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Notation

This section gives a concise overview of the notation used throughout this thesis.
Concepts which are in our opinion not common are introduced before the first usage.
For introduced operations we assume that the operants are of appropriate shape.

Sets

A = {a, b, c} A set including a, b, c
A A set (fraktur is used for sets of special importance)
A× B The Cartesian product of sets A and B
An The set of all n-dim vectors with elements of A
An1×n2 The set of all n1 × n2-dim matrices with elements of A
An1×...×nm The set of all n1 × ...× nm-dim arrays
2A The power set of A (the set of all subsets of A)
P A set of sets, e.g., a partition, see Def. 3.2.3

Convenience

∅ The empty set
N The set of natural numbers (N0 including 0)
R The set of real numbers (R+ just positive, including 0)
Z,C The set of integers and of complex numbers
P[t] The set of all polynomials in t
An×∗ The set of all matrices with n rows
[a, b] The real interval including a and b
[n] The set of natural numbers from 1 to n ∈ N

Numbers, Arrays, and Tuples

a A scalar (real or natural number)
a A vector of scalars
A A matrix of scalars
A An n-dim array of scalars (n > 2)
A A tuple (or list or ordered set) of non scalar elements
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Convenience

h, i, j, k, l, m, n, w Are natural numbers
a, b Are real numbers
x, y, z Could be natural or real numbers
0 The zero vector, matrix, or n-dim array
e, π Euler’s number, circle number
(a, b, c)T The vector containing a, b, c
(A,B) 3-dim array with A and B stacked along the third dim

Operations on Sets and Tuples

A⌢ B The list B is put at the end of list A

Indexing, Dimensions, and Naming

For non scalars the lower right index position is reserved for indexing purposes. The
lower left index position is used to refer to the object’s dimensionality. The upper
right index position is used (usually in brackets) for the naming of different objects.

ai The i-th element of vector a
Ai,j The scalar in row i and column j of matrix A
Ai,: The i-th row of matrix A
A:,j The j-th column of matrix A
Ai1,...,in The scalar with indices i1, ..., in of A
A:,:,i3,...,in The matrix for fixed indices i3, ..., in
Ai The i-th element in the list A
1A The number of rows of the matrix A
2A The number of columns of the matrix A
iA The dimensionality of dimension i of A
a(1), a(2) Two different vectors

Logic Notation

∀ For all
∃ There exists at least one
∃! There exists one and only one
∧ Logical and
∨ Logical or
¬ Logical not



V

Convenience

Let A,B ∈ {0, 1}n×m (binary).

A ∧B (A∧B)i,j =
⎧⎨⎩1, if Ai,j = Bi,j = 1

0, else
, ∀i ∈ [n] , j ∈ [m]

A ∨B (A∨B)i,j =
⎧⎨⎩0, if Ai,j = Bi,j = 0

1, else
, ∀i ∈ [n] , j ∈ [m]

¬A 0 becomes 1 and vice versa

Matrix Operations

AT Transpose of matrix A
A⊙B Hadamard product (element-wise multiplication)
A ∗B Matrix convolution, see Sec. 3.1.3
A⊕B Morphological dilation (A,B binary), see [Ser82]
A⊖B Morphological erosion (A,B binary), see [Ser82]
A ◦B Morphological opening (A,B binary), see [Ser82]

Functions

f : A→ B Function f mapping from A to B
f ◦ g The composition of f and g (f ◦ g(x) = f(g(x)))
f(x; θ) Function f in x is parametrized by θ

Convenience

| · | The absolute value for a scalar argument
| · | The number of elements for a non scalar argument
⌈a⌉ The ceil of scalar a
⌊a⌋ The floor of scalar a
∥ · ∥2 The L2-norm, ∥x∥2 =

√∑n
i=1 x2

i , x ∈ Rn

Miscellaneous

N (µ, σ2) Normal distribution with mean µ and standard
deviation σ

x ∼ N (µ, σ2) x is sampled from the normal distribution





1. Introduction

Accessibility of the valuable cultural heritage of historical documents is an important
concern of archives, libraries as well as certain companies, e.g., those specialized in
genealogy. After years of digitization at an industrial scale to protect and preserve
these valuable goods, millions over millions of scanned pages are stored at servers
all over the world [ICH12]. The generic next step is to make the enormous amount
of content of these document images accessible and enable humanists, historians,
genealogists as well as ordinary people to efficiently work with these documents. Be-
sides the cost- and time-consuming process of manually annotating volumes [CW12],
it is subject to current research and scientific discussion how to automate this process
[Sán+13]. This thesis investigates a subtask of this information retrieval pipeline,
namely the text line extraction.

1.1. Motivation & Thematic Classification

Since 2009, tremendous progress in the field of automated text recognition (ATR)1

[GS08]; [Lei+16] as well as keyword spotting (KWS) [PTV14]; [Str+16a]; [Str+16b]
was achieved. The performance of state-of-the-art systems reaches character error
rates below 10% for ATR [San+14] and mean average precisions above 0.9 for KWS
[Pra+16] for complex handwritten documents. Although efforts are made to develop
systems working solely on the rough input image without any a-priori segmentation
[Rus+15]; [Blu16]; [KKG16], the best performing recognition systems – with ref-
erence to recently hosted competitions – rely on segmented words or text lines as
input. Entirely segmentation-free approaches suffer either from an enormous train-
ing/inference time and/or, up to now, did not demonstrate its applicability with
competitive quality on challenging datasets [Pra+16]. Hence, a workflow which in-
volves a text line extraction followed by the transformation of pixel information
into textual information (ATR/KWS) is the widespread standard. This work deals
with the first step of the information retrieval pipeline, namely the text line extrac-
tion. This is a mandatory step since errors directly effect the performance of the
overall information retrieval process. The text line extraction is still unsolved to
a certain extend for historical documents due to difficulties like physical degrada-
tions (e.g., bleed-through, faded away characters, heterogeneous stroke intensity),
image capture conditions (e.g., scan curve, illumination issues), complex layouts

1ATR = Optical Character Recognition + Handwritten Text Recognition
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(e.g., structured documents, marginalia, multi-column layouts, varying font sizes),
arbitrary orientations and curved text lines.

The results achieved by state-of-the-art approaches are not satisfying [Zah+07];
[Mur+15], especially if dealing with heterogeneous data. Algorithms are often highly
adapted to certain scenarios and need to be re-parametrized by experts; or even fail
if applied to collections of different characteristics. Moreover, even state-of-the-
art algorithms struggle if they are challenged with historical documents that are
characterized by the above mentioned difficulties [Mur+15]. Therefore, this work
focuses on the extraction of text lines in arbitrary historical documents.

Traditionally, the problem of text line extraction is tackled by image processing
based methods [NG09]; [SSG09]; [Gar+12]; [DKS13]; [AS14]; [RKC14]; [SAE14].
These approaches usually incorporate domain knowledge in form of hand-crafted
features. As already mentioned, this process usually necessitates remarkable expert
knowledge. Besides these classical methods, deep learning based approaches became
omnipresent in the document analysis community within the last years [Vo+17];
[Ten+17]; [Che+17]; [Ren+17]. These methods do not rely on hand-crafted features.
Instead, they learn hierarchical representations from raw training data. However,
this training data generation is usually cumbersome and expensive. Either plenty of
trainings samples are required or the production of single samples is quite elaborate
if just a reasonable number of training samples is necessary, e.g., the labeling at
pixel level for binarization purposes. The presented work combines deep learning
strategies and state-of-the-art image processing based techniques to design a two-
stage clustering approach. This is done to overcome the limitations of the single
approaches to build a method which constitutes a more powerful and easy to handle
framework which is usable by a wide range of people without any remarkable expert
knowledge of the fields of computer vision or deep learning.

In this work, the problem of text line extraction is decoupled into the problem of
baseline detection and the subsequent problem of the estimation of a polygonal rep-
resentation of a text line given its detected baseline. This increases the flexibility
of the extraction process and allows for an easy adaptation to different ATR/KWS
modules. After introducing the problem of baseline detection, a similarity score is
introduced to evaluate the quality of baseline detection methods. Finally, we will
utilize a newly designed, fully convolutional network (called ARU-Net) to perform
a goal oriented pixel labeling. That means the pixels of the input document are
assigned to certain classes. Binarization, which is a prior step to many text line
extraction algorithms [DKS13]; [RKC14]; [Koo16], is a special form of pixel label-
ing. But binarization sometimes tends to fail for complex documents and results in
hardly correctable errors. Moreover, it just distinguishes between foreground and
background, which is usually not sufficient for text line extraction, e.g., ruled lines or
graphics have to be separated from text. Finally, binarization algorithms are usually
parametrized for a certain collection and necessitate expert knowledge to be adapted
to another collection. This motivates the usage of a more sophisticated pixel labeling
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method. The proposed ARU-Net can be trained for any pixel labeling task, even to
distinguish between different types of text (as we will see later). Furthermore, it is
adaptable to different collections and/or scenarios just by retraining. Consequently,
there is solely the need for appropriate training data (which will be easy and cheap
to produce) instead of expert knowledge to re-parametrize the algorithm (which
librarians or digital humanists usually do not have). The ARU-Net output consti-
tutes the input for an image processing based clustering approach. This clustering
approach incorporates domain knowledge to improve the overall performance. The
approach is based on the state estimation which was introduced in [KC10], firstly
used for text line extraction in handwritten documents in [KC12], and further ex-
tended in [Grü+17]; [Ahn+17]. The latter was referred to as current state of the
art in a recent review [EGO17], because it won the last two (to that point) compe-
titions on text line extraction organized in conjunction with the ICDAR conference.
However, our proposed two-stage baseline detection method proves its superiority
over the previous state of the art. It substantially outperforms the submissions to
3 recently organized competitions on origin point/baseline detection and is already
usable (and used) by a wide audience via the Transkribus2 platform.

After detecting the baselines, we utilize an approach which is based on dynamic
programming to determine polygonal representations for the text lines. In the end,
the influence on the overall information retrieval pipeline of the proposed text line
extraction method is investigated. Fig. 1.1 illustrates a snippet of the cBAD test
set [Die+17b] with the detected baselines and the estimated polygonal chains rep-
resenting the text lines. This snippet will cross our path several times throughout
this thesis (until we achieve the depicted results).

Figure 1.1.: Baselines and text lines for an image snippet of [Die+17b] –
Illustration of the detected baselines (solid blue lines) and the extracted
text lines (blue underlay) for a snippet of a historical document image
which were estimated by the proposed text line extraction method.

1.2. Main Contributions

Here, we will briefly list the main contributions of this thesis followed by an outline
of this thesis. Main contributions:

2https://transkribus.eu
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• Formulation of the problem of text line extraction in a formal way, especially
a definition of a correct text line is given in a practically motivated way in
form of the text line intuition.

• Introduction of the decoupling of the stated problem in a baseline detection
problem and a text line extraction problem.

• Development of a similarity score for the baseline detection problem.
• Introduction of a newly designed deep neural network (ARU-Net) for pixel

labeling along with a meaningful parametrization (which is the result of an
extensive search in the hyperparameter space and leads to impressive results
over a wide range of different scenarios) – the ARU-Net and its training frame-
work are open source3.

• Introduction of the new concept of learned separators to handle complex lay-
outs instead of an a-priori page segmentation or white-/blackrun calculation.

• Introduction of a two-stage workflow which combines the developed ARU-
Net with state-of-the-art image processing techniques. The resulting method
outperforms the previous state of the art on several data sets.

• The developed method was tested for a variety of different data sets, especially,
the influence of the amount of training data as well as data augmentation
strategies were investigated to demonstrate the applicability of the proposed
approach at an industrial scale.

• Introduction of a dynamic programming based method which utilizes the cal-
culated baselines to estimate polygonal chain representations of the text lines.

• Evaluation of the entire information retrieval pipeline in an end-to-end fashion.
• The entire text line extraction method was made available via the Transkribus

platform and is used by a wide range of researchers from different domains.

The remainder of the thesis is structured as follows: After introducing the text
line extraction problem in Sec. 1.3, Chap. 2 briefly introduces some related work.
In Chap. 3 the fundamentals for the baseline detection method are given. After
thoroughly introducing the fully convolutional network, an energy minimization
framework based on graph cuts is introduced. Chap. 4 focuses on the baseline
detection and constitutes the main chapter of this thesis. Besides the motivation of
the baseline detection as a first step of the text line extraction framework, the devel-
oped similarity score to evaluate the performance of a baseline extraction method
is described. The remainder of this chapter is dedicated to the developed baseline
detection method. After introducing the method, its capabilities are demonstrated
in various experiments. In Chap. 5 a method to estimate polygonal chains given the
detected baselines is described. This method is evaluated on a recently hosted text
line extraction competition with respect to the intersection-over-union measure. Af-
terwards, the end-to-end performance of the entire system is investigated. For this
purpose, a system for automated text recognition is trained and the transcriptions
of the entire system are evaluated by means of the character error rate. Finally,
Chap. 6 concludes the thesis.

3https://github.com/TobiasGruening/ARU-Net
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1.3. Problem Statement

This section introduces definitions of basic terms to state the text line extraction
problem in a formal way. For instance, image is a term frequently used in the
literature, nevertheless it is related to various different objects. Hence, it is necessary
here to clarify exactly what is meant by image.
Definition 1.3.1 (image, pixel, intensity, coordinate). A matrix I ∈ [0, 1]h×w is
called (gray-scale) image of height h ∈ N and width w ∈ N. An element p = (i, j) ∈
[h] × [w] is called pixel of I. The matrix value Ip = Ii,j of row i and column j
is called intensity of pixel p. y = p1 and x = p2 are called coordinates (y− and
x−coordinate). An image of zeros and ones I ∈ {0, 1}h×w is called binary image.
Remark 1.3.2. It is common in computer vision that the first coordinate constitutes
the y−coordinate and the second one the x−coordinate. Furthermore, the y-axis
is typically inverted compared to the Cartesian coordinate system. We follow this
convention throughout this thesis.
Remark 1.3.3. Pixel coordinates are natural numbers. Nevertheless, we assume
that all operations which are defined in R2 are also applicable on pixels. A pixel is
mapped onto R2 in the generic way. Any x ∈ R+ × R+ is mapped back into the
pixel space by p = (round(x1), round(x2))T with round : R+ → N defined as

round(x) :=
⎧⎨⎩⌊x⌋ , if x > 1 ∧ x− ⌊x⌋ ≤ 0.5
⌈x⌉ , else

.

Note that round(0.1) = 1 because a pixel coordinate has to be a natural number.
Image means gray-scale image for the rest of this work. 1I denotes the height
of image I, 2I denotes the width, analogously. For visualization purposes a pixel
intensity value of 1 means white and 0 means black.
Definition 1.3.4 (image space). The set of all possible images

I :=
⋃

h,w∈N
[0, 1]h×w

is called image space (I).
Remark 1.3.5. A colored image can be regarded as three stacked gray-scale images,
each encoding one of the following colors – red (R ∈ I), green (G ∈ I), blue
(B ∈ I). In this work, we follow the recommendation ITU-R BT.601-7 [Ser11] for
the conversion of a colored image to a gray-scale image

I = 0.299 ·R + 0.587 ·G+ 0.114 ·B.

If the colored image is available, we usually use it for visualization even though it
is converted to its gray-scale version for calculations.
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Everybody has an intuition about what a text line is. However, this intuition usually
differs between people and even between scenarios for the same person. Thus, it is
impossible to state a formal definition which holds in general (for all intuitions) and
covers all characteristics to clearly describe a text line. Therefore, a text line is
introduced in a quite general way.

Definition 1.3.6 (text line, text line space). Given an image I ∈ I a text line is a
subset of the image pixels

P ⊂ [1I]× [2I] .

The set of all possible text lines

PTL := 2N×N

is called text line space (PTL).

Hence, a text line could be anything. As stated above there is no closed definition
to describe how a ”correct” text line looks like. To overcome this issue, we introduce
the text line intuition as a function which maps any image to a set of text lines.

Definition 1.3.7 (text line intuition, text line ground truth). A function ιI : I →
2PTL is called text line intuition (TLI) if and only if (iff) it reflects the intuition
about text lines of an (human) operator. The set of text lines ιI(I) is referred to as
(text line) ground truth (GT) for I ∈ I.

A TLI is given by an (human) operator and usually motivated by an application.
Basically, different TLIs differ in the understanding of what a text line is and how
it should be represented. The major differences of practically relevant TLIs are
described and visualized in the introduction of Chap. 4. However, since there are
no well-defined computation rules for a TLI, the realization for a certain image has
to be done manually by the (human) operator. This takes quite a long time and is
not suitable for large scale applications. Hence, it is within the scope of this work
to eliminate the operator-part in this process. The text line extraction should be
automated. Thus, there has to be a purely automatic method which produces text
line hypothesises for an image. The calculation rules of this function have to be
known. We call such a function text line extractor.

Definition 1.3.8 (text line extractor, text line hypothesis). A function ιE : I →
2PTL is called text line extractor (TLE) iff its calculation rules are well-defined. The
set of text lines ιE(I) is referred to as (text line) hypothesis (HYP) for I ∈ I.

For the rest of this thesis, we aim for the design of a TLE which ”optimally” approx-
imates a given TLI. To evaluate the quality of a TLE for a certain image a similarity
score is introduced. A similarity score should (as the name implies) assign a value
to two sets of text lines which represents their similarity.
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Definition 1.3.9 (similarity score). A function ⟨ · , · ⟩TL : 2PTL × 2PTL → [0, 1]
is called similarity score.

Some application oriented similarity scores are introduced in Chap. 5. Basically,
a similarity score assigns high values to sets of text lines if they are very similar.
Thus, a value close to 1 (⟨ιI(I), ιE(I)⟩TL ≈ 1) indicates a high accuracy of the TLE
ιE(I) for the image I given a TLI ιI . Accordingly, a TLE is optimal for a TLI and
a similarity score ⟨ · , · ⟩TL iff it solves

ι∗E = arg max
ιE is TLE

∑
I∈I
⟨ιI(I), ιE(I)⟩TL. (1.3.1)

As already mentioned, there are no closed computation rules for a certain TLI.
Hence, the optimization problem defined in Eq. (1.3.1) is not manageable due to the
infinite number of possible images. Therefore, the (human) operator has to choose
a representative subset of I which (ideally) is sampled independent and identically
distributed (i.i.d.) from all images of interest. The combination of this subset of
images and their corresponding realizations of the TLI (GT) is called test set (T)

TιI =
{(
I(i), ιI(I(i))

)
| i ∈ [ntest] , I(i) ∈ I

}
, (1.3.2)

where ntest ∈ N is the number of test samples. The test set should represent the
TLI (on a meaningful subset of I) and is used to evaluate the quality of a TLE. For
each test set there is always a fixed TLI, this is denoted by the respective subscript.
The production of TιI has to be done by the (human) operator and is, even for a
subset of reasonable size, time-consuming and expensive. Finally, the quality of a
TLE is measured by means of the similarity score on the test set.

Definition 1.3.10 (test score). Assume there is a test set TιI and a similarity score
⟨ · , · ⟩TL, the test score (τtest) assigns a score to each TLE and is defined as

τtest(ιE) := 1
|TιI |

∑
(I,ιI(I))∈TιI

⟨ιI(I), ιE(I)⟩TL.

Taking into account the test set during the design phase of the TLE is fraught with
risk. In the worst case the TLE is just memorizing TιI and it does not approximate
the underlying TLI at all. This behavior is referred to as overfitting. The perfor-
mance of a system which overfits on a certain set is typically very poor on arbitrary
inputs which are not part of this set.

To overcome this issue a train set (T′)

T′
ιI =

{(
I(i), ιI(I(i))

)
| i ∈ [ntr] , I(i) ∈ I

}
. (1.3.3)

is introduced. It is set up like the test set, especially the same TLI is used to generate
both sets. But the sets can differ in their sizes and have to differ in the images used,
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i.e., T′
ιI ∩ TιI = ∅.

A TLE which was designed using solely T′
ιI and which performs well on TιI is much

more likely approximating the underlying TLI than a system which was designed
using both sets. Thus, the major difficulty is to design a system which generalizes
well from the train set to the test set. The problem investigated in this thesis can
now be stated as follows.

Text Line Extraction Problem Assume there is a text line intuition along with a
test set TιI and a train set T′

ιI which were generated by means of the TLI. Design
a text line extractor (ι∗E) which utilizes just T′

ιI and maximizes the test score τtest
on TιI .

Moreover, we do not just aim for the design of a TLE for a certain TLI but for a
design which is adaptable to different TLIs. Hence, the designed TLE should be of
the form

ιE( · ; θ) : I→ 2PTL

with a vector of parameters θ ∈ RN . Given a new TLI, an adaptation of θ should be
sufficient to solve the above stated problem. Furthermore, the designed TLE should
allow for an ”easy” estimation of θ. That is to say, for a certain TLI it should be
possible to estimate θ without any expert knowledge and at a reasonable cost. This
is a mandatory characteristic for a TLE which should be used at an industrial scale
and is therefore one major requirement within this thesis.

1.4. Conclusion

In this chapter, we have motivated the topic of this thesis. The necessity of a ro-
bust and flexible text line extraction method in the information retrieval pipeline
for scanned documents was mentioned. Especially, there is a lack of methods which
are adaptable to entirely new scenarios without any notable expert knowledge. Af-
terwards, the main contributions of this thesis were stated. Finally, the problem of
text line extraction was stated in a formal way.



2. Related Work

A myriad of solutions to the text line extraction problem has been proposed in
the literature. Likforman-Sulem et al. [Zah+07] and Eskenazi et al. [EGO17]
give surveys which cover the last two decades. Especially, the recently published
review [EGO17] provides a comprehensive overview of methods of the last ten years.
Because of that, we will not provide a global summary of methods and limit ourselves
towards a brief introduction of approaches which are relevant for this work. We will
evaluate each method (or class of methods) with respect to the requirements for a
text line extractor which were stated in the previous section.

In [AS14]; [NG09]; [SAE14], the principle of dynamic programming is utilized to
calculate cost optimal paths passing the image from left to right to separate different
text lines from each other. Basically, the above cited methods differ in the way
the images are pre-processed and in the formulation of the cost function which
is optimized. The major drawback of these methods is that they solely work for
a subset of all images of interest. I.e., they are just applicable for images with
(roughly) horizontally oriented text lines which range from the left to the right
image border. In the words of [EGO17], these methods are algorithm constrained.
That means, they are limited to a pre-defined scenario and not adaptable to different
TLIs. Nevertheless, these methods do not necessarily rely on a binarization and work
very well in their pre-defined constrained environment. Therefore, they are the basis
for our baseline-to-text-line method which will be described in Chap. 5.

Ryu et al. [RKC14] propose an algorithm which uses characteristics (so-called
states) of extracted connected components to assign costs to certain clustering re-
sults. These states encode local text orientation and interline distances (whose
meaning is intuitively clear but will be introduced later in this work). Subsequently
using four different operations (merge, split, merge-split, merge-merge-split) on an
initial coarse clustering, the costs are minimized to obtain an optimal clustering,
which leads to the final text line segmentation. Ahn et al. [Ahn+17] improve this
approach by the introduction of a newly developed binarization method and an im-
proved clustering process. Grüning et al. [Grü+17] extended the approach of Ryu
et al. so that it is applicable for more general superpixels which do not rely on a
binarization. Furthermore, they introduce a new clustering procedure which does
not rely on a coarse initial clustering. These algorithms belong to the class of param-
eter constrained (cf. [EGO17]) methods. Consequently, they are more adjustable to
different TLIs compared to the algorithm constrained methods. The required pa-
rameter tuning typically necessitates expert knowledge which is not acceptable for
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applications which should be used at industrial scale. Nevertheless, these methods
constitute an important ingredient for our proposed baseline detection methodology.
The ideas of these methods allow for an easy incorporation of domain knowledge,
e.g., of basic characteristics of text lines as well as of provided layout information,
into our proposed text line extraction framework, cf. Sec. 4.3.2.

Besides these “classical” approaches, which are based on image processing tech-
niques, methods based on machine learning gained importance within the last two
years. Eskenazi et al. [EGO17] classify the neural network based approaches as
potentially unconstrained methods. This is due to the fact that the capability of
neural network based methods is mainly determined by the given training data.
Hence, they can potentially adapt to various TLIs. Moysset et al. [Moy+15] pro-
pose a method based on a recurrent neural network. The network is trained given
only the number of lines in the image utilizing Connectionist Temporal Classifica-
tion which was introduced to train networks for handwriting text recognition and
allows for ground truth data without any alignment. The trained neural network
predicts confidences for the vertical coordinates of the image to belong either to
the classes line or interline. Further post-processing of the neural network output is
performed to detect the text lines. In follow-up works, they formulated the problem
as a regression problem [Moy+17]; [MKW17]. The recurrent neural network directly
predicts bounding boxes as well as the start of each text line, respectively. Besides
this regression based approach, classification based approaches were proposed most
recently. In contrast to the approach of Moysset et al., these methods perform a
pixel labeling to classify each image pixel (instead of classifying rows of pixels, only).
For instance, Renton et al. [Ren+17] propose a fully convolutional network (FCN)
based on dilated (or atrous) convolutions to classify pixels as text line main body
or not. The classification results are utilized to extract the text line information.
These techniques are currently very popular, e.g., four of the five participants of
the cBAD: ICDAR2017 Competition on Baseline Detection [Die+17a] use methods
relying on FCNs. The method introduced in this work relies (in the first stage) on
such a neural network based pixel labeling, see Sec. 4.3.1. In contrast to the above
mentioned methods which (to a greater or lesser extent) directly use the neural net-
work output as result, the proposed method utilizes the neural network output as
input for a subsequent sophisticated clustering approach, see Sec. 4.3.2.



