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1. Introduction 

1.1. Biomaterials 

Biomaterials are biocompatible materials and consist of synthetic or natural material. They are 

used to replace part of a living system and to function in intimate contact with living tissue. 

They are used for different medical devices like wound dressing, implants, tissue engineering 

and drug delivery. Biometric materials are synthetic but their composition and properties are 

similar to materials of living organisms. Coupling of protein layers to the surface provide the 

basis for materials called bioactive materials. 

The rapidly developing field of regenerative medicine will require rational molecular and 

supramolecular design of temporary scaffold materials for cells to control their bioactivity and 

physical properties (Green et al., 2002; Fields et al., 1998; Liu et al., 2004). Tissue engineers 

develop three-dimensional (3D) scaffolds because they are attractive candidates for repair of 

injured tissues and organs to be used in transplantation therapies (Weaver et al., 1997; 

Hayman et al., 2004; Willerth et al., 2006). Tissue engineering is an interdisciplinary field that 

applies the principles of engineering and biomedical sciences toward the development of 

biological substitutes that restore, maintain, or improve tissue or organ function (Ratner et al., 

2004; Cheung et al., 2007). A tissue engineered implant is a biologic-biomaterial combination 

in which cells are transplanted to penetrate and proliferate in all directions to populate all 

regions of the implant (Akdemir et al., 2008). 

The ideal material in neuroscience is biocompatible with low immunogenicity, biodegradable 

with chemically and mechanically stable and non-toxic to neurons or other cellular 

components of brain tissue. Most biomaterials are reproducibly, structurally stable for long 

enough to allow repaired or regenerated tissues to organize into a desired three-dimensional 

structure. The material should ideally degrade without any foreign residues remaining. The 

microstructure and porosity of the material should be controllable, so that the biomaterials can 

be used to provide structural support to the surrounding brain or to encourage local neurite 

and axonal regrowth. This can be accomplished with techniques that include modifying the 

material’s pore structure, surface topography or charge, or functionalising the material surface 

with extracellular-matrix-like molecules or therapeutic proteins. Ideally, a given biomaterial 

can be formed or processed into a variety of shapes such as tubes, sheets, meshes, sponges, 

foams, etc. In cases in which local delivery of potentially therapeutic molecules is desirable, 
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the materials should provide a controlled and sustained delivery of that molecule for the 

required duration (Orive, 2009). Three groups of materials are used: 1) synthetic materials; 2) 

natural materials; and 3) biosynthetic materials (Table 1). 

Synthetic Polymers Natural Polymers Biosynthetic materials 

Hydroxyapatite 

Poly(glycolic acid) (PGA), 

Poly(lactic acid) (PLA), 

Poly(lactic-co-glycolic acid) (PLGA),

Poly(e-carpolactone) (PCL), 

Poly(ethylene glycol) (PEG), 

Poly(vinylalcohol) (PVA), 

Poly(N-vinyl 2-pyrrolidone) (PNVP),

Poly(propylene fumarate) (PPF), 

Poly(acrylic acid) (PAA), 

Poly(ß-hydroxybutyrate) (PHB),  

Polypyrrole polymers (Ppy) 

Polydioxanone (PDS), 

Poly(acrylonitrile-co-methylacrylate) 

(PAN-MA), 

Hydroxyethyl methacrylate (HEMA),

Poly(2-hydroxylethyl methacrylate) 

(pHEMA), 

self-assembling peptide hydrogels, 

Peptide, DNA (artificially prepared 

natural polymers) 

Collagen, 

Gelatin, 

Hyaluronate, 

Glycosaminoglycan, 

Chitosan, 

Alginate, 

Silk, 

Fibrin, 

Dextran, 

Matrigel, etc. 

combine the pros of 

both synthetic and 

natural materials 

Table 1: Overview of existing Biomaterials. Table 1 shows existing materials, which can be used as 

biomaterials. Biomaterials could divide in three groups of materials, completely synthetic materials, natural 

derived materials and the combination of both. 

1.1.1. Natural derived biomaterials 

Natural materials are desirable to be biodegradable, non-toxic/non-inflammatory, 

mechanically similar to the tissue to be replaced, highly porous, encouraging of cell 

attachment and growth, easy and cheap to manufacture, and capable of attachment with other 

molecules. Natural materials include collagen, chitosan, agarose/alginate, hyaluronic acid and 

fibronectin. Various cells have been used to seed and culture onto different 3D matrices, such 

as collagen (O’Connor et al., 2000; Ma et al., 2004) and fibrin (Woerly et al., 1996; Sakiyama 

et al., 1999; Willerth et al., 2006). Collagen for example as the major component of the 
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extracellular matrix ECM, contains many chemo-attractant binding domains, provides 

support to connective tissue such as skin, tendons, bones, cartilage, blood vessels, and 

ligaments in its native environment, and also interacts with cells in connective tissues, and 

transduces essential signals for the regulation of cell anchorage, migration, proliferation, 

differentiation, and survival (Tabesh et al., 2009). Collagen gel can used as a carrier for cell 

transplantation (Weinand et al., 2007) and a cell infiltration matrix to induce regeneration and 

remodelling in vivo (Patino et al., 2002), as coating in a guidance conduit to induce neurite 

extension from dissociated dorsal root ganglia (Schnell et al., 2007) or on implants which is 

more successful than the bare ones (Munisamy et al., 2008). NPC culture in 3D collagen gels 

is well documented (O’Connor et al., 2000; Ma et al., 2004). Various matrices of collagen in 

combination with neural induction factors allow the development of experimental 

transplantation therapies (Marchand and Woerly, 1990; Houwelling et al., 1998). 

Hyaluronic (HA) acid-based hydrogel has been shown to inhibit scar formation and promote 

angiogenesis, which is also very beneficial for wound healing (Peattie et al., 2004; Cencetti et 

al., 2011). HA is a major constituent of the natural ECM and is biocompatible, biodegradable, 

water soluble, and immunoneutral. The great hydrophilicity of HA hydrogels provides a good 

environment for cell growth, and the cavernous structure provides significant space to cells, 

which enhances nutrient exchange, ability to stretch their prominences, and ability to build up 

their intercellular connections. The HA material possesses excellent biocompatibility, which 

supports the attachment and the survival of the neurons and axonal growth (Hou et al., 2005 

& 2006). 

Chitosan, as a natural polysaccharide in the shell of crustacean, cuticles of insects and cell 

walls of fungi (Khor & Lim, 2003), can be used for wound dressing, drug delivery, and tissue 

engineering (cartilage, nerve and liver tissue) applications (Tabesh et al., 2009). 

Agarose and alginate are linear polysaccharides obtained from seaweed and algae and 

encapsulation of certain cell types enhances cell survival and growth and has been explored 

for use in liver, nerve, heart, and cartilage tissue engineering. Incorporation of BDNF protein 

into agarose nerve guidance scaffold significantly increased the quantity of axons growing 

into scaffolds (Stokols et al., 2006). Prang et al. (2006) show in an entorhino-hippocampal 

slice culture model that alginate-based scaffolds elicit highly oriented linear axon regrowth in 

the injured mammalian CNS and appropriate target neuron reinnervation. Therefore alginate 

hydrogels can be used as bridging materials for both spinal cord (Bunge, 2002; Suzuki et al., 

1999) and peripheral nerve repair (Suzuki et al., 2000; Labrador et al., 1998). But extensive 
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purification is needed to prevent immune responses after transplantation (Willerth & 

Sakiyama-Elbert, 2007). 

Fibronectin is a glycoprotein, which exists outside of cells and on the cell surface, in blood 

and in the other body fluids. It is associates with other proteins of the extra cellular matrix like 

fibrinogen, collagen, glycosamineglycans and with suitable receptors, which are in the cell 

membrane (Tabesh et al., 2009). Functional fibrous fibronectin biomaterials take the form of 

mats or cables, which have been developed for use in the repair of peripheral nerves or injured 

spinal cord. Combination of SCs with alginate-fibronectin and resorbable scaffold has been 

shown to support axonal regeneration in adult rodents after spinal cord and peripheral nerve 

injury (Novikov et al., 2002; Mosahebi et al., 2003). Such material also have been used as a 

depot for the supply of soluble factors such as NGF, NT3 and antibodies, slowly releasing the 

content to sites of nervous system repair (Tabesh et al., 2009). 

The natural derived biomaterials include matrigel, which is a soluble basal membrane extract 

of the Engelbreth-Holm-Swarm tumour cell line that gels at room temperature forming a 

genuine reconstituted basal membrane (Kleinman et al., 1986). The major components of 

matrigel are laminin, collagen IV, entactin and heparan sulphate proteoglycan, and it also 

includes growth factors such as FGF-2, EGF, IGF-1, PDGF, NGF, and TGF-ß 

(manufacturer’s data). It has been widely used in cell culture applications and enhances 

growth and migration of different cell types (Lelièvre et al., 1998). It induced significant 

sprouting of DRG neurits (Novikova et al., 2006) and can been used experimentally as 

bridging materials for both spinal cord (Bunge, 2002; Suzuki et al., 1999) and peripheral 

nerve repair (Suzuki et al., 2000; Labrador et al., 1998). In vitro it is used as alternative 

feeder-free cell culture environments effective for long-term embryonic stem-cell culture 

(Blow, 2008).  

Natural materials such as collagen, alginate, gelatine, laminin, chitosan, and fibrin share 

similar properties with soft tissues, like mechanical strength, physical properties and 

biomolecular recognition. On the other hand they display disadvantages like high cost, 

possible immunogenicity and batch-to-batch variability. Naturally derived polymers can face 

various challenges like inflammatory response, pathogen transfer and purity. The abundant 

presence of growth factors in matrigel can masked any simultaneous neurotrophic or 

neurotropic effects of the scaffold structure itself (Novikova et al., 2006). Its future clinical 

use as cell carrier is somewhat problematic, because for in vivo and in vitro studies as well 

main initial components must be, biocompatible and well defined. Therefore many synthetic 

materials have been developed to avoid this challenge. 
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1.1.2. Synthetic biomaterials 

Synthetic hydrogels are devoid of animal derived material and pathogens and therefore are 

important to form defined in vitro systems to conduct a completely controlled study. 

Regardless of their purity or chemical tailorability, the biocompatibility of the biodegradation 

products and host responses upon transplantation supposed their use in vivo. 

As synthetic tree-dimensional scaffold materials bioceramics, microfiber scale polymers, or 

nanofiber hydrogels can be used. Synthetic polymers have been widely used as surgical 

structures, with long established clinical success and many are approved for human use by the 

Food and Drug Administration (FDA). They also represent a more reliable source of raw 

materials with the ability to provoke an immune response in the body. These materials exist: 

hydroxyapatite (Shikinami et al., 1999); polyesters such as polylactic (PLA) and polyglycolic 

acids (PGA), poly(e-carpolactone) PCL, poly(ß-hydroxybutyrate) PHB and their copolymers 

(Tab.1); and self-assembling peptide hydrogels (Holmes, 2000). 

Hydroxyapatite has a sufficient rigidity and is used as artificial bone matrix. Surface 

functionalisation of artificial hips with calcium hydroxylapatite is used in bone replacement 

and induces attachment of the implant to the living bone. Along with biocompatibility 

requirements, these synthetic materials need to resemble biological extracellular matrices and 

interact with cells at molecular level in order to effectively control the processes of tissue 

regeneration. 

Polymer scaffolds could be divided into macroporous scaffolds, microporous scaffolds and 

nanofiber scaffolds. Scaffolds with pores bigger than cell size are called macroporous or with 

pores smaller than cell size microporous. Nanofiber scaffolds are composed of a network of 

overlapping nanofibers (Fig. 1I). Macroporous scaffolds like PLA or PGA polymers are less 

rigid and provide a pseudo 3D microenvironment. Whereas peptide hydrogels often form 

nanofiber scaffolds and therefore provides a truly 3D microenvironment similar to natural 

tissue. 

Polyesters can be degraded by hydrolysis of ester bond leading and degradation products can 

be desorbed through metabolic pathways. PLA for example is biodegradable polyester 

attainable by poly-condensation of lactic acid. L-lactic acid occurs in the metabolism of all 

animals and microorganism and is a non-toxic degradation product of polylactides 

(Kricheldorf, 2001). The implantation of a macroporous PLA tubular scaffold or a PLA single 

channel tubular scaffold containing Schwann cells in the transected rat spinal cord elicited a 

modest axonal regeneration (Oudega et al., 2001; Patist et al., 2004). 
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PGA is highly crystalline, has a high melting point and low solubility. Co-polymers with 

the more soluble PLA increase the hydration, hydration rate and the degradation (Tabesh et 

al., 2009). The microbially produced poly-ß-hydroxybutyrate (PHB) degrades after 

implantation slowly at body temperature and forms a non-toxic metabolite that is secreted in 

urine (Tabesh et al., 2009). PHB has been previously used as a wound scaffolding device, 

designed to support and protect wounds against further damage, while promoting healing by 

encouraging cellular growth on and within the device from the wound surface. Ljungberg et 

al. (1999) used PHB as a wrap-around implant to guide axonal growth after peripheral nerve 

injury. The aliphatic polyester poly-e-caprolactone (PCL) is used in pharmaceutical products 

and wound dressings with his bioresorbable and biocompatible properties (Venugopal et al., 

2005a, b). Owing to its slower degradation than PLA, it is interesting for the preparation of 

long-term implantable devices. Polypyrrole polymers (Ppy) for example can be molded into a 

variety of shapes, allows cell adhesion and is therefore convenient for use in neural prosthetic 

applications (Tabesh et al., 2009). Other synthetic polymers such as PDS, PAN-MA has been 

shown to induce nerve growth (Sangsanoh et al., 2007). The most commercially important 

polymer poly ethylene glycol (PEG) resists protein adsorption and cell adhesion, minimizing 

the immune response after implantation and to seal cell membranes after injury, making it 

useful for limiting cell death. The widely in medicine used hydroxyethyl methacrylate

(HEMA) can be prepared to various hydrogels, to immobilize proteins or cells. Attractive for 

biomedical engineering applications is poly(2-hydroxylethyl methacrylate) (pHEMA), 

because of its physical properties and high biocompatibility. This polymer can be easily 

manipulated through formulation chemistry and it has been extensively used in medical 

applications, e.g. contact lenses, kerato prostheses and as orbital implants. Longitudinally 

oriented channels within pHEMA hydrogels have the potential to enhance nerve regeneration 

after transection injuries of the spinal cord by increasing the available surface area and 

providing guidance to extending axons and invading cells (Flynn et al., 2003). 

1.1.3. Hydrogels 

Hydrogels are also good candidates for tissue-engineered implants because of their 

hydrophilic structure, which gives them physical characteristics similar to tissue (Shin et al., 

2003). Hydrogels are water swollen crosslinked polymers. The crosslinks may occur by 

reaction of one or more monomers, hydrogen bonds and van der Waals interactions. Highly 
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swollen hydrogels like cellulose derivatives, poly(vinyl alcohol) PVA, poly(N-vinyl 2-

pyrrolidone) PNVP, PEG and moderately or poorly swollen hydrogels like pHEMA and 

derivatives are described. Hydrogel scaffolds are shown to promote neurogenesis (Martin et 

al., 2008) and are used in the field of stem cell research (Brännvall et al., 2007; Gerecht et al., 

2007; Uemura et al., 2010; Pan et al., 2009) and neural engineering applications (Novikova et 

al., 2006; Prang et al., 2006) to promote differentiation of cells into different cell types. 

Hydrogels with additional functions, like swelling, shrinking, bending, or degradation, are 

often called smart hydrogels, responding to changes of environmental conditions (Geever et 

al., 2008). These types of stimuli-responsive polymers can undergo relatively large and 

abrupt, physical or chemical changes in response to small external changes in the 

environmental conditions. Jongpaiboonkit et al. (2008) demonstrated that the hydrogel 

network chemistry (both natural and synthetic), cell type, cell density, cell adhesion ligand 

density, and degradability can be systematically varied to screen for environments that 

promote cell viability in a 3D context. 

1.1.4. Biosynthetic materials 

Biosynthetic materials combine the pros of both synthetic and natural materials (Ahmed et al, 

2003). Composites of synthetic and natural biological polymers such as alginate, collagen 

alone or with bioactive motifs, substances or proteins, can be designed to yield materials for 

tissue engineering (Langer & Tirrell, 2004; Cha et al., 2011; Hrynyk et al., 2012; Reichert et 

al., 2009; Yu et al., 2012). For example, current difficulties using chitosan as a polymer 

scaffold in tissue engineering, like low strength and inconsistent behaviour (Madihally and 

Matthew, 1999), could be avoid by using mixtures with synthetic polymers (Tabesh et al., 

2009). The coupling of protein layers to the surface provides the basis for bioactive materials. 

The combination of bioactive scaffolds and cell culture techniques is a rapid and useful way 

to study cell viability and the delivery of bioactive molecules for possible transplantation into 

tissue and organs (O’Connor et al., 2000; Ma et al., 2004; Silva et al., 2004). PHB conduits 

coated with alginate hydrogel and fibronectin and seeded with SCs reduce spinal cord 

cavitation as well as retrograde degeneration of injured spinal tract neurons (Novikov et al., 

2002). Furthermore, chemistry is used to modify PEG hydrogels to add sites for cell adhesion 

or extracellular matrix molecules to allow cells to infiltrate the scaffolds, extending their 

potential applications (Willerth & Sakiyama-Elbert, 2007).  
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1.1.5. Fabrication of biomaterials 

The field of materials chemistry (Green et al., 2002; Fields et al., 1998; Hartgerink et al., 2001 

& 2002; Silva et al., 2004) offer strategies synthesize biometric materials meeting the 

challenges of designing artificial extracellular matrices. Synthetic polymers can be tailored to 

produce a wide range of mechanical properties and degradation rates. Several techniques are 

used to create nanostructured scaffolds (Fig. 1). Polymers can be combined to benefit from 

their unique properties (Willerth & Sakiyama-Elbert, 2007). Using nanotechnology, 

biomaterial scaffolds can be manipulated at atomic-molecular and macromolecular levels and 

constructed into specific geometrical and topological structures ranging from 1-100 nm 

scales. New properties of the materials occur such as mechanical (stronger), physical (lighter), 

more porous (tunable), optical (colour emission), chemical reactivity (more active and less 

corrosive), electronic properties (more electrically conductive), and magnetic properties 

(super paramagnetic). Several techniques have been developed to process synthetic and 

natural scaffold materials into porous structures. Existing conventional scaffold fabrication 

techniques are solvent-casting, particulate-leaching, gas foaming, fibre meshes/fibre bonding, 

phase separation, melt molding, emulsion freeze drying, solution casting, and freeze drying 

(Tabesh et al., 2009) (Fig. 1F, G, H). One common way for fabrication of nanofibrous 

scaffold is electrospinning. Polymers can be spun to nanofibers with diameters in the nano- to 

micrometer range (Fig. 1C, D, E, I). Such small diameter fibres with a defined volume, even 

approach densities of axons found in peripheral nerve (Schnell et al., 2007). Nanofibrous 

scaffolds can be utilized to provide a better environment for neural cell attachment, migration, 

proliferation and differentiation (Martins et al., 2007). Electrospinning is additionally used to 

create thin films of different coating designs, applied on prosthetic devices aimed to be 

implanted in the central nervous system (Buchko et al., 1999). Many of the fabrication 

technologies for polymers are based on harsh operating conditions, such as particulate 

leaching, heat compression and extrusion, lading to limited incorporation of bioactive proteins 

and cells. An alternative method for producing porous scaffolds is freeze-dry processing (Fig. 

1F). Stokols et al. (2004) developed a novel procedure for using freeze-dry processing to 

create nerve guidance scaffolds made from agarose, with uniaxial linear pores. An elegant 

way to produce nanofibrous scaffolds existing of poly (L-lactic acid) (PLLA) is a liquid phase 

separation method, which supporting the neural stem cell differentiation and neurite 

outgrowth (Yang et al., 2004). For nerve regeneration two fibre-fabrication methods are 

possible: electrospinning (fibres with diameters from several micrometers to hundreds of 
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nanometre) and self-assembly (fibres have diameters of tens of nanometres) (Cao et al., 

2009). 

Fig. 1: Different biomaterial structures formed by using different fabrication methods for polymers (Lee 

et al., 2008). A, C, D, E, I: Different structures can produce for individual usage, ranging from several cm 

(macro scale) to nm size (Nano scale). Electrospinning can be used for a wide field of polymers and with liquid-

solid transition polymeric materials, hydrogels and composites can produced. Biomaterial scaffolds should 

provide more than temporary architectural structure. They can be produced to release biomolecules, to surround 

tissue or cells and can be modified by filling or coating with other polymers or peptides to increase attachment, 

migration and differentiation of cells (K, L, M).  

1.1.6. Self-assembling peptide hydrogels 

One group of novel materials for tissue engineering applications are peptide-based self-

assembling fibrous networks (Hartgerink et al., 2001 & 2002; Silva et al., 2004; Zhang, 2003; 

Petka et al., 1998). Several self-assembling peptide hydrogels are described EAK16-II, KFE8, 

KLD12 and different types of RADA16 (for further study, review Zhang, 2002). Peptide 

amphiphile (PA) molecules are composed of peptide segments, containing 6-12 amino acids, 

which are coupled via an amide bond to fatty acid chains, with lengths of 10 to 22 carbon 

atoms (Hartgerink et al., 2001 & 2002; Silva et al., 2004). These peptide molecules are able to 

self-assemble, where the reaction is triggered by metal ions (Beniash et al., 2005), a change of 

salt concentrations (Holmes et al., 2000, Semino et al., 2004), pH (Ye et al., 2008) or 

temperature (Ye et al., 2008). The process of supramolecular self-assembly includes three 

phases, namely transitions, intermolecular hydrogen bonds, and a combination of attractive or 
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repulsive electrostatic interactions (Zhao et al., 2008). The gels are formed by a network 

of overlapping cylindrical nanofibers, ranging from 5 to 8 nm in diameter. They have a weak 

mechanical strength, a pore size between 50-100 nm, are permeable to gases, metabolites, and 

macromolecules and have a very low signalling capacity. Peptide hydrogel scaffolds are 

proved to be an effective environment for neural cells (Holmes et al., 2000; Semino et al., 

2004; Wang et al., 2010; Xu et al., 2010) in spinal cord replacement (Tysseling et al., 2010) 

and tissue engineering (Beniash et al., 2005). They are used for studies to promote signalling 

pathways, influencing critical cell functions such as proliferation, differentiation and 

migration of cells in well-defined 3D culture systems (Mooney et al., 1994; Friedl et al., 1998, 

Silva et al., 2004; Semino et al., 2004). 

A great advantage of self-assembling peptides, used to build nanostructures in a bottom-up 

approach, is their amenability to easy functionalisation. Because of their consistent 

composition and predictable manipulation of properties, they can be used to combine with 

synthetic materials containing biometric cues, to induce cell attachment, differentiation and 

migration. Specific features can be incorporated and the peptides can be modified and 

functionalized to create microenvironments suited for culturing cells (Silva et al., 2004; 

Gelain et al., 2006), triggering tissue regeneration (Zhang et al., 2004; Ellis-Behnke et al., 

2006) and other applications. Hartgerink et al. (2001) have reported that peptide amphiphile 

nanofiber networks can be mineralized with hydroxyapatite to recreate the nanoscale structure 

of bone. Silva et al. (2004) reported on the use of bioactive peptide amphiphile nanofibers to 

promote rapid and selective differentiation of neural progenitor cells into neurons. With 

modern synthetic biomaterials it is possible to control the distribution of biological signals 

and their presentation in a well-defined manner. 

Simplified growth scaffolds such as peptide-derived hydrogels should be seen as highly 

advantageous and will likely become more commonplace in cell culture methodology 

(Liebmann et al., 2007). 

1.1.6.1.  Self-assembling peptide hydrogel RADA16-I

Soluble hydrogels like the RADA-16-I (BD PuraMatrix
TM

) are advantageous, because they 

are injectable and able to fill any shape or defect in vivo and they can easily formulate with 

cells by simple mixing (Ellis-Behnke et al., 2006; Wang et al., 2010). The hydrogel is formed 

rapidly after injection, to prevent the undesirable diffusion of the gel precursors and cells to 
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the surrounding tissue (Wang et al., 2010). The self-assembling peptide hydrogel 

RADA16-I (BD PuraMatrix™), which is used in this study, is a synthetic biocompatible 

matrix that is used to create defined three-dimensional (3D) microenvironments for a variety 

of cell culture experiments. 

The hydrogel consists of the repeated amino acid sequence RADA, arginine (R), alanine (A), 

aspartic acid (D), and alanine (A) (Ac-RADARADARADARADA-COHN2, 1% w/v) and 

99% water. The motif RAD is similar to the ubiquitous integrin receptor-binding site RGD 

(Zhang et al., 2004). The peptide component self-assembles under physiological conditions 

due to altered salt concentration, with a transition from a viscous solution into an elastic 3D 

hydrogel. The hydrogel exhibits a nanometre scale fibrous structure with an average pore size 

of 50-200 nm. The RADA16-I hydrogel is biocompatible, resorbable, and devoid of animal 

derived material and pathogens. Experiments in mammals showed that inoculation of Scrapie 

with the RADA-16-I peptide disrupt prion accumulation and extends survival (Hnasko & 

Bruederle, 2009). The treatment with RADA-16-I solution enables reconnection of brain 

tissue after acute injury, which resulted in functional behavioural recovery (Ellis-Behnke et 

al., 2006). 

In recent in vitro studies RADA-16-I matrices were used to elucidate the influence of the 3D 

environment on the development of muria and human neural progenitor cells (Holmes et al., 

2000; Thonhoff et al., 2008; Semino, 2008; Ortinau et al., 2010). Holmes et al. (2000) showed 

extensive neurite outgrowth and active synapse formation of primary rat neurons on the self-

assembling peptide scaffolds. Semino et al. (2004) developed a simple method to entrap 

migrating neural cells from postnatal hippocampal organotypic cultures in the 3D peptide 

nanofiber scaffold. RADA-16-I showed low toxicity and retain several crucial properties of 

hNPCs, including migration and neuronal differentiation (Thonhoff et al., 2008). It can be 

utilised for regenerative medicine applications and for delivering cytokines. Drugs can be 

released slowly and sustained; therefore they are confined in scaffold hollow cavities or 

interact weakly with the net surface charges of the self-assembled nanostructures (Gelain et 

al., 2010). The release of epidermal growth factor from the RADA-16-I nanofiber scaffold 

can accelerate wound healing by being well suited for the treatment of cutaneous wounds 

including wound coverage, localized growth factor release and activation of wound repair 

(Schneider et al., 2008). 

The in our lab established in vitro protocol of RADA16-I peptide hydrogel supplemented with 

laminin was used in this study to describe the behaviour of hNPCs encapsulated into 3D 

scaffolds on the differentiation potential and survival (Ortinau et al., 2010). 
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Fig. 2: Schematic demonstration of the self-assembling process. This picture shows steps of self-assembling, 

ranging from the single RADA-16-I peptide to assembled nanofibers and finally the formed 3D scaffold 

hydrogel. This 3D scaffold can be supplemented with extracellular components like laminin (right). Left to 

right: Structure of RADA-16 peptide (blue = arginine, white = alanine, red = aspartic acid), self-assembled 

nanofibers, 3D scaffold with spheroid like cell aggregates, 3D scaffold supplemented with laminin and 

distributed cell growth (www.nanosprint.com). 

1.1.6.2.  Next generation of self-assembling peptides 

The next generation of self-assembling peptides consist of self-assembling backbone 

sequences, which are functionalised with specific biological motifs at the C-terminal of the 

RADA16-I peptide. They were tailored to be regenerate specific tissues (Gelain et al., 2006, 

Chau et al., 2008, Taraballi et al., 2010, Gelain et al., 2011). Zhang et al. (2009) showed that 

RADA-16-I with incorporated RGD sequence stimulates mouse pre-osteoblast attachment, 

spreading and proliferation. Enhanced neural differentiation directed by functional epitopes is 

described for surface modulation (Kam et al., 2002; Tong & Shoichet, 2001; Li & Chau, 

2010) and 3-dimensional cultivation (Silva et al., 2004; Gunn et al., 2005; Gelain et al., 2006; 

Wei et al., 2007; Salinas et al., 2008; Tysseling et al., 2010). Further studies showed that an 

increased number of amino acids, acting as linkers between the self-assembling peptides and 

the motifs, can increase the effect because the bioactive motifs are more exposed to the 

solvent (Taraballi et al., 2010). 

