

Entwicklung Transkriptom-basierter Schwarzrostresistenzmarker sowie histologische und Transkriptom-basierte Charakterisierung von Kronenrostresistenzen in *Lolium perenne*

Dissertation

zur Erlangung des Grades doctor agriculturae (Dr. agr.)

an der Professur für Phytomedizin der Agrar- und Umweltwissenschaftlichen Fakultät der Universität Rostock

Rostock, 2017

vorgelegt von: Jens Bojahr aus Waren geboren am 01.01.1985 in Teterow

Gutachter:

1. Gutachter

PD Dr. Christine Struck Professur Phytomedizin, Universität Rostock

2. Gutachter

Professor Dr. Frank Ordon Institut für Resistenzforschung und Stresstoleranz, Julius Kühn-Institut (JKI) - Bundesforschungsinstitut für Kulturpflanzen

3. Gutachter

Professor Dr. Ralf T. Vögele Institut für Phytomedizin, Universität Hohenheim

Datum der Einreichung: 31. Januar 2017

Datum der Verteidigung: 28. Juli 2017

Inhaltsverzeichnis

Inł	naltsv	verzeichnis	i	
Ab	Abbildungsverzeichnis v			
Та	Tabellenverzeichnisvii			
Ab	kürz	ungsverzeichnis	ix	
1		Einleitung	1	
	1.1	Bedeutung von Lolium perenne als Rasen- und Futtergras	1	
	1.2	Bedeutung und Schadbild von Puccinia graminis f.sp. graminicola.	1	
	1.3	Bedeutung und Schadbild von Puccinia coronata f.sp. lolii	2	
	1.4	Der Lebenszyklus von Puccinia graminis und Puccinia coronata	3	
	1.5	Mechanismen der pflanzlichen Abwehr	6	
	1.6	Markerentwicklung und Lokalisation von Schwarzrostresistenz- assoziierten Transkripten	7	
	1.7	Problemstellung, Hypothesen und Ziele	9	
2		Material und Methoden	14	
2	2.1	Pflanzenmaterial und Rostisolate	14	
	2.2	Rostvermehrung	14	
	2.3	Phänotypisierung	15	
2	2.4	Erzeugung von Kronenrosteinsporisolaten	16	
	2.5	Mikroskopische Untersuchungen zur Kronenrostresistenz	17	
2	2.6	Massive analysis of cDNA ends (MACE)	18	
	2.6	0.1 Schwarzrost-MACE	18	
	2.6	0.2 Kronenrost-MACE	19	
	2.6	3.3 RNA-Isolierung, Reverse Transkription und Sequenzierung	21	
	2.6	.4 Bioinformatik	21	
	2.7	Validierung von ausgewählten Sequenzen der Schwarzrost-MACE mittels quantitativer gRT-PCR	22	
	2.7	.1 RNA Isolierung und Umschreiben der RNA in cDNA	22	

	2.7	7.2	2 Pri	mer und qRT-PCR-Protokoll	22
	2.8	ç	Statis	tische Methoden	23
3		E	Ergeb	onisse	25
	3.1	ç	Schw	arzrostresistenz	25
	3.1	1.1	l Ph	änotypisierung der Kartierungspopulation LPSR1001 auf	
			Sc	hwarzrostresistenz	25
	3.1	1.2	2 Scl	hwarzrost-MACE	26
		3.	1.2.1	"Gene Ontology"-Analyse signifikant überexprimierter Transkrip	ote
				im schwarzrostresistenten Bulk (ResAll)	27
		3.	1.2.2	Differentiell exprimierte Transkripte und SNPs zwischen ResAll	
				und SusAll	27
		3.	1.2.3	"in silico"-Kartierung von ETRs und SNPs in Brachypodium	
				distachyon und Lolium perenne	28
		3.	1.2.4	Genetische Kartierung von MACE basierten ETRs und SNPs de	er
				schwarzrostresistenten Bulks	30
		3.	1.2.5	Inokulationsbedingte Überexpression abwehrinduzierter	
				ranskripte in den schwarzrostresistenten und -antalligen Bulks	33 33
		3	126	Validierung von Expressionsraten ausgewählter <i>Lolium</i> nerenne	<u> </u>
		5.	1.2.0	Transkripte der Schwarzrost-MACE mittels gRT-PCR	 38
	32	ł	≺rone	enrostresistenz	40
	33	2 1	1 Ph	änotypisierung auf Kronenrostresistenz	40
	3.4	2.2) ніс	tologische Charakterisierung der kronenrostresistenten <i>Lolium</i>	70
	0.2	<u> </u>	per	renne-Genotypen	41
		3	221	Finfluss der kronenrostresistenten <i>Lolium perenne</i> -Genotypen	
		0.		auf die Keimfähigkeit und Appressorienbildung des	
				Kronenrosteinsporisolats KR-SR1	41
		3.	2.2.2	Einfluss der kronenrostresistenten Lolium perenne-Genotypen	
				auf die Bildung substomatärer Vesikel und Infektionshyphen de	s
				Kronenrosteinsporisolats KR-SR1	43

3.2	2.2.3 Einfluss der kronenrostresistenten <i>Lolium perenne</i> -Genotypen	
	auf die Haustorienmutterzellen Entwicklung des Kronenrost-	
	einsporisolats KR-SR14	4
3.2.3	Kronenrost-MACE 4	6
3.2	2.3.1 "Gene Ontology" mit überexprimierten Transkripten in den	
	kronenrostresistenten <i>Lolium perenne</i> -Genotypen4	7
3.2	2.3.2 Differenziell exprimierte Gene zwischen den	
	kronenrostresistenten <i>Lolium perenne</i> -Genotypen nach	
	Inokulation mit dem Kronenrosteinsporisolat mit Zuordnung zur	
	pflanzlichen Abwehr5	2
3.2	2.3.3 Einfluss der Kronenrostinokulation auf die Genexpression der	
	Lolium perenne-Genotypen5	5
3.2	2.3.4 "Gene Ontology" mit überexprimierten Transkripten in den Loliur	n
	perenne-Genotypen induziert durch die Kronenrostinokulation 5	6
3.2	2.3.5 Überexprimierte Transkripte in den <i>Lolium perenne</i> -Genotypen	
	induziert durch die Kronenrostinokulation5	9
3.3 V	ergleich der Schwarz- und Kronenrostresistenz in der	
K	artierungspopulation LPSR10016	2
3.3.1	Vergleich der Boniturmodalwerte der Phänotypisierungen zur	
	Schwarz- und Kronenrostresistenz 6	2
3.3.2	Vergleich der Genexpression des schwarzrostresistenten Lolium	
	perenne-Bulks mit den kronenrostresistenten Lolium perenne-	
	Genotypen6	3
3.3.3	Vergleich der Genexpression von schwarz- und kronenrost-	
	inokulierten Bulks und Genotypen6	5
D	viskussion	7
4.1 S	chwarzrostresistenz- <i>LpPg1</i> 6	7
4.1.1	Markerentwicklung, " <i>in silico</i> "-Kartierung und LpPg1-vermittelte	
	Genexpression7	0

4.	4.1.2 Differentielle und <i>LpPg1</i> -vermittelte Genexpression in den			
	schwarzrostresistenten <i>Lolium perenne</i> -Bulks	71		
4.2	Kronenrostresistenz	74		
4.2	2.1 Histologische Unterschiede und differentielle Genexpression			
	zwischen dem kronenrostanfälligen und den -resistenten Lolium			
	<i>perenne</i> -Genotypen	77		
	4.2.1.1 Vollständige Kronenrostresistenz	79		
	4.2.1.2 Moderate Kronenrostresistenz	83		
4.3	Vergleich der Schwarz- und Kronenrostresistenz	86		
5	Schlussfolgerungen	89		
6	Zusammenfassung	91		
7	Literatur	95		

Anhang

- A1 SNP- und ETR-Primersequenzen der genetischen Kartierung von LpPg1
- A2 Auszählungen zur Entwicklung der Kronenrostinfektionsstrukturen in kronenrostresistenten und -anfälligen *Lolium perenne*-Genotypen
- A3 "Gene Ontology" signifikant überexprimierter Transkripte in den kronenrostresistenten und -anfälligen *Lolium perenne*-Genotypen
- A4 "Gene Ontology" signifikant überexprimierter Transkripte in den kronenrostinokulierten *Lolium perenne*-Genotypen im Vergleich zum nicht inokulierten Zeitpunkt
- A5 Signifikant überexprimierte Transkripte in den kronenrostinokulierten *Lolium perenne*-Genotypen 6, 12 und 24 Stunden nach Inokulation

Abbildungsverzeichnis

Abb.	1.1	Schwarzrost-Uredosporenlager auf einem infizierten Lolium perenne	-
		Blatt	2
Abb.	1.2	Kronenrost-Uredosporenlager auf <i>Lolium perenne</i> -Blattsegmenten	
		10 Tage nach Inokulation	3
Abb.	1.3	Lebenszyklus von Puccinia graminis nach Leonard und Szabo (2005	5)4
Abb.	1.4	Roststrukturen von Puccinia graminis ausgebildet während der frühe	en
		Infektionsphase der Uredosporenbildung nach Leonard und Szabo	
		(2005)	5
Abb.	2.1	Inokulierte Blattsegmente der hochanfälligen Lolium perenne-Sorte	
		Aurora mit Schwarzrost-Sporensuspension (links) und ersten	
		Uredosporenlagern nach 10 Tagen (rechts)	15
Abb.	2.2	Schwarzrost inokulierte resistente (links) und anfällige Lolium perenn	ne-
		Phänotypen (rechts) der Kartierungspopulation LPSR1001 10 Tage	
		nach Inokulation	19
Abb.	3.1	Häufigkeitsverteilung der Boniturmodalwerte von 114 Lolium perenn	e-
		Genotypen der Kartierungspopulation LPSR1001 inokuliert mit vier	
		Schwarzrostfeldisolaten in vierfacher Wiederholung	26
Abb.	3.2	Anzahl exklusiver Transkripte der schwarzrostresistenten Lolium	
		perenne-Bulks und SNPs mit Sequenzhomologie zu Brachypodium	
		<i>distachyon</i> -Chromosomen	29
Abb.	3.3	Anzahl von SNPs und exklusiv exprimierten Transkripten der	
		resistenten Bulks von Lolium perenne zwischen 26,0 - 34,5 Mbp auf	
		Brachypodium distachyon-Chromosom 1 (Bd1)	29
Abb.	3.4	Gelbild mit PCR-Produkten des co-segregierenden Marker LpETR_1	18
		von vier resistenten Genotypen mit LpPg1-Resistenz, vier anfälligen	
		Genotypen ohne LpPg1-Resistenz, dem resistenten Elter und dem	
		anfälligen Elter	30
Abb.	3.5	Genetische Karte vom Resistenzlokus <i>LpPg1</i> mit ETR- und SNP-	
		Markern aus der Schwarzrost-MACE	32
Abb.	3.6	Anzahl signifikant überexprimierter und runterregulierter Lolium	
		perenne-Transkripte in den inokulierten schwarzrostresistenten und	-
		anfälligen Bulks im Vergleich zum nicht inokulierten Zeitpunkt	34

Abb. 3.7 qPCR-Ergebnisse zur Validierung der Schwarzrost-MACE-	
Expressionsraten an acht überexprimierten Lolium perenne-	
Transkripten in den schwarzrostresistenten im Vergleich zu der	۱ -
anfälligen Bulks	39
Abb. 3.8 Häufigkeitsverteilung der Boniturmodalwerte von 284 Lolium pe	renne-
Genotypen der Kartierungspopulation LPSR1001 inokuliert mit	drei
Kronenrostfeldisolaten in vierfacher Wiederholung	40
Abb. 3.9 Lolium perenne-Genotypen inokuliert mit dem Kronenrosteinspo	orisolat
KR-SR1 7 Tage nach Inokulation	41
Abb. 3.10 Keimschläuche und Appressorien von Puccinia coronata auf d	er
adaxialen Blattoberfläche des kronenrostanfälligen Genotyps	
angefärbt mit Fluorescent Brightener 28	42
Abb. 3.11 Prozentualer Anteil gebildeter Puccinia coronata-Appressorien	auf
ausgewählten <i>Lolium perenne</i> -Genotypen 6 und 12 Stunden na	ach
Inokulation	43
Abb. 3.12 Prozentualer Anteil gebildeter substomatärer Vesikel von Puce	cinia
coronata auf ausgewählten Lolium perenne-Genotypen 12 und	
24 – 60 Stunden nach Inokulation	44
Abb. 3.13 Zeitlicher Verlauf der Haustorienmutterzellen-Bildung von Puc	cinia
<i>coronata</i> in ausgewählten <i>Lolium perenne</i> -Genotypen 12 bis 60)
Stunden nach Inokulation	45
Abb. 3.14 Infektionsstrukturen und Autofluoreszenz der Mesophyllzellen	nach
Kontakt mit Haustorienmutterzellen im vollständig resistenten L	olium
perenne Genotyp 60 Stunden nach Inokulation angefärbt mit	
Fluorescent Brightener 28	46
Abb. 3.15 Anzahl signifikant differentiell exprimierter Transkripte ausgew	ählter
kronenrostresistenter Lolium perenne-Genotypen im Vergleich	zum
anfälligen Genotyp	47
Abb. 3.16 Anzahl differentiell exprimierter Transkripte in den mit Puccinia	7
<i>coronata</i> inokulierten <i>Lolium perenne</i> -Genotypen im Vergleich :	zum
jeweiligen nicht inokulierten Zeitpunkt	56
Abb. 3.17 Anzahl der abwehrspezifischen, überexprimierten Transkripte	nach
Puccinia coronata-Inokulation in allen Lolium perenne-Genotyp	en
zusammengefasst nach ihrer Funktion	59

Tabellenverzeichnis

Tab.	2.1	Verwendetes Pflanzen- und Uredosporenmaterial	16
Tab.	2.2	Vergleichende Darstellung der Schwarz- und Kronenrost-MACE	
		Experimente	20
Tab.	2.3	Primersequenzen ausgewählter MACE-Transkripte zur Validierung o	ler
		Schwarzrost-MACE-Ergebnisse mittels qRT-PCR	23
Tab.	3.1	"Gene Ontology" signifikant überexprimierter Transkripte in allen	
		resistenten Lolium perenne-Bulks (ResAll) zusammengefasst nach	
		ihrer biologischen Funktion in GOs	27
Tab.	3.2	Signifikant überexprimierte Transkripte mit Annotation zur	
		Pflanzenabwehr in allen schwarzrostresistenten Lolium perenne-Bu	lks
		(ResAll)	28
Tab.	3.3	Exklusive Transkripte der resistenten Lolium perenne-Bulks mit	
		Sequenzhomologie zu Resistenzgenen und Zuordnung zum	
		Referenzgenom von Brachypodium distachyon	30
Tab.	3.4	Abwehrspezifische Transkripte induziert durch die Inokulation mit	
		Schwarzrosturedosporen in den resistenten und anfälligen Lolium	
		<i>perenne</i> -Bulks	35
Tab.	3.5	"Gene Ontology" signifikant überexprimierter Transkripte in den	
		Puccinia coronata-resistenten Lolium perenne-Genotypen im	
		Vergleich zum anfälligen Genotyp 0 – 24 Stunden nach Inokulation	49
Tab.	3.6	Signifikant überexprimierte Transkripte in den Puccinia coronata-	
		resistenten Lolium perenne-Genotypen im Vergleich zum anfälligen	
		Genotyp 0 – 24 Stunden nach Inokulation	52
Tab.	3.7	"Gene Ontology" <i>Puccinia coronata</i> induzierter, signifikant	
		überexprimierter Transkripte, mit Zuordnung zur pflanzlichen Abweh	۱r,
		in den <i>Lolium perenne</i> -Genotypen 6, 12 und 24 Stunden nach	
		Inokulation mit dem Kronenrosteinsporisolat KR-SR1	57
Tab.	3.8	Exklusiv und hoch differentiell exprimierte Transkripte im vollständig	
		kronenrostresistenten Lolium perenne-Genotyp und dem resistenter	า
		Elter im Vergleich zum anfälligen Genotyp 6, 12 und 24 Stunden na	ch
		Inokulation mit dem Kronenrosteinsporisolat KR-SR1	60

- Tab. 3.9 Exklusiv und hoch differentiell exprimierte Transkripte im vollständig und moderat kronenrostresistenten *Lolium perenne*-Genotyp im Vergleich zum anfälligen Genotyp 6, 12 und 24 Stunden nach Inokulation mit dem Kronenrosteinsporisolat KR-SR1
- Tab. 3.10 Korrelationsanalyse der Boniturmodalwerte zwischen den Schwarz-und Kronenrost-Phänotypisierungen62
- Tab. 3.11 "Gene Ontology" signifikant überexprimierter Transkripte beteiligt an pflanzlichen Abwehrreaktionen in inokulierten und nicht inokulierten schwarz- und kronenrostresistenten *Lolium perenne*-Bulks/Genotypen

- Tab. 3.12 Identische, signifikant überexprimierte Transkripte nach Schwarzbzw. Kronenrostinokulation in schwarz- bzw. kronenrostresistenten *Lolium perenne*-Bulks/Genotypen im Vergleich zum jeweiligen anfälligen Bulk/Genotyp (log2 fold change ≥ 2)
- Tab. 3.13 Identische, signifikant überexprimierte Transkripte in schwarz-bzw. kronenrostinokulierten resistenten Lolium perenne-Bulks/Genotypen im Vergleich zum nicht inokulierten resistenten Bulk/Genotyp (log2 fold change ≥ 2)
- Tab. 4.1 Ausgewählte Schwarzrostresistenz-assoziierte Transkripte der LpPg1-vermittelten Genexpression68
- Tab. 4.2 Ausgewählte Kronenrostresistenz-assoziierte Transkripte derkronenrostresistenten Lolium perenne-Genotypen74

Abkürzungsverzeichnis

AG	anfälliger Genotyp
APP	Appressorium
Bd	Brachypodium distachyon-Chromosom
BSA	"Bulked Segregant Analysis"
BSK8	"Brassinosteroid-signaling kinase 8"-Gen
сМ	centi Morgan
CRK7	"Cysteine-rich receptor-like protein kinase 7"-Gen
crk7	Genotyp mit ausgeschaltetem "Cystein-rich receptor-like
	protein kinase 7"-Gen
DAB	Diaminobenzidin
EF-Tu	Elongationsfaktor-Tu-Gen
ELF-1α	Elongationsfaktor-1alpha-Gen
ETR	Exklusive Transkripte der resistenten Bulks
GO	"Gene Ontology"
HMZ	Haustorienmutterzelle
hpi	Stunden nach der Inokulation
IH	Infektionshyphe
KR-SR1	Kronenrosteinsporisolat 1 aus Steinach (2012)
LG	"Linkage group" / Kopplungsgruppe
log2FC	x-fache Expression zum Vergleichspartner logarithmiert zur
-	Basis 2 (log2 Fold Change)
LpPg1	Bezeichnung des Schwarzrostresistenzlokus der
IRR	Kartierungspopulation LPSR 1001
	"Massive Analysis of cDNA Ends"
	Massive Analysis of CDNA Ends
WAF NIWAF NZ	binding proteine 2 Gen
Mbp	Megabasenpaare
miRNA	"micro RNA"
MRG	moderat resistenter Genotyp
NGS	"next generation sequencing"
OG	Oligogalakturonsäure
PAMPGO	"Plant Associated Microbe Gene Ontology
	Consortium"/Pflanzen-assoziiertes Mikroben Gen Ontologie
	Konsortium
PR	"Pathogenesis related protein"-Gen
qRT-PCR	"quantitative Realtime-Polymerase chain reaction"/
ΟΤΙ	Quantitative ECRIZEIL-POlymerase-Ketten-Reaktion
	Merkmals
RE	resistenter Elter

ResAll	Zusammenfassung aller Zeitpunkte der schwarzrostresistenten Bulks
RGA	"Resistance Gene Analog"-Gen
RLK5	"Receptor-like protein kinase 5"-Gen
ROS	Reaktive Sauerstoffspezies
RPM1	"Disease Resistance Protein RPM1"-Gen (Resistenz gegen <i>Pseudomonas syringae</i>)
RPP8	"Disease Resistance Protein RPP8"-Gen (Resistenz gegen <i>Peronospora parasitica</i>)
RPP13	"Disease Resistance Protein RPP13"-Gen (Resistenz gegen <i>Peronospora parasitica</i>)
siRNA	"Small interfering RNA"/kleine eingreifende RNA
SNP	"Single Nucleotide Polymorphism"/Variation eines einzelnen Basenpaares
SRG1	"Protein SRG1"-Gen
SSR	"Simple Sequence Repeat"/einfache Sequenzwiederholung
SSV	Substomatäres Vesikel
SusAll	Zusammenfassung aller Zeitpunkte der schwarzrostanfälligen Bulks
TGA4	"Transcriptionsfactor TGA4"-Gen
VRG	vollständig resistenter Genotyp
VSR	"Vacuolar Sorting Receptor"-Gen
WAK1	"Wall associate Receptor 1"-Gen
WRKY	"Transcriptionsfactor WRKY"-Gen
XIP I	"Xylanase inhibitor protein 1"-Gen
XRN4	"5'-3' exoribonuclease 4"-Gen

1 Einleitung

1.1 Bedeutung von Lolium perenne als Rasen- und Futtergras

Das ausdauernde Weidelgras (Lolium perenne L.) ist eines der bedeutendsten Futtergräser in den gemäßigten Breiten weltweit (Wilkins 1991) und bestimmt mit ca. 60% den höchsten Anteil der Grassamennutzung in Europa (Abberton et al. 2008). In der Viehwirtschaft wird es wegen seiner schnellen Etablierung, hohen Erträgen und Nährstoffgehalten, der guten Verdaulichkeit und dem damit verbundenem hohen Futterwert geschätzt (Kimbeng 1999; Lenuweit und Gharadjedaghi 2002; Schubiger et al. 2010). Auf Grund der mehrjährigen Nutzung von L. perenne sind die Produktionskosten und der Pflanzenschutz im Vergleich zu einjährigen Gräsern geringer und durch eine dichte Grasnarbe die Bodenerosion reduziert (Wilkins 1991). Als Rasengras wird L. perenne in Mischung mit weiteren Gräsern als Oberfläche für Sportplätze und zur Begrünung von Parks und privaten Rasenflächen genutzt (Jo et al. 2008). Auf Sportplätzen und Parkanlagen kann L. perenne dazu beitragen, Verletzungen zu reduzieren, als Erosionsschutz dienen, die Luft- und Lärmbelastung reduzieren und hohe Lufttemperaturen senken (Bonos et al. 2006). Durch die weltweite Verbreitung als Rasen- und Futtergras wird L. perenne von zahlreichen Krankheiten befallen. In der Produktion von Gras als Wiederkäuerfutter und in der Grassamenproduktion stellen phytopathogene Pilze eine signifikante Bedrohung dar. Die Züchtung von resistenten Sorten stellt bei der Bekämpfung dieser Pathogene die wirtschaftlich und ökologisch effizienteste Lösung dar (Dracatos et al. 2009b).

1.2 Bedeutung und Schadbild von *Puccinia graminis* f.sp. *graminicola*

Der Schwarzrost (*Puccinia graminis* f.sp. *graminicola*) führt in der Gräservermehrung zu hohen Ertragsverlusten (Welty und Barker 1992; Pfender 2009; Schubiger et al. 2010) und kann in unbehandelten anfälligen Beständen einen Ertragsverlust von bis zu 98 % verursachen (Pfender 2009). Symptome treten bei Schwarzrostbefall an der gesamten oberirdischen Pflanze auf, jedoch hauptsächlich am Stängel und den Blattscheiden (Leonard und Szabo 2005). Dort bilden sich kaffeebraune Uredosporenlager (Abb. 1.1) von 2 – 3 cm Länge,

die häufig zusammenwachsen, streifenförmige Pusteln bilden und sich über den gesamten Halm ausbreiten. Dadurch wird die photosynthetisch aktive Fläche und Photosyntheseleistung der oberen Blattetagen und des Halmes reduziert (Hampton 1986). Des Weiteren wird der Transport von Assimilaten im Phloem in die infizierten Gewebe umgeleitet und führt dadurch zu einer Reduktion des Samenertrags und der Tausendkornmasse (Pfender 2009).

Abb. 1.1 Schwarzrost-Uredosporenlager auf einem infizierten *Lolium perenne*-Blatt

1.3 Bedeutung und Schadbild von Puccinia coronata f.sp. lolii

Der Kronenrost (Puccinia coronata f.sp. lolii) ist eine weltweit verbreitete Pilzkrankheit in *L. perenne*, die erhebliche Trockenmasse- und Qualitätsverluste auf Wiesen und Weiden der Wiederkäuerfütterung und Schäden in der Rasennutzung verursacht (Mattner und Parbery 2007; Dracatos et al. 2010; Schubiger et al. 2013). Symptome eines Kronenrostbefalls sind runde, pulverförmige, orangefarbene Uredosporenlager auf den Blattoberseiten (Abb. 1.2). Infektionen führen zu Trockenmasseverlusten von bis zu 56 % und einem erhöhten Absterben von Bestockungstrieben in unbehandelten Beständen (Potter 1987; Plummer et al. 1990; Mattner und Parbery 2007). Dies führt zu einem lückigen Bestand und einem erhöhten Vorkommen von unerwünschten Arten im Grünland und Rasen. Bedingt durch das Aufbrechen der Blattepidermis während der Sporulation kommt es zu einem erhöhten Wasserverlust durch Transpiration, einem Abbau an wasserlöslichen Kohlenhydraten und einer reduzierten Verdaulichkeit (Potter 1987; Reheul und Ghesquiere 1996; Schubiger et al. 2006). In der Milchproduktion führt die verringerte Verdaulichkeit zu reduzierten Milchleistungen und einer Ablehnung von hoch infiziertem Gras bei Milchkühen (Kimbeng 1999; Smit et al. 2005).

Abb. 1.2 Kronenrost-Uredosporenlager auf *Lolium perenne* Blattsegmenten 10 Tage nach Inokulation

1.4 Der Lebenszyklus von Puccinia graminis und Puccinia coronata

P. graminis und P. coronata entwickeln einen komplexen vollständigen Lebenszyklus, wobei beide Rostpilze einen Wirtswechsel durchlaufen (Abb. 1.3). Am Ende der Wachstumsphase der Gräser werden dickwandige zweizellige Teleutosporen gebildet, die sich vornehmlich auf den Blattscheiden und Halmen befinden, schwarzbraun sind und als Ruhesporen auf dem Stroh der Gräser den Winter überdauern. Mit dem Frühjahr und dem beginnenden Blattwachstum des Dikaryontenwirtes, der Berberitze (Berberis vulgaris) beim Schwarzrost und dem Kreuzdorn (*Rhamnus cathartica*) beim Kronenrost, erfolgt die Karyogamie in den keimenden dikaryotischen Teleutosporen. Dabei verschmelzen die beiden Zellkerne der Teleutospore und nach einer anschließenden Meiose entstehen vierzellige Basidien und vier haploide Basidiosporen. Die Basidiosporen werden über kurze Distanzen (180-270 m) durch Wind auf den Dikaryontenwirt übertragen und dringen dort in die Epidermiszellen ein. Nach ca. 5 Tagen bilden sich auf der Blattoberseite Spermagonien, die nach 7-14 Tagen Spermatien enthalten und aus denen Empfängnishyphen hervorstehen. Nach der Befruchtung der Empfängnishyphen mit einem kompatiblen Spermatium entwickelt sich aus den beiden Gameten ein dikaryotisches Myzel, mit dem der dikaryotische Zustand wiederhergestellt ist. Aus diesem Myzel bildet sich auf der Blattunterseite ein Aecidium in denen Aecidiosporen gebildet werden. Durch das Abtrocknen der feuchten Aecidien und durch Wind werden die Aecidiosporen auf den Haplontenwirt, die Gräser übertragen. Wegen der hohen Anzahl an Blättern und einer starken Infektion des Alternativwirtes kann es zu einem hohen Infektionsdruck durch Aecidiosporen im Umkreis von 100 m kommen. Bei einer optimalen Temperatur von 22°C und Feuchtigkeit auf den Blättern keimen die Aecidiosporen und dringen über die Stomata in den Haplontenwirt, das ausdauernde Weidelgras, ein. Nach erfolgreicher Infektion werden zwischen 7 und 14 Tagen Uredosporen gebildet, die durch Wind über weite Strecken auf umliegende Wirte verbreitet werden (Roelfs 1985). Damit setzt sich das Uredosporen-Stadium fort, bis im Herbst Teleutosporen gebildet werden, die auf dem Stroh der Gräser den Winter überdauern und im Frühjahr den Dikaryontenwirt infizieren.

Abb. 1.3 Lebenszyklus von Puccinia graminis nach Leonard und Szabo (2005)

Mit der Bildung von Uredosporen beginnt das Sommer- bzw. Uredostadium (Diplophase). Nachdem Uredosporen auf den Blättern oder Stängeln des Wirtes gelandet sind, benötigen sie einen Wasserfilm bzw. ausreichend Feuchtigkeit, um zu keimen. Nach erfolgreicher Keimung bildet die Uredospore einen Keimschlauch, der sich an der Blatt- oder Stängeloberfläche orientiert, sich an die Kutikula anpresst und damit die Möglichkeit, ein Stoma zu finden, erhöht. Sobald der Keimschlauch ein Stoma erreicht hat, endet das Längenwachstum und es wird ein Appressorium über der Öffnung des Stoma gebildet. Ausgehend davon wächst aus dem Appressorium ein Penetrationskeil durch das Stoma in den Interzellularraum. Dort bildet der Rost ein substomatäres Vesikel aus, von dem das Mesophyllgewebe durch Infektionshyphen besiedeln wird. Wenn die Spitze einer Infektionshyphe in Kontakt mit einer Mesophyllzelle kommt,

entwickelt sich am Ende der Infektionshyphe eine sich abgrenzende Haustorienmutterzelle (Leonard und Szabo 2005). Die Haustorienmutterzelle bildet einen schmalen Keil, der durch Druck und enzymatische Auflösung der pflanzlichen Zellwand in den Apoplast der Mesophyllzelle eindringt (Harder und Chong 1984). Nach der Penetration der Wirtszelle wird ein Haustorium im Apoplast ausgebildet, das Nährstoffe extrahiert (Struck 1996; Hahn et al. 1997; Voegele et al. 2001; Voegele und Mendgen 2003) und die parasitäre Phase der Rostentwicklung einleitet (Abb. 1.4). In einer anfälligen bzw. kompatiblen Wirt/Parasit-Beziehung wird anschließend der Phloemtransport in das infizierte Gewebe umgeleitet, um den Rostpilz mit Nährstoffen für das Wachstum und die Sporulation zu versorgen (Roelfs 1985). Nach 7 bis 14 Tagen bricht die Epidermis der Weidelgrasblätter auf, die Sporulation setzt ein und die Uredosporen werden durch Wind auf umliegende Wirte verbreitet. Auf diesen erfolgen die Entwicklung der Roststrukturen und die Uredosporenbildung erneut.

ur = Uredospore, ap = Appressorium, pp = Penetrationskeil, ssv = substomataläres Vesikel, if = Infektionshyphe, hmc = Haustorienmutterzelle, h = Haustorium

Abb. 1.4 Roststrukturen von *Puccinia graminis* ausgebildet während der frühen Infektionsphase der Uredosporenbildung nach Leonard und Szabo (2005)

1.5 Mechanismen der pflanzlichen Abwehr

Die Abwehrreaktionen von Pflanzen gegenüber Pathogenen werden in qualitative und quantitative Resistenz eingeordnet. Eine qualitative Resistenz, auch als rassenspezifische Resistenz bezeichnet, basiert auf der Gen-für-Gen-**Hypothese** nach Flor (1971). Danach basiert die Auslösung der Resistenzreaktion auf der Interaktion zwischen einem Resistenzgen des Wirtes und einem spezifischen dazugehörigen Avirulenzgen des Pathogen. Für diese Interaktion ist eine enge räumliche Nähe als Schnittstelle zwischen Pathogen und Wirtszelle notwendig. In der posthaustoriellen Phase der Rostentwicklung befindet sich das Haustorium im Apoplast der Wirtszelle. In diesem Stadium haben die haustorielle und wirtseigene Plasmamembran direkten Kontakt, was eine intensive Interaktion vermuten lässt (Hahn und Mendgen 2001; Voegele und Mendgen 2003; Jones und Dangl 2006). Qualitative Rost-Resistenzen in Getreide und Gräsern zeigen meist nach der Ausbildung von Haustorien eine hypersensitive Reaktion mit anschließendem programmierten Zelltod der infizierten Wirtszelle (Kloppers und Pretorius 1997; Bozkurt et al. 2010; Graichen et al. 2011: Sánchez-Martín et al. 2012). Diese Reaktion kann fluoreszenzmikroskopisch durch eine Autofluoreszenz der betroffenen Zelle nachgewiesen werden. In Weizen- und Hafer-Genotypen mit einer qualitativen posthaustoriellen Resistenz stagnierte die Rostentwicklung nach Bildung der ersten Haustorienmutterzellen zwischen 24 und 48 hpi. Anschließend trat eine Autofluoreszenz der infizierten Wirtszellen ab ca. 60 hpi ein, was auf den hypersensitiven Zelltod schließen lässt und damit die parasitäre Phase der Rostentwicklung verhindert (Kloppers und Pretorius 1997; Sánchez-Martín et al. 2012).

Im Gegensatz dazu führt eine guantitative rassenunspezifische Resistenz nicht zum vollständigen Erliegen der Rostentwicklung. Eine Form dieser Resistenz ist durch eine Verzögerung der Rostentwicklung charakterisiert und wird als "slow rusting" bezeichnet (Skovmand et al. 1978). Der Nachweis einer "slow rusting"-Resistenz kann durch verschiedene Vergleiche der Pathogenentwicklung erbracht werden. anderem durch Vergleich unter den von Rostentwicklungskurven zwischen anfälligen und "slow rusting"-Genotypen (Wilcoxson 1981). Die Mechanismen dieser Resistenzen sind weitestgehend unbekannt. Ma und Shang (2009) zeigten für die "slow rusting"-Resistenz im

Weizen gegenüber dem Gelbrost (*Puccinia striiformis* f.sp. *tritici*) eine Verstärkung der Zellwand durch die Ablagerung von Callose, einem beta-1,3-Glucan, um die Haustorien herum. Diese physikalische Barriere führt zu einer reduzierten Entwicklungsgeschwindigkeit, einer verlängerten Latenzphase und reduzierten Befallsstärke (Ma und Shang 2009).

In der Resistenzzüchtung liegt der Fokus besonders auf den qualitativen Resistenzen, weil diese auf einem Gen basieren und sich dadurch leichter in bestehendes Zuchtmaterial einkreuzen lassen. Durch resistenzspezifische molekulare Marker kann die Züchtung von resistenten Sorten zusätzlich beschleunigt werden, in dem zeitaufwändige Resistenztests ersetzt und die Anzucht und Pflege auf resistente Kreuzungsnachkommen konzentriert wird. In *L. perenne* wurden bereits qualitative und quantitative Resistenzen gegenüber dem Schwarz- und Kronenrost identifiziert, mit dem Ziel molekulare Marker für die Züchtung bereit zu stellen (Rose-Fricker et al. 1986; Dumsday et al. 2003; Muylle et al. 2005; Sim et al. 2007; Jo et al. 2008; Dracatos et al. 2009a; Beckmann et al. 2010; Pfender et al. 2011; Pfender und Slabaugh 2013).

1.6 Markerentwicklung und Lokalisation von Schwarzrostresistenzassoziierten Transkripten

Um Resistenzgene zu identifizieren, können Transkriptom basierte Methoden eine effektive Alternative zu bereits bestehenden Markersystemen, wie "Simple Sequence Repeat" (SSR)- und "Resistance Gene Analog" (RGA)-Markern sein. Vorteile der Transkriptom-basierten Methode ist, dass ausschließlich exprimierte Sequenzen erfasst und sich wiederholende Regionen ausgespart werden (Deschamps und Campbell 2009). Mit einer Kartierungspopulation, die eine definierte Aufspaltung in resistente und anfällige Genotypen zeigt, können "resistente" und "anfällige Bulks" gebildet werden. Genotypen in einem Bulk können genetisch unterschieden, müssen aber in einem Merkmal identisch sein ("bulked segregant analysis" (BSA)). Zusammen mit der "next-generation sequencing" basierten digitalen Genexpressionsanalyse "Massive Analysis of cDNA Ends" (MACE) (Kahl et al. 2012; Zawada et al. 2014; Nold-Petry et al. 2015) lassen sich aus diesen Bulks Kandidatengene identifizieren, die bereits erfolgreich zur Markerentwicklung genutzt wurden (Bojahr et al. 2016). Diese Methode hat bereits in verschiedensten Kulturpflanzen zur erfolgreichen

Identifikation von resistenzassoziierten Sequenzen für die Markerentwicklung beigetragen (Jing et al. 2013; Randhawa et al. 2014; Mamo et al. 2015).

Zusätzlich zur Identifikation von resistenzassoziierten Transkripten können die gewonnenen Informationen dazu beitragen, molekulare Mechanismen der Resistenz aufzudecken bzw. diese an Hand ihrer Expressionsprofile zu charakterisieren. Der Einfluss von Rostinfektionen auf die Genexpression von resistenten und anfälligen Genotypen wurde in der Wirt/Parasit-Interaktion zwischen Weizen und Puccinia spp. untersucht (Hulbert et al. 2007; Coram et al. 2010; Manickavelu et al. 2010; Zhang et al. 2011b). Diese Untersuchungen zeigten, dass während der Rostinfektion unterschiedlichste Signalwege und abwehrassoziierte Gene exprimiert werden, die für Resistenzgene, Rezeptoren, Transkriptionsfaktoren und antifungale Proteine codieren (Manickavelu et al. 2010; Zhang et al. 2011a; Guo et al. 2011). Ein weiterer Vorteil der Transkriptombasierten Methoden ist die Möglichkeit, über eine "in silico"-Kartierung auf die Lage des Resistenzlokus, auf bestimmten Kopplungsgruppen zu schließen. Zu diesem Zweck entwickelte Pfeifer et al. (2013) den "perennial ryegrass GenomeZipper" der auf der Transkriptomkarte von Studer et al. (2012) basiert. Diese Karte umfasst insgesamt 838 DNA-Marker und umspannt 750 (cM) mit einer durchschnittlichen Markerdichte von 0,9 cM. Bevor der "perennial ryegrass GenomeZipper" veröffentlicht wurde, war ein Vergleich zwischen Kopplungsgruppen limitiert, da diese auf unterschiedlichen Markersystemen und Auflösungen der genetischen Karten basieren. Der "GenomeZipper" hingegen nutzt die identifizierten Gemeinsamkeiten in der Reihenfolge von Genen oder Gensegmenten auf verschiedenen chromosomalen Abschnitten zwischen L. perenne und den Referenzgenomen von Brachypodium distachyon, Reis und Sorghum aus und arrangiert diese gemeinsamen chromosomalen Abschnitte entlang eines Markergerüsts (Pfeifer et al. 2013). Über den Abgleich von Lolium-Sequenzen mit den Referenzgenomen kann über homologe Sequenzen der Referenzgenome auf die Position der Lolium-Sequenz im Markergerüst geschlossen werden. Durch Byrne et al. (2015) wurde der "perennial ryegrass GenomeZipper" weiterentwickelt und damit eine Syntenie basierte Vorstufe des L. perenne Genoms konstruiert, das auf der Genordnung von 11.311 Genen basiert und insgesamt 1128 Mbp des L. perenne Genoms umfasst. Der Ansatz des "GenomeZippers" wurde bereits in Gerste erfolgreich bei der

Markerentwicklung und detaillierten Markerabdeckung von spezifischen Bereichen eingesetzt (Yang et al. 2013).

1.7 Problemstellung, Hypothesen und Ziele

ausdauernde Weidelgras ist eine wichtige Komponente in der Das Wiederkäuerfütterung und ein wesentlicher Bestandteil von Rasenmischungen. Bedingt durch die weltweite Verbreitung und das allgegenwärtige Vorkommen von L. perenne in unserer Umwelt, ist es einem permanenten Infektionsdruck durch phytopathogene Pilze ausgesetzt. Der Befall durch Puccinia graminis f.sp. graminicola in der Grassamenvermehrung und Puccinia coronata f.sp. lolii im Anbau zur Futtergewinnung verursachen hohe Ertragsverluste. Um diese Verluste zu vermeiden und die Krankheiten zu kontrollieren, ist der Anbau von resistenten Weidelgrassorten der am meisten effiziente, ökonomische und ökologische Weg. Die hohe Reproduktionsrate und die windbürtige Verbreitung der Uredosporen über weite Strecken lässt vermuten, dass eine Vielzahl von Schwarz- und Kronenrostpathotypen in Europa vorhanden sind (Schubiger et al. 2013; Schubiger und Boller 2015). Damit ist die Wahrscheinlichkeit der Überwindung vorhandener Resistenzen durch Mutationen der Pathotypen allgegenwärtig und die Identifikation neuer wirksamer Rostresistenzen von großer Bedeutung. Ein wichtiger Aspekt bei der Züchtung resistenter Sorten ist die Beschleunigung des Zuchtprozesses durch die markergestützte Selektion.

Die Identifikation von Resistenzmarkern in L. perenne beschränkte sich bisher auf DNA-basierte Markersysteme und QTL-Analysen ("quantitative trait loci"). Zahlreiche Studien haben gezeigt, dass die Transkriptom-basierte Identifikation resistenzassoziierten Transkripten und SNPs ("single von nucleotide polymorphism"), fehlender Genomsequenz, die Identifikation bei und Resistenzmarkerentwicklung beschleunigen kann (Parra-González et al. 2012; Livaja et al. 2013; Salgado et al. 2014; Fischer et al. 2015). Deshalb sollte in dieser Arbeit erstmalig die Entwicklung Transkriptom-basierter molekularer Schwarzrost-Resistenzmarker im hochgradig heterozygoten Gras, L. perenne von der Phänotypisierung bis zum nutzbaren Marker beschrieben werden. Darüber hinaus sollte untersucht werden, ob über eine "in silico"-Kartierung der resistenzassoziierten Transkripte und SNPs zusammen mit dem "perennial ryegrass GenomeZipper" eine Lokalisation des Resistenzlokus LpPg1 auf einer

spezifischen Kopplungsgruppe von *L. perenne* möglich ist. Über die Genexpressionsprofile der resistenten Bulks soll versucht werden auf den Resistenzmechanismus von *LpPg1* zu schließen. Neben *LpPg1* wurden zwei unterschiedliche Kronenrostresistenzen in derselben Kartierungspopulation identifiziert. Beide Kronenrostresistenzen sollen in dieser Arbeit fluoreszenzmikroskopisch charakterisiert und mittels MACE resistenzassoziierte Transkripte für eine spätere Markerentwicklung identifiziert werden.

Die Arbeiten zur Schwarz- und Kronenrostresistenz werden getrennt von einander beschrieben und die Ergebnisse im Anschluss zusammengeführt. Die vorgelegte Dissertation basiert auf folgenden Arbeiten und Hypothesen.

Basis der Untersuchungen zur Schwarz- und Kronenrostresistenz bilden die Phänotypisierungen mit Schwarz- bzw. Kronenrostfeldisolaten verschiedener Herkünfte in Form von Blattsegmenttests:

- Die Phänotypisierung der Kartierungspopulation mit Schwarz- und Kronenrostfeldisolaten zeigt eine Aufspaltung in resistente und anfällige Genotypen.
- Zwischen den Schwarz- bzw. Kronenrostfeldisolaten lassen sich Unterschiede in der Befallsstärke der Genotypen durch standortbedingt unterschiedliche Pathotypenzusammensetzungen erklären.

Mit Hilfe der Zusammenfassung von Blattsegmenten schwarzrostresistenter bzw. -anfälliger Genotypen in Form von Bulks zu verschiedenen Inokulationszeitpunkten wird die spezifische Genexpression in den Schwarzrost anfälligen und resistenten Genotypen erfasst.

- Aus der differentiellen Genexpression und SNP-Analyse zwischen resistenten und anfälligen Bulks lassen sich resistenzassoziierte Kandidatengene und SNPs identifizieren.
- Diese Gene und SNPs lassen sich als polymorphe molekulare Marker etablieren, sind mit dem Schwarzrostresistenzlokus *LpPg1* gekoppelt, in einer genetischen Karte zusammen mit *LpPg1* darstellbar, lassen eine verlässliche Unterscheidung von resistenten und anfälligen Genotypen zu, die von der Züchtung genutzt werden kann.

 Durch eine "*in silico*"-Kartierung von resistenzassoziierten Transkripten kann über die Brückenart *B. distachyon* und unter Zuhilfenahme des "perennial ryegrass GenomeZipper" der Resistenzlokus *LpPg1* auf einer spezifischen *L. perenne*-Kopplungsgruppe lokalisiert werden.

Die Untersuchungen zur Kronenrostresistenz in der Kartierungpopulation LPSR1001 sollen eine Grundlage für eine spätere Entwicklung molekularer Kronenrostresistenzmarker sein.

Dazu werden der Zeitpunkt der Pathogenerkennung und Resistenzreaktionen durch die fluoreszenzmikroskopische Dokumentation und Auszählung der Kronenrostinfektionsstrukturen sowie die Resistenzausprägung von verschiedenen Resistenztypen erfasst.

- Die Entwicklung der Kronenroststrukturen wird in den resistenten Genotypen unterbunden bzw. die Ausbreitung im Pflanzengewebe beeinflusst.
- Genotypen lassen sich basierend auf den Infektionskurven den spezifischen Resistenztypen zuordnen.

Mit Hilfe von Genexpressionsanalysen der Kronenrostresistenztypen im Vergleich zum anfälligen Genotyp wird die resistenzassoziierte Genexpression erfasst und werden resistenzspezifische Genexpressionsprofile und Kandidatengene für eine spätere Markerentwicklung identifiziert.

- Über die resistenzassoziierten Genexpressionsprofile und Transkripte können die Resistenztypen unterschieden werden.
- Exklusiv und hochdifferentiell exprimierte resistenzassoziierte Transkripte können spezifisch für jede Kronenrostresistenz identifiziert werden.

Mit Hilfe der Korrelationsanalyse von Modalwerten aus der Schwarz- und Kronenrostresistenzphänotypisierung und dem Vergleich von exklusiven und hochdifferentiell exprimierten Transkripten in schwarz- und kronenrostresistenten Bulks/Genotypen lässt sich auf einen identischen Resistenzlokus für die Schwarz- und Kronenrostresistenz oder getrennte Resistenzloki schließen.

 Die Modalwerte der resistenten und anfälligen Genotypen sind f
ür die Schwarz- und Kronenrostresistenz identisch. Die Vererbung beider Resistenzen erfolgt gemeinsam.

- Die differentielle Expression von schwarz- und kronenrostresistenten Genotypen ist vergleichbar.
- Aus den Genexpressionsprofilen von schwarz- und kronenrostresistenten Bulks/Genotypen lässt sich auf einen identischen Resistenzlokus schließen.