3. Fundamentals

In this chapter, we introduce the fundamentals for the techniques used to work on
the text line extraction problem as stated in Sec. 1.3. Each technique is thoroughly
introduced in a mathematical fashion. Several references for further studies beyond
this thesis are given. After introducing a technique a short conclusion is given. The
conclusion states the main points of the technique and motivates its usage to solve
the text line extraction problem. The introduced techniques are:

(1) Artificial Neural Networks
(2) Energy Minimization via Graph Cuts

3.1. Artificial Neural Networks

The question whether programmable computers could become intelligent dates back
to a time 100 years before the first one was build [ML43]. Nevertheless, it took quite
a while until the first steps towards artificial intelligence (AI) were made. The first
success stories of AI were limited to problems with well-defined, sterile environments.
For this kind of problems, it was possible to formulate a list of formal mathematical
equations. As a result, the design of hard-coded strategies constituted the solution
to this problems. Hence, the first AI systems were based on a static set of rules. One
of the most prominent systems among the knowledge-based systems is IBM’s Deep
Blue chess-playing system which defeated the world champion Garry Kasparov in
1997 [Hsu02].

However, a major problem of this kind of knowledge-based systems is that they
struggle if confronted with problems which suffer from a complex or intractable
problem formulation. Therefore, powerful AI systems should be able to acquire their
own knowledge by extracting patterns from raw data. This capability is known as
machine learning (ML). The performance of machine learning methods strongly rely
on the representation of the data they are trained on. E.g., to determine whether
there is a face in an image or not is quite simple if one gets number and position
of eyes, noses, mouths, ears, ... instead of the raw pixel intensities. The design of
meaningful high level features like the above-mentioned could be done by (human)
experts. The so-called handcrafted features are used in a large variety of different
problems. Nevertheless, there are plenty of problems for which the formulation of
a meaningful set of features (and their detection) is nearly as challenging as the



Chapter 3. Fundamentals 12

original problem. Especially for computer vision tasks this is true. The detection of
eyes, noses, mouths, ears, ... is nearly as complex as the detection of faces. In deep
learning (DL) this problem is tackled by an automatic design of high-level features
that are expressed in terms of lower level (simpler) features. No (human) expert is
required in this design phase.

The past decade has seen the rapid development of DL [Sch15]; [LBH15]. Re-
searchers worked on and solved problems in different domains in a quality which
results in a gain of attention even in the public at large. Especially large IT-
companies like Google, Amazon, Apple, Microsoft foster the DL research and incor-
porate newly developed techniques directly in their products. Personal assistants,
e.g., Google Home, Amazon Echo, Siri, and Cortana, are of special importance
regarding the publicity. These products are a direct consequence of advances in
speech recognition [D+10]; [Dah+12]; [Hin+12]; [GMH13] and natural language
processing [Col+11]; [Kum+16]. There are various other domains which benefit
from recent progress, e.g., automation (self-driving cars [Far+13]), automatic image
captioning [KSZ14a]; [KSZ14b]; [Mao+14]; [Fan+15]; [Vin+15]; [Xu+15], neural
machine translation [SVL14]; [BCB14], information extraction in biomedical images
[RFB15], GO-computer-programs which are able to beat the worlds best human
players [Sil+16]; [Sil+17], to name but a few.

The omnipresent technique and basis for the above-mentioned success stories is the
artificial neural network (ANN). This approach, as its name implies, tries to under-
stand and imitate the human brain. The term ”(artificial) neural network” covers a
wide range of different models which aim to describe neural behavior in biological
systems in a mathematically fashion [MP43]; [Heb49]; [WH60]; [Ros61]; [RHW86].
Nowadays, there are plenty of different ANN models with various properties to dis-
tinguish between them. One major difference is the way the model is internally
connected. There are models whose connections form cycles, so-called recurrent
neural networks. These networks are widely used for sequence processing problems,
e.g., speech recognition [GMH13], language processing [Kum+16], language mod-
eling [Mik+10]; [Mik+11]; [MZ12], automatic translation [SVL14], and automatic
text recognition [Gra+09]; [Lei+16]; [Str+16a]. The other category, the feedfor-
ward neural networks, has acyclic connections. In this work, we will limit ourselves
towards the feedforward neural networks because they constitute the most popu-
lar ANN models for computer vision tasks [KSH12]; [Far+13]; [Goo+13]; [Gir+16].
Next, we will introduce the basic concepts of modern feedforward neural networks
which will be used in this thesis. Based on the classical multilayer perceptron the
convolutional neural network is introduced. This type of ANN is the basis for the
method described in Chap. 4.
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3.1.1. Multilayer Perceptron

In the 1950s, [Ros58]; [Ros61] introduced the perceptron. This was the first model
with trainable weights and is widely seen as the basis for modern ANNs. In the
late 1980s, the first deep neural network architectures were introduced by stacking
multiple perceptrons to build the so-called multilayer perceptron (MLP) [RHW86];
[Wer88]. Notably, these stacked perceptrons were extended versions of the originally
proposed perceptron (see [RHW86]). In the following, we will introduce the multi-
layer perceptron in our own notation which is close to the standard notation and is
used for the rest of the work. First, we will introduce all necessary components to
set up the MLP.
Definition 3.1.1 (logit function). For a given matrix W ∈ Rn×m and a vector
b ∈ Rm the function ΦW,b : Rn → Rm defined as

ΦW,b(x) := W Tx + b

is called logit function. The resulting vector x̃ = ΦW,b(x) is called logit.

The free model parameters W and b are called weights and bias, respectively. They
determine the behavior of the logit function. To incorporate the capability to model
non-linear dependencies between input and output an activation function is intro-
duced.
Definition 3.1.2 (activation function). A continuous and monotonically increasing
function ψ : R→ R is called activation function.

Remarkably, in the literature there are also non-monotone activation functions, e.g.,
radial basis function [BL88]; [LB88]; [PS91], but these are not of interest within this
work.
Remark 3.1.3. For non-scalar inputs the activation function is applied element-
wise for its input. For instance, for a given vector x ∈ Rn

ψ(x) = (ψ(x1), ..., ψ(xn))T

holds.

There are various different commonly used activation functions. The tanh, logistic,
and relu funtions (f.l.t.r)

ψ(x) = tanh(x), ψ(x) = 1
1 + e−x , ψ(x) = max{0, x}

are among the most frequently used ones in state-of-the-art systems. Besides these
activation functions which are applied element-wise to their inputs, there are acti-
vation functions which take into account the entire input. The so-called softmax
activation is of importance especially for classification purposes.
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Definition 3.1.4 (softmax). The function ψ : Rn → (0, 1]n defined as

ψ(x) :=
(

ex1∑n
i=1 e

xi
, ...,

exn∑n
i=1 e

xi

)T

is called softmax .

The softmax activation outputs are all positive and sum up to one. Hence, they can
model a (probability) distribution and are often used to activate the output layer of
a neural network which is used for classification purposes.

Remark 3.1.5. In the literature, the term logit is often solely used for the input
to the softmax activation. We use it for the input to any activation function.

The composition of logit function and activation function is called layer.

Definition 3.1.6 (layer). The pair
(
ΦW,b, ψ

)
of logit function and activation func-

tion is called layer . For a given input x ∈ Rn, the layer’s output y ∈ Rm is calculated
as follows

y = ψ ◦ ΦW,b(x) = ψ(ΦW,b(x)).

The components yi, i ∈ [m] of the output vector are called units.

For the reason of simplicity, we usually write ΦW,b,ψ for a layer and ΦW,b,ψ(x) =
ψ(ΦW,b(x)) holds. Several layers could be stacked in a way that a layer’s output
constitutes the next layer’s input. One has to ensure that the output dimension of a
layer equals the input dimension of the next layer. This has to be done by choosing
the layers weight and bias dimensions correctly. The resulting model is referred to
as multilayer perceptron.

Definition 3.1.7 (multilayer perceptron). For zin, zout, l ∈ N with l > 1, we call a
set of layers ΦW (1),b(1),ψ1 , ...,ΦW (l),b(l),ψl multilayer perceptron (MLP) iff

1W
(1) = zin ∧ 2W

(l) = zout ∧ ∀i ∈ [l − 1] : 2W
(i) = 1W

(i+1). (3.1.1)

For a given input x ∈ Rzin the MLP’s output y ∈ Rzout is calculated by subsequently
updating the layers

y = ΦW (l),b(l),ψl ◦ · · · ◦ ΦW (1),b(1),ψ1(x).

The last layer ΦW (l),b(l),ψl is referred to as output layer . The propagation of the input
through the layers is called forward propagation.

The input/output (I/O) dimensions, the number of layers l, the dimensionality of
the weights and biases as well as the choice of the activation functions are called
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hyper parameters of the MLP. The weights and biases themselves constitute the
model parameters.

Remark 3.1.8. An MLP is a function mapping an input vector to an output vector
Φ( · ; θ) : Rzin → Rzout , θ constitutes the model parameters.

Since the behavior of the function is parameterised by the model parameters θ,
an MLP is capable of instantiating many different functions. A commonly used
example to demonstrate the representative power of MLPs is the so-called XOR
problem. The XOR function is not linearly separable but it is easy to see that a
2-layer MLP can approximate the XOR function, see [GBC16] [pp. 171-177].

3.1.2. Convolutional Neural Network

In computer vision, the task is typically an approximation of a function generating
some kind of output given an image (cf. Def. 1.3.1) as input. To tackle this kind
of problem one could flatten the input image to get a vector and use an MLP.
However, there are (at least) three major drawbacks of the classical MLP used for
visual inputs which motivate an extension of it.

First, the number of model parameters is intractably large for real world problems.
For instance, a layer taking an 2000×2000 image as input and producing an output
of dimension 4000 has 1.6 · 1010 + 4000 free parameters. Second, it could be useful
to detect the same features at different locations of the image. In other words,
equivariance to translation is desired. Finally, for an MLP the input dimension and
output dimension are fixed. Of course, flexibility concerning these dimensions is also
a desired property if working on computer vision problems.

The convolutional neural network (CNN) which was introduced by LeCun et al.
[LeC+89]; [LeC+90]; [LeC+98] overcomes this limitations. The CNN differs from
the MLP mainly in the input/output behavior and in the way the logit function is
defined. First, we will define the convolution logit function which is the basis for
the CNN. The convolution logit function is based on the discrete convolution.

Definition 3.1.9 (discrete convolution). Let D = Zn be the domain of the complex
valued functions f, g : D→ C, the operation

(f ∗ g)(d) :=
∑
t∈D

f(t)g(d− t)

is called discrete convolution.

To simplify the notation which is necessary to introduce the convolution logit func-
tion, the convolution for two matrices is defined based on the discrete convolution.
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Definition 3.1.10 (matrix convolution). For K ∈ Rkh×kw and X ∈ Rh×w let

hl =
⎧⎨⎩⌊kh/2⌋ , if kh is odd

kh/2− 1 , else
, wl =

⎧⎨⎩⌊kw/2⌋ , if kw is odd

kw/2− 1 , else
.

The operation K ∗X ∈ Rh×w defined as

(K ∗X)i,j :=
⌊kh/2⌋∑
l=−hl

⌊kw/2⌋∑
m=−wl

Kl+hl+1,m+wl+1Xi+l,j+m ∀i ∈ [h] , j ∈ [w] (3.1.2)

with Xi,j = 0 for i /∈ [h] ∨ j /∈ [w] is called matrix convolution.

The matrix convolution can be reduced to the discrete convolution in the following
way. Think of X and K as two functions with discrete domains

fX : Z× Z→ R by fX(i, j) :=
⎧⎨⎩Xi,j , if i ∈ [h] ∧ j ∈ [w]

0 , else
,

fK : Z× Z→ R by fK(i, j) :=
⎧⎨⎩Ki,j , if i ∈ [kh] ∧ j ∈ [kw]

0 , else
.

The function f̂K(i, j) = fK ◦ τ(i, j) results from fK by translating its support such
that it is centered at the origin. The translation function τ : Z × Z → Z × Z is
defined as τ(i, j) := (i+hl+1, j+wl+1) with hl, wl of Def. 3.1.10. Furthermore, let
f̃K(i, j) := f̂K(−i,−j). If the result of the discrete convolution of f̃K ∗fX is reduced
to the spatial domain of X ([h]× [w]) and written as a matrix, one gets Eq. (3.1.2).

Remark 3.1.11. The matrix convolution is often parametrized by natural numbers
called strides. The strides determine the reduction in the height and width of X.
For given strides sy, sx the matrix convolution is defined as

(K ∗X)i,j :=
⌊kh/2⌋∑
l=−hl

⌊kw/2⌋∑
m=−wl

Kl+hl+1,m+wl+1Xi·sh+l,j·sw+m ∀i ∈ [⌈h/sh⌉] , j ∈ [⌈w/sw⌉] .

(3.1.3)

Hence, the standard matrix convolution has strides sh = sw = 1.

In the following, the inputs and outputs are usually 3-dim arrays. An image as
in Def. 1.3.1 can also be written as a 3-dim array (I ∈ [0, 1]w×h becomes I ∈
[0, 1]w×h×1). On this basis, we call the first two dimensions of 3-dim arrays spatial
dimensions. The first dimension is usually referred to as height and the second
dimension is referred to as width. The third dimension is referred to as (represen-
tative) depth. E.g., a grey-scale image has a representative depth of one, a colored
image has a depth of three.
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The matrix convolution could be applied on several different matrices and the results
could be stacked. As a result, this generic extension of the matrix convolution to
3-dim arrays along with the introduction of a bias term constitute the convolutional
logit function.

Definition 3.1.12 (convolutional logit function). For a 4-dim array called kernel
K ∈ Rkh×kw×zin×zout and a bias vector b ∈ Rzout , the function ΦK,b

conv : R∗×∗×zin →
R∗×∗×zout defined as

ΦK,b
conv(X):,:,l :=

zin∑
k=1

K :,:,k,l ∗X :,:,k + bl ∀l ∈ [zout]

is called convolutional logit function. ΦK,b
conv(X) is called convolutional logit.

As a reminder, the dimensionality ”star” represents an arbitrary dimension. For the
addition of the bias term (which is a scalar) and the result of the convolution (which
is a matrix) the bias term is broadcasted to the matrix dimension. We will extend
the softmax activation of Def. 3.1.4 to be capable to process a convolutional logit.

Definition 3.1.13 (convolutional softmax). The function ψ : R∗×∗×z → (0, 1]∗×∗×z

defined as

ψ(X)i,j,: :=
(

eXi,j,1∑z
k=1 e

Xi,j,k
, ...,

eXi,j,z∑z
k=1 e

Xi,j,k

)T
∀i ∈ 1X, j ∈ 2X

is called convolutional softmax .

The outputs of the convolutional softmax are all positive. Furthermore, they sum to
one for each spatial position (summation over the representative depth). Hence, the
convolution softmax can model position dependent (probability) distributions. Fi-
nally, the combination of the convolutional logit function and an activation function
(either of Def. 3.1.2 or the convolutional softmax) yields the convolutional layer.

Definition 3.1.14 (convolutional layer). The pair
(
ΦK,b
conv, ψ

)
of convolution logit

function and activation function is called convolutional layer . For a given input
X ∈ R∗×∗×zin the layer’s output Y ∈ R∗×∗×zout is calculated as follows

Y = ψ ◦ ΦK,b
conv(x).

The matrices Y :,:,k, k ∈ [zout] are called feature maps.

For the reason of simplicity, we usually write ΦK,b,ψ
conv for a layer and ΦK,b,ψ

conv (X) =
ψ(ΦK,b

conv(X)) holds. The convolutional layer as introduced in this thesis retains
the spatial dimensions of the input. This is due to the fact that in Def. 3.1.10 zero
padding is performed at the border. In the literature, convolutional layers sometimes
do not perform zero padding. Hence, the spatial dimensions of the input are reduced
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by the kernel size minus one (in each dimension), if we consider a stride of 1 along
each dimension.

Besides these border effects, one usually aims at the reduction of the spatial dimen-
sions and an increase of the representative depth to build complex, high-level and
more global features as input for subsequent convolutional layers. This reduction
of the spatial dimensions is usually done by so-called pooling layers. Wen et al.
[WAH92] introduce the max pooling layer. Ranzato et al. [Ran+07] use the max
pooling layer in conjunction with convolutional layers. Nowadays, the max pooling
layer is the widely used standard in many state-of-the-art systems and is also used
within this work.

Definition 3.1.15 (max pooling layer). For ph, pw ∈ N the function Φph,pw
max :

R∗×∗×z → R∗×∗×z defined as

Φph,pw
max (X)i,j,k := max

(i−1)·ph<i
′≤min{i·ph, 1X}

(j−1)·pw<j′≤min{j·pw, 2X}

X i′,j′,k ∀i ∈ [⌈1X/ph⌉] ,

∀j ∈ [⌈2X/pw⌉] , ∀k ∈ [z]

is called max pooling layer . ph, pw are called subsampling factors.

Basically, the max pooling layer subsamples an input by reducing the information
of all values within a receptive field (which is the spatial region of interest for a
certain computation) of dimension ph × pw to their maximum value. The depth is
unchanged.

To allow for the combination of classical layers and convolutional layers a flatten
function is introduced.

Definition 3.1.16 (flatten function). For any n1, n2, n3 let ff : Rn1×n2×n3 →
Rn1·n2·n3 be the function mapping any X ∈ Rn1×n2×n3 to an (n1 · n2 · n3)-dim vector
in the following way

ff (X)(i−1)·(n2·n3)+(j−1)·n3+k := X i,j,k ∀i ∈ [n1] , j ∈ [n2] , k ∈ [n3]

This function is called flatten function.

Based on the introduced termini and concepts the definition of a CNN can be for-
mulated as follows.

Definition 3.1.17 (convolutional neural network). For h,w, zin, zout, l, c ∈ N we
call a sequence of convolutional layers ΦK(1),b(1),ψ1

conv , ...,ΦK(c),b(c),ψc
conv and a sequence of

classical layers ΦW (1),b(1),ψ1 , ...,ΦW (l),b(l),ψl convolutional neural network (CNN) iff for
X ∈ Rh×w×zin the forward propagation

y = ΦW (l),b(l),ψl ◦ · · · ◦ ΦW (1),b(1),ψ1 ◦ ff ◦ ΦK(c),b(c),ψc
conv ◦ · · · ◦ ΦK(1),b(1),ψ1

conv (X) (3.1.4)
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is well-defined. That means, the MLP condition (Eq. (3.1.1)) holds for the set of
classical layers with an input dimension equal to the output dimension of ff and an
output dimension of zout. In Eq. (3.1.4) each convolutional layer can be composed
with a max pooling layer.

The I/O dimensions h,w, zin, zout, the number of convolutional layers c and classical
layers l, the dimensionality of the kernels, weights, and biases, the number/posi-
tion/size of max pooling layers as well as the choice of the activation functions are
called hyper parameters of the CNN. The kernels, weights, and biases themselves
constitute the model parameters.

Remark 3.1.18. A CNN is a function Φ( · ; θ) : Rh×w×zin → Rzout , θ constitutes
the model parameters.

Traditionally, the CNN is used for ”global” classification purposes. In this context
global means that for an input a single (global) output for the entire input is gen-
erated, e.g., digit classification [CMS12], optical character recognition [LeC+98],
image classification [KSH12]. Nevertheless, the CNN still suffers from a fixed input
dimension due to the transition between convolutional layers and classical layers (cf.
Eq. (3.1.4)).

This is solved by the fully convolutional network (FCN). A FCN is a CNN without
flatten function and classical layers. I.e., the FCNs contain only convolutional and
max pooling layers. Hence, the MLP condition (Eq. (3.1.1)) does not have to hold
and the spatial input dimension is arbitrary. Furthermore, the output of the FCN
is still a 3-dim array.

Remark 3.1.19. An FCN is a function Φ( · ; θ) : R∗×∗×zin → R∗×∗×zout , θ consti-
tutes the model parameters.

The FCNs are recently very popular for pixel labeling/semantic segmentation tasks
[LSD15]; [NHH15]; [RFB15]; [Che+17]; [Ten+17]; [Vo+17]. In Sec. 4.3.1 we will in-
troduce the ARU-Net which is the basis for the proposed baseline detection method.
This ARU-Net is basically a FCN.

3.1.3. Tasks & Loss Functions for ANNs

In the last sections, we have introduced the MLP, the CNN, and the FCN. All of
them are representatives of ANNs which themselves belong to the class of machine
learning algorithms. But what exactly is meant by learning? One answer to this
question was given in [Mit97]: A computer program is said to learn from experience E
with respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with experience E. In this section we will
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focus on tasks (T) and measures (P) for ANNs. The experience (E) is discussed in
Sec. 3.1.4.

There are various different tasks, e.g., classification, regression, transcription, ma-
chine translation, anomaly detection, denoising, which were tackled with ANN based
systems in the last years. In Sec. 3.1, several examples were given for systems de-
signed to solve some of the above stated tasks. Of course, there are at least as many
measures as there are tasks. In this thesis, we will limit ourselves to the classifica-
tion task and a suitable measure. The classification task was extensively studied in
machine learning literature [MBi06]; [DHS12]. In this work, we will briefly introduce
the classification task and a suitable loss function for the MLP scenario and extend
it to the CNN & FCN scenario in the end.

Classification Task

Definition 3.1.20 (classification function). Let X ⊂ Rn and C = {c1, ..., cm} be a
set of distinct classes (ci is called class label). A function fC : X→ C which assigns
a class label to each element of X is called classification function.

The classification task aims at the approximation of a certain classification function
fC by an appropriate model. There are mainly three different approaches to do so,
see [MBi06] [pp. 43]. The first is to build a model f̃C : X → C that directly maps
from the input space to a certain output class label, this type of model is referred
to as discriminant function. The support vector machine [CV95] is a well-known
example of this kind.

The other two classes of models are probabilistic models and incorporate some uncer-
tainty in terms of a joint (probability) distribution pdata(x, c) defined on the sample
space Ω = X× C. We refer to this distribution as data distribution. Hence, the en-
tire uncertainty associated to the input and class variables is encoded by pdata(x, c).
To solve the classification task, the models are designed to estimate the posterior
distribution pdata( · | x) of the classes given an input.

The generative models try to separately infer the class-conditional probabilities
pdata(x | c) and the prior class probabilities pdata(c) and utilize Bayes’ theorem
to estimate the posterior probabilities for all classes. The hidden markov models
[Rab89] are a representative of this type of models. However, the ANNs as intro-
duced in this thesis are discriminative models and we will limit to this kind of models
in this work. This type of models tries to infer the posterior distribution pdata( · | x)
given an input x directly. Hence, one aims for the approximation of the function
Pdata : X→ [0, 1]m defined as

Pdata(x) := (pdata(c1 | x), ..., pdata(cm | x))T ∀x ∈ X. (3.1.5)
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Let

Pmodel(x; θ) := (pmodel(c1 | x; θ), ..., pmodel(cm | x; θ))T ∀x ∈ X (3.1.6)

be the model’s approximation of Pdata which is parametrized by θ ∈ RN . The
classification result can be calculated as

fmodel(x) := arg max
c∈C

pmodel(c | x). (3.1.7)

This separation of inference and decision (Eq. (3.1.6) & (3.1.7)) has several advan-
tages over the approach of discriminant functions, see [MBi06] Sec. 1.5.4. Note that
pmodel constitutes a family of distributions over the classes which is dependent on
the model input.

In the following, we will examine whether the MLP is a kind of model which is
capable to approximate any Pdata (and is therefore a suitable choice) or not. First,
one can show that the MLP is a universal function approximator.

Theorem 3.1.21 (universal approximation theorem). Let ψ1 : R → R be a non-
constant, bounded, and monotonically-increasing continuous activation function.
id : R → R is the identity and X ⊂ Rn is compact. For any ϵ > 0 and any
continuous function f : X → R, there exist N ∈ N, W (1) ∈ Rn×N , b(1) ∈ RN , and
W (2) ∈ RN×1 such that⏐⏐⏐f(x)− ΦW (2),0,id ◦ ΦW (1),b(1),ψ1(x)

⏐⏐⏐ < ϵ ∀x ∈ X (3.1.8)

holds.

Proof. see [Cyb89]; [Hor91]; [Has95]

The restriction to non-constant and bounded activation functions is not contempo-
rary because the relu activation, which is constant (for x < 0) and not bounded, is
used in many state-of-the-art systems. Sonoda et al. [SM17] extend the universal
approximation theorem for more general activation functions, especially for the relu
activation function.

Corollary 3.1.22. The universal approximation theorem holds for the relu activa-
tion ψ1(x) = max{0, x}.

Proof. see [SM17]

The universal approximation theorem can easily be extended to functions f : X →
Rm. But in this generic extension the activation functions are decoupled, i.e., the
activations are calculated for each dimension independently. Hence, it does not hold
for the softmax activation. This was investigated by Strauß [Str17].
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Corollary 3.1.23. A 2-layer MLP with a softmax activation for the output layer can
approximate (to arbitrary precision) any continuous function (Pdata) mapping from
a compact domain to a (probability) distribution over the possible output classes.

Proof. see [Str17]

It is easy to see that this collary is still true for any n-layer MLP. For practically
relevant problems X of Def. 3.1.20 is usually finite, e.g., the finite set of (relevant)
images in 8-bit resolution, the finite set of digitized audio signals. As a result, X
is compact and Pdata is continuous. Therefore, the MLP is capable to approximate
Pdata to arbitrary precision and is an appropriate discriminative model.

After showing that the MLP is a suitable discriminative model, we focus on the
measure of the quality of the approximation of Pdata by Pmodel. The quality will be
measured in terms of a loss function. Because Ω = X × C is usually intractably
large, let

T′ = {(x(i), c(i)) | i ∈ [ntr]} ⊂ X× C (3.1.9)

be a training set which is i.i.d. sampled from the data distribution pdata. The quality
of Pmodel can now be evaluated in terms of how probable it is to independently sample
the correct classes of the training set from the model. The resulting probability is
called the likelihood of the model (given the training data) and is given by

L(T′; θ) =
∏

(x,c)∈T′
pmodel(c | x; θ) ∈ [0, 1] ,

see [MBi06]; [Gra08]; [GBC16]. Traditionally, one aims for a large likelihood, i.e.,
the product over the probabilities for the correct class labels for all samples in T′

should be large. Consequently, the maximum likelihood approach tries to solve

θ∗ = arg max
θ∈RN

∏
(x,c)∈T′

pmodel(c | x; θ).

Obviously, this is equivalent to a maximization of the log likelihood

θ∗ = arg max
θ∈RN

log
∏

(x,c)∈T′
pmodel(c | x; θ) = arg max

θ∈RN

∑
(x,c)∈T′

log pmodel(c | x; θ).

