
Molybdenum Pincer Complexes: 

Synthesis and Application in Catalytic 

Hydrogenations

Cumulative Dissertation 
to acquire the academic degree 

doctor rerum naturalium (Dr. rer. nat.) 

of the Faculty of Mathematics and Natural Sciences 

at the University of Rostock 

Submitted by Thomas Leischner, born on 16th October 1989 in Kassel 

Rostock, 29.07.2020 

https://doi.org/10.18453/rosdok_id00002871



II 
 

The present work was accomplished at the Leibniz-Institute for Catalysis e. V., at the 

chair for Applied Catalysis in the group of Professor Dr. Matthias Beller during the 

period October 2016 to June 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reviewer #1: Prof. Dr. Matthias Beller 

  Leibniz-Institut für Katalyse e.V.  

  Abteilung: Angewandte Homogenkatalyse 

  Albert-Einstein-Straße 29a 

  18059 Rostock  

 

Reviewer #2: Prof. Dr. Rhett Kempe 

  University of Bayreuth  

   

  

Date of submission : 29.07.2020 

Date of defense : 17.11.2020 



III 
 

Statement of Authorship 
 
I hereby affirm that I have written the present work by myself without outside 

assistance. No other resources were utilized than stated. All references as well as 

verbatim extracts were quoted, and all sources of information were specifically 

acknowledged.  

 

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig 

angefertigt und ohne fremde Hilfe verfasst habe. Dazu habe ich keine außer den von 

mir angegebenen Hilfsmitteln und Quellen verwendet und die den benutzten Werken 

inhaltlich und wörtlich entnommenen Stellen habe ich als solche kenntlich gemacht. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rostock, 20.07.2020 

 

………………………. 

Thomas Leischner  
  



IV 
 

Acknowledgements – Danksagung 

Zuallererst möchte ich mich bei Herrn Prof. Dr. Matthias Beller für die Aufnahme in seinen 

Arbeitskreis und die Vergabe des hochinteressanten Themas bedanken. Deine Bereitschaft 

zu wissenschaftlichen Diskussionen und die schier endlosen neuen Anreize und Ideen 
bezüglich meiner Forschung haben mich persönlich weitergebracht und maßgeblich zum 

Gelingen dieser Arbeit beigetragen. Des Weiteren möchte ich mich für die Möglichkeit 

bedanken, an einem Forschungsprojekt für die Bayer AG zu arbeiten. 

Dr. Kathrin Junge danke ich für die überaus herzliche Aufnahme in Ihre Themengruppe und 

die Begleitung meiner Arbeit von Beginn an. Vielen Dank dafür, dass du mich nie hast hängen 
lassen und mir mehr als einmal extra Zeit in deiner Arbeitsgruppe ermöglicht hast.  

Frau Dr. Anke Spannenberg danke ich für die gemessenen X-Ray Strukturen und deren 
Auswertung. Trotz teils schwieriger kristallographischer Probleme konntest du mir immer eine 

Kristallstruktur liefern und hast so erheblichen Anteil an nahezu allen meinen veröffentlichten 

Arbeiten. Frau Dr. Christiane Fischer, Frau Susanne Schareina, Frau Susann Buchholz, 

Frau Astrid Lehmann und Frau Katrin Fiedler danke ich ausdrücklich für die zahllosen 
Messungen verschiedenster Art. 

Ebenso danke ich allen Mitgliedern der Redox-Gruppe die ich über die Jahre kennenlernen 

durfte. Besonders möchte ich Dr. Veronica Papa und Dr. Pavel Ryabchuk hervorheben. 

Veronica, you have been simply an awesome lab mate and I want to let you know that I 

genuinely more than enjoyed our common time at LIKAT. I yet can not imagine how much I 
am going to miss these times, but I will always remember them as one of the best I have ever 

had. You have always been an exhilarating personality and helped me more than once to go 

through some hard times. I thank you so much for always having an open ear for me, on a 

personal as well a professional level. I wish you all the best for your future career, however, I 
have no doubt that it is going to be more than successful. One more thing: I am simply amazed 

that you survived the time in the office with Pavel, David and me. Probably most people would 

have gone crazy. Similarly Pavel: Thank you so much for all the advices you gave me and the 
time we had at LIKAT. You helped me a lot to grow as a person and a chemist. I clearly 

remember our first meetings after we both joined the team. It was fall and we discussed 

chemistry on our way home. Soon after I met you and your daughter in f ront of the Kröperliner 

