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A B S T R A C T

This thesis aims at laying the foundation for handling PT symmet-
ric structures in fs-LASER-written waveguide arrays. This is done
by presenting a thorough theoretical and experimental investigation
of a new way to implement well defined losses in fs-LASER-written
waveguides. Also it comprises the first experimental realization of a
PT symmetric structure on this platform. In addition, a new coupled
mode theory for dissipative waveguides is presented and experimen-
tally verified.

The context of this thesis is structured as follows. After a short
review of the current state of the art in chapter 2, in chapter 3 sinu-
soidally bent waveguides are presented as a novel way to introduce
well controllable losses in waveguide lattices. The main question tack-
led in this chapter is whether bending losses may lead to an over-
all exponential decay of the waveguide’s mode amplitude and how
this behavior depends on the system parameters. Surprisingly, even
though bending losses of waveguides have been studied intensively
in areas such as optical fibers or integrated photonics, this investiga-
tion is the first to deal with periodically bent guides; hence evolution
dynamics are found, which strongly deviate from those of isolated
bends.

The findings of chapter 3 pave the way for the subsequent investi-
gations presented in chapters 4 and 5, where dissipative systems are
theoretically considered and sinusoidally bent waveguides are experi-
mentally applied. Chapter 4 presents the first experimental investiga-
tion of PT symmetry in fs-LASER-written waveguides. A PT invari-
ant structure is investigated in the so-called broken PT symmetric
regime and a mobility transition from ballistic to diffusive transport
is found. This finding is remarkable, as such dynamics are impossible
in ordered, 1D hermitian systems.

Finally, chapter 5 revisits the well-known coupled mode theory gov-
erning the light evolution in discrete lattices. A new theory that covers
the peculiarities of dissipative lattices is presented and investigated
based on an experimental sample system.
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Z U S A M M E N FA S S U N G

Diese Dissertation liefert die Basis für die Umsetzung PT symmetri-
scher Strukturen in fs-LASER geschriebenen Wellenleitergittern. Hier-
für werden tiefgreifende theoretische und experimentelle Untersu-
chungen dargestellt, die sich mit einer neuen Art, wohldefinierte Ver-
luste in Wellenleitergitter einzutragen, beschäftigen. Des weiteren bein-
haltet diese Dissertation die erste experimentelle Realisierung PT
symmetrischer Strukturen auf Basis von fs-LASER geschriebenen Wel-
lenleitern. Darüber hinaus wird in dieser Arbeit eine neue Theorie
gekoppelter Moden in dissipativen Wellenleitern präsentiert und ex-
perimentell verifiziert.

Der Inhalt dieser Arbeit ist wie folgt strukturiert. Nach einer kur-
zen Zusammenfassung des aktuellen Forschungsstandes in Kapitel
2, werden in Kapitel 3 sinus-förmig gekrümmte Wellenleiter disku-
tiert. Diese dienen als eine neuartige Methode, um kontrollierbare,
optische Verluste in Wellenleitergitter einzutragen. Die zentrale Fra-
ge dieses Kapitels ist es, ob die eingetragenen Krümmungsverluste
zu einem exponentiellen Abfall der Wellenleitermode führen und wie
dieses Verhalten gegebenen Falls von den Systemparametern abhängt.
Überraschender Weise ist diese Untersuchung die erste ihrer Art, die
sich mit periodisch gekrümmten Wellenleitern beschäftigt; folglich
werden neue Evolutionsregime gefunden, die sich stark von denen
isolierter Krümmungen unterscheiden.

Die Ergebnisse aus Kapitel 3 ebnen den Weg für die Kapitel 4

und 5, in denen dissipative Systeme theoretisch untersucht werden
und sinus-förmig gekrümmte Wellenleiter als experimentelles Werk-
zeug dienen. Hierbei wird in Kapitel 4 die erste experimentelle Um-
setzung eines PT symmetrischen, fs-LASER geschriebenen Wellen-
leitergitters beschrieben. Eine PT invariante Struktur wird in der
sogenannten gebrochenen PT Phase untersucht und ein Übergang
vom ballistischen zum diffusiven Transportregime wird festgestellt.
Diese Ergebnisse sind ebenso erstaunlich, wie beachtlich, da solch
eine Propagationsdynamik in geordneten, eindimensionalen, hermiti-
schen Systemen nicht vorkommen kann.

Abschließend greift Kapitel 5 noch einmal die altbekannte Theo-
rie gekoppelter Moden auf, welche die Lichtausbreitung in diskreten
Wellenleitergittern beschreibt. An ihre Stelle tritt hier eine neue Theo-
rie, die die Besonderheiten eines dissipativen Gitters berücksichtigt.
Experimentelle Beispiele verdeutlichen dabei die theoretischen Vor-
hersagen des Kapitels.
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1
I N T R O D U C T I O N

The introduction of PT symmetry in quantum mechanics (QM) in
1998 initiated a paradigm change in physics [7]. Before the seminal
work of Bender and Boettcher was published, hermitian operators
were heralded as the only physically relevant entities. This notion is
based on the assumption that the result of a physical measurement is
given by an Eigen-value of the corresponding (observable) operator.
Since the measurement always yields a real value, all Eigen-values of
such observables must be real as well. This leads to the natural choice
of hermitian operators, which have an entirely real Eigen-value spec-
trum. However, as Bender and Boettcher pointed out, the condition
of an operator being hermitian is overly restrictive and a consistent
quantum theory can be build on other classes of operators that still
posses an entirely real Eigen-value spectrum. For instance, so-called
PT symmetric QM can be formulated by replacing the mathemat-
ical condition of hermiticity by the additional physical assumption
that the evolution of a quantum system looks the same after flipping
space and time.

In 2007, the concept of PT symmetry was adopted in optics [30]
and it substantially influenced the way scientists viewed the evolution
and manipulation of light [79]. Before, loss was typically considered
undesirable and minimized or avoided in every optical system, when-
ever possible. However, with the arrival of PT symmetry, physicists
began to realize that certain well balanced gain-loss modulations can
lead to peculiar propagation dynamics, which were thought to be
physically impossible before. Hence, it was understood that loss -
well placed and well controlled - can play a vital and most of all
beneficial role in the propagation dynamics of optical systems. This
notion was carried even further, when it was realized that PT sym-
metric evolution dynamics are even possible in entirely passive struc-
tures, where no gain is present at all [37].

In order to make the unique properties of PT symmetry experi-
mentally accessible, it seems apparent that it is necessary to locally
imprint and control the amount of loss. In turn, this addresses the
need for a versatile platform, which allows these kinds of manipu-
lations on an experimental basis. Evanescently coupled waveguides
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2 introduction

produced by fs-LASER direct writing (FLDW) are a suitable candidate
which fulfills exactly these essential requirements.

The door towards fs-LASER-written waveguides and waveguide ar-
rays was pushed wide open in 1996 by the discovery of permanent
glass modifications induced by visible femtosecond LASER irradia-
tion [21]. Indeed, it took only a couple of years until in 2004 the
first experimental demonstration of such a fs-LASER-written wave-
guide system was presented [75]. It is definitely no exaggeration to
claim that this demonstration marked the hour of the birth of one
of the most interesting research platforms of today, which draws its
strength and superiority from the degree of freedom and accessibil-
ity of physical phenomena which were so far experimentally entirely
inaccessible.

The theoretical grounds of evanescently coupled waveguides were
already laid in 1965 within the context of the coupling of optical fibers
[45]; and in 1973, the first experiment was conducted utilizing chan-
nel waveguides, which were fabricated in GaAs by proton implan-
tation [89]. Surprisingly, the research area of evanescently coupled
waveguides remained scarcely investigated until 1988, when interest
in the non-linear dynamics of such systems began to rise [16]. From
today’s perspective, one can only speculate that the lack of interest
in these systems in the late ’70s and early ’80s was due to the ob-
vious experimental limitations and difficulties posed by the specific
semiconductor platform, which also entail a rather slow prototyping.
Maybe it was for these reasons that with the advent of the FLDW tech-
nique [44], the research interest in evanescently coupled waveguide
arrays was newly sparked. Since then, the platform has proven to be
a versatile tool in many aspects.

What makes fs-LASER-written waveguide arrays such a powerful
tool is the fact that the discrete evolution dynamics of light within
an array is analogous to the Schrödinger Equation (SE) in QM. In
this respect, waveguide arrays are since used to emulate and study
quantum-mechanical effects, such as Bloch Oscillations, Zener Tun-
neling, Anderson Localization, or Landau Levels in Graphene [78, 65,
92, 93, 56], just to name a few. In addition, fs-LASER-written wave-
guides constitute a unique physical system of their own and hence
stimulate a lot of research both in the linear as well as the non-linear
regime [17, 55, 29, 103, 66]. On top of this fundamental research inter-
est, the ability to fabricate arbitrary three-dimensional (3D) structures
has promoted waveguide arrays in fused silica as a prime candidate
for quantum computing or microfluidic devices. In total, all these
properties and possible applications render fs-LASER-written wave-
guide arrays as a very promising research platform for future appli-
cations.

It is in exactly this sense that this thesis presents a versatile path
towards PT symmetry in fs-LASER-written waveguide lattices. This
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work contains a thorough theoretical and experimental investigation
of a way to implement well defined losses in fs-LASER-written wave-
guides. Also it comprises the first experimental realization of a PT
symmetric structure on this platform. In addition, a new coupled
mode theory for dissipative waveguides is presented and experimen-
tally verified.

This context is structured as follows. After a short review of the
current state of the art in chapter 2, in chapter 3 sinusoidally bent
waveguides are presented as a novel way to introduce well control-
lable losses in waveguide lattices. The main question tackled in this
chapter is whether bending losses may lead to an overall exponen-
tial decay of the waveguide’s mode amplitude and how this behavior
depends on the system parameters. Surprisingly, even though bend-
ing losses of waveguides have been studied intensively in areas such
as optical fibers or integrated photonics, this investigation is the first
to deal with periodically bent guides; hence evolution dynamics are
found which strongly deviate from those of isolated bends.

The findings of chapter 3 pave the way for the subsequent investi-
gations presented in chapters 4 and 5, where dissipative systems are
theoretically considered and sinusoidally bent waveguides are experi-
mentally applied. Chapter 4 presents the first experimental investiga-
tion of PT symmetry in fs-LASER-written waveguides. A PT invari-
ant structure is investigated in the so-called broken PT symmetric
regime and a mobility transition from ballistic to diffusive transport
is found. This finding is remarkable, as such dynamics are impossible
in ordered, one-dimensional (1D) hermitian systems.

Finally, chapter 5 revisits the well-known coupled mode theory
governing the light evolution in discrete lattices. A new theory that
covers the peculiarities of dissipative lattices is presented and investi-
gated based on an experimental sample system.

All in all, with its three main parts, this thesis aims at laying the
theoretical and experimental foundation for handling PT symmetric
or, more generally, dissipative structures in fs-LASER-written wave-
guide arrays.





2
F U N D A M E N TA L S & S TAT E O F T H E A RT

2.1 theory of optical waveguiding

In this section the foundation of optical waveguiding will be laid.
The summary of the most important equations, concepts and no-
tions will start from the fundamental equations of Electrodynamics,
namely Maxwell’s Equations. This early entry point is important,
as it is essential for this thesis to understand which assumptions and
approximations are usually made and how things differ if one consid-
ers dissipative systems instead of their usually lossless counterparts.
Along these lines, within this section, certain terms, such as wave-
guide or Eigen-mode, will be defined for usage throughout the entire
thesis. This is necessary, as for a number of terms one can usually
find deviating notions within the literature. It is important to state,
that it is not the intention of this section to rate any deviating defini-
tion; this section is merely supposed to serve as a basis for a common
vocabulary.

2.1.1 From Maxwell’s Equations to the Paraxial Helmholtz Equation

The dynamics of optical waveguides as well as all electromagnetic
phenomena are governed by Maxwell’s Equations. In the absence of
free electric charges and free currents, the medium assisted equations
can be expressed as

~∇~D (~r, ω) = 0
~∇~B (~r, ω) = 0

~∇× ~E (~r, ω) = iω~B (~r, ω)

~∇× ~H (~r, ω) = −iω~D (~r, ω)

in the frequency domain. Within the context of this thesis only sys-
tems with a linear, isotropic optical response are considered, hence
the field components can be connected in the following way

~D (~r, ω) = ε0ε (~r, ω) ~E (~r, ω)

~B (~r, ω) = µ0 ~H (~r, ω) .

5



6 fundamentals & state of the art

Moreover, within the physical system under consideration the elec-
tric permittivity is assumed to be slowly varying, which means that
~∇~D = ε0ε~∇~E + ε0~E~∇ε ≈ ε0ε~∇~E and hence also the electric field is
divergence free, i.e. ~∇~E = 0. As an immediate consequence one can
derive the Helmholtz Equation for the electric field components, that
is

~∇2~E + ω2

c2 ε~E = 0 ,

whereas between free space permittivity, free space permeability and
the speed of light the relation ε0µ0c2 = 1 holds. Up to this point the
set of Maxwell’s Equations was simplified to the Helmholtz Equation
only by making assumptions about the underlying dielectric medium.
In order to derive the Paraxial Helmholtz Equation (PHE) assump-
tions about the electric field have to be made as well. The first as-
sumption is that in Cartesian coordinates the three electric field com-
ponents are decoupled and it is sufficient to consider only one com-
ponent, for instance subsequently it will be assumed that the electric
field is linearly polarized, i.e. ~E (~r, ω) = E (~r, ω)~ey. From that it
follows that one can move from a vectorial to a scalar Helmholtz
Equation for the field component E (~r, ω), keeping in mind that the
field components still have to obey the divergence condition ~∇~E = 0,
hence they are coupled. The last step towards the PHE is the as-
sumption that the field component is comprised of a quickly oscillat-
ing term eikz and an envelope A (~r, ω) which is slowly varying with
respect to the z-direction, such that E (~r, ω) = A (~r, ω) eikz whereas
∂2

zA ≈ 0. With that one arrives at the PHE for the slowly varying
amplitude A, which reads

i2k∂zA = −
(

∂2
x + ∂2

y

)
A+

(
k2 − ω2

c2 ε
)
A . (2.1)

Additionally, one can define k := k0n0 with k2
0 := ω2/c2 and n (~r, ω) =

n0 + δn (~r, ω) :=
√

ε (~r, ω), where it is assumed that the refractive in-
dex n is only slightly varying around the position-independent bulk
index n0, hence it is assumed that δn2 ≈ 0. For mathematical con-
venience, one can introduce normalized coordinates with x = x0ξ,
y = x0η, and z = z0ζ with z0 = 1/k0 and x0 = 1/k0

√
2n0. Then the PHE

can be written as

i∂ζA = −
(

∂2
ξ + ∂2

η

)
A− δnA . (2.2)

The PHE (2.2) is mathematically equivalent to the SE in QM. While
the SE describes the temporal evolution of the probability amplitude
of a quantum-mechanical state, eq. (2.2) describes the spatial prop-
agation of the field envelope A along the ζ-direction and inside a
weak refractive index landscape given by δn. The direction along the
ζ-coordinate is called propagation direction or longitudinal direction,
whereas the coordinate plane of ζ = const. is called the transverse
plane. In subsequent sections, all considerations will be confined to
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only one transverse dimension, i.e. it will be assumed that A is inde-
pendent of the transverse coordinate η.

2.1.2 Free Space Propagation

In the absence of a refractive index profile, that is δn = 0, the prop-
agation dynamics of certain fields can be expressed analytically. A
special class of solutions to eq. (2.2) is the class of plane waves; the
Ansatz A = ei(αξ−βζ) yields the dispersion relation for these paraxial
plane waves

β = α2.

Note that this dispersion relation can also be derived by inserting the
plane wave Ansatz into the non-paraxial Helmholtz Equation and
expressing the resulting dispersion relation as a taylor expansion, i.e.
β =

√
k2 − α2 ≈ k − 1/2kα2 + O

(
α4). This derivation provides an

intuitive picture of paraxiality.
Plane waves are so-called Eigen-modes of free space, meaning their

spatial profile does not change during propagation. Another special
class of solutions to eq. (2.2) are so-called Gaussian Beams, whose
transverse profile is characterized by the Gaussian Shape

A0 (ξ) = A (ξ, ζ = 0) = e
− ξ2

w2
0 eiα0ξ

and their propagation dynamics can be expressed as

A (ξ, ζ) =
1√

1 + i ζ
ζ0

e
− ω2

0
4

α2
0(

1−i
ζ0
ζ

)
e
− ξ2

ω2
0

(
1+i ζ

ζ0

)
e

i α0
1+i ζ

ζ0

ξ

(2.3)

where ζ0 = w2
0/4. In contrast to plane waves, Gaussian Beams are

not Eigen-modes of eq. (2.2) as their beam profile changes during
propagation. To be precise, the shape of Gaussian Beams remains
Gaussian, whereas their width increases with increasing propagation
distance. An example of a propagating Gaussian Beam is shown in
fig. 2.1.

2.1.3 One-Dimensional Waveguide

Due to the analogy between SE and PHE, it is convenient to borrow
concepts from QM, where for instance the evolution dynamics of a
wave packet within a simple box potential are well known. Adopting
this knowledge, one can consider a refractive index profile of

δn =

δnmax ; |ξ| < w

0 ; else
(2.4)
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Figure 2.1: Intensity |A|2 of a propagating Gaussian Beam with w0 = 3 and
α0 = 0.5.

which shows a box profile with respect to the ξ-direction, but is in-
variant with respect to the ζ-direction. For this type of potential one
can easily find a solution to eq. (2.2) in the form of

A = Φ (ξ) e−iβζ (2.5)

with a transverse profile given by

Φ (ξ) =


cos (κ1w) eκ2(ξ+w) ; ξ < −w

cos (κ1ξ) ; |ξ| < w

cos (κ1w) e−κ2(ξ−w) ; ξ > w

(2.6)

where κ1 =
√

δnmax + β , κ2 =
√
−β and the dispersion relation reads

κ1 sin (κ1w) = κ2 cos (κ1w) . (2.7)

In contrast to the dispersion relation of plane waves, which yields
a continuous set of modes, this condition determines a discrete set
of values for the propagation constant β. Equivalent to plane waves,
eq. (2.5) resembles an Eigen-mode of the given potential, as the trans-
verse beam profile does not change during propagation. In addition
to being an Eigen-mode eq. (2.5) is a bound mode, which means that
its transverse profile is square-integrable and confined to a region
around the potential. Figure 2.2 shows an example of a refractive in-
dex profile δn and the corresponding transverse mode profile Φ (ξ).
Subsequently, a refractive index profile which supports bound modes
will be referred to as a waveguide. Moreover, only waveguides sup-
porting a single bound mode will be considered.

2.2 coupled mode theory of hermitian systems

2.2.1 Coupled Mode Equations

Consider a refractive index landscape δn which consists of a col-
lection of well-separated waveguides δnj, each supporting a single
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Figure 2.2: Transverse mode and refractive index profile for δnmax = 1 and
w = 2.

bound mode with a transverse profile Φj and a propagation constant
β j. Assuming that the total field of such a structure is given by the
superposition of these modes with ζ-dependent amplitudes ãj, i.e.

A = ∑
j

ãj (ζ)Φj (ξ) e−iβ jζ ,

from eq. (2.2) one can derive the following set of coupled equations

i ∑
j

˙̃aj
〈
Φl |Φj

〉
e−iβ jlζ = ∑

j,m 6=j
ãj
〈
Φl |δnm|Φj

〉
e−iβ jlζ ,

where
〈
Φj|Φl

〉
=
∫

Φ∗j Φldξ ,
〈
Φj |δnl |Φm

〉
=
∫

Φ∗j δnlΦmdξ, and
β jl = β j − βl . In a first order approximation, one can assume that〈
Φj|Φl

〉
= δjl and

〈
Φj |δnl |Φm

〉
= δjl

(
Cj+δm(j+1) + Cj−δm(j−1)

)
, which

reflects the fact that the modes are assumed to be orthogonal and that
only modes of neighboring waveguides couple with each other. This
assumption is valid if the waveguides are far enough apart, such that
only a small portion of the evanescent part of the mode field reaches
the region of the neighboring waveguide. The resulting evolution
equation for the amplitudes reads

i ˙̃aj = Cj+ ãj+1e−iβ(j+1)jζ + Cj− ãj−1e−iβ(j−1)jζ ,

which is almost the desired coupled mode equation except for the
occurring exponential terms. Fortunately, these can be eliminated by
setting aj = ãje−iγjζ and γj = γj−1 + β(j−1)j. Moreover, from energy

conservation, i.e. ∑
j

∂ζ

∣∣aj
∣∣2 = 0, it follows that the coupling constants

Cj+ and Cj− are not independent of each other, but rather fulfill the
symmetry relation Cj+ = C(j+1)− =: Cj ∈ R. This leads to the coupled
mode equation

iȧj = γjaj + Cjaj+1 + Cj−1aj−1. (2.8)
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Note that eq. (2.8) represents the simplest case of a coupled mode
equation; more elaborate versions can be obtained by taking into ac-
count coupling between arbitrary guides

[〈
Φj
∣∣δnj+l

∣∣Φj+l
〉
6= 0

]
, self-

coupling
[〈

Φj
∣∣δnj+l

∣∣Φj
〉
6= 0

]
, or non-orthogonality of the modes[〈

Φj|Φj+l
〉
6= 0

]
.

2.2.2 Directional Coupler

In order to have an intuitive understanding of the evolution dynam-
ics described by eq. (2.8) a system of just two waveguides shall be
considered. This setup is also often referred to as directional coupler.
The two evolution equations of a none-detuned directional coupler,
for which β12 = 0, are

iȧ1 = C1a2

iȧ2 = C1a1

with the solution
a1 = cos (C1ζ)

a2 = i sin (C1ζ)

for the specific initial conditions a1 (0) = 1 and a2 (0) = 0. The evolu-

1.0

0.5

0.0
10.50 1.5 2

ζ/Lc

|a
i|2
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rb

.u
.]

|a2|2

|a1|2

Figure 2.3: Intensities |a1|2 and |a2|2 of a symmetric directional coupler.

tion of the mode amplitudes is graphically depicted in fig. 2.3, where
one can see that the net intensity periodically oscillates between both
waveguides. The period of one oscillation is called coupling length
Lc and is related to the coupling constant via C1Lc = 2π. Due to
this relation, simple directional couplers are used experimentally to
retrieve C1 from measurements of Lc.