(3.1.10)

The latter maximization problem does not suffer from numerical underflow errors
due to the product of many probabilities.

Let (x, c) ∈ T′ be a training sample. We encode the class c in an one-hot encoding
scheme (or 1-of-m coding scheme) by c ∈ Rm (m is the number of possible classes)
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which is defined component-wise as

ci :=
⎧⎨⎩1 , if c = ci

0 , else
∀i ∈ [m] .

As a result, we can formulate the negative log likelihood loss function in the notation
used within this thesis. It is easy to see that its minimization is equivalent to the
maximization of Eq. (3.1.10).
Definition 3.1.24 (negative log likelihood). Let X,C = {c1, ..., cm} be as in Def. 3.1.20
and T′ as in Eq. (3.1.9). Let pmodel denote the model posterior probabilities defined
in Eq. (3.1.6). The function LNLL defined as

LNLL(pmodel;T′) := −
∑

(x,c)∈T′

m∑
i=1

ci · log pmodel(ci | x; θ).

is called negative log likelihood (LNLL).

Besides the motivation for LNLL which is based on the maximization of the likelihood
of the model given the training data, we will give another motivation for this loss
function. The second motivation is based on the well-known (discrete) Kullback-
Leibler divergence [KL51] which is a measure for the disagreement between two
distributions.

For each (x, c) ∈ T′ let pgt( · ; x, c) : C → {0, 1} be the GT distribution which is
defined as

pgt(c̃; x, c) :=
⎧⎨⎩1 , if c̃ = c

0 , else
.

Consequently, we can measure the disagreement between the GT distribution and
the model distribution for a certain trainings sample (x, c) utilizing the (discrete)
Kullback-Leibler divergence as

DKL(pgt || pmodel; x, c) =
m∑
i=1

pgt(ci; x, c) · log pgt(ci; x, c)
pmodel(ci | x; θ)

=
m∑
i=1

pgt(ci; x, c) · (log pgt(ci; x, c)− log pmodel(ci | x; θ))

= −
m∑
i=1

pgt(ci; x, c) · log pmodel(ci | x; θ)

= −
m∑
i=1

ci · log pmodel(ci | x; θ).

The last but one equality holds, because of the one-hot encoding of pgt and because
the summands 0 · log 0 count 0 in the sum (motivated by limx→0 x · log x = 0). Of
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course, the disagreement should not be penalized for a single training sample but
for the entire training set. Finally, the summation over the elements in T′

DKL(pgt || pmodel;T′) = −
∑

(x,c)∈T′

m∑
i=1

ci · log pmodel(ci | x; θ).

yields the LNLL.

Remark 3.1.25. The LNLL as introduced in this section can be used to approxi-
mate any pdata. Nonetheless, the data distribution resulting from the classification
function of Def. 3.1.20 is one-hot encoded. This is due to the fact that fC is a
function.

Remark 3.1.26. Originally, one aims at the approximation of pdata for the entire
sample space. In contrast, the loss function is minimized for a certain subset of the
sample space (T′). Hence, usually another subset T (the test set) is sampled from
the sample space to get a more reliable estimation of the quality of the model, see
Sec. 3.1.4.

Spatial Classification Task

The introduced concepts are now extended to the spatial case. This case allows for
a pixel labeling given an input image as it will be shown in a while. In the following,
the I/O arrays are 3-dimensional in the spatial case (two spatial dimensions and one
for the representative depth). First, the r-interior is introduced to handle border
effects.

Definition 3.1.27 (r-interior). Let X ∈ Rh×w×n and r ∈ N. The 3-dim array
Y ∈ Rh−2·r×w−2·r×n is called r-interior of X iff

Y i,j,k = X i+r,j+r,k ∀i ∈ [h− 2 · r] , j ∈ [w − 2 · r] , k ∈ [n] .

Definition 3.1.28 (spatial classification function). Let X ⊂ R∗×∗×n and C =
{c1, ..., cm} be a set of distinct classes. We call a function fSC : X → C∗×∗ spa-
tial classification function iff

(1) 1fSC(X) = 1X ∧ 2fSC(X) = 2X ∀X ∈ X
(2) fSC has a receptive field of radius r ∈ N, i.e., fSC(X)i,j = fSC(X̃)i,j holds if

X, X̃ are equal in a circle of radius r around (i, j)

hold.

The first condition states that the spatial dimensions of input and output are equal.
That means a spatial classification function assigns a class to each spatial point of
the input. The second condition implies that the classification result at a certain
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position is just influenced by the input information in a field of finite spatial radius
around the position of interest.

Now, the spatial classification task is about the approximation of fSC by a certain
model. In the literature, the spatial classification task is often referred to as image
segmentation [PP93], semantic segmentation [LSD15], or pixel labeling [NW12]. For
the spatial classification task, we also follow the approach of discriminative models.
The introduced distribution of Eq. (3.1.5) is extended to the spatial case in the
generic way and is denoted by P S

data. First, we will prove the capability of the FCN
model to solve the spatial classification task.

Corollary 3.1.29. Let fSC be a spatial classification function defined on a finite
domain X ⊂ R∗×∗×n and r ∈ N is the radius of its receptive field. P S

data denotes the
spatial posterior distribution over the distinct classes C = {c1, ..., cm}. There is a
2-layer FCN with a convolutional softmax activated output layer that approximates
P S
data in the r-interior to arbitrary precision.

Proof. Let X̃ ⊂ R(2·r+1)×(2·r+1)×n be the set of all (2 · r + 1) × (2 · r + 1) patches
((2 · r + 1) × (2 · r + 1) × n dimensional subarrays) of elements of X. Because fSC
is equivariant with respect to translations on the r-interior, it is sufficient to prove
the claim (w.l.o.g.) for the mapping f̃SC : X̃→ C which is defined as

f̃SC(X̃) := fSC(X)i,j (3.1.11)

for some X ∈ X for which X̃ is patch of X centered at i, j. Let f−1
f be the inversion

of the flatten function (cf. Def. 3.1.16) for the fixed spatial dimensions of X̃. There
is an MLP approximating the posterior distribution for the classification problem
resulting from fC : R(2·r+1)2·n → C

fC(x) := f̃SC(f−1
f (x)) (3.1.12)

to arbitrary precision, cf. Cor. 3.1.23. Let W (1) ∈ R(2·r+1)2·n×N , b(1) ∈ RN ,W (2) ∈
RN×m be the model parameters of this MLP. ψ1 is the activation function of the first
layer. Let K(1) ∈ R2·r+1×2·r+1×n×N be defined byW (1) via a reordering of its elements
along the first dimension determined by f−1

f . Furthermore, let K(2) ∈ R1×1×N×m be
defined by K

(2)
1,1,:,: = W (2). Let ψ2 be the spatial softmax activation function. The

2-layer FCN defined as

Y = ΦK(2),0,ψ2
conv ◦ ΦK(1),b(1),ψ1

conv (X) (3.1.13)

approximates P S
data in the r-interior to arbitrary precision.

Because the arguments given for the classification task on practically relevant prob-
lems still hold for the spatial classification task, the FCN has the capability to solve
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the spatial classification task. Finally, the negative log likelihood function is ex-
tended to the spatial case. Of course, its motivations are also valid for the spatial
case.

Definition 3.1.30 (spatial negative log likelihood). Let X,C be as in Def. 3.1.28,
T′= {(X(i), C(i)) | i ∈ [n]} ⊂ X × C∗×∗ is a training set as in Eq. (3.1.9), and C is
the one-hot encoded version of C. pSmodel denotes the spatial posterior distribution
of the model for a certain input, cf. Eq. (3.1.6). The function LSNLL defined as

LSNLL(pSmodel;T′) = −
∑

(X,C)∈T′

1X∑
i=1

2X∑
j=1

m∑
k=1

Ci,j,k · log pSmodel(ck |X)i,j. (3.1.14)

is called spatial negative log-likelihood (LSNLL).

LSNLL will be used as loss function throughout this thesis.

3.1.4. Training of ANNs

Roughly speaking, this section is about the realization of the theoretical capability
to solve the classification (and other) tasks. The corollaries of the last section just
stated that ”there is a MLP/FCN that ...”, they did not give any idea how such
models look like. In this section, we focus on the estimation of the model parameters,
such that a certain model approximates the underlying data distribution well. In
this work, this problem is tackled following the paradigm of supervised learning, see
[MBi06] [pp. 3], [GBC16] [pp. 104]. As a result, the experience (E) of the last
section constitutes the learning of the model parameters given a labeled training
set.

In this section, we will restrict the discriminative models approximating the posterior
probabilities over the output classes Φ( · ; θ) : X → [0, 1]m with X ⊂ Rn to MLPs.
The extension to FCNs is straightforward. The MLP maps any input vector to a
distribution over all output classes. The model is parametrized by θ. Hence, θ ∈ RN

contains all model parameters (weights and biases). Assume there are two distinct
sets

T =
{
(x(i), c(i)) | i ∈ [ntest] , x(i) ∈ X, c(i) = Pdata(x(i))

}
– test set,

T′ =
{
(x(i), c(i)) | i ∈ [ntr] , x(i) ∈ X, c(i) = Pdata(x(i))

}
– train set,

of input vectors along with their classification results (Pdata of Eq. (3.1.5)). The
examples are i.i.d. sampled from X. In supervised learning, the model parameters
should be estimated to minimize the loss function L, e.g., the negative log-likelihood
of Def. 3.1.24, on the training set.
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Definition 3.1.31 (error function). The function E( · ;T′) : RN → R defined as

E(θ;T′) := 1
|T′|

∑
(x,c)∈T′

L(Φ(x; θ), c)

is called error function.

Hence, in supervised learning the minimization problem

E(θ;T′)→ min (3.1.15)

in the parameters θ has to be solved. The process of estimating the optimal model
parameter is referred to as training.

After solving optimization problem (3.1.15), the quality of the model is evaluated
on the test set. Ideally, the training process results in the generalization to new,
previously unseen data (test set). It is not about learning solely the training data.
The differences and implications of this are described in detail in [GBC16] [Sec. 5.2].
To overcome the problem of memorizing solely the training data (this is referred
to as overfitting) instead of approximating the underlying data distribution, one
usually uses large training datasets [GBC16] [pp. 152] or employs data augmentation
strategies to increase the number of training samples, see Sec. 4.4.

Because of the complexity of E and the large number of parameters (N usually
exceeds 1M), there is no direct solution of optimization problem (3.1.15). Indeed,
Blum et al. [BR89] show that even the training of a 3-node neural network is NP-
complete. Instead, methods based on gradient descent [Cau47]; [Had08] are usually
utilized to iteratively and approximately solve optimization problem (3.1.15). There
are also other techniques to estimate the model parameters of an ANN [Heb49];
[Jae02], but they are usually limited to special scenarios and not competitive in
general.

To apply gradient descent, the function E has to be at least piecewise continuously
differentiable. The MLP (FCN) along with the LNLL (LSNLL) as introduced in this
the last section are piecewise continuously differentiable since the introduced com-
ponents (see Sec. 3.1.1-3.1.3) are all piecewise continuously differentiable. Conse-
quently, their composition (MLP/FCN) is also piecewise continuously differentiable.
The calculation of the error function’s gradient with respect to the model parameters
∇θE(θ;T′), especially for deep structures, is challenging. The technique of (error)
backpropagation or backward propagation of errors iterates the chain rule [Lei76];
[LHô96] to efficiently calculate this gradient.

Its invention was a milestone in deep learning. Traditionally, the work of Rumel-
hart et al. [RHW86] is cited in conjunction with backpropagation. Nevertheless,
the minimisation of errors through gradient descent for ANN-related systems has
been already discussed in the 1960s [Bry61]; [BH69]. Efficient error backpropaga-
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tion in arbitrary, discrete, possibly sparsely connected, ANN-like networks was first
described in the 1970s [Lin70]; [Lin76]. Afterwards, in the 1980s efficient back-
propagation was proposed for ANN-specific applications [Wer81]; [Par85]; [LeC85].
Finally, Rumelhart et al. [RHW86] significantly contributed to the popularisation of
backpropagation for ANNs. They experimentally demonstrated the benefit of inter-
nal representations in hidden layers which were trained by backpropagation. Error
backpropagation was formulated for CNNs (and consequently for FCNs) by LeCun
et al. [LeC+89]; [LeC+90]; [LeC+98]. Hence, we can assume that ∇θE(θ;T′) is
calculable and gradient descent is applicable.

Let θ(i) denote the model parameters after optimization step i. The update rule for
the batch gradient descent can now be formulated as

θ(i+1) = θ(i) − η · ∇θE(θ(i);T′)

with a learning rate η ∈ R+. Since the gradient comprises the entire training set,
which is typically large, a single gradient descent step is computationally expensive.
As a consequence, the widely used standard to solve the optimization problem stated
in (3.1.15) is the stochastic gradient descent. In stochastic gradient descent the
gradient ∇θE(θ;T′) is approximated by the gradient for a subset T ⊂ T′ containing
just a few, e.g., |T| = 16, 32, 64, training samples. We call a subset T ⊂ T′ minibatch.
The minibatch can be sampled with or without returning of the chosen samples. In
this work, we sample without returning. Finally, we refer to the optimization as
minibatch gradient descent (MGD) and the training follows Alg. 1.

Algorithm 1: Minibatch Gradient Descent: θ = MGD(E ,T′,θ0, η, n)
input : error function E , training set T′, initial value θ0, learning rate η,

minibatch size n
output: optimized model parameter θ

1 θ ← θ0, T← T′

2 while ¬STOP do ▷ stopping criteria, see main text
3 if |T| < n then
4 T← T′

5 Tn ← randomly choose n samples of T
6 T← T \ Tn
7 θ ← θ − η · ∇θE(θ;Tn)

return : θ

There are various stopping criteria. The simplest is to train for a fixed pre-defined
number of update steps. Hence, the stopping criteria is just a counter. The second
approach is to implement some early stopping [MBi06] [pp. 259] based on, e.g., the
gradient’s norm, the training error or the error on a so-called validation set, see
[GBC16] [pp. 246].
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In practice, this vanilla version of MGD often yields bad results. Especially, for
deep architectures with several stacked layers the results are not satisfying at all.
The training suffers from vanishing gradient phenomena [GB10] and/or is prone
to local minima as well as saddle points [Dau+14]. This is the main reason, why
researchers lost interest in ANNs in the 1990s and early 2000s. A breakthrough
in unsupervised learning [HOT06]; [HS06]; [Ben+07] was necessary to unleash the
potential of the ANNs. Deep fully connected ANNs which were pre-trained in a
fully unsupervised fashion outperformed the previous state of the art, e.g., SVMs,
on some benchmarking problems like MNIST [LeC98]. This was the beginning of the
renaissance of ANNs. Since that time, substantial progress happened concerning the
training of deep ANNs. Nowadays, deep neural networks (and even deep recurrent
neural networks) are trainable without any pre-training yielding amazing results.

Besides the classical method of momentum [Pol64], there are various first order op-
timization methods which were proposed in the last years, e.g., Nesterov accelerated
gradient [Sut+13], AdaGrad [DHS11], RMSProp [TH12], AdaDelta [Zei12], Adam
[KB15], Nadam [Doz16], to name but a few. They basically adjust line 7 in Alg. 1.
We will shortly introduce RMSProp because this is the training scheme used within
this work.

Definition 3.1.32 (exponential moving average). Let x(t) ∈ RN be a time depen-
dent t = 1, 2, ... series of vectors. The recursively defined value

EMA(x)(t) = (1− ξ) · x(t) + ξ · EMA(x)(t−1) t = 2, 3, ...

with an initial value of EMA(x)(1) = x(1) and ξ ∈ [0, 1] is called exponential moving
average (EMA).

The EMA results in a smoothing of high frequencies (for ξ close to one) of the under-
lying time series of vectors. This is utilized to get a (squared) gradient estimation
in MGD which is not prone to the noise because of sampling issues. This estimate
is used to rescale the gradient component-wise to tackle the vanishing/exploding
gradient phenomena. Finally, for RMSProp line 7 in Alg. 1 becomes:

7.1 g ← ∇θE(θ;Tn)

7.2 EMA(g2)← (1− ξ) · g2 + ξ · EMA(g2) ▷ g2 element-wise square

7.3 θi ← θi − η√
EMA(g2)i+10−8

· gi, i ∈ [|θ|]

Consequently, each weight gets an own learning rate which depends on the norm of
its gradient’s exponential moving average. A parametrization of ξ = 0.9 is recom-
mended for the newly introduced hyperparameter.

Furthermore, several different techniques for weight initialization (θ0) were proposed
[GB10]; [SMG13]; [Sus15]; [Seu+17]. In this work, we utilize the weight initialization
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of [GB10]. It is often referred to as Xavier initialization. Basically, the weights are
sampled from a normal distribution with a standard deviation determined by the I/O
characteristics of the connected units. We will introduce the Xavier initialization
for the FCN, i.e., for the kernels.

Definition 3.1.33 (Xavier initialization). Let K ∈ Rkh×kw×zin×zout be a kernel as
in Def. 3.1.12. The initialization

Ki,j,k,l ∼ N
(

0, 2
kh · kw · zin + zout

)
∀i, j, k, l

is called Xavier initialization.

This initialization heuristic is designed as compromise between the goals of having
the same activation variance as well as gradient variance for all layers. The formula
is derived under the assumption of a purely supervised network without any non-
linearities. This is obviously not true in most practical cases. Nevertheless, the
authors argue that strategies designed for the linear case often perform reasonably
well for their non-linear counterparts.

To further reduce the effects of sampling noise (e.g., caused by the choice of the
training samples for a minibatch), an exponential moving average is calculated for
the model parameters during training. These shadow parameters are not used at all
during training, they are just updated. In the end, these weights are used as model
parameters for inference. This technique is widely used for image classification
purposes.

Although they are just of importance for the briefly introduced ATR system of
Chap. 5, we would like to mention two additional concepts which were recently
introduced and stabilize as well as improve the ANN training. Dropout [Sri+14]
randomly switches off a pre-defined fraction of units in every minibatch step. This
should help to prevent the model from overfitting to the training set. Batch normal-
ization [IS15] should accelerate the training and should improve the generalization
of the model by normalizing the activations regarding their mean and variance over
the current minibatch.

3.1.5. Conclusion

This section has described the key aspects of artificial neural networks which are
used in this thesis. Besides the classical multilayer perceptron, the fully convolu-
tional network was introduced. It was argued that the FCN is a suitable method
to tackle the spatial classification task (or pixel labeling task). For this purpose,
an appropriate loss function – the spatial negative log-likelihood – was introduced
and motivated. Finally, we have introduced some state-of-the-art methodologies to
estimate the model parameters of an FCN given a training set. This process is
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referred to as training. A trained FCN is not only able to memorize the training
set. Instead, it is also able to generalize to new, previously unseen data which is
sampled from the same data distribution as the training set. Besides this ability,
the FCN is capable to adapt to entirely new data (different data distribution) via
a new training. This is mandatory to handle various different text line intuitions
and therefore motivates the usage of FCNs in the context of the text line extraction
problem as introduced in Sec. 1.3. See Sec. 4.3 & 4.4 for more details.

3.2. Energy Minimization via Graph Cuts

In this section, we will introduce an algorithm to approximately minimize a certain
family of energy functions via graph cuts. This section is based on [BVZ01].

Definition 3.2.1 (labeling problem). Let A be a set, and l ∈ N is the number of
possible labels. A function Λ : A → [l] is called labeling (Λ). Let E be a function
which maps any labeling to a scalar value called labeling energy. The problem
defined as

Λ∗ = arg min
Λ is labeling

E(Λ;A)

is called labeling problem.

Remarkably, any set A is allowed, especially any set of pixels. Basically, the labeling
problem is an energy minimization problem. Simulated annealing [KGV83]; [Čer85]
is a general-purpose global energy minimization method which is widely used and
could be utilized to solve the labeling problem. There are various different versions
of simulated annealing, see [OG12] for a comprehensive review. However, simulated
annealing is inefficient in practice, partly, because it changes the labeling of just
one element of A at each step. Hence, it is very slow for large A, see [BVZ01]. To
overcome this issue, we will consider only a special form of energy functions and
introduce an optimization method based on graph cuts which approximately (but
fastly) solves the labeling problem for this kind of energy functions.

3.2.1. α-β-Swap Energy Minimization

In the following, we consider only energy functions which comprise a data energy
term and a smooth energy term. The data energy term penalizes the labeling for
each element of A separately. On the other hand, the smooth energy term penalizes
the difference in the labeling of adjacent elements of A. Consequently, a piecewise
smooth labeling is desired. This concept is motivated for early vision tasks [VZ99],
but is also reasonable for other noisy observations which should be smoothed. We
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will introduce a few more termini which are necessary to state the described energy
function in a formal way.

Definition 3.2.2 (neighborhood system, edge, adjacent). Let A be a set. We call
a subset N ⊂ A× A neighborhood system iff

(a, b) ∈ N⇒ a ̸= b ∧ (b, a) ∈ N ∀a, b ∈ A.

Each pair (a, b) and (b, a) of elements of N is called edge and denoted by ea,b (or
eb,a). a, b are adjacent iff ea,b ∈ N (or eb,a ∈ N). ea,b \ a ∈ A denotes the element b.

Consequently, edges in a neighborhood system are undirected and self-loops are
not allowed. If there is an edge which connects a and b, there is just one such
edge. For the reason of simplicity, we use the notations ea,b and eb,a for this edge
interchangeably. Finally, the energy of Def. 3.2.1 is dependent on a neighborhood
system and is defined as

E(Λ;A,N) :=
∑
a∈A

D(Λ(a); a) +
∑

ea,b∈N

V (Λ(a),Λ(b); ea,b). (3.2.1)

with D( · ; a) : [l] → R called data term and V ( · , · ; ea,b) : [l] × [l] → R+ called
smoothing term. Remarkably, the data term and smoothing term can be (and
usually are) entirely different functions for different elements and edges. Examples
of these functions are given in Sec. 4.3.2. Here, it is just of importance that D is
arbitrary and V has to be a semi-metric, i.e., V (i, j) = V (j, i) ≥ 0 and V (i, j) =
0⇔ i = j.

In special cases, such energies can be minimized exactly [BVZ98]; [IG98], but in
general the problem is NP-hard [VZ99]. In the following, we introduce a method
to approximately minimize the energy which is based on α-β-swaps. We sometimes
represent a labeling by its uniquely determined partition (or elements of the parti-
tion).

Definition 3.2.3 (partition). Let A be a set. We call a set of subsets {A(1), ...,A(n)}
a partition of A iff A = A(1) ∪ · · · ∪ A(n) ∧ A(i) ̸= ∅ ∀i ∧ A(i) ∩ A(j) = ∅ ∀i ̸= j.

Given a labeling Λ, the corresponding partition is defined as

A(i) := {a ∈ A | Λ(a) = i} ∀i ∈ [l] , (3.2.2)

empty sets are omitted. The notation is simplified by including the empty sets.
Hence, P = {A(1), ...,A(l)} is the ”partition” assigned to labeling Λ. Because of the
bijection between labelings and partitions, the terms are used interchangeably.

Definition 3.2.4 (α-β-swap). Let P = {A(1), ...,A(l)} be a partition and α, β ∈ [l].
A partition P ′ = {Ã(1), ..., Ã(l)} is called α-β-swap iff i /∈ {α, β} ⇒ A(i) = Ã(i)

holds.
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That means, the labeling is just changed for elements which were labeled either with
α or with β in the original labeling. Furthermore, the new label is also in {α, β}.
It is easy to see that a α-β-swap allows for large moves between two labelings.
This is an important property which facilitates a fast convergence of the introduced
optimization method. An algorithm which obviously yields a local optimal solution
with respect to α-β-swaps is shown in Alg. 2.

Algorithm 2: α-β-Swap Energy Minimization: Λ = SWE(E, l,P,N)
input : energy E of Eq. (3.2.1), number of labels l, set of elements A,

neighborhood system N
output: minimized labeling Λ

1 Λ←arbitrary labeling
2 OPT ← True
3 while OPT do
4 OPT ← False
5 for {α, β} ⊂ [l] do
6 Λ∗ = arg minΛ′ E(Λ′;A,N) ▷ Λ′ results from α-β-swap for Λ
7 if E(Λ∗;A,N) < E(Λ;A,N) then
8 Λ← Λ∗

9 OPT ← True

return : Λ

The key part of Alg. 2 is line 6. Now, we demonstrate how graph cuts can be
used to efficiently determine the optimal swap move. Graph cuts were extensively
studied and the optimal solution can be found in low-order polynomial complexity
[AMO14]. Boykov et al. [BK04] introduce a max-flow algorithm which has a nearly
linear running time in practice. In this thesis, we describe the graph cut part only.
For a detailed description of suitable methods to solve this problem, we refer to the
above-mentioned literature. In the rest of this section, we will introduce the graph
cut problem. Afterwards, it is proven that the finding of an optimal swap move is
equivalent to the finding of a minimum graph cut for a certain graph.

3.2.2. Optimal α-β-Swap via Graph Cuts

First, we introduce the necessary termini from the field of graph theory.
Definition 3.2.5 (graph). Let A be a set. N is a neighboring system (cf. Def. 3.2.2)
over A. (A,N) is called graph. The elements of A are called vertex .
Definition 3.2.6 (connected). Let (A,N) be a graph. Two vertices a, b are con-
nected iff

∃a(0), ..., a(N) ∈ A : a(0) = a ∧ a(N) = b ∧ ea(i),a(i+1) ∈ N (0 ≤ i ≤ N − 1)
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holds. The chain of edges connecting a and b is called path.

Definition 3.2.7 (graph cut). Let (A(αβ),N) be a graph with two distinct vertices
which are assigned to be terminals, i.e., A(αβ) = A ∪ {t(α), t(β)}. A subset NC ⊂ N
is called minimal graph cut iff the terminals are separated, i.e., not connected, in
the graph (A,N \NC) and no proper subset of NC separates the terminals.

A graph becomes a weighted graph if there is a weight function w : N→ R+ assigning
a (non-negative) weight to each edge. The minimum graph cut problem can now be
stated as follows.

Definition 3.2.8 (minimum cut problem). Let
(
A(αβ),N, w

)
define a weighted

graph. The minimum cut problem is defined as

N∗
C = arg min

NC is graph cut

∑
ep,q∈NC

w(ep,q).