Tor and we had a long chat while you waited for Anastasia to finish the gym. In you, I found a 
brother in mind who shared the same sense of humor. I just want the say: It was a hilarious, 

amazing, and unforgettable time. I will simply miss it. Our whatsapp group has to survive!!!!! I 

also wish you and your family a great start in Belgium at Galapagos. I hope you found yourself 



V 
 

a nice to place to live and thrive. But, to be honest, I have no doubt, that you have amazing 
times ahead of you and that you and your family will do great. 

Weiterhin gilt mein Dank der Mittagsgruppe, welche neben der Chemie auch andere Themen 

zur Diskussion stellten. Hierbei sind vor allem Herr Dr. Jacob Schneekönig, Frau Dr. Reni 

Grauke und David Kevin Leonard zu erwähnen. Zusammen haben wir dem Mittagessen 

interessante, oft tagesaktuelle, hin und wieder wiederkehrende und oft abstrakte 
Diskussionsthemen zur Verfügung gestellt. Möglicherweise manchmal auch zum Leidwesen 

einiger Anwesender: Hallo Frau Dr. Möller :). 

Erwähnen möchte ich auch die „LIKAT Betriebssport Laufgruppe“. Training mit euch war 

immer ein erheiternder Start in die Woche und eine angenehme Abwechslung zum 

Arbeitsalltag. 

Meiner Freundin Vivian danke ich für die unglaubliche Zeit, die wir bis hierher hatten und weiter 

haben werden. Danke, dass du und auf jeglicher Ebene für mich da bist. Ich freue mich auf 
unsere nächsten, gemeinsamen Lebensabschnitte. 

Zu guter Letzt danke ich meiner Familie für die Unterstützung während meiner gesamten 
Ausbildung und der Möglichkeit, dass ich diesen Weg bestreiten konnte. Ohne euch wäre das 

alles nicht möglich gewesen! 

 

Vielen Dank. 



VI 
 

Summary 

The thesis in hand describes the synthesis of novel molybdenum pincer complexes and their 

application as catalysts for the homogeneous hydrogenation of unsaturated organic molecules. 

PNP-type pincer ligands with aliphatic backbones were a focal point in this respect, as related 
molybdenum complexes and their catalytic properties were previously only scarcely explored. 

A synthetic methodology for the preparation of such organometallic compounds was 

developed, giving access to diverse Mo(0), Mo(I) and Mo(II) compounds. In a first catalytic 

protocol, the reduction of acetophenones and styrenes to the corresponding alcohols and 
alkanes, catalyzed by a Mo(I) complex, is described. Subsequently, employing the same 

catalyst, we developed a highly selective hydrogenolysis of N-methylated formanilides to 

amines and alcohols via C–N bond cleavage. Finally, we reported a selective hydrogenation 
of aromatic and aliphatic nitriles to the respective primary amines, catalyzed by a Mo(0) 

complex. In addition, a chiral Ir-catalyst for the enantioselective hydrogenation of an 

agrochemical building block was developed in cooperation with an industrial partner. 

Moreover, an in situ-cobalt/triphos catalyst for the hydrogenation of structurally diverse 
epoxides to the respective anti-Markovnikov alcohols is disclosed. 

Zusammenfassung 

Die vorliegende Arbeit beschreibt die Synthese neuartiger Molybdän-Pincer Komplexe sowie 

deren Anwendung als Katalysatoren für die homogenkatalytische Hydrierung ungesättigter 

organischer Verbindungen. Der Einsatz von PNP Pincerliganden mit aliphatischem 
Ligandenrückgrat stand hierbei im Vordergrund, da entsprechende Molybdänverbindungen 

sowie deren katalytische Eigenschaften bisher nur wenig untersucht wurden. Zunächst wurde 

eine Synthesestrategie zur Herstellungen solcher Komplexverbindungen entwickelt und so 
Zugang zu verschiedenen Mo(0)-, Mo(I)- und Mo(II)-Komplexen erhalten. In einer ersten 

