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1. Introduction 

The development of overall science has been accompanied with the progress of computer 

technology since the middle of the 20th century. Advanced mathematical model on ship’s 

behaviour can explain complex physical phenomena more easily, and the computer tech-

nology can introduce various derivative ideas. 

This can have a great influence on both a construction and a navigation of a ship. From 

the ship’s design to its actual operation, various forms of application of information pro-

cessing technology are no longer surprising matters. The improvement of the computer 

performance can be seen in the estimation of ship’s manoeuvrability, more precisely the 

estimation of hydrodynamic coefficients acting on ship’s hull. In the initial ship design 

stage, it is possible to precheck the ship’s manoeuvrability and seaworthiness, and to re-

flect them in the actual ship construction. This can lead to positive effects such as reliable 

ship, cost reduction and process innovation. 

In 2006, the international towing tank conference (ITTC) provided state-of-art for pre-

dicting the manoeuvring behaviour of ships. Most of the methods except for the database 

method and the free model test are system based manoeuvring simulation or computa-

tional fluid dynamics (CFD) based estimation methods. All above methods estimate the 

ship’s hydrodynamic coefficients based on the ship’s equations of motion, and these can 

be utilized to estimate ship’s manoeuvrability. Among these, the most popular methods 

used in the early design stage are the captive model test and CFD based manoeuvring 

simulation. The above methods are enabling to conduct experiments without using a full-

scale sized model, and it is possible to estimate hydrodynamic coefficients and corre-

sponding manoeuvrability of proper reliability. 

However, this ship manoeuvrability estimation can be applied differently for existing 

ships. The system based manoeuvring simulation for the estimation of ship manoeuvra-

bility is applied to various purposes in conjunction with the computer development men-

tioned above. Simulation based ship handling training has made great progress in the ed-

ucation and training of seafarers. A sailing decision support program, which uses simula-

tions and network technologies, collects data from various navigation equipment to ena-

ble safer and more effective ship operation. Unmanned or autonomous vessels, which are 

currently under active research, reflect this trend well. 
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Estimation of the ship’s hydrodynamic coefficients can also be done through full-scale 

sea trial. This is the only way to estimate the hydrodynamic coefficients without addi-

tional tests such as model tests and CFD. This can be done through a mathematical pro-

cedure called system identification. This mathematical process conducts optimization for 

the hydrodynamic coefficients to represent ship’s manoeuvrability in a mathematical way. 

Abkowitz, Oltmann and Hess conducted representative studies related to this, and the 

follow-up studies are still carried out at present.  

Normally, estimation of hydrodynamic coefficients is conducted according to the specific 

loading conditions of the ship. In other words, ship’s manoeuvrability and its correspond-

ing coefficients can be considered to one specific trim and draught condition of the ship 

at the time. However, in practice, ships operate with various trim and draught conditions. 

In some cases, situations may arise where all trim and draught conditions need to be con-

sidered, depending on the purpose of the simulation. 

Therefore, this thesis proposes a method for estimation of the hydrodynamic coefficients 

using full-scale sea trial and a method of system identification. Also, based on this, a 

proposal for a new estimation method that can consider various trim and draught condi-

tions will be given here. The new estimation method will be in the form of suggesting an 

additional calibration formula that can complement the existing empirical estimation for-

mulas for the hydrodynamic coefficients involving different trim and draught parameters. 

This makes it possible to estimate a simpler and more efficient estimation of the hydro-

dynamic coefficients from sea trials. 

This thesis is composed as follows. Chapter 2 describes the theoretical background for 

estimating ship manoeuvrability. The ship's coordinate system, equations of motion, hy-

drodynamic coefficients acting on the hull, and influence of trim and draught on ship’s 

manoeuvrability are included. 

Chapter 3 introduces the mathematical optimization, which is a method for estimating the 

hydrodynamic coefficients acting on the hull for this thesis. After introducing the basic 

concepts of the mathematical optimization, an introduction to the representative algo-

rithms of constrained and unconstrained optimization is described in this chapter. 
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Chapter 4 applies the algorithms introduced in Chapter 3 to actual sea trial data and the 

optimization results are compared and verified. Details of the sea trial vessel, trial proce-

dures and comparison of optimization results are discussed in this chapter. 

Chapter 5 conducts the mathematical optimization with an interior point algorithm, which 

is finally chosen from the algorithm comparison in Chapter 4. Five sea trial data with 

three different trim and draught conditions are used for the optimization. Based on the 

optimization result, the trim and draft correction coefficients are calculated and a correc-

tion formula for the final coefficient estimation is suggested. 

Chapter 6 describes the final summary and future work based on the previous contents. 
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2. State of the art in ship manoeuvrability 

In this chapter concepts, following definitions and corresponding literature study are dis-

cussed: 

• Coordinate systems 

• Equations of motions 

• Hydrodynamic coefficients 

• Manoeuvring characteristics and trials 

• Influence of trim and draught 

2.1 Prediction of ship manoeuvrability 

A ship simulation has been developed with an improvement of computer processing tech-

nology. It has become possible to more effectively and simply estimate the manoeuvra-

bility of the ship during its initial design stage. Even in the case of existing vessels, the 

simulation can be used for various purposes such as training and navigation decision sup-

port. Ship modelling in a mathematical way, especially for estimating hydrodynamic co-

efficients acting on the hull, is one of the most important processes to realize this. 

2.1.1 Coordinate systems 

Two right-handed three degrees of freedom coordinate systems, the earth-fixed coordi-

nate 𝑂0 − 𝑥0𝑦𝑜𝑧0 and the ship-fixed coordinate 𝑂 − 𝑥𝑦𝑧 are selected to estimate ship’s 

manoeuvrability.  Both the 𝑂0 − 𝑥0𝑦𝑜 and the 𝑂 − 𝑥𝑦 horizontal planes placed on the un-

disturbed free surface and velocities for heave, rolling and pitching are ignored. Figure 

2.1 shows an overview of the coordinate systems. Vertical axes 𝑧0 and 𝑧 are directed 

downwards: 
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Figure 2.1 Coordinate systems 

where 𝛹 is a heading angle, 𝛽 is a drift angle, 𝛿 is a rudder angle, 𝑉⃗  is ship’s speed and 

𝑟 is yaw rate, respectively. Heading can be determined by an angle between 𝑥0 and 𝑥 axes. 

A ship’s position in each moment is determined by the ship’s centre of gravity in the 

earth-fixed coordinate system. The drift angle is determined by an angle between a direc-

tion of speed 𝑉⃗  and the 𝑥 axis. The ship’s speed 𝑉⃗  is expressed by a combination of axial 

speeds 𝑢 and 𝑣. The axial speeds can be calculated as follows: 

1 
𝑢 = |𝑉⃗ | cos 𝛽 

𝑣 = −|𝑉⃗ | sin 𝛽. 

(1) 

2.1.2 Equations of a ship’s manoeuvring motion 

Equations of a ship’s motion are based on the Newton’s second law. In the inertial coor-

dinate, the earth-fixed coordinate, the equations can be defined as follows [1]: 

2 
𝑋0 = 𝑚𝑥̈0𝐺  

𝑌0 = 𝑚𝑦̈0𝐺 

𝑁0 = 𝐼𝑧𝐺𝛹̈, 

(2) 

where 

𝑋0, 𝑌0: component of external force acting on 𝑥0 and 𝑦0 axis, respectively, 
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𝑁0: component of external moment for 𝑧 axis, 

𝑚: mass of a ship, 

𝑥̈0𝐺 , 𝑦̈0𝐺: component of acceleration acting on 𝑥0 and 𝑦0 axis, respectively, 

𝐼𝑧𝐺: moment of inertia of a ship about the z axis and 

𝛹̈: yaw acceleration. 

 

Equation (2), which is focused on the earth-fixed coordinates, can be converted into equa-

tions in the body-fixed coordinates. External forces acting on 𝑥 and 𝑦 axes are the fol-

lowing: 

3 
𝑋 =    𝑋0 𝑐𝑜𝑠 𝛹 + 𝑌0 𝑠𝑖𝑛 𝛹 

𝑌 = −𝑋0 𝑠𝑖𝑛 𝛹 + 𝑌0 𝑐𝑜𝑠 𝛹. 

(3) 

The right side of Equation (3) can be transformed to terms of kinetic parameters for the 

ship-fixed coordinate by applying relations between kinematic parameters for both coor-

dinates. Components of speed in the earth-fixed coordinate are expressed by a ship’s lon-

gitudinal and lateral speed components, 𝑢𝐺  and 𝑣𝐺 , and heading 𝛹: 

4 
𝑥0̇ = 𝑢𝑔 𝑐𝑜𝑠 𝛹 − 𝑣𝑔 𝑠𝑖𝑛 𝛹 

𝑦0̇ = 𝑢𝑔 𝑠𝑖𝑛 𝛹 + 𝑣𝑔 𝑐𝑜𝑠 𝛹. 

(4) 

Components of acceleration in the earth-fixed coordinate can be provided by differenti-

ating Equation (4): 

5 
𝑥̈0 = 𝑢̇𝑔 𝑐𝑜𝑠 𝛹 − 𝑢̇𝑔𝛹̇ 𝑠𝑖𝑛 𝛹 − 𝑣̇𝑔 𝑠𝑖𝑛 𝛹 − 𝑣̇𝑔𝛹̇ 𝑐𝑜𝑠 𝛹 

𝑦̈0 = 𝑢̇𝑔 𝑠𝑖𝑛 𝛹 + 𝑢̇𝑔𝛹̇ 𝑐𝑜𝑠 𝛹 + 𝑣̇𝑔 𝑐𝑜𝑠 𝛹 − 𝑣̇𝑔𝛹̇ 𝑠𝑖𝑛 𝛹. 

(5) 

Equation (3) can be converted into the equations in the body-fixed coordinate by substi-

tuting Equations (2) and (5): 

6 
𝑋 = 𝑚(𝑢̇𝑔 − 𝑣𝑔𝛹̇) 

𝑌 = 𝑚(𝑣̇𝑔 + 𝑢𝑔𝛹̇). 

(6) 
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Considering a ship is symmetrical based on a hydrodynamic centre, it is more convenient 

to place the ship-fixed coordinate on the midship point than the ship’s centre of gravity. 

Then, the ship’s new longitudinal and lateral speed components are as follows: 

7 
𝑢𝑔 = 𝑢 

𝑣𝑔 = 𝑣 + 𝑥𝑔𝛹̇. 

(7) 

The equations of motion in the body-fixed coordinate, placed on the midship point, are 

as follows. 

8 
𝑋 = 𝑚(𝑢̇ − 𝑣𝛹̇ − 𝑥𝑔𝛹̇2) 

𝑌 = 𝑚(𝑣̇ + 𝑢𝛹̇ + 𝑥𝑔𝛹̈) 

(8) 

The external moment acting on the 𝑧 axis and moment of inertia in the ship-fixed coordi-

nate can be modified from the moment acting on the earth-fixed coordinate and the lon-

gitudinal centre of gravity position. 

9 
𝑁 = 𝑁0 + 𝑌𝑥𝑔 and 𝐼𝑧 = 𝐼𝑧𝐺 + 𝑚𝑥𝐺

2 

then,  𝑁 = 𝐼𝑧𝛹̈ + 𝑚𝑥𝑔(𝑣̇ + 𝑢𝑟) 

(9) 

The first-order differential for the heading can be converted into the yaw rate 𝑟. The equa-

tions of motion in the ship-fixed coordinate, lying on the ship’s midship point, can be 

finally provided as follows. 

10 
𝑋 = 𝑚(𝑢̇ − 𝑣𝑟 − 𝑥𝑔𝑟2) 

𝑌 = 𝑚(𝑣̇ + 𝑢𝑟 + 𝑥𝑔𝑟̇) 

𝑁 = 𝐼𝑧𝑟̇ + 𝑚𝑥𝑔(𝑣̇ + 𝑢𝑟) 

(10) 

2.1.3 Representation of hydrodynamic force and moment 

Various studies on expression of hydrodynamic force and moment have been carried out 

by many researchers. These can be classified into two kinds: a polynomial model and a 

modular model.  

Model by Abkowitz   Abkowitz presented polynomials for the hydrodynamic force and 

moment, which is based on the Tayler series. He premises that forces can be determined 

by instantaneous values of kinematic parameters, without unsteady effects [2]. This 
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means that the unsteady influences can be ignored when a time step for hydrodynamic 

changes is extremely smaller than the one for the ship’s motion. The polynomials are 

functions of the kinematic parameters and rudder angle: 

11 
𝑋, 𝑌 𝑎𝑛𝑑 𝑁 = 𝑓(𝑢, 𝑣, 𝑟, 𝑢̇, 𝑣̇, 𝑟̇, 𝛿). (11) 

Abkowitz suggested polynomials based on a third-order Taylor series, as follows [3]: 

12 𝑋 = 𝑋0 +
𝜕𝑋

𝜕𝑢̇
𝑢̇ +

𝜕𝑋

𝜕𝑢
∆𝑢 +

1

2

𝜕2𝑋

𝜕𝑢2
(∆𝑢)2 +

1

2

𝜕2𝑋

𝜕𝑣2
𝑣2 +

1

2

𝜕2𝑋

𝜕𝑟2
𝑟2 +

1

2

𝜕2𝑋

𝜕𝛿2
𝛿2 

        +
1

2

𝜕2𝑋

𝜕𝑣𝑟
𝑣𝑟 +

1

2

𝜕2𝑋

𝜕𝑣𝛿
𝑣𝛿 +

1

2

𝜕2𝑋

𝜕𝑟𝛿
𝑟𝛿 +

1

6

𝜕3𝑋

𝜕𝑢3
(∆𝑢)3 +

1

6

𝜕3𝑋

𝜕𝑣2𝑢
𝑣2∆𝑢 

        +
1

6

𝜕3𝑋

𝜕𝑟2𝑢
𝑟2∆𝑢 +

1

6

𝜕3𝑋

𝜕𝛿2𝑢
𝛿2∆𝑢 +

1

6

𝜕3𝑋

𝜕𝑣𝑟𝑢
𝑣𝑟∆𝑢 +

1

6

𝜕3𝑋

𝜕𝑣𝛿𝑢
𝑣𝛿∆𝑢 

        +
1

6

𝜕3𝑋

𝜕𝑟𝛿𝑢
𝑟𝛿∆𝑢 

(12) 

13 𝑌 = 𝑌0 +
𝜕𝑌

𝜕𝑣̇
𝑣̇ +

𝜕𝑌

𝜕𝑟̇
𝑟̇ +

𝜕𝑌

𝜕𝑢
∆𝑢 +

𝜕𝑌

𝜕𝑣
𝑣 +

𝜕𝑌

𝜕𝑟
𝑟 +

𝜕𝑌

𝜕𝛿
𝛿 +

1

2

𝜕2𝑌

𝜕𝑢2
(∆𝑢)2 

        +
1

2

𝜕2𝑌

𝜕𝑣𝑢
𝑣∆𝑢 +

1

2

𝜕2𝑌

𝜕𝑟𝑢
𝑟∆𝑢 +

1

2

𝜕2𝑌

𝜕𝛿𝑢
𝛿∆𝑢 +

1

6

𝜕3𝑌

𝜕𝑣3
𝑣3 +

1

6

𝜕3𝑌

𝜕𝑟3
𝑟3 

        +
1

6

𝜕3𝑌

𝜕𝛿3
𝛿3 +

1

6

𝜕3𝑌

𝜕𝑣𝑢2
𝑣(∆𝑢)2 +

1

6

𝜕3𝑌

𝜕𝑣𝑟2
𝑣𝑟2 +

1

6

𝜕3𝑌

𝜕𝑣𝛿2
𝑣𝛿2 

        +
1

6

𝜕3𝑌

𝜕𝑟𝑢2
𝑟(∆𝑢)2 +

1

6

𝜕3𝑌

𝜕𝑟𝑣2
𝑟𝑣2 +

1

6

𝜕3𝑌

𝜕𝑟𝛿2
𝑟𝛿2 +

1

6

𝜕3𝑌

𝜕𝛿𝑢2
𝛿(∆𝑢)2 

        +
1

6

𝜕3𝑌

𝜕𝛿𝑣2
𝛿𝑣2 +

1

6

𝜕3𝑌

𝜕𝛿𝑟2
𝛿𝑟2 +

1

6

𝜕3𝑌

𝜕𝑣𝑟𝛿
𝑣𝑟𝛿 

(13) 

14 𝑁 = 𝑁0 +
𝜕𝑁

𝜕𝑣̇
𝑣̇ +

𝜕𝑁

𝜕𝑟̇
𝑟̇ +

𝜕𝑁

𝜕𝑢
∆𝑢 +

𝜕𝑁

𝜕𝑣
𝑣 +

𝜕𝑁

𝜕𝑟
𝑟 +

𝜕𝑁

𝜕𝛿
𝛿 +

1

2

𝜕2𝑁

𝜕𝑢2
(∆𝑢)2 

        +
1

2

𝜕2𝑁

𝜕𝑣𝑢
𝑣∆𝑢 +

1

2

𝜕2𝑁

𝜕𝑟𝑢
𝑟∆𝑢 +

1

2

𝜕2𝑁

𝜕𝛿𝑢
𝛿∆𝑢 +

1

6

𝜕3𝑁

𝜕𝑣3
𝑣3 +

1

6

𝜕3𝑁

𝜕𝑟3
𝑟3 

        +
1

6

𝜕3𝑁

𝜕𝛿3
𝛿3 +

1

6

𝜕3𝑁

𝜕𝑣𝑢2
𝑣(∆𝑢)2 +

1

6

𝜕3𝑁

𝜕𝑣𝑟2
𝑣𝑟2 +

1

6

𝜕3𝑁

𝜕𝑣𝛿2
𝑣𝛿2 

        +
1

6

𝜕3𝑁

𝜕𝑟𝑢2
𝑟(∆𝑢)2 +

1

6

𝜕3𝑁

𝜕𝑟𝑣2
𝑟𝑣2 +

1

6

𝜕3𝑁

𝜕𝑟𝛿2
𝑟𝛿2 +

1

6

𝜕3𝑁

𝜕𝛿𝑢2
𝛿(∆𝑢)2 

        +
1

6

𝜕3𝑁

𝜕𝛿𝑣2
𝛿𝑣2 +

1

6

𝜕3𝑁

𝜕𝛿𝑟2
𝛿𝑟2 +

1

6

𝜕3𝑁

𝜕𝑣𝑟𝛿
𝑣𝑟𝛿, 

(14) 
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where 𝑋0, 𝑌0 and 𝑁0 are derivatives for the initial steady state, where longitudinal speed 

only exists. Derivatives in Equations (12) to (14) can be shorten as follows: 

15 
𝜕𝑋

𝜕𝑢
= 𝑋𝑢,

𝜕3𝑌

𝜕𝑣𝑟2
= 𝑌𝑣𝑟𝑟 ,

𝜕3𝑁

𝜕𝑣𝑟𝛿
= 𝑁𝑣𝑟𝛿 , ⋯ 

(15) 

Model by Norrbin   Norrbin provided a mathematical model, which is a transitional 

model between a polynomial and a modular model [4]. The model includes functions for 

speed components for three axes, a thrust 𝑇, a propeller torque 𝑄 and an inflow velocity 

to the rudder 𝑐. A wake and thrust deduction factors are independent from the propeller 

loading. Norrbin’s equations are as follows [5]: 

16 
𝑇 = 𝑇(𝑢, 𝑛) 

𝑄 = 𝑄(𝑢, 𝑛) 

𝑐 = 𝑐(𝑢, 𝑛) 

𝑋 = 𝑋𝑢̇𝑢̇ + 𝑋𝑢𝑢𝑢2 + 𝑋𝑣𝑟𝑣𝑟 + 𝑋𝑣𝑣𝑣
2 

       +𝑋𝑐|𝑐|𝛿𝛿𝑐|𝑐|𝛿
2 + 𝑋𝑐|𝑐|𝛽𝛿𝑐|𝑐|𝛽𝛿 + (1 − 𝑡)𝑇 

 

𝑌 = 𝑌𝑣̇𝑣̇ + 𝑌𝑢𝑟𝑢𝑟 + 𝑌𝑢𝑣𝑢𝑣 + 𝑌𝑣|𝑣|𝑣|𝑣| + 𝑌𝑐|𝑐|𝛿2𝑐|𝑐|𝛿2 

       +𝑌𝑐|𝑐||𝛽||𝛿|𝑐|𝑐||𝛽||𝛿| + 𝑌𝑇𝑇 

 

𝑁 = 𝑁𝑟̇𝑟̇ + 𝑁𝑢𝑟𝑢𝑟 + 𝑁𝑢𝑣𝑢𝑟 + 𝑁|𝑣|𝑟|𝑣|r + 𝑁𝑐|𝑐|𝛿𝑐|𝑐|𝛿 

       +𝑁𝑐|𝑐||𝛽||𝛽||𝛿|𝑐|𝑐||𝛽||𝛽||𝛿| + 𝑁𝑇𝑇 

T = 𝑇𝑢𝑢𝑢2 + 𝑇𝑢𝑛𝑢𝑛 + 𝑇𝑛|𝑛|𝑛|𝑛| 

(𝐼𝑃 − 𝑄𝑛)𝑛̇ = 𝑄𝐹 + 𝑄𝑢𝑢𝑢2 + 𝑄𝑢𝑛𝑢𝑛 + 𝑄𝑛|𝑛|𝑛|𝑛| + 𝑄𝑛𝑛 + 𝑄𝜇𝜇 

c = 𝑐𝑢𝑛𝑢𝑛 + 𝑐𝑛𝑛𝑛2    , 𝑛 > 0 

c = 0                              , n < 0 

(16) 

where, 𝜇 is an engine output ratio. Considering lateral and rotational direction for the 

symmetrical hull, a form of the absolute value, |𝑎|, is applied. 

