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Executive summary

Background: Three key observations have been made about the mortality changes of the last

century and a half. First, mortality has been improving continuously. Second, the age pattern

of mortality improvements has been changing. Third, there are additional opportunities for

longevity extension at the highest ages. We face ongoing challenges and questions when seek-

ing to measure and understand the pattern and consequences of the mortality dynamics that

underlie these findings. The individual articles of this thesis address these specific challenges

and questions.

Objectives: Based on these three key findings, four thematic clusters have been derived. The

first cluster addresses the issue of how survival progress is measured, and proposes an al-

ternative measure for this purpose. The second cluster refers to the mortality dynamics at

the upper and the lower boundary of age-specific mortality, and thus aims to shed light on

different aspects of these dynamics, such as on the levels and locations of these boundaries.

The third cluster poses methodological questions about how best to measure and explain life

expectancy changes and lifespan variability, as well as about the extent to which increasing

longevity affects the lifetime risk of contracting a disease in the context of changing age pat-

terns of mortality improvement. Recognizing the unused potential for longevity extension at

the highest ages as well as the different patterns of lifespan variability since the 1950s, the

fourth cluster aims to show the benefits of using lifespan variability to evaluate mortality fore-

casting approaches.

Outcomes: The individual articles present novel measures as well as empirical applications.

XIV



Executive summary

Cluster one introduces a new measure, which translates differences in the level of survival

improvements between a population and a reference into a lag, expressed in calendar time.

The cluster also includes a proposal for a classification of different settings for the compar-

ison of populations, and discusses their respective shortcomings. Cluster two illustrates the

tremendous decline in the lower boundary of age-specific mortality, as well as its shift to

younger and younger ages over time. Recent trends also suggest that these developments are

likely to continue, at least in the near future. Moreover, the analysis of the maximum levels

of age-specific mortality produces slightly higher levels than those estimated in previous pub-

lications. Cluster three introduces a refined analysis framework for the rectangularization of

the survival curve, as well as two different decomposition methods for the contributions of

mortality dynamics to life expectancy change, and for the contributions of longevity increase

and disease incidence to lifetime risk differentials. The evaluation of mortality forecasting

approaches in cluster four shows that the tested approaches perform fairly well in capturing

life expectancy levels, but that they have difficulties capturing the related lifespan variability

pattern, especially in situations in which life expectancy is changing as lifespan variability is

stagnating or increasing.

Conclusion: Mortality changes over the last one and a half centuries are associated not just

with an increase in the length of the average human lifespan, but with an expansion in the

range of age-specific mortality and shifts in the dynamics of these trends. The enormous life

expectancy gains that have been made, and particularly the development of the lower bound-

ary of age-specific mortality, suggest that there is still enormous room for improving mortality

at all ages. However, the extent of the changes at the lower boundary should also motivate

us to consider potential “failures of success” as consequences of the advancement in the past.

When assessing survival progress, it is clear that in many instances, the patterns and the speed

of improvement are often more informative than the actual levels of advancement, especially

when analyzing key characteristics of mortality, such as life expectancy or infant mortality.

The proposed approaches for measuring the dynamics driving mortality changes highlight the

multiple ways in which lifespan variability and life expectancy have been related since the on-
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Executive summary

set of sustained mortality decline at older ages. Given the still large opportunities for longevity

extension, this topic will remain a key issue for mortality research in the future. The evalua-

tion of mortality forecasting is of prime importance in this context, because it highlights how

problematic deviations from the usual patterns can be. In addition to providing methodological

insights, the outcomes of this thesis shed light on related topics, such as the role distributive

justice plays in further reducing mortality in a population, and the shape of progress in popu-

lations with lagging levels of advancement. The methods proposed in this thesis should prove

useful in addressing such questions.
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1. Background

1.1. The continuity of mortality improvement

The average number of years that humans can expect to live has been increasing for more than

one and a half centuries. Prior to the sustained increase in life expectancy, the global average

lifespan fluctuated at around 30 to 35 years (Riley, 2005). Currently, Japanese females are liv-

ing longest, with an average lifespan of almost 87 years. The rise in life expectancy has been

occurring with a remarkable degree of regularity. Based on the highest annual life expectancy

observed, Oeppen and Vaupel (2002) have suggested that the increase is best illustrated by

a straight line starting around 1840 that increases by approximately a quarter year per year.

Other authors have proposed depicting the increase of life expectancy using a segmented trend

line with three distinct development periods (Vallin and Meslé, 2009). Regardless of whether

life expectancy improvement has been occurring at a single or at different speeds, there is ex-

tensive evidence of the striking regularity of the historic increase in longevity (among others

White, 2002; Riley, 2001; Colchero et al., 2016).

Figure 1.1 visualizes the continuity of mortality improvements. The graph depicts period

estimates for life expectancy at birth for each country with at least one year of data in the

Human Mortality Database (2017a) between 1850 and 2015. To approximate some general

trends, the annual average across all countries with data in the respective year is highlighted

with a thick solid line. Estimates for males are in blue and estimates for females are in red.

Figure 1.1 illustrates the tremendous increase in life expectancy at birth. Based on the av-
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Figure 1.1.: Life expectancy at birth, males and females, various countries, 1850-2015.

The graph includes estimates for all countries included in the Human Mortality

Database (2017a) with at least one year of data between 1850-2015. The annual

average is calculated across all countries, providing a life expectancy estimate in

the respective year. Hence, the number of countries included in the average varies

by year. Life expectancy estimates are based on period life tables, using age-

specific death counts and exposures provided by the Human Mortality Database

(2017a). The abbreviation “LE” stands for life expectancy.

erage value across countries, the average lifespan almost doubled between 1850 and the most

recent years. Despite short-term fluctuations and the influence of strong period effects, such

as the Spanish flu (1918–1920) and the World Wars (1914–1918, 1939–1945); it is clear that

2



1. Background

survival has been continuously improving since at least 1870. However, if we look at the an-

nual cross-country average, we see that the pace of improvement started slowing around 1950.

This trend is likely attributable to the onset of sustained old-age mortality declines (Kannisto,

1994).

Several authors have emphasized the commonalities in the patterns of survival improvement

across countries. Tuljapurkar et al. (2000), for instance, have provided evidence of a roughly

constant rate of exponential mortality decline across the G7 countries. Taking a broader per-

spective, Leon (2011) pointed out that the pace of the life expectancy increase has been similar

across western Europe, Japan, and the USA; but also that some deviating trends can be ob-

served in regions such as eastern Europe. Using a joint perspective, White (2002) showed that

the variability in the level of life expectancy across countries has been decreasing over time.

Additionally, he argued that the earliest industrialized countries have shared a stable rate of

change and a stable degree of variability of life expectancy levels at least since around 1980.

He concluded from these findings that the countries included in his analysis increasingly ap-

pear to have a common mortality trend. While acknowledging the occurrence of short-term

fluctuations, Wilmoth (1998) also emphasized the remarkable stability and regularity of im-

provements. The expectation that past trends will continue in the future prompted him and

other scholars to simply extrapolate past trends to forecast future levels of life expectancy

(Wilmoth, 1998; Torri and Vaupel, 2012).

Over a long run, the general trend in life expectancy and the life expectancy trends of al-

most all of the countries in Figure 1.1 are remarkably regular. Nonetheless, there is still a

considerable degree of inequality in life expectancy levels. For instance, Ribeiro et al. (2016)

provided evidence for spatial inequalities in old-age survival across European regions. They

observed a north-south pattern with higher life expectancy in the southern regions. Moreover,

some scholars have described a divergence of old-age mortality declines across low-mortality

countries (Meslé and Vallin, 2006; Rau et al., 2008). According to Meslé and Vallin (2006),

the trends in the USA and the Netherlands and those in France and Japan can be seen as ex-

3



1. Background

emplary groups with differing trends. By analyzing the time point at which countries started

to diverge from some general trend, Ouellette et al. (2014) and Li et al. (2011) found that most

trend breaks occurred between 1970 and the end of the 1980s. Peters et al. (2016) argued

that most of these trends breaks can be explained by the smoking epidemic. Moreover, Thun

et al. (2012) found that the four-stage model of the smoking epidemic, which was originally

published by Lopez et al. (1994), provides a useful description of the mortality trends in many

developed countries. It is therefore possible to speculate that since 1950, tobacco smoking has

been the main driver of the variations in mortality trends across countries. However, in some

eastern European countries in particular, alcohol consumption and other factors have also had

considerable effects on the changes in life expectancy (McKee and Shkolnikov, 2001).

Innovations and changes in nearly every branch of life are responsible for the marked in-

crease in the average lifespan. According to Cutler et al. (2006) the factors that have con-

tributed to rising longevity include better nutrition, improvements in public health, urban-

ization (albeit with some negative effects), vaccination, better medical treatments, and the

long-term effects of improvements in early-life conditions. Advances in education, welfare,

and infrastructure are other potential determinants of the increase in the average lifespan (Ri-

ley, 2001). Researchers have also found correlations between life expectancy and a number

of other development indicators, such as gross domestic product (Preston, 1975; Mackenbach

and Looman, 2013). It is, however, unclear, which of these determinants have been and cur-

rently are the most important. Scholars have observed a complex interplay of all of these

factors with variations over age, period, and cohort (Oeppen and Vaupel, 2002; Riley, 2001).

An attempt to create a theoretical framework for these fundamental changes was made by

Fogel and Costa (1997). They proposed the theory of technophysio evolution. This concept

relates the alteration of human physiology to the steady increase in environmental control that

has occurred over the last 10 generations, and which has been particularly pronounced in the

last three to four generations. Fogel and Costa (1997) characterized this evolution as a long

term and still ongoing process.

4



1. Background

In addition to the determinants responsible for progress across populations, factors that

influence mortality within populations have become increasingly important. Health care sys-

tems, medical care, resource allocation, differences in health-related behaviors, social struc-

ture, and stress seem to have driven recent and current mortality developments within and

across countries (Cutler et al., 2006; Marmot, 2005). The emergence of modern epidemics,

such as the smoking epidemic, have slowed or even reversed mortality improvements (Thun

et al., 2012; Lopez et al., 1994). Although being overweight is probably not as deleterious to

health as smoking tobacco, the obesity epidemic appears to be threatening further health and

mortality improvements in developed countries (Prentice, 2005; Caballero, 2007).

The enormous number of years added to the average lifespan also raises questions about

the health status of people during their additional years of life. Are these years spent in poor

or good health? Three competing hypotheses that attempt to answer this question have been

proposed. The compression of morbidity hypothesis (Fries, 1980) argues that these additional

years are healthy years: The dynamic equilibrium hypothesis (Manton, 1982) assumes that

the proportion of the lifespan spent in poor health remains the same. Finally, the expansion

of morbidity hypothesis (Gruenberg, 1977; Kramer, 1980) argues that the additional years or

life are spent in poor health. Although many studies have favored the compression of morbid-

ity theory, the research outcomes on this issue diverse (Chatterji et al., 2015; Vaupel, 2010).

Thus, it has recently been asserted that the question of whether the additional years are spent

in good or in poor health is the next million-dollar question in demography 1. There are also

different hypotheses about the influence of improved survival on the general health status of

the population. For example, the failure of success hypothesis claims that medicine has saved

the lives of frail individuals in the population in particular, and that this has in turn resulted

in an increasingly unhealthy population (Gruenberg, 1977; Rosen and Haglund, 2005). The

counterpart to this idea could be called the success of success hypothesis, which asserts that

the general health status of the population has been improving. However, given the contro-

1http://demogr.mpg.de/en/news_press/news/news/the_next_million_dollar_

question_in_demography_4802.htm

5

http://demogr.mpg.de/en/news_press/news/news/the_next_million_dollar_question_in_demography_4802.htm
http://demogr.mpg.de/en/news_press/news/news/the_next_million_dollar_question_in_demography_4802.htm
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versies surrounding health status during the additional years of life, the questions of mortality

decline and population health are linked is similarly debatable.

In light of the expectation of further advances in the various forces of improvement and the

recent mortality trends in developed countries, it is unlikely that the rise in life expectancy

will halt in the near future (Vaupel, 2010; Mathers et al., 2015). Nevertheless, what the levels

and the limits of the average and the maximum lifespan will turn out to be are questions that

continue to be debated. Although Oeppen and Vaupel (2002) have shown that many suggested

limits have already been exceeded in the projected year, opinions about the future of human

life expectancy still range from limited to limitless. For instance, Olshansky et al. (1990) dis-

cussed the evidence in favor of the assumption that life expectancy is limited. They argued

that unless major breakthroughs occur, life expectancy is unlikely to exceed 85 years. How-

ever, in more recent publications, the same authors have revised their view on the limits of

life expectancy (Olshansky et al., 2005). By contrast, De Grey (2006) offered a highly opti-

mistic, almost limitless view on the future of longevity. Based on extrapolations of scientific

progress and political responses, he argued that the cohorts born in the 21st century are likely

to achieve a life expectancy of more than 1000 years. A much more pessimistic perspective

was presented in a recent article by Dong et al. (2016), who argued that even the maximum

lifespan is unlikely to exceed 115 years. However, the results of other recent studies have

convincingly demonstrated that these findings are flawed (Hughes and Hekimi, 2017; Lenart

and Vaupel, 2017; Rozing et al., 2017; de Beer et al., 2017).

1.2. The changing age pattern of mortality

improvement

As populations evolved from having low to high life expectancy, the major drivers of in-

creases in life expectancy shifted from young to old ages. Accordingly, the forces that drove

the progress made at the beginning of the life expectancy revolution differ from the factors that
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influence life expectancy in the current context (Christensen et al., 2009; Riley, 2001; White,

2002). At the beginning of the revolution, declines in infant and child mortality as well as in

mortality among adolescents and young adults made the largest contributions to the increase

in the average lifespan. Since the 1950s, however, mortality improvements at older ages are

the primary drivers of rising life expectancy levels (Christensen et al., 2009; Kannisto, 1996;

Rau et al., 2008). This trends is also a consequence of the continuous mortality decline. As

mortality levels across almost all ages have been dropping from one historical minima to the

next, the opportunities for further reductions in mortality at younger ages are narrowing. By

contrast, there are still enormous opportunities for further improvements in mortality at the

highest ages.

Figure 1.2 illustrates the changing effects of mortality reductions at younger and older ages

on increases in life expectancy at birth. The graph depicts the relative contributions of mor-

tality declines to increases in life expectancy at birth between 1900 and 1950 (left panel) and

between 1950 and 2000 (right panel) for several countries, separated into the age ranges of

below and above 30. In each panel, the bars on the left depict the contribution of ages below

30. The bars on the right indicate the contribution of ages above 30. Estimates for males and

females are depicted in blue and red, respectively.

On average, around 75% of the increase in life expectancy between 1900 and 1950 was

generated by mortality decline at ages below 30. Accordingly, only around 25% of the in-

crease was due to mortality declines above age 30. The results of the decomposition between

the years 1950 and 2000 reveals a different pattern: during this period, mortality declines at

ages below 30 generated only around 25% to 50% of the increase in life expectancy, whereas

mortality declines at ages above 30 contributed around 50 % to 75% to the increase in life

expectancy. The period during which mortality improvements at older ages were the main

drivers of life expectancy increase has been described by Kannisto (1994) as the “era of sus-

tained old-age mortality decline.” For several countries, Kannisto (1994) also provided time

points of the onset of this development. For instance, his analysis showed that this trend started

7



1. Background

Belgium

Switzerland

Denmark

England & Wales

Finland

France

Iceland

Italy

Netherlands

Norway

Scotland

Sweden

100% 75% 50% 25% 0% 0% 25% 50% 75% 100%

Ages below age 30 Ages above age 30
1900 to 1950

Relative contribution to the increase of life expectancy at birth

Females
Males

Belgium

Switzerland

Denmark

England & Wales

Finland

France

Iceland

Italy

Netherlands

Norway

Scotland

Sweden

100% 75% 50% 25% 0% 0% 25% 50% 75% 100%

Ages below age 30 Ages above age 30
1950 to 2000

Relative contribution to the increase of life expectancy at birth

Females
Males

Figure 1.2.: Relative contribution to the increase in life expectancy at birth, males and

females, various countries, 1900-1950 and 1950-2000. The graph depicts all

countries that provide data for the years 1900, 1950, and 2000. The decomposi-

tion is based on the methodology presented in Arriaga (1984), which is concisely

summarized in Preston et al. (2001). The unequal age intervals are justified by

the higher sensitivity of life expectancy to mortality changes at younger ages. All

of the included countries showed an increase in life expectancy at birth over time.

The estimates are based on based on period life tables, using age-specific death

counts and exposures provided by the Human Mortality Database (2017a).

first among females in France (1955 or earlier), Switzerland, Sweden (all 1956), and Denmark

(1962); and much later among women in Spain, New Zealand (both 1974), the Czech Repub-

lic (1975), Ireland (1979), and Estonia (1981). Looking at males, the analysis found that this

trend started first in France (1955 or earlier), Japan (1966), Switzerland (1967), Finland, and

Portugal (both 1970); and later in Denmark, Iceland, East Germany (all 1984), Hungary, the

Czech Republic (1985), and Estonia (1989). On average across all of the countries analyzed,

females experienced the onset in 1968 and males experienced the onset in 1976 (Kannisto,

1994). Vaupel (2010) has noted that as a consequence of improvements in survival at older
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ages, the number of centenarians has been increasing exponentially in Sweden and Japan since

1950.

The shift in the age pattern of mortality improvement is attributable to the success of the

fight against communicable diseases. During the transition, communicable diseases, such

as cholera and other infectious diseases, were replaced as major causes of death by non-

communicable diseases, such as cardiovascular diseases and cancer (Riley, 2001). Although

many regions have experienced this transition, the timing of the onset and the level of progress

achieved differ greatly across the globe. Riley (2005) has dated the start of the earliest health

transitions by populations to 1770 in Europe; to the mid 19th century in America, Asia, and

Oceania; to the late 19th century in the former Soviet Republics; and to the 1920s in Africa

(Riley, 2005). Irrespective of these geographic differences, non-communicable diseases dom-

inate the current global ranking of major causes of death (Feigin et al., 2016). Hence, the

fight against non-communicable diseases, such as cardiovascular and other degenerative dis-

eases, is the major driver of current survival progress (Robine, 2001; Vallin and Meslé, 2004).

However, despite intensive efforts to reduce mortality from non-communicable diseases, the

general process of physical deterioration with age (aging, sometimes also called senescence)

remains untouched. Thus, these efforts have simply resulted in the gaining of extra time prior

to contracting these diseases through the postponement of senescence to higher and higher

ages Vaupel (2010).

Several efforts have been made to conceptualize the shift in the disease and cause-of-death

spectrum of humans. The most prominent examples are arguably the epidemiological transi-

tion theory by Omran (1971) and, based on this work, the more general theory of the health

transition (see, for instance, Riley, 2001; Fogel, 2004)). In the epidemiological transition the-

ory, Omran (1971) described three distinct periods of change during the development from

low to high life expectancy. In the first period, mortality is high and fluctuating due to, for in-

stance, pandemics such as plague (Walter and Schofield, 1989). The second period marks the

onset and the continuation of mortality improvements and increasing life expectancy, which
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are generated by success in fighting infectious diseases. In the third period, life expectancy

levels exceed age 70 and non-communicable diseases are the major killers. The epidemio-

logical transition is an appropriate description of the mortality change up until the 1960s/70s.

However, an unprecedented reduction in cardiovascular mortality, which is commonly referred

to as the “cardiovascular revolution” accelerated this progress (Vallin and Meslé, 2004; Frenk

et al., 1991). Together with the delaying of the onset of other degenerative diseases, this de-

velopment marks a fourth stage of a general health transition: namely “the age of delayed

degenerative diseases” (Olshansky and Ault, 1986; Robine, 2001).

The changes in the age pattern of mortality improvement also led to shifts in the lifespan dis-

tribution. Taking a long-term perspective, we can see that increasing life expectancy has been

accommodated by decreasing lifespan variability (Colchero et al., 2016). As a consequence

of mortality improvements that have been occurring mainly at older ages, new and divers pat-

terns of changes in lifespan variability have been emerging that could result in a decoupling of

this long-term relationship (Vaupel et al., 2011; Smits and Monden, 2009). Deaths are being

postponed to older ages, while mortality at younger ages is declining. This pattern results in

decreasing lifespan variability and increasing life expectancy because the old-age mortality

hump in the lifespan distribution becomes more and more compressed. In his canonical work,

Fries (1980) used the term “compression of mortality” to describe these dynamics. How-

ever, with the onset of the decline in old-age mortality, other dynamics became prevalent. A

“shifting of mortality” has been observed, whereby deaths are postponed to higher ages, but

with an approximately constant shape of the lifespan distribution (Kannisto, 1996; Bongaarts,

2005; Canudas-Romo, 2008). When a shifting of mortality occurs, life expectancy increases

alongside constant lifespan variability. Moreover, it has been suggested that an expansion of

mortality at higher ages is possible (Rothenberg et al., 1991; Cheung et al., 2005; Engelman

et al., 2010). In this situation, life expectancy would increase alongside an increase in lifespan

variability due to a shift in the right tail of the lifespan distribution to higher and higher ages,

which is in turn caused by a dispersal of the old-age mortality hump.

10
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1.3. The potential for further increases in longevity

Due to the continuity of mortality improvements as well as the changing age pattern of these

improvements, opportunities for the further extension of life expectancy and longevity have

become increasingly concentrated at the highest ages. Figure 1.3 illustrates the current situa-

tion in various countries. The figure depicts the average number of person-years lived in the

age intervals 0–69 and 70–109 (partial life expectancy) relative to the respective number of

maximum possible life years in both age intervals; 70 and 40 years, respectively. For each

country, the last year with available data is used, which ranges from 2010 to 2015. Estimates

for females and males are shown in red and blue, respectively. Looking at the figure, we can

see that the populations of almost all of these countries are living close to 100% of the max-

imum possible years between ages zero and 69. Accordingly, only marginal additional gains

in the number of life years could be achieved among people in this age group. But we can also

see that the populations of the analyzed countries are using only 25% to 50% of the maximum

possible years between ages 70 and 109. Accordingly, it is clear that any increases in life

expectancy, and in maximum lifespan will be achieved primarily by reducing the mortality

among people aged 70 and older.

In addition to making further advances in the “classical” drivers of survival improvement,

scholars of various disciplines have proposed a number of groundbreaking ways of prolong-

ing life at the higher ages, such as slowing human aging or eradicating major diseases through

innovative forms of treatment and prevention. Citing findings from animal studies in which

aging patterns have been modified through, for instance, dietary restrictions or the manipula-

tion of genes, some scholars have are proposed that such modifications could be used to slow

human aging and fundamentally change the mortality trajectory (Longo et al., 2015; Sierra

et al., 2009). Moreover, Sierra et al. (2009) presented findings from human observational

studies, clinical trials, and other research settings that could point to strategies for extending

the human lifespan. However, while strategies for altering several “hallmarks of aging” have

been suggested, an effective approach for halting senescence in humans has yet to be devel-

oped (López-Otín et al., 2013).
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Figure 1.3.: Partial life expectancy between ages 0–69 and 70–109, males and females,

various countries, 2010–2015 (estimates for the last year available by coun-

try). The graph depicts partial life expectancy in the last year for which data

are available. Accordingly, the years range from 2010 to 2015. Partial life ex-

pectancy is calculated by Tx2−Tx1
lx1

with x2 > x1, with Tx expressing the person-

years lived above age x and lx being the survivors at age x. It expresses the

average number of person-years lived in specific age-interval (e.g.; x1 to x2).

For this example, age intervals zero to 69 (left) and 70 to 109 are used. Accord-

ingly, in the first interval, the maximum number of person-years is 70; and in

the second interval, the maximum number of person-years is 40. The estimated

partial life expectancy is divided by the respective maximum number of person-

years to calculate the proportion of the living potential used in the two distinct

age intervals. The estimates are based on period life tables, using age-specific

death counts and exposures provided by the Human Mortality Database (2017a).
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Irrespective of the specific strategy proposed, opinions vary about the feasibility and the

consequences of interventions aimed at slowing or stopping the aging process. From ancient

times to the present, there have been those who favor having an extremely long and youthful

life, and those who have warned of the dangers and the negative consequences of altering the

human aging pattern and pursuing extreme longevity (Jeune, 2002). Regardless of whether

any of these interventions succeed, Goldstein and Cassidy (2012) have shown that there are

several ways of reducing mortality that would lead to considerable gains in life expectancy,

and thus to the utilization of the potential for survival at the highest ages. Interestingly, the

slowing of the aging process in humans is the intervention that appears to offer the greatest

promise (Goldstein and Cassidy, 2012).

1.4. Aim of the thesis

The three main findings discussed above – namely, that mortality is continuously improving,

that the age pattern of mortality improvement is changing, and that there are further opportuni-

ties for increasing longevity – are the major cornerstones of this thesis. The individual articles

– the core of this thesis – stand on the shoulders of these well-established demographic facts.

The persistence and the dynamics of mortality improvement, as well as the potential for future

improvements, lead us to question whether existing demographic approaches and measures

are sufficient for understanding these developments going forward. To organize the specific

issues and aims of the articles, four thematic clusters are derived, which are related in dif-

ferent ways to the three key findings (see Figure 1.4). The clusters differ in terms of their

thematic perspectives and their scientific tasks/approaches. In addition to providing some

thematic orientation, the creation of these clusters allow us to map the distinct steps of the

scientific process: namely, the assessment of a specific phenomenon, the exploration of the

phenomenon and the formulation of future/alternative patterns (outlook).
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Changing age-pattern of 
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Mortality dynamics
in an era of old-age
mortality decline
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age-specic mortality 

Measuring survival
progress

Assessment Exploration Outlook

Continuity of mortality 
improvement

The role of mortality
dynamics for future
mortality prospects

Figure 1.4.: Thematic outline and structure of the doctoral thesis. The graph depicts the

key findings, the thematic clusters, and the different approaches. The black solid

lines express the relation of the different elements with each other. The figure is

an own illustration.

The sole focus of the first cluster, measuring survival progress, is the continuity of mor-

tality improvement. Although declining mortality can be observed in almost all parts of the

world, development levels are not equally distributed. Some populations have not yet com-

pleted the health transition, whereas others are already looking for ways to modify the human

aging pattern in order to further extend the lifespan (Riley, 2005; Sierra et al., 2009). There-

fore, monitoring survival progress is of great societal and political importance. Moreover,

analysis of variations across populations and of deviant cases can provide valuable opportu-

nities for studying the dynamics of specific survival determinants. Given the continuity of

mortality improvement, this approach might be particularly useful for identifying the determi-

nants of mortality dynamics and their respective changes. Hence, this cluster aims to provide

methodological alternatives for assessing survival progress in order to simplify the respective

evaluations and to stimulate a critical examination of reference trends.

The second cluster, investigating mortality dynamics at the boundaries of age-specific mor-
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tality, refers to mortality development at the lower and the upper boundary of the age-specific

mortality trajectory. Continuous improvements have pushed mortality rates to lower and lower

levels. Moreover, in response to the changes in the age patterns of mortality improvement in

developed and developing countries, efforts to prolong lifer are increasingly concentrated on

generating further declines in mortality rates at advanced ages. Obviously, this is because the

opportunities for reducing mortality are greatest at those ages. However, whether these efforts

are having any effect on the lower boundary of age-specific mortality is unknown. Generally,

relatively little is known about the evolution of the lower boundary of age-specific mortality.

While more is known about the development of the maximum level of age-specific mortality,

only a few analyses have examined the specific characteristics of this development, such as

the level of maximum mortality. Additionally, the boundaries of age-specific mortality can

be regarded as extreme cases. Hence, examining the dynamics and the changes in mortality

patterns can help us better understand the plasticity of age-specific mortality, the potential

frontiers of improvement, and the opportunities for overcoming previous limits in order to

make further progress at the edges of the mortality trajectory. In addition to being useful for

the assessment and the exploration of empirical trends, investigating mortality dynamics at

the boundaries can have important implications for developing or refining methods such as

mortality forecasting approaches. The main aim of this cluster is to assess trends and to ex-

plore the consequences and implications of the developments at the boundaries of age-specific

mortality, with a special emphasis on the lower boundary.

The third cluster, mortality dynamics in an era of old-age mortality decline, deals with the

methodological challenges that arise as a result of the sustained decline in old-age mortality.

The shift in mortality improvements from younger to older ages has altered mortality dynam-

ics. Moreover, old-age mortality improvements are likely to generate the greatest additional

gains in life expectancy and longevity in the future. However, these emerging patterns call

into question existing analysis frameworks and specific measurement techniques. Hence, this

cluster addresses different measurement problems in this area, and aims to provide new ap-

proaches for exploring the emerging patterns.
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The fourth cluster, the role of mortality dynamics for future mortality prospects, refers to

the link between mortality forecasting approaches and mortality dynamics. Future life ex-

pectancy increases will be solely based on the exploitation of the potential for prolonging life

at the highest ages. Moreover, as the age patterns of improvement have changed, mortality

dynamics have already been altered at least once. Hence, further improvements might lead to

additional changes in these dynamics. However, regardless of whether this happens or current

trends continue, the methods used to measure these dynamics should be able to capture and

anticipate different kinds of mortality dynamics at the highest ages. It is particularly impor-

tant that mortality forecasting approaches are able to perform these functions because they

are used to estimate future mortality trends. Hence, this cluster aims to explore the capacity

of forecasting approaches to capture different kinds of mortality dynamics, and to provide an

overview (outlook) of the methodological challenges involved in developing forecasting ap-

proaches.

The combined aim of the four clusters rests on the extension of opportunities to capture,

analyze, and evaluate recent and future mortality dynamics; and to assess the likelihood that

potential scenarios will develop in the future. Taken together, the clusters are expected to

provide coherent outcomes that should result in advances in the assessment and exploration

of mortality change in an era of continuous mortality decline, as well as in the projection of

future scenarios.

1.5. Structure of the summary

Chapter one of this summary separately introduces the three demographic key findings, which

provide the basis for the research presented. These findings are related to the continuity of

mortality improvement, the changing age pattern of mortality improvement, and the prospects

for further longevity increases at the highest ages. Based on these cornerstones, the aim of this
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thesis is presented in chapter one.

The articles of this thesis are classified into four different thematic clusters. The outcomes

of each cluster, as well as of the respective papers in the cluster, are presented in individual

chapters. The results of the first cluster, measuring survival progress, are described in chapter

two. The outcomes of the second cluster, investigating mortality dynamics at the boundaries of

age-specific mortality, are presented in chapter three. The results of the third cluster, mortality

dynamics in an era of old-age mortality decline, are outlined in chapter four. The outcomes of

the fourth and final cluster, the role of mortality dynamics in future mortality developments,

are presented in chapter five.

Each of the cluster-specific chapters follows the same outline. The chapter opens by intro-

ducing the cluster objectives. Due to the thematic range, each of the articles in cluster three

(chapter four) also has an individual objectives section. The outcomes of the individual papers

are then presented separately. The structure of these sections depends on the content of the

respective article. Each subsection includes both a presentation of an outcome as well as a

discussion and conclusion of the respective finding. The article-specific summaries focus on

the most important outcomes, and are thus shortened and adjusted versions of the original text.

Moreover, although the aim of these summaries is to provide a comprehensive overview, they

do not offer the level of detail of the original article. To ensure that the focus remains on the

respective outcomes, the technical details are reduced to a minimum. However, for the inter-

ested reader, each article summary contains a materials and data section that provides details

on the data and methods used. After the outcomes of the individual articles are discussed, each

cluster-specific chapter closes with a summary of the outcomes of the whole cluster.

Chapter six contains the overall conclusions of the thesis. The sections in this chapter are

structured to cover the outcomes for the three specific tasks – namely, assessment, explo-

ration, and outlook – that underlie the different thematic clusters. The last section of chapter

six presents the conclusions for all of the clusters combined.
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Chapter seven contains the original versions of the five main articles, and, if available, the

respective supplemental information.

The appendix contains an overview of the authors’ contributions to the preparation of the

manuscripts, the original versions of the two appended articles, and the affidavit.
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2. Cluster I – Measuring survival

progress

2.1. Cluster objectives

Sklair (1970, p. XIV) defines progress as: “...the end point, temporary or permanent, of any

social action that leads from a less to a more satisfactory solution of the problems of man in

society.”. The prolongation of the lifespan could be seen as the most important outcome of

human actions intended to create a more satisfactory state. A series of advancements ranging

from improvements in sanitation to nutrition to medical care have been instrumental to this

achievement. These continuous and intrinsically motivated efforts to improve living condi-

tions are responsible not only for the steady progress in survival, but for the shift in the age

pattern of mortality improvement. For instance, the “cardiovascular revolution” (Frenk et al.,

1991), which is an outcome of major advances primarily in medicine, might be seen as one

of the more recent breakthroughs in improving quality of life, and as an example of how such

advancements translate into changes in mortality.

In a comparative perspective, survival progress is also an important indicator for tracking

the development of populations. Life expectancy is often used as a central indicator in this

context. Among other advantages, the main benefit of using life expectancy is that it corre-

lates with various economic, political and social indicators (Preston, 1975; Bergh and Nilsson,

2010). For instance, the level of life expectancy is one of three dimensions of the Human

Development Index (United Nations, 2016); and although mortality has declined almost ev-
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erywhere around the globe (Feigin et al., 2016), the level of progress achieved differs greatly

across regions and across social strata (Lim et al., 2016; Marmot, 2005). Therefore, survival

progress as defined in, for example, the Sustainable Development Goals remains instrumental

to the United Nations’ agenda of advancing the development of populations (Maurice, 2015).

Theory building and modeling also benefit from the assessment of progress (Keyfitz, 1975;

Burch, 2018). For instance, the three periods of Omran’s (1971) epidemiological transition

theory are distinguished by the respective pace of survival progress. Because of variations in

levels of achieved progress and speeds of progression, Vallin and Meslé (2004) have even pro-

posed rethinking Omran’s framework and replacing it with a more broadly applicable health

transition theory. The mortality index in the canonical forecasting approach of Lee and Carter

(1992) might be seen as a technical example whereby survival progress – in this case, the pace

of survival progress across ages – is used for modeling and developing methods. In addition to

their relevance in these areas, progress differentials and cases of exceptionally strong or weak

improvements can be used to understand the effects and the dynamics of specific mortality

determinants. For instance, cases in which life expectancy trends deviate from the general

trajectory by, for example, stagnating or declining are often used to investigate the effects on

overall progress of specific determinants, such as lifestyle factors or health care (among others

Drefahl et al., 2014; Nusselder and Mackenbach, 2000; Tarkiainen et al., 2011).

From a technical perspective, there are two different ways to measure survival progress.

The most common way is to look at the extent to which a mortality summary measure such

as life expectancy differs between a comparison and a reference population at a specific point

in time (gap). In some approaches, this gap is translated into an index to make it comparable

across countries; such as in the Human Development Index or in the Global Burden of Dis-

eases studies (Global Burden of Disease Group, 2017; United Nations, 2016). An alternative

to measuring this gap is to compare the pace of improvement over time. For example, annual

increases in life expectancy may be compared between a comparison and a reference popu-

lation. However, both the gap and the slope include only one specific piece of information
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about the progression of survival improvement. The gap could be understood as representing

a static perspective, whereas the slope could be seen as reflecting a dynamic perspective. As

both perspectives are needed to get a full picture of the advancement of survival progress, it

would be beneficial to have an alternative measure that combines the gap and the slope in a

single quantity.

The objective of this cluster is to (re)-introduce an alternative concept for the assessment of

survival progress. The measure combines both the gap and the slope into a single value and

translates the delay in development into calendar years; the most common unit used to assess

progress. Moreover, the advantages and the drawbacks of different kinds of reference trends

are discussed.

Paper in this cluster:

Ebeling, Peters, Rau (2018). The concept of equivalent time as a simple indicator for

the assessment of survival progress. Under review in Population Health Metrics.

2.2. The concept of equivalent time

To introduce the concept of equivalent time, survival progress is linked operationally to the

level of life expectancy at birth over time. Thus, countries with higher levels of life expectancy

experience greater advances in survival progress than countries with lower levels of life ex-

pectancy. Likewise, increases and decreases in life expectancy over time reflect advances and

declines in survival progress, respectively. While the former development is expressed by the

difference in the life expectancy levels of two countries at the same point in time (gap), the

latter development is measured by computing the absolute change over a given period of time

within a country or a group of countries (slope; see also Figure 2.1). Hence, the gap might be

understood as a static aspect of development, and the slope as a dynamic aspect of develop-

ment.
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Figure 2.1.: Schematic representation of measuring survival progress.

There is a third, previously neglected dimension for tracking the development of survival

progress that expresses how far back in time we need to go to find the equivalent level of life

expectancy in a country relative to that of a reference group. This indicator is defined as the

length of time the advancement of a country’s life expectancy lags behind that of a reference

population. We label this quantity “equivalent time” (ET ). Figure 2.1 schematically illus-

trates ET and its relationship to the gap and the slope. In cases in which the reference trend is

linearly increasing, ET could be simply computed by dividing the gap by the slope. Thus, ET

combines the static and the dynamic aspects of development in a single quantity, expressed as

the delay in development.

To identify a unique ET , the reference trend must fulfill certain requirements. To exclude

the possibility that there is more than one equivalent value, the reference time series must

change monotonically over time. This could, however, be viewed as a minor issue, because

we see fairly steady improvements in most measures of survival progress, such as life ex-

pectancy and mortality measures like age-standardized death rates. Moreover, to provide a
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2. Cluster I – Measuring survival progress

straightforward benchmark for progress, the cases chosen as references usually have a steady

pace of development. For the slope, it is not necessary to assume a constant change over time.

It is also possible to directly compare empirical values without calculating a general slope.

The idea of using lags to assess survival progress was already suggested by Stolnitz more

than 60 years ago (Stolnitz, 1955). He applied this approach in studying the delays in mor-

tality decline in non-western countries relative to those in western countries. Surprisingly, we

are not aware of any other study that has applied this approach. More recently, Goldstein and

Wachter used a comparable concept to study the relationship between cohort and period life

expectancy within countries (Goldstein and Wachter, 2006). They defined the lag as “how

far back in time from the current period we have to go to find a cohort with equivalent life

expectancy” (Goldstein and Wachter, 2006, pp. 259). The general idea of time lags has also

been used to evaluate the decline in age-specific mortality by expressing the improvement

in ages with equivalent mortality levels, which are usually called “equivalent ages” (Burger

et al., 2012; Rau and Vaupel, 2014). While these earlier studies focused on detailed aspects

of mortality and survival, our definition of ET is more general, and refers to cross-country

comparisons of overall survival progress.

2.3. Types of reference trends

To demonstrate the added value of ET , we compare the trends in life expectancy among US

males to those of three reference groups based on the gap, the slope, and the ET between

1960 and 2015. The goal in selecting the reference groups was to ensure that we were cover-

ing the spectrum of reference types typically used in comparative studies. We label the three

main types intra-group, inter-group, and supra-group. In the intra-group comparison, a coun-

terfactual of the trends in the country of interest is used as the reference: namely, cancer-free

life expectancy of US males. In the inter-group comparison, a second external group is used

as the reference: namely, Japan, the world leader in LE. Finally, in the supra-group compari-

23
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son, a more general trend is used as the reference: namely, the average LE of the G7 countries.

Table 2.1.: Classification of different kinds of references for the evaluation of survival

progress. The listed examples are using the reference perspective in at least some

part of their empirical analysis.
Type Example Specific Features Exemplary Study

Intra-group e0,Country A – e−i
0,Country A w/o health burden i peculiarity or commonality? Aburto et al. (Aburto et al., 2016)

Inter-group e0,Country A – e0,Country B prime example or exception? Meslé and Vallin (Meslé and Vallin, 2006)

Supra-group e0,Country A – e0,Cross-country average common trend? Bongaarts (Bongaarts, 2006)

e0 –Life Expectancy at Birth

Obviously, which references are chosen depends on the research objective. Even if a spe-

cific reference fits the research purpose, it is important to take into account the specific features

of the respective reference type. Table 2.1 provides an overview of specific reference types and

their characteristics. The results stemming from an intra-group comparison are not sufficient

to determine whether the measured lags are a peculiarity of the respective population, or are

occurring across several populations. Moreover, the outcomes of an inter-group comparison

do not tell us whether the reference population is a prime example of the specific gains being

evaluated, or is an outlier. Finally, the results of the supra-comparison do not indicate whether

the more general reference trend is reflective of a common trend across populations.

2.4. Materials and data

The estimates of life expectancy at birth for US males — the comparison group — are based on

death counts and exposures from the Human Mortality Database (Human Mortality Database,

2017b). In the intra-group comparison, cancer-eliminated life expectancy is used as the ref-

erence (see, for instance, (Preston et al., 2001) for more details on cause-elimination life ta-

bles). Cause-specific death counts were obtained from the National Center for Health Statistics

(NCHS) (2016). The total time period analyzed encompasses the years 1960 to 2015. Cancer
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deaths were reconstructed using the International Classification of Diseases (ICD) codes 140–

239 (ICD 7–9) and C00–D48 (ICD 10). The calculations of Japanese life expectancy in the

inter-group comparison and of the life expectancies for the G7 countries in the supra-group

comparison were also based on death count and exposure data from the Human Mortality

Database (2017b). To ensure that the supra-group also covers the years 1960-2015 for coun-

tries that were missed in the most recent life expectancy estimates, values were obtained from

the World Bank (2017). The equivalent time in all three examples was calculated using linear

interpolation between the time series of the comparison population and the reference popula-

tion. The whole analysis was conducted in the language R (R Core Team, 2017).

2.5. Illustrative example: assessing the survival

progress of US males

Figure 2.2 shows the results for all three comparisons. The rows depict the results for the

intra-, inter-, and supra-group comparisons, respectively. The rows display the results for the

intra-, inter-, and supra-group comparisons; while the columns show the life expectancy, the

gaps, the slopes, and the equivalent times. The slopes are calculated as annual increases over

five year periods, assuming a linear change between the respective time points.

The life expectancy level of US males increased continuously between 1960 and 2015

(panel a). Although an increase can also be observed for all three reference groups, the level

of life expectancy differs across the groups, and compared to the US pattern (panels a–c). The

life expectancy gap between US males and the inter-group reference category remained fairly

stable at a level of about three years, while the life expectancy gap between US males and the

intra-group reference category declined from one year higher in 1960 to four years lower in

2015 (panels d–e). The life expectancy gap between US males and the supra-group reference

category increased from very small in 1960 to about three years in 2015 (panel f).
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Figure 2.2.: Life expectancy, gap, slope (annual change over five year periods), and

equivalent time of US life expectancy compared to three references, males,

1960-2015. All of the estimates are based on period life expectancy. The slopes

indicate the annual change between the two years, comprising five-year intervals.

The last group 2010-15 comprises six years. All calculations of the slope assume

a linear change between the two time points. Equivalent time is calculated using

linear interpolation. The various example rest on data from the National Center

for Health Statistics (NCHS) (2016), the Human Mortality Database (2017b) and

the World Bank (2017).

An assessment based on the pace of improvement alone provides limited insights. Both

cancer-free and average G7 life expectancy had almost the same slopes as that of US male life

expectancy across the different year groups. By contrast, Japanese life expectancy increased

more rapidly until 1985-89, but changed at almost the same pace thereafter (panels g–i). Gen-

erally, however, the slopes varied greatly over time, which makes it difficult to derive solid
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conclusions about the advancement of survival progress.

Compared to the gap and the slope, the ET shows larger differentials in the development

levels of the reference groups and larger differences between the groups in the advancement of

survival progress over time. In the intra-group comparison, US male life expectancy in 1975

is the first value, which can be located on the reference trend line. In this year, the survival

progress of US males lagged around 13 calendar years behind the level that hypothetically

could have been achieved if cancer had been eradicated. This lag grew consistently over time

to reach a magnitude of almost 19 calendar years in 2015 (panel j). In the inter-group com-

parison, we even see that the survival progress of US males was two calendar years ahead of

that of Japanese males in 1960. But by 2015, this advantage had turned into a lag of almost

21 calendar years (panel k). In the supra-group comparison, US male life expectancy in 1970

is the first value, which can be located on the G7 average trend line. In this year, the survival

progress of US males lagged around 10 years behind the average level of progress of the G7

countries. After a period of improvement, the lag among US males increased consistently to

reach a level of 12 calendar years by 2015 (panel l).

2.6. Cluster conclusion

In this cluster, a measure for assessing survival progress has been introduced. It is labeled

equivalent time (ET ). The measure complements the current practice of comparing develop-

ment at a single point in time and of comparing changes in development over time. It offers a

simple and intuitive way to express in calendar years the delay in the development of a popula-

tion in comparison to that of a reference population. ET arguably has the potential to become

a standard approach in the toolbox that is used for the assessment of survival progress in both

large-scale cross-country comparisons and case studies, and for the evaluation of single coun-

tries. To illustrateET , period life expectancy has been used, but any other continuous variable

that is monotonically increasing or decreasing over time could be used as well.
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The simplicity of ET is, of course, also a shortcoming. Since it is built on a single variable,

critics might see ET as an oversimplified measure that does not capture the multiple dimen-

sions of development. This criticism is certainly justified. Thus, in cases in which reliable

data on other dimensions are available, the use of more complex measures might indeed be

more appropriate. However, for many countries, and particularly for longer historical periods,

such data are often not available.

The illustrative example depicts a potential application of ET that is complementary to the

classical approaches. The results indicate that the survival progress of US males has been

increasingly falling behind that of other groups, as the large increases in ET found among US

males over the study period demonstrate. For instance, the application ofET showed that rela-

tive to their Japanese peers, US males experienced a delay in LE development of two decades.

This is a remarkable insight given that US life expectancy increased virtually throughout the

whole study period at a pace that was almost comparable to that of the reference categories. At

the same time, the gap between US life expectancy and that of the reference groups remained

fairly stable, at least compared to that of the intra and supra-group reference categories. The

results are even more intriguing given that the US has the highest health care expenditures in

the world (Wang et al., 2013). Moreover, the results show that ET is a more sensitive measure

of advances in survival than the comparison of gaps or slopes.

In addition to introducing another tool for measuring progress and development, we were

able to show that the assessment of the performance of a specific country is not straightfor-

ward. Rather, we illustrated that such assessments are sensitive to the selected indicator (e.g.,

life expectancy), perspective (gap, slope, lag), and reference (e.g., G7 countries). It is therefore

important to use care in interpreting results that are based on a single measure, perspective, or

reference. If possible, multiple factors should be taken into account for each of these dimen-

sions.
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3. Cluster II – Investigating mortality

dynamics at the boundaries of

age-specific mortality

3.1. Cluster objectives

Mortality has been declining for more than 160 years (Oeppen and Vaupel, 2002; Riley, 2001).

Mortality rates at almost all ages have regularly reached unprecedented minima over this pe-

riod. These developments are attributable to continuous advances in nearly every area of life,

which also altered some fundamental aspects of human mortality, such as the cause of the

spectrum. While each of these successive improvements was unprecedented, the mortality

trajectory has retained certain key features (see Figure 3.1). For example, levels of infant

mortality have been consistently similar to mortality levels between ages 60 to 80. Moreover,

adult mortality has shown a log-linear increase over age, and mortality levels between infancy

and early adulthood have followed a U-shaped pattern.