As mentioned above, there are efficient algorithms to solve this problem, but this is
beyond the scope of this work.

For the rest of this section, A is the set of elements to be labeled, l is the number of
labels, N is a neighborhood system over A, and E,D, V are of Eq. (3.2.1). Let P be
the current partition (labeling Λ) and α, β ∈ [l] are two labels for which the optimal
swap has to be determined (cf. line 6 of Alg. 2). Now, we present the construction
of the graph for which the minimum cut yields the optimal swap move.

Let A(α),A(β) be the subsets of A which are labeled with α and β, respectively, cf.
Eq. (3.2.2). Let t(α) and t(β) denote the two terminals. Note, these are additional
vertices and they are not in A. The set A(αβ) := A(α) ∪A(β) ∪{t(α), t(β)} constitutes
the set of vertices of the graph to be constructed. The set of edges is defined as

N(αβ) := {ea,b ∈ N | a, b ∈ A(α) ∪ A(β)} ∪
⋃

a∈A(α)∪A(β)

{ea,t(α) , ea,t(β)}.

In other words, the new set of vertices contains all elements which are labeled with α
or β and the two terminals. The new set of edges comprises all edges of N connecting
elements which are labeled with α or β. Additionally, edges connecting each of the
α, β labeled elements with the terminals are added, see Fig. 3.1a. Let N(a) denote
the set of elements in A which are adjacent to a and not labeled with α nor with β.
Finally, the weight function wαβ : N(αβ) → R+ is defined as follows

w(ea,b) :=

⎧⎪⎪⎨⎪⎪⎩
V (α, β; ea,b) , if a, b ∈ A(α) ∪ A(β)

D(α; a) +∑
c∈N(a) V (α,Λ(c); ea,c) , if b = t(α)

D(β; a) +∑
c∈N(a) V (β,Λ(c); ea,c) , if b = t(β)

. (3.2.3)

Let N
(αβ)
C be a minimum cut for the constructed weighted graph.
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Lemma 3.2.9. N
(αβ)
C includes either ea,t(α) or ea,t(β) for all a ∈ A(α) ∪ A(β).

Proof. Assume there is an a ∈ A with ea,t(α) , ea,t(β) /∈ N
(αβ)
C , then the two terminals

are connected via a.  
On the other hand, assume there is an a ∈ A with ea,t(α) , ea,t(β) ∈ N

(αβ)
C . Let A(a)

denote the set of vertices which are connected to a in (A,N \N(αβ)
C ). The elements

of A(a) are either all connected to t(α) or to t(β), otherwise there would be a path
connecting t(α) and t(β) via a. Assume A(a) is connected to t(α) (w.l.o.g.) then
N

(αβ)
C \ ea,t(α) is a proper subset of N(αβ)

C and separates the two terminals.  

A \ (A(α) ∪ A(β))

a

g
e

t(α)

b

c f

d

t(β)

(a) Shown is the initial labeling for α and β:
A(α) = {a, e, g} and A(β) = {b, c, d, f} and
the resulting graph for which the minimum
cut is estimated.

A \ (A(α) ∪ A(β))

a

g
e

t(α)

b

c f

d

t(β)

(b) The minimum cut is depicted as red line.
The labeling after the optimal α-β-swap dif-
fers just in A(α) = {a, b, c, d} and A(β) =
{e, f, g} from the initial labeling.

Figure 3.1.: α-β-swap optimization via graph cut – Shown is the optimal α-
β-swap estimation utilizing the minimum cut. In the initial labeling,
A(α) ∪ A(β) = {a, b, c, d, e, f, g} are labeled with α (blue) or β (cyan).
The set of elements which is labeled with [l]\{α, β} is shown in magenta.
The neighborhood system N is represented by the black lines. The
additional edges which connect the terminals to A(α) ∪ A(β) are shown
in gray. The edges leaving the magenta set are solely of interest for the
weight function, cf. Eq. (3.2.3), but they are not part of the graph for
which the minimum cut is estimated.
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Consequently, there is a generic labeling

Λ̃(a) :=

⎧⎪⎪⎨⎪⎪⎩
α , if ea,t(α) ∈ N

(αβ)
C

β , if ea,t(β) ∈ N
(αβ)
C

Λ(a) , else

, (3.2.4)

which is well-defined for all a ∈ A and determined by the minimum cut.

Theorem 3.2.10. Λ̃ is the optimal α-β-swap from Λ.

Proof. First, there is a one-to-one correspondence between cuts on the constructed
graph and labelings which are one α-β-swap from Λ. The first direction of this
equivalence follows from Lem. 3.2.9 and Eq. (3.2.4). The second direction follows,
because each labeling uniquely determines the edges of N which connect differently
α, β-labeled vertices as well as edges connecting the vertices to the terminals of the
appropriate label.
Now, we calculate the weight of a cut and show that it is equal to the energy of the
resulting labeling plus a constant which is not influenced by α-β-swaps. The weight
of the cut comprises the summation over the weights of the different types of edges,

w(N(αβ)
C ) =

∑
e

a,t(α) ∈N
(αβ)
C

w
(
ea,t(α)

)
+

∑
e

a,t(β) ∈N
(αβ)
C

w
(
ea,t(β)

)
+

∑
ea,b∈N

(αβ)
C ,

a,b/∈{t(α),t(β)}

w (ea,b)

=
∑

e
a,t(α) ∈N

(αβ)
C

⎛⎝D(α; a) +
∑

c∈N(a)
V (α,Λ(c); ea,c)

⎞⎠

+
∑

e
a,t(β) ∈N

(αβ)
C

⎛⎝D(β; a) +
∑

c∈N(a)
V (β,Λ(c); ea,c)

⎞⎠
+

∑
ea,b∈N

(αβ)
C ,

a,b/∈{t(α),t(β)}

V (α, β; ea,b)

=
∑

a∈A(α)∪A(β)

D(Λ̃(a); a) +
∑

ea,b∈N,

{a,b}∩(A(α)∪A(β))̸=∅

V (Λ̃(a), Λ̃(b); ea,b).

The last equality holds, because V (α, α; ea,b) = V (β, β; ea,b) = 0. Finally,

E(Λ̃) = w(N(αβ)
C ) +K

with

K =
∑

a/∈A(α)∪A(β)

D(Λ̃(a); a) +
∑

ea,b∈N,

{a,b}∩(A(α)∪A(β))=∅

V (Λ̃(a), Λ̃(b); ea,b)
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holds. Consequently, the weight of the cut is equal to the energy of the resulting la-
beling plus a constant which is independent to α, β-labeled elements. Together with
the one-to-one correspondence between cuts and labelings the theorem is proven.

Remark 3.2.11. Of course, a local minimum with respect to swap moves can be
arbitrarily far away from the global optimum. Boykov et al. [BVZ01] propose
another energy minimization method which is based on expansion moves. For a
given label α, an expansion move can relabel any element with the label α. This
method has two major advantages over the α-β-swap algorithm. First, the α-β-swap
algorithm is quadratic in the choice of the labels to swap, cf. Alg. 2 line 5. Here,
the α-expansion algorithm is linear. Furthermore, it is proven in [VZ99] that a local
minimum with respect to expansion moves (Λ̃) is within a certain range of the global
minimum (Λ∗)

E(Λ̃) ≤ 2 · c · E(Λ∗)

with

c = max
ea,b∈N

maxi ̸=j∈[l] V (i, j; ea,b)
mini ̸=j∈[l] V (i, j; ea,b)

.

The major drawback is that V has to be a metric, i.e., the triangle inequality has to
hold. This is not the case in our scenarios. Consequently, the α-β-swap algorithm
is used throughout this thesis. It has to be mentioned that the α-β-swap algorithm
yields results which are satisfying in all our scenarios.

3.2.3. Conclusion

This section has introduced an energy minimization framework based on graph cuts
which will be used to estimate certain text line characteristics which are used for
the baseline estimation in Sec. 4.3. The energy function comprises a data term
and a smoothing term. The smoothing term penalizes differences in the labeling of
elements which are assigned to be adjacent. We will utilize this to encode the ex-
pectation that some characteristics of text lines tend to change smoothly for nearby
text lines, see Sec. 4.3.





4. Baseline Detection

The text line extraction problem as introduced in Sec. 1.3 depends on a text line
intuition (TLI). Because the text line extraction is just the first step in the infor-
mation retrieval pipeline on scanned documents this TLI is usually the result of
an (human) operator combined with the demands of the ATR/KWS modules which
process the extracted text lines. Basically, these TLIs differ in three major questions:

(a) What is a text line? E.g., are we just interested in main body text, or also in
marginalia text as well as comments? (cf. Fig. 4.1a)

(b) How does the page layout look like? E.g., where does a text line begin and
where does it end? (cf. Fig. 4.1b)

(c) How should a text line be represented? E.g., by a bounding box or by a more
complex polygon? (cf. Fig. 4.1c)

The first two questions depend on the (human) operator, the third question depends
on the respective ATR/KWS system. Hence, it is meaningful to decouple the text
line extraction problem into two subproblems. First, the text lines should be de-
tected and encoded by a meaningful representation, i.e., questions (a) & (b) should
be ”answered”. Second, the detected text lines should be extracted, i.e., question (c)
should be answered. It is easy to see that this results in a flexible text line extraction
method. The first subproblem tries to satisfy the demands of the (human) operator
(first two questions), the second subproblem could be adapted to the ATR/KWS
system which should be used to transform the pixel information into textual in-
formation. But how does a meaningful representation of a detected text line look
like? Murdock et al. [Mur+15] encoded each text line by its origin point. Roughly
speaking, this is the left-bottom corner of a text line. In our opinion, this repre-
sentation does not encode sufficient information, especially questions (b) & (c) are
not answered at all. To overcome this limitation we decided to encode the detected
text lines by their baselines. This representation has the advantage that it encodes
the general layout characteristics of the underlying TLI, i.e., separation issues like
where a text line begins and where it ends. Thus, question (b) is answered. Given a
baseline it is comparatively easy to extract the text line in a suitable representation,
see Chap. 5. Finally, one can set up a specific ”baseline to text line” module if a
certain ATR/KWS necessitates a special text line representation.

After briefly introducing the baseline detection problem, a newly developed simi-
larity score for baselines is described. The rest of the chapter is devoted to the
proposed baseline detection method.
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(a) Depicted is a snippet of an image of the DIVA-HisDB [Sim+16]. Besides the main body
text (red), there are also comments (magenta). The TLI of [Sim+17] is limited to the main
body text. Of course, TLIs which are interested in the entire text are also reasonable.

(b) Depicted is a snippet of an image of the cBad test set [Grü+18a]. Two different TLIs (red
and magenta) are outlined which differ in the understanding where a text line starts and
where it ends end.

(c) Depicted is a snippet of an image of the Bozen test set [Sán+16]. Two different repre-
sentations of the same text line are shown. The left one is detailed and takes care of all
ascenders and descenders. The right one is simpler and cuts some descenders, see Chap. 5.

Figure 4.1.: Differences in the text line intuitions – This figure demonstrates
the major issues in which TLIs typically differ.

4.1. Problem Statement

We will briefly introduce the problem of baseline detection. Because its formulation
is related to Sec. 1.3 and builds upon it (and its notation), we will often refer to
Sec. 1.3 and will not state definitions which are just slightly different to already
introduced ones.

Within this work we follow the definition of a baseline given in [Die+17b]:

Definition 4.1.1 (baseline). A baseline is defined in the typographical sense as the
virtual line where most characters rest upon and descenders extend below.

To encode baselines in a mathematical way, we introduce the polygonal chain.

Definition 4.1.2 (polygonal chain). A polygonal chain of length n ∈ N is an n-tuple
of pixels

P =
(
p(1),p(2), ...,p(n)

)
. (4.1.1)

A polygonal chain is said to be closed iff p(1) = p(n) holds. Two pixels p(i),p(j) of a
polygonal chain are called adjacent iff |i− j| = 1.
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For the reason of simplicity, we write p ∈ P if a pixel belongs to the polygonal chain
(which is not a set but a tuple).

Consequently, each baseline can be represented by a polygonal chain. Of course, the
mapping from baselines to polygonal chains is not well-defined. There are various
different polygonal chains which could be assigned to a baseline, see Fig. 4.2. This
has to be taken into account if measuring the accuracy of a detected baseline. The
choice of the representative should not negatively affect the accuracy. Since we
assume that each baseline is represented by a polygonal chain, we sometimes mix
the termini baseline and polygonal chain. The equivalent to the text line space (PTL)
is the baseline space.

Definition 4.1.3 (baseline space). The infinite set of all polygonal chains is called
baseline space (PBL).

We will not introduce the baseline intuition (BLI) ι̃I : I → 2PBL (cf. Def. 1.3.7),
(baseline) ground truth (ι̃I(I)) (cf. Def. 1.3.7), baseline detector (BLD) ιD : I →
2PBL (cf. 1.3.8), baseline hypothesis (ιD(I)) (cf. 1.3.8), (baseline) similarity score
⟨ · , · ⟩BL : 2PBL×2PBL → [0, 1] (cf. 1.3.9), (baseline) test set Tι̃I (cf. Eq. (1.3.2)),
(baseline) train set T′

ι̃I (cf. Eq. (1.3.3)), and (baseline) test score τ̃test (cf. Def. 1.3.10)
thoroughly and refer to Sec. 1.3. These are just the generic versions for baselines in-
stead of text lines. Hence, also the baseline detection problem can be stated similar
to the text line extraction problem.

Baseline Detection Problem Assume there is a baseline intuition along with a
(baseline) test set Tι̃I and a (baseline) train set T′

ι̃I which were generated by means
of the BLI. Design a baseline detector (ι∗D) which utilizes just T′

ι̃I and maximizes
the test score τ̃test on Tι̃I .

The demand for an easy adaptation to different TLIs of Sec. 1.3 is also valid for
different BLIs. As a result of the argumentation in the introduction to this chapter,
the ability to adapt to different BLIs is equivalent to the ability to adapt to differ-
ent TLIs (regarding questions (a) & (b)). Hence, this ability constitutes a central
demand on a BLD.

4.2. Similarity Score

This section describes the evaluation scheme introduced in [Grü+18a] in a nota-
tion adapted to this work. This evaluation scheme was already used in two in-
ternational competitions dealing with baseline detection in historical documents
[Sim+17]; [Die+17b]. These competitions were organized in conjunction with the
14th IAPR International Conference on Document Analysis and Recognition. Based
upon this scheme, the accuracy of a BLD is measured by means of the F-value.
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Finally, the F-value will constitute the (baseline) similarity score ⟨ · , · ⟩BL :
2PBL × 2PBL → [0, 1].

4.2.1. Motivation & Requirements

Since the widely-used similarity scores for text line extraction [Li+08]; [GSL11];
[Sim+17] rely on surrounding polygons and use area (or foreground pixel) based
methods to calculate the accuracy of text line segmentation results, there is a need
for a similarity score suitable for baselines. To our knowledge there was no such
similarity score before the one introduced in [Grü+18a].

There are special requirements for a similarity score developed to measure the ac-
curacy of a BLD:

(I) The similarity score should be invariant to small differences between ground
truth (GT) and hypothesis (HYP). Def. 4.1.1 as well as the representation
of a baseline by a polygonal chain allow for a certain margin of ”correct”
baselines. Furthermore, slightly different baselines potentially lead to the same
ATR/KWS accuracy. Hence, there is not one unique and correct HYP for an
image (or even for a GT), this has to be taken into account.

(II) The similarity score should be able to handle skewed and oriented text lines.
(III) The similarity score should only rely on the baseline GT and baseline HYP,

not on a reading order nor on any image information, e.g., on a binarization
of the image.

Besides these requirements which have to be fulfilled in general, there are two char-
acteristics of the baseline HYP which also should be evaluated:

(i) It has to be evaluated how reliable the text is detected – ignoring layout issues.
The value reflecting this is called R-value since it has similar properties as the
well-known recall value, see [Pow11].

(ii) It has to be evaluated how reliable the structure of the text lines (layout) of
the document is detected. The value reflecting this is called P-value since it
has similar properties as the well-known precision value, see [Pow11].

These values are useful to analyze a BLD concerning its strengths and weaknesses.
Furthermore, they are related to the expected/possible performance of the subse-
quent ATR/KWS modules in the information retrieval pipeline. Finally, the R-value
and the P-value should be combined to constitute the similarity score. We refer to
this value as F-value. The algorithm calculating all three values, i.e., R-value, P-
value, and F-value, is referred to as evaluation scheme.

In the following, we will introduce an evaluation scheme which meets all the above
stated requirements. The proposed evaluation scheme is implemented in Java and
available as a standalone command line tool. It is licensed under LGPLv3 and
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publicly available1.

4.2.2. Evaluation Scheme

Now, the calculation of the R-value and the P-value for the HYP and GT for a single
image I ∈ I is described. The baseline GT ι̃I(I) for image I and the baseline HYP
ιD(I) for image I are denoted by

ι̃I(I) = G = {G(1), ...,G(M)} ∈ 2PBL , (4.2.1)

ιD(I) = H = {H(1), ...,H(K)} ∈ 2PBL . (4.2.2)

See Fig. 4.4a for exemplary sets G and H. The calculation of the R-value and the
P-value for the two sets G and H is described in the following.

Polygonal Chain Normalization

In a first step, each polygonal chain is normalized such that two adjacent pixels are
(roughly) of predefined distance. This is done utilizing line segments.

Definition 4.2.1 (line segment). Let p, q be two pixels. The function λ( · ; p, q) :
[0, 1]→ R2 defined as

λ(τ ; p, q) := p + τ · (q − p) (4.2.3)

is called line segment (λ( · ; p, q)) connecting p and q.

A polygonal chain P is normalized by P̃ := NORM(P , d), see Alg. 3.

Hence, adjacent pixels of the normalized polygonal chains have a maximal distance
d (except for rounding errors and border effects). The resulting sets of normalized
chains are G̃ and P̃. For a better readability, we omit the tilde. Consequently, G and
P denote the sets of normalized polygonal chains in the following. The normalization
step is mandatory to compensate the effect of the choice of the representative of a
baseline, see Fig. 4.2.

Tolerance Value Calculation

As mentioned above, the evaluation scheme should not penalize HYP baselines which
are ”slightly” different to the GT baselines. Thus, some kind of tolerance area around
each GT polygonal chain is required. Image (and baseline) dependent tolerance val-
ues are calculated because various resolutions and layout scenarios could be present

1https://github.com/Transkribus/TranskribusBaseLineEvaluationScheme
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Algorithm 3: Polygonal Chain Normalization: P̃ = NORM(P , d)

input : polygonal chain P =
(
p(1), ...,p(n)

)
, distance value d

output: normalized polygonal chain P̃
1 P̃ ← ∅
2 for i = 1 to n− 1 do
3 l←

p(i) − p(i+1)


2
4 s← ⌈l/d⌉
5 P̃ ← P̃ ⌢ p(i)

6 for j = 1 to s− 1 do
7 P̃ ← P̃ ⌢ λ(j/s; p(i),p(i+1)) ▷ λ mapped to a pixel (Rem. 1.3.3)

8 P̃ ← P̃ ⌢ p(n)

return : P̃

simple example
simple example

simple example
simple example

d=20

Figure 4.2.: Polygonal chain normalization – Depicted is the normalization of
two different representatives of the same baseline. Only two points of
the lower left baseline have a correspondence in the one above. The
two intermediate points do not contribute any additional information
(straight line). Hence, the normalizations result in two equivalent polyg-
onal chains.

within a test set of images. A single pre-defined tolerance value can hardly cover
all these scenarios in a satisfying fashion. Hence, for each polygonal chain G ∈ G a
tolerance value tG is calculated. Remarkably, the term ”slightly” is determined by
the respective tolerance value. The calculation of the tolerance value for a certain
GT baseline is based on the distance to the ”closest” (this will be clarified below)
other GT baseline. The calculation of this distance and the resulting tolerance value
is described in the following.

First, the text orientation of the baselines is roughly estimated by means of linear
regression. The resulting orientation is encoded in an orientation vector.

Definition 4.2.2 (polygonal chain orientation). Let P ∈ PBL be a polygonal chain.
The slope (ωP ∈ [0, π)) of the line solving the linear regression problem for the pixels
of P is called polygonal chain orientation (ωP).

Definition 4.2.3 (orientation vector). Let α ∈ [0, π) be an angle. The vector of
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length one defined as

o(α) := (− sin(α), cos(α))T ∈ R2 (4.2.4)

is called orientation vector (o(α)).

For a better understanding of Eq. (4.2.4), remember that the first dimension con-
stitutes the y-coordinate and the y-axis is inverted, cf. Rem. 1.3.2. The concept
of off-text distance and in-text distance is introduced and utilized to determine the
line-dependent tolerance value.

Definition 4.2.4 (off-text distance, in-text distance). Let o(α) be an orientation
vector. For two pixels p, q, the length of the component of (p − q) ∈ R2 which is
orthogonal to o(α) is called off-text distance of p and q. It is denoted by doff (p, q;α).
The length of the component of (p− q) ∈ R2 which has the same direction as o(α)

is called in-text distance and is denoted by din(p, q;α).

The concept of off-text direction and in-text direction is visualized in Fig. 4.3.

simple example
in-text distance

off-text distance

p

q

Figure 4.3.: Off-text distance and in-text distance for two pixels – The con-
cept of off-text distance and in-text distance for two pixels p, q and
an orientation vector (blue arrow) is displayed. The orientation vector
encodes the text direction. The off-text distance is the component of
(p− q) which is orthogonal to the text direction. The in-text distance
is the component which has the text orientation. The magenta parallel-
ogram is utilized for an efficient calculation of the distances, see main
text.

Lemma 4.2.5. Let o(α) be an orientation vector and p, q are two pixels. The
off-text distance can be efficiently calculated by

doff (p, q;α) =
⏐⏐⏐−(p2 − q2)o(α)

1 + (p1 − q1)o(α)
2
⏐⏐⏐ . (4.2.5)

The in-text distance can be calculated by

din(p, q;α) =
⏐⏐⏐(p− q)To(α)

⏐⏐⏐ . (4.2.6)
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Proof. Eq. (4.2.5) follows from some basic geometric considerations. The area of
the magenta parallelogram in Fig. 4.3 equals the off-text distance, because the ori-
entation vector has length 1. The assertion follows from the transformation matrix

T =

⎛⎜⎝ 0 1 0
−1 0 0
0 0 1

⎞⎟⎠
(from computer vision coordinates to classical coordinates) and the cross product⎛⎜⎝T ·

⎛⎜⎝p1 − q1
p2 − q2

0

⎞⎟⎠
⎞⎟⎠×

⎛⎜⎝T ·
⎛⎜⎝o(α)

1
o(α)

2
0

⎞⎟⎠
⎞⎟⎠ =

⎛⎜⎝ 0
0

−(p2 − q2)o(α)
1 + (p1 − q1)o(α)

2

⎞⎟⎠ ,
and the fact that its length is equal to the parallelogram’s area.

The projection of (p− q) on o(α) yields

o(α)T · T T · T · (p− q)
o(α)T · T T · T · o(α) · o(α).

Eq. (4.2.6) follows, because T is orthogonal and o(α) has length 1. Consequently,⏐⏐⏐⏐⏐o(α)T · (p− q)
o(α)T · o(α) · o(α)

⏐⏐⏐⏐⏐ =
⏐⏐⏐o(α)T · (p− q)

⏐⏐⏐ · o(α)


2
=
⏐⏐⏐(p− q)T · o(α)

⏐⏐⏐
holds.

Let G ∈ G be any normalized GT polygonal chain. Let X be the set of all pixels of
the chains of G \ G, the set XG ⊂ X is calculated such that for any p ∈ XG there are
at least two pixels p(1), p(2) ∈ G satisfying(

(p− p(1))T · o(ωG)
)
·
(
(p− p(2))T · o(ωG)

)
≤ 0. (4.2.7)

Condition (4.2.7) means that the parallel components of (p−p(1)) and of (p−p(2))
with respect to o(ωG) face opposite directions (or one of them has length zero). In
other words, the set XG just consists of pixels which are in the text range of G. In
Fig. 4.4c the set XG(2) of pixels for GT baseline 2 is shown (green points). It is easy
to see, that the pixel of G(4) which are not green, are not in the text range of G(2).

Let p ∈ XG be arbitrary. mG(p) ∈ G is the pixel for which the parallel component
of (p−mG(p)) with respect to o(ωG) has minimal length. Thus, it is defined as

mG(p) := arg min
q∈G

din
(
p, q; o(ωG)

)
.
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The minimum distance of G to the ”closest” polygonal chain is now defined as

dG := min
p∈XG

doff (p,mG(p);ωG). (4.2.8)

Basically, dG is the minimal length of all the orthogonal components of (p−mG(p))
with respect to o(ωG), see Fig. 4.4c (green lines). For XG = ∅ there are no baselines
which allow for a calculation of dG. In this case, its tolerance value is set to some
default value (250 was chosen as a meaningful default regarding practical relevant
scenarios).

The condition of Eq. (4.2.7) is mandatory to calculate reasonable distances. If XG is
not estimated carefully, the minimal distance calculation of Eq. (4.2.8) would suffer
from pixels which are not in the text range of the regarded text line. E.g., the off-text
distance of the yellow pixel in Fig. 4.4c to GT line 2 is significantly smaller than the
reasonable minimum distance. Hence, it would falsify the statistics. Nevertheless,
it is not in the range of P (Eq. (4.2.7) is not fulfilled), therefore not in XG, and
consequently not regarded in Eq. (4.2.8).

The mean dG is calculated for all dG (G ∈ G) which have a value different to the
default. Finally, the GT baseline dependent tolerance values are calculated as

tG := 0.25 ·min(dG, dG).

25% of the estimated interline distance yields a reasonable compromise between
accuracy and flexibility. In Fig. 4.4d the red areas display the individual toler-
ance areas for the different GT baselines. Finally, the tolerance values along with
the polygonal chain normalization allow for a certain margin of baselines. Thus,
requirement (I) for the similarity score is met.

Coverage Function

To evaluate (i) & (ii) (R-value & P-value) some kind of overlapping between GT
and HYP has to be calculated. For this purpose we introduce the coverage function.

Definition 4.2.6 (coverage function). The function COV : PBL ×PBL × R → R
which is determined by Alg. 4 is called coverage function.

Basically, the coverage function COV(P(1),P(2), t) determines a value representing
the fraction of a polygonal chain P(1) for which there is a pixel of another polygonal
chain P(2) within a certain tolerance area determined by t. The coverage function
is independent of the text orientation. As a result, requirement (II) is met, because
the tolerance value calculation is also applicable for various text orientations.

Alg. 4 counts the number of pixels of P(1) for which there is a pixel of P(2) with
a distance less than the given tolerance value t. Furthermore, a smooth (linear)
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(a) Depicted are the sets G = {G(1),G(2),G(3),G(4)} of four GT baselines (red) and H =
{H(1),H(2),H(3),H(4)} of four HYP baseline (blue).

(b) The baselines of Fig. 4.4a but represented by normalized polygonal chains (d = 25).

(c) The pixels which are taken into account to calculate the minimum distance of GT line 2
to the other GT lines are displayed as green points. Green lines are the orthogonal (to
GT line 2) distances of the green pixels of GT line 4. For a description of the meaning of
the yellow pixel see main text.

(d) Shown in light red are the tolerance areas for the different GT baselines, for all four
baselines the estimated tolerance value is roughly 20.

Figure 4.4.: Baseline similarity score – Depicted is a snippet of an example docu-
ment image sampled from [Die+17b] along with GT and HYP baselines
as well as intermediate steps of the evaluation scheme.

transition is performed for pixels of P(1) with a distance between t and 3t. A pixel
with a distance less than t counts 1, with a distance of 1.5t it counts 0.75, with a
distance of 2t it counts 0.5, ... Finally, a pixel with a distance of 3t and more counts
0. The resulting value is normalized by the number of pixels in P(1).

Let COVS : PBL × 2PBL × R → R be the generic extension of COV to a function
accepting sets of polygonal chains as second argument. The minimum from line 3
in Alg. 4 is calculated over a set of polygonal chains instead of a single polygonal
chain. To clarify the functionality of the coverage function, a few exemplary values
are shown in Tab. 4.1. Note that the function COV is not commutative in the first
two arguments.

R-value, P-value, and F-value Calculation

Now, we will introduce the R-value and P-value, see (i) & (ii).

Definition 4.2.7 (R-value). Let G,H be the sets of normalized GT and HYP
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Algorithm 4: Coverage Function: c = COV(P(1),P(2), t)
input : polygonal chains P(1),P(2), tolerance value t
output: coverage value c

1 c← 0
2 for p ∈ P(1) do
3 dmin ← minq∈P(2) ∥p− q∥2
4 if dmin ≤ t then
5 c← c+ 1
6 else if dmin ≤ 3t then
7 c← c+ 3t−dmin

2t

8 c← c

|P(1)| ▷
⏐⏐⏐P(1)

⏐⏐⏐ is the number of pixels in P(1)

return : c

Table 4.1.: Examples for the coverage function – Example values of the cov-
erage function for the normalized polygonal chains shown in Fig. 4.4b
with a fixed tolerance value of 20 (as shown in Fig. 4.4d). G(i) means the
normalized version of the i-th GT baseline.
P Q R COV(P ,Q, 20) COVS(P , {Q,R}, 20)

H(3) G(4) – 1.0 –
G(4) H(3) H(4) 0.65 0.96
G(3) H(2) – 0.76 –
H(1) G(1) G(2) 0.26 0.95

baselines. Let tG denote the tolerance value for G ∈ G. The value defined as

R(G,H) :=
∑

G∈G COVS(G,H, tG)
|G|

. (4.2.9)

is called R-value.

The R-value indicates for what fraction of the GT baselines there are detected HYP
baselines within a certain tolerance area. Because no alignment between GT and
HYP baselines is enforced, segmentation (page layout) errors are not penalized at
all. The segmentation errors are penalized in the P-value. To penalize segmentation
errors the GT and HYP baselines have to be aligned.

Definition 4.2.8 (alignment). A subset of the Cartesian product M ⊂ G × H is
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called alignment between G and H iff⏐⏐⏐{(G̃,H) ∈M | G̃ = G}
⏐⏐⏐ ≤ 1 ∀G ∈ G⏐⏐⏐{(G, H̃) ∈M | H̃ = H}
⏐⏐⏐ ≤ 1 ∀H ∈ H

hold.

Hence, a subset of the Cartesian product is called alignment if each element of G as
well as of H occurs at most once in the pairs.

Definition 4.2.9 (P-value). Let G,H be the sets of normalized GT and HYP base-
lines. Let tG denote the tolerance value for G ∈ G. The value defined as

P(G,H) := max
M⊂G×H

is alignment

∑
(G,H)∈M COV(H,G, tG)

|H|
. (4.2.10)

is called P-value.

An alignment ensures that segmentation errors are penalized. E.g., if a text line is
split into two equally sized parts an R-value of 1.0 is calculated (the two detected
polygonal chains cover the entire GT baseline). But the expected P-value is 0.5
(the GT baseline is aligned with exactly one of the HYP polygonal chains with a
coverage of 1, this is divided by 2, because there are two HYP polygonal chains).

We propose a greedy P-alignment to determine the maximum in Eq. (4.2.10). This
is due to the fact that there is a huge number of possible alignments.

Lemma 4.2.10. Let |G| = M and |H| = K be the number of GT and HYP baselines.
There are

N =
min(M,K)∑

n=0
n! ·

(
M

n

)
·
(
K

n

)
≥ 2min(M,K)

different alignments.

Proof. Let N denote the total number of different alignments. We call an align-
ment M an n-alignment iff |M| = n holds. Let Nn denote the total number of n-
alignments. It is easy to see (Def. 4.2.8), that Nn > 0 only if n ∈ {0, ...,min(M,K)}.
Consequently,

N =
min(M,K)∑

n=0
Nn (4.2.11)

holds. Now, we will count all possible n-alignments. Therefore, we will set up an
arbitrary n-alignment. Because M · K = |G×H| holds, there are M · K possible
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first elements for an alignment. This has to be multiplied by the number of possible
second elements, ... Because of the uniqueness of each element in an alignment there
are (M − 1) · (K − 1) possible second elements and so on. Since the ordering is not
of importance (an alignment is a set), the resulting number has to be divided by n!.
With the falling factorial nm := n!

(n−m)! we get

Nn = 1
n!

n−1∏
i=0

(M − i) · (K − i)

= 1
n! ·M

n ·Kn

= n! ·
(
M

n

)
·
(
K

n

)
(4.2.12)

The stated equality directly follows from (4.2.11) & (4.2.12). The inequality is a
consequence of

n∑
k=0

(
n

k

)
= 2n

and equality holds for M = K = 0.

Even for reasonable numbers M = 50 and K = 50 the number of possible alignments
exceeds (by far) 250. Hence, a direct optimization by testing all possible alignments
is impossible or at least cumbersome. Thus, the greedy P-alignment is a good
compromise and it yields suitable alignments in all our practical cases.
Definition 4.2.11 (greedy P-alignment). The set of pairs M ⊂ G×H defined as

M := ALIGN(G,H) (see Alg. 5)

is called greedy P-alignment.

We have described the computations rules for the R-value and for the P-value (i)
& (ii). These rules do not rely on any reading order nor on a binarization of the
underlying document image (nor on any pixel information of the image) . Conse-
quently, the requirement (III) is met. That means all requirements as stated in the
introduction are satisfied. Finally, the R-value and the P-value are combined by
means of their harmonic mean to constitute the F-value. The F-value is employed
as (baseline) similarity score throughout this work.
Definition 4.2.12 (F-value). Let G,H be the sets of normalized GT and HYP
baselines. The harmonic mean of R-value and P-value defined as

F(G,H) := 2 · R(G,H) · P(G,H)
R(G,H) + P(G,H)

is called F-value.
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Algorithm 5: Greedy P-Alignment Function: M = ALIGN(G,H)
input : GT and HYP sets G = {G(1), ...,G(M)}, H = {H(1), ...,H(K)}
output: greedy P-alignment M

1 M← ∅
2 C ← coverage matrix defined by Ci,j = COV(H(i),G(j), tG(j)) ∀i ∈ [K] , j ∈ [M ]
3 while 1C > 0 ∧ 2C > 0 do
4 (i, j)← arg maxi∈[K],j∈[M ] Ci,j
5 if m > 0 then ▷ create an aligned pair
6 M←M ∪ (G(j),H(i))
7 C ← take C and delete row i and col j
8 else

return : M
return : M

Examples

Results for different subsets of the GT and HYP baselines of Fig. 4.4a are shown in
Tab. 4.2 and explained in the following.

Table 4.2.: Examples for the R-, P-, and F-values – The values for different
subsets of the GT and HYP baselines shown in Fig. 4.4a are calculated.
A fixed tolerance value of 20 is used for the calculations.

Ex. G H R P F

1 {G(1),G(2),G(3),G(4)} {H(1),H(2),H(3),H(4)} 0.91 0.61 0.73
2 {G(2),G(3),G(4)} {H(1),H(2),H(3),H(4)} 0.9 0.61 0.73
3 {G(1),G(3),G(4)} {H(1),H(2),H(3),H(4)} 0.89 0.51 0.65
4 {G(1),G(2),G(3),G(4)} {H(2),H(3)} 0.35 0.88 0.5
5 {G(1),G(2),G(3),G(4)} {H(2),H(3),H(4)} 0.43 0.6 0.5

The small difference between Ex. 1 and Ex. 2 is due to the fact, that in both cases
H(1) is aligned with G(2) for the P-value calculation. Hence, there is no effect on
the P-value if G(1) is removed. The R-value is nearly the same, because G(1) and
G(2) are both completely covered by H(1). By removing G(2) instead of G(1) (Ex.
3), H(1) is now aligned with G(1) yielding a lower P-value, because G(2) covers much
more of H(1) than G(1). In Ex. 4 one gets a high P-value, because the remaining
HYP baselines are very well covered by the GT baselines. Of course, the R-value in
increased by adding H(4) (Ex. 5), but the P-value is decreased. This is due to the
fact that H(3) is aligned with G(4) (as in Ex. 4) and H(4) is not aligned at all and
gets a P-value of 0.
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Remark 4.2.13. Short text lines have the same impact as long ones for the R-value
as well as the P-value (and consequently the F-value). This is because in Eq. (4.2.9)
and Eq. (4.2.10) the line specific R- and P-values are divided by the number of GT
and HYP lines, respectively. This prevents an underestimation of the importance of
short text lines, which often contain essential information in the context of historical
documents, e.g. ages, dates, sex.

Multi Page Evaluation

Since some datasets, e.g. the cBad dataset [Die+17b], are very heterogeneous, it is
meaningful to evaluate each page on its own and to average these page-wise results.
This prevents an overbalance of pages with dozens of baselines (like pages containing
a table) and yields results representing the robustness of the evaluated algorithms
over various scenarios. This is already taken into account in the definition of the
test score, see Def. 1.3.10. Hence, it is also valid for the (baseline) test score.

Computational Effort

In this section, we investigate the complexity of the proposed similarity score. Be-
cause the number of GT and HYP baselines as well as their shape are given by
an operator and the method to be evaluated, the complexity is investigated for the
distance parameter d in the polygonal chain normalization. This is a free parameter
of the evaluation scheme.

Corollary 4.2.14. Let G,H be the sets of normalized GT and HYP baselines. Let
n = 1/d denote the number of pixels per unit of length. The (baseline) similarity
score (F(G,H)) is in O(n2).

Proof. The complexity reduces to the complexity of the coverage function, see Alg. 4.
The summations and loops in Eq. (4.2.9), Eq. (4.2.10), and in Alg. 5 just depend on
|G| , |H| and therefore contribute to the constant term. Line 2 of Alg. 4 is linear in
n and line 3 is also linear in n (for the proposed straight-forward implementation).
Hence, the coverage function is in O(n2).

Consequently, the distance parameter has (in theory) a quadratic influence on the
computation time of the similarity score. Of course, a coarse resolution (high value
d) results in an inaccurate similarity score, see Fig. 4.5.

In Tab. 4.3 the F-value and the corresponding computation time are shown for
different distance parameters. Finally, a distance value of d = 5 yields a good
compromise between accuracy and computational time and is used in this work.
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simple example
d=92

simple example
d=46

Figure 4.5.: Effect of the normalization on the similarity score – Shown are
two different scenarios for the similarity score calculation for different
distance parameters in the polygonal chain normalization. GT base-
lines are red, HYP baselines blue. The red circles (radius of 3t with a
tolerance value t, cf. Alg. 4) are the areas of interest for the coverage
function. For d = 92 the similarity score would be 0, because the HYP
pixels are all outside of the areas of interest. On the contrary, the result
for d = 46 would be reasonable.

Table 4.3.: Relation between F-value and computational time – Shown are
F-values and the time required for their computation for several distance
parameters. The experiments were performed for an exemplary hypoth-
esis set for the cBad test set (complex track), see [Die+17a]. The test
set is composed of 1010 pages of heterogeneous historical documents.

d 1 3 5 10 25 50 100

F-value 0.9259 0.9244 0.9231 0.9186 0.8935 0.803 0.6999
time in s 460 94.9 40.9 17.4 9.0 6.4 5.2

4.3. Baseline Detection Method

After motivating and introducing the problem of baseline detection as well as the
(baseline) similarity score to evaluate the quality of baseline detection methods, we
will describe the developed baseline detection method. The following sections orient
towards [Grü+18b], some paragraphs and figures are citations of the mentioned
work. Nevertheless, major parts were substantially rewritten to incorporate the
cited work into this thesis.

As already mentioned in Chap. 1 & 2, deep learning based methods became om-
nipresent in the document analysis community within the last years. Such techniques
were recently used to solve several different problems such as binarization [Vo+17],
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page boundary extraction [Ten+17], page segmentation [Che+17] or text line de-
tection [Ren+17]. Nevertheless, usually either classical image processing based ap-
proaches or deep learning based approaches are proposed in the literature. The pre-
sented work to our knowledge is the first which uses a two-stage method, combining
deep learning strategies and state-of-the-art image processing based techniques.

For this purpose, we propose a newly designed fully convolutional network (FCN),
see Sec. 3.1. The proposed FCN, the so-called ARU-Net, is an extension of the U-
Net [RFB15]. The fully convolutional U-Net is extended by incorporating residual
blocks [He+16] to increase its representative power. Furthermore, a spatial atten-
tion mechanism is developed which allows the ARU-Net to focus on image content
at different positions and scales. The network is designed to process the entire,
arbitrarily-sized image at once to take account of all spatial context. The ARU-Net
is universal in a way that it could be used to tackle any pixel labeling task.

In this work, it is trained in a fully supervised fashion to classify each pixel to belong
to one of the following classes: baseline, separator or other. The separator class is
introduced to explicitly predict beginning and end of each text line and not just rely
on the information implicitly given by the baseline class. This is advantageous for
text lines which are close together but have to be separated, e.g., those belonging
to different columns.

The network output serves as input for an image processing based bottom-up cluster-
ing approach. This approach utilizes so-called states of superpixels [RKC14], which
encode local text orientation and interline distances. This second stage allows for an
error correction of the network output by incorporating domain knowledge based on
assumptions, which hold for text lines in general. Additionally, it is easily possible
to incorporate the separator information, which allows for a handling of documents
with complex layouts, e.g., images containing tables or marginalia.

We show that the presented approach outperforms state-of-the-art methods on three
different datasets. A relative F-value (cf. Sec 4.2) error (the gap to 1.0) reduction of
at least 24% is achieved for the cBAD dataset [Die+17b]. This dataset is composed
of images of nine different archives and libraries from all over Europe and is there-
fore – in the opinion of the authors – the most representative and heterogeneous
freely available dataset. Especially, for the complex track, which contains mostly
documents with complex layouts, the average F-value is increased from 0.859 to
0.922.

In the following, we introduce the two-stage method for baseline detection, see
Fig. 4.6. The first stage relies on an FCN – the ARU-Net – and performs a pixel
labeling. The pixel labeling can be seen as some kind of goal-oriented binarization.
Instead of detecting all foreground elements, it restricts itself to those elements
which are of interest for the specific task. The second stage performs a superpixel
extraction on the first stage’s output. These superpixels are further clustered to
build baselines.
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First, a detailed description of the proposed ARU-Net is given. Finally, the super-
pixel extraction and clustering approach is described.
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Figure 4.6.: Two-stage workflow to detect baselines – The first stage utilizes
a deep artificial neural network to perform a pixel labeling. The result
of Stage I is the input for an image processing based method in Stage
II. This method clusters superpixels to build baselines. The image is
sampled from the cBad complex test set [Grü+18a].

4.3.1. Stage I: ARU-Net

Typically, layout analysis algorithms directly work on the input image I or on a
binarized version of it [AS14]; [RKC14]; [NG09]; [SAE14]; [Gar+12]; [Grü+17].
Instead, we employ a more goal-oriented transformation of the input image utilizing
an FCN, which is trained in a supervised manner to assign a certain class to each
pixel like in [RFB15]; [LSD15]; [NHH15]. This is often referred to as pixel labeling
or semantic segmentation. We will introduce the problem of pixel labeling utilizing
FCNs, followed by a description of the proposed ARU-Net architecture.

Pixel Labeling – Problem Formulation

Essentially, the pixel labeling problem is a spatial classification problem as intro-
duced in Def. 3.1.28. Here, we introduce the neural pixel labeler to solve the problem
and the pixel ground truth to train the corresponding ANN. In Sec. 3.1 the FCN was
introduced. Basically, it is a parametrized function Φ( · ; θ) : R∗×∗×zin → R∗×∗×zout .
This function maps from a 3-dim array with arbitrary spatial dimensions and fixed
representative depth to a 3-dim array of dimensions determined by the input’s di-
mension and of the hyperparameters of the FCN. It is easy to see, that any image
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can be represented as a 3-dim array with a representative depth of 1. Hence, one can
state I ⊂ R∗×∗×1. Furthermore, I|C| ⊂ R∗×∗×|C| holds. Therefore, images are feasible
inputs to FCNs and the introduced neural pixel labeler is just a special FCN.

Definition 4.3.1 (neural pixel labeler). Let C = {c1, ..., cn} be a set of distinct
classes. An FCN Φ( · ; θ) : I→ I|C| is called neural pixel labeler (NPL) iff

Φ(I; θ) = C ∈ [0, 1]1I×2I×|C| subject to
|C|∑
k=1

Ci,j,k = 1 ∀i ∈ [1I] , j ∈ [2I]

holds.

The NPL is parametrized by the model parameters θ ∈ RN and it produces a
prediction over all pixels and all possible classes for I ∈ I. Hence, C :,:,k ∈ I denotes
the image which encodes the pixel-wise prediction (probability) for the k-th class.
Hence, the NPL aims at solving the spatial classification task, see Def. 3.1.28.

Definition 4.3.2 (pixel ground truth). A 3-dim array G(I) ∈ I|C| is called pixel
ground truth (for image I) if it assigns exactly one class (one-hot-encoding) to each
pixel such that

∀i ∈ [1I] , j ∈ [2I] ∃!k ∈ {1, ..., |C|} : G
(I)
i,j,k = 1 ∧G

(I)
i,j,k̃

= 0 (∀k̃ ̸= k).

Following the methodology of Sec. 3.1.3, we aim for an NPL which was tuned on a
training set and performs optimal on a test set. Because of the one-hot-encoding of
the pixel ground truth the spatial negative log-likelihood (LSNLL) of Def. 3.1.30 can
be utilized to evaluate the NPL and to train its model parameters, see Sec. 3.1.4.

ARU-Net – Architecture

The ARU-Net is a special NPL and is described in this section. Within the last
few years, different architectures were proposed for the pixel labeling task. Most
of them are based on FCNs. A direct application of FCNs for pixel labeling is
presented in [LSD15]. The presented FCN combines local features to produce more
meaningful high level features using pooling layers. These pooling layers reduce the
spatial dimension of the input, cf. Def. 3.1.15. Thus, the result suffers from a coarse
resolution. Noh et al. [NHH15] tackle this problem by applying a deconvolutional
network on the subsampled output of the FCN. The deconvolutional layer increases
the resolution, such that the output has the same spatial dimension as the input.
The U-Net proposed in [RFB15] furthermore introduces shortcuts between layers of
the same spatial dimension. This allows for an easier combination of local low level
features and global higher-level features. Additionally, error propagation for deep
structures is facilitated and the vanishing gradient problem [GB10] is reduced.
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The U-Net is the basis for the proposed ARU-Net. We extend the U-Net by two
more key concepts – spatial attention (A) and depth (residual structures (R)) to be
described below. Remarkably, in contrast to the U-Net proposed in [RFB15], we
perform border padding, see Def. 3.1.10. Hence, the spatial dimensions in each scale
space of the U-Net are all the same, see Fig. 4.7 for a schematic representation of
a U-Net. Thus, the output of the U-Net comprises feature maps (z feature maps
in Fig. 4.7) of the same spatial dimension as the input. Hence, the U-Net becomes
an NPL as defined in Def. 4.3.1 by adding a convolutional layer with convolutional
softmax activation (to get pixel-wise predictions) which processes the U-Net output
and distinguishes between the different classes in C.

Remark 4.3.3. If the presented architectures are used for pixel labeling, it is im-
plicitly assumed that such a convolutional softmax layer is always added to generate
per class probabilities at pixel level.
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Figure 4.7.: U-Net – The input is an image of arbitrary spatial dimension. "Act" is
the activation function thus the rectangles represent sets of activation
maps. Each rectangle represents a 3-dim array (∈ R∗×∗×∗) of certain
dimensionality. Within each scale space (roman numbers) the feature
map widths and heights are constant (encoded by the height of the
rectangles). The number of feature maps z is pictured by the width
of the rectangles. Between adjacent scale spaces the spatial dimension
decreases by a certain factor (2 in the figure) and the representative
depth (number of feature maps) increases by the same factor.

He et al. [He+16] introduce very deep neural networks which are still trainable
and yield state-of-the-art results. This is achieved using so-called residual blocks.
The basic idea behind residual blocks is: If a set of stacked layers can approximate
the function f : Rn → Rn f(x), it can also approximate the residual function
h(x) = f(x)−x. Consequently, one gets an approximation of f by f(x) ≈ x+h(x).
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There are various different forms of residual blocks. The one used within this work is
depicted in Fig. 4.8. As a result, residual blocks introduce shortcuts. These shortcuts
enable the error backpropagation as well as an identity propagation even for very
deep structures. Hence, the vanishing gradient problems are reduced [He+16].
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z z z z

+

z

O
ut
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t

Conv+Act Conv Act Identity Logits

Figure 4.8.: Residual Block – The input is convolved and the resulting 3-dim array
(the maps before passed through an acitvation function are referred to
as logits) is used twice. At the first branch it is passed through the
activation function and further processed by several convolution layers.
At the second branch it is directly fed into a summation node. After
a point-wise summation of the two logit maps an activation function
is applied. The shortcut enables for an easy identity propagation and
error backpropagation. Arbitrarily many inner layers are possible.

Definition 4.3.4 (RU-Net). An RU-Net is a U-Net with residual blocks.

That means, each of the 2-layer CNN blocks in Fig. 4.7 is replaced by a residual
block as in Fig. 4.8.

Now, we introduce a pixel-wise (spatial) attention mechanism to explicitly incor-
porate the capability to handle various font sizes (especially mixed font sizes on a
single page). Attention mechanisms gained a lot of interest in the last years. In
the survey of Wang et al. [WT16], they distinguish between hard-attention mech-
anisms and soft-attention mechanisms. Hard-attention mechanisms, e.g., [M+14];
[J+15]; [CCB15], pay attention to a certain area of the input. They are usually
cumbersome to train. For instance, the network architecture proposed in [M+14]
comprises some stochastic component. Hence, it is not trainable using standard
backpropagation techniques, instead reinforcement learning has to be utilized. In
contrast, soft-attention based mechanisms make use of a weighted attention over
the entire input [Blu16]; [BLM17]; [BCB14]; [Cha+16]. I.e., each input element is
multiplied with some scalar ∈ [0, 1], a multiplication with 1 means full attention is
paid to this input element, a multiplication with 0 means no attention is paid to
this input element. The attention is usually encoded via an attention vector/map
which is calculated given the input or some other features. Consequently, no hard
decisions have to be made and the architectures are trainable with standard back
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propagation. Xu el al. [Xu+15] demonstrates that the combination of both types
of attention mechanisms could also yield satisfying results.

In this work, we will utilize a soft-attention based approach. For this purpose, we
introduce an attention network (A-Net). The A-Net is a multi-layer CNN which
generates a single output feature map – the attention map. The A-Net will be
applied along with the RU-Net on the input image at different scales, the same
network weights are used on all scales (weight sharing). Specially, a scale pyramid is
built by downscaling the input image I = I(1) several times. The resulting (scaled)
images I(1), I(2), I(4), I(8), ..., I(s) (superscripts denote the scaling factors) are fed
into the RU-Net and the A-Net. Trainable deconvolutional layers (of corresponding
scales) are applied on the outputs of the RU- and the A-Net to obtain feature maps
of spatial dimensions equal to the inputs.

A(1), ..., A(s) denote the up-sampled feature map of the A-Net because the represen-
tative depth of the A-Net output is 1 they are denoted in the matrix notation (not
bold). RU (1), ...,RU (s) are the features maps of the RU-Net, respectively. Let the
representative depth of the output of the RU-Net be z. After applying a pixel-wise
softmax normalization for the attention maps

Â
(k)
i,j =

exp(A(k)
i,j )∑

l∈{1,2,4,...,s} exp
(
A

(l)
i,j

) ∀k ∈ {1, 2, 4, ..., s}, i ∈
[

1A
(k)
]
, j ∈

[
2A

(k)
]

the normalized attention maps Â(k) sum to one (pixel-wise). The feature maps
RU (k) are combined like in

ARU :,:,l =
∑

k∈{1,2,4,...,s}
RU

(k)
:,:,l ⊙ Â(k) ∀l ∈ [z] .

where ⊙ is the Hadamard product (element-wise multiplication). ARU is the input
for the softmax activated convolutional layer. Hence, the ARU-Net becomes an NPL,
see Rem. 4.3.3.

