16,00	-2,02	0,000735	0,014007
LOC786657	23,92	53,08	-2,22	0,00087	0,005694	CENPO	32,00	64,45	-2,01	0,000080	0,005465
CPT1A	144,01	319,57	-2,21	0,000601	0,012615	EHHADH	17,27	34,78	-2,01	0,002335	0,025881
[12750559]	40,22	88,03	-2,20	0,000235	0,008441	FAM83D	14,93	29,86	-2,01	0,000624	0,012853
SGOL2	33,13	73,01	-2,20	0,001873	0,022741	HIS (1H1D	30,27	60,55	-2,01	0,000492	0,011749
ZNF432	14,93	32,67	-2,20	0,005263	0,040596	IQGAP3	23,92	48,17	-2,01	0,000316	0,009384

Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)	Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)
LOC784007	122,79	247,28	-2,01	0,000067	0,004982	FANCB	4,86	9,13	-1,88	0,000312	0,009365
SKA3	57,68	116,97	-2,01	0,001202	0,017864	MARCH8	88,65	166,57	-1,88	0,000116	0,006143
ECM2	15,35	30,70	-2,00	0,000285	0,009057	RGS7	25,99	48,84	-1,88	0,001381	0,019296
ERAP2	24,76	49,52	-2,00	0,003618	0,032932	[12913531]	15,56	29,04	-1,87	0,002540	0,027144
CAP2	103,25	205,07	-1,99	0,000054	0,004595	STYXL1	27,10	50,56	-1,87	0,000134	0,006505
GCLC	374,81	749,61	-1,99	0,000141	0,006621	ZNF214	5,46	10,20	-1,87	0,005545	0,041991
STIL	17,63	35,02	-1,99	0,003681	0,033138	FAM129A	401,71	744,43	-1,86	0,00008	0,002760
TP53INP1	240,52	477,71	-1,99	0,000909	0,015567	MSMB	7,01	13,00	-1,86	0,002439	0,026447
DZANK1	172,45	342,51	-1,98	0,000029	0,004135	SGOL1	29,24	54,57	-1,86	0,000687	0,013534
HNRNPM	156,50	308,69	-1,98	0,004611	0,037455	THEM4	97,68	181,02	-1,86	0,006140	0,044801
TMEM229B	51,27	101,83	-1,98	0,000030	0,004135	ZRANB2	109,14	203,66	-1,86	0,003763	0,033592
ANKRD45	24,42	48,17	-1,97	0,004260	0,035721	[12915179]	12,55	23,26	-1,85	0,003202	0,030950
C5H12orf35	704,28	1389,16	-1,97	0,000056	0,004638	CYFIP2	14,93	27,67	-1,85	0,001006	0,016482
DDX58	33,13	64,89	-1,97	0,000677	0,013436	DTX4	40,22	74,54	-1,85	0,000889	0,015441
GAS2L3	67,18	132,51	-1,97	0,002315	0,025732	MSH2	44,94	83,29	-1,85	0,001504	0,020315
HERC5	11,96	23,59	-1,97	0,003180	0,030843	NALCN	11,00	20,25	-1,85	0,001808	0,022311
RAB7L1	35,02	69,07	-1,97	0,003022	0,029987	PARPBP	13,18	24,42	-1,85	0,006806	0,047641
RNF213	95,01	187,40	-1,97	0,000408	0,010794	CA5B	75,06	139,10	-1,84	0,003716	0,033357
DOCK4	30,48	60,13	-1,96	0,000055	0,004633	GINS3	32,00	58,89	-1,84	0,005922	0,043778
	46,53	91,14	-1,96	0,001058	0,016809		13,36	24,59	-1,84	0,003405	0,031952
ALDH1A1	7,52	14,72	-1,95	0,000461	0,011385	N1502	86,82	159,79	-1,84	0,002231	0,025265
	37,53	13,52	-1,95	0,000249	0,008576	SEC14LZ	38,05	102.25	-1,84	0,001462	0,020035
NUDITS DTCD1	153.28	130,24	-1,95	0,00035	0,011962		50,49 62.68	103,25	-1,03	0,000569	0,012354
SP1/0	0.10	17 99	-1,95	0,0000000	0,004133	EMO5	02,00	167 73	-1,03	0,000109	0,000101
	3/2 51	666.20	-1,55	0,000401	0,010044		32.22	58.80	-1,00	0,000234	0,000441
C16H1orf11	09.04	55 70	-1,34	0,000040	0,012140	100	440.00	000.50	-1,00	0,007035	0,040303
5	28,84	55,72	-1,94	0,000006	0,002760	103	112,99	206,50	-1,83	0,003439	0,032133
EPHA4	90,51	176,07	-1,94	0,000342	0,009832	ODF2L	270,60	494,56	-1,83	0,002829	0,028875
HOPX	127,12	245,57	-1,94	0,001374	0,019258	PDE7B	42,81	78,79	-1,83	0,000437	0,011170
ID1	64,00	124,50	-1,94	0,000297	0,009200	RRAD	49,87	91,14	-1,83	0,004237	0,035616
KCND2	20,68	40,22	-1,94	0,004425	0,036558	SEPP1	203,66	374,81	-1,83	0,001025	0,016588
340	5,43	10,56	-1,94	0,006175	0,044859	SMC4	73,01	133,44	-1,83	0,003616	0,032932
LOC525511	70,03	136,24	-1,94	0,002208	0,025067	STARD10	89,88	164,28	-1,83	0,000702	0,013729
LOC788250	75,58	146,02	-1,94	0,000292	0,009130	EHD3	44,94	82,14	-1,82	0,001623	0,021106
HOXC8	38,32	74,03	-1,93	0,000959	0,016117	KANK1	124,50	227,54	-1,82	0,000012	0,003182
MSANTD3	44,32	85,63	-1,93	0,001841	0,022492	LOC508666	49,18	89,88	-1,82	0,004888	0,038895
MX1	41,07	79,34	-1,93	0,000753	0,014260	MRPS14	67,18	121,94	-1,82	0,005931	0,043804
ZHX1	65,34	126,24	-1,93	0,004368	0,036321	MYBL2	32,00	58,08	-1,82	0,000661	0,013257
AJUBA	68,12	130,69	-1,92	0,000383	0,010446	RENBP	71,01	128,89	-1,82	0,000097	0,005885
BRCA1	32,90	63,56	-1,92	0,000508	0,011936	SKA1	11,63	21,11	-1,82	0,002712	0,028131
	209,38	401,71	-1,92	0,000052	0,004551	SLC28A2	6,45	11,79	-1,82	0,000365	0,010170
	29,45	56,49	-1,92	0,003954	0,034368		33,59	60,97 76 11	-1,01	0,000779	0,014438
LINGO2 MCM5	44,3Z	60.55	-1,92	0,003555	0,032040		41,95	10,11	-1,01	0,003245	0,031171
	30,25 16.00	09,55 30,70	-1,92	0,003910	0,030776	C1S	24,59	44,00	-1,01	0,000000	0,002760
	40.22	30,70 77 71	-1,92	0,003104	0,030770	CCNB3	20.86	54 10	-1,01	0,000331	0,009702
CEP97	51.63	98.36	-1,52	0,0000000	0,030337	CI CA3	1296 13	2336.28	-1,01	0,001007	0,022000
	31 78	60,00	-1.91	0.000314	0.009365	HMMR	33 59	60.55	-1.81	0.000450	0.011258
01102	6 77	10.01	4.04	0,000456	0,000000	LOC100336	20,00	44.07	4.04	0,000400	0.017455
CLIC2	6,77	12,91	-1,91	0,000456	0,011328	893	22,78	41,07	-1,81	0,001147	0,017455
DPF3	46,21	88,03	-1,91	0,000006	0,002760	SLC38A9	120,26	216,77	-1,81	0,004421	0,036554
MARCH11	33,82	64,45	-1,91	0,003959	0,034381	CAMKK2	99,73	179,77	-1,80	0,00036	0,004135
SLC25A20	39,40	75,58	-1,91	0,000025	0,004115	CBX6	48,17	86,82	-1,80	0,000449	0,011258
	143,01	272,48	-1,91	0,000341	0,009811	LUC616167	298,17	537,45	-1,80	0,002246	0,025356
	43,11	82,14	-1,90	0,004299	0,035942		14,52	25,99	-1,80	0,000440	0,013496
WIIR 2358	53,45	101,83	-1,90	0,000603	0.026447		32,90	58,89	-1,/9	0,000142	0,000037
ILRJ	54,19 10.00	26.00	-1,90	0,002435	0,020447	TDIMEO	95,07	75.00	-1,/9	0,000119	0,000214
EGFLI FF71	132 51	250,00	-1,09	0,001040	0,010/00	7BTR1	41,04	347 20	-1,79	0,0007 19	0,042094 0 027817
FEZ I	132,51	200,73	-1,09	0,002421	0,020390	LDIDI	192,07	347,29	-1,79	0,002009	0,02/04/