Moreover, as these advances were occurring, major improvements in survival shifted from

younger to older ages (Christensen et al., 2009). The changing age pattern of mortality im-

provement might also be interpreted as a sign that all of the major opportunities for reducing

mortality at younger ages have been exploited. Today, the contributions of the youngest ages

to the increase in the average age at death are small to negligible. Nevertheless, in almost all

countries of the world, mortality at younger ages has been decreasing continuously (Armour-
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Marshall et al., 2012; Verguet et al., 2014). This trend has resulted not only in an increasingly

pronounced U-shaped pattern of mortality between infancy and early adulthood (see Figure

3.1), but in a widening of the range of age-specific death rates.
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Figure 3.1.: Age-specific death rates, France, females, years 1850,1900, 1950, and 2000.

Death rates are smoothed. The rates are plotted on a logarithmic scale. The

estimates are based on age-specific death counts and exposures provided by the

Human Mortality Database (2017a).

The lower boundary of age-specific mortality is located at the inflection point of the U-

shaped mortality pattern between infancy and early adulthood. The upper boundary is reached

at the late-life mortality plateau Gampe (2010). Both the upper and the lower boundary are
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valuable indicators of the dynamics at the edges of human mortality. However, both bound-

aries have unique characteristics that reveal their fundamental differences.

The plasticity of the lower boundary compared to the stability of the upper boundary is per-

haps the most important difference. Gampe (2010) estimated a mortality rate of around 7,000

deaths per 10,000 person-years lived at the upper boundary of age-specific mortality. But

when we look at Figure 3.1, large declines in the lower boundary are immediately evident.

Explanations for the stable upper boundary are diverse, and range from a more homogeneous

population composition at those ages to physiological and genetic aging processes (Wachter,

1999; Pletcher and Curtsinger, 1998; Missov and Vaupel, 2015; Vaupel et al., 1998). Mini-

mum mortality, by contrast, appears to (still) be alterable. Most importantly, improved living

standards (e.g., better sanitation and nutrition) and medical breakthroughs, such as antibiotics

and vaccinations, are the main reasons for the survival gains at childhood and juvenile ages

(Cutler et al., 2006; Blum, 2009; Gore et al., 2011).

After the degree of alterability, the location is the second major difference between mini-

mum and maximum mortality. Maximum mortality is located at the end of the lifespan, which

seems obvious due to the log-linear increase in mortality with age. Minimum mortality is

however reached within a tiny age range at the end of the first decade of life. It marks a

specific point over the life course at which physical and social development levels are most

favorable for avoiding death. The explanations for why mortality levels are lowest in this exact

age range are mainly drawn from evolutionary mechanisms, such as high selection pressure

prior to the beginning of the reproductive period; i.e. the proximity of these ages to the onset

of sexual maturity (Burger et al., 2012; Chu et al., 2008; Levitis, 2011). However, for both

males and females, scholars have observed over the past century temporal changes in related

processes, such as faster body growth or the earlier onset of puberty (Frisch, 1978; Tanner,

1973; Goldstein, 2011; Schönbeck et al., 2012). The location of minimum mortality might be

similarly affected by these shifts.
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Male-female differences are the third key feature that could reveal further disparities be-

tween maximum and minimum mortality. Gampe (2010) did not find any relevant differences

in maximum mortality between males and females, even though most of the data used in her

analysis were for females. Unfortunately, until recently there have been relatively few studies

that examined the level of the plateau and potential sex-specific differences. Among children

and adolescents, mortality is higher for males, even though the absolute gap becomes smaller

with decreasing levels of mortality (Gissler et al., 2009). Surprisingly, external causes of death

as an indicator for sex-specific risk-adverse behavior explain only a minor part of the male-

female differences (Gissler et al., 2009). For example, Gissler et al. (2009) measured a higher

rate of non-external causes for boys than for girls. It therefore appears that additional factors

must be responsible for these differences.

Examining these key features help us better understand about the frontiers of human mortal-

ity improvement because minimum and maximum mortality (the lower and the upper bound-

ary) indicate specific points along the mortality trajectory at which the condition of individuals

as well as the composition of the population are most extreme in terms of mortality severity.

Hence, it could be hypothesized that potential frontiers and fundamental breakthroughs that

might affect all ages in the long run are primarily detectable at the boundaries of age-specific

mortality.

Understanding the development of the mortality boundaries is also important for mortal-

ity modeling. For instance, mortality forecasting approaches usually assume that death rates

have no lower limit. Instead, the logarithm of death rates is used, which allows rates to de-

cline infinitely, while staying between zero and one (see, for instance, Hyndman and Ullah,

2007; Lee and Carter, 1992). Accordingly, examining the evolution of the lower boundary

of age-specific mortality can provide further insights that would help us better understand the

implications of recognizing lower boundaries in mortality forecasting approaches. Moreover,

attempts were made in previous parametric mortality models, such as the Siler model (Siler,

1983) or the Heligman-Pollard model (Heligman and Pollard, 1980), to include mortality at
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all ages. For instance, the Siler models incorporate the lower boundary by adding a constant to

the two terms, which captures the exponentially decreasing and increasing parts of the force

of mortality. In the Heligman and Pollard (1980) model, no specific parameter is added to

model the lower boundary, but the parametrization generates such a pattern. Neither para-

metric models take the pattern of the upper boundary of mortality into account. Accordingly,

the mortality pattern of both models would generate further increases at the highest ages, al-

though the increase in death rates would decelerate (Horiuchi and Wilmoth, 1998) prior to the

leveling-off at the late-life mortality plateau (note that the Heligman and Pollard model shows

some deceleration). However, evidence for a leveling-off and clear empirical proof of the mor-

tality plateau has been provided by studies published long after the publication of the works of

Siler (1983) and Heligman and Pollard (1980), following the development of other parametric

models (see among others Thatcher et al., 1998; Thatcher, 1999; Gampe, 2010). The exam-

ples of mortality forecasting and parametric mortality models demonstrate the added value

of exploring the boundaries of age-specific mortality in order to refine existing approaches or

even develop new models.

Based on these considerations, the objectives of this cluster are to investigate the evolution

of the lower and the upper boundary of mortality, with a special emphasis on the lower bound-

ary. Accordingly, three essential questions should be asked and answered when examining

minimum mortality. These questions are:

• How pronounced are the sex-differences at the lower boundary of age-specific mortal-

ity?

• At which ages is minimum mortality reached, and how have these ages changed over

time?

• How has the level of minimum mortality evolved, and is minimum mortality still de-

creasing?

Given the unprecedented mortality improvements of the past, it is not far-fetched to hypoth-

esize that minimum mortality will be the first death rate to finally hit a lower (natural) limit;
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and that minimum mortality indicates the absolute frontier of human mortality improvement.

For the upper boundary, the question to be answered is simply:

• Where is the level of the late-life mortality?

Thus, the aim is to investigate whether it is possible to find further support for a maximum

mortality level of 70 deaths per 100 person-years lived using an estimation procedure that rep-

resents an alternative to the procedure used by Gampe (2010).

Papers in this cluster:

Ebeling (2018). How has the lower boundary of human mortality evolved and has it

already stopped decreasing? Forthcoming in Demography.

Appended paper: Rau, Ebeling, Peters, Bohk-Ewald, Missov (2017). Where is the level

of the plateau? Published in Living to 100 Monograph.

3.2. Outcomes for the lower boundary of age-specific

mortality

3.2.1. Material and data

Minimum mortality is estimated using cohort and age-specific data because only a cohort

follow-up provides the life course perspective that is needed to clearly identify the lowest

mortality rate over age. Moreover, many forces shape minimum mortality, such as selection

in a cohort. The cohort data used come from the Human Mortality Database (2017c). All of

the estimates are based on data for individuals aged one to 20. The earliest cohort considered

was born in 1900. For some countries, the data start later. The most recent cohort considered

also varies by country. Countries with data covering fewer than 20 cohorts are excluded from
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the analysis.

Although data from the Human Mortality Database cover national populations, and can thus

be considered complete enumerations, the data are still subject to stochastic variation (Udry

et al., 1979; Kirkby and Currie, 2010; Klotz, 2016). In addition, it is usually assumed that the

underlying mortality process is smooth (see also Kirkby and Currie, 2010). Minimum mortal-

ity could be considered to be especially vulnerable to population size and stochastic variation

because of its low intensity. Hence, around the age of minimum mortality, mortality could be

quite noisy. Minimum mortality contains another, rather technical and theoretical problem:

namely, that mortality rates are bound at zero at the lower end. In low-mortality countries

with a small population size, mortality at some ages below 20 is already at such low levels

that the number of age intervals without any deaths is consistently increasing over time. To

deal with zero death rates and stochastic variation, we complemented the analysis of observed

trends with estimates based on a two-dimensional smoothing approach by Camarda (2012),

and applied it over age and cohort (see the original paper for a detailed discussion of model

selection and descriptions of the different models). The method is readily available via the

package “MortalitySmooth” for the statistical programing language R (2017).

The occurrence of period shocks, such as the Spanish flu or a war, can lead to problematic

estimates when two-dimensional smoothing approaches are applied, because in such situa-

tions the respective mortality rates are subject to more than just stochastic variation (Kirkby

and Currie, 2010; Palloni, 1990). When the two dimensions are cohort and age, the situation

becomes especially difficult because the period shocks are located on a backward 45-degree

line in the age-cohort surface. Due to the data structure, the 1915–1919 and 1938–1947 peri-

ods, which cover the Spanish flu and World Wars I and II, are excluded from the analysis. The

approach we used interpolates the emerging gaps, which are generated when the mortality of

the respective ages is ignored.

To avoid potential distortions, the range of ages searched for the minimum mortality level
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was restricted to ages five to 15. This is theoretically reasonable given the range of observed

ages.

3.2.2. The level of minimum mortality

Figure 3.2 shows the minimum mortality levels for males and females in France (see the orig-

inal paper for results for all of the other countries). The graph depicts the level of minimum

mortality per 100,000 person-years lived. The levels are shown on a log scale, using the log-

arithm of two to emphasize level halving. Accordingly, the horizontal contour lines mark the

consecutive halving of the mortality level. The solid lines are minimum mortality estimates

based on the age-cohort smoothing, and the colored area around this line indicates the 95%

confidence interval. The plus signs indicate observed minimum mortality. The squares mark

the observed minimum mortality for cohorts who spent at least one year in the omitted periods

(1915–1919, 1938–1947). Females are depicted in red and males in blue.

In Figure 3.2, we can see that minimum mortality declined from almost 250 deaths per

100,000 person-years lived to around 10 deaths per 100,000 person-years lived over the co-

horts born between 1900 and 1993. Over the course of this decline, the trajectories for French

males and females show four periods with distinct developments (see tags in Figure 3.2). Min-

imum mortality improves only slowly in the first period (I), which encompasses the cohorts

born between 1900 and 1920. The second period (II) is characterized by rapid improvements.

This period spans the cohorts born between 1920 and 1950. In the third period (III), minimum

mortality improvements decelerated, and were close to stagnation at certain points. This trend

lasts up to the cohorts born in the early 1960s. The fourth period (IV), which covers the most

recent cohorts, again shows steady improvements. The trajectory of France is exemplary of

the trajectories observed in the majority of countries analyzed. The only variation that could

be found were small temporal differences and differences in the manifestation of the patterns

in the four periods described. The minimum mortality levels of a few countries only, such as

those of Russia or Belarus, deviate from the general trend. In these countries, the improve-
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Figure 3.2.: Minimum mortality, France, females and males, birth cohorts 1900–1993.

The graph depicts the observed (squares and crosses) as well as the smoothed

(solid line) minimum mortality levels. The observed rates marked with a square

indicate the cohorts who spent at least one year in the omitted periods (World

Wars I and II). The colored area around the smoothed minimum mortality esti-

mates depict the 95% confidence interval, as calculated by the approach of Ca-

marda (2012). Minimum mortality rates are illustrated using the logarithm with

basis two. The solid gray grid lines and the Roman numerals mark the different

periods of development. The age- and cohort-specific death counts and exposure

data were obtained from the Human Mortality Database (2017c).

ments in minimum mortality over the analyzed cohorts are marginal to non-existent.

Based on the broad picture across all of the countries analyzed, it could be concluded that

37



3. Cluster II – Investigating mortality dynamics at the boundaries of age-specific mortality

the level of minimum mortality decreased continuously over the observed time period, and

that the pace of improvement among recent cohorts has been relatively steady. Therefore, the

recent trends do not suggest an imminent end to this decline. Among the best practice coun-

tries, the current levels are about eight deaths per 100,000 person-years for females and about

10 deaths per 100,000 person-years for males (see the original paper for a comparison of the

recent minimum mortality levels across all of the countries analyzed). However, the lower

boundary of mortality has not been decreasing constantly. Especially among the post-war

cohorts, improvements have temporarily slowed, with some countries even experiencing stag-

nating or slightly increasing levels. The reasons why minimum mortality has stagnated are not

entirely clear. Among the potential explanations for this development are the introduction of

mass immunization for several diseases in the 1960s (Riley, 2001); changes in fertility-related

behavior (Billari and Kohler, 2004); and changes in child care (Vandell et al., 2010).

Given that this decline has been steady, it is intriguing that the lower boundary of mor-

tality has still not reached a lowest limit after almost 170 years of continuous mortality im-

provements. The question of whether minimum mortality has a lower limit remains open and

continues to present challenges. If such a limit does exist, mortality might follow a constant

force of mortality, whereby simply good or bad luck are the essential mortality determinants.

However, recent developments in childhood health call into question such an optimistic as-

sumption. For instance, Brüne and Hochberg (2013) have found that since the late 1980s in

particular, the prevalence of chronic diseases in childhood, such as obesity, diabetes, and au-

toimmune diseases has been increasing. They argued that changes in the environment favor

this development; speculating that evolutionary and medical factors — such as thrifty genes,

hygiene, fetal programming, or the extensive intake of cow’s milk — might explain this trend.

Although the rising prevalence of chronic diseases in childhood might not have an immediate

effect on death, it might increase the vulnerability of children, and could thus have an indirect

effect on the level of minimum mortality. However, based on these results, we cannot confirm

that these developments have had any negative impact on minimum mortality levels among

the most recent cohorts.

38



3. Cluster II – Investigating mortality dynamics at the boundaries of age-specific mortality

3.2.3. The location of minimum mortality

The results for the minimum mortality ages can be seen in Figure 3.3. The observed mortality

rates as well as the smoothed mortality rates are given by age. Hence, the ages of minimum

mortality are also measured in integers. Due to stochastic fluctuations and the impact of the

world wars, minimum mortality ages based on the smoothed mortality estimates are consid-

ered as the basis. Furthermore, the trends across countries are very homogeneous, and show

only small variations. Therefore, we pooled the ages of minimum mortality across countries

and summarized the results for 10 consecutive cohort groups. Due to the varying lengths of

the data available, the number of ages in each of these 10 groups differs.

The age of minimum mortality decreased over the cohorts studied. This trend is also visible

if we look at the ages based on the observed mortality estimates. For the cohorts up to those

born in 1920–1929, the modal value jumps between ages 11 and 12. The distribution of males

and females for the 1930–1939 and 1940–1949 cohorts are right–skewed, which means that

ages higher than the mode are observed more frequently than younger ages. This is, how-

ever, likely an effect of World War II. Although minimum mortality among the cohorts born

in 1950–1959 or later has been relatively consistently located at age 11, the distribution is

shifting toward younger ages. The shift is indicated quite well by the growing frequency of

age 10 as the age of minimum mortality over the respective groups. Accordingly, for the last

two cohort groups, the modal value is already located at age 10, and ages above and below the

mode are almost evenly observed. However, the growing frequency of age nine over the last

two cohort groups could suggest that the shift toward younger ages might be continuing.

The location of the lowest mortality level is closely associated with the onset of sexual ma-

turity. Hence, the change in the location of minimum mortality might be generated by changes

in related mechanisms. Evolutionary theories of aging argue that evolutionary fitness, defined

as the intrinsic rate of natural increase, is most sensitive to mortality changes around the age of
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Figure 3.3.: Distribution of minimum mortality ages, all countries together, females and

males, grouped birth cohorts 1900-1994. The bars show the relative frequency

of the ages in the respective cohort groups; pooled over all of the available coun-

tries. The age of minimum mortality is measured in integers. The number of

countries varies over time in each cohort group, and is indicated by N. The high-

lighted bar represents the modal age in the respective year. The bars correspond

to full ages. The age- and cohort-specific death counts and exposures data were

obtained from the Human Mortality Database (2017c).
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sexual maturity (Hamilton, 1966). Accordingly, selection pressure on age-specific mortality

should be highest around the onset of the reproductive period, when the respective mortality

rates are pushed to their lowest possible levels. Similarly, the age of maturity itself should be

under strong selection pressure as a key age that defines the onset of reproduction. Other au-

thors have also argued that intergenerational transfers, such as parental care, shape selection

pressure, and are thus an important determinant of the shape of human life history, and, in

turn, mortality (Gurven et al., 2012). The investments of older generations in younger genera-

tions therefore lead to a concave shape of selection pressure, which may push mortality down

even further at the onset of the reproductive period, when such investments start to pay off

(Chu et al., 2008; Lee, 2003; Bogin, 1997). As a result of the close relationship between the

location of minimum mortality and sexual maturity, it could be hypothesized that the earlier

occurrence of minimum mortality might be related to temporal changes in different aspects of

childhood development such as body growth, and thus to the earlier occurrence of puberty and

sexual maturity that has been reported by a number of authors (Goldstein, 2011; Tanner, 1973;

Frisch, 1978; Schönbeck et al., 2012). However, the similar locations of minimum mortality

of males and females could be seen as a sign that this is not the case, because different studies

provide evidence for a slightly earlier onset of puberty of females, which also holds for the

transition through the different developmental stages of sexual maturity (Susman et al., 2010;

Lee, 1980). In addition to these factors, Levitis and Martínez (2013) have offered further hy-

potheses for why the juvenile mortality pattern is U-shaped, and for why we therefore see an

inflection point between the decreasing and the increasing parts of mortality over age. How-

ever, the plasticity of minimum mortality challenges all of these concepts. Given the enormous

gains that have been made over a short period of time, it is possible to speculate about whether

human progress has decoupled minimum mortality from evolutionary mechanisms — or has,

at least, weakened the relationship between them.
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3.2.4. Sex–specific differences of minimum mortality

Figure 3.4 shows the absolute male–female differences in the levels of minimum mortality

for all of the countries analyzed. The trajectories of Japan, Russia, France and Norway are

highlighted. A negative difference expresses higher mortality for females and vice versa.
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Figure 3.4.: Absolute male–female minimum mortality differences, Japan, Russia,

France and Norway, birth cohorts 1900-1994. The gray lines depict all of

the other countries included in the analysis. The sex differences are calculated

based on the smoothed minimum mortality estimates. The age- and cohort-

specific death counts and exposures data were obtained from the Human Mor-

tality Database (2017c).

The development of absolute sex-specific differences at the lower boundary of mortality

shows two distinct patterns: female mortality is higher with a consistently growing male dis-
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advantage, followed by a trend toward convergence. Russia is an exception to this overall

pattern. Among the most recent Russian cohorts analyzed, men have a minimum level that is

still around 20 deaths per 100,000 person-years higher than that of females; whereas in, for ex-

ample, Japan, France, and Norway, the absolute male-female differences are almost negligible.

The female excess mortality found in the oldest cohort analyzed is an intriguing pattern.

Tuberculosis could be one explanation for this trend. Several authors have documented higher

tuberculosis death rates among females in the respective age range (10-14) for similar cohorts

and for the calendar years in which the respective cohorts reached their minimum mortality

level (Frost, 1995; Springett, 1952a,b). Other potential explanations for this finding such as

discrimination related to sex or birth order (Modin, 2002) are conceivable, but remain vague

speculations.

The female disadvantage turned relatively rapidly into a male disadvantage, which reached

the maximum level at some point among the interwar cohorts. Since then, a continuous trend

toward convergence can be observed. The male disadvantage is the result of slower improve-

ments in the minimum mortality levels of males than of females. These pace differentials are

striking because the usual determinants of sex-specific differences, such as lifestyle and be-

havioral factors, should be less relevant at these ages. We can speculate that excess mortality

caused by environmental conditions is decreasing more quickly among females than among

males. It is also possible that after this type of excess mortality is no longer relevant, the

gender gap is still primarily driven by biological factors. Currently, it appears that communi-

cable diseases can be excluded as a potential driver, and that external causes of death explain

only a small part of the gender gap (Gissler et al., 2009). Accordingly, non-behavioral causes

and non-communicable diseases could be emerging as the potential drivers. Studies that used

cancer — a leading cause of death in childhood in the developed countries — to illustrate

this development found that boys are more likely than girls to develop a childhood cancer

(Kaatsch, 2010; Dorak and Karpuzoglu, 2012).
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3.3. Outcomes for the upper boundary of age-specific

mortality

3.3.1. Material and data

The level of the late-life mortality plateau is the upper boundary of age-specific mortality. Ac-

cordingly, after the log-linear increase in mortality at adult ages, the force of mortality tends

to decelerate between around the ages 80 to 85. This phenomenon is commonly referred to

as “mortality deceleration” (Horiuchi and Wilmoth, 1998). This deceleration ultimately re-

sults in the late-life mortality plateau, at which mortality remains constant (see, for instance,

Thatcher et al. (1998); Missov and Vaupel (2015)). The explanation for this pattern is most

often drawn from the selective mortality hypothesis, which rests on a simple idea. Popula-

tions are heterogeneous, which means that some individuals in the population are frailer than

others. On average, these frailer individuals tend to die earlier than their more robust peers.

Accordingly, the force of mortality observed on the population level (µx) could be interpreted

as average across these different subpopulations. As these frailer individuals die off, the force

of mortality tends to level off. The general relationship between the population-level hazard

and the risks faced by subpopulations is described in more detail by Vaupel and Yashin (1985)

and Vaupel (2010).

The formalization of this idea originates from the canonical work of Vaupel et al. (1979),

in which the authors introduced frailty models. Assuming that frailty is fixed over the lifetime

for each individual, and that frailty affects the baseline mortality proportionally, the force of

mortality of an individual with frailty z – the simplest frailty model – is expressed by

µx,z = zµ0,x, (3.1)

where µ0,x depicts the baseline force of mortality at age x. Accordingly, the force of mortality

at the population level can be expressed by

µx =

∞∫

0

z µx fx,z dz, (3.2)
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where fx,z is the probability density function of frailty among the survivors at age x. Hence,

the force of mortality of the population at age x is the weighted average across individual force

of mortality, where the weights stem from the probability density function of frailty among

the survivors at age x. Vaupel et al. (1979) already assumed that frailty is gamma-distributed

with a mean of one, which was later discussed in more detail by, for instance, Vaupel and

Missov (2014). By combining this assumption with the frequently investigated idea that the

force of mortality at the individual level follows the Gompertz mortality model (Steinsaltz and

Wachter, 2006; Finkelstein and Esaulova, 2006), the force of mortality at the population level

can be expressed by the gamma-Gompertz model, which is described by Vaupel and Missov

(2014) as

µx =
beb(x−M)

1 + γe−bM(ebx − 1)
, (3.3)

where b is the slope of the force of mortality over age, M is the modal age at death, and γ

expresses the variance of the gamma distribution. The mortality plateau for this model can

then be expressed by

lim
x→∞

µx =
b

γ
. (3.4)

Our investigation of the mortality plateau rests on this model. Based on the minimum AIC

(Akaike, 1974), the gamma-Gompertz came out as the best model in a comparison of several

parametric mortality models (see the original paper for further details).

All of the estimates are based on death counts and exposures from the Human Mortality

Database (2016). The estimation of the gamma-Gompertz model and of the models used in

the comparison rests on the maximum-likelihood framework, which assumes that age-specific

death counts are Poisson-distributed (Brillinger, 1986). The data cover the age range 80 to

109 and the years 1960 to 2010.
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3.3.2. Level of maximum mortality

Figure 3.5 depicts the distribution of the level of the mortality plateau across all of the countries

and the periods analyzed. The histogram includes estimates for females and males. Addition-

ally, the estimated density curves for females (red) and males (blue) are shown. The boxes at

the top of the graph depict the interquartile range of the estimated mortality plateaus with the

median (solid line) for both sexes combined (gray), and for females and males, respectively.

The median value of the mortality plateau for both sexes combined is slightly below one,

which translates into a probability of dying of≈63%. The median value for females is slightly

above a level of 0.8 (≈55%). For males the median value is slightly below a level of 1.2

(≈70%). However, as the estimates for males in particular have large variations, the median

value provides only limited insights. To investigate the role of population size as a potential

source of variation, we employed a simulation: we fixed b at a level of 0.14 and γ at a level of

0.2, both of which resulted in a mortality plateau of 0.7, and varied the population size (1,000,

1,0000 ,and 100,000 individuals). The results of this simulation clearly show that variation de-

creases with increasing population size. For instance, for a population of 1,000 individuals, the

interquartile range is between the levels of 0.58 and 0.92. However, this finding only partially

explains the variation that is evident in Figure 3.5 ,because even in 1960, more than 10,000

males and females were alive at age 80 in Sweden, one of the smallest countries analyzed.

A separate analysis by period and country also does not explain the variation. Therefore, the

analysis was further restricted to countries with the best grade of data quality (Jdanov et al.,

2008), high life expectancy, and a combined population size of at least 10 million individuals

at the respective ages for the years 2005–2010. Using these criteria, the sample of countries

consists of Belgium, France, Germany, West Germany, Italy, and Japan. The results of this

more restricted analysis show a median value of 0.799 for females (IQR: 0.775–0.829; prob-

ability of dying: 0.55%), and no clear pattern for males. Hence, the median value is 1.246

(1.1324–1.5487; 71%). The considerable difference for males is primarily driven by the vari-

ation in the variance of the gamma-distribution (γ).
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Figure 3.5.: Empirical Density Function of Mortality Plateaus for Women and Men,

1960–2010. Data for Australia, Austria, Belgium, Canada, Denmark, Finland,

France, Germany (West), Italy, Japan, Norway, Spain, Sweden, Switzerland, the

United Kingdom, and the United States. The red curve is estimated density for

women, and the blue curve is estimated density for men for the same countries

and years. The horizontal rectangles are interquartile ranges of the mortality

plateaus for both sexes combined (gray), women (red), and men (blue). The cal-

culations are based on death counts and exposures from the Human Mortality

Database (2016).

Gampe (2010) estimated a level of 0.7 for the late-life mortality plateau, which is also the

upper boundary of age-specific mortality. Of the 637 individuals included in Gampe’s analy-

sis, 573 were females. Thus, her estimates were mainly driven by female mortality trajectories.

However, our results for females are not in line with Gampe’s estimates, as we found a level of
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0.8 for females. For males, we estimated an even higher level of 1.2. Given that Gampe’s esti-

mates are based mainly on females, the sex-specific differences are less surprising. However,

the strong variation across the 16 countries and years analyzed is much more worrisome. All

of our efforts to restrict the analysis failed to considerably reduce these variations. Therefore,

we can carefully claim that our analysis provides evidence of a mortality plateau for females

at a level of 0.8. For males, however, the results are much less clear.

3.4. Cluster conclusion

The age-specific boundaries of mortality can be regarded as extreme cases of the mortality

trajectory. In both cases, humans have characteristics that make them more or less likely to

die. but for the lower boundary, it is not clear whether and, if so, how the continuity of mor-

tality improvements has affected the development. For the upper boundary, the changing age

pattern of mortality improvement might act as an additional force of change. Based on this

starting point, this cluster aimed to assess and explore the development at the boundaries of

age-specific mortality, with a special focus on the lower boundary.

Three key characteristics of the lower boundary — level, location, and sex-specific differ-

ence — have been investigated for this purpose. Given the continuity of mortality improve-

ments, the lower level might be of special interest. Our results show that minimum mortality

has declined continuously across almost all of the countries analyzed, and particularly among

the most recent cohorts. These findings support the expectation that the minimum mortality

levels for both males and females are also likely to decrease in the near future. Apart from

some rare exceptions such as Russia, all of the countries analyzed exhibit strong declines in

the lower boundary over the study period. Moreover, in the majority of these countries, a

stable pattern of improvement could be observed in the cohorts born since the 1970s. Hence,

even after more than 160 years of continuous mortality improvements, opportunities for fur-

ther improvements in the lower boundary of age-specific mortality remain. The results also
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showed higher levels for males in the most recent periods. However, this has not always been

the case. Among the oldest cohorts analyzed, females exhibited higher levels. More detailed

investigations will be needed to explain this development and the excess male mortality in the

most recent cohorts.

The location of minimum mortality decreased over time. Changes in related mechanisms,

such as pubertal timing, are promising candidates for explaining this pattern. The location is

also of general interest for mortality change, because at the minimum mortality age, the physi-

ological and social constitutions of humans are most capable of withstanding death. Following

Belsky et al. (2015), we could argue that aging research should focus on the age groups that

are still in the very early stages of the aging process. In their study, they focused on individuals

aged 26–38. Minimum mortality as such marks the inflection point between decreasing and

increasing mortality, and could thus be interpreted as the point at which aging begins. Hence,

investigating the aging process starting from the age of minimum mortality might be even

more intriguing. We could then ask the following questions: Are there some lessons we can

learn from the findings on minimum mortality about how aging and mortality might be post-

poned to or altered at later ages? Are we able to extend minimum mortality levels to the point

of developing a second mortality plateau at younger ages? Or does minimum mortality reflect

the baseline level of mortality if humans did not age? These are all non-trivial questions for

which there may be no clear answers. However, they invite further investigation of the lower

boundary of human mortality.

For the upper boundary, only the level has been investigated. It turned out that conducting

this analysis alone was an ambitious undertaking. The results for males do not allow us to

make any reliable claim about the level of the late-life mortality plateau. Although our results

support the existence of such a plateau for males, further analysis is required. More impor-

tantly, we will have to wait until the number of male centenarians and semi-supercentenarians

is higher. The results for females suggest a level of 80 deaths per 100 person-years lived. This

is slightly higher then the level of 70 deaths per 100 person-years lived calculated by Gampe
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(2010) using an alternative estimation procedure. The currently available data and our analysis

setting do not permit to make any claims about time trends and changes in the location of the

plateau.

When we look at the lower and the upper boundary together, it becomes clear that the

span of age-specific mortality has increased, and is likely to increase further. This trend is at-

tributable to a decrease in the lower boundary. This is an important finding for the development

of mortality forecasting approaches in particular. These methods are designed to capture and

to map the complete pattern and range of age-specific mortality. Hence, these approaches are

needed to capture even bigger ranges of age-specific mortality, and so far do not require any

assumptions about the minimum values until death rates are allowed to decline. The insights

we gained are also of interest for those studying the frontiers of human mortality improve-

ment. It seems that we are still far from reaching the frontiers at the lower boundary. For the

upper boundary, however, it is difficult to interpret the results in light of potential frontiers.

Using sophisticated approaches and data that cover time trends and include an investigation of

the location of the mortality plateau could help to uncover clues about the upper frontiers.
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an era of old-age mortality decline

4.1. Cluster objectives

The onset of sustainable declines in old-age mortality had a wide range of implications for

disease and mortality dynamics. In particular, lifespan disparity as an indicator of mortal-

ity dynamics has been affected by the change in the age pattern of mortality improvement.

In a long-term perspective, life expectancy and lifespan are closely related: life expectancy

increased, while lifespan variability decreased (Colchero et al., 2016). This dynamic is com-

monly labeled “compression of mortality”; a concept that was introduced in the seminal article

by Fries (1980). However, the onset of the old-age mortality decline led to the emergence of

new patterns that have been characterized as “expansion of mortality” and “shifting of mortal-

ity” (Rothenberg et al., 1991; Engelman et al., 2010; Canudas-Romo, 2008; Kannisto, 1996;

Bongaarts, 2005). Each of these concepts describes different relationships between mean

lifespan and lifespan dispersion. In particular, the shifting of mortality – a shift of the lifes-

pan distribution to higher ages with an approximately constant shape – has been viewed as

the successor to the compression of mortality pattern(Canudas-Romo, 2008; Kannisto, 1996;

Bongaarts, 2005). In this scenario, life expectancy increases alongside stagnating lifespan

variability.

The shifting of mortality is also an appropriate scenario for mortality change, under which

a pattern referred to as the “postponement of senescence” could proceed. The postponement
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of senescence describes a delay in the physical aging process of humans to higher ages, as

distinct from a mere slowing of this aging process. Vaupel (2010) argued that this concept

describes the pattern of changes in the occurrence of diseases and deaths at the population

level, at least since the onset of the sustainable declines in old-age mortality. However, he

also argued that the pattern of health improvements is much less clear than the dynamics of

mortality improvement (Vaupel, 2010). Therefore, the postponement of senescence might be

only one possible scenario that describes how mortality dynamics are altered through changes

in health dynamics. From this example, however, it becomes clear that mortality changes

must be accompanied by changes in health patterns. Moreover, Christensen et al. (2009), for

instance, have reported improvements in several health measures over time.

Considering the complexity of mortality and health dynamics and its effects on several other

aspects of mortality and health, which are generated with the onset of the sustainable declines

in old-age mortality, measuring and quantifying these patterns poses challenges for existing

models and measures. Moreover, the future trajectories of mortality and health patterns are

highly dependent on the extent to which the opportunities for further lifespan extension at the

highest ages are exploited. Therefore, the methods and models applied in this context should

also be able to capture any new dynamics that may arise. However, given the enormous

thematic range in this field, the work in this cluster focuses on three specific phenomena:

• the rectangularization of the survival curve;

• the effects of increasing longevity and changing disease incidence on the lifetime risk

of getting a specific disease; and

• the contributions of different mortality dynamics to the increase in life expectancy.

With a focus on these three phenomena, the objective of this cluster is to provide solutions

for the problems and the incidences of theoretical misspecification that are generated by the

sustainable decline in old-age mortality. Our aim is to develop novel or refined tools and mea-

sures that provide deeper insights into recent changes, and that allow us to evaluate and gain a
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better understanding of potential developments.

Papers in this cluster:

Ebeling, Rau , Baudisch (2018). Rectangularization reconsidered: the maximum inner

rectangle approach. Published in Population Studies.

Ebeling, Modig, Ahlbom, Rau (2018). The effects of increasing longevity and changing

incidence on lifetime risk differentials: a decomposition approach. Published in PLoS

ONE.

Appended paper: Bergeron-Boucher, Ebeling, Canudas-Romo (2015). Decomposing

changes in life expectancy: compression versus shifting mortality. Published in Demo-

graphic Research.

4.2. Outcomes for rectangularization of the survival

curve

4.2.1. Objectives

The rectangularization of the survival curve describes the increasingly rectangular shape of

the survival curve due to the postponement of deaths to higher and higher ages. This concept

has become instrumental to the description and the analysis of the compression of mortality.

Although this phenomenon has been described in earlier work (Pearl and Miner, 1935; Com-

fort, 1956), extensive research has been conducted since its recognition in the seminal article

by Fries (1980). Most of this research has been focused on proving or disproving Fries’ ideas

(see among others Nagnur, 1986; Nusselder and Mackenbach, 1996; Cheung et al., 2005; My-

ers and Manton, 1984).

However, given the current state of knowledge, it can clearly be stated that several of the
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assumptions Fries made in formulating his initial concept have become obsolete. Most impor-

tantly, reductions in oldest-old mortality were not anticipated in the original framework. The

emergence of this trend in turn invalidated several (partly implicit) assumptions of Fries’ the-

ory. For example, the idea that life expectancy has “looming limits” has been rejected (Oeppen

and Vaupel, 2002; Vallin and Meslé, 2009); the contributions of premature mortality improve-

ments to increases in life expectancy have become negligible (Christensen et al., 2009); and

Fries’ assessment (p. 130) that “[. . . ] there has been no detectable change in the number of

people living longer than 100 years [. . . ]” has been disproven (e.g., Vaupel and Jeune, 1995;

Vaupel, 2010). Although we have not witnessed an increase in the maximum observed lifes-

pan since the death of Jeanne Calment at age 122 in 1997 (Robine, 1998), Fries’ prediction

(p. 133) that “human life span may not be fixed but may be slowly increasing, perhaps a month

or so each century” had already been exceeded by more than an order of magnitude with the

increases that occurred between 1980 and 1997 (Wilmoth et al., 2000).

Furthermore, life expectancy gains can only be generated in Fries’ framework by a de-

crease in lifespan variability (see, for instance, also Nagnur, 1986; Nusselder and Macken-

bach, 1996). Compression would be completed when “under ideal conditions” (Fries, 1980,

p. 132) lifespans were scattered in a normal distribution around a mean of 85.6 years, with a

standard deviation of about four years (in 1989, Fries assumed wider intervals). Moreover, a

newly emerging pattern such as the shifting of mortality does not lead to further rectangular-

ization, but to increasing life expectancy (Kannisto, 1996; Bongaarts, 2005; Canudas-Romo,

2008). It is also clear that the almost constant difference between the mean and the modal age

at death (Canudas-Romo, 2010) cannot be combined with normally distributed deaths across

age, even with historically low levels of premature mortality.

Despite all of these drawbacks and flaws, the general underlying idea of rectangularization

remains simple and intuitive, which makes the concept appealing. Furthermore, rectangular-

ization is one of the few theoretical frameworks that incorporates the relationship between

lifespan disparity and life expectancy. For these reasons, and in light of its frequent use in
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mortality and health research, we believe that this concept should be refined and extended to

allow for an incorporation of recent and potential mortality changes.

4.2.2. Maximum inner rectangle approach (MIRA)

When we attempt to extend the concept of rectangularization beyond its classical application

and seek to incorporate recent and potential mortality changes into it, several issues arise.

First, the rectangularization framework needs to be detached from its static perspective. In-

stead, the framework should dynamically capture mortality changes at all ages, and not just in

the premature age range. Second, it would be beneficial if the concept included a measurement

approach capable of differentiating between and quantifying premature/early and late changes

in age-specific mortality. Third, it would be desirable if an extension of Fries’ framework still

allowed us to determine whether there are any impending limits to lifespan.

The framework proposed here, which is called the “maximum inner rectangle approach”

(MIRA), is designed to address those issues. The approach uses two dimensions of rectangu-

larization. We call the classical perspective “outer rectangularization” because it relates the

survival curve, and, accordingly, life expectancy, to the maximum living potential. Hence,

it compares the current experience with a theoretical maximum. There is, however, another

perspective, which we call “inner rectangularization,” that has so far largely been neglected.

Defined as the rectangle with the largest area under the survival curve, it relates current lifes-

pan equality to current life expectancy. The basic idea is illustrated in Figure 4.1. The bold

solid line denotes a hypothetical survival curve starting from a radix of one and reaching zero

at the highest attainable age ω. The thin solid line denotes the classic reference used to esti-

mate the advancement of rectangularization: namely, the outer rectangle, which also expresses

the maximum living potential. The dashed line depicts the newly proposed concept: namely,

the maximum inner rectangle.

Outer rectangularization is the standard perspective of rectangularization, and captures
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Figure 4.1.: Survival curve and its maximum inner rectangle and outer rectangle. Own

illustration.

progress in mean lifespan,e0, relative to progress in maximum lifespan, ω. The latter can

be interpreted as the “the maximum living potential,” which also defines the outer frame of

the survival curve or the outer rectangle. It counts the hypothetical number of person-years

that could be lived in a population if everyone survived to the maximum age and then died. In

comparison, the actual number of person-years lived in a population corresponds to the area

under the survival curve, and determines mean lifespan. Mean and maximum lifespan serve

to capture the degree of outer rectangularization of the survival curve. We define the outer

rectangle ratio (ORR) as

ORR =

ω∫
0

la da

ω
=
e0

ω
, (4.1)
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with la being the survival function at age a. The maximum age should be able to move forward

or backward depending on the underlying mortality development. Therefore, we link ω to a

specific survival proportion (k) – such as 1% of the population still alive – so that lω = k.

By definition, 0 ≤ ORR ≤ 1. The ratio relates the observed to the maximum possible

number of person-years lived in a population. For example, if ORR = 0.8, then current living

conditions allow the population to exploit 80% of current maximum lifespan potential.

Inner rectangularization adds a new perspective. In contrast to the outer rectangle, we seek

the largest rectangle under the survival curve. Any inner rectangle (IR) under the survival

curve is horizontally defined by age, x; and is vertically defined by survival to that age, lx.

Consequently, the corresponding area is IRx = x · lx. The first age derivative of IRx then

identifies the age x∗ that corresponds to the maximum inner rectangle (MIR) with an area of

MIR = x∗ · lx∗ (4.2)

as the solution to
d IRx

d x
= 0. (4.3)

Although there is no closed form solution, x∗ can be found numerically given that

µx > 0 ∀ x ∈ [0, ω], (4.4)

where µx denotes the force of mortality (see original paper for further details).

MIR counts “maximum uniformly shared person-years.” It is determined by the maximum

shared lifespan (x∗) and the survival proportion up to this lifespan (lx∗). At ages x < x∗,

the share of the population receiving an equal number of person-years would be larger than

lx∗ , but the number to be received per individual would be smaller than x∗. Likewise, at ages

x > x∗, the number to be received per individual would be larger than x∗, but the share of

the population receiving an equal number of person-years would be smaller than lx∗ . In both

cases, the total number of uniformly shared person-years would be reduced.
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Using this definition of MIR allows us to add an inner perspective to the process of rectan-

gularization. In analogy to the maximum living potential (ω), we can interpret life expectancy

(e0) as a population’s current theoretical maximum number of life years that could be shared

uniformly. Accordingly, with perfectly uniform lifespans, 100% of individuals in a popula-

tion would share a lifespan of length e0. When, however, actual lifespan equality is measured

by MIR, a maximum survival fraction of lx∗ < 100% shares a uniform lifetime of at most

x∗ years. Thus, by relating MIR to e0, we define inner rectangularization as the process of

a population approaching its current lifespan equality potential. It is measured by the inner

rectangle ratio (IRR), which is given by

IRR =
MIR

e0

. (4.5)

The inner rectangle ratio captures a trend that differs from that of the outer rectangle ratio,

because changes in the MIR do not require a change in the mean or the maximum lifespan.

Indeed, the trend could be characterized by a constant mean and a falling maximum lifespan,

or by an increasing mean but a constant maximum lifespan, or even by a falling mean and a

falling maximum lifespan. Though closely related, the inner rectangle ratio differs from the

outer rectangle ratio because it is essentially an index of lifespan equality, while the outer rect-

angle ratio is an index of exploiting maximum living potential. Accordingly, if IRR = 0.8,

then current living conditions allow the population to exploit 80% of its current lifetime equal-

ity potential.

Table 4.1 summarizes the quantities presented here, as well as additional areas and specific

ages included in the MIRA. The table provides the name and the acronym of each measure,

its mathematical expression, and a short interpretation of it.

As far as we know, there are no demographic predecessors to our concept of inner rectan-

gularization. Thus, the age maximizing the inner rectangle provides a novel point of reference

indicating maximum shared lifespan. This point represents the optimal trade-off between past

lifetime and a sufficient number of survivors in terms of lived person-years. Hence, the princi-

ple of inner rectangularization rests on identifying the optimal combination of two (inversely
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Table 4.1.: Quantities of the maximized inner rectangle approach (MIRA).

Name Acronym Expression Interpretation

inner rectangle IRx xlx Age-specific uniformly shared person years

(PY)

maximum shared lifespan x∗ max[xlx] Maximum number of uniformly shared life

years by largest number of survivors

maximum proportion lx∗ lx∗ Largest proportion alive at the maximum

shared lifespan

maximum inner rectangle MIR x∗lx∗ Population’s current maximum amount of

uniformly shared PY

life expectancy e0
ω∫
0

la da Population’s current amount of PY, i.e. mean

lifespan

outer rectangle ω ωl0 Maximum possible PY

inner rectangle ratio IRR MIR
e0

Proportion of uniformly shared PY from all

PY lived

outer rectangle ratio ORR e0
ω Proportion of PY lived from maximum pos-

sible PY

total rectangle ratio TRR MIR
ω Proportion of uniformly shared PY lived on

maximum possible PY

related) inputs, age and survival, which unify the biggest area under a curve representing their

respective relationships. Such measures have previously been applied elsewhere. For instance,

the Hirsch index, or the h-index, measures the productivity and the citation impact of scientists

(Hirsch, 2005). It depicts “x publications of a scientist have been cited at least x times.” The

geometric equivalent is a list of all publications by a scientist (y-axis) sorted by the number of

citations (x-axis). This approach is similar to our application, where the survival curves could

be interpreted as a sorted list of life lengths (x-axis) of the population (y-axis).
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4.2.3. Materials and data

MIRA quantities are computed using period life tables, which we estimated from death counts

and corresponding exposures from the Human Mortality Database (2015a). We have chosen

to highlight the trajectories of females in Sweden, Denmark, and Italy because these three

countries provide three exemplary mortality developments. Furthermore, all three countries

have sufficient data coverage over time. In estimating x∗ and lx∗ , a key challenge we faced was

that the data are only available in discrete integer units, but x and lx need to be continuous. We

estimated x∗ in two steps. First, we smoothed the product of x and lx with cubic splines using

R’s splinefun() function (R Core Team, 2017), which allows us to evaluate the function

value at arbitrary precision. Second, we used R’s general purpose univariate optimization

function optimize() to find the maximum. A similar two-step approach with splines has

been used in previous mortality research to estimate the modal age at death (Ouellette and

Bourbeau, 2011). Other age estimates, such as ω or the threshold ages discussed in the next

section, have been calculated using the same procedure.

In several empirical studies on rectangularization, the maximum age ω was not set at the

actual age at which there were no survivors left in the life table population. Wilmoth and

Horiuchi (1999), for instance, set the cutoff age at the point at which 0.1% of the population

are still alive. Rossi et al. (2013) used the 10% threshold; and, most recently, Schalkwijk et al.

(2016) used the 0.1%, 1%, and 10% thresholds. In our study, we opted for a threshold of

1%. Sensitivity analysis revealed that the actual choice for lω had only minor effects on the

results. As the maximum age changes with varying survival fractions, the estimates of TRR

and ORR change quantitatively. However, the patterns of the ratios remain stable over time.
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4.2.4. Illustrative examples of the inner, the outer, and the total

rectangle ratio

Each panel in Figure 4.2 depicts the inner (IRR, black line), the outer (ORR, light gray), and

the total rectangle ratio (TRR, dark gray) for females in Italy (upper left), Denmark (upper

right), and Sweden (lower left). Figure 4.2 illustrates the following key points:

Two important empirical findings can be derived from the results presented in Figure 4.2.

First, we found that outer rectangularization has shown continuous gains over time. This is

a consequence of the straight linear increase in life expectancy (Oeppen and Vaupel, 2002),

which has been faster than the increase in the longest lifespans, as measured by ω. However,

we also detected a considerably slower pace of outer rectangularization since the middle of

the 20th century. Additionally, we saw no convergence of the TRR to the ORR. Both have

been developing almost in parallel for about 160 years. If Fries’ ideas were correct, we would

expect to observe that the TRR undergoes a period of “catching-up” to the ORR until Fries’

“ideal conditions” of a life expectancy of about 85 years are reached. So far, none of the

selected countries has reached this level of life expectancy. Consequently, we should see a

continued narrowing of the gap. It is therefore clear that Fries’ concept of rectangularization

needs to be revised.