Definition 4.3.5 (ARU-Net). An RU-Net incorporating the described spatial at-
tention mechanism is called ARU-Net, see Fig. 4.9.

The point-wise multiplication combined with the pixel-wise attention maps allow the
ARU-Net to pay attention in different scales at different positions of the image. In
Fig. 4.9 one can see that this behavior was indeed learned by the network. It seems
like the RU-Net is specialized on a certain font size and the A-Net distinguishes
between areas of different font sizes (bright and dark areas).

The ARU-Net as introduced can be used for any pixel labeling task, e.g., binariza-
tion, page detection and page segmentation. The purpose of the ARU-Net is defined
and fixed by the number of classes and the ground truth data provided for train-
ing. In this work, we limit ourselves to the baseline detection problem introduced
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Figure 4.9.: ARU-Net – The input image and its downscaled versions are fed into
the A-Net and R-U-Net (weight sharing accross different scales). The
results for the lower resolutions are deconvolved. The attention maps
are passed through a softmax normalization. The brighter the map
at a certain position the more attention is paid to that position at
the corresponding scale. The attention maps are point-wise muliplied
with the feature maps of the RU-Net. The results are summed and a
classification is performed.

in Sec. 4.1. For this purpose, we introduce three different classes: baseline (bl),
separator (sep) and other (∅). The separators mark beginning and end of each text
line. Although, the separator information is implicitly encoded by the baselines, it
is advantageous to explicitly introduce it as possible classification result. Especially,
for baselines which are close together, e.g., such belonging to two adjacent columns,
this approach helps to avoid segmentation errors, see Sec. 4.4.

The LSNLL loss functions requires per-pixel one-hot encoded GT information. Hence,
pixel GT of Def. 4.3.2 is required to train the ARU-Net. In the baseline detection
problem (see Sec. 4.1) the baseline GT is encoded by polygonal chains. Thus, the
pixel GT for the classes C = {bl, sep,∅} has to be produced. We propose an algo-
rithm, see Alg. 6, to automatically generate the pixel GT for all three classes given
solely the baseline GT. Hence, no additional human effort is necessary to generate
the required pixel GT.

A sample image with baseline GT along with its generated pixel ground truth is
depicted in Fig. 4.10. The prediction of a trained ARU-Net for this sample image
is shown in Fig. 4.11a.
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Algorithm 6: Pixel Ground Truth Generation: G = PGTG(I, ι̃I(I))
input : image I, baseline ground truth G = ι̃I(I)
output: pixel ground truth G

1 B, S,N ← 0 ▷ of dimension 1I × 2I

2 for G =
(
p(1), ...,p(n)

)
∈ G do

3 ωG ← polygonal chain orientation of G ▷ see Def. 4.2.2
4 dG ← interline distance of G ▷ see Def. 4.3.9
5 P(b) ← polygonal chain of length dG and orient. ωG + 90° centered at p(1)

6 P(e) ← polygonal chain of length dG and orient. ωG + 90° centered at p(n)

7 draw P(b) and P(e) in S ▷ draw: set all pixels of the normalized
polygonal chain to 1.0 in the image

8 draw G in B

9 E ← 3× 3 matrix of ones
10 S ← S ⊕ E
11 B ← (B ⊕ E) ∧ ¬S
12 N ← ¬S ∧ ¬B

return : G← (B, S,N)

4.3.2. Stage II: Baseline Estimation

This subsection describes the second stage of the proposed baseline detection method.
Baselines are estimated given the output of the ARU-Net. The proposed method
consists of three steps: superpixel calculation, state estimation and superpixel clus-
tering, which are described in the following.

The trained ARU-Net generates an output C ∈ [0, 1]1I×2I×3 for each image I ∈ I.
In the following B = C :,:,1 ∈ I denotes the image encoding the probability of each
pixel belonging to a baseline and S = C :,:,2 ∈ I is the separator image, see Fig.4.11a.

Superpixel Calculation

The number of all pixels in an image often exceeds several millions. To reduce the
dimensionality of the problem (the number of pixels to be regarded for the baseline
estimation), we limit ourselves to a subset of all pixels.

Definition 4.3.6 (superpixel). Let S = {p(1), ...,p(N)} be a subset of the image
pixels of I (typically, N ≪ 1I · 2I holds). An element of S is called superpixel (SP).

Basically, the definition of a superpixel does not introduce any new concept. An SP
is just a pixel which is somehow regarded to be of certain importance. Because it is
a frequently used term, we decided to introduce it via a definition. The set of SPs
constitutes the basis for the clustering process to build baselines. Hence, it is easy
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(a) Baseline ground truth – The baselines are described by the red dots. For visualization
purposes the dots of a baseline were connected.

(b) Pixel ground truth produced by Alg. 6 – Green encodes the separator class, red the
baseline class and black the ”other” class.

Figure 4.10.: Baseline and pixel ground truth – These are shown for the top
snippet of the image of Fig. 4.6.

to see that the choice of the set of SPs is crucial for the overall performance. If there
are no SPs in S which belong to a certain baseline, this baseline will be not detected.
To calculate a suitable set of SPs, we utilize the baseline image B generated by the
ARU-Net.

In a first step, B is binarized

B
(b)
i,j =

⎧⎨⎩1 , if Bi,j > b

0 , else
, ∀i ∈ [1B] , j ∈ [2B] ,

see Fig. 4.11b. The morphological skeleton B(s) = SKE(B(b)) is calculated for B(b)

following Lantuéjoul’s formula [Ser82], see Alg. 7. The skeleton image of B(b) is
depicted in Fig. 4.11c.

All foreground pixels (pixels with an intensity of 1) of B(s) build an initial set
of pixels

{
p(1), ...,p(M)

}
. Its elements are sorted (π : N → N permutation) in

descending order w.r.t. their baseline confidences(
p(π(1)), ...,p(π(M))

)
: Bp(π(i)) ≥ Bp(π(j)) ⇔ i ≤ j. (4.3.1)

Finally, S is set up by iteratively adding pixels of the sorted list of Eq. (4.3.1)
(beginning with the first pixel). To keep the number of SPs small, a new pixel p is
added to S only if

∥p− q∥2 > d ∀q ∈ S (4.3.2)
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(a) ARU-Net output – The estimated baseline image B (blue) and separator image S
(cyan) are shown as underlay of the original image.

(b) Binarized baseline image – Shown is the binarized baseline image B(b).

(c) Skeleton baseline image – Shown is the skeleton image B(s) computed by Alg. 7.

(d) Superpixel – The calculated set S of SPs (blue) is shown.

Figure 4.11.: Superpixel calculation – The intermediate steps of the superpixel
calculation are shown for the top snippet of the image of Fig. 4.6.

holds for a distance threshold d ∈ R, otherwise it is skipped. In Fig. 4.11d the set
of resulting SPs is shown. These SPs build the basis for the further clustering.

Remark 4.3.7. For all experiments, we have chosen fixed values of b = 0.2 (bi-
narization threshold) and d = 10 (Eq. (4.3.2)). These demonstrated to be well
suited for a wide range of different scenarios. Hence, they are not regarded as free
parameters of the system which have to be further tuned. This also holds for the
parameters which are fixed in Rem. 4.3.15 & 4.3.24.
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Algorithm 7: Skeleton Calculation (Lantuéjoul’s formula): I(s) = SKE(I(b))
input : binary image I(b)

output: skeleton image I(s)

1 E ← structuring element ▷ e.g., cross of size 3
2 I(s) ← 0 ▷ of dimension 1I

(b) × 2I
(b)

3 while I(b) ̸= 0 do
4 T ← ¬(I(b) ◦ E) ▷ ◦ morphological opening
5 T ← T ∧ I(b)

6 I(s) ← I(s) ∨ T
7 I(b) ← I(b) ⊖ E ▷ ⊖ morphological erosion

return : I(s)

Superpixel State Estimation

Assume we can assign each SP to a certain text line. The state of an SP should en-
code meaningful characteristics of its text line. These characteristics will be defined
and combined to constitute the state of an SP. This work is based on previous work
of [RKC14]; [Grü+17], but adapted to the characteristics of SPs extracted given the
ARU-Net output, e.g., an easier calculation of the local text orientation is utilized
as well as a different smoothing term formulation.
Definition 4.3.8 (local text orientation). The local text orientation (ωp) of an SP p
is the slope of its text line’s baseline at the coordinates closest (w.r.t. the euclidean
distance) to p.
Definition 4.3.9 (interline distance). The interline distance (sp) of an SP p is the
off-text distance of its text line’s baseline to the nearest other baseline.
Definition 4.3.10 (state). The state of an SP is the pair (ωp, sp) of its local text
orientation and its interline distance.

In the following, we will describe a method to estimate the states of all SPs. The
local text orientation of an SP will be calculated in a straightforward way utilizing
solely the baseline image B along with the position of nearby SPs. On the other
hand, the estimation of the interline distances combines local information of the
text line’s periodicity with the more global assumption that nearby SPs tend to
have similar interline distances. For this purpose, let S be the set of calculated
SPs and N is the neighborhood system (cf. Def. 3.2.2) calculated by Delaunay’s
triangulation [Del34] for the set of SPs, see Fig. 4.13.
Definition 4.3.11 (connectivity function). Let λ( · ; p, q) : [0, 1]→ R2 be the line
segment defined in Def. 4.2.1. The function Γ : N× I→ [0, 1] defined as

Γ(ep,q, I) :=
∫ 1

0 I(λ(τ ; p, q))dτ
∥p− q∥2

(4.3.3)
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simple example
simple example

sp

ωp

p

Figure 4.12.: Local text orientation and interline distance for an SP – De-
picted are the local text orientation and the interline distance for SP
p. Obviously, p belongs to the lower text line. Consequently its local
text orientation (ωp) is roughly 10◦. Its interline distance (sp) is the
shortest off-text distance from its textline’s baseline to the adjacent
text line.

Figure 4.13.: Delaunay neighborhood system – Neighborhood system N cal-
culated by Delaunay’s triangulation for the set S of SPs of Fig. 4.11d.

is called connectivity function. I(λ(τ ; ep,q)) denotes the intensity of the pixel in I
closest (w.r.t the euclidean distance) to the real-valued coordinates λ(τ ; ep,q), see
Rem. 1.3.3.

The connectivity function calculates the average intensity for a given image along
the shortest path connecting two pixels. The local text orientation of each SP is
estimated as ωp = LTO(p;N, B) utilizing N and the baseline image B, see Alg. 8.
The LTO algorithm picks the two neighbors of an SP p with the largest baseline con-
nectivity to p and determines the slope of the line passing through these neighbors.

The periodicity of text lines in document images is utilized to calculate the interline
distances. We determine the interline distance of an SP p by evaluating the regional
text-line periodicity around p as follows. For an SP p, for a circular region of
diameter d ∈ N around p, and for a projection direction determined by the local



67 4.3 Baseline Detection Method

Algorithm 8: Local Text Orientation of p: ωp = LTO(p,N, B)
input : SP p, neighborhood system N, baseline image B
output: local text orientation ωp of p

1 M← {eq,r ∈ N | q = p ∨ r = p}
2 L ← sorted list of M ▷ sorted by means of Γ(eq,r, B)
3 if |L| = 1 then
4 eq,r ← L1 ▷ Lk denotes the k-th element of L
5 else
6 eq,r ← (L1 \ p,L2 \ p)

return : ωp ← − arctan
(

ry−qy

rx−qx

)

text orientation ωp, let

hp,d = (hp,d
1 , ...,hp,d

d )T ∈ Nd

be the projection profile with respect to S, see Fig. 4.14. For the calculation of hp,d,
only SPs with a euclidean distance to p of less than d

2 are taken into account.

Figure 4.14.: Interline distance estimation – Illustration of several projection
profiles for a certain SP (red point). The profiles for different diameters
d ∈ {64, 128, 256, 512} and an orientation of 0° are shown in green. The
winning period (interline distance) is drawn as yellow curve. In blue a
histogram for a wrong orientation (45°) is shown.

Remark 4.3.12. The projection profile hp,d can be calculated very efficiently by
utilizing Lem. 4.2.5 for the off-text distance of p to q ∈ S with ∥p− q∥2 ≤

d
2 . Of

course, the sign of the off-distance has to be regarded, cf. Eq. (4.2.5).

To extract the regional periodicity inherent in the projection profile hp,d, a discrete
fourier transform (DFT) [Bri88] is applied to hp,d with resulting coefficients

Hp,d =
(
Hp,d

1 , ...,Hp,d
d

)T
∈ Cd. (4.3.4)
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A coefficient Hp,d
k , k ∈ [d] corresponds to the portion of the signal with a period of

d
k

to the entire discrete signal hp,d.

In the simplest case, the index k′ of the dominant coefficient of Hp,d determines the
interline distance of p as sp = d

k′ . However, we may be forced to assign a different
value to sp due to additional constraints to be discussed in a moment. Therefore,
a data term (cf. Eq. (3.2.1)) is introduced. This data term assigns a negative
confidence to an interline spacings determined by d and k under the data (the set
of SPs).

Definition 4.3.13 (data term). The data term of SP p and interline distance d
k

is
defined as

D

(
d

k
; p

)
:= − log

⎛⎜⎝
⏐⏐⏐Hp,d

k

⏐⏐⏐2
∥Hp,d∥2

2

⎞⎟⎠ . (4.3.5)

Remarkably, the normalization of the DFT coefficients by the quadratic L2-norm of
Hp,d reduces the effect of the different diameters d.

The data term is used within an energy minimization framework for finding the
optimal interline distance for each SP, cf. Sec. 3.2. Hence, we aim for an optimal
labeling of the set of SPs. The set of possible interline distances constitutes the set
of labels to be assigned to the SPs. To cover a suitable range of different interline
distances as well as to be robust against disturbances due to close-by text regions
of a different style, the projection profiles and DFTs are calculated for different
diameters d ∈ {64, 128, 256, 512} and k ∈ {3, 4, 5}. The choice of the values for
d and k is application driven and results in a set of possible interline distances
(see Tab. 4.4) which are reasonable concerning typically document resolutions and
layouts.

Table 4.4.: Set of possible interline spacings – The resulting interline spacings
for the chosen projection profile diameters d ∈ {64, 128, 256, 512} and
fourier coefficient indices k ∈ {3, 4, 5} are shown.

d/k 5 4 3
64 12.8 16.0 21.3
128 25.6 32.0 42.7
256 51.2 64.0 85.3
512 102.4 128.0 170.7

Thus, the resulting set of possible labels comprises l = 12 elements. We identify
each of the interline spacings with a natural number between 1 and 12 in a sorted
fashion, i.e., 12.8 is identified with 1 and 170.7 is identified with 12. For the reason
of simplicity, we write D (i; p) ∈ [l] for the data term (cf. Eq. (4.3.5)) of interline
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spacing i assigned to SP p. In the following, we aim for a labeling Λ : S→ [l] which
assigns a label to each SP.

Following a greedy labeling strategy by assigning the interline distance with the low-
est data energy defined by Eq. (4.3.5) to each SP, i.e., solving the labeling problem

Λ∗ = arg min
Λ is labeling

∑
p∈S

D (Λ(p); p) , (4.3.6)

leads to a noisy result, see Fig. 4.15a.

To reduce the noise effects, the influence of close-by SPs is taken into account. It is
reasonable to expect that neighboring SPs tend to have similar interline distances.
This expectation is encoded via a smoothing term. The smoothing term is equally
defined for all adjacent SPs. Consequently, it is not dependent on the respective
edge as in Eq. (3.2.1).

Definition 4.3.14 (smoothing term). Let σ ∈ R+ be a penalty value. The smooth-
ing term for two labels i, j ∈ [l] is defined as

V (i, j) :=
⎧⎨⎩σ , |i− j| ≥ 4
|i− j| , else

.

Thus, the smoothing cost V (i, j) becomes large if the labels differ. A maximum
value of σ is used for ”huge” differences. It is easy to see, that the smoothing term
is a semi-metric. Because the penalty value is typically large, e.g., σ = 25, the
triangle inequality does not hold: 25 = V (1, 5) ≰ V (1, 3) + V (3, 5) = 4. Finally, we
can formulate the labeling energy like in Eq. (3.2.1). Let Λ : S → [l] be a labeling.
The labeling energy is defined as

E(Λ;S,N) =
∑
p∈S

D (Λ(p); p) +
∑

ep,q∈N

V (p, q).

The resulting labeling problem

Λ∗ = arg min
Λ is labeling

E(Λ;S,N) (4.3.7)

is approximately solved utilizing the energy minimization framework introduced
in Sec. 3.2. The additional smoothing term (with a meaningful penalty value σ)
prevents neighboring SPs to differ to much in their interline distances. An exemplary
optimized labeling is shown in Fig. 4.15b.

Remark 4.3.15. For all experiments, we have chosen a fixed value of σ = 25.
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(a) Greedy states – The SP states for the greedy labeling (Eq. (4.3.6)) are shown.

(b) Final states – The SP states for the smoothed labeling (Eq. (4.3.7)) are shown.

Figure 4.15.: SPs along with their assigned states – The local text orientation
of each SP is visualized by the orientation of the green lines (for better
clarity rotated by 90°). The length of the lines encode the interline
distance of the corresponding SP.

Superpixel Clustering

In the previous sections, the calculation of SPs and their enrichment with state
information was described. In a final step, this state information is utilized to
cluster the SPs to build baselines. There will be a one-to-one assignment between
clusters and baselines. In the following, we call a subset of S cluster . Thus, a cluster
is just a set of SPs.

In this section, we formulate the clustering problem and introduce a greedy clustering
procedure to solve the problem. Two assumptions which hold for baselines in general
(independent of the baseline intuition) constitute the conditions for the clustering
problem:

(I) Baselines should not exceed a certain curvilinearity value.
(II) Within the interline distance of a baseline there are no other baselines.

Basically, assumption (I) claims that a baseline can be approximated by a polynomial
function of a certain degree, see [RKC14]. Assumption (II) is self-explanatory.

Remark 4.3.16. In the following, ω({p(1), ...,p(n)}) denotes the average orientation
and s({p(1), ...,p(n)}) the average interline distance of all SPs in {p(1), ...,p(n)}.

Definition 4.3.17 (curvilinearity value). Let deg ∈ N and S(1) ⊂ S be a cluster.
Let pS(1),deg(t) ∈ P [t] be the polynomial which solves the linear regression problem
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in the monomials t0, t1, ..., tdeg for the rotated real-valued pixels S(1)′ defined as

S(1)′ :=
{(

cos(−ω(S(1))) − sin(−ω(S(1)))
sin(−ω(S(1))) cos(−ω(S(1)))

)
· p

⏐⏐⏐ p ∈ S(1)
}
⊂ R2. (4.3.8)

The root-mean-square regression error normalized by s(S(1)) is called curvilinearity
value of S(1) and is denoted by cur(S(1), deg).

Remark 4.3.18. We fix deg = 3 and omit it in the following.

Note that the rotation matrix in Eq. 4.3.8 for computer vision coordinates as intro-
duced in Def. 1.3.1 is equal to the rotation matrix in classical coordinates.

Lemma 4.3.19. The rotation matrix in the computer vision coordinates as defined
in Def. 1.3.1 is given by

Rα =
(

cos(α) − sin(α)
sin(α) cos(α)

)
.

Proof. The transformation matrices from computer vision coordinates to classical
coordinates (T ) and vice versa (T−1) are given by

T =
(

0 1
−1 0

)
, T−1 =

(
0 −1
1 0

)
.

Let R̃α =
(

cos(α) − sin(α)
sin(α) cos(α)

)
denote the well-known rotation matrix in classical

coordinates and p is any pixel. The rotation of p by α can now be calculated as

p′ = T−1 · R̃α · T · p.

With the associative law and Rα = T−1 · R̃α · T the lemma is proven.

The curvilinearity value allows for an easy evaluation of (I). To test for (II) we will
introduce the distance of two clusters. Remarkably, only distances orthogonal to the
text orientation, the off-text distances as introduced in Def. 4.2.4, should be taken
into account. Therefore, the off-text distance is generalized for two clusters of SPs.

Calculating the minimal pairwise off-text distance of all SPs of two clusters could
result in a cluster distance distorted by SP outliers. Therefore, SPs in each cluster
are projected onto the corresponding regression curve obtained by the regression
problem of Def. 4.3.17, before taking pairwise distances.

Definition 4.3.20 (regression curve). Let S(1), S(1)′ and pS(1)(t) be of Def. 4.3.17.
The spatial t-range of S(1)′ is given by tmin = min{p2 | p ∈ S(1)′} and tmax =
max{p2 | p ∈ S(1)′}. A curve cS(1) : [0, 1] → R2 which results from rotating the
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graph of pS(1)(t) for t ∈ [tmin, tmax] by ω(S(1)) is called regression curve of S(1), see
Fig. 4.16.

simple example
simple example

Figure 4.16.: Regression curve and cluster distance – Displayed are two clusters
S(1), S(2) as blue points. Their corresponding regression curves cS(1)(t),
cS(2)(t) are shown as red curves. The projected SPs S̃(1), S̃(2) are the
red points. For the cluster distance calculation, only pairs of projected
SPs of the different clusters for which the euclidean distance is less
than a certain value (solid black lines) are taken into account. The
resulting cluster distance (off-text distance with respect to the average
slope of the regression curve at the respective positions) is depicted as
cyan line.

The SPs in S(1) are projected (in off-text direction) onto cS(1) . The resulting projected
SPs are denoted by S̃(1), see Fig.4.16. To achieve robust distance estimates even for
curved and differently slanted text lines we focus on SPs of the different clusters
which are quite close to each other and furthermore take into account the slope of
the regression curve at the specific SP positions instead of averaging over the entire
text line.

Definition 4.3.21 (cluster distance). Assume two clusters S(1), S(2) with regression
curves cS(1)(t), cS(2)(t) and projected SPs S̃(1), S̃(2). The cluster distance is defined
as

d
(
S(1),S(2)

)
:= min

p∈S̃(1),q∈S̃(2):
∥p−q∥2<4·s(S(1)∪S(2))

doff (p, q;ωc(p, q)),

ωc(p, q) is the average slope of the corresponding regression curves at p and q,
respectively (see Fig. 4.16).

The cluster distance is utilized to evaluate condition (II). Finally, we will use con-
ditions (I) to introduce feasible sets of clusters. For this purpose, we will limit
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ourselves to partitions (cf. Def. 3.2.3) of S. Hence, each SP has to be assigned to
one baseline at most. Furthermore, we require the baseline clusters to be N-linked.

Definition 4.3.22 (N-linked). Let S(1) be a cluster and N be a neighborhood
system. S(1) is N-linked iff

∀p, q ∈ S(1) ∃p0, ...,pN ∈ S(1) : p0 = p ∧ pN = q ∧ epi,pi+1 ∈ N (0 ≤ i ≤ N − 1)

holds.

Definition 4.3.23 (feasible). For γ, δ ∈ R+, a set of SPs S and a neighborhood
system N, we call a partition P =

{
S(0), ...,S(L)

}
of S with L ∈ N feasible iff

• S(i) is N-linked ∀i > 0
• conditions (I) and (II) hold, i.e.,

– cur(S(i)) < γ ∀i > 0
– d(S(i),S(j)) > δ ·max{s(S(i)), s(S(j))} ∀i, j > 0, i ̸= j.

The set of feasible partitions is denoted by feasN(S; γ, δ).

Note that the number L ∈ N of baselines is (a-priori) unknown. We usually omit γ
and δ and write feasN(S) for the set of feasible partitions. Let P =

{
S(0), ...,S(L)

}
be a feasible partition. We follow the convention that the clusters S(i), i > 0 identify
the baselines and S(0) constitutes the clutter cluster containing SPs not belonging
to any baseline. Finally, we represent the baseline corresponding to S(i) by the
polygonal chain which is defined by the projected SPs S̃(i), see Fig. 4.16 & 4.17.

In the following, we will incorporate domain knowledge to promote SPs belong-
ing to different baselines not to be N-linked. Hence, partitions with erroneously
connected baselines are not feasible anymore. This is done by a modification of
the neighborhood system N. Since baselines of different text orientations should
not contribute to the same cluster, we adjust the initial neighborhood system N
by removing edges ep,q of SPs with substantially different local text orientations:
|ωp − ωq| mod π > π

4 .

In addition, it is an ease to incorporate layout information by further adjusting N.
The layout information which is encoded by the separator image S (Fig. 4.11a) can
be incorporated by taking into account the connectivity of the SPs in S. Edges ep,q ∈
N for which a separator is crossed, i.e., Γ(ep,q, S) > η or maxτ∈[0,1] S(λ(τ ; ep,q)) > 2·η
(Γ of Def. 4.3.11 and λ of Def. 4.2.1) holds, are removed, see Fig. 4.17b.

Finally, a common scenario is the baseline detection with given text regions. We as-
sume that the text regions are represented by closed polygonal chains R(1), ...,R(N).
This additional layout information (if available) is easy to integrate by

N′ = {ep,q ∈ N | ∃i ∈ [N ] : p, q ∈ R(i)}.
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(a) Without separator information – The entire neighborhood system (yellow) is shown.

(b) With separator information – The neighborhood system was reduced by removing
edges (cyan) with high separator connectivity. The corresponding separator information
is illustrated in Fig. 4.11a.

Figure 4.17.: Influence of the separator information on the clustering – The
resulting baselines (blue lines) with and without taking into account
the separator information are shown.

Roughly speaking, a closed polygonal chain contains a SP if for all "ways" from the
SP to the image border one has to cross the polygonal chain. Hence, SPs which
are part of different non-overlapping text regions are not N-linked any more. Thus,
each baseline S(i), i > 0 is entirely contained in one text region for all feasible sets.
The resulting neighborhood system is still denoted by N (instead of N′).

Remark 4.3.24. For all experiments, we have chosen fixed values of γ = 0.3, δ = 0.5
(Def. 4.3.23) and η = 0.125.

After reducing the neighborhood system, we now introduce the total baseline energy.
We will assign an energy to all feasible sets and aim for an optimal one. This allows
for the formulation of the clustering problem to be solved.

Definition 4.3.25 (total baseline energy). Let B be a baseline image, N a neigh-
borhood system and P =

{
S(0), ...,S(L)

}
a partition over S. With N(S(i)) = {ep,q ∈

N | p, q ∈ S(i)} ⊂ N the total baseline energy is defined as

b(P) :=
L∑
i=1

∑
ep,q∈N(Si)

Γ(ep,q, B). (4.3.9)

Finally, the clustering problem can be formulated as

P∗ = arg max
P∈feasN(S)

b(P). (4.3.10)
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Because there is usually a huge number of feasible partitions, we introduce a greedy
clustering algorithm to solve Eq. (4.3.10). The proposed algorithm clusters edges
of N instead of clustering SPs. If an edge is assigned to a cluster (set) of edges, we
assign both corresponding SPs to the corresponding cluster of SPs. In a first step,
the set of edges in N is sorted in decreasing order w.r.t.(

1− doff (p, q;ω({p, q}))
∥p− q∥2

)
· Γ(ep,q, B). (4.3.11)

The sorted list is denoted by N . Eq. (4.3.11) takes into account the B-connectivity
value of an edge and discounts it if ep,q is rather orthogonal to ω({p, q}). Discounted
edges are less likely part of a baseline and are therefore sorted to the end of the
list. This avoids that these edges are falsely assigned to baseline clusters which are
composed of just a few correct edges (statistics of the cluster are not reliable, yet).
Given S and N , the proposed clustering process is shown in Alg. 9.

Lemma 4.3.26. Alg. 9 converges and yields a feasible partition.

Proof. The while-loop stops if no edge was clustered. Hence, in the worst-case a
single edge is clustered each iteration. Consequently, the algorithms stops after
(at most) |N | while iterations. In practice, it usually converges after less than 10
iterations.

It is easy to see that P is a partition. In the beginning, all SPs are in S(0). If SPs
are removed from any cluster they are put to exactly one other cluster, cf. line 9,
14, 17 & 22 . As a result, each SP is assigned to exactly one cluster during the entire
clustering process. Hence, P is always a partition.

Each S(i), ∀i > 0 is N-linked. This is due to the fact, that edges are clustered
instead of SPs. I.e., if a new cluster is created, it is N-linked, cf. line 10. If it is
extended, the new SP is connected to the cluster via an edge, cf. line 14. If two
clusters are merged they are both N-linked and connected via an edge, cf. line 17.
Consequently, the merged cluster is also N-linked.

The curvilinearity is explicitly checked before a cluster is changed, cf. line 12 & 16.
Of course, a cluster consisting of two SPs (line 10) has a curvilinearity value of 0.

The for-loop (line 19) ensures that the distance condition holds. As a result, the
resulting partition is feasible.

4.4. Experiments

The experiment section is divided into 4 party. First, each method relying on super-
vised (deep) learning and therefore relying on training data can suffer from the need
of an enormous amount of labeled training data. We demonstrate that the presented
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Algorithm 9: SP Clustering: P = SPC(S,N )
input : set of SPs S and sorted list of edges N ▷ γ, δ of Rem. 4.3.24
output: optimized partition P

1 S(0) ← S, P ← {S(0)}, n← 0
2 while |N | ̸= n do
3 n← |N|
4 for ep,q ∈ N do ▷ Four possible cases dependent on the SPs
5 if ∃i > 0 : p, q ∈ S(i) then ▷ Case 1: add edge to cluster!
6 N ← N \ {ep,q}
7 else if p, q ∈ S(0) then ▷ Case 2: create new cluster?
8 if doff (p, q;ω({p, q})) < δ · s({p, q}) then
9 N ← N \ {ep,q}, S(0) ← S(0) \ {p, q}

10 P ←P ∪ {{p, q}}
11 else if w.l.o.g. p ∈ S(0) ∧ ∃i > 0 : q ∈ S(i) then ▷ Case 3: extend?
12 if cur(S(i) ∪ {p}) < γ ∧ d(S(i), {p}) < δ · s(S(i)) then
13 if d(S(i) ∪ {p},S(j)) > δ · s(S(j)) ∀j ̸= i, j > 0 then
14 N ← N \ {ep,q}, S(i) ← S(i) ∪ {p}, S(0) ← S(0) \ {p}

15 else if ∃i, j > 0 (i ̸= j) : p ∈ S(i) ∧ q ∈ S(j) then ▷ Case 4: merge?
16 if cur(S(i) ∪ S(j)) < γ ∧ d(S(i),S(j)) < δ ·min

(
s(S(i)), s(S(j))

)
then

17 N ← N \ {ep,q}, S(i) ← S(i) ∪ S(j)

18 P ←P \ {S(j)}

19 for S(i) ∈P, i > 0 do ▷ Remove close cluster
20 if ∃S(j) ∈P, j > 0, j ̸= i : d(S(i),S(j)) < δ ·max

(
s(S(i)), s(S(j))

)
then

21 if b(S(j)) > b(S(i)) then ▷ b is baseline energy, cf. Eq. (4.3.9)
22 P ←P \ {S(i)}, S(0) ← S(0) ∪ S(i)

return : P

approach achieves high quality results on the Bozen dataset [Sán+16] with less than
50 full-page training samples by using data augmentation strategies. Along with
an annotating effort of just a few minutes per page the adaptation of the proposed
method is easy and cheap.

Second, we demonstrate the applicability of the proposed method for images with
arbitrarily oriented as well as curved text lines by achieving nearly as good results
as for straight 0° oriented text lines.

The third part presents and compares results of different versions of our proposed
neural pixel labeler architectures on the very heterogeneous and challenging cBAD
dataset [Grü+18a]; [Die+17b]. We perform tests to show the statistical significance
of the stated conclusion – the superiority of the proposed ARU-Net in a two-stage
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workflow over other architectures and a single-stage workflow.

Finally, we show that the presented approach outperforms state-of-the-art methods
on the datasets of 3 recently hosted competitions. For the first competition the
proposed similarity score for the origin point detection is utilized. For the other
two competitions, we will make use of the similarity score introduced in Sec. 4.2
(F-value) to measure the quality of the baseline detection.

The configuration for all experiments including the hyperparameters of the network
architecture as well as the training are summarized in Tab. 4.5. This configuration
is the result of an extensive search in the hyperparameter space and results in
impressive results for various scenarios/datasets.

Table 4.5.: Hyperparameters – The architecture and training configuration which
were used in this work are described.

Image pre-processing: input image I is downscaled by a factor of 2 for
max{1I, 2I} < 2000, 3 for 2000 ≤ max{1I, 2I} < 4800 or 4 followed by a normal-
ization to mean 0 and variance 1 (on pixel intensity level)
RU-Net architecture, see Fig. 4.7 & 4.8: number of scale spaces: 6, initial
feature depth: 8, residual depth (activated layers in a residual block): 3, feature
increasing and spatial decreasing factor: 2, activation function: ReLu, kernel size:
3× 3, stride: 1
A-Net architecture: 4 layer CNN, activation function: ReLu, kernel size: 4 ×
4, stride: 1, maxpooling of size 2 × 2 after each convolution, feature number:
12, 16, 32, 1
ARU-Net architecture, see Fig. 4.9: number of image scales: 5, classifier:
4× 4 convolution layer with softmax activation
Training: weight initialization: Xavier, optimizer: RMSprop, learning rate:
0.001, learning rate decay per epoch: 0.985, weight decay on the L2 norm: 0.0005,
exponential moving average on the model weights: 0.9995, mini batch size: 1 (due
to memory limitations of the GPU), early stopping: none (trained for a fixed num-
ber of epochs)

Since no early stopping based on the loss for any validation set is used, we train on
the entire training set. We used Google’s deep learning library Tensorflow [Aba+15]
to implement and train the ARU-Net. The SP extraction, state estimation, and
clustering are written in Java. The ARU-Net workflow for training and inference as
well as a trained network are freely available2. The ARU-Net training takes 3 h to
24 h from scratch (dependent on the number of epochs and samples per epoch) on
a Titan X GPU. The inference time per image ranges from 2 s to 12 s per image on
a dual core laptop (Intel Core i7-6600U with 16GiB RAM), this reduces to 0.5 s to

2https://github.com/TobiasGruening/ARU-Net
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Figure 4.18.: Influence of the number of training samples and of differ-
ent data augmentation strategies – The bar height represents the
mean F-value. The error bars encode min-max values of the 5 experi-
ments (not the standard deviation). The dashed green line marks the
maximum mean value of 0.975 achieved for 350 trainings samples. For
a detailed description of the different augmentation strategies: B (no
augmentation), S (arbitrary scaling), S+A (S+ affine transformations)
and S+A+E (S+A+ elastic transformations), see main text.

2 s running the ARU-Net on the Titan X.

4.4.1. Influence of Training Sample Number and Data
Augmentation

A major drawback of state-of-the-art approaches (Sec. 2) is the need for an extensive
expert tuning if confronted with scenarios which are not already covered. But the
eligibility for a usage at industrial scale depends on the possibility to easily adapt
at reasonable cost. For approaches relying on machine learning, this reduces to two
questions:

• What about the amount of ground truth needed?
• What about the effort of ground truth production?

Concerning the second question, we refer to Alg. 6. The annotation of baselines for
a document image is quite easy and does not need remarkable expert knowledge
compared to, e.g., ground truth production for ATR systems for historical hand-
writings or even the text line annotation at surrounding polygon level. The effort
is reduced to several minutes per page by using platforms such as Transkribus3. In

3https://transkribus.eu
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the following, we want to examine the first question.

The influence of training dataset size along with different data augmentation strate-
gies is investigated for the freely available Bozen dataset4 [Sán+16], see Fig. A.2.
This dataset is a subset of documents from the Ratsprotokolle collection of Bozen
composed of minutes of the council meetings held from 1470 to 1805 and consists of
400 pages. Baseline ground truth is available in form of PAGE5 XML. The dataset
is quite challenging concerning layout analysis issues. Most of the pages consist of a
single main text region with many difficulties for line detection and extraction, e.g.,
bleed through, touching text lines and marginalia. For the following experiments,
we have randomly divided the Bozen set in a set of training samples T′ of size 350
and a test set T of size 50. In a first step, we randomly set up a chain of subsets of
T′

T′
1 ⊂ T′

3 ⊂ T′
5 ⊂ T′

10 ⊂ T′
30 ⊂ T′

50 ⊂ T′
100 ⊂ T′

200 ⊂ T′
350,

where T′
i contains i training samples (pages and pixel ground truth). Since we

expect an influence of the choice of training samples, i.e., of the sorting of T′, we
repeat the mentioned procedure 4 times with different sortings of T′. Notably, the
test set remains untouched. Finally, we got 45 training sets – five of each quantity.
For each set, we trained the RU-Net for 100 epochs with 256 images per epoch, see
Alg. 1. The RU-Net was chosen instead of the ARU-Net, because of the homogeneity
of the Bozen dataset concerning font size and resolution. Note that we randomly
choose samples of the training set and remove them from the set. If each element of
the training set was used for training once, we start again with the initial training
set. Hence, it does not matter whether the number of training samples per epoch
exceeds the size of the training set or not. This procedure guarantees the same
amount of training samples shown to the networks in training independent of the
size of the training set. We trained the RU-Net from scratch on all 45 sets in
4 different scenarios. For training purposes the image pre-processing mentioned
in Tab. 4.5 is disabled. Instead, the training samples (I,G(I))i are pre-processed
following one of the four strategies:

(a) subsampled by a constant factor of 3 (no further data augmentation - one
training sample per element of the training set), referred to as B

(b) randomly subsampled by a factor s ∈ [2, 5], referred to as S
(c) S + random affine transformation (three corner points of the image are uniform

randomly shifted within a circle of diameter 0.025 ·max(1I, 2I) around there
original position), referred to as S + A

(d) S + A + elastic transformation [SSP03], referred to as S + A + E

For the test set the images were subsampled by the constant factor of 3 in all
scenarios. The results of these 180 experiments are shown in Fig. 4.18.

4https://zenodo.org/record/218236
5http://www.primaresearch.org/tools
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One can see that all 3 data augmentation strategies significantly improve the per-
formance compared to the base (B) strategy. Notably, for small numbers of training
samples the min-max difference is much larger than for higher number of training
samples. Hence, if just a few training samples are available, the choice of these is
of large importance. The best mean F-value (0.975) is achieved for all 350 training
samples with the S + A + E strategy. Nevertheless, there only is a negligible loss in
performance for 200 or 100 training samples. Even for 30 training samples, a F-value
of 0.963 is achieved for the S+A strategy, which is sufficient for most applications,
see Fig. A.2. This results in a quite acceptable effort for ground truth production
making the presented approach interesting even for industrial production. The S +
A data augmentation strategy will be the default for the rest of this work.

Of course, the presented numbers are not directly transferable to collections with
pages of entirely different scenarios, e.g., census tables mixed with postal cards
mixed with ... . One would expect that more than 30 training samples are nec-
essary for this kind of scenario. Nevertheless, the presented experiment reflects a
common situation: One has a robust baseline detector which was trained on very
heterogeneous data (see Sec. 4.4.4), but this detector does not work satisfyingly well
for a certain (in most cases quite homogeneous) collection. The numbers presented
here give a hint concerning the effort of ground truth production necessary in this
scenario.

4.4.2. Curved and Oriented Text Lines

In this part, we demonstrate the ability of the introduced approach to handle curved
or arbitrarily oriented text lines. In a first experiment, the test set of the Bozen
dataset was deformed to contain arbitrarily curved text lines. For this purpose, we
utilized trigonometric functions with random period to simulate curved text lines in
the test phase. The RU-Net was trained (5 times) for 100 epochs with 256 samples
per epoch on the Bozen training set using the S + A + E augmentation strategy
with strong elastic deformations. We choose elastic transformations in training,
because they simulate curves of different amplitudes and frequencies in the same
image. Furthermore, we increased the polynomial degree (Def. 4.3.17) to deg = 5
to enable the system to handle the curvatures present in the test set.

Remark 4.4.1. Different methods were used to deform the images during training
(S + A + E) and test (trigonometric functions) phases. Hence, the system had to
learn the concept of curved text lines instead of an inversion of the image degradation
method used in the training phase.

In a second experiment, we have trained an RU-Net (5 times) on arbitrarily oriented
samples of the Bozen training set and evaluated the resulting networks on oriented
pages of the test set. The results are shown in Tab. 4.6 and a few sample images
are shown in Fig. A.3.
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Table 4.6.: Results for the Bozen test set – The results in the Base, Curved
and Oriented scenario are depicted. The bold numbers are the averages
of 5 experiments. The P- and R-values are strongly related to the well-
known precision and recall measures, see Sec. 4.2. Finally, the results for
a system trained with all degradations are shown.

Scenario ∅ P-Val ∅ R-Val ∅ F-val [min,max]
Base 0.9765 0.9734 0.9750 [0.9693, 0.9770]

Curved 0.9802 0.9690 0.9745 [0.9725, 0.9760]
Oriented 0.9625 0.9655 0.9640 [0.9582, 0.9674]

∅ F-val (Base) ∅ F-val (Curved) ∅ F-val (Oriented)
Combined 0.9531 0.9573 0.9676

For the curved scenario the results are as good as for the base scenario. In case of
the oriented scenario the results are slightly worse, but still excellent. This demon-
strates the applicability for images with curved or oriented text lines without re-
markable adaptation of the workflow. Finally, we have trained five models with all
degradations (affine, elastic, rotation) and evaluated this model on the three dif-
ferent scenarios. The corresponding F-values are depicted in Tab. 4.6. The system
is worse than the experts for the base and curved scenarios, but for the oriented
scenario it even benefits from the additional elastic transformations.

4.4.3. U-Net vs. ARU-Net vs. Single-Stage Workflow

In Sec. 4.3, we have introduced the ARU-Net in a two-stage workflow. In this
section, we will investigate its superiority over the classical U-Net as well as over a
”single-stage” workflow. For this purpose we have trained the U-, RU-, and ARU-
Net (each 5 times – random weight initialization and random training sample order)
on the recently introduced cBAD dataset6 [Die+17b]. The details of the dataset are
described in [Grü+18a]. In our opinion, this is the most challenging freely available
dataset at the moment. We have trained each network for 250 epochs, 1024 training
samples each epoch using the S + A data augmentation strategy. To assure the
statistical significance of the posed superiority of the newly introduced architecture,
we follow [Pui17] and provide the results of a statistical analysis. The choice of
appropriate statistical tests is quite limited since we can not make any assumptions
regarding the underlying distribution. We utilize 95% confidence intervals (CI)
provided by non-parametric bootstrapping [Efr87] as well as the Tukey-Duckworth
test (level of significance: 5%) [Tuk59]. The results obtained are summarized in
Tab. 4.7.

6https://zenodo.org/record/257972
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Table 4.7.: Results for the cBAD test set – The results for different neural
network architectures and the workflow without Stage II (for the ARU-
Net) are shown. Each architecture is trained 5 times on the cBAD train
set. The results are sorted with respect to computational effort. The last
two columns indicate whether an architecture is superior to all before
mentioned ones in terms of disjunct confidence intervals and the Tukey-
Duckworth test.

Method
∅ F-val [95% CI]

CI T-D
Simple Track Complex Track

ARU I† 0.9627 [0.9615, 0.9636] 0.9081 [0.9071, 0.9095]
U 0.9714 [0.9701, 0.9721] 0.9114 [0.9107, 0.9122] ✓ ✓

RU 0.9756 [0.9744, 0.9766] 0.9182 [0.9165, 0.9203] ✓ ✓

ARU 0.9781 [0.9772, 0.9789] 0.9223 [0.9214, 0.9230] ✓ ✓

† single-stage workflow – baseline estimation by basic image processing
methods (binarization of B followed by a CC analysis, no usage of S)

The ARU-Net performs significantly (last two columns) better than all architectures
with less computational effort. Furthermore, the results show that the introduction
of the second stage is beneficial for the overall performance. Hence, the ARU-Net
together with the two-stage workflow has shown its superiority (which is statisti-
cally significant) over the other systems and is used in the following. It has to be
mentioned that the above comparison is not fair concerning the number of trainable
parameters – U - 2.16, RU - 4.13, ARU - 4.14 (in millions) – nor concerning the
training and inference time. The comparison is about different architectures which,
theoretically, have different capabilities, and whether they make good use of them
or not.

4.4.4. Comparison against the State of the Art

In this section, we compare the proposed framework against the state of the art.
We have chosen the 3 most recent competitions on text line detection for historical
documents, namely:

• ICDAR2015 competition on text line detection in historical documents [Mur+15],
• ICDAR2017 Competition on Layout Analysis for Challenging Medieval Manu-

scripts (Task 2) [Sim+17],
• cBAD: ICDAR2017 Competition on Baseline Detection [Die+17a].

We will not further introduce the datasets or metrics used and refer to the compe-
tition papers.
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ICDAR 2015 Competition on Text Line Detection in Historical Documents
(ANDAR-TL)

The ARU-Net was trained on the cBAD training set7. This competition aims at the
origin point (OP) detection. An OP is roughly spoken the lower left "corner" of a
text line. Hence, we calculate the left most point of each detected baseline. This is
the output of our system for this competition. The achieved results are shown in
Tab. 4.8.

Table 4.8.: Origing Point (OP) detection results for the ANDAR-TL test
set – Results for the dataset of [Mur+15] are shown. #DF means the
number of detection failures (no OP detected by the system), #DM
means the number of detection misses (detected OP far away from the
ground truth OP) and #FP means the number of false positives.
Method #HYP #COR #DF #DM #FP avg. cost
UNIFR 9301 2578 3022 6456 267 19.00

IA-2 11789 5655 407 6032 102 14.51
A2iA-3† 8967 6523 2490 2263 181 13.20

SNU[Ahn+17] 10466 7741 948 2700 25 9.77
[Grü+17] 10896 8015 517 2860 21 8.19
proposed 11635 9610 358 1942 83 5.39

† According to [EGO17] this is an extension of [Moy+15].

Since the ARU-Net was not trained on the original training data, it is hard to
compare its results to the other ones. Nevertheless, we would like to stress the fact,
that trained systems usually perform better if training set and test set are sampled
from the same distribution. E.g., the ARU-Net trained on the cBAD training set
achieves an average F-value of 0.9605 for the Bozen test set, which is worse than the
F-vlaue of 0.9750 of the system trained solely on the Bozen training set, see Tab. 4.6.
This indicates (but does not prove) the superiority of the presented method over
the other methods in Tab. 4.8.

ICDAR2017 Competition on Layout Analysis for Challenging Medieval
Manuscripts (Task 2)

The ARU-Net was trained for 250 epochs 1024 samples per epoch on the competition
training data8 provided by the competition organizers, the DIVA-HisDB [Sim+16].
This allows an entirely fair comparison to the participant’s results [Sim+17], see

7The competition training data was not available to the authors.
8http://diuf.unifr.ch/main/hisdoc/diva-hisdb
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Tab. 4.9. The proposed method substantially outperforms the winning one and

Table 4.9.: Results for the ICDAR2017 Competition on Layout Analysis
for Challenging Medieval Manuscripts (Task 2)– The F-values
for Task 2 of all participants and the proposed method are shown for the
different subsets of the test set.

Method CB55 CSG18 CSG863 overall
CVML 0.9534 0.8734 0.9751 0.9340
BYU 0.9597 0.9879 0.9830 0.9768

CITlab 0.9896 0.9853 0.9716 0.9822
proposed 0.9980 0.9828 0.9889 0.9899

reduces the error (the gap to 1.0) by 43.26% (relatively). The specialty of this com-
petition was that the methods should focus on a special kind of text, e.g., comments
were not annotated as text. Hence, the ARU-Net had to learn to distinguish between
different types of text. The output of the ARU-Net and the detected baselines for a
sample image of the CSG18 subset of the test set are shown in Fig. 4.19. One can
see, that the ARU-Net entirely ignores all text entities not regarded (in this compe-
tition) as main text. Remarkably, no further information besides the input image
is provided to the ARU-Net. To demonstrate the capability to adapt to different
baseline intuitions, we have trained the ARU-Net on the same images, but all text
lines (including comments) were assigned to be text lines. The ARU-Net output
for the same image as used in Fig. 4.19 is shown in Fig. A.1. Hence, the ARU-Net
yields also impressive results for an entirely different baseline intuition.

cBAD: ICDAR2017 Competition on Baseline Detection

We compare our average result for the ARU-Net (see Tab. 4.7) to the results pre-
sented in [Die+17a], see Tab. 4.10. Our method performs considerably better in
both tracks compared to all submissions. Especially, the increase in performance for
the complex track is massive. The gap to the maximal F-value of 1 is reduced by
nearly 45%. Remarkably, the winning team uses a U-Net based system with task-
specific pre- and postprocessing. This indicates that the newly introduced concepts
and parametrization, which are presented in this work, significantly improve the ca-
pability of the classical U-Net. Some results on chosen images of the cBAD test set
are shown in Fig. A.4-A.6. Notably, no further information besides the input image
(and the text region information in the simple track) is provided to the ARU-Net
nor to the second stage of the workflow during inference.
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Figure 4.19.: Results for an image of the CSG18 subset of the test set –
The original image (only the main text lines were ground truthed), the
baseline image generated by the trained ARU-Net and the baselines
detected by the proposed method are shown (from left to right).

4.5. Conclusion

In this chapter, we have motivated the separation of the text line extraction prob-
lem into a baseline detection and a subsequent extraction problem. The baseline
detection problem was introduced and a suitable similarity score to evaluate the per-
formance of a baseline extractor was described. Furthermore, we have introduced
a baseline detection method which combines modern deep learning techniques and
state-of-the-art image processing approaches. The proposed ARU-Net, which is a
universal pixel labeling approach, was trained to predict the baseline position and
the beginning and end of each text line. This enables the system to handle doc-
uments with complex layouts, e.g., tables, marginalia, multi columns layouts. We
have shown that the system can be trained from scratch with manageable few train-
ing samples for a complex but homogeneous collection. Remarkably, ground truth
production is quite cheap. A ground truth sample is just a page with annotated
baselines, which can be done in a few minutes per page. Therefore, one can expect
that an adaptation on collections, which are not covered by the neural network,
is possible with quite reasonable ground truthing effort. Additionally, this is also
true for different baseline intuitions. This was demonstrated for two entirely dif-
ferent baseline intuitions for the DIVA-HisDB. Consequently, the proposed baseline
extractor has the ability to adapt to different TLIs (regarding the baseline specific
questions (a) & (b) of the introduction to this chapter). Hence, it meets the central
demand on a BLD as stated in the introduction to this chapter.

The applicability of the proposed method was shown for straight, curved and ori-
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Table 4.10.: Results for the cBAD test set – The P-, R- and F-values of all
participants and of the proposed method for the simple and complex
track of the cBAD: ICDAR2017 Competition on Baseline Detection are
shown. The bold numbers display the average value for 5 trained ARU-
Nets.

Method
Simple Track Complex Track

P-Val R-Val F-val P-Val R-Val F-val
LITIS 0.780 0.836 0.807 – – –

IRISA† 0.883 0.877 0.880 0.692 0.772 0.730
UPVLC 0.937 0.855 0.894 0.833 0.606 0.702

BYU 0.878 0.907 0.892 0.773 0.820 0.796
DMRZ 0.973 0.970 0.971 0.854 0.863 0.859

proposed 0.977 0.980 0.978 0.926 0.918 0.922
† This method is based on the work presented in [Ren+17].

ented text lines as well as for a combined scenario. The superiority of the proposed
ARU-Net in the two-stage workflow over the classical U-Net and over a simplified
workflow was shown and statistically verified. Finally, we showed that the proposed
method substantially outperforms the previous state of the art. Nevertheless, as
one can see in Fig. A.4-A.6 there are still errors made by the system, e.g., missed
baselines (see Fig. A.5 – bottom right), segmentation errors (see Fig. A.6 – bottom
left), false positives (see Fig. A.4 – top left) or problems with strongly degraded
documents (see Fig. A.5 – top left). But these errors do not seem to follow a cer-
tain deterministic principle, which is not surprising for a method based on machine
learning.

In the next chapter, we will determine a polygonal chain representation of a text line
given its baseline. This will be done utilizing the principle of dynamic programming.
The entire text line extraction pipeline will then be tested concerning its accuracy at
pixel level as well as in conjunction with an ATR system by means of the character
error rate.