Modified RADA16-I with functionally modified peptide, composed of two domains, self-

assembling domain RADA16-I and functional biological motifs at the C-terminal of 

RADA16-I, which functionalize 3-dimentional scaffolds to suit user needs. The used 

functionally modified RADA16-I is supposed to promote more cell adhesion and 

differentiation than standard RADA16-I. The focus in the study was on the SDP-peptide a cell 

adhesion motif in laminin (SDPGYIGSR), which is due to promote cell adhesion and 

extensibility of neural cells and the PFS-peptide a motif of the bone marrow homing factor 
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(GGPFSSTKT) is due to stimulate NSC adhesion and differentiation in vitro (Gelain et 

al., 2006) and stabilize the ß-sheet structures of the scaffold (Taraballi et al., 2010).  

Fig. 3: Molecular and schematic models of designer peptides and of the scaffold. Modifications of standard 

RADA-16 modified in means of an elongation by biologic active peptide sequences BMHP 1 and 2 (left).  

(Gelain et al., 2006). Schematic model of a self-assembling nanofiber scaffold with combinatorial motifs (I, II, 

III, IV, V). 

1.2.  Advantages of the 3D culture 

Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, 

extended cell growth. As research has already shown that cells forming 3D structures often 

resemble their in vivo counterparts more closely in comparison to two dimensional systems, 

3D culture allows defined microenvironments recapitulating the in vivo milieu in a better way. 

Biomaterials provide an attractive strategy because these materials exhibit several desirable 

characteristics. Hydrogels have been commonly used as model systems for 3D cell biology. 

Natural and synthetic hydrogels have been used to gain fundamental insights into virtually all 

aspects of cell behaviour, including cell adhesion, migration, and differentiated function. The 

material should be able to control cell functions such as migration, attachment and 

differentiation. In cases of transplantation with cells (such as stem cells) it will be advisable to 

use ’biomimetic materials’ to encourage the cells to survive and functionally integrate into the 

host tissue. 
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1.3.  Stem cells 

The isolation of human embryonic stem cells in 1998 was a milestone in stem-cell research 

while the availability of cell lines dramatically increased. Since 1998, about 200 embryonic 

stem-cell lines have been derived (Blow, 2008). Stem cells can be found in all multicellular 

organisms and possess two unique properties namely potency and self-renewal. Potency is the 

capacity to differentiate into specialized cell types. Self-renewal is the ability to go through 

numerous cycles of cell division while maintaining the undifferentiated state. In an embryo, 

stem cells start out in the yolk sac, then translocate to the aortic arch, to the liver and finally to 

the bone marrow. They being modificated at each of the stages during this way that the degree 

of specification gradually increases. There are three main categories of stem cells: totipotent, 

pluripotent and multipotent stem cells (Schöler, 2007). 

Totipotent stem cells are only cells from an earlier stage of the embryo, the first diploidic 

basic cell and the daughter cells from 3 to 4 cell divisions, known as the morula. They are 

able to become all tissues in the body and the extraembryonic placenta (Mitalipov & Wolf, 

2009). The first differentiation step of totipotent cells during mammalian development is the 

formation of the blastocyst in an early stage of embryogenesis. 

Pluripotent stem cells are embryonic cells. They have the potential to generate all kind of 

adult and embryonic cell types. Embryonic stem cells are isolated from the inner cell mass of 

blastocysts. During development embryonic stem cells build all derivatives of the three 

primary germ layers: ectoderm, endoderm and mesoderm (Loebel et al., 2003). They can 

develop into each of the more than 200 cell types of the adult body when given sufficient and 

necessary stimulation. The endoderm gives rise to the entire gut tube and the lungs, the 

ectoderm to the nervous system and skin, and the mesoderm gives rise to muscle, bone-, and 

blood (Loebel et al., 2003). 

Whereas embryonic stem cells are pluripotent, adult stem cells are multipotent. Adult stem 

cells are found in various tissues and can only develop into specific adult cell types in the 

body. In adult organisms, the system of multipotent stem cells is exploited for regeneration 

purposes, replenishing adult tissues (Schöler, 2007). 

The two main characteristics of stem cells self-renewal and potency are essential for growth 

and development of organisms (ontogeny). They are especially crucial in the early stage of 

development, known as embryogenesis. The capacity of the stem cells to differentiate into 

specialized cell types allows for their use in medicine. They are used for cell replacement 

therapies in the treatment of spinal cord injuries (Olson et al., 2009), traumatic brain injury 
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(Harting et al., 2008) or neurological diseases like Parkinson’s and Huntington’s disease 

(Bosch et al., 2004). The embryonic stem cells often cultured on mouse embryonic fibroblast 

cells as ‘feeder’ cells in different media formulations containing serum. The containing 

animal products of this culture could limit the potential of stem-cell lines for therapeutic 

applications (Blow, 2008). Therefore many researchers are trying to identify biomaterials like 

Matrigel scaffolds, which could be alternative feeder-free cell culture environments for long-

term human embryonic stem-cell culture (Blow, 2008). 

1.3.1. Neural progenitor cells 

Neural precursor cells (NPCs) are multipotent cells that contain both neural stem cells and 

neural progenitor cells (Gage, 2000). Multipotent neural progenitor cells (NPCs) divide in the 

ventricular zones to give rise to neurons and glial cells during central nervous system (CNS) 

development (Hirabayashi & Gotoh, 2005). Neural precursor cells divide symmetrically 

resulting in an increased NPC population, this begins in mice at 7.5 days pc (post coitum). 

Asymmetric cell divisions follow in the neurogenic phase around stage 13 pc resulting mainly 

in an increased number of neurons. Asymmetric cell divisions at stage 18 pc and early 

postnatal stages lead to the generation of mainly glial cells (Hirabayashi & Gotoh, 2005). 

Progenitor cells have a tendency to differentiate into a specific type of cell, but are already 

more specific than stem cells and can divide only a limited number of times (Fischer, 1997). 

Progenitor cells are said to be in a further stage of cell differentiation and are a developing 

state between stem cells and fully differentiated cells.  

Mammalian CNS progenitor cells are not only present during developing stages. Neural 

progenitor cells have been found in different brain regions, the hypothalamus, the dentate 

gyrus of the hippocampus and the forebrain, the subgranular zone of the dentate gyrus and the 

structure of the subventricular zones of the lateral ventricle (Arsenijevic et al., 2001), within 

the olfactory bulb (Temple & Alvarez-Byulla, 1999), the neocortex (Gould et al., 1999) and 

the substantia nigra (Zhao et al., 2003). They are able to differentiate into neurons and glial 

cells (Donato et al., 2007). It is shown in rat striatal progenitor cell line ST14A, that self-

renewal, migration and differentiation of neural progenitor cells are controlled by a variety of 

pleiotropic signal molecules. Members of the morphogen family of Wnt molecules play a 

crucial role for developmental and repair mechanisms in the embryonic and adult nervous 

system (Lange et al., 2006).  
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NPCs can be directly isolated from fetal or adult tissue (Ling et al., 1998; Arsenijevic et 

al., 2001) or generated from ES cells (Kim et al., 2007; Stacpoole et al., 2011). Neural stem 

cells (NSC) / NPC can be propagated as free-floating aggregates in vitro, so called 

neurospheres, by addition of epidermal growth factor or fibroblast growth factor (Reynolds & 

Weiss, 1992; McKay, 1997). These neurospheres are heterogeneous and contain NPCs and 

NSCs.  

1.3.2. Neural progenitor cell line ReNcell VM cells

The neural progenitor cell line ReNcell VM, which is used in this study, was provided by 

ReNeuron (Guildford, UK). Human NPCs are derived from the ventral midbrain of a 10-

week-old fetus and immortalized by retroviral v-Myc transduction (Donato et al., 2007; 

Hoffrogge et al., 2006). This cell line is able to proliferate without morphological and 

molecular changes for 40 passages with supplemented growth factors and shift to 

differentiation under growth factor withdrawal. The cells are known to differentiate mostly 

into astrocytes, some neuronal cells and only few dopaminergic neurons (Donato et al., 2007). 

These neuronal progenitor cells differentiate faster into neurons than reported for other 

neuronal progenitor cells or stem cell lines such as N-tera2 (Schwartz et al., 2005) or PC12 

cells (Greene & Tischler, 1976), which need several weeks to differentiate. The ReNcell VM 

cells were used as model for profiling and functional proteome studies of neuronal 

differentiation processes to describe the protein inventory as well as protein activity and 

interactions, subcellular localization and posttranslational modifications (Hoffrogge et al., 

2006). Results displayed the large rearrangement of the proteome during this process. Morgan 

et al. (2009) describe a protection of developing dopaminergic neurons, derived from these 

human neural progenitor cells, by Na
+
 channel agonist veratridine treatment, most likely 

based on voltage-dependent mechanisms reducing premature death amongst developing 

neurons. 

Furthermore ReNcell VM cells are shown to be a suitable tool to study Wnt/ß-catenin 

signalling during neurogenesis, because the Wnt/�-catenin pathway is known to be involved 

in ReNcell VM differentiation. Components of the Wnt/�-catenin pathway are shown to be 

strongly activated and regulated in ReNcell VM cells, which is shown by mRNA up-

regulation of Wnt ligands (Wnt5a and Wnt7a), receptors including Frizzled-2, -3, -6, -7, and -

9, and co-receptors, as well target genes including Axin2 (Mazemondet et al., 2011). The 
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over-expression of Wnt-3a increases neurogenesis during the differentiation of ReNcell 

VM cells and the activation of Wnt/�-catenin signalling increases TCF-mediated transcription 

and the expression of the Wnt target genes Axin2, LEF1 and CyclinD1 in ReNcell VM cells 

(Hübner et al., 2010). They suggest that neurogenesis induced by Wnt-3a is independent of 

the transcriptional activity of Wnt/�-catenin pathway in ReNcell VM cells. The aim to 

increase the neurogenesis in ReNcell VM cells is of great interest in many studies. GSK-3beta 

inhibitors, like kenpaullone, SB-216763 and the synthesized non-symmetrically substituted 

indolylmaleimide IM-12, acting via the canonical Wnt signalling pathway by inhibition of the 

key enzyme GSK-3beta and resulted in an increase of neuronal cells of ReNcell cell VM cells 

(Schmöle et al., 2010, Lange et al., 2011). As well the proliferation and differentiation of this 

hNPCs under hypoxic conditions results in an increased neurogenesis and it is shown that 

erythropoietin partially mimicked these hypoxic effects by an increase of the metabolic 

activity during differentiation and protection of differentiated cells from apoptosis (Giese et 

al., 2010). But the increase in neuronal cells is low, the shift to more physiological conditions 

by using biomaterials to create a 3D structure for the cells enforces the neurogenesis of this 

cells (Ortinau et al., 2010). However, the neurons obtained are not functional. In an approach 

to obtain fully functional neurons, ReNcell VM was plated on top of rat hippocampal slices. 

Patch clamp recordings revealed that the transplanted progenitor cells could express neuronal-

type voltage-gated currents and rapidly receive synaptic input from hippocampal brain slice 

cultures (Morgan et al., 2011). These results highlight the utility of this cell line for the 

present study. 

1.4.  Apoptosis  

An important parameter in biomaterial research is the survival of the encapsulated cells, if 

either the material enhances or decreases the survival of the cells. The 3D culture by the use 

of different biomaterials was shown to enhance survival of stem cells (Mahoney & Anseth, 

2006; Orive et al., 2009; Ortinau et al., 2010). Therefore it was of interest if apoptotic 

processes are decreased by the 3D scaffold. 
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1.4.1. Definition of apoptosis 

Apoptosis is the process of programmed cell death (PCD) and is a normal physiologic process 

and also a part of the neurogenesis. Apoptosis occurs during embryonic development as well 

as in maintenance of tissue homeostasis (Zakeri & Lockshin, 2002). A clutch of biochemical 

events leads to characteristic morphologic cell changes and death. The apoptotic program is 

characterized by certain morphologic features, including blebbing (formation spherical 

cellular protrusions), loss of plasma membrane asymmetry and attachment, cell shrinkage, 

condensation of the cytoplasm and nucleus, and internucleosomal cleavage of DNA. The 

process of apoptosis is controlled by a diverse range of cell signals, which may originate 

either by extrinsic inducers (extracellular) or intrinsic inducers (intracellular). Extracellular 

signals can include cytokines, growth factors, hormones, nitric oxide or toxins (Popov et al., 

2002; Brüne, 2003). These signals may initiate apoptosis (positive induction) or repress / 

inhibit apoptosis (negative induction). A cell initiates intracellular apoptotic signalling in 

response to distress. The release of intracellular apoptotic signals by a damaged cell can be 

triggered through the binding of nuclear receptors by glucocorticoids, heat, hypoxia, nutrient 

deprivation, radiation, viral infection and increased intracellular calcium concentration after 

damage to the membrane (Mattson & Chan, 2003). Regulatory proteins initiate the apoptosis 

pathway before enzymes precipitate the actual process of cell death (Zahir & Weaver, 2004). 

1.4.2. Regulation of apoptosis 

Two main methods of regulation play a decisive role, targeting mitochondria functionality, or 

directly transducing the signal via adaptor proteins to the apoptotic mechanisms. This allows 

apoptotic signals to initiate cell death, or to stop the process. There are two main regulation 

pathways of the apoptosis, the extrinsic pathway mediated by the tumour necrosis factor

(TNF) and the intrinsic pathway mediated by the Fas ligand FasL (Wajant, 2002). 

At the extrinsic regulation, the caspase activation via the intermediate membrane proteins 

TNF, receptor-associated death domain (TRADD) and Fas-associated death domain protein

(FADD) is initiated after binding of TNF to TNF-receptor TNF-R1 (Chen & Goeddel, 2002). 

Via autocatalysis activated caspase-8 initiates a downstream cascade of events, the caspase 

cascade, whereat a positive feedback enforces this process (Tamm et al., 1998). Furthermore 

the activation of transcription factors involved in cell survival and inflammatory responses is 

indirectly activated (Goeddel, 1999) (Fig. 4). 
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The intrinsic pathway is characterized by the formation of the death-inducing 

signalling complex (DISC), the increase of pro-apoptotic factors from mitochondria, the 

amplified activation of caspase-8 and the release of Cytocrome c. Released Cytocrome c 

serves a regulatory function as it precedes morphological change after it binds to the apoptotic 

protease activating factor - 1 (Apaf-1) and ATP. Thereby the protein binding domain CARD 

(caspase recruiting domain) von Apaf-1 become amenable to the CARD domain of pro-

caspase-9 and create with pro-caspase-9 a protein complex known as an apotosome, which 

cleaves the pro-caspase to its active form of caspase-9. The caspase-9 in turn activates the 

effector Caspase-3. The activation of the initiator caspases then initiates a downstream 

cascade of events, the caspase cascade, that results in the induction of effector caspases that 

function in apoptosis (Gewies, 2003) (Fig. 4). 

There also exists a caspase-independent apoptotic pathway that is mediated by apoptosis-

inducing-factor AIF (Susin et al., 1999). 

The mitochondrial regulation is one of the main methods in the regulation of apoptosis. 

Apoptotic proteins can lead to mitochondrial swelling through the formation of membrane 

pores or they increase the permeability of the mitochondrial membrane for apoptotic effectors. 

After the increase in permeability, second mitochondria-derived activator of caspases

(SMACs) is released into the cytosol. SMAC binds to inhibitor of apoptosis proteins (IAPs) 

and deactivates them (Gewies, 2003) (Fig. 4). IAPs like XIAP and Survivin suppress the 

activity of caspases, which implement the degradation of the cell (Fesik & Shi, 2001). The 

Mitochondrial Apoptosis-Induced Channel (MAC) mediates the release of Cytocrome c to the 

cytosol based on the formation of MAC on the outer mitochondrial membrane in response to 

certain apoptotic stimuli (Dejean et al., 2006b). Consequently MAC triggers the commitment 

step of the mitochondrial apoptotic cascade. 

Next page 

Fig. 4: Schematic representation of some major apoptotic signalling pathways. The extrinsic pathway is 

mediated by cytokine TNF. After binding of TNF to the TNF-R1, the death domain of TRADD binds to FADD 

that initiates the caspase activation by binding of the death effector domain (DED) of pro-caspase-8 to the DED 

of FADD. In consequence of the local high concentration of procaspase-8 it becomes active via autocatalysis and 

initiates the caspase cascade. Intrinsic pathway: The formation of the death-inducing signalling complex

(DISC) results after FasL binding, which results in the release of Cytocrome c. Cytocrome c acts as a regulator 

by binding to the apoptotic protease activating factor - 1 (Apaf-1) and dATP. Apaf-1 binds to pro-caspase-9 to 

create the apotosome. The apotosome cleaves the pro-caspase to its active form of caspase-9, which activates the 

effector Caspase-3 via proteolytic cleavage, and the degenerative stage of apoptosis begins. A positive feedback 

is mediated by caspase-7. IAPs inhibit apoptosis by physically binding to and inhibiting proper caspase function 

(Gewies, 2003). 
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Fig. 4: Apoptotic signalling pathways (http://www.celldeath.de/encyclo/aporev/aporev.htm). 
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1.4.3. Execution and removal of dead cells (efferocytosis) 

A cell undergoing apoptosis shows a characteristic morphology: Because of the breakdown of 

the proteinaceous cytoskeleton by caspases, cell shrinkage and rounding are shown and the 

cytoplasm appears dense with tightly packed organelles. The chromatin undergoes 

condensation into compact patches against the perinuclear envelope, a process called pyknosis 

(Susin et al., 2000; Kihlmark et al., 2001). During karyorrhexis the nuclear envelope becomes 

discontinuous and the DNA inside is fragmented by endonuclease activity. Based on the 

degradation of DNA the nucleus breaks into several discrete chromatin bodies or nucleosomal 

units (Nagata, 2000). The short DNA fragments, regularly spaced in size give a characteristic 

“laddered” appearance on agar gel after electrophoresis. Above tests for DNA laddering 

apoptosis can differentiate between ischemic or toxic cell deaths. The cell membrane shows 

irregular buds called blebs. Apoptotic bodies were accumulated when the cell breaks apart 

into several vesicles and subsequently phagocytised. 

Efferocytosis is the removal of dead cells by phagocytic cells (Vandivier et al., 2006). Dying 

cells at the final stages of apoptosis expose phosphatidylserine (phagocytotic molecules) on 

their cell surface (Li et al., 2003). Normally found on the cytosolic surface of the plasma 

membrane phosphatidylserine is redistributed during apoptosis to the extracellular surface 

(Wang et al., 2003). These molecules mark the cell for phagocytosis by macrophages (Savill 

et al., 2003). Phagocytes remove dying cells in an orderly manner without eliciting an 

inflammatory response. Marker like Annexin V allows detection of cells at these early stages 

of apoptosis. 

1.4.3. Apoptosis and neuronal cells 

Apoptosis is required for the establishment of appropriate cell numbers and for the 

elimination of improperly connected neurons in the developing nervous system (Pettmann and 

Henderson, 1998). In the adult nervous system, the inappropriate induction of apoptotic cell 

death contributes to neuropathology of neurodegenerative diseases. Therefore, identifying the 

mechanisms of neuronal apoptosis was essential for therapeutic strategies. Mitochondrial 

dysfunction and release of pro-apoptotic factors such as Cytocrome c or apoptosis inducing 

factor (AIF) from mitochondria are key features of neuronal cell death (Landshamer et al., 

2008). AIF is a flavoprotein and normally present in the intermembrane space of 

mitochondria. If AIF is released from the mitochondria to the cytosol, it migrates to the cell 
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nucleus, binds to DNA, it signals the cell to condense its chromosomes and triggers 

DNA degradation and ultimately cell death (Hangen et al., 2010). Translocation of AIF to the 

nucleus is preceded by increasing translocation of pro-apoptotic bcl-2 family member Bid 

(BH3-interacting domain death agonist) to mitochondria, perinuclear accumulation of Bid-

loaded mitochondria, and loss of mitochondrial membrane integrity (Wang et al., 1996). 

After neuronal injury in response to excitotoxins, hypoxia and ischemia, death regulatory 

molecules like Poly(ADP-ribose)-Polymerase PARP, c-jun, plasma membrane death receptor 

ligand systems and the transcription factor p53 as key upstream initiator of cell death process 

have been implicated (Cregan et al., 2002). Enforced expression of p53 triggers apoptosis in 

post mitotic neurons (Cregan et al., 1999). Caspases as key effector molecules are involved in 

the execution of neuronal cell death during development and after injury. Just as well a 

caspase-independent mechanism of neuronal cell death exists (Rideout & Stefanis, 2001) 

which is mediated by AIF (Susin et al., 1999). In excitotoxic cell death, caspases are not 

activated and peptide-based caspase inhibitors do not invoke neuroprotection (Lankiewicz et 

al., 2000). 

The neurogenesis is regulated by pro- and anti-apoptotic proteins. The pro-apoptotic proteins 

Bax and Bak (Bcl-2-antigonist) are matter for the limitation of the neural progenitor cells in 

the adult mouse brain, but have no influence on the differentiation of these cells (Lindsten et 

a., 2003). The down-regulation of Bax results in reduced apoptotic sensitivity of PC-12 cells 

(Vekrellis et al., 1997). Later studies showed that this occurs with a differentiation based 

protein expression decrease of Apaf-1 and the simultaneous increase of IAPs (Wright et al., 

2004; Lindholm & Arumäe, 2004). The neurogen-active brain areas of adult rats show a 20-

800 fold higher concentration of apoptotic cells based on the activation of caspase-2, -3 and –

9 (Biebl et al., 2000). The anti-apoptotic protein Survivin deactivated the Caspase-3, -7 and –

9 in neural mouse progenitor cells (Jiang et al., 2005). The protein Survivin is found prevalent 

in neurogene regions (Altura et al., 2003; Pennartz et al., 2004) and have dual functions as 

apoptosis inhibitor and mitosis regulator (Altieri, 2003; Jiang et al., 2005; Dohi et al., 2004; 

Shankar et al., 2001; Song et al., 2003; Chen et al., 2003a). Bcl-2 as anti-apoptotic protein is 

shown to have regulatory functions in neuronal differentiation of the human cell line Paju 

(Zhang et al., 1996). 
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2. Aim of the study 

The use of biomaterials for stem cell cultivation becomes an important source for cell 

replacement therapies of neurodegenerative diseases. For in vitro studies the 3D culture is 

desired to better mimic 3D in vivo tissue growth, than standard 2D cultures. The use of an 

ideal material can be essential for the study. Natural derived polymers can face various 

challenges in vivo like inflammatory response, pathogen transfer and purity. This could be 

problematic for clinical studies. Synthetic materials instead can hold a lack of adhesion 

motifs. Besides the pore size of the polymers is crucial. Nanofiber structures provide a truly in 

vivo environment than micro- or macroporous polymers. The here used self-assembling 

hydrogel RADA-16-I functionalised with laminin seem to be ideal for the human neural 

progenitor cells.  

In the first part the advantage of the 3D culture over the 2D culture had to analyse regarding 

the growth, survival and finally the neuronal differentiation of the hNPCs. Several parameters 

are of interest: 

- the growth and distribution inside the 3D scaffold 

- the contact between the cells and between cells and the scaffold 

- the amount of neuronal marker during the differentiation period 

- the amount of apoptotic cells (of all and only neuronal cells) 

- the amount of early and late apoptotic cells 

- amount of some key factors of apoptosis regulation 

Either the synthetic materials possible have a lack on functional motifs, new generations of 

self-assembling peptide hydrogels based on RADA-16-I were designed to induce the 

attachment on the scaffold and the neuronal differentiation. In the second part of the study the 

influence of modified 3D scaffolds on neuronal differentiation of the hNPCs was of interest. 

Therefore scaffolds modified with bioactive peptides, called SDP and PFS (provided from BD 

Bioscience), were used to induce the neuronal differentiation of the hNPCs. Furthermore it 

was questioned if the survival of the hNPCs is influenced by the modifications of the 3D 

scaffolds, indicated by changing of apoptotic events. The interesting parameters are: 

- the attachment or distribution of the hNPCs 

- the amount of neuronal phenotypes 
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- the rate and the state of apoptosis for the all cells and the neuronal population 

For further molecular biological studies it was of interest if the supplement of the purified 

functional motif PFS to monolayer cultures of hNPCs itself is able to induce the neuronal 

differentiation in the hNPCs. 

In a third and last part of the study it was questioned if laminin has an additional effect on the 

hNPCs in modified 3D scaffolds. The laminin supplement to the scaffold should increase the 

attachment and the differentiation. Therefore the modified 3D scaffold was supplemented 

with laminin and these scaffolds were analysed as well regarding the neuronal differentiation 

and survival of the hNPCs. 
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3. Material and Methods 

3.1. Material 

3.1.1. Technical equipment 

System Company 

balance MCBA 100 Sartorius 

camera DS2M Nikon 

cell counter CASY Roche 

cell culture microscope Eclipse TS100 Nikon 

centrifuge Z383K Hermle 

centrifuge Z233MK-2 Hermle 

centrifuge 3K10 Sigma 

flow cytometer FACS-Calibur BD Bioscience 

fluorescence microscope Biozero Keyence 

heating block Thermomixer eppendorf 

incubator KA14060 Binder 

pH-meter Mettler Toledo 

pipettes Reference eppendorf 

plate reader Spectra Fluor plus Tecan 

Powerpac PowerPac
TM

 HC BioRAD 

scanning electron microscope DSM 960A ZEISS 

sonicator UR-009 ATP measurement technique

sterile working bench Antares 48 Sterile 

sterile working bench IVF workstation L224 K Systems 

transmission electron microscope EM902A ZEISS 

vortexer SI-0156 Scientific Industries 
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3.1.2. Chemicals 

Routinely used chemicals were purchased with “pro analysis“ grade and were supplied, if not 

otherwise stated, by Calbiochem, Fluka, Merck, Sigma and Roth. 

3.1.3. Cell culture media, buffers and supplements 

Buffer Supplements Company 

Cell culture medium  DMEM / F12 (Dulbecco’s Modified 

Eagle Medium) 

4.5g/l glucose 

FCS (fetal calf serum) 

Pen/Strep 100x 

Gentamycin 

B27 

BFGF 

EGF 

heparin sodium salt 

Invitrogen 

Invitrogen 

Invitrogen 

PAA 

Invitrogen 

Invitrogen 

Roche 

Roche 

Invitrogen 

HBSS (Hank’s balanced salt 

solution) 

CaCl2

MgCl2

Gibco 

Trypsin / Benzonase solution 25U/ml Benzonase 

in Trypsin-EDTA 

Merck 

Invitrogen 

Trypsin-inhibitor / Benzonase 1% HSA 

25ml Benzonase 

0.55mg/ml trypsin-inhibitor 

in DMEM/F12 

Merck 

Sigma 

Invitrogen 

Sucrose solution 20% (20g / 100ml aqua dest.) Sigma 

PuraMatrix 1% peptide + 99% water BD Bioscience 

Mouse Laminin I solution 1mg/ml Trevigen 

PBS 137nM NaCl 

2.7nM KCl 

8.1nM Na2HPO4 

1.5nM KH2PO4 

Biochrome AG 

Immunocytochemistry fixing 

solution 

4% PFA in PBS Aldrich 

Blocking buffer 

(immunocytochemistry) 

5% normal goat serum 

0.3% Triton-X100 in PBS 

Dako 

Roth 



Material and Methods 

27 

Antibody incubation buffer 

(immunocytochemistry) 

1% normal goat serum in PBS Dako 

Mowiol / Dapco 

(1,4-Diazabicyclo- (2,2,2) octan

6g Glycerol 

2.4g Mowiol 

12g of 0.2M Tris-HCL pH 8.5 

25mg DABCO / ml 

in aqua didest. 