Second, we found that inner rectangularization also increased rather uniformly until around

1950; and that the patterns thereafter cannot be summarized with a general trend, because they

are rather country-specific: i.e., there was a steady increase in Italy, a slow increase in Swe-

den, and a slight dip in Denmark for two decades starting in about 1970. The country-specific

patterns suggest that the forces behind this development vary. For instance, the steady increase

in Italy suggests that the rise in life expectancy was accompanied by more growth of the maxi-

mum inner rectangle. The almost stagnating IRR in Sweden between 1960 and 1990 suggests

that life expectancy increased in line with the maximum inner rectangle. Denmark’s deviant

dynamics suggest that the maximum inner rectangle was declining while life expectancy stag-

nated. The differences across countries appear to be attributable to the variation in the onset of
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Figure 4.2.: Inner rectangle ratio, outer rectangle ratio and total rectangle ratio, Italy

(1872-2012), Denmark (1850-2011), and Sweden (1850-2014), females, 1850-

2013. All calculations are based on period life tables in the respective year. The

calculation is based on death counts and exposures from the Human Mortality

Database (2015a).

sustained mortality declines among the oldest-old (Kannisto, 1994), as well as to other factors,

such as smoking among Danish women (e.g., Juel et al., 2000; Jacobsen et al., 2002; Lindahl-
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Jacobsen et al., 2016), and reforms of the health care system (Mackenbach et al., 2011; Peters

et al., 2015).

In this context, the inner rectangle ratio highlights how evenly the magnitudes and the trends

(decrease or increase) of age-specific mortality changes are spread over age. We believe that

these outcomes provide us with a new perspective on lifespan variability. Our intuition is

strengthened by our finding of a correlation between the IRR and other summary measures

of lifespan variability (see the original article for further details). This pattern is especially

pronounced for the time period in which gains in premature survival were instrumental for the

increase in life expectancy.

4.2.5. Applying the MIRA to separate premature from old-age

mortality

Premature and old-age mortality are terms that are frequently used in mortality research, but

they are often loosely defined, which might be sufficient for many applications. However,

in analyzing rectangularization, how these terms are defined is a crucial issue. In Fries’ de-

scription, premature mortality plays a central role. He argued that premature mortality decline

drives the process of rectangularization, and implicitly assumed that premature mortality im-

provements alone are generating life expectancy increase. While how Fries defines premature

ages is unclear, his descriptions suggest that he views life expectancy as a threshold. We argue

that x∗ can be interpreted as an age that allows us to separate premature from old-age mortal-

ity. Accordingly, the threshold in MIRA is based on the longest lifespan that is shared by the

largest fraction of the population.

Figure 4.3 illustrates the relationship between x∗ (horizontal axis) and lx∗ (vertical axis);

i.e., the coordinates for measuring the number of maximum uniformly shared person-years,

again for females in Italy, Denmark, and Sweden. The number of life-years lived in the max-

imum inner rectangle is depicted in the gray contour lines. The two time periods 1850–1950
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Figure 4.3.: Scatterplot between x∗ and lx∗ , females, Italy (1872-2012), Denmark (1850-

2011), and Sweden (1850-2014). All calculations are based on period life tables

in the respective year. Lines are based on a locally weighted smoothing to high-

light the patterns only. Additionally, contour lines visualize the corresponding

number of person-years lived in equality (MIR), since this is determined by the

product of both. The calculation is based on death counts and exposures from the

Human Mortality Database (2015a)

and 1951–2014 are illustrated by dashed and solid lines, respectively.

The share of the life table population dying at old ages is denoted by lx∗ . Consequently,

1− lx∗ equals the proportion dying prematurely. Generally, two trends can be distinguished: a

“vertical” development (until 1950) and a “horizontal” development (after 1950). Premature
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mortality improvements drove progress until 1950, which is illustrated by the increasing share

of survivors. With improving old-age mortality, x∗ shows an accelerated movement toward

higher ages; whereas the corresponding survival fraction at x∗ (lx∗) shows only small gains.

To compare the trajectories resulting from the MIRA, we also analyzed the relationship be-

tween the threshold ages and the corresponding surviving proportions (see the original article)

for the alternative approaches by Zhang and Vaupel (2009) and Gillespie et al. (2014), which

are based on the variance (Gillespie et al., 2014) and the number of life years lost (Zhang and

Vaupel, 2009). These estimates show similar trends. However, within the 150 years of life ex-

pectancy development analyzed, the proportion dying at old age had changed relatively little

under the threshold ages suggested by Zhang and Vaupel (2009) and Tuljapurkar et al. (2000).

In both cases, the change amounted to less than 15 percentage points; a shift we consider to

be rather small. In contrast, our measure shows a shift of about 65 percentage points, from

20% dying at old age in 1850 to about 85% dying at old age in the most recent years. These

numbers seem to be more in line with the findings of, for example, Christensen et al. (2009),

who estimated that almost 80% of recent gains in life expectancy for Japanese women were

caused by survival improvements among the elderly.

The patterns of all three approaches suggest that there was a switch at around 1950 from

avoiding premature deaths to extending the premature age range. This dynamic also points

to a potential minimum proportion of individuals dying prematurely. Depending on the un-

derlying definition of threshold ages, the share dying prematurely varies between 10%–15%

(MIRA), 15%–20% (Gillespie et al., 2014), and 30%–35% (Zhang and Vaupel, 2009) un-

der current mortality conditions. Hence, Fries’ prediction that premature mortality would be

almost completely eradicated seems rather unlikely. We can, however, see that the definition

and the measurement of premature mortality are issues that have been unresolved at least since

Lexis (1877).
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4.3. Outcomes for estimating the effect of increasing

longevity and changing disease incidence on the

lifetime risk of getting a specific disease

4.3.1. Objectives

Summary measures of population health combine information on mortality and health out-

comes to indicate population health within a single index (Murray et al., 2000). Moreover,

these summary measures are useful in several situations, such as when analyzing the benefits

of health interventions, identifying and quantifying health inequalities within the population,

or monitoring changes in the health of a population and comparing levels of health across pop-

ulations (Murray et al., 2000). Especially for the last two purposes, understanding differen-

tials of summary measures between different time points or populations is essential. However,

these differentials are not always easy to interpret because of confounding factors, such as the

age structure of the population. To address these specific problems, decomposition techniques

are applied (Canudas-Romo, 2003). These methods allow us to quantify the contributions of

specific components to these differentials.

To examine the nature of such changes, Vaupel and Canudas-Romo (2002) provided a gen-

eral procedure for the decomposition of population averages, which include a wide range of

population summary measures. In addition to providing a formal derivation, they proposed a

framework consisting of three different kinds of explanations that can be adapted to almost any

evaluation of population summary measure differentials. They defined a level-0 explanation,

which includes data or methodological problems. Their level-1 explanation refers to direct

changes in the quantity of interest, such as improving health. The level-2 explanation captures

possible confounding effects, such as changes in the population age structure. Given a specific

population summary, decomposition methods allow us to quantify the contributions of fac-

tors belonging to level-1 or level-2 explanations, respectively. For many summary measures,

such decomposition techniques have already been developed (see, for instance, Nusselder and
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Looman, 2004).

The lifetime risk of getting a disease is another specific example of a summary measure. It

expresses the probability of developing a certain disease throughout one’s lifetime or from a

certain age onward (remaining lifetime risk). It is a useful indicator for monitoring the burden

of a disease in a population, and is frequently used in cancer research (Sasieni et al., 2011;

Wun et al., 1998; Feuer et al., 1993; Goldberg et al., 1956). In many studies, lifetime risk is

estimated based on longitudinal data for cohorts, such as the Rotterdam study, the Framing-

ham Heart Study, or population register data (Heeringa et al., 2006; Vasan et al., 2002). In

these approaches, lifetime risk refers to the observed lifetimes of individuals. However, life-

time risk has also been calculated using cross-sectional data (Sasieni et al., 2011; Goldberg

et al., 1956; Karampampa et al., 2015). In such an analysis, lifetime risk rests on observed

disease and death patterns at a specific point in time. For at least two reasons, using cross-

sectional lifetime risks is a valuable alternative to relying on estimates based on longitudinal

data. First, the data requirements are much lower when using lifetime risk, since having data

with a sufficiently long follow-up time is not necessary. Second, a cross-sectional lifetime risk

summarizes the current burden in a population, whereas a lifetime risk based on longitudinal

data primarily summarizes past trends. Hence, a cross-sectional lifetime risk is a useful indi-

cator for the above-mentioned situations in which summary measures are applied.

When calculating lifetime risk, the death (mortality rates) and disease (incidence rates) pat-

terns at a specific point in time are assumed to apply as if a real cohort were passing through

time. Accordingly, the disease of interest and death as the competing risk are the two possi-

bilities for exiting from the population. The resulting lifetime risk estimate is determined by

age-specific incidence and survival. Hence, differences in lifetime risk over time or between

populations can arise from differences in incidence or in survival, but changes in just one of

the two are unlikely in reality. Indeed, different authors have acknowledged that comparisons

of cross-sectional lifetime risks suffer from increasing longevity, and thus from the interplay

of mortality and health changes (Sasieni et al., 2011; Karampampa et al., 2015). For example,
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a study on hip fractures documented an increasing lifetime risk, despite declining age-specific

incidence rates (Karampampa et al., 2015).

Given that old-age mortality declines appear to be sustainable, a pivotal task we face is to

better understand the influence of mortality dynamics on population summary measures of

health. Using lifetime risk as a specific example, our research question may be formulated as

follows:

• How much of the change in lifetime risk can be attributed to (I) changing survival; and

(II) how much can be attributed to changing disease incidence?

Hence, the objective of this study is to provide a methodological solution for the outlined

problem that allows us to answer this question.

4.3.2. Decomposition approach for lifetime risk differentials

Assuming that incidence rates depict the first occurrence of the disease of interest, the rate of

either dying or getting diagnosed at age x, µx, can be written as

µx = mx + Ix (4.6)

where mx is the death rate at age x and Ix is the incidence rate of getting a disease at age x

(Sasieni et al., 2011; Ahmad et al., 2015). The probability of staying alive and healthy within

one age interval x can be expressed by exp[−µx]1. Hence, the fraction alive and healthy at age

xi can be calculated by exp[− ∑
x≤y<xi

µy]
2. The lifetime risk of contracting a disease from age

1To allow readers to comprehend the omitted steps and further details, the notation in this part of the thesis is

similar to that in the original paper. This notation differs from that used in the rest of the thesis.
2Please note that the equations in this part differ from those published in the original article. In the original

article, the equations, which express survival, contain an incorrect summation index. Please see the correction

attached to the original article for further details. At the time of the submission of this thesis, an official

correction was processed by the journal.
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x onward, lrx, can then be calculated by

lrx =
∑

x≤xi≤ω

Ixi exp[−
∑

x≤y<xi

µy] =
∑

x≤xi≤ω

Ixi exp[−
∑

x≤y<xi

Iy] exp[−
∑

x≤y<xi

my], (4.7)

where ω denotes the highest age attained.

We are interested in decomposing the change in the lifetime risk of contracting a given

disease; denoted with ∆, between two time points A and B, or, more generally, the difference

between two populations:

∆ = lrx,A − lrx,B. (4.8)

In the further derivation, we write φxi for Ixi exp[−
∑

x≤y<xi
Iy] and lxi for exp[− ∑

x≤y<xi
my].

Given the general definition of lifetime risk of Equation 4.7, we can then rewrite Equation 4.8

to

∆ =
∑

x≤xi≤ω

[lxi,A − lxi,B]
φxi,A + φxi,B

2
︸ ︷︷ ︸

Contribution of Changing Survival Conditions

+
∑

x≤xi≤ω

[φxi,A − φxi,B]
lxi,A + lxi,B

2
︸ ︷︷ ︸

Contribution of Changes in Incidence

. (4.9)

Equation 4.9 provides two distinct interpretable terms (see the original paper for further details

on the derivation). The left term expresses the contribution of changing survival conditions

to the difference in the lifetime risk between populations A and B. The right term expresses

the contributions of changes in disease incidence to the difference in the lifetime risk be-

tween populations A and B. Note that the methodological outline is based on previous studies

that provided general results for mathematical problems of this kind (Kitagawa, 1955; Gupta,

1991).

Table 4.2 presents three hypothetical examples to that illustrate the decomposition as pre-

sented in Equation 4.9. In the first example (I), survival improves as reflected in the lx–

columns, while the incidence proportions are unchanged. The lifetime risk rose by 12 per-

centage points from lrA = 0.24 to lrB = 0.36 . Because we subtracted B from A, we obtained

a negative value. The contribution to the increase in the lifetime risk from changes in the inci-

dence proportions (last column) is obviously zero, since iA,x and iB,x do not differ at any age.
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Table 4.2.: Illustration of the decomposition method with hypothetical examples.

(I) Changes in age-specific survival. (II) Changes in age-specific incidence.

(III) Changes in age-specific survival and incidence. In all three examples, we

decomposed the change from A to B (A−B).

Contribution of Change

in Age-Specific

Scenario Age x lA,x lB,x φA,x φB,x Survival† Incidence‡

1 1.0 1.0 0.0 0.0 0.00 0

(I) Change in 2 0.7 0.8 0.2 0.2 -0.02 0

Survival 3 0.2 0.4 0.3 0.3 -0.06 0

4 0.1 0.2 0.4 0.4 -0.04 0

lrA = 0.24 lrB = 0.36 ∆ = −0.12
∑

-0.12 0

1 1.0 1.0 0.0 0.0 0 0.00

(II) Change in 2 0.7 0.7 0.2 0.1 0 0.07

Incidence 3 0.2 0.2 0.3 0.4 0 -0.02

4 0.1 0.1 0.4 0.2 0 0.02

lrA = 0.24 lrB = 0.17 ∆ = 0.07
∑

0 0.07

1 1.0 1.0 0.1 0.2 0.000 -0.100

(III) Changes in 2 0.5 0.8 0.2 0.1 -0.045 0.065

Survival and Incidence 3 0.3 0.4 0.3 0.4 -0.035 -0.035

4 0.1 0.2 0.4 0.2 -0.030 0.030

lrA = 0.33 lrB = 0.48 ∆ = −0.15
∑

-0.11 -0.04

† Estimated by first part of Equation 4.9.

‡ Estimated by second part of Equation 4.9.

As expected, the difference in the lifetime risk can be completely attributed to improvements

in survival.

A complementary picture is provided by the second example (II). Age-specific survival
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does not differ between time points A and B. Instead, the age-specific incidence proportions

changed over time. The overall reduction in lifetime risk of 0.07 is therefore equivalent to the

sum of the contributions from the different age categories.

Although all of the examples are hypothetical, the third example (III) is probably closest

to reality because the contributions to lifetime risk differences originate from changes in age-

specific survival, as well as from changes in age-specific incidence proportions. The lifetime

risk increased by 15 percentage points, from 0.33 to 0.48. Our decomposition method allows

us to disentangle the overall effect into contributions due to varying mortality conditions and

varying age-specific incidence proportions. It turns out that the increase in lifetime risk is due

to a combination of higher incidence proportions and higher survival. In addition to offering

this qualitative assessment, we can state that improved survival contributed almost three times

more (0.11) to the increase in lifetime risk than the actual incidence risk (0.04).

4.3.3. Materials and data

We also applied the method to the remaining lifetime risk of being diagnosed with myocardial

infarction, colorectal cancer, or hip fracture among Swedish males at age 60. Note that the

decomposition can be applied to lifetime risk starting at any age. For the different diseases, we

compared the lifetime risk between two different time points. These time points are 1987 and

1994 for colorectal cancer, 1994 and 2014 for hip fractures, and 1994 and 2004 for myocardial

infarction.

The incidence estimates for the three disease outcomes were obtained from Swedish registry

data maintained by Statistics Sweden and the National Board of Health and Welfare (Modig

et al., 2013). For myocardial infarction and hip fracture, the first event occurring after age 60

after a seven-year disease-free period was identified using data from the National Patient Reg-

ister. For colorectal cancer, information on the date of cancer diagnosis was collected from

the Swedish Cancer Register. The incidence counts have been smoothed across age and time

71



4. Cluster III – Mortality dynamics in an era of old-age mortality decline

to reduce random fluctuations using the MortalitySmooth package in R (R Core Team, 2017;

Camarda, 2012). In our example, death rates are based on death counts and exposures of the

total Swedish male population provided by the Human Mortality Database (2015b) (see the

original article for a discussion on the impact of using death rates of the total population on

the estimation of lifetime risk).

4.3.4. Decomposition of the lifetime risk of myocardial infarction,

hip fracture and colorectal cancer for Swedish males

The left panel of Figure 4.4 depicts the time trends of lifetime risk for the respective diseases3.

The dots mark the time points that are selected for the decomposition. The selection is based

on the pattern of the respective lifetime risks. Accordingly, for myocardial infarction, we have

chosen the end points of a period with almost stagnating levels of lifetime risk. For hip frac-

ture, the time points mark the boundaries of a period of slightly increasing lifetime risk. For

colorectal cancer, the time points mark the boundaries of a period of increasing lifetime risk.

The right panel illustrates the results of the decomposition. The bars show the contributions of

changing survival and of changing incidence, as well as the total change in the lifetime risk.

In the case of myocardial infarction, the lifetime risks are similar at the two time points,

which could lead us to conclude that there have been no improvements in the incidence above

age 60. However, when applying the decomposition, it becomes clear that the declining in-

cidence should have generated a decrease in the lifetime risk of more than three percentage

points, but that increasing longevity prevented such a decrease from occurring. If mortality

had changed between the two time points, the mortality improvements — and, hence, the

higher number of individuals surviving to older ages — would have resulted in an increase in

3After the adjustment for the incorrect summation index, the empirical results changed slightly. Therefore, the

estimates in Figure 4.4 differ slightly from those in the graph of the original article. Please see the correction

attached to the original article for further details. At the time of the submission of this thesis, an official

correction was processed by the journal.
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Figure 4.4.: Remaining Lifetime Risk at Age 60 and Lifetime Risk Decomposition

for Myocardial Infarction, Hip Fracture, and Colorectal Cancer, Sweden,

Males. Lifetime risk estimates are based on combing death counts, exposures and

disease incidence of a certain period in a multiple-decrement life table. Death

counts and exposures are provided by the Human Mortality Database (2015b).

Information on disease incidence are obtained from Swedish registry data main-

tained by Statistics Sweden and the National Board of Health and Welfare (Modig

et al., 2013).

the lifetime risk of more than 2.5 percentage points. In sum, the counteracting factors resulted

in an overall change in the lifetime risk of less than a half percentage point.

For hip fracture, we observe a slight but steady increase over time in the remaining life-

time risk above age 60. This rise is, however, entirely driven by increasing longevity. Given

the same mortality at both time points, the declining incidence should have contributed to a

decrease in the lifetime risk of more than 1.5 percentage points; whereas given the same in-

cidence at both time points, the survival improvements should have generated an increase of
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more than three percentage points. Accordingly, the total change sums up to an increase of

more than 1.5 percentage points.

Colorectal cancer is an example of a disease for which the lifetime risk increased relatively

steeply over a short period of time. Unlike in the other two examples, the incidence con-

tributed to a rise in the remaining lifetime risk at age 60. Consequently, the incidence between

1987 and 1994 increased. Rising incidence alone should have generated an increase in the

lifetime risk of more than 2.5 percentage points. Moreover, the effects of improving survival

on changes in the lifetime risk are different from those in the other two examples. Because, on

average, colorectal cancer occurred earlier, its impact on longevity advancement was smaller.

Hence, given the same incidence at both time points, the contribution of increasing survival

should have resulted in an increase of slightly more than 0.25 percentage points. Thus, the

total change sums up to an increase in the lifetime risk of more than three percentage points.

As we have seen from these empirical examples, whether increasing longevity influences

the development of lifetime risk, depends on the timing of the respective disease. In recent

decades, mortality improvements have been especially large at higher ages (Christensen et al.,

2009). Accordingly, the lifetime risks of diseases that tend to occur at higher ages are influ-

enced to a greater extent by increasing survival. This is because improved survival causes a

higher number of people to survive to the ages at which disease incidence is highest. Thus,

even when the incidence of a disease is going down, the declines at those ages are offset by the

higher number of people at risk. Conversely, for diseases that tend to occur at ages at which

survival improvements have been marginal, incidence declines of the same magnitude should

have a stronger effect on lifetime risk. That is because the numbers of survivors at those ages

differ only marginally between the two populations.

The decomposition method presented above allows us to quantify these conflicting dynam-

ics. The method can also be extended beyond the application presented here. In addition to

being useful for quantifying the contributions of incidence and survival to changes in life-
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time risk, the general procedure can be adjusted to incorporate the contributions of changes in

disease-related mortality and case fatality.

4.4. Outcomes for estimating the contributions of

different mortality dynamics to the increase in life

expectancy

4.4.1. Objectives

Our main objective has been to gain a better understanding of the influence of mortality

dynamics on changes in summary measures of mortality, particularly in changes in life ex-

pectancy. Several techniques have been developed for decomposing changes in life expectancy

using different components, such as cause of death and age, for discrete (Andreev et al., 2002;

Pollard, 1982; Arriaga, 1984; Pressat, 1985) as well as continuous changes (Vaupel and Romo,

2003; Beltrán-Sánchez et al., 2008; Vaupel, 1986; Keyfitz, 1977; Horiuchi et al., 2008). These

methods have been instrumental to efforts quantify and understand the changing age pattern

of mortality improvement.

With the emergence of alternative patterns of mortality change, there has been an increasing

interest in understanding the contribution of such dynamics to changes in life expectancy. For

instance, Goldstein and Cassidy (2012) investigated how different kinds of mortality change

translate into life expectancy changes. They found that slowing the relative increase of mor-

tality with age would have the biggest impact on the level of life expectancy, given current

levels of mortality. However, alternative dynamics such as a shifting of mortality – i.e., a pure

postponement of deaths to higher ages without changing the relative increase – would also

generate considerable gains in life expectancy.

So far, the compression of mortality and the shifting of mortality have arguably been the
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dominant dynamics that have shaped mortality change since the onset of the sustained decline

in old-age mortality (see among others Fries, 1980; Nusselder and Mackenbach, 1996; Bon-

gaarts, 2005; Canudas-Romo, 2008). Hence, from that point onward, these dynamics have

also driving changes in life expectancy. However, the specific forces generating changes in

life expectancy differ for each of these patterns. The compression of mortality produces gains

in life expectancy through declines in lifespan variability; while the shifting of mortality gen-

erates increases in life expectancy due to changes in the timing of mortality, without having an

impact on lifespan variability. Although the approach by Goldstein and Cassidy (2012) allows

us to quantify the impact of a particular dynamic on the level of life expectancy, it is solely

based on a perturbation analysis. Hence, their method does not allow us to decompose a life

expectancy differential into the respective contributions of the compression and the shifting of

mortality. In general, methods that are designed to quantify the contributions of these dynam-

ics to changes in life expectancy have, until recently, been lacking 4. Hence, the objective of

this study is to provide a methodological approach as well as some empirical results to answer

the following questions:

• What is the impact of the compression and the shifting of mortality on the increase in

life expectancy over time?

• How did one process replace the other, and to what extent did they do so?

4.4.2. Decomposing the contributions of different mortality

dynamics to differentials in life expectancy

The following outline of the decomposition methodology uses the Gompertz mortality model

as an example. However, the general idea can also be applied to other parametric mortality

models (see the original article for results for other models).

4A recent publication by de Beer and Janssen (2016), which provides such an approach, might be seen as a

follow-up to the approach suggested in the article.
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Figure 4.5 shows the distribution of deaths for Gompertz parameters under two scenarios.

It illustrates how changes in mortality can be decomposed into effects due to the compres-

sion and the shifting of mortality. Assuming a general change in mortality between the two

distributions (arrow denoted as A), the shifting effect is the hypothetical change that results

only if the modal age at death (M ) changes between those two distributions (arrow B). The

variability effect (compression) is the hypothetical change produced if only the slope of the

hazard function (β) changes from one distribution to another (arrow C). The latter transforma-

tion C, of changing the slope of the hazard distribution, also changes the shape of the density

distribution, and thus its variability (Wilmoth, 1997).

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

Age

D
en

si
ty

 d
is

tr
ib

ut
io

n

20 30 40 50 60 70 80 90 10
0

11
0

Distribution 1
Distribution 2
Change in β only
Change in M only
Modal ages

A

B

C

Figure 4.5.: Illustration of the shifting and the variability effects in the density function

of the distribution of deaths for simulated data from a Gompertz model.

The different distributions shown rest on the combination of shape parameters

β1 = 0.10 and β2 = 0.13 and modal ages at death M1 = 75 and M2 = 90.

Following the illustration in Figure 4.5, the change in life expectancy at birth over time, ė0,t,
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can be expressed by

ė0,t = ∆β + ∆M, (4.10)

where ∆β and ∆M are the gains in life expectancy resulting from changes in the shape pa-

rameter and modal age at death, respectively. Following Vaupel and Romo (2003), a dot on

top of a variable denotes its derivative with respect to time.

Following the work of Horiuchi et al. (2013) and Missov et al. (2015), the Gompertz mortal-

ity model can be calculated using the modal age at death. Accordingly, the force of mortality

can be expressed by

µx,t = βte
βt(x−Mt), (4.11)

where βt is the shape parameter at time t of the Gompertz hazard function µx,t, and Mt is the

modal age at death. The change over time in the force of mortality (µ̇x,t) can be decomposed

into the respective components of change for the shape (β̇t) and the mode (Ṁt), which can be

expressed by

µ̇x,t = β̇t

[
µx,t(

1

βt
+ x−Mt)

]
− Ṁt [βtµx,t]. (4.12)

The components of change for the shape (β̇t) and the modal age at death (Ṁt) are each mul-

tiplied by a weighting function. For simplicity, these weighting functions are summarized by

fβ(µx,t) for the shape and fM(µx,t) for the mode. Equation 4.12 then changes to

µ̇x,t = β̇t fβ(µx,t) − Ṁt fM(µx,t). (4.13)

The change in life expectancy at birth over time can be expressed by

ė0,t =

∫ ω

0

l̇a,t da = −
∫ ω

0

la,t

∫ a

0

µ̇x,t dx da, (4.14)

where l̇a,t is the time derivative of the survival function la,t. Equation 4.13 can now be substi-

tuted in Equation 4.14, which results in

ė0,t = −β̇t
∫ ω

0

la,t

∫ a

0

fβ(µx,t) dx da
︸ ︷︷ ︸

∆β

+ Ṁt

∫ ω

0

la,t

∫ a

0

fM(µx,t) dx da
︸ ︷︷ ︸

∆M

. (4.15)
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The first term in Equation 4.15 expresses the gain in life expectancy due to a change in the

shape, (∆β), capturing the compression of mortality; while the second term expresses the

gain in life expectancy due to a shift in the modal age at death (∆M ), capturing the shifting

of mortality.

4.4.3. Materials and data

The Siler mortality model is used for the illustration of the decomposition method (Siler,

1983). Using the parameterization of the Gompertz mortality model with the modal age at

death, the force of mortality of can be expressed by

µx,t = αt e
−btx + ct + βte

βt(x−Mt), (4.16)

where α and c are capturing the initial level of infant and background mortality, the parameters

b and β are the constant rates of mortality change with age for infant and adult mortality, and

M is the modal age at death. By including the infant and background parameters, the Siler

model provides a more detailed estimation of the compression and the shifting effects because

it captures mortality at all ages. However, it must be noted that the Siler model appears to

have some shortcomings in capturing the U-shaped mortality trajectory at infant, childhood

and adolescent ages. It has also problems in capturing the deceleration of mortality at old

ages. Nevertheless, it is useful for illustrating the method and for analyzing the impact of both

mortality dynamics. The effect sizes calculated should, however, be interpreted with care (see

the original paper for a further discussion on the accuracy of the method).

The decomposition is applied to the mortality of Swedish females and to the average fe-

male mortality in selected countries of the Human Mortality Database (HMD 2015c) (see the

original paper for further details). The parameters of the mortality models are estimated for

each country independently, and then averaged across all countries (with equal weights) to

obtain the HMD average. The Siler models are fitted to the observed mortality trends using

the maximum-likelihood framework and assuming that age-specific death counts are Poisson-
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distributed (Brillinger, 1986).

4.4.4. Decomposition results using the Siler mortality model

To illustrate the accuracy of the method, the decomposition has been applied to the differences

in life expectancy at birth between the years 1900–1905, 1950–1955 and 2000–2005. Table

4.3 shows the results for each setting, as well as for for each parameter in the Siler model.

Although the method requires some adjustments to allow us to apply the continuous functions

to discrete data and to capture the change over time (e.g., linear, exponential; see the original

paper for further details) of the respective quantities, the results suggest that the proposed de-

composition method provides fairly accurate results, which can be seen by the similar values

for the life expectancy differentials and the sum of the contributions of the individual param-

eters.

To tackle the two research questions, Figure 4.6 depicts the results of the Siler decomposi-

tion for five-year periods between 1900–2010 for females in Sweden and the average across

the countries of the Human Mortality Database. Each bar in the graph corresponds to the

decomposition of the life expectancy differential between the start and the end year of the

respective five-year period. The colors highlight the contributions of the individual parame-

ters, with blue referring to the compression of mortality and orange referring to the shifting of

mortality. Apart from showing some fluctuations in years affected by war or larger epidemics,

Figure 4.6 clearly illustrates that the compression of mortality was the dominant force in in-

creasing life expectancy until the 1950s. Thereafter, the shifting of mortality, measured by the

change in the modal at at death, became instrumental to increasing life expectancy. Given the

patterns shown in Figure 4.6, the transition from the compression to the shifting of mortality

as the major driver proceeded relatively rapid. However, when we look at the relative rather

than the absolute contributions (as shown in Figure 4.6), we see a more gradual shift from one

to the other with an onset in the 1940s becoming visible.
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Table 4.3.: Female life expectancy at age 0 (e0,t) and its decomposition due to changes in

the Siler parameters, Sweden and the HMD average, 1900, 1950, and 2000.

By rounding the numbers to the second decimal point in the table, the sum of the

contributions (
∑

∆i) might differ slightly from the difference in life expectancy

(ė0,t). The estimation is based on age-specific death counts and exposures from

the Human Mortality Database (2015c).

1900 1950 2000

e0,t 56.06 72.78 81.68

e0,t+5 58.00 74.44 82.34

ė0,t 1.94 1.66 0.66

∆α 0.52 0.06 0.01

∆b 0.54 0.02 -0.04

∆c 0.69 0.44 0.02

∆β -0.17 0.03 0.05

∆M 0.34 1.11 0.62

∆α+∆b+ ∆c+∆β+∆M 1.94 1.66 0.66

The proposed method allows us to quantify the contributions of the compression and the

shifting of mortality to the increase in life expectancy. However, because the procedure rests

on the parametric mortality models, the results are sensitive to the selected model, and to

whether the model used includes mortality at young and middle ages. Moreover, the method

provides accurate results for decomposition over short time horizons, such as five or 10 years.

But with longer time horizons, the sum of the individual parameter contributions start to devi-

ate slightly from the initial difference in life expectancy. This is due to the approximation of

the equations to discrete data, as well as the assumption of how a respective quantity changes

between two time points.
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Figure 4.6.: Trends over time of the Siler parameters’ contribution to changes in female

life expectancy at age 0 (ė0,t), Sweden and HMD average, 1900-2010. The

Siler models have been fitted using the Poisson-likelihood. The estimation is

based on age-specific death counts and exposures from the Human Mortality

Database (2015c).

4.5. Cluster conclusion

The individual articles in this cluster aim to provide methodological solutions for problems,

which are generated by sustained declines in old-age mortality. The maximum inner rectan-

gle approach is the only approach that also contains a theoretical component. The two other

approaches are decomposition methods for different types of differentials. However, in all

three cases, the approaches aim to capture the influence of recent mortality changes, and they

can also be used to anticipate and capture the patterns that may arise from further expected
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improvements in old-age survival such as an expansion of mortality.

The three approaches tackle different problems that arise following the onset of sustained

declines in old-age mortality. The classical idea of the rectangularization of the survival curve

did not include the possibility that life expectancy would increase due to the decline in mor-

tality at advanced ages. Therefore, a theoretical refinement was necessary. The maximum

inner rectangle extends the whole concept by introducing a second type of rectangularization,

which captures the degree of equality across the total person-years lived. The decomposition

method for lifetime risk differentials captures the problem that arises incidentally from declin-

ing old-age mortality: namely, population aging. Migration and fertility are also important

factors in this process. However, for summary measures of health and mortality, which rest

on an observed or derived (from a model) population age structure, the increase in longevity

must be taken into account when time trends or differentials are compared. Lifetime risk is a

concrete example of such a measure, but the proposed procedure can also be applied to other

summary measures that rest on the population age structure. The onset of the sustained decline

in old-age mortality was also the time point at which dynamics other than the compression of

mortality became instrumental for the change in life expectancy. The proposed decomposition

method represents a first attempt to quantify the importance of these dynamics for the overall

increase in the average lifespan; and to analyze whether, and, if so, how these dynamics (the

shifting and the compression of mortality) have replaced each other.

The presented approaches can also be used to analyze and explain the dynamics of future

mortality prospects. The progressive exploitation of opportunities for extending life at the

highest ages — which is likely to continue occur, at least in the near future — will affect both

the pattern of lifespan variability as well as the increase in longevity. The maximum inner

rectangle approach and the life expectancy decomposition method are designed to capture po-

tential changes in lifespan variability. In this context, the maximum inner rectangle approach

offers further extension possibilities beyond the measures presented. Mostly importantly, the

possibility of decomposing the complete maximum living potential into the different kinds of
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person-years lived and lost represents a promising opportunity to gain further insights into the

relationship between the compression and the shifting of mortality, as well as into the poten-

tial expansion of mortality as increasing life expectancy is accompanied by increasing lifes-

pan variability. In addition to the decomposition method, lifetime risk as such is an interesting

measure for anticipating changes in the life expectancy because it expresses the likelihood that

an average individual will contract a disease in the future; a crucial information for anticipat-

ing future changes in life expectancy. It may therefore makes sense to combine information

on survival and diseases incidence in a single index. Lifetime risk provides a unique oppor-

tunity in this context. Further extending this method, which allows us to decompose lifetime

risk differentials into the components of disease-related mortality and case fatality, can help

us better understand the dynamics of two potential drivers of increasing longevity.
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5. Cluster IV – The role of mortality

dynamics for future mortality

prospects

5.1. Cluster objectives

Mortality forecasting approaches aim to predict future levels of life expectancy. Given the

changes in the age patterns of mortality improvement — and perhaps more importantly, the

location of improvements potentials at the highest ages — the accuracy of the approaches used

to predict increases in life expectancy depends to a large extent dependent on their ability to

capture and forecast mortality dynamics at the highest ages. However, these trends have been

divers in the past. Figure 5.1 illustrates this diversity. The figure illustrates the correlation

between life expectancy at birth (x-axis) and average life years lost at birth, e†0 (y-axis) for fe-

males in Denmark, Italy, and Japan. Average life years lost at birth (e†0) – a measure of lifespan

variability – can be interpreted as an indicator of the underlying mortality dynamics, because

the respective pattern of lifespan variability is determined by the distribution and intensity of

age-specific mortality improvements.

Until the three populations reach a life expectancy level of 75 years, there are only marginal

differences in the corresponding levels of average life years lost. However, as soon as the

countries exceeded this level of life expectancy, the corresponding levels of average life years

lost show diverse patterns, with a continuation of the regular decline (the compression of mor-
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tality) for Italian females; an increase and a decrease for Danish females; and a leveling-off

(the shifting of mortality) for Japanese women. These findings illustrate that different under-

lying mortality trajectories can lead to similar levels of life expectancy, but to varying levels of

lifespan variability. Different authors have already discussed this phenomenon in more detail

(Wilmoth and Horiuchi, 1999; Smits and Monden, 2009; Vaupel et al., 2011).

The diversity of mortality dynamics is a challenge for mortality forecasting approaches, be-

cause the future development of life expectancy depends entirely on whether and, if so, how

improvement potentials at the highest ages are exploited. In Figure 5.1, we can see that these

improvements can be realized through multiple dynamics, such as a further compression in

the case of Italy or a shifting of mortality in the case of Japan. To provide robust forecasts of

life expectancy, mortality forecasting approaches should be able to capture and process a va-

riety of mortality dynamics. In this instance, lifespan variability could serve as an indicator of

mortality dynamics, which could be used to evaluate the performance of mortality forecasting

approaches in capturing and forecasting these mortality dynamics.

Basic life table functions, such as life expectancy at birth (a measure of central tendency)

and age-specific mortality (a measure of mortality intensity) are usually applied to evaluate

the performance of forecasting approaches. Accordingly, the more closely a forecast fits the

observed values, the greater the forecasting performance is. Based on these assumptions, the

goodness-of-fit test and other validation procedures are applied to quantify the predictive abil-

ity of mortality forecasting approaches. For the evaluation of the differences between the pre-

dicted and the observed mortality, ex-post quantitative aspects are generally used (Armstrong

and Collopy, 1992; Cairns et al., 2011; Keilman, 1997; Shang, 2015). The quantified forecast

errors can than be expressed in absolute or relative terms, and can be averaged over different

dimensions, such as ages, time periods, or populations (Booth et al., 2006; Keilman and Pham,

2004; Koissi et al., 2006; Shang et al., 2011; Smith et al., 2001). Depending on the respective

error statistic, different dimensions of predictive ability are evaluated, such as accuracy in the

case of absolute errors and bias in the case of positive and negative errors. However, errors
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Figure 5.1.: Scatterplot of life expectancy at birth and average life years lost at birth

due to death, females, Denmark, Italy and Japan, 1950-2012. Life expectancy

at birth and average life years lost at birth due to death are calculated using

the approach presented in Vaupel et al. (2011). Accordingly, the average life

years lost at birth due to death (e†0) are calculated by applying the equation e†0 =

1
l0

ω∫
0

exdx dx, with ex being life expectancy at age x, dx being the life table deaths

at age x, and l0 being the life table radix, to discrete data. Both life expectancy

and average life years lost estimates are based on period life tables, using age-

specific data on death counts and exposures provided by the Human Mortality

Database (2017a).
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and test statistics of basic life table functions are useful for specifying precisely how mortality

has been forecast. But small errors in the forecasting of, for instance, average lifespan do not

necessarily indicate that the underlying mortality dynamics are plausible.

The objective of this study is to explore and highlight the question of whether mortality

forecasting approaches can capture and forecast different trends in life expectancy at birth

and lifespan variability. Hence, the aim is to emphasize the benefits of incorporating lifespan

variability as an additional indicator in the toolkit that is used to evaluate the performance of

mortality forecasts.

Paper in this cluster:

Bohk-Ewald, Ebeling, Rau (2017). Lifespan disparity as an additional indicator for

evaluating mortality forecasts. Published in Demography.

5.2. Approaches used to forecast mortality

Three approaches are selected to forecast mortality. They differ in their ability to capture dy-

namic age shifts in survival improvement. These models are the Lee-Carter model (Lee and

Carter, 1992), its rotating variant (Li et al., 2013), and the model developed by Bohk and Rau

(Bohk-Ewald and Rau, 2017). As their levels of modeling flexibility differ, each of these ap-

proaches model the various trends in lifespan variability differently. Many other approaches

are equally appropriate for meeting our research objective. However, the aim of this analysis

is to show the additional information that can be gained when evaluating the forecasted spread

of mortality in the presence of different trends for life expectancy at birth and lifespan vari-

ability. Hence, an extensive evaluation of the performance of different forecasting approaches

is beyond the scope of this study.

The canonical model by Lee and Carter (1992) is undeniably a standard approach in the field

of mortality forecasting. The Lee-Carter model forecasts mortality by age and calendar year
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on the logarithmic scale, while assuming that the relative changes in mortality are constant

across the ages over time. Hence, if the survival improvements were relatively large at young

ages and were small at old ages in the reference years, it was assumed that this proportion

would be unchanged in the forecast years. The absence of a dynamic shift in survival im-

provements to progressively higher ages may induce (1) an underestimation of life expectancy

at birth, as well as (2) a strong compression of deaths, which may in turn be accompanied by

a strong decline in lifespan variability.

Many scholars have refined the Lee-Carter model to address the problem of the inflexibil-

ity in the age profile of mortality change (Booth et al., 2006; Shang et al., 2011; Soneji and

King, 2011). An important step in this direction was taken by Li et al. (2013), hereafter called

Lee-Carter-rotated, who implemented a time-variant age schedule of mortality change that ro-

tates from a present level to an ultimate level. The timing and the pace of the rotation depend

on the average lifespan, which has been forecasted in a previous step using the original Lee-

Carter model. As soon as life expectancy at birth exceeds a certain level, the rotation starts

and proceeds until life expectancy at birth reaches an ultimate level. The rotating age pattern

basically induces a postponement of relatively large survival improvements from younger to

older ages. Given that the average lifespan is forecasted using the original Lee-Carter model,

it is important to note that the rotation only affects the underlying mortality dynamics, not the

average level of mortality. Assuming a regular decline in mortality, we expect to find that like

the original model, the rotated model may (1) underestimate the additional years of life; but

that unlike the original model, it may (2) be able to forecast a mortality compression that is

less strong because of its greater modeling flexibility.

The model of Bohk and Rau (Bohk-Ewald and Rau, 2017) provides an alternative strategy

for forecasting that relatively large rates of mortality improvement proceed from younger to

older ages. The model predicts survival improvements instead of death rates. Moreover, the

Bohk-Rau model has a linear and an exponential core model for forecasting time series of

age-specific mortality change; it uses simulation-based Bayesian inference to run those mod-
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els and to estimate coherent changes in mortality among adjacent ages. Although both the

Lee-Carter-rotated and the Bohk-Rau model allow the age profile of the rates of mortality im-

provement to change, the latter model appears to be more flexible, since it does not assume

an approximation of an ultimate schedule. We expect to find that the Bohk-Rau model will

perform similarly to the Lee-Carter-rotated model in forecasting average mortality and lifes-

pan variability for populations with regular mortality declines. But we hypothesize that the

Bohk-Rau model will perform even better in generating forecasts for populations with irregu-

lar mortality developments, because it is more adaptable to different forecasting situations.

5.3. Materials and data

In the evaluation, we examine whether each of the three models is able to generate precise

forecasts of average lifespan and lifespan variability. The examples are designed to indicate

whether the approaches can capture (1) regular and irregular trends of average lifespan, as

well as (2) different dynamics in the age shifts of survival improvements. We have chosen

to compare the forecasts for women in Italy (regular e0 and e†0), Japan (regular e0 and ir-

regular e†0), and Denmark (irregular e0 and e†0) because in recent decades these groups have

differed substantially in their levels of life expectancy and lifespan dispersion (see Figure 5.1).

We use death counts and exposures by single years of age from age zero to ages 110+,

and by calendar years from 1950 to 2009, from the Human Mortality Database (2015d). To

enable the forecasting approaches to shift deaths to ages beyond 110+, we have extended the

age range to 130+ with the Kannisto model (Thatcher et al., 1998) (see the original paper for

further details).

To generate the mortality forecasts, we implemented all models in the statistical software

R (R Core Team, 2017). We implemented the Bohk-Rau model and the Lee-Carter model

in their original versions, but we made a few adjustments to the original version of the Lee-
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Carter-rotated model. Most importantly, we set the onset of the rotation in the age pattern to

a life expectancy level of 75 because differences in lifespan disparity started to develop for

women in Italy, Japan, and Denmark as the average lifespan exceeded this value (see Figure

5.1). To avoid jump-off bias for the Lee-Carter model and the Lee-Carter-rotated model, we

use the last observed death rates to forecast mortality.

To measure lifespan variability, we take the average number of life years lost at birth (Vaupel

and Romo, 2003; Zhang and Vaupel, 2009), e†0, estimated by

e†0 =

ω∫
0

eada da

l0
, (5.1)

with ea being the remaining life expectancy at age a and da being the life table deaths at age

a, with both integrated from age zero to ω, the highest age at death. l0 is the radix of the life

table. A major reason why we have chosen e†0 is that it is demographically interpretable as the

average life years lost. Since e†0 refers to the lost living potential, it also provides information

about the capacity for further increases in life expectancy. We argue that these key features

mean that e†0 in particular is suitable to be used to evaluate the plausibility of mortality fore-

casts.

5.4. Evaluation results of the mortality forecasts

Our evaluation is based on four different evaluation settings, which vary in terms of their ref-

erence periods and forecast years. In these settings, mortality is always forecasted up to 2009,

but using different reference periods (1965–1990 1960–1985, 1955–1980, and 1950—1975).

Thus, the range of forecast years varies across these settings (the results for the last three

settings can be seen in the original article). Figure 5.2 presents the results of the central vali-

dation setting. The mortality forecasts are based on the reference period 1965–1990. Mortality

is then forecasted from 1991 to 2009. Based on these forecasted death rates, life expectancy

at birth (e0) and lifespan equality (e†0) are calculated. Based on this setting, we are able to
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compare the estimations with the actually observed values. The upper, middle, and bottom

panels depict the results for life expectancy (left) and lifespan variability (right) for women

in Italy, Japan, and Denmark. The observed trajectories are in black. The blue, green, and

red solid lines refer to the Bohk-Rau model, the Lee-Carter-rotated model and the Lee-Carter

model, respectively. Moreover, the forecasted years, from 1991 to 2009, are highlighted in

gray; and the reference period, from 1965 to 1990, is highlighted in beige.

Besides employing visualization techniques for the evaluation, we calculated forecast er-

rors to evaluate the forecasting performance of each method. To quantify forecast accuracy in

terms of the mean and the spread of mortality, we use the Absolute Percentage Error (APE).

This is a relative error that relates the absolute difference between forecasted and observed

values to the size of the actual values. Since the APE can deal with measures of different

scales, we use it to compare the forecasting performance (across time and by country) of the

methods using e0 and e†0. Table 5.1 lists those MAPEs (Mean Absolute Percentage Errors)

averaged over all four validation settings.

The fits of life expectancy at birth and lifespan variability basically appear to depend on the

regularity of mortality trends and the ability of the approaches to capture them appropriately.

Since the mortality developments among Japanese and Danish women were irregular, making

precise forecasts for these groups is particularly challenging. Thus, the predictive ability of

the approaches declines as the magnitude of the MAPEs increases. This effect appears to be

greater for the Lee-Carter model than for the other two models, and it appears to be more pro-

nounced in forecasts of lifespan variability than of average lifespan. For example, the greatest

overall MAPE, 10.7%, is for e†0 in Japan from the Lee-Carter model; whereas the smallest

overall MAPE, 0.4%, is for e0 in Italy from the Bohk-Rau model (see Table 5.1). The greater

forecast error found for the Lee-Carter model is probably due to the extrapolation of average

trends of the reference period. Hence, if the overall trend in lifespan variability is decreasing

in the reference period, the Lee-Carter model may be expected to predict a decreasing pattern

as well, and vice versa (see Figure 5.2). The structural breaks observed in Danish and Japanese
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Figure 5.2.: Life expectancy at birth (left panels) and life years lost at birth (right panels)

for women in Italy (top), Japan (center), and Denmark (bottom).Observed

data are in black, while forecasted data are in red (Lee-Carter model), green

(Lee-Carter-rotated), and blue (Bohk-Rau model). The forecast years are 1991

to 2009, based on the reference period 1965 to 1990. All estimates are based

on age-specific death counts and exposures provided by the Human Mortality

Database (2015d).
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Table 5.1.: Mean of the Absolute Percentage Errors (MAPE) for e0 and e†0 over all valida-

tion settings by country and method. The MAPE is calculated over the APE of

all four validation settings. The reference periods (1965–1990 1960–1985, 1955–

1980, and 1950—1975) and the forecast years of the settings differ. All of the

forecasts range from the year after the end of the reference period until 2009.

