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1. INTRODUCTION

A commonly used physical term is isolated system, which means that there are no energy
and matter exchange between the investigated system and its surrounding environment. The
isolated system is an idealized concept and a rough approximation that works only for macro-
scopic objects in classical mechanics. In reality, the quantum system under study can not
be isolated from its surrounding environment. The trivial surrounding environment is the
vacuum where the creation and annihilation of virtual particles are allowed according to
Heisenberg’s uncertainty principle. In other non-trivial surroundings, e.g. plasmas, the phys-
ical problem, that we tackle for a real quantum system, is a many-body problem, where a
statistical description is always indispensable. Moreover, a quantitative change of a system
can lead to a qualitative change of the system, since new physical phenomena can arise from
the correlations of many particles [Wen86], such as collective excitations [HM86, Zim&7],
screening effects [KKER86, KSKBO05], localization [JZK*03], modifications of the spectral
lines [Gri97], and Rydberg blockades [LFCT01].

Among all many-body systems in nature, plasma plays a fundamental role. Matter in
plasma states covers a wide range of physical regimes, as shown in the temperature-density
plane for plasmas (see Fig. 1.1). More than 90% of visible matter in the universe is in the
plasma state [KSKBO05]. A plasma is an ionized neutral gas consisting of a large number of
charged particles, i.e. electrons ans ions, as well as the force carrier for the electromagnetic
interaction between the charged particles, i.e. photons. Generally, the plasma is characterized
by density, temperature, and its chemical composition. To describe the geometrical or the
dynamical properties of the plasma system, some useful parameters can be introduced to
quantify the plasma system. The following parameters are introduced to characterize the
dynamical properties of a plasma: the Landau length [y, the thermal de Broglie wavelength
Ath, and the Debye screening length Ap [KKERS86, Red13],
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where the index ¢ denotes the particle species with the corresponding mass m., charge number
z. and density n.. Further plasma parameters are the average distance a. between particles
of species ¢ (also known as Wigner-Seitz radius) and the Thomas-Fermi radius Rpr [Sal98]:
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with the Bohr radius ap = 4megh?/(me €?).

From these parameters, the plasma coupling parameter I'. and the degeneracy parameter
0. can be defined. Due to the long-range nature of the Coulomb interaction, the plasma
particles interact simultaneously with each other. In other words, the motion of particles in
plasma is correlated with the motion of nearby particles. The strength of this correlation can




2 1. Introduction

be represented via a dimensionless parameter I'., which is taken as the ratio of the average
potential energy and the thermodynamic kinetic energy

_li_ z?eQ

I, = T nl/3. (1.3)
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For the last relation, the charge neutrality condition ", z.n. = ne is used. According to the
point of view of scattering theory, the plasma coupling parameter can also be interpreted as
follows: with respect to the Coulomb collisions, the Landau length Iy, describes the critical
collision, in which the particle is deflected by 90° [DKMSO05]. If the distance of two charged
particles a. is larger than the Landau length [;,, the deflection angle after the collision must
be smaller than 90°. In this case, the investigated particle is less affected by the neighboring
particles and the plasma can be regarded as weakly coupled (I'c < 1). In the opposite case,
a strongly coupled plasma system is established (I'. > 1).
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Abb. 1.1: The density-temperature plane of plasmas (taken from [Oma07]).

The degeneracy parameter 6. is defined via the ratio of the thermodynamic kinetic en-
ergy kgT and the Fermi energy E& = h? (372n.)?/3/(2m,). Due to their large masses, ions
can generally be treated classically, which means the ionic subsystem is weakly degenerate.
Therefore, one is always interested in the degeneracy for the electron subsystem, i.e. 0,

which reads as
T
6. = =L _p. ng 23, (1.4)
Eg

Approaching the low temperature limit, the quantification for plasmas discussed above
is complicated by degeneracy effects and strong coupling effects (ion lattice effects). Due to



their different thermal wavelengths compared to the average interparticle distance, the degen-
eracy and coupling strength for electrons and ions should be treated independently [GGLOG,
GRHT'07]. To account for these effects in the low temperature limit, more appropriate con-
cepts of effective temperatures in plasmas can be introduced. For free electrons in plasmas,
the effective temperature can be introduced as [GGL06, GRHT07]

1/2
Tt = (12 +12) / (1.5)

with temperature Ty, = Tw/(1.3251 — 0.1779,/7) related to the Fermi temperature Ty =
Ef./kp and the Briinckner parameter rs = ao/ag with the Bohr radius ag. Then the effective
degeneracy parameter for electron system can be written as

kg T
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R
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Similarly, as the ion temperature is decreased, the ionic system becomes more strongly coupled
and trends to crystallize. The ions can still oscillate around their lattice sites and the collective
excitation modes, i.e. phonons, are generated. In this case, the following effective temperature
for ions can be defined [GGLO6]

1/2
e = (1013 +72) " (1.7)

with 79 = 3/(27%). The Debye temperature Tp accounts for the ion lattice effects and
screening of ions by free electrons and is expressed as

h Whpi
Tp=— —— 1.8
P kg 1+ k2/k? (1.8)
with the ion plasma frequency wpi = 1/22n; €2/ (egm;) and k = (2/2)Y? (3772716)1/3. The
inverse screening length for electrons can be represented as
2
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This expression interpolates the inverse Debye screening length and the inverse Thomas-
Fermi length for electron systems. Consequently, the effective ion coupling parameter can be

rewritten as
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To determine these parameters and therefore to reveal the physical essence of the many-
body systems (plasmas), information of density, temperature, and their spatial distributions
are necessary. Therefore, special diagnostic techniques are needed to infer these conditions
in a plasma. One of the most important diagnostic techniques is the optical spectroscopy,
more explicitly speaking, the emission spectrum, because it carries a wealth of informa-
tion about the local instantaneous plasma density and temperature conditions surrounding
the emitter [Sal98, Fuj05, KSKBO05]. In particular, for short lifetime plasmas generated by
nanosecond or femtosecond laser pulses or particle beams, the emission spectral lines may
be the only reliable method for studying the dynamical properties of these plasmas [Sal98].
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The intensity, shift, and broadening of the emitted spectra carry a wealth of information
to describe the many particle plasma system. When talking about spectral lines, one dis-
tinguishes the continuous spectrum (i.e. the bremsstrahlung and inverse bremsstrahlung)

and spectra emitted from discrete bound levels (for instance, bound-bound transition and
photo-ionization).
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Abb. 1.2: Emission spectra in a hydrogen plasma at 7, = 16000K and n, = 1.9 -
10'" em ™3 [OWRI11]. The continuum background, the emission from the low-lying
levels and from the Rydberg states near the continuum edge are shown, where no
discontinuity between the bound and free states is observed.

As shown in Fig. 1.2 for a hydrogen plasma, the total emission spectrum can be divided
into three regimes with respect to the wavelength A: bound-bound transitions in the range
of 420 — 700 nm, free-free transitions in the range of 350 — 380 nm, and the bound-free
related regime in the range of 380 — 420 nm. Two important features can be clearly seen from
this figure: 1) there is no abrupt jump in the bound-free transition regime (in the range of
380 — 420 nm); 2) the position of the continuum edge is shifted in contrast to the isolated
case Hjipy,-

Among all the emission mechanisms, transitions from Rydberg states (including bound-
free and bound-bound transitions), which are energetically near to the continuum of scat-
tering states, are of particular interest. The correct treatment of the Rydberg states which
are near the continuum edge is a longstanding problem in plasma spectroscopy [EKKRS5,
GRO06, GR07, LGRR16]. In contrast to the low-lying bound states, the Rydberg states are
more sensitive to the influence of the surrounding plasmas. As we know, the screening of a
given ion by the free electrons and neighboring ions in a plasma results in the reduction of
the ionization potential and line broadening of eigenenergy levels of the given atom. Con-
sequently, the bound states should be truncated up to some main quantum number. This
phenomenon is well known in calculating the partition function, for example as in the de-
scription of Planck-Larkin partition function [KKER86, KSKBO05]. One should note that,



from the experimental measurements of spectral lines, no discontinuity for bound-bound and
bound-free transitions is observed, see Fig. 1.2. This fact is extensively discussed by different
authors [WKP72, HZ82, RGS86, NMG198, D’y98, OWRI11, D’y16]. For the Rydberg states
near the continuum edge, it may be quite difficult to rigorously distinguish the borderline
between the real continuum edge and bound states. On one hand, the real continuum edge
is lowered because of the screening of the plasma particles. Consequently, some bound levels
are dissolved or, equivalently, are shifted into continuous states. This phenomenon is termed
in the literature as pressure ionization, or continuum lowering, or ionization potential de-
pression (IPD) [KKER&6, Sal98, Gri97, Fujo5, KSKB05]. On the other hand, the bound
states are broadened due to the fluctuating micro-field experienced by the bound electrons.
If the broadening (or width) of the bound states is larger than half of the energy difference
to the adjacent levels, a quasi-continuum state could be established. This effect is knows as
Inglis-Teller (IT) effect [IT39]. To distinguish and better understand the IPD and IT effect,
a more accurate theory is necessary.

In addition to plasma physics, Rydberg states play an important role in other research
fields of physics, such as in quantum information [LBMWO03, ASSR13, And15], in under-
standing the basic concepts of quantum mechanics [LFC*T01, Sch07, GAH"16], in astro-
physics [GMIT09], in semiconductor physics [KFST14, GAH'16], and so on [Gal94]. Because
of their macroscopic characters and long lifetimes, the Rydberg atoms may be regarded as
an outstanding example demonstrating both macroscopic classical and microscopic quantum
behavior. The appearance of the classicality in a quantum system due to localization, i.e., the
loss of quantum information of a quantum system, can be described by decoherence resulting
from the interaction of an open quantum system with its surroundings [JZKT03].

In the context of new experimental facilities exploring confined neutral atoms, warm dense
matter (WDM), and materials in the high-energy density regime with the newly developed
laser techniques, a detailed theoretical investigation of thermodynamic, transport, and optical
properties of strongly coupled and nearly degenerate Coulomb systems becomes of emerging
interest. For example, the emission spectra for carbon plasmas were measured [NMG™198],
where the influence of the IPD and IT effect was discussed. Traditional expressions for
the IPD given by Ecker and Kroll (EK) [EK63] or Stewart and Pyatt (SP) [SPJ66] are
commonly applied in different simulation codes for understanding the experimental results.
More recently, using intense short-pulse laser irradiation to produce highly excited plasmas at
condensed matter densities, different measurements related to the IPD were performed [Vel2,
CVCT12, HAJ"13a, FKPT14, Ct16, KCK'16], for example, measurements on the ionization
energy of the K-shell in aluminum and the subsequent K, lines by Ciricosta et al. [Vel2,
CVCT12, Ct16], Ly- and He-lines for ions A1 and AI'?* by Hoarty et al. [HAJ*13a], and
the Thomson scattering spectrum for CH mixtures [FKP114, KCK'16].

Various approaches can be used to calculate the spectral line profiles in a plasma envi-
ronment, for instance, unified theory or quantum mechanical scattering theory. Using the
thermodynamic Green’s function technique, a systematic quantum statistical approach has
been developed [RSK81, HRSZ86, Giin95]. This approach has been successfully applied to
calculate the line profiles of hydrogen, H-like ions, and helium in plasma environments [Giin95,
Oma07, Lorl4]. Generally, the electrons are considered in the impact approximation, while
the ions are treated quasi-statically by the microfield distribution [Giin95, Dem10, SM10]. In
this investigation, we introduce the ionic structure factor to account for ionic correlations.

Motivated by these exciting perspectives, we study the optical properties of a radiating
particle surrounded by a warm dense plasma environments. Obviously, the accurate atomic
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structures of this radiating particle are evidently modified by the surrounding plasma due to
their interactions. We concentrate on the following questions in the present investigation:

e What is the most suitable description for Rydberg states in a plasma?
e How can we describe the spectral lines within the theory of open quantum systems?

e What is the reasonable quantum statistical description for the shift of the continuum
edge and for the ionization potential depression in plasmas?

e What are the differences and the connections between the ionization potential depres-
sion and the Inglis-Teller effect?

In attempt to answer these questions, this thesis is organized as following. In chapter 2,
general descriptions of the Green’s function technique and open quantum system are reviewed.
The Green’s function technique is a powerful tool for both equilibrium and non-equilibrium
many-body system. The modifications of the accurate atomic properties by the plasma
surroundings are described via the self-energy. In particular, the fundamental theory about
the single- and two-particle GF under the so-called cluster decomposition is presented. In
contrast to GF theory, where the time evolution is described by the operators, we take
into account the time-dependence through the density operator (or statistical operator). The
equation of motion for the relevant density operator is derived in Born-Markov approximation.

Chapter 3 presents the study of a test particle interacting through collisions with a low-
density plasma background by using the quantum master equation approach. The influence
of the plasma on the dynamics of the atom is determined by the dynamical structure factor
of the surrounding plasma. To describe transition rates of the Rydberg states, a Gaussian
wave packet description is introduced. The optimized Gaussian wave packet which is most
stable under collisions with plasma particle is denoted as robust state which is characterized
by a special width in the Gaussian distribution. Additionally, the application of the quantum
master equation approach to calculate the profiles of spectral lines is also presented.

In chapter 4, we return to the Green’s function theory, with which the ionization potential
depression in plasmas is investigated. We take into account the ionic correlation effects by
introducing the dynamical structure factor within the framework of the quantum statistical
theory. A general expression for the IPD is obtained. Different experimental measurements,
for instance, via the K-shell ionization energy, via the dissolution of spectral lines, and via the
Thomson scattering, are analyzed. The calculated IPD values under different experimental
conditions are illustrated and discussed.

Subsequently, spectral properties of the Green’s function approach to spectral line shapes
of non-ideal plasmas are described in chapter 5. Finally, conclusions and future prospects are
given in chapter 6.



2. THEORIES FOR OPTICAL PROPERTIES IN
PLASMAS

In this chapter, we will discuss two theoretical approaches to investigate the properties, in
particular the optical properties, within plasmas. The first approach is the Green’s function
(GF') technique, which is an effective theory in the language of the quasi-particle concept. The
influence of the surroundings on the investigated system is accounted for by the self-energy.
The other approach, the quantum master equation (QME) approach, is based on the theory of
open quantum systems, where a reduced density operator, acting only on the Hilbert space of
the system under study, is introduced by taking the average over the degrees of freedom of the
surrounding environment. The optical transitions in the electrodynamic field are determined
by the solution of the QME.

2.1 Quantum description for a quantum system

2.1.1 Operators, states, and their evolution equations

The fundamental elements to describe a quantum system in quantum mechanics are the state
vectors |¥(t)) and the operators O(t) that act on the quantum states. The time evolution
of the quantum system can be described in different pictures, i.e., the Schrédinger picture
(indicated by an index S), the Heisenberg picture (denoted by an index H) or the interaction
picture which is also known as the Dirac picture (signified by an index D). More details about
those fundamental concepts can be found in textbooks, for example, see Refs. [Sch68, Noll17].

In the Schrédinger picture, the equation of motion of the quantum system is described
by the time evolution of the state vectors | W, (t)) while the operator O (t) = Og(t) := O
are constant with respect to time t. The state vectors |W¥(t)) evolve in time according to the
Schrodinger equation (SE),

0 -
ih [ () = W, (1), (2.1)

with the Hamiltonian I:IS. Introducing the time evolution operator U (t,tp), the transform of
a state |W (tp)) at the initial time o to another state |y (t)) at the time ¢ can be written as

(W, (1)) = U(t, t0)|T(to)). (2.2)

In general, the time evolution operator U (t,to) is an unitary operator which fulfills the relation
Ut(t, to)U(t,to) = Ut to)U'(t,tg) = I with the identity operator Z. Here the superscript
717 denotes the Hermitian conjugate of an operator. Inserting the expression (2.2) into the
SE (2.1), we find the time evolution operator obeys the following equation

ihgtf](t,to) = H, U(t,t) (2.3)
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with the initial condition

U(to, to) = 7. (2.4)

Note that in the Schrédinger picture, an operator, for instance, the Hamiltonian ﬁs, can also
have an explicate dependence on the time ¢, if there exists an external driving, for example,
by a laser field. More generally, if the Hamiltonians at different times do not commute, then
the time evolution operator can be expressed as a time-ordered exponential

ot
Ul(t, to) = T exp (-2 t H(r) dT), (2.5)
0

where T is the chronological time-ordering operator which arranges the products of time-
dependent operators such that the operators will be ordered from left to right in descending
order of time t¢.

Another useful physical quantity in quantum mechanics is the statistical operator or the
density operator. It is given in the Schrédinger picture as

( ) ’\I/ | = Zam ‘ws: ><¢s n’ = (t tO) Ps(to) UT(t tO) (2'6)

where we have use the possibility to express the state |V (¢)) as a superposition of basis states
|t .m) with the corresponding coefficient a,(t). Differentiating the Eq. (2.6) with respect to
time with the help of the SE, we obtain the equation of motion for the density matrix
L0 - "
ih= bs(t) = [Hy(1).ps(0)] (2.7)
which is commonly referred to as the von Neumann or Liouville-von Neumann equation. Here
[fl, é} := AB — BA denotes the commutator of two operators. It can be seen that once

the state vector |U,(¢)) is determined by solving the SE, the density operator pg(t) is also
totally determined.
In contast to the Schrodinger picture, in the Heisenberg picture the time evolution of
the system is incorporated in the operator OH (t), while the state vector is time-independent,
e., |¥,(t) = |¥,(to)) for arbitrary time t. Consequently, the statistical operator in the
Heisenberg picture p,(t) = p,(to) is also a constant of time. Assuming that at the initial
time to the quantum states in both picture coincide, i.e., \TIH (to) = ‘ils (to), py(to) = ps(to),
and Oy, (to) = O4(to), then the operators in the Heisenberg picture are related to those in the
Schrédinger picture through the canonical transformation

Oy (t) = UT(t,10) O () Ut to). (2.8)
The equation of motion for operators in the Heisenberg picture is described by

90,0 = 1 [A,(1),040)] + 20,(0), (2.9

In this equation, d/dt denotes the total time derivative, while 9/t is the partial derivative
with respect to the explicit time dependence of the operators in the Schrédinger picture. In
the case that the operator in the Schrédinger picture does not explicitly depend on time, the
Eq. (2.9) reduces to the form

204(1) = 3 [1,.0,()] . (2.10)



2.1. Quantum description for a quantum system

representation
time evolution

Schrédinger picture

Heisenberg picture

Dirac picture

state vectors |¥(t))

time-dependent

constant

time-dependent

operators O(t)

constant

time-dependent

time-dependent

constant

time-dependent

density matrix p(t) time-dependent

Tab. 2.1: Time-dependence in different formulations of quantum mechanics for a quantum
System.

The interaction picture is an intermediate representation between the Schrodinger picture
and the Heisenberg pictures. In other words, the Schrédinger and the Heisenberg picture are
the limiting cases of the interaction picture. To transform into the interaction representation,
we separate the Hamiltonian H,(¢) into two parts

H

S

(t) = H + H™(1), (2.11)
and define the unperturbed time evolution operator
Oo(t) = exp (—iHCt/h). (2.12)

The selection of the part H g, which is usually time-independent, depends on the particular
physical situation under study. A general principle for this seperation is to ensure the simpli-
fied problem under study with the Hamiltonian H. g solvable and to treat the time-dependent

A

part with Hamiltonian H5,(t) as a perturbation to the system under investigation [Wik17].

The state vector and the operator in the interaction picture are then defined via

B,(1)) = MG (1)), O (t) = exp (iH2t/h) Oy(t) exp (=if0t/h) . (213)
Using these definitions, we have for the Hamiltonian and the density operator

AY(t) = exp (il t/h) - AY(t) - exp (—if) t/h) = AL, (2.14)

H™ (t) = exp (iHY - t/h) - HM(t) - exp (—iHLt/h), (2.15)

pr(t) = exp (il - t/h) py(t) - exp (—iBOt/R). (2.16)

Transforming the SE for the state vector and the von Neumann equation for the density
operator from the Schrédinger picture to the interaction picture gives

ih%\fll (1) = F(t) - 0, (1), (2.17)
i pu (1) = A0 ,(0)] (2.18)

A summary of formulations of quantum mechanics in the different pictures is given in Tab.
2.1. In addition to these three representations for quantum mechanics, Feynman introduced
a path integral formulation of quantum mechanics based on a semiclasscial picture. The path
integral is a particular representation of the law of superposition in quantum mechanics,
and is an attempt to describe the quantum world in terms of the pictures of corresponding
classical systems [Wen86|. For further details on this approach, the textbook by Feynman
and Hibbs [FH65] is recommended.
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2.1.2 Average for observables: pure state and statistical mixture

The expectation value of an operator is given by

0(t) = (B(1)| OW)[B(1)) = Tr {p()O) } . (2.19)

For a pure state, the density operator is described by p(t) = |¥(¢))(¥(t)| and the trace
procedure is represented via Tr{---} = (®(¢)| --- |®(¢)). The physical equivalence of the
three pictures in Tab. 2.1 is shown evidently by the fact that the expectation value of an
observable O(t) is the same in all pictures

O(t) = (O(1)) = (O4(1)) = (0,(1)) = (O,(1)), (2.20)

where the average is taken over the degree of freedom of the quantum system and is defined
in the different pictures as

(0.(1) =Tr {5105 (1)} = Tr {5, ()O5(t0) | . (2:21)
(0u(t)) = T {5y (110, ()} = Tr { s (t0) Oy (1)}, (2.22)
(0,)) = Tx {p,(1)0,(t)} (2.23)

Here we assume that the quantum system is not driven by any external field, i.e., the Hamil-
tonian Hg and other operators in the Schrodinger picture have no explicit time dependence.

Working in the Heisenberg picture, the time-dependent average can be expressed as [ZMR97,
SL13]

O(t) = Tr {5y (10) 0y (1) } = (Wo| Ulto, )OB)U (2, t0) | o). (2.24)

This relation can be interpreted as that the time-dependent average of an observable is the
overlap between the initial state described by the bra (V| and a ket obtained by transforming
|W) from some initial time #q to ¢, after which an action is carried out via an operator O(t),
and then evolving the resulting ket backward from ¢ to ty. Therefore, the expression (2.24)
can be more distinctly depicted as in the following figure, which is denoted as the Keldysh
contour ¥X, also known as Schwinger-Keldysh contour [ZMR97, SL13].

A

L

Abb. 2.1: The Schwinger-Keldysh contour v¥ = 4~ + 4 [SL13] includes a forward (upper)
v~ and a backward (lower) branch v between ¢y and ¢. The final time ¢ can be
extended to oo without influence on the real physical dynamics.

Generally, it is not possible to completely isolate a quantum system from its surrounding
environment. The trivial environment is the vacuum which may have only negligible influence
on the test system. Because of the complicate interactions between the quantum system and
its environment, the complete information on the state of the system at a particular time is
not perfectly known. Within the framework of quantum statistical physics, this incomplete
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information about a quantum system due to system-environment interaction is described by
assigning a probability p,, € [0, 1] to a corresponding state |¢,,) with >°,, p, = 1 [SL13, Rop13].
In other words, the essential idea here is to describe the total quantum system (system +
environment) in terms of a statistical mixture of isolated systems, and to account for the
system-environment coupling via the probability p, that is completely determined by the
features of the environment. Obviously, the pure isolated state is described by setting the
probabilities p, = 0 for all states |¢,) except for one single state |¢,,) (m # n) with p,, = 1.
The probabilities p, can be time-dependent for the non-equilibrium case. In the equi-
librium case, the probabilities are related to the partition function and the macroscopic
quantities are connected to the ensemble average (no dependence on time t). In this work,
we use the grand-canonical ensemble, where the statistical operator [ZMR97, SL13, Rép13]

exp (—BEIM) o~ BEN
Pgrand = —————— =D |on) (@ 2.25
sran Zgrand ; Zgrand ’ n>< n’ ( )
describes the thermodynamical equilibrium of a system at a given temperature T and the
chemical potential p with the partition function

Zgrand = 1T {exp (—ﬂf]M)} = Z exp (—ﬁ Eg/{) , (2.26)

where EM is related to the eigenenergy E, via the relation EM = E — uN with the particle
number N. Correspondingly, the average of any macroscopic quantity is determined via

OM =Tr {ﬁgrandOM} = Z<¢m‘ ﬁgrandOM |¢m> (227)

m

The temperature-dependence in the exponential exp (—BI:I M) can be also expressed as a

time evolution operator it/ hif we regard the parameter § as an imaginary time [SL13],

B-h— et —it, (2.28)

where we continuously change 6 from 0 to 7/2. This replacement is known as analytic
continuation, also known in field theory as Wick rotation. Then the ensemble average can also
be graphically described by a contour which is known as the Matsubara contour ™ [ZMRI7,
SL13] in the thermodynamic GF techniques.

A

lo- 1P

Abb. 2.2: The Matsubara contour Y™ [SL13]: the time evolves along the negative axis from
to to to — Zﬁ
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For operators along the contour ¥M, we have the following definitions

AM = H(z e y™M) := H(ty) — uN for the Hamiltonian ; (2.29)
OM = O0(z e ¥M) := O(ty) for any other operator. (2.30)

Zp=12z,- 1

Abb. 2.3: Konstantinov-Perel’s contour v = v¥ @ yM [SL13]: the time ordering is indicated
by the arrow along the contour, i.e., any time point between z, and to_ (tp4+ and
2,) is earlier (later) than a point in the Keldysh contour +X.

The analytic continuation allow us to describe the real time evolution and the ensemble
average in a consistent way. Introducing a more general contour v = v¥ @ 4™, as depicted
in Fig. 2.3, then we have for the average along the contour

1|7 {e h T o) |
Tr {T{e—i‘f’y dzH(z)H 5

where the operator 7 is the extended time-ordered operator. The contour introduced above
is known as the Konstantinov-Perel’s contour [ZMR97, SL13]. The physical meaning of the
Konstantinov-Perel’s contour can be explained as following: the system is initially prepared
in equilibrium at some time ty and then evolves out of equilibrium because of the perturbation
of an external field. After the external perturbation is turned off, the system will relax into
the equilibrium once again. Based on this contour idea, both the equilibrium and the non-
equilibrium properties of a system can be described in a systematic theory [ZMR97, Wei99,
SL13, Ropl3].

To acquire the time-dependent average of an observable (including both real-time aver-
age and imaginary-time average), the corresponding equation of motion for the observable
should be solved under some boundary conditions. The equation of motion for the observ-
able (O(t)) can be obtained by differentiating it with respect to time ¢. As we discussed at
the beginning of this chapter, the time-dependence is described by the state vector and the
corresponding density operator in the Schédinger picture or can be assigned to the operator
in the Heisenberg picture [ZMR97]. This fact indicates that we can have different methods
to access the dynamical properties of a system. The first approach, constructed from the
equation of motion for the density operator in the Schédinger picture, i.e., the quantum
Liouville-von Neumann equation, is well known in the research field of dissipative quantum
systems [BP07, JZKT03, Wei99, Rop13, ZMR97|. In this case, the concept of the so-called
reduced density operator has to be introduced. We will describe this method in detail in
the last section of this chapter. In the following section, we introduce an alternative to the

0(z) = (2.31)
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method based on the Liouville-von Neumann equation, i.e., the Green’s function formalism
in terms of the quasi-particle concept [Répl3, ZMR97, KKER86, KSKB05, SL13|, which is
an approach based on the equations of motion for field operators given in the Heisenberg
picture.

2.1.3 Correlation functions and their relation to physical properties of a system

To study properties of a physical system, one experimentally perturbs the system and see how
it responds to this perturbation [Wen86]. However, the experimental observations can not be
described by a simple and universally valid theory. To develop a theory for a system, one has
to find out the corresponding physical quantities related to the special problem under ques-
tion [Giin95, KSKB05, Rop13]. For instance, measurements of conductivity, emission spec-
trum, structure factor and many other physical properties can be performed [Wen86, Rép13].
Theoretically, the force-force (current-current) correlation function is used to described the
conductivity [Rei05, KSKBO05], while we use dipole-dipole correlation functions for the emis-
sion spectrum [KKER86, Giin95] and density-density correlation functions for structure fac-
tors [GR09]. Evidently, theorists always tend to find the corresponding correlation functions
to describe the desired properties of a physical system.

The correlation functions can be expressed in a general form of time-ordered strings of
operators

~

k(a1 2m) = T{O1(21) - On(zn) } (2.32)

with the time-order operator T. Physically observed quantities are then determined via
k(zy,--- ,zn):Tr{l%(zl,'-- ,zn)}, (2.33)

where the trace is taken over certain relevant degrees of freedom. In fact, all physical observ-
ables should be described by the corresponding operators. For example, the density operator
is given in terms of creation and annihilation field operators at equal time [KKER86, KSKBO05,
SL13|

(z) = ¢'(2) 6(2). (2.34)

Another special series of important operators are constructed by an equal number of creation
and annihilation field operators [SL13|

Gu(l,-- 31, ) = %T{éH(l) by () O () - 3L (1)} (2.35)

from which the Green’s functions can be defined. An important feature of this series of
correlation operators is hidden in their corresponding equations of motion. It is found that
the equation of motion for én, given by the derivative of G,,, is expressed in terms of Gn1
and Gy,41, which is known as BBGKY hierarchy [KSKBO05, Rop13, SL13|. This means that we
have to solve an infinite hierarchy of coupled differential equations, if we attempt to obtain
the exact knowledge of the n—th correlation operator G,. This renders these equations
practically unsolvable. Moreover, in most cases one is only interested in the properties of Gh.
Consequently, the system of coupled differential equations should be truncated under some
assumptions or approximations. This simplification results in the quasi-particle concept and
the definition of self-energy within the framework of the Green’s function approach [KKERS6,
Gun95, KSKB05, Rop13, SL13].
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2.2 Green'’s function technique

As mentioned above, the ensemble average includes the interaction between the system and
the environment via the statistical weight p,,, which can be described by a modified Hamilto-
nian related to the quasi-particle concept. In this section, we introduce the thermodynamic
(or Matsubara) Green’s function and the quasi-particle concept [KSKB05, Rop13, SL13].
Using these definitions, we will discuss the relations between the Green’s function and the
continuum lowering as well as the spectral lines.

From the n—th order correlation operator Gn

N 1 ~ N ~ N
the thermodynamical n—particle GF G,, is defined as [SL13]
Tr {exp (_5ﬁM) én(la Ty 1,7 T 7n/)}
a Tr {exp (—ﬁI:IM)}

In the following, we are merely interested in the single- and two-particle Green’s func-
tions. The generalization to a n—particle GF, for example the 4-particle GF for « parti-
cles [RSSN98], is straightforward.

GM(L 7n;1/7"' 7n/)

(2.37)

2.2.1 Single-particle Green’s function and continuum lowering
2.2.2.1 Single-particle Green’s function

In this and the following subsections we discuss the general properties of the one-particle
and the two-particle GFs in equilibrium denoted by the superscript "™” (short hand notation
for "Matsubara”) following the notations in Ref. [SL13]. The one-particle GF G represents
the propagation of an additionally created particle inserted in a many-body environment at
some initial time 79 and at the position xo to an other time point 71 and position x;. The
general informations contained in the single-particle GF G are the one-particle energy and
its lifetime. Obviously, the GF can also be represented in another basis, for example, in the
momentum space |p). Therefore, it is more convenient to work with the GF operator (i.e., the
GF correlator) which is invariant with respect to the basis. In thermodynamic equilibrium,
the GF operator G1 only depends on the time 7 and 7» via their difference, i.e., /4 — 73 in
the form [KKER&6, Rop13, SL13]

A N

1 . .
G, m) =GV (r — ) = i3 Z et (m=m2) GM (), (2.38)

with the Matsubara frequencies containing the statistical information on temperature

% v=0,42,+4--. for bosons
wy =19 . i (2.39)
% v==21,+£3,£5--- for fermions
and where the Matsubara GF operator in w, space is defined by
A 1
GMiw,) = ——— (2.40)

iw, —hM
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Here, the chemical potential is included in the one-particle Hamiltonian M = h — . Al-
ternatively, we can also assign the chemical potential in the definition of the Matsubara
frequencies [Rop13]. To investigate the properties of plasma, the homogeneity of space and
time is generally assumed because of the momentum and energy conservation. Consequently,
the Hamiltonian is diagonal in the single-particle quantum numbers ¢ = {p¢, s.} with the
momentum p, and the spin s, of the particle species ¢. Working in momentum space, we

have
1

GM(ciwt) = ———.
170( 9y I/) Zwlc/ _ EC

(2.41)

The free GF Gll\/fo (c,iwt) is only valid for a non-interacting system. In reality, the interac-
tions between different particles in a physical system must be taken into account. Generally,
during the propagation, the test particle can interact with its surrounding particles and also
dynamically interact with itself. The latter process is known as re-absorption of a photon,
i.e., the test particle emits a photon which will move freely in the plasma and then will
be absorbed again by this test particle. For the interacting system, the full (dressed) GF
GM(c,iw) incorporating the influence of the plasma environment can be expressed in terms
of the free GF GY(c,iw¢) and the “self-energy” 1 (c,iwf) as follows

e = o+ e N (2.42)

Gl (e iwg) = GYo(c,iws) + GYole,iws) - Si(c,iws) - GY (e, iwf) (2.43)
1

{Gll\ilo(c,iwﬁ)}_l - El(c,iW,S).

This equation is known as Dyson equation [KKER86, KSKB05, SL13, Rop13]. The self-energy
appears in the denominator and can be formally regarded as an energy shift. However, the
self-energy is in general a complex quantity and frequency-dependent. We will discuss this
point in more details later. The self-energy 31(c,iwS) originates from the fact that we wish
to construct an effective theory for the investigated system by embedding all the irrelevant
degrees of freedom into one effective quantity [ZMR97, SL13, Rop13].

2.2.2.2 Screened potential

Similar to the modification of the free GF by the plasma environment, the bare Coulomb
potential is also changed in plasmas. More accurately, the long range Coulomb potential of
the test particle is shielded by the plasma particles [KKER86, KSKB05, SL13, R6p13]. In the
basic equations of quantum statistical theory, the binary interaction of charged particles of a
plasma is characterized via the Coulomb potential which is a long range potential in the form
of ~ 1/r. A shortcoming of the bare Coulomb interaction is that this long range potential
leads to divergences in the calculation of relevant physical quantities [KSKBO05]. Additionally,
such long range potential allows the charged particles in the plasma to interact with each
other simultaneously which leads to a collective motion of the charged particles. Because
of the simultaneity and instantaneity of the mutual interaction, the interaction between
two test particles is modified by the surrounding particles. This phenomenon is known as
the dynamical screening of the Coulomb potential, which is an important and fundamental
quantity for all many-body systems [KKER86, KSKBO05].
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In the language of the GF technique, the dynamically screened potential is given in the
diagrammatic representation as [Rop13]

1"’(,=E+: +: +...=E+'
@@~ @n,

and, correspondingly, in the mathematical form via

ab (Qw) = )+ Zvac ea(q,w) Vi (a9, w). (2.44)

This expression, known as screening equation, can be further simplified by reordering and
rejoining the charges eg, ep, e, eq. The the following expression is obtained

Vab(q) o Vab(q)

SCI‘
q,w = 2.45
) = TS V@) Healar)  2la,w) 24
with the dielectric function that is defined via the polarization function II.4(q,w)
=1- Z Vea(q) Tea(q, w). (2.46)

The quantity (2.45) is the Fourier transform of the Coulomb potential modified by the di-
electric function. This modification may be explained as follows: a charged test particle
immersed in plasma polarizes its surrounding particles, so that any other particle experiences
the test particle and its screening cloud at the same time. The dielectric function (2.46) is a
complex quantity whose real and imaginary part satisfy the Kramers-Kronig relation. Then
Eq. (2.45) can be rewritten in the spectral representation in the following form

S (q,w) = Vap(q) - {1+/OO du’ Imgl(q’“’l_im}. (2.47)

oo T w—uw'

The simplest approximation for the polarization function II.4(q,w) and, correspondingly,
for the dielectric function e(q,w) is the so-called random-phase approzimation (RPA)

RPA _ 250"‘1 f € )—fc(e )
MRPA (g, ) = O e (2.48)

where the polarization functions are assumed to be diagonal in the particle species. Inserting
this expression into Eq. (2.46), the dielectric function in RPA is obtained

RPA(q ) =1 — ZVCC )TIRPA (g, w)
2SC+ 1 fc €Ep— - fC €
—1-y Bty () Femd 2 JlG) (249
op 0 Wt €p-q— €p

The dielectric function in RPA includes profound information of the properties of the plasma
and is valid for arbitrary degeneracy and can be evaluated in different limits. For example,
collective oscillation, described by the plasma frequency (plasmon resonance), appears in
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the long-wavelength limit (q — 0). Additionally, the well-known Debye screening for a
non-degenerate plasma can be derived in the static limit (w — 0), while the Thomas-Fermi
screening for a strongly degenerate plasma is recovered in the low-temperature limit (7" — 0).

The consequences of the screening effects in plasma are the following: 1) the continuum
edges that describe the eigenenergies of free particles are changed; 2) the bound state energies
of the composite ions are modified. Consequently, the transition energies for bound-bound
and bound-free transitions are different from those in the case of isolated ions.

2.2.2.3 Self-energy and continuum lowering

After the introduction of the screened potential and the dressed GF, we follow the ideas in
Ref. [KKERS86] and can now discuss the single-particle self-energy 31 (p, z) in more detail.
The simplest approximation for the single-particle self-energy is the Hartree-Fock (HF) ap-
proximation, which is constructed by the free GF for the single-particle and the bare Coulomb
potential

- -
P ~

SFp=/ N =Y p-az-w V(). (2.50)
1 —»—9 % 1

The first contribution, known as Hartree term, generally vanishes for a homogeneous system
because of charge neutrality. The second contribution, i.e., the Fock term, is related to the
statistical correlation because of the Pauli principle [KKERS86]. Unless otherwise stated, we
concentrate only on the Fock term (but still name this approximation as HF approximation)
and the corresponding improvements based on the Fock term.

In contrast, the full consideration for the single-particle self-energy is described by the
GWT-approximation, where G denotes the dressed GF, W = V3 gignifies the screened
potential, and I' indicates the vertex correction ”A” to the interaction vertex ” e ”.

E?Wr(p’ Z) = = Z Gl(p —q,z — w) : VSCr(q’ w)' (251)
qw

To evaluate the self-energy and other quantities according to the perturbation theroy within
the GWT-approximation, special care must be taken in order to avoid double counting
throughout the different diagram classes. Moreover, the diagrams included in this approach
result in an infinite hierarchy of equations which is impossible to be solved. Therefore, a
further simplification is to truncate this infinite hierarchy of equations on a certain level for
practical calculation. One possibility for the truncation is the GW-approximation by ignoring
the vertex correction I'.

In a next step to the HF approximation, the GW°-approximation (or the self-consistent
HF approximation) is obtained using the full GF instead of the free GF in the orginal HF
approximation,

P ~

W (p 2y =/ V=GP - az—w) - V(a,w). (2.52)
q,w

A further important approximation is the Montroll-Ward (MW) approximation obtained
by replacing the bare Coulomb potential V' (q) by the screened potential V5 (q,w). Hence,
the MW approximation is also known as V*- or GoV*-approximation,
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1 (p.2) = i:\_‘} =Y Glp—q,z—w) - V*¥(q,w). (2.53)

Based on the self-energy ¥ (¢, 2), a new concept “quasi-particle” can be introduced, where
the particle mass is renormalized in order to restore the orginal free particle’s propagator
structure [RM09]

R
més 9 (hp)?

Obviously, the quasi-particle energy Fj';(q) includes the energy shift in addition to the
kinetic energy of the free particle. The energy shift is usually negative, so that the threshold
value for the definition of continuum states is not given by p = 0 any more but from some
negative value [KKER86, KSKB05]. In other words, it seems that the continuum edge is
lowered. This phenomenon is connected to the ionization potential depression in plasma and
will be discussed in detail in terms of the single-particle self energy in MW approximation
and the structure factor in Chapter 4.

EY(q) with Efl(q) = e+ Re {X1(c,w)} ‘WZE?:Z(Q)' (2.54)

2.2.2.4 Evaluation of Self-energy

As an example, we calculate the self-energy within the GoV*- (or MW) approximation, i.e.
Eq. (2.53). The needed elements are the free GF of single-particle Gj(c,iw) and the
dynamically screened potential V<" (q,w). We repeat the corresponding expressions

1

Glole %) = ——, (2.55)
. © dw' Ime Y(q,w’
Vi (q,w) = Vee(q) - {1 + L — w_(w/)} : (2.56)

Writing out the screening potential Vi (q,w), the self-energy in MW approximation
can be expressed as

Sl (p,2) =Y Glp —q, 2 —w) - V¥¥(q,w) = B (p, 2) + 27 (p, 2) (2.57)

q,w

with the Hartree-Fock (HF) contribution for the self-energy [KKERS6]

MW
El,c

3
SHF _ZZVCC )G (e, 26) = —/(;k)?)mc(k) L(p—k) (2.58)

and the correlation contribution due to the influence of the plasma environment

d I / 1
Zcorr p’ Z/ w' Tme™ (q7w) . . (259)

/ c _ —
w—w 25 — W — €cp—q

Using the Matsubara frequency summation rule for bosons [KKER86, RM09, Rép13]

i Z 1 _ np(wn) — np(ws) (2.60)

Wy —wl W, —wy Wy w1 — Wa+ wy
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we arrive at the following expression

Ecorr p’ u _ Z/ Img (q,w/> . nB(W) - nB(Zy - €c,p_q) ) (261)

2, — €cp—q— W'
Because of z{ = 7v. /5 with v, = 0,£2,--- for bosons and v, = £1,+3,--- for fermions, and
thus e? % = (—1)2% depending on the spin s, of the particle, we have

1
exp (15 25 — Becp—q) — 1

nB(Zg - 6c,pfq) = =1+ (_1)2scfc(p - q)a (2'62)

where f.(p—q) is the Bose distribution for bosons with integer spins and the Fermi distribu-
tion for fermions with half-integer spins, respectively. Inserting this relation into Eq. (2.61),
we obtain

ng(w) +1+ (=1)*f.(p — q)
25 — €cp—q — W' .

Ecorr p, V _ Z/ hatedll Ims (q’w/) . (263)

This expression is of essential importance in investigating the continuum lowering, i.e., the
ionization potential depression, since it describes modifications of atomic properties in a
plasma environment. We will discuss this expression in detail in Chapter 4.

2.2.2 Two-particle Green’s function and spectral lines
2.2.3.1 Two-particle Green’s function

Similar to the one-particle GF, the two-particle GF describes the propagation of a two-
particle system which initially locates in (x},x5) to another position (x1,x2), during which
this two-particle system may interact with each other and with its surroundings. The aim of
introducing the two-particle GF in our case is to describe bound states which can be regarded
as a new particle species in the chemical picture [KKER86, RM09, SL13, Rép13].

To acquire the information about the two-particle system, a system of coupled equations
for the GFs should be solved, which in practice can never be achieved due to the huge
numbers of degree of freedom. We must find reasonable approximations for GG3. According to
the definition Eq. (2.37), the GF should fulfill a general symmetry property. The approximate
two-particle GF has also to obey this condition [SL13]

GM(1,2;1% 2%) = GY(2,1; 21, 1), (2.64)

Another condition for the approximate GFs is that they should satisfy the same conservation
laws as the original exact GFs. This condition is reflected in the fact that the approximate
GFs follow the same boundary conditions as the exact GFs.

The simplest approximation for the two-particle GF is the Hartree approximation by ne-
glecting the direct interaction between the two particles and the symmetry or anti-symmetry
in the case of two identical particles [RM09, SL13, Rop13]. Taking into account the identity
of the particles, the Hartree-Fock approximation can be obtained [R6p13]
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The “+ 7 describes the quantum statistical properties of bosons and “ —” of fermions. In our
case for the spectral lines, we introduce the so-called ladder approximation for the two-particle
GF [Ropl3]

1 1/ 15i1f1’ 13 3 1/
ladd i ladd
2G5 o _ 2 S222/ ;|:><+ 2 414'|G3 o

This diagram is the starting point for evaluating the atomic polarization function for spectral
lines within the framework of Green’s function technique.

2.2.3.2 Spectral lines: electron and ion dynamics

The emission and absorption of light in WDM is considered within perturbation theory, the
photons are coupled to the dipole-dipole correlation function. The line profile is given by the
Fourier transform of the dipole autocorrelation function [Duf69, Giin95, Dem10]

I(w) = %Re / ST g d(0)A (1)}, (2.65)

where peq is the equilibrium statistical operator, d the dipole operator of the emitting ra-
diator and the time dependence is given within the Heisenberg picture. In a more general
version the dipole moment is determined by the entire plasma. Also higher multi-pole mo-
ments of the charge density can be considered. Such relations between a dissipative property
like absorption of light and fluctuations in equilibrium (fluctuation-dissipation theorem) are
obtained from linear response theory. The relation (2.65) is a special form, equivalent rela-
tions are the dielectric function which is related to the polarization function. Furthermore,
the polarization function can be expressed as correlation function of (charge) density fluctu-
ations in equilibrium. Similar relations for the emission and absorption of light are obtained
from quantum master equations as shown in Ref. [LGRR16] and will be discussed in detail
in next chapter. The evaluation of equilibrium correlation functions like the dipole autocor-
relation function (2.65) and the density-density correlations can be performed using different
approaches: path integral methods, MD simulations, perturbation expansion and Feynman
diagrams which will be considered here. In the general form, the polarization function is
presented by the sum of all irreducible diagrams with incoming and outgoing particle-hole
lines as shown in the following.

To calculating the spectral lines in plasmas, the ions and electrons are in general treated
separately because of their large difference of masses and hence significant distinction of their
thermodynamic mobility. The average over the degrees of freedom of plasma can be performed
in two stages: first over the fast moving electrons and then over the slow ions [GHR91, Dem10,
Duf69, SM10]

< T >plasma = < < e >electrons >ions' (266)

While evaluating the average over electrons, the ions produce a slowly varying electric field
F, if the ions are assumed to be essentially stationary. The free electrons collide with the
radiator and result in the so-called pressure broadening of the spectra, which has a Lorentzian
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shape [GHR91, SM10]
1

<‘ o >electr0ns — w A(F) — ZF(F)

Here A(F) and I'(F') are related to the shift and broadening of the spectral lines, respectively.
On the other hand, the ions are randomly distributed in plasmas. Different ion configurations
near the perturbed atom or ion lead to different field strength F'. To account for all possible
ionic distributions, we introduce the microfield distribution W (F') and express the average
over ions as [GHR91, SM10]

(2.67)

< te >ions — /OOO ar W(F) ' < T >electrons- (268)

The influence of the plasma ions on the emitter is usually quantitatively described by the
linear and quadratic Stark effect [LL85, Giin95, Dem10, SM10], which is determined by the
field strength F'. For non-interacting ions, the probability distribution W (F') of the field
strength F' is given by the Holtsmark distribution [Hol19]. To include the correlation effects,
Hopper’s tables for the low frequency microfield [Hoo68], the APEX approach [IRS*00], and
the fit formula by Potekhin et al. [PCGO02] can be used.

Depending on the plasma parameters, the ion dynamics might become important and
can not be neglected any more. Generally, line wings can be treated statically and the
line center is affected by ion-dynamics. Based on the quasi-static approximation of the
microfield, two different methods are commonly used to include ion-dynamics into the line
profile calculation, i.e., the model microfield method and the reformulation of the frequency
fluctuation model [Dem10, Lor14].

2.2.3.2 Spectral lines in terms of Green’s function approach

Within the framework of the quantum statistical approach [Giin95, KKERS&6|, the optical
properties of a plasma system, i.e., the absorption coefficient a(w) and the refraction index

n(w), are determined by the transversal dielectric function e, (q,w) via the relation [Gtin95,
KKERS6, Oma07, Lorl4]

n(w) +ica(w)/w = éig% etr(q,w), (2.69)

with ¢ denoting the speed of light in vacuum. In the long wavelength limit, both the transver-
sal and longitudinal part of the dielectric function €(q,w) are identical, i.e. €n(q,w) =
€long (0, w). The longitudinal dielectric function €jong(q,w) is further related to the polariza-
tion function II(q,w) as

elong(qa W) =1- V(‘]) H(qvw)’ (2'70)

in which the polarization function II(q,w) can be evaluated systematically by using thermo-
dynamic Green’s functions and Feymann’s diagrams. This means, a cluster decomposition
of the polarization function with consideration of all the irreducible diagrams can be per-
formed. In order to obtain the spectral line shapes, the bound states, described by the
second order term of the cluster decomposition in the chemical picture, have to be take into
account [Giin95]

H(q’w) = HRPA(qv"‘)) + Hatom(qa W)~ (2.71)
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The atomic polarization function Il om (g, w) can be described diagrammatically as [Oma07]

o 8]

l'wn 1Az Jw”; iy
P ->-X

Go(n,P,C)

with the dressed GF G3 and the unperturbed transition matrix My ,,,(q) expressed via

M°, (q )—i{zanm _ / d3r¢;1(r)e—iqr¢n2(r)}. (2.72)

The spectral line shapes are determined by the imaginary part of the atomic polarization
function Matom(q, w). The full spectral line profile I(w), called the Voigt profile, is obtained as
a convolution of the Doppler-broadened line profile with the pressure-broadened line profile
Iy (w) [Giin95, Lorl4]

o dw' m, e [w—w?
I(w)w/ e e I ] (2.73)
. N

The contribution of the pressure broadening is expressed as

Tpr { S @) Gl U )If/>\i’>} (2.74)
i’ f "

with
ff Fleli! w? —hw/ (ks T)
> I @) = Gl gy e e, (2.75)
i ff!

The evolution operator U(w) is of essential importance for determining the spectral line shapes
and can be taken in different approximations. For example, in the quasistatic approximation
it is described by

W) = [T asPE) L w,p) (2.76)
0
with

L(w, ) = hw — (Es(B) — Ef(B)) + Re (i — Sf) +iIm (5; + ) +417; (2.77)

The shift of the spectral lines is determined by the difference of the self-energies of the upper
and lower level and there is no vertex contribution for the level shift. The displacement of
the level energy accounting for the influence of the microfield is given by [GHR91]

Ei(8) = E} + C(B), (2.78)

where the energy shift C'(3) depends on the detailed microfield models. The electron and ion
subsystems are assumed to be decoupled. Consequently, the self energy can be decomposed
into a S-dependent ionic part and a frequency-dependent electronic part

S (W, B) = B (w, B) + 25 (B)- (2.79)
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In dynamically screened Born approximation, the electronic self-energy is given by [Giin95]

1 d3q  dw Im e~ !(q,w + 40)
Yl | M, 2/ =N ’ 2.
V== ] GapV @ DM @) 14 m ) g g ey 280

oo T

where V' (q) is the interaction potential between the transition electron in eigenstate £, and
the plasma electrons with the momentum transfer q. n,(w) and €(q,w + i0) are the Bose-
Einstein distribution and the dielectric function, respectively. The calculations of spectral
lines using the GF techniques will be discussed in detail in chapter 5.

2.3 Theory of open quantum systems

As we discussed in last Sec. 2.2, it is usually impossible to analytically determine the time
evolution of the global system-environment combination. Therefore, a system + environment
model is introduced in order to acquire the information of the system of interest and to
describe the influence of the environment on investigated system. Alternative to the Green’s
function approach, the exact global dynamics of the combined system and the approximate
evolution of the reduced system can also be described by the so-called quantum master
equations in the theory of open quantum systems [Wei99, BP07, Rop13]. In this section, we
review some fundamental concepts in the theory of open quantum systems and the general
formalism of quantum master equations. More details can be found in Refs. [Sch07, BP07,
Rop13].

2.3.1 System-environment coupling: quantum master equation

We consider a quantum subsystem (S§) with Hamiltonian ﬁsys(t). This subsystem is inter-
acting with its surrounding environment (£) whose Hamiltonian is He,(t). The interaction
potential between the subsystem and environment is described by ﬁmt (t). Then the Hamil-
tonian of the total quantum system, which is generally assumed to be a closed system, reads

Hiotal(t) = Hays(t) + Hen(t) + Hing(t). (2.81)

Assumed that the Hamiltonian has no explicit time-dependence, then we have ﬁtotal(t) =
Hista1. The dynamics of the combined system can be described by the Liouville-von Neumann
equation for the total density operator p(t)

.. Llir 9
5Pt~ = | Hiora, ()] =0 (2.82)

Generally, it is more convenient to work in the interaction picture for deriving the quantum
master equation. Introducing the noninteracting Hamiltonian H(¢) of the combined system,
i.e., Hy(t) = Hgys(t) + Hen(t) we have

A )\ 4 Vil
Hiy (1) = exp (i};t) Hiy exp <—i;t> . (2.83)

Then the Liouville-von Neumann equation (2.82) can be rewritten as

9

S0 = [AL0.70)] (2.8

ik
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Because only the properties of the subsystem S are relevant and of essential interest, we
should transform this expression to a closed equation of motion for the reduced system.
To accomplish this goal, the first step is to construct the density operator for the reduced
system from the total density operator. This can be done by the so-called Nakajima-Zwanzig
projection operator technique [BP07]. The corresponding reduced statistical operator for the
subsystem S reads

Pays(t) = Tren p(t). (2.85)

Then, the average value of any observable S of the subsystem S is calculated as <$’)t =
Tr{S p(t)} = Treys{S psys(t)}. Formally integrating the Eq. (2.84) we arrive at

Pha(t) = pha(0) i [t [AL(0),5'0)] (2.86)

Reinserting this resulting expression back into the Eq. (2.84), and performing the trace over
all bath variables, the following expression can be obtained

2pba(t) = = [t T [ 180, [0, 0') | (2.87)

The right side of Eq. (2.87), also known as influence term £[f)slys(t)], can be generally divided
into two parts [Sch07]

L[pho ()] = =i [H3(0), 51 ()] + Dlpgs(®)]. (2.88)

The first term is an unitary part describing the reformulation of the energy levels of the
reduced system. The second term represents the decoherence and dissipation of the reduced
system due to the environment. Generally, this term is of essential interest to us because
most physical informations are contained in this term.

In deriving the expression (2.87), we have assumed

Tren | Hyys(t), 51(0)] = 0. (2.89)
This assumption can always be achieved, if necessary, by a formal redefinition of the Hamil-
tonians HJ and HJYS( ) [Sch07, Goc07, Répl3]. The expression (2.87) is exact and no ap-
proximations have been performed in the derivation. Evidently, equation (2.87) has no closed
form, since the dynamics of the reduced system still depends on the total density operator
pL(t"). Furthermore, equation (2.87) is non-local in time ¢ because of the dependence on all
previous times ¢’ in the total density operator pl(#'). To obtain a closed quantum master
equation that is local in time and is determined entirely by the reduced density operator pASIyS,
some assumptions about the system-environment states and dynamics have to be introduced.
This goal can be achieved by imposing the Born-Markov approximation, which is motivated
from assumptions of weak system-environment couplings and of an environment that is large
compared to the size of the system [Sch07, BP07].

Under the assumption of weak coupling between the system and its environment, a per-
turbative expansion can be carried out with respect to the interaction strength. In Born
approximation, this expansion is truncated up to the second order of the system-environment
coupling. Moreover, the combined density operator pl(t) is assumed to be expressed in an
approximate product form at all times

PL(t) & plys(t) ® ply(to)- (2.90)
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The environment is assumed to be in equilibrium with pl (t) = pl.(to) = pl,. Actually,
performing the Born approximation is equivalent to construct a relevant statistical operator
Pre1(t) = Psys(t)Pen that is fulfilling the condition of the maximum of information entropy for
given constraints. The relevant statistical operator pye(t) obeys the renormalization condition
Tr pre1(t) = 1 and the self-consistency condition psys(t) = Tren prel(t) = Tren p(t) [R6p13].

The Markov approximation means that the memory effects on dynamical correlations of
the environment are negligible [BP07, Sch07, Wei99, R6p13]. In other words, the dynamical
corrections in the environment are destroyed so quickly that the reduced system is not aware
of any changes of the environment at all previous times. Therefore, the dynamics of the
relevant reduced system depends merely on the properties of the environment at the present
time. Consequently, the density operator of the composite system ﬁl(t’ ) at a certain previous
time ¢ can be replaced by pl(t), and the limit of the integration on the right-hand side of
Eq. (2.87) can be extended to co. Taking these simplification into account, the Born-Markov
master equation is obtained

0 . t A A . N
&pslys(t) - _/O dt/ TI'en |:Hi¥1t(t)7 |:Hi£lt (t,)7pslys(t) peln} :| . (291)

The interaction Hamiltonian is assumed to be in a diagonal and bilinear form with respect
to the system operator S, and the environment operator &, [BP07, Sch07]

Hing =) Sa ® Ea. (2.92)

Inserting this expression into the Born-Markov master equation (2.91), a more explicit ex-
pression can be obtained [Sch07]

iﬁslys@) = - /OOO dr azﬁ {CaB(T) : {Soz (t> Sa(t - T) ﬁslys(t) - Soz(t =) ﬁsts<t> Sa(t)}

A

+ Coa(=7) - [P () St = 7) Salt) = Salt) pls(t) Salt — 7)] } (2.93)
where Co3(7) is the spectral correlation tensor and is defined as

Cap(T) = (€a(T) Es Jen- (2.94)

The expressions (2.91), (2.92) and (2.93) are the starting point for our study on the Rydberg
states in plasmas in Chapter III.

To analyze the dynamical behavior of the reduced system under the influence of the en-
vironment, two different special system-environment couplings are usually preferred, i.e. the
Rotating-Wave coupling and the Feynman-Vernon coupling [IMMO03, BP07]. The Feynman-
Vernon coupling is given in terms of the creation and annihilation operators of the reduced
system (@, a') and of the environment (b;, l;j)

Hine =y _(a+ ') - (9:b; + g7h]) (2.95)
(2
with the coupling strength g; to the corresponding mode 4 of the environment. By neglecting
the counter rotating terms ab; and af lA)I (rotating wave approximation), the Rotating-Wave
coupling can be obtained

Hie = > (g7 ab] + g;al by). (2.96)

(2
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This simplification leads different problems in corresponding special cases [IMMO03, LGRR16],
for examples, incorrect value for environmentally induced frequency shifts, and reduction of
non-Markovianity in non-Markovian regime, see Ref. [LGRR16] and other references therein.
We will return to this discussion in next Chapter and show that if the rotating wave ap-
proximation is carried out prematurely, it will be inappropriate to describe the dissipative
properties of the relevant atomic system and results in erroneous transition rates [LGRR16].

2.3.2 Decoherence and localization

Due to the system-environment coupling, entanglements are generated between the system
and environment, and therefore, a coherent state is formed. With time evolution, the coher-
ence decay because of the scattering of the environment particles off the investigated particle.
This process is known quantum decoherence [JZK103, BP07, Goc07]. When speaking of scat-
tering off a macroscopic object, this process is generally denoted as localization and can be
well described by the quantum Brownian motion [JZKT03]. For simplicity, we only consider
the motion in one space dimension with the corresponding equation of motion [JZK'03]

0, A A N PO

ZaPSyS(t) = {HsySa PsyS(t)} T iA {337 [vasyS(t)],L ) (2.97)
where A is the localization rate (also denoted as decoherence rate in a more general case)
characterizing how fast the destruction of coherence between different positions is. Within the
Caldeira-Leggett model [Wei99, BP07, Goc07], the localization rate A = v/A%, depends on the
thermal wavelength of the macroscopic object Ap and the relaxation rate v which is related to
the effective scattering cross section contributing to the destruction of entanglement [DBD77,
DBD79, SVY81, BP07]. The solution of the equation for Brownian motion of a free particle
can be described by the following ansatz [JZK' 03]

pevs(,9,1) = exp { — A(t) (z = 9)? +iB(t) (z + y)(z — y) + C(¢) (z + y)?
+iK () (z = y) + L(1) (x +y) + D(t) . (2.98)
We consider a simplified but more explicit version of this ansatz

Peys (2,4, 1) = pays(,7,0) - e A7, (2.99)

To get a feeling of the magnitude of the localization rate A, we show some examples for this
quantity in the following table.

a=10"m|a=10"m | a=10°%m
Cosmic background radiation 100 1076 1012
300 K photons 10%9 102 109
Sunlight on earth 102! 107 1013
Air molecules 1036 1032 1030

Tab. 2.2: Localization rate A in unit of cm~'s~! for a dust particle with spatial size a under
different types of scattering environment [JZK'03]

As an example, we consider a coupling system formed by four linearly distributed dust
particles with width ¢ = +/0.5 um located in position x1 = -9 um, x1 = -3 ym, x; = 3 pm,
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and 1 = 9pum, respectively. Each spatially separated component can be described by a
Gaussian wave packet

r — X 2
Yi(z) = exp {—u} . (2.100)

202

As an illustration of coherence and decoherence, we take a superposition of four Gaussian
wave packets following the idea in Ref. [JZKT03].

4

Tup(z) =3 i) (2.101)

with the density matrix in the position representation at the initial time tqg = 0

Psys(2,4,0) = Wyp(x) Wip(y)- (2.102)

(a) Density matrix distribution peys(z,y,t =0)  (b) Density matrix distribution pgys(z,y,0.5 us)

(c) Density matrix distribution psys(x,y, 5 us) (d) Density matrix distribution psys(z,y, 15 us)

Abb. 2.4: Time evolution of the density matrix psys(x,y,t) for the coupled system (2.101),
where the positions z and y are in unit of ym.
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Assumed that this coupling system is scattered by 300 K photons with the localization
rate 10'2cm~'s™!, see Tab. 2.2, the time evolution of the density matrix for this system
can be depicted, as shown in Fig. 2.4. It can be seen that, the nondiagnol elements of the
density matrix describing the system-environment entanglement disappear very fast because
of the scattering with the thermal photons. In the viewpoint of quantum mechanis, the
quantum feature of this coupled system is destroyed, and therefore, it can be treated as a
classical system. This phenomenon, known as “appearance of a classical world in quantum
theory” [JZKT03, Sch07], is universal for all microscopic and macroscopic objects, such as
body cells, dust particle in air, astronomical objects and so on.

In contrast to the wave packet description for a free particle moving in a special environ-
ment, we will show in Chapter 3 that a wave packet description can also be formed for the
bound Rydberg electron in an atom. The Rydberg electron undergoes frequent scattering
with its surrounding particles which leads to a strong localization due to the weak coupling
with the ion core. Consequently, the Rydberg electron can be described quasi-classically. Such
a quasi-classical description turns out to be more appropriate to calculate the transition rates
in plasmas.

2.3.3 Emission and absorption

Another famous application of the quantum master equation is in the investigation of the
interaction of matter with electromagnetic field, where the transition rates induced by pho-
tons, the Lamb shift, the mass renormalization, and many other interest properties can be
derived. Here we consider an atom coupled to the electromagnetic field [BP07, Rop13], which
is studied in detail in my master thesis [Lin14]. The relevant system in this case is the atomic
system with the Hamiltonian f]sys including the kinetic energy of the electrons and the nuclei
as well as the Coulomb coupling between them. The Hamiltonian of the bath H.,, ie. of the
electromagnetic field, is given by

Ao =3 3 hunc b (k)b (K), (2.103)
k A=1,2

where B;(k) and by (k) are the creation and annihilation operator for the photon in the
polarization mode e) (k) with energy hwy. The interaction Hamiltonian can be represented
as

Hi(t) = — / gﬁe*iwtﬁ(w) -E(t) (2.104)
o 2m
with the dipole operator in the spectral representation [Rop13]
D(w) = exh 3 |60}l £ ) (Gu0] - 6(En — By + o) (2.105)
and the vector for the electric field
; . 27Thwk>1/2 " it s et
E(t)=1 ex(k) - <ba(k) e "kt — bl (k) "KL, 2.106
0=iX % (Fqt) e b {1t} (2.106)

Inserting the interaction Hamiltonian into the Born-Markov QME, the so-called quantum
optical master equation can be obtained [R6p13]

9 . 1~ 1ra i
oy Povs(0) = = [y eys(0)] = = [Hiun, pegs(0)] = Dlows(]  (2107)
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with the influence Hamiltonian describing the mass renormalization of the system

Hin = [ - ‘2%’ hS(w) D (w) - D(w), (2.108)

and the dissipation term containing information of the transition rates

© dw 4w? R A 1 (a A
b = — : . 5 f(w) = = IDM(w) - 5
[T @) { D) (D) — 1 (D) D), et}
o 27 3hed npl\w W) Psys w 9 w W) Psys e
(2.109)
where S(w) is the spectral function of the bath and reads
2 o0 1+ng(w) npw) }
Sw) = =3 dwy w} - 2.110
(w) 371%0373/0 ik { W — Wk * wtwg )’ ( )

where P denotes the principle value and c is the speed of light.

The first line of Eq. (2.109) describes the emission process in the electromagnetic field,
where both the spontaneous emission and the thermal emission of photons are included. The
second line of Eq. (2.109) gives the transition rate for the absorption of photons. As we can
see here, the Einstein A— and B—coefficients, which are expressed via the transition rates,
are fulfilling.

2.4 Some open questions

We have reviewed the fundamental description of the Green’s function technique and the
open quantum system. Some well known applications are given. As discussed in Chapter
1, we devote ourselves to the optical properties in a plasma in the present investigation.
Therefore, we collect some open questions that we will concentrate on in the rest part of this
dissertation and in future researches.

1) Besides the interaction with the radiation field, the atom/ion immersed in a plasma is
also influenced by Coulomb collision with other charged and neutral particles. This may
be the most important interaction mechanism in plasmas, which results in a number
of effects, for example, transition rates induced by charge carriers, pressure broadening
of spectral lines, localization of particles, screening effects, conductivity, formation of
bound states, and so on. Then an interesting and important question arises from this
Coulomb interaction: how can we include the influence of a plasma environment?

2) What are robust states, in particular, for Rydberg states?
3) How does the atomic potential modified in a plasma in contrast to in the isolated case?

4) Which rules should we obey when defining a relevant system? What is the borderline
between the relevant system and the irrelevant environment?

5) How can we go beyond the Born-Markov approximation?
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3. TRANSITION RATES AND RYDBERG STATES IN
PLASMAS

In this chapter, we derive a quantum master equation for an atom coupled to a heat bath rep-
resented by a charged particle many-body environment. In the Born-Markov approximation,
the influence of the plasma environment on the reduced system is described by the dynamical
structure factor. Wave packets are introduced as robust states allowing for a quasiclassical
description of Rydberg electrons. Transition rates for highly excited Rydberg levels are in-
vestigated. A circular-orbit wave-packet approach has been applied in order to describe the
localization of electrons within Rydberg states. The calculated transition rates are in a good
agreement with experimental data and Monte-Carlo simulations. Based on the quantum mas-
ter equation, expressions for the spectral lines are derived, where the photons are turned out
to be relevant degrees of freedom in comparison with the case for deriving the Pauli equation.
The main results of this chapter are published in Phys. Rev. A 93, 042711 (2016).

3.1 Pauli equation for population number of bound states

3.1.1 Physical system and Hamiltonians

We investigate the reduced system of a Rydberg atom (A) embedded in a bath (B) consisting
of charged particles ¢ , electrons (¢ = e) and (singly) charged ions (¢ = i), charge e., mass
me, particle density n. and temperature 7. The microscopic model under consideration
is a hydrogen atom coupled to a surrounding charge-neutral plasma, ) .e.n. = 0. In the
bath, in general, the formation of bound states such as atoms is also possible. Furthermore,
the interaction of the atom is mediated by the Maxwell field which contains, besides the
Coulomb interaction with the charged particles, also single-particle states, the photons. The
total system is then described by the Hamiltonian

ﬁ:ﬁA‘i‘ﬁB‘i‘ﬁint- (31)

In a plasma environment the Hamiltonian Hp includes both the kinetic energy and the
Coulomb interactions of charged particles Hcoul (see Eq. (3.2) below) as well as the degrees
of freedom of the photonic field lehoton describing the transversal Maxwell field of the plasma
environment, i.e. I:IB = lﬁlcoul + ﬁlﬁloton.

For the plasma, surrounding the radiating atom, the Hamiltonian containing both the

kinetic energy and the pairwise Coulomb interaction is described by

Floon =S P01 1 L 5 Sos o 0oy orCh b dy
Coul — Z 9 Cpcp+ 2 Z Onlp’ — 2 9p1+p2,p} +p5901,0, 9a2,0% Cpy Cpy Gpl, Cp!)
me ;. €0 0|pl pl’
&p ¢,d,p1p2,p}py

(3.2)
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where we used second quantization ép,é;f) for free particle states |p) = |p,o) (wave vector
and spin) of charge ¢ . The grand canonical equilibrium (3.10) contains also the particle
number operator N, = >p é;ép. The macroscopic state of the bath is fixed by the Lagrange
multipAliers e and T. g is the volume of the total system. Because of charge neutrality

> cecNe =0 both pe, p; are related.
The transversal Maxwell field

ﬂpjﬁioton = Z hwk,sﬁk,s (33)
k,s

is quantized and denoted by the photon modes |k, s). The frequency wy = c|k| = 2mc/\ is
the dispersion relation for the frequency as a function of the wave number k. fy , = BL Sl;k,s
is the occupation number with the polarization s = 1, 2.

The atomic Hamiltonian reads in the non-relativistic case

. P2 p2 o2
AA=50 " om ™ Tmeg i) (34)
where the center-of-mass (c.0.m.) motion is described by the total mass M = m.+m,; and the
variables f{, 15, the relative motion by the reduced mass m and the relative variables ¢, p. The
eigenstates |¥,, p) of the isolated hydrogen atom are the solutions of the Schrédinger equation
Ha|W, p) = E,p|¥, p) with the eigenenergy E, p = P2/(2M) + E,. The quantum number
n = {n,l,m, ms} describes the internal state for bound states E,, < 0 and n = {p, ms} for
scattering states Fp = p2/(2m) > 0. For the bound states, the wave function U(R,r) =
(R, 1|V, p) = Up(R)1,(r) contains the eigenstates 1), (r) of the hydrogen atom. The c.o.m.
motion ¥p(R) is given by a plane wave. In this work we concentrate on the internal degrees
of freedom of the bound states. The c.o.m motion, which, e.g., determines the Doppler
broadening of the spectral line profile, will not be discussed here in detail. In most cases it
will be dropped considering the adiabatic limit.

The interaction between the atomic electron and the plasma environment is given by the
coupling of the atomic current operator to the electromagnetic field of the bath

Hing (1) = / Pri(2) A, p(2) (3.5)

with z# = {ct,r}. Introducing the creation (¢)f(z)) and annihilation (¢/(z)) operator for the
atomic electron, the current operator of the atomic subsystem §Z(x) = {coa (x),jA ()} can be
explicitly written as pa(z) = —ed)f(2))(x) for the electron probability density and ja(z) =
2%1 [ﬁT(x)%qﬁ(x) - (%ﬁﬂ(x)) 1&(:5)} for the electric current density of the electron (non-
relativistic limit).The time-dependence in these operators are given in Heisenberg picture.

The source of the electromagnetic field of the bath flg (z) = (Us(z), Ag(z)) is the current
density jg (x) of all charge carriers in the plasma. In the present work the Coulomb gauge
V x Ap(x) = 0 is used. The Fourier transform

A
.

fan(w) = / dPr / dte =19 (1. 1) (3.6)
) —o0

of the electrical current in the surrounding plasma can be decomposed into a transverse
component »_. jé"é(w) coupled only to the vector potential Aqp(w) and a longitudinal one
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e ﬂlch(w)q/ g which is related only to the Coulomb potential. Because of the continuity

AH

equation, the relation q - jqp(w) = Qg p(W) = wdqB(W)

4 jqB(W) = @il (W) = wngpW) (3.7)

holds, where gq(w) is the Fourier transform of the corresponding charge density operator
o(a).

The general form of the interaction (3.5) includes the Coulomb interaction via the longitu-
dinal component of the currents, and the coupling of the transverse component of the currents
with the radiation field. We do not investigate the radiation interaction connected with the
transverse component. The radiative field of the plasma determines the natural broadening
which has already been extensively discussed in [BP07, Rop13] by using the quantum master
equation approach. However we focus on the Coulomb interaction of the hydrogen atom with
its surrounding charged particles in this work. In this case, the distribution and the motion
of the charge carriers in the plasma produce a scalar potential which is given in terms of the
longitudinal current [Rei05]:

~C w ~ll,e w
Ugp(w) = Q“B—(g) =3 Jan) (3.8)

- €odq . fowq

This results in the pressure broadening of the spectral lines as shown in Sec. 3.3.

3.1.2 General quantum master equation

The state of the total system is described by the statistical operator p(t). We assume that
the observables A of the subsystem A commute with the observables B of the bath B. If only
the properties of the subsystem A are relevant, we can consider the corresponding statistical
operator

palt) = Trg (t) (3.9)
performing the trace over all bath variables. Then, the average value of any observable A of
the subsystem A is calculated as (A)! = Tr{A p(t)} = Tra{A pa(t)}. The equilibrium state
pp of the bath B is assumed as the grand canonical distribution
1 [_ﬁB _ZCILLCNC ﬁB _ZC/LCNC‘|

(3.10)

pB = 7 P kpT kpT

, Zp = Trpexp [—

with the chemical potentials p. of the species c.

If the bath is assumed to have short memory in the sense that the correlation in the
bath decays very quickly in comparison to the time evolution of the reduced system (Markov
approximation), and the dynamics of the reduced system is considered only in second order
with respect to Hin (Born approximation), a closed equation of motion can be derived for
the reduced statistical operator pa(t) of the subsystem A by performing the average with
respect to the bath in (2.82), i.e., the Born-Markov master equation [R6p13], as discussed in

the last chapter,
0 . 1 .~ A
5;PA (1) — = [Ha, pa(t)] = DIpa(t)] (3.11)

with the influence term

A

Dlpa(t)] =~ | OOO dr e Trg | Hing, [Hine(7), pa(t)8] | - (3.12)
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This is the quantum master equation (QME) in Born-Markov approximation. To go beyond
the Born approximation, a more general solution has been given in [ZMR97].

Born approximation indicates that higher orders of the interaction Hamiltonian in the
time evolution of the operator “exp {—i (ﬁo + ﬁint> t} ” can be dropped. Consequently, the
time dependence in Born approximation is given by the interaction picture

OAI(t7 to) = oi(Ha+Hgp)(t—to)/h O o~ i(Ha+Hg)(t—to)/h (3.13)

At t = to, the interaction picture coincides with the Schrodinger picture. Note that the
time of reference t( is often taken as zero. In interaction picture, the QME in Born-Markov
approximation reads

9 .

apIA(tv to) = Dl(tv tO) ) (314)
i.e., only the perturbation determines the time evolution of pk (,ty) (note that Hp commutes
with pa(t)). The influence term in interaction representation follows as

1 0 N N R R
Dl(t,t0) = —75 / dr e Trg [ Bl (8. t0), [ Byt + 7. t0). A (1. t0) s | (3.15)
—00

In zeroth order with respect to the perturbation, ﬁg(t, to) is constant, therefore not changing
with time ¢.

3.1.3 Atomic quantum master equation and Pauli equation

In this section the master equation for the reduced statistical operator (3.14) shall be ap-
plied to atomic bound states in a many-particle plasma environment. However, most of the
discussion is valid for a much more general case.

The photonic field I:I}ﬁloton is not relevant in our present consideration for the Pauli equa-
tion in this section. We focuss on the Coulomb interaction with the charged particles of
the bath. The longitudinal part of the interaction Hamiltonian can be extracted from the
general form Hin (3.5) by using the expression (3.8) and performing the Fourier transform
with respect to the time for the atomic charge density operator

N % dw -t AT
Qq,A(tv tU) = % € Qq,A(w) (316)
—o0
so that ) p
AT, W i(t—te) .
il (tt0) = 30 o= [ e 7 g a(@)dl gt o) (3.17)
q

with 0qB = > . Oqp and og g = o ece;—q/Q,oép—‘rq/ZU' In this work only the contribution
of the electrons in the plasma is considered. Because of the large mass ratio, the ionic
contribution related to the microfield should be treated in a different way. Coming back
to the influence term (3.15), the factorization of the interaction Hamiltonian allows us to
perform the average over the bath degrees of freedom separately

1 0 1 dw dw/ : ’ T’
DI ttn) = _7/ dr €7 - / uw W —i(wHw) (t—to)—iw'T 3.18
0= L g da2q?0g ) 2w ) o 19

s { [8h, A ()8l ()5 (. 10) — By o ()P (. 10)8h A ()] {8 (1 0) 8 (¢ + 7. 70))

Al Al Al AL Al Al Al Al
— [ B, a@)Ph (¢, to) by a () — P (2 t0) Oy A ()G A ()] (0L gy B (t + 7 t0) 6 q (¢, t0))m |
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with ( --- )g = Trg {--- pp}. The autocorrelation function <@I—q,B(tv to)@I_q,’B(t + 7,t9))B for
the charge density is calculated in thermodynamic equilibrium. Because of homogeneity in
space and time it is o< dg/,—q and not depending on the time ¢ as well as tg. We introduce
the Laplace transform of the bath auto-correlation functions which can be also defined as the
response function

1 [0 i A R
Co(ae) = g [ dree @y plto, )k plto + 7t (3.19)
— 00

The response function I',(q,w) is a complex physical quantity which is related to the dynam-
ical structure factor of the plasma or the dielectric function, as shown in the App. A. It can
be decomposed into real and imaginary parts,

i(a,0) = 53(a©) + S, (a,w), (320)

where 7, (q,w) and S, (q,w) are both real functions. They fulfill the Kramers-Kronig relation
and are related to the damping and the spectral line shift, respectively (for details see next
subsection).

With the response function (3.19), we find that the influence term (3.15) can be rewritten
as

1 do [dw' ...
DI t t — _ /7 et z(w 7W)(t*t0)rr ! AL AL ! N | t t
1o)== vy | 5n | 2 (a, ') [h2 (), 0" qa(=w)h (2 )]
+h.c. (3.21)

The second contribution of the r.h.s. of Eq. (3.21) is the hermitean conjugate of the first
contribution so that DI(t,to) is a real quantity. Approximations for the response function
I',(q,w) are obtained from the approximations for the dielectric function such as the random-
phase approximation and improvements accounting for collisions.

In a next step we introduce the orthonormal basis of the hydrogen bound states in the
Hilbert space of the atomic subsystem to obtain the Pauli equation for population numbers.
We use the basis of hydrogen-like states |¢,) of the Hamiltonian Hy. For the charge density
operator

OqA = /d377 eiq'F@A(f‘) = /dgf eiq'f[ee5(f'e —T)+ed(f; — 1) =ec eildte 4 o eiq'fi, (3.22)

the time dependence in the interaction picture can be written in matrix representation as
(e = —¢€;)

é‘lil,A(ta tO) = e%ﬁA(t—to) @(LA e—%HA(t—to) — Z eeTn’n Fn’n(q) e—iwnn/(t—tg) (323)
nn’
with
Toum = |9 (Wl (3.24)
E, — E,
Wyt = —— (3.25)

n’ T)
Fual@) = [ '3, (@)n(e) (1 - %), (3.26)
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in adiabatic approximation m, < m;. Furthermore, the atom is assumed to be localized at
R = 0. Performing the Fourier transformation with respect to ¢t we obtain the atomic charge
density in Fourier-space

@é,A (w) = Z eeTrm Fun(q) 27 6(w — W) (3.27)

nn’

With Eq. (3.27) the influence function (3.21) can be represented as

Dl(t,tg) = — S e/ Hmm ) (Et0) s (9 W)
nn/ ;mm’,q
X {Tn/nTm/mﬁk(t, tg) — Tm/mﬁk(t, tQ)Tn/n} + h.c. (328)
with )
e
Kmm’;n’n((b w) = = F; (q)Fn’n(Q) L, (q7 w) (329)

gt mm’
containing informations about the atomic system, the plasma bath and the interaction be-

tween them. In matrix representation the atomic QME (3.14) can be represented as (|1);) -
initial state, [1f) - final state)

15)
apk,if(t, to) = (il D' (¢, to)[¥y) (3.30)

with the influence function

WDt to)leog) = — 30 e m 1) K (0, mn) P g (1 10) (3.31)

mn,q
+ ewmy(t—to) Knonf (s Wny) Pk,z’m(t’ to)
. ei(wim+wnf)(t_to) [Kml,fn(q’ wmz) + K:Lfymz(qv an)} pk,mn(ta to)}

with the density matrix pkmn(t, to) = (¥m|pY\ (t,t0)[¥n). The corresponding atomic QME in
Schrédinger picture is obtained with p mn(t,t0) = eiwmn(t=to) PAmn(t).

Now, we investigate the diagonal elements of the density matrix by setting ¢ = f in
the above expression (3.30). This leads to an equation for the population number P;(t) =

P ii(tito) = paii(t)

OP;(t)
ot

= Z {k;m-(q,wm)Pn(t) — k‘m(q,wm)Pi(t)}

n7q

_ Z 2Re |:eiwim(t_t0) Kmn;in(qa wmn)} pIA,mi (tv to)
n,m#i,k

+ Z 2Re{eiw”m(tt0) [ T*Ll,ml(qv wnl) + Kmmn((b wml):| } pIA,mn(tu tO) (332)
m>n,q
with kab(qy Wab) =2Re Kab;ab(q’ Wab) = 6’2 |Fab(q)’2 ’Yr(qa Wab)/(e(%q49(2))7 where expression (320)
is used and the indices m and n are interchanged in the derivation. The interaction picture
shows a slow time dependence in pxnm(t, to) owing to the influence of the bath, Eq. (3.14),

and a quick time variation due to the factor e (t=%) with w,,, # 0. The second and third
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term oscillate with the characteristic transition frequencies wy,;, and w;,,, respectively. Sub-
sequently their contributions vanish when averaging over a time interval large in comparison
to the inverse of the characteristic transition frequencies, because the population numbers
are approximately constant. This is the so-called Rotating Wave Approzimation (RWA). For
the long-term evolution of the reduced system the nondiagonal elements in Eq. (3.32) can be
neglected and consequently we obtain a closed rate equation for the population number — the
Pauli equation:

OPi(t)

ot

= Z [kni(cb Wni)Pn(t) - kin(CIa Wm)Pz(tﬂ . (333)
n7q

Comparing with the standard form of the Pauli equation %Pi(t) = > [wn—i P () —wi—n P (t)],

we have for the transition rates

e2 |F; 2 , Wni
Wi = Z knz(q7wnz) — Z e ‘ nl((:2)|4gg(q m), (334)
q q 0d 7%
e |F; 2 , Wi
Wissn = Y kin(q,win) = Y =< | Z”(;)(L4g;(q n) (3.35)
q q 0 0

To derive the Pauli equation we used the RWA which neglects quickly oscillating terms. Also
the dependence on the time ty, where the interaction picture coincides with the Schrédinger
picture disappears. The validity of the RWA in the theory of open quantum systems is under
discussion. The dynamics is modified if contributions of the right hand side of Eq. (3.32) are
dropped. As we will see in next subsection, if the RWA is carried out prematurely, it will be
inappropriate to describe the dissipative properties of the relevant atomic system (Rydberg
states) and results in erroneous transition rates. Additionally, the nondiagonal elements of
Eq. (3.30) are also derived as well as a principle discussion on the validity of the RWA is
given.

3.1.4 Rotating wave approximation

In this subsection, we will investigate the influence of the RWA on the dynamics of the reduced
system. The neglect of quickly oscillating terms in Eq. (3.32) modifies the dynamics of the
system. This procedure depends on the choice of the basis [¢;,) which defines the diagonal
and non-diagonal elements of the density matrix.

In contrast to the expressions given in subsec. 3.1.3, we here consider the result if perform-
ing the RWA in an earlier stage. The starting point is the QME (3.14) (interaction picture)
with the influence function (3.28). The RWA implies that the explicit dependence on ¢ — tg
disappears so that in Eq. (3.28) only the terms with m = n’ and m’ = n contribute. We find

D(l) (t tO Z Kn n;n’ n(q7 Wn! n){Tn’n’pAIA(tv tO) - Tnn’ﬁk (t, tO)Tn’n} + h.c. (336)

nn',q

In addition the explicit dependence on t — ty disappears for n’ = n and m’ = m so that

D(Q) (t tO Z Kmm nn(qa wmm){jﬂmmﬁk(ty t0)5mn - TmmpA(t tO) } + h.c. (337)
mn,q
The term m = n in the sum of 15%2) gives the same contribution as in 15%1) if n =n. To

avoid this double counting, the corresponding contributions in @%2) should be substracted.
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The correct contribution can be expressed as

Dioy(t:t0) = Y Vi Fun(@)Fyr (@) (T (@ ) + T3 ) ) + T s (£ 0) T

n’'#n,q
= Z Vq2 an(q)F;Lk’n’(q) ’Y?”(qv 0) : Tn’n’pAIA(ta tO)Tnn- (338)
n'#n,q

In dipole approximation, this expression yields no contribution because Fy,(q) = 0 in dipole
approximation. Beyond dipole approximation this term contributes only to the vertex cor-
rection. Alltogether, the influence function in RWA follows as

Diwa (£, to) = Dy (£, to) + Dig (¢, to). (3.39)

The influence function ﬁ%l)(t,to) can be transformed into a more transparent form. With
the decomposition of the response function I', (k,w) (3.20), the influence function (3.36) and
(3.37) can be rewritten as

Z5%1) (tv tO = - Z { n'n wan n [{Tn 'n! pA(t tO) + pAIA(ta tO)Tn/n’} - 2Tnn’:51A(tv tO)Tn’n}
nn’,q

—1 Z VqQFn/n(q)an’(_Q) Sr(qawn/n) [Tn/n’ﬁ&@,to) pA(t to) }}(3 40)
nn’,q

The last term in Eq. (3.40) can be rewritten as commutator describing the reversible Hamil-
tonian dynamics which in fact represents the line shift of the eigenenergy levels of the atomic
system induced by the coupling to the background as known from the coupling to the ra-
diation field. The terms in the first line of the influence function (3.40) are responsible for
the transition processes of atoms. Since Fy,,(q)F, (q) is a complex quantity, the influence
function 25%2) (t,tp) can be also decomposed into a real part

Dylpa®)] = Y. Ve Re{ Fun(@Fm (@)} - 9(a,0) - Ty (b t0) T (341)
nl#n7q

and an imaginary part

A (2 % N R A
A5k = 3 VE m{Fun(@) P (@} - 1(@,0) - Tm b (8, 10) T (342)
n'#n,q

With the relation pl (¢,t0) = ei(Ha+Hg)(t—to)/ pa(t) e~ iHat+Hp)(t—t0)/h the atomic QME
can be transformed back to the Schrédinger picture

opalt) 1
ot ih

[Fa+ A, + S oa ()] = Dy [oa®)] + Dy [oa ()] (3.43)
with the shift Hamiltonian operator

shlft Z VQ’FH n ‘ S (q> Wy n)Tn 'n (344)

nn’,q
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which is related the shift of the eigenenergies. The dissipator ﬁ(l)[ﬁA(t)], which is the real
part of the influence function ﬁ{l)(t, to), see Eq. (3.40) and is given in Schrodinger picture by

A P
D(l) PA Z kn 'n qawn n Tnn’pA(t)Tn’n - 5 {Tn’n’apA(t)}+:| ) (345)
nn ,q
where the curly brackets {---, ---}, denote the anticommutator. Without the contributions

from 15%2) [pa(t)], the QME (3.43) has the Lindblad form. Generally, by performing the RWA
here we can render the QME in the Lindblad form in which the terms describing atomic
emissions and absorptions can be seperated as shown in Ref. [BP07]. However, we should
point out that the neglecting of the term D( )[ A(t)] yields an incorrect description of the
dissipative system beyond dipole approximation.

We implement the matrix representation of the QME (3.43) in the Schrédinger picture
with Eq. (3.13), then the atomic QME in RWA becomes

Opaif(t .
LA étf( )+ iwippaif(t)

- Z [ njin Qa wzn) + Kfn fn((L wfn)} ’ ,OA,z'f(t)
+ 5”‘ Z [ ni;ni q7wm) + Km nz(qa wm)} : pA,nn(t)

+(1=di) ) [Kii;ff(qawn‘) + K;f;ii(q7wff)} - paif(t). (3.46)
q

The last contribution comes from ﬁé) (t,t0), Eq. (3.38).

On the other hand, we can also study the dissipator (3.45) in its matrix representation.
The Pauli equation resulting from the diagonal matrix elements of the the dissipator (3.45)
is given by

arW (1)

Tt 5 (i@, on) PV () = in @, in) P (1)} (3.47)

This relation coincides with the Pauli equation (3.33) because the contribution 15%2) (t,t0) does
not affect the behavior of the population numbers given by the diagonal terms of the density
matrix. Note that in comparison to the derivation given in this appendix two additional terms
occur in Eq. (3.32), which contain nondiagonal matrix elements pa ;7(t). The neglecting of
these additional terms is only valid if the differences of neighbored eigenenergies E,, of the
basis |¢,,) are enough large so that these terms oscillate quite quickly. In the case of Rydberg
states, these terms oscillating with frequency w;s are also relevant and cannot be ignored any
more.

The nondiagonal matrix elements of the dissipator (3.43), i.e. Dryw a[fa(t)] = f)(l) [Pa(t)]+

]5(2) [Pa(t)], can be represented as

Opa,if(t)

R 1
o i pAif(t) = (Vi Drwalpa (b)) [vf) = —2{d1 +dy + d3} paif(t)  (3.48)
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with the modified transition frequency @;s due to the shift Hamiltonian in Eq. (3.43). The
contributions di, d and ds are defined similarly as in Eq. (3.79),

dy =Y Vi |Fi(a) = Frp(—=a)*1(q,0), (3.49)
dy = {kig(a,wig) + kpi(a,wpi) }, (3.50)
q
d3 = Z Z {kin(q>wm) + kfn(q,wfn)}- (351)
n#i,f d

The mixed contribution in d; originates from the dissipator ]5(2) [pa(t)] (3.41), whereas an-

other two contributions belong to the dissipator ﬁ(l)[ﬁA(t)] (3.45). It can be seen that the
expression (3.50) relates directly to the transition rates of the atomic eigenstates comparing
with the Pauli equation (3.33) for a given two-levels system transition, which gives a clue
to define the transition rates for the Rydberg wave packet via the QME as explained in
Sec. 3.2.4.

For the sake of investigating the effect of the RWA we return to the atomic QME (3.30)
which reads in the Schrédinger picture

0pa,if(t)

S+ iwipaip (t) = (Gl DA (8)][vy) (3.52)

with the influence function [remember pj .. (¢, t0) = etwmn(t=to) pr o ()]

<wl|ﬁ[ﬁA(t)]‘¢f> = - Z {Kmn;in(q,wmn) pA,mf(t) + K;m;fn(qawmn) PA,im(t)

mn,q

- [Kmi;fn(qa Wmi) + K;f;mz‘(% an)} PA,mn(t)}- (3.53)

The RWA for the non-diagonal terms means we should set m = i in the first term, m = f
in the second term and m = i, n = f in the third term of the influence function (3.53). By
using the decomposition of the complex response function I',(q,w) = v,-(q,w)/2 4+ iS,(q,w)
we obtain the same expression as Eq. (3.48).

We found that the RWA performed in Eq. (3.28) by neglecting 25%2) (t,t0) leads to a QME

in Lindblad form. However, the term 25%2) (t,tp) has a significant contribution in some special
cases, for example, the vertex correction of the spectral line profiles. On the other hand,
if the RWA is performed in the matrix representation, the contribution of 15%2) (t,tp) can
be automatically included in the influence function. If the RWA is carried out prematurely
in Eq. (3.36), it will be inappropriate to describe the dissipative properties of the relevant
atomic system (Rydberg states) and results in erroneous transition rates.

In principle, the RWA obtained by the removal of terms that oscillate quickly with respect
to some characteristic time scales of the system is problematic as pointed out by different
authors [Aga7l, Aga73, Fle98, FCAH10, MABL13, MM13]. It depends on the choice of the
basis [¢y,) for the representation of the density matrix, and in the case of small energy differ-
ences of neighbored eigenenergies F,, the oscillation may become not quick enough compared
to the characteristic time scales of the system. In a study of the spontaneous emission of a
two-level system, Agarwal found that the RWA gives an incorrect value for environmentally
induced frequency shifts with respect to the system frequency [Aga7l, Aga73]. Fleischhauer
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studied the photodetection without the RWA, finding that for ultrashort pulses, whose length
is of the order of the oscillation period, the mean number of photocounts with the RWA and
without the RWA are substantially different [F1e98]. Recently, Fleming et al. investigated the
validity of the RWA in an open quantum system and argued that the quantum state resulting
from the RWA is inappropriate for calculating the detailed properties of the state dynamics
such as entanglement dynamics [FCAH10]. In Ref. [MABL13], Majenz et al. showed that
the RWA leads to the lack of important qualitative features of the population dynamics in a
special three-level model. Recently, Méakeld and Méttonen [MM13] discovered that the RWA
yields an considerable reduction of non-Markovianity and is problematic if non-Markovian
dynamics is of essential relevance.

In this work, irreversible behavior is not produced by the RWA, but already inherent in
the solutions of Egs. (3.14) and (3.15). The source term with € > 0 in Eq. (2.82) is obtained
from phase averaging in the evolution of pye(t), see Eq. (1.101) in Ref. [Ropl3]. A positive
¢ is necessary to get v, > 0, Eq. (3.20), which is calculated here in Born approximation.
According to Egs. (3.33) and (3.34), ~, determines the relaxation rate w of the states of the
system A. Averaging over the phases related to tg in the interaction picture, all oscillations
with wyy, > w « v, are damped out so that the corresponding contributions tend to zero and
can be dropped, see also Eq. (3.40) in Ref. [R6p13]. Consequently, the RWA is obtained.

3.2 Wave packet description for Rydberg states

3.2.1 Wave packets

Within the QME approach, the statistical operator of the reduced system pp is of interest.
The density matrix pa m, = (m|pa|n) is represented with respect to the states |n) of the
reduced system. One possibility is using the orthonormal basis set of energy eigenstates
of the unperturbed atom according to the interaction picture. In the case considered here,
these are the hydrogen orbitals including the scattering states. The hydrogen orbitals are
long-living if the perturbation by the surrounding plasma is weak. Accordingly, the transition
rates due to collisions with the plasma are small.

Rydberg atoms, as ubiquitous states formed due to the recombination of electrons and
positive ions in laser-produced plasmas [PPR04a, PPR04b], play a significant role for under-
standing the evolution of expanding plasmas. Some general properties for Rydberg atoms are
displayed in Tab. 3.1. Their interaction effects with the plasma particles are comparable or
greater than the differences of atomic energy eigenstates F,, for n near a fixed value ng. On
the other hand, the pressure broadening of the Rydberg states is also comparable to the en-
ergy difference between adjacent orbitals since it is scaled as n~3 with respect to the principal
quantum number n. Furthermore, the transition rates are quite large because of the enor-
mous dipole moment ({(nl|r|nl =+ 1) ~ n?). Consequently, the pure Rydberg state is strongly
affected by the plasma environment and has only a short life time. In this case, mixtures
of pure Rydberg states should be taken into account. Hence one can look for more robust
states that are formed as superposition of energy eigenstates, which might be more stable in
the time evolution. For a local interaction such as the Coulomb potential, the position r of
the atomic electron enters the interaction part of the Hamiltonian, and localization is favored
because r commutes with Hiy and is a conserved quantity with respect to this part of the
Hamiltonian. Therefore, localized states are more robust with respect to the interaction with
the surrounding plasma. In this case, a wave packet description for Rydberg states can be
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’ Property n-dependence ‘ Na (state n = 10,1 = 2) ‘
Binding energy n=? 0.14 eV
Energy between adjacent n states n=3 0.023 eV
Orbital radius n? 147 ag
Dipole moment (nd|er|nf) n? 143 eay
Polarizability n’ 0.21 MHz cm? V2
Radiative lifetime n3 1.0 pus

Tab. 3.1: Properties of Rydberg atoms: scaling rules (from Ref. [Gal94]). ag is the Born
radius and e is the elementary charge.

introduced to describe the evolution of the system, in particular transition rates.

In addition, the introduction of the wave packet description may allow us to investigate
the boundary between the quantum and classical descriptions of systems. In fact, since the
introduction of quantum mechanics many physicists attempted to establish the connections
between these descriptions of nature by exhibiting the so-called coherent wave packet. One of
the famous examples is the well known coherent state of the linear harmonic oscillator [Gla63]
which may be regarded as an excellent example to describe the macroscopic limit of a quantum
mechanical system according to the correspondence principle. For the Coulomb problem,
e.g. the hydrogen atom, many attempts to construct localized semi-classical solutions of the
coherent-state type have been made [Bro73, NS78, BDRGS86, ZZF94, MS97]. Note that the
hydrogen atom is equivalent to the four-dimensional harmonic oscillator so that coherent
wave packets can be introduced accordingly [BDRG86]. Recently, Makowski and Peplowski
constructed well-localized two-dimensional wave packets for two different potentials [MP12,
MP13] where an excellent quantum-classical correspondence is observed. We use Brown’s
circular-orbit wave packets [Bro73, GS90] as a quasiclassical representation to describe the
highly excited Rydberg states of the hydrogen atom.

3.2.2 Circular Rydberg states

In the present work, we are interested in the extreme-circular Rydberg states where a valence
electron of the atom is highly excited to quantum states I = m = n — 1. In the case of a
hydrogen atom we have

n—1
Y () = (X[t 1) = Cn (T> e~/ (naw) gipn=1(g)ein—1)¢, (3.54)
aB

where ¢, = (2/(nag))*?[2n(2n 4+ 1)!]71/2. Furthermore, in this section we use the abbre-
viation 1, (r) for the circular wave function vy, ,—1,—1(r) and use the notation n for the
principal quantum number. It can be seen from Eq. (3.54) that the hydrogen electron in
this eigenstate is already excellently localized in the radial (r) and polar (f) direction, see
Fig. 3.1.

Besides the above mentioned localized properties, these extreme-circular Rydberg states
have also other remarkable properties: long radiative lifetimes, giant magnetic moments, no
linear Stark shift, and smallest quadratic Stark shifts [Hez10, ASSR13, And15]|. According to
the dipole selection rule Al = 1, the radiative decay channels of circular Rydberg states are
strongly suppressed. As a consequence, transition between adjacent circular states can be



3.2. Wave packet description for Rydberg states 43

regarded as a two-level quantum system which may be used to realize a two-qubit quantum
gate [XZS13].
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(a) Localization in radial direction (n = 69). (b) Localization in polar direction.

Abb. 3.1: Localization of the circular wave function [Lin14].

Different methods for creating circular Rydberg atoms have been developed, for example,
the adiabatic rapid passage technique [HK83, NBB"93], the crossed-field method [DG88,
HGGSS], and the adiabatic radio-frequency field technique [MJY86, CCRS93, CLG94|. In
addition to the production of circular Rydberg states, special trapping techniques are indis-
pensable for studies and applications of these states. For instance, as recently demonstrated
by Anderson et al. [ASSR13], a room-temperature magnetic trap for circular Rydberg atoms
has been realized. There, circular Rydberg state with n = 57 are generated within a sample
of 107 cold 8"Rb atoms via a two-step excitation process with two laser beams. It was possible
to observe the center-of-mass and internal-state evolution of circular states. These experi-
ments can be employed to provide a source of long-lived circular state atoms for precision
measurements.

3.2.3 Wave packet for circular motion

We now introduce a circular-orbit wave packet of the hydrogen atom as a coherent state con-
structed from the superposition of circular-orbit eigenfunctions of the hydrogen atom (3.54)
with a Gaussian weighting function around a large principal quantum number ny [GS90]:

gn7 zn—
Gro.0) Z o D90)4),,) (3.55)

with the Gaussian factor and the normalization factor respectively

— 2 _ 2
gno,nzexp{—(nél;z)} Nig = Zexp{ n%;m) }, (3.56)

where o0y, is the standard deviation considered as fixed parameter for ng. Without loss of
generality we can put ¢ = 0 because it fixes, as a phase factor, only the initial position of the
wave packet at the azimuthal angle ¢. We drop ¢g in the following. Due to the superposition
with a Gaussian factor, we have also good localization with respect to ¢ in the wave packet
description (3.55). The actual Hilbert space H, n—1.,—1 considered here is only a subspace
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of the entire Hilbert space H of the hydrogen atom. The generalization to the full Hilbert
space to include all bound and scattering states could be done straightforwardly.
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Abb. 3.2: Time evolution of the autocorrelation function |A(t)|* with A(t) = (Gpy (t)| Gy (0))
around the principal quantum number ny = 69 [Lin14].

The time-dependent wave packet in the coordinate representation in terms of spherical
coordinates is given by

(r|Gng et Ent/hy (1) (3.57)

9ng,n
>t — )
2 o
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with E, = Ry/n? and Ry = 13.6eV. For an appropriate Gaussian factor only the terms
with principal quantum number adjacent to ng contribute. Therefore we can use the central
quantum number ngy to approximate other states in radial and #-direction. In addition, for
short-term time evolution the energy E, in the factor ¢!»*/" in Eq. (3.57) can be expanded
around ng up to the second order, which relates directly to the quantum revival, see below.
The probability distribution of the wave packet can be represented as

2np—2
(|G )| Z &2 () o~ 20/ (moas) gy 2no=2 ) (3.58)
X exp {—(al — iWreyt)(n — n0)2 — (a1 + iwrept)(m — n0)2 + (¢ — wet)(n — m)}

with a1 = 1/(40,%0), Wel = |E;LO|/h = 2Ry/(hnd) and wyey = |E;:0|/(2h) = 3Ry/(hn}), where
E,, and E are the first and second derivatives of FE,, with respect to the main quantum
number n at ng, respectively. As pointed out in [Rob04], w. relates to the classical Kepler

period Ty = 27re/va for the Kepler trajectory with ro = n3ap and vy = /Ry/(mend),
and the quantum revival period can be defined by wyey. To reveal the Kepler motion and
the quantum revival behavior, the time evolution of the autocorrelation function A(t) =
(Gry (t)|Gny(0)) is shown in Fig. 3.2.

For highly excited states |x| < ng with x = n —ng and |y| < no with y = m — ng, the
sum »_,, , can be replaced by the integral [2. dx [7_ dy. Integrating over the variables r
and 6 and performing the integral over x, y yields the probability distribution of the wave
packet

9 2 (Q:I(t)
‘Gno ((bat)’ ~ m oxXp |:_ 2[&% (wrev ) ]/al

with ¢c(t) = ¢ — weat. From this probability distribution the time-dependent width of the
wave packet for a Rydberg electron can be extracted

(3.59)

o2 (B +)2
0%, (t) = /162 + (@revt)?] far = Ml 4 no(f;o”. (3.60)

For the initial time ¢ = 0, we have 0% = 1/(20,,). The expression (3.59) also shows that
on such a short time scale the central position of the probability distribution is exactly
determined by the Kepler motion. The localized wave packet for the hydrogen atom moves
along the classical Keplerian trajectory of the electron and its width broadens. With time
evolution the localization of the wave packet is destroyed and interference fringes of different
eigenstates are displayed. On a much longer time scale Tyey = 27 /wyey, the wave packet finally
reverses itself, which is the above mentioned quantum revival as indicated in Eq. (3.59).
The dynamics of the wave packet shown above is purely due to quantum mechanical
evolution without plasma surroundings. Within a plasma environment, the hydrogen atom
undergoes interactions with the plasma particles which results in the shift of the eigenen-
ergy levels, the broadening of plasma spectral lines, the screening of the Coulomb potential,
the localization of the hydrogen atom (proton and bound electron), etc. In this work we
concentrate on the localization of the bound electron immersed in a plasma environment.
The scattering of the bound electron by free plasma electrons results in the localization
of the electron of the hydrogen atom, i.e. the collisions with the plasma tend to localize
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the Rydberg electron and to narrow the wave packet. As in the case of free particles in
a surrounding environment [JZKT03], the spreading of the wave packet competes with the
localization effect induced by the plasma environment. The optimum width of a Gaussian
wave packet where both effects, localization and quantum diffluence, nearly compensate,
describes a state which is nearly stable in time and is denoted as robust state.

In this work we are interested in time scales, which are even smaller than the classical
Keplerian periodicity T,;. We assume that on such a short time scale a Rydberg electron
behaves like a free electron because of the weak coupling between the electron and the proton.
Comparing with the relaxation processes, which describe the inelastic coupling between the
internal energy eigenstates and the surrounding environment, the quasiclassical Kepler motion
of the wave packet is assumed to be influenced by the elastic scattering of the Rydberg
electrons with its surroundings. Similarly as in the case of the quantum Brownian motion
of a free particle [JZK103], the equation of motion for the reduced density matrix in space
basis can be derived via the collisional decoherence as following.

Following the method represented in the book of Joos et al. [JZK103] for the free particles,
we study here the weakly bound Rydberg electrons. The reduced density matrix for the
Rydberg electron can be derived under the assumptions of recoil-free collisions and elastic
scattering

p(Ro,R,) = p(Ro, R,) {1+Z[ I 0 Tl ), (361)

where the T-matrix is given by T=V+VGV + VGGV + .... In the elastic scattering
process the principal quantum number n of the Rydberg electron does not change, this means,
the Rydberg electron motions along the classical Kepler orbit. For the bound electrons the
T-matrix in Born approximation can be represented as

(K, n|T|k,n) = Vg Fun(q)d(Ex — Ex) (3.62)

with q = k — & and Ey = k2/(2m,). Vg denotes the interaction potential and F,(q) is
diagonal atomic form factor.
In Born approximation we have

A =Y [1 - I RROT 0 Tk, )2

k’ 1_ ei(k—k/).(Rn—R;)} V2 F2 ()0 (Fy — Byo)

Qome 2 iq-(Rn—R,,)
27rh3k/ dqqV2 F, ()[ e ] (3.63)

In the third line th/e integrals over k' and ¢ have been carried out and the integral over 6
is replaced by ﬁlztz,| dq by using the relation ¢?> = k? + k2 — 2kk’ cos§. The squared delta
function is evaluated by using the Fourier representation of the delta function

T—o0 27

52(Ex — Ey) = 6(Ex — Ey) - lim / (B By )t/h
h T/2

"5k — k). lim — (3.64)

hzk/ T—00 27rh
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For a collection of N independent scattering events in plasma, the above expression (3.63)
should be multiplied by a factor N. For the momentum distribution P(q) of the plasma en-
vironment, the classical Maxwell-Boltzmann distribution is taken. where the momentum
distribution P(hk) of the plasma environment, assumed to fulfill Maxwell-Boltzmann distri-

bution P(q) = (%)3/2 exp[—h2q%/(2mekpT)] is taken. We find

NQOT me oo 2 2 —ﬁ2 2 S, _ /
A= N dqqV2 F ¢/ (8mekpT) |1 _ gia-(Rn—Ry) | 3.65

For the scattering process described here we have the time evolution of the reduced density
matrix (QME) by taking the differential limit of small T

p(R,, R, T)— p(Rn, R, 0)

N (]\27972 \/MiT/ dqqVg F2,(q) e "0/ BmeksT) [1_eiq.(Rn_R;)]' (366)
T Tkp

To avoid the divergence of the integral in (3.66), the Debye potential [?] can be used. As
the next step we can use the long-wavelength limit to evaluate (3.66), i.e. we can expand
(Rn—R

the exponential function '@ ) up to second order and obtain the QME in the long-

wavelength limit

8 / NQO Me o0 —h2a2/(8m. /
%p(R’“ R, 1) = _7T(27rﬁ)2 \ 27Tk‘BT/o dq qVq2 Fr%n(‘l) e 0"/ (BmeksT) (a- (Rn — Rn))2'
(3.67)

As shown in Sec. 3.2.3, the Rydberg electron moves along the Kepler orbit, i.e. R, =
(nap,7/2,¢) and R, = (n%ap,n/2,#'). This assumption allows us to calculate the term
(a4 - (R, —R,,))? by averaging it over all possible directions (R, — R.,): (q- (R, —R,))? =
¢ (z — 2')?/3 with & = rq¢. Then we have

57 plx, 2’ t) = —Ag, - (z — 2')? (3.68)

with the localization rate defined by

NQO 2 2 m —h2g2
A o r e 1°q /(8mekBT)' ]
R = TR / dg vq 2@ [ (3.69)

describing how fast interferences of an entangled system of extension |z — 2’| are suppressed.
According to [JZK'03], the optimal width of the wave packet is defined by equilibrating the
interplay between the spreading of the wave packet and the localization of the wave packet

and reads: ”
. 1 h
o = 5 (m A ) . (3.70)

As a consequence, an optimal width oy, can be calculated using the relation (3.60) for ¢ =0
and the relation 0¢ =o¢ / T SO that

_Ta
Ong = 20—01 .
n

(3.71)
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For the plasma with temperature 7' = 300K and density ny = 10 cm ™3, we obtain an optimal
width oy, = 0.75 for ng = 13, which will be shown in the next section to be appropriate to
describe the transition rate.

In Table 3.2 we show the dependence of the localization rates on the plasma parameters
for different principal quantum numbers. For given temperature and density, the localization
rate decreases slightly with the increasing quantum number ng. At a fixed temperature, the
localization rate is raised drastically when the plasma density increases. At the same time,
the localization rate shows only a weak dependence on the plasma temperature.

_ uantum number ng

T [K] | npifem™] 10 : 20 30 40
10° 5.722 5.722 5.722 5.721
100 1012 180.3 180.1 180.0 179.7
10%° 5090 4969 4813 4645
109 5.722 5.722 5.722 5.722
1000 1012 180.9 180.8 180.7 180.6
101° 5619 5549 5474 5399
109 5.722 5.722 5.722 5.722
10000 1012 180.9 180.9 180.9 180.9
101° 5696 5670 5645 5619

Tab. 3.2: Localization rate Ag, (3.69) in units of [10?3 cm =2 s~!] for different plasma densities
and temperatures.

The transition between descriptions of the bound electron in hydrogen atom by the
wave packet and the pure quantum eigenstate may be determined by comparing the optimal
width (3.70) with the orbit radius 7, = rq = ndag. For this, a function b(ng, np1, T)

O.cl

b(ng) = b(no,np, T) = —> —1 (3.72)

Tng

can be introduced. For the given electron density np, and temperature 7' of the plasma,
quantum mechanical descriptions is valid for b(ng) > 0, and for the opposite case (b(ng) < 0),
the wave packet descriptions can be used.

In Fig. 3.3 we show this function for different plasma densities at the given temperature
T = 300 K. With the increase of the plasma density the principal quantum number n.,
at b(ne) ~ 0 characterizing the change from a pure quantum description to a classical
description drops drastically.

We discussed the descriptions of the bound electron, in particular the validity of the wave
packet description. We have shown that this question is related to the localization of the
wave packet if an optimal width of the wave packet is assumed, which also has a dependence
on the mass of the localized object as shown in Eq. (3.70). Similar considerations can be
made for the free electrons and ions in the plasma, see Refs. [GR06, GRO7].

3.2.4 Transition rates

We are interested in a matrix representation of the QME. We use robust states |i) = |Gy,;)
for the initial state and |f) = |Gp,) for the final state to investigate the atomic transition
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Abb. 3.3: Boundary between classical and quantum mechanical descriptions of the hydrogen
electron at T' = 300 K for different densities.

rates of the Rydberg states. For the reduced Hilbert space H, n—1.n,—1 used to construct
the circular-orbit wave packet, there is no completeness relation 3, |n)(n| = 1 because non-
circular orbits are missing. Only if we project on the reduced Hilbert space, this relation can
be applied. A more general discussion about the completeness relation in the wave packet
case is found in Refs. [Fox99, K1a96]. Therewith the charge density operator in Hilbert space
Hnn—1.n—1 is expressed as

@{q,A (t) = Z €e Tmn an((l)@iwmnt- (3.73)
mn

In Fourier-space the charge density operator reads

@fLA(w) = Zee T Frn (@) 26 (w + Wi ). (3.74)

Note that the operators given in this section are all projected on the reduced Hilbert space
Hnmn—-1.n—1. The use of the full Hilbert space is more complex and should be worked out in
future investigations.

In the present section, the diffusion of the wave packet with the center quantum number
ng is of essential interest. The dynamics along the classical trajectory, shown in the previous
section, is given by ¢.(t). To investigate the diffusion of the wave packet with respect to
the quantum number n, we come back to the QME in which the influence function for the
wave packet in Hilbert space H, n—1,,—1 is obtained by inserting the charge density operator
(3.74) into equation (3.21)

DI [ﬁIA(t)] = - Z efi(wnn/+wmm/)(t7t0) Kmm’;n’n(q7 wmm’)

nn/ ,mm’,q

x AT T P (£ 0) = T P (£ 0) T | + bic. (3.75)
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The influence function in RWA can be represented in matrix representation as

FIDUBA DN = D Grt { K@, wes) + Kipas(at,wmn)
s,h,q
- Z {Ksn;sn(qa wsn) + K;;n;nh(qv whn)}}pk,sh(t) (3'76)
n
with g P
B nfe,S N,
Gl = ——2= (3.77)

SN NG

where the g-function is given by Eq. (3.56). After decomposition of the response function
I (q,w) =v(q,w)/2+iS,(q,w), we have the dissipator for the circular wave packet

DA D)) = — Z G2 { D1+ D2+ D (0 (3.78)
with
=Y Vi |Fss(@) — Fun(—a)* 1 (q,0), (3.79)
D, = i {kns(a,wns) + ksn(a, wsn) }, (3.80)
Dy = ;Zs:h%: {Esn(a, wsn) + knn(d, whn) }- (3.81)

This dissipator, describing the decoherence of the nondiagonal elements of the wave packet,
has three different contributions. D; originates from the vertex correction and contributes
only beyond the dipol approximation. Ds represents the contributions of all intermediate
transitions. The transition between the contributing initial state s and final state h is hidden
in Dy and from which the transition rates for the wave packet can be defined

Wi —n; Z Gl - wp s (3.82)

with the atomic transition rate given in Eq. (3 34).

In collision theory, the T-matrix T=V+ VGOV + VGOVGOV + ... is used to calculate
the cross sections and the transition rates. Comparison with the Born approximation imple-
mented in the derivation of the QME (3.14) shows that only the first term V in T-matrix is
taken into account. In order to obtain a better description of the collision effects in plasma,
higher-order terms should be evaluated. We use a semiclassical approximation reported in
Ref. [BL95] to describe the modification of the transition rate due to the collision effects in
plasma, which is given by

f(n, An,©) = In [HM@(H;M@/M)].[1n(1+A711®>}1, o= Li”T' (3.83)

with An = n —n’ and the binding energy E,, for the hydrogen atom. Therefore the modified
transition rate for the wave packet description may be written as

Wniﬁnf = Z gﬁ}:}; *Wh—s - f(ha |h - S|> @) (384)
s,h
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In Fig. 3.4 we show the transition rates calculated from the expression (3.84) for two dif-
ferent values for the width of the hydrogenic wave packet. Comparing with the experimental
data of Helium, it can be seen that the transition rates calculated with the wave packet width
ony = 0.75, evaluated using Eq. (3.71) for the given plasma parameters T' and np, are in
best agreement. The agreement reveals the coherent wave packet character of the Rydberg
electron.
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Abb. 3.4: Transition rates of n; = 13 to near n; states induced at a T' = 300 K electron
plasma with density ny = 10%m™3. calculated from the wave packet description
with the width o,, = 0.55 and 0, = 0.75 compared to the results from classical
Monte-Carlo simulation (MCS) [VS80], the calculation in Born approximation with
and without collision effects from Ref. [GR06] and experimental data [DBD79].

The comparison between the results of the classical Monte-Carlo simulation and the ex-
perimental data indicates that a classical treatment is more appropriate to calculate the tran-
sition rates of the highly excited states. In the classical Monte-Carlo simulation, the highly
excited free electron is treated as a point in an 18 dimensional phase space which behaves in
accordance with classical laws under the influence of the Coulomb interactions [MKG69]. From
the quantum mechanical point of view, this treatment is equivalent to represent the electron
as an incoherent wave packet with vanishing width.

Another comparison for the transition rates with the initial principal quantum number
n; = 40 is shown in Fig. 3.5. From the figure the validity of the wave packet description can
be also verified from the agreement between the results of classical Monte-Carlo simulations
and the results calculated with the wave packet width o,, = 2.

3.3 Spectral line shapes in plasma in terms of the open quantum system theory

In open quantum system theory one separates a reduced subsystem out from the total quan-
tum system, which includes all relevant observables that one is interested in. The remaining
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Abb. 3.5: Transition rates of n; = 40 to near ny states induced by a T' = 20 K electron
plasma with density np = 10%m™3 calculated from the wave packet description
with the width o,, = 0.5,2,3 compared to the results from classical Monte-Carlo
simulation [VS80] (green line) and the results in Born approximation with and
without collision effects from Ref. [BL95].

degrees of freedom are treated as irrelevant for the dynamical behavior and are denoted as
the observables of the bath. However, the selection of the relevant observables that are appro-
priate to describe the dynamics of the system depends sensitively on the physical problems
that we tackle.

For instance, the degrees of freedom of the emitted photons are irrelevant for the dynamics
of the population numbers of the atomic energy eigenstates and therefore can be considered as
part of the bath in the derivation of the Pauli equation. This consideration is also applied in
the derivation of the natural line width of the spectral line profile [BP07, R6p13]. In contrast,
these degrees of freedom are most important for the description of the spectral line profile in a
plasma environment where we obtain the spectral line shapes by measuring the energy of the
emitted photons. The emitted photons are therefore relevant degrees of freedom. To correctly
describe the spectral line shapes via the open quantum system theory, we must extend the
reduced system by including the set of the degrees of freedom of the emitted photons. This
means that the radiation field together with the atomic system should be considered as the
reduced system to be described by the QME, and the surrounding plasma is the bath coupled
to the system by Coulomb interaction.

Absorption as well as spontaneous and induced emission coefficients, related by the Ein-
stein relation, are obtained from QED where the transverse part of the Maxwell field

Al .
thoton = Z hwk,snk,s
k,s

(3.85)

is quantized and denoted by the photon modes |k, s). The frequency wy = c|k| = 2m¢/\ is the
dispersion relation for the frequency as a function of the wave number A. iy ; = bL DK s is the
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occupation number with the polarization s = 1, 2. As mentioned above, the photon field must
be treated as part of the reduced system with the Hamiltonian Hg = Hy + ﬁrﬁwton, and the
eigenstates will be denoted by the expression |n) = [y, Ny (k, s)) containing corresponding
quantum numbers for the eigenenergy E, = E, + > ks Nu(k, s) hwy s with the occupation
number N, (k, s) of the mode |k, s).

Emission and absorption are described by the interaction Hamiltonian, see Eq. (3.5),
Arad = i dSrjfg . Aph = [d®r dy - Eph after integration by parts with the atomic dipole op-
erator dy. The decomposition of the electric field of the photon subsystem (two polarization

vectors €y ) is
~ . hwy 2 2
Epn=i) /50 €k,s [bk,s — blk.s]. (3.86)
s 20

For a given measured photon mode ]l_<, 5) in the experiment, only the mode with k = k and
s = 5 in the Hamiltonian H'® contributes. This allows us to introduce a new operator
describing emission and absorption

A~ ~

ds = da ® (b — bfy), (3.87)

where the polarization index is suppressed. The initial and final states in this case are given by
i) = |1, Ni(k)) and |f) = |vf, Ny(k)) with Ny(k) = N;(k) + Oy - respectively. This means
that for the measured photon mode k the occupation number fulfills Ns(k) = N;(k) + 1,
while for all other photon modes their occupation numbers remain unchanged. A shift of
the eigenenergy levels is caused by the interaction with the plasma environment via the
momentum exchange. Subsequently, this leads to a deviation of the measured transition
frequency wy, from the characteristic transition frequencies wy,, between the unperturbed
atomic eigenstates |¢,,). We define the deviation by using the eigenenergies E,, via

Awpp = (B, — Ey)/h. (3.88)

We use the interaction picture with Hy = Hg + Hpg so that the power spectrum P(wy) =
JoC e ctetit(d ) dt as shown in [BHMVS4] in the framework of the linear-response theory
can be rewritten as

Plwg) = /0 et (ds)dt =3 Li, (3.89)
if

where the photon frequency is absorbed by the new dipole operator ds of the reduced system
(including photons) and

(ds)t = Tr{ps(t)ds} =D p§ ;(t)d§ (1) (3.90)
if

with pIS’fZ»(t) being the solution of the QME in interaction picture (see Eq. (3.95)), and the
matrix elements dIS’if(t) = (1i|da v y)e”Awist. Consequently, the spectral line shape £; ¢ in
Eq. (3.95) can be written as

Lip= [ dee o itk (). (3.91)
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In order to obtain the solution of the QME, a similar reduced charge density operator
containing the photon information as in Eq. (3.87) can be introduced for the extended reduced
system

A~ ~

bass = dq,n ® (b — bL). (3.92)

Using the basis set |72) of the unperturbed reduced system, we obtain the matrix elements of
the reduced charge density operator @ﬁ,s(t) at time ¢

~/| Al ~ iAw, 1t

(1]0g,s()|72) = ec Frm(q) e [51\/",(12),1\7”(12)—1 - 5Nn/(R),Nn(R)+1] ;
where the Kronecker’s delta is connected to the atomic emission and absorption with the
transition frequency wy,. Performing the Fourier transform with respect to the time ¢, we
obtain the reduced charge density operator in Fourier-space

basw) =" e T Fun(q) d(w — Awyn) — > ee Tl - Furn(q) 6(w + Awpyy)  (3.93)

n'>n n'<n

with Tr;n = |/ {(n| - SN, (k),Nn (k)1 denoting the one photon absorption and T;Cn = |/ {(n| -
0 Ny (), N (R)+1 ™ the one photon emission. Inserting this expression into the influence func-
tion (3.21), we obtain a new influence function including both emission and absorption terms,
which can be used as the starting point to derive the spectral line profile. The terms rep-
resenting the emission processes can be selected by using the matrix element representation

(fID'ps(1)])7) with the change of the photon number AN = Ny (k) — N;(k) = 1:

(fID'[Ps(1)]]i) = —Ay — Ag + Az + Ay (3.94)
with
Al = Z exp[i(*Awnm + Aan)t] Kfn;nm(qa Aan) <7pm7 AN|ﬁS(t)|7J)z>
n>fm<n,q
+ Z eXp[i(Awmn - Awfn)t] Kfn;nm(qa _Awmn) <1/}m7 AN‘ﬁS(t)W}z),
n<f,m>n,q

Ay = Z exp[_i(_Awnm + Awni)t] K:rm;m'(qv Aan) <¢f’ AN|ﬁS(t)|¢m>

n>i,m<n,q

+ Y exp[—i(Awmn — Awin)t] Kypini (4, Awnm) (7, ANps (t) thm),

n<i,m>n,q

Ag = Z expli(—Awpm + Awin)t] (Ym, AN|ps(t)|vn)

i>nm<f,q

X {Kni;fm((L AOme) + K;;’Lf;z’n(qa sz‘n)},

Ay = Z eXp[i(_Awfm + Awin)t] (Ym, AN |ps(t)|tn)

i<n,m>f,q

X {Kni;fm(CL _Awmf) + K’:lf;in(qv _Awni)}
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where the indexes m and n are interchanged. These terms can be further simplified in RWA.
This means that we can set m = f in Ay, m =i in As, and m = f, n =14 in A3 and A4. The
QME in RWA becomes

9ps () ,
5 = TR @b i) + T 0 i) (3.95)

with a coefficient FJ]?Z»S (wg) describing the shift of the eigenenergy levels and the pressure
broadening

F Z{an (@, Dwnp) + Kng.po(d, —Dwiy,) (3.96)
n,q

+ K;‘;z zn(qa Awnl) + K:;z zn( Awm)}

and a coeflicient F}fi describing the vertex correction

=Y {Kigr(a, Dwyp) + Kigpp(q, —Dwyy) (3.97)
q

+Kffu(q7Aw”)+Kffu( Aw“)}
The vertex correction has no dependence on the photon frequency wy, and contributes only
beyond the dipol approximation. Formally integrating the expression (3.95) yields
—{rBS(wi)-TV.
P it) = Pl 7i(0) - e~ TR (-TH e, (3.99)
Inserting this formal solution into the Eq. (3.91), the line shape function can be expressed as

1
s . 3.99
(wi)i,f x Wi — wif + i€ — iI‘?fS(wf{) + ifl\»} .

The expression (3.99) coincides with the result of the unified theory for spectral line pro-
files [KG95], if only the electron contribution (impact approximation) is considered. Note
that the unified theory gives the result in Born approximation with respect to the interac-
tion with the surrounding plasma, what corresponds to the Born-Markov approximation for
the coupling to the plasma considered as the bath. Strong coupling of the radiator to the
perturbing environment has been treated in the Green function approach using a T-matrix
approximation, see Ref. [KG95]. The improvement of the Born-Markov approximation for the
QME considering strong interactions and the ionic contribution of the plasma environment,
given by the microfield distribution.
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4. IONIZATION POTENTIAL DEPRESSION IN
PLASMAS

A fundamental phenomenon in plasma is the modification of bound state levels as well as
of continuum states by the surrounding warm and dense medium. In this chapter, we are
interested in the ionization potential depression (IPD) which is relevant for the composition of
the plasma, and, accordingly, for the thermodynamic and transport properties. Introducing the
ionic dynamical structure factor as the indicator for the ionic microfield, we demonstrate that
ionic correlations and fluctuations play a critical role in determining the ionization potential
depression. The comparisons with recent experimental measurements and other theoretical
approaches are made. The main results of this chapter are published in Phys. Rev. E 96,
013202 (2017).

4.1 Atomic potential and ionization potential depression

When ions or atoms are immersed in a plasma, they experience a special local environment
which is substantially different in comparison with that of the isolated case, where only the
vacuum fluctuation exists. In addition, the boundary condition for the atomic potential is
also drastically changed due to the existence of other plasma particles. In the case of isolated
systems, the atomic potential disappears at infinity, i.e. V(r) — 0 for r — oo, as shown
in Fig. 4.1a. In contrast, the atomic potential experienced by a bound electron has a finite
negative value at the boundary of ionic system determined by the charge neutrality condition,
see Fig. 4.1b.

This change of the local environment results in modifications of the dynamics of the bound
electrons. A fundamental related phenomenon is the modification of bound state levels as well
as of continuum states (also known as ionization potential depression) due to the surrounding
warm and dense medium [KKER86, Gri97, Sal98, Fuj05]. The ionization energy depression
(IPD) describes the reduction of the energy needed to liberate a bound electron into the
continuum state in plasma in comparison with the case of an isolated ion. In particular,
the IPD significantly alters the ionization balance in plasma and therefore strongly modifies
the thermodynamic properties and optical properties of the system. This change can be
understood as following [Sal98, FujO5]. Firstly, the original atomic potential exerted by the
ion core to the bound electrons is modified by the local instantaneous microfield generated
by the surrounding plasma particles, resulting shift and broadening of the bound eigenlevels.
Secondly, the boundary condition for the original Coulomb potential, V(r) — 0 for r — oo,
is violated due to the existence of other ions, i.e. the Coulomb potential has a finite negative
value at a finite boundary. In the simplest approximation, the IPD in plasma can be expressed
in a general form as [Fuj05]
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(a) Atomic potential experienced by a bound (b) Atomic potential experienced by a bound elec-
electron in isolated H atom. tron in a plasma environment.

Abb. 4.1: Schematical description of the atomic potential for a bound electron without and
with plasma environment

where R.; is some characteristic length in plasma, which describes the geometrical or the
dynamical properties of the plasma system. A typical characteristic length describing the
geometrical distribution is the average distance between the ions, i.e., the Wigner-Seitz radius
Rws = (3/ (47mi))1/ ®, which leads to the ion sphere model for the IPD. On the other hand,
one of the dynamical properties in plasma is the screening effect. In the low density and
high temperature limit, the screening is represented by the Debye screening length, so that
the Debye-Hiickel model for the IPD is obtained. For more complicate cases, for instance in
the WDM regime, the IPD can not be described by any such simple model because of the
complex structure and dynamical coupling of the plasma.

The shifts both of the continuum edge and of the bound state levels have been discussed
for the electron-hole plasma in excited semiconductors [RKK* 78, ZKK 78, KKERS6, Zim8&7,
KSKBO05] some decades ago. Depending on the density and temperature of the electron-hole
plasma, excitons are modified by medium effects, and merge with the lowered continuum at
the Mott density. Thus, an exciton gas is transformed into an electron-hole liquid. A highly
sophisticated theory describing dynamical screening and degeneracy effects by the fermionic
plasma constituents had been worked out, explaining precise measurements in excited semi-
conductors. However, because the ions are heavier compared to the effective mass of holes,
a simple transfer of the physics of excited semiconductors to WDM is not possible. The ions
remain classical within a large density region, forming strong correlations which are described
by the dynamical ionic structure factor (SF) Sii(q,w) [LRKR17].

4.2 Theoretical models for ionization potential depression

4.2.1 Analytical approaches

The first attempt for the IPD to cover a wide density range was carried out by Ecker and
Kroll in 1963 [EK63], which is based on a statistical method in expressing the IPD via the
chemical potential. To determine the chemical potential in plasma, the average electrostatic
micro-potential at the point of the investigated particle was evaluated. In their work, three
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special characteristic radii, i.e. rok,ric and rg, were introduced in order to determine the
average electrostatic micro-potential. rox is the smallest distance from the test particle,
above which the Onsager-Kirkwood condition z129¢?/(4nkpTrok) < 1 is fulfilled. This con-
dition indicates, in fact, that the particle with charge number z; is weakly coupled to another
particle with charge number 25 in the distance rokx. The characteristic length 7;. separates
the environment of the investigated particle into an individual and a collective region. Then
in the domain r > max {rok,ric}, the potential can be satisfactorily approximated by the
Yakuwa potential. The latter-most radius r¢ characterizes the largest distance from the test
particle, below which the potential can be well approximated by the Coulomb potential. In
the intermediate region r¢ < r < max {roxk,Tic}, the potential distribution is not exactly
known but should lie between the above two limited potential distributions. After a de-
tailed analysis, Ecker and Kroll found the expressions for the potential in this region and
consequently determined the IPD as following

(Zion+1)e? ifn <n 3 [kpT,\3 N
AL =) Fre T owithng = () =y (42
o G Bty M= (a ) ey 42

with the Ecker-Kroll radius rgg = ¢ ;’r—VN and the total number of particles in plasma N =
Ne +>°,. Ny The prefactor Cgk is determined by the continuity condition at the critical
density. To fit the experimental data with the EK model, Ciricosta et al. [CVCT12] found that
Cgk = 1, denoted as modified EK (mEK) model, is most suitable for their measurements.
Below the critical density, the expression in Eq. (4.2) is the famous Debye-Hiickel (DH) shift
and also known as the "polarization term” for the lowering of the ionization potential. In
the opposite limit, it is denoted as the "lattice term” for the IPD following the notation
introduced by Ecker and Weizel [EW56].

Two years after the publication of EK’s work, Stewart and Pyatt developed another
approach to calculate the average electrostatic potential distribution around a nucleus located
in a plasma environment using a finite-temperature Thomas-Fermi (TF) model [SPJ66]. In
calculating the potential distribution via the Poisson equation, the electrons in plasma are
described in terms of the non-relativistic Fermi-Dirac statistics whereas the ionic contribution
of the neighboring ions to the potential distribution near the test ion is represented by the
non-relativistic Maxwell-Boltzmann statistics. Theoretically, the bound and free electrons
in the TF theory do not need to be treated differently and could be taken into account
consistently. As argued by Stewart and Pyatt in their work, the bound electrons have no
contribution to the pressure lowering of the ionization potential because the bound electrons
exist already in the isolated system. Therefore, one should isolate the effect of the free
electrons and neighboring ions in determining the potential distribution in the TF model.
After a lengthy and detailed calculation, Stewart and Pyatt expressed their results for the
IPD as

3 2/3
AT 3 (Zion + 1) € [(HD ris)” + 1} -1 (43)
SP — 3 : ) .
2 2 . . *
where the total inverse Debye screening length is kp = ezgf)(;ié;j)m = % includ-

ing both ions and electrons with ne = 3=, zin; and 2* = (3, 22n;) / (3, zini) = (3, 22n4) /ne.
The expression (4.3) is actually an interpolation between the DH and Ion-Sphere limits, which
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reduces to the DH shift in the case of weakly coupled plasmas whereas for strongly coupled

A 2
plasma system the IS form, i.e. Algp — Alig = %%, can be obtained.

Since then many other attempts to understand the phenomenon of IPD have been made
by different authors. Zimmerman and More investigated the Helmholtz free energy in plasmas
based on the average atom model and the screened hydrogenic model [ZM80]. The essential
problem in their calculation is the determination of the equilibrium populations of the one-
electron state in shell |nl) with an effective charge Z,,; experienced by the test bound electron.
The lowering of the ionization potential Aypp is then given by the partial derivative of the
Helmholtz free energy over the charge number of the test ion. The average model is more or
less a similar model as the IS model, so that a satisfactory description can only be acquired
for the case of high density from their calculation. Another calculation was performed by
Dharma-wardana and Perrot, where the notation "mobility edge” for the continuum states
was introduced based on the so-called neutral pseudoatom model [DwP92]. In plasma, the
distinction between the bound discrete states and the continuum states is rather ambiguous
because some states around the bound-free limit persistently oscillate between the continuum
and the bound levels with the fluctuation of the distribution of the surrounding plasma.
Consequently, a sharp definition of the position of the borderline between the discrete and
continuum states is extremely difficult and complicate. In other words, we have a mobility
edge for the position of the continuum states.

4.2.2 Review of the topic "ionization potential depression” by Crowley

An excellent review on the topic "IPD” can be found in the recent work of Crowley [Crol4],
where he pointed out that different definitions for the phenomenon "IPD” are present and
should be treated carefully and distinguished in the application to compare the experimental
measurements and the theoretical calculations using different models. In general, the ion-
ization is regarded as a quasistatic transition between states of thermodynamic equilibrium.
The continuum lowering modeled under this assumption is referred as the thermodynamic
IPD. Obviously, the EK and SP models belong to this category. Moreover, in the derivation
of these models, the IPD is evaluated in terms of the average electrostatic potential experi-
enced by the electrons in the ion under investigation. This treatment results in the static
continuum lowering, since the dynamical influence of the surrounding particles on the test
particle, such as the fluctuation of the microfield and dynamical screening, are disregarded.

The discussions above are from the theoretical consideration. In the viewpoint of exper-
iments, photonionization is a dynamical process between plasma microstates, in which the
changes of plasma microstates are observed on timescales much smaller than the response
from the surrounding plasma to this individual transition. Because of this transition, the
initially assumed condition of local thermodynamic equilibrium of plasma system cannot be
valid any more. During their propagations in plasma, the photon and the emitted electron
exchange energy with their surroundings. This phenomenon is known as relaxation and the
exchanged energy is denoted as relaxation energy. Taking into account this relaxation en-
ergy yields the spectroscopic ionization potential depression. To analyze the experimental
measurement, special care should be taken when applying these definitions of different IPDs.
More details can be found in the original paper of Crowley.
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4.2.3 Simulation methods

With the development of the computer technique, Monte-Carlo simulations and the molecular
dynamical simulations become more and more popular in the scientific researches, in partic-
ular in determining the properties of many-body systems in physics. Additionally, numerical
approaches based on numerically solving the Schrodinger equation, such as Hartree-Fock cal-
culations [Cra02] and the density functional theory method [Baul3, Red13], are also state-of-
the-art modeling methods used in physics, chemistry and material sciences to investigate the
properties of electronic structures in many-body systems. After the experiments by Ciricosta
et al. [CVCT12] and Hoarty et al. [HAJ*13a], which renewed the interest on the topic of IPD
and suggest that a deeper understanding on this phenomenon is afforded, different numerical
approaches, such as classical molecular dynamical simulations [CFT15b, CFT15a], two-step
Hatree-Fock calculations [STJT14], calculations via the density functional theory [VCW14],
and Monte-Carlo simulations [Str16] have been performed recently in the investigation of the
IPD in plasma.

4.3 Experimental measurements on ionization potential depression

Being a long-standing problem in plasma physics, IPD experiments [HAJ"13a, CVC*t12,
Ct16, PVCT13, FKP*14, KCK'16] have been performed recently using the new possibility
to produce highly excited plasmas at condensed matter densities by intense short-pulse laser
irradiation.

4.3.1 Measurements of ionization energies of K-shell electrons

The first reliable measurement was performed by Ciricosta et al. [CVCt12, Vel2] at the LCLS
soft X-ray materials science instrument. In this experiment, targets comprising 1.0um-thick
aluminum foils at solid density were irradiated with 80-fs pulses of X-rays at photon energies
in the range 1560 — 1830 eV (around and above the K-edge of cold Al) at peak intensities
exceeding 1017 Wem™2. In this conditions the Al sample is isochorically heated to electron
temperatures up to 200 eV, depending on the LCLS photon energy. Since the photon energy
lies near that ion’s K edge and the kinetic energy of free electrons is relatively small in com-
parison to the photon energy, the main transition mechanism is direct photoionization rather
than collisional ionization. Due to the dominated K-shell photoabsorption, a core electron
in the K-shell is ejected into the continuum and the K-shell holes are created exclusively by
intense, quasi-monochromatic X-ray photons (denoted as K-edge in Subfigure 4.2a). After
photoionization, the K-shell holes are filled by two different processes, i.e. the KLL Auger
decay and the K, transition, where the radiative emission accounts only for 3% of the total
recombination from the L shell. Subsequently, an X-ray fluorescence spectrum is recorded
by means of a flat crystal Bragg spectrometer, as shown in Subfigure 4.2b. The occurrence
of K-shell emission is indeed strongly dependent on the energy of the incident photon, which
can be therefore regarded as an indicator for the direct measurement of the IPDs, because the
threshold value of the photon energy inducing the K-shell holes and subsequent K, emission
in a plasma is reduced in comparison with the K-edge ionization energy of the isolated case.
The measured IPD values in different cases are shown in Fig. 4.3, where excellent agreements
between the experimental data and the EK model are displayed.
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Abb. 4.2: Spectral lines from K-shell in a laser-produced Al plasma, taken from Ref. [Vel2].
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Abb. 4.3: Experimental measurements for IPD via the ionization energies of K-shell electrons

4.3.2 Measurements of dissolution of spectral lines

Another experiment on measuring the effect of IPD was carried out by Hoarty et al. [HAJ"13a]
at the newly commissioned Orion laser in the UK, where the Al sample with density in the
range of 1 — 10 g/cc buried in plastic foils or diamond sheets is compressed and heated to
electron temperature between 500 and 700 eV. In this experiment, the disappearance of lines
is believed to be attributed to the IPD, but not the broadening of bound states. In these
experimental conditions, the hydrogen- and helium-like aluminum ions are abundant and the
n = 1—3 transitions from these ions are clearly visible at low density, see Subfigure 4.4a. With
increasing density as shown in Subfigure 4.4b, the spectral lines are found to be smoothed
out at the density of 5.5 — 9 g/cc. In addition, the peak information of the experimental
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lineout can be well reproduced in the FLYCHK code with consideration of the SP model
for the reduction of the ionization potential. In contrast to the measurement by Ciricosta et
al. [CVCT12], this experiment is an indirect measurement for the IPD.
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Abb. 4.4: Experimental measurements for IPD via the Lyg and Heg lines

4.3.3 Measurements of bound-free transitions via Thomson scattering

X-ray Thomson scattering (XRTS) spectra have been demonstrated to be a powerful di-
agnostic tool to measure the electron density and temperature of WDM and highly com-
pressed dense plasmas. The entire spectrum is determined by the total electron structure
factor [Chi00, GR09, FKP*14]

S (k,w) = D VTa | falk) + qa(k)] - [ fo(k) + ap(k)] San(k, w)
a,b

+ 280k, w) + 3 28w / du’ 5% (k, w — ') 55 (k, o) (4.4)

where z, = ng/ >, np is the fraction of the ion species a with its density n,, the number of
its core bound electrons Z¢, atomic form factor f,(k), and the screening cloud following the
motion of the ion a ¢, (k). Zr denotes the effective free ionization state which obeys the charge
neutrality condition. The first term in Eq. (4.4) given by the partial ion-ion structure factor
Sap(k,w) results from elastic scattering of tightly bound electrons (i.e. Rayleigh scattering)
and other weakly coupled free electrons that move along with the ions. The second term
described by the SF SY, (k,w) represents the Compton scattering for the free electrons that
do not follow the ions. The third term, represented by S5¢(k,w —w’) describes the bound-free
transitions, which are modulated by the self-motion of the test ion, i.e., S5(k,w’).

The XRTS from bound-free transitions under well-characterized electron density n, and
temperature T, contains information about the ionization potential depression because it
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has a significant influence on the ionization balance [FKP*14, KCK'16]. Therefore, the
XRTS technique gives the possibility to have a deeper understanding on the phenomenon
“continuum lowering” in plasma and can be used to benchmark different IPD models.

The first application using XRTS to reveal the IPD effect was reported by Fletcher et
al. [FKP™14]. They found the best-fit to both the elastic and inelastic scattering can be
found only with a carbon ionization state of Z¢ = 4, which means that the L-shell electrons
are completely dissolved and have no contribution. In those modelings which neglect the shell
structure of the ions, i.e., orbital-free modeling such as the standard Thomas-Fermi model,
the mean charge state of the carbon ions is predicated to be Z¢ = 2, which is inconsistent
with the measured ionization state Zc = 4. In other words, the continuum lowering and
shell structure must be incorporated in the modeling to analyze the bound-free scattering
contribution of the measured XRTS data.

Another recent measurement through the XRTS spectrum was performed by Kraus et
al. [KCK™16] at the National Ignition Facility, where a CH sphere was irradiated by laser
beams with total energy of 1.1 MJ and a peak power of 425 TM and was six time compressed
to a density pcy = 6.74 g/cc with the mean electron temperature T, = 86 + 20 eV and the
mean charge state of carbon ions ( Z¢ ) = 4.92 + 0.15, while the hydrodynamics simulations
predict a mean ionization charge state of (Zc) = 4.4 with (T,) = 109 eV. A reasonable
explanation for this high carbon ionization state is challenging because the simulations in-
corporating the widely used IPD models, such as EK and SP models, predicate significantly
smaller mean charge state with ( Z¢) = 4.2 under the same plasma conditions explored by
the experiment. Coincidentally and astonishingly, the prediction by the simulation with DH
model results in an excellent agreement with the experimental results because the DH model
gives a remarkably larger IPD than other models and consequently a larger mean ionization
charge state. However, it is well known that the DH theory works only for the high tem-
perature and low density plasma, i.e., in the classical regime. In other words, although the
DH model results in a good agreement with the experiment, the explanation based on it is
incredible and questionable. A more general model at the microscopical level is necessary for
such extreme states of matter [LRKR17].
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4.4 Quantum statistical approach for ionization potential depression in terms
of dynamical structure factors

The phenomenon, ionization potential depression, can be better understood within the frame-
work of our quantum statistical approach [KSKB05, KKER&6], where the definition of the
continuum lowering is more clear and the influence of the plasma environment on the inves-
tigated system is simply represented by the quantity “self-energy” as discussed in Chapter 11
and as detailed in the following.

4.4.1 Continuum lowering and single-particle self-energy in plasmas

To study the properties of the atomic system in plasma, we consider a two-particle system,
consisting of an electron (charge —e, mass m.) and an ion (charge (Z; +1)e, mass m;)
embedded in a surrounding plasma. In vacuum, the solution of the Schrodinger equation for
the Coulomb interaction is well known. Bound states are found at negative energies, whereas
a continuum of scattering states is observed at positive energies. The simple case of the
Hydrogen atom (Z; = 0) can be generalized to a two-particle system with total charge Ze,
consisting of a core ion with charge number Z; + 1 and an electron, charge number 7, = —1.

If the two-particle system is embedded in a plasma, bound state energies and wave func-
tions as well as the scattering states are modified. Correspondingly, the Schrédinger equa-
tion for the two-particle system has to be amended in order to include the influence of the
surrounding plasma. A systematic quantum statistical approach to describe these medium
effects is given by the method of thermodynamic Green functions [KSKB05, KKERS&6]. In
particular, the following in-medium Schrodinger equation (usually denoted as Bethe-Salpeter
equation) can be derived [ZKK*78, RKK*78, KSKB05, KKERS6]:

{E(l) +B@) + Y {70+ @)+ 72 - @)} Viala) + AV, 2,q, z)} $(1,2,2)
q

+ Z{{l - f(1> - f(2)}vl2<q) + AVGH(L 27qa Z)}i/)(l +q, 2-— q, Z) = hz¢(17 27 Z) (45)
q

Neglecting in Eq. (4.5) the medium effect arising from the Fermi functions f(i) as well
as the effective interaction AVe# (1,2, q, 2), the equation

(B + E@)](1,2,2) + Y Vis(@)w(1 +a,2 - q,2) = hz16(1,2, 2)

has eigensolutions v, (1,2) at energies hz = E,, well known from Hydrogen-like ions. For
more complex ions consisting of a nucleus and some bound electrons, a pseudopotential can
be introduced to describe the effect of the electrons within the core ion.

The in-medium Schrédinger equation (4.5) describes the influence of the medium accord-
ing to two effects, Pauli blocking and screening. Pauli blocking is caused by the antisym-
metrization of the fermionic wave function. States which are already occupied by the medium
are blocked and can not be used for the two-particle system under consideration. The block-
ing is described by the Fermi distribution function f(1) = [exp(B3(E(1) — (1)) + 1]71, with
B = 1/(kpT) and p(1) denoting the chemical potential of species ¢;. The Pauli exclusion
principle leads to the Fock shift >-, f(1 + q) Vi2(q) in addition to the single particle energy
E(1) in Eq. (4.5) (for charge-neutral plasmas, the Hartree term vanishes). Also in the in-
teraction term, the Pauli blocking gives the contribution — 3>, f(1)Vi2(q)¥ (1 +q,2 —q, 2).
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Both in-medium contributions are caused by the degeneracy of the plasma particles. In the
plasmas considered here, electrons may be degenerate because of their small mass m.. The
ions are non-degenerate and can be treated as classical particles.

Considering only the Pauli blocking effects, the effective (non-hermitean) Hamiltonian
of Eq. (4.5) remains real and can be symmetrized. The energy eigenvalue problem can be
solved, and the bound state energies as well as the edge of continuum states are shifted.
At a certain density, the bound states merge with the continuum of scattering states and
disappear. Within this approximation, which is essentially a mean-field approximation, a
sharp value for the lowering of the continuum edge and for the IPD can be calculated.

Screening of the interaction by the medium is described by the effective interaction

oo d /
AVI(1,2,0,2) = Via(a) [ ot e (g +10) - [y (&) + 1]

oo T

h ki
" <hZ—W—E(1) “EBE@—aq)  h:-h - E(+q) —E(2)) - (40

We neglected terms o f(1), which give corrections in higher orders of the density. n,(w) =
[exp(Bhw) — 1]7! is the Bose distribution function. The dynamical properties of the sur-
rounding plasma are contained in the dielectric function (g, z) to be taken at the real axis,
z = W' +10. In general, the dielectric function is a complex, frequency dependent quantity,
the imaginary part jumps at the real axis. Often the random-phase approximation (RPA) is
taken, and in the static limit w — 0 the Debye screening is obtained. In this section, we show
that this simple approximations have to be improved in a systematic way, which is obtained
from the quantum statistical approach.

Including the effective potential, the effective Hamiltonian in the in-medium Schrédinger
equation (4.5) becomes complex and frequency dependent. As a consequence, the eigen-
solutions are no longer stationary states with sharp energy levels which are shifted by the
polarisation of the medium, but have a finite life time given by the imaginary part of the
effective Hamiltonian. This can be interpreted as collisions with the plasma particles and
leads to a broadening of the energy levels. The corresponding quantum statistical approach
to plasma line shapes based on the treatment of the polarization function has been worked
out [GHR91] and will not be investigated in the present work. As a consequence, sharp level
shifts and a sharp shift of the continuum edge is only obtained from a mean-field approxima-
tion. Any frequency dependence beyond the mean-field approximation gives imaginary parts
and, this way, a broadening of the energy levels.

This problem has been considered also earlier [ZKK*78, SAK95|, where both, real part
and imaginary part of the energy levels of the in-medium two-particle problem, are calculated.
As a consequence, only the spectral function has a unique physical meaning, showing the
spectral line profiles and the smooth transition to the continuum. However, we will focus
within this work on the shifts that are obtained from the real part of the effective Hamiltonian.

As shown in [KKER86, KSKB05, RKK*78, ZKK'78, SAK95], density effects arise from
dynamical screening in the effective potential, expressed by the inverse dielectric function
e~ Y(gq, 2) of the medium in Eq. (4.6). For bound states, Pauli blocking as well as the screen-
ing in the self-energy term (AV®T in the first square bracket of Eq. (4.5)) and the effective
interaction partially compensate each other so that the bound state energy levels are only
weakly dependent on the density. In contrast, the energy shift of the continuum states is
determined only by the self-energy contribution. In leading order of the density, the medium
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modification of the IPD is given by the shift of the edge of continuum states. For a more
extended discussion see [KKER86, KSKB05, RKK*78, ZKK*78, SAK95, Zim8&7].

A standard expression for the dielectric function &(q, z) is given in the RPA (see Chapter
2). Here we discuss improvements beyond RPA to evaluate the shift of the continuum edge
occurring at p; = p2 = 0. Under this condition, the two-particle problem for the continuum
edge can be reduced to single-particle problem by renaming, e.g., hz — E(2) = hw in the last
term of (4.6). Then the Eq. (4.6) can be rewritten as

AV(1,2,q, 2)|py=pe=0 = AV (1, q, 2) + AVE(2, q, 2) (4.7)

with the contribution from the corresponding single-particle of species ¢

dw’ h
. .
AV (e, q,w) = —Via(q) /,oo —Ime Hg, o' +0) - [ng (W) +1] - hw — hw' — Ee(q)

. (4.8)

This expression coincides with the correlation part of the single-particle self-energy 3™ (1, )
described in Chapter 2. In the single-particle picture, the influence of the plasma environment
on the properties of the investigated particle is merged in the self-energy ¥.(1,z). It can be
represented by Feynman diagrams, in lowest approximation by the diagram (also known as
V*G or GW approximation) with the dressed propagator G and the screened potential V'*

o(1,2) ‘ﬂ ZG (p—q,2—w) V(qw) = SHF(1,2) + O7(1,2).  (4.9)

The Hartree-Fock (HF) contribution for the self-energy reads

3
SR (12) = Vie(12) Go(12) = = [ G Vielh) felp — ). (110)

To derive the last expression, the Matsubara representation is used. For classical plasmas,
i.e., in the nondegenerate limit, the HF contribution can be further simplified as

2722 3 Bh2p?
S (p) = =< ncAl 1P (1,2,—/82mp . (4.11)

It has been investigated elsewhere, see [KKER86, SAK95], and will not be discussed in detail
here. The correlation part of the self-energy ¥°"(1, z) contains the contribution of the
interaction with electrons in plasma, as well as the interaction with ions. We are interested
in the real part of the self-energy since it describes the continuum shift

14 ng, (W)
— OJI — Ec7p+q/h

Re Ecorr p7 = _P / / - cc( ) X Ims—l(q,w/ +20)w (412)

with P denoting the principal value. In the following, the structure factors are introduced as
improvements beyond RPA for the dielectric function. Then they are used to evaluate the
shift of the continuum edge. Other approaches using semi-empirical assumptions such as the
ion sphere model are improved within our approach that is based on a systematic quantum
statistical approach as shown in the following.
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4.4.2 Dielectric function and dynamical structure factor

The structural properties of plasmas are of essential importance since they provide the basis
for a general understanding of different systems in astrophysics, laboratory plasma under
normal and extreme conditions, and laser-heated solids and plasmas [GR09, VCW14, Red13,
KSKBO05]. Additionally, the response of the plasma system to external perturbation are
totally determined by the detailed structure of the plasma, i.e., the dynamical SF of the
plasma. The dynamical SF is closely related to the density-density correlation function which
determines many transport and optical properties, such as stopping power, the equation of
state, the spectral lines, and the ionization potential (ionization balance).

In general, the dielectric function is connected to the dynamical structure factor via the
fluctuation-dissipation theorem [GR09, KSKBO05]

h 1

T V(@) TmeT (g, w). (4.13)

SZZ(q7 U.)) =
The dielectric function contains the complete information on the ions and electrons in the
interacting systems. Additionally, the dielectric function is connected to the density-density
response function x.q4(q,w) between particles of species ¢ and d via [GR09]

_ 1
€ l(qvw) =1 + erc €d Xcd(qaw)v (414)
cd

which describes the induced density fluctuations of species ¢ due to the influence of an external
field on particles of species d. For a two-component plasma system, we have

2 2.2 2
Zi ¢ 2zie
52] 2 i@ w) = —5  Xei(d, w) (4.15)

e Hquw) =1+ w0

W * Xee(q,w) +
Taking into account the fact that the dynamical SFs are related to the density-density cor-
relation functions (0n.(r,t)ény(0,0)) via Fourier transformation, we can define the partial
dynamical SF for different components in plasmas from the density-density response func-
tion xcq(q,w) as follows [KSKBO5]

h 1
Scd(qa w) = “hw/ksT - Im Xcd(qa w)' (416)

o \/Neng 1—e¢
The dynamical SFs S.4(q,w) characterize the plasma in response to any perturbation. For
instance, they have been investigated to describe X-ray Thomson scattering, see Ref. [?].
Other plasma properties such as the electrical conductivity are also governed by the dynamical
SF.
For a two-component plasma, the imaginary part of the inverse dielectric function can be
expressed via the dynamical SFs, see also [Chi00],

1 - e
e(q,w+1i0)  heoq? (1 + ng(w))

Im . [z? n;Si(q, w) — 2z; /neni Sei(q, w) + neSee(q,w)] .

(4.17)
Comparing this expression to Eq. (5.29), we find that the effective dynamical SF describing

the response of all charged species in plasma can be expressed via the sum of contribu-
tions from the single component S..(q,w) and the pair-wise coupling of two different species
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Seda(q,w). More exactly, for the two-component plasma (electrons + ions), the total dynam-
ical SF is given by the summation of the ionic SF Sji(q,w), electronic SF See(q,w), and the
electron-ion coupling Sei(q,w). Moreover, the electronic SF See(q,w) in the decomposition
of the dynamical SF in Eq. (5.30) can be divided into S2(g,w) for fast-moving free electrons
and a contribution for the slowly moving free electrons accompanying the ions as shown in
Refs [Chi00, GRH"07]

)2
Seelg ) = S (.) + =g ) (4.18)
(2
with the screening function accounting for the screening cloud of electrons
kbe 0
QSc(k) =7 kge See(k)' (4'19)

In addition, the electron-ion coupling Sei(q, w) can be also expressed via the screening function
_ Gse(k)

Vzi
Consequently, we have for the total dynamical SF the following form

 ase(k)

Zi

Sei(q,w) Sii(q, w). (4.20)

)2 - Sa(k,w). (4.21)

Here we focus on the static SF of ions which is given by S%%(k) = [dw S%%(k,w). The
simplest model for the static SF of ions is the one-component plasma (OCP) model where
the ions are regarded as interacting point charges in a uniform neutralizing background. A
further simplification is the mean spherical approximation in which the ion is treated as a
positive charged hard sphere of finite diameter ¢. This approximation is demonstrated to
accurately reproduce experimental data for liquid metals as well as MC simulations, and to be
useful to analytically solve the coupled equations (the Ornstein-Zernike equation) [GRHT07].

Alternatively, we can also use the following fit formula for the OCP ionic structure fac-
tor [GRH'07] with the introduction of the diameter o, the packing fraction 7, the mean ion
distance a;;, and the coupling parameter I';; and their compositions

SP (k) = (1

™ aii
n= 8”103, V= (a) i, x = (241)"/%. (4.22)
Then the OCP ionic structure factor [GRHT07] is expressed as
1
OCP
i k)= ——F—— 4.2

where the direct correction function reads
Cii(q) = 2;;7 : {yo ¢ (sing — qeosq) +y1¢* [2qsing — (¢* —2) cosq —2]
g [ (3q2 - 6) sing — q (q2 - 6) cosq]
+ys [q (4q2 - 24) sin g — (q4 124 + 24) cosq + 24}

+ysq 2 [6q (q4 — 2042 + 120) sin g — <q6 — 30¢" + 360¢% — 720) cosq — 720}

— q4 cos q 4.24
Y
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The effective hard-core diameter o, and therefore the corresponding packing fraction 7, is
uniquely determined by the solution 1 = 0 because of the continuity of the pair correlation
function at the hard sphere boundary.

The fit formula for the OCP ionic SF can reproduce the results for the SF in the low
density and high temperature limit, which is known as Debye-Hiickel SF

2
PbH(y -4 4.27
i () 2+ "5%),17'\27\75 ( )

Another well known ion SF is the SF for the average atom model or the ion sphere model,
which stems from the Fourier transform of the radial distribution function g(r) = O(r —rws)

1 .
S (@) =1- el {sing — q cosq}. (4.28)

The IS model was developed for a strongly coupled system, in particular for solid state physics.
We must be careful with S5 (g) since the strongly coupled peak near the Wigner-Seitz radius
can not be depicted by this SF as shown in Fig. 4.6.

For weakly coupled plasmas, the ionic SF in Fig. 4.6 displays a monotonically increasing
behavior as the wave number, which indicates that the ions are randomly distributed in space
and form an unordered system. With increasing density and correspondingly increasing ionic
coupling parameter, the ionic SF exhibits an oscillatory behavior and shows a strong peak
near the Wigner-Seitz radius 7,4 due to the correlation with the neighboring ions. Such a
behavior implies the formation of a lattice-like structure in plasma. For I';; > 175 £ 5 [Sal98]
or I';i > 178 £ 1 [KG90], the OCP model predicts that the plasma crystallizes and the ions
locate in a body-centered cubic lattice. Thereby, a solid state high temperature plasma is
generated. In such a strongly coupled plasma, the ionic SF has very slight or no dependence
on the temperature.
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Abb. 4.6: The static SFs for Al'2* at solid density and at different temperatures, correspond-
ingly different coupling strength I';.

The discussion above is based on the assumption of the OCP model where the free elec-
trons are treated as a uniformly distributed background and the electron-ion interaction are
given by the bare Coulomb potential. Actually, the free electrons form polarized screening
clouds around the slowly moving ions. In this case, a screening correction to the electron-ion
interaction to be bare Coulomb potential has to the considered. Then a screened ionic SF is
constructed from the OCP ion SF as [GRH'07]

)\’ SP (k)
SZ2(k, w) = (1 — Gse ) . 1 4.29
ii ( (U) Z; 14+ fv(k‘) . SI?CP(k,) ( )
with the screening correction to the bare Coulomb potential
kl%i o (ko gsc(k)
folk) =— 2 C08 <2> - (4.30)
where the screening correction should be truncated after the first node in order to maintain
smooth electron wave functions.

4.4.3 Linear mixing rule for a multi-component plasma

The discussion above based on the description of effective charge is valid for one chemical
element. In general, the many-particle system under investigation consists of a mixture of Ny,
atomic species of charge z; and mass number A; with ¢ = 1,---, Ng,. In chemical picuture
every charge state is treated as a new chemical species. The number density of species i is n;,
respectively. The total number density of ions, i.e. the density of the nuclei, and the electron
density are, respectively, given by

Nsp NSP

N, = Zni, Ne = an Zi = ZNy. (4.31)
7 7
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For this multi-component system, the effective SF accounting for the response of all species
can be approximately expressed by a linear combination of the OCP SF of the single species

Nep
Sef(q Z 2. S0P (q). (4.32)

This approximation is known as linear mixing rule (LMR) [DGO09]. Here z. is the weight
for the corresponding ionic species c¢. The effective SF has a convergent value in the short
wavelength limit, i.e. Sieiff(q — 00) — 1. One possible expression for the weight x. is given
by Daligault and Gupta [DGO09]

<Z>1/3 Zg/g Re
(Z2) Nin

(4.33)

T =

or in a simpler approximation by neglecting the charge dependence x. = n./n, as shown by
Chabrier and Ashcroft.
4.4.4 lonization potential depression in terms of dynamical structure factors

We now discuss the ionic contribution to the correlation shift of the continuum edge, namely,
the real part of the self-energy Re £ (0, w) + Re £§°™(0,w). It is expressed as

Re Zcorr7 ionfion(p _ 0, w) _ Aiconfion(o7 O.)) (434)
d3 W’ Vee(q) T Zi€*Ne
_ cc 1 GS" / .
=P o) T o B e SE @)

Thus, the ionic contribution to the continuum shift is related to the dynamical SF of the
ions. The quasiparticle shift has to be defined self-consistently at w = A"=0((, ), but this
shift is compensated by the energy FE.q which is shifted, too. Then the ionic contribution
Alon=ion(() ) is given by AlPn=ion(( 0), later denoted as Alen—ion,

Under WDM conditions considered here, the ions are strongly coupled, so that the SF
SﬁZ Z should not be always taken in the Debye limit. However, the plasma ions can be treated
classically. Therefore, in (4.34), we consider the limit 7 — 0 in the propagator 1/[—w’ —
hq?/(2m.)]. In addition, the ions move very slowly in comparison to the electrons due to the
large ion mass, which indicates that the dynamical SF of ions can be reasonably replaced by
the static SF within some approximations. We use the plasmon pole approximation

2
_ TTW;
q,?

where w? = ZZn;e? /(egm;) is the ionic plasmon frequency with w2 ; = (¢*w?) / (m? SiZiZ(q))
and k7 = w?m;/kpT according to the particle number conservation [GRHT07]. Then we find
the following approximation

d(w — wgi) + 0(w + wgi)
1+ e—w/(kBT) )

Si%(q,w) = Si%(q) (4.36)
The physical meaning of the replacement of the dynamical SF by the static SF in Eq. (4.36)
is that the ions are considered to have a fixed distribution in the plasma neglecting temporal
fluctuations.



4.4, Quantum statistical approach for ionization potential depression in terms of dynamical structure factors 73

For the ionization process % 2 T eTig 0 the IPD can be given by the difference between
the self-energy before and that after the ionization of the investigated system, i.e.,

Aion—ion — A’iionfion _ (Azon—ion + Aionfion). (437)

IPD i+1

Assuming that the ionic structure of the plasma environment does not change during the
ionization, we obtain for the IPD

fon—i (ZZ + 1)62
Alon—ion _ . S(T; 4.
PD regrs L) (4.38)
with the parameter function
% d
S(r) = F(r) | s ao) (4.3
0

where qo = ¢/ (37°n;) /3 is the reduced wavenumber. T; = Z2e?/(dmeokpTry,s) is the ionic
coupling parameter with the Wigner-Seitz radius 7y, = (47n;/3)"1/3. Within the plasmon
pole approximation, the function F(I';) in the parameter function S(I';), i.e., in Eq. (4.39),
results from w,; ~ #; ' as F(T;) = T (12/7)'/3. The screening parameter k7 o 1/(kpT)
follows from the linearized Debye theory for classical systems. In this case, we consider the
ion-ion SF SPH(q) = ¢?/(¢* + K?) of a OCP. Then, from Eq. (4.38), the DH result for the
low density and high temperature limit, AL = —(Z; 4 1)e*x;/(4meq), is recovered for the
ionic contribution to the IPD.

When the coupling parameter becomes larger, the pair correlation function exhibits a
peak near r,, when approaching the liquid state, which would be reasonably well described
by a Percus-Yevick SF. In other words, the plasma starts to crystallize and forms a periodic
structure. In this case for a fixed charge state Z;, the function S(I';) should gradually tend
to a constant and a similar formula as in the IS model for the IPD should be obtained.
In this strongly coupled regime, the frequency w,; is determined by r, as discussed, e.g.,
in Ref. [KG90]. Consequently, the parameter s occuring in w,; should be replaced by
a more general expression f%f(l}) depending on the parameter I';. For instance, the non-
linear Debye theory which avoids negative densities of the screening cloud, gives the implicit
relation [KKERS6]

> 2 I . 1
/ de -x*Jl—exp | ——-exp (=R (Di)rys )| p == (4.40)
0 z 3
In this work, we introduce the following approximation
4 3T
F(Ty) = | —r2 & (I) = . (4.41)
9 \/(9/4)2/3 4 3T

to interpolate between the weak and strong coupling limit. Note that the parameter function
S(T';) has a slight dependence on the charge number Z; at a fixed temperature and a fixed
density. The validity of this interpolation formula is shown in Fig. 4.7. It can be seen that
in the range of I'; up to 100 the deviation of our interpolated expression with respect to
solutions of Eq. (4.40) is less than 1%.
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Abb. 4.7: The validity of the interpolation (4.41) with respect to the coupling parameter T.
The black points are calculated by numerically solving the equation (4.40).
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Abb. 4.8: The dependence of the parameter function S(I';) on the coupling parameter I'; via
different temperatures at two different densities.

It can be seen from Fig. 4.8 that the parameter function S(I';) tends to a constant which
has no dependence on the density because of the crystallization of ions in the low-temperature
limit. This conclusion coincides with the results from the ion sphere model in solid state
physics. With increasing temperature at a fixed density, the plasma system becomes weakly
coupled and a transition to the DH theory can be found in the high-temperature limit.

In the following, we use the expression (4.38) together with Eq. (4.41) and the ionic SF
reported in Ref. [GRHT07] to evaluate the ionic contribution to the IPD in a plasma. At
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first, a model calculation is performed to compare our approach with other theoretical models.
After that, detailed investigations for different experimental measurements and comparisons
of our results with other theoretical approaches and experimental predictions are shown.
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Abb. 4.9: Comparisons of the IPDs predicted by different models for Al''* at 600 eV, as
function of the density.

Fig. 4.9 shows the comparisons for the IPD calculated using different models. From Fig.
4.9, it can been seen that the IPD from SP [SPJ66], original EK (0EK) [EK63] and our result
are in good agreement with the DH shift in the low density region. Above the critical density
NEK ait = 3/(47) - (4meokpT/(Z2€?))? with the nuclear charge Ze, the underestimation of the
IPD by the SP model and the overestimation by the modified EK (mEK) model [CVC*12]
can be seen in comparison to the original IS (oIS) model [ZM80]. Note that, with increasing
density, corresponding to increasing coupling parameter I'; (I'; = 0.16 for the denisty 0.001
g/cm? and T'; = 7.28 for the denisty 100 g/cm?), our result shows, on one hand, a transition
between SP at low densities (weakly and moderately coupled) and mEK at large densities
(strongly coupled), and, on the other hand, a good agreement with the oIS model in the
intermediate density region.

The approach, presented in this work, shows a close connection of the IPD to the detailed
structure of the plasma system. As a general theory, the expression (4.38) should work
within the valid range of the fluctuation-dissipation theorem for both equilibrium and non-
equilibrium systems described by the exact SF of the quantum many-body system. Once the
SF is known from other methods, for instance, the simulations or the Thomson scattering
measurements, the IPD can be directly evaluated. In this work, the local thermodynamic
equilibrium is assumed for the calculation. Further investigations are needed to describe
non-equilibrium situations, for instance, after irradiations by strong short-pulse laser beams.
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4.4.5 Comparisons to other approaches and experimental measurements
A: Comparison to experimental measurements by Hoarty et al.

We now discuss our results with respect to recent experiments. The investigated density
range in the experiments of Hoarty et al.[HAJ*13a, HAJT13b] is 1.2 to 9 g/cm?® at the
electron temperature in the range of 550 to 700 eV. The assumption of local thermodynamic
equilibrium is believed to be valid for the high densities [HAJ13b], which implies the ionic
coupling parameter is estimated to be in the range 2 ~ 4. In this moderate coupling regime,
the SP and IS models should result in good agreement with the experiment, as indicated
later in the Fig. 4.11. Under the experimental conditions, the screened ionic SFs for different
densities are shown in Fig. 4.10, where the ionic SFs are found to be slightly changed with
increasing densities during the compression.

The disappearance of Ly and Heg lines in aluminum plasma [HAJ*13a] was measured
experimentally to occur at the density somewhere between 5.5 and 9 g/cm?®, which is in
reasonable agreement with the predictions by FLYCHK [CCM™05] using the SP model. For
this range of densities, the modified IS (mIS) model is most suitable [Crol4]. This agreement
is consistent with the predicted spectra for the opacity using the CASSANDRA opacity code
with an IS model for the IPD [HAJ"13b], where the dissolution of lines from n = 3 levels is
indicated to take place between the density of 6 ~ 8 g/cm?. Our approach, predicting the
critical density between 7 ~ 8 g/cm? for the disappearance of n = 3 levels, gives also an
excellent agreement with the experimental data and with the predictions by the simulation
codes.
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Abb. 4.10: Screened ionic SF for the Al''* at temperature T = 700 eV and at different
densities.
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Abb. 4.11: The experimental value is given where the Heg line fades out [HAJ"13a]. The
corresponding results are different for different models. Our calculation (the red

region) shows the results for the electron temperature in the range of 550 to 700
eV.

B: Comparison to experimental measurements by Ciricosta et al.

The fact, that the agreement of our results changes gradually from the SP model to the
mEK model with increasing coupling parameter, gives a reasonably well explanation for the
other experiment. Using FEL [CVCT12, Ct16], the aluminum sample at solid density is
isochorically heated to electron temperatures up to 200 €V, indicating a strongly coupled
plasma as shown in the Fig. 4.12. The screened ionic SFs at solid density and at different
temperatures for diverse charge states are shown. The dash-dotted lines represent the SF
for different charge states at same density (solid density) and at same temperature (50 eV),
where a clear distinction is found. The LCLS pulse duration in this experiment was estimated
to be less than 80 fs, which means that the spatial distribution of ions are more or less the
same regardless of different charge states. Obviously, the assumption of same temperature for
different charge states are invalid which can be also demonstrated by the ionization balance:
higher charged states can only exist at higher temperature for a fixed density.

i
be in the order of 10'4/s. In contrast, the response of the electrons to the laser field is
much faster and can be described by the electron frequency wgll ~ 10'6/s. In comparison to
the laser pulse, the electrons have enough time to exchange energy between each other and
with the laser field and are isochorically heated to a high temperature. Because of the large
mass of the ions, the response of the ionic subsystem to the external fluctuation is so slow
that the ions in the plasma are weakly excited by the photons and by fast moving electrons,
which implies that the ions are colder than the electrons. Of essential importance in the
measurement is that the IPD for distinct charge states, inferred from the triggering energy
of the photoionization, is measured at different time stages. This fact indicates that the ions
are heated with the time evolution and the local thermodynamic equilibrium condition might

Additionally, the ionic plasma frequency w!" in this laser-produced plasma is found to
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be achieved.
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Abb. 4.12: The screened ionic SFs at solid density and at different temperatures for diverse
charge states.
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Therefore, we make the following assumption: for different charge states, we have corre-
spondingly different ion temperature. To reveal the validity of this assumption, we show at
first the calculated IPD values for different charge states at the same temperature in Fig. 4.13.
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As we can see, the experimentally measured IPD values for low charge states Z; = 3 ~ 5
can be reproduced with the ion temperature 7; = 20 eV. However, the IPD values for higher
charge states can only be obtained with a much higher temperature T3 = 50 eV. According
to this fact, we assume the ion temperature for different charge states as Ti(Z;) = 5 - Z;
eV. The results from our approach and the comparisons to the experimental data and other
approaches are shown in Fig. 4.14. As discussed by Ciricosta et al., the direct measurement
of the IPD in aluminum plasma for different charge states can more reasonably be explained
by the mEK model. Our approach can also reproduce the experimental data, see Fig. 4.14.
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Abb. 4.14: Comparisons of the IPDs predicted by different models and the experimental re-
sults [CVCT12, Ct16] for an aluminum plasma at solid density 2.7 g/cm?. (Lines
to guide the eye)

C: Comparison to experimental measurements by Kraus et al.

The application of the simple IPD models to a mixture of different ions is problematic as
displayed by a recent measurements on a CH mixture at the NIF [KCK'16]. The measured
mean charge state can not be explained by either the SP or the mEK models, as shown in
Tab. 4.1. Although the DH shift is inappropriate under the experimental conditions because
of the strong coupling of the carbon ions (I'c ~ 4), it results in larger IPDs and therefore
gives a more reasonable agreement with the experiment than all other models.

This fact can be attributed to the deficiency to account for the strong correlation and
fluctuation effects in these models. For the CH mixture, the influence of a different chemical
species, the protons from the fully ionized hydrogen, on the properties of the carbon ions is
described by an additional electron density in the SP and EK models. In our approach, this
effect can be consistently taken into account by the ionic SF, which includes the response of
all charged particles in the plasma. We applied the linear mixing rule [DG09] for a multi-
component plasma SF. Under the experimental conditions [KCK'16], the carbon ions are
strongly coupled while the protons are weakly correlated. The effective SF accounting for
both carbon ions and protons reads

ST (q0) = x S%%(qo) + (1 — x) Sl (q0)- (4.42)
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Exemplarily, we have taken for our calculation the total SF of 0.75 S%%(qo) + 0.25 SPH (qo)
as shown in Fig. 4.15. Taking into account the influence of the protons, the SF for each
wavenumber are moved to a higer value with respect to the SF of carbons. Within this
approach, our estimate for the mean charge of 4.79 yields a close match with the experiment
4.92 £+ 0.15 [KCK'16]. The SF of the protons modifies the structure of the integrand in
Eq. (4.39) leading to higher IPD values for the carbon ions, and therefore push the carbon
ions to a higher charge states.

charge 3t cit Cot mean charge
model

DH 261.3 326.7 392.0 491

SP 91.7 108.3 123.9 4.18

IS 103.2 119.7 135.2 4.21

mEK 116.0 145.0 174.0 4.24

SF (z = 0.75) 237.3 296.6 355.9 4.79

SF (z=1) 99.0 123.7 148.4 4.19
Exp. 4.92 + 0.15

Tab. 4.1: IPDs in eV and mean charge for CH mixture at density 6.74 g/cm?® and
T = 86 eV [KCK'16]. The ionization energies for different charge states are
I[C34] = 64.5 eV, 1[C*] = 392.1 eV,1[C°F] = 490.0 eV. We have taken in our cal-
culation for the effective SF, i.e., S%%(qo) = x 5%“(qo) + (1 — ) SPH(qo), the value
x =1 and z = 0.75, without and with the influence of protons, respectively.
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Abb. 4.15: Effective SF according to the linear mixing rule for CH mixture.

To complete our discussion, the dependence of the IPD values on the weight x¢ in
Fig. 4.16, where a linear relation is observed for different charge states. In our consider-

ation, the weight is selected via the form x¢ = mc"_‘me . ZcZ—kCZH' For charge state Z¢c = 4 and
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Zc =5, we have z¢ = 73.8% and zc = 76.9%, respectively. Hence, it is reasonable to take
xc = 75% for calculating the mean charge state in Tab. 4.1.

Calculations for a pure C plasma at the same conditions (same ionic density of carbon
and same temperature), lead to the mean ionization degree of 4.2. For the CH plasma, the
asymmetry of the charges and masses of protons and carbon ions lead to strong fluctuations
and hence significantly enhance the ionization. Future discussions on experiments with pure
C targets may test this effect.

CH mixture
-100 T T T T T T T

_ZC:
—_ ZC=4

-200

-300

-400

Density: p_ . =6.74 glcc
Temperature: 86 eV

lonization potential depression (eV)
o
(@]
o

L ‘ L L ‘ L L ‘ L
0,5 0,6 0,7 0,8 0,9
weight X,

|l IR RN T T S RN H SR T N SN S N R

0

Abb. 4.16: Dependence of the IPD values on the weight of the carbon z¢ in the total effective
SE.

4.5 Plasma composition and coupled Saha equations

To understand the thermodynamic, optical, and transport properties of plasmas, the detailed
knowledge of the charge state distribution is of essential importance. The charge state distri-
bution can be calculated from basic principles, for example, from minimizing the Helmholtz
free energy F' [Sal98]. In general, conditions of the local thermodynamic equilibrium (LTE)
are assumed, where the rates of collisional processes related to depopulations and their in-
verse processes, namely, recombination, are equal. The Helmholtz free energy F' is related to
the chemical potential via p. = OF/0n.. Under LTE conditions, the following relation (also
known as the law of mass action) [Red13, KCK*16]

Pi1 + fle = [ (4.43)
is fulfilled for a chemical reaction between two involved charge states ¢ + 1 and
Zix1et+e= Ze. (4.44)

The chemical potential includes an ideal part derived from the ideal gases and an additional
contribution accounting for the interaction between the plasma particles. The ideal part of



82 4. lonization potential depression in plasmas

the chemical potential of the species ¢ reads [KSKBO05, Red13, KKER86, KCK'16]

3
Buid = In (n;Ac> (4.45)

with the thermal wavelength A., the partial particle density n. and the statistical weight g..
This expression is only valid for non-degenerate cases. In the low temperature limit, electron
degeneracy must be included in the chemical potential p.. Generally, the chemical potential
of non-interacting electron gases can be obtained via Fermi integrals [KSKBO05, Zim87] or by
interpolation between the non-degenerate and the fully degenerate limits [Zim87, KSKBO05,
Red13].

For the statistical weight g¢; of ions, the internal partition function determined by the
ionization energies should be considered [Red13]. In other words, the ionization energy has
to be taken into account [KCK*16]

Bu; = Bui’ + BIT (4.46)

with the effective ionization potential for the ion with charge state
et —p — P (4.47)
where I; is the unperturbed ionization energy and I}FP describes the ionization potential

depression in plasmas. Inserting Eqs. (4.45) and (4.46) into Eq. (4.43), we arrive at the
following expression [KSKB05, Red13, KCK*16]

Ni+1  Gi+l _preff
=t exp (—BI" — B, ) - (4.48)

The densities of the higher ionization states with respect to a reference state can be
reduced by assuming successive ionization over a sequence of this Saha equation. Then the
so-called coupled Saha equations are obtained. To solve the coupled Saha equation system,
the following conservation laws have to be obeyed. The first one is the conservation of total
ion number

Nsample = Znia (449)
i

where ngample is the nucleus number density of an atomic species under study. The sum runs
over all possible charge states. The second conservation rule is given by the charge neutrality

Ne = Z n; z;. (450)

The distribution of charge states predicted by the Saha equation (4.48) depends strongly
on the IPD model used for the effective ionization energy. In Fig. 4.17, we show the pre-
dicted mean charge of a CH plasma with respect to different densities and temperatures by
solving the coupled Saha equations considering different IPD models. In comparison to the
experimental results by Kraus et al. [KCK'16], the influence of the protons in the plasma on
the mean charge state of the carbon ions is evidentially revealed.
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Abb. 4.17: Mean charge of a CH plasma with respect to different densities and temperatures
predicted by different models.

Summary

We treated the in-medium two-particle problem (4.5) within a quasiparticle approach and
obtained the contribution of the shift of the continuum edge to the IPD. Our approach is based
on a Born approximation for the interaction of the two-particle system with the plasma ions.
The internal structure and dynamics of the plasma is described by the dielectric function
which contains the polarization function II(q,w). Improving the RPA expression for the
polarization function, two-particle correlations are included, see also [RD79]. In particular,
the ionic dynamical structure factor is taken into account if the cluster decomposition of the
polarization function is considered, here the two-ion distribution. Similar approaches have
been used for optical spectra [GHR91] where also a cluster decomposition of the polarization
function has been considered.

Starting from the general expression (4.9), we obtain a rather simple formula (4.38) for
the IPD containing the ionic static structure factor. We emphasize that this result could
now be improved by systematically removing some of the approximations for the dynamical
SF (4.36). In particular, the plasmon pole approximation in handling the dynamical SF
is a model assumption which can be improved, e.g., by numerical simulations. Finally, an
advantage of our quantum statistical approach is that any degeneracy effect can be taken
into account in a systematic way, which becomes of interest at increasing densities.

A more serious problem is the use of the quasiparticle approximation. Within a so-
phisticated Green function approach, the quasiparticle propagators are replaced by spectral
functions, see, e.g., [For09], which describe also the finite life time of the quasiparticle excita-
tions. This leads to the fact that the energy gaps between the optical lines describing bound
state transitions are washed out (Inglis-Teller effect [IT39]). We will continue this discussion
in details in the next Chapter.
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5. OPTICAL SPECTRA IN PLASMAS

The phenomenon of disappearance of spectral lines in dense plasmas due to the IPD effects is
investigated within a more general approach. In this chapter we discuss the following question:
what is the reasonable description for the disappearance of the peak structures (spectral lines)
in the optical spectra of plasmas? A commonly accepted physical mechanism is the Inglis-
Teller (IT) effect resulting from the line merging of highly excited levels. Another mechanism
leading to the disappearance of spectral lines is the pressure ionization that describes the
truncation of the principal quantum numbers in a medium. The latter effect has been already
extensively discussed in the previous chapter. Thus we concentrate on the line merging due to
the IT effect, which is closely related to the width and broadening of the energy levels. Similar
to the method used in the previous chapter, the quantum statistical approach based on the GF
technique is utilized.

5.1 Line dissolution: Inglis-Teller effect versus continuum lowering

To analyze the spectra emitted from plasmas, two spectroscopic effects, i.e. line merging
due to IT effect [IT39] and line disappearance because of pressure ionization (also known
as IPD and continuum lowering) [SPJ66, EK63], have to be considered carefully and com-
prehensively. Both effects arise from the deformation of the ionic potential by the plasma
fields as well as collisions and have been used for plasma diagnostics [NMG'98, EK63,
SPJ66, GHRO1]. Generally, pressure ionization is derived from an quasi-static ionic mi-
crofield, from which a sharp cutoff for the highest existing principal quantum number can
be defined [IT39, NMG'98, KKERS6]. Alternatively, the time-dependent effect with con-
sidering the fluctuating microfields accounts for the line broadening and line merging and
is denoted as Inglis-Teller effect [IT39]. This effect is also known as pressure broaden-
ing or the Stark broadening. For correctly reproducing the experimental spectra, a good
Stark broadening model should be used in conjunction with the pressure ionization mod-
els. Until nowadays, both effects are extensively and well investigated using different mod-
els [IT39, NMG198, EK63, SPJ66, GHR91, KG95, OWGR07, OWR11, DwP92]. However,
all these models are unable to describe both effects at the same time. In other words, a sys-
tematical and consistent theory is indispensable to account simultaneously for both effects.

In the previous chapter, we have demonstrated that our approach, i.e., the quantum
statistical approach based on the GF technique, displays an excellent agreement with different
experimental measurements under different plasma conditions. Unlike other models without
taking into account the structures of particle correlations, we have introduced the structure
factor in calculating the IPD values. Another important feature of our approach is that the
time-dependent effect leading to the broadening of the continuum edge can also be described
via the imaginary part of the self-energy, as pointed out in our paper [LRKR17].

The IT effect is usually described by the Stark broadening model. The Stark broadening is
studied in detail since the elaboration of the quantum mechanics for hydrogen atoms [Sch68].
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The relevant physical quantity is the electric field. More generally, the so-called microfield
comes into play, if the investigated system is immersed in an environment, in our case, the
plasma [GHR91, D’y98, BM59, DwP86, Uns48, Hol19, OWRI11]|. Therefore, one task that
we have to tackle is to find the corresponding microfield distribution for the plasma under a
particular condition.

Depending on the plasma density and temperature, the competition of the pressure ioniza-
tion and the IT effect leads to three consequences: a) the effect of pressure ionization is hidden
by the line merging which occurs at lower principal quantum numbers [NMG198, WKP72];
b) the continuum lowering is so large that the lines disappear before they are subject to
broadening sufficient to merge them [HAJ™13a]; ¢) both effects lead to comparable highest
existing principal quantum numbers for the upper level of the emitted lines [OWGRO07]. We
address again, the aim of the present investigation is to obtain a systematical and consistent
theory to explain both the continuum lowering and the IT effect.

5.1.1 Continuum lowering: energy shift and microfield

An important progress for understanding the modification of the atomic potential in a plasma
was performed by Unséld [Uns48]. In his well-known perturbing ion model, Unséld investi-
gated how the atomic potential well experienced by a confined bound electron is changed by
a homogeneous electric field and the nearest neighbor ion. He gave a visualized but simple
picture within the framework of classical physics. His fundamental idea is to determine a
critical distance at which the binding energy is compensated by the critical electric field pro-
duced in plasmas by the nearest perturbing ion. In other words, a critical microfield Fi.i; can
be introduced for the corresponding bound state at its classical turning point of the orbit.
For hydrogen plasma, the corresponding limit of the radius 7¢ can be given in terms of the
principle quantum number ng; [Uns48]

Terit = ngrit;ao (51)

with the Bohr radius ag.

To ascertain the critical microfield (electric field) Fi, different approximations can be
used. The simplest approximation for the microfield is the Holtsmark distribution, where
correlation between plasma ions is neglected. More advanced treatments take into account the
influence of the interaction between charges, for instance the Hooper distribution. According
to D’yachkov [D’y98], the determination of this critical value of the microfield is a rather
difficult problem and the uniform field approximation for one-electron atoms and the nearest
neighbor approximation for many-electron atoms can be applied. The probability distribution
of finding the nearest neighbor ion leads to the following expression for the critical principal
quantum number in a plasma [Uns48]

1 41N, —1/3
crit — . 5.2
Herit GCLO( 3 ) (5:2)

Therefore, the shift of the continuum edge or the amount of the pressure ionization is char-
acterized by the absolute value of the binding energy at the critical quantum number ni.
Consequently, the continuum lowering can be expressed as

13.6 eV 4 1/3
Ajon = ———o— = —13.6 - 6ag - (m) . (5.3)
ncrit 3
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The simple but elegant analysis on the pressure ionization can be improved in different
ways. For example, Fisher and Maron studied the interrelations between characteristic dis-
tances on the atomic scale [FMO00], where the electron states in plasma are classified into
three types: free (with energies E > 0), bound (with energies £ < 0 and trapped only to a
single ion), and collectivized (with energies E' < 0 and confined by the potential wells of two
or more ions). In their theory, different effects such as tunneling, screening, and Stark effect
are included. Here, we will not discuss the details in great depth.

An alternative approach to describe electrons in the Coulomb potential of the random
distributed ions is known from the impurity problem. There exists a mobility edge, where
the bound electron becomes itinerant [DwP92]. This approach can be considered as more
fundamental in comparison with the simple models for the ion distribution, such as the ion
sphere model.

In Fig. 5.1a we show the positions of the continuum edge in hydrogen plasmas predicted
by the microfield model, the IS model, and SP model. These results will be discussed in
conjunction with the IT effect in the next section.

5.1.2 Inglis-Teller effect: Stark broadening and microfield

It is well known that the degenerate sublevels of energy levels are destroyed due to presence of
an external electric field. From the viewpoint of optical spectroscopy, the spectral lines of ions
and atoms are split into several components because of the interaction with other charged
particles. To investigate the Stark effect in hydrogen-like systems, the parabolic coordinates
are generally used. Quantization in the parabolic coordinates leads to the parabolic quantum
numbers |n1, ng, m) with the principal quantum number [Sch68]

n=ny+ng+|ml+1, ny,ny=0,1,---,n—1. (5.4)

For details see Appendix D. If the external electric field can be regarded as a perturbation,
the first- and second-order Stark effects can be derived [SVY81, Giin95]. Obviously, the first-
order effect is linear in the perturbing electric field, while the second-order effect is quadratic
in the field. Therefore, the first- and second-order Stark effects are also denoted as linear
and quadratic Stark effect, respectively. Under certain circumstances, the inhomogeneity
of the microfield also contributes significantly to the total Stark effect [SVY81, Giin95].
This contribution is described by the quadrupole interaction between the investigated atomic
system and the microfield. To simplify the calculations, we only consider the linear Stark
effect.

The linear Stark effect for hydrogen due to the ionic contribution, i.e., the displacement
of the level energy L5 is given in the parabolic coordinates as [Sch68, SVY81, Giin95]

3
yls — in(ng —ny)eap F, (5.5)

where F' is the strength of the external electric field experienced by the atomic system under
study. Since the ions are randomly distributed in plasmas, the microfield distribution for the
electric field F' can be introduced. This distribution is responsible for the pressure broadening
(or the Stark broadening) of spectral lines. The expression (5.5) gives a variation of the
linear Stark effect X1 between the limits 4 (3/2) n(n — 1)eagF. For highly excited states,
the broadenings of the adjacent levels are so large, that their wavefunctions overlap with
each other. Consequently, the spectral lines from these levels merge into a continuum [IT39,
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OWGRO07, OWRI11, D’y16]. This is the Inglis-Teller effect mentioned above. Quantitatively,
the limited principal quantum number npy.y of the uppermost quantum state for the Inglis-
Teller effect is given by [IT39, Sal98, Fuj05, Gri97]

15/2 _ 222
X 8neag

n (5.6)

To evaluate the Stark broadening, the most probable value of the Holtzmark microfield
distribution [Hol19, PCGO02] for the electric field F are used by Inglis and Teller [IT39], which
is given via the ion density

F=3Ten)? (5.7)

on °

For hydrogen plasmas, njon, = ne. Inserting this in the equation (5.5), an estimation for the
influence of the plasma environment on the spectral lines can be obtained.

To provide insights in how the pressure ionization and IT effect are quantitatively related,
calculations for both effects under different plasma conditions are performed and displayed in
Fig. 5.1. The positions of the continuum edge depend strongly on the IPD models, as shown
in Fig. 5.1a. In contrast to other models, the positions of the continuum edge predicted by
the microfield model are located deeper. Consequently, the resulting cutoff for the highest
existing principal quantum number lies closer to the maximum quantum number given by the
IT effect. It is difficult to distinguish which effect is responsible for the bound-free transition
in the experimental spectra.

The modification of positions of the continuum edge can be directly observed in the emis-
sion spectra in plasmas. As shown in Fig. 5.2, the following two features are observed: 1)
there is no abrupt discontinuity for the Balmer spectral lines near the continuum edge; 2) the
Balmer limit is shifted to larger wavelength in comparison to the isolated case. These phenom-
ena are not unique to Balmer series, but a general phenomenon in many-body physics, for ex-
ample, in the electron-hole plasma in excited semiconductors [ZKK 78 RKK'78, KKERS6].
Another well-known example is that in solar astrophysics spectral lines are visible up to main
quantum numbers of about 17 [EKKR85]. For Lyman series, These phenomena are also
well studied by Hohne and Zimmermann [HZ82], where no transparency window around the
threshold frequency distinguishing the bound-bound and bound-free transitions is displayed
in the calculated emission spectra for Lyman series.

5.2 Quantum statistical approach for spectral lines in plasma

The problem of predicting the spectral lines of radiating atoms or ions embedded in a plasma
is rather complicate. It is usually simplified by treating the ionic and the electronic subsystem
in plasmas as well as the investigated atomic system separately. As already mentioned in
chapter 2, the ions are heavier than the electrons, so that the average velocity of the ions is
much smaller than the average electron velocity [Duf69, SM10, Giin95, Dem10]. During the
radiation, the electrons move significantly while the spatial distribution of plasma ions can
be approximately regarded as unchanged. Consequently, the ions may be considered as static
and the electrons should be treated dynamically within the binary collision approximation.

Within these treatments, a generally accepted expression for the spectral lines is ob-
tained [Glin95]

I(Aw) ~ /OOO dF W (F) - [Aw + dif F — i B(Aw)] ! (5.8)
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Abb. 5.1: Predictions of line dissolution due to the effect of the continuum lowering and the
Inglis-Teller effect for different plasma conditions.

where d;; = (i|d|f) is the atomic dipole element and Aw = w — w; the frequency difference
between the emitted photons and the unperturbed transition frequency for the initial state
i) and the final state |f). The positive ions contribute to the broadening through the static
Stark effect. However, the contribution of the free electrons to the broadening is by means of
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(a) Hydrogen spectra of Balmer series from 3600 — 5200 A [WKP72]. The
four spectra are selected from different radial positions of the same run
in experiment, which represent emissions under different densities and
temperatures.
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(b) Spectral intensity distribution in the Balmer spectrum of a hydrogen
plasma between 350 — 700 nm [RGS86]. The solid line represents the ex-
perimentally recorded spectrum. The dash line describes the theoretical
results calculated with a cut-off Coulomb potential approach [RGS86].

Abb. 5.2: Balmer spectra in hydrogen plasmas recorded in different experiments, where no
abrupt discontinuity between the bound-free and free-free transitions is observed.
The IT effect and the IPD effect are both responsible for this continuity near the

continuum edge.

the static Stark effect for low temperatures and via collisions at high temperatures [Duf69,
Gun95]. In this formulation the ionic contribution is subdivided into a static and a dynamical
component. The static contribution is included by the microfield field distribution W (F),
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while the dynamical contribution is described by the operator B(Aw). The assumptions
performed in deriving Eq. (5.8) are unsatisfied for high density plasma since strong collision
effects, dynamically screening effects, and degeneracy effects are not considered [Giin95].
Furthermore, the perturbation theory is also problematic for high density plasmas. More
importantly, the continuum lowering is not taken into account, which has a strong influence
on the emission lines from the highly excited states.

5.2.1 Microfield: autocorrelation function

The total electric microfield F experienced by a test particle located at R = 0 is evidently
represented as the sum of all plasma ion Fjo, and electron fields F under the condition of
vector additivity, which can be decomposed into slow Fgjo and fast Fg,g microfield compo-
nents [Dem10)]

oo
F = Z F;, = Fel + Fion = Ffast + Fslow- (59)
7
Obviously, the fast component Fi,t is not equivalent to the electron microfield. Part of
the free electrons in plasmas establish a screening cloud around the slowly moving ions.
This is also the reason why one should introduce the effective single particle fields in the
APEX approximation with adjustable parameters [IRST00] and in other numerical simula-
tions [DwP86, PCG02, SM10].

The first essentially important quantity for spectral lines is the static microfield distribu-
tion W (F'), which concentrates only on the slow microfield component Fyoy [Dem10, Giin95.
Actually, in Eq. (5.8) only the slow component of the microfield Fyjoy is involved. The fast
part of the microfield Fy,g is described by the operator B(Aw). A number of papers on
the study of various physical processes related to microfield characteristics and its effect on
medium properties are published. An excellent review on the status of microfield notion can
be found in the paper by Demura [Dem10]. In the isotropic case, an elegant expression can
be derived for the microfield field distribution [Dem10, PCG02]

W(8) = % /O T dk -k sin(kp) Ak) (5.10)
with the normalization condition
| aswe) =1, (5.11)

where 8 = F/Fy with Fy = 27(4/15)*3¢ 2 nf/ % is the reduced dimensionless microfield value.
A(k) is the characteristic function, which reads for an isotropic ideal plasma as

A(k) = exp(—k>/?). (5.12)

This is the so-called Holtsmark distribution [Holl9]. It can also be derived for interacting
systems, for example, using the Baranger-Mozer cluster expansion [BM59].

Another central quantity to calculate the spectral line shapes is the autocorrelation func-
tions. One of these correlation functions is the electric field autocorrelation function. For
example, the field autocorrelation function is directly related to problems of collisional trans-
port and determination of plasma conductivity [Dem10]. Introducing the charge density of
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the total plasma

t) = Z ecne(r,t) = ( Z emi(r,t)) — ene(r, t), (5.13)

all ion species

the time-dependent total electric field is described by

F(t) = /d?’r-%p(r,t). (5.14)

Consequently, the field autocorrelation function can be expressed in terms of the charge
density autocorrelation function [Duf69]

y= [ [an B o) o), (5.15)

It is always more convenient to handle the physical quantities in the Fourier representation.
Evidently, this correlation function contains the ion-ion correlation, the electron-electron
coupling, and the electron-ion interaction. Before detailed discussing these contributions, we
first introduce the retarded field autocorrelation function via the Fourier transform

et (o / dte'“ (F-F(1)) 0(t) (5.16)

and the retarded charge density autocorrelation function in Fourier space

et (k, w) = / &r / dt TR (e 1)) 0(1), (5.17)

where 6(t) is the Heaviside step function. Inserting the Egs. (5.15) and (5.17) into the
expression (5.16), the following relation can be achieved [Duf69]

d*k
(2m)?
This correlation function is closely related to the plasma structure factor S(k,w), which will
be discussed in the subsection 5.2.3.

k2.0 (K, w). (5.18)

C(w) = (4m? [

5.2.2 Self-energy for bound states: microfield

Within the framework of quantum statistical theory, the influence of both electrons and ions
are considered via the effective potential. Theoretically, the degeneracy effects and the phase-
space occupation (i.e. Pauli blocking) can also be consistently taken into account. Because
of different dynamical time scales of ions and electrons, the static microfield ansatz can be
also introduced as discussed by Giinter [Giin95]. Subsequently, the pressure-broadened line
profile is expressed as

IP"(w) = Tm / dF - W(F) - L(w, F) (5.19)
0
with the profile function [Giin95, OWGR07, OWR11, LOZ"14]
wt hw . ot
Ll F) = 3 e (— ) - (il ld)

i’ ff
) (] [heo = g — Sg (. F) 44T lil) (5.20)
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with the self-energy for the initial ¢ and final f states
Yif(w, F) =Re {Ej(w, F) — Ef(w, F)} + iIm {3;(w, F) + 3¢ (w, F)}. (5.21)

Following the discussion at the beginning of this section, the total self-energy ¥, (w, F') due
to both the ions and the electrons of the plasma can be approximately decomposed into a
frequency-independent ionic part and an frequency-dependent electronic part which is how-
ever independent of the ionic microfield [Giin95, LOZ"14]

Yow, F) = 2% w) + Xion(F). (5.22)

In dynamically screened Born approximation, the electronic self-energy is given by

3 * dw no(w)] - Ime ! (q,w+i
) = [ gV X |t [ e et D

In the non-degenerate case, the Bose distribution can be replaced by the Maxwell-Boltzmann
distribution. Additionally, the dielectric function is treated in the random phase approxima-
tion. The ionic self-energy is then described by the Stark effect, for example, by the linear
Stark effect

yiomls. ;n(ng —ny)eap F. (5.24)

This is the standard treatment within the Green’s function approach to calculate the spectral
lines. The improvement to account for strong collisions has also been developed. Using this
approach, the line profiles emitted from hydrogen, helium, and hydrogen-like plasmas are
extensively investigated for the purpose of plasma diagnostics [GHR91, Giin95, OGWROG,
OWGRO07, OWRI11, LOZ" 14, Oma07, Lor14].

In Eq. (5.26) the integral domain for the microfield distribution W (F') is taken from 0 to
0o. For the emissions from low quantum levels, this procedure does not produce too large
errors. However, the energy levels of the bound states are perturbed by the microfield strength
and the higher series of transition will disappear, when the microfield strength approaches
a certain threshold value [Uns48, D’y98, D’y16, OWGRO07, OWRI11]. This means that the
upper limit of the integral in Eq. has to be truncated due to the dissolution of the discrete
upper levels of the permitted transitions. As discussed in Sec 5.1.1, the potential experienced
by the atomic electron, which is composed of the sum of the Coulomb potential due to the
ionic core of charge Z and the perturbing electric field, exhibits a saddle point above which no
bound state can exist. Within the microfield model [RGS86, D’y98, OWRI11], a dissolution
factor can be introduced [D’y98, OWRI11]

Ferit
j(w) = / W(F)dF. (5.25)
0

The remaining important problem in the calculations is the determination of the critical
microfield F.;, for which two models can be used: uniform field for one-electron atoms
with F.it = E?/(4€®) and nearest neighbor approximations for many-electron atoms with
Feit = E?/(16€3) [D’y98]. Here E denotes the ionization energy of the investigated state
in an unperturbed atom. Then the line profile covering all bound-bound and bound-free
transitions can be expressed as [D’y16]

Ferit 0o
I(w) =Tm /dF-W(F)~£(w,F)+ / dF -W(F) - Leoms(w, F), (5.26)
0 Ferit
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where Leont(w, F') is the line profile function for the bound-free and free-free emissions. We
will not go into the details on determining the critical microfield Fg;; and on deriving the
emission coefficients related to the continuum states. In the following, we will discuss the
possibility whether we can calculate the spectral line shapes in terms of the dynamical and
static structure factors as we have done for the ionization potential depression [LRKR17].

5.2.3 Self-energy for bound states: structure factor

In the original GF formalism derived by Ropke et al. for spectral lines [RSK81, HRSZ86], no
microfield ansatz is necessary to evaluate the shift and broadening of spectral lines. The in-
fluence of the plasma in the two-particle states induced by free electrons and plasma ions
is consistently included in the Bethe-Salpeter equation for the two-particle GF. The es-
sential physical quantity is the dielectric function as the sum of electron polarization and
ion polarization. In the random-phase approximation, the total dielectric function is well-
known [Duf69, RSK81]. The main task within the GF formalism is to calculate the two-
particle self-energy [RSK81, Giin95]

3 n.(w)Ime (q,w+i
S = | 5733 [Fvax +E§f) zIES,,piqi O P (27

n/

where E?LP is the total energy of the two-particle state and M,,,/(q) is the transition matrix
element with the momentum transfer q.

Actually, the dielectric function, the dynamical SF, and the field autocorrelation func-
tion are tightly related. For example, the field autocorrelation function is connected to the
symmetrized correlation function of the longitudinal microfield fluctuations via (0E/E)q ., =
2m(Z2e?/q%)Sii(q,w) [KSKBO05]. This is the reason why we can use different formalisms to
describe the same physics. This fact is reflected by the study on the IPD effect in plasma.
In the present work, the possibility using the SF and the microfield model to calculate the
IPD is shown in the previous chapter and in this chapter, respectively. As in the theroy of
Thomson scattering and in the theroy for IPD, we introduce the dynamical struture factor
to investigate the spectral line profile in plasma.

We rewrite the expressions for the dynamical SF

S(q,w) = /dgr/dt e!@traT) (e 1)) (5.28)

and for the dielectric function

h 1 _ _
Slaw) =— — otV Hg) - Ime!(q,w) (5.29)

or in a more explicit form

1 e (14+n,(w)™" [,
Im et i) = qBQ : [zl n;Sii(Q, w) — 2z; v/NeniSei(q, w) + neSee(Q7w)] :
(5.30)

Evidently, the electron and ion contributions to the inverse dielectric function e~1(q,w + i0)
are not additive. Reminding the relation between the field autocorrelation function and
the charge-density autocorrelation function, the connection between the field autocorrelation
function and the dynamical SF can be established.
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5.2.3.1 Electronic contribution

The electronic contribution is described by the last term of Eq. (5.30), i.e. See(q,w) and is
generally described in the RPA. To account for degeneracy effects, we follow the idea of Arista
and Brandt [AB84], where the electronic dielectric function €ee(q,w + i0) can be calculated
by an anylytical expression

€ee(q, w 4+ 10) = €1(q, w + i0) + iea(q, w + i0) (5.31)

with the following expressions

20
€1(q,w +10) = Recee(q,w +i0) =1 + % . {g(u +2z)—glu— z)}, (5.32)

ﬂx%g.n 1+exp{n—(u—z)2/9]
823 1{1+exp{n—(u+z)2/9] ’ (5.33)

EQ(qv w + ZO) = Im Eee(qv w + ZO) =

where 6 is the degeneracy parameter of the plasma electrons. Other reduced parameters are
given as x3 = 1/ (raokre),u = w/ (kvpe) and 2z = k/(2kp ) with the Fermi wave number
of the electron kg o = mevpe/h. Then the imaginary part of the inverse electronic dielectric
function, which is related to the dynamical structure factor of free electrons, can be expressed

by

, -1 €2(q, w + 10)
See(q,w) ~ Iee(q,w 4+ 10) = Im — = . - . (5.34
(a,) ( ) €ee(q,w +10)  (€1(q,w +10))* + (e2(q, w + i0))? (5:34)

This expression is also known as energy-loss function, which is the crucial quantity deter-
mining the spectrum of excitations in the plasma in terms of the momentum transfer hq
and of the energy transfer Aiw. It’s impossible to find an exact analytical expression for the
energy-loss function Iee(q,w +40) which can, however, be evaluated approximately in various
limiting cases.

Generally, the following three limiting cases are interesting for the experiments of light or
particle scattering in plasma: (a) low-frequency behavior of the plasma indicated by u < 1
for all z values; (b) the single-particle ridge in the region of high frequencies and short
wavelength with v = z > 1; and (c¢) the plasma resonance domain at high frequencies and
long wavelength limit, i.e. w > 1 > z, which describes the collective excitations of the free
electrons.

In the low-frequency limit case (a), the energy-loss function can be approximated as [AB84]

2m2e’qw h2k? !
Lf. S~ e . .
Tee' (@ e +i0) 7 (k2 + k2)? {1 o [8m6kBT ! (5:35)

where the screening constant can be expressed approximately as k2 ~ k2p/ (1 + 962/ 4)1/ 2
with the Thomas-Fermi screening length kng =3 Wple/VF ¢ OF given approximately as kg 4=
Kor + Kb

The single-particle ridge, case (b), describes short-range excitations of individual electrons
in the plasma, whose existence is a pure quantum feature and has no correspondence in the
classical or semi-classical treatments of the dielectric function. From the condition u = z, it
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can be seen that hw = h2¢2/(2me), €1(q,w +i0) = 1+ O (kpo/k)*, and ex(q,w +i0) < 1, so
that the energy-loss function can given approximately as [AB84]

™20 . { 1+ exp [n —(u—2z)? /9] } ‘ (5.36)

S.p. ) ~ ) -
[ (q,w +10) = e2(q, w +10) = 823 1+ exp [77 — (u+t2)° /9]

The collective resonance of the plasma, which describes the modes of collective motion
of the electrons, is determined by the condition €e(q,w + i0) = 0. For example, the famous
phenomenon of "Landau damping” can be explained by this collective resonance behavior of
free electrons in plasma. The resonance frequency is given by the dispersion relation [AB84]

. 3 1/2
wg = nge + (v®)¢?,  with (v?) = 2 U%’e 0°/? Fy)0(n) = v%e . (1 + 2592/4> , (5.37)

v w

and the corresponding energy-loss function is

4 .
w, €2(q,w + 10
I (q,w +10) =~ 424 )

5 . (5.38)
(w2 —w2) +wi (a,w +i0)

Obviously, for transitions with An = 0, the approximate expression (5.35) can be used.
For the optical transitions with An # 0, the approximation (5.36) for the inverse electronic
dielectric function can be performed.

5.2.3.2 lonic contribution

Theoretically, the final results can be obtained for calculating the spectral lines by inserting
Eq. (5.30) into the expression (5.27), where the ionic contribution is included in the ionic
dynamical SF Sj(q,w). But this procedure does not lead to satisfying results since the
unperturbed level energy E%p and the unperturbed wavefunction in the transition matrix
element M, (q) are applied. In the microfield formalism the perturbation of the plasma
environment on the eigenenergies is removed by the microfield ansatz [GHR91, Giin95]

Eup = Edp + C(8), (5.39)

where C() is related to the microfield distribution W (/3) in terms of the dipole interaction.

For the single-particle problem, the shift in the self-consistently defined self-energy is
compensated by the eigenenergy shift [LRKR17]. In analogy to the case of single-particle
problem, the following self consistent relation for the two-particle eigenenergy has to be solved

E.xp = El% +ReY,p.i, p- (5.40)

The current assignment is to reveal the implicit connection between the perturbed eigenenergy
and the SF, which is rather difficult and complicate and still under investigation. In the next
subsection we will show how this approach woks in calculating spectra line shapes in dense
plasmas.
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5.2.4 Spectral lines in plasmas

To investigate the optical spectra within the quantum statistical approach, we should return
to the two-particle problem, which is described by the atomic polarization function (i.e. the
second term in the cluster decomposition of the polarization function) [RKK*78, KKERS6].
The pressure-broadened line profile is then given by [GHR91, Giin95, OWRI11]

U.)4 —% . / ./ ./ / TV -1 .
Lw) =3 ggge B ) Ieli) - (@) B — g = Sig(w) +i0Y] 1i)F)
i’ f f!
(5.41)
with the SE for the initial 7 and final f states
Yif(w) =Re {Z;j(w) — Ep(w)} + iIm {3;(w) + Xf(w)} (5.42)
and the vertex correction
v d’p [ d’q "’p-q
if — / W / (QT)gfe(EP) VQ(Q) Mz%(Q)MJQf(—Q) 4 Me (543)
where the unperturbed transition matrix elements are given by [OWR11]
MO (q) =i {Zéna - / Pr g (r) 9T %(r)} . (5.44)

Evidently, the shift of transition energy is given by the difference of real parts of the SE for
the initial ¢ and final f states, whereas the broadening of spectral lines is determined by the
imaginary parts of the SE for the initial ¢ and final f states as well as the vertex correction Iy
Because of different dynamical time scales of ions and electrons, the electronic contribution is
usually calculated in the impact approximation and the ionic contribution is described within
the quasi-static approximation [GHR91, Gri97].

Introducing the microfield ansatz [GHR91], the total SE ¥, (w, F') can be approximately
decomposed into a frequency-independent ionic part determined by the microfield strength
F and an only frequency-dependent electronic part (for details see section 2.2.3.2). In this
work, we deal with the problem in a different way by treating the plasma electrons and
ions at the same level, i.e. directly via the DF. The RPA DF for the non-degenerate case
reads [KKERS86, Red97]

K _ _
erea (@) = 1+ 505 { V2 [Dlah) = Dap)] + 2/ [Dlaf) - Dlay)
_7;{ /2 [e—(azf)Q — e—(&:f)ﬂ +1/7/(29) e (23)% _ e—(IS)Q} }} (5.45)
with the abbreviations
hq (14 22)h2nee? Me
= 5, K =, =
“ (me kBT)1/2 me g0 (kpT)? ! Mion

- BEE) A BEE Y ew
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where D(z) = exp (—2?) [y dt exp (—t?) is the Dawson integral. Inserting this expression into
the single-particle self-energy discussed in the last chapter, an expression for the IPD can be
obtained, which is the Debye shift for the IPD in the low density case and is equivalent to the
expression (4.38). Then we have for the SE of bound two-particle states with the following
expression [RD79]

3 * dw Ny (w)] - Im eqs w1
5.6 = [ Vo) X M [ Rl @t D)

which is the SE in dynamically screened Born approximation with the RPA DF. Accounting
for the thermal motion of the plasma ions, which results in the Doppler broadening, the full
line profile is given by a convolution [Gri97]

[ m; o 2 Aw— A\
Itotal A — i Mion / dA I IP* (A n . _mlonc < ) ‘ 4
(Aw) wo V 27kT J_so v (Awr) - exp 2kgT \ wg + A/ (5.48)
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Abb. 5.3: Transition energy for the Lyman series iw = E,, — E15 and the threshold energy
for the bound-free transition hwy, = V' (00) — E15 with respect to the inverse Debye
length of electrons xe. The solid lines represent the results of this work. The dashed
lines and the dotted-dashed lines describe the numerical results of the Schrédinger
equation with a Debye potential [HZ82, QWWQ09] and a cutoff potential [HZ82],
respectively. The cross points are also calculated with Debye potential [QWWQO09].

The interaction of a radiating particles with the plasma environment results in both shift
and broadening of the eigenlevels of a two-particle state. At first, we concentrate on the
shifts of both the bound states and the free states. In the present work, we calculate the IPD
and the shift of bound states via Eq. (4.38) and Eq. (5.47), respectively. Comparison of our
results for the transition energies and bound-free threshold energies and the results predicted
by other theoretical approaches is shown is Fig. 5.3.

The positions of emission line centers are determined by the transition energies. One
of the commonly used theoretical approaches is to solve the Schrodinger equation with a



5.2. Quantum statistical approach for spectral lines in plasma 99

40— T T
|

|, shifted continuum
| (unshifted: 364.6 nm)

4p-2s

w
[=]

intensity (a.u.)
N
o

Lo
o

I
OO \I I I !

‘ Il
380 400 420 440 460 480 500 520
wavelength (nm)

Abb. 5.4: Optical spectra of a plasma at the electron density ne = 2.1 - 107 cm™ and tem-
perature T, = 1.02 eV calculated within RPA (5.47). Gaussian broadening with
FWHM of 0.002 Ryd is considered in the calculation. Both ITE and IPD are
systematically calculated from the quantum statistical approach. A continuum
background [OWRI11] is considered.

pseudo-potential [HZ82, QWWQO09] for eigenenergies and the corresponding wave functions.
Numerical solutions have been obtained using the Debye potential [HZ82, QWWQO09] or the
cutoff potential [HZ82, RGS86] as the pseudo-potential. From Fig. 5.3, it is seen that the line
center positions derived from the cutoff potentials are almost unchanged in comparison to the
pure Coulomb case. In contrast, the Debye potential predicts a strong modification for the
transition energy, in particular for relatively high densities (ke = v/nee?/(g0ksT) > 0.02/ay).
However, this result is in strong contradiction to the experimental measurements, where the
positions of line centers are only slightly shifted [RGS86]. In the Debye model, the shifts do
not separately depend on density and temperature but only on the screening parameter k..

The optical spectra of the Balmer series calculated within RPA combined with a con-
tinuum background due to Bremsstrahlung are displayed in Fig. 5.4. For the given plasma
conditions (ne = 2.1-10'7 ecm™3, T, = 1.02 eV), the IPD value is about 0.138 eV, which means
that the energy levels appear only up to n = 9 and the Balmer limit is shifted from 364.6
nm to 380.8 nm. Another feature of the predicted line shape (i.e. ITE) is the formation of
quasi-continuum states, i.e. the band structure, starting from the energy level n = 6. More-
over, the transition peak from 9p — 2s is washed out due to the broadening. In summary, to
calculate the spectra in the whole wavelength range, the first step is to determine the highest
existing quantum state from the IPD theory. The second step is to calculate the line shape
up to the highest energy level predicted by the IPD theory. Actually, the optical spectra of
Balmer series under these conditions were experimentally measured by Goto et al. [GMK10],
where the disappearance of the transition peaks is observed already starting from a lower
principal quantum number n = 6. The reason for this disagreement arises from the fact that
the ionic contribution to the broadening is excessively underestimated by RPA. Comparing
the experimentally measured line broadening of H,, line with the RPA result, it is shown that
the RPA result is only 25% of the experimental value.
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The line merging due to the broadening does not have a simple relation to the shift of the
continuum edge. Generally, both effects have to be considered carefully and comprehensively
for correctly reproducing the experimental spectra. For weakly coupled and non-degenerate
plasmas, the line merging occurs at lower principal quantum numbers in comparison to the
IPD effect as shown in Fig. 5.4 and measured in laser produced plasmas [HAJ"13a, NMG'98].
Recently, the optical spectra in highly charged aluminum plasmas are observed, where the
continuum lowering is so large that the lines disappear before they are subject to broadening
sufficient to merge them [HAJ"13a]. Therefore, it is of relevance to develop an accurate
spectral line theory using the systematic quantum statistical approach, since spectroscopic
methods are the most reliable tool to analyze density and temperature conditions.

5.3 Further work

We have shown that both effects, IPD and ITE, have to be considered to explain the dis-
appearance of spectral lines. The synthetic spectra and the transition energies are system-
atically described using a consistent quantum statistical approach within the simplest RPA.
The Debye results for both IPD and optical transitions are obtained. Of course, the Debye
model is very simple and the ionic contributions are strongly underestimated. For the hy-
drogen plasmas, the ion contribution is more important. The RPA is not satisfied and has
to be improved. The underestimation might be rendered by using the ionic structure factor
to calculate the line broadening and shift like in the case for the IPD when going beyond
the RPA [LRKR17|. Additionally, the electron contribution can be improved by introducing
the T matrix describing strong collisions. Furthermore, photon re-absorption plays an im-
portant role for the transport of radiation in a plasma, which has a strong influence on the
transitions from the low quantum numbers [OWRI11]. This has to be taken into account in
calculating the line shapes. For higher levels, the transition rates may be better described via
semi-classical description, for example using wave-packet states for the electrons [LGRR16].

In the context of new experimental facilities exploring warm dense matter [HAJ13a,
CVCT12, KCK™16, NMG"98]|, strongly coupled and nearly degenerate Coulomb systems
can be produced. A detailed description of the spectrum emitted from such systems in
equilibrium and non-equilibrium conditions is still a challenging problem. As shown in this
work, the quantum statistical approach based on thermodynamic Green’s function technique
provides a possibility to understand the many-body systems under such extreme conditions.

For further works, we are aiming to find out a consistent description for both single- and
two-particle problem in terms of the SFs at the same time. Additionally, how to realize the
application of our approach, i.e. thermodynamical GF technique, to inner-shell transitions,
for example, the K, spectral lines [Senl10, Chel4| deserves further extensive investigation.
Some preliminary results see Appendix E.

Stark broadening parameters of H-like He-like carbon systems are of interest for hot and
dense stars, as well as for the diagnostics of laser-produced plasmas [Oma07]. To reveal
conditions of extreme pressure ionization and line merging in spectroscopic observations,
time- and space-resolved extreme ultraviolet spectra of carbon plasmas were recorded and
analyzed in detail [NMG™'98]. Obviously, a detailed description of the spectrum emitted by
such an expanding plasma in non-equilibrium is a challenging problem. It is of great interest
and of relevance to develop an accurate spectral line theory, since spectroscopic methods are
the most reliable tool to analyze density and temperature conditions [Sal98, Fuj05]. The
most interesting and most important feature of these spectra is that a dip in the spectrum
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near the series limit for the DH case is shown in the numerical simulation. This is caused by
an overestimation of the continuum lowering, leaving no merged bound-bound transitions to

contribute to the spectrum in that region [NMG98].
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Abb. 5.5: Pressure ionization and line merging in strongly coupled carbon plasmas [NMG*98].
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for comparison in simulations.
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6. CONCLUSION AND OUTLOOK

To study the optical properties in plasmas, two different theories, i.e., the quantum master
equation approach and the thermodynamic Green’s function technique, are introduced in
the present investigation. Within the Born-Markov approximation, the QME for an atom
interacting with the charged particles of a plasma environment has been derived, where the
influence function of the plasma environment is determined by the dynamical structure fac-
tor of the plasma. Alternatively to the QME approach, the thermodynamic Green’s function
technique within the framework of the quantum statistical theory has been applied to inves-
tigate the continuum lowering, the ionization potential depression, and the modifications of
spectral lines in dense plasmas.

The Rydberg atoms considered in the present work are an interesting object to describe
the transition from the quantum micro-world to the macroscopic classical world where new
properties such as trajectories emerge [Joo03, Goc07, Gal94, Hez10, Sch07, Rob04]. A main
advantage of the QME for a hydrogen Rydberg atom surrounded by a plasma is the use of
robust states instead of the pure hydrogen eigenenergy states [Goc07, LGRR16]. Generally,
the Rydberg states are assumed to be described quasi-classically. Here we provide an ex-
planation for this treatment. The treatment of localization due to the interaction with the
surrounding environment allows the transition to classical physics and the very efficient use
of classical descriptions.

Introducing the Brown circular-orbit wave packets [Bro73, GS90] as the optimized robust
states for the bound Rydberg electrons, the transition rates were calculated. Comparing
with experiments [DBD79] and MCS results [VS80], it turns out that the use of robust wave
packets gives a better agreement with measured data and classical calculations than the
approach using pure hydrogen energy eigenstates. The wave packet is constructed from the
superposition of different quantum states and is characterized by an average quantum number
ng. On the other side, it is well known that the low-lying bound states are more appropriately
described by the quantum number. Therefore, a critical quantum number n., is introduced
to represent the transition between descriptions of the bound electron in hydrogen atoms by
the wave packet and the pure quantum eigenstate.

As another example for the use of the atomic master equation, the spectral line shape
for transitions at low quantum numbers has been derived. The equivalence with a quantum
statistical approach to profiles of spectral lines [Giin95] has been shown. After decoupling the
ion and electron subsystems of the plasma environment, only the electron contribution to the
spectral line shape has been considered (impact approximation). The standard description
of the interaction with the plasma ions is the ionic microfield. The ionic structure factor and
the corresponding pair distribution function determine the microfield distribution [DwP86].
A superposition of the Stark shift in the ionic microfield and the electron contribution in
impact approximation lead to the line profiles as derived from the unified theory [Giin95].

A fundamental issue in the theory of open quantum systems is that the subdivision of the
total system into the reduced system and the bath is arbitrary and can be changed [Wei99,
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BP07, Goc07, Rop13]. Degrees of freedom of the bath which are strongly coupled to the
reduced system may be incorporated into the reduced system, so that the bath contains only
weakly coupled degrees of freedom, which may be treated in the Born-Markov approximation.
Various approximations, in particular the Born-Markov approximation and the rotating-wave
approximation, performed in the present work can be improved in future work, see also
Ref. [ZMR97, BP07]. Furthermore, the electrons in atoms and the plasma electrons must be
antisymmetric so that exchange terms will occur. With respect to radiation processes, it is
in general not the single electron which emits radiation but the whole reduced system which
couples to the radiation field [KKER86]. Another interesting application of this aspect is the
treatment of radiation from many-electron atoms, for instance the K, radiation [Senl10].

Another interest and important feature for an atom immersed in a plasma is that the
existence of the plasma environment also leads to a reduction of the bound electron binding
energy because of the screening effects in the plasma [KKER86, Sal98, Fuj05, KSKBO05]. This
means there is a maximum principal quantum number n,,,x under a certain plasma condition,
above which the continuum states for electrons can be defined. From the quantum Brownian
motion [Joo03, Goc07] we know that a wave packet description constructed from plane-
wave states can be applied for free particles moving in a bath. Moreover, no abrupt jump
between the bound states and continuum ones is observed in spectroscopic measurements.
Therefore, it would be of interest to investigate whether a wave-packet description might
be more suitable near the continuum edge for both bound and free states, if we extend the
definition of the wave packet to include the continuum states. The remaining question is
how we can determine the maximum principal quantum number 7.y, i.e. the position of
the continuum edge. Within the QME approach, this question is rather difficult to solve. As
shown in this investigation, the Green’s function technique is more convenient to understand
problems related to the continuum edge [LRKR17].

As mentioned above, the thermodynamic Green’s function technique is also a powerful tool
for investigation of the spectral lines in dense plasmas. This approach has been successfully
applied for hydrogen, helium, and hydrogen-like ionic spectral lines [Giin95, Oma07, Lorl4],
where the ionic contribution is described by the microfield. Different from this treatment,
we have introduced the structure factor as the indicator for the ionic correlations and fluc-
tuations. In fact, both the microfield distribution and the structure factor are related to
the pair distribution function [DwP86, KSKB05]. With the help of the structure factor, the
in-medium two-particle problems, i.e. the ionization potential depression and the emission
spectral lines in a dense plasma, are investigated using the thermodynamic GF technique.

With respect to the IPD effect in the plasma, we demonstrated that ionic correlations and
fluctuations play a critical role in determining the IPD. The simple but elegant expression for
the IPD shown in chapter 4 has many advantages in comparison with other phenomenological
models, such as the SP [SPJ66], EK [EK63] and IS [ZM80] models, as well as the numerical
simulations [CFT15a, STJ*14, VCW14, Str16]. On one hand, the traditional phenomenolog-
ical expressions for the IPD are generally restricted in a certain plasma regime, as verified by
different experimental observations [NMGT98, HAJ"13a, CVCT12, Ct16, KCK'16]. On the
other hand, detailed structures, for example, the spatial distribution of the ions in matters,
can not be considered in these approaches. Additionally, the numerical simulations are time
consuming, although the numerical simulations are nowadays extremely popular and have
excellent ability for studying the detailed structures and properties of materials. Therefore,
such kind of approaches are inconvenient and even awkward for simulation codes such as
FLYCHK [CCM*05] which model plasmas under extreme conditions. Distinctly good agree-
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ments are seen with various experimental measurements for Al plasma and for CH mixture.
In particular, for mixtures of different ions with large mass and charge asymmetry, the exper-
imental results can not be explained by any phenomenological models [KCK™16], since those
models could not include the influence of different ions at the same level. Our model has the
ability to take into account this feature through the structure factor under the assumption
of linear mixing rule, and provides a reasonable and good explanation for the experimental
observations. As proposed, it would be of interest to perform experiments with pure sub-
stances like C. Compared to the large IPD seen in CH experiments, a lower IPD is expected
for a pure C plasma.

Our approach is based on a Born approximation for the interaction of the two-particle
system with the plasma ions, which can be improved in different ways. Firstly, the MW
approximation for the self-energy is employed. This can be replaced by a more advanced
treatment, i.e., the GWT-approximation [KKERS86, SL13]. Secondly, the Born approximation
has to be completed accounting for multiple interaction. Taking into account the strong
collisions and multi-particle interaction, the so-called T-matrix approximation [KKERS6,
Ro6p13] can be performed. Thirdly, more details of the ionic subsystem may be incorporated,
in particular, the relaxation of the ionic subsystem and collective excitations (plasmons,
phonons) can be treated. Our model in terms of the ionic static structure factor could be
improved by systematically removing again some of the approximations for the dynamical
SF [VDTG12, WSGRI17]. In particular, the plasmon pole approximation in handling the
dynamical SF is a model assumption which can be improved, e.g., by numerical simulations.
Finally, an advantage of our quantum statistical approach is that any degeneracy effect can
be taken into account in a systematic way, which becomes of interest at increasing densities.

A more serious problem is the use of the quasiparticle approximation. Within a so-
phisticated Green function approach, the quasiparticle propagators are replaced by spectral
functions, see, e.g., Refs. [KKER86, For09], which describe also the finite life time of the
quasiparticle excitations. This leads to the fact that the energy gaps between the optical
lines describing bound-state transitions are washed out [NMG198, OWR11]. According to
our knowledge, there exists no unified quantum mechanical theory for this phenomenon. We
have shown that both effects, IPD and ITE, have to be considered to explain the disappear-
ance of spectral lines. The synthetic spectra and the transition energies are systematically
described using a consistent quantum statistical approach within the simplest RPA. The De-
bye results for both IPD and optical transitions are obtained. Of course, the Debye model is
very simple and the ionic contributions are strongly underestimated. In order to better un-
derstand and describe such spectra from plasmas observed in nature and laboratory systems,
a consistent and systematic quantum statistical theory is indispensable.
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APPENDIX






A. DYNAMICAL STRUCTURE FACTOR AND
RESPONSE FUNCTION

The response function -, is the real part of the Laplace transform of the density-density
correlation function. With the eigenstates |¢y,) of the bath, (Hg — Y., pteNe)|én) = Bn|¢n),
the spectral density of the density—density correlation function follows as [Rop13, LGRR16]

QW)= Z s 3B, (9nl0-aBlém)(Om|0qBldn)2m6(w = Bu/hi+ B /h). (A1)

enm

The spectral density is the Fourier transform of the density autocorrelation function,

PN A~ dw WT
(0-an(Miqs0)s = [ SoTaw)e . (A2)
We find [LGRR16]
e? duw’ 1
T, =—<J(q,— —1I(q, -’ A.
(@)= eyt )+ Pl [~ P w1 (4.3)
where P denotes the principal value of the integral.
Now we can use the fluctuation-dissipation theorem
o2
Yr(q,w) = h‘;I( w) (A4)
and have for S,(q,w), which determines the Lamb shift, the Kramers-Kronig relation
dw'’ 1
Haw)=P5 | T-Ia.- = 72 (q, . A5
Sr(d,w) PHQ/ (a, =) w—w 7)/ e w )w—w’ (A:5)

The response function can be related to the dynamical structure factor (DSF) of the
bath which is defined via the Fourier transform of the correlation function of the density
fluctuation [HMS86]

Sblaw) = s [ dr e (6008(r)80-qn(0) s (A6)

2w nplﬁoe
where np is the electron density in plasma and 09qB(7) = 0q,B(7) — (0q,8(7)) B is the density
fluctuation of the electrons. Because of the plasma environment in equilibrium, the condition
(0q,B(T)) B = €enpidq,o holds for all times. Then the DSF can be rewritten as

SB(q7°J) - 2’/T7”Lp]Q(]€/ dr e <5Qq B( )59—(1 B( )>B

1

Np]
=——1J(— P §(w)d(q). A.
s () + 5 600)3(a) (A7)
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The last term in the above expression contributes only at w = 0 and q = 0. For dynamical
processes this contribution can be neglected.

It can be seen that the functions v,(q,w), Sr(q,w), I(q,w) and Sg(q,w) are all related
to the density-density correlation function and connected to each other, which means that
we need only one of them to construct the correlation function of the plasma environment.
In this work we use the DSF Sp(q,w) which is directly related to the inverse dielectric
function e !(q,w) in plasma physics by employing the well-known fluctuation-dissipation
theorem [KSKBO5]:

Sp(q,w) = Y g Im {Elg(l)g € (quw+ w)} : (A.8)

The dielectric function can be treated by perturbation theory or numerical simulations as
a quantum many-body problem. An analytical approach calculating the dielectric function
in context of the linear response theory and the random phase approximation can be found,
e.g., in Refs. [KSKB05, Rop13].



B. AUTOCORRELATION FUNCTIONS AND LINE
SHAPE FUNCTION

In general, the line shape function is given by the Fourier transform of the dipole-dipole
correlation function [Giin95, Fuj05]

L(w):%Re {/Oooé()exp[ i (w — wo) ]dT}, (B.1)

where w and wq are the transition frequency in plasma and in the isolated system, respectively.
The dipole autocorrelation function ®(7) reads

(1) = Tr {dU'(r,0)dU(7,0) p}, (B.2)

where d is the dipole operator, U(7,0) the time evolution operator, and p is the statistical
operator of the radiator.
The canonical current density is generally defined as [Rei05, Rop13]

Jk = Zjﬁ = Qio Z Le hip n;,kv (B.3)

where the index ¢ denotes the particle species, and npx = aL_k#aerkﬂ is the particle number
density. It can be seen that the current-current correlation function can be expressed by the
density-density correlation function

e o i\ 2 €cCel . o
(Ji;dk )2 = (QO> Z Z p- P/<”p,k§np,k>z- (B.4)

For optical transitions involving only one bound electron, this expression can be rewritten in
a form via the matrix elements

.. he \?2
<Juu§J/u/ >Z = Z ( > Puv - p,,uy<np;np’ >z- (B'5)
p,p’

Additionally, the dipole-dipole correlation function can be also reformulated via the density-
denisity correlation function

ihe ihe
d V’ d 1727 - AN 14 ; A
< a o= <; mew;w$do PuvTip % Mewp o

oy

,/u,ynp/ >Z

2
.p Ny Vg B.6
mew,uz/Q0> Puv puu<”panp ) (B.6)
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To derive this expression, the relation (¢,|t|¢,) = —ih{¢.|D|dv)/ (Mewpy) is utilized. Com-
paring the formula (B.6) with the expression (B.5), we found [Lor14]

r,. .
<d,uu§duu >z = _WT<J}U/;JMV >z- (B7)

nuv

Within the framework of the Green’s function technique, the line shape function is de-
termined by the polarization function, which can be calculated from equilibrium correlation
functions. The longitudinal polarization function is related to the irreducible current-current
correlation function via the formula [Rei05, Lorl4]

k2B

n -1 -1 irr
T8 (g, ) = —i (00 o il (.3)

with the longitudinal component of the above defined canonical current density ji.



C. RELATION TO THE UNIFIED THEORY OF
SPECTRAL LINE SHAPES

We investigate in this appendix the relationship between the spectral line profile and the
response function which relates to the retarted two-time Green’s function [ZMR96, ZMRI7].

In plasma, if the interacting transiti0n2frequency of the reduced atomic system wy,,’ is
larger than the plasma frequency wy, = (%)1/ 2 the imaginary part of the inverse dielectric
function can be approximated as

tm {0, (k, @) } ~ —~Tm {€1ong (k, w)} (C.1)

In this case follows the relation discussed in the appendix A

‘C(A w) =Im 510ng(qa w) = h(l - eﬁw/kBT) Qoeok? ’Yr(kﬂ'u)

2he?

1 e )
hw/kpT —ET IWT | A PN
= (1 —e /kB )QoeokQ -Re {hz /0 dre (& <Q—k,B(T)Qk,B(O)>B} . (C2)

We must keep in mind that the above expression implies that it is not a single atom but
the plasma as a whole emitting or absorpting radiation. In the present work, we consider a
radiating system which consists of a single radiator immersed in a plasma environment. In
this case the spectral line shape is related to the Laplace tranform of the dipole correlation
function of the atomic emmitter A,

ho kT 2he’ L% er iwr)AH H
L(aw) = (1= /Ty 0 el [T dre e gl (A ) . (C3)
Qoeok h* Jo ? ’
where the trace is performed over both the atomic system and the bath variables. The index
H denotes the Heisenberg picture.

In oder to give the Doppler broadening in the case that no density effects are taken into
account by neglecting the surrounding plasma we identify the emitting atom

(01,A(T)0-1,A(0))A- (C.4)

In zeroth order with respect to the interaction, we simply have after introducing the atomic
eigenstates

(o) = O Rl 3 e e [ are Tl 0
N hQoepk? nn'P 0 T n.P |0k, Al¥n/ P+k
62(1 . efuu/kBT) i
= lim Re{ Z3 e PEnP (), b oY) n 2 },
T n;) A |(n,P |0k A0 P11)] Lfﬁ}p(k,w i)

(C.5)
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with

L(o) k2 + 2K2P - k

o pKw+i6) = h(w+1id) — Iy — S (C.6)

This gives already the Doppler broadening. ( ' P+k) denotes matrix elements of

the charge density operator @ﬁ A
To investigate the pressure broadenlng, we introduce the interaction picture where the
operators depend on time only via Hy = Hy + Hg so that

OH(t) — e(i/ﬁ)(ﬁo-ﬁ-ﬁint)te—(i/ﬁ)ﬁotOI(t)e(i/ﬁ)f{ote—(i/ﬁ)(Ho-i—ﬁint)t. (07)

We apply the Baker-Campbell-Hausdorff-formula for the exponential function for two non-
commutating operators A and B [ZMR96, ZMR97, Rép13]

~1+ /01 dxe*“if?e”i[l + /Oa: d)\e*)‘ABee)‘A]; (C.8)
GAtBo—A _q / ! dper(A+B) po—ch
0
~1+ /01 dx[l + /O:c d)\eAAEe_AA]exAée_mA. (C.9)
With these expressions the time dependence of the operator gk a(t) in Heisenberg picture

with A = zf[ot/h = i(lﬁIA + fIB)t/h and B = iﬁimt/h is calculated up to the second-order
terms in Hiy,

t1
da) = (15 [ - [ dn [ ol ) )

t
(1_/ dtl mt tl hQ/ dtl 1dt?l{lnt( )HlIIlt( )) (C'IO)
0

where we have neglected the higher order terms in ﬁmt . The first-order terms vanish because
of the commutation [HL (1), 0% (t)] = 0.
In the zeroth order the above expression yields the natural line profile:

* —€T _IWT [ A ~ e_ﬂEi A~ o fwtiws . —e)T
| dre e el a0 =3 7 (il i) [ dreerion

'7j

1
0 e A1
1Al e (©1)

Going up to second order with respect to the interaction we have to perform the trace
of the correlation function also over the bath variables. We have three contributions to the
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Laplace transform (C.3) in the second order:
(2) 1 o —eT _iwT T 2 Al Al Ni n
L) xRegy [T dre e [ty [T dtalh (1) (1) A (D))
+ [ an / it (04 o () Fhy (41) Fh (82) 1 0) (C.12)
- [Tt [ ol ()8 a () B t2) )}

To perform the integration over time we introduce the atomic eigenstates |i), the Hilbert
space of the bath variables is separated and the trace (...)p is performed independently.
The matrix elements of the following operators in the atomic Hilbert subspace arise

L@Y = i / dre T Y / dty / dty 55— 2k2k2 (C.13)

kiko

X Oy A(£2) Oy A (1) 01 A (T) 0" 1 2 (0" 1, B(2) 0"y B(t1)) B

t1
22 T um'
>——h4/ dre”* Z/ dtl/ dty 55 2k2k2 (C.14)

kika

X @k,A(T)ékl,A(tl)ng,A(tQ)éfk,A<@7k1,B(tl)@fkg,B(h))B?

L£3Z3) = 1 /OO dre” e > /T dty /T dt2; (C.15)
R Jo lks 70 0 G%k%k%
X Oy A(£1) O A (T) ey, a (£2)0 1 A (011, B (11) 0" 1, B(2)) B-

The trace over the atomic system has the form Zg S e PE iﬁm with £;; = (i|£]5). with
the matrix elements (atomic form factors) Fj;(k)e™ist = (i |gk’ A(t)|7) after writing the time
dependence in the interaction picture using the eigenstates of the atomic system |i) we have

1 1 /OO _ . T t1
R —_ dre ETew”/ dt/ dt
X Fyj(k1)e™ % Fjp (k) et By (k)€™ Fri(—k) (0, 5(—71)0k,,8) B, (C.16)

where we used k; = —ko because of the homogeneity of the bath and ¢; — to = 7 because

of the equilibrium of the bath. In this work we only show the derivation for El(-i.’l)

treatments can be performed for 5(2 2 and E( 3,
Now we can perform the 1ntegrals over the tlme variables. After integration by parts, we

have for EZ(Z b with to =t1 — 1y

. Similar

0 . T t1 . . .
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This expression can be further simplified using the RWA by setting m = i for E( b,

Using the definition of Gamma function I',(k,w) we obtain

21) ’Fw kl ‘ ’Fm( )‘2 *
I''(k P —w). 1
21: 2k4 Z w+wzn +Z<€) T( b tng w> (C 8)

Similarly for £22) and £23) we find

22) ’an ki ’ ‘Fm( )’
= Tk, wim , C.19
21: Qk%% w—i—wm—i-za) (s, win ) (C.19)
23) u k1 k1)|an( )‘2( % >
Pr k s Win Fr k sy Wng — .
Ly hgz k4Z P (K1, win + ) + T3 (K1, wni — w)

Then we have the spectral line profile

2e2(1 — eMw/ksTy L e=BE: | Fy, (k)|? 1
hQoepk? ; Zpn wH Win +1e w+ wip + i€+ iTanS — iy

in

L2 (pw) =

(C.20)
with the vertex correction coefficient I'}; and the broadening and energy-shift coefficient F
y 1 1 .
ry, = 72 Z WFii(kl)an(_kl) Ly (k1 win +w) + T7(ky, wpi — w) |, (C.21)
rss = = Z 2k4 Z (\FW (k1) T (K1, wyy — w) + [ Foj (k1) Ty (K1, wij +w)>, (C.22)
1

where the trick 1 + 2 = = is used for the derivation of LA (A w).



D. PARABOLIC COORDINATES AND STARK
EFFECTS

The solution of the problem of motion in a centrally symmetric field in terms of spherical
coordinates (r, 6, ¢) is generally useful. This is already shown in investigating the properties of
hydrogen atoms, where the bound electron moves in a spherically symmetric Coulomb field.
Another possibility to such symmetric Coulomb field is to separate the variables in terms
of parabolic coordinates (§,n, ¢), which is defined with respect to the Cartesian coordinate
system (z,y, z) via [Sch68, LL85]

E=r+z, n=r—2z ¢=tan ‘(y/x) with 7=/ +y2 + 22, (D.1)

where £ and 7 takes values from 0 to co and ¢ from 0 to 27. For hydrogen atoms, solving
the Schrodinger equation
R, e?

0
—ma%b(ﬁ t) = H(ﬂb(ra t) = Ew(r) t) HO = _ﬂ Vr _471'807' (D2)

in parabolic coordinates, the following normalized wave functions are obtained

\/§ eimqb

@Z}nﬂlzm(& 7, ¢) = ﬁ fn1m(§/(na0)) fn2m(77/(na0)) \/72? (D'3)
with
Fom(p) = % (pJFPWF(—p, m| +1,p) e=#/? plmI/2, (D.4)

where F'(—p,|m| + 1, p) is the confluent hypergeometric function, ny and ny the parabolic
quantum numbers and m the magnetic quantum number. They connect to the principle
quantum number via

n=mn; +ng+ |m|+ 1. (D.5)

Obviously, the possible values of the quantum number |m/| for a given n run from 0 to n — 1.
For fixed n and |m|, n; takes values from 0 to n— |m|— 1. Introducing the following notations

1 = (m-+ny—ng)/2, po=(m—ny+n2)/2, (D.6)

the wave functions in the parabolic coordinates for the state |[ninam), or equivalently |nupe),
can be transformed to those in the spherical coordinates which is represented in terms of the
quantum numbers |nim) [LL85]

Q;Z)nlm = Z <lm|M1M2> 1/1nu1u2 (D7)

p1+p2
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or conversely
n—1

Ungini = (L p1 + pia i p12) Prim (D.8)
=0
with the overlapping coefficients (lm|u1p2).
In the case that an atom is placed in an external electric field £ with the perturbation
Hamiltonian

H =—e€z=—eErcosb, (D.9)

it is more convenient to use the parabolic coordinates, since the polarization axis is in a
certain direction in space, here in the direction of positive z.

Because of the perturbation of the external electric field, the energy levels of the hydrogen
atoms are altered, which is generally known as Stark effect. This modification of the energy
levels is determined via the perturbation theory up to the second order. The displacement
of the energy levels of the level E,, is given by the form

I
AE, = —gagk)gigk (D.10)

with the atomic polarizability tensor of rank two 0%(1?)- To understand the Stark effect, the

matrix elements for transitions ninom — ninsm’ with in the same principle quantum number
n should be studied. In this case, only the diagonal matrix elements are non-zero and given
by

2 | 2 _ 2 2
[ Wi €20V = g [ 7 ["deando (6 = 1) . (D11)
Then the energy displacement for the linear Stark effect (in atomic units) can be obtained
(1 _ 3
AEn = 55 n(n1 — TLQ). (D12)
To calculate the quadratic effect, it is not convenient to use ordinary perturbation theory

and will not be detailed here. For details, the textbooks in quantum mechanics and atomic
physics [Sch68, LL85, SVY81] are recommended.



E. MULTI-ELECTRON SYSTEM AND INNER-SHELL
TRANSITIONS

In discussing shift and broadening of bound electrons induced by electron scattering, we
should treat the ion as a bound system consisting of N electrons each of negative charge —e
and mass m, and a nucleus of positive charge +Ze and mass M. Within the independent-
particle approximation (IPA), each bound electron is considered to move in an effective
central potential representing the Coulomb interaction with the nucleus and the (N — 1)
other electrons. In other words, an effective composite system of two interacting particles
can be taken into account and the so-called screened hydrogenic model (SHM) [FBROS8| can
be applied.

The effective charge, which is seen by the radiative electron belonging to the k subshell
of a given configuration {(n1l1)%" -+ (nglk)? -+ - (Nky s lkmay ) 7™ }, is given by [FBROS]

kmax

Zy=2—=Y 0w - (gr — Okir) » (E.1)
k/

where oy and Jip are respectively a screening coefficient and the Kronecker symbol. The
coefficients oy, describing screening of the k subshell by the &’ subshell (k < k' for outer
screening effect and k > &’ for inner screening), are constants that are independent of the ion.
gk is the integer population of the k subshell varying from 0 to 2 (2l + 1) with le?ff‘ gr = N.

Tab. E.1: Screening constants oy of the screened hydrogenic model [FBROS|

/

I K 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
1s 0.3100 | 0.0135 | 0.0003 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
2s 0.7388 | 0.3082 | 0.2522 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
2p 0.9461 | 0.3481 | 0.3495 | 0.0392 | 0.0210 | 0.0007 | 0.0097 | 0.0060 | 0.0000 | 0.0000
3s 0.9511 | 0.8511 | 0.6480 | 0.3106 | 0.2496 | 0.1676 | 0.0477 | 0.0245 | 0.0290 | 0.0000
3p 0.9696 | 0.8550 | 0.7916 | 0.3002 | 0.3136 | 0.3226 | 0.0513 | 0.0338 | 0.0392 | 0.0000
3d 0.9987 | 0.9865 | 0.9413 | 0.4847 | 0.3230 | 0.3786 | 0.0743 | 0.0781 | 0.0188 | 0.0224
4s 0.9340 | 0.7502 | 0.8500 | 0.6718 | 0.6068 | 0.6547 | 0.2983 | 0.2881 | 0.1889 | 0.1276
4p 0.9886 | 0.9068 | 0.8899 | 0.6760 | 0.6770 | 0.6543 | 0.2988 | 0.3348 | 0.2663 | 0.2574
4d 0.9988 | 0.9973 | 0.9891 | 0.9856 | 0.9109 | 0.7160 | 0.4474 | 0.3416 | 0.3438 | 0.2737
4f 0.9988 | 0.9983 | 0.9955 | 0.9891 | 0.9280 | 0.9768 | 0.5507 | 0.4388 | 0.4126 | 0.3863

Classically, all the electrons and the nucleus are regarded as point charges and their spatial
distributions are described by the Dirac-delta functions. This description is not valid from the
viewpoint of quantum mechanics where each of the atomic electrons is being characterized by
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an extended charge distribution. The charge distribution is generally scaled by the hydrogenic
wave function [Sch68, FBROS]

2Zu\*? [(n—1—1) /2Zyr\" Zmr] o 27
ot (Znt, ) = n " R i ray il E.2
Bni(Znis ) < n ) 2n (n +1)! < n ) exp{ n } n-i=1 n ) (E-2)

Based on the SHM, an effective two-particle description is introduced within this chemical
model for the the A-particle GF. In the ladder approximation, the A-particle GF satisfies the
Bethe-Salpeter equation [SRS90, RSSN98, R6p13]

Ga(l--- A1 Al 2a) = GY(1--- A; 2a) - H5” (E.3)

1. AN

with the interaction Va(1---A;1"--- A") = 37,V (ij;4'5") - [z Orar- The unperturbed
A-particle GF is given by

GO Az = SO (A = I @) J(3) _ fWFR) - fB) x g5 (L, A)

za—e(l,---,A) B za—e(l,---,A)
(E.4)

with the following shorthand notations

B A A
fn)=1-fn), e,---,A)=> & Z , (E.5)
=1 =1

ga(l-, 4) = {exp[B (1 A) + <—1>A-1}” (E.6)

The composite A particles can be decomposed into an Ath optical electron involved in the
transition and a rest atomic core § = (1,--- A—1) in the frozen orbital approximation. Then
the effective two-particle GF can be expressed as

GS"(1, 8) = GY(A) G + G Gy VAT G5 (1, 9) (E.7)

with the effective mean field potential V}1¥.

The discussion displayed in the present section gives a possibility to calculate the K, lines
in plasmas via the GF technique. Before we consider the specific physical systems, there are
still a lot of other problems that have to be solved. For example, how can we build the
effective two-particle vertex function to replace the transition matrix element M, (q)? How
can we handle the relaxation of other bound electrons during the transition?
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