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Abstract 

This dissertation focuses on the development of new and convenient synthetic approaches 

for important or new aromatic heterocycles, which are potential for drug discovery and 

advanced materials. Based on selective Pd(0)-catalyzed reactions of easily accessible starting 

materials, the precursors with desired active centers were set up for further domino reactions 

towards target molecules. This strategy was successfully applied in the development of new 

synthetic methods for chromeno[3,4-b]pyrrol-4(3H)-ones, indolo[1,2-f]phenanthridines, 

azaindolo[1,2-f]phenanthridines, and naphtho-fused heterocycles. Furthermore, a convenient 

synthesis of fluorinated pyrazoles based on one-pot domino reaction of dianinons was 

developed. 

 

 

Zusammenfassung 

Diese Dissertation beschäftigt sich mit der Entwicklung neuer und zugleich einfacher 

synthetischer Zugänge von wichtigen bzw. neuen aromatischen Heterozyklen, welche von 

Interesse für die Entwicklung neuer Wirkstoffe oder Materialien sind. Mittels selektiver Pd(0) 

katalysierter Reaktionen von einfach zugänglichen Startmaterialien wurden Vorstufen 

synthetisiert, welche im Anschluss durch Domino-Reaktionen zu den entsprechenden 

Zielprodukten umgesetzt wurden. Diese Strategie wurde erfolgreich angewendet zur 

Darstellung von Chromeno[3,4-b]pyrrol-4(3H)-onen, Indolo[1,2-f]phenanthridinen, 

Azaindolo[1,2-f]phenanthridinen und Naphthalin-annellierten Heterozyklen. Außerdem wurde 

ein praktischer Zugang zu fluorierten Pyrazolen, basierend auf einer Ein-Topf-Domino-

Reaktion entwickelt.  
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1. General introduction 

1.1. The importance of heterocycles 

Heterocyclic molecules could be figuratively compared to jewelry rings ornamented with 

gemstones.[1] By introducing one or more heteroatoms to an aromatic carbocyclic system, both 

chemical and physical properties change significantly, making the ring system more “precious”. 

For example, pyridine, formed by replacing one CH unit in benzene by one nitrogen, could act 

as a base or nucleophile while the α-hydrogens could undergo substitution by strong base such 

as sodium amide. Another example is pyrrole, an electron-rich five-membered ring heterocycle, 

formed by replacing two CH units in benzene by one NH unit, which is prone to electrophilic 

reactions, or tend to be oxidized more easily. In addition, heteroatom that possesses one or more 

unshared electron pairs, as of pyridine, imidazole, or pyrazole, can take part in weak interactions 

such as hydrogen bonds or form complexes with metal ions, playing crucial roles in human 

biological systems. Although activities of aromatic systems are improved by incorporation of 

heteroatoms, the thermal stability is still retained in molecules of heteroaromatic systems.[1][2]  
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Figure 1.1: Heterocycles in hydrogen-bonding interaction and complex with metal cation 

Aromatic heterocycles are ubiquitous in life and society and found crucial applications in 

medicine, agriculture, and technology. From natural sources, a great number of heteroaromatic 

compounds have been discovered and many of them have been used as drugs or lead 

compounds for drug discovery. For instance, extracts from the bark of cinchona tree have been 

used to prevent or cure malaria since 1632. Later studies showed that the main active component 

of them is quinine, a quinoline derivative.[3] Quinine then was recommended as a first-line 

treatment for malaria by WHO until 2006. Moreover, synthetic aromatic heterocycles also lead 

to the discovery of many new drugs. For example, phenazone, known as an anti-inflammatory 

and antipyretic drug, is a pyrazole derivative first synthesized by Lugwig Knorr in 1887.[4]  
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Figure 1.2: Aromatic heterocycles as drugs 

Furthermore, synthetic aromatic polyheterocycles are essential components in developing 

advanced materials. They are applied in numerous types of light-emitting diodes (OLEDs), 

organic photovoltaic devices (OPVs), and organic field effect transistors (OFETs).[5] 

Heteroatoms help improving stability, charge mobility, and molecular packing of aromatic 

heterocycles over corresponding polycyclic aromatic hydrocarbons (PAHs).[6] For example, 

pentacene, a linear PAH consisting of five fused benzene rings, known as an organic 

semiconductor with high charge mobility, is vulnerable to oxidation, which slowly degrades 

under air and light exposure; therefore, its applications is practically limited.[7] By introducing 

heteroatoms to pentacene systems, the stability of obtained derivatives is improved as well as 

other properties such as charge mobility, solubility, or molecular packing. Numerous pentacene 

derivatives have been discovered by this strategy which possess potential electronic, 

photophysical, and optical properties.[8] Moreover, heteroaromatic compounds can form 

organometallic chelates with remarkable charge transport and luminescent properties. Among 

them, Alq3 (tris(8-hydroxyquinolinato)aluminium), a common component of small molecule 

OLEDs, has been used as the emission and electron transport layers.[9] And Ir(ppy)3 

(Tris[2-phenylpyridinato-C2,N)iridium(III)), a green emitting complex, is used as the dopant in 

phosphorescent organic light-emitting diode (PHOLED).[10] 
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Figure 1.3: Aromatic heterocycles applied in organic materials 

Due to their gravity in modern life, extensive effort has been devoted to the development 

of synthetic methods and characteristic studies of aromatic heterocycles. Recently, synthetic 

methods of heterocyclic and polyheterocyclic compounds have been blooming in the light of 

transition metal-catalyzed reactions.[11] Among them, palladium(0) – catalyzed reactions have 

been well-studied and found important practical applications.[12–14]  

1.2. Palladium(0) catalytic cycle  

The chemistry of palladium(0)-catalyzed reaction was incubated in the late 1960s and has 

been growing rapidly since then. Because of its practical importance to human life, in 2010, the 

Nobel Prize in chemistry was dedicated to professors Heck, Negishi, and Suzuki for their 

contribution to the development in the field.[15] 

In general, a palladium(0)-catalyzed reaction is a catalytic cycle that includes 3 basic stages: 

oxidative addition, reactions of Pd(II) complexes with appropriate nucleophiles, and reductive 

elimination. Firstly, the catalytic cycle starts with a Pd(0) species that is oxidized by substrates 

to generate a Pd(II) complex, which is called oxidative addition (OA). The new generated Pd(II) 

species now behaves as an electrophile. Depending on the nature of nucleophiles, different 

processes can take place, such as ligand substitution, transmetalation, or migratory insertion. 

Finally, expected products are formed by reductive elimination (RE) of Pd(II) complexes, along 
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with the regeneration of [Pd(0)] catalyst to start a new catalytic cycle. In the case of  migratory 

insertion, the product and a hydridopalladium(II) halide complex are obtained after β-hydride 

elimination, then the hydridopalladium(II) halide complex  undergoes reductive elimination to 

recreate the [Pd(0)] catalyst.[13,16] 

 

Figure 1.4: A general Pd(0)-catalytic cycle 

1.2.1. Oxidative addition and reductive elimination 

Oxidative addition (OA) and reductive elimination (RE), which are microscopic reverse, 

are involved in all Pd(0)-catalytic cycles. 

 

Scheme 1.1: Oxidative addition and reductive elimination 

The process above describes the oxidative addition of R-X to a Pd(0) center. After OA, both 

coordination number and oxidative state of metal increase by 2 units. According to the 

18-electron rule, Pd(0) with d10 configuration requires 8 more electrons to reach the 

configuration of Xe, thus the coordination number of Pd(0) is four. For the oxidative addition 

to occur, the metal center must have a lone pair of electrons and a vacant site, that means 

16-electron or lower complex is required. For instance, a typical Pd(0) catalyst is Pd(PPh3)4; 

before OA can be performed, at least one ligand (PPh3) must leave to activate the catalyst. As 

studies have shown, a small amount of Pd(PPh3)2 was found in equilibrium with Pd(PPh3)3. The 

two-coordinated species is more reactive than the three-coordinated complex and plays the main 
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role in oxidative addition. The highly active 14-electron Pd(0) species then performs OA with 

the substrate, Pd(0) is oxidized to Pd(II) and the coordination number increases by two units, 

resulting in a 16-electron square-planar Pd(II) complex, then isomerizes to the more stable trans 

complex. Oxidative addition can undergo through 4 types of mechanisms: concerted, 

substitution SN2, radical, or ionic mechanisms. In the case of aryl or vinyl halide (pseudohalide), 

the mechanism oxidative addition to Pd(0) is widely accepted as concerted pathway for non-

polar substrates or substitution via SNAr for polar substrates.[16,17] 

 

Scheme 1.2: Mechanisms of oxidative addition 

Noteworthy, when the substrates contain two or more reactive centers for OA, controlling 

the selectivity of OA is very important to obtained desired products. Generally, the rate of OA 

for different halogens or pseudohalogens follows this trend: CAr-I > CAr-OTf > CAr- Br >> 

CAr-Cl >>> CAr-F. CAr-F bonds, on the other hand, is relatively inert for OA. With a same 

halogen, the electron density and steric effect of substituents around C-X decide the selectivity 

of the reaction. OA favors less sterically hindered and more electron-positive carbon. For 

example, by utilizing chemo-selectivity or site-selectivity on 2,3-dihalogenopyridine, different 

products of cross-coupling reactions can be prepared depending on the synthetic strategy. Since 

CAr-Br is more reactive than CAr-Cl, the first OA takes place at the 3rd position of 

3-bromo-2-chloropyridine. However, with 2,3-dibromopyridine, the first OA takes place at the 

2nd position which is more electron-positive.[18] Another demonstration is 

5,7-dibromo-8-(trifluoromethylsulfonyloxy)quinolone. In this molecule, there are three 

reactive centers for cross-coupling reactions, for example, Suzuki-Miyaura reaction. Evaluating 

these three reactive centers, Br5 and Br7 are more reactive than OTf and Br5 is less sterically 

hindered than Br7. Therefore, the reactivity order for OA is: C-Br5, C-Br7, and finally C-OTf. 

[19] (figure 1.5) 
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Figure 1.5: Selectivity of oxidative addition on substrates with many reactive centers 

Reductive elimination is the reverse of oxidative addition to regenerate Pd(0) catalyst from 

Pd(II) complex, and in most cases, forms new bond in the product structure. Since RE is the 

microscopic reverse of OA, RE can run through those mechanisms as OA, however, the most 

important one is concerted pathway. Moreover, cis-coordination of the groups being eliminated 

is required for RE. Therefore, in order for RE to perform, the trans Pd(II) complex must 

isomerize to cis configuration. If a β-H is present in the molecular, β-hydride elimination may 

compete with reductive elimination. 

Reductive eliminations which involve H, such as H-H, H-R, H-COR, are particularly fast. 

Reductive eliminations involving C(sp2)-C(sp2) bond formation usually take part in 

cross-coupling reactions such as Suzuki-Miyaura, Negishi, Stills, Kumada, Hiyama couplings. 

Sonogashira coupling, on the other hand, produces C(sp)-C(sp2) bond. Representative examples 

for reductive elimination involving C(sp2)-N or C(sp2)-O bond formation are those of 

Buchwald-Hartwig reaction.[20]  

1.2.2. Reactions of Pd(II) complexes 

As mentioned earlier, depending on the nature of nucleophiles interacting with the Pd(II) 

complex, the catalytic cycle can run in different directions. Most important are ligand 

substitution, demonstrated in Buchwald-Hartwig reaction, transmetalation in cross-coupling 

reactions involving an organometallic reagent as the nucleophile, and migratory insertion in 

Heck-type reactions or carbene insertion. Those transformations and their demonstration in 

reactions utilized in this dissertation will be the main concern of this section.   
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Ligand substitution: Buchwald-Hartwig reaction  

Ligand exchange is an important process for cross-coupling reactions involving 

C-heteroatom bond formations such as C-N, C-S, C-O, C-P bonds.[21] One of the most important 

reactions is Buchwald-Hartwig amination, in which amines are employed as nucleophiles.[22] 

 

Scheme 1.3: Buchwald-Hartwig reaction 

As described previously, the four-coordinated Pd(II) complex formed by OA is a 16-electron 

square-planar complex. Ligand substitution of Pd(II) complexes can occur via two mechanisms: 

associative pathway or dissociative pathway. In associative pathway, nucleophile forms a 

penta-coordinated square-pyramidal Pd(II) complex by σ-bonding with empty pz orbital of Pd. 

The 18-electron square-pyramidal complex then rearranges the configuration in which the 

leaving ligand (usually X) is being on the top of the pyramid via a trigonal bipyramid 

intermediate. Finally, the leaving ligand disassociates to form a new square-planar Pd(II) 

complex. This process can be considered as an analog of SN2 reaction, in which Pd(II) center 

is a soft electrophile. However, when the attack of nucleophile is sterically hindered or the 

formation of penta-coordinated square-pyramidal complex is not favored by energy, ligand 

exchange prefers via dissociative pathway. In this mechanism, the Pd-X bond is fully broken 

to form a T-shaped intermediate, then the nucleophile attacks to the empty site left by X to form 

the new square-planar complex. The dissociative pathway is similar to SN1 reaction. There is 

no change in oxidation state at the Pd center through ligand substitution. 
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Scheme 1.4: Mechanisms of ligand exchange 

Transmetalation: Suzuki and Sonogashira reaction 

 

Scheme 1.5: Transmetalation 

Transmetalation is an irreversible process involving the transfer of ligands from one metal 

to another. Similar to ligand substitution, there is no change of oxidation state of the metal 

centers. In this process, Pd(II) is an electrophilic center while R2-M bond is a nucleophile. 

Therefore, increasing the nucleophilicity of R2 and electrophilicity of Pd(II) center accelerate 

transmetalation. For transmetalation to proceed, Pd must be more electronegative than M. For 

example, Pd(II) complexes participate in transmetalation with organometallic compounds of 

metals such as Cu, B, Si, Zn, Al, Sn. Cross-coupling reactions involving transmetalation of 

different organometallic reagents with Pd(II) complexes are summarized in figure 1.6.[23] 
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Figure 1.6: Cross-coupling reaction involving transmetalation 

Among them, Suzuki-Miyaura cross-coupling reaction is one of the most popular methods 

for constructing C(sp2)-C(sp2) bonds.[24] This method employs organoborons as the coupling 

partner, which are easily accessible, air and moisture stable, less toxic, and safer for 

environment than other organometallic compounds such as organostannane or organozinc. 

Since the C-B bond is considered to be highly covalent, R2BX2 is a weak nucleophilic reagent. 

Hence, to promote transmetalation, adding a nucleophile or base is often required to increase 

the nucleophilicity of B-R2. In fact, many studies show that, without the presence of base, 

organoboron compounds do not undergo transmetalation. A nucleophilic base can participate 

in the reaction by two ways described in scheme 1.6. Following path A, organoboron compound 

is activated by adding one base to the boron center, which is more readily to undergo 

transmetalation. In path B, the nucleophilic base replaces X of Pd(II) complex and transforms 

it to a new Pd(II) complex that is capable of coordinating to the boron center of organoborane. 

The product of transmetalation then arranges to cis configuration for reductive elimination, 

affording the product and regenerating Pd(0) catalyst. 

 

Scheme 1.6: Roles of base in Suzuki-Miyaura reaction 

While Suzuki-Miyaura reaction is widely used for constructing C(sp2)-C(sp2) bonds, 

Sonogashira reaction is the most convenient method for forming C(sp2)-C(sp) bonds.[14,25] The 

reaction utilizes organocopper compounds as the coupling partner, generated in situ from 
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terminal alkyne and CuX in the presence of an amine base. In this reaction, CuX is used as 

catalytic amount, integrating with Pd cycle as shown in scheme 1.7. 

 

Scheme 1.7: Mechanism of Sonogashira reaction 

Insertion and elimination: Heck-type reactions and cross-coupling reactions of 

N-tosylhydrazone 

In organometallic chemistry, migratory insertion is an inserting process of a ligand to metal 

complexes which results in bond formation of it with another ligand on the metal complex. By 

that definition, migratory insertion of a ligand to Pd(II) complex can take place commonly in 

two main ways: 1,1- and 1,2-migratory insertion. As depicted in scheme 1.8, 1,1-migratory 

insertion results in bond formation of R with ligand X-Y at the same position with Pd while 

1,2- migratory insertion gives bond at the neighboring atom.  

 

Scheme 1.8: Migratory insertions 
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Ligands that have both donor and acceptor centers at the same atom usually undergo 

1,1-migratory insertion. For example, CO gives 1,1-migratory insertion, in which both Pd and 

R1 end up attached to carbon of CO.[26] 

 

Scheme 1.9: Migratory insertion of CO 

 

Scheme 1.10: Migratory insertion of carbene 

Another important example is the migratory insertion of carbenes R2C, which possess a lone 

pair electron that can act as a σ-donor and an empty orbital that can act as an acceptor at carbon 

atom. Recently, the coupling reactions of aryl halide and diazo compound to synthesize 

substituted olefins, in which carbene is generated in situ, have been attracting a lot of 

attention.[27–29] Among them, cross-coupling reactions utilizing N-tosylhydrazone as the 

coupling partner have been prove to be efficient to synthesized substituted olefins.[30,31] In this 

reaction, under the high temperature and in the presence of a base, such as LiOtBu, a carbene 

is generated in situ from N-tosylhydrazones. 

 

 

Scheme 1.11: Cross-coupling reaction of N-tosylhydrazones involving carbene 

On the other hand, 1,2-migratory insertion takes place when ƞ2-ligands, such as alkenes, 

react with Pd(II) complexes. A typical example of 1,2-migratory insertion is the insertion of 

double bond to Pd(II) complexes, an important step in Heck-Mizoroki cross-coupling 

reaction.[32] 
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Scheme 1.12: Heck-Mizoroki reaction 

Migratory insertion in Heck-Mizoroki reactions can undergo via three mechanisms: cationic, 

neutral, or anionic pathways. Cationic mechanism takes place when Heck reactions of aryl 

triflates or aryl halides are catalyzed by palladium-diphosphine in the presence of Ag(I) or Tl(I) 

salts. Dissociation of OTf or X anion leaves Pd(II) center a positive charge and a vacant site, 

that is attached by the double bond of an alkene. Then migratory insertion of double bond to 

PdAr proceeds, forming new Pd(II) complex. During migratory insertion, both Pd-P bonds stay 

intact so the enantioselectivity of the product can be achieved by utilizing chiral diphosphine 

ligands. 

 

Scheme 1.13: Cationic mechanism of 1,2-migratory insertion 

Regularly, without the presence of Ag(I) or Tl(I) salt, migratory insertion of alkenes is 

considered undergoing neutral pathway. This mechanism involves the dissociation of one 

neutral ligand (phosphine ligand) to create a vacant site for the coordination of double bond 

with Pd(II) center, leading to 1,2-migratory insertion of C=C to Ar-Pd.  

 

Scheme 1.14: Neutral mechanism of 1,2-migratory insertion 

Recent studies show that the combination of phosphine ligands and Pd(OAc)2 as precatalyst 

may generate an anionic species [Pd(L)2OAc]- for oxidative addition of ArX, in which acetate 

anion act as a bystander ligand. The product of oxidative addition is believed existing as a 

penta-coordinated Pd(II) complex, which is short-live and easy to dissociate X- anion to form 

neutral trans-ArPd(OAc)L2 as the key reactive intermediate. The reaction of this Pd(II) species 
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is the rate-determining step of the Heck reactions underwent anionic pathway. Acetate ligand 

facilitates the dissociation of one phosphine ligand because of its bidentate nature. 

 

Scheme 1.15: Anionic mechanism of 1,2-migratory insertion 

In all three mechanisms, product of insertion is syn-addition of alkene to PdR. Regiochemistry 

depends on the mechanism of insertion. Regioselectivity is under the influence of steric factor 

when the reaction passes via neutral Pd complexes, which Ar prefer to attach to less hindered 

carbon. On the other hand, regioselectivity is governed by electronic factor in mechanisms 

involving cationic Pd complexes, which Ar favorably bonds with the less electron-density 

carbon.  

The reverse process of 1,2-migratory insertion, β-hydride elimination, is a process in which 

a metal alkyl is converted to a hydro metal alkene complex. In order for β-hydride elimination 

to process, a vacant site on Pd that is cis to the alkyl group is required, and Pd-C-C-H must 

arrange on a coplanar conformation to bring β-H atom close enough to Pd to form an agostic 

interaction. The Heck reaction is stereoselective for E olefin because the transition state of it is 

more favored by energy. In addition, Z-configurated olefin, which is the minor product, can 

react with H-Pd to form thermodynamically more stable E-isomer. 

 

Scheme 1.16: β-hydride elimination 

β-Hydride elimination produces olefin and hydridopalladium(II) halide complex, which 

undergoes reductive elimination to regenerate Pd(0) catalyst. 

An analogue of Heck reaction is the direct arylation of aryl halides and arenes without 

pre-functionalized, affording biaryl compounds. This reaction has many advantages over 

traditional cross-coupling reactions such as utilizing unactivated arenes instead of 

pre-functionalized arenes for transmetalation.[33] 
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Scheme 1.17: C-H arylation vs traditional cross-coupling reactions 

The reaction of Ar[Pd]X with arenes can be considered as electrophilic aromatic substitution 

SEAr, Heck-like, or concerted metalation-deprotonation (CMD). Studies have supported that it 

is reasonable to describe direct arylation of electron-rich, π-nucleophilic heteroarenes as SEAr 

and that of electron-deficient benzenes as CMD. 

 

Scheme 1.18: Mechanisms C-H arylation 

Owning to the fact that there might be more than one C-H site in the structure of arene, more 

than one biaryl products could be formed. In general, considering CMD pathway, the more 

acidic the C-H bond, the more active it is in C-H activation reaction. On the other hand, the 

Heck-like pathway favors the more stable intermediate, in which the positive charge is more 

stabilized. Moreover, a strategy to achieve selectivity is to employ directing groups. Normally, 

directing groups can coordinate to the Pd center, therefore limit it to a certain geometry, which 

can selectively reach to the desired C-H site. For example, ester, amide, carbamate, nitro can 

be used as directing groups, in which the ortho C-H to the directing group is usually the reacting 

site. After the reaction, directing groups can be removed or transform to other functional 

groups.[34] 
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Furthermore, intramolecular direct arylation is often utilized in constructing aromatic 

polyheterocyles due to its convenience, which is important in developing synthetic methods in 

this dissertation.[35]  

 

Scheme 1.19: Intramolecular direct arylation 

1.2.3. Effects of ligands: Phosphine ligands 

Ligands are usually used in combination with Pd catalyst to achieve selectivity and 

reactivity. In oxidative addition, Pd center of Pd(0) complexes acts as a nucleophile. Strong 

σ-donating ligands such as alkyl phosphines and carbenes increase electron density at the Pd(0) 

center; hence, facilitate oxidative addition. On the other hand, strong π-acceptor ligands such 

as CO, however, slow the process down. Bulky ligands help pushing the equilibrium of Pd(0) 

complexes to the two-coordinated 14-electron complex, or in some cases, generating 

monoligated 12-electron complexes, which are highly active for OA. Bulky ligands also force 

other ligands close together to facilitate reductive elimination. The Pd center of Pd(II) 

complexes, on the other hand, is electrophilic and should be sterically accessible for the 

incoming nucleophiles. Therefore, controlling the electronic and steric properties of ligands is 

crucial for optimizing reaction conditions. In this dissertation, phosphine ligands were mainly 

employed because of their availability and many advantages. 

Phosphine ligands R3P, known as σ-donating and weak π-accepting ligands (d to σ* of 

P-R), are widely used in Pd(0)-catalyzed cross-coupling reaction because they could be 

conveniently synthesized in series. Furthermore, their electronic and steric properties could be 

modified systematically and predictably by changing R. In addition, phosphines normally exist 

in crystal form, are air and thermal stable. Therefore, they are easy to handle and stable under 

a wide range of reaction conditions. Notably, in 1998, Fu reported a series of bulky, 

electron-rich phosphines, such as P(tBu)3 and PCy3, used in combination with Pd(0) 

precatalysts to produce biaryls from unactivated chloroarenes and arylboronic acid in good 

yield.[36] At about the same time, Buchwald also reported comparable results with the discovery 

of dialkyl biaryl phosphine ligands.[37] Those ligands have been applying widely in 

Pd(0)-catalyzed C-C, C-N, C-O bond-forming reactions.[38] 
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Figure 1.7: Phosphine ligands 

Moreover, Beller showed that turnover numbers of Suzuki-Miyaura couplings of unactivated 

and deactivated chloroarenes could be achieved at 20000 when 

di-(1-adamanyl)-n-butylphosphine (cataCXium® A) is used as the ligand.[39] Bulky ligands are 

believed to promote the formation of highly active monoligated 12-electron Pd(0) catalyst.[40] 

In addition, diphosphines such as Ph2P(CH2)nPPh2, which are bidentate ligands, also play an 

important role in Pd-catalyzed reactions. This type of ligands force Pd(II) complexes to the cis 

arrangement which accelerate both OA and RE. Bite angle is an important parameter regarding 

bidentate ligands and easily modified combining with steric effect of substituents. Many studies 
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have shown that bidentate ligands with large bite angles have an impact on selectivity and 

reactivity of the reaction.[41] 

 

Figure 1.8: Diphosphine ligands 

1.3. Palladium(0)-catalyzed domino reactions in constructing important heterocycles 

Among synthetic approaches, methods that involve one-pot multistep reactions have been 

proved to be effective, in which two or more reactions are carried out continuously without 

isolating the intermediates. One-pot reactions bring several advantages over stepwise reactions 

such as reduction in time, cost, and waste production. They help approaching complex 

structures via more effective and shorter pathways, which are favored in industrial applications. 

In particularly, if the reaction proceeds through many steps under the same reaction conditions 

without adding additional reagents, the terms domino, cascade, tandem, or sequential catalysis 

are used. Domino reactions can be classified as cationic, anionic, radical, pericyclic, transition 

metal catalyzed, or enzymatic domino reaction.[42] Benefiting from the advance of transition 

metal catalyzed reactions, especially Pd(0)-catalyzed reactions, a great number of 

Pd(0)-catalyzed domino or one-pot reactions have been developed, providing practical tools for 

construction of heteroaromatic systems.[43] Pd(0)-catalyzed domino reactions could be seen as 

continuous Pd(0) catalytic cycles promoted by a single catalytic system. Some notable 

examples will be discussed in following parts to demonstrate their utility. 

One of the most important class of compounds which is present widely in biologically 

active and naturally occurring compounds are indoles and indole-based structures.[44] In the 

past, indoles were prepared by Fisher synthesis from phenylhydrazine and aldehyde or ketone 



General Introduction 

19 

 

under acidic conditions. However, phenylhydrazine is very toxic, and the Fisher’s conditions 

are somehow harsh. Later a lot of modifications have been studied to improve Fisher 

synthesis,[45] such as Buchwald modification, in which involves Pd-catalyzed cross-coupling of 

aryl bromide and hydrazones.[46] 

 

Scheme 1.20: Approaches to the synthesis of indoles by Pd(0)-catalyzed domino reactions: 

Recently, many convenient methods based on Pd(0)-catalyzed domino reactions have been 

developed for the synthesis of indoles.[47] Among them, Larock’s method has proved to be 

superior (a, figure 1.9).[48] The domino reaction initiates by oxidative addition of 

2-halogenoaniline to form Pd(II) species, followed by regioselective insertion of alkyne to the 

Pd(II) center, and subsequent intramolecular palladium displacement by amino group, affording 

2,3-disubstituted indoles in good yields. A similar strategy starting 

from ortho-alkynyltrifluoroacetanilides and aryl halides was reported by Cacchi (d).[49]  The 

methodology was well demonstrated in synthesizing the complex structure of 

indolo[2,3-a]carbazole in a single step from 1,3-diaceylene precursor.[50] 
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Scheme 1.21: Synthesis of indolo[2,3-a]carbazoles by Cacchi 

Starting from ortho-alkynylhalogenoarenes, Ackermann has combined Buchwald-hartwig 

amination and intramolecular hydroamination to synthesize 2-substituted indoles with excellent 

yields. Moreover, ortho-alkynylhalogenoarenes are easily obtained by Sonogashira reaction of 

ortho-dihalogenoarenes and terminal alkynes (c).[51] Later, Ackemann has reported an 

improvement that started straightforward from ortho-dihalogenoarenes, terminal alkyenes, and 

amines in a one-pot three-component reaction.[52] 

 

Scheme 1.22: Synthesis of indoles by one-pot three-component reaction by Ackemann 

In addition, recently methods are also worth mentioning, for example, strategies that employ 

aryl and alkenyl C-N bond formation (b)[53] or subsequently C-C and C-N bond formation from 

imines and ortho-dihaloarenes (e).[54] 

Furthermore, an important class of compounds derived from indole ring is carbazoles, 

which are found in many natural alkaloids and some of them possess potential bioactivity.[55] 

Carbazoles can be synthesized efficiently by Pd(0)-catalyzed domino reaction, for instance, 

two-fold C-N bond formation by Buchwald-Hartwig reaction[56] or C-N and C-C bond 

formation by subsequent Buchwald-Hartwig and C-H arylation reactions.[57] 

 

Scheme 1.23: Approaches to the synthesis of carbazoles 
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1.4. The aim of dissertation 

Motivated by the importance of aromatic heterocycles, the aim of this dissertation is to 

develop new and convenient approaches for important or new aromatic heterocycles, mainly 

nitrogen-containing. Compounds targeted in this work are potential for drug discovery and 

advanced materials. Regarding biologically active compounds, the structures based on natural 

products, which possess highly therapeutic activity, and drugs or novel drug candidates will be 

explored. For discovering new organic material, aromatic polyheterocyclic compounds, which 

have been proved to be crucial in advanced materials, will be the spotlight.  

The synthetic methods developed for desired compounds are aiming to be convenient and 

practical. My strategy is based on the selectivity of Pd(0)-catalyzed reactions of easily 

accessible starting materials to set up the precursors with desired active centers for further 

domino reactions. The precursors then will be converted to target molecules by designed 

Pd(0)-catalyzed domino reactions. This strategy will be demonstrated throughout chapter 2 to 

chapter 4. Chapter 5 is about domino reactions of dianions for the synthesis of fluorinated 

compounds. 

In addition, selected synthesized compounds will be submitted to biological studies in 

collaboration with the group of Dr. Jamshed Iqbal (Centre for Advanced Drug Research, 

COMSATS Institute of Information Technology, Abbottabad, Pakistan). And compounds with 

potential application in developing advanced materials will be examined physical properties in 

collaboration with the group of Prof. Stefan Lochbrunner (Institut für Physik, Universität 

Rostock). 
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2. Synthesis of pyrrolocoumarins via palladium(0)-catalyzed 

domino C-N coupling/hydroamination reactions 

2.1.  Introduction 

Pyrrolocoumarin is a privileged scaffold formulated from coumarin moiety fused with a 

pyrrole unit which widely occurs in biologically active compounds. Notably, 

chromeno[3,4-b]pyrrol-4(3H)-one, recognized as the core structure in molecules of marine 

alkaloids ningalin B[58] and lamellarin,[59,60] exhibits potent pharmacological properties such as 

immunomodulatory activity, cytotoxicity,[60] and HIV-1 integrase inhibition.[61] Some of them 

are novel drug candidates or lead compounds for drug discovery. For example, synthetic 

modification of lamellarin D leads to a series of Topoisomerase 1 inhibitors.[62] 

 

 

Figure 2.1: Ningalin B and Lamellarin D derivatives 

The diversity of their bioactivities has motivated many researches to develop efficient 

synthetic routes for constructing the chromeno[3,4-b]pyrrol-4(3H)-one subunit. Generally, 

there are two main strategies for the synthesis of this unique scaffold.[63] Firstly, synthesis of 

chromeno[3,4-b]pyrrol-4(3H)-ones can be derived from regioselectively constructing 

functionalized pyrrole moiety, following by lactonizing to afford the desired structure. This 
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approach is effectively demonstrated in the works of Iwao.[64] The second approach originated 

from isoquinolines as starting materials.[65] Recently, synthesis of 

chromeno[3,4-b]pyrrol-4(3H)-ones starting from coumarins has attracted a lot of attention. For 

example, Langer group has reported a new approach to this scaffold by cyclocondensation 

reactions of 1,3-dicarbonyl compounds with 4-chloro-3-nitrocoumarin.[66] 

 

Scheme 2.1: Synthesis of chromeno[3,4-b]pyrrol-4(3H)-ones 

Moreover, catalytic hydroamination of alkynes has recently become a valuable synthetic 

tool in the synthesis of fused nitrogen-containing heterocycles. Several catalytic systems have 

been utilized for this type of cyclization such as palladium, gold, mercury, copper, zinc, 

rhodium, platinum, indium, and iridium salts.[67] Among them, Pd(II) has been proved its 

versatility. For example, Xu and co-workers reported an elegant approach to pyrrolocoumarins 

by Pd-catalyzed intramolecular hydroamination of acetylenic aminocoumarins obtained from 

4-chloro-3-nitrocoumarin.[68] Interestingly, Ackermann reported that the combination of 

Pd(0)-catalyzed Buchwald-Hartwig amination and intramolecular hydroamination of 

o-alkynylanilines with amines works harmoniously to form pyrrole-fused systems.[51,69] 

Considering this strategy, I believe that it is plausible to obtain the pyrrolocoumarin framework 

starting from a ortho-dihalogenated coumarin, following by mono-Sonogashira coupling 

reaction to obtain key intermediate o-alkynyl bromocoumarin. The key step then relies on 

forming fused-pyrrole ring via palladium catalyzed sequential C-N coupling/intramolecular 

hydroamination of o-alkynyl bromocoumarins with amines. After reviewing many reported 

synthetic approaches, I found that 3-bromo-4-(trifluoromethanesulfonyloxy)coumarin 2.3 



Palladium(0)-catalyzed Domino C-N Coupling/Hydroamination Reactions 

24 

 

would be the most suitable educt for synthesizing various analogues of pyrrolocoumarin 

(scheme 2.3). 

 

Scheme 2.2: Synthesis of chromeno[3,4-b]pyrrol-4(3H)-ones by hydroamination 

2.2. Synthesis of chromeno[3,4-b]pyrrol-4(3H)-ones 

Starting from commercially available 4-hydroxycoumarin 2.1, bromination was carried out 

in MeCN at 20 °C by using NBS, affording brominated product 2.2 after 45 minutes with 91% 

yield. 3-Bromo-4-hydroxycoumarin 2.2 was then easily transformed into its corresponding 

triflate 2.3 by using triflic anhydride in dry DCM.  Interestingly, the yield raised up from 55% 

to 80% by reducing the temperature to -20 °C compared to 0 °C of the originally published 

procedure (Scheme 2.3).[70] 

 

Scheme 2.3: Synthesis of 3-bromo-4-(trifluoromethanesulfonyloxy)coumarin. Conditions: i, 

NH4OAc, MeCN, 45 min, 20 °C. ii, 1 (1 equiv.), Tf2O (1.2 equiv.), Et3N (3 equiv.), 

CH2Cl2, -20 °C to 20 °C. 
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Then, the selective Sonogashira cross-coupling reaction of 

3-bromo-4-(trifluoromethanesulfonyloxy)coumarin 2.2 with phenylacetylene was studied as 

the model reaction. Since C-OTf is more favored than C-Br in Sonogashira reaction plus the 

C4 is more electron-positive than C3, the mono-coupling is expected at C4-OTf.  At the first 

attempt, the general procedure using Pd(PPh3)2Cl2/CuI in THF at room temperature (20 °C) 

was applied, but the result was disappointing with only 7% yield of isolated product yield (entry 

1, table 2.1). Only trace of product was detected when Pd(PPh3)4 was used as the catalyst (entry 

2 and 3, table 2.1). After studying various conditions, Pd(CH3CN)2Cl2 proved to be the best 

catalyst for this reaction so far. The reaction proceeded smoothly in NEt3/DMF (3:2) at room 

temperature catalyzed by 5% of Pd(CH3CN)2Cl2 and 10% CuI in 75% yield (entry 7, table 2.1). 

DMF must be added to overcome the low solubility of 2.3 in NEt3. Other attempts to raise the 

temperature or to change the catalyst resulted in poor yields.  

Table 2.1: Optimization for the synthesis of 2.4a 

 

No. 
Catalyst (5 mol%), 

CuI (10%) 
Base Solvent Time (h) Yield (%) 

1 Pd(PPh3)2Cl2 NEt3 THF 4 7 

2 Pd(PPh3)3 NEt3 THF 4 trace 

3 Pd(PPh3)4 NEt3 CH3CN 4 trace 

4 Pd(PPh3)2Cl2 NEt3 CH3CN 4 15 

5 Pd(PPh3)2Cl2 NEt3 DMF 4 23 

6 Pd(PPh3)2Cl2 DIPEA DMF 4 20 

7 Pd(CH3CN)2Cl2 NEt3 DMF 2 75 

Conditions:  2.3 (1 equiv.), alkyne (1.2 equiv.), NEt3/DMF (3:2), 20 °C 

Applying the optimized conditions, I prepared various alkynylated coumarins 2.4b-g. Both 

aromatic and aliphatic alkynes could be employed to achieve desired products (Table 2.2). 
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Table 2.2: Synthesis of 2.4 

 

2.4 R1 Yield (%) 

b 
 

56 

c 
 

22 

d 
 

53 

e 
 

41 

f CH3(CH2)2- 47 

g CH3(CH2)3- 45 

Conditions: 2.3 (1 equiv.), alkyne (1.2 equiv.), Pd(CH3CN)2Cl2 (5% mol),  

CuI (10 % mol), NEt3/DMF (3:2), 20 °C, 2 h. 

With the alkynylated coumarins in hand, the reaction of alkynylated coumarins 2.4 with 

amines 2.5 affording pyrrolocoumarins 2.6 was investigated. Compound 2.4a and 

4-methoxyaniline were firstly used as model substrates for the optimization of the reaction 

conditions. During the studies, it became apparent that strong bases, such as NaOtBu or KOtBu, 

should be avoided, because of decomposition of the coumarin ring under these conditions. 

Therefore, mild inorganic bases, such as Cs2CO3, K2CO3, and K3PO4, were utilized. The 

reaction was first studied in toluene as the solvent using Pd(OAc)2 (5%) as the catalytic source 

and different phosphine ligands (10%). It is important to note that we could only obtain the 

desired product, albeit in only 12% yield when SPhos 

(2-Dicyclohexylphosphino-2',6'-dimethoxybiphenyl) was used as the ligand and Cs2CO3 as the 

base (entry 4, table 2.3). However, the yield could be improved when DMF or DMA was used 

as the solvent. The best result (64% yield) was obtained when the catalyst loading was increased 

to 10% and CuI (20%) was used as an additive (entry 14, table 2.3). The role of CuI might be 

to promote the hydroamination step. The use of CuI as the catalyst in combination with ligands 
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also resulted in the formation of the product as well, however, only in 23% yield (entry 15, table 

2.3). 

Table 2.3: Optimization of 2.6a 

 

No. 
Catalyst 

(5%) 
Ligand (10%) Base Solvent 

Temp. 

(°C) 

Time 

(h) 

Yield 

(%) 

1 Pd(OAc)2 XantPhosa Cs2CO3 Toluene 110 8 - 

2 Pd(OAc)2 (tBu)3P·HBF4 Cs2CO3 Toluene 110 8 - 

3 Pd(OAc)2 Cy3P Cs2CO3 Toluene 110 8 - 

4 Pd(OAc)2 SPhos Cs2CO3 Toluene 110 8 12 

5 Pd(OAc)2 XPhos Cs2CO3 Toluene 110 8 5 

6 Pd(OAc)2 SPhos K3PO4 Toluene 110 8 - 

7 Pd(OAc)2 SPhos K2CO3 Toluene 110 8 - 

8 Pd(OAc)2 XPhos K3PO4 Toluene 110 8 - 

9 Pd(OAc)2 XPhos K2CO3 Toluene 110 8 - 

10 Pd(OAc)2 SPhos Cs2CO3 DMF 110 2 39 

11 Pd(OAc)2 SPhos Cs2CO3 DMA 110 2 35 

12 Pd(OAc)2 SPhos Cs2CO3 DMSO 110 8 - 

13 Pd(OAc)2
c
 SPhosb Cs2CO3 DMF 80 4 52 

14 
Pd(OAc)2

c
 

CuIb 
SPhosb Cs2CO3 DMF 80 4 64 

15 CuIc 1,10-phenantrolineb  Cs2CO3 DMF 110 8 23 
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16 CuIc 
1H-Benzotriazole-1

-methanolb 
Cs2CO3 DMF 110 8 15 

17 CuIc 1,2-DMEDAb Cs2CO3 DMF 110 8 17 

18 CuIc TMEDAb Cs2CO3 DMF 110 8 11 

Conditions: 2.4a (0.1 mmol, 1 equiv.), 2.5a (0.12 mmol, 1.2 equiv.), base (0.25 mmol, 

2.5 equiv.), solvent 2 mL 
a5%, b20%, c10% 

With the optimized conditions in hand, we extended the scope of the reaction to synthesize 

a series of pyrrolocoumarins 2.6b-q using various amines (Table 2.4). The employment of 

anilines containing electron donating substituents (more nucleophilic) generally resulted in 

better yields than of anilines containing electron withdrawing groups. No product was isolated 

from 4-nitroaniline. Aliphatic amines were successfully employed in the reactions, affording 

desired products in good yields. 

Table 2.4: Synthesis of chromeno[3,4-b]pyrrol-4(3H)-ones 

 

Compound R1 R2 Structure 
Yield 

(%) 

2.6a 

  

 

64 

2.6b 
 

 

 

47 
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2.6c 

 
 

 

61 

2.6d 

  

 

52 

2.6e 

  

 

41 

2.6f 

 
 

 

35 

2.6g 

  

 

40 

2.6h 

  

 

82 

2.6i 

  

 

76 
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2.6j 

  

 

61 

2.6k 

  

 

46 

2.6l 

 
 

 

57 

2.6m 

  

 

47 

2.6n 

  

 

65 

2.6o 

  

 

69 
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2.6p 
 

 

 

62 

2.6q 
 

 

 

65 

2.6r 
 

 

 

51 

Conditions: 2.4a-g (0.2 mmol, 1 equiv.), R’NH2 (0.24 mmol, 1.2 equiv.), Pd(OAc)2 
(0.02 mmol, 10 mol%), SPhos 0.04 (mmol, 20 mol%), Cs2CO3 (0.5 mmol, 2.5 equiv.), 
DMF (4 mL), 80 °C, 4 h. 

The structures of all products were confirmed by spectroscopic methods. The structure of 2.6j 

was independently confirmed by X-ray crystal structure analysis (Figure 2.2). 

 

 

Figure 2.2: X-ray structure of 2.6j 

2.3. Bioactivity and docking study 

Synthesized compounds were tested for cholinesterase (acetylcholinesterase and 

butyrylcholinesterase, obtained from electric eel and equine serum) and monoamine oxidase 
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(A & B) inhibition. Cholinesterase inhibition is known as one of the most powerful approaches 

for the treatment of Alzheimer’s disease.[71]  Moreover, monoamine oxidases are considered an 

important therapeutic target for neurodegenerative disorders. Among them, selective MAO-A 

inhibitors could be used as antidepressants and anxiolytics, and selective MAO-B inhibitors are 

used for treatments of Parkinson's disease and Alzheimer's disease.[72] Interestingly, many 

coumarin derivatives have been reported as potential inhibitors against both cholinesterases and 

monoamine oxidases[73]. Therefore, chromeno[3,4-b]pyrrol-4(3H)-ones could be considered as 

a potential approach to cholinesterase and monoamine oxidase inhibitors. 