2.2.3 Homogeneous Lattice

Another important example is the infinite homogeneous lattice with
its evolution equations

iȧj = C
(
aj+1 + aj−1

)
. (2.9)
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If one assumes that initially only the zeroth waveguide is excited,
that is aj (0) = δ0j, and the lattice extends to infinity in both direc-
tions, one can easily solve for the ζ-dependent amplitudes. From
eq. (2.9) it follows that the evolution pattern is symmetric, hence
aj = a−j and specifically iȧ0 = 2Ca1. If one compares this to well
known relations for Bessel Functions, i.e. Jl (ξ) = (−1)l J−l (ξ) and
2∂ξ Jl (ξ) = Jl−1 (ξ)− Jl (ξ), one finds

aj (ζ) = ij Jj (2Cζ) , (2.10)

which shows that the evolution dynamics of a homogeneous wave-
guide lattice can be explicitly expressed in terms of Bessel Functions.
Figure 2.4 shows the characteristic propagation pattern for such a
single site excitation and C = 1.
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Figure 2.4: Evolution of a single site excitation of a homogeneous lattice
with C = 1.

Another important relation concerns the variance of the wave packet,
generally defined by σ (ζ) =

∫
A∗ (ξ, ζ) ξ2A (ξ, ζ)dξ. In a discrete

waveguide array this reduces to σ (ζ) = ∑
j

j2
∣∣aj
∣∣2 and in the case of a

homogeneous lattice it can even be expressed analytically, i.e.

σ (ζ) = 2C2ζ2,

where the relation ∑
l=1

l2 J2
l (ξ) = ξ2/4 , which follows from [35] p.941

WA 47(1) for n = 1, was used. This is a very important finding, as
it shows that the propagation dynamics of this specific lattice are bal-
listic, whereas the definition of ballistic propagation states that the
variance of the wave packet grows quadratically with ζ. In the litera-
ture three main types of propagation dynamics or transport regimes
are known, namely localization, for which the variance of the wave
packet is constant with respect to ζ, diffusive transport, where the
variance grows linearly with ζ, and the aforementioned ballistic trans-
port [4, 65, 67, 92, 94, 93]. For a 1D hermitian waveguide array one
can even make the following general statement.
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For any ordered lattice the propagation regime is ballistic.

That is, if there is no disorder in the system, for instance a random dis-
tribution of Cj or γj, the transport regime will be of ballistic nature. It
is important to note, that the transport regime is a fundamental prop-
erty of the underlying lattice itself and is completely independent of
the specific excitation.

Before closing the discussion about the homogeneous lattice, one
should take a look at its Eigen-states and the dispersion relation.
From Fourier theory, one finds that any arbitrary initial distribution
aj (0) can be expressed through its spectrum f0 (ϕ) in the form of

aj (0) = 1
2π

π∫
−π

f0 (ϕ) e−ijϕdϕ. Further, it follows that eq. (2.9) can be

transfered to Fourier-space reading i∂ζ f (ϕ, ζ) = 2C cos (ϕ) f (ϕ, ζ).
Consequentially, the evolution of the spectral components f (ϕ, ζ) is
given by an exponential dependence, i.e. f (ϕ, ζ) = f0 (ϕ) e−i2C cos(ϕ)ζ .
As a conclusion, one can easily see that these spectral components
represent Eigen-modes in the form of

aj (ϕ, ζ) = e−i(jϕ+βζ)

with the dispersion relation

β = 2C cos (ϕ) .

It can be noted that these modes are not localized as they are a dis-
crete version of plane waves. Moreover, the set of modes is continu-
ous as −π ≤ ϕ ≤ π.

2.3 numerical and experimental methods

2.3.1 Numerical Methods - Perfectly Matched Layers

In practically all fields of physics numerics are used to support ei-
ther analytical calculations or experimental work. This is also true
for waveguides produced by FLDW. Usually and especially in the
case of 1D lattices the numerical effort is quite low compared to other
field such as numerical relativistics and numerical tasks can well be
accomplished using standard desktop machines. In the simplest case
one can take eq. (2.8) as a basis of numerical investigation. In this
situation one does not even have to take care of a spatial discretiza-
tion scheme as the equation is already discrete in space. Moreover,
if interested in a finite array, as found in every experiment, also nu-
merical boundary conditions are of no concern. Under more evolved
circumstances, for instance when probing the validity of eq. (2.8), one
usually takes eq. (2.2) as a starting point of numerical investigation.
While one does have to take care of the spatial discretization one can
still disregard boundary conditions in most standard use cases. This
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is true because if one ensures that one or more waveguides are ex-
cited with their respective Eigen-modes and the array is sufficiently
far away from the numerical boundary, then the amount of light ra-
diated away from the array is negligibly small and can mostly be
neglected. When investigating lattices where waveguides are bent
or segmented the light radiated away from the guides can usually
not be neglected. In this case, the standard approach is to insert an
additional absorbing medium, i.e. an imaginary potential, at the nu-
merical boundaries in order to absorb light that hits the boundaries
and prevent it from being reflected back into the waveguide region.
In fig. 2.5 (a), an additional imaginary potential that grows quadrat-
ically outside the waveguide region is depicted. Even though the
potential is only gradually increasing, the drawback of this type of
boundary modification is that it is not entirely reflectionless. In fact,
there is no complex potential which is reflectionless for arbitrary an-
gles of incidence. Usually in most applications this is no obstacle as
one is interested in systems where most of the light remains within
the waveguide lattice. In this thesis, however, the situation is differ-
ent. The system under consideration is designed such that after a
certain propagation distance most of the light which is initially lo-
calized inside the waveguide is radiated away and the light intensity
inside the waveguide region should tend to zero. As a consequence
any reflections from numerical boundaries are crucial to the accuracy
and validity of simulations. One way to minimize reflections from nu-
merical boundaries is to utilize perfectly matched layers (PML). The
idea behind this type of boundary modification is not to introduce an
additional potential, but rather to extend the coordinate space into
the complex domain. This Ansatz is possible since a solution to the
PHE is an analytic function of its coordinates. Hence a solution for
real coordinates is also valid for contours within the complex plane.
If one considers, for instance, a plane wave A = ei(αξ ′−βζ) along a
contour ξ ′ = ξ + iΘ (ξ) as shown in fig. 2.5 (b) where the complex
coordinate ξ ′ is given in terms of the real variable ξ, one finds

A = eiαξ−αΘ(ξ)−βζ (2.11)

in terms of the real coordinate ξ. For positive α and an increasing
function Θ (ξ) this solution is decaying as ξ increases. That means,
the solution behaves like the solution in an absorbing medium. How-
ever, the important difference is that in the region where Θ (ξ) = 0
the solution coincides with a plane wave as found for real coordinates,
which means there is no back reflection from the absorbing region.
As a matter of fact, the complex contour results in a reflectionless ab-
sorbing medium. As stated above the analytically continued solution
obeys the PHE. In order to avoid solving the PHE along a complex
contour it seems more convenient to find a transformed equation in
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Figure 2.5: (a) Illustration of absorbing boundary conditions. An additional
imaginary part is added to the potential at the edge of the com-
putational cell. (b) In contrast to absorbing boundary condi-
tions, PML rely on an analytic continuation of the field along
a suitable trajectory in the complex plane. Along the contour
the complex coordinate ξ ′ is given in terms of a real variable as
ξ ′ = ξ + iΘ (ξ).

terms of the real coordinates. This is easily done by replacing the
derivatives according to

∂ξ ′ =
1

1 + iΘξ
∂ξ ,

where Θξ = ∂Θ
∂ξ . As a consequence, with additional PML the 1D PHE

can be written as

i∂ζA = −
(

vvξ∂ξ + v2∂2
ξ

)
A− δnA , (2.12)

where v =
(
1 + iΘξ

)−1 and vξ = ∂v
∂ξ .

Unfortunately, PML are only perfectly reflectionless for the exact
PHE. As soon as the equation is being discretized, numerical reflec-
tions occur. Nontheless, numerical reflections are usually very small
and can be made arbitrarily small by the right choice of parameters.
In fact, this is also true for non-PML absorbers. However, the advan-
tage of PML is that a much smaller layer thickness is needed, which
in turn might save a lot of computational power. In some cases a PML
thickness of half a wavelength or thinner might be sufficient. As it
turns out, this is not the case in this investigation. One can already
see from eq. (2.11) that the absorption within the PML depends on the
angle of incidence, i.e. α in eq. (2.11), and since the light that is being
radiated away from the waveguide hits numerical boundaries under
very small angles quite thick PML are needed within the context of
this thesis.

In order to verify the effectiveness of the PML, the numerical scheme
is being tested with the known solution of Gaussian Beams, i.e. eq.
(2.3), and the numerical reflection of these beams launched under
different angles of incidence is measured. Figure (2.6) shows two
cases where a Gaussian Beam is being launched within the computa-
tional cell. The top graph in both subfigures is equal to the absolute
difference between the numerical and analytical value at ξ = 0, i.e.
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∆ = |Anum (ξ = 0, ζ)−Aana (ξ = 0, ζ)|. For illustration purposes the
coordinate line ξ = 0 is drawn as a gray dashed line on top of the
amplitude of the Gaussian Beam. The analysis suggests that the PML
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Figure 2.6: (a) Bottom: Simulated light evolution of a Gaussian Beam with
an initial width of w0 = 6 µm and a tilt angle of α0 = 0. Top: De-
viation between simulated amplitude of Gaussian Beam at ξ = 0
and analytical solution as given by eq. (2.3). (b) Equivalent to
(a) the evolution of a Gaussian Beam with α0 = 0.015 is depicted
and compared to the analytical formula.

yield a good reflectionless absorption of the incident light. Yet, it
shall be stated that in contrast to statements found in the literature
the PML thickness is about 32 wavelengths. This is necessary because
of the large aspect ratio of the system under investigation and the fact
that light hits the boundaries under very small grazing angles. As it
follows from eq. (2.11) for decreasing α the absorption within the
PML decreases as well. Accordingly light that enters the PML under
small angles reenters the computational cell after a certain propaga-
tion distance if the PML are not sufficiently thick. In turn, for a given
PML thickness, this fact yields an upper bound for the longitudinal
dimension of the computational cell.

2.3.2 Fabrication of Optical Waveguides

Within the recent past, arrays of evanescently coupled waveguides
have attracted a lot of research interest. As a consequence a num-
ber of platforms to implement evanescently coupled waveguides have
been established; these include AlGaAs heterostructures, LiNb wafers,
or optical fibers, to name just a few [90, 102, 32, 104, 74]. Through-
out this thesis optical waveguides will be generated in the bulk of
fused silica using the technique of FLDW[44]. Since its discovery in
1996 [21], this technique’s potential of creating an arbitrary 3D index
profile has been harnessed in a large number of complex photonic
systems in fused silica [95]. The technique itself relies on nonlin-
ear processes inside the glass medium which cause a permanent re-
structuring and an increase of the refractive index[44]. In contrast
to other nano-structuring techniques, FLDW is not limited to fused
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silica [70], but its applicability extends over a large variety of glasses
[84, 28, 105], crystalline materials such as silicon [68] and lithium nio-
bate [13, 101, 39] as well as polymers [46].

The experimental structures investigated in this thesis were gener-
ated using a commercially available Amplitude fiber LASER system.
For the inscription, the LASER pulses at a wavelength of 532 nm, a
pulse length of 300 fs (full width at half maximum), a repetition rate
of 200 kHz, and an energy of approximately 250 nJ are tightly focused
into fused silica (Corning HPFS 7980) using a 20× microscope objec-
tive (NA= 0.35). As the focal spot has a diameter of a few µm light
intensities are very high and field ionization as well as multiphoton
absorption processes occur. Together with onsetting avalanche ion-
ization, recombination, and restructuring processes, this leads to a
permanent modification of the material [14, 15]. In order to fabricate
optical waveguides the silica wafer is moved with respect to the fo-
cal spot using a Computer controlled positioning system (Aerotech).
The velocity of the wafer movement, also termed writing velocity,
is used to tune the propagation constants of the modes of the indi-
vidual waveguides. This can be achieved since the writing velocity
determines the amount of energy deposited in the glass and conse-
quentially the refractive index increase. The larger the writing veloc-
ity is the less energy gets deposited; hence the smaller the refractive
index increase of the modified region. A typical writing velocity is
100 mm/min which results in a refractive index increase on the order
of δn = 5× 10−4.

Figure 2.7 (b) displays that the cross section of the resulting wave-
guides is oval with dimensions of approximately 10× 4 mm2. This
profile was calculated by numerical inversion of the Helmholtz Equa-
tion from the mode profile shown in fig. 2.7 (c) [59]. As a consequence
of the oval cross section, the waveguides are not polarization degen-
erate but rather support two linearly polarized Eigen-modes. Within
the further analysis of this thesis, the coupling of these polarization
modes in arrays of waveguides can be neglected as it is usually very
small. For that reason subsequently the waveguides will still be re-
ferred to as single mode. However, it is interesting to note that there
exist techniques to induce a significant coupling between both polar-
izations. This is used for example when waveguide arrays are utilized
as quantum gates.

2.3.3 Measurement Technique - Fluorescence Measurements

Experiments were conducted utilizing a fluorescence measurement
technique [96, 97, 40, 65]. This techniques builds on the fact that non-
bridging oxygen hole color centers are created inside the waveguide
region during the FLDW process. For this to occur fused silica with a
high content of hydroxide is necessarry. Illuminating the waveguides
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(a) (b)

(c)

Figure 2.7: (a) Scheme of the FLDW process. The LASER is focused inside
the glass sample which is continuously moved in order to fab-
ricate elongated waveguides. (b) Transverse cross-section of a
fs-LASER-written waveguide. (c) Transverse cross-section of the
mode supported by the waveguide shown in (b).

with a HeNe-LASER at a wavelength of 633 nm results in an excitation
of these color centers and fluorescence at a wavelength of 650 nm.
While the excitation light is being guided along the waveguides the
fluorescence is being emited isotropically and can be observed with
a CCD-camera from above the glass sample, as depicted in fig. 2.8
(a). Figure 2.8 (b) contains a fluorescence image as observed with a
CCD-camera exemplarily given for a homogeneous lattice governed
by eq. 2.9 and a single excited waveguide.

The fluorescence measurement technique provides an image of the
light evolution inside a waveguide array. In particular, these images
also contain transverse information, i.e. the transverse mode profile
of the waveguides. However, throughout this thesis only the longi-
tudinally resolved amplitude of the waveguide modes is of interest.
In this regard, a technique to extract the waveguide amplitudes and
focus on small signal to noise ratios in the underlying fluorescence
images is discussed in the next section.

2.3.4 Post Processing of Fluorescence Images

In order to extract data from fluorescence images, all measured im-
ages are post processed numerically. In the following, the post pro-
cessing algorithm to extract amplitude data from the measurements
is being explained exemplarily.
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(a) (b)

Figure 2.8: (a) Fluorescence measurement setup. Glass chip with
waveguides is being illuminated with a HeNe-LASER and a
10×microscope objective. The CCD-camera mounted on a trans-
lation stage scans along the sample. The single images are
stitched together at the PC after the scanning process. (b) Flu-
orescence image of a ballistic array for a single waveguide exci-
tation.

Figure 2.9 (a) shows the raw fluorescence image. The image con-
tains two main sources of errors, which can be minimized. The first
error is due to misalignment of the sample, especially rotation. For
this reason, the first operation which is performed is a rotation of the
raw data. The best rotation angle is found by finding

max
α

[
max

j
∑

l
Ijl (α)

]

where Ijl is the intensity at row j and column l and α is the rotation
angle. Figure 2.9 (b) shows the maxium column sum of (a) as a func-
tion of α. Here, the maximum is found at α0 = −0.104, showing that
the raw data was rotated by a slight angle. Figure 2.9 (c) depicts the
re-rotated data.

The second major error source is noise. In order to reduce the noise,
the image is being filtered, both transverse as well as longitudinally.
As a transverse filter the shape of the transverse mode is being used.
To approximate this shape, the aligned image is averaged over all
columns. From this, the normalized mode profile can be retrieved,
as shown in fig. 2.9 (d). Moreover, the averaging procedure yields
the central position of the waveguide as well - corresponding to row
j0 in (c). Figure 2.9 (e) shows the filtered image, where fig. 2.9 (d)
was used as a transverse filter. The mode amplitude, shown in fig.
2.9 (f), is finally retrieved from (e) by extracting the row j0 from (e).
To estimate the noise level in (e), the average signal outside of the
waveguide region is calculated. This value is finally subtracted from
(f).
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Figure 2.9: (a) Raw fluorescence image. (b) Maximum row sum as a func-
tion of rotation angle. (c) Rotated image, where the rotation an-
gle is obtained from (b). (d) approximated mode profile. Ob-
tained by summing over the rows of (c). (e) Filtered image,
where fig. (c) was horizontally averaged and vertically filtered
using the normalized profile given by fig. (d). (f) Mode ampli-
tude extracted from (e).

2.4 PT symmetry

2.4.1 PT Symmetric Quantum Mechanics

One of the axioms of standard QM states that the evolution of a quan-
tum system is described by a hermitian Hamiltonian [18]. In contrast
to other assumptions about QM, like causality, conservation of prob-
ability, or real energy values, the assumption of hermiticity seems
purely mathematical and less physically motivated. It is true that the
choice of hermitian operators in QM yields a lot of nice properties like
real Eigen-values or a unitary evolution; from an axiomatic point of
view however one has to acknowledge that hermiticity is not a physi-
cal requirement but rather a mathematical convenience. In 1998, with
their seminal work Bender and colleagues reignited the discussion
about PT symmetry in physics [7]. In this context, they argued that
the condition of a Hamiltonian being hermitian is overly restrictive



20 fundamentals & state of the art

and that a consistent quantum theory can be build on other classes
of operators. For instance, so-called PT symmetric QM can be for-
mulated by replacing the mathematical condition of hermiticity by
the additional physical assumption that the evolution of a quantum
system looks the same after flipping space and time. Mathematically,
this leads to the condition that a system’s Hamiltonian H commutes
with the parity-time-reversal operator (PT ), i.e.

[H,PT ] = 0. (2.13)

In order to lay the ground work for PT symmetric optics, subse-
quently, the fundamental properties of PT symmetric QM will be
summarized. It will be discussed how PT symmetric QM compares
to standard QM; as a quantum theory can only be considered a valid
theory if it ensures at least real Eigen-values of observables and a
unitary evolution of the quantum system.

To investigate these specific requirements some basic properties of
the PT operator are needed. As the PT operator is a product of
the parity operator P and the time-reversal operator T , one plausible
physical property is that (PT )2 = 1. This simply means that flip-
ping space and time twice in a row reproduces the initial situation.
From the structure of the SE it is apparent that a proper definition
of the time-reversal operator is given by the complex conjugation, i.e.
T AT = A∗ and T |Ψ〉 = |Ψ∗〉 [10]. The parity operator P can simply
be defined in position space as P |x〉 = |−x〉 [9].

These basic properties lead to the statement that if the PT opera-
tor and the Hamiltonian H share a common set of Eigen-vectors, the
Eigen-values E of the Hamiltonian are real [8]. This is can simply be
shown by applying PT to the Eigen-value equation H |Ψ〉 = E |Ψ〉
and using eq. (2.13) on the left hand side. One finds E = E∗ stat-
ing that the energy Eigen-values must be real. Before continuing
the discussion about the unitary evolution, the nomenclature used
throughout this thesis needs to be commented. Note that eq. (2.13)
is not a sufficient condition for the system to be PT symmetric, it is
merely the condition for the Hamiltonian to be PT invariant. The
system is said to be PT symmetric if and only if H and PT share
a common set of Eigen-vectors [22]. From linear algebra it is known
that the commutation of two linear operators is equivalent to them
sharing a common set of Eigen-vectors. However, from its definition
it follows that T and also PT are anti-linear and hence the aforemen-
tioned equivalence is not valid. That means that one has to check the
symmetry of the Eigen-vectors in order to make a statement about
the symmetry of the system. Throughout this thesis, a Hamiltonian
is said to be PT invariant if eq. (2.13) is satisfied and the System is
said to be PT symmetric if H and PT share a common set of Eigen-
vectors. As stated above, it follows that the Hamiltonian of a PT
symmetric system has real Eigen-values.
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Regarding the unitary evolution of the quantum system, it is evi-
dent that ∂t 〈Ψ|Ψ〉 6= 0 for non-hermitian Hamiltonians1 which means
that the evolution is not unitary [83]. However, it turns out that the
unitary evolution can be restored by introducing a new inner product.
Already by using the so-called PT inner product, which is defined as
〈Ψ|Φ〉P =

∫
Ψ∗ (−x)Φ (x)dx, one finds ∂t 〈Ψ|Ψ〉P = 0 [9]. Yet this

inner product yields states with negative norm and hence the Hilbert
space metric associated with this particular inner product is indefinite
[63]. One could try to formulate a quantum theory by insisting that
physical states must have positive norm, however this would lead to
QM on a nonlinear state space and would still leave many open in-
terpretational questions [9]. The resolution, accepted throughout the
literature, is the introduction of the CPT inner product which en-
sures a unitary evolution and a positive norm [9, 62]. The CPT inner
product makes use of the linear operator C which is the observable
that represents the measurement of the signature of the norm within
the PT inner product of a state, as such it is also dependent on the
Hamiltonian itself. As a consequence in PT symmetric QM the in-
teresting situation arises that each Hamiltonian comes with its own
inner product.

When PT symmetry was first introduced in quest of a physical
alternative to the mathematical axiom of hermiticity, it was quickly
realized that it allows for a different class of Hamiltonians [10]. The
first Hamiltonian which was considered in the original paper by Ben-
der and colleagues, namely

H = p2 − x2 (ix)m , (2.14)

extended2 the harmonic oscillator into the complex plane [7]. It was
conjectured and later proven in ref. [24] that this class of systems is
PT symmetric for all m ≥ 0. At a value of m = 0 the PT symme-
try of these systems breaks spontaneously and for m < 0 the Eigen-
values of H are complex. In this regime the Hamiltonian is still PT
invariant whereas H and PT do not share a common set of Eigen-
vectors anymore.

Even though many complex systems exhibiting an imaginary exter-
nal potential can be observed in science, including Hamiltonians de-
scribing delocalization transitions in condensed matter systems [38]
or even models stemming from population biology [69], from a fun-
damental point of view it seems unfeasible to study the fundamental

1 If H is not hermitian, then H 6= H† and hence ∂t 〈Ψ|Ψ〉 = 〈Ψ| (∂t |Ψ〉) +
(∂t 〈Ψ|) |Ψ〉 = − 〈Ψ| iH |Ψ〉+ 〈Ψ| iH† |Ψ〉 = −i 〈Ψ|

(
H − H†) |Ψ〉 6= 0.