Merck 

Calbiochem 

Roth 

Aldrich 

FACS fixing solution 1% PFA in PBS Aldrich 

FACS saponin buffer 0.5% BSA 

0.5% saponin 

0.02% NaN3 in PBS 

Roth 

Merck 

Merck 

FACS wash buffer 0.5% BSA 

0.02% NaN3 in PBS 

Roth 

Merck 

HBS 14mM Hepes 

0.9% NaCl 

1ml aqua dest., pH 7.4 

Merck 

Roth 

Wash buffer (TUNEL-Assay) 0.2% HSA in HBS 

Permeabilisation solution 

(TUNEL-Assay) 

0.1% Triton X-100 

in 0.1% sodium citrate 

Roth 

Fluka 

DNase I solution 

(TUNEL-Assay) 

3000 IE/ml a 500µl 

50µl incubation buffer (10*) 

150µl DNase (10U/µl) 

300µl RNase-free water 

Roche 

Binding buffer 

(Annexin staining) 

0.1M Hepes/NaOH (pH 7.4) 

1.4M NaCl 

25mM CaCl2 

BD Bioscience 

RIPA buffer 20mM Tris 

137mM NaCl 

0.1% SDS 

0.5% Natriumdesoxycholic acid 

1% Triton X-100 

10% Glycerol 87%ig 

2mM EDTA 

1mM EGTA 

1mM NaF 

20mM sodium pyro phosphate x 

10 H2O 

100ml dest. H2O, pH 7.4 

1/vol complete mini protease 

inhibitor cocktail 7x stock 

Roth 

Roth 

Roth 

Roth 

Merck 

Merck 

Sigma-Aldrich 

Roche 
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Pierce reagent Pierce BCA Protein Assay Kit 

(23225) 

Thermo scientific

5x Lämmli buffer 6.25ml Tris (0.5M) 

10ml Glycerol 

5ml 20% SDS solution 

2.5ml Mercaptoethanol 

5ml 1% bromphenol blue 

21.25ml aqua dest. 

Roth 

Merck 

Roth 

Roth 

Electrophoresis buffer 30.3g Tris 

141g Glycine 

10g SDS 

In 1L aqua dest 

Roth 

Roth 

Roth 

10% SDS solution 50g SDS 

500ml aqua dest. 

Roth 

SDS transfer buffer 

(semi dry) 

5.82g Tris 

2.93g Glycine 

3.75ml 10% SDS solution 

200ml Methanol 

In 1L aqua dest. 

Roth 

Roth 

Roth 

Roth 

10x TBS 7.7mM Tris HCl 

15mM NaCl 

in 1L aqua dest. 

working solution 1X (dilution 1:10) 

Roth 

Roth 

TTBS 100ml 10x TBS 

1ml Tween 20 

In 1L H2O 

Serva 

WB blocking solution 3% skim milk solution Fluka 

Coomassie-Brilliant-Blue 

(CBB) – stock 

5g Coomassie-Brillant-Blue 

(G-250) 

In 100ml aqua dest. 

Serva 

Colloidal Coomassie dye 

(CCD) - stock 

50g ammonium sulphate 

6ml 85% phosphoric acid 

490ml H2O dest 

10ml CBB-stock 

Merck 

Merck 

Ready to use Colloidal 

Coomassie solution 

200ml CCD-stock solution 

50ml Methanol Roth 
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3.1.4. Antibodies 

Primary 

antibody 

company Catalogue 

number 

host Dilution 

for IF 

Dilution 

for flow 

cytometry

Dilution

for WB 

Bax  BD Bioscience 610982 mouse 

monoclonal

- - ������

Bcl-2 (100) Santa Cruz sc-509 mouse 

monoclonal

- 1:5 - 

Caspase-3 Cell Signalling #9665 rabbit 

polyclonal 

- - 1 :1000 

��	
�� Abcam Ab8245 mouse 

monoclonal

- - ��������

GFAP Dako Z0334 rabbit 

polyclonal 

1:1000 1:100 - 

HuC/D Invitrogen A21271 mouse 

monoclonal

1:100 - 

Ki-67 Santa Cruz Sc-15402 rabbit 

polyclonal 

1:200 - - 

PARP-1 Cell Signalling #9532 rabbit 

polyclonal 

- - �������

PSA-NCAM Millipore MAB5324 mouse 

monoclonal

1:200 1:100  

PSD95 Abcam Ab2723 mouse 

monoclonal

1:200 - - 

ß-Actin AC-15 Sigma A5441 mouse 

monoclonal

- - 1:10000 

ßIII-tubulin Abcam Ab18207 rabbit 

polyclonal 

1:2000   

Survivin Cell Signalling #2808 rabbit 

polyclonal 

- - �������

Synaptophysin Sigma S5768-2 mouse 

monoclonal

1:100 - - 
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TH tyrosine 

hydroxylase

Millipore AB152 rabbit 

polyclonal 

1:500 - - 

XIAP BD Bioscience 610716 mouse 

monoclonal

- - ������

�III-tubulin Santa Cruz sc-515670 mouse 

monoclonal

1:500 1:100 - 

      

Secondary 

antibody 

Company Catalogue 

number 

Host Dilution 

for IF-IC 

Dilution for 

flow 

cytometry 

Dilution 

for WB 

Alexa Fluor 

488 

Molecular 

Probes 

A11029 goat anti-

mouse 

1:1000 - - 

Alexa Fluor 

488 

Molecular 

Probes 

A11034 goat anti-

rabbit 

- 1:1000 - 

Alexa Fluor 

568 

Molecular 

Probes 

A11036 goat anti- 

rabbit 

1:1000 - - 

Alexa Fluor 647 Invitrogen A21235 goat anti-

mouse 

- 1:1000 - 

Alexa Fluor 647 Invitrogen A21245 goat anti-

rabbit 

- 1:1000 - 

Alexa Fluor 680 Invitrogen A21057 goat anti-

mouse 

- - ��������

Alexa Fluor 

680 

Molecular 

Probes 

A-211098 goat anti-

rabbit 

- - 1:20000 

IRDye800 Rockland 610-132-121 goat anti-

mouse 

- - 1:10000 
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3.2. Methods 

3.2.1. Culture of human neural progenitor cells 

The human neural progenitor cell line ReNcell VM was provided by ReNeuron (Guildford, 

UK). The human neural progenitor cells (hNPCs) were derived from the ventral midbrain of a 

10-week-old fetus and immortalized by retroviral v-Myc transduction. The cells were 

cultivated in culture vessels at 37°C, 20% O2 and 5% CO2 in Dulbecco´s modified eagle 

medium (DMEM)/F12, supplemented with Glutamax, B27 media supplement, heparin 

sodium salt and gentamycin (all Invitrogen, Karlsruhe, Germany). For proliferation epidermal 

growth factor (EGF, 20ng/ml) and basic fibroblast growth factor (bFGF, 10ng/ml; both 

Roche, Mannheim, Germany) were added to the media. Withdrawal of the EGF and bFGF 

induces the differentiation of the cells (Donato et al., 2007). Different protocols of culture 

conditions are compared to find out the optimal growth and differentiation conditions for 

these cells. On one hand a monolayer culture of hNPCs on laminin coated wells (Trevigen, 

Gaithersburg, USA) and on the other hand 3D culture systems with the self-assembling 

peptide hydrogel RADA16-I (PuraMatrix
TM

, BD Biosciences, Heidelberg, Germany). 

3.2.1.1.  Cultivation of the cells in a standard 2D culture system 

For the 2D culture the cell culture vessels (6-well plate) were coated with laminin. Therefore 

the dishes were incubated with a laminin solution dissolved in (DMEM)/F12 media to a 

concentration of 1% for 1 to 24h at 37°C, 20% O2 and 5% C. After washing of the well with 

(DMEM)/F12 media, cells were seeded with the proliferation media. When 80% confluence 

was reached, the hNPCs were differentiated for up to 10 days. 

3.2.1.2.  Cultivation of the cells in a 3D culture system 

For the 3D culture the self-assembling peptide hydrogel RADA16-I (PuraMatrix
TM

, BD 

Biosciences, Heidelberg, Germany) was used in a concentration of 0.25% and supplemented 

with laminin (8µg/100µl Matrix) further referred as PML (Ortinau et al., 2010). Furthermore 

modified PuraMatrix formulations PM-SDP, and PM-PFS (provided by BD Bioscience) were 
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tested and compared with a PuraMatrix-scaffold without laminin further referred as PM. 

PuraMatrix-scaffolds consisting of PM or PM-PFS and supplemented with laminin are 

referred as PML, and PML-PFS. For the preparation of the 3D scaffolds the cells were 

encapsulated in the scaffold with a concentration of 80000 cells/100µl matrix. Therefore 

monolayer cultured hNPCs were trypsinised with Trypsin/Benzonase. Than the hNPCs were 

washed and resuspended in 10% sucrose to remove salt of the solution. Two solutions were 

prepared 1) cell solution (hNPCs dissolved in 10% sucrose and laminin) and 2) PuraMatrix 

solution (PM-stock dissolved in 20% sucrose 1:1). Solution 1 was mixed with solution 2 and 

transferred immediately on coverslips resided in a 4-well plate. 2 x 200µl/well media was 

slowly added, initiating the peptide self-assembly by altering salt concentrations. After 1h 

incubation at 37ºC on IVF Workstation L224 with heating plate matrices were washed with 

500µl media for 10min and incubated with fresh media in the incubator. In all 3D scaffolds 

hNPCs proliferate for 7 days after seeding inside the matrix and then were differentiated for 

up to 10 days with media change every 2-3 days. The growth control was done via phase 

contrast microscopy. 

3.2.1.3.  Recovering of hNPCs cultivated in a 3D scaffold 

Recovering means the leaching of the cells of the scaffold to produce a single cell solution for 

recultivation in 2D. The 3D scaffolds with encapsulated hNPCs were washed with HBSS, 

mechanically disrupted by pipetting up and down and transferred to a conical tube. Next the 

cells were treated with Trypsin/Benzonase for 5min at 37°C, 20% O2 and 5% CO2. After 

stopping the reaction with Trypsin-inhibitor/Benzonase, the cell solution was washed two 

times with HBSS to remove remaining cell-cell- and cell-matrix-aggregates. Next the hNPCs 

were resuspended in cell culture medium and were plated on PDL and laminin coated cover 

slips. The next day cells were attached on the cover slips and can fixed with 4% 

Paraformaldehyde PFA (Liedmann et al., 2012a). In PBS with 0.02% NaN3 the samples can 

store until staining. 
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3.2.2. Electron microscopy 

3.2.2.1.  Scanning electron microscopy 

For scanning electron microscopy, hNPCs encapsulated in 3D scaffolds were fixed with 

glutaraldehyde (4% in PBS) for 1h or overnight, rinsed with PBS and subsequently 

dehydrated in acetone with increasing concentrations (30%, 50%, 75%, 90%, 100%). 

Specimens were dried with a critical point drier (BalTec, Germany) and sputter coated with 

gold. Pictures were taken with a DSM 960A scanning electron microscope (ZEISS, 

Germany). The preparation of the samples and imaging of the scanning electron microscope 

pictures were done in cooperation with the Electron Microscopic Centre of the University of 

Rostock (www.emz.med.uni-rostock.de). 

3.2.2.1.  Transmission electron microscopy 

For transmission electron microscopy the 3D scaffolds containing hNPCs were fixed with 

glutaraldehyd (4% in PBS + Na-Cacodylat). The scaffolds were incubated 45min in osmium 

acid, rinsed with Na-Phosphate buffer and embedded in Agar-Agar. They were subsequently 

dehydrated in acetone with increasing concentrations (75%, 90%, 100%). Next the drained 

Agar block was embedded in Araldite and cut in ultra thin slices. The preparation of the 

samples and pictures were done with an EM902 transmission electron microscope (ZEISS, 

Germany, Oberkochen) in cooperation with the Electron Microscopic Centre of the University 

of Rostock (www.emz.med.uni-rostock.de). 

3.2.3. Immunocytochemistry 

3.2.3.1.  Immunocytochemistry of 2D culture samples

The 2D culture samples were fixed with paraformaldehyde (4% in 0.1M PBS) for 15min and 

stored at 4°C in PBS with 0.02% NaN3. After washing with PBS the hNPCs were incubated 

for 1h in blocking buffer (Normal Goat Serum NGS 5%, Triton X-100 0.3% in PBS). The 

primary antibody was incubated for 1h (ßIII-tubulin) or over night (PSD95). The cells were 

washed 3 times for 5min and the secondary antibody staining was performed. The secondary 

antibody was dissolved in PBS and 1% NGS and incubated for 1h at RT in the dark. Cell 



Material and Methods 

34 

nuclei labelling was combined with the mounting of the samples using mounting media 

containing DAPI (4’,6-Diamidin-2’-phenylindoldihydrochlorid) (Morgan et al., 2009). The 

slides were fixed with nail polish. Pictures were taken with the Biozero 8000 microscope 

(Keyence, Germany, Karlsruhe).

3.2.3.2.  Immunocytochemistry of 3D culture samples

The 3D cultures of hNPCs were fixed with paraformaldehyde (4% in 0.1M PBS) for 30min 

and stored at 4°C in PBS with 0.02% NaN3. Next the matrices were incubated for 24h in 

blocking buffer (NGS 5%, Triton X-100 0.3% in PBS) by changing blocking buffer 4 times. 

Afterwards they were incubated with the primary antibody in PBS with 1% NGS over night at 

4°C. After washing the cells 4 times for 2h and over night with PBS, the secondary antibody, 

dissolved in PBS with 1% NGS was added and matrices were incubated for 4h at RT in the 

dark. Before a cell nuclei labelling was performed with DAPI (100ng/ml in PBS, Sigma) the 

samples were washed 4-6 times for 1h and over night with PBS. After the DAPI staining three 

washing steps, each 30min follow, than matrices were mounted with Mowiol/Dapco. The 

fluorescence microscope (Biozero 8000 microscope, Keyence, Karlsruhe, Germany) was used 

to obtain single micrographs and z-stacks at 8 different independent areas. Each stack 

contains 30 single pictures with a distance of 1-2�m. Using the corresponding analyser 

software the blur inherent to fluorescence was removed before full projections of the z-stacks 

were produced (Liedmann et al., 2012b). 

3.2.4. Flow cytometry 

For flow cytometry, 3D scaffolds were mechanical disrupted by pipetting up and down and 

cells were released with a mixture of Trypsin/Benzonase from the matrices. Cells cultured in 

the standard 2D system were detached with Trypsin/Benzonase solution and the reaction was 

stopped with Trypsin-inhibitor/Benzonase solution. In the following the procedure was the 

same for 2D and 3D cultivated cells. After centrifugation at 3000 x g at RT for 5min, all cells 

were washed with HBSS puffer two times to separating cells from matrix. RADA-16 peptides 

or nanofibres were eliminated with the supernatant. Subsequently the remaining cell/matrix 

aggregates were removed with a cell strainer (70µm, BD Bioscience). After fixation of the 

cells with 1% PFA for 15min, the cells were resuspended in washing buffer (PBS + 0.5% 
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BSA + 0.02% Na-azide) and stored at 4°C in the dark. For the staining cells were 

centrifuged at 350 x g, 10min, 4°C and resuspended in saponin buffer (PBS + 0.5% saponin + 

0.5% BSA + 0.02% Na-azide) containing the first antibody. Additional a negative control 

without first antibody was produced for all samples and an isotype control for each 

experiment. Then the cells were incubated for 2h at RT. Afterwards the cells were washed 

two times with saponin buffer and incubated with the secondary antibody for 1h in saponin 

buffer. The cells were washed again twice with saponin buffer and resuspended in wash 

buffer for analysis (Liedmann et al., 2012a). Measurements were done using a FACS-Calibur 

(BectonDickinson, San Jose, USA) in combination with Cell Quest Pro software. 

3.2.5. TUNEL-Assay 

Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) is a method for 

detecting DNA fragmentation by labelling the terminal end of nucleic acids (Gavrielli et al., 

1992; Negoescu et al., 1996). The In Situ Cell Death Detection Kit with the fluorochrome 

Fluorescein from Roche was used. In the following the procedure of the sample preparation 

was the same for 2D and 3D cultivated cells. The cells were prepared as described above (see 

3.2.4.; Liedmann et al., 2012b). After fixing the cells with 1% PFA for 15min, the cells were 

resuspended in HBS with 0.2% HSA. The labelling starts with the permeabilisation of the 

cells with 0.1% Triton X-100 and 0.1% sodium citrate dissolved in PBS. Subsequently the 

cells were incubated in the TUNEL reaction mix for 1h at 37ºC in a humidified atmosphere, 

in darkness. Samples were subsequently washed and stored in PBS until analysis. Negative 

controls were incubated without TUNEL reaction mix. For positive controls cells were 

incubate with DNase I (3000 IE/ml) to induce DNA strand breaks. Measurement was done 

using the FACS-Calibur (BectonDickinson, San Jose, USA) in combination with Cell Quest 

Pro software. 

3.2.6. Annexin V Apoptosis Detection 

Annexin V is a 35-36kDa calcium dependent phospholipid-binding protein which can in 

combination with the vital dye propidium iodide (PI) identify apoptosis at early stage (Martin 

et al., 1995; van Engeland et al., 1996). 
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The FITC Annexin V Apoptosis Detection Kit I (BD Bioscience, San Jose, USA) was 

used and the cells were prepared as described above (3.2.4.) for flow cytometry without fixing 

the cells. For 2D cultivated cells the supernatant of the cell culture dishes was collected as 

well. In the following the procedure was the same for 2D and 3D cultivated cells. After 

washing the cells with HBSS two times and elimination of cell/matrix aggregates via a cell 

strainer, the cells were washed with PBS (Liedmann et al., 2012b). Next the cells were 

resuspended in 1x binding buffer at a concentration of 2x10
6
 cells/ml and in 100µl of the cell 

solution 5µl of Annexin V and 5µl propidium iodide were added. After 15min incubation at 

RT in the dark, 400µl of 1x binding buffer were added and measurement was done using 

FACS-Calibur (BectonDickinson, San Jose, USA) in combination with Cell Quest Pro 

software. An example of a flow cytometry measurement is shown in picture 5. 

Fig. 5: The analysis of the Annexin V- PI staining is shown. The cells which were only positive for PI indicates 

necrotic cells, cells positive for Annexin V indicate cells in early apoptosis. Late apoptotic cells were positive for 

both. 

The negative control was performed by blocking FITC Annexin V binding sites. Cells were 

incubated 15min at RT with 15µg purified recombinant Annexin V before the staining with 

the FITC Annexin V and PI started. 

A supplement control was produced by induction of apoptosis by treatment with 

Camptothecin. The cells were treated with Camptothecin to get a positive control by inducing 
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apoptosis in the hNPCs. The 1mM stock solution of Camptothecin (in DMSO) was 

added to the culture medium resulting in a final concentration of 6µM. After 16h incubation 

of the cells at 37ºC the Annexin V assay was preceded to evaluate the amount of apoptotic 

cells. 

3.2.7. Western blot 

The sample preparation of the 3D scaffolds followed with the same procedure used for flow 

cytometric preparation (3.2.4.). The 2D samples and the 3D scaffolds were treated with 

Trypsin/Benzonase and Trypsin-inhibitor/Benzonase, washed 2 times with HBSS buffer and 

aggregates of matrix were separated by using a cell strainer. Next the cells were washed with 

PBS and lysated on ice with RIPA buffer for 20min. Then the samples were treated three 

times for 15s in the sonicator to enforce lysis of the cells. The samples were centrifuges 

afterwards for 10min at 3800 x g. 10µl of the lysate was separated for a determination of the 

protein amount (Pierce BCA Protein Assay Kit, Thermo scientific). Therefore the lysate 

solution was diluted 1:20 and 10µl of the dilution was added on well of a 96 well plate (three 

times). The reagent B was diluted 1:50 with Reagent A and 200µl of the resulting Pierce 

reagent were added to the samples in the 96 well plates. After 1h incubation the colour change 

was measured with a TECAN plate reader (Spectra Fluor plus). The protein content was 

calculated using a standard curve. 

The total cell lysate for Western Blot analysing was mixed 5:1 with 5-fold Lämmli-Buffer and 

incubated 5min at 95°C/350rpm. The samples, with an equal amount of protein, were added 

to the slots of the 4-15% TRIS-HCl (Criterion) gel. The gel electrophoresis was performed in 

a gel chamber with electron buffer for 1h at 200V. The gel, the membrane and the filter paper 

were incubated for 10min on a shaker in SDS transfer buffer, subsequently. The proteins 

separated in the gel were blotted on a Hybond Nitrocellulose membrane (GE Healthcare) 

between two filter papers for 90min at 100mA. The gel was stained with Coomassie-blue to 

control if the blot was complete. Afterwards the membranes were blocked in 3% skim milk 

for 1h on a shaker. The primary antibody staining was done over night at 4°C under gentle 

shaking. Afterwards the membranes were washed three times for 5min with TTBS buffer. The 

membranes were stained for 2h at RT in the dark with the secondary antibody with gentle 

shaking. Before the membranes were dried they were washed two times with TTBS and ones 

with TBS buffer (Burnette, 1981). During the scanning of the membranes the fluorescence 
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was measured with the Li-COR scanner (Li-COR Inc, Lincoln, USA). For analysing the 

Prestained Protein Marker IV (peqlab peqGOLD) and an internal standard like GAPDH and 

ß-Actin AC-15 was used. 

3.2.8. Statistics 

All statistical analyses and graphs were performed with Prism 5 (GraphPad Prism. Inc., 

USA). The analysing of the ßIII-tubulin positive cells in immunocytochemistry pictures was 

performed by counting 8 areas of two 3D scaffolds per time point. N is given as the number 

of experiments and n as the number of scaffolds for each experiment. For flow cytometry 

analyses one 3D scaffold was used per time point, therefore N is given as the number of 

experiments. The values represent the mean and the aberrance was shown as standard error 

of the mean SEM. The values of the tested conditions were compared at each time point using 

the student’s t-test. P-values � 0.05 indicated by *, were considered to indicate significant 

statistical differences. P-values � 0.01 or � 0.001 are indicated by ** and *** respectively. 
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4. Results 

Aim of the study was to elucidate the influence of a 3-dimensional environment on the 

proliferation and differentiation of human neural progenitor cells. Therefore cells were 

cultured in a standard 2D culture system and in the peptide based hydrogel PuraMatrix 

supplemented with laminin (PML) (4.1). Subsequently the different culture conditions were 

compared by several parameters like the amount of cells with a neuronal phenotype and 

apoptotic events. In the second part modified RADA16-I formulations (provided from BD 

Bioscience), namely PM-SDP and PM-PFS were tested. These formulations contained 

incorporated functionally modified peptide sequences to improve cell adhesion and 

differentiation (4.2.). Further the effect of the PFS sequence on monolayer culture was 

analysed (4.3.). In the last part, the effect of laminin on the hNPCs, grown in the modified 

matrix formulation PM-PFS, was studied to elucidate any additional effects of the 

combination of laminin and modified matrix (4.3.). 

4.1.  Cultivation of hNPCs in 3D scaffolds (PML) 

In a previous study it was shown that the structure of 3D scaffolds consisting of PuraMatrix 

depends on the used concentration of the matrix and the functionalisation with laminin 

(Ortinau et al., 2010). Furthermore the formation of the matrix directly influenced the 

differentiation and survival of hNPCs cultured in the 3D scaffolds. As Ortinau et al. (2010) 

determined a PM-concentration of 0.25% as optimal for the hNPCs, I used this concentration 

for my studies. In the first part of the study the influence of the 3-dimensional culture system 

on the growth, differentiation and survival of the hNPCs was analysed. 

4.1.1. Growth of hNPCs inside the 3D scaffolds (PML) 

The question, how the cells grow inside the matrix was of great interest in the beginning of 

this work. I used a 0.25% PuraMatrix scaffold supplemented with laminin (PML) in a 

concentration of 8µg laminin / 100µl Matrix. The hNPCs were encapsulated in the matrix, 

cultured in the 3D scaffold for 7 days under proliferation conditions and subsequently 

differentiated for up to 10 days. Fig. 6 shows proliferated hNPCs inside the PML 3D scaffolds 
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(Fig. 6A, B) and cells differentiated 7 days (7dd) (Fig. 6C, D). Cells proliferated for 7 

days show flat and densely packed cell aggregates with 3-dimensional loosely composed 

cellular structures (Fig. 6A, B). After 7 days of differentiation (Fig. 6C, D) one can see 

outgrowing processes and morphological changes compared to proliferating cells (Fig. 6A, 

B). 

Fig. 6: Phase contrast pictures of hNPCs in 3D scaffolds (PML) 7 days under proliferation conditions (A, B) and 

7 days differentiated (C, D). A, C: Overview, scale 20µm; B, D: magnification, scale 10µm. 

The hNPCs grown not as neurospheres. Neurospheres are the preferred form of the hNPCs. 

They shown a distribution across the 3D scaffold, but the distribution is not equal in the 

matrix. There are parts with lower number of cells and parts with a huge number of cells and 

also areas without cells (Fig. 6). In a first set of experiments I analysed the structure of the 

scaffold by means of scanning electron microscopy to know if this may results from the 

structure of the matrix. 

Fig. 7 shows an example of the surfaces of the PML scaffolds by using the scanning electron 

microscopy. The surface of the scaffold appears fissured and inhomogeneous. The PML 
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scaffold demonstrates cavities and lacunas (Fig. 7a, b). The dense network of regular 

overlapping nanofibres of the scaffold was detected with the highest magnification (right). 

Fig. 7: Scanning electron microscopy of 3D scaffolds. The surface of the scaffold with the laminin 

functionalisation (PML) is shown (a, b, c). a Scale 40µm, b Scale 10µm, c Scale 4µm. The dense network of 

regular overlapping nanofibers was detected with the highest magnification (right, c). 

Next, I was interested in how the hNPCs were incorporated in these structures. Therefore the 

cells were embedded in PML scaffolds and the growth was compared to cells cultivated in 

standard 2D culture system (Fig. 8). The images of the left column present an overview and 

the images of the right column provide a higher magnification of the samples. The pictures 8a 

and 8b show hNPCs grown as a monolayer in the 2D culture system. One can observe an 

outgrowth of processes with only few contacts between the cells. 

The images 8c-h shows the network structure of the 3D scaffold and the growing of the cells 

within the 3D composition of the scaffold. The cells are in contact with the matrix material 

and avoid cavities and lacunas (8c, e). They only bridged them with processes. In higher 

magnification (Fig. 8d) one can see the small pore size (50-200nm) of the material in 

comparison to the size of the cells (5-20µm). Fig. 8e-h show hNPCs 7 days differentiated in 

PML scaffolds. In Fig. 8e, g a network of processes of the hNPCs is found among the 

scaffolds. In a higher magnification one can see a very detailed view of single cells (Fig. 8f) 

and a process outgrowth (Fig. 8h) of hNPCs within 3D scaffolds. 
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Fig. 8: Scanning electron microscopy pictures of hNPCs in 2D culture and 3D scaffolds. Left panel: scale 40 

µm, right panel: scale 10 µm. a, b Proliferated hNPCs cultured in 2D culture, adherent on PDL and laminin 

coated cover slips. Proliferating cells cultured in PML 3D scaffolds for 7 days (c: overview, d: magnification) 

and 7 days differentiated cells in PML 3D scaffolds (e, g: overview; f, h: magnification). A very detailed view of 

hNPCs is shown in d, f and of a process in h. White arrows indicate hNPCs, black arrows indicate structure of 

the matrix. 
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As the scanning electron microscopy pictured only the surface of the 3D scaffolds, 

transmission electron microscopy was used in addition to analyse cells residing inside the 

matrices. Fig. 9 shows two ultra thin slices of laminin functionalised scaffolds (PML) with 

proliferated cells. Inside the cells one can see cell organelles like the nucleus with nucleolus, 

the rough endoplasmic reticulum (RER), several mitochondria, the golgi apparatus and the 

cell membrane (Fig. 9A). The cells are surrounded by other cells or matrix distinguishable of 

overlapping nanofibers. Interestingly one could observe vesicles in the cells filled with 

material with a structure similar to the structure of the matrix material (Fig. 9B, C), which 

could possible phagozytosed nanofibers from the scaffold. 

Fig. 9: Transmission electron microscopy of hNPCs cultured 4 days in 3D scaffolds supplemented with 

laminin (PML). A: Nucleus, Nucleolus, cell membrane, matrix, rough ER, mitochondrion, Golgi apparatus. 