MMG modular model   A research group focused on the ‘standardization of a mathe-

matical model for ship manoeuvring predictions’ was created by the Japan Society of 

Naval Architects and Ocean Engineers, and this group provided the current Manoeuvring 

Modelling Group (MMG) model [6]. Each hydrodynamic force or moment has three 
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modules, which are acting on the ship hull, the propeller and the rudder, respectively. 

Each component concerns both individual and interacting effects.  

17 
𝑋 = 𝑋𝐻 + 𝑋𝑃 + 𝑋𝑅 

𝑌 = 𝑌𝐻 + 𝑌𝑃 + 𝑌𝑅 

𝑁 = 𝑁𝐻 + 𝑁𝑃 + 𝑁𝑅 

(17) 

2.1.4 Determination of the hydrodynamic coefficients 

ITTC summarized the state-of-the-art of the ship’s manoeuvring prediction methods. Fig-

ure 2.2 shows an overview of methods for manoeuvring predictions and Figure 2.3 shows 

an overview of accuracy against cost. Methods can be categorized into three features: a 

prediction without simulation, with system based manoeuvring simulation and CFD 

based manoeuvring simulation. 

 

 

 

Figure 2.2 Methods of manoeuvring prediction [7] 
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Figure 2.3 Effort/Cost versus accuracy of manoeuvring prediction methods [7] 

 

The full-scale trial is an intuitive way to figure out manoeuvrability of an object. Nomoto 

estimated indices of K and T, which are steering coefficients for rudder effect and ship’s 

reaction inertia, from the analysis of full-scale zig-zag trials, using linear equation of mo-

tion [8,9]. Inoue et al. conducted sea trials with various types of vessels and those 

manoeuvring results were compared to numerical simulation results [10]. The most fa-

mous trial is conducted by the 278,000 DWT tanker ESSO Osaka in confined waters by 

Crane [11]. He showed an impact of the bottom clearance on ship’s manoeuvrability and 

his approach greatly influenced the methods and procedures for sea trial to estimate ma-

noeuvrability. However, this method is not possible to control environmental effects thor-

oughly and is hard for merchant vessels due to economic reasons. 

The model tests are an alternative way to complement deficiencies of the full-scale trial. 

Forces and kinetic parameters are measured during the trials and there the hydrodynamic 

coefficients can be derived for certain mathematical model of a vessel. In a model basin, 

which includes a towing tank and a cavitation tunnel and others, scaled models are tested 

and resultant forces and corresponding parameters can be measured. A set of model tests 

can also be applied into empirical regression and corresponding formulas. Norrbin, Inoue 

et al., Clarke et al., Kijima et al. and Kose proposed foundations of empirical formulas 
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for the hydrodynamic coefficients of the equations of motion and subsequent researches 

are still continuing [5,10,12–14]. 

CFD techniques can provide insight into the ship with the application of computational 

calculation. Since 1960s, after Hess and Smith introduced three-dimensional CFD model 

in aviation, CFD has shown outstanding progress with the advancement of computing 

technology [15]. Compared to the conventional model tests, this method can react to lots 

of models and external conditions easily. CFD for the shipbuilding industry was intro-

duced later than the aviation, because of the existence of free surface and complex ship 

geometry [16].  

In spite developing a numerical calculation, conventional model tests are still the main 

source to examine manoeuvring force and moment. As shown in Figure 2.3, the conven-

tional model tests are the best solutions to satisfy both accuracy and cost without bias to 

either side, when a designated ship is at the early design stage or under construction. On 

the other hand, the methods above are relatively more expensive than the system identi-

fication method.  

Table 2.1 summarizes characteristics for the predictions methods by ITTC [7]. This study 

applies a system identification method, which optimizes the hydrodynamic coefficients 

in a way of mathematical optimization. The optimization procedure requires a set of ref-

erences and initial conditions. These are delivered from real ship sea trials and existing 

empirical estimation formulas, which are based on the idea of Norrbin and Clarke [5,12]. 

The system identification has developed with the progress of computational calculation. 

Abkowitz used the extended Kalman filter (EKF) to estimate hydrodynamic coefficients 

for the ESSO Osaka [17]. The resultant coefficients and an effective simulation showed 

that results of the numerical simulation were fitted to motions during the sea trials. 
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Table 2.1 Characteristics for methods of manoeuvrability prediction 

Method Concept Advantage Disadvantage 

Free model test 

- Perform pre-defined ma-

noeuvres, such as zig-zag 

or turning manoeuvres 

- Model ship’s actuators are 

controlled by autopilots 

- Close to reality 

- Test results are delivered 

in real time 

- Relatively low cost 

- Possibility for control of 

environmental conditions in 

a basin 

- Require relatively large 

test area 

- Impossible to deliver 

physical insight 

- Impossible to connect to 

mathematical models 

- Environmental effects 

also should be considered a 

scale effect 

Captive model test 

- Carried out in a tow tank, 

with planar motion mecha-

nism and rotating arm de-

vice 

- Hydrodynamic coeffi-

cients can be obtained from 

analysing test results 

- Perfect control of environ-

mental effects during tests 

- Created mathematical 

model can also be utilized 

for bridge simulators 

- Desired result can be de-

livered after post-pro-

cessing of test results 

- Quality of the mathemati-

cal model is dependent on 

the size of test matrix 

- Test should be carried out 

by skilled personnel to re-

duce re-test, which needs a 

lot of time 

Empirical method 

- Estimate hydrodynamic 

coefficients based on multi-

ple previous tests 

- Test results are utilized in 

the fast-time and real-time 

simulators 

- Short processing time 

- Relatively low cost 

- Easy to change certain pa-

rameters of a ship 

 

- The accuracy and reliabil-

ity are quite low 

- Sensitive to the shallow 

water effect 

- Consideration of hull 

form detail is missing 

System identification 

- Estimate hydrodynamic 

coefficients by mathemati-

cal optimization 

- Utilize sea trial measure-

ments into parameter iden-

tification directly 

-Apply to generate addi-

tional manoeuvres based on 

results of free model tests 

- Applicable for both 

model-scale and full-scale 

manoeuvres 

- Resultant coefficients are 

not physically correct 

- Acquired raw data might 

have noise and this can in-

terfere to a process 

Viscous flow CFD 

- RANS calculation takes a 

role of the captive model 

test 

- Physical model is not re-

quired 

- CFD gives physical in-

sight 

- Applicable for both 

model-scale and full-scale 

tests 

- Much experience is re-

quired for stable test results 

- A large amount of exper-

tise and coding is required 

 

Potential flow CFD 

- CFD methods, which does 

not apply RANS calcula-

tion 

- Require less effort than 

the RANS method 

- Reliability is lower than 

the RANS method 
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(a) Concept of the coefficients identification 

 

 
 

(b) Heading simulation of zig-zag manoeuvre20°/20° after the identification 

Figure 2.4 System identification for estimating hydrodynamic coefficients by Abkowitz [17] 

 

Rhee et al. also used the EKF with the ESSO Osaka, but this research used the MMG 

model for the numerical simulations [18]. They implemented an importance of sensitivity 

for each manoeuvre and conducted coefficients identification according to the result of 

the sensitivity analysis. Simulations results using estimated coefficients showed satisfac-

tory trajectory and other kinematic parameters compared to the sea trial results. 

Zhang and Zou applied ε-support vector regression to the coefficients identification [19]. 

The mathematical model of Abkowitz was applied to the identification process and re-

sultant coefficients were verified by the PMM test results.  
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(a) Estimation procedure 

 

 
 

(b) Trajectory of zig-zag manoeuvre20°/20° after the identification 

Figure 2.5 System identification for estimating hydrodynamic coefficients by Rhee et al. [18] 

 

Tran et al. introduced SQP and BFGS algorithms to obtain optimization results [20]. Co-

efficients identification was conducted after sensitivity analysis for each manoeuvre and 

their simulation results were compared with the sea trial data. 
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Many of previous studies on the system identification were conducted using ESSO Osaka 

as a reference data and the EKF. It is assumed that these are caused by difficulty of ob-

taining sufficient sea trial data for estimating hydrodynamic coefficients and limitations 

of the optimization algorithm at that time. In addition, as mentioned in Table 2.1, it is 

considered that there has been less research than other methods of manoeuvrability esti-

mation because of the problem of having physical uncertainty about the estimated coef-

ficients. 

This study was carried out considering the advantages and disadvantages of the system 

identification, mentioned above. As a preparation of this thesis, Kim introduced a math-

ematical optimization process using a simulation result based on Azimuth propulsion 

ferry ship as a reference [21]. Based on this result, Kim et al. conducted a mathematical 

optimization by applying sea trial data as a reference, and simulation results using tuned 

coefficients are closer to the reference compared with simulation results using a basic 

coefficients estimation of the corresponding simulator [22]. In this study, optimization 

was performed based on the mathematical models and corresponding hydrodynamic co-

efficients of Norrbin and Clarke. Reference data required for optimization process were 

obtained by sea trial. 

 

2.2 Manoeuvring characteristics and corresponding tests 

Ship manoeuvrability is an ability of a ship, which presents keeping and altering its state 

of motion with certain controls. This includes straight motions with constant speed or 

increasing speed and changing course manually. IMO provided standards for ship 

manoeuvring characteristics to evaluate qualities of the manoeuvrability [23]. 

Inherent dynamic stability   A ship is dynamically stable on a straight course if it can 

fix a new straight course after a disturbance without any steering actions by a helmsman. 

Figure 2.6 shows a concept of the inherent dynamic stability. An unstable ship moves 

continuously into an irrational course in contrast with a stable ship, which can reset its 

course after an interruption. The consequent deviation from the original heading relies on 

the extend of inherent stability and on the weight and length of the disturbance.  
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Figure 2.6 Inherent dynamic stability 

Course-keeping ability   The course-keeping ability is a means of a steered ship, which 

keeps a straight path toward a prearranged course without inordinate oscillations of rudder 

or heading. As shown in Figure 2.7, a ship with inherent dynamic stability can only keep 

its original course with certain control action. However, a ship with an inherent dynamic 

instability can also maintain its original course if it applies a frequent control action. 

 

Figure 2.7 Course-keeping ability 

Initial turning / course-changing ability   The initial turning ability is described by the 

change-of-heading response to a control action. A ship which has good initial turning 

ability can alter to its original course. This can be expressed by the ‘P number’, which 

represents the rate of heading change as to the helm angle [24]. Norrbin defines this index 

as follows: 

18 𝑃 =
𝜓′(𝑡′ = 1)

𝛿′(𝑡′ = 1)
, 

(18) 

where 𝜓′, 𝛿′ and 𝑡′ are the nondimensionalised heading, rudder angle and time, respec-

tively [9]. Norrbin studied the P number for different ships and proposed the value P=0.3 

as a lower limit for proper manoeuvrability of a ship [25]. 
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Yaw checking ability   The yaw checking ability is a ship performance measurement of 

how fast a turning motion defeats and settles a course [26]. It can be measured from the 

response to counter-rudder in a certain state of turning manoeuvre. The overshoot angle 

or time to yaw-check of course change test and zig-zag test can examine the yaw checking 

ability. 

Turning ability   The turning ability is an ability to turn a ship with a hard-over rudder. 

Corresponding results are an advance, a tactical diameter and a transfer. Details are dis-

cussed later. 

Stopping ability   The stopping ability is measured from ‘track reach’ and ‘time to dead 

in water’ by a stop engine-full astern manoeuvre after a steady motion with full engine 

speed. Normally a ship deviates due to environmental disturbances and initial test condi-

tions. 

As shown in Table 2.2, ITTC summarized a total of 19 manoeuvring tests, which are 

recommended by various organisations. 15 of these provide information on manoeuvring 

characteristics, which are mentioned above [27].  

The standard of IMO resolution MSC.137(76) is chosen for this dissertation. Test details 

and their satisfactory criteria are as follows [28]. 

Turning test   A turning test evaluates a ship’s turning ability. It performs to both star-

board and port with a 35-degree rudder angle or designed maximum angle at the test speed. 

Command for rudder execution comes after the ship is at a steady state with zero yaw 

rate. Figure 2.8 shows a concept and kinematic parameters of the turning test. The stand-

ard requires that the advance should not be more than 4.5 ship lengths and the tactical 

diameter should be more than 5 ship lengths in the manoeuvre. 
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Table 2.2 Recommended manoeuvring tests by various organisations [27] 

Type of test 
IMO 

A.601 

IMO 

A.751 

IMO 

137(76) 

ITTC 

1975 

SNAME 

1989 

Norse 

Standard 

Japan 

RR 
ISO 

ITTC 

2002 

Remarks 

(*) 

1 Turning circle ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 5 

2 Z-manoeuvre ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 3,4 

3 
Modified  

Z-manoeuvre 
      ✓  ✓ 1,3 

4 
Z-manoeuvre at 

low speed 
✓    ✓  ✓  ✓ 1,2 

5 Direct spiral   ✓ ✓ ✓ ✓ ✓  ✓ 1,2 

6 Reverse spiral   ✓ ✓ ✓ ✓ ✓  ✓ 1,2 

7 Pull-out ✓  ✓ ✓ ✓   ✓ ✓ 1 

8 Stopping ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 6 

9 Stopping inertia ✓     ✓ ✓  ✓ 6 

10 Man-overboard ✓       ✓ ✓ 4,5 

11 
Parallel course 

manoeuvre 
✓       ✓ ✓ 4,5 

12 Initial turning     ✓    ✓ 3 

13 
Accelerating 

turning 
✓   ✓    ✓ ✓ 5 

14 Thruster ✓   ✓ ✓ ✓   ✓ 4,5 

15 Crabbing         ✓ 3 

16 New course keeping ✓      ✓    

17 
Acceleration/ 

deceleration 
✓          

18 Crash stop ahead ✓    ✓ ✓ ✓    

19 Minimum revolution ✓    ✓ ✓     

     (*) 1) inherent dynamic stability 

 2) course-keeping ability 

 3) initial turning/course-changing ability 

 4) yaw checking ability 

 5) turning ability 

 6) stopping ability 
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Figure 2.8 Trajectory of the ship during turning [1] 

Zig-zag test   A zig-zag test evaluates the ship’s initial turning, the yaw checking and the 

course-keeping abilities. It begins by executing a certain amount of rudder angle from an 

initial straight manoeuvre, called ‘first execute’. When a specified deviation from the 

ship’s original heading occurs, the rudder angle is altered to the opposite side, called ‘sec-

ond execute’. Normally two kinds of zig-zag tests, 10°/10° and 20°/20° tests are applied. 

Each test has 10° and 20° of heading deviation, respectively. Figure 2.9 shows character-

istic parameters and time histories for the rudder angle and heading during the test. Over-

shoot angles and initial turning time to second execute are chosen as manoeuvrability 

parameters. For the initial turning ability, with the 10°/10° test, the ship should not travel 

more than 2.5 ship lengths by the time for 10° of heading deviation. For the yaw checking 

and course-keeping ability, satisfactory criteria is as follows: 

- The first overshoot angle for the 10°/10° test should not exceed  

10° if L/V is less than 10s;  

20° if L/V is 30s or more; and  

(5+1/2(L/V)) ° if L/V is 10s more, but less than 30s. 

- The second overshoot angle for the 10°/10° test should not exceed  

25° if L/V is less than 10s;  

40° if L/V is 30s or more; and  
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(17.5+0.75(L/V)) ° if L/V is 10s or more, but less than 30s. 

- The first overshoot angle for the 20°/20° test should not exceed 25°. 

 

Figure 2.9 Time histories of rudder angle and heading during zig-zag test [1] 

 

Stopping test   A stopping test evaluates the stopping ability. A full astern stopping test 

is conducted to measure the track reach of a ship from the moment of full-astern order to 

the place ship is stopped. Figure 2.10 shows a concept of the test. The standard requires 

that the track reach should not exceed 15 to 20 ship lengths, considering a ship’s displace-

ment. 

 

Figure 2.10 Trajectory of the ship during stopping test [1] 

 

Spiral test   A spiral test is included as additional manoeuvres in the standard of IMO. It 

evaluates the inherent dynamic stability and the course-keeping ability. A direct spiral 

test conducts a series of turning manoeuvres. Rudder commands for the turning change 

every 5 degrees from 15 degrees of one side to 0 degrees. This is repeated for both the 

port and starboard side. Each turning manoeuvre should be recorded at least one minute 

tinit t1-3 
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after the yaw rate remains constant. A reverse spiral test can substitute the direct spiral 

test to define an instability loop. In the test, a ship is steered to obtain a constant yaw rate 

and the mean rudder angle is required to measure the yaw rate. Then the yaw rate versus 

rudder angle can be plotted on the area of the instability. Figure 2.11(a) and Figure 2.11(b) 

show results of spiral tests for a stable ship and instable ship, respectively.  

 

Figure 2.11 Yaw rate to rudder angle curve from spiral tests [1] 

Pull-out test   A pull-out test evaluates a ship’s dynamic stability on a straight course. 

After the completion of the turning manoeuvre, the rudder is set to midship position, and 

from there a steady yaw rate is obtained. If the ship is stable, the rate of turn decreases to 

zero. The continuing rates of turn indicates the degree of instability at the 0° of the rudder 

angle. Figure 2.12(a) and Figure 2.12(b) compare results of the pull-out tests for a stable 

and an unstable ship. 

 

Figure 2.12 Time histories of the turning rate from pull-out test [1] 
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2.3 Influence of trim and draught on ship manoeuvrability 

Since IMO adopted a guideline, “Interim Guidelines for Estimating Manoeuvring Perfor-

mance in Ship Design”, in 1985, many studies about estimation and evaluation of the 

manoeuvrability have been provided and this enhanced accuracy of prediction at the de-

sign stage. While the guideline gives a criterion only for ship’s full loaded even keel 

condition, most of sea trials are carried out in ballast conditions for practical reasons.  

Changes of trim and draught have a remarkable effect on a ship’s manoeuvrability due to 

the change of multiple corresponding ship’s conditions, such as displacement, a location 

of the centre-of-pressure for the sway force, rudder inflow angle and so on. It is easily 

shown that a ship with a trim by stern is common when the ship is in ballast condition 

due to its relatively stable manoeuvrability than other trim and draught conditions. 