The calculations in all of the settings are based on age-specific death counts and

exposures provided by the Human Mortality Database (2015d).

Country Measure LC LC, rotated Bohk-Rau

Average across all validation settings

Italy
e0 0.011 0.011 0.004

e†0 0.027 0.019 0.024

Japan
e0 0.008 0.008 0.005

e†0 0.107 0.086 0.025

Denmark
e0 0.009 0.008 0.022

e†0 0.057 0.045 0.024

lifespan variability are unexpected, and are difficult for all of the models to capture since they

are not designed for this specific task.

By focusing exclusively on lifespan variability, we are able to discern large differences

between the approaches, particularly between the two Lee-Carter models in the forecasts of

Japanese female mortality. The rotating variant appears to capture the flattening decline in

lifespan disparity in the forecast years much better than the original model, and thus sub-

stantially improves forecasting performance with an overall MAPE for e†0 in Japan, which is

substantially lower for the Lee-Carter-rotated (8.6%, Lee-Carter model: 10.7%). This find-

ing demonstrates the need for time-variant survival improvements in order to capture dynamic

trends in the variability of the age at death. It should be noted that we do not expect forecasting

errors to be equal to zero, since they show more signs of overfitting than of displaying high

forecasting performance.
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5.5. Cluster conclusion

The comparative analysis revealed that, irrespective of the reference period, forecasting per-

formance basically depends on the regularity (or continuation) of mortality trends and the

ability of the approaches to capture them appropriately. While the forecasts of life expectancy

at birth generated by the Lee-Carter models are rather conservative, the forecasts generated by

the Bohk-Rau model often have small forecast errors, but also a few upward outliers across

all validation settings. Moreover, the Japanese forecasts were found to be precise when we

looked at average lifespan only, but they turned out to be rather inaccurate when we took lifes-

pan disparity into account as well. Hence, the models were not able to capture the flattening

decline of Japanese lifespan disparity in the forecast years, although the rotating model and

the Bohk-Rau model fared better than the Lee-Carter model due to time-variant survival im-

provements.

However, the remaining deviations from the observed values indicate that the refinement

or the development of forecasting approaches should focus not only on average mortality, but

on lifespan disparity. This may be particularly important given the concentration of mortality

improvement potentials at the highest ages. Improving mortality at those ages would likely

mean that people will be able to live beyond the current maximum ages. Hence, it is crucial

that forecasting approaches are able to capture multiple trends in the (right) tail of the lifespan

distribution (stagnation or expansion). The approaches should therefore be able to forecast

further reductions in mortality not only up to the current maximum ages, but to higher ages

and beyond. Reaching this goal will require a high degree of modeling flexibility, which has

been missing in existing approaches.

To summarize, our analysis illustrates that the joint evaluation of the average lifespan, e0;

and the life years lost, e†0; provide new insights that we believe are needed for a comprehensive

evaluation of the predictive performance of mortality forecasts. We also suggest that these new

insights are used when improving or developing new methods for forecasting mortality. Until

now, these approaches were exclusively designed to capture the almost linear increase in life
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expectancy at birth. Hence, it is not surprising that forecasts of the average lifespan turn out

to be more accurate and yield smaller forecast errors. The incorporation of lifespan disparity

as a quality criterion or even central outcome may substantially improve the methodology.
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6.1. Assessing the consequences and the

implications of the continuous mortality

improvements

The primary aim of both the first cluster, measuring survival progress, and the second cluster,

investigating mortality dynamics at the boundaries of age-specific mortality, was the assess-

ment of mortality change. The initial motivation for undertaking such an assessment was

the persistent continuity of mortality improvements (White, 2002; Oeppen and Vaupel, 2002;

Vallin and Meslé, 2009). The two clusters addressed this issue from different angles. The

first cluster focused on how the advancement of the continuous change is measured, while

the second cluster looked at the implications of the continuous change for the boundaries of

age-specific mortality.

The formulation of the concept of “equivalent time” (ET ) and the classification of reference

types are the two key outcomes of the first cluster. ET combines two common perspectives

on assessing survival progress, gap and slope, into a single index. This index expresses dif-

ferentials in the advancement of survival improvement in calendar years, which is a common

unit for tracking the development of populations. In the study, we showed the benefits of ET

and its advantages when it comes to assessing past progress and to gauging future prospects.

The proposal of the classification of reference trends is preceded by a question: What is
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desirable progress? Is it sufficient to keep up with a reference trend, or should a population

overtake the levels of a reference trend? Obviously, answers to this question can be given on

a case-by-case basis only, and in light of the specific issues to be addressed. However, by

restricting ourselves to overall survival progress, we can use the change in life expectancy as a

basis of evaluation. Thus, the previous question could be reformulated as follows: Is keeping

up with the increase in record life expectancy sufficient progress for a population with much

lower levels of life expectancy? Or should this population be improving more quickly in or-

der to catch up with the record values? Moreover, is record life expectancy an appropriate

point of reference in this context? The proposed breakdown of reference types and compar-

ison settings into intra-, inter-, and supra-groups can help us critically review and select the

appropriate progress benchmark for addressing these questions.

The consequences and implications of the continuous mortality improvements for the lower

boundary of age-specific mortality (minimum mortality) received special attention in the sec-

ond cluster. Past developments of three key characteristics – the level, the gap, and the

sex-specific differences – have been analyzed in order to gain a better understanding of the

consequences and implications of more than a century and a half of continuous survival im-

provements. To my knowledge, this is the first investigation of this kind. The results represent

trends at the population level, and are intended to stimulate follow-up questions for further

investigations. The general findings can be summarized as follows: minimum mortality has

decreased tremendously, and is likely to decline further; the location of minimum mortality

has shifted to younger ages; and the sex-specific differences in minimum mortality changed

from temporary female excess mortality to persistent male excess mortality. Hence, for mini-

mum mortality, the main consequence of the continuous mortality improvement could be the

decline to recent levels of eight females deaths and 10 male deaths per 100,000 person-years

lived among the best practice countries.

What are the implications of the finding for minimum mortality? After one and a half cen-

turies of continuous survival improvements, there is still room for further gains, even in the
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historically lowest death rate across age. This finding alone might not be surprising. However,

evidence of the continuity of the decline in minimum mortality among the most recent cohorts

and of the likelihood of future improvements at the lower boundary are impressive signs of

the ongoing diffusion of advances in various areas of life, and of how these advances continue

to generate further survival improvements, especially in situations in which opportunities for

improvement are arguably very small. This implies not only that the prospects for reducing

mortality at the lower edge are good, it also shows that the opportunities for further mortality

improvements at all ages are enormous; an important implication in particular by recognizing

that it is sometimes assumed that mortality cannot be further reduced, despite the occurrence

of major breakthroughs (Olshansky et al., 1990).

Understanding the implications of the shift in the location of minimum mortality is not

straightforward, as the reasons for this change are unclear. Karapanou and Papadimitriou

(2010) have reported that improvements in socioeconomic conditions in the 20th century re-

sulted in an earlier onset of puberty, which can be seen in the decline in the average age at

first menarche. Given the close association between the location of minimum mortality and

the onset of sexual maturity, the shift may be attributed to similar advances, which are in turn

the drivers of the overall mortality improvements. Thus, on the one hand, we could emphasize

the positive effects of these advances; but one the other, we could focus on the negative con-

sequences of earlier menarche, such as higher rates of cancer mortality, especially of breast

cancer (Karapanou and Papadimitriou, 2010). The shift in the location to younger ages could

therefore also be regarded as a “failure of success” (Gruenberg, 1977). In conclusion, the loca-

tion of minimum mortality is a good example of the ambivalent implications of these general

advances.

The investigation of maximum mortality, or of the level of the late-life mortality plateau,

provided only limited insights. For females, a maximum level of eight deaths per 10 person-

years lived was found, whereas the results for males did not allow us to derive a concrete

empirical value. However, this project shed light on the problems that can arise when study-
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ing mortality in this age range, particularly the lack of appropriate data. Hence, although

mortality has been improving over a long period of time, it seems that we will have to wait

even longer to collect the data we need to gain insights into the upper boundary. Once these

data are available, examining the time trends in the level of the plateau and the ages at which

it is reached could provide important insights into the dynamics of mortality change and the

question of whether the continuous mortality improvements are large enough to alter essential

features of the human mortality trajectory, such as the late-life mortality plateau.

Combining the findings of the two clusters allows us to draw one general conclusion: the

pattern of advancement is often more informative than the actual level of advancement for

understanding the consequences and implications of the continuous mortality improvements.

ET , the different reference types, and the findings for the boundaries of age-specific mortality

all indicate that studying delays in, speeds of, and patterns of improvement are more informa-

tive when accompanied by an exploration of the consequences and implications of continuous

survival improvement.

6.2. Exploring the consequences and implications of

the changing age-pattern of mortality

improvement

The third cluster, mortality dynamics in an era of old-age mortality improvements, aimed to

explore the consequence and implications of the changing age pattern of mortality improve-

ment. The different articles focused on three specific aspects of this field: the rectangular-

ization of the survival curve, the effects of longevity increases on lifetime risk differentials,

and the contributions of different mortality dynamics to the increases in life expectancy. The

objectives of all three studies centered on the sustained decline in old-age mortality, which

generated various kinds of methodological challenges.
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One type of method has been instrumental to providing answers to the different questions:

the decomposition approach. Generally, decomposition methods are used to quantify the con-

tributions of various components to the differences between two or more populations in a

specific measure. The lifetime risk of getting a disease and life expectancy are the two central

measures used in the presented approaches. To my knowledge, the method for the decom-

position of lifetime risk is the first approach of its kind, whereas there are several existing

approaches for the decomposition of life expectancy differences (see, for instance, Andreev

et al., 2002; Pollard, 1982; Vaupel, 1986; Keyfitz, 1977). However, the decomposition method

presented here employs a new perspective. It decomposes life expectancy differentials into

the contributions of different mortality dynamics; more specifically, into the contributions of

a general shift of deaths to higher ages (the shifting of mortality) and of a further compression

of deaths toward the end of the lifespan (the compression of mortality).

Although the use of the maximum inner rectangle approach (MIRA) as a decomposition

method has not been presented, the method can easily be applied in this way. However, the

initial objective of the MIRA was to refine the framework of the rectangularization of the

survival curve, which was established in a seminal article by Fries (1980). In addition to

offering some modifications of the original framework, we proposed a novel type of rectangu-

larization, inner rectangularization, which complements the usual perspective on this process.

Commonly, rectangularization has been understood as the process of a population approach-

ing its maximum living potential, which is given by the current maximum lifespan (see, for

instance, Wilmoth and Horiuchi, 1999; Cheung et al., 2005). However, using the newly devel-

oped maximum shared lifespan as a reference point, inner rectangularization can be defined

as the process of a population approaching its current maximum lifespan equality, which is

given by the current level of life expectancy. Moreover, the inner rectangle ratio, the measure

of inner rectangularization, extends the landscape of alternative lifespan variability measures

by measuring the dispersion among the number of person-years lived, rather than effect or the

size of person-years lost due to death.
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In the MIRA as well as in the life expectancy decomposition, mortality dynamics are cap-

tured through the pattern of lifespan variability. In addition to representing methodological

advances, both approaches provided new insights into the consequences of the old-age mor-

tality decline for mortality dynamics. The application of the life expectancy decomposition to

Swedish females showed that the shifting of mortality has gradually replaced the compression

of mortality as the leading force of life expectancy increase; a process that has been underway

at least since the 1940s. The application of the MIRA to the same population also confirmed

the importance of this dynamic for the overall mortality change. However, the results of the

MIRA also suggest that in recent years, the compression of mortality has been strengthening

among Swedish females. Moreover, the results across all of the countries analyzed with the

MIRA reveal the existence of various patterns of mortality dynamics in recent decades. For in-

stance, an increase in lifespan variability was found among Danish females, which is believed

to be a consequence of tobacco smoking (Lindahl-Jacobsen et al., 2016); while a continuous

process of compression was observed among Italian females, even after the onset of old-age

mortality declines. These findings highlight the country-dependent advancement of old-age

mortality declines. The results also suggest that although life expectancy increases have been

accompanied by a compression pattern over the long term (Colchero et al., 2016), new dynam-

ics have been emerging since the onset of the sustained decline in old-age mortality. It thus

appears that the age pattern of mortality improvement has been changing, as the evidence that

new lifespan variability patterns are accompanying life expectancy increases indicates. The

question of how future mortality change will alter the relationship between life expectancy and

lifespan variability therefore remains open. The MIRA can be a valuable tool for answering

this question.

With regards to the potential for lifespan extension at the highest ages, another closely re-

lated question arises: What are the future prospects for mortality dynamics? It is clear that

old-age mortality improvements will continue to be needed, and that life expectancy will rise

even further in the future. But how will these dynamics be shaped? The answer to this ques-
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tion depends entirely on the plasticity of mortality at the highest ages. Several scenarios are

conceivable, such as a further shifting of mortality in the coming decades. Alternatively, if

mortality at the highest ages is difficult to change, a new era of compression with a further

rectangularization of the survival curve may emerge. We can only speculate about the like-

lihood of either of these scenarios. An important determinant of future trends will be the

development of health and its relationship to mortality. Looking at the current evidence, we

see that even though we have already experienced an era with major innovations (Fogel and

Costa, 1997), these general advances have resulted only in a delay of the aging process, which

Vaupel (2010) called the “postponement of senescence.” Thus, while we have succeeded in

generating extra life years, it so far appears that we have not altered the process of deteriora-

tion with age. This development aligns almost perfectly with the shifting of mortality, which,

given the results of the presented studies, seems to have been the predominant dynamic in

many low-mortality countries since the 1950s. Moreover, the decomposition of lifetime risk

as a measure while combining information on mortality and health has shown that increasing

longevity and improving incidence levels can almost offset each other. Nevertheless, analy-

ses of other populations are needed before we can reach any clear conclusions on this topic.

Although only the lifetime risk decomposition refers to the direct intersection of health and

mortality development, all of the presented methods allow us to investigate these processes and

their consequences. The MIRA and the lifetime risk decomposition are also flexible enough

to capture and analyze patterns beyond the shifting or the compression of mortality.

While the presented methods do not directly indicate how further advances in different

fields, such as medicine or health care, might translate into mortality change, the outcomes

arguably provide a sufficient basis to investigate their relationship. In particular, the MIRA

represents a valuable approach in this context because future mortality dynamics will be de-

termined by the distribution of these advances in the population. Accordingly, from a philo-

sophical and from a future-oriented perspective, the MIRA can be interpreted as a measure of

distributive justice in a population with respect to mortality. While individual lifestyle choices

affect mortality, the provision, the quality, and the advancement of health care in a popula-
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tion have important effects on lifespan variability. In that context, Marchand et al. (1998)

discussed four alternative views that are applicable to equality in person-years lived: first, tar-

geting a maximization of the total sum of health in a population would generate no further

equality increases; second, reducing class inequalities in health would result in more equality;

third, improving health for the lowest socioeconomic group would also increase equality; and,

fourth, priority should be given to the sickest individuals, irrespective of their social class,

which would potentially also increase equality. These third and fourth views are related to

Rawls’ “difference principle,” as outlined in his work of political philosophy, “A Theory of

Justice” (Rawls, 1971). Clearly, the evaluation, assessment, and determination of such strate-

gies are difficult and complex tasks, but the consequences of population aging and increasing

longevity might lead us to focus more on addressing these issues in the future. The presented

methods can provide valuable insights from different angles that can prove helpful in this con-

text. In addition to using the MIRA as a measure for lifespan equality, we could, for example,

apply the lifetime risk decomposition in order to highlight how advancement translates into

the improvement of different aspects, such as case fatality or disease-related mortality.

So far, the main focus of mortality research has been on the consequences of the old-age

mortality decline. Yet the changes observed in the age pattern of mortality improvement show

the decreasing contribution of mortality at younger ages to overall survival improvement. Us-

ing the MIRA to quantify young/premature and old-age mortality has provided intriguing

insights into the importance of premature mortality. Since 1850, survival improvements have

largely resulted in a continuously declining share of premature deaths. Obviously, continued

improvements in old-age mortality are conditional on this development. However, as the age

pattern of improvement changes, the share of the population who die prematurely tends to

level-off. This lead us to formulate the hypothesis that in low-mortality countries, the pro-

portion of premature deaths is going to reach a lower limit in the near future. The MIRA

suggests that this limit could be at around 10%-15% of all deaths. However, the results of the

second cluster challenge this hypothesis, because the past and the future declines in minimum

mortality could be interpreted as signs of further declines in the share of premature deaths.
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Although this is only one specific death rate, it is a death rate that is particularly interesting

for investigating the frontiers of mortality decline, since it is the lowest rate across all ages.

Hence, the falsification of this hypothesis remains a task for future research.

The shift away from saving premature deaths toward extending the premature age range is

also associated with the changing meaning of chronological age: i.e., of who is considered

young and who is considered old. The increase in life expectancy and the related evolution

of new or extended lifespan stages, such as time spent in retirement, have fueled this debate,

and have led to the proposal of some alternatives to the chronological age, such as subjective

age (Kotter-Grühn et al., 2016). Nevertheless, this issue should receive further attention espe-

cially among demographers, since age is central variable in our discipline. Moreover, for the

presented approaches, age remains an instrumental variable. However, the MIRA and the life

expectancy decomposition have the potential to make contributions to this debate.

6.3. The prospects for prolonging life at the highest

ages

Although our results do not provide any specific quantitative outcomes of future mortality

development, the initial objective of the fourth cluster, understand how mortality dynamics af-

fect future mortality trends, is an investigation of the prospects of prolonging life at the highest

ages. The outcomes of the cluster are an evaluation of the capacity of our tools to provide us

with the best possible information on future mortality prospects, or, in other words, with the

best possible approaches for projecting mortality trends. Accordingly, the cluster illustrates

the benefits of using lifespan variability as an indicator for mortality dynamics to evaluate the

performance of mortality forecasting approaches.

The results can briefly be summarized as follows: as long as life expectancy increases were

accompanied by a reduction in lifespan variability, the compared approaches performed well;
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but when life expectancy increases were accompanied by other lifespan variability patterns,

the compared approaches started to show deficiencies. It may be assumed that many mortality

forecasting approaches anticipate the compression of mortality as the predominant force for

further life expectancy change. But this assumption appears to be incorrect, because most

approaches capture past trends that largely support the predominance of compression, and

extrapolate them into the future. Accordingly, if we anticipate that this relationship will no

longer hold in the coming decades, the analysis suggests some ideas that could be used to

improve mortality forecasting approaches. Incorporating a flexible modeling of the dynamic

age shifts of mortality improvements is of particular importance in this context. Lifespan vari-

ability can provide two focal contributions for this task. First, as was already mentioned, it

can serve as a criterion for the evaluation of approaches. Second, and perhaps more important,

lifespan variability could become a quantitative input for mortality forecasting approaches.

For instance, parameters of lifespan variability and their likelihood could serve as priors for

Bayesian mortality forecasting approaches. This is clearly a vague proposal. In fact, it should

be understood as an illustration of the claim that while lifespan variability and, more gener-

ally, the range of mortality dynamics have so far been neglected component by forecasters,

they could be used to increase the precision of mortality forecasts.

The findings of the fourth cluster bring us back to the question we raised previously: What

are the future prospects for mortality dynamics? In the previous chapter, different aspects of

this question were outlined. But for mortality forecasting, one more claim could be made.

Expert opinions have been used as inputs for mortality forecasts (Booth and Tickle, 2008).

Experts from different fields have, for example, been asked for their opinions on the future

of a specific cause of death or on future levels of life expectancy, which have then been used

as target values (Booth and Tickle, 2008). The variety of mortality dynamics since the onset

of the sustained decline in old-age mortality, together with the prospects for lifespan exten-

sion (Sierra et al., 2009) are illustrative of the opportunities for altering human mortality that

emanate from advancements in various fields. Thus, in order to broaden our perspectives,

demographers should ask scholars in other fields about their expectations for future mortality
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trends, and about how these expectations affect the approaches we use and the questions we

ask in researching mortality.

6.4. Measuring trends and dynamics in an era of

continuous mortality decline

The main focus of this thesis is on the consequences and implications of the continuous mor-

tality decline for mortality dynamics. Three key findings – the remarkable continuity of mor-

tality improvement, the changing age pattern of mortality improvement, and the location of

longevity extension potentials at the highest ages – are the basis for the individual articles of

this thesis. The articles explore in particular the various methodological challenges that are

caused by the interplay of the above mentioned developments. Five out of the seven articles

included in the thesis propose new or refined approaches. Three of these approaches use lifes-

pan disparity as an indicator for mortality dynamics, while the two other approaches address

the interplay of disease dynamics and longevity extension, and the measurement of survival

progress in an era of continuous mortality declines. Although the two remaining articles pro-

pose no new methods, they apply existing approaches in a novel way to investigate the effects

of the continuous mortality decline on the boundaries of age-specific mortality.

The application of these novel approaches, as well as the insights offered on mortality

change at the boundaries, shed light on some of the challenges both demographers and the

general public face currently, and will face in the future. In the past, survival progress has

been remarkably stable and regular, especially among the leading western countries. Since the

onset of the change in the age pattern, mortality improvements have continued to proceed rel-

atively continuously, but appear to have slowed in a number of countries. Moreover, the level

as well as the pace of advancement vary greatly across populations. Hence, the challenges

we face are two-fold. First, what factors will drive future longevity increases in the leading

countries, and how will these advancements shape mortality change? Second, what level of
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progress is sufficient for the lagging populations to catch up with the leading populations?

This thesis does not provide concrete answers to these questions, but it offers methodological

opportunities to tackle these issues. Moreover, the development of the lower boundary of age-

specific mortality has not only illustrated the opportunities for further advancements and for

additional reductions in mortality; it points to the value of analyzing the potential failures of

this success.

With the changing age pattern of mortality improvement, different kinds of mortality dy-

namics have emerged. This development and the prospects for further improvements at the

highest ages suggest that the current variety of mortality dynamics will persist into the future,

and may even expand as new patterns emerge. In particular, the evaluation of mortality fore-

casting approaches and the proposed lifespan variability measurements highlight the method-

ological challenges associated with this development. A central question in this context is

how life expectancy and lifespan variability will be related in the future. Again, the proposed

approaches and measure do not provide an instant answer to this question, but the evaluation

of mortality forecasting approaches has demonstrated the need to seek out a range of answers

to the question of how such approaches should be developed and refined. The proposed lifes-

pan variability tools, as well as the lifetime risk decomposition method could be used to help

answer this question. The MIRA refers to a further related question in this context: Namely,

how are future mortality improvements altering lifespan equality? The availability as well as

the distribution of drivers for further survival improvements, such as innovations in medicine

or health care across and within populations, will be important determinants in either reducing

or increasing lifespan equality. Given that resources are limited, this issue might be of partic-

ular interest for future research.
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Abstract

Background: Mortality decline is a central aspect of the advancement in
development. Differences in development are usually assessed based on the gap
between two countries at a single point in time or by comparing rates of
improvement over time. Here, we propose a third approach that combines these
two indicators in a single quantity, which we will call “equivalent time” (ET ).

Methods: ET translates the gap between a country’s population and a reference
population into a time lag. It expresses how many years we need to go back in
time to find the value for the reference group that is equivalent to the value for
the country’s population. The translation from the gap to ET can be performed
with any indicator, given that the values of the reference are changing
monotonically over time. We illustrate the application of ET to US male life
expectancy (LE) using three reference categories that cover different types of
development benchmarks: cancer-free LE of US males (intra-group), LE of
Japanese males (inter-group), and average LE of males in the G7 countries
(supra-group).

Results: Between 1960 and 2015, LE increased almost continuously among the
US male population and the three reference groups. The LE gap between US
males and the inter-group reference category remained fairly stable, at a level of
about three years; while the LE gap between US males and the intra-group
reference category declined from one year higher in 1960 to four years lower in
2015. The LE gap between US males and the supra-group reference category
increased from a small difference in 1960 to about three years in 2015. Thus, ET
suggests that over the study period, US males continuously lost ground relative
to these reference group: by 2015, the life expectancy of US males was lagging
almost 20 calendar years behind that of the intra- and inter-group reference
populations, and almost 15 calendar years behind that of the supra-group
reference population.

Conclusion: ET represents an intuitive indicator for assessing differentials in
survival advances that can be also applied in a broader context of development.
Our illustrative examples demonstrate that ET might be a more sensitive
measure than commonly applied approaches. ET thus has the potential to
become a standard procedure for assessing survival progress and general
development, complementing classical approaches.

Keywords: advances; gap; slope; references; mortality; progress; equivalent time

Background
Humankind has made substantial progress along important dimensions of devel-

opment, including longevity, since the early 19th century, and especially since the

end of World War II [1–3]. Spearheaded by a group of Western countries, progress
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in living conditions diffused through most countries, albeit at varying paces [4].

Monitoring the state of development is crucial for evaluating the success or failure

of past national policies, but also for identifying opportunities for further advance-

ment. This type of monitoring is particularly important in cases in which a country

is failing to keep up with the general trend, or has periods in which its development

is stagnating, or even reversing.

One of the most important dimensions of development is the decline in mortality

rates, which has been occurring almost everywhere in the world [5]. Thus, mea-

suring survival improvements is among the main approaches used for tracking the

general development of populations. For instance, the level of life expectancy is one

of the three dimensions measured in the Human Development Index [6]. Further-

more, global goals and targets based on progress in mortality and health, such as

the Millennium Development Goals and the more recently established Sustainable

Development Goals [7], are instrumental to the development agenda of the United

Nations. While mortality decline is observed in most parts of the world, the pace

of decline varies greatly across regions and across social strata [8–10]. In addition

to having societal relevance, monitoring and analyzing trends in survival progress

are crucial to theory-building and modelling [11].

One of the most popular approaches used to assess and compare the decline in

mortality in different countries is to compute the difference in life expectancy at

a certain point in time, which we refer to here as the gap perspective. Alterna-

tively, researchers can compare country-specific annual changes in life expectancy,

which represent the pace of survival improvement. The goal of our paper is to

(re-)introduce a concept that combines the gaps in and the pace of life expectancy

changes in a more intuitive indicator, which we call “equivalent time” (ET ).

Methods
The concept of equivalent time

In our analysis, survival progress is linked operationally to the level of life ex-

pectancy at birth (LE) over time. Thus, countries with higher levels of LE experi-

ence greater advances in survival progress than countries with lower levels of LE.

Likewise, increases and decreases in LE over time reflect advances and declines in

survival progress, respectively. While the former is expressed by the difference in

LE between two countries at the same point in time (gap), the latter is measured

by computing the absolute change over a given period of time within a country or

a group of countries (slope). Hence, the gap might be understood as a static aspect

of development, and the slope as a dynamic aspect of development.

We propose a third, previously neglected dimension for tracking development that

expresses how far back in time we need to go to find the equivalent level of LE in a

country relative to that of a reference group. This indicator is defined as the length

of time the advancement of a country’s LE lags behind that of a reference popu-

lation (see Fig. 1). We label this quantity “equivalent time” (ET ). An example: If
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we observe that the life expectancy of the comparison population is five years lower

than that of the reference population (∆ = −5), and that LE in the reference pop-

ulation is increasing at an annual rate of 0.1 years (β = 0.1), then ET = ∆/β, and

we observe an equivalent time of -50 years. This value expresses that the progress

of the comparison population lags 50 years behind that of the reference population.

Or, in other words, the comparison population would need 50 calendar years at

the given pace to reach the life expectancy level of the reference population at the

point in time of the comparison. Hence, in cases in which the reference trend is

linearly increasing, ET could be simply computed by dividing the gap by the slope.

Thus, ET combines the static and the dynamic aspects of development in a single

quantity, expressed as the delay in development.

To identify a unique ET , the reference trend must fulfill certain requirements.

To exclude the possibility that there is more than one equivalent value, the ref-

erence time series must change monotonically over time. This could, however, be

viewed as a minor issue, because we see fairly steady improvements in most mea-

sures of survival progress, such as life expectancy and mortality measures like,

age-standardized death rates. Moreover, to provide a straightforward benchmark

for progress, the cases chosen as reference usually have a steady pace of develop-

ment. For the slope, it is not necessary to assume a constant change over time. It

is also possible to directly compare empirical values without calculating a general

slope.

Illustrative examples
Materials

To demonstrate the added value of ET , we compare the trends in life expectancy

among US males to those of three reference groups based on the gap, the slope,

and the ET between 1960 and 2015 (see Fig. 2). Our goal in selecting the refer-

ence groups was to ensure that we were covering the spectrum of reference types

typically used in comparative studies. We label the three main types intra-group,

inter-group, and supra-group. In the intra-group comparison, a counterfactual of

the trends in the country of interest is used as the reference: namely, cancer-free life

expectancy of US males. In the inter-group comparison, a second external group

is used as the reference: namely, Japan the world leader in LE. Finally, in the

supra-group comparison, a more general trend is used as the reference: namely, the

average LE of the G7 countries. Obviously, which references are chosen depends

on the research objective. Even if a specific reference fits the research purpose, it

is important to take into account the specific features of the respective reference

type (see Table 1). The results stemming from an intra-group comparison are not

sufficient to determine whether the measured lags are a peculiarity of the respective

population, or are occurring across several populations. Moreover, the outcomes

of an inter-group comparison do not tell us whether the reference population is a

prime example of the specific gains being evaluated, or is an outlier. Finally, the

results of the supra-comparison do not indicate whether the more general reference

trend is reflective of a common trend across populations.
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Data

The estimates of life expectancy at birth for US males — the comparison group

— are based on death counts and exposures from the Human Mortality Database

[12]. In the intra-group comparison, cancer-eliminated life expectancy is used as the

reference (see, for instance, Preston et al [13] for more details on cause-elimination

life tables). Cause-specific death counts were obtained from the National Center for

Health Statistics [14]. The total time period analyzed encompasses the years 1960

to 2015. Cancer deaths were reconstructed using the International Classification of

Diseases (ICD) codes 140–239 (ICD 7–9) and C00–D48 (ICD 10). The calculation of

Japanese life expectancy in the inter-group comparison and of the life expectancies

for the G7 countries in the supra-group comparison were also based on death count

and exposure data from the Human Mortality Database [12]. To ensure that the

supra-group also covers the years 1960-2015 for countries that were missed in the

most recent life expectancy estimates, values were obtained from the World Bank

[15]. The equivalent time in all three examples was calculated using linear inter-

polation between the time series of the comparison population and the reference

population. The whole analysis was conducted in the language R [16].

Results

Figure 2 shows the results for all three comparisons. The rows display the results

for the intra-, inter-, and supra-group comparisons; while the columns show the life

expectancy, the gaps, the slopes and the equivalent times. The slopes are calculated

as annual increases over five-year periods, assuming a linear change between the

respective time points.

The life expectancy level of US males increased continuously between 1960 and

2015 (panel a). Although an increase can also be observed for all three reference

groups, the level of life expectancy differs across the groups, and compared to

the US pattern (panels a–c). The LE gap between US males and the inter-group

reference-category remained fairly stable at a level of about three years, while the

LE gap between US males and the intra-group reference-category declined from one

year higher in 1960 to four years lower in 2015 (panels d–e). The LE gap between

US males and the supra-group reference-category increased from very small in 1960

to about three years in 2015 (panel f).

An assessment based on the pace of improvement alone provides limited insights.

Both cancer-free and average G7 life expectancy had almost the same slopes as that

of US males life expectancy across the different year groups; whereas Japanese life

expectancy increased more rapidly until 1985-89, but changed at almost the same

pace thereafter (panels g–i). However, in general, the slopes varied greatly over

time, which makes it difficult to derive solid conclusions about the advancement of

survival progress.

Compared to the gap and the slope, the ET shows larger differentials in the de-

velopment levels of the reference groups and larger differences between the groups
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in the advancement of survival progress over time. In the intra-group comparison,

US male life expectancy in 1975 is the first value, which can be located on the

reference trend line. In this year, the survival progress of US males lagged around

13 calendar years behind the level that hypothetically could have been achieved if

cancer had been eradicated. This lag grew consistently over time to reach a magni-

tude of almost 19 calendar years in 2015 (panel j). In the inter-group comparison,

we even see that the survival progress of US males was two calendar years ahead of

that of Japanese males in 1960. But by 2015, this advantage had turned into a lag

of almost 21 calendar years (panel k). In the supra-group comparison, US male life

expectancy in 1970 is the first value, which can be located on the G7 average trend

line. In this year, the survival progress of US males lagged around 10 years behind

the average level of progress of the G7 countries. After a period of improvement,

the lag among US males increased consistently to reach a level of 12 calendar years

by 2015 (panel l).

In sum, the results indicate that the survival progress of US males has been in-

creasingly falling behind that of other groups, as reflected in the large increases in

ET among US males over the study period. This is a remarkable insight given that

US life expectancy increased virtually throughout the whole study time at a pace

that was almost comparable to that of the reference categories. At the same time,

the gap between US life expectancy and that of the reference groups remained fairly

stable, at least compared to that of the intra- and supra-group reference categories.

This means that ET is a more sensitive measure of advances in survival than the

comparison of gaps or slopes.

Discussion
In this paper, we have introduced a measure used to assess survival progress, which

we labeled “equivalent time” (ET ). The measure complements the current practice

of comparing development at a single point in time and of comparing changes in

development over time. It offers a simple, generic, and intuitive way to express in

calendar years the delay in the development of a population in comparison to that

of a reference population. We argue that ET has the potential to become a standard

approach in the toolbox that is used for the assessment of survival progress in both

large-scale cross-country comparisons and case studies, and for the evaluation of

single countries. We used period life expectancy as an example to illustrate ET .

Any other continuous variable that is monotonically increasing or decreasing over

time could be used as well.

The simplicity of ET is, of course, also a shortcoming. Since it is build on a single

variable, critics might see ET as an oversimplified measure that does not capture

the multiple dimensions of development. This criticism is certainly justified. Thus,

in cases in which reliable data on other dimensions are available, the use of more

complex measures might indeed be more appropriate. However, for many countries,

and particularly for longer historical periods, such data are often not available.
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The idea of using lags to assess survival progress was already suggested by Stol-

nitz more than 60 years ago [17]. He applied this approach in studying the delays

in mortality decline in non-western countries relative to those in western countries.

Surprisingly, we are not aware of any other study that has applied this approach.

More recently, Goldstein and Wachter used a comparable concept to study the re-

lationship between cohort and period life expectancy within countries [18]. They

defined the lag as “how far back in time from the current period we have to go

to find a cohort with equivalent life expectancy” [18, pp. 259]. The general idea

of time lags has also been used to evaluate the decline in age-specific mortality by

expressing the improvement in ages with equivalent mortality levels, which are usu-

ally called “equivalent ages” [19, 20]. While these earlier studies focused on detailed

aspects of mortality and survival, our definition of ET is more general and refers

to cross-country comparisons of overall survival progress.

ET adds a dynamic component to research on differentials in survival advances;

or, more generally, of advances in population development. The previous literature

on this topic is dominated by studies examining the gap between specific measures;

i.e., differences between countries at a certain point in time. For example, Drefahl

et al. [21] used the declining ranking of Sweden across countries with the highest

life expectancy as the initial impetus for investigating why Swedish life expectancy

is “losing ground”. By comparing the best- and the worst-performing US counties,

Wang et al. [22] investigated the question of why US life expectancy lags behind

that of other high-income countries, even though health care expenditures in the

US are the highest in the world. Jasilionis and Shkolnikov [23] used life expectancy

differentials between different educational groups to study the relationship between

education and the longevity increase. They suggested that the trajectory of the

highly educated group shows the way to higher levels of life expectancy for other

population groups. The Human Development Index includes a measure based on

the gap between an observed life expectancy and a hypothetical minimum life ex-

pectancy divided by the range between the hypothetical minimum life expectancy

and the highest observed life expectancy in a specific calendar year [6]. The Global

Burden of Disease research program [10] uses a similar approach to assess progress

on a large collection of health and mortality indicators in 188 countries. Similar

to the Human Development Index, the program’s progress benchmark is a scale

bounded by the best- and the worst-performing population for each indicator at a

certain point in time. Since all of these studies target a dynamic research question,

a delay-based measure such as ET could add to their analyses.

Using an illustrative example, we proposed a potential application of ET that

complements classical approaches. The application of ET to the case of US males

life expectancy between 1960 and 2015 revealed that LE in this group was increas-

ingly falling behind, even though it increased almost continuously over the whole

study period; and that the LE gap between US males and the reference groups was

more or less constant over most of the study period. For instance, the application of

ET showed that relative to their Japanese peers, US males experienced a delay in

LE development of two decades. This is an intriguing result, especially given that
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the US has the highest health care expenditures in the world [22]. In this context,

earlier studies have demonstrated that the quality of health care — in the form of

both treatment and the use of more aggressive measures to discourage poor health

behaviors like smoking — plays a crucial role in further lowering death rates [24–26].

In future research, the usefulness of ET as a measure of differentials in survival

progress and in advances in general development should be examined. Among the

promising research settings for measuring these differentials are the countries of

western and eastern Europe before and after the fall of the Iron Curtain in 1990, as

well as eastern and western Germany before and after reunification [27, 28]. Similar

exercises might be carried out by examining the ET of countries during the imple-

mentation of large policy reforms or economic crises. Moreover, ET might be useful

for studying the burden of certain diseases in a population. Since ET allows us to

quantify the delay in development due to a specific disease, it may, for example, be

used to investigate the consequences of eradicating cancer [29].

Conclusion
In addition to introducing another tool for measuring progress and development, we

were able to show in this paper that the assessment of the performance of a specific

country is not straightforward. Rather, we illustrated that such assessments are

sensitive to the selected indicator (e.g., life expectancy), perspective (gap, slope,

lag), and reference (e.g., G7 countries). It is therefore important to use care in

interpreting results that are based on a single measure, perspective, or reference.

If possible, multiple factors should be taken into account for each of these dimen-

sions. The concept of equivalent time represents a new (or rejuvenated) approach

for studying advances in development. Using a single number, the measure reflects

both the differences in development at a certain point in time and the pace of

change over time. ET therefore offers a simple and intuitive way of expressing the

delay in the development of a given population relative to the development of a

reference population.
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Figure 1 Schematic representation of measuring advancements in the decline of mortality.

Tables

Table 1 Classification of different kinds of references for the evaluation of survival progress. The
listed examples are using the reference perspective in at least some part their empirical analysis.

Type Example Pitfall Exemplary Study

Intra-group e0,Country A – e−i
0,Country A w/o health burden i

peculiarity or commonality? Aburto et al. [30]

Inter-group e0,Country A – e0,Country B prime example or exception? Meslé and Vallin [31]
Supra-group e0,Country A – e0,Cross-country average common trend? Bongaarts [32]

e0 –Life Expectancy at Birth
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Figure 2 Life expectancy, gap, slope (annual change over five-year periods), and equivalent
time of US life expectancy compared to that of three references, males, 1960-2015. All
estimates are based on period life tables. The slopes indicate the annual change between the two
years, comprising five-year intervals. The last group, 2010-15, comprises six years. The slope
calculation is based on the assumption of a linear change between the two time points. Equivalent
time is calculated using linear interpolation.
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How has the lower boundary of human mortality

evolved and has it already stopped decreasing?

Marcus Ebeling1,2

Abstract

In contrast to the upper boundary of mortality, the lower boundary has so far

largely been neglected. Based on the three key features location (1), sex-specific

difference (2) and level (3), this paper analyzes past and present trends in the

lower boundary of human mortality. The analysis is based on cohort mortality

data for 38 countries, covering all the cohorts born between 1900 and 1993. Min-

imum mortality is analyzed using observed as well as smoothed estimates. The

results show that the ages at which minimum mortality is reached have shifted to

lower ages. Although the differences have become almost negligible over time,

males are showing higher levels of minimum mortality than females. The level of

minimum mortality was halved more than five times over the analyzed time hori-

zon. The results also suggest that even after more than one and a half centuries of

mortality improvements, minimum mortality has not yet reached a lowest limit,

and is likely to decrease further in the near future. Trends in the three key features

also raise questions about the importance of evolutionary, social, and biological

determinants for the recent and future development of minimum mortality.
1 University of Rostock, Rostock, Germany
2 Max Planck Institute for Demographic Research, Rostock, Germany
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Introduction

Whereas the upper boundary of mortality (maximum mortality) is a topic that has pre-

viously attracted the attention of scholars (e.g., Gampe, 2010; Rau et al., 2017), the topic

of the lower boundary (minimum mortality) has so far largely been neglected. In this

paper, we aim to analyze past and current trends in the ages and levels of minimum

mortality, as well as the sex-specific differences in minimum mortality.

The steady decline in mortality is one of the greatest success stories in human his-

tory (Oeppen and Vaupel, 2002; Riley, 2001). Mortality rates across almost all ages

have been consistently declining to lower and lower levels for more than one and a

half centuries.While the successive improvements have been unprecedented, the mor-

tality trajectory has retained its key features (see Figure 1): For example, levels of in-

fant mortality have been consistently similar to mortality levels between ages 60 to 80.

Moreover, adult mortality has shown a log linear increase over age, and mortality lev-

els between infancy and early adulthood have followed a U-shaped pattern.

As mortality declined in developed countries, the main improvements in life ex-

pectancy shifted from younger to higher ages (Christensen et al., 2009). Today, the con-

tributions of the youngest ages to the increase of the average age at death are almost

negligible. Nevertheless, in almost all countries of the world, mortality at younger

ages has been decreasing continuously (Armour-Marshall et al., 2012; Verguet et al.,

2014). Consequently, the U-shaped mortality trajectory between infancy and juvenile

ages has become more and more pronounced over time (see Figure 1). Minimum mor-

tality represents the inflection point of this pattern; i.e. it marks the lowest mortality

level across ages, and the threshold between mortality decrease and increase over age.

[Figure 1 about here]

Together with the maximum level, minimum mortality embraces the range of age-

2



specific mortality. The maximum mortality level has been estimated at a level of

around 7,000 deaths per 10,000 person-years lived, indicating the magnitude of the

late-life mortality plateau (Gampe, 2010). Minimum mortality cannot be assessed to

a specific level. Minimum mortality declined from around 30 per 10,000 to a level of

less than one per 10,000 over the time horizon of 150 years (see Figure 1). The plas-

ticity of the lower boundary compared to the stability of the upper boundary points

to the most important difference between the two. Explanations for the stable upper

boundary are diverse, and range from a more homogeneous population composition

at those ages to physiological and genetic aging processes (Wachter, 1999; Pletcher and

Curtsinger, 1998; Missov and Vaupel, 2015; Vaupel et al., 1998). Minimum mortality, by

contrast, appears to (still) be alterable. Most importantly, improved living standards

(e.g., better sanitation and nutrition) and medical breakthroughs, such as antibiotics

and vaccinations, are the main reasons for the survival gains at childhood and juvenile

ages (Cutler et al., 2006; Blum, 2009; Gore et al., 2011). The major causes of death at

those ages have shifted away from infectious diseases and toward behavioral causes

(Blum, 2009). Today, injuries and non-communicable diseases are the leading causes

of death for people aged 5 to 14 in low-mortality countries (Patton et al., 2009).

After the degree of alterability, the location is the second major difference between

minimum and maximum mortality. Maximum mortality is located at the end of the

lifespan, whereas minimum mortality is reached within a tiny age range at the end of

the first decade of life. It marks a specific point over the life course at which physical

and social development levels are most favorable for withstanding the risk of death.

The explanations of why mortality levels are lowest in this exact age range are mainly

drawn from evolutionary mechanisms, such as high selection pressure prior to the be-

ginning of the reproductive period; i.e. the proximity of these ages to the onset of

sexual maturity (Burger et al., 2012; Chu et al., 2008; Levitis, 2011). However, for both

males and females, scholars have observed over the past century temporal changes in

related processes, such as faster body growth or the earlier onset of puberty (Frisch,
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1978; Tanner, 1973; Goldstein, 2011; Schönbeck et al., 2012). The location of minimum

mortality might be similarly affected by these shifts.

Male-female differences are the third key feature that could reveal further dispar-

ities between maximum and minimum mortality. The question of whether there are

sex-specific differences in maximum mortality cannot be answered clearly. Gampe

(2010) found no relevant differences between the male and female levels, whereas Rau

et al. (2017) documented higher levels for males. Among children and adolescents,

mortality is higher for males, despite the fact that the absolute gap becomes smaller

with decreasing levels of mortality (Gissler et al., 2009). Surprisingly, external causes

of death as an indicator for sex-specific risk-adverse behavior explain only a minor part

of the male-female differences (Gissler et al., 2009). For example, Gissler et al. (2009)

measured a higher rate of non-external causes for boys than for girls. It therefore ap-

pears that additional factors must be responsible for these differences.

An assessment of minimum mortality could have also implications for the develop-

ment of methods and models in mortality research. For instance, mortality forecasting

approaches usually assume that death rates have no lower limit. Instead, the loga-

rithm of death rates is used, which allows rates to decline infinitely, while staying be-

tween zero and one (see, for instance, Hyndman and Ullah, 2007; Lee and Carter, 1992).

A proof seems impossible, as the question of whether mortality rates can decline in-

finitely has yet to be answered. Examining trends in minimum mortality can help us

better understand the dynamics at the lower edge of human mortality. Moreover, at-

tempts were made in previous parametric mortality models, such as the Siler-model

(Siler, 1983) or the Heligman-Pollard model (Heligman and Pollard, 1980), to include

mortality at all ages; and thus the decreasing and increasing parts of age-specific mor-

tality, which are connected by minimum mortality. Mortality modeling could benefit

from an investigation of minimum mortality in, for instance, the refinement of existing

models or the development of new models.
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Based on these considerations, three essential key questions should be asked when

seeking to identify the characteristics of the lower boundary of mortality. First, how

pronounced are the sex differences in the lower boundary of age-specific mortality?

Second, at which ages is minimum mortality located, and how have these ages changed

over time? Third, how has the level of minimum mortality evolved, and is minimum

mortality still decreasing? Given the unprecedented mortality improvements of the

past, it is not far-fetched to hypothesize that minimum mortality might be the first

mortality rate that finally hits a lower (natural) limit; and that therefore indicates the

absolute frontiers of human mortality improvement.

Data

We have chosen a cohort perspective to estimate minimum mortality. Only a cohort

follow-up ensures a life course perspective, and thus the clear identification of the

lowest mortality rate over age. Because the mortality rates of several cohorts are com-

bined in period perspective, period-based estimates could be distorted by peculiarities

across cohorts, such as fluctuating birth cohort sizes or unexpected external shocks

and changes, like political crises or medical breakthroughs. In addition, many forces

shaping minimum mortality such as selection work in cohort direction. Hence, a co-

hort perspective allows to evaluate and discuss the trends in the light of these potential

explanations and determinants. This is not readily possible in a period based compar-

ison. Furthermore, a cohort perspective still covers a sufficient observation time and

provides current values, since minimum mortality is located at an early stage of life.