Scale 2µm. B, C: Scale 500 nm. The structures inside the vesicle of the cells (black arrow), which looks similar 

to the structure of the 3D scaffold. 
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4.1.2. Differentiation of hNPCs in 3D scaffolds (PML) 

To elucidate the influence of the 3-dimensional environment on the differentiation of the 

hNPCs, immunocytochemical studies were performed using neuronal marker. Further a 

quantification of the amount of the different phenotypes of the hNPCs was done. 

The hNPCs were proliferated in PML 3D scaffolds for 7 days and subsequently differentiated 

for another 7 days. Different neuronal markers were used like ßIII-tubulin for mature neuronal 

cells, TH (tyrosine hydroxylase) for dopaminergic neurons or GFAP (Glial fibrillary acidic 

protein) for glial cells. Fig. 10 shows differentiated cells stained against ßIII-tubulin and 

GFAP (Fig. 10A), ßIII-tubulin and TH (Fig. 10B) as well as PSA-NCAM (Fig. 10C). 

Proliferated cells usually show GFAP, but no ßIII-tubulin or TH positive cells. The hNPCs 

differentiated mostly to astrocytes, shown as GFAP positive cells, only a small amount of  �

Fig. 10: Immunocytochemistry pictures of 7 days differentiated hNPCs in 3D scaffolds (PML). A: ßIII-

tubulin (green) / GFAP (red), scale 20 nm. B: ßIII-tubulin (green) / TH (red), scale 20 nm. C: PSA-NCAM 

(green), scale 50 nm D: Ki-67 of released hNPCs, which were differentiated 7 days in 3D scaffolds, scale 20 nm. 

The distribution of cells within the matrix is shown by DAPI staining. Proliferated cells were positive for GFAP, 

PSA-NCAM and Ki-67. TH and ßIII-tubulin were usually only found in differentiated cells. GFAP and PSA-

NCAM were found in both conditions. Also some Ki-67 positive cells were found in hNPCs when differentiated 

in 3D scaffolds. 
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ßIII-tubulin and few TH positive cells were found (Fig. 10A, B). PSA-NCAM was used 

as a marker for neuronal precursor cells. The hNPCs are positive for PSA-NCAM at 

proliferated and differentiated state in 3D scaffolds. Fig. 10C shows differentiated hNPCs 

positive for PSA-NCAM. If the hNPCs were differentiated in 3D scaffolds some cells were 

not stained for any of the described marker. Following, the in 3D scaffolds differentiated 

hNPCs were released of the scaffold to prove if the cells keep their proliferation potential. 

The differentiated cells were plated again as monolayer and stained against Ki-67. Ki-67 is a 

marker for dividing cells. Fig. 10D shows that some cells differentiated in 3D scaffolds were 

positive for Ki-67. 

Fig. 11 shows the quantification of immunocytochemistry pictures with hNPCs in 3D 

scaffolds at different time points. The manual counting was done for cells differentiated up 20 

days to define the time course for following experiments in the 3D cultures. The peak with the 

highest number of cells was detected at 7 days of differentiation with around 3-4% ßIII-

tubulin positive cells. Then a decrease of ßIII-tubulin positive cells until 14 days was found to 

less than 1% positive counts. 

Fig. 11: Quantification of immunocytochemistry pictures of hNPCs in 3D scaffolds (PML): Number of ßIII-

tubulin positive cells counted at different stages of differentiation. Total number of cells was determined by 

DAPI staining using GSA Image Analyser counting software. The highest number of ßIII-tubulin
+
 cells was 

found at 7dd. N=2-4, n=2. Mean ± SEM. 
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As the quantification of microphotographs is extremely time consuming and only a 

small subset of cells within the scaffolds can be analysed, a method to release the cells from 

the scaffolds was adapted. In a next approach hNPCs encapsulated in 3D scaffolds were 

released from the matrices and subsequently cultured in 2D culture system providing access 

to cells for immunocytochemical staining. Therefore the 3D scaffolds were disrupted 

mechanically and the cells were released and sub-cultured on PDL and laminin coated cover 

slips. Three conditions with PML 3D scaffolds were tested. Cells were released after 7 days 

of proliferation, as well as 4 and 7 days in differentiation (Fig. 12). Recovered proliferated 

cells adhere properly. Differentiated cells had a reduced tendency to adhere. Fig. 12 shows 

differentiated hNPCs recovered from PML 3D scaffold at 4dd and 7dd stained for GFAP and 

ßIII-tubulin (Fig. 12 A, C). The number of adhered neuronal cells was decreased from 4 to 7 

days (Fig. 12 B, D). Based on these results the next experiments to detect cells positive for 

different marker via immunocytochemistry, were done with cells recovered from scaffolds 

after 4 days differentiation. 

Fig. 12: Immunocytochemistry of recovered hNPCs at 4dd and 7dd stained against ßIII-tubulin and 

GFAP. Scale 20 nm. A: recovered at 4dd, ßIII-tubulin (green) / GFAP (red); B: recovered at 4dd, ßIII-tubulin 

(red); C: recovered at 7dd ßIII-tubulin (green) / GFAP (red); D: recovered at 7dd ßIII-tubulin (green). More 

neuronal cells adhered when recovered at 4dd. 



Results 

47 

This method provided access to an analysis of the cells by flow cytometry. Therefore the 

scaffolds were mechanical disrupted and cells were released by the same method to produce a 

single cell solution. Fig. 13A shows an example of a flow cytometry analysis to determine the 

amount of neuronal cells. Unstained cells were used as negative control, to set the gate (black 

frame, Fig. 13A) for the subsequently analysis of the amount of different marker e.g. HuC/D. 

To quantify the percentage of positive cells the same gate, set in the negative control, was 

used. Positive cells appear in the right part of the x-axis, where also intermediate population 

in 3D scaffolds was observed (blue frame), and most likely representing debris of cells.   

The comparison of manual counted cells and cells counted by flow cytometry of ßIII-tubulin 

revealed a much higher proportion of positive cells, where the time dependency of the number 

of ßIII-tubulin
+
 was comparable, indicating the reliability of the flow cytometry protocol (Fig. 

13B).

Fig. 13: Principle of flow cytometry analysis with hNPCs. A: Pictures show negative control with the 

secondary antibody Alexa Fluor 647 and the hNPCs, cultured in 2D and 3D scaffolds (PML), stained with 

HuC/D and the Alexa Fluor 647. Black gate demonstrate positive cells, blue gate intermediate population of 

cells. B: Mean ± SEM. Comparison of manual counted ßIII-tubulin+ with flow cytometry counted positive cells, 

time dependency was comparable. 



Results 

48 

Depending on the results of the immunocytochemistry quantification the time points 4, 7 

and 10 days of differentiation were assessed for further experiments (4dd, 7dd, 10dd). The 

time points 1dd and 3dd were additional reviewed to compare the results with the usually 

used cultivation of hNPCs as adherent monolayer, where the peak of ßIII-tubulin positive 

cells is between 3dd and 4dd. First the amount of ßIII-tubulin
+
 cells in the standard 2D culture 

system and in 3D scaffolds was compared (Fig. 14A). The expression of ßIII-tubulin was 

significant higher in hNPCs cultivated in 3D scaffolds at all time points especially at 7 and 10 

days and with the highest amount at 7 days (7.03 ± 0.76 %). The comparison 2D vs. 3D 

shows that the peak of ßIII-tubulin shifts from 4dd (2D: 2.99 ± 0.45 %) to 7dd (3D: 7.03 ±

0.76 %), where a 2.4 fold higher amount was found compared to 2D cultivated cells. 

As a second neuronal marker the expression of HuC/D was analysed. The expression of 

HuC/D was significant higher at 7 days in 3D scaffolds (2D: 2.33 ± 0.67 %; 3D: 5.55 ± 0.59 

%) and lower at 1 day in 3D scaffolds (2D: 2.59 ± 0.34 %; 3D: 0.72 ± 0.38 %). The peak of 

HuC/D expression was after 4dd in 2D culture and 3D scaffolds (2D: 5.84 ± 0.58 %; 3D: 7.08 

± 1.07 %; Fig. 14B). Comparison with ßIII-tubulin shows that the expression of HuC/D starts 

earlier than ßIII-tubulin in 2D cultivation and was significant higher than ßIII-tubulin at 0dd, 

1dd and 3dd (Fig. 14A, B). In 3D cultured cells the expression of HuC/D peaked earlier than 

ßIII-tubulin as well, but was not significant higher as ßIII-tubulin. 

In addition to the neuronal markers GFAP was used to determine cells with a glial phenotype 

(Fig. 14C). The comparison 2D vs. 3D shows a significant lower expression of GFAP at 3dd, 

7dd and 10dd in 3D scaffolds (3dd: 1.12 fold, 7dd: 1.13 folds, 10dd: 1.24 folds; Fig. 14C). 

The amount of GFAP positive cells in proliferated cells (0dd) was found to be comparable 

between the 2D and 3D culture system (2D: 91.47 ± 2.21 %; 3D: 91.35 ± 1.7 %). 

Flow cytometry of PSA-NCAM, a marker for neuronal progenitor cells, was done to prove if 

the increase of ßIII-tubulin is based on a higher progenitor pool (Fig. 14D). The comparison 

between 2D cultures and 3D scaffolds showed a significant increase of PSA-NCAM in 3D 

scaffolds (2D: 5.17 ± 1.56 %; 3D: 41.33 ± 11.74 %). Comparing the expression of PSA-

NCAM with the expression of ßIII-tubulin (Fig. 14A), it is noticed that there is a huge 

difference between the amounts of the markers. Nearly 40 % of the cells were positive for 

PSA-NCAM but only about 8 % of the hNPCs become positive for ßIII-tubulin. 
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Fig. 14: Flow cytometry analysis of hNPCs cultivated in 2D and 3D scaffolds (PML). Mean ± SEM. A: 

Significant increase of ßIII-tubulin
+
 cell in 3D scaffolds, 2D: N = 6-13, 3D: N = 7-12; B: Significant increase of 

HuC/D
+
 cells in 3D scaffolds at 7dd, 2D: N = 3-8, 3D: N = 4-14; C: Significant decrease of GFAP

+
 cells in 3D 

scaffolds at 3dd, 7dd, 10dd, 2D: N = 3-7, 3D: N = 4-9; D: Significant increase of PSA-NCAM
+
 cells in 3D 

scaffolds, 2D: N = 5-11, 3D: N = 5. *, ** and *** indicates significant differences 2D to 3D. 

4.1.3. Apoptosis of hNPCs in 3D scaffolds (PML) 

As the neuronal population of the hNPCs seem to survive longer in the PuraMatrix-scaffolds 

(Fig. 14A) the rate of apoptosis was examined in the 2D culture and PML 3D scaffolds. In a 

first set of experiments the ratio of apoptotic events was investigated using a TUNEL-Assay 

(Fig. 15). The TUNEL-Assay is a common method for detecting DNA fragmentation, which 

is a consequence from apoptotic signalling cascades. The presence of nicks in the DNA can 

be identified by terminal deoxynucleotidyl transferase. This enzyme catalyzes the addition of 

labelled dUTPs. Also cells with severed DNA damage are labelled. For the TUNEL-Assay 
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the hNPCs were differentiated up to 10 days and subsequently released from the 

matrices as described above (3.2.5.). The amount of TUNEL-positive cells of 3D scaffolds 

was compared to the amount of positive cells found in the standard 2D culture.  

In 2D cultivated cells a high increase of apoptotic events was detected over time, with the 

highest amount after 10 days (74.86 ± 9.28 %; Fig. 15). In 3D scaffolds cultivated cells the 

number of positive cells was always lower in comparison to 2D cultured cells and the increase 

of TUNEL-positive cells was less steep over time. The comparison of the number of apoptotic 

cells in the 2D and 3D cell culture system showed a significant lower rate of apoptosis in the 

3D scaffold after 4, 7 and 10 days (Fig. 15).  

Fig. 15: TUNEL-Assay of hNPCs cultured in 2D monolayer and 3D scaffolds. Mean ± SEM. 2D: white bars,

N = 5-12, 3D: black bars, N = 5-10. * and *** indicates significant differences 2D to 3D. Increase of apoptotic 

cells during differentiation up to 10 days is shown for 2D. Compared with 3D scaffolds significant differences 

were found. 

As the TUNEL-Assay marks cells at different states of apoptosis and shows only cells within 

ongoing apoptosis with DNA damage but not the state of apoptosis, another assay had to be 

used to determine cells in the early and late state of apoptosis. The Annexin V staining can 

identify apoptosis at very early states of apoptosis in comparison to assays based on nuclear 

changes. In combination with the vital dye propidium iodide cells could discriminate between 

early or late apoptosis and necrotic cells. Therefore a double staining of Annexin-V and 
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propidium iodide was used for the next experiments. Quantification of early apoptotic 

cells in the hNPC population revealed an increase in both conditions during differentiation, 

but the amount of cells was not significantly different between cells cultured in the 2D system 

and 3D scaffolds (Fig. 16A). 

The quantification of late apoptotic cells revealed an increase up to 7 days differentiation for 

2D cultured cells (Fig. 16B). A higher proportion of cells in the late apoptosis were observed 

in the 2D culture compared to the 3D culture system. A significant change was found at 1dd, 

4dd, 7dd and 10dd, with a fold change from 1.7 at 1dd to 2.4 at 10dd. 

The population of necrotic cells was not quantified because dead cells lost the adherence to 

the surface in 2D culture and washed away during media change, which underestimate the 

real number. In 3D culture all cells dead or alive were cleaved in the scaffold. Further the 

necrotic cells in 3D scaffolds show no significant differences at all time points. Therefore no 

comparison with 2D culture of the necrotic cells was done.

Fig. 16: Double staining of FITC coupled Annexin-V and Propidium Iodide in 2D culture and 3D scaffolds

analysed via flow cytometry. Mean ± SEM. 2D: white bars, N = 4-6, 3D: black bars, N = 3-5. *, ** and *** 

indicates significant differences 2D to 3D. A: early apoptosis. No difference between 2D and 3D scaffolds was 

observed. B: late apoptosis. A significant lower number of apoptotic cells were determined in 3D scaffolds. 

The above described experiments, of monitoring the survival and apoptotic events in 2D- and 

3D cultures, contained all populations of cells, regardless of their phenotype. To study in 

which amount the neuronal cell population was affected by apoptosis, a TUNEL-Assay was 

performed in combination with ßIII-tubulin stained cells (Fig. 17). Quantification revealed 
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that cells cultured in monolayer showed an increase of apoptotic neurons over 7 days up 

to 70 % (Fig. 17). Regarding the whole population of the cells (Fig. 15) there was no 

difference. The apoptotic events of neuronal cells in 3D scaffolds (Fig. 17) were higher than 

in the whole population (Fig. 15). Compared with 2D the hNPCs in 3D scaffolds show a 

higher rate of apoptotic neurons up to 4 days differentiated, with a significant increase at 3dd. 

But they seem to survive longer, because only few ßIII-tubulin positive cells were left after 7 

days of differentiation in the 2D culture, where in 3D scaffolds the highest number of neurons 

was found after 7 days of differentiation (Fig. 14A). 

Fig. 17: Combination of TUNEL-Assay and ßIII-tubulin staining shows apoptotic neurons of hNPCs in 2D 

culture and 3D scaffolds. Mean ± SEM. 2D: white bars, N = 3-6, 3D: black bars, N = 4-7. * indicates 

significant differences 2D to 3D. A significant increase at 3dd in 3D scaffolds was found. 

Based on the results of the TUNEL-Assay and Annexin V – PI double staining further 

investigation were done to study apoptotic processes. As a most likely possibility the amount 

of the anti-apoptotic protein Bcl-2 was analysed by means of flow cytometry. Bcl-2 plays a 

crucial role in the regulation of the formation of MAC, where the formation of MAC is 

hindered, resulting in prevention of cytochrome c release and apoptosis. Fig. 18 show the 

quantification of the Bcl-2 amount of the hNPCs differentiated in 2D culture and PML 3D 

scaffolds. The Bcl-2 expression of hNPCs in 2D culture started with a low amount and 
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increases during differentiation with the highest amount at 4dd (15.99 ± 2.87%). After 4 

days the Bcl-2 amount decreases up to 10dd. The hNPCs in 3D scaffolds started with a high 

concentration of Bcl-2 at 0d (9.13 ± 3.62%). Than increases during differentiation to the 

highest concentration at 4dd (26.90 ± 7.50%) and was more or less stable up to 10dd. The 

comparison of the Bcl-2 concentration in 2D culture and 3D scaffolds showed always a higher 

amount in 3D scaffolds. Where a significant higher amount was found in 3D scaffolds at 0, 7 

and 10 days of differentiation compared to 2D cultivated cells (Fig. 18).  

Fig. 18: Flow cytometry of Bcl-2 in hNPCs in 2D culture and 3D scaffolds. Mean ± SEM. 2D: white bars, N 

= 3-6, 3D: black bars, N = 3-6. * and ** indicates significant differences 2D to 3D. An increased Bcl-2 

expression in 3D-scaffolds is shown with significant differences at 0dd, 7dd and 10dd.  

Based on the finding of decreased apoptotic rate in 3D scaffolds I was next interested in the 

mechanism underlying this effect. The highest significant difference in apoptotic events was 

detected at 7dd and 10dd (Fig. 15). From previous apoptotic studies of this cell line in 2D 

culture is known that the expression change of apoptotic key factors started at early time 

points after induction of differentiation (Jaeger, 2010). Maybe 7dd are too late for 2D cultured 

cells. The time point 1dd could be too early for 3D cultured cells based on remaining growth 

factors which could not washed out before starting the differentiation. Because the highest 

number of ßIII-tubulin positive cells in 2D was found at 4dd and at 4dd the significant 
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differences of apoptotic cells between both culture conditions starts, 4dd seem to be 

optimal to determine the regulation of apoptosis. Several apoptotic markers were tested via 

Western Blot for hNPCs cultured in 3D scaffolds and 2D cultures (Fig. 19). The amount of 

Bax, as a pro-apoptotic marker, Caspase-3, PARP-1, the anti-apoptotic marker XIAP and 

Survivin were examined. Caspase-3 is an effector caspase and is activated via proteolytic 

cleavage. Caspase-3 (35 kDa) was detected in proliferated and differentiated hNPCs in 2D 

and PML 3D scaffolds. The quantification of the line intensity revealed that the expression of 

Caspase-3 was increased in differentiated cells. The 3D scaffolds show a lower increase, but 

no significant difference was detected between differentiated cells of 2D and 3D cultures.  

The Poly(ADP-ribose)-Polymerase-1 (PARP-1) was detected as a 116 kDa line in proliferated 

and differentiated hNPCs in 2D culture. In 3D scaffolds the expression of PARP-1 was lower 

and only tracks could detect in differentiated hNPCs. The quantification of line intensities 

shows that the expression of PARP-1 was increased in differentiated hNPCs in 2D culture. In 

3D scaffolds no difference between proliferated and differentiated hNPCs was found. 

Comparison of 2D culture and 3D scaffolds relieved a significant decrease in 3D scaffolds 

during differentiation. 

The expression of the X-linked inhibitor of apoptosis protein (XIAP), with a size of 57 kDa, 

was found in proliferated and differentiated hNPCs in both culture systems. The 

quantification of line intensities showed an increase of the XIAP expression in differentiated 

hNPCs. This first result indicates that XIAP is higher increased in differentiated hNPCs 

cultured in PML 3D scaffolds, without significant differences. The 21 kDa protein Bax could 

be detected in proliferated and differentiated cells. Additional a second smaller line 18 kDa 

known as a fragment of Bax was detected in some samples of differentiated cells in PML 3D 

scaffolds (Fig. 19). Quantification of the 21 kDa protein shows no difference between both 

cultivations (Data not shown). At last the 16 kDa protein Survivin, a member of inhibitors of 

apoptosis (IAP), was analysed. It was highly present in proliferated hNPCs in 2D and was 

decreased in differentiated hNPCs of the 2D culture. In 3D scaffolds the hNPCs expressed 

Survivin in lower amount, where in proliferated cells always a small line of Survivin was 

present, in differentiated cells only some samples showed tracks of Survivin (Fig. 19). 
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Fig. 19: Western Blot of apoptotic marker expression of two time points (0 days and 4 days differentiated) 

in hNPCs cultivated in 2D culture and 3D scaffolds. Lines and quantification of the line intensities related to 

the internal standard GAPDH or ß-Actin. Normalized to 0 days. White bars indicate 2D cultures, black bars 3D 

cultures. Mean ± SEM. * indicates significant differences 2D to 3D. Caspase-3 2D N = 4, 3D N = 3. PARP-1 

2D N = 6, 3D N = 4. XIAP 2D N = 7, 3D N = 4. Compared with 2D culture a decrease of Caspase-3 and PARP 

and increase of XIAP is shown. 
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4.2.  Cultivation of hNPCs in modified 3D scaffolds

4.2.1. Growth and differentiation of hNPCs in modified 3D scaffolds 

In the second part of experiments modified PuraMatrix formulations, provided by BD 

Bioscience, were used to study the differentiation of hNPCs. The modified PuraMatrix 

formulations contain incorporated functionally modified peptide sequences to alter the 

functionalisation of the scaffolds. Two altered formulations of PuraMatrix were used. 

1) PM-SDP: The SDP-peptide (Ac-(RADA)4-GGSDPGYIGSR-NH2) is a cell adhesion 

motif of laminin, promoting cell adhesion and extensibility of neural cells (Gelain et al., 

2006). 

2) PM-PFS: The PFS-peptide (Ac-(RADA)4-GGPFSSTKT- NH2) is a motif of the bone 

marrow homing factor shown to improve the differentiation of neural stem cells and 

extension of neural cells (Gelain et al., 2006). 

The hNPCs were cultured in the modified matrices accordingly to the above-mentioned 

procedure (3.2.1.2.). The unmodified pure PuraMatrix scaffold was used as control to detect if 

the modifications results in increased attachment or differentiation. Fig. 20 shows hNPCs 

cultured in 3D scaffolds of PM, PM-SDP and PM-PFS. The cells proliferated for 7 days and 

were subsequently differentiated for 7 days. The hNPCs grow in PuraMatrix and modified 

PuraMatrix formulation in spheroid likes densely packed cell aggregates with sporadically 3-

dimensional loosely composed cellular structures (Fig. 20A, C, E). The spheroids like 

structures are mostly less compact and smaller than typical neurospheres after 7 days of 

proliferation. The cells within all scaffolds mostly hold the spheroid like structure during 

proliferation and no visual difference could be detected between the three conditions. Upon 

induction of differentiation, one can see morphological changes and outgrowing processes. 

Differentiated cells build networks with other cells and cell aggregates (Fig. 20B, D, F). 

Fig. 20B, D and F show immunocytochemistry staining against ßIII-tubulin after 4 days of 

differentiation. Expression of the neuronal marker ßIII-tubulin was observed in all three 

conditions, where an impressively higher amount of processes and cell bodies was observed 

in matrices consisting of PM-PFS and PM-SDP (Fig. 20D, F). The hNPCs build a dense 

network of outgrowths between different spheroids in the modified scaffolds PM-SDP and 

PM-PFS (Fig. 20D, F), but especially in scaffolds with the PFS-peptide (Fig. 20F). Further in 

parts with higher amounts of spheres and lower distances of the spheres the connection 
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between different spheres seem to be increased (Fig. 20F). The amount of ßIII-tubulin 

between 4dd and 7dd evidence no difference (data not shown). 

Fig. 20: The hNPCs proliferated and differentiated in 3D scaffolds of PuraMatrix and modified 

PuraMatrix formulations.  Scale 50 nm. PM: PuraMatrix, PM-SDP: PM modified with peptide sequence of 

the laminin, PM-PSF: PM modified with peptide sequence of the bone marrow homing factor. A, C, D: Phase 

contrast pictures of proliferating cells. Spheroid like growth patterns of hNPCs were observed in all scaffolds; B, 

D, F: Immunocytochemistry pictures, 4dd, ßIII-tubulin (green) / TH (red). The distribution of cells within the 

matrix is shown by DAPI staining. One can observe an increased number of ßIII-tubulin
+
 cells in matrices 

consisting of PM-SDP and PM-PFS scaffolds. 
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Next the amount of the neuronal marker ßIII-tubulin, HuC/D, the glial marker GFAP 

and the marker for neuronal progenitor cells PSA-NCAM were quantified by means of flow 

cytometry. The comparison of PuraMatrix vs. the modified PuraMatrix formulations revealed 

significant higher numbers of ßIII-tubulin positive cells in the modified matrices at all time 

points (Fig. 21A). Whereas the PM-PFS scaffolds show the highest increase. All conditions 

show an increase with the highest amount at 10 days (PM: 8.36 ± 1.65 %, SDP: 19.01 ± 4.29 

%; PFS: 25.07 ± 2.66 %). The HuC/D expression showed a little higher amount in the 

modified scaffolds at 4 days of differentiation, but no significant changes compared with the 

PM scaffold could be detected (Fig. 21B). Except in the PM-PFS scaffold a significant 

increase was determined at 7 days. The higher amount in PM-SDP scaffold at 10dd was not 

significant. �

Fig. 21: Flow cytometry analysis of neuronal markers in hNPCs cultivated in PuraMatrix and modified 

PuraMatrix formulations. White bars indicate PM scaffolds; black bars PM-SDP scaffolds, doted bars PM-

PFS scaffolds. Mean ± SEM. *, ** and *** indicates significant differences PM to mod. PM. 15A ßIII-tubulin

PM: N=7-8, PM-SDP: N = 8-10, PM-PFS: N = 6-9; 15B HuC/D PM: N = 8-10, PM-SDP: N = 7-9, PM-PFS: 

N = 5-10; 15C GFAP PM: N = 5, PM-SDP: N = 4-6, PM-PFS: N = 5-7; 15D PSA-NCAM N = 4. A significant 

increase of ßIII-tubulin
+
 at all time points and HuC/D at 7dd. Expression of GFAP and PSA-NCAM no 

significant differences were found. 
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Surprisingly the expression of GFAP show no significant differences compared with the PM 

scaffold (Fig. 21C). A little decrease was found in PM-SDP scaffolds at 4 days and PM-PFS 

at 7 days, but no significance was observed. The amount of GFAP-positive cells was between 

73 % and 81 % in the modified scaffolds. 

PSA-NCAM was used to determine if the progenitor pool of the hNPCs is changed when 

cultured in the modified 3D scaffolds and was mostly expected in proliferated cells. Either the 

ßIII-tubulin expression is high increased when hNPCs cultured in modified PM formulations, 

I was interested if the modified scaffolds have also an effect on the expression of PSA-

NCAM in the hNPCs. The quantification shows the highest amount at zero days with a 

decrease in differentiation (Fig. 21D). The PSA-NCAM expression of hNPCs in the modified 

matrices show a trend of a small decrease at both time points compared to the PM scaffold, 

but no significant changes were observed.

As shown in Fig. 21, culturing of hNPCs in the modified 3D scaffolds resulted in a 

significantly higher amount of cells with a neuronal phenotype. In a subset of experiments I 

examined the influence of the modified matrix on the expression of synaptic proteins, as 

synapses are prerequisite for synaptic transmission between neurons. 

Therefore immunocytochemical staining of hNPCs, encapsulated into modified scaffolds, 

against synaptic marker were done, using the presynaptic marker synaptophysin and the 

postsynaptic marker PSD95 (data not shown). The hNPCs showed no positive staining for 

both markers when cultured in monolayer. Experiments with encapsulated hNPCs inside 3D 

scaffolds have proven disadvantageous, because the auto-fluorescence of every cell in the 3D 

scaffold and the high number of cells inside the scaffold resulted in a high background 

preventing a clear determination of positive staining. 

Recovering of hNPCs cultured in modified PM formulations and staining against the synaptic 

marker is shown in Fig. 22. Synaptophysin could not detect in the hNPCs neither in 

unmodified nor in modified PM formulations. The postsynaptic marker PSD95 was usually 

also not found in the hNPCs in 2D culture. This was also the case for the unmodified scaffold 

and the scaffold modified with the SDP-peptide. Staining with the PSD95 in PM-PFS 

scaffolds indicates few positive cells in the PM-PFS scaffolds. Fig. 22 shows PSD95 positive 

cells after culturing and differentiated in PM-PFS scaffolds and subsequently released of the 

scaffold after 4dd. 
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Fig. 22: Immunocytochemistry of recovered differentiate hNPCs from modified 3D scaffolds. Picture 

shows recovered hNPCs, which were differentiated 4 days in PM-PFS scaffolds and stained against PSD95 

(green) and ßIII-tubulin (red). Scale 5 µm. 