Gene Symbolhohe Dichte Signalgeringe Dichte SignalFC (hoch vs. gering)ANOVA p-value (hoch vs. gering)FDR p- value (hoch vs. gering)Gene Signalhohe pointe Signalgeringe (hoch vs. gering)Gene SymbolSignalSignalFC (hoch vs. gering)ANOVA p-value (hoch vs. gering)FDR p- value (hoch vs. gering)Gene Symbolhohe Dichte Signalgeringe peringe (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)
ARHGDIB 30,48 54,19 -1,78 0,001325 0,018846 EFCAB7 29,45 50,91 -1,72	0,003920	0,034272
ATAD2 184,82 328,56 -1,78 0,000017 0,003636 LOC100337 12,13 20,82 -1,72	0,002621	0,027660
C16H1orf11 14.42 25.63 -1.78 0.005142 0.040094 METTL23 26.35 45.57 -1.72	0.000548	0.012149
HOXC6 36.00 64.00 -1.78 0.000460 0.011385 MMS221 30.48 52.35 -1.72	0.001373	0.019258
KIAA0391 32,22 57,28 -1,78 0,004842 0,038677 NDUFAF7 69,55 120,26 -1,72	0,005131	0,040064
LIAS 12,55 22,32 -1,78 0,001272 0,018365 NFRKB 44,63 77,17 -1,72	0,001022	0,016588
PLEKHA7 23,43 41,64 -1,78 0,000569 0,012354 ORC1 12,73 22,01 -1,72	0,002059	0,024105
PRR14L 101,83 181,02 -1,78 0,001153 0,017505 PRKD1 172,45 296,11 -1,72	0,000597	0,012585
ZNF391 5,50 9,85 -1,78 0,000937 0,015923 PSRC1 26,91 46,21 -1,72	0,003046	0,030141
[12911641] 45,57 81,01 -1,78 0,006433 0,046009 TMEM106C 141,04 242,19 -1,72	0,000135	0,006505
CCND1 23,10 40,79 -1,77 0,006099 0,044598 IPX2 96,34 166,57 -1,72	0,002156	0,024732
NCAPD2 36.00 63.56 -1.77 0.000508 0.011936 [12915165] 18.38 31.56 -1.72	0.002844	0,033020
NLGN1 56,10 99.73 -1.77 0.002546 0.027191 ANKRD44 38.05 65.34 -1.71	0,001439	0,019828
URB2 41,64 74,03 -1,77 0,000282 0,009037 CASP8 77,71 133,44 -1,71	0,001127	0,017262
ZMAT3 216,77 385,34 -1,77 0,000251 0,008602 CD36 209,38 359,54 -1,71	0,002853	0,028974
CLIP1 168,90 296,11 -1,76 9,93E-07 0,002757 GABRE 15,24 26,17 -1,71	0,001959	0,023392
DEPDC5 174,85 308,69 -1,76 0,000004 0,002760 GDNF 27,28 46,53 -1,71	0,004543	0,037084
FHL5 4,38 7,73 -1,76 0,006501 0,046294 HIST1H2BN 11,79 20,25 -1,71	0,000789	0,014478
FSI 652,58 1152,06 -1,76 0,001285 0,018460 IF180 47,18 80,45 -1,71 KIE22 15.25 27.10 4.76 0.002022 0.002023 0.002023 0.002023 10.002023 10.002023 10.0020023 11.1 17.1 17.1 17.1 10.0020023 10	0,001654	0,021349
PIEKHΔ5 21.71 38.05 -1.76 0.000903 0.015548 NEU3 55.33 95.01 -1.71	0,001701	0,021691
PLK4 61.39 108.38 -1.76 0.002912 0.029370 [12765863] 166.57 286.03 -1.71	0.000817	0.014756
SYNE1 22,01 38,59 -1,76 0,000414 0,010887 ABAT 48,84 83,29 -1,70	0,000905	0,015567
TBC1D4 124,50 219,79 -1,76 0,000023 0,004064 ABAT 48,17 82,14 -1,70	0,001211	0,017913
TBPL1 74,54 130,69 -1,76 0,002031 0,023875 BARD1 24,42 41,64 -1,70	0,006128	0,044744
YPEL3 70,52 123,64 -1,76 0,000860 0,015207 CDC6 10,13 17,15 -1,70	0,006459	0,046104
ZNF462 218,27 385,34 -1,76 0,000033 0,004135 CDH8 152,22 257,78 -1,70	0,000103	0,006003
[12914493] 8,17 14,42 -1,76 0,000940 0,015944 CWC27 17,88 30,48 -1,70	0,006249	0,045205
[12915227] 8,17 14,42 -1,76 0,000940 0,015944 DDAH1 184,82 313,00 -1,70 IBE1 23.50 41.07 -1,75 0,000525 0,012035 [G3RP1 240.52 410.15 -1,70	0,000111	0,006130
MIR2484 3.71 6.45 -1.75 0.000899 0.015531 REV3L 129.79 221.32 -1.70	0.000239	0.008500
NPY1R 51,27 89,88 -1,75 0,000607 0,012688 USP53 121,10 205,07 -1,70	0,002438	0,026447
PAQR3 77,17 135,30 -1,75 0,000214 0,008128 [12803773] 86,22 146,02 -1,70	0,006708	0,047242
PHKB 103,97 182,28 -1,75 0,002480 0,026702 [12911813] 8,22 14,03 -1,70	0,003442	0,032146
PLD1 809,00 1408,55 -1,75 0,000034 0,004135 CENPN 35,02 58,89 -1,69	0,000955	0,016092
RAD51 44,32 77,71 -1,75 0,001219 0,017970 FAM111B 33,82 57,28 -1,69	0,000090	0,005750
SMC1A 100,43 176,07 -1,75 0,000211 0,008035 IGFBP4 46,53 78,79 -1,69	0,000488	0,011725
INEMI 194A 70,52 123,64 -1,75 0,003955 0,034366 MCM4 46,17 61,57 -1,69	0,002166	0,024935
WDR77 37.53 65.34 -1.75 0.00002 0.002757 NAPEPLD 45.25 76.64 -1.69	0.003166	0.030776
CD55 286,03 498,00 -1,74 0,000325 0,009598 PDE5A 225,97 380,04 -1,69	0,002283	0,025576
LOC537017 81,57 142,02 -1,74 0,003890 0,034168 STXBP6 40,79 68,59 -1,69	0,005597	0,042230
METAP1D 26,91 46,85 -1,74 0,000442 0,011207 TP53BP1 36,00 60,55 -1,69	0,000181	0,007409
MOSC2 48,84 85,04 -1,74 0,005819 0,043238 AK3 67,65 113,77 -1,68	0,007084	0,048910
SLC4A4 24,42 42,52 -1,74 0,001053 0,016809 BRCA2 29,86 50,21 -1,68	0,000392	0,010554
WWC1 34,30 59,71 -1,74 0,001025 0,016588 CAMK2G 82,71 139,10 -1,68	0,000049	0,004549
[12092913] 7,31 12,73 -1,74 0,003061 0,033070 GISE1 25,63 43,11 -1,68	0,000371	0,010283
HIST1H2AC 78 79 136 24 -1.73 0.005949 0.043864 IFT46 81 57 137 19 -1.68	0,0003200	0,031201
LOC521581 515,56 885,29 -1,73 0,003988 0,034466 MYOCD 42,52 71,51 -1,68	0,005912	0,043743
NCAPG2 37,79 65,34 -1,73 0,005609 0,042268 POLE 19,97 33,82 -1,68	0,004107	0,035029
NFYB 30,06 51,98 -1,73 0,002355 0,026013 [12914733] 58,08 98,36 -1,68	0,006307	0,045520
RHBDL2 86,82 150,12 -1,73 0,001779 0,022180 ARHGAP6 72,00 120,26 -1,67	0,000233	0,008441
SAT2 65,80 112,99 -1,73 0,000011 0,003105 AXDND1 5,66 9,45 -1,67	0,003971	0,034406
TICRR 12,47 21,56 -1,73 0,002276 0,025534 BRIP1 12,47 20,82 -1,67 C02012-514 20.52 25.26 4.72 0.000274 0.000274 0.000274 0.000274 0.000274 0.000274 0.0000074 0.0000074 0.0000	0,002836	0,028875
-1.77	0.000704	0 042740

CSRNP3 31,56 53,08 -1,67 0,002257 0,025419 MiR2414 8,88 14,52 -1,63 0,000474 0,0 CYB5D1 29,04 48,50 -1,67 0,002569 0,027327 NHSL2 23,26 38,05 -1,63 0,000199 0,0 HDAC8 60,55 101,13 -1,67 0,002498 0,037384 RGNEF 138,14 225,97 -1,63 0,001299 0,0 METTL20 25,28 42,22 -1,67 0,002849 0,028962 RNASET2 116,16 190,02 -1,63 0,000130 0,0 MPZL3 23,43 39,12 -1,67 0,004628 0,037504 TPST1 21,11 34,30 -1,63 0,000705 0,0 MTX3 37,53 63,12 -1,67 0,003789 0,033682 C11H2orf44 16,45 26,54 -1,62 0,001623 0,0 NQ01 45,25 75,06 -1,67 0,003789 0,033682 C11H2orf44 16,45 2	Joint J.011561 J.00761 J.018035 J.0108035 J.010170 J.013730 J.021106 J.021552 J.006025 J.047876 J.000591 J.009049 J.009365
CYB5D1 29,04 48,50 -1,67 0,002569 0,027327 NHSL2 23,26 38,05 -1,63 0,00199 0,0 HDAC8 60,55 101,13 -1,67 0,004598 0,037384 RGNEF 138,14 225,97 -1,63 0,00129 0,0 METTL20 25,28 42,22 -1,67 0,002849 0,028962 RNASET2 116,16 190,02 -1,63 0,00129 0,0 MPZL3 23,43 39,12 -1,67 0,00176 0,017652 SMC6 270,60 442,64 -1,63 0,000105 0,0 MTX3 37,53 63,12 -1,67 0,003789 0,033682 C11H2orf44 16,45 26,54 -1,62 0,001623 0,0 NQO1 45,25 75,06 -1,67 0,003789 0,033682 C11H2orf44 16,45 26,54 -1,62 0,001623 0,0),007761),018035),006395),010170),013730),021106),021552),007236),0040316),0021552),040316),006025),047876),006591),009049),009733),009365
HDAC8 60,55 101,13 -1,67 0,004598 0,037384 RGNEF 138,14 225,97 -1,63 0,001229 0,0 METTL20 25,28 42,22 -1,67 0,002849 0,028962 RNASET2 116,16 190,02 -1,63 0,001100 0,0 MPZL3 23,43 39,12 -1,67 0,004598 0,037504 RNASET2 116,16 190,02 -1,63 0,000130 0,0 MTX3 37,53 63,12 -1,67 0,004528 0,037504 TPST1 21,11 34,30 -1,63 0,000705 0,0 NQO1 45,25 75,06 -1,67 0,003789 0,033682 C11H2orf44 16,45 26,54 -1,62 0,001623 0,0),018035),006395),010170),013730),021106),007236),040316),021552),040376),047876),009049),009733),009365
METTL20 25,28 42,22 -1,67 0,002849 0,028962 RNASET2 116,16 190,02 -1,63 0,000130 0,0 MPZL3 23,43 39,12 -1,67 0,00176 0,017652 SMC6 270,60 442,64 -1,63 0,000365 0,0 MTX3 37,53 63,12 -1,67 0,004628 0,037504 TPST1 21,11 34,30 -1,63 0,000705 0,0 NQ01 45,25 75,06 -1,67 0,003789 0,033682 C11H2orf44 16,45 26,54 -1,62 0,001623 0,0),006395),010170),021106),021106),007236),040316),021552),040316),006025),047876),006591),009049),009733),009365
MPZL3 23,43 39,12 -1,67 0,001176 0,017652 SMC6 270,60 442,64 -1,63 0,000365 0,0 MTX3 37,53 63,12 -1,67 0,004628 0,037504 TPST1 21,11 34,30 -1,63 0,000705 0,0 NQO1 45,25 75,06 -1,67 0,003789 0,033682 C11H2orf44 16,45 26,54 -1,62 0,001623 0,0),010170),021106),021106),007236),007236),040316),021552),040316),006025),047876),006591),009049),009733),009365
MTX3 37,53 63,12 -1,67 0,004628 0,037504 TPST1 21,11 34,30 -1,63 0,000705 0,0 NQO1 45,25 75,06 -1,67 0,003789 0,033682 C11H2orf44 16,45 26,54 -1,62 0,001623 0,0 C18H19orf1),013730),021106),007236),040316),021552),040316),021552),047876),006025),047876),006591),009049),009733),009365
NQO1 45,25 75,06 -1,67 0,003789 0,033682 C11H2orf44 16,45 26,54 -1,62 0,001623 0,0),021106),007236),040316),021552),006025),047876),006591),009049),009733),009365
C18H19orf1),007236),040316),021552),006025),047876),006591),009049),009733),009365
NYNRIN 72,00 120,26 -1,67 0,000309 0,009330 26,35 42,81 -1,62 0,000169 0,0),040316),021552),006025),047876),006591),009049),009733),009365
RHNO1 26.35 44.32 -1.67 0.001272 0.018365 FIGN 42.52 69.07 -1.62 0.005216 0.0),021552),006025),047876),006591),009049),009733),009365
SKP2 40,79 68,12 -1,67 0,003965 0,034403 GUCY2C 8,17 13,18 -1,62 0,001685 0,0),006025),047876),006591),009049),009733),009365
SMC2 93,05 155,42 -1,67 0,004851 0,038691 ICK 209,38 340,14 -1,62 0,000106 0,0),047876),006591),009049),009733),009365
TACC3 21,86 36,50 -1,67 0,002516 0,026983 JMY 69,07 112,21 -1,62 0,006848 0,0),006591),009049),009733),009365
TMEM52 75,06 125,37 -1,67 0,005921 0,043778 PINX1 32,90 53,08 -1,62 0,000139 0,0),009049),009733),009365
TRGC4 3,53 5,90 -1,67 0,000042 0,004289 PION 4,66 7,57 -1,62 0,000283 0,0),009733),009365
[12911561] 57,68 96,34 -1,67 0,000736 0,014007 RIN2 97,01 156,50 -1,62 0,000336 0,0),009365
DIRC2 106,89 177,29 -1,66 0,000614 0,012765 SOX6 48,84 79,34 -1,62 0,000313 0,0	
DYRK3 22,63 37,53 -1,66 0,001119 0,017220 SPRY3 82,71 134,36 -1,62 0,003077 0,0),030304
FMO4 24,42 40,50 -1,66 0,005110 0,039966 ADCY6 138,14 222,86 -1,61 0,001047 0,0),016772
FOXL2 147,03 245,57 -1,66 0,003876 0,034094 BTBD8 16,68 26,72 -1,61 0,000613 0,0),012764
GSTM2 421,68 699,41 -1,66 0,000143 0,006659 C1R 13,27 21,41 -1,61 0,001090 0,0),017053
KLHDC9 20,97 34,78 -1,66 0,002712 0,028131 C1RL 47,84 77,17 -1,61 0,003487 0,0),032371
MMP2 120,26 199,47 -1,66 0,007343 0,049952 CGN 32,45 52,35 -1,61 0,000140 0,0),006591
RACGAP1 89,88 148,06 -1,66 0,004616 0,037466 DSEL 300,25 484,38 -1,61 0,001011 0,),016510
TSNAX 97,68 162,02 -1,66 0,001738 0,021891 FBXW7 19,70 31,78 -1,61 0,000095 0,0),005821
ZFP106 132,51 219,79 -1,66 0,000027 0,004135 GSTM1 178,53 286,03 -1,61 0,000627 0,0),012889
CABYR 14,03 23,10 -1,65 0,000308 0,009330 LGR4 306,55 494,56 -1,61 0,004216 0,0),035532
CASP8AP2 8,17 13,45 -1,65 0,003561 0,032673 LMNB1 27,10 43,71 -1,61 0,005723 0,0),042902
CDC25B 29,45 48,50 -1,65 0,001585 0,020897 LOC100335 24,93 40,22 -1,61 0,000993 0,0),016375
CLEC12B 57,68 95,01 -1,65 0,002487 0,026746 SFT2D2 176,07 284,05 -1,61 0,000126 0,00126 0,00126 0,00126 0,00126 0,000126),006324
CLUL1 7,36 12,13 -1,65 0,001125 0,017262 TRIM21 26,72 42,81 -1,61 0,000280 0,0),009027
EZH2 54,19 89,26 -1,65 0,000393 0,010554 UNG 72,50 116,16 -1,61 0,004844 0,0),038677
GSTM1 290,02 477,71 -1,65 0,000649 0,013146 ZMYND12 14,93 23,92 -1,61 0,001132 0,0),017288
HIST2H2AB 41,07 67,65 -1,65 0,004942 0,039136 ZNF365 32,00 51,63 -1,61 0,000235 0,0),008441
MAP1A 205,07 340,14 -1,65 0,001494 0,020256 [12837861] 108,38 173,65 -1,61 0,000023 0,0),004064
MIR2485 10,93 18,00 -1,65 0,002439 0,026447 ARSK 128,00 203,66 -1,60 0,000619 0,0),012799
MNS1 10,13 16,80 -1,65 0,002447 0,026492 501 109,90 174,85 -1,60 0,003483 0,0),032359
MTFR2 76,11 126,24 -1,65 0,000010 0,002999 MOSPD1 65,34 104,69 -1,60 0,003098 0,0),030357
PRKAR2B 508,46 843,36 -1,65 0,006523 0,046404 NMB 38,32 61,39 -1,60 0,005561 0,0),042062
SAMHDI 64,45 106,15 -1,65 0,001889 0,022860 NR3C1 147,03 235,57 -1,60 0,000247 0,0),008526
SLC/A6 179,77 296,11 -1,65 0,000268 0,008805 BIBD3 104,69 165,42 -1,59 0,000094 0,0	019462
TCP1111 106 15 174 85 1 65 0.000007 0.002760 CALLIN2 22.01 35.02 1 59 0.001269 0.0	030818
7NE518A 31.56 51.98 - 1.65 0.002664 0.027860 CCNE 25.11 39.67 - 1.59 0.004331 0.0	1,030010
[12898795] 25.63 41.93 -1.65 0.002136 0.024500 CMPI 68.59 109.14 -1.59 0.000139 0.0	007761
AI DH8A1 13.27 21.71 -1.64 0.000852 0.015113 FIG4 126.24 200.85 -1.59 0.002565 0.0) 027299
IOC504599 315 17 519 15 -1 64 0.000777 0.014438 HIST1H2AJ 820 30 1305 15 -1 59 0.000281 0.0) 009035
LOC504599 315 17 519 15 -1.64 0 000777 0 014438 LOC527805 28 64 45 57 -1.59 0 001675 0 0) 021463
LOC537528 20.68 33.82 -1.64 0.000490 0.011731 PHIP 222.86 354.59 -1.59 0.000173 0.0).007288
LOC787465 288.01 474.41 -1.64 0.003422 0.032066 SLC4A3 45.89 73.01 -1.59 0.001659 0.0).021363
PDRG1 43,71 72,00 -1,64 0,000740 0,014057 UHRF1 30.48 48.84 -1.59 0.000654 0.0),013214
[12913343] 18,51 30,48 -1,64 0,000998 0,016416 XK 45.57 72.00 -1.59 0.000170 0.0),007275
ABCD1 77,71 126,24 -1,63 0,000911 0,015595 ZHX3 22,63 36,00 -1,59 0.001776 0.0),022174
CITED1 76,64 124,50 -1,63 0,000157 0,006992 ACSS3 247,28 388,02 -1,58 0,000663 0,0),013270
FAM151B 74,03 120,26 -1,63 0,006806 0,047641 ANKRD52 167,73 265,03 -1,58 0,000797 0,0),014571
FOXO4 32,67 53,45 -1,63 0,002661 0,027847 BTBD11 74,03 116,97 -1,58 0,000034 0,0),004135
IFI6 519,15 849,22 -1,63 0,000575 0,012417 C29H11orf8 47.50 75.06 -1.58 0.001081 0.0	0.016976
LOC789715 11,47 18,77 -1,63 0,000784 0,014465 CDCA3 23,92 37,79 -1,58 0,000034 0,0),004135

Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)	Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)
DGKH	33,36	52,71	-1,58	0,003393	0,031896	LOC100337 451	50,91	79,34	-1,55	0,003669	0,033102
FAM53C	195,36	308,69	-1,58	0,000456	0,011328	LOC510844	25,46	39,40	-1,55	0,004948	0,039170
GRK4	18,64	29,65	-1,58	0,004965	0,039254	LOC618824	809,00	1260,69	-1,55	0,000348	0,009922
LOC100848	109,90	173,65	-1,58	0,000958	0,016116	LRRC8A	114,56	177,29	-1,55	0,000469	0,011499
LOC539947	12,64	19,84	-1,58	0,002982	0,029770	MAP2K5	28,25	44,02	-1,55	0,004697	0,037873
LOC786974	157,59	249,00	-1,58	0,000833	0,014934	NR1H4	78,79	121,94	-1,55	0,005784	0,043133
LRRC40	116,16	183,55	-1,58	0,002152	0,024707	OAZ2	75,06	116,16	-1,55	0,000017	0,003592
POLK	50,91	80,45	-1,58	0,000352	0,009986	PLEKHG2	36,00	56,10	-1,55	0,001289	0,018462
PPP1R9A	83,29	131,60	-1,58	0,000336	0,009733	SH3PXD2B	304,44	471,14	-1,55	0,004343	0,036180
RARS2	75,06	117,78	-1,58	0,002224	0,025215	TRNAU1AP	37,27	57,68	-1,55	0,001804	0,022287
SLC35B4	87,43	138,14	-1,58	0,005312	0,040866	VP545 [12012677]	106,15	07.68	-1,55	0,003015	0,029955
SYTL4	27 28	43 11	-1,58	0,000000	0.039721	[12912077]	25.99	40.22	-1,55	0.002001	0,020730
TCEA3	39.12	61.82	-1.58	0.000160	0.007059	ARHGEF39	13.09	20.11	-1.54	0.001812	0.022324
THOC1	42,22	67,18	-1,58	0,004472	0,036753	HIST1H2AC	11,47	17,63	-1,54	0,005774	0,043112
TICAM2	55,72	88,03	-1,58	0,004480	0,036801	RTN4IP1	18,64	28,64	-1,54	0,000852	0,015115
ZBTB16	144,01	227,54	-1,58	0,007160	0,049180	UBE3D	26,17	40,22	-1,54	0,004538	0,037059
[12911047]	38,59	60,55	-1,58	0,005777	0,043112	UHMK1	215,27	333,14	-1,54	0,001684	0,021552
[12915373]	21,56	34,06	-1,58	0,003982	0,034448	WNT2B	207,94	319,57	-1,54	0,000983	0,016287
ARHGAP19	78,25	122,79	-1,57	0,005414	0,041410	ZC3HAV1	237,21	364,56	-1,54	0,003524	0,032480
FRRS1	44,63	70,03	-1,57	0,000775	0,014438	[12818747]	4,23	6,50	-1,54	0,000819	0,014793
GPD1L HMGN2	31,78	49,87	-1,57	0,001536	0,020487	[12912103] ANGETI 2	38,59	59,30 357.05	-1,54	0,002375	0,026113
IFT74	60 55	95.01	-1,57	0.002827	0.028869	CDK20	75 58	115 36	-1,53	0.007081	0.048909
KIF24	22,47	35,26	-1,57	0,005049	0,039655	NUDT10	326,29	498,00	-1,53	0,000038	0,004198
LOC518818	202,25	317,37	-1,57	0,000290	0,009095	PLXNB3	14,83	22,63	-1,53	0,000866	0,015269
MYH11	15,35	24,08	-1,57	0,002781	0,028578	PRKD2	35,26	54,19	-1,53	0,001738	0,021891
ORC5	103,97	163,14	-1,57	0,004423	0,036558	RGL1	50,21	76,64	-1,53	0,000001	0,002757
PANX1	142,02	222,86	-1,57	0,000868	0,015270	TROAP	34,30	52,35	-1,53	0,007214	0,049367
RFX5	45,57	71,51	-1,57	0,001974	0,023478	TSPAN19	3,05	4,69	-1,53	0,005160	0,040094
RNPC3	122,79	191,34	-1,57	0,001276	0,018382	TTPAL	76,11	116,97	-1,53	0,004417	0,036543
STAMBPL1	60,13	94,35	-1,57	0,000192	0,007617	UBR2	102,54	157,59	-1,53	0,007197	0,049302
TMFM27	123,04	308.69	-1,57	0,001724	0,021013	[12912905] F2F1	36.76	55 72	-1,55	0,003131	0,040094
XRCC5	83.87	131.60	-1.57	0.000245	0.008521	FAM227A	10.63	16.22	-1.52	0.003578	0.032729
BT.30403	18,77	29,04	-1,56	0,003244	0,031171	KCNE3	16,56	25,28	-1,52	0,000255	0,008660
CADM4	54,19	84,45	-1,56	0,000106	0,006022	LOC100335	32,90	50,21	-1,52	0,003679	0,033135
FASTKD2	85.04	132 51	-1.56	0 005456	0.041638	495 LOC530353	18 51	28.05	-1 52	0.002356	0.026019
FGFR10P	37,53	58,49	-1,56	0,001115	0,017197	MOV10	95,01	144,01	-1,52	0,000649	0,013146
GALM	382,68	596,34	-1,56	0,001330	0,018875	MYO1B	315,17	477,71	-1,52	0,000084	0,005603
KBTBD4	127,12	198,09	-1,56	0,000164	0,007080	NARG2	114,56	173,65	-1,52	0,001887	0,022860
LOC512486	7,52	11,71	-1,56	0,002602	0,027571	NKIRAS2	181,02	274,37	-1,52	0,000406	0,010754
MCM3	29,04	45,25	-1,56	0,000363	0,010147	ORC3	76,64	116,97	-1,52	0,002433	0,026447
MKKS	35,75	55,72	-1,56	0,004052	0,034818	PBXIP1	114,56	174,85	-1,52	0,000576	0,012417
NEK9	166,57	259,57	-1,56	0,001029	0,016588	RBM24	26,17	39,95	-1,52	0,004716	0,037995
OSCP1	27,86	43,41	-1,56	0,004529	0,036997		51,27	78,25	-1,52	0,002964	0,029636
PPARG-	95,07	150,12	-1,50	0,001780	0,022194		119,43	102,20	-1,52	0,000040	0,015005
TSEN2	55,72	86,82	-1,56	0,002862	0,029015	TTC30A	18,64	28,25	-1,52	0,001059	0,016809
PRR15	35,51	54,95	-1,56	0,000469	0,011499	ZMYM4	116,97	177,29	-1,52	0,001427	0,019683
[12914837] AGBI 5	418,77	60.07	-1,56	0,002528	0,027086	ZNF1/4	25,63	39,12	-1,52	0,003383	0,031865
	44,03 21 11	09,07 32 67	-1,55	0,000124	0,000301	C20H5orf42	128,89 58.40	194,01 88 02	-1,51 -1 51	0,000188	0,007605
AURKB	36 76	56 89	-1.55	0.000035	0.004135	DENND1A	93 70	142 02	-1.51	0.000664	0.013283
CDKN2C	75.06	116,16	-1,55	0,006165	0,044821	DHX29	136.24	205.07	-1,51	0,000002	0,002757
FBXO47	11,31	17,63	-1,55	0,005510	0,041870	FANK1	9,45	14,32	-1,51	0,000464	0,011396
HOXD8	52,71	82,14	-1,55	0,006720	0,047251	LGALS3	247,28	372,22	-1,51	0,001058	0,016809
HSPH1	182,28	282,09	-1,55	0,002049	0,024026	PEX3	68,12	102,54	-1,51	0,005733	0,042951

Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)	Gene Symbol	hohe Dichte Signal	geringe Dichte Signal	FC (hoch vs. gering)	ANOVA p-value (hoch vs. gering)	FDR p- value (hoch vs. gering)
PIGN	129,79	195,36	-1,51	0,000278	0,009020	SCAI	62,25	93,70	-1,51	0,007141	0,049111
PLEKHG3	20,53	30,91	-1,51	0,000107	0,006025	TBC1D13	90,51	136,24	-1,51	0,000194	0,007659
POC1A	42,81	64,89	-1,51	0,002019	0,023765	ТМРО	139,10	209,38	-1,51	0,002818	0,028846
PROSER1	106,15	159,79	-1,51	0,000554	0,012213	TRIM26	39,67	59,71	-1,51	0,002623	0,027660
PVRL1	103,97	156,50	-1,51	0,001131	0,017288	TTLL4	155,42	235,57	-1,51	0,001131	0,017288
RCL1	112,21	168,90	-1,51	0,001055	0,016809	ZNF827	48,17	73,01	-1,51	0,003248	0,031171
RNF11	266,87	401,71	-1,51	0,005015	0,039447						

Zahlen in eckigen Klammern stellen die Transcript ID des Årrays dar, ermöglichten jedoch keine Annotation; FC Fold

Change

Endkonzentration

Lösungen und Puffer

Kulturmedium für Granulosazellen

		Endkonzentration
500 ml	Alpha-Medium	
5 ml	200 mM L-Glutamin	2 mM
5,6 ml	7,5 % NaHCO ₃	0,084 %
10 ml	5 % BSA / 1 M Hepes	0,1 % / 20 mM
20 µl	100 µg/ml Natriumselenit	4 ng/ml
500 µl	5 mg/ml Transferin	5 µg/ml
500 µl	10 μg/ml Insulin	10 ng/ml
5 ml	10.000 IU / 10 mg/ml Penicillin/Streptomycin	100 IU / 0,1 mg/ml
5 ml	100 x NEA	1 mM

1 x PBS

28,7 g	PBS
	in 400 ml reinem H ₂ O lösen und autoklavieren

GTE-Puffer

		Endkonzentration
5 ml	1 M Glucose	50 mM
2,5 ml	1 M Tris (pH 8,0)	25 mM
2 ml	0,5 M EDTA (pH 8,0)	10 mM
	ad 100 ml ddH ₂ O und steril filtrieren	

NaOH/SDS-Lösung

1,6 ml	10 N NaOH	0,2 N
8 ml	10 % SDS	1 %
	ad 80 ml ddH₂O	

3 M KAc-Lösung

29,4 g Kaliumacetat in 100 ml ddH₂O lösen

4 M NaCI-Lösung

18,7 g Natriumchlorid

in 80 ml ddH₂O lösen

13 % PEG 8.000 10,4 g PEG in 80 ml ddH₂O lösen

50 x TAE

- 242,3 g Tris
 - 57 ml Acetat
- 18,6 g EDTA
 - ad 1 I ddH₂O und autoklavieren

PCR Ladepuffer (Laufeigenschaft in 3 % Agarose bei 350 – 550 bp)

- 14,36 ml 87% Glycerin
- 0,025 g Xylencyanol
 - 6 ml 500 mM EDTA (pH 8,0)

0,25 ml 1 M Tris-HCI (pH 8,0)

ad 25 ml ddH₂O

SOC Flüssigmedium

- 5 g Hefeextrakt
- 20 g Trypton/Pepton
- 10 ml 1 M Glucose
- 0,58 g NaCl
- 0,19 g KCl
- 10 ml 1 M MgCl₂
- 10 ml 1 M MgSO₄
 - ad 1 I ddH₂O und autoklavieren

LB-Ampicillin Agarplatten

- 15 g Agar-Agar
- 5 g Hefeextrakt
- 10 g Trypton/Pepton
- 10 g NaCl

ad 1 l ddH₂O und autoklavieren

3 ml 25 mg/ml Ampicillin ausreichend für ca. 40 Platten

LB-Ampicillin Flüssigmedium

- 5 g Hefeextrakt
- 10 g Trypton/Pepton
- 10 g NaCl
 - ad 1 I ddH₂O und autoklavieren
- 3 ml 25 mg/ml Ampicillin

TB-Ampicillin Flüssigmedium

- 24 g Hefeextrakt
- 12 g Trypton/Pepton
- 4 ml 100 % Glycerin
- 0,17 M KH₂PO₄
- 0,72 M K₂HPO₄
 - ad 1 I ddH₂O und autoklavieren
 - 3 ml 25 mg/ml Ampicillin

Kompetente Zellen E.coli XL-1 Blue

Erstellung von chemisch kompetenten *E.coli* mit dem Roti[®]-Transform Kit (Roth, Karslruhe) nach Herstellerangaben

IF Waschpuffer

- 200 ml 1x PBS
 - 1g BSA
- 100 µl Triton X-100

Roti 1:50

1 ml Roti[®]Block 49 ml ddH₂O

Roti 1:100

- 10 ml 1x PBS
 - 5 µl Tween 20

davon 100 µl mit 100 µl Roti[®]Block versetzen → Roti 1:100

Permeabilisierungspuffer

20 mM	HEPES
-------	-------

- 300 mM Saccharose
- 50 mM NaCl
 - 3 mM MgCl₂
- 0,5 % Triton X-100
 - auf pH 7,4 einstellen

Trenngel für Westernblot – 10 %

- 5 ml 40 % Acrylamid/Bis (29:1)
- 5 ml 1,5 M Tris (pH 8,8)
- 200 µl 10 % SDS
- $200\;\mu I$ $~10\;\%\;APS$
- 20 µl TEMED
 - ad 20 ml ddH₂O

Sammelgel für Westernblot – 5 %

1,25 ml 40 % Acrylamid/Bis (29:1)
2,5 ml 0,5 M Tris (pH 6,8)
100 μl 10 % SDS
100 μl 10 % APS
10 μl TEMED ad 10 ml ddH₂O

TBST-Puffer

- 500 ml Roti[®]-Stock 10x TBS
- 0,1 % Tween 20

Lämmli-Puffer (Elektrophoresepuffer)

50 mM Tris 133 mM Glycin 0,1 % SDS

Chemikalien und Kits

[1,2,6,7-3H(N)]progesteron [2,4,6,7-3H]estradiol-17β 6-Bnz-cAMP 8-Br-cAMP Acetat Acrylamid/Bis (29:1) Agar-Agar Agarose Alexa Fluor[®] 488 F(ab')₂ Fragment (goat anti-mouse) Alexa Fluor[®] 546 F(ab')₂ Fragment (goat anti-rabbit) AllPrep DNA/RNA Mini Kit Alpha-Medium Amphotericin B Ampicillin Androstendion Anti pan-Cadherin Anti-rabbit IgG, HRP-linked Antibody Anti Tubulin- α (HRP conjugate) APS **BigDye Terminator Cycle Sequencing** Ready Reaction Kit 1.1 Blue Loading Puffer **BSA** β-Catenin Antikörper β-Tubulin (9F3) Rabbit mAb (HRP Conjugate) CellTiter 96[®] AQueous One Solution Cell **Proliferation Assay** Collagen R DMSO dNTPs ECL Prime Eco52I Eco52I Puffer ThermoScientific, Schwerte

PerkinElmer, Boston, MA, USA GE Healthcare, Freiburg Sigma Aldrich, Steinheim Sigma Aldrich, Steinheim Roth, Karlsruhe Roth, Karlsruhe Roth, Karlsruhe Biodeal, Markkleeberg LifeTechnologies, Darmstadt LifeTechnologies, Darmstadt Qiagen, Hilden Biochrom AG, Berlin Biochrom AG, Berlin Roth, Karlsruhe Sigma Aldrich, Steinheim Abcam, Cambridge, UK CellSignaling, Leiden, Belgien NEB, Frankfurt Roth, Karlsruhe LifeTechnologies, Darmstadt CellSignaling, Leiden, Belgien Sigma Aldrich, Steinheim CellSignaling, Leiden, Belgien CellSignaling, Leiden, Belgien Promega, Mannheim Serva, Heidelberg Roth, Karlsruhe Roche, Mannheim GE Healthcare, Freiburg ThermoScientific, Schwerte

EDTA	Roth, Karlsruhe	
Ethanol 99,8 %	Roth, Karlsruhe	
Ethidiumbromid 0,025 % (Tropfflasche)	Roth, Karlsruhe	
EZ DNA Methylation Gold Kit	Zymo Research; HISS Diagnostics,	
	Freiburg	
FKS	Biochrom AG, Berlin	
FSH	Sigma Aldrich, Steinheim	
Gelatine	Roth, Karlsruhe	
Glucose	Sigma Aldrich, Steinheim	
Glycerin	Roth, Karlsruhe	
Glyceringelatine	Merck Millipore, Darmstadt	
Glycin	Roth, Karlsruhe	
H-89	Sigma Aldrich, Steinheim	
HCI	Roth, Karlsruhe	
Hefeextrakt	Roth, Karlsruhe	
Hepes	Roth, Karlsruhe	
High Pure PCR Purification Kit	Roche, Mannheim	
HotStarTaq Plus	Qiagen, Hilden	
Insulin	Biochrom AG, Berlin	
IPTG	Roth, Karlsruhe	
K₂HPO₄	Roth, Karlsruhe	
Kaliumacetat	Roth, Karlsruhe	
KCI	Roth, Karlsruhe	
KH ₂ PO ₄	Roth, Karlsruhe	
L-Glutamin	Biochrom AG, Berlin	
LH	Sigma Aldrich, Steinheim	
LightCycler [®] 480 DNA SYBR Green I	Roche, Mannheim	
Master		
Mercaptoethanol	Roth, Karlsruhe	
MgCl ₂	Roth, Karlsruhe	
MgSO₄	Roth, Karlsruhe	
M-MLV Reverse Transkriptase	Promega, Mannheim	
M-MLV Reverse Transkriptase	GeneOn, Ludwigshafen	
Natriumazid	Roth, Karlsruhe	
NaCl	Roth, Karlsruhe	
NaHCO ₃	Biochrom AG, Berlin	
NaOH	Roth, Karlsruhe	

Natriumselenit Sigma Aldrich, Steinheim NEA Biochrom AG, Berlin Nucleo Spin[®] RNA Kit Macherey-Nagel, Düren Oligo-(dT) Primer Roche, Mannheim Paraformaldehyd Sigma Aldrich, Steinheim PBS (ohne Ca²⁺, Mg²⁺) Biochrom AG, Berlin Penicillin/Streptomycin Biochrom AG, Berlin Phospho-β-Catenin (Ser33/37/Thr41) CellSignaling, Leiden, Belgien Antikörper pGEM[®]-T Vektor System Promega, Mannheim Polyethylenglykol 8000 (PEG) Roth, Karlsruhe Primer für genspezifische Amplifikation Sigma Aldrich, Steinheim Protein Quantification Assay Macherey-Nagel, Düren QiaShredder Qiagen, Hilden R³ IGF-1 Sigma Aldrich, Steinheim Random Hexamer Primer Roche, Mannheim RNase A Roche, Mannheim RNase T₁ Roche, Mannheim Ripa Puffer (10x) CellSignaling, Leiden, Belgien Roti[®]-Block Roth, Karlsruhe Roti[®]-Stock 10x TBS Roth, Karlsruhe Saccharose Roth, Karlsruhe SDS 20 % Roth, Karlsruhe SensiFAST[™] SYBR No-ROX Bioline, Luckenwalde TEMED Roth, Karlsruhe TO-PRO[®]3 LifeTechnologies, Darmstadt Towbin Transferpuffer (10x) Serva, Heidelberg Transferin Sigma Aldrich, Steinheim Tris Roth, Karlsruhe Triton X-100 Roth, Karlsruhe Trypsin Biochrom AG, Berlin Trypton Roth, Karlsruhe Tween 20 Roth, Karlsruhe X-Gal Roche, Mannheim **Xylencyanol** Roth, Karlsruhe Biochrom AG jetzt zugehörig zu Merck Millipore, Darmstadt

