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Abstract

The calculation of the solution to Poisson’s equation regarding the space charge
force is still a challenging task in beam dynamics simulations and therefore further
improvement is necessary. The partial differential equations lead to different numer-
ical methods and treatments. Efficiency and accuracy are the two key aspects in the
numerical computation. In this dissertation, we firstly summarize a type of classical
fast Poisson solver, Green’s function-Fast Fourier transform routine in beam dyna-
mics simulations. This includes the Hockney and Eastwood’s convolution routine, the
integrated Green’s function method, etc. These solvers have been used for decades
in the research community. However, the efficiency of this commonly used Poisson
solver can still be further improved. The improvement for the commonly used Poisson
solver is separated into three parts: the calculation of Green’s function integral values
is replaced by the efficient integrated Green’s function integral values; the discrete
Fourier transform calculation of the real even symmetric extension of the integrated
Green’s function values is replaced by the discrete cosine transform of the efficient
integrated Green’s function values; the explicitly zero-padded fast Fourier transform
is replaced by the implicitly zero-padded fast Fourier transform for charge density.
In addition, the state-of-the-art high performance computing technology is utilized
for the further improvement of efficiency. These technologies include: OpenMP API
for multi-thread CPU parallelization; OpenMP+CUDA for CPU and GPU hetero-
geneous parallelization; MPI for parallelization in supercomputers; MPI+OpenMP
for parallelization in advanced supercomputers. The examples demonstrate that the
resulting improvement regarding the efficiency is significant. The successful routine is
programmed and integrated into the simulation packages MOEVE-PIC for the imple-
mentation in workstations and IMPACT for the implementation in supercomputers,
respectively. The simulation results are matched with the results of the commonly
used Poisson solver in order to demonstrate the accuracy performance. In total, the
new Poisson solver routine preserves the advantages of fast computation and high
accuracy. The efficiency for both sides of algorithm and technology is promising and
attractive. In conclusion, this novel Poisson solver provides a fast routine for high
performance calculation of the space charge effect in the simulation of beam dynamics
in accelerators.






Zusammenfassung

Das Berechnen der Losungen fiir die Poisson-Gleichung bezogen auf die Raumladung
stellt immer noch eine grofle Herausforderung fiir dynamische Simulationen dar und
erfordert weiterhin stetige Verbesserungen. Die partiellen Differentialgleichungen
fithren zu verschiedenen numerischen Methoden und Verfahren. In numerischen
Berechnungen sind die Leistungsfahigkeit und Genauigkeit die beiden wesentlichen
Aspekte. Diese Dissertation beschéftigt sich mit den klassischen schnellen Losun-
gensverfahren fiir die Poisson-Gleichnung und der Greenschen Schnellen Fourier-
Transformation in Simulationen der Strahldynamik. Diese bezieht unter anderem
die Konvolutionsroutine von Hockney und Eastwood und die integrierte Greensche
Funktionsmethode mit den Losungen, die seit Jahrzehnten in der Forschung benutzt
werden. Fiir die derzeit angewendete Losungensverfahren fiir die Poisson-Gleichnung
besteht immer noch Entwicklungsspielraum hinsichtlich der Leistungsfahigkeit. Die
Verbesserung der Losung ist in drei Schritte unterteilt. Die Berechnung der Green-
schen Funktionsintegralwerte wird durch die effizienteren Greenschen Funktionsinte-
gralwerte ersetzt. Die diskrete Berechnung der Fourier-Transformation der reellen
symmetrischen Erweiterung der integrierten Greenschen Funktionswerte wird durch
die diskrete Kosinustransformation der effizienten integrierten Greenschen Funktion-
swerte ersetzt. Die explizite schnelle Faltung der Fourier-Transformation wird durch
die implizite schnelle Faltung der Fourier-Transformation fiir die die Ladungsdichte
ersetzt. Zudem kommt fiir die weitere Verbesserung der Leistungsfihigkeit die mod-
ernste Hochleistungscomputertechnologie zum Einsatz. Die Technologie besteht aus
einer OpenMP API fiir mehrstrangige CPU Parallelisierung; OpenMP+CUDA fiir
die heterogene Parallelisierung von CPU und GPU; MPI fiir die Parallelisierung in
Hochleistungsrechnern; MPI+OpenMP fiir die Parallelisierung in weiterentwickelten
Grofirechnern. Die Beispiele belegen, dass die resultierende Verbesserung der Leis-
tungsfiahigkeit grofl ist. Die erfolgreiche Routine wird entsprechend programmiert
und in die Simulationspakete MOEVE-PIC fiir den Einsatz in Arbeitsplatzrechnern
und in IMPACT fiir den Einsatz in Hochleistungsrechnern integriert. Die Simulation-
sergebnisse werden mit den Ergebnissen der allgemein iiblichen Losungsverfahren fiir
die Poisson-Gleichung abgeglichen, um die Leistungsfihigkeit im Detail darzustellen.
Insgesamt werden in den neuen Routinen fiir die Losung der Poisson-Gleichung die
Vorteile der schnellen Verarbeitung und der hohen Genauigkeit beibehalten. Die
Leistungsfihigkeit fiir den Algorithmus als auch die Technologie ist vielversprechend.
Zusammenfassend l&sst sich sagen, dass die neuen Losungsansitze eine schnelle Rou-
tine fiir préazise Berechnungen des Raumladungseffektes in Strahldynamiksimulatio-
nen fiir Beschleuniger darstellt.
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Thesis Statements

of the dissertation

Efficient Algorithms for the Fast Computation of Space
Charge Effects Caused by Charged Particles in Particle
Accelerators

by Dawei Zheng
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10.

11.

The multi-particle system inside the particle accelerator can be described with
the help of Vlasov-Maxwell equations. The dynamics of the particle distribution
leads to the hard mathematical problem —— the N-body problem of identical
particles.

. The particle-in-cell model, a particle-mesh method that treats the particles by

approximating the quantity on a mesh, is chosen as the computational method
for beam dynamics simulation.

The calculation of space charge effects is influenced by the beam itself, surroun-
ding conditions, and time evolution. There are various numerical methods and
the corresponding efficient optimization is demanded.

The Poisson solvers in MOEVE-PIC software package are further enhanced for
GF-FFT methods.

Green’s function (GF) and the integrated Green’s function (IGF) methods are
optimized by efficient IGF methods, i.e. CIGF, RIGF, and CRIGF. The effi-
ciency is achieved while the accuracy does not decline.

The CIGF fits far-bunch space charge calculations and the RIGF matches near-
bunch space charge calculations.

The trivial FFT convolution routine is easily implemented as Hockney and
Eastwood created their own successful efficient routine for computing.

A novel discrete convolution with implicitly zero-padded FFT is investigated
for the improvement of the convolution routine.

The calculation of the IGF values is replaced by the efficient IGF integral values.

The discrete Fourier transform calculation of the real even symmetric extension
of the IGF values is replaced by the discrete cosine transform of the efficient
IGF values.

The explicitly zero-padded fast Fourier transform is replaced by the implicitly
zero-padded fast Fourier transform for charge density.
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19.

20.

The real to complex FFT implementation can further save nearly half of the
time consumption of the novel fast 3D convolution.

Among others, major errors resulting from the PIC model are the density fluc-
tuation, the coupling between the macro particles and the mesh. Regarding
the GF-FFT method, numerical errors are induced by numerical integration.

The OpenMP routine of shared-memory parallelization of the novel Poisson
solver is programmed and examined by increasing CPU thread numbers.

A heterogeneous parallelization of CPU+GPU relying on an OpenMP+CUDA
APT implementation for workstations is provided. The limitations of CUDA
API are the reasons for this heterogeneous routine rather than a pure GPU
parallel routine.

The corresponding parallel Poisson solver for supercomputers is further pro-
grammed in Fortran and integrated into IMPACT software package at LBNL.
An MPI+OpenMP parallel routine for future advanced supercomputers is at-
tempted as well.

Efficiency studies as weak scaling, strong scaling, assignment of processors,
different compilers, and FFT libraries are given for the implementation on a
supercomputer.

An ideal uniform charged sphere bunch, an ideal uniform charged ellipsoid
bunch, and an ideal Gaussian distributed charged bunch are introduced for the
numerical verification, validation and convergence studies.

For applications, the validations are done by comparing the novel Poisson solver
with a commonly used Poisson solver. Two beam dynamic simulations through
two different simulation codes, MOEVE-PIC and IMPACT, are given.

The improvements in efficiency regarding both the algorithm and the HPC
technologies for the implementations of both workstation and supercomputer
are significant.
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1 Introduction

Particle accelerators have a history of almost 100 years. The breakthrough started
with Rutherford’s scattering experiment involving alpha particles on a gold foil [7§]
[79]. Originally the alpha particles came from natural radioactive sources. Gamow
predicted that perhaps a source of lower energy particles than the natural radioac-
tive sources would be sufficient. For the physical studies, researchers showed in-
terest in the manufactured particle sources, and the first accelerators were built
around the 1930s. The practical machines were the Van de Graff generator [85] [86],
the Cockeroft-Walton generator [20], and the first cyclotron by Lawrence [51] [50].
Some theoretical input was provided by Ising [47], Widerde [94] [95] and Alvarez.
Since then, further concepts and results have appeared, such as colliding beams,
synchronous acceleration with phase stability, among others. Accelerator physics
studies have been an essential ingredient to overcome the practical limits of the mod-
ern accelerators, e.g. beam dynamics, beam cooling, collective beam instability, space
charge effects. In the meantime, more acceleration technologies have been exploited,
e.g. the radio-frequency (RF) power sources, high acceleration gradients, wakefield
acceleration. Today’s accelerators are pursuing higher energy, higher luminosity,
and higher brightness beams. Accelerators for high energy physics are operating or
built, such as the Large Hadron Collider (LHC) [21], a ring-like machine at CERN
in Switzerland or the International Linear Collider (ILC) [84], a linear accelerator
scheduled in Japan. In applications, other types of accelerators are more popular;
synchrotron light sources and spallation sources are used for material studies. New
generations of brilliant light sources and spallation sources have been designed and
are under construction now, such as the European X-ray free-electron laser (XFEL)
[98] at Deutsches Elektronen-Synchrotron (DESY) in Hamburg! and the European
Spallation source (ESS) [29] in Lund, Sweden. The types of today’s accelerators are
diverse. Further accelerators are used for different purposes, such as cancer therapy
and rocket motors.

This dissertation starts with the introduction of the basic beam dynamics from
physical and mathematical viewpoints. This involves Maxwell’s equations, Hamilto-
nian dynamics, and Einstein’s special theory of relativity, which are introduced at
the beginning. In particular, the space charge effects as the interesting field of this
dissertation are explained with respect to different numerical methods.

Chapter 3 then discusses the basic Green’s function (GF) method with free-space
boundary conditions. The electrostatics potential ¢ is obtained as the convolution of
the charge density and GF within a computational domain. The mid-point integral
rule is chosen for the numerical convolution calculation. Based on the primitive func-

!This machine is partly built in Schleswig-Holstein.
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tion of GF, the integrated Green’s function (IGF) provides a further approach for the
discrete convolution. However, the time consumption of the numerical convolution
is conspicuous. A couple of efficient GFs are introduced.

Replacing the trivial fast Fourier transform (FFT) convolution routine, Chapter 4
reviews the multidimensional discrete Fourier transform (DFT) and the commonly
used classical method by Hockney and Eastwood. Furthermore, a novel efficient
convolution routine is presented for 1D, 2D and 3D situations. Vector extensions
and DFTs are both considered for the optimization of the GF-related calculations.
Furthermore, the implicitly zero-padded FFTs for the charge density are applied.
The combination of real to complex FFTs with the novel discrete convolution is
developed as well. Finally, an error study is carried out in Section 4.5.

Chapter 5 approaches various parallel routines. First, the OpenMP application
program interface (API) speeds up the computation relating to the number of threads
in usage for shared memory parallel routine. Second, an effort on CPU+4+GPU hete-
rogeneous parallelization is carried out by means of an OpenMP+Compute Unified
Device Architecture (CUDA) routine. Third, the Message Passing Interface (MPI)
routine for the distributed shared memory parallelization in supercomputers for
high performance computing (HPC) implementation is designed. For state-of-the-art
supercomputers, the MPI4+OpenMP parallel routine is further developed.

Chapter 6 verifies the aforementioned novel efficient methods with examples and
applications. First, three examples are introduced for the numerical verification.
Second, the efficient IGF integrals, cutting integrated Green’s function (CIGF) and
reduced integrated Green’s function (RIGF) are verified through these test examples.
Additionally, the novel fast convolution routine combined with the efficient IGF in-
tegral is studied to determine its accuracy. For applications, the validations are done
by comparing the novel Poisson solver and a commonly used Poisson solver. Both
serial and parallel routines are considered. The parallel routines are studied with
different architectures.




2 Fundamentals of the mathematical
model and space charge effects

A beam, composed of bunches of charged particles, is accelerated and manipulated by
electromagnetic (E.M.) fields, which are generated from particle sources and main-
tained by cavities and magnet components inside the particle accelerator. Other
facilities, e.g. devices to detect beam motion, vacuum systems to attain excellent
beam lifetime, undulators and wigglers to produce high brilliance photon beams, tar-
gets for producing secondary beam, are supplemental options with different purposes
[52].

This chapter starts with the introduction of the basis of beam dynamics from a
physical and mathematical view. This involves Maxwell’s equations, Hamiltonian
dynamics, and Einstein’s special theory of relativity, which are introduced in Sec-
tion 2.1.

In particular, the space charge effects as a focal issue of this dissertation are ex-
plained with different respects to numerical methods in Section 2.2.

Section 2.3 introduces the objectives and research goals of this dissertation.
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2.1 Beam dynamics inside particle accelerators

The physics inside particle accelerators is complex and complicated. Many topics are
subject to deep study or even beyond our current knowledge level, e.g. the N-body
problem arising in beam dynamics, finding of new particles inside the accelerator [1],
or investigating the beginning of universe from the evolution of particles [75].

Beam dynamics study is the foundation for all accelerator-related studies, because
all experiments rely on certain types of beams. For the precise operation to obtain
specific beams, we need to theoretically understand the beam enough in advance.

The beam is guided by external magnetic fields, accelerated by electric fields, and
travels relativistically in the accelerator system. The physical fundamentals involve
Maxwell’s equations, particle motions, and relativity theory, among others.

2.1.1 Maxwell’s equations

The E.M. fields’ propagation is described by Maxwell’s equations [59], whose integral
form is:

Gauss’s law: D(r,t)-dS = ///Q p(r, £)dV, (2.1)

o0
Gauss’s law for magnetism: B(r,t)-dS = 0, (2.2)
o0
Faraday’s law of induction: 75 E(r,t)-dl = 9 // B(r,t) - dS, (2.3)
o ot JJs
Ampere’s law: H(r,t)-dl = // 2D(r,zﬁ) +J(r,t) | - dS,
o » \ 0t
(2.4)

where D(r,t) is defined as the electric flux density, p(r,t) as the electric charge
density, B(r,t) as the magnetic flux density, E(r,¢) as the electric field strength,
H(r,t) as the magnetic field strength, and J(r, ) as the electric current density. The
spatial position is r, and the time variable is t. The domain covering the charged
area is denoted as {2, and the closed boundary of €2 is the surface 0. If a surface
Y. is considered such that the magnetic flux passes through it, then 9% is defined as
the closed boundary of 3.
The differential form of Maxwell’s equations is:

V-D(I‘,t) = p(I‘,t),
V-B(r,t) = 0,

V x E(r,t) = —%B(r,t), (2.7)
V xH(r,t) = %D(r,t) + J(r, 1), (2.8)
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A single charged particle with charge ¢ experiences the external electric fields E
and magnetic flux densities B inside the particle accelerator. These E.M. fields are
described by Maxwell’s equations.

For an electron inside an accelerator, the electric field acts on the electron in
the anti-direction of the electric field. The magnetic fields force the electron in the
direction which is perpendicular to both B and v (the velocity of the electron). The
E acceleration and B bending are usually separated inside an accelerator. Electric
fields can be used for acceleration of particles while magnetic fields can serve to bend
particles and as optical lenses. In combination of the E.M. fields with motion, the
Lorentz force F is obtained by E and B as:

F =¢(E+v x B). (2.9)

The RF cavities provide the major accelerating E fields, whereas the magnetic
components guide the particles. A dipole is used to provide the magnetic flux density
B for guiding the beam. In particular, a circular accelerator uses dipole magnets as
the essential elements in which there is no electric field E for the acceleration of the
charged particle, the magnetic flux density B is perpendicular to the velocity v in the
vertical direction, and the bending radius r of the circular motion can be determined
in a simple form as:

_mllv]
qIBJ’

(2.10)

where m is the mass of the particle.

Different components provide different forms of E.M. fields in Eq. (2.9). Combined
quadrupoles named as “FODQO” cells are used for focusing and defocusing the beam.
The sextupoles can be used to cancel some of the chromatic aberration (chromaticity)
from quadrupoles [96].

2.1.2 Multi-particle system in Hamiltonian dynamics

In comparison to an analysis of a single reference particle, multi-particle systems
show the real dynamic situation inside the particle accelerator. The E.M. interactions
among the enormous number of particles play an important role for the dynamics of
the multi-particle system. Hence, the charge density p(r,t) in Eq. (2.1) feels not only
the external driven E.M. fields Eg.iven, but also the interactive E.M. fields Ei,teractive
of the charged particles themselves.

For the multi-particle system study of an electron beam, phase space variables
(r,p) are defined, where r represents position and p denotes momentum. The charge
density results from a more fundamental quantity in physics: the particle distribution
function f(r,p,t). The connection is linked by the following two formulas:

p(r,t) =n(r,t)e, (2.11)

where n(r,t) is particle density, e is the unit charge, and

n(r,t):/f(r,p,t)dp. (2.12)
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The dynamics of the charge density is derived from the dynamics of the particle
distribution, which is a hard problem named the N-body problem of identical par-
ticles. The problem has not been solved in mathematics so far [25]. Hamiltonian
dynamics is a way to describe the N-body problem by Hamiltonian function H(X)
through Hamiltonian equation:

I.'l = (3le, pl = _arzH> (213)

where [ defines the [th particles of the N-particle system X = (z1,--- ,zn). f(r,p,1)
is also denoted as fy(X;t) for the N-particle system.

The evolution of the N-particle system is given by Liouville’s equation under
Hamilton dynamics. The Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hie-
rarchy is a series of coupled equations transformed from Liouville’s equation. How-
ever, the coupled equations are not easier to solve, because a fs(X;t) (s-particle
distribution function) is determined by fs11(X;t) ((s + 1)-particle distribution func-
tion) in the whole particle interaction system. Assumptions and simplifications have
to be declared in order to solve the equations. Truncation of the BBGKY hierarchy
is a common way to achieve an initial simplification: we assume that all particles are
independent. For the two-particle distribution function we have

fa(wy, z05t) = f(z158) f225). (2.14)

By assuming a conservative system (i.e. the system is free of damping or diffu-
sion effects due to external sources) and applying the relevant formula derivations
and theories, the Vlasov equation leading to the description of multi-particle beam
dynamics can be derived as:

af+2. 0. f-F-0,f=0. (2.15)
m

The force F represents the sum of the external force and the interactive force.
Still, the acting force F mainly represents the E.M. force on the charged particles.
We apply the Lorentz force:

F = q<Edriven + Einteractive + % X B)7 (216)

where the Egiven is the electric field provided by the RF cavity, and the Eiyeractive
is the electric field provided by the beam-self field of the particle ensemble, which is
described by Poisson’s equation:

V. Einteractive = /f(I', p, t)dp (217>

The equations of the Vlasov-Maxwell system, (2.1)-(2.4), (2.15), (2.16) and (2.17),
are useful tools to determine the evolution of a multi-particle system under the in-
fluence of the forces depending on the physical parameters of the system through
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differentiable functions. The Vlasov equation can also be enhanced by adding per-
turbation terms and damping terms in order to describe a real system.

Additionally, the real system of physical events is complex: certain processes with
forces caused by purely statistical process are involved, e.g. by the quantized emi-
ssion of synchrotron radiation photons, by collisions with other particles within the
same bunch, or residual gas atoms. Statistical processes are considered and lead to
Fokker-Planck’s equation [76] which is identical to the Vlasov equation excluding the
statistical excitation terms.

The bunch distribution contains a great number of particles, which makes the
direct analysis of interactions among particles difficult. Furthermore, the motion of
charged particles finally reaches relativistic velocity inside the particle accelerator.
Based on the theory of relativity, the analysis becomes more complicated. Instead of
the theoretical analysis, numerical models are used to manage most studies. Solving
for the field Eiyteractive precisely with large number N directly leads to methods which
calculate with mesh-free (particle-particle) models, e.g. the tree-based method, and
the fast multiple method [36] [37]. However, mesh-related methods are more common
in the research community. The Particle-in-Cell (PIC) model is the most common tool
for studying and is introduced in Section 2.1.3, and further discussed in Section 2.2.

Space charge effects are defined as the influence on the particle’s motion caused by
the E.M. fields of the charged particles themselves. They are responsible for many
phenomena in beam dynamics: the betatron tune shift, the synchrotron tune shift,
energy loss, energy spread, and instabilities. However, there are still many behaviors
which are not fully understood, e.g. the beam motion after the photoinjector in
free-electron laser (FEL), and beam-cloud interaction. All these applications need
the space charge force calculation.

Some beam parameters are introduced in the following, and used in Chapter 6 for
comparisons.

Beam size: the scaling parameter to describe the beam scope. The root mean
square (rms) beam size used in simulation is defined as:

RMS.z = +/(z?), (2.18)

where
Ya? Y\ 2

For the N particle distribution, Yz; = XN, 2; is performed as the sum of the N
particles.

The beam size should be as small as possible in order to maximize the electron
density especially along the linac and undulator. However, if the beam size is too
small, diffraction effects will appear. In practice, an optimum beam size will be
realized by inserting quadrupoles as the FODO channel to balance the effects. To
study the optimum beam size, numerical simulations are required to determine the
best parameter for the FODO channel [96].
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Beam emittance: the area of a particle beam in phase space, for both trans-
verse phase space and longitudinal phase space. It is a statistical definition, and the
normalized rms emittance (e.g. (x,p.) phase space) for numerical beam studies is
presented in the following [34] [33]:

1

EN,rms — m_oc\/<x2><p?:> - <l’pz>2, (220>
where
EpZ ) ) 2
2 x,l Pz,

_ o : 2.21
W) = - (R (2.21)

lepm lesz,k
(ope) = — ——3 (2.22)

In the design of accelerators, a low emittance is preferred since most of the particles
are confined into a small area that suits the beam chamber and magnets in the
accelerating system. The low emittance guarantees obtaining high luminosity for the
collider accelerator, and high brilliance for the light source accelerator. Numerical
simulations can predict the emittance growth in acceleration, and further influence
of luminosity or brilliance [96].

2.1.3 Particle-in-cell model

Functional analysis and resolutions are difficult and varied in calculations, thus the
distribution function for the particles is not straightforward in numerical computa-
tions. Replacing the distribution function, the discrete charge density is taken for
numerical computing.

In particular, replacing the direct solution of Vlasov-Maxwell equations with the
PIC model is a proper choice. It is a particle-mesh method that treats the particles by
approximating the quantity on a mesh. This dissertation specifically deals with the
PIC model using equations of motion. In computation, the differential operators are
replaced by the finite difference formulas, e.g. Laplacian is approximated on the mesh
as the Laplace matrix. All the calculations of force, field, potential are computed on
the mesh. In contrast, the calculations of particle assigning, mesh interpolating, and
particle movement are also computed for each particle.

For the purpose of computational efficiency, the charged particles are replaced by
macro particles in a bunch which usually contains a large number of particles (for
instance 10% ~ 10'3) concentrated around one synchronous particle. The dynamic
motions are discretized by the time step 6t. The data of the bunch particles are
initialized on the laboratory frame. The velocity of the charged particle becomes
nearly relativistic, the Lorentz transform between the laboratory frame and the rest
frame is necessary for a couple of physical quantities, e.g. the position and the E.M.
fields. Because the calculation of E.M. fields by Poisson’s equation should be done
in the rest frame.
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Lorentz transform
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Figure 2.1: A schematic model of bunch motion with transformation between the labo-
ratory frame (left) and the rest frame (right).

The procedures are summarized in Figure 2.1, whereby four procedural steps are
repeated in a cycle for time step dt until a certain time limit or distance limit is
reached. Here, the Cartesian coordinates and a Cartesian mesh is used in the algo-
rithm.

Firstly, the routine loads bunch information and transforms the bunch position
from the laboratory frame to the rest frame by a Lorentz transform (see Figure 2.1
from left top to right top):

T =uz,
y =y, (2.23)
z =79z

Here, the z direction is the bunch’s travel direction and the coordinates (z,y, z) have

been transformed to (z,y,z) with the Lorentz factor v = 1/4/1 — 32, where (3 is

defined by = v, /c with the velocity in z direction v, and the speed of light c.
Secondly, we solve the E.M. fields in the rest frame. As a start, the charge of each

macro particle is assigned to the mesh. A cubic domain, €, over [0, L,] x [0, L,] x
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[0, L.], is taken to cover the charged particles. L,, L,, L, are the lengths in each
direction. The above L, x L, x L, domain is discretized to N, X N, x N, mesh points
within each direction. By equidistant discretization, the step sizes are formed as:
h, = %, hy = %, h, = % A non-equidistant discretization can allow denser
meshing at the position of the particle distribution and a coarser meshing elsewhere.
Thus, the parameter particles-per-cell is balanced in comparison with equidistant
discretization.

For each particle, the charge is assigned to the neighboring grid points (Figure 2.2)
with special assignment functions for different schemes, e.g. the Nearest Grid Point
(NGP) scheme, Cloud In Cell (CIC) scheme, and Triangular Shaped Cloud (TSC)
scheme [44].

The NGP scheme is the simplest charge assignment of the PIC model. As the
name suggests, the charge of a given particle is assigned to its nearest mesh point.
Furthermore, the force value from the nearest mesh point is taken as the particle’s
force. The NGP scheme, whose obtained interparticle forces are discontinuous in
value, is not often used in practice.