Table 2.5: Anticholinesterase activities of chromeno[3,4-b]pyrrol-4(3H)-ones 

 AcetylCholinesterase activity ButyrylCholinesterase activity 

Compounds IC50±SEM (µM) IC50±SEM (µM) 

2.6d 0.47±0.01 57.8±1.23 

2.6e 11.8±0.99 82.1±2.45 

2.6a 257.6±3.11 127.2±4.21 

2.6f 2.87±0.56 159.1±3.11 

2.6h 385.1±4.11 51.3±3.11 

2.6i 0.47±0.01 208.8±2.56 

2.6k 8.01±1.21 39.8±3.11 

2.6q 248.7±4.89 14.9±2.16 

2.6p 173.5±2.98 9.45±1.56 

2.6m 308.7±3.12 34.1±1.78 

2.6n 4.04±0.34 57.8±3.12 

2.6l 16.8±1.56 18.4±1.89 

2.6c 3.59±0.34 43.5±4.78 

Donepezil 0.03 ± 0.01 6.41 ± 0.34 

Neostigmine 22.2 ± 3.2 49.6 ± 6.11 

 

As the results of anticholinesterase activity study (table 2.5), compounds 2.6d and 2.6i showed 

highest inhibitory activity against AChE with the IC50 value of 0.47±0.01 µM. Structurally, 

compound 2.6d contains phenyl group at C2 and N1 while 2.6i possesses phenyl group at C2 

and phenethyl group at N1. Others modifications of the substituent at C2 and N1 lead to the 

devaluation of inhibitory activity against AchE. Notably, the presence of aliphatic substituents, 

methoxybenzyl at C2, or benzyl at N1 in the structure of chromeno[3,4-b]pyrrol-4(3H)-ones 

significantly decreased the value of IC50 (compounds 2.6a, 2.6h, 2.6m, 2.6p, 2.6q). Compound 

2.6i, however, exhibits lowest inhibitory activity against BChE, with the IC50 value of 

208.8±2.56 µM. The most active BchE inhibitor was found to be compound 2.6p with the IC50 

value of 9.45±1.56 µM. Furthermore, the data suggested that 

chromeno[3,4-b]pyrrol-4(3H)-ones displayed selective inhibitory activity against either AChE 

or BChE. 
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Table 2.6: Monoamine oxidase (A & B) activities of chromeno[3,4-b]pyrrol-4(3H)-ones 

Compounds 
MA0-A 

IC 50 µM & SEM VALUE 

MAO-B 

IC 50 µM & SEM VALUE 

2.6d 0.79±0.005 0.33 ±0.06 

2.6a 41% 43% 

2.6b 0.77±0.003 2.18±0.03 

2.6c 2.73±0.08 0.59±0.003 

2.6f 1.09±0.01 4.71±0.05 

2.6h 1.28±0.04 0.21±0.0005 

2.6i 26% 11% 

2.6j 0.53±0.001 15% 

2.6k 1.21±0.02 40% 

2.6q 1.51±0.03 37% 

2.6p 5.12±0.07 0.15±0.0001 

2.6m 0.69±0.0004 32% 

2.6n 1.06±0.06 0.32±0.0002 

2.6o 0.52±0.0003 21% 

Clorgyline 3.64±0.012 - 

Deprenyl - 0.007±0.001 

 

Clorgyline were used as the standard inhibitor for monoamine oxidase A with IC50 value of 

3.64±0.012 µM, and deprenyl for monoamine oxidase B with 0.007±0.001 µM. Compound 2.6j 

and 2.6o were found to be potential inhibitors against monoamine oxidase A with IC50 value of 

0.53±0.001 µM and 0.52±0.0003 µM respectively, which are about 7 times stronger compared 

to the standard. Compound 2.6p, with IC50 = 0.15±0.0001 µM, exhibits the most effective 

inhibitory activity against monoamine oxidase B among the tested 

chromeno[3,4-b]pyrrol-4(3H)-ones. There is no clear trend between structure and monoamine 

oxidase activities (table 2.6). 

Compounds 2.6d and 2.6i showed similar activities against AChE, therefore these 

compounds were chosen for molecular docking study. Both compounds show similar 

interactions inside the receptor and form hydrophobic pocket with amino acid residues Trp279, 

Ile287, Phe330, Phe33d1, Tyr334, and Gly335. However, the results showed that compound 

2.6i established more stable conformation inside the receptor and formed additional hydrogen 

bonds with two water molecules. Figure 2.3 shows the docked pose of 2.6i with AChE receptor 

and Figure 2.4 shows interaction in 2D.  
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Figure 2.3: Putative binding mode of 2.6i inside AChE receptor (PDB ID 3I6Z).  

The blue dashed lines indicate hydrophobic interactions of amino acids with phenyl groups of 

the compound. 

 
Figure 2.4: Putative binding mode of 2.6i inside AChE receptor (PDB ID 3I6Z). 

 Green solid line around the compound shows the hydrophobic layer of active site and the 

dahed lines show hydrogen bonds with water molecule 

Compound 2.6p was docked inside the active pocket of BuChE. The molecular docking 

revealed that amino acid residues Gly16, Gly17, Ser198, Trp231, Leu286, Val288, Phe329, and 

His438 formed weak hydrophobic bonding with 2.6p (figure 2.5). Additionally, carbonyl 

moiety of compound 2.6p shows hydrogen bonding with amino group of amino acid residues 

Ile199, Gly116, and Gly117 (figure 2.6). 
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Figure 2.5: Putative binding mode of 2.6p inside BuChE receptor (PDB ID 1P0I) 

The blue dashed lines show the hydrophobic interactions of amino acid residues with phenyl 

groups of compound 2.6p and the red dashed lines indicate hydrogen bonds between amino 

group of Gly116, Gly117, Ala199 and carbonyl group of compound 2.6p. 

 

Figure 2.6: Putative binding mode of 2.6p inside BuChE receptor (PDB ID 1P0I) 

Green solid line around the compound  shows the hydrophobic layer of active sites and the 

dahed lines depict hydrogen bonds beteween carbonyl group of compound 2.6p with amino 

groups of amino acid residues 

After docking study, the docked poses were further verified by HYDE assessment. The ΔG 

value for the compound 2.6i was calculated as -26 KJmol-1 while that of the 2.6h was only -10 

KJmol-1. These results also prove the experimental data, which compound 2.6i is the best 

inhibitor against AChE while compound 2.6h exhibit the least active inhibior. Similar results 

were found in case of BuChE. The ΔG value for the strongest compound 2.6p is -18 KJmol-1 

and for 2.6i is -15 KJmol-1. 



Palladium(0)-catalyzed Domino C-N Coupling/Hydroamination Reactions 

36 

 

2.4. Conclusion 

A convenient method for the synthesis of chromeno[3,4-b]pyrrol-4(3H)-ones was 

successfully developed. Moreover, a series of chromeno[3,4-b]pyrrol-4(3H)-ones, which are 

difficult to obtained by known methods, were prepared. New synthesized 

chromeno[3,4-b]pyrrol-4(3H)-ones were studied regarding their inhibitory activity against 

cholinesterases and monoamine oxidases. Among them, compounds 2.6d and 2.6i were found 

to be potent selective inhibitors against AChE while compound 2.6p showed the best activity 

as selective inhibitor against BuChE. Furthermore, chromeno[3,4-b]pyrrol-4(3H)-ones 2.6j and 

2.6o also displayed potent inhibitory activity against monoamine oxidase A. 

A part of the results of this chapter were published in: 

T. N. Ngo, O. A. Akrawi, T. T. Dang, A. Villinger, P. Langer, Tetrahedron Lett. 2015, 56, 

86–88. 
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3. Palladium(0)-catalyzed domino C-N coupling/hydroamination/ 

C-H arylation reactions: Synthesis of indolo[1,2-f]phenanthridines, 

azaindolo[1,2-f]phenanthridines 

3.1. Introduction  

Fused phenanthridines are recognized as an important motif among drug-like molecules 

and found many applications in medicinal chemistry.[74] For example, nitidine, fagaronine, and 

coralyne, which are natural alkaloids containing the benzo[c]phenanthridine moiety, possess 

interesting antitumor activity and are important targets for total syntheses and biological 

evaluations;[75] ethidium bromide, an intercalating agent, is used as a fluorescent tag;[76] and 

pyrrolo[1,2-f]phenanthridines was found capable of inhibiting HIV (figure 3.1).[77] 

 

Figure 3.1: Biologically active phenanthridines 

In addition to their biological activities, due to their large π-conjugated electron system and 

effects of heteroatom contributing to the conjugated system, fused phenanthridines are essential 

components for developing new semiconductors and organic light-emitting diodes (OLEDs).[78] 

Particularly, recent studies showed that fused phenanthridines possess interesting optical and 

electronic properties, in which phenanthridines fused with N-heterocycles are potential 

candidates for the development of new blue-emitting materials.[79] Furthermore, organic dyes 

developed from indolo[1,2-f]phenanthridine structure show broad and intense visible 

absorptions, which are promising new sensitizers for dye-sensitized solar cells (figure 3.2).[80] 
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Figure 3.2: Phenanthridine derivatives with potential physical properties 

Although many methods for the synthesis of phenanthridines were developed in recent 

years, most of them require many steps and/or harsh conditions, and even more challenging for 

fused phenanthridines.[81] Therefore, developing new and efficient methods is important and 

necessary for the development of new bioactive molecules and organic materials. In recent 

years, the advances in transition metal-catalyzed reactions have facilitated considerably the 

approach to complex structures. Among them, palladium-catalyzed domino reactions proved to 

be a useful tool for the synthesis of fused heterocyclic compounds with high atom economy. In 

2007, Zhang and coworkers published a convenient method to synthesize 

indolo[1,2-f]phenanthridines by reaction of arynes with 1-(2-bromophenyl)-1H-indole in the 

presence of a Pd catalyst.[82] However, approaching starting materials for this method could be 

problematic and requires many synthetic steps. In 2012, Mirua et al. and later in 2013, You et 

al. independently reported an interesting Pd-catalyzed domino N–H/C–H arylation for the 

regioselective synthesis of N-heterocyclic fused phenanthridines.[83,84] These authors used 

readily available 2-arylindoles and 1,2-dibromobenzene as the starting materials, however, the 

selectivity of reactions was difficult to control, which may result in mixtures of isomers. A 

similar cascade process involving C-H arylations followed by an intramolecular N-arylation 

reaction to prepare benzimidazole-fused phenanthridines in moderate to good yields was 

published by Peng et al. in 2014.[85] More recently, Wang and Lv reported a one-pot tandem 

approach to indolo[1,2-f]phenanthridines employing 2-alkynylanilines and boronic acids via 

Cu-catalyzed C-N coupling/hydroamination and Pd-catalyzed C-H arylation.[86] 

Retrospectively, I believe that by combining intramolecular C-H arylation with the construction 

of indole scaffold, fused phenanthridines could be formed in a one-pot domino reaction. For 

constructing indole moiety, sequential Pd-catalyzed C-N coupling and intramolecular 

hydroamination of ortho-halogenated phenylacetylene is expected to be most suitable in this 

scenario.  
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Scheme 3.1: Domino reactions for the synthesis of fused-phenanthridines 

In this chapter, I wish to describe a new synthetic methodology to efficiently approach 

various indolo[1,2-f]phenathridines. The transformations proceed through three sequential 

steps in a one-pot reaction: C-N coupling, hydroamination, and C-H arylation reactions with 

employment of a single Pd catalyst. The reaction employs commercially available starting 

materials: dihalogenated arenes, terminal alkynes, and 2-bromoanilines or anilines. 

3.2. Synthesis of indolo[1,2-f]phenanthridines 

For studying the reaction, 1-bromo-2-(phenylethynyl)benzene 3.1a and 2-bromoaniline 

3.2a were chosen as model substrates. Initially, the reaction was carried out in DMF at 120 °C 

using Cs2CO3 as the base in the absence of catalyst and ligand. However, the reaction did not 

give the desired product 3.3a. When 10 mol% Pd(OAc)2 and 20 mol% PPh3 were introduced to 

the reaction mixture as the catalyst, the product was isolated in 34% yield after 24 h. To improve 

the yield, a series of monodentate and bidentate phosphine ligands were examined. 

Consequently, XantPhos (10 mol%) and PCy3·HBF4 (20 mol%) were found to be the best 

ligands as the reaction resulted in 75% and 74% yields of 3.3a, respectively. For further 

investigation, other combinations of various palladium precursors and XantPhos were screened. 

No product could be isolated when Pd2(dba)3 was used, while 70% yield of the desired product 

was obtained when employing Pd(PPh3)4. It proved to be important to use Cs2CO3 as the base. 
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Only trace amounts of product were detected when other bases were used, such as K2CO3 and 

KOtBu. Variation of solvent and temperature did not lead to improved yields (table 3.1). 

Table 3.1: Optimization for the synthesis of 3.3a 

 

Entry Catalyst Ligand Base Yield (%) 

1 Pd(OAc)2 PPh3 Cs2CO3 34 

2 Pd(OAc)2 BINAP Cs2CO3 34 

3 Pd(OAc)2 XantPhos Cs2CO3 75 

4 Pd(OAc)2 DPEPhos Cs2CO3 70 

5 Pd(OAc)2 DPPE Cs2CO3 38 

6 Pd(OAc)2 DPPF Cs2CO3 41 

7 Pd(OAc)2 XPhos Cs2CO3 45 

8 Pd(OAc)2 SPhos Cs2CO3 34 

9 Pd(OAc)2 RuPhos Cs2CO3 38 

10 Pd(OAc)2 DavePhos Cs2CO3 64 

11 Pd(OAc)2 PCy3·HBF4 Cs2CO3 74 

12 Pd(OAc)2 P(tBu)3·HBF4 Cs2CO3 5 

13 Pd(PPh3)4 XantPhos Cs2CO3 70 

14 Pd2(dba)3 XantPhos Cs2CO3 trace 

15 Pd(OAc)2 XantPhos K2CO3 trace 

16 Pd(OAc)2 XantPhos KOtBu 5 

Conditions: 3.1a (0.1 mmol, 1 equiv.), 3.2a (0.12 mmol, 1.2 equiv.), Pd(OAc)2 (0.01 mmol, 

10 mol%), ligand (20 mol% with monodentate ligands, 10 mol% with bidentate ligands), 

Cs2CO3 (0.3 mmol, 3 equiv.), DMF (1 mL), 120 °C, 24 h. 

With the optimized conditions in hand, I extended the scope of the reaction by modifying 

both substrates to prepare a series of indolo[1,2-f]phenanthridines. First, several alkynes 3.1a-f 

were synthesized by chemoselective Sonogashira coupling reactions of 2-bromo-iodobenzene 

with 1.1 equiv. of various phenylacetylenes, including electron-withdrawing and -donating 

substituents. These compounds were obtained in nearly quantitative yield when using reported 

procedure.[87] 



Palladium(0)-Catalyzed Domino C-N Coupling/Hydroamination/ C-H Arylation Reactions 

41 

 

Table 3.2: Synthesis of alkynes 3.1 

 
Compound R1 Structure Yield (%) 

3.1a H 

 

95 

3.1b 4-Me 

 

94 

3.1c 4-tBu 

 

92 

3.1d 4-F 

 

90 

3.1e 4-OMe 

 

96 

3.1f 2-Br 

 

74 
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Conditions: 2-bromo-iodobenzene 1 equiv., alkynes 1.1 equiv., Pd(PPh3)2Cl2 2.5 mol%, 

CuI 10 mol%, Et3N is used as solvent and base, 25 °C, 4 h. 

Then, reactions of 3.1a-e with 2-bromoanilline 3.2a, 2-bromo-4-methylaniline 3.2b, and 

2-bromo-4-fluoroaniline 3.2c afforded various indolo[1,2-f]phenathridines 3.3 (Table 3.3). In 

general, 1-bromo-2-(phenylethynyl)benzene or 2-bromoaniline derivatives, bearing 

electron-donating or -withdrawing groups, afforded the corresponding products in moderate to 

good yields under optimized conditions. The presence of substituents located at the aryl group 

of the 1-bromo-2-(phenylethynyl)benzene had no pronounced effect on the yield. In contrast, 

the structure of the 2-bromoaniline derivative had a greater impact, but did not follow a clear 

trend. The best yields were obtained for 3.3h and 3.3j. The structure of 3.3i was unambiguously 

confirmed by X-ray crystallography (figure 3.3). 

Table 3.3: Synthesis of indolo[1,2-f]phenathridines 

 

Compound R1
 R2 Structure 

Yield 

(%)a 

3.3a H (3.1a) H (3.2a) 

 

75 

3.3b H (3.1a) Me (3.2b) 

 

66 

3.3c Me (3.1b) H (3.2a) 

 

52 
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3.3d Me (3.1b) Me (3.2b) 

 

45 

3.3e Me (3.1b) F (3.2c) 

 

55 

3.3f tBu (3.1c) H (3.2a) 

 

65 

3.3g tBu (3.1c) Me (3.2b) 

 

67 

3.3h F (3.1d) H (3.2a) 

 

77 

3.3i F (3.1d) Me (3.2b) 

 

54 

3.3j MeO (3.1e) H (3.2a) 

 

78 

3.3k MeO (3.1e) Me (3.2b) 

 

73 

Conditions: 3.1 (0.3 mmol, 1 equiv.), 3.2 (0.36 mmol, 1.2 equiv.), Pd(OAc)2 (0.03 mmol, 

10 mol%), XantPhos (0.03 mmol, 10 mol%), Cs2CO3 (0.9 mmol, 3 equiv.), DMF (4 mL), 

120 °C, 24 h. 
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Figure 3.3: X-ray crystal structure analysis of 3.3i 

Moreover, I conducted additional experiments to study the applicability of less reactive 

chlorine substituents in the reaction. I realized that the bromine substituent in acetylenes 3.1 

played a crucial role in the reaction, since no conversion of 1-chloro-2-(phenylethynyl)benzene 

was observed when reacting with 2-bromoaniline under the optimized conditions.  

 
Scheme 3.2: Reaction of 1-chloro-2-(phenylethynyl)benzene with 2-bromoaniline 

A possible mechanistic pathway of the formation of indolo[1,2-f]phenanthridines is proposed 

in Scheme 3.3. First, a Buchwald-Hartwig reaction of 3.1b with 2-bromoaniline 3.2a gave 

intermediate 3.1i. Intramolecular hydroamination of 3.1i subsequently formed intermediate 

3.1ii (which could be isolated and structurally confirmed by NMR spectroscopy). Finally, an 

intramolecular C-H activation took place to give indolo[1,2-f]phenanthridine 3.3c. 
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Scheme 3.3: Proposed pathway for the reaction 

Encouraged by the successful isolation of intermediate 3.1ii, I considered the application 

of 1,2-bis(2-bromophenyl)ethyne 3.1f as a suitable alternative precursor for the reaction. This 

would allow the employment of simple anilines as educts and would widely broaden the scope 

of the methodology. To my delight, the reaction of 1,2-bis(2-bromophenyl)ethyne 3.1f with 

various anilines proceeded smoothly and produced the desired products 3.5a-j in moderate to 

good yields (Table 3.4). Anilines containing a fluoro substituent gave very good results with 

72% (3.5g) and 75% (3.5h) isolated yields. When employing an unsymmetrical aniline, a 

mixture of two inseparable isomers 3.5e1 and 3.5e2 with 1:3 ratios was formed.  
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Table 3.4: Reaction of 1,2-bis(2-bromophenyl)ethyne 3.1f with amines 

 
Compound R Products Yield (%)a 

3.5a (3.3a) H (3.4a) 

 

52 

3.5b (3.3b) 4-Me (3.4b) 

 

55 

3.5c 4-tBu (3.4c) 

 

43 

3.5d 4-MeO (3.4d) 

 

49 

3.5e 3-MeO (3.4e)  

 

43a 

3.5f 2-MeO (3.4f) 

 

49 
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3.5g 2-F (3.4g) 

 

72 

3.5h 4-F (3.4h) 

 

75 

3.5i 4-CN (3.4i) 

 

44 

3.5j 4-MeS (3.4j) 

 

56 

 

Conditions: 3.1f (0.3 mmol, 1equiv.), 3.4 (0.36 mmol, 1.2 equiv.), Pd(OAc)2 (0.03 mmol, 

10 mol%), (PCy3·HBF4 0.06 mmol, 20 mol%), Cs2CO3 (0.9 mmol, 3 equiv.), DMF (4 mL), 

120 °C, 24 h. 
a inseparable mixture (ratio 1:3 determined by NMR) 

It is clear that employment of unsymmetrical dibromoacetylenes would result in a 

selectivity issue. In order to address this problem, we investigated the reaction of 

1-bromo-2-((2-chlorophenyl)ethynyl)benzene 3.1g containing two different halides. The 

reaction of 3.1g with p-toluidine afforded, using the optimized conditions, the desired product 

3.5b in only 14% yield. As mentioned before, no conversion takes place in the reaction of 

1-chloro-2-(phenylethynyl)benzene with 2-bromoaniline under the same conditions. Therefore, 

the reactions were assumed to proceed starting from Buchwald Hartwig reaction at the C-Br 

bond, followed by hydroamination and intramolecular C-H arylation at the C-Cl bond (scheme 

3.4). 
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Scheme 3.4: Reaction of 1-bromo-2-((2-chlorophenyl)ethynyl)benzene with p-toluidine 

3.3. Synthesis of azaindolo[1,2-f]phenanthridines 

As mentioned previously, the structure obtained when phenanthridine fused with 

N-heterocycles, such as imidazole, benzoimidazole, indole, and pyrrole, were reported to 

possess remarkable optical and electronic properties. For example, phenanthridine fused with 

N-heterocycles, such as imidazole, benzoimidazole, indole, and pyrrole, were reported to 

possess remarkable optical and electronic properties.[79,83,85] Moreover, azaindoles are also 

considered as important core structures and have been studied for decades.[88] However, the 

scaffold of phenanthridine fused with azaindole is rarely reported, probably because of 

difficulties in synthetic approaches. To my best knowledge, only one work (patented) related 

to azaindolo[1,2-f]phenanthridines was published (figure 3.4); authors of the patent claimed 

that electroluminescent devices employing these compounds showed improvement in driving 

voltage and lifespan in comparison of using Alq3.
[89] Therefore, developing an efficient 

synthetic method for this scaffold is compelling for further studies of its properties. 

 

Figure 3.4: Azaindolo[1,2-f]phenanthridines applicable in electroluminescent devices 

In the reported patent, authors synthesized azaindolo[1,2-f]phenanthridine scaffold starting 

from 7-azaindole, following by Ullmann reaction to obtain the key intermediate. This precursor 

was transformed to azaindolo[1,2-f]phenanthridine by Pd-catalyzed cascade reaction with 

benzyne generated in situ from 2-(trimethylsilyl)phenyl trifluoromethanesulfonate, which was 

mentioned in previous part (scheme 3.5). 
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Scheme 3.5: Synthesis of azaindolo[1,2-f]phenanthridines via in situ benzyme 

Regarding my methodology for the synthesis of fused phenanthridines, the strategy relies 

on three sequential steps catalyzed by a single Pd catalyst in a one-pot reaction: C-N coupling, 

hydroamination and intramolecular C-H arylation. After contemplation, I realized that this 

strategy could be applied efficiently to synthesize phenanthridines-fused azaindole scaffolds 

from simple and commercially available dihalogentated pyridines. Especially by employing 

chemo- or regioselective of Sonogashira reaction for modifying the alkyne precursors, different 

scaffolds, 4- or 7-azaindolo[1,2-f]phenanthridines, could be obtained (scheme 3.6). 

 

Scheme 3.6: Synthesis of azaindolo[1,2-f]phenanthridines  

In the following section, the details will be discussed, and furthermore, the optical properties 

of selected synthesized compounds will be studied to justify the objective of the proposed idea. 

Initially, 3-bromo-2-(phenylethynyl)pyridines 3.6a and 2-bromoaniline were chosen as 

model substrates to study the reaction. No desired product was obtained after stirring the 

mixture of substrates and cesium carbonate in DMF at 120 °C for 24 h. At the beginning, we 

applied the reaction conditions from the previous reactions (table 3.3), which utilizes 

Pd(OAc)2/XantPhos as the catalytic system. Interestingly, these conditions produced the 

desired product with 39% yield. Furthermore, when the reaction time was increased to 48 h, the 

yield of the reaction raised to 64%. Encouraged by this result, we continued to investigate other 

combinations of catalytic sources and ligands using the same solvent, base, and temperature 
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conditions. To my delight, XantPhos was the best choice of ligand so far. The combination of 

Pd(PPh3)4 and XantPhos gave the best result with 68% yield. Other attempts to change the 

solvent and base did not lead to higher yields. Notably, decreasing the reaction temperature also 

led to a significant decrease of yield. During the reaction, we observed the formation of 

intermediate 3.6ii as a potential intermediate of the reaction pathway which is proposed in 

Scheme 3.7. 

 

Scheme 3.7: Proposed pathway for the reaction 

With the optimized conditions in hand, the scope of the reaction was extended by 

modifying the starting alkynes and 2-bromoanilines. Both electron-withdrawing and 

electron-donating substituents were introduced into both substrates. Firstly, 

3-bromo-2-(alkynyl)pyridines 3.6a-3.6f were synthesized from 2,3-dibromopyridine by 

selective Sonogashira reaction at its C2, affording desired compounds with good to excellent 

yields (table 3.5). 
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Table 3.5: Synthesis of 3-bromo-2-(alkynyl)pyridines 

 
Compound R1 Structure Yield (%) 

3.6a H 

 

86 

3.6b 4-Me 

 

91 

3.6c 4-tBu 

 

95 

3.6d 4-F 

 

80 

3.6e 4-OMe 

 

91 

3.6f 2-Br 

 

77 
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Conditions: 2,3-dibromopyridine 1 equiv., alkynes 1.1 equiv., Pd(PPh3)2Cl2 2.5 mol%, CuI 

10 mol%, Et3N is used as solvent and base, 25 °C, 4 h. 

 

Then the domino reactions were performed with obtained 3-bromo-2-(alkynyl)pyridines 

and several anilines. The reaction proceeded smoothly with various starting materials under 

optimized conditions affording the desired products 3.7a-3.7k in moderate to high yields. 

However, no apparent effect of the substituents on the yield was observed. Compound 3.7h was 

obtained with the highest yield (88%) (Table 3.6). Furthermore, the structure of 3.7j was 

independently confirmed by X-ray crystallographic analysis (figure 3.5).  

Table 3.6: Synthesis of 4-azaindolo[1,2-f]phenanthridines 

 

Compound R1 R2 Structure Yield (%)a 

3.7a H H 

 

68 

3.7b H Me 

 

64 

3.7c H F 

 

41 
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3.7d Me H 

 

61 

3.7e Me Me 

 

72 

3.7f tBu H 

 

69 

3.7g tBu Me 

 

32 

3.7h F H 

 

88 

3.7i F Me 

 

79 
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3.7j MeO H 

 

85 

3.7k MeO Me 

 

37 

Conditions: 3.6 (0.3 mmol, 1 equiv.), 3.2 (0.36 mmol, 1.2 equiv.), Pd(PPh3)4 (0.03 mmol, 

10 mol%), XantPhos (0.03 mmol, 10 mol%), Cs2CO3 (0.9 mmol, 3 equiv.), DMF (4 mL), 

120 °C, 24 h. 

 

 

Figure 3.5: X-ray crystallographic analysis of 3.7j. 

Similarly, I assumed that the position of bromine and hydrogen atom participating in the 

last step of the reaction could be interchangeable. With this idea in mind, reactions of 3.6f with 

various amines were investigated to broaden the scope of this strategy (table 3.7). 
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Table 3.7: Synthesis of 4-azaindolo[1,2-f]phenanthridines 

 

Compound R3 Structure Yield (%) 

3.8a (3.7a) H (3.4a) 

 

87 

3.8b 4-MeO (3.4d) 

 

51 

3.8c 2-MeO (3.4f) 

 

60 

3.8d 3-MeO (3.4e)  

 

65 (mixture) 
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3.8e (3.7c) 4-F (3.4g) 

 

76 

3.8f (3.7b) 4-CH3 (3.4b) 

 

65 

3.8g 4-SMe (3.4j) 

 

81 

3.8h 

(3.4k) 

 

42 

Conditions: 3.6f (0.3 mmol), 3.4 (0.36 mmol), Pd(PPh3)4 (0.03 mmol), XantPhos 

(0.03 mmol), Cs2CO3 (0.9 mmol), DMF (4 mL), 120 °C, 24 h. 

 

To my delight, the reaction proceeded without any problem when the same conditions as 

in the previous reaction were applied, affording desired products in moderate to high yields. 

Interestingly, compounds 3.7a (3.8a), 3.7b (3.8f), 3.7c (3.8e) could be synthesized by this 

method with higher yield. Besides, other modifications on the aniline ring gave lower yields 

compared to 2-bromoanline. However, the limitation of this method is the selectivity when 

meta-substituted amines are used, such as 3-methoxyaniline 3.4e. In this case, using 

3-methoxyaniline resulted in a mixture of two products, which were not separable by column 

chromatography. 
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Additionally, the selectivity of the Sonogashira reaction on halogenated pyridines gives us 

the possibility to deliver a higher diversity of products by customizing the starting material. To 

demonstrate this, the selective Sonogashira mono-coupling reaction of 

1-chloro-2-ethynylbenzene on 3-bromo-2-chloropyridine was performed to afford alkyne 3.6g. 

The coupling reaction of 3-bromo-2-chloropyridine is controlled by the chemoselectivity of 

bromide at position 3 versus the chloride at position 2, compared to 2,3-dibromopyridine in 

which reactions at position 2 are more favored. Subsequently, alkyne 3.6g produced various 

7-azaindolo[1,2-f]phenanthridines 3.9a-3.9c under optimized conditions as shown in table 3.8. 

Noteworthy, the C2-Cl of 3.6g (of pyridine ring) is more reactive than of 

1-chloro-2-(phenylethynyl)benzene for the first step of the domino reaction (Buchwald-

Hartwig reaction), as 1-chloro-2-(phenylethynyl)benzene showed no conversion when applied 

conditions to perform the domino reaction (scheme 3.2). 

 

Scheme 3.8: Synthesis of 3.6g 

Table 3.8: Synthesis of 7-azaindolo[1,2-f]phenanthridines 

 

Compound R Structure Yield (%)a 

3.9a 4-MeO (3.4d) 

 

34 
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3.9b 4-F (3.4g) 

 

51 

3.9c 4-SMe (3.4j) 

 

36 

Conditions: 3.6g (0.3 mmol, 1 equiv.), 3.4 (0.36 mmol, 1.2 equiv.), Pd(PPh3)4 (0.03 mmol, 

10 mol%), XantPhos (0.03 mmol, 10 mol%), Cs2CO3 (0.9 mmol, 3 equiv.), DMF (4 mL), 

120 °C, 24 h. (temperature and reaction time were not optimized) 

 

To explore larger conjugated systems, I considered structure 3.10 (scheme 3.9) as the target 

of the domino reaction. Then, 2,3,5,6-tetrabromopyridine was utilized as the starting material, 

affording product of selective two-fold Sonogashira reaction at 2 and 6 positions as the set-up 

for the domino reaction. Unfortunately, the reaction resulted in an inseparable mixture. 

 

Scheme 3.9: Two-fold domino reaction 
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3.4. Absorption and fluorescence properties of azaindolo[1,2-f]phenanthridines 

The optical properties of all synthesized compounds were studied by UV/Vis and 

fluorescence spectroscopy in CH2Cl2 at 25 °C as summarized in table 3.9. The UV/Vis spectra 

show an absorption band in the range of 270-300 nm and several weaker bands in the range of 

300-400 nm (figure 3.6). In general, introducing electron-donor groups, such as a methyl or 

methoxy group, at the core structure 3.7a causes a slight red shift of the absorption bands. A 

stronger redshift was observed for compound 3.8h by extending the conjugated system of the 

core structure. Changing the position of the nitrogen atom in the azaindole moiety (compounds 

3.9a, 3.9b, 3.9c) caused also a shift to longer wavelengths. The similar trend was also observed 

in the emission spectra. 

   

 

Figure 3.6: Normalized absorption and corrected emission spectra of 

azaindolo[1,2-f]phenanthridines in CH2Cl2. 
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Table 3.9: Absorption and emission spectroscopic data of azaindolo[1,2-f]phenanthridines 

Cp λabs1 

Log 

ε(λabs1) 

 

λabs2 

(nm) 

Log 

ε(λabs2) 

 

λabs3 

(nm) 

Log 

ε(λabs3) 

 

λabs4 

(nm) 

Log 

ε(λabs4) 

λabs5 

(nm) 

Log 

ε(λabs5) 

λem 

max 

(nm) 

Փfluo 

% 

3.7a 290 6.347 326 5.937 354 5.744 370 5.777 390 5.623 416 65 

3.7d 292 6.598 328 6.251 355 6.098 371 6.100 391 5.978 420 42 

3.7f 292 6.729 327 6.349 354 6.178 371 6.196 390 6.054 420 53 

3.7h 290 6.614 327 6.296 355 6.105 371 6.065 391 5.872 424 28 

3.7j 296 6.554 329 6.287 359 6.121 373 6.059 391 5.836 431 47 

3.7b 290 6.576 329 6.214 356 5.953 374 5.984 394 5.860 421 52 

3.7e 292 6.647 330 6.308 357 6.039 374 6.072 394 5.916 424 56 

3.7g 292 6.649 330 6.301 375 6.041 374 6.069 394 5.929 425 55 

3.7i 289 6.469 327 6.233 356 6.122 371 6.105 390 6.011 424 14 

3.7k 296 6.338 332 6.115 360 5.893 375 5.819 396 5.702 435 32 

3.8b 282 6.503 334 6.234 361 5.947 380 5.946 400 5.858 432 28 

3.8c 290 6.645 330 6.288 - - 368 6.010 385 5.832 420 28 

3.8e 289 6.581 329 6.363 357 6.049 375 6.036 395 5.871 425 38 

3.8g 289 6.567 338 6.203 - - 375 5.994 - - 434 12 

3.8h 281 6.646 - - 374 5.897 396 5.735 418 5.530 459 19 

3.9a 282 6.785 331 6.060 364 6.060 380 6.063 400 5.930 433 40 

3.9b 278 6.649 326 6.416 358 6.056 375 6.027 395 5.858 426 30 

3.9c 288 6.845 337 6.337 363 6.018 376 5.993 400 5.785 436 26 

Fluorescence spectra of the compounds were measured in CH2Cl2 exciting them at 360 nm. 

The spectra show maximal emission in the range of 416 nm to 469 nm. Emission quantum 

yields were determined using a solution of quinine hemisulfate salt monohydrate in 0.05 M 

H2SO4 (Փ = 0.52) as a reference standard.[90] Among the synthesized compounds, 

4-azaindolo[1,2-f]phenanthridine 3.7a, which contains no substituent, possesses the highest 

quantum yield of 65%. In addition, 7-azaindolo[1,2-f]phenanthridine 3.9a also exhibit a good 

quantum yield of 40%.  Noteworthy, the quantum yield of indolo[1,2-f]phenanthridine was 

reported to be only 21%.[83] Therefore, introducing one more nitrogen atom to the scaffold of 

indolo[1,2-f]phenanthridine to obtain azaindolo[1,2-f]phenanthridines gives a much better 

result. However, introducing both electron-donating and electron-withdrawing groups to the 

core structure leads to decreased quantum yields. The poorest quantum yield of 12% was 

observed in compound 3.8g which contains a methylthio group. 

3.5. Unsuccessful results 

Attempt to total synthesis of arnoamine C, D, and their derivatives 

Recently, the search for new pharmaceuticals from the marine environment has resulted in 

the isolation of a large number of alkaloids. In 2013, arnoamine C and D, which contain a 

pentacyclic unit, were isolated from Cystodytes violatinctus and showed interesting anticancer 

activities. IC50 values of arnoamine D are less than 10 μM in the presence of HCT116, SW480, 
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and A375 cancer cell lines.[91] Derivatives of Arnoamine C & D would have interesting 

bioactivities for applications in medicinal chemistry.  

 

Figure 3.7: Arnoamine C & D 

Based on the same strategy described in scheme 3.1, the total synthesis of Arnoamine C & 

D and their derivatives could be synthesized using three-step domino reaction (scheme 3.11). 

 

Scheme 3.10: Retrosynthesis analysis of Arnoamines 

The starting material 3.11 can be synthesized from 5-chloro-2-methoxyaniline via 3 steps in 

scheme 3.11.[92] 



Palladium(0)-Catalyzed Domino C-N Coupling/Hydroamination/ C-H Arylation Reactions 

62 

 

 

Scheme 3.11: Proposed Synthesis of starting material 

However, the precursor 3.11 failed to convert to corresponding desired compound 3.10. I 

assumed that chlorine might be not reactive enough for the reaction; therefor, another starting 

material containing bromine was employed. For this purpose, 6-hydroxyquinoline was used as 

the starting point, following by bromination with NBS and triflation to obtain 

5-bromo-6-trifluoromethanesulfonatequinoline 3.12. Selective Sonogashira at the C-OTf of 

quinoline 3.12 was performed successfully, affording precursor 3.13 for the domino reaction.  

 

Scheme 3.12: Alternative starting material 3.13 

With the initial screening, the formation of desired product was observed together with the 

intermediate by GC/MS. But unfortunately, the desired product 3.14 was not separable as the 

pure product. 
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Scheme 3.13: Domino reaction of 3.13 

3.6. Conclusion 

In conclusion, two Pd-catalyzed three-step tandem reactions comprising of the three 

sequential reactions: C-N coupling, hydroamination and C-H arylation reaction were 

developed. These methods offer a straightforward synthesis of indolo[1,2-f]phenanthridines 

under mild conditions with good yields, which are interesting for further applications in the 

synthesis of new organic materials and bioactive molecules. In addition, a series of new 

azaindolo[1,2-f]phenanthridines were synthesized conveniently by this strategy. The starting 

materials were easily accessible by regioselective Sonogashira cross-coupling reaction, which 

lead to diverse final products. The absorption and fluorescence properties of all products were 

studied. This class of compounds shows promising photophysical properties, in particular, high 

quantum yields. Furthermore, other new aromatic polyheterocycles are being explored by the 

developed synthetic method. 

The results of this chapter were published in: 

T. N. Ngo, P. Ehlers, T. T. Dang, A. Villinger, P. Langer, Org. Biomol. Chem. 2015, 13, 

3321–3330. Highlighted in Synfacts S001815SF.  

and 

T. N. Ngo, F. Janert, P. Ehlers, D. H. Hoang, T. T. Dang, A. Villinger, S. Lochbrunner, P. 

Langer, Org. Biomol. Chem. 2016, 14, 1293–1301. 
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4. Regioselective synthesis of naphtho-fused heterocycles via 

palladium(0)-catalyzed tandem reaction of N-tosylhydrazones 

4.1. Introduction 

Since its first discovery, independently by Mizoroki and Heck, Heck-Mizoroki reaction is 

among the most useful synthetic tools due to its high chemoselectivity, mild reaction conditions, 

and cheap reaction reagents.[93] Especially, domino processes involving intramolecular 

Heck-Mizoroki reaction have been known as one of the most powerful methods to produce 

polycarbocyclic or polyheterocyclic compounds with a variety of ring sizes. The active alkyl 

intermediate palladium complexes, formed by insertion of double bond to Pd(II) complex, can 

participate in sequential intra- or intermolecular processes before the β-hydride elimination 

step[94]. For example, the active intermediate alkyl palladium complex could react with another 

double bond in the molecule to afford fused bicyclic compounds.[95] Moreover, regioselectivity 

in intramolecular Heck reaction has also attracted a lot of attention. Generally, intramolecular 

Heck reactions give exo-trig cyclization products, however, several reactions formed 

6-endo-trig instead of 5-exo-trig cyclized products.[96] In some cases, the 6-membered ring 

might be the result of a sequence of 5-exo-trig, then 3-exo-trig cyclization, finally ring opening 

of cyclopropane (Scheme 4.1). If the β-hydride elimination occurs before the ring opening 

process, the cyclopropane ring is still retained in the product as the evidence for this 

mechanism.[97] Although many studies regarding this process have been achieved, studying the 

behavior of palladium on the variety of substrates is still compelling for insightful 

understanding. 

 

Scheme 4.1: Pathways of 6-endo-trig and 5-exo-trig cyclizations 
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Recently, the utility of easily accessible N-tosylhydrazones as the coupling partner for 

metal-catalyzed cross-coupling reactions has attracted growing attention.[28–31,98] As discussed 

earlier in chapter 1, the method relies on the insertion of carbene species, generated in situ from 

N-tosylhydrazones, to Pd(II) complexes. In 2007, the group of Barluenga developed 

palladium-catalyzed cross coupling reactions of N-tosylhydrazones and aryl halides, efficiently 

affording polysubstituted olefins.[30] Furthermore, the presence of the double bond in obtained 

olefins attracts a sequential intramolecular Heck cyclization. To exemplify, Valdés et. al. 

reported a palladium-catalyzed autotandem process which involves cross-coupling of 

N-tosylhydrazones with 2,2′-dibromobiphenyls followed by a 5-exo-trig Heck-type cyclization, 

final β-hydride elimination step to give the formation of various polycyclic compounds 

(Scheme 4.2a).[99]  

 

Scheme 4.2: Pd-catalyzed cyclization of dibrominated compounds with hydrazones 

From this perspective, I wish to report a novel tandem process started from the 

cross-coupling reaction of N-tosylhydrazones with dibromide compounds, then followed by a 

sequence of intramolecular 5-exo-trig, 3-exo-trig cyclization, ring opening, β-hydride 

elimination in the presence of a single palladium catalyst to give 6-endo-trig cyclization 

products (scheme 4.2b). The obtained fused heterocycles, heterotetracenes and 
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heteropentacene, with large π-extended conjugated aromatic system are important in both 

materials science and medicinal chemistry.[100] To the best of my knowledge, only few tandem 

procedures to access these fused systems were developed to date.[101]  

4.2. Synthesis of naphtho-fused heterocycles 

For the initial investigation, 3-bromo-2-(2’-chlorophenyl)benzo[b]thiophene (4.1a) and 

acetophenone N-tosylhydrazone (4.2a) were chosen as model substrates (Scheme 4.3). Firstly, 

I utilized Pd2(dba)3 and XPhos as the catalytic system and LiOtBu as the base, which are known 

as standard conditions for the cross-coupling reaction of N-tosylhydrazones and aryl halides. 

Two similar reactions at 90 °C in dioxane as the solvent were performed under argon. One 

reaction was stopped after 2 hours, and the intermediate as the product of the first coupling was 

isolated. The structure of the intermediate 4.1i was confirmed by NMR and mass spectra as the 

new terminal double bond was formed and the chlorine still remained in the molecule. The 

remaining reaction was continued and the reaction temperature was raised to 100 ºC. After 4 h, 

complete conversion of 4.1a and formation of only one product with 72% yield were observed. 

Surprisingly, the product was proved to be regioisomer 4.3a by X-ray crystallographic analysis, 

which is different from the 6-endo-trig cyclization 4.3a’.  

 

Scheme 4.3: Tandem reaction of 3-bromo-2-(2’-chlorophenyl)benzo[b]thiophene 4.1a with 

N-tosylhydrazone of acetophenone 4.2a 

Conditions: 4.1a (0.2 mmol, 1 equiv.), 4.2a (0.3 mmol, 1.5 equiv.), Pd2(dba)3 2.5 mol%, 

XPhos 10 mol%, LiOtBu (0.8 mmol, 4 equiv.), dioxane (4 mL). 
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On the basis of these experimental results in the combination with reported literature on 

domino palladium-catalyzed processes as well as Barluenga’s and Valdés’ reports of 

N-tosylhydrazones and aryl halides, I postulate that the mechanism of the reaction followed a 

sequence of intramolecular 5-exo-trig, 3-exo-trig cyclization, ring opening, and finally 

β-hydride elimination. The proposed mechanism is described in Scheme 4.4. The catalytic cycle 

is believed to initiate by the first oxidative addition of C-Br bond of 4.1a with palladium catalyst 

to form an active Pd-complex (I). This complex reacts with the carbene generated from 

N-Tosylhydrazone 4.2a to give  new palladium active species (III) via intermediate complex 

(II). The reductive elimination of complex (III) regenerates palladium(0) species and an 

intermediate (4.4), which was isolated. The second oxidative addition of intermediate (4.4) with 

palladium catalyst results in formation of a new active palladium complex (IV). The 

intramolecular cyclization of this palladium species (IV) via 5-exo-trig, 3-exo-trig cyclization, 

and then ring opening of cyclopropane lead to the more stable palladium complex (VII). A 

second reductive elimination of  palladium complex (VII) releases the cyclized product (4.3a) 

and H[Pd]Cl, which reacts with base to reproduce palladium(0) catalyst (Schem 4.4). 
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Scheme 4.4: Proposed mechanism of Pd-catalyzed cyclization of dibrominated compounds 

with hydrazones. 
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Scheme 4.5: Tandem reaction of 2,2′-dibromobiphenyl 4.1b and 

3-bromo-2-(2-bromophenyl)pyridine 4.1c.  

Reaction conditions: 1 (0.2 mmol), 4.2a (0.3 mmol, 1.5 equiv.), Pd2(dba)3 2.5 mol%, XPhos 

10 mol%, LiOtBu (0.8 mmol, 4 equiv.), dioxane 4 mL, 110 °C 24 h.* inseparable mixture 

In addition, the reaction 2,2′-dibromobiphenyl (4.1b) and N-tosylhydrazone of 

4’-methylacetophenone (4.2b) was carried out under the same conditions (Scheme 4.5). It is 

worth to mention again that the tandem reaction of 2,2′-dibromobiphenyl and N-tosylhydrazone 

of cyclic ketones underwent β-hydride elimination after the 5-exo-trig cyclization to afford 

5-membered ring spiro compounds. In this work, the absence of β-hydrogens promoted 

3-exo-trig cyclization to the double bond of benzothiophene which is not fully conjugated in 

the aromatic system. However, in the case of 2,2′-dibromobiphenyl, the alkyl palladium 

complex was not able to perform 3-exo-trig cyclization to the stable conjugated aromatic system 

of benzene. Therefore, only the uncyclized product was detected after 24 h. The same result 

was observed with 3-bromo-2-(2-bromophenyl)pyridine. These results also confirmed the 

hypothesis about the mechanism of the reaction. 

In order to improve the yield of the desired products, I utilized 

3-bromo-2-(2-bromophenyl)benzo[b]thiophene (4.1d) as the starting material instead of 

3-bromo-2-(2’-chlorophenyl)benzo[b]thiophene (4.1a). The reaction was performed under the 

same conditions at 90 °C. Surprisingly, the reaction completed after 4 h producing only 4.3a 

with 83% yield. Then, other combinations of Pd(OAc)2, Pd2(dba)3 and different ligands were 

examined, however, no significant improvement of yield was observed. Therefore, the 

combination of Pd2(dba)3 and XPhos proved to be the best so far. Increasing the amount of 

Pd2(dba)3 to 5 mol% and XPhos to 20% increased the yield to 85%, so it was not reasonable to 

use more amount of catalyst. As I reviewed the literature, almost of the publications related to 
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the cross-coupling of N-tosylhydrazones employed the conditions with LiOtBu as the base and 

dioxane as the solvent, so the combination of LiOtBu and dioxane is believed to be important 

for the first cross-coupling of N-tosylhydrazones. Moreover, the reaction was additionally 

carried out in toluene but resulted in a complicated mixture, without the possibility to isolate 

the pure compound. The reaction was also tested at 60 °C, 90 °C, and 110 °C. At 60 °C, after 

4h, I detected mainly the intermediates. At 110 °C, the reaction completed after 2 hours, but 

more spots on the TLC were observed, one of them overlapped with the spot of the product, 

leading to the difficulty in isolating the pure product, so I found that carrying out the reaction 

at 90 °C was most suitable for this purpose. Interestingly, the formation of two intermediates 

was observed in this case, because the first coupling of N-tosylhydrazone with 4.1d could 

undergo at either C-Br bond (Scheme 4.6). The two intermediates gave the same palladium 

complex after the 5-exo-trig cyclization (similar to complex V), thus, only one product was 

formed. Besides, double Heck reaction of 4.1d with styrene utilizing above conditions as well 

as conditions reported by Blacklock et. al. produced a complicated mixture without the 

formation of 4.3a.[102] Therefore, the cross-coupling reaction of N-tosylhydrazone was proved 

to be superior in this tandem reaction. 

 

Scheme 4.6: Tandem reaction of 3-bromo-2-(2-bromophenyl)benzo[b]thiophene 4.1d and 

N-tosylhydrazones. 

Encouraged by these results, I examined the scope and limitation of the tandem reaction 

by varying the substrates (table 4.1). Firstly, the tandem reactions of various N-tosylhydrazones 

were performed with 3-bromo-2-(2’-bromophenyl)benzo[b]thiophene 4.1d. To my delight, the 

optimized conditions were applicable for numerous N-tosylhydrazones of substituted 

acetophenones. Both electron-donating and electron-withdrawing groups on N-tosylhydrozones 

resulted in only one isomer from good to excellent yields. N-tosylhydrazone of 

4’-methoxyacetophenone gave the best yield of 95% (4.3i) while the trifluoromethyl substituent 
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on acetophenone gave the poorest yield with 53% (4.3c). There is no predictable effect of 

substituents on acetophenones moiety on yields of the reaction. The reaction conditions are 

tolerable with several substituents such as unprotected hydroxyl (4.3d) or cyano groups (4.3e). 

N-tosylhydrazone derived from hetero-aromatic acetophenone such as 4-acetylpyridine also 

gave the desired product under the reaction conditions (4.3h). Interestingly,  a heteropentacene 

(4.3o) could be successfully prepared with 34% yield in the employment of reaction conditions 

with corresponding 3,3'-dibromo-2,2'-bibenzo[b]thiophene. Unfortunately, the reaction of 

N-tosylhydrazone of 1,2-diphenylethan-1-one with 4.1d resulted in an inseparable mixture.  

Table 4.1: Synthesis of benzo[b]naphtho[2,1-d]thiophenes 

 
Compound Ar Structure Yield (%) 

4.3b 
 

 

90 

4.3c 
 

 

53 

4.3d 
 

 

81 

4.3e 
 

 

68 
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4.3f 
 

 

89 

4.3g 

 

 

75 

4.3h 
 

 

56 

4.3i 
 

 

95 

4.3j 

 

 

80 

4.3k 

 

 

71 

4.3l 

 

 

65 
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4.3m 

 

 

67 

4.3n 
 

 

63 

4.3o 
 

 

34* 

4.3p 
 

 

0** 

Conditions: 4.1d (0.2 mmol), 4.2 (0.3 mmol, 1.5 equiv.), Pd2(dba)3  2.5 mol%, XPhos 

10 mol%, LiOtBu (0.8 mmol, 4 equiv.), dioxane 4 mL, 90 °C, 4 h. 
*) 3,3'-dibromo-2,2'-bibenzo[b]thiophene was used instead of 4.1d. 
**) 3-bromo-2-(2-bromophenyl)thiophene was used instead of 4.1d, a mixture of uncyclized 

intermediates was obtained instead of 4.3p. 

 

 

Figure 4.1: The structure of 4.3a determined by X-ray crystallographic analysis 
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Figure 4.2: The structure of 4.3b determined by X-ray crystallographic analysis 

In order to further explore the scope of reaction, I studied the reaction with other dibromide 

derivatives from different heterocycles. The reaction gave good yields and regioselectivity 

when applied for 3-bromo-2-(2-bromophenyl)benzofuran 4.1e. The reaction was assumed 

following the proposed mechanism for 3-bromo-2-(2’-bromophenyl)benzo[b]thiophene, 

forming similar isomer (table 4.2). Higher temperature and longer reaction time were required 

when 3-bromo-2-(2-bromophenyl)-1-methyl-1H-indole 4.1f was employed as the precursor, 

producing benzo[a]carbazole derivatives in relatively lower yields (table 4.3). 

 

Table 4.2: Synthesis of naphtho[1,2-b]benzofurans 

 
Compound Ar Structure Yield (%) 

4.5a 
 

 

60 



Palladium(0)-Catalyzed Tandem Reaction of N-Tosylhydrazones 

75 

 

4.5b 
 

 

45 

4.5c 
 

 

77 

4.5d 
 

 

41 

Reaction conditions: 4.1e (0.2 mmol), 4.2 (0.3 mmol, 1.5 equiv.), Pd2(dba)3  2.5 mol%, 

XPhos 10 mol%, LiOtBu (0.8 mmol, 4 equiv.), dioxane 4 mL, 90 °C, 4 h. 

 

 

Table 4.3: Synthesis of benzo[a]carbazoles 

 
Compounds Ar Structure Yield 

4.6a 
 

 

31 
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4.6b 
 

 

45 

4.6c 
 

 

39 

Reaction conditions: 4.1f (0.2 mmol), 4.2 (0.3 mmol, 1.5 equiv.), Pd2(dba)3 2.5 mol%, 

XPhos 10 mol%, LiOtBu (0.8 mmol, 4 equiv.), dioxane 4 mL, 100 °C, 12 h. 

 

4.3. Conclusion  

In conclusion, I have developed a tandem reaction for regioselective synthesis of a range 

of π-extended polyheterocyclic aromatic compounds. The reaction can be applied to numerous 

substrates with the tolerance of various functional groups. Products of the reaction, 

heterotetracenes and a heteropentacene, are interesting targets to explore potential applications 

in materials science as well as medicinal chemistry. This strategy could be applied in the 

synthesis of advanced functional materials containing larger π-extended heteroacene 

compounds. 

The results of this chapter were published in: 

T. N. Ngo, T. T. Dang, A. Villinger, P. Langer, Adv. Synth. Catal. 2016, 358, 1328–1336. 
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5. Efficient one-pot synthesis of 5-perfluoroalkylpyrazoles by 

cyclization of hydrazone dianions 

5.1. Introduction 

Dianions, contained two negative charges, are known for versatility in cyclization reactions 

with dielectrophiles to form rings with various size. The group of Prof. Langer has developed 

several domino or one-pot cyclization reactions based on 1,1-, 1,2-, 1,3-, and 1,4-dianions, 

affording important core structures ranging from three- to six-membered rings. These concepts 

can apply to synthesize heterocycles, for example, the regioselective synthesis of functionalized 

pyrroles by one-pot cyclocondensation of 1,3-dicarbonyl dianions with α-azidoketones. Due to 

dianions are highly reactive, reactions with dielectrophiles can result in elimination, 

polymerization, decomposition, and formation of open chained products. An important 

discovery to overcome the drawback of dianions is the employment of electroneutral dianions, 

or masked dianions, which are activated when reacting with Lewis acid. The idea was well 

demonstrated by using 1,3-bis-silyl enol ethers as masked dianions in cyclization reactions with 

dielectrophiles.[103] 

 

Scheme 5.1: One-pot cyclocondensation of 1,3-dicarbonyl dianions with α-azidoketones 

Fluorinated organic compounds have become essential in the development of 

agrochemicals, and more importantly, in pharmaceuticals.[104] Recently, the number of 

approved drugs or drug candidates containing fluorine is increasing noticeably, contributing 

about 25% compounds in pharmaceuticals. In fact, three of ten best-selling drugs contain at 

least one fluorine: rosuvastatin used for the treatment of high cholesterol and prevent 

cardiovascular disease,[105] sofosbuvir, and ledipasvir used for the treatment of hepatitis C 

infection.[106] The high electronegativity combining with its small size makes fluorine 
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extremely low polarizability, resulting in drastic changes in physicochemical properties of 

fluoroorganic compounds, most importantly enhancing thermal stability and lipophilicity, thus, 

increasing bioavailability. In addition, fluorine has the size similar to hydrogen, however, could 

act as a hydrogen bond acceptor, benefiting the molecules with similar geometry to those of 

hydrogen but completely different interactions.[107] 

Moreover, nitrogen-containing heterocycles constitute a large part of biologically active 

compounds. Among them, pyrazole moiety is widely recognized, presenting in many leading 

drugs,[108] such as Zometapine[109] and Viagra[110] and in agrochemicals, such as Tolfenpyrad 

and Fenpyroximate.[111] Recently, the progression of synthetic fluorination methods leads to the 

discovery of a pyramid of fluorinated pyrazoles with remarkable biological activities.[112] For 

example, many important drugs and agrochemicals, such as Celecoxib (antiarthritic),[113] 

Mavacoxib (antiarthritic),[114] Razaxaban (anticoagulant),[115] Fluazolate (herbicide),[116] 

Penthiopyrad (fungicide)[117] are derived from trifluoromethylated and perfluoroalkylated 

pyrazoles. Therefore, developing new efficient methods for the synthesis of fluorinated 

heterocycles, particularly fluorinated pyrazoles, is still in demand. 

 

Figure 5.1: Drugs and agrochemicals containing trifluoromethylated pyrazoles 

There are two strategies to introduce florine to a structrue: direct fluorination or synthesis from 

pre-fluorinated building blocks. Although direct fluorination is flourishing and gaining 

significance with the rapid development of transition metal-catalyzed reactions, the strategy 
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involving fluorine-containing intermediates is still efficient in various scenarios. Based on 

developed synthetic methods for specific class of heterocycles, which are already proved their 

efficiency, fluorine or fluorinated groups, such as trifluoromethyl or perfluoroalkyl, are 

embedded in molecules of the precursors.  

Particularly, conventional methods for the synthesis of pyrazoles are based on the 

cyclocondensation of hydrazine with 1,3-dielectrophiles, such as 1,3-dicarbonyl or 

α,β-unsaturated carbonyl compounds.[118] Another approach is 1,3-dipolar cycloadditions of an 

alkyne with various 1,3-dipoles, such as diazoalkanes, nitrilimines, or azomethine imines.[119]  

 

Scheme 5.2: Synthesis of pyrazoles  

Trifluoromethylated pyrazoles have been prepared by cyclocondensation of 

trifluoromethyl-1,3-diketones with phenylhydrazine, however, mixtures of regioisomers were 

formed.[120] In order to discover more efficient approaches for the synthesis of 

trifluoromethylated pyrazoles, several research groups have focused on the development of new 

methods to address the issue of regioselectivity. Frizzo et al. reported a useful method for the 

synthesis of 5-trifluoromethylpyrazoles based on the condensation of 

4-alkoxy-1,1,1-trifluoro-3-alken-2-ones with phenyl-hydrazine using the ionic liquid 

[BMIM][BF4] as the solvent. In general, this method gave very good yields of 

5-trifluoromethylpyrazoles, but for some derivatives, regioisomeric mixtures were still 

obtained.[121] Recently, some useful methods have been developed to overcome this problem, 

e.g., the use of fluorinated alcohols (TFE and HFIP) in the cyclocondensation of 

trifluoromethyl-1,3-diketones with phenylhydrazine or the employment of 

4-trifluoromethyl-sydnones as starting materials in the cycloaddition reaction with alkynes.[122] 

In early 2014, Mykhailiuk and coworkers reported an interesting approach to the synthesis of 
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3-trifluoromethylpyrazoles in very good yields based on the [3+2] cycloaddition of CF3CHN2 

with alkynes.[123] Very recently, a new method for the synthesis of 3-trifluoromethylpyrazoles 

was described via trifluoromethylation/cyclization of α,β-alkynic hydrazone with hypervalent 

iodine reagent.[124]  

In addition, another interesting approach is the cyclization of hydrazone dianions with 

esters. Hauser and co-workers were the first to report the synthesis of 5-substituted pyrazoles 

by cyclization of hydrazone 1,4-dianions with esters. The same strategy was applied by the 

group of Prof. Langer to prepare pyrazole-5-carboxylates and pyrazole-1,5-dicarboxylates.[125] 

I believe that this method could be employed to prepare regioselectively 

5-perfluoroalkylpyrazoles (scheme 5.3). 

 

Scheme 5.3: Synthesis of pyrazoles by cyclization of hydrazone 1,4-dianions 

In this chapter, a convenient and efficient method for the synthesis 5-trifluoromethyl- and 

5-perfluoroalkylpyrazoles by one-pot cyclization of hydrazone 1,4-dianions with fluorinated 

esters is being described. In addition, the activity of the pyrazoles prepared as inhibitors of 

human tissue-nonspecific alkaline phosphatase (h-TNAP) and human intestinal alkaline 

phosphatase (h-IAP) are being discussed. Furthermore, the effects of these molecules were also 

tested on two other human ectonucleotidases, ecto-nucleotide pyrophosphatase/ 

phosphodiesterase-1 (h-NPP1) and h-NPP3. 

5.2. Synthesis of perfluoroalkylated pyrazoles 

Hydrazones 5.2 were prepared by condensation of ketones 5.1 with hydrazine derivatives. 

This reaction proceeded under solvent free (‘green’) conditions at room temperature and is 

catalyzed by acetic acid and provided nearly quantitative yields of hydrazones. Then, 5.2 were 

converted to their dianions by treatment with 2 equivalents of n-BuLi in THF at -78 °C. 

Subsequently, ethyl perfluorocarboxylates 5.3 were added to the reaction mixture. After 

warming to ambient temperature, either trifluoroacetic acid (TFA) or p-toluenesulfonic acid 
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(PTSA) was added to the reaction mixture to give perfluoroalkylated pyrazoles 5.4 or 5.5, 

respectively (Scheme 5.4 & table 5.1). The formation of the product proceeds by the attack of 

the carbon of dianion A onto 5.3 to give intermediate B, cyclization by the attack of the nitrogen 

atom onto the carbonyl group to give intermediate C, and subsequent acid-mediated 

dehydration. Treatment of intermediate C with TFA under reflux in dioxane allowed 

5-perfluoromethylated pyrazoles 5.4 in good to excellent isolated yields. On the other hand, 

treatment of intermediate C with PTSA (reflux, toluene) gave the N-deprotected 

3-perfluoromethylpyrazoles 5.5. This could be explained by the fact that PTSA is a stronger 

acid than TFA. The carbamate protecting group was removed when PTSA was used but 

remained intact when TFA was used. It is noteworthy that the synthesis of compound 5.4f could 

be scaled up to gram quantities. Starting with 10 mmol of 5.1f, product 5.4f was isolated in 

88% yield (2.67 g). 

 

Scheme 5.4: Synthesis of pyrazoles 5.4 and 5.5 

Conditions: i, neat, acetic acid (catalytic amount, 3 drops), 20 °C; ii, 1) 2.2 equiv. n-BuLi, 

THF, -78 °C to 20 °C. 2) 1.5 equiv. 5.3a, -78 °C to 20 °C. 3) TFA, reflux 2h (or PTSA, 

reflux, 8h). 
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Table 5.1: Synthesis of pyrazoles 5.4 and 5.5 

Compound Ar R RF Structure Yield (%) 

5.4a 
  

CF3 

 

89 

5.4b 
  

CF3 

 

79 

5.4c 

 
 

CF3 

 

81 

5.4d 

 
 

CF3 

 

61 

5.4e 
  

CF3 

 

74 

5.4f 
  

CF3 

 

87 

5.4g 

 
 

CF3 

 

90 

5.4h 
  

CF3 

 

82 

5.4i 

 
 

CF3 

 

78 

5.4j 
  

CF3 

 

64 
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5.4k 
  

C2F5 

 

95 

5.4l 
  

C2F5 

 

91 

5.4m 

 
 

C2F5 

 

93 

5.4n 
  

C2F5 

 

85 

5.4o 
  

C3F7 

 

83 

5.4p 
  

C3F7 

 

76 

5.4q 
 

CO2Et CF3 

 

57 

5.4r 

 

CO2Et CF3 

 

  65 

5.5a 
 

H CF3 

 

51 

5.5b 
 

H C2F5 

 

56 

5.5c 
 

H C3F7 

 

57 
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5.5d 

 

H CF3 

 

78 

5.5e 

 

H C2F5 

 

86 

5.5f 

 

H C3F7 

 

64 

5.5g 
 

H CF3 

 

75 

5.5h 
 

H C2F5 

 

74 

5.5i 
 

H C3F7 

 

67 

    

The cyclization of the dianion of the hydrazone of cyclododecanone 5.2s with ethyl 

2,2,2-trifluoroacetate afforded the annulated trifluoromethylated pyrazole 5.4s in 80% yield 

(Scheme 5.5). The cyclizations of the hydrazones of cyclohexanone 5.2t, cyclohex-2-en-1-one 

5.2u and tetralone 5.2v afforded the corresponding products 5.4t-v. 
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Scheme 5.5: Synthesis of 5.4s-v 

Conditions:i, neat, acetic acid (catalytic amount, 3 drops), 20 °C; ii, 1) 2.2 equiv. n-BuLi, 

THF, -78 °C to 20 °C. 2) 1.5 equiv. 5.3a, -78 °C to 20 °C. 3) TFA, reflux 2h. 

 

Recently, it has been reported that trifluoromethylated indazole D32 represents a highly 

selective ligand for the estrogen receptor β. Trifluoromethylated indazole E33 is a useful agent 

for the treatment of obesity and diabetes (Figure 5.2). Therefore, it would be interesting to 

prepare trifluoromethylated indazoles starting from ring-fused pyrazoles.  

 

Figure 5.2: Bioactive trifluoromethylated indazoles D and E 

The dehydrogenation of pyrazoles 5.4s and 5.4t with DDQ afforded the desired indazoles 

5.6a and 5.6b in high yields, respectively. These experiments show that this methodology can 

be successfully applied also for the synthesis of trifluorinated indazoles (scheme 5.6). 
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Scheme 5.6: Synthesis of 5.6a and 5.6b 

Conditions:i, 2.0 equiv. DDQ, toluene, reflux, 3 h. 

The cyclization of the dianions of oximes 5.7a, b with ethyl trifluoroacetate and subsequent 

treatment with TFA (reflux, 8h) afforded 5-trifluoromethylated isoxazoles 5.8a and 5.8b in 57% 

and 62% isolated yields, respectively. 

 

Scheme 5.7: Synthesis of isoxazoles 5.8a, b 

Conditions:i, 1) 2.2 equiv. n-BuLi, THF, -78 °C to 20 °C. 2) 1.5 equiv. CF3COOEt, -78 °C to 

20 °C. 3) TFA, reflux 2h. 

5.3. Alkaline phosphatase and nucleotide pyrophosphatase activity and SAR 

Intestinal alkaline phosphatase (IAP) is believed to play an important role in detoxification 

of bacterial endotoxin, dephosphorylation of triphosphorylated and diphosphorylated 

nucleotides, regulation of the intestinal microbiome, and regulation of intestinal lipid 

absorption.[126] However, overexpression of IAP might have a connection with some 

inflammatory bowel diseases such as Crohn’s disease.[127] On the other hand, tissue 
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non-specific alkaline phosphatases (TNAP), which participate in the maintenance of the PPi 

level in the body, share significant homology with IAP.[128] Therefore, selective inhibitors 

against IAP would be potential therapeutic agents. Interestingly, pyrazole derivatives were 

observed having inhibitory activity against alkaline phosphatases.[129] In this context, 

embedding fluorine atoms in pyrazole molecules is promising to the discovery of potential 

inhibitors for APs. In addition, nucleotide pyrophosphatase/phosphodiesterases (NPPs), which 

affect a number of processes like bone mineralization, cell proliferation, motility, and digestion, 

are also important therapeutic targets and it is worth to examine the inhibitory activity of 

fluorinated pyrazoles against them.[130] 

All the fluorinated pyrazole derivatives were tested for human recombinant APs and NPPs 

and they were found to be selective inhibitors of APs in comparison to NPPs. Against h-NPP1 

and h-NPP3, these compounds exhibited low response of inhibition. The data obtained showed 

that all the values were below 50%. Compound 5.4i was found to be the potent inhibitor of 

h-TNAP having IC50 value of IC50 ±SEM = 0.45±0.01 µM. It can be suggested that the activity 

of this compound might be due to the presence of a phenyl and a trifluoromethyl group at the 

parent pyrazole ring. When the activity of this compound was compared with the other 

derivatives containing naphthalene ring attached to parent pyrazole it was clearly observed that 

compound having phenyl and side chain with less carbon atom, has more impact on activity 

against h-TNAP. When the number of carbon and fluorine increased the activity of the 

compound was decreased as it was reflected in activity values of 5.4m, 5.5d, 5.5e, and 5.5f. 

Levamisole was used as a standard inhibitor against h-TNAP. Other compounds inhibited 

h-TNAP with IC50 values in the range of IC50 ±SEM = 0.449±0.001 to 50.3±3.28 µM. 

Compound 5.4n exhibited the most potent inhibition of h-IAP with an IC50value of IC50 ±SEM= 

0.65±0.04 µM [sic] which is over 120 folds more efficient than the known standard inhibitor 

L-phenylalanine. The comprehensive study of the compound structure was justified by 

comparing with L-phenylalanine (known reference standard) which contain only one phenyl 

ring. This confirmed that the presence of biphenyl group on the pyrazole ring might be 

responsible for its high activity against h-IAP. On the other hand, when this compound was 

compared with 5.4e containing biphenyl ring with the different carbon side chain it was 

observed that with a reduced number of carbon atoms in the side chain, the activity of 

compound was decreased against h-IAP. Other pyrazole derivatives displayed h-IAP inhibition 

activity in the range IC50 ±SEM = 0.647±0.04 to 7.36±0.25 µM. The above-mentioned data 

showed that most pyrazole derivatives were better inhibitors of h-IAP than of h-TNAP. 
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Table 5.2: Alkaline phosphatase AP (h-TNAP & h-IAP) and NPP (h-NPP1 & h-NPP3) 

inhibition in presence of the synthesized compounds 

5.4. Conclusion 

In conclusion, I have demonstrated that a series of 5-trifluoromethylated and 

5-perfluoroalkylated pyrazoles, including deprotected derivatives, could be efficiently and 

selectively synthesized by one-pot cyclization of hydrazone dianions with ethyl 

perfluorocarboxylates. In addition, two trifluoromethylated indazoles were prepared from the 

corresponding bicyclic hydrazones. The cyclization of oxime dianions afforded 

 

No. 

h-TNAP h-IAP h-NPP1 h-NPP3 

IC50 
a 

(µM)±SEM 

IC50 

a(µM)±SEM 
(%inhibition)b (%inhibition)b 

5.4a 9.52±1.53 1.49±0.38 18.9% 12.5% 

5.4b 11.1±1.06 1.22±0.22 23.4% 27.6% 

5.4c 10.46±.65 1.63±0.41 21.2% 22.6% 

5.4d 26.6±2.56 2.31±0.13 1.65% 4.87% 

5.4e 3.23±0.48 1.41±0.05 12.4% 13.5% 

5.4f 1.48±0.72 3.52±0.98 7.98% 19.8% 

5.4g 2.59±0.38 5.78±0.74 13.8% 6.87% 

5.4h 10.1±1.72 1.62±0.23 4.89% 2.76% 

5.4i 0.45±0.01 4.46±0.78 23.2% 2.87% 

5.4j 3.11±0.84 2.37±0.79 6.98% 1.09% 

5.4k 2.11±0.28 5.12±0.84 34.5% 24.8% 

5.4l 5.01±0.79 3.71±0.37 2.89% 4.67% 

5.4m 1.35±0.06 2.19±0.05 38.4% 14.6% 

5.4n 

 

 

 

 

 

 

 

 

 

 

48.6±3.22 0.65±0.04 6.98% 9.87% 

5.4o 50.3±3.28 1.35±0.14 28.2% 12.7% 

5.4p 25.9±1.38 7.11±0.98 11.5% 17.8% 

5.5a 11.6±1.28 7.36±0.25 3.08% 6.08% 

5.5b 13.1±0.63 10.5±1.02 14.8% 18.9% 

5.5c 4.34±0.03 2.91±0.35 39.1% 34.6% 

5.5d 8.09±1.28 1.95±0.26 22.4% 18.7% 

5.5e 13.9±1.08 4.47±0.97 6.87% 7.98% 

5.5f 12.9±1.38 2.23±0.32 15.9% 10.8% 

5.5g 1.62±0.11 2.39±0.36 19.3% 14.7% 

5.5h 47.1±3.11 2.57±0.77 25.6% 29.8% 

5.5i 2.04±0.17 1.96±0.33 28.2% 31.2% 

5.6b 21.2±1.78 6.03±0.75 27.6% 12.6% 

5.6a 17.2±0.89 5.84±0.37 12.8% 16.7% 

Levamisole 19.21±0.001    

L-Phenylalanine ------- 80.21±0.001   

Values are expressed as mean ± SEM of n = 3. aThe IC50 is the concentration at which 50% 

of the enzyme activity is inhibited. bThe % inhibition of the enzyme activity caused by 0.1 

mM of the tested compound. 
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trifluoromethyl-substituted isoxazoles. All the compounds were selective inhibitors of APs with 

little effect on h-NPP1 and h-NPP3. In addition, the data showed that most of the compounds 

presented here inhibited h-IAP more efficiently than h-TNAP. Therefore these compounds 

appear as selective inhibitors of h-IAP.The results reported herein are of considerable interest 

for further applications in medicinal chemistry. 

The results of this chapter were published in: 

T. N. Ngo, S. A. Ejaz, T. Q. Hung, T. T. Dang, J. Iqbal, J. Lecka, J. Sevigny, P. Langer, Org. 

Biomol. Chem. 2015, 13, 8277-8290. 
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APPENDIX 

Methods for compound characterization and analysis 

Melting Points 

Micro heating table HMK 67/1825 Kuestner (Büchi apparatus); Melting points are 

uncorrected. 

Nuclear Magnetic Reasonance Spectroscopy (NMR) 

Bruker: AM 250, (62.9 MHz); Bruker: ARX 300, (75.4 MHz), Bruker: ARX 500, 

(125 MHz). The chemical shifts are given in parts per million (ppm). Coupling constants are 

given in Hz. 

References for 1H NMR: TMS (δ = 0.00) or residual deuterated solvent (CDCl3 (δ = 7.26), 

C6D6 (δ = 7.16), (CD3)2CO (δ = 2.05), (CD3)2SO (δ = 2.50)), for 13C NMR TMS (δ = 0.00) or 

residual deuterated solvent (CDCl3 (δ = 77.16), C6D6 (δ = 128.06), (CD3)2CO (δ = 29.84; 

206.26), (CD3)2SO (δ = 39.52)) were taken as internal standard. The splitting pattern was 

characterized by s: singlet, d: doublet, t: triplet, q: quartet, quin: quintet, sex: sextet, m: 

multiplet. More complicate coupling peaks are represented by combinations of the respective 

symbol. For example, dt indicate to doublet of triplet. Distortionless enhancement polarization 

transfer (DEPT) spectra were taken to determine the types of carbon signals. 

Mass Spectroscopy (MS) 

AMD MS40, Varian MAT CH 7, MAT 731 (EI, 70 eV), Intecta AMD 402 (EI, 70 eV, and 

CI). 

High Resolution Mass Spectroscopy (HRMS) 

Finnigan MAT 95 or Varian MAT 311; Bruker FT CIR, AMD 402 (AMD Intectra). 

Infrared Spectroscopy (IR)  

Bruker IFS 66 (FT IR), Nicolet 205 FT IR; Nicolet Protege 460, Nicolet 360 Smart Orbit 

(ATR); KBr, KAP, Nujol, and ATR; Peaks were characterized with abbreviation: w = weak, 

m = medium, s = strong, br = broad. 
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X-ray Crystal Structure Analysis 

Bruker X8Apex diffractometer with CCD camera (Mo Kαradiation and graphite 

monochromator, λ=0.71073 Å). The structures were solved by direct methods andrefined by 

full-matrix least-squares procedures on F2 with the SHELXTL software package. 

UV/Vis spectroscopy 

Lambda 5 (Perkin Elmer) and Analytic Jena Specord 50 UV/VIS spectrometer in 

acetonitril. 

Fluorescence spectroscopy 

Fluoromax4P-0759D-0311-FM. The samples were dissolved in dichloromethane. The 

quinine hemisulfate salt monohydrate in 0.05M H2SO4 which has a fluorescence yield of 0.52, 

was used as the standard for the fluorescent quantum yield determination. 

Thin Layer Chromatography (TLC) 

Merck Silica 60 F254 on aluminum foil from Macherey-Nagel. Detection under UV light 

at 254 nm and/or 365 nm of wavelength and visualize by dipping in TLC stains solution 

including conc. H2SO4/vaniline, Cerium-ammonium-molybdate (CAM), ceric sulfate and 

Dragendorff reagent. 

Column chromatography 

Column chromatography was performed over Merck silica gel (63-200 µM) as normal 

column and (40-63 µM) as flash column. All the solvent were distilled prior to use. 

Biological protocols  

The biotests were performed by Sundas Sarwar, Syeda Abida Ejaz, and Syeda Mahwish 

Bakht in the group of Dr. Jamshed Iqbal, Centre for Advanced Drug Research, COMSATS 

Institute of Information Technology, Abbottabad, Pakistan. 

Cell Transfection with Human APs and NPPs 

COS-7 cells were transfected with plasmids expressing human APs (TNAP & IAP) or 

human NPPs ((NPP-1) or (NPP-3)) in 10-cm plates, by using Lipofectamine. The confluent 

cells were incubated for 5 h at 37 °C in DMEM/F-12 in the absence of fetal bovine serum and 
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with 6 µg of plasmid DNA and 24 µL of Lipofectamine reagent. The same volume of 

DMEM/F-12 containing 20% FBS was added to stop the transfection and cells were harvested 

48–72 h later.   

Preparation of membrane fractions 

The transfected cells were washed three times at 4 °C, with Tris–saline buffer, collected by 

scraping in the harvesting buffer (95 mM NaCl, 0.1 mM PMSF, and 45 mM Tris buffer, pH 

7.5) and washed twice by centrifugation at 300×g for 5 min at 4 °C. Subsequently, cells were 

resuspended in the harvesting buffer containing 10 µg/mL aprotinin and sonicated. Nuclear and 

cellular debris were discarded by 10 min centrifugation (300×g at 4 °C). Glycerol was added to 

the resulting supernatant at a final concentration of 7.5%.  

Samples were kept at -80 °C until used. Protein concentration was estimated using Bradford 

microplate assay and bovine serum albumin was used as a standard.  

Protocol of Cholinesterase inhibition assay  

For the determination of cholinesterase inhibition, electric eel and horse serum were used 

as sources of AChE and BChE, respectively. AChE and BChE inhibition was measured in vitro 

by the Ellman’s spectrophotometric method with slight modification. The reaction started by 

mixing 20 µL assay buffer, 10 µL of test compound and 10 µL of enzymes (0.5 and 3.4 U/mg 

of AChE or BChE, respectively). Then the reaction mixture was incubated for 10 min at 25 °C. 

At the end of the pre/incubation period, 10 µL of 1 mM acetylthiocholine iodide or 

butyrylthiocholine chloride were added to the respective AChE or BChE enzyme solution and 

50 µL of 0.5 mM, 5,5’/Dithiobis/2/Nitrobenzoic Acid (DTNB) was added as coloring reagent. 

The mixtures were incubated for 15 min at 25 °C. The formation of enzymatic product was 

determined by the variation in absorbance measured at 405 nm with a microplate reader 

(Bio/Tek ELx800TM, Instruments Inc., Winooski, VT, USA). In this bioactivity assay, the 

standard drugs, neostigmine and donepezil were used. The buffer for enzyme dilution 

comprised of 50 mM Tris/HCl containing 0.1% (w/v) BSA (pH 8). To remove the effect of 

DMSO on enzymes, a blank assay was performed without any enzyme and accounted as 

non/enzymatic reaction. The analysis of each concentration was done in triplicate and the IC50 

values were calculated with the linear regression parameters. The computer program used for 

this purpose is GraphPad Prism 5.0 (San Diego, CA, USA). 

Protocol of Monoamine oxidase inhibition assay  
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Monoamine oxidase inhibitory activities of the synthesized compounds were evaluated 

using standard protocol. Assays were performed in 200 µL final volume in 96 well plate. Rat 

liver mitochondria were pretreated for 15 min at room temperature with an aqueous solution of 

clorgyline (30 nM) or deprenyl (300 nM) to irreversibly block MAO/A or MAO/B activity, 

respectively. Test compounds (2 µL), dissolved in DMSO (100%), were added to 90 µL of 

mitochondrial preparation (25.0 µg of protein for rat MAO/A and 5.0 µg protein for rat MAO/B) 

and were incubated for 30 min prior to the addition of 90 µL of freshly prepared Amplex Red 

fluorogenic substrate. The Amplex Red reagent were used as follows, for a 96 well plate, 1.0 mg 

of Amplex Red, dissolved in 200 µL of DMSO (100%) and 100 µL of reconstituted horseradish 

peroxidase (HRP 200 U/mL) stock solution (kit vial + 1.0 mL of 50 mM sodium phosphate 

buffer) was added to 9700 µL of sodium phosphate buffer (250 mM, pH 7.4). The enzymatic 

reaction was started by the addition of 20 µL/well of an aqueous solution of the substrate p/ 

tyramine (300 µM final concentration). Deprenyl and clorgyline (each in a final concentration 

of 1.0 µM) were used to determine non MAO/B and non/MAO/A enzyme activity, respectively. 

Fluorescence measurements were performed over 45 min and the concentration response curves 

of clorgyline and deprenyl served as positive controls for the rat MAO/A and rat MAO/B assay, 

respectively. 

Protocol of Alkaline Phosphatase Assay (h-TNAP & h-IAP) 

A chemiluminescent substrate, CDP-star, was used for the determination of activity of 

h-TNAP and h-IAP. The conditions for the assay were optimized with the slight modifications 

in the previously used spectrophotometric method. The assay buffer was composed of 2.5 mM 

MgCl2, 0.05 mM ZnCl2 and 8 M DEA (pH 9.8). Initial screening was performed at a 

concentration of 0.2 mM of the tested compounds. The total volume of 50 µL contained 10 µL 

of tested compound (0.2 mM with final DMSO 1% (v/v)), 20 µL of h-TNAP (46 ng of protein 

from COS cell lysate in assay buffer) or of h-IAP (57 ng protein in assay buffer). The mixture 

was pre-incubated for 5-7 minutes at 37 °C and luminescence was measured as pre-read using 

microplate reader (BioTek FLx800, Instruments, Inc. USA). Then, 20 µL of CDP-star (final 

concentration of 110 µM) was added to initiate the reaction and the assay mixture was incubated 

for 15 min more at 37 °C. The change in the luminescence was measured as after-read. The 

activity of each compound was compared with total activity control (without any inhibitor). 

Levamisole (2 mM per well) and L-phenylalanine (4 mM per well) were used as a positive 

control for the inhibition of h-TNAP and h-IAP, respectively. For the compounds which 

exhibited over 50% inhibition of either h-TNAP activity or h-IAP activity, full concentration 
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inhibition curves were produced to evaluate IC50 values. For this purpose, 6 to 8 serial dilutions 

of each compound were prepared in assay buffer and their dose response curves were obtained 

by assaying each inhibitor concentration against both ALPs using the above mentioned reaction 

conditions. All experiments were repeated three times in triplicate. The Cheng Prusoff equation 

was used to calculate the IC50 values, determined by the non-linear curve fitting program 

PRISM 5.0 (GraphPad, San Diego, California, USA).  

Protocol of Nucleotide pyrophosphatase (h-NPP-1 & h-NPP-3) activity  

The conditions for the assay were optimized with the slight modifications in the previously 

used spectrophotometric method. The reaction was carried out in the assay buffer which 

contained 5 mM MgCl2, 0.1 mM ZnCl2, 50% glycerol and 50 mM tris-hydrochloride (pH: 9.5). 

Initial screening was performed at a concentration of 0.1 mM of the tested compounds. The 

total volume of 100 µL contained 70 µL of the assay buffer, 10 µL of tested compound (0.1 mM 

with final DMSO 1% (v/v)) and 10 µL of h-NPP-1 (27 ng of protein from COS cell lysate in 

assay buffer) or 10 µL of h-NPP-3 (25 mg of protein from COS cell lysate in assay buffer). The 

mixture was pre-incubated for 10 minutes at 37 °C and absorbance was measured at 405 nm as 

pre-read using microplate reader (BioTek FLx800, Instruments, Inc. USA). The reaction was 

then initiated by the addition of 10 µL of p-Nph-5-TMP substrate at a final concentration of 

0.5 mM and the reaction mixture was incubated for 30 more min at 37 °C. The change in the 

absorbance was measured as after-read. The activity of each compound was compared with the 

reaction in absence of synthesized compounds/inhibitors. The compounds which exhibited over 

50% inhibition of either the h-NPP-1 activity or h-NPP-3 activity were further evaluated for 

determination of IC50 values. For this purpose, their dose response curves were obtained by 

assaying each inhibitor concentration against both NPPs using the above mentioned reaction 

conditions. All experiments were repeated three times in triplicate. The Cheng Prusoff equation 

was used to calculate the IC50 values, determined by the non-linear curve fitting program 

PRISM 5.0 (GraphPad, San Diego, California, USA). 

Preparation of receptor and ligands 

Prior to docking procedures, the receptor crystalline structures were downloaded from 

RCSB Protein Data Bank. As no good resolution template was present for eeAChE, the crystal 

structure of Torpedo californica AChE (PDB ID 3I6Z) with resolution of 2.19 Å and Human 

BuChE (PDB ID 1P0I) of human BuChE with resolution of 2.0 Å were downloaded. Receptors 

for docking studies were prepared by using Load or Prepare Utility of LeadIT v2.1.8 from 
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BioSolveIT GmbH, Germany. The active site of the receptor was defined by selecting amino 

acid residue in 7.5 Å radius around reference ligands i.e. Galantamine (G6X) in AChE receptor 

and Butanoic acid (BUA) in BuChE. 

Ligands: Chemical structures of the ligands were drawn using ACD/ChemSketch v14.1, 

and 3D optimized. Using ANTECHAMBER, Gasteiger charges were added. Ligand structures 

were then subjected to energy minimization using default values in Chimera v1.10.04 and saved 

as mol2 files.  

Molecular docking 

Molecular docking was performed by Syed Jawad Ali Shah in the group of Dr. Jamshed 

Iqbal, Centre for Advanced Drug Research, COMSATS Institute of Information Technology, 

Abbottabad, Pakistan. 

Molecular docking was carried out using FlexX utility of LeadIT v2.1.8 from BioSolveIT 

GmbH, Germany. The binding site was defined as stated above. Water, amino acid residues and 

small molecules were handled automatically by the software. Compounds were protonated as 

in aqueous solution. Top ranking 30 poses were kept and further used for HYDE Assessment. 

Hyde assessment and visual affinity 

Top ranking docked poses were then subjected to HYDE assessment of LeadIT v.2.1.8 to 

determine the Binding Free Energy (binding affinity). HYDE is based on two parameters. One 

is hydrogen bonding and the second one is dehydration term i.e. ΔGi
HYDE = Ʃ ΔGi

Dehydration + Ʃ 

ΔGi
H-bond 

General procedure for the synthesis of pyrrolocoumarins 

Compound 2.4 (0.3 mmol), aniline 2.5 (0.36 mmol, 1.2 equiv), Pd(OAc)2 (0.03 mmol, 

10% mol), SPhos (0.06 mmol, 20% mol), CuI (20% mol), and Cs2CO3 (2.5 equiv. 0.9 mmol) 

were placed in a dried pressure tube equipped with a septum. The reaction was back-filled with 

argon three times. Then dry and degassed DMF (4 mL) was added under argon and the septum 

was replaced with a Teflon cap. The reaction mixture was allowed to stir at 80 °C for 4 h. Then 

the reaction mixture was cooled to room temperature and was filtered through a pad of Celite. 

The Celite pad was washed three times with ethyl acetate (3x20 mL). The filtrate was dried 

under reduced pressure, and the product 2.6 was obtained after flash chromatography on a silica 

gel column. 
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3-(4-Methoxyphenyl)-2-phenylchromeno[3,4-b]pyrrol-4(3H)-one 2.6a 

White solid, 64% (70.5 mg). M.p.: 197–199 °C.  

IR (ATR, cm-1): 3068.7 (w), 2971.0 (w), 2840.9 (w), 1720.8 (s), 

1608.6 (m), 1512.0 (s), 1464.4 (s), 1356.6 (m), 1249.1 (m), 

1168.0 (s), 1065.4 (s), 973.8 (s), 831.2 (m), 755.7 (s), 693.9 (s), 

553.3 (s). 

1H NMR (300 MHz, CDCl3) δ 7.89 – 7.79 (m, 1H, CHAr), 7.40 (dd, 3J = 4.9, 4J = 1.4 Hz, 2H, 

CHAr), 7.34 – 7.15 (m, 8H, CHAr), 6.95 – 6.84 (m, 3H, CHAr), 3.83 (s, 3H, OCH3). 

13C NMR (75 MHz, CDCl3) δ 159.5 (C-OCH3), 154.2 (C=O), 151.6, 145.5, 131.2, 130.5, 130.3 

(CAr), 129.3 (2CHAr), 129.0 (2CHAr), 128.2 (3CHAr), 127.9, 123.8, 122.8 (CHAr), 118.3, 117.7 

(CAr), 116.9 (CAr), 113.7 (2CHAr), 102.9 (CHAr), 55.3 (OCH3). 

MS (EI,70 eV): m/z (%) = 367 (M+, 100), 278 (5), 205 (10), 176 (9), 133 (5), 77 (4). 

HRMS (EI, 70 eV): calcd for C24H16O3N1 ([M]+): 367.12029, found: 367.11931. 

3-(3-Methoxyphenyl)-2-phenylchromeno[3,4-b]pyrrol-4(3H)-one 2.6b 

Yellowish solid, 47% (51.7 mg). M.p.: 182–183 °C. 

IR (ATR, cm-1): 3116.2 (w), 3063.7 (w), 2951.1 (w), 2849.3 (w), 

1710.4 (s), 1598.8 (m), 1487.0 (m), 1463.4 (s), 1356.2 (m), 

1213.5 (s), 1111.8 (m), 1031.5 (s), 989.4 (m), 954.4 (m), 850.0 

(m), 762.4 (s), 693.9 (s), 647.1 (m). 

1H NMR (300 MHz, CDCl3) δ 7.84 (d, 3J = 7.6 Hz, 1H, CHAr), 7.47 – 7.36 (m, 2H, CHAr), 

7.36 – 7.17 (m, 7H, CHAr), 7.06 – 6.74 (m, 4H, CHAr), 3.74 (s, 3H, OCH3). 

13C NMR (63 MHz, CDCl3) δ 159.7 (C-OCH3), 154.0 (C=O), 151.6, 145.3, 138.4, 131.1, 130.7 

(CAr), 129.3 (CHAr), 129.2 (2 CHAr), 128.6 (CHAr), 128.5 (2 CHAr), 128.3, 124.2, 123.2, 121.1 

(CHAr), 118.1, 117.7 (CAr), 117.3, 114.8, 114.5, 103.5 (CHAr), 55.6 (OCH3) 

MS (EI,70 eV): m/z (%) = 367 (M+, 100), 278 (5), 205 (7), 176 (9), 92 (4), 77 (4). 

HRMS (EI, 70 eV): calcd for C24H16O3N1 ([M]+): 367.12029, found: 367.11972. 

3-(2-Methoxyphenyl)-2-phenylchromeno[3,4-b]pyrrol-4(3H)-one 2.6c 



APPENDIX 

viii 

 

Yellowish solid, 61% (67.2 mg). M.p.: 162–163 °C. 

IR (ATR, cm-1): 3067.7 (w), 2923.1 (w), 2843.0 (w), 1717.9 (s), 1598.9 

(w), 1503.0 (m), 1465.0 (s), 1279.3 (m), 1220.4 (m), 1162.0 (m), 1108.9 

(m), 1060.3 (m), 969.9 (s), 896.1 (m), 756.1 (s), 700.5 (s), 655.3 (m), 

549.6 (m). 

1H NMR (300 MHz, CDCl3) δ 7.98 – 7.73 (m, 1H, CHAr), 7.43 – 7.35 (m, 3H, CHAr), 

7.34 – 7.21 (m, 6H, CHAr), 7.16 (dd, 3J = 7.7, 4J = 1.7 Hz, 1H, CHAr), 7.02 – 6.88 (m, 3H, 

CHAr), 3.68 (s, 3H, OCH3). 

13C NMR (75 MHz, CDCl3) δ 155.8 (C-OCH3), 154.0 (C=O), 151.6, 145.5, 131.3, 130.4 (CAr), 

130.4 (CHAr), 129.8 (CHAr), 128.8 (2CHAr), 128.5 (CHAr ), 128.3 (2 CHAr), 128.0 (CHAr), 126.8 

(CAr), 124.0, 123.1, 120.5 (CHAr), 118.4, 117.9 (CAr), 117.2, 112.0, 102.9 (CHAr), 55.8 (OCH3). 

MS (EI,70 eV): m/z (%) = 367 (M+, 100), 336 (35), 261 (25), 205 (5), 176 (10), 139 (9), 77 

(6). 

HRMS (EI, 70 eV): calcd for C24H16O3N1 ([M]+): 367.12029, found: 367.11965. 

2,3-Diphenylchromeno[3,4-b]pyrrol-4(3H)-one 2.6d 

White solid, 52% (52.6 mg). M.p.: 215–216 °C. 

IR (ATR, cm-1): 3051.9 (w), 2922.3 (w), 2849.8 (w), 1714.0 (s), 

1590.1 (w), 1495.0 (m), 1468.7 (m), 1390.6 (m), 1352.7 (m), 1224.1 

(m), 1165.9 (m), 1110.5 (m), 1063.1 (s), 760.2 (s), 690.5 (s), 558.7 

(m). 

1H NMR (300 MHz, CDCl3) δ 7.92 – 7.75 (m, 1H, CHAr), 7.51 – 7.13 (m, 13H, CHAr), 6.95 (s, 

1H, CHAr). 

13C NMR (75 MHz, CDCl3) δ 154.1 (C=O), 151.6, 145.4, 137.5, 131.1, 130.7 (CAr), 129.3 

(2CHAr), 128.7 (2 CHAr ), 128.7 (CHAr ), 128.7 (2 CHAr ), 128.5 (CHAr ), 128.5 (2 CHAr ), 128.3, 

124.2, 123.12 (CHAr), 118.1, 117.7 (CAr), 117.2, 103.5 (CHAr). 

MS (EI,70 eV): m/z (%) = 337 (M+, 100), 307 (5), 291 (13), 278 (5), 205 (12), 176 (10), 146 

(8), 77 (11). 

HRMS (+ESI, 180 eV): calcd for C23H15O2N1 ([M+H]+): 338.11773, found: 338.11756. 

3-(4-Fluorophenyl)-2-phenylchromeno[3,4-b]pyrrol-4(3H)-one 2.6e 
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Yellowish solid, 41% (43.7 mg). M.p.: 226–227 °C. 

IR (ATR, cm-1): 3412.0 (w), 3096.6 (w), 3069.1 (w), 1710.4 (w), 

1609.2 (w), 1507.4 (s), 1467.2 (m), 1355.7 (m), 1220.4 (s), 1117.2 

(m), 1064.2 (m), 977.5 (m), 845.3 (m), 756.7 (s), 695.1 (m), 553.3 

(s). 

1H NMR (300 MHz, CDCl3) δ 7.84 (dt, 3J = 7.6, 4J = 1.1 Hz, 1H, CHAr), 7.41 (dd, 3J = 4.7, 

4J = 1.0 Hz, 2H, CHAr), 7.38 – 7.15 (m, 8H, CHAr), 7.13 – 7.02 (m, 2H, CHAr), 6.93 (s, 1H, 

CHAr). 

19F NMR (282 MHz, CDCl3) δ -112.40. 

13C NMR (75 MHz, CDCl3) δ 162.4 (d, 1J = 248.7 Hz, CF), 154.2 (C=O), 151.6, 145.5, 133.5 

(d, 4J = 3.3 Hz), 130.9, 130.8 (CAr), 130.4 (d, 3J = 8.8 Hz, 2 CHAr ), 129.3 (2 CHAr ), 128.7 

(CHAr ), 128.6 (2 CHAr ), 128.4, 124.3, 123.2 (CHAr), 118.2, 117.6 (CAr), 117.3 (CHAr ), 115.8 

(d, 2J = 23.0 Hz, 2 CHAr ), 103.6 (CHAr). 

MS (EI,70 eV): m/z (%) = 355 (M+, 100), 309 (11), 224 (6), 205 (8), 176 (9), 155 (5), 95 (7). 

77 (2). 

2-Phenyl-3-(3-(trifluoromethyl)phenyl)chromeno[3,4-b]pyrrol-4(3H)-one 2.6f 

Yellowish solid, 35% (42.5 mg). M.p.: 191–192 °C. 

 IR (ATR, cm-1): 3059.1 (w), 2922.3 (w), 2851.1 (w), 1713.6 (s), 

1612.3 (w), 1498.5 (w), 1463.6 (m), 1401.8 (w), 1330.0 (s), 1251.2 

(w), 1166.3 (m), 1125.0 (s), 1064.6 (s), 987.7 (m), 818.9 (m), 

765.3 (s), 698.6 (s), 654.4 (m), 550.0 (m). 

1H NMR (300 MHz, CDCl3) δ 7.93 – 7.78 (m, 1H, CHAr), 7.70 – 7.60 (m, 1H, CHAr), 

7.58 – 7.45 (m, 3H, CHAr), 7.45 – 7.38 (m, 2H, CHAr)), 7.38 – 7.22 (m, 4H, CHAr), 7.22 – 7.12 

(m, 2H, CHAr), 6.96 (s, 1H, CHAr). 

19F NMR (282 MHz, CDCl3) δ -62.73. 

13C NMR (75 MHz, CDCl3) δ 154.1 (C=O), 151.6, 145.5, 137.8 (CAr), 132.1(CHAr), 131.2 

(CAr), 131.2 (q, 2J = 33.1 Hz, CAr-CF3), 130.5 (CAr), 129.4 (2 CHAr ), 129.3 (CHAr ), 128.9 

(CHAr), 128.7 (2 CHAr ), 128.6, 125.8 (q, 3J = 3.8 Hz), 125.4 (q, 3J = 3.6 Hz), 124.3, 123.9 

(CHAr), 123.58 (q, 1J = 270.2 Hz, CF3), 118.0, 117.4 (CAr), 117.3, 104.1 (CHAr). 

MS (EI,70 eV): m/z (%) = 405 (M+, 100), 384 (36), 274 (4), 205 (11), 176 (9), 145 (7), 75 (3). 

HRMS (EI, 70 eV): calcd for C24H14F3O2N1 ([M]+): 405.09711, found: 405.09668. 
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4-(4-Oxo-2-phenylchromeno[3,4-b]pyrrol-3(4H)-yl)benzonitrile 2.6g 

Yellow solid, 40% (43.3 mg). M.p.: 233–234 °C. 

IR (ATR, cm-1): 3096.1 (w), 3067,6 (w), 3046.2 (w), 2241.8 (w), 

2232.5 (w), 1719.4 (m), 1704.5 (s), 1600.6 (w), 1507.9 (m), 

1466.4 (m), 1399.7 (m), 1355.2 (w), 1223.5 (w), 1065.2 (m), 

977.7 (m), 854.4 (m), 756.5 (s), 696.4 (m), 566.9 (m). 

1H NMR (300 MHz, CDCl3) δ 7.89 – 7.78 (m, 1H, CHAr), 7.72 – 7.63 (m, 2H, CHAr), 

7.46 – 7.27 (m, 8H, CHAr), 7.16 (dd, 3J = 7.8, 4J = 1.7 Hz, 2H, CHAr), 6.97 (s, 1H, CHAr). 

13C NMR (75 MHz, CDCl3) δ 154.1 (C=O), 151.6, 145.3, 141.2 (CAr), 132.6 (2 CHAr), 131.7, 

130.3 (CAr), 129.7 (2 CHAr), 129.3 (2 CHAr ), 129.1 (CHAr ), 128.8 (3 CHAr ), 124.5, 123.3 

(CHAr), 117.9 (CAr), 117.4 (CHAr), 117.3, 112.5 (CAr), 104.5 (CHAr). (one signal could not be 

detected) 

MS (EI,70 eV): m/z (%) = 362 (M+, 100), 316 (12), 277 (1), 230 (4), 203 (6), 176 (8), 152 (6), 

75 (4). 

HRMS (EI, 70 eV): calcd for C24H14O2N2 ([M]+): 362.10498, found: 362.10398. 

3-Benzyl-2-phenylchromeno[3,4-b]pyrrol-4(3H)-one 2.6h 

Yellowish solid, 82% (86.3 mg). M.p.: 199–201 °C.  

IR (ATR, cm-1): 3130.8 (w), 3025.7 (w), 2962.9 (w), 2850.9 (w), 

1702.9 (s), 1496.5 (m), 1427.0 (m), 1257.1 (m), 1202.5 (m), 1010.3 

(m), 963.0 (m), 892.9 (m), 813.5 (m), 751.8 (s), 727.5 (s), 689.9 (s), 

648.6 (m), 584.0 (m). 

1H NMR (250 MHz, CDCl3) δ 7.79 (dd, 3J = 7.0, 4J = 1.0 Hz, 1H, CHAr), 7.50 – 7.35 (m, 7H, 

CHAr), 7.35 – 7.15 (m, 4H, CHAr), 6.93 (dd, 3J = 7.2, 4J = 2.3 Hz, 2H, CHAr), 6.77 (s, 1H, CHAr), 

5.77 (s, 2H, CH2). 

13C NMR (63 MHz, CDCl3) δ 154.9 (C=O), 151.4, 145.9, 138.1, 131.2, 130.4 (CAr), 129.5 (2 

CHAr), 129.1 (CHAr), 128.7 (2 CHAr), 128.5 (2 CHAr), 127.9 (CHAr), 127.3 (CHAr), 126.4 

(2CHAr), 124.1, 122.9 (CHAr), 117.7 (CAr), 117.1, 103.3 (CHAr), 49.1 (CH2) (One signal could 

not be detected). 

MS (EI,70 eV): m/z (%) = 351 (M+, 76), 334 (4), 260 (4), 232 (7), 203 (5), 176 (6), 157 (3), 91 

(100), 65 (10). 

HRMS (EI, 70 eV): calcd for C24H17O2N1 ([M]+): 351.12538, found: 351.12528. 
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3-Phenethyl-2-phenylchromeno[3,4-b]pyrrol-4(3H)-one 2.6i 

Yellowish solid, 76% (83.2 mg). M.p.: 185–186 °C. 

 IR (ATR, cm-1): 3064.6 (w), 3025.6 (w), 2924.7 (w), 2860.8 (w), 

1703.1 (s), 1603.2 (w), 1504.7 (w), 1465.5 (m), 1356.5 (m), 1198.2 

(m), 1110.2 (m), 1070.7 (m), 953.6 (m), 757.1 (s), 693.8 (s), 652.7 

(m). 

1H NMR (300 MHz, CDCl3) δ 7.77 (dd, 3J = 7.7, 4J = 1.3 Hz, 1H, CHAr), 7.53 – 7.33 (m, 5H, 

CHAr), 7.34 – 7.20 (m, 3H, CHAr), 7.21 – 7.08 (m, 3H, CHAr), 6.99 – 6.82 (m, 2H, CHAr), 6.62 

(s, 1H, CHAr), 4.66 (dd, 3J = 8.2, 3J = 6.8 Hz, 2H, NCH2CH2), 3.10 – 2.96 (m, 2H, NCH2CH2). 

13C NMR (63 MHz, CDCl3) δ 155.5 (C=O), 151.8, 146.2, 138.2, 131.6, 130.7 (CAr), 129.8 (2 

CHAr , 129.3 (CHAr ), 129.3 (2 CHAr ), 129.0 (2 CHAr ), 128.8 (2 CHAr ), 128.3, 126.9, 124.5, 

123.4 (CHAr), 118.2 (CAr), 117.5 (CHAr), 116.9 (CAr), 103.2 (CHAr), 47.9 (NCH2CH2), 38.5 

(NCH2CH2). 

MS (EI,70 eV): m/z (%) = 365 (M+, 41), 274 (44), 261 (100), 244 (4), 230 (16), 202 (14), 152 

(3), 91 (6), 65 (3). 

HRMS (EI, 70 eV): calcd for C25H19O2N1 ([M]+): 365.14103, found: 365.14097. 

3-(4-Fluorobenzyl)-2-phenylchromeno[3,4-b]pyrrol-4(3H)-one 2.6j 

Yellowish solid, 61% (67.5 mg). M.p.: 211–212 °C. 

IR (ATR, cm-1): 3114.5 (w), 3054.4 (w), 2943.7 (w), 1703.7 (s), 

1604.6 (w), 1506.2 (s), 1465.1 (s), 1381.6 (w), 1295.3 (m), 1208.2 

(s), 1113.9 (s), 1040.5 (s), 949.6 (m), 894.5 (m), 765.2 (s), 698.2 (s), 

651.5 (m), 538.4 (m). 

1H NMR (300 MHz, CDCl3) δ 7.82 – 7.75 (m, 1H, CHAr), 7.49 – 7.43 

(m, 3H, CHAr), 7.43 – 7.34 (m, 4H, CHAr), 7.33 – 7.27 (m, 1H, CHAr), 6.90 – 6.86 (m, 4H, 

CHAr), 6.76 (s, 1H, CHAr), 5.73 (s, 2H, CH2). 

19F NMR (282 MHz, CDCl3) δ -115.07. 

13C NMR (63 MHz, CDCl3) δ 162.2 (d, 1J = 245.7 Hz, CF), 155.2 (C=O), 151.6, 146.0, 133.9 

(d, 4J = 3.2 Hz), 131.2, 130.7 (CAr), 129.6 (2 CHAr ), 129.4 (CHAr ), 128.9 (2 CHAr ), 128.48 (d, 

3J = 8.1 Hz, 2 CHAr ), 128.2, 124.3, 123.1 (CHAr), 117.8 (CAr), 117.3 (CHAr), 117.1 (CAr), 115.6 

(d, 2J = 21.6 Hz, 2 CHAr ), 103.6 (CHAr), 48.5 (CH2). 

MS (EI,70 eV): m/z (%) = 369 (M+, 70), 260 (4), 232 (6), 203 (4), 176 (5), 109 (100), 83 (7). 
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HRMS (EI, 70 eV): calcd for C24H16F1O2N1 ([M]+): 369.11596, found: 369.11563. 

2-Phenyl-3-(3-(trifluoromethyl)benzyl)chromeno[3,4-b]pyrrol-4(3H)-one 2.6k 

Yellow solid, 46% (57.8 mg). M.p.: 153–154 °C. 

 IR (ATR, cm-1): 3119.1 (w), 3067.1 (w), 2981.0 (w), 2851.0 

(w), 1707.7 (s), 1504.7 (m), 1427.7 (m), 1325.6 (s), 1202.7 (m), 

1118.5 (s), 1071.8 (m), 1037.2 (m), 1016.3 (m), 894.9 (m), 817.7 

(m), 759.4 (s), 694.5 (s), 653.9 (s), 557.3 (m). 

1H NMR (300 MHz, CDCl3) δ 7.86 – 7.70 (m, 1H, CHAr), 7.54 – 7.27 (m, 10H, CHAr), 7.17 (d,3 

J = 7.8 Hz, 1H, CHAr), 7.09 (s, 1H, CHAr), 6.78 (s, 1H, CHAr), 5.81 (s, 2H, CH2). 

19F NMR (282 MHz, CDCl3) δ -62.70. 

13C NMR (63 MHz, CDCl3) δ 155.3 (C=O), 151.6, 146.1, 139.1, 131.0 (CAr), 130.9 (q, 

2J = 32.5 Hz, C-CF3), 130.8 (CAr), 130.2 (CHAr ), 129.6 (2 CHAr ), 129.6, 129.3 (CHAr ), 129.1 

(2 CHAr), 128.3 (CHAr), 124.5 (q, 3J = 8.1 Hz, CHAr), 124.4 (CHAr), 123.8 (q, 1J = 273 Hz, CF3), 

123.7 (q, 3J = 7.7 Hz, CHAr), 123.2 (CHAr), 117.8 (CAr), 117.3 (CHAr), 177.1 (CAr), 103.8 

(CHAr), 48.7 (CH2). 

MS (EI,70 eV): m/z (%) = 419 (M+, 100), 398 (13), 274 (9), 260 (27), 232 (27), 203 (10), 176 

(11), 159 (37), 109 (12), 75 (4). 

HRMS (EI, 70 eV): calcd for C25H16F3O2N1 ([M]+): 419.11276, found: 419.11272. 

3-(3,4-Dimethoxybenzyl)-2-(4-fluorophenyl)chromeno[3,4-b]pyrrol-4(3H)-one 2.6l 

Yellowish solid, 57% (73.4 mg). M.p.: 231–231 °C. 

1H NMR (300 MHz, CDCl3) δ 7.80 – 7.73 (m, 1H, CHAr), 

7.45 – 7.33 (m, 4H, CHAr), 7.33 – 7.25 (m, 1H, CHAr), 

7.23 – 7.09 (m, 2H, CHAr), 6.72 (s, 1H. CHHAr), 6.67 (d, 

3J = 8.3 Hz, 1H, CHAr), 6.53 (d, 4J = 2.0 Hz, 1H, CHAr), 6.43 

(dd,3J = 8.2, 4J = 2.0 Hz, 1H, CHAr), 5.67 (s, 2H, CH2), 3.79 (s, 

3H, OCH3), 3.72 (s, 3H, OCH3). 

19F NMR (282 MHz, CDCl3) δ -111.39. 

13C NMR (75 MHz, CDCl3) δ 163.3 (d, 1J = 250.0 Hz, CF), 155.2 (C=O), 151.5, 149.0, 148.5, 

144.8 (CAr), 131.6 (d, 3J = 8.3 Hz, 2CHAr), 130.6 (CHAr), 130.5 (CAr), 127.5 (d, 4J = 3.5 Hz, 

CAr), 124.3, 123.1, 119.2 (CHAr), 117.8 (CAr), 117.2 (CHAr), 117.1 (CAr), 116.1 (d, 2J = 21.7 Hz, 

2CHAr), 111.3, 110.3, 103.6 (CHAr), 55.9, 55.9 (OCH3), 48.8 (CH2). 
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MS (EI,70 eV): m/z (%) = 429 (M+, 18), 151 (100), 107 (7), 78 (3). 

HRMS (EI, 70 eV): calcd for C26H20F1O4N1 ([M]+): 429.13709, found: 429.13713. 

2-(4-(Tert-butyl)phenyl)-3-(4-fluorobenzyl)chromeno[3,4-b]pyrrol-4(3H)-one 2.6m 

Yellowish solid, 47% (60.0 mg). M.p.: 187–188 °C. 

IR (ATR, cm-1): 3074.1 (w), 2961.9 (w), 2866.9 (w), 1720.6 (s), 

1605.8 (m), 1508.8 (m), 1475.7 (m), 1358.2 (m), 1219.9 (m), 1156.6 

(m), 1083.2 (m), 1032.4 (m), 970.7 (m), 765.3 (s), 652.1 (m), 575.9 

(m), 526.5 (m). 

1H NMR (300 MHz, CDCl3) δ 7.87 – 7.70 (m, 1H, CHAr), 7.51 – 7.43 

(m, 2H, CHAr), 7.43 – 7.36 (m, 2H, CHAr), 7.36 – 7.27 (m, 3H, CHAr), 

6.95 – 6.84 (m, 4H, CHAr), 6.75 (s, 1H, CHHAr), 5.73 (s, 2H, CH2), 1.37 (s, 9H, C(CH3)3). 

19F NMR (282 MHz, CDCl3) δ -115.21. 

13C NMR (75 MHz, CDCl3) δ 162.1 (d, 1J = 245.6 Hz, CF), 155.1 (C=O), 152.7, 151.6, 146.2, 

134.1 (d, 4J = 3.2 Hz, CAr), 130.7 (CAr), 129.3 (2CHAr ), 128.4 (d, 3J = 8.1 Hz, 2CHAr ), 128.2 

(CAr), 128.1 (CHAr), 125.9 (2CHAr ), 124.2, 123.1 (CHAr), 117.8 (CAr), 117.2 (CHAr), 116.9 

(CAr), 115.51 (d, 2J = 21.5 Hz, 2CHAr), 103.4 (CHAr), 48.6 (CH2), 34.9 (C(CH3)3), 31.4 (3C, 

C(CH3)3). 

MS (EI,70 eV): m/z (%) = 425 (M+, 94), 410 (21), 301 (26), 273 (6), 109 (100), 83 (6). 

HRMS (EI, 70 eV): calcd for C28H24F1O2N1 ([M]+): 425.17856, found: 425.1782. 

2-(4-(Tert-butyl)phenyl)-3-phenethylchromeno[3,4-b]pyrrol-4(3H)-one 2.6n 

Yellowish solid, 65% (82.1 mg). M.p.: 168–169 °C. 

 IR (ATR, cm-1): 3030.4 (w), 2962.0 (w), 2921.1 (w), 2847.9 (w), 

1704.6 (s), 1514.5 (w), 1490.3 (m), 1452.8 (m), 1398.2 (m), 

1284.0 (m), 1070.4 (m), 1014.0 (m), 942.9 (w), 764.3 (s), 700.6 

(s), 659.3 (m), 576.7 (m), 532.6 (w). 

1H NMR (300 MHz, CDCl3) δ 7.82 – 7.73 (m, 1H, CHAr), 

7.50 – 7.33 (m, 4H, CHAr), 7.33 – 7.11 (m, 6H, CHAr), 7.02 – 6.93 (m, 2H, CHAr), 6.62 (s, 1H, 

CHHAr), 4.79 – 4.59 (m, 2H, NCH2CH2), 3.12 – 2.76 (m, 2H, NCH2CH2), 1.40 (s, 9H, C(CH3)3). 

13C NMR (75 MHz, CDCl3) δ 155.2 (C=O), 152.3, 151.6, 145.9, 138.0, 130.4 (CAr), 129.3 

(2CHAr), 129.0 (2CHAr), 128.5 (2CHAr), 128.3 (CAr), 127.9, 126.6 (CHAr), 125.7 (2CHAr), 



APPENDIX 

xiv 

 

124.1, 123.1 (CHAr), 117.9 (CAr), 117.2 (CHAr), 116.5 (CAr), 102.7 (CHAr), 47.6 (NCH2CH2), 

38.3 (NCH2CH2), 34.9 (C(CH3)3), 31.4 (3C, C(CH3)3). 

MS (EI,70 eV): m/z (%) = 421 (M+, 75), 317 (77), 302 (84), 274 (100), 230 (7), 202 (8), 105 

(9), 77 (9), 57 (36), 41 (10). 

HRMS (EI, 70 eV): calcd for C29H27O2N1 ([M]+): 421.20363, found: 421.20335. 

2-(4-methoxyphenyl)-3-phenethylchromeno[3,4-b]pyrrol-4(3H)-one 2o 

Yellowish solid, 69% (81.8 mg). M.p.: 194–195 °C 

1H NMR (300 MHz, CDCl3) δ 7.76 (dd, 3J = 7.7, 4J = 1.2 Hz, 

1H, CHAr), 7.48 – 7.33 (m, 2H, CHAr), 7.29 (dd, 3J = 7.6, 

4J = 1.7 Hz, 1H, CHAr), 7.22 – 7.10 (m, 5H, CHAr), 7.01 – 6.88 

(m, 4H, CHAr), 6.57 (s, 1H, CHAr), 4.84 – 4.35 (m, 2H, 

NCH2CH2), 3.88 (s, 3H, OCH3), 3.11 – 2.94 (m, 2H, NCH2CH2). 

13C NMR (75 MHz, CDCl3) δ 160.2 (C-OCH3), 155.2 (C=O), 151.6, 145.8, 138.0 (CAr), 130.8 

(2CHAr), 130.4 (CAr), 129.1 (2CHAr), 128.6 (2CHAr), 127.9, 126.6, 124.1 (CHAr), 123.5 (CAr), 

123.1 (CHAr), 117.9 (CAr), 117.0 (CHAr), 116.4 (CAr), 114.2 (2CHAr), 102.7 (CHAr), 55.5 

(OCH3), 47.56 (N CH2CH2), 38.2 (N CH2CH2). 

MS (EI,70 eV): m/z (%) = 395 (M+, 57), 304 (56), 291 (100), 276 (24), 217 (12), 190 (6), 91 

(6), 77 (8). 

HRMS (EI, 70 eV): calcd for C26H21O3N1 ([M]+): 395.15160, found: 395.15141. 

3-Phenethyl-2-propylchromeno[3,4-b]pyrrol-4(3H)-one 2.6p 

Yellowish oil, 62% (61.6 mg). 

IR (ATR, cm-1): 3124.1 (w), 3024.2 (w), 2959.5 (w), 2873.7 (w), 

1710.7 (s), 1593.8 (w), 1491.6 (m), 1434.0 (m), 1362.3 (m), 

1285.2 (m), 1208.0 (m), 1153.9 (w), 1062.2 (m), 1015.2 (m), 

965.1 (m), 895.0 (m), 793.0 (m), 763.1 (s), 748.8 (s), 697.5 (s), 

657.1 (m), 575.2 (m), 531.7 (m). 

1H NMR (300 MHz, CDCl3) δ 7.83 – 7.64 (m, 1H, CHAr), 7.43 – 7.32 (m, 2H, CHAr), 

7.31 – 7.21 (m, 4H, CHAr), 7.15 – 7.08 (m, 2H, CHAr), 6.40 (s, 1H, CHAr), 4.67 – 4.50 (m, 2H), 

3.21 – 3.03 (m, 2H), 2.38 – 2.24 (m, 2H), 1.74 – 1.55 (m, 2H, CH2), 0.96 (t, 3J = 7.3 Hz, 3H, 

CH3). 
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13C NMR (63 MHz, CDCl3) δ 155.0 (C=O), 151.5, 146.3, 138.3, 130.2 (CAr), 129.2 (2CHAr), 

128.7 (2CHAr), 127.7, 126.8, 124.0, 123.0 (CHAr), 118.1 (CAr), 117.2 (CHAr), 115.5 (CAr), 100.2 

(CHAr), 47.1 (NCH2CH2), 38.2 (NCH2CH2), 28.3, 21.62 (CH2), 14.1 (CH3). 

MS (EI,70 eV): m/z (%) = 331 (M+, 74), 240 (100), 227 (42), 212 (17), 198 (39), 181 (5), 115 

(9), 91 (12), 77 (12), 65 (5). 

HRMS (EI, 70 eV): calcd for C22H21O2N1 ([M]+): 331.15668, found: 331.15666. 

2-Butyl-3-phenethylchromeno[3,4-b]pyrrol-4(3H)-one 2.6q 

Yellowish oil, 65% (67.2 mg). 

IR (ATR, cm-1): 3118.7 (w), 3025.9 (w), 2959.3 (w), 2864.4 (w), 

1703.8 (s), 1612.7 (w), 1507.5 (w), 1477.5 (m), 1428.2 (m), 

1358.6 (m), 1301.0 (w), 1202.2 (m), 1037.0 (m), 956.3 (w), 829.0 

(m), 751.2 (s), 697.4 (m), 570.3 (m).  

1H NMR (300 MHz, CDCl3) δ 7.73 (dd, 3J = 7.6, 4J = 1.3 Hz, 1H, CHAr), 7.43 – 7.31 (m, 2H, 

CHAr), 7.31 – 7.21 (m, 4H, CHAr), 7.16 – 7.07 (m, 2H, CHAr), 6.39 (s, 1H, CHAr), 4.70 – 4.49 

(m, 2H, CH2), 3.10 (t, 3J = 7.3 Hz, 2H, CH2), 2.48 – 2.22 (m, 2H, CH2), 1.73 – 1.48 (m, 2H, 

CH2), 1.43 – 1.25 (m, 2H, CH2), 0.93 (t, 3J = 7.3 Hz, 3H, CH3). 

13C NMR (75 MHz, CDCl3) δ 154.9 (C=O), 151.4, 146.4, 138.2, 130.1 (CAr), 129.1 (2CHAr), 

128.6 (2CHAr), 127.6, 126.7, 123.9, 122.9 (CHAr), 117.9 (CAr), 117.0 (CHAr), 115.3 (CAr), 100.1 

(CHAr), 46.9 (NCH2CH2), 38.1 (NCH2CH2), 30.3, 25.8, 22.5 (CH2), 13.9 (CH3). 

MS (EI,70 eV): m/z (%) = 345 (M+, 57), 316 (8), 254 (20), 241 (6), 212 (100), 199 (59), 167 

(9), 105 (9), 91 (12), 77 (11). 

HRMS (EI, 70 eV): calcd for C23H23O2N1 ([M]+): 345.17233, found: 345.17210. 

2-Butyl-3-(4-fluorobenzyl)chromeno[3,4-b]pyrrol-4(3H)-one 2.6r 

Yellowish oil, 51% (53.4 mg).  

IR (ATR, cm-1): 3069.6 (w), 2957.3 (w), 2926.6 (w), 2855.0 (w), 

1706.5 (s), 1603.4 (w), 1495.9 (m), 1432.4 (m), 1392.2 (m), 1314.5 

(w), 1221.8 (m), 1159.4 (m), 1072.8 (m), 977.5 (m), 895.2 (m), 839.8 

(m), 808.7 (m), 767.3 (s), 733.5 (m), 659.8 (m), 551.5 (m). 

1H NMR (300 MHz, CDCl3) δ 7.81 – 7.71 (m, 1H, CHAr), 7.43 – 7.32 

(m, 2H, CHAr), 7.32 – 7.23 (m, 1H, CHAr), 7.10 – 6.81 (m, 4H, CHAr), 6.54 (s, 1H, CHHAr), 5.73 
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(s, 2H, CH2), 2.67 – 2.55 (m, 2H, CH2), 1.74 – 1.59 (m, 2H, CH2), 1.40 (m, 2H, CH2), 0.92 (t, 

3J = 7.3 Hz, 3H, CH3). 

19F NMR (282 MHz, CDCl3) δ -115.08. 

13C NMR (75 MHz, CDCl3) δ 162.1 (d, 1J = 244.5 Hz, CF), 155.0 (C=O), 151.3, 146.5 (CAr), 

133.3 (d, 4J = 3.3 Hz, CAr), 130.2 (CAr), 128.1 (d, 3J = 7.5 Hz, 2CHAr), 127.8 (CAr), 124.0, 122.9 

(CHAr), 117.8 (CAr), 117.1, 115.9 (CHAr), 115.7 (d, 2J = 21.7 Hz, 2CHAr), 101.0 (CHAr), 47.6 

(NCH2), 30.3, 26.3, 22.4 (CH2), 13.8 (CH3).  

MS (EI,70 eV): m/z (%) = 349 (M+, 32), 320 (11), 307 (29), 24 (7), 224 (3), 198 (10), 109 

(100), 83 (8), 63 (2). 

HRMS (EI, 70 eV): calcd for C22H20F1O2N1 ([M]+): 349.14726, found: 349.14690. 

General procedure for synthesis of Indolo[1,2-f]phenanthridines 

1-Bromo-2-(phenylethynyl)benzene 3.1 (0.3 mmol), 2-bromoaniline 3.2 (0.33 mmol), 

Pd(OAc)2 (0.03 mmol, 10%), XantPhos (0.03 mmol, 10%), and Cs2CO3 (0.9 mmol) were 

placed in a dried pressure tube equipped with a septum. The reaction vessel was back-filled 

with argon three times. Then dried and degassed DMF (4 mL) was added under argon and the 

septum was replaced with a Teflon cap. The reaction mixture was allowed to stir at 120 °C for 

24 h. Then the reaction mixture was cooled to room temperature and was filtered through a pad 

of Celite. The filtrate was dried under reduced pressure, and the product 3.3 was obtained after 

flash chromatography on a silica gel column with heptane. 

Indolo[1,2-f]phenanthridine 3.3a: 

Yellowish solid, 75% (60.1 mg). M.p.: 150–151 °C.  

IR (ATR, cm-1): 3054.8 (w), 1938.2 (w), 1594.9 (w), 1562.1 (w), 1550.6 

(w), 1485 (m), 1452.2 (m), 1434.9 (s), 1355.8 (m), 1334.6 (s), 1251.6 

(m), 1199.6 (m), 1107.0 (m), 1041.4 (w), 956.6 (w), 788.8 (w), 754.1 

(m), 742.5 (s), 711.6 (m), 613.3 (m), 574.7 (m).  

1H NMR (300 MHz, CDCl3) δ 8.55 (dd, 3J = 8.5, 4J = 0.8 Hz, 1H, CHAr), 8.45 – 8.35 (m, 1H, 

CHAr), 8.32 (dd, 3J = 8.1, 4J = 1.4 Hz, 1H, CHAr), 8.27 – 8.18 (m, 1H, CHAr), 8.18 – 8.09 (m, 

1H, CHAr), 7.90 – 7.80 (m, 1H, CHAr), 7.63 – 7.52 (m, 1H, CHAr), 7.53 – 7.44 (m, 2H, CHAr), 

7.44 – 7.31 (m, 3H, CHAr), 7.26 (s, 1H, CHAr).  
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13C NMR (63 MHz, CDCl3) δ 136.3, 135.5, 134.2, 130.6 (CAr), 129.0, 128.5, 128.1 (CHAr), 

127.1, 126.4 (CAr), 124.4, 124.3, 123.3, 122.7 (CHAr), 122.4 (CAr), 122.3, 122.1, 121.3, 116.6, 

114.5, 96.5 (CHAr). 

MS (EI,70 eV): m/z (%) = 267 (M+, 100), 239(8), 134(11), 120(4), 106(3).  

HRMS (EI, 70 eV): calcd for C20H13N1 ([M]+): 267.10425, found: 267.10431. 

6-Methylindolo[1,2-f]phenanthridine 3.3b: 

Yellowish solid, 66% (55.6 mg). M.p.: 170–171 °C.  

IR (ATR, cm-1): 3120.4 (w), 3043.3 (w), 2914.1 (w), 1930.0 (w), 1593.0 

(m), 1562.1 (m), 1550.6 (m), 1488.8 (m), 1446.4 (s), 1355.8 (s), 1332.6 

(m), 1251.6 (m), 1195.7 (m), 1112.8 (m), 1043.4 (m), 958.5 (m), 788.8 

(s), 754.1 (m), 736.7 (s), 713.6 (m), 615.2 (m), 578.6 (m).  

1H NMR (300 MHz, CD2Cl2) δ 8.46 (d, 3J = 8.6 Hz, 1H, CHAr), 8.38 (d, 3J = Hz, 1H, CHAr), 

8.32 – 8.24 (m, 1H, CHAr), 8.22 – 8.13 (m, 2H, CHAr), 7.88 – 7.79 (m, 1H, CHAr), 7.57 – 7.48 

(m, 2H, CHAr), 7.47 – 7.42 (m, 1H, CHAr), 7.42 – 7.30 (m, 2H, CHAr), 7.29 (d, 4J = 0.7 Hz, 1H, 

CHAr), 2.53 (s, 3H, CH3).  

13C NMR (63 MHz, CD2Cl2) δ 135.7, 134.4, 134.4, 133.3, 130.8 (CAr), 130.3, 128.8, 128.5 

(CHAr), 127.5, 126.7 (CAr), 124.9, 124.7, 123.0, 122.5 (CHAr), 122.5 (CAr), 122.2, 121.5, 116.7, 

114.7, 96.4 (CHAr), 21.4 (CH3).  

MS (EI,70 eV): m/z (%) = 281 (M+, 100), 252(3), 139(12).  

HRMS (+ESI): calcd for C21H16N1 ([M+H]+): 282.12773, found: 282.12775. 

3-Methylindolo[1,2-f]phenanthridine 3.3c: 

Yellowish solid, 52% (43.8 mg). M.p.: 135–136 °C.  

IR (ATR, cm-1): 3114.6 (w), 3043.3 (w), 2912.1 (w), 2854.3 (w), 

1907.3 (m), 1598.8 (m), 1564.1 (w), 1556.3 (w), 1494.6 (w), 1440.6 

(s), 1351.9 (s), 1340.4 (m), 1253.6 (m), 1199.6 (w), 1112.8 (w), 

1035.6 (m), 958.5 (m), 781.1 (m), 757.9 (s), 740.6 (s), 713.6 (s), 615.2 (m), 578.6 (m), 532.3 

(s).  

1H NMR (300 MHz, CDCl3) δ 8.56 (dd, 3J = 8.5, 4J = 0.9 Hz, 1H, CHAr), 8.43 – 8.30 (m, 2H, 

CHAr), 8.08 – 8.01 (m, 2H, CHAr), 7.88 – 7.80 (m, 1H, CHAr), 7.64 – 7.53 (m, 1H, CHAr), 

7.44 – 7.30 (m, 4H, CHAr), 7.22 (s, 1H, CHAr), 2.53 (s, 3H, CH3).  



APPENDIX 

xviii 

 

13C NMR (63 MHz, CDCl3) δ 137.8, 136.3, 135.7, 134.0, 130.7 (CAr), 129.7, 128.8 (CHAr), 

127.0 (CAr), 124.3, 124.1 (CHAr), 123.9 (CAr), 123.1, 122.7 (CHAr), 122.3 (CAr), 121.9, 121.9, 

121.1, 116.5, 114.3, 95.6 (CHAr), 22.0 (CH3).  

MS (EI,70 eV): m/z (%) = 281 (M+, 100), 252 (3), 139 (10), 126 (4).  

HRMS (EI, 70 eV): calcd for C21H15N1 ([M]+): 281.11990, found: 281.12033. 

3,6-Dimethylindolo[1,2-f]phenanthridine 3.3d:  

Yellowish solid, 45% (39.8 mg). M.p.: 185–186 °C.  

IR (ATR, cm-1): 3106.9 (w), 3054.8 (w), 2912.1 (w), 2850.4 (w), 

2725.1 (w), 1917.0 (w), 1729.9 (w), 1598.8 (m), 1562.1 (m), 1498.5  

(w), 1444.5 (s), 1350.0 (s), 1251.6 (m), 1201.5 (s), 1112.8 (m), 

1033.7 (m), 960.4 (m), 867.9 (m), 823.5 (s), 784.9 (s), 756.0 (s), 

736.7 (s), 713.6 (s), 655.7 (s), 613.3 (m), 574.7 (m), 538.1 (s).  

1H NMR (250 MHz, CDCl3) δ 8.40 (d, 3J = 8.6 Hz, 1H, CHAr), 8.37 – 8.29 (m, 1H, CHAr), 8.07 

(d, 4J = 1.2 Hz, 1H, CHAr), 8.04 – 7.95 (m, 2H, CHAr), 7.87 – 7.77 (m, 1H, CHAr), 7.42 – 7.24 

(m, 4H, CHAr), 7.18 (s, 1H, CHAr), 2.51 (s, 3H, CH3), 2.50 (s, 3H, CH3).  

13C NMR (63 MHz, CDCl3) δ 137.7, 135.6, 134.1, 133.8, 132.4, 130.5 (CAr), 129.5, 129.5 

(CHAr), 126.9 (CAr), 124.3, 124.3 (CHAr), 123.9 (CAr), 122.6 (CHAr), 122.1 (CAr), 121.7, 121.6, 

120.9, 116.3, 114.2, 95.3 (CHAr), 22.0 (CH3), 21.3 (CH3).  

MS (EI,70 eV): m/z (%) = 295 (M+, 100), 278 (13), 139 (9).  

HRMS (EI, 70 eV): calcd for C22H17N1 ([M]+): 295.13555, found: 295.13567. 

6-Fluoro-3-methylindolo[1,2-f]phenanthridine 3.3e: 

Yellowish solid, 55% (49.3 mg). M.p.: 165–166°C.  

IR (ATR, cm -1): 3106.9 (w), 3049.1 (w), 2917.9 (w), 2856.2 (w), 

2736.6 (w), 1917.0 (w), 1729.9 (w), 1606.5 (w), 1567.9 (m), 1496.6 

(m), 1448.4 (m), 1429.1 (s), 1353.9 (m), 1276.7 (m), 1249.7 (m), 

1203.4 (m), 1172.6 (s), 1116.6 (m), 1068.4 (m), 1041.4 (m), 960.4 

(m), 948.9 (m), 867.9 (s), 823.5 (s), 788.8 (s), 754.1 (m), 734.8 (s), 713.6 (m), 655.7 (m), 611.4 

(m), 572.8 (m), 536.1 (s).  

1H NMR (300 MHz, CDCl3) δ 8.42 (dd, 3J = 9.2, 4J = 4.9 Hz, 1H, CHAr), 8.26 (dd, 3J = 6.5, 

4J = 2.6 Hz, 1H, CHAr), 7.96 (d, 3J = 8.1 Hz, 1H, CHAr), 7.89 (dd, 3J = 10.2, 4J = 2.9 Hz, 1H, 
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CHAr), 7.86 – 7.73 (m, 2H, CHAr), 7.43 – 7.27 (m, 3H, CHAr), 7.27 – 7.10 (m, 1H, CHAr), 2.49 

(s, 3H, CH3) (signal of one H could not be detected).  

19F NMR (282 MHz, CDCl3) δ -119.57.  

13C NMR (75 MHz, CDCl3) δ 158.7 (d, 1J = 241.8 Hz, CF), 137.9, 135.2, 133.7 (CAr), 132.6 (d, 

4J = 2.2 Hz, CAr), 130.4 (CAr), 130.3 (CHAr), 126.1 (d, 4J = 2.5 Hz, CAr), 124.3 (CHAr), 124.2 

(d, 3J = 7.6 Hz, CAr), 124.1 (CAr), 122.8, 122.1, 121.9, 121.2 (CHAr), 117.7 (d, 4J = 8.2 Hz), 

115.5 (d, 2J = 23.0 Hz, CHAr), 113.8 (CHAr), 110.2 (d, 2J = 23.8 Hz, CHAr), 95.7 (CHAr), 21.9 

(CH3).  

MS (EI,70 eV): m/z (%) = 299 (M+, 100), 270 (3), 148 (6).  

HRMS (EI, 70 eV): calcd for C21H14N1F1 ([M]+): 299.11048, found: 299.11053. 

3-(Tert-butyl)indolo[1,2-f]phenanthridine 3.3f: 

Yellowish solid, 65% (63.0 mg). M.p.: 151–152 °C.  

IR (ATR, cm-1): 3122.3 (w), 3043.3 (w), 2950.7 (w), 2863.9 (w), 

2742.4 (w), 2331.6 (w), 1917.0 (w), 1731.8 (w), 1606.5 (w), 

1562.1 (w), 1490.8 (w), 1448.4 (s), 1440.6 (s), 1417.5 (s), 1348.1 

(s), 1276.7 (m), 1259.4 (m), 1197.6 (m), 1172.6 (m), 1112.8 (m), 1072.3 (m), 1053.0 (m), 

1020.2 (m), 958.5 (w), 875.6 (m), 831.2 (m), 788.8 (m), 754.1 (s), 734.8 (s), 723.2 (m), 661.5 

(m), 611.4 (m), 588.2 (m), 541.9 (m). 

1H NMR (300 MHz, CDCl3) δ 8.54 (d, 3J = 8.4 Hz, 1H, CHAr), 8.41 – 8.31 (m, 2H, CHAr), 8.25 

(d, 4J = 1.7 Hz, 1H, CHAr), 8.06 (d, 3J = 8.4 Hz, 1H, CHAr), 7.86 – 7.76 (m, 1H, CHAr), 

7.61 – 7.47 (m, 2H, CHAr), 7.41 – 7.28 (m, 3H, CHAr), 1.45 (s, 9H, C(CH3)3). (signal of one H 

could not be detected).  

13C NMR (63 MHz, CDCl3) δ 136.2, 135.4, 133.9, 130.6, 130.5 (CAr), 128.6 (CHAr), 126.5 

(CAr), 126.2, 124.1, 123.9 (CHAr), 123.8 (CAr), 123.0 (CHAr), 122.5 (CAr), 121.8, 121.8, 120.9, 

118.6, 116.5, 114.3, 95.7 (CHAr), 35.2 (C(CH3)3), 31.4 (3C, C(CH3)3).  

MS (EI,70 eV): m/z (%) = 323 (M+,100), 308 (70), 293 (34), 267 (13), 140 (23).  

HRMS (EI, 70 eV): calcd for C24H21N1 ([M]+): 323.16685, found: 323.16687. 

3-(Tert-butyl)-6-methylindolo[1,2-f]phenanthridine 3.3g: 
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Yellowish solid, 67% (67.7 mg). M.p.: 195–196 °C.  

IR (ATR, cm-1): 3124.3 (w), 3049.1 (w), 2950.7 (w), 2863.9 (w), 

2732.8 (w), 2331.6 (w), 1913.1 (w), 1731.8, 1606.5 (w), 1564.1 

(m), 1488.8 (m), 1446.4 (s), 1421.4 (s), 1351.9 (s), 1280.6 (m), 

1261.3 (m), 1195.7 (m), 1114.7 (m), 1066.5 (m), 1045.3 (w), 

1024.1 (w), 788.8 (s), 757.9 (s), 736.7 (m), 611.4 (m), 588.2 (m), 555.4 (s).  

1H NMR (300 MHz, CD2Cl2) δ 8.46 (d, 3J = 8.5 Hz, 1H, CHAr), 8.38 (d, 3J = 8.2 Hz, 1H, CHAr), 

8.30 (d, 4J = 1.7 Hz, 1H, CHAr), 8.22 (s, 1H, CHAr), 8.11 (d, 3J = 8.4 Hz, 1H, CHAr), 7.83 (dd, 

3J = 6.8, 4J = 1.9 Hz, 1H, CHAr), 7.61 (dd, 3J = 8.4, 4J = 1.8 Hz, 1H, CHAr), 7.49 – 7.28 (m, 3H, 

CHAr), 7.24 (s, 1H, CHAr), 2.55 (s, 3H, CH3), 1.49 (s, 9H, C(CH3)3). 

13C NMR (63 MHz, CD2Cl2) δ 151.6, 135.9, 134.5, 134.3, 133.2, 130.9 (CAr), 130.1 (CHAr), 

127.0 (CAr), 126.7, 124.7, 124.5 (CHAr), 124.2, 122.8 (CAr), 122.2, 122.1, 121.4, 119.3, 116.8, 

114.7, 95.8 (CHAr), 35.6 (C-(CH3)3), 31.7 (3C, C-(CH3)3), 21.4 (CH3).  

MS (EI,70 eV): m/z (%) = 337 (M+, 100), 322 (59), 307 (32), 278 (10), 161 (5), 147 (17).  

HRMS (EI, 70 eV): calcd for C25H23N1 ([M]+): 337.1825, found: 337.18270. 

3-Fluoroindolo[1,2-f]phenanthridine 3.3h: 

Yellowish solid, 77% (65.8 mg). M.p.: 129–130 °C.  

IR (ATR, cm-1): 3054.8 (w), 2952.6 (w), 2850.4 (w), 2734.7 (w), 

2331.6 (w), 1928.6 (w), 1884.2 (w), 1731.8 (w), 1602.6 (m), 1558.3 

(m), 1490.8 (m), 1440.6 (s), 1350.0 (s), 1280.6 (m), 1272.9 (m), 

1195.7 (m), 1120.5 (m), 887.1 (w), 835.1 (m), 777.2 (m), 754.1 (m), 736.7 (s), 729.0 (s), 651.9 

(m), 597.9 (m), 555.4 (m), 534.2 (m).  

1H NMR (300 MHz, CDCl3) δ 8.42 – 8.31 (m, 1H, CHAr), 8.26 – 8.17 (m, 1H, CHAr), 8.00 (dd, 

3J = 8.1, 4J = 1.3 Hz, 1H, CHAr), 7.90 (dd, 3J = 8.8, 4J = 5.7 Hz, 1H, CHAr), 7.75 – 7.62 (m, 2H, 

CHAr), 7.51 – 7.39 (m, 1H, CHAr), 7.33 – 7.13 (m, 3H, CHAr), 7.12 – 7.01 (m, 1H, CHAr), 7.00 

(s, 1H, CHAr).  

19F NMR (282 MHz, CDCl3) δ -112.61.  

13C NMR (63 MHz, CDCl3) δ 162.5 (d, 1J = 246.4 Hz, CF), 136.2, 134.6, 133.7, 130.3 (CAr), 

129.4 (CHAr), 128.9 (d, 3J = 8.2 Hz, CAr), 126.2 (d, 3J = 8.7 Hz, CHAr), 124.1, 123.0 (CHAr), 

122.5 (d, 4J = 2.5 Hz, CAr), 122.0, 121.89 (CHAr), 121.2 (d, 4J = 3.1 Hz, CAr), 120.9, 116.3 
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(CHAr), 116.1 (d, 2J = 23.0 Hz, CHAr), 114.2 (CHAr), 108.4 (d, 2J = 23.2 Hz), 95.8 (d, 

6J = 1.5 Hz, CHAr). 

MS (EI,70 eV): m/z (%) = 285 (M+, 100), 257 (7), 143 (10).  

HRMS (EI, 70 eV): calcd for C20H12N1F1 ([M]+): 285.09483, found: 285.09458. 

3-Fluoro-6-methylindolo[1,2-f]phenanthridine 3.3i: 

Yellowish solid, 54% (48.4 mg). M.p.: 203–204 °C.  

IR (ATR, cm-1): 3108.8 (w), 3051.0 (w), 2917.9 (w), 2850.4 (w), 

2732.8 (w), 2325.8 (w), 1928.6 (w), 1895.8 (w), 1731.8 (w), 1614.2 

(m), 1554.4 (m), 1486.9 (m), 1438.7 (m), 1350.0 (m), 1280.6 (m), 

1274.8(m), 1189.9, 1120.5, 1076.1, 1041.4, 1024.1, 960.4, 900.6, 

844.7(m), 784.9 (s), 736.7 (s), 653.8 (m), 632.6 (m), 615.2 (m), 607.5 (m), 574.7(m), 530.4 (m).  

1H NMR (300 MHz, CDCl3) δ 8.40 – 8.21 (m, 2H, CHAr), 8.01 (dd, 3J = 8.8, 4J = 5.7 Hz, 1H, 

CHAr), 7.87 (s, 1H, CHAr), 7.84 – 7.64 (m, 2H, CHAr), 7.43 – 7.28 (m, 3H, CHAr), 7.21 – 6.99 

(m, 2H, CHAr), 2.46 (s, 3H, CH3).  

19F NMR (282 MHz, CDCl3) δ -112.82.  

13C NMR (75 MHz, CDCl3) δ 162.6 (d, 1J = 246.2 Hz, CF), 134.6, 134.2, 133.8, 132.6 (CAr), 

130.4 (CHAr), 129.0 (d, 3J = 8.2 Hz, CAr), 126.3 (d, 3J = 8.7 Hz, CHAr), 124.5 (CHAr), 122.7 (d, 

4J = 2.4 Hz, CAr), 122.0, 121.8 (CHAr), 121.2 (d, 4J = 3.0 Hz, CAr), 121.1, 116.3 (CHAr), 116.1 

(d, 2J = 22.7 Hz, CHAr) (one signal of the doublet is overlapped with the signal at 116.3), 114.2 

(CHAr), 108.5 (d, 2J = 23.3 Hz, CHAr), 95.6 (CHAr), 21.2 (CH3) (signal of one CAr could not be 

detected).  

MS (EI,70 eV): m/z (%) = 299 (M+, 100), 149 (8).  

HRMS (EI, 70 eV): calcd for C21H14N1F1 ([M]+): 299.11048, found: 299.10984. 

3-Methoxyindolo[1,2-f]phenanthridine 3.3j: 

Yellowish solid, 78% (69.5 mg). M.p.: 143–144 °C.  

IR (ATR, cm-1): 3108.8 (w), 3043.3 (w), 2919.8 (w), 2850.4 (w), 

2732.8 (w), 2323.9 (w), 2057.8 (w), 1918.9 (w), 1891.9 (w), 

1731.8 (w), 1610.3 (m), 1558.3 (m), 1492.7 (s), 1427.1 (s), 1348.1 

(m), 1286.4 (m), 1199.6 (m), 1120.5 (m), 1078.1 (m), 1037.6 (m), 1024.1 (m), 958.5 (m), 910.3 

(m), 835.1 (m), 777.2 (m), 740.6 (s), 653.8 (m), 638.4 (m), 607.5 (m), 565.1 (m), 538.1.  
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1H NMR (300 MHz, CDCl3) δ 8.49 (dd, 3J = 8.5, 4J = 0.9 Hz, 1H, CHAr), 8.37 – 8.28 (m, 1H, 

CHAr), 8.18 (dd, 3J = 8.1, 4J = 1.4 Hz, 1H, CHAr), 7.97 (d, 3J = 8.8 Hz, 1H, CHAr), 7.84 – 7.73 

(m, 1H, CHAr), 7.60 – 7.49 (m, 2H, CHAr), 7.41 – 7.27 (m, 3H, CHAr), 7.03 (dd, 3J = 8.8, 

4J = 2.5 Hz, 1H, CHAr), 3.92 (s, 3H, OCH3). (Signal of one H could not be detected).  

13C NMR (63 MHz, CDCl3) δ 159.5 (C-OCH3), 136.3, 135.6, 133.8, 130.8 (CAr), 128.9 (CHAr), 

128.4 (CAr), 125.8, 124.0, 122.9 (CHAr), 121.9 (CAr), 121.8, 121.6, 120.8 (CHAr), 119.8 (CAr), 

116.4, 116.1, 114.2, 105.8, 94.7 (CHAr), 55.5 (OCH3).  

MS (EI, 70 eV): m/z (%) = 297 (M+, 100), 282 (19), 254 (56), 226 (4), 149 (12), 126 (12).  

HRMS (EI, 70 eV): calcd for C21H15N1O1 ([M]+): 297.11482, found: 297.11474. 

3-Methoxy-6-methylindolo[1,2-f]phenanthridine 3.3k: 

Yellowish solid, 73% (68.1 mg). M.p.: 188–189 °C.  

IR (ATR, cm-1): 3108.8 (w), 3045.2 (w), 2910.2 (w), 2840.8 (w), 

2725.1 (w), 2325.8 (w), 2055.8 (w), 1918.9 (w), 1888.1 (w), 

1731.8 (w), 1608.4 (m), 1556.3 (m), 1488.8 (m), 1431.0 (m), 

1350.0 (m), 1286.4 (m), 1201.5 (m), 1130.1 (m), 1072.3 (m), 

1037.6 (m), 1024.1 (m), 958.5 (m), 919.9 (m), 838.9 (m), 781.1 (s), 736.7 (s), 655.7 (m), 609.4 

(m), 565.1 (m), 547.7 (s).  

1H NMR (300 MHz, CDCl3) δ 8.41 – 8.21 (m, 2H), 8.06 – 7.91 (m, 2H), 7.86 – 7.72 (m, 1H), 

7.57 (d, 4J = 2.3 Hz, 1H), 7.43 – 7.28 (m, 3H), 7.04 (dd, 3J = 8.8, 4J = 2.4 Hz, 2H), 3.94 (s, 3H, 

OCH3), 2.47 (s, 3H, CH3).  

13C NMR (63 MHz, CDCl3) δ 159.5 (C-OCH3), 135.5, 134.2, 133.7, 132.3, 130.6 (CAr), 129.8 

(CHAr), 128.4 (CAr), 125.9, 124.3 (CHAr), 121.8 (CAr), 121.6, 121.4, 120.7 (CHAr), 119.9 (CAr), 

116.3, 116.1, 114.2, 105.7, 94.4 (CHAr), 55.6 (OCH3), 21.2 (CH3). 

MS (EI, 70 eV): m/z (%) = 311 (M+, 100), 296 (13), 268 (42), 156 (10), 133 (10).  

HRMS (EI, 70 eV): calcd for C22H17N1O1 ([M]+): 311.13047, found: 311.13016. 

For compounds 3.5c, 3.5d, 3.5h, 3.5i, 3.6j, 3.5g, 3.5f, 20% of PCy3·HBF4 was used instead of 

XantPhos. 

6-(Tert-butyl)indolo[1,2-f]phenanthridine 3.5c: 
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Yellowish solid, 43% (41.7 mg). M.p.: 146–168 °C.  

IR (ATR, cm-1): 3065.8 (w), 3043.2 (w), 2955.5 (w), 2898.7 (w), 2859.4 

(w), 1953.0 (w), 1921.3 (w), 1881.4 (w), 1593.0 (m), 1552.4 (m), 1487.5 

(m), 1448.4 (s), 1408.1 (w), 1357.5 (m), 1255.0 (m), 1228.8 (m), 1206.2 

(m), 1120.3 (m), 1019.2 (m), 945.7 (m), 877.9 (m), 802.3 (m), 755.3 (s), 

732.5 (s), 624.4 (m), 526.5 (m).  

1H NMR (250 MHz, Acetone) δ 8.62 (d, 3J = 8.8 Hz, 1H, CHAr), 8.57 – 8.47 (m, 3H, CHAr), 

8.33 – 8.24 (m, 1H, CHAr), 7.84 (dd, 3J = 7.1, 4J = 1.5 Hz, 1H, CHAr), 7.76 (dd, 3J = 8.8, 

4J = 2.3 Hz, 1H, CHAr), 7.64 – 7.49 (m, 2H, CHAr), 7.48 – 7.25 (m, 3H, CHAr), 1.48 (s, 9H, 

C(CH3)3).  

13C NMR (63 MHz, Acetone) δ 147.0, 135.9, 134.8, 134.7, 131.4 (CAr), 129.3, 129.1 (CHAr), 

128.1 (CAr), 127.5 (CHAr), 127.1 (CAr), 125.3, 123.8, 123.1, 122.7 (CHAr), 122.5 (CAr), 122.0, 

121.8, 117.1, 115.2, 97.2 (CHAr), 35.4 (3C, C(CH3)3), 31.8 (C(CH3)3).  

MS (EI, 70 eV): m/z (%) = 323 (M+, 100), 308 (90), 293 (28), 267 (16), 239 (3), 140 (22).  

HRMS (EI, 70 eV): calcd for C24H21N1 ([M]+): 323.16685, found: 323.16686. 

6-Methoxyindolo[1,2-f]phenanthridine 3.5d: 

Yellowish solid, 49% (43.7 mg). M.p.: 154–155 °C.  

IR (ATR, cm-1): 3105.0 (w), 3043.3 (w), 2910.2 (w), 2836.9 (w), 2325.8 

(w), 2053.9 (w), 1917.0 (w), 1890.0 (w), 1731.8 (w), 1620.0 (w), 1562.1 

(m), 1488.8 (m), 1438.7 (m), 1357.7(m), 1288.3 (m), 1197.6 (m), 1130.1 

(m), 1070.4 (m), 1041.4 (m), 1026.0 (m), 958.5 (m), 919.9 (m), 838.9 

(m), 790.7 (S), 734.8 (S), 655.7 (m), 607.5 (m), 563.1(m).  

1H NMR (250 MHz, CD2Cl2) δ 8.38 (d, 3J = 9.2 Hz, 1H, CHAr), 8.23 (d, 3J = 8.4 Hz, 1H, CHAr), 

8.15 (dd, 3J = 6.2, 4J = 3.1 Hz, 1H, CHAr), 8.10 – 7.93 (m, 1H, CHAr), 7.74 (d, 4J = 2.8 Hz, 1H, 

CHAr), 7.70 – 7.57 (m, 1H, CHAr), 7.46 – 7.26 (m, 2H, CHAr), 7.27 – 6.95 (m, 4H, CHAr), 3.80 

(s, 3H, OCH3).  

13C NMR (63 MHz, CD2Cl2) δ 156.2 (C-OCH3), 135.3, 134.1, 130.7, 130.6 (CAr), 129.0, 128.4 

(CHAr), 127.2, 126.8 (CAr), 124.7 (CHAr), 123.8 (CAr), 123.3, 122.5, 121.9, 121.5, 118.0, 115.8, 

114.4, 108.9, 96.3 (CHAr), 55.7 (OCH3).  

MS (EI,70 eV): m/z (%) = 297 (M+, 100), 282 (25), 254 (53), 226 (5), 148 (11), 127 (14).  

HRMS (EI, 70 eV): calcd for C21H15N1O1 ([M]+): 297.13047, found: 297.13000. 
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6-Fluoroindolo[1,2-f]phenanthridine 3.5h: 

Yellowish solid, 75% (64.1 mg). M.p.: 169–170 °C.  

IR (ATR, cm-1): 3049.1 (w), 2140.7 (w), 1918.9 (w), 1729.9 (w), 1621.9 

(w), 1567.9 (m), 1488.8 (m), 1448.4 (s), 1357.7 (m), 1276.7 (m), 1247.8 

(m), 1197.6 (m), 1180.3 (s), 1139.8 (m), 1066.5 (m), 1041.4 (m), 1024.1 

(m), 960.4 (m), 921.9 (m), 838.9 (m), 796.5 (s), 734.8 (s), 659.6 (m), 

611.4 (m), 565.1(m).  

1H NMR (300 MHz, CD2Cl2) δ 8.39 (dd, 3J = 9.2, 4J = 4.9 Hz, 1H, CHAr), 8.29 – 8.18 (m, 1H, 

CHAr), 8.13 – 7.97 (m, 2H, CHAr), 7.89 (dd, 3J = 10.3, 4J = 2.9 Hz, 1H, CHAr), 7.85 – 7.75 (m, 

1H, CHAr), 7.54 – 7.41 (m, 2H, CHAr), 7.41 – 7.30 (m, 2H, CHAr), 7.30 – 7.20 (m, 1H, CHAr), 

7.19 (s, 1H, CHAr).  

19F NMR (282 MHz, CD2Cl2) δ -120.10.  

13C NMR (63 MHz, CD2Cl2) δ 159.2 (d, 1J = 241.2 Hz, CF), 135.3, 134.2, 132.9 (d, 

4J = 2.2 Hz), 130.7 (CAr), 129.4, 128.5 (CHAr), 126.8,  126.5 (d, 4J = 2.5 Hz, CAr), 124.6 (CHAr), 

124.5 (d, 3J = 7.7 Hz, CAr), 123.1, 122.8, 122.4, 121.7 (CHAr), 118.2 (d, 3J = 8.2 Hz, CHAr), 

116.0 (d, 2J = 23.1 Hz, CHAr), 114.3 (CHAr), 110.6 (d, 2J = 23.9 Hz, CHAr), 96.8 (CHAr).  

MS (EI, 70 eV): m/z (%) = 285 (M+, 100), 257 (8), 143 (10), 128 (4).  

HRMS (EI, 70 eV): calcd for C20H12N1F1 ([M]+): 285.09483, found: 285.09477. 

Indolo[1,2-f]phenanthridine-6-carbonitrile 3.5i: 

Yellowish solid, 44% (38.5 mg). M.p.: 217–218 °C.  

IR (ATR, cm -1): 3068.3 (w), 2221.7 (m), 1593.0 (m), 1556.3 (m), 1490.8 

(m), 1446.4 (s), 1409.8 (m), 1353.9 (m), 1288.3 (m), 1251.6 (m), 1207.3 

(m), 1182.2 (w), 1145.6 (w), 1068.4 (w), 1045.3 (w), 1024.1 (w), 958.5 

(w), 919.9 (w), 877.5 (m), 833.1 (m), 798.4 (s), 734.8 (s), 657.6 (m), 

611.4 (m), 565.1 (m).  

1H NMR (300 MHz, CD2Cl2) δ 8.45 (d, 4J = 1.8 Hz, 1H, CHAr), 8.42 (d, 3J = 8.8 Hz, 1H, CHAr), 

8.20 (dd, 3J = 6.4, 4J = 2.5 Hz, 1H, CHAr), 8.14 – 7.97 (m, 2H, CHAr), 7.85 – 7.77 (m, 1H, 

CHAr), 7.73 (dd, 3J = 8.8, 4J = 1.9 Hz, 1H, CHAr), 7.59 – 7.45 (m, 2H, CHAr), 7.45 – 7.32 (m, 

2H, CHAr), 7.22 (s, 1H, CHAr).  
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13C NMR (63 MHz, CD2Cl2) δ 138.9, 135.4, 134.5 (CAr), 132.3 (CHAr), 131.2 (CAr), 129.9, 

128.9, 128.8 (CHAr), 126.7, 125.5 (CAr), 124.7, 123.5, 123.3 (CHAr), 123.2 (CAr), 122.9, 121.9 

(CHAr), 119.4 (CN), 117.2, 114.8 (CHAr), 106.9 (CAr), 98.4 (CHAr).  

MS (EI,70 eV): m/z (%) = 292 (M+, 100), 264 (10), 146 (8), 132 (9), 118 (3).  

HRMS (EI, 70 eV): calcd for C21H12N2 ([M]+): 292.0995, found: 292.09960. 

6-(Methylthio)indolo[1,2-f]phenanthridine 3.5j: 

Yellowish solid, 56% (52.6 mg). M.p.: 143–144 °C.  

IR (ATR, cm-1): 3043.3 (w), 2917.9 (w), 1915.1 (w), 1591.1 (w), 1546.7 

(m), 1490.8 (m), 1448.4 (s), 1398.2 (m), 1353.9 (m), 1288.3 (m), 

1253.6(m), 1203.4 (w), 1188.0 (m), 1164.9 (m), 1114.7 (m), 1024.1 (w), 

954.6 (m), 916.1 (w), 864.0 (w), 790.7 (s), 734.8 (s), 613.3 (m), 582.4 

(m).  

1H NMR (250 MHz, CD2Cl2) δ 8.38 (d, 3J = 8.8 Hz, 1H, CHAr), 8.24 (d, 3J = 8.2 Hz, 1H, CHAr), 

8.20 – 8.09 (m, 2H, CHAr), 8.09 – 7.98 (m, 1H, CHAr), 7.79 – 7.63 (m, 1H, CHAr), 7.50 – 7.33 

(m, 3H, CHAr), 7.33 – 7.20 (m, 2H, CHAr), 7.18 (s, 1H, CHAr), 2.51 (s, 3H, SCH3).  

13C NMR (63 MHz, CD2Cl2) δ 135.3, 134.2, 134.2, 133.3, 130.8 (CAr), 129.0, 128.4, 128.3 

(CHAr), 126.7, 126.7 (CAr), 124.6 (CHAr), 123.2 (CAr), 123.1, 123.0, 122.6, 122.2, 121.5, 117.4, 

114.6, 96.8 (CHAr), 16.7 (SCH3).  

MS (EI,70 eV): m/z (%) = 313 (M+, 100), 298 (47), 265 (12), 254 (25), 156 (9), 132 (5).  

HRMS (EI, 70 eV): calcd for C21H15N1S1 ([M]+): 313.09197, found: 313.09196. 

8-Fluoroindolo[1,2-f]phenanthridine 3.5g: 

Yellowish solid, 72% (61.6 mg). M.p.: 115–116 °C.  

IR (ATR, cm-1): 3041.3 (w), 2923.7 (w), 1901.6 (w), 1604.6 (w), 1552.5 

(w), 1494.6 (w), 1475.3 (m), 1442.6 (s), 1436.8 (m), 1346.1 (m), 1288.3 

(m), 1251.6 (m), 1213.1 (m), 1184.1 (m), 1134.0 (m), 1074.2 (w), 1018.3 

(w), 954.6 (w), 912.2 (m), 781.1 (m), 759.9 (s), 736.7 (s), 551.6 (s).  

1H NMR (300 MHz, CDCl3) δ 8.23 – 8.02 (m, 3H, CHAr), 8.02 – 7.87 (m, 1H, CHAr), 

7.85 – 7.74 (m, 1H, CHAr), 7.59 – 7.41 (m, 2H, CHAr), 7.41 – 7.27 (m, 5H, CHAr).  

19F NMR (282 MHz, CDCl3) δ -111.04.  
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13C NMR (75 MHz, CDCl3) δ 152.3 (d, 1J = 249.6 Hz, CF), 135.6 (d, 4J = 1.2 Hz), 135.5, 130.1 

(CAr), 129.0, 127.9 (CHAr), 126.8, 126.5 (d, 4J = 2.7 Hz), 126.2 (d, 4J = 3.0 Hz, CAr), 124.0 

(CHAr), 123.9 (d, 3J = 8.5 Hz, CHAr), 123.2 (d, 3J = 11.1 Hz, CAr), 123.0, 122.0 (CHAr), 121.7 

(d, 4J = 4.1 Hz, CHAr), 120.5 (CHAr), 119.5 (d, 4J = 2.9 Hz, CHAr), 116.0 (d, 2J = 22.3 Hz, 

CHAr), 115.8 (d, 2J = 26.6 Hz, CHAr), 98.0 (CHAr).  

MS (EI, 70 eV): m/z (%) = 285 (M+, 100), 264 (12), 142 (9).  

HRMS (EI, 70 eV): calcd for C20H12N1F1 ([M]+): 285.09483, found: 285.09470. 

8-Methoxyindolo[1,2-f]phenanthridine 3.5f: 

Yellowish oil, 49% (43.7 mg).  

1H NMR (250 MHz, Acetone) δ 8.39 – 8.31 (m, 1H, CHAr), 8.25 (dd, 

3J = 6.4, 4J = 2.6 Hz, 1H, CHAr), 8.05 (d, 3J = 7.9 Hz, 1H, CHAr), 

7.80 – 7.68 (m, 2H, CHAr), 7.56 – 7.48 (m, 2H, CHAr), 7.40 (m, 2H, 

CHAr), 7.35 – 7.21 (m, 3H, CHAr), 3.95 (d, 3J = 5.1 Hz, 3H).  

13C NMR (63 MHz, Acetone) δ 150.7 (C-OCH3), 137.2, 136.6, 130.8 (CAr), 129.6, 128.8 

(CHAr), 127.9, 127.6, 126.2 (CAr), 125.6 (CHAr), 125.0 (CAr), 124.7, 124.1, 122.0, 121.4, 120.9, 

118.3, 116.9, 112.8, 98.3 (CHAr), 55.8 (OCH3).  

MS (EI,70 eV): m/z (%) = 297 (M+,100), 282 (56), 252 (13), 141 (12), 126 (10), 113 (4).  

HRMS (EI, 70 eV): calcd for C21H15N1O1 ([M]+): 297.11482, found: 297.11451. 

1-(2-Bromophenyl)-2-(p-tolyl)-1H-indole 3.1ii 

1H NMR (300 MHz, CDCl3) δ 7.66 – 7.56 (m, 2H, CHAr), 

7.30 – 7.03 (m, 7H, CHAr), 6.95 (d, 3J = 8.0 Hz, 2H, CHAr), 

6.90 – 6.83 (m, 1H, CHAr), 6.71 (d, 4J = 0.7 Hz, 1H, CHAr), 2.20 (s, 

3H, CH3).  

13C NMR (75 MHz, CDCl3) δ 141.5, 138.9, 138.4, 137.4 (CAr), 133.8, 131.5, 129.8 (CHAr), 

129.7 (CAr), 129.1 (2 CHAr ), 128.5 (CAr), 128.5 (2CHAr ), 128.5 (CHAr), 124.2 (CAr), 122.3, 

120.9, 120.6, 111.0, 103.1 (CHAr), 21.3 (CH3).  

MS (EI, 70 eV): m/z (%) = 361 (M+,100), 281 (51), 267 (74), 190 (5), 165 (6), 133 (50).  

HRMS (EI, 70 eV): calcd for C21H16N1Br1 ([M]+): 361.04606, found: 361.04591. 
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General procedure for synthesis of azaindolo[1,2-f]phenanthridines 

3-bromo-2-(phenylethynyl)pyridine 3.6 (0.3 mmol), 2-bromoaniline 3.2 (1.1 equiv., 

0.33 mmol), Pd(PPh3)4 (10 mol%, 0.03 mmol,), XantPhos (10 mol%, 0.03 mmol), and Cs2CO3 

(3 equiv., 0.9 mmol) were placed in a dried pressure tube equipped with a septum. The reaction 

was back-filled with argon three times. Then dried and degassed DMF (4 mL) was added under 

argon and the septum was replaced with a Teflon cap. The reaction mixture was allowed to stir 

at 120 °C for 24 h. Then the reaction mixture was cooled to room temperature and was filtered 

through a pad of Celite. The filtrate was dried under reduced pressure, and the product 3.7 was 

obtained after flash chromatography on a silica gel column with ethyl acetate. 

Pyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.7a 

Yellowish solid, 86% (69.1 mg). M.p.: 144–145 °C. 

IR (ATR, cm-1): = 3123 (w), 3099 (w), 3062 (w), 3034 (w), 1887 (w), 

1598 (m), 1580 (w), 1556 (s), 1503 (w), 1488 (w), 1479 (m), 1453 (m), 

1440 (s), 1414 (s), 1401 (w), 1378 (m), 1356 (m), 1325 (w), 1311 (w), 

1303 (w), 1279 (m), 1236 (m), 1186 (m), 1138 (w), 1127 (w), 1110 (w), 1073 (w), 1051 (w), 

1042 (w), 973 (w), 954 (w), 943 (w), 923 (w), 908 (w), 877 (w), 862 (w), 833 (w), 805 (w), 774 

(w), 745 (s), 731 (w), 708 (m), 666 (w), 640 (w), 617 (m), 608 (w), 584 (w), 574 (w), 556 (w), 

537 (w). 

1H NMR (300 MHz, CDCl3) δ = 8.62 (dd, 3J = 4.6, 4J = 1.0 Hz, 1H, CHAr), 8.50 (d, 3J = 8.6 Hz, 

1H, CHAr), 8.35 – 8.17 (m, 2H, CHAr), 8.17 – 7.90 (m, 2H, CHAr), 7.53 – 7.43 (m, 3H, CHAr), 

7.39 – 7.09 (m, 3H, CHAr). 

13C NMR (63 MHz, CDCl3) δ = 147.6 (CAr), 144.9 (CHAr), 138.3, 135.2 (CAr), 129.0, 128.9, 

128.5 (CHAr), 127.0, 126.9, 125.1 (CAr), 124.9, 124.3, 123.7, 122.4 (CHAr), 121.9 (CAr), 121.3, 

116.2, 116.0, 96.8 (CHAr).  

MS (EI, 70 eV): m/z(%) = 268 (M+, 100), 240 (7), 214 (3), 134 (10), 120 (13), 106 (5).  

HRMS (EI): Calculated for C19H12N2 (M
+): 268.09950, found: 268.09952. 

3-Methylpyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.7d 

Yellowish solid, 61% (51.6 mg). M.p.:162–164 °C. 

IR(ATR, cm-1): = 3120 (w), 3093 (w), 3061 (w), 3032 (w), 2917 

(w), 2851 (w), 1914 (w), 1883 (w), 1613 (w), 1598 (m), 1575 (w), 

1557 (m), 1550 (w), 1493 (w), 1481 (w), 1444 (s), 1414 (s), 1375 
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(m), 1349 (m), 1306 (m), 1283 (m), 1238 (m), 1208 (w), 1189 (m), 1164 (w), 1149 (w), 1127 

(w), 1115 (w), 1079 (m), 1039 (m), 956 (m), 943 (w), 923 (m), 913 (w), 903 (w), 873 (m), 834 

(w), 810 (s), 772 (m), 755 (s), 734 (s), 714 (w), 660 (w), 651 (w), 623 (m), 610 (m), 578 (s), 

545 (w), 532 (s).  

1H NMR (300 MHz, CDCl3) δ = 8.72 – 8.54 (m, 1H, CHAr), 8.50 – 8.36 (m, 1H, CHAr), 8.19 

(dd, 3J = 10.5, 3J = 5.7 Hz, 2H, CHAr), 7.95 – 7.78 (m, 2H, CHAr), 7.54 – 7.36 (m, 1H, CHAr), 

7.34 – 7.09 (m, 4H, CHAr), 2.45 (s, 3H, CH3). 

13C NMR (75 MHz, CDCl3) δ = 147.9 (CAr), 144.8 (CHAr), 138.8, 138.5, 135.3 (CAr), 129.7, 

128.8 (CHAr), 126.8 (CAr), 124.8, 124.1, 123.5 (CHAr), 122.6 (CAr), 122.5 (CHAr), 121.9 (CAr), 

121.0, 115.9, 115.8, 96.1 (CHAr), 22.0 (CH3). (one signal of C tertiary could not be detected). 

MS (EI, 70 eV): m/z(%) = 282 (M+, 100), 266 (4), 140 (10), 128 (2), 126 (5).  

HR-MS (EI): calculated for C20H14N2 (M
+): 282.11515, found: 282.11477. 

3-(Tert-butyl)pyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 8f 

Yellowish solid, 69% (67.1 mg). M.p.: 176–178 °C. 

IR (ATR, cm-1): = 3060 (w), 3025 (w), 2947 (m), 2902 (w), 2860 

(w), 1931 (w), 1884 (w), 1732 (w), 1615 (w), 1598 (m), 1578 (w), 

1557 (m), 1504 (w), 1494 (m), 1479 (w), 1463 (w), 1443 (s), 1413 

(s), 1392 (w), 1357 (w), 1348 (m), 1303 (w), 1275 (m), 1265 (m), 1242 (w), 1205 (w), 1187 

(m), 1162 (w), 28 1151 (w), 1127 (w), 1115 (w), 1097 (w), 1070 (w), 1053 (w), 1039 (w), 1021 

(w), 970 (w), 956 (m), 925 (w), 913 (w), 875 (m), 832 (w), 813 (m), 788 (s), 769 (m), 756 (s), 

738 (s), 710 (w), 657 (w), 648 (w), 623 (s), 608 (w), 584 (m), 542 (s). 

1H NMR (300 MHz, CDCl3) δ = 8.63 (d, 4J = 4.1 Hz, 1H, CHAr), 8.53 (d, 3J = 8.6 Hz, 1H, 

CHAr), 8.41 – 8.29 (m, 2H, CHAr), 8.24 (d, 4J = 1.7 Hz, 1H, CHAr), 8.10 (d, 3J = 8.4 Hz, 1H, 

CHAr), 7.64 – 7.48 (m, 2H, CHAr), 7.42 – 7.32 (m, 2H, CHAr), 7.22 (dd, 3J = 8.5, 4J = 4.6 Hz, 

1H, CHAr), 1.47 (s, 9H, C(CH3)3). 

13C NMR (75 MHz, CDCl3) δ = 152.1, 148.0 (CAr), 144.9 (CHAr), 138.5, 135.5 (CAr), 128.9 

(CHAr), 127.0, 126.6 (CAr), 126.5, 124.9, 124.2, 123.6 (CHAr), 122.8, 122.4 (CAr), 121.1, 118.7, 

116.1, 116.0, 96.3 (CHAr), 35.4 (C(CH3)3), 31.4 (3C, C(CH3)3). 

MS (EI, 70 eV): m/z(%) = 324 (M+, 100), 309 (98), 294 (28), 290 (4), 281 (12), 268 (15), 240 

(4), 154 (4), 146 (4), 140 (24), 132 (6), 126 (4), 41 (3), 39 (3). 

HR-MS (EI): calculated for C23H20N2 (M
+): 324.16210, found: 324.16196. 
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3-Fluoropyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.7h 

Yellowish solid, 88% (75.5 mg). M.p.: 213–215 °C. 

IR (ATR, cm-1): = 3059 (w), 3035 (w), 1616 (m), 1603 (m), 1580 

(w), 1558 (m), 1551 (m), 1489 (m), 1443 (s), 1416 (s), 1379 (w), 

1349 (m), 1331 (w), 1304 (w), 1272 (m), 1245 (w), 1236 (w), 1180 

(s), 1135 (w), 1128 (w), 1106 (w), 1072 (w), 1054 (w), 1032 (w), 957 (m), 933 (w), 915 (w), 

892 (m), 854 (w), 819 (w), 810 (m), 784 (w), 763 (s), 755 (m), 733 (s), 706 (w), 652 (m), 631 

(m), 621 (m), 606 (w), 599 (m), 583 (w), 545 (w), 533 (m).  

1H NMR (300 MHz, CDCl3) δ = 8.61 (d, 4J = 3.6 Hz, 1H, CHAr), 8.41 (d, 3J = 8.6 Hz, 1H, 

CHAr), 8.23 – 8.11 (m, 1H, CHAr), 8.02 (dd, 3J = 8.1, 4J = 1.3 Hz, 1H, CHAr), 7.95 (dd, 3J = 8.8, 

3J = 5.7 Hz, 1H, CHAr), 7.66 (dd, 3J = 10.6, 4J = 2.5 Hz, 1H, CHAr), 7.55 – 7.45 (m, 1H, CHAr), 

7.32 – 7.23 (m, 2H, CHAr), 7.23 – 7.08 (m, 3H, CHAr). 

19F NMR (63 MHz, CDCl3) δ = 110.77 Hz. 

13C NMR (63 MHz, CDCl3) δ = 163.1 (d, 1J = 248.2 Hz, CF), 147.7 (CAr), 145.1 (CHAr), 137.5, 

135.5 (CAr), 129.7 (CHAr), 129.1 (d, 3J = 8.4 Hz, CAr), 127.2 (d, 3J = 8.9 Hz, CHAr), 126.8 (CAr), 

124.4, 123.7 (CHAr), 121.5 (d, 4J = 2.5 Hz, CAr), 121.1 (CHAr), 121.1 (CAr), 116.5 (d, 

2J = 23.2 Hz, CHAr), 116.2, 116.0 (CHAr), 108.5 (d, 2J = 23.4 Hz, CHAr), 96.5 (d, 6J = 1.3 Hz, 

CHAr). 

MS (EI, 70 eV): m/z(%) = 286 (M+, 100), 258 (7), 232 (3), 195 (2), 143 (10), 129 (11), 115 (3). 

HR-MS (EI): calculated for C19H11N2F1 (M
+): 286.09008, found: 286.08980. 

3-Methoxypyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.7j 

Yellowish solid, 85% (76.0 mg). M.p.: 200–201 °C. 

IR (ATR, cm-1): = 3089 (w), 3032 (w), 2999 (w), 2958 (w), 2930 

(w), 2908 (w), 2831 (w), 1609 (s), 1601 (s), 1550 (s), 1493 (s), 

1450 (s), 1438 (w), 1428 (w), 1414 (s), 1379 (w), 1347 (m), 1334 

(w), 1303 (w), 1278 (s), 1244 (w), 1219 (s), 1190 (m), 1181 (w), 1141 (w), 1130 (w), 1111 (w), 

1079 (w), 1073 (w), 1056 (w), 1041 (w), 1033 (w), 1021 (m), 980 (w), 971 (w), 956 (m), 912 

(w), 905 (w), 883 (w), 872 (w), 865 (w), 830 (m), 823 (w), 813 (s), 785 (w), 766 (s), 753 (s), 

736 (s), 705 (w), 656 (m), 634 (m), 623 (m), 607 (s), 584 (m), 555 (m), 539 (m).  

1H NMR (300 MHz, CDCl3) δ = 8.49 (d, 4J = 4.2 Hz, 1H, CHAr), 8.31 (d, 3J = 8.5 Hz, 1H, 

CHAr), 8.08 (d, 3J = 8.1 Hz, 1H, CHAr), 7.98 (dd, 3J = 8.1, 4J = 1.0 Hz, 1H, CHAr), 7.79 (d, 



APPENDIX 

xxx 

 

3J = 8.8 Hz, 1H, CHAr), 7.44 – 7.29 (m, 2H, CHAr), 7.22 – 7.12 (m, 1H, CHAr), 7.07 (dd, 

3J = 8.5, 4J = 4.6 Hz, 1H, CHAr), 7.02 (s, 1H, CHAr), 6.90 (dd, 3J = 8.8, 4J = 2.4 Hz, 1H, CHAr), 

3.79 (s, 3H, OCH3). 

13C NMR (75 MHz, CDCl3) δ = 160.2 (CAr-OCH3), 148.0 (CAr), 144.7 (CHAr), 138.6, 135.5 

(CAr), 129.1 (CHAr), 128.5, 126.8 (CAr), 126.6, 124.2, 123.5 (CHAr), 121.7 (CAr), 120.9 (CHAr), 

118.6 (CAr), 116.3, 116.0, 115.6, 105.6, 95.2 (CHAr), 55.5 (OCH3). 

MS (EI, 70 eV): m/z(%) = 298 (M+, 100), 283 (20), 255 (63), 227 (7), 149 (9), 127 (4), 113 (5), 

99 (3). HR-MS (EI): calculated for C20H14N2O1 (M
+): 298.11006, found: 298.10998. 

6-Methylpyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.7b 

Yellow solid, 64% (54.1 mg). M.p.: 184–186 °C. 

IR (ATR, cm-1): = 3124 (w), 3069 (w), 3036 (w), 2954 (w), 2916 (m), 

2850 (m), 2746 (w), 1942 (w), 1900 (w), 1877 (w), 1860 (w), 1823 (w), 

1795 (w), 1600 (m), 1577 (w), 1569 (m), 1553 (s), 1524 (w), 1496 (m), 

1450 (s), 1416 (s), 1387 (w), 1372 (w), 1354 (m), 1324 (w), 1310 (w), 

1300 (w), 1279 (m), 1236 (w), 1193 (w), 1182 (m), 1165 (w), 1145 (w), 1124 (m), 1116 (m), 

1066 (w), 1042 (w), 999 (w), 972 (w), 955 (m), 937 (w), 910 (m), 883 (w), 866 (m), 853 (m), 

828 (w), 801 (m), 790 (s), 772 (m), 748 (s), 730 (w), 720 (w), 710 (w), 694 (w), 660 (w), 643 

(m), 620 (w), 576 (s), 540 (m). 

1H NMR (300 MHz, CDCl3) δ = 8.60 (s, 1H, CHAr), 8.39 (d, 3J = 8.5 Hz, 1H, CHAr), 

8.13 – 7.95 (m, 3H, CHAr), 7.91 (s, 1H, CHAr), 7.54 – 7.35 (m, 2H, CHAr), 7.30 (s, 1H, CHAr), 

7.19 (d, 3J = 7.0 Hz, 2H, CHAr), 2.39 (s, 3H, CH3). 

13C NMR (75 MHz, CDCl3) δ = 147.2 (CAr), 144.4 (CHAr), 139.9, 138.3, 133.1, 133.0 (CAr), 

129.8, 128.8, 128.3 (CHAr), 127.0, 125.0 (CAr), 125.0, 124.4, 122.4 (CHAr), 121.7 (CAr), 121.3, 

116.0, 115.7, 96.2 (CHAr), 21.2 (CH3). 

MS (EI, 70 eV): m/z(%) = 282 (M+, 100), 266 (4), 252 (3), 140 (16), 126 (5), 113 (2), 100 (2). 

HRMS (EI): calculated for C20H14N2 (M
+): 282.11515, found: 282.11484. 

3,6-Dimethylpyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.7e 
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Yellowish solid, 72% (63.9 mg). M.p.: 208–210 °C. 

IR (ATR, cm-1): = 3154 (w), 3115 (w), 3097 (w), 3056 (w), 3025 

(w), 3004 (w), 2952 (w), 2917 (m), 2851 (w), 1920 (w), 1898 (w), 

1854 (w), 1613 (w), 1601 (m), 1569 (w), 1549 (s), 1491 (m), 1481 

(w), 1434 (w), 1416 (s), 1373 (w), 1352 (w), 1300 (w), 1281 (m), 

1262 (w), 1237 (m), 1205 (w), 1192 (m), 1152 (w), 1121 (w), 1099 (w), 1069 (w), 1041 (m), 

957 (m), 929 (w), 906 (w), 877 (m), 867 (w), 817 (w), 806 (s), 784 (s), 754 (s), 741 (w), 716 

(w), 694 (w), 660 (m), 629 (w), 622 (w), 590 (m), 578 (m), 560 (w), 533 (s).  

1H NMR (300 MHz, CDCl3) δ = 8.59 (s, 1H, CHAr), 8.36 (d, 3J = 8.5 Hz, 1H, CHAr), 7.98 (d, 

3J = 8.5 Hz, 1H, CHAr), 7.88 (d, 3J = 8.3 Hz, 2H, CHAr), 7.79 (s, 1H, CHAr), 7.35 – 6.87 (m, 4H, 

CHAr), 2.45 (s, 3H, CH3), 2.38 (s, 3H, CH3). 

13C NMR (75 MHz, CDCl3) δ = 147.7 (CAr), 144.6 (CHAr), 138.6, 138.4, 133.1, 132.8 (CAr), 

129.6, 129.5 (CHAr), 126.8, 126.7 (CAr), 124.8, 124.2 (CHAr), 122.6 (CAr), 122.4 (CHAr), 121.7 

(CAr), 120.9 (CHAr), 115.6 (2 CHAr ), 95.6 (CHAr), 22.0 (CH3), 21.2 (CH3). 

MS (EI, 70 eV): m/z(%) = 296 (M+, 100), 279 (11), 266 (2), 148 (6), 147 (3), 146 (3), 140 (7), 

126 (2). HR-MS (EI): calculated for C21H16N2 ([M+1]+1): 297.13862, found: 297.13882. 

3-(Tert-butyl)-6-methylpyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.7g 

Yellow solid, 32% (32.4 mg). M.p. 197–199 °C. 

IR (ATR, cm-1): = 3033 (w), 2956 (m), 2914 (w), 2864 (w), 1615 

(w), 1600 (w), 1569 (w), 1556 (m), 1548 (m), 1489 (w), 1482 (w), 

1460 (w), 1444 (w), 1427 (w), 1414 (s), 1391 (w), 1379 (w), 1357 

(m), 1353 (m), 1301 (w), 1280 (m), 1263 (m), 1240 (w), 1202 (w), 

1187 (w), 1159 (w), 1131 (w), 1121 (w), 1067 (w), 1045 (w), 958 (m), 941 (w), 925 (w), 904 

(w), 880 (m), 865 (w), 830 (m), 811 (w), 786 (s), 774 (s), 757 (s), 736 (w), 722 (m), 666 (w), 

656 (w), 634 (w), 620 (w), 611 (w), 578 (m), 552 (s), 533 (w).  

1H NMR (300 MHz, CDCl3): δ = 8.67 – 8.56 (m, 1H, CHAr), 8.49 (d, 3J = 8.5 Hz, 1H, CHAr), 

8.23 – 8.07 (m, 4H, CHAr), 7.63 – 7.57 (m, 1H, CHAr), 7.36 – 7.29 (m, 2H, CHAr), 7.20 (dd, 

3J = 8.5 Hz, 4J = 4.5 Hz, 1H, CHAr), 2.51 (s, 3H, CH3), 1.48 (s, 9H, C(CH3)3).  

13C NMR (75 MHz, CDCl3): δ = 152.0, 147.9 (CAr), 144.8 (CHAr), 138.4, 133.4, 133.1 (CAr), 

129.8 (CHAr), 126.7 (CAr), 126.3, 125.0, 124.3 (CHAr), 122.9, 122.3 (CAr), 121.0, 118.6, 116.0, 

115.8, 96.0 (CHAr), 35.4 (C(CH3)3), 31.5 (CH3), 21.3 (3C, C(CH3)3) (one signal of CAr could 

not be detected).  
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MS (EI, 70 eV): m/z(%) = 338 (M+, 100), 323 (85), 308 (29), 295 (9), 282 (11) , 266 (3), 161 

(7), 153 (4), 152 (3), 147 (23), 140 (8), 139 (5), 133 (4), 41 (5), 39 (4). HR-MS (EI): calculated 

for C24H22N2 (M
+): 338.17775, found: 338.17773. 

3-Fluoro-6-methylpyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.7i 

Yellow solid, 79% (80.1 mg). M.p.: 233–235 °C. 

IR (ATR, cm-1): = 3033 (w), 2956 (m), 2914 (w), 2864 (w), 1615 

(w), 1600 (w), 1569 (w), 1556 (m), 1548 (m), 1489 (w), 1482 (w), 

1460 (w), 1444 (w), 1427 (w), 1414 (s), 1391 (w), 1379 (w), 1357 

(m), 1353 (m), 1301 (w), 1280 (m), 1263 (m), 1240 (w), 1202 (w), 

1187 (w), 1159 (w), 1131 (w), 1121 (w), 1067 (w), 1045 (w), 958 (m), 941 (w), 925 (w), 904 

(w), 880 (m), 865 (w), 830 (m), 811 (w), 786 (s), 774 (s), 757 (s), 736 (w), 722 (m), 666 (w), 

656 (w), 634 (w), 620 (w), 611 (w), 578 (m), 552 (s), 533 (w).  

1H NMR (300 MHz, CDCl3) δ = 8.68 (s, 1H, CHAr), 8.45 (d, 3J = 8.5 Hz, 1H, CHAr), 

8.11 – 8.01 (m, 2H, CHAr), 7.84 (s, 1H, CHAr), 7.76 – 7.69 (m, 1H, CHAr), 7.35 – 7.22 (m, 3H, 

CHAr), 7.19 (dd, 3J = 8.4 Hz, 4J = 2.3 Hz, 1H, CHAr), 2.48 (s, 3H, CH3). 

19F NMR (63 MHz, CDCl3) δ = 110.92. 

13C NMR (63 MHz, CDCl3) δ = 163.1 (d, 1J = 247.9 Hz, CF), 147.5 (CAr), 144.9 (CHAr), 137.5, 

133.3, 133.3 (CAr), 130.5 (CHAr), 129.1 (d, 3J = 8.4 Hz, CAr), 127.2 (d, 3J = 8.9 Hz, CHAr), 124.6 

(CHAr), 121.6 (d, 4J = 2.4 Hz, CAr), 121.0 (CHAr), 120.9 (d, 4J = 3.0 Hz, CAr), 116.4 (d, 

2J = 23.2 Hz, CHAr), 116.0, 115.8 (CHAr), 108.5 (d, 2J = 23.4 Hz, CHAr), 96.1 (CHAr), 21.2 

(CH3). (Signal of one CAr could not be detected). 

MS (EI, 70 eV): m/z(%) = 338 (M+, 100), 323 (85), 308 (29), 295 (9), 282 (11), 266 (3), 161 

(7), 153 (4), 147 (23), 140 (8), 139 (5), 133 (4), 41 (5), 39 (4). HR-MS (EI): calculated for 

C20H13F1N2 (M
+): 338.17775, found: 338.17773. 

3-Methoxy-6-methylpyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.7k 

Yellow solid, 37% (34.6 mg). M.p.: 183–185 °C. 

IR (ATR, cm-1): = 3094 (w), 3029 (w), 3005 (w), 2916 (w), 2839 

(w), 2054 (m), 1722 (w), 1610 (s), 1572 (w), 1546 (s), 1493 (s), 

1467 (w), 1452 (w), 1432 (w), 1418 (s), 1378 (w), 1353 (w), 1333 

(w), 1300 (w), 1282 (s), 1243 (w), 1223 (s), 1194 (m), 1188 (m), 

1152 (w), 1125 (w), 1074 (w), 1028 (s), 959 (m), 936 (w), 906 (w), 860 (w), 833 (m), 819 (m), 
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803 (w), 782 (s), 773 (m), 751 (s), 710 (w), 682 (w), 668 (w), 633 (m), 621 (w), 587 (w), 579 

(w), 545 (s).  

1H NMR (300 MHz, CDCl3) δ = 8.57 (s, 1H, CHAr), 8.47 (d, 3J = 8.5 Hz, 1H, CHAr), 8.12 (d, 

3J = 8.5 Hz, 1H, CHAr), 7.99 (d, 3J = 8.8 Hz, 1H, CHAr), 7.93 (s, 1H, CHAr), 7.53 (d, 4J = 2.4 Hz, 

1H, CHAr), 7.31 (dd, 3J = 8.5, 4J = 1.1 Hz, 1H, CHAr), 7.24 – 7.13 (m, 2H, CHAr), 7.07 (dd, 

3J = 8.8, 4J = 2.4 Hz, 1H, CHAr), 3.95 (s, 3H, OCH3), 2.46 (s, 3H, CH3). 

13C NMR (63 MHz, CDCl3) δ = 160.5 (C-OCH3), 147.2 (CAr), 143.7 (CHAr), 139.1, 133.3 (CAr), 

130.2 (CHAr), 128.8, 127.0 (CAr), 126.9, 124.5 (CHAr), 121.7 (CAr), 121.4 (CHAr), 118.6 (CAr), 

116.4, 115.9, 115.4, 105.8, 94.5 (CHAr), 55.7 (OCH3), 21.3 (CH3). (one signal of CAr could not 

be detected).  

MS (EI, 70 eV): m/z(%) = 312 (M+, 100), 297 (16), 269 (53), 253 (4), 239 (2), 156 (10), 134 

(7), 121 (3), 120 (3), 107 (2). HR-MS (EI): calculated for C21H16N2O1 (M
+): 312.12571, found: 

312.12596. 

6-Fluoropyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.7c (3.8e) 

Yellow solid, 41% (35.2 mg). M.p.: 220–221 °C. 

IR (ATR, cm-1): = 3131.1 (w), 3056.8 (w), 3031.7 (w), 2920.8 (w), 

2850.5 (w), 1942.2 (w), 1889.7 (w), 1573.4 (m), 1557.6 (s), 1496.3 (m), 

1452.2 (m), 1420.5 (s), 1280.2 (m), 1243.7 (m), 1201.1 (m), 1174.1 (m), 

1137.7 (m), 1108.0 (w), 1168.8 (m), 957.1 (m), 909.6 (m), 856.1 (m), 

806.8 (m), 782.8 (m), 746.5 (s), 577.9 (m). 

1H NMR (300 MHz, CDCl3) δ = 8.65 (d, 4J = 4.0 Hz, 1H, CHAr), 8.44 (d, 3J = 8.6 Hz, 1H, 

CHAr), 8.23 (dd, 3J = 9.2, 4J = 4.8 Hz, 1H, CHAr), 8.16 – 8.07 (m, 1H, CHAr), 8.07 – 8.00 (m, 

1H, CHAr), 7.90 (dd, 3J = 10.0, 4J = 2.8 Hz, 1H, CHAr), 7.60 – 7.47 (m, 2H, CHAr), 7.36 (s, 1H, 

CHAr), 7.28 – 7.16 (m, 2H, CHAr). 

19F NMR (282 MHz, CDCl3) δ -118.20. 

13C NMR (75 MHz, CDCl3) δ = 159.0 (d, 1J = 243.3 Hz, CF), 147.7 (CAr), 145.3 (CHAr), 137.9, 

131.8 (d, 4J = 2.1 Hz, CAr), 129.3, 129.0 (CHAr), 126.8 (CAr), 126.2 (d, 4J = 2.5 Hz, CAr), 125.6 

(CAr), 125.1 (CHAr), 124.0 (d, 3J = 7.7 Hz, CAr), 122.7, 120.7 (CHAr), 117.5 (d, 3J = 8.1 Hz, 

CHAr), 116.5 (CHAr), 116.1 (d, 2J = 23.2 Hz, CHAr), 110.6 (d, 2J = 23.9 Hz, CHAr), 97.1 (CHAr). 

MS (EI, 70 eV): m/z(%) = 286 (M+, 100), 258 (7), 232 (5), 208 (2), 195 (3), 168 (3), 143 (6), 

128 (3), 99 (2), 87 (2), 75 (2), 62 (5), 51 (3), 39 (3). 
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HR-MS (EI): calculated for C19H11N2F1 (M
+): 286.09008, found: 286.09014 

6-Methoxypyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.8b 

Yellowish solid, 51% (45.6 mg). M.p.: 156–157 °C. 

IR (ATR, cm-1): = 3133.5 (w), 3055.6 (w), 2919.6 (w), 2849.1 (w), 

1957.7 (w), 1925.7 (w), 1900.2 (w), 1726.6 (w), 1616.8 (m), 1606.1 (m), 

1569.7 (m), 1552.5 (s), 1500.3 (m), 1453.4 (m), 1419.4 (s), 1350.4 (m), 

1218.9 (m), 1185.5 (m), 1138.4 (m), 1018.3 (m), 956.6 (m), 850.5 (m), 

789.6 (m), 755.3 (s), 694.9 (m), 583.2 (m). 

1H NMR (300 MHz, CDCl3) δ = 8.61 (d, 4J = 4.0 Hz, 1H, CHAr), 8.41 (d, 3J = 8.6 Hz, 1H, 

CHAr), 8.13 (d, 3J = 9.2 Hz, 1H, CHAr), 8.10 – 8.00 (m, 2H, CHAr), 7.64 (d, 4J = 2.8 Hz, 1H, 

CHAr), 7.53 – 7.39 (m, 2H, CHAr), 7.32 (s, 1H, CHAr), 7.19 (dd, 3J = 8.6, 4J = 4.6 Hz, 1H, CHAr), 

7.03 (dd, 3J = 9.1, 4J = 2.9 Hz, 1H, CHAr), 3.89 (s, 3H, OCH3). 

13C NMR (63 MHz, CDCl3) δ = 155.7, 147.4 (CAr), 144.7 (CHAr), 137.9, 129.7 (CAr), 128.8, 

128.6 (CHAr), 126.8, 126.7, 125.4 (CAr), 125.1 (CHAr), 123.3(CAr), 122.5, 120.8, 117.1, 116.0, 

115.3, 108.4, 96.3 (CHAr), 55.7 (OCH3). 

MS (EI, 70 eV): m/z(%) = 298 (M+, 100), 283 (37), 255 (70), 227 (11). 200 (5), 174 (4), 149 

(8), 127 (7), 114 (11), 100 (5), 87 (7), 75 (4), 63 (4), 51 (4), 39 (6). 

HR-MS (EI): calculated for C20H14N2O1 (M
+): 298.11006, found: 298.10977. 

8-Methoxypyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.8c 

Yellow oil, 60% (53.6 mg).  

1H NMR (300 MHz, CDCl3) δ = 8.59 (dd, 3J = 4.5, 4J = 0.9 Hz, 1H, 

CHAr), 8.25 – 8.12 (m, 2H, CHAr), 8.10 – 8.03 (m, 1H, CHAr), 7.94 (dd, 

3J = 8.1, 5J = 0.9 Hz, 1H, CHAr), 7.65 – 7.45 (m, 3H, CHAr), 7.39 (t, 

3J = 8.1 Hz, 1H, CHAr), 7.22 – 7.07 (m, 2H, CHAr), 3.90 (s, 3H, OMe). 

13C NMR (63 MHz, CDCl3) δ = 149.5, 146.9 (CAr), 144.4 (CHAr), 139.1, 129.9 (CAr), 128.9, 

128.8 (CHAr), 127.3, 125.9, 125.4 (CAr), 124.9 (2CHAr), 124.7 (CHAr), 124.1 (CAr), 123.1, 116.4, 

115.0, 112.1, 97.6 (CHAr), 55.9 (OCH3). 

MS (EI, 70 eV): m/z(%) = 298 (M+, 100), 283 (83), 253 (13), 227 (7), 201 (4), 175 (2), 142 

(10), 127 (6), 114 (7), 100 (7). 

HRMS (EI): calculated for C20H14N2O1 (M
+): 298.11006, found: 298.11014. 
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6-(Methylthio)pyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.8g 

Yellow solid, 81% (77.2 mg). M.p.: 172–173 °C. 

IR (ATR, cm-1): = 3031.8 (w), 3001.0 (w), 2958.0 (w), 2917.4 (w), 

2849.2 (w), 1597.0 (w), 1646.3 (m), 1488.3 (w), 1449.2 (m), 1413.4 (s), 

1354.0 (m), 1278.7 (m), 1189.0 (m), 1115.3 (w), 955.0 (m), 855.7 (w), 

789.8 (s), 750.4 (s), 580.6 (m). 

1H NMR (300 MHz, CDCl3) δ = 8.61 (s, 1H, CHAr), 8.42 (d, 3J = 8.5 Hz, 1H, CHAr), 

8.17 – 7.97 (m, 4H, CHAr), 7.57 – 7.42 (m, 2H, CHAr), 7.35 (dd, 3J = 8.8, 4J = 2.1 Hz, 1H, 

CHAr), 7.31 (s, 1H, CHAr), 7.22 (dd, 3J = 8.5, 4J = 4.6 Hz, 1H, CHAr), 2.57 (s, 3H, SCH3). 

13C NMR (75 MHz, CDCl3) δ = 147.2 (CAr), 144.6 (CHAr), 138.2, 133.5, 133.0 (CAr), 129.0, 

128.8, 127.9 (CHAr), 126.4, 125.2 (CAr), 125.1, 122.8 (CHAr), 122.6 (CAr), 122.4, 121.3, 116.5, 

116.2, 96.7 (CHAr), 16.8 (SCH3). (one signal of CAr could not be detected). 

MS (EI, 70 eV): m/z(%) = 314 (M+, 100), 299 (52), 266 (9), 255 (28), 227 (4), 157 (13), 127 

(6), 113 (3), 100 (2). 

HRMS (EI): calculated for C20H14N2S1 (M
+): 314.08722, found: 314.08694. 

Benzo[c]pyrido[2',3':4,5]pyrrolo[1,2-f]phenanthridine 3.8h 

Yellow solid, 42% (40.1 mg). M.p.: 231–232 °C. 

IR (ATR, cm-1): = 3096.6 (w), 2958.7 (w), 2850.5 (w), 1954.5 (w), 

1915.3 (w), 1808.3, 1713.7 (w), 1621.8 (w), 1576.9 (m), 1543.0 (m), 

1416.8 (s), 1389.4 (m), 1274.8 (m), 1029.8 (m), 807 (m), 752.5 (s), 611.2 

(m), 566.6 (m). 

1H NMR (300 MHz, CDCl3) δ = 8.64 (d, 4J = 4.0 Hz, 1H, CHAr), 8.34 – 8.11 (m, 4H, CHAr), 

7.96 – 7.84 (m, 2H, CHAr), 7.79 (d, 3J = 8.7 Hz, 1H, CHAr), 7.60 – 7.47 (m, 3H, CHAr), 7.45 (d, 

5J = 0.6 Hz, 1H, CHAr), 7.43 – 7.34 (m, 1H, CHAr), 7.03 (dd, 3J = 8.5, 4J = 4.5 Hz, 1H, CHAr). 

13C NMR (63 MHz, CDCl3) δ = 147.6 (CAr), 145.4 (CHAr), 139.8, 134.1, 129.9, 129.2 (CAr), 

129.0, 128.7, 128.3 (CHAr), 127.6 (CAr), 127.2 (CHAr), 125.9 (CAr), 125.2, 124.7, 124.6, 124.3 

(CHAr), 123.7 (CAr), 123.0, 122.1 (CHAr), 121.0 (CAr), 120.5, 114.0, 97.7 (CHAr). 

MS (EI, 70 eV): m/z(%) = 318 (M+, 100), 291 (12), 237 (2), 159 (41), 144 (23), 131 (9), 105 

(2), 87 (1). 

HRMS (EI): calculated for C23H14N2 (M
+): 318.11515, found: 318.11507. 
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6-Methoxypyrido[3',2':4,5]pyrrolo[1,2-f]phenanthridine 3.9a 

Yellowish solid, 34% (30.4 mg). M.p.: 186–187 °C. 

IR (ATR, cm-1): = 3104.4 (w), 2997.7 (w), 2930.7 (w), 2830.5 (w), 

2089.0 (w), 1892.9 (w), 1713.5 (w), 1620.3 (w), 1563.3 (m), 1543.8 (s), 

1499.5 (m), 1453.9 (m), 1407.9 (m), 1327 (m), 1293.2 (m), 1215.2 (m), 

1075.3 (m), 1042.8 (m), 1016.0 (m), 945.9 (w), 855.2 (m), 792.4 (m), 

758.9 (m), 729.0 (m), 607.9 (m), 566.3 (m). 

1H NMR (300 MHz, CDCl3) δ = 10.15 (d, 3J = 9.3 Hz, 1H, CHAr), 8.50 (dd, 4J = 4.6, 

4J = 1.6 Hz, 1H, CHAr), 8.24 – 7.97 (m, 3H, CHAr), 7.72 (d, 4J = 2.8 Hz, 1H, CHAr), 7.57 – 7.39 

(m, 2H, CHAr), 7.34 – 7.16 (m, 2H, CHAr), 7.08 (s, 1H, CHAr), 3.95 (s, 3H, OCH3). 

13C NMR (63 MHz, CDCl3) δ = 155.8 (C-OCH3), 146.9 (CAr), 141.8 (CHAr), 134.6, 129.9 (CAr), 

128.4, 128.3, 128.2 (CHAr), 127.4, 125.8 (CAr), 124.3, 122.8 (CHAr), 122.7, 122.1 (CAr), 120.4, 

117.5, 115.5, 107.5, 92.4 (CHAr), 55.7 (OCH3). 

MS (EI, 70 eV): m/z(%) = 298 (M+, 100), 283 (34), 255 (61), 227 (7), 201 (3), 175 (2), 149 

(15), 127 (16), 113 (4), 100 (5). 

HRMS (EI): calculated for C20H14N2O1 (M
+): 298.11066, found: 298.11047 

6-Fluoropyrido[3',2':4,5]pyrrolo[1,2-f]phenanthridine 3.9b 

Yellowish solid, 51% (43.8 mg). M.p.: 201–202 °C. 

IR (ATR, cm-1): = 3122.0 (w), 3054.0 (w), 1920.0 (w), 1884.2 (w), 

1798.7 (w), 1661.0 (w), 1620.4 (w), 1567.0 (m), 1497.6 (m), 1454.6 (m), 

1409.4 (m), 1329.7 (m), 1267.7 (m), 1174.5 (m), 1141.0 (m), 892.5 (m), 

824.2 (m), 752.8 (m), 724.4 (m), 662.7 (w), 593.9 (m), 566.3 (m). 

1H NMR (300 MHz, CDCl3) δ = 10.26 (dd, 3J = 9.3, 3J = 5.5 Hz, 1H, CHAr), 8.50 (dd, 4J = 4.5, 

4J = 1.3 Hz, 1H, CHAr), 8.25 – 8.03 (m, 3H, CHAr), 7.91 (dd, 3J = 10.3, 4J = 2.7 Hz, 1H, CHAr), 

7.52 (dd, 3J = 6.0, 4J = 3.3 Hz, 2H, CHAr), 7.41 – 7.26 (m, 2H, CHAr), 7.11 (s, 1H, CHAr). 

19F NMR (282 MHz, CDCl3) δ = -118.48. 

13C NMR (63 MHz, CDCl3) δ = 159.3 (d, 1J = 242.1 Hz, CF), 142.1 (CHAr), 134.6, 131.9, 130.4 

(CAr), 128.9, 128.7, 128.4 (CHAr), 126.8 (d, 4J = 1.9 Hz, CAr), 125.8 (CAr), 124.3 (CHAr), 123.4 

(d, 3J = 7.6 Hz, CAr), 122.9 (CHAr), 122.2 (CAr), 121.0 (d, 3J = 7.8 Hz, CHAr), 117.9 (CHAr), 

116.4 (d, 2J = 22.4 Hz, CHAr), 109.3 (d, 2J = 24.0 Hz, CHAr), 93.0 (CHAr). 

MS (EI, 70 eV): m/z(%) = 286 (M+, 100),  258 (10), 232 (3), 143 (17), 129 (4), 115 (3). 
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HRMS (EI): calculated for C19H11N2F1 (M
+): 286.09008, found: 286.08990. 

6-(Methylthio)pyrido[3',2':4,5]pyrrolo[1,2-f]phenanthridine 3.9c 

Yellow solid, 36% (33.9 mg). M.p.: 168–169 °C. 

IR (ATR, cm-1): = 3107.2 (w), 3037.2 (w), 2918.0 (w), 2849.6 (w), 

2731.2 (w), 2520.1 8w), 2387.1 (w), 2116.4 (w), 1959.0 (w), 1916.1 (w), 

1724.9 (w), 1595.9 (m), 1541.6 (m), 1453.3 (s), 1405.6 (s), 1323.5 (m), 

1103.3 (m), 955.8 (m), 818.2 (m), 793.9 (s), 758.7 (s), 730.2 (s), 646.5 

(m), 585.3 (m). 

1H NMR (300 MHz, CDCl3) δ = 10.14 (d, 3J = 8.9 Hz, 1H, CHAr), 8.49 (dd, 4J = 4.6, 

4J = 1.7 Hz, 1H, CHAr), 8.27 – 8.11 (m, 2H, CHAr), 8.10 – 7.99 (m, 2H, CHAr), 7.57 – 7.41 (m, 

3H, CHAr), 7.26 (dd, 3J = 7.9, 4J = 4.7 Hz, 1H, CHAr), 7.06 (s, 1H, CHAr), 2.61 (s, 3H, SCH3). 

13C NMR (75 MHz, CDCl3) δ = 147.1 (CAr), 142.0 (CHAr), 134.7, 133.4, 132.9 (CAr), 128.5 (2 

CHAr), 128.4, 128.2 (CHAr), 127.0, 125.7 (CAr), 124.2, 122.7 (CHAr), 122.3 (CAr), 122.2 (CHAr), 

122.0 (CAr), 119.8, 117.7, 93.0 (CHAr), 17.2 (SCH3). 

MS (EI, 70 eV): m/z(%) = 314 (M+, 100), 299 (59), 266 (7), 255 (29), 227 (3), 201 (1), 157 

(14), 133 (5), 113 (2). 

HRMS (EI): calculated for C20H14N2S1 (M
+): 314.08722, found: 314.08645. 

General procedure for domino reaction of dibromide compounds and 

N-tosylhydrazones 

Dibromide compound 4.1 (0.2 mmol), N-tosylhydrazone 4.2 (1.5 equiv., 0.3 mmol), 

Pd2(dba)3 (2.5 mol%, 4.6 mg, 0.005 mmol), XPhos (10 mol%, 9.6 mg, 0.01 mmol), and LiOtBu 

(4 equiv. 64 mg, 0.8 mmol) were placed in a dried pressure tube equipped with a septum. The 

reaction vessel was back-filled with argon three times. Then dried and degassed dioxane (4 mL) 

was added to the reaction mixture under argon and the septum was replaced with a Teflon cap. 

The reaction mixture was stirred at 20 °C for 15 mins and then at 90 °C for 4 hours. After 

cooling to room temperature, water (10 mL) and ethyl acetate (10 mL) were added and the 

organic layer was separated. The aqueous layer was extracted three times with ethyl acetate 

(3x10 mL). Combined organic layers were dried over MgSO4 and the solvent was removed 

under reduced pressure. The residue was chromatographed (silica gel, heptane) to obtain the 

pure product. 

5-Phenylbenzo[b]naphtho[2,1-d]thiophene 4.3a 
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White solid, 83% (52 mg). M.p.: 196–197 °C. 

IR (ATR, cm-1): 3041.6 (w), 1950.5 (w), 1893.8 (w), 1802.3 (w), 1745.3 

(w), 1432.7 (w), 1339.2 (w), 1247.1 (w), 1155.1 (w), 1071.7 (w), 873.6 

(m), 744.8 (s), 697.5 (s).  

1H NMR (250 MHz, CDCl3) δ 8.27 – 8.15 (m, 2H, CHAr), 8.13 (s, 1H, CHAr), 8.06 – 7.92 (m, 

2H, CHAr), 7.71 – 7.44 (m, 9H, CHAr). 

13C NMR (63 MHz, CDCl3) δ 140.9, 139.4, 138.2, 137.0, 136.8, 132.3, 131.1 (CAr), 130.5 (2 

CHAr), 129.3 (CAr), 128.5 (2CHAr), 127.6 (2CHAr), 126.8, 126.5, 126.4, 124.9, 124.8, 123.1, 

121.8, 120.7 (CHAr). 

MS (EI, 70 eV): m/z (%) = 310 (M+, 100), 276 (4), 154 (28), 131 (7), 118 (4).  

HRMS (EI): Calculated for C22H14S1 (M
+): 310.08107, found: 310.08151. 

5-(p-Tolyl)benzo[b]naphtho[2,1-d]thiophene 4.3b 

White solid, 90% (58 mg). M.p.: 143–144 °C. 

IR (ATR, cm-1): 3043.5 (w), 2919.8 (w), 2860.6 (w), 2726.5 (w), 1895.5 

(w), 1512.0 (w), 1433.0 (w), 1339.7 (w), 1107.1 (w), 875.8 (m), 819.9 

(m), 747.0 (s), 607.2 (m). 

1H NMR (300 MHz, CDCl3) δ 8.24 – 8.16 (m, 2H, CHAr), 8.13 (s, 1H, 

CHAr), 8.07 – 8.02 (m, 1H, CHAr), 8.02 – 7.95 (m, 1H, CHAr), 7.68 – 7.60 (m, 1H, CHAr), 

7.56 – 7.46 (m, 5H, CHAr), 7.38 (d, 3J = 7.8 Hz, 2H, CHAr), 2.52 (s, 3H, CH3). 

13C NMR (75 MHz, CDCl3) δ 139.4, 138.1, 138.0, 137.3, 136.8, 132.3, 131.2 (CAr), 130.3 

(2CHAr), 129.3 (CAr), 129.2 (2CHAr), 127.6, 126.7, 126.4, 126.3, 124.9, 124.7, 123.1, 121.7, 

120.7 (CHAr), 21.4 (CH3) (signal of one tertiary carbon is overlapped). 

MS (EI, 70 eV): m/z (%) = 324 (M+, 100), 308 (36), 154 (10), 125 (2), 39 (7).  

HRMS (EI): Calculated for C23H16S1 (M
+): 324.09672, found: 324.09641. 

5-(4-(Trifluoromethyl)phenyl)benzo[b]naphtho[2,1-d]thiophene 4.3c 

Yellowish solid, 53% (40 mg). M.p.: 167–169 °C. 

IR (ATR, cm-1): 3066.7 (w), 2922.7 (w), 2851.0 (w), 1923.3 (w), 

1724.8 (w), 1614.7 (m), 1435.9 (m), 1319.7 (s), 1159.9 (s), 1102.4 (s), 

1063.7 (s), 841.6 (m), 749.9 (s), 632.4 (m).  
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1H NMR (300 MHz, CDCl3) δ 8.27 – 8.15 (m, 2H, CHAr), 8.11 – 8.07 (m, 1H, CHAr), 

8.04 – 7.95 (m, 1H, CHAr), 7.89 (dd, 3J = 7.2, 3J = 6.8 Hz, 1H, CHAr), 7.85 – 7.77 (m, 2H, 

CHAr), 7.75 – 7.61 (m, 3H, CHAr), 7.61 – 7.46 (m, 3H, CHAr). 

19F NMR (282 MHz, CDCl3) δ -62.62. 

13C NMR (75 MHz, CDCl3) δ 144.7, 139.4, 137.8, 136.6, 136.5, 132.2 (CAr), 130.8 (2CHAr), 

130.6 (CAr), 129.8 (q, 2J = 32.5 Hz, C-CF3), 129.3 (CAr), 127.1, 127.0, 126.8, 126.6 (CHAr), 

125.5 (q, 3J = 3.8 Hz, 2CHAr), 125.1, 124.9 (CHAr), 124.5 (q, 1J = 272.0 Hz, CF3), 123.2, 121.7, 

120.9 (CHAr). 

HRMS (EI): Calculated for C23H13F3S1 (M
+): 378.06848, found: 378.06817. 

4-(Benzo[b]naphtho[2,1-d]thiophen-5-yl)phenol 4.3d 

White solid, 81% (53 mg). M.p.: 195–197 °C. 

IR (ATR, cm-1): 3534.5 (w), 3163.9 (w, br), 3040.1 (w), 2924.4 (w), 

1888.9 (w), 1592.8 (m), 1506.0 (m), 1433.2 (m), 1339.9 (m), 1226.1 (s), 

991.2 (m), 832.1 (s), 748.9 (s), 607.3 (m). 

1H NMR (300 MHz, CDCl3) δ 8.24 – 8.15 (m, 2H, CHAr), 8.09 (s, 1H, 

CHAr), 8.04 – 7.92 (m, 2H, CHAr), 7.69 – 7.58 (m, 1H, CHAr), 7.56 – 7.41 (m, 5H, CHAr), 

7.08 – 6.96 (m, 2H, CHAr), 4.90 (s, br, 1H, OH). 

13C NMR (63 MHz, CDCl3) δ 155.2, 139.4, 137.7, 136.8, 136.8, 133.5, 132.3 (CAr), 131.7 

(2CHAr), 131.4, 129.3 (CAr), 127.6, 126.8, 126.5, 126.4, 125.0, 124.7, 123.1, 121.8, 120.7 

(CHAr), 115.4 (2CHAr). 

MS (EI, 70 eV): m/z (%) = 326 (M+, 100), 308 (9), 295 (17), 271 (4), 224 (2), 148 (18), 135 

(6).  

HRMS (EI): Calculated for C22H14O1S1 (M
+): 326.07599, found: 326.07548. 

4-(Benzo[b]naphtho[2,1-d]thiophen-5-yl)benzonitrile 4.3e 

White solid, 68% (46 mg). M.p.: 215–216 °C. 

IR (ATR, cm-1): 3405.7 (w), 3046.0 (w), 3014.7 (w), 2223.6 (m), 1938.8 

(w), 1602.3 (m), 1508.3 (m), 1341.4 (m), 989.5 (m), 836.7 (m), 747.0 

(s), 720.4 (m), 614.1 (m), 573.9 (m).  
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1H NMR (300 MHz, CDCl3) δ 8.28 – 8.15 (m, 2H, CHAr), 8.07 (s, 1H, CHAr), 8.03 – 7.94 (m, 

1H, CHAr), 7.92 – 7.78 (m, 3H, CHAr), 7.75 – 7.60 (m, 3H, CHAr), 7.60 – 7.45 (m, 3H, CHAr). 

13C NMR (75 MHz, CDCl3) δ 145.7, 139.2, 138.0, 136.4, 135.9 (CAr), 132.2 (2CHAr), 132.0 

(CAr), 131.0 (2CHAr), 130.1, 129.2 (CAr), 127.1, 126.9, 126.6, 126.5, 125.1, 124.8, 123.0, 121.6, 

120.7 (CHAr), 118.9 (CN), 111.3 (CAr). 

MS (EI, 70 eV): m/z (%) = 335 (M+, 100), 167 (15), 153 (14), 131 (9).  

HRMS (EI): Calculated for C23H13N1S1 (M
+): 335.07632, found: 335.07571. 

5-(4-Fluorophenyl)benzo[b]naphtho[2,1-d]thiophene 4.3f 

Yellowish solid, 89% (58 mg). M.p.: 176–177 °C. 

IR (ATR, cm-1): 3063.9 (w), 2926.3 (w), 1889.9 (w), 1667.1 (w), 1597.5 

(m), 1504.2 (m), 1434.1 (m), 1215.5 (m), 1153.0 (m), 1089.1 (m), 876.9 

(m), 835.6 (m), 749.0 (s), 605.1 (m). 

1H NMR (250 MHz, CDCl3) δ 8.28 – 8.14 (m, 2H, CHAr), 8.08 (s, 1H, 

CHAr), 8.03 – 7.88 (m, 2H, CHAr), 7.71 – 7.58 (m, 1H, CHAr), 7.58 – 7.46 (m, 5H, CHAr), 

7.33 – 7.17 (m, 2H, CHAr). 

19F NMR (235 MHz, CDCl3) δ -115.13. 

13C NMR (63 MHz, CDCl3) δ 162.5 (d, 1J = 246.5 Hz, CF), 139.4, 137.2, 137.0 (CAr), 136.8 (d, 

4J = 3.4 Hz, CAr), 136.7, 132.2 (CAr), 132.0 (d, 3J = 8.0 Hz, 2CHAr), 131.1, 129.3 (CAr), 127.3, 

126.9, 126.6, 126.5, 125.0, 124.8, 123.1, 121.7, 120.8, 115.5 (d, 2J = 21.3 Hz, 2CHAr). 

MS (EI, 70 eV): m/z (%) = 328 (M+, 100), 163 (23), 154 (10), 140 (8).  

HRMS (EI): Calculated for C22H13F1S1 (M
+): 328.07165, found: 328.07113. 

5-(2-Fluorophenyl)benzo[b]naphtho[2,1-d]thiophene 4.3g 

Yellowish solid, 75% (49 mg). M.p.: 193–194 °C. 

IR (ATR, cm-1): 3054.6 (w), 1693.9 (w), 1575.4 (w), 1488.7 (m), 1449.4 

(w), 1339.4 (w), 1247.6 (w), 1210.9 (w), 1095.3 (w), 887.4 (m), 746.9 

(s), 725.7 (m), 611.8 (m). 

1H NMR (250 MHz, CDCl3) δ 8.25 – 8.17 (m, 2H, CHAr), 8.15 (s, 1H, CHAr), 8.03 – 7.94 (m, 

1H, CHAr), 7.82 – 7.74 (m, 1H, CHAr), 7.69 – 7.60 (m, 1H, CHAr), 7.57 – 7.45 (m, 5H, CHAr), 

7.38 – 7.22 (m, 2H, CHAr). 

19F NMR (235 MHz, CDCl3) δ -113.51. 
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13C NMR (63 MHz, CDCl3) δ 160.5 (d, 1J = 246.7 Hz, CF), 139.3, 137.8, 136.7 (CAr), 132.8 (d, 

4J = 3.4 Hz, CHAr), 132.2, 131.7, 131.1 (CAr), 129.8 (d, 3J = 8.0 Hz, CHAr), 129.2, 128.2 (d, 

2J = 16.3 Hz, CAr), 127.3 (d, 4J = 1.2 Hz, CHAr), 126.9, 126.7, 126.5, 125.0, 124.8 (CHAr), 124.4 

(d, 3J = 3.6 Hz, CHAr), 123.1, 121.8, 121.6, 115.9 (d, 2J = 22.2 Hz, CHAr). 

MS (EI, 70 eV): m/z (%) = 328 (M+, 100), 163 (23), 154 (11), 131(5).  

HRMS (EI): Calculated for C22H13F1S1 (M
+): 328.07165, found: 328.07116. 

4-(Benzo[b]naphtho[2,1-d]thiophen-5-yl)pyridine 4.3h 

White solid, 56% (35 mg). M.p.: 170–171 °C. 

IR (ATR, cm-1): 3066.6 (w), 3022.5 (w), 2922.7 (w), 1935.3 (w), 1693.5 

(w), 1591.4 (m), 1402.2 (m), 1340.3 (w), 1062.1 (w), 988.3 (w), 823.4 

(m), 749.2 (s), 726.3 (s), 617.4 (m). 

1H NMR (300 MHz, CDCl3) δ 8.85 (s, br, 2H, CHAr), 8.26 – 8.16 (m, 2H, 

CHAr), 8.10 (s, 1H, CHAr), 8.03 – 7.96 (m, 1H, CHAr), 7.93 (d, 3J = 8.2 Hz, 1H, CHAr), 

7.73 – 7.43 (m, 6H, CHAr). 

13C NMR (75 MHz, CDCl3) δ 149.6, 139.3, 138.4, 136.5, 135.1, 132.2, 129.9, 129.4 (CAr), 

127.3, 127.1, 126.7, 126.7, 125.2, 124.9, 123.2, 121.7, 120.7 (CHAr). (signals of 4CHAr could 

not be detected). 

MS (EI, 70 eV): m/z (%) = 311 (M+, 100), 282 (12), 155 (23), 141 (14), 107 (4). HRMS (EI): 

Calculated for C21H13N1S1 (M
+): 311.07632, found: 311.07582. 

5-(4-Methoxyphenyl)benzo[b]naphtho[2,1-d]thiophene 4.3i 

White solid, 95% (65 mg). M.p.: 178–179 °C. 

IR (ATR, cm-1): 3043.2 (w), 2947.3 (w), 2832.6 (w), 1604.6 (m), 

1509.9 (m), 1432.5 (m), 1290.1 (w), 1240.1 (m), 1168.9 (m), 1031.0 

(m), 875.6 (m), 829.8 (m), 751.5 (s), 723.4 (,), 606.7 (m). 551.1 (m). 

1H NMR (250 MHz, CDCl3) δ 8.25 – 8.15 (m, 2H, CHAr), 8.11 (s, 1H, 

CHAr), 8.06 – 7.93 (m, 2H, CHAr), 7.69 – 7.58 (m, 1H, CHAr), 7.58 – 7.44 (m, 5H, CHAr), 

7.16 – 7.05 (m, 2H, CHAr), 3.94 (s, 3H, OCH3). 

13C NMR (63 MHz, CDCl3) δ 159.2, 139.4, 137.8, 136.8, 136.7, 133.2, 132.3 (CAr), 131.5 

(2CHAr), 131.4, 129.3 (CAr), 127.6, 126.7, 126.4, 126.4, 124.9, 124.7, 123.1, 121.7, 120.7 

(CHAr), 113.9 (2CHAr), 55.5 (OCH3). 
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MS (EI, 70 eV): m/z (%) = 340 (M+, 100), 325 (26), 295 (36), 269 (3), 148 (26), 135 (9).  

HRMS (EI): Calculated for C23H16O1S1 (M
+): 340.09164, found: 340.09158. 

5-(3-Methoxyphenyl)benzo[b]naphtho[2,1-d]thiophene 4.3j 

White solid, 80% (55 mg). M.p.: 138–139 °C. 

IR (ATR, cm-1): 3047.3 (w), 2960.5 (w), 2831.0 (w), 1705.6 (w), 1582,9 

(m), 1485.3 (m), 1459.4 (m), 1255.7 (m), 1214.0 (m), 1077.1 (m), 1034.1 

(m), 952,2 (m), 789.8 (s), 748.3 (s), 649.4 (m), 570.3 (m). 

1H NMR (250 MHz, CDCl3) δ 8.26 – 8.16 (m, 2H, CHAr), 8.14 (s, 1H, 

CHAr), 8.07 – 7.90 (m, 2H, CHAr), 7.68-7.59 (m, 1H, CHAr), 7.58 – 7.41 (m, 4H, CHAr), 

7.22 – 7.10 (m, 2H, CHAr), 7.09-7.00 (m, 1H, CHAr), 3.90 (s, 3H, OCH3). 

13C NMR (63 MHz, CDCl3) δ 159.7, 142.3, 139.4, 138.0, 137.1, 136.8, 132.2, 131.1 (CAr), 

129.5 (CHAr), 129.3 (CAr), 127.6, 126.8, 126.5, 126.4, 124.9, 124.8, 123.1, 123.0, 121.8, 120.6, 

116.1, 113.1 (CHAr), 55.5 (OCH3). 

MS (EI, 70 eV): m/z (%) = 340 (M+, 100), 325 (3), 308 (10), 295 (33), 148 (22), 135 (8).  

HRMS (EI): Calculated for C23H16O1S1 (M
+): 340.09164, found: 340.09152. 

 

5-(2-Methoxyphenyl)benzo[b]naphtho[2,1-d]thiophene 4.3k 

White solid, 71% (48 mg). M.p.: 216–218 °C. 

IR (ATR, cm-1): 3064.5 (w), 2952.0 (w), 2834.7 (w), 1578.4 (w), 1491.1 

(m), 1461.4 (m), 1432.8 (m), 1339.4 (w), 1289.0 (m), 1241.1 (m), 1111.2 

(m), 1024.2 (m), 875.4 (m), 746.2 (s), 724.4 (m), 614.1 (m), 551.5 (m). 

1H NMR (300 MHz, CDCl3) δ 8.23 – 8.14 (m, 2H, CHAr), 8.12 (s, 1H, CHAr), 8.02 – 7.93 (m, 

1H, CHAr), 7.69 (d, 3J = 8.4 Hz, 1H, CHAr), 7.64-7.56 (m, 1H, CHAr), 7.55 – 7.43 (m, 4H, 

CHAr), 7.40 (dd, 3J = 7.4, 4J = 1.7 Hz, 1H, CHAr), 7.19 – 7.05 (m, 2H, CHAr), 3.72 (s, 3H, 

OCH3). 

13C NMR (63 MHz, CDCl3) δ 157.6, 139.3, 137.1, 136.9, 134.9, 132.4 (CAr), 132.3 (CHAr), 

131.6, 129.7 (CAr), 129.4 (CHAr), 129.0 (CAr), 127.9, 126.6, 126.3, 126.2, 124.8, 124.6, 123.1, 

121.8, 121.1, 120.9, 111.2 (CHAr), 55.7 (OCH3). 

MS (EI, 70 eV): m/z (%) = 340 (M+, 100), 324 (21), 308 (5), 297 (28), 265 (4), 148 (21), 135 

(9).  



APPENDIX 

xliii 

 

HRMS (EI): Calculated for C23H16O1S1 (M
+): 340.09164, found: 340.09157. 

5-(Naphthalen-1-yl)benzo[b]naphtho[2,1-d]thiophene 4.3l 

White solid, 65% (47 mg). M.p.: 217–218 °C 

IR (ATR, cm-1): 3043.8 (w), 2952.5 (w), 2850.6 (w), 1921.1 (w), 1506.2 

(w), 1432.7 (m), 1235.3 (w), 1102.5 (w), 1018.6 (m), 879.7 (m), 798.7 

(m), 772.9 (s), 748.4 (s), 725.4 (s), 698.6 (m), 600.2 (m), 578.3 (m). 

1H NMR (300 MHz, CDCl3) δ 8.28 – 8.23 (m, 1H, CHAr), 8.21 (s, 1H, 

CHAr), 8.19 – 8.10 (m, 1H, CHAr), 8.07 – 7.92 (m, 3H, CHAr), 7.70 – 7.56 (m, 3H, CHAr), 

7.55 – 7.43 (m, 5H, CHAr), 7.43 – 7.27 (m, 2H, CHAr). 

13C NMR (75 MHz, CDCl3) δ 139.4, 138.5, 137.3, 136.8, 136.3, 133.7, 133.2, 132.4, 132.2, 

129.1 (CAr), 128.4, 128.3, 128.3, 128.0, 126.9, 126.8, 126.5, 126.5, 126.3, 126.1, 125.6, 124.9, 

124.8, 123.2, 121.8, 121.7 (CHAr). 

MS (EI, 70 eV): m/z (%) = 360 (M+, 100), 179 (46), 120 (3).  

HRMS (EI): Calculated for C26H16S1 (M
+): 360.09672, found: 360.09677. 

5-(Naphthalen-2-yl)benzo[b]naphtho[2,1-d]thiophene 4.3m 

White solid, 67% (48 mg). M.p.: 190–192 °C. 

IR (ATR, cm-1): 3036.6 (w), 2919.9 (w), 2849.9 (w), 1920.8 (w), 

1704.2 (w), 1596.4 (w), 1434.9 (w), 1240.1 (w), 962.3 (m), 858.5 

(m), 815.7 (m), 747.2 (s), 726.9 (s), 669.6 (m), 627.2 (m). 

1H NMR (250 MHz, CDCl3) δ 8.27 – 8.16 (m, 3H, CHAr), 8.09 – 7.91 

(m, 6H, CHAr), 7.75 – 7.47 (m, 7H, CHAr). 