Most studies on manoeuvrability regarding loading conditions are focusing on the corre-

sponding changes of displacement, stern shape and rudder area. Kijima et al. and Kose 

studied an influence and an importance of trim and draught conditions on a ship’s ma-

noeuvrability. In order to estimate a ship’s manoeuvrability in different trim and draught 

conditions, they conducted captive model tests with various types of ships and four trim 

and draught conditions: fully loaded, half loaded, ballast with even keel and ballast aft 

trim conditions [13,14,29]. The prediction results based on the estimation agreed well 

with the measured results of free running model tests. Yasukawa et al. investigated an 

influence of the load condition on the effect of rudder force [30]. Inoue et al. suggested a 

set of empirical formulae from model experiments considering both in even keel and 

trimmed conditions using the aspect ratio 𝑘 as follows [31]: 

19 𝑌′
𝛽 = (

1

2
𝜋 𝑘 + 𝑓 (𝐶𝐵

𝐵

𝐿
)) (1.0 +

2𝑡

3𝑑𝑚
) 

𝑌′
𝑟 =

1

4
𝜋 𝑘 (1.0 +

0.80𝑡

𝑑𝑚
) 

𝑁′
𝛽 = 𝑘 (1.0 −

0.27𝑡

𝑙𝛽𝑑𝑚
) 

𝑁′
𝑟 = (0.54𝑘 − 𝑘2) (1.0 +

0.30𝑡

𝑑𝑚
) 

where, 𝑙𝛽 = 𝑘/ (
1

2
𝜋 𝑘 + 𝑓 (𝐶𝐵

𝐵

𝐿
)) 

(19) 
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Influence of ship manoeuvrability due to changes in draught and trim can be confirmed 

using fast time simulator. For this experiment, a fast time simulator SIMOPT of ISSIMS 

GmbH and a G/T 6686t model ship were used for the simulations. Details of the model 

ship will be referred in Chapter 4. A ship’s dynamic capabilities of the SIMOPT are based 

on the mathematical models of Norrbin and Clarke [5,12] which is in between the poly-

nomial model and modular model. Clarke’s formulae are reduced from the same form of 

Inoue et al. [31]. Figure 2.13 presents an example of user interface for SIMOPT. Hull 

forces and moment of the equations consist of the following components:  

20 𝑋ℎ = 𝑋𝑢𝑝(𝑢̇ − 𝑢̇𝑔) + 𝑋𝑣𝑟𝑣𝑟 + 𝑋𝑢𝑢𝑢|𝑢| + 𝑋𝑢4𝑢
3|𝑢| 

       +𝑋𝑢𝑣𝑣𝑣𝑢|𝑣|𝑣2 + 𝑓(𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

𝑌ℎ = 𝑌𝑣𝑝(𝑣̇ − 𝑣̇𝑔) + 𝑌𝑟𝑝𝑟̇ + 𝑌𝑢𝑟𝑢𝑟 + 𝑌𝑢𝑣|𝑢|𝑣 + 𝑌𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 

𝑁ℎ = 𝑁𝑟𝑝(𝑟̇ − 𝑟̇𝑔) + 𝑁𝑟𝑣𝑣̇ + 𝑁𝑢𝑟|𝑢|𝑟 + 𝑁𝑢𝑣𝑢𝑣 + 𝑁𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟, 

(20) 

 

where 𝑢, 𝑣, 𝑟 are speed components through water, and  𝑢̇, 𝑣̇, 𝑟̇ and 𝑢̇𝑔, 𝑣̇𝑔, 𝑟̇𝑔 are acceler-

ation components through water and over ground, respectively. The term 𝑓(𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) 

is only active when a pre-defined threshold velocity is greater than a ship’s velocity. Sets 

of nonlinear coefficients 𝑌𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 and 𝑁𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 can be composed by the following co-

efficients:  

𝑌𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = [𝑌𝑟𝑟, 𝑌𝑣𝑣, 𝑌𝑣𝑟 , 𝑌𝑣𝑟𝑡, 𝑌𝑣𝑣𝑣𝑟 , 𝑌𝑟𝑟𝑡, 𝑌𝑣𝑣𝑡, 𝑌4𝑣2𝑟𝑡, 𝑌𝑛𝑜𝑛_𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑝𝑜𝑖𝑛𝑡] 

𝑁𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 = [𝑁𝑣𝑟 , 𝑁𝑟𝑟𝑡, 𝑁𝑣𝑣𝑡, 𝑁𝑟𝑟 , 𝑁𝑣𝑣, 𝑁𝑣4𝑟2, 𝑁𝑣𝑟𝑡, 𝑁5𝑣3𝑟𝑡, 𝑁𝑛𝑜𝑛_𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑝𝑜𝑖𝑛𝑡]. 
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Figure 2.13 User interface for hull coefficients in SIMOPT 

The coefficients, 𝑌𝑛𝑜𝑛_𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑝𝑜𝑖𝑛𝑡 and 𝑁𝑛𝑜𝑛_𝑡𝑢𝑟𝑛𝑖𝑛𝑔_𝑝𝑜𝑖𝑛𝑡 can vary according to a turn-

ing point. The standard estimation for the SIMOPT system, named ‘Clarke estimation’, 

uses the following ship parameters: 

- Length 

- Breadth 

- Draught, fore 

- Draught, aft 

- Displacement 

- Block coefficient 

- Nominal power 

- Nominal speed 

The experimental method is as follows. In comparing the manoeuvrability according to 

the draught change, trim is fixed to the even keel condition. On the contrary, simulations 

for the comparison of the manoeuvrability with the change of the trim are carried out by 

changing only the trim at the same mean draught. The mean draughts were set in five 

conditions, ranging from 3.9m to 5.9m with every 0.5m. The trims are total of 5 condi-

tions, from -2m to +2m per meter. Because the sign of the trim differs from related or-

ganizations and industries, this thesis uses the trim by stern as positive and trim by head 

as minus based on the document of IMO [28]. 

𝑇𝑟𝑖𝑚 = 𝐷𝑟𝑎𝑢𝑔ℎ𝑡𝑎𝑓𝑡 − 𝐷𝑟𝑎𝑢𝑔ℎ𝑡𝑓𝑜𝑟𝑤𝑎𝑟𝑑 
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Table 2.3 shows simulation results of the turning manoeuvre with the change of the 

draught. Advance, tactical diameter and kinematic parameters were selected for manoeu-

vre characteristics to be compared. Turning manoeuvre results show that as the draught 

increases, the advance and the tactical diameter also increases. This leads to increased 

distance of straight motion before turning and larger turning radius. Tendencies of dis-

tance parameters relate also to corresponding kinematic parameters. Figure 2.14 shows 

comparison for trajectories, based on the corresponding simulation results. 

Table 2.3 Influence of draught changes on turning manoeuvre 

Mean draught 

[m] 

TC35P 

Advance 

[m] 

Tactical di-

ameter [m] 

Final speed 

[kts] 

Final ROT 

[deg/min] 

Final drift 

angle [deg] 

3.9 304.43 157.54 7.42 -75.849 13.77 

4.4 316.8 167.19 7.12 -71.896 13.21 

4.9 328.33 177.14 6.83 -68.527 12.75 

5.4 338.18 182 6.61 -66.055 12.36 

5.9 347.51 186.63 6.33 -63.552 12.09 

Remark  ROT: Rate of Turn 

 

 

Figure 2.14 Comparison of trajectories for turning manoeuvre with 35 degrees of rudder angle 

according to changes of mean draught 
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Table 2.4 and Table 2.5 show influence of draught change for zig-zag manoeuvre with 

10 degrees and 20 degrees of rudder angle, respectively. First and second overshoot an-

gles, dimensionless parameters and elapsed time for certain amount of heading change 

were selected for the characteristics to be compares. Definitions for manoeuvre charac-

teristics are as follows: 

- Initial turning parameter: dimensionless distance between starting point and 

the first point (xinit in Figure 2.9) where ship’s heading meets rudder command, 

in relation to ship’s length; 

- Turning & checking parameter: dimensionless period of time (x1-3 in Figure 

2.9) between first and third zero crossing of heading, in relation to ship speed 

performance (L/V); 

- Initial response time: initial time of ship’s heading response to rudder com-

mand. 

Comparison shows that the overshoot angles increase consistently as the draught in-

creases. Although the first overshoot at 5.9m for zig-zag with 10 degrees does not follow 

the trend with others, the rest parameters at that draught maintain a steady trend. This is 

considered to be due to the increase of ship’s displacement and resistance, which is caused 

by the increase of the underwater portion of the hull. Figure 2.15 to Figure 2.18 show 

comparison for trajectories and heading changes, based on the corresponding simulation 

results. 

 

Table 2.4 Influence of draught changes on zig-zag manoeuvre with 10 degrees of rudder angle 

Mean draught 

[m] 

ZZ10S 

First  

overshoot 

[deg] 

Second  

overshoot 

[deg] 

Initial  

turning  

parameter 

Turning & 

checking 

parameter 

Initial  

response 

time [s] 

3.9 3.3 3.1 1.38 7.35 16 

4.4 3.4 4.1 1.47 8.04 17 

4.9 3.7 4.1 1.56 8.47 18 

5.4 3.9 5.1 1.64 9.16 19 

5.9 3.4 5.2 1.73 9.5 20 
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Table 2.5 Influence of draught changes on zig-zag manoeuvre with 20 degrees of rudder angle 

Mean draught 

[m] 

ZZ20S 

First  

overshoot 

[deg] 

Second  

overshoot 

[deg] 

Initial  

turning  

parameter 

Turning & 

checking 

parameter 

Initial  

response 

time [s] 

3.9 8.4 7.2 1.64 9.6 19 

4.4 8.8 8.1 1.73 10.2 20 

4.9 9.2 9.1 1.81 10.89 21 

5.4 9.6 8.8 1.9 11.4 22 

5.9 10.2 9.8 1.99 12.09 23 

 

 

 

Figure 2.15 Comparison of trajectories for zig-zag manoeuvre with 10 degrees of rudder angle 

according to changes of mean draught 
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Figure 2.16 Comparison of heading changes for zig-zag manoeuvre with 10 degrees of rudder 

angle according to changes of mean draught 

 

 

Figure 2.17 Comparison of trajectories for zig-zag manoeuvre with 20 degrees of rudder angle 

according to changes of mean draught 
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Figure 2.18 Comparison of heading changes for zig-zag manoeuvre with 20 degrees of rudder 

angle according to changes of mean draught 

 

Table 2.6 and Figure 2.19 show the changes of manoeuvre characteristics for turning ma-

noeuvre according to the trim changes. As the trim changes from ‘by the head’ to ‘by the 

stern’, the turning circle increases and the corresponding kinetic parameters are also con-

sistent. 

 

Table 2.6 Influence of trim changes on turning manoeuvre 

Trim 

[m] 

TC35P 

Advance 

[m] 

Tactical di-

ameter [m] 

Final speed 

[kts] 

Final ROT 

[deg/min] 

Final drift 

angle [deg] 

-2 289.96 116.12 4.26 -67.194 18.72 

-1 317.2 150.43 5.19 -65.444 15.12 

0 347.51 186.63 6.33 -63.552 12.09 

+1 381.95 229.03 7.55 -61.037 9.73 

+2 419.91 277.72 8.72 -57.975 7.94 

Remark  ROT: Rate of Turn 
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Figure 2.19 Comparison of trajectories for turning manoeuvre with 35 degrees of rudder angle 

according to changes of trim 

 

Table 2.7 and Table 2.8 show changes in the zig-zag manoeuvre as the trim changes. The 

characteristics to be compared are the same as those of the previous draught change. As 

the trim changes from 'by the head' to 'by the stern', the initial turning ability decreases 

but the yaw checking ability becomes better. Figure 2.20 to Figure 2.23 show comparison 

for trajectories and heading changes, based on the corresponding simulation results. 

 

Table 2.7 Influence of trim changes on zig-zag manoeuvre with 10 degrees of rudder angle 

Trim 

[m] 

ZZ10S 

First  

overshoot 

[deg] 

Second  

overshoot 

[deg] 

Initial  

turning  

parameter 

Turning & 

checking 

parameter 

Initial  

response 

time [s] 

-2 8.1 17.2 1.55 12.09 18 

-1 5.2 9.3 1.64 10.36 19 

0 3.4 5.2 1.73 9.5 20 

+1 2.7 3.3 1.81 9.41 21 

+2 2.1 2.8 1.9 9.67 22 

 



 

32 

 

Table 2.8 Influence of trim changes on zig-zag manoeuvre with 20 degrees of rudder angle 

Trim 

[m] 

ZZ20S 

First  

overshoot 

[deg] 

Second  

overshoot 

[deg] 

Initial  

turning  

parameter 

Turning & 

checking 

parameter 

Initial  

response 

time [s] 

-2 19.1 21.2 1.81 14.08 21 

-1 13 13.6 1.9 12.52 22 

0 10.2 9.8 1.99 12.09 23 

+1 6.8 7.1 2.16 11.75 25 

+2 6 7.3 2.25 12.26 26 

 

 

 

Figure 2.20 Comparison of trajectories for zig-zag manoeuvre with 10 degrees of rudder angle 

according to changes of trim 
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Figure 2.21 Comparison of heading changes for zig-zag manoeuvre with 10 degrees of rudder 

angle according to changes of trim 

 

 

Figure 2.22 Comparison of trajectories for zig-zag manoeuvre with 20 degrees of rudder angle 

according to changes of trim 
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Figure 2.23 Comparison of heading changes for zig-zag manoeuvre with 20 degrees of rudder 

angle according to changes of trim 

 

Krüger introduced comparison for a ship’s manoeuvrability with various trim condition 

by Benedict [32,33]. He found that a change of trim is subject to major changes of a ship’s 

manoeuvrability, but this influence is not subject to the linear laws. Figure 2.24 shows 

simulation results for a turning manoeuvre and a zig-zag manoeuvre for a fully loaded 

2,500 TEU container ship. All manoeuvres are conducted under the same mean draught, 

and trim is the only control variable for the comparison. Trim conditions are provided 

every 1 metre from the even keel condition to 3 metres by the head. Results confirm that 

increased trim by the head affects to greater overshoot angle and to decrease turning circle. 

These are consistent with the effect of trim changes, shown in the Table 2.6 to Table 2.8. 
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Figure 2.24 Manoeuvre results with various trim conditions [33] 

 

These experimental results can be explained by theoretical considerations. The position 

of the pivot point, also as known as the apparent centre of rotation, has a close correlation 

with the ship’s manoeuvrability, especially in the turning of the ship. As shown in Figure 

2.25, Seo and Mishu stated that the pivot point is not the actual centre of ship’s yaw 

motion, but it is a useful concept to explain the movement of ship [34]. 
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Figure 2.25 Concepts of pivot point [34] 

 

A research project ISTTES introduces two approaches for the coefficient estimation re-

garding various trim and draught conditions [36]. A traditional approach is a kind of direct 

tuning of parameters, which are presented in the form of polynomials to describe the re-

sponse of the ship’s body to external forces. It is simple to demonstrate and to understand, 

however the optimized parameters are no longer consistent with others because of linear 

dependency of the whole parameters. Another approach, which the author contributed, is 

to change the geometric data of the ship. The premise of this approach is that it should be 

possible to optimize hydrodynamic coefficients by varying the geometric ship character-

istics which affects “Clarke estimation” for the polynomials. However, the change of the 

geometric dimensions does not consider the further physical effects. Also, this idea is a 

simple and efficient idea, but as the estimation formulas for all the coefficients are bound 

to the ship's dimension, changing one parameter causes all the coefficients to change. As 

a result, there was a problem in obtaining the desired tuning value. 

In consideration of the above results, this study conducts the optimization only for spe-

cific coefficients, which have a particularly large influence on the specific manoeuvre 

G:   Centre of gravity 
P:    Pivot point 
CL: Ship’s longitudinal centre line 
θ:    Drift angle 

P 
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used in the sea trial, through the sensitivity analysis. The correction formula of the exist-

ing Clarke estimation formula according to influence of the trim and draught condition is 

as follows. 

21 
𝐶𝑛𝑒𝑤 = 𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + ∆𝐶𝑡𝑟𝑖𝑚 𝑎𝑛𝑑 𝑑𝑟𝑎𝑢𝑔ℎ𝑡 (21) 
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3. Fundamentals of mathematical optimization 

3.1 Introduction 

A mathematical optimization is a method to determine scientific solutions and to analyse 

physical systems [37]. Also, it is a process for the formulation and for the solution of an 

optimization problem [38]. This method minimizes or maximizes an objective function 

on its variables. Sometimes the variables should also be restricted by constraints. The 

basic optimization problem can be expressed as follows: 

22 
𝑚𝑖𝑛 𝑓(𝑥)        , subject to 

𝑐𝐸(𝑥) = 0 

𝑐𝐼(𝑥) ≤ 0 

(22) 

where 𝑥 is the vector of variables, 𝑓 is the objective function (𝑓: ℝ𝑛 → ℝ), a function of 

the variable(s) 𝑥 to be minimized or maximized, 𝑐𝐸 is an equality constraint (𝑐𝐸: ℝ𝑛 →

ℝ𝑚) and 𝑐𝐼 is an inequality constraint (𝑐𝐼: ℝ
𝑛 → ℝ𝑝). 

Figure 3.1 illustrates a concept of the mathematical optimization. Contour refers to a set 

of points whose values of the objective function are constant. The feasible region is an 

area that satisfies all constraints and contains an optimum point. This optimum point can 

be either a local optimum or a global optimum. 

 

Figure 3.1 Concept of the mathematical optimization 

 



 

39 

 

Determining a proper problem—which is a process of modelling to find an objective 

function, variables and constraints—is the most important thing for successful mathemat-

ical optimization. A designed optimization problem can be solved by an optimization 

algorithm. An appropriate algorithm for a certain problem is determined according to the 

types of the objective function and the constraints. This may determine a quality of an 

optimization result, an elapsed time and so on. 

During the optimization process, the algorithm observes its optimality conditions at each 

iteration. If a current optimality condition is not satisfactory, the algorithm finds a new 

set of variables, and this strategy distinguishes each algorithm. Some algorithms utilize 

first- and/or second-order derivatives information from previous. In contrast, others use 

information only at the current point. 

Optimization problems can be classified into four categories: a continuous versus a dis-

crete optimization, a constrained versus an unconstrained optimization, a global versus a 

local optimization and a stochastic versus a deterministic optimization. In this study, we 

only focus on continuous, local and deterministic optimizations. Based on this, con-

strained and unconstrained optimizations will be discussed, and the optimal algorithm for 

estimating hydrodynamic derivatives will be suggested. 

 

3.2 Unconstrained optimization 

An unconstrained optimization solves a problem without restrictions for all variables. The 

optimization algorithm produces a set of iterates and it terminates a sequence when a 

change of particular conditions is relatively small or when it may be a solution. Most 

algorithms are based on two fundamental strategies to decide movement toward the next 

iteration: the line search method and the trust region method. Briefly the line search 

method determines a direction for a new iteration, whereas the trust region method deter-

mines a maximum distance, which is called as a trust region radius, for a new iteration. 

This study chooses the Quasi-Newton algorithm, which is a kind of the line search method, 

and the Nelder-Mead simplex algorithm, which is a kind of a derivative-free method. The 

trust region method is not chosen because it requires a gradient vector and a Hessian 

matrix – a square matrix of second-order partial derivatives - for determining a next iter-

ation, and the optimization process for estimating hydrodynamic coefficients is not able 



 

40 

 

to provide them manually. Details will be discussed in the next chapter with a demonstra-

tion of an entire optimization process. 

3.2.1 Quasi-Newton Algorithm 

The line search method determines a direction 𝑝 and explores a new iteration, which has 

a smaller value of the objective function, along this direction from the current iteration 

𝑥𝑘. This method can be distinguished by a strategy of search direction, especially for use 

of the Hessian: the steepest descent method, Newton’s method and the Quasi-Newton 

method. The steepest descent method is a kind of first-order method and it has advantages 

of simplicity and good theoretical guarantee of convergence for weak problem conditions 

[39]. Newton’s method obtains a direction, if the calculated Hessian is positive. This sec-

ond-order method performs better than the steepest descent method, however it requires 

an ‘exact’ Hessian information, which is a very expensive computation, and some opti-

mization problems are not able to meet this condition [40,41].  

The Quasi-Newton method covers disadvantages for both the steepest descent method 

and Newton’s method, and it is still the most popular algorithm in nonlinear optimization. 

It does not require computation of the Hessian, but it can present a convergence as a 

superlinear rate. The basic idea for the Quasi-Newton method is to replace the true Hes-

sian ∇2𝑓 to an approximation 𝐵, which is updated at each step considering the latest step 

information. The updated approximation is used for checking whether a provided gradient 

is still changing.  