Publikation wurde die Hydrierung verschiedener Acetophenone und Styrole zu den 

korrespondierenden Alkoholen und Ethylbenzolen mittels eines Mo(I) -Katalysators 

beschrieben. Nachfolgend, unter Verwendung des gleichen Mo-Komplexes, wurde eine 
hochselektive Hydrogenolyse N-methylierter Formanilide via C–N Bindungsspaltung 

entwickelt. Abschließend konnten wir die Eignung eines auf Molybdän(0) basierenden 

Katalysatorsystems für die selektive Hydrierung aromatischer und aliphatischer Nitrile zu den 

entsprechenden primären Aminen demonstrieren. Zusätzlich wurde im Rahmen dieser 
Promotion ein chiraler Ir-Katalysator für die enantioselektive Hydrierung einer Zwischenstufe 

zur Herstellung einer Agrochemikalie, sowie ein auf Cobalt/Triphos basierendes in situ 

Katalysatorsystem zur Hydrierung von terminalen und internen Epoxiden zu anti-Markovnikov 
Alkoholen entwickelt. 
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1 Introduction  

1.1 Molybdenum – General Information  

Molybdenum represents the 54th most abundant element in the Earth´s crust and the 25 th most 
abundant element in the oceans with average concentrations of 1.5 ppm and 10 ppb, 

respectively.[1] It was discovered in 1778 by Carl Wilhelm Scheele, who was able to isolate 
MoO3 from a sample of the ore molybdenite.[2] Scheele named the new element molybdenum, 

referring to the ancient Greek term for lead, molybdos, as molybdenite was previously often 

confused with the common lead ore galena.[1] In 1781, Peter Jacob Hjelm eventually prepared 

elemental molybdenum by reduction of MoO3 with carbon in linseed oil.[3] Naturally, 
molybdenum always occurs as a constituent of ores such as wulfenite (PbMoO4), powellite 

(CaMoO4) and molybdenite (MoS2), deposits of the pure element are not known. On an 

industrial scale, it is mainly mined in the form of MoS2 or recovered as a by-product of copper 
and tungsten mining.[4] In 2018, worldwide production of molybdenum was nearly 300.000 

metric tons with the most important suppliers being the United States and China as well as 

Chile, Peru, and Mexico.[5] 

Molybdenum has the sixth highest melting point of all naturally occurring elements (2.623 °C), 
yet its density (10.22 g/cm3) exceeds the one of iron by only 25%. It has the lowest coefficient 

for thermal expansion of all engineering materials, while the thermal conductivity is among the 

highest of all elements.[6] Molybdenum metal does not react with dioxygen or water at room 
temperature, indeed weak oxidation only starts at 300 °C. Moreover, it is stable towards non-

oxidizing acids, including hydrogen fluoride. [7] Molybdenum displays an extensive redox 

chemistry, and oxidation states ranging from -II to +VI are known. In general, it adopts 

coordination numbers between four and eight, and various complex geometries have been 
reported, predominantly in the oxidation states 0, +II, +IV and +VI. Particularly in its lower 

oxidation states, molybdenum has a rich organometallic chemistry, as best illustrated by the 

familiar hexacarbonyl Mo(CO)6.[8] 

The distinct physical and chemical properties of molybdenum have been transformed into 
numerous applications, particularly since the beginning of the 20th century.[8] On a bulk level, it 

is mainly used for the manufacturing of special alloys.[9] Molybdenum-alloyed materials display 

unique features, including low thermal expansion, high strength at elevated temperatures, high 
thermal and electrical conductivity as well as high corrosion resistance, durability, and 

weldability.[10] In power plants, molybdenum is utilized in NO/NO2/NOx sensors for pollution 

control. At 350 °C, it facilitates the selective degradation of NO2 and NOx to NO, enabling a 
consistent monitoring by IR spectroscopy. [11] Molybdenum (IV) sulfide is an important solid 
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lubricant and high-pressure high-temperature (HPHT) anti-wear agent in industrial settings.[12] 
The radioisotope 99Mo is used as parent nuclide for the generation of 99mTc, which is employed 

for medical purposes.[13] Ammonium heptamolybdate is of relevance as fertilizer for 

molybdenum-depleted soils and is additionally applied in biological staining procedures. 
Similarly, phosphomolybdic acid is a popular staining agent for thin layer chromatography in 

synthetic chemistry.[4] 