We use cohort data from the Human Mortality Database (2017). Death counts are

given by Lexis–triangles. Accordingly, the full death counts for one age are the sum

of two consecutive triangles in cohort direction. The two triangles are spread over
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two periods, and thus the end-year/start-year population between them is used as

the exposures-to-risk (see the supplemental information for an illustration). For most

countries, the majority of raw data for death counts in the Human Mortality Database

are given by Lexis–triangles. Especially at the beginning of the 20th century, this num-

ber was growing. For other countries and periods with raw data of a different struc-

ture, a regression approach is applied to split the death counts within a Lexis–square

into counts by a Lexis–triangle (see Wilmoth et al. (2007) for further details). All es-

timates are based on data for ages one to 20. The earliest cohort considered includes

those born in 1900. For some countries, the data start later in time. The last cohort

available also varies by country. Countries with data covering fewer than 20 cohorts

are excluded from the analysis. (see the supplemental information for further details).

Methods

Although data from the Human Mortality Database cover national populations and

can thus be considered complete enumerations, the data are still subject to stochastic

variation (Udry et al., 1979; Kirkby and Currie, 2010; Klotz, 2016). For instance, Udry

et al. (1979) have demonstrated that the smaller a population is, the more unstable

the respective mortality rates are. In addition, it is usually assumed that the underly-

ing mortality process is smooth (see also Kirkby and Currie, 2010). Minimum mortal-

ity could be considered to be especially vulnerable to population size and stochastic

variation because of its low intensity. Hence, around the age of minimum mortality,

mortality could be quite noisy. Minimum mortality contains another, rather technical

and theoretical problem: namely, that mortality rates are bound at zero at the lower

end. In low-mortality countries with a small population size, mortality at some ages

below 20 is already at such low levels that the number of age intervals without any

deaths is consistently increasing over time (see the supplemental information for fur-

ther details). To deal with zero death rates and stochastic variation, we complement

the analysis of observed trends with estimates based on a two-dimensional smooth-
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ing approach. Although using other approaches is also conceivable, we have chosen a

smoothing approach for count data developed by Camarda (2012), and applied it over

age and cohort. The main reason for this choice is that the approach was developed to

capture the data-generating process behind mortality, which is assumed to be Poisson

(Brillinger, 1986). Therefore, the approach can also process intervals with zero death

counts. Furthermore, the approach provides a sufficient fit to both mortality and the

age of minimum mortality (see the supplemental information for further details on

method evaluation and selection). However, model testing and evaluation were nec-

essary to determine the best calibration for the problem at hand.

The approach by Camarda (2012) uses P-splines within a generalized linear array

model. This or a similar approach is widely used in practice to smooth observed mor-

tality rates (see, for instance, Colchero et al., 2016; Bohk-Ewald and Rau, 2017; Cur-

rie et al., 2004). The method relies on the assumption that death counts are Poisson-

distributed over age and time. The Poisson assumption implies that the mean and the

variance are equal. However, for most countries in the dataset, variance is considerably

higher (or lower) than the mean, and the Poisson assumption is therefore violated (see

the supplemental information for further details). This phenomenon is known as ex-

tra Poisson variation, or (under-) overdispersion (Breslow, 1984; Djeundje and Currie,

2011). Data may be overdispersed for a number of reasons. In many cases, popula-

tion heterogeneity and unexpected events, such as period shocks, are responsible for

the overdispersion. Since variance is higher than the mean, incorporating overdisper-

sion is especially important when seeking to generate robust standard errors. The ap-

proach by Camarda (2012) can integrate this specific feature by allowing the variance

to change proportional to the mean. Furthermore, because the Poisson assumption al-

lows for the incorporation of age intervals without any deaths, the approach is able to

utilize this information. The method is readily available via the package “MortalityS-

mooth” for the statistical programing language R (2016).
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The occurrence of period shocks, such as the Spanish flu or a war, can lead to prob-

lematic estimates when two-dimensional smoothing approaches are applied, because

in such situations the respective mortality rates are subject to more than just stochastic

variation (Kirkby and Currie, 2010; Palloni, 1990). When the two dimensions are co-

hort and age, the situation becomes especially difficult because the period shocks are

located on a backward 45-degree line in the age-cohort surface. Hence, in the model

calibration, we investigated the influence of such ruptures by fitting them with and

without information about ages, which are affected by period shocks. Due to the data

structure, we excluded the 1915–1919 and 1938–1947 periods, which cover the Spanish

flu and World Wars I and II. The P-spline approach we used interpolates the emerging

gaps, which are generated when the mortality of the respective ages is ignored.

Based on the evaluation and model testing, the following settings were used to

obtain smooth minimum mortality estimates (see the supplemental information for

further details). Irrespective of the impact in the specific country, we excluded war

years to ensure a consistent analysis framework. To avoid potential distortions, we

restricted the range of ages to be searched for the minimum mortality to the ages five

to 15; which is theoretically reasonable given the range of observed ages. We also de-

cided to control for overdispersion across all countries to provide consistency. Even

after these restrictions were applied, overdispersion or underdispersion was found in

almost all of the countries (see the supplemental information for further details).

Results

Level of minimum mortality: Figure 2 shows the level of minimum mortality for

males and females in France. The supplemental information contain the minimum

mortality trajectories for all other countries. The graph depicts the level of minimum

mortality per 100,000 person-years lived. Levels are shown on a log-scale, using the
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logarithm of two to emphasize level halving. Accordingly, the horizontal contour lines

mark the consecutive halving of the mortality level. The solid lines are minimum mor-

tality estimates based on the age-cohort smoothing and the colored area around this

line indicates the 95% confidence interval. The plus signs indicate observed minimum

mortality. The squares mark the observed minimum mortality for cohorts who spent

at least one year in the omitted periods (1915–1919, 1938–1947). Females are colored in

red and males in blue.

[Figure 2 about here]

In Figure 2, we can see that minimum mortality declined from almost 250 deaths

per 100,000 person-years lived to around 10 deaths per 100,000 person-years lived over

the cohorts born between 1900 and 1993. Over the course of this decline, the trajecto-

ries for French males and females show four periods with distinct developments (see

tags in Figure 2). Minimum mortality improves only slowly in the first period (I),

which encompasses the cohorts born between 1900 and 1920. The second period (II)

is characterized by rapid improvements. This period spans the cohorts born between

1920 and 1950. In the third period (III), minimum mortality improvements decelerated,

and were close to stagnation at certain points. This trend lasts up to the cohorts born

in the early 1960s. The fourth period (IV), which runs until the most recent cohorts,

again shows steady improvements. The trajectory of France is exemplary of the tra-

jectories observed in the majority of countries analyzed. Variation can only be found

in small temporal differences and in the manifestation of patterns in the four periods

described. Only the minimum mortality levels for a few countries, such as those of

Russia or Belarus, deviate from the general trend. In these countries, the improve-

ments in minimum mortality over the analyzed cohorts are marginal to non-existent.

Figure 3 shows the minimum mortality levels for three recent cohorts (1970, 1980,

and 1990) for all of the countries observed. The countries are ordered based on the
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minimum mortality level of the 1990 cohort, with the lowest to the highest values be-

ing displayed from left to right. To identify the significance of differences in the most

recent estimates (1990), minimum mortality for the 1990 cohort is depicted with the

corresponding 95% confidence interval, which is illustrated by the bar around the re-

spective median estimate. Note that the axes for males and females have different

ranges.

[Figure 3 about here]

Japan currently has the lowest minimum mortality levels at around eight deaths

for females and 10 deaths for males per 100,000 person–years lived. For the females

of the 1990 birth cohort, the three countries with the lowest minimum mortality lev-

els are Japan, Sweden, and Northern Ireland; while for the males of 1990 birth cohort,

the three countries with the lowest minimum mortality levels are Japan, Austria, and

Sweden. Note that the estimates for Luxembourg and Iceland rest on data with many

zero death rates, and should therefore be interpreted with care. The levels among the

best-practice countries are very close to each other, which is reflected in the black solid

trend and the overlapping confidence intervals. This overlapping, which applies to

almost half of the countries, suggests that the differences are marginal, and are not

statistically significant. Therefore, efforts to rank or select clear leaders would be inap-

propriate. However, among the countries with the highest minimum mortality levels,

clear distinctions can be made. Russian males and females have by far the highest

levels. Males and females in other Eastern European and Baltic countries, as well as

in Portugal, also have relatively high minimum mortality levels. Among the G7 or

the countries with the greatest economic power, no uniform pattern can be observed.

These countries are spread over the remaining rankings above the group of the worst

performing countries.

The finding that mortality has declined continuously across almost all countries,

and especially among the most recent cohorts, supports the assumption that minimum
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mortality for both males and females is likely to decrease in the near future. All of the

countries studied showed at least a marginal decline in mortality over time. Moreover,

in the majority of these countries, a stable pattern of improvement could be observed

in the cohorts born since the 1970s; and this trend may be expected to continue.

Age of minimum mortality: The results for the minimum mortality ages can be

seen in Figure 4. The observed mortality rates as well as the smoothed mortality rates

are given by age. Hence, the ages of minimum mortality are also measured in in-

tegers. Due to stochastic fluctuations and the impact of the world wars, minimum

mortality ages based on the smoothed mortality estimates are considered as the basis.

Furthermore, the trends across countries are very homogeneous, and show only small

variations. Therefore, we pooled the ages of minimum mortality across countries and

summarized the results for 10 consecutive cohort groups. Due to the varying length of

the data, the number of ages in each of these 10 groups differs.

[Figure 4 about here]

The age of minimum mortality decreased over the cohorts studied. This trend is

also visible if we look at the ages based on the observed mortality estimates. For the

cohorts up to the cohorts born in 1920–1929, the modal value jumps between ages 11

and 12. The distribution of males and females for the 1930–1939 and 1940–1949 cohorts

are right–skewed, which means that ages higher than the mode are observed more fre-

quently than younger ages. This is, however, likely an effect of World War II. Although

minimum mortality among the cohorts born in 1950–1959 or later has been relatively

consistently located at age 11, the distribution is shifting toward younger ages. The

shift is indicated quite well by the growing frequency of age 10 as the age of minimum

mortality over the respective groups. Accordingly, for the last two cohort groups, the

modal value is already located at age 10, and ages above and below the mode are al-

most evenly observed. However, the growing frequency of age nine over the last two
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cohort groups could suggest that the shift toward younger ages might be continuing.

In addition to the location of minimum mortality, we also analyzed the form of

the U-shape pattern, using the ratio of death rates at ages adjacent to the age of min-

imum mortality (see the supplemental information for more details). However, there

is no clear trend across cohorts, countries or sexes. For some countries, the U-shape

remained almost constant, whereas in other countries considerable difference are visi-

ble. Therefore, the location of minimum mortality is much more clear in some countries

than in others.

Sex–specific differences: The sex-specific differences in the ages of minimum mor-

tality are declining over the cohort groups. For the first three cohort groups, the fre-

quency of the modal value is more pronounced for females than for males. However,

especially for the post-war cohorts, the distributions for both males and females are

almost similar.

[Figure 5 about here]

Figure 5 shows the absolute male–female differences in the levels of minimum mor-

tality for all of the countries analyzed. The trajectories of Japan, Russia, France and

Norway are highlighted. A negative difference expresses higher mortality for females

and vice versa.

The development of sex–specific differences over time shows two distinct patterns:

higher female mortality with a consistently growing male disadvantage followed by a

trend toward convergence. In all of the countries observed from the 1900 birth cohort

onward, the female minimum mortality levels were higher in the first 10 to 20 cohorts;

albeit with vastly differing magnitudes. For instance, in the 1900 birth cohort, the

minimum mortality level of females was around 25 deaths per 100,000 person-years
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higher than that of males in France, whereas the female minimum mortality level was

only around seven deaths higher than that of males in Norway. However, the start-

ing level is also the point at which the female disadvantage was the greatest. The

gender gap decreased steadily, with males and females reaching similar levels of min-

imum mortality somewhere between the 1905 and the 1920 birth cohorts. Thereafter,

these varying developments continued and the sex-specific differences widened once

again. The gender gap in minimum mortality rates peaked among the 1940 birth co-

hort. For example, French males of the cohorts born between 1935 and 1940 had mini-

mum mortality levels that were around 15 deaths per 100,000 person-years higher than

the minimum mortality levels of their female peers. The growing male disadvantage

was mainly driven by the rapid improvements in minimum mortality among females

in the cohorts born between 1920 and 1940. After the male disadvantage reached its

maximum level, the levels converged steadily in almost all of the countries. Russia has,

however, been an exception to this overall pattern. Among the most recent Russian co-

horts analyzed, men have a minimum level that is still around 20 deaths per 100,000

person-years higher than that of females; whereas in, for example, Japan, France, and

Norway, the absolute male-female differences are almost negligible.

Discussion and Conclusion

Whereas the upper boundary of mortality is a topic that has previously attracted the

attention of scholars, the issues surrounding the development and characteristics of

the lower boundary have so far been neglected. The lower boundary, hereafter also

called minimum mortality, is the lowest mortality rate across ages. It is located at the

bottom of the U-shaped pattern, which describes the trajectory of childhood and early

adolescent mortality. This paper addresses the past and the present developments of

three key features of minimum mortality: level, location, and sex-specific differences.
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Our analysis rests on cohort mortality data. The lengths of the available time se-

ries vary by country, with a maximum range covering the cohorts born between 1900

and 1993. In addition to using observed trends, we complemented the analysis with

smoothed mortality estimates using a two-dimensional P-spline approach over age

and cohort (Camarda, 2012). This approach was selected after it was compared with a

locally weighted regression, tested, and assessed under different model specifications

(see the supplemental information for more details). To prevent the distortion of the

minimum mortality estimates by period shocks, we excluded the data for the ages that

were affected by World Wars I and II.

Although we removed the war years, a remaining effect of the two world wars can-

not be ruled out completely. The temporary acceleration in the decline of minimum

mortality for the 1920-1950 cohorts in the smoothed as well as in the observed esti-

mates is visible in almost all of the countries, but the pattern is especially pronounced

in countries such as Italy, France or England and Wales, which experienced war on

their territories. Those estimates probably do not reflect the real minimum mortality,

and are additionally influenced by post-war improvements. Thus, the estimates might

not reflect the minimum mortality levels that would have been observed in the absence

of war. A further problem for small populations with decreasing mortality is the emer-

gence of age intervals without any deaths. Although the P-spline approach is able to

handle this phenomenon, the estimates for Iceland and Luxembourg in particular are

not reliable, and should be interpreted with care. The number of such intervals within

one cohort increases constantly over time, and reaches problematic levels. For exam-

ple, the Icelandic cohorts born between 1975 and 1992 contain an average of 11 such

intervals for males and 12 such intervals for females between ages one and 20. Given

their sudden appearance, the zeroes in Iceland might even be subject to data problems.

The level of minimum mortality decreased continuously over the observed time pe-

riod. Furthermore, the pace of improvement among recent cohorts has been rela-
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tively steady. Therefore, recent trends do not suggest an imminent end to this de-

cline. Among the best-practice countries, the current levels are about eight deaths

per 100,000 person-years for females and about 10 deaths per 100,000 person-years for

males. However, the lower boundary of mortality has not been decreasing constantly.

Especially among the post-war cohorts, improvements slowed temporarily, with some

countries even experiencing stagnating or slightly increasing levels. The reasons of

why minimum mortality stagnated and declined again are open to speculation. The

introduction of mass immunization for several diseases in the 1960s could hint at po-

tential explanations (Riley, 2001). Other factors such as the changing fertility-related

behavior at that time (Billari and Kohler, 2004) or changes in the child care (Vandell

et al., 2010) might also serve as potential explanations. Given that the current levels

are unprecedented, it is even more intriguing that the lower boundary of mortality has

still not reached a lowest limit after almost 170 years of continuous mortality improve-

ments. The question of whether minimum mortality has a lower limit remains open

and continues to present challenges. If such a limit does exist, mortality might follow a

constant force of mortality, whereby simply good or bad luck are the essential mortal-

ity determinants. However, recent developments in childhood health challenge such

optimistic and futuristic thoughts. For instance, Brüne and Hochberg (2013) found that

chronic diseases in childhood such as obesity, diabetes or autoimmune diseases have

been increasing, especially since the late 1980s. They argued that changes in the envi-

ronment favor this development; speculating that evolutionary and medical factors —

such as thrifty genes, hygiene, fetal programming, or the extensive intake of cow’s milk

— might explain this trend. Although rising prevalence of chronic diseases in child-

hood might not have an immediate effect on death, they could potentially increase

the vulnerability, and thus, have an indirect effect on the level of minimum mortality.

However, based on our results, we cannot confirm any negative influence of such a de-

velopment on the improvement of minimum mortality up to the most recent cohorts.

The minimum mortality age shifted toward lower ages. For the oldest birth cohorts
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analyzed, minimum mortality was mainly located at age 12. Over time, however, the

modal value shifted toward lower ages, and the distribution around this modal value

moved to lower ages. In the most recent cohorts, the lower boundary of age-specific

mortality is located at age 10. The location of the lowest mortality across ages is closely

associated with the onset of sexual maturity. Evolutionary theories of aging argue that

evolutionary fitness, defined as the intrinsic rate of natural increase, is most sensitive

to mortality changes around the age of sexual maturity (Hamilton, 1966). Accordingly,

selection pressure on age-specific mortality should be highest around the onset of the

reproductive period, when the respective mortality rates are pushed to their lowest

possible levels. Similarly, the age of maturity itself should be under strong selection

pressure as a key age that defines the onset of reproduction. Other authors have also

argued that intergenerational transfers, such as parental care, shape selection pres-

sure and are an important determinant of the shape of human life history, and thus

of, mortality (Gurven et al., 2012). Consequently, the investments of older generations

in younger generations lead to a concave shape of selection pressure, which may push

mortality down even further at the onset of the reproductive period, when such invest-

ments start to pay off (Chu et al., 2008; Lee, 2003; Bogin, 1997). As a result of the close

relationship between the location of minimum mortality and sexual maturity, it could

be hypothesized that the earlier occurrence of minimum mortality might be related to

temporal changes in different aspects of childhood development such body growth,

and perhaps as a consequence, the earlier occurrence of puberty and sexual maturity,

which has been reported by a number of authors (Goldstein, 2011; Tanner, 1973; Frisch,

1978; Schönbeck et al., 2012). However, the similar locations of minimum mortality of

males and females could be seen as a sign against this idea because different stud-

ies provide evidence for a slightly earlier onset of the puberty of females, which also

holds for the transition through the different development stages of sexual maturity

(Susman et al., 2010; Lee, 1980). In addition to these factors, Levitis and Martı́nez

(2013) have offered further hypothesis for why juvenile mortality is U-shaped, and for

why we therefore see an inflection point between the decreasing and the increasing
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parts of mortality over age. However, the plasticity of minimum mortality challenges

all of these concepts. Given the enormous gains that have been made over a short pe-

riod of time, it is possible to speculate about whether human progress has decoupled

minimum mortality from evolutionary mechanisms — or has, at least, weakened the

relationship between them.

The development of absolute sex-specific differences in the lower boundary of mor-

tality shows two distinct patterns: higher female mortality with a consistently growing

male disadvantage, followed by a trend toward convergence. In the oldest cohort an-

alyzed, females had higher minimum mortality levels. Tuberculosis could be one po-

tential explanation for this female excess mortality. Different authors document higher

tuberculosis death rates of females in the respective age range (10-14) for similar co-

horts as well as for calendar years, in which the respective cohorts reached their mini-

mum mortality (Frost, 1995; Springett, 1952b,a). Further reason such as discrimination

related to sex or birth order (Modin, 2002) are conceivable but remain as vague specu-

lations. The female disadvantage turned relatively rapidly into a male disadvantage,

which reached its maximum level at some point among the interwar cohorts. Since

then, a continuous trend toward convergence can be observed. The male disadvantage

is the result of slower improvements in the minimum mortality levels of males than of

females. These pace differentials are striking because the usual determinants of sex-

specific differences, such as lifestyle and behavioral factors, should be less relevant at

these ages. We can speculate that excess mortality, caused by environmental condi-

tions is decreasing more quickly among females than among males. Furthermore, it

is possible that after this type of excess mortality is no longer relevant the gender gap

will be primarily driven by biological factors. Currently, communicable diseases can

be excluded as a potential driver and external causes of death explain only a small

part of the gender gap (Gissler et al., 2009). Accordingly, non-behavioral causes and

non-communicable diseases could be emerging as the potential drivers. Studies that

used cancer — a leading cause of death in childhood in the developed countries —
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to illustrate this development found that boys are more likely than girls to develop a

childhood cancer (Kaatsch, 2010; Dorak and Karpuzoglu, 2012).

It is clear that at the minimum mortality age, the physiological and social consti-

tutions of humans are most capable of withstanding death. Following Belsky et al.

(2015), we argue that aging research should focus on the age groups that are still in the

very early stages of the aging process. In their study, they focused on individuals aged

26–38. Minimum mortality as such marks the inflection point between decreasing and

increasing mortality, and could thus be interpreted as the point at which aging begins.

Hence, investigating the aging process starting from the age of minimum mortality

might prove to be even more intriguing. We could then ask the following questions:

Are there some lessons we can learn from the findings on minimum mortality about

how aging and mortality might be postponed to or altered at later ages? Are we able to

extend minimum mortality levels to the point of developing a second mortality plateau

at younger ages? Or does minimum mortality reflect the baseline level of mortality if

humans did not age? These are all non-trivial questions for which there may be no

clear answers. However, they all invite further investigation into the lower boundary

of human mortality.
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Figure 1. Age-specific mortality, France, females, years 1850,1900, 1950, and 2000.

Mortality rates are smoothed. Source: Own illustration using age-specific death counts and

exposures-to-risk from the Human Mortality Database (2017).
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Figure 2. Minimum mortality, France, females and males, birth cohorts 1900–1993.

The graph depicts the observed (squares and crosses) as well as the smoothed (solid line)

minimum mortality. The observed rates marked with a square indicate the cohorts who spent

at least one year in the omitted periods (World Wars I and II). The colored area around the

smoothed minimum mortality estimates depict the 95% confidence interval as calculated by

the approach of Camarda (2012). Minimum mortality rates are illustrated using the logarithm

with basis two. The solid gray grid lines and the Roman numerals mark the different periods of

development. Source: Own illustration using age- and cohort-specific death counts and

exposure-to-risk from the Human Mortality Database (2017).
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Figure 3. Minimum mortality, females and males, birth cohorts 1970, 1980 and 1990.

The graph depicts the levels of minimum mortality for the 1970, 1980 and 1990 birth cohorts

for all countries analyzed. Note that for Bulgaria, the last available cohort was born in 1989.

Countries are ordered according to the minimum mortality level for the cohort born in 1990,

with the lowest to the highest levels displayed from left to right. The bars around the median

estimate of the 1990 birth cohort depict the 95% confidence interval, as calculated by the

approach of Camarda (2012). Note that the vertical axis has different ranges for males and

females. Source: Own illustration using age- and cohort-specific death counts and

exposure-to-risk from the Human Mortality Database (2017).
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minimum mortality is measured in integers. The number of countries varies over time in each

cohort group and is indicated by N. The highlighted bar represents the modal age in the

respective year. The bars correspond to full ages. Source: Own illustration using age- and

cohort-specific death counts and exposure-to-risk from the Human Mortality Database (2017).
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Figure 5. Absolute male–female minimum mortality differences, Japan, Russia,

France and Norway, birth cohorts 1900-1994. The gray lines depict all of the other

countries included in the analysis. The sex–differences are calculated based on the smoothed

minimum mortality estimates. Source: Own illustration using age- and cohort-specific death

counts and exposure-to-risk from the Human Mortality Database (2017).
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1 Country-specific details

Table 1. Overview of the country-specific details. An overdispersion parameter close to

one indicates that there is no overdispersion. A parameter (smaller) bigger than one indicates

(under-) overdispersion. Zero death depicts the number of age intervals without any death

over the entire cohort range. Data: Human Mortality Database (2017)

Males Females

Overdispersion Parameter Overdispersion Parameter

Country Cohort Range w Shocks w/o Shocks zero Death w Shocks w/o Shocks zero Death

Australia 1920–1990 1.1096 0.9590 0 1.0598 0.8942 2

Austria 1946–1993 1.0959 1.0959 0 0.9977 0.9946 1

Belgium 1918–1994 2.2458 1.0370 0 1.6513 1.1506 1

Bulgaria 1946–1989 1.7444 1.7356 0 1.7718 1.7626 0

Belarus 1958–1993 1.0168 1.0168 0 0.7194 0.7194 0

Canada 1920–1990 1.5618 1.2300 0 1.4573 1.1523 0

Switzerland 1900–1993 1.6633 1.0885 0 1.7624 1.0983 4

Czech 1949–1993 1.1055 1.1055 0 1.0871 1.0871 0

East Germany 1955–1992 1.4714 1.4714 0 1.2217 1.2217 0

West Germany 1955–1992 1.8816 1.8816 0 1.3631 1.3631 0

Denmark 1900–1993 1.4443 0.9926 1 1.3514 0.9759 2

Spain 1907–1993 10.8917 4.8185 0 9.1480 3.8431 0

Estonia 1958–1992 0.8162 0.8162 4 0.8716 0.8716 19

Finland 1900–1994 5.1371 1.3763 3 2.9506 1.2812 3

France 1900–1993 18.8175 2.0831 0 11.8500 1.7096 0

Northern Ireland 1921–1992 0.5730 0.5031 1 0.5735 0.5108 5

United Kingdom 1921–1992 2.5081 1.3913 0 2.1009 1.0925 0

Scotland 1900–1992 1.1885 0.6947 0 1.3090 0.6730 0

England and Wales 1900–1992 13.8741 2.1381 0 7.5534 1.9456 0

Hungary 1949–1993 1.2149 1.2149 0 1.1390 1.1390 0

Ireland 1949–1993 0.5220 0.5220 0 0.6297 0.6297 0

Iceland 1900–1992 0.5678 0.5226 232 0.4639 0.4214 299

Italy 1900–1991 41.6297 4.7319 0 37.7099 4.4166 0

Japan 1946–1993 4.9041 3.9621 0 3.1759 2.1095 0

Lithuania 1958–1992 0.7205 0.7205 0 0.5350 0.5350 0

Luxembourg 1959–1993 0.6319 0.6319 113 0.6211 0.6211 208

Latvia 1958–1992 0.6645 0.6645 0 0.6046 0.6046 0

Netherlands 1900–1991 6.0515 1.0800 0 5.2064 0.9995 0

Norway 1900–1993 1.1325 0.7643 2 1.0105 0.6839 6

New Zealand 1947–1992 0.8661 0.8661 0 0.9191 0.9191 2

Poland 1957–1993 1.3319 1.3319 0 1.0967 1.0967 0

Portugal 1939–1991 1.3432 1.2131 0 1.2641 1.0713 0

Russia 1958–1993 6.2416 6.2416 0 1.8984 1.8984 0

Slovakia 1949–1993 1.0929 1.0929 0 1.1056 1.1056 1

Sweden 1900–1993 2.5450 1.2409 0 2.5207 1.1638 1

Taiwan 1969–1993 1.5302 1.5302 0 0.7381 0.7381 0

Ukraine 1958–1992 2.3891 2.3891 0 1.0001 1.0001 0

U.S.A. 1932–1993 2.7886 2.3596 0 2.0869 1.7153 0
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2 Illustration of death rate construction

Year

A
ge

t t+1 t+2

x

x+1

x+2

x+3

Average Person−Years

Deaths

Deaths

Figure 1. Illustration of the death rates used for the analysis.
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3 Method evaluation

To identify an appropriate method, we compared a smoothing approach for count data

developed by Camarda (2012) and a local regression model (LOESS) (Cleveland and

Devlin, 1988; Chambers and Hastie, 1991), both applied over age and cohort. The use

of other approaches, such as GAMs with an appropriate specification of the smooth-

ing function and the distribution of the response (see Wood (2006)), is, of course, also

conceivable (Kafadar, 1994; Currie et al., 2004). However, it is beyond the scope of the

paper to either develop an appropriate approach or to provide an exhaustive method

comparison of several approaches. Thus, availability, practicability, and accuracy are

paramount considerations.

Note that the approach by Camarda (2012) has been described in more detail in the

main text.

In the LOESS, logarithmic mortality rates over age and cohort are required as an

input. Cohort and age are then used as the predictors in the model. To obtain the fit

of a specific point, a weighted least squares regression model is fitted by minimizing

for a set of observations within a pre-specified span around the specific observation.

Weights are distributed so that observations closer to the central point have a higher

weight than observation with a larger distance. Accordingly, a small span results in a

high degree of adaptation to the data and a big span in a rough fit (for more details, see

Cleveland and Devlin (1988) or Chambers and Hastie (1991)). To get the fit of a new

point, a new regression model for a new set of respective observations and weights

must be fitted. We determined the optimal span by using the value that minimizes the

Akaike information criterion (AIC).

Although this approach has advantages over other two-dimensional smoothers

(Kafadar, 1994), the LOESS rests on linear regression. It can also be applied using non-

linear regression with additional quadratic terms for the two predictors. But consider-
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Figure 2. Minimum mortality and minimum Mortality Age estimation under

different model specifications, Italy, males, cohorts 1900–1991. Data: Human

Mortality Database (2017)
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ing the results of Kafadar (1994), the linear LOESS seems to outperform the quadratic

version. However, the use of linear regression to fit age-specific mortality has been

criticized for several reasons (Pletcher, 1999; Promislow et al., 1999). First, the tech-

nique does not capture the data-generating process, and is thus theoretically wrong.

Accordingly, in the LOESS, errors are assumed to be normally distributed with a con-

stant variance (Cleveland and Devlin, 1988), which is a problematic assumption for

age-specific mortality rates. An additional drawback resulting from the application of

linear regression is that the logarithm of death rates is required as a response to keep

the rates within the range of zero and one. For this reason, the LOESS –in opposite to

the approach by Camarda (2012)– is not able to include zero mortality rates as infor-

mation in the model fit. The respective death rates have to be considered as missing.

These rates are then interpolated by borrowing information from neighboring cohorts

and ages. All of these disadvantages are reasons to reject the LOESS as a potential

method, but we still chose to test it as an alternative to the P-spline approach because

of its great practicability.

As was mentioned in the main text, we excluded the 1915–1919 and 1938–1947 pe-

riods, which cover the Spanish flu and World Wars I and II. Both the LOESS and the

P-spline approach interpolate the emerging gaps, which are generated when the mor-

tality levels of the respective ages are ignored.

We chose Italian males as a comparison basis because even after omitting the war

years, they were affected by the two World Wars and had a large amount of overdisper-

sion, as indicated by their overdispersion parameter (see Table 1 in the main article).

We complemented this assessment by evaluating Swedish males, a small population

among whom the influence of period shocks was weak. The results for Swedish males

can be found in Figure 3.

Figure 2 presents the results of the different models and the respective model spec-
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Table 2. Model accurracy, residual standard error (RSE), males, Italy, ages 1–20,

cohorts 1900–1991. The RSE is based on the data used to fit the model. RSE in

brackets for models with war years is based on comparing only non-war years. Data:

Human Mortality Database (2017)

Control

Model War Year Overdispersion RSE

P-spline Yes No 0.1434 (0.1172)

P-spline Yes Yes 0.1462 (0.1197)

P-spline No No 0.0866

P-spline No Yes 0.0900

LOESS Yes – 0.2589 (0.1651)

LOESS No – 0.1287

ifications for Italian males. The two upper panels show the results of the P-spline ap-

proach, including the war years, with (left) and without (right) accounting for overdis-

persion. The two middle panels depict the outcomes of the P-splines approach exclud-

ing the wars years, with (left) and without (right) accounting for overdispersion. The

two lower panels illustrate the outcomes of the LOESS with (left) and without (right)

the war years. In addition to the observed minimum rates (squares), the estimated

minimum rate (black solid line) with the 95% confidence intervals (colored area) and

the estimated ages of minimum mortality are shown (solid blue line). Observed ages

are depicted with circles. The left axis depicts mortality per 100,000 person-years lived

on a log scale. The right axis depicts the minimum mortality age. In addition to the

visual inspection, we calculated the residual standard error (RSE) for all ages and co-

horts considered in the model fit. Table 2 shows the values for all six models. The RSE

in brackets is based on comparing only fitted and observed values of non-war years

for approaches that include the war years in the model fit.

The RSE across the considered ages and cohorts is lower when the war years are

7



omitted. Hence, for both the LOESS and the P-spline approach, the fit of the models

is increased. In comparison, however, the P-spline approach shows a higher degree

of accuracy, which is expressed by a lower RSE. The minimum mortality trajectories

of both approaches are affected differently by the war years. The LOESS consistently

overestimates the level of minimum mortality up to the first post-war cohorts, whereas

the P-spline approach even reveals implausible spikes up to that point. In general, the

minimum mortality estimates of the LOESS are rougher than those of the P-spline ap-

proach. For Swedish males and for both approaches, the smoothed minimum mortal-

ity estimates are not as close to the observed rates as they are for Italian males; and

they are generally above the observed minimum. These more conservative estimates

are acceptable for countries with a small population size because, due to higher fluc-

tuations, the observed minimum mortality rates could represent more outliers than in

countries with a bigger population size.

The exclusion of the war years provides a more stable trajectory for the minimum

mortality age. In general, the observed ages fluctuate considerably, but they change

even more for the cohorts affected by war. The impact of war is especially visible for

the 1931 cohort, who had a minimum mortality age of 20; which is six years after the

end of WW II (see also Figure 4). Given the age trajectories of the adjacent cohorts,

it is highly unlikely that age 20 would have been the minimum mortality age for this

cohort in the absence of war. Only the LOESS and the spline approach without the war

years are able to provide such stable minimum mortality age patterns over time.

Allowing for overdispersion in the P-spline approach has only a small effect on

the accuracy of the model, but a big impact on the standard errors. Regarding the

median estimates, Camarda (2012) stated that by controlling for overdispersion, the

trajectories are smoother. This is visible in the slightly higher RSE for both models

with overdispersion. However, the standard errors of minimum mortality for the most

recent cohorts in particular increase when the relationship between the mean and the

8



variance is relaxed. The confidence intervals in the LOESS approaches are generally

narrower. For both approaches, it should be noted that in the figures, the confidence

bounds seem smaller because of the logarithmic axis for mortality rates.
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Figure 3. Minimum Mortality and Minimum Mortality Age Estimation under

different Model Specifications, Sweden, Males, Cohorts 1900–1993. Data: Human

Mortality Database (2017)

10



4 Influence of war on age-specific mortality pattern
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Figure 4. Observed and fitted age-specific mortality trajectory, Italy, males, cohort

1931. Data: Human Mortality Database (2017)
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5 Minimum Mortality All Other Countries
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Figure 5. Minimum mortality, all other countries, females and males. Data: Human

Mortality Database (2017)
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Figure 6. Minimum mortality, all other countries, females and males. Data: Human

Mortality Database (2017)
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Figure 7. Minimum mortality, all other countries, females and males. Data: Human

Mortality Database (2017)
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Figure 8. Minimum mortality, all other countries, females and males. Data: Human

Mortality Database (2017)
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6 Development of the U-shaped mortality pattern

Figure 9 shows the ratio of age-specific death rates adjacent to the minimum mortality

and minimum mortality for various countries and four different cohorts. The trajecto-

ries do not reveal a shared trend for both perspective across cohorts and across coun-

tries. For instance, with the exception of the birth cohort 1900, Italian females show

an approximately stable U-shape across cohorts with marginal convergence towards

minimum mortality for younger ages and marginal divergence at ages higher than the

minimum mortality age. An almost similar pattern can be seen for Danish females.

However, French females show a different trend. For this population, the U-shaped

pattern became flatter over time, which is especially visible for ages younger than the

minimum mortality age. For French males, in opposite, it seems that the U-shaped

pattern became more pronounced over time. Generally, the difference of minimum

mortality and adjacent death rates varies also across countries.

17



M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Cohort 1900
Cohort 1930
Cohort 1960
Cohort 1990

R
at

io
: d

ea
th

 r
at

e/
m

in
im

um
 m

or
ta

lit
y

France
Males Females

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Cohort 1900
Cohort 1930
Cohort 1960
Cohort 1990

R
at

io
: d

ea
th

 r
at

e/
m

in
im

um
 m

or
ta

lit
y

Sweden
Males Females

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Cohort 1900
Cohort 1930
Cohort 1960
Cohort 1990

R
at

io
: d

ea
th

 r
at

e/
m

in
im

um
 m

or
ta

lit
y

Netherlands
Males Females

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Cohort 1900
Cohort 1930
Cohort 1960
Cohort 1990

R
at

io
: d

ea
th

 r
at

e/
m

in
im

um
 m

or
ta

lit
y

Norway
Males Females

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Cohort 1900
Cohort 1930
Cohort 1960
Cohort 1990

R
at

io
: d

ea
th

 r
at

e/
m

in
im

um
 m

or
ta

lit
y

Italy
Males Females

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Cohort 1900
Cohort 1930
Cohort 1960
Cohort 1990

R
at

io
: d

ea
th

 r
at

e/
m

in
im

um
 m

or
ta

lit
y

Scotland
Males Females

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Cohort 1900
Cohort 1930
Cohort 1960
Cohort 1990

R
at

io
: d

ea
th

 r
at

e/
m

in
im

um
 m

or
ta

lit
y

Finland
Males Females

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Cohort 1900
Cohort 1930
Cohort 1960
Cohort 1990

R
at

io
: d

ea
th

 r
at

e/
m

in
im

um
 m

or
ta

lit
y

Denmark
Males Females

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

M
in

A
ge

−
2

M
in

A
ge

−
1

M
in

A
ge

M
in

A
ge

+
1

M
in

A
ge

+
2

1.00

1.05

1.10

1.15

1.20

1.25

1.30
Cohort 1900
Cohort 1930
Cohort 1960
Cohort 1990

R
at

io
: d

ea
th

 r
at

e/
m

in
im

um
 m

or
ta

lit
y

Switzerland
Males Females

Figure 9. Ratio of death rates at adjacent ages to the location at minimum mortality

and minimum mortality, cohorts 1900, 1930, 1960, 1990, males and females, various

countries. Standardized age-specific death rates are shown for the age range: minimum

mortality age ± two years of age. The shown estimates are based on the smoothed age-specific

death rates. Source: Own illustration using age- and cohort-specific death counts and

exposure-to-risk from the Human Mortality Database (2017).
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Rectangularization of the survival curve—a key analytical framework in mortality research—relies on

assumptions that have become partially obsolete in high-income countries due to mortality reductions

among the oldest old. We propose refining the concept to adjust for recent and potential future mortality

changes. Our framework, the ‘maximum inner rectangle approach’ (MIRA) considers two types of

rectangularization. Outer rectangularization captures progress in mean lifespan relative to progress in

maximum lifespan. Inner rectangularization captures progress in lifespan equality relative to progress in

mean lifespan. Empirical applications show that both processes have generally increased since 1850.

However, inner rectangularization has displayed country-specific patterns since the onset of sustained old-

age mortality declines. Results from separating premature and old-age mortality, using the MIRA, suggest

there has been a switch from reducing premature deaths to extending the premature age range; a shift

potentially signalling a looming limit to the share of premature deaths.

Supplemental material for this article is available at: http://dx.doi.org/10.1080/00324728.2017.1414299
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[Submitted June 2016; Final version accepted July 2017]

Introduction

Rectangularization of the survival curve is one of the
key analytical frameworks in mortality research. We
argue that the canonical understanding of rectangu-
larization is outdated. Instead of abolishing the
concept completely, we suggest extending the frame-
work to accommodate recent developments in
mortality.
While the process of rectangularization had been

recognized earlier (e.g., Pearl and Miner 1935;
Comfort 1956), Fries’ (1980) interpretation of the
concept has arguably become the commonly
accepted view. Mortality developments in high-
income countries over recent decades have,
however, rendered several of Fries’ assumptions
obsolete. Most importantly, potential reductions in
mortality among the oldest old were not anticipated
in the classical rectangularization framework. Mor-
tality for people aged 80 and above has been declin-
ing in a number of countries since the 1960s (see, e.g.,
Kannisto 1994; Kannisto et al. 1994; Vaupel 1997;
Rau et al. 2008). This trend in turn has invalidated

several (partly implicit) assumptions of Fries’
theory: the idea that life expectancy has ‘looming
limits’ has been rejected (Oeppen and Vaupel
2002; Vallin and Meslé 2009), the contributions
of improvements in premature mortality to
increases in life expectancy have become negligible
(Christensen et al. 2009), and Fries’ (1980, p. 130)
assessment that ‘[…] there has been no detectable
change in the number of people living longer than
100 years […]’ has been disproven (e.g., Vaupel and
Jeune 1995; Vaupel 2010). Although we have not
witnessed any increase in maximum observed life-
span since the death of Jeanne Calment at age 122
in 1997 (Robine and Allard 1998), Fries’ (1980,
p. 133) prediction that ‘human life span may not be
fixed but may be slowly increasing, perhaps a
month or so each century’ had already been
exceeded by more than an order of magnitude with
the increases that occurred between 1980 and 1997
(Wilmoth et al. 2000).
Furthermore, in Fries’ framework, life expectancy

gains can only be generated by a decrease in lifespan
variability (see, e.g., Nagnur 1986; Nusselder and
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Mackenbach 1996). This compression would be com-
pleted when, ‘under ideal conditions’ (Fries 1980,
p. 132), lifespans were scattered in a normal distri-
bution around a mean of 85.6 years, with a standard
deviation of about four years. Later, Fries (1989)
assumed wider intervals. But since the second half
of the twentieth century, both stagnating variability
and increasing life expectancy have been observed
simultaneously (Kannisto 1996; Bongaarts 2005;
Canudas-Romo 2008; Bergeron-Boucher et al.
2015). This phenomenon is commonly labelled the
‘shifting of mortality’. Some authors go one step
further and discuss the possibility of life expectancy
gains in the presence of increasing variability in life-
spans; this is called the ‘expansion of mortality’
(Myers and Manton 1984; Rothenberg et al. 1991;
Cheung et al. 2005; Engelman et al. 2010, 2014). It
is, however, clear that the almost constant difference
between the mean and the modal age at death
(Canudas-Romo 2010) are not compatible with nor-
mally distributed deaths across age, even with histori-
cally low levels of premature mortality.
It may come as a surprise that we do not suggest

entirely discarding the concept of rectangularization.
Indeed, we find the simplicity and intuitiveness of the
concept appealing, and recognize that rectangulari-
zation is one of the few theoretical frameworks that
incorporates the relationship between (average)
length of life and lifespan variability. Thus, rather
than rejecting the concept, we wish to extend it to
incorporate recent mortality changes, as well as
future developments.
The first step in extending rectangularization is to

detach the framework from its static perspective. It
needs to capture mortality changes dynamically at
all ages, and not just in the premature age range. It
would also be beneficial if a measurement approach
could differentiate between and quantify changes in
premature and old-age mortality. Furthermore, it
would be desirable if an extension of Fries’ frame-
work still allowed us to assess the potentially impend-
ing limits to lifespan.
The framework we propose, which we call the

‘maximum inner rectangle approach’ (MIRA), is
designed to address these issues. Our approach uses
two dimensions of rectangularization. We call the
classical perspective ‘outer rectangularization’
because it relates the survival curve, and, accordingly,
life expectancy, to the ‘maximum living potential’.
Hence, it compares the current experience with the
current theoretical maximum, if everyone survived
to and then died at the actual maximum lifespan.
There is, however, another perspective that has so
far largely been neglected, which we call ‘inner

rectangularization’. Defined as the rectangle under
the survival curve with the largest possible area,
this perspective relates the current inequality in life-
span to current life expectancy. The basic idea is illus-
trated in Figure 1. The bold solid line denotes a
hypothetical survival curve starting from a radix of
one and reaching zero at the highest attainable age,
ω. The dotted line denotes the classic reference
used to estimate the advancement of rectangulariza-
tion—the outer rectangle—which also expresses the
maximum living potential. The dashed line depicts
our newly proposed concept: the maximum inner
rectangle.

Maximum inner rectangle approach (MIRA)

The MIRA is based on different areas and specific
ages that will be introduced in the following
section. Table 1 provides an overview of all MIRA
quantities.
In the MIRA, we distinguish between inner and

outer rectangularization. Outer rectangularization is
the standard perspective of rectangularization, and
captures progress in mean lifespan relative to pro-
gress in maximum lifespan. Hence, the outer frame
of the survival curve serves as a reference point.
We denote the area of the outer rectangle as ω,
because it is determined by the maximum attainable
age (ω) and the radix of the survival function (l0),
which we set to one. The maximum age should be
able to move forwards or backwards depending on
the underlying mortality development. In the empiri-
cal application we link ω to a specific survival pro-
portion, k—such as the age at which 1 per cent of
the population is still alive—so that lv = k.
In a population, ω can be interpreted as the

maximum living potential. It counts the hypothetical
number of person-years that could be lived in a popu-
lation if everyone survived to the maximum age and
then died. In comparison, the actual number of
person-years lived in a population corresponds to
the area under the survival curve, and determines
mean lifespan. The ratio of mean to maximum life-
span serves to capture the degree of outer rectangu-
larization of the survival curve. Thus, we define the
outer rectangle ratio (ORR) as

ORR =
�v
0 lada
v

= e0
v
, (1)

with e0 denoting life expectancy (or mean lifespan)
and ω maximum age. By definition, 0 ≤ ORR ≤ 1.
The ratio relates the observed number of person-
years lived in a population to the maximum person-
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years possible. For example, if ORR = 0.8, then
current living conditions are allowing the population
to exploit 80 per cent of its current maximum living
potential.
Inner rectangularization adds a new perspective. In

contrast to the outer rectangle, we seek the largest
rectangle under the survival curve. Any inner rec-
tangle (IR) under the survival curve is defined hori-
zontally by age, x, and defined vertically by survival
to that age, lx. Consequently, the corresponding
area is IRx = x× lx. The first age derivative of IRx

then identifies the age, x∗, that corresponds to the
maximum inner rectangle (MIR) with an area of

MIR = x∗ × lx∗ (2)

as the solution to

d IRx

d x
= 0 (3)

which simplifies to

x∗ = 1
mx∗

. (4)

Although there is no closed form solution, x∗ can be
found numerically, given that

mx . 0 ∀ x [ [0, v], (5)

where mx denotes the force of mortality. A proof for a
unique maximum in the case of increasing mortality
with age is included in the supplementary material
(section A).
MIR counts the ‘maximum uniformly shared

person-years’. It is determined by the maximum
shared lifespan (x∗) and the survival proportion up
to this lifespan (lx∗). At ages below x∗, the share of

the population living for x years (lx) would be
larger than lx∗ , but the number of years lived per indi-
vidual would be smaller than x∗. Likewise, at ages
above x∗, the number of years lived per individual
would be larger than x∗, but the share of the popu-
lation living for x years (lx) would be smaller than
lx∗ . In either case, the total number of uniformly
shared person-years, as indicated by MIR, would be
reduced.
Using this definition of MIR allows us to add an

inner perspective to the process of rectangulariza-
tion. In an analogy to the maximum living potential
(ω), we can interpret life expectancy (e0) as a popu-
lation’s current theoretical maximum number of life
years that could be shared uniformly. Accordingly,
with perfectly uniform lifespans, 100 per cent of indi-
viduals in a population would share a lifespan of
length e0. With actual lifespan inequality as measured
by MIR, however, a maximum survival fraction of
lx∗ , 100 per cent shares a uniform lifetime of at
most x∗ years. Thus, by relating MIR to e0, we
define inner rectangularization as the process of a
population approaching its current lifespan equality
potential. It is measured by the inner rectangle
ratio (IRR), which is given by

IRR = MIR
e0

. (6)

The IRR captures a trend that differs from that of the
ORR, because changes in the MIR do not require a
change in the mean or the maximum lifespan.
Indeed, the trend could be characterized by a con-
stant mean and a falling maximum lifespan, or by
an increasing mean but a constant maximum lifespan,
or even by a falling mean and a falling maximum life-
span. Though closely related, the IRR differs from

Figure 1 The survival curve and its maximum inner rectangle and outer rectangle
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the ORR because it is essentially an index of lifespan
equality, while the ORR is an index of exploiting
maximum living potential. Accordingly, if
IRR = 0.8, then current living conditions are allow-
ing the population to exploit 80 per cent of its
current lifetime equality potential.
The two indices can be combined into a single

index to measure total rectangularization. We
define the total rectangle ratio (TRR) as

TRR = IRR ×ORR = MIR
v

. (7)

The TRR measures achieved lifespan equality in
relation to maximum possible equality. Accordingly,
if TRR = 0.8, then current living conditions are
allowing the population to achieve 80 per cent of its
maximum possible lifespan equality at present.