A common minimizer for the mathematical optimization can be expressed by the Taylor’s 

theorem. Suppose that an objective function 𝑓 is twice continuously differentiable and for 

𝑡 ∈ (0,1), a formula can be as follows: 

23 
𝑓(𝑥 + 𝑝) = 𝑓(𝑥) + ∇𝑓(𝑥 + 𝑡𝑝)𝑇 , 

∇𝑓(𝑥 + 𝑝) = ∇𝑓(𝑥) + ∫ ∇2𝑓(𝑥 + 𝑡𝑝)𝑝𝑑𝑡.
1

0

 

(23) 

These can be converted into the following: 
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24 𝑓(𝑥 + 𝑝) = 𝑓(𝑥) + ∇𝑓(𝑥)𝑇𝑝 +
1

2
𝑝𝑇∇2𝑓(𝑥 + 𝑡𝑝)𝑝, 

(24) 

where 𝑝 = 𝑥𝑘+1 − 𝑥𝑘 and ∇𝑓 is the gradient. By substituting the Hessian ∇2𝑓 to an ap-

proximation 𝐵 and 𝑥 = 𝑥𝑘, Equation (24) is the following: 

25 𝑓(𝑥𝑘 + 𝑝) ≈ 𝑓(𝑥𝑘) + 𝛻𝑓(𝑥𝑘)
𝑇𝑝 +

1

2
𝑝𝑇𝐵𝑘𝑝. 

(25) 

The corresponding gradient, which is in respect to 𝑝,  is the following: 

26 
𝛻𝑓(𝑥𝑘 + 𝑝) ≈ 𝛻𝑓(𝑥𝑘) + 𝐵𝑘𝑝. (26) 

When points 𝑥𝑘  and 𝑥𝑘+1 are close to each other and near at a local optimum 𝑥∗, the 

Newton step is the following: 

27 
𝑝 = −𝐵𝑘

−1𝛻𝑓(𝑥𝑘). (27) 

The newly updated Hessian should satisfy the secant equation, which is a kind of Newton 

method: 

28 
𝐵𝑘+1𝑠𝑘 = 𝑦𝑘, (28) 

where 𝑠𝑘 = 𝑝 = 𝑥𝑘+1 − 𝑥𝑘  and 𝑦𝑘 = ∇𝑓(𝑥𝑘 + 𝑝) − ∇𝑓(𝑥𝑘) = ∇𝑓𝑘+1 − ∇𝑓𝑘 . For the 

successive optimization, the updated approximation 𝐵𝑘+1 should meet particular condi-

tions: low rank updated, symmetry matrix and positive definiteness [42].  

The Quasi-Newton method can be distinguished into several sub algorithms according to 

ways of updating the Hessian approximation. The Davidon-Fletcher-Powell (DFP) for-

mula, Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and Symmetric rank one 

(SR1) are well known methods and this study applies the BFGS method for the optimi-

zation. 

To update an approximate Hessian, two matrices are required as follows [43]: 
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29 
𝐵𝑘+1 = 𝐵𝑘 + 𝑈𝑘 + 𝑉𝑘 (29) 

where 𝑈𝑘 and 𝑉𝑘 are symmetric rank one matrices. For the successful approximation for 

the next step, the update form should be converted as follows: 

30 
𝐵𝑘+1 = 𝐵𝑘 + 𝛼𝑢𝑢𝑇 + 𝛽𝑣𝑣𝑇 . (30) 

From the secant condition in Equation (28) and substituting u = 𝑦𝑘 and v = 𝐵𝑘𝑠𝑘. into 

Equation (30), components α and β are the following: 

31 𝛼 =
1

𝑦𝑘
𝑇𝑠𝑘

 

𝛽 = −
1

𝑠𝑘
𝑇𝐵𝑘𝑠𝑘

. 

(31) 

Finally, an approximation formula for the BFGS algorithm is as follows: 

32 𝐵𝑘+1 = 𝐵𝑘 +
𝑦𝑘𝑦𝑘

𝑇

𝑦𝑘
𝑇𝑠𝑘

−
𝐵𝑘𝑠𝑘𝑠𝑘

𝑇𝐵𝑘
𝑇

𝑠𝑘
𝑇𝐵𝑘𝑠𝑘

 
(32) 

The BFGS has a property of self-correction [44]. By using the inverse Hessian approxi-

mation, incorrect approximates, which cause slow calculation, are ignored and corrected 

in the next few steps.  

 

3.2.2 Derivative-free optimization 

Derivative-free optimization is a kind of mathematical optimization which does not re-

quire derivative information. Though the derivative-free optimization is not popular and 

is not as advanced as derivative-based methods, they perform well with certain functions, 

such as non-smooth, noisy and time-consuming to get derivatives [45]. One class of meth-

ods sets a linear or a quadratic model up for the objective function and it defines an up-

dated iteration by searching to minimize this model inside a trust region [37]. Since Hooke 

and Jeeves introduced a direct search solution, the derivative-free optimization has been 

grown by many applicants and has been applied in wide area, such as scientific problems, 

medical problems and engineering design and facility location problems [46]. However, 
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this method cannot guarantee an optimality, especially for an optimization problem with 

more than a few tens of variables [47]. Also, it is relatively slower to converge than gra-

dient-based algorithms. 

This study chooses the Nelder-Mead algorithm, which is a kind of direct local search 

method. The direct search method is a sequential process which solves a problem by com-

paring trials in the same iteration to find the best one [48]. The Nelder-Mead method 

searches an optimal in 𝑛-dimensional space using heuristic ideas. It is also called a ‘non-

linear simplex’, but it has nothing doing with the simplex method for linear optimization 

programming. As mentioned, it does not require any pre-defined derivatives. This means 

that a corresponding objective function must not be smooth during an optimization pro-

cess.  

A term ‘simplex’ is a geometric figure in 𝑛-dimensional space and it is produced by 𝑛 +

1 vertices, each iteration of the algorithm starts with a simplex and an objective function 

for 𝑛 + 1 sets of variables, and the algorithm reshapes the simplex using four simple op-

erations in the same iteration.  

The algorithm firstly finds 𝑛 + 1 points of the simplex based on a given initial point 𝑥0 

It is preferable for arranging the simplex to make with equal length edges. Figure 3.2 

presents examples of the simplex. Consider all the lengths are set to be c and 𝑥0 is the 

(𝑛 + 1)th vertex. Resting vertices for the simplex can be calculated by adding a vector to 

𝑥0, and their elements are all 𝑏, except one component, which is set to 𝑎 [49]: 

33 
𝑏 =

𝑐

𝑛√2
(√𝑛 + 1 − 1) 

𝑎 = 𝑏 +
𝑐

√2
 . 

(33) 
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Figure 3.2 Simplexes for 𝑛 = 2 (left) and 𝑛 = 3 (right) 

A process for the optimization is as follows: 

Order   After setting the initial simplex, objective function values for all vertices are 

compared and three of them are selected: the highest(“worst”) 𝑥𝑤 , the second high-

est(“lousy”) 𝑥𝑙 and the lowest(“best”) 𝑥𝑏. The Nelder-Mead algorithm performs the opti-

mization process with four scalar parameters: reflection (ρ), expansion (χ), contraction 

(γ) and shrinkage (σ). Figure 3.3 shows concept operations for the Nelder-Mead algo-

rithm. 

 

Figure 3.3 Concept operation for the Nelder-Mead algorithm 

Nelder and Mead provided criteria for satisfactory as  follows [50]: 
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𝜌 > 0, 𝜒 > 1, 𝜒 > 𝜌, 0 < 𝛾 < 1   𝑎𝑛𝑑   0 < 𝜎 < 1.  

Lagarias et al. suggested a universal standard for the algorithm [51]: 

 𝜌 = 1, 𝜒 = 2, 𝛾 =
1

2
   𝑎𝑛𝑑   𝜎 =

1

2
. 

 

An operation for each parameter calculates a new vertex and sequences of operations in 

the same iteration rely on values of the new vertex. The first operation calculates an av-

erage of the n points, 𝑥𝑎, which do not include a value for 𝑥𝑤: 

34 𝑥𝑎 =
1

𝑛
∑ 𝑥𝑖

𝑛+1

𝑖=1,𝑖≠𝑤

 
(34) 

Reflection   A new vertex is located on the line from 𝑥𝑤 to 𝑥𝑎, which is a descent direc-

tion: 

35 
𝑥𝑟 = 𝑥𝑎 + 𝜌(𝑥𝑎 − 𝑥𝑤). (35) 

If 𝑓(𝑥𝑏) ≤ 𝑓(𝑥𝑟) < 𝑓(𝑥𝑙), accept the reflected vertex 𝑥𝑟 and proceed to the next itera-

tion. 

Expansion   If the value at the reflected point is better(lower) than the best point, the 

reflection is acceptable, and the algorithm calculates the expansion point 𝑥𝑒: 

36 
𝑥𝑒 = 𝑥𝑟 + 𝜒(𝑥𝑟 − 𝑥𝑎). (36) 

If 𝑓(𝑥𝑒) < 𝑓(𝑥𝑟), accept the expansion vertex 𝑥𝑒 and proceed to the next iteration. On 

the other hand, if 𝑓(𝑥𝑒) ≥ 𝑓(𝑥𝑟), accept 𝑥𝑟 and proceed the next iteration. 

Outside contraction   If 𝑓(𝑥𝑙) ≤ 𝑓(𝑥𝑟) < 𝑓(𝑥𝑤), perform an outside contraction: 

37 
𝑥𝑜 = 𝑥𝑎 + 𝛾(𝑥𝑎 − 𝑥𝑤). (37) 

If 𝑓(𝑥𝑜) ≤ 𝑓(𝑥𝑟), accept 𝑥𝑜 and proceed to the next iteration.  



 

46 

 

Inside contraction   If 𝑓(𝑥𝑤) ≤ 𝑓(𝑥𝑟), perform an inside contraction: 

38 
𝑥𝑐 = 𝑥𝑎 − 𝛾(𝑥𝑎 − 𝑥𝑤). (38) 

If 𝑓(𝑥𝑐) ≤ 𝑓(𝑥𝑤), accept 𝑥𝑐 and proceed to the next iteration.  

Shrinkage   A new vertex is accepted only after the expansion is successful. Otherwise 

previously reflected points are accepted for the next iteration. If reflection, expansion and 

contraction fail, an operation shrinkage performs. This operation absorbs all vertices ex-

cluding the best one: 

 39 
𝑥𝑖 = 𝑥𝑏 + 𝜌(𝑥𝑖 − 𝑥𝑏). (39) 

 

3.3 Constrained optimization 

Many optimization problems have certain variables which must be satisfied before eval-

uating an optimality condition and before reliability is ensured. The physical laws for the 

conservation of mass and Kirchhoff’s voltage and current are representative constraints 

[52]. These can be either equality or inequality conditions. The constrained optimization 

is relatively more difficult and expensive to get an optimization result than the uncon-

strained optimization. Forms of the equality and inequality constraints are the same as 

Equation (22). 

The constrained optimization can be largely distinguished by the type of objective and 

constraint functions and solution methods: linear, integer, quadratic, nonlinear and dy-

namic programming. It is most common for algorithms to be required to convert an opti-

mization problem with simple constraints into unconstrained problems. 

This study only considers the nonlinear constrained optimization, due to a type of objec-

tive function for the estimating hydrodynamic dynamics. The interior point method and 

the sequential quadratic programming method are especially discussed in the following 

subchapters. 
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3.3.1 Interior point method 

The interior point method is a group of algorithms which solves both linear and nonlinear 

convex optimization problems. This method finds solutions with the barrier function, 

which is based on the penalty method, to make constraints simple.  

As many algorithms do so, an idea is initiated from solving linear problems. The simplex 

method, which handles vertices of the polytope defined by the constraints, had been the 

only available one for decades since the 1940s [53]. Because the simplex method does 

not use a polynomial, it requires a lot of time to reach an optimal value through visiting 

many vertices [54]. Since Neumann introduced a concept of the interior point method, it 

has been continuously updated and progressed. Karmarkar applied a polynomial into his 

algorithm, which is based on Khachiyan’s ellipsoid algorithm and is 50 times faster than 

the simplex method [55,56]. Gill et al. found that the classical barrier function is similar 

with the Karmarkar’s equation and it can be applied to not only to linear problems but 

also other problems, such as quadratic and nonlinear programming [57].  

An overview of the interior point method for nonlinear optimization is described in the 

following. Equation (22) can be transformed by applying the slack variables 𝑠 [58]: 

40 
𝑚𝑖𝑛 𝑓(𝑥)        , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑐𝐸(𝑥) = 0 

𝑐𝐼(𝑥) − 𝑠 = 0 

𝑠 ≥ 0. 

(40) 

The general inequality constraints 𝑐𝐼(𝑥) ≤ 0 is replaced by the slack variables s ≥ 0. 

However, the constraints are still complex and it is required to be simpler using the barrier 

problem: 

41 𝑚𝑖𝑛
𝑥,𝑠

𝑓(𝑠) − 𝜇 ∑𝑙𝑜𝑔 𝑠𝑖

𝑚

𝑖=1

        , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑐𝐸(𝑥) = 0 

𝑐𝐼(𝑥) − 𝑠 = 0 

(41) 

where μ is a positive penalty parameter and the slack variable 𝑠 is assumed to be positive. 

The barrier problem finds a solution for a sequence of positive barrier parameters, which 

converges to zero. 
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The algorithm applies one of two types of searching directions at each iteration [59]: 

- A direct step, also known as in the Newton step, in (𝑥, 𝑠), by using the KKT 

equations and the primal-dual method for the linear approximation. 

- A conjugate gradient step, by using a trust-region method. 

The ‘fmincon’ solver attempts to take a direct step firstly. However, if it is not successful, 

it searches direction with a conjugate gradient step. This process happens when the ap-

proximate problem is not locally convex.  

The KKT equation for the nonlinear programming is [37]: 

42 
𝛻𝑓(𝑥) − 𝐴𝐸

𝑇(𝑥)𝑦 − 𝐴𝐼
𝑇(𝑥)𝑧 = 0 

𝑆𝑧 − 𝜇𝑒 = 0 

 

𝑐𝐸(𝑥) = 0 

𝑐𝐼(𝑥) − 𝑠 = 0, 

(42) 

with 𝜇 = 0, 𝑠 ≥ 0 and 𝑧 ≥ 0. Where ∇𝑓(𝑥) is the gradient of 𝑓: 

43 𝛻𝑓(𝑥) = (
𝜕𝑓(𝑥)

𝜕𝑥1
,
𝜕𝑓(𝑥)

𝜕𝑥2
, … ,

𝜕𝑓(𝑥)

𝜕𝑥𝑛
)𝑇 

(43) 

𝐴𝐸(𝑥) and 𝐴𝐼(𝑥) are the Jacobian matrices, first-order partial derivatives for matrices, for 

functions of equality constraints and inequality constraints, respectively: 

44 
𝐴(𝑥) = 𝛻𝑐(𝑥) = (𝛻𝑐1(𝑥), 𝛻𝑐2(𝑥), 𝛻𝑐3(𝑥), … , 𝛻𝑐𝑚(𝑥)), 

𝑤𝑖𝑡ℎ 𝑐: ℝ𝑛 → ℝ𝑚, 

(44) 

and 𝑦 and 𝑧 are corresponding Lagrange multipliers. 𝑆 and 𝑍 are diagonal matrices and 𝑒 

is a vector of ones, with the same size as the inequality constraint. 

The primal-dual system for equation (42) by applying Newton’s method is 
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[
 
 
 
𝛻𝑥𝑥

2 ℒ 0 −𝐴𝐸
𝑇(𝑥) −𝐴𝐼

𝑇(𝑥)

0 𝑍 0 𝑆
𝐴𝐸(𝑥) 0 0 0
𝐴𝐼(𝑥) −𝐼 0 0 ]

 
 
 
[

𝑝𝑥

𝑝𝑠

𝑝𝑦

𝑝𝑧

] = −

[
 
 
 
𝛻𝑓(𝑥) − 𝐴𝐸

𝑇(𝑥) − 𝐴𝐼
𝑇(𝑥)

𝑆𝑧 − 𝜇𝑒
𝑐𝐸(𝑥)

𝑐𝐼(𝑥) − 𝑠 ]
 
 
 

 

(45) 

where ℒ is the Lagrangian equation for corresponding variables (41): 

46 
ℒ(𝑥, 𝑠, 𝑦, 𝑧) = 𝑓(𝑥) − 𝑦𝑇𝑐𝐸(𝑥) − 𝑧𝑇(𝑐𝐼(𝑥) + 𝑠). (46) 

Next iterations can be calculated after determining the corresponding steps 𝑝 =

(𝑝𝑥, 𝑝𝑠, 𝑝𝑦, 𝑝𝑧): 

47 
𝑥+ = 𝑥 + 𝛼𝑠

𝑚𝑎𝑥𝑝𝑥 

𝑠+ = 𝑠 + 𝛼𝑠
𝑚𝑎𝑥𝑝𝑠 

𝑦+ = 𝑦 + 𝛼𝑧
𝑚𝑎𝑥𝑝𝑦 

𝑧+ = 𝑧 + 𝛼𝑧
𝑚𝑎𝑥𝑝𝑧 , 

(47) 

where 𝛼𝑠
𝑚𝑎𝑥  and 𝛼𝑧

𝑚𝑎𝑥  are boundary rules, which monitor descent directions toward 

lower bounds, known as the boundary rule: 

48 
𝛼𝑠

𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝛼 ∈ (0,1): 𝑠 + 𝛼𝑝𝑠 ≥ (1 − 𝜏)𝑠} 

𝛼𝑧
𝑚𝑎𝑥 = 𝑚𝑎𝑥{𝛼 ∈ (0,1): 𝑧 + 𝛼𝑝𝑧 ≥ (1 −)𝑧} , 

𝑤𝑖𝑡ℎ 𝜏 ∈ (0,1). 

(48) 

The equations above are a concept of the interior point method. In a real situation, the 

algorithm is struggling with nonconvexities and nonlinearities.  

 

3.3.2 Sequential quadratic programming method 

The sequential quadratic programming (SQP) method is an effective technique for small- 

and medium-sized nonlinear programming problems. It generates steps by solving quad-

ratic subproblems [37]. Since Wilson proposed the first SQP method, this method has 

become one of the most successful methods for constrained nonlinear optimization prob-

lems [60]. As with most optimization methods, the SQP is a huge concept, which is com-

posed of multiple specific algorithms [61].  



 

50 

 

Unlike the interior point method, which mainly applies the barrier function as a kind of 

penalty method, the SQP method applies the Lagrange multiplier to solve an optimization 

problem with equality and inequality constraints. The advantages and disadvantages of 

the SQP method and the interior point method counter to each other [62]. The interior 

point method is efficient if users can deliver reliable and correct second derivatives. With 

that, the interior point method can converge within a few iterations, no matter if corre-

sponding problems are small or large. However, the interior point method is not efficient 

to solve sequence-related nonlinear programming problems. Also, this method requires a 

lot of iterations when constraints are infeasible. 

Otherwise, the SQP method can distinguish infeasibility. As a quadratic programming 

(QP) method, sophisticated matrix factorization updating techniques are applied to make 

a problem simple. However, it is difficult for SQP method to deliver exact second deriv-

atives due to theoretical properties of the QP subproblem. Adding to this problem, the 

SQP method, which employs empty convex quasi-Newton approximation, can be slow 

when it solves large scale problems [63]. 

The SQP method is a sequential process, which finds a solution from a given iteration 

𝑥𝑘 , 𝑘 ∈ ℕ by the QP subproblem. A solution at each iteration is delivered to a new itera-

tion 𝑥𝑘+1. As the iteration 𝑘 increases, corresponding variable 𝑥𝑘 is close to a local min-

imum, or this can be a global minimum. Contrary to the interior point method, which 

finds a solution at each iteration only in the feasible area, iterations of the SQP method 

need not to be in the feasible area, except the optimal solution. This is a major advantage 

of this method [64]. 