Ziel dieser Promotionsarbeit ist es:

- Die auf Schwarzrostresistenz phänotypisierte Kartierungspopulation LPSR1001 mit aktuellen Schwarzrost-Feldisolaten zu phänotypisieren: Dazu sollen die Genotypen mit Schwarzrostisolaten verschiedener Herkünfte inokuliert werden, um resistente und anfällige Genotypen für die Genexpressionsanalyse zu selektieren.
- Kandidatengene und SNPs für die Schwarzrostresistenz-Markerentwicklung zu identifizieren: Dabei sollen in Vergleichen zwischen resistenten und anfälligen Bulks, exklusiv und hochdifferentiell exprimierte Transkripte und resistenzassoziierte SNPs selektiert werden. Zusätzlich soll an Hand der Genexpressionsprofile der resistenten Bulks eine Aussage über den Resistenzmechanismus getroffen werden.
- Molekulare Marker für die Schwarzrostresistenz zu entwickeln: Dabei sollen die Sequenzen der Kandidatengene auf Polymorphismen in der Kartierungspopulation getestet und die Kopplung der Marker zusammen mit dem Resistenzlokus auf einer genetischen Karte dargestellt werden. Anschließend soll über den "perennial ryegrass GenomeZipper" auf die Position von LpPg1 auf einer spezifischen Lolium-Kopplungsgruppe geschlossen werden.
- Die Kronenrostresistenzen in der Kartierungspopulation LPSR1001 zu phänotypisieren: Dazu sollen die Genotypen mit Kronenrostisolaten verschiedener Herkünfte inokuliert werden, um resistente und anfällige Genotypen für fluoreszenzmikroskopische Untersuchungen und Genexpressionsanalysen zu selektieren.
- Den Zeitpunkt der Kronenrostresistenzreaktionen einzugrenzen und den Resistenzmechanismus zu beschreiben: Dazu soll ein Zeitreihenversuch mit kronenrostinokulierten resistenten und anfälligen

Genotypen durchgeführt und dabei die Entwicklung von Roststrukturen quantifiziert und dokumentiert werden.

- Die Kronenrostresistenzen an Hand ihrer Genexpressionprofile zu charakterisieren und Kandidatengene für eine spätere Markerentwicklung zu identifizieren: Dazu soll die Genexpression von kronenrostresistenten und -anfälligen Genotypen sowie von inokulierten und nicht inokulierten Zeitpunkten miteinander verglichen werden.
- Die Schwarz- und Kronenrostresistenz auf einem identischen Resistenzlokus zu untersuchen: Dazu sollen die Ergebnisse der Schwarz- und Kronenrost-Phänotypisierungen auf Korrelationen getestet werden und die Genexpressionsprofile schwarz- und kronenrostresistenter Bulks/Genotypen auf Gemeinsamkeiten untersucht werden.

2 Material und Methoden

2.1 Pflanzenmaterial und Rostisolate

Für nachfolgenden Untersuchungen wurde die Lolium perenne die Vollgeschwisterpopulation LPSR1001 der Saatzucht Steinach GmbH & Co KG ausgewählt. Diese Kartierungspopulation umfasst 276 Pflanzen, die einer Vollgeschwister-Kreuzung zwischen einem schwarzrostresistenten (LPSR2061 1/1) und anfälligen Genotyp (LPSR2061 1/3) der F1-Population LPSR2061 entstammen. LPSR2061 basiert auf einer Paarkreuzung von Genotypen der Sorten "Weigra" und "Fennema". Die Phänotypisierung auf Schwarzrostresistenz der Kartierungspopulation LPSR1001 erfolgte in einem Vorgängerprojekt (Beckmann 2010). Zur Bestätigung der von Beckmann (2010) als resistent bonitierten Genotypen wurden diese mit vier weiteren Schwarzrostisolaten im Blattsegmenttest getestet. Für die Resistenztests stellten jeweils die Saatzucht Steinach GmbH & Co KG aus Steinach (2011), William Pfender von der "USDA Forage Seed and Cereal Research Unit" aus Corvallis/Oregon (2011), die IPK Außenstelle Malchow/Poel (2012) und die Universität Rostock (2012) ein Schwarzrostfeldisolat zur Verfügung. Die Kronenrostfeldisolate entstammen dem Zuchtgarten der Saatzucht Steinach GmbH & Co KG in Steinach (2012) und Bocksee (2013) sowie dem Versuchsgarten der Universität Rostock (2012). (Tab. 2.1). Alle Pflanzen wurden im Gewächshaus bei einem Tag/Nacht-Rhythmus von 16/8 h bei 24°C Tag und 18°C Nacht angezogen. Die Bewässerung erfolgte täglich und die Düngung monatlich mit 0,22 g*L-1 Wuxal Universaldünger (N:P:K=8:8:6) (Wilhelm Haug GmbH & Co KG, Ammerbuch-Pfäffingen).

2.2 Rostvermehrung

Die Vermehrung der Schwarz- und Kronenrostisolate erfolgte auf Blattstücken der hochanfälligen und isoliert angezogenen Sorte Aurora. Es wurden ausschließlich Blattstücken des dritten vollentwickelten Blattes eines Triebes genutzt und mit der Blattunterseite auf Agarplatten (6% Agar, 400 ppm Benzimidazol; Lellbach 1994) der Länge nach aufgelegt. Bis zur Inokulation wurden die Platten im Klimaschrank gelagert. Die bei -85°C gelagerten Rostsporen wurden für fünf Minuten bei 43°C inkubiert und anschließend in eine 10 ppm Tweenlösung gegeben und im Ultraschallbad homogenisiert (Rowell

1984). Die Inokulation erfolgte mit 10 µl Sporensuspension (100 µl Eppendorf-Pipette) im Abstand von ca. 1,5 cm (Abb. 2.1, links). In regelmäßigen Abständen wurde die Sporensuspension für eine Sekunde im Ultraschallbad homogenisiert. Nach der Inokulation wurden die Agarplatten bei 18°C und 20 Stunden Dunkelheit und anschließend bis zur Uredosporenernte bei 22°C und einem Tag/Nacht-Rhythmus von 16/8 h mit Zusatzbeleuchtung (Tageslichtlampen (38 W/m², 13000 lx) im Klimaschrank gelagert. Erste Uredosporenlager zeigten sich nach ca. 8 Tagen beim Kronenrost und 10 Tagen beim Schwarzrost (Abb. 2.1, rechts). Nach der Uredosporenernte erfolgte eine Trocknung auf Silicagel für zwei Tage (Fa. Roth), mit anschließender Lagerung bei -85°C.

Abb. 2.1 Inokulierte Blattsegmente der hochanfälligen *Lolium perenne* Sorte Aurora mit Schwarzrost-Sporensuspension (links) und ersten Uredosporenlagern nach 10 Tagen (rechts)

2.3 Phänotypisierung

Die Phänotypisierung der Kartierungspopulation LPSR1001 wurde auf Schwarzund Kronenrostresistenz durchgeführt. Beckmann (2010) phänotypisierte die Population bereits mit drei Schwarzrostfeldisolaten aus Deutschland (Malchow/Poel aus 2003, Bornhof und Steinach aus 2007) in einem Vorgängerprojekt (Tab. 2.1). Dabei wurde eine 1:1 Aufspaltung in schwarzrostresistente und -anfällige Genotypen festgestellt.

Eine Auswahl von 114 als schwarzrostresistent bonitierte Genotypen dieser Kartierungspopulation wurde an der Universität Rostock mit den oben beschriebenen vier Schwarzrostfeldisolaten nochmals phänotypisiert, um ausschließlich resistente Genotypen für die Genexpressionsanalyse mittels "Massive Analysis of cDNA Ends" (MACE) zu selektieren. Die Phänotypisierung auf Kronenrostresistenz wurde mit allen noch beim Züchter vorhandenen 282 Genotypen mit den drei Kronenrostfeldisolaten aus Deutschland (Rostock 2012, Steinach 2012 und Bornhof 2013) durchgeführt. Alle Resistenztests erfolgten nach Beckmann (2010) in Form von Blattsegmenttests. Dazu wurden Blattsegmente von zwei cm Länge vom dritten vollentwickelten Blatt jedes Genotyps entnommen und je zwei Blattstücke auf zwei runde (14 cm \emptyset) Agarplatten, wie in Kapitel 2.2 beschrieben, nacheinander aufgelegt. Die bei -85°C gelagerten Uredosporen wurden vor der Inokulation für fünf Minuten bei 43°C inkubiert. Die Inokulation erfolgte mit einem Druckluft betriebenen Inokulationsturm mit 30 µg*cm⁻² Uredosporen bei 4 bar Luftdruck. Nach der Inokulation wurde ein feuchtes Filterpapier in die Deckel der Agarplatten gelegt. Dies gewährleistete eine hohe Luftfeuchtigkeit und eine gleichmäßige Sporenkeimung. Anschließend wurden die Agarplatten, wie in Kap. 2.2 beschrieben, bis zur Bonitur gelagert. Die Keimung der Uredosporen wurde 24 h nach Inokulation bei 200-facher Vergrößerung unter dem Lichtmikroskop kontrolliert. Nach 10 und 12 Tagen wurden die Blattsegmente nach der neunteiligen Boniturskala nach Beckmann (2010), die von 1 (keine Symptome) bis 9 (über 60% befallene Blättfläche) reicht, bonitiert. Jeder Blattsegmenttest wurde in zweifacher zeitlicher Wiederholung durchgeführt und die Boniturnoten für jeden Genotyp in einem Modalwert zusammengefasst.

	Schwarzrost	Kronenrost	
Kartiarungananulatian	LPSR1001 (406 Genotypen)	LPSR1001 (282 Genotypen)	
Kartierungspopulation	Beckmann (2010)	Universität Rostock	
Herkunft und Jahr der	Malchow 2003, Bornhof 2007,	Steinach 2012, Rostock	
verwendeten Rostisolate	Steinach 2007	2012, Bocksee 2013	
Test ausschließlich	Universität Rostock		
resistenter Genotypen	(114 Genotypen)		
Herkunft und Jahr der	Steinach 2011, USA/Corvallis		
verwendeten Rostisolate	2011, Malchow/Poel 2012,		
	Rostock 2012		

Tab. 2.1 Verwendetes	Pflanzen- und	Uredos	porenmaterial
----------------------	---------------	--------	---------------

2.4 Erzeugung von Kronenrosteinsporisolaten

Für die histologischen und molekularbiologischen Untersuchungen der Kronenrost/Lolium-Interaktion wurde das Kronenrostfeldisolat aus Steinach

(2012) ausgewählt, weil es die höchste Virulenz in der Phänotypisierung zeigte. Eine Sporensuspension mit 5 Uredosporen*µl-1 Tween (10 ppm) Lösung wurde hergestellt und für 3 Sekunden im Ultraschallbad homogenisiert. Ein Volumen von 10 µl Sporensuspension wurde auf einen Objektträger pipettiert und einzelne Uredosporen bei 200-facher Vergrößerung unter dem Lichtmikroskop (Nikon Eclipse 6000) mit einer 2,5 µl-Pipette (Eppendorf) aufgezogen. Jede Spore wurde auf ein 2 cm langes, auf Agar ausgelegtes, Blattstück der Sorte Aurora pipettiert und wie in Kapitel 2.2 beschrieben im Klimaschrank gelagert. Nach 10 Tagen wurden die Sporenlager isoliert geerntet und wie in Kapitel 2.2 beschrieben vermehrt. Das Kronenrost-Einsporisolat aus Steinach (KR-SR1) wurde für die mikroskopischen Untersuchungen ausgewählt, weil dieses dieselbe phänotypische Ausprägung der Resistenztypen zeigte, wie das Feldisolat.

2.5 Mikroskopische Untersuchungen zur Kronenrostresistenz

Basierend auf den Ergebnissen der Phänotypisierung der Kronenrostresistenz wurden je ein vollständig resistenter (LPSR1001/102) (VRG), ein moderat resistenter (LPSR1001/7) (MRG) und ein anfälliger Genotyp (LPSR1001/255) (AG), der resistente Elter (LPSR2061 1/1) (RE) sowie die hochanfällige Sorte "Aurora" ausgewählt. Diese Genotypen repräsentieren die ermittelten Kronenrostresistenztypen in der Kartierungspopulation LPSR1001. Zur Darstellung des Kronenrostinfektionsverlaufs wurden Zeitreihenversuche bei denen die Rostentwicklung fluoreszenzmikroskopisch durchgeführt, dokumentiert wurde. Von jedem Resistenztyp wurden zehn Blattstücke von je zwei cm Länge des dritten jüngsten vollentwickelten Blattes eines Triebes, für jeden Zeitpunkt entnommen und, wie in Kapitel 2.2 beschrieben, auf Agar ausgelegt. Anschließend wurde jedes Blattsegment mit 5 x 10 µl Tropfen der KR-SR1/Tweenlösung (10 ppm), wie in Kapitel 2.2 beschrieben, inokuliert. Die Uredosporensuspension setzte sich aus 2,5 mg Uredosporen/ml Tweenlösung (10 ppm) zusammen. Nach der Inokulation wurden die Agarplatten bei 18°C für 20 h Dunkelheit im Klimaschrank und anschließend, wie in Kapitel 2.2 beschrieben, gelagert. Jede Zeitreihe erfolgte in zweifacher Wiederholung mit jeweils fünf Blattsegmenten je Wiederholung. Die Probenahme erfolgte zum Zeitpungkt 6, 12, 24, 36, 48 und 60 Stunden nach Inokulation (hpi) mit sofortiger Fixierung bei 65°C für 15 min in einer Lactophenol/Ethanollösung (v:v, 1:2)

(Rohringer et al. 1977). Bis zur Fortsetzung des Protokolls wurden die Blattsegmente in dieser Lactophenol/Ethanollösung gelagert. Die Anfärbung der Infektionsstrukturen wurde modifiziert nach Rohringer et al. (1977) durchgeführt. Die Färbedauer wurde auf 20 min in 0,1 %iger "Fluorescent Brightener 28"-Lösung (Sigma Aldrich, St. Louis, USA) verlängert. Nach dreimaligem Waschen der Blattsegmente für 15 min in destiliertem Wasser und einmal für 30 min in einer gesättigen Chloralhydratlösung wurden Dauerpräparate mit Kaisersglyceringelantine hergestellt. Die Rostentwicklung wurde unter UV-Anregung an einem Nikon Eclipse 6000 D unter 400-facher Vergrößerung beifolgender Filterkombination: Anregungsfilter 380-420 nm, Sperrfilter 450 nm und dichroitischer Spiegel 430 nm dokumentiert. Zu den Zeitpunkten 6 und 12 Stunden nach Inokulation (hpi) wurde auf jedem Blattsegment die Keimfähigkeit und Appressorienbildung von 50 Uredosporen bestimmt. In Vorversuchen war die APP-Bildung zum Zeitpunkt 12 hpi beendet, deswegen erfolgte ab diesem Zeitpunkt die Auszählung der Infektionsstrukturen ausgehend von 50 APP/Blattsegment.

2.6 Massive analysis of cDNA ends (MACE)

2.6.1 Schwarzrost-MACE

Das Ziel der Schwarzrost-MACE war die Identifizierung von resistenzspezifischen Kandidatengenen für die anschließende Markerentwicklung. Die Zeitreihe zur Ermittlung von Genexpressionsprofilen zwischen schwarzrostresistenten und -anfälligen Genotypen wurde von der Saatzucht Steinach GmbH & Co KG und die Genexpressionsanalyse bei der GenXpro GmbH, Frankfurt/M., durchgeführt. Für die MACE wurden 20 resistente und 20 anfällige Genotypen selektiert. Die ausgewählten resistenten Genotypen zeigten zu keinem Zeitpunkt Symptome und die anfälligen Genotypen mindestens 60% befallene Blattfläche mit einer starken Sporulation (Abb. 2.2). Von jedem Genotyp wurden zu fünf Zeitpunkten jeweils ein Blattsegment des dritten jüngsten vollentwickelten Blattes entnommen und wie in Kapitel 2.2 beschrieben auf Agar ausgelegt. Inokuliert wurden die Blattsegmente mit dem Schwarzrostfeldisolat aus Steinach (2011), in einem druckluftbetriebenen Inokulationsturm. Vor der Inokulation wurde von jedem resistenten und anfälligen Genotyp ein Blattstück entnommen, in Form von "Bulks" als resistente und anfällige Genotypen zusammengefasst und unverzüglich in flüssigem Stickstoff "fixiert". Nach der Inokulation wurden zu den Zeitpunkten 4, 8, 18 und 24 hpi Blattstücke jedes Genotyps entnommen und wie oben beschrieben in Bulks zusammengefasst und fixiert. Die Zeitpunkte 4 und 8 hpi und 18 und 24 hpi wurden nachträglich vor der RNA-Isolierung als früher und später Infektionszeitpunkt zusammengefasst (Tab. 2.2).

Abb. 2.2 Schwarzrost inokulierte resistente (links) und anfällige *Lolium perenne* Phänotypen (rechts) der Kartierungspopulation LPSR1001 10 Tage nach Inokulation

2.6.2 Kronenrost-MACE

Die Zeitreihe zur Charakterisierung der Kronenrostresistenztypen wurde wie in Kapitel 2.5 beschrieben durchgeführt. Dazu wurden die Lolium-Genotypen vollständig resistent (VRG), moderat resistent (MRG), und anfällig (AG) sowie der resistente Elter LPSR2061 1/1 (RE) ausgewählt und mit KR-SR1 inokuliert. Gegensatz zur Schwarzrost-MACE wurden von den Blattstücken Im ausschließlich die inokulierten Bereiche mit einem in flüssigem Stickstoff gekühltem Korkbohrer ausgestanzt, um möglichst die Genexpression von resistenzspezifischen Transkripten zu erfassen und einen möglichen Verdünnungseffekt durch nicht infizierte Bereiche auszuschließen. Die

ausgestanzten Blattstücke wurden unverzüglich in einem in flüssigem Stickstoff gelagerten Cryoröhrchen (Fa. Carl Roth, Deutschland) eingefroren und bei -85°C gelagert. Die Probenahmen erfolgten unmittelbar vor der Inokulation sowie 6, 12 und 24 hpi (Tab. 2.2).

	Schwarzrost	Kronenrost
Ziel	Resistenzmarker- Entwicklung	resistenzspezifische Genexpression
ausgewählte Genotypen	20 resistente Genotypen (0 % befallene Blattfläche) 20 anfällige Genotypen (≥ 60 % befallene Blattfläche)	vollständig resistenter Genotyp (0 %) resistenter Elter (0 %) moderat resistenter Genotyp (>5 – 10 %) anfälliger Genotyp (≥ 60 %)
Verwendetes	Feldisolat	Einsporisolat (KR-SR1) aus
Rostisolat	Steinach (2011)	Steinach (2012)
Probenmaterial	Blattsegmente als Bulks	ausgestanzte inokulierte Blattbereiche je Genotyp
Zeitpunkte der Probenahme	nicht inokuliert, 4 hpi, 8 hpi, 18 hpi, 24 hpi	nicht inokuliert, 6 hpi, 12 hpi, 24 hpi
cDNA Banken	<u>Bulks:</u> nicht inokuliert anfällig nicht inokuliert resistent früher Zeitpunkt anfällig (4 + 8 hpi) früher Zeitpunkt resistent (4 + 8 hpi) später Zeitpunkt anfällig (18 + 24 hpi) später Zeitpunkt resistent (18 + 24 hpi)	<u>Genotypen:</u> vollständig resistent, moderat resistent, anfällig und der resistente Elter <u>Zeitpunkte:</u> nicht inokuliert 6 hpi 12 hpi 24 hpi

 Tab. 2.2 Vergleichende Darstellung der Schwarz- und Kronenrost-MACE

 Experimente

2.6.3 RNA-Isolierung, Reverse Transkription und Sequenzierung

Bei der GenXPro GmbH wurde die RNA-Isolierung durchgeführt. Die Blattsegmente wurden in flüssigem Stickstoff gemahlen und die RNA mit dem RNeasy Plant Extraktionskit (Qiagen, Deutschland) extrahiert und mittels polyadenylierter RNA durch Dynabeads Oligo-dt (life technology, USA) nach Angaben des Herstellers isoliert.

Die cDNA-Banken wurden nach Zawada et al. (2014) generiert. cDNA von 5 µg RNA wurde willkürlich fragmentiert und die biotinylierten 3'-Enden an eine Streptavidin-Matrix gebunden. Zur Hochdurchsatzsequenzierung (Ilumina HiSeq 2000) wurden die cDNA-Banken mit TrueQuant-Adaptern (GenXPro GmbH) prepariert. Die cDNA-Banken bestanden aus Sequenzen von 50 bis 600 Basenpaaren (bp) von 3'-Enden abgeleiteten Fragmenten. Zur Erzeugung von MACE-Sequenzen (reads) wurden die 5'-Enden der cDNA-Banken mit 100 Zyklen im HiSeq 2000 sequenziert. Jede Sequenz repräsentiert ein einzelnes Transkriptmolekül, deren erste sechs Basenpaare einen Barcode enthalten. Die tatsächliche Länge der MACE-Sequenzen (reads) erreicht 94 bp. Die Sequenzdaten der Schwarzrost-MACE sind in der NCBI BioProject-Datenbank unter der Akzessionsnummer PRJNA317520 hinterlegt. Die bei der Kronenrost-MACE ermittelten Sequenzdaten wurden bisher nicht veröffentlicht.

2.6.4 Bioinformatik

Die reads wurden anschließend in der Bioinformatik bearbeitet. Dabei wurden zur Entfernung des PCR-Bias alle von der True Quant-Technologie (GenXPro GmbH) identifizierten Duplikate vom Rohdatensatz entfernt. Sequenzen mit geringer Basenqualität wurden gekappt und der Poly-A-Schwanz abgeschnitten. Die qualitativ hochwertigen reads wurden anschließend mit der GenXproeigenen nicht publizierten RNASeq-Sammlung von *L. perenne* abgeglichen. Alle reads der Proben, die nicht annotiert werden konnten, wurden zu einer Referenzdatenbank zusammengesetzt. Die Sequenzen der zusammengesetzten reads wurden zur Swissprot (Boeckmann et al. 2005) und NCBI-"Viridiplantae"-Datenbank durch BLASTX (Altschul et al. 1990) annotiert und anschließend als Referenz für die Annotierung und Quantifizierung der MACE-Sequenzen genutzt. Ausschließlich eindeutig zugeordnete reads wurden weiter genutzt.

2.7 Validierung von ausgewählten Sequenzen der Schwarzrost-MACE mittels quantitativer qRT-PCR

Zur Bestätigung der Genexpressionsanalyse in der Schwarzrost-MACE wurden acht Transkripte aus der MACE ausgewählt (Tab. 2.3) und mit der quantitativen "Real Time-Polymerase Chain Reaction" (qRT-PCR) auf Reproduzierbarkeit getestet. Von diesen acht Transkripten wurden fünf exklusiv nur in den resistenten Genotypen und drei zwischen den resistenten und anfälligen Bulks hochdifferenziell exprimiert. Basierend auf den MACE-Sequenzen wurden spezifische Primer mit dem Programm Primer-Blast von NCBI erstellt (Ye et al. 2012). Als Referenzgen wurde aus den MACE-Sequenzen das Elongationsfaktor 1-alpha-Gen (*ELF-1* α) gewählt, dessen Expression über alle Versuchsbedingungen konstant war. Die Zeitreihe wurde in einem unabhängigen Experiment in Rostock, wie in Kapitel 2.6.1 beschrieben, wiederholt.

2.7.1 RNA Isolierung und Umschreiben der RNA in cDNA

Für die RNA-Isolierung wurden die Bulks aus 4 und 8 hpi und 18 und 24 hpi analog zu Kapitel 2.6.3 zusammengefasst und mit Mörser und Stößel in flüssigem Stickstoff homogenisiert. Von 100 mg Pflanzenmaterial wurde mit dem RNease-Plant Minikit (Fa. Qiagen, Deutschland) die RNA isoliert und anschließend mit dem QuantiTect Reverse Transcription Kit (Fa. Qiagen, Deutschland) in cDNA übersetzt. Die Arbeiten erfolgten entsprechend den Anweisungen des Herstellers.

2.7.2 Primer und qRT-PCR-Protokoll

Der Mastermix setzte sich aus 1 ng cDNA und dem SYBR Green PCR-Mastermix (Qiagen, Deutschland) nach Vorgabe des Herstellers zusammen. Im Rotor-Gene Q MDx (Qiagen, Deutschland) qRT-PCR-Cycler wurden die Proben der Reihe nach in einem 72 Proben fassenden Rotor eingesetzt und die PCR nachfolgendem Programm ausgeführt: 90°C für 5 min, gefolgt von 40 Zyklen für 5 sec bei 90°C und 10 sec bei 60°C. Jedes Primerpaar und jede Probe wurde in dreifacher technischer Wiederholung quantifiziert und die Primerspezifität bei jedem Lauf mit einer Negativkontrolle überprüft (Tab. 2.3).

 Tab. 2.3 Primersequenzen ausgewählter MACE-Transkripte zur Validierung der Schwarzrost-MACE-Ergebnisse mittels qRT-PCR

Primer	Gen- Identifikat -ion	Beschreibung	Sequenz 5'-3'	Produkt -länge (bp)
ERT1-f	LoliumRes_a 230215_7	Disease resistance protein	AGGCTTTGCTCACAGTACCC	111
ERT1-r		bulbocastanum)	GGGACCGCAAGAACTTCTCA	
ERT2-f	LoliumRes_a 549699_4	Putative disease resistance protein RGA1	AAGGTTGAGCTGCTGAGGAC	163
ERT2-r		(S. bulbocastanum)	ACACATCCACCCATGCTCTG	
ERT3-f	LoliumRes_a 783434_3	PREDICTED: <i>Brachypodium</i> <i>distachyon</i> disease resistance RPP8-like protein 3-like (LOC100827328),	CTTGACTCCTGTCCGCATGA	174
ERT3-r		mRNA;	CTTTGGAAAAGCCAGGCAGT	
ERT4-f	LoliumRes_a	Disease resistance RPP13- like protein 4 (<i>Arabidopsis</i>	ACACTGCCTGTTTTGGCTCA	156
ERT4-r	521100_0	thaliana)	ACGGACCCTGATGTAGTCCT	
ERT5-f	LoliumRes_a 48290_26	RPM1_ARATH Disease resistance protein RPM1 (A.	GTTCAGAACAGATGCATGTAC	101
ERT5-r	_	thallana)	AGACGAGAGTTGGAAGCACC	
LoRes1-f	LoliumRes_a	Premnaspirodiene oxygenase (<i>Hyoscyamus</i>	AGCCGCGTAAATAAACAGGG	65
LoRes1-r	2000_120	muticus)	GATTCCCCCTGCAGTTTCCC	
LoRes2-f	LoliumSus_a 50225_89	Thaumatin-like pathogenesis-related	ACGTCAAGACCAAAACCTGC	177
LoRes2-r		protein 4 (Avena sativa)	CGTGTGTGCACCGATTGTTC	
LoRes3-f	LoliumRes_a 18580_131	Pathogenesis-related protein PRB1-2 (<i>Hordeum</i>	ACGCCGAAGCCAAGTAGTC	104
LoRes3-r		vulgare)	CATTGCCACGGATACAGCAG	
Elf1α-f	LoliumRes_a	Elongation factor 1-alpha (H.	TCGACTCTGGCAAGTCAACC	08
Elf1α-r	507_2186	vulgare)	CTCAGCGGCTTCCTTCTCAA	

2.8 Statistische Methoden

Vergleiche zwischen den Modalwerten der Phänotypisierungen der einzelnen Rostisolate wurden mit der Rangkorrelationsanalyse nach Spearman und Signifikanzen mit Tukey's HSD *post hoc*-Test auf Ränge berechnet. Signifikante Unterschiede in der Kronenrostentwicklung ausgewählter Resistenztypen wurde mit dem Kruskal-Wallis Test und multiple Vergleiche mit Tukey's HSD *post hoc*-Test berechnet (Mendiburu 2016). Die Auswertung erfolgte mit der Softwareumgebung R (Version 3.3.0, R Development Core Team 2008). Neben den Standardpaketen wurde das Paket "agricolae" (Version 1.2-4) genutzt.

Die Normalisierung und die Tests auf differentielle Genexpression zwischen den Bulks der Schwarzrost-MACE bzw. den Genotypen der Kronenrost-MACE wurden bei der GenXpro GmbH mit dem Paket DEGSeq R/Bioconductor (Wang

et al. 2010) Die Selektion berechnet. von resistenzassoziierten Genexpressionsprofilen und Transkripten wurde mit der "Gene Ontology" (GO) Analyse ("Gene Ontology Enrichment Analysis Tool") durchgeführt. In der GO process" wurden GO-Beariffe mit signifikant differentieller "biological Genexpression auf Grundlage des nach Fischer berechneten p-Werts selektiert. Anschließend wurde auf GO-Begriffe mit Annotation zur Pflanzenabwehr und Wirt/Parasit-Interaktion selektiert. Die dazu genutzten GO-Begriffe basieren auf GO-Analysen von Resistenzen und Wirt/Pathogen-Interaktionen in wissenschaftlichen Artikeln und auf GO-Begriffen, die vom "Plant-Associated Microbe Gene Ontology (PAMGO) Consortium" entwickelt wurden (Chibucos et al. 2009; Meng et al. 2009; Torto-Alalibo et al. 2009).

Um SNPs zwischen den Sequenzen der resistenten und anfälligen Bulks in der Schwarzrost-MACE zu identifizieren, wurde das Programm SNVmix genutzt (Goya et al. 2010). Alle Contigs, die SNPs beinhalteten, wurden auf das *Brachypodium distachyon*-Genom annotiert. Dieses wurde in 50 Abschnitte aufgeteilt und die Frequenz der Contigs mit SNPs gezählt. Diese SNPs wurden als "resistenzassoziierte SNPs" bezeichnet. Mit den Sequenzen der exklusiv nur in den resistenten Bulks vorkommenden Transkripten (ETRs) wurde ebenso verfahren. Anschließend wurden die Sequenzen auf die *Brachypodium*-Chromosomen aufgetragen.

Die Ct-Werte aus der qPCR wurden basierend auf der PCR-Effizienz und dem Referenzgen (*ELF-1a*) normalisiert. Mit dem "Pair-Wise Fixed Reallocation Randomization Test" des Softwareprogramm REST 2009 (Pfaffl et al. 2002) wurde die x-fache Expression zum Vergleichspartner logarithmiert zur Basis 2 (log2FC) zwischen den anfälligen und resistenten Bulks bestimmt und auf signifikant differentielle Genexpression getestet.
3 Ergebnisse

Die in der vorliegenden Arbeit beschriebenen Untersuchungen zur Resistenz gegenüber Schwarzrost (Puccinia graminis f. sp. graminicola) und Kronenrost (Puccinia coronata f. sp. lolii) in Lolium perenne gliedern sich in zwei separate Teile. Die Resistenzuntersuchungen gegenüber den Rostkrankheiten werden getrennt von einander analysiert und anschließend Gemeinsamkeiten und Unterschiede dargestellt. Den ersten Teil zur Schwarzrostresistenz bildet die Phänotypisierung vorselektierter Genotypen der Kartierungspopulation LPSR1001 mit vier verschiedenen Schwarzrost-Feldisolaten, die die Basis für die Auswahl der Genotypen für die molekulargenetischen Genexpressionsanalysen bildet. Im zweiten Teil wird die Überexpression von Transkripten anfälliger und resistenter Bulks verglichen, Kandidatengene selektiert und darauf basierend Marker entwickelt. Abschließend werden alle polymorphen Marker zusammen mit LpPg1 in einer Kopplungskarte zusammengefasst und versucht die spezifische Kopplungsgruppe, auf der sich *LpPg1* befindet, zu bestimmen.

Die Untersuchungen zur Kronenrostresistenz beziehen sich im ersten Teil auf die Phänotypisierung der Kartierungspopulation und auf die fluoreszenzmikroskopische Charakterisierung der resultierenden Resistenztypen. Im zweiten Teil wird die Genexpression der Resistenztypen mit einem anfälligen Genotyp und untereinander verglichen.

3.1 Schwarzrostresistenz

3.1.1 Phänotypisierung der Kartierungspopulation LPSR1001 auf Schwarzrostresistenz

Von den auf Schwarzrostresistenz vorselektierten 114 Genotypen zeigten im Mittel über alle Schwarzrostisolate 49 Genotypen keine Sporulation (Boniturnote 1), 27 ein bis fünf Uredosporenlager pro Blattsegment (Boniturnote 2) und 38 eine Sporulation auf mehr als 5% der Blattsegmentfläche. Die Verteilung der Modalwerte zwischen den Schwarzrostisolaten zeigte eine hohe Korrelation von 0.64. 0.69 Signifikante und 0.70. Unterschiede zwischen den Schwarzrostisolaten waren nicht nachweisbar (Tab. 3.9). Die höchsten Korrelationskoeffizienten von 0,70 wurden für die Schwarzrostisolate Steinach-USA, Malchow/Poel-Rostock und Rostock-USA berechnet, der geringste

25

Korrelationskoeffizient mit 0.64 für die Isolate Steinach-Malchow/Poel. Das Feldisolat aus Steinach ist mit 11 hoch anfälligen Genotypen (>40% befallene Blattfläche) das Schwarzrostisolat mit der höchsten Virulenz (Abb. 3.1).

Abb. 3.1 Häufigkeitsverteilung der Boniturmodalwerte von 114 *Lolium perenne*-Genotypen der Kartierungspopulation LPSR1001 inokuliert mit vier Schwarzrostfeldisolaten in vierfacher Wiederholung

3.1.2 Schwarzrost-MACE

Auf Grund der 1:1 Aufspaltung der Population in resistente und anfällige Genotypen (Beckmann 2010) wurde von einer monogenen Resistenz ausgegangen und Bulks aus 20 vollständig resistenten (Boniturnote 1) und 20 hochanfälligen Genotypen (Boniturnote 9) gebildet (Abb. 2.2). Zum Vergleich der Genexpressionsprofile und zur Identifikation von resistenzassoziierten Transkripten wurden alle Zeitpunkte der resistenten Bulks (ResAll) und analog der anfälligen Bulks (SusAll) bioinformatisch zusammengefasst und einzeln als ResAll und SusAll miteinander verglichen.

3.1.2.1 "Gene Ontology"-Analyse signifikant überexprimierter Transkripte im schwarzrostresistenten Bulk (ResAll)

Die signifikant überexprimierten Transkripte in ResAll sind nach ihrer biologischen Funktion zusammengefasst und wurden fünf zur pflanzlichen Abwehr zählenden GOs zugeordnet (Tab. 3.1). Diese Transkripte sind am Zelltod anderer Organismen und am Ab- bzw. Umbau der Zellwand beteiligt.

Tab. 3.1 "Gene Ontology" signifikant überexprimierter Transkripte in allen resistenten *Lolium perenne*-Bulks (ResAll) zusammengefasst nach ihrer biologischen Funktion in GOs

Gene Ontology- Identifikation	Bezeichnung	log2FC
GO:0009830	cell wall modification involved in abscission	2,3
GO:0044277	cell wall disassembly	2,3
GO:0031640	killing of cells of other organism	2,2
GO:0001906	cell killing	2,2
GO:0044364	disruption of cells of other organism	2,2

3.1.2.2 Differentiell exprimierte Transkripte und SNPs zwischen ResAll und SusAll

Über alle Zeitpunkte wurden 1370 Transkripte signifikant differentiell exprimiert $(\log 2FC \ge 2, \log 2FC \le -2; p < 0.01)$. Davon wurden 517 im resistenten und 853 im anfälligen Bulk überexprimiert. Basierend auf den fünf GOs, die im resistenten Bulk über alle Zeitpunkte überexprimiert sind, wurden 12 Transkripte mit Annotation zu Abwehrreaktionen bei Pflanzen identifiziert (p < 0.01)FDR < 0,001) (Tab. 3.2). Diese Transkripte zeigen Homologie zu Genen, die weitreichende resistenzspezifische Funktionen von der Pathogenerkennung bis zur Phytoalexinproduktion erfüllen. Zusätzlich wurden 401 nahezu exklusiv exprimierte Transkripte und 330 SNPs in 178 Transkripten identifiziert, die ausschließlich in den resistenten Bulks vorkamen. Von den 401 Transkripten wurden 341 ausschließlich in den resistenten Bulks exprimiert.

Tab. 3.2 Signifikant überexprimierte Transkripte mit Annotation zur Pflanzenabwehr in allen schwarzrostresistenten *Lolium perenne*-Bulks (ResAll)

Gen-Identifikation	Gen- Bezeichnung	log2FC
LoliumRes_a48290_26	Disease resistance protein RPM1 (A. thaliana)	8,9
LoliumRes_a37859_64	Transcription factor TGA4 (A. thaliana)	5,8
LoliumRes_a91747_18	Disease resistance RPP8-like protein 3-like	5,8
LoliumRes_a2363_425	Premnaspirodiene oxygenase (<i>Hyoscyamus</i> <i>muticus</i>)	5,8
LoliumRes_a30151_42	Reticuline oxidase-like protein (A. thaliana)	3,5
LoliumRes_a18580_13 1	Pathogenesis-related protein PRB1-2 (H. vulgare)	3,4
LoliumRes_a22756_71	Red chlorophyll catabolite reductase (Fragment) <i>(H. vulgare</i>)	3,3
LoliumRes_a61717_25	Probable receptor-like protein kinase At5g47070 (A. thaliana)	2,9
LoliumRes_a25059_69	Vacuolar-sorting receptor 6 (A. thaliana)	2,5
LoliumRes_a55220_24	Mediator of RNA polymerase II transcription subunit 15a <i>(A. thaliana</i>)	2,3
LoliumRes_a32737_43	Probable disease resistance RPP8-like protein 2 (A. thaliana)	2,2
LoliumRes_a71891_29	Probable histone deacetylase 19 (Z. mays)	2,0

3.1.2.3 *"in silico"-*Kartierung von ETRs und SNPs in *Brachypodium distachyon* und *Lolium perenne*

Die ETRs und Transkripte mit SNPs wurden anschließend mit dem Referenzgenom von Brachypodium distachyon abgeglichen und die chromosomale Position von homologen Sequenzen bestimmt. Von den 401 nahezu exklusiven Transkripten wurden 131 dem B. distachyon-Genom zugeordnet (Abb. 3.2). Davon wurden 64 Transkripte zu Chromosom 1 von B. distachyon (Bd1) und die zweitgrößte Gruppe mit 25 Transkripten Chromosom 4 (Bd4) zugeordnet. Acht ETRs zeigten Seguenzhomologie zu Resistenzgenen, die auf Bd1, 4 und 5 lokalisiert wurden (Tab. 3.3). Von den Transkripten mit SNPs wurden 52 dem B. distachyon-Genom zugeordnet, davon 19 zu Bd1 und 17 zu Bd3 (Abb. 3.2). Die ETRs und SNPs auf Bd1 beschränken sich auf einen begrenzten Bereich von 26,0 bis 34,5 Mbp (Abb. 3.3). Dieser Bereich auf Bd1 zeigt im "Perennial ryegrass GenomeZipper" (Pfeifer et al. 2013) Makrosyntenie zu L. perenne-Kopplungsgruppe 7 (LG7). Sequenzen von ETRs und SNPs mit Mikrosyntenie von B. distachyon zu L. perenne waren nicht vorhanden. Daraufhin wurden die Sequenzen der polymorphen Marker aus der genetischen Kartierung

genutzt und mit dem Syntenie-basierten Gerüst-Genom von Byrne et al. (2015) abgeglichen. Sequenzen von 18 Markern zeigten Homologie zu Gerüstsequenzen, von denen die meisten auf den Lolium-Kopplungsgruppen 2 (LG) und 7 lokalisiert wurden. Der co-segregierende Marker *LpERT_18* zeigte Sequenzhomologie zur Gerüst-Sequenz: scaffold_3494_ref001884 bei 78 cM auf LG2. Für die flankierenden Marker *LpETR_17* und *LpETR_19* wurde keine Sequenzhomologie identifiziert.

Abb. 3.2 Anzahl exklusiver Transkripte der schwarzrostresistenten Lolium perenne-Bulks und SNPs mit Sequenzhomologie zu Brachypodium distachyon-Chromosomen

Abb. 3.3 Anzahl von SNPs und exklusiv exprimierten Transkripten der resistenten Bulks von *Lolium perenne* zwischen 26,0 - 34,5 Mbp auf *Brachypodium distachyon*-Chromosom 1 (Bd1)

Tab. 3.3 Exklusive Transkripte der resistenten Lolium perenne-Bulks mitSequenzhomologie zu Resistenzgenen und Zuordnung zumReferenzgenom von Brachypodium distachyon

Gen- Identifikation	Gen- Beschreibung	<i>B. distachyon</i> Chr.
LoliumRes_a783434_3/	Disease resistance RPP8-like protein 3-like	1
LoliumRes_a91747_18	(LOC100827328) (<i>B. distachyon</i>) Disease resistance RPP8-like protein 3-like (LOC100827328) (<i>B. distachyon</i>)	1
LoliumRes_a330668_9	Disease resistance protein RPM1-like (LOC100844311) (<i>B. distachyon</i>)	4
LoliumRes_a549699_4/ <i>LpETR_19</i>	Putative disease resistance protein RGA1 (<i>S. bulbocastanum</i>)	4
LoliumRes_a775259_4	Disease resistance protein RGA2-like (LOC100828116) (<i>B. distachyon</i>)	4
LoliumRes_a924483_3/ <i>LpETR_17</i>	Disease resistance protein RPM1-like (LOC100844311) (<i>B. distachyon</i>)	4
LoliumRes_a48290_26/ LpETR_1	Disease resistance protein RPM1 (<i>A. thaliana</i>)	5
LoliumRes_a230215_7	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)	NA

3.1.2.4 Genetische Kartierung von MACE basierten ETRs und SNPs der schwarzrostresistenten Bulks

Die Kartierung von *LpPg1* basierte auf der Vollgeschwister Kartierungspopulation LPSR1001 (N = 267). Für 87 ETRs und fünf SNPs, die den *B. distachyon* Chromosomen 1, 4 und 5 zugeordnet werden konnten, wurden Primer designt. Davon zeigten 83 Primerpaare ein Amplifikat und 30 einen Polymorphismus zwischen den resistenten und anfälligen Genotypen (Abb. 3.4, siehe Anhang A1).

Spalte 1-4: resistente Genotypen mit *LpPg1*-Resistenz, Spalte 5-8: vier anfällige Genotypen ohne *LpPg1*-Resistenz, Spalte 9: der resistente Elter (RE) und Spalte 10: der anfällige Elter (AE)

Abb. 3.4 Gelbild mit PCR-Produkten des co-segregierenden Marker *LpETR_18* von vier resistenten Genotypen mit *LpPg1*-Resistenz, vier anfälligen Genotypen ohne *LpPg1*-Resistenz, dem resistenten Elter und dem anfälligen Elter

Zusätzlich zu den polymorphen Markern wurden fünf "simple sequence repeat" (SSR) Ankermarker, die bereits von Beckmann et al. (2010) zur Kartierung von *LpPg1* genutzt wurden, in die Kartierung aufgenommen. Daraus wurde eine genetische Karte mit einer Distanz von 97,6 cM generiert, die den Resistenzlokus *LpPg1* mit 35 Marker umfasst (Abb. 3.5). *LpPg1* wird von *LpETR_17* mit 0,3 cM proximal und von *LpETR_19* mit 1,1 cM distal flankiert. Der ETR Marker *LpETR_18* co-segregierte mit *LpPg1*.

* Ankermarker aus Hirata et al. (2006), genutzt von Beckmann et al. (2010)

Abb. 3.5 Genetische Karte vom Resistenzlokus *LpPg1* mit ETR- und SNP-Markern aus der Schwarzrost-MACE

3.1.2.5 Inokulationsbedingte Überexpression abwehrinduzierter Transkripte in den schwarrostresistenten und -anfälligen Bulks zusammengefasst in "Gene Ontology"

Zur Identifikation von Transkripten, die durch die Rostinokulation überexprimiert wurden, sind die inokulierten mit dem nicht inokulierten Zeitpunkt verglichen worden. In Abbildung 3.6 ist die Anzahl hoch- bzw. runterregulierter Transkripte zum jeweiligen Zeitpunkt dargestellt. In der GO-Analyse der inokulierten Zeitpunkte wurde ausschließlich zum späten Zeitpunkt im resistenten Bulk abwehrspezifische GOs identifiziert. Diese GOs sind: "cell killing", "disruption of cells of other organism", "killing of cells of other organism" und entsprechen damit, den bereits im Vergleich von resistent mit anfällig identifizierten GOs.

Die in diesen und weiteren abwehrspezifischen GOs zusammengefassten Transkripte sind in Tabelle 3.4 nach ihrer Funktion, basierend auf der Uniprot-Datenbank, sortiert und für den frühen und späten Zeitpunkt jedes Bulks dargestellt. Insgesamt ist ein Anstieg von Transkripten mit Homologie zu "disease resistance" Genen, "pathogenesis related" und antifungalen Proteinen in den inokulierten Zeitpunkten zu verzeichnen. In den resistenten Bulks wurden, im Vergleich zu den anfälligen Bulks, besonders Transkripte mit antifungaler Funktion, wie "barwin", "wheatwin" und "glucan endo-1,3-glukosidasen" überexprimiert. Als zweitgrößte Gruppe wurden Transkripte mit Annotation zur Signalübertragung und Transkription in den inokulierten Zeitpunkten überexprimiert. Diese codierten für Transkriptionsfaktoren, Proteinkinasen und Proteine, die in der RNA-Verarbeitung involviert sind. Gemeinsamkeiten in den resistenten und anfälligen Bulks wurden bei Transkripten mit Funktion im Transport- und Lipidmetabolismus identifiziert. Diese waren zu allen untersuchten Zeitpunkten ähnlichen mit Expressionsraten durch die Rostinokulation induziert. Zusätzlich zu den beschriebenen Transkripten wurden mehrere mit unbekannter Funktion, die aber in Zusammenhang mit Abwehrreaktionen von Pflanzen in Verbindung stehen, überexprimiert.

33

		resistente Bulks		anfällige Bulks	
Gen- Identifikation	Gen- Beschreibung	log2FC früher Zeitpunkt	log2FC später Zeitpunkt	log2FC früher Zeitpunkt	log2FC später Zeitpunkt
Abwehr und Stress induzierte	e Transkripte				
LoliumSus_a1803_818	Barwin (<i>H. vulgare</i>)	2,1	1,2	0,0	-1,2
LoliumRes_a1192_855	Barwin (<i>H. vulgare</i>)	2,3	1,4	0,0	-1,2
LoliumRes_a117549_14	Disease resistance protein RGA2 (S. bulbocastanum)	-0,7	-0,7	3,9	3,9
LoliumSus_a110432_14	Disease resistance protein RPM1 (A. thaliana)	0,7	0,7	3,6	3,7
LoliumRes_a11357_126	Disease resistance response protein 206 (P. sativum)	2,1	0,4	0,5	-0,5
LoliumRes_a23369_55	Disease resistance RPP13-like protein 4 (A. thaliana)	2,4	1,4	0,0	-0,8
LoliumRes_a1047_723	Endochitinase A (Z. mays)	2,4	1,8	0,1	-0,7
LoliumRes_a372729_5	Glucan endo-1,3-beta-glucosidase 13 (A. thaliana)	-0,3	-0,9	2,8	1,8
LoliumSus_a4992_372	Glucan endo-1,3-beta-glucosidase 13 (A. thaliana)	6,1	7,0	-0,8	0,1
LoliumRes_a5216_338	Glucan endo-1,3-beta-glucosidase 13 (A. thaliana)	6,4	7,4	-0,9	0,1
LoliumRes_a6165_237	Glucan endo-1,3-beta-glucosidase GII (H. vulgare)	0,7	0,4	2,4	1,3
LoliumRes_a9509_159	Glutathione transferase GST 23 (Z. mays)	2,2	2,0	0,2	0,1
LoliumRes_a29433_56	Glutathione transferase GST 23 (Z. mays)	2,4	1,7	-0,5	-0,1
LoliumSus_a55538_47	Glutathione transferase GST 23 (Z. mays)	2,2	1,2	-0,2	-0,6
LoliumRes_a24765_79	Heat shock protein 82 (Z. mays)	1,5	0,4	2,5	1,4
LoliumSus_a108847_24	Heat shock protein 90-2 (<i>A. thaliana</i>)	4,5	3,7	exklusiv hoch	exklusiv hoch
LoliumRes_a120_7330	Major allergen Pru ar 1 (<i>P. armeniaca</i>)	0,1	-0,1	2,5	2,1
LoliumRes_a196_2606	Pathogenesis-related protein 1 (A. officinalis)	0,5	-0,1	2,3	1,5
LoliumRes_a15391_110	Pathogenesis-related protein 1 (<i>H. vulgare</i>)	-1,7	1,3	1,2	3,4
LoliumRes_a7210_241	Pathogenesis-related protein 4 (PR-4) (T. monococcum)	0,9	2,2	-1,0	0,0
LoliumRes_a261577_11	Pathogenesis-related protein PRB1-3 (<i>H. vulgare</i>)	exklusiv hoch	exklusiv hoch	exklusiv hoch	exklusiv hoch
LoliumRes_a1305_1278	Pathogen-related protein 10-7 (PR10-7) (L. perenne)	-0,1	-0,1	2,2	1,9
LoliumRes_a133050_21	Phosphoenolpyruvate carboxykinase [ATP] (A. thaliana)	4,8	3,3	exklusiv hoch	exklusiv hoch

Tab. 3.4 Abwehrspezifische Transkripte induziert durch die Inokulation mit Schwarzrosturedosporen in den resistenten und
anfälligen Lolium perenne-Bulks

LoliumRes_a508204_6	Putative disease resistance protein RGA3 (S. bulbocastanum)	3,1	3,1	0,1	0,4
LoliumRes_a157432_9	Reticuline oxidase-like protein (A. thaliana)	-0,3	0,5	2,2	2,5
LoliumRes_a189902_15	Ribonucleoprotein At2g37220, chloroplastic (A. thaliana)	exklusiv hoch	exklusiv hoch	exklusiv	exklusiv
LoliumRes_a70071_29	Ribonucleoside-diphosphate reductase small chain C (A. thaliana)	exklusiv hoch	exklusiv hoch	exklusiv hoch	exklusiv hoch
LoliumRes_a15586_126	Thaumatin-like pathogenesis-related protein 1 (A. sativa)	8,7	8,5	6,0	5,2
LoliumSus_a44107_54	Thaumatin-like pathogenesis-related protein 4 (A. sativa)	5,5	7,1	5,3	6,8
LoliumRes_a51325_55	Thaumatin-like pathogenesis-related protein 4 (A. sativa)	3,2	4,0	3,2	4,8
LoliumRes_a2300_676	Wheatwin-2 (<i>T. aestivum</i>)	1,5	2,5	-0,8	0,3
Signalübertragung und Trans	kription				
LoliumRes_a219355_11	Cysteine-rich receptor-like protein kinase 7 (A. thaliana)	2,1	1,6	-0,2	-1,7
LoliumRes_a141091_16	Ethylene-responsive transcription factor 1B (A. thaliana)	2,3	0,8	0,9	-0,4
LoliumRes_a36771_51	Ethylene-responsive transcription factor 5 (A. thaliana)	2,1	-0,2	-0,7	-1,7
LoliumSus_a105426_17	Ethylene-responsive transcription factor ERF094 (A. thaliana)	2,1	-0,9	0,4	0,0
LoliumRes_a290854_6	Ethylene-responsive transcription factor ERF094 (A. thaliana)	4,4	1,1	0,8	-0,5
LoliumRes_a37598_68	Glycine-rich RNA-binding protein 7 (<i>A. thaliana</i>)	exklusiv hoch	exklusiv hoch	exklusiv	exklusiv
LoliumRes_a165853_16	G-type lectin S-receptor-like serine/threonine-protein kinase SD1-13 (<i>A. thaliana</i>)	4,3	3,9	1,1	0,6
LoliumRes_a605768_5	LRR receptor-like serine/threonine-protein kinase FLS2 (A. thaliana)	exklusiv hoch	exklusiv hoch	0,2	-2,7
LoliumRes_a54681_50	Mitogen-activated protein kinase 1 (O. sativa subsp. japonica)	3,7	3,2	4,9	4,0
LoliumRes_a268348_7	Probable LRR receptor-like serine/threonine-protein kinase At4g08850	0,9	2,7	-1,1	0,3
LoliumSus_a15330_97	(A. <i>tnaliana</i>) Probable mediator of RNA polymerase II transcription subunit 37c (A. <i>thaliana</i>)	0,8	-0,2	2,4	1,4
LoliumRes_a33830_61	Probable mediator of RNA polymerase II transcription subunit 37c (<i>A. thaliana</i>)	1,1	-0,1	2,2	1,2
LoliumRes_a21206_41	Probable WRKY transcription factor 51 (A. thaliana)	2,2	-0,4	-0,3	-2,5
LoliumRes_a86354_14	Probably inactive leucine-rich repeat receptor-like protein kinase	2,5	0,1	1,4	-0,1
LoliumSus_a244863_10	Putative serine/threonine-protein kinase-like protein CCR3 (<i>A. thaliana</i>)	-0,9	0,9	0,2	2,3
LoliumRes_a158397_13	RING-H2 finger protein ATL80 (A. thaliana)	-2,7	-1,2	1,2	2,3
LoliumRes_a182687_12	Serine/threonine-protein kinase AtPK2/AtPK19 (A. thaliana)	exklusiv hoch	exklusiv hoch	exklusiv hoch	exklusiv hoch
LoliumRes_a163297_14	Serine/threonine-protein kinase AtPK2/AtPK19 (A. thaliana)	exklusiv hoch	exklusiv hoch	exklusiv hoch	exklusiv hoch

LoliumRes_a17307_106	Somatic embryogenesis receptor kinase 1 (A. thaliana)	2,1	1,4	0,0	0,0
LoliumSus_a88994_30	Transcription factor MYB44 (A. thaliana)	-0,8	-0,5	2,0	1,7
LoliumRes_a127239_24	WRKY transcription factor 18 (A. thaliana)	0,1	2,2	-0,6	-0,4
Transport					
LoliumRes_a222452_12	ABC transporter F family member 3 (A. thaliana)	5,1	4,4	4,2	3,7
LoliumRes_a96669_25	Molybdenum cofactor sulfurase (S. lycopersicum)	4,7	3,1	exklusiv hoch	exklusiv hoch
LoliumRes_a608601_4	Putative lipid-transfer protein DIR1 (A. thaliana)	-0,3	-2,1	2,0	-0,6
LoliumSus_a178106_13	Vesicle-associated membrane protein 711 (A. thaliana)	exklusiv hoch	exklusiv hoch	exklusiv hoch	exklusiv hoch
Lipidmetabolismus					
LoliumRes_a166222_13	Long chain base biosynthesis protein 2a (O. sativa subsp. japonica)	4,8	5,0	exklusiv hoch	exklusiv hoch
LoliumSus_a192371_13	Triacylglycerol lipase 2 (A. thaliana)	2,9	1,7	-0,4	-1,0
Verschiedene					
LoliumRes_a536263_6	NB-ARC domain containing protein (O. sativa subsp. Japonica)	exklusiv hoch	exklusiv hoch	1,0	0,0
LoliumRes_a177001_21	Oryzain beta chain (<i>O. sativa subsp. japonica</i>)	-5,7	exklusiv runter	-0,2	5,8
LoliumSus_a85120_50	Oryzain beta chain (<i>O. sativa subsp. japonica</i>)	-6,7	exklusiv runter	exklusiv hoch	exklusiv hoch
LoliumRes_a47382_19	PTA.236.C1 (L. perenne)	2,9	exklusiv runter	0,3	-1,9
LoliumRes_a166469_10	Putative uncharacterized protein Sb02g040920 (S. bicolor)	-0,3	0,7	5,5	5,4
LoliumSus_a88050_21	Putative uncharacterized protein Sb02g040920 (S. bicolor)	0,1	0,0	exklusiv hoch	exklusiv hoch
LoliumRes_a22756_71	Red chlorophyll catabolite reductase (<i>H. vulgare</i>)	-2,7	2,5	-0,3	0,2
LoliumSus_a156493_19	Ta_Contig77289.ansp (<i>T. aestivum</i>)	1,8	3,3	0,0	-0,1
LoliumRes_a247524_9	Ta_Contig77289.ansp (<i>T. aestivum</i>)	0,9	2,2	-1,7	-0,6
LoliumRes_a320886_5	Tryptophan aminotransferase 1 (A. thaliana)	-3,1	-0,4	1,8	3,3
LoliumRes_a610458_4	Tyrosine N-monooxygenase (S. bicolor)	-3,4	exklusiv runter	2,5	-3,0
LoliumRes_a166688_9	Uncharacterized protein BRADI3G09740 (B. distachyon)	0,9	0,4	3,2	1,2
LoliumSus_a199620_10	Uncharacterized protein BRADI3G19967 (B. distachyon)	1,8	2,3	-0,4	-0,1
LoliumRes_a102746_10	Uncharacterized protein BRADI5G22187 (B. distachyon)	-1,1	0,2	2,7	3,8
LoliumRes_a187787_10	Uncharacterized protein BRADI5G22842 (B. distachyon)	-0,6	-2,4	exklusiv hoch	exklusiv hoch

exklusiv hoch oder runterregulierte Transkripte zeigten keine detektierbare Expression im Vergleichspartner

3.1.2.6 Validierung von Expressionsraten ausgewählter Lolium perenne-

Transkripte der Schwarzrost-MACE mittels qRT-PCR

Zur Validierung der in der MACE ermittelten Genexpressionsraten wurde der Versuch zeitlich unabhängig wiederholt, RNA isoliert und von acht ausgewählten MACE-Transkripten die Genexpression mittels quantitativer real time-PCR bestimmt. Die getesteten MACE-Transkripte setzten sich aus fünf exklusiv und drei hoch differentiell exprimierten Transkripten, mit signifikant höheren Expressionsraten in den resistenten Bulks zusammen. Der log2FC wurde zwischen den resistenten und anfälligen Bulks berechnet, um einen Vergleich zwischen beiden Methoden zu gewährleisten. Log2FC mit positiven Werten zeigen eine Überexpression in den resistenten Bulks und negative Werte Überexpression der anfälligen Bulks.

Von den 24 Expressionsraten stimmen 16 mit denen in der MACE überein und zeigen eine signifikante Überexpression in den resistenten Bulks in beiden Methoden (Abb. 3.7). Dazu zählen vier homologe Transkripte, die als potentielle Resistenzgene für die Schwarzrostresistenz verantwortlich sein können und "pathogenesis related protein"-Transkripte, die in der Resistenzreaktion involviert sein können. Obwohl die Expressionsraten in der qRT-PCR generell höher sind als in der MACE, bestätigt die qRT-PCR die Überexpression der ausgewählten Transkripte.

Abb. 3.7 qPCR-Ergebnisse zur Validierung der Schwarzrost-MACE-Expressionsraten an acht überexprimierten *Lolium perenne*-Transkripten in den schwarzrostresistenten im Vergleich zu den -anfälligen Bulks

3.2 Kronenrostresistenz

3.2.1 Phänotypisierung auf Kronenrostresistenz

Die Phänotypisierung der Lolium-Population auf Kronenrostresistenz erfolgte mit allen 284 Genotypen der Kartierungspopulation LPSR1001. Die meisten Genotypen zeigten keine Sporulation in den Resistenztests und wurden als vollständig resistent eingestuft. Das Isolat aus Bocksee hatte mit 257 die höchste Anzahl an vollständig resistenten Genotypen (0% befallene Blattfläche) (Abb. 3.8). Im Gegensatz dazu wurde für das Isolat aus Steinach die geringste Anzahl von 151 vollständig resistenten und die höchste Anzahl von 49 hoch anfälligen Genotypen (>40% befallene Blattfläche) bonitiert. Dieses Isolat weist die höchste Virulenz der drei getesteten Kronenrostisolate auf. Für die Isolate aus Rostock und Steinach wurden mehrere Genotypen (49 Rostock, 39 Steinach) mit einer Befallsstärke von >5 bis 10% befallener Blattfläche bonitiert. Diese Genotypen zeigten eine geringere und zeitlich verzögerte Sporulation gegenüber den hochanfälligen Genotypen und wurden als moderat resistent 3.9). eingestuft (Abb. Die Verteilung der Modalwerte zwischen den Kronenrostisolaten zeigte die höchste Korrelation von 0,81 zwischen den Isolaten aus Rostock und Steinach. Das Isolat aus Bocksee zeigte gegenüber den anderen beiden Isolaten die geringste Korrelation von 0,49 mit Rostock und 0,42 mit Steinach. Signifikante Unterschiede zwischen den Kronenrostisolaten wurden

Abb. 3.8 Häufigkeitsverteilung der Boniturmodalwerte von 284 *Lolium perenne*-Genotypen der Kartierungspopulation LPSR1001 inokuliert mit drei Kronenrostfeldisolaten in vierfacher Wiederholung

anfällige Sorte Aurora vollständig resistenter Genotyp moderat resistenter Genotyp

Abb. 3.9 Lolium perenne-Genotypen inokuliert mit dem Kronenrosteinsporisolat KR-SR1 7 Tage nach Inokulation

3.2.2 Histologische Charakterisierung der kronenrostresistenten *Lolium perenne*-Genotypen

Um welchem Stadium Rostentwicklung die zu überprüfen, in der Resistenzreaktionen in den Genotypen wirksam werden, wurde repräsentativ für jeden Resistenztyp ein Genotyp ausgewählt. Die Resistenztypen setzten sich aus einem vollständig resistenten (LPSR1001/102, VRG), moderat resistenten (LPSR1001/7, MRG) und anfälligen Genotyp (LPSR1001/255, AG) sowie dem resistenten Elter (LPSR2061 1/1, RE) und die als Kontrolle fungierende hochanfällige Sorte Aurora, zusammen. An Hand von vergleichender fluoreszenzmikroskopischer Untersuchungen ließen sich quantitative Unterschiede in der Ausbildung von Infektionsstrukturen zwischen den Genotypen nachweisen. Um die Rostentwicklung zwischen den Genotypen vergleichbar zu halten, wurde die relative Häufigkeit der betrachteten Infektionsstruktur bezogen auf die jeweils vorausgehende Struktur prozentual berechnet, d. h., wenn von 50 gezählten Appressorien insgesamt 40 substomatäre Vesikel ausgehen, ist die substomatäre Vesikelbildung 80%.

3.2.2.1 Einfluss der kronenrostresistenten *Lolium perenne*-Genotypen auf die Keimfähigkeit und Appressorienbildung des Kronenrosteinsporisolats KR-SR1

Die Inokulation der adaxialen Blattseite mit dem Einsporisolat KR-SR1 führte auf allen Genotypen zur erfolgreichen Uredosporenkeimung, Lokalisation und Penetration der Stomata (Abb. 3.10) sowie der Ausbildung substomatärer Vesikel im Interzellularraum 12 hpi durch KR-SR1. Nach der Inokulation wurde die Uredosporenkeimung und Appressorienbildung auf den Blattstücken 6 und 12 hpi dokumentiert. Diese stieg 6 hpi von 83,4 % auf dem VRG bzw. 67,8 % auf dem RE auf 87,0 % bzw. 74,6 % und erreichte ihr Maximum 12 hpi.

Sechs hpi bildeten 46 % der gekeimten Uredosporen auf den Resistenztypen VRG, MRG und RE ein Appressorium (APP), dagegen waren es auf dem AG und Aurora 62 %. Nach weiteren 6 Stunden (12 hpi) stieg der Anteil gebildeter APP auf 63 % auf dem VRG, MRG und RE bzw. 76 % auf dem AG und Aurora. Auf den resistenten Genotypen (VRG, RE und MRG) wurden 6 und 12 hpi eine um ca. 10 % signifikant geringere APP Bildung im Vergleich zu den anfälligen Genotypen festgestellt (Abb. 3.11, siehe Anhang A2).

(a = Keimschlauch; b = Appressorium; c = Stoma; Balken: 10 μm)

Abb. 3.10 Keimschläuche und Appressorien von *Puccinia coronata* auf der adaxialen Blattoberfläche des kronenrostanfälligen Genotyps angefärbt mit Fluorescent Brightener 28

VRG = vollständig resistenter Genotyp, RE = resistenter Elter, MRG = moderat resistenter Genotyp, AG = anfälliger Genotyp, Aurora = hochanfällige Sorte

Abb. 3.11 Prozentualer Anteil gebildeter *Puccinia coronata*-Appressorien auf ausgewählten *Lolium perenne*-Genotypen 6 und 12 Stunden nach Inokulation

3.2.2.2 Einfluss der kronenrostresistenten *Lolium perenne*-Genotypen auf die Bildung substomatärer Vesikel und Infektionshyphen des Kronenrosteinsporisolats KR-SR1

Auf die Bildung der APP folgten die Penetration der Stomata und die Entwicklung der substomatären Vesikel (SSV) im Interzellularraum der Wirtspflanze. Das Verhältnis von SSV zu APP kann demzufolge als Penetrationserfolg betrachtet werden. Erste SSV wurden 6 hpi beobachtet. 12 hpi wurden signifikant weniger SSV im VRG gezählt, als in allen anderen Genotypen. Die Entwicklung dieser erreichte 24 hpi ihr Maximum von 75,2 – 94,4 % (Abb. 4.5). Auf Grund dessen wurden alle späteren Zeitpunkte, einschließlich 24 hpi, für die Berechnung von Unterschieden zwischen den Genotypen zusammengefasst, da diese als Wiederholung angesehen werden können. Die Genotypen der Kartierungspopulation weisen eine signifikant geringere SSV Bildung im Vergleich zu Aurora auf. Der VRG zeigt mit 69,8 %, bezogen auf den Zeitraum 24-60 hpi, von allen Genotypen die signifikant geringste SSV Bildung, gefolgt vom MRG mit 82,7 % und dem AG bzw. RE mit 86,9 bzw. 88,3 %. Die Unterschiede zwischen den Genotypen in der SSV-Entwicklung setzen sich in der Infektionshyphen-Bildung (IH) nicht fort. Eine signifikant geringere IH-Bildung

24 hpi wurde bei dem VRG und MRG beobachtet. Dieser Unterschied beschränkte sich ausschließlich auf diese Zeitpunkte und konnte in den nachfolgenden Zeitpunkten nicht nachgewiesen werden.

Abb. 3.12 Prozentualer Anteil gebildeter substomatärer Vesikel von Puccinia coronata auf ausgewählten Lolium perenne-Genotypen 12 und 24 – 60 Stunden nach Inokulation

3.2.2.3 Einfluss der kronenrostresistenten *Lolium perenne*-Genotypen auf die Haustorienmutterzellen Entwicklung des Kronenrosteinsporisolats KR-SR1

Nach erfolgreicher Entwicklung von IH wurde die Ausbildung von Haustorienmutterzellen (HMZ) zum Zeitpunkt 24 hpi nach Kontakt mit Mesophyllzellen des Wirtes beobachtet. Für die Resistenztypen VRG, MRG und RE erscheint dieser Kontakt als Auslöser für die spezifischen Resistenzreaktionen. Die ersten signifikanten Unterschiede zwischen den Genotypen wurden 24 hpi festgestellt (siehe Anhang A2).

Bis 36 hpi steigt die HMZ-Anzahl im VRG und RE an und stagniert ab diesem Zeitpunkt bei 1,9 - 2,2 bzw. 2,3 - 2,5 (Abb. 3.13). 60 hpi wurde in beiden Genotypen eine gelbe bis orangefarbene Autofluoreszenz der mit den HMZ in Kontakt getretenen Mesophyllzellen beobachtet (Abb. 3.14). Bei der Phänotypisierung wurde auf Blattsegmenten dieser Genotypen zu keinem Zeitpunkt eine Sporulation festgestellt. Trotz dieser Gemeinsamkeiten ist der Kronenrost in der Lage im RE signifikant mehr HMZ zu bilden, als im VRG.

24 hpi wurde im VRG, MRG und AG eine signifikant geringere HMZ-Bildung im Vergleich zu Aurora dokumentiert. Dieser Trend setzte sich 36, 48 und 60 hpi im MRG fort, so dass 60 hpi im AG und Aurora mehr als doppelt so viele HMZ gezählt wurden, als im MRG (Abb. 3.13, Anhang A2). Im AG und Aurora ist 48 und 60 hpi die HMZ Bildung von KR-SR1 identisch, beide Genotypen zeigten ab 48 hpi eine signifikant erhöhte Zunahme der HMZ im Vergleich zu den Resistenztypen. Eine stagnierende Rostentwicklung oder Eigenfluoreszenz war im MRG nicht zu beobachten, dafür eine um 2 - 4 Tage zeitlich verzögerte Sporulation verglichen mit dem AG und Aurora (Abb. 3.9).

Abb. 3.13 Zeitlicher Verlauf der Haustorienmutterzellen-Bildung von *Puccinia coronata* in ausgewählten *Lolium perenne*-Genotypen 12 bis 60 Stunden nach Inokulation

(a = Appressorium, b = substomatäres Vesikel, c = Infektionshyphe, d = Haustorienmutterzelle, e = Autofluoreszenz; Balken: 10 μ m)

Abb. 3.14 Infektionsstrukturen und Autofluoreszenz der Mesophyllzellen nach Kontakt mit Haustorienmutterzellen im vollständig resistenten *Lolium perenne*-Genotyp 60 Stunden nach Inokulation angefärbt mit Fluorescent Brightener 28

3.2.3 Kronenrost-MACE

Um Unterschiede in den Genexpressionsprofilen zwischen den Genotypen festzustellen und resistenzassoziierte Transkripte zu selektieren, wurde die Genexpression der Resistenztypen VRG, MRG und RE mit der des AG verglichen. Die Anzahl der differentiell exprimierten Transkripte im VRG ist im Vergleich zum AG mit 2786 überexprimierten Transkripten deutlich höher als die Anzahl überexprimierter Transkripte im RE und MRG mit 1569 bzw. 1671 (Abb. 3.15). Demgegenüber ist die Anzahl von 897 runterregulierten Transkripten im MRG im Vergleich zum VRG und RE am höchsten.

(log2FC ≥2; ≤-2; p<0.001; FDR<0.001)

Abb. 3.15 Anzahl signifikant differentiell exprimierter Transkripte ausgewählter kronenrostresistenter *Lolium perenne*-Genotypen im Vergleich zum -anfälligen Genotyp

3.2.3.1 "Gene Ontology" mit überexprimierten Transkripten in den kronenrostresistenten *Lolium perenne*-Genotypen

Als erstes wurde mit Hilfe der "Gene Ontology" (GO)-Analyse für jeden Resistenztyp ein globales Genexpressionsprofil erstellt und die GO "biological process" auf signifikant differentiell exprimierte Transkripte mit Zuordnung zur pflanzlichen Abwehr selektiert. Die Charakterisierung der spezifischen Resistenztypen erfolgte anschließend an Hand der zu diesen GOs zugeordneten hoch differentiell exprimierten Transkripten. Die Vergleiche der Resistenztypen mit dem AG zeigen Resistenz-spezifische Genexpressionsprofile der einzelnen Gentoypen und die für jede Resistenz überexprimierten biologischen Prozesse auf. Im VRG wurden 52, im RE 50 und im MRG 15 GOs gegenüber dem AG mit signifikant überexprimierten Transkripten identifiziert (log2FC≥2; p<0,05) (siehe Anhang A3). GOs, die von allen resistenten Genotypen, von zwei Genotypen bzw. spezifisch für einen Genotyp sind, wurden in Tabelle 3.5 dargestellt. In allen drei Resistenztypen finden sich zwei GOs mit exklusiv überexprimierten Transkripten, d.h. diese wurden ausschließlich in den Resistenztypen exprimiert. Beide GOs beinhalten Transkripte, die der Regulation an der Superoxiddismutaseaktivität beteiligt sind. Der VRG und RE zeigen GOs, die an der hypersensitiven Reaktion und dem programmierten Zelltod beteiligt sind, was den Beobachtungen in der histologischen Charakterisierung entspricht. Weitere Gemeinsamkeiten in der Genexpression zeigen der VRG und der MRG. In beiden Genotypen werden Transkripte überexprimiert, die an der Tryptophan- und Indolalkylaminbiosynthese sowie am Zellwandabbau bzw -umbau beteiligt sind. Der RE und MRG zeigen keine Gemeinsamkeiten hinsichtlich der GOs auf.

Spezifisch für den jeweiligen Resistenztyp wurden im VRG 37, im RE 40 und im MRG 8 GOs mit signifikant überexprimierten Transkripten im Vergleich zum AG identifiziert. Von diesen sind: im VRG sechs der Wirt/Parasit-Interaktion, drei dem hypersensitiven Zelltod, zwei an der Synthese von Salicylsäure, drei der unspezifischen Immunreaktion und acht der Bildung von Tryptophan, aromatischen Aminosäuren und Glykosiden sowie cyanogenen Glykosiden zugeordnet. Von den GOs mit Annotation zur Wirt/Parasit-Interaktion wurden vier exklusiv im VRG identifiziert. Diesen GOs sind ausschließlich Transkripte mit Homologie zu viralen Proteingenen zugeordnet.

Im RE sind 13 GOs mit überexprimierten Transkripten identifiziert worden, die am Umbau und Transport von Aminen bzw. Aminosäuren beteiligt sind. Davon wurden in 11 GOs Transkripte exklusiv nur im RE exprimiert. Des Weiteren wurden drei GOs mit überexprimierten Transkripten ermittelt, die an der Reaktion externen Stimulus und zwei GOs. die gegenüber einem an der Zellwandverstärkung und der damit verbundenen Calloseablagerung beteiligt sind.

Der MRG zeigte überexprimierte Transkripte in vier GOs, die an der Polyprenolbiosynthese, an Prozessen der Inosinbildung und an der negativen Regulation des Cytokinin-Signalwegs beteiligt sind.

48

Tab. 3.5 "Gene Ontology" signifikant überexprimierter Transkripte in den *Puccinia coronata*-resistenten *Lolium perenne*-Genotypen im Vergleich zum anfälligen Genotyp 0 – 24 Stunden nach Inokulation

	Gene	Cono Ontology		Log2FC	
	Ontology- Identifikation	Beschreibung	vollständig resistent	resistenter Elter	moderat resistent
-	GO:1901668	regulation of superoxide dismutase activity	exklusiv	exklusiv	exklusiv
	GO:1901671	positive regulation of superoxide dismutase activity	exklusiv	exklusiv	exklusiv
_	GO:0006995	cellular response to nitrogen starvation	3,3	exklusiv	
	GO:0009626	plant-type hypersensitive response	2,3	2,8	
	GO:0034050	host programmed cell death induced by symbiont	2,3	2,8	
	GO:0043562	cellular response to nitrogen levels	2,3	exklusiv	
	GO:1901804	beta-glucoside metabolic process	2,3	exklusiv	
	GO:1901806	beta-glucoside biosynthetic process	2,3	exklusiv	
	GO:0010132	dhurrin biosynthetic process	2,3	exklusiv	
	GO:0012501	programmed cell death	2,1	2,8	
_	GO:0042435	indole-containing compound biosynthetic process	2,9		2,0
	GO:0000162	tryptophan biosynthetic process	2,3		2,2
	GO:0046219	indolalkylamine biosynthetic process	2,3		2,2
	GO:0009830	cell wall modification involved in abscission	2,0		2,0
	GO:0044277	cell wall disassembly	2,0		2,0
	GO:0044000	movement in host	exklusiv		
	GO:0046739	spread of virus in multicellular host	exklusiv		
	GO:0046740	spread of virus in host, cell to cell	exklusiv		
	GO:0048832	specification of organ number	exklusiv		
	GO:0048833	specification of floral organ number	exklusiv		
	GO:0051814	movement in other organism involved in symbiotic interaction	exklusiv		
	GO:0080009	mRNA methylation	exklusiv		
	GO:0097167	circadian regulation of translation	exklusiv		
	GO:0010363	regulation of plant-type hypersensitive response	3,6		
	GO:0042430	indole-containing compound metabolic process	3,0		
	GO:0045088	regulation of innate immune response	2,8		
	GO:0009696	salicylic acid metabolic process	2,7		
	GO:0009697	salicylic acid biosynthetic process	2,7		
	GO:0002682	regulation of immune system process	2,7		

GO:0006568	tryptophan metabolic process	2,6	
GO:0006586	indolalkylamine metabolic process	2,6	
GO:0006612	protein targeting to membrane	2,4	
GO:0072657	protein localization to membrane	2,4	
GO:0090150	establishment of protein localization to membrane	2,4	
GO:0008037	cell recognition	2,4	
GO:0048544	recognition of pollen	2,4	
GO:0009073	aromatic amino acid family biosynthetic process	2,3	
GO:0016137	glycoside metabolic process	2,3	
GO:0016138	glycoside biosynthetic process	2,3	
GO:0019756	cyanogenic glycoside biosynthetic process	2,3	
GO:0042341	cyanogenic glycoside metabolic process	2,3	
GO:0042991	transcription factor import into nucleus	2,3	
GO:0050898	nitrile metabolic process	2,3	
GO:0080028	nitrile biosynthetic process	2,3	
GO:1901642	nucleoside transmembrane transport	2,3	
GO:1902358	sulfate transmembrane transport	2,3	
GO:0009875	pollen-pistil interaction	2,2	
GO:0009627	systemic acquired resistance	2,2	
GO:0008219	cell death	2,1	
GO:0016265	death	2,1	
GO:0052126	movement in host environment	2,0	
GO:0052192	movement in environment of other organism involved in symbiotic interaction	2,0	
GO:0000209	protein polyubiquitination		exklusiv
GO:0000255	allantoin metabolic process		exklusiv
GO:0000256	allantoin catabolic process		exklusiv
GO:0009410	response to xenobiotic stimulus		exklusiv
GO:0010135	ureide metabolic process		exklusiv
GO:0010136	ureide catabolic process		exklusiv
GO:0010163	high-affinity potassium ion import		exklusiv
GO:0010440	stomatal lineage progression		exklusiv
GO:0010769	regulation of cell morphogenesis involved in differentiation		exklusiv
GO:0015837	amine transport		exklusiv
GO:0032890	regulation of organic acid transport		exklusiv
GO:0032973	amino acid export		exklusiv
GO:0043157	response to cation stress		exklusiv

_

	GO:0043266	regulation of potassium ion transport		exklusiv	
	GO:0043270	positive regulation of ion transport		exklusiv	
	GO:0044210	'de novo' CTP biosynthetic process		exklusiv	
	GO:0051353	positive regulation of oxidoreductase		exklusiv	
	GO:0051952	regulation of amine transport		exklusiv	
	GO:0051955	regulation of amino acid transport		exklusiv	
	GO:0060284	regulation of cell development		exklusiv	
	GO:0080027	response to herbivore		exklusiv	
	GO:0080092	regulation of pollen tube growth		exklusiv	
	GO:0080143	regulation of amino acid export		exklusiv	
	GO:0009267	cellular response to starvation		4,0	
	GO:0031669	cellular response to nutrient levels		4,0	
	GO:0042594	response to starvation		4,0	
	GO:0045454	cell redox homeostasis		4,0	
	GO:0009991	response to extracellular stimulus		3,3	
	GO:0031668	cellular response to extracellular		3,3	
	GO:0071496	cellular response to external stimulus		3,3	
	GO:0052386	cell wall thickening		2,6	
	GO:0052543	callose deposition in cell wall		2,6	
	GO:0006260	DNA replication		2,4	
	GO:0015074	DNA integration		2,3	
	GO:0090305	nucleic acid phosphodiester bond hydrolysis		2,3	
	GO:0006259	DNA metabolic process		2,2	
	GO:0006278	RNA-dependent DNA replication		2,2	
	GO:0006508	proteolysis		2,0	
	GO:0031407	oxylipin metabolic process		2,0	
	GO:0031408	oxylipin biosynthetic process		2,0	
_	GO:0019408	dolichol biosynthetic process			exklusiv
	GO:0019348	dolichol metabolic process			exklusiv
	GO:0033386	geranylgeranyl diphosphate			exklusiv
	GO:0006148	inosine catabolic process			exklusiv
	GO:0046102	inosine metabolic process			exklusiv
	GO:0080037	negative regulation of cytokinin mediated signaling pathway			exklusiv
	GO:0016094	polyprenol biosynthetic process			exklusiv
	GO:0016093	polyprenol metabolic process			exklusiv
	مرجعها والمتعادية	i haansi ahaana Famana ahaa ina amfisiliinaan Qamahaa	I	ļ	

exklusiv = ohne nachweisbare Expression im anfälligen Genotyp

3.2.3.2 Differenziell exprimierte Gene zwischen den kronenrostresistenten Lolium perenne-Genotypen nach Inokulation mit dem

Kronenrosteinsporisolat mit Zuordnung zur pflanzlichen Abwehr

Basierend auf der Zuordnung der exprimierten Transkripte zu den bereits beschriebenen GOs wurde zusätzlich die GO "defense response" in die Auswertung aufgenommen. In dieser GO werden Transkripte zusammengefasst, die als Reaktion auf einen Fremdorganismus oder eine Verwundung exprimiert werden und zu einer Wachstumsrestriktion des Fremdorganismus oder zu einer Prävention/Erholung von einer Infektion führen. Die den signifikant überexprimierten GOs zugeordneten Transkripte (log2Fc \geq 2; p \leq 0,01; FDR \geq 0,001) sind nach ihrem Vorkommen in den Resistenztypen in Tabelle 3.6 dargestellt. Insgesamt wurden 68 Transkripte signifikant überexprimiert. Davon wurden 12 in allen Resistenztypen, 12 im VRG und RE und 20 im VRG und MRG überexprimiert. Zwischen dem RE und MRG wurden keine Transkripte mit Zuordnung zur Pflanzenabwehr gemeinsam überexprimiert. Insgesamt weisen die überexprimierten Transkripte Homologie zu Resistenzgenen, Transkriptionsfaktoren, Proteinkinasen, Rezeptoren, Transportern und antifungalen Proteinen auf. Diese Proteine umfassen eine große Bandbreite von resistenzspezifischen Funktionen, von der Pathogenerkennung bis zur erfolgreichen Abwehr.

Gen-	Gen-		log2FC			
Identifikation	Beschreibung	VRG	RE	MRG		
LoliumRes_a162 018_11	Putative disease resistance protein Sb02g040920 (<i>S. bicolor</i>)	exklusiv	exklusiv	exklusiv		
LoliumRes_a187 703_15	Putative disease resistance RPP13-like protein 3 (<i>A. thaliana</i>)	exklusiv	exklusiv	exklusiv		
LoliumSus_a199 938_14	Dynamin-related protein 1E (<i>A. thaliana</i>)	exklusiv	exklusiv	exklusiv		
LoliumSus_a459 10_22	Disease resistance protein RPP13 (<i>A. thaliana</i>)	exklusiv	exklusiv	exklusiv		
LoliumRes_a552 20_24	Mediator of RNA polymerase II transcription subunit 15a (<i>A. thaliana</i>)	8,3	6,8	7,3		
LoliumRes_a185 80_131	Pathogenesis-related protein PRB1-2 (<i>H. vulgare</i>)	7,3	5,4	5,9		
LoliumRes_a327 37_43	Probable disease resistance RPP8-like protein 2 (<i>A. thaliana</i>)	6,4	5,3	5,7		

Tab. 3.6 Signifikant überexprimierte Transkripte in den Puccinia coronata-
resistenten Lolium perenne-Genotypen im Vergleich zum anfälligen
Genotyp 0 – 24 Stunden nach Inokulation

LoliumRes_a850 51_27	Predicted protein (<i>H. vulgare</i> var. <i>distichum</i>)	6,4	5,1	5,4
LoliumRes_a166 216_12	Disease resistance protein RPM1 (<i>A. thaliana</i>)	4,9	4,6	4,5
LoliumSus_a852 19_18	Putative disease resistance RPP13-like protein 3 (<i>A. thaliana</i>)	4,3	4,5	5,0
LoliumRes_a438 69_30	Ethylene-responsive transcription factor 11 (<i>A. thaliana</i>)	4,2	4,2	3,8
LoliumRes_a961 12_26	Predicted protein (<i>H. vulgare</i> var. <i>distichum</i>)	3,7	3,6	4,7
LoliumRes_a636 329_5	Receptor-like protein kinase 5 (<i>A. thaliana</i>)	exklusiv	exklusiv	0
LoliumRes_a319 973_6	Disease resistance protein RPM1 (<i>A. thaliana</i>)	exklusiv	exklusiv	0
LoliumRes_a917 47_18	Disease resistance RPP8-like protein 3- like (BRADI1G34430) (<i>B. distachyon</i>)	8,5	8,5	0
LoliumRes_a338 30_61	Probable mediator of RNA polymerase II transcription subunit 37c (<i>A. thaliana</i>)	8,3	7,9	0
LoliumRes_a320 92_126	Polyol transporter 5 (<i>A. thaliana</i>)	6,9	6,1	0
LoliumSus_a595 35_65	<i>Lolium perenne</i> subsp. <i>perenne</i> PTA.236.C1 mRNA sequence	5,8	6,2	0
LoliumRes_a482 90_26	Disease resistance protein RPM1 (<i>A. thaliana</i>)	5,8	5,8	0
LoliumRes_a329 623_5	Disease resistance protein RPM1-like (BRADI4G09587) (<i>B. distachyon</i>) -	5,5	5,8	0
LoliumRes_a473 82_19	<i>Lolium perenne</i> subsp. <i>perenne</i> PTA.236.C1 mRNA sequence	5,4	6,1	0
LoliumRes_a378 59_64	Transcription factor TGA4 (A. thaliana)	4,5	4,4	0
LoliumRes_a250 59_69	Vacuolar-sorting receptor 6 (A. thaliana)	4,3	6,2	0
LoliumRes_a558 25_27	L-type lectin-domain containing receptor kinase IV.1 (<i>A. thaliana</i>)	3,9	3,5	0
LoliumRes_a228 570_6	Disease resistance RPP8-like protein 3 (<i>A. thaliana</i>)	exklusiv	0	exklusiv
LoliumSus_a179 922_11	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)	exklusiv	0	exklusiv
LoliumRes_a219 869_13	Receptor-like protein kinase 5 (<i>A. thaliana</i>)	exklusiv	0	exklusiv
LoliumSus_a187 22_112	Membrane steroid-binding protein 2 (<i>A. thaliana</i>)	exklusiv	0	exklusiv
LoliumSus_a238 782_9	Putative disease resistance protein (Sb02g040920) (<i>S. bicolor</i>)	exklusiv	0	exklusiv
LoliumRes_a485 94_16	Disease resistance protein RPM1 (<i>A. thaliana</i>)	7,1	0	7,3
LoliumRes_a521 6_338	Glucan endo-1,3-beta-glucosidase 13 (<i>A. thaliana</i>)	6,8	0	6,8
LoliumRes_a535 88_25	L-type lectin-domain containing receptor kinase IV.1 (<i>A. thaliana</i>)	6,8	0	6,8
LoliumRes_a531 00_32	Probable serine/threonine-protein kinase At5g41260 / brassinosteroid-	6,7	0	6,5
_ LoliumSus_a499 2_372	signaling kinase 8 (<i>A. thaliana</i>) Glucan endo-1,3-beta-glucosidase 13 (<i>A. thaliana</i>)	6,6	0	6,6

LoluimRes_a153 42_155	<i>Lolium perenne</i> subsp. <i>perenne</i> PTA.2441.C1 mRNA sequence	6,6	0	6,7
LoliumRes_a106 700_16	Putative late blight resistance protein homolog R1C-3 (<i>S. demissum</i>)	6,0	0	5,8
LoliumRes_a984 45_14	LRR receptor-like serine/threonine- protein kinase EFR (<i>A. thaliana</i>)	5,7	0	6,2
LoliumRes_a177 265_9	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)	5,4	0	5,8
LoliumRes_a229 587_8	Putative disease resistance protein At4g19050 (<i>A. thaliana</i>)	5,4	0	4,6
LoliumRes_a144 624_17	Shikimate O- hydroxycinnamoyltransferase (<i>A.</i> <i>thaliana</i>)	5,1	0	4,0
LoliumRes_a219 355_11	Cysteine-rich receptor-like protein kinase 7 (<i>A. thaliana</i>)	4,3	0	6,2
LoliumRes_a972 6_93	Putative disease resistance RPP13-like protein 3 (<i>A. thaliana</i>)	4,0	0	4,2
LoliumRes_a617 17_25	Probable receptor-like protein kinase At5g47070 (<i>A. thaliana</i>)	4,0	0	3,4
LoliumRes_a118 09_59	5'-3' exoribonuclease 4 (<i>A. thaliana</i>)	3,9	0	3,5
LoliumRes_a272 877_6	Putative disease resistance RPP13-like protein 3 (<i>A. thaliana</i>)	exklusiv	0	0
LoliumRes_a314 476_6	Putative disease resistance protein At1g63350 (<i>A. thaliana</i>)	exklusiv	0	0
LoliumRes_a536 263_6	NB-ARC domain containing protein LOC_Os12g06920 (<i>O. sativa</i> subsp.	exklusiv	0	0
LoliumRes_a684 889_4	Wall-associated receptor kinase 1 (<i>A. thaliana</i>)	8,0	0	0
LoliumSus_a273 203_6	Putative uncharacterized protein Osl_37604 (<i>O. sativa</i> subsp. <i>Indica</i>)	5,8	0	0
LoliumRes_a259 696_8	Putative uncharacterized protein Sb06g000340 (<i>S. bicolor</i>)	5,7	0	0
LoliumSus_a345 62_72	Probable glucan endo-1,3-beta- glucosidase A6 (<i>A. thaliana</i>)	4,3	0	0
LoliumSus_a156 214_15	Defensin-like protein (<i>P. integrifolia</i>)	4,3	0	0
LoliumRes_a394 67_47	Probable glucan endo-1,3-beta- glucosidase A6 (<i>A. thaliana</i>)	4,3	0	0
LoliumRes_a136 003_20	Defensin-like protein (<i>P. integrifolia</i>)	3,9	0	0
LoliumSus_a334 38_36	L-type lectin-domain containing receptor kinase IV.1 (<i>A. thaliana</i>)	3,0	0	0
LoliumRes_a117 549_14	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)	0	exklusiv	0
LoliumRes_a459 382_5	Protein NSP-INTERACTING KINASE 2 (<i>A. thaliana</i>)	0	exklusiv	0
LoliumSus_a880 50_21	Putative uncharacterized protein Sb02g040920 (<i>S. bicolor</i>)	0	exklusiv	0
noHitAssembly_ c42848_g1_i1	Probable LRR receptor-like serine/threonine-protein kinase	0	exklusiv	0
LoliumRes_a166 469_10	Putative uncharacterized protein Sb02g040920 (<i>S. bicolor</i>)	0	6,9	0

Disease resistance protein RPM1 (<i>A. thaliana</i>)	0	6,0	0
Protein SRG1 (<i>A. thaliana</i>)	0	0	7,9
Protein SRG1 (<i>A. thaliana</i>)	0	0	7,3
Probable LRR receptor-like serine/threonine-protein kinase At4g08850 (<i>A. thaliana</i>)	0	0	6,4
LRR receptor-like serine/threonine- protein kinase EFR (<i>A. thaliana</i>)	0	0	4,3
High-affinity nitrate transporter 3.1 (<i>A. thaliana</i>)	0	0	3,5
Two-component response regulator ARR4 (<i>A. thaliana</i>)	0	0	3,4
Two-component response regulator ARR4 (<i>A. thaliana</i>)	0	0	3,2
Indole-3-glycerol phosphate synthase, chloroplastic (<i>A. thaliana</i>)	0	0	2,9
	Disease resistance protein RPM1 (<i>A. thaliana</i>) Protein SRG1 (<i>A. thaliana</i>) Protein SRG1 (<i>A. thaliana</i>) Probable LRR receptor-like serine/threonine-protein kinase At4g08850 (<i>A. thaliana</i>) LRR receptor-like serine/threonine- protein kinase EFR (<i>A. thaliana</i>) High-affinity nitrate transporter 3.1 (<i>A. thaliana</i>) Two-component response regulator ARR4 (<i>A. thaliana</i>) Two-component response regulator ARR4 (<i>A. thaliana</i>) Indole-3-glycerol phosphate synthase, chloroplastic (<i>A. thaliana</i>)	Disease resistance protein RPM1 (A. thaliana)0Protein SRG1 (A. thaliana)0Protein SRG1 (A. thaliana)0Probable LRR receptor-like serine/threonine-protein kinase At4g08850 (A. thaliana)0LRR receptor-like serine/threonine- protein kinase EFR (A. thaliana)0High-affinity nitrate transporter 3.1 (A. thaliana)0Two-component response regulator ARR4 (A. thaliana)0Two-component response regulator ARR4 (A. thaliana)0Indole-3-glycerol phosphate synthase, chloroplastic (A. thaliana)0	Disease resistance protein RPM1 (A. thaliana)06,0Protein SRG1 (A. thaliana)00Protein SRG1 (A. thaliana)00Probable LRR receptor-like serine/threonine-protein kinase At4g08850 (A. thaliana) LRR receptor-like serine/threonine- protein kinase EFR (A. thaliana) High-affinity nitrate transporter 3.1 (A. thaliana)00Two-component response regulator ARR4 (A. thaliana) Indole-3-glycerol phosphate synthase, chloroplastic (A. thaliana)00

exklusiv = ohne nachweisbare Expression im anfälligen Genotyp

3.2.3.3 Einfluss der Kronenrostinokulation auf die Genexpression der

Lolium perenne-Genotypen

Abbildung 3.16 zeigt die Anzahl hoch- und runterregulierter Transkripte in den inokulierten Genotypen im Vergleich zum jeweiligen nicht inokulierten Zeitpunkt des Genotyps. Die Anzahl überexprimierter Transkripte im zeitlichen Verlauf ist in allen Genotypen weitestgehend konstant, mit Ausnahme im AG und im RE 6 hpi. Im AG wurde über alle Zeitpunkte und Genotypen die geringste differentielle Genexpression 6 hpi, mit 3370 hoch und 743 runter regulierten Transkripten gemessen. Im RE ist dagegen zum Zeitpunkt 6 hpi mit 7387 im Vergleich zu den späteren Zeitpunkten mit 5191 und 5492 die Anzahl der hochregulierten Transkripte deutlich erhöht und weist den höchsten Wert über alle Genotypen und Zeitpunkte auf. Bei den runterregulierten Transkripten steigt die Anzahl von 6 nach 24 hpi in allen Genotypen an, mit dem höchsten Wert von 3102 Transkripten 24 hpi im RE.

Abb. 3.16 Anzahl differentiell exprimierter Transkripte in den, mit *Puccinia coronata*, inokulierten *Lolium perenne*-Genotypen im Vergleich zum jeweiligen nicht inokulierten Zeitpunkt

3.2.3.4 "Gene Ontology" mit überexprimierten Transkripten in den *Lolium perenne*-Genotypen induziert durch die Kronenrostinokulation

Insgesamt wurden zu allen Zeitpunkten nach Inokulation Transkripte aus 85 GOs gegenüber den nicht inokulierten Zeitpunkten signifikant überexprimiert (siehe Anhang A4). Davon wurden 38 GOs der pflanzlichen Abwehr zugeordnet, die einen weiten Bereich der abwehrinduzierten Genxpression von der Erkennung des Pathogens bis zur spezifischen Abwehrreaktion beschreiben (Tab. 3.7). Zusätzlich wurden im VRG und AG Transkripte in GOs überexprimiert, die auf eine gesteigerte Genexpression eines nicht pflanzlichen Organismus hindeuten. Davon wurden vier GOs ausschließlich im VRG ("reproductive process in single-celled organism", "sporulation resulting in formation of a cellular spore", "reproduction of a single-celled organism", "sporulation") und eine GO ("single-organism intracellular transport") im AG 24 hpi signifikant überexprimiert.

Tab. 3.7 "Gene Ontology" *Puccinia coronata*-induzierter, signifikant überexprimierter Transkripte, mit Zuordnung zur pflanzlichen Abwehr, in den *Lolium perenne*-Genotypen 6, 12 und 24 Stunden nach Inokulation mit dem Kronenrosteinsporisolat KR-SR1

			VRG			RE			MRG			AG	
GO- Identifikation	Gene Ontology- Beschreibung	6 hpi	12 hpi	24 hpi	6 hpi	12 hpi	24 hpi	6 hpi	12 hpi	24 hpi	6 hpi	12 hpi	24 hpi
GO:0006030	chitin metabolic process	3,5	4,0	3,4	5,5	2,8					4,8	3,8	4,0
GO:0006032	chitin catabolic process	3,3		3,2	5,4							3,7	
GO:0045730	respiratory burst	4,7			5,0	6,1					4,7	4,9	
GO:0016998	cell wall macromolecule catabolic process		3,4		4,2							3,3	
GO:0009800	cinnamic acid biosynthetic	exklusiv		exklusiv				exklusiv	exklusiv	exklusiv			
GO:0009803	process cinnamic acid metabolic process	exklusiv		exklusiv				exklusiv	exklusiv	exklusiv			
GO:0022413	reproductive process in single-celled organism			exklusiv									
GO:0030435	sporulation resulting in formation of a cellular spore			exklusiv									
GO:0032505	reproduction of a single-celled			exklusiv									
GO:0043934	sporulation			exklusiv									
GO:0002679	respiratory burst involved in defense response				4,9	6,0					4,6	4,8	
GO:0018958	phenol-containing compound metabolic process				2,3						2,0		
GO:0043069	negative regulation of programmed cell death				3,3						3,6	3,7	
GO:0060548	negative regulation of cell death				3,4						3,7	3,8	
GO:0009404	toxin metabolic process					2,9							
GO:0009407	toxin catabolic process					2,8							
GO:0009696	salicylic acid metabolic process				2,2								
GO:0009697	salicylic acid biosynthetic process				2,1								

GO:0010200	response to chitin		2,1		
GO:0046189	phenol-containing compound		2,2		
	biosynuneuc process				
GO:0009620	response to fungus			2,0	
GO:0009627	systemic acquired resistance			2,0	
GO:0050832	defense response to fungus			2,1	
GO:1902582	single-organism intracellular				2,2
	transport				
	in the second second	· · · · · · · · · ·	•		

exklusiv = ohne nachweisbare Expression zum nicht inokulierten Zeitpunkt

3.2.3.5 Überexprimierte Transkripte in den *Lolium perenne*-Genotypen induziert durch die Kronenrostinokulation

Zu den Zeitpunkten 6, 12 und 24 hpi wurden insgesamt 545 Transkripte in den Genotypen VRG, RE, MRG und AG zu GOs mit Zuordnung zur pflanzlichen Abwehr überexprimiert (siehe Anhang A5). In Abbildung 3.17 ist die Verteilung dieser Transkripte nach ihrer Funktion dargestellt. Die Abwehr und Stress induzierten Transkripte bilden die größte Gruppe mit Homologie zu "disease resistance protein" und "pathogenesis-related protein"-Genen sowie Genen für antifungale Proteine, wie Barwin, Wheatwin-2, Chitinasen, Glucan-endo-1,3beta-Glukosidasen und "Heat shock"-Proteinen. Die zweitgrößte Gruppe sind die der Transkription und Signalübertragung zugeordneten Transkripte mit "receptorlike protein"-Kinasen und Transkriptionsfaktoren. Des Weiteren sind Transkripte am Transport, dem Lipidmetabolismus und an der Aminosäuresynthese beteiligt. Insgesamt wurden 363 Transkripte im AG und den Resistenztypen überexprimiert. Im VRG und dem RE wurden 20 und im VRG und dem MRG 18 überexprimiert identische Transkripte (Tab. 3.8, 3.9).

Abb. 3.17 Anzahl der abwehrspezifischen, überexprimierten Transkripte nach *Puccinia coronata*-Inokulation in allen *Lolium perenne*-Genotypen zusammengefasst nach ihrer Funktion Tab. 3.8 Exklusiv und hoch differentiell exprimierte Transkripte im vollständig kronenrostresistenten Lolium perenne-Genotyp und dem resistenten Elter im Vergleich zum anfälligen Genotyp 6, 12 und 24 Stunden nach Inokulation mit dem Kronenrosteinsporisolat KR-ŠR1 ı. ı

		VRG			RE				
Gen-Identifikation	Gen-Beschreibung	6 hpi	12 hpi	24 hpi	6 hpi	12 hpi	24 hpi		
Abwehr- und Stress induzierte Transkripte									
comp172872_c0_seq6	Chitinase 6 (<i>O. sativa</i> subsp. <i>japonica</i>)	exklusiv	exklusiv	exklusiv	exklusiv	exklusiv			
LoliumRes_a55289_63	Chitinase 6 (O. sativa subsp. japonica)			exklusiv					
comp167847_c4_seq8	Pathogenesis-related protein 1 (A. officinalis)		3,5		2,5				
LoliumSus_a106172_22	Probable NADPH:quinone oxidoreductase 1 (<i>O. sativa</i> subsp. <i>japonica</i>)	2,2				2,2			
LoliumSus_a217148_9	Putative disease resistance protein RGA4 (<i>S. bulbocastanum</i>)		4,1		2,6	2,4	2,5		
comp154893_c0_seq1	Xylanase inhibitor protein 1 (<i>T. aestivum</i>)	2,8				2,6			
LoliumRes_a19384_103	Xylanase inhibitor protein 1 (<i>T. aestivum</i>)	3,6	2,1		2,7	2,6			
LoliumSus_a16931_139	Xylanase inhibitor protein 1 (<i>T. aestivum</i>)	3,6	2,0		2,3	2,2			
	Transkription und Signalübert	ragung							
LoliumRes_a824672_3	L-type lectin-domain containing receptor kinase IV.2 (<i>A. thaliana</i>)		exklusiv		2,2				
LoliumRes_a55220_24	Mediator of RNA polymerase II transcription subunit 15a (<i>A. thaliana</i>)	2,5		2,1		2,4			
LoliumSus_a207255_10	Phytosulfokine receptor 1 (A. thaliana)			2,2			2,3		
comp104992_c0_seq1	Pre-mRNA-splicing factor SPF27 homolog (A. thaliana)	exklusiv	exklusiv		exklusiv	exklusiv			
LoliumRes_a29134_73	Probable LRR receptor-like serine/threonine-protein kinase At1g74360 (<i>A. thaliana</i>)	2,8	2,6	2,1	2,6				
LoliumSus_a34012_37	Probable LRR receptor-like serine/threonine-protein kinase At1g74360 (<i>A. thaliana</i>)	5,1		3,8		2,1			
LoliumSus_a19898_116	Two-component response regulator ARR4 (A. thaliana)			2,9			2,6		
LoliumSus_a172892_13	Tyrosine-sulfated glycopeptide receptor 1 (<i>A. thaliana</i>)		4,5	4.0		2,0			
LollumRes_a684889_4	Wall-associated receptor kinase 1 (A. thallana)			4,3			exklusiv		
Transport									
comp173593_c0_seq1	Transmembrane emp24 domain-containing protein p24delta5 (<i>A. thaliana</i>)		2,8		3,2				
Funktion unbekannt									
LoliumRes_a63326_60	NBS-LRR class RGA (Aegilops tauschii)		3,9		exklusiv				
LoliumRes_a17527_63	rRNA N-glycosidase (<i>Oryza brachyantha</i>)		5,2		4,5				

exclusiv = onne nachweisbare Expression im antailigen Genotyp
Tab. 3.9 Exklusiv und hoch differentiell exprimierte Transkripte im vollständig und moderat kronenrostresistenten *Lolium perenne*-Genotyp im Vergleich zum anfälligen Genotyp 6, 12 und 24 Stunden nach Inokulation mit dem Kronenrosteinsporisolat KR-SR1

			VRG			MRG	
Gen- Identifikation	Gen- Beschreibung	6 hni	12 hni	24 hni	6 hni	12 hni	24 hni
	Abwehr- und Stress induzierte 1	Franskripte	, <u>12 npi</u>	24 1121	U IIPI	12 1191	24 1191
comp162236_c0_seq3	(+)-neomenthol dehydrogenase (Capsicum annuum)			exklusiv			exklusiv
comp150396_c0_seq1	Alpha-amylase/trypsin inhibitor (<i>Z. mays</i>)			3,8	3,0	2,6	5,3
comp128715_c0_seq1	Chitinase 2 (O. sativa subsp. japonica)			3,2	4,6		6,0
comp173676_c0_seq3	Chitinase 2 (O. sativa subsp. japonica)			exklusiv			2,3
LoliumSus_a123467_18	Disease resistance protein RGA2 (S. bulbocastanum)			exklusiv	2,0		
LoliumRes_a166216_12	Disease resistance protein RPM1 (A. thaliana)	3,3		3,1	2,5	2,2	2,1
LoliumRes_a30011_122	Pathogenesis-related protein 1 (<i>H. vulgare</i>)			exklusiv			5,2
comp165814_c4_seq2	Pathogenesis-related protein STH-2 (S. tuberosum)	2,7	3,5	3,2		2,5	3,4
comp165814_c4_seq4	Pathogenesis-related protein STH-2 (S. tuberosum)	3,1	3,9	3,5		2,5	3,2
comp165814_c4_seq5	Pathogenesis-related protein STH-2 (S. tuberosum)	4,4	5,9	5,3		2,3	3,1
comp154752_c0_seq5	Zeamatin (Z. mays)			exklusiv	4,5	3,6	6,8
LoliumRes_a68140_45	Zeamatin (Z. mays)			exklusiv	3,5	3,1	5,6
	Transkription und Signalüber	rtragung					
LoliumRes_a336644_5	LOB domain-containing protein 41 (A. thaliana)	exklusiv			4,6		
LoliumRes_a350286_4	L-type lectin-domain containing receptor kinase IV.2 (<i>A. thaliana</i>)			3,4	3,0	2,7	2,3
LoliumRes_a183494_11	Probable WRKY transcription factor 62 (A. thaliana)	2,2				3,0	
LoliumRes_a219869_13	Receptor-like protein kinase 5 (A. thaliana)	2,7			2,8	3,0	
	Funktion unbekannt						
LoliumRes_a11842_62	Aldehyde dehydrogenase family 2 member C4 (A. thaliana)			2,2		2,2	2,6
LoliumRes_a909785_4	AST_5595 (Agrostis stolonifera)			3,1			2,3

exklusiv = ohne nachweisbare Expression im anfälligen Genotyp

3.3 Vergleich der Schwarz- und Kronenrostresistenz in der Kartierungspopulation LPSR1001

3.3.1 Vergleich der Boniturmodalwerte der Phänotypisierungen zur Schwarz- und Kronenrostresistenz

Um herauszufinden, ob die Rostresistenzen in der Kartierungspopulation LPSR1001 auf einer Rostresistenz gegenüber *Puccinia graminis* und *Puccinia coronata* basieren oder ob die Resistenzen Rost-spezifisch sind, wurden die Modalwerte der Schwarzrost- und Kronenrostresistenz-Phänotypisierungen auf Korrelationen untersucht (Tab. 3.10). Dazu wurden multiple Vergleiche zwischen den Modalwerten der Phänotypiserungen durchgeführt und signifikante Korrelationen ermittelt. Dabei wurde eine signifikante Korrelation zwischen dem Kronenrostisolat aus Bocksee und den Schwarzrostisolaten aus Steinach und den USA festgestellt (Signifikanzniveau < 0.05). Weitere Korrelationen zwischen Schwarz- und Kronenrostisolaten konnten nicht nachgewiesen werden.

		Schwarzrostisolate				Kronenrostisolate			
		Steinach	Malchow	Rostock	USA	Steinach	Rostock	Bocksee	
Sc	Steinach		<0,0001	<0,0001	<0,0001	0,38	0,08	0,03	
hwarzro	Malchow	0,64		<0,0001	<0,0001	0,38	0,76	0,07	
ostisolate	Rostock	0,69	0,70		<0,0001	0,50	0,62	0,63	Signifika
	USA	0,70	0,69	0,70		0,42	0,29	0,04	anzwe
Krone	Steinach	0,08	0,08	0,06	0,08		<0,0001	<0,0001	rte
nrostis	Rostock	0,17	0,03	0,05	0,10	0,81		<0,0001	
olate	Bocksee	0,20	0,17	0,05	0,19	0,42	0,49		
		Korrelationskoeffizienten							

 Tab. 3.10 Korrelationsanalyse der Boniturmodalwerte zwischen den Schwarzund Kronenrost-Phänotypisierungen

i

1

(Rangkorrelationstest nach Spearman und Signifikanzen nach Tukey's HSD post hoc-Test)

3.3.2 Vergleich der Genexpression des schwarzrostresistenten *Lolium perenne*-Bulks mit den kronenrostresistenten *Lolium perenne*-Genotypen

Um Gemeinsamkeiten und Unterschiede in den Expressionsprofilen zu identifizieren, wurden die GOs mit signifikant überexprimierten Transkripten verglichen. Übereinstimmungen zwischen den schwarzrostresistenten Bulks und den kronenrostresistenten Genotypen zeigten sich bei den GOs "cell wall modification involved in abscission" und "cell wall disassembly". Diese GOs zeigten überexprimierte Transkripte in den schwarzrostresistenten Bulks und den Kronenrostresistenztypen VRG und MRG (Tab. 3.11). Alle weiteren GOs sind als spezifisch für die Schwarzrost- bzw. für die Kronenrostresistenztypen zu betrachten.

Beim Vergleich von überexprimierten Transkripten zwischen den schwarzrostresistenten Bulks mit den Kronenrostresistenztypen wurden acht Übereinstimmungen identifiziert. Drei Transkripte aus den schwarzrostresistenten Bulks wurden in allen Kronenrostresistenztypen, vier im VRG und RE und ein Transkript im VRG und MRG überexprimiert. Drei Transkripte wurden ausschließlich in den schwarzrostresistenten Bulks überexprimiert (Tab. 3.12). **Tab. 3.11** "Gene Ontology" signifikant überexprimierter Transkripte beteiligt an pflanzlichen Abwehrreaktionen in inokulierten und nicht inokulierten schwarz- und kronenrostresistenten *Lolium perenne*-Bulks/Genotypen

Gene Gene Ontology-		Schwarzrost- resistenz	Kronenrostresistenz			
Identifikation	ikation Beschreibung		VRG	RE	MRG	
GO:0009830	cell wall modification involved in abscission	Х	Х		Х	
GO:0044277	cell wall disassembly	х	Х		Х	
GO:0031640	killing of cells of other organism	Х				
GO:0001906	cell killing	Х				
GO:0044364	disruption of cells of other organism	Х				
GO:0009626	plant-type hypersensitive response		Х	Х		
GO:0034050	host programmed cell death induced by symbiont		Х	Х		
GO:0012501	programmed cell death		Х	Х		
GO:0008219	cell death		Х			
GO:0016265	death		Х			
GO:0010363	regulation of plant-type hypersensitive response		Х			
GO:0042430	indole-containing compound metabolic process		Х			
GO:0045088	regulation of innate immune response		Х			
GO:0009696	salicylic acid metabolic process		Х			
GO:0009697	salicylic acid biosynthetic process		Х			
GO:0002682	regulation of immune system process		Х			
GO:0006586	indolalkylamine metabolic process		Х			
GO:0019756	cyanogenic glycoside biosynthetic process		Х			
GO:0042341	cyanogenic glycoside metabolic process		Х			
GO:0009627	systemic acquired resistance		Х			
GO:0031407	oxylipin metabolic process			Х		
GO:0031408	oxylipin biosynthetic process			Х		
GO:0052386	cell wall thickening			Х		
GO:0052543	callose deposition in cell wall			Х		
GO:0042435	indole-containing compound biosynthetic process		Х		Х	
GO:0080037	negative regulation of cytokinin mediated signaling pathway				Х	

Tab. 3.12 Identische, signifikant überexprimierte Transkripte nach Schwarzbzw. Kronenrostinokulation in schwarz- bzw. kronenrostresistenten Lolium perenne-Bulks/Genotypen im Vergleich zum jeweiligen anfälligen Bulk/Genotyp (log2 fold change ≥ 2)

		log2FC						
		Schwarzrost- resistenz	Kro re	nenro sisten	st- z			
Gen- Identifikation	Gen- Beschreibung	ResAll	VRG	RE	MR G			
	Abwehr- und Stress induzierte Transkripte							
LoliumRes_a	Disease resistance protein RPM1 (A.	8,9	5,8	5,8	0,0			
48290_26	thaliana)							
LoliumRes_a	Transcription factor TGA4 (A. thaliana)	5,8	4,5	4,4	0,0			
37859_64								
LoliumRes_a	Disease resistance RPP8-like protein 3-	5,8	8,5	8,5	0,0			
91747_18	like (BRADI1G34430) (B. distachyon)							
LoliumRes_a	Pathogenesis-related protein PRB1-2(H.	3,4	7,3	5,4	5,9			
18580_131	vulgare)			•	~ .			
LoliumRes_a	Probable receptor-like protein kinase	2,9	4	0	3,4			
61/1/_25	At5g47070 (A. thallana)	0.5	4.0	~ ~	0.0			
LOIIUMRes_a	vacuolar-solung receptor 6 (A. thallana)	2,5	4,3	0,Z	0,0			
20009_09	Modiator of PNA polymoraso II	2.2	02	6 8	72			
55220 24	transcription subunit 15a (A thaliana)	2,5	0,5	0,0	7,5			
JJZZU_Z4	Probable disease resistance RPP8-like	2.2	64	53	57			
32737 43	nrotein 2 (A thaliana)	۲,۲	0,4	5,5	5,7			
LoliumRes a	Red chlorophyll catabolite reductase	3.3						
22756 71	(Fragment) (H. vulgare)	0,0						
LoliumRes a	Reticuline oxidase-like protein (A.	3.5						
30151 42	thaliana)	-,-						
LoliumRes a	Probable histone deacetylase 19 (Z.	2,0						
71891_29	mays)	ŕ						

3.3.3 Vergleich der Genexpression von schwarz- und kronenrostinokulierten Bulks und Genotypen

Die Überexpression von Sequenzen mit Homologie zu "disease resistance"-, "pathogenesis-related protein"-Genen und Genen, die für antifungale Proteine kodieren, wie barwin, wheatwin-2, Chitinasen, Glucan-endo-1,3-beta-Glukosidasen, Gluthationtransferasen und "Heat schock"-Proteinen ist in allen Bulks und Genotypen ähnlich. Diese Gemeinsamkeiten setzten sich in der Überexpression von Transkripten fort, die an der Transkription und der Signalübertragung beteiligt sind (Tab. 3.13).

Von den insgesamt 545 Kronenrost und 73 Schwarzrost induzierten Transkripten wurde zwischen beiden Rostresistenzen eine Überexpression von 11 Transkripten mit identischer Genidentifikation, d.h. identischen Sequenzen identifiziert (Tab. 3.13).

		resisten	te Bulks		VRG			RE			MRG	
Gen- Identifikation	Gen- Beschreibung	früh	spät	6 hpi	12 hpi	24 hpi	6 hpi	12 hpi	24 hpi	6 hpi	12 hpi	24 hpi
Abwehr und St	ress induziert											
LoliumRes_a 5216_338	Glucan endo-1,3-beta-glucosidase 13 (<i>A. thaliana</i>)	6,4	7,4									2,2
LoliumRes_a 6165_237	Glucan endo-1,3-beta-glucosidase GII (<i>H. vulgare</i>)	0,7	0,4	3,3	3,3	3,4						
LoliumRes_a 9509_159	Glutathione transferase GST 23 (Z. mays)	2,2	2	2,8	2,6							
LoliumRes_a 157432_9	Reticuline oxidase-like protein (<i>A. thaliana</i>)	-0,3	0,5	2,5	2,7	2,4						
Transkription u	nd Signalübertragung											
LoliumRes_a 219355_11	Cysteine-rich receptor-like protein kinase 7 (<i>A. thaliana</i>)	2,1	1,6			2,2						
LoliumRes_a 141091_16	Ethylene-responsive transcription factor 1B (<i>A. thaliana</i>)	2,3	0,8					3,7	3,4			
LoliumRes_a 36771_51	Ethylene-responsive transcription factor 5 (<i>A. thaliana</i>)	2,1	-0,2				3,9	2,9				
LoliumRes_a 290854_6	Ethylene-responsive transcription factor ERF094 (<i>A. thaliana</i>)	4,4	1,1	exklusiv								
LoliumRes_a 268348_7	Probable LRR receptor-like serine/threonine-protein kinase At4g08850 (<i>A. thaliana</i>)	0,9	2,7							2,7	3,2	2,4
verschiedene												
LoliumRes_a 536263_6	NB-ARC domain containing protein (<i>O. sativa</i> subsp. <i>japonica</i>)	exklusiv	exklusiv			2,5						
LoliumSus_a1 99620_10	Uncharacterized protein BRADI3G19967 (<i>B. distachyon</i>)	1,8	2,3						3,2			

Tab. 3.13 Identische, signifikant überexprimierte Transkripte in schwarz-bzw. kronenrostinokulierten resistenten *Lolium perenne*-Bulks/Genotypen im Vergleich zum nicht inokulierten resistenten Bulk/Genotyp (log2 fold change ≥ 2)

exklusiv = ohne nachweisbare Expression im anfälligen Genotyp

4 Diskussion

Im ersten Teil der Diskussion wird die Schwarzrostresistenzmarkerentwicklung, "in silico"-Kartierung von LpPg1 und die differenzielle Genexpression zwischen schwarzrostresistenten und -anfälligen Bulks sowie inokulierten und nicht inokulierten Zeitpunkten diskutiert. Der zweite Teil beschreibt die Kronenrostresistenzen und führt die Beobachtungen aus der Phänotypisierung und den fluoreszenzmikroskopischen Untersuchungen mit der resistenztyp-Abschließend spezifischen Genexpression zusammen. werden die Gemeinsamkeiten Unterschiede zwischen Schwarzund der und Kronenrostresistenz diskutiert und die Frage beantwortet, ob beide Rostresistenzen auf einem Resistenzlokus basieren.

4.1 Schwarzrostresistenz-LpPg1

Die nachfolgende Tabelle gibt Auskunft über die in der Literatur beschriebenen Funktionen ausgewählter resistenzassoziierter Gene die an der *LpPg1*vermittelten Schwarzrostresistenz beteiligt sind. Im anschließenden Text werden die einzelnen Gene, geordnet nach ihrer Funktion und Einfluss an der Resistenzausprägung von *LpPg1*, kritisch diskutiert.

Gen- Identifikation	Gen- Beschreibung	Funktion
LoliumRes_a 48290_26/ <i>LpETR_1</i>	Disease resistance protein RPM1 (A. thaliana)	 löst hypersensitiven Zelltod aus (Boyes et al. 1998; McDowell et al. 1998)
LoliumRes_a 924483_3/ <i>LpETR_17</i>	Disease resistance protein RPM1-like (LOC100844311) (<i>B. distachyon</i>)	• steht in Verbindung mit der Auslösung eines programmierten Zelltods in Weizen (<i>Lr10</i> -Resistenz) bei Inokulation mit <i>Puccinia triticina</i> - (Feuillet et al. 2003)
LoliumRes_a 783434_3/ <i>LpETR_</i> 18	Disease resistance RPP8-like protein 3-like (LOC100827328) (<i>B. distachyon</i>)	 löst hypersensitiven Zelltod aus (Boyes et al. 1998; McDowell et al. 1998)
LoliumRes_a 91747_18	Disease resistance RPP8-like protein 3-like (BRADI1G34430) (<i>B. distachyon</i>)	 mögliche Beteiligung an Resistenzreaktion in <i>L. perenne</i> bei Inokulation mit <i>Puccinia coronata</i> f. sp.
LoliumRes_a 32737_43	Probable disease resistance RPP8-like protein 2 (<i>A. thaliana</i>)	Iolli (Muylle et al. 2005)
LoliumRes_a 549699_4/ <i>LpETR</i> _19	Putative disease resistance protein RGA1 (S. bulbocastanum)	in Verbindung mit rassenunspezifischer Resistenz gegenüber <i>P. infestans</i> in Kartoffel-
LoliumRes_a 230215_7	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)	und Tomatengenotypen beschrieben (Song et al. 2003; van der Vossen et al. 2003)
LoliumRes_a 2363_425	Premnaspirodiene oxygenase (<i>Hyoscyamus muticus</i>)	 gehört zur Cytochrome-P450-Familie und ist an der Synthese von Solavetivone, einem hochpotenten antifungalen Phytoalexin beteiligt kommt in Nachtschattengewächsen vor und hemmt das Myzelwachstum von Phytophthora infestans und Rhizoctonia solani (Takahashi et al. 2007)
LoliumRes_a 605768_5	LRR receptor-like serine/threonine-protein kinase FLS2 (<i>A. thaliana</i>)	 an der basalen Pflanzenabwehr beteiligt, induziert durch bakterielle Pathogene, in <i>Arabidopsis</i> beschrieben (Gómez-Gómez und Boller 2000; Kim et al. 2009)
LoliumRes_a 165853_16	G-type lectin S-receptor-like serine/threonine-protein kinase SD1-13 (<i>A. thaliana</i>)	 an der basalen Pflanzenabwehr beteiligt, induziert durch bakterielle Pathogene, in <i>Arabidopsis</i> beschrieben (Gómez-Gómez und Boller 2000; Kim et al. 2009) fungiert als negativer Regulator der Abwehr gegenüber <i>Pseudomonas</i> <i>syringae</i> pv. <i>tomato</i>
LoliumRes_a 141091_16	Ethylene-responsive transcription factor 1B (<i>A. thaliana</i>)	bekannte positive Regulatoren von abwehrinduzierten Chitinasen und
LoliumRes_a 36771_51	Ethylene-responsive transcription factor 5 (<i>A. thaliana</i>)	anderen "pathogenesis related protein"-Genen (Chen und Chen 2002;
LoliumSus_a1 05426_17	Ethylene-responsive transcription factor ERF094 (<i>A. thaliana</i>)	Lorenzo et al. 2003; Gutterson und Reuber 2004; McGrath et al. 2005; Pré et al. 2008; Gao et al. 2011; Moffat et
LoliumRes_a 290854 6	Ethylene-responsive transcription factor ERF094 (<i>A. thaliana</i>)	al. 2012)

Tab. 4.1 Ausgewählte Schwarzrostresistenz-assoziierte	Transkripte der <i>LpPg1</i> -
vermittelten Genexpression	

LoliumRes_a 127239_24	WRKY transcription factor 18 (<i>A. thaliana</i>)	Überexpression führt in transgenen Arabidopsis-Genotypen zu einer gesteigerten Expression von "pathogenesis related protein"-Genen und einer verstärkten Resistenz gegen Pseudomonas syringae (Chen und Chen 2002).
LoliumRes_a 37859_64/ <i>LpETR</i> _3	Transcription factor TGA4 (A. thaliana)	 positiver Regulator von "pathogenesis related protein"-Genen und der basalen Resistenz gegen bakterielle und pilzliche Pathogene (Kesarwani et al. 2007; Wang 2011)
LoliumSus_a1 803_818, LoliumRes_a 1192_855	Barwin (<i>H. vulgare</i>)	 bekannte antifungale Proteine aus der Gerste und dem Weizen zeigen eine breite Wirksamkeit gegenüber pilzlichen Pathogenen (Svensson et al. 1992; Caruso et al. 1996)
LoliumRes_a 2300_676	Wheatwin-2 (<i>T. aestivum</i>)	 wirken gegen Colletotrichum graminicola in Mais (Vargas et al. 2012) und wurden in inkompatiblen Reisgenotypen bei Infektion mit Magnaporthe oryzae gefunden (Wang et al. 2014b)
LoliumSus_a4 992_372, LoliumRes_a 5216_338, LoliumRes_a 6165_237	Glucan endo-1,3-beta- glucosidase 13 (<i>A. thaliana</i>)	 hemmen das Pilzwachstum, in dem das aus Chitin und Glukan bestehende pilzliche Zellskelett angegriffen wird (Theis und Stahl 2004)
LoliumRes_a 1047_723	Endochitinase A (<i>Z. mays</i>)	
LoliumRes_a 15586_126, LoliumSus_a4 4107_54, LoliumRes_a 51325_55	Thaumatin-like pathogenesis- related protein 1 (<i>A. sativa</i>), Thaumatin-like pathogenesis- related protein 4 (<i>A. sativa</i>)	 in vielen inkompatiblen Interaktionen zwischen Pflanzen und Rostpilzen überexprimiert (Lin et al. 1998; Rinaldi et al. 2007; Hulbert et al. 2007; Coram et al. 2008; Bozkurt et al. 2010; Wang et al. 2014a) tragen zur gesteigerten Resistenz gegen phytopathogene Pilze in transgenem Weizen und Straußgras bei (Fu et al. 2005; Mackintosh et al. 2007)
LoliumRes_a 9509_159, LoliumRes_a 29433_56, LoliumSus_a5 5538_47	Glutathione transferase GST 23 (<i>Z. mays</i>)	 in Verbindung mit mehreren quantitativen Resistenzen in Mais beschrieben (Wisser et al. 2011) sind an zahlreichen Stressreaktionen, wie an der Entgiftung von Pathogen- bezogenen xenobiotischen Verbindungen beteiligt (Marrs 1996) in der Regel unverzüglich nach Erkennung einer Infektion induziert (Hahn und Strittmatter 1994; Dean et al. 2005) und in resistenten Genotypen überexprimiert (Panthee et al. 2007; Choi et al. 2008b)

4.1.1 Markerentwicklung, *"in silico"-*Kartierung und *LpPg1-*vermittelte Genexpression

Zur Identifikation von Kandidatengenen und Polymorphismen für die Entwicklung von Schwarzrostresistenzmarkern wurde die NGS-Methode MACE genutzt. Insgesamt wurde die Genexpression von drei resistenten und drei anfälligen Bulks, die jeweils auf 20 Blattstücken von resistenten und 20 anfälligen Genotypen basieren, zu drei unterschiedlichen Zeitpunkten untersucht. Es wurden Transkripte und SNPs für die Markerentwicklung ausgewählt, die ausschließlich in den resistenten Bulks vorkamen.

Von den insgesamt 30 polymorphen Markern co-segregierte *LpETR_18* mit dem Schwarzrost-Resistenzlokus *LpPg1*. *LpETR_17* und *LpETR_19* flankierten diesen im Abstand von 0,3 bzw. 1,1 cM. Alle drei Marker zeigten Homologie zu bekannten Resistenzgenen: *LpETR_17* zu RPM1, *LpETR_18* zu RPP8 und *LpETR_19* zu RGA1. Auf Grund der Co-Segregation von *LpETR_18* mit *LpPg1* ist dieses ETR ein Kandidat für das Schwarzrostresistenzgen selbst. Dem gegenüber könnte eine Ausdehnung der Kartierungspopulation in einer Detektion von Rekombinanten resultieren, die *LpETR_18* als mögliches Resistenzgen ausschließen. Um dies zu prüfen wird eine Ausdehnung der Kartierung von *LpPg1* auf eine größere Population und eine funktionelle Genstudie empfohlen. Abgesehen davon können die drei Resistenzmarker zur Selektion von Genotypen mit dem *LpPg1*-Schwarzrostresistenzlokus in der Züchtung eingesetzt werden.

Bisher haben sich nur wenige Studien mit der Schwarzrostresistenz-Markerentwicklung und der Lokalisation von Markern auf *Lolium*-Kopplungsgruppen befasst. QTLs für Schwarzrostresistenz wurden auf LG1, 6 und 7 identifiziert (Jo et al. 2008; Pfender und Slabaugh 2013). Zur Zuordnung von *LpPg1* und dessen eng korrelierender Marker zu einer *Lolium*-Kopplungsgruppe wurde die Syntenie zwischen *L. perenne* und *B. distachyon* genutzt. Wie bereits in Kapitel 3.1.2.3 beschrieben, zeigen die ETRs und SNPs Sequenzhomologie zu *Brachypodium*-Sequenzen auf Bd1, 4 und 5. Diese *Brachypodium*-Chromosomen zeigen Übereinstimmungen zu den Lolium Kopplungsgruppen (LG) 2, 5 und 7 (Pfeifer et al. 2013). Auf dem synteniebasierten Gerüst-Genom nach Byrne et al. (2015) zeigte der co-segregierende Marker Sequenzhomologie zum "scaffold_3494_ref0018849", der sich bei 78 cM

auf LG2 befindet. Dies lässt vermuten, dass sich LpPg1 auf Lolium LG2 befindet. Gegensatz dazu hat Beckmann (2010) den hier beschriebenen Im Resistenzlokus LpPg1 bereits mit SSR-Markern auf LG4 lokalisiert. Die dabei verwendeten Marker wurden in der Kopplungsanalyse mit verrechnet und gemeinsam mit LpPg1 und den ETR- und SNP-Markern einer Kopplungsgruppe zugeordnet. Dies bestätigt die Kopplung der SSR-Marker von Beckmann (2010) mit LpPg1. Auf Grund der divergierenden Zuordnung von LpPg1 zu einer spezifischen Kopplungsgruppe wird empfohlen, in weiterführenden Untersuchungen, Ankermarker aus dem "perennial ryegrass GenomeZipper" auszuwählen, polymorphe Ankermarker in die Kopplungsanalyse aufzunehmen und dadurch LpPg1 einer spezifischen Kopplungsgruppe zuzuordnen.

4.1.2 Differentielle und *LpPg1*-vermittelte Genexpression in den schwarzrostresistenten *Lolium perenne*-Bulks

Eine zeitnahe Erkennung von Pathogenen ist oft auf homologe Resistenzgene zurückzuführen. In diesen Untersuchungen wurden acht Transkripte identifiziert, die Homologie zu bekannten Rezeptor-ähnlichen Resistenzgenen aufweisen: RPM1 (LpETR_1, LpETR_17), RPP8 (LpETR_18), RGA1 (LpETR_19) und RGA2. Diese Transkripte wurden zu allen inokulierten Zeitpunkten in den resistenten Bulks überexprimiert, aber nicht in den anfälligen Bulks. RPM1 steht in Verbindung mit einer Puccinia triticina-Resistenz im Weizen (Feuillet et al. 2003) und RPP8 könnte an einer Resistenz gegenüber Puccinia coronata f. sp. *Iolii* in *L. perenne* beteiligt sein (Muylle et al. 2005), was auf einen abwehrenden Effekt beider Resistenzgene gegen pathogene Rostpilze in Getreide und Gräsern schließen lässt. Dies bestätigt die Annahme, dass das homologe Lolium-Transkript von RPP8 (LpETR 18), welches mit LpPg1 co-segregiert, ein naheliegender Kandidat für das LpPg1-Resistenzgen ist. Beide Resistenzgene, *RPM1* und *RPP8*, lösen einen hypersensitiven Zelltod bei Pathogenerkennung in Weizen bzw. Lolium aus (Boyes et al. 1998; McDowell et al. 1998). Zusätzlich bestätigt die 1:1-Aufspaltung der Kartierungspopulation LPSR1001 in schwarzrostresistente und -anfällige Genotypen die Annahme einer rassenspezifischen, qualitativen Resistenz (Beckmann 2010). Diese basiert auf der Erkennung des Avirulenzgens des Pathogens durch ein spezifisches Wirtes (Flor 1971). Resistenzgen des Resistenzgen-vermittelte

Abwehrreaktionen gehen in den meisten Fällen mit einem hypersensitiven Zelltod der infizierten Wirtszelle einher und verhindern damit die parasitäre Phase des Rostpathogens (Tiburzy et al. 1990; Kloppers and Pretorius 1997; Morel und 1997: Heath 1998: Bozkurt et al. 2010). Zu den in Dangl der Genexpressionsanalyse untersuchten Zeitpunkten wurde. außer den beschriebenen Resistenzgenen, keine Transkription identifiziert, die in Zusammenhang mit einem hypersentiven Zelltod steht. Dies lässt vermuten, dass der hypersensitive Zelltod zwischen den untersuchten Zeitpunkten stattfand bzw. nach 24 hpi induziert wird.

Die hohe Anzahl von abwehrinduzierten Transkripten zum frühen Zeitpunkt im inokulierten resistenten Bulk (Tab. 3.4) lässt vermuten, dass die schnelle Erkennung des Schwarzrostes und Induktion von Abwehrprozessen wichtige Komponenten der effizienten LpPg1-vermittelten Resistenz sind. Zusätzlich zu RPM1 und RPP8 wurden die Resistenzgene RGA1 und RGA2 in den resistenten Bulks überexprimiert. Diese wurden für rassenunspezifische, quantitative Resistenzen beschrieben, deren Verteilung in der Phänotypisierung nicht mit der 1:1-Aufspaltung einhergeht, sondern einer Normalverteilung folgt (Miedaner wurden Desweiteren diese 2010). Resistenzgene bisher nicht mit Resistenzreaktionen gegen phytopathogene Rostpilze in Verbindung gebracht (Tab. 4.1).

Ein Transkript mit Homologie zum "premnaspirodien Oxygenase"-Gen wurde nahezu exklusiv in den resistenten Bulks exprimiert (LoliumRes_a2363_425) und zeigte die höchste Expressionsrate zum frühen Zeitpunkt. Als Vorstufe von Solavetivon, einem hochpotenten antifungalen Phytoalexin (Takahashi et al. 2007), deutet die Expression auf die Biosynthese eines neuen Phytoalexins in schwarzrostresistenten *L. perenne*-Genotypen hin und lässt vermuten, dass dieses Transkript ein wichtiger Bestandteil in der *LpPg1*-vermittelten Resistenz ist. Zusätzlich wurden zahlreiche Transkripte identifiziert, die an einer gesteigerten Expression von "pathogenesis-related protein"-Genen und an basalen Abwehrreaktionen beteiligt sind (Tab. 4.1). Das "LRR receptor-like serine/threonine-protein kinase FLS2"- und "G-type lectin S-receptor-like serine/threonine-protein kinase SD1-13"-Gen sowie die Ethylen-abhängigen Transkriptionsfaktoren: ERF1B, ERF5 and ERF094 sind bekannte positive Regulatoren von abwehrinduzierten Chitinasen und anderen "pathogenesis

related protein"-Genen (Chen und Chen 2002; Lorenzo et al. 2003; Gutterson und Reuber 2004; McGrath et al. 2005; Pré et al. 2008; Gao et al. 2011; Moffat et al. 2012). Die Transkriptionsfaktoren WRKY18 und TGA4 führen, bei Überexpression, zu einer gesteigerten Expression von "pathogenesis related protein"-Genen und einer verstärkten Resistenz gegen bakterielle (Chen und Chen 2002) und pilzliche Pathogene (Kesarwani et al. 2007; Wang 2011). Die Expression dieser regulatorischen Gene wird durch die Überexpression von zahlreichen antifungalen Proteinen, wie: barwin, wheatwin-2, Endochitinase A, Glucan-endo-1,3-beta-Glukosidasen und "thaumatin-like pathogenesis related protein"-Genen zum frühen Zeitpunkt im resistenten Bulk bestätigt. Desweiteren zeigt die Expression von Transkripten mit Homologie zum "Glutathion transferase GST 23"-Gen (GST), welches unverzüglich nach Erkennung einer Infektion induziert (Hahn und Strittmatter 1994; Dean et al. 2005), in resistenten Genotypen überexprimiert (Panthee et al. 2007; Choi et al. 2008b) und an der Entgiftung von Pathogen-bezogenen xenobiotischen Verbindungen beteiligt ist (Marrs 1996), dass die Erkennung und Abwehrreaktion bereits zu einem frühen Stadium der Schwarzrostinfektion stattfindet. Basierend auf der Überexpression dieser abwehrinduzierten Gene wird vermutet, dass die Expression von antifungalen und "pathogenesis-related protein"-Genen im Zusammenhang mit der LpPg1-vermittelten Resistenz steht und ein wichtiges Element dieser Resistenz darstellen.

4.2 Kronenrostresistenz

Die nachfolgende Tabelle (Tab. 4.2) gibt Auskunft über die in der Literatur beschriebenen Funktionen ausgewählter resistenzassoziierter Gene, die an der vollständigen und moderaten Kronenrostresistenz beteiligt sind. Im anschließenden Text werden die einzelnen Gene, geordnet nach ihrer Funktion und Einfluss an der Resistenzausprägung in den Genotypen, kritisch abgehandelt.

Tab. 4.2 Ausgewählte Kronenrostresistenz-assoziierte Transkripte der kronenrostresistenten Lolium perenne-Genotypen

Gen- Identifikation	Gen- Beschreibung	Funktion
LoliumRes_a3 19973_6, LoliumRes_a4 8290_26, LoliumRes_a3 29623_5	Disease resistance protein RPM1 (<i>A. thaliana</i>)	 löst hypersensitiven Zelltod aus (Boyes et al. 1998; McDowell et al. 1998) in Verbindung mit der Braunrostresistenz <i>Lr10</i> in Weizen beschrieben (Feuillet et al. 2003)
LoliumRes_a9 1747_18	Disease resistance RPP8-like protein 3-like (BRADI1G34430) (<i>B. distachyon</i>)	 löst hypersensitiven Zelltod aus (Boyes et al. 1998; McDowell et al. 1998) mögliche Beteiligung an Resistenzreaktion in <i>L. perenne</i> bei Inokulation mit <i>Puccinia coronata</i> f. sp. <i>Iolli</i> (Muylle et al. 2005)
LoliumRes_a5 5825_27	L-type lectin-domain containing receptor kinase IV.1 (<i>A. thaliana</i>)	 <i>LecRK</i>s sind an der unspezifischen Abwehr beteiligt Expression wird durch Pathogeninfektion induziert in Genotypen mit gesteigerter Resistenz überexprimiert (Singh et al. 2012; Huang et al. 2013; Singh und Zimmerli 2013; Bouwmeester et al. 2014)
LoliumRes_a6 36329_5	Receptor-like protein kinase 5 (<i>A. thaliana</i>)	 in der Zellmembran lokalisiert und wird in der Abzissionszone von Blüten und Blättern exprimiert (Jinn et al. 2000) an der Aktivierung der MAPK-Kaskade, der Transkription von Zellwand modifizierenden Enzymen, Abwehrreaktionen, der Ligninbiosynthese und in der Regulation der Abszission von Blütenorganen beteiligt (Jinn et al. 2000; Cho et al. 2008; Niederhuth et al. 2013)
LoliumRes_a3 2092_126	Polyol transporter 5 (<i>A. thaliana</i>)	 in der Zellmembran lokalisierter Zuckertransporter (Klepek et al. 2005) wird bei Verwundung von Zellen, Seneszenz und durch endogene Polygalakturonsäuren induziert Überexpression von <i>PLT5</i> in frühen Stadien der Seneszenz an der Rückgewinnung von Zuckern involviert (Reinders et al. 2005)

Vollständige Kronenrostresistenz

		•	
LoliumRes_a3 3830_61	Probable mediator of RNA polymerase II transcription subunit 37c (<i>A. thaliana</i>)	•	gehört zur Familie der Hitzeschock-Proteine in <i>Pseudomonas syringae</i> pv <i>tomato</i> infizierten <i>A. thaliana</i> -Blättern überexprimiert Überexpression trat mit Akkumulation von reaktiven Sauerstoffspezies (ROS) auf (Noël et al. 2007)
LoliumRes_a3 7859_64	Transcription factor TGA4 <i>(A. thaliana)</i>	•	positiver Regulator von "pathogenesis related protein"-Genen und der basalen Resistenz gegen bakterielle und pilzliche Pathogene (Kesarwani et al. 2007; Wang 2011)
LoliumRes_a2 5059_69	Vacuolar-sorting receptor 6 (<i>A. thaliana</i>)	•	in Arabidopsis an der Sortierung von Speicherproteinen in die Vakuolen beteiligt Mutanten mit ausgeschaltetem <i>VSR1</i> -Gen zeigten eine falsche Sortierung von Speicherproteinen, indem diese von den Zellen abgesondert wurden (Shimada et al. 2003)
LoliumRes_a6 84889_4	Wall-associated receptor kinase 1 (<i>A. thaliana</i>)	•	Aktivierung erfolgt durch pflanzliche Peptide oder Zellwandbestandteile, die bei der Verwundung oder Infektion von pflanzlichen Zellen entstehen Oligogalakturonsäuren werden durch <i>WAK1</i> erkannt (Brutus et al. 2010) und aktivieren die abwehrinduzierte MAPK-Kaskade (Boller und Felix 2009; Rasmussen et al. 2012; Meng und Zhang 2013) führte in Arabidopsis zu einer gesteigerten Resistenz gegen <i>Botrytis cinerea</i> (Brutus et al. 2010) und in Reis zu einer gesteigerten Resistenz gegen <i>Magnaporthe oryzae</i> (Li et al. 2009), bzw. war überexprimiert in Reaktion auf ein inkompatibles <i>Magnaporthe oryzae</i> Isolat (Wang et al. 2014b)
LoliumSus_a1 56214_15, LoliumRes_a1 36003_20	Defensin-like protein (<i>P. integrifolia</i>)	•	im Blütenstempel von Petunien nachgewiesen und zu den "pathogenesis-related protein"- Genen gehörend (Karunanandaa et al. 1994) hemmen breites Spektrum an Pilzen (Lay und Anderson 2005) wird während der basalen Abwehrreaktion in den Apoplast abgegeben und greift die Zellwand von Pilzen an (Hückelhoven 2007)
Moderate Kro	<u>nenrostresistenz</u>		
LoliumSus_a1 79922_11	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)	•	an breit wirksamen Resistenzen gegenüber <i>P. infestans</i> in Kartoffel- und Tomatengenotypen beteiligt (Song et al. 2003; van der Vossen et al. 2003) in <i>Solanum demissum</i> -Genotypen mit <i>RGA2</i> - Resistenz wurde die Läsionsentwicklung von <i>P. infestans</i> erheblich verlangsamt und damit die Befallsrate deutlich reduziert
LoliumRes_a2 19869_13 LoliumRes_a5 3588_25	Receptor-like protein kinase 5 (<i>A. thaliana</i>) L-type lectin-domain containing receptor kinase IV.1 (<i>A. thaliana</i>)	•	in der Zellmembran lokalisiert und wird in der Abzissionszone von Blüten und Blättern exprimiert (Jinn et al. 2000) an der Aktivierung der MAPK-Kaskade, der Transkription von Zellwand modifizierenden Enzymen, Abwehrreaktionen, der

			Ligninbiosynthese und in der Regulation der Abszission von Blütenorganen beteiligt (Jinn et al. 2000; Cho et al. 2008; Niederhuth et al. 2013)
LoliumRes_a9 8445_14	LRR receptor-like serine/threonine-protein kinase EFR (<i>A. thaliana</i>)	•	Erkennungsrezeptor des spezifischen bakteriellen Elongationsfaktor-Tu (<i>EF-Tu</i>) von <i>Agrobacterium tumefaciens</i> induziert Pflanzenabwehr bzw. gesteigerte Resistenz gegen <i>A. tumefaciens</i> (Albert et al. 2010)
LoliumRes_a2 19355_11	Cysteine-rich receptor- like protein kinase 7 (<i>A. thaliana</i>)	•	in <i>A. thaliana</i> in Verbindung mit dem Schutz der Zelle gegenüber reaktiven Sauerstoffspezies im Apoplast beschrieben (Idänheimo et al. 2014) Expression von <i>CRK7</i> gekoppelt mit steigenden ROS-Level vermehrtem Zelltod und erhöhte Sensibilität gegenüber O ₃ in <i>CRK7</i> (<i>crk7</i>) "Knockout"-Mutanten
LoliumRes_a5 3100_32	Brassinosteroid- signaling kinase 8 (<i>A. thaliana</i>)	•	in Zusammenhang mit verminderter Anfälligkeit gegenüber dem Falschen Mehltau in <i>A. thaliana</i> beschrieben (Qi et al. 2011; Xu et al. 2014) Beitrag zur pflanzlichen Abwehr unbekannt
LoliumSus_a1 8722_112	Membrane steroid- binding protein 2 (<i>A. thaliana</i>)	•	Einfluss auf die Phenylpropanoidbiosynthese (Hoffmann et al. 2004; Kao et al. 2005) Funktionen von
LoliumRes_a1 44624_17	Shikimate O- hydroxycinnamoyltransf erase (<i>A. thaliana</i>)		Phenylpropanoidverbindungen in der pflanzlichen Abwehr reichen von der Bildung oder Induktion von physikalischen bis zu chemischen Barrieren gegen mikrobielle Infektionen (Dixon et al. 2002).
LoliumRes_a1 1809_59	5'-3' Exoribonuclease 4 (<i>A. thaliana</i>)	•	in allen eukaryotischen Organsimen hoch konserviert und kontrolliert selektiv den Abbau von siRNAs und miRNAs (Rymarquis et al. 2011) Überexpresson von <i>XRN4</i> durch Infektion mit dem Rostpilz (<i>Cronartium quercuum</i> f. sp. <i>Fusiforme</i>) der Nordamerikanischen Weihrauchkiefer (<i>Pinus taeda L.</i>) führte zu reduzierten Level von miRNAs und einer Immunisierung des umliegenden Gewebes
LoliumRes_a5 216_338, LoliumSus_a4 992_372	Glucan endo-1,3-beta- glucosidase 13 (<i>A. thaliana</i>)	•	hemmen das Pilzwachstum, indem das aus Chitin und Glukan bestehende pilzliche Zellskelett angegriffen wird (Theis und Stahl 2004)
LoliumRes_a8 4819_28, LoliumSus_a1 55094_11	Protein SRG1 (<i>A. thaliana</i>)	•	in Virus infizierten <i>A. thaliana</i> Blättern identifiziert (Whitham et al. 2003) Überexpression von SRG1 während der Seneszenz von <i>A. thaliana</i> in Zellkulturlösungen nachgewiesen (Callard et al. 1996)
comp154893_ c0_seq1, LoliumRes_a1 9384_103, LoliumSus_a1 6931_139	Xylanase inhibitor protein 1 (<i>T. aestivum</i>)	•	in Weizen durch Verwundung und die Infektion mit <i>Erysiphe graminis</i> induziert (Igawa et al. 2005) inhibierende Wirkung gegenüber pilzlichen endo-1,4-beta-D-Xylanasen (Payan et al. 2004; Igawa et al. 2005)

comp162236_ c0_seq3	(+)-neomenthol dehydrogenase (<i>Capsicum annuum</i>)	 an der Bildung von Neomenthol beteiligt gesteigerte Resistenz bei Überexpression in Genotypen von <i>C. annuum</i> und <i>A. thaliana</i> gegenüber <i>Pseudomonas syringae pv tomato</i> und <i>Hyaloperonospora parasitica</i> (Choi et al. 2008a)
comp150396_ c0_seq1	Alpha-amylase/trypsin inhibitor (<i>Z. mays</i>)	 antifungale Aktivität und Sequenzhomologien zu Thaumatin (Richardson et al. 1987; Huynh et al. 1992) Wachstum von <i>A. solani</i> und <i>F. oxysporum</i> auf Medien, versetzt mit dem Alpha- amylase/trypsin inhibitor, deutlich reduziert ausgeprägte antifungale Aktivität dieses Proteins wird vermutet
comp128715_ c0_seq1, comp173676_ c0_seq3	Chitinase 2 (<i>O. sativa</i> subsp. <i>japonica</i>)	 hydrolysiert Chitin und ist an der Abwehr von Pilzpathogenen beteiligt Überexpression führte zu einer gesteigerten Resistenz gegen <i>R. solani</i> (Datta et al. 2001)
comp154752_ c0_seq5, LoliumRes_a6 8140_45	Zeamatin (<i>Z. mays</i>)	 Protein mit antifungaler Wirkung gehört zu den PR5-Proteinen und spielt eine wichtige Rolle in der gesteigerten Resistenz gegenüber pathogenen Pilzen (Roberts und Selitrennikoff 1990; Liu et al. 2010) greift die Zellmembran von Pilzen an, indem es direkt in die Zellmembran eingebaut wird und Transmembranporen bildet, die die Hyphenentwicklung beeinträchtigen (Roberts und Selitrennikoff 1990)

4.2.1 Histologische Unterschiede und differentielle Genexpression zwischen dem kronenrostanfälligen und den -resistenten *Lolium perenne-*Genotypen

Schubiger und Boller (2015) untersuchten, wie sich die Pathotypenvielfalt des Kronenrostes (*Puccinia coronata* f. sp. *Iolii*) in Europa zusammensetzt und fanden eine hohe Variation in Europa vor. In 2004 wurden dazu Kronenrost-Uredosporen von *L. perenne* und *L. multiflorum* infizierten Pflanzen an 28 Standorten in 11 europäischen Ländern gesammelt. Insgesamt wurden 107 Pathotypen mit unterschiedlicher Virulenz nachgewiesen. Darüber hinaus zeigte die Analyse innerhalb der Standorte eine hohe Pathotypenvielfalt. Dies stimmt mit Untersuchungen zu *P. coronata* f. sp. *avenae*, dem Hafer-Kronenrost überein. Für diese *formae speciales* von *P. coronata* wurden mehr als 290 physiologische Rassen in den USA beschrieben (Michel und Simons 1977). Bei Inokulationen

mit dem Kronenrostisolat aus Bocksee wurden, im Vergleich zu den Kronenrostisolaten aus Steinach und Rostock, keine moderat resistenten Genotypen identifiziert. Auf Grund der Kronenrostpathotypenvielfalt und der räumlichen Verteilung von verschiedenen Pathotypen innerhalb Europas (Schubiger und Boller 2015) besteht die Vermutung, dass das Kronenrostisolat aus Bocksee eine geringere Virulenz bzw. keine Pathotypen mit ausreichender Virulenz aufweist, um diesen Resistenztyp hervorzurufen. Die vergleichsweise hohe Anzahl an vollständig resistenten Genotypen inokuliert mit dem Kronenrostisolat aus Bocksee legt außerdem nahe, dass die moderat resistenten Genotypen eine Sporulation dieser Pathotypen vollständig unterbinden, bzw. die Entwicklung des Rostes soweit verlangsamt haben, dass zur Bonitur keine Symptome und Sporulation sichtbar wurden. Um einen Effekt durch unterschiedliche Pathotypen auf die fluoreszenzmikroskopischen Untersuchungen und die Genexpressionsanalyse auszuschließen, wurde für diese Zeitreihenversuche das Einsporisolat KR-SR1 verwendet.

Erste signifikante Unterschiede in der Kronenrostentwicklung zwischen den Genotypen, traten bereits vor der Penetration der Stomata auf. Im VRG, RE und MRG kam es, im Vergleich zum AG und Aurora, zu einer signifikanten Reduktion der Appressorienbildung. Im Vergleich der Genexpressionsprofile des nicht inokulierten mit den inokulierten Zeitpunkten wurde zum Zeitpunkt 6 und 12 hpi eine Überexpression von Transkripten mit Homologie zu "pathogenesis related protein"-Genen und dem "Xylanase inhibitor protein 1"- Gen (XIP I) im VRG, RE und MRG identifiziert. Die Expression von "pathogenesis related protein"-Genen und XIP I führte weder zu einem vorzeitigen Ende noch zu einer verzögerten Rostentwicklung, was darauf schließen lässt, dass eine verringerte Uredosporenkeimung und Rostentwicklung auf der Blattoberfläche den Infektionsdruck abschwächen kann, aber keinen Einfluss auf die Penetration der Stomata bzw. Bildung substomatärer Vesikel hat (Jacobs 1989; Sillero und Rubiales 2002).

Zu allen inokulierten Zeitpunkten und in allen Genotypen wurden Transkripte mit Homologie zu Genen überexprimiert, die an der pflanzlichen Abwehr beteiligt sind. Auf Grund der hohen Anzahl von 363 abwehrinduzierten Transkripten, wie "pathogenesis-related protein"- und antifungalen Proteingenen, die der AG zusammen mit den Resistenztypen überexprimiert, ist davon auszugehen, dass

diese nicht an der Ausprägung der Resistenzreaktionen im VRG, RE und MRG beteiligt sind. Dies steht in Übereinstimmung mit Genexpressionsanalysen zur Wirt/Parasit-Interaktion der Rostpathogene *P. striiformis* und *P. triticina* mit Weizen (Hulbert et al. 2007; Coram et al. 2008; Ma et al. 2009; Bozkurt et al. 2010). Trotz der Übereinstimmungen in der abwehrinduzierten Genexpression zwischen allen inokulierten Genotypen zeigen der VRG, RE und MRG eine Reihe von Transkripten, die exklusiv bzw. nahezu exklusiv nur in diesen Genotypen exprimiert wurden und als potentielle Kandidatengene für die Resistenzmarkerentwicklung interessant sind.

4.2.1.1 Vollständige Kronenrostresistenz

Die beobachtete Autofluoreszenzreaktion der Mesophyllzellen deutet auf eine post-haustorielle qualitative Kronenrostresistenz hin. Nach Heath (1981) und Niks und Dekens (1991) sind die Bedingungen für eine post-haustorielle, rassenspezifische Resistenz dann erfüllt, wenn das Pilzwachstum nach Bildung der ersten Haustorienmutterzelle gestoppt und in den Zellen, in denen ein Haustorium gebildet wurde, ein programmierter Zelltod eintritt. Dieser Prozess des hypersensitiven-programmierten Zelltods geht meist mit einer Autofluoreszenz der sterbenden Zellen einher und ist unter Fluoreszenzanregung sichtbar (Abb. 3.14) (Bozkurt et al. 2010). Kloppers und Pretorius (1997) beschrieben für die monogenen Lr34 und Lr37 Weizen-Resistenzen gegenüber dem Erreger des Braunrostes (Puccinia recondita f.sp. tritici), ähnliche Rostentwicklungen, wie sie im VRG und RE beobachtet wurden. In diesen Weizengenotypen stagnierte die Rostentwicklung im Mittel bei 1,5 bis 3,3 gebildeten Haustorienmutterzellen/Infektionsstelle, während zum Zeitpunkt 64 hpi eine Autofluoreszenz festgestellt wurde. Des Weiteren wurde im Hafer eine ähnliche Reaktion nach Inokulation mit dem Hafer-Kronenrost (Puccinia coronata f.sp. avenae) beschrieben (Sánchez-Martín et al. 2012). Dort kam es in resistenten Genotypen zu einem Ende der Rostentwicklung in 24 – 36 hpi. Diese Genotypen zeigten weniger als sechs HMZ/Infektion und eine Autofluoreszenz der mit HMZ in Kontakt gekommenen Mesophyllzellen, was vergleichbar mit der Rostentwicklung und den Beobachtungen im VRG und RE ist und die Annahme einer qualitativen, rassenspezifischen Resistenz bestätigt.

Die Annahme des hypersensitiven Zelltods im VRG und RE wird durch die Ergebnisse der GO- und Genexpressionanalyse gestützt. In beiden Genotypen wurden signifikant überexprimierte Transkripte zu GOs mit Verbindung zur hypersensitiven Reaktion und dem programmierten Zelltod zugeordnet (Tab. 3.5). Nach Jones und Dangl (2006) erfolgt der hypersensitive Zelltod, nachdem Effektoren bzw. das Avirulenzgen des Pathogens von einem spezifischen Resistenzgen erkannt wurde. Im Vergleich der Genexpressionsprofile des VRG und RE mit dem AG und MRG wurden hochdifferentiell bzw. exklusiv exprimierte Transkripte mit Homologie zu Resistenzgenen und Rezeptorkinasen identifiziert. In beiden Genotypen wurden vier Transkripte identifiziert, die Homologie zum Resistenzgen RPM1 und RPP8 aus A. thaliana aufweisen (Tab. 4.2). Diese wurden bereits in Zusammenhang mit der Auslösung eines hypersensitiven Zelltods in A. thaliana (Boyes et al. 1998), in Weizen nach Inokulation mit Puccinia triticina (Feuillet et al. 2003) und einer Kronenrostresistenz in L. perenne beschrieben (Muylle et al. 2005). Dies lässt eine direkte Beteiligung dieser Transkripte an der Kronenrostresistenz und dem hypersensitiven Zelltod vermuten. Außerdem qualifiziert es diese Transkripte zu Kandidatengenen für eine nachfolgende Kronenrostresistenzmarkerentwicklung.

Drei überexprimierte Transkripte mit Homologie zum "Probable mediator of RNA polymerase II transcription subunit 37c"- (HSC70), "Polyol transporter 5"- (PLT5) und "Receptor-like protein kinase 5"-Gen (RLK5) stehen in Verdacht am hypersensitiven Zelltod bzw. der Akkumulation von reaktiven Sauerstoffspezies in den penetrierten Mesophyllzellen beteiligt zu sein. HSC70 wird durch eindringende Pathogene in die Wirtszelle (Noël et al. 2007) und durch die Bildung von ROS in den Chloroplasten induziert (Scarpeci et al. 2008). Eine Überexpression von PLT5 wurde in frühen Stadien der Seneszenz identifiziert, in denen es an der Rückgewinnung von Zuckern beteiligt ist (Reinders et al. 2005). Die RLK5 ist an der Aktivierung von "Mitogen-activated protein kinase"-Gen-Kaskaden (MAPK) involviert, einem wichtigen Element in der Aktivierung von Abwehrgenen, dem hypersensitiven Zelltod und der Synthese von antimikrobiellen Metaboliten (Meng und Zhang 2013). Jedes dieser drei Transkripte deutet auf einen beginnenden hypersensitiven Zelltod hin, der durch die Penetration der Wirtszelle durch die HMZ induziert wird.

Die Annahme wird durch die Expression von Transkripten mit Homologie zum "Ltype lectin-domain containing receptor kinase IV.1"-Gen (LECRK41) im VRG und RE gestützt. Humphrey et al. (2007) vermuten, dass "L-type lectin receptor kinase"-Gene (LecRK) an der Überwachung der Unversehrtheit der Zellwand beteiligt sind und auf Oligogalakturonide (OG) reagieren. Diese OGs entstehen bei Verwundung bzw. dem Abbau der Zellwand während der Penetration der Wirtszelle. Es wird weiterhin davon ausgegangen, dass bei der Penetration der Wirtszellen durch die HMZ zellwandabbauende Enzyme produziert werden, die zur Überwindung der pflanzlichen Zellwand dienen (Kubicek et al. 2014). Die penetrierten Zellen reagieren auf OGs mit einer gesteigerten Genexpression von LecRK (Riou et al. 2002) und zeigten in A. thaliana-Genotypen eine gesteigerter Resistenz gegenüber Botrytis cinerea (Singh et al. 2012; Huang et al. 2013; Singh und Zimmerli 2013; Bouwmeester et al. 2014). In allen Kronenrostinokulierten Genotypen waren LecRKs überexprimiert. Ausschließlich ein Transkript mit Homologie zum LECRK41-Gen (LoliumRes a55825 27) wurde im VRG und RE überexprimiert und zeigte 24 hpi die höchste Genexpression. Dies lässt vermuten, dass dieses LECRK41-Gen an der Erkennung der Pathogeninduzierten Abbauprodukte der Zellwand zum Zeitpunkt der Penetration durch die Haustorienmutterzelle beteiligt ist und einen Einfluss auf die gesteigerte Expression von "pathogenesis-related protein"-Genen im VRG und RE hat.

Die Transkripte mit Homologie zum Transkriptionsfaktor *TGA4* und dem "Vacuolar-sorting receptor 6"-Gen (*VSR6*) unterstützen diese Vermutung und wurden in beiden Genotypen überexprimiert. *TGA4* agiert als positiver Regulator in der basalen Resistenz gegen phytopathogene Bakterien und Pilze (Kesarwani et al. 2007; Wang 2011) und ist an der Regulation von "pathogenesis-related protein"-Genen beteiligt. Wang (2011) nimmt an, dass diese TGA-Trankriptionsfaktoren abwehrbasierte Sekretionsereignisse kontrollieren, die bei Abwehrreaktionen an der Zellwand benötigt werden. *VSR6* steht in Zusammenhang mit der Sortierung von Speicherproteinen in Vakuolen und der Sekretion dieser in den Apoplast (Shimada et al. 2003). Dies lässt auf eine mögliche Interaktion von *TGA4* und *VSR6* schließen.

Trotz der Gemeinsamkeiten zwischen dem VRG und RE, wurden Transkripte mit Homologie zu "putative disease resistance protein"-Genen spezifisch für den VRG bzw. RE exprimiert. Auf Grund der Tatsache, dass in beiden Genotypen ein programmierter Zelltod eintritt und der RE der Resistenzdonor ist, muss davon ausgegangen werden, dass beide Genotypen dasselbe Resistenzgen exprimieren, was die spezifisch für jeweils einen Genotyp exprimierten Transkripte als Kandidatengene für die Markerentwicklung ausschließt.

Im VRG wurde ein Transkript mit Homologie zum "wall-associated receptor kinase 1"-Gen (WAK1) (LoliumRes a684889 4) überexprimiert. Die Aktivierung der WAK1 erfolgt durch die bereits für die LecRK beschriebenen OGs, die während der Penetration der Zellwand durch pilzliche Polygalakturonasen frei gesetzt und von der WAK1 erkannt werden (Brutus et al. 2010). Im VRG wurde die WAK1 um das 10-fache höher exprimiert als im RE und MRG und zeigte 24 hpi die höchste Expression. Die Überexpression von WAK1 führt in Arabidopsis zu einer gesteigerten Resistenz gegen Botrytis cinerea (Brutus et al. 2010) und in Reis zu einer gesteigerten Resistenz gegen Magnaporthe oryzae (Li et al. 2009) bzw. war überexprimiert in Reaktion auf ein inkompatibles M. oryzae Isolat (Wang et al. 2014b). Dies bestätigt die Vermutung der Penetration und Erkennung des Kronenrostes durch die Wirtszelle zum Zeitpunkt 24 hpi. Zusätzlich wurden im VRG zwei Transkripte mit Homologie zum "Defensin-like protein"-Gen aus Petunia integrifolia überexprimiert (Karunanandaa et al. 1994). Dieses Protein hemmt ein breites Spektrum an Pilzen (Lay und Anderson 2005), wird während der basalen Abwehrreaktion in den Apoplast abgegeben und greift die Zellwand von Pilzen an (Hückelhoven 2007). Beide Transkripte wurden in allen Genotypen exprimiert, aber ausschließlich im VRG mit einem log2FC von > 3,8 24 hpi überexprimiert, was eine gesteigerte Expression dieses Gens und damit verbundene basale Abwehrreaktion im VRG 24 hpi vermuten lässt.

Zusätzlich zu den gemeinsam exprimierten Transkripten wurden zwei uncharakterisierte Transkripte mit Homologie zur *PTA.236.C1*-Sequenz in *L. perenne* im VRG und RE identifiziert. Diese Sequenz wurde von Pfeifer et al. (2013) zur *L. perenne* Kopplungsgruppe 2 (LG2) zugeordnet. Dies lässt eine mögliche Lokalisation der vollständigen Kronenrostresistenz auf LG2 vermuten und macht diese Transkripte als Kandidatengene für die Entwicklung molekularer Marker interessant. Auf dieser Kopplungsgruppe wurden bereits mehrere Kronenrostresistenzen und QTLs identifiziert (Dumsday et al. 2003; Muylle et al. 2005; Hackauf und Lellbach 2007; Studer et al. 2007; Dracatos et al. 2008). Auf Grund dessen ist die Wahrscheinlichkeit hoch, dass die vollständige Resistenz

auf LG2 lokalisiert ist. Des Weiteren sind die beschriebenen exklusiven und überexprimierten Transkripte im VRG und RE mögliche Kandidatengene für die Entwicklung molekularer Kronenrostresistenzmarker.

4.2.1.2 Moderate Kronenrostresistenz

"Slow rusting"-Resistenzen wurden bereits in Avena byzantina, Avena sativa, Dactylis glomerata, Hordeum vulgare, Lolium multiflorum, Triticum aestivum und Zea mays nachgewiesen. Nach Skovmand et al. (1978) besitzen Genotypen mit einer "slow rusting"-Resistenz die Fähigkeit die Rostentwicklung zu verlangsamen. Die Resistenz kann durch verschiedene Vergleiche identifiziert werden, unter anderem durch Rostentwicklungskurven und dem Beginn der Sporulation (Wilcoxson 1981). Im MRG war sowohl die Rostentwicklungskurve der HMZ-Entwicklung im Vergleich zum AG und Aurora signifikant reduziert, als auch die Sporulation um ca. zwei Tage verzögert (Abb. 3.13, 3.9). Zum Zeitpunkt 36 hpi zeigten der VRG und MRG signifikant weniger HMZ als der RE. Dieser Unterschied setzte sich zwischen dem VRG und RE bis zum Zeitpunkt 60 hpi fort und lässt vermuten, dass der VRG zusätzlich zur qualitativen, rassenspezifischen Resistenz auch Träger der "slow rusting"-Resistenz sein könnte. Die Vermutung der Doppelresistenz im VRG wird durch die gemeinsame Expression von zahlreichen abwehrinduzierten Transkripten im VRG und MRG und der nicht vorhandenen Expression dieser Transkripte im RE gestützt. Beide Genotypen exprimieren insgesamt sieben Transkripte mit Homologie zu "disease resistance protein"-Genen. Die Resistenzgene RPP8, RPP13, R1C-3 ("late blight resistance protein"), At5g47070 ("Putative disease resistance protein"), Sb02g040920 ("putative disease resistance protein") und RPM1 sind für monogene Resistenzen beschrieben worden (Grant et al. 1995; McDowell et al. 1998; Bittner-Eddy et al. 2000; Kuang et al. 2005) und vermutlich nicht an der "slow rusting" Resistenz beteiligt. Im Gegensatz dazu wurden drei Transkripte mit Homologie zum RGA2-Resistenzgen identifiziert, dass an breit wirksamen Resistenzen gegenüber P. infestans in Kartoffel- und Tomatengenotypen beschrieben wurde (Song et al. 2003; van der Vossen et al. 2003). In Solanum demissum-Genotypen mit RGA2-Resistenz wurde die Läsionsentwicklung von P. infestans erheblich verlangsamt und damit die Befallsrate deutlich reduziert. Diese verzögerte Pathogenentwicklung ist vergleichbar mit der verzögerten

Rostentwicklung und Sporulation im MRG. Im VRG und MRG wurden die drei Transkripte mit Homologie zu *RGA2* gegenüber dem AG exklusiv exprimiert, was diese Transkripte zu Kandidatengenen für eine spätere Markerentwicklung qualifiziert. *RGA2* wurde bisher nicht mit Resistenz gegen Rostpilze in Gräsern in Verbindung gebracht.

Des Weiteren wurden in beiden Genotypen Transkripte mit Homologie zu Rezeptorkinasen überexprimiert. Dazu zählen die bereits in Kapitel 4.2.1.1 beschriebenen RLK5- und LECRK41-Gene, die an der Aktivierung von Abwehrgenen bzw. an der Überwachung des Zellwandzustandes beteiligt sind und in Genotypen mit gesteigerter Resistenz überexprimiert wurden (Singh et al. 2012; Huang et al. 2013; Singh und Zimmerli 2013; Bouwmeester et al. 2014). In diesem Zusammenhang wurde auch das "LRR receptor-like serine/threonineprotein kinase EFR"-Gen identifiziert (Albert et al. 2010). Welchen Einfluss dieser Rezeptor auf die Erkennung bzw. Abwehr von pilzlichen Pathogenen hat, ist bisher unbekannt. Im Gegensatz dazu wurde das "Cysteine-rich receptor-like protein kinase 7"-Gen (CRK7) in A. thaliana in Verbindung mit dem Schutz der Zelle gegenüber ROS im Apoplast beschrieben (Idänheimo et al. 2014). Mit steigendem Level an ROS stieg die Expression von CRK7 an. In "Knockout"-Mutanten von CRK7 (crk7) kam es zu einem vermehrten Zelltod und einer Sensibilität erhöhten gegenüber O₃. was auf einen möglichen Schutzmechanismus vor ROS durch CRK7 und eine Konzentration von ROS im Apoplast des VRG und MRG hindeutet. Exklusiv nur im MRG wurden zwei Transkripte mit Homologie zum "Protein SRG1"-Gen (SRG1) exprimiert. Callard et al. (1996) wiesen eine Überexpression von SRG1 während der Seneszenz von A. thaliana Zellkulturlösungen nach, was eine Beteiligung von SRG1 an der Seneszenz von Pflanzenteilen vermuten lässt. Trotz der Überexpression von Transkripten mit Homologie zu CRK7 und SRG1, die mit ROS und Seneszenz in Zusammenhang stehen, wurde weder in den fluoreszenzmikroskopischen Beobachtungen noch in der GO-Analyse ein Hinweis auf eine hypersensitive Reaktion im MRG festgestellt. Außerdem hätte die Konzentration von CRK7 mit einer erhöhten Genexpression von Klasse III Peroxidasen und/oder NADPH-Oxidasen einhergehen müssen, die für die Bildung von ROS verantwortlich sind (O'Brien et al. 2012). Im Gegensatz dazu wurde zu keinem Zeitpunkt eine erhöhte Expression dieser Peroxidasen im VRG und MRG gemessen. Dies lässt

vermuten, dass die gebildeten ROS auf einen definierten Bereich, wie den Apoplast, konzentriert waren und keine hypersentive Reaktion auslösten. Die Überexpression von CRK7 als Schutzmechanismus gegenüber ROS könnte dafür eine Erklärung sein. Um die Vermutung der durch ROS verursachten, verzögerten Rostentwicklung zu bestätigen oder abzulehnen wird empfohlen, weitere fluoreszenzmikroskopische Untersuchungen im Zeitraum von 24 bis 60 hpi mit Diaminobenzidin (DAB) gefärbten Blattsegmenten nach Thordal-Christensen et al. (1997) durchzuführen. DAB polymerisiert in Bereichen mit hoher Peroxidaseaktivität zu einem braunen Polymer und wurde mehrfach zur Detektion von ROS-spezifischen Abwehrreaktionen zwischen Rostpilzen und Gräsern eingesetzt (Wang et al. 2007; Melichar et al. 2008; Zhang et al. 2012; Serfling et al. 2016). Neben der Abwehrreaktion durch ROS können antifungale Proteine die Entwicklung des Kronenrostes ebenfalls verlangsamt haben. Im MRG und VRG wurde die höchste Genexpression von Transkripten mit Homologie zum "Chitinase 2"-, "(+)-neomenthol dehydrogenase"-, "Alphaamylase/trypsin inhibitor"- und "Zeamatin"-Gen 24 hpi gemessen. Zusätzlich zeigten zwei Transkripte mit Homologie zum "Glucan endo-1,3-beta-glucosidase 13"-Gen 24 hpi eine um mehr als das 100-fache erhöhte Expression im VRG und MRG verglichen mit dem AG und RE. Dies ist in Übereinstimmung mit Genexpressionsanalysen zur Yr5-Resistenz einer "slow rusting"-Resistenz im Weizen gegen den Gelbrost (Puccinia striiformis sub.sp tritici), bei der die Genexpression von antifungalen Proteinen 24 hpi ihren Höhepunkt erreichte (Coram et al. 2008; Chen et al. 2013). Wie bereits beschrieben, wird zu diesem Zeitpunkt die Penetration der Mesophyllzellen erwartet, was die Überexpression abwehr- und stressinduzierten Genen erklärt. Insbesondere von die Genexpression antifungaler Proteingene, war in allen Genotypen 24 hpi stark erhöht und zeigte in nahezu allen Transkripten die höchste Expression im MRG (siehe Anhang A5). Dies lässt erwarten, dass diese Transkripte einen erheblichen Anteil an der "slow rusting"-Resistenz haben. Dadurch konnte die Entwicklung des Kronenrosts im MRG gehemmt bzw. die HMZ-Anzahl im VRG gegenüber dem RE signifikant verringert werden. Des Weiteren ist ein Einfluss Transkripten mit Homologie zu Genen, die an der Phenylvon propanoidbiosynthese beteilgt sind, nicht auszuschließen. Die Funktionen von Phenylpropanoidverbindungen in der pflanzlichen Abwehr reichen von der

Bildung oder Induktion von physikalischen bis zu chemischen Barierren gegen mikrobielle Infektionen und decken ein breites Spektrum von antimikrobieller Aktivität ab (Dixon et al. 2002). Dazu zählen die Transkripte mit Homologie zum "Membrane steroid-binding proteine 2"- (*MAPR2*) und dem "Shikimate O-hydroxycinnamoyltransferase"-Gen die an der Phenylpropanoidbiosynthese beteiligt sind (Hoffmann et al. 2004; Kao et al. 2005).

Im Gegensatz dazu kontrolliert das "5'-3' Exoribonuclease 4"-Gen (*XRN4*) selektiv den Abbau von siRNAs und miRNAs und ist in allen eukaryotischen Organsimen hoch konserviert (Rymarquis et al. 2011). Diese RNAs sind wesentliche regulatorische Komponenten der pflanzlichen Abwehr gegen Bakterien und Pilze. Lu et al. (2007) zeigte, dass es bei Überexpression von *XRN4* bei der Infektion der Nordamerikanische Weihrauchkiefer (*Pinus taeda L.*) mit dem Rostpilz (*Cronartium quercuum* f. sp. *fusiforme*) zu einem reduzierten Level von miRNAs kam und damit eine Immunisierung des nicht infizierten umliegenden Gewebes erfolgte, was vor einer Ausbreitung des Pilzes schützte. Ein weiteres Transkript, das einen möglichen Anteil an der "slow rusting"-Resistenz im MRG haben könnte, ist das "Brassinosteroid-signaling kinase 8"-Gen (*BSK8*). Dieses wurde in Zusammenhang mit verminderter Anfälligkeit gegenüber dem Falschen Mehltau in *A. thaliana* beschrieben. Eine genaue Beschreibung der Funktion bzw. in welchem Umfang die *BSK8* zu möglichen Abwehrreaktionen in der Pflanze beiträgt, liegt bisher nicht vor.

4.3 Vergleich der Schwarz- und Kronenrostresistenz

Die hohen Korrelationskoeffizienten und niedrigen Signifikanzwerte innerhalb der Schwarz- bzw. Kronenrostphänotypisierungen (p < 0.0001) lassen eine weitestgehend homogene Pathotypenzusammensetztung der Schwarz- bzw. Kronenrostfeldisolate vermuten. Dies ist in Übereinstimmung mit den Untersuchungen zur Kronenrostpathotypenzusammensetzung in Europa (Schubiger und Boller 2015). Ausschließlich das Schwarzrostfeldisolat aus Steinach und das Kronenrostfeldisolat aus Bocksee sind signifikant miteinander korreliert (p = 0,03). Die Korrelation dieser beiden Rostisolate kommt durch die, verglichen mit den zwei anderen Kronenrostisolaten, hohe Anzahl an vollständig resistenten Genotypen zustande, was eine größere Übereinstimmung der Modalwerte mit dem Schwarzrostfeldisolat aus Steinach zur Folge hat. Um diesen Effekt, hervorgerufen durch Feldisolate mit einer geringen Virulenz, entgegenzuwirken, wird ein Signifikanzniveau von p < 0,01 empfohlen (Beckmann et al. 2010; Schubiger und Boller 2015). Die Vergleiche der Modalwerte der Schwarz- und Kronenrostphänotypisierungen zeigten nicht, dass schwarzrostresistente Genotypen ebenfalls resistent gegenüber den Kronenrostisolaten sind, was auf zwei unabhängig von einander vererbte Resistenzen hindeutet.

Die Unterschiede zwischen der Schwarz- und Kronenrostresistenz setzen sich in Genexpressionsanalysen fort. den Die vergleichende Aufstellung der überexprimierten Transkripte mit Zuordnung zu GOs der pflanzlichen Abwehr in Tabelle 3.11 stellt die Gemeinsamkeiten und Unterschiede in den Expressionsprofilen resistenten Bulks/Genotypen der dar. In den schwarzrostresistenten Bulks (ResAll) wurden Transkripte exprimiert, die an der direkten Tötung von Fremdorganismen beteiligt sind. Im Gegensatz dazu werden in den Kronenrostresistenztypen VRG- und RE-Transkripte exprimiert, die die fluoreszenzmikroskopischen Beobachtungen eines programmierten Zelltods bestätigen. Ein programmierter Zelltod in den schwarzrostresistenten Genotypen kann trotzdessen nicht ausgeschlossen werden. Dieser kann zu einem späteren Zeitpunkt als im VRG und RE eintreten.

Von den in Tabelle 3.12 dargestellten elf überexprimierten Transkripten in den resistenten Bulks wurden acht in den Kronenrostresistenztypen überexprimiert, davon sieben gemeinsam im VRG und RE und vier im MRG. Darunter sind drei Transkripte mit Homologie zu potentiellen Resistenzgenen. Das Transkript LoliumRes a48290 26 mit Homologie zu RPM1 zeigt in der Markerentwicklung einen Polymorphismus zwischen schwarzrostresistenten und -anfälligen Genotypen, war aber mit 57 cM von LpPg1 zu weit entfernt, um als Kandidat für *LpPg1* in Frage zukommen. Die zwei verbleibenden Transkripte wurden nicht in die Markerentwicklung aufgenommen, da diese sowohl in den resistenten als auch in den anfälligen Bulks exprimiert wurden. Für die Markerentwicklung zur Kronenrostresistenz können diese Transkripte als mögliche Kandidatengene für die qualitative Kronenrostresistenz in Betracht gezogen werden, da sie nahezu exklusiv im VRG und RE vorkommen. Interessant ist auch, dass die Transkripte, co-segregierende auf denen der und die beiden flankierenden Schwarzrostresistenz-Marker basieren, in den Kronenrostresistenztypen nicht

(LpETR_17) bzw. nur in geringem Umfang exprimiert wurden (LpETR_18, LpETR 19). Dies unterstreicht die Vermutung, dass die Schwarz- und Kronenrostresistenz auf unterschiedlichen Resistenzen basiert. Eine 100%ige Aussage kann jedoch erst getroffen werden, wenn für jede Resistenz das spezifische Resistenzgen identifiziert wurde, bzw. durch die Resistenzmarkerentwicklung beider Resistenzloki eine Kopplung ausgeschlossen wurde.

Basierend auf den Korrelationskoeffizienten der Schwarz- und Kronenrostphänotypisierung und der Genexpressionanalysen ist davon auszugehen, dass beide Resistenzen unabhängig von einander vererbt werden.

5 Schlussfolgerungen

Die hier dargestellten Untersuchungen kommen zu dem Schluss, dass die Kartierungspopulation LPSR1001 eine vielversprechende Resistenzquelle für die Schwarz- und Kronenrostresistenzzüchtung ist. Die anfängliche Annahme, dass die Schwarz- und Kronenrostresistenzen auf einem Resistenzlokus basieren, konnte durch die Resistenz-Phänotypisierungen und die Genexpressionsanalysen nicht bestätigt werden. Beide Rostresistenzen werden unabhängig voneinander vererbt.

Die vorliegende Arbeit beschreibt erstmalig die Entwicklung von Transkriptombasierten molekularen Rostresistenz-Markern in einer hochgradig heterozygoten L. perenne-Population. Mit der Kombination aus der NGS-basierten Methode "Massive Analysis of cDNA Ends" (MACE) und "Bulked Segregant Analysis" wurden zahlreiche resistenzspezifische exklusiv exprimierte Transkripte und SNPs identifiziert, die zur Kartierung des Schwarzrostresistenzlokus LpPg1 eingesetzt wurden. Diese ermöglichten die kosteneffiziente Entwicklung von Schwarzrostresistenzmarkern für die markergestützte Selektion und eine Feinkartierung von LpPg1. Die Lokalisation von LpPg1 mittels "in silico"-Kartierung und unter Verwendung des "perennial ryegrass GenomeZipper" zeigte Syntenie der resistenzassoziierten Transkripte zu LG2 und 7. Dabei wurde der co-segregierende Marker LpETR 18 auf LG2 lokalisert, was mit hoher Wahrscheinlichkeit die Position von LpPg1 beschreibt. Eine abschließende Bestätigung der Lokalisation von LpPg1 durch Ankermarker wird empfohlen. Des Weiteren wurde in den resistenten Bulks eine rasche Induktion von potentiellen Resistenzgenen, signal- und stressinduzierten Genen, Transkriptionsfaktoren, "pathogenesis-related protein"-Genen und einem für Gräser bisher nicht beschriebenen Phytoalexinsyntheseweg identifiziert. Damit lässt die hier beschriebene Methode, zusätzlich zur Schwarzrostresistenzmarkerentwicklung, eine Aussage über die Abwehrmechanismen der *LpPq1*-vermittelten zu Schwarzrostresistenz und eröffnet neue Informationen über die Genexpression von schwarzrostinokulierten resistenten Genotypen.

Die Phänotypisierung mit Kronenrostfeldisolaten identifizierte zwei Kronenrostresistenzen in der LPSR1001 Kartierungspopulation. Durch fluoreszenzmikroskopische Untersuchungen und Genexpressionsanalysen mit

diesen Kronenrostresistenztypen wurden eine qualitative und eine quantitative Kronenrostresistenz nachgewiesen. Die qualitative Kronenrostresistenz basiert auf einem hypersensitiven Zelltod, der in Mesophyllzellen ausgelöst wird, die durch HMZ penetriert werden und führt zu einer vollständigen Resistenz. Die quantitative "slow rusting"-Kronenrostresistenz beruht höchstwahrscheinlich auf einer Überexpression von Transkripten, die an der Bildung von reaktiven Sauerstoffspezies im Apoplast der Mesophyllzellen beteiligt sind und/oder einer Überexpression von antifungalen Proteinen. Dies führt, im Vergleich zu anfälligen Genotypen, zu einer verzögerten und verringerten Kronenrostsporulation. Für beide Kronenrostresistenzen liegen umfangreiche Daten, von der Entwicklung der Kronenroststrukturen bis zur Genexpression in diesen Resistenztypen, vor. Damit bildet diese Arbeit eine Grundlage für nachfolgende Untersuchungen zu qualitativen und "slow rusting"-Kronenrostresistenzen in *L. perenne* und den ersten Schritt für die Entwicklung von Kronenrostresistenz-Markern für die *Lolium-*Züchtung.

6 Zusammenfassung

Um die molekulare Schwarzrostresistenzmarker für L. perenne-Kartierungspopulation LPSR1001 zu entwickeln, wurde die NGS-Methode "Massive Analysis of cDNA Ends" (MACE) mit der "Bulked Segregant Analysis" (BSA) kombiniert. Durch eine Schwarzrostresistenz-Phänotypisierung mit Schwarzrostfeldisolaten unterschiedlicher Herkunft wurden vollständig resistente und hochanfällige Genotypen ausgewählt. Für die Genexpressionsanalysen wurden Bulks aus Blattsegmenten von 20 resistenten bzw. 20 anfälligen Genotypen zu verschiedenen Zeitpunkten vor und nach der Inokulation gebildet. Die Genexpression von resistenten und anfälligen Bulks wurde verglichen und resistenzspezifische exklusiv und hochdifferentiell exprimierte Transkripte und SNPs in den resistenten Bulks identifiziert. Basierend auf diesen Sequenzen Schwarzrost-Resistenzmarker wurden mit enger Kopplung zum Schwarzrostresistenzlokus-LpPg1 entwickelt, von denen zwei Marker LpPg1 flankieren und ein Marker mit dem Resistenzlokus co-segregierte. Eine "in silico"-Kartierung der resistenzassoziierten Transkripte und Marker unter Verwendung des "perennial ryegrass GenomeZipper" lokalisierte zahlreiche Transkripte auf Kopplungsgruppe 2 und 7, sowie den co-segregierenden Marker LpETR 18 auf Kopplungsgruppe 2 von L. perenne. Zur Identifikation der LpPg1-vermittelten Abwehrreaktion wurden die inokulierten mit dem nicht-inokulierten Zeitpunkt verglichen. Dabei wurde in den Genexpressionprofilen der resistenten Bulks eine Abwehrreaktion zwischen 4 und 8 hpi identifiziert, die auf der Genexpression von antifungalen Proteinen und Phytoalexinen basiert.

Durch eine Phänotypisierung der Kartierungspopulation LPSR1001 mit Kronenrostfeldisolaten wurden, zusätzlich zur Schwarzrostresistenz LpPg1, zwei Kronenrostresistenzen identifiziert. In der Phänotypisierung wurden zwei Resistenztypen identifiziert, die eine vollständige Resistenz, ohne Sporulation und eine moderate Resistenz mit einer zeitlich verzögerten und verringerten Sporulation zeigten. Für jede Resistenz wurde ein Genotyp sowie der resistente Elter und ein anfälliger Genotyp ausgewählt und die Kronenrostentwicklung fluoreszenzmikroskopisch dokumentiert. 60 hpi wurde im vollständig resistenten Genotyp dem resistenten Elter Autofluoreszenz und eine der mit Haustorienmutterzellen in Kontakt gekommenen Mesophyllzellen dokumentiert.

Im moderat resistenten Genotyp wurde eine verzögerte Haustorienmutterzellenbildung nachgewiesen, die in der Literatur als "slow rusting"-Resistenz beschrieben wird. Die Genexpressionsprofile der untersuchten Genotypen zeigen für jede Resistenz spezifische Transkripte, an Hand derer die Resistenzen unterschieden werden können. Im vollständig resistenten Genotyp und im resistenten Elter wurden Transkripte mit Funktion am hypersensitiven Zelltod überexprimiert und bestätigen damit die Beobachtungen der fluoreszenz-mikroskopischen Untersuchungen. Im moderat resistenten und vollständig resistenten Genotyp wurden zahlreiche Transkripte mit Homologie zu antifungalen Proteinen überexprimiert. Die Übereinstimmungen in der resistenzassoziierten Expression zwischen dem vollständig resistenten und dem moderat resistenten Genotyp sowie dem vollständig resistenten Genotyp mit dem resistenten Elter geben Hinweise auf eine Doppelresistenz im vollständig resistenten Genotvp.

Die Phänotypisierungen zur Schwarz- und Kronenrostresistenz in der Kartierungspopulation waren nicht miteinander korreliert. Ein Vergleich der Genexpression der schwarzrostresistenten Bulks mit den kronenrostresistenten Genotypen identifizierte 11 identische Transkripte, die an unspezifischen Abwehrreaktionen beteiligt sind. Dies lässt auf eine getrennte Vererbung der Schwarz- und Kronenrostresistenzen schließen.

Abstract

The aim of this study was to identify candidate genes involved in stem rust resistance, to develop stem rust resistance specific molecular markers and to characterize crown rust resistances in the highly heterozygous forage crop *L. perenne*.

The NGS-based transcriptome profiling technique massive analysis of cDNA ends (MACE) in combination with bulked segregant analysis was used. To identify highly resistant and susceptible genotypes for BSA, the mapping population was phenotyped for stem rust resistance with four stem rust field isolates from different regions. For transcription profiling by MACE, leaf segments of 20 fully resistant and 20 highly susceptible genotypes from the mapping population were selected. Leaf segments for transcription profiling were harvested right before inoculation and at 4, 8, 18, and 24 h after inoculation (hai). Leaves from 4 and 8 hai and 18 and 24 hai were bulked, giving a total of six different samples for MACE. Genexpression profiles of stem rust resistant and susceptible bulks were compared and exclusively expressed resistance specific and highly differentially expressed transcripts and SNPs in resistant bulks were identified. Based on these sequences, we were able to develop stem rust resistance specific molecular markers with strong linkage to the LpPq1 resistance locus. Two markers flanked and one co-segregated with the LpPg1 locus. To predict the genomic location of the closely linked markers and resistance specific transcripts on *L. perenne* linkage groups, an *in silico*-mapping in combination with the perennial ryegrass GenomeZipper was used. Most of them were localized on Lolium LG 2 and 7. Sequence of the co-segregating marker LpETR 18 showed homology to scaffold 3494 ref0018849 at 78 cM on Lolium LG2, assuming the location of LpPg1 in this region. In addition, MACE also enabled us to investigate how the LpPq1 gene orchestrates gene expression of the efficient resistance mechanism. Most informative was the comparison of gene expression between all infected and non-inoculated bulks. Here, the early resistant bulk revealed the highest induction of plant defense processes, based on gene expression of antifungal proteins and phytoalexins.

In addition, the same mapping population carrying the stem rust resistance locus *LpPg1* were phenotyped for crown rust resistance with three different field

isolates. The population showed different levels of resistance: most of the individuals were fully resistant, some were moderate resistant and very few were highly susceptible to P. coronata. Histological analyses were conducted to characterize fungal development and resistance reactions in a fully resistant, moderate resistant, highly susceptible genotype and in addition the resistant parent and the highly susceptible variety "Aurora". Two types of crown rust disease resistance responses were observed. In the fully resistant genotype and the resistant parent crown rust development stopped at haustorial mother cell formation at 36 hours post inoculation. Cell autofluorescence was seen in mesophyll cells in direct contact with primary haustorial mother cells at 60 hours post inoculation, indicating a hypersensitive cell death in both genotypes. In the moderate resistant genotype, a delayed haustorial mother cell formation in comparison to the highly susceptible genotype and "Aurora" was observed. Gene expression analyses revealed crown rust resistance specific gene expression profiles which can separate fully resistant and moderate resistant genotypes. Compared to the susceptible Lolium genotype, in the fully resistant genotype and the resistant parent expression of genes involved in hypersensitive cell death were identified, which was evidenced by autofluorescence of mesophyll cells 60 hours post inoculation. In the moderate resistant and fully resistant genotype numerous genes were up-regulated coding for antifungal proteins. Similarities between the fully resistant and moderate resistant, and also between the fully resistant and resistant parent indicating both crown rust resistances are present in the fully resistant genotype.

The phenotyping of stem and crown rust resistance in the mapping population was not correlated and a comparison of the gene expression of stem rust resistant bulks with crown-rust-resistant genotypes identified 11 identical transcripts involved in unspecific defense reactions. In summary, there is no correlated inheritance between the stem and crown rust resistances.

7 Literatur

- Abberton MT, Marshall AH, Humphreys MW, Macduff JH, Collins RP, Marley CL (2008) Genetic Improvement of Forage Species to Reduce the Environmental Impact of Temperate Livestock Grazing Systems. Adv Agron 98:311–355.
- Albert M, Jehle AK, Mueller K, Eisele C, Lipschis M, Felix G (2010) *Arabidopsis thaliana* pattern recognition receptors for bacterial elongation factor tu and flagellin can be combined to form functional chimeric receptors. J Biol Chem 285:19035–19042.
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410.
- Beckmann K (2010) Entwicklung eines In-vitro-Resistenztests für den Erreger des Schwarzrostes (*Puccinia graminis* ssp. *graminicola*) an Deutschem Weidelgras (*Lolium perenne* L.) und molekulare Charakterisierung eines dominanten Resistenzgens. Julius Kühn-Institut, Federal Research Centre for Cultivated Plants.
- Beckmann K, Eickmeyer F, Lellbach H, Schubiger FX, Hartmann S, Wehling P (2010) Development of molecular markers for stem-rust resistance in perennial ryegrass (*Lolium perenne* L.) and their utilisation in breeding programms. In: 60.Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs 2009. Lehr- und Forschungszentrum für Landwirtschaft Raumberg-Gumpenstein, Irdning, pp 101–104.
- Bittner-Eddy PD, Crute IR, Holub EB, Beynon JL (2000) *RPP13* is a simple locus in *Arabidopsis thaliana* for alleles that specify downy mildew resistance to different avirulence determinants in *Peronospora parasitica*. Plant J 21:177– 188.
- Boeckmann B, Blatter M-C, Famiglietti L, Hinz U, Lane L, Roechert B, Bairoch A (2005) Protein variety and functional diversity: Swiss-Prot annotation in its biological context. C R Biol 328:882–899.
- Bojahr J, Nhengiwa O, Krezdorn N, Rotter B, Saal B, Ruge-Wehling B, Struck C, Winter P (2016) Massive analysis of cDNA ends (MACE) reveals a cosegregating candidate gene for *LpPg1* stem rust resistance in perennial ryegrass (*Lolium perenne*). Theor Appl Genet 129:1915–1932.
- Boller T, Felix G (2009) A renaissance of elicitors: perception of microbeassociated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406.
- Bonos SA, Clarke BB, Meyer WA (2006) Breeding for disease resistance in the major cool-season turfgrasses. Annu Rev Phytopathol 44:213–234.
- Bouwmeester K, Han M, Blanco-Portales R, Song W, Weide R, Guo LY, van der Vossen E a G, Govers F (2014) The Arabidopsis lectin receptor kinase LecRK-I.9 enhances resistance to Phytophthora infestans in Solanaceous plants. Plant Biotechnol J 12:10–16.

- Boyes DC, Nam J, Dangl JL (1998) The *Arabidopsis thaliana RPM1* disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA 95:15849–15854.
- Bozkurt TO, Mcgrann GRD, Maccormack R, Boyd L A., Akkaya MS (2010) Cellular and transcriptional responses of wheat during compatible and incompatible race-specific interactions with *Puccinia striiformis* f. sp. *tritici*. Mol Plant Pathol 11:625–640.
- Brutus A, Sicilia F, Macone A, Cervone F, De Lorenzo G (2010) A domain swap approach reveals a role of the plant wall-associated kinase 1 (*WAK1*) as a receptor of oligogalacturonides. Proc Natl Acad Sci U S A 107:9452–9457.
- Byrne SL, Nagy I, Pfeifer M, Armstead I, Swain S, Studer B, Mayer K, Campbell JD, Czaban A, Hentrup S, Panitz F, Bendixen C, Hedegaard J, Caccamo M, Asp T (2015) A synteny-based draft genome sequence of the forage grass *Lolium perenne*. Plant J 84:816-826.
- Callard D, Axelos M, Mazzolini L (1996) Novel molecular markers for late phases of the growth cycle of *Arabidopsis thaliana* cell-suspension cultures are expressed during organ senescence. Plant Physiol 112:705–15.
- Caruso C, Caporale C, Chilosi G, Vacca F, Bertini L, Magro P, Poerio E, Buonocore V (1996) Structural and antifungal properties of a pathogenesisrelated protein from wheat kernel. J Protein Chem 15:35–44.
- Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by *AtWRKY18*, a pathogen-induced *Arabidopsis* transcription factor. Plant Physiol 129:706–716.
- Chen X, Coram T, Huang X, Wang M, Dolezal A (2013) Understanding Molecular Mechanisms of Durable and Non-durable Resistance to Stripe Rust in Wheat Using a Transcriptomics Approach. Curr Genomics 14:111–26.
- Chibucos MC, Collmer CW, Torto-Alalibo T, Gwinn-Giglio M, Lindeberg M, Li D, Tyler BM (2009) Programmed cell death in host-symbiont associations, viewed through the Gene Ontology. BMC Microbiol 9 Suppl 1:S5.
- Cho SK, Larue CT, Chevalier D, Wang H, Jinn T-L, Zhang S, Walker JC (2008) Regulation of floral organ abscission in *Arabidopsis thaliana*. Proc Natl Acad Sci U S A 105:15629–15634.
- Choi HW, Lee BG, Kim NH, Park Y, Lim CW, Song HK, Hwang BK (2008a) A role for a menthone reductase in resistance against microbial pathogens in plants. Plant Physiol 148:383–401.
- Choi JJ, Alkharouf NW, Schneider KT, Matthews BF, Frederick RD (2008b) Expression patterns in soybean resistant to *Phakopsora pachyrhizi* reveal the importance of peroxidases and lipoxygenases. Funct Integr Genomics 8:341–359.
- Coram TE, Huang X, Zhan G, Settles ML, Chen X (2010) Meta-analysis of transcripts associated with race-specific resistance to stripe rust in wheat demonstrates common induction of blue copper-binding protein, heat-stress transcription factor, pathogen-induced *WIR1A* protein, and ent-kaurene synthase transcripts. Funct Integr Genomics 10:383–392.
- Coram TE, Wang M, Chen X (2008) Transcriptome analysis of the wheat *Puccinia striiformis* f. sp. *tritici* interaction. Mol Plant Pathol 9:157–169.
- Datta K, Tu J, Oliva N, Ona I, Velazhahan R, Mew TW, Muthukrishnan S, Datta SK (2001) Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci 160:405–414.
- Dean JD, Goodwin PH, Hsiang T (2005) Induction of glutathione S-transferase genes of *Nicotiana benthamiana* following infection by *Colletotrichum destructivum* and *C. orbiculare* and involvement of one in resistance. J Exp Bot 56:1525–1533.
- Deschamps S, Campbell MA. (2009) Utilization of next-generation sequencing platforms in plant genomics and genetic variant discovery. Mol Breed 25:553–570.
- Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MSS, Wang L (2002) The phenylpropanoid pathway and plant defence A genomics perspective. Mol Plant Pathol 3:371–390.
- Dracatos PM, Cogan NOI, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2008) Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (*Lolium perenne* L.). Theor Appl Genet 117:203–219.
- Dracatos PM, Cogan NOI, Keane PJ, Smith KF, Forster JW (2010) Biology and Genetics of Crown Rust Disease in Ryegrasses. Crop Sci 50:1605.
- Dracatos PM, Cogan NOI, Sawbridge TI, Gendall AR, Smith KF, Spangenberg GC, Forster JW (2009a) Molecular characterisation and genetic mapping of candidate genes for qualitative disease resistance in perennial ryegrass (*Lolium perenne* L.). BMC Plant Biol 9:62.
- Dracatos PM, Dobrowolski MP, Lamb J, Olle RS, Gendall AR, Cogan NOI, Smith KF, Forster JW (2009b) Development of genetically homogenised populations of the crown rust pathogen (*Puccinia coronata* f. sp. *lolii*) for disease trait dissection in perennial ryegrass (*Lolium perenne* L.). Australian J Exp Agric 39:361–378.
- Dumsday JL, Smith KF, Forster JW, Jones ES (2003) SSR-based genetic linkage analysis of resistance to crown rust (*Puccinia coronata* f. sp. *lolii*) in perennial ryegrass (*Lolium perenne*). Plant Pathol 52:628–637.
- Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene *Lr10* from the hexaploid wheat (*Triticum aestivum* L.) genome. Proc Natl Acad Sci U S A 100:15253– 15258.
- Fischer K, Dieterich R, Nelson MN, Kamphuis LG, Singh KB, Rotter B, Krezdorn N, Winter P, Wehling P, Ruge-Wehling B (2015) Characterization and mapping of *LanrBo*: a locus conferring anthracnose resistance in narrow-leafed lupin (*Lupinus angustifolius* L.). Theor Appl Genet. 128: 2121-2130.
- Flor HH (1971) Current Status of the Gene-For-Gene Concept. Annu Rev Phytopathol 9:275–296.

- Fu D, Tisserat NA, Xiao Y, Settle D, Muthukrishnan S, Liang GH (2005) Overexpression of rice *TLPD34* enhances dollar-spot resistance in transgenic bentgrass. Plant Sci 168:671–680.
- Gao Z, Chung E-H, Eitas TK, Dangl JL (2011) Plant intracellular innate immune receptor Resistance to *Pseudomonas syringae* pv. *maculicola* 1 (*RPM1*) is activated at, and functions on, the plasma membrane. Proc Natl Acad Sci U S A 108:7619–7624.
- Gómez-Gómez L, Boller T (2000) FLS2: An LRR Receptor–like Kinase Involved in the Perception of the Bacterial Elicitor Flagellin in *Arabidopsis*. Mol Cell 5:1003–1011.
- Goya R, Sun MGF, Morin RD, Leung G, Ha G, Wiegand KC, Senz J, Crisan A, Marra MA, Hirst M, Huntsman D, Murphy KP, Aparicio S, Shah SP (2010) SNVMix: Predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics 26:730–736.
- Graichen FAS, Martinelli JA, Lima Wesp C de, Federizzi LC, Chaves MS (2011) Epidemiological and histological components of crown rust resistance in oat genotypes. Eur J Plant Pathol 131:497–510.
- Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the *Arabidopsis RPM1* gene enabling dual specificity disease resistance. Science 269:843–846.
- Guo B, Fedorova ND, Chen X, Wan C-H, Wang W, Nierman WC, Bhatnagar D, Yu J (2011) Gene expression profiling and identification of resistance genes to *Aspergillus flavus* infection in peanut through EST and microarray strategies. Toxins (Basel) 3:737–53.
- Gutterson N, Reuber TL (2004) Regulation of disease resistance pathways by *AP2/ERF* transcription factors. Curr Opin Plant Biol 7:465–471.
- Hackauf B, Lellbach H (2007) Mapping of *LmPc*, a major dominant gene from *Lolium multiflorum* conferring resistance to crown rust. Proc XXVIIth EUCARPIA Symp Improv Fodd Crop amenity grasses, Copenhagen, Denmark, 19th to 23rd August 2007 77–82.
- Hahn K, Strittmatter G (1994) Pathogen-defence gene *prp1-1* from potato encodes an auxin-responsive glutathione S-transferase. Eur J Biochem 226:619–626.
- Hahn M, Mendgen K (2001) Signal and nutrient exchange at biotrophic plant fungus interfaces. Curr Opin Plant Biol 4:322–327.
- Hahn M, Neef U, Struck C, Göttfert M, Mendgen K (1997) A Putative Amino Acid Transporter Is Specifically Expressed in Haustoria of the Rust Fungus *Uromyces fabae*. Mol Plant Microbe In 10:438–445.
- Hampton JG (1986) Fungicidal effects on stem rust, green leaf area, and seed yield in "Grasslands Nui" perennial ryegrass. New Zeal J Exp Agric 14:7–12.
- Harder DE, Chong J (1984) Structure and Physiology of Haustoria. In: The Cereal Rusts, Vol. 1. Origins, Specificity, Structure, and Physiology. USA: Academic press, Orlando, pp 431–476.
- Heath C (1998) Apoptosis, programmed cell death and the hypersensitive response. Eur J Plant Pathol 104:117–124.

Heath MC (1981) Resistance of Plants to Rust Infection. Phytopathology 71:971.

- Hirata M, Cai H, Inoue M, Yuyama N, Miura Y, Komatsu T, Takamizo T, Fujimori M (2006) Development of simple sequence repeat (SSR) markers and construction of an SSR-based linkage map in Italian ryegrass (*Lolium multiflorum* Lam.). Theor Appl Genet 113:270–279.
- Hoffmann L, Besseau S, Geoffroy P, Ritzenthaler C, Meyer D, Lapierre C, Pollet B, Legrand M (2004) Silencing of Hydroxycinnamoyl-Coenzyme A Shikimate/ Quinate Hydroxycinnamoyltransferase Affects Phenylpropanoid Biosynthesis. Plant Cell 16:1446–1465.
- Huang P, Ju HW, Min JH, Zhang X, Kim SH, Yang KY, Kim CS (2013) Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in *Arabidopsis thaliana*. Plant Sci 203–204:98–106.
- Hückelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127.
- Hulbert SH, Bai J, Fellers JP, Pacheco MG, Bowden RL (2007) Gene expression patterns in near isogenic lines for wheat rust resistance gene *lr34/yr18*. Phytopathology 97:1083–1093.
- Humphrey T V., Bonetta DT, Goring DR (2007) Sentinels at the wall: Cell wall receptors and sensors. New Phytol 176:7–21.
- Huynh QK, Borgmeyer JR, Zobel JF (1992) Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds. Biochem Biophys Res Commun 182:1–5.
- Idänheimo N, Gauthier A, Salojärvi J, Siligato R, Brosché M, Kollist H, Mähönen AP, Kangasjärvi J, Wrzaczek M (2014) The *Arabidopsis thaliana* cysteinerich receptor-like kinases *CRK6* and *CRK7* protect against apoplastic oxidative stress. Biochem Biophys Res Commun 445:457–462.
- Igawa T, Tokai T, Kudo T, Yamaguchi I, Kimura M (2005) A Wheat Xylanase Inhibitor Gene, *Xip-I*, but Not *Taxi-I*, Is Significantly Induced by Biotic and Abiotic Signals That Trigger Plant Defense. Biosci Biotechnol Biochem 69:1058–1063.
- Jacobs T (1989) Germination and appressorium formation of wheat leaf rust on susceptible, partially resistant and resistant wheat seedlings and on seedlings of other Gramineae. Netherlands J Plant Pathol 95:65–71.
- Jing F, Jiao-Jiao X, Rin-Ming L, Yue-Qiu H, Shi-Chang X (2013) Genetic analysis and location of gene for resistance to stripe rust in wheat international differential host Strubes Dickkopf. J Genet 92:267–72.
- Jinn TL, Stone JM, Walker JC (2000) *HAESA*, an *Arabidopsis* leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14:108–117.
- Jo Y-K, Barker R, Pfender W, Warnke S, Sim S-C, Jung G (2008) Comparative analysis of multiple disease resistance in ryegrass and cereal crops. Theor Appl Genet 117:531–543.
- Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329.

- Kahl G, Molina C, Rotter B, Jüngling R, Frank A, Krezdorn N, Hoffmeier K, Winter P (2012) Reduced representation sequencing of plant stress transcriptomes. J Plant Biochem Biotechnol 21:119–127.
- Kao A, Chang T, Chang S, Su J, Yang C (2005) Characterization of a novel *Arabidopsis* protein family *AtMAPR* homologous to 25-Dx / IZAg/nHpr6.6 proteins. Bot Bull Acad Sin 46:107–118.
- Karunanandaa B, Singh A, Kao TH (1994) Characterization of a predominantly pistil-expressed gene encoding a gamma-thionin-like protein of *Petunia inflata*. Plant Mol Biol 26:459–464.
- Kesarwani M, Yoo J, Dong X (2007) Genetic interactions of TGA transcription factors in the regulation of pathogenesis-related genes and disease resistance in Arabidopsis. Plant Physiol 144:336–346.
- Kim HS, Jung MS, Lee SM, Kim KE, Byun H, Choi MS, Park HC, Cho MJ, Chung WS (2009) An S-locus receptor-like kinase plays a role as a negative regulator in plant defense responses. Biochem Biophys Res Commun 381:424–428.
- Kimbeng CA (1999) Genetic basis of crown rust resistance in perennial ryegrass, breeding strategies, and genetic variation among pathogen populations: a review. Aust J Exp Agric 39:361.
- Klepek Y-S, Geiger D, Stadler R, Klebl F, Landouar-Arsivaud L, Lemoine R, Hedrich R, Sauer N (2005) *Arabidopsis* POLYOL TRANSPORTER5, a new member of the monosaccharide transporter-like superfamily, mediates H+-Symport of numerous substrates, including myo-inositol, glycerol, and ribose. Plant Cell 17:204–218.
- Kloppers FJ, Pretorius ZA (1997) Effects of combinations amongst genes *Lr13*, *Lr34* and *Lr37* on components of resistance in wheat to leaf rust. Plant Pathol 46:737–737.
- Kuang H, Wei F, Marano MR, Wirtz U, Wang X, Liu J, Shum WP, Zaborsky J, Tallon LJ, Rensink W, Lobst S, Zhang P, Tornqvist CE, Tek A, Bamberg J, Helgeson J, Fry W, You F, Luo MC, Jiang J, Robin Buell C, Baker B (2005) The *R1* resistance gene cluster contains three groups of independently evolving, type I *R1* homologues and shows substantial structural variation among haplotypes of *Solanum demissum*. Plant J 44:37–51.
- Kubicek CP, Starr TL, Glass NL (2014) Plant Cell Wall-Degrading Enzymes and Their Secretion in Plant-Pathogenic Fungi. Annu Rev Phytopathol 1–25.
- Lay FT, Anderson MA (2005) Defensins-components of the innate immune system in plants. Curr Protein Pept Sci 6:85–101.
- Lellbach H (1994) Blattstück-Test zur Beurteilung der Resistenz gegen Kronenrost (*Puccinia coronata*) bei *Lolium* sp. In: 36. Fachtagung des DLG-Ausschusses Gräser, Klee und Zwischenfrüchte am 7. und 8. Dezember 1994, Fulda. pp 89–97.
- Lenuweit U, Gharadjedaghi B (2002) Biologische Basisdaten zu *Lolium perenne*, *Lolium multiflorum*, *Festuca pratensis* und *Trifolium repens*. Umweltbundesamt.
- Leonard KJ, Szabo LJ (2005) Stem rust of small grains and grasses caused by *Puccinia graminis*. Mol Plant Pathol 6:99–111.

- Li H, Zhou SY, Zhao WS, Su SC, Peng YL (2009) A novel wall-associated receptor-like protein kinase gene, *OsWAK1*, plays important roles in rice blast disease resistance. Plant Mol Biol 69:337–346.
- Lin KC, Bushnell WR, Smith AG, Szabo LJ (1998) Temporal accumulation patterns of defence response gene transcripts in relation to resistant reactions in oat inoculated with *Puccinia graminis*. Physiol Mol Plant Pathol 52:95–114.
- Liu J-J, Sturrock R, Ekramoddoullah AKM (2010) The superfamily of thaumatinlike proteins: its origin, evolution, and expression towards biological function. Plant Cell Rep 29:419–436.
- Livaja M, Wang Y, Wieckhorst S, Haseneyer G, Seidel M, Hahn V, Knapp SJ, Taudien S, Schön C-C, Bauer E (2013) BSTA: a targeted approach combines bulked segregant analysis with next- generation sequencing and de novo transcriptome assembly for SNP discovery in sunflower. BMC Genomics 14:628.
- Lorenzo O, Piqueras R, Sánchez-Serrano JJ, Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15:165–178.
- Lu S, Sun Y-H, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098.
- Ma J, Huang X, Wang X, Chen X, Qu Z, Huang L, Kang Z (2009) Identification of expressed genes during compatible interaction between stripe rust (*Puccinia striiformis*) and wheat using a cDNA library. BMC Genomics 10:586.
- Ma Q, Shang HS (2009) Ultrastructure of stripe rust (*Puccinia striiformis* f.sp. *tritici*) interacting with slow rusting, highly resistant and susceptible wheat cultivars. J Plant Pathol 91:597–606.
- Mackintosh CA, Lewis J, Radmer LE, Shin S, Heinen SJ, Smith LA, Wyckoff MN, Dill-Macky R, Evans CK, Kravchenko S, Baldridge GD, Zeyen RJ, Muehlbauer GJ (2007) Overexpression of defense response genes in transgenic wheat enhances resistance to Fusarium head blight. Plant Cell Rep 26:479–488.
- Mamo BE, Smith KP, Brueggeman RS, Steffenson BJ (2015) Genetic Characterization of Resistance to Wheat Stem Rust Race TTKSK in Landrace and Wild Barley Accessions Identifies the *rpg4/Rpg5* Locus. Phytopathology 105:99–109.
- Manickavelu A, Kawaura K, Oishi K, Shin-I T, Kohara Y, Yahiaoui N, Keller B, Suzuki A, Yano K, Ogihara Y (2010) Comparative gene expression analysis of susceptible and resistant near-isogenic lines in common wheat infected by *Puccinia triticina*. DNA Res 17:211–22.
- Marrs K A. (1996) the Functions and Regulation of Glutathione S-Transferases in Plants. Annu Rev Plant Physiol Plant Mol Biol 47:127–158.
- Mattner SW, Parbery DG (2007) Crown rust affects plant performance and interference ability of Italian ryegrass in the post-epidemic generation. Grass Forage Sci 62:437–444.

- McDowell JM, Dhandaydham M, Long TA, Aarts MG, Goff S, Holub EB, Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the *RPP8* locus of *Arabidopsis*. Plant Cell 10:1861–1874.
- McGrath KC, Dombrecht B, Manners JM, Schenk PM, Edgar CI, Maclean DJ, Scheible W-R, Udvardi MK, Kazan K (2005) Repressor- and activator-type ethylene response factors functioning in jasmonate signaling and disease resistance identified via a genome-wide screen of *Arabidopsis* transcription factor gene expression. Plant Physiol 139:949–959.
- Melichar JPE, Berry S, Newell C, MacCormack R, Boyd LA (2008) QTL identification and microphenotype characterisation of the developmentally regulated yellow rust resistance in the UK wheat cultivar Guardian. Theor Appl Genet 117:391–399.
- Mendiburu F de (2016) Statistical Procedures for Agricultural Research. Agric. Stat. Proced. Agric. Res. R Packag. version 1.2-0. 1.
- Meng S, Brown DE, Ebbole DJ, Torto-Alalibo T, Oh YY, Deng J, Mitchell TK, Dean RA (2009) Gene Ontology annotation of the rice blast fungus, *Magnaporthe oryzae*. BMC Microbiol 9 Suppl 1:S8.
- Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–66.
- Michel LJ, Simons MD (1977) Aggressiveness and virulence of *Puccinia coronata avenae* isolates, 1971-1975. Plant Dis Report 61:621–625.
- Miedaner T (2010) Grundlagen der Pflanzenzüchtung. DLG-Verlag, Frankfurt am Main.
- Moffat CS, Ingle R A, Wathugala DL, Saunders NJ, Knight H, Knight MR (2012) *ERF5* and *ERF6* play redundant roles as positive regulators of JA/Etmediated defense against *Botrytis cinerea* in *Arabidopsis*. PLoS One 7:1– 11.
- Morel J, Dangl JL (1997) The hypersensitive response and the induction of cell death in plants. Cell Death Differ 4:671–683.
- Muylle H, Baert J, Van Bockstaele E, Pertijs J, Roldán-Ruiz I (2005) Four QTLs determine crown rust (*Puccinia coronata* f. sp. *Iolii*) resistance in a perennial ryegrass (*Lolium perenne*) population. Heredity (Edinb) 95:348–357.
- Niederhuth CE, Cho SK, Seitz K, Walker JC (2013) Letting go is never easy: Abscission and receptor-like protein kinases. J Integr Plant Biol 55:1251– 1263.
- Niks RE, Dekens RG (1991) Prehaustorial and Posthaustorial Resistance to Wheat Leaf Rust in Diploid Wheat Seedlings. Phytopathology 81:847.
- Noël LD, Cagna G, Stuttmann J, Wirthmüller L, Betsuyaku S, Witte C-P, Bhat R, Pochon N, Colby T, Parker JE (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19:4061–4076.

- Nold-Petry C A, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP, Lotz-Havla AS, Gersting SW, Cho SX, Lao JC, Ellisdon AM, Rotter B, Azam T, Mangan NE, Rossello FJ, Whisstock JC, Bufler P, Garlanda C, Mantovani A, Dinarello CA, Nold MF (2015) *IL-37* requires the receptors *IL-18Rα* and *IL-1R8* (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 16:354–365.
- O'Brien J A, Daudi A, Butt VS, Bolwell GP (2012) Reactive oxygen species and their role in plant defence and cell wall metabolism. Planta 236:765–79.
- Panthee DR, Yuan JS, Wright DL, Marois JJ, Mailhot D, Stewart CN (2007) Gene expression analysis in soybean in response to the causal agent of Asian soybean rust (*Phakopsora pachyrhizi* Sydow) in an early growth stage. Funct Integr Genomics 7:291–301.
- Parra-González LB, Aravena-Abarzúa GA, Navarro-Navarro CS, Udall J, Maughan J, Peterson LM, Salvo-Garrido HE, Maureira-Butler IJ (2012) Yellow lupin (*Lupinus luteus* L.) transcriptome sequencing: molecular marker development and comparative studies. BMC Genomics 13:425.
- Payan F, Leone P, Porciero S, Furniss C, Tahir T, Williamson G, Durand A, Manzanares P, Gilbert HJ, Juge N, Roussel A (2004) The dual nature of the wheat xylanase protein inhibitor *XIP-I*: Structural basis for the inhibition of family 10 and family 11 xylanases. J Biol Chem 279:36029–36037.
- PfaffI MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:36.
- Pfeifer M, Martis M, Asp T, Mayer KFX, Lubberstedt T, Byrne S, Frei U, Studer B (2013) The Perennial Ryegrass GenomeZipper: Targeted Use of Genome Resources for Comparative Grass Genomics. PLANT Physiol 161:571–582.
- Pfender W (2009) A damage function for stem rust of perennial ryegrass seed crops. Phytopathology 99:498–505.
- Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in *Lolium perenne*. Theor Appl Genet 122:1467–1480.
- Pfender WF, Slabaugh ME (2013) Pathotype-specific QTL for stem rust resistance in *Lolium perenne*. Theor Appl Genet 126:1213–1225.
- Plummer RM, Hall RL, Watt TA (1990) The influence of crown rust (*Puccinia coronata*) on tiller production and survival of perennial ryegrass (*Lolium perenne*) plants in simulated swards. Grass Forage Sci 45:9–16.
- Potter LR (1987) Effect of crown rust on regrowth, competitive ability and nutritional quality of perennial and Italian ryegrasses. Plant Pathol 36:455–461.
- Pré M, Atallah M, Champion A, De Vos M, Pieterse CMJ, Memelink J (2008) The *AP2/ERF* domain transcription factor *ORA59* integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol 147:1347–1357.
- Qi Y, Tsuda K, Glazebrook J, Katagiri F (2011) Physical association of patterntriggered immunity (PTI) and effector-triggered immunity (ETI) immune receptors in *Arabidopsis*. Mol Plant Pathol 12:702–708.

- Randhawa M, Bansal U, Valárik M, Klocová B, Doležel J, Bariana H (2014) Molecular mapping of stripe rust resistance gene *Yr51* in chromosome 4AL of wheat. Theor Appl Genet 127:317–24.
- Rasmussen MW, Roux M, Petersen M, Mundy J (2012) MAP Kinase Cascades in *Arabidopsis* Innate Immunity. Front Plant Sci 3:1–6.
- Reheul D, Ghesquiere A. (1996) Breeding perennial ryegrass with better crown rust resistance. Plant Breed 115:465–469.
- Reinders A, Panshyshyn JA, Ward JM (2005) Analysis of transport activity of *Arabidopsis* sugar alcohol permease homolog *AtPLT5*. J Biol Chem 280:1594–1602.
- R development core Team (2008) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
- Richardson M, Valdes-Rodriguez S, Blanco-Labra A (1987) A possible function for thaumatin and a TMV-induced protein suggested by homology to a maize inhibitor. Nature 329:432-434.
- Rinaldi C, Kohler A, Frey P, Duchaussoy F, Ningre N, Couloux A, Wincker P, Le Thiec D, Fluch S, Martin F, Duplessis S (2007) Transcript Profiling of Poplar Leaves upon Infection with Compatible and Incompatible Strains of the Foliar Rust. Plant Physiol 144:347–366.
- Riou C, Hervé C, Pacquit V, Dabos P, Lescure B (2002) Expression of an *Arabidopsis* lectin kinase receptor gene, *lecRK-al*, is induced during senescence, wounding and in response to oligogalacturonic acids. Plant Physiol Biochem 40:431–438.
- Roberts WK, Selitrennikoff CP (1990) Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J Gen Microbiol 136:1771–1778.
- Roelfs AP (1985) Wheat and Rye Stem Rust. In: The Cereal Rust Vol II. Cereal Rust Laboratory, Agricultural Research Service, U.S. Department of Agriculture, University of Minnesota, St. Paul, Minnesota, pp 3–37.
- Rohringer R, Kim WK, Samborski DJ, Howes NK (1977) Calcofluor: An Optical Brightener for Flourescence Mircroscopy of Fungal Plant Parasites in Leaves. Phytopathology 67:808–810.
- Rose-Fricker CA., Meyer WA, Kronstad WE (1986) Inheritance of Resistance to Stem Rust (*Puccinia graminis* subsp. *graminicola*) in Six Perennial Ryegrass (*Lolium perenne*) Crosses. Plant Dis 70:678–681.
- Rymarquis L A, Souret FF, Green PJ (2011) Evidence that *XRN4*, an *Arabidopsis* homolog of exoribonuclease *XRN1*, preferentially impacts transcripts with certain sequences or in particular functional categories. RNA 17:501–511.
- Salgado LR, Koop DM, Pinheiro DG, Rivallan R, Le Guen V, Nicolás MF, de Almeida LGP, Rocha VR, Magalhães M, Gerber AL, Figueira A, Cascardo JCDM, de Vasconcelos AR, Silva WA, Coutinho LL, Garcia D (2014) De novo transcriptome analysis of *Hevea brasiliensis* tissues by RNA-seq and screening for molecular markers. BMC Genomics 15:236.

- Sánchez-Martín J, Rubiales D, Sillero JC, Prats E (2012) Identification and characterization of sources of resistance in *Avena sativa*, *A. byzantina* and *A. strigosa* germplasm against a pathotype of *Puccinia coronata* f.sp. *avenae* with virulence against the *Pc94* resistance gene. Plant Pathol 61:315–322.
- Scarpeci TE, Zanor MI, Valle EM (2008) Investigating the role of plant heat shock proteins during oxidative stress. Plant Signal Behav 3:856–857.
- Schubiger FX, Baert J, Ball T, Cagas B, Czembor E, Feuerstein U, Gay A, Hartmann S, Jakesova H, Klima M, Krautzer B, Leenheer H, Persson C, Pietraszek W, Poinsard L, Posselt UK, Quitté Y, Romani M, Russi L, Schulze S, Tardin MC, Van Nes M, Willner E, Wolters L, Boller B (2013) The EUCARPIA Multi-site Rust Evaluation—Results 2010. In: Breeding strategies for sustainable forage and turf grass improvement. Springer Netherlands, Dordrecht, pp 209–217
- Schubiger FX, Baert J, Bayle B, Bourdon P, Cagas B, Cernoch V, Czembor E, Eickmeyer F, Feuerstein U, Hartmann S, Jakesova H, Johnston D, Krautzer B, Leenheer H, Lellbach H, Persson C, Pietraszek W, Posselt UK, Romani M, Russi L, Schulze S, Tardin MC, VanHee F, van Kruijssen L, Wilkins P, Willner E, Wolters L, Boller B (2010) Susceptibility of European cultivars of Italian and perennial ryegrass to crown and stem rust. Euphytica 176:167–181.
- Schubiger FX, Boller B (2015) Virulence of crown rust isolates (*Puccinia coronata* f.sp. *Iolii*) on genotypes of Italian and perennial ryegrass (*Lolium multiflorum* and *L. perenne*). Eur J Plant Pathol 144:141-154.
- Schubiger FX, Streckeisen P, Boller B (2006) The EUCARPIA Multisite Rust Evaluation – Results of the trials 2004. In: Breeding and seed production for conventional and organic agriculture—XXVI EUCARPIA Fodder Crops and Aminity Grasses Section Meeting in Perugia, Italy. pp 154–158
- Serfling A, Templer SE, Winter P, Ordon F (2016) Microscopic and Molecular Characterization of the Prehaustorial Resistance against Wheat Leaf Rust (*Puccinia triticina*) in Einkorn (*Triticum monococcum*). Front Plant Sci 7:1– 18.
- Shimada T, Fuji K, Tamura K, Kondo M, Nishimura M, Hara-Nishimura I (2003) Vacuolar sorting receptor for seed storage proteins in *Arabidopsis thaliana*. Proc Natl Acad Sci U S A 100:16095–16100.
- Sillero JC, Rubiales D (2002) Histological Characterization of Resistance to *Uromyces viciae-fabae* in Faba Bean. Phytopathology 92:294–9.
- Sim S, Diesburg K, Casler M, Jung G (2007) Mapping and comparative analysis of QTL for crown rust resistance in an Italian x perennial ryegrass population. Phytopathology 97:767–776.
- Singh P, Kuo Y-C, Mishra S, Tsai C-H, Chien C-C, Chen C-W, Desclos-Theveniau M, Chu P-W, Schulze B, Chinchilla D, Boller T, Zimmerli L (2012) The Lectin Receptor Kinase-VI.2 Is Required for Priming and Positively Regulates *Arabidopsis* Pattern-Triggered Immunity. Plant Cell 24:1256– 1270.
- Singh P, Zimmerli L (2013) Lectin receptor kinases in plant innate immunity. Front Plant Sci 4:124.

- Skovmand B, Wilcoxson RD, Shearer BL, Stucker RE (1978) Inheritance of slow rusting to stem rust in wheat. Euphytica 27:95–107.
- Smit HJ, Tas BM, Taweel HZ, Tamminga S, Elgersma A (2005) Effects of perennial ryegrass (*Lolium perenne* L.) cultivars on herbage production, nutritional quality and herbage intake of grazing dairy cows. Grass Forage Sci 60:297–309.
- Song J, Bradeen JM, Naess SK, Raasch J A, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from *Solanum bulbocastanum* confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci U S A 100:9128–9133.
- Struck C (1996) Plasma Membrane H+-ATPase Activity in Spores, Germ Tubes, and Haustoria of the Rust Fungus *Uromyces viciae-fabae*. Fungal Genet Biol 20:30–35.
- Studer B, Boller B, Bauer E, Posselt UK, Widmer F, Kölliker R (2007) Consistent detection of QTLs for crown rust resistance in Italian ryegrass (*Lolium multiflorum* Lam.) across environments and phenotyping methods. Theor Appl Genet 115:9–17.
- Svensson B, Svendsen I, Højrup P, Roepstorff P, Ludvigsen S, Poulsen FM (1992) Primary structure of barwin: a barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry 31:8767–8770.
- Takahashi S, Yeo Y-S, Zhao Y, O'Maille PE, Greenhagen BT, Noel JP, Coates RM, Chappell J (2007) Functional characterization of premnaspirodiene oxygenase, a cytochrome P450 catalyzing regio- and stereo-specific hydroxylations of diverse sesquiterpene substrates. J Biol Chem 282:31744– 54.
- Theis T, Stahl U (2004) Antifungal proteins: targets, mechanisms and prospective applications. Cell Mol Life Sci 61:437–455.
- Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194.
- Tiburzy R, Noll U, Reisener HJ (1990) Resistance of wheat to *Puccinia graminis* f.sp. *tritici*: Histological investigation of resistance caused by the *Sr5* gene. Physiol Mol Plant Pathol 36:95–108.
- Torto-Alalibo T, Collmer CW, Gwinn-Giglio M (2009) The Plant-Associated Microbe Gene Ontology (PAMGO) Consortium: community development of new Gene Ontology terms describing biological processes involved in microbe-host interactions. BMC Microbiol 9 Suppl 1:S1.
- van der Vossen E, Sikkema A, Hekkert BTL, Gros J, Stevens P, Muskens M, Wouters D, Pereira A, Stiekema W, Allefs S (2003) An ancient R gene from the wild potato species *Solanum bulbocastanum* confers broad-spectrum resistance to *Phytophthora infestans* in cultivated potato and tomato. Plant J 36:867–882.

- Vargas WA, Martín JMS, Rech GE, Rivera LP, Benito EP, Díaz-Mínguez JM, Thon MR, Sukno S a (2012) Plant defense mechanisms are activated during biotrophic and necrotrophic development of *Colletotricum graminicola* in maize. Plant Physiol 158:1342–1358.
- Voegele RT, Mendgen K (2003) Rust haustoria: nutrient uptake and beyond. New Phytol 159:93–100.
- Voegele RT, Struck C, Hahn M, Mendgen K (2001) The role of haustoria in sugar supply during infection of broad bean by the rust fungus *Uromyces fabae*. Proc Natl Acad Sci U S A 98:8133–8.
- Wang CF, Huang LL, Buchenauer H, Han QM, Zhang HC, Kang ZS (2007) Histochemical studies on the accumulation of reactive oxygen species (O2and H2O2) in the incompatible and compatible interaction of wheat-*Puccinia striiformis* f. sp. *tritici*. Physiol Mol Plant Pathol 71:230–239.
- Wang L (2011) Biological funktions of *Arabidopsis TGA1* and *TGA4* transcription factors. University of Saskatchewan.
- Wang L, Feng Z, Wang X, Wang X, Zhang X (2010) DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 26:136–138.
- Wang X-M, Gaudet DA, Liu W, Frick M, Puchalski B, Lu Z-X, Leggett F, Kang Z-S, Laroche A (2014a) Defence responses including hypersensitive cell death, oxidative burst and defence gene expression in "Moro" wheat inoculated with *Puccinia striiformis*. Can J Plant Pathol 36:202–215.
- Wang Y, Kwon SJ, Wu J, Choi J, Lee Y, Agrawal GK, Tamogami S, Rakwal R, Park S, Kim B-G, Jung K, Kang KY, Kim SG, Kim ST (2014b) Transcriptome Analysis of Early Responsive Genes in Rice during *Magnaporthe oryzae* Infection. Plant Pathol J 30:343–354.
- Welty RE, Barker RE (1992) Evaluation of resistance to stem rust in perennial ryegrass grown in controlled and field conditions. Plant Dis 76:637–641.
- Whitham SA, Quan S, Chang HS, Cooper B, Estes B, Zhu T, Wang X, Hou YM (2003) Diverse RNA viruses elicit the expression of common sets of genes in susceptible *Arabidopsis thaliana* plants. Plant J 33:271–283.
- Wilcoxson RD (1981) Genetics of Slow Rusting in Cereals. Phytopathology 71:989.
- Wilkins PW (1991) Breeding perennial ryegrass for agriculture. Euphytica 52:201–214.
- Wisser RJ, Kolkman JM, Patzoldt ME, Holland JB, Yu J, Krakowsky M, Nelson RJ, Balint-Kurti PJ (2011) Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci USA 108:7339–7344.
- Xu P, Xu S-L, Li Z-J, Tang W, Burlingame AL, Wang Z-Y (2014) A Brassinosteroid-Signaling Kinase Interacts with Multiple Receptor-Like Kinases in *Arabidopsis*. Mol Plant 7:441–444.
- Yang P, Perovic D, Habekuß A, Zhou R, Graner A, Ordon F, Stein N (2013) Genebased high-density mapping of the gene *rym7* conferring resistance to Barley mild mosaic virus (BaMMV). Mol Breed 32:27–37.

- Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134.
- Zawada AM, Rogacev KS, Müller S, Rotter B, Winter P, Fliser D, Heine GH (2014) Massive analysis of cDNA Ends (MACE) and miRNA expression profiling identifies proatherogenic pathways in chronic kidney disease. Epigenetics 9:161–72.
- Zhang H, Hu Y, Wang C, Ji W (2011a) Gene Expression in Wheat Induced by Inoculation with *Puccinia striiformis* West. Plant Mol Biol Report 29:458–465.
- Zhang H, Wang C, Cheng Y, Chen X, Han Q, Huang L, Wei G, Kang Z (2012) Histological and cytological characterization of adult plant resistance to wheat stripe rust. Plant Cell Rep 31:2121–2137.
- Zhang H, Wang C, Cheng Y, Wang X, Li F, Han Q, Xu J, Chen X, Huang L, Wei G, Kang Z (2011b) Histological and molecular studies of the non-host interaction between wheat and *Uromyces fabae*. Planta 234:979–991.

Anhang

Marker name	Gen ID	Orientierung	Sequenz (5'-3')
		F	GTTCAGAACAGATGCATGTACG
LPEIR_1	LollumRes_a48290_26	R	AGACGAGAGTTGGAAGCACC
		F	GCCAAAGAGATGGACGTGGA
LPEIR_2	LollumRes_a97885_41	R	CGGAGGACGAAGAATCGGG
	Lalium Dec. 627050.04	F	GAACAATTTGCGTGCGTGTG
LPEIR_3	LoliumRes_a37859_64	R	GCAGCTTCAGTGCTTCTTCA
		F	CCTGCACACTGAGCTCTACC
LPEIR_4	LollumRes_a808308_4	R	AGCCTGATACACCTTGGGGA
	Laling Data - 40400, 00	F	CCGGCAACGTTTCAATGTGT
LPEIR_5	LollumRes_a48100_26	R	TGCTTGGGTTTTCTGTGGGT
		F	GAGGTAGCAATCCTCTCGCA
LPEIR_6	LollumRes_a1119992_2	R	CAGTCATCCCAGCACAGACA
		F	GGTGCGCAGTAGACTCTTGT
LPEIR_/	LollumRes_a258364_10	R	GGAAGAAAGGCCGACCATGA
		F	CGGGGCGGATCTTGATTTCT
LPEIR_8	LollumRes_a371696_4	R	CCTGGTTCTGTCTAGCGTGG
InFTR 0	l oliumRes 2805010 3	F	TCTTCCTTCGCTTGACACCC
LpL III_9	Londini (es_a000910_0	R	GTGTCGTGGCAGACCATACA
LpETR 10	l oliumRes a667642 4	F	AACGCCGAAGCAGACCTAAA
		R	TGGACGGCGAATTCAGAGAC
LpETR 11	l oliumRes a694160 4	F	ACAGTCGATCAACCTGGAGC
		R	GAGACCACTCCTTGCTGCAT
LpETR 12	l oliumRes a80742 14	F	ATGCAGTTGGGCAAGCAAAG
		R	AGTACGACCGATGAACCAGC
InFTR 13	LoliumRes a284261_12	F	GTAAAGTTGGCTGTCGGCTG
_p		R	CTCTTGATCTCACGGGCACA
InFTR 14	LoliumRes a366934_6	F	CACCCTGGATATGACTCGCC
		R	GTAGTGCACCCACTGATGCT
InFTR 15	LoliumRes a311035 7	F	TTGATCCTGCACGCATCCTT
<i>LpL III</i> 10		R	ACGCAATTCGTAGGCAGTCA
InFTR 16	LoliumRes a330668 9	F	ACGGGAGTTAAAGAGCTGCC
		R	ATGGCCAACTTCCTAAGCCC
InETR 17	l oliumRes a924483 3	F	ACACTGCCTGTTTTGGCTCA
	Lonum (05_0024400_0	R	ACGGACCCTGATGTAGTCCT
InETR 18	l oliumRes 2783/13/ 3	F	CTTGACTCCTGTCCGCATGA
LpL III_10		R	CTTTGGAAAAGCCAGGCAGT
InFTR 10	l oliumRes a5/10600 /	F	AAGGTTGAGCTGCTGAGGAC
	20101111005_00400005_4	R	ACACATCCACCCATGCTCTG
INETE 20	LoliumRes 2251630 12	F	GCAGCCTTGAGTAAGCTCGT
LPEIR_20	LUIUIIINES_8201000_12	R	CGAAGTTAATCCCCCAGGCA

A1 SNP und ETR Primersequenzen der genetischen Kartierung von *LpPg1*

LEETD 01		F	AAGTTGGGGTGTTGGGACAA
LDEIR_21	LollumRes_a000003_4	R	GTAAGTCACCTGGCACACCA
LEETE 22	Lolium Dog. 0010916-2	F	AGCGACCTTTTAGACACCCA
LPETR_22	Loliuliires_a919010_3	R	ACATGCTGCTTAGCCTCTGA
INETE 22	LoliumPos 2003700 3	F	GAGAACGCGAAGACGAGGTA
LPETR_23	Loliuliires_a903709_3	R	CCCTAACGGACGGTCGC
LpETR_24	LoliumDoo 0469026 6	F	TCTCCTTGTGCTGGCGTTC
	Loliullines_a400030_0	R	GAGGATGTGGTTCTCGGCG
LAETD 25	Lolium Pool 0119700 14	F	CAGCCTATCCATTCCCCACC
LPEIR_25	LoliulliRes_a110799_14	R	CCCAGTCACCCAGATGCAAA
IDETE 26	LoliumPos 2281285 14	F	TTGCCACCACTAGAACATGGC
LPETR_20	Loliullines_azo1zo5_14	R	AAGGGATTTTAGCCGAGTGC
IDETE 27	LoliumPos 0161855 16	F	TACGAGGGAATCGGGGGAAT
LPEIR_27	Loliullikes_alo1000_10	R	GCCAGCGGATAACAGGAACT
LOSNE 1	LoliumBoo 022046 111	F	ATGAAGCCACGACTTCCAGG
LpSNP_1	LoliumRes_azz040_111	R	TTGTGTGCCCGATTGTCAGA
LOSNE 2	LoliumDoo 045902 46	F	AGACGCCGCCATGCTG
LpSNP_2	Loliullines_a40000_40	R	ACAGTACGTACCGACTGACT
LOSNE 2	LoliumDoo of6760 20	F	GACGTCCAACCTGTGTATAGT
LpSNP_3	Lonumres_aboro0_b0	R	AGACCTGTACAACACATGCAGA

A2 Auszählungen zur Entwicklung der Kronenrostinfektionsstrukturen in kronenrostresistenten und -anfälligen Lolium perenne-Genotypen

	Zeitnunkt	VRG	RF	MRG	٨G	Aurora
Entwicklung der Rostinfektionsstrukturen	Lonpunkt					
Keimfähigkeit (in %)	6 hpi	83,4 ± 9,4	67,8 ± 11,6	80,0 ± 10,8	80,5 ± 15,6	80,8 ± 14,7
	12 hpi	87,0 ± 8,8 ª	74,6 ± 13,2 ^b	87,4 ± 7,1 ª	81,8 ± 20,9 ª	70,6 ± 14,7 ^b
Approaction bildung (in 9/)	6 hpi	45,9 ± 11,0 ^b	46,5 ± 19,4 ^b	46,9 ± 10,0 ^b	61,1 ± 20,7 ª	63,5 ± 19,7 ª
Appressonenbildung (in %)	12 hpi	59,9 ± 16,5 ^b	66,7 ± 20,4 ^b	62,5 ± 10,7 ^b	77,8 ± 13,9 ^b	75,1 ± 16,7 ^b
	12 hpi	39,0 ± 23,2 ^b	56,6 ± 19,4 ^{ab}	64,0 ± 16,0 ª	62,2 ± 14,8 ª	71,6 ± 12,3 ª
Popotrationsorfold dar Approssorian/Aptail	24 hpi	75,2 ± 15,0 ^d	85,5 ± 9,6 ^b	87,2 ± 6,8 °	90,6 ± 5,1 ^b	94,4 ± 4,6 ª
gebildeter substomatärer Viskel aus	36 hpi	67,6 ± 22,2	84,7 ± 7,6	81,6 ± 6,7	86,0 ± 22,8	91,7 ± 7,9
Appressorien (in %)	48 hpi	72,0 ± 22,1	93,0 ± 7,4	84,1 ± 7,0	88,2 ± 5,3	93,6 ± 5,4
	60 hpi	64,4 ± 22,3	89,9 ± 6,0	77,9 ± 8,5	83,0 ± 11,5	90,8 ± 5,3
	12 hpi	66,8 ± 25,3	55,4 ± 15,6	67,2 ± 10,6	62,4 ± 16,8	70,5 ± 11,7
	24 hpi	95,7 ± 6,0 ^b	99,5 ± 1,1 ª	94,9 ± 5,1 ^b	99,1 ± 2,0 ª	99,8 ± 0,7 ª
Anteil Infektionshyphen aus substomatalen Vesikeln (in %)	36 hpi	99,8 ± 0,8	99,2 ± 1,9	99,5 ± 1,0	97,8 ± 7,0	100,0 ± 0,0
	48 hpi	99,1 ± 1,9	99,8 ± 0,7	98,9 ± 2,1	98,8 ± 3,0	100,0 ± 0,0
	60 hpi	98,0 ± 3,2	99,8 ± 0,7	94,7 ± 13,1	98,3 ± 2,4	99,5 ± 1,0
	12 hpi	0,0 ± 0,0	0,0 ± 0,0	$0,0 \pm 0,0$	0,0 ± 0,0	0,0 ± 0,0
Mittelwert der gehildeten	24 hpi	1,5 ± 0,2 ^{b, A}	1,6 ± 0,1 ^{ab, A}	1,5 ± 0,1 ^{b, A}	1,6 ± 0,1 ^{b, A}	1,8 ± 0,1 ^{a, A}
Haustorienmutterzellen je substomatärem	36 hpi	1,9 ± 0,1 ^{с, В}	2,3 ± 0,3 ^{a, B}	$2,1 \pm 0,2 \text{ bc, B}$	$2,2 \pm 0,2$ ^{ab, B}	2,3 ± 0,2 ^{a, B}
Vesikeln	48 hpi	$2,2 \pm 0,2$ d, C	2,5 ± 0,3 ^{с, в}	2,7 ± 0,2 ^{b, C}	3,5 ± 0,5 ª, C	$3,6 \pm 0,6^{a, C}$
	60 hpi	1,9 ± 0,2 ^{d, B}	2,5 ± 0,3 ^{с, В}	3,0 ± 0,4 ^{b, D}	6,6 ± 1,3 ^{a, D}	6,8 ± 2,5 ^{a, D}

kleine Buchstaben zeigen Signifikanz für p < 0,05 zwischen den Genotypen innerhalb eines Zeitpunkts

große Buchstaben zeigen Signifikanz für p<0,05 zwischen den Zeitpunkten innerhalb eines Genotyps