2 Even though PT symmetric QM allows for accessing Hamiltonians, which are pro-
hibited in hermitian QM, it cannot be called a generalization of standard QM. Dur-
ing the scientific discussion inspired by PT symmetry a generalization of hermitian
QM was formulated [63]. Within this general pseudo-hermitian QM, both hermi-
tian and PT symmetric QM are specific realizations. Within this context, a PT
symmetric system could be considered (pseudo)-hermitian regarding the CPT in-
ner product.
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properties and behavior of systems such as the one in eq. (2.14) on an
experimental basis in the context of QM. As will be discussed in the
next section, the field of optics yields the perfect playground for such
investigations as arbitrary complex potentials are experimentally ac-
cessible at a much smaller expense.

2.4.2 PT Symmetric Optics

As stated in section 2.1.1, the PHE (2.2) is mathematically equivalent
to the SE. From this it follows that the concept of PT symmetry can
be carried over to paraxial optics in a straight forward fashion. In
2007, this was first realized by El-Ganainy et al. in ref. [30] where
they developed a formalism suitable for describing coupled optical
PT symmetric systems and thus laid the theoretical ground work for
PT symmetric optics. The authors stated that as a direct consequence
of the symmetry, the optical potential δn in eq. (2.2) must satisfy

δn (ξ) = δn∗ (−ξ) ,

that is it must be comprised of a symmetric index profile and an an-
tisymmetric gain/loss profile. The first experimental realizations of
simple PT systems were reported in Refs. [37, 82] where the au-
thors considered simple PT dimer structures and investigated the
beam dynamics. Already these kinds of synthetic PT materials were
shown to exhibit unique characteristics such as power oscillations,
loss induced optical transparency, etc. Regarding the fact that even
such simple PT cells can exhibit unconventional features, the nat-
ural follow-up question was what novel and interesting properties
can be expected from more complex structures, like PT symmet-
ric lattices. This question was first addressed in ref. [58] and even
extended to the non-linear regime in ref. [64]. Originating from
these works, many unique characteristics of PT symmetric optical
systems have been theoretically predicted as well as experimentally
observed [56, 57, 11, 98, 26, 79, 1]. All these findings have only been
possible because PT optics differs in one particular and important
aspect from PT symmetric QM. Considering this, one could even
argue that it is in this sense where PT symmetric optics is even
more interesting than PT symmetric QM. The property concerned
is that PT symmetric QM comes with a Hamiltonian-dependent in-
ner product, whereas in PT symmetric optics this is not the case.
While in QM the measurement process itself and hence the inner
product cannot be “observed” experimentally the situation is differ-
ent in optics. In optics one measures the intensity I, which corre-
sponds to the absolute square of the slowly varying envelope A, i.e.
I (x) ∼ |A (x)|2 = A∗ (x)A (x). From that, one can readily con-
clude that the only meaningful inner product in optics is given by
the standard inner product, i.e. 〈A|A′〉 =

∫
A∗ (x)A′ (x)dx, hence
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one cannot simply chose the appropriate inner product correspond-
ing to PT symmetry. As an immediate consequence one finds that
Eigen-vectors of PT symmetric Hamiltonians are not orthogonal. In
the same fashion, other properties that distinguish PT symmetric op-
tical systems from corresponding PT symmetric QM systems follow
from the presence of a predefined inner product in optics. And it is
in this sense where PT symmetric optics might be more interesting
than its QM counterpart, as one is indeed able to observe seemingly
non-unitary “quantum” evolutions, non-orthogonal Eigen-states and
other usually forbidden characteristics of quantum systems.

2.4.3 Passive PT Symmetry

The first experimental observations of PT symmetric optics were
based on platforms where one was able to introduce well-defined
gain and loss in order to account for an appropriate complex opti-
cal potential. As researchers aspired to access more and more com-
plex structures, the well-defined introduction of gain turned out to be
the bottle neck of possible implementations. It was then argued that
propagation dynamics equivalent to those of PT symmetric struc-
tures could also be achieved in entirely passive structures, where one
exhibits no gain, but only loss. This is true as long as the structure is
“quasi” PT symmetric around the mean loss of the structure. In case
of a simple directional coupler this was rigorously shown in ref. [71]
and shall be briefly recapitulated here for clarity.

In order to do so the example of a simple directional coupler pre-
sented in section 2.2.2 shall be extended to the PT symmetric regime.
This can be achieved by “inserting” gain of strength Γ into the first
waveguide and loss of equal strength (−Γ) in the second waveguide.
In this specific case the coupled mode equation reads

i∂ζ

(
a1

a2

)
=

(
iΓ C1

C1 −iΓ

)(
a1

a2

)
. (2.15)

From which one can easily calculate the Eigen-values as well as Eigen-
vectors, which are(

a1

a2

)
±

=

(
1

iΓ+E±
C

)
, E± = ±

√
C2 − Γ2 .

It is interesting to note that the structure of the Eigen-values reveals
a breaking of the PT symmetry for C = Γ, that is the system is
PT symmetric for C > Γ. In this regime the system shows those
power oscillations typical for PT symmetric systems. An illustrative
example is presented in fig. (2.10) (a), here C1 = 1 and Γ = 0.2. In
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the same fashion, one can verify that Eigen-values and Eigen-vectors
of a system described by

i∂ζ

(
a1

a2

)
=

(
0 C1

C1 −2iΓ

)(
a1

a2

)
(2.16)

are given by(
a1

a2

)
±

=

(
1

E±
C

)
, E± = iΓ±

√
C2 − Γ2 .

This latter case describes a directional coupler, which is not PT sym-
metric, since both diagonal terms are not complex conjugates of each
other. In fact, in this specific case the first waveguide contains neither
gain nor loss and the second waveguide contains twice the loss com-
pared to the aforementioned PT coupler. However, as the structure
of the Eigen-values suggests, even in this entirely passive case the
propagation dynamics are equivalent to the PT symmetric case up
to a global the damping factor e−Γζ . Figure (2.10) (b) shows a graph-
ical representation of this fact. In accordance with (a) C1 = 1 and
Γ = 0.2. It is well visible that the dynamics underneath the exponen-
tial envelope are the same as those of (a). In fact, mathematically it
is easy to see that both cases can be transformed into each other via
(a1, a2)

> → e−Γζ (a1, a2)
>.
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Figure 2.10: (a) Amplitudes |a1|2 and |a2|2 as well as total power |a1|2 +
|a2|2of a PT symmetric directional coupler. (b) Amplitudes
|a1|2 and |a2|2 as well as total power |a1|2 + |a2|2of a passive
PT symmetric coupler. Both graphs follow equations (2.15)
and (2.16) respectively, whereas C1 = 1 and Γ = 0.2 in both
cases.

The arguments applied to this simple case of a directional coupler
can be applied to any general PT symmetric lattice, i.e. one can al-
ways use a transformation an → e−Γζ an with an appropriate global
damping factor Γ and turn a truly PT symmetric system into a pas-
sive PT system. In this process, regardless of the specific realization
the underlying PT propagation dynamics will be preserved in the
passive case. As mentioned before this is highly important for exper-
imental realizations, as the task of implementing gain and loss in a
well defined fashion reduces to the insertion of loss only.
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3
R E A L I Z I N G L O S S I N M O D U L AT E D WAV E G U I D E S

Since PT symmetric systems entered optics [7, 30], it became evident
that loss is not only an unwanted side effect of an optical system
but can introduce a variety of new and exciting physical phenomena
such as unusual beam dynamics [58, 109], PT symmetric solitons
[64, 23], Bloch Oscillations and dynamic localization in complex crys-
tals [56, 57], and even optical tachyons [98]—as long as the loss can
be introduced in a controlled manner. As the most natural way of im-
plementing PT symmetry is using systems of evanescently coupled
waveguides, the loss management in the individual waveguides is the
crucial step in the fabrication process. Currently, there are three dif-
ferent techniques available. First, when implementing waveguides in
an AlGaAs heterostructure (the most popular fabrication technique
of waveguides these days), additional losses can be introduced by
adding a thin chromium layer on top of the particular waveguides
[37]. Second, waveguides obtained by Titan-indiffusion into LiNb
wafers can exhibit additional loss due to the optical excitation of elec-
trons from Fe2+ color centers to the conduction band [82]. Recently,
a ground-breaking third technology was introduced: PT synthetic
lattices with time as the “transverse” coordinate, where losses are ob-
tained by acousto-optical modulation [79]. The downside of the first
two approaches is that they are inherently planar, with no possibility
of involving a second transverse dimension. Also, it seems that the
third approach is limited to 1D systems due to practical reasons, and
additionally the evolution equations in these systems do not perfectly
match the set of coupled Schrödinger-like equations as required in the
original proposal of optical PT symmetry.

In this chapter a new technique for achieving a controllable amount
of loss in waveguides will be discussed. The platform of choice will
be waveguides created by FLDW, as discussed in section 2.3. Through-
out the work of this thesis several approaches to introduce well de-
fined losses in waveguides have been pursued. These are not dis-
cussed in the main body of this thesis but are briefly compared and
evaluated in appendix A.1. As a result it is argued, that radiation
loss due to a sinusoidal bending of waveguides is more advantages
than other approaches. In section 3.1 the nature of this type of loss
mechanism is discussed in detail on a numerical basis. As this nu-

27
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merical investigation reveals a seemingly counter-intuitive behavior
the loss mechanism due to periodically bending the waveguides is in-
vestigated analytically in more depth in section 3.2. In order to grasp
the essence of the underlying mechanisms a 1D SE with a sinusoidally
oscillating box-potential is assumed as a model system. Most impor-
tantly, section 3.2 shows that the loss mechanism under investigation
leads to an exponential decay of the intensity along the propagation
direction inside the waveguide. The resulting exponential decay rate
is given in closed form as a function of all relevant system parame-
ters. Finally, in section 3.3 experimental results for sinusoidally bent
waveguides are discussed. It is found that numerical results, analyti-
cal description as well as experimental observations are in very good
agreement.

3.1 numerical investigation of modulated waveguides

3.1.1 Light Propagation in Sinusoidally Bent Waveguides

For analyzing the light propagation in sinusoidally bent waveguides,
the following parameters are chosen. The wavelength λ = 0.633 µm
and the background refractive index n0 = 1.45. For numerical rea-
sons, the refractive index increase is not modeled as a rect-function
but rather a super-Gaussian of power 16, i.e.

δn = δnmax exp

[
−
(

ξ − ξ0

wwg

)16
]

, (3.1)

with δnmax = 6 · 10−4 and wwg = 3/x0 µm. Note that, following section
2.1.1, wwg = 50.71 in dimensionless units as x0 = 0.0592 µm for this
set of parameters. Moreover the center of the waveguide oscillates
sinusoidally with

ξ0 = d
[

1− cos
(

2π

p
ζ

)]
. (3.2)

In fig. 3.1 (a) the simulated transverse mode profile as well as the as-
sociated potential of a straight waveguide is shown, correspondingly
the evolution of the bound mode’s phase is depicted in subfigure (b).
From this graph one can extract a period length of 1.98 mm or equiv-
alently a propagation constant of 3.17 mm−1. As will be shown sub-
sequently, the bound mode’s propagation constant is an important
parameter for the behavior of sinusoidally modulated system.

If a sinusoidal modulation is introduced to the center of the wave-
guide, radiation losses occur due to the bending of the waveguide.
In fig. 3.2 (a) the light evolution for a sinusoidally bent waveguide
is shown for an oscillation period of 1 mm. The top subfigure of fig.
3.2 (a) represents the amplitude at the center of the waveguide as a
function of the propagation distance. The logarithmic plot suggests
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Figure 3.1: (a) Transverse mode profile (red) and corresponding waveguide
profile (blue) as described by eq. (3.1). (b) Phase evolution of
the mode shown in (a) along a straight waveguide. The period
length pphase = 1.98 mm.

that the mean dependence can well be described by an exponential
decay as indicated by the dashed line. On the other hand, locally one
can observe local maxima and minima while the amplitude oscillates
with a period of 500 µm, which corresponds to twice the bending
frequency. Since the loss in this system is caused by the bending of
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Figure 3.2: (a) Bottom: Light evolution (amplitude) for sinusoidally bent
waveguide with an oscillation period of 1 mm. Top: Amplitde
of the light field at the center of the waveguide as a func-
tion of propagation distance (blue solid line). The red dashed
line corresponds to an exponential decay with a decay rate of
1.16 · 10−1 mm−1. (b) Bottom: Phase evolution corresponding to
(a). Top: Phase at the center of the waveguide. The period length
pphase = 2.05 mm.

the waveguide one could expect the loss to grow monotonically with
increasing bending frequency (or equivalently with decreasing bend-
ing period). That this naive assumption cannot be true is already
clear when considering the light evolution for very high frequencies.
It is intuitively clear that in this case, i.e. when the bending frequency
approaches infinity, the loss of the bound mode should be zero. In
this situation, the bound mode is too inert to follow the quick oscilla-
tions of the waveguide and as a consequence experiences an effective
lossless potential. One can expect this effective potential to be equal
to the temporal average of the true potential. This lossless limiting
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Figure 3.3: Light evolution (amplitude) for sinusoidally bent waveguide
with an oscillation period of 5 µm.

case is depicted in fig. 3.3. Here the light evolution for a sinusoidally
bent waveguide with an oscillation period of 5 µm is shown. After
an initial decay, the Eigen-mode of the effective potential is quickly
established and the transverse mode profile becomes z−independent.
The initial decay is due to the fact that the waveguide is excited by
the Eigen-mode of the straight waveguide.

3.1.2 Decay vs. Oscillation Period

From the previous paragraph it follows that for both zero and infinite
bending the decay of the bound mode is zero and for intermediate
bending there is a measurable loss due to the curvature of the guide.
Moreover, the loss can well be approximated as an exponential decay.
Ultimately, in order to controllably manufacture lossy waveguides
the question is, how the decay behaves as a function of the bending
period. In order to approach the answer to this, fig. 3.4 contains the
extracted decay rates for various oscillation periods. As illustrated
in this graph, the loss’s dependence on the oscillation period can be
divided into four regions. It will be discussed subsequently, that on
one hand these four regions differ quantitatively regarding the mere
value of the loss but on the other hand in these regions the behavior
of the loss also strongly differs qualitatively.

Starting the discussion in region four of fig. 3.4, one can see, that
the decay rate in the waveguide is negligibly small, hence the guide
can be approximated as being straight. As an example, fig. 3.5 shows
the evolution dynamics of a waveguide with an oscillation period of
2.5 mm. From subfigure (a) it is apparent that the intensity inside
the waveguide almost does not drop during evolution. The initially
stronger oscillations (up to a propagation distance of approx. 7.5 mm)
also decay during propagation.

The most curious property of the evolution dynamics is the be-
havior of the phase. First of all, the period of the phase oscillation
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Figure 3.4: (a) Decay rate as a function of bending period of the oscillating
waveguide. (b) Phase oscillation period of light inside of the
waveguide as a function of bending period.

along the waveguide amounts to 1.95 mm, which is almost identical
to the period within the straight waveguide (1.98 mm). It is very in-
teresting to find that this period length is almost constant throughout
region four (fig. 3.4), even at small periods where the bending ap-
proaches the straight waveguide’s phase oscillation period. In this
respect, maybe the most important finding is that the boundary be-
tween region four and region three in fig. 3.4 coincides with the phase
oscillation period of the straight waveguide’s bound mode.

In addition, it is instructive to study the presence and location of
the phase singularities shown in the bottom graph of fig. 3.5 (b). The
plot shows that the waveguide is seemingly arched around the phase
singularities. This property links all realizations in region four (fig.
3.4). What distinguishes the locations for different oscillation periods
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is the distance to the waveguide. It can be found that for larger oscil-
lation periods the location of the phase singularities is further away
from the waveguide, while for smaller period lengths the phase sin-
gularities are located closer to the waveguide. This behavior can well
be explained using the following intuition.
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Figure 3.5: (a) Bottom: Light evolution (amplitude) for sinusoidally bent
waveguide with an oscillation period of 2.5 mm. Top: Am-
plitde of the light field at the center of the waveguide as a func-
tion of propagation distance (blue solid line). The red dashed
line corresponds to an exponential decay with a decay rate of
2.7 · 10−4 mm−1. (b) Bottom: Phase evolution corresponding to
(a). Top: Phase at the center of the waveguide. The period length
pphase = 1.95 mm.

If one considers a straight waveguide, there are no phase singular-
ities, as the surfaces of equal phase are parallel (transverse) planes
[fig. 3.6 (a)]. If a section of the waveguide is bent along an arc the
formerly parallel phase planes overlap in the center of the circle [fig.
3.6 (b)]. Consequentially, a phase singularity appears in the center
of the circle. It is obvious that the smaller the radius of curvature is,
the closer the singularity is to the guide. Regarding the influence of

(a) (b) (c)

Figure 3.6: Scheme of three waveguides (light blue lines) with different
bending radii. The transverse phase planes are denoted by dark
blue lines and the mode volume is shaded orange. At the center
of the circle (red dot), where the phase planes overlap, occurs a
phase singularity.

the location of the singularities on the propagation dynamics of the
waveguide mode, one can suspect that the singularity has no effect,
if it is well outside of the mode volume [fig. 3.6 (b)]. Only when
the singularity is inside of the mode volume [fig. 3.6 (c)], it affects
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the propagation dynamics, since the field amplitude has to be zero at
the location of the singularity. Due to this effect, if the singularity is
close enough to the waveguide, the mode gets “squeezed” out of the
waveguide region and bending losses occur.

Even though for a sinusoidally bent waveguide the situation is a
little bit more involved, the principle behavior is equivalent. If the
phase singularities are sufficiently close to the guide (inside of the
mode volume), bending losses start to occur. Interestingly, this tran-
sition seems to take place when the modulation frequency coincides
with the bound mode’s propagation constant.

In region three the exponential decay rate increases when increas-
ing the oscillation frequency. Figure 3.7 illustrates the propagation
dynamics for an exemplary oscillation period of 1.85 mm. Most no-
tably in this region the decay differs more strongly from the average
exponential decay. The deviation is illustrated by the dotted gray line
in fig. 3.7 (a). From this, one can see that in addition to the small
scale oscillations with a period equal to the modulation frequency of
the waveguide there is another large scale oscillation. In this specific
case it has a period of approximately 15 mm.
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Figure 3.7: (a) Bottom: Light evolution (amplitude) for sinusoidally bent
waveguide with an oscillation period of 1.85 mm. Top: Am-
plitde of the light field at the center of the waveguide as a func-
tion of propagation distance (blue solid line). The red dashed
line corresponds to an exponential decay with a decay rate of
5.9 · 10−2 mm−1. The dotted gray line (ordinate on the right hand
side) corresponds to the difference between the two logarithms
of amplitude and the mean exponential decay respectively. (b)
Bottom: Phase evolution corresponding to (a). Top: Phase at the
center of the waveguide. The period length pphase = 1.87 mm.

Compared to region four (fig. 3.4) in region three the phase sin-
gularities are closer to the waveguide as well as slightly shifted to
larger propagation distances. A difference that can be observed com-
paring fig. 3.5 (b) and fig. 3.7 (b). This indicates a qualitatively
different propagation behavior. While in region four almost no light
is radiated away from the waveguide, the situation is different in re-
gion three. There the curvature is large enough to cause a substantial
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Figure 3.8: Schematic illustration of light being radiated away from sinu-
soidally bent waveguides. In regions 1 and 2 (dashed boxes)
light is emitted and reabsorbed. Light cones from subsequent
emission regions overlap and interfere.

amount of radiation. In fig. 3.8 this process is schematically illus-
trated. Light leaves the waveguide where the curvature is strongest
[areas 1 and 2 in fig. 3.8]. However, the angle under which light is
radiated away from the guide is very small, so that first of all part
of the light radiated away in area 1 re-enters the waveguide in area
2 and second of all the two emerging light cones strongly overlap.
Due to this strong overlap the light can interfere. Depending on the
relative phase difference the net power, which is radiated away from
the waveguide, is either amplified or suppressed respectively. This
effect is best illustrated in fig. 3.2 (a), where the light cones at ev-
ery second bend are suppressed. The finding is also supported by
the phase evolution shown in fig. 3.2 (b), where one can see that the
phase difference between two consecutive bends is in the order of π,
causing destructive interference of the radiated light.

In conclusion, the existence of a maximum exponential decay rate
and the decline of decay when increasing the oscillation frequency of
the guides (as observed in region two of fig. 3.4) can be explained by
the interference between light that is radiated away from consecutive
bends. It should also be emphasized that region two in fig. 3.4, where
the decay rate decreases for increasing oscillation frequencies, is well
above the regime where the waveguide can be approximated as an
effective medium. To support that statement fig. 3.9 shows the light
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Figure 3.9: (a) Light evolution (amplitude) for sinusoidally bent waveguide
with an oscillation period of 0.1 mm. (b) Phase evolution corre-
sponding to (a).

evolution for an oscillation period of 100 µm (region one in fig. 3.4).
It is well visible that in contrast to fig. 3.3 the light mainly follows
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the oscillation of the waveguide. Moreover, the light cones that are
radiated away from the bends are visible in fig. 3.9 (a) while (b) shows
that the phase evolution is by no means similar to that of a stationary
mode.

3.1.3 Concluding the Numerical Investigation

In summary, the light evolution inside sinusoidally oscillating wave-
guides was studied numerically. It was found that the overall de-
cay inside the guides can well be approximated as being exponential.
Moreover the simulations verified the intuition that the decay van-
ishes for straight waveguides as well as for quickly oscillating ones,
that can be approximated as an effective medium. For medium os-
cillation frequencies the decay rate shows a single distinct maximum.
The investigation suggests that the behavior of the decay as a func-
tion of the oscillation period is well connected to the interference of
light that is radiated away from distinct bends of the waveguide. An
important quantitative finding is that the decay is negligibly small
as long as the oscillation frequency of the guide is smaller than the
phase oscillation period of the bound mode of the straight waveguide.
At this specific frequency the exponential decay suddenly starts to in-
crease.