An objective function 𝑓 and constraints 𝑐 in equation (22) can be replaced by QP sub-

problems. At each iteration, the subproblem must find a local optimal of the nonlinear 

problem: 

49 𝑓(𝑥) ≈ 𝑓(𝑥𝑘) + 𝛻𝑓(𝑥𝑘)(𝑥 − 𝑥𝑘) +
1

2
(𝑥 − 𝑥𝑘)𝑇𝐻𝑓(𝑥𝑘)(𝑥 − 𝑥𝑘) 

𝑐𝐸(𝑥) ≈ 𝑐𝐸(𝑥𝑘) + 𝛻𝑐𝐸(𝑥𝑘)(𝑥 − 𝑥𝑘) 

𝑐𝐼(𝑥) ≈ 𝑐𝐼(𝑥
𝑘) + 𝛻𝑐𝐼(𝑥

𝑘)(𝑥 − 𝑥𝑘), 

(49) 

where 𝐻𝑓(𝑥𝑘) is Hessian for the variables at each iteration: 
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50 (𝐻𝑓(𝑥))𝑖𝑗 =
𝜕2𝑓(𝑥)

𝜕𝑥𝑖𝜕𝑥𝑗
,   1 ≤ 𝑖, 𝑗 ≤ 𝑛, 

(50) 

and it will be replaced by an approximation 𝐵𝑘 as the Quasi-Newton method. Based on 

Equation (49) and substituting 𝐵𝑘 = 𝐻𝑓(𝑥𝑘) and 𝑑(𝑥) = 𝑥 − 𝑥𝑘 , the QP subproblem 

can be written as follows: 

51 𝑚𝑖𝑛 𝛻𝑓(𝑥𝑘)𝑇𝑑(𝑥) +
1

2
𝑑(𝑥)𝑇𝐵𝑘𝑑(𝑥) 

 

𝑜𝑣𝑒𝑟 𝑑(𝑥) ∈ ℝ𝑛 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑐𝐸(𝑥𝑘) + 𝛻𝑐𝐸(𝑥𝑘)𝑇𝑑(𝑥) = 0 

                      𝑐𝐼(𝑥
𝑘) + 𝛻𝑐𝐼(𝑥

𝑘)𝑇𝑑(𝑥) ≤ 0. 

(51) 

The objective function in Equation (51) can be converted to a function of Lagrangian 

equation ℒ: 

52 𝑚𝑖𝑛 𝛻ℒ(𝑥𝑘 , 𝑦𝑘, 𝑧𝑘)𝑇𝑑(𝑥) +
1

2
𝑑(𝑥)𝑇𝐻ℒ(𝑥𝑘 , 𝑦𝑘, 𝑧𝑘)𝑑(𝑥) 

 

𝑜𝑣𝑒𝑟 𝑑(𝑥) ∈ ℝ𝑛 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝑐𝐸(𝑥𝑘) + 𝛻𝑐𝐸(𝑥𝑘)𝑇𝑑(𝑥) = 0 

                      𝑐𝐼(𝑥
𝑘) + 𝛻𝑐𝐼(𝑥

𝑘)𝑇𝑑(𝑥) ≤ 0. 

(52) 

53 
              ℒ(𝑥, 𝑦, 𝑧) = 𝑓(𝑥) + 𝑦𝑇𝑐𝐸(𝑥) + 𝑧𝑇𝑐𝐼(𝑥) (53) 

where 𝑦𝑘 and 𝑧𝑘 are the corresponding Lagrange multipliers for equality and inequality 

constraints, respectively. When variables at a certain iteration 𝑥𝑘 are a local minimum x∗, 

Equation (22) is 
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54 
𝑚𝑖𝑛 ℒ(𝑥∗, 𝑦∗, 𝑧∗) 

𝑜𝑣𝑒𝑟 𝑥 ∈ ℝ𝑛         , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑐𝐸(𝑥) = 0 

𝑐𝐼(𝑥) ≤ 0 

(54) 

To ensure equivalence between Equation (51) and Equation (52), the following conditions 

must be satisfied: 

- If there are no inequality constraints, both equations are equivalent. 

- In case of the fully constrained case, the Lagrange multiplier for the inequality 

constraint 𝑧𝑘 must be 0. 

The first-order necessary optimally conditions, which are important to determine a local 

minimum are: 

55 
𝛻ℒ(𝑥∗, 𝑦∗, 𝑧∗) = 𝛻𝑓(𝑥∗) + 𝛻𝑐𝐸𝑓(𝑥∗)𝑦∗ + 𝛻𝑐𝐼𝑓(𝑥∗)𝑧∗ = 0 

𝑤𝑖𝑡ℎ 𝑥∗ ∈ ℝ𝑛, 𝑦∗ ∈ ℝ𝑚 𝑎𝑛𝑑 𝑧∗ ∈ ℝ𝑝, 

(55) 

and the second order sufficient optimality conditions are the following: 

- The columns of 𝐺(𝑥∗) are linearly independent, 

- Strict complementary slackness holds at 𝑥∗, and 

- The Hessian of the Lagrangian is positive definite, when 𝑥 is positive definite 

on the null space of 𝐺(𝑥∗)𝑇 

where 𝐺(𝑥∗) is a matrix of first derivatives for equality constraints 𝑐 and strict comple-

mentary slackness 𝑔: 

56 
𝐺(𝑥∗) = (𝛻𝑐𝐸1(𝑥), 𝛻𝑐𝐸2(𝑥), … , 𝛻𝑐𝐸𝑚(𝑥), 𝛻𝑔𝑖1(𝑥),… , 𝛻𝑔𝑖𝑞𝑥(𝑥)) ,   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑔𝑖(𝑥
∗)𝑧∗ = 0,     1 ≤ 𝑖 ≤ 𝑝 

            𝑧∗ > 0,     𝑖 ∈ 

(56) 

where 𝐼𝑎𝑐(𝑥
∗) is known as a set of active constraints: 
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57 
𝐼𝑎𝑐(𝑥

∗) = {𝑖 ∈ {1,… , 𝑝} | 𝑐𝐼𝑖(𝑥) = 0} . (57) 

The optimization process terminates and returns an optimal solution 𝑥∗ when the iteration 

𝑥𝑘 for the QP subproblem is the same with the active constraints at the iteration 𝑥𝑘: 

58 𝑚𝑖𝑛   𝛻𝑓(𝑥𝑘)𝑇𝑑(𝑥) +
1

2
𝑑(𝑥)𝑇𝐵𝑘𝑑(𝑥) , 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜   𝛻𝑐𝐼(𝑥
𝑘)𝑇𝑑(𝑥) + 𝑐𝐼(𝑥

𝑘) = 0. 

(58) 

 

  



 

54 

 

4. Coefficients estimation using mathematical opti-

mization 

4.1 Introduction 

This chapter introduces an overall procedure to estimate hydrodynamic derivatives for a 

ship’s hull using mathematical optimization algorithms and a ship’s equations of motion 

which are described in previous chapters. Optimization problems, such as variables, and 

objective function and constraints, are demonstrated according to the sequence of the 

mathematical optimization. Also, basic information on reference data and ways to acquire 

them will be provided. 

Aims of this chapter can be mainly distinguished into two parts. The first one is that sea 

trial data can be suitable for reference data for the optimization process. Success of this 

aim can be determined how simulation data using optimized coefficients are close to the 

reference data. If it is satisfactory, the second aim finds which algorithm is the most 

proper one to the mathematical optimization using sea trial data. With preparation and 

verification of the optimization, estimation of hydrodynamic coefficients considering trim 

and draught conditions are tried in the next chapter. 

 

4.2 About the mathematical optimization 

The mathematical optimization finds minimums or maximums of an objective function 

with certain constraints. Especially for the optimization of hydrodynamic coefficients, 

this is a series of processes to acquire optimized coefficients which return similar manoeu-

vring characteristics with certain reference data. These data can be measured from sea 

trials and are essential to set up an objective function and constraints, to compare with 

simulation results at each iteration. 

Figure 4.1 shows a concept for the optimization process, especially for estimating hydro-

dynamic coefficients. When a user provides reference data, initial coefficients and 

lower/upper bounds, an optimization solver finds an optimal solution according to a des-

ignated optimization algorithm. The algorithm calculates a set of hydrodynamic coeffi-

cients, satisfying all constraints, and checks an optimality of the objective faction which 

compares simulation data using the coefficients with the reference data. If the objective 



 

55 

 

function satisfies certain criteria, the optimization process stops and returns an optimal 

solution. 

 

Figure 4.1 Concept of optimization process to estimate hydrodynamic coefficients 

 

4.3 Setting of optimization problems 

Solvers and corresponding algorithms in the optimization toolbox of the MATLAB are 

used for the estimation of hydrodynamic coefficients. Also, the fast-time simulation soft-

ware SIMOPT is used for the simulation in the optimization procedure. This software is 

suitable for the optimization process because it allows to perform a large number of sim-

ulations in a short time. In addition, users can control parameters of a ship from the out-

side of the software. This is suitable for the optimization process which must change hy-

drodynamic coefficients and manoeuvre simulations at each iteration. 

Equation (20) in Chapter 2 have too many hydrodynamic coefficients to conduct optimi-

zation at once. Thus, applying strict standards to select hydrodynamic coefficients are 

required for effective optimization. For this, a sensitivity analysis for selecting proper 

manoeuvres and corresponding coefficients should be performed prior to start the opti-

mization procedure. 
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A general definition of the sensitivity analysis is a process of checking how the change 

of the input information affects the output change. The sensitivity analysis enables figur-

ing out proper variables, a set of hydrodynamic coefficients for this study, for the optimi-

zation. Normally this can be divided into two types: global sensitivity and local sensitivity. 

In most cases, a term ‘sensitivity’ refers to the local sensitivity and it can also be divided 

into direct method, indirect method and green function method, and this study applies the 

indirect method for the sensitivity analysis [18]. 

The indirect method is the simplest way to find sensitivity, and it calculates correlation 

between a parameter and corresponding function using finite difference approximation: 

59 |
𝜕𝑓

𝜕𝑥𝑖
| ≈ |

𝑓(𝑥𝑖 + ∆𝑥𝑖) − 𝑓(𝑥𝑖)

∆𝑥𝑖
| ,     𝑤𝑖𝑡ℎ 𝑖 = 1,… , 𝑛. 

(59) 

This study applies three manoeuvres: straight motion with constant speed, zig-zag ma-

noeuvre and turning manoeuvre. Sensitivity is calculated from changes of manoeuvre 

characteristics according to the change of each parameter in a certain range. 

The calculated sensitivities may differ due to size or unit of corresponding parameters. 

Thus, it is required to conduct normalization to compare them at once. The normalization 

means adjusting values measured on different scales to common scale. Z-scores, min-

max method and normalization by decimal scaling are well known methods. 

The min-max normalization performs a linear transformation of the original data. This 

method converts a value 𝑑 of a group of parameters 𝑃 to 𝑑’ in the new range [new.min 

(𝑃), new.max (𝑃)], as follows: 

60 𝑑′ =
(𝑑 − 𝑚𝑖𝑛(𝑃)) ∗ (𝑛𝑒𝑤.𝑚𝑎𝑥(𝑃) − 𝑛𝑒𝑤.𝑚𝑖𝑛(𝑃))

𝑚𝑎𝑥(𝑃) − 𝑚𝑖𝑛 (𝑃)
+ 𝑛𝑒𝑤.𝑚𝑖𝑛(𝑃). 

(60) 

If the desired range is from 0 to 1, Equation (60) can be converted simply as shown below: 

61 𝑑′ =
𝑑 − 𝑚𝑖𝑛 (𝑝)

𝑚𝑎𝑥(𝑝) − 𝑚𝑖𝑛 (𝑝)
 

(61) 

As described above, the sensitivity analysis and the normalization are divided into three 

steps for the stepwise optimization for estimating hydrodynamic coefficients. Target co-

efficients for each sensitivity analysis are chosen according to basic characteristics of 



 

57 

 

each manoeuvre: straight motion, steer a ship with small rudder angle and large rudder 

angle. Added mass which are combined with acceleration components in Equation (20) 

are excluded in the sensitivity analysis and corresponding normalization due to their com-

plexity. Table 4.1 shows results of the sensitivity analysis and the normalization. 

The first step compares only coefficients in the force acting on the X-axis, and coefficients 

𝑋𝑢𝑢  and 𝑋𝑢4  are the values of interest. For the second step, coefficients  

𝑋𝑣𝑟 and linear components acting on Y- and Z-axis are compared with the small rudder 

angle. The result sows that the coefficient 𝑁𝑢𝑣 is the biggest influence on zig-zag ma-

noeuvre and 𝑋𝑣𝑟 has no influence. The last step compares 𝑋𝑣𝑟 and the remaining nonlin-

ear components acting on Y- and Z- axis. From this, coefficients 𝑋𝑣𝑟, 𝑌𝑣𝑟 , 𝑁𝑟𝑟 and 𝑁𝑣𝑣 

are chosen as manipulate variables. Figure 4.2 shows corresponding results of the sensi-

tivity analysis. 

Table 4.1 Results of sensitivity analysis on hydrodynamic coefficients 

Coefficients 
Step 1 

Straight motion 

Step 2 

Zig-zag, 10 deg. 

Step 3 

Turning, 35 deg. 

𝑋𝑣𝑟 0 0 0.0890 

𝑋𝑢𝑢 1.0000   

𝑋𝑢4 0.5587   

𝑋𝑢𝑣𝑣𝑣 0   

𝑌𝑢𝑣  0.0096  

𝑌𝑢𝑟   0.0476  

𝑁𝑢𝑣  1.0000  

𝑁𝑢𝑟  0.0930  

𝑌𝑟𝑟    0 

𝑌𝑣𝑣   0 

𝑌𝑣𝑟𝑡   0 

𝑌𝑣𝑟    0.0675 

𝑌𝑣𝑣𝑣𝑟    0.0088 

𝑌𝑟𝑟𝑡   0 

𝑌𝑣𝑣𝑡   0 

𝑌4𝑣2𝑟𝑡   0 

𝑁𝑣𝑟   0 

𝑁𝑟𝑟𝑡   0 

𝑁𝑣𝑣𝑡   0 

𝑁𝑟𝑟   1.0000 

𝑁𝑣𝑣   0.2213 

𝑁𝑣4𝑟2   0.0264 

𝑁𝑣𝑟𝑡   0 

𝑁5𝑣3𝑟𝑡   0 
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(a) Sensitivity analysis for straight motion 

 

(b) Sensitivity analysis for zig-zag manoeuvre 

 

 

(c) Sensitivity analysis for turning manoeuvre 

 

Figure 4.2 Results of sensitivity analysis on hydrodynamic coefficients 
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Table 4.2 summarizes the variables for each optimization step. 

Table 4.2 Variables on each optimization step 

Step Coefficients Remarks 

1 𝑋𝑢𝑢 , 𝑋𝑢4 Straight motion 

2 𝑌𝑢𝑣 , 𝑌𝑢𝑟 , 𝑁𝑢𝑣 , 𝑁𝑢𝑟 Zig-zag manoeuvre (10 deg.): Small rudder angle 

3 𝑋𝑣𝑟 , 𝑌𝑣𝑟 , 𝑁𝑟𝑟 , 𝑁𝑣𝑣 Turning manoeuvre (35 deg.): Large rudder angle 

 

4.4 Sea trial measurements and corrections for reference 

data 

The objective function and constraints are written using reference data from sea trials, 

which were taken only for this thesis. The author planned and managed the whole process 

of the trials. The measurements are taken from a training ship of G/T 6,686t. The objective 

function compares trajectories of the reference data and trajectories of a simulation result 

which is based on calculated coefficients at each iteration. The constraint function com-

pares manoeuvre characteristics of the same manoeuvre with the objective function. All 

of constraints are set as equality constraints. The biggest advantage of this idea is that 

optimization requires measurement data for ship’s trajectories and this enables simple 

procedures during the sea trial measurements. Table 4.3 shows details of the reference 

vessel and equation (62) shows a concept of the objective function: 

Table 4.3 Details of the reference vessel for comparing optimization algorithms 

Type of vessel Training ship 

Length overall [m] 117.20 

Length between perpendiculars [m] 104.42 

Breadth [m] 17.80 

Depth at upper deck [m] 10.85 

Gross tonnage 6,686.00 

Type of main engine MAN B&W 6L42MC/ME 

Maximum power [KW] 6,052.54 

Maximum speed [kts] 18.40 

Propeller Single, right-handed, fixed-pitch 

Draught forward (sea trial) [m] 6.10 

Draught aft (sea trial) [m] 6.10 

Displacement (sea trial) [ton] 6,741.70 
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62 
𝑓𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = ∑|(𝑝𝑜𝑠. 𝑥𝑖

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
− 𝑝𝑜𝑠. 𝑥𝑖

𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)|

𝑖

+ 

                       ∑|(𝑝𝑜𝑠. 𝑦𝑖
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

− 𝑝𝑜𝑠. 𝑦𝑖
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛)|

𝑖

. 

(62) 

Sea trials are carried out in accordance with recommendations of IMO and ITTC [23,27], 

as stated in the subchapter 2.2. Table 4.4 shows environmental conditions for sea trials. 

Time histories of position, heading, speed, rudder angle, propeller revolution and envi-

ronmental information are measured during the sea trial. Table 4.5 and Table 4.6 show 

time histories for the zig-zag and turning manoeuvre, respectively.  

 

Table 4.4 Summary of conditions for sea trials 

 Data1 Data2 

Manoeuvre ZZ10 TC35 

Latitude 34.98N 34.95N 

Longitude 129.12E 129.09E 

Heading [deg] 210 220 

RPM [‰] 681 681 

Draught fore [m] 6.10 6.10 

Draught mid [m] 6.10 6.10 

Draught aft [m] 6.10 6.10 

Wind direction [deg] 286 286 

Wind speed [kts] 5.8 5.8 

Current direction [deg] 225 225 

Current speed [kts] 0.5 0.5 

Water depth [m] 83 89 
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Table 4.5 Time history for zig-zag manoeuvre 

Time  

(UTC) 
Comments 

Heading  

[deg] 

Speed 

[kts] 

Rudder  

[deg] 

Δ Heading 

[deg] 

07:39:23 Start recording 210 11.8 0  

07:39:33 Command, 10° Starboard 210 11.8 - - 

07:39:35 Rudder set to 10° Starboard 210 11.8 +10 - 

07:40:02 Command, 10° Port 220 11.6 - +10 

07:40:06 Rudder set to 10° Port 220 11.6 -10 - 

07:41:17 Command, 10° Starboard 200 10.6 - -10 

07:41:21 Rudder set to 10° Starboard 200 10.4 +10 - 

07:42:35 Command, 10° Port 220 10.1 - +10 

07:42:39 Rudder set to 10° Port 220 10.1 -10 - 

07:43:05 Terminate recording     

 

Table 4.6 Time history for turning manoeuvre 

Time  

(UTC) 
Comments 

Heading  

[deg] 

Speed 

[kts] 

Rudder  

[deg] 

07:54:55 Start recording 220 10.6 0 

07:55:05 Command, 35° Starboard 220 10.6 - 

07:55:15 Rudder set to 35° Starboard 220 10.6 +35 

08:05:20 Terminate recording    

 

These data are taken from NMEA data in the voyage data recorder (VDR), provided by 

STX Engine – VDR 5000, and electronic chart display (ECDIS), provided by Marine 

Electronics – PM3D, in the reference vessel. The data of VDR are preferentially used, 

and data collected by other means are used as supplementation. Figure 4.3 introduces 

means of data acquisition for the measurement in this chapter. 
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(a) Simplified Voyage Data Recorder (S-VDR) 

 

(b) Electronic Chart DISplay (ECDIS) 

 

Figure 4.3 Means of data acquisition: S-VDR and ECDIS [65] 

 

Sea trials should be carried out in calm weather conditions, as the situation allows. How-

ever, it is hard to conduct sea trials with desired weather conditions due to many reasons. 

In case of ship’s manoeuvrability assessment, the trial results can be corrected, if the 

minimum weather conditions for the criteria requirements are not met. In this study, for 
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the purpose of comparing optimization algorithms, environmental effects on the meas-

urement data are corrected according to the IMO recommendation [23].  

This correction starts form the results of the turning manoeuvre. The turning circle test 

results are useful to measure the magnitude and direction of current. At the time of the 

sea trial, the ship’s dynamic information, such as position and heading, should be col-

lected until at least 720° of heading change. Two half circles which can be measured after 

180° of heading change from the initial heading are used for estimating magnitude and 

direction of the environmental effect, especially for current. Equation (63) shows the local 

current velocity 𝑉𝑖  which can be defined by the two positions, (𝑥1𝑖, 𝑦1𝑖, 𝑡1𝑖)  and 

(𝑥2𝑖, 𝑦2𝑖 , 𝑡2𝑖), from the half circles: 

63 𝑉𝑖 =
(𝑥2𝑖 − 𝑥1𝑖 , 𝑦2𝑖 − 𝑦1𝑖)

(𝑡2𝑖 − 𝑡1𝑖)
. 

(63) 

From sets of local velocity, the estimated current velocity can be calculated from Equation 

(64): 

64 𝑉𝑐 =
1

𝑛
∑𝑉𝑖

𝑛

𝑖=1

=
1

𝑛
∑

(𝑥2𝑖 − 𝑥1𝑖 , 𝑦2𝑖 − 𝑦1𝑖)

(𝑡2𝑖 − 𝑡1𝑖)

𝑛

𝑖=1

. 
(64) 

The magnitude of the current velocity can be calculated as 

65 
𝑉𝑐 = |𝑉𝑐|. (65) 

The final corrected trajectories of the measurement data can be obtained from the follow-

ing: 

66 
𝑥′(𝑡) = 𝑥(𝑡) − 𝑉𝑐𝑡, (66) 

where 𝑥(𝑡) is the measured position vector and 𝑥′(𝑡) is the corrected position of the ship 

and 𝑥′(𝑡) = 𝑥(𝑡) at 𝑡 = 0.  