4.2.2. Survival and apoptosis of hNPCs inside modified 3D scaffolds 

As demonstrated in 4.2.1. a significantly higher amount of neuronal cells was found in 

matrices consisting of modified PM formulations. To elucidate if these findings were based 

on increased differentiation or better survival of the cells, the rate of apoptosis was 

determined in the modified scaffolds. To evaluate the amount of apoptotic cells a TUNEL-

Assay was performed with cells cultured in PM, PM-SDP and PM-PFS scaffolds. The 

quantification was done by flow cytometry where the whole population (Fig. 23A) as well as 

the neuronal population was examined (Fig. 23B). In all three types of scaffolds a bigger 

increase of apoptotic events was observed after 4 days of differentiation compared to 0d, 

followed by a small increase up to 10dd. The apoptosis of the hNPCs in both modified 

scaffolds was not significant different to PM scaffolds (Fig. 23A). 

Fig. 23B shows the amount of apoptotic cells of the neuronal population of the hNPCs in the 

modified scaffolds. The apoptotic events were only in the population of neuronal cells higher 

than in the whole population of cells cultured in the modified scaffolds. An amount between 

20 % and 30 % for all cells in the scaffolds was found, whereas between 60 % and 80 % 

apoptotic cells were found only for the neuronal population of hNPCs (Fig. 23A, B). The 
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amount of apoptotic neurons increases during differentiation in all three scaffolds. In the 

modified scaffolds a little lower number of apoptotic neurons were found, but based on the 

high variances of the experiments no significant decrease was observed (Fig. 23B). 

Fig. 23: Apoptosis of hNPCs in PuraMatrix and modified PuraMatrix formulations. White bars indicate 

PM scaffolds; black bars PM-SDP scaffolds, doted bars PM-PFS scaffolds. Mean ± SEM. A: TUNEL-Assay,

PM: N = 3-5, PM-SDP: N = 4-5, PM-PFS: N = 3-5; B: TUNEL-Assay of ßIII-tubulin
+
 hNPCs, PM: N = 3-5, 

PM-SDP: N = 4-5, PM-PFS: N = 3-7. No significant differences were found in the modified PM scaffolds. 

As the TUNEL-Assay marks cells at different state of apoptosis, a double staining of 

Annexin-V and propidium iodide was used to detect cells in early or late states of apoptosis. 

Fig. 24 shows the quantification of early and late apoptosis, as well necrotic cells of hNPCs 

cultured in PM, PM-SDP and PM-PFS scaffolds. The necrotic cells do not differ between the 

PM scaffold and the modified PM formulations. The number of cells in the early or late 

apoptosis was in all three conditions about 20 % after inducing differentiation (Fig. 24). 

Whereas the ratio of early and late apoptosis in PM scaffolds is more or less equal in PM 

scaffolds, in the modified PM formulations the amount of early apoptotic cells was slightly 

higher than the amount of late apoptotic cells. But significant differences could not be found 

(Fig. 24). 

The apoptotic events in the modified PM formulation seem not to differ between the scaffolds 

compared to the PM scaffolds. The positive effect regarding the survival of the 3D scaffolds 

on the hNPCs, described in chapter 4.1.2. for the PML 3D scaffold, is also present in the 

modified PM scaffolds. An additional increased survival or a significant decreased survival 

was not found for the modified PM scaffolds. 
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Fig. 24: Double staining of Annexin V and Propidium Iodide of hNPCs in PuraMatrix and modified 

PuraMatrix formulations. Triangle indicates early apoptosis, square indicates late apoptosis, and circle 

indicates necrosis. PM and PM-SDP: N = 4-5, PM-PFS: N = 3. No significant differences were found in the 

modified PM scaffolds. 
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In the last experiment, regarding apoptosis of hNPCs cultured in the modified PM 

scaffolds, the expression of the anti-apoptotic protein Bcl-2 was analysed. The modified PM 

formulation had as well a starting concentration at 0d, where the lowest concentration was 

found in PM-PFS scaffolds. The control and the PM-SDP scaffold showed an increase during 

differentiation with the highest amount at 4dd and a decrease up to 10dd. The Bcl-2 

expression in PM-PFS scaffolds increases up to 7dd and at 10dd a small decrease was found. 

A slightly decrease of the Bcl-2 expression at 4dd was found in PM-PFS scaffolds compared 

to the control and the PM-SDP scaffold, but no significant differences were observed (Fig. 

25). 

Fig. 25: Flow cytometry of Bcl-2 of hNPCs in PuraMatrix and modified PuraMatrix formulations. White 

bars indicate PM scaffolds; black bars PM-SDP scaffolds, doted bars PM-PFS scaffolds. Mean ± SEM. PM: N = 

3-4, PM-SDP: N = 4, PM-PFS: N = 3-4. No significant differences were found in the modified PM scaffolds. 

4.3.  Effect of PFS peptide sequence on monolayer culture of hNPCs 

The increased ßIII-tubulin expression of hNPCs encapsulated in the modified PM scaffold 

(Fig. 21) was the origin of the following set of experiments. As the highest amount of ßIII-

tubulin was observed in PFS-scaffolds, experiments were done to study the effect of the PFS-

peptide on hNPCs cultured as monolayer. Therefore a purified PFS peptide sequence 

(GGPFSSTKT) was used. This PFS-peptide sequence was added to the media of a 2D 

monolayer culture of hNPCs at different time points. The addition of the PFS-peptide 
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sequence to the sample results in a decreased attachment of the hNPCs as well 

proliferated and differentiated cells (Fig. 26B) compared to the control (Fig. 26A). 

For the quantification of the neuronal marker ßIII-tubulin two conditions were tested. PFS-

peptide supplemented during proliferation and differentiation (black bars) and only during the 

differentiation (doted bars). As control 2D culture of hNPCs without supplement was used 

(white bars). Regarding the amount of neuronal differentiated cells, a small decrease was 

found in both conditions compared to control, but no significant differences could observed 

(Fig. 26C). If the PFS-peptide was added only during differentiation no difference compared 

to the control was observed. A slightly higher amount of ßIII-tubulin was observed at 0 days 

for hNPCs proliferated with PFS-peptide, however this difference was not significant. 

Fig. 26: hNPCs cultured in monolayer with the PFS-peptide sequence as media supplement. A, B: Phase 

contrast pictures of proliferated hNPCs. Scale 10µm. A: control. B: PFS-peptide as supplement. The attachment 

of the hNPCs is decreased under PFS-peptide treatment C: Flow cytometry against ßIII-tubulin. White bars 

indicate control, black bars PFS-peptide for proliferation and differentiation, doted bars PFS-peptide for 

differentiation. Mean ± SEM. N = 3. No effect was found under PFS-peptide treatment. 
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4.4.  Influence of laminin on hNPCs in modified 3D scaffolds 

Aim of this part of the study was to determine the influence of laminin on the hNPCs cultured 

in modified PM scaffolds to elucidate possible additive effects of the modified matrix and 

laminin. The hNPCs grew neurosphere like in the modified PM scaffolds, laminin supplement 

can increase the attachment of the hNPCs and prevent neurospheres shown in 4.1.1. Therefore 

PM-PFS scaffolds were supplemented with laminin and the growth, differentiation and 

survival of the hNPCs were compared to cells cultured in not modified PM scaffolds 

supplemented with laminin as described in 4.1. If the laminin supplement to the modified PM 

scaffolds had also an effect on the differentiation or the survival will be shown in this chapter. 

4.4.1. Growth and differentiation of hNPCs in laminin supplemented 

modified 3D scaffolds 

Regarding the differentiation of the hNPCs an enhancement of neuronal cells was found in 

PM-PFS scaffolds (Fig. 21A), where no obvious effect was observed regarding the increased 

adhesion of the cells (Fig. 20E). In the PML scaffold a better spreading and decreased 

spheroid like growing of the hNPCs were observed (Fig. 6). Hence the PM-PFS scaffold was 

supplemented with laminin (further referred as PML-PFS) to show if laminin can influence 

the adhesion and the differentiation. 

The supplementation of laminin to the PFS scaffolds resulting in the same growth pattern like 

the PML scaffold (Fig. 6, 27). One can see flat and densely packed cell aggregates with 3-

dimensional loosely composed cellular structures item (Fig. 27A).  

Regarding the differentiation an increase of ßIII-tubulin positive cells after 4 days of 

differentiation in the PML-PFS scaffold was detected compared with the PML scaffold (Fig. 

10B, 27B). 
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Fig. 27: The hNPCs proliferated and differentiated in PFS scaffolds supplemented with laminin (PML-

PFS). Scale 50 nm. A: Phase contrast picture at 0dd. More distribution of the cells and less spheroid like 

structures of the hNPCs was found in PM-PFS scaffolds. B: Immunocytochemistry pictures after 4dd, ßIII-

tubulin (green) / TH (red). A high amount of ßIII-tubulin and a dense network of neuronal cells were detected. 

Fig. 28 shows a comparison of the tested 3D scaffolds (PM, PML, PM-PFS and PML-PFS). 

The addition of laminin to the PM scaffold leads to no different expression of ßIII-tubulin at 4 

and 7dd. ßIII-tubulin was slightly but not significantly increased at 0dd in PML compared to 

PM scaffolds. At 10dd the ßIII-tubulin
+
 cells were decreased in the scaffolds supplemented 

with laminin (PML). The supplementation of laminin to the modified PFS scaffold leads to an 

increase in ßIII-tubulin expression compared with PM and PML scaffolds. But the level of 

positive cells observed in the PM-PFS scaffolds was not reached in the PFS scaffolds 

supplemented with laminin (PML-PFS) at all time points with a significant difference at 10dd 

(Fig. 28A). Regarding the amount of ßIII-tubulin positive cells in proliferating cells, no 

significant difference was found between cells hosted in PM-PFS or PML-PFS scaffolds (Fig. 

28A). 

In case of the HuC/D expression there was no significant difference between PM and PML 

scaffolds (Fig. 28B). In PML-PFS scaffolds an increased number of HuC/D
+
 cells were found 

at 0dd. After induction of the differentiation the number of HuC/D
+
 cells was always lower in 

PML-PFS scaffolds compared with PM-PFS scaffolds with significant differences at 7 and 

10dd. The laminin supplementation lift the positive influence of the PM-PFS scaffold for the 

HuC/D expression and the number of HuC/D
+
 cells is in the range of PM and PML scaffolds 

(Fig 28B). Besides the neuronal marker ßIII-tubulin and HuC/D the GFAP expression was 

analysed. A decreased amount of GFAP positive cells was found in scaffolds supplemented 

with laminin (Fig. 28C). At 7dd the GFAP expression was significantly decreased in PML 

scaffolds compared with PM scaffolds. PML-PFS scaffolds exhibited a lower amount of 
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GFAP
+
 cells than PM-PFS scaffolds at 7dd and 10dd. A significant decreased 

expression of GFAP was found at 7 and 10dd in PML-PFS scaffolds compared to PM 

scaffolds. At 10 days after differentiation the lowest amount of GFAP (64.47 ± 5.11 %) was 

found in PML-PFS scaffolds. 

To determine the neuronal progenitor cell pool of the hNPCs the expression of PSA-NCAM 

was analysed (Fig. 28D). The PSA-NCAM expression of proliferated cells was slightly 

decreased in 3D scaffolds supplemented with laminin (PML, PML-PFS) compared with 3D-

scaffolds without laminin (PM, PM-PFS), but no significant differences were found. As well 

no differences between the conditions were found for differentiated cells (Fig. 28D). 

Fig. 28: Flow cytometry analysis of neuronal markers in hNPCs cultivated in PM and modified PM 

formulations with and without laminin. White bars indicate PM scaffolds; black bars PML scaffolds, striped 

bars PM-PFS scaffolds, doted bars PML-PFS scaffolds. Mean ± SEM. * and ** indicate significant differences.

A ßIII-tubulin PM: N=7-9, PML: N = 7-10, PM-PFS: N = 6-9, PML-PFS: N = 7-9; B HuC/D PM: N = 7-10,

PML: N = 7-12, PM-PFS: N = 5-10, PML-PFS: N = 7-8; C GFAP PM: N = 5, PML: N = 7-10, PM-PFS: N = 

5-7, PML-PFS: N = 4-5; D PSA-NCAM N = 4, PML: N = 3-5. A significant decrease of ßIII-tubulin
+
 at 10dd 

and HuC/D
+
 at 4dd and 7dd in PML-PFS scaffolds was observed in comparison to PM-PFS. Expression of 
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GFAP was significant decreased at 7dd in PML and PML-PFS and at 10dd in PML-PFS scaffolds in 

comparison to PML scaffolds. For PSA-NCAM no significant differences were found. 

4.4.2. Survival and apoptosis of hNPCs in laminin supplemented 

modified 3D scaffolds 

In this part of the project the influence of laminin on apoptotic events in the hNPCs was of 

interest. Therefore laminin was supplemented to the scaffolds consisting of PM and PFS. The 

amount of apoptotic cells was determined at different time points of differentiation using the 

TUNEL-Assay and the Annexin-PI-staining. 

Fig. 29 shows the results of the TUNEL-Assay of PM versus PML scaffolds (Fig. 29A) and 

PM-PFS versus PML-PFS scaffolds (Fig. 29B). In PM scaffolds the apoptotic cells increases 

up to 10dd and was slightly lower up to 7dd. The amount of apoptotic cells in PML scaffolds 

was increased up to 7 days of differentiation and decreased at 10 days of differentiation. A 

little lower amount at 10dd was found for PML scaffolds, but no significant differences could 

be found. 

In the PFS scaffolds the amount of apoptotic cells increase over time. Where the number of 

apoptotic cells in PML-PFS scaffolds was slightly increased compared to PM-PFS, but no 

significant differences were observed. 

Analysing the amount of TUNEL positive cells in the neuronal population (Fig. 29B) the PM 

and the PML scaffolds show an increase up to 7dd, than the apoptosis in the neurons decrease 

in PML scaffolds whereas apoptotic events in the PM scaffold further increases. Therefore 

significant differences were observed in PML scaffolds at 10dd compared to PM scaffolds. 

In the PFS scaffolds namely PM-PFS and PML-PFS the apoptosis in neuronal cells increases 

over time in PM-PFS scaffolds. The increase of apoptotic neurons at 7dd was more or less 

equal between both conditions, no significant difference was observed. 
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Fig. 29: Apoptotic cells of hNPCs cultivated in 3D scaffolds of PuraMatrix with and without laminin; PFS-

scaffolds with and without laminin. White bars indicate PM scaffolds, black bars PML-scaffolds, striped bars 

PFS- and dotted bars PML-PFS-scaffolds. * indicates significant differences PFS to PML-PFS. Mean ± SEM. A: 

TUNEL-Assay, PM: N = 3-5, PML: N = 6-9, PM-PFS and PML-PFS: N = 3-6. No significant differences for 

the whole cell population were found. B: TUNEL-Assay of ßIII-tubulin positive cells, PM: N = 3-5; PML: N = 

6-10, PM-PFS: N = 3-7, PML-PFS: N = 4-7. A significant decrease of apoptotic neurons was found in PML-

scaffolds versus PM scaffolds at 10dd. 

The next figure shows the relation between the necrotic cells, cells in early and late apoptosis 

(Fig. 30). To show the influence of the laminin supplement, all six tested culture conditions 

were compared (PM, PM-SDP, PM-PFS, PML, PML-PFS and 2D culture). One could 

observe differences between hNPCs cultivated in contact with laminin or without. In all three 

types of scaffolds cultured without laminin, namely PM and the modified scaffolds PM-SDP 

and PM-PFS (Fig. 30, left panel) no differences in the number of cells in the early or in the 

late apoptosis were observed, where the number of apoptotic cells ranged between 20 % and 

�
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Fig. 30: Double staining Annexin V and Propidium Iodide of hNPCs cultivated in 2D, 3D scaffolds of 

PuraMatrix and modified PuraMatrix formulations with and without laminin. Triangles indicate early 

apoptosis, squares indicate late apoptosis, and circles indicate necrosis. PM and PM-SDP: N = 4-5, PM-PFS: N 

= 3, PML: N = 9-10, PML-PFS: N = 3, 2D: N = 4-6. Left panel: No differences between early and late 

apoptosis in scaffolds without laminin were found. Right panel: A higher amount of early apoptotic cells was 

found in scaffolds supplemented with laminin and 2D cultures. 
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25% (Fig. 30). Cells cultivated with laminin in PML, PML-PFS scaffolds and 2D 

monolayer cultures (Fig. 30, right panel) reacted in difference between early and late 

apoptotic events. 

In all three conditions more cells were found to be in the early apoptosis than in late apoptosis 

(Fig. 30, right panel). A high increase of cells in the late apoptosis was only found in 2D 

cultivated cells. The number of necrotic cells was more or less equal in cell cultures with 

laminin PML-PFS, PML and 2D. In scaffolds without laminin supplement PM, PM-SDP and 

PM-PFS the necrotic cells increases a little bit during differentiation (Fig. 30). 

In a last set of experiments I analysed the effect of laminin on the expression of the anti-

apoptotic protein Bcl-2 in PM and PM-PFS scaffolds (Fig. 31). The hNPCs cultured in 

scaffolds with laminin showed a higher expression of Bcl-2 in proliferating conditions (Fig. 

31A, B). In the PML scaffolds a slightly decreased expression of Bcl-2 was observed at all 

time points of differentiation in comparison to the PM scaffold, but the differences were not 

significant (Fig. 31A). The Bcl-2 expression of hNPCs in PM-PFS scaffolds increases up to 

7dd, than a decreased expression in 10dd was found (Fig. 31B). In PML-PFS scaffolds 

hNPCs differentiated for 7 days, showed a significant decrease of Bcl-2 in comparison to 

PFS-scaffolds, where as at the other time points the expression was more or less equal. 

Fig. 31: Flow cytometry analysis of Bcl-2 in hNPCs cultivated in 3D scaffolds of PuraMatrix and modified 

PuraMatrix with and without laminin supplement. Mean ± SEM. * indicates significant differences PM-PFS 

to PML-PFS. A: White bars indicate PM scaffold, black PML scaffold. PM: N = 3-4, PML: 4-6. No significant 

difference in PML- compared with PM scaffolds was observed. B: striped bars indicate PM-PSF scaffold, dotted 

bars PML-PFS scaffold. N = 3-4. A significant decrease was found in PML-PFS scaffolds at 7dd. 
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4.5.  Executive summary 

As described in the first chapter (4.1.) the PML scaffold results in an increase of ßIII-tubulin 

positive cells and a decrease of astrocytes. Compared with the 2D culture hNPCs show 2 or 3 

times more neural precursors (PSA-NCAM
+
) when proliferated in 3D scaffolds (PML). 

Further the hNPCs survived longer in 3D scaffolds compared to 2D culture and a significant 

lower number of apoptotic cells were found in the 3D scaffolds (PML).This is combined with 

an increased expression of anti-apoptotic proteins (Bcl-2, XIAP) while the expression of key 

enzymes of apoptosis regulation was decreased in 3D scaffolds (PML). 

The surprising effect in the study was the high increase of neural cells when hNPCs cultured 

in modified 3D scaffolds (4.2.), which resulting also in a few cells positive for the 

postsynaptic marker PSD95. Another important result is that all 3D scaffolds with and 

without modification increase the progenitor pool of hNPCs but only the cells encapsulated 

inside the modified matrices can use this effect to enhance the differentiation in neuronal 

direction. The number of apoptotic events did not differ between the 3D scaffolds modified or 

non-modified. Regarding the attachment, there was a different. The attachment was decreased 

in the modified scaffolds compared with PML scaffolds. In the modified scaffolds 

neurosphere like growth of the hNPCs was detected. Additional the soluble PFS-peptide itself 

as media supplement to hNPCs cultured in 2D does not enhance the neural differentiation. 

The effect of laminin on the hNPCs cultured in 3D scaffolds is also an important finding in 

this work. The supplementation of laminin to the modified scaffolds results in a small 

decrease of neural cells and an increase in attachment of hNPCs. Furthermore laminin 

supplement influence apoptosis in hNPCs by increasing the amount of early apoptotic cells in 

laminin supplemented 3D scaffolds. 
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5. Discussion 

The objective of this study was to examine the cultivation of human neural progenitor cells in 

functionalised 3D scaffolds based on the self-assembling peptide hydrogel PuraMatrix. This 

system was analysed regarding the growth, survival and finally the neuronal differentiation of 

the hNPCs. In the first part the influence of the PuraMatrix supplemented with laminin (PML) 

on the growth (5.1.1.) and differentiation of the hNPCs (5.1.2.) is discussed. Chapter 5.1.3. is 

focused on the influence of the PML scaffolds on the survival of the hNPCs. The regulation 

of the apoptosis in the PML 3D scaffolds by some key enzymes of the apoptotic process is the 

topic of chapter 5.1.4. The 3D culture could be an advantage for the stem cell research, but 

also provide some challenges. This will be discussed in chapter 5.1.5. 

In the second part the potential of the hNPCs regarding the induction of neuronal 

differentiation using modified 3D scaffolds is discussed. Including the ability of the hNPCs to 

build functional active neuronal cells was of interest. Further the question if the survival of 

the hNPCs is changed, when cultivated in modified 3D scaffolds, is debated (5.2.). An 

additional focus in this study was the effect of the soluble PFS-peptide sequence, used as a 

media supplement, on the differentiation of the hNPCs (5.3.). 

The last part of the discussion is focused on the influence of laminin on modified 3D scaffolds 

regarding the neuronal differentiation and survival of the hNPCs (5.4.). 

5.1. Differentiation and survival of hNPCs inside the 3D scaffolds 

(PML) 

5.1.1. Growth of hNPCs inside the 3D scaffolds (PML) 

In the first part of the study the influence of the 3D culture on the growth and differentiation 

of hNPCs was analysed. In standard cultivation conditions cells mostly grow in a 2D 

monolayer environment on rigid flat surfaces. 3D culture systems allow defined 

microenvironments to better recapitulate the in vivo milieu. Cells forming 3D structures often 

resemble their in vivo counterparts more closely in comparison to two-dimensional systems 

(Falconnet et al., 2006). During early development, hESCs reside and differentiate within a 
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single 3D environmental milieu (Gerecht et al., 2007). The development of more 

realistic in vitro models for cell-based assays may be facilitated by applying some of the 

principles developed in tissue engineering in which stimulation of specific cellular responses 

is of great importance (Dainiak et al., 2008). 

The aim of the first part of the study was to optimise the culture of hNPCs in a 3D culture 

system consisting of RADA-16-I (PuraMatrix) and to develop methods to quantify different 

parameters to be compared with 2D monolayer cultures. The hNPCs encapsulated in 

PuraMatrix scaffolds with laminin supplement (PML), were distributed in flat and densely 

packed cell aggregates with three-dimensional loosely composed cellular structures. As the 

functionalisation of the scaffold supports cell adhesion and prevents the formation of 

neurospheres (Ortinau et al., 2010), the distribution of the cells seems to be a consequence of 

the casual arrangement of cells during seeding, an increased attachment based on the laminin 

and the structure of the scaffold. The latter was concluded from the scanning electron 

microscopy studies (figures 7 and 8). The dense network of regular overlapping nanofibers in 

the 3D scaffolds is typical for the self-assembling peptide hydrogel PuraMatrix (Holmes et 

al., 2000). The 3D scaffolds supplemented with laminin demonstrate more cavities and 

lacunas as without laminin. This structural difference could be a consequence of the increase 

of fibres in number and length, which was shown with atomic force microscopy (Ortinau et 

al, 2010). These findings suggest a possible explanation for the increased instability during 

preparation and handling of the 3D scaffolds supplemented with laminin. 

Because scanning electron microscopy pictured only the surface of the sample, transmission 

electron microscopy was used to show more details and to reveal structures inside the 3D 

scaffold. The aim was to visualize the formation of cells in the scaffolds, cell-cell or cell-

matrix-contact. But neither evidence for synaptic structures nor how the cells contact the 

matrix compartments of the 3D scaffold could be elucidated. One possibility to analyse cells-

matrix interaction are further studies on the surface of the cells and to mark the MHC-

receptors or immunoglobulin with gold labelled antibodies. In vivo are cell-ECM interactions 

mediated by adhesion receptors that include integrins, dystroglycans, CD44 and 

thrombomodulin, and a novel subfamily of receptor tyrosine kinases called discoidin domain 

receptors. Integrins have emerged as the most prevalent and best-characterized ECM 

receptors (Zahir & Weaver, 2004). Therefore especially the integrins come in consideration 

for interaction with the PML scaffold, because integrins are the most important ones for 

laminin binding (Rodin et al., 2010). Structure differences of proliferated and differentiated 

cells could be analysed as well with scanning electron microscopy and transmission electron 
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microscopy, because integrin receptors were increased in differentiated cells (Anton et 

al., 1999). Furthermore synaptic contact between cells could by easier detected if they are 

labelled with gold-coupled antibodies. 

An interesting finding was the observation of structures inside vesicles located in the cells, 

which looks like nanofibers from the PuraMatrix
TM

 (Fig. 9). The mechanism by which a 

possible uptake might be carried out is presumably phagocytosis. The hydrogel PuraMatix 

consists of a repeated amino acid sequence of arginine, alanine, aspartic acid, and alanine and 

is described to be resorbable (Zhang et al., 2004). Zhang et al. (2004) generated a 14C, carbon 

radio labelled version of PuraMatrix, which was internally labelled at the third alanine site 

(Acetyl- (RADA)-(R- [14C(U)-Ala]-D-A)-(RADA)2-CONH2) as opposed to a labelled acetyl 

group which could be cleaved off, in order to better characterize the adsorption, degradation, 

metabolism and excretion of the PuraMatrix material in vivo. Beniash et al. (2005) showed as 

well that nanofibers matrices of self-assembling peptide amphiphile can be endocytosed by 

MC3T3-E1 cells. This indicates that nanofibers of peptide matrices can be used as a source of 

nutrients for the hNPCs. 

5.1.2. Differentiation of hNPCs inside the 3D scaffolds (PML) 

Besides the analysis how the hNPCs proliferate in the 3D scaffolds, another aspect was of 

special interest, namely the differentiation of the hNPCs inside the PML 3D scaffolds. The 

cells are known to differentiate mostly into astrocytes, some neuronal cells and only few 

dopaminergic neurons (Donato et al., 2007; Ortinau et al., 2010). Similar findings were 

obtained in hNPCs cultured in the 3D scaffolds. Proliferated and differentiated cells were 

positive for the glial fibrillary acidic protein GFAP, whereas ßIII-tubulin and tyrosine 

hydroxylase (TH) positive cells were only found after differentiation induction. Partially, 

spontaneous differentiation was detected in proliferating cells. Such spontaneous 

differentiation is also described for monolayer cultures, with a confluence of more than 80% 

(Donato et al., 2007). As one cannot control the distribution of cells in the 3D scaffolds as 

well as in a 2D culture system, the amount of cells can be higher in some part of the scaffold, 

leading to spontaneous differentiation. Also it can be hypothesised that the laminin 

functionalised PuraMatrix by itself has low capacity to induce the differentiation of the 

hNPCs under proliferating conditions. Ortinau et al. (2010) showed the same effect of this 3D 

culture system based on PuraMatrix. It is also known that scaffolds based on PuraMatrix can 

support neuronal cell attachment and differentiation as well extensive neurite outgrowth 
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(Holmes et al., 2000). Holmes and his co-workers (2000) suggested that the scaffolds 

are permissive substrates, because primary rat neurons form active synapses on such scaffold 

surfaces. The ability of PuraMatrix to support neuronal differentiation of fetal human neural 

stem cells (hNSCs) was also shown by Thonhoff and co-workers (2008). Self-assembling 

peptide scaffolds presenting laminin-derived epitopes were shown to direct neuronal 

differentiation of PC12 cells and significantly longer neurite outgrowth were found in 

matrices containing the IKVAV motive of the laminin (Li & Chau, 2010). 