Data and estimation procedure

We computed MIRA quantities using period life
tables, which we estimated from death counts and
corresponding exposures from the Human Mortality
Database (2015). In this paper, we choose to high-
light the trajectories of Swedish, Danish, and Italian
females because these countries provide three
exemplary mortality developments. Furthermore,
all three countries have sufficient data coverage
over time. In estimating x∗ and lx∗ , a key challenge
we faced was that the data are only available in dis-
crete integer units, but x and lx need to be continuous.
Therefore, we estimated x∗ in two steps. First, we
smoothed the product of x and lx with cubic splines
using R’s splinefun() function (R Core Team 2015),
which allowed us to evaluate the function value
with arbitrary precision. Second, we used R’s
general-purpose univariate optimization function
optimize() to find the maximum. A similar two-step

approach with splines has been used previously in
mortality research to estimate the modal age at
death (Ouellette and Bourbeau 2011). We calculated
other age estimates, such as ω and the threshold ages
discussed in the next section, using the same
procedure.
In several empirical studies on rectangularization,

the maximum age (ω) is not set at the actual age at
which there are no survivors left in the life table
population. Wilmoth and Horiuchi (1999), for
instance, set the cut-off age at the point at which
0.1 per cent of the population were still alive. Rossi
et al. (2013) used the 10 per cent threshold and,
most recently, Schalkwijk et al. (2016) used the 0.1,
1, and 10 per cent thresholds. In our study, we
opted for a threshold of 1 per cent. Sensitivity analy-
sis revealed that the actual choice of value for lv had
only minor effects on the results. As the maximum
age changes with varying survival fractions, the esti-
mates of TRR and ORR change quantitatively.
However, the patterns of the ratios remain stable
over time.

Illustration of the inner, the outer, and the
total rectangle ratio

Figure 2 shows the three ratios for females in Italy
(upper left panel), Denmark (upper right), and
Sweden (lower). It depicts the IRR (black line), the
ORR (light grey), and the TRR (dark grey). Figure 2
illustrates the following key points:

(1) The TRR and the ORR have been develop-
ing almost in parallel for about 160 years.
This suggests that Fries’ concept of rectangu-
larization needs to be revised. If Fries’ ideas
were correct, we would have expected to
witness a ‘catching-up period’ of the TRR
to the ORR until his ‘ideal conditions’ with

Table 1 Quantities of the maximum inner rectangle approach (MIRA)

Name Acronym Expression Interpretation

Inner rectangle IRx x× lx Age-specific uniformly shared person-years (PY)
Maximum shared
lifespan

x∗ max[x × lx] Maximum number of uniformly shared life years by largest number of
survivors

Maximum proportion lx∗ lx∗ Largest proportion alive at the maximum shared lifespan
Maximum inner
rectangle

MIR x∗ × lx∗ Population’s current maximum number of uniformly shared PY

Life expectancy e0
�v
0 lada Population’s current number of PY, i.e., mean lifespan

Outer rectangle v v× l0 Maximum possible PY
Outer rectangle ratio ORR e0/v Proportion of PY lived from maximum possible PY
Inner rectangle ratio IRR MIR/e0 Proportion of uniformly shared PY from all PY lived
Total rectangle ratio TRR MIR/v Proportion of uniformly shared PY lived of maximum possible PY
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life expectancy of about 85 years were
reached. None of the selected countries has
reached this level of life expectancy yet. Con-
sequently, we should see a continued narrow-
ing of the gap, but this is not the case.

(2) Inner rectangularization describes a different
dimension of mortality progress. Its trajec-
tory is decoupled from those of the ORR
and the TRR, mainly because its frame of
reference is not maximum lifespan, but life
expectancy. In each of the examples we can
see an increase over time, with a trend
change occurring sometime during the

1950s when the slope becomes shallower.
This break can likely be attributed to the
shift in survival improvements from
younger to older ages (e.g., Christensen
et al. 2009).

(3) We can see that the IRR in each of these
three countries has followed a different tra-
jectory over the last half century, with a
steady increase in Italy, a slow increase in
Sweden, and a slight dip in Denmark during
the 1970s and 1980s. Even though the IRR
has generally increased over time, the
country-specific patterns suggest that the

Figure 2 Inner rectangle ratio, outer rectangle ratio, and total rectangle ratio for females, Italy (1872–2012),
Denmark (1850–2011), and Sweden (1850–2014)
Note: All calculations are based on period life tables in the respective year.
Source: Human Mortality Database (2015).
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forces behind this development vary. For
instance, the steady increase in Italy suggests
that a rise in life expectancy accompanies a
faster growth of the MIR. The almost stag-
nating IRR in Sweden between 1960 and
1990 suggests that life expectancy has
increased similarly to the MIR. Denmark’s
unusual dynamics suggest a declining MIR
while life expectancy stagnated.

(4) The IRR highlights how evenly the magni-
tude of and trends in age-specific mortality
changes are spread over age. We claim
that this provides a new perspective on life-
span variability. Our suggestion is strength-
ened by the correlation between the IRR
and other summary measures of lifespan
variability. Table 1 in the supplementary
material (section B) shows that the IRR is
less correlated with common measures of
lifespan variability (shown in Table 2 in
the supplementary material) than those
measures are correlated with each other.
This pattern is especially pronounced for
the time period when gains in premature
survival were instrumental for the increase
in life expectancy (the period 1850–1950 in
our analysis).

Applying the MIRA to separate premature
from old-age mortality

Premature and old-age mortality are terms that are
frequently used in mortality research, but they are
loosely defined, which may be sufficient for many
applications. However, in analysing rectangulariza-
tion, these definitions are a crucial issue. In Fries’
description, premature mortality plays a central
role. He argues that declines in premature mortality
drive the process of rectangularization, and implicitly
assumes that only these improvements are generat-
ing life expectancy increases. Although, Fries
remains unclear in his definition of premature ages,
his descriptions most evidently suggest that he is
referring to life expectancy as a threshold. We
argue that x∗ can be interpreted as an age that
allows us to separate premature from old-age mor-
tality. With x∗, we provide an approach that is
embedded within our rectangularization framework,
and which quantifies the threshold. Accordingly, the
threshold in MIRA is based on the longest lifespan
that is shared by the largest fraction of the
population.

Even though existing approaches, such as those by
Zhang and Vaupel (2009) and Gillespie et al. (2014),
rest on different lifespan variability measures, their
respective threshold ages result from a proportional
perturbation of age-specific mortality and, hence,
they rely on the same perturbation/definition. In
both approaches, the threshold refers to a specific
age, such that proportional mortality reductions
before this age would result in a decrease in lifespan
variability, whereas reductions at higher ages would
lead to an increase in lifespan variability (see
section F of the supplementary material for more
details). Hence, x∗ could serve as an alternative defi-
nition of a threshold age separating premature and
old-age mortality, based on the maximum shared
lifespan.
Figure 3(a) illustrates the relationship between x∗

(horizontal axis) and lx∗ (vertical axis); that is, the
coordinates to measure the number of maximum uni-
formly shared person-years; again, this is shown for
females in Italy, Denmark, and Sweden. The grey
contour lines depict the number of life years lived
in the MIR. The two time periods 1850–1950 and
1951–2014 are illustrated by dashed and solid lines,
respectively. Generally, two trends can be distin-
guished in Figure 3(a): a ‘vertical’ development
(until 1950) and a ‘horizontal’ development (after
1950).
The share of the life table population dying at

older ages is denoted by lx∗. Consequently, 1− lx∗
equals the proportion dying prematurely. Premature
mortality improvements drove progress until 1950, as
illustrated by the increasing share of survivors (lx∗).
With improving old-age mortality, x∗ shows an accel-
erated movement towards higher ages; whereas the
corresponding survival fraction at x∗ (lx∗) shows
only small gains. This pattern is similar to that of
the modal age at death, which is also robust to mor-
tality changes at lower ages, but sensitive to
changes at higher ages (Canudas-Romo 2010).
To compare the trajectories resulting from our

approach with alternative approaches, we also plot
the relationship between the threshold ages pro-
posed by Gillespie et al. (2014; Figure 3(b)) and
Zhang and Vaupel (2009; Figure 3(c)), which are
based on the variance and the number of life years
lost, respectively, and the corresponding survival pro-
portions. These estimates show similar shifts in the
trend. The slopes of the curves in each of the three
parts of Figure 3 have become shallower in recent
decades. This development could point to the exist-
ence of a limit to premature mortality that cannot
be lowered any further. Fries (1980) argued that pre-
mature mortality would be almost eliminated,
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declining to a maximum share of 2–5 per cent of all
deaths. The three measures presented here suggest
that there is a limit of at least 10–15 per cent (the
minimum is from the MIRA measure).
It should, however, be noted that we use different

vertical scales within Figure 3. If we instead used the
scale from our measure in Figure 3(a) for the other
two measures, we would obtain almost horizontal
lines for those measures. Within the 160 years of

life expectancy development contained in the
figure, the proportion dying at old age has changed
relatively little under the threshold ages suggested
by Zhang and Vaupel (2009) and Gillespie et al.
(2014). In both cases, the change amounts to less
than 15 percentage points; a shift we consider to be
rather small. In contrast, our measure shows a shift
of about 65 percentage points, from 20 per cent
dying at old age in 1850 to about 85 per cent dying

Figure 3 Scatterplot of the threshold age and survival proportion at the threshold age according to: (a) MIRA;
(b) Gillespie et al. (2014); and (c) Zhang and Vaupel (2009), women, Italy (1872–2012), Denmark (1850–2011),
and Sweden (1850–2014)
Notes: The trend lines are based on a locally weighted smoothing to highlight the patterns only. Additionally, contour lines in
panel (a) visualize the corresponding number of person-years lived in equality (MIR), since this is determined by the product
of both. The approaches of Zhang and Vaupel (2009) and Gillespie et al. (2014) and their calculation are explained in more
detail in the supplementary material.
Source: As for Figure 2.
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at old age in the most recent years. These numbers
seem to be more in line with the findings of, for
example, Christensen et al. (2009), who estimated
that almost 80 per cent of recent gains in life expect-
ancy for Japanese women were caused by survival
improvements among older people.

Discussion and conclusion

Rectangularization is one of the established analyti-
cal frameworks in mortality research. We propose
refining the classical concept to adjust for recent
changes in survival improvements, and to allow for
the incorporation of anticipated mortality trajec-
tories in the near future. This new framework,
which we call the maximum inner rectangle approach
(MIRA), rests on two theoretically distinct types of
rectangularization: inner rectangularization and
outer rectangularization.
Outer rectangularization relates the number of life

years that are currently lived (i.e., life expectancy) to
a theoretical maximum where everyone dies at the
same (maximum) age. We extend this standard defi-
nition of rectangularization by introducing the
concept of inner rectangularization. This novel
concept corresponds to the largest rectangle under
the survival curve. This rectangle captures the
largest number of life years lived by the largest pro-
portion of the population. Thus, it measures the pro-
portion of lifespan equality at the current level of life
expectancy. By contrast, outer rectangularization
measures the degree of living potential exploited,
using maximum lifespan as a reference point.
The measurement of both constituent parts of the

MIRA rests on simple ratios. To measure outer rec-
tangularization, we use the well-known concept of
the moving rectangle (Wilmoth and Horiuchi 1999;
Rossi et al. 2013; Schalkwijk et al. 2016). As far as
we know, there are no demographic predecessors to
our concept of inner rectangularization. Thus, the
age that maximizes the IR provides a novel point of
reference, indicating maximum shared lifespan. This
point represents the optimal trade-off between past
lifetime and number of survivors in terms of lived
person-years. Hence, the principle of inner rectangu-
larization rests on identifying the optimal combi-
nation of two (inversely related) inputs—age and
survival—which unify the biggest area under a
curve representing their respective relationship.
Such measures have previously been applied else-
where. For instance, the Hirsch index (or h-index)
measures the productivity and citation impact of
scientists (Hirsch 2005). It depicts that x publications

of a scientist have been cited at least x times. The geo-
metric equivalent is a list of all publications by a
scientist (y-axis) sorted by the number of citations
(x-axis). This approach is similar to our application,
where the survival curves could be interpreted as a
sorted list of life lengths (x-axis) of the population
(y-axis). Another example of such a maximum rec-
tangle can be found in physics: the ‘maximum
power point’ indicates the maximum power of a
photovoltaic module, with a given current–voltage
curve (Wasynezuk 1983). Our approach is also
related to Cohen’s (2015) decomposition of life
expectancy model, which derives Markov’s inequal-
ity and Chebyshev’s inequality for tail probabilities
in a novel way. In this approach, Cohen decomposes
life expectancy into three parts, one of these parts
being a non-maximized version of the IR.
Our most important empirical findings are as

follows. First, we found that outer rectangularization
has shown continuous gains over time (see also
Figures 1 and 2 in sections C and D of the supplemen-
tary material). This is a consequence of the straight
linear increases in life expectancy (Oeppen and
Vaupel 2002), which have been faster than the
increase in the longest lifespans, as measured by ω.
However, we also detected a considerably slower
pace of outer rectangularization since the middle of
the twentieth century. Second, we found that inner
rectangularization also increased rather uniformly
until around 1950; and that the patterns thereafter
could not be summarized with a general trend
because they are rather country-specific (see also
Figures 1 and 2 in sections C and D of the supplemen-
tary material). These country-specific patterns
appear to be attributable to differences in the onset
of sustained mortality declines among the oldest
old (Kannisto 1994), as well as by other factors,
such as smoking among Danish women (e.g., Juel
et al. 2000; Jacobsen et al. 2002; Lindahl-Jacobsen
et al. 2016), and postponed reforms of the healthcare
system in the Netherlands (Mackenbach et al. 2011;
Peters et al. 2015).
If we interpret x∗, the age maximizing the IR, as a

threshold age separating premature from old-age
mortality, then the rises in x∗ (see also Figure 3 in
section E of the supplementary material) and in cor-
responding survival, lx∗ , switched in around 1950,
from a reduction in premature deaths to an extension
of the premature age range. This dynamic also points
to a potential minimum proportion of individuals
dying prematurely. Depending on the underlying
definition of threshold age, the share dying prema-
turely varies between 10–15 per cent (MIRA),
15–20 per cent (Gillespie et al. 2014), and 30–35 per
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cent (Zhang and Vaupel 2009) under current mor-
tality conditions. Hence, Fries’ prediction that prema-
ture mortality would be almost completely
eradicated seems rather unlikely. We can, however,
see that the definition and measurement of prema-
ture mortality are issues that have been unresolved
at least since Lexis (1877).
Using x∗ as a reference point also would enable us

to extend the MIRA beyond the areas and ratios pre-
sented here. These areas above and below the survi-
val curve would allow us to decompose life
expectancy and maximum living potential because
they capture all person-years apart from those
included in the MIR. An application of the decompo-
sition could provide a basis for a more detailed analy-
sis of past and potential future developments of
rectangularization. For instance, the non-uniform
number of person-years lived of life expectancy
(e0 −MIR) could be subdivided into the numbers
for those dying prematurely and for those living
longer than x∗. Such an analysis can show to what
extent changes in life expectancy, and thus rectangu-
larization, are determined by lifespan equality
increases, premature mortality reductions, and long-
evity extensions. Generally, we would expect to see
continuous gains in life expectancy if large shares of
the population benefit from mortality improvements.
This would result in rising lifespan equality. Indeed,
the absolute number of uniformly shared person-
years (MIR) has increased in almost all countries
with continuously rising life expectancy (see Figure
3(a), for example). But relative to life expectancy,
the country-specific patterns of the IRR after 1950
question this relationship (as shown in Figure 2).
The rise in uniformity of person-years lived seems
to be more detached from overall gains in life expect-
ancy in some countries than in others. In the selected
countries, for instance, Italian females were shown to
be closest to the described scenario; whereas Danish
females, with their convex IRR trend, were found to
have a stronger degree of detachment. The extension
opportunities offered by the MIRA should help us to
gain deeper insights into these dynamics.
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A Second Derivative of MIRA Equation

In general, the relationship between hazard (µ(x)), density ( f (x)) and survival function (l(x)) is

given by

f (x) = l(x)µ(x) (1)

Hence, the derivative with respect to x of equation 1 is

d f (x)
d x

=
d l(x)

d x
µ(x) +

d µ(x)
d x

l(x) (2)

Dividing equation 2 by f (x) results in

d f (x)
d x

f (x)
= −µ(x) +

d µ(x)
d x

µ(x)
. (3)

The general equation for calculating x∗ is given by

A(x) = xl(x). (4)

Deriving equation 4 with respect to x results in

d A(x)
d x

= A′ = l(x)− x f (x). (5)

For an extremum x∗, it is required that

A′(x∗) = l(x∗)− x∗ f (x∗) = 0. (6)

Rewriting equation 6 gives

x∗ =
1

µ(x∗)
. (7)

The second derivative of equation 4 is equal to

d2 A(x)
d2 x

= A′′(x) = − f (x)− f (x)− x · d f (x)
d x

= −2 f (x)− x · d f (x)
d x

. (8)

For a maximum, it has to hold that

−2 f (x)− x · d f (x)
d x

< 0 ∀ x = x∗. (9)

This can also be expressed by
−2
x

<
d f (x)

d x
f (x)

∀ x = x∗. (10)

2



Inserting equations 7 and 3 in equation 10 results in

−2µ(x) <
d µ(x)

d x
µ(x)

− µ(x) ∀ x = x∗. (11)

Simplifying equation 11 reduces the problem to

−µ(x)2 <
d µ(x)

d x
∀ x = x∗, (12)

which is always true for an increasing force of mortality over age, representing the adult human

pattern.
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B Correlation Analysis of Common Lifespan Variability Measures and

MIRA Ratios

Table 1: Kendall’s correlation coefficient τ for measures of variability and MIRA indices for
period data available in the Human Mortality Database, both sexes combined. The lower left
triangle refers to the years 1850–1950, the upper right triangle refers to the years 1951–2014. We
selected Kendall’s τ because it does not rely on a linear relationship like Pearson’s r, or a monotonic
relationship like Spearman’s ρ. For New Zealand, data for the entire population are included. For
Germany, separate data for the eastern and the western regions are included. England and Wales,
Scotland, and Northern Ireland are included separately. Measures are calculated based on period
life tables in the respective years. The measures in continuous notation and examples of their usage
can be found in Table 2. (G - Gini-coefficient, CV - coefficient of variation, H - Keyfitz’ entropy,
IQR - inter quartile range, SD - standard deviation, VAR - variance, S10 - standard deviation above
age 10, e† - average life years lost)

IRR ORR TRR IQR e† H G CV SD VAR S10
IRR 0.73 0.84 -0.88 -0.81 -0.79 -0.69 -0.60 -0.53 -0.53 -0.78

ORR 0.78 0.89 -0.77 -0.85 -0.92 -0.88 -0.82 -0.73 -0.73 -0.67
TRR 0.83 0.94 -0.85 -0.89 -0.93 -0.83 -0.75 -0.66 -0.66 -0.74
IQR -0.64 -0.80 -0.77 0.86 0.82 0.73 0.65 0.59 0.59 0.80

e† -0.69 -0.74 -0.75 0.76 0.90 0.81 0.74 0.68 0.68 0.81
H -0.78 -0.92 -0.91 0.81 0.81 0.88 0.80 0.71 0.71 0.73
G -0.74 -0.94 -0.90 0.84 0.75 0.91 0.91 0.82 0.82 0.65

CV -0.72 -0.93 -0.88 0.84 0.74 0.90 0.98 0.89 0.89 0.58
SD -0.50 -0.68 -0.64 0.81 0.71 0.69 0.73 0.74 1.00 0.54

VAR -0.50 -0.68 -0.64 0.81 0.71 0.69 0.73 0.74 1.00 0.54
S10 -0.60 -0.54 -0.57 0.54 0.71 0.60 0.54 0.53 0.52 0.52
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Table 2: Overview of common measures of variability. All measures are used in the correlation
analysis. Not all mentioned examples apply the measure according to the mentioned notation.

Measure Expression Example

Gini-Coefficient G = 1− 1
e0

ω∫
0

l2
a da Shkolnikov et al. (2003); Smits and

Monden (2009)

Average Life Years Lost e† =
ω∫
0

eada da Vaupel et al. (2011)

Keyfitz’ Entropy H =

ω∫
0

eada da

e0
Nagnur (1986); Nusselder and
Mackenbach (1996)

Standard Deviation SD =

√
ω∫
0
(a− e0)2da da Myers and Manton (1984); Ed-

wards and Tuljapurkar (2005);
Thatcher et al. (2010); Kannisto
(2000)

Variance VAR =
ω∫
0
(a− e0)2da da Edwards and Tuljapurkar (2005);

Gillespie et al. (2014)

Coefficient of Variation CV =

√
ω∫
0
(a−e0)2da da

e0
Anand et al. (2001)

Standard Deviation above
Age 10

S10 =

√
ω∫

10
([a−10]−e10)2da da

l10
Edwards and Tuljapurkar (2005);
Gillespie et al. (2014)

Inter Quartile Range IQR = Xl0.75 − Xl0.25 Wilmoth and Horiuchi (1999)
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C MIRA Ratios for all HMD Countries: Females
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Figure 1: Inner rectangle ratio, outer rectan-
gle ratio and total rectangle ratio, all Human
Mortality Database countries with data be-
tween 1850 and 2014, females. All calculations
are based on period life tables in the respec-
tive year. Source: Human Mortality Database
(2015)
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D MIRA Ratios for all HMD Countries: Males
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Figure 2: Inner rectangle ratio, outer rectan-
gle ratio and total rectangle ratio, all Human
Mortality Database countries with data be-
tween 1850 and 2014, males. All calculations
are based on period life tables in the respec-
tive year. Source: Human Mortality Database
(2015)
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E Maximum shared lifespan x∗ for all HMD Countries
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Figure 3: Maximum shared lifespan x∗, all Human Mortality Database countries with data be-
tween 1850 and 2014, males and females. All calculations are based on period life tables in the
respective year. Source: Human Mortality Database (2015)
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F The threshold ages used to separate early and late mortality

The term “threshold age” is commonly used to describe a specific age, which represents the cut-off

age between premature and old-age mortality. Existing approaches commonly define this bor-

der such that mortality reductions before this age would result in a decrease of lifespan variability,

whereas mortality reduction at higher ages would lead to an increase of lifespan variability. Zhang

and Vaupel (2009) and Gillespie et al. (2014) derive threshold ages using average life years lost (e†)

and variance of the age at death (VAR), respectively. Van Raalte and Caswell (2013) provide results

for a range of lifespan variability measures using matrix calculus.

The approaches by Zhang and Vaupel (2009) rests on a proportional change in age-specific

mortality, expressed by the derivative of the respective measures with respect to the logarithm of

the force of mortality (µx). Accordingly, the age separating early and late mortality in the approach

by Zhang and Vaupel (2009) is given by the root of equation 13,

kx = e†
x + ex(Hx − 1) (13)

where e†
x denotes average person years lost above age x, ex is the remaining life expectancy at age

x, and Hx denotes the cumulative hazard at age x.

In their applications, Gillespie et al. (2014) use different starting ages for the calculation of their

threshold age. For comparison reasons, we choose the variant which starts directly at birth. Similar

to the application by Zhang and Vaupel (2009), Gillespie et al. (2014) base their threshold age also

on a proportional change in age-specific mortality. Accordingly, equation 14 results from deriving

the variance of the age at death with respect to ln µx.

kx = −2µx

ω∫

x

la(a− e0) da (14)

In equation 14, la denotes the survival fraction at age a and e0 is life expectancy at birth. The thresh-

old age is then given by the root.

We calculated these ages by estimating the respective function empirically and searching for

the root numerically. The procedure is similar to those applied for calculating MIRA quantities

and the endpoint of the survival curve.
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Abstract
Increasing longevity can distort time trends in summary measures of health and mortality,

such as the lifetime risk of getting diseased. If not observing a cohort, this lifetime risk is cal-

culated with cross-sectional data on age-specific incidence and survival. In those instances,

incidence and survival may work in opposite directions resulting in lifetime risk estimates

where, reductions in incidence might be offset by a simultaneous longevity increase. The

proposed method decomposes the difference between two lifetime risks into contributions

of changing incidence and changing survival. The approach can be extended to measure

the contributions of changes in disease related mortality and even case fatality. We illustrate

the method with hypothetical examples as well as remaining lifetime risk at age 60 of

experiencing a myocardial infarction, colorectal cancer and hip fractures for Swedish males.

The empirical examples show that the influence of increasing longevity on the development

of lifetime risk depends on the respective age profile of occurrence. In the cases of myocar-

dial infarction and hip fracture, longevity increases of the general population counterbal-

anced or even exceeded the substantial gains in disease incidence, while for colorectal

cancer, the lifetime risk was almost unaffected by the longevity improvement. This was

because colorectal cancer has an on average earlier onset than myocardial infarction and

hip fracture.

Introduction

Lifetime risk expresses the probability to develop a certain disease throughout lifetime or from

a certain age onward (remaining lifetime risk). This makes it a useful indicator for monitoring

the burden of a disease in a population. It is, for instance, widely applied in cancer research

[1–4].

There is no common procedure for the calculation of lifetime risk. In many studies, it rests

on longitudinal data for cohorts, such as the Rotterdam study, the Framingham Heart Study

or population register data [5, 6]. Lifetime risk in these approaches refers to observed lifetimes

PLOS ONE | https://doi.org/10.1371/journal.pone.0195307 April 19, 2018 1 / 9

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ebeling M, Modig K, Ahlbom A, Rau R

(2018) The effects of increasing longevity and

changing incidence on lifetime risk differentials: A

decomposition approach. PLoS ONE 13(4):

e0195307. https://doi.org/10.1371/journal.

pone.0195307

Editor: Brecht Devleesschauwer, Scientific Institute

of Public Health (WIV-ISP), BELGIUM

Received: August 25, 2017

Accepted: March 20, 2018

Published: April 19, 2018

Copyright: © 2018 Ebeling et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The authors confirm

that, for approved reasons, some access

restrictions apply to the disease-specific data

underlying the findings. The incidence rates are

based on national registers in Sweden and the

datasets contain sensitive information. The

restrictions of these data are imposed by the data

owners, the National Board of Health and Welfare

in Sweden (http://www.socialstyrelsen.se/english)

and Statistics Sweden (http://www.scb.se/en_/).

Therefore only the unidentifiable dataset that was

used for the analyses presented in this paper is



of individuals. However, lifetime risk has also been calculated based on cross-sectional data [1,

4, 7]. This approach is sometimes called “current probability method” [8]. In such a context,

lifetime risk is based on observed disease and death patterns at a certain point in time. For at

least two practical reasons, the use of cross-sectional lifetime risks are a valuable alternative to

estimates based on longitudinal data. First, the data requirements are much lower for such a

lifetime risk since no data with a sufficiently long follow-up time are necessary. Second, a

cross-sectional lifetime risk summarizes the current burden in the population, whereas a life-

time risk based on longitudinal data summarizes past trends.

For the calculation of lifetime risk based on cross-sectional data, death and incidence rates

for the respective period and population are required. Essentially by using standard life table

techniques, these death and incidence rates are assumed to apply as if a real cohort would pass

through time. The necessary assumption of time-invariant mortality and incidence are obvi-

ously false but since we are aiming to depict the current situation, this is, nevertheless, accept-

able. Let us assume we have age-specific death and incidence rates of myocardial infarction for

males aged 60 and older in a certain period. For this example, an interpretation of a lifetime

risk would be: a 60 year-old male at the specific point in time has on average a remaining life-

time risk of, for instance, 30% to experience a myocardial infarction, if mortality and incidence

stay constant over time.

The underlying risk population for a cross-sectional lifetime risk is usually drawn from a

life table [1, 4, 8]. Accordingly, the two exit possibilities are the disease of interest and death as

competing risk. The resulting lifetime risk estimate is based on the population age-structure of

the life table, which can be regarded as a closed and stationary population, and which, solely

depends on age-specific incidence and survival. Hence, differences in lifetime risk over time or

between populations can arise from differences in incidence or in general survival. However,

changes in just one of the two are unlikely in reality. In this instance, the interplay of survival

and disease incidence can distort lifetime risk estimates and complicates meaningful compari-

sons of cross-sectional lifetime risks over time or between populations [1]. For example, a

recent study has shown that the lifetime risk of hip fracture increased over time, despite declin-

ing age-specific incidence rates [7]. But how much of the change in lifetime risk can be attrib-

uted to each of the two factors?

In this paper, we aim to present a simple method to disentangle the two factors, allowing us

to quantify how much of the change in lifetime risk is due to 1) changes in age-specific inci-

dence and 2) changes in age-specific survival in the general population. We illustrate the

method with an example based on artificial data and an application to empirical estimates of

lifetime risk of myocardial infarction, hip fracture and colorectal cancer, using incidence and

mortality of Swedish males.

Methods

Decomposing lifetime risk

Assuming that our incidence rates depict the first occurrence of the disease of interest, the rate

of either dying or getting diagnosed at age x, μx, can be written as

mx ¼ mx þ Ix ð1Þ

where mx is the death rate at age x and Ix is the incidence rate of getting diseased at age [1, 9].

For these estimation, death rates ideally refer to the disease-free population because they are

the exit rate for those who die before getting diseased, whereas incidence covers the exit rate

for those who get diseased before they die. In empirical application, however, these data

requirements can not always be fulfilled and alternative death rates must be used (see data and

Decomposing lifetime risk
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materials for further discussion). Note that death and incidence rates are referring to age inter-

vals, which can also be bigger than one year of age. However, the length of the age-groups does

not change the basic derivation of the decomposition method. To improve readability, we

therefore excluded the notation of intervals throughout the manuscript. Moreover, the whole

approach assumes constant rates within age intervals and also independence of age-specific

death and incidence rates.

The probability of staying alive and healthy within one age interval x can be expressed by

exp[−μx]. Hence, the fraction alive and healthy at age x can be calculated by exp½�
X

0�xi<x

mxi
�,

where xi denotes the running index of the sum, which is age. The lifetime risk of becoming dis-

eased from age x onward, lrx, can then be calculated by

lrx ¼
X

x�xi�o

Ixi exp½�
X

0�xi<x

mxi
�; ð2Þ

where ω denotes the highest age attained. Eq 2 can be rewritten as

lrx ¼
X

x�xi�o

Ixi exp½�
X

0�xi<x

Ixi � exp½�
X

0�xi<x

mxi
�: ð3Þ

For simplicity, we will write �xi
for Ixi exp½�

X

0�xi<x

Ixi � and lxi for exp½�
X

0�xi<x

mxi
�. Hence, Eq 3

changes to

lrx ¼
X

x�xi�o

�xi
lxi : ð4Þ

We are interested in decomposing the change in lifetime risk to experience a given disease,

denoted with Δ, between two time points A and B or, more generally, the difference between

two populations:

D ¼ lrx;A � lrx;B: ð5Þ

The following methodological outline and derivation of the decomposition is based on previ-

ous studies, which provide general results for mathematical problems of such kind [10, 11].

Given the general definition of lifetime risk of Eq 4, we can rewrite Eq 5 to

D ¼
X

x�xi�o

�xi;A
lxi ;A �

X

x�xi�o

�xi;B
lxi ;B: ð6Þ

Rearranging Eq 6 leads to

D ¼
X

x�xi�o

lxi ;A � lxi ;B
h i�xi;A

þ �xi ;B

2
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution of Changing Survival Conditions

þ
X

x�xi�o

�xi;A
� �xi ;B

h i lxi ;A þ lxi ;B
2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Contribution of Changes in Incidence

:
ð7Þ

The omitted steps for deriving the expression in Eq 7 are listed in the S1 Appendix. Eq 7 pro-

vides now two distinct interpretable terms. The left term expresses the contribution of chang-

ing survival conditions to the difference in the lifetime risk between populations A and B. The

right term expresses the contributions of changes in disease incidence to the difference in the

lifetime risk between populations A and B. For both left and right term, age-specific differences

in incidence and survival are standardized by average age-specific survival and incidence

between both populations, respectively. This could be interpreted as if mortality or,

Decomposing lifetime risk
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respectively, incidence would have been the same for both populations. Note in the S2 Appen-

dix you find an extension of this decomposition, which additionally includes the mortality of

the specific disease.

Hypothetical example

Table 1 presents three hypothetical examples to illustrate the decomposition as presented

in Eq 7. In the first example (I), survival improves as reflected in the lx–columns, while the

incidence proportions are unchanged. The lifetime risk rose by 12 percentage points from

lrA = 0.24 to lrB = 0.36. Because we subtracted B from A we obtained a negative value. The con-

tribution to the increase in the lifetime risk from changes in incidence proportions (last col-

umn) is obviously zero since iA,x and iB,x do not differ at any age. As expected, the difference in

lifetime risk can be completely attributed to improvements in survival.

The complementary picture is provided by the second example (II). Age-specific survival

does not differ between time points A and B. Instead, the age-specific incidence proportions

changed over time. The overall reduction in lifetime risk of 0.07 is therefore equivalent to the

sum of the contributions from the different age categories.

Although all examples are hypothetical, the third example (III) is probably closest to reality

because contributions to lifetime risk differences originate from changes in age-specific sur-

vival as well as from changes in age-specific incidence proportions. The lifetime risk increased

by 15 percentage points from 0.33 to 0.48. Our decomposition method allows us to disentangle

the overall effect into contributions due to varying mortality conditions and varying age-spe-

cific incidence. It turns out that the increase in lifetime risk is due to a combination of higher

incidence proportions and higher survival. In addition to this qualitative assessment, we can

also state that improved survival contributed almost three times more (0.11) to the increase in

lifetime risk than the actual incidence risk (0.04).

Table 1. Illustration of the decomposition method with hypothetical examples. (I) Changes in age-specific survival. (II) Changes in age-specific incidence. (III)

Changes in age-specific survival and incidence. In all three examples, we decomposed the change from A to B (A − B).

Contribution of Change in Age-

Specific

Scenario Age x lA,x lB,x ϕA,x ϕB,x Survival† Incidence‡

(I) Change in Survival 1 1.0 1.0 0.0 0.0 0.00 0

2 0.7 0.8 0.2 0.2 -0.02 0

3 0.2 0.4 0.3 0.3 -0.06 0

4 0.1 0.2 0.4 0.4 -0.04 0

lrA = 0.24 lrB = 0.36 Δ = −0.12 ∑ -0.12 0

(II) Change in Incidence 1 1.0 1.0 0.0 0.0 0 0.00

2 0.7 0.7 0.2 0.1 0 0.07

3 0.2 0.2 0.3 0.4 0 -0.02

4 0.1 0.1 0.4 0.2 0 0.02

lrA = 0.24 lrB = 0.17 Δ = 0.07 ∑ 0 0.07

(III) Changes in Survival and Incidence 1 1.0 1.0 0.1 0.2 0.000 -0.100

2 0.5 0.8 0.2 0.1 -0.045 0.065

3 0.3 0.4 0.3 0.4 -0.035 -0.035

4 0.1 0.2 0.4 0.2 -0.030 0.030

lrA = 0.33 lrB = 0.48 Δ = −0.15 ∑ -0.11 -0.04

† Estimated by first part of Eq 7.
‡ Estimated by second part of Eq 7.

https://doi.org/10.1371/journal.pone.0195307.t001
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Empirical examples

Material and data

We applied the method to remaining lifetime risk of getting diagnosed with myocardial infarc-

tion, colorectal cancer and hip fracture for Swedish males at age 60. Note, however, that the

decomposition can be applied to lifetime risk starting at any age. For the different diseases, we

compared the lifetime risk between two different time points. These are 1987 and 1994 for

colorectal cancer, 1994 and 2014 for hip fractures and 1994 and 2004 for myocardial

infarction.

The incidence estimates for the three disease outcomes were obtained from Swedish regis-

try data maintained by Statistics Sweden and the National Board of Health and Welfare [12].

For myocardial infarction and hip fracture, the first event occurring after age 60 after a seven

year disease free period was identified from the National Patient Register. For colorectal can-

cer, the date of the diagnosis of the cancer was collected from the Swedish Cancer Register.

The incidence counts have been smoothed across age and time to reduce random fluctuations,

using the MortalitySmooth package in R [13, 14].

Death—the competing risk of getting diseased— should ideally be measured by the death

rates of the disease-free population. This requires sufficiently detailed data sources, which

allow to follow individuals over time, in order to determine whether they can be considered

disease-free or not. In most cases, however, such detailed data are not available, and therefore,

alternative data sources must be used. In our example, death rates are based on death counts

and population data of the total Swedish male population, provided by the Human Mortality

Database [15]. For two reasons, these death rates are very likely overestimating mortality in a

cross-sectional setting. First, persons who get diseased and die in the same year are considered

in the incidence as well as in the death rate and are therefore counted as two separate exits. Sec-

ond, in our quasi-cohort perspective, death rates at consecutive ages are also potentially too

high because total population death rates still contain the diseased population. It is very likely

that this population suffers from higher mortality than the disease-free population. For practi-

cal reasons, however, the use of such death rates is acceptable because this misclassification

likely overestimates mortality, and thus, leads to upper bound estimates of lifetime risk and the

contribution of increased survival. Note that the bias of using such death rates depends on the

respective relationship between mortality and the disease of interest.

The left panel of Fig 1 depicts the time trends of lifetime risk for the respective diseases. The

dots mark the time points, which are selected for the decomposition. The selection is based on

the pattern of the respective lifetime risks. Accordingly, for myocardial infarction, we choose

the end points of a period with almost stagnating levels of lifetime risk. For hip fracture, both

time points comprise a period of slight increases and for colorectal cancer, the time points are

the boundaries of a period of increasing lifetime risk. The right panel illustrates the results of

the decomposition. The bars show the contribution of changing survival and of changing inci-

dence as well as the total change in lifetime risk.

Results

In the case of myocardial infarction, the lifetime risks are almost similar at the two time points,

which could lead to the conclusion that there have been no improvements in incidence above

age 60. By applying the decomposition, however, it becomes clear that declining incidence

would have generated a decrease in lifetime risk by more than three percentage points but

increasing longevity prevented this decline. If only mortality would have changed between the

two time points, the mortality improvements and, hence, the higher number of survivors to

Decomposing lifetime risk

PLOS ONE | https://doi.org/10.1371/journal.pone.0195307 April 19, 2018 5 / 9



older ages would have resulted in an increase of lifetime risk by more than 2.5 percentage

points. In sum, the counteracting factors resulted in an overall change of lifetime risk by less

than a half percentage point.

For hip fracture, we observe a slight but steady increase in remaining lifetime risk above age

60 over time. This rise, however, is entirely driven by increasing longevity. The declining inci-

dence, given the same mortality at both time points, would have contributed to a decrease of

lifetime risk by more than 1.5 percentage points, whereas the survival improvements, given the

same incidence at both time points, would have generated an increase by more than 3 percent-

age points. Accordingly, the total change sums up to an increase by almost 1.5 percentage

points.

Colorectal cancer is an example, where lifetime risk increases relatively steeply in a short

period of time. In contrast to the other two examples, incidence contributes to a rise in the

remaining lifetime risk at age 60. Consequently, the incidence between 1987 and 1994 has

increased. Rising incidence alone would have generated an increase of lifetime risk by more

than 2.5 percentage points. Also the role of improving survival for changes in the lifetime risk

are different compared to the other two examples. The on average earlier occurrence of colo-

rectal cancer lowered the impact of the longevity advancement. Hence, the contribution of

increasing survival, given the same incidence at both time points, would have resulted in an

increase by slightly more than 0.25 percentage points. The total change, thus, sums up to a rise

of lifetime risk by almost 3 percentage points.

Discussion and conclusion

In this paper, we presented a decomposition method, which allows to separate the contribution

of changing incidence and changing survival on the difference between two lifetime risks. The

Fig 1. Remaining lifetime risk at age 60 and lifetime risk decomposition for myocardial infarction, hip fracture and colorectal cancer, Sweden, males.

https://doi.org/10.1371/journal.pone.0195307.g001
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method can be applied to compare lifetime risks over time or between different populations.

We illustrated the method and the interpretation of its estimates using hypothetical as well as

empirical data for three different diseases, which differ in their development of lifetime risk

over time.

In the analysis of time trends of the incidence of a certain disease, lifetime risk may be a

suitable summary measure across age categories or lifespan. In such an application, it is con-

ceivable that the incidence decreases with time in parallel with a reduction in death risks,

which in turn determines survival. This is the situation in which the change in incidence forces

lifetime risk to go down, while the change in survival forces lifetime risk to go up. Thus, the

two forces work in opposite directions and a positive development of the risk of getting a dis-

ease may be hidden but can be excavated by a decomposition method. Of course, other

approaches such as age-standardization are conceivable to investigate the change in incidence

but such methods would ignore the quantification of the influence of improved survival. In

this context, lifetime risk provides a valuable, perhaps unique, opportunity to combine infor-

mation on survival and incidence within one single index. The presented decomposition

method allows to investigate incidence change and additionally survival change at the same

time by comparing directly the observed age-specific incidence and death rates, thereby omit-

ting the use of some arbitrary standard population.

As we have seen from the empirical examples, whether increasing longevity influences the

development of lifetime risk or not, depends on the timing of the respective disease. In recent

decades, mortality improvements have been especially prevalent at higher ages [16]. Accord-

ingly, especially lifetime risks of diseases, which tend to occur at higher ages, are influenced by

increasing survival. This is because improved survival causes a higher number of survivors to

the ages where disease incidence is highest and, hence, even when incidence is going down,

the declines at those ages are at least compensated by the higher number of persons under risk.

In turn, for disease which tend to occur at ages with only marginal survival improvements,

incidence declines of the same magnitude would have a stronger effect on lifetime risk. That is

because of the number of survivors at that ages, which differs only marginally between the two

populations.

Furthermore, it is worth noting that for fatal diseases there is a certain degree of depen-

dency between the disease risks and the death risks. However, as we show in the appendix the

method could easily be extended to capture this dependency. In this case, it is a three factor

decomposition, which separates, besides the contributions of survival and incidence, the con-

tribution of changes in disease related mortality to incorporate the interrelation of declining

incidence as a potential driver of increasing longevity over time. In fact, the approach could

even be extended to a four factor decomposition, which could additionally provide the contri-

bution of changing case fatality.

Many common summary measures of population health and mortality are distorted by the

increase in longevity, or more generally by the change of the age-structure of the underlying

population. The general procedure presented here can add to our understanding of the influ-

ences of these factors on such measures. Practically, these decompositions could also be impor-

tant in forecasting and planning health care resources in the future.

Supporting information

S1 Appendix. Mathematical derivation of the method: Omitted steps.

(PDF)
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S2 Appendix. Extending the decomposition by the disease related mortality rate: Equa-

tions and illustrative example.

(PDF)
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The effects of increasing longevity and changing
incidence on lifetime risk differentials: A

decomposition approach
(Appendix 1)

Marcus Ebeling∗, Karin Modig†, Anders Ahlbom‡and Roland Rau§

Mathematical derivation of the method: omitted steps
In the main text, we have not shown the full derivation of the decomposition method. The steps
to derive the final decomposition formula are shown below. Starting from the equation

Δ =
∑

x≤xi≤!
�xi,Alxi,A −

∑
x≤xi≤!

�xi,Blxi,B. (1)

we split the two components in the first line of Eq 2 in halves, and add and subtract identical
terms in the second line of Eq 2. We do this in order to end up with easily interpretable terms.

Δ =

∑
x≤xi≤!

lxi,A�xi,A

2
+

∑
x≤xi≤!

lxi,A�xi,A

2
−

∑
x≤xi≤!

lxi,B�xi,B

2
−

∑
x≤xi≤!

lxi,B�xi,B

2

+

∑
x≤xi≤!

lxi,A�xi,B

2
−

∑
x≤xi≤!

lxi,A�xi,B

2
+

∑
x≤xi≤!

lxi,B�xi,A

2
−

∑
x≤xi≤!

lxi,B�xi,A

2
.

(2)

By grouping, we can reduce Eq 2 to four terms:

Δ =
∑

x≤xi≤!
lxi,A

�xi,A + �xi,B
2

+
∑

x≤xi≤!
�xi,A

lxi,A + lxi,B
2

−
∑

x≤xi≤!
lxi,B

�xi,A + �xi,B
2

−
∑

x≤xi≤!
�xi,B

lxi,A + lxi,B
2

.
(3)
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Eq 3 can now be rewritten to get the decomposition formula

Δ =
∑

x≤xi≤!
[
lxi,A − lxi,B

] �xi,A + �xi,B
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contribution of Changing Survival Conditions

+
∑

x≤xi≤!
[
�xi,A − �xi,B

] lxi,A + lxi,B
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contribution of Changes in Incidence

. (4)
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The effects of increasing longevity and changing
incidence on lifetime risk differentials: A

decomposition approach
(Appendix 2)

Marcus Ebeling∗, Karin Modig†, Anders Ahlbom‡and Roland Rau§

Extending the decomposition by the disease related mortality
rate: equations and illustrative example
To investigate and illustrate the relationship between declining incidence of the respective dis-
ease and its role as a potential driver of increasing longevity over time, we incorporate disease-
related mortality as a third factor to the decomposition. If we are including the death rate of the
respective disease at age x, dx, the rate of either dying or getting diagnosed at age x changes to

�x = mx + Ix + dx, (1)

where, for interpretation reasons, mx now depicts the death rate for all other causes than the
disease in question. By applying this modification, the calculation of lifetime risk changes to

lrx =
∑

x≤xi≤!
Ixi exp[−

∑
x≤y<xi

Iy] exp[−
∑

x≤y<xi
my] exp[−

∑
x≤y<xi

dy]. (2)

For simplicity, we will write again �xi for Ixi exp[−
∑

x≤y<xi
Iy] and lxi for exp[−

∑
x≤y<xi

my] and,
furthermore, �x,i for exp[− ∑

x≤y<xi
dy]. Given these changes, the original decomposition formula

is extended by a third term, which indicates the contribution of changes in disease-specific
∗University of Rostock & Max Planck Institute for Demographic Research, Rostock, Germany
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mortality between both populations. Accordingly, the formula writes as follows
∑

x≤xi≤!
�xi,Alxi,A�xi,A −

∑
x≤xi≤!