Figure 4.4 compares the measured sea trial trajectory and the corrected trajectory. Cor-

rection values are obtained from the measurement of turning manoeuvre, and they are 



 

64 

 

also applied to the measurement of the zig-zag manoeuvre. Both trajectories are corrected 

environmental effects which force the ship shift to the north-east direction. 

Optimizations are carried out with six conditions using four algorithms: a solver ‘fmincon’ 

uses the interior point and the SQP algorithms, a solver ‘fminunc’ uses the Quasi-Newton 

algorithm and a solver ‘fminsearch’ uses the Nelder-Mead algorithm. Algorithms for con-

strained optimization, the interior point and the SQP are also be divided to optimizations 

with and without constraints. As mentioned in Table 4.2, stepwise optimization is carried 

out in the order of the straight motion, the zig-zag manoeuvre and the turning manoeuvre. 

Step 2 and Step 3 change coefficients which are already optimized in the previous step(s), 

prior to starting the main optimization process. 

  

(a) (b)  

Figure 4.4 Comparisons of measurement data and corrected data 

Table 4.7 shows detailed conditions of the optimization for this chapter. Initial values can 

be calculated from the Clarke estimation. Lower and upper bounds apply close value to 0 

or 10 times greater than the initial value. Step 1 conducts optimization without constraints, 

due to simple manoeuvre and relatively small number of variables. Step 2 and 3 apply 

constraints using manoeuvre characteristics, such as overshoot angle and tactical diameter, 

if applicable. 
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Table 4.7 Detailed conditions of optimization 

 Step 1 Step 2 Step 3 

Solver (Algorithm) 

fmincon (interior-point, SQP) 

fminunc (Quasi-Newton) 

fminsearch (Nelder-Mead) 

Initial values 

𝑋𝑢𝑢 -0.0458 𝑌𝑢𝑣 -1.5336 𝑋𝑣𝑟 1.0225 

𝑋𝑢4 -0.3490 𝑌𝑢𝑟   0.3245 𝑌𝑣𝑟  1.7265 

 
𝑁𝑢𝑣 -0.5796 𝑁𝑟𝑟 0.1079 

𝑁𝑢𝑟 -0.2429 𝑁𝑣𝑣 0.8633 

Lower bounds 

𝑋𝑢𝑢 -0.4000 𝑌𝑢𝑣 -15.3360 𝑋𝑣𝑟 0.0001 

𝑋𝑢4 -3.0000 𝑌𝑢𝑟   0.0001 𝑌𝑣𝑟  0.0001 

 
𝑁𝑢𝑣 -5.7960 𝑁𝑟𝑟 0.0001 

𝑁𝑢𝑟 -0.2429 𝑁𝑣𝑣 0.0001 

Upper bounds 

𝑋𝑢𝑢 -0.0001 𝑌𝑢𝑣 -0.0001 𝑋𝑣𝑟 10.0000 

𝑋𝑢4 -0.0001 𝑌𝑢𝑟   3.2450 𝑌𝑣𝑟  17.0000 

 
𝑁𝑢𝑣 -0.0001 𝑁𝑟𝑟 1.0790 

𝑁𝑢𝑟 -0.0001 𝑁𝑣𝑣 8.6330 

Objective function 
Track difference 

Straight motion Zig-zag, 10 deg. Turning, 35 deg. 

Constraints  

(if applicable) 
- First overshoot Tactical diameter 

 

4.5 Optimization results 

Table 4.8 shows Clarke coefficients, which are initial values in the optimization process 

and results of all optimizations at once. Optimized coefficients of step 1, constant speed 

with straight motion, are not different from the Clarke coefficients. In case of the step 2, 

the zig-zag manoeuvre with a rudder angle of 10 degrees, coefficients of yaw moment (𝑁) 

have more variation than coefficients of sway force (𝑌). It relates to the results of the 

sensitivity analysis in the subchapter 4.2 that sensitivity for coefficients of yaw moment 

are greater than the others. Also, it is shown that the algorithms of constrained optimiza-

tion, the interior point and the SQP, have different results according to the presence of 

constraints. This will be discussed later with simulation results using optimized coeffi-

cients. The results of step 3 also show that the coefficient 𝑁𝑟𝑟 which is the most sensible 

one has the biggest variation among variables.  
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Table 4.8 Summarization of Clarke coefficients and optimized coefficients 

Coefficients Clarke 
IP 

(con) 

IP 

(uncon) 

SQP 

(con) 

SQP 

(uncon) 
QN NM 

𝑋𝑢𝑢 -0.0458 -0.0403 -0.0403 -0.0458 -0.0458 -0.0408 -0.0397 

𝑋𝑢4 -0.3490 -0.3490 -0.3490 -0.2323 -0.2323 -0.3480 -0.3575 

𝑌𝑢𝑣 -1.5336 -1.3006 -1.5283 -1.7185 -1.4252 -1.5257 -1.5188 

𝑌𝑢𝑟   0.3245  0.2888  0.2905  0.1780  0.3020  0.2970  0.2919 

𝑁𝑢𝑣 -0.5796 -2.0583 -2.2262 -1.5637 -0.9484 -0.6141 -0.6293 

𝑁𝑢𝑟 -0.2429 -0.7399 -0.7112 -0.4707 -0.2257 -0.1429 -0.1429 

𝑋𝑣𝑟  1.0225   0.7680  0.4968  1.2000  0.0001  0.4167  1.0225 

𝑌𝑣𝑟   1.7265  2.4636  1.4223  1.6924  2.4582  1.8311  1.6099 

𝑁𝑟𝑟  0.1079  0.0623  0.3461  0.1105  0.0172  0.3496  0.1079 

𝑁𝑣𝑣  0.8633  0.6450  0.6232  1.0169  5.5060  0.6120  1.8633 

Remarks 

IP:     Interior point 

SQP: Sequential quadratic programming 

QN:  Quasi-Newton 

NM:  Nelder-Mead 

con: Constrained 

uncon: Unconstrained 

 

Table 4.9 shows manoeuvre characteristics of the reference data and simulations results 

using Clarke coefficients and optimized coefficients. Manoeuvre characteristics of the 

reference data are acquired from the measurement data which have been already corrected 

environmental effects. For the Clarke coefficients, simulation results are directly reflected 

in the results table. The simulation results using optimized coefficients are summarized 

step-by step to see the change of manoeuvring characteristics with step progress. 

The selected manoeuvres for the simulation are the same as the optimization process: 

straight motion with constant speed, zig-zag manoeuvre with a rudder angle of 10 degrees 

and turning manoeuvre with a hard rudder. Manoeuvre characteristics are as follows: ratio 

of sailed distance for the straight motion to ship’s length between perpendiculars 

(Way/LPP), first and second overshoot angles for the zig-zag manoeuvre and advance 

and tactical diameter for the turning manoeuvre. 
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Table 4.9 Manoeuvre characteristics of reference data and simulation results 

 
Straight Zig-zag, 10 degrees Turning, 35degrees 

Way/LPP Overshoot 1 Overshoot 2 Advance Tactical dia. 

Reference 23.4768 7.2 12.7 298.0000 399.5000 

Clarke 23.0435 3.1   4.7 298.0729 430.2624 

IP, step 1 23.4626 3.3   4.7 300.2329 433.8391 

IP (con), step 2 23.4190 7.0 15.2 286.0168 353.8225 

IP (con), step 3 23.4227 6.5 13.5 291.2115 389.6643 

IP (uncon), step 2 23.4200 7.6 16.0 268.0846 336.7742 

IP (uncon), step 3 23.4224 6.9 14.8 296.1285 393.6173 

SQP, step 1 23.4435 3.3   4.6 299.8891 432.6124 

SQP (con), step 2 23.1895 8.8 18.2 245.5009 300.8476 

SQP (con), step 3 23.1896 8.6 17.9 247.0885 305.0851 

SQP (uncon), step 2 22.6818 9.0 19.3 217.6083 270.2148 

SQP (uncon), step 3 23.0396 5.9   8.7 329.6871 590.2585 

QN, step 1 23.4268 3.3   4.6 299.9692 433.4675 

QN, step 2 23.3352 7.3 13.0 222.3280 289.4011 

QN, step 3 23.3541 5.6   8.8 285.9273 435.4688 

NM, step 1 23.4787 3.3   4.6 300.3715 433.6262 

NM, step 2 23.3100 7.9 14.1 219.6220 283.4635 

NM, step 3 23.3281 6.8 11.0 246.2697 361.6117 

Remarks 

IP:     Interior point 

SQP: Sequential quadratic programming 

QN:  Quasi-Newton 

NM:  Nelder-Mead 

con: Constrained 

uncon: Unconstrained 

 

Figure 4.5 compares the manoeuvre characteristic, Way/LPP for the reference data and 

the simulation results. As shown in Table 4.9, Way/LPP for all simulations including 

results of Clarke coefficients are close to the reference data. Results for step 2 of the 

unconstrained SQP are the worst, and it is 3.38% lower than the reference data. It is shown 

that optimized coefficients of later steps can also affect a manoeuvrability of the straight 

motion. 
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Figure 4.5 Comparison of optimization algorithms: straight motion 

For step 2, as shown in Figure 4.6, the difference between the manoeuvre characteristics 

is larger than step 1. Results of the interior point and the Quasi-Newton algorithms are 

closer to the reference data than the rest results. In case of the interior point algorithm, 

the difference between constrained and unconstrained optimization is not large. 

The results of step 3 show no significant difference from the results of step 2. The interior 

point and the Quasi-Newton algorithms have high similarity with the reference data, and 

in the order of the Nelder-Mead and the SQP algorithms. However, for the advance, the 

value for the Clarke coefficients is already close to the reference data. Because of this, 

advance values for the simulation using coefficients of step 1 are also close to the refer-

ence data. This means that the advance is not proper parameter to compare algorithms for 

this reference data. In addition, the advance should not be used as constraints. 
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Figure 4.6 Comparison of optimization algorithms: zig-zag manoeuvre 

 

 

Figure 4.7 Comparison of optimization algorithms: turning manoeuvre 
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Following figures show trajectories for the straight motion and the turning manoeuvre, 

and time history of heading and rudder command, which are mentioned above. Figure 4.8 

contains reference data, the simulation result using Clarke coefficients and simulation 

results using coefficients for all algorithms, only for step 1 results. Results of the straight 

motions are almost the similar with the reference data. 

 

 

Figure 4.8 Comparison of trajectories: straight motion 

 

Figure 4.9 and Figure 4.10 show results of the zig-zag simulation using coefficients of 

the step 2, excluding the results of the SQP and the QN which were worse than the others. 

The reference data and the result of Clarke coefficients are solid lines and the rest results 

are printed as dotted lines. The result of the Clarke coefficients shows clear difference 

from the reference data. In contrast to the first overshoot for optimized results, most sec-

ond overshoot values are greater than the reference data. Simulation result of the interior 

point without constraints fits most well with the reference data. 
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Figure 4.9 Comparison of trajectories: zig-zag motion 

 

 

Figure 4.10 Comparison of heading change: zig-zag manoeuvre 

 

Figure 4.11 shows results of the turning manoeuvre. Similar with the results of step 2, the 

circle of the SQP is significantly greater than both the reference data and other simulation 
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results. As mentioned above, values of the advance are similar with each other excluding 

the value of the SQP. For other algorithms, the shape and diameter of the circles are sim-

ilar, but their positions differ. 

 

Figure 4.11 Comparison of trajectories: turning manoeuvre 

Figure 4.12 to Figure 4.14 compare results of zig-zag manoeuvre using coefficients for 

the results of the optimization step 2 and 3, respectively. In every case, difference of the 

second overshoot angel from the reference from the simulation results for the step 3 is 

smaller than the ones for the step 2. 

Considering the results, the interior point algorithm calculates the best solution for both 

constrained and unconstrained optimization. In the next chapter, unconstrained optimiza-

tion with the interior point algorithm will be applied firstly; after that, if corresponding 

results are not satisfactory, constrained optimization will be tried. 
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Figure 4.12 Comparison of heading change for optimization steps 2 and 3: Interior point algo-

rithm with constraint 

 

 

Figure 4.13 Comparison of heading change for optimization steps 2 and 3: Interior point algo-

rithm without constraint 
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Figure 4.14 Comparison of heading change for optimization steps 2 and 3: Nelder-Mead algo-

rithm 

 

Figure 4.15 to Figure 4.17 show the history of iterations for each step. It seems that the 

‘fmincon’ solver with the interior point algorithm has found optimal coefficients at the 

middle of the whole iterations. However, it takes more iterations to conclude them as a 

final solution. This is because of continuously descending gradients of the objective func-

tion. Regularly the algorithm starts an optimization for a certain coefficient from the 

lower or upper bound, prominent point in the iteration history, but soon the coefficient 

returns to the solution. 
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Figure 4.15 History of iteration: straight motion 

 

Figure 4.16 History of iteration: zig-zag manoeuvre 
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Figure 4.17 History of iterations: turning manoeuvre 

 

4.6 Conclusion 

In this chapter, an optimization problem was set up and its verification was carried out. 

Also, four optimization algorithms were compared to find the best algorithm for estima-

tion of hydrodynamic coefficients. 

The optimization problem consists of variables selection, reference selection for objective 

and constraint functions and optimization condition setting. Setting the optimal number 

of variables can help in making a more effective and faster optimization process. For this, 

optimal variables were selected through comparison of the hydrodynamic coefficients 

using sensitivity analysis and normalization. The reference data were borrowed from a 

set of sea trial data of a training ship, which were conducted and managed by author. The 

raw sea trial data were applied to the final reference data after applying the environmental 

influence correction formulas which are provided by IMO. The optimization conditions 

were set to six versions using four different algorithms. The optimizations were carried 

out stepwise according to the characteristics of each manoeuvre. 
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Most of the optimization results were similar with the reference. This seems to be the 

results of proper optimization problem setting and algorithm selection. Specifically, the 

optimization results fitted to the reference data in the order of the interior point, the Quasi-

Newton, the Nelder-Mead and the SQP algorithms. In the next chapter, all the optimiza-

tions will be carried out using the interior-point algorithm. 
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5. Coefficients estimation for various trim and 

draught conditions 

5.1 Introduction 

This chapter estimates hydrodynamic coefficients considering various trim and draught 

conditions. Firstly, hydrodynamic coefficients are mathematically optimized using sea 

trial data with various trim and draught conditions. By utilizing those coefficients and 

corresponding trim and draught conditions, new coefficients which are for another trim 

and draught condition will be estimated, and simulation results using the new coefficients 

will also be compared with their reference data. 

 

5.2 Optimization problems 

Details of the reference vessel in this chapter are shown in Table 5.1. The vessel is a 4,500 

TEU class container carrier with a length of 294 metres and a maximum draught of 13 

metres. Sea trials were carried out in 2012 by Krüger [32]. 

Table 5.1 Details of the reference vessel 

Type of vessel 4,500 TEU class container carrier 

Length overall [m] 294.12 

Length between perpendiculars [m] 283.20 

Breadth, moulded [m] 32.20 

Depth, moulded [m] 10.85 

Design draught, moulded [m] 12.00 

Scantling draught, moulded [m] 13.00 

Gross tonnage 53,324.00 

Deadweight [ton] 63,510.00 

Full load displacement [ton] 82,496.00 

Type of main engine MAN B&W 9K90MC-C 

Maximum power [KW] 41,040.00 

Maximum speed [kts] 23.70 

Propeller Single, right-handed, fixed-pitch 

 

Table 5.2 summarizes conditions of each sea trial. All five trials are zig-zag manoeuvres, 

and they can be divided into three trim and draught conditions: mean trim 9.35 metres 
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with trim 0.5 metres by stern, mean trim 10 metres with even keel and mean trim 12.875 

metres with trim 0.25 metres by stern. Unlike Chapter 4, all simulations used in this chap-

ter consider the environment influence, wind and currents at the time of sea trials. Time 

histories for each manoeuvre will be presented in 7. 

Table 5.2 Summary of conditions for sea trials 

 Data1 Data2 Data3 Data4 Data5 

Manoeuvre ZZ10P ZZ10S ZZ10S ZZ10P ZZ20S 

Latitude 32.8N 32.0N 10.7N 9.7N 9.7N 

Longitude 119.9W 117.3W 67.2W 79.6W 79.6W 

Heading [deg] 110 110 260 250 250 

RPM [‰] 843 620 676 422 422 

Draught fore [m] 12.75 12.75 10.00 9.10 9.10 

Draught mid [m] 12.55 12.55 10.00 - - 

Draught aft [m] 13.00 13.00 10.00 9.60 9.60 

Wind direction [deg] 270 310 20 50 50 

Wind speed [kts] 12 15 5 15 15 

Current direction [deg] 160.47 251.56 169.50 23.62 23.62 

Current speed [kts] 1.37 0.88 0.28 1.25 1.55 

Water depth [m] >1000 >1000 >1000 >1000 >1000 

 

Table 5.3 shows selection of variables through sensitivity analysis and normalization, 

with the same process as in Chapter 4. However, coefficients for steering with a large 

rudder angle are excluded from variables because all the measurements are zig-zag ma-

noeuvres. The selected variables are the same as those of Chapter 4. 

Table 5.3 Variables on each optimization step 

Step Coefficients Remarks 

1 𝑋𝑢𝑢 , 𝑋𝑢4 Straight motion 

2 𝑌𝑢𝑣 , 𝑌𝑢𝑟 , 𝑁𝑢𝑣 , 𝑁𝑢𝑟 Zig-zag manoeuvre (10 deg.): Small rudder angle 

 

Data 2, 3 and 4 in Table 5.2 which have different trim and draught conditions are opti-

mized first. Table 5.4 summarizes optimization conditions of the data.  
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Table 5.4 Detailed conditions of optimization  

 

Data 2 

(ZZ10S, draught=12.875m, trim=0.25m) 

Data 3 

(ZZ10S, draught=10.00m, trim=0) 

Data 4 

(ZZ10P, draught=9.35m, trim=0.5m) 

Step 1 Step 2 Step 1 Step 2 Step 1 Step 2 

Solver (Algorithm) fmincon (interior-point) 

Initial values 

𝑋𝑢𝑢 -0.0280 𝑌𝑢𝑣 -1.5857 𝑋𝑢𝑢 -0.0373 𝑌𝑢𝑣 -1.3811 𝑋𝑢𝑢 -0.0407 𝑌𝑢𝑣 -1.3947 

𝑋𝑢4 -0.3405 𝑌𝑢𝑟   0.4281 𝑋𝑢4 -0.4534 𝑌𝑢𝑟   0.3820 𝑋𝑢4 -0.4948 𝑌𝑢𝑟   0.3934 

 
𝑁𝑢𝑣 -0.5625 

 
𝑁𝑢𝑣 -0.4401 

 
𝑁𝑢𝑣 -0.3965 

𝑁𝑢𝑟 -0.2675 𝑁𝑢𝑟 -0.2348 𝑁𝑢𝑟 -0.2339 

Lower bounds 

𝑋𝑢𝑢 -0.2800 𝑌𝑢𝑣 -15.8567 𝑋𝑢𝑢 -0.3700 𝑌𝑢𝑣 -13.8110 𝑋𝑢𝑢 -0.4037 𝑌𝑢𝑣 -13.9472 

𝑋𝑢4 -3.4050 𝑌𝑢𝑟   0.0001 𝑋𝑢4 -4.5000 𝑌𝑢𝑟   0.0001 𝑋𝑢4 -4.9485 𝑌𝑢𝑟   0.0001 

 
𝑁𝑢𝑣 -5.6252 

 
𝑁𝑢𝑣 -4.4019 

 
𝑁𝑢𝑣 -3.9654 

𝑁𝑢𝑟 -2.6753 𝑁𝑢𝑟 -2.3480 𝑁𝑢𝑟 -2.3396 

Upper bounds 

𝑋𝑢𝑢 -0.0001 𝑌𝑢𝑣 -0.0001 𝑋𝑢𝑢 -0.0001 𝑌𝑢𝑣 -0.0001 𝑋𝑢𝑢 -0.0001 𝑌𝑢𝑣 -0.0001 

𝑋𝑢4 -0.0001 𝑌𝑢𝑟    4.2813 𝑋𝑢4 -0.0001 𝑌𝑢𝑟   3.8201 𝑋𝑢4 -0.0001 𝑌𝑢𝑟   3.9344 

 
𝑁𝑢𝑣 -0.0001 

 
𝑁𝑢𝑣 -0.0001 

 
𝑁𝑢𝑣 -0.0001 

𝑁𝑢𝑟 -0.0001 𝑁𝑢𝑟 -0.0001 𝑁𝑢𝑟 -0.0001 

Objective function 
Track difference 

Straight motion Zig-zag, 10 deg. Straight motion Zig-zag, 10 deg. Straight motion Zig-zag, 10 deg. 