3.2 analytical description of an oscillating potential

Even though the numerical study yields an insight into the underly-
ing physics of the system, it lacks the ability to make more quantita-
tive statements such as the magnitude and location of the maximum
decay rate as a function of the system parameters. The goal of this
section is to answer this need and to give an analytical expression
for the exponential decay rate. In order to do so, the system under
consideration will be eq. (3.10) equipped with the oscillating box
potential

δn =

δnmax ; |ξ − ξ0| < w

0 ; else
(3.3)

where the center of the potential is given by eq. (3.2). Note that the
box potential differs slightly from the super-Gaussian Potential [eq.
(3.1)] used in the numerical study. However, this does not pose a
limitation to the validity, since, as it will be pointed out at the end of
this section, the findings of this section can well be generalized to an
arbitrary potential.
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3.2.1 Straight Waveguide Revisited

The first step in the analysis is to revisit the straight waveguide case
and to make some more statements about it which will turn out to be
necessary for solving the oscillating case. In section 2.1.3 it was stated
that the transverse mode profile of the Eigen-mode of a box potential
is given by eq. (5.3) and the mode’s Eigen-frequency is determined by
the dispersion relation eq. (2.7). As a matter of fact, this is only half
of the story, since the box potential (3.3) also supports a continuous,
infinite set of so-called radiation modes. A basis (complete set of
Eigen-modes) then consists of all radiation modes as well as the single
bound mode.

In elementary QM these radiation modes are usually discussed in
terms of a scattering problem, where a radiation mode is formed
by the incident, reflected, and transmitted plane wave as well as the
forward and backwards propagating waves inside of the box. A com-
plete set of radiation modes is formed by taking into account incident
fields both from the left and the right side of the potential for all pos-
itive propagation constants as defined in eq. (2.5).

Since these types of radiation modes do not possess a nice symme-
try, i.e. they are neither symmetric nor antisymmetric, it is advanta-
geous for further calculations to symmetrize them. This can easily be
done by calculating the symmetric and antisymmetric superposition
of left and right incident modes with the same propagation constant,
respectively. This way, the spatial structure of the modes is given by

Φs (ξ, β) =


Re
[

Ase−ik2(ξ+w)
]

; ξ < −w

cos (k1ξ) ; |ξ| < w

Re
[

Aseik2(ξ−w)
]

; ξ > w

(3.4)

for the symmetric modes and

Φa (ξ, β) =


−Re

[
Aae−ik2(ξ+w)

]
; ξ < −w

sin (k1ξ) ; |ξ| < w

Re
[

Aaeik2(ξ−w)
]

; ξ > w

(3.5)

for the antisymmetric modes. Moreover

As = cos (k1w) + i k1
k2

sin (k1w)

Aa = sin (k1w)− i k1
k2

cos (k1w)

k1 =
√

β + δnmax

k2 =
√

β

(3.6)

where β ≥ 0. The normalization of these modes is given by

〈Φa/s (β) |Φa/s (β′)〉 = 2πk2 |Aa/s|2 δ (β− β′) (3.7)



3.2 analytical description of an oscillating potential 37

for the radiation modes and

〈Φb|Φb〉 = δnmax
κ3

2
sin2 (κ1w) + w (3.8)

for the bound mode. A more detailed mathematical calculation of eq.
(3.7) can be found in app. A.2 and A.3.

3.2.2 Oscillating Potential

Having exhaustively investigated the properties of the straight wave-
guide one can turn to the oscillating case. The first step in the analysis
will be to consider a moving frame of reference in which the potential
is stationary. In this specific case, the transformation reads

ξ ′ = ξ − ξ0 (ζ)

ζ ′ = ζ
(3.9)

where ξ0 is given by eq. (3.2) and in the new frame of reference the
1D PHE reads

i∂ζA = −∂2
ξ ′A− δn (ξ ′)A+ iνd sin (νζ) ∂ξ ′A . (3.10)

Equation (3.10) represents a 1D PHE equipped with a stationary po-
tential δn and an additional external oscillating term containing the
derivative of the field. It is interesting to note that eq. (2.2) or equiva-
lently eq. (3.10) can be transformed to a similar form where the term
iνd sin (νζ) ∂ξ ′ is replaced by ν2d cos (νζ) ξ ′. Applying this so-called
Kramers-Henneberger Transformation, the equation is well known in
many fields of physics, as it represents the dynamics of an electronic
wave function under the influence of an external electric field. This
system is of central interest in the field of attosecond physics, where
the equation is studied in great detail [20, 52, 54]. Unfortunately, the
literature of attosecond science does not provide knowledge which
is particularly relevant for the present investigation. Therefor there
are mainly two reasons. One reason being that the quantities of in-
terest in attosecond pulse generation differ from those of this thesis.
While in attosecond physics researchers are interested in the ioniza-
tion process and the resulting properties of the free electron, in the
underlying waveguide system the analysis is focused on the bound
state. Another reason is tied to the fact that the atomic system, which
is considered in attosecond physics, is much more complex than the
underlying waveguide system, which leads to the fact that a detailed
analytical investigation is impractical and many studies are carried
out numerically.

Considering the structure of eq. (3.10) - with its static potential
and ζ-dependent perturbation - one might wish two apply Fermi’s
Golden Rule[31, 18] in order to retrieve the exponential decay rate
that was predicted by the simulations. However, therein lie several
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inadequacies. The first shortcoming is that Fermi’s Golden Rule is
rigorously derived for time-independent perturbations. Even though
generalizations of Fermi’s Golden Rule for time-dependent pertur-
bations have been derived [88], they might lack the practicability of
Fermi’s original statement. Moreover, a hasty application of Fermi’s
Golden Rule to eq. (3.10) will lead to errors. Secondly, by just apply-
ing Fermi’s Rule, one would simply postulate an exponential decay
of the waveguide amplitude. While on one hand, this might seem
acceptable, as the numerics clearly show this kind of behavior, on the
other hand, this procedure could not serve as a rigorous proof of the
average exponential decay, which in turn is the goal of this chapter.
Moreover, the application of Fermi’s Rule does not yield the higher
order corrections to the average behavior. As a matter of fact, through-
out the literature, a number of authors [33, 2, 19, 73, 99, 108, 25]
have criticized the mathematical grounds of Fermi’s derivation, pre-
sented generalizations, and even showed the invalidity in certain sce-
narios. In this sense, subsequently the cautious route of avoiding
Fermi’s Golden Rule and presenting a careful fundamental deriva-
tion is taken.

3.2.3 Coupled Mode Theory and First Order Perturbation

The reason for performing transformation (3.9) and continuing the
analysis with eq. (3.10) is the fact that eq. (3.10) can more easily be
handled in terms of perturbation theory. Regarding the amplitude d
as a small perturbation, it is quite convenient that the perturbation
term is linear in d. In fact, if d = 0 eq. (3.10) reduces to the well
known static case. In this sense, the general solution strategy is to
expand the field A in terms of the modes of the static potential and
to perform a first order perturbation approximation afterwards. With
this, the field can be written as

A (ξ ′, ζ) = cb (ζ)Φb (ξ
′) e−iβbζ

+
∞∫
0
[cs (ζ, β)Φs (ξ ′) + ca (ζ, β)Φa (ξ ′)] e−iβζdβ

(3.11)
denoting the superposition of a single bound and a continuum of
radiation mode, whereas for each propagation constant β > 0 there
is one symmetric and one antisymmetric mode. The coefficients c
represent yet unknown mode amplitudes which vary with propaga-
tion distance ζ. At this point, the goal of the analysis is to find the
ζ-dependence of the coefficient cb, which represents the amplitude of
the bound mode. It will be shown that to first order cb is given by an
exponential decay, i.e. cb ∼ e−Γζ .

Inserting eq. (3.11) into eq. (3.10) and projecting it onto each of the
Eigen-modes of the straight guide one obtains the system of coupled
equations
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∂ζcb = νd sin (νζ)
∞∫
0

ca Ibaeiβbaζdβa

∂ζcs = νd sin (νζ)
∞∫
0

ca Isaeiβsaζdβa

∂ζca = νd sin (νζ)

{
cb Iabeiβabζ +

∞∫
0

cs Iaseiβasζdβs

} (3.12)

which links the ζ-dependent coefficients ci. In this system of equa-
tions the dependence on the transverse coordinate is eliminated and
implicitly expressed in the overlap integrals Ijl = 〈Φj|∂ξ |Φl〉/‖Φj‖2; also
β jl = β j − βl where j, l ∈ {a, b, s}.

At this point, it might be advantageous to make use of the specific
choice of initial conditions which is of interest for this analysis. In
accordance with both the simulations as well as subsequent experi-
ments only the case of

ca (ζ = 0) = cs (ζ = 0) = 0

cb (ζ = 0) = 1

will be considered. These conditions represent the fact that initially
all light is confined within the bound mode. With these specific initial
conditions the formal integration of the equations for ca and cs yields

cs (ζ) = νd
ζ∫

0
sin (ντ)

∞∫
0

ca (τ) Isaeiβsaτdβadτ

ca (ζ) = νd
ζ∫

0
sin (ντ)

{
cb (τ) Iabeiβabτ +

∞∫
0

cs (τ) Iaseiβasτdβs

}
dτ.

Since the goal of this analysis is to find the longitudinal behavior of
the amplitude of the bound mode, i.e. cb (ζ), the next step consists of
iteratively inserting the newly found equations for ca and cs into the
first equation of the system (3.12) in order to remove the dependence
on ca and cs and to obtain an integro-differential equation for the coef-
ficient cb. In the spirit of first order perturbation theory subsequently
only the term quadratic in νd will be considered and all higher order
terms will be neglected. This approximation is valid if

νd� 1 (3.13)

and poses a joined condition on the oscillation frequency and ampli-
tude. With this condition the equation for cb reduces to

∂ζcb = ν2d2 sin (νζ)
∞∫
0

ζ∫
0

sin (ντ) cb (τ) Iab Ibaeiβabτeiβbaζdτdβa . (3.14)

It must be noted that due to the approximation above eq. (3.14) is only
valid in a regime where both oscillation frequency and amplitude are
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small. However, this condition is well met within the experiments
under consideration.

It is instructive to reflect on the physical meaning of the approxi-
mation (3.13). To this end, fig. 3.10 illustrates the mode coupling as
given by eq. (3.12). It is shown that the bound mode only couples
directly to the antisymmetric modes. Whereas the antisymmetric ra-
diation modes also couple to the symmetric radiation modes. In this
sense, the above approximation implies that the coupling to the sym-
metric radiation modes is entirely disregarded and these modes play
no role in the radiation process.

νd

νd νd

νd

bound antisymmetric symmetric

Figure 3.10: Schematic illustration of the mode coupling in accordance with
eq. (3.12). The applied approximation is equivalent to neglect-
ing the coupling to the symmetric modes.

3.2.4 Markovian Approximation

Considering eq. (3.14) it is interesting to mention that up to this
point neither the explicit shape of the modes nor the structure of
the perturbation operator have been used. Hence eq. (3.14) can be
considered as a general expression for any sinusoidally oscillating
potential. In order to further simplify and even solve eq. (3.14) the
kernel of the integral needs to be evaluated. It is

Iab Iba = − 〈Φb|∂ξ |Φa〉2

‖Φb‖2‖Φa‖2

= −α
k2 sin2(k1w)

βa+δnmax cos2(k1w)
1

(βa−βb)
2

=: −αS (βa)

(3.15)

with
α = 2δn2

max(βb+δnmax)κ2 cos2(κ1w)
π{δnmax cos2(κ1w)+(βb+δnmax)κ2w} .

Note that α is a constant factor regarding the integration in eq. (3.14)
as it only depends on parameters of the straight waveguide. Further-
more, it is assumed that in eq. (3.15) k1/2 = k1/2 (βa).

With this result at hand, one can test the validity of eq. (3.14). In
order to do so, both eq. (3.12) as well as eq. (3.14) were numerically
integrated using the parameters from the previous section. Figure
3.11 shows the results of an example simulation for an oscillation
period of 1 mm. The solid blue line corresponds to the amplitude of
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Figure 3.11: Amplitude of the bound mode for a sample simulation with a
period of 1 mm. The solid blue line corresponds to the ampli-
tude of the bound mode calculated from the complete system
of equations (3.12). The dashed red line shows the evolution of
the bound mode’s amplitude calculated using eq. (3.14).

the bound mode calculated from the complete system of equations
(3.12). Its result is identical to the values presented in fig. 3.2. The
dashed red line shows the evolution of the bound mode’s amplitude
calculated using eq. (3.14). It is evident that it only deviates slightly
from the rigorous calculation. This shows that the approximation
(3.14) holds and proves the fact that the involvement of the symmetric
modes in the radiation process can readily be neglected.

Continuing the analysis of eq. (3.14) it is advantageous to reverse
the order of integration and rewrite it as

∂ζcb = −αν2d2 sin (νζ)
ζ∫

0
sin (ν (ζ − τ)) cb (ζ − τ)

∞∫
0

S (βa) eiβbaτdβadτ

(3.16)
where eq. (3.15) as well as the substitution τ′ = ζ − τ was used.

Investigating the temporal behavior of the kernel
∞∫
0

S (βa) e−iβaτdβa

numerically, it was found that it is only significantly different from
zero in a very small interval τ < τc. Moreover, in this interval cb is
only slowly varying and can hence be regarded as constant around
τ ≈ 0, i.e.

cb (ζ − τ) ≈ cb (ζ) . (3.17)

With the same argument it follows that the upper limit of the tempo-
ral integration in eq. (3.16) does not have a significance any more and
can hence very well be extended to infinity. The term sin (ν (ζ − τ))
however is not slowly varying within the interval 0 < τ < τc and has
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to be considered fully. With this Markovian Approximation eq. (3.16)
reduces to the ordinary first order differential equation

∂ζcb = −αν2d2 sin (νζ) cb

∞∫
0

sin (ν (ζ − τ))
∞∫
0

S (βa) eiβbaτdβadτ .

(3.18)
Using eq. (A.7), the integration in eq. (3.18) can be carried out and

∂ζcb = −αν2d2cb

[
sin2 (νζ) T (βb, ν) + sin(2νζ)

2 U (βb, ν)
]

(3.19)

is obtained, where the two ζ-independent terms T (βb, ν) and U (βb, ν)
are given by

T (βb, ν) = πS̃(βb+ν)
2 − iPV

∞∫
0

(βa−βb)S(βa)

(βa−βb)
2−ν2 dβa

U (βb, ν) = PV
∞∫
0

νS(βa)

(βa−βb)
2−ν2 dβa + i πS̃(βb+ν)

2 .
(3.20)

Note that here S̃ (βb + ν) was used instead of S (βb + ν). This short
hand notation is supposed to represent

S̃ (βb + ν) =

S (βb + ν) ν ≥ |βb|

0 ν < |βb|

following the fact that the term δ (βb − βa + ν) in eq. (A.7) is only
different from zero if ν > |βb|. Also note that both T (βb, ν) and
U (βb, ν) are split into real and imaginary part which is ensured since
both S̃ and the integrals are purely real.

One last integration of eq. (3.19) yields the final expression for
the amplitude of the bound mode within an oscillating waveguide, it
reads

cb (ζ) = exp
[
− αν2d2

2 T (βb, ν) (ζ − sin (2νζ))
]

× exp
[
− ανd2

4 U (βb, ν) (1− cos (2νζ))
]

.
(3.21)

Analyzing the structure of eq. (3.21) one can identify several terms
which are qualitatively different. Starting with the second exponen-
tial, one finds that it only contributes to a periodic oscillation, whereas
the real part of U is responsible for an amplitude oscillation and its
imaginary part is responsible for a corresponding phase oscillation;
also the first exponential in eq. (3.21) contains an oscillating part. All
oscillating terms in eq. (3.21) have the same frequency, which corre-
sponds to twice the oscillation frequency of the waveguide. This ob-
servation was already made in connection with the simulations and
hence is in perfect agreement. Moreover, the numerical investigation
revealed that these oscillations are only small and can be neglected
for long term evolution [compare figs. 3.2, 3.5, 3.7, and 3.11].
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The only term in eq. (3.21) which contributes to a long term mod-
ulation is cb ∼ exp

[
− αν2d2

2 T (βb, ν) ζ
]
. Since T consists of both a real

and an imaginary part, it follows that only one term, namely

cb ∼ exp
[
−παν2d2

4
S̃ (βb + ν) ζ

]
, (3.22)

contributes to an exponential decay, while the imaginary part of T
is responsible for an additional linear phase. Inserting the argument
βb + ν into the definition of S in eq. (3.15) one finds that the exponen-
tial decay rate can be written as

Γ =

παd2

4
k2 sin2(k1w)

βb+ν+δnmax cos2(k1w)
ν ≥ |βb|

0 ν < |βb|
(3.23)

where k1 =
√

βb + ν + δnmax, k2 =
√

βb + ν and cb ∼ exp [−Γζ].
Note that eq. (3.22) might be misleading, as it suggests that the decay
rate is proportional to ν2, however since S̃ (βb + ν) ∼ ν−2 the direct
ν-dependence cancels. This fact is much clearer represented in eq.
(3.23).

3.2.5 Discussion

Equation (3.23) presents the desired exponential decay rate for sinu-
soidally oscillating waveguides. As it was presumed from the results
of the simulations in the previous section, the light evolution inside
a sinusoidally oscillating waveguide can well be approximated as an
overall exponential decay. The theoretical considerations suggest that
this exponential decay is accompanied by minor amplitude and phase
oscillations, with a frequency of twice the modulation frequency of
the bent guide. As it is of minor interest in this thesis, the ampli-
tude of these small oscillations is not given in closed form but can be
found in terms of Chauchy Principal Values in eq. (3.20).

The exponential decay rate given by eq. (3.23) is in very good agree-
ment with rigorous simulations. Figure 3.12 presents a comparison
of both results. A very peculiar feature that can be found in both
graphs and is most pronounced in the analytic curve is the fact that
the decay is zero for modulation frequencies smaller than βb. While
this peculiarity was difficult to interpret with the simulations, it be-
comes even more obvious with the analytic considerations. As the
analytical calculations are based on a mode-picture, it might be help-
ful to adopt a quantum-mechanical picture, where the propagation
constant corresponds to the energy of a state. In this picture, one can
argue that it takes at least a perturbation energy ν larger than |βb| in
order to transfer energy from the bound state with a negative energy
of βb to the continuum of free modes with positive energy. Vice versa,
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Figure 3.12: Exponential decay rate as a function of oscillation period

for a perturbation with an energy ν ≤ |βb| the bound mode just does
not couple to the continuum, hence it does not decay.

From an experimental point of view, the question might arise: How
to implement a certain loss for a given waveguide geometry, i.e. for
w and δnmax being fixed? To answer this question, it is necessary
to determine the maximum achievable loss and the corresponding
modulation frequency for this specific configuration. Answering this
question would formally involve finding the maximum of eq. (3.23).
Unfortunately, the common procedure of calculating dΓ

dν = 0 and then
solving for ν does not yield a closed form expression for the fre-
quency ν. To overcome this dilemma, one can guess a rough estimate
of the maximum by setting

k1w =
π

2

in eq. (3.23), which corresponds to the maximum of the sine in the
numerator and the minimum of the cosine in the denominator. With
the definition of k1 one can solve for the modulation frequency and
obtains

νmax,est =
π2

4w2 − δnmax − βb. (3.24)

Figure 3.12 shows that for the given set of parameters such an esti-
mation yields a modulation period of pmax,est = 919 µm and the true
maximum can be found at larger modulation periods. Even though
νmax,est does not yield the exact maximum, at least it yields a lower
bound and might be helpful in experimental parameter studies.

Interpreting the behavior of the decay rate, it is important to fill
eq. (3.23) with a physical understanding. Recollecting that S (βa)
originates form the overlap integral between antisymmetric radiation
mode and the perturbed bound mode [eq. (3.15)], it merely repre-
sents the coupling strength between bound and antisymmetric modes.
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Moreover, eq. (3.22) states that for the exponential decay only one of
the antisymmetric modes, namely the mode with βa = βb + ν, is rele-
vant. This represents the physical fact that only for a single radiation
mode a certain phase matching condition is met. Even though the
bound mode couples to the entire spectrum of antisymmetric radia-
tion modes, there is only one propagation constant βa = βb + ν for
which the light, which is scattered into this mode, accumulates con-
structively during a series of oscillation cycles 2πn/ν. Again, one can
refer to the discussion carried out in section 3.1 and centered around
fig. 3.8. Already in this discussion, it was argued that the light ra-
diated away from the waveguide leaves only in particular direction.
This argument is supported mathematically in this section, in addi-
tion the analytical derivation yields the exact value of this radiation
direction which is given by

√
βb+ν/k.

Investigating the decay rate as a function of the system parameters
δnmax and w, one might jump to the hasty conclusion that the de-
pendence might be trivial. As a variation of δnmax or w leads to the
bound mode being either tighter or looser bound, one might think
that the tighter the mode is bound the smaller the exponential decay
and that βb is the only relevant parameter. However, this premature
assumption is misleading. Even though it is true for a quite large pa-
rameter range, there is yet another range where the assumption fails.
Taking a look at eq. (3.24) one finds the rather interesting case of

π2

4w2 = δnmax. (3.25)

For this specific parameter set, eq. (3.23) yields an infinite decay rate
Γ as the modulation frequency ν approaches βb. However, a strongly
decaying cb violates eq. (3.17) which states that cb is only slowly vary-
ing in a sufficiently small interval. In turn eq. (3.23) cannot hold in
the resonance region determined by eq. (3.25). Indeed fig. 3.13 shows
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Figure 3.13: Amplitude of the light field (solid blue line) at the center of a
waveguide with δnmax = 6 · 10−4, w = 3.78 µm and p = 1.6 mm.
The red line corresponds to an exponential decay.

that for δnmax = 6 · 10−4, w = 3.78 µm and p = 1.6 mm the amplitude
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of the bound mode does not follow an exponential decay at all. As a
consequence, even though at first glance it seems that eq. (3.25) pro-
vides a misleading resonance and uncovers a flaw in the derivation,
the opposite is the case. Equation (3.25) provides an experimentally
valuable finding in the sense that if one is interested in implement-
ing an exponential decay utilizing sinusoidally bent waveguides, one
needs to avoid the parameter range defined by eq. (3.25).

3.2.6 High Frequency Regime

The previous findings are limited to small frequencies, as stated by
eq. (3.13). On the other hand it was found in section 3.1 that the
loss of a sinusoidally modulated waveguide vanishes for very high
frequencies. This section serves as a rigorous prove of the numerical
findings in this specific high frequency limit. The starting point of the
subsequent analysis shall be eq. (2.2) together with the sinusoidally
oscillating potential. In general, the field can be decomposed into its
Fourier-components as

A (ζ) =

∞∫
−∞

Ã (β) eiβζdβ.