�xi,Blxi,B�xi,B =

∑
x≤xi≤!

(�xi,A − �xi,B)
[ lxi,A�xi,A + lxi,B�xi,B

3
+
lxi,A�xi,B + lxi,B�xi,A

6

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contribution of Changing Incidence Risks

+
∑

x≤xi≤!
(lxi,A − lxi,B)

[�xi,A�xi,A + �xi,B�xi,B
3

+
�xi,A�xi,B + �xi,B�xi,A

6

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contribution of Changing Survival Conditions (except Disease)

+
∑

x≤xi≤!
(�xi,A − �xi,B)

[�xi,Alxi,A + �xi,Blxi,B
3

+
�xi,Alxi,B + �xi,Blxi,A

6

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Contribution of Changing Disease Related Survival

(3)
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Figure 1: Decomposition of Lifetime Risk at Age 60 for Myocardial Infarction, Sweden,
Males, 1994-2004.

Fig. 1 shows an application of the three factor decomposition to the example of lifetime
risk for myocardial infarction for Swedish males, comparing the years 1994 and 2004. During

2



this period, lifetime risk almost stagnated, which could lead to the presumption that there has
been no improvement in the incidence of getting a myocardial infarction. By applying the three
factor decomposition, however, we see that the opposite is true. Not only incidence declined,
also the mortality of myocardial infarction improved. Given the same mortality for myocardial
infarction and all other causes, the contribution of changing incidence between both time points
would have resulted in a decrease of lifetime risk by more than 3 percentage points. However,
the improved survival for both myocardial infarction and all other causes prevented this decline.
Hence, given the same incidences and mortality of myocardial infarction at both time points, the
contribution of increased survival for all other causes would have resulted in a rise of lifetime
risk by more than 1.25 percentage points. Additionally, improved mortality for myocardial
infarction would have resulted in an increase by almost 1.5 percentage points. In sum, the three
factors add up to a total change of less than -0.5 percentage points.
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The effects of increasing longevity and changing incidence on
lifetime risk differentials: A decomposition approach

—
Correction

We noticed an incorrect summation index that appears in some equations. This error has no
effect on the content of the article. By recalculating our empirical examples with the revised for-
mulas, we noticed only minor changes in the empirical outcomes of our decomposition method.
The magnitude of the changes does not require any adjustments of the text. In fact, they even
strengthen the message of our paper. In conclusion, the incorrect summation index requires the
following corrections:

1. revise the respective formulas in the original paper
2. upload a revised S2 Appendix
3. exchange Figure 1 with a revised figure

1. revise the respective formulas in the original paper

Original text (page 3 in the original manuscript):

Hence, the fraction alive and healthy at age x can be calculated by exp[− ∑
0≤xi<x

�xi],
where xi denotes the running index of the sum, which is age. The lifetime risk of
becoming diseased from age x onward, lrx, can then be calculated by

lrx =
∑

x≤xi≤!
Ixi exp[−

∑
0≤xi<x

�xi], (2)

where ! denotes the highest age attained. Eq 2 can be rewritten as

lrx =
∑

x≤xi≤!
Ixi exp[−

∑
0≤xi<x

Ixi] exp[−
∑

0≤xi<x
mxi]. (3)

For simplicity, we will write �xi for Ixi exp[−
∑

0≤xi<x
Ixi] and lxi for exp[−

∑
0≤xi<x

mxi].

Corrections/track changes of the respective part (changes are highlighted in blue):



Hence, the fraction alive and healthy at age xi can be calculated by exp[− ∑
x≤y<xi

�y],
where xi denotes the running index of the sum, which is age. The lifetime risk of
becoming diseased from age x onward, lrx, can then be calculated by

lrx =
∑

x≤xi≤!
Ixi exp[−

∑
x≤y<xi

�y], (2)

where ! denotes the highest age attained. Eq 2 can be rewritten as

lrx =
∑

x≤xi≤!
Ixi exp[−

∑
x≤y<xi

Iy] exp[−
∑

x≤y<xi
my]. (3)

For simplicity, we will write �xi for Ixi exp[−
∑

x≤y<xi
Iy] and lxi for exp[−

∑
x≤y<xi

my].

2. upload a revised S2 Appendix

The incorrect summation index appears also in the S2 appendix. Therefore, this document
requires also minor revisions. Please see the attached document.

3. exchange Figure 1 with a revised figure

Figure 1 shows the graph as printed in the published article. Figure 2 depicts the revised
version of the graph after adjusting for the incorrect summation index.

The following changes occurred after the adjustment for the incorrect summation index:
• myocardial infarction

– slight increase in the lifetime risk estimates
• colorectal cancer

– slight increase in the lifetime risk estimates, the total change between the two lifetime
risks compared, and the contributions of changes in disease incidence

• hip fracture
– slight increase in the lifetime risk estimates, the total change in the two lifetime risks
compared, and the contribution of changes in survival

– slight decline in the contribution of changes in disease incidence

2



The outlined changes do not influence the outcomes of the article and do not require any editing
of the text in the manuscript.
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Figure 1: Figure 1 OLD
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Introduction

The aim of most mortality forecasts is to predict how many additional years of life
people will gain in the future. Basic life table functions—such as life expectancy at
birth (a measure of central tendency) and age-specific death rates (measures of
mortality intensity) are usually applied to evaluate the precision of such fore-
casts. The closer a forecast is to the observed development, the greater is its
forecasting performance—or, interchangeably, its predictive ability. Goodness-of-fit
tests as well as validation procedures are typically used to evaluate the predictive ability
of mortality forecasts. Placing particular emphasis on ex post quantitative aspects
(Armstrong and Collopy 1992; Cairns et al. 2011b; Keilman 1997; Shang 2015),
conventional evaluation measures quantify the difference between predicted and
observed mortality. It is commonly considered that the greater such forecast
errors, the poorer is the forecasting performance. However, although deviations
are supposed to be small, zero deviations would indicate overfitting rather than
a good forecasting performance. Forecast errors can be expressed in absolute or
relative terms, and they can be averaged over dimensions such as age, time,
and population (Booth et al. 2006; Keilman and Pham 2004; Koissi et al. 2006;
Shang et al. 2011; Smith et al. 2001). The meaning of these errors changes in
each case. For example, means of absolute errors measure accuracy, whereas
means of positive and negative errors measure bias—that is, systematic over- or
underestimation. Relative errors deal with scale dependency and therefore allow
comparison of errors across measures and methods. Dowd et al. (2010); Koissi
et al. (2006), and Lee and Miller (2001) analyzed how errors or (standardized)
residuals are distributed. In addition to employing visualization techniques,
these authors used statistical tests such as chi-squared, Levene’s test, the
variance ratio test, or the Jarque-Bera normality test. Moreover, Shang (2015)
recently proposed using test statistics to reveal significant differences in the forecast
accuracy of point and interval estimates as well as differences between the forecasts of
multiple approaches.

Errors and test statistics of basic life table functions are useful for specifying
precisely how mortality has been forecasted. However, small errors in the forecasts
of average lifespan do not necessarily indicate that the forecasted underlying mortality
developments are plausible. Figure 1 illustrates this issue in more detail with a
scatterplot that displays the negative correlation between life expectancy at birth and
lifespan disparity measured by average life years lost at birth, e†0 (e.g., Vaupel and
Canudas-Romo 2003), for women in Italy, Denmark, and Japan from 1950 to 2012. In
contrast to basic life table measures, e†0 provides information about the underlying
mortality developments. Although life expectancy at birth has increased in recent
decades because of reductions in mortality at progressively higher ages, e†0 has de-
creased mainly as a result of survival improvements at premature ages, which shifted
deaths toward the end of the lifespan. Figure 1 shows a striking pattern: the average
lifespan of Italian, Danish, and Japanese women has been similar in recent decades,
whereas the decline in the variability of the age at death differed considerably among
these groups of women as soon as their average lifespan exceeded 75 years. Specifi-
cally, lifespan dispersion (1) declined regularly for Italian women, (2) leveled off for
Japanese women, and (3) increased and decreased for Danish women.
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These findings illustrate that different underlying mortality trajectories can
lead to similar average lifespans and lifespan disparities. Other researchers
have discussed this relationship in detail (e.g., Smits and Monden 2009;
Vaupel et al. 2011; Wilmoth and Horiuchi 1999). For example, Wilmoth and
Horiuchi (1999) showed that different levels of life expectancy at birth can
come across with different levels of lifespan dispersion. Goldstein and Cassidy
(2012) and Bergeron-Boucher et al. (2015) analyzed the impact of changing
slopes in the mortality age profile on life expectancy at birth and lifespan
dispersion. For instance, Goldstein and Cassidy concluded that changes in the
slope have a relatively larger effect on life expectancy at birth than changes in
the level of mortality. To ensure that we take these underlying trajectories into
account, we propose expanding the toolkit of conventional evaluation
procedures. Basic life table functions should be complemented by measures
of lifespan dispersion to improve the assessment of ex post quantitative
aspects and to evaluate the plausibility of underlying mortality trends. To the
best of our knowledge, only Cairns et al. (2006, 2011b) have taken a similar
approach. They added an ex ante evaluation with qualitative criteria to ex post
measures; that is, they examined the forecasting performance using qualitative
criteria, such as the biological validity of the age schedule of mortality, and
investigated the consistency of the forecasts using historical data. However, as
far as we know, no existing studies have used lifespan disparity as an evalu-
ation measure for the plausibility of mortality forecasts. The objective of this
article is to highlight the necessity to assess whether mortality forecasting
methods can capture and forecast different trends of life expectancy at birth
and lifespan disparity—that is, expose the benefits of incorporating lifespan
disparity as an additional indicator in the toolkit that is used to evaluate the
performance of mortality forecasts.
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Fig. 1 Scatterplot of life expectancy at birth and average life years lost at birth due to death for women in
Denmark, Italy, and Japan from 1950 to 2012
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Lifespan Disparity: Measures and Concepts

Lifespan disparity describes the variation in the lifespan distribution—that is, the
differences in the length of life across members of a population. A wide range of
approaches can be used to measure lifespan disparity, including (1) classic statistical
variability measures, such as the standard deviation or the interquartile range; (2)
equality measures, such as the Gini coefficient; or (3) geometric approaches, such as
the Prolate index (Cheung et al. 2005; Eakin andWitten 1995; Kannisto 2000; Wilmoth
and Horiuchi 1999). However, because all these measures are highly correlated
(Vaupel et al. 2011; Wilmoth and Horiuchi 1999), we can expect that their
impact on the results would be minor. Although those measures are highly
correlated, however, their trends may differ. For example, if equality were
rising, measures of variability would decrease, whereas measures of rectangularity
would increase (Wilmoth and Horiuchi 1999).

To measure lifespan dispersion,1 we take the average number of life years lost at birth

(Vaupel and Canudas-Romo 2003; Zhang and Vaupel 2009), e†0, estimated by

e†0 ¼
∫
0

ω

eadada

l0
; ð1Þ

with ea being remaining life expectancy at age a, and da being life table deaths at age a,
with both integrated from age 0 toω, the highest age at death. l0 is the radix of the life

table. A major reason why we chose e†0 is that it is demographically interpretable as the

average life years lost. Because e†0 refers to the lost living potential, it also provides
information about the capacity for further increases in life expectancy. We argue that

these key features enable e†0 in particular to be used to evaluate the plausibility of
mortality forecasts.

Measuring lifespan disparity may reveal one of three general patterns: the compres-
sion, shifting, or expansion of mortality. Although these patterns are not mutually
exclusive in the real world, they are useful for explaining trends in lifespan disparity.
Fries (1980) established the concept of mortality compression, originally describing a
postponement of mortality to some fixed upper lifespan limit, which in turn induces a
reduction in lifespan disparity. Although the expected levels of lifespan disparity have
not been reached and the proposed levels of average lifespan have been exceeded, the
concept of mortality compression is typically used to describe the massive reductions in
lifespan variability since the mid-nineteenth century (Kannisto 2000; Nagnur 1986;
Nusselder and Mackenbach 1996). The concept of shifting mortality describes a
postponement of the old-age death bulk toward higher ages with an approximately
constant level of lifespan variability. Empirical studies have provided evidence that
shifting mortality may occur following mortality compression (e.g., Bongaarts 2005;
Canudas-Romo 2008; Kannisto 1996). The concept of mortality expansion refers to
progressive improvements in survival to very old ages that have not previously been

1 We use the terms “lifespan disparity,” “lifespan dispersion,” and “lifespan variability” interchangeably. Some

scholars also call e†0 “life disparity” (Vaupel et al. 2011). However, we use the term “lifespan disparity” to
describe the general concept of lifespan variability that we measure using average life years lost.
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reached by many people. Mortality expansion to very old ages induces temporarily
increasing lifespan variability, although its impact on total variability of the age at death
has not been evident until recently. However, increasing lifespan dispersion has been
observed in multiple populations at approximately age 60 (Engelman et al. 2010, 2014;
Rothenberg et al. 1991).

A (positive or negative) change in life expectancy at birth, along with a compression,
a shifting, and/or an expansion of mortality, are possible developments that should be
captured in a mortality forecast. Because these developments are closely related and
occur at different times in different populations, mortality forecasting approaches may
need to be adjusted to ensure that they are captured appropriately.

Mortality Forecasting Approaches That Tackle Variability of the Age
at Death

Concise Overview

Many approaches, like the canonical Lee-Carter model (1992), extrapolate past trends
while assuming that the relative progress in mortality made among people of different
ages has been time-invariant. This assumption is, however, implausible, given that
survival improvements differ considerably by age over time. In the first half of the
twentieth century, large reductions in mortality occurred among infants and young
children in many highly developed countries. More recently, most of the survival
improvements have been among adults and the elderly. In the coming decades,
mortality is expected to decline mainly among the very old. Hence, the assumption
of time-invariant changes in mortality by age may induce forecasts that are prone to
errors. Recently developed approaches respond to this problem in different ways. For
example, Janssen and de Beer (2016) accounted for the distribution of the age at death;
Li et al. (2013) rotated the age pattern of mortality change with time; and Haberman
and Renshaw (2012), Mitchell et al. (2013), and Bohk-Ewald and Rau (2017) used
rates of mortality improvement instead of death rates to forecast dynamic age shifts in
mortality decline. Moreover, Li and Lee (2005), Cairns et al. (2011a), Hyndman et al.
(2013), and others used coherent approaches to jointly forecast mortality among
multiple populations, allowing populations to adapt their below- or above-
average increases in life expectancy to a shared trend among multiple popula-
tions. Capturing ruptures in long-term trends that emerge from irregular patterns of
mortality change is also challenging. For example, Coelho and Nunes (2011) dealt with
long-term trend changes in mortality forecasts, Janssen et al. (2013) included exogenous
variables such as tobacco smoking, and Renshaw and Haberman (2006) considered
cohort mortality to account for this issue.

We select three of these approaches, which differ in their ability to capture dynamic
age shifts in survival improvement, to forecast mortality exemplarily for women in Italy,
Japan, and Denmark up to 2009 (see the next section). These models are the Lee-Carter
model, its rotating variant developed by Li et al., and the model developed by Bohk-
Ewald and Rau. Given that their levels of modeling flexibility differ, each approach
models the various trends in lifespan disparity in the three populations differently (see
Fig. 1). All the approaches mentioned in the concise overview are equally qualified to be
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selected for the case studies to show the advantages when evaluating the forecasting
performance using the mean—and, as an extra criterion, the spread of mortality. Hence,
this analysis is designed to show the additional information that can be gained when
evaluating the forecasted spread of mortality in the presence of different trends for life
expectancy at birth and lifespan dispersion. Although the case studies provide some
results for comparing the forecasting performance of the three approaches, this should be
considered preliminary and rather a byproduct than an incentive to conduct this analysis;
a valid model comparison would instead require a systematic evaluation of the forecast-
ing performance using extensive mortality data of multiple countries and periods, which
is beyond the scope of this work. Hence, for the case studies, we select three forecasting
models that cover the range of available approaches andmodeling strategies quite well. In
addition to describing the method-based assumptions of the selected approaches for
capturing dynamic age shifts in survival improvement, as well as some details on
implementation, we offer hypotheses regarding the effect that each approach might have
on the forecasted mean lifespan and lifespan disparity.

Impact of Model-Based Assumptions on Lifespan Disparity

Lee-Carter Model

Although the Lee-Carter model has been used and revised extensively since it was first
developed in 1992 (Booth and Tickle 2008; Booth et al. 2006; Butt and Haberman
2010; Shang 2012; Shang et al. 2011), we use its original version as a benchmark in our
case studies. The Lee-Carter model forecasts mortality by age and calendar year on the
logarithmic scale while assuming that the relative changes in mortality were constant
between the ages over time. Hence, if the survival improvements were relatively large
at young ages and small at old ages in the reference years, this proportion would
assumedly be unchanged in the forecast years. Yet, given the shifts by age in survival
improvements over time, we hypothesize that the inflexibility in the age profile of
mortality change would have affected the Lee-Carter forecasts up to 2009. The
extrapolation of declining mortality at infant, child, adult, and old ages based solely
on the mortality trends observed in the reference period may result in a reliable forecast
for the near future given that the prevalence of mortality reductions at very old ages will
still be low. However, if mortality continues to decline at progressively higher ages in
the coming decades, the Lee-Carter model may produce forecasts that fail to capture
correctly both the average lifespan and lifespan disparity. The absence of a dynamic
shift in survival improvements to progressively higher ages may then induce (1) an
underestimation of life expectancy at birth as well as (2) a strong compression of
deaths, which may in turn be accompanied by a strong decline in the lifespan
dispersion. To generate the mortality forecasts with the Lee-Carter model, we
implemented the model in the statistical software R (R Core Team 2015).

Li et al. Model

Many scholars have refined the Lee-Carter model to address the problem of the
inflexibility in the age profile of mortality change (Booth et al. 2006; Shang et al.
2011; Soneji and King 2011). Li et al. (2013) took an important step in this direction by
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implementing a time-variant age schedule of mortality change that rotates from a
present level to an ultimate level. The timing and the pace of the rotation depend on
the average lifespan, which has been forecasted in a previous step with the original
Lee-Carter model. As soon as life expectancy at birth exceeds a value of 80
years, the rotation starts; it then proceeds until life expectancy at birth reaches
an ultimate level of 102 years. The greater the number of forecasted additional
years of life is, the faster the ultimate schedule is achieved, and the rotation
stops. The ultimate schedule of mortality change is constant for ages 0 to 64,
and it gradually declines thereafter. The rotation basically induces a postponement
of relatively large survival improvements from younger to older ages. Given that the
average lifespan is forecasted using the original Lee-Carter model, the rotation affects
only the underlying mortality dynamics—not the average level of mortality. Assuming a
regular decline in mortality, we expect to find that (1) like the original model, the rotated
model may underestimate additional years of life; but (2) unlike the original model, it
may be able to forecast a mortality compression that is less strong because of its greater
modeling flexibility. To take these dynamic mortality changes into account, Ševčíková
et al. (2016) implemented the rotation in Raftery et al.’s (2013) model, which has been
used in the UN World Population Prospects (2014, 2015). To derive the age profiles of
mortality using the rotated Lee-Carter model, we implement this model in R with a few
adjustments. Because we allow approaches to shift deaths beyond the maximum age of
the data (see the upcoming section, “Estimation and Evaluation Procedure”), we set the
ultimate schedule of mortality change constant until age 80, and as gradually declining
thereafter. Moreover, for the rotation, we change the recommended bounds of the
forecasted lifespan, which are 80 years and 102 years. We set the lower bound at 75
because differences in lifespan disparity started to develop for women in Italy, Japan,
and Denmark as the average lifespan exceeded this value (see Fig. 1). Finally, to avoid
jump-off bias, we use the last observed death rates to forecast mortality.

Bohk and Rau Model

The model of Bohk-Ewald and Rau (2017) provides an alternative strategy for fore-
casting that relatively large rates of mortality improvement proceed from younger to
older ages. This model predicts survival improvements instead of death rates, and it
optionally combines the mortality trends of multiple populations to account for
(anticipated) trend changes in the forecast years. Although this model allows us to
assume mortality convergence between a country of interest and reference countries,
we do not use this feature in the case studies in order to enable a fair comparison with
the model of Li et al. (2013). Moreover, the Bohk and Rau model has a linear and an
exponential core model to forecast time series of age-specific mortality change, using
simulation-based Bayesian inference to run those models and to estimate coherent
changes of mortality among adjacent ages. The model has been applied to forecast
mortality for some European countries (Bohk and Rau 2014; Bohk-Ewald and Rau
2017) as well as for the United States (Bohk and Rau 2016). Although both the rotating
Lee-Carter model and the Bohk and Rau model allow the age profile of the rates of
mortality improvement to change, the latter model appears to be more flexible because
it does not assume an approximation of an ultimate schedule. If mortality declines
regularly, we expect that the Bohk and Rau model will perform as well as the rotating
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Lee-Carter model in forecasting average mortality and lifespan disparity and that it will
perform even better in generating forecasts for populations with irregular mortality
developments because it is more adaptable to different forecasting situations. To
generate the forecasts with the Bohk and Rau model, we use its implementation in R,
which is described in detail in Bohk-Ewald and Rau (2017).

Illustrative Examples

In this section, we validate the forecasting performance of the Lee-Carter model, its
rotating variant, and the model of Bohk-Ewald and Rau. Using illustrative examples,
we examine whether each model is able to generate precise forecasts of average
mortality and lifespan disparity. These illustrative examples are designed to indicate
whether the approaches can capture (1) regular and irregular trends of average lifespan
and (2) dynamic age shifts in survival improvements.

Estimation and Evaluation Procedure

The mortality forecasts up to 2009 rely on four reference periods (1965–1990, 1960–
1985, 1955–1980, and 1950–1975). We compare the estimations with the observed
values. Besides e0, which is a common indicator in evaluations, we also compare the
forecasted e†0 values with the observed values to assess the ability of the forecasting
approaches to predict average mortality and lifespan disparity. We focus our main
analysis on e0 and e

†
0, but we also provide results for e65 and e

†
65 in Online Resource 1 in

order to show how sensitive (or robust) our findings are.
We employ visualization techniques as well as forecast errors to evaluate the

forecasting performance of each method. To quantify forecast accuracy in terms of
the mean and spread of mortality, we use the absolute percentage error (APE) because it
is a relative error that relates the absolute difference between forecasted and observed
values to the size of the actual values. Because the APE can, therefore, deal with
measures of different scales, we use it to compare the forecasting performance (across
time and by country) between the methods using e0 and e†0. Given that the chosen
approaches provide probabilistic mortality forecasts, we focus not only on the evalu-
ation of median point estimates but also on the calibration of prediction intervals. We
use empirical frequencies to evaluate the uncertainty estimates of probabilistic fore-
casts; empirical frequencies give the proportion of observed values that actually fall
within the prediction intervals. For instance, a 95 % prediction interval should capture
95 % of all observations. If it captures more or fewer observations, it is too wide or too
narrow, respectively (e.g., Raftery et al. 2013; Schmertmann et al. 2014).

We generate forecasts of mortality for women in Italy (regular e0 and e†0), Japan
(regular e0 and irregular e†0), and Denmark (irregular e0 and e†0) because these groups
have differed substantially in recent decades in their levels of life expectancy and
lifespan dispersion (see Fig. 1). As input data, we use deaths and exposures by single
age from 0 to 110+, and by calendar year from 1950 to 2009, from the Human
Mortality Database (n.d.). To enable the forecasting approaches to shift deaths to ages
beyond 110+, we extend the age range to 130+ with the Kannisto model (Thatcher et al.
1998), the details of which we explain in Online Resource 1 (section A). This approach
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is similar to Ševčíková et al.’s (2016) revised UN approach. The estimation of e0 and e
†
0

(and of e65 and e†65) is based on life tables produced from the forecasted and observed
age-specific death rates.

Results

Visualize Forecast Performance Figure 2 displays the average lifespan, e0, and
the average number of life years lost, e†0, for women in Italy, Japan, and
Denmark. The observed data are in black, and the forecasted data are in red (Lee-
Carter model), green (rotating variant proposed by Li et al. 2013), and blue (Bohk and
Rau model). Moreover, the forecasted years (1991–2009) are highlighted in gray, and
the reference period (1965–1990), is highlighted in beige. Given the technical construc-
tion of the Lee-Carter models, it is not surprising that the forecasts of average lifespan
are almost identical: both models use the forecasted life expectancy at birth of the
original model. The rotated variant deviates no more than +/– 0.1 years, which we used
as a tolerance level when adjusting the age profile of mortality change with the rotation
to fit the average lifespan of the original Lee-Carter model. By contrast, the forecasts of
the Lee-Carter models differ in terms of lifespan disparity. The effect shown here is
greater than it would have been with Li et al.’s (2013) original implementation because
we let the rotation start when the average lifespan exceeded the value of 75 years, not of
80 years.

Quantify Forecast Performance Table 1 lists the mean of the APEs for e0 and e†0
over the forecast years by country and forecasting method for each validation setting,
and Table 2 lists those mean absolute percentage errors (MAPEs) averaged over all four
validation settings. Strikingly, the MAPEs appear to be greater for e†0 than for e0 for
almost any country, validation setting, and method. The overall mean of all MAPEs is
approximately 0.01 for e0 and 0.046 for e

†
0; that is, the forecasts deviate on average by

1 % from life expectancy at birth and by 4.6 % from lifespan dispersion. As a
consequence, the forecasting performance is depreciated for all methods when
we consider e†0 in addition to e0. Furthermore, the MAPEs for e65 and e†65 are
listed in Tables S1 and S2 in Online Resource 1. In contrast with mortality over the
entire lifespan, errors often appear to be smaller for e†65 than for e65. An exception is
Japan; in the validation settings 1 and 2, the errors appear to be larger for e†65 than for e65.

The empirical frequencies for e0 and e†0 in Table S3 and for e65 and e†65 in Table S4
(Online Resource 1) confirm our findings for the median forecasts and show even more
clearly that current approaches struggle to forecast lifespan disparity. The 95 % pre-
diction intervals capture, on average, a fairly large number of observations for life
expectancy at birth and, albeit slightly fewer, for remaining life expectancy at age 65.
By contrast, many fewer observations are captured by the 95 % prediction intervals for
lifespan disparity; empirical frequencies range from 0 % to 96.5 %, with the average
being only approximately 26 %.

Case of Italy: Regular Trends for Mean Lifespan and Lifespan Disparity

If mortality develops regularly without any trend changes in the forecast years, the
predictions of all three approaches appear to be close to the observed values. In Italy,
we detect a regular increase in the average lifespan as well as a regular decline in
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Table 1 Mean of the absolute percentage errors (MAPE) fore0 and e
†
0 over the forecast years by country andmethod

Country and
Measure

Method

Lee-Carter

Lee-Carter,
Rotated
(Li et al.) Bohk and Rau

Validation 1 (ref. years: 1965–1990; forecast years: 1991–2009)

Italy

e0 0.003 0.003 0.005

e†0 0.019 0.015 0.014

Japan

e0 0.002 0.003 0.002

e†0 0.087 0.080 0.034

Denmark

e0 0.008 0.007 0.006

e†0 0.065 0.054 0.009

Validation 2 (ref. years: 1960–1985; forecast years: 1986–2009)

Italy

e0 0.010 0.010 0.002

e†0 0.029 0.021 0.018

Japan

e0 0.002 0.002 0.004

e†0 0.092 0.076 0.014

Denmark

e0 0.005 0.004 0.017

e†0 0.094 0.077 0.021

Validation 3 (ref. years: 1955–1980; forecast years: 1981–2009)

Italy

e0 0.014 0.014 0.002

e†0 0.027 0.019 0.012

Japan

e0 0.009 0.009 0.003

e†0 0.118 0.092 0.022

Denmark

e0 0.007 0.008 0.029

e†0 0.048 0.033 0.023

Validation 4 (ref. years: 1950–1975; forecast years: 1976–2009)

Italy

e0 0.018 0.018 0.008

e†0 0.032 0.023 0.053

Japan

e0 0.018 0.018 0.012

e†0 0.131 0.094 0.032

Denmark

e0 0.015 0.014 0.035

e†0 0.020 0.018 0.043

Note:MAPEs are shown for four validating settings that all forecast mortality until 2009, but they use different
historical periods.
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lifespan disparity in the entire 1965–2009 period. Hence, Italian women experienced no
trend changes, and their additional years of life were probably due to a compression of
mortality that lasted (without any interruptions) in the reference and forecast years.
Given these regular trends, the forecasts of all the approaches capture mean lifespan
and its disparity with only negligible deviations. However, the MAPEs are smaller for
e0 (0.3 % to 0.5 %) than for e†0 (1.9 % for the Lee-Carter model and 1.5 % for the other
two models).

Case of Japan: Regular Trend for Mean Lifespan and Irregular Trend for Lifespan
Disparity

If the average lifespan trend is regular but the lifespan disparity trend is not, differences
in the predictive ability of the three approaches are present but become visible only if
we complement the evaluation with a measure of dispersion. In Japan, we observe a
strong increase in the average lifespan from 1965 to 2009 as well as a decline in
lifespan disparity that levels off in the forecast years. Hence, among Japanese women
there was a trend change in the forecast years, and their additional years of life were
probably due to a compression of mortality in the reference period and a shifting of
mortality in the forecast years. Given the partial instability of mortality trends among
Japanese women, the forecasts of the three models are close to the observed mean
lifespan. The MAPEs for e0 range between 0.2 % and 0.3 %, suggesting that the
forecasts were precise. However, the analysis of lifespan disparity shows that all the
approaches overestimate the observed decline in the variability of the age at death. The
deviations are greater for the Lee-Carter models (MAPEs for e†0 are 8.7 % for the
original model and 8.0 % for its rotated variant) than for the Bohk and Rau model
(MAPE for e†0 is 3.4 %). As a consequence, all three approaches predict a continuation
of mortality compression while assuming that the concentration of deaths at higher ages
will be greater than it actually was.

Table 2 Mean of the absolute
percentage errors (MAPE) for e0
and e†0 over all validation settings
by country and method

Country
and Measure

Method

Lee-Carter

Lee-Carter,
Rotated
(Li et al.) Bohk and Rau

Italy

e0 0.011 0.011 0.004

e†0 0.027 0.019 0.024

Japan

e0 0.008 0.008 0.005

e†0 0.107 0.086 0.025

Denmark

e0 0.009 0.008 0.022

e†0 0.057 0.045 0.024
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Case of Denmark: Irregular Trends for Mean Lifespan and Lifespan Disparity

If the trends of the mean lifespan and lifespan disparity are irregular, both evaluation
measures indicate forecast errors. In Denmark, we observe an increase in the average
lifespan in the forecast years after a period of stagnation in the 1980s and the early
1990s. We also observe a slight increase in lifespan disparity in the reference years that
turns into a sharp decline in the forecast years. Hence, Danish women experienced
trend changes in the forecast years. Their additional years of life were probably due to a
mixture of a shifting and a worsening of mortality at different ages in the reference
years as well as mortality compression in the forecast years. This result indicates
that since the early 1990s, the mortality trends of Danish women have been catching
up to those of vanguard populations, such as women in Italy and in Japan. Given these
unstable mortality trends among Danish women, the forecasts of the three models
capture the increasing trend of the average lifespan quite well. The MAPEs for e0,
0.6 % to 0.8 %, are only slightly higher than for Italy and Japan. However, the situation
is different for lifespan disparity: the Lee-Carter models (more so the original model than
the rotating variant) predict an increase in the forecast years despite an actual decline.
This outcome not only deviates substantially from the observed values yieldingMAPEs
for e†0 of 6.5 % and 5.4 %, but it also appears to be rather implausible given the general
negative correlation between rising life expectancy at birth and declining lifespan
disparity (see Fig. 1). In contrast, the Bohk and Rau model appears to capture
the changing trend in lifespan disparity in the forecast years quite well, resulting
in a more plausible forecast with only small deviations from the realized values
(a MAPE for e†0 of only 0.9 %).

Model Comparison

The illustrative examples suggest that the Lee-Carter model is less flexible than the
other two models. This shortcoming is particularly noticeable when we look at the
changing mortality trends in the forecast years, especially among women in Japan and
Denmark. By contrast, the rotating variant and the Bohk and Rau model appear to be
more capable of adapting to changing trends because unlike the original Lee-Carter
model, which assumes that the relative changes are time-invariant across ages, these
models assume that survival improvements will change over time. Analyzing the
forecast errors, the rotated Lee-Carter model appears to perform on average better than
the other two models because its MAPEs for e0 and e†0 are relatively small for all
countries and validation settings. By contrast, the original Lee-Carter model often has
the largest MAPEs; and although the Bohk and Rau model often has the smallest
MAPEs for life expectancy at birth and lifespan dispersion, it also has a few upward
outliers that reduce its overall forecasting performance.

Sensitivity of the Results to the Reference Period

To examine the sensitivity of the above results to the choice of the reference period, we
look at mortality forecasts up to 2009 that rely on different reference periods: 1960–
1985, 1955–1980, and 1950–1975. The analyses are shown in Figs. S2–S4 in Online
Resource 1, and have the same color scheme as in Fig. 2. Although the key message of
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the results presented is not affected by changing the reference period, a comparative
analysis helps to identify method-based differences.

The fits of life expectancy at birth and lifespan disparity basically appear to depend
on the regularity of mortality trends and the ability of the approaches to capture them
appropriately. Because Japanese and Danish women experienced irregular mortality
developments, making precise forecasts for them is particularly challenging. Thus, the
predictive ability of the approaches declines as the magnitude of the MAPEs increases.
This effect appears to be greater for the Lee-Carter model than for the other two
models, and it appears to be more pronounced in forecasts of lifespan disparity than
of average lifespan. For example, the greatest overall MAPE (10.7 %) is for e†0 in Japan
from the Lee-Carter model, whereas the smallest overall MAPE (0.4 %) is for e0 in Italy
from the Bohk and Rau model (Table 2). The greater forecast error for the Lee-Carter
model is probably due to the extrapolation of average trends of the reference period.
Hence, if the overall trend of lifespan disparity is decreasing in the reference period, the
Lee-Carter model tends to predict a decreasing pattern as well, and vice versa.
However, the structural breaks in Danish and Japanese lifespan disparity appear to be
unexpected and are therefore difficult to capture in a forecast generated by any model
that has not been designed for this specific task. If we look instead at the more regular
mortality trends in Italy, for example, we can see that the Lee-Carter models tend to
generate rather conservative forecasts of progress in the average lifespan; that is, they
tend to systematically underestimate the observed trajectories and yield overall MAPEs
for e0 of 1.1 %. By contrast, the forecasts of the Bohk and Rau model yield a smaller
overall MAPE for e0 (0.4 %) than the forecasts of the other two models, and they
sometimes systematically overestimate the additional years of life. Examining lifespan
disparity reveals even more differences between the approaches, particularly between
the two Lee-Carter models in the forecasts of Japanese female mortality. The rotating
variant appears to capture the flattening decline of lifespan disparity in the forecast
years much better than the original model, and thus substantially improves forecasting
performance: the overall MAPE for e†0 in Japan is substantially lower for the rotated
Lee-Carter variant (8.6 %) than for the original model (10.7 %). Also clearly visible for
lifespan dispersion in Japan is that the further in time the reference period is, the more
forecasts of the rotating variant diverge from those of the original model and converge
with those of the Bohk and Rau model. Given that the rotation starts when life
expectancy exceeds 75 years and that Japanese women reached this point in the early
1970s, this finding is not really surprising. As a consequence, the forecast that relies on
data from 1950 to 1975 is also the forecast in which the rotation has the largest effect on
the results. This finding demonstrates the need for time-variant survival improvements
in order to capture dynamic trends in the variability of the age at death. The remaining
deviations from the real values indicate that refining (or developing) forecasting
approaches may help to account for patterns in lifespan disparity, such as the
compression, shifting, and expansion of mortality. However, we do not expect
forecasting errors to be equal to 0 because they showmore signs of overfitting than of
high forecasting performance.

Also of note is that the predictive ability of forecasts that rely on data from 1950 to
1975 appears to be lower than that of forecasts based on more recent mortality trends.
Because this effect can be seen for the average lifespan and also partly for lifespan
disparity, we speculate that it may be attributable to the delayed onset of the old-age

1572 C. Bohk-Ewald et al.



mortality decline in the 1970s, which was crucial for future mortality develop-
ments in all three populations. Hence, if a major driving trend of mortality in
the forecast years is missing in the reference period, the forecasting performance may
be substantially reduced.

If we restrict our analysis to ages above 65, the relation of errors (MAPEs) for
remaining years of life and lifespan disparity reverses. An exception is Japan, which
shows larger errors for lifespan disparity than for remaining years of life at age 65, but
only in the validation settings 1 and 2. Most likely, the onset of old-age mortality
decline (Kannisto 1994) causes the reversal in the error pattern. Analyzing the magni-
tude of errors across all four validation settings provides evidence that the more years
that are included in the reference period since the onset of the old-age mortality decline,
the more accurate are the forecasts of remaining life expectancy at age 65. Given that
the survival improvements at older ages primarily induced a parallel downward shift of
the force of mortality on the log scale, the effects were large for e65 but only marginal
for e†65. This development is widely known as shifting mortality and has been described
in detail by, for example, Bongaarts (2005) and Canudas-Romo (2008). Japan is the
world record leader in terms of life expectancy thanks to exceptionally large old-age
mortality improvements; we assume that these deviant/special trends in mortality
may have caused larger changes in the variability at death that have not been
captured in the forecasts and thus lead to larger errors for e†65 in the last two validation
settings (Cheung and Robine 2007; Wilmoth and Robine 2003).

Summary and Concluding Remarks

Our analysis has shown that some methods—among them, the original Lee-Carter
model, which is considered a golden standard in mortality forecasting—struggle to
account for trends in lifespan disparity. This shortcoming, often caused by rather time-
invariant survival improvements, has not been shown so clearly yet because the toolkit
for evaluating the forecast performance focused on, for example, life expectancy at
birth and age-specific death rates. These measures of central tendency are typically
used to analyze ex post to what extent forecasts deviate from their realized values.
Although these parameters of central tendency are useful for assessing how precisely
average mortality has been forecasted, they cannot be used to determine whether the
forecasted underlying mortality developments are plausible. This may be a serious
drawback because similar average lifespans can result from different underlying mor-
tality developments, which describe a dynamic age shift of survival improvement from
younger to older ages in many highly developed countries in the last decades. As a
consequence, small forecast errors of average lifespan do not necessarily indicate
plausible trends in the forecasted underlying mortality dynamics. To assess whether
the forecasts of the underlying developments are also plausible, we propose to
use measures of lifespan disparity in the evaluation procedure. Despite many
suitable measures of lifespan dispersion, we employed e†0 as a measure of
spread to tackle this problem.

In illustrative mortality forecasts for women in Italy, Japan, and Denmark—three
populations who differ substantially in terms of lifespan disparity (see Fig. 1)—e†0 was
a useful addition to the common toolkit for evaluating the predictive ability of
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forecasting approaches. We used the original Lee-Carter model (Lee and Carter 1992),
its rotating variant proposed by Li et al. (2013), and the model of Bohk-Ewald and Rau
(2017) to predict mortality up to 2009. Because the three approaches differ primarily in
their ability to capture dynamic age shifts in the distribution of deaths, they are
particularly suitable for evaluating how well they are able to forecast actual develop-
ments in average lifespan and lifespan disparity. To examine the sensitivity of our
results, we chose four reference periods instead of just one: 1965–1990, 1960–1985,
1955–1980, and 1950–1970. We then compared the forecasted values of the average
lifespan and lifespan disparity with the actual values.

The comparative analysis revealed that irrespective of the reference period, fore-
casting performance basically depends on the regularity (or continuation) of mortality
trends and the ability of the approaches to capture them appropriately. Although the
forecasts of life expectancy at birth generated by the Lee-Carter models are rather
conservative, the forecasts generated by the Bohk and Rau model often have small
forecast errors but also a few upward outliers. Moreover, the Japanese forecasts were
found to be precise when we looked at average lifespan only, but they turned out
to be rather inaccurate when we took lifespan disparity into account as well.
Hence, the models were not able to capture the flattening decline of Japanese
lifespan disparity in the forecast years, although the rotating model and the
Bohk and Rau model fared better than the original Lee-Carter model because of
time-variant survival improvements.

However, the remaining deviations from the observed values indicate that the
refinement or the development of forecasting approaches should focus not only on
average mortality but also on lifespan disparity. This indication may be particularly
important given the concentration of mortality improvement potentials at the highest
ages. Improving mortality at those ages could imply that people will probably live
beyond current maximum ages. Hence, it will be crucial for forecasting approaches to
be able to capture multiple trends in the (right) tail of the lifespan distribution
(stagnation or expansion). As a consequence, the approaches should be able to forecast
further reductions in mortality not only up to the current maximum ages but also to
higher ages beyond. Doing so requires a high degree of modeling flexibility, which has
been missing in existing approaches.

To summarize, our analysis illustrates that the joint evaluation of the average

lifespan (e0) and the life years lost (e
†
0) provide new insights that we believe are needed

for a comprehensive evaluation of the predictive performance of mortality forecasts.
We also suggest that these new insights should be used when improving or developing
new methods for forecasting mortality. Until now, these approaches were exclusively
designed to capture the almost linear increase in life expectancy at birth. Hence, it is not
surprising that forecasts of the average lifespan turn out to be more accurate and yield
smaller forecast errors. The incorporation of lifespan disparity as a quality criterion or
even central outcome may substantially improve the methodology.
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A Extending the age range beyond 110+

The data used are death counts and exposures by single age, 0 to 110+, from the Human Mortality Database

(2015). To enable forecasting approaches to shift deaths to ages beyond 110+, we extend the age range of

mortality data, like Ševčı́ková et al. (2016), with the model of Kannisto:

µx =
αeβx

1 + αeβx (2)

as it is described in Thatcher et al. (1998, p. 16). We fit the model with the function optim in R (2015) to 

mortality at ages 80 to 110 using a Poisson log-likelihood for women in Italy, Denmark, and Japan for each 

year between 1950 and 2009. We then use the fitted Kannisto models to smooth mortality for ages 80 to 110, 

and to predict mortality for the ages above 110 in each year. Figure S1 depicts such mortality data for ages 

80 to 130 for Italian, Danish, and Japanese women in the year 1950. The model of Kannisto is particularly 

suitable for populations with low mortality. It is also applied by, e.g., the Human Mortality Database and 

the United Nations (2014) to fit old-age mortality.
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Fig. S1 Extended age range of mortality data of Italian (left), Danish (center), and 

Japanese (right) women in 1950. We used the model of Kannisto to fit (gray line) 

observed mortality (black circles) at ages 80 to 110, and to predict it at ages 111 to 130 

(gray dots).
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B Forecasts until 2009 with reference periods 1960-1985, 1955-1980, and 1950-1975
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Fig. S2 Life expectancy at birth (left panels) and life years lost at birth (right panels) for 

women in Italy (top), Japan (center), and Denmark (bottom); observed data are in black, 

forecasted data are in red (Lee-Carter model), green (rotating variant), and blue

(Bohk-Rau model); reference period: 1960-1985.
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Fig. S3 Life expectancy at birth (left panels) and life years lost at birth (right panels) for 

women in Italy (top), Japan (center), and Denmark (bottom); observed data are in black, 

forecasted data are in red (Lee-Carter model), green (rotating variant), and blue

(Bohk-Rau model); reference period: 1955-1980.
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Fig. S4 Life expectancy at birth (left panels) and life years lost at birth (right panels) for 

women in Italy (top), Japan (center), and Denmark (bottom); observed data are in black, 

forecasted data are in red (Lee-Carter model), green (rotating variant), and blue

(Bohk-Rau model); reference period: 1950-1975.
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C MAPE estimates for e65 and e†
65
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Country Measure LC LC, rotated Bohk–Rau

Validation 1 (Ref.years: 1965–1990; Forecast years: 1991–2009)

Italy
e65 0.016 0.013 0.014

e†
65 0.009 0.008 0.021

Japan
e65 0.015 0.012 0.008

e†
65 0.056 0.050 0.012

Denmark
e65 0.020 0.018 0.026

e†
65 0.016 0.013 0.010

Validation 2 (Ref.years: 1960–1985; Forecast years: 1986–2009)

Italy
e65 0.046 0.040 0.008

e†
65 0.016 0.012 0.034

Japan
e65 0.025 0.018 0.007

e†
65 0.050 0.041 0.020

Denmark
e65 0.054 0.046 0.062

e†
65 0.051 0.045 0.044

Validation 3 (Ref.years: 1955–1980; Forecast years: 1981–2009)

Italy
e65 0.055 0.049 0.006

e†
65 0.027 0.022 0.020

Japan
e65 0.068 0.056 0.018

e†
65 0.067 0.055 0.008

Denmark
e65 0.063 0.057 0.099

e†
65 0.009 0.010 0.012

Validation 4 (Ref.years: 1950–1975; Forecast years: 1976–2009)

Italy
e65 0.065 0.057 0.041

e†
65 0.026 0.020 0.076

Japan
e65 0.105 0.085 0.050

e†
65 0.071 0.054 0.029

Denmark
e65 0.066 0.060 0.102

e†
65 0.011 0.011 0.009

Table S1 Mean of the Absolute Percentage Errors (MAPE) for e65 and e†
65 over the 

forecast years by country and method. MAPEs are shown for four validating settings 

that all forecast mortality until 2009, but use different historical periods.
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Country Measure LC LC, rotated Bohk-Rau

Average across all validation settings

Italy
e65 0.046 0.040 0.017

e†
65 0.020 0.016 0.038

Japan
e65 0.053 0.043 0.021

e†
65 0.061 0.050 0.017

Denmark
e65 0.051 0.045 0.072

e†
65 0.021 0.019 0.019

Table S2 Mean of the Absolute Percentage Errors (MAPE) for e65 and e†
65 over 

all validation settings by country and method.
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D Empirical frequencies for e0 and e†
0
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Country Measure LC LC, rotated Bohk–Rau

Validaton 1 (Ref.years: 1965–1990; Forecast years: 1991–2009)

Italy
e0 100.00 100.00 94.74

e†
0 10.53 31.58 36.84

Japan
e0 100.00 100.00 94.74

e†
0 0.00 0.00 0.00

Denmark
e0 100.00 100.00 89.47

e†
0 0.00 0.00 42.11

Validation 2 (Ref.years: 1960–1985; Forecast years: 1986–2009)

Italy
e0 79.17 91.67 91.67

e†
0 0.00 20.83 41.67

Japan
e0 100.00 100.00 87.50

e†
0 0.00 0.00 50.00

Denmark
e0 100.00 100.00 54.17

e†
0 0.00 0.00 37.50

Validation 3 (Ref.years: 1955–1980; Forecast years: 1981–2009)

Italy
e0 55.17 72.41 89.66

e†
0 13.79 34.48 48.28

Japan
e0 100.00 100.00 48.28

e†
0 0.00 0.00 96.55

Denmark
e0 100.00 100.00 55.17

e†
0 13.79 13.79 37.93

Validation 4 (Ref.years: 1950–1975; Forecast years: 1976–2009)

Italy
e0 64.71 79.41 88.24

e†
0 5.88 26.47 2.94

Japan
e0 64.71 100.00 26.47

e†
0 2.94 2.94 82.35

Denmark
e0 100.00 100.00 41.18

e†
0 20.59 17.65 32.35

Table S3 Empirical frequencies, in %, for the 95% prediction intervals of e0 and e0
† over 

the forecast years by country and method. The empirical frequencies are shown for four 

validating settings that all forecast mortality until 2009, but use different historical 

periods.
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E Empirical frequencies for e65 and e†
65
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Country Measure LC LC, rotated Bohk–Rau

Validaton 1 (Ref.years: 1965–1990; Forecast years: 1991–2009)

Italy
e65 94.74 100.00 100.00

e†
65 21.05 10.53 57.89

Japan
e65 100.00 100.00 47.37

e†
65 0.00 0.00 63.16

Denmark
e65 100.00 100.00 57.89

e†
65 31.58 36.84 73.68

Validation 2 (Ref.years: 1960–1985; Forecast years: 1986–2009)

Italy
e65 4.17 29.17 83.33

e†
65 4.17 12.50 66.67

Japan
e65 70.83 95.83 50.00

e†
65 4.17 4.17 91.67

Denmark
e65 100.00 100.00 45.83

e†
65 0.00 0.00 8.33

Validation 3 (Ref.years: 1955–1980; Forecast years: 1981–2009)

Italy
e65 13.79 20.69 93.10

e†
65 0.00 0.00 75.86

Japan
e65 6.90 41.38 24.14

e†
65 0.00 0.00 93.10

Denmark
e65 100.00 100.00 55.17

e†
65 48.28 41.38 89.66

Validation 4 (Ref.years: 1950–1975; Forecast years: 1976–2009)

Italy
e65 20.59 35.29 94.12

e†
65 2.94 2.94 61.76

Japan
e65 5.88 38.24 23.53

e†
65 2.94 0.00 94.12

Denmark
e65 100.00 100.00 61.76

e†
65 35.29 41.18 88.24

Table S4 Empirical frequencies, in %, for the 95% prediction intervals of e65 and e†
65 over 

the forecast years by country and method. The empirical frequencies are shown for four 

validating settings that all forecast mortality until 2009, but use different historical 

periods.
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Research Article

Decomposing changes in life expectancy:
Compression versus shifting mortality

Marie-Pier Bergeron-Boucher 1

Marcus Ebeling 2

Vladimir Canudas-Romo 1

Abstract

BACKGROUND
In most developed countries, mortality reductions in the first half of the 20th century
were highly associated with changes in lifespan disparities. In the second half of the 20th
century, changes in mortality are best described by a shift in the mortality schedule, with
lifespan variability remaining nearly constant. These successive mortality dynamics are
known as compression and shifting mortality, respectively.