The CIC scheme gives a better approximation and much smoother force than the
NGP scheme. Instead of assigning to the nearest grid point, the charge of a particle
is assigned to the neighboring grid points which belong to the weighting cell. For an
M dimensional problem, the number of neighboring points in a cell is 2. Because
of the particles being displaced with respect to the mesh, the interparticle forces are
continuous in value, but discontinous in their first derivative (see Figure 2.2).

/Bartidle
1

1 ¢:~I
S 5o

Figure 2.2: A schematic plot of the particle assignment of CIC scheme. A fraction of
its charge is assigned to each of the eight neighboring grid points of a particle at some
position inside the grid cell.

TSC is an even more accurate scheme. It uses the piece-wise quadratic function
with more grid points for assigning charge of a particle. For an M dimensional
problem, the number of neighboring points in a cell is 3*. This results in continuity
of value (first order) and first derivative (second order).

10
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Introductions to these charge assignment methods with different orders and smooth-
ness can be found in [44] and [9]. For the applications in this dissertation, the CIC
scheme of the 3D PIC model is chosen for numerical calculations.

The introduced mesh provides a lot of convenience in the numerical calculations
of electric field. As introduced before, the particles affect each other due to the
space charge forces generated by the particles themselves at the beginning sections
of the accelerator. The electric field Eiyieractive has to be computed through Poisson’s
equation (for each time step 6t). Efficiency is the main advantage of the PIC model as
Poisson’s equation is discretized on the mesh for various discrete numerical methods.
In contrast, it is more time-consuming and complicated to solve Poisson’s equation
with the particle distribution function.

The E.M. fields are computed on the mesh rather than on the involved particles.
The computation of the electric field caused by space charges directly connects to
the electrostatic potential ¢ based on the formula between ¢(z,y, z) and E(z,y, 2):

E(a:,y,z) = —Vgo(x,y, Z) (224)
 is the solution of Poisson’s equation,

p(x,y,2)

,in Q C R, (2.25)
€o

—AQO(.QT, Y, Z) -
with the Laplace operator A, the charge density p, the permittivity in vacuum &g,
and the considered domain 2.
Thirdly, the updated E.M. fields have to be transformed back from the rest frame
to the laboratory frame (see Figure 2.1 from right bottom to left bottom):

E, = 1E,, (2.26)

E, = Ej (2.27)
v

B - vxE, (2.28)

where L stands for the transverse directions and || for the longitudinal direction.

The transformed fields are further interpolated from the mesh to each particle [ as
E, and B;. The method of the field interpolation corresponds to the applied charge
assignment scheme. Additionally, the driven E.M. fields should be added up if the
bunch travels in the RF cavity, or other E.M. components.

Fourthly, instead of solving the Vlasov equation for the particle distribution in the
Hamiltonian system, we solve the equation of motion for particles. The individual
particle is moved by the relativistic equations of motion for particle [. The equations
in the laboratory frame are given as:

dp

d;tl = q(E, +v, xB)), (2.29)
v _ B (2.30)
dt myy’ '

11
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Figure 2.3: A schematic plot of leap-frog algorithm.

where p, denotes the momentum and my the rest mass. Furthermore, r; refers to the
position and v; to the velocity with 8 =v_,/c,v = 1/y/1 — 5/ for particle I.

For the time integration of the ordinary differential equation, we can use either the
Runge-Kutta or the leap-frog scheme.

The leap-frog scheme is well-used in updating E.M. fields with time integration
calculations. The stability can be determined by Courant-Friederichs-Lewy stability
condition [53]:

0t < Otmag, (2.31)

where

5tmax = - 5 2.32
: 232

Ax, Ay and Az are step sizes in space.

The time step 0t is proceeded by dt/2 for the discrete time integration. The leap-
frog algorithm forwards the (E,B) and v with different half time steps as shown in
Figure 2.3 and [9]. It is an explicit scheme and can be implemented very efficiently
on modern computer architecture, therefore we choose the leap-frog algorithm for
the time integration for applications in this dissertation.

2.2 Mesh-related calculation of space charge
effects

For the E.M. fields generated by the beam in the multi-particle system, regardless of
the space charge effects, which are mainly induced from the self-bunch, there are also
sources from the previous bunches called wakefields [18], [89], [92]. Generally, the
E.M. fields induced by the two types of bunches are named as collective effects which
are always studied for the beam instability in accelerator design and operation.

Additionally, space charge effects are classified by direct space charge and image
space charge. The direct space charge comes from the Coulomb interactions inside
the charged particle bunch. The image space charge represents the “virtual” charge
from the metallic surface screen of the vacuum chamber, acceleration cavity, or other
surroundings.

12



2.2 Mesh-related calculation of space charge effects

Statically, the space charge effects depend on some facts of the beam and surround-
ings: the charge of the particle bunch, the geometry of the beam, and the vacuum
chamber’s shape. For instance, the space charge force acting on the bunch is large
if the charge of the bunch is massive; the different distributions of particles inside a
bunch make the acting forces different; the variety of circular, ellipse and rectangular
shapes of the vacuum chamber reflects assorted equi-potential planes for the image
charge, etc.

Dynamically, the numerical calculation methods, image charge and other condi-
tions in space charge effects calculation can be treated differently in different regimes
inside the particle accelerator. The image charge generated from the surface of the
cathode of a photo cathode electron gun should be under consideration for the space
charge effects. After a short distance, the direct space charge is the major source of
space charge effects while the image charge from the metallic surface screen is lim-
ited. Here, it is reasonable to neglect the image charge in a simulation since the space
charge force obtained from the image charge is very low. Since the beam is concen-
trated in the center of the vacuum chamber in transverse directions, the size of the
beam is far smaller compared to the vacuum chamber size in most application cases.
For instance, the superconducting TESLA cavity [6] has a radius in centimeters while
the transverse beam size is in the millimeter range. Furthermore, the space charge
effects affect the motion of the bunch in the low energy regime of particle accelerator,
and are neglected for high energy bunches in most cases.

As mentioned, the space charge effects act in the form of the electric field E, which
is related to the electrostatic potential ¢ by Eq. (2.24).

For a volume of continuous charge density p,

o(r) = L/@dr’, (2.33)

4meg L

where ¢ is the distance from charge to a position r. The density p(r’) corresponds to
the local charged particles per volume unit. In the next chapters, 1/¢ is understood
as GF. In fact, the whole dissertation discusses the numerical extensions of this form.

From the view of all charged particles, the computation of the electrostatic po-
tential connects to the solution of Poisson’s equation by using Gauss’s Law for the
surface of a considered domain €):

—Ap(r) = @, in €, (2.34)

where the charge density is p(r).

The above two equations (2.33) and (2.34), relating to the potential o, are essen-
tially the same in physics. In principle, each is the inverse problem of the other (see
Appendix A). In computation, they bring the mesh-related numerical study into the
PIC model. Egs. (2.33) and (2.34) can share the same mesh, but may lead to different
numerical approaches, shown as integral and differential forms. In the following we
will discuss more details about different aspects of the mesh-related methods.
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2 Fundamentals of the mathematical model and space charge effects

2.2.1 Dimensions

For the spatial dimension, a couple of options are available to choose in simulations,
e.g. 2D, 2.5D and 3D. A 2D simulation is usually described by a slice in the transverse
directions, or a slice in the longitudinal direction. A 2.5D simulation is defined by a
number of transverse 2D slices along the longitudinal direction. Both the 2D and the
2.5D case simplify the real physics, which may lead to a loss of information in the
study of the beam dynamics. In 3D, the real spatial situation inside the accelerator
is taken into account. This dissertation studies the 3D case.

2.2.2 Computational domain and boundary conditions

As mentioned, the currently used vacuum chamber’s radius is still much larger than
the transverse lengths of the bunch, and the image space charge can reasonably be
neglected. Furthermore, in the bunch tracking related simulation it is appropriate to
consider a domain which is only slightly larger than necessary to cover the bunch as
only the E.M. fields in the regime of the bunch itself are useful for the particles of the
bunch. The bunch shape is various and dynamic, the considered domain can be set
as a cube, cylinder, or other regular shape relating to the further numerical methods
and computational efficiency. In most simulation codes, a cubic domain is the usual
choice since the dynamic bunch shape will not match any regular domain. There is
no evidence to show the cubic domain is less accurate than other choices, and it is
probably the most efficient in computation. If the considered domain just covers the
surrounding bunch, we define this calculation as near-bunch domain calculation.

In contrast, the aperture of the RF cavity may be small for some accelerators in
order to achieve higher geometrical shunt impedance of the fundamental mode, and
(or) save costs. In some cases, the E.M. fields from the surface of the RF cavity to the
bunch may need to be considered for certain purposes. In these cases, the effects of the
image space charge on the surface screen are not negligible. A computational domain
which fits the shape of the inner geometry of the RF cavity should be considered for
reasons of accuracy. In this case, a cylinder (or a pseudo cylinder in a cube) may be
preferred. We refer to this calculation as far-bunch domain calculation.

There is a large area of vacuum included if the considered domain fits the aperture
of the RF cavity. The considered domain is difficult to fit the vacuum chamber in
reality due to the transverse radius of the chamber varying with the cavity’s shape
in longitudinal direction. For further numerical calculations, the discretized charge
density (r.h.s.) values contain numerous zeros in the implementation, and the mesh-
particle assignment is proceeded in a rough way compared to near-bunch domain. The
right-hand side (r.h.s) function is discontinuous, and loses some detailed information
of the discretized charge density. These properties may call for extra effort to reflect
the real E.M. fields.

Other types of considered domains e.g. irregular domains are not popular in beam
dynamics simulations.

For a single bunch simulation, the longitudinal boundary condition is mostly free-
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2.2 Mesh-related calculation of space charge effects

space. The transverse boundary conditions are Dirichlet boundary conditions. Peri-
odic boundary conditions with symmetric extensions in transverse directions may be
better to fit the real physics situations for screen symmetry. In some cases, this can be
chosen for approximation. In the near-bunch domain simulation, the corresponding
boundary conditions are set to be free-space in all three directions.

This dissertation studies the cubic domain with free-space boundary conditions for
the near-bunch domain simulation.

2.2.3 Coordinate settings

The coordinate settings should match the considered domain: Cartesian coordinates
fit the cubic domain, cylindrical coordinates suit the cylindrical domain, and the
elliptic cylindrical coordinates match the elliptic shape in transverse. Other types of
coordinates may not be suitable to cover the geometry of the domain.

In cylindrical coordinates, the coordinates (7,0, z), or (radial, azimuthal, vertical),
are mostly chosen through a number of different cylindrical notations. In Cartesian
coordinates, (x,y, z) are chosen as usual.

This dissertation studies Cartesian coordinates with equidistant discretization.
The non-equidistant discretization is also an option for reflecting a solution, but may
need preprocessing and/or postprocessing for the results. For the GF-FFT method
discussed in this dissertation, the equidistant mesh points can be directly proceeded
by FFTs in comparison with non-equidistant discretization.

2.2.4 Classical numerical methods for Poisson’s equation

The numerical solution of Poisson’s equation is not difficult to obtain, even in an
irregular domain. The real issue is achieving efficiency with reasonable accuracy in
practice. Because the charge density is updated during every time step, the Poisson
solver has to be repeated within each time step. In the beam dynamics simulation,
the Poisson solver generally dominates the time consumption, and this can obstruct
the whole simulation.

In Cartesian coordinates (z,y, z), the Laplace operator is expressed as:

o* 9 9

:@—i_a_gﬂ—{—@' (2.35)

If the Taylor series is used for deriving the discrete formulation, the popular finite
difference method (FDM) is obtained and easily implemented in computers. There
are forward difference, backward difference, and central difference formulas. The most
commonly used one is a seven points central difference for the 3D Laplace operator
and reads as:

—20i ik T Pici ik + Pitijk  —2Qijk T Pij—1k T Pijrik  —2Pijk T Pijk—1 T+ Pijkt1
+ + .
h2 hz h?
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2 Fundamentals of the mathematical model and space charge effects

The discrete Laplace operator can also be expressed by stencil matrices using
more neighbor points for a higher order solution [43]. Finally, all these various
discretizations result in a linear system. The discretized matrix is usually sparse,
symmetric and positive if the computational domain and boundary conditions are
chosen properly. There are dozens of options to solve the linear system derived from
Poisson’s equation, for instance, the direct solvers which utilize the matrix decom-
position, e.g. Cholesky decomposition, band Cholesky decomposition; the classi-
cal iterative methods, e.g. the Jacobi method, the Gauss-Seidel method, and the
successive over-relaxation (SOR) method; Krylov subspace methods [80], e.g. the
conjugate-gradient (CG) method, the bi-conjugate-gradient stabilized (Bi-CGStab)
method; the spectral-DFT (FFT) direct method; the cycle reduction method; FACR
method [82]; the domain decomposition method [81]; and multigrid methods.

For the discrete linear system derived from Eq. (2.34), the multigrid method is
mostly preferred for its high speed convergence compared to other numerical methods.
Possible contributions are [30], [7], [14], [15].

For the discrete integration form derived from Eq. (2.33), the GF-FFT method
is the classical numerical method used in beam dynamics studies. However, the
GF values for different computational domains and boundary conditions are difficult
to obtain. Thus the boundary conditions are limited to be free-space boundary
conditions. This dissertation focuses on the further efficiency improvement of this
method.

From the numerical solution side for mesh-related methods, alternatives for the
FDM are possible, e.g. the finite element method [19], [83], and the finite integration
technique [90], [91], [88].

2.2.5 Parallel calculation of space charge effects

HPC has played an important role for modeling, simulation, and data analysis in the
design, optimization, and operation of current and future accelerators.

The parallel calculation enhances modeling and simulation results to make them
much closer to a realistic scenario. For accuracy, we can use the real number of
particles instead of macro particles, and finer mesh instead of coarse mesh. For
efficiency, the computational time is shortened by increasing process numbers.

A parallel routine has to be programmed differently from the serial routine for
HPC. The program does not only focus on the implementation of the algorithm but
also on the speed-up with a multi-processes pattern.

For beam dynamics simulations, it is now increasingly popular to use the HPC
architecture in all phases of accelerator design and study. Some parallel algorithms
on space charge effects are found in [35], [99], [2], [73], [28]. Integrated Map and
Particle ACcelerator Tracking Code (IMPACT) is a parallel PIC code suite for mod-
eling high intensity, high brightness beams in RF proton linacs, electron linacs and
photoinjectors [69] [74]. Object Oriented Parallel Accelerator Library (OPAL) is an
open-source package for general particle accelerator simulations including 3D space
charge, short range wake fields and particle matter interaction [3], [4], [61]. A Space
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Charge Tracking Algorithm (ASTRA)-parallel ([32], [62]) is also free of charge for
non-commercial and non-military use. It covers particle injecting, bunch tracking
with 3D (or 2D) space charge calculations and wake fields. A Many-GPGPU Particle-
in-Cell Code (PIConGPU) [16] is specifically programmed for the GPU-level archi-
tecture. All packages, and others, meet the challenge of computing the space charge
effects efficiently.

As the third pillar of science, computational simulation with HPC certainly de-
serves to be a key direction of the future numerical beam dynamics study. This
dissertation discusses different routines of a novel GF-FFT algorithm for different
HPC architectures.

2.3 Objectives and research goals

The more advanced the technologies of particle accelerators are, the more precise are
the requirements on the quality of the beam. Several influences on the dynamics of
the particle beam can severely decrease the performance of the accelerator facility.
Thus, a detailed study of beam dynamics is very important in all phases of the
establishment of a new machine: design, commissioning, and operation. In order to
meet the needs of the next-generation accelerator facilities, the numerical methods
for the computation of beam dynamics issues have to be further developed.

The detailed investigation of space charge related beam dynamics is a crucial issue
for the design and operation process of an accelerator facility. The repulsive Coulomb
field caused by space charge effects of a beam can generate a defocussing force that
reduces the external focusing. Yet, almost all low energy synchrotrons suffer space
charge induced emittance growth. The electron gun for the next generation light
source is also affected by space charge effects, especially from the densely charged
bunch [40].

G. Poplau has developed and implemented fast methods for space charge compu-
tations in 3D: the main field of activity is adaptive multigrid methods [66], [63], [64],
[67], [65] for Poisson’s equation. These algorithms - Poisson solvers - are available
with the software package Multigrid for non-equidistant grids to solve Poisson’s equa-
tion (MOEVE), which is under the regents of the university of Rostock. MOEVE
has been further enhanced by A. Markovik into the MOEVE-PIC software package.
This tracking code is now applied to the simulation of the interaction of a positron
beam with an electron cloud [54], [55], [56], [57], [58] .

Although the multigrid approach is more flexible with respect to boundary condi-
tions and adaptive discretizations, the GF-FFT technique achieves better simulation
results for free-space boundary conditions. The GF-FFT method [44] is correct but
not very efficient since it needs many more grid points in the large aspect-ratio di-
rection in order to resolve the variation of the GF. A further development was made
in [70], [71] with the introduction of the IGF method. This approach allows the
computation of fields of very long or very short bunches correctly. However, the com-
putations are complex and time-consuming, which requires further improvement.
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2 Fundamentals of the mathematical model and space charge effects

The resulting aim of this PhD work follows as:

e The numerical GF-FFT convolution routine formed by Hockney and Eastwood
should be integrated into the MOEVE-PIC package.

e The further IGF method for the GF-FFT convolution routine should be studied
and also integrated into the MOEVE-PIC package.

e In order to optimize the efficiency of the IGF method, a couple of efficient GF
methods should be researched.

e The alternative approaches of the GF-FF'T convolution routine should be fur-
ther developed.

e The corresponding parallelization of the achieved efficient algorithms should be
programmed and carried out for different computer architectures.

The FFT Poisson solver with the IGF found by J. Qiang [71] [72] proofed to achieve
correct simulation results for very long or short bunches. When the Poisson solver
is repeated again and again, more attention needs to be paid to the elapsed time of
the Poisson solver. Even though the FFT implementation is optimized for modern
computers, there is always demand for faster implementation times. Further, the
computation of the IGF increases the time consumption while increasing the accuracy
of very long or short bunches. This approach has to be optimized in efficiency for
3D space charge computations. The IGF-FFT routine is manually separated into
three main parts of implementation: the GF values computation, and the DFT (
inverse discrete Fourier transform (IDFT)) of the extension vector of GF vector, the
DFT (IDFT) of the zero-padded charge density. The efficiency improvements here
consider each of these three parts separately. The algorithms are programmed in C
language and further integrated into the MOEVE-PIC package. The code is tested
in a workstation with a 3.7 GHz Intel Xeon(R) CPU and a Quadro K4000 NVIDIA
GPU. Most Poisson solvers from other simulation codes would benefit from the
algorithm optimization.

The efficiency of simulation is so important that more and more beam simula-
tions are implemented in multi-core CPU and supercomputers with parallel routines.
The outcome of the optimization task should therefore also be simultaneously pro-
grammed in parallel routine, e.g. with OpenMP API for shared memory multi-core
CPU parallelization, with the CUDA library for GPU parallelization, with the MPI
library for distributed memory parallelization in supercomputers, and the combina-
tion of the above frames, e.g. OpenMP+CUDA, MPI+OpenMP. The MOEVE-PIC
software package is further enhanced by the OpenMP API for the implementation of
a workstation. For the implementation in supercomputers, the parallel routine has
been carried out in IMPACT at Lawrence Berkeley National Laboratory (LBNL) in
the USA. As the GF-FFT routine is the essential Poisson solver for nearly all beam
dynamics simulation codes, the optimizations from both algorithm and technology
will positively influence other parallel simulation codes in the research community.
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3 Numerical studies of Green’s functions
with free-space boundary conditions in
electrostatics

Mathematically, GF is an integral kernel function solving differential equations, such
as the partial differential equations (PDEs) with certain boundary conditions. Meth-
ods utilizing the GF are widely used in the areas of mathematics, physics, and en-
gineering. In electrostatics, determining the electrostatic potential ¢ poses a funda-
mental problem: solving Poisson’s equation as Eq. (2.34). The electrostatic potential
¢ connects the essential electric field E by Eq. (2.24).

For a single point charge, the corresponding fundamental potential is known as
GF. Additional GF's are also known as the integral kernel to solve PDEs for various
domain shapes and boundary conditions. The free-space boundaries express the
decay condition as |r| — oo:

|G(r)| — 0.

v can be obtained as the convolution of the charge density and GF within the com-
putational domain. The result of numerical convolution is often obtained by the
mid-point integral rule. The details can be found in Section 3.1.

In some cases, the mid-point rule is not sufficient for a large longitudinal-to-
transverse ratio domain. A further integral for the discrete convolution is studied,
which is based on the primitive function of GF. For this part, Section 3.2 provides
more information.

However, the time consumption of the upgraded numerical convolution is signifi-
cant. A selection of efficient versions of GF are introduced in Section 3.3.

Finally, the trivial FF'T convolution routine is presented in Section 3.4, which is
improved within the scope of this dissertation as described in Chapter 4.

Some of the results described in this chapter have already been published in own
publications [102] [100].
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3 Numerical studies of Green’s functions with free-space boundary conditions in electrostatics

3.1 Green’s function

3.1.1 Green’s function

Poisson’s equation with free-space boundaries is commonly used in simulations of
beam dynamics. In reality, the free-space boundary conditions do not fit the acceler-
ator’s chamber, but insofar as the bunch concentrates near the center of the chamber
the free-space boundary conditions are a valid approximation in simulations. This
fact has also been accepted by the research community as most simulations use the
free-space boundary conditions as well.

GF in free-space with Cartesian coordinates is presented as:

1
Ve =2+ (y—y)?+(z -2

which is given by the reciprocal distance between two points in the free space. In
some cases, in particular for the calculation side, the GF can be described directly as
the distance’s function. Similarly, treat the Eq. (3.1) by the coordinate translation,
substituting w — w’ by w for w in {z,y, z} and thus use (0,0, 0) instead of w’, i.e.

G(Iaxlayay/azaz/) - (31)

G($»$,7?Ja y/7 Z, Z/) = G(IE - I’l, Yy — ?/7 z = Zla 07 Oa 0)

Therefore, the GF can also be simplified as

G(r) =
1

V2 2+ 22

This simplified formula is often used in discrete computation since the GF is always
pre-calculated in practice.

Using GF, the solution of Poisson’s equation in R3, i.e. the continuous electrostatic
potential ¢, reads as [44] [71]:

1
—, or
r

G(z,y,2) = (3.2)

1
olx,y,2) = ///p(x’,y’, NGz, 2y, v, z, 2" )da'dy'd2’. (3.3)

471'80

G(z,2',y,y, z,2') is the integral kernel, which is convoluted with the charge den-
sity p(z’,y,2"). In practice, the continuous solution is not always the case. p is
expressed in discrete grid points as obtained in the last chapter. Although it can be
approximated by continuous or basic functions, the integral cannot be solved directly
or easily by the way of analysis. In total, the discrete computation methods are more
competitive in various aspects, e.g. feasibility, execution time.

The cubic computational domain €2, which is obtained from the last chapter, is
already discretized by N,, N, and IV, steps, respectively, in each coordinate direction
with equidistant step sizes hy, hy, h,. The integral in Eq. (3.3) on the domain (2 is
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3.1 Green’s function

discretized on the same grid as introduced in Section 2.1.3 for the charge distribution
p(zi,yjr, ). Then, the discrete integral formula is given by

Na—1Ny—1N,—1

Z Z Z p Tyt 7yj/7zk/ é(xiawi’vijyj’vzkvzk’>v (3'4)

i'=0 j'=0 k'=

SO(SCZ, yj7 Zk: 471'60

where the grid points (z;, y;, 2x) are the center points of each integral. The integral
cell is equal to the individual grid cells with side lengths h,, h, and h,. Thus, the
integral over one grid cell reads as:

Gz, o'y, v, 2, 2/ )da’dy'dz2’.

(3.5)

The @(asi,xi/,yj,yj/,zk,zk/) is demonstrated as shown in Figure 3.1: the points

colored in red are the discretized grid points (z;,v;,2). The grid cell, which is

expressed for the numerical evaluation of the integrals in Eq.(3.5), is actually edged
by the lines colored in blue around each red central grid point.

xi+he/2  pyj+hy/2 pzpth: /2
G(mzaxz ayjay]’azkazk’ / /
x;

i—ha/2 —hy/2 Jzp—hz/2

Figure 3.1: A schematic plot of the grid arrangement used for the numerical integrals in
Eq. (3.4). Source: Thomas Flisgen [31].

Substitute w — w’ by w for w in z,y, z in Eq. (3.5),

xi+he /2 pyjthy/2 zk+hz/2
G(xi, yj, 2r) / / Gy, 2")da'dy'dz’ (3.6)
xi—hg /2 hy/2 zk—hz/2
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3 Numerical studies of Green’s functions with free-space boundary conditions in electrostatics

Applying the midpoint rule to the numerical integral, the GF integral is obtained:

hahyh.
VYA

Since the charge density p in Eq. (3.3) cannot be obtained as a function in practice,
the results of the numerical convolution are always obtained by the approximation
Eq. (3.4). For the integral of GF, the numerical midpoint integral rule of G in
Eq. (3.5) is sufficient for most applications. Theoretically, the approximation of the
midpoint integral reaches an accuracy of O(h?). However, as Poisson’s equation is
solved after the Lorenz transform, the considered domain is stretched by the Lorenz
factor v. When the bunch of particles reaches a higher energy, the accuracy of
the numerical integral Eq. (3.7) is challenged. The improvement of the numerical
integral accuracy would directly focus on the accuracy improvement of G. There
are methods available to improve the accuracy of the integral. First, the high order
accuracy numerical integrals can be used to replace the midpoint rule, e.g. Simpson’s
rule, Simpson’s 3/8 rule, and other types of Newton-Cotes quadrature rule. Second,
the numerical integral can also be directly solved by the first fundamental theorem
of calculus for high dimensions. However, the antiderivative function’s form is not
straightforward to express manually in practice. The next section will discuss the
topic in details.