More important in the context of this work, molybdenum has several large-scale applications 

in industrial catalysis (Scheme 1). The synthesis of acrolein and acrylonitrile, respectively, from 
propene via the SOHIO process are carried out in the presence of  Bi/Mo oxides as catalysts.[14] 

Mo/V oxides are used to promote the selective oxidation of propenal to acrylic acid on a bulk 

scale.[15] The Formox process uses Fe/Mo oxides for the selective oxidation of methanol to 
formaldehyde.[16] Moreover, in the Shell Higher Olefin Process, alumina supported Mo oxides 

are utilized for the synthesis of linear internal C11–C14 alkenes via cross metathesis of olefinic 

mixtures.[17] The hydrodesulfurization (HDS) of natural gas and refined petroleum streams is 

routinely carried out in the presence of MoS2-based catalysts. This process is of crucial nature 
for oil refining, as the Re and Pt-catalysts used for catalytic reforming are rapidly poisoned by 

sulfur, even in extremely low concentrations. [18] Moreover, the removal of sulfur is of  extreme 

importance from an environmental point of view, as ultra-low-sulfur fuels emit considerably 
lower amounts of SO2, a known cause of acidic rain.[19]  

 

Scheme 1. Selected applications of molybdenum in industrial catalysis. 

Every petrol refining site around the world nowadays operates at least one HDS reactor and 

hence makes use of molybdenum´s catalytic properties on a daily basis. [20] Therefore, 
molybdenum certainly adopts a special role in industrial catalysis and for society in general.  
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1.2 Molybdenum – Biological Role 

Molybdenum occurs in all kinds of life, ranging from ancient archaea to man. It is an essential 
dietary mineral for most species, including humans, where it typically serves as the active site 

of certain enzymes.[21] Notably, it represents the only second-row transition metal that is 

required by living organisms.[22] The omnipresence of molybdenum in biological systems is 
ascribed to its abundant nature in the oceans, the birthplace of life, where it is the most 

common of the redox active transition metals. Naturally, the bioavailable form of molybdenum 

is the water soluble molybdate anion [MoO4] 2−, which closely resembles the sulfate anion, 

SO4−, structurally and electronically. Organisms have developed various strategies to take up 
sufficient quantities of molybdenum from their respective environments. As a result of the vide 

supra described structural relationship, molybdenum transport systems often closely resemble 

their sulfate analogous.[21] 

Enzymes dependent on molybdenum are pervasive in the biosphere and to date more than 
fifty different examples have been discovered.[22] The overwhelming majority occurs in 

bacteria.[21] However, several mammalian molybdenum-containing examples have been 

disclosed, including sulfite oxidase, xanthine oxyreductase, the mitochondrial amidoxime 
reductase and aldehyde oxidase (Table 1).[24] These molybdenum enzymes exert vital tasks, 

mainly in the metabolism, where they facilitate the oxidation, and in some cases even the 

reduction, of small molecules as part of sulfur, nitrogen, and carbon regulating mechanisms.[25]  

Table 1. Selected examples of molybdoenzymes.[4] 

Enzyme Catalyzed Reaction  

Nitrogenase N2 + 6 H+ → 2 NH3 

Nitrate reductase NO3
− + 2 H+ + 2 e− → NO2

− + H2O 
Xanthine oxidase 

Xanthine + H2O → Uric acid + 2 H+ + 2 e− 

Xanthine dehydrogenase 
Aldehyde oxidase RCHO + H2O → RCO2H + 2 H+ + 2 e− 

Sulf ite oxidase SO3
2− + H2O → SO4

2− + 2 H+ + 2 e− 

This can be exemplified by the task of the xanthine oxidase, which catalyzes the oxidation of 
xanthine to uric acid within the purine catabolism. Interestingly, the activity of xanthine oxidase 

was found to directly correlate with the amounts of molybdenum present in the body. However, 

above certain concentrations, an inhibitory effect was observed. [26] 

In general, molybdenum-containing enzymes can be distinguished into two main families, 
depending on the structural nature of their active site. The first category relies on a distinct 

molybdenum cofactor, called molybdopterin, to carry out their biological tasks (Figure 1a). On 
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a molecular level, this cofactor consists of a fragment featuring a mononuclear Mo atom in the 
+VI oxidation state, coordinated by a unique pterindithiolene ligand. [21] Depending on the 

molecular structure of the complexed [Mