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Abstract

The aim of this thesis is to analyze both theoretically and experimentally the prop-

agation of single and multi-photon states in integrated waveguides arrays, which

can be applied in quantum computation and simulation. As a first part, the impact

of decoherence on the dynamics of a system is studied, analyzing the cases of

distinguishable and indistinguishable photons. The next part covers the study

of quantum suppressions, where conditions necessary for suppression of certain

output distributions is investigated. Finally the implementation of a photonic

quantum SWAP gate is presented. All experimental realizations were performed

through integrated photonic quantum circuits, fabricated with the femtosecond

laser writing technique.

Zusammenfassung

Das Ziel dieser Arbeit ist es sowohl theoretisch wie auch praktisch, die Propagation

von einzel- und viel-Photonen Zuständen in integrierten Wellenleitersystemen zu

untersuchen, mit Anwendung auf die Bereiche Quantum Computation und Quan-

ten Simulationen. Zu Beginn wird der Einfluss von Dekohärenz auf die Dynamik un-

terscheidbarer und ununterscheidbare Photonen studiert. Weiterführend wird die

Unterdrückung bestimmter Quantenzustände, ”Quantum Suppression”, analysiert.

Der letzte Teil der Arbeit befasst sich mit der Implementierung eines photonischen

Quanten-SWAP-Gates. In all diesen Arbeiten geschieht die experimentelle Um-

setzung mittels passiver, integrierter, photonischer Quanten Schaltkreise, welche

mittels Femtosekundenlaser hergestellt werden.
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CHAPTER

1
Introduction

Understanding how light propagates in a guided structure, such as an optical

waveguide, and how its properties can be manipulated is crucial for development

of new light-based technologies, both in the classical and quantum regime. In

the last decades, areas like quantum information [1], quantum cryptography [2],

quantum metrology [3] and quantum simulation [4] have had a great impact due

to development of quantum sources, integrated circuits and detection systems,

making these areas more realistic from experimental point of view. Ultimately, all

these advances in quantum technologies could be determinant in the fabrication

of a possible quantum computer [5], which promises to outperform a classical

computer in several tasks like, for example searching databases [1] and quantum

simulations.

To this date, however, none of the available quantum technologies have proven

to be a complete and purely quantum platform, as they execute small and simple

tasks which can be performed by a classical computer in a more (or comparable)

efficient way. Nevertheless, such technologies could be the building blocks of a

future genuine quantum platform. In a view of that, work done by Knill, Laflamme

and Milburn [6] attracted a lot of attention showing theoretical possibility to create

an efficient quantum computation with linear optics, namely using only beam split-

ters, phase shifters, single photon sources and photo-detectors. Several physical

platforms have been used for the development of quantum technologies such as

ultracold atoms [7], trapped ions [8], spin chains [9], nuclear magnetic resonance

[10] and photons [11].



Photons, in particular, offer significant advantages, such as low decoherence, high

mobility, easy manipulation and individual addressing, by employing simple op-

tical components, high speed transmission and the possibility to encode infor-

mation in several degrees of freedom, such as polarization, path, time or orbital

angular momentum [12]. One drawback is the lack of interaction between photons,

which prevents nonlinear effect used for the implementation of some deterministic

quantum operations [13]. The generation of multi-photon states is still an open

challenge. Due to the scalability of the photon sources, generation of 8- and 10-

photon entangled states represents actual milestone [14, 15].

Photons on chip integrated photonic waveguides [11] can be viewed as a very

good platform since it provides high stability, low noise and small size. This is

opposite with the situation in bulk optics where the increase of the components’ di-

mensions and the size of the setup enhance problems related to stability and noise,

making integrated arrays of waveguides to be ideal candidate for photonic platform.

All these features make the integrated photonic waveguides a very controllable

platform, allowing to study not only photons but it opens also the possibility to

study other quantum systems as well, through quantum simulations with photons

[12].

Arrays of waveguides have interesting properties such as formation of bands and

gaps, analogous to the formation of band-gap energy spectra in crystal lattices

studied by Bloch [16]. The study of propagation of light in these periodic media can

be traced back to the time of Lord Rayleigh [17] until today, where optical analogues

of many quantum effects have been observed like the Bloch oscillations [18, 19],

quantum Zeno effect [20] and Anderson localization [21]. All these achievements

are largely due to the plasticity of waveguides, where the manipulation of the flow

of light is very versatile [22], adding another advantage to waveguides as a quantum

platform. Interestingly, the propagation of light in these arrays manifests through

discrete diffraction or ballistic spreading, which can be modelled by using the

discrete Schrödinger equation [23]. These properties make waveguides ideal for

the observation of genuine quantum effects like quantum walk [24], the quantum

analog of the classical random walk, as it is pointed out in [25]. This marks the

starting point where integrated waveguides and photons start to work in a more

solid fashion. Moreover, few time after Bromberg et al. described quantum correla-

tions in waveguides [26], needed to study quantum properties of the propagation
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of photons in these arrays.

In summary, quantum integrated optics has proven to be a fertile ground for re-

search with a constant progress in diverse areas like quantum computation [27, 28],

quantum simulation [12, 29] and quantum effects [30]. The purpose of this thesis,

therefore, is to use integrated photonic circuits, fabricated using the femtosecond

laser writing technique in order to implement several quantum gates and quantum

simulation devices.

The thesis is organized as follows: in Chapter 2 the theoretical background for

the evolution of light in waveguide lattices is explained. In the same chapter, the

experimental part is reviewed including the femtosecond laser writing technique

and generation of photons. In Chapter 3 the quantum simulations of an open

quantum system using waveguides with dynamical noise are presented, analyzing

the role of indistinguishability for single and two-photon states. In Chapter 4 a

quantum law for zero transmission in waveguides is discussed due to quantum

properties of photons. Chapter 5 deals with the problem of engineering a quantum

gate performing a SWAP operation, where a photonic integrated chip is proved

experimentally. Final conclusions and outlook are presented in Chapter 6.
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CHAPTER

2
Fundamentals

2.1 Propagation of (quantum) light in waveguides

The starting point are Maxwell’s equations [31]:

~∇ · ~D = ρ ,

~∇ · ~B = 0 ,

~∇× ~E = −∂
~B
∂t

,

~∇× ~H =
∂ ~D
∂t

+ ~J , (2.1)

where ~D is the electric displacement, ~B is the magnetic induction, ~E is the electrical

field, ~H is the magnetic field, ~J is the current density and ρ is the charge density.

If one assumes to consider a non-magnetic (for which ~B = µ0
~H holds, being µ0

the vacuum magnetic permeability), isotropic dielectric medium, characterized by

the permittivity ε = ε(r), and also assuming that in this medium there are no free

charges (ρ = 0) or current ( ~J = 0), one can, from the above equations, derive the

following wave equation:

∇2~E(r, t) =
n2(r)

c2
∂2

∂t2
~E(r, t) , (2.2)

where c = 1/
√
ε0µ0 standing for the speed of light, n being the refractive index of

the medium n(r) =
√
ε(r) and the approximation ~∇ · ~E ≈ 0 has been used due

to a slow and small change of ε in waveguides. Considering the propagation of

monochromatic electromagnetic waves in the form ~E = Re{ ~E(r)e−iωt} where ~E

representing the electric complex amplitude, the Helmholtz equation is obtained:

∇2 ~E(r) + k2 ~E(r) = 0 , (2.3)



where k = k0n(r) =
√
ε(r)ω/c. For simplicity, assume that the waveguides form a

1D array (higher dimensions can be easily derived from this approach), where x is

the transversal coordinate n(r)→ n(x) and z stands for the propagation direction.

The waveguide supports propagation of at least one mode (the fundamental)

and the amplitude of observed mode slowly changes in z direction (changes of

refractive index along z direction can be neglected). The mode is characterized

with a propagation constant β = k0n0, where n0 denotes the unperturbed refractive

index. Presuming only linear polarization in x direction ( ~E → E(x, z)eiβz~ex) and

replacing it in Eq. (2.3)

∂

∂x2
E(x, z) +

∂2

∂z2
E(x, z) + 2iβ

∂

∂z
E(x, z)− β2E(x, z) +

ω2

c2
n2(x)E(x, z) = 0 .

SinceE changes slowly in z direction, the paraxial approximation is used |∂2E/∂z2| �
|k∂E/∂z|. Moreover, changes of the refractive index modulation are very small,

n(x) = n0 + ∆n(x) with ∆n in the order of 10−4 to 10−3, so −β2 + ω2n2(x)/c2 ≈
2β2∆n(x)/n0, getting finally:

i
∂

∂z
E(x, z) +

1

2β

∂2

∂x2
E(x, z) +

β∆n(x)

n0

E(x, z) = 0 . (2.4)

Having in mind that ω = 2πc/λ and λ̄ = λ/2π, previous equation can be trans-

formed into:

iλ̄
∂

∂z
E(x, z) +

λ̄2

2n0

∂2

∂x2
E(x, z) + ∆nE(x, z) = 0 . (2.5)

Comparing it to the Schrödinger equation:

i~
∂

∂t
ψ(x, t) +

~2

2M

∂2

∂x2
ψ(x, t)− V (x)ψ(x, t) = 0 , (2.6)

one can see that although they describe different entities, the mathematical struc-

ture is identical, and the following correspondences can be made:

E ⇐⇒ ψ

z ⇐⇒ t

∆n ⇐⇒ −V
λ̄ ⇐⇒ ~

n0 ⇐⇒ M (2.7)

Notice that now it is possible to study the dynamics of the wave-function, observing

directly the dynamics of light in waveguides arrays along the propagation distance
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z (instead of time t) which is one of the main advantages of optical systems. Appli-

cation of such platform led to the big achievements in the field of photonics such

as: observing for the first time optical Bloch oscillations [18, 19], optical discrete

solitons [32] and Anderson localization [21].

Although the propagation of light can be described using Eq. (2.4), it is some-

times useful to make a discretization in the transverse direction since the observed

system consists of waveguides which fundamental eigenmode is mostly localized

inside the waveguides, while the interaction between channels can be approxi-

mated to the first neighbors via evanescent fields. This approximation is used

within the scope of the coupled mode theory [33] and is analogous to the tight

binding model in solid state physics [34]. Starting by writing the electrical field as a

superposition of eigenmodesE(x, z) =
∑

j aj(z)fj(x)e−iβz, where a is the amplitude

along z direction, f is the amplitude of transverse component of the mode and the

sum runs over j, with j being the number of the waveguide, it is possible to derive

a discrete equation for the amplitude of the envelope of the electric field at lattice

site n:

i
d

dz
an(z) + βnan(z) + Cn,n−1an−1(z) + Cn,n+1an+1(z) = 0 , (2.8)

where βn is the propagation constant of the mode in the waveguide n and Cn,n±1
stand for the coupling constants between two adjacent waveguides n and n±1, and

is related to the overlap integral of the transversal modes
∫
fnf

∗
n±1(n

2(x)−n2
j±1(x))dx.

Along this thesis only equal coupling will be considered (Cn,n+1 = Cn,n−1 ≡ C),

getting finally:

i
d

dz
an(z) + βnan(z) + C[an−1(z) + an+1(z)] = 0 . (2.9)

This equation is important not only because it describes the dynamics of light in

waveguides array but also the dynamics of single photons [26]. It is also used to

make characterization of the array, allowing quantification of the coupling constant

C and detuning (∆β = βn − βm) via experiment.

Notice that the Hamiltonian of the system is given by:

H = −
N∑
j

[
βja

∗
jaj + Ca∗j−1aj + Ca∗j+1aj

]
. (2.10)

where the canonical variables q, p can be identified as q → a and p→ ia∗ [35]. Then

using the Hamilton equation dq
dz

= ∂H
∂p

one can derive the equation of motion in

Eq. (2.9).
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In order to describe the propagation of quantum light (photons) in waveguide

arrays, one proceeds to quantize the field in each waveguide using the operators â

and â† [36], obeying the commutation relations:[
âj, â

†
k

]
= δj,k , [âj, âk] = 0 ,

[
â†j, â

†
k

]
= 0 , (2.11)

where â†j is the bosonic creation operator and âj is the bosonic annihilation op-

erator which creates or destroys a photon in waveguide j, respectively. Now the

Hamiltonian is (setting ~ = 1):

Ĥ = −
N∑
j

[
βj â

†
j âj + Câ†j−1âj + Câ†j+1âj

]
. (2.12)

It is worth noticing that since it was assumed that all couplings in systems are

equal, this Hamiltonian is hermitian. It is possible to calculate the evolution of the

system in the Heisenberg picture, where the operators â(†)j evolve. This evolutions

is given by the Heisenberg equation:

i
d

dz
â†n =

[
â†n, Ĥ

]
. (2.13)

Evaluating this commutator and using the commutators in Eq. (2.11), one arrives

to the equation for the evolution of the creation operator â† [26]:

− i d
dz
â†n(z) + βnâ

†
n(z) + C[â†n−1(z) + â†n+1(z)] = 0 . (2.14)

The general solution of Eq. (2.14) is derived by direct integration:

â†n(z) = eiβnz
∑
k

Un,k(z)â†k(0) , Un,k(z) =
(
eizC̃

)
n,k

, (2.15)

where Un,k(z) is a unitary transformation corresponding to the exponent of the

matrix izC̃n,k, which describes the amplitude for the transition of a single photon

from waveguide n to waveguide k. Notice that the solution given by the matrix

exponential U is the same for the classical case in Eq. (2.9). The elements of the

matrix C̃ will correspond to the couplings and propagation constants, forming a

tri-diagonal matrix

C̃ =



β1 C 0 . . . 0

C β2 C 0 . . .

0 C β3 C 0
...

. . .
...

0 · · · 0 C βN


.

8



2.2 Two photon quantum interference

In each experiment it will be important to determine the average photon number

ni within each waveguide i, calculating the expectation value of the photon number

distribution (also called probability distribution):

ni(z) = 〈â†i (z)âi(z)〉 = 〈ψ| â†i (z)âi(z) |ψ〉 . (2.16)

Here 〈 〉 denotes the expectation value of an operator with respect to the state of

the system |ψ〉. If now, there are two identical photons in the system, the photon

number correlation function Γ [26] can be calculated as follows:

Γp,q(z) = 〈â†p(z)â†q(z)âq(z)âp(z)〉 . (2.17)

This correlation function describes the probability to detect one photon in waveg-

uide p and q, that is, a coincidence measurement. As it will be clarified in the

following lines, this correlation function can give a truly view of the quantum

properties of the traveling light in the system. To prove this, consider the most

simple waveguide array, i.e., the directional coupler, which consists of two identical

waveguides, fulfilling the condition: β1 = β2 = β. Writing Eq. (2.14) in a matrix

notation

i
d

dz

(
â†1(z)

â†2(z)

)
=

(
β C

C β

)(
â†1(0)

â†2(0)

)
,

and using Eq. (2.15):(
â†1(z)

â†2(z)

)
=

(
cos(Cz) i sin(Cz)

i sin(Cz) cos(Cz)

)(
â†1(0)

â†2(0)

)
, (2.18)

where the global phase factor eiβz has been omitted. From now on (for convenience)

the initial condition â†i (0) will be written as â†i . For a single photon input in channel

1

|ψ〉 = â†1 |0, 0〉 = |1, 0〉 ,

where the creation operator is acting in the waveguide 1, given by the first position

of the ket |0, 0〉. The average photon number n1 is calculated to be:

n1(z) = 〈â†1(z)â1(z)〉 = 〈ψ| â†1(z)â1(z) |ψ〉
= 〈1, 0| [U1,1â

†
1 + U1,2â

†
2][U

∗
1,1â1 + U∗1,2â2 |1, 0〉

= 〈1, 0| |U1,1|2â†1â1 + U1,1U
∗
1,2â

†
1â2 + U1,2U

∗
1,1â

†
2â1 + |U1,2|2â†2â2 |1, 0〉

= |U1,1|2 〈1, 0| â†1â1 |1, 0〉+ U1,1U
∗
1,2 〈1, 0| â†1â2 |1, 0〉

+ U1,2U
∗
1,1 〈1, 0| â†2â1 |1, 0〉+ |U1,2|2 〈1, 0| â†2â2 |1, 0〉

n1(z) = |U1,1|2 = cos2(Cz) . (2.19)
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Doing the same procedure for channel 2, one obtains n2(z) = sin2(Cz). So, the one

photon probability oscillates between the two waveguides (see Fig. 2.1). Notice that

the same result is obtained for the light amplitude of a classical wave using Eq. (2.9).

Conversely, measurements of the probability distribution of single photons do not

reveal the quantum properties of light, in the sense that the same dynamics can be

observed with classical light [25].

An interesting case is when the directional coupler terminates at z = π/4C. This is

known as 50:50 coupler and the probability to find a single photon in each waveg-

uide is equal to 1/2. If now two identical photons are launched into this 50:50

coupler, one in each waveguide (a separable state)

|ψsep〉 = â†1â
†
2 |0, 0〉 = |1, 1〉 ,

the average photon number is now constant

n1(2)

( π

4C

)
= 〈â†1(2)â1(2)〉 = |U1,1|2 + |U1,2|2 = 1 .

In order to see nonclassical properties of light, the correlation function Γ will be

considered, using Eq. (2.17):

Γ1,2

( π

4C

)
= 〈â†1â†2â2â1〉 = 〈1, 1| â†1â†2â2â1 |1, 1〉

= 〈1, 1| [U1,1U2,1â
†
1â
†
1 + U1,1U2,2â

†
1â
†
2 + U1,2U2,1â

†
2â
†
1 + U1,2U2,2â

†
2â
†
2]

× [U∗2,1U
∗
1,1â1â1 + U∗2,1U

∗
1,2â1â2 + U∗2,2U

∗
1,1â2â1 + U∗2,2U

∗
1,2â2â2] |1, 1〉 .

(2.20)

Notice that terms 〈1, 1| â†i â†i âiâi |1, 1〉 and 〈1, 1| â†i â†i âj âj |1, 1〉 are zero, while term

〈1, 1| â†i â†j âiâj |1, 1〉 equals to one. Therefore, the corresponding photon number

correlation functions are obtained to be:

Γ1,2

( π

4C

)
= (U1,1U2,2 + U1,2U2,1)(U

∗
1,1U

∗
2,2 + U∗1,2U

∗
2,1)

Γ1,2

( π

4C

)
= |U1,1U2,2 + U1,2U2,1|2 = cos2

(
2C

π

4C

)
= 0 , (2.21)

and

Γ1,1

( π

4C

)
= Γ2,2

( π

4C

)
= 1 . (2.22)

This means, that after a distance of z = π/4C the two photons are found together

in the same waveguide (photon bunching), and never in different waveguides. This
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a) b)

Figure 2.1: Light dynamics in a directional coupler and Hong-Ou-Mandel effect. a) Average
photon number in a directional coupler for a single photon input (equivalent to the inten-
sity of classical light). Indicated with a blue dashed line is the length needed to have a 50:50
coupler, where the output is equal for both waveguides and used to see the HOM effect.
b) By tuning the delay time of arrival photons to a 50:50 coupler, a typical “HOM-dip” is
observed. The uncertaintiy corresponds to the standard deviation following a Poissonian
distribution of the measured counts and it is smaller than the point size.

is completely different to the behavior of classical light or distinguishable photons,

where the probability to find photons in both exit ports of the coupler is equal to

the one of finding them in a single exit port. This phenomenon is a clear signature

of quantum path interference and it was first observed by Hong, Ou and Mandel in

1987 using bulk beam splitter [37] and has been known as the Hong-Ou-Mandel

(HOM) effect. Another interesting result of the 50:50 coupler is that when the HOM

effect is observed, the output state is a path-entangled state [38]:

â†1â
†
2

DC−→ i

2
(|2, 0〉+ |0, 2〉) , (2.23)

which is one case (N=2) of the general entangled N00N states [39].

The observation of the HOM effect can be performed by launching single photons

with different arrival time (delay time) to a directional coupler, where at the output

coincidence measurements between two detectors are done. In that way, photons

arriving at different time are distinguishable and therefore coincidences measure-

ments between two detectors are different from zero. On the other hand, when the

time delay between photons approaches to zero, the coincidences start decrease

until no coincidences for zero delay. An experimental picture is shown in Fig. 2.1

where the time delay between photons was tuned via a translational stage.

Although this discussion was started with a simple directional coupler, it is possible
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to replaced it by more complex arrangements of waveguides, offering a richer

dynamics and more intricate quantum interferences. In a multi-port system, the

average photon number for a two-photon input state is just the incoherent sum of

the average photon number for single photon inputs in channels m and n:

ni(z) = |Ui,m(z)|2 + |Ui,n(z)|2 . (2.24)

Fig. 2.2 a) depicts the average photon number when a single photon is launched

in the middle of the array. It is characterized by having ballistic lobes, which is a

characteristic feature of discrete system, known as discrete diffraction [22]. Inter-

estingly this evolution of a single particle can be seen as a implementation of a

continuous quantum walk [25].

The correlation function Γ in Eq. (2.17) for a separable two photon state can be

written as the coherent sum:

Γp,q(z) = |Up,m(z)Uq,n(z) + Up,n(z)Uq,m(z)|2 , (2.25)

where Up,m is the probability to find a photon at channel p when it was launched

in channel m. Fig. 2.2 c) shows the correlation matrix for the separable case when

indistinguishable photons are launched in two adjacent waveguides, m = 11 and

n = 12 in an array of 21 waveguides, and Γ(z) is calculated at z = 1.25π/C. The

plot exhibits higher values of coincidences in equal sites (diagonal) close to either

the beginning or end of the array. Conversely the probability to detect photons in

separated waveguides (anti-diagonal) is close to zero.

Another interesting input is when two photons are launched either in waveguide m

or n (with m 6= n), that is, the path-entangled state 1
2
[(â†m)2 + (â†n)2]. In this case the

correlation function is:

Γp,q(z) = |Up,m(z)Uq,m + Up,nUq,n|2 . (2.26)

A plot of Γ for the path-entangled case is shown in Fig. 2.2 d). Interestingly the pho-

tons are found in separate channels, showing an anti-bunching behavior. The case

when m = n, corresponding to both photons launched in a single waveguide, will

lead to no quantum interference because both photons have the same dynamics

and they propagate independently from each other. In contrast, considering two

distinguishable photons, where the correlation function is the incoherent sum:

Γp,q(z) = |Up,m(z)Uq,n(z)|2 + |Up,n(z)Uq,m(z)|2 , (2.27)

12



a) b)

c)
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e)
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Figure 2.2: Evolution of a single and two-photon state in an array of 21 waveguides. (top)
Plots of the average photon number for a single a) and two-photon input b). (bottom)
Correlations matrices at z = 1.25π/C for initial conditions c) separable, d) path-entangled
and e) distinguishable photons.

will cause occurrence of four characteristic peaks in Fig. 2.2 e). Notice that the

average photon number is the same for all the three different inputs ni(z) =

|Ui,m(z)|2 + |Ui,n(z)|2 (Fig. 2.2 b)) so calculating the probability distribution does

not reveal quantum properties of light, but using the correlation function the

nonclassical features of light are revealed.

2.3 Direct laser inscription

As it was discussed in the previous section, propagation of photons in waveguide

arrays offers a big potential to see and study quantum properties of light. So the

necessity to have a good experimental platform is huge. In that way, several differ-

ent techniques used to fabricate waveguides for classical light experiments found

a good opportunity to be also used for propagation of photons. Silicon-on-silica

[27], Ti in-diffusion and proton exchange in lithium niobate [40] and femtosecond

laser writing techniques [41, 42] are some of the most commonly used techniques
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for fabrication of integrated chips. The latter has been used to realize setups for

the photon propagation problems discussed in this thesis, and will therefore be

described in more detail in the following.

Femtosecond laser writing technique is a fabrication process in which the laser

beam is used to induce structural modifications in various materials. Initially used

in [43] to fabricate waveguides in transparent materials, now is also used in several

other areas like optofluidics [44] and quantum optics [45]. During the inscription

process, ultra short pulses (generated by a femtosecond laser) are focused in a

bulk material, whereas the nonlinear absorption and field ionization take place. In

the case of fused silica as bulk material, these processes lead to a recombination

of the molecular structures of the material, yielding a permanent change of the

refractive index [46]. Then, by moving the sample, a continuos region with a higher

refractive index is formed, thus creating the waveguides (see Fig. 2.3). It should be

noted that there are different regimes of energy which stimulate these processes

to happen. In the case of waveguide formation, low energy regimes are shown to

be appropriate choice, whereas regimes with intermediate or high power create

asymmetric structures and inclusive void zones [46], which can be used in other

fields like material processing [47].

As the change of refractive index occurs in the focal volume only, the waveguides

are not forced to stay in the same plane and 3D structures can be created by moving

the sample on 3D trajectories. This is one of the main advantages of the femtosec-

ond writing technique compared to other methods. Another advantage is that the

light intensity dynamics can be directly observed using a fluorescence microscopy

technique [48, 49].

It should be mentioned that the resulting waveguides have elliptical shape as well

as the modes propagating inside (see Fig. 2.3). Due to ellipticity, the waveguides

support two modes with linear orthogonal polarizations, which have different prop-

agation constants. Although this could be seen as a problem if polarization needs

to be maintained, it is an advantage in devices where changes in birefringence are

needed [50]. So, in order to prevent changes in polarization during dynamics, only

one vertical or horizontal polarization has to be chosen during experiments.

Key parameters, such as the coupling C, which is related to the overlap of the
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sample translation

20 µm

18 µm

Figure 2.3: Waveguides created by direct laser inscription. To the left, a schematic image of
the writing process, where the inset shows a typical elliptical mode field at 800 nm. To the
right, microscope images of the cross section of several couplers (top) and a top view of
the same coupler (bottom).

evanescent fields of adjacent waveguide modes, can be controlled by changing

the spatial separation between waveguides: as the separation between neighbor-

ing waveguides increases, in fact, the corresponding coupling decreases. This

dependence of the coupling with the separation between waveguides follows an

exponential relation [51] (see Fig. 2.4 b)). Another important parameter is the

propagation constant β (directly proportional to the change of refractive index),

which can be experimentally modified by controlling both the inscription power

and writing velocity. Values of the increase of the refractive index are in the order

of 10−3 to 10−4, while losses are in the range of 0.4 dB/cm [52]. All these values

which characterize an array of waveguides are subject to change, since they de-

pend strongly enough on the writing parameters, like pulse duration, pulse energy,

polarization, writing velocity, etc. Optimal experimental values used during this

work can be found in the following.

The process to create a specific circuit, starts with a previous characterization

(calibration), where one knows what value of coupling represent a certain distance

between waveguides or how big is the detuning ∆β for a certain value of writing

velocity. This analysis is valid for both classical and quantum light. In order to know

the coupling, a coupling vs distance scan is done using couplers with the same
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length of propagation zl but different coupling distance d between them. Then,

using the coupled mode theory, theoretical solution for a coupler can be derived:

|a1(zl, d)|2 = I1(d) = cos2(C(d)zl)

|a2(zl, d)|2 = I2(d) = sin2(C(d)zl) , (2.28)

where In is the intensity measured at the output of the sample when a single input

in waveguide 1 is used. From here, C is derived as:

C(d) =
tan−1

(√
I2(d)/I1(d)

)
zl

. (2.29)

Conducting the same procedure for different distances d allows to obtain a curve of

coupling (see Fig. 2.4 b)). For detuning ∆β, couplers with same coupling distance

and propagation length are used, but with the difference that now one of them

was inscribed with a different writing velocity. Assuming theoretical solution for a

detuned coupler:

|a1(z)|2 =
1

1 + ∆β2/4C2

[
∆β2

4C2
+ cos2

(
zC

√
1 +

∆β2

4C2

)]

|a2(z)|2 =
1

1 + ∆β2/4C2
sin2

(
zC

√
1 +

∆β2

4C2

)
, (2.30)

it is possible to find the detuning ∆β and C (notice that for ∆β = 0, Eq. (2.28) is

obtained) by tracing the entire dynamics through the fluorescence technique. This

is possible due to the formation of color centers during the inscription process,

which exhibits high absorption at 620 nm. Therefore, when launching light beam

at λ = 633 nm, these color centers are excited and the emitted fluorescence can

be recorded with a camera [41] (see Fig. 2.4 a)). Once the image is obtained, the

experimental data are fitted using the analytical solutions so the values of detuning

are found for different values of writing velocities.