GGF(%,%’, Zk) = hzhyth<Ii7yjazk) =

(3.7)

3.2 Integrated Green’s function

If the primitive function of G(x, y, z) is defined as IGF (z, y, z), the values of G(z;, Yjs %)
in Eq. (3.5) can be easily calculated by summing up the eight terms of the surrounding
IGF function values of (z;,y;, z), which is shown as Gigr:

Tithe/2  pyj+hy/2 zk—l—hz/Q
/ G2,y 2")d'dy'd~’

GIGF<xz> .%, Zk /

i—ha/2 —hy /2 zk—hz/2
I L R,
—IGF(z; + %a% - th 2+ };Z) — IGF (2 — %,yj + th 2+ };Z)
+HIGF(z; — %7%‘ - h2y 2+ h;) + IGF (z; + %’?Jg‘ - tha 2k — %)
+HIGF (2 — %»% + h2y 2% — %) —IGF(z; h;,yj ];”, % — %)' (3.8)

The IGF integral has definitely a better performance than the GF integral in the
numerical integral calculation of (3.5). It calculates the integral precisely for each
grid cell.
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3.2 Integrated Green’s function

The primitive function (antiderivative) of Eq. (3.1) can be expressed by Wolfram
Mathematica’s integration tool. The IGF(z,y, z), is demonstrated as:

m
:yzln(l'—i- 2 4 2 +22)+:czln<y+ $2+y2—|—z2>
+zyIn (z + /22 2 + z2>
Lo 8ia® 4+ 8(y —iz)e — Biny/a? £ 4P + 2
! r2(y —iz)z?
+1i22 In 8ix® + 8(y + iz)z + iz /2% + 2 + 23
4 22(y +iz)2?
1 9 8<$2_i$y+z(z—|- $2+y2—|—z2>>
—|—42$ n 22(z — iy)22
1 8<x2+z’xy+z<z+ m2+y2+zg>>
——iz”In .
4 22 (x + iy)2?
1 9 2$y—22'<y2+z(z—|— $2+y2+22>)
1" In —
1 9 2Iy+2i(y2+z(z—|— J72+y2—|—22>>
+4Zy n T
A simpler form of (3.9) from [72] is shown as follows:
IGF(z,y, = // - dedydz (3.10)
m
2
= — avetan( y ) — arctan( i )
z? yz
—— arctan byzin(e + VLR 22
Y E ( )

+rzln(y + 22 + 9> + 22) + xyln(z + /a? 4+ y? + 22).

From the view of physics, the IGF and GF have the same physical meaning. Re-
gardless of the IGF and GF, the accuracy of the potential form (3.4) is limited to
the discrete charge density p.
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3.3 Efficient integrated Green’s function

3.3.1 Reduced integrated Green’s function
Comparison of integrated Green’s function and Green’s function

The IGF and GF integral routines show significantly different results in some specific
cases, i.e. where the computational domain has a large longitudinal-to-transverse
ratio. This is the situation which arises when the bunch has been accelerated to a
few MeV. Then the bunch size is extremely long after the Lorentz transform to the
rest framework for the design of next-generation accelerators.

The simulation results differ from each other, which suggests it may be useful to
conduct a comparative approach of the two GF integrals. The comparison focuses
on two aspects: the aspect of accuracy, which relates to the relative difference of the
numerical integrals; and the aspect of efficiency, which relates to the execution time.

Comparison of accuracy

Define the tilde GF integral error from tilde IGF integral as:
0Gar(wi,y5, 2) = Gar(@i, 5, 21) — Grar(wi, y5, 21),
comparatively define the relative error between the GF and IGF integrals as:

5éGF($z’, Yjs Zk)
Giar(xi, Y5, 2k)

UG(ifi,yj, Zk:) =

To confront the specific cases, a rectangular computational domain with a large
aspect ratio L, : L, : L, = 1:1:30 is chosen. The grid is generated in equidistant
points with step sizes (hy, hy, h,) with grid number (64,64,64) in each axis. The
number of grid points for GF values is 65 x 65 x 65 = 274,625 (The GF grid is
organized by one more point than the discrete p(x;, y;, 2;) in each axis for the further
fast convolution calculation).

In Figure 3.2, the local relative errors ne(z;, y;, 2x) are plotted along index k (also
z, the longitudinal direction), which means each column in the Figure corresponds
to one slice of index k. The slice is a 2D cutting plane of the 3D domain along z
direction and identified by index k. The trend of the plot is obvious: the local relative
errors decrease sharply with increasing value of k. For the first several 2D slices along
k, the local relative errors vary strongly and variously. With increasing k, the errors
within a slice coincide more and more, and the errors of further slices converge to
zero. The strong decreasing property of GF indicates this fact principally.

On the other hand, the numerical midpoint integral’s relative error can be bounded
by the following error analysis as:

h3h3h3

5GGF(xi7yj7Zk‘) S 1724113 ZKxKsza (311)
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Figure 3.2: The local relative error of the GF integral.

where K, is the largest value of |Gl (z,y, z)|, and w € [w, — & w, + %] for w in
{z,y,2} and [ in {4,,k}. K, has a stronger decreasing trend than G(z,y, z) if we
check the derivatives. Aiming for a smaller ne(z;, y;, 2), the grid number N, along
the large aspect ratio direction can be set as a large number in order to obtain a finer
grid in z direction and smaller step size h,. However, the calculation time increases
proportionally with the increasing V.. The high efficiency would be a challenge for
this finer grid assignment.

The local relative error exponentially decreases with increasing distance from the
origin, while the error varies also with the relative aspect ratio.

From a different point of view, the diagonal line in the first slice along k direction
is considered as shown in Figure 3.3 (left). As the longitudinal-to-transverse ratio
increases from 1 to 10, 30, and 100, the ng(x;,y;, zx) values exhibit an increasing
relative error along the diagonal line of the traverse plane in Figure 3.3 (right), i.e.
the larger the aspect ratio is the worse the integral errors are.

Figures 3.2 and 3.3 reflect the reason why the standard GF integral solves Poisson’s
equation less accurately when large aspect ratios are concerned. As a global expla-
nation for both approaches shown in the figures, the midpoint rule GF integrals near
the origin point are affected by the large ratio scaling. Far from a certain distance
to the origin, the numerical midpoint integral Gar shows acceptable local relative
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Figure 3.3: The local relative error of standard GF integrals, ng (ihs, ihy, 0) with different
aspect ratios.

errors with Gigr.

Comparison of execution time

In comparison to G (xi,y;, 2) value calculations the IGF integral CNJIGF(L-, yj, 2x) calls
for eight terms in Eq.(3.8), and each term is calculated by the complicated formula
in Eq.(3.10). In practice, the values from Eq.(3.10) can be computed once and stored
in advance. Then the eight-terms summation in Eq.(3.8) is simply substituted by the
value for each term rather than computing eight times. In contrast, the numerical
CF integral Gar(2;,v;, ) has only one simple term in Eq.(3.10). The complexity
of the numerical GF integral Gar(i,y;, 2) is much lower than the IGF integral
GIGF(%‘, Yijs Zk)

Table 3.1: Comparison of execution time for the two GF integrals G

N+1 égp execution Time G’IGF execution Time
33 1.7576e-03 s 1.3171e-02 s

65 6.8170e-03 s 7.2431e-02 s

129 | 5.2252e-02 s 5.2918e-01 s

257 | 4.0518e-01 s 4.0992e+00 s

It can be demonstrated straightforwardly that there is an execution time difference
between the two integrals. As shown in Table 3.1, the execution time! of IGF integrals
is more than a dozen times that of the GF integrals for N = N, = N, = N,. This

IThe execution time for all comparisons is recorded by the average time if we do not distinguish
it in this thesis.
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3.3 Efficient integrated Green’s function

reflects the fact that the IGF integral leads to high time-consuming terms while it is
a simple term for the GF integral.

By comparing both accuracy and efficiency aspects, the midpoint rule for éGF(xi, Yjs %)
integrals above the grid cells shows poor performance at the front parts of the
large aspect ratio direction compared to élgp(xi,yj,zk). This fact is determined
by the distance from the origin and aspect ratio. In contrast, the execution time of
Ghar (w4, 95, 21,) integral is an order of magnitude higher than that of Gar(zi, y;, 2&)
integrals.

Reduced integrated Green’s function

A numerical integral routine, which combines both the accuracy and efficiency pro-
perties from GF and IGF integrals, respectively, is an ultimate method in practice.
The RIGF routine is a hybrid way to implement the plan. The trick starts by having
the IGF integral inside RIGF takes the responsibility of the accuracy aspect while
the GF integral inside RIGF takes charge of the efficiency aspect. Additional inte-
ger parameters (R,, R,, R,) determine the separation of G values between the IGF
portion (the near-origin parts) to the GF portion (the rest parts inside the computa-
tional domain) (see Figure 3.4 blue line between {gp and Qgr). These (R, Ry, R.)
parameters scale the balance between the accuracy and efficiency demands.
Then the new RIGF integral reads as follows:

Grar (24,95, 2), (0,0,0) < (4, 4,k) < (R, Ry, R.);

~ ‘ (3.12)
Ger(zi,y;, 21), otherwise;

éRIGF(JEi, Ys, Zk) = {

Based on the two key aspects, two general strategies are carried out to choose these
parameters R, for win {x,y, z}. For the large scaling domain size, the parameters R,,
are reasonable to be limited in certain axes. For the long bunch after Lorenz transform
in longitudinal direction, the R, is not needed for w in {z,y}. To demonstrate this
clearly, the next two strategies are considered in this situation.

Time determination strategy:

Defining a splitting parameter s, which respects the ratio between IGF portion and
the whole domain in z direction. R, can be automatically defined as:

N, +1

Sz

Rz:[

! (3.13)

The splitting parameter s, not only separates the space, but also scales the com-
putational time. The final RIGF computational time tgigr is linear between the IGF
computational time t;gr and the GF computational time tgr shown as:

R,

t = t —t tar. 3.14
RIGF N, + 1( IGF Gr) + tar ( )
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Figure 3.4: A schematic plot of RIGF domain for Cartesian coordinates.

The time determination strategy has a good estimation of execution time with the
information of tjgr, tgr. In some cases, it could be directly used as the bunch ratio
is not large.

Adapted relative error determination strategy:

The final solver’s computational error would definitely be influenced by the numerical
RIGF integral error which exactly matches the GF integral portion inside RIGF. The
magnitude of the numerical integral’s relative error is referenced to have a global
estimation of the final solver’s relative error in this strategy.

The strategy is demonstrated as follows:

First, f(IV,) = 1/log, N, is chosen as the reference function which compares with
the Gigr’s decreasing trend by

||éIGF k-1 — GIGF kH/éIGF k-1 < f(N2),

where GIGF means IGF integration is used for the G calculation. For the determina-
tion strategy, the referenced indices (3, j, k) are chosen as (0,0, k), thus can be set as
Giar k simply and k increases from 0.
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3.3 Efficient integrated Green’s function

In this step, a stationary area is determined by the inequality because the Gigr is
decreasing tremendously with respect to the beginning part. 1/log(z) exhibits similar
behavior in practice and is a comparable function regarding the error magnitude
estimation.

The first £ which satisfies the inequality would be recorded as Esiaple-

Second, the proper R, is chosen from the k, which determines the further accuracy
tolerance by

5G~!k/5ékstablc <107,

where 6G), = HG’IGF w — Gap k||, where Gor means the GF integration is used for the
G calculation. s is the magnitude determination (the accuracy control) factor, which
is an integer and greater than 0. The first k& that satisfies the inequality in this step
is recorded as R,.

These parameters have to be determined individually for different problems under
examination. The validation for the relative error determination strategy will be
discussed in Chapter 6.

3.3.2 Cutting integrated Green’s function

The above GF integrals are generally used for bunch tracking simulations. This
means the computation domain just covers the bunch space and only the self-field
inside the domain is calculated. This kind of simulation is denoted as near-bunch do-
main calculation. In contrast, the external electric field outside the bunch can also be
needed. The computational domain would be larger than the bunch which is known
as far-bunch domain calculation. In some cases the far-bunch domain calculation is
considered, e.g. the interaction between bunch and cloud simulation. The GF-kind
integral methods have also a potential to make far-bunch domain simulation. Unsur-
prisingly, even the same bunch tracking routines in two different domain settings lead
to two different results. The following efficient GF integrals of CIGF concentrate on
the far-bunch domain calculation.

As presented in Figure 3.5, the bunch domain Qgyue, (surrounding cuboid) is su-
pposed to be located at the subdomain [xy, ] X [ys, y¢] X [25, 2¢] of the grid (cor-
responding to [Nyp, Nut| X [Nyp, Nyt X [Nup, Noi| in mesh) which is in the center of
the computational domain €2, the ratio between bunch domain and the complete
computational domain is 1 : «y, for w in x,y, z directions, respectively.

Taking the summation form of the discretized convolution in Eq. (3.4) there will
be a large area in which the charge density parts p(zy, y;/, 2i) are zeros. That means
if we use the GIGF for the far-bunch domain calculation, a portion of the GIGF values
is over-calculated and, in principle, unnecessary. The form of Eq. (3.4) without zero
terms is shown in Eq. (3.15). The corresponding portion of é(wi,xi/,yj,yj/, 2k 2k
is automatically waived for calculations as well.

Nyt Nyt Nzt

1 -
gp(wi,yj,zk) ~ F&O . Z Z Z p(xi’ayj’azk’)G(xiaxi’uyjayj’uZk7zk’)' (315)

/=Ny j/:Nyb k'=N_p
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Figure 3.5: A schematic plot of CIGF domain for Cartesian coordinates.

As the G values are practically computed in advance, the waived calculation portion
of G is actually outside of the domain bounded by the red line (Figure 3.5), but inside
the computational domain. Although the calculations are waived, a value should be
filled in each of these grid points for G. In practice, the values are set as zero and
the domain is named as €y. This is the numerical demand for the next fast Fourier
convolution step in Section 3.4.

The GF value G, outside of the subdomain bounded by the red line, does not
contribute to the discretized convolution at all. The red line is determined by the
bunch-domain ratio, the ratio between the Green’s function domain and the total
computational domain, defined as (1 + @,,/2) : .

Naturally, we define the CIGF as GCIGF(xia Yj, 2k):

GIGF(xivijzk>7 (07070) S <i7j7 k) < (CI7CyJCZ);
0, otherwise;

éCIGF(JJz‘; Yis Zk) = {

where C,, is determined by the domain-bunch ratio o, = L, Domain/LwBunch (0w >
1), L, is the length for w in {z,y, 2} and Cy, = [Ny(1 + au)/2a,]. The large area
with zero charge density in €}y guarantees the CIGF is as accurate as IGF, and highly
efficient in G integrals.
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Computational domain

Ny
¢, \
unch domain
Ry
GF domain
IGF domain
0 R, Cy N,

Figure 3.6: A schematic plot of CRIGF domain for Cartesian coordinates.

3.3.3 Cutting reduced integrated Green’s function

For far-bunch domain space charge simulation, the CIGF integral is efficient and
does not waste calculations. When the near-bunch domain simulation takes place,
the CIGF is not valid anymore. However, the RIGF can always be implemented. In
total, we have the following cutting reduced integrated Green’s function (CRIGF)
integral:

CRIGF integral

The combination of RIGF and CIGF as the CRIGF should be more efficient than
pure CIGF for the same problem,

) Grar(2i, 95, 2), (0,0,0) < (i, k) < (Bs, Ry, R.);
GCRIGF(wiuyjazk) = GGF(xiyyj;Zk)a (RxaRyaRz> S <i7j7 k) < (Cmycyacz);
0, otherwise;

where (C,,C,,C,) and (R,, R,, R.) are chosen as above.
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In Table 3.2, the different GF integrals are compared in the respect of executed
time in practice.

Table 3.2: Comparison of different GF integrals’ elapsed time with increasing grid reso-

lution.

N+1 | GF Time IGF Time RIGF Time | CIGF Time | CRIGF Time
33 1.7576e-03 s | 1.3171e-02 s 2.5239e-03 s | 2.4517e-03 s | 6.2260e-04 s
65 6.8170e-03 s | 7.2431e-02 s 1.3374e-02 s | 1.6735e-02 s | 3.5395e-03 s
129 5.2252e-02 s | 5.2918e-01 s 7.8222e-02 s | 1.1753e-01 s | 2.4910e-02 s
257 4.0518e-01 s | 4.0992e+00 s | 5.3560e-01 s | 9.4162e-01 s | 1.9471e-01 s

The accuracy respect of different GF integrals connecting to relative errors of
Poisson solvers is not shown in this chapter. The verification of RIGF integral and
CIGF integral (CRIGF integral is then automatically included) will be discussed in
Chapter 6.

3.4 The trivial FFT convolution routine with
padding zeros

The summation of Eq. (3.4) is highly time-consuming when the complexity reaches
numbers as high as N2 N;NZ. However, based on the Fourier convolution theory, the
discrete convolution in the space domain equals the point-wise multiplication in the
Fourier domain, i.e. using 3D DFT § and convolution theory, the extended potential
expression is:

1
47T60

371{[3(;%]1,]‘,16 [ Pealijk Yon, 2N, 2N, - (3.16)

[Soea:]i,j,k ==

Here, the domain w is doubled in each axis, i.e. the computational domain should
be 2N, x 2N, x 2N rather than the original NV, x N, x N, due to the implementation
of a cyclic convolution. The cyclic convolution is a result from the naturally periodic
property of DET. A direct DFT will force both the charge density p(z;,y;, 2x) and
the tilde GF G (i, yj, 2) to be periodic. The obtained solution would be meaningless,
since neither p(z;,y;, z;) nor é(:ci,yj,zk) is periodic in reality. The N, x N, x N,
size results in the following problem: if we perform the cyclic convolution directly on
é(xi, yj, z) and p(x;, y;, z) of the original N, x N, x N, domain, wrong é’(xz, Yj, 2k);
p(xi,yj, z1,) values will automatically be defined as periodic functions along each
axis. To overcome these issues, both G(z;,;, ) and p(x;,y;, 2) are extended as
C;’ex(xi, Yj, 2k) and pey (24, yj, 21). The extended potential is denoted as ¢, (2, yj, 2k).
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3.4 The trivial FF'T convolution routine with padding zeros

Figure 3.7: The extension of GF (left side) and the extension of charge density (right
side).

For the extensions: the charge density pe,(i,y;,2) is padded with zeros in all
extension grid points, the tilde GF é(xl, Yj, zk) 1s extended to be symmetric. The
details are demonstrated in the following routine and Figure 3.7. The original po-
tential at each grid point equals the first N,, N, N, values of the extended potential
expression on each axis.

As the cyclic convolution is executed through DFT, the computation complexity
can be reduced due to FFT’s implementation. However, the double-sized extension
of data in each axis can not be avoided.

Routine: the trivial FFT convolution routine
1. Green’s function calculation and extension (Left side of Figure 3.7):

1.1. Calculate each tilde GF value G(z;, Yyj, 2) by using the formula from either
GF, IGF, or CRIGF integrals.

1.2. Extend the tilde GF values as:

éex(xia Yj, zk) =
(

G(xi, 5, 1), 0<i<N;0<j<N;0<k<N,

G(Tan,—i, ¥j» 2k), N, <i<2N,—-1,0<j<N,;0<k<N,,

G (i, Yon, i ), 0<i<N;N,<j<2N,—1,0<k<N,,

G(2i, Y5, 2an,—k)s 0<i<N;0<j< NN, <k<2N,—1,

G (Tan, —is Yo, —js 21); Ny <i<2N,—1;N, <j<2N,—1,0<k<N,,
G(Tan,—i, Yj, ZaNe—k); N, <i<2N,-1,0<j< N, N, <k<2N, -1,
G (i, Yan, > Zan. k), 0<i< Ny Ny <j<2N,—1;N, <k <2N,—1,

| G(an, i, Yon,—js Zon. 1)y No <i < 2N, —1;N, < j <2N, —1; N, < k < 2N, — 1,
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2. Extend the charge density p(x;,y;, zi) (right side of Figure 3.7):

Pex(Tis Yj» 2k) =

( p(ziyj.20), 0<Si<N,—LO<j<N,—L0O<k<N., -1,

, N, <i<2N,—L,0<j<N,—L,0< k<N, -1,
0<i<N,—L;N,<j<2N,—L,0<k<N, -1,
0<i<N,—L,0<j<N,— LN, <k <2N, -1,

N, <i<2N,—1;N, <j<2N, - 1;,0< k<N, -1,
N, <i<2N, - 150<j <N, — LN, <k <2N, -1,
0<i<N,—1;N,<j<2N,—1;N, <k <2N, -1,
N, <i<2N,—1;N, <j <2N,— L;N, <k <2N, -1,

o o0 o0 o o o o

\ Y

3. Obtain FGep (i, Y5, 2t): 3D FFT of Gep(i, y5, 21)-

4. Obtain §pes (i, yj, 2x): 3D FET of pey (i, yj, 2k).-

5. Multiply §pes (i, y;, 2) and 3(;630(@, yj, 2r) by corresponding indices. The re-
sults are stored to §pes (74, y;, 2k).

6. Obtain the potential ¢, (z;,y;, 2): 3D inverse FET of §pe, (i, yj, 21)-

7. The potential ¢(z;, y;, z;) is obtained by cutting the original domain 2 from the
extended domain of ¢, (2;, yj, 2k).

The trivial FFT convolution routine is straightforwardly obtained by the Fourier
convolution theorem. For implementation, the routine is still not effective or efficient
enough. In the next chapter, this trivial routine will be further improved with respect
to less storage requirement and less time consumption. The historic line will be linked
for a clear demonstration.

In some simulation applications this trivial routine is still in use. For example for
the GPU version simulation [24] [77] which is due to the simple programming, and
highly optimized FF'T library provided by hardware vendors.
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4 A novel discrete convolution with
implicitly zero-padded FFT

Since FFT accelerates the numerical computation within an acceptable amount of
time, Fourier transform has been widely used for convolution computations. The
trivial FFT convolution routine, as shown in Section 3.4, is the basic and the simplest
routine for the numerical convolution implementation. However, this routine treats
the extensions and the multidimensional DFT in a rough way. Many unnecessary
operations are counted inside the computation, which means that potential efficiency
improvements are available to perform. Also, the Poisson solver is executed for tens
of thousands of times, so that a few percentage points of execution time equal a few
hours in real time. Efficient numerical methods are needed and the pursuit of that
is endless.

In Section 4.1, multidimensional DFT and FFT are represented. They are essential
for the optimization of a convolution routine for either explicitly zero-padded FFT,
as done by Hockney and Eastwood, or the implicitly zero-padded FFT as used in the
novel discrete convolution.

In Section 4.2, the classical method by Hockney and Eastwood, which has been
widely used for a couple of decades, is reviewed.

Furthermore, the novel efficient convolution routine is presented in Section 4.3 for
1D, 2D, and 3D situations. Both the extension and DFT are considered for G’s
optimization. On the other hand, the implicitly zero-padded FF'Ts for p are implied.

The combination of real to complex FFTs with the novel discrete convolution is
considered for further efficiency improvement in Section 4.4.

Finally, the error study of the novel numerical convolution is given in Section 4.5.
A detailed numerical convergence approach is presented in Section 6.3.1 in Chapter 6.

Some of the results described in this chapter have already been published in own
publication [101].
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4.1 Multidimensional discrete Fourier transform

DFT is probably the most widely used algorithm in both scientific and engineering
fields. However, it was ignored for a long time due to the high complexity of the
matrix-vector multiplication operation. As early as 1805, Gauss had already pre-
sented the algorithm in his works. The formulas published by Gauss are expressed
as well as the forms almost a hundred years later [41]. After 1965, when Cooley
and Tukey published their global renowned article [23] on FFT, computational tools
based on FFT spread over most areas of the scientific world, including the space
charge calculation in beam dynamics.

Before introducing further optimization steps for the convolution routine in Sec-
tion 3.4, the basic ideas behind FFT and multidimensional FFT routines have to be
explained.

4.1.1 The discrete Fourier transform

The DFT of a n-sized vector f = [fo, f1, fo,- - fn_1]? is, in principle, a matrix-vector
product on the vector, i.e.
f=DFT,(f).
Or the full-matrix form:
£ 0-0 0-1 0-2 01 0-n—1
fO wn wn wn e wn e wnn fO
¢ 1-0 11 1-2 1.1 1n—1
fl wn wn wn R wn . wnn fl
¢ 2-0 2:1 2.2 21 2n—1
f2 Wn, Wn, Wy, Wn wnn f2
¢ k-0 k-1 k-2 k-l kn—1
fk wn wn wn e wn e wn n fl
fn—l wz—l-o wz—ll wz—l-Z .. CUZ_LZ .. wz—l-n—l fn—l

whereby

wp=cos| — | —isin| — | =exp|——1],
n n n

and w;’ = 1 which means w, is an nth root of unity.
The one-line form of DFT is prescribed as

n—1
f(wg):waLlfl, for k=0,1,2...,n— 1. (4.1)
1=0

It is easy to confirm that the DF'T matrix § is symmetric, and the inverse procedure
of DFT, known as IDFT, §~! equals to the conjugate transpose of § regardless a
constant factor as:

SR
gnl = _Sn'
n
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4.1 Multidimensional discrete Fourier transform

The corresponding one-line form of IDFT is obtained as:

n—1
1 —lk 7
_—E w for!=0,1,2...,n—1. 4.2
fl nk:o nfk7 or s Ly , ( )

where the @, is the complex conjugate value of w,.

4.1.2 The fast Fourier transform

To divide a n-sized DFT into a tree of smaller and smaller DFTs is the general idea of
Cooley-Tukey’s FFT algorithm. As an instruction, the following theorem summarizes
the basic idea of FF'T in the radix-2 splitting situation. The routine is continued until
the new ns are primes (2 for this case).

Theorem 1 (Radix-2 splitting). If n = 2m and

n ),

Q,, = diag(1,wp, ... ,w
then

San -

gm Qmgm o ]m Qm
Sm _Qm%ym B ]m - Qm

Sm 0

0 Fm |
where w, = exp(—2mi/n) and I1,, is the permutation matriz, which groups the even-
indexed columns of . firstly and odd-indexed columns afterwards.

The proof of this theorem is provided in [87] (page 12). The key aspect of the
proof is substituting the following formulas Eq. (4.3) into the Fourier matrix and
simplifying it.

w2 = Wy, and W = —1 (4.3)

In many cases, n cannot be divided by 2, but by other primes. Comparably, the
radix splitting in other primes is still successful for FFT, which can be found in [87]
(chapter 2).

Computer science assumes a major role inside FFT’s widely used applications.
Several software packages are specified for the implementation of FFT, e.g. Fastest
Fourier Transform in the West (FFTW) package developed by Matteo Frigo and
Steven G. Johson at MIT, and FFTPACK by Paul N. Swarztrauber at National
Center for Atmospheric Research, US. The FFT’s efficient implementation is so im-
portant that the lower bound on the complexity of FFT algorithm has been ques-
tioned and is still unsolved in the theoretical aspect [48], while different computing
architectures are carried out and optimized for the FFT’s speed-up in comparison
with the common CPU’s implementation, e.g. the implementation of FFT in GPU
platform.
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4 A novel discrete convolution with implicitly zero-padded FFT

4.1.3 The multidimensional DFTs and FFTs

As the 3D problem is a typical situation in beam dynamics simulation, we choose
the 3D DFT as an instruction. The DFT can also be denoted as FFT in some cases
when we do not need to distinguish the two in this dissertation.

The multidimensional FFTs are obtained by serially implementing the 1D FFT
along all directions as performed in Algorithm 1. However, there are other issues
which need to be considered, e.g. the transportation within 3D vectors and memory
traffic problems.

Algorithm 1 3D FFT

Input: f(0: N,—1,0: N, —1,0: N, —1)

Output: f(0: N, —1,0: N, —1,0: N, —1)
1: function 3D DFT

2 for j=0— N, —1do

3 fork=0— N,—1do

5 end for

6: end for

7

8

9

fori=0— N, —1do
fork=0— N,—1do

: f,: k)« FFT[f(i,: k)]

10: end for

11: end for

12: fori=0— N,—1do

13: for j=0— N, —1do

14: fi,j,:) < FFT[f(i,7,:)]
15: end for

16: end for
17: end function

In Section 3.4, the 3D FFT of extended GF data and p are briefly obtained as
Algorithm 1. However, the FFT size with the extended vectors is exponentially
larger than the original problem’s size. So it has to be reluctantly accepted that the
full 3D FFTs for both G.,, and Pex are applied in the routine, especially when only
the potential in the original domain is needed. As a start of the optimization, the
3D FFT of p.,. can be optimized due to the property of the zero-padded extension.
Hockney and Eastwood have presented the algorithm in their book [44], and it is also
presented here in Section 4.2.

The multidimensional DFTs are sometimes presented via the Kronecker product
of matrix and vectorization of multidimensional arrays for analysis purpose and in-
structions. ([87] section 3.4).
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4.2 The commonly used convolution routines

4.2 The commonly used convolution routines

4.2.1 The routine from Hockney and Eastwood

The fast convolution routine by Hockney and Eastwood has been used widely for
a couple of decades. In their routine, a full structure of 3D FFT is organized to
be pruned. The pruned 3D FFT succeeds because seven eighths of p., are zeros
after padding zeros for the charge density p. It is implemented based on the idea
of splitting the zero portions in the original structure of 3D FFT. The detailed
algorithm is demonstrated in Algorithm 2.

In addition, the saving of memory storage in the routine is planned as well. The
storage required in Hockney and Eastwood’s routine is for two active data 2N, X
Ny x N, (fep in Algorithm 2) and 2N, x 2N, x 2N, (3DFFTGreenFunExt in
Algorithm 2), plus a temporary plane of 2N, x N, points (T'emp2D in Algorithm 2),
and a temporary vector of 2N, points (T'emplD in Algorithm 2). The storage savings
are competitive to the trivial extended p.,, which is eight-fold of p.

The routine includes two major types of functions: PaddingZeroInW|] for W in
{X,Y,Z}, and 1D FFT[] (IFFT][]) functions in each direction.

As an instruction for PaddingZerolnW|]in 1D: if a vector f = [fo, f1, for -+ s fa_1]?,
the PaddingZero of f is

f = [f07f17f27"'7fn—17070707“'70]gn7

where [ ]2 means the transpose of a 2n-sized vector. All three usages of padding

zero functions can be understood as the above instruction in different directions.

For the involved F'FT] ], the implementation can be effected by the for-loops.
Based on the storage settings, the numbers of batch FFTs in each direction are
different: (N, —1) x (N, — 1) FFTs in x axis, N, — 1 FFTs in y axis, and 1 FFT in
z axis. The storage saving of a temporary vector of 2N, points for the z direction is
not worthwhile compared to the FFT efficiency in the z direction in most cases.

From a modern perspective of efficient FFT calculations, the FFT parts for the
z direction in Algorithm 2’s routine can be modified to be implemented in batch or
parallel. Nowadays, the batch FFTs are fully optimized by different kinds of FFT
packages. The FFTW package provides both batch plans and shared-memory parallel
ways for efficient FF'T implementation. Similarly, the CUDA FFT library contributes
another efficient FFT implementation for GPU implementation. Moreover, both
strategies based on the batch FFTs are efficient in practice, which is well included
in software packages. This realization differs from the one Hockney and Eastwood
introduced in their work a couple of decades ago.

The Hockney and Eastwood routine waives the FFTs of zero vectors inside Eq. (3.16)
of the Fourier convolution theory. A reasonable efficiency improvement is achieved.
However, Hockney and Eastwood do not optimize the FFT for the GF vector, even
though they notice the symmetric property after the 3D FFT because they use the
symmetric property for the purpose of storage savings.

39



4 A novel discrete convolution with implicitly zero-padded FFT

Algorithm 2 Fast 3D Convolution by Hockney and Eastwood
Input: f(0: N, —1,0: N, —1,0: N, — 1), 3DFFTGreenFunExt(0 : 2N, — 1,0 :
2N, —1,0:2N, — 1)
Output: u(0: N, —1,0: N, —1,0: N, — 1)
1: function CONVOLUTION3D_HANDE

2: fex(0:2N, —1,0: N, —1,0: N, — 1) < PaddingZerolnX[f(0: N, —1,0:
N,—1,0: N, —1)]

3: for j=0— N, —1do

4: for k=0— N,—1do

5: fex(:7j7k) <_FFT[fex<7J7k)]

6: end for

7: end for

8: fori:=0—2N,—1do

9: Temp2D(0: 2N, —1,0: N, — 1) < PaddingZeroInY [f.,(i,0 : N, — 1,0 :

10: for k=0— N,—1do

11: Temp2D(:, k) < FFT[Temp2D(:, k)]

12: end for

13: for j=0— 2N, —1do

14: TemplD(0: 2N, — 1) < PaddingZerolnZ|[Temp2D(j,0: N, — 1)]

15: TemplD <« FFT[TemplD]|

16: TemplD < TemplD(:) * 3DF FTGreenFunExt(i, j,:)

17: TemplD <« IFFT[TemplD)|

18: Temp2D(j,0: N, — 1) <~ TemplD(0: N, — 1)

19: end for

20: for k=0— N,—1do

21: Temp2D(:, k) < [FFT[Temp2D(:, k)]

22: end for

23: fex(t,:,k) <= Temp2D(0 : Ny, k)

24: end for
25: for j=0— N, —1do

26: for k=0— N,—1do
27: fex(:7j7 k) — IFFT[fex(:>j7 k)]
28: end for

20: end for
30: w0: N, —1,0: Ny —1,0: N, = 1) « fer,(0: N, — 1,:,2)
31: end function

In the next section, the efficiency optimization of FFT will be further studied for
both p., and G.,.
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4.3 A novel fast 3D convolution routine without explicit zero padding

4.3 A novel fast 3D convolution routine without
explicit zero padding

Recently, Bowmann and Roberts have shown an efficient dealiased convolution algo-
rithm without the expense of conventional zero padding [12]. He uses a routine to
calculate the implicitly zero-padded FFT convolution rather than the explicitly zero-
padded FFT convolution. The core finding is to leave out a bit reversal stage in FF'T
in order to reduce both the time and the storage consumption. In general, the speed-
up is as high as 2 compared to the explicitly zero-padded pruned-FFT convolution.
The precision of the implicitly zero-padded FFT convolution is identical to that of
the explicitly zero-padded convolution. This kind of convolution is used in the study
of turbulence. However, the input data’s extension and convolution in Bowmann’s
study is different from the convolution we mentioned in the Poisson solver for space
charge calculation. This is because the zero-padded G, is replaced by a different
extension, defined in Def.1.

Definition 1. Suppose a vector g = [go, g1, - - -, gn|", the real even symmetric exten-
sion (RESE) of g is given as ge, which is expressed as:

Jex = [907 g1,y 9, 9n—1,9n—2, - - - 7gl]gn-

The RESE of a multidimensional vector is obtained by applying 1D RESE in each
dimension.

The goal to produce the convolution without the last bit reversal stage must be
developed differently in our convolution. The efficiency improvement needs to be
tested for our new routine and the novel fast convolution routine will be compared
with the classical routine from Hockney and Eastwood.

4.3.1 Optimization of the 3D FFT with extension for GF
values

The optimization of the FFT for G., starts with a real to real Fourier transform:
(type-I) discrete cosine transform (DCT) and the specific symmetric extension of G.
There are eight different types of DCTs in total. In this dissertation, DCT refers to
the first type if not specific. Elsewhere, type-I1 discrete cosine transform (DCT-II)
is used in the field of signal and image processing, for example, but this is usually a
small size transform.

Definition 2. Suppose a vector g = [go, g1, - - -, gn)", define DCT of g asy, which is
expressed by:

y= DCT,(g), ie.
m—1 .
k‘ _1 k m
=2+ > cos(=2")g; + %, fork=0,1,....,n.  (44)
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4 A novel discrete convolution with implicitly zero-padded FFT

The DCT has a strong connection with the FFT of roughly double length with
RESE. Theorem 2 presents the connection in 1D form as follows:

Theorem 2. Suppose a vector g = [go, g1, - - - gn)T, the RESE of g is gep. If we define
the vectors

1
Yex = éDFT2n<gex)a

and
y = DCT,(9),

then Y, is the RESE of y.

The DCT can be achieved by applying the same size of the FFT with some addi-
tional operations, as introduced in [87] (section 4.4). The complexity is on the same
level as FFT, 2.5nlogn. The idea behind the fast computation is also due to the
RESE property. In total, Theorem 2 shows us the capability to reduce the “double-
sized” 2n FFT with RESE by exchanging the RESE after the DCT. Regardless of
the computation of RESE, the complexity reduces from 5n log 2n to 2.5n logn.

The 3D DCT is achieved similar to the routine of the 3D FFT by implementing
1D DCT along each dimension for x, y, z directions. The conclusion for 3D, Theorem
3, is similar to the 1D Theorem:

Theorem 3. Suppose a 3D vector g, and the 3D RESE of g i$ ger. If the 3D vectors
Yeaw and y,
1
gggex
and
y=9(9),
where § 1s the 3D Fourier transform and ® is the 3D DCT, then y., is the 3D RESE
of y.
Or:
Corollary 1. The vector obtained by the DFT of a RESE vector is RESE.

For the further usage of §G.,, the extension can be expressed implicitly from D(G)
with real even symmetry, rather than with extension in storage. The corresponding
index is as shown:

Séex(iaj7 k) :C‘D(é)(I? J? K)? (45)
where
- € [0, V.
2N, —i i €[N, +12N—1]
Jo { J, € [0, N]
2N, —j jE[N+12N 1]’
K- { k, k € [0, N,] . (4.6)
2N, —k ke[N,+1,2N, —1]
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4.3 A novel fast 3D convolution routine without explicit zero padding

Some more conclusions regarding to RESE, DCT, (type-I) inverse discrete cosine
transform (IDCT), DFT and IDFT are shown in Theorem 4 and Corollary 2.

Theorem 4. Apart from a constant factor, DCT is the same as IDC'T.

Corollary 2. Apart from a constant factor, DFT and IDFT of real-even symmetric
vectors are the same.

Resulting from Corollary 2, we notice that both DFT and IDFT for G, can be
used for Hockney and Eastwood (HandE)’s routine, apart from a constant factor.

Optimization results of the 3D FFT with RESE for GF values:

Based on Theorem 2 and 3, the improvement of the 3D DCT with implicit RESE
for GF values is significant for both storage and efficiency. As the explicit RESE
of G values is waived, the storage stays the same size as G rather than increasing
to roughly 8 times its size. Secondly, the 3D 2N, x 2N, x 2N, FFT is replaced
by 3D (N, + 1) x (N, + 1) x (N, + 1) DCT. The improvement of complexity and
efficiency is apparent: the complexity of DCT is 2.5nlogn while the complexity of
FFT is 5nlog2n for the 1D problem. In contrast, the complexity and the efficiency
improvements of DCT versus FFT for the 3D problem are exponential. A direct
comparison of CPU elapsed time can be found in Table 4.1.

Table 4.1: Comparison of the elapsed time of 3D DCT and FFT transforms for GFs with
increasing grids resolution.

N+1 3D DCT 2N 3D FFT

33 9.9720e-04 s || 64 | 2.3370e-03 s
65 3.6033e-03 s || 128 | 3.7920e-02 s
129 | 1.4419e-02 s || 256 | 1.4211e+00 s
257 | 6.2829e-02 s || 512 | 1.4005e+01 s

4.3.2 Implicitly zero-padded convolution in 1D

Suppose m-sized fex is obtained by padding with zeros to n-sized f , where m = 2n.
The backward DFT of f., reads as:

m—1 m—1
2 ~
k) = :exp(z‘%kl)fex(l) M (), for k=0,1,2,...,m—1, (4.7
=0 =0

where w,, is defined by exp(—27i/m).
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4 A novel discrete convolution with implicitly zero-padded FFT

As fex(l) has the zero portion structure, i.e. fex(l) =0withl=mn,---,m—1, the
multiply operations are waived due to the fact that any number multiplied by zero
equals zero.

By separation between even and odd indices of f.,, and consideration of the pro-

perties of Fourier coefficients: w3% = @F and @™ = 1:
-1 n—1
fer(2K) = E:@?kn =D _@hfal) = > @nf ),
- n—1 R n—1 .
fal2k+1) = ij“lﬁx>= it ferll) = Y 5 (a4,50))
1=0 1=0 1=0
for k=0,1,2...n— 1. (4.8)

From Eq. (4.8), we achieve a backward FFT with padding zeros implicitly, the
notation of this new type FFT is called fftpadBackward. Algorithm 3 shows the
corresponding routine for implementation.

Algorithm 3 fftpadBackward
Input: f(0:n—1)
Output: f(0:n—1),u(0:n—1)
1: function fftpadBackward
for |l=0—n—1do
u(l) < @b, £(1);
end for
7() — IFFTIf();
u(:) <= IFFT[u(:)];
end function

IR AN S ol

In contrast, the scaled forward DFT of f., can be proceeded inversely: starting
with the original DF'T of f,,,

Fu(l) = Zw““fez Cforl1=0,1,2...,m— 1. (4.9)

The summation is split into even and odd index divisions of k£ and substituted m by
2n;:

n—1 n—1
£ 1 Ik l lk
feull) = 5 (;wn fen(2K) +w2n;wn fex2k+1) |, for1=0,1,2...,m—1.

R (4.10)
From Eq. (4.10), the f is automatically obtained by forgoing the zero padding portion

(l=nn+1n+2,....m—1):

n—1 n—1
£ _ 1 Ik l Ik _
f) =5 (an fea(2k) + wh, > Wl fup(2k+1) |, for 1=0,1,2...,n— 1.
k=0 k=0
(4.11)
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4.3 A novel fast 3D convolution routine without explicit zero padding

Eq. (4.11) provides the corresponding forward FFT of f., by the name fftpadFor-
ward, to obtain f.,, which is the padding zero extension of f. Algorithm 4 presents
the exact implementation routine.’

Algorithm 4 fftpadForward
Input: f(0:n—1), u(0:n—1)
Output: f(0:n—1)

1: function fftpadForward

2 f(:) < FFT[f()];
3 u(:) < FFTu(:)];

4: for{=0—n—1do

5: F(O) < fI) + wyu(l);
6 end for

7: end function

Finally, we achieve the FFT without a bit reversal stage in the memory operation
(see [12] as well) for the 1D implicitly zero-padded convolution, they are proceeded
by fftpadBackward and fftpadForward as in [12].

The different FFT routines indicate a different convolutin routine, since the di-
mension is reduced to be n from 2n-sized f., (zero-padded charge density), but two
vectors f and w. In the meanwhile, the GF vector ¢ is neither extended to be real
even symmetric nor FFT of that extended vector, but is operated by the DCT rou-
tine. The 1D convolution routine has to be reorganized to fit the optimizations. The
indices of g will be re-indexed to match the multiplication with both f and u, by the
implicit RESE and the splitting indices of f., (f and u), as explained in function
Multiplyl D (Algorithm 5):

Algorithm 5 MultiplylD
Input: f(0:n—1)u(0:n—1), g(0:n)
Output: f(0:n—1),u(0:n—1),

1: function Multiplyl D

2: fori=0—-n—1do

3 if i <n/2 then

4: I.=2,1,=21+ 1,

5: else

6: I.=2(n—1),I,=2(n—1)—1;

7 end if

S f) = F) *g(l), uli) = u(i)  g(L);
9: end for

10: end function

IThe fftpadBackward and fftpadForward routines may have a factor difference in comparison with
the extended backward FFT and forward FFT, because of the different scaling strategies in
practice.
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4 A novel discrete convolution with implicitly zero-padded FFT

Algorithm 6 presents a straightforward routine of the implicitly zero-padded convo-
lution in 1D. For two input vectors: n-sized f (represents charge density), n+ 1-sized
g (represents GF after DCT), and one output n-sized f (represents potential after the
convolution). The convolution routine is unique compared to other applications such
as Bowmann’s convolution routine for turbulence simulation, since the GF vector is
extended in the real even symmetric way rather than by padding zeros. 1D fftpad-
Backward is proceeded to replace the original FFT of f.,.. The function MultiplylD
multiplies f with even indices of g and u with odd indices of g in frequency domain.
Finally, proceeding the fftpadForward with f and u, and the result of 1D convolution
is achieved.

Algorithm 6 Implicitly zero-padded convolution in 1D
Input: f(0:n—1), g(0:n)
Output: f(0:n—1)
1: function CONVOLUTION1D
2: [u, f] « fftpadBackward|f];
[F(2), u()] « Multiplyl DIf(:),u(:), o))
4: [f] < fftpadForward|[f, ul;
5: end function

@

4.3.3 Implicitly zero-padded convolution in 2D

The basic idea of the 2D implicitly zero-padded convolution routine is similar to the
former 1D situation in Section 4.3.2. Before introducing the 2D convolution routine,
the 2DfftpadBackward and 2DfftpadForward functions are given.

The 2DfftpadBackward is demonstrated in Algorithm 7: f(0 : N; — 1,0 : Ny —
1) as the 2D input vectors, and four output vectors f(0 : N; — 1,0 : N — 1),
fool0 0 Nj — 1,0 1 N — 1),£0e(0 : Nj — 1,0 : N — 1),£0e(0 : Nj — 1,0 : Ny — 1).
These four resulting vectors are obtained serially by 1D fftpadBackwards along both
directions. First, the fftpadBackwards along j direction derive f,.(:,:) and refresh
f(:,:). Second, twice fftpadBackwards along k direction of the two, derive f,,(:,:)
and refresh fo.(:,:), and derive fe,(:,:) and refresh f(:,:), separately. In Figure 4.1,
a sketch of the 2DfftpadBackward transform is presented. The horizontal red color
lines indicate the fftpadBackward along x direction, and the vertical blue color lines
show the fftpadBackward along y direction.

In contrast, Algorithm 7 and Figure 4.2 show the inverse transform of 2Dfftpad-
Backward: 2DfftpadForward. The notations are the same while the processing is
reversed, and the fftpadBackward is replaced by fftpadForward.
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fftpadBackward along z

f Teven

ffcren yWeven

Figure 4.1: A sketch of the 2DfftpadBackward transform

f.’L‘even »Yodd

<

fftpadBackward along y

f Lodd

fxodd sYeven

fl’odd‘,yndd

Algorithm 7 2DfftpadBackward

Input: f(0: N; —1,0: N, —1)
Output: f(0: N; — 1,0 : Ny — 1), feo(0 : N; — 1,0 : N — 1),f0e(0 : N; — 1,0 :
Nk — 1),foe(0 : Nj - 1,0 : Nk - 1)
function 2DfftpadBackward

for k=0— N, —1do

1:
2
3
4
5:
6
7
8
9:

[f(:, k), foe(:, k)] < fftpadBackward|[f(:, k)];

end for

for j=0— N;—1do

[f(J;2), feo(d, 1)] < fftpadBackward[f (7, :)];
[foe(Gs2)s foolJs2)] < fftpadBackward|fo. (7, :)]

end for
end function

?
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fl’euen Yodd fE odd>Yodd

fxoddayeuen

fUJcmzmycrcn

‘thpad Backward along y

ffeven fxodd

‘fftpad Backward along x

f
Figure 4.2: A sketch of the 2DfftpadForward transform

Algorithm 8 2DfftpadForward
Input: f(0: N; —1,0 : Ny — 1), feo(0 : N; — 1,0 : N — 1),f,e(0 : N; — 1,0 :
Ny —1),f0e(0: N; — 1,0 : N, — 1)
Output: f(0: N; —1,0: N, —1)
1: function 2DfftpadForward
for j=0— N; —1do
[£(4,:)] « fftpadForward[f (7, :), feo(7, )];
[forlG22)] 4 ltpadForwardfoe (7, ), fool 2] :
end for
for k=0— N, —1do
[f(:, k)] < fftpadForward[f(:, k), foe(:, k)];
end for
end function

The 2D implicitly zero-padded convolution starts with two inputs of data: f(0 :
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N; —1,0: Ny, —1) and ¢g(0 : N;,0: Ni). The procedure is the following: first, take
a 2DfftpadBackward for f(:,:); second, conduct the piece-wise multiplication with
g(:,:) by Multiply2D for the obtained results in 2D Fourier domain; third, use the
2DfftpadForward to obtain the output f. The pseudo code is shown in Algorithm 9.

Algorithm 9 Implicitly zero-padded convolution in 2D
Input: f(0: N; —1,0: Ny —1), g(0: N;,0: Ng)
Output: f(0: N, —1,0: Ny —1)
1: function CONVOLUTION2D
[f () feols), foe(ss0), foo(:, )] 4= 2DfftpadBackward|[f (:, :)];
| ([f(;,]:),feo(:, s foe (5 2), foo(5y2)] <= Multiply2D[f(:,:), feo(ss:)s foe (55 2)s foolsy:
7g ": ;
[f(:, )] < 2DfftpadForward[f (:,:), feo(:s 1), foe (s 1)y fool(is 1)];

. end function

AN

The element-by-element multiplication Multiply in 2D is formalized in Algorithm 10.
The function renews the four vectors f(:,:), feo(:,:), foe(:,:), and foo(:,:) with g(:,:)
in Fourier domain. The g(:,:) is extended implicitly by RESE with reindexing.

Algorithm 10 Multiply2D

Input: f(:7 :)7 feO(:7 :)7 foe(:7 ')7 foO(:7 :)7 g(:7 :)
Output: f(:,:), feo(ts:)s foe(s ), foolis:)
1: function Multiply2D

2: for k=0— N, —1do

3: for j=0— N;—-1do

4: if k < Ni/2 then

5: K,.=2k K,=2k+1,;

6: else

7 Ke:2(Nk—kJ), KOZQ(Nk—]{?)—l;

8: end if

9: if j < N;/2 then

10: Je=25,J,=27+1;

11: else

12: Je:2<Nj—j), J0:2<Nj—j)—1,

13: end if

14 FGK) = FG k) * 9(Ter Koy Folis ) = fuols ) 5 9o o),
15: foe(ja k) = foe(ja k) * g(JoyKe)a foo(j7 k) = foo(j> k) * g(‘]OaKo);
16: end for

17: end for
18: end function

Moreover, the 2D implicitly zero-padded convolution routine is different from the
structure of HandE’s routine. There are other options for the convolution routine,
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4 A novel discrete convolution with implicitly zero-padded FFT

e.g. it can also be proceeded by the recurrence of 1D implicitly convolution, which
is similar as the HandE’s routine’s recurrence structure. As mentioned before, the
FFTs can be implemented in batch and parallel. For the future parallel routine,
this structure is well organized for FFTs and the element-by-element multiplication
computations, which is beneficial for the modern advanced computer architectures.

The 2D convolution algorithm can be used to solve the 2D space charge calculation
as well as recurrence parts in the 3D convolution algorithm.

4.3.4 Implicitly zero-padded convolution in 3D

The 3D implicitly zero-padded convolution routine is demonstrated in Algorithm 11:
the two inputs f(:,:,:) and g(:,:,:) are sized by N; x N; x Nj, and (N; + 1) x (N, +
1) x (Ng + 1), respectively. To start with, the fftpadBackward transfers f(:,:,:) along
i direction to obtain f(:,:,:) and f,(:,:,:) over the other two dimensions y and z.
Next, the 2D slices, f(i,:,:) and f,(i,:,:), are ordered by index i from 0 to N; — 1 for
the 2D convolution routine CONVOLUTION2D is introduced in Section 4.3.3.

Algorithm 11 Implicitly zero-padded convolution in 3D
Input: f(0: N;—1,0: N;—1,0: N, — 1), g(0: N;,0: N;,0: Ny)
Output: f(0: N;—1,0: N; —1,0: Ny — 1)
1: function CONVOLUTION3D
2 for j=0— N; —1do
3 for k=0— N, —1do
4 (7, k), foli, 7, k)] < fftpadBackward|[f(:, j, k)];
5 end for
6: end for
7.
8
9

fori:=0— N;—1do
[e(0: N; —1,0: Ny —1),9,(0: N; — 1,0 : N}, — 1)] = Set2Dglg(:,:, 1), 1];
: fli,:,:) =CONVOLUTION2D(f(i,:,:), ge(:,2));
10: foliy:y:) = CONVOLUTION2D(f,(i,:,:), Go(:y2));

11: end for

12: for j=0— N; —1do

13: for k=0— N, —1do

14: f(:, 4, k) < fftpadForward|[f(:, j, k), fo(:, 7, k)];
15: end for

16: end for

17: end function

Within the ¢ loop, GF values g(:,:,:) is extended to g.(:,:) and g¢,(:,:) in 2D for
matching the ¢ index with f(7,:,:) and f,(i,,:), the work is done by function Set2Dg
in Algorithm 12. After the two 2D implicitly zero-padded convolutions for both
f(i,::) and f,(j,:,:) with the corresponding g.(:,:) and g,(:,:) are finished for all is,
f(, 5 0) and f,(:, 1) are transferred back by fftpadBackward to refresh f which is the
result of the 3D convolution.
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4.3 A novel fast 3D convolution routine without explicit zero padding

Algorithm 12 Set2Dg

Input: ¢(:,:,:),
OUtPUt: ge(:v :>? go<:7 :)
1: function Set2Dg

2 if i < N;/2 then

3 =2 1,=2+1;

4 else

5: I.=2(N; —1), I, =2(N; — 1) — 1;

6 end if

7 Ge(0:N; —1,0: Ny — 1) = g(Le, 1, 1), go(0: N; — 1,0 : N — 1) = g(1,, 3, 1);
8: end function

Optimization results of the 3D explicitly zero-padded convolution:

The optimization shows the benefits for both the computational complexity and
memory assignment. In the HandE’s routine, the FFTs of the zero data portions are
skipped. The padding of zero data is implied implicitly, and other small computations
are also skipped for the sake of computational complexity. In contrast, the memory
assignment is probably the most apparent reason. Because the data transport inside
the multidimensional FFT consumes time. Two 3D N, x N, x IV, sized vectors f(:,,:)
fo(t, ) and (Ny+1) x (N, +1) x (N, +1) sized g, plus six 2D slices fec(:,:), feo(:, 1),
foe(5,2); foo(s,2), ge(:,:), and go(:,:). In comparison with HandE’s routine, the total
memory is smaller mainly because g is not extended explicitly. On the other hand,
all separated data is smaller in size but more in quantity. This memory assignment
is more efficient than a single large data for data transport. The smaller separated
data is also good for the parallel implementation with distributed memory. A direct
comparison of CPU elapsed time can be found in Table 4.2.

Table 4.2: FElapsed time comparison of 3D explicitly zero-padded convolution and impli-
citly zero-padded convolution with increasing grids resolution.

N | 3D explicitly zero-padded | 3D implicitly zero-padded
32 0.011504 s 0.006787 s
64 0.180757 s 0.065217 s
128 1.576133 s 0.671114 s
256 14.21496 s 10.01754 s

There are other possible options for implementation, but the routine presented
here is considered as the option which balances the computation between efficiency
and memory storage.
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4 A novel discrete convolution with implicitly zero-padded FFT

4.4 The real to complex FFT implementation for
the novel fast 3D convolution

Compared to general complex data, the Fourier transform for real data is specific.
The vacancy of the imaginary portions, taken together with data symmetry, provides
further efficient FFT and the fast trigonometric transforms. This section considers
the case where the input data f is pure real vector, which is considered as a generic
complex vector in the last sections.

4.4.1 The real to complex FFT for explicitly zero-padded
data in ¢ dimension

Theorem 5. Suppose two n-sized real vectors f = [fo, f1,-- - foc1)®, 9 = (90,91, - Gn1]" -
If the complex vector h = §,(f +1g), then

Snf = [(I, + T,)) Real(h) + i(I,, — T,,) Imag(h)],

Sng = (L, + T,)Imag(h) —i(I, — T,) Real(h)],

where the T, is the n-by-n identity matrix with the last n — 1 columns arranged in
reverse order.

Theorem 5 shows that the DFT of two real vectors can be obtained simultaneously
by combining the two vectors as a same-sized complex vector. Thus a 2n-sized real
vector can be split into two n-sized real vectors (by odd-even index in reality), the
sub-DFT's of the two real vectors are processed as Theorem 5. The final DF'T of the
original 2n-sized real vector is obtained automatically based on Theorem 1. Moreover,
when the elements of input data f are purely real numbers, the DFT output satisfies
the “Hermitian” redundancy as shown in the following Theorem 6 (see also [87]).

Theorem 6. Suppose a real vector f = [fo, f1,. ., fu_1]T, if

h = Sn(f)a

then h 1is conjugate even symmetric, h,_; is the conjugate of h,, i.e. h,_; = hy,
1<i<|5].

Thus, the DFT of any subvector of a real vector is conjugate even. This property
cooperates with the last butterfly? so it can be simplified to be a conjugate-even bu-
tterfly to avoid redundant computation. The exact real to complex FF'T is explained
in [87] (Section 4.3). The improvement is a rough factor of two in both speed and
memory usage for 1D case, technologically. From the practical side, if the input is a
2n-sized real vector, the output vector size after the real to complex FFT is n + 1.

2The diagram of the data-flow of FFT in the radix-2 case is similar to the shape of a butterfly.
The Cooley-Turkey FFT computation, in particular with data flow, is often referred to as a
“butterfly” [93].
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4.4 The real to complex FF'T implementation for the novel fast 3D convolution

The real to complex FFT cannot be implied for all three directions. After the FFT
in the first direction, the output vector is already a complex vector. Therefore we
only use the real to complex FFT and the corresponding complex to real FFT in ¢
direction. The routines are shown in Algorithm 13 and Algorithm 14.

Algorithm 13 The real to complex FFT in ¢ dimension
Input: f.,(0:2N;—1,0: N;—1,0: Ny — 1)
Output: fep(0: N;,0: N; —1,0: N, — 1)

1: function FFTR2CINI

2 for j=0—+ N, —1do

3 for k=0— N,—1do

4: fempiz(0 : Niyj, k) <= FETr2c[fe.(:, j, k)]
5: end for

6 end for

7: end function

Algorithm 14 The complex to real FFT in ¢ dimension
Input: fon.(0: N;,0: N; —1,0: Ny — 1)
Output: f.,(0:2N;, —1,0: N; —1,0: N, — 1)

1: function FFTC2RINI

2 for j=0— N, —1do

3 for k=0— N,—1do

4 fez(0:2N; — 1,4, k) <= FFTC2r| fermpiz (2, 7, k)]
5: end for

6 end for

7: end function

4.4.2 The fast routine with real to complex FFT for 3D
convolution

For the other two directions, CONVOLUTION2D routine is implied whose algo-
rithm is the same as mentioned in Section 4.3.3. The exact algorithm is shown in
Algorithm 15 named as CONVOLUTIONS3D_rFFT.

The explicitly zero padded r2c FFT is efficient. Firstly, it is implemented with ex-
plicitly zero padding and approximately half of the computations of a normal FFT,
compared to two complex FFTs as the implicit zero padded FFT way. Secondly, the
implicitly zero padded FFTs for the other directions are also significantly improved
because one CONVOLUTION2D is waived inside the loop for 7 in Algorithm 15,
which reduces the computation size to a half (approximately) for the other two di-
rections. Furthermore, the g (é) is not required to extend with odd and even indices
as ge, go (as in Algorithm 11). The indices of fe. and g match perfectly.
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4 A novel discrete convolution with implicitly zero-padded FFT

Algorithm 15 Implicitly zero-padded convolution in 3D with real FFT

Input: f(0: N;—1,0: N; —1,0: Ny —1), g(0: N;,0: N;,0: N)
Output: f(0: N;—1,0: N; —1,0: Ny — 1)
1: function CONVOLUTION3D_RFFT

2: fex(0:2N, —1,0: N, —1,0: N, — 1) < PaddingZerolnX[f(0: N, —1,0:
N, —1,0: N, — 1)]

3: Jempiz(0 © N;,0 « N; — 1,0 : N — 1) < FFTR2CinI|[fe;(0 : 2N, — 1,0 :
N, —1,0: N, —1)]

4: for:=0— N; do

5: fempiz(t,1,1) = CONVOLUTION2D( fempiz (2,1, ), 9(4,:,2));

6: end for

7 fez(0 : 2N, — 1,0 : N, — 1,0 : N, — 1) <= FFTC2Rin!|fermpi(0 : N;,0 :
Nj—l,OINk—l)]

8: w(0: N, —1,0: Ny—1,0: N, — 1) ¢ fer(0: N, — 1,:,2)

9: end function

Four different implementations of the GF-FFT method for Poisson’s equation have
been introduced so far. The results are compared in Table 4.3. The HandE’s routine
is faster than the trivial 3D FF'T routine for a large problem size. In contrast, it
is slower for a small problem size, which is possible because of the optimization
of the 3D FFT within the FFTW library. Furthermore, the speed-up of the c2c FC
routine (implicitly zero-padded convolution with FFT of complex data) is significant:
the factor of the c2¢ FC routine to the HandE routine is around 2-4. The r2c¢ FC
(implicitly zero-padded convolution with FFT of real data) routine can further reduce
the execution time by nearly a half of the value for the c¢2c¢ FC routine.

Table 4.3: Comparison of different Poisson solvers’ execution time with increasing grids

resolution.
N,, | Trivial 3D FFT HandE c2c FC r2c FC
32 1.5073e-02 s 1.7862e-02 s | 8.2003e-03 s | 5.2606e-03 s
64 1.7020e-01 s 2.3329e-01s | 7.3771e-02 s | 4.6923e-02 s
128 | 4.7494e+00 s | 3.2693e+00 s | 7.7315e-01 s | 4.1733e-01 s
256 | 4.5813e+01 s | 2.9780e+01 s | 1.0685e+01 s | 6.0078e¢+00 s

4.5 Error classification of Green’s function
methods

In recent times, simulation has gained an essential importance alongside theory and
experiments. As a starting point, simulation results are verified by physics theory and
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4.5 Error classification of Green’s function methods

experiment. Furthermore, simulation can predict results of theory and experiments
which are beyond the limitations of reality. However, simulation does face a challenge
because its results are never one hundred percent accurate. Sometimes the issue is
even much more complicated because the derived physical model, the numerical errors
or the involved factors are unknown.

Therefore, it is necessary to carry out an error analysis for the methods used.
Optimally, this should be done before implementing them. For the PIC model, there
are various error sources. The discussion about the propagation of error with time
steps is beyond the topic of this dissertation. The contributions [49] and [45] study
the numerical noise in PIC with time propagation. Here, the discussion of error
is limited to one time step in the dissertation. The round-off errors resulting from
computers’ number digit limits are also ignored in the discussion.

4.5.1 Errors resulting from the PIC model

In the PIC model, the error sources are classified into two main sources and designated
as charge-assignment and force-interpolation.

First, the fluctuation of feature density, which is connected to the coupling of
particles, macro particles, and the mesh. The real number of charged particles is
replaced by a smaller number of macro particles, which preserves the charge-mass
ratio in simulation [38]. But as a source of errors, it is natural to increase this number
of macro particles, bringing it closer to the real number of particles and reducing the
error. However, the computing time increases dramatically as well. Second, errors
occur due to the coupling between the macro particles and the mesh, which involves
the usage of interpolation and deposition algorithms for the particles on the mesh.
This occurs for both charge-assignment and force-interpolation procedures. Third,
the short range effect of particles inside a mesh cell is automatically ignored. To
increase the mesh number can resolve these issues, but the entire operation is still
limited by the time consumption.

In total, the PIC model is an approximation methodology, rather than the real
physical model. The error can not be waived due to the coupling between particles
and the mesh. However, this error can be reduced by increasing the number of
macro particles and mesh numbers to an acceptable level with the help of different
applications.

4.5.2 Errors regarding the GF-FFT method in the Poisson
solver

The discrete charge density is fluctuated by spatial grid effects and its discontinuous
property. This fact affects the stability of the algorithm for the Poisson solver and
requires attention.
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4 A novel discrete convolution with implicitly zero-padded FFT

Errors induced by numerical integration

The numerical integration error for the discrete convolution is the straightforward
trigger. The numerical error due to the numerical integration algorithm is the main
source for errors besides the model error.

Regardless of the discrete charge density, there is no additional discretization error
for the IGF method, as it calculates analytical integration. While for both the GF
method and the RIGF method, the numerical integral error should be considered.
From a straight point of view: the “1/r” potential rule shows us: IGF and GF are
coming closer as the “R, distance” increases. The GF method induces a singular
matrix at the “zero point” in calculation. For a local point (z;,y;, 2x), all error terms
where |k — k'| < R, are zero for RIGF. The accurate potentials around (x;,y;, 2x)
by means of the IGF method are determined by the distance R,. Outside of this “R,
distance”; the less accurate potentials are calculated by the GF method.

We define

0Q3i,Yjs 2k) = PRIGF(Tis Ys, 2k) — Q167 (Tis Y 2k) (4.12)
and suppose 6G = Griar — Giar. 0 < |0G| < ng., where ng. is the upper bound of
e

The local potential error d¢.,(z;,y;, 2x) is obtained as:

Ny—1Ny—1N,-1

Z Z Z pe:c Xy 7y]’>zk’)5Gex(xz>$z 7y]ay]’7zkazk’) (413)

i'=0 j'=0 k'=

do(i, i, 2k)
(i, Yjs 2k 47T€0

If k < R., 6G(i,j,k) = 0 for the RIGF method.
Further, define A, = N[0,k — R, —2]UN[k— R, —1,2N, — 1], where N[a, b] = {n €
N, a <n <b}. By the Cauchy-Schwarz inequality:

:ch

|5(p($zyijzk |— 471'5 ZZ Z ’p xwyj’;Zk’)’ ’

i'=1j'=1k'CA,

555 (56

i’=1j'=1 k'=R,+1

2

(4.14)

Since the RIGF method integrates with the mid-point rule, the bound of (5@GF($¢, Yjs %)
can be derived from the common 1D error analysis, as:

31333

. h
0Gar(Ti, Y, 2k)| < x24y3 "KL, KK, (4.15)

where K, is the largest value of °G(z,y, 2)/0x* with x € [v; — & z; + %]. The
numbers K, K, are defined in the same way.
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4.5 Error classification of Green’s function methods

Substitute Eq. (4.15) to Eq. (4.14):

z NZ/
|5S0(wzayj7zk = 47'['5 ZZ Z |p €Ty 7y]/72k’)|
O\ i=1j/=1kea,
h3h3h3 Ny Ny

“‘241/32 >N Z KZK2 K}, (4.16)

i'=1j'=1 k'=R.+1

where Ky, Kj, Ky represents K,, K,, K, in each grid cell. This leads to the
bound of the potential error, which is determined by stepsizes in three directions,
two summation terms of |p(zy, y;r, z1)|* and K2 K K}, which are dominated by R..

From the inequality (4.16), the error is also stable if the two summation terms
are stable. For the term regarding G: the singular and strong decreasing portion
property of the RIGF is excluded, the remaining term is smooth and stable. The
term of discrete charge density is handled by the charge assignment scheme connected
to Section 4.5.1. The summation should not vary much for different schemes. In total,
the errors induced by numerical integration are stable and not sensitive when p and
8G are smooth. The 6@ is, of course, smooth as the RIGF is specific in optimizing
the G function.
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5 High performance computing studies
for fast Poisson solvers

The novel efficient Poisson solver introduced in the previous chapters will be fur-
ther developed in order to fit the modern HPC patterns. The parallel programs are
managed by OpenMP, CUDA, and Open MPI. These programming APIs are spe-
cific for different levels of parallelizations and hardwares. The combination of these
programming APIs is also available.

The HPC platforms include the multi-core CPU workstation, heterogeneous archi-
tecture of CPU and GPU, and supercomputers (and clusters).

Section 5.1 introduces the shared memory parallel routine for the multi-core CPU
workstation. The OpenMP API is used to speed up the computation with the number
of CPU threads in usage.

Section 5.2 attempts a heterogeneous parallelization of CPU+GPU for worksta-
tions. The parallel routine relies on an OpenMP+CUDA API implementation. The
limitations of CUDA API are also the reasons for the heterogeneous parallelization
rather than a pure GPU parallel routine.

Section 5.3 deals with the distributed memory parallel routine for supercomputers
and clusters by applying MPI implementation. In pursuit of the highest speed-up
possible, the limiting factor is the data transport between processors.

For the state-of-the-art supercomputers, both shared memory and distributed par-
allelizations are used. The MPI4+OpenMP parallel routine is further developed in
Section 5.4. An attempt for the future CPU+Many Integrated Core (MIC) architec-
ture is prepared as well.

Some of the results described in this chapter have already been published in own
publications [103] [104].
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5 High performance computing studies for fast Poisson solvers

5.1 The shared memory parallel routine with
multiprocessors

5.1.1 Shared-memory parallelization

Nowadays, almost all CPU products provided by the major CPU manufactures (i.e.
Intel and AMD) are the multi-processor type in PC and server markets. An ar-
chitecture called symmetric multiprocessing (SMP) is constructed by two or more
identical processors through a shared memory. The memory in the SMP architecture
is accessed equally for every processor as shown in Figure 5.1.

Shared Memory

System Bus

|
Processor 1 Processor Processor
1 ‘ 2 n

Figure 5.1: A schematic plot of the symmetric multiprocessing architecture, adapted from
Ferruccio Zulian [105].

In contrast, there is the Non-Uniform Memory Access (NUMA) architecture which
can be composed of more processors, e.g. 24 or 32. These processors are accessed
in allocations differently to SMP. Processors in the same chunk access the same
local shared memory. When a processor accesses the non-local memory in a different
chunk, it has to use a different access latency, i.e. intersocket. This access is slower
than the local memory access and leads to imbalance problems between the data
transport and computing (see Figure 5.2).

All these kinds of CPUs have the capability of implementing programs in parallel
by a thread-level parallelism (TLP). These threads correspond to the cores inside
processors in CPU. One practical way to operate the parallelization is the OpenMP
API.
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5.1 The shared memory parallel routine with multiprocessors

Socket O Intersocket Socket1
NUMA Node 0 connection NUMA Node 1
CPU
1 2
4 3
Local Remote
access access

Figure 5.2: A schematic plot of the NUMA architecture, adapted from Frank Denneman
[5].

The OpenMP API

The OpenMP API is defined and maintained via collaborative work from the hard-
ware and software industry, and academia. The current version, OpenMP 4.5 spec-
ification, was released in November 2015. It is one of the most popular parallel
programming models and still shows a promising future. It is a single standard
rather than consisting of several manufacture-specific standards. It is also relatively
easy to start with the original serial code by adding pre-processor compiler directive,
e.g. #pragma omp in C/C++ language. Furthermore, the OpenMP committee is
going to extend the directive language to support GPU and MIC accelerators, hence
OpenMP will provide more parallel capabilities.

The OpenMP APT’s parallel pattern is based on the fork-join model formed in 1963
[22]. An OpenMP program starts sequentially with one thread, which branches off in
a parallel region with other threads. Once the parallel region’s execution is finished,
the program is merged (“join”) to one thread again and executed further with the
sequential program. The “fork-join” procedures are proceeded in the program until
the program finishes its operation.

Most parallel constructs in the OpenMP API are scheduled as compiler directives:

#pragma omp <construct> [clausel clause2 ...]

whereby the clauses provide additional information for construct. For example:

#pragma omp parallel

{

....\\ parallel region

4}
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All threads in the CPU execute the parallel region simultaneously.
The clauses are supplementary and limitative for the construct, e.g.,

#pragma omp for [clausel clause.2..]

> for—loops

The for-loops are implemented by a number of threads. Due to the application’s
demand and thread safety, some variables need to be protected. Inside a for-loop,
the variable is maintained by a thread, it should be protected against reuse by other
threads. In this case, the available clause options are:

private(variable list),

firstprivate (variable list),
lastprivate (variable list),

To add the OpenMP API into codes is simple. All common open source compilers
such as gcc, intel or clang include the OpenMP API automatically. In order to
implement a program, the OpenMP flag (e.g. -fopenmp for gee compiler, -openmp
for intel compiler) should be attached during compiling.

Another technology for shared-memory parallelization in HPC is known as vec-
torization, or single instruction multiple data (SIMD). It is usually performed on
arrays, i.e. a single machine instruction operates on multiple array elements that can
certainly improve the CPU efficiency. OpenMP API provides the support for SIMD
since OpenMP 4.0 is released.

The combination for both multi-threads and vectorization would be promising.
OpenMP tries to work on the shared-memory parallelization standard. Therefore,
the knowledge of OpenMP is rather complex and dynamic. Please refer to [10] for
details on the OpenMP API implementation.

5.1.2 The OpenMP routine of the novel Poisson solver

The novel Poisson solver introduced in Section 4.3 has been further parallelized via
the OpenMP API. Parts of the codes have been slightly changed for the purpose of the
parallel routine. For an efficiency study, three major parallel portions are compared
with the serial routine to check the speed-up by varying CPU thread numbers.

The parallelization of the efficient IGF calculations

The efficient IGF values are calculated with three level nested for-loops. The con-
struct is parallel for and the corresponding clauses are private and collapse. The
simplified code reads as:

#pragma omp parallel for private(m) collapse(3)
for (k=0;k<N[2];k++){
for (j=03j<N[1];j++)
for (i=0;i<N[0]; i++){
m=i+j*N[0]+k«N[0]*N[1];
G_EffIntG [m|=EffIGF_Fun (ixh[0] ,j*h[1] ,kxh[2]) ;
133
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The parallelization results of GF calculations are shown in Figure 5.3. The blue-
colored curve is the ideal speed-up line while the black curve is the real implemented
time trend. The closer the black curve and the blue curve are, the better the parallel

routine performs.

.1973 .qu‘l .1(‘)72

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Threads Threads Threads Threads

Figure 5.3: The parallelization of GF calculations with increasing thread numbers from 1

to 4 for different mesh numbers 333, 653, 1292 and 2573 (left to right), respectively.

The parallelization of FFTs and DCTs in the same direction

The novel Poisson solver relies heavily on FFT-related transforms: FFTs and DCTs.
All these transforms are handled by the FFTW package. For parallel implementa-
tion, FFTW also provides its multi-thread version FFTs with OpenMP (or Pthread,

another TLP API). The implementation is as follows:

First, the multi-thread routine should be compiled for the FF'TW’s configuration

in order to enable the OpenMP property.

./ configure —enable—openmp

Second, the following flags should be added in the makefile for compiling before

the executable file is generated.
—lm —fopenmp —1fftw3 —1fftw3_omp

Third, before making FFTW’s FFT plans, we add the following functions in ad-
vance. These functions initialize the multi-thread environment for FFTW and set
the FFTW plans for the system’s maximum number of threads, which is obtained by

the OpenMP self-functions omp_get_maz_threads().

/*initialize multi—threadssx/
fftw_init_threads () ;

3 /*make FFTW plan for omp_get_-max_threads() threadssx/

fftw_plan_with_nthreads (omp_get_max_threads());

The execute function stays the same as the original serial function as:

fftw_execute (fftw_plan);

Similar to Figure 5.3, Figure 5.4 shows the speed-up of FFTs inside the novel
Poisson solver (DCTs are analogous). The speed-up is weaker than that of the GF

calculations, but still comparable with the number of CPU threads used.
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Figure 5.4: The parallelization of FFT with increasing thread numbers from 1 to 4 for
different mesh numbers 323, 643, 1283 and 2563 (left to right), respectively.

The parallelization of element-by-element multiplications in Fourier
space

The parallelization implementation of Algorithm 10 in Section 4.3.3 is simplified as
follows:

| #pragma omp parallel for private (ke,ko,Gk,je,jo,Gj,Gm_yeze,Gm_yoze,
Gm_yezo ,Gm_yozo ,m) collapse (2)

> for (k = 0; k <N2; k++){

s for (j = 0; j < N1; j++){

! /*xset indices for f, f_eo, f_oe, foox/

5 m= jke= ;ko= ;je= ;jo= ;

¢ /+set indices for gx/

7 Gk= ;Gj= ;Gm_yeze= ;Gm_yoze= ;Gm_yezo= ;Gm_yozo= |;

8 /*complex multiplication in frequency domainx/

9 f [m]=f [m]*g[Gm_yeze | ; f_eo m=f_co [m]*g[Gm_yezo];

10 f_oe[m=f_oe [m]xg[Gm_yoze]; f_oo[m|=f_oo [m]*g[Gm_yozo];
11 1}

The speed-up of parallel element-by-element multiplications is comparable to the
ideal case as shown in Figure 5.5.
Total efficiency improvement of the novel Poisson solver

The speed-up of the whole novel Poisson solver is compared with the ideal speed-
up trend as shown in Figure 5.6. If the problem size is small, the speed-up is not
significant. This may result from the overhead of the OpenMP API causing the major
time consumption.

5.2 An effort on CPU+GPU heterogeneous
parallelization

Since 2006, the GPUs have evolved in the HPC field, especially by the efficient ma-
nipulation for large blocked data. For instance, NVIDIA releases its CUDA platform
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Figure 5.5: The parallelization of element-by-element multiplications with increasing
thread numbers from 1 to 4 for different mesh numbers 323, 643, 1283 and 2563 (left
to right), respectively.
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Figure 5.6: The parallelization of the novel Poisson solver with increasing thread numbers
from 1 to 4 for different mesh numbers 323, 643, 1283 and 2563 (left to right), respectively.

for its GPU computing framework. Other manufacturers construct their own struc-
tures individually, e.g. DirectCompute by DirectX.API. Generally, an open standard
known as Open Computing Language (OpenCL) [46] is published for cross-platform
implementations. As mentioned, OpenMP has its own plan for the parallel imple-
mentation of the GPU together with CPUs.

A CPU has a small number of processors, usually 2 or 4 for PCs (up to 24 or 32
for workstations) while a GPU holds a high amount of CUDA cores. The CUDA
cores have a lower computing capability than the CPU processors. Secondly, mem-
ory management is an advantage of GPU accelerators, e.g. scattered reads, shared
memory, unified memory, and fast bandwidth in the GPU. These advantages will
benefit highly parallel algorithms and large dataset computation.

On the other hand, data transformation between host (CPU random-access mem-
ory (RAM)) and device (GPU RAM) may affect performance, thus unmassive data
computation may be not worthwhile. The thread control should fit with the hard-
ware, e.g. the utilized thread number is 32 or the fold numbers of 32 depends on
different GPU settings.

The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is implemented
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differently by vendors. In combination with other complex reasons, the computational
results from CPU and GPU are slightly different.

Nevertheless, using GPU accelerators is attractive regarding the speed-up side, and
has become a trend in the HPC field. Particularly, parts of the industry standard
CPU-only libraries have been replaced by the GPU-accelerated libraries. For exam-
ple, the FF'T libraries are highly relied on in space charge calculation algorithms. The
CUDA Fast Fourier Transform (FFT) product (cuFFT) library provided in CUDA
by NVIDIA is specific to match the aim. The cuFFT reports that it is up to 10x
faster than CPU [60]. The promising results provide an opportunity for a GPU
implementation of the aforementioned Poisson solvers.

5.2.1 Technical limitation for the novel Poisson solver on a
pure GPU platform

A full GPU version of the novel Poisson solver is not available for implementation
so far. The cuFFT library does not support the real-to-real FFTs, such as 3D fast
DCT. Since cuFFT includes highly-optimized algorithms and functions within CUDA
structure, the fast DCT should be managed by cuFFT. Especially, a customized DCT
routine can be far beyond the performance of its FFT peers in cuFF'T. This trigger
interrupts a full GPU Poisson solver.

Regarding the CPU and GPU’s precisions of operations, the same sequence of
operations may not have the same results due to complex reasons. For instance, the
GPU may rearrange the operations, e.g. multiply-add operation for the multi-core
implementations yielding different numeric results. Finally, IEEE 754 standard does
not define the precision of most math functions. The CPU implementation chooses
extended precision for the intermediate calculations, while the GPU does not. The
IGF values involved with specific math functions are therefore achieved with different
levels of precision in different implementations of GPU and CPU.

A pure GPU implementation of the novel Poisson solver is currently not possible.
However, this cloud may actually have a silver lining, since a heterogeneous parallel
implementation turns out to be a good choice.

Both CPUs and GPUs have strong but specific capabilities in computing. For the
algorithm of the Poisson solver, the FF'T performed by the cuFFT library in GPU
is faster than the peer library in CPU. However, a CPU accurately calculates the
IGF values and the fast DCT with FFTW. Coincidentally, the size of 3D DCT is
approximately 1/8 of the size of 3D FFT: “small for slower, large for faster”. These
advantages and disadvantages of CPU and GPU are compensable. For the imple-
mentation, the routine is ideally separated into two portions, which are independent
and simultaneous calculations. The facts given above show that the Poisson solver
is capable and at least theoretically matches a CPU+GPU heterogeneous routine.
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Figure 5.7: A schematic plot of the heterogeneous Poisson solver routine with CPU and
GPU separation.

5.2.2 CPU+4GPU heterogeneous parallel implementation

In this section, the algorithm used in a single workstation or PC with a GPU accel-
erator is considered. For the HPC programming of the inter-cross CPU and GPU
routines, the OpenMP+CUDA framework is considered.

In details, the routine is controlled by CPU OpenMP threads. At the fork point
of the Poisson solver, a CPU thread divides a GPU portion and other CPU threads
still belong to the CPU portion, as shown in Figure 5.7. The aim of the separation is
to fully accelerate the calculation with CPU+GPU. With an ideal synchronization,
both of GPUs and CPUs can be sufficiently exploited.

There are a couple of options in OpenMP API to make such separation, e.g. with
construct sections to make two sections, with construct single, or master to control
the GPU portion.

First, with #pragma omp parallel sections, each portion fits a omp section. There
is a thread-synchronization, when both sections finish the executions at the end. The
construct is as follows:

| #pragma omp parallel sections
: {

3 #pragma omp section

1 {/+«GPU sectionx/

)

6 #pragma omp section

7 {/*CPU sectionx*/

s }

o }

If the workstation has only two processors, the construct sections would be sufficient
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since only two sections are needed. Frequently, the calculation in GPU section is
faster than the calculation in CPU section due to the fast cuFFT implementation
in GPU. Inside the CPU section, the efficient IGF calculation costs more execution
time than the 3D DCT of it. In the best case the CPU section and GPU section
should be finished at nearly the same time. This leads to the performance balance
between GPU and CPU capability.

Second, if there are more processors provided, this balance can be optimized by
giving additional OpenMP threads to the CPU portion. The OpenMP function
omp_set_nested() is applied to enable the nested environment.

omp_set_nested (1) ;
#pragma omp parallel num_threads(2)

{

if (omp_get_thread_num () = 0){
/*GPU portion with master threadx/

}
else{
/*CPU portion with other threadsx/

}
}

Moreover, the two portions deal with different tasks.

GPU portion:

Inside the GPU portion, the CUDA programs are differently depending on the dec-
laration of CUDA functions as follows:

/*Executed on the device, callable from the device only.x*/
__device__ float DeviceFunction ()

3 /*Executed on the device, callable from the host

with execution configuration <<<Dg,Db,Ns>>> x/

, __global__ void KernelFunction<<<Dg,Db,Ns>>>()
; /* Executed on the host, callable from the host only.x/

__host__ float HostFunction ()

The host means CPU while the device means GPU.

An OpenMP thread copies the charge density data p from the host RAM (of the
computer) to the device (memory of the graphic card) using CudaMemcpy function
which is provided by CUDA.

Padding zeros and processing the deformed DF'T for the extended vectors are done
in GPU. The functions are managed by self-defined __device_ padding zero functions,
and cuFFT library. The deformed 3D DFT can be implemented by either HandE’s
routine or the implicit zero-padded convolution routine. We use HandE’s routine for
an attempt study in this dissertation.

After synchronization, the spectrum A (G after 3D DCT) is copied to the device
by CudaMemcpy function again.

A function __global_ void ComplexPointwiseMultiply(), together with __device__
inline cufftDouble Complex ComplexScale() function, are programmed for the complex
multiplication of p., and A to obtain Q.
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Figure 5.8: The CPU portion (black curve) and the GPU portion (red curve) calculations
with increasing thread numbers from 1 to 3 for different mesh numbers 323, 643, 1283
and 2563 (left to right), respectively.
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Figure 5.9: The hybrid CUDA+OpenMP Poisson solver (black curve) and the pure
OpenMP Poisson solver (green curve) respectively. The mesh numbers are 323, 643,
1283 and 2563 (left to right), respectively.

The inverse transform procedure in HandE’s routine is applied: 3D IDFT and
cutting the original portion from ¢, as . The final electrical potential ¢ is copied
back to the host RAM by the CudaMemcpy function. Further calculations can be
processed afterwards.

CPU portion:

OpenMP threads are responsible for the CPU portion in efficient IGF calculation
and the following 3D DCT. Here, the efficient IGF becomes the critical factor in the
efficiency improvement. Whereas the improvement for the whole Poisson solver in the
pure serial CPU routine due to the efficient IGF is in the order of 15-25% (see [102]), in
the parallel portions the efficient IGF leads to a much more significant improvement.
The CPU program is the same as introduced in Chapter 3 and Chapter 4. After
that, the synchronization between GPU and CPU portions is performed as mentioned
above.

This heterogeneous parallel implementation can sufficiently exploit both CPU and
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GPU by manually adding OpenMP threads for the CPU portion. In Figure 5.8, the
execution time of the CPU portion is given with different threads. In comparison of
the synchronization time, the execution time of the GPU portion is also plotted. As
shown in the figure, the GPU portion is much faster than the CPU portion.

In Figure 5.9, the speed-up of the OpenMP+CUDA solver to the pure OpenMP
parallel Poisson solver is compared. The total CPU threads for both solvers are 4.
The hybrid solver (black curve) is not always faster than the pure OpenMP parallel
solver (green curve). As shown, the efficiency can be achieved when the problem size
is large (256%).

This CPU+GPU routine is only an immediate parallel routine since there are some
concerns in the CPU+GPU heterogeneous routine as well.

First, the data transport between the host and the device memory does not benefit
the computation but still counts into executed time. Second, the overhead for the
OpenMP APT’s preparations and operations consume some percentage points of the
total execution time. Third, the load balance between the two portions of CPU and
GPU may hang up one portion to wait for the other portion inside the computation.
Fourth, this heterogeneous parallel routine is limited by the lack of full real-to-real
FFT support in cuFFT. The explicit zero padded convolution routine by HandE is
used for the current heterogeneous routine. Once the full real-to-real FFT is available
in cuFF'T, a full novel GPU Poisson solver is foreseen to be done by the author.

The competition between CPU and GPU has no end and the heterogeneous parallel
routine has its own way to benefit from the procedure.

5.3 The MPI routine in supercomputer for the
novel Poisson solver

A supercomputer is a high-level computer with an extremely strong computational ca-
pability compared to a normal computer. The development and deployment of HPC
systems lead to an essential power to the scientific discovery, the economic competi-
tiveness, and the modernization of industry. The cutting-edge HPC core technology
has been making a great capability and competition inside the field: HPC, nowa-
days, is experiencing a revolutionary phase, where the parallelism on shared memory
processors is benefitting from serious attention, e.g. the MIC architecture intro-
duced by Intel and the CUDA platform defined by NVIDIA for GPUs are two strong
competitors among the technology competition. Apart from that, international ini-
tiatives are also focussing on this potential, e.g. the European Union Horizon 2020
e-Infrastructures that build centers of excellence for computing applications, and the
U.S. White House announced the “Advancing U.S. Leadership in High-Performance
Computing” strategy in 2015.

The HPC complex field encompasses not only the “hard” device, e.g. presum-
ing higher floating-point operations per second, but also the “soft” ability, e.g. the
advanced numerical technologies in simulations of various computational problems.
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In this section, the novel efficient Poisson solver will be further developed to fit
the supercomputer’s architecture with the MPI library. The parallel routine is pro-
grammed in Fortran 90 language, the parallellization is managed by Open MPI which
is an open source project for HPC implementation. The source code is developed and
maintained by a consortium of academic, research and industry partners.

For executing the parallel routine, the resources and facility of National Energy Re-
search Scientific Computing Center (NERSC) at LBNL, are utilized. One of NERSC’s
newest supercomputers, Edison, named in honor of Thomas Edison, has a peak per-
formance of 2.57 petaflops/sec, 133,824 compute cores for running scientific applica-
tions, 357 terabytes of memory, and 7.56 petabytes of online disk storage with a peak
I/O bandwidth of 168 gigabytes (GB) per second. The parallel implementation for
this chapter is materialized and tested on the Edison supercomputer.

5.3.1 The improved parallel Poisson solver
The improved parallel Poisson solver’s routine

The parallel routine needs to apply a constant number of processors from the batch
system. A batch system is a resource manager and scheduler of a supercomputer.
Then the constant processors utilizing in the solver, numbered as np, are mapped
onto a 2D nprow X npca process grid. For this purpose, we need to set a new
communicator of the topology information with 2D Cartesian grid by replacing the
original communicator of the 1D topology information. The Open MPI function
MPI _cart_create is applied. By using the MPI function MPI _cart_coords, each process
owns a unique ID (RowID, ColID) as the element of a matrix, and np = nprow - NPCoL-

The charge density p(i, j, k) is distributed onto the process grid by filling (j, k)s
into the (RowID,ColID)s as (Jiocal; Kiocal)$ equally. Only the is are free to be utilized
by the local processor. Since the indices of j, k are distributed along the grid, the
elements ordered by the two directions can not be used directly due to the separation
of memory in different processors. The indices (j, k) can be obtained by Eq. (5.1)
and Eq. (5.2),

RowID—-1

Jj= Z Nip; + Jocal, (5.1)
ID, =0
CollD—1

k= Y N, + kiocal, (5.2)

ID},=0

where (Np,, Nip,) are the local lengths of (jiocal, Kiocal)s at process (ID;, IDy,).

As presented in Figure 5.10, p(i, 7, k)s are distributed in the 2D grid processes by
the order (i, j,k) ( i(green), j(red), k(blue)) in each process.

71



5 High performance computing studies for fast Poisson solvers

Figure 5.10: A schematic plot of the 3D charge density data distributed to a 2D Cartesian
grid of processes.

Inside the improved parallel Poisson solver’s routine, the multidimensional FFT
becomes more challenging than the serial routine. Unlike the shared-memory com-
puter programming (normal computers), the transport of data is a serious problem
in parallel programming (supercomputers). The FFTs in different directions for the
3D situation are linked by the self-programmed transpose functions. The specified
transpose function rearranges the 3D vector by exchanging the order of directions,
e.g. ijk to jik or kji for each time. Communications and transports of data are a
special challenge for supercomputers. This problem requires intensive concern. To
use the MPI function MPI alltoall is one option for the multidimensional transpose.
The time consumption of the data transpose can reach a higher percentage of the to-
tal CPU time compared to the pure computing time of the multidimensional Fourier
transform.

The following improved parallel Poisson solver is based on the serial routine in
Section 4.4.1 in Chapter 4.

The MPI parallel programming routine is organized by four parts:

Part 1. The efficient IGF calculation and the related 3D DCT (Figure 5.11)

The GF values G(:, :,:) calculated by the efficient IGF methods are distributed in
the 2D grid processes by the order (k, 7,4) (k(blue), j(red), i(green)) in each process.
This is different from the order of the stored p ((4, j, k)). The reason for these index
settings is the synchronization of the calculations, it is better to have the same com-
putation quantity in each processor. There will be no load balance problems in this
case. In contrast, in case of (i, j, k) order, the processors computing GF values would
wait for the processors computing the IGF values due to the different complexity for
the two groups. One way to treat this issue is to calculate the efficient IGF along
the k direction. In this case each processor can finish the tasks at approximately the
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Gy ji = RIGF(z,y,2)
On each processor

. .
kyi.jel
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tjk2gik transpose

Figure 5.11: The efficient IGF calculation and the related 3D DCT.

same time rather than compute the efficient IGF along the other two directions, i.e.
i, j directions. This is a special change for the MPI routine.

The implementation of the 3D DCT of G is processed by serially executing 1D
DCTs along each direction in the 3D space. For the non-shared memory parallel rou-
tine, the 1D DCTs of the i, j cannot be set directly among all the processors. The
work is obtained by taking the transpose functions of the index order, i.e. kji2ijk,
and ijk2jik. At the beginning, we implement the 1D DCTs along k£ and take the
kji2ijk transpose, then implement the 1D DCTs along ¢ and take the ijk2jik trans-
pose. In the end, the 1D DCTs along j are implemented to finish the 3D DCT of G.
A special change for the parallel is: the results are extended in j direction as Gk
and G, by classifying the even and odd index of G, along j direction in order
to avoid the data transfer and communications in multiplication in Fourier space.
Furthermore, the (j,1, k) order is transposed to the order of (k,i,j) for the further
multiplication in Part 3.

Part 2. The 3D backward deformed FFT routine (Figure 5.12)

p is directly padded with the same size zeros in ¢ direction as Exp; j ;. The following
deformed 3D FFTs is constructed.

First, we act the R2C' FFTs to the real vectors Exp; ;; in order to obtain the
complex vectors Cp; ;. The transpose function of index between ¢ and j is proceeded
as 1jk2jtk function. Second, the FFTPADBACKWARDS along j is organized from
Cpijr to Cprije and Cpyjo. The transpose function of index between j and k is
then followed by jik2kij function twice, for both Cpy; ;. and Cpy;jo. Third, the
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FFTPADBACKWARDS along £ is scheduled from Cpy; je t0 Cppeije and Cppo; je, and
from Cpgi jo t0 Cpresijo and Cppo.i jo, respectively. The four vectors Cpre i jes Cproyi,jes
CPke,ijo, and Cppo.i jo are prepared for the further multiplication in Part 3.

N

Cpke,i,je;‘

1D fftpadBackward 4

» along k - N
iépk,z’,je\; T CPkoyi,je
A 4

1D fttpadBackward along j
and jik2kij transpose

/ - —
‘ Exp; i 1D R2C FFT along i Cp: s (6‘0 \F 1D fftpadBackward 5 \
\\\77// and ijk2jik transpose p{ﬁ ~PEjijor along o Phe,ijol
p Complex vectors -
S Oy, Ni(Cp) = Nifp) +1 N
Chrosijo

Figure 5.12: The 3D backward deformed FFT routine.

Part 3. Multiplication in Fourier space (Figure 5.13)

The results from Part 1 and Part 2 are multiplied element by element. G je
and Gy j, need to be extended by the implicit RESE. The detailed multiplication is
updated by the following rule in Eq. (5.3),

Cpke,i,je = RESE(Gk,i,je)k even ¥ Cpke,i,je;
Cproije = RESE(Grije)k odd * CProsje,
C,Oke,i,jo = RESE(Gk,i,jo)k even ¥ O,Ok:e,i,jo’
Cpko,i,jo = RESE(Gk,i,jo)k odd * Opko,i,jm (53)

where the two vectors obtained in Part 1 are Gy ;. and Gi, j,. The four vectors
obtained in Part 2 are Cpieije, Cproijes CPreijor and Cproiio (see also in Fig-
ure 5.13). The “even” and “odd” at the subscript indicate the even and odd indices
of a vector.

Part 4. The 3D forward deformed FFT routine part (Figure 5.14)
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Cpre.ijz = RESE(Gy; jx)even * Cpre i ja-

Cprosijz = RESE(G i jx)oad * CPkosi ju-

where x expresses e (even) or o (odd)

Figure 5.13: Multiplication in spectral domain.
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Figure 5.14: The 3D forward deformed FFT routine.

The inverse procedure of Part 2 is performed. Among the four updated vectors,
CPrejijes Cproyije are given as the inputs to function FFTPADFORWARDS along k
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direction to obtain Cpy; .. The same routine for Cpge,ijo and Cpie; jo to obtain
Cprijo. The two renewed vectors Cpy;je, Cpr,ijo are transposed by kij2jik to
make the vectors with full indices along j. Then the 1D FFTPADFORKWARDS along
J becomes available to gain Cp;; ;. For the last ¢ direction, the jik2ijk transpose
function is implied to update Cp; j , and the further C2R FFT's along ¢ are executed.
The obtained real vector Exp; j is 2N;-sized in ¢ dimension. The front N; parts of
the Exp; ;i is the expected solution of Poisson’s equation.

5.3.2 Study of the improved parallel Poisson solver

For the parallel routine of the Poisson solver, the implementation needs additional
settings regarding the execution, e.g. different compiling plans, different assignment
of processor numbers, and the process grid.

The weak scaling and strong scaling study of the solver:

For the parallel performance, an ideal efficiency is achieved if the computational
speed is preserved when we raise the number of processes and increase the size of
the problem. However, in practice, the results do not match the ideal results. For
the parallel performance of an application, some measurements have to be studied.
In general, there are two scaling studies to check whether a problem is cpu-bound or
memory-bound: weak scaling and strong scaling.

Weak scaling

If the problem size is defined as N, /N, N, and the process number is defined as np,
we keep the ratio of the two, N, N, N, /np, to be constant with increasing the process
number for the weak scaling study. Thus, the measurements of the execution time are
compared with increasing both problem sizes and processors. The study is scheduled
to have large communication patterns for a large number of processors. A good
algorithm can keep the ratio as stable as a constant in performance. In this case,
the algorithm can be implemented for a large problem without interruptions, i.e.
overloads, communications.

If ¢; is defined as the execution time for a unit task finished by one processor, ¢,
as the execution time for np units task finished by np processors, the weak scaling
efficiency is calculated by
LY x 100%.
bnp
The weak scaling time scales and efficiency of the improved parallel Poisson solver
are shown in Figure 5.15. The run time increases rather than remaining at an ideal
constant, which may be because of the heavy usage of the global communication
patterns. In total, the improved parallel Poisson solver does not perform very well
for a large problem size and process number, which may be due to the 3D FFT and
global transposes inside the algorithm.
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Figure 5.15: The weak scaling study: fixing the ratio between the size of the problem
and the cores in order to keep it constant. The starting points are 163 /core (top left),
323 /core (top right), and 643 /core (bottom) respectively. The blue curve is the weak
scaling efficiency while the black curve is the execution time ¢,, for the corresponding
number of cores.

Strong scaling

We increase the process numbers for the constant problem size for strong scaling (The
problem size, N,N,N,, stays fixed while the process number, np, is increased). The
execution time is measured with the process numbers. In strong scaling, it is ideal to
scale linearly, but difficult to stay on the linear property. The limitation point will
be a reasonable choice between time and parallel overhead.

If ¢, is execution time for 1 core of a N, N, N-sized task while ¢, is the execution
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Figure 5.16: The strong scaling study: fixing the size of the problem, 643(top left), 1283
(top right) and 256% (bottom), while increasing the number of cores in processing. The
blue curve is the weak scaling efficiency while the black curve is the execution time t,,

for the corresponding number of cores.

time for np cores of the same size task. The strong scaling efficiency is given by

i1

np X typ

x 100%.

The strong scaling figures are plotted in Figure 5.16.

The strong scaling time scales and efficiency of the improved parallel Poisson solver
are shown in Figure 5.16. The run time decreases linearly until the number of cores
becomes large. For problem with larger number sizes, the performance improves.

In total, the performance of the improved parallel Poisson solver shows a better
performance in strong scaling than in weak scaling due to the heavy utilization in

communications and transposes.
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Figure 5.17: CPU time for different assignment of processors in the process grid.

Different assignment of processors within the process grid:

The np processors can be assigned by the MPI_cart_coords function with different
row-column combinations. Some processors are within the same node while others
are not.

The variation of the process grid for the same np processors can lead to different
execution time.

As an explanation in practice: a total of 96 processors are applied for the imple-
mentation. By np = npgrow X nPcor, the npr,, can vary from 1, 2, 3, 4, 6, 8, 12,
16, 24, 32, 48, and 96. Figure 5.17 shows the CPU time for the above npg,,s. We
can see that if npre, is roughly /np, the computing time is shorter than the other
situations. On the other hand, npgr.., differs from npc,; when we switch the two val-
ues, especially npry, = 1 costs much less time than npc, = 1 shown in Figure 5.17.
The reason for this case is that Fortran uses the column-major order method for ar-
ranging multidimensional arrays in memory. npgry, = 1 provides the column-memory
accesses across np columns while npc, = 1 means the row-memory accesses across
np rows. The memory accesses in row and column directions are different for data
transport. The column access in memory is much more efficient than the row access
in memory. This conducts the data transport differently with arrangement in vector
transpose as can be seen in Figure 5.17.
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Different compiling plans:

A compiler transforms the programming language known as source language (high-
level programming language), e.g. C, Fortran, into the binary form target language
(low-level programming language). With converting source code into an executable
program, the program can be written from machine-independent source programs.
Therefore, the compiler can compile the same source program for different specific
machines.

For large applications in HPC, the compilers may not be complete enough to handle
the programs. In Edison, there are a couple of compilers identified by vendors, e.g.
Intel, Cray and GNU. For each individual compiler, different optimization strategies
can be applied that can make various differences in performance. These techniques
have to be pre-studied before generating the final execution program for simulation.

By conducting dozens of attempts, we confirmed that the Intel compilers have a
better performance than others for the improved parallel Poisson solver implementa-
tion in execution time. Thus, the Intel compilers are chosen for computation in this
dissertation.

5.4 The MPI + OpenMP parallel routine

As mentioned before, there are different types of shared-memory, e.g. holding by the
cores within a computing node, using the MIC architecture as the co-processor for the
CPU, and cooperating with GPU structure. The first option meets the bottleneck of
the CPU manufacturing. The other two options are probably choices for the future
HPC industry improvement. The competitions are still going on: up to the latest
(November 2015) TOP 500 supercomputer list [39], 104 systems (90 on July 2015)
are using the new accelerating technology for shared-memory parallel computations,
66 of these use GPUs, and there are 27 systems with MIC co-processors, 4 systems
use a combination of the two.

From the programming side, the MPI4+OpenMP routine would be a promising
combination. The OpenMP API has been widely used for a long period. For Intel’s
MIC architecture, it is the official and solely supported environment that programs
should be considered for the hybrid parallel routine.

5.4.1 The MPI+OpenMP routine

In this section, the hybrid parallel routine is scheduled for the existing code without
unnecessary reprogramming scripts. This is organized by attaching the OpenMP
API scripts in the code directly.

Inside a computational node involving the parallel computation, the OpenMP co-
operates with the Open MPI process. The cooperation’s performance varies with
different CPU architecture and memory allocation. For instance, the computational
node in Edison is the NUMA node containing 24 cores separated by two portions

80



5.4 The MPI + OpenMP parallel routine

connected through intersocket. NERSC announced that the best choice per NUMA
node can be 1-4 MPI processes with 12-3 OpenMP threads for each node in Edison.
Fortran uses different compiler directives as C:

'$omp <construct> [clausel clause2 ...]

For the hybrid routine, the OpenMP parallel parts are mainly involved with “do-
loops”. Not only the GF value calculations and the element-by-element multiplica-
tions are computed inside the “do-loops”, but also the FFTs provided by FFTPACK
are managed by “do-loops”. In fact, the “do-loops” are maintained by two “loop-
controllers” in the hybrid parallel routine: Open MPI task and OpenMP threads.

The “do-loops” inside each MPI process are further parallelized with OpenMP API.
The parallelization is similar to the aforementioned OpenMP routine as:

e The parallelization of the efficient IGF calculations

e The parallelization of FFTs and DCTs

e The parallelization of multiplication in Fourier domain
e The parallelization of the data transpose

Substituting OpenMP threads for MPI parallelism is an excellent strategy for a
type of modern supercomputers. The newest supercomputer system, named Cori, in
NERSC will have the second generation of the Intel Xeon Phi co-processor products
called the Knights Landing (KNL) MIC architecture which has a strong potential in
the HPC application.

Benefiting from the Intel’s widely available CPU market, the co-processors can
easily be made to co-operate with CPUs in different strategies. Two major strategies
are: the ofload mode and the MPI mode. The offload mode involves localized changes
to a program and generally used for finer grained parallelization. In contrast, the
MPI mode requires scattered changes in a program and often used for coarse grained
parallelization.

As an attempt and preparation, the future MPI+OpenMP routine should differ
from the attached OpenMP routine under the goals of reducing the need for replicated
data transport and adding vector parallelism. In detail, we use efficient batch FFT
implementation and reduce the matrix transpose times among processes.

First, the FFTs are computed by the FF'TW library rather than the former FFT-
PACK library. The SIMD FFTs from FFTW library are available for higher speed-up
as shown in Figure. 5.18 .

Second, the data transposes should be avoided as much as it can and the processing
of a transpose should be more efficient. For the first scheme, an attempt is the
replacement of the 2D coordinate of processes to a 1D coordinate in the program
pattern. Each process stores the 2D slices and the ordering 2D slices construct
the whole 3D structure by combining all 2D slices, thus the transpose for the first
2D is maintained in the same process. For the second scheme, the hot problem of
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Figure 5.18: Comparison of FFTs in FFTW library and FFTPACK with np =4, N, =
128

efficient global communication across processes in HPC field is met. The simultaneous
implementation and SIMD should also be considered for the data transpose.

Furthermore, every language is a type of column-major or row-major language, e.g.
Fortran is a column-major language. The operations within dimensions of multidi-
mensional data are different based on the difference of row-column management. In
the author’s view, if the data operations between column and row are hugely differ-
ent, the control of the data is not ideal and calls for improving. The operations of the
column direction and the row direction should be balanced as much as possible for
either language. If the current capability is beyond the need, new technologies such
as MIC structure should improve the multi-operation capability for such memory
control.
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6 Verification with examples, applications
and discussions

The efficient Poisson solver has been introduced by the theoretical method (Chap-
ter 3, Chapter 4), and further programmed in practice by the state-of-the-art HPC
technologies (Chapter 5). Further validations and applications are presented in this
chapter for the proposed novel efficient approach.

First, three examples are introduced for the numerical verification in Section 6.1:
an ideal uniform charged sphere bunch, an ideal uniform charged ellipsoid bunch,
and an ideal Gaussian distributed charged bunch.

Second, the efficient IGF integrals (CIGF and RIGF) are verified through these
test examples.

Additionally, the novel fast convolution routine combining with the efficient IGF
integral is studied for accuracy. The convergence study of the novel Poisson solver is
presented by refining the discretization.

For applications, the validations are done by comparing the novel Poisson solver
and a commonly used Poisson solver. Two beam dynamic simulations through two
different simulation codes, MOEVE-PIC and IMPACT, are given.

On the efficiency improvement side, the execution times are studied for both work-
station and supercomputer with regard to all of the new technologies: pure single
CPU routine for a workstation, OpenMP shared-memory parallelization, the hybird
parallel routine with OpenMP+CUDA for a workstation, pure Open MPI routine for
a supercomputer, and the hybrid Open MPI+OpenMP routine for a new architecture
of supercomputer.
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6.1 Verification examples

For all the examples we use the notations, 7, and ng to measure the relative errors
between the simulation results and analytic solutions, which we used as follows:

’(pijk — Ptrue; k|
1,7, k): = = = and inf 1= IMa 1,7,k
77<P( 7, k) max; ’gptrue/i’j}kv ||7790||1nf ivj’g(%( 3 k),

HE'ij - Etrue- k||2
7. k) s = e AL d = 7. k).
ne(i, J, k) 2%y Boree 1o and ||1g||in rznﬁzc(nE(Z,j, ))

Additionally, we optionally study two other norms of relative errors for the potential:

||n<,0||2 = ‘ /Z”s@(%]: k:)2/Npa
4,5,k

||T]<p||1 = Z |n<,0(i7j7 k)|/Np

Z'7]’7’6

Here, the notations are, n,(i, j, k), @i r and @i, ,, as the relative error of the
potential at index (i,7, k), the computed potential at index (i,j, k) and the true
potential for the same index, respectively. In the same way, we have the notation for
the electric field: ng(4,j, k), E;jx and By, .-

This section contains three different verified examples for Poisson’s equation based
on different distributions of charge density p(x,y, 2z) (or p(i, j, k) in discretized situ-
ation), i.e. uniform sphere shape, uniform ellipsoid shape, and with Gaussian distri-
bution.

Test Case 1: ideal uniform charged sphere bunch

In this case, Poisson’s equation is described as:

3.9 for Irle < R
“Ap = 2 — 4 meoR? 2= 6.1
7 co { 0 otherwise. (6.1)
Solution:
9 _ . (32— ) forr <R,
sD(,,,) — { 47r50R 2 2R —. (62)
otherwise.

dmegr

The parameters are referenced from the table:

Signs Notations Values
Q charge -1 nC
R radius of the sphere 2.2 mm
r distance \/m
Q computational domain [—4.4,4.4] mm?
£0 permittivity in vacuum 8.85419 x 1072 F-m™!
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6.1 Verification examples

Test Case 2: an ideal uniform charged ellipsoid bunch [26] [17].

In this case, Poisson’s equation is described as:

Solution:
3Q
o(r) = { 163750
167eg

2
Qo for &+ ¥ 425 <1,

megabe

I
—N
O wlw

otherwise.

(—Az? — By? — C2>+ D) for & + ¥4 +
- (=Ayx? — Byy? — Cy2% + D)) otherwise.

The parameters for the analytical solution are expressed as:

where A\

f(s)

o ds
/0 (a® + s)\/(a2 +5)(b2 + s)(2 + s)’
o ds
(b2 + )/ (a2 + s)(b% + s)(2 + 5)7
o ds
(2 + 8)y/ (a2 + s) (b2 + s)(c2 + 3)7
ds
V(a2 + s)(b2 + s)(c2 + s)’
ds
(a% + 5)y/(a® + 5) (B2 + 5)(* + 5)
ds
(0 + 5)\/(a? + 5) (0 + 5) (> + 5)
o ds
(2 +8)y/(a? + s)(* + s) (2 + s)’
e ds
/,\ V(a2 +s) (12 + s) (e + s)’
the greatest root of f(s) =0,and
22 . Y2 . 22 -
a?+s b’+s A+s

8

g

Nhﬁo\o\;o\;

22<1

c2 =

" (6.4)

A “cigar” shape ideal ellipsoid bunch is chosen as the exact verified example: assume
a = b, and ¢ > a. The above parameters are calculated by Mathematica [97], and
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6 Verification with examples, applications and discussions

read as follows:
c arccosh (g)
a? (2 — a?) - (c2 — a2)3/2’
2 (cx/ c2 — a2 arccosh (ﬁ) —a®+ 02)
¢(a? — 2)° ’
2 cosh™ (5)
N
2 2 _
B e e B G )
\/fCQ—HH
A, = By = : o
2(c2 —a?)*? (a2 + \)

0y = . <—¢—<a2 ><c2+A>1og< G 1)

(a®> — )" Ve + A a? — c?

+2a% — 22 + /= (a% — ) (2 + \) (log(ﬂ 24—1)
2 —c¢
log(,/—jj—*(f‘z—l—l)
D, =
02_a2</ ac22+22_1>

1
where \ = 5 <\/(—a2 — 24224+ 12 4 22)° + 4 (—a2 + a22? 4 212 + 2y?)

A:B:

C:

Y

N———

a2—02+x2+y2+22).

The bunch parameters are referenced from the table:

Signs Notations Values
Q charge -1 nC
a(b), ¢ ellipsoid size [—2.2,2.2], 30[—2.2,2.2] mm
Q computational domain  [—4.4,4.4]% x 30[—4.4,4.4]  mm?
€0 permittivity in vacuum 8.85419 x 10712 Fm™!

Test Case 3: an ideal Gaussian distributed charged bunch.
In this case, Poisson’s equation is described as:

-2
—AQO — ﬁ = —Q B exp 207, (65)

€0 goo3V 2T

Solution:

or) = o e fl

The parameters are referenced from the table:

)- (6.6)
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6.2 Numerical verification of the efficient IGF integrals for the Poisson solver

Signs Notations Values
Q charge -1 nC
o standard deviation 0.000875
Q computational domain [—4.4,4.4] mm?3
r distance \/m
erf (Gauss) error function

€0 permittivity in vacuum 8.85419 x 1072 F-m™!

6.2 Numerical verification of the efficient IGF
integrals for the Poisson solver

In Chapter 3, the efficient IGF integrals are given, analyzed and verified in a theoreti-
cal way. The numerical verification is presented in the form of numerical error studies
of the corresponding Poisson solver. The efficient IGF integral, CRIGF, is tested by
two sub-verifications: verification of CIGF integral, and verification of RIGF integral.
The separated verification makes clear how the integrals influence the final result of
the Poisson solver. The discrete convolution of the Poisson solver uses the classical
HandE’s routine.

6.2.1 Numerical verification of the CIGF integral

The CIGF integral is verified through Test Case 1, which the bunch parameters are
set as:

Signs Notations Values
Q charge -1 nC
R radius of the sphere 2.2 mm
Q computational domain [—2.2 X 5,2.2 x 5] mm?

Also the domain-bunch ratio ais 5, i.e. ap = oy = a, = 5. Oy = [(14) /204, N,y
for w in {x,y, z}.

Table 6.1: Comparison of the relative errors of IGF and CIGF by || ||inf
N IGF [Ingllins  IGF |Ingllme  CIGF [[nglline  CIGF |7 |int

32 0.0587 0.0619 0.0587 0.0619
64 0.0130 0.0334 0.0130 0.0334
128 0.0045 0.0290 0.0045 0.0290

We further check the other two norms of relative errors:
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6 Verification with examples, applications and discussions

Table 6.2: Comparison of the relative errors of IGF and CIGF by || |1 and || |2
N IGF [nglly IGF [Inells - CIGF |Ing[ls  CIGF ||

32 1.367e-02  8.336e-05  1.367e-02 8.336e-05
64  2.448e-03  5.273e-06  2.448e-03 9.273e-06
128 5.160e-04  4.004e-07  5.160e-04 4.004e-07

In addition, four figures are given to visualize the relative errors n, (top) and ng
(bottom). The 2D figures are plotted by cutting the slice along the middle of the
computational domain in z direction.
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35 0.006 35
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3 3
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25 25
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Figure 6.1: Comparison of CIGF and IGF by n,(:,:,:) and ng(:,:,:) for an ideal uniform
sphere beam.

The norms of the numerical errors of the Poisson solver induced by IGF and CIGF
integrals are the same. A detailed comparison of the two was also done element by
element and it suggests the numerical errors are the same.
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6.2 Numerical verification of the efficient IGF integrals for the Poisson solver

6.2.2 Numerical verification of the RIGF integral

The RIGF integral is verified through Test Case 2, where some of the parameters are
reset as shown in the following table.

Signs Notations Values
Q charge -1 nC
Q computational domain [—4.4,4.4]* x 3[—4.4,4.4]  mm3
a(b), ¢ ellipsoid size [—2.2,2.2], B]—2.2,2.2] mm

In the table, 3 is expressed as the longitudinal-to-transverse ratio of the ellipsoid
bunch. The value is set as 10, 30 and 100 to compare different scaling results. The
extreme conditions of large § may present a bunch in the rest frame after a Lorentz
transform.

In Figure 6.2, the ||n,||int values are plotted when the R, varies from 0 to 32
(N, = 64). The remaining half of the points are not included in the figures since
the line’s trend is foreseen: smooth, stable and convergent. The plotted errors show
the numerical solution is not sensitive to shift of different GF integrals as described
in Section 3.3. Although GF is a strong decreasing function, the switching does not
break the continuity property. This is because the accuracy shifting of GF integral
values is bounded by the determined strategies. There is a slight drop in the error
values for the initial values of R, when ( is large (e.g. 100). After that the errors
recover again and converge to IGF integral’s result. This behavior is not fully under-
stood now, but the provided R, determination strategies always override these points
in practice.

For the adapted relative error determination strategy: s = 1 (see Section 3.3.1) is
chosen for the switching between GF and IGF for the high accuracy purpose. The
parameter R, chosen by the adapted algorithm appears to be constant for the three
different fs, i.e. R, = 13.

For the time (distance) error determination strategy: R, = [NZ—;H], s, = 4 to
8 (R, = 16 to 8) is enough to reflect a reasonable simulation result, as shown in
Figure 6.2.

In total, the numerical verification of the efficient IGF integrals shows a reliable re-
sult: the CIGF integral fully agrees with the IGF integral on the solution of Poisson’s
equation; on the RIGF integral side, the solution providing by the RIGF integral sta-
bly converges to the reference solution with IGF integral. The adapted algorithm for
choosing the parameter R, is reliable and fast while the time (distance) determination
strategy is simple and direct.

The CRIGF integral, as the combination integral, is verified by the above two sub-
verifications. The efficient IGF integrals are integrated into the novel Poisson solver,
and further verified by comparing with the commonly used Poisson solver in the next
section.
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Figure 6.2: The RIGF integral study: fixing the mesh numbers N,, = 64 for Test Case 2,
while 5 = 10(top left), 5 = 30 (top right) and 8 = 100 (bottom).

6.3 Verification of the novel Poisson solver

In Chapter 4, the novel discrete convolution routine is presented. The routine theoret-
ically does not differ from the classical Poisson solvers, either the trivial FFT routine
or the HandE’s routine. The routine combined with the aforementioned efficient IGF
integrals is verified in two aspects: the error convergence trend (the aforementioned
three different error norms are all compared) with finer grids, and the local errors
plotted on the cutting planes in comparison with HandE’s routine.

All three test cases are tested: Test Cases 1 and 2 contrast the length scaling while
Test Cases 1 and 3 differ with regard to the continuous property of the r.h.s function.
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6.3 Verification of the novel Poisson solver

6.3.1 Convergence study of the novel Poisson solver

For Test Cases 1 and 2: the domain-bunch-ratio is 1. The domain size is reset in the
following table as:

Signs Notations Values
Q charge -1 nC
Qcase 1 computational domain  [-2.2,2.2)* x [-2.2,2.2] mm?
QCase 2 computational domain [—2.2,2.2]* x 30[—2.2,2.2]  mm?

For Test Case 3, the parameters remain the same as their initial values in Sec-
tion 6.1.

The potential convergence of the novel Poisson solver is expanded by means of
increasing the mesh number N,, for the constant domain. N, is from 8 to 344 with
the step value 8. In total, 43 points are plotted in each sub-figure of Figure 6.3.
The plots are in log-log axes: N,N,N, (total mesh number) is in x axis while the
magnitude of relative errors is in y axis.

For Test Cases 1 and 2, they show a similar behavior: the convergence with in-
creasing mesh number N,, does succeed. However, the convergence is not as stable
nor “continuous” as the Gaussian distribution of Test Case 3.

For Test Case 3, the plots of all three norms show a stable decreasing linear line
in the log-log axes.

As an aspect of explanations: the computational domain sizes for both Test Cases
1 and 3 are the same. It means that the only difference between the two is the
charge density, it is a continuous function for Test Case 3 (Gaussian bunch), but
a flat-top function as Eq. (6.1) for Test Case 1 (charged sphere bunch). The poor
property of the r.h.s function reflects also a weak property in sensitivity of the com-
puted results, a wider convergent band region, and the convergence slope is lower.
Furthermore, the figures of Test Cases 1 and 2 show that the convergence does not
break from the sensitivity. The three norms used for testing cases show the same
trend of convergence.

We cannot expect a better solution if the r.h.s function has a poor property in
comparison with the situation where the r.h.s function has a good property. This
is true for all numerical methods as the refining discretized grid actually represents
the original function’s property. The classical HandE’s routine also has the same
behavior for Test cases 1 and 2.

A recommendation to be drawn from the convergence study is: the convergence
study reveals the advice of keeping a constant spatial discretization during a bunch
tracking. Additionally, some more numerical tools may be an asset.
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Figure 6.3: Convergence study for the novel Poisson solver with increasing mesh number
Ny: Test Case 1 (top left), Test Case 2 (top right), Test Case 3 (bottom). The ||7,| is

differed by : ||n,|int (black curve), ||n,||1 (red curve) and ||n,||2 (brown curve).

6.3.2 Numerical verification of the novel efficient method

The HandE’s routine is chosen as the comparable convolution routine; both GF and

IGF integrals are applied to show the bounds of the efficient GF integrals.
comparisons are for both aspects of potentials and electric field.

All three test cases are studied for the numerical verification while only Test Case 2
is included in this section. The other two test cases are given in Appendix C in the

same way.
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Figure 6.4: Comparison of 7, (4, j, k) of Test Case 2: at plane (:, N,/2,:) (left view) and
(:,:,N,/2) (right view) inside the 3D computational domain for the GF integral.

Simulate an ideal uniform charged ellipsoid bunch

The bunch parameters of Test Case 2 are the same as their initial values in Section 6.1.

Two cutting planes, (:, N,/2,:) plane and (:,:, N,/2) plane, are chosen to show the
error study. The positions of the two planes inside the 3D computational domain
are plotted in Figure 6.4. Furthermore, Figure 6.5 and Figure 6.6 present the 7,
values and ng values by plotting the two cutting planes directly: left column for
(:, N,/2,:) planes and right column for (:,:, N,/2) planes. The different GF integrals
are recognized as GF integrals (top row), efficient IGF integrals (middle row), IGF
integrals (bottom row).

For Test Case 2, 1, (also ng) of GF integrals is not plotted with the same color
scaling as the other two integrals since the magnitude of GF integrals differs from
the other two integrals. The efficient IGF and IGF integrals present nearly the same
figures.

The large 7, values locate around the center of the bunch area, whereas the large
ng values locate in an area around this boundary of the bunch. In comparison, the
GF integrals solve larger errors of potential within the area of the bunch, whereas
the GF integrals solve larger errors of the electric field around the boundary of the
bunch.

The local errors from both figures show that the novel Poisson solver with efficient
IGF integral agrees with the classical Poisson solver with IGF integral.
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Figure 6.5: Comparison of n,(i, j, k) of Test Case 2: at plane (:, N,/2,:) (left) and (:,:
,N./2) (right) for the GF integral (a) (b), efficient IGF (c) (d), IGF (e) (f).
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6.4 Applications

The novel Poisson solver is already integrated into the MOEVE-PIC and IMPACT
software packages. The validation is further considered for the application of beam
dynamics simulations. The verifications in the preceding sections were all success-
fully done within the Poisson solver itself. However, the Poisson solver is repeated
hundreds of thousand times with each discretized time step in beam dynamics sim-
ulations. The simulation combining the Poisson solver and other calculations in the
PIC module is complex. In particular, potential and electric field resulting from the
Poisson solver are only the intermediate quantities for beam dynamics study in the
accelerator community. Bunch size and emittance are the parameters for the mea-
surement in experiment and analysis in theory. The simulation code computes these
parameters for comparisons with experiment and theory.

Two sub-tasks are implemented for two software packages, respectively: the se-
rial implementation in MOEVE-PIC (Section 6.4.1); the parallel implementation in
IMPACT (Section 6.4.2). By comparing the accelerator parameters, i.e. bunch size
and emittance, the goal of agreement between the novel Poisson solver and a com-
monly used Poisson solver is achieved for the two sub-tasks.

6.4.1 Tracking a bunch in a beam line with MOEVE-PIC

MOEVE-PIC software package originally applies multigrid method for Poisson solver
in bunch tracking simulations, electron cloud, and ion cloud effects studies. Now, a
couple of FFT Poisson solvers have been integrated into the package. The integrated
solvers combined with the existed PIC module provide a comparable result.

An electron Gaussian bunch whose parameter profile is listed in Table 6.3 is chosen
as the application example.

Table 6.3: Initial parameters of the tracked bunch for MOEVE-PIC.

Bunch parameters

number of marco particles 20,000
beam energy 0.800 MeV
beam charge -1.000 nC
normalized emittance 1.000 7 mrad mm
bunch length 22.5 mm
rms bunch radius 0.75 mm

The time step 0t is set as 1 ps and 1000 total steps are applied. Without any exter-
nal electric field, the bunch is tracked inside a beam line. The transverse emittance
and the rms bunch size of the tracked bunch are plotted in Figure 6.7.
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Figure 6.7: Comparison of emittance growth (left) and bunch size (right) increase for
MOEVE-PIC example: efficient IGF together with novel fast convolution routine (a) (b),
IGF together with HandE’s routine(c) (d).

The relative difference study is presented in Figure 6.8. As shown, both relative
differences of emittance and rms bunch size have a slight increase. However, the
relative differences for both are on the magnitude of 107%, which is very small. In
next section, the relative difference is studied with an external magnetic field for a
detailed simulation.

6.4.2 Compare simulation results within IMPACT

The novel Poisson solver has also been integrated into the IMPACT package for par-
allel simulations. More simulation results can be compared with different accelerator
settings. The comparison is against the HandE’s routine with IGF integrals, but in
parallel.

A virtual accelerator is set for the purpose of this comparison: a long bunch (Bunch
profile is in Table 6.4) with uniform distribution in transverse direction and Gaus-
sian distribution in longitudinal direction is generated by an RF electron gun. The
starting point of the comparison is a short distance (2 meters) after the electron gun.
The bunch is tracked for a certain distance (10 meters) in simulation without extra
electric field but with focusing and defocusing magnetic field. The whole simulation
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Figure 6.8: Comparison of the relative difference (rel. diff.) of transverse emittance
(Emmit.transverse) (left) and rms bunch size (RMS.transverse) (right) between efficient
IGF and IGF integrals for a bunch tacking example in MOEVE-PIC.

procedure corresponds to the electron gun studies for the accelerators such as Free
Electron Lasers.

Some critical simulation parameters are 6t = 1ps, distance=10m, N,, = 64. Specific
for the parallel implementation: np = 64, and the processors’ coordinates are np., =
8, NProw = 8. For the whole simulation, the only difference is the Poisson solvers.

Table 6.4: Initial parameters of the tracked bunch for IMPACT.

Bunch parameters

number of marco particles 160,000
beam energy 0.511 MeV
beam charge -1.000 nC
longitudinal bunch length 2.82 mm

transverse bunch length (z,y) (1.66,1.66) mm

In Figure 6.9, the rms bunch size is plotted for both solvers: the red lines represent
the existing FFT Poisson solver in IMPACT (named as IGF in the plots); the green
lines represent the parallelized novel Poisson solver (named as RIGF in the plots).
In Figure 6.11, the same notations are chosen as in Figure 6.9. The rms emittance
is plotted for both solvers. From the two figures, the agreements of bunch size and
emittance for both Poisson solvers are clear: they match very precisely.

In addition, the relative difference study for IMPACT is presented in Figure 6.10
and Figure 6.12. The trend of the relative difference changes with different sections of
the accelerator for both emittance and rms bunch size, since the external focusing and
defocusing magnetic field is added. The magnitude of relative difference is in the order
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both x direction (top left), y direction (top right), and z direction (bottom).
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RMS.transverse (left) and RMS.z (right) between RIGF and IGF integrals for a bunch

tacking example in IMPACT.

of 1073 in the transverse direction, whereas it is lower in the longitudinal direction.
The magnitude differs to the MOEVE-PIC studies. This may be because the tracking
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Figure 6.11: A schematic plot of a comparison of the original IGF solver in IMPACT
with the novel RIGF solver implemented in IMPACT. Compared is the rms emittance
for both x direction (top left), y direction (top right), and z direction (bottom).
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distance in MOEVE-PIC is too short for the relative difference to reach the magnitude
of the example in IMPACT. Other factors may influence the difference as well, e.g.
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different mesh numbers, bunch parameters, domain size and other calculations inside
PIC.

Again, both relative differences of emittance and rms bunch size have a slight
increase in a drift area. However, the relative differences for both are at a low
magnitude. When the external E.M. fields are added for real accelerator simulation,
the magnitude varies with different sections but stays at a low magnitude.

In fact, the errors introduced by the PIC model are the dominant part of the total
numerical error. Compared to that, the relatively small difference between the two
IGF methods is hardly of any relevance. Boonpornprasert [11] shows the comparison
between a simulation and an experiment in Photo Injector Test Facility at DESY,
Location Zeuthen (PITZ). This difference between simulation and experiment is
actually still not fully understood in the research community.
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6.5 Efficiency improvement results of the novel
Poisson solver

After completing the verification and validation of the novel Poisson solver, this
section presents the efficiency improvement, which can be considered as a core result
of this dissertation.

The Poisson solver’s efficiency improvements are summarized in two parts: the
theoretical algorithm improvement, and the computing technology improvement.

The two Poisson solvers are abbreviated as commonly used Poisson solver (CPS)
and novel efficient Poisson solver (EPS) in this section. Both solvers utilize the real
to complex FFT for the first dimension of the 3D vectors.

The theoretical algorithm improvement

The efficiency improvement of the Poisson solver is separated into three parts as
introduced in Chapter 3 and Chapter 4:

e The calculation of the IGF integral values is replaced by the efficient IGF
integral values (with blue color and noted as IGF integrals in figures).

e The FF'T calculation of RESE of the IGF values is replaced by the DCT of the
efficient IGF values (with red color and noted as IGF transforms in figures).

e The explicitly zero-padded FFT is replaced by the implicitly zero-padded FFT
for the charge density (with yellow color and noted as p transforms in figures).

The results of the theoretical algorithm improvement are presented in Section 6.5.1
in a single CPU simulation, as shown in Figure 6.13 and Table 6.5. First, the per-
centage points of p transforms increase significantly for both CPS and EPS with
increasing grid resolution. Also, p transforms dominate the total time consumption
for fine meshes. The GF integrals are the second largest time consumption for CPS,
similar to the GF transforms for EPS.

The speed-up of EPS compared to CPS is around 3 to 5. In particular, the speed-
up for both IGF integrals and IGF transform is around 4 to 8, the speed-up for p
transform is around 2. The time evolution with mesh numbers are plotted in log-log
scale and recorded in Figure 6.13 and Table 6.5.

The presented results of execution time in this section may differ from the results
in the former chapters, in particular for a problem of small size, e.g. 323. This
is because the execution time is recorded by the average execution time in former
chapters, whereas the execution time is measured for a single implementation in this
section. In order to obtain a real trend with grid difference, the solver is decided to
be executed for a single implementation with increasing grid resolution managed by
Bash! scripts under the same computing condition. Furthermore, the overhead of
the external APIs such as OpenMP API, is also a key factor.

'Bash is a system shell and command language written by Brian Fox used in Unix-like system.
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6.5 Efficiency improvement results of the novel Poisson solver

The computing technology improvement

The computing technology improvement is divided into different sub-sections due
to different HPC technologies, e.g. OpenMP and OpenMP+CUDA for a workstation,
MPI and MPI+OpenMP for supercomputers.

1. The simulation results of OpenMP parallel solver compared to EPS in a work-
station is presented in Section 6.5.2. In total, four CPU threads are used for the
OpenMP parallel execution. As shown in Figure 6.15, the speed-up of OpenMP par-
allel solver compared to EPS can reach as high as 3. However, the acceleration of
computation is not obvious for a small size problem, e.g. 323, 643 since the overhead
of OpenMP API costs percentage of time as well.

2. The simulation results of OpenMP+CUDA parallel solver compared to EPS in
a workstation are presented in Section 6.5.3. In total, four CPU threads are used for
the OpenMP parallel execution, three threads of those are used for the CPU portion
while one thread masters the GPU portion. As shown in Figure 6.15, the speed-up
of OpenMP+CUDA parallel solver compared to EPS can reach as high as 3. As the
OpenMP parallel routine, the acceleration of OpenMP+CUDA is weak for a small
mesh, e.g. 323, since the overhead of both OpenMP and CUDA APIs consumes the
major execution time.

Regarding the combination of the theoretical algorithm improvement and the com-
puting technology improvement, the total speed-up results for a workstation are
shown in Figure 6.16. Compared to CPS, the final speed-up with parallel technology
can reach as high as 10. Still, a small size computation may limit the performance
of the parallel solver. As the speed-up results are measured for a single execution
in order to reflect the real trend with grid difference. In real simulation, the speed-
up results can be variously higher as introduced in the former chapters when the
Poisson solver is repeated, which is similar to the situation recorded in the former
chapters. If the size of problem is large, the hybrid OpenMP+CUDA may show the
best performance as shown.

For supercomputers, the results of speed-up are reported in Section 6.5.4 and
Section 6.5.5.
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6.5.1 Single CPU simulation results in a workstation

Table 6.5: Comparison of CPS and EPS with increasing grid resolution.

N CPS EPS N CPS EPS

323 10.020377 s{0.008351 s || 160% | 4.276374 s | 1.249857 s
643 0.178336 s|0.064438 s || 1923 | 7.773760 s |2.413308 s
963 0.761309 s|0.276435 s || 2243 | 12.256783 s | 3.776264 s
1283 |2.314242 5| 0.518175 s || 256% | 21.739702 s | 6.774378 s
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Figure 6.13: Comparison of CPS and EPS with increasing grid resolution.
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6.5.2 OpenMP simulation results in a workstation

Table 6.6: Comparison of EPS and OpenMP parallel solver with increasing grid resolution.
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N
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96
128

0.008351 s
0.064438 s
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0.007070 s
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0.185006 s
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192
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6.5.3 OpenMP-+CUDA simulation results in a workstation
Table 6.7: Comparison of EPS and OpenMP+CUDA parallel solver with increasing grid

resolution.
N EPS OpenMP-+CUDA || N EPS OpenMP+CUDA
32 10.008351 s 0.008100 s 160 | 1.249857 s 0.547934 s
64 |0.064438 s 0.038541 s 19212.413308 s 0.926579 s
96 |0.276435 s 0.132028 s 224 |3.776264 s 1.450704 s
128 10.518175 s 0.268601 s 256 |6.774378 s 1.964245 s
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Figure 6.15: Comparison of EPS and OpenMP+CUDA (Hybrid in the legend) parallel

solver with increasing grid resolution.
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Figure 6.16: Comparison of relative computation time of different solvers and parallel
routines.

6.5.4 Open MPI simulation results in a supercomputer

We compare the efficiency improvement of the new Poisson solver. As shown in
Table 6.8 and Figure 6.17, the speed-up is as high as 2, which is significant. For
small size problems with a large number of processes, the speed-up is not obvious.
The reason for this may be that the data transports occupy a high percentage of the
whole time consumption for both solvers.

Table 6.8: Comparison of parallel CPS and parallel EPS with Open MPI in Edison su-
percomputer

N np tcps tEps IN  np  teps teps

643 64  21.44749s 11.39442s(/192% 64  476.69889s 308.23102s
643 256 7.91761s  6.89414s (1923 256 81.87869s  46.75058 s
64> 1024 14.53673s 17.47832s(/192% 1024 46.75058s  30.34015s

128% 64  138.71456s 78.66420s(256% 64  1139.38282s 759.27792s
1283 256 41.37721s 30.73737s|[256% 256 311.81897s 214.20530s
1283 1024 15.44938s 14.00897s|/256% 1024 142.09763s 63.00095s

Even though the speed-up of the parallel EPS routine in a supercomputer is not
as high as that of the serial routine in a workstation, the speed-up is still obvious.
The possible reasons read as follows:
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Figure 6.17: Comparison of parallel CPS and parallel EPS with Open MPI in Edison
supercomputer. In each case the respective CPS computing time determined the 100%.

e The MPI overhead consumes a high percentage of the total time consumption.

e For a small problem size, the speed-up decreases when we increase the process
numbers beyond a certain number.

e Due to the overhead of MPI has a balance with the improvement of the com-
putation, the speed-up increases then decreases with refining the mesh.

The efficient numerical method for parallel routines shows promising results. We
experienced a speed-up as high as 2 only from the improvement of algorithm. This
speed-up due to algorithm improvements is almost free of charge, which compares
very favourably to the speed-up of between 2 and 3 which can be observed moving
from Hopper (the former main supercomputer at NERSC) to Edison, which involves
hardware costs of dozens of millions of US dollars.

6.5.5 Open MPI+OpenMP simulation results in a
supercomputer

As shown in Figure 6.18, the processor number np in use is fixed as 96 (as in Sec-
tion 5.3.2) for this study. The MPI processes are 96, 48, 32, 16 and 12 while the
OpenMP thread number varies from 1, 2, 3, 4 and 6 per MPI process. The execu-
tion time for different OpenMP threads per process in use (for two memory affinity
situations: Numa_node and depth) is plotted. The mesh numbers N, , , = 512 (left)
and N,,. = 256 (right) are studied. As shown, the results agree with NERSC’s
announcement that each MPI process handles 3 OpenMP threads may execute faster
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6.5 Efficiency improvement results of the novel Poisson solver

than other number of OpenMP threads. For the two memory allocation modes,
Numa_node and depth modes are also similar in performance. However, the hybrid
Open MPI+OpenMP routine performs no better than the pure Open MPI routine
with the same number of processors in use.
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Figure 6.18: Execution time for different OpenMP threads per MPI process in use.
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Figure 6.19: Comparison of Poisson solvers with FFTW and FFTPACK with Open
MPI4+OpenMP in Edison supercomputer.

The overhead of OpenMP API is a key reason for the unsuccessful improvement
of the hybrid parallel routine. Adding more OpenMP threads directly does not scale
the performance. The memory allocation and management are still the trigger for
the shared-memory parallelization.

As an attempt for advanced supercomputers, the FFTs are further computed by
the FFTW library. Figure 6.19 shows the results. On the left side, np = 64 and
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N, = 128, whereas np = 96 and N,, = 256 on the right side. FFTW improves
20%-25% efficiency of the whole Poisson solver in comparison to FFTPACK. The
improvement of FF'TW for the whole PIC simulation may be marginal though.

The communications and the 3D FFTs within data transposes are the targets
for the further efficient implementation for the internal OpenMP shared-memory
parallelization.

6.6 Discussions

6.6.1 Conclusions

In this dissertation, the numerical calculation of space charge effects in beam dyna-
mics simulation is discussed. The mathematical model for the space charge effects
leads us to solve Poisson’s equation numerically with high accuracy and high effi-
ciency. Among all possible numerical methods, the GF-FFT method is the most
essential and commonly used.

We have introduced different 3D efficient integrated Green’s functions for the GF-
FFT Poisson solver, i.e. RIGF, CIGF and CRIGF strategies. These strategies rely
on the bunch size scaling and the domain-bunch ratio. The new efficient integrated
Green’s functions are well suited for the original problems and speed up the calcu-
lations almost without losing accuracy for the results compared to the original IGF
method. So we suggest using the efficient IGF methods rather than the original
IGF in order to speed up calculations. Independently and at a later date, a similar
efficient IGF method is also researched by Dohlus and Henning [27]. The idea is
very similar, but they express their efficient IGF with a smoothing function and a
smoothing factor.

We have also presented further optimization of the discrete convolution routine.
Firstly, the double-sized extension in each direction with FFT is replaced by a fun-
damental DCT of the GF values. This is proven by means of a mathematical theory.
Secondly, the commonly used numerical convolution routine by Hockney and East-
wood is also replaced by a novel implicitly zero padded convolution. The subsequent
element-by-element multiplications are shifted to adopt the novel routine too. The
accuracy is not influenced by the novel routine, but the calculation time is reduced
significantly.

Since our aim is to pursue an efficient and accurate Poisson solver for the applica-
tion in beam dynamics simulations, the aforementioned novel methods (routines) are
parallelized for different computation architectures. Shared-memory parallelization
using OpenMP API, heterogeneous parallelization of CPU+GPU, distributed mem-
ory parallelization using MPI for supercomputers, and MPI4+OpenMP parallelization
for advanced supercomputers are given. The parallel routines’ performances with dif-
ferent CPU threads, processes and scalings are studied as well.

The Poisson solver performs well in example verifications and applications. Three
verification examples are taken for the comparison with HandE’s routine together
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with IGF method. Convergence studies for the efficient IGF with varying parameters
are shown, as well as the error convergences with finer meshes. The feasibility in
current scientific reality is demonstrated in applications such as tracking a single
bunch in a drift space in MOEVE-PIC, and simulating a bunch after the electron
gun in IMPACT for a virtual accelerator.

In conclusion, the novel improved Poisson solver proves to be more efficient than the
commonly used routine with no (or only very little) loss of accuracy in the calculation
of space charge for beam dynamics simulations. The technique improvements are also
researched with the state-of-the-art parallelization from workstations to advanced
supercomputers in practice.

6.6.2 Outlook

Finally, we briefly remark on some key issues for the future research topics that may
interest us and others in the related fields.

Higher accuracy Poisson solver

In the numerical convolution between charge density and Green’s function, the ac-
curacy corresponds to the mid-point rule of numerical integration. The integrated
Green’s function can obtain a better accuracy solution, but not an essential improve-
ment. Simulating with finer meshes definitely can enable obtaining the solution with
higher accuracy, but only by sacrificing the execution time.

A numerical method to achieve a higher accuracy solution is needed [68] [42].
This may cost slightly more in terms of calculation, but not as much as refining
the discretization. On the other hand, the higher accuracy at some local areas is
also welcome to decrease the influence of some discontinuous properties of the r.h.s
function (charge density with the surrounding zero area) in simulations.

Further optimization of parallel routine

While the HPC industry grows overwhelmingly important in scientific research, state-
of-the-art parallel technologies are developing substantially. The parallel strategies
lead to new hardware, and programming routines. All existing codes have to be
adapted: parts of the codes have to be optimized for the new technologies. The next
generation HPC facilities will reach exaFLOPS (10'® floating point operations per
second). The beam dynamics simulation codes have to be enhanced to fit the new
environment in order to reach the peak.

Firstly, the common pure MPI routine will be replaced by the MPI+OpenMP
programming routine, and (or) the MPI+CUDA programming routine. The next
generation supercomputers probably contain accelerators such as MICs and GPUs.
The hybrid programming has to be optimized to match the hardware’s updates.

Secondly, better weak and strong scaling optimizations for massive cores and large
meshes have to be achieved. Some barriers have to be cleared, such as the other form
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of global data transport and communications in multidimension FFTs.

New types of fast Poisson solver

The data transport forms a barrier for the 3D vector transpose inside the FFTs
for the implementations in supercomputers. A new type of fast Poisson solver which
suits the supercomputer’s architecture deserves further research. The multigrid solver
may provide a good performance while the (free-space) boundary conditions have to
be approximated in advance. The FACR method [82] may show some advantages
as well, whose routine may match the modern supercomputers avoiding the specific
memory-bound data transport in FFT's.

Insight for other fields

The convolution form of integrating Green’s function with charge density shares the
same calculation routine with other physics formulas, e.g. in the calculation of grav-
itational potential, and the calculations for fluid (or air) turbulence. The implicitly
zero-padded FFT strategy was originally invented for the turbulence studies. As
presented in this dissertation, the efficient GF calculations and implicit RESE with
DCT are worth referencing in other fields. The cross-subject numerical method can
benefit all the related fields, and deserves broader research.
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A Green’s function, inverse operator,
convolution theory, DFTs, and
Kronecker product

A.1 Green’s function and inverse operator

In principle, Green’s function is the inverse operator for a given differential operator
L, which has been shown in [8]. In Theorem 1, Green’s function and inverse operator
for the invertible situation has been extended to generalized Green’s function and
generalized inverse operator L (Moore-Penrose inverse [8]), respectively.

Theorem 1. /8] For a differential operator L, there is a kernel
G(s,t), a<s, t<b,
such that, for all y € R(L),

(LTy)(s) = / G(s,t)y(t)dt, a < s <b,

then G(s,t) is called the Green’s function of L in the case of L is invertible (LT is the
inverse operator of L); or the generalized Green’s function for the not invertible L
(L1 is the generalized inverse operator of L). For any y € R(L), the unique solution

of
Lx =y

15 given by

x(s) = /b G(s,t)y(t)dt,a < s <b.

A.2 1D FFT convolution theorem

Theorem 2. [13] Let f and g be two 1D wvectors, the convolution of the two is
defined as f x g. Let § denote the Fourier transform matriz, and ' denote the
inverse Fourier transform matriz. Then, the following equations Eq. (A.1) Eq. (A.2)
succeed.

S (fxg)=F"9) -5 (), (A1)
and

$(f xg) =5(g)- (/) (A.2)
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A.3 Discrete FFT convolution in multidimension

As shown from Theorem 2, the point-wise multiplication in 1D can be dealt with
in either Fourier space or inverse Fourier space. In multidimension convolution, the
DFT is individually implemented for each direction. Thus either of two forms can be
used for each dimension, and the combinations along directions are possible.

Theorem 3. Let f and g be two 3D vectors, the convolution of the two is defined as
f*g. Let § denote the Fourier transform matriz for 1D vector, and F~* denote the
inverse Fourier transform matriz. The following equation succeed:

57 @8, @8, (vee(f *g)) = F7 3§ @F;" (vee(g)) - 527 @ F, @ §3 (vee(f)). (A3)

where vec() is the vector operation of 3D wvector, ® is Kronecker product (see next
section), and sw can be taken as 1 (Fourier transform), or —1 (inverse Fourier
transform,).

A.4 Kronecker product

If Fis an m x n matrix and G is a p X ¢ matrix, then the Kronecker product F'® G
is the mp x ng block matrix reads as:

FLIG FLQG Ce Fl,nG
r ® G = F2,.1G F2,2G :
: . : Fm—l,nG
FpiG ... FunG  Fn.G
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boundary conditions

B.1 The fast spectral Poisson Solver in 1D

The basic real trigonometric transforms are essential to derive the fast 1D spectral
Poisson solver.

Real trigonometric transform:
The (type-I) discrete sine transform (DST):

y(l:m—1) =DST(z(1:m —1)),

m—1 k 7T
Y = Z Sln ]
The DCT:

y(0:m)=DCT(z(0: m)),
m—1 .
Tg kjm (—=1)*z,,
— ? -+ jgl COS(W)IJ‘ + T
The type-II discrete sine transform (DST-II):

y(1:m) = DST-II(z(1 : m)),

—m
Y = Z sin( j )xj.
The DCT-II:

(O-m—l)—DCTH( 0:m—1)),

2j+1
yk_Zcos )j.

The complexity of these four real trigonometric transforms is expressed as O(m?).
These trigonometric transforms can be obtained through Table B.1 and DFT by the
way of the following relation:

DFT,, = C,, — iS,,
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where " "
2rky . 2mkj

), (Sl =sin(T0),
As known, the calculation of DFT, C,,, S,, can be accelerated by FFT. Therefore
the complexity of the real trigonometric transform can reduce to O(5mlog, m) when
m is the power of two, even reduce to O(2.5mlog, m) if a real FFT is performed. The
detailed introduction about the trigonometric transform and part of the following 1D
fast Poisson solver can be found in [87].

[Crnlij = cos(

Table B.1: Matrix specification of trigonometric transforms.

Transform Matrix Specification
DST y(1:m—1)=8,1:m—-1,1:m—-1)z(1:m—1)
DCT  |y(0:m) = Con(0:m,0:m) [x9/2 | z(1:m —1) | ,,/2]"
DST-II y(1:m) = Syn(l:m,1:2:2m —1) z(1 : m)
DCT-II |y(0:m—1)=Cyn(0:m—1,1:2:2m—1) z(0: m —1)

x m is the power of two, the exact calculation can be different and accelerated by
different specific routines.

Poisson’s equation in 1D reads as:

—digc(f) =F(z), a<az<b. (B.1)

with five possible boundary conditions:

Dirichlet-Dirichlet:  U(a) = o, U(b) = B,

Dirichlet-Neumann: U(a) = o, U'(b) = 3,
Neumann-Dirichlet: U’(a) = o, U(b) = 3,
Neumann-Neumann: U'(a) = o, U'(b) = 3,
Periodic: U(a) = U(D).

The second order central-difference is performed to discretize the 1D continuous
Poisson’s equation as:

u(z-1) — 2u(r;) + u(r4)

h2 = fl7
a=Tog< - <27 <+ <z, =>. In the matrix form:
Thu=f. (B.2)
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Theorem 1 (Spectral Decomposition, C. Van Loan, 1992). If we define the discrete
Laplace matrices for the above five boundary conditions as L, there exists an invertible
matriz V' for each boundary condition, such that

VTILV = A,
here A is the spectral matriz, which is diagonal.

D-D: V=DST, Aj;=4sin*(Z
D-N: V=DST-II, Aj; =4sin?(Z"
N-D: V=DCT-II, Aj; = 4sin?(221
N-N: V=DCT, Aj; =4sin*(Z
P: V=IDFT, A\j; = 4sin’(4

where D stands for Dirichlet, N stands for Neumann and P stands for periodic for
the boundary conditions.

By Theorem 1, the spectral Poisson solver sketch can be directly demonstrated as
the following statement into two classes:

Class 1: L is a full rank matrix. We solve the linear system Lu = f with the
factorization of L as:

Lu = f
VVIILVV T = f
AVy = VIf
Vi = AWV
i = A'f

u = VATV

The result of the inverse trigonometric transform V! of f and u signed as f and .
The D-D, D-N, N-D boundary conditions belong to Class 1.

Class 2: L is a rank deficient matrix. In this case, A is not invertible which
suppresses the solving procedure as: Agy =0

A_lf - U.

where,
f=Vf a=Vv1tu
The N-N and periodic boundary conditions belong to Class 2.

For N-N boundary conditions, we see that the eigenvector corresponding to Agg
is fulfilled with elements 1 inside the matrix form of DCT. If we define the A 5=0
instead of the infinity in A~!, we could solve the problem further like Class 1. The
derived solution is only a constant distance shift from the true solution.
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For periodic boundary conditions, we solve it in the N-N way, only define the Ay 0=
0 instead of the infinity at A; (1), we may not achieve the demanded solution since this
automatically periodic setting does not match with reality during the simulation. In
practice, we can extend the r.h.s vector f, to:

P (—fﬁo_: V 1)) " (f(oo: n)> i =

in order to meet the symmetry property in real situations.

B.2 3D fast spectral Poisson Solver for various
mixed boundary conditions

Poisson’s equation in 3D reads as:

We consider a cubic domain in x, y, 2z axes with various mixed boundary conditions in
each axis as: BC_X,,(2,y, 2), BC_Xiown(z,y, 2), BO_Y,,(2,y, 2), BC_Ygoun(,y, 2),
BC_Z,y(z,y, 2), BC_Zjon(z,y, 2), six surface functions for the proper boundary
conditions, which may be D-D, D-N, N-D, N-N, periodic for each axis.

Suppose we discretize the computational domain with N,, N,, N, mesh points,
equilibrium for each axis, the stepsizes are hy, h,, h., respectively. As in the 1D
situation, we use the 3D spectral decomposition by the Kronecker product form to
express the discrete Poisson’s equation:

1 1

1
(ﬁ(INZ ® Iy, ® Ly,) + E(INZ ® Ly, ® In,) + ﬁ(LNZ ® In, ® In,))Upe = foe
x )

z
fre is the r.h.s function, which has been updated by the six surface boundary condition
functions in the same way as the 1D situation.

The linear system of equations can be simply written as:

1 1 1
(I@I@ﬁAx+I®ﬁAy®I+ﬁAZ®I®I)-(X/;1®Vy*1®1/;1)ubc=
x Yy z

VoV, @ Vo) fre

where I is the unit matrix, A,, . are the eigenvalue matrices. (V' @ V,”' @ V')
is the Fourier-type transforms in 3D. In the “Fourier space”, denoted as frequency
space, we have:

. 1 i
U .. — <
be i,5,k N N A N Apr bei,5,k
he TR T R2

Therefore the solution reads as:

Upeijh = (Vo @ Vy @ Vi)l k-
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B.2 3D fast spectral Poisson Solver for various mixed boundary conditions

f f f
BCk w Inverse b
Transform
V7 1
AV 1
V; 1 BCy o
Transform
@) v,
Vy
BCs V, .
physical space frequency space spectrum

Figure B.1: A sketch of the fast spectral Poisson solver.

The discrete 3D r.h.s. vector f is transformed by boundary conditions BC to fp.,
which can be extended to f., as a new f. if necessary (for periodic boundary con-
ditions). Then inverse transforms V7', V7!, V7! are performed in each dimension

to obtain fbc in frequency space. The frequency solution . is derived by eigenvalue
matrix A with the corresponding BC'y. The final solution u is achieved by the trans-
forms V,, V,, V., in each dimension from frequency space to physical space and the
boundary conditions.

This Poisson solver provides a total of 5% possible boundary conditions which may
reflect the fact of the space charge effect closer. The Poisson solver utilizes a direct
strategy to resolve the solution. This means the error only derives from the discrete
representation and round-off error. This solver provides more opportunity to study
image charge as well as simulation diagnostics.
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C Further numerical verification of the
novel efficient method by examples

C.1 Simulate an ideal uniform charged sphere
bunch

The bunch parameters of Test Case 1 are the same as their initial values in Section 6.1.
The 7, values (Figure C.1), and ng values (Figure C.2) are plotted in two cutting
planes of the computational domain: (:, N,/2,:) planes (left column), (:,:, N,/2)
planes (right column). The different GF integrals are recognized as GF integrals
(top row), efficient IGF integrals (middle row), IGF integrals (bottom row).

For Test Case 1, n,, (also ng) is plotted with the same color scaling for comparison
among GF, efficient IGF and IGF integrals. As expected, the difference between
efficient IGF and IGF integrals disappears almost entirely, as shown in the figures.

The GF integrals solve larger errors of potential in the bunch area. Outside the
bunch area, 7, agrees among the three different integrals. In contrast to ng, the GF
integrals represent slightly weaker electric fields at the boundary of the bunch.

C.2 Simulate a Gaussian distributed charged
bunch

The bunch parameters of Test Case 3 are the same as their initial values in Section 6.1.
The 7, values (Figure C.3), and ng values (Figure C.4) are plotted in two cutting
planes of the computational domain: (:, N,/2,:) planes (left column), (:,:, N,/2)
planes (right column). The different GF integrals are recognized as GF integrals
(top row), efficient IGF integrals (middle row), IGF integrals (bottom row).

For Test Case 3, 1, (also ng) cannot be plotted with the same color scaling for GF
integrals since the magnitude of GF integrals differs to the other two integrals. As
expected, the figures between efficient IGF and IGF integrals are nearly the same.

The GF integrals solve larger errors of potential for the whole domain. The trend
of n, (as well as ng) is similar for all integrals from the figures. However, the two IGF
methods achieve an improvement of one magnitude. The largest 7, values locate in
the center of the bunch area, whereas the largest ng values locate in a circular area
around this center.
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Figure C.1: Comparison of 7,(i, j, k) of Test Case 1: at plane (:, N,/2,:) (left) and (:,:
,N./2) (right) for the GF integral (a) (b), efficient IGF (c) (d), IGF (e) (f).
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Figure C.2: Comparison of 7g(i, j, k) of Test Case 1: at plane (:, N,/2,:) (left) and (:,:

,N./2) (right) for the GF integral (a) (b), efficient IGF (c) (d), IGF (e) (f).

123



C Further numerical verification of the novel efficient method by examples

%103 %10

-2.0e-04
-4.0e-04
-6.0e-04
x
-8.0e-04
-1.0e-03 ;
-1.2e-03 -
1.4e-03
4

x10°% y x10°

(a) (b)

%103 %10

-5.0e-05
-1.0e-04
x
-1.5e-04
-2.0e-04
-2.5e-04 -
4

x10°% y %10

() (d)

%103 %103

-5.0e-05
-1.0e-04
x
-1.5e-04
-2.0e-04
-2.5e-04 -
2 4

-2.0e-04

-4.0e-04

-6.0e-04

-8.0e-04

-1.0e-03

-1.2e-03

-1.4e-03

-4 -2 0 2
z

-5.0e-05
-1.0e-04
-1.5e-04
-2.0e-04

-2.5e-04

-4 -2 0 2
z

-5.0e-05
-1.0e-04
-1.5e-04
-2.0e-04

-2.5e-04

-4 -2 0 -4 -2 0 2 4
z

x10°% y %10

(e) (f)

Figure C.3: Comparison of n,(i,j,k) of Test Case 3: at plane (:, N,/2,:) (left) and (:,:
, N, /2) (right) for the GF integral (a) (b), efficient IGF (c) (d), IGF (e) (f). The error is
very small for all three methods. Yet, the two IGF methods still achieve an improvement
of one magnitude.
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Figure C.4: Comparison of ng(4, j, k) of Test Case 3: at plane (:, N,/2,:) (left) and (:,:
,N./2) (right) for the GF integral (a) (b), efficient IGF (c) (d), IGF (e) (f). The error is
very small for all three methods. Yet, the two IGF methods still achieve an improvement
of one magnitude.
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