V

Verbrauchsmaterial

4titude, Berlin		
Roth, Karlsruhe		
Affymetrix, Santa Clara, CA, USA		
Roth, Karlsruhe		
4titude, Berlin		
Roth, Karlsruhe		
StarLab, Hamburg		
Sarstedt, Nümbrecht		
Sarstedt, Nümbrecht		
ThermoScientific,		
Roth, Karlsruhe		
StarLab, Hamburg		
Biochrom AG, Berlin		
Roth, Karlsruhe		
Biochrom AG jetzt zugehörig zu Merck Millipore, Darmstadt		

Geräte und Software

96-Well Plattendetektor DTX880	Beckman Coulter, Krefeld
Brutschrank Heraeus FunctionLine B12	ThermoScientific, Schwerte
Centrifuge 5417C	Eppendorf, Hamburg
Centrifuge 5424R (kühlbar)	Eppendorf, Hamburg
Elektrophorese-Kammer	ThermoScientific, Schwerte
ESME (epigenetic sequencing	Epigenomics, Berlin
methylation analysis software)	
Expression Console V1.3.1.187	Affymetrix, Santa Clara, CA, USA
Flüssigkeitsszintillationszähler Tri-Carb	PerkinElmer, Boston, MA, USA
2900TR	
FluoStar Optima	BMG Labtech, Ortenberg
Geldokumentation Gel Doc™ EZ System	BioRad, München
Hoefer Mighty Small SE 250 System	GE Healthcare, Freiburg
(SDS-PAGE)	
Kamera Nikon Coolpix5000	Nikon, Düsseldorf
Labsonic M	Sartorius, Göttingen

Laser Scanning Mikroskop LSM 5 Pascal LightCycler[®] 480 LightCycler[®] 480 SW 1.5 LightCycler[®] 96 LightCycler[®] 96 SW 1.1 Mikroskop Nikon TMS NanoDrop 1000 Spectrophotometer PCR-Gerät TProfessional 96 Pierce[™] Fast Semidry Blotter Raytest Kamerasystem Sequenziergerät 3130 Genetic Analyzer SigmaPlot 12.0 SNAP i.d.[®] Protein Detection System Sterilwerkbank Heraeus Herasafe HS 12 Thermocycler Transcriptome Analysis Console 3.0 Ultra High Resolution CCD Camera System Camilla Vortex Genie 2 Wasserbad Zentrifuge AllegraTM X-12R Zentrifuge Sepatech Biofuge 13

Carl Zeiss, Jena Roche, Mannheim Roche, Mannheim Roche, Mannheim Roche, Mannheim Nikon, Düsseldorf ThermoScientific, Schwerte Biometra, Göttingen ThermoScientific, Schwerte Raytest, Straubenhardt LifeTechnologies, Darmstadt Jandel Scientific, San Rafael, CA, USA Merck Millipore, Darmstadt ThermoScientific, Schwerte Biometra, Göttingen Affymetrix, Santa Clara, CA, USA Raytest, Straubenhardt Scientific Industries, Bohemia, NY, USA

ThermoScientific, Schwerte Beckman Coulter, Krefeld Heraeus, Hanau

Danksagung

An dieser Stelle möchte ich mich bei meinem Betreuer PD Dr. Jens Vanselow bedanken, der mir diese Arbeit ermöglichte, mich in der Zeit unterstützte und immer wieder neue Anregungen bzw. Ideen gab und mir aufzeigte, wie viele Möglichkeiten die Erforschung von landwirtschaftlichen Nutztieren bietet.

Gleichzeitig möchte ich mich bei dem gesamten Team der Abteilung Experimentelle Reproduktionsbiologie bedanken, Dr. Rainer Fürbaß, Maren Anders, Veronica Schreiter und Marina Polei. In unseren gemeinsamen Diskussionen fand ich immer wieder ein offenes Ohr und schöpfte Kraft für neue Ideen. Auch unsere gemeinsamen Arbeitsgruppenausflüge bleiben unvergessliche Momente.

Ein besonderer Dank geht dabei an Maren Anders und Veronica Schreiter, die mir jederzeit bei Fragen und Problemen labortechnischer Natur, aber auch weiter reichenden Angelegenheiten zur Seite standen. Nicht zuletzt dadurch, wurde mein Arbeitsplatz ein zweites kleines Heim.

Ein weiterer Dank geht an Herrn Prof. Dr. Reinhard Schröder für die Begutachtung und Unterstützung dieser Arbeit, sowie für seine konstruktiven Anregungen.

Des Weiteren möchte ich mich auch bei meinen Freunden bedanken. Besonderer Dank geht dabei an Marina Polei, Daniela Ohde, Christin Wittfoth und Martin Kunze, die immer für einen Gedankenaustausch offen waren. Sie waren ein immerwährender Pool an Freude und sorgten mit ihrer positiven Art immer für eine Motivation.

Ein riesengroßer Dank geht an meine Familie, meinen Freund und auch meinen kleinen Sohn, die mich immer und jederzeit unterstützten und mir in jeder Lebenslage Halt gaben.

Lebenslauf

Persönliche Angaben

Name	Anja Baufeld
Geburtsdatum	03.01.1986
Geburtsort	Halle (Saale)

Akademische Ausbildung

09/2012 – 10/2012	6-wöchiger Forschungsaufenthalt am National Dairy Research Institute (NDRI) in Karnal, Haryana, Indien
seit 07/2011	Doktorandin in der Abteilung Experimentelle Reproduktionsbiologie, Institut für Fortpflanzungsbiologie, Leibniz- Institut für Nutztierbiologie (FBN), Dummerstorf
10/2005 — 01/2011	Studium der Biologie an der Universität Rostock, Abschluss: Diplom (Note 1,2), Abteilung Genetik, Institut für Biowissenschaften, Universität Rostock

Schulische Ausbildung

09/1996 – 06/2005	Abitur am Südstadt Gymnasium Halle
09/1992 – 08/1996	Grundschule "Gebrüder Grimm", Halle

Selbstständigkeitserklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst habe. Dazu habe ich keine außer den von mir angegebenen Hilfsmitteln und Quellen verwendet und die den benutzten Werken inhaltlich und wörtlich entnommenen Stellen habe ich als solche kenntlich gemacht.

Rostock, den

.....