If it can be assumed that the spectral width of A (ζ) is limited and
there exists a frequency βmax for which holds that if |β| > |βmax| then
A (β) ≈ 0, then one can find a small longitudinal interval Z with
Z � 2/βmax so that

〈A (ζ)〉ζ =
1
Z

ζ+ Z
2∫

ζ− Z
2

A
(
ζ ′
)

dζ ′ = A (ζ) .

This is true, because one can exchange the Fourier integral and the
temporal averaging and then for each Fourier component

1
Z

ζ+ Z
2∫

ζ− Z
2

Ã (β) eiβζ ′dζ ′ =

Ã (β) eiβζ ; |β| ≤ |βmax|

0 ; |β| > |βmax|
.

Applying this moving average to the PHE one finds

i∂ζA (ξ, ζ) = −∂2
ξA (ξ, ζ) + 〈δn〉ζ (ξ)A (ξ, ζ)

where it was used that
〈
∂ζA

〉
ζ
= ∂ζ 〈A〉ζ as well as 〈δnA〉ζ = 〈δn〉ζ A,

utilizing the same argument as above. If the frequency ν with which
the potential δn is oscillating is much larger than 2π/Z then the mean
potential 〈δn〉ζ is constant along the longitudinal axis. As a conse-
quence, in this high frequency limit the field amplitude A only feels
a constant potential along the ζ-direction. In general, the shape of
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the potential changes due to the averaging procedure and it should
be stated that 〈δn〉ζ 6= δn

(
ξ − 〈ξ0〉ζ

)
. Instead, for a box potential

with the specific parameters d = 1 µm and w = 3 µm the potential is
depicted in fig. 3.14. In general, due to the average potential being dif-
ferent from the original potential also the shape of the bound mode
changes. However, for the specific parameters under consideration,
both profiles are almost identical.
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Figure 3.14: Comparison between straight waveguide and average potential
for high oscillation frequencies with d = 1 µm and w = 3 µm.
The blue line represents the straight box potential, whereas the
gray line shows the oscillating average potential. For the pa-
rameters under consideration the Eigen-mode profile of both
potentials (red line) is almost identical.

If such an averaged potential is excited with its own bound mode
then - in the high frequency limit - the evolution is stationary and
A (ξ, ζ) = Φ (ξ) exp [iβbζ]. In this case βmax can simply be identified
with βb and one finds the condition

βb �
2
Z

<
2π

Z
� ν

which relates the modulation frequency of the potential with the
propagation constant of the bound mode. This condition determines
the validity of the high frequency approximation above, for which the
loss of the bound mode is identical to zero.

3.3 experimental realization of well-controllable loss

Sinusoidally bent waveguides were fabricated in order to experimen-
tally verify the theoretical predictions. The main experimental inter-
est lies in confirming the average exponential decay as well as the fre-
quency dependence as proposed in fig. 3.12. To this end, several sam-
ples with period lengths ranging from 100 µm to 50 mm were written.
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All samples share a common length of 50 mm as well as a sine ampli-
tude of 1.45 µm. Figure 3.15 (a) exemplarily shows the fluorescence
image of a sinusoidally bent waveguide with an oscillation period of
3.9 mm. This image, where the oscillation takes place within the focal
plane, was taken solely for illustration purposes. For the true mea-
surement images, from which the light amplitude is extracted, the
waveguide oscillates orthogonal with respect to the focal plane of the
imaging objective. From such an image the extracted light amplitude
is shown in fig. 3.15 (b), where the period is 3.9 mm as well. Figure
3.15 (b), where the intensity-axis is scaled logarithmically, shows the
typical characteristics of a fluorescence measurement. After a propa-
gation distance of 12 mm the graph clearly shows a linear slope, indi-
cating the exponential decay of the light intensity. In this particular
example the slope is −0.42 cm−1. Initially, for propagation distances
smaller than 12 mm, the behavior strongly deviates from the subse-
quent exponential behavior. This effect can be attributed to coupling
the free-space LASER-beam into the glass chip using a microscope
objective. As a consequence, in all samples this coupling-region was
neglected, when evaluating the light evolution.

After post-processing the raw images, all samples show the afore-
mentioned exponential decay. Hence, the experiments confirm the
theoretical predictions. Theory and simulation also predict slight de-
viations from this exponential decay, specifically periodic amplitude
oscillations. As the measurements show, these oscillations are in the
same order of magnitude as the noise level.

Figure 3.16 contains the extracted decay rates for all realizations
with different period lengths. For large period lengths, e.g. 50 mm,
the decay rate [0.08 cm−1] differs only minimally from the intrinsic
decay of straight waveguides. This behavior continues for period
lengths down to 10 mm, for which the decay only increases by 20%.
As the graph in fig. 3.16 shows, a pronounced frequency dependence
of the bending induced decay can be observed for period lengths
between 200 µm and 10 mm, spanning roughly two orders of magni-
tude. The maximum loss is achieved at a period length of 1.2 mm.
Here, the decay, exhibiting a value of 1.0 cm−1, exceeds the intrinsic
loss by over an order of magnitude.

Comparing the experimentally measured decay rates [fig. 3.16]
with the theoretically predicted ones [fig. 3.4] a good agreement is as-
serted. Clearly, both graphs show negligible decay for small and large
periods respectively and exhibit a single pronounced maximum in the
range of a few mm of period length. The experimental results differ in
the fact that the sudden drop, which is theoretically predicted, cannot
be confirmed by the measurements. In fact, this difference between
theory and experiment can be attributed to the dimensionality, since
the experimental waveguides exhibit a two-dimensional (2D) cross
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section, whereas the theoretical model is based on a single transverse
dimension.
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Figure 3.15: (a) Fluorescence image of a sinusoidally bent waveguide with
an oscillation period of 3.9 mm. (b) Light intensity extracted
from a sinusoidally bent waveguide with a period of 3.9 mm.
This intensity data is not extracted from (a), but rather an equiv-
alent guide, where the oscillation amplitude is orthogonal to the
focal plane of the imaging system.

To this end, fig. 3.16 also contains the decay rates extracted from
2D simulations. This data shows the same gradual drop as the exper-
imental data. The gradual decrease can be explained by the behavior
of the phase matching condition discussed on page 45. There it was
argued that only a single radiation mode takes part in the scattering
process. In 2D this condition is weakened, as phase matching can be
fulfilled by a collection of radiation modes with different transverse
momenta.
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Figure 3.16: Experimentally measured intensity decay rate (blue crosses)
and decay rate extracted from 2D simulations (red line).

3.4 chapter summary

In this chapter, a versatile way to introduce well-controllable optical
loss in fs-LASER-written waveguides was introduced and discussed
on both a theoretical and experimental basis. Here, the basic idea
was to periodically bend the guides transverse to the propagation di-
rection of light in order to repeatedly cause fractions of the guided
light to be radiated away. While in principle, the elementary loss is
due to the curvature of the guides, the analysis revealed that interfer-
ence effects play an immense role and that loss cannot be increased
arbitrarily by merely increasing the curvature of the waveguides.

The main achievement of this chapter was the theoretical and ex-
perimental verification that loss, which is introduced in the aforemen-
tioned way, leads to an overall exponential decay of the amplitude of
the bound waveguide mode. In order to ensure this behavior, the
sinusoidally bent waveguides are designed such that the modulation
amplitude is kept relatively small and in turn the modulation fre-
quency is used as a tuning parameter to control the amount of loss.

The investigation of the frequency dependence of the exponential
decay revealed that there is virtually no loss for small and high modu-
lation frequencies, respectively. For intermediate modulation frequen-
cies, the decay rate increases and a single pronounced maximum can
be observed. The analytical expression for the decay rate, which is
derived in this chapter, is accompanied by an intuitive understand-
ing, that relates the propagation dynamics of sinusoidally bent wave-
guides to the interference effects of radiated light.

The results presented in this chapter form the basis of the subse-
quent investigations, since they prove that sinusoidally bent wave-
guides can be experimentally applied to mimic lossy media. The ad-
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vantage of the presented technique is that it can be incorporated into
the well-established FLDW process without the need of an additional
pre- or post-processing step. With this, it enables the implementation
and study of PT symmetric and other dissipative structures on the
platform of fs-LASER-written waveguide arrays.
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4
T R A N S P O RT I N N O N - H E R M I T I A N S Y S T E M S

The deceleration of wave transport in a lattice due to disorder was
introduced in physics about 100 years ago with the famous Drude
model. Paul Drude explained the conductance of metals by free elec-
trons that are scattered by the atomic lattice, which in turn results
in a diffusive transport [27]. The diffusion process is ubiquitous.
It governs the effects of electric and thermal conductivity in solids
[27, 50], particle mixing in fluids [72] and spin diffusion effects [91],
just to name a few. In this context, it is generally agreed that all
systems that exhibit sub-ballistic transport are inherently disordered.
Today, disorder is explored in many disciplines, such as optics [86],
solid-state physics [80], acoustics [42] and matter waves [12, 81]. In
particular, optical systems attracted much interest, and so far numer-
ous sub-ballistic transport phenomena based on disorder have been
observed; these include Anderson Localization [86, 4, 53], quantum
decoherence [3], Levy Flights [5] and anomalous diffusion [60]. The
understanding of diffusive (and in general sub-ballistic) transport nat-
urally assumes hermiticity of the Hamiltonian, as this ensures the re-
ality of the eigenvalue spectrum and, therefore, energy conservation.
However, dissipative (that is, lossy) systems that interact with their
environment are by far the most common. With the damped pendu-
lum as the simplest example, dissipation is the basis for phenomena
like the Carnot Process or negative temperature coefficient thermis-
tors. In the nonlinear regime, dissipative structures are encountered
even in the everyday world, for instance, in the form of heat con-
vection of a candle light, cyclons, the famous Belousov–Zhabotinsky
Reaction [34] and, above all, in living organisms. As discussed in
section 2.4.1, PT symmetric systems have recently received consid-
erable attention [7]. Moreover, as explained in section 2.4.2, optical
structures provide an exceptional platform for the implementation of
PT symmetric physics, where the (symmetric) refractive index dis-
tribution represents the real part of the complex potential, whereas
the (antisymmetric) gain-loss profile has the role of its imaginary part
[30]. In optical PT symmetrical systems, the short-term evolution of
(optical) wave packets exhibits peculiar features and is highly non-
intuitive [58, 64, 56, 37, 82, 79]. In this context, perhaps, it is natural
to ask how periodic but dissipative structures affect the long-term

53
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wave transport - a question of fundamental importance in numerous
physical systems.

In this chapter, theoretical predictions and experimental observa-
tions are presented, which show that in static PT symmetric optical
lattices with no disorder, wave transport may suddenly slow down
from ballistic to diffusive after a particular transition distance. It is
demonstrated that this transition as well as the resulting diffusive
transport - which, in the absence of disorder, is impossible in hermi-
tian systems - depends only on a dissipation parameter associated
with the system. The analysis carried out in this chapter makes ex-
tensive use of the findings of the previous chapter in the sense that
sinusoidally bent waveguides represent the dissipative features of the
system under consideration.

4.1 theory of non-hermitian lattices

Consider a biatomic lattice, such as the one schematically depicted
in fig. 4.1. The two sites within a unit cell couple to each other with

Γb

Γa

ωa

ωb

Ci Co

a0 b0 a1 b1b−1a−1

unit cell

Figure 4.1: Schematic illustration of a biatomic lattice. Each unit cell con-
sists of two sites which couple to each other with a strength of
Ci. The inter cell coupling has a strength of Co. Each lattice site
is characterized by an Eigen-frequency ω and a decay rate Γ.

an inner strength Ci whereas sites of neighboring cells couple to each
other with an outer coupling strength Co. Moreover, each lattice site
is characterized by a propagation constant ω as well as a decay rate
Γ. The evolution of the on site amplitudes an (ζ) and bn (ζ) shall be
described by a PHE which reads

i∂ζ an = [ωa + iΓa] an + Cibn + Cobn−1

i∂ζbn = [ωb + iΓb] bn + Cian + Coan+1.
(4.1)

In order to investigate the dynamics of such a lattice, it is best to study
the propagation of the Bloch-modes which are obtained by utilizing
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the Ansatz (an+1, bn+1)
> = einϕ (an, bn)

>. With this, one obtains the
evolution equation

i∂ζ

(
a

b

)
=

(
ωa + iΓa Ci + Coe−iϕ

Ci + Coeiϕ ωb + iΓb

)(
a

b

)

that reduces the complexity of the problem to a single unit cell. Then
the Eigen-modes evolve in the usual fashion (a, b)> = eiβζ (a0, b0)

>

whereas the Eigen-values are given by

β± = −β̄±
√

δβ2 + C2
i + C2

o + 2CiCo cos (ϕ) . (4.2)

Here β̄ = ω̄ + iΓ̄ and δβ = δω + iδΓ where the mean energy ω̄ =
(ωa+ωb)/2, mean decay rate Γ̄ = (Γa+Γb)/2, as well as the differences
δω = (ωa−ωb)/2 and δΓ = (Γa−Γb)/2 are introduced. The PHE (4.1) repre-
sents the most general case of a biatomic lattice considering only next
neighbor interaction. From the Eigen-value spectrum, i.e. eq. (4.2),
one finds two bands of Eigen-values which are in general complex.
Both bands are symmetrically centered around the mean β̄. Without
loss of generality, one can neglect the mean value, or equivalently set
β̄ = 0 [ωb = −ωa and Γb = −Γa], since it does not play a role in
the inter site evolution and only contributes to a global phase and
amplitude factor. This argument is analog to the explanations carried
out in section 2.4.2. Additionally, let us assume that the waveguides
bn are the more lossy ones, which means that Γb < Γa and hence
δΓ > 0. With β̄ = 0, one obtains a band structure symmetrically
centered around zero, i.e.

β± = ±
√

ω2
a + 2iωaΓa − Γ2

a + C2
i + C2

o + 2CiCo cos (ϕ) . (4.3)

As one would expect, in the hermitian case, which is obtained for
Γa = 0, the spectrum is entirely real, regardless of the specific choice
of the parameters ωa, Ci, or Co. Equivalently, from fig. 4.1 it can be
concluded that only in the case of ωa = 0 the Hamiltonian is PT
invariant. In this case the band structure reduces to

β± = ±
√
−Γ2

a + C2
i + C2

o + 2CiCo cos (ϕ) . (4.4)

This well studied spectrum exhibits the interesting feature that it can
be either entirely real, if |Ci − Co| > Γa, entirely imaginary, if Ci +

Co > Γa, or exhibit both a real and an imaginary range, as illustrated
in fig. 4.2 (a). As it was discussed in sec. 2.4.1, if the spectrum is
entirely real, the Hamiltonian of eq. (4.1) and the PT operator share
a common set of Eigen-vectors. On the other hand, if |Ci − Co| <
Γa the symmetry is broken and the spectrum exhibits a real and an
imaginary range.

The dynamics of the lattice governed by eq. (4.1) are well studied in
the regime of PT symmetry and little attention was brought towards
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Figure 4.2: (a) Normalized band structure of a PT invariant Hamiltonian
[eq. (4.4)] with Γa = 1.3 and Ci = 1 for ranging Co. The blue
surface represents the real part whereas the red surface denotes
the imaginary part of the Eigen-value β. PT symmetry is broken
for Co < 2.3. (b) Normalized band structure of a PT symmetric
Hamiltonian. Eigen-values are obtained from (a) for the specific
choice of Co = 3. (c) Normalized band structure for a parameter
set where PT symmetry is broken, i.e. Co = 1.

the regime where PT symmetry is lost. To this end, the subsequent
analysis will be carried out in the broken PT regime. Note that the
fact whether PT symmetry is gained or lost, merely depends on the
difference between inner and outer coupling strength relative to the
decay rate [fig. 4.2 (a)]. Figure 4.2 (c) exemplarily shows an Eigen-
value spectrum with broken symmetry; one can see that the Eigen-
values are purely real for |ϕ| < 0.45π and purely imaginary for |ϕ| >
0.45π. For the more general band structure [eq. (4.3)], for which an
example is plotted in fig. 4.3, the spectrum looks qualitatively similar
if one introduces an energy detuning ωa which is only small. In this
scenario the spectrum looks like a smeared out version of fig. 4.2 (c)
- where the imaginary part is zero in fig. 4.2 (c) a small imaginary
component is added in fig. 4.3. Also the sharp transition between real
and imaginary spectral range is smoothed out. Increasing ωa would
lead to an even “smoother” spectrum.

From fig. 4.3 it is clear that the decay, which each mode experiences,
is not constant but rather a function of the transverse momentum ϕ.
Hence, Eigen-modes in different regions of the Brillouin zone experi-
ence different losses, depending on the value of the imaginary part
of their Eigen-values. As a consequence, in both bands modes in the
center of the Brillouin zone (where the lattice momentum ϕ = 0) ex-
perience an intermediate loss, which is close to the average loss in the
system. At the edge of the Brillouin zone (around ϕ = ±π) the situa-
tion is very different. There, the modes in the lower band suffer from
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Figure 4.3: Normalized band structure of a general dissipative biatomic
lattice. The parameters chosen here are almost equivalent to
the broken PT case shown in fig. 4.2 (c) with ωa = 1.3 and
Ci = Co = 1. In addition here a frequency detuning of ωa = 0.1
is introduced.

a loss that is much larger than the systems’s average loss, whereas
in the upper band the modes experience much less loss. Hence, be-
cause of this difference, the modes in the lower band at the edge
of the Brillouin zone will disappear after a relatively short distance
[fig. 4.4 (a)], whereas the modes in the center of the spectrum will
disappear somewhat later [fig. 4.4 (a) and (b)]. Only the modes in
the upper band around ϕ = ±π will prevail at long propagation
distances [fig. 4.4 (b)]. Therefore, the spectrum will considerably be
getting narrower during the evolution of the wave packet, and only a
part of the spectrum will contribute to transport.

In order the visualize the connection between the spectral behavior,
as explained within the last preceding paragraph, and the evolution
dynamics in real space, the evolution of a wave packet is plotted in
fig. 4.4. As mentioned above, the evolution of the spectrum is plotted
in subfigures (a) and (b) whereas the spatial evolution is plotted in
subfigure (c). Figure 4.4 shows the special case of a single site ex-
citation; for that reason initially all transverse modes in both bands
are excited with the same ampltide. One can clearly observe that
as long as all transverse modes possess a finite amplitude, which is
the case for ζ < 20 in fig. 4.4, the evolution dynamics in real space
[subfigure (c)] exhibits features which are comparable to those of a
basic homogeneous lattice [compare fig. 2.4]. To be specific, those
features are the strong ballistic side lobes and the amplitude oscilla-
tions inside the individual waveguides. On the other hand, for longer
propagation distances, that is when the modes around ϕ = ±π are
predominant, the evolution dynamics are fundamentally different. In
fig. 4.4 one observes that the intensity is mostly confined within the
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sub-lattice an and central waveguides possess a larger amplitude than
outer guides. Also the amplitude beating in individual guides is lost.
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Figure 4.4: Evolution of a wave packet inside a lattice described by eq. (4.1)
with the specific parameters ωa = Γa = 0, ωb = −0.2, Γb =
−0.1, and Ci = Co = 0.3. Initially only waveguide a0 is excited
with unit amplitude. (a) Evolution of the mode amplitudes in
the lower band. (b) Evolution of the mode amplitudes in the
upper band. (c) Evolution dynamics in real space. (d) Variance
calculated from the evolution shown in (c). The blue solid line
represents the actual variance σ2, whereas the red dashed line is
identical to a parabola for ζ < 16 and a straight line for ζ > 16.
The transition region is symbolically drawn across all subfigures.

Figure 4.4 (d) poses the connection between the evolution dynamics
and the actual transport regime. As the transport regime is charac-
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terized by the broadening of the wave packet, from fig. 4.4 (d) one
can conclude that there are two distinct regimes for different dis-
tances. For small distances the evolution is ballistic, characterized
by a quadratic growth of the variance, whereas for longer distances
the evolution is diffusive and also remains diffusive. The diffusive
transport is characterized by the linear growth of the variance of the
wave packet.

In order to prove that the diffusive transport continues indefinitely,
a full analytical theory was developed within this thesis. It starts
from the evolution of the wave packet represented as a superposition
of modes and makes use of the Eigen-vectors(

a0

b0

)
+

=

(
−C

(
1 + eiϕ)

β+ + β̄ + δβ

)
,

(
a0

b0

)
−

=

(
β− + β̄− δβ

−C
(
1 + eiϕ)

)

corresponding to eq. (4.2). The subscript of the Eigen-vectors denotes
to which Eigen-value they belong. Here additionally Ci = Co = C
was assumed for simplicity; also in this parameter regime PT sym-
metry is always broken, which is desired for this analysis. With these
vectors, the full formal solution of eq. (4.1) for a single site excitation
is given by(

an

bn

)
=

1
2π

π∫
−π

N

α+

(
a0

b0

)
+

e−iβ+ζ + α−

(
a0

b0

)
−

e−iβ−ζ

 einϕdϕ

(4.5)
where the coefficients are

α+ = C
(
1 + eiϕ) , α− = β+ + β̄ + δβ

and normalization is given by

N =
−1

C2
(
1 + eiϕ

)2
+
( 1

2 (β+ + β−) + δβ
)2 .

Being interested in large propagation distances, it was already argued,
that the modes within the lower band decay faster than those in the
upper band and can well be neglected for large distances. Moreover,
the spectrum contracts around ϕ = ±π and in a small spectral region
around these points the band structure can be approximated by the
leading terms of its Taylor series, i.e.

β+ = −β̄ + δβ +
C2δβ∗

2 |δβ|2
(ϕ− π)2 . (4.6)

If one evaluates the shape of the Eigen-modes in the limit of ϕ → π

one finds
α−
N

(
a0

b0

)
−

ϕ→π−→
(

1

0

)
. (4.7)
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This fact is physically plausible, remembering that the bn guides were
assumed to be lossier than the an. As a consequence, if the mode is
only confined within the an sub-lattice, it only experiences the loss
of the an guides. Note that this observation is in agreement with
fig. 4.4 (c), where it is well visible that after a certain propagation
distance only the an carry intensity. With the knowledge, that the
evolution of the wave packet is only confined to the an sub-lattice
and the amplitude of the bn is identical to zero, one can reduce the
entire analysis to the an. With these refinements eq. (4.5) reduces to

an = einπ

2π ei(β̄−δβ)ζ
∞∫
−∞

e−iwϕ′2ζeinϕ′dϕ′ (4.8)

where

w =
C2δβ∗

2 |δβ|2

and ϕ′ = ϕ− π has been applied. Also, the integration limits were
extended to infinity. This can be justified by the fact that for large
distances the width of the Gaussian Term is much smaller than the
initial interval and hence determines the relevant range of integration.