5. Baseline to Text Line

In the literature, different text line representations were utilized for different ATR/
KWS systems, e.g., bounding boxes [SF16], x-height areas [Ren+17] or more precise
polygonal representations following all ascenders and descenders [Str+16a]. How-
ever, Romero et al. [Rom+15] show that the HTR accuracy is not significantly
effected by the polygon surrounding the text lines. Even simple strategies to con-
struct surrounding polygons given baseline representations lead to satisfying results.

Here, we will present an approach to calculate polygonal chain representations by
utilizing dynamic programming [BD62]; [Cor09] to calculate separating seams which
constitute the polygonal chain representation of a text line. Dynamic programming
was already utilized in the context of text line extraction, e.g., by Nicolaou et al.
[NG09], Saabni et al. [SAE14] or Arvanitopoulos et al. [AS14].

After introducing the seam carving methodology, we will evaluate its performance
on a recently hosted competition for text line extraction. Furthermore, we will
evaluate the performance in conjunction with a subsequent ATR module. Therefore,
several ATR systems were trained on two datasets to investigate the influence of the
proposed text line extraction method in an end-to-end fashion.

5.1. Seam Carving

After introducing the term seam, we will briefly describe the proposed seam carving
methodology which is basically very similar to the method proposed in [SAE14].

Definition 5.1.1 (seam). Let I ∈ I be an image. We call a polygonal chain
P =

(
p(1), ...,p(2I)

)
seam iff

• p
(1)
2 = 1 ∧ p

(i+1)
2 = p

(i)
2 + 1 ∀i ∈ [2I − 1],

• p
(i)
1 ∈ [1I] ∀i ∈ [2I] ∧

⏐⏐⏐p(i+1)
1 − p

(i)
1

⏐⏐⏐ ≤ 1 ∀i ∈ [2I − 1].

That means, a seam is a polygonal chain which connects the left with the right
image border. Furthermore, there has to be a pixel for each column and adjacent
pixels are allowed to differ in their y−coordinates by at most 1.

Basically, seam carving aims at the calculation of energy minimal seams. The energy
will be defined in a way that a seam which separates two adjacent text lines gets a
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(a) Depicted is a baseline P (blue) with its corresponding subimage I(P) (bright area).

(b) The Sobel image with medial seam (white) and separating seams (cyan/blue) which result
from a calculation without/with spring model.

(c) Shown are the resulting text lines which were calculated given just the detected baselines.

Figure 5.1.: Baseline to text line – This figure illustrates different stages of the
proposed baseline to text line methodology.

low energy. Finally, the polygonal chain representation of a text line is built by two
seams which separate a text line from its upper and lower neighbors. This approach
implies that text lines of interest are roughly horizontal oriented and range from the
left image border to the right one, see [NG09]; [SAE14]; [AS14].

Of course, this is not ensured in common scenarios. Therefore, we generate text line
specific subimages which satisfy the requirements for the seam carving approach.
For this purpose, we utilize the text line’s baselines. Let {P(1), ...,P(n)} ∈ 2PBL

be the set of baselines in an image which were either automatically detected or
manually annotated by an operator. The baseline specific subimages of the original
image are calculated utilizing the baseline dependent polygonal chain orientation
and tolerance value, cf. Sec. 4.3. The document image is rotated by the polygonal
chain orientation. Finally, the text line specific image I(P) for baseline P is the
subimage of I which has a width equal to the baseline width, a height determined
by the tolerance value, and is centered at the baseline, see Fig. 5.1a.

To reduce the effect of background noise as well as changes in the illumination, we
convert the gray scale image into a Sobel image. To concentrate on changes in the
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pixel intensities (edges) which characterize text, the image I(P) is convolved with
the x− and y−Sobel filter, respectively. The Sobel filter is an edge detection filter
and constitutes the basis for the Sobel image.

Definition 5.1.2 (Sobel image). Let I be an image and

S(x) =

⎛⎜⎝1 0 −1
2 0 −2
1 0 −1

⎞⎟⎠ , S(y) =

⎛⎜⎝ 1 2 1
0 0 0
−1 −2 −1

⎞⎟⎠
are the x− and y−Sobel filter. The image defined as

sob(I) := 1
8 ·
(⏐⏐⏐S(x) ∗ I

⏐⏐⏐+ ⏐⏐⏐S(y) ∗ I
⏐⏐⏐) ∈ I

is called Sobel image.

An exemplary Sobel image sob(I(P)) is depicted in Fig. 5.1b. For each Sobel im-
age a medial seam P(med) which specifies the text line (cf. [SAE14]) is calculated
based on the detected baseline, see Fig. 5.1b. Finally, two separating seams, one
(P(sa)) above the medial seam and one (P(sb)) beneath it, are calculated utilizing
dynamic programming. The cost function C to be minimized is determined by the
pixel intensities in the Sobel image and by the distance to the medial seam. For
a Sobel image I, a medial seam P(med) =

(
q(1), ..., q(2I)

)
and an arbitrary seam

P =
(
p(1), ...,p(2I)

)
, C is defined as

C(P ; I,P(med)) :=
2I∑
i=1

Ip(i) + k ·
⏐⏐⏐p(i)
y − q(i)

y

⏐⏐⏐ .
The second term ensures that the medial seam attracts the separating seam. It is
referred to as spring model [SAE14]. For a high spring factor k the separating seams
tend to include solely text line components, but also tend to cut off superscript dots.
On the other hand, a low spring factor results in separating seams which include
background noise and other elements which are not of interest. In Fig. 5.1b the
separating seams for a spring factor k = 0 (cyan) and k = 0.005 (blue) are shown.
The influence of the spring factor is further investigated in the next section.

5.2. Baseline to Text Line Experiments

In this section, we evaluate the introduced method on Task 3 of the ICDAR2017
Competition on Layout Analysis for Challenging Medieval Manuscripts [Sim+17].
Task 2 of this competitions was already mentioned in Sec. 4.4. In Task 3, the
competitors had to submit methods which produce polygonal representations of
the text lines given the input images. Because the text lines were annotated at
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pixel level, see [Sim+16], an evaluation at pixel level is possible. Consequently, the
methods were evaluated by means of the intersection over union methodology (IU)
[MB01]. The IU is defined as

IU := TP

TP + FP + FN

with the true positives (TP ), the false positives (FP ), and the false negatives (FN).
Hence, the fraction of the correct detections (intersection of all detections and the
ground truth) and all detections plus the missed ones (union over all detections and
the ground truth) is calculated. A detailed description of the resulting evaluation
scheme can be found in [Alb+17]; [Sim+17]. Here, we just point out some essential
parts. The evaluation tool is available as standalone jar1.

It has to be mentioned that only foreground pixels (which were assigned to be
foreground by some operator) inside the hypothesis and ground truth polygonal
chains were taken into account for the IU calculations. Finally, the methods were
evaluated with respect to three different scores, namely the pixel IU , the matched
pixel IU , and the line IU . The latter constitutes the main score which determines
the final ranking for the competition. Consequently, the line IU constitutes the
similarity score as introduced in Sec. 1.3. For the line IU , TP is the number of
correctly detected lines, FP is the number of extra lines, and FN is the number of
missed lines. A line is said to be correct if there is a pair of GT and HYP line which
has a pixel precision and a pixel recall value greater than some threshold (0.75 in
the competition). If the precision is lower than this threshold, the line is said to be
a false positive. In the last case, for a recall which is lower than the threshold the
line is a false negative. Pixel IU and matched pixel IU indicate how well the lines
were extracted at pixel level, instead as on line level. For a detailed description, we
refer to [Sim+17]. In this work, we will just provide the line IU (LIU) and the pixel
IU (PIU) of all methods.

In the following, we demonstrate the capability of the introduced method to extract
text lines in complex scenarios in a high quality. On the other hand, we also show
that the performance strongly relies on the spring factor. We extract the text lines
as described in the previous section for baselines detected by the method described
in Chap. 4 (the baseline detection was evaluated in Tab. 4.9).

As mentioned in [Sim+17]: The presence of interlinear glosses is usually a major
difficulty for obtaining a good text line segmentation. This is especially true for some
images of the sets CSG18 and CSG863. The ARU-Net was trained to detect main
body text only. As a result, the interlinear glosses cause errors in the seam carving
text extraction. Interlinear glosses which are close to the main body text lines tend
to be assigned to the main body text lines for low spring factors. It is plausible
that these errors diminish for increasing spring factors. The seams are forced to be
close to the correctly detected baselines. Consequently, the interlinear glosses are

1https://github.com/DIVA-DIA/DIVA_Line_Segmentation_Evaluator
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not assigned to the main body text lines any more. On the other hand, correct
pixels are also cut from the main body text lines.

This behavior is encoded in the values in Tab. 5.1. For the CB55 set which does
not comprise any interlinear glosses, the LIU value as well as the PIU value are
quite good for small spring factors. There are no interlinear glosses which could be
erroneously assigned to the main body text lines. But for increasing spring factors
more and more correct pixels are cut (PIU gets smaller) until the precision/recall
values fall below the threshold and the LIU also decreases. For the other two
subsets, the behavior is different. LIU as well as PIU are low for small spring
factors (many interlinear glosses are erroneously assigned to the main body text
lines). This problem reduces with increasing factors up to a certain point where to
many correct pixels were cut from the text lines. The entire behavior is visualized
in Fig. A.7 - A.9.

Table 5.1.: Results for the ICDAR2017 Competition on Layout Analysis
for Challenging Medieval Manuscripts (Task 3) – The line IU
and pixel IU of all submissions, of an additional combined method, and
of the proposed method for several spring factors are shown for the three
subsets of the test set. Finally, the average value is given. The average
line IU constitutes the basis for the competition ranking.

Method
CB55 CSG18 CSG863 avgerage

LIU PIU LIU PIU LIU PIU LIU PIU

IAIS 5.67 30.53 39.17 54.52 25.96 46.09 23.6 43.71
BYU 84.29 80.23 69.57 75.31 90.64 93.68 81.5 83.07

CITlab 99.33 93.75 94.90 94.47 96.75 90.81 96.99 93.01
Combined† 98.04 96.67 96.91 96.93 98.62 97.54 97.86 97.05

k = 0.0 99.68 97.17 59.58 78.03 85.95 90.12 81.74 88.44
k = 0.001 99.68 96.79 82.61 88.22 87.56 90.67 89.95 91.89
k = 0.005 99.68 96.22 94.92 94.24 95.73 93.28 96.78 94.58
k = 0.01 99.68 95.3 96.69 95.41 96.38 94.22 97.58 94.98
k = 0.02 99.35 92.62 96.97 95.57 96.70 94.67 97.67 94.29
k = 0.05 80.17 80.60 97.29 93.78 96.74 90.95 91.4 88.44
k = 0.001‡ 99.68 96.62 97.29 97.01 97.07 95.56 98.01 96.40
† This method was proposed by the organizers, who combined a Task 1

method with an own text line extraction method. It was noncompetitive.
‡ The baselines of the interlinear glosses which were detected by the ARU-

Net trained to detect all text lines (Sec. 4.4.4 & Fig. A.1) were taken into
account for seam carving.
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However, it is much more meaningful to directly incorporate the knowledge about
the interlinear glosses. Note that this was also done in the ”Combined” method
of the competition organizers, see Tab. 5.1. Here, we propose a slightly different
approach. Instead of labeling all pixels, we make use of the ARU-Net which was
trained to detect all text lines, see Sec. 4.4.4. After extracting all text lines, we
eliminate the text lines which were not detected by the ARU-Net trained to detect
main body text lines only. The resulting system yields the best results concerning
the line IU (similarity score). Some representative results are shown in Fig. 5.2.
Consequently, the competitiveness of the proposed approach was demonstrated. In
the following, we fix the spring factor to be 0.001.

Figure 5.2.: Text line extraction results for two snippets of the DIVA-
HisDB – Shown are the results of the text line extraction which takes
care of the interlinear glosses (see main text) for two snippets of the
DIVA-HisDB test set [Sim+16]. A spring factor of 0.001 was used. The
visualization was generated by the tool presented in [Alb+17]. Green
means correct, blue are false negatives, yellow pixels are assigned to the
wrong text line and red pixels are no main body pixels at all.
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5.3. End-to-end Experiments

After demonstrating that the proposed approach is at least comparable to the state
of the art concerning a pixel level based similarity score, we will investigate the entire
text line extraction pipeline in an end-to-end fashion. Therefore, we have trained
a hybrid conv-BLSTM ATR system and evaluated the entire information retrieval
pipeline for two different data sets.

Therefore, the text lines are extracted in the way described in the last chapters.
Afterwards, the extracted text line images were preprocessed in the way described
in [Str+16a] before fed into the ATR system. Hence, they have a fixed height of
64px. We will not describe the conv-BLSTM ANN in detail. For a comprehensive
description of such systems see [Pui17]; [SBY17]; [Bre17]; [BM17]. Here, we will just
outline the differences of our system. Basically, our system consists of 3 conv layers
(Kernel Dim–Stride Dim–Pooling Dim: 4×2×1×8−4×2−1×1; 4×2×8×32−
1× 1− 4× 2; 3× 3× 32× 64− 1× 1− 1× 2), followed by 3 blstm layers (256 units
each), followed by a fully connected softmax layer. Batch normalization (see [IS15])
and local response normalization (see [KSH12]) are applied after each convolutional
layer. The BLSTM layers are trained with dropout 0.5 applied to the output of
each cell (see [GG16]). Finally, we have trained the networks for a fixed epoch
size (150 with 8192 samples per epoch) utilizing an exponential moving average
for the trainable model parameters. To increase the amount of training data, we
employed some data augmentation strategies (grid deformations [Wig+17], dilation,
and erosion) for the preprocessed input images.

The experiments were performed for two different datasets. The Bozen dataset which
was already described in Sec. 4.4 and the StAZH dataset. The StAZH dataset is
composed of samples chosen from 800 pages of the Staatsarchiv des Kantons Zürich
(StAZH) collection. This set consists of Kantonsratsprotokolle and Regierungsrats-
beschlüsse whereas the former contains less than 10% of the overall amount of text.
The documents were written in German current in a time between 1803 and 1882.
The texts consist of resolution/enactment of the cabinet as well as the parliament of
the state of Zurich (starting in 1848 “canton”). 320 pages were chosen for training,
40 for testing.

In case of the StAZH dataset, ground truth is available at baseline level. Hence, we
applied the presented baseline to text line algorithm on the entire dataset to generate
feasible training data for the ATR system. We trained our ATR system 5 times on
the generated training data. Furthermore, we trained our baseline detection system
5 times on the training data to detect the baselines. Finally, the 5 trained ATR
systems were applied on the extracted text lines of the test set which were generated
given the ground truth baselines (GT-BL). Afterwards, the 5 trained ATR systems
were applied on the extracted text lines of the test set which were generated given
just the raw input document images (no GT). For each ATR system, a different
baseline detection system was used in the no GT scenario. We evaluated the quality
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by means of the average character error rate and the average bag of words F1-score
over the 5 experiments. Remarkably, the transcription was calculated given the raw
ANN output, no dictionary or language model was utilized.

Table 5.2.: Results for the end-to-end experiments – Shown are the average
character error rate and the average bag of words F1-score for several
experiments. GT-TL means that the ATR system was evaluated on the
GT text lines, GT-BL means an evaluation on the text lines extracted
given the GT baselines, and no GT means that the text lines were ex-
trcted given solely the input image. For the Bozen dataset, the results of
[San+16] are listed to provide some comparison (comparable to GT-TL).

Dataset System
Evaluation

CER in % [min,max] F1-score (BoW) [min,max]

StAZH
GT-TL 3.27 [3.23, 3.32] 0.890 [0.886, 0.891]
no GT 3.97 [3.86, 4.38] 0.891 [0.890, 0.893]

Bozen

ParisTech 18.5± 0.5‡ –
LITIS 7.3± 0.4‡ –
A2IA† 5.4± 0.3‡ –
BYU 5.1± 0.3‡ –

RWTH† 4.8± 0.3‡ –
GT-TL 5.11 [4.94, 5.20] 0.850 [0.843, 0.858]
GT-BL 5.31 [5.18, 5.39] 0.841 [0.835, 0.846]
no GT 5.97 [5.84, 6.16] 0.831 [0.828, 0.834]

† A language model was used on top of the ATR model.
‡ It is not clarified in [San+16] what is meant by ± x.

For the Bozen dataset, baselines and polygonal chain representations of the text
lines are available as ground truth. In addition to the above mentioned experiments,
we trained 5 ATR systems on these ground truth text lines (GT-TL). Since the Bozen
dataset was used for an ATR competition [San+16], we compare our results to the
participant’s results. Note that in this competition just the ATR performance was
evaluated. The ground truth text lines were provided to all participants by the
organizers. Consequently, a comparison to our GT-TL scenario is fair.

Note that for the CER calculation in the no GT scenario the alignment algorithm
of Sec. 4.2 (Alg. 5) was utilized. It was slightly adapted such that the edit distance
between GT and HYP is minimized. Consequently, segmentation errors are penal-
ized twice, i.e., if a text line is falsely segmented, one of its parts is aligned to the
GT which results in insertions, the other part is not aligned at all which results in
deletions. The results of the experiments are summarized in Tab. 5.2.
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The results demonstrate the usability of the proposed text line extraction method
for a fully automated information retrieval pipeline. Of course, if the task gets
complexer (no GT scenario) the error increases. Nevertheless, the error is dominated
by the ATR error. The text line extraction is responsible for a relative increase
in the CER of 21.5% (StAZH) and 16.8% (Bozen), respectively. For the StAZH
experiments, a further analysis of the results allows for an insight in the type of
errors. The increase in the CER is larger than for the Bozen dataset. Nevertheless,
for the bag of words F1-score it is vice versa. This indicates that the errors in
the StAZH experiments are due to segmentation errors. Indeed, sometimes the
marginalia is connected to the main body text. This results in an increase of the CER
but all words are correctly transcribed. Hence, the bag of words F1-score does not
decrease. This phenomena is shown for an exemplary page in Fig. A.10-A.11. The
errors for the Bozen dataset are not as easy to analyze. The scenario is much more
complex and the errors seem to be the result of several issues, e.g., ATR model noise,
segmentation issues, detection errors, cutted ascenders/descenders. However, the
results for an exemplary page are shown in Fig. A.12-A.13. Remarkably, comparable
ATR results are achieved with entirely different polygonal chain representations
(TLIs). Note that it is of importance that the TLI used for training is also used for
testing. For instance, an ATR system trained on the TLI visualized in Fig. A.12
and tested for the TLI visualized in Fig. A.13 yields a CER of 7.04% (compared to
5.96% for an ATR system trained on the TLI visualized in Fig. A.13).

5.4. Conclusion

In this chapter, we have introduced a fully automatic baseline to text line method
which is based on the principle of dynamic programming. Given the text line’s
baselines it automatically calculates polygonal chain representations. These repre-
sentations can be used to train an ATR system. We evaluated this method as a
stand alone method at pixel level and in an end-to-end fashion by means of CER
and bag of words F1-score for a subsequent ATR system. In both cases, the proposed
method demonstrated satisfying results. Of course, it is responsible for a slight in-
crease in the CER compared to an ATR system which works on the GT text lines.
Nevertheless, the CER is dominated by the errors made by the ATR system.





6. Conclusion & Outlook

There is no doubt that the general public directly benefits from an automation of the
information retrieval pipeline in the context of scanned historical documents. This
dissertation contributes a small piece to achieve the long-term goal to automatically
access the cultural heritage which is hidden in the billions over billions of scanned
document images which are stored on servers all over the world. This thesis for-
mulates the text line extraction problem for arbitrary document images in a formal
way and describes a sophisticated text line extraction method which constitutes the
current state of the art. The method is already usable and used by a wide audience
of researchers via the Transkribus1 platform.

The developed method is based on a subsequent solution of the problems of baseline
detection and text line extraction given the detected baselines. The baseline detec-
tion methodology constitutes the main part of the thesis. The developed baseline
detection method is a combination of state-of-the-art machine learning approaches
and classical image processing techniques. The method and the basics of the used
concepts are thoroughly motivated and introduced in a quite formal way. The base-
line detector demonstrated its applicability for various different datasets and diffi-
culties in an impressive quality, cf. Sec. 4.4. Because there was no suitable similarity
score to evaluate and compare the performance of baseline detection methods, this
thesis motivates and introduces a similarity score to quantify the similarity between
two sets of baselines. The developed score was already used to rank the submissions
of two recently hosted international competitions on baseline detection.

The property of the baseline detector to be trainable given appropriate training
samples is inherited from the machine learning component and allows not only for
an adaptation to different collections but also for an adaptation to different un-
derstandings about what a text line is and how text lines should look like. It is
demonstrated that this adaptation is possible without any expert knowledge just by
retraining, see Sec. 4.4.4. Basically, this is the major advantage of the developed
approach and allows for a usage at a large scale by a wide audience.

Finally, a text line extraction method based on the detected baselines is introduced.
This method is based on the well-known seam carving approach which itself is based
on dynamic programming. The entire text line extraction pipeline is evaluated twice.
First, it is evaluated on pixel level. Second, it is evaluated in an end-to-end fashion.
For this purpose, an state-of-the-art ATR system was trained to transcribe the

1https://transkribus.eu
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content of the extracted text lines. It was shown that the overall character error
rate is dominated by the ATR errors and not by errors due to extraction issues.

Although the developed approach outperforms the previous state of the art and
that the transcription errors are dominated by ATR errors instead of segmentation
errors, there is still scope for improvement. It is stated in Sec. 1.3 that we aim for
a design of an optimal text line extractor which is adaptable to different text line
intuitions without any expert knowledge. Finally, we can state that the designed
method is adaptable but not optimal since, e.g., the F-value in Sec. 4.4 does not
reach the maximum value of 1. Consequently, there are still errors made by the
system as already discussed in Sec. 4.5. However, after comparing the developed
method to various other methods on several different datasets using two similarity
scores, we conclude the proposed method is maybe not optimal but it outperforms
(to date) all its competitors.

In future work, we will investigate several new concepts, e.g., capsules to improve the
performance for rotated text lines, inception blocks to increase the representative
power of the model, deeply supervised networks to accelerate the training, ... .
However, we will also focus on the redesign of the baseline to text line methodology.
As shown in Sec. 5.3 even a quite simple polygonal chain representation is sufficient
to yield impressive ATR results (which could be better than the results achieved with
the proposed text line representation). Hence, the investigation of the interaction
of text line extractor and ATR/KWS system is of special importance to improve
the overall performance of the information retrieval pipeline and will be of special
importance for future research.



A. Appendix

A.1. Examplary Results

Figure A.1.: Results for an image of the CSG18 subset of the test set with
an alternative BLI – Shown is the baseline image generated by the
trained ARU-Net and the baselines detected by the proposed method
for the image used in Fig. 4.19. In contrast, here, the ARU-Net was
trained to detect all text lines, not just the main body text lines.



Appendix A. Appendix 100

Figure A.2.: Results for an image of the Bozen test set – Results for RU-Nets
trained on 5, 30 and 350 training samples (left to right) with different
data augmentation strategies B, S+A and S+A+E (top to bottom) are
shown.
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Figure A.3.: Results for an image of the Bozen test set – Results for two
“degraded” images are shown. The images were arbitrarily curved and
rotated.
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Figure A.4.: Results for images of the cBAD test set [Die+17b] – The images
are sampled from the complex track (no layout information was given).
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Figure A.5.: Results for images of the cBAD test set [Die+17b] – The images
are sampled from the complex track (no layout information was given).
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Figure A.6.: Results for images of the cBAD test set [Die+17b] – The images
are sampled from the complex track (no layout information was given).
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Figure A.7.: Text line extraction results for the CB55 subset – Shown are
the results for the text line extraction for a snippet of the CB55 subset
of the DIVA-HisDB [Sim+16]. Distance penalty values of (from top to
bottom): 0, 0.001, 0.005, 0.1, 0.2, 0.5 were used. The visualization was
generated by the evaluation tool presented in [Alb+17]. Green means
correct, blue are false negatives, yellow pixels are assgined to the wrong
text line and red pixels are no main body pixels at all.
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Figure A.8.: Text line extraction results for the CSG18 subset – Shown are
the results for the text line extraction for a snippet of the CB55 subset
of the DIVA-HisDB [Sim+16]. Distance penalty values of (from top to
bottom): 0, 0.001, 0.005, 0.1, 0.2, 0.5 were used. The visualization was
generated by the evaluation tool presented in [Alb+17]. Green means
correct, blue are false negatives, yellow pixels are assgined to the wrong
text line and red pixels are no main body pixels at all.
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Figure A.9.: Text line extraction results for the CSG18 subset – Shown are
the results for the text line extraction for a snippet of the CB55 subset
of the DIVA-HisDB [Sim+16]. Distance penalty values of (from top to
bottom): 0, 0.001, 0.005, 0.1, 0.2, 0.5 were used. The visualization was
generated by the evaluation tool presented in [Alb+17]. Green means
correct, blue are false negatives, yellow pixels are assgined to the wrong
text line and red pixels are no main body pixels at all.
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Figure A.10.: Text line extraction result (GT-BL) for the StAZH dataset
– Shown are the text line extraction results for an image of the StAZH
dataset given the ground truth baselines. The trained ATR system
yields an CER of 5.80% for the depicted text lines.
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Figure A.11.: Text line extraction result (no GT) for the StAZH dataset –
Shown are the text line extraction results for an image of the StAZH
dataset given solely the raw image. The trained ATR system yields
an CER of 7.83% for the depicted text lines. The increase in the CER
is (mainly) due to the segmentation error connecting marginalia and
main body text.
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Figure A.12.: Text line extraction result (GT-TL) for the Bozen dataset
– Shown are the ground truth text lines for an image of the Bozen
dataset. The trained ATR system yields an CER of 4.10% for the
depicted text lines.
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Figure A.13.: Text line extraction result (no GT) for the Bozen dataset –
Shown are the text line extraction results for an image of the Bozen
dataset given solely the raw image. The trained ATR system yields
an CER of 4.36% for the depicted text lines. Hence, a comparable
performance is achived for an entirely different TLI. Note that the TLI
has to be consistent between training set and test set. For instance,
the ATR system of Fig. A.12 yields a CER of 4.87% for this TLI.
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