13C NMR (63 MHz, CDCl3) δ 139.4, 138.5, 138.1, 137.2, 136.8, 133.6, 132.8, 132.4, 131.3, 

129.4 (CAr), 129.1, 128.8, 128.2, 127.9, 127.9, 127.6, 126.9 (CHAr), 126.6 (2CHAr), 126.5, 

126.3, 125.0, 124.8, 123.1, 121.8, 121.1 (CHAr). 

MS (EI, 70 eV): m/z (%) = 360 (M+, 100), 179 (43), 143 (4).  

HRMS (EI): Calculated for C26H16S1 (M
+): 360.09672, found: 360.09575. 

5-([1,1'-Biphenyl]-4-yl)benzo[b]naphtho[2,1-d]thiophene 4.3n 
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White solid, 63% (49 mg). M.p.: 190–192 °C. 

IR (ATR, cm-1): 3031.2 (w), 1599.4 (w), 1487.9 (w), 1433.1 (w), 1339.8 

(w), 1235.3 (w), 990.0 (w), 888.3 (w), 842.8 (m), 747.0 (s), 724.2 (s), 

693.0 (m), 645.3 (m), 579.8 (m). 

1H NMR (250 MHz, CDCl3) δ 8.27 – 8.18 (m, 2H, CHAr), 8.17 (s, 1H, 

CHAr), 8.13 – 8.06 (m, 1H, CHAr), 8.04 – 7.95 (m, 1H, CHAr), 7.84 – 7.60 (m, 7H, CHAr), 

7.60 – 7.46 (m, 5H, CHAr), 7.46 – 7.37 (m, 1H, CHAr). 

13C NMR (63 MHz, CDCl3) δ 140.9, 140.5, 139.9, 139.4, 137.7, 137.1, 136.8, 132.3, 131.1 

(CAr), 130.9 (2CHAr), 129.4 (CAr), 129.0 (2CHAr), 127.6, 127.6 (CHAr), 127.3 (2CHAr), 127.2 

(2CHAr), 126.9, 126.6, 126.4, 125.0, 124.8, 123.1, 121.8, 120.8 (CHAr). 

MS (EI, 70 eV): m/z (%) = 386 (M+, 100), 308 (20), 193 (10), 154 (6), 77 (5).  

HRMS (EI): Calculated for C28H18S1 (M
+): 386.11237, found: 386.11180. 

6-Phenylbenzo[b]benzo[4,5]thio[3,2-g]benzothiophene 4.3o 

Yellow, 34% (25 mg). M.p.: 230–231 °C. 

IR (ATR, cm-1): 3054.1 (w), 3025.7 (w), 2920.0 (w), 2849.8 (w), 

1942.8 (w), 1905.1 (w), 1820.8 (w), 1788.0 (w), 1750.0 (w), 1693.4 

(w), 1600.7 (w), 1435.4 (w), 1405.1 (m), 1330.9 (m), 1231.1(m), 

1157.7 (m), 1111.9 (m), 876.9 (m), 755.7 (s), 728.2 (s), 699.6 (s), 

646.1 (m), 568.9 (m). 

1H NMR (300 MHz, CDCl3) δ 8.21 – 8.12 (m, 1H, CHAr), 8.02 (s, 1H, CHAr), 7.97 – 7.91 (m, 

1H, CHAr), 7.91 – 7.86 (m, 1H, CHAr), 7.60 – 7.54 (m, 5H, CHAr), 7.53 – 7.44 (m, 2H, CHAr), 

7.42 – 7.33 (m, 1H, CHAr), 7.20 – 7.07 (m, 2H, CHAr). 

13C NMR (63 MHz, CDCl3) δ 141.5, 139.7, 139.4, 136.5, 136.2, 136.1, 133.8, 133.7, 132.4, 

132.0 (CAr), 129.6 (2CHAr), 128.9 (2CHAr), 128.1, 127.0, 126.3, 125.1, 125.0, 124.4, 123.2, 

123.0, 122.2, 120.4 (CHAr). 

MS (EI, 70 eV): m/z (%) = 366 (M+, 100), 332 (5), 182 (30), 160 (6), 121 (2). 

HR-MS(+ESI): calculated for C24H15S2 (M+H)+: 367.06097, found: 367.06144. 

5-Phenylnaphtho[1,2-b]benzofuran 4.5a 
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White solid, 60% (35 mg). M.p.: 119–120 °C. 

IR (ATR, cm-1): 3030.2 (w), 2922.0 (w), 2850.8 (w), 1892.7 (w), 1576.1 

(w), 1493.1 (w), 1457.9 (m), 1440.5 (m), 1403.5 (m), 1355.6 (m), 1235.5 

(m), 1192.5 (m), 1171.9 (m), 1048.3 (m), 883.3 (m), 787.1 (m), 769.4 

(m), 741.9 (s), 697.9 (s), 603.0 (m), 582.5 (m). 

1H NMR (300 MHz, CDCl3) δ 8.54 (dd, 3J = 8.2, 5J = 0.5 Hz, 1H, CHAr), 8.00 (d, 3J = 8.2 Hz, 

2H, CHAr), 7.96 (s, 1H, CHAr), 7.75 (d, 3J = 8.2 Hz, 1H, CHAr), 7.71-7.63 (m, 1H, CHAr), 

7.61 – 7.37 (m, 8H, CHAr). 

13C NMR (75 MHz, CDCl3) δ 156.3, 151.8, 141.1, 136.2, 131.6 (CAr), 130.5 (2CHAr), 128.5 

(2CHAr), 127.4, 127.2, 126.5, 126.5, 126.3 (CHAr), 125.2 (CAr), 123.2 (CHAr), 121.7 (CAr), 

121.3, 120.4, 119.5, 118.8 (CAr), 112.0 (CHAr). 

MS (EI, 70 eV): m/z (%) = 294 (M+, 100), 263 (15), 239 (4), 146 (8), 132 (15), 119 (10).  

HRMS (EI): Calculated for C22H14O1 (M
+): 294.10392, found: 294.10358. 

5-(p-Tolyl)naphtho[1,2-b]benzofuran 4.5b 

 

White solid, 45% (28 mg). M.p.: 173–174 °C. 

IR (ATR, cm-1): 3025.9 (w), 2917.4 (w), 2863.5 (w), 2731.7 (w), 1930.0 

(w), 1814.0 (w), 1634.2 (w), 1577.5 (w), 1459.1 (m), 1351.9 (m), 

1236.6 (w), 1195.9 (m), 1049.3 (m), 822.6 (m), 766.1 (m), 739.8 (s), 

601.2 (m). 

1H NMR (250 MHz, CDCl3) δ 8.58 – 8.49 (m, 1H, CHAr), 8.08 – 7.97 (m, 2H, CHAr), 7.95 (s, 

1H, CHAr), 7.81 – 7.60 (m, 2H, CHAr), 7.58 – 7.30 (m, 7H, CHAr), 2.51 (s, 3H, CH3). 

13C NMR (63 MHz, CDCl3) δ 156.3, 151.7, 138.2, 137.1, 136.1, 131.7 (CAr), 130.4 (2CHAr), 

129.2 (2CHAr), 127.3, 126.4, 126.4, 126.2 (CHAr), 125.3 (CAr), 123.1 (CHAr), 121.7 (CAr), 121.2, 

120.4, 119.4 (CHAr), 118.8 (CAr), 112.0 (CHAr), 21.4 (CH3). 

MS (EI, 70 eV): m/z (%) = 308 (M+, 100), 292 (10), 279 (6), 263 (5), 250 (5), 207 (10), 187 

(4), 154 (8), 132 (11). 

HRMS (EI): Calculated for C23H16O1 (M
+): 308.11957, found: 308.11961. 

5-(4-Methoxyphenyl)naphtho[1,2-b]benzofuran 4.5c 
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White solid, 77% (50 mg). M.p.: 168–169 °C. 

IR (ATR, cm-1): 3019.8 (w), 2958.7 (w), 2906.4 (w), 2542.6 (w), 

2351.3 (w), 2051.5 (w), 1923.9 (w), 1605.3 (m), 1509.4 (m), 1460.4 

(m), 1355.7 (m), 1238.0 (m), 1104.2 (m), 1031.5 (m), 827.2 (m), 768.5 

(m), 745.5 (s), 686.4 (m), 601.3 (m), 555.4 (m). 

1H NMR (250 MHz, CDCl3) δ 8.58 – 8.47 (m, 1H, CHAr), 8.06 – 7.97 (m, 2H, CHAr), 7.94 (s, 

1H), 7.79 – 7.60 (m, 2H, CHAr), 7.60 – 7.34 (m, 5H, CHAr), 7.17 – 7.00 (m, 2H, CHAr), 3.93 (s, 

3H, OCH3). 

13C NMR (63 MHz, CDCl3) δ 159.1 (C-OCH3), 156.3, 151.7, 135.8, 133.4, 131.8 (CAr), 131.6 

(2CHAr), 127.2, 126.4, 126.4, 126.2 (CHAr), 125.3 (CAr), 123.1 (CHAr), 121.7 (CAr), 121.2, 

120.4, 119.4 (CHAr), 118.8 (CAr), 113.9 (2CHAr), 112.0 (CHAr), 55.5 (OCH3). 

MS (EI, 70 eV): m/z (%) = 324 (M+, 100), 309 (31), 279 (21), 252 (17), 226 (5), 162 (8), 140 

(7), 113 (10). 

HRMS (EI): Calculated for C23H16O2 (M
+): 324.11448, found: 324.11403. 

5-([1,1'-Biphenyl]-4-yl)naphtho[1,2-b]benzofuran 4.5d 

White solid, 41% (30 mg). M.p.: 187–188 °C. 

IR (ATR, cm-1): 3029.6 (w), 2922.4 (w), 2850.5 (w), 1927.1 (w), 1580.5 

(w), 1487.1 (m), 1440.6 (m), 1352.2 (m), 1236.5 (w), 1177.3 (m), 1049.4 

(m), 838.7 (m), 763.6 (m), 741.9 (s), 692.7 (s), 606.2 (m), 587.4 (m). 

1H NMR (300 MHz, CDCl3) δ 8.60 – 8.53 (m, 1H, CHAr), 8.09 (d, 

3J = 8.5 Hz, 1H, CHAr), 8.05 – 7.97 (m, 2H, CHAr), 7.82 – 7.70 (m, 5H, CHAr), 7.70 – 7.62 (m, 

3H, CHAr), 7.59 – 7.47 (m, 4H, CHAr), 7.47 – 7.36 (m, 2H, CHAr). 

13C NMR (75 MHz, CDCl3) δ 156.3, 151.9, 141.0, 140.3, 140.1, 135.7, 131.6 (CAr), 130.9 

(2CHAr), 129.0 (2CHAr), 127.5 (CHAr), 127.3 (2CHAr), 127.2 (3CHAr), 126.6, 126.5, 126.3 

(CHAr), 125.2 (CAr), 123.2 (CHAr), 121.7 (CAr), 121.3, 120.4, 119.6 (CHAr), 118.8 (CAr), 112.0 

(CHAr). 

MS (EI, 70 eV): m/z (%) = 370 (M+, 100), 339 (4), 292 (13), 263 (6) CHAr, 185 (8), 169 (7). 

HRMS (EI): Calculated for C28H18O1 (M
+): 370.13522, found: 370.13465. 

11-Methyl-5-phenyl-11H-benzo[a]carbazole 4.6a 
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Yellowish solid, 31% (19 mg). M. p.: 153–154 °C. 

IR (ATR, cm-1): 3079.1 (w), 3055.4 (w), 3026.2 (w), 2918.9 (w), 1597.8 

(w), 1518.4 (w), 1448.8 (m), 1334.5 (m), 1263.1 (m), 1133.2 (m), 1017.0 

(m), 882.1 (m), 769.2 (m), 735.3 (s), 699.5 (s), 578.3 (s). 

1H NMR (250 MHz, CDCl3) δ 8.81 (d, 3J = 8.1 Hz, 1H, CHAr), 

8.17 – 8.04 (m, 3H, CHAr), 7.66 – 7.43 (m, 9H, CHAr), 7.35 – 7.27 (m, 1H, CHAr), 4.47 (s, 3H, 

NCH3). 

13C NMR (63 MHz, CDCl3) δ 142.1, 141.2, 135.3, 132.7, 132.0 (CAr), 130.7 (2CHAr), 128.4 

(2CHAr), 127.9, 127.0, 125.2, 125.0, 124.8 (CHAr), 123.2, 123.0 (CAr), 122.4, 120.4, 119.8, 

119.8 (CHAr), 118.6 (CAr), 109.2 (CHAr), 34.4 (NCH3). 

MS (EI, 70 eV): m/z (%) = 307 (M+, 100), 291 (35), 152 (12), 146 (23), 131 (5), 118 (3). 

HRMS (EI): Calculated for C23H17N1 (M
+): 307.13555, found: 307.13495. 

5-(4-Methoxyphenyl)-11-methyl-11H-benzo[a]carbazole 4.6b 

Yellowish solid, 45% (30 mg). M.p.: 154–155 °C. 

IR (ATR, cm-1): 3119.2 (w), 3029.2 (w), 2956.9 (w), 2836.1 (w), 

1926.1 (w), 1766.2 (w), 1658.8 (w), 1606.6 (m), 1572.5 (m), 1508.6 

(s), 1440.4 (s), 1335.6 (m), 1233.7 (s), 1169.8 (s), 1103.7 (m), 1027.6 

(s), 884.2 (m), 835.5 (s), 738.4 (s), 690.2 (m), 547.7 (s).  

1H NMR (300 MHz, CDCl3) δ 8.79 (d, 3J = 8.1 Hz, 1H, CHAr), 

8.19 – 8.05 (m, 3H, CHAr), 7.66 – 7.43 (m, 6H, CHAr), 7.37 – 7.28 (m, 1H, CHAr), 7.12 – 7.04 

(m, 2H, CHAr), 4.44 (s, 3H, NCH3), 3.93 (s, 3H, OCH3). 

13C NMR (75 MHz, CDCl3) δ 158.9, 141.2, 135.2, 134.4, 132.3, 132.3 (CAr), 131.7 (2CHAr), 

127.9, 125.1, 124.9, 124.7 (CHAr), 123.2, 123.0 (CAr), 122.4, 120.4, 119.8, 119.7 (CHAr), 118.6 

(CAr), 113.9 (2CHAr), 109.2 (CHAr), 55.5 (OCH3), 34.3 (NCH3). 

MS (EI, 70 eV): m/z (%) = 337 (M+, 100), 322 (37), 278 (27), 168 (10), 145 (20). 

HRMS (EI): Calculated for C24H19O1N1 (M
+): 337.14612, found: 337.14559. 

5-([1,1'-Biphenyl]-4-yl)-11-methyl-11H-benzo[a]carbazole 4.6c 
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White solid, 39% (30 mg). M.p.: 218–219 °C. 

IR (ATR, cm-1): 3056.4 (w), 3026.0 (w), 1594.1 (w), 1516.7 (w), 1464.9 

(w), 1375.0 (w), 1334.9 (w), 1264.7 (w), 1227.0 (w), 1062.7 (w), 897.7 

(m), 845.0 (m), 770.6 (m), 726.0 (s), 693.7 (s), 637.5 (m), 583.0 (m). 

1H NMR (300 MHz, CDCl3) δ 8.82 (d, 3J = 8.4 Hz, 1H, CHAr), 

8.25 – 8.11 (m, 3H, CHAr), 7.85 – 7.45 (m, 12H, CHAr), 7.45 – 7.29 (m, 

2H, CHAr), 4.47 (s, 3H, NCH3). 

13C NMR (63 MHz, CDCl3) δ 141.2, 141.2, 141.1, 139.9, 135.4, 132.3, 132.0 (CAr), 131.1 

(2CHAr), 129.0 (2CHAr), 127.9, 127.4 (CHAr ), 127.3 (2CHAr), 127.2 (2CHAr), 125.3, 125.1, 

124.9 (CHAr), 123.2, 123.1 (CAr), 122.4, 120.5, 119.8, 119.8 (CHAr), 118.6 (CAr), 109.2 (CHAr), 

34.4 (NCH3). 

MS (EI, 70 eV): m/z (%) = 383 (M+, 100), 367 (14), 341 (1), 291 (10), 184 (9), 152 (4), 77 (4). 

HRMS (EI): Calculated for C29H21N1 (M
+): 383.16685, found 383.16645. 

2-(2-Chlorophenyl)-3-(1-phenylvinyl)benzo[b]thiophene 4.4 

Yellowish oil. 

IR (ATR, cm-1):3054.8 (w), 3023.3 (w), 1609.9 (m), 1491.6 (m), 1430.9 

(m), 1241.0 (w), 1059.9 (m), 1026.7 (w), 904.5 (m), 777.9 (m), 748.6 

(s), 732.2 (s), 701.8 (s), 597.7 (m). 

1H NMR (300 MHz, CDCl3) δ 8.00 – 7.81 (m, 1H, CHAr), 7.59 – 7.45 

(m, 1H, CHAr), 7.45 – 7.34 (m, 5H, CHAr), 7.34 – 7.13 (m, 6H, CHAr), 5.82 (d, 2J = 1.3 Hz, 1H, 

C=CH2), 5.34 (d, 2J = 1.3 Hz, 1H, C=CH2). 

13C NMR (75 MHz, CDCl3) δ 142.2, 140.1, 139.7, 139.4, 137.8, 135.8, 134.8, 133.4 (CAr), 

132.8, 129.8, 129.7 (CHAr), 128.3 (2CHAr), 127.8 (CHAr), 126.9 (2CHAr), 126.4, 124.7, 124.4, 

124.2, 122.2 (CHAr), 118.1 (C=CH2). 

MS (EI, 70 eV): m/z (%) = 346 (M+, 16), 311 (100), 295 (7), 269 (6), 234 (38), 189 (8), 154 

(16), 77 (7).  

HRMS (EI): Calculated for C22H15
35Cl1S1 (M

+): 346.05775, found: 346.05749. 

General procedure for the synthesis of pyrazoles 

Acetophenone 5.1 (0.5 mmol, 1 eq) and phenylhydrazine (0.525 mmol, 1.05 eq) were 

dissolved in 2 mL of DCM. The solution was stirred for 1 min at room temperature and then 
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the solvent was removed under reduced pressure. The residue was stirred at room temperature 

and 3 drops of acetic acid were added. The reaction mixture was stirred for 5 min to complete 

the reaction. (In most cases, the product was solid and the reaction mixture became solid as the 

reaction completed). The reaction carried out nearly qualitative. Then the crude product was 

dissolved in 10 mL of DCM. After that, solvent, water, and acetic acid were removed under 

reduced pressure and the product was transferred to the next step without further purification. 

To a solution of hyrazone 5.2 (0.5 mmol) in 7 mL of dry THF was added n-butyllithium 

(0.44 mL, 2.2 equiv., 2.5 M solution in hexane) slowly at -78 °C under Ar. After adding n-

-butyllithium, the mixture was allowed to warm to 20 °C and stirred at that temperature for 15 

min. Then the reaction was cooled to -78 °C again and ethyl perfluorocarboxylate 5.3 (1.5 eq, 

solution in 1 mL THF) was added at this temperature. The reaction was allowed to warm to 

20 °C and stirred for 30 min, subsequently, 1 mL of TFA was added. The mixture was stirred 

under reflux for 2 h. After cooling, a saturated aqueous solution of NaHCO3 was added until no 

CO2 evolution was observed. Then THF was removed and the remained water was extracted 

with ethyl acetate (10 mL 3x). Combined organic layers were dried over MgSO4 and the solvent 

was removed under reduced pressure. The residue was purified by chromatography (silica gel, 

n-heptane/DCM). 

1,3-Diphenyl-5-(trifluoromethyl)-1H-pyrazole 5.4a 

White solid, 89% (128 mg). M.p.: 53–54 °C. 

IR (ATR, cm-1): ν = 549 (s), 615 (m), 685 (s), 760 (s), 773 (s), 812 (s), 

956 (m), 9872 (s), 1028 (s), 1072 (s), 1118 (s), 1138 (m), 1211 (s), 1232 

(s), 1288 (s), 1363 (m), 1444 (s), 1502 (m), 1556 (m), 1593 (m), 3054 (w), 3070 (w), 3139 (w).  

 1H NMR (300 MHz, CDCl3) δ 7.92 – 7.83 (m, 2H, CHPh), 7.65 – 7.32 (m, 8H, CHPh), 7.12 (s, 

1H, CHAr). 

 19F NMR (282 MHz, CDCl3) δ -57.59.  

13C NMR (75 MHz, CDCl3) δ 151.8, 139.3 (CAr), 134.0 (q, 2J = 39.2 Hz, C-CF3), 131.9 (CAr), 

129.4 (CHAr), 129.26 (2CHAr), 128.9 (2CHAr), 128.8 (CHAr), 126.0 (2CHAr), 125.9, 125.9 

(CHAr), 119.9 (q, 1J = 269.2 Hz, CF3), 106.2 (q, 3J = 2.4 Hz, CHHetAr). 

GC-MS (EI, 70 eV): m/z (%) = 288 (100), 267 (37), 219 (9), 77 (20).  

HRMS (EI): calcd. for C16H11F3N2 ([M]+): 288.08688, found: 288.08678. 

3-(4-Methoxyphenyl)-1-phenyl-5-(trifluoromethyl)-1H-pyrazole 5.4b 
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Yellow solid, 79% (127 mg). M.p.: 77–78 °C.  

IR (ATR, cm-1): ν = 548 (m), 617 (m), 685 (s), 767 (s), 810 (s), 

833 (m), 956 (m), 987 (s), 1031 (s), 1080 (s), 1088 (s), 1115 (s), 

1151 (s), 1209 (s), 1248 (s), 1290 (s), 1359 (w), 1435 (s), 1450 (s), 1502 (s), 1558 (m), 1595 

(m), 1614 (m), 2845 (w), 2943 (w), 2970 (w), 3022 (w), 3068 (w), 3130 (w).  

1H NMR (300 MHz, CDCl3) δ 7.86 – 7.73 (m, 2H, CHAr), 7.62 – 7.44 (m, 5H, CHAr), 7.04 (s, 

1H, CHAr), 7.02 – 6.90 (m, 2H, CHAr), 3.85 (s, 3H, OCH3).  

19F NMR (282 MHz, CDCl3) δ -57.59.  

13C NMR (75 MHz, CDCl3) δ 160.2, 151.6, 139.4 (CAr), 133.9 (q, 2J = 39.0 Hz, C-CF3), 129.3 

(CHAr), 129.2 (2CHAr), 127.3 (2CHAr), 125.9, 125.9 (CHAr), 124.5 (CAr), 119.9 (q, 

1J = 269.1 Hz, CF3), 114.3 (2CHAr), 105.8 (q, 3J = 2.4 Hz, CHHetAr), 55.47 (OCH3).  

GC-MS (EI, 70 eV): m/z (%) = 318 (100), 303 (26), 275 (12), 77 (12). 

HRMS (EI): calcd. for C17H13F3N2O ([M]+): 318.09745, found: 318.09788. 

3-(3-Methoxyphenyl)-1-phenyl-5-(trifluoromethyl)-1H-pyrazole 5.4c 

Pale yellow oil, 81% (129 mg). 

IR (ATR, cm-1): ν = 544 (m), 627 (m), 688 (s), 766 (s), 816 (m), 847 

(m), 916 (w), 987 (s), 1041 (s), 1089 (s), 1124 (s), 1143 (s), 1197 (s), 

1224 (s), 1257 (m), 1284 (m), 1354 (m), 1433 (s), 1464 (m), 1500 (s), 1556 (m), 1597 (m), 2835 

(w), 2939 (w), 3003 (w), 3063 (w), 3138 (w). 

1H NMR (300 MHz, CDCl3) δ 7.63 – 7.47 (m, 5H, CHAr), 7.47 – 7.40 (m, 2H, CHAr), 7.35 (t, 

3J = 8.1 Hz, 1H, CHAr), 7.10 (s, 1H, CHAr, ), 6.93 (m, 1H, CHAr), 3.87 (s, 3H, OCH3).  

19F NMR (282 MHz, CDCl3) δ -57.60.  

13C NMR (75 MHz, CDCl3) δ 160.2, 151.6, 139.3 (CAr), 134.0 (q, 2J = 39.2 Hz, C-CF3), 133.2 

(CAr), 130.0, 129.5 (CHAr), 129.3 (2CHAr), 125.9, 125.9 (CHAr), 119.9 (q, 1J = 269.2 Hz, CF3), 

118.5, 114.8, 111.1 (CHAr), 106.4 (q, 3J = 2.4 Hz, CHHetAr), 55.5 (OCH3). 

GC-MS (EI, 70 eV): m/z (%) = 318 (100), 297 (8), 267 (8), 205 (3), 77 (20). HRMS (EI): calcd. 

for C17H13F3N2O ([M]+): 318.09745, found: 318.09718. 

3-(2-Methoxyphenyl)-1-phenyl-5-(trifluoromethyl)-1H-pyrazole 5.4d 
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Pale yellow solid, 61% (109 mg). M.p.: 70–71 °C.  

IR (ATR, cm-1): ν = 542 (m), 692 (s), 750 (s), 777 (s), 814 (s), 989 (s), 

1028 (s), 1068 (s), 1084 (s), 1113 (s), 1157 (s), 1201 (s), 1230 (s), 1246 

(s), 1290 (s), 1354 (m), 1421 (m), 1437 (s), 1456 (m), 1473 (s), 1504 (m), 1556 (m), 1585 (m), 

1595 (m), 2841 (w), 2943 (w), 3057 (w), 3180 (w).  

1H NMR (300 MHz, CDCl3) δ 8.04 (dd, 3J = 7.6, 4J = 1.7 Hz, 1H, CHAr), 7.64 – 7.42 (m, 5H, 

CHAr), 7.41 – 7.30 (m, 2H, CHAr), 7.08 – 6.91 (m, 2H, CHAr), 3.96 (s, 3H, OCH3).  

19F NMR (282 MHz, CDCl3) δ -57.38. 

13C NMR (75 MHz, CDCl3) δ 156.9, 148.6, 139.4 (CAr), 132.9 (q, 2J = 39.0 Hz, C-CF3), 129.8, 

129.1 (CHAr), 129.1 (2CHAr), 128.8, 125.8, 125.8, 120.9 (CHAr), 120.6 (CAr), 120.0 (q, 

1J = 269.0 Hz, CF3), 111.3, 110.3 (q, 3J = 2.5 Hz, CHHetAr), 55.5 (OCH3). 

GC-MS (EI, 70 eV): m/z (%) = 318 (100), 289 (64), 267 (27), 249 (28), 221 (14), 77 (60). 

HRMS (EI): calcd. for C17H13F3N2O ([M]+): 318.09745, found: 318.09699. 

3-([1,1'-Biphenyl]-4-yl)-1-phenyl-5-(trifluoromethyl)-1H-pyrazole 5.4e 

Pale yellow solid, 74% (134 mg). M.p.: 94–95 °C.  

IR (ATR, cm-1): ν = 546 (m), 685 (s), 727 (s), 758 (s), 820 (s), 845 

(m), 987 (s), 1086 (s), 1117 (s), 1149 (s), 1159 (s), 1201 (m), 1226 

(s), 1290 (s), 1358 (m), 1410 (m), 1443 (s), 1502 (s), 1566 (w), 1595 (m), 2850 (w), 2920 (w), 

3032 (w), 3053 (w), 3144 (w).  

1H NMR (300 MHz, CDCl3) δ 7.99 – 7.90 (m, 2H, CHAr), 7.72 – 7.63 (m, 4H, CHAr), 

7.63 – 7.33 (m, 8H, CHAr), 7.16 (d, 5J = 0.3 Hz, 1H, CHAr).  

19F NMR (282 MHz, CDCl3) δ -57.57 (s).  

13C NMR (75 MHz, CDCl3) δ 151.4, 141.5, 140.7, 139.4 (CAr), 134.1 (q, 2J = 39.2 Hz, C-CF3), 

130.8 (CAr), 129.5 (CH), 129.3 (2CHAr), 128.9 (2CHAr), 127.6 (CHAr), 127.6 (2CHAr), 127.2 

(2CHAr), 126.4 (2CHAr), 125.9, 125.9 (CHAr), 119.9 (q, 1J = 269.1 Hz, CF3), 106.3 (q, 

3J = 2.4 Hz, CHHetAr).  

GC-MS (EI, 70 eV): m/z (%) = 364 (100), 343 (11), 152 (10), 77(10).  

HRMS (EI): calcd. for C22H15F3N2 ([M]+): 364.11818, found: 364.11765. 

1-Phenyl-3-(p-tolyl)-5-(trifluoromethyl)-1H-pyrazole 5.4f 
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Pale yellow solid, 87% (140 mg). M.p: 71–72 °C.  

IR (ATR, cm-1): ν = 544 (m), 623 (m), 687 (s), 768 (s), 798 (s), 827 

(m), 989 (s), 1086 (s), 1122 (s), 1155 (s), 1203 (m), 1232 (s), 1290 

(m), 1440 (s), 1504 (m), 1556 (m), 1595 (w), 2357 (w), 2860 (w), 2922 (w), 3022 (w), 3061 

(w).  

1H NMR (250 MHz, CDCl3) δ 7.82 – 7.65 (m, 2H, CHAr), 7.63 – 7.44 (m, 5H, CHAr), 

7.33 – 7.18 (m, 2H, CHAr), 7.08 (s, 1H, CHAr), 2.40 (s, 3H, CH3).  

19F NMR (282 MHz, CDCl3) δ -57.58.  

13C NMR (63 MHz, CDCl3) δ 151.8, 139.4, 138.7 (CAr), 133.9 (q, 2J = 39.2 Hz, C-CF3), 129.6 

(2CHAr), 129.4 (CHAr), 129.2 (2CHAr), 129.1 (CAr), 125.9 (4CHAr), 119.9 (q, 1J = 269.2 Hz, 

CF3), 106.1 (q, 3J = 2.4 Hz, CHHetAr), 21.4 (CH3).  

GC-MS (EI, 70 eV): m/z (%) = 302 (100), 281 (18), 267 (8), 233 (7), 77 (14). 

HRMS (ESI): calcd. for C17H13F3N2 ([M+H]+): 303.11036, found: 303.11038. 

3-(2-Fluorophenyl)-1-phenyl-5-(trifluoromethyl)-1H-pyrazole 5.4g 

Pale yellow solid, 90% (138 mg). M.p. 73–74 °C.  

IR (ATR, cm-1): ν = 553 (m), 625 (m), 661 (m), 686 (s), 750 (s), 771 (s), 

820 (s), 833 (s), 947 (m), 960 (m), 989 (s), 1028 (m), 1070 (s), 1115 (s), 

1165 (s), 1201 (s), 1238 (s), 1261 (m), 1290 (s), 1358 (m), 1423 (m), 1444 (s), 1471 (m), 1500 

(m), 1554 (m), 1581 (m), 1587 (m), 1913 (w), 3056 (w), 3076 (w), 3165 (w). 

1H NMR (300 MHz, CDCl3) δ 8.19 – 8.07 (m, 1H, CHAr), 7.68 – 7.50 (m, 5H, CHAr), 

7.50 – 7.35 (m, 1H, CHAr), 7.35 – 7.15 (m, 3H, CHAr).  

19F NMR (282 MHz, CDCl3) δ -57.59, -116.00.  

13C NMR (126 MHz, CDCl3) δ 160.5 (d, 1J = 250.0 Hz, CF), 146.5, 139.3 (CAr), 134.3 – 133.3 

(m, 1C, CAr), 130.2 (d, 3J = 8.5 Hz, CHAr), 129.5 (CHAr), 129.3 (2CHAr), 128.6 (d, 3J = 11.5 Hz, 

CHAr), 125.9, 125.9 (CHAr), 124.6 (d, 4J = 3.5 Hz, CHAr), 119.9 (q, 1J = 269.2 Hz, CF3), 119.9 

(d, 2J = 20.8 Hz, CAr), 116.3 (d, 2J = 22.0 Hz, CHAr), 109.9-109.5 (m, 1C, CHHetAr).  

GC-MS (EI, 70 eV): m/z (%) = 306 (100), 285 (38), 267 (9), 237 (7), 77 (15).  

3-(4-Fluorophenyl)-1-phenyl-5-(trifluoromethyl)-1H-pyrazole 5.4h 
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Yellow solid, 82% (125 mg). M.p.: 64–65 °C.  

IR (ATR, cm-1): ν = 544 (m), 619 (m), 692 (s), 750 (m), 769 (s), 808 

(s), 837 (s), 956 (m), 987 (s), 1028 (m), 1066 (s), 1076 (s), 1086 (s), 

1111 (s), 1155 (s), 1207 (s), 1228 (s), 1290 (s), 1440 (s), 1502 (s), 1525 (m), 1558 (m), 1595 

(m), 1606 (m), 1888 (w), 3058 (w), 3141 (w). 

1H NMR (300 MHz, CDCl3) δ 7.91 – 7.75 (m, 2H, CHAr), 7.63 – 7.44 (m, 5H, CHAr), 

7.20 – 7.07 (m, 2H, CHAr), 7.06 (s, 1H, CHAr).  

19F NMR (282 MHz, CDCl3) δ -57.65, -112.97.  

13C NMR (75 MHz, CDCl3) δ 163.2 (d, 1J = 247.9 Hz, CF), 150.9, 139.3 (CAr), 134.2 (q, 

2J = 39.2 Hz, C-CF3), 129.5 (CHAr), 129.3 (2CHAr), 128.1 (d, 4J = 3.2 Hz, CAr), 127.8 (d, 

3J = 8.2 Hz, 2CHAr), 125.8, 125.8 (CHAr), 119.8 (q, 1J = 269.2 Hz, CF3), 115.9 (d, 2J = 21.8 Hz, 

2CHAr), 106.0 (q, 3J = 2.4 Hz, CHHetAr).  

GC-MS (EI, 70 eV): m/z (%) = 306 (100), 285 (40), 237 (9), 77 (17).  

HRMS (EI): calcd. for C16H10F4N2 ([M]+): 306.07746, found: 306.07713. 

3-(Naphthalen-2-yl)-1-phenyl-5-(trifluoromethyl)-1H-pyrazole 5.4i 

Pale yellow solid, 78% (102 mg). M.p.: 71–71 °C.  

IR (ATR, cm-1): ν = 542 (m), 687 (s), 742 (s), 767 (s), 798 (s), 804 

(s), 819 (m), 856 (s), 885 (m), 945 (m), 989 (s), 1028 (m), 1057 (s), 

1074 (s), 1086 (s), 1113 (s), 1153 (s), 1230 (s), 1246 (s), 1290 (s), 1431 (m), 1485 (m), 1504 

(s), 1556 (w), 1595 (m), 3028 (w), 3055 (w).  

1H NMR (300 MHz, Acetone) δ 8.50 (s, 1H, CHAr), 8.13 (d, 3J = 8.3 Hz, 1H, CHAr), 8.04 – 7.88 

(m, 3H, CHAr), 7.72 – 7.47 (m, 8H, CHAr).   

19F NMR (282 MHz, Acetone) δ 119.44.  

13C NMR (75 MHz, Acetone) δ 152.5, 140.4, 134.6, 134.6 (CAr), 134.5 (q, 2J = 39.0 Hz, 

C-CF3), 130.6 (CAr), 130.3 (CHAr), 130.3 (2CHAr), 129.5, 129.3, 128.8, 127.6, 127.4, 126.9, 

126.9, 125.7, 124.6 (CHAr), 121.1 (q, 1J = 268.4 Hz, CF3), 107.6 (q, 4J = 2.5 Hz, CHHetAr).  

GC-MS (EI, 70 eV): m/z (%) = 338 (100), 317 (14), 127 (17), 77 (20).  

HRMS (EI): calcd. for C20H13F3N2 ([M]+): 338.10253, found: 338.10259. 

1-Phenyl-5-(trifluoromethyl)-3-(4-(trifluoromethyl)phenyl)-1H-pyrazole 5.4j 
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Yellow solid, 64% (113 mg). M.p.: 50–51 °C.  

IR (ATR, cm-1): ν = 552 (m), 592 (s), 625 (m), 687 (s), 766 (s), 804 

(s), 845 (s), 991 (s), 1062 (s), 1068 (s), 1089 (s), 1093 (s), 1109 (s), 

1132 (s), 1232 (s), 1288 (s), 1323 (s), 1419 (w), 1446 (m), 1504 (m), 1531 (w), 1558 (w), 1595 

(m), 1622 (m), 3063 (w), 3145 (w).  

1H NMR (300 MHz, CDCl3) δ 7.98 (d, 3J = 8.1 Hz, 2H, CHAr), 7.69 (d, 3J = 8.1 Hz, 2H, CHAr), 

7.62 – 7.46 (m, 5H, CHAr), 7.16 (s, 1H, CHAr).  

19F NMR (282 MHz, CDCl3) δ -57.71, -62.63.  

13C NMR (75 MHz, CDCl3) δ 150.3, 139.1 (CAr), 135.3 (d, 4J = 1.3 Hz, CAr), 134.5 (q, 

2J = 39.6 Hz, C-CF3), 130.7 (q, 2J = 32.5 Hz, CAr), 129.7 (CHAr), 129.4 (2CHAr), 126.17 

(2CHAr), 125.9 (q, 3J = 3.8 Hz, 2CHAr), 125.8 (q, 4J = 1.0 Hz, 2CHAr), 124.3 (q, 1J = 272.3 Hz, 

CF3), 119.7 (q, 1J = 269.3 Hz, CF3), 106.5 (q, 3J = 2.4 Hz, CHHetAr). 

GC-MS (EI, 70 eV): m/z (%) = 356 (100), 335 (51), 287 (10), 267 (10), 77 (27). 

HRMS (EI): calcd. for C17H10F6N2 ([M]+): 356.07427, found: 356.07482. 

5-(Perfluoroethyl)-1,3-diphenyl-1H-pyrazole 5.4k. 

Pale yellow solid, 95% (161 mg). M.p.: 140–142 °C.  

IR (ATR, cm-1): ν = 544 (w), 580 (w), 602 (m), 619 (m), 630 (m), 688 

(s), 711 (m), 750 (s), 765 (s), 777 (s), 814 (m), 914 (m), 937 (s), 958 (s), 

1020 (m), 1041 (s), 1076 (m), 1092 (s), 1134 (s), 1190 (s), 1203 (s), 1223 (s), 1331 (m), 1444 

(m), 1498 (m), 1595 (w), 3076 (w), 3151 (w).  

1H NMR (300 MHz, CDCl3) δ 7.90 – 7.82 (m, 2H, CHAr), 7.55 – 7.48 (m, 5H, CHAr), 

7.48 – 7.32 (m, 3H, CHAr), 7.10 (d, 5J = 0.9 Hz, 1H, CHAr).  

19F NMR (282 MHz, CDCl3) δ -83.38 (t, 3JF-F = 2.9 Hz), -106.28 (q, 3JF-F = 2.9 Hz).  

13C NMR (63 MHz, CDCl3) δ 152.1, 139.9 (CAr), 132.0 (t, 2J = 27.6 Hz, C-CF3), 131.7 (CAr), 

129.7 (CHAr), 129.1 (2CHAr), 128.9 (2CHAr), 128.9 (CHAr), 126.9 (2CHAr), 126.0 (2CHAr), 

107.4 – 107.0 (m, CHAr), signal of CF2CF3 could not be detected. 

GC-MS (EI, 70 eV): m/z (%) = 338 (100), 319 (6), 269 (14), 219 (8), 77 (24).  

HRMS (EI): calcd. for C17H11F5N2 ([M]+): 388.08369, found: 388.08322. 

3-(4-Methoxyphenyl)-5-(perfluoroethyl)-1-phenyl-1H-pyrazole 5.4l 
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Pale yellow solid, 91% (168 mg). M.p.: 82–83 °C.  

IR (ATR, cm-1): ν = 532 (s), 576 (m), 602 (m), 617 (m), 634 (m), 

694 (s), 748 (s), 771 (s), 804 (s), 835 (s), 935 (s), 958 (s), 1026 

(s), 1036 (s), 1092 (s), 1134 (s), 1176 (s), 1190 (s), 1215 (s), 1250 (s), 1292 (m), 1331 (m), 

1443 (m), 1502 (m), 1552 (w), 1596 (m), 1614 (m), 2839 (w), 2943 (w), 3010 (w), 3139 (w).  

1H NMR (300 MHz, CDCl3) δ 7.91 – 7.68 (m, 2H, CHAr), 7.57 – 7.44 (m, 5H, CHAr), 7.02 (s, 

1H, CHAr), 7.00 – 6.92 (m, 2H, CHAr), 3.85 (s, 3H, CH3).  

19F NMR (282 MHz, CDCl3) δ -83.39 (t, 3JF-F = 2.7 Hz), -106.26 (q, 3JF-F = 2.6 Hz).  

13C NMR (63 MHz, CDCl3) δ 160.2, 151.9, 139.9 (CAr), 131.9 (t, 2J = 27.6 Hz, C-CF3), 129.6 

(CHAr), 129.0 (2CHAr), 127.3 (2CHAr), 126.9 (2CHAr), 124.5 (CAr), 114.3 (2 CHAr), 

106.9 – 106.5 (m, CHAr), 55.5 (OCH3), signal of CF2CF3 could not be detected. 

GC-MS (EI, 70 eV): m/z (%) = 368 (100), 353 (20), 77 (14).  

HRMS (EI): calcd. for C18H13F5N2O ([M]+): 368.09426, found: 368.09390. 

3-(Naphthalen-2-yl)-5-(perfluoroethyl)-1-phenyl-1H-pyrazole 5.4m 

Pale brown solid, 93% (181 mg). M.p.: 104–106 °C.  

IR (ATR, cm-1): ν =  544 (w), 575 (m), 617 (m), 628 (m), 642 (m), 

685 (s), 748 (s), 771 (s), 804 (s), 860 (s), 887 (m), 941 (s), 980 (m), 

1020 (s), 1043 (s), 1095 (s), 1134 (s), 1190 (s), 1329 (m), 1431 (m), 1487 (m), 1504 (m), 

1594.92 (m), 3043 (w), 3058 (w).  

1H NMR (300 MHz, CDCl3) δ 8.33 (s, 1H, CHAr), 8.01 (dd, 3J = 8.6, 4J = 1.7 Hz, 1H, CHAr), 

7.95 – 7.79 (m, 3H, CHAr), 7.64 – 7.41 (m, 7H, CHAr), 7.23 (d, 5J = 0.7 Hz, 1H, CHAr).  

19F NMR (282 MHz, CDCl3) δ -83.31 (t, 3JF-F = 2.9 Hz), -106.28 (q, 3JF-F = 2.9 Hz).  

13C NMR (75 MHz, CDCl3) δ 152.1, 139.9 (CAr), 133.6 (2CAr), 132.2 (t, 2J = 27.9 Hz,  

C-CF3), 129.8 (CHAr), 129.1 (2CHAr), 128.7, 128.4, 127.9 (CHAr), 126.9 (2CHAr), 126.6, 126.5, 

125.0, 123.9 (CHAr), 107.6 – 107.3 (m, 1CHAr), signal of one CAr and CF2CF3 could not be 

detected. 

GC-MS (EI, 70 eV): m/z (%) = 388 (100), 269 (7), 194 (6), 127 (16), 77 (18).  

HRMS (EI): calcd. for C21H13F5N2 ([M]+): 388.09934, found: 388.09878. 

3-([1,1'-Biphenyl]-4-yl)-5-(perfluoroethyl)-1-phenyl-1H-pyrazole 5.4n 



APPENDIX 

lvi 

 

Pale yellow solid, 85% (178 mg). M.p.: 140–142 °C.  

IR (ATR, cm-1): ν = 694 (s), 727 (s), 746 (s), 765 (s), 819 (s), 846 

(m), 937 (s), 958 (s), 1020 (m), 1041 (s), 1072 (m), 1093 (s), 1134 

(s), 1186 (s), 1219 (s), 1278 (w), 1331 (m), 1409 (w), 1441 (m), 1502 (m), 1597 (m), 3061 (w), 

3132 (w).  

1H NMR (300 MHz, CDCl3) δ 7.86 (d, 3J = 8.0 Hz, 2H, CHAr), 7.73 – 7.51 (m, 4H, CHAr), 

7.51 – 7.21 (m, 8H, CHAr), 7.04 (s, 1H, CHAr).  

19F NMR (282 MHz, CDCl3) δ -83.33 (t, 3JF-F = 2.5 Hz), -106.24 (q, 3JF-F = 2.5 Hz).  

13C NMR (63 MHz, CDCl3) δ 151.7, 141.6, 140.7, 139.9 (CAr), 132.1 (t, 2J = 27.4 Hz, C-CF3), 

130.7 (CAr), 129.7 (CHAr), 129.1 (2CHAr), 129.0 (2CHAr), 127.7 (CHAr), 127.6 (2CHAr), 127.2 

(2CHAr), 126.9 (2CHAr), 126.4 (2CHAr), 125.4 – 110.9 (m, CF2CF3), 107.4 – 107.1 (m, 1CHAr).  

GC-MS (EI, 70 eV): m/z (%) = 414 (100), 395 (3), 345 (5), 295 (4), 207 (3), 152 (8), 116 (1), 

77 (8).  

HRMS (EI): calcd. for C23H15F5N2 ([M]+): 414.11499, found: 414.11460. 

5-(Perfluoropropyl)-1,3-diphenyl-1H-pyrazole 5.4o 

White solid, 83% (161 mg). M.p.: 90–91 °C.  

IR (ATR, cm-1): ν = 532 (m), 590 (m), 648 (s), 692 (s), 746 (s), 765 (s), 

777 (s), 814 (s), 874 (s), 957 (m), 1003 (m), 1026 (m), 1078 (m), 1109 

(s), 1138 (s), 1182 (s), 1223 (s), 1344 (s), 1443 (m), 1500 (s), 1595 (w), 3053 (w), 3157 (w).  

1H NMR (300 MHz, CDCl3) δ 7.91 – 7.82 (m, 2H, CHAr), 7.50 (s, 5H, CHAr), 7.48 – 7.32 (m, 

3H, CHAr), 7.12 (s, 1H, CHAr).  

19F NMR (282 MHz, CDCl3) δ -80.04 (t, 3JF-F = 10.1 Hz), -103.84 – -104.15 (m),  

-124.86 – -125.05 (m).  

13C NMR (63 MHz, CDCl3) δ 152.1, 139.9 (CAr), 132.3 (t, 2J = 28.7 Hz, C-CF3), 131.7 (CAr), 

130.0 (CHAr), 129.3 (2CHAr), 129.2 (2CHAr), 129.1 (CHAr), 127.4 (2CHAr), 126.3 (2CHAr), 

125.8 – 92.5 (CF2CF2CF3), 108.0 – 107.6 (m, 1CHAr).  

GC-MS (EI, 70 eV): m/z (%) = 388 (100), 269 (39), 77 (18).  

HRMS (EI): calcd. for C18H11F7N2 ([M]+): 388.08050, found: 388.07991. 

3-(4-Methoxyphenyl)-5-(perfluoropropyl)-1-phenyl-1H-pyrazole (4p): 



APPENDIX 

lvii 

 

Pale solid, 76% (160 mg). M.p.: 97–98 °C.  

IR (ATR, cm-1): ν = 644 (m), 692 (s), 744 (s), 773 (s), 800 (s), 

872 (s), 904 (m), 958 (m), 1006 (s), 1030 (s), 1070 (m), 1078 

(m), 1109 (s), 1138 (s), 1178 (s), 1184 (s), 1223 (s), 1251 (s), 1344 (m), 1435 (s), 1446 (s), 

1502 (s), 1523 (m), 1552 (w), 1596 (w), 1614 (m), 2835 (w), 2939 (w), 2964 (w), 3001 (w), 

3066 (w).  

1H NMR (300 MHz, CDCl3) δ 7.83 – 7.79 (m, 1H, CHAr), 7.79 – 7.76 (m, 1H, CHAr), 7.49 (s, 

5H, CHAr), 7.03 (s, 1H, CHAr), 7.01 – 6.96 (m, 1H, CHAr), 6.96 – 6.92 (m, 1H, CHAr), 3.85 (s, 

3H, OCH3).  

19F NMR (282 MHz, CDCl3) δ -80.05 (t, 3JF-F = 10.1 Hz), -103.83 – -104.18 

(m), -124.90 – -125.02 (m).  

13C NMR (63 MHz, CDCl3) δ 160.2, 151.9, 139.9 (CAr), 132.9 – 131.6 (m, 1CAr), 129.6 (CHAr), 

128.9 (2CHAr), 127.3 (2CHAr), 127.1 (2CHAr), 124.5 (CAr), 114.3 (2CHAr), 107.2 – 106.9 (m, 

1CHHetAr), 55.5 (OCH3). (signals of CF2CF2CF3 could not be detected).  

GC-MS (EI, 70 eV): m/z (%) = 418 (100), 375 (4), 299 (12), 77 (9).  

HRMS (EI): calcd. for C19H13F7N2O ([M]+): 418.09106, found: 418.09036. 

Ethyl 3-(4-methoxyphenyl)-5-(trifluoromethyl)-1H-pyrazole-1-carboxylate 5.4q 

White solid, 57% (89 mg). M.p.: 73–74 °C.  

IR (ATR, cm-1): ν = 3519.0 (w), 3117.7 (w), 2966.8 (w), 2842.0 

(w), 1766.3 (s), 1613.6 (m), 1587.0 (m), 1464.0 (m), 1441.8 

(m), 1293.7 (s), 1143.8 (s), 1006.6 (m), 946.1 (m), 834.4 (s), 746.3 (m), 680.4 (m), 554.2 (m).  

1H NMR (300 MHz, CDCl3) δ 7.87 – 7.71 (m, 2H, CHAr), 7.10 (s, 1H, CHAr), 7.01 – 6.89 (m, 

2H, CHAr), 4.57 (q, 3J = 7.1 Hz, 2H, OCH2CH3), 3.85 (s, 3H, OCH3), 1.49 (t, 3J = 7.1 Hz, 3H, 

OCH2CH3).  

19F NMR (282 MHz, CDCl3) δ -60.03.  

13C NMR (75 MHz, CDCl3) δ 161.1 (C-OCH3), 153.5 (CAr), 148.3 (C=O), 135.8 (q, 

2J = 41.3 Hz, C-CF3), 128.0 (2CHAr), 123.1 (CAr), 119.3 (q, 1J = 269.1 Hz, CF3), 114.4 (2CHAr), 

110.8 (q, 3J = 3.2 Hz, CHHetAr), 65.5 (OCH2CH3), 55.5 (OCH3), 14.1 (OCH2CH3).  

GC-MS (EI, 70 eV): m/z (%) = 314 (47), 270 (12), 255 (17), 242 (100), 227 (58), 213 (17), 199 

(36), 170 (12), 151 (22), 120 (5), 101 (5), 75 (6), 63 (5).  
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HRMS (+EI): calcd. for C14H13O3F3N2 ([M]+): 314.08728, found: 314.08732. 

Ethyl 3-(2-fluorophenyl)-5-(trifluoromethyl)-1H-pyrazole-1-carboxylate (4r): 

White solid, 57% (86 mg). M.p.: 84–85 °C.  

IR (ATR, cm-1): ν = 3505.3 (w), 3171.4 (w), 3076.4 (w), 2996.6 (w), 

2918.6 (w), 1761.2 (s), 1620.7 (w), 1591.2 (w), 1446.9 (s), 1304.1 

(m), 1229.2 (m), 1141.8 (s), 1026.1 (m), 1032.2 (m), 949.0 (m), 840.6 (m), 747.9 (m), 676.2 

(m), 552.1 (w).  

1H NMR (300 MHz, CDCl3) δ 8.10 (td, 3J = 7.7, 4J = 1.8 Hz, 1H, CHAr), 7.47 – 7.34 (m, 1H, 

CHAr), 7.30 (d, 4J = 3.5 Hz, 1H, CHAr), 7.27 – 7.10 (m, 2H, CHAr), 4.59 (q, 3J = 7.1 Hz, 2H, 

OCH2CH3), 1.50 (t, 3J = 7.1 Hz, 3H, OCH2CH3).  

19F NMR (282 MHz, CDCl3) δ -60.00, -115.67.  

13C NMR (63 MHz, CDCl3) δ 160.8 (d, 1J = 251.0 Hz, CF), 148.8 (CAr), 148.1 (C=O), 135.5 

(q, 2J = 42.0 Hz C-CF3), 131.5 (d, 3J = 8.6 Hz, CHAr), 129.2 (d, 4J = 2.8 Hz, CHAr), 124.7 (d, 

3J = 3.5 Hz, CHAr), 119.3 (q, 1J = 269.2 Hz, CF3), 118.5 (d, 2J = 11.5 Hz, CAr), 116.4 (d, 

2J = 21.9 Hz, CHAr), 114.5 – 113.4 (m, CHAr), 65.7 (OCH2CH3), 14.1 (OCH2CH3). 

2-Phenyl-3-(trifluoromethyl)-4,5,6,7,8,9,10,11,12,13-decahydro-2H-cyclododeca[c]pyrazo

le 5.4s 

White solid, 80% (140 mg). M.p.: 56–57 °C.  

IR (ATR, cm-1): ν = 546 (m), 692 (s), 771 (s), 993 (s), 1086 (s), 1111 (s), 

1168 (s), 1242 (m), 1309 (m), 1329 (m), 1350 (m), 1452 (m), 1504 (s), 

1556 (w), 1595 (m), 2856 (m), 2904 (m), 2933 (m).  

1H NMR (250 MHz, CDCl3) δ 7.44 (s, 5H, CHAr), 2.73 – 2.47 (m, 4H, CH2), 1.90 – 1.62 (m, 

4H, CH2), 1.59 – 1.30 (m, 12H, CH2).  

19F NMR (282 MHz, CDCl3) δ -55.61.  

13C NMR (63 MHz, CDCl3) δ 153.2, 140.1 (CAr), 129.0 (2CHAr), 129.0 (q, 2J = 37.2 Hz, 

C-CF3), 128.9 (CHAr), 126.2 (2CHAr), 122.9 (q, 3J = 3.2 Hz, CAr), 120.9 (q, 1J = 269.4 Hz, CF3), 

28.9, 28.3, 26.0, 25.8, 25.4, 25.2 (CH2), 23.0 (2CH2), 22.9, 20.8(CH2).  

GC-MS (EI, 70 eV): m/z (%) = 350 (100), 331 (9), 307 (50), 293 (41), 281 (71), 267 (36), 253 

(43), 240 (79), 77 (40).  

HRMS (EI): calcd. for C20H25F3N2 ([M]+): 350.19643, found: 350.19626. 
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2-Phenyl-3-(trifluoromethyl)-4,5,6,7-tetrahydro-2H-indazole 5.4t 

Yellow oil, 82% (109 mg).  

IR (ATR, cm-1): ν = 546 (m), 681 (m), 692 (s), 744 (m), 766 (s), 914 (m), 964 

(m), 993 (s), 1028 (m), 1074 (s), 1097 (s), 1116 (s), 1149 (s), 1170 (s), 1213 

(m), 1296 (m), 1352 (m), 1377 (m), 1464 (m), 1504 (s), 1574 (w), 1598 (m), 

2854 (w), 2939 (m).  

1H NMR (300 MHz, CDCl3) δ 7.49 – 7.37 (m, 5H, CHAr), 3.07 – 2.53 (m, 4H, CH2), 2.13 – 1.61 

(m, 4H, CH2).  

19F NMR (282 MHz, CDCl3) δ -55.92.  

13C NMR (75 MHz, CDCl3) δ 150.2, 139.8 (CAr), 129.0 (2CHAr), 128.9 (CHAr), 128.1 (q, 

2J = 38.2 Hz, C-CF3), 125.9 (2CHAr), 120.9 (q, 1J = 269.4 Hz, CF3), 119.8 (q, 3J = 1.7 Hz, CAr), 

23.4, 22.8, 22.8 (CH2), 20.9 (q, 4J= 1.3 Hz, CH2).  

GC-MS (EI, 70 eV): m/z (%) = 266 (100), 247 (6), 238 (48), 217 (4), 197 (52), 77(39).  

HRMS (EI): calcd. For C14H13F3N2 ([M]+): 266.10253, found: 266.10212. 

2-Phenyl-3-(trifluoromethyl)-4,5-dihydro-2H-indazole 5.4u 

Brown oil, 66% (87 mg).  

IR (ATR, cm-1): ν = 536 (m), 596 (m), 661 (m), 690 (s), 765 (s), 993 (s), 1095 

(s), 1117 (s), 1163 (s), 1207 (m), 1304 (m), 1325 (m), 1377 (m), 1462 (m), 

1502 (s), 1577 (w), 1597 (m), 1705 (w), 2837 (w), 2898 (w), 2937 (w), 3060 

(w).  

1H NMR (250 MHz, CDCl3) δ 7.53 – 7.32 (m, 5H, CHAr), 6.60 (dt, 3J = 9.9, 4J = 2.0 Hz, 1H, 

CH=CH), 6.14 (dt, 3J = 9.9, 3J = 4.3 Hz, 1H, CH=CH), 3.08 – 2.78 (m, 2H, CH2), 2.55 – 2.36 

(m, 2H, CH2).  

19F NMR (282 MHz, CDCl3) δ -56.16.  

13C NMR (63 MHz, CDCl3) δ 148.6, 139.7 (CAr), 131.5 (CH=CH), 129.1 (2CHAr), 128.9 

(CHAr), 127.7 (q, 2J = 38.4 Hz, C-CF3), 125.9 (2C, CHAr), 120.8 (q, 1J = 269.6 Hz, CF3), 119.7 

(CHAr). 118.7 (q, 3J = 1.8 Hz, CAr), 23.4 (CH2), 18.5 (q, 4J = 1.3 Hz, CH2).  

GC-MS (EI, 70 eV): m/z (%) = 314 (100), 245 (33), 218 (10), 77 (27), 51 (12).  

HRMS (EI): calcd. for C14H11F3N2 ([M]+): 264.08688, found: 264.08643. 

2-Phenyl-3-(trifluoromethyl)-4,5-dihydro-2H-benzo[g]indazole 5.4v 
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Brown solid, 82% (130 mg). M.p.: 78–79 °C.  

IR (ATR, cm-1): ν = 549 (m), 648 (m), 696 (s), 731 (s), 781 (s), 897 (m), 

945 (m), 987 (s), 1026 (m), 1047 (s), 1103 (s), 1157 (s), 1174 (s), 1226 

(s), 1267 (m), 1307 (m), 1331 (m), 1352 (m), 1377 (m), 1446 (s), 1500 

(s), 1595 (m), 2848 (w), 2901 (w), 2964 (w).  

1H NMR (300 MHz, CDCl3) δ 8.07 – 7.75 (m, 1H, CHAr), 7.67 – 7.35 (m, 5H, CHAr), 

7.36 – 7.26 (m, 3H, CHAr), 3.16 – 2.77 (m, 4H, CH2).  

19F NMR (282 MHz, CDCl3) δ -56.04.  

13C NMR (75 MHz, CDCl3) δ 148.9, 139.8, 136.5 (CAr), 129.2 (CHAr), 129.2 (2CHAr), 128.6 

(CAr), 128.5, 128.5 (CHAr), 128.3 (q, 2J = 38.3 Hz, C-CF3), 127.2 (CHAr), 126.2 (2CHAr), 122.8 

(CHAr), 120.7 (q, 1J = 269.6 Hz, CF3), 120.1 (q, 3J = 1.8 Hz, CAr), 28.9 (CH2), 19.4 (q, 

4J = 1.3 Hz, CH2).  

GC-MS (EI, 70 eV): m/z (%) = 314 (100), 245 (33), 218 (10), 142 (13), 115 (10), 77 (27).  

HRMS (EI): calcd. For C18H13F3N2 ([M]+): 314.10253, found: 314.10234. 

5-(4-Methoxyphenyl)-3-(trifluoromethyl)-1H-pyrazole 5.5a 

Compound 5.5a was synthesized following the general procedure using 

4-methoxyacetophenone, ethyl carbamate for the first step and ethyl trifluoroacetate for the next 

step. After adding ethyl trifluoroacetate, the reaction temperature was allowed to rise to 20 °C 

and stirred for 30 min. Then the solvent was removed under reduced pressure. After that, the 

residue was dissolved in toluene and 2 mmol (4 eq) of PTSA was added. The reaction mixture 

was stirred under reflux for 8 h. After cooling, a saturated aqueous solution of NaHCO3 was 

added until no evolution of CO2 was observed. Then THF was removed and the remained water 

was extracted with ethyl acetate (10 mLx3). Combined organic layers were dried with MgSO4 

and the solvent was removed under reduced pressure. The residue was purified by 

chromatography (silica gel, heptane/DCM). The product was isolated as a white solid (51%, 62 

mge).  

M.p.: 147–148 °C.  

IR (ATR, cm-1): ν = 3225.7 (w), 2974.4 (w), 2845.7 (w), 1614.5 

(m), 1574.2 (m), 1516.7 (m), 1490.1 (m), 1458.8 (s), 1440.5 (m), 

1274.9 (s), 1243.7 (s), 1109.9 (s), 1056.2 (s), 980.9 (m), 836.3 (s), 795.3 (s), 742.4 (m).  
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1H NMR (300 MHz, CDCl3) δ  9.24 (s, br, 1H), 7.95 – 7.31 (m, 2H, CHAr), 7.11 – 6.77 (m, 2H, 

CHAr), 6.66 – 6.62 (m, 1H, CHAr), 3.85 (s, 3H, OCH3). 

19F NMR (282 MHz, CDCl3) δ -62.17 (s).  

13C NMR (75 MHz, CDCl3) δ 160.7, 145.2(CAr), 143.7 (q, 2J = 38.1 Hz, C-CF3), 127.3 (2CHAr), 

121.3 (q, 1J = 268.6 Hz, CF3), 120.7 (CAr), 114.8 (2CHAr), 100.5 (q, 3J = 1.8 Hz, CHHetAr), 55.5 

(OCH3).  

GC-MS (EI, 70 eV): m/z (%) = 242 (100), 227 (41), 223 (10), 199 (41), 169 (3), 151 (24).  

HRMS (+EI): calcd. for C11H9O1F3N2 ([M]+): 242.06615, found: 242.0660.  

5-(4-Methoxyphenyl)-3-(perfluoroethyl)-1H-pyrazole 5.5b 

Compound 5.5b was synthesized following the procedure for 

compound 5.5a using 4-methoxyacetophenone for the first step 

and ethyl pentafluoropropionate for the next step. The product 

was isolated as pale yellow solid (56%, 82 mg). M.p.: 137–138 °C.  

IR (ATR, cm-1): ν = 3185.5 (w), 3142.1 (w), 3033.4 (w), 1619.0 (m), 1513.2 (s), 1330.6 (m), 

1258.5 (s), 1185.6 (s), 1029.1 (s), 933.0 (s), 830.5 (m), 747.8 (m), 614.4 (m).  

1H NMR (300 MHz, MeOD) δ 7.90 – 7.49 (m, 2H, CHAr), 7.16 – 6.94 (m, 2H, CHAr), 6.86 (s, 

1H, CHAr), 3.86 (s, 3H, OCH3).  

19F NMR (282 MHz, MeOD) δ -86.12, -114.10.  

13C NMR (63 MHz, MeOD) δ 161.9 (C-OCH3), 128.3 (2CHAr), 115.6 (2CHAr), 102.2 (CHHetAr), 

55.8 (OCH3), (signals of 3CAr and CF2CF3 could not be detected).  

GC-MS (EI, 70 eV): m/z (%) = 292 (199), 277 (30), 249 (39), 223 (12), 151 (20), 111 (6).  

HRMS (EI): calcd. for C12H9O1N2F5 ([M]+): 292.06296, found: 292.06263.  

5-(4-Methoxyphenyl)-3-(perfluoropropyl)-1H-pyrazole 5.5c 

Compound 5.5c was synthesized following the procedure for 

compound 5.5a using 4-methoxyacetophenone for the first step 

and ethyl heptafluorobutyrate for the next step. The product was 

isolated as pale yellow solid (57%, 98 mg). M.p.: 127–128 °C.  

IR (ATR, cm-1): ν = 3144.1 (w), 3031.2 (w), 2947.1 (w), 1890.6 (w), 1617.6 (m), 1512.5 (s), 

1427.8 (m), 1348.6 (m), 1311.7 (m), 1255.9 (m), 1229.3 (s), 1178.2 (s), 1106.6 (s), 1029.6 (m), 

1000.1 (m), 874.2 (s), 829.8 (m), 746.3 (s), 652.1 (m), 620.4 (m).  
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1H NMR (300 MHz, MeOD) δ 7.78 – 7.47 (m, 2H, CHAr), 7.22 – 6.91 (m, 2H, CHAr), 6.85 (s, 

1H, CHAr), 3.85 (s, 3H).  

19F NMR (282 MHz, MeOD) δ -81.15 – -82.64 (m), -111.79 (d, 3J = 9.5 Hz),  

-127.00 – -130.06 (m).  

13C NMR (63 MHz, MeOD) δ 161.9 (C-OCH3), 146.4, 143.0 (CAr), 128.3 (2CHAr), 122.2 (CAr), 

115.6 (2CHAr), 102.4 (CHHetAr), 55.8 (OCH3) (signals of CF2CF2CF3 could not be detected).  

GC-MS (EI, 70 eV): m/z (%) = 342 (100), 327 (18), 299 (25), 223 (29), 208 (4), 180 (5), 151 

(15), 111 (6). HRMS (EI): calcd. for C13H9O1N2F7 ([M]+): 342.05976, found: 342.05959. 

5-(Naphthalen-2-yl)-3-(trifluoromethyl)-1H-pyrazole 5.5d 

Compound 5.5d was synthesized following the procedure for 

compound 5.5a using 2-acetonaphthone for the first step and ethyl 

trifluoroacetate for the next step. The product was isolated as white 

solid (78%,102 mg). M.p.: 180–181 °C.  

IR (ATR, cm-1): ν = 3227.5 (w), 3043.6 (w), 2923.5 (w), 1631.9 (w), 1608.5 (w), 1582.5 (w), 

1567.3 (w), 1500.0 (m), 1474.0 (w), 1255.6 (m), 1150.1 (s), 1120.6 (s), 1103.6 (s), 992.0 (m), 

860.5 (m), 803.6 (s), 741.1 (s), 713.1 (m), 679.4 (m), 601.7 (m).  

1H NMR (300 MHz, MeOD) δ 8.26 (s, 1H, CHAr), 8.11 – 7.72 (m, 4H, CHAr), 7.56 (dd, 

3J = 6.3 Hz, 4J = 3.0 Hz, 2H, CHAr), 7.10 (s, 1H, CHAr).  

19F NMR (282 MHz, MeOD) δ -63.58.  

13C NMR (75 MHz, Acetone) δ 145.5 (CAr), 144.3 (q, 2J = 37.5 Hz, C-CF3), 134.4, 134.4 (CAr), 

129.9, 129.1, 128.7, 127.8, 127.7 (CHAr), 126.7 (CAr), 125.6, 124.3 (CHAr), 122.9 (q, 

1J = 267.5 Hz, CF3), 102.1 (CHAr).  

GC-MS (EI, 70 eV): m/z (%) = 262 (100), 243 (7), 214 (10), 183 (6), 165 (22), 152 (1), 139 (4), 

127 (7), 69 (3).  

HRMS (+ESI): calcd. for C14H10F3N2 ([M+H]+): 263.07906, found: 263.07925. 

5-(Naphthalen-2-yl)-3-(perfluoroethyl)-1H-pyrazole 5.5e 

Compound 5.5e was synthesized following the procedure for 

compound 5.5a using 2-acetonaphthone for the first step and ethyl 

pentafluoropropionate for the next step. The product was isolated 

as pale yellow solid (86%, 134 mg). M.p.: 124–126 °C.  
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IR (ATR, cm-1): ν = 3147.0 (w), 3114.4 (w), 2933.1 (w), 1955.6 (w), 1906.3 (w), 1785.8 (w), 

1679.0 (w), 1583.7 (w), 1566.5 (w), 1513.6 (w), 1431.1 (w), 1332.5 (s), 1214.1 (s), 1183.3 (s), 

1131.7 (s), 1069.4 (m), 1028.9 (s), 940.5 (s), 801.5 (m), 745.4 (s), 619.4 (m).  

1H NMR (300 MHz, MeOD) δ 8.21 (d, 4J = 4.6 Hz, 1H, CHAr), 8.08 – 7.70 (m, 4H, CHAr), 

7.62 – 7.42 (m, 2H, CHAr), 7.07 (s, 1H, CHAr).  

19F NMR (282 MHz, MeOD) δ -86.02, -114.00.  

13C NMR (63 MHz, MeOD) δ 146.4, 134.8 (CAr), 130.1, 129.3, 128.8 (CHAr), 127.9 (2CHAr), 

126.9 (CAr), 125.8, 124.4, 103.3 (CHAr), (signals of 2CAr and CF2CF3 could not be detected).  

GC-MS (EI, 70 eV): m/z (%) = 312 (100), 293 (5), 243 (18), 214 (13), 194 (4), 165 (17), 121 

(11), 82 (3), 69 (2).  

HRMS (+ESI): calcd. for C15H10F5N2 ([M+H]+): 313.07587, found: 313.07617.  

3-(Perfluoropropyl)-5-(naphthalen-2-yl)-1H-pyrazole 5.5f 

Compound 5.5f was synthesized following the procedure for 

compound 5.5a using 2-acetonaphthone for the first step and ethyl 

heptafluorobutyrate for the next step. The product was isolated as 

pale yellow solid (64%, 116 mg). M.p.: 181–182 °C.  

IR (ATR, cm-1): ν = 3183.6 (w), 3067.3 (w), 2877.8 (w), 1565.2 (w), 1512.8 (w), 1415.8 (w), 

1349.1 (m),  1224.1 (m), 1176.5 (s), 1103.7 (m), 1000.7 (m), 874.8 (m), 791.3 (m), 744.3 (m), 

651.2 (m).  

1H NMR (300 MHz, MeOD) δ 8.26 (s, 1H, CHAr), 8.12 – 7.72 (m, 4H, CHAr), 7.68 – 7.44 (m, 

2H, CHAr), 7.11 (s, 1H, CHAr). 

19F NMR (282 MHz, MeOD) δ -81.78 (t, 3JF-F = 9.5 Hz), -111.71 (d, 3JF-F = 8.6 Hz), -128.28 

(s).  

13C NMR (75 MHz, Acetone) δ 145.7, 134.4, 134.4 (CAr), 129.9, 129.2, 128.7, 127.8, 127.8, 

125.7, 124.3, 103.6 (CHAr), (signals of 2CAr and CF2CF2CF3 could not be detected). 

GC-MS (EI, 70 eV): m/z (%) = 362 (100), 343 (9), 243 (34), 214 (17), 194 (4), 165 (14), 122 

(13), 83 (4), 69 (4).  

HRMS (+ESI): calcd. for C16H10F7N2 ([M+H]+): 363.007267, found: 363.07305.  

3-(Trifluoromethyl)-5-(4-(trifluoromethyl)phenyl)-1H-pyrazole 5.5g 
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Compound 5.5g was synthesized following the procedure for 

compound 5.5a using 4-trifluoromethylacetophenone for the first 

step and ethyl trifluoroacetate for the next step. The product was 

isolated as white solid (75%, 105 mg). M.p.: 135–136 °C.   

IR (ATR, cm-1): ν = 3239.9 (w), 3161.7 (w), 3066.3 (w), 2987.4 (w), 1914.8 (w), 1790.5 (w), 

1738.4 (w), 1671.9 (w), 1622.3 (w), 1587.6 (w), 1494.7 (w), 1325.4 (m), 1253.0 (m), 1172.6 

(m), 1109.0 (s), 1068.0 (m), 982.9 (m), 916.7 (m), 813.6 (m), 747.3 (m), 661.5 (m), 592.3 (m).  

1H NMR (300 MHz, MeOD) δ 7.95 (d, 3J = 8.2 Hz, 2H, CHAr), 7.80 (d, 3J = 8.3 Hz, 2H, CHAr), 

7.12 (s, 1H, CHAr).  

19F NMR (282 MHz, MeOD) δ -63.66, -64.34.  

13C NMR (75 MHz, CDCl3) δ 144.2 (CAr), 143.5 (q, 2J = 38.0 Hz, CAr), 131.5 (q, 2J = 33.0 Hz, 

C-CF3), 131.2 (CAr), 126.4 (q, 4J = 3.8 Hz, 2CHAr), 125.8 (2CHAr), 123.7 (q, 1J = 272.3 Hz, 

CF3), 120.7 (q, 1J = 269.0 Hz, CF3), 102.1 (CHHetAr).  

GC-MS (EI, 70 eV): m/z (%) = 280 (100), 261 (23), 231 (7), 211 (20), 201 (5), 182 (15), 164 

(4), 145 (8), 133 (49, 87 (2), 69 (6).  

HRMS (+ESI): calcd. for C11H7F6N2 ([M+H]+): 281.05579, found: 281.05099.  

5-(Perfluoroethyl)-3-(4-(trifluoromethyl)phenyl)-1H-pyrazole 5.5h 

Compound 5.5h was synthesized following the procedure for 

compound 5.5a using 4-trifluoromethylacetophenone for the first 

step and ethyl pentafluoropropionatefor the next step. The product 

was isolated as white solid (74%, 122 mg). M.p.: 142–143 °C.  

IR (ATR, cm-1): ν = 3191.2 (w), 3032.7 (w), 2887.0 (w), 1623.7 (w), 1590.6 (w), 1465.6 (w), 

1429.3 (w), 1325.2 (s),  1225.8 (s), 1194.1 (s), 1125.4 (s), 1063.8 (m), 1030.5 (m), 973,8 (m), 

939.2 (m), 841.6 (m), 807.8 (m), 750.1 (m), 693.5 (m), 622.0 (w), 591.5 (w).  

1H NMR (300 MHz, MeOD) δ 7.96 (d, 3J = 8.2 Hz, 2H, CHAr), 7.80 (d, 3J = 8.3 Hz, 2H, CHAr), 

7.14 (s, 1H, CHAr).  

19F NMR (282 MHz, MeOD) δ -64.34, -86.12, -114.07.  

13C NMR (75 MHz, CDCl3) δ 144.6 (CAr), 131.7 (q, 2J = 32.9 Hz, C-CF3), 129.2 (CAr), 126.4 

(q, 4J = 3.8 Hz, 2CHAr), 125.9 (2CHAr), 123.8 (q, 1J = 272.2 Hz, CF3), 103.9 (CHHetAr), (signals 

of 1CAr and CF2CF3 could not be detected).  
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GC-MS (EI, 70 eV): m/z (%) = 330 (81), 311 (21), 261 (100), 232 (4), 213 (9), 182 (6), 164 

(18), 145 (5), 121 (5), 105 (5), 69 (6).  

HRMS (+ESI): calcd. for C12H7F8N2 ([M+H]+): 331.04760, found: 331.04806.  

5-(Perfluoropropyl)-3-(4-(trifluoromethyl)phenyl)-1H-pyrazole 5.5i 

Compound 5.5i was synthesized following the procedure for 

compound 5.5a using 4-trifluoromethylacetophenone for the first 

step and ethyl heptafluorobutyrate for the next step. The product 

was isolated as white solid (67%, 127 mg). M.p. 109–110 °C.  

IR (ATR, cm-1): ν = 3171.2 (w), 3034.4 (w), 2950.7 (w), 2887.4 (w), 1623.5 (w), 1591.8 (w), 

1467.1 (w), 1424.8 (w), 1326.4 (s), 1276.0 (w), 1232.3 (s), 1171.5 (m), 1109.2 (s), 1063.0 (s), 

1001.4 (m), 876.1 (m), 842.4 (m), 810.1 (m), 747.9 (m), 652.6 (m), 592.2 (m).  

1H NMR (300 MHz, MeOD) δ 7.96 (d, 3J = 8.2 Hz, 2H, CHAr), 7.80 (d, 3J = 8.3 Hz, 2H, CHAr), 

7.14 (s, 1H, CHAr).  

19F NMR (282 MHz, MeOD) δ -64.35 (s), -81.84 (t, 3J = 9.6 Hz), -111.76 (s), -128.29 – -128.38 

(m). 

(Due to there are many Fs in the molecule, the signals of carbons are splited and very difficult 

to identify.) 

GC-MS (EI, 70 eV): m/z (%) = 380 (64), 361 (23), 261 (100), 213 (8), 182 (5), 164 (17), 69 (6).  

HRMS (+ESI): calcd. for C13H7F10N2 ([M+H]+): 381.04441, found: 381.04428.  

Synthesis of 2-phenyl-3-(trifluoromethyl)-2H-indazole 5.6a 

To a solution of 5.4s (100 mg) in toluene (7 mL), DDQ (2 equiv.) was added. The reaction 

mixture was stirred under reflux for 3h. Then the reaction mixture was cooled to room 

temperature and ethyl acetate (10 mL) and water (10 mL) were added. The organic layer was 

separated and washed with water three times. After drying and removal of solvent, the residue 

was purified by chromatography (silica gel, n-heptane/DCM). The product was isolated as a 

yellow oil (71%, 71 mg).  

IR (ATR, cm-1): ν = 534 (m), 567 (m), 627 (m), 640 (m), 692 (s), 743 (s), 768 

(s), 829 (m), 914 (m), 933 (m), 989 (s), 1001 (s), 1030 (m), 1074 (s), 1103 (s), 

1147 (s), 1174 (s), 1223 (s), 1298 (s), 1381 (w), 1429 (s), 1469 (m), 1500 (s), 

1522 (m), 1551 (w), 1597 (m), 2361 (w), 2858 (w), 2929 (w), 3066 (w).  
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1H NMR (300 MHz, CDCl3) δ 7.90 – 7.76 (m, 2H, CHAr), 7.64 – 7.49 (m, 5H, CHAr), 

7.49 – 7.37 (m, 1H, CHAr), 7.37 – 7.27 (m, 1H, CHAr).  

19F NMR (282 MHz, CDCl3) δ -54.47. 

13C NMR (75 MHz, CDCl3) δ 148.3, 139.7 (CAr), 130.1 (CHAr), 129.2 (2CHAr), 127.4 (CHAr), 

126.3 (2CHAr), 125.2 (CHAr), 123.8 (q, 2J = 39.5 Hz, C-CF3), 121.7 (CAr), 121.1 (q, 

1J = 269.0 Hz, CF3), 119.5 (q, 4J = 1.7 Hz, CHAr), 118.6 (CHAr).  

GC-MS (EI, 70 eV): m/z (%) = 262 (100), 236 (7), 193 (34), 166 (11), 77 (15), 51 (12).  

HRMS (EI): calcd. for C14H9F3N2 ([M]+): 262.07123, found: 262.07106. 

Synthesis of 2-phenyl-3-(trifluoromethyl)-2H-benzo[g]indazole 5.6b 

To a solution of 5.4t (100 mg) in toluene (7 mL), DDQ (2 equiv.) was added. The reaction 

mixture was stirred under reflux for 3h. Then the reaction mixture was cooled to room 

temperature and ethyl acetate (10 mL) and water (10 mL) were added. The organic layer was 

separated and washed with water three times. After drying and removal of solvent, the residue 

was purified by chromatography (silica gel, n-heptane/DCM). The product was isolated as a 

pale yellow solid (90%, 90 mg). M.p.: 100–102 °C.  

IR (ATR, cm-1): ν = 549 (s), 681 (s), 746 (s), 767 (s), 804 (s), 885 (m), 

982 (s), 1045 (s), 1099 (s), 1176 (s), 1217 (s), 1238 (m), 1269 (m), 1309 

(m), 1385 (w), 1441 (s), 1473 (m), 1504 (s), 1558 (w), 1597 (m), 3024 

(w), 3049 (w).  

1H NMR (300 MHz, CDCl3) δ 8.66 (dd, 3J = 5.7, 4J = 3.5 Hz, 1H), 7.93 – 7.80 (m, 1H), 

7.76 – 7.52 (m, 9H).  

19F NMR (282 MHz, CDCl3) δ -54.74 (s).  

13C NMR (63 MHz, CDCl3) δ 146.1, 139.7, 132.3 (CAr), 129.8 (CHAr), 129.1 (2CHAr), 128.5, 

127.7, 127.5, 127.3, 126.4, 126.3 (CHAr), 125.0 (CAr), 124.7 (q, 2J = 39.8 Hz, C-CF3), 122.5 

(CHAr), 120.9 (q, 1J = 269.2 Hz, CF3), 119.3 (CAr), 116.9 (q, 4J = 1.9 Hz, CHAr).  

GC-MS (EI, 70 eV): m/z (%) = 312 (100), 242 (30), 77 (10).  

HRMS (EI): calcd. for C18H11F3N2([M]+): 312.08688, found: 312.08667. 

3-(4-methoxyphenyl)-5-(trifluoromethyl)isoxazole 5.8a 
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Compound 5.8a was synthesized following the general procedure using 

4-methoxyacetophenone, hydroxylamine for the first step and ethyl trifluoroacetate for the next 

step. The product was isolated as a white solid (57%, 69 mg). M.p. 

76-78 °C.  

IR (ATR, cm-1): ν = 3114.5 (w), 2963.7 (w), 2844.2 (w), 1611.5 

(m), 1532.2 (w), 1459.8 (m), 1432.7 (m), 1319.7 (m), 1242.4 (m), 

1174.7 (m), 1114.0 (s), 1023.3 (m), 966.8 (m), 915.7 (m), 837.2 (m), 821.7 (m), 747.2 (m), 

680.0 (w). 

1H NMR (300 MHz, CDCl3) δ 7.82 – 7.68 (m, 2H, CHAr), 7.04 – 6.96 (m, 2H, CHAr), 6.94 (d, 

5J = 0.9 Hz, 1H, CHAr), 3.87 (s, 3H, OCH3).  

19F NMR (282 MHz, CDCl3) δ -64.24.  

13C NMR (75 MHz, CDCl3) δ 162.3, 161.8 (CAr), 159.1 (q, 2J = 42.4 Hz, C-CF3), 128.6 

(2CHAr), 119.9 (CAr), 118.1 (q, 1J = 270.3 Hz, CF3), 114.7 (2CHAr), 103.3 (d, 3J = 2.1 Hz, 

CHHetAr), 55.5 (OCH3).  

GC-MS (EI, 70 eV): m/z (%) = 243 (82), 174 (82), 146 (100), 131 (14), 119 (7), 103 (9), 92 

(11), 76 (18), 63 (15), 50 (9).  

HRMS (+EI): calcd. for C11H8O2F3N1 ([M]+): 243.05016, found: 243.05028.  

3-(naphthalen-2-yl)-5-(trifluoromethyl)isoxazole 5.8b 

Compound 5.8b was synthesized following the general procedure using 2-acetonaphthone, 

hydroxylamine for the first step and ethyl trifluoroacetate for the next step. The product was 

isolated as a white (62%, 82 mg). M.p. 103–104 °C.  

IR (ATR, cm-1): ν = 3232.3 (w), 3126.3 (w), 2921.0 (w), 1631.3 (w), 

1486.7 (m), 1438.6 (m), 1303.8 (m), 1143.6 (s), 1104.9 (s), 1057.6 

(m), 964.1 (m), 901.5 (m), 827.7 (s), 745.5 (m), 633.1 (w). 

1H NMR (300 MHz, CDCl3) δ 8.26 (d, 4J = 0.7 Hz, 1H, CHAr), 8.00 – 7.84 (m, 4H, CHAr), 

7.64 – 7.48 (m, 2H, CHAr), 7.14 (d, 4J = 0.9 Hz, 1H, CHAr). 

19F NMR (282 MHz, CDCl3) δ -64.15.  

13C NMR (75 MHz, CDCl3) δ 162.8 (CAr), 159.4 (q, 2J = 42.7 Hz, C-CF3), 134.5, 133.2 (CAr), 

129.3, 128.7, 128.1, 127.7, 127.3, 127.2 (CHAr), 124.8 (CAr), 123.7 (CHAr), 118.1 (d, 

1J = 270.5 Hz, CF3), 103.7 (d, 3J = 2.1 Hz, CHHetAr).  
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GC-MS (EI, 70 eV): m/z (%) = 263 (100), 194 (72), 166 (41), 139 (21), 127 (68), 115 (12), 97 

(8), 69 (10).  

HRMS (+ESI): calcd. for C14H9O1F3N1 ([M+H]+): 264.06307, found: 264.06321.  
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Crystal data and structure refinement 

Crystal data and structure refinement for compound 2.6h 

 
is_cm11 

Crystal data 

Chemical formula C24H16FNO2  

Mr 369.38 

Crystal system, space group Monoclinic, P21/c 

Temperature (K) 173 

a, b, c (Å) 7.7148 (5), 20.3158 (13), 11.7110 (8) 

β (°) 91.418 (4)  

V (Å3) 1834.9 (2)  

Z 4 

Radiation type Mo Kα 

µ (mm−1) 0.09 

Crystal size (mm) 0.46 × 0.12 × 0.10 

Data collection 

Diffractometer Bruker Apex Kappa II-CCD- 

diffractometer  

Absorption correction Multi-scan  

(SADABS; Sheldrick, 2004) 

Tmin, Tmax 0.959, 0.991 

No. of measured, independent and 

observed [I > 2σ(I)] reflections 

25493, 4882, 2572  

Rint 0.071 

(sin θ/λ)max (Å
−1) 0.682 

Refinement 

R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.126, 1.00 

No. of reflections 4882 

No. of parameters 253 

H-atom treatment H-atom parameters constrained  

Δρmax, Δρmin (e Å−3) 0.20, −0.21 
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Crystal data and structure refinement for compound 3.3i 

 
is_indolo_d2 

Crystal data 

Chemical formula C21H14FN 

Mr 299.33 

Crystal system, space group Monoclinic, P21/c 

Temperature (K) 173 

a, b, c (Å) 10.5670 (7), 20.0282 (12), 6.8420 (5) 

β (°) 95.652 (2)  

V (Å3) 1440.99 (17)  

Z 4 

Radiation type Mo Kα 

µ (mm−1) 0.09 

Crystal size (mm) 0.33 × 0.27 × 0.22 

Data collection 

Diffractometer Bruker Apex Kappa II-CCD- 

diffractometer  

Absorption correction Multi-scan  

(SADABS; Sheldrick, 2004) 

Tmin, Tmax 0.671, 0.746 

No. of measured, independent and 

observed [I > 2σ(I)] reflections 

19527, 3832, 2993  

Rint 0.038 

(sin θ/λ)max (Å
−1) 0.682 

Refinement 

R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.129, 1.10 

No. of reflections 3832 

No. of parameters 279 

No. of restraints 68 

H-atom treatment H-atom parameters constrained  
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Δρmax, Δρmin (e Å−3) 0.21, −0.20 

 

Crystal data and structure refinement for compound 3.7j 

 
is_es4 

Crystal data 

Chemical formula C20H14N2O 

Mr 298.33 

Crystal system, space group Triclinic, P  

Temperature (K) 173 

a, b, c (Å) 12.2153 (2), 13.5599 (2), 18.6521 (3) 

α, β, γ (°) 95.666 (1), 104.369 (1), 107.679 (1) 

V (Å3) 2800.32 (8)  

Z 8 

Radiation type Mo Kα 

µ (mm−1) 0.09 

Crystal size (mm) 0.55 × 0.28 × 0.19 

Data collection 

Diffractometer Bruker-Nonius Apex X8-CCD- 

diffractometer  

Absorption correction Multi-scan  

(SADABS; Sheldrick, 2004) 

Tmin, Tmax 0.707, 0.746 

No. of measured, independent and 

observed [I > 2σ(I)] reflections 

93666, 18586, 13060  

Rint 0.033 

(sin θ/λ)max (Å
−1) 0.735 

Refinement 

R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.147, 1.01 

No. of reflections 18586 

No. of parameters 833 

H-atom treatment H-atom parameters constrained  
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Δρmax, Δρmin (e Å−3) 0.47, −0.28 

 

Crystal data and structure refinement for compound 4.3a 

 
is_tn_hb 

Crystal data 

Chemical formula C22H14S 

Mr 310.39 

Crystal system, space group Triclinic, P  

Temperature (K) 123 

a, b, c (Å) 6.0433 (2), 10.7998 (3), 12.1236 (3) 

α, β, γ (°) 108.612 (1), 92.292 (1), 95.272 (1) 

V (Å3) 744.69 (4)  

Z 2 

Radiation type Mo Kα 

µ (mm−1) 0.21 

Crystal size (mm) 0.29 × 0.20 × 0.14 

Data collection 

Diffractometer Bruker-Nonius Apex X8-CCD- 

diffractometer  

Absorption correction Multi-scan  

(SADABS; Sheldrick, 2004) 

Tmin, Tmax 0.722, 0.746 

No. of measured, independent and 

observed [I > 2σ(I)] reflections 

16019, 4325, 3897  

Rint 0.021 

(sin θ/λ)max (Å
−1) 0.703 

Refinement 

R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.096, 1.06 

No. of reflections 4325 

No. of parameters 208 

H-atom treatment H-atom parameters constrained  
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Δρmax, Δρmin (e Å−3) 0.45, −0.26 

 

Crystal data and structure refinement for compound 4.3b 

 
is_thang1203 

Crystal data 

Chemical formula C23H16S 

Mr 324.42 

Crystal system, space group Triclinic, P  

Temperature (K) 123 

a, b, c (Å) 5.9864 (2), 11.0375 (4), 13.4379 (5) 

α, β, γ (°) 112.071 (2), 96.127 (2), 92.844 (2) 

V (Å3) 814.25 (5)  

Z 2 

Radiation type Mo Kα 

µ (mm−1) 0.20 

Crystal size (mm) 0.19 × 0.15 × 0.10 

Data collection 

Diffractometer Bruker-Nonius Apex X8-CCD- 

diffractometer  

Absorption correction Multi-scan  

(SADABS; Sheldrick, 2004) 

Tmin, Tmax 0.710, 0.746 

No. of measured, independent and 

observed [I > 2σ(I)] reflections 

27542, 5885, 4610  

Rint 0.029 

(sin θ/λ)max (Å
−1) 0.756 

Refinement 

R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.02 

No. of reflections 5885 

No. of parameters 218 

H-atom treatment H-atom parameters constrained  
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