OBJECTIVE
To understand the effect of compression and shifting dynamics on mortality changes, we
quantify the gains in life expectancy due to changes in lifespan variability and changes in
the mortality schedule, respectively.

METHODS
We introduce a decomposition method using newly developed parametric expressions of
the force of mortality that include the modal age at death as one of their parameters. Our
approach allows us to differentiate between the two underlying processes in mortality and
their dynamics.

RESULTS
An application of our methodology to the mortality of Swedish females shows that, since
the mid-1960s, shifts in the mortality schedule were responsible for more than 70% of
the increase in life expectancy.

CONCLUSIONS
The decomposition method allows differentiation between both underlying mortality pro-
cesses and their respective impact on life expectancy, and also determines when and how
one process has replaced the other.

1 Max-Planck Odense Center on the Biodemography of Aging, University of Southern Denmark, Odense,
Denmark.
2 Max Planck Institute for Demographic Research, Rostock, Germany. University of Rostock, Institute of
Sociology and Demography, Rostock, Germany.
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Bergeron-Boucher, Ebeling & Canudas-Romo: Decomposing changes in life expectancy

1. Background

Human mortality has undergone remarkable declines over the years. The increase in life
expectancy is probably the best expression for the dramatic mortality decline in the last
170 years (Oeppen and Vaupel 2002). Improvements in living conditions, nutrition and
medicine are among the main reasons for this development (Riley 2001; Oeppen and
Vaupel 2002). These changes in economic, social, and sanitary conditions first triggered
an important decline in infant, child, and early adult mortality, which contributed to the
reduction in lifespan disparities (Wilmoth and Horiuchi 1999; Edwards and Tuljapurkar
2005; Vaupel, Zhang, and van Raalte 2011). As individuals became more homogeneous
in their ages at death, a compression of the distribution of deaths in a more narrow age-
interval was observed in many low-mortality countries in the first half of the twentieth
century (Fries 1980; Wilmoth and Horiuchi 1999; Kannisto 2000, 2001; Cheung et al.
2009). Fries (1980) hypothesized that this dynamic can be interpreted as a compression
of deaths against the upper limit of the human lifespan. Assuming a nearly negligible
role for premature mortality, he stated the limit of the average age at death as approxi-
mately 85 years, with 95% of all deaths occurring in an age range of 4 years deviation
(Fries 1980). The “compression of mortality hypothesis” motivated a rich discussion on
the occurrence and interpretation of this development. Several studies provided evidence
for a compression, but emphasized that the achieved mortality levels differ substantially
from Fries’ predictions (Nusselder and Mackenbach 1996; Wilmoth and Horiuchi 1999;
Cheung et al. 2005).

After the period of strong compression, low-mortality countries entered a new era
of change. Since the second half of the twentieth century, the main contributions to the
increase in average age at death shifted from infant and early adult ages to old and very
old-ages (Christensen et al. 2009). This generated changes in the mechanisms behind
the increase in life expectancy (Wilmoth and Horiuchi 1999; Edwards and Tuljapurkar
2005; Smits and Monden 2009). The new mechanism behind improvement in life ex-
pectancy is best illustrated by a shift in the distribution of death toward older ages with a
shape remaining nearly constant (Yashin et al. 2001; Bongaarts 2005; Cheung et al. 2005;
Cheung and Robine 2007; Canudas-Romo 2008). Vaupel (1986), Vaupel and Gowan
(1986) and Bongaarts (2005) were among the first to articulate the idea of shifting mor-
tality. Canudas-Romo (2008) deepens this idea by studying the variability around and the
change of the modal age at death. He finds that over time mortality shifts to higher ages,
with approximately constant variability in age at death. He concludes that the shifting
mortality pattern might be the new dynamic behind mortality improvements, subsequent
to the compression process.

The ages at which mortality reductions occur tend to determine the dominating mor-
tality dynamic: compression or shift. Compression is more pronounced when mortal-
ity reductions occur at very young and adult ages (Nusselder and Mackenbach 1996;
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Wilmoth and Horiuchi 1999; Kannisto 2000; Cheung et al. 2005). On the other hand,
shifting mortality requires changes at old and very old-ages (Canudas-Romo 2008). Vau-
pel, Zhang, and van Raalte (2011) report relatively stable variability patterns for survivors
beyond age 50 in the last 100 years. Engelman, Caswell, and Agree (2014) and Engelman,
Canudas-Romo, and Agree (2010), however, provide evidence for a modest expansion of
lifespan variability for survivors at older ages, resulting from mortality improvement at
these same ages.

The measurement of compression and shifting mortality is an important issue, as both
dynamics translate differently into survival, mortality density and hazard distributions
(Wilmoth and Horiuchi 1999). Alterations are, however, visible in all three functions due
to their interrelation. For instance, in a mortality compression context, the survival curve
becomes more rectangular with increasing concentration of deaths at old-age, which is
a well-known phenomenon called rectangularization (Nusselder and Mackenbach 1996;
Wilmoth and Horiuchi 1999; Cheung et al. 2005). Simultaneously, the old-age bulk of
deaths in the distribution of death becomes more pronounced, thereby reducing variability
of the age at death. In the hazard distribution, the slope becomes steeper, with mortality
reductions being more pronounced at younger ages (Wilmoth and Horiuchi 1999; Robine
2001).

In a shifting mortality context, these three functions also undergo transformations.
The downward slope of the survival curve will shift to higher ages with an equal shape.
Similarly, the density distribution will shift towards older ages with a shape also remain-
ing constant. In the hazard distribution, the same pattern requires a constant slope de-
picted by a parallel shift of the logarithmic force of mortality toward higher ages (Bon-
gaarts 2005; Canudas-Romo 2008). In this context, Bongaarts (2005) suggested fixing
the shape parameter of mortality models and assumed that only scale and background pa-
rameters can vary over time. Vaupel (2010) also describes a postponement of senescence
rather than a fundamental change of the age-pattern of mortality for the period starting
around 1950.

In the assessment of the shifting mortality period, the modal age at death has been
an extensively used indicator. By shifting the modal age at death towards older ages, the
deaths around this age move along with it (Canudas-Romo 2008). This indicator also
has several advantages in the investigation of survival at old-ages. First, it is nonsensi-
tive to mortality changes at younger ages. Second, it reflects the most common lifespan.
Third, a change of the modal age can only be realized if there are pulling forces, mean-
ing mortality improvement at ages older than the mode (Kannisto 2000; Canudas-Romo
2010). In fact, the modal age at death has shown an accelerated pace of increase since
the onset of the old-age mortality decline (Kannisto 2000; Wilmoth and Robine 2003;
Canudas-Romo 2008). Since the beginning of the 21st century, this indicator has re-
ceived increasing attention and has become a key indicator of lifespan, especially since
longevity extension became determined by adult and old-age mortality (Kannisto 2000,
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2001; Bongaarts 2005; Cheung and Robine 2007; Canudas-Romo 2008, 2010; Ouellette
and Bourbeau 2011; Horiuchi et al. 2013).

Therefore, compression and shifting mortality are observed respectively by changes
in the variability of the age at death and in the modal age at death. Both dynamics also
have different implications regarding changes in mortality: the former reflects changes in
lifespan disparities, while the latter provides information about changes in the timing of
mortality.

Considering the two periods of change in mortality development, two questions arise.
First, what is the impact of compression and shifting mortality dynamics on the increase
of life expectancy over time? Second, how and to what extent did one process replace
the other? Additionally, considering the impact of child and young adult mortality reduc-
tions on the appearance of compression, one might further ask, if only adult and old-ages
mortality is analyzed, how does the impact of both dimensions change?

To approach these questions, a new methodology to study changes in compression and
shifting mortality over time and their effect on life expectancy is presented. We quantify
the gains in life expectancy due to changes in the timing of mortality and changes in lifes-
pan disparities, respectively. Using newly developed parametric expressions of the force
of mortality (Horiuchi et al. 2013; Missov et al. 2015), we decompose the change in life
expectancy between two distributions by the contribution of a shift in the modal age at
death and a change in variability of the age at death.

This paper is divided into four sections, with this background as the first section. In
the following section, we introduce the decomposition methodology, at first in general
terms and then for the Gompertz, Gompertz-Makeham and Siler models. The third sec-
tion presents an illustration of the methodology applied to discrete data, followed by the
fourth section, in which we present our conclusions.

2. Methods and data

2.1 Decomposing life expectancy

In order to explain the dynamics behind changes in mortality, demographers have devel-
oped several techniques to decompose changes in life expectancy by different components
of mortality, such as ages and causes of death. Some methods focus on discrete differ-
ences between two life expectancies (Pollard 1982; Arriaga 1984; Pressat 1985; Andreev,
Shkolnikov, and Begun 2002; Firebaugh et al. 2014) while others consider continuous
changes (Vaupel 1986; Keyfitz 1977; Vaupel and Canudas-Romo 2003; Beltrán-Sánchez,
Preston, and Canudas-Romo 2008; Horiuchi, Wilmoth, and Pletcher 2008). We follow
the latter approach of a continuous decomposition of changes in life expectancy by vari-
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ability and shifting effects using a recent expression of the Gompertz mortality model.
Figure 1 shows the distribution of deaths for Gompertz parameters under two scenar-

ios. It illustrates how changes in mortality can be decomposed into effects due to changes
in variability and the shifting of mortality. Assuming a general change of mortality be-
tween the two distributions (in Figure 1 as the arrow denoted as A), the shifting effect is
the hypothetical change resulting only if the modal age at death (M ) would have changed
between those two distributions (in Figure 1 as arrow B). The variability effect is the hy-
pothetical change produced only if the slope of the hazard function (β) changes from one
distribution to another (in Figure 1 as arrow C). The latter transformation C, of changing
the slope of the hazard distribution, also changes the shape of the density distribution,
and thus their variability (Wilmoth 1997).

Changes in life expectancy at birth over time (denoted as ė0,t) can thus be decom-
posed into two components

ė0,t = ∆β + ∆M , (1)

where ∆β and ∆M are the gains in life expectancy resulting from changes in the shape
parameter and modal age at death, respectively. In the following section we present the
methodology of the decomposition for the Gompertz force of mortality and then general-
ize it to other parametric functions of mortality.

Figure 1: Illustration of the shifting and variability effects in the density
function of the distribution of deaths for simulated data from a
Gompertz model with a combination of shape parameters
β1 = 0.10 and β2 = 0.13 and modal ages at death M1 = 75 and
M2 = 90
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2.2 Decomposing senescent mortality: Gompertz

Gavrilov and Gavrilova (1991) defined the Gompertz (1825) law of mortality as one of
the most successful models expressing mathematically the senescent age-pattern of mor-
tality. In this article, we refer to senescent mortality as the increase over age in the force
of mortality occuring after a certain age, representing aging and physiological deteriora-
tion (Bongaarts and Feeney 2002; Bongaarts 2005; Horiuchi et al. 2013). The Gompertz
approach allows a good approximation of adult mortality patterns over age and time for
many countries. However, the Gompertz model does not fit infant, child and oldest-old
mortality well. Other parametric models, such as the Makeham (1860) and Siler (1979),
have addressed some of these problems by including additional parameters capturing
background and infant mortality. The Gompertz model is, however, broadly used to de-
scribe the distribution of adult death from age 30 to 90, having the advantage of being
simple and offering a good fit to senescent mortality. The decomposition methodology in-
troduced here will be presented through the Gompertz model, but it will be demonstrated
that the method can be applied to other parametric models.

It has been shown by Horiuchi et al. (2013) and Missov et al. (2015) that the hazard
rate as expressed by the Gompertz model can be rewritten using the modal age at death
instead of the timing parameter αt as

µx,t = αte
βtx = βte

βt(x−Mt), (2)

where βt is the shape parameter at time t of the Gompertz hazard function µx,t, and Mt

is the modal age at death. This parametrization has some advantages: 1) the parameter
Mt has a clearer interpretation than αt (Horiuchi et al. 2013), and 2) there is a lower
correlation between the parameters when the Gompertz is expressed using the modal age
at death (Missov et al. 2015).

The parametrization presented in equation (2) also gives a starting point for decom-
posing changes in life expectancy due to changes in variability and shifting mortality.
Shifting mortality is observed through changes in the modal age at death, which is cap-
tured by the parameter Mt. Additionally, as presented in Appendix A, it can analytically
be shown that the shape parameter βt is the main carrier of variability changes.

Let a dot on top of a variable denote its derivative with respect to time (Vaupel and
Canudas-Romo 2003). The change over time in the force of mortality (µ̇x,t) can be de-
composed into respective components of change for the shape (β̇t) and the mode (Ṁt):

µ̇x,t = β̇t

[
µx,t(

1

βt
+ x−Mt)

]
− Ṁt [βtµx,t]. (3)

Equation (3) can be expressed in more general terms to be used in other models of mor-
tality. The components of change for the shape (β̇t) and modal age at death (Ṁt) are each
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multiplied by a weighting function of the corresponding hazard rate, denoted as fi(µx,t),
with i corresponding to the parameters β and M ,

µ̇x,t = β̇t fβ(µx,t) − Ṁt fM (µx,t). (4)

As with the hazard distribution, we can derive the time change of life expectancy. In
general terms, life expectancy at birth is expressed as

e0,t =

∫ ω

0

la,t da,

where la,t is the survival function and the radix of the population is one. Therefore,
changes in life expectancy at birth through time (ė0,t) can be expressed by:

ė0,t =

∫ ω

0

l̇a,t da = −
∫ ω

0

la,t

∫ a

0

µ̇x,t dx da, (5)

where l̇a,t is the time derivative of the survival function la,t. By substituting equation (4)
in equation (5), we can estimate the change in life expectancy at birth due to changes in
the modal age at death and changes in the shape parameter as:

ė0,t = −β̇t
∫ ω

0

la,t

∫ a

0

fβ(µx,t) dx da
︸ ︷︷ ︸

∆β

+ Ṁt

∫ ω

0

la,t

∫ a

0

fM (µx,t) dx da
︸ ︷︷ ︸

∆M

. (6)

The first term in equation (6) represents the gain in life expectancy resulting from a
change in variability (∆β), corresponding to a compression pattern, while the second
term is the gain in life expectancy produced by a shift in the modal age at death (∆M ),
indicating a shifting pattern. These are the equivalent terms of equation (1) in the Gom-
pertz model.

Equations (4) and (6) allow further generalizations to other parametric models ex-
pressing senescent mortality using the modal age at death (M ) and a shape parameter
(β). Horiuchi et al. (2013) present this parametrization for the Logistic and Weibull mod-
els. Table 1 includes the elements of the decomposition equations for the Gompertz,
Logistic and Weibull models.

As mentioned previously, the Gompertz model does not fit young age mortality well,
and tends to fit mortality over age 30 better. Hence, for the application of the Gompertz
decomposition, we will start our life table at age 30, and e0,t will represent the life ex-
pectancy at age 30, indicated as e30,t in the tables.
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Table 1: Hazard (µx), modal age at death (M ), life expectancy at birth (e0)
and decomposition weights (fβ(µx,t) and fM (µx,t)) for three
mortality models

Gompertz Logistic Weibull

µx(α,β) αeβx eα+βx

1+eα+βx αβxβ−1

µx(M ,β) βeβ(x−M) βeβ(x−M)

1+βeβ(x−M)

(β−1)xβ−1

(M)β

M ln(β)−ln(α)
β

ln(β)−α
β ( (β−1)

αβ )
1
β

e0
∫ ω

0
e−e

−βM (eβa−1)da
∫ ω

0

[
βe−βM+1
βeβ(a−M)+1

] 1
β

da
∫ ω

0
e
− (β−1)aβ

βMβ da

fβ(µx,t) µx,t(
1
βt

+ x−Mt)
µx,t(

1
βt

+x−Mt)

1+βteβt(x−Mt)
µx,t [ 1

(βt−1) + ln( x
Mt

)]

fM(µx,t) βtµx,t
βtµx,t

1+βteβt(x−Mt)
µx,t

βt
Mt

Note: To simplify the equations, the time component (t) was not added as subscript to the parameters αt, βt and
Mt in the first four lines of the table. However, the parameters can also vary over time (t) in these equations.

2.3 Extending the model beyond senescent mortality

With the previous methodology, only senescent mortality can be decomposed. The de-
composition is thus limited to adult and old-age mortality, and might bring only limited
understanding of mortality changes over time. As mentioned previously, compression of
mortality has been strongly linked to reductions in infant, child and early adult mortality,
which is not considered when decomposing the Gompertz model. Modeling mortality at
all ages needs more complex models, and additional parameters often need to be added.

Equation (1) can be generalized to allow the inclusion of parameters other than β and
M , as

ė0,t =
∑

i=1

∆i, (7)
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where ∆i is the change in life expectancy at birth due to a change in the parameter i.

2.3.1 Gompertz-Makeham

A Makeham (1860) variant can be added to each of the models presented in Table 1
(Horiuchi et al. 2013). Assuming that the modal age at death (Mt) estimated by the
Gompertz model in equation (2) applies to the Gompertz-Makeham model, the hazard
function can be expressed as

µx,t = ct + βte
βt(x−Mt), (8)

where ct is the Makeham term. Adding the parameter ct improves the fit of the Gompertz
function at younger ages, but still without capturing the decrease in infant mortality. The
Makeham term is an age-independent component which captures the extrinsic or “back-
ground” mortality risk. The Makeham term has a more influential effect at younger ages
and is often associated with adult or early adult mortality, which is especially important
for the variability effect.

Equivalent to the decomposition presented in equation (6), we can estimate the change
in adult life expectancy due to changes in the different parameters of the Gompertz-
Makeham model using equation (5). As expressed by equation (7), change in life ex-
pectancy is then estimated as

ė0,t = − ċt

∫ ω

0

la,t a da

︸ ︷︷ ︸
∆c

− β̇t

∫ ω

0

la,t

∫ a

0

[eβt(x−Mt)(1 + βt(x−Mt))] dx da

︸ ︷︷ ︸
∆β

+ Ṁt

∫ ω

0

la,t

∫ a

0

[β2
t e
βt(x−Mt)] dx da

︸ ︷︷ ︸
∆M

, (9)

where ċt is the change in the background mortality level, β̇t is the change in the rate of
mortality increase over age and Ṁt is the change in the modal age at death.

2.3.2 Siler

The Siler (1979) model extends the Gompertz model by including two additional terms,
capturing both the decrease over ages of infant mortality and the “background” mortality
risk. By using the Gompertz model with the parametrization presented in equation (2),
we can express the Siler model as
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µx,t = αt e
−btx + ct + βte

βt(x−Mt), (10)

where αt and ct are timing parameters for infant and background mortality, the parame-
ters bt and βt are the constant rates of mortality change over age for infant and senescent
mortality, respectively, and Mt is the modal age at death. By including the infant and
background parameters, the Siler model provides a more detailed estimation of the vari-
ability and shifting effect by modeling mortality at all ages.

Decomposition of changes in the Siler model is expressed by changes in 5 different
parameters: α̇t is the change with respect to t in the initial level of mortality (age 0),
ḃt is the change in the rate of infant mortality decrease over age, ċt is the change in the
background mortality level, β̇t is the change in the rate of mortality increase over age for
senescent mortality, and Ṁt is the change in the modal age at death.

As generally presented in equation (7), the gain in life expectancy at birth for the Siler
model is estimated by

ė0,t = − α̇t

∫ ω

0

la,t

∫ a

0

[e−btx] dx da

︸ ︷︷ ︸
∆α

+ ḃt

∫ ω

0

la,t

∫ a

0

[αte
−btxx] dx da

︸ ︷︷ ︸
∆b

− ċt

∫ ω

0

la,t a da

︸ ︷︷ ︸
∆c

− β̇t

∫ ω

0

la,t

∫ a

0

[eβt(x−Mt)(1 + βt(x−Mt))] dx da

︸ ︷︷ ︸
∆β

+ Ṁt

∫ ω

0

la,t

∫ a

0

[β2
t e
βt(x−Mt)] dx da

︸ ︷︷ ︸
∆M

. (11)

There are, however, some implications of adding the Makeham term and the Siler infant
mortality term to the Gompertz parametrization presented in equation (2). The parame-
ter M , reflecting the modal age at death evaluated from senescent mortality only, could
differ from the modal age at death evaluated from the total mortality. Horiuchi et al.
(2013), however, found that the modal age at death for senescent mortality, when adding
a Makeham term to equation (2), is nearly equal to the modal age at death for total mor-
tality. We found similar results with the Siler model. For example, the total modal age at
death for Swedish female mortality in 2010 fitted with a Siler model was 88.46, and the
senescent modal age at death was 88.49. As the mortality level at old-ages tends to be de-
termined by senescent mortality, with only limited influence from infant and background
mortality, the senescent and total modal ages at death will generally be similar (Horiuchi
et al. 2013). It is important to recall that the modal age at death is determined by old-age
mortality only. To help understand the role of young age mortality on shifting and com-
pression, we decided to overlook these small differences. In the following sections, we
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will refer to the senescent modal age at death as the modal age at death.
When using the Gompertz model, the variability effect is captured by the parameter βt

(Appendix A) and the shifting effect by the parameter Mt. However, with a Gompertz-
Makeham model or a Siler model, more parameters will influence variability changes.
Canudas-Romo (2010) analytically demonstrated that, in a mortality declining scenario,
as the one experienced in developed countries, the mode will be maintained when re-
duction of mortality occurs at younger ages than the modal age at death. Using a Siler
model, Engelman, Caswell, and Agree (2014) showed that improvement in childhood
components of mortality (αt and bt) and in background mortality parameter (ct) influ-
enced lifespan variability reduction. The first four terms of the above equation would
then have an impact on variability reduction. The variability effect could then be divided
into four distinct effects: α̇t, ḃt, ċt and β̇t. The shifting effect is still captured by Ṁt. This
partition between the five Siler parameters emphasizes the impact of changing mortality
at young ages on lifespan disparities, in contrast with the effect of mortality reductions at
older ages on shifting mortality.

2.4 Data

The data source used in this study is the Human Mortality Database (HMD: http://www.
mortality.org). The HMD (2015) compiles census and vital statistics information for the
populations of entire countries. The HMD has high quality historical mortality data for
industrialized countries; the data series are constructed according to a common protocol,
making the HMD a unique comparison tool. For our illustrations, data for all the HMD
countries, excluding Eastern European countries, have been used for years 1900 to 2010
(Table 2). We justify the data exclusion because there are different age-patterns of mortal-
ity in the excluded countries than to those included in the illustrations in recent decades.
Nevertheless, our methodology can easily be extended to those countries although with
different mortality parameters.

The decomposition is applied to the mortality of Swedish females and to the average
female mortality in the selected HMD countries4. The Gompertz, Gompertz-Makeham
and Siler models are fitted to observed mortality trends using a Poisson log-likelihood
procedure. The estimation procedures of derivatives such as those in equations (6) to dis-
crete data are presented in Appendix B.

4The parameters of the mortality models are estimated for each country independently and then averaged over
all countries (with equal weight) to obtain the HMD average.
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Table 2: Selected HMD countries and years with available data used for the
illustration

Country Years Country Years
Australia 1925-2010 Japan 1947-2010
Austria 1947-2010 Luxembourg 1960-2009
Belgium 1900-2010 Netherlands 1900-2009
Canada 1921-2010 New Zealand 1948-2008
Chile 1992-2005 Norway 1900-2009
Denmark 1900-2010 Portugal 1940-2010
Finland 1900-2010 Spain 1908-2010
France 1900-2010 Sweden 1900-2010
Germany 1990-2010 Switzerland 1900-2010
Iceland 1900-2010 Taiwan 1970-2010
Ireland 1950-2009 United Kingdom 1922-2010
Israel 1983-2009 United States 1933-2010
Italy 1900-2009

Source: HMD (2015)

3. Illustration

3.1 Gompertz decomposition

Table 3 presents the decomposition of life expectancy at age 30 by M and β for Swedish
females at the beginning, middle, and end of the 20th century and for the HMD females
average, between 2000 and 2005. For the three periods selected and for both populations,
changes in the modal age at death (∆M ) are the main components driving the change in
life expectancy.

To further study the year-to-year changes, Figure 2 presents the decomposition from
1900 until 2010 in 5-year intervals for Swedish and HMD average females. Over most
periods, the gains in life expectancy at age 30 were mainly the result of a shift in the
modal age at death (∆M ). Until the end of the 1950s, variability reduction contributions
to changes in life expectancy (∆β) have been more important than in the following peri-
ods. However, even during those years, changes in life expectancy were mainly driven by
changes in the mode. Figure 7 in Appendix C presents similar results for 25 of the HMD
countries.
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Table 3: Female life expectancy at age 30 (e30,t) and its decomposition due to
changes in the Gompertz parameters, Sweden and HMD average,
1900, 1950, and 2000

Sweden HMD Average
1900 1950 2000 2000 (min, max)

e30,t 37.82 44.18 52.04 51.43 (49.23, 54.79)
e30,t+5 38.21 45.56 52.72 52.45 (50.40, 55.67)
ė30,t 0.39 1.39 0.68 1.03

∆β -0.17 0.09 0.05 0.09 (-0.11, 0.22)
∆M 0.56 1.30 0.63 0.94 (0.48, 2.08)

∆β + ∆M 0.39 1.39 0.68 1.03

Source: HMD (2015) and authors’ own calculation.
Note: By rounding the numbers to the second decimal point in the table, the sum of the contributions (

∑
∆i)

might differ slightly from the difference in life expectancy (ė30,t).

Figure 2: Trends over time of the Gompertz parameters’ contribution to
changes in female life expectancy at age 30 (ė30,t), Sweden and
HMD average, 1900-2010
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Changes in variability of senescent mortality alone would not have been sufficient to
generate the important gains in life expectancy at age 30 observed since 1900. An ex-
planation for this small variability effect compared with the important shifting effect for
senescent mortality still needs to be provided. A possible explanation is that as only
senescent mortality is analyzed by the Gompertz model, it does not consider the ages
essentially responsible for mortality compression, i.e., infant, child and early adult (Che-
ung and Robine 2007). To address the latter aspect of how mortality at young ages has
influenced changes in life expectancy, we present results for the Gompertz-Makeham and
Siler models in the next sections.

3.2 Gompertz-Makeham decomposition

The Gompertz-Makeham model can help us understand the impact of early adult mor-
tality changes on compression and shifting mortality. Table 4 presents an application of
the decomposition of life expectancy at age 30 using the Gompertz-Makeham model for
Swedish and HMD average females at three points in time. Among the parameters influ-
encing variability changes (β and c), the Makeham term (c) has a similar influence on life
expectancy changes than the shape parameter β, for most of the times studied in Table 4.

Table 4: Female life expectancy at age 30 (e30,t) and its decomposition due to
changes in the Gompertz-Makeham parameters, Sweden and HMD
average, 1900, 1950, and 2000

Sweden HMD Average
1900 1950 2000 2000 (min, max)

e30,t 32.50 43.30 51.41 50.75 (49.02, 53.66)
e30,t+5 32.95 45.04 52.09 51.70 (49.52, 54.49)
ė30,t 0.45 1.74 0.68 0.95

∆c 0.11 0.77 0.02 -0.09 (-0.73, 0.63)
∆β -0.12 -0.03 0.05 0.11 (0.00, 0.36)

∆M 0.46 1.00 0.61 0.93 (0.48, 2.01)
∆c+ ∆β + ∆M 0.45 1.74 0.68 0.95

Source: HMD (2015) and authors’ own calculation.
Note: By rounding the numbers to the second decimal point in the table, the sum of the contributions (

∑
∆i)

might differ slightly from the difference in life expectancy (ė30,t).

Figure 3 presents the decomposition for 5-year periods between 1900 and 2010 for Swedish
and HMD average females. The gains in life expectancy at age 30 before the 1950s were
mainly driven by changes in variability of the age at death, which is essentially captured
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by changes in the parameter c. After this initial period of variability decline, changes in
life expectancy at age 30 are mainly the result of shifting mortality (∆M ).

The inclusion of a parameter capturing early adult background mortality appears es-
sential, then, to demonstrate the effect of variability reduction on life expectancy at age
30. Figure 8 in Appendix C shows similar results for the selected HMD countries. The
next section presents an application of the Siler decomposition, in order to understand the
role of infant mortality on the changes in life expectancy.

Figure 3: Trends over time of the Gompertz-Makeham parameters’
contribution to changes in female life expectancy at age 30 (ė30,t),
Sweden and HMD average, 1900-2010
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Source: HMD (2015) and authors’ own calculation.

3.3 Siler decomposition

Table 5 and Figure 4 present the results of life expectancy decomposition, using a Siler
model, for female mortality in Sweden and HMD average at ages 0 and older. Similar
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to the Gompertz-Makeham decomposition, the results suggest that changes in life ex-
pectancy at birth before the 1950s were mainly the result of variability reductions. Gains
in life expectancy due to changes in the parameter β are still small, and the main gains are
due to variability reductions coming from changes in infant and background parameters.

Since the mid-1960s, the modal age at death has been the key parameter leading the
changes in life expectancy. Changes in the modal age at death were responsible for more
than 70% of the increase in e0,t since 1965 for females from both Swedish and HMD
average. Figure 9 in Appendix C presents similar results for 25 of the HMD countries.

Table 5: Female life expectancy at age 0 (e0,t) and its decomposition due to
changes in the Siler parameters, Sweden and HMD average, 1900,
1950 and 2000

Sweden HMD Average
1900 1950 2000 2000 (min, max)

e0,t 56.06 72.78 81.68 80.93 (78.92, 84.16)
e0,t+5 58.00 74.44 82.34 81.99 (79.92, 85.01)
ė0,t 1.94 1.66 0.66 1.06

∆α 0.52 0.06 0.01 0.01 (-0.04, 0.04)
∆b 0.54 0.02 -0.04 0.00 (-0.07, 0.05)
∆c 0.69 0.44 0.02 0.04 (-0.16, 0.23)
∆β -0.17 0.03 0.05 0.09 (-0.07, 0.26)

∆M 0.34 1.11 0.62 0.91 (0.48, 2.01)
∆α+∆b+ ∆c+∆β+∆M 1.94 1.66 0.66 1.06

Source: HMD (2015) and authors’ own calculation.
Note: By rounding the numbers to the second decimal point in the table, the sum of the contributions (

∑
∆i)

might differ slightly from the difference in life expectancy (ė0,t).
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Figure 4: Trends over time of the Siler parameters’ contribution to changes
in female life expectancy at age 0 (ė0,t), Sweden and HMD average,
1900-2010
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Source: HMD (2015) and authors’ own calculation.
Note: Appendix D presents these results in terms of relative differences.

3.4 Life expectancy and modal age at death

Figure 5 shows the life expectancy at birth and the modal age at death between 1900 and
2010 for females from Sweden and HMD average. Until the beginning of the 1940s, life
expectancy increased around 4 months per year on average, while the modal age at death
stayed nearly constant. The gains in life expectancy over this first period were in great
part the result of improvements in infant and background mortality, and thus, variability
reductions (Figure 4).
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Figure 5: Modal age at death and life expectancy at birth and their
respective segmented regression for females, Sweden and HMD
average, 1900-2010
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Note: The slopes and breakpoints of the modal age at death and life expectancy trends are calculated
with a segmented regression methodology (Camarda, Vallin, and Meslé 2012).

A second period followed in which the mode begins to increase at a faster pace while life
expectancy increase keeps its previous pace. Between 1940 and 1965, the mode contribu-
tion to changes in life expectancy increased, while variability contributions gradually lost
importance. During these years, variability contributions to changes in life expectancy
decreased from more than 60% to less than 30% of the total gains (Appendix D). This
period is one of acceleration in the increase of the modal age at death and marks the
transition from compression to shifting mortality.

Since the mid-1960s, the mode and life expectancy have been increasing at a com-
parable pace of around 2 months per year. This change in the pace of life expectancy
coincides with the change of pace observed by Vallin and Meslé (2009) for the best-
practice life expectancy. Life expectancy is still increasing at a marginally faster pace
than the mode due to small extra contributions from variability reduction. Nevertheless,
gains in life expectancy are mainly driven by changes in the modal age at death and thus
shifting mortality (Figure 4). This parallels the 3-phases transition described by Cheung
et al. (2009).
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4. Discussion and conclusion

Using recent parametrization of the Gompertz model, we separated changes in life ex-
pectancy by the variability reduction effect, captured by β, from the shifting mortality
effect, captured by M . The methodology is then extended to other parametric repre-
sentations of mortality, and particularly to the Gompertz-Makeham and Siler models, to
consider the effect of young adult, child and infant mortality changes. This new de-
composition method, using parametric models, allows us to understand and quantify the
respective impact of shifting mortality and variability changes on life expectancy.

Our results suggest that mortality compression was the main driver of change in life
expectancy at birth before the 1950s, due to a decrease in infant and background mor-
tality. After this period, changes in life expectancy became gradually dependent on the
shift in the senescent modal age at death. These results are consistent with the findings
of other studies looking at changes in the modal age at death and at different variability
measures (Wilmoth and Horiuchi 1999; Robine 2001; Yashin et al. 2001; Canudas-Romo
2008). The results also confirm the increasing importance of the modal age at death as a
key indicator of lifespan. The modal age at death has increased since the beginning of the
1940s and has become the main driver of longevity extension since the 1960s. An impor-
tant feature of this indicator is that, in populations that experience declining mortality, its
change is only determined by old-age mortality.

In the above illustrations, the results of the decomposition are presented for female
life expectancy only. However, similar results are found when decomposing male life
expectancy, but with a shifting pattern appearing later in time. Shifting mortality became
the main driver of life expectancy increase in the late 1970s for males (results available
from the authors).

We asked previously how and to what extent, one process replaced the other. Our
methodology allows us to observe and quantify the gradual replacement of a compres-
sion pattern by a shifting pattern in a relatively short period of time. We can also observe
that, even if shifting the modal age at death is explaining a great deal of the life expectancy
increase nowadays, lifespan variability reductions still play a role in mortality changes.

The results are, however, sensitive to the selected parametric model, and especially if
the model is able to include infant and background mortality parameters. The dominating
effect of variability reductions on life expectancy increase in the first half of the 20th cen-
tury can only be seen when using the Gompertz-Makeham and Siler models in the above
illustrations. When only senescent mortality is analyzed, the compression of mortality
only has a minor impact on life expectancy improvement, even before the 1950s. It could
thus be theorized that in a context where infant and young adult mortality is low, as it is
the case in most industrialized countries, variability reductions will have limited impact
on life expectancy, and shifting the modal age at death would be the main dynamic that
would allow life expectancy to increase.
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The choice of the parametric model for senescent mortality might also have influ-
enced the results. The illustration section presented the application of the methodology
to discrete data using a Gompertz model. Other models could, however, have been more
appropriate, such as the Logistic, to consider the deceleration in the hazard at very old-
ages. However, an application using the Logistic model shows that the results are very
similar to the findings obtained with the Gompertz model (Appendix E).

A previous attempt to quantify the effect of shifting the mortality schedule on life
expectancy has been done by De Beer and Janssen (2014). Their procedure consists in
evaluating the effect on life expectancy of changing the value of their model parame-
ters on life expectancy. However, to the authors’ knowledge, our current study is the
first attempt to quantify the gain in life expectancy produced by a change in variability
and shifting mortality. Our procedure allows us to differentiate between both underlying
mortality processes and their respective impact on life expectancy, and also to determine
when and how one process has replaced the other.
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Appendices

Appendix A: Changes in variability: effects of β and M

We stated that changing the parameter β of the Gompertz hazard equation will have an
effect on variability of the age at death. In this section, we evaluate this effect by looking
at a measure of variability, namely e-dagger (e†), and attest the contribution of each of
the parameters in the Gompertz hazard to the change in variability. Among the different
indicators used to measure variability of the age at death (Robine 2001; Wilmoth and
Horiuchi 1999; Vaupel, Zhang, and van Raalte 2011), we focus on e†, a measure of
lifespan disparity often interpreted as the average years of life expectancy lost due to
death:

e†t =

∫ ω

0

Hx,tlx,t dx, (A1)

where lx,t is the survival distribution, and Hx,t is the cumulative hazard, equal to:

Hx,t = eβt(x−Mt) − e−βtMt =
1

βt
µx,t − e−βtMt .

Therefore, e†t can be written as

e†t =
1

βt

∫ ω

0

µx,tlx,t dx − e−βtMt

∫ ω

0

lx,t dx,

leading to

e†t =
1

βt
− e−βtMte0,t. (A2)

Wrycza (2014) also showed this relation for Gompertz-Makeham entropy using the stan-
dard parametrization. It is possible to quantify the respective effects of βt and Mt on e†t
by looking at its time derivative, denoted by a dot on top of the variable. From equation
(A2) changes in e†t over time (ė†t ) can be expressed by components of changes for both
Gompertz parameters:

ė†t = −β̇t
[

1

β2
t e0,t

−Mte
−βtMt

]
e0,t − ė0,t[e

−βtMt ] + Ṁt[βte
−βtMte0]. (A3)

As shown by equation (6), ė0,t can be decomposed by a factor of change of Mt and
βt. Therefore, e0,t contributions to changes in e†t can be distributed into Mt and βt
contributions, obtaining
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ė†t = −β̇t
[

1

β2
t

− (Mte0,t + Fβ)e−βtMt

]

︸ ︷︷ ︸
δβ

+ Ṁt[(βte0,t − FM )e−βtMt ]︸ ︷︷ ︸
δM

, (A4)

where δβ and δM are the gains in e†t produced by a change in parameters βt and Mt,
respectively, and Fβ and FM are the terms multiplying β̇t and Ṁt respectively in equation
(6):

Fβ =

∫ ω

0

la,t

∫ a

0

µx,t(
1

βt
+ x−Mt) dx da (A5a)

FM =

∫ ω

0

la,t

∫ a

0

βtµx,t dx da. (A5b)

Table 6 shows an application of the e†t decomposition to Swedish and HMD average fe-
male data. It is shown that the main factor of variability changes comes from changes in
the parameter βt. However, increasing the modal age at death produced a small increase
in lifespan disparities.

Changes in e†t are thus driven by both Gompertz parameters. In general, increasing
βt will lead to a smaller variability of the age at death, while increasing Mt would have
the opposite effect. These results are consistent with the results of Engelman, Caswell,
and Agree (2014). Using a Siler model, the authors show that a decrease in the timing
parameter for senescent mortality (α2) will increase the variability (Engelman, Caswell,
and Agree 2014). However, Table 6 and Figure 6 show that this variability expansion
resulting from a shift in Mt will generally be too small to drive substantial changes in
lifespan disparities. The assumption that mortality compression is produced by an in-
crease in βt is then confirmed.
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Table 6: e-dagger (e†t ) and its decomposition due to changes in the Gompertz
parameters, Swedish and HMD countries average, females, 1900,
1950 and 2000

Sweden HMD Average
1900 1950 2000 2000

e†t 13.0425 9.7848 8.8384 9.2218
e†t+5 13.4824 9.6259 8.7529 9.0654
ė†t 0.4399 -0.1589 -0.0855 -0.1564

δβ 0.4356 -0.1601 -0.0856 -0.1567
δM 0.0043 0.0012 0.0001 0.0003

δβ + δM 0.4398 -0.1589 -0.0855 -0.1564

Source: HMD (2015) and authors’ own calculation.
Note: By rounding the numbers to the fourth decimal point in the table, the sum of the contributions (

∑
δi)

might differ slightly from the difference in e-dagger (ė†t ).

Figure 6: Trends over time of the Gompertz parameters’ contribution to
changes in e-dagger (e†t ) for females, Sweden and HMD average,
1900-2010
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Appendix B: Applying the decomposition to discrete data

The estimation procedure of our methodology can be done to discrete data by estimating
the functions at their midpoint over a certain time interval (Preston, Heuveline, and Guil-
lot 2001; Vaupel and Canudas-Romo 2003). As suggested by Vaupel and Canudas-Romo
(2003), if data are available between time t and t+ h, the midpoint value of the function
vx,t was estimated by

vx,t+h/2 = vx,t

(
vx,t+h

vx,t

)1/2

. (B1)

The derivative of the function vx,t+h/2 was estimated by

v̇x,t+h/2 = vx,t+h/2

ln[
vx,t+h
vx,t

]

h
. (B2)

In some cases, it could make more sense to assume a linear change in the interval (Vaupel
and Canudas-Romo 2003). In these cases, we used

vx,t+h/2 =
vx,t+h + vx,t

2
(B3)

and

v̇x,t+h/2 =
vx,t+h − vx,t

h
. (B4)

We used these latter estimates for the change over time of the life expectancy (ė0,t).
The other functions were estimated by assuming an exponential change, as presented in
equations (B1) and (B2). It is important to note that these procedures generate annual
estimates, and also that the midpoint of each term multiplying β̇t and Ṁt in equation
(6) should be estimated. For example, the annualized ∆M for the period t to t + h
(∆Mt+h/2) using the Gompertz model is calculated as

∆Mt+h/2 = Ṁt+h/2

∫ ω

0

lx,t+h/2 βt+h/2 Hx,t+h/2 dx, (B5)

where Hx,t is the cumulative hazard at time t and age x. In the illustration section, the
results are presented for five-year periods. As the above equations are valid for annual
changes, the decomposition is applied to yearly differences, which are then summed up to
equal for longer periods. Yearly estimates are generally more accurate than the estimates
for longer periods. Similar methodology is also applied for the Gompertz-Makeham and
Siler models.
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Appendix C: International comparison

Figure 7: Trends over time of the Gompertz parameters’ contribution to
changes in female life expectancy at age 30 (ė30,t), HMD countries,
1900-2010
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Figure 8: Trends over time of the Gompertz-Makeham parameters’
contribution to changes in female life expectancy at age 30 (ė30,t),
HMD countries, 1900-2010.
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Figure 9: Trends over time of the Siler parameters’ contribution to changes
in female life expectancy at age 0 (ė0,t), HMD countries, 1900-2010
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Appendix D: Relative differences

Figure 10: Female life expectancy at birth (e0,t) and relative gain in life
expectancy due to changes in the Siler parameters, Sweden and
HMD average, 1900-2010. The black and red lines are the life
expectancy at birth observed (in black) and modeled (in red)
presented in Figure 5.
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Note: The sum of the contributions (

∑
∆i) for each bar equal to 1 in this figure.
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Appendix E: Life expectancy decomposition: Gompertz, Logistic and
Weibull models

Table 7: Female life expectancy at age 30 (e30,t) and its decomposition due to
changes in the modal age at death (∆M ) and shape (∆β), using
Gompertz, Logistic and Weibull models, Sweden and HMD
average, 1900, 1950 and 2000

Sweden HMD Average
1900 1950 2000 2000 (min, max)

Gompertz
e30,t 37.82 44.18 52.04 51.43 (49.23, 54.79)

e30,t+5 38.21 45.56 52.72 52.45 (50.40, 55.67)
ė30,t 0.39 1.39 0.68 1.03

∆β -0.17 0.09 0.05 0.09 (-0.11, 0.22)
∆M 0.56 1.30 0.63 0.94 (0.48, 2.08)

∆β + ∆M 0.39 1.39 0.68 1.03
Logistic

e30,t 37.93 44.25 52.13 51.50 (49.30, 54.90)
e30,t+5 38.33 45.64 52.80 52.53 (50.46, 55.78)
ė30,t 0.40 1.39 0.67 1.02

∆β -0.17 0.07 0.04 0.08 (-0.15, 0.22)
∆M 0.57 1.32 0.62 0.94 (0.48, 2.12)

∆β + ∆M 0.40 1.39 0.67 1.02
Weibull

e30,t 38.50 44.33 52.09 51.46 (49.36, 55.05)
e30,t+5 38.98 45.77 52.74 52.47 (50.47, 55.88)
ė30,t 0.48 1.44 0.65 1.01

∆β 0.05 0.02 0.02 0.04 (-0.03, 0.08)
∆M 0.42 1.41 0.62 0.97 (0.50, 2.10)

∆β + ∆M 0.48 1.44 0.65 1.01

Source: HMD (2015) and authors’ own calculation.
Note: By rounding the numbers to the second decimal point in the table, the sum of the contributions (

∑
∆i)

might differ slightly from the difference in life expectancy (ė30,t).
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