A3 "Gene Ontology" signifikant überexprimierter Transkripte in den kronenrostresistenten und -anfälligen *Lolium perenne*-Genotypen

			log2FC	
goterm	Beschreibung	vollständig resistent	resistenter Elter	moderat resistent
GO:1901668	regulation of superoxide dismutase activity	exklusiv	exklusiv	exklusiv
GO:1901671	positive regulation of superoxide dismutase activity	exklusiv	exklusiv	exklusiv
GO:0006995	cellular response to nitrogen starvation	3,3	exklusiv	
GO:0009626	plant-type hypersensitive response	2,3	2,8	
GO:0034050	host programmed cell death induced by symbiont	2,3	2,8	
GO:0043562	cellular response to nitrogen levels	2,3	exklusiv	
GO:1901804	beta-glucoside metabolic process	2,3	exklusiv	
GO:1901806	beta-glucoside biosynthetic process	2,3	exklusiv	
GO:0010132	dhurrin biosynthetic process	2,3	exklusiv	
GO:0012501	programmed cell death	2,1	2,8	
GO:0042435	indole-containing compound biosynthetic process	2,9		2,0
GO:0000162	tryptophan biosynthetic process	2,3		2,2
GO:0046219	indolalkylamine biosynthetic process	2,3		2,2
GO:0009830	cell wall modification involved in abscission	2,0		2,0
GO:0044277	cell wall disassembly	2,0		2,0
GO:0044000	movement in host	exklusiv		
GO:0046739	spread of virus in multicellular host	exklusiv		
GO:0046740	spread of virus in host, cell to cell	exklusiv		
GO:0048832	specification of organ number	exklusiv		
GO:0048833	specification of floral organ number	exklusiv		
GO:0051814	movement in other organism involved in symbiotic interaction	exklusiv		
GO:0080009	mRNA methylation	exklusiv		
GO:0097167	circadian regulation of translation	exklusiv		
GO:0010363	regulation of plant-type hypersensitive response	3,6		
GO:0042430	indole-containing compound metabolic process	3,0		
GO:0045088	regulation of innate immune response	2,8		
GO:0009696	salicylic acid metabolic process	2,7		
GO:0009697	salicylic acid biosynthetic process	2,7		
GO:0002682	regulation of immune system process	2,7		
GO:0006568	tryptophan metabolic process	2,6		
GO:0006586	indolalkylamine metabolic process	2,6		
GO:0006612	protein targeting to membrane	2,4		
GO:0072657	protein localization to membrane	2,4		
GO:0090150	establishment of protein localization to membrane	2,4		
GO:0008037	cell recognition	2,4		
GO:0048544	recognition of pollen	2,4		
GO:0009073	aromatic amino acid family biosynthetic process	2,3		

GO:0016137	glycoside metabolic process	2,3	
GO:0016138	glycoside biosynthetic process	2,3	
GO:0019756	cyanogenic glycoside biosynthetic process	2,3	
GO:0042341	cyanogenic glycoside metabolic process	2,3	
GO:0042991	transcription factor import into nucleus	2,3	
GO:0050898	nitrile metabolic process	2,3	
GO:0080028	nitrile biosynthetic process	2,3	
GO:1901642	nucleoside transmembrane transport	2,3	
GO:1902358	sulfate transmembrane transport	2,3	
GO:0009875	pollen-pistil interaction	2,2	
GO:0009627	systemic acquired resistance	2,2	
GO:0008219	cell death	2,1	
GO:0016265	death	2,1	
GO:0052126	movement in host environment	2,0	
 GO:0052192	movement in environment of other organism involved in symbiotic interaction	2,0	
GO:0000209	protein polyubiquitination		exklusiv
GO:0000255	allantoin metabolic process		exklusiv
GO:0000256	allantoin catabolic process		exklusiv
GO:0009410	response to xenobiotic stimulus		exklusiv
GO:0010135	ureide metabolic process		exklusiv
GO:0010136	ureide catabolic process		exklusiv
GO:0010163	high-affinity potassium ion import		exklusiv
GO:0010440	stomatal lineage progression		exklusiv
GO:0010769	regulation of cell morphogenesis involved in differentiation		exklusiv
GO:0015837	amine transport		exklusiv
GO:0032890	regulation of organic acid transport		exklusiv
GO:0032973	amino acid export		exklusiv
GO:0043157	response to cation stress		exklusiv
GO:0043266	regulation of potassium ion transport		exklusiv
GO:0043270	positive regulation of ion transport		exklusiv
GO:0044210	'de novo' CTP biosynthetic process		exklusiv
GO:0051353	positive regulation of oxidoreductase activity		exklusiv
GO:0051952	regulation of amine transport		exklusiv
GO:0051955	regulation of amino acid transport		exklusiv
GO:0060284	regulation of cell development		exklusiv
GO:0080027	response to herbivore		exklusiv
GO:0080092	regulation of pollen tube growth		exklusiv
GO:0080143	regulation of amino acid export		exklusiv
GO:0009267	cellular response to starvation		4,0
GO:0031669	cellular response to nutrient levels		4,0
GO:0042594	response to starvation		4,0
GO:0045454	cell redox homeostasis		4,0

GO:0009991	response to extracellular stimulus 3	,3	
GO:0031668	cellular response to extracellular stimulus 3	,3	
GO:0071496	cellular response to external stimulus 3	,3	
GO:0052386	cell wall thickening 2	,6	
GO:0052543	callose deposition in cell wall 2	,6	
GO:0006260	DNA replication 2	,4	
GO:0015074	DNA integration 2	,3	
GO:0090305	nucleic acid phosphodiester bond hydrolysis 2	,3	
GO:0006259	DNA metabolic process 2	,2	
GO:0006278	RNA-dependent DNA replication 2	,2	
GO:0006508	proteolysis 2	,0	
GO:0031407	oxylipin metabolic process 2	,0	
GO:0031408	oxylipin biosynthetic process 2	,0	
GO:0019408	dolichol biosynthetic process		exklusiv
GO:0019348	dolichol metabolic process		exklusiv
GO:0033386	geranylgeranyl diphosphate biosynthetic process		exklusiv
GO:0006148	inosine catabolic process		exklusiv
GO:0046102	inosine metabolic process		exklusiv
GO:0080037	negative regulation of cytokinin mediated signaling pathway		exklusiv
GO:0016094	polyprenol biosynthetic process		exklusiv
GO:0016093	polyprenol metabolic process		exklusiv

A4 "Gene Ontology" signifikant überexprimierter Transkripte in den kronenrostinokulierten *Lolium perenne*-Genotypen im Vergleich zum nicht inokulierten Zeitpunkt

		6 hpi				12	hpi		24 hpi				
goterm	description	VRG	RE	MRG	AG	VRG	RE	MRG	AG	VRG	RE	MRG	AG
GO:0002181	cytoplasmic translation	exklusiv	exklusiv	exklusiv	exklusiv	exklusiv	exklusiv	exklusiv	exklusiv	exklusiv	exklusiv	exklusiv	exklusiv
GO:0006559	L-phenylalanine catabolic	exklusiv						exklusiv		exklusiv			
	process												
GO:0009800	cinnamic acid biosynthetic	exklusiv		exklusiv				exklusiv		exklusiv		exklusiv	
	process												
GO:0009803	cinnamic acid metabolic process	exklusiv		exklusiv				exklusiv		exklusiv		exklusiv	
GO:1902222	erythrose 4-	exklusiv						exklusiv		exklusiv			
	phosphate/phosphoenolpyruvate												
	family amino acid catabolic												
	process												
GO:0022413	reproductive process in single-									exklusiv			
00 0000 405	celled organism												
GO:0030435	sporulation resulting in formation									exklusiv			
00.00000505	of a cellular spore									aulduaiu			
GO:0032505	reproduction of a single-celled									exklusiv			
CO-0043034	sporulation									ovkluciv			
GO:0043934	mitochondrial ATP synthesis						50						
60.0042775	coupled electron transport						5,0			5,1			
GO·0006122	mitochondrial electron transport									43	45		
00.0000122	ubiquinol to cytochrome c									4,0	4,0		
GO:0042255	ribosome assembly									4.2			exklusiv
GO:0006995	cellular response to nitrogen		4.3	3.5	exklusiv				4.9	4.1		2.9	
	starvation		.,0	0,0					.,0	.,.		_,0	
GO:0043562	cellular response to nitrogen		4.3	3.5	exklusiv				4.9	4.1		2.9	
	levels		, –	- , -					, -	,		, -	
GO:0042274	ribosomal small subunit		4,8	exklusiv			3,5			4,0	4,2		5,4
	biogenesis												
GO:1901071	glucosamine-containing	3,5	5,6		4,9				3,8	3,5			4,0
	compound metabolic process												
GO:0006030	chitin metabolic process	3,5	5,5		4,8	4,0	2,8		3,8	3,4			4,0
GO:0046348	amino sugar catabolic process	3,3	5,4						3,7	3,3			3,8
GO:1901072	glucosamine-containing	3,3	5,4						3,7	3,3			3,8
	compound catabolic process												
GO:0006026	aminoglycan catabolic process	3,3	5,4						3,7	3,2			
GO:0006032	chitin catabolic process	3,3	5,4						3,7	3,2			

GO:0006558	L-phenylalanine metabolic process	3,1	3,2						3,1			
GO:1902221	erythrose 4- phosphate/phosphoenolpyruvate family amino acid metabolic process	3,1	3,2						3,1			
GO:0006022	aminoglycan metabolic process	3,1	4,5	3,8	3,5	2,5		3,4	3,1			3,6
GO:0009060	aerobic respiration			3,0	2,1	2,8	3,4	3,0	2,9	3,1	2,3	3,3
GO:0006099	tricarboxylic acid cycle			2,4		2,4	2,9	2,7	2,8	3,0	2,3	2,9
GO:0042773	A I P synthesis coupled electron					2,8			2,7			
00.0045000	transport			0.0		0.5	0.7	0.0	0.5	2.0	0.0	0.0
GO:0045333	cellular respiration	2.2		2,8	0.0	2,5	2,7	2,6	2,5	3,0	2,3	3,2
GO:0000730	one-carbon metabolic process	Ζ,Ζ			2,3				2,5		2.0	
GO:0032343	operate derivation by exidation of			2.5		22	2.5	22	2,4	27	2,0	21
GO.0015960	organic compounds			2,5		2,3	2,5	2,3	2,3	2,7	Ζ, Ι	3,1
GO-0022004	respiratory electron transport					22			22			31
00.0022004	chain					2,2			2,2			0,4
GO:0045730	respiratory burst	4.7	5.0	4.7		6.1		4.9				
GO:0006040	amino sugar metabolic process	3.3	0,0	.,.		•,.		3.5				
GO:0071826	ribonucleoprotein complex	3.1		4.3				-,-				6.1
	subunit organization	-,		, -								- ,
GO:0000746	conjugation	2,5	2,1	3,8	2,0							
GO:0006560	proline metabolic process	2,2		-								
GO:0000747	conjugation with cellular fusion			exklusiv								
GO:0002679	respiratory burst involved in		4,9	4,6		6,0		4,8				
	defense response											
GO:0006119	oxidative phosphorylation					2,8						
GO:0006412	translation		2,1379			2,1				2,6		2,5
GO:0006414	translational elongation			0 (.				2,2		
GO:0006820	anion transport			2,1		2,1				2,1		
GO:0007005	mitochondrion organization					2.4				3,2		
GO.0007204	small GTPase mediated signal					3,1						
CO-0008037	cell recognition			11								
GO:0008104	protein localization			4,4		20						23
GO:0000104 GO:0009404	toxin metabolic process					2,0						2,0
GO:0009407	toxin catabolic process					2.8						
GO:0009620	response to fungus			2.0		_,.						
GO:0009627	systemic acquired resistance			2,0								
GO:0009696	salicylic acid metabolic process		2,2									
GO:0009697	salicylic acid biosynthetic		2,1									
	process		·									

GO:0009698	phenylpropanoid metabolic	2,2	2,3						
	process								
GO:0010200	response to chitin	2,1							
GO:0010583	response to cyclopentenone		2,2		2,8				
GO:0015031	protein transport				2,0				
GO:0015749	monosaccharide transport								exklusiv
GO:0015791	polyol transport								2,1
GO:0016192	vesicle-mediated transport				3,7		3,1	2,6	3,8
GO:0016998	cell wall macromolecule	4,2		3,4			3,3		
	catabolic process								
GO:0018958	phenol-containing compound metabolic process	2,3	2,0						
GO:0019673	GDP-mannose metabolic					2.2			
	process					_,_			
GO:0022618	ribonucleoprotein complex		4.3						6.1
	assembly		, -						-)
GO:0032011	ARF protein signal transduction				3.3				
GO:0032012	regulation of ARF protein signal				3,3				
	transduction				,				
GO:0035556	intracellular signal transduction	2,1	2,3						
GO:0042537	benzene-containing compound	2,5	2,1		2,2				
	metabolic process								
GO:0043069	negative regulation of	3,3	3,6				3,7		
	programmed cell death								
GO:0043090	amino acid import		3,4						3,8
GO:0043434	response to peptide hormone								2,1
GO:0045184	establishment of protein				2,0				
	localization								
GO:0046189	phenol-containing compound	2,2							
	biosynthetic process								
GO:0046487	glyoxylate metabolic process		2,2						
GO:0046686	response to cadmium ion								2,1
GO:0046907	intracellular transport				2,1				
GO:0048544	recognition of pollen		4,4						
GO:0050832	defense response to fungus		2,1						
GO:0060416	response to growth hormone								2,1
GO:0060548	negative regulation of cell death	3,4	3,7				3,8		
GO:0071277	cellular response to calcium ion					2,6			
GO:0071702	organic substance transport								2,1
GO:0090487	secondary metabolite catabolic				2,8				
	process								
GO:1901652	response to peptide								2,1

GO:1902582 single-organism intracellular transport

A5 Signifikant überexprimierte Transkripte in den kronenrostinokulierten *Lolium perenne*-Genotypen 6, 12 und 24 Stunden nach Inokulation

2,2

		VRG			RE			MRG				AG	
			12	24		12	24		12	24		12	24
gene_id	description	6 hpi	hpi	hpi	6 hpi	hpi	hpi	6 hpi	hpi	hpi	6 hpi	hpi	hpi
Abwehr- und St	ress induzierte Transkripte												
comp162236_c 0_seq3	(+)-neomenthol dehydrogenase (Capsicum annuum)			exklu siv						exklu siv			•
2635_3	(+)-neomenthol dehydrogenase (Capsicum annuum)									3,7			
Contig14075 comp150396_c	Acidic endochitinase P (<i>Nicotiana tabacum</i>)				4,1	3,5						4,4	4,2
0_seq1	Alpha-amylase/trypsin inhibitor (Z. mays)			3,8				3,0	2,6	5,3		ovklu	ovklu
0_seq3	Barwin (<i>H. vulgar</i> e)	2,3	3,2	4,0		4,8	4,8	3,2	3,2	4,3		siv	siv
LoliumRes_a11 92_855	Barwin (<i>H. vulgare</i>)		2,8	3,4	2,3	4,7	4,8	3,4	2,8	3,9	2,2	6,0	6,3
LoliumSus_a18 03_818	Barwin (<i>H. vulgare</i>)		2,8	3,4	2,4	4,8	4,9	3,4	2,8	3,9		5,7	6,1
comp173676_c 0_seq11	Basic endochitinase C (<i>S. cereale</i>)									2,5			
comp128715_c 0_seq1	Chitinase 2 (O. sativa subsp. japonica)			3,2				4,6		6,0			
0_seq12	Chitinase 2 (O. sativa subsp. japonica)					2,8							ovidu
0_seq14	Chitinase 2 (O. sativa subsp. japonica)									4,2			siv
0_seq2	Chitinase 2 (O. <i>sativa</i> subsp. <i>japonica)</i>					3,2						3,6	
comp1/36/6_c 0_seq3	Chitinase 2 (O. sativa subsp. japonica)			exklu siv						2,3			
comp173676_c 0_seq8	Chitinase 2 (<i>O. sativa</i> subsp. <i>japonica)</i>					3,5						exklu siv	

LoliumRes_a18 45_853	Chitinase 3 (<i>O. sativa</i> subsp. <i>japonica)</i>	3,1	2,8	4,6	2,8	5,8	5,5	3,3		3,9		6,8	7,1
comp184005_c 0_seq1	Chitinase 5 (<i>O. sativa</i> subsp. <i>japonica</i>)				5,0	3,3		3,5		3,4	3,0	3,9	
Contig12050 LoliumRes_a14	Chitinase 5 (O. sativa subsp. japonica)					exkiu siv	exkiu siv						3,5
950_116	Chitinase 5 (<i>O. sativa</i> subsp. <i>japonica)</i>	2,8	3,5		2,7	2,7						2,9	
82_187 LoliumRes_a94	Chitinase 5 (O. sativa subsp. japonica)	3,1	3,9		3,4	3,2	exklu					3,2	2,5
07_319 LoliumRes a46	Chitinase 5 (O. sativa subsp. japonica)						siv					3,6	4,3 exklu
032_49 comp172872 c	Chitinase 5 (O. sativa subsp. japonica)												siv
0_seq1 comp172872 c	Chitinase 6 (O. sativa subsp. japonica)				2,6			3,0		2,4		2,5	
0_seq3 comp172872 c	Chitinase 6 (O. sativa subsp. japonica)	exklu	exklu	exklu	3,7 exklu	exklu						2,7	
0_seq6 LoliumRes a33	Chitinase 6 (O. sativa subsp. japonica)	siv	siv	siv	siv	siv						o -	
257_71 LoliumRes a64	Chitinase 6 (O. sativa subsp. japonica)	2,6	2,2	0.5	3,2	0.4	0.0				2,0	2,5	
473_32 LoliumRes a55	Chitinase 6 (O. sativa subsp. japonica)	3,5	2,1	3,5 exklu	2,8	2,4	2,2					2,1	
289_63 comp173676_c	Chitinase 6 (O. sativa subsp. japonica)			siv			exklu	0 F		2.4			exklu
0_seq6	Chitinase) (O. sativa subsp. japonica)			3,2			siv	2,5		ა, I			siv
747_38	Cinnamoyl-CoA reductase 2 (<i>A. thaliana</i>)	2,6	2,4	2,4		3,5	2,8				4,7	6,2	5,6
Contig2821 comp171641_c	Cinnamyl alcohol dehydrogenase 7 (O. <i>sativa</i> subsp. <i>japonica</i>)	6,9	6,6	5,2	6,4	5,7	4,8	7,2	6,6	5,2	5,9	4,9	4,4
1_seq2 LoliumRes_a48	Cysteine proteinase inhibitor 8 (O. sativa subsp. japonica)				3,1				2.2			26	
576_60	Cysteine proteinase inhibitor 8 (O. sativa subsp. japonica)								3,Z			3,0	
LoliumRes_a13 642_178	Cytochrome B5 isoform D (A. thaliana)	2,4	2,2	2,7		3,9	3,0					3,7	2,9
LoliumRes_a37 381_44	Cytochrome b5 (<i>O. sativa</i> subsp. j <i>aponica</i>)					2,3							
LoliumRes_a13 2178_27	Cytochrome P450 99A2 (O. sativa subsp. japonica)	3,5	3,6		5,6	4,2	2,5		2,3	2,0	4,6	6,5	4,0
LoliumRes_a17 9414_9	Cytochrome P450 99A2 (O. sativa subsp. japonica)	2,6					2,3					3,8	3,0

LoliumRes_a26 355_40	Cytochrome P450 99A2 (<i>O. sativa</i> subsp. <i>japonica</i>)		2,4	3,1			2,9			2,2	1	3,0	3,4
LoliumRes_a69 5594_3	Cytochrome P450 99A2 (<i>O. sativa</i> subsp. <i>japonica</i>)		2,3			3,0	2,2			3,2	I	4,0	3,1
LoliumSus_a13 5198_15	Cytochrome P450 99A2 (<i>O. sativa</i> subsp. <i>japonica</i>)	2,9		2,3	3,4		2,9			2,2	I	3,6	3,2
LoliumSus_a24 5229_10	Cytochrome P450 99A2 (<i>O. sativa</i> subsp. <i>japonica</i>)	4,0	4,3	2,1	5,3	4,2			2,2		5,1	7,4	5,1
comp158010_c 0_seq1	Defensin-like protein 1 (<i>A. thaliana</i>)						exklu siv	3,4			I		
LoliumRes_a17 6379_12	Disease resistance protein RGA2 (S. bulbocastanum)				3,2						I		
LoliumRes_a20 5266_10	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)				4,2	3,6	2,2				I	2,8	
LoliumRes_a34 745_50	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)		2,3								I		
LoliumRes_a64 121_21	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)	3,6	2,8	2,3	3,9	4,6	3,0	2,6	2,9	2,7	2,3	3,8	2,1
LoliumRes_a70 140_30	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)				3,6						I		
LoliumSus_a12 3467_18	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)			exklu siv				2,0			I		
LoliumSus_a18 5718_11	Disease resistance protein RGA2 (S. bulbocastanum)		exklu siv								I		
LoliumSus_a54 158_38	Disease resistance protein RGA2 (<i>S. bulbocastanum</i>)										2,3		
LoliumSus_a79 2_360	Disease resistance protein RPH8A (A. thaliana)						2,3				I		2,8
LoliumRes_a11 0584_16	Disease resistance protein RPM1 (A. thaliana)				2,4						I		
LoliumRes_a16 0151_12	Disease resistance protein RPM1 (A. thaliana)				exklu siv	3,1					I		
LoliumRes_a23 390_36	Disease resistance protein RPM1 (A. thaliana)	2,6	2,5		2,0	2,3					2,2	3,4	2,3
LoliumRes_a43 2270 6	Disease resistance protein RPM1 (A. thaliana)				exklu siv						I	2,8	
LoliumRes_a49 106 19	Disease resistance protein RPM1 (A. thaliana)					2,4					I		
LoliumRes_a52 65 165	Disease resistance protein RPM1 (A. thaliana)		2,6								I		
LoliumSus_a25 150_57	Disease resistance protein RPM1 (A. thaliana)	2,3	2,2		2,8	2,8					I	2,9	

LoliumRes_a16 6216_12	Disease resistance protein RPM1 (A. thaliana)	3,3		3,1				2,5	2,2	2,1			
comp173707_c 1_seq14	Disease resistance protein RPM1 (<i>Triticum urartu</i>)				exklu siv								
LoliumRes_a19 7820 9	Disease resistance protein RPP13 (<i>A. thaliana</i>)				2,3								
LoliumRes_a25 362_26	Disease resistance protein RPP13 (A. thaliana)				2,1								
LoliumRes_a37 422_44	Disease resistance protein RPP13 (A. thaliana)					exklu siv	exklu siv					3,6	
LoliumSus_a21 184_35	Disease resistance protein RPP13 (A. thaliana)				2,9	2,7							
LoliumSus_a37 227_45	Disease resistance protein RPP13 (A. thaliana)						3,5						
LoliumSus_a45 910_22	Disease resistance protein RPP13 (A. thaliana)	2,9											
LoliumRes_a11 2802_12	Disease resistance protein RPS2 (A. thaliana)					4,0	2,4	2,7	2,0	2,2		3,5	2,1
LoliumSus_a63 220_22	Disease resistance protein RPS2 (A. thaliana)	2,1	2,3			2,6					2,8	3,9	2,3
LoliumSus_a65 114_16	Disease resistance protein RPS2 (A. thaliana)	2,1				2,4		2,5				3,7	2,2
LoliumRes_a11 357_126	Disease resistance response protein 206 (<i>Pisum sativum</i>)	2,4		4,4		4,7	4,0	2,4		2,4		4,1	3,0
LoliumRes_a38 602_59	Disease resistance response protein 206 (<i>Pisum sativum</i>)			3,5		2,2				2,5			
LoliumRes_a51 451_54	Disease resistance response protein 206 (<i>Pisum sativum</i>)	3,5	2,2	2,9							2,2	2,9	3,8
LoliumRes_a69 855_41	Disease resistance response protein 206 (<i>Pisum sativum</i>)	2,7	2,3	2,1	2,9	5,3	3,8	2,0	2,1			3,4	
LoliumRes_a46 707_24	Disease resistance RPP13-like protein 4 (A. thaliana)	2,7						2,0	2,5	2,6			2,4
LoliumRes_a10 47_723	Endochitinase A (<i>Z. mays</i>)			3,7	3,9	4,2	4,8	3,4		3,6	2,5	4,4	5,0
LoliumSus_a46 17_636	Endochitinase A (<i>Z. mays</i>)			2,2	2,8	3,9	3,9					2,9	3,8
comp172872_c 0_seq9	Endochitinase B (Fragment) (<i>Z. mays</i>)	2,6		3,1	2,8	3,8	3,5					3,2	3,8
LoliumRes_a15 270_95	Endochitinase B (Fragment) (<i>Z. mays</i>)	2,8	4,4		6,8	4,0	2,3				2,8	3,8	2,6
LoliumRes_a38 318_66	Endochitinase (<i>C. papaya</i>)											3,2	

LoliumRes_a14 6588_13	Ent-copalyl diphosphate synthase 2 (O. sativa subsp. indica)	3,7	4,7	4,6	4,5	7,8	5,1		2,3	3,2	3,9	7,2	4,6
LoliumSus_a12 1200_19	Ent-copalyl diphosphate synthase 2 (O. sativa subsp. indica)	3,4	4,2	4,0	3,1	6,4	3,5	2,2	2,5	3,5	4,3	7,4	4,2
LoliumRes_a52 16_338	Glucan endo-1,3-beta-glucosidase 13 (A. thaliana)									2,2			
LoliumSus_a61 412_39	Glucan endo-1,3-beta-glucosidase 8 (A. thaliana)				2,0	2,2							
LoliumRes_a44 53_490	Glucan endo-1,3-beta-glucosidase GII (<i>H. vulgare</i>)									exklu siv			
LoliumRes_a61 65_237	Glucan endo-1,3-beta-glucosidase GII (<i>H. vulgare</i>)	3,3	3,3	3,4									
LoliumSus_a99 04_168	Glucan endo-1,3-beta-glucosidase (<i>T. aestivum</i>)				2,5	4,0	2,2	2,1				2,5	
LoliumRes_a79 29_167	Glucan endo-1,3-beta-glucosidase (<i>T. aestivum</i>)				2,3	3,9	2,0	2,2				2,6	
comp115815_c 0_seq1	Glucan endo-1,3-beta-glucosidase, acidic isoform (Z. mays)			4,1	3,4	4,8	3,7	2,7	2,1	3,3	2,6	4,7	5,6
comp115815_c 0_seq2	Glucan endo-1,3-beta-glucosidase, acidic isoform (Z. mays)		2,1	3,9	3,7	5,3	3,9	2,8	2,1	3,4	3,0	5,8	6,4
comp132107_c 0_seq1	Glucan endo-1,3-beta-glucosidase, acidic isoform (Z. mays)	2,3	2,1	4,5	2,6	4,2	4,9	3,6	3,2	4,4		3,3	5,3
LoliumRes_a13 4_2812	Glucan endo-1,3-beta-glucosidase, acidic isoform (Z. mays)			2,9	4,0	4,2	5,4	2,1		3,1		4,2	6,3
LoliumRes_a16 067_223	Glucan endo-1,3-beta-glucosidase, acidic isoform (Z. mays)									exklu siv			siv
LollumRes_a31 45_972	Glucan endo-1,3-beta-glucosidase, acidic isoform (Z. mays)			4,4		exkiu siv	exklu siv	4,2	3,6	4,6			siv
22_317	Glucan endo-1,3-beta-glucosidase, acidic isoform (Z. mays)		3,2	5,0		exkiu siv		3,2	2,6	3,1			siv
LollumRes_a58 59_528	Glucan endo-1,3-beta-glucosidase, acidic isoform (Z. mays)			4,0	4,6	5,9	4,2	3,1	2,6	3,6	4,3	6,4	7,1
LollumRes_a70 7_2096	Glucan endo-1,3-beta-glucosidase, acidic isoform (Z. mays)	2,3	2,2	4,6	3,5	5,4	5,8	4,0	3,2	4,5		4,6	6,2
11_410	Glucan endo-1,3-beta-glucosidase, acidic isoform (Z. mays)									siv			3,4
1_seq7	Glutathione transferase GST 23 (Z. mays)				2,2			2,8				a vitele e	ميراران
Contig1287	Glutathione transferase GST 23 (Z. mays)	3,1	3,4	3,7		4,9	4,5					siv	siv
231_95	Glutathione transferase GST 23 (Z. mays)				2,4	3,8	3,8			2,0		2,3	2,7

LoliumRes_a29	Glutathione transferase GST 23 (7 mays)		2,0	2,5		2,6	3,1					3,7	3,4
LoliumRes a81	Giulatilone transferase GOT 25 (2. mays)												
85 242	Glutathione transferase GST 23 (Z. mavs)	2,4		2,3	3,2	3,7	3,7	2,1		2,2	4,1	5,7	5,6
LoliumRes a95		0.0	0.0								1		
09 159 _	Glutathione transferase GST 23 (Z. mays)	2,8	2,6								1		
LoliumSus_a17				2.1	24	16	5.0				1	25	20
157_105	Glutathione transferase GST 23 (Z. mays)			۷,۱	3,4	4,0	5,0				1	2,5	2,0
LoliumSus_a55				29		26	3.0	21		21	1	37	32
538_47	Glutathione transferase GST 23 (Z. mays)			2,0		2,0	0,0	2,1		۲,۱	1	0,1	0,2
LoliumRes_a23 282 47	Heat shock 70 kDa protein 17 (<i>A. thaliana</i>)					2,3						2,4	
 comp157442_c					2.0	26	2.2		2.2		1	07	
1_seq1	Heat shock protein 81-1 (O. sativa subsp. indica)				2,9	3,0	2,2		2,2		1	2,7	
LoliumRes_a53	Heat shock protein 81-1 (O sativa subsp. janonica)		31						26		1	26	
44_415			0,1						2,0		1	2,0	
LoliumRes_a59 2 1257	Heat shock protein 81-1 (O. sativa subsp. japonica)		2,6			2,1			2,4			2,5	
LoliumRes a87	Heat sheak protein 91.1 (O setive suban isnanias)		26		2.0	26			2.2		1	26	
8_1537 _	Heat shock protein of -1 (O. sativa subsp. japonica)		2,0		2,0	2,0			2,2		1	2,0	
comp168532_c						32			21		1	3.0	
1_seq1	Heat shock protein 81-3 (O. sativa subsp. japonica)					0,2			2,7		1	5,0	
comp168532_c			27			28			27		1	29	
1_seq2	Heat shock protein 81-3 (O. sativa subsp. japonica)		_ ,.			2,0			_,.		1	2,0	
comp168532_c			2,7			3.0			2,1		1	2.6	
1_seq4	Heat shock protein 81-3 (O. sativa subsp. japonica)		,			,			,		1	، میرادان	
LOIIUMRes_azi	Heat sheak protein 91.2 (O setive suban isnanias)										1	exkiu	
900_100 LoliumRes 268	Heat shock protein or-5 (O. Saliva subsp. Japonica)										1	517	
1 2004	Heat shock protein 81-3 (O sativa subsp. <i>janonica</i>)		2,6			2,9			2,7		1	2,6	
LoliumSus a31											1		
068 103	Heat shock protein 81-3 (O. <i>sativa</i> subsp. <i>japonica</i>)								4,6		1		
LoliumSus a35			0.4			0.0			0.0		1	07	
6 2473	Heat shock protein 81-3 (O. sativa subsp. japonica)		2,1			2,8			2,6		1	2,7	
LoliumRes_a12	Heat shock protein 00 1 (A thaliana)								3.2		1		
83_869	Theat shock protein 90-1 (A. thailana)								3,2		1		
comp93201_c0					exklu		exklu	54			1	exklu	exklu
_seq1	Heat shock protein 90-2 (<i>A. thaliana</i>)				siv		siv	0,1			1	siv	siv
comp129730_c	$ \mathbf{x}_{1} = \frac{1}{2} \left(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{2$						exklu				1		
U_seq2	Inositol-3-phosphate synthase isozyme 2 (A. thaliana)						SIV				1		
LollumRes_a47 312 37	Major pollen allergen Aln g 1(<i>Alnus glutinosa</i>)	3,6	5,3	3,0	3,7	5,2	3,1	3,0	3,6	3,5	3,7	7,6	5,5

LoliumSus_a10 3345_21	Major pollen allergen Aln g 1 (<i>A. glutinosa</i>)	2,9	4,9	2,7	3,6	5,5	3,5	3,2	3,8	3,8	4,2	8,3	6,4
LoliumRes_a27 219_42	Nematode resistance protein-like HSPRO2 (A. thaliana)				2,6	3,6					2,0	3,2	
comp102523_c 0_seq1 comp167847_c	Pathogenesis-related protein 1 (<i>H. vulgare</i>)									exklu siv			
4_seq8	Pathogenesis-related protein 1 (A. officinalis)		3,5		2,5								
LollumRes_a13 101_143	Pathogenesis-related protein 1 (A. officinalis)	2,8	2,8	4,4			2,7			2,7			2,1
LoliumRes_a16 718_148	Pathogenesis-related protein 1 (A. officinalis)			4,1			2,8	3,4	3,6	4,3			
LoliumRes_a15 391 110	Pathogenesis-related protein 1 (H. vulgare)			4,5		2,8	3,6					2,9	4,7
LoliumRes_a30 011 122	Pathogenesis-related protein 1 (H. vulgare)			exklu siv						5,2			
LoliumSus_a14 9148 14	Pathogenesis-related protein 1 (H. vulgare)			4,3			exklu siv	2,9	2,8	5,0			exklu siv
LoliumSus_a24 893 122	Pathogenesis-related protein 1 (H. vulgare)	exklu siv	exklu siv	exklu siv		2,7	3,4						3,6
 LoliumSus_a56 245_64	Pathogenesis-related protein 1 (H. vulgare)						exklu siv			6,6			exklu siv
LoliumRes_a20 608_82	Pathogenesis-related protein 10 (H. vulgare)	3,1	2,6		5,1	3,9	3,5	2,1			3,4	5,0	3,4
LoliumSus_a27 769_81	Pathogenesis-related protein 10 (H. vulgare)	2,9	2,0		3,9	3,1	2,5				exklu siv	exklu siv	exklu siv
LoliumRes_a72 10 241	Pathogenesis-related protein 4 (T. monococcum)			4,5		2,7	5,2			3,3		2,5	5,5
Contig1333	Pathogenesis-related protein 5 (A. thaliana)	5,2	5,6	4,0	5,4	5,5	4,4	6,0	6,3	5,1	5,3	4,7	4,9
comp122934_c 0_seq1	Pathogenesis-related protein P2 (Solanum lycopersicum)		3,8	4,7		exklu siv	exklu siv	3,0	3,3	4,0		exklu siv	exklu siv
comp122934_c 0_seq2	Pathogenesis-related protein P2 (S. lycopersicum)	2,9				exklu siv	exklu siv	3,5	3,3	4,1		exklu siv	exklu siv
comp171473_c 1 sea1	Pathogenesis-related protein PRB1-3 (H. vulgare)						exklu siv	2,6	2,7	4,7			3,6
comp171473_c	Pathogenesis related protein PPR1 3 (H vulgare)			5,3			3,1	2,5	2,6	4,8			3,7
comp171473_c							exklu	4.6		7.1			exklu
1_seq7 comp171473_c	Pathogenesis-related protein PRB1-3 (<i>H. vulgare</i>)						sıv exklu	4.0	45	7.2			SIV
1_seq9 LoliumRes_a44	Pathogenesis-related protein PRB1-3 (<i>H. vulgare</i>)		a :				siv	4,9	4,0	r,∠			4,0
_5146	Pathogenesis-related protein PRB1-3 (H. vulgare)		2,4	4,0		4,4	5,5	2,3	2,2	2,5		4,9	6,2

comp171473_c 1_seq5	Pathogenesis-related protein PRB1-3 (<i>H. vulgare</i>)						exklu siv			exklu siv			exklu siv
comp165814_c 4 seq1	Pathogenesis-related protein STH-2 (S. tuberosum)	3,2	4,4	3,1	5,0	6,6	4,9	2,6	2,9	3,4	5,5	8,6	6,7
comp165814_c 4 seq2	Pathogenesis-related protein STH-2 (S. tuberosum)	2,7	3,5	3,2					2,5	3,4			
comp165814_c 4_seq3	Pathogenesis-related protein STH-2 (<i>S. tuberosum</i>)	2,8	4,1	2,7	5,4	7,1	5,5	3,2	3,4	3,8	3,6	6,8	4,9
comp165814_c 4_seq4	Pathogenesis-related protein STH-2 (S. tuberosum)	3,1	3,9	3,5					2,5	3,2			
comp165814_c 4_seq5	Pathogenesis-related protein STH-2 (S. tuberosum)	4,4	5,9	5,3					2,3	3,1			
comp165814_c 4_seq6	Pathogenesis-related protein STH-2 (S. tuberosum)	3,3	4,4	3,1	5,4	7,2	5,5	2,8	3,0	3,5	4,2	7,2	5,1
LoliumRes_a20 01_378	Pathogenesis-related protein STH-21 (S. tuberosum)	3,4	4,5	3,3	3,6	5,2	3,9	2,6	2,9	3,3	3,7	6,8	4,9
comp176334_c 0_seq1	Pathogenesis-related protein STH-21 (S. tuberosum)									2,4			
comp123177_c 0_seq1	Pathogen-related protein 10-3 (<i>L. perenne</i>)				exklu siv								
comp159354_c 0_seq1	Pathogen-related protein 10-3 (<i>L. perenne</i>)				3,3								
0_seq3	Pathogen-related protein 10-3 (L. perenne)												2,3
0_seq6	Pathogen-related protein 10-3 (<i>L. perenne</i>)												2,1
169_243	Pathogen-related protein (<i>H. vulgare</i>)											2,5	
033_138	Pathogen-related protein (<i>H. vulgare</i>)										2,1	3,4	2,4
695_98	Pathogen-related protein (<i>H. vulgare</i>)					4,0	4,2					siv	siv
602_175	Pathogen-related protein (<i>H. vulgare</i>)											3,0	
738_87	Pathogen-related protein (<i>H. vulgare</i>)				3,0	2,8							
293_12	Probable disease resistance protein At1g58390 (<i>A. thaliana</i>)				3,4							3,2	2,1
992_15	Probable disease resistance protein RDL5 (A. thaliana)					4,1	3,4						
7443_10	Probable disease resistance protein RXW24L (A. thaliana)											2,9	

LoliumRes_a39 507_38	Probable disease resistance RPP8-like protein 2 (A. thaliana)				3,7								
LoliumRes_a98 716_12	Probable disease resistance RPP8-like protein 4 (A. thaliana)					2,5					2,3	3,2	
LoliumRes_a39 467_47	Probable glucan endo-1,3-beta-glucosidase A6 (A. thaliana)	2,9		2,3	exklu siv	exklu siv	exklu siv	2,7		2,5			
LoliumSus_a34 562_72	Probable glucan endo-1,3-beta-glucosidase A6 (A. thaliana)	2,9		2,6	3,5	5,6	4,2			2,1			
LoliumRes_a17 4490_9	Protein BONZAI 1 (<i>A. thaliana</i>)					3,1						2,7	
LoliumSus_a22 6438_7	Protein BONZAI 3 (A. thaliana)					3,0						exklu siv	
LoliumRes_a28 3022_9	Putative disease resistance protein At1g50180 (A. thaliana)							2,6					
LoliumSus_a10 5946_16	Putative disease resistance protein At1g59780 (A. thaliana)				3,9						3,9	4,1	3,3
LoliumRes_a42 686_24	Putative disease resistance protein At3g14460 (A. thaliana)	3,7			2,6						2,3		
LoliumRes_a18 483_49	Putative disease resistance protein RGA1 (S. bulbocastanum)						2,2						
LoliumSus_a57 851_17	Putative disease resistance protein RGA1 (S. bulbocastanum)	3,9	4,2	3,3	4,9	5,8	3,5	2,8		2,3	4,4	5,2	3,9
LoliumRes_a12 1284_14	Putative disease resistance protein RGA3 (S. bulbocastanum)				exklu siv								
LoliumRes_a17 1058_9	Putative disease resistance protein RGA3 (S. bulbocastanum)					exklu siv	exklu siv					exklu siv	exklu siv
LoliumRes_a50 8204_6	Putative disease resistance protein RGA3 (S. bulbocastanum)			exklu siv			exklu siv	3,5		3,4			exklu siv
LoliumRes_a98 467_11	Putative disease resistance protein RGA3 (S. bulbocastanum)	2,3				3,6						4,0	2,5
LoliumSus_a71 773_22	Putative disease resistance protein RGA3 (S. bulbocastanum)				2,7	2,9						3,0	
LoliumRes_a33 0467_7	Putative disease resistance protein RGA4 (S. bulbocastanum)	2,9	3,8	3,6	2,6	5,1	4,3	2,5	2,9	2,1		exklu siv	exklu siv
LoliumRes_a83 612_14	Putative disease resistance protein RGA4 (S. bulbocastanum)				2,9	3,8	2,6						
LoliumSus_a21 7148_9	Putative disease resistance protein RGA4 (S. bulbocastanum)		4,1		2,6	2,4	2,5						
LoliumSus_a30 2184_8	Putative disease resistance protein RGA4 (S. bulbocastanum)		4,6	4,3		2,9	2,4	2,2	2,5			3,0	2,3
LoliumSus_a69 095_17	Putative disease resistance protein RGA4 (S. bulbocastanum)					2,2						3,1	

LoliumRes_a12 1993_12	Putative disease resistance RPP13-like protein 1 (A. thaliana)	2,7	2,1	2,5								2,7	
LoliumRes_a49 66_64	Putative disease resistance RPP13-like protein 1 (A. thaliana)												2,2
LoliumSus_a12 0130_18	Putative disease resistance RPP13-like protein 1 (A. thaliana)					exklu siv	exklu siv		3,8	3,4			exklu siv
LoliumRes_a54 6091_4	Putative disease resistance RPP13-like protein 3 (A. thaliana)								exklu siv				
LoliumRes_a97 26_93	Putative disease resistance RPP13-like protein 3 (A. thaliana)												2,2
LoliumSus_a12 2253_16	Putative disease resistance RPP13-like protein 3 (A. thaliana)											3,7	
LoliumSus_a12 9293_12	Putative disease resistance RPP13-like protein 3 (A. thaliana)										2,2	2,5	2,1
LoliumSus_a50 984_19	Putative disease resistance RPP13-like protein 3 (A. thaliana)	2,1			3,1	2,8	2,9				3,6	4,8	4,5
LoliumSus_a23 4749 10	Putative glucan endo-1,3-beta-glucosidase GVI (Fragment) (<i>H. vulgare</i>)						2,5						
LoliumRes_a63 307_17	Putative late blight resistance protein homolog R1A-6 (<i>S. demissum</i>)	2,5		2,1	2,0	2,5						3,3	2,2
LoliumRes_a73 6191_3	Resistance protein RGA2 (<i>Triticum urartu</i> var. <i>urartu</i>)							3,8	3,6				
LoliumRes_a15 7432_9	Reticuline oxidase-like protein (A. thaliana)	2,5	2,7	2,4									
LoliumRes_a30 151_42	Reticuline oxidase-like protein (A. thaliana)	2,4		4,6		4,5	6,9			3,8			3,1
Contig3636	Thaumatin-like pathogenesis-related protein 1 (A. sativa)	4,7	5,5	4,5	5,7	6,0	5,5	6,0	6,6	5,9	6,0	6,0	6,3
2_2592	Thaumatin-like pathogenesis-related protein 2(A. sativa)		2,3	3,1	2,5	4,3	5,1	2,6	2,4	2,7	2,0	4,7	6,1
958_150	Thaumatin-like pathogenesis-related protein 4 (A. sativa)	3,0	3,7	3,9	2,1	4,8	5,6		2,1	3,7		4,8	5,3
225_89	Thaumatin-like pathogenesis-related protein 4 (A. sativa)	3,1	3,5	4,0	2,9	5,6	6,4		2,0	3,6		5,7	6,0
comp1/4803_c 1_seq2	Thaumatin-like pathogenesis-related protein (A. sativa)			4,4				3,0	3,6	3,5			exkiu siv
comp228522_c 0_seq1	Thaumatin-like protein 1 (<i>Castanea sativa</i>)			exklu siv			exklu siv			exklu siv			exklu siv
comp131978_c 2_seq1	Wheatwin-2 (<i>T. aestivum</i>)			4,9		3,0	5,2			3,3		4,4	7,4
comp175497_c 0_seq1	Wheatwin-2 (<i>T. aestivum</i>)		2,2	3,0	exklu siv	exklu siv	exklu siv	3,7	3,3	4,3		4,8	5,8
LoliumRes_a23 00_676	Wheatwin-2 (<i>T. aestivum</i>)			5,0		3,7	5,7			3,3		2,7	5,7

LoliumRes_a26 71_773	Wound-induced protein WIN2 (S. tuberosum)		2,9	3,8	2,6	5,0	5,1	3,4	2,9	3,9	3,2	6,5	6,9
comp154752_c 0_seq5	Zeamatin (<i>Z. mays</i>)			exklu siv				4,5	3,6	6,8			
LoliumRes_a52 0_1880	Zeamatin (<i>Z. mays</i>)			4,0			4,2			2,2			4,6
LollumRes_a68 140_45	Zeamatin (<i>Z. mays</i>)			exkiu siv				3,5	3,1	5,6			
Transkription ur	nd Signalübertragung												
LoliumRes_a11 809_59	5'-3' exoribonuclease 4 (A. thaliana)												2,1
LoliumRes_a18 6_1624	Calreticulin-3 (<i>A. thaliana</i>)											2,3	
comp160750_c 0_seq5	CBL-interacting protein kinase 16 (O sativa subsp. japonica)				exklu siv								
LoliumRes_a62	Chitin elicitor-binding protein (<i>O. sativa</i> subsp. <i>japonica</i>)				UIV	2,2							
LoliumRes_a28 1764_8	Cysteine-rich receptor-like protein kinase 19 (A. thaliana)			2,4									
LoliumSus_a32 7570_10	Cysteine-rich receptor-like protein kinase 19 (A. thaliana)									2,3			
LoliumRes_a53 983_31	Cysteine-rich receptor-like protein kinase 5 (A. thaliana)	3,0				2,3					2,8	2,9	
LoliumRes_a21 9355_11	Cysteine-rich receptor-like protein kinase 7 (A. thaliana)			2,2									
LoliumRes_a30 3232_6	Cysteine-rich receptor-like protein kinase 7 (A. thaliana)			2,1									
LoliumRes_a33 4688_5	Cysteine-rich receptor-like protein kinase 7 (A. thaliana)	3,2			5,1	4,6	3,6	3,5	2,4	2,3	exklu siv	exklu siv	exklu siv
LoliumRes_a74 481_38	Cysteine-rich receptor-like protein kinase 7 (A. thaliana)	3,4	3,1	2,9	4,0	4,7	3,2	2,3	2,1		4,0	4,8	3,5
LoliumRes_a94 930_31	Cysteine-rich receptor-like protein kinase 7 (A. thaliana)	4,7	3,8	3,1	3,1						2,5		
LoliumSus_a58 581_43	Cysteine-rich receptor-like protein kinase 7 (A. thaliana)	3,6	3,6	3,1	3,8	4,7	2,9				6,0	6,7	5,5
LoliumRes_a71 702_29	E3 ubiquitin-protein ligase ATL6 (A. thaliana)	6,4	5,1	4,9	3,6	4,5	3,3	3,1	2,2	2,8	4,8	6,2	5,0
LoliumRes_a96 773_21	E3 ubiquitin-protein ligase ATL6 (<i>A. thaliana</i>)				4,0	2,1					2,3		
LoliumSus_a73 822_30	E3 ubiquitin-protein ligase ATL6 (A. thaliana)	3,8	2,9	3,3	4,8	6,3	5,0	3,0	2,2	2,6	4,4	6,1	4,7
comp150518_c 0_seq1	E3 ubiquitin-protein ligase PUB22 (A. thaliana)					exklu siv							

comp150518_c					exklu					
U_seq2	E3 ubiquitin-protein ligase POB22 (A. thailana)				SIV		ovklu			
04983 3	E3 ubiquitin-protein ligase PUB22 (A. thaliana)						siv			
LoliumRes a18				0.5	0.4			exklu	exklu	exklu
4262_10	E3 ubiquitin-protein ligase PUB23 (A. thaliana)			3,5	6,4	4,5		siv	siv	siv
LoliumRes_a29		exklu	exklu							
9846_5	E3 ubiquitin-protein ligase PUB23 (A. thaliana)	siv	siv							
LoliumRes_a54 244_34	E3 ubiquitin-protein ligase SPL11 (O. sativa subsp. japonica)								2,2	2,0
LoliumSus_a44 064_34	E3 ubiquitin-protein ligase SPL11 (O. sativa subsp. japonica)								2,8	2,9
LoliumRes_a31 000_64	E3 ubiquitin-protein ligase XB3 (O. sativa subsp. japonica)		2,5							
LoliumSus_a59 94_220	Ethylene-responsive transcription factor 1 (S. lycopersicum)				2,3				2,1	
LoliumRes_a72 91 173	Ethylene-responsive transcription factor 1A (A. thaliana)				2,1			3,2	3,0	2,9
LoliumRes_a14 1091 16	Ethylene-responsive transcription factor 1B (A. thaliana)				3,7	3,4				
LoliumSus_a12 8071_21	Ethylene-responsive transcription factor 1B (A. thaliana)				3,8	3,4			exklu siv	
LoliumRes_a11 629 147	Ethylene-responsive transcription factor 3 (A. thaliana)			2,7						
LoliumSus_a10 047 126	Ethylene-responsive transcription factor 4 (Nicotiana sylvestris)			2,8						
LoliumRes_a36 771_51	Ethylene-responsive transcription factor 5 (A. thaliana)			3,9	2,9					
LoliumSus_a37 194_63	Ethylene-responsive transcription factor 5 (A. thaliana)			3,7	2,6					
LoliumRes_a29 0854_6	Ethylene-responsive transcription factor ERF094 (A. thaliana)	exklu siv								
LoliumRes_a77 199_31	Ethylene-responsive transcription factor ERF094 (A. thaliana)	3,0		exklu siv	exklu siv				4,1	
LoliumSus_a10 5426_17	Ethylene-responsive transcription factor ERF094 (A. thaliana)	2,7		3,8	2,4		2,9		exklu siv	exklu siv
LoliumSus_a54 4067_3	Ethylene-responsive transcription factor ERF094 (A. thaliana)	exklu siv								
LoliumSus_a94 68_72	F-box/LRR-repeat MAX2 homolog (O. sativa subsp. japonica)			2,3						
comp101129_c 0_seq1	FHA domain-containing protein DDL (A. thaliana)	4,5		3,5			4,9			exklu siv

LoliumRes_a34 118_55	GDP-L-galactose phosphorylase 1 (A. thaliana)		3,6		3,4	2,2			4,0		3,0	3,7	
comp140254_c 0_seg2	GDP-I -galactose phosphorylase 2 (A thaliana)								2,0			2,3	
LoliumRes_a54	Glutamate receptor 2.7 (<i>A. thaliana</i>)				3,6						4,1	4,9	4,4
LoliumRes_a83 663 16	Glutamate receptor 2.7 (A. thaliana)		4,3		exklu siv							2,5	2,0
LoliumSus_a11 1189 23	Glutamate receptor 2.7 (A. thaliana)	3,1	3,4	2,1	exklu siv	exklu siv	exklu siv	2,3	2,5		5,0	6,0	5,0
LoliumRes_a18 8651 12	G-type lectin S-receptor-like serine/threonine-protein kinase B120 (<i>A. thaliana</i>)	2,4		2,1									
LoliumRes_a40 029 18	G-type lectin S-receptor-like serine/threonine-protein kinase B120 (<i>A. thaliana</i>)	2,6		2,4								2,2	
LoliumRes_a47 799_16	G-type lectin S-receptor-like serine/threonine-protein kinase B120 (<i>A. thaliana</i>)	2,2			2,7	3,4	2,2	2,0			3,6	5,1	4,0
LoliumSus_a31 3510_6	G-type lectin S-receptor-like serine/threonine-protein kinase B120 (<i>A. thaliana</i>)			exklu siv									
– Contig3760	G-type lectin S-receptor-like serine/threonine-protein kinase SD1-13 (A. <i>thaliana</i>)			3,3									
LoliumRes_a38 50 193	Jasmonate O-methyltransferase (A. thaliana)	4,6	3,8	4,2	5,0	6,8	4,4	3,4	3,3	3,6	3,8	6,3	3,6
LoliumSus_a79 48 118	Jasmonate O-methyltransferase (A. thaliana)	4,7	4,2	4,2	4,8	6,3	3,8	3,3	3,2	3,4	4,1	6,8	4,0
LoliumRes_a55 1946_6	Leucine-rich repeat receptor-like protein kinase PEPR1 (<i>A. thaliana</i>)				2,4	3,3		3,2	3,7				
LoliumSus_a35 410 37	Leucine-rich repeat receptor-like protein kinase PEPR2 (A. thaliana)												4,2
comp135117_c 0 sea2	Leucine-rich repeat receptor-like serine/threonine/tyrosine- protein kinase SOBIR1 (<i>A. thaliana</i>)				3,6	3,9	2,6	2,6	2,2			3,4	2,7
Contig3171	Leucine-rich repeat receptor-like serine/threonine/tyrosine- protein kinase SOBIR1 (<i>A. thaliana</i>)				2,6	3,5	2,2				2,1	2,4	2,2
LoliumRes_a28 81 334	Leucine-rich repeat receptor-like serine/threonine/tyrosine- protein kinase SOBIR1 (A. thaliana)				2,6	3,0	2,2				2,5	3,5	3,0
LoliumSus_a49 89_176	Leucine-rich repeat receptor-like serine/threonine/tyrosine- protein kinase SOBIR1 (<i>A. thaliana</i>)				2,5	2,8	2,1				2,5	3,4	3,1
LoliumRes_a33 6644 5	LOB domain-containing protein 41 (<i>A. thaliana</i>)	exklu siv						4,6					
LoliumSus_a54 507 42	LRR receptor-like serine/threonine-protein kinase EFR (<i>A. thaliana</i>)		2,1										
LoliumSus_a62 816_32	LRR receptor-like serine/threonine-protein kinase EFR (A. thaliana)												3,5

LoliumRes_a12 5468_15	LRR receptor-like serine/threonine-protein kinase FLS2 (A. thaliana)	2,4			3,4						2,2		
LoliumRes a29	LRR receptor-like serine/threonine-protein kinase FLS2 (A.				exklu								
9027 5 _	thaliana)				siv								
LoliumRes a60	LRR receptor-like serine/threonine-protein kinase FLS2 (A.				0.7								
5768 5	thaliana)				3,7						4,1		
LoliumSus a19	LRR receptor-like serine/threonine-protein kinase FLS2 (A.				exklu						2.0	07	0.0
5838_8	thaliana)				siv						3,2	2,7	۷,۷
LoliumSus_a31	LRR receptor-like serine/threonine-protein kinase FLS2 (A.	25			07						2.2	2.0	
998_41	thaliana)	2,5			2,7						2,3	2,0	
LoliumRes_a10	L-type lectin-domain containing receptor kinase IV.1 (A.												27
1869_16	thaliana)												2,7
LoliumRes_a11	L-type lectin-domain containing receptor kinase IV.1 (A.	2.2	2 1	2.0	10	47	26	2.1	0.1		10	57	4.4
033_102	thaliana)	3,3	з, I	2,0	4,9	4,7	3,0	∠, I	Ζ,Ι		4,2	5,7	4,4
LoliumRes_a13	L-type lectin-domain containing receptor kinase IV.1 (A.	27			exklu	exklu	exklu	27			exklu	exklu	exklu
0178_14	thaliana)	2,1			siv	siv	siv	5,7			siv	siv	siv
LoliumRes_a14	L-type lectin-domain containing receptor kinase IV.1 (A.	3.8	35	35	12	61	16	28	26	31	37	51	37
2053_19	thaliana)	5,0	5,5	5,5	4,2	0,1	4,0	2,0	2,0	5,1	5,7	5,4	3,7
LoliumRes_a37	L-type lectin-domain containing receptor kinase IV.1 (A.	25	26	21		25					26	3.0	37
517_32	thaliana)	2,5	2,0	۲,۱		2,5					2,0	5,9	3,7
LoliumRes_a42	L-type lectin-domain containing receptor kinase IV.1 (A.												31
8413_7	thaliana)												5,7
LoliumRes_a43	L-type lectin-domain containing receptor kinase IV.1 (A.	3.6	27	35	3.1	15	35	23	20	25	13	56	10
247_39	thaliana)	5,0	2,1	5,5	5,1	4,5	5,5	2,5	2,0	2,5	4,5	5,0	4,9
LoliumRes_a53	L-type lectin-domain containing receptor kinase IV.1 (A.							20	21				
588_25	thaliana)							2,5	∠,⊤				
LoliumRes_a57	L-type lectin-domain containing receptor kinase IV.1 (A.	40	31	26	65	49	39	23			67	70	58
022_27	thaliana)	4,0	0,1	2,0	0,0	7,5	0,0	2,0			0,1	7,0	0,0
LoliumRes_a69	L-type lectin-domain containing receptor kinase IV.1 (A.					3.0	28					51	49
516_38	thaliana)					0,0	2,0					0,1	4,0
LoliumRes_a71	L-type lectin-domain containing receptor kinase IV.1 (A.		24	32	25	40	48					45	57
954_33	thaliana)		<i>2</i> , 1	0,2	2,0	1,0	1,0					1,0	0,1
LoliumRes_a81	L-type lectin-domain containing receptor kinase IV.1 (A.	24		28		39	36						27
363_43	thaliana)	2,1		2,0		0,0	0,0						2,1
LoliumRes_a89	L-type lectin-domain containing receptor kinase IV.1 (A.	41	43	44		3.0	29					39	35
806_29	thaliana)	.,.	1,0	1,1		0,0	2,0					0,0	0,0
LoliumRes_a91	L-type lectin-domain containing receptor kinase IV.1 (A.	22	32		61	67	49				39	56	40
13_100	thaliana)	_,_	0,2		0,1	0,1	1,0				0,0	0,0	1,0
LoliumRes_a96	L-type lectin-domain containing receptor kinase IV.1 (A.		2.3		2.2	3.0						2.5	
153_27	thaliana)		_,•		_,_	0,0						_,•	
LoliumSus_a10	L-type lectin-domain containing receptor kinase IV.1 (A.	2.0	2.9		3.6	4.7	3.0				3.6	5.3	4.0
231_87	thaliana)	2,0	<u> </u>		0,0	.,.	0,0				0,0	0,0	.,5

LoliumSus_a15 9227 14	L-type lectin-domain containing receptor kinase IV.1 (<i>A. thaliana</i>)	5,1	4,2		3,9	5,5	3,8	3,3			2,9	3,7	2,9
LoliumSus_a17	L-type lectin-domain containing receptor kinase IV.1 (<i>A. thaliana</i>)												3,9
LoliumSus_a18	L-type lectin-domain containing receptor kinase IV.1 (A.							2,7					
LoliumSus_a24	L-type lectin-domain containing receptor kinase IV.1 (A.		25										26
4520_11 LoliumSus_a61	thaliana)		_,0										_,0
533_25	thaliana)	3,9	2,9	2,2	5,6	4,5	3,4	2,0			5,6	6,1	4,5
LoliumSus_a70 559_35	L-type lectin-domain containing receptor kinase IV.1 (<i>A. thaliana</i>)	2,9		3,1	3,7	5,5	5,3						2,6
LoliumSus_a93	L-type lectin-domain containing receptor kinase IV.1 (<i>A. thaliana</i>)			2,1		3,9	3,2					4,2	4,2
comp161008_c	L-type lectin-domain containing receptor kinase IV.2 (A.	5.2	6.0		4.0	5.6			5.4			exklu	
0_seq4	(haliana)	-,_	-,-		.,-	-,-			-, -			SIV	
0_seq5	thaliana)	5,4	6,4		4,4	5,8						4,1	
comp161008_c	L-type lectin-domain containing receptor kinase IV.2 (<i>A. thaliana</i>)	4,0	5,1		3,3	4,5			3,4			4,0	
comp161008_c	L-type lectin-domain containing receptor kinase IV.2 (A.	55	6.0	3 1	18	59		16	10			5.0	
0_seq8	thaliana)	0,0	0,0	0,1	7,0	0,0		4,0	т,5			5,0	
comp161008_c	L-type lectin-domain containing receptor kinase IV.2 (A.	5,4	6,3	3,4	3,5	4,9		3,6	3,6			exklu	
comp181454 c	L-type lectin-domain containing receptor kinase IV.2 (A.					0.5						517	
0_seq1	thaliana)					2,5							
LoliumRes_a10	L-type lectin-domain containing receptor kinase IV.2 (A.	5,7	5,9	6,6	exklu	exklu	exklu	3,0	2,4	3,0		exklu	exklu
l oliumRes a19	I -type lectin-domain containing receptor kinase IV.2 (A				SIV	SIV	exklu					SIV	SIV
2180_14	thaliana)						siv	2,3					2,0
LoliumRes_a22	L-type lectin-domain containing receptor kinase IV.2 (A.	3.9	4.1	4.9		4.5	4.2	2.8	2.7	4.0		5.1	6.1
029_46	thaliana)	0,0	.,.	1,0		1,0	.,_	2,0	-,.	1,0		0,1	0,1
LollumRes_a25	L-type lectin-domain containing receptor kinase IV.2 (A.	3,3			3,6	3,4	3,5	2,1			2,2		2,3
LoliumRes a35	L-type lectin-domain containing receptor kinase IV.2 (A.			0.4				0.0	07	0.0			
0286_4	thaliana)			3,4				3,0	2,7	2,3			
LoliumRes_a35	L-type lectin-domain containing receptor kinase IV.2 (A.	2.8	2.7		2.8	3.8	2.6				2.1	3.1	2.2
766_79	thaliana)	2,0	_ ,.		2,0	0,0	2,0				_, ·	0,1	_,_
LollumRes_a39	L-type lectin-domain containing receptor kinase IV.2 (A.	2,2						2,7			3,6		
LoliumRes a82	I -type lectin-domain containing receptor kinase IV 2 (A		exklu										
4672_3	thaliana)		siv		2,2								
LoliumSus_a37 334 71	L-type lectin-domain containing receptor kinase IV.2 (A. thaliana)	2,3	2,4			2,1						3,3	2,8
--------------------------	--	--------------	-------	-----	-------	-------	-----	------------	-----	-----	-----	-----	-------
LoliumRes_a55 220 24	Mediator of RNA polymerase II transcription subunit 15a (A. thaliana)	2,5		2,1		2,4							
LoliumRes_a59 2273_4	Mediator of RNA polymerase II transcription subunit 15a (<i>A. thaliana</i>)						3,1						
LoliumRes_a14 438_127	Mitogen-activated protein kinase 5 (<i>O. sativa</i> subsp. <i>japonica</i>)	2,1		2,2		2,1						2,1	2,2
LoliumSus_a13 454_108	Mitogen-activated protein kinase 5 (O. sativa subsp. japonica)					2,1							
Contig5177	Phytosulfokine receptor 1 (A. thaliana)	exklu siv											
7201_7	Phytosulfokine receptor 1 (A. thaliana)		2,1		3,0	3,2					3,9	4,5	2,6
1506_13	Phytosulfokine receptor 1 (A. thaliana)		2,2		3,2	3,1					3,7	3,8	2,7
7255_10 comp104992_c	Phytosulfokine receptor 1 (A. thaliana)	exklu	exklu	2,2	exklu	exklu	2,3						
0_seq1	Pre-mRNA-splicing factor SPF27 homolog (A. thaliana)	siv	siv		siv	siv							
LoliumSus_a35	Probable leucine-rich repeat receptor-like protein kinase			21		34	32						exklu
5659_8	At1g35710 (A. thaliana)			2,1		0,1	0,2						siv
LoliumRes_a45	Probable leucine-rich repeat receptor-like serine/threonine-												2,2
400_40	protein kinase Alog 15730 (A. Inaliana)												
13/ 73	Atta7/360 (A thaliana)	2,8	2,6	2,1	2,6								
LoliumSus a34	Probable I RR recentor-like serine/threonine-protein kinase												
012 37	At1g74360 (A. thaliana)	5,1		3,8		2,1							
LoliumRes a26	Probable LRR receptor-like serine/threonine-protein kinase							o -					
8348 7	At4g08850 (A. thaliana)							2,7	3,2	2,4			
LoliumRes a78	Probable LRR receptor-like serine/threonine-protein kinase	2.4			4.0		2.0				2.0	0.4	0.4
112_20	At4g08850 (A. thaliana)	3,1			4,0	4,4	3,9				3,Z	2,4	∠,⊺
LoliumRes_a82	Probable LRR receptor-like serine/threonine-protein kinase	20	2.4		4.0	5.0	11	2.1	2.2		51	E 0	50
414_15	At4g08850 (A. thaliana)	2,0	2,4		4,9	5,Z	4,1	∠, I	2,2		5,4	5,6	5,Z
LoliumSus_a61	Probable LRR receptor-like serine/threonine-protein kinase	37	32		50	27					46	43	
9913_4	At4g08850 (A. thaliana)	0,7	0,2		0,0	2,1					4,0	4,0	
LoliumSus_a15	Probable mediator of RNA polymerase II transcription subunit					2.6							
330_97	37c (A. thaliana)					_,-							
LoliumRes_a43 550_46	Probable recentor-like protein kinase At5a39020 (A thaliana)				33	32	25				22	3,4	2,8
					0,0	0,2	2,0				2,2	,	

LoliumSus_a24 060_46	Probable receptor-like protein kinase At5g47070 (A. thaliana)	2,6											
LoliumSus_a34 461_42	Probable receptor-like protein kinase At5g47070 (A. thaliana)										2,4	2,1	
comp168371_c	Probable serine/threonine-protein kinase At1g18390 (A.				exklu								
1_seq1	thaliana)				siv								
LoliumRes_a26	Probable serine/threonine-protein kinase At1g18390 (A.				exklu							2,3	
4/88_8	Inaliana) Drahahla aarina/thraanina pratain kinaaa Atta18200 (A				SIV								
081 36	thaliana)	2,4	2,5	2,1	3,9	4,4	3,4				3,5	4,4	3,8
LoliumRes a82	Probable serine/threonine-protein kinase At1g18390 (A												
11 109	thaliana)	2,1			2,6	3,1					2,7	3,2	2,5
LoliumSus a13	Probable serine/threonine-protein kinase At1g18390 (A.				0.0								
8769_15	thaliana)				2,3								
LoliumSus_a29	Probable serine/threonine-protein kinase At1g18390 (A.		21		37	11	33				36	15	30
152_43	thaliana)		Ζ,Ι		3,7	4,1	3,5				3,0	4,5	5,9
LoliumSus_a69	Probable serine/threonine-protein kinase At1g18390 (A.	2.1			2.1	2.5					3.5	4.3	3.6
66_137	thaliana)	_, .			_,.	_,0					0,0	.,0	0,0
LoliumRes_a14 9070_11	Probable WRKY transcription factor 16 (A. thaliana)	3,1	3,9	3,1	4,4	4,6	3,6					2,9	2,4
LoliumSus_a53 067 28	Probable WRKY transcription factor 19 (A. thaliana)											2,1	
LoliumRes_a48	Probable WPKY transcription factor 10 (A. thaliana)								2.0			2.1	
157_25	FIODADIE WRRT transcription factor 19 (A. trailana)								2,0			Ζ,Ι	
LoliumRes_a47	Probable WRKY transcription factor 33 (A thaliana)					21							
63_336						۷,۱							
LoliumRes_a62	Probable WRKY transcription factor 33 (A. thaliana)	3.2			4,3	4,1		2,8	2,5		4,6	4,9	2,7
525_39		,			,	,			,		,		,
LOIIUMSUS_247	Probable WRKY transcription factor 33 (A. thaliana)	3,6	2,1		3,8	3,4		2,6	2,4		4,0	4,4	
403_40 LoliumRes a26													
80 349	Probable WRKY transcription factor 40 (A. thaliana)				2,3								
LoliumRes a29		o -	~ ~						~ ~				
023 105 _	Probable WRKY transcription factor 40 (A. thaliana)	3,7	2,9	2,3		4,5		2,0	2,6	2,1		5,7	4,7
LoliumSus_a31	Probable WRKV transcription factor 40 (A. thaliana)	36	27	23		11	2.2	2.0	26			64	53
136_92		5,0	2,1	2,3		4,4	2,2	2,0	2,0			0,4	5,5
LoliumRes_a48	Probable WRKY transcription factor 46 (A thaliana)				24	3.0	25					21	
461_55					_, ·	0,0	2,0					_, ·	
LoliumRes_a84	Probable WRKY transcription factor 46 (A. thaliana)	4,4	5,4	5,6		3,4	2,9			2,8		exklu	exklu
003_21 LoliumSuo o11	, ,					ovklu	ovklu					SIV	SIV
1146_17	Probable WRKY transcription factor 46 (A. thaliana)		4,1	4,1		Siv	siv	4,0	5,1	5,5		5,2	4,1

LoliumRes_a12 841_130	Probable WRKY transcription factor 50 (A. thaliana)				3,1	4,0	3,2			2,3	2,2	3,7	2,6
LoliumSus_a11 542_122	Probable WRKY transcription factor 50 (A. thaliana)				2,5	3,2	2,4					2,6	
LoliumRes_a21 206_41	Probable WRKY transcription factor 51 (A. thaliana)				3,3	3,4	2,3				4,3	5,4	3,8
LoliumRes_a34 607_51	Probable WRKY transcription factor 51 (A. thaliana)	2,5	2,6	2,2	3,8	4,6		2,3	2,1		3,4	5,3	2,6
LoliumSus_a31 384_34	Probable WRKY transcription factor 51 (A. thaliana)				3,5	3,6	3,0				2,9	4,3	2,9
LoliumRes_a20 388_75	Probable WRKY transcription factor 53 (A. thaliana)				2,4							2,2	
LoliumRes_a91 3315_3	Probable WRKY transcription factor 53 (A. thaliana)	4,7	4,5		4,7	4,0		2,7			exklu siv	exklu siv	exklu siv
LoliumRes_a66 012_41	Probable WRKY transcription factor 54 (A. thaliana)		4,5		2,4	5,4	3,9		2,4	2,8		exklu siv	exklu siv
LoliumRes_a18 3494_11	Probable WRKY transcription factor 56 (A. thaliana)	2,2							3,0				
LoliumRes_a56 59_312	Probable WRKY transcription factor 70 (A. thaliana)					3,1	2,6		2,5	2,6		4,0	4,2
LoliumRes_a71 2367_3	Probable WRKY transcription factor 70 (A. thaliana)			3,7		exklu siv	exklu siv			exklu siv			
LoliumRes_a69 493_15	Probably inactive leucine-rich repeat receptor-like protein kinase At5g48380 (<i>A. thaliana</i>)					2,4							
LoliumRes_a86 354_14	Probably inactive leucine-rich repeat receptor-like protein kinase At5g48380 (<i>A. thaliana</i>)				2,7						3,2		
LoliumRes_a89 1362_3	Probably inactive leucine-rich repeat receptor-like protein kinase At5g48380 (<i>A. thaliana</i>)				exklu siv								
LoliumSus_a10 6430_16	Probably inactive leucine-rich repeat receptor-like protein kinase At5g48380 (<i>A. thaliana</i>)				2,4						3,2		
LoliumSus_a67 786_19	Probably inactive leucine-rich repeat receptor-like protein kinase At5g48380 (<i>A. thaliana</i>)											2,2	2,1
LoliumSus_a72 8357 3	Probably inactive leucine-rich repeat receptor-like protein kinase At5g48380 (<i>A. thaliana</i>)				5,5			2,5			4,1	4,2	
LoliumRes_a16 1372_8	Putative serine/threonine-protein kinase-like protein CCR3 (A. thaliana)											2,9	
LoliumRes_a21 4376_10	Putative serine/threonine-protein kinase-like protein CCR3 (A. thaliana)			exklu siv									
LoliumRes_a66	Putative serine/threonine-protein kinase-like protein CCR3 (A.	2,8		011	2,8	3,4			2,0			2,4	
LoliumSus_a11 8092_11	Putative serine/threonine-protein kinase-like protein CCR3 (A. thaliana)											2,9	

LoliumSus_a24 4863_10	Putative serine/threonine-protein kinase-like protein CCR3 (A. thaliana)		exklu siv										
LoliumSus_a65 319 25	Putative serine/threonine-protein kinase-like protein CCR3 (A. <i>thaliana</i>)	2,3									3,5	3,5	2,5
LoliumRes_a17 084 132	Receptor-like cytosolic serine/threonine-protein kinase RBK1 (<i>A. thaliana</i>)	2,8	2,7	2,1	3,7	4,4	3,1	2,4	2,2		3,5	4,2	3,0
LoliumRes_a21 9869_13	Receptor-like protein kinase 5 (<i>A. thaliana</i>)	2,7						2,8	3,0				
LoliumRes_a44 48_152	Receptor-like protein kinase 5 (A. thaliana)											2,5	2,1
LoliumRes_a63 6329_5	Receptor-like protein kinase 5 (A. thaliana)				2,7								
LoliumRes_a15 6759_13	Receptor-like protein kinase FERONIA (A. thaliana)										2,0		
LoliumRes_a24 337_77	Receptor-like protein kinase FERONIA (A. thaliana)											2,4	2,8
LoliumRes_a54 269_45	Receptor-like protein kinase FERONIA (A. thaliana)				2,8	4,1	2,2					5,7	4,1
LoliumSus_a35 388_74	Receptor-like protein kinase FERONIA (A. thaliana)					3,1					3,7	5,8	4,4
LoliumRes_a16 084_62	RPM1-interacting protein 4 (A. thaliana)			2,2						2,1		2,2	
LoliumRes_a17 307_106	Somatic embryogenesis receptor kinase 1 (A. thaliana)	4,0	4,1	3,1	4,1	5,3	4,5	3,0	2,8	3,2	4,0	6,8	6,1
LoliumRes_a20 5894_7	Systemin receptor SR160 (<i>S. peruvianum</i>)						exklu siv						
LoliumRes_a84 593_31	Systemin receptor SR160 (<i>S. peruvianum</i>)	2,7	2,4		4,6	5,5	3,5	2,1	2,6		3,2	4,2	2,7
LoliumRes_a18 9279_10	Transcription factor JUNGBRUNNEN 1 (A. thaliana)	2,5			3,8	3,5	2,2					exklu siv	
LoliumRes_a61 4485_4	Transcription factor JUNGBRUNNEN 1 (A. thaliana)	4,1		6,8		exklu siv	exklu siv	3,4	2,9	5,9			
LoliumRes_a10 6320_12	Tyrosine-sulfated glycopeptide receptor 1 (A. thaliana)				2,1								3,0
LoliumRes_a60 731_16	Tyrosine-sulfated glycopeptide receptor 1 (A. thaliana)				2,1	2,0							
LoliumSus_a17 2892_13	Tyrosine-sulfated glycopeptide receptor 1 (A. thaliana)		4,5			2,0							
LoliumSus_a26 8198_11	Tyrosine-sulfated glycopeptide receptor 1 (A. thaliana)	exklu siv		exklu siv	3,4	4,9				2,2		2,8	
LoliumSus_a82 996_15	Tyrosine-sulfated glycopeptide receptor 1 (A. thaliana)						2,3						2,2

LoliumSus_a30 821_64	Vacuolar-sorting receptor 6 (A. thaliana)					2,0	2,4						2,0
LoliumRes_a68 4889_4	Wall-associated receptor kinase 1 (A. thaliana)			4,3			exklu siv						
LoliumRes_a35 680_26	Wall-associated receptor kinase 1 (A. thaliana)	2,5			2,7	3,1		2,1			2,7	3,6	2,3
LoliumRes_a11 2064_30	Wall-associated receptor kinase-like 2 (A. thaliana)							3,3					
LoliumRes_a34 0884_7	Wall-associated receptor kinase-like 2 (A. thaliana)			2,7		2,9	3,1						exklu siv
LoliumRes_a12 7239_24	WRKY transcription factor 18 (A. thaliana)	3,8				6,0	4,1	3,3	4,1	4,1		exklu siv	exklu siv
LoliumRes_a51 635_53	WRKY transcription factor 18 (A. thaliana)				4,2						2,4	2,5	
LoliumRes_a11 905_150	WRKY transcription factor 6 (A. thaliana)				2,1	3,1	2,3					2,7	2,3
Transport													
LoliumRes_a88 54_115	ABC transporter C family member 4 (A. thaliana)											2,1	
LoliumRes_a41 66_294	Amino acid permease 3 (<i>A. thaliana</i>)					2,9	2,3						
LoliumRes_a29 691_58	Aminotransferase ALD1 homolog (O. <i>sativa</i> subsp. <i>japonica</i>)			6,0				6,3	6,2	6,4			exklu siv
LoliumRes_a99 010_17	Anthranilate phosphoribosyltransferase, chloroplastic (<i>A. thaliana</i>)	2,8		3,2		2,5			2,2	3,8		2,1	
LoliumRes_a26 150_95	Calcium-transporting ATPase 2, plasma membrane-type (<i>A. thaliana</i>)					2,7						2,7	
LoliumSus_a20 727_133	Calcium-transporting ATPase 2, plasma membrane-type (<i>A. thaliana</i>)					2,6						2,5	
LoliumRes_a16 777_123	Cationic amino acid transporter 1 (A. thaliana)	2,3		2,3	2,2	2,5	3,7				2,5	2,9	3,8
LoliumRes_a49 651_82	Cationic amino acid transporter 1 (A. thaliana)	3,2	2,8	2,5	2,5	4,0	4,5				exklu siv	exklu siv	exklu siv
LoliumSus_a23 901_100	Cationic amino acid transporter 1 (A. thaliana)		2,3		2,3	3,8	4,6				2,6	3,5	4,6
LoliumSus_a34 897_112	Cationic amino acid transporter 1 (A. thaliana)			2,0	2,6	2,8	3,5				3,0	3,8	4,5
LoliumRes_a17 5233_12	Organic cation/carnitine transporter 7 (A. thaliana)					2,3						2,9	
LoliumRes_a15 933_88	Peptide transporter PTR3-A (A. thaliana)											2,1	2,4
LoliumRes_a24 17_469	Peptide transporter PTR3-A (A. thaliana)										2,1	2,2	2,3

LoliumRes_a37 5262_5	Peptide transporter PTR3-A (A. thaliana)										I		2,4
LoliumSus_a28 75_438	Peptide transporter PTR3-A (A. thaliana)										I	2,1	2,2
LoliumRes_a32 170_33	Phospholipid-transporting ATPase 1 (A. thaliana)				3,4	4,0	2,5				2,4	3,9	2,4
LoliumRes_a16 01_415	Polyol transporter 5 (<i>A. thaliana</i>)	2,6			3,8	3,0	2,5				3,4	3,0	2,0
LoliumRes_a32 092_126	Polyol transporter 5 (<i>A. thaliana</i>)	2,5									I		
LoliumRes_a41 865_72	Polyol transporter 5 (<i>A. thaliana</i>)	2,5		2,3							I		
LoliumSus_a25 38_234	Polyol transporter 5 (<i>A. thaliana</i>)	2,6	3,4	2,0	4,0	4,6	3,5	2,1	2,2		3,4	4,9	3,9
Lipid Metabolis	nus												
LoliumRes_a35 7569_5	12-oxophytodienoate reductase 1 (O. sativa subsp. japonica)	2,1									I	2,5	
LoliumRes_a25 6381_15	3-ketoacyl-CoA synthase 6 (A. thaliana)		2,2								I		
comp173644_c 2_seq17 comp173644_c	4-coumarateCoA ligase-like 10 (A. thaliana)									exklu siv	I	exklu	
2_seq9	4-coumarateCoA ligase-like 10 (<i>A. thaliana</i>)										I	siv	
LoliumRes_a74 07_171	4-coumarateCoA ligase-like 10 (A. thaliana)	3,5	3,9	2,7	3,8	5,2	3,1	3,2	3,4	2,9	3,2	5,4	3,1
LoliumSus_a80 0620_3	Acyl-[acyl-carrier-protein] desaturase 1, chloroplastic (<i>O. sativa</i> subsp. <i>japonica</i>)	7,3									I		
LoliumRes_a38 1384_7	Long chain acyl-CoA synthetase 4 (A. thaliana)		3,4	4,4	exklu siv	exklu siv	exklu siv			2,5	I	exklu siv	exklu siv
LoliumSus_a43 6024_6	Long chain acyl-CoA synthetase 4 (A. thaliana)		3,4	3,7		exklu siv	exklu siv	3,4	4,2	4,1	I	exklu siv	exklu siv
LoliumSus_a50 417_30	Long chain acyl-CoA synthetase 4 (A. thaliana)	2,3			2,5	2,1					I	2,5	
LoliumRes_a48 886_27	Long chain acyl-CoA synthetase 5 (A. thaliana)	2,5	2,4		2,2						I	2,4	
Amino-acid bios	synthesis												
LoliumRes_a13 5003_10	Indole-3-glycerol phosphate synthase, chloroplastic (A. thaliana)	2,6		4,5		2,8		3,4	2,6	5,8	I		
LoliumRes_a18 946_56	Indole-3-glycerol phosphate synthase, chloroplastic (A. thaliana)					2,2					I		
LoliumRes_a30 229_56	Indole-3-glycerol phosphate synthase, chloroplastic (A. thaliana)					2,3					I		

LoliumRes_a74 4854_4	U-box domain-containing protein 20 (A. thaliana)			3,6	3,6	4,1	3,0	5,6	4,9	4,8		exklu siv	exklu siv
LoliumSus_a45 4680_6	U-box domain-containing protein 20 (A. thaliana)	3,8	4,0	3,1	5,6	6,7	5,3	3,7	3,0	3,1	exklu siv	exklu siv	exklu siv
LoliumRes_a14 3640_16	U-box domain-containing protein 21 (A. thaliana)	3,2	2,2		3,4	4,2	2,0	3,3	3,2		4,6	4,8	2,8
LoliumRes_a33 125_46	U-box domain-containing protein 21 (A. thaliana)	3,7	3,1	2,5	4,6	5,0	3,8	2,8	2,5		4,3	5,5	4,4
LoliumSus_a91 958_20	U-box domain-containing protein 21 (A. thaliana)	2,5	2,2		6,5	5,4	3,6	2,4	2,2		3,9	4,1	2,4
LoliumSus_a47 1752_4	U-box domain-containing protein 51 (A. thaliana)					2,8						exklu siv	
_seq1	U-box domain-containing protein 72 (O. sativa subsp. japonica)	exkiu siv	exkiu siv	exkiu siv	exkiu siv	exklu siv	exklu siv			exklu siv	l		exkiu siv
Sonstige													
LoliumRes_a90 9785_4	AST_5595 mRNA sequence (Agrostis stolonifera)			3,1						2,3			
comp151450_c 0_seq1	Aldehyde dehydrogenase family 2 member C4 (A. thaliana)			3,1									
LoliumRes_a11 842_62	Aldehyde dehydrogenase family 2 member C4 (A. thaliana)			2,2					2,2	2,6			
192_56	Aldehyde dehydrogenase family 2 member C4 (A. thaliana)			2,7									3,7
LoliumRes_a49 070_27	Uncharacterized protein At5g05190 (A. thaliana)					2,2							
LoliumSus_a19 9620_10	Uncharacterized protein BRADI3G19967 (B. distachyon)						3,2						
LoliumRes_a79 851_21	Uncharacterized protein BRADI4G01117 (B. distachyon)											2,8	
LoliumRes_a67 386_44	Uncharacterized protein BRADI4G07902 (B. distachyon)	2,0			2,7	3,8	2,9				2,4	2,5	2,1
LoliumSus_a53 648_59	Uncharacterized protein BRADI4G07902 (B. distachyon)				3,0	3,5	3,0					3,0	2,3
LoliumRes_a33 466_73	Uncharacterized protein BRADI4G07910 (B. distachyon)					2,6							
LoliumRes_a76 04_261	Uncharacterized protein BRADI4G10180 (B. distachyon)											2,0	3,4
LoliumSus_a91 96_264	Uncharacterized protein BRADI4G10180 (B. distachyon)						2,2					2,2	3,4
LoliumSus_a23 4496_12	Uncharacterized protein BRADI4G12877 (B. distachyon)					2,1							
LoliumSus_a37 9817_8	Uncharacterized protein BRADI4G35317 (B. distachyon)			exklu siv		exklu siv	exklu siv	3,6		4,1		3,7	3,0

LoliumRes_a42 8387_7	Uncharacterized protein BRADI4G35317 (B. distachyon)	3,1	3,8	exklu exkl siv siv	¹ 3,2	3,3	exklu siv	exklu siv
LoliumRes_a26 0681_12	Uncharacterized protein (<i>B. distachyon</i>)				2,7			

Thesen

Das ausdauernde Weidelgras (*Lolium perenne L.*) ist eines der bedeutendsten Futtergräser in den gemäßigten Breiten weltweit und nimmt den größten Anteil der Grassamennutzung in Europa ein. Durch die weltweite Verbreitung als Rasen- und Futtergras stellen phytopathogene Pilze eine signifikante Bedrohung für den Anbau dar. Dazu zählen der Schwarzrost (*Puccinia graminis* f.sp. *graminicola*) in der Grassamenproduktion und der Kronenrost (*Puccinia coronata* f.sp. *lolii*) in der Produktion von Gras als Wiederkäuerfutter.

Zum Gefahrenpotential des Schwarzrostes gehören Ertragsverluste, die bis zum Totalausfall führen können, sowie Qualitätsminderungen, die in reduzierten Keimfähigkeiten und Tausendkorngewichte der Grassamen resultieren. Der Kronenrost kann zu erheblichen Trockenmasse- und Qualitätsverlusten auf Wiesen Weiden. sowie zu einem erhöhten und Absterben von Bestockungstrieben führen. Die Züchtung von resistenten Sorten stellt bei der Bekämpfung dieser Pathogene die wirtschaftlich und ökologisch am meisten effiziente Lösung dar. Eine Beschleunigung der Rostresistenzzüchtung kann durch die Bereitstellung von molekularen Resistenzmarkern erfolgen, indem zeitaufwändige Resistenztests ersetzt und die Anzucht und Pflege auf resistente Kreuzungsnachkommen Die Identifikation konzentriert wird. von Resistenzmarkern in L. perenne beschränkte sich bisher auf DNA-basierte Markersysteme und QTL-Analysen ("quantitative trait loci"). Wesentlich effizienter sind Transkriptom-basierte Methoden die ausschließlich exprimierte Sequenzen erfassen und sich wiederholende Regionen aussparen. Zusätzlich zur Markerentwicklung können, die mit diesen Methoden gewonnenen Informationen dazu beitragen, molekulare Mechanismen der Resistenzen aufzudecken bzw. diese an Hand ihrer Genexpessionsprofile zu charakterisieren. Ein weiterer Vorteil der Transkriptom-basierten Methoden ist die Möglichkeit, über eine "in silico"-Kartierung der resistenzassoziierten Gene auf die Lage des Resistenzlokus zu schließen.

Ziel dieser Arbeit ist, erstmalig die Entwicklung Transkriptom-basierter molekularer Schwarzrostresistenzmarker im hochgradig heterozygoten Gras, *L. perenne,* von der Phänotypisierung bis zum nutzbaren molekularen Marker zu beschreiben. Darüber hinaus sollte untersucht werden, ob über eine "*in silico*"-

141

Kartierung der resistenzassoziierten Transkripte und SNPs zusammen mit dem "perennial ryegrass GenomeZipper" eine Lokalisation des Schwarzrostresistenzlokus *LpPg1* auf einer spezifischen Kopplungsgruppe von *L. perenne* möglich ist. Über die Genexpressionsprofile sollte versucht werden, auf den Schwarzrost-Resistenzmechanismus von *LpPg1* zu schließen.

LpPa1 Kronenrostresistenzen derselben Neben wurden zwei in Kartierungspopulation identifiziert. Beide Kronenrostresistenzen sollen in dieser Arbeit und fluoreszenzmikroskopisch durch Transkriptom-weite charakterisiert Genexpressionsanalysen werden. Dabei sollte die Rostentwicklung in ausgewählten Kronenrost resistenten Genotypen erfasst werden und durch den Vergleich von Rostentwicklungskurven auf den Zeitpunkt sowie durch mikroskopische Dokumentation auf die Resistenzreaktionen geschlossen werden. Aus einem Zeitreihenversuch sollte inokuliertes und nicht inokuliertes Blattmaterial entnommen werden und mittels Transkriptom-weiten Genexpressions-analysen die resistenzspezifische Transkription der Kronenrostresistenzen erfasst werden.

Aus den Ergebnissen und den gezogenen Schlussfolgerungen der vorangestellten Untersuchungen werden folgende Thesen abgeleitet:

- Mit der Kombination aus "Bulked Segregant Analysis" und der Transkriptom-basierten Genexpressionsanalyse "massive analysis of cDNA ends" ist es möglich, Schwarzrostresistenz-assoziierte Transkripte und SNPs zu identifizieren.
- Von den Sequenzen Schwarzrostresistenz-assoziierter Transkripte und SNPs lassen sich molekulare Marker ableiten, die polymorph für das beschriebene Merkmal und mit dem Resistenzlokus gekoppelt sind sowie eine Feinkartierung des Resistenzlokus zulassen. DNA-basierte Markersysteme können somit durch Transkriptom-basierte Genexpressionsanalysen ersetzt werden.
- Die Position des Schwarzrostresistenzlokus LpPg1 kann durch eine "in silico"-Kartierung von Resistenz-assoziierten Transkripten, SNPs und molekularen Markern eingegrenzt werden.

142

- Genexpressionsprofile von inokulierten und nicht inokulierten Schwarzrost anfälligen und resistenten Genotypen lassen auf den Abwehrmechanismus der vorhandenen Resistenz schließen.
- Eine Kronenrostresistenz-Phänotypisierung mit Feldisolaten verschiedener Standorte zeigte Unterschiede in der Resistenzausprägung der Genotypen. Es wurden vollständig resistente, moderat resistente und anfällige Genotypen ermittelt.
- Unterschiedliche Anzahlen von Kronenrost resistenten und anfälligen Genotypen zwischen den Feldisolaten sind auf standortspezifische Pathotypen zurückzuführen. Um neue Resistenzen zu entdecken ist es notwendig das Pflanzenmaterial mit möglichst verschiedenen Kronenrostfeldisolaten zu testen.
- Die fluoreszenzmikroskopische Untersuchung der entwickelten Roststrukturen in Kronenrost resistenten und anfälligen Genotypen ließ auf den Zeitpunkt der Pathogenerkennung und die zugrundeliegenden Resistenzreaktionen schließen. Dabei wurden eine quantitative und eine qualitative Kronenrostresistenz durch Vergleiche der Rostentwicklungskurven identifiziert.
- Die Entwicklungsgeschwindigkeit von der quantitativen "slow rusting"-Resistenz ist gegenüber anfälligen Genotypen reduziert.
- Durch Autofluoreszenz der Mesophyllzellen, nach Kontakt mit Haustorienmutterzellen des Kronenrostes im vollständig resistenten Genotyps, konnte ein hypersensitiver Zelltod in diesen Zellen festgestellt werden.
- Mit der Transkriptom-basierten NGS-Methode MACE wurden Kronenrostresistenz-assoziierte Genexpressionsprofile spezifisch f
 ür jede Kronenrostresistenz identifiziert. Die Überexpression von Transkripten mit Zuordnung zum hypersensitiven Zelltod best
 ätigt die fluoreszenzmikroskopischen Untersuchungen. Die "slow rusting"-Resistenz zeigte eine Überexpression von "pathogenesis-related protein"- und antifungalen Protein-Genen.
- Die Schwarz- und Kronenrostresistenz-Phänotypisierungen zeigten keine Korrelation zwischen den Rostresistenzen. Eine hohe Korrelation

innerhalb der Schwarz- und Kronenrostisolate ist auf geringe Virulenzunterschiede der Feldisolate zurückzuführen.

- In Vergleichen zwischen den Genexpressionsprofilen der Schwarz- und Kronenrost resistenten Bulks bzw. Genotypen wurden geringe Übereinstimmungen in der Genexpression festgestellt.
- Die Schwarz- und Kronenrostresistenzen sind aufgrund der Unterschiede in den Rostresistenz-Phänotypisierungen und in den Genexpressionsprofilen als eigenständige und unabhängig voneinander vererbte Resistenzen zubetrachten.

Danksagung

Frau Dr. Struck danke ich für die Überlassung des Themas, der hilfsbereiten Betreuung, Unterstützung während aller Phasen der Dissertation und der kritischen Durchsicht der Arbeit.

Ich bedanke mich bei meinen Kollegen und Kolleginnen von der Universität Rostock und dem Julius-Kühn Institut in Groß Lüsewitz für die herzliche Arbeitsatmosphäre und die konstruktiven Gespräche.

Mein herzlicher Dank gilt Martina Goltermann, Rosa Minderlen, Katrin Schönherr, Mariane Müller und Ingolf Gliege für die Unterstützung im Gewächshaus und Labor.

Sabine Schulze, Ottilia Nhengiwa, Christof Böhm, Dr. Bernhard Saal, Dr. Peter Winter, Dr. Björn Rotter und Nicolas Krezdorn danke ich für die gute Zusammenarbeit im ReTroLo- und LoMaRe-Projekt, sowie für die konstruktiven Diskussionen.

Ich danke Dr. Brigitte Ruge-Wehling für ihren Einsatz im LoMaRe-Projekt und Kristin Fischer für ihr stets offenes Ohr bei Fragen zur Markerentwicklung.

Zum Schluss gilt mein Dank meiner Großmutter Ingeborg Awolin und meinen Eltern, für ihre Unterstützung und ihren Zuspruch in jeder Lebenslage.

Erklärung

Ich erkläre, dass ich die eingereichte Dissertation selbständig und ohne fremde Hilfe verfasst, andere als die von mir angegebenen Quellen und Hilfsmittel nicht benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Waren, 31. Januar 2017

Jens Bojahr