The laser system used in this work is from Coherent, consisting of a pump Verdi

V18, oscillator Mira 900 and amplifier RegA 9000. It produces ultrashort pulses

at 800 nm center wavelength with a repetition rate of 100 kHz, pulse length of

approximately 150 fs at full width half maximum (FWHM) and pulse energy of 500

nJ. The pulses are focused into the sample by a 20×-objective (numerical aper-

ture of 0.35). The samples used to fabricate waveguides are polished fused silica

Corning®HPFS®7980 Standard Grade and Corning®HPFS®7980 ArF Grade. The
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a)

b) c)

Figure 2.4: Calibration of coupling and detuning. a) Fluorescence setup: red light from a
HeNe laser at 633 nm illuminates the sample and sections of the fluorescence pattern are
recorded by a CCD camera from the top, which is translated along the sample until the
entire pattern is saved. To the right an experimental fluorescence pattern for a homogenous
array (from [41]). b) Characteristic curve of coupling C vs coupling distance d, where a
exponential function is used to fit experimental data. c) Relation between detuning ∆β
and writing velocity. Blue lines correspond to a fit, where slightly different fits were used
for positive and negative detuning.

translational movement of the samples is done by a three-axis translation stage

Aerotech ANT130 with typical inscription velocities between 60 mm/min and 200

mm/min. The created waveguides have an elliptical cross section of around 2×10

µm2. The shape of waveguide mode is elliptical too, as shown in Fig. 2.3, with

typical size between 10×15 µm2 to 15×20 µm (FWHM) at 815 nm. Since the con-

nection between the sample with the photons source and detectors is done using

commercial fiber-arrays, with a separation of 127 µm between them, a fan-in and

fan-out in the sample is required in order to match the position of the fibers. This

is done by curved segments at the beginning and at the end of the sample (see

Fig. 3.3) where the bending radii is limited to the centimeter regime to avoid extra
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losses [53].

In conclusion, the femtosecond laser writing technique has proved to have a huge

potential in the area of discrete systems, propagation of light and quantum optics.

The 3D capability and fast process of creation (around one minute per waveg-

uide) are the big advantages of this technique. The circuits exhibit high stability,

they are permanent and have reduced size (in the order of microns (width) and

few millimeters up to centimeters (length)), which is the reason why one speaks

about integrated chip. Since photons can be also used in these structures [27], the

term quantum integrated optics is referred to those circuits where photons and

an integrated chip is used. Therefore, this technique is used in all the experiments

throughout this thesis.

2.4 Generation and detection of indistinguishable

photon pairs

One of the most common sources of indistinguishable photon pairs is based on

spontaneous parametric down conversion (SPDC) [54, 55]. This is a nonlinear

process, where two photons (called idler with frequency ωi and signal with fre-

quency ωs) are created from an initial pump photon with frequency ωp. This is

a spontaneous process, meaning that not always photon pairs will be created,

where the state of the nonlinear crystal is unchanged (parametric process) and

the energy and momentum are conserved, with a lower energy of the idler and

signal compared to the pump (down conversion). Specifically, the energy conser-

vation is ~ωp = ~ωi + ~ωs and momentum conservation is ~kp = ~ki + ~ks which allows

only certain directions in ~kj , depending on frequencies, orientation of the crystal

(optical axis), refractive index and polarization. One can distinguish two types

of nonlinear crystal for SPDC, one named type I, where the photon pair have the

same polarization (and orthogonal to the polarization of the photon pump) and the

second named the type II, where signal and idler have orthogonal polarization. In

this work the type I is used, so photon pairs with equal polarization are generated.

Consider signal and idler have a certain angle θs and θi with respect to the pump

direction (see Fig. 2.5), then depending of the angle Θ between the photons of the

pump and the optical axis of the crystal, it is possible to have the degenerate case

ωs = ωi = ωp/2 and θs = θi (this is why they are also called “twin photons”), where

the photons have the same frequency and polarization and are emitted in opposite
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Figure 2.5: Photon pair generated by spontaneous parametric down conversion. a) A pump
beam is launched to a nonlinear BiBO crystal where two photons, signal and idler, are
generated with some certain angles θi and θs. b) Experimental image at the output for the
degenerate case θi = θs, where a ring is formed. The spot at the middle correspond to the
pump beam. Image from [56].

sides of a cone of opening angle 2θs, as indicated in Fig. 2.5.

The detection of photons after the sample was done using avalanche photo diodes.

Inside these detectors a large voltage is applied against the current transmitting

direction of their pn-junction. Once an incoming photon is absorbed, an electron-

hole pair is generated, and then both charge carriers are separated and accelerated

strongly, so that they generate more carriers by impact ionization. This process

repeats leading to avalanche of carriers which can be detected as a macroscopic

current [57]. As a single photon suffices to start an avalanche, also it could be two

or three photons having the same result, so these detector cannot distinguish the

real photon number. So, cases where two photons are populating one waveguide

were detected using probabilistic photon number resolving detection using a 50:50

fiber splitter [29].

In Fig. 2.6 the setup for performing quantum experiments used during this work

is shown. A continuos wave diode laser Coherent OBIS 405 at 407.5 nm and 70

mW of optical power illuminates a type I phase-matched 1 mm-thick bismuth

borate BiB3O6 (BiBO) crystal and orientated in such manner that the signal and

idler photons at 815 nm (double wavelength of the pump) emerge in an opening

angle of 14.4 degrees. Then the photons are passed through a 3 nm band-pass

filter Semrock 830 nm MaxLine® in order to improve indistinguishability. These

photons are coupled to two polarization maintaining single mode optical fibers.

The time delay (or equivalent the path length difference) of the incoming photons
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Figure 2.6: Scheme of the experimental quantum setup used in this work. It contains the
generation of photon pairs by SPDC (BiBO crystal). Manipulation of the photons is done in
an integrated chip (sample) fabricated with the femtosecond writing technique. Detection
of the photons is realized with avalanche photo diode detectors (APD).

to the sample are controlled by a µm actuator connected to one of the fibers. These

fibers can be connected to any of the eight polarization maintaining single mode

fibers of the input fiber array. As it was mentioned before, the fibers in this input

fiber array are separated by 127 µm so a fan-in and fan-out has to be done in the

sample in order to couple it to the fiber array. A second fiber array is used to lead

the photons toward the avalanche photo diode detectors which are connected to a

computer where photon counting and coincidences are recorded (by a correlation

card Beck & Hickel DPC 230).

To summarize, this chapter gave brief overview of the three important parts of

any quantum integrated photonics circuit: photon source, circuit (or manipula-

tion) and detection. Although here presented as different parts, the state of art is

rapidly moving to a fully integrated chip, where the generation of photons, their

manipulation and detection is done in a single integrated chip. In the next chapters

the focus is put on the circuit itself, where the manipulation of photons through

different operations reveals interesting properties in the dynamics of photons.
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CHAPTER

3
Prevalence of quantum

coherence in open quantum

systems

Optical coherence, a property of waves that it can be seen as the relation between

the phases of a single or several waves has been greatly studied in classical realm

but in the context of a quantum realm it has a deeper meaning. The term co-

herence, now quantum coherence, is related to the relation between phases of

quantum states, and they are described for correlations functions of higher orders

which differs with the classical case [58]. Of particular interest is how the quantum

coherence is affected or modified during a dynamical process since it has deeper

implications in the system itself. That is how the study of loss of coherence could

be explained due to the interaction between the system and an environment and

this loss of coherence has been postulated as the quantum origin of the classical

one [59]. One example where changes in coherence affect the system itself is in

the energy transport in the Fenna-Matthews-Olson protein complex [60]. This is a

photosynthetic complex where the efficiency of the transport of energy from one

site to another is very high. Simulations, however, show an efficiency very smaller

with respect to the experimental data, where only coherent transport is assumed.

That is how, contrary to what someone could think, the action of decoherence (loss

of coherence) is what describes well this high value of transport efficiency, which

can be explained due to the interaction between the system and environment

[61, 62].

The effects of the decoherence in a system and how affect the coherence is studied

in this chapter, considering not only single photons but also two-photon input

states. Making a connection between open quantum systems (OQS) and arrays

of waveguides with dynamical disorder, an experiment in an integrated chip is

performed.



3.1 Closed and open quantum systems

Dynamical systems which do not exchange energy (or information, matter, etc)

with another system are named closed quantum systems. In these systems the

time evolution of a pure state |ψ(t)〉 is:

d

dt
|ψ(t)〉 = − i

~
H(t) |ψ(t)〉 , (3.1)

where H is the Hamiltonian of the system. Typically H is hermitian and the evo-

lution of the state can be expressed by an unitary time-evolution operator U(t, t0)

which transform the initial state |ψ(t0)〉 to |ψ(t)〉

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 ,

and substituting in Eq. (3.1):

∂

∂t
U(t, t0) = − i

~
H(t)U(t, t0) . (3.2)

Now, if instead of a pure state there is a mixed state, it is used the density matrix:

ρ(t0) =
∑
α

ωα |ψα(t0)〉 〈ψα(t0)| , (3.3)

then for a time t

ρ(t) =
∑
α

ωαU(t, t0) |ψα(t0)〉 〈ψα(t0)|U †(t, t0)

ρ(t) = U(t, t0)ρ(t0)U
†(t, t0) .

Taking the time derivative of equation above

dρ

dt
=

∂

∂t
U(t, t0)ρ(t0)U

†(t, t0) + U(t, t0)ρ(t0)
∂

∂t
U †(t, t0) ,

and using Eq. (3.2)

dρ

dt
= − i

~
H(t)U(t, t0)ρ(t0)U

†(t, t0) +
i

~
U(t, t0)ρ(t0)U

†(t, t0)H(t) ,

but U(t, t0)ρ(t0)U
†(t, t0) = ρ(t), so:

dρ

dt
= − i

~
[H, ρ] . (3.4)

This equation is known as Liouville-von Neumann equation and it is the quantum

version of the the classical Liouville equation

∂ρ

∂t
= −{ρ,H} ,
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where ρ now is the phase space distribution and { , } are the Poisson brakets.

Now for the case of open quantum systems, consider a system S which is cou-

pled to another quantum system, the environment E (which represents a reservoir

or a heat bath). Although the combined system is closed, the time evolution of

the open system S is not in general unitary. This is due to the interaction between

the environment, consisting of an infinite number of degrees of freedom, and the

system. The total Hamiltonian H can be written as

H(t) = HS ⊗ I + I⊗HE +HI(t) ,

where HS and HE are the Hamiltonian of the system S and E respectively and the

interaction is described byHI . Because the interest is in the dynamics of the system

S itself and not together to the environment E, the focus is put in the subset of

observables related to the open system S which leave unaltered the system E by

taking the reduced density matrix:

ρS = TrE{ρ} , (3.5)

where Tr is the trace. Since the total density matrix evolves unitarily in time

ρS = TrE{U(t, t0)ρ(t0)U
†(t, t0)} .

Then

dρS
dt

=
d

dt
TrE{ρ(t)}

= TrE

{
dρ

dt

}
but dρ/dt can be written as Eq. (3.4), so:

dρS
dt

= − i
~

TrE[H, ρ] . (3.6)

From this equation and using dynamical maps and Kraus operators plus Born and

Markov approximations it is possible to derive an new equation for the reduced

density matrix ρS (the theoretical description of this calculation is beyond the

scope of this work, detailed information can be found in [63, 64]), known as master

equation:

dρS
dt

= − i
~

[H, ρS] +
1

~
∑
k

(VkρSV
†
k −

1

2
V †k VkρS −

1

2
ρSV

†
k Vk) , (3.7)
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where Vk are the Lindblad operators and the sum is until d2−1 with d the dimension

of the Hamiltonian H. This equation also can be found in the so-called Lindblad

form [65]:
dρS
dt

= − i
~

[H, ρS] + L[ρS] , (3.8)

where L is the Lindblad operator L = 1
~
∑

k(VkρV
†
k − 1

2
V †k Vkρ− 1

2
ρV †k Vk).

3.2 Master equation for single photon states

As it was stablished in the previous section, the interaction between a quantum

system and a fluctuating environment is called open quantum system, and how

the action of the environment affect the dynamics of the system it has been a

subject of intensive research in science [66–68]. One way to study the evolution

of these open quantum systems is using the Born-Markov approximation [69]. In

this approximation the quantum system is weakly coupled to a large environment

system (reservoir) where the environment is virtually unaffected by coupling to the

quantum system under analysis and also that memory time of the environment is

extremely short in comparison to the timescale of the quantum system evolution

so memory effects are neglected, that means the future of the dynamics only de-

pends of the present. This action of the environment to the system can be modeled

in different ways including dissipation, dephasing, Markovian or non-Markovian

fluctuations [62, 70]. In the present work, it will be considered pure dephasing and

Markovian fluctuations [71] and the relevance of such dephasing model can be

found in several interdisciplinary framework of studies including quantum chem-

istry [72, 73], biology [61, 62] and ultra-cold atoms [74].

In a quantum system of N sites (or network) under dephasing, the phase proper-

ties of the associated quantum mechanical waves are randomly distorted by the

environment. The equation representing that situation and the dynamics of this

system, can be written as:

i
d

dt
ϕn(t) + εn(t)ϕn(t) +

N∑
m 6=n

κm,nϕm(t) = 0 , (3.9)

where ϕn represents the single particle wavefunction at site n, κm,n is the hopping

rate between sites m and n, εn stands for the energy at site n and ~ = 1. Notice

that this equation is for the system represented by ϕ and is not for the total system

(system + environment), and it will be referred as reduced OQS. Although the
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equation above is for the reduced OQS, the action of the environment is indeed

present, represented by the fluctuating on-site energy εn. Moreover, εn depends of

t, satisfying the conditions of a Gauss-Markov processes,

〈εn(t)〉 = 0 and 〈εn(t)εm(t′)〉 = µnδm,nδ(t− t′) ,

with 〈· · ·〉 denoting stochastic average and µn being the dephasing rates [71]. As it

was already seen in Chapter 2, the Schrödinger equation is completely analogous to

the paraxial wave equation, and because the experiments done during this work are

in the context of photonics, from now the following equation will be used instead

of Eq. (3.9):

i
d

dz
ψn(z) + βn(z)ψn(z) +

N∑
m 6=n

Cm,nψm(z) = 0 , (3.10)

where now ψn represents the amplitude of the mode in site n, βn stands for the

propagation constant in site n and Cm,n is the coupling between sites m and n.

As before for εn, it is the propagation constant βn(z) who is changing in z in this

case, according to the function βn(z) = βn + φn(z), where φn satisfies the condition

of a Gauss-Markov process 〈φn(z)〉 = 0 and 〈φn(z)φm(z′)〉 = γnδm,nδ(z − z′). The

dephasing rate γn corresponds to γn = σ2
n∆z [75], where σ is the standard deviation

of the gaussian distribution and ∆z corresponds to the correlation length.

Although Eq. (3.10) is useful to determine the dynamics of the amplitude ψ, it

does not give (explicitly) information about quantum coherence terms. For that

it is necessary to write an equation for the density matrix ρ. Because this can be

seen as a stochastic problem, due to the random fluctuations in βn(z), work done

in the area of stochastic methods will be used, including Wiener processes and Itô’s

calculus [76]. Writing (3.10) in differential form

dψn = iβnψndz + i
∑
r

Cn,rψr(z)dz + iψnφndz .

Then introducing the Wiener increments

dWn =
φn(z)√
γn

dz → 〈dWndWm〉 = δn,mdz ,

it produces:

dψn = iβnψndz + i
∑
r

Cn,rψndz + iψn
√
γndWn . (3.11)

Then using the Itô’s product rule [77]:

d(ψmψ
∗
n) = d(ψn)ψ∗m + ψnd(ψ∗m) + d(ψn)d(ψ∗m) , (3.12)
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in which dψn has to be written in Itô’s form [71]:

dψn =

(
iβnψn + i

∑
r

Cn,rψr −
1

2
γnψn

)
dz + iψn

√
γndWn . (3.13)

Calculating the right hand side of Eq. (3.12) using Eq. (3.13):

d(ψnψ
∗
m) =

[
i(βn − βm)− 1

2
(γn + γm)

]
ψnψ

∗
mdz + i

∑
r

Cn,rψrψ
∗
mdz

−i
∑
r

Cm,rψnψ
∗
rdz+i

√
γnψnψ

∗
mdWn−i

√
γmψnψ

∗
mdWn+

√
γn
√
γmψnψ

∗
mdWndWm ,

(3.14)

where it has been considered terms up to first order in dz. Finally, by taking the

stochastic average of Eq. (3.14) , it follows a dynamics equation for the system in

term of ρ:

d

dz
ρn,m(z) =

[
i(βn − βm)− 1

2
(γn + γm)

]
ρn,m(z) +

√
γn
√
γmδn,mρn,m(z)

+ i
∑
r

Cn,rρr,m(z)− i
∑
r

Cm,rρn,r(z) , (3.15)

where it was used the relation ρn,m = 〈ψnψ∗m〉. It should be noticed that Eq. (3.10)

was used for the reduced OQS, so this density matrix ρ corresponds to the reduced

density matrix. Therefore, this equation is the master equation (Eq. (3.8)), where

the coupling terms C and propagation constant terms β are associated to the

HamiltonianH and dephasing terms γ are associated to the Lindblad operator (see

Appendix A).

a) b)

Figure 3.1: Theoretical intensity distribution of the system of three waveguides. a) Case
without noise and b) case with a dynamical noise and correspond to the average of 100
simulations. Upper waveguides (green and orange lines) have a stronger coupling compare
to the lower waveguide (blue line) due to their proximity.
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a) b)

Figure 3.2: Schematic setup of an integrated array of three waveguides used to represent a
reduced open quantum system. In (a) the waveguides keep their propagation constant (no
dephasing) meanwhile in (b) the waveguides have different propagation constants given
by the different color shades. The arrow represents the initial input in only one waveguide.
Green waveguide represents waveguide 1, orange is waveguide 2 and blue is waveguide 3.

In order to see how the dephasing affect the dynamics, a simulation of a system

with noise and another without disorder is done, where the system consists of three

waveguides with fluctuating propagation constants (see Fig. 3.2). In order to be

concise, during this work the terms dephasing, noise and disorder means the same,

although dephasing will be used in the quantum context and noise in the experi-

mental context. A plot for the theoretical intensity of every waveguide along the

propagation distance is shown in Fig. 3.1, which also it corresponds to the diagonal

elements of ρ (ρn,n = 〈ψnψ∗n〉 = |ψn|2 which are the intensities in Fig. 3.1). It is clear

that in the order system the evolution is mainly in the upper waveguides and in a

coherent fashion where only a small amount of light is going to the lower site. In

contrast, the same system but with a fluctuating noise, the average evolution is

quite different and now it is observed that in average the wave-packet evolves into

an incoherent superposition of delocalized light states, where after 12 cm there is a

homogeneous energy distribution in all sites.

3.3 Experiment and results

In order to show these results experimentally, it will be used as model an array

of three waveguide also called trimer (see Fig. 3.2), which was fabricated using

the femtosecond laser writing technique. In this system the two upper waveg-

uides (labeled as waveguide 1 and 2) are closer and they interact weakly with a

third waveguide (labeled as waveguide 3). Specifically the values used for the
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Figure 3.3: Fluorescence images of the system of three waveguides for the first centimeters.
(top) order case (bottom) noisy case for a single measurement. Indicated are the input
position, the bending and trimer section separated by a dashed white line.

coupling coefficients between upper waveguides were C1,2 = C2,1 = 2 cm−1 and

C1,3 = C2,3 = 0.6 cm−1 was the coupling with the lower waveguide. The propagation

constants βn were chosen randomly from a Gaussian distribution with a variance

of σ = 3 cm−1 and mean values of β1 = β2 = 1 cm−1 and β3 = −1 cm−1. This was

experimentally done changing the writing velocity of the laser inscription. The

length used in all experiments was 12 cm and the length of every section βn was

∆z = 1 cm. Then, light from a HeNe laser at 632 nm was used to illuminate one

of the upper sites of the trimer and images from the top were taken. This allows

Figure 3.4: Experimental intensity distribution along the propagation distance, where a)
corresponds to the order case and b) to the average of the noisy cases. Line colors are the
same as in Fig. 3.1.
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Re{ρ} Im{ρ}

Figure 3.5: Real and imaginary part of the off diagonal elements of ρ versus propagation
distance for different values of dephasing γ. (top) γ = 0.3γexp, (center) γ = 0.6γexp and
(bottom) γ = γexp where γexp = (1.7275, 1.7435, 1.7645). Blue line corresponds to ρ1,2, red
line to ρ1,3 and black line to ρ2,3.

to see all propagation along the propagation distance. As example, in Fig. 3.3 is

possible to see the experimental pictures for the noiseless case and noisy case. The

intensity profiles along the propagation distance are extracted from those pictures

and for the noisy case the final intensity profile corresponds to the average over

21 different samples. The results are shown in Fig. 3.4. Comparing the experimen-

tal intensity distribution to the theoretical one in Fig. 3.1, the results show that

the experimental data is in a very good agreement with the theory. Specially in

Fig. 3.4 b), it is evidently how the intensity distribution in the third site (blue line)

is growing up, and at 12 cm the three waveguides have almost the same amount of

intensity. These results are also a good experimental evidence about how the action

of the environment over a system (in this case through dephasing), assists and

increments the transport efficiency, given by the increment of intensity in the third

waveguide [61]. Apart from this experimental result, the off diagonal components

(the coherence terms) of the density matrix ρ using Eq. (3.15) was calculated. In

Fig. 3.5 are plotted the real and imaginary part of the off diagonal components of ρ

for different values of dephasing γ. Those simulations reveal that independently

of the value of dephasing γ, the real and imaginary part of ρp,q p 6= q tends to zero,

meaning that the coherence of the system decay. This results can be explained
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watching equation (3.15) where the off diagonal elements ρp,q exhibit a complex

term (βp−βq)− i(γp+γq)/2, where the negative imaginary part implies attenuation.

On the contrary, for the diagonal elements ρp,p this term is zero.

This theoretical result along with the experimental observation suggest that Eq. (3.15)

can be assumed valid. For single-excitations (in the reduced OQS) the evolution

is coherent during certain time and then the system reaches a steady state consti-

tuted of an uniform incoherent mixture of states [61, 62, 72], where the coherence

of the system has decayed.

3.4 Master equation for two-photon states

In the previous section thy dynamics for single particle was calculated and one of

the result was the quantum coherence decays (see Fig. 3.5), so one natural question

is if for two-photon state will happen the same or not. To answer that, a theoretical

and experimental study will be developed in this section. In order to obtain the

master equation for a two-photon state, a similar approach for single photon case is

used. The framework used here is based on the concept of two-photon probability

amplitude Ψp,q, which describes jointly two photons in sites (p, q) [78].

By adding the information about what site is initially occupied by the single photon,

Eq. (3.10) can be written as follows:

i
d

dz
Up,n(z) + βn(z)Up,n(z) +

∑
r

Cp,rUr,n(z) = 0 , (3.16)

where Up,n is the probability amplitude in site p and initially excited in site n. One

can do the same for another photon and calculate Uq,m and in terms of these two

amplitudes is defined the two-photon probability at sites p and q [79]:

Ψp,q(z) =

N,N∑
m,n

αm,n[Up,n(z)Uq,m(z) + Up,m(z)Uq,n(z)] , (3.17)

whereαm,n is the initial normalized probability amplitude profile
(∑

m,n |αm,n|2 = 1
)

.

It worth to mention that in the expression (3.17) the + sign also can be − where

plus or minus sign are used for boson or fermion statistics respectively [80]. Similar

to previous section, Eq. (3.16) is written in differential form:

dUq,n = iβqUq,ndz + i
∑
r

Cr,qUr,n + iφq(z)Uq,ndz , (3.18)
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and also:

dUp,m = iβpUp,mdz + i
∑
r

Cr,pUr,m + iφp(z)Up,mdz . (3.19)

Introducing the Wiener increments dWp = φp(z)√
γp
dz and dWq = φq(z)√

γq
dz and replacing

them in the equations above:

dUq,n = iβqUq,ndz + i
∑
r

Cr,qUr,ndz + i
√
γqUq,ndWq (3.20)

dUp,m = iβpUp,mdz + i
∑
r

Cr,pUr,mdz + i
√
γpUp,mdWp . (3.21)

But these equations have to be written in the Itô’s form:

dUq,n =

(
iβqUq,n + i

∑
r

Cr,qUr,n −
1

2
γqUq,n

)
dz + i

√
γqUq,ndWq (3.22)

dUp,m =

(
iβpUp.m + i

∑
r

Cr,pUr,m −
1

2
γpUp,m

)
dz + i

√
γpUp,mdWp . (3.23)

Then using the Itô’s product rule given in Eq. (3.12), the product d(Uq,nUp,m) can be

obtained

d(Uq,nUp,m) =

[
i(βp + βq)Uq,nUp,m + i

∑
r

Cr,pUq,nUr,m

+ i
∑
r

Cr,qUr,nUp,m −
1

2
(γp + γq)Uq,nUp,m

]
dz

+ i(
√
γpdWp +

√
γqdWq)Uq,nUp,m −

√
γpγqUq,nUp,mdWpdWq .

Doing the same for d(Up,nUq,m) and adding those two equations, it is found

d(Up,nUq,m + Uq,nUp,m) = i(βp + βq)(Up,nUq,m + Uq,nUp,m)dz

+ i
∑
r

Cr,q(Up,nUr,m + Up,mUr,n)dz + i
∑
r

Cr,p(Ur,nUq,m + Ur,mUq,n)dz

− 1

2
(γp + γq)(Up,nUq,m + Uq,nUp,m)dz + i(

√
γpdWp +

√
γqdWq)(Up,nUq,m + Uq,nUp,m)

−√γpγq(Up,nUq,m + Uq,nUp,m)dWpdWq ,

but by using the definition of Ψp,q in Eq. (3.17):

dΨp,q = i(βp + βq)dzΨp,q + i
∑
r

(Cr,pΨr,q + Cr,qΨp,r)dz −
1

2
(γp + γq)Ψp,qdz

+ i(
√
γpdWp +

√
γqdWq)Ψp,q −

√
γpγqΨp,qdWpdWq . (3.24)

31



Doing the same, but now for the complex conjugate of Ψp′,q′ , it is found the expres-

sion: d(Ψp,qΨ
∗
p′,q′)

d(Ψp,qΨ
∗
p′,q′) =

[
i(βp + βq − βp′ − βq′)−

1

2
(γp + γq + γp′ + γq′)

]
Ψp,qΨ

∗
p′,q′dz

+ i
∑
r

[Cr,qΨp,rΨ
∗
p′,q′ + Cr,pΨr,qΨr,qΨ

∗
p′,q′ − Cr,q′Ψp,qΨ

∗
p′,r − Cr,p′Ψp,qΨ

∗
r,q′ ]dz

−
√
γp′γ′qΨp,qΨ

∗
p′,q′dWp′dWq′ −

√
γpγqΨp,qΨ

∗
p′,q′dWpdWq +

√
γpγp′Ψp,qΨ

∗
p′,q′dWpdWp′

+
√
γqγq′Ψp,qΨ

∗
p′,q′dWqdWq′ +

√
γpγq′Ψp,qΨ

∗
p′,q′dWpdWq′ +

√
γq, γp′Ψp,qΨ

∗
p′,q′dWqdWp′ .

(3.25)

And finally taking the average:

d

dz
ρ(p,q),(p′,q′)(z) =

[
i(βp + βq − βp′ − βq′)−

1

2
(γp + γq + γp′ + γq′)

]
ρ(p,q),(p′,q′)(z)

+ [
√
γpγp′δp,p′ +

√
γpγq′δp,q′ +

√
γq, γp′δq,p′ +

√
γqγq′δq,q′ −

√
γpγqδp,q

−√γp′γq′δp′,q′ ]ρ(p,q),(p′,q′)(z) + i
∑
r

[Cr,pρ(r,q),(p′,q′)(z) + Cr,qρ(p,r),(p′,q′)(z)]

− i
∑
r

[Cr,p′ρ(p,q),(r,q′)(z) + Cr,q′ρ(p,q),(p′,r)(z)] , (3.26)

where it was used the relation ρ(p,q),(p′,q′) = 〈Ψp,qΨ
∗
p′,q′〉. Therefore, Eq. (3.26) corre-

sponds to the master equation for two-photon states. Notice that the diagonal ele-

ments of the two-photon density matrix ρ, which are ρ(p,q),(p,q) = Ψp,qΨ
∗
p,q = |Ψp,q|2

are related to Eq. (3.17) by the absolute square value, and correspond to the two-

photon correlation function Γp,q seen in Chapter 2. So by integrating Eq. (3.26) and

analyzing the diagonal elements, it is possible to check when there is bunching

(elements (i, i), (i, i) where i = 1, 2, 3, which are the diagonal elements of Γ) or

antibunching (elements (i, j), (i, j) where i, j = 1, 2, 3, which are the off diagonal

elements of Γ).

3.5 Experiment and results

In the following, it will be considered the situations when the trimer system is

excited by two indistinguishable photons in a separable state |Ψsep〉 = 1√
2
(|11, 12〉+

|12, 11〉) and in an entangled state |Ψent〉 = 1√
2
(|11, 11〉+|12, 12〉), where the subindices

represent in which site is the photon. Integration of Eq. (3.26) gives the dynamics

of the system and is shown in Fig. 3.6. The results show that density matrix for both

separable and entangled photons becomes identical after 12 cm and after 20 cm the
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a)

|ρsep(p,q),(p′,q′)(z = 0)|

b)

|ρsep(p,q),(p′,q′)(z = 12)|

c)

|ρsep(p,q),(p′,q′)(z = 100)|

d)

|ρent(p,q),(p′,q′)(z = 0)|

e)

|ρent(p,q),(p′,q′)(z = 12)|

f)

|ρent(p,q),(p′,q′)(z = 100)|

Figure 3.6: Absolute value of ρ(p,q),(p′,q′)(z). At top the separable case ρsep for a) z = 0 cm, b)
z = 12 cm and c) z = 100 cm. At bottom the path entangled case ρent for d) z = 0 cm, e)
z = 12 cm and f) z = 100 cm. The values used for dephasing are equal to the experiment
γexp = (1.3012, 1.2365, 1.293).

system reaches the steady state. As a steady state, it prevails along the propagation

distance for any distance as is shown for z = 100 cm in Fig. 3.6 c) and f). An in-

spection of this steady state reveals the in the diagonal elements of ρ both photons

bunch into the same site with probability ρ(1,1),(1,1) = ρ(2,2),(2,2) = ρ(3,3),(3,3) = 0.15

while the other terms in the diagonal, which quantify particle anti-bunching, ex-

hibit a lower probability equal to 0.09.

Quite interestingly, there are some off-diagonal terms of the two-photon density

matrix which are not zero, meaning that some coherence prevails. To explain this,

an analysis of the two-photon master equation is done. Notice that for diagonal el-

ements, the first two elements on the right-hand of Eq. (3.26) (elements factorized

by ρ(p,q),(p′,q′)) gives zero. Moreover, the same occurs for the off-diagonal elements

accounting for particle indistinguishability, in the form ρ(p,q),(q,p). So because these
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a)

|ρcc(p,q),(p′,q′)(z = 0)|

b)

|ρcc(p,q),(p′,q′)(z = 12)|

c)

|ρcc(p,q),(p′,q′)(z = 100)|

d)

|ρinc(p,q),(p′,q′)(z = 0)|

e)

|ρinc(p,q),(p′,q′)(z = 12)|

f)

|ρinc(p,q),(p′,q′)(z = 100)|

Figure 3.7: Absolute value of ρ(p,q),(p′,q′)(z). (top) Classically correlated state ρcc for a)
z = 0, b) z = 12 and c) z = 100 cm, (bottom) incoherent state ρinc for d) z = 0 cm, e)
z = 12 cm and f) z = 100 cm. The values used for dephasing are equal to the experiment
γexp = (1.3012, 1.2365, 1.293).

elements are zero, the diagonal and the indistinguishable off-diagonal will remain

immune to the dephasing. On the other side, the remaining off-diagonal elements

ρ(p,q),(p′,q′) will have the element i(βp + βq − βp′ − βq′)− (γp + γq + γp′ + γq′)/2 and the

imaginary part will affect these off-diagonal elements, producing finally a decay.

After this analysis one question appearing is, what role does the indistinguisha-

bility perform?. Until now, it has been observed that when the input is indis-

tinguishable, the off diagonal indistinguishable elements and diagonal elements

prevail after decoherence. So in order to have the complete picture, a similar

analysis is done launching two-photon states exhibiting classical probabilities.

For that, consider the case of a two-photon state presenting classical correla-

tion ρcc(1,1),(2,2) = (|11, 11〉 〈11, 11| + |12, 12〉 〈12, 12|)/2, where this state involves two

indistinguishable photons entering together into anyone of the upper waveguides
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with exactly the same classical probability. Also consider the case of an incoher-

ent state ρinc(1,2),(2,1) = (|11, 12〉 〈11, 12|+ |12, 11〉 〈12, 11|)/2, where this state represents

two distinguishable photons entering separately into the upper waveguides of

the system. The dynamics of these two different inputs are shown in Fig. 3.7.

Remarkably, for the ρcc(1,1),(2,2) case, the dynamics is identical to the cases separa-

ble and entangled. In contrast, for the case of ρinc(1,2),(2,1) the density matrix looks

completely different, where the anti-bunching elements ρ(1,2),(1,2) = ρ(1,3),(1,3) =

ρ(2,1),(2,1) = ρ(2,3),(2,3) = ρ(3,1),(3,1) = ρ(3,2),(3,2) = 0.15 are larger than the bunching

ones ρ(1,1),(1,1) = ρ(2,2),(2,2) = ρ(3,3),(3,3) = 0.09 at z = 100 cm. It should be mentioned

that although they are two distinguishable photons, there are also some small ele-

ments outside the diagonal (see Fig. 3.7 f)). A possible explanation it could be that

due to the phase changes induced by dephasing, at some point, the coherences

acquire the proper phase characteristic of indistinguishable particles and allowing

it to exist. And once they get excited in a steady state they will remain immune to

dephasing.

In order to quantify the difference between all steady states analyzed, it will be used

the trace-distance criterion D(ρm, ρn) = 1
2

Tr|ρm − ρn|, which yields zero if and only

if ρm = ρn [81]. For the case under observation ρn represents any combination of

steady states using the cases ρsep(1,2),(2,1), ρ
ent
(1,1),(2,2), ρ

cc
(1,1),(2,2), ρ

inc
(1,2),(1,2) and it was found

that D(ρm, ρn) = 0 for all cases involving only indistinguishable particles, while for

the cases having steady states of indistinguishable and distinguishable particles

it was found D(ρm, ρn) = 0.25. This reaffirms that is the indistinguishability who

becomes one the main factor to decide if the coherence prevails or not under

dephasing.

In order to prove experimentally the validity of Eq. (3.26), the two-photon cor-

relation function Γ was measured, which as it was stated before, it corresponds to

the diagonal of ρ(p,q),(p,q). It was used a separable, entangled, classically correlated

and incoherent two-photon states using an ensemble of 37 waveguide arrays (see

Fig. 3.2). Indistinguishable separable pair of photons were generated by SPDC

using the scheme explained in Chapter 2. Path-entangled two-photon states were

generated at the output of a 50:50 coupler when simultaneously exciting the two

input modes with the indistinguishable photons generated by the photons source

[82]. For classically correlated two-photon states the same approach was used

as above, but with the difference that now it was introduced a delay of ≈ 2 ps in
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a)

Γsepp,q (z = 0)

b)

Γentp,q (z = 0)

c)

Γccp,q(z = 0)

d)

Γincp,q (z = 0)

e)

Γsepp,q (z = 12)

f)

Γentp,q (z = 12)

g)

Γccp,q(z = 12)

h)

Γincp,q (z = 12)

Figure 3.8: Experimental intensity correlation function Γp,q(z). The initial inputs for the
cases separable, entangled, classically correlated and incoherent are shown in a), b), c) and
d) respectively. The respective correlation patterns after 12 cm are shown in e), f), g) and
h).

one of the output ports of the 50:50 coupler. Incoherent (distinguishable) two-

photon states were produced delaying one of the photons ≈ 2 ps with respect

to the other before entering in the trimers. Results are plotted in Fig. 3.8 and

correspond to the average of 37 different samples. Notice that in all indistinguish-

able two-particles states, there is a tendency of the photons to bunch into the

same waveguide (given by the diagonal) meanwhile off-diagonal elements (anti-

bunching events) are smaller. But for the distinguishable case Fig. 3.8 h), the higher

coincidences are in the off-diagonal, indicating that the state remains incoherent

along evolution. In order to quantify how was the performance of the samples

with respect to the theory, it was calculated the average fidelity S [29] between the

experimental Γexp and theoretical Γtheo, getting S = 0.99 for all cases, where S is

defined by S = (
∑

i,j

√
Γtheoi,j Γexpi,j )2/(

∑
i,j Γtheoi,j

∑
i,j Γexpi,j ). This result indicates that

the performance of the samples was good.

3.6 Conclusions

With all these results, one can conclude that unlike single photons were the co-

herence terms are not preserved in the presence of noise, indistinguishable two-
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photon states preserve on average quantum coherence, and that happened despite

the rate of the dephasing. Moreover, this prevalence of quantum coherence is

independently of the actual two-photon state launched into the system provided

they are indistinguishable.
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CHAPTER

4
Quantum suppression law in Jx

lattices

A way to present some of the problems studied in quantum simulation and quan-

tum computation is the following: given an input of single or multi-particles,

calculate the output after propagation in some system, characterized by the ma-

trix U . A possible solution it will depend of several factor, like if the particles are

fermions or bosons or if the system described by U is hermitian or not. In general,

the answer is very hard to deal with, and it will depend on the properties of the

system itself. One example of this problem is the boson sampling [83, 84], where

the output distribution of bosons is sampled. And it has caught a lot of attention

because it would be one example of the quantum computational supremacy over

classical computers. Now, know if certain output is completed suppressed, only

knowing the nature of the input and U , prior to do the experiment, it is very ad-

vantageous. Indeed one very famous example is the HOM effect, where one state

is suppressed, the one when the two photons takes different paths. This effect

is explained due to the bosonic nature of the photons and today it is used as a

way to characterize the quality of the photon sources (how indistinguishable are

the generated photons) [85]. The next step is to extend the HOM effect to a setup

with more photons and more ports where one would expect also some outputs

suppressed like in the original HOM setup. Studies in this area [86] introduce

the idea of suppression law, where are described some rules which predict which

outputs are suppressed.

Following those studies, here the focus is put in to describe a quantum suppres-

sion law having in consideration some symmetries in the input and in the system,

specifically in the Jx lattice.



4.1 Multi-photon interference

Consider a system characterized by a unitary matrix U of dimension n× n, where

there exist n input modes. For a single particle input the answer to the question how

it will be every mode at the output, can be computed by calculating the average

photon number:

Pj,k = |Uj,k|2 , (4.1)

where j is the input mode and k the output mode. In Chapter 2 a system of n = 2 is

studied, the directional coupler, where the probability to exit every channel at the

output is equal, when one photon is launched, but when the number of photons

was increased to two, the output is changed, and inclusive there is one output

case, the one with the photons going out at different channels, being completely

suppressed. If now the number of photons and channels is increased the difficult

to know the output distribution is very hard due to the increasing number of path

interference. In that context, know a priori if some output state is suppressed can

be good deal.

To study this problem consider the case of N indistinguishable photon entering

a lattice represented by a unitary U with n ports. Using the notation described in

[87], one can define the initial state by a unique mode occupation list:

~r = (r1, r2, . . . , rn) , (4.2)

where r1 is the number of photons in the mode 1, r2 in mode 2 and so on with∑
j rj = N . The initial state is

|ψ〉in =
n∏
j=1

(â†j)
rj√
rj!
|0〉 ,

where â†j is the creation operator of the mode j and |0〉 is the vacuum state. After

propagation, one can define ~s as the mode occupation list at the output ~s =

(s1, . . . , sn), having an output state

|ψ〉out =
n∏
j=1

(b̂†j)
sj

√
sj
|0〉 ,

with b̂†i =
∑

k Ui,kâ
†
k. It is useful to define the mode assignment list ~d(~r), in which

the entries give the origin of each particle, that is, which modes the N photons

occupy
~d(~r) = (d1(~r), . . . , dN(~r)) ,
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â†1

â†2
...

â†n

Û

b̂†1

b̂†2
...

b̂†n

...
...

Figure 4.1: Scheme for a multi-photon interference in a array. The transmission of single
photons is characterized by the unitary matrix Û , where there are n possibles modes at
input and output. Each waveguide can be excited by any number of photons represented
by the creation operator â†i and the output, after transmission in system Û , is represented
by b̂†i . As an example, two photons (blue circles) are entering in mode 1 and one photon
in mode n. Then the initial occupation list is ~r = (2, 0, . . . , 0, 1) and the corresponding
mode assignment list is ~d(~r) = (1, 1, n) and at the output the final occupation list is ~s =
(1, 1, 0, . . . , 0, 1) and the mode assignment list is ~d(~s) = (1, 2, n).

with di(~r) being the mode number occupied by the i-th photon. For example

consider the input state defined as ~r = (2, 0, 1, 1) then the mode assignment list

is ~d(~r) = (1, 1, 3, 4), the number one is repeated two times because there are two

photon in mode one, then one photon in mode 3 and one photon in mode 4

(another example is given in the caption of Fig. 4.1). The same analysis for the final

state ~s can be done, where a new mode assignment list ~d(~s) is obtained. Now the

transition probability P to find a specific state ~s given an initial state ~r is obtained

via a coherent sum over all possible combinations to distribute the photons at the

output [87]:

P (~r, ~s) =

∏n
j=1 sj!∏n
j=1 rj!

∣∣∣∣∣∣
∑

σ∈S~d(~s)

N∏
j=1

Udj(~r),σ(j)

∣∣∣∣∣∣
2

, (4.3)

where σ runs over all permutations S~d(~s) of the mode assignment list ~d(~s). Notice

that for distinguishable photons, the transition probability is just the sum of the

single photon probabilities:

Pd(~r, ~s) =
∑

σ∈S~d(~s)

N∏
j=1

|Udj(~r),σ(j)|2 . (4.4)

In order to see the use of Eq. (4.3) and as example consider the directional coupler

(n = 2) with an initial input of two photons ~r = (1, 1) and the output state ~s = (1, 1)
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so the mode assignment lists are ~d(~r) = (1, 2) and ~d(~s) = (1, 2) respectively. Then

there are two permutations σ, one is σ = (1, 2) and σ = (2, 1) so writing explicitly

Eq. (4.3):

P ((1, 1), (1, 1)) =

∏2
j=1 sj!∏2
j=1 rj!

∣∣∣∣∣∣
∑

σ∈S~d(~s)

2∏
j=1

Udj(~r),σ(j)

∣∣∣∣∣∣
2

=
1!1!

1!1!

∣∣∣∣∣
2∏
j=1

Udj((1,2)),(1,2)j +
2∏
j=1

Udj((1,2),(2,1)j)

∣∣∣∣∣
2

= |U1,1U2,2 + U1,2U2,1|2

P ((1, 1), (1, 1)) = cos2(2Cz) , (4.5)

where the values of Ui,j in Eq. (2.18) have been used. If the distance is z = π/4C

the probability is P = cos2(π/2) = 0 (the same as in Chapter 2, where there are not

coincident measurement). On the other hand, keeping the same initial state ~r but

looking for output state ~s = (2, 0) (or (0,2)), it is found that

P ((1, 1), (2, 0)) = P ((1, 1), (0.2)) = 2|U1,1U2,1|2 = 2 sin2(2Cz) .

At z = π/4C the probability is 1/2, that is one half of the times the two photons

exit at the mode 1 (first waveguide) and the other half in mode 2 (waveguide 2), in

agreement to Chapter 2.

Notice that the expression in Eq. (4.3) can be written as:

P (~r, ~s) =
1∏

j rj!sj!
|perm(M)|2 , (4.6)

where Mj,k = Udj(~r),σ(j) and perm is the permanent of a matrix

perm(M) =
∑
σ∈Sn

n∏
i

ai,σ(i) .

If instead of photons (bosons) one is working with fermions, the probability from

input ~r to output ~s is [88]:

Pf (~r, ~s) =

∣∣∣∣∣∣
∑

σ∈S~d(~s)

sgn(σ)
N∏
j=1

Udj(~r),σ(j)

∣∣∣∣∣∣
2

= |det(M)|2 , (4.7)

where det is the determinant of a matrix. Although the expressions for these two

functions, the permanent and the determinant, are very similar, the calculations
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required to get their evaluations are very different. Although there exist several

techniques to obtain the determinant, the calculations of the permanent is expo-

nentially hard in the context of computation (in time/resources) and is considered

a #P-complete problem [89]. This problem has become an example of the called

“quantum supremacy” (the solutions to a problems which cannot be solved effi-

ciently by classical computers) after the proposal of Aaronson and Arkhipov [83],

where the computation of the permanent can be obtained efficiently through the

sampling of the output distribution of bosons, named as boson sampling [90–93].

4.2 Suppression law for Bell multiport beam splitter

As it was seen, the probability to get some certain output can be hardly and com-

plex to calculate since up to N ! amplitudes has to be summed in Eq. (4.3), so to

derive an expression which predicts whether some output events are suppressed it

would be very useful. One representative work in this area can be found in [87] and

a brief summary is presented here. Others similar works can be found in [94, 95].

Starting from the HOM effect, a general case is a system of n beam-splitters or

multiport beam-splitters. If these beam-splitters are all equal, called Bell multiport

[96], all single-particle probabilities are equal |Uj,k|2 = 1/n with n the number of

photons and the unitary transformation describing this process, is the Fourier

matrix

UFou
j,k =

1√
n
ei

2π
n
(j−1)(k−1) .

Due to a property of the Fourier transformation (UFou)−1 = (UFou)∗, it is found the

input-output symmetry

P (~r, ~s) = P (~s, ~r) .

In this way, using these symmetry relations, given by the Fourier matrix, it is

possible to find a criterion for the fully destructive interference. This suppression

law says: output states ~s are suppressed if the sum of the elements of the mode

assignment list ~d(~s) is not divided by n:

mod

(
n∑
j=1

dj(~s), n

)
6= 0 ⇒ P (~r, ~s) = 0 . (4.8)

It is possible to use the same idea of suppressed states for other U , which is studied

in the next section.
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4.3 Suppresion law for parity-symmetric input states

in a Jx lattice

In this section, it is considered the case when there is the following symmetry

relation in U :

Un+1−k,l = c(n)(−1)l−kUk,l , (4.9)

with c(n) a phase factor depending only on n. The symmetry involved here relates

the transmission amplitude from input site k to output site l with the amplitude

from the opposite input channel n + 1 − k to the same output site l by a phase

factor c(n). One array that follows this symmetry is the Jx lattice [97].

The particular Jx name of this special lattice comes from the area of quantum

spin networks, where in order to have a perfect state transfer from one site to

another, the coupling in the system has to follow a certain order, which it can be

represented by the angular momentum operator Jx [98]. In order to map the matrix

elements of th Jx operator to the context of waveguides, the coupling C between

waveguides k and k + 1 will be:

Ck,k+1 =
κ0
2

√
k(n− k) , (4.10)

z =
⇡

2

1 2 3 4 5 6 7
C1,2 C2,3 C3,4 C4,5 C5,6 C6,7

Figure 4.2: Scheme of a Jx lattice. (left) There is in total n = 7 modes (waveguides) with
different couplings between them, following a parabolic rule. (right) Dynamics from 0 to
π when the input is in waveguide 1 (top) an when the input is in waveguide 7 (bottom).
Notice that in z = π/2 the transmission amplitude U is equal for symmetric inputs with
respect to the center, U1,l = c(n)(−1)l−7U7,l.
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with κ0 a scaling factor, which, in the following analysis, is assumed to be 1. This

relation is plotted in Fig. 4.2. The equation of motion in the Jx lattice for the mode

k is

i
dâ†k
dz

=
1

2

√
(n− k)kâ†k+1 +

1

2

√
(n− k + 1)(k − 1)â†k−1 .

Looking for the eigenvectors u(k)l of this equation with eigenvalues βk, one arrives

to the solution [97]::

u
(k)
l = 2−

1
2
(n+1)+l

√
(l − 1)!(n− l)!
(k − 1)!(n− k)!

P
(k−l,n−k−l+1)
l−1 (0) , (4.11)

where P (k−l,n−k−l+1)
l−1 (0) are the Jacobi polynomials of order l − 1 evaluated at the

origin. As it was seen in Chapter 2, the creator operator can be written as a sum of

the elements of the unitary matrix multiplied by the initial condition

â†p(0) =
n∑
m

U∗p,m(z)â†m(z) ,

where

Up,q(z) =
n∑
r=1

u(r)q u(r)p eiλrz . (4.12)

Using properties and an alternative form of the Jacobi polynomials, Eq. (4.12) can

be written as [99]

Up,q(z) = (−i)q−p
√

(j + p)!(j − p)!
(j + q)!(j − q)!

[
sin
(z

2

)]q−p [
cos
(z

2

)]−q−p
P q−p,−q−p
j+p (cos(z)) .

And evaluating in z = π/2, one arrives to the result:

Up,q

(π
2

)
= (−i)q−p2p

√
(j + p)!(j − p)!
(j + q)!(j − q)!P

q−p,−q−p
j+p (0) = ei

π
2
(q−p)u(q)p . (4.13)

Using the symmetry of the Jacobi-polynomials P (α,β)
m (0) = (−1)mP

(β,α)
m (0), the fol-

lowing relation for the eigenmodes is obtained

u
(n+1−k)
l = (−1)l−1u

(k)
l .

Combining Eq. (4.13) and the above equation and after some algebra one can

arrives to the final result:

Un+1−k,l = eiπ
n−1
2 (−1)l−kUk,l , (4.14)

where the phase eiπ
n−1
2 only depends in n. This equation follows the rule said

in Eq. (4.9) so the transmission amplitude from site k to site l is the same to the
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symmetry axissymmetry axis

â†1
...

â†k
...

â†n+1�k

...

â†n

U1,l

...

Uk,l

...

Un+1�k,l

...

Un,l

Figure 4.3: Symmetries for suppression law. (left) Scheme for the parity-symmetry input
state, (right) mirror symmetry in the transmission matrix U to the site l.

transmission amplitude from opposite site n+ 1− k to site l (multiplied by a phase

factor, see Fig. 4.2). It is said that this system possess a mirror symmetry in U (see

Fig. 4.3). The other condition for the suppression law considered here is related to

the input state. The input state has to be symmetric with respect to the centre of

the lattice rj = rn+1−j so that means:

dj(~r) = n+ 1− dN+1−j(~r) . (4.15)

This implies that in every factor Udj(~r),σ(j) in Eq. (4.3) can be written as

UdN+1−j(~r),σ(N+1−j) = Un+1−dj(~r),σ(N+1−j) = c(n)(−1)σ(N+1−j)−dj(~r)Udj(~r),σ(N+1−j) ,

where the symmetry of U has been used. Notice that every element has its pair due

to the mirror symmetry, but the middle term UdN+1
2

(~r),σ(N+1
2

) has no a pair if N is

odd. Therefore, the cases for even and odd N will be treat separately.

4.3.1 Even photon number states

In this case, all factors can be grouped in pairs of equal dj(~r), then Eq. (4.3)

P (~r, ~s) =

∏n
j=1 sj!∏n
j=1 rj!

∣∣∣∣∣∣
∑

σ∈S~d(~s)

N/2∏
j=1

c(n)(−1)σ(N+1−j)−dj(~r)Udj(~r),σ(j)Udj(~r),σ(N+1−j)

∣∣∣∣∣∣
2

.

This expression can be simplified noting that the phase factor c(n) as well as

(−1)dj(~r) do not depend on σ so they can factored out from the sum over all permu-

tations. Then:

P (~r, ~s) ∝

∣∣∣∣∣∣
∑

σ∈S~d(~s)

N/2∏
j=1

(−1)σ(N+1−j)Udj(~r),σ(j)Udj(~r),σ(N+1−j)

∣∣∣∣∣∣
2

. (4.16)
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The sum over all permutations σ can be divided in two kinds: they can be symmetric

with respect to a reversal of their order, σ(j) = σ(N + 1− j), or not, which is called

non-symmetric. Starting the discussion with the non-symmetric permutations, for

every non-symmetric permutation σ there is always a reversed-order permutation

σ′ ∈ S~d(~s) with σ′(j) = σ(N + 1− j). This means that every summand in Eq. (4.16)

can be grouped in pairs of σ and σ′:∣∣∣∣∣∣
N/2∏
j=1

(−1)σ(N+1−j)Udj(~r),σ(j)Udj(~r),σ(N+1−j) +

N/2∏
k=1

(−1)σ
′(N+1−j)Udk(~r),σ′(k)Udk(~r),σ′(N+1−k)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
N/2∏
j=1

(−1)σ(N+1−j)Udj(~r),σ(j)Udj(~r),σ(N+1−j) +

N/2∏
k=1

(−1)σ(k)Udk(~r),σ(k)Udk(~r),σ(N+1−k)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
N/2∏
j=1

(−1)σ(N+1−j) +

N/2∏
k=1

(−1)σ(k)

N/2∏
l=1

Udl(~r),σ(l)Udl(~r),σ(N+1−l)

∣∣∣∣∣∣
2

P (~r, ~s) ∝

∣∣∣∣∣∣
N/2∏
k=1

(−1)σ(k)

N/2∏
j=1

(−1)σ(N+1−j)−σ(j) + 1

N/2∏
l=1

Udl(~r),σ(l)Udl(~r),σ(N+1−l)

∣∣∣∣∣∣
2

.

(4.17)

Noticing that there is a sum of -1 and 1 in the term with angular brackets, this term

could be zero, if the exponent of (-1) is odd, that is

N/2∑
j=1

σ(N + 1− j)− σ(j) = σ(N) + · · ·+ σ(N/2 + 1)− σ(N/2)− · · · − σ(1)

is an odd number. This is also true if the sum of all σ(j) is odd. Hence this condition

is equivalent to say that the sum over all entries of the mode assignment list ~d is

odd, which can be written as

mod

(
N∑
j=1

σ(j), 2

)
= mod

(
N∑
j=1

dj(~s), 2

)
= 1 .

This condition is fulfilled if and only if there is an odd number of odd entries in ~d(~s)

or equally to say (because N is even) that there is an odd number of even entries.

In resume, in the cases of non-symmetric permutation, the probability goes to zero

if there is an odd number of even entries in ~d(~s).

To finish the case with an even photon number, the case for symmetric permuta-

tions has to be considered. In the symmetric case every element must occur twice
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(because N is even) so there must be an even number of even entries, but for the

case of an odd number of even entries there is no symmetric permutation, so the

transition probability is zero. Therefore, for the case N even, all output events with

an odd number of photons in even output modes are suppressed.

4.3.2 Odd photon number states

The same method of pair terms can be used as before, but taking care that now

there is one element, which has no partner UdN+1
2

(~r),σ(N+1
2

). However, because the

symmetry of the input state, an odd number of waveguides is needed and in the

middle of the array has to be the middle photon so dN+1
2

(~r) = n+1
2

. The transmission

amplitude can be written as:

P (~r, ~s) ∝

∣∣∣∣∣∣
∑

σ∈S~d(~s)

Un+1
2
,σ(N+1

2
)

N−1
2∏
j=1

(−1)σ(N+1−j)Udj(~r),σ(j)Udj(~r),σ(N+1−j)

∣∣∣∣∣∣
2

, (4.18)

where again as before the terms c(n) and (−1)dj(~r) have been factored out. Then

doing the same as the case of even photon number, it is separated in symmetric

and non-symmetric permutations. For the non-symmetric case, doing the same

procedure as before one arrives to the same equation in Eq. (4.17) plus the extra

factor Un+1
2
,σ(N+1

2
). So the factor with the sum of -1 and 1 decide if the probability is

zero or not:

N−1
2∑
j=1

σ(N+1−j)−σ(j) = σ(N)+ · · ·+σ

(
N + 3

2

)
−σ

(
N − 1

2

)
−· · ·−σ(1). (4.19)

If this sum is odd the probability vanishes. Then this is true is the sum of the σ(j)

is odd or conversely the sum of dj(~s) is odd and it happens if an only if there is

an odd number of even entries in ~d(~s). If there is an odd number of even entries,

there must be an even number of odd entries, but for even number of odd entries

the probability is zero as it will be seen below: for each permutation σ there are

two cases for the factor Un+1
2
,σ(N+1

2
), either σ(N+1

2
) is even or odd. If it is even, this

implies zero probability due to:

Un+1
2
,σ(N+1

2
) = eiπ(

n−1
2

+σ(N+1
2

)−n+1
2

)Un+1
2
,σ(N+1

2
) = (−1)σ(

N+1
2

)−1Un+1
2
,σ(N+1

2
) , (4.20)

then, if the factor in the exponent of (-1) is odd, that is if σ(N+1
2

) is even, then

U = −U which is only true if U is zero. So σ(N+1
2

) even, it implies Un+1
2
,σ(N+1

2
) = 0.

For the case σ(N+1
2

) odd, because there is an even number of odd entries, all terms
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cancel in Eq. (4.19).

Analyzing now the case for symmetric permutations, they have a structure

(σ(1), · · · , σ(N−1
2

), σ(N+1
2

), σ(N−1
2

), · · · , σ(1)), so if there is an odd number of even

entries, the imposed symmetry can be only achieved by an even central component

σ(N+1
2

), but it was stablished by Eq. (4.20) that this case implies zero probability .

Hence, an odd number of even entries in ~d(~s) implies zero transmission probability,

as the same rule for the even photon number.

Combining both cases even and odd photon number in one equation, one ar-

rives to the final expression for the suppression law: If the number in even entries

at the output mode ~s is odd, this state is suppressed, and formally written in the

following equation:

mod

(
N∑
j=1

dj(~s)−N, 2
)

= 1 ⇒ P (~r, ~s) = 0 . (4.21)

4.4 Experiment and results

To test the suppression law studied here, an experiment with three photons was

performed. The experimental setup is shown in Fig. 4.4. Initially, pulses from a

Ti:Saphire are doubled in frequency going through a non-linear crystal BiBO, and

then illuminate a non-linear crystal BBO type II, where events of two pairs of pho-

tons by spontaneous parametric down conversion are collected. This is possible

to the fact that it is used pulses from a femtosecond laser ( 200 fs) and high power

(400 mW), which makes possible to reach events where not only two photons are

generated but also four photons. Those photons are entangled in polarization and

they are represented by the state∝ |HH〉L |V V 〉R+|V V 〉L |HH〉R+
√

2 |HV 〉L |V H〉R
where H and V are the horizontal and vertical polarization respectively and L is

the left arm and R is the right arm during collection. By using two polarizing beam-

splitters (PBS) it is possible separate the polarization into spatial modes, so in this

way for example |HH〉L |V V 〉R goes to |2, 0, 0, 2〉 because there are two photons

with H polarization in the spatial mode L and two photons with V polarization in

the spatial mode R and zero in the other cases. Doing the same for the rest one

arrives to the state |2, 0, 0, 2〉 + |0, 2, 2, 0〉 +
√

2 |1, 1, 1, 1〉. The last term is the one

needed to perform this experiment because it has only one photon in each mode

(although different polarizations). The other two possibilities are eliminated by
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Ti:Saphire

PBS

PBS

BBO
BiBO NBF

NBF

DM

DS

DS

DS

WGs

PC

APDs

Figure 4.4: Scheme of the experimental setup used for verification of quantum suppres-
sion law. (top) The scheme contains: a Ti:Sapphire laser, a non-linear crystal type I BiBO,
dichroic mirror DM to separate the original pump from doubled-frequency light, a SPDC
source non-linear crystal type II BBO, narrow band filter NBF to get a better indistinguisha-
bility, polarizing beam splitter PBS, delay stages DS, integrated chip with waveguides WGs
doing a Jx lattice, avalanche photo diode detectors APD and a computer PC. (bottom) Real-
ization of a HOM-dip experiment for the cases when the photons are distinguishable (left)
and when they are indistinguishable (right). Error bars follow a Poissonian distribution of
the measured counts.

using one of the photon as herald and taking only four-fold coincidences between

this photon and the other three. Then photons with V polarization are rotated to

H polarization to get equal polarization in all photons entering to the waveguide

array. The initial symmetric input state consists of three photons launched in

waveguides 1, 4 and 7, ~r = (1, 0, 0, 1, 0, 0, 1) following the rule in Eq. (4.15) and with

the assignment list ~d(~r) = (1, 4, 7). The array of waveguides consist of a Jx lattice

done using the femtosecond laser writing technique and a characterization of the

chip using classical light at the same wavelength of generated photons is shown in

Fig. 4.5. In this array was used a very recent technique [100], where the final part of

every waveguide is written several times, getting an enhancement of the coupling

efficiency to the fibers which collect the photons at output. Then these photons
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Figure 4.5: Characterization of the Jx lattice. Intensity values at output for single input in
every of the seven waveguides. Purple bar are the experimental value and light purple are
the theoretical one

are carried to avalanche photo diodes where the measurements are done.

The output modes ~s under observation consists of single photons per waveguide,

due as it was said before, over all events of four photons created by SPDC, one

of them will be used a herald to perform a four-fold coincidence, so cases as
~d(~s) = (1, 1, 2) where two photons are in waveguide 1 are not measured. This

means there are 35 different ~d(~s) at output, including cases where the suppression

law discussed here can be tested. The results are in Fig. 4.6, where there is a clear

difference between the suppressed output states (left side, marked by a dashed

line) who have a small probability and the non-suppressed output states (right

side) with higher probabilities. The suppressed output states have theoretically

a probability equal to zero, but here they are a slightly higher than zero due to

small imperfections during the process of fabrication of the Jx lattice and also that

photons are not totally indistinguishable. Taking those elements into account new

probabilities were calculated (blue bars) witch match pretty well the experimental

data (light blue bars). Just to emphasize, notice that the cases to the right of the

dashed line are the non-suppressed states due to they have a even number of even

entries (and not a odd number of even entries, which are the suppressed cases to

the left). Also it was analyzed the case where the input photons are distinguishable

(see Fig. 4.6 bottom), and one can observe that for the same states, the probability

to see that output is much higher if the photons are distinguishable (this was done

delaying the arrival time of photons using the delay stages in the setup). This
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Figure 4.6: Probability at output of the 35 different possibilities of one photon in each
waveguide for the initial input ~d(~r) = (1, 4, 7). At top is the indistinguishable case and
bottom the distinguishable case. Blue bars are the theoretical values and light blue bars
are the experimental values. Dashed line separates the suppressed cases (to the left) from
the unsuppressed cases (to the right).

happen because the suppression law is not anymore valid and some output states

may be suppressed or not. To quantify the difference between this two cases, the

sum of the all probability for the expected suppressed states was calculated, having

for the indistinguishable case
∑

ssupp
P indis
exp = 0.25± 0.02

(∑
ssupp

P indis
theo = 0.29

)
and

for the distinguishable case
∑

ssupp
P dis
exp = 0.60 ± 0.03

(∑
ssupp

P dist
theo = 0.59

)
. These

values show a closeness with the theoretical value of 0 for an ideal experiment,

where the states are completely suppressed.

4.5 Conclusions

Here it was studied theoretically a new example of quantum suppressions, specifi-

cally for a Jx lattice and a parity-symmetric input. The result shows if the number
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in even entries at the output mode ~s is odd, this state is suppressed (Eq. (4.21)).

This was tested in a experiment using a Jx integrated photonic lattice of seven sites

and launching three single photons, where the results are in agreement with the

studied theory.
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CHAPTER

5
Experimental realization of a

photonic quantum SWAP gate

With the constant progress of quantum information and quantum computation,

the experimental realization of the operations related to those fields is the vital

importance. In this context, the information can be encoded in quantum bits

or qubits, the quantum analog to the classical bits, including a big difference to

their classical relative, apart to be in the state |0〉 or |1〉 (as the classical bit), it can

also be in a coherent superposition of |0〉 and |1〉. This opens new and interesting

possibilities like quantum search algorithm and quantum cryptography [1]. But in

order to do experimentally these ideas, the manipulation of single and multiple

qubits has to be done carefully. Moreover, the operations carried out in the qubits

has to keep their coherence and so do not lose some encoded information. Those

operations are known as quantum gates and they are the analog to the classical

logic gates. Among the all existing quantum gates, the more commonly used are

the Hadamard, phase shift, controlled-not (CNOT) and Toffoli gates among other,

where they act over single and multiple qubits. Experimental realizations of these

quantum gates have been done in several platforms including superconducting

circuits [101, 102], trapped ions [103, 104] and integrated optics [42, 50].

Another common and important operation is the SWAP gate, which is the subject

of this chapter. A possible implementation is studied theoretically and later a exper-

imental realization is presented, where one remarkable property is an (theoretical)

efficiency of one.



5.1 The SWAP operation

The SWAP gate for a two-qubit system swaps an input state |Ψ〉in = |a, b〉 to the final

state |Ψ〉out = |b, a〉, that is:

|a, b〉 SWAP−−−→ |b, a〉 . (5.1)

The SWAP gate is represented by the following matrix:

USWAP =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (5.2)

in the computational basis |0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉. It will be used a dual-rail basis

to describe qubits, where each qubit is encoded in the spatial modes of two waveg-

uides excited by single photons [1, 105]. So for example an arbitrary qubit |θ〉 can

be prepared in the states of the computational basis: zero |θ〉 = |0〉 = (1, 0)T , one

|θ〉 = |1〉 = (0, 1)T or in a coherent superposition |θ〉 = α |0〉+ β |1〉 = (α, β)T where

T is the transpose of the vector, and α and β are complex amplitudes satisfying

|α|2 + |β|2 = 1.

The SWAP operation described by Eq. (5.1) is very useful and an important com-

ponent for the proper operation of several quantum circuits [106, 107] or in the

implementation of some quantum algorithms, for example the Shor’s algorithm

[108] and a necessary condition for the networkability of quantum computation

[109].

One important point is that a SWAP gate can be constructed by the application of

three consecutive CNOT gates [1, 110]. And it is known that CNOT gates together

to single qubit gates are universal for quantum computation [111, 112], i.e., any

unitary operation can be done by using only those gates. Therefore due to the im-

portance of CNOT gates, several studies of SWAP gates based in CNOT operations

have been done [110]. But one problem that arises is its possible experimental

realization. Up to now the best photonic circuit implementing a CNOT has a prob-

ability of success of 1/9 [105], meaning that three of them would work (1/9)3 of the

times, without considerer any extra source of error. This would make any effort

unsuccessful by using this approach. So a possible implementation of a SWAP gate

with a better probability of success is discussed in the next section.
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5.2 Implementation of a photonic SWAP gate

In order to make a experimental realization of a SWAP gate, a possible implementa-

tion using waveguides is discussed. The system proposed for this task consists of an

array ofN = 2M waveguides, withM the number of qubits and forming a Jx lattice.

This means that the coupling between waveguides is given by f(n) = κ0
2

√
n(N − n),

where κ0 is a scaling factor introduced for experimental reasons (a high value of κ0
would imply large values of coupling and a short propagation length but this would

produce to be in a regime different to the couple mode theory. A small value of κ0
would not have problem with the couple mode theory but it would produce a very

long propagation length and not reachable by the actual experimental settings).

The dynamics of single photons in a Jx lattice is given by the Heisenberg equation

for the creator operator â†n :

i
d

dZ
â†1(Z) = f(1)â†2(Z)

i
d

dZ
â†n(Z) = f(n)â†n+1(Z) + f(n− 1)â†n−1(Z)

i
d

dZ
â†N(Z) = f(N − 1)â†N−1(Z) , (5.3)

where n runs from 2 to N − 1, Z is the normalized coordinate given by Z = κ0z

and z is the actual propagation distance. As it was seen in Chapter 4, the unitary

transformation of a photon launched in site q and reaching site p is analytically

described by:

Up,q(Z) = (−i)q−p
√

(j + p)!(j − p)!
(j + q)!(j − q)!

[
sin

(
Z

2

)]q−p [
cos

(
Z

2

)]−q−p
P q−p,−q−p
j+p (cos(Z)).

(5.4)

A direct evaluation of this equation at Z = π reveals all amplitudes vanish except at

particular where p = N + 1− q. This means that single photons entering in waveg-

uides located over one side of the array will symmetrically appear from waveguides

on the opposite side, as is shown in Fig. 5.1. This is exactly what is needed for

a SWAP operation between the spatial modes of the array. Also notice that the

array is performing the swapping of the input without any extra measurements or

post selection, so it is completely deterministic and due that the input is totally

transferred to the output, the efficiency of the operation is 1.

Moreover, the capacity to perform a SWAP operation is not restricted to qubits

but also to qudits (name referred to a system with d-levels, with d higher than two.
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Z = ⇡

Figure 5.1: Scheme of a Jx lattice. (left) Perfect transfer from site n to site N − n + 1 is
reached at distance ofZ = π. (right) Evolution of the average photon number for two initial
inputs in the borders of an array of 20 waveguides. They reach the opposite sites at Z = π,
which it could be used as a SWAP operation.

d = 2 is for qubits). For that consider an even system of N = 2d waveguides and

two inputs states |θL〉 = (α1, α2, . . . αd)
T and |θR〉 = (βd+1, βd+2, . . . β2d)

T entering

simultaneously to the array. Here L and R denote left and right with respect to

the center of the array. Using Eq. (5.4) and after a propagation of Z = π one can

notice that the initial two-qudit state |Ψ〉in = (α1, . . . , αd)
T (βd+1, . . . , β2d)

T evolves

into the output state |Ψ〉out = (β2d, . . . , βd+1)
T (αd, . . . , α1)

T , which can be seen as a

SWAP operation (the states are symmetrically swapped with respect to the center).

5.3 Experiment and results

In order to test experimentally the proposed SWAP operation, an array of N = 4

waveguides was done using the femtosecond laser direct writing technique ex-

plained in Chapter 2, to perform operations in a level of two qubit. An scheme

of the integrated circuit is shown in Fig. 5.2. The length of the Jx lattice at the

normalized distance Z = π was experimentally equal to 52.3 mm (κ0 = 0.06

mm−1) and values of coupling between 0.51 and 0.6 cm−1 were used. According

to the dual-rail basis, a single photon exciting the modes of the first (waveguide

1) and second (waveguide 2) waveguides encodes the first input qubit. In the

same way, the second qubit is represented by another single photon exciting the

modes of the third (waveguide 3) and four (waveguide 4) waveguides. Then the

first component of the first qubit is encoded in the mode of waveguide 1, and

the second component is encoded in the state of waveguide 2. For the second

qubit the first component is encoded in the mode of waveguide 4 and second

component is encoded in the state of waveguide 3. Following those definitions,

the computational basis |0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉 corresponds to the creation opera-

tors â†1â
†
4 |0〉 , â†1â†3 |0〉 , â†2â†4 |0〉 , â†2, â†3 |0〉 respectively. After propagation in the array,
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Figure 5.2: Scheme of the integrated chip used for a SWAP gate. Numbers 1,2,3 and 4 are
the labels of the four waveguides (modes) used in this experiment. Initially there is a fan-in
region in order to match the fiber array used to launch single photons, then the Jx region,
and finally a fan-out section to match the output fiber array which collect the photons and
connect them to detectors. BS represents a 50:50 coupler or beam-splitter. The initial state
|Ψ〉in and final state |Ψ〉out are located at the start and end of the Jx section respectively
(marked with dashed lines). The first BS is used to create a coherent superposition and
second BS is used to test the SWAP operation and it is located after the Jx section.

the basis is transformed to the states |0, 0〉 , |1, 0〉 , |0, 1〉 , |1, 1〉. This evolution is

described in matrix notation by:



|0, 0〉 |0, 1〉 |1, 0〉 |1, 1〉
|0, 0〉 1 0 0 0

|0, 1〉 0 0 1 0

|1, 0〉 0 1 0 0

|1, 1〉 0 0 0 1

 , (5.5)

where the basis (dual-rail basis) is putted explicitly. Notice that this matrix (also

known as truth table) is equivalent to USWAP in Eq. (5.2).

The Jx lattice was proved launching classical light from a diode laser at the same

wavelength of the photons source used in this work, that is 815 nm. Those results

are in Fig. 5.3 a) where single input condition was tested in every waveguide, show-

ing good results compared to the theory. Then, single photons were generated by

SPDC, and collected by a fiber array to the chip. Because these fibers form an array

with a separation of 127 µm between them, a fan-in (fan-out) structure has to be
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a)

b) c)

Figure 5.3: Characterization of the integrated SWAP gate. a) Intensity output measurements
when input light is launched in every of the four waveguides (wg 1,. . . ,wg 4). Purple bar is
the experimental value and light purple is the theoretical one. At bottom, the truth table of
the SWAP gate for b) theoretical and c) experimental values.

done previous (after) to the place where the dynamics occurs, in this case the Jx
lattice (see Fig. 5.2).