Additionally also cells positive for Ki-67 were detected in differentiated cells. Ki-67 is a 

cellular proliferation marker to determine the fraction of dividing cells (Scholzen & Gerdes, 

2000, Gerdes et al., 1983). Ki-67 play an important role in the ribosomal RNA transcription 

and its inactivation leads to inhibition of ribosomal RNA synthesis (Bullwinkel et al., 2006; 

Rahmanzadeh et al., 2007). Ki-67 is present during all active phases of the cell cycle (G1, S, 

G2, mitosis), but absent from resting cells. Upon withdrawal of the growth factors the 

differentiation of the hNPCs starts and the cells stop to proliferate. The presence of dividing 

cells during differentiation indicates that a minor population of cells still active in 

proliferating in 3D scaffolds. 

First the amount of ßIII-tubulin positive hNPCs was evaluated during a differentiation period 

of 20 days by manual counting. The peak with the highest amount was found at 7 days of 

differentiation (Fig. 11). This is in contrast to Ortinau et al. (2010) where the peak of ßIII-

tubulin was found at 4dd with the same condition. Based on these results the time course for 

following experiments was set to a maximum time of 10 days differentiation. The challenge 

of this part was to get clear pictures to determine the number of ßIII-tubulin positive cells 

because of the high number of cells and the 3D structure. As the counting of cells resided in 

the scaffolds was extreme time consuming a new method for quantification of different 

parameter by changing conditions had to be found. An excellent method to count different 

cell types of a sample is the flow cytometry (Bader, 2010). Therefore the scaffolds had to be 

disrupted to get a single cell solution and cell-cell- and cell-matrix-aggregates had to be 

excluded. The basic preparation was given from the manufacturer (PuraMatrix user manual) 

and was as in a first step adapted. The protocol is comparable with protocols used to prepare 

e.g. tissues where a mechanical isolation of the cells is followed by a digestion of surrounding 

material by enzymes. A higher number of cells (flow cytometer: 50.000 per probe, manual 

analysis: several hundred per probe) can be analysed independent of the distribution of the 

cells in the 3D scaffolds, where one could found parts with many positive cells or parts with 
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only a few numbers of positive cells. Areas with high number of ßIII-tubulin positive 

cells were often thick aggregates of cells in the scaffolds, and could not be analysed with a 

standard fluorescence microscope. The very dense areas of matrices can hardly be analysed or 

high background of the matrix material resulting in an underestimation of the “real” cell 

number. This is not the case for flow cytometry analysis. But if flow cytometry is used for 

neuronal cells one topic has to be discussed. In this study neuronal cells were mainly stained 

with an antibody against ßIII-tubulin, resulting in staining of the complete cell, including 

soma and processes (Morgan et al., 2009; Ortinau et al., 2010). Based on the fact that the 

release of the cells from the scaffold comes along with mechanically disruption of the 

scaffolds, one can expect wrong positive signals through this cell debris. To overcome this 

challenge different experiments or controls were done. All used antibodies were tested in 2D 

cultured cells to assure positive staining where the samples were prepared using the same 

protocol to release cells from 3D scaffolds. For all samples negative controls (only secondary 

antibody) and isotype control were done. Beside ßIII-tubulin other marker for neuronal cells 

were used, namely NeuN and HuC/D. NeuN is a neuron-specific nuclear protein detected in 

the nucleus of neurons in a wide range of vertebrates and so it is widely used as a tool for 

detecting neuronal cells (Dent et al., 2010). NeuN recognizes the DNA-binding and the 

distributions are apparently restricted to neuronal nuclei. Dent et al. (2010) provided evidence 

that NeuN/Fox-3 is an intrinsic component of the neuronal nuclear matrix and a reliable 

marker of nuclear speckles in neurons. 

The assumption that the initiation of the neuronal differentiation of the hNPCs via growth 

factor withdrawal results in the differentiation to NeuN positive neurons could not be verified. 

This result differs from the literature, where NeuN has been widely used as a reliable tool to 

detect most post mitotic neuronal cell types in neuroscience, developmental biology, and stem 

cell research fields as well as diagnostic histopathology (Kim et al., 2009). It first appears at 

developmental time points that correspond with the withdrawal of the neuron from the cell 

cycle and/or with the initiation of terminal differentiation of the neuron (Kim et al., 2009; 

Dent et al., 2010). We assume that the cells are still immature or arrested in an intermediate or 

quiescent developing state which is supported by a high number of GFAP positive cells and 

the high number of nestin positive cells, which were detected in our lab during differentiation 

(Morgan, 2011). Another possibility might be that, the NeuN protein is not expressed at the 

tested time points (0d, 4dd). Weyer & Schilling (2003) suggested whereas NeuN expression 

per se is a reliable marker of proliferative capacity, levels of NeuN expression may also be 

indicative of the physiological status of a post mitotic neuron. 
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Furthermore, neuronal marker HuC/D (human neuronal protein HuC/HuD) was tested 

as a neuronal RNA-binding protein and a marker for neurons in an early developmental stage 

(Graus et al., 1987, Graus & Ferrer, 1990). HuC/D was found in all samples of differentiated 

cells (Fig. 14B). This antibody showed a clear signal in flow cytometry of 2D samples as well 

as of 3D samples (Fig. 13). In addition in the 3D samples was an intermediate population 

observed (dotted frame in Fig. 13). To avoid wrong signals in the analysis, coming from 

debris of the cells, this population was excluded from the analysis. 

Quantification of the flow cytometry measurements was shown in Fig. 14. Comparison with 

ßIII-tubulin shows that the expression of HuC/D starts earlier than ßIII-tubulin in 2D 

cultivation and was significantly higher than ßIII-tubulin at the early time points 0d to 3dd 

(Fig. 14A, B). This confirms the expectations, because HuC/D is a marker for early neuronal 

cells and Bader (2010) showed that HuC/D is expressed in neurons prior to ßIII-tubulin. 

The comparison of the monolayer culture with the 3D scaffold showed an increase of ßIII-

tubulin positive cells in the 3D scaffolds (Fig. 14A). Remarkable was the shift of the peak 

with the highest amount of ßIII-tubulin from 4dd in 2D to 7dd in 3D scaffolds. Together with 

the increased expression of HuC/D and the decreased GFAP expression of the hNPCs in the 

3D scaffolds (Fig. 14C), the increase of ßIII-tubulin positive cells supports the importance of 

a 3D environment and the architecture, which resembles more the in vivo environment of the 

cells. 3D cultures contain cells with different phenotypes and the cellular heterogeneity within 

3D culture models is far more realistic (Dainiak et al., 2008). The 3D culture of different cell 

types was shown to enhance the survival and the differentiation of these cells. 3D culture of 

murine embryonic stem cells and NSCs in hydrogels showed an enhanced neuronal 

differentiation (Brännvall et al., 2007; Willerth et al., 2006; Thonhoff et al., 2008). Several 

studies have explored the culture of hESCs in defined 3D settings by using a variety of natural 

and synthetic scaffolds for cell growth (Li et al., 2006), differentiation (Gerecht-Nir et al., 

2004), or lineage guidance (Levenberg et a., 2003 & 2005; Baharvand et al., 2006; Gerami-

Naini et al., 2004; Ferreira et al., 2007). Li et al. (2007) for example demonstrated that human 

neuroblastoma SH-SY5Y cells developed longer neurites in 3D collagen type 1 cultures than 

in 2D cultures. Whereas completely synthetic hyaluronic acid hydrogel matrix can support 

long-term self-renewal of hESCs in the presence of conditioned medium from mouse 

embryonic fibroblast feeder layers and direct cell differentiation (Gerecht et al., 2007). 

Regarding the used cells, neural progenitor cells show an induction of neuronal differentiation 

by using 3D culture systems (Thonhoff et al., 2008; Ortinau et al., 2010). The same might be 

also possible for the ReNcell VM cells in this study. Many researchers culturing NPCs in 3D 
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scaffolds using natural derived biomaterials. In vitro studies of embryonic cortical rat 

NSC/NPC in a 3D collagen type 1 gel revealed progenitor cell expansion, differentiation, and 

formation of synapses (Ma et al., 2004). Neural progenitor cells isolated from the E13.5 

forebrain cortical neuroepithelium differentiated mostly into neurons and a few glial cells in 

hyaluronic acid hydrogel scaffolds and support the survival of NPCs, providing even 

phenotypic direction to become neurons (Pan et al., 2009). Different materials have different 

capabilities to influence the differentiation of NSCs and NPCs especially. Synthetic 

biomaterials like polyvinylidene fluoride (PVDF)-based material inhibit the differentiation of 

NSCs, whereas other materials promote their differentiation (Hung et al., 2006). 

Regarding the used self-assembling peptide hydrogel RADA16-I, it tends to build soft gels 

and was used for in vitro and in vivo application of neural cells (Holmes et al., 2000; Ellis-

Behnke et al., 2006; Thonhoff et al., 2008; Semino, 2008; Ortinau et al., 2010). Thonhoff et 

al. (2008) found that PuraMatrix was the most optimal hydrogel for hNPCs, when gelated in 

concentration of 0.25%, and it retains several crucial properties of hNPCs, including 

migration and neuronal differentiation. A comparable observation was shown by Ortinau et al. 

(2010) and as well in this study. 

The observed increased neuronal differentiation in this study might be based by, apart from 

the 3D environment, increased attachment on the peptides of the scaffold or on the 

supplemented laminin. There exists an attachment of the hNPCs on the peptides of the 

scaffolds, shown in (Thonhoff et al., 2008) by some loosely cellular compounds of fetal 

hNSCs leaving neurospheres structures after 7 days. But these cells and used ReNcells 

forming neurosphere structures in the PuraMatrix. The supplement of laminin was used to 

prevent such effect, because the increased attachment of hNPCs on laminin is used for the 2D 

culture. Laminins are a family of heterotrimeric glycoproteins composed of α, β and γ chains, 

which exist as five, three and three genetically, district types forming 15 different 

combinations in human tissues (Aumailley et al., 2005). The different laminins show various 

expression patterns as well as tissue-specific localization and functions. Laminin is, together 

with collagen IV, entactin, and proteoglycans the main constituents of basement membranes, 

which provide not only mechanical support but also influences cell behaviour (Paulsson, 

1992) and induce robust outgrowth of DRG neurites in vitro (Tonge et al., 1997). Laminin is 

known to be important for proper brain development (Georges-Labouesse et al., 1998; Zhang 

& Galileo, 1998; Anton et al., 1999). 

The coating with laminin is useful to prevent neurospheres in hNPC cultures shown in Donato 

et al. (2007). The PM scaffolds with laminin supplement (PML) showed the same effect and a 
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distribution described in Ortinau et al. (2010). The addition of laminin to the hydrogel 

has also the ability to support the hNPCs to build neuronal cells. Yu et al. (1999) showed that 

laminin coupled to agarose hydrogel scaffolds enhance neurite extension from three-

dimensionally cultured PC12 cells. Georges et al. (2006) found that laminin-coated soft gels 

encourage attachment and growth of neurons while suppressing astrocyte growth. 

The mouse laminin 1, used in my study, is restricted to the early embryo and certain epithelial 

cells (Ekblom et al., 2003). The extracellular matrix protein laminin 1 promotes cell adhesion 

and was shown to stimulate neurite outgrowth in various neuronal cell types (Powell et al., 

2000). Therefore I conclude that the combination of 3D environment, increased attachment on 

the scaffold and on laminin support the neuronal differentiation of the hNPCs in the PML 3D 

scaffold. 

One possible mechanism underlying the increased amount of neuronal cells in the 3D 

scaffolds is an alteration in the pool of progenitor cells, which are determined to undergo 

neuronal differentiation. To test this hypothesis PSA-NCAM, a marker for neural progenitor 

cells was used to elucidate differences in the progenitor pool of cells cultured in 2D and 3D 

cultures. The significant high increase of the progenitor pool in the 3D scaffolds, observed in 

this study before starting the differentiation (Fig. 14D), might be a result of the proliferation 

period of the cells in the 3D scaffolds. Assumingly, the hNPCs change their developing state 

during the proliferation in the 3D scaffolds into neuronal restricted precursor cells. A neuronal 

restricted precursor cell can undergo self-renewal and differentiate into multiple neuronal 

phenotypes and is identified by its high expression of PSA-NCAM (Mayer-Proschel et al., 

1997). Many neural development processes in the brain are depending on the regulated 

expression of neural cell adhesion molecule NCAM isoforms. In the developing nervous 

system PSA-NCAM represents the highly polysialylated form of the embryonic NCAM and it 

is the mainly expressed form (Kiss et al., 2001). PSA-NCAM is suggested to perform an 

instructive role in development by interacting with signalling molecules (Muller et al., 2000; 

Kiss et al., 2001). Therefore the observed high expression of PSA-NCAM in the ReNcell VM 

cells indicate a change in the proliferation state of the cells and the possible interacting with 

signalling molecules resulting in the increase of neuronal cells in the 3D scaffolds. 

In my study I observed as well a small decrease of PSA-NCAM during differentiation. This 

depends on the fact that PSA-NCAM expression is mainly present during development (Kiss 

et al., 2001) and in the adult it is restricted to regions that retain plasticity (Theodosis et al., 

1994). This may indicate instead, that the ReNcells starts to become mature. 
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Interestingly a significant difference between the amount of PSA-NCAM positive cells 

and ßIII-tubulin positive cells was observed in 3D scaffolds (Fig. 14A, D). About 40 % of the 

hNPCs in 3D scaffolds were positive for PSA-NCAM, but only about 8 % of the hNPCs were 

found to be positive for ßIII-tubulin. The 7 fold higher amount of PSA-NCAM positive cells 

enforces the hypothesis of a changed pool of progenitor cells in 3D scaffolds to neuronal 

restricted precursor cells. Therefore more cells are able to differentiate in neuronal like cells. 

This and the shift of the ßIII-tubulin expression peak from 4dd in 2D culture to 7dd in 3D 

culture could also indicate that an increased survival of the hNPCs in 3D scaffolds is possible. 

Presumptive are both mechanism possible for the positive effect of the 3D scaffolds 

supplemented with laminin. The PML 3D scaffold seems to prime the hNPCs effective to 

differentiate to neuronal phenotypes. But not all cells, which are primed to neuronal restricted 

precursors, become neurons (only 8%). Therefore the neuronal differentiation has to optimise. 

The influence of the scaffold is early, in the proliferation state, but do not really enhance the 

differentiation. It has to evaluate, how to utilise the increased potential of the proliferated 

cells. One possibility is described in the second part of the study.  

For further examination of molecular changes of cells cultured in 3D scaffolds, the orientation 

on studies screening for high-throughput screening format for cell-based assays could be 

important. Dainiak and his co-workers (2008) demonstrated the possibility to combine 3D cell 

culture with a miniaturized screening format (96-minicolumn plate) on human colon cancer 

cells (HCT116), human acute myeloid leukaemia KG-1 cells, and embryonic fibroblasts. 

5.1.3. Survival and apoptosis of hNPCs inside the 3D scaffolds (PML)  

In the next part of the study, investigations about the survival of hNPCs in 3D scaffolds were 

done. It is known that the number of dead cells and apoptosis is increased in monolayer 

cultures of hNPCs upon induction of differentiation (Jaeger, 2010). Ortinau et al. (2010) 

showed that the survival of the hNPCs is increased when cultured in 3D scaffolds. They found 

a decreased number of dead cells compared to 2D cultures by the use of a Live/Dead-assay. 

Corresponding controls using this assay approved these results, where the amount of dead 

cells in 3D scaffolds was not changing over a period of 20 days of differentiation (data not 

shown). It was concluded that the apoptosis is reduced in 3D scaffolds. The results of the 

TUNEL-Assay affirmed this assumption. The number of apoptotic cells was 2.5 fold lower 

than in 2D cultures (Fig. 15). The increased survival during the differentiation fit very well to 
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the higher number of ßIII-tubulin neurons. An increased cell survival of neural cells in 

3D scaffolds was also described by Mahoney & Anseth (2006) with poly ethylenglycol 

hydrogels. The use of hydrogels as scaffolds for culturing cells in a 3D environment is 

attractive, because hydrogels have high permeability for oxygen, nutrients and other water-

soluble metabolites through their high water-content matrix, which is an excellent 

environment for cell growth and tissue regeneration (Alsberg et al., 2002). In contrast Silva et 

al. (2004) could not demonstrate significant differences in cell survival within the 

differentiation phase with the IKVAV hydrogel system compared to 2D composition. But 

they suggest that diffusion of nutrients, bioactive factors, and oxygen through these highly 

hydrated networks is sufficient for survival of large numbers of cells for extended periods of 

time. Thonhoff et al. (2008) found that PuraMatrix was the most optimal hydrogel for hNPCs, 

since it showed low toxicity when gelated in concentration of 0.25% and retain crucial 

properties of hNPCs. Orive (2009) provide that polymer encapsulation allows long-term 

survival of cells sourced from animals or human stem cells. Embryonic stem (ES) cells grown 

on polymeric scaffolds with well-defined microstructure constructed into a multilayer cell-

scaffold complex using low-pressure carbon dioxide (CO2) and nitrogen (N2) was shown to 

increases the cell viability (Xie et al., 2009). Zhu et al. (2010) showed that human bone 

marrow stoma stem cells increased to higher levels and remained higher for longer periods 

with the use of the fibrin matrix. 

3D cell models offer a district advantage over conventional 2D systems because they 

recapitulate both the architecture and the phenotypic behaviour of the differentiated tissue 

with reasonable fidelity (Zahir & Weaver, 2004). The cell-ECM and cell-cell interactions are 

necessary for maintenance of cell survival in tissues (Yu et al., 2002). Santini et al. (2000) 

showed that 3D spheroids undergo phenotypic switch associated with changes in tissue 

organisation that is linked to enhance cell-cell interactions, altered expression of integrins and 

increased expression of ECM proteins. Shain et al. (2002) showed that cell-ECM interactions 

can influence death receptor signalling by increasing the activity and expression of pro-

survival genes (Sethi et al., 1999). 

Further it was of interesting how much the neuronal population of the hNPCs is affected from 

apoptosis. The analysis of the hNPCs revealed that the largest portion was positive for the 

glial marker GFAP, in both examined culture systems. The number of neuronal cells was 

around 3 % in 2D culture and 7 % in 3D scaffolds, whereas around 90% of the analysed cells 

were positive for GFAP. As it is known that neurons differentiated from human neural 
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progenitor cells are more sensitive than astrocytes to induced cytotoxicity (Li et al., 

2005), I was interested in which amount the neuronal cells were affected by apoptosis. 

Therefore ßIII-tubulin staining were combined with the TUNEL-Assay and analysed with 

flow cytometry (Fig. 17). The neuronal cells were more affected by apoptosis than the total 

number of cells in both conditions. Surprisingly the number of apoptotic neurons was higher 

in 3D scaffolds. The fact that after 7 days of differentiation in 2D cultures only few ßIII-

tubulin positive cells were left, whereas the highest number of neurons was observed at 7 days 

in the 3D scaffolds, indicates an increased survival of the neuronal cells based on the 3D 

structure (Mahoney & Anseth, 2006), decreased PARP-1 activation (Midorikawa et al., 2006; 

Skaper, 2003), increased XIAP expression (Tamm et al., 1998) and increased Bcl-2 

expression (Wang et al., 2006). But why are the neuronal cells in 3D scaffolds more affected 

by apoptosis? Apoptosis is required for the establishment of appropriate cell numbers and for 

the elimination of improperly connected neurons in the developing nervous system (Pettmann 

and Henderson, 1998). Either more neuronal cells could found in 3D scaffolds or no advice 

for active synapses, apoptosis is a consequence for improperly connected neurons during 

development of neuronal cells. Another possibility is the different regulation of apoptosis in 

3D scaffolds. Caspases as key effector molecules are involved in the execution of neuronal 

cell death during development and after injury. Just as well a caspase-independent mechanism 

of neuronal cell death exists (Rideout & Stefanis, 2001). I concluded, because of the high 

mortal rate and the high number of detached dead cell in culture medium found in 2D cultured 

hNPCs can shift the result and that most neurons in the 2D also undergo necrosis, while in 3D 

scaffolds the neurons more undergo apoptosis. 

The next question was which stage the apoptotic cells are. The TUNEL-Assay as a method for 

detecting DNA fragmentation by labelling the terminal end of nucleic acids (Negoescu et al., 

1996) labelled all cells affected of apoptosis with DNA damage. A discrimination of the state 

of apoptosis, ranging from early effects to DNA damage and cell death cannot be resolved by 

this assay (Grasl-Kraupp et al., 1995). To achieve this, another assay marking cells at earlier 

time points during apoptosis had to be used. Therefore the Annexin – PI staining was 

performed to determine the different states of the apoptosis (Vermes et al., 1995). The loss of 

plasma membrane is one of the earliest features of the apoptotic process. In apoptotic cells, 

the membrane phospholipid phosphatidylserine PS is translocated from the inner to the outer 

leaflet of the plasma membrane, thereby exposing PS to the external cellular environment 

(Martin et al., 1995). Annexin V is a 35-36 kDa Ca2+ dependent phospholipid-binding 
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protein that has a high affinity for PS, and binds to cells with exposed PS (Koopman et 

al., 1994). Therefore Annexin V, conjugated to fluorochromes, serves as a sensitive probe for 

flow cytometric analysis of cells undergoing apoptosis (Vermes et al., 1995). Since 

externalisation of PS occurs in the earlier stages of apoptosis, FITC Annexin V staining can 

identify apoptosis at an earlier stage than assays based on nuclear changes such as DNA 

fragmentation (van Engeland et al., 1996). The loss of membrane integrity, which also 

accompanies the latest stages of cell death, can be a result from either apoptotic or necrotic 

processes. Therefore, staining with FITC Annexin V is combined with a vital dye such as 

propidium iodide PI to identify early apoptotic cells (PI negative, FITC Annexin V positive) 

(Lecoeur, 2002). Viable cells with intact membranes exclude PI, whereas the membranes of 

dead and damaged cells are permeable to PI (Moore et al., 1998). 

In addition a more technical aspect had to be discussed. The hNPCs had to be detached from 

the surface or the scaffold and might be stressed or damaged by this protocol. As Annexin V 

is a very sensitive method based on binding exposed PS, cells could become positive and can 

influence the staining. On the other hand, for comparison of the data all samples of 2D and 

3D cultures were prepared with the same protocol. 

The Annexin V – PI – staining showed the same trend as the TUNEL-Assay, namely that the 

rate of cells in the late apoptosis is significantly lower in the 3D scaffolds in comparison to 

2D culture (Fig. 16B). But an interesting new finding was the high amount of early apoptotic 

cells in the 3D scaffolds (Fig. 16A). Nearly the same numbers of cells in the early apoptosis 

were found for 2D and 3D cultured cells. The results of Annexin V – PI double staining 

indicate that the hNPCs in 3D scaffolds stay / rest more in the early apoptosis and no increase 

in late apoptotic events was detected. Cells were protected from apoptosis and accordingly 

survived longer when encapsulated in 3D scaffolds supplemented with laminin. I conclude 

that the cells are protected in an unknown way before entering later states of apoptosis. The 

possible mechanism of the apoptosis regulation in 3D scaffold is discussed in the next 

chapter.  

5.1.4. Regulation of the apoptosis of hNPCs inside 3D scaffolds (PML) 

Apoptosis defines a set of cascades which, when initiated, programs the cell to undergo lethal 

changes such as membrane blebbing, mitochondrial break down and DNA fragmentation 

(Elmore, 2007). After a cell received a stimulus, it undergoes organized degradation of 

cellular organelles by activated proteolytic caspases, like Caspase-3, 6 and 7 (Gewies, 2003). 
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Caspase-3 is one member of the cascade of activated proteolytic caspases. With 

Caspase-3 the degenerative stages of apoptosis begin (Elmore, 2007). Caspase-3 is known as 

an indicator for the activity of Caspase-9 (Wright et al., 2004), and Caspase-9 is included in 

the process of the apotosome complex (Zou et al., 1999). The increase of the apoptosis 

specific chromatin condensation in murine neural progenitor cells is correlated with the 

activation of GSK-3ß, the pro-apoptotic proteins Bax and Caspase-3 (Eom et al., 2007). A set 

of preliminary western blot experiments was done in this study to evaluate the underlying 

mechanism of the increased survival of the hNPCs in 3D scaffolds. The expression of 

Caspase-3 was highly increased in differentiated cells of the 2D culture, but only a small 

increase was found in the 3D scaffolds. That indicates that the cells might be stressed and 

influenced by the withdrawal of the growth factors in 2D culture and as well as in 3D 

scaffolds, shown in Fig. 16A by exposing phosphatidylserine. But the early degenerative 

stages of apoptosis did not start in 3D scaffolds (Fig. 19). The decreased Caspase-3 

expression differs from recent literature. A significant increase of active Caspase-3 in ReNcell 

VM cells was shown during differentiation in 2D culture (Jaeger, 2010). And it is supposed 

that the growth factor withdrawal is correlated with the activation of Caspase-3. Miho et al. 

(1999) showed that the withdrawal of bFGF results in activation of Caspase-3 in murine 

embryonal P19-carcinoma cells during the neuronal development (Miho et al., 1999). 

Caspase-3 induces the genesis of neural progenitor cells in mouse by induction of protein 

kinase (Fernando et al., 2005) and is possible involved in the cytoskelett reorganisation during 

differentiation. The decreased activated Caspase-3 in the 3D scaffolds results in increased 

survival of the hNPCs (Fig. 15), but it is also possible to influence the differentiation of the 

hNPCs. 

Taken together the results demonstrate that after induction of differentiation the apoptosis of 

the hNPCs increases in the 2D culture with high number of cells in an early and late stage of 

apoptosis and an increase of active Caspase-3. In contrast in 3D scaffolds a decreased 

expression of Caspase-3 was found and consistently a decreased number of late apoptotic 

cells. This indicates different ways in regulation of the apoptosis of the hNPCs cultured in 2D 

and 3D culture. Because from in vivo it is known that cells within a 3D tissue, in which 

multiple cell types co-exist and cell-cell and cell-ECM interactions prevail, pathways 

functionally linked to tissue architecture likely play a role in modulating apoptotic decisions 

(Zahir & Weaver, 2004). It is known for the ReNcell VM cells, that the start of the 

differentiation via GF withdrawal is correlated with the activation of the intrinsic apoptotic 

pathway (Jaeger, 2010). The intrinsic pathway is initiated by intracellular or environmental 
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stimuli and one of the key enzymes is the Caspase-3 (Fig. 4) (Gewies, 2003). Activated 

cleavage products of Caspase-3 cleave and activate Caspase-6, -7 and –9, reduce the function 

of the DNA-repair enzyme PARP via proteolytic cleavage and are involved in the degradation 

of the actin cytoskeleton (Jaeger, 2010). Therefore the decreased expression of Caspase-3 in 

3D scaffolds influence another apoptotic key enzyme Poly-(ADP-ribose)-Polymerase 1 

(PARP-1). PARP-1 is involved in DNA-repair (Bouchard et al., 2003). Since the proteolytic 

decomposition of PARP-1 is mediated by Caspase-3 during apoptosis, we used PARP-1 as a 

next marker to determine the regulation of apoptosis in the 3D scaffolds. As PARP-1 is 

involved in proliferation and differentiation, it is found in both conditions. The expression 

was increased in 2D culture. In 3D scaffolds the expression of PARP-1 was significantly 

lower in differentiated hNPCs compared to 2D culture. From the literature is known, that the 

survival of cells is correlated with the PARP-1 activity in different species (Midorikawa et al., 

2006). In embryonal mouse neurons the amount of cleaved PARP-1 increases also under 

growth factor withdrawal and activation of Caspase-3 (Eom et al., 2007). 

Compared with recent literature, one possible way regulating the apoptosis is PARP-1. PARP-

1 has been shown to interact with p53 (Gueven et al., 2004; Malanga et al. 1998). Tumour 

suppressors like p53 can excite the intrinsic path by stimulating the expression of pro-

apoptotic factors Bax, Bad of the Bcl-2 family resulting in the release of Cytochrome c. The 

hypothesis that PARPs might regulate cell fate as essential modulators of death and survival 

transcriptional programs is discussed with relation to nuclear factor kappaB and p53 (Skaper, 

2003). After neuronal injury in response to excitotoxins, hypoxia and ischemia, death 

regulatory molecules like PARP, c-jun, plasma membrane death receptor ligand systems and 

p53 as key upstream initiator of cell death process have been implicated (Cregan et al., 2002). 

The excessive activation of PARP-1 can lead to significant decrements in NAD
+
, ATP 

depletion and cell death (suicide hypothesis) (Skaper, 2003). This can play a role for 2D 

cultivated cells, but not for the 3D cultured hNPCs. From in vivo it known that tissue 

architecture enhances cell survival by modulating mitochondria homeostasis (Igney & 

Krammer, 2002; Hickman, 2002). This is achieved through activation of pathways that 

upregulate mitochondrial protectors (Plas & Thompson, 2002). For the 3D culture, one family 

of proteins called inhibitors of apoptosis IAPs can play a role in regulating cell death by 

inhibiting the process. One member of the IAP family is the human X-linked inhibitor of 

apoptosis (XIAP) an anti-apoptotic protein of the intrinsic pathway. First results show an 

increase of the XIAP expression of hNPCs in 3D scaffolds compared to 2D culture. The 

results of the 2D culture demonstrate the same result found by Jaeger (2010), where no up-
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regulation of the XIAP expression coupled to the withdrawal of the growth factors was 

found. ReNcell VM cells show a relative constant expression in proliferation and 

differentiation. 

XIAP binds to Caspase-3 and -7, which are known as the effector caspases in the signalling 

pathway of apoptosis (Tamm et al., 1998) and following inhibition of Caspase-3, -7, and –9. 

Therefore the XIAP seem to play an important role in the protection from apoptosis in the 3D 

scaffolds and the critical point is in the intrinsic pathway by suppressing the activity of 

caspases and arresting of the apoptotic process. 

The next question was if other anti-apoptotic factors are included in the protection of the 

hNPCs from apoptosis in 3D scaffolds. A most likely possibility is the regulation of apoptosis 

by members of the Bcl-2 protein family, which control the formation of Mitochondrial 

Apoptosis-Induced Channel (MAC) (Dejean et al., 2006b). MAC is triggering the 

commitment step of the mitochondrial apoptotic cascade. This ion channel is an early marker 

of the onset of apoptosis (Guo et al., 2004). To date, the human repertoire of multidomain 

proteins comprises seven pro-survival members (Bcl-2, Bcl-xL, Bcl-w, Mcl-1, Bcl2l10, Bfl-1 

and Bcl2l12), and up to six pro-apoptotic members (Bax, Bak, Bok, Bcl-G, Bcl-rambo and 

Bfk). The pro-apoptotic members Bax and/or Bak form MAC (Dejean et al., 2006a; Dejean et 

al., 2005) whereas the anti-apoptotic members like Bcl-2 or Bcl-xL prevent MAC formation 

and inhibit the release of Cytochrome c to the cytosol (Yang et al, 1997). Bax channel 

inhibitors (Hetz et al., 2005) and MAC inhibitors (Peixoto et al., 2009) degrade the MAC 

activity and results in prevention of Cytochrome c release and caspase cascade. Bcl-2 may 

promote cell survival by interfering with the activation of the Cytochrome c / Apaf-1 pathway 

through stabilization of the mitochondrial membrane (Fig. 4; Gewies, 2003). The Bcl-2 is one 

among many key regulators of apoptosis, which are essential for proper development, tissue 

homeostasis and protection against foreign pathogens (Zahir & Weaver, 2004). Human Bcl-2 

is a membrane-associated and promotes cell survival through protein-protein interactions with 

other Bcl-2 related family members, such as the death suppressors Bcl-xl, Mcl-w and A1, or 

the death agonists Bax, Bak, Bik, Bad and BID (Dejean et al., 2006a). The anti-apoptotic 

function of Bcl-2 can also be regulated through proteolytic processing and phosphorylation. 

The increased expression of Bcl-2 at 0dd, 7dd and 10dd evidenced that the protective effect of 

the 3D scaffold plays an important role (Fig. 18). The increase of Bcl-2 and the increase of 

neural cells at 7dd and 10dd in 3D scaffolds (Fig. 13) showed that Bcl-2 can act as neuron 

protector in the hNPCs when cultured in 3D scaffolds. Fröhlich et al. (2009) described that 



Discussion 

88 

the functional inhibition of Bcl-2 leading to a temporary delayed differentiation, a 

reduction of neurons and increased Caspase-3 activity. Many studies showed instead that 

over-expression of Bcl-2 in neural cells leads to increased apoptosis resistance, reduced ß-

Catenin cleavage, extensive axon growth, increased expression of neuron specific enolase and 

decreased activity of pro-apoptotic proteins like Bax and Bak (Martinou et al., 1994; 

Kranenburg et al., 1996; Brancolini et al., 1997; Zhang et al., 1996; Youle, 2007; Yin et al., 

1994; Wang et al., 2006). The high starting concentration of Bcl-2 on day zero in 3D 

scaffolds can be a reason why the apoptotic events do not increase with starting differentiation 

of hNPCs in 3D scaffolds. In case the hNPCs induce the Bcl-2 expression in response of 

stress, it can also be an advice of stress for the cells in 3D scaffolds in the beginning of the 

cultivation relating to the preparation of the 3D scaffolds. In the literature it is controversially 

discussed if the increased expression of Bcl-2 is a consequence or the reason of the 

differentiation. Bcl-2 as anti-apoptotic protein is shown to have regulatory functions in the 

forming of neuronal differentiation of the human cell line Paju (Zhang et al., 1996). Almeida 

et al. (2005) and Lonze & Ginty (2002) account the increase of Bcl-2 in differentiating 

neuronal cells with a Wnt-3a / inactive GSK-3ß induced activity of the canonic Wnt 

signalling pathway. Otherwise Bcl-2 could regulate the differentiation of neural cells by cell 

cycle regulation, instead of anti-apoptotic processes (Zinkel et al., 2006). Bcl-2 can as well 

force a cell cycle arrest in the G0 / G1 phase (Zinkel et al., 2006; Mazel et al., 1996; 

Middleton et al., 1998). This indicates that the further developing state of the hNPCs during 

proliferation in 3D scaffolds can also be possible for the high concentration of Bcl-2 in 3D 

cultures. Further the prevention of apoptosis in 3D could be regulated by cyclin-dependent 

kinase-5 through ERK-mediated upregulation of Bcl-2 (Wang et al., 2006) 

Investigations regarding the regulation of the apoptosis in 3D scaffold could include the 

determination of the expression of the Bcl-2 antagonists, accordingly pro-apoptotic proteins 

like Bax and Bak. First results show no difference in the amount of the 21 kDa Bax protein. In 

3D scaffolds in the 4 days differentiated hNPCs additional an 18 kDa Bax fragment was 

found. This indicates a decreased activity of pro-apoptotic proteins, correlated with the 

increase of Bcl-2 (Yin et al., 1994). Further experiments are necessary to approve the 

relationship. In case of a parallel activation of the extrinsic pathway for the regulation of 

apoptosis in the ReNcell VM cells, some key enzymes of this path are interesting. Darios et 

al. (2003) found a connection between GF withdrawal, intracellular Ceramid increase, 

Caspase-8 activation, subsequently Bid cleavage and increased neuronal death. Further 

studies prove this connection, because the phosphorylation and activation of Bak is realised 
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by activated GSK-3ß (Eom et al., 2007; Linseman et al., 2004; Li et al., 2000; Putcha 

et al., 2002; Somervaille et al., 2001). Another interesting aspect for the regulation of 

apoptosis in 3D cultures of hNPCs comes from Vekrellis et al. (1997). They show that the 

down-regulation of Bax results in reduced apoptotic sensitivity of PC-12 cells. Later studies 

show that this occurred with a differentiation based protein expression decrease of Apaf-1 and 

the simultaneous increase of IAPs (Wright et al., 2004; Lindholm & Arumäe, 2004). The high 

increase of IAPs like XIAP and Bcl-2 in 3D scaffolds supports this hypothesis. Interesting 

could be further the analysing of the Bax expression in 3D scaffolds, because Bax is 

downregulated during the development of the nervous system (Vekrellis et al., 1997), and is 

possible downregulated during differentiation of the hNPCs is 3D scaffolds. 

Another inhibitor of apoptosis IAP tested in this study was Survivin. Survivin was discovered 

by its structural homology to IAP family of proteins in human B-cell lymphoma (Tamm et al., 

1998). It is known that the protein Survivin is found prevalent in neurogenic regions (Altura 

et al., 2003; Pennartz et al., 2004) and have dual functions as apoptosis inhibitor and mitosis 

regulator (Altieri, 2003; Jiang et al., 2005; Dohi et al., 2004; Shankar et al., 2001; Song et al., 

2003; Chen et al., 2003a). Survivin inhibiting caspase activation by physically binding to the 

caspase, thereby leading to negative regulation of apoptosis. As Survivin was detected in 

hNPCs it was of interest if Survivin is a part of the mechanism to protect the cells in 3D 

scaffolds from undergoing apoptosis. The results in 2D conditions show that Survivin is 

highly expressed in proliferated hNPCs, but a lower amount was found in differentiated 

hNPCs. This is consistent with Jaeger (2010), where Survivin was mainly present in 

proliferated ReNcell VM cells and decreased under differentiated conditions. This could be in 

accordance with the fact that Survivin is highly expressed in most human tumours and fetal 

tissue (Sah et al., 2006) and that the ReNcell VM cells are a cell line with the ability to 

proliferate under growth factor supplement over many passages (Donato et al., 2007). 

Interestingly I observed a decrease of Survivin expression in hNPCs proliferated in 3D 

scaffolds and the differentiated hNPCs showed an additional decreased expression. This in 

turn is correlated with the decrease of the proliferation activity during differentiation progress 

of the ReNcell VM cells. As it is known that Survivin is completely absent in terminally 

differentiated cells (Sah et al., 2006), the decrease was an expected result. Survivin is mostly 

important for the survival of proliferated cells in the central nervous system of mammals 

(Jiang et al., 2005). Survivin expression is highly regulated by the cell cycle and is only 

expressed in the G2-M phase. It controls the cytokinesis by co-localisation with centrosomes 
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and spindle apparatus (Altieri, 2003). This plays a role in hyperproliferated cancer 

cells. The decrease of Survivin in proliferated cells of 3D scaffolds indicates that something 

changed in hNPCs when cultured in 3D scaffolds. A disruption of Survivin induction 

pathways usually leads to an increase of apoptosis. Either the decreased Survivin expression 

in 3D scaffolds during proliferation do not leads to increased apoptosis of hNPCs, indicates 

that the Survivin pathway do not play a role for regulation of the apoptosis in 3D scaffolds for 

proliferating cells.  

The decrease of Survivin in hNPCs proliferated in 3D scaffolds seems to be compensated by 

the anti-apoptotic protein Bcl-2, as the Bcl-2 expression of proliferated cells in 3D scaffolds 

was up to 8 folds higher than in 2D cultured hNPCs (Fig. 18). It seems that the protection 

against apoptosis of the hNPCs in 3D scaffolds starts during the proliferation in the 3D 

scaffolds and results in a lower increase of apoptosis during differentiation. Further studies 

may also include the changes during the proliferation period in the 3D scaffolds. 

Another question to be asked is, if the decreased expression of Survivin is due to altered with 

a change in the differentiation state of the hNPCs during proliferation. The hNPCs proliferate 

7 days in the 3D scaffold and only a low rate of spontaneous differentiation was observed, 

terminal differentiation does not really starts. Based on the fact that Survivin is highly 

expressed in fetal tissue and completely absent in terminally differentiated cells (Sah et al. 

2006), Survivin could possibly decrease in neuronal-restricted precursors and further 

differentiated cells. Therefore, the high amount of PSA-NCAM positive cells in 3D scaffolds 

can be correlated with the decrease of Survivin. Nearly 40 % of the proliferated cells were 

positive for PSA-NCAM and consequently more directed to neuronal lineage. This is an 

additional hint that the developmental state of the hNPCs changed during the culturing in 3D 

scaffolds. The molecular mechanism of Survivin regulation is not well understood. But 

Survivin is upregulated by beta-catenin and a direct target gene of the Wnt pathway (Olie et 

al., 2000). Therefore may be correlated with the differentiation. 

Taken together growth in 3D per se appears to induce fundamental change in cell physiology 

and to regulate cell responsiveness to apoptotic stimuli, and appears to be linked to cell 

adhesion (Zahir & Weaver, 2004). The mechanisms whereby adhesive interactions regulate 

the spatio-temporal viability of cells in tissues are poorly understood. During tissue 

development ECM-dependent activation of integrins has been implicated in cell survival 

(Zahir & Weaver, 2004). The enhanced survival of the hNPCs in 3D scaffolds can be 

triggered by synergistic interactions between activated integrins and growth factor receptors, 
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because the supplemented laminin, as a member of the ECM, could mimic ECM-cell 

interaction. Such crosstalk facilitates stimulation of associated signalling molecules such as 

focal adhesion kinase, tyrosinkinase src, integrin-linked kinase, mitogen-activated protein 

kinase (ERK) and phosphinositide 3-kinase (PI3-K). These signalling cascades then actively 

repress cell death by increasing the expression and / or activity of anti-apoptotic molecules 

including bcl-2 family dimers, and kappa-light-chain-enhancer NFkB and protein kinase B

(AKT) which in turn regulate expression of molecules such as folkhead and IAP proteins 

(Zahir & Weaver, 2004). 

Also the polarity of the peptide scaffold can play a role in apoptosis resistance of the hNPCs 

in 3D scaffolds. Boudreau et al. (1996) found that polarized mammary structures are able to 

sustain long term viability in culture and are able to resist multiple extrinsic and intrinsic 

apoptotic stimuli (Weaver et al., 2002). This depends upon laminin induced ligation of α6ß4 

integrin which activate NFkB and induce tissue polarity and apoptosis in 3D structures 

through PI3-K and ERK-independent activation of RAC (GTPase) (Zahir et al., 2003). 

Further studies are necessary to achieve this. 

5.1.5. Challenges using 3D culture systems 

The 3D culture based on self-assembling peptide hydrogels provides a lot of advantages 

regarding differentiation and survival of the cells discussed above. However, some more 

technical aspects appeared to limit the use of the 3D scaffolds. The huge number of cells 

inside the scaffolds was shown to provide problems during microscopy, high background and 

auto-fluorescence of the samples makes it difficult to test some new antibodies. In addition 

cells cultured inside 3D scaffolds cannot be used directly for functional assays like 

electrophysiological recordings. 

The mechanical treatment used to release the cells from the 3D scaffolds could provide breaks 

of outgrowth, which influence the measurement via flow cytometry. And do not forget the 

high variance between experiments and the resulting additional work and expense for truly 

statistical analysing. The variance of the experiments may result of normal behaviour of the 

cells, little changes in treatment, little temperature and pH changes. This can influence the 

cells, but also the self-assembling of the scaffolds. All handling of the 3D scaffolds had been 

standardised and were done as best as possible. The used cell line is known to consist of NSC 

and NPC (Donato et al., 2007) and varied from batch to batch. Also the scaffold plays a role 
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in the variance, the third dimension enforce this additional. The self-assembling of the 

peptide sequences can be influenced on differ temperature, pH and percussion. Some studies 

focus on more controlled self-assembling of scaffolds not based on peptides (Perale et al., 

2011) But the peptides, described above, especially the functional peptides were effective for 

the cells. The use of a template molecule to control the length of a self-assembling nanofibre 

of peptide amphiphiles is more interesting (Moxham, 2008). Further studies show that the 

creation of functional scaffolds changes the self-assembling and stiffness, that the scaffolds 

were able to recover from breakdowns of the scaffolds (Gelain et al., 2011). These 

possibilities provide more controllable conditions in 3D scaffolds for future approaches. 

5.2. Differentiation and apoptosis of hNPCs inside modified 3D scaffolds 

Along with biochemical modifications, surface characteristics of the underlying material such 

as hydrophobicity, charge, and mechanical compliance are also important surface cues, which 

substantially affect cellular responses (Brodbeck et al., 2001; Allen et al., 2003; Pelham & 

Wang, 1997). 

The aim of the second part of my study was to examine the influence of modified PuraMatrix 

formulations. In this modified matrices short functionally amino acid sequences were 

incorporated to the RADA-16 backbone of the hydrogel matrices to improve cell adhesion 

and differentiation (Fig. 3). The both modified RADA16-I formulations used for this study 

were provided from BD Bioscience. The SDP-peptide, a cell adhesion motif in laminin (Ac-

(RADA)4-GGSDPGYIGSR-NH2), is described to promote cell adhesion and extensibility of 

neural cells (Gelain et al., 2006). The PFS-peptide is a motif of the bone marrow homing 

factor (Ac-(RADA)4-GGPFSSTKT- NH2) and is thought to improve the differentiation of 

neural stem cells to neural cell and extension of neural cells (Gelain et al., 2006; Taraballi et 

al., 2010). 

In the modified 3D scaffolds also the growth pattern was analysed. The observed neurosphere 

like growth of hNPCs (Fig. 20A, C, E) is known from Thonhoff et al. (2008) and Ortinau et 

al. (2010). The expectation that the modified matrix with the SDP-peptide also increase the 

attachment of hNPCs on the scaffold, which is known from 3D scaffolds supplemented with 

laminin (Fig. 6A, C), was not observed. The same spheroids like growing, as described for the 
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PM and the PM-PFS scaffold, was found (Fig. 20A, C, E). The spheroid like growing 

of the cells inside the modified matrices can direct to problems in visualisation under the 

microscope, preparation and separation for flow cytometric analysis. I suggested that the SDP 

peptide was not ideal for the attachment of the hNPCs, because there was no difference to the 

control. The SDP peptide could influence the hNPCs in a different way. From literature is 

known that the interactions between cells and hydrogel depend on the chemical properties of 

the polymers and on the presence of biologically active molecules exposed at the surfaces 

(Woerly et al., 2008). Cell adhesion and neurite outgrowth-promoting sites have been 

identified in the C-terminal site of α1 and α2 chain of laminin (Tashiro et al., 1989; Skubitz et 

al., 1991; Calof et al., 1994; Richard et al., 1996; Nomizu et al., 1995) in the cross-region of 

the molecule (Edgar et al., 1984, Tashiro et al., 1994), in the γ1 chain (Liesi et al., 1989 & 

1992; Nomizu et al., 1997) and in the N-terminal region of the α2 chain (Nomizu et al., 

1996). May be sequences of other regions in the laminin provide the possibility to enhance the 

attachment of the hNPC. 

Besides the growth, the modified 3D scaffolds PM-SDP and PM-PFS were analysed 

regarding the neuronal differentiation. The results demonstrated an increased expression of 

ßIII-tubulin of cells differentiated in the modified 3D scaffolds (Fig. 21A). The enhancement 

of ßIII-tubulin up to 4.2 fold for PM-SDP scaffolds and 5.3 fold for PM-PFS scaffold exceed 

the expectations for this cell line. In Gelain et al. (2006) it was showed that the PuraMatrix 

hydrogel with such modified peptide sequences induced the neuronal differentiation of 

murine neural stem cells. Especially for the BMHP from the bone marrow homing factor, this 

is similar to the PFS-peptide. 

Regarding the used cell line such high number of ßIII-tubulin positive cells is described for 

the first time. Usually 95 % of the ReNcell VM cells differentiate to GFAP positive cells and 

only 3% to the neuronal linage. A lot of applications of small molecules (Schmöle et al., 

2010) as well as the activation of the Wnt pathway (Hübner et al., 2010) were shown to 

improve the differentiation of the ReNcell VM cells into neuronal direction. Although the 

observed changes in the number of neuronal phenotypes were small. This could be based of 

the unknown composition of neural stem and neural progenitor cells (Donato et al., 2007). 

The shift from two dimensional monolayer to 3-dimensional environment to create more 

physiological conditions leads to a significant increase of neuronal phenotypes as described 

above (Fig. 14) and in Ortinau et al. (2010). But this cell line needs more direction to induce 

the differentiation potential. This was shown in Morgan et al. (2011) by co-cultivation of 
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hNPCs with brain slice culture. The direct contact of these cells with primary rat NPCs 

or brain slice culture results in functional active neuronal cells.  

Coming back to the modified 3D scaffolds it is known that, modified self-assembling 3D 

scaffolds with functional motifs promote neuronal differentiation of adult mouse neural stem 

cells (Gelain et al., 2006; Taraballi et al., 2010). Taraballi et al. (2010) also showed that the 

addition of glycine linker between the backbone of the PuraMatrix peptide and the functional 

motive increases the effect additionally. The possibility to induce the potential of the ReNcell 

VM cells via modified 3D scaffolds is a big step in controlling the neuronal differentiation 

and to push NPCs in the neuronal direction. The observed decreased expression of astrocytes 

enforces this hypothesis (Fig. 21C). 

But why does the scaffold modified with the functional peptide sequence have such effect on 

the hNPCs? The SDP-peptide a cell adhesion motif in laminin (Ac-(RADA)4-

GGSDPGYIGSR-NH2) is due to promote cell adhesion and extensibility of neural cells 

(Gelain et al., 2006). Laminin is usually used in our lab as functionalisation of surfaces of 

culture dishes for attachment of hNPCs on surfaces. As some studies show that the use of 

mouse laminin for human stem cells can be disadvantageous for the differentiation (Rodin et 

al., 2010), it is important to use only the functional sequences (Silva et al., 2004) or domains 

(Nomizu et al., 1995; Tashiro et al., 1994; Nomizu et al., 1997) of laminin not the whole 

protein. A wide variety of signalling peptides derived from laminin were described, which 

have the potency to interact with neurite outgrowth and differentiation (Powel et al., 2000). 

The well described laminin epitope IKVAV was used to functionalise surfaces (Kam et al., 

2002; Tong & Shoichet, 2001; Li & Chau, 2010) and 3D scaffolds (Silva et al., 2004). Silva et 

al. (2004) were able to demonstrate that the IKVAV, integrated into a 3D matrix, was able to 

initiate neuronal differentiation of murine NPCs. Wei et al. (2007) showed that hyaluronic 

acid hydrogels with IKVAV peptides has the potential for tissue repair and axonal 

regeneration in an injured rat brain. These signalling peptides might act different depending 

on various cell types; therefore pre-test of the signalling peptides for their effect on the 

desired cell line could necessary before using them in a 3D approach. The SDP-peptide acts 

similar to these sequences regarding the potential to initiate neuronal differentiation and can 

used as a source to induce neuronal differentiation of hNPCs, especially for human cell lines 

like the ReNcell VM cells. 

The PFS-peptide (Ac-(RADA)4-GGPFSSTKT- NH2) based on the Bone marrow homing 

peptide (BMHP) which functional motif (PFSSTKT) was demonstrated to stimulate neural 
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stem cell (NSC) viability and differentiation when linked to self-assembling peptide 

hydrogel (Gelain et al., 2006). Gelain and his co-workers also tested another motif, BMHP1 

(SKPPGTSS). Both belong to a family of peptides (bone marrow homing peptides) rich in K, 

P, F, S, and T. They have been shown to home into bone marrow in vivo (Nowakowski et al., 

2004). Bone marrow is one source of adult stem cells, which have the ability to differentiate 

into endothelial, muscle and connective tissue and neuronal cells. It is likely that bone marrow 

cells have some of the same differentiating pathways and adhesion receptors as NSCs (Gelain 

et al., 2006). Bjornson et al. (1999) for example demonstrated the possibility to turning brain 

into blood, in which a haematopoietic fate adopted by adult neural stem cells in vivo. Whereas 

bone marrow stromal cells extensively proliferate, migrate into the lesion, and express the 

neural cell markers and improving neurological function, when transplanted into animal 

models of cerebral infarct (Chen et al., 2001, 2003b; Shichinohe et al., 2004; Yano et al., 

2005b), traumatic brain injury (Mahmood et al., 2003 & 2006), and spinal cord injury (Chopp 

et al., 2000; Lee et al., 2003; Yano et al., 2005a). That means transplantation of hSC / PC 

from bone marrow into the hippocampus of mice is able to promote neurogenesis of 

endogenous NSCs (Munoz et al., 2005). Also the survival of neuronal cells could be 

increased. The stromal cell-derived factor-1α, involved in the trafficking of haematopoietic 

stem cells from bone marrow to peripheral blood, was found to extent neuroprotectic effects 

that rescued primary cortical cultures from H2O2 neurotoxicity, and to modulate neurotrophic 

factor expression (Shyu et al., 2008). Kabos et al. (2002) described the in vitro generation of 

NPC from whole adult bone marrow. As well encapsulation in 3D scaffolds provides the 

possibility for differentiation of human bone marrow mesenchymal SC into nerve cells (Wang 

et al., 2010). Multiple mechanisms are possible for this phenomenon. Jori et al. (2005) 

emphasized the importance of cAMP and MEK-ERK MAP kinase in neural differentiation of 

bone marrow SC. The used PFS-peptide could increase the neuronal differentiation of hNPCs 

by the activation of the MEK-ERK MAP-kinase. 

Further investigation of the modified scaffolds by Gelain et al. (2011) described a novel 

ensemble of self-assembling peptides developed from bone marrow homing factor with 

additional motives. Thirty-two sequences, including biotinylated and unbiotinylated 

sequences, as well a hybrid peptide-peptoid sequence were designed. Most show self-healing 

properties mean they recover their stiffness after rupture of the assembled gels. This enlarges 

the set of potential applications of these novel self-assembling peptides. The RGD-

functionalisation (adhesion peptide, Arg-Gly-Asp) and the hybrid peptide-peptoid self-

assembling sequences opened the door for additional functionalisation with further bioactive 
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motifs like IKVAV or the neural adhesion molecule L1 (Gelain et al., 2011; Azemi et 

al., 2008). L1 is expressed in developing and differentiated neurons of the central nervous 

system and Schwann cells of the peripheral nervous system, and can specifically promote 

neuronal attachment, neurite outgrowth and neuronal survival in vitro (Lagenaur & Lemmon, 

1987; Lemmon et al., 1992; Dihné et al., 2003). Coating of the L1 bio-molecule on a silicon 

surface or polystyrene substrates show higher levels of neuron attachment and neurite 

outgrowth, while inhibiting the attachment of astrocytes (Azemi et al., 2008) as well as the 

astrocytic differentiation of NPCs (Lagenaur & Lemmon, 1987; Lemmon et al., 1992; Dihné 

et al., 2003). Interesting for further studies is the question, if PM-PSF scaffolds, additionally 

modified with L1, can induce the attachment of the hNPCs while inducing neural 

differentiation and suppressing differentiation of astrocytes. 

In consideration of the PSA-NCAM expression the expectations were not delivered in 

modified 3D matrices. 2D culture compared with 3D scaffolds show a high increase of PSA-

NCAM in 3D scaffolds that leads to the conclusion that 3D culture results in an increase of 

the progenitor pool. The PSA-NCAM expression of hNPCs in the modified matrices is equal 

to the expression in pure PuraMatrix, this indicates that the modified scaffolds increase the 

ßIII-tubulin expression but do not enhance the progenitor pool in additive manner in hNPCs 

like known from PuraMatrix without modifications. 

Based on the induced neuronal differentiation of the modified 3D scaffolds and on increased 

PSA-NCAM and increased ßIII-tubulin expression, it was of great interest if the modified 

scaffolds are able to produce functional active neural cells. In a first step 

immunocytochemical staining against synaptic marker were done. Synaptophysin as a 

presynaptic marker and PSD95 as postsynaptic marker were chosen for the staining. 

Synaptophysin is a synaptic vesicle glycoprotein. It is present in neuroendocrine cells and in 

virtually all neurons in the brain and spinal cord that participate in synaptic transmission. 

Thus it is used for immunostainings and for quantification of synapses (Calhoun et al., 1996). 

It interacts with the essential synaptic vesicle protein synaptobrevin (McMahon et al., 1996). 

PSD95 (postsynaptic density protein 95) also known as synapse-associated protein 90 SAP-

90 and is a member of the membrane-associated guanylate kinase MAGUK family. It is 

almost exclusively located in the postsynaptic density of neurons and is involved in anchoring 

synaptic proteins (Hunt et al., 1996). In 2D culture no positive staining of both antibodies was 

found. Either the immunocytochemistry staining in 3D scaffolds were problematical because 

of background and auto-fluorescence of the huge number of cells. After reculturing of the 

hNPCs, which differentiated before in PM-PFS scaffolds, on coated cover slips were only few 
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PSD95 positive cells monitored. This indicates that the hNPCs cultured in PM-PFS 

scaffolds were able to build functional active neuronal cells. The increased expression of the 

PSA-NCAM of hNPCs in 3D scaffolds opens the door for further changes in the cell line, as 

PSA-NCAM may be related to synaptic rearrangement and plasticity (Muller et al., 1996). 

The measure of functional activity of hNPCs differentiated in modified 3D scaffolds is inside 

the scaffold not possible. The differentiated cells had to be recultured on cover slips. First 

results of patch clamp studies, done in cooperation, indicated an evaluated number of cells 

expressing functional Na+ channels. Here 7 % of cells differentiated in PM expressed 

functional Na+ channels, in comparison to 12 % and 20 % of cells hosted in PM-SDP and 

PM-PFS (Liedmann et al., 2012b). That leads to the importance of using directed 

functionalised 3D scaffolds or modified surfaces to induce neuronal differentiation and to 

produce functional active neuronal cells in vitro. 

If enhanced survival plays a role for the induced neuronal differentiation in the modified 3D 

scaffolds, the modified scaffolds were tested for apoptotic events. The apoptosis of the hNPCs 

in both modified scaffolds was not significant different to the control considering all cells of 

the scaffold (Fig. 23A) or only the neuronal cells (Fig. 23B). Also the amount of early and 

late apoptotic cells did not differ significant from the control. Nearly the same number of 

early and late apoptotic cells was found in PM-SDP, PM-PFS scaffold and in the control. That 

leads to the conclusion that the modified 3D scaffolds protect the encapsulated cells in the 

same manner like the 3D scaffolds described in chapter 5.1.3., that and the increased survival 

was not only the reason for the increased ßIII-tubulin expression of hNPCs in modified 3D 

scaffolds. Possible for the induced differentiation is the combination of inhibited apoptosis of 

the 3D environment (chapter 5.1.4.) and activation of the MAPK/ERK pathway by the peptide 

sequences. 

5.2.1. Outlook for modified 3D scaffolds 

Further development of functionalised scaffolds for co-cultivation of multiple cell types like 

primary neuronal or bone marrow cells can induce differentiation and further to functional 

active networks of neuronal cells types in vitro. Morgan et al. (2011) showed that the 

cultivation of hNPCs on hippocampal slice cultures results in neuronal cells positive for 

synaptic marker. The functional network integration of embryonic stem cells-derived 

astrocytes in hippocampal slice cultures by gap junction-mediated coupling between donor 
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and host cells permits widespread delivery of dye from single donor cells (Scheffler et 

al., 2003). Also Namba et al. (2007) showed that the co-culture of neural precursor cells with 

hippocampal slice cultures efficient neuronal production. The transplantation of hSC/PC from 

bone marrow into the hippocampus of mice promotes neurogenesis of endogenous NSCs 

(Munoz et al., 2005). 

The additional modification of the PM-PFS scaffold with the cell adhesive peptide RGD or 

L1 (Lagenaur & Lemmon, 1987; Lemmon et al., 1992; Dihné et al., 2003) may improve the 

adhesion of the hNPCs on the scaffold and to reach more spreading of the cells and prevent 

neurospheres like growing in the PM-PFS scaffold. To simplify the culture conditions for 

further molecular assays, go away from encapsulation, cell seeding on surface of the scaffold 

(Holmes et al., 2000) or coating of a monolayer culture with the scaffold (Semino et al., 2004) 

could be an alternative. 

As 3D culture enhances the PSA-NCAM expression, it opens the door for further 

experiments. The hNPCs could proliferate in 3D scaffolds for 7 days and recovered, marked 

alive against PSA-NCAM and subsequently sorted with a FACS sorter. The PSA-NCAM 

positive cells could be recultured to increase the neuronal phenotypes. Ekici et al. (2008) for 

example discriminate neuronal progenitors of a ReNcell VM culture and produce an adapted 

cell line. For additional improving of the neuronal differentiation of the separated cells, they 

could be encapsulates again by using the PM-PFS scaffold. 

5.3.  Could the use of the soluble PFS peptide sequence as supplement for 

monolayer culture of hNPCs imitate the effect of the PFS scaffold? 

To overcome some technical drawbacks of the 3D culture, some experiments with the soluble 

PFS-peptide were done in the 2D culture system. This part is focused on first experiments 

with the soluble peptide sequence PFS to show if the peptide it self is able to enhance the 

neuronal differentiation. The question if the PFS-peptide alone induces the differentiation of 

the hNPCs by simply supplement of the peptide could be answered easily. No effect was 

found. Induction of neuronal differentiation by supplement of substances is described in many 

studies. Schmöle et al. (2010) showed that the addition of small molecules to monolayer 

cultures of hNPCs is able to influence or in best case increase the differentiation towards 

neuronal phenotypes. Synthetically produced tyrosine-rich amelogenin peptide TRAP and its 

unique C-terminal 12 amino acid sequence (TCT) is shown to suppressed bone-forming cells, 
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whereas leucine-rich amelogenin peptide LRAP and its unique C-terminal 23 amino 

acid sequence (LCT) markedly enhanced terminal differentiation of bone-forming cells (Amin 

et al., 2012). The supplementation of soluble inhibitory peptide sequences instead was shown 

to decrease neurite extension on 2D collagen substrates and within 3D collagen gels (Blewitt 

& Willits, 2007). Some examples using soluble peptide sequences could found, but most 

studies focus about coupled peptide sequences on surfaces or scaffolds. This could be the 

reason for the result. The hNPCs seem to need another presentation of the peptide sequence. 

The presentation of the peptide can be important for the cell reaction, therefore no higher 

amount of ßIII-tubulin in hNPCs could be detected in monolayer culture with PFS-peptide 

supplement. Surface modulation or coating with the peptide, which is described in many 

studies (Tashiro et al., 1989; Kam et al., 2002; Nomizu et al., 1995; Tong & Soichet, 2001), is 

more usefully. One possibility is electrospinning. This method is used to create thin films of 

different coating designs (Buchko et al., 1999). The peptide coating of cover slips via 

glycinee spacer could be another possibility. It is shown that glycinee as linkers between the 

self-assembling peptides and the motifs can increase the differentiation of neural cells 

(Taraballi et al., 2010). The use of functional sequences is well described in the literature. One 

example is the pentapeptide epitope isolucine-lysine-valine-alanine-valine IKVAV-peptide, 

this improve the neuronal differentiation in surface modulation (Tashiro et al., 1989; Kam et 

al., 2002; Nomizu et al., 1995; Tong & Soichet, 2001) and in 3D scaffolds (Gunn et al., 2005; 

Silva et al., 2004; Wei et al., 2007; Sreejalekshmi & Nair, 2011). Silva et al. (2004) describe 

the incorporation of the epitope IKVAV into a peptide amphiphile nanofiber scaffold, which 

results in selective differentiation of NPCs. Interestingly, not all cells do act in a similar way 

to those peptides; the neurite outgrowth activity of some sites is cell type specific (Richard et 

al., 1996; Malinda et al., 1999; Ponce et al., 1999). More over the orientation or the 

presentation of the peptide to the cells is important. If the IKVAV-peptide is linked not on the 

terminal site but between two self-assembling RADA-16 peptides, which change the 

presentation of the peptide to the cells, no neurite outgrowth of PC12 cells encapsulated in 3D 

scaffolds could be detected (Li & Chau, 2010). Additional glycinee spacer between the self-

assembling RADA-16 peptide and the functional motif sequence change the differentiation 

potential (Taraballi et al., 2010). Longer spacer of glycinees, the more effective is the 

functional motif in eliciting NSCs adhesion, improving their viability and increasing their 

differentiation, because bioactive motifs are more exposed to the solvent. They concluded that 

the presentation of the functional peptide plays an important role in the 3D culture. Gelain et 

al. (2011) showed that the modification of the peptide, the biotinlylation and the RGD 
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functionalisation shift the properties of the scaffolds and the differentiation properties 

of the cells. RGD unit enhance the adhesion of cell to the surface of the hydrogels.  

Thus the stiffness of the surrounding matrix is important and has implications on 

development, differentiation, disease, and regeneration (Discher et al., 2005). Plating cells on 

hydrogels with controllable stiffness has identified how mechanical parameters affect cell 

behaviour (Pelham & Wang, 1997). For instance, substrate stiffness modulates cell motility 

and spreading (Pelham & Wang, 1997), and through alterations in the cell shape it is able to 

modulate gene expression (Maniotis et al., 1997). Mechanical and biochemical properties of 

an aNSC microenvironment can turn to regulate the self-renewal and differentiation of 

aNSCs. (Saha et al., 2008). Synthetic, interfacial hydrogel culture systems, termed variable 

moduli interpenetrating polymer networks vmIPNs, are used to assess the effects of soluble 

signals, adhesion ligand presentation, and material moduli on adult neural stem-cell 

behaviour. The proportion of neurons versus glia is a strong function of elastic modulus, 

softer gels favoured neurons, and harder gels promoted glial cultures. The stiffness of 

materials required for optimal neuronal growth, characterized by an elastic modulus of several 

hundred Pa, is in the range measured for intact rat brain (Georges et al., 2006). Brain is a soft 

tissue and has an elastic modulus ~10 times softer than liver and nearly 50 times softer than 

muscle (Discher et al., 2005). The rate of human mesenchymal SC proliferation increased 

with the decrease in stiffness of the hydrogel (Wang et al., 2010). Also the neurogenesis of 

human mesenchymal SC was controlled by the hydrogel stiffness in a 3D context, they 

expressed more neuronal protein markers in hydrogels with lower stiffness (Wang et al., 

2010). Turning the mechanical properties of a synthetic culture substrate offers a means to 

modulate or control neural stem-cell behaviour (Saha et al., 2008). The effect of gel stiffness 

on neurite extension is described in many studies for different hydrogels synthetic as well as 

natural hydrogels (Willits & Skornia, 2004; Gunn et al., 2005). That indicates that not only 

the 3D culture also the mechanically properties of hydrogels have a strong influence on the 

differentiation of neural stem cells which are sensitive to the mechanical properties of 

surrounding or underlying environment. 

Apart from the mechanical stiffness and the presentation of the functional motif the modified 

3D scaffold with the PFS-peptide seem to be ideal for the differentiation of the hNPCs. The 

elasticity of the PuraMatrix is attributed to a network nanostructure consisting of fibrous self-

assemblies. The stiffness of this scaffold is in the same range of the native brain tissue and the 

presentation of the functional motif is good as well (Taraballi et al., 2010). All these facts and 

the advantages of the 3D environment together, like the architecture and the overall contact 
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between the cells and the scaffold, play a big role in the high increase of neuronal cells. 

This could never be mimicked by 2D culture systems. The coating with the peptide could 

support the differentiation, but not in the same range of the PM-PFS scaffold. 

5.4. Effect of laminin supplement on differentiation and survival of 

hNPCs in modified 3D scaffolds 

Different laminins show various expression patterns as well as tissue-specific locations and 

functions. LN-211 and LN-221 are primarily present in basement membranes of muscle cells 

and motor neuron synapses (Miner & Yurchenco, 2004). LN-332 is specific for subepithelial 

basement membranes (Kallunki et al., 1992), LN-411 is located in subendothelial basement 

membranes (Iivanainen et al., 1997), LN-511 is expressed ubiquitously (Miner et al., 1995), 

and LN-111 is restricted to the early embryo and certain epithelial cells (Ekblom et al., 2003). 

The influence of laminin 1 on growth, differentiation and survival of hNPCs encapsulated in 

modified PM-PFS scaffolds was analysed in this part to compare the results with the PML 

scaffold (5.1.). The functionalisation of the scaffolds with laminin supports cell adhesion and 

prevents the formation of neurospheres (Fig. 6A, C). Ortinau et al. (2010) showed that the 

growth pattern of the hNPCs can influence the differentiation. The supplementation of 

laminin and the following changing of the spreading of the cells in the 3D scaffolds can also 

influence the neuronal differentiation of the hNPCs in the PFS-scaffolds. Therefore four 

different conditions were compared, PM, PML, PM-PFS and PML-PFS scaffolds. The better 

spreading and decreased spheroid like growing of the hNPCs in the PML scaffold was already 

show from PML-PFS scaffolds (Fig. 27). The main result of the quantification of neuronal 

marker was that the positive effect of the PM-PFS scaffold is decreased when the PM-PFS 

scaffold was supplemented with laminin (PML-PFS) (Fig. 28). The decrease of ßIII-tubulin at 

10dd in PML and PML-PFS scaffolds may results on the kind of growth inside the matrix, 

whether the cells are distributed or growth in spheroid like manner. The HuC/D expression 

was significant decreased in PML-PFS scaffold compared with the PM-PFS scaffold. The 

laminin in 3D scaffolds was usually shown to induce the enhancement of neurite outgrowth of 

neural cells (Labrador et al., 1998; Yu et al., 1999; Rangappa et al., 2000; Koh et al., 2008; 

Ortinau et al., 2010). As it was shown in literature that the use of laminin for 3D scaffolds 

induces the neuronal differentiation, I conclude that the changed distribution of the cells is the 

underlying effect for the decrease. The cell line is well described and it is known that the 

differentiation is induced if the distance between the cells is smaller and reduced if the 
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distance between the cells is higher (Donato et al., 2007). They suggested that this 

might be based on the fact that the isolation protocol of the ReNcell VM cells resulted in a 

bulk-like and not clonal cell isolate. The addition of laminin can also change the self-

assembling of the scaffold peptides as described from Ortinau et al. (2010). The length and 

the fibre diameter of the nanofibers in the PM-PFS scaffold could be changed, resulting in 

little changed environment for the hNPCs. 

If the supplement of laminin can influence the differentiation, the survival of the cells could 

also be effected. Considering the survival of the hNPCs (Fig. 30) a prominent difference was 

found between the culture conditions with and without laminin. Regarding the number of cells 

in an early state of apoptosis, in culture conditions with laminin, namely 2D cultures, PML 

and PML-PFS scaffolds, the amount was higher in comparison to 3D scaffolds without 

laminin (Fig. 30). In 3D scaffolds without laminin, namely PM, PM-PFS and PM-SDP 

scaffolds, the ratio of early and late apoptosis was equal (Fig. 30, left panel). Laminin can 

have an impact on the cells in three ways. At first the addition of laminin to a 3D scaffold or 

the coating of a surface for 2D cultures, will change the attachment, distribution and finally 

the growth of the hNPCs. The used cell line is growing in neurospheres in absence of laminin 

coating (Donato et al., 2007). The contact of cells inside the neurospheres is very close. The 

neuronal differentiation and the survival of the hNPCs are known to be increased in 

neurospheres (Donato et al., 2007). The integrin expression observed in spheroids resembles 

quite closely the expression pattern found in in vivo and the amount of cell–cell contacts and 

the spheroid microenvironment can modulate the integrin expression (Waleh et al., 1994). 

The spheroid like growing of the hNPCs in 3D scaffolds without laminin provides more direct 

contact of cells among each other, than in 3D scaffolds with laminin. Using laminin modified 

scaffolds can support the attachment and viability of PC12 cells (Koh et al., 2008). But 

laminin has a higher tendency to promote neurit outgrowth than to enhance viability of nerve 

cells (Luckenbill-Edds, 1997). 

A second aspect is the used laminin. In this study laminin 1 obtained from mice was 

employed to supplement the matrices or to coat 2D culture dishes. The combination of human 

cells with mouse laminin might be not optimal. Rodin et al. (2010) described that the use of 

human recombinant laminin-511 for culturing hES and iPS cells supports the adhesion, the 

survival and the self-renewal. The laminin is shown to interact with surface receptors, such as 

integrin receptors α1β1, α6β1 and α6β4, to activate signalling pathways that influence cell 
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viability and functions (Chen & Strickland, 2003). This may result in different 

mechanisms to enhance neurit outgrowth and neuronal differentiation. 

Third, atomic force microscopy studies in Ortinau et al. (2010) show that the different growth 

patterns are linked to the assembly of the 3D scaffolds. The matrix structure is build from 

beta-sheets and aggregates or bundles of those. The supplement of laminin to the scaffold 

directly influences the formation of the PuraMatrix scaffold by increasing the number of 

aggregates and increases the distance between fibres by shifting the composition of beta-

sheets and bundles more towards the bundles. This changes the stiffness and the stability of 

the scaffold, which can also influence the cells inside the scaffolds regarding survival and 

differentiation. This fact enforces the trend to use only the functional sequences and not the 

whole protein. Surface modulation adjusted for the cells and the application were possible 

also for 2D culture conditions. As described above (5.1.4.) that the high number of early 

apoptotic cells is not correlated with the onset of the caspases during apoptosis, indicates that 

the distribution of the hNPCs inside the scaffolds makes the cells be more vulnerable to 

changes during cultivation and the shift from proliferation media to differentiation media. The 

survival signals, which come from cell surface adhesion, must be substituted by those arising 

from cell–cell contact (Dainiak et al., 2008). Dainiak et al., 2008 demonstrate that formation 

of aggregates enhanced resistance of the cells grown on these matrices to the drug treatment. 

Regarding the neuronal cells, they were influenced by laminin. The increase of apoptotic 

events in neuronal cells at 4dd and the following decrease at 7dd in the PML-PFS scaffold 

indicated that the apoptosis is mainly completed and the Surviving neurons were hardened. It 

also may compensate of new generated neurons. 

Li et al. (2007) suggest complex cell-material interactions, in which the dimension of the 

culture material influences gene expression and cell spreading and the structural and 

mechanical properties of the culture material influence gene expression and neurite 

outgrowth. The cells exhibited differential expression of genes in collagen I, including those 

relevant to cytoskeleton, extracellular matrix, and neurite outgrowth via microarray analysis. 

Real-time reverse transcriptase polymerase chain reaction experiments (RT-PCR) compared 

collagen I and matrigel show differentially regulating genes associated with actin in similar 

patterns and the expression of the gene encoding for neurofilament varied with the type of 

material. RT-PCR and microarray analysis comparing 2D culture and the 3D scaffolds 

formulations could test whether the differential growth and gene expression reflected 

influences of culture dimension or culture material. 
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6. Conclusion 

Conventional cell culture studies have been performed on 2D surfaces, resulting in flat, 

extended cell growth. More relevant studies are desired to better mimic 3D in vivo tissue 

growth. Effective generation of patterned 3D cultures will lead to improved cell study results 

by better modelling in vivo growth environments and increasing efficiency and specificity of 

cell studies. The self-assembling peptide hydrogel provide a good in vitro environment for 

hNPCs, because neuronal differentiation of the hNPCs was increased in all tested 3D culture 

conditions compared to 2D culture. This study demonstrates that the 3D culture increase the 

survival of the hNPCs compared to standard monolayer culture, providing a good architecture 

to mimic natural environment of these cells. The apoptosis is regulated in a different way like 

known from 2D culture, where the intrinsic pathway is the critical point, indicated by the 

decrease of Caspase-3 and PARP-1 expression in the 3D scaffolds. The hNPCs seems to be 

protected from apoptosis by increased expression of inhibitor of apoptosis like Bcl-2, by 

preventing the formation of Mitochondrial Apoptosis-Induced Channel and inhibiting the 

release of Cytochrome c to the cytosol, and XIAP, by suppressing the activity of caspases and 

arresting of the apoptotic process. I conclude that the hNPCs especially the neuronal cells 

survive longer in 3D scaffolds, indicated by the shift of the ßIII-tubulin positive cells from 

4dd to 7dd in 3D scaffolds. Another possibility for the significant increase of ßIII-tubulin 

positive cells is a change of the developing state of the hNPCs during the proliferation in the 

3D scaffolds into neuronal restricted precursor cells, indicated by the significant high increase 

of PSA-NCAM and the decrease of Survivin.  

The modified PuraMatrix formulation enhance the neuronal differentiation of the hNPCs 

resulted in a 2 –3 times significant higher amount of ßIII-tubulin positive cells. The modified 

scaffolds seem to protect the differentiating hNPCs in the same manner like the PML 

scaffold. The hNPCs in modified scaffolds use the induced progenitor pool to differentiate 

into neuronal phenotype. That leads to the conclusion that the incorporated peptides of the 

modified 3D scaffolds were really able to enhance the differentiation of the hNPCs and that 

most likely not a single mechanism underlies the increased proportion of neuronal cells but a 

combination of an elevated neuronal differentiation and a protective effect of the modified 

matrices on the neuronal cells.  
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The addition of laminin to the PFS scaffold increases the attachment, but influences the cells 

regarding the apoptosis. The spheroid like structure seems to be protecting the hNPCs from 

outer factors like growth factor withdrawal resulting in less number of cells affected from 

early apoptotic events. The limitation of nutrients and oxygen, which occur sometimes in the 

middle of neurospheres, can also limiting the positive effect, shown by the little increase of 

cells in the late apoptosis in scaffolds without laminin. 

The study shows that not only the 3D microenvironment is of importance. More directed 

functional biomaterials are needed for different cell types or different usage to induce 

neuronal differentiation and produce a functional neuronal networks for neural regenerative 

medicine applications. The simply functionalisation with biologic active peptides of theses 

scaffolds suited for the user needs, make it attractive as well. The tested modified scaffolds 

with incorporated peptide sequences increase the differentiation additional toward neuronal 

phenotypes. The potential of the resulting cells to communicate by building active synapses 

open the door for clinical applications. The next generation of biomaterials for neuroscience 

research does not only act as architecture for seeding and natural environment, they are 

functionalised with biological signals to control the differentiation of stem cells or progenitor 

cells transplanted or of endogenous sources. This controlled neural differentiation of hNPCs 

might become an important source for cell replacement therapies in the field of 

neurodegenerative diseases like Alzheimer’s disease, Parkinson and Huntington’s disease.. 

The field of tissue engineered scaffolds play an increasing role in methods for the treatment of 

neurological disorders like traumatic brain injury and stroke. Scaffolds with nanoscale 

features like the PuraMatrix have the potential to improve the specificity and accuracy of 

materials for a number of neural-engineering applications, ranging from neural probes for 

Parkinson’s patients to guidance scaffolds for axonal regeneration in patients with traumatic 

nerve injuries. 
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8. Appendix 

Abbreviations 

AIF Apoptosis-inducing-factor 

aNSC Adult neural stem cells 

Apaf-1 Apoptotic protease activating factor - 1 

ATP Adenosine triphosphate 

B27 Media supplement 

Bax Bcl-2-associated X protein 

Bcl-2 B-cell lymphoma 2 

BDNF Brain derived neurotrophic factor 

bFGF Basic fibroblast growth factor 

Bid BH3-interacting domain death agonist 

BMHP Bone marrow homing peptide 

BSA Bovin serum albumin 

CARD Caspase recruiting domain 

CBB Coomassie-Brilliant-Blue 

CCD Colloidal Commassie dye 

c-jun Jun proto-oncogen 

CNS Central nervous system 

DAPI 4’,6-Diamidin-2’-phenylindoldihydrochlorid 

dd Days differentiated 

DED Death effector domain 

DISC Death-inducing signalling complex 

DMEM / F12 Dulbecco’s modified eagle medium 

DMSO Dimethyl sulfoxid 

DNA Desoxyribonuclein acid 

dp Days proliferated 

DRG Dorsal root ganglion 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 

EGF Epidermal growth factor 
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EGTA Ethylene glycol tetraacetic acid 

ERK Mitogen-activated protein kinase 

ES cells Embryonic stem cells 

FADD Fas-associated death domain protein 

FasL Fas ligand 

FCS Fetal calf serum 

FDA Food and Drug Administration 

FGF-2 Fibroblast growth factor 

GAPDH Glyceraldehyde 3-phosphate dehydrogenase 

GF Growth factor 

GFAP Glial fibrillary acidic protein 

GSK-3 Glycogen synthase kinase-3 

HA Hyaluronic acid 

HBSS Hank’s bananced salt solution 

HEMA Hydroxyethyl methacrylate 

hESCs Human embryonic stem cells 

hNPCs Human neural progenitor cells 

hNSCs Human neural stem cells 

HuC/D Human neuronal protein HuC/HuD 

IAPs Inhibitor of apoptosis proteins 

IF Immunofluorescence 

IGF-1 Insulin-like growth factor-1 

IKVAV Isolucine-lysine-valine-alanine-valine sequence 

IM-12 Indolylmaleimide 

iPS cells Induced pluripotent cells 

L1 Neural adhesion molecule 

LCT C-terminal 23 amino acid sequence 

LEF1 Transcription factor 

LRAP Leucine-rich amelogenin peptide 

MAC Mitochondrial apoptosis-induced channel 

MAGUK Membrane-associated guanylate kinase  

MAP kinase Mitogen-activated protein kinase 

MEK-ERK Ras-Raf-MEK-ERK pathway or MAP kinase pathway 

MHC-receptor Major histocompartibility complex - receptor 
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NCAM Neural cell adhesion molecule 

NeuN Neuronal nuclar antigen 

NFkB Kappa-light-chain-enhancer 

NGF Nerve growth factor 

NGS Normal goat serum 

NPCs Neural progenitor cells 

NSCs Neuronal stem cells 

NT3 Neurotrophin-3 

p53 Transcription factor / tumour suppressor 

PA Peptide amphiphile 

PAA Poly(acrylic acid) 

PAN-MA Poly(acrylonitrile-co-methylacrylate) 

PARP-1 Poly(ADP-ribose)-Polymerase-1 

PBS Phosphate buffered saline 

pc Post coitum 

PCD Programmed cell death 

PCL Poly(e-carpolactone) 

PDGF Platelet-derived growth factor 

PDL Poly-d-lysine 

PDS Polydioxanone 

PEG Poly(ethylene glycol) 

PEGDA Poly(ethylene glycol) diglycidyl-co-poly(ethylene glycol)

diacrylate 

PFA Paraformaldehyde 

PFS -PFSSTKT- peptide sequence 

PGA Poly(glycolic acid) 

PHB Poly(3-hydroxybutyrate) 

pHEMA Poly(2-hydroxylethyl methacrylate) 

PI Propidium iodide 

PI3-K Phosphinositide 3-kinase 

PLA Poly(lactic acid) 

PLGA Poly(lactic-co-glycolic acid) 

PLLA Poly(L-lactic acid) 

PM PuraMatrix 3D scaffold 
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PML PuraMatrix 3D scaffold with laminin 

PM-PFS PuraMatrix 3D scaffold modified with PFS-peptide 

PM-SDP PuraMatrix 3D scaffold modified with SDP-peptide 

PNVP Poly(N-vinyl 2-pyrrolidone) 

PPF Poly(propylene fumarate) 

Ppy Polypyrrole polymers 

PS Phosphatidylserine 

PSA-NCAM Polysialic acid-Ncam 

PSD95 Postsynaptic density protein 95 

PVA Poly(vinylalchol) 

PVDF Polyvinylidene fluoride 

RADA-16-I Peptide Ac-RADARADARADARADA-COHN2  

= PuraMatrix 

REM Scanning electron microscopy 

ReNcell VM Neural progenitor cell line 

RER Rough endoplasmatic reticulum 

RGD sequence Adhesion peptide, Arg-Gly-Asp 

RT Room temperature 

RT-PCR Real-time reverse transcriptase polymerase chain reaction

SAP-90 Synapse-associated protein 90 

SCs Stem cells 

SDP -SDPGYIGSR- peptide sequence 

SDS Sodium dodecyl sulphate 

SEM Standard error of the mean 

SMACs Second mitochondria-derived activator of caspases 

src Tyrosinkinase 

ST14A Rat striatal progenitor cells 

TBS Tris buffered saline 

TCF Transcription factor 

TCT C-terminal 12 amino acid sequence 

TGF-ß Tumour growth factor-ß 

TH Tyrosine hydroxylase 

TNF Tumor necrosis factor 

TNF-R1 Tumor necrosis factor receptor 1 
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TRADD TNF receptor-associated death domain 

TRAP Tyrosine-rich amelogenin peptide 

TTBS Tris buffered saline with Tween 20 

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end 

labelling 

vmIPNs Variable moduli interpenetrating polymer networks  

WB Western blot 

XIAP X-linked inhibitor of apoptosis protein 
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