Constraints None 
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Thereafter, in order to verify the optimization results, data 1 and 5 which have the same 

trim and draught condition with data 2 and 4, respectively. 

 

5.3 Validation of optimization results using other sea trial 

data 

Table 5.5 shows results of each mathematical optimization. In all the data, coefficients of 

step 1 do not show any significant change compared to the Clarke estimation coefficients. 

In contrast, in the case of the coefficients of step 2 which are acting on the y- and z-axis, 

some optimized coefficients have great differences compared to the Clarke estimation 

coefficients. 

Table 5.5 Summarization of Clarke coefficients and optimized coefficients 

Coefficients 
Data 2 Data 3 Data 4 

Clarke Optimized Clarke Optimized Clarke Optimized 

𝑋𝑢𝑢 -0.0280 -0.0250 -0.0373 -0.0515 -0.0407 -0.0665 

𝑋𝑢4 -0.3405 -0.2865 -0.4534 -0.5873 -0.4948 -0.4536 

𝑌𝑢𝑣 -1.5857 -1.9472 -1.3811 -2.2214 -1.3947 -2.2611 

𝑌𝑢𝑟  0.4281  0.3426  0.3820  0.4827  0.3934  0.3919 

𝑁𝑢𝑣 -0.5625 -1.2354 -0.4401 -3.4181 -0.3965 -0.9541 

𝑁𝑢𝑟 -0.2675 -0.2783 -0.2348 -0.6116 -0.2339 -0.2335 

Remarks 

Data 2: ZZ10S, draught=12.875m, trim=0.25m 

Data 3: ZZ10S, draught=10.00m, trim=0 

Data 4: ZZ10P, draught=9.35m, trim=0.5m 

 

Step 1: straight motion (𝑋𝑢𝑢, 𝑋𝑢4),  

Step 2: zig-zag manoeuvre (𝑌𝑢𝑣 , 𝑌𝑢𝑟 , 𝑁𝑢𝑣,𝑁𝑢𝑟) 

 

Table 5.6 shows simulation results using the Clarke coefficients and the optimized coef-

ficients together with the corresponding reference values. All simulation results of each 

step are shown in the table. For the straight motion with constant speed, as in Chapter 4, 

the comparison is based on the manoeuvring characteristic ‘way/LPP’. It is shown that 

the simulation results using the optimized coefficients are much closer to the reference 

data than the result using the Clarke coefficients. 

In the zig-zag test, initial turning time and yaw check time are compared in addition to 

the overshoot angles. The initial turning time is an elapsed time of heading change by 
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initial steering order. The yaw check time can be taken from the point of the first steering 

command to the point of returning to the original heading after the second overshoot. 

Results of step 2 for all data are similar with the reference data compared to the result of 

the Clarke estimation. In the initial turning time and the yaw checking time, the distinction 

between results of the Clarke coefficients and the optimized ones cannot be clearly dis-

tinguished, but in the overshoot angles the difference between the two are obvious. 

Table 5.6 Manoeuvre characteristics for reference data and simulation results 

 
Straight Zig-zag, 10 degrees 

Way/LPP Init. turning Yaw check Overshoot 1 Overshoot 2 

D
at

a 
2
 

Reference 3.53 58 370 6.70 11.80 

Clarke 3.33 82 366 1.87 2.73 

Step 1 3.52 79 319 1.99 2.55 

Step 2 3.52 69 378 5.31 9.66 

D
at

a 
3
 

Reference 5.22 47 279 4.80 7.40 

Clarke 5.58 57 272 1.87 2.51 

Step 1 5.22 64 286 1.68 2.42 

Step 2 5.22 38 265 3.63 7.13 

D
at

a 
4
 

Reference 3.52 78 398 3.20 4.60 

Clarke 3.89 89 414 1.71 1.79 

Step 1 3.50 93 438 1.53 1.72 

Step 2 3.51 87 423 2.98 3.90 

Remarks 

Data 2: ZZ10S, draught=12.875m, trim=0.25m 

Data 3: ZZ10S, draught=10.00m, trim=0 

Data 4: ZZ10P, draught=9.35m, trim=0.5m 

 

Way/LPP:      Distance from start point/LPP 

Init. turning:  Initial turning time [s] 

Yaw check:   Yaw checking time [s] 

Overshoot 1: First overshoot angle [deg] 

Overshoot 2: Second overshoot angle [deg] 

 

Figure 5.1 to Table 5.6 show both track difference and time history of heading for the 

results in the above table. As noted earlier, the simulation results using coefficients of the 

optimization step 2 are the most similar with the reference data. The simulation results 

using coefficients of the Clarke estimation and the optimization step 1 show no significant 

difference to each other in the zig-zag manoeuvre.  
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Figure 5.1 Comparison of heading change between sea trial data 2 and simulation results 

 

 

Figure 5.2 Comparison of trajectories between sea trial data 2 and simulation results 
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Figure 5.3 Comparison of heading change between sea trial data 3 and simulation results 

 

 

Figure 5.4 Comparison of trajectories between sea trial data 3 and simulation results 
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Figure 5.5 Comparison of heading change between sea trial data 4 and simulation results 

 

 

Figure 5.6 Comparison of trajectories between sea trial data 4 and simulation results 

 

As mentioned in Table 5.2, the five sea trial data consist of three trim and draught condi-

tions. The conditions of data 1 and data 2 are the same, and data 4 and 5 are the same. 
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Therefore, as a primary verification for the optimization results presented above, the 

tuned coefficients based on the data 2 and the data 4 are used in the simulations for the 

data 1 and 5, respectively. This verification is performed using the sea trial data 1 and 5, 

and each data is compared with three simulation results. The hydrodynamic coefficients 

used in the simulations are as follows: 

- calculated coefficients by the formulas of Clarke estimation, 

- tuned coefficients based on the data 2 and 4 (provided in Table 5.5) and 

- tuned coefficients based on the data 1 and 5. 

In other words, this procedure is to verify whether the tuned coefficients of the specific 

data can be applied to simulations for other data, if there is sea trial data for the same trim 

and draft conditions. 

Table 5.7 and Table 5.8 present three sets of coefficients as mentioned above, respectively. 

𝑋𝑢𝑢 for the optimization result of the data 1 differs from the Clarke coefficient, while the 

result of data 2 is close to the Clarke’s. 𝑋𝑢4, on the other hand, showed that the result of 

data 1 is close to the Clarke coefficient. For the coefficients acting on the y- and z-axes, 

only 𝑁𝑢𝑣 for the both optimization results show a large difference with the Clarke coeffi-

cients; and for the remaining coefficients, the two optimization results are similar. 

 

Table 5.7 Comparison of optimized coefficients for two sea trial data which have the same trim 

and draught condition (Case of the data 1 and 2) 

Coefficients Clarke 
Optimization using 

Data 1 Data 2 

𝑋𝑢𝑢 -0.0280 -0.0412 -0.0250 

𝑋𝑢4 -0.3405 -0.3486 -0.2865 

𝑌𝑢𝑣 -1.5857 -1.6097 -1.9472 

𝑌𝑢𝑟 0.4281 0.4530 0.3426 

𝑁𝑢𝑣 -0.5625 -1.3288 -1.2354 

𝑁𝑢𝑟 -0.2675 -0.2740 -0.2783 

Remarks 

Data 1: ZZ10P, draught=12.875m, trim=0.25m 

Data 2: ZZ10S, draught=12.875m, trim=0.25m 

 

Step 1: straight motion (𝑋𝑢𝑢, 𝑋𝑢4),  

Step 2: zig-zag manoeuvre (𝑌𝑢𝑣 , 𝑌𝑢𝑟 , 𝑁𝑢𝑣,𝑁𝑢𝑟) 
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Table 5.8 Comparison of optimized coefficients for two sea trial data which have the same trim 

and draught condition (Case of the data 4 and 5) 

Coefficients Clarke 
Optimization using 

Data 4 Data 5 

𝑋𝑢𝑢 -0.0407 -0.0665 -0.0598 

𝑋𝑢4 -0.4948 -0.4536 -0.8876 

𝑌𝑢𝑣 -1.3947 -2.2611 -2.3852 

𝑌𝑢𝑟 0.3934 0.3919 0.4110 

𝑁𝑢𝑣 -0.3965 -0.9541 -1.2228 

𝑁𝑢𝑟 -0.2339 -0.2335 -0.2548 

Remarks 

Data 4: ZZ10P, draught=9.35m, trim=0.50m 

Data 5: ZZ20S, draught=9.35m, trim=0.50m 

 

Step 1: straight motion (𝑋𝑢𝑢, 𝑋𝑢4),  

Step 2: zig-zag manoeuvre (𝑌𝑢𝑣 , 𝑌𝑢𝑟 , 𝑁𝑢𝑣,𝑁𝑢𝑟) 

 

In case of the data 4 and 5, the 𝑋𝑢𝑢 for both optimization results are similar and differ 

from the Clarke coefficient. 𝑋𝑢4 for the result of data 5 shows a large difference to the 

Clarke coefficient, whereas the coefficient for the result of data 4 is similar with the 

Clarke coefficient. The coefficients acting on the y- and z-axes for the both optimization 

results are close to each other. Among them, 𝑌𝑢𝑣 and 𝑁𝑢𝑣 show a significant difference 

compared with the Clarke coefficients. Comparisons of the manoeuvre results according 

to these optimization results are shown in the following table and figures. 

Table 5.9 compares manoeuvre characteristics for the simulation results using the coeffi-

cients presented above and for the reference data. Contents for the manoeuvre character-

istics are the same as those in Table 5.6. Each term in the table means as follows: 

- ‘Reference’ means manoeuvre characteristic of the sea trial for the data 1. 

- ‘Clarke’ represents results of simulation using coefficients calculated by Clarke 

estimation.  

- ‘Data 1’ shows results of simulation using optimized coefficients based on the 

data 1. 

- ‘Data 2’ shows results of simulation using optimized coefficients based on the 

data 2. 

All simulations are carried out under the same conditions as the sea trial data 1. The results 

of the straight motion with constant speed show that the simulation result of the data 1 is 



 

88 

 

closer to the reference data than the result of the data 2. This can be attributed to the 

difference in the optimized coefficients as shown in Table 5.7. In addition, since 𝑋𝑢𝑢 

showed a higher sensitivity, the optimization result is much closer to the reference data. 

In the zig-zag manoeuvres, both the optimization and the validation results are similar 

with each other, and they are close to the reference data. As shown before, it is considered 

impossible to compare the simulation results using the initial turning time and the yaw 

checking time. The above results show that the change of coefficients acting on the x-axis 

do not have influence on the zig-zag manoeuvre. Also, the coefficients optimized with 

certain sea trial data are valid for other sea trials with the same trim and draught condition.  

 

Table 5.9 Comparison of manoeuvre characteristics for simulation results and sea trial data 

(Case of the data 1 and 2) 

 
Straight Zig-zag, 10 degrees 

Way/LPP Init. turning Yaw check Overshoot 1 Overshoot 2 

Reference 4.42 46 293 6.00 12.30 

Clarke 4.70 76 267 2.34 2.26 

Data 1 4.42 48 290 6.51 8.45 

Data 2 4.80 51 278 6.27 8.28 

Remarks 

Data 1: ZZ10P, draught=12.875m, trim=0.25m 

Data 2: ZZ10S, draught=12.875m, trim=0.25m 

 

Way/LPP:      Distance from start point/LPP 

Init. turning:  Initial turning time [s] 

Yaw check:   Yaw checking time [s] 

Overshoot 1: First overshoot angle [deg] 

Overshoot 2: Second overshoot angle [deg] 

 

Table 5.10 also compares manoeuvre characteristics for the simulation results using the 

coefficients and for the sea trial data 5. Detailed conditions and definitions are the same 

as the Table 5.9. Comparison results show similar trend to those of data 1. In the case of 

the straight motion with constant speed, both the optimization result and the validation 

results have the same simulation results as the reference data. Each result has a different 

𝑋𝑢4, but this coefficient does not have a large influence on the result of the straight motion. 

It can be confirmed again that the influence of 𝑋𝑢𝑢 is larger when the result of data 1 and 

the results of data 5 are considered together. In the case of zig-zag manoeuvre, it can be 

seen that the validation result is closer to the reference data than the optimization result. 
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Table 5.10 Comparison of manoeuvre characteristics for simulation results and sea trial data 

(Case of the data 4 and 5) 

 
Straight Zig-zag, 20 degrees 

Way/LPP Init. turning Yaw check Overshoot 1 Overshoot 2 

Reference 1.96 81 405 5.60 6.10 

Clarke 2.15 93 441 3.21 3.25 

Data 5 1.95 80 429 6.24 7.15 

Data 4 1.93 84 436 5.59 6.26 

Remarks 

Data 4: ZZ10P, draught=9.35m, trim=0.50m 

Data 5: ZZ20S, draught=9.35m, trim=0.50m 

 

Way/LPP:      Distance from start point/LPP 

Init. turning:  Initial turning time [s] 

Yaw check:   Yaw checking time [s] 

Overshoot 1: First overshoot angle [deg] 

Overshoot 2: Second overshoot angle [deg] 

 

Figure 5.7 to Figure 5.10 compare the time history of heading for the results from Table 

5.9. For data 1, the first overshoot angle for both the optimization result and the validation 

result are similar with the reference data, while their second overshoot angle is smaller 

than the reference data. For data 5, both the first overshoot and second overshoot angles 

for all results are similar with the reference data. 

 

Figure 5.7 Comparison of heading change between sea trial data 1 and various simulations 
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Figure 5.8 Comparison of trajectories between sea trial data 1 and various simulations 

 

 

Figure 5.9 Comparison of heading change between sea trial data 5 and various simulations 
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Figure 5.10 Comparison of trajectories between sea trial data 5 and various simulations 

 

5.4 Estimation of hydrodynamic coefficients considering vari-

ous trim and draught conditions 

Based on the optimization results obtained in Subchapter 5.3, estimation of the hydrody-

namic coefficients for a certain trim and draught condition that are not included in the sea 

trial conditions are carried out. Also, a corresponding simulation results are compared 

with the reference data. 

Estimation of the hydrodynamic coefficient considering various trim and draught condi-

tions is basically based on the Clarke estimation formulas. In addition, final coefficients 

can be estimated by adding additional correction values using existing optimization re-

sults from sea trials. The validation of the estimated coefficients is performed by consid-

ering the data obtained in the sea trial booklet of the reference vessel. 

The coefficients estimation formulas can be constructed as follows. First of all, the esti-

mation formulas which can cope with various trim and draught conditions require a spe-

cific reference trim and draught condition.  

In this study, the condition of the data 3 which is 10 metres of the mean draught and even 

keel condition is set as a reference condition. The new coefficients can be obtained by 
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adding correction values for differences of trim and draught between the desired and the 

reference condition. 

67 
𝐶𝑛𝑒𝑤 = 𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.𝑡𝑢𝑛𝑒𝑑 + ∆𝐶𝑑𝑟𝑎𝑢𝑔ℎ𝑡 + ∆𝐶𝑡𝑟𝑖𝑚 

 

∆𝐶𝑑𝑟𝑎𝑢𝑔ℎ𝑡 = (𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.𝑐𝑙𝑎𝑟𝑘𝑒 − 𝐶𝑑𝑒𝑠𝑖𝑟𝑒𝑑.𝑑𝑟𝑎𝑢𝑔ℎ𝑡) ∗ 𝛾𝑑𝑟𝑎𝑢𝑔ℎ𝑡 

∆𝐶𝑡𝑟𝑖𝑚       = (𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.𝑐𝑙𝑎𝑟𝑘𝑒 − 𝐶𝑑𝑒𝑠𝑖𝑟𝑒𝑑.𝑡𝑟𝑖𝑚) ∗ 𝛾𝑡𝑟𝑖𝑚 

(67) 

where 

- 𝐶𝑛𝑒𝑤 is a finally tuned coefficient; 

- 𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.𝑡𝑢𝑛𝑒𝑑 is a tuned coefficient by mathematical optimization process for the ref-

erence trim and draught condition; 

- 𝐶𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒.𝑐𝑙𝑎𝑟𝑘𝑒 is a calculated coefficient by the Clarke estimation formulas for the 

reference trim and draught condition; 

- 𝐶𝑑𝑒𝑠𝑖𝑟𝑒𝑑.𝑑𝑟𝑎𝑢𝑔ℎ𝑡 is a calculated coefficient by the Clarke estimation formulas for the de-

sired draught condition, but trim is the same with the reference condition;  

- 𝐶𝑑𝑒𝑠𝑖𝑟𝑒𝑑.𝑡𝑟𝑖𝑚 is a calculated coefficient by the Clarke estimation formulas for the desired 

trim condition, but draught is the same with the reference condition;  

- 𝛾𝑑𝑟𝑎𝑢𝑔ℎ𝑡 and 𝛾𝑡𝑟𝑖𝑚 are correction values considering coefficients variation with draught 

and trim, respectively; 

- ∆𝐶𝑑𝑟𝑎𝑢𝑔ℎ𝑡 is difference between 𝐶𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑.𝑐𝑙𝑎𝑟𝑘𝑒 and 𝐶𝑎𝑐𝑡𝑢𝑎𝑙.𝑑𝑟𝑎𝑢𝑔ℎ𝑡, with applying the 

correction value, and; 

- ∆𝐶𝑡𝑟𝑖𝑚 is difference between 𝐶𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑.𝑐𝑙𝑎𝑟𝑘𝑒 and 𝐶𝑎𝑐𝑡𝑢𝑎𝑙.𝑡𝑟𝑖𝑚, with applying the cor-

rection value. 

 

To comply with the form of equation (21), a correction value or a lookup table must be 

created that can consider trim and draught simultaneously. However, since the number of 

samples of the sea trial data used in this study is small, this study sets correction values 

for trim and draught separately. 

Here states an example of application of equation (67) to a desired condition, 11.85m of 

mean draught (D) and 0.1m of trim (t) by the stern, which is a condition in the sea trial 

booklet of the model vessel. We have now three trim and draught conditions for the sea 
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trials - D=9.35m t=0.5m, D=10.00m t=0m and D=12.875m t=0.25m - and one of them 

should be the reference condition. The condition of 10.00m of mean draught and even 

keel condition is chosen as the reference condition for this case. Thus equation (67) can 

be applied as follows: 

68 
𝐶𝑛𝑒𝑤,𝐷=11.85𝑚,𝑡=0.1𝑚 = 𝐶𝑡𝑢𝑛𝑒𝑑,𝐷=10.00𝑚,𝑡=0 + ∆𝐶𝑑𝑟𝑎𝑢𝑔ℎ𝑡 + ∆𝐶𝑡𝑟𝑖𝑚 

 

∆𝐶𝑑𝑟𝑎𝑢𝑔ℎ𝑡 = (𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=10.00𝑚,𝑡=0 − 𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=11.85𝑚,𝑡=0) ∗ 𝛾𝑑𝑟𝑎𝑢𝑔ℎ𝑡 

∆𝐶𝑡𝑟𝑖𝑚       = (𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=10.00𝑚,𝑡=0 − 𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=10.00𝑚,𝑡=0.1𝑚) ∗ 𝛾𝑡𝑟𝑖𝑚 

 

[
𝛾𝑑𝑟𝑎𝑢𝑔ℎ𝑡

𝛾𝑡𝑟𝑖𝑚
] = [

𝐶𝐶𝑙𝑎𝑟𝑘𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷1 𝐶𝐶𝑙𝑎𝑟𝑘𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡1

𝐶𝐶𝑙𝑎𝑟𝑘𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷2 𝐶𝐶𝑙𝑎𝑟𝑘𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡2
]
−1

∗ [
𝐶𝑡𝑢𝑛𝑒𝑑 1

𝐶𝑡𝑢𝑛𝑒𝑑 2
] 

 

𝐶𝐶𝑙𝑎𝑟𝑘𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷1 = 𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=10.00𝑚,𝑡=0 − 𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=9.35𝑚,𝑡=0 

𝐶𝐶𝑙𝑎𝑟𝑘𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐷2 = 𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=10.00𝑚,𝑡=0 − 𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=12.875𝑚,𝑡=0 

𝐶𝐶𝑙𝑎𝑟𝑘𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡1 = 𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=10.00𝑚,𝑡=0 − 𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=10.00𝑚,𝑡=0.5𝑚 

𝐶𝐶𝑙𝑎𝑟𝑘𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡2 = 𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=10.00𝑚,𝑡=0 − 𝐶𝐶𝑙𝑎𝑟𝑘𝑒,𝐷=10.00𝑚,𝑡=0.25𝑚 

𝐶𝑡𝑢𝑛𝑒𝑑 1 = 𝐶𝑡𝑢𝑛𝑒𝑑,𝐷=10.00𝑚,𝑡=0 − 𝐶𝑡𝑢𝑛𝑒𝑑,𝐷=9.35𝑚,𝑡=0.5𝑚 

𝐶𝑡𝑢𝑛𝑒𝑑 2 = 𝐶𝑡𝑢𝑛𝑒𝑑,𝐷=10.00𝑚,𝑡=0 − 𝐶𝑡𝑢𝑛𝑒𝑑,𝐷=12.875𝑚,𝑡=0.25𝑚 

(68) 

 

For the coefficients acting on the 𝑥-axis, 𝑋𝑢𝑢 and 𝑋𝑢4, are affected by nominal resistance 

and nominal speed, and estimation of them in this case can be provided by second order 

curve fitting from three sets of tuned coefficients. Figure 5.11 shows results of curve 

fitting and Table 5.11 presents calculated correction values for the coefficients to be esti-

mated. 

Table 5.11 Correction values for estimation formulae which are based on three sea trial meas-

urements 

 Correction value Remarks 

𝑋𝑢𝑢 [-0.0037, 0.0952, -0.6305] Second order fitting 

[B2, B1, Intercept] 𝑋𝑢4 [0.0955, -2.0531, 10.3964] 

𝛾𝑑𝑟𝑎𝑢𝑔ℎ𝑡  [-1.3953, 0.8239, 15.4710, 10.0599] for 

[𝑌𝑢𝑣, 𝑌𝑢𝑟, 𝑁𝑢𝑣, 𝑁𝑢𝑟] 𝛾𝑡𝑟𝑖𝑚 [-0.3713, -11.2893, 224.6883, -184.9057] 
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Figure 5.11 Results of curve fitting for 𝑋𝑢𝑢 and 𝑋𝑢4 

 

Table 5.12 presents environmental conditions for the corresponding sea trial for valida-

tion of the estimation formulae, and it is named as ‘Data 6’.  

 

Table 5.12 Environmental conditions for the sea trial for validation of the estimation formulae 

 Data6 

Manoeuvre ZZ20S 

Heading [deg] 176.6 

Draught fore [m] 11.80 

Draught aft [m] 11.90 

Wind direction [deg] 263.8 

Wind speed [kts] 11.6 

Current direction [deg] 181.4 

Current speed [kts] 0.4 

Water depth [m] 250 

 

Table 5.13 compares the Clarke with the coefficients estimated by the above formulas. 

For the straight motion with constant speed, both estimation results differ from each other. 
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The coefficients acting on y- and z-axes also show a large difference for 𝑌𝑢𝑣 and 𝑁𝑢𝑣, as 

well as the results of the previous optimization. 

 

Table 5.13 Comparison of coefficients between Clarke estimation and suggested formulas 

𝑇𝑚=11.85m 

𝑡=0.1m 
Clarke 

Estimation 

formula 

𝑋𝑢𝑢 -0.0304 -0.0260 

𝑋𝑢4 -0.3699 -0.5263 

𝑌𝑢𝑣 -1.4991 -2.0650 

𝑌𝑢𝑟  0.4056 0.4649 

𝑁𝑢𝑣 -0.5144 -3.7873 

𝑁𝑢𝑟 -0.2527 -0.6562 

 

Table 5.14 compares the simulation results for the Clarke coefficients and the estimated 

coefficients with the reference data. Because the results of the straight motion for the sea 

trial booklet cannot be obtained, only the results of the zig-zag manoeuvre of the reference 

data are compared with the two simulation results. In the straight motion, there was no 

difference between the two simulation results. In the case of the zig-zag manoeuvre, the 

initial turning time for the Clarke coefficient is closer to the reference data than the one 

of the estimation formulas, but this initial turning time cannot be given meaning that it is 

not suitable for comparison as shown in the previous results. In the case of the overshoot 

angles, the two simulation results show a significant difference. Compared to the simula-

tion result for the Clarke coefficients, both the first and the second overshoot angles of 

the estimation formulas are quite similar with the reference data. On the basis of this, it 

can be seen that the coefficients using the newly proposed estimation formulas well re-

flect the reference data. 

Figure 5.12 shows the results of the above table as time history of heading. Because there 

is no raw data for the reference, the figure combines two layers of the simulation results 

of both the Clarke coefficients and the estimated formulas and an image of the sea trial 

booklet, via synchronization of the x- and y-axes. As described above, the simulation 

result for the Clarke coefficients differs significantly from the reference data, while the 

results for the estimation formulas appear to have heading changes similar with the refer-

ence data. 
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Table 5.14 Comparison of manoeuvre characteristics for the simulation results of Clarke estima-

tion and suggested formula 

 
Straight Zig-zag, 20 degrees 

Way/LPP Init. turning Yaw check Overshoot 1 Overshoot 2 

Reference - 53 278 8.8 13.7 

Clarke 28.5491 56 285 3.4 6.8 

Estimation 28.6848 49 287 9.3 19.2 

Remarks 

Way/LPP:      Distance from start point/LPP 

Init. turning:  Initial turning time [s] 

Yaw check:   Yaw checking time [s] 

Overshoot 1: First overshoot angle [deg] 

Overshoot 2: Second overshoot angle [deg] 

 

Estimation:      Hydrodynamic coefficients using suggested estimation formulas 

 

 

Figure 5.12 Comparison of heading change for the simulation results of Clarke estimation and 

suggested formula 

 

5.5 Conclusion 

In this chapter, five sea trial sets of data were optimized and they were mutually validated. 

Also, formulas for estimating the hydrodynamic coefficients for additional trim and 

draught conditions were proposed based on the optimized coefficients. 
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The sea trial data had three trim and draught conditions and the data 2,3, and 4, which 

have different trim and draught conditions, are firstly optimized. Optimization results for 

data 2 and 4 were verified using data 1 and the data 5, respectively. Validation results 

showed that any optimization results under the same trim and draught conditions can have 

mutually similar simulations results. As a result, the simulation results for both the ‘opti-

mization’ result and the ‘validation’ result were much similar with the reference data than 

the result for the Clarke coefficients. 

For estimating coefficients for additional trim and draught condition, formulas for cor-

rection values to be added to the existing Clarke estimation formulas were proposed. One 

of the sea trial conditions was set as the reference condition, and the correction values 

were obtained using all the optimization results. Then the difference of each trim and 

draught were added to obtain a new coefficient. Simulation results using the coefficient 

from the above process showed a similarity to the reference data by comparing the simu-

lation results for Clarke estimation with the same conditions. 

The experiment results were not possible to support the theoretical background of the 

correlation between the change of trim and draught conditions and ship’s manoeuvrability, 

as stated in the subchapter 2.3, due to the limitation of the sample data configuration. In 

addition, the proposed method is not yet complete because there was only one validation., 

Further validations using an additional reference vessel and its trials or more samples on 

an existing reference vessel are still required for higher reliability of this proposal. 
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6. Conclusion 

In this paper, full-scale sea trials were performed and the system identification method 

were used to estimate the ship’s hydrodynamic coefficients. Based on these results, this 

study proposed a new equation for estimating the coefficients considering various trim 

and draught conditions and this equation can supplement existing estimation formulas for 

the hydrodynamic coefficients. 

Identification of appropriate hydrodynamic coefficients is an important and a fundamen-

tal element for predicting of analysing ship’s manoeuvrability. Several experimental and 

theoretical researches for this have been conducted for decades. 

Chinarro classified modelling techniques as priori, posteriori and intermediate modelling 

and he defined the system identification method as a posteriori or an intermediate method 

for a dynamic system which requires to observe input and output from experimental or 

measured data [66]. This method can also be applied to estimate the hydrodynamic coef-

ficients for ship’s equation of motions. Especially for the existing ships, which can con-

duct sea trial, this method is the most reasonable method to estimate the hydrodynamic 

coefficients. This is the biggest difference compared to the model test and CFD methods 

for the ships under construction, especially in the early design stage. 

In this study, the optimization toolbox in MATLAB was used to get optimized hydrody-

namic coefficients. In the preparation and verification phased for the setting of optimiza-

tion problems, four algorithms with six versions were applied to figure out the best algo-

rithm for this study. Those optimization results were utilized to the simulation and they 

were compared with reference data and simulation results using Clarke coefficients. The 

reference data for this phase were obtained from the sea trial using a training ship and 

these data were calibrated to consider environmental influence. The initial values for each 

optimization were set using the Clarke estimation. The optimization results showed that 

most results are similar with the reference. The optimization results fitted to the reference 

data in the order of the interior point, the Quasi-Newton, the Nelder Mead and the SQP 

algorithm.  

Based on the above results, in the final validation phase, optimization and proposal of 

new estimation formula were conducted considering various trim and draught conditions. 

In this phase, the interior point algorithm was used for all optimization process according 

to the results of the previous phase.  
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The reference data, five zig-zag manoeuvres with three different trim and draught condi-

tions, were acquired from the sea trials using a 4,500 TEU class container vessel. The 

optimization results showed that any optimization results under the same trim and draught 

condition could present mutually similar simulation results. Also, those simulation results 

fitted to their corresponding reference data better than the simulation results using Clarke 

coefficients. 

Based on the optimization results, formulas for correction values to be added to the exist-

ing Clarke estimation formulas were proposed. One of the sea trial condition was set as 

the reference condition, and the correction values were obtained using all the optimization 

results. Then the difference of each trim and draught were added to obtain a new coeffi-

cient. Simulation results using the coefficient from the above process showed a similarity 

to the reference data by comparing the simulation results for Clarke estimation with the 

same conditions.  

This study was conducted as a part of the modelling method for existing ships rather than 

ships under construction. For this purpose, the full-scale sea trial using a target vessel and 

following system identification method were used to estimate hydrodynamic coefficients. 

The overall results were satisfactory compared to the coefficients using existing empirical 

estimation method. Based on this an updated estimation formula was also suggested. 

However, this optimization procedure and suggested formula need more validation with 

additional sea trials and reference vessels. Through this, the reliability for the proposed 

idea will be increased. 
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Appendix A. Details of manoeuvres for chapter 5 

Time histories of five manoeuvres in the chapter 5 are presented in this appendix. All data 

are presented by Caspar M. Krüger. 

Appendix A.1 Time history for data 1 

 

Time  

[sec] 

Heading  

[deg] 

Speed 

[kts] 

Rudder  

[deg] 
Comment 

Δ Heading 

[deg] 

17:20:00 110.0 19.70 0.0 initial conditions (UTC)  

+0 110.0 19.70 0.0 start manoeuvre, 10° to port 0.00 

   -10.0 rudder is 10° to port  

+38 100.0 19.30 -10.0 counter rudder to starboard 10° -10.00 

   10.0 rudder is 10° to starboard  

+130 92.1 18.80 10.0 1. overshoot angle (ROT=0) -17.90 

+209 100.0 18.80 10.0 passing initial heading-10° -10.00 

+231 110.0 18.90 10.0 passing initial heading 0.00 

+250 120.0 18.50 10.0 counter rudder to port 10° 10.00 

   -10.0 rudder is 10° to port  

+336 130.3 18.20 -10.0 2. overshoot angle (ROT=0) 20.30 

+430 120.0 18.40 -10.0 passing initial heading+10° 10.00 

+448 110.0 18.00 -10.0 passing initial heading 0.00 

+507 100.0 17.60 -10.0 counter rudder to starboard -10.00 

   10.0 rudder is 10° to starboard  

+602 86.8 17.0 10.0 3. overshoot angle (ROT=0) 23.20 

   10.0 passing initial heading-10° -10.00 

   10.0 passing initial heading 0.00 

   10.0 counter rudder to port 10.00 

   -10.0 rudder is 10° to port  

   -10.0 4. overshoot angle (ROT=0)  

   -10.0 passing initial heading+10° 10.00 

   -10.0 meet her 0.00 
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Appendix A.2 Time history for data 2 

 

Time  

[sec] 

Heading  

[deg] 

Speed 

[kts] 

Rudder  

[deg] 
Comment 

Δ Heading 

[deg] 

00:27:00   0.0 initial conditions (UTC)  

+0 110.0 15.8 0.0 start manoeuvre, 10° to starboard 0.0 

+7 110.0 15.8 10.0 rudder is 10° to starboard 0.0 

+58 120.0 15.8 10.0 counter rudder to port 10° 10.0 

+106 120.0 15.8 -10.0 rudder is 10° to port 10.0 

+140 126.7 15.6 -10.0 1. overshoot angle (ROT=0) 16.7 

+236 120.0 15.5 -10.0 passing initial heading+10° 10.0 

+304 110.0 15.3 -10.0 passing initial heading 0.0 

+327 100.0 14.8 -10.0 counter rudder to starboard 10° -10.0 

+333 99.0 14.8 10.0 rudder is 10° to starboard -11.0 

+440 88.2 14.2 10.0 2. overshoot angle (ROT=0) -21.8 

+552 100.0 14.7 10.0 passing initial heading-10° -10.0 

+620 110.0 14.8 10.0 passing initial heading 0.0 

+643 120.0 14.6 10.0 counter rudder to port 10.0 

+648 121.0 14.6 -10.0 rudder is 10° to port 11.0 

+750 130.1 14.6 -10.0 3. overshoot angle (ROT=0) 20.1 

+850 120.0 14.8 -10.0 passing initial heading+10° 10.0 

+917 110.0 14.6 -10.0 passing initial heading 0.0 

+939 100.0 14.1 -10.0 counter rudder to starboard -10.0 

+946 96.0 14.1 10.0 rudder is 10° to starboard -14.0 

+1055 87.7 13.8 10.0 4. overshoot angle (ROT=0) -22.3 

+1212 100.0 14.4 10.0 passing initial heading-10° -10.0 

   10.0 meet her  
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Appendix A.3 Time history for data 3 

 

Time  

[sec] 

Heading  

[deg] 

Speed 

[kts] 

Rudder  

[deg] 
Comment 

Δ Heading 

[deg] 

17:22:00   0.0 initial conditions (UTC)  

+0 260.0 16.50 0.0 start manoeuvre, 10° to starboard 0.0 

+3 260.0 16.50 10.0 rudder is 10° to starboard 0.0 

+46 270.0 16.50 10.0 counter rudder to port 10° 10.0 

+52 272.0 16.40 -10.0 rudder is 10° to port 12.0 

+113 274.9 16.20 -10.0 1. overshoot angle (ROT=0) 14.9 

+148 270.0 16.10 -10.0 passing initial heading+10° 10.0 

+218 260.0 15.70 -10.0 passing initial heading 0.0 

+242 250.0 15.30 -10.0 counter rudder to starboard 10° -10.0 

+246 248.0 25.30 10.0 rudder is 10° to starboard -12.0 

+324 242.5 14.80 10.0 2. overshoot angle (ROT=0) -17.5 

+408 250.0 15.00 10.0 passing initial heading-10° -10.0 

+438 260.0 15.20 10.0 passing initial heading 0.0 

+503 270.0 15.10 10.0 counter rudder to port 10.0 

+508 272.0 15.10 -10.0 rudder is 10° to port 12.0 

+534 275.1 15.00 -10.0 3. overshoot angle (ROT=0) 15.1 

+611 270.0 15.10 -10.0 passing initial heading+10° 10.0 

+640 260.0 15.00 -10.0 passing initial heading 0.0 

+704 250.0 14.60 -10.0 counter rudder to starboard -10.0 

+709 247.0 14.50 10.0 rudder is 10° to starboard -13.0 

+745 242.7 14.20 10.0 4. overshoot angle (ROT=0) -17.3 

+831 250.0 15.10 10.0 passing initial heading-10° -10.0 

+900 260.0 14.90 10.0 meet her 0.0 
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Appendix A.4 Time history for data 4 

 

Time  

[sec] 

Heading  

[deg] 

Speed 

[kts] 

Rudder  

[deg] 
Comment 

Δ Heading 

[deg] 

17:36:57   0.0 initial conditions (UTC)  

+0 250.0 10.60 0.0 start manoeuvre, 10° to port 0.0 

+4 250.0  -10.0 rudder is 10° to port 0.0 

+117 240.0 10.50 -10.0 counter rudder to starboard 10° -10.0 

+121 240.0 10.40 10.0 rudder is 10° to starboard -10.0 

+200 236.8 10.30 10.0 1. overshoot angle (ROT=0) -13.0 

+234 240.0 10.20 10.0 passing initial heading-10° -10.0 

+324 250.0 10.20 10.0 passing initial heading 0.0 

+405 260.0 10.00 10.0 counter rudder to port 10° 10.0 

+409 262.0 10.00 -10.0 rudder is 10° to port 12.0 

+446 264.6 9.90 -10.0 2. overshoot angle (ROT=0) 15.0 

+545 260.0 9.90 -10.0 passing initial heading+10° 10.0 

+637 250.0 9.70 -10.0 passing initial heading 0.0 

+716 240.0 9.60 -10.0 counter rudder to starboard -10.0 

+720 239.0 9.40 10.0 rudder is 10° to starboard -11.0 

+807 234.9 9.50 10.0 3. overshoot angle (ROT=0) -15.0 

+858 240.0 9.60 10.0 passing initial heading-10° -10.0 

+945 250.0 9.70 10.0 passing initial heading 0.0 

+1025 260.0 9.60 10.0 counter rudder to port 10.0 

+1029 261.0 9.70 -10.0 rudder is 10° to port 11.0 

+1111 264.3 9.50 -10.0 4. overshoot angle (ROT=0) 14.0 

+1203 260.0 9.70 -10.0 passing initial heading+10° 10.0 

+1255 250.0 9.70 -10.0 meet her 0.0 

 

  



 

109 

 

Appendix A.5 Time history for data 5 

 

Time  

[sec] 

Heading  

[deg] 

Speed 

[kts] 

Rudder  

[deg] 
Comment 

Δ Heading 

[deg] 

18:03:57   0.0 initial conditions (UTC)  

+0 250.0 10.50 0.0 start manoeuvre, 20° to starboard 0.0 

+5 250.0 10.50 20.0 rudder is 20° to starboard 0.0 

+121 270.0 10.00 20.0 counter rudder to port 20 20.0 

+129 273.0 9.90 -20.0 rudder is 20° to port 23.0 

+152 275.5 9.50 -20.0 1. overshoot angle (ROT=0) 25.5 

+231 260.0 9.50 -20.0 passing initial heading+20° 10.0 

+331 250.0 9.00 -20.0 passing initial heading 0.0 

+419 230.0 8.40 -20.0 counter rudder to starboard 20° -20.0 

+430 227.0 8.40 20.0 rudder is 20° to starboard -23.0 

+500 223.9 8.20 20.0 2. overshoot angle (ROT=0) -26.1 

+542 230.0 8.30 20.0 passing initial heading-20° -20.0 

+644 250.0 8.50 20.0 passing initial heading 0.0 

+742 270.0 8.20 20.0 counter rudder to port 20.0 

+751 273.0 8.20 -20.0 rudder is 20° to port 23.0 

+812 274.7 8.10 -20.0 3. overshoot angle (ROT=0) 24.7 

+851 270.0 8.30 -20.0 passing initial heading+20° 20.0 

+957 250.0 8.40 -20.0 passing initial heading 0.0 

+1051 230.0 8.00 -20.0 counter rudder to starboard -20.0 

+1102 228.0 7.90 20.0 rudder is 20° to starboard -22.0 

+1128 224.2 7.80 20.0 4. overshoot angle (ROT=0) -25.8 

+1209 230.0 8.00 20.0 passing initial heading-20° -20.0 

+1313 250.0 8.40 20.0 meet her 0.0 
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