It needs to be emphasized that eq. (4.8) together with the afore-
mentioned approximation arguments is only valid for δΓ 6= 0 that is
in the case of a non-vanishing loss detuning between the waveguides
an and bn. Clearly, for δΓ = 0, when the lattice is lossless, neither the
modes in the upper nor in the lower band decay, hence the modes
of the lower band cannot be neglected in eq. (4.5). Also, for a single
site excitation the Taylor approximation of β, i.e. eq. (4.6), would
not be valid. On the other hand, for every loss detuning δΓ > 0, no
matter how small it is, there is a propagation distance ζc for which
the approximation eq. (4.8) holds. This distance can be calculated
by requiring that all modes outside of a certain spectral region ε, i.e.
ϕ′ > ε, are damped by a factor δ. Since the damping is due to the
Gaussian Term in eq. (4.8) one requires∣∣∣e−iwε2ζ

∣∣∣ < δ.

A typical condition, which is sufficient for this analysis, is δ = e−2

which leads to

ζ > ζc =
4 |δβ|2

ε2C2δΓ
.

Obviously, the spectral range ε cannot be chosen arbitrarily, but has
to be chosen such that eqs. (4.6) and (4.7) are ensured. This is the
case for

ε2 <
2 |δβ|2

C2 .

Inserting this band width criterion into the condition for the propa-
gation distance above, one arrives at the very simple expression

ζc =
2

δΓ
(4.9)
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which represents the critical distance after which eq. (4.8) is certainly
valid. Interestingly, ζc does only depend on the loss detuning be-
tween the waveguides and is independent of other system parame-
ters.

To continue the analysis of eq. (4.8), one can easily perform the
integration, arriving at

an = einπ

2
√

πwζ
ei(β̄−δβ)ζe−

n2
4iwζ . (4.10)

This equation completely describes the evolution dynamics on the
underlying lattice and represents the closed-form solution for the an-
sub-lattice for large distances. Remember, that for these distances the
amplitude within the bn-sub-lattice is approximately zero. Equation
(4.10) reveals that the wave packet evolves into a Gaussian Shape,
whereas neighboring sites have a respective phase difference of π.
Moreover, the ζ-dependent phase evolution is identical for all sites.

In order to retrieve the propagation regime of this wave packet, the
last step in the evaluation is to compute the variance of a wave packet
defined by this equation. Since the lattice is dissipative, the variance
is given by the usual variance defined on page 11 normalized to the
total energy of the wave packet, i.e.

σ2 =

∞
∑

n=1
n2 |an|2

∞
∑

n=1
|an|2

. (4.11)

Inserting eq. (4.10) into eq. (4.11), for large propagation distances the
sums can be approximated as Gaussian Integrals, which can then be
evaluated easily. The resulting variance is given by

σ2 =
C2

2δΓ
ζ (4.12)

which clearly shows a linear dependence on the propagation distance.
As a result, one can conclude that the wave packet spreads diffusively.
Again, it is important to note that eq. (4.12) is valid only after a critical
distance ζc which is determined by eq. (4.9). For distances shorter
than ζc, the evolution is ballistic, as indicated in fig. 4.4.

The derivation above, reveals that the diffusive spreading of the
wave packet is indeed due to the contraction of the spectrum. In fact,
the spectrum does not only contract until the diffusive regime sets
in, the spectrum keeps contracting around the mode with the least
amount of loss, i.e. around ϕ = π, indefinitely even within the dif-
fusive regime. This understanding leads to the notion that this type
of diffusive transport can be found in a more general class of lattices.
As a matter of fact, for any arbitrary, dissipative, periodic lattice, for
which there exists a transverse momentum ϕs, at which the loss is
the smallest, there will be a propagation distance after which only
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modes in a small interval surrounding ϕs have a relevant amplitude.
Accordingly, if the curvature at this point is quadratic, then also the
propagation regime will be diffusive. Moreover, if the curvature at
ϕs is not quadratic (but for instance quartic), then a new transport
regime in which the wave packet spreads faster than diffusively but
slower than ballistically would arise.

4.2 experimental observation of diffusive transport

In order to verify the theoretical predictions of the previous section
photonic waveguide lattices were utilized. Usually, these waveguide
lattices are hermitian, that is lossless, systems. Even though fs-LASER-
written waveguides exhibit small intrinsic losses, these can well be
neglected in most experimental situations. In contrast, the modeling
of eq. (4.1) requires a dissipative system, which is preferably tunable.
Specifically, the decay rate of an isolated site needs to be adjustable. It
is in this particular sense that the findings of chapter 3 can be applied.
One of the important findings of this chapter is that the mode of a
single sinusoidally bent waveguide can be approximated to decay ex-
ponentially. As a consequence, one can argue that the amplitude of
such a mode follows the simple equation i∂ζ a = [β + iΓ] a, whereas
β is the propagation constant equivalent to that of a straight wave-
guide and Γ is the decay rate derived in chapter 3. Without giving a
rigorous derivation it seems plausible to assume that if such a dissi-
pative waveguide is embedded in an entire lattice, then its evolution
is given by an equation such as (4.1). This equation only differs from
the usual hermitian case as derived in section 2.2 in the sense that
the real propagation constant is replaced by its complex counter part
which now incorporates the decay rate as its imaginary part. If this
argument is true, then it is perfectly valid to model eq. (4.1) utilizing
a biatomic waveguide lattice such as the one schematically depicted
in fig. 4.5. In such a lattice every second guide is bent sinusoidally in
order to implement intrinsic losses whereas the straight waveguides
exhibit no losses [Γa = 0]. The bending plane is perpendicular with
respect to the lattice plane in order to prevent light which is radiated
away from a lossy waveguide to be reabsorbed by a different lattice
guide.

In the specific experimental setup the waveguides are equidistantly
separated by a distance of 17 µm which leads to a coupling of C =

1.1 cm−1. In order for this lattice not to lead to a z-modulated cou-
pling, the amplitude of the sinusoidal modulation needs to be small.
For this reason, in the experiments a fixed modulation amplitude of
3 µm was chosen.
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Figure 4.5: Schematic illustration of a biatomic waveguide lattice modeling
eq. (4.1). In order to implement tunable losses, every second
waveguide is bent sinusoidally, transverse with respect to the
lattice plane.
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Figure 4.6: Subfigures (a), (c), (e), (g), (i) and (k) show fluorescence mi-
croscopy images of the light beams propagating through the lat-
tice. Subfigures (b), (d), (f), (h), (j) and (l) contain the correspond-
ing variance in a double-log plot as a function of the propaga-
tion distance z. The experimental data are given by the red line,
whereas the blue dotted line depicts the corresponding simula-
tion. (a) and (b) show the purely ballistic case with Γb = 0. In
(c) and (d), Γb = −0.6 cm−1; (e) and (f), Γb = −0.8 cm−1; (g)
and (h), Γb = −1.1 cm−1; (i) and (j), Γb = −1.5 cm−1; (k) and (l),
Γb = −2.0 cm−1.
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To facilitate different intrinsic decay rates the modulation frequency
served as the tuning parameter. Figure 4.6 displays the experimen-
tal measurements for a range of loss parameters. These range from
Γb = 0 cm−1 for the ballistic case to a maximum of Γb = −2 cm−1 for
the lossiest configuration. In addition to the pure fluorescence images
which show the intensity evolution of the light, fig. 4.6 also shows
the corresponding extracted variance of the wave packet. Moreover,
each experimental variance curve is accompanied by its correspond-
ing simulated counter part, where the simulation parameters have
been chosen to match the experimental ones. To be precise, for the
simulation no fitting parameter was used. The coupling strength C
used in the simulation is an experimental value obtained from mea-
surements in a single directional coupler with the aforementioned
waveguides separation of 17 µm. Equivalently, the loss parameter Γb
was extracted from loss measurements in isolated sinusoidally bent
waveguides.

From the measurements presented in fig. 4.6, one can conclude
that the experiments are in agreement with the theoretical predic-
tions. The fluorescence images show that the ballistic characteristics
vanish more and more with increasing loss. In the lossless, ballistic
case [fig. 4.6 (a)] the characteristic ballistic side lobes are clearly visi-
ble, but already in subfig. (c) they start to vanish, when finally at the
largest loss modulation [subfig. (k)] the side lobes are not visible any-
more. The same behavior is true for the intensity modulation within
individual waveguides - where the Bessel-like modulation is observ-
able in subfig. (a), the central waveguides in subfig. (k) do not show
any intensity modulation anymore. Also in subfig. (k) the diffusive
propagation is affirmed by the theoretically predicted feature that the
guides of the lossy sub-lattice do not carry light anymore.

From all measurements presented in fig. 4.6 the critical distance
zcrit, around which the transition from ballistic to diffusiv transport
happens, was extracted. In order to retrieve zcrit from the measure-
ments, a straight line was fitted to the data for z > zcrit and parabola
was fitted to z < zcrit, whereas zcrit was used as a fitting parameter.
In fig. 4.7, the critical distances, which were extracted this way, are
plotted as a function of Γb. Correspondingly, eq. (4.9) is plotted as a
blue line in the same figure. It shows that indeed the critical distance
at which the transport regime changes is inversely proportional to the
loss detuning.

4.3 chapter summary

In conclusion, it was shown how a mobility transition from ballistic
to diffusive transport can occur in static, ordered 1D systems. These
findings extend the common perception that the transport in such
systems is either ballistic or localized - a notion, which is true in the
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Figure 4.7: The red crosses represent the critical distance zcrit extracted from
the measurements shown in fig. 4.6. In addition eq. (4.9) is plot-
ted as a solid blue line. For this, Γb is also taken from measure-
ments, whereas Γa = 0 is assumed.

case of hermitian system, but false in the case of PT symmetric or
other dissipative systems.

In the particular biatomic lattice, which was considered in this
chapter, the mobility transition was induced by the inhomogeneous,
i.e. alternating, distribution of dissipation in the system. As a con-
sequence of this particular loss distribution the Eigen-modes of the
system decay at different rates and there exists a single mode, that
exhibits the least amount of loss. If initially the entire spectrum is
excited, for short propagation distances all modes contribute to the
characteristic ballistic propagation pattern. However after larger dis-
tances only modes with a small decay rate prevail and the spectrum
keeps contracting around the mode with the least amount of loss. In
accordance, the transport becomes diffusive.

The analytical derivation, carried out in this chapter, revealed that
the distance after which the transition from ballistic to diffusive trans-
port takes place is inversely proportional to the loss detuning within
the biatomic lattice. This indicates that the transport is still ballistic
for a homogeneous loss distribution, for which the band structure
would exhibit a constant imaginary part.

The experimental results, presented in this chapter, pose the first
demonstration of PT symmetric dynamics in a fs-LASER-written
waveguide array. They verify the existence of a mobility transition
as well as the inverse dependence of the transition distance on the
loss detuning. As sinusoidally bent waveguides are utilized to in-
troduce the losses, the application of this method was successfully
demonstrated in a complex lattice.
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5
C O U P L E D M O D E T H E O RY I N L O S S Y M E D I A

As a versatile tool to study the interaction and dynamics in physi-
cal systems, coupled mode theory (CMT) is widely applied in many
fields of physics. In the early 1950’s, it was first heuristically intro-
duced in refs. [76, 61] and later a rigorous theory was formulated [85].
CMT was first discussed within the context of microwave phenomena
and introduced to waveguide optics in the 1970’s [87, 106, 51]. What
the first analyses have in common is the fact that they are all based
on lossless single mode waveguides. While in the early days the or-
thogonality or non-orthogonality of modes of adjacent waveguides
was heavily discussed, them being lossless was always postulated.
Losses, whether in the context of grating assisted couplers or tapered
waveguides, were always considered as an additional perturbation
and not as an intrinsic property of the waveguide itself [43]. This ap-
proach probably originated from the fact that losses were considered
undesirable and were minimized wherever possible.

Even in the study of systems where losses are inherently present,
such as plasmonic structures, losses are sometimes neglected when
trying to extract meaningful results [77]. However, since then sev-
eral studies have been addressed at an inherently lossy CMT [6] and
interesting properties, such as complex coupling, were found.

In this thesis in chapter 4, it was shown how a mobility transition
arises in certain non-hermitian systems, whereas the analysis was
also based on CMT. It was argued that if the loss is distributed in-
homogeneously on the lattice sites, also the band structure shows a
loss modulation and consequently there exists one mode with the
least amount of loss. Furthermore, it was proven that due to the con-
traction of the spectrum an initially ballistic propagation turns into a
diffusive one after a critical distance.

While the findings of the previous chapter were directly grounded
on coupled mode equations, the influence of loss on these equations
was only heuristically incorporated, as argued in section 4.2. The goal
of this chapter is to formulate a general CMT for waveguide arrays
comprised of lossy media. To this effect, the properties of a bound
mode of a lossy waveguide are discussed as a first step. Secondly,
a set of general coupled mode equations is derived and applied to
the specific case of a homogeneous lattice. In this context, it will

67
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be shown, that even for a homogeneous loss distribution there exists
a diffusive transport regime, which is due to a generally complex
coupling, that arises in lossy waveguide arrays. Finally, it is discussed
how the results of this chapter, which are seemingly contradictory, are
in perfect agreement with the findings of chapter 4 and broaden the
understanding of light evolution in lossy waveguide lattices.

Experimentally, the theoretical predictions are verified using the
technique of sinusoidally modulated waveguides, as established chap-
ter 3. In this context, this chapter serves another purpose, since it
verifies that sinusoidally bend waveguides can indeed be viewed as
an effective lossy medium, when embedded in a 1D array.

5.1 theory of coupled lossy waveguides

In order to derive a coupled mode theory for lossy media, eq. (2.1)
shall serve as a starting point. In this equation the permittivity ε =

ε0 + εm is comprised of a constant background permittivity ε0 and a
variable component εm denoting the waveguide modulation. Similar
to section 2.1 one can define the wave number as k2 = k2

0ε0 which
leads to

2ik∂zA (x, z) = −∂2
xA (x, z)− k2

0εmA (x, z) . (5.1)

From the definition of the wave number k, one can then conclude that
if ε0 is complex, then also k is a complex quantity. From this in turn
it follows that eq. (5.1) does not have the structure of a SE anymore,
but is rather a mixture between SE and heat equation. For simplicity
in this section, it shall be assumed that the background medium is
absorptionless and hence ε0 ∈ R - preserving the Schrödinger-like
character of eq. (5.1). On the other hand, the modulation permittivity
εm shall generally be assumed to be complex.

Also in this chapter normalized units are introduced. With z0 =
2
√

ε0/k0 and x2
0 = 1/k2

0 eq. (5.1) reduces to

i∂ζA = −∂2
ξA− εmA . (5.2)

Note that eq. (5.2) is almost equivalent to eq. (2.2) with the difference
that it contains the permittivity instead of a refractive index. Even
though the use of a refractive index is more common, in the case of
dissipative media using the permittivity is more useful, as it allows a
less obstructed view on the elementary physical parameters.

Isolated Lossy Waveguide

Before looking at an array of coupled waveguides, consider an iso-
lated lossy waveguide, in order to clarify the fundamental differences
and similarities as compared to a lossless waveguide. In the partic-
ular case in which the waveguide represents a box-shaped potential,
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the Eigen-mode of such a guide can formally be written in the same
way as its lossless counterpart, i.e.

Φ (ξ) =


cos (κ1w) e−iκ2(ξ+w) ; ξ < −w

cos (κ1ξ) ; |ξ| < w

cos (κ1w) eiκ2(ξ−w) ; ξ > w

(5.3)

However, deviating from this formal structure is the fact that due
to the complex permittivity, also the Eigen-value β, as well as κ1 =√

εm + β and κ2 =
√
+β are complex1. This leads to the phase front

of the Eigen-mode being curved, which stands in contrast to the plane
phase front of the Eigen-mode of the lossless guide. Figure 5.1 shows
the amplitude (blue line) and phase (red line) of the transverse mode
profile of an Eigen-mode of a waveguide with a width w = 2 and
permittivity εm = 1 + 0.4i. The corresponding Eigen-value is βlossy =

−0.72− 0.45i. For comparison the amplitude of a mode for εm = 1
is drawn as a dashed gray line, here the Eigen-value βlossless = −0.74.
Note that the real part of these two Eigen-values, which fulfill the
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Figure 5.1: Transverse mode profile of an Eigen-mode of a lossy box-shaped
waveguide with a width of w = 2 and a permittivity of εm =
1+ 0.4i. The corresponding Eigen-value is βlossy = −0.72− 0.45i.
The solid blue line represents the amplitude, whereas the red line
represents the phase of the mode. For comparison the amplitude
of a lossless waveguide (εm = 1) is plotted as a dashed gray line.
For this βlossless = −0.74.

complex dispersion relation

− κ1 sin (κ1w) = iκ2 cos (κ1w) (5.4)

also deviate only slightly from each other.

1 Note that the complex square root has two leafs. Here, without further reference,√
· assumes the principal value of the square root, which has a positive (or zero)

imaginary part. This convention ensures that, for instance, eiκ2ξ decays for positive
ξ.
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It is a non-trivial (mathematical) fact, that the transition from the
real dispersion relation eq. (2.7) to its complex counterpart eq. (5.4)
preserves the structure of the spectrum, meaning that indeed a unique
bound mode can be found. Physically, on the other hand, this state-
ment should be obvious, since no optical system is completely loss-
less and guided modes can still be found.

To finish the discussion on the isolated lossy box-potential, the nor-
malization of the mode needs to be provided, as the profile in eq. (5.3)
is not normalized. In this matter, one has

〈Φ|Φ〉 =
cos (2κ′1w)

2κ′′2
+

sin (2κ′1w)

2κ′1
+

cosh (2κ′′1 w)

2κ′′2
+

sinh (2κ′′1 w)

2κ′′1
(5.5)

where κ′1/2 denotes the real and κ′′1/2 the imaginary part of the trans-
verse wave number. In the limit of vanishing loss, eq. (5.5) reduces to
eq. (3.8).

Homogeneous Dissipative Array

Next, consider an array of well-separated waveguides where the mod-
ulation permittivity is given as a discrete superposition, i.e.

εm = ∑
j

ε j

and ε j are non-overlapping, generally complex permittivity modula-
tions. In order to simplify the analysis, the subsequent study will be
confined to single mode waveguides, such that each modulation ε j
supports - when isolated - a single bound mode with

Aj = Φj (ξ) e−iβ jζ (5.6)

where Φj is the transverse profile and β j the possibly complex Eigen-
value. In analogy to section 2.2, inserting the superposition A =

∑
j

ãjAj into eq. (5.2) yields

i ∑
j

e−iβ jlζ∂ζ ãj
〈
Φm|Φj

〉
= − ∑

j,l 6=j
ãj
〈
Φm |ε l |Φj

〉
e−iβ jlζ .

For sufficiently far separated waveguides one can assume that
〈
Φm|Φj

〉
=

δjm as well as
〈
Φm |ε l |Φj

〉
= δml

(
Cm+δj(m+1) + Cm−δj(m−1)

)
. Together

with aj = ãje−iγjζ and γj = γj−1 + β(j−1)j this leads to the coupled
mode equations for dissipative media, i.e.

i∂ζ aj = γjaj + Cj+aj+1 + Cj−aj−1. (5.7)

Equation (5.7) is almost identical to eq. (2.8), only differing in the fact
that the argument relating Cj+ and C(j+1)− cannot be made, due to the
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absence of energy conservation in dissipative systems. Moreover, in
this context it was argued that the coupling constants have to be real.
For dissipative systems however, the coupling is generally complex.
This fact should be clear when looking at the expression

〈
Φj±1

∣∣ε j
∣∣Φj

〉
where all participating quantities are complex functions.

In the particular case of a homogeneous lattice, where indeed all
coupling terms are equal [B] and the evolution is determined by the
equation

i∂ζ aj = Caj+1 + Caj−1, (5.8)

the interesting situation arises, that the phase of the coupling term
depends on the separation between neighboring waveguides. This
peculiar behavior is due to the curved phase front of the lossy wave-
guide mode, which is exemplarily depicted in fig. 5.1. Figure 5.2
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Figure 5.2: Coupling between two waveguides as a function of waveguide
separation. The graph shows the amplitude and phase of the nor-
malized coupling coefficient for two adjacent waveguides with a
width of w = 1 and ε = 0.4 + 0.1i.

shows the separation dependence of the coupling between two neigh-
boring waveguides where each guide has a width of w = 1 and a
permittivity of ε j = 0.4 + 0.1i. As expected from the hermitian case,
the amplitude of the coupling drops exponentially, whereas the phase
grows linearly with the waveguide separation D. An interesting fea-
ture of this behavior is, that for any complex permittivity there exists
a distance for which the coupling is purely imaginary; in fig. 5.2
this distance is approximately 20. Equivalently, there exists a larger
distance at which the coupling is real again, but negative - admit-
tedly the coupling might be quite small. A rigorous calculation of〈

Φj±1
∣∣ε j
∣∣Φj

〉
using the non-normalized profile in eq. (5.3) yields〈

Φj±1
∣∣ε j
∣∣Φj

〉
= wε j cos (κ∗1 w) [sinc (∆κw) + sinc (Σκw)] eiκ∗2 (w−D)

(5.9)
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with ∆κ = κ1 − κ∗2 and Σκ = κ1 + κ∗2 . This proofs that indeed

C =
〈Φi±1 |ε i|Φi〉
〈Φi|Φi〉

∼ e−iκ∗2 D = e−κ′′2 De−iκ′2D. (5.10)

It can be concluded that the dissipative nature of a waveguide does
not only manifest itself in a pure amplitude decay rate, as it would be
the case for an isolated guide, but is also inscribed in the coupling co-
efficients of an array. In order to investigate the influence of this com-
plex coupling on the propagation dynamics, a basic homogeneous lat-
tice, governed by eq. (5.8), is considered and its evolution illustrated
in fig. 5.3. In this figure the coupling is chosen to be C = 1 + 0.16i.
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Figure 5.3: Light evolution in a homogeneous lattice with complex coupling
coefficients C = 1 + 0.16i.

One can observe the characteristic ballistic propagation pattern only
at small distances; at larger distances the propagation seems diffusive.
In fact, the evolution of light within such a lossy homogeneous lattice
is, in complete analogy to its lossless counterpart, formally given by

aj (ζ) = ij Jj (2Cζ) (5.11)

only differing in the fact that the Bessel Function is now evaluated at
complex arguments. For purely imaginary coupling, that is C = iC′′,
one can rewrite the Bessel Functions Jj (z) in terms of modified Bessel
Functions Ij (z), which leads to aj (ζ) = (−1)j Ij (2C′′ζ). At first
glance, this seems strange, because the modified Bessel Functions
are monotonically increasing and Ij (z) → ez/

√
2πz for z → ∞. How-

ever, this behavior is perfectly valid, recalling the fact, that the true
amplitude of the optical field is apodized with an exponential decay
which dominates the one induced by the complex coupling [compare
eq. (5.6)]. To illustrate the qualitative behavior for an arbitrary com-
plex coupling, fig. 5.4 compares the light evolution within the cen-
tral waveguide of three different lattices, which are characterized by
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Figure 5.4: Comparison of light evolution in the central waveguide of a
homogeneous lattice. The blue line solid represents the lossless
array with C = 1, the red solid represents the central guide of
fig. 5.3 with C = 1 + 0.16i and the gray dashed line shows the
evolution for the purely complex coupling case with C = 0.16i.

a purely real coupling (C = 1; blue solid line), complex coupling
(C = 1 + 0.16i; red solid line), as well as purely imaginary coupling
(C = 0.16i; dashed gray line). Here the intermediate regime corre-
sponds to the central guide of fig. 5.4. The comparison in fig. 5.4
shows that the oscillation period of the complex coupling case, vis-
ible only at small distances, is equal to the real case. In case of a
purely imaginary coupling no oscillations are visible.

The presence or absence of amplitude oscillations can be under-
stood more fundamentally, when considering the evolution of the
spectrum. On page 12 it was stated that the evolution of the spectral
components f (ϕ) of a homogeneous lattice is given by

f (ϕ, ζ) = f (ϕ) e−i2C cos(ϕ)ζ = f (ϕ) e−i2C′ cos(ϕ)ζe2C′′ cos(ϕ)ζ (5.12)

whereas the mode amplitudes are related via an = 1
2π

π∫
−π

f0 (ϕ) e−inϕdϕ.

This relation also holds in the dissipative case considered here. Equa-
tion (5.12) states that the real part of the coupling coefficient C =

C′ + iC′′ introduces a phase term, which depends on the transverse
momentum ϕ. On the other hand the imaginary part C′′ introduces
an amplitude increase. Note that this increase is physically valid,
since the amplitude of the physical mode is apodized by an addi-
tional exponential term, corresponding to the decay of the waveguide
mode [eq. (5.6)], which dominates the coupling-induced increase and
ensures the decay of energy.

It is well known, that the oscillating propagation pattern of the
homogeneous hermitian lattice can be understood in terms of mode
beating, meaning that the phases of individual spectral components,
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eq. (5.12), evolve at different rates, causing an alternating construc-
tive and destructive interference along the ζ-direction. With the same
argument it follows that in the case of purely imaginary coupling, the
respective phases of the modes are conserved along the propagation
direction and no mode beating occurs. In case of a complex cou-
pling, mode beating occurs for small propagation distances where
all modes are present. However, influenced by the imaginary cou-
pling, some modes become predominant after a certain propagation
distance, making the phase of all other modes irrelevant. In other
words, the phase information of those modes with a negligible ampli-
tude is lost and the mode beating vanishes.
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Figure 5.5: Complex Eigen-values for a lattice with complex coupling, i.e.
C = 1 + 0.16i. The real part of the Eigen-value is denoted by the
blue line, whereas the red line represents its imaginary part.

The discussion above, leads to the conclusion that the mode evo-
lution of a homogeneous dissipative lattice is qualitatively similar to
the evolution within a biatomic lattice as discussed in the previous
chapter. There, it was argued that the complex band structure leads
to a contraction of the spectrum and hence a diffusive transport after
a certain propagation distance. Indeed, the same dynamics can be ob-
served in the underlying homogeneous lossy lattice. Figure 5.5 shows
the Eigen-value spectrum of a lattice with C = 1 + 0.16i, where the
Eigen-value with the smallest imaginary part can be found at a trans-
verse momentum of ϕ = 0. Hence, the spectrum contracts around
exactly this momentum. Figure 5.6 contains the variance of the wave
packet corresponding to fig. 5.3 in a double-logarithmic plot. For
small propagation distances one observes a ballistic spreading (slope
of 2) whereas for larger distances the spreading is diffusive (slope of
1). The underlying homogeneous lattice even allows a rigorous ana-
lytical calculation of the variance using the spectral decomposition of
the amplitudes. With this

Σ |an|2 = I0
(
4C′′ζ

)
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Figure 5.6: Variance of the wave packet corresponding to fig. 5.3.

as well as

Σn2 |an|2 =
|C|2

C′′
ζ I1
(
4C′′ζ

)
.

The variance is then given by the ratio

σ2 (ζ) =
|C|2

C′′
ζ

I1 (4C′′ζ)
I0 (4C′′ζ)

.

With the asymptotic forms In (z) ≈ ez/
√

2πz for z� 1 and In (z) ≈ zn/n!

for z� 1, the diffusive spreading for large distances, i.e.

σ2 (ζ)
ζ�ζcrit
=
|C|2

C′′
ζ

and the ballistic spreading for small distances, i.e.

σ2 (ζ)
ζ�ζcrit
= 2 |C|2 ζ2

can be derived, whereas the critical distance that divides both trans-
port regimes is given by the expression

ζcrit =
1

4C′′
. (5.13)

Dissipative Biatomic Lattice

In chapter 4 it was claimed that a mobility transition occurs in a bi-
atomic lattice due to an alternating loss distribution within the lattice.
Since the starting point of the derivation was eq. (4.1), one could try
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to argue that this equation does not take into account complex cou-
pling and hence cannot be valid for optical systems. Furthermore,
one could jump to the conclusion that the derivation of chapter 4 is
questionable and stands in contradiction to the present chapter. How-
ever, this is by no means the case and shall be briefly commented on
in this section.

First of all, as it was already mentioned in a previous paragraph,
both chapters yield the conclusion that a diffusive transport is due to
the curvature of the complex band structure. While the approaches
with which these results were obtained differ, both chapters agree in
the result.

Secondly, the results of the previous chapter can easily be extended
to the case of complex coupling. In the same way, the results of this
chapter can be extended to a biatomic lattice. Following either ap-
proach leads to the band structure of a biatomic lattice with complex
coupling as depicted in fig. 5.7. This graph corresponds to fig. 4.3
of the previous chapter whereas an additional complex coupling ap-
pears, such that C = 1 + 0.16i. For comparison, the imaginary part of
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Figure 5.7: Complex band structure of a biatomic lattice with complex cou-
pling. The solid blue lines represent the real part of β while the
red lines represent the imaginary part. The values correspond
to those of fig. 4.3 whereas an additional complex coupling was
introduces, such that C = 1 + 0.16i. The gray dotted line corre-
sponds to the exact imaginary part of fig. 4.3.

the Eigen-values for a purely real coupling [C = 1] is also included
in fig. 5.7. It can be observed, that the spectra clearly deviate in
the center of the Brillouin zone, while no deviation is present at the
edges. This shows, that the complex coupling only affects the center
of the band while the edges are unaffected. Since the array modes
with the least amount of loss can still be found at the edge of the
band, one can conclude that after a certain propagation distance the
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modes of the central part, where the complex coupling plays a role,
are negligible and the physics is solely determined by the loss detun-
ing. This claim is experimentally validated as shown in fig. 4.6. The
fluorescence images, for which a loss detuning is present, show that
the light’s intensity alternates and is only present in every second
guide. This proves that only modes at the edge of the Brillouin zone
are present. On the other hand, a diffusive transport due to com-
plex coupling, leads to an intensity distribution, where neighboring
guides have similar amplitude and phase.

In summary, it can be concluded that the findings of chapter 4 are
perfectly valid, knowing that complex coupling effects were disre-
garded.

5.2 experimental investigation of a homogeneous lat-
tice

In order to experimentally verify that an optical wave packet spreads
diffusively in a homogeneous dissipative lattice, fs-LASER-written
waveguide arrays were utilized. In agreement with the experiments
presented in the previous chapter, the waveguides are homogeneously
spaced with a distance of 17 µm which leads to a coupling of C =

1.1 cm−1. Also equivalently, losses were introduced by sinusoidally
bending the guides with an amplitude of 3 µm. In contrast to the
biatomic lattice, where only every second guide is modulated, effects
of a z-modulated coupling can be neglected in this setup, since the
separation between neighboring guides remains constant at all prop-
agation distances.

Light propagation within a homogeneous array of straight wave-
guides can be observed in fig. (4.6) (a) and the corresponding vari-
ance [fig. (4.6) (b)] clearly shows a ballistic spreading. Even though,
also straight waveguides exhibit small intrinsic losses, a transition to
a diffusive transport regime cannot be observed. The reason being,
that the intrinsic decay rate of the bound mode of an isolated wave-
guide is in the order of 8.9 · 10−3 cm−1. If this value is taken as a
basis for calculating an effective permittivity of the waveguide and
retrieving a complex coupling, one finds that the complex coupling
coefficient should be in the order of 5 · 10−3 cm−1. With this value,
from eq. (5.13) a critical distance of 50 cm would follow. Since the
length of the available glass samples is limited to 15 cm only a ballis-
tic spreading can be observed for straight waveguides.

The situation changes, when additional losses are introduced due
to a sinusoidal bending of the guides. Figure 5.8 (a) shows the propa-
gation dynamics of light launched in an array where the bending pe-
riod was 3 mm. It can be observed that initially the evolution shows
ballistic characteristics, which then change to diffusive - the initial
intensity beating decreases and finally vanishes after some propaga-
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tion distance. At large propagation distances [5− 7 cm] the intensity
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Figure 5.8: (a) Fluorescence image of the light evolution inside a waveguide
array where all waveguides are sinusoidally bent with an ampli-
tude of 3 µm and a period of 3 mm. (b) Variance corresponding
to fluorescence image (a). The critical distance is visualized by a
vertical dashed red line, at zcrit = 1.6 cm.

within the individual guides does not oscillate anymore. Extracting
the variance of this wave packet reveals the critical distance, which
divides the zones of different transport regimes. This is depicted in
fig. 5.8 (b), where the variance is plotted in a double logarithmic plot.
For distances smaller than zcrit = 1.6 cm the slope of the variance is
equal to two, whereas for larger distances, the slope is equal to one.
The measured critical distance of zcrit = 1.6 cm also implies a complex
coupling coefficient of C′′ = 0.16 cm−1.

Indeed, the conducted measurements proof that the introduction
of homogeneous losses manifest in a complex coupling and do not
only lead to an exponential decay. Moreover, it needs to be men-
tioned, that the dissipation in the system was not introduced via a



5.3 chapter summary 79

complex permittivity, but rather a sinusoidal bending of the wave-
guides. While it was proven in chapter 3 that the sinusoidal bending
leads to an exponential decay of the waveguide mode’s amplitude, it
is not a priori clear that it also acts in the same fashion as a complex
refractive index. Intuitively, one would suspect that the coupling of
two adjacent bent waveguides is calculated from the overlap between
the bound mode and the real refractive index. Hence, no complex
coupling should come into play. However, the situation is different,
since the experiments clearly show the diffusive transition, which can
only be induced by complex coupling. The reason for this behavior
can be understood by revisiting fig. 5.1 which shows the tilted wave
front of the lossy mode. This tilted phase outside of the dissipative
box resembles the physical process of a net energy flux, which trans-
ports energy from the exponential tails of the mode, where there is
no dissipation, to the dissipative guide, where the energy leaves the
system. Relating to the mode of a sinusoidally bent guide this means
that if the evolution can be approximated by an exponential decay, the
effective mode also has a tilted phase front. In general, such a tilted
phase is not unique to the box potential presented above, but a unify-
ing characteristic feature of any Eigen-mode of a dissipative system.
Having established this connection, the complex coupling occurring
in arrays of homogeneously modulated waveguides can be attributed
to the tilted phase front and it’s influence on the coupling integral.
As it was already stated during the discussion of eq. (5.10), not only
the complex permittivity leads to a complex coupling, but also the
tilted phase front plays an important role. To express it even more
rigorously, the complex permittivity itself can be disregarded, since
only the tilted phase front of the Eigen-mode leads to the physically
interesting separation dependence of the complex coupling.

In conclusion, the experiments did not merely prove that complex
coupling is present in homogeneous dissipative lattices, but also con-
tributed evidence to the claim that sinusoidally bent waveguides are
a valid tool for implementing an effective complex refractive index.

5.3 chapter summary

In this chapter, a general coupled mode theory, which is valid for dis-
sipative waveguide arrays, was derived from the PHE. It was shown
that tight binding equations for dissipative systems differ from their
hermitian pendants in the sense that the coupling coefficients cannot
be written as purely real values, but are generally complex. In this
context, one of the most intriguing features is the fact that the phase
of the complex coupling coefficients grows linearly with the actual
distance between two waveguides, while the amplitude drops expo-
nentially, as expected from the hermitian case.



80 coupled mode theory in lossy media

The reason for this striking behavior can be understood by consid-
ering the Eigen-mode profile of a lossy waveguide. While the mode
profile has a flat phase front in the case of a lossless waveguide, a
lossy waveguide exhibits a tilted wave front [compare fig. 5.1]. Since
the coupling coefficient stems from the overlap integral between ad-
jacent modes, the tilted phase front induced the distance dependence
of the complex coupling. In this vein, it is interesting to note that
even though the complex permitivity of the waveguide is initially re-
sponsible for the dissipation, it is only indirectly responsible for the
non-trivial complex coupling., which is primarily due to the tilted
phase front of the waveguide’s Eigen-mode.

It was shown theoretically as well as experimentally that the com-
plex coupling has a substantial influence on the propagation dynam-
ics, already for a homogeneous array. In this case, it was found that
the well known ballistic propagation pattern vanishes and is replaced
by a diffusive one. In accordance to the previous chapter, the dif-
fusive transport is induced by a non-trivial complex band structure,
where modes in different regions of the spectrum experience different
amounts of loss.

Similar to chapter 4, a critical distance at which the propagation
switches from ballistic to diffusive was derived analytically and veri-
fied experimentally. In the particular case of a homogeneous lattice,
which was considered in this chapter, the critical distance is inversely
proportional to the imaginary part of the complex coupling coeffi-
cient.
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6
C O N C L U S I O N A N D O U T L O O K

The aim of this thesis was to provide a framework which allows
one to make the unique properties of PT symmetry accessible in fs-
LASER-written waveguide arrays and hence broaden the versatility of
this platform. The ambition was sparked by the desire to investigate
novel dynamics in PT symmetric media. Altogether, this goal was
accomplished by providing a thorough theoretical and experimental
investigation of sinusoidally bent waveguides as a way to implement
well defined losses. In addition, a new coupled mode theory for dissi-
pative waveguides was presented and experimentally verified. With
these tools at hand, this thesis contains the first experimental real-
ization of a PT symmetric structure in fs-LASER-written waveguide
arrays.

The cornerstone of this thesis is formed by the investigation of
waveguides that were sinusoidally bent transverse with respect to the
propagation direction of light. As light is being radiated away from
these guides due to the local curvature, the main question of interest
was whether this type of modulation leads to an overall exponential
decay of the bound mode’s amplitude. The fact that this question was
positively answered during the theoretical and experimental analysis,
made all subsequent experimental investigations even possible in the
first place. Beyond that, the investigation of sinusoidally bent wave-
guides did not only seek a digital answer of yes or no, but was rather
concerned with the understanding of the underlying physics, the de-
pendence of the effect on the relevant system parameters and also the
limitations which are most important when it comes to experimental
applications.

In this respect, it was found that the overall decay rate of light
bound to the waveguide strongly depends on bending parameters
such as period, since interference effects play a vital role in the prop-
agation dynamics. In order to better grasp the interference effects,
occurring in modulated waveguides, the system was compared to
blazed diffraction gratings. In such gratings the reflected light of
an incident plane wave is being split into several diffraction orders
due to an angle-dependent constructive or destructive interference
between light reflected from adjacent grating lines. In accordance,
the light that is radiated away from neighboring bends of modulated
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waveguides also interferes. The difference is that light is predomi-
nantly radiated away in one predetermined direction, leading to ei-
ther an enhancement or suppression of the overall emitted light. This
interference effect leads to the beneficial situation that it can be ex-
ploited while using the modulation frequency for tuning the expo-
nential decay rate of the guided light.

The importance of exhibiting an exponential decay rate in sinu-
soidally modulated waveguides stems from the fact that this type of
propagation behavior is equivalent to the evolution of light inside of
a straight waveguide formed by a dissipative medium. As a conse-
quence, sinusoidally bent waveguides can be utilized to mimic dissi-
pative media and hence enable the implementation of PT symmetric
structures.

Such a PT symmetric structure was presented in chapter 4, where
a biatomic lattice was considered. In this specific biatomic lattice
straight and bent waveguides were alternating, which introduces a
symmetric refractive index distribution and an anti-symmetric loss
modulation - a condition that is necessary for PT symmetry. Here-
with the first experimental realization of a PT symmetric structure
in fs-LASER-written waveguide arrays was presented.

The structure was investigated both theoretically and experimen-
tally primarily in the regime where PT symmetry is broken, a sit-
uation which was implemented experimentally by equally spacing
neighboring waveguides. In this regime of broken PT symmetry the
band structure of the system is complex, leading to a non-uniform de-
cay of the Eigen-modes during propagation. When initially the entire
spectrum is excited, the modes in the upper band decay first, followed
by the modes in the center of the lower band. After a sufficiently long
propagation distance only the modes at the edge of the lower prevail,
while the spectrum still keeps contracting. In this setup, the resulting
propagation dynamics show a diffusive spreading of the wavepacket,
characterized by the linear growth of the wavepacket’s variance. In
contrast, in the ballistic case the variance grows quadratically with
the propagation distance. In addition, the analysis revealed that the
propagation distance at which the transition from an initially ballistic
spreading (when all modes still contribute) to a subsequent diffusive
spreading takes place is merely inversely proportional to the loss de-
tuning between the individual guides.

The findings presented in chapter 4 have an enormous impact on
the understanding of wave transport in 1D systems. Before, it was
naturally assumed that wave transport in a 1D system can either be
ballistic or localized, depending on whether the system was subject to
disorder. It was understood that any amount of uncorrelated disorder
would lead to localization of the otherwise ballistic transport. On the
other hand, diffusive transport, was considered to be not observable
in 1D quantum systems - especially in ordered systems. Since this
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understanding was based on hermitian systems, it cannot simply be
transfered to PT symmetric systems or more generally systems that
include dissipative structures. In this matter, the presentation of an or-
dered 1D lattice that exhibits a diffusive spreading of the wavepacket
broadens the view based on hermiticity and suggests a generaliza-
tion of the notion of wave transport which includes and correctly
describes dissipative systems. The strength of the analysis presented
here lies in the simplicity of relating the diffusive transport regime to
the curvature of the complex band structure.

Another well established notion was questioned in chapter 5, where
a new, generalized coupled mode theory for dissipative waveguides
was analytically derived and experimentally observed. The elemen-
tary finding, which extends the common understanding of hermitian
lattices, is the fact that the coupled mode equations for dissipative
waveguides exhibit a complex coupling term, which cannot simply
be reduced to a real term by means of a transformation.

While the fundamental origin of the complex coupling is formed
by the complex permittivity of the individual waveguide, the more
interesting and immediate cause of the complex coupling is given
by the tilt of the guided mode profile of the dissipative waveguide.
Interestingly, it is in this regard that the dissipative waveguides dif-
fer most strongly from their lossless counterparts. While for lossless
waveguides the transverse mode profile of a guided mode exhibits a
flat phase outside of the waveguide region, in the case of a dissipa-
tive guide the phase front is tilted in this region. This tilt represents
the physical process of energy being constantly transported from the
evanescent side lobes into the central region where it dissipates.

As the coupling constant of the coupled mode theory is equated
with the overlap-integral between adjacent mode profiles computed
inside the waveguide region, it is an interesting finding that the phase
tilt of the mode and actual distance between adjacent guides deter-
mine the phase of the coupling constant. As an immediate conse-
quence, the investigation in chapter 5 revealed that the distance be-
tween adjacent guides can be used to tune the phase of the coupling
constant. To be specific, it is interesting to note that regardless of
the exact value of the complex permittivity the coupling constant can
adopt any phase depending on the distance between adjacent guides.
As a matter of fact, there are certain distances at which a purely imag-
inary or negative coupling can be achieved.

In addition, in chapter 5 the propagation dynamics of a homoge-
neous, dissipative lattice were investigated. The analysis revealed
that due to the complex coupling a non-trivial complex band struc-
ture arises which also leads to a diffusive wave transport. As the
experimental verification of this effect also utilized sinusoidally bent
waveguides more evidence was added to the claim that sinusoidally
bent waveguides can mimic dissipative media. The analysis proved
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that not only the amplitude of isolated sinusoidally bent waveguides
decays exponentially, but also when these waveguides are brought
into an array and interact, then propagation dynamics are observed
as they would be expected from media exhibiting a complex permit-
tivity.

Judging the impact of this thesis, it is important to note that this
work made scientific contributions on three distinct layers. The first
and basic layers includes the contributions to field of fundamental
physics, especially quantum physics; whereas the second more spe-
cific layer denotes the value this thesis provides for the platform of
fs-LASER-written waveguides; finally the third layer consists of the
ideas one can draw from this thesis regarding specific applications
and devices.

Regarding the layer of elementary physics, this thesis made impor-
tant contributions. Especially the work presented in chapters 3 and 4

bears significance for the field of quantum physics. As it was already
stated during the theoretical derivations, the sinusoidally modulated
waveguide in paraxial optics is mathematically equivalent to an oscil-
lating potential well in QM. As such it is important in many differ-
ent fields of physics, such as for instance atto-second science where
an electronic wavefunctin inside of an atomic potential is considered.
With this in mind, it is rather interesting that even though the sta-
tionary potential well is subject to every elementary QM lecture, the
analytical description of a wavefunction evolving inside of an oscillat-
ing potential well was yet unknown in the literature. With this, one
can suspect that the knowledge and ideas gained in this thesis are
of value in various research areas and can be applied in fields where
similar questions are studied.

As already mentioned in a previous paragraph, the value of chapter
4 for the field of elementary physics lies in the generalization of no-
tions about wave transport beyond the scope of hermiticity. It will be
interesting to see, whether in the future one will be able to find a uni-
fied theory that generalizes the prediction of a wave transport regime
in 1D or 2D structures. Moreover, the analysis has exemplarily shown
that the study of PT symmetry and related topics is important for el-
ementary physics in order to broaden the field of view and loosen the
ties of a sometimes overly restrictive thinking - as it was shown in this
thesis, new insights into well known topics can be gained. Especially
the field of PT symmetry is a fertile area of research, which needs
to be studied intensively. For this matter, it is important that this the-
sis provided the solid foundation for an experimental platform for
PT symmetry. Already today, work has been published that utilizes
the experimental implementation of PT symmetry, which was estab-
lished here, in order to study new phenomena in different fields such
as quantum optics [36, 100] or topology [107]. Along these lines a
lot of insights are still to be gained. It should be expected that the
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field of PT symmetry together with the newly emerging research in-
terest in topology will deliver new perspectives on well established
ultimate truths. As there are multiple opportunities to broaden the
field of view when studying symmetries in an elementary sense, it is
a great advantage to have a versatile experimental platform at hand,
as theory and experiment can fruitfully exchange ideas.

In regard to the value this thesis provides for the platform of fs-
LASER-written waveguides, one can conclude that it surely poses a
significant extension to the toolbox available to this platform. As al-
ready stated, the study of topics like PT symmetry or dissipative
systems in general has not been possible before to extend. In this
sense, this thesis pointed out that even after decades of extensive use
the physics of this platform are not entirely understood. Over the
past years the coarser understanding of the basics of light evolution
inside of fs-LASER-written waveguide arrays was well sufficient in
order to study a number of remarkable phenomena. However, the
investigations of this thesis have ignited a new desire to explore the
properties of light evolution in waveguide arrays on a much deeper
level. For instance, almost all experiments conducted today are con-
fined to and based on the assumption of the tight binding approxi-
mation. In this context, quite recently new investigations probed the
validity and limitation of this approximation and furthermore pro-
vided a suitable extension, which in turn enables the valid prediction
of a much wider range of lattices, where for instance waveguides are
much closer spaced. In the near future, more advances which ex-
tend the available toolbox of fs-LASER-written waveguide arrays are
foreseen. An important extension, which directly follows from this
work, will be to find a way to implement dissipative waveguides also
in 2D lattices, since currently the technique is confined to a single
transverse dimension in order to prevent reabsorption of the radiated
light.

From an application point of view, this thesis provides a number
of promising ideas. The dissipative arrays discussed throughout the
chapters might serve as mode filters. Here, in particular the impor-
tance of the band structure, which was pointed out in chapter 4, can
serve as a guide for fabricating new kinds of structured illumination
devices, which in turn can find application in microscopy or telecom-
munication. The advantage of such structures that rely on dissipation
instead of, for instance, interference is the fact that they should be
more robust to external conditions, such as temperature, or manufac-
turing inaccuracies. Today, the platform of fs-LASER-written wave-
guide arrays shows a great versatility in many aspects, still until now
it remains a research platform rather than a platform for manufactur-
ing commercial devices. However, this step will surely be taken in
the near future when fs-LASERs, as the main manufacturing device,
become more affordable and the fast prototyping is accompanied by
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an overall low priced fabrication process. Nevertheless, the true suc-
cess of this platform regarding applications will only happen, if one
is able to actively control the dynamics of the light evolution. Natu-
rally, this obstacle is already tackled by means of different interesting
approaches - one of them involves the incorporation of liquid crystals
as active switching devices.

In conclusion, as every scientific work should do, this thesis has
answered important questions, when it made the unique properties
of PT symmetry accessible in fs-LASER-written waveguide arrays,
while at the same time a number of new interesting demands were
raised.
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This part of the appendix serves as supplement to chapter 3. It con-
tains additional information to some other attempts to control loss in
waveguides, as well as some lengthy calculations for the analytical
derivation.

a.1 attempts to control loss

In the course of this thesis mainly three approaches to establish a well
defined amount of loss inside Laser written waveguides have been ex-
amined. It turned out that only periodically bending the waveguides
in a sinusoidal fashion was suitable for further use. In this section the
drawbacks of less advantageous methods shall be discussed briefly.

Defect Scattering

One attempt to introduce loss in Laser written waveguides was to gen-
erate scattering centers inside the waveguide by operating the Laser
during the FLDW process close to the damage threshold. The idea be-
hind this approach is that above the so-called damage threshold the
FLDW technique does not yield guiding glass modifications anymore
but the glass rather burns in the focal region resulting in non-guiding
modifications that strongly scatter light. Due to several effects such as
a slightly fluctuating Laser power, roughness of the glass surface, or
inhomogeneity of the bulk material one can operate the writing Laser
at a threshold level at which the resulting glass modifications are
guiding waveguides laced with several spot-like scattering centers at
which the waveguide is burned. These scatterers are distributed ran-
domly along the longitudinal waveguide dimension. Schematically
the scattering loss in waveguides is depicted in fig. A.1. When light
that is usually bound hits the scattering centers parts are being scat-
tered away from the waveguide region and only a fraction continues
propagating in the bound state.

What makes this approach unfeasible for further practical use is the
fact that the occurrence of scattering centers is randomly distributed
with a very high variance, that is the distribution of the spacing be-
tween two consecutive scattering centers along the waveguide has a
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Figure A.1: Illustrating scattering losses. The waveguide contains spot-like
scattering centers which correspond to the waveguide being
burned. When light that is usually bound hits the scattering
centers parts are being scattered and only a fraction continues
propagating in the bound state.

very high variance. As a result, one could write two waveguides us-
ing the same writing parameters and one waveguide would lack any
scattering centers whereas the other waveguide would contain several
scatterers. Consequentially, this process is not reproducible enough
for practical application. Even though one could envision modify-
ing the approach to a scenario in which the scattering centers are
implanted in a determined fashion, this would still leave the scheme
impractical as also the strength of the scatterers varies broadly.

Segmentation

The segmentation of Laser written waveguides has already been ap-
plied in many studies [96, 47, 41, 48, 49]. However, in all of these cases
the purpose of segmenting waveguides was to introduce pure phase
shifts. This can be achieved by periodically interrupting the wave-
guide along its transverse dimension. In those segments where the
waveguide is omitted light propagates freely without being bound.
If the gap between two consecutive waveguide segments is large the
light spreads during this free space propagation and when entering
a section where the waveguide is present only a fraction of the field
is coupled back into the bound mode, as schematically depicted in
fig. A.2 (a). However, the fact that this segmentation technique can
be utilized to introduce a phase shift without significant loss in the
segmentation region is due to the large Rayleigh length compared the
interruption length. For a quick back-of-the-envelope calculation lets
assume the mode exiting the waveguide to approximately of Gaus-
sian shape with a width of w = 5 µm, the typical wavelength is
λ = 633 nm and the bulk refractive index is n = 1.45. With these pa-
rameters one finds a Rayleigh length of zR = πw2n/λ = 180 µm. From
this rough estimate it is clear that in segments where the interrup-
tion length is in the order of 20 µm the loss is negligibly small. Also
globally the loss can be neglected regarding the fact that the number
of such interruptions is not larger than 50 in typical designs of such
phase shifting regions [47]. Nevertheless, if one increases the inter-
ruption length significantly to be in the order of the Rayleigh length
one is able to introduce well pronounced amounts of loss.
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(a)

(b)

Figure A.2: (a) Illustrating loss due to segmentation. Light exiting one wave-
guide segment spreads during free space propagation. When
entering the next waveguide segment only a fraction is coupled
into the bound mode. (b) Scheme of four waveguides where
two waveguides are segmented (second and fourth) while two
guides are continuous (first and third).

The drawback of this technique one encounters when implement-
ing waveguide lattices that include segmented as well as non-segmen-
ted waveguides. For instance if one considers a setup such as the one
illustrated in fig. A.2 (b) one would not be able to describe this setup
by the coupled mode equation (2.8) derived in section 2.2. The reason
for that is that in section 2.2 it was argued that next-nearest neighbor
coupling can be neglected, however in the setup shown in fig. A.2
(b) this is not the case. It is evident that in those regions where wave-
guides two and four are interrupted the coupling between them and
their nearest neighbors is zero, hence the coupling between guides
one and three must be taken into account in these regions. It can only
be neglected in those regions where waveguides two and four are
present since the coupling strength decreases exponentially increas-
ing distance between waveguides.

Even though increasing the impact of next-nearest neighbor cou-
pling might be desirable in some applications segmented waveguides
were regarded as unfeasible for experiments tied to this thesis and
hence dropped from further investigations.

Sinusoidal Bending

It is well known that optical waveguides exhibit losses when being
bent. For Instance for optical fibers this fact is important if one is
interested in how much a fiber can be curled up. Also in integrated
photonic devices bending losses are one of the limiting factors for
miniaturization. With this knowledge it seems somewhat natural to
utilize bending losses when trying to implement well-defined losses
in photonic waveguides. To this effect, the approach which was in-
vestigated within this thesis was to let the waveguide oscillate in a
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sinusoidal fashion transverse to the propagation direction in order to
introduce losses along the propagation direction. The nature of this

Figure A.3: Illustrating losses due to sinusoidal bending. As the bound
mode of the waveguide is only weakly guided it can not “fol-
low” the waveguide in the regions of strong curvature. In these
regions light is radiated away from the waveguide resulting in a
loss of the bound modes amplitude.

loss mechanism, as schematically depicted in fig. A.3, will be dis-
cussed in more detail in the following sections of this chapter. It will
be shown that this approach is well suitable for implementation in
PT symmetric structures provided that the oscillation amplitude is
small and the frequency of oscillation is large. Moreover, even though
bending loss has been studied for many decades the nature of this ge-
ometry was little understood and could not be analytically predicted
before.

a.2 mathematical preparation

In order to derive the correct normalization for the radiation modes
it is necessary to consider the integral

I =
∞∫

0

∞∫
0

ei∆kxdx f (ω)dω (A.1)

first. It’s value will be essential for subsequent calculations. In this
expression ∆k = k0 − k and k =

√
ω. For eq. (A.1) it is hard to

carry out the x-integration. This will be easier when considering the
equivalent expression

I = lim
ε→0+

∞∫
0

∞∫
0

e[i∆k−ε]xdx f (ω)dω.

This way the x-integration can be carried out and the integral reads

I = i lim
ε→0+

∞∫
0

f (ω)
∆k+iε dω .

Splitting the real and imaginary part, one obtains

I = lim
ε→0+

∞∫
0

ε
∆k2+ε2 f (ω)dω + i lim

ε→0+

∞∫
0

∆k
∆k2+ε2 f (ω)dω .
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The real part can be transformed in the following way

I1 = lim
ε→0+

∞∫
0

ε
∆k2+ε2 f (ω)dω

= 2π lim
ε→0+

∞∫
−k0

1
π

ε
κ2+ε2 (κ + k0) f (ω (κ + k0))dκ

regarding the fact that

∞∫
−∞

p
p2 + x2 dx = π (A.2)

which was taken from ref. [35]. This way the limit lim
ε→0+

. . . 1
π

ε
κ2+ε2

acts as a Dirac-δ-function, extracting the value of the integral at κ = 0.
Hence the integral can be evaluated as

I1 = 2πk0 f (ω (k0)) .

In a similar fashion, one can transform the imaginary part to

I2 = i lim
ε→0+

∞∫
0

∆k
∆k2+ε2 f (ω)dω

= −2i lim
ε→0+

∞∫
−k0

κ2

κ2+ε2

(
1 + k0

κ

)
f (ω (κ + k0))dκ.

In this expression, the term κ2

κ2+ε2 approaches 1 for |κ| � ε and it
approaches 0 for |κ| � ε and is exactly symmetric about κ = 0.
Therefore, the limit of the above integral is the Chauchy Principal
Value Integral. At this point, this integral cannot be evaluated further
without knowledge about the function f (ω), however the common
notation of the Chauchy Principal Value can be adopted and the inte-
gral can be written as

I2 = −2i PV
∞∫

0

k
k− k0

f (ω (k))dk

or equivalently

I2 = −i PV
∞∫

0

f (ω)

k− k0
dω

in terms of ω-integration. Using the results of this short excursus,
one can choose to write

∞∫
0

ei∆kxdx = 2πk0 δ (ω−ω0)− i
PV

k− k0

where δ (ω) denotes the Dirac-δ-function, ω0 = ω (k0), and PV shall
be used as a short hand notation for the Chauchy Principal Value In-
tegration, that means whenever one integrates over a term including
PV the Chauchy Principal Value shall be applied.
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a.3 calculations for section 3 .2

In order to derive the results of section 3.2 a few calculations are
necessary.

It is easy to verify the orthogonality relation between the modes.
Since the bound mode and the radiation modes are Eigen-modes with
different Eigen-values it simply follows that they are mutually orthog-
onal, i.e.

∞∫
−∞

Φ∗b (ξ, βb)Φs (ξ, βs)dξ =

∞∫
−∞

Φ∗b (ξ, βb)Φa (ξ, βa)dξ = 0.

The fact that symmetric and antisymmetric modes are mutually or-
thogonal simply follows from their symmetry, hence also

∞∫
−∞

Φ∗s (ξ, βs)Φa (ξ, βa)dξ = 0.

It is important to note, that neither the bound mode given by eq. (5.3)
nor the radiation modes above are normalized. Since normalization
is import when using these modes as a basis, it needs to be calcu-
lated for all modes. The norm of the bound mode is rather simple
to retrieve, since this mode profile poses a square integrable function.
When it comes to the subject of the radiation modes, which are not
square integrable, more effort is necessary.

Normalization of Modes

From mode profile provided in eq. (5.3), the norm of the bound mode
is rather straight forward to calculate; it equates to

∞∫
−∞

|Φb|2 dξ =
cos (κ1w)

κ1κ2
[κ1 cos (κ1w) + κ2 sin (k1w)] + w. (A.3)

In order to calculate the norm of the radiation modes [eqs. (3.4) and
(3.5)], the integral needs to be evaluated separately in all three regions,
that is the left and right region outside of the waveguide as well as
the inside of the waveguide, i.e. for the symmetric modes one has

∞∫
−∞

Φ∗s (ξ, β)Φs (ξ, β′)dξ =
−w∫
−∞

Φ∗s (ξ, β)Φs (ξ, β′)dξ

+
w∫
−w

Φ∗s (ξ, β)Φs (ξ, β′)dξ

+
∞∫
w

Φ∗s (ξ, β)Φs (ξ, β′)dξ.

(A.4)
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The finite part of this integral, which corresponds to the inside of the
potential, is equal to

w∫
−w

Φ∗s (ξ, β)Φs
(
ξ, β′

)
dξ =

sin ((k′1 + k1)w)

k′1 + k1
+

sin ((k′1 − k1)w)

k′1 − k1
,

where the short hand notation k′1 = k1 (β′) is used. Equivalently,
k′2 = k2 (β′) and A′s = As (β′) will be used subsequently. Moreover,
since the Φs are symmetric, that is Φs (ξ, β) = Φs (−ξ, β), the integrals
over left and right half space are equal to each other. Utilizing the
mathematical preparation above one finds

∞∫
w

Φ∗s (ξ, β)Φs (ξ, β′)dξ =
−w∫
−∞

Φ∗s (ξ, β)Φs (ξ, β′)dξ

= πk2 |As|2 δ (β− β′)

− 1
2 PV

{
Im[A′s As]

k′2+k2
+ Im[A′s A∗s ]

k′2−k2

}
,

where one is left with two terms. One of these terms is proportional to
a δ-function while the other one includes a principal value integration.
After some calculations using basic trigonometric identities of finds

Im [A′s As] =
k′1
k′2

sin (k′1w) cos (k1w) + k1
k2

cos (k′1w) sin (k1w)

and

Im [A′s A∗s ] =
k′1
k′2

sin (k′1w) cos (k1w)− k1
k2

cos (k′1w) sin (k1w) .

Using the relationship k′21 − k2
1
= k′22 − k2

2, it can be shown that the
principal value part can be rewritten as

Im [A′s As]

k′2 + k2
+

Im [A′s A∗s ]
k′2 − k2

=
sin ((k′1 + k1)w)(

k′1 + k1
) +

sin ((k′1 − k1)w)(
k′1 − k1

) .

Inserting all individual parts into eq. (A.4) one finds that the terms
including the Chauchy Principal Value cancel with the integral over
the potential region and only the terms proportional to the Dirac-δ
remain, i.e.

∞∫
−∞

Φ∗s (ξ, β)Φs
(
ξ, β′

)
dξ = 2πk2 |As|2 δ

(
β− β′

)
.

Little surprising, this calculation shows that indeed the symmetric
radiation modes for different propagation constants are orthogonal.
More importantly, the above calculation yields the correct normaliza-
tion of the symmetric radiation modes. In analogy to that the normal-
ization of the antisymmetric modes can be found, it reads

∞∫
−∞

Φ∗a (ξ, β)Φa
(
ξ, β′

)
dξ = 2πk2 |Aa|2 δ

(
β− β′

)
.
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Derivation of Equation 3.15

In order to derive eq. (3.15), one needs to evaluate the overlap inte-
gral, which represents a matrix element of the perturbation operator,

〈
Φb
∣∣∂ξ

∣∣Φa (β)
〉

=
∞∫
−∞

Φ∗b (ξ) ∂ξΦa (ξ, β)dξ

=
−a∫
−∞

Φ∗b (ξ) ∂ξΦa (ξ, β)dξ

+
a∫
−a

Φ∗b (ξ) ∂ξΦa (ξ, β)dξ

+
∞∫
a

Φ∗b (ξ) ∂ξΦa (ξ, β)dξ.

(A.5)

The evaluation of the individual regions yields

∞∫
w

Φ∗b ∂xΦadx = cos(κ1w)
k2

2+κ2
2

[
κ2k1 cos (k1w)− k2

2 sin (k1w)
]

as well as
w∫
−w

Φ∗b ∂xΦadx = 2k1 cos(κ1w)
κ2

1−k2
1

[κ2 cos (k1w)− k1 sin (k1w)] .

With this〈
Φb
∣∣∂ξ

∣∣Φa (β)
〉

= 2 cos(κ1w)
k2

2+κ2
2

[
κ2k1 cos (k1w)− k2

2 sin (k1w)
]

+ 2k1 cos(κ1w)
κ2

1−k2
1

[κ2 cos (k1w)− k1 sin (k1w)] .
(A.6)

With these expressions, after some lengthy but straight forward cal-
culations one finds eq. (3.15).

Validity of Approximation

The derivation carried out in sec. 3.2 heavily relies on the condition
(3.13). This section shall provide the experimental bounds for its va-
lidity. In order to do so, (3.13) needs to be carried over to physical
units. Recall that in chapter 2 dimensionless units were introduced,
where x = x0ξ and z = z0ζ with z0 = 1/k0 and x0 = 1/k0

√
2n0. With this

(3.13) can be rewritten as

1
2π
√

2n0
>

dph
pph

where dph is the amplitude in physical units and pph is the oscillation
period in physical units. With a refractive index of n0 = 1.45, the left
hand side of the expression above 1/2π

√
2n0 ≈ 10. Hence in physical

units condition (3.13) becomes

pph
dph

> 10 .
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In all experiments the modulation amplitude was kept constant at
dph = 1.45 µm and the smallest period under consideration was pph =

100 µm. From this pph/dph ≈ 69 and one can conclude that condition
(3.13) is fulfilled in all experiments.

Integral in Equation 3.18

The integral in eq. (3.18) evaluates to

∞∫
0

sin (ν (ζ − τ)) eiβbaτdτ = π
2i e

iνζδ (βb − βa + ν)

− π
2i e
−iνζδ (βb − βa − ν)

+ cos (νζ) PV ν

(βa−βb)
2−ν2

− i sin (νζ) PV βa−βb

(βa−βb)
2−ν2

(A.7)
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b.1 derivation of equation 5 .9

In this section eq. (5.9) will be derived. Explicitely, it is of interest
that left and right neighbor coupling are equal. Using eq. (5.3) one
finds〈

Φj±1
∣∣ε j
∣∣Φj

〉
=

w∫
−w

(
cos (κ1w) e∓iκ2(ξ∓D±w)

)∗
ε j cos (κ1ξ)dξ

The constant terms can be pulled out of the integral and the exponen-
tial can be simplified. With this, one has

〈
Φj±1

∣∣ε j
∣∣Φj

〉
= ε j cos (κ∗1 w) eiκ∗2 (w−D)

w∫
−w

cos (κ1ξ) e±iκ∗2 ξdξ

Finally, the integration yields

〈
Φj±1

∣∣ε j
∣∣Φj

〉
= ε j cos (κ∗1 w) eiκ∗2 (w−D)

w∫
−w

1
2

[
eiκ1ξ + e−iκ1ξ

]
e±iκ∗2 ξdξ

= ε j cos (κ∗1 w) eiκ∗2 (w−D)
w∫
−w

1
2

[
ei(κ1±κ∗2 )ξ + e−i(κ1∓κ∗2 )ξ

]
dξ

= ε j cos (κ∗1 w) eiκ∗2 (w−D) 1
2×[

1
i(κ1±κ∗2)

(
ei(κ1±κ∗2 )w − e−i(κ1±κ∗2 )w

)
+ 1
−i(κ1∓κ∗2)

(
e−i(κ1∓κ∗2 )w − ei(κ1∓κ∗2 )w

)]
= ε jw cos (κ∗1 w) eiκ∗2 (w−D)×[

1
2i(κ1±κ∗2)w

(
ei(κ1±κ∗2 )w − e−i(κ1±κ∗2 )w

)
+ 1

2i(κ1∓κ∗2)w

(
ei(κ1∓κ∗2 )w − e−i(κ1∓κ∗2 )w

)]
= ε jw cos (κ∗1 w) eiκ∗2 (w−D)×

[sinc [(κ1 ± κ∗2)w] + sinc [(κ1 ∓ κ∗2)w]]

= ε jw cos (κ∗1 w) eiκ∗2 (w−D) [sinc [∆κw] + sinc [Σκw]]

This proves eq. (5.9) and the fact that left and right neighbor coupling
are equal.
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