During the theoretical part is was assumed that the photons are indistinguishable,

so the experiment has to meet this condition. Experimentally this was checked

performing a HOM dip experiment, getting a visibility of 90% on chip. Once the

photons are ready to be used in the integrated circuit, the fist experiment con-

sisted to test and characterized our device by measuring the truth table of this

circuit. For that, the four states of the computational basis were used as input

states |0, 0〉 , |0, 1〉 , |1, 0〉 , |1, 1〉, this means single photons in waveguide 1 and 4,

waveguide 1 and 3, waveguide 2 and 4 and waveguide 2 and 3 respectively and then

the output probability is analyzed in the corresponding basis. The theoretical and

experimental truth table are showed in Fig. 5.3 b) and c). The result shows a good

agreement with the theoretical value, where the calculated similarity of the device

was S = 0.81± 0.01. A possible explanation for this value is, that photons are not
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entire indistinguishable but they are partially distinguishable and a non-perfect

fabrication of the Jx lattice. Due the array implements a SWAP operation only at

distance Z = π and following a specific values of coupling, small variations and

imperfections during the process of fabrication may produce a small detuning in

waveguides, therefore having a non-perfect performance of the SWAP gate

Although the truth table is good indicator in how is the performance of the device,

experiments with non-trivial input states has to be done in order to clarifier if

the circuit is doing a SWAP operation or not. For that, it will be considered the

following coherent superposition |Ψ〉cs = α |0, 0, 1, 0〉 + β |0, 0, 0, 1〉, this means a

single photon entering to the waveguides 3 and 4 with probability |α|2 and |β|2
respectively. This can be done putting an additional BS before the Jx section (see

Fig. 5.2). Here it was used a 50:50 beam-splitter, so α = β = 1/
√

2. Also it will be

considered a single photon entering into waveguide 1, |Ψ〉sp = |1, 0, 0, 0〉.
So, the input state will be

|Ψ〉in = |Ψ〉cs ⊗ |Ψ〉sp = α |1, 0, 1, 0〉+ β |1, 0, 0, 1〉 .

And after the SWAP operation performed by the integrated circuit one should

expect the following state

|Ψ〉out = |Ψ〉sp ⊗ |Ψ〉cs = α |0, 1, 0, 1〉+ β |1, 0, 0, 1〉 ,

where the coherent superposition initially between channels 3 and 4 is swapped

to channels 1 and 2 and the single photon initially in channel 1 is swapped to

channel 4. In Fig. 5.4 are the output probabilities in every channel where one can

can compare the theoretical value Fig. 5.4 a) with the experimental one Fig. 5.4 b).

Due it is using a 50:50 coupler to create the coherent superposition, one should

observe equal number of counts between channels 1 and 2, nothing in channel

3, and higher counts in waveguide 4. Experimentally the values are close to the

theory, where channel 1 and 2 are very similar, although there are a number of

counts different to zero in waveguide 3. These measurements give information of

the circuit but they have to be complemented with quantum correlations, so in

order to have a deeper insight about the quantum properties of the system, the

correlation function Γp,q is calculated [26] (see Fig. 5.4 bottom). The results shows

no values on the diagonal, meaning no bunching, and higher values in the expected

position (see the theoretical plot to the left), like for example the position (1,4),

where the detector in channel 1 receives the single photon from channel 4 and
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a) b)

Γp,q

c)

Γp,q

d)

Figure 5.4: Measurements at the output of the Jx lattice using as input the coherent
superposition and a single photon. (top) Output probability in every of the four detectors,
where a) is the theoretical value and b) is the experimental one. (bottom) Correlation
function Γp,q (or two-fold coincidence), where two detectors count single photons at the
same time. c) is the theoretical value, and d) is the experimental one.

detector in channel 4 receives the one photon of the coherent superposition. The

similarity of this measurement was 0.72± 0.01. The same explanation used for the

experimental values of the truth table can be used here, where distinguishability of

photons and minor imperfections in the Jx lattice are the main source of errors.

With all this measurements, including the correlation matrix, one can infer that

the created device is performing a SWAP operation. An ultimate test would be that

indeed the same coherent superposition at input is being swapped to the output.

For that an additional BS is added at the output of the Jx lattice (see Fig. 5.2). This

is done because if the initial coherent superposition between waveguides 3 and 4
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a) b)

Figure 5.5: Experimental output probability of the BS added at the end of the Jx lattice.
When a coherent superposition is the input, the output shows a tendency to exit in one
arm of the BS a). In the other hand, when a single photon is the input, equal probability is
measured in both arms b).

is being swapped to waveguides 1 and 2, then the coherent superposition entering

to this BS would exit in only one arm of the BS and single photons in this arm

should be detected. This was tested and the result of this experiment is shown in

Fig. 5.5 where the output probability of the two arms of this BS are plotted, and

one can observe a clear tendency of photons to exit in one arm of the BS with a

probability of 0.70± 0.02. Moreover when instead of the coherent superposition, a

single photon is used as input, it was observed an equal output probability of 0.5 in

both arms of the BS (due that a single photon is entering to the BS, equal output

probability is expected, see Fig. 5.5 b)). This shows clearly a different behavior of

the device depending if either the input is a coherent superposition or a single

photon, therefore one can say that the chip is performing a SWAP operation for the

coherent superposition.

5.4 Conclusions

In this Chapter, a integrated photonic quantum SWAP gate was studied and imple-

mented experimentally using photons. To ensure that the chip was indeed doing

a SWAP operation several measurements were taken, including the obtention of

the truth table of the device and the use of non trivial input states. One important

point is that this operation is completely deterministic, so it has a probability of

success of 1. This makes it a good candidate for large and complex networks using

SWAP gates.
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CHAPTER

6
Conclusions and Outlook

During this work different aspects of the actual quantum technology were studied.

All of them characterized by the propagation of single or multi-photon states in

complex networks, including certain areas of quantum computation and quan-

tum simulation. They were studied by using dynamical equations, like discrete

Schrödinger equation, for classical and quantum light. Interestingly the knowledge

about the dynamics of single and multi-photons in guided structures helped to

address different works in these areas.

Throughout this thesis, integrated optical circuits fabricated by means of fem-

tosecond writing technology played a crucial role. This technique, in fact, allows

to have a access to complex networks, like the Jx lattice or tuned waveguides and

in this way to manipulate the propagation of single and multi-photons states for

quantum technologies.

The observation of the very high efficiency quantum transport in photosynthetic

complexes due to decoherence, mark the beginning of Chapter 3. By using the

formalism of open quantum systems applied to waveguides, a system of three

detuned waveguides was used for a quantum simulation. Experimental results in

the single photon regime were obtained, where it was observed an increment of the

transport efficiency, process known as environment assisted quantum transport

[61]. Then the regime of two photons was studied. Unlike single photon regime,

results show that indistinguishable two photon states arrives to the same steady

state characterized by higher elements in the diagonal of the photon correlation

function Γ. Moreover, coherence terms, given by the off-diagonal elements of



the density matrix, survive to the decoherence despite the rate of the dephasing,

provided the photons are indistinguishable.

The scattering or propagation of photons in a network it is the special impor-

tance in the context of quantum integrated optics. A well known example is the

boson sampling problem, indicated as intermediate computation which solve a

problem believed to be classically hard to resolve [92]. And this task is related to

calculate the permanent of a matrix. In chapter 4, it was discussed cases where,

interestingly, this permanent is zero. The suppression of certain output states,

given by the permanent, was studied for cases with symmetric conditions for the

input and the unitary matrix U . It was a found a condition related to the number of

even entries at the output mode: if this number is odd, then that state is suppressed.

To test experimentally this condition, an experiment using a Jx lattice and three

photon input states was carried out, where the results have a good agreement with

the stablished suppression law.

Last, but not least, the proposal of a quantum SWAP gate for quantum computation

is addressed. The different operations inside a scheme of quantum computation

are implemented by quantum gates, where the SWAP operation acts as an inter-

mediate gate swapping states. The SWAP gate can be built by the action of three

consecutive CNOT gates, where the CNOT gate is an important operation due to its

universality in quantum computation. A big problem to create a SWAP gate using

the mentioned approach is that it would have a probability of success of (1/9)3

[105], making it impracticable experimentally. Here a quantum two qubit SWAP

gate was discussed acting in the spatial modes using a Jx lattice, where the problem

of low success is avoid due to its remarkable characteristic of having an efficiency

of 1. This means that no post processing is needed, making this implementation

a realistic option for future experiments. The gate was characterized and proved

using non trivial input states showing good results.

As future work in the area of quantum gates, the proposed SWAP gate in this

work could be used to implement a quantum Fredkin gate. The Fredkin gate is a

universal classical gate using three inputs which has several applications in quan-

tum computation [113]. This gate is also called controlled-SWAP gate meaning if

the control photon is 0, nothing happens to the others two photons (identified by a

identity matrix), but if the control photon is 1, the other photons do a SWAP opera-

tion (identified by a SWAP matrix). The SWAP operation was already discussed for
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two photons, using a Jx lattice at the distance of π/2. Interestingly, the Jx lattice

at distance of π makes a complete revival of the inputs, which it may be seen as

the case when control photon is 0 (because inputs stay equal). Therefore using Jx
lattices at different distances, one could implement a Fredkin gate. It remains to

see how control photon does this change, where non-linear operations or the use

of ancillary photons may be needed.

Together to the work put in manipulation of photons through quantum gates,

work in their detection has to be done also. Click detectors cannot distinguish

between events of single photon or many of them, so work in the fabrication of

detectors able to make such a distinction is highly desirable. Examples can be

found in [114] using superconducting nanowires. Other desirable characteristic

of these new detection systems is that they are integrable to the actual integrated

circuits, so manipulation and detection would be in the same chip. Example of

this, are the the superconducting detectors mounted onto waveguides [115, 116].

One drawback is these devices run only at very low temperature, so operation at

room temperature is not yet possible.

The other step in quantum integrated optics is the generation of photons, in-

dispensable for any photonic quantum technology. Although during this work

external sources where used, new approaches use sources on chip. One example is

photon pairs generated at telecom wavelength through SPDC in periodically-poled

lithium niobate waveguides [117]. The work above is interesting, because although

the waveguides created during this thesis were in amorphous materials like fused

silica, it is also possible to use the same writing technique in crystals [118, 119]

like lithium niobate. This opens the possibility to generate non-linear waveguides

where the generation of photons pair is possible on chip, by employing the fem-

tosecond laser writing technique [120].

All the obtained results in this thesis shed light upon certain aspects of the propa-

gation of photons in waveguides arrays, where different areas like quantum com-

putation and simulation where studied. They show the study of the dynamics

oh photons can be used in several areas, and that the use of special arrays, like

Jx lattice have the potential for interesting results in integrated quantum optics,

where the femtosecond laser writing technique appears as a good candidate to

fabricate such as integrated structures.
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APPENDIX

A
Derivation of the dynamical

equation for ρ in OQS

In the following, an analogous way to get Eq. (3.15) in the main text will be devel-

oped starting from Eq. (3.7). It is assumed that the system under study corresponds

to the array of three waveguide presented in the main text. It is necessary to cal-

culate the component n,m of dρ/dz, where now it will be used ρ for the reduced

density matrix:

d

dz
ρn,m = 〈n| d

dz
ρ |m〉 = 〈n| − i[H, ρ] |m〉+ 〈n| L[ρ] |m〉 . (A.1)

Analyzing firstly the term 〈n| − i[H, ρ] |m〉

〈n| − i[H, ρ] |m〉 = −i 〈n|Hρ |m〉+ i 〈n| ρH |m〉 ,

but the Hamiltonian H of the trimer system written in a matrix form is H =

−∑p βp |p〉 〈p| −
∑

p,q Cp,q |p〉 〈q|, then:

−〈n| i[H, ρ] |m〉 = i 〈n|
∑
p

βp |p〉 〈p| ρ |m〉 − i 〈n| ρ
∑
p

βp |p〉 〈p|m〉

+ i 〈n|
∑
p,q

Cp,q |p〉 〈q| ρ |m〉 − i 〈n| ρ
∑
p,q

Cp,q |p〉 〈q|m〉

= i
∑
p

βpδn,pρp,m − i
∑
p

βpρn,pδp,m + i
∑
p,q

Cp,qδn,pρq,m − i
∑
p,q

Cq,pρn,pδq,m

= i(βn − βm)ρn,m + i
∑
q

Cn,qρq,m − i
∑
p

Cp,mρn,p

−〈n| i[H, ρ] |m〉 = i(βn − βm)ρn,m + i
∑
r

(Cn,rρr,m − Cr,mρn,r) . (A.2)

For the second term

〈n| L[ρ] |m〉 = 〈n|
∑
k

VkρV
†
k −

1

2
V †k Vkρ−

1

2
ρV †k Vk |m〉 ,



but in the main text it is considered only pure dephasing , so Vk =
√
γk |k〉 〈k|with

γk the dephasing rate [61, 121]:

〈n| L[ρ] |m〉 = 〈n|
∑
k

√
γk |k〉 〈k| ρ

√
γk |k〉 〈k|m〉 −

1

2
〈n|
∑
k

√
γkγk |k〉 〈k|k〉 〈k| ρ |m〉

− 1

2
〈n| ρ

∑
k

√
γkγk |k〉 〈k|k〉 〈k|m〉

=
∑
k

√
γkδn,kρk,k

√
γkδk,m −

1

2

∑
k

γkδn,kρk,m −
1

2

∑
k

γkρn,kδk,m

〈n| L[ρ] |m〉 =
√
γn
√
γmδn,mρn,m −

1

2
(γn + γm)ρn,m (A.3)

Then finally:

d

dz
ρn,m = i(βn−βm)ρn,m+i

∑
r

(Cn,rρr,m−Cr,mρn,r)+
√
γn
√
γmδn,mρn,m−

1

2
(γn+γm)ρn,m,

(A.4)

which is the result in Eq. (3.15).
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Busch, H. Moya-Cessa, J. P. Torres, A. Perez-Leija and A. Szameit. Oral talk:

Noise-assisted energy transport in dynamically disordered photonic lattices.

RIAO/OPTILAS 2016, Pucon, Chile

[•] D. Guzman-Silva, R. Brüning, F. Zimmermann, C. Vetter, M. Gräfe, M. Heinrich,
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stständig und ohne fremde Hilfe verfasst habe, bis auf die in der Bibliographie

angegebenen Quellen keine weiteren Quellen benutzt habe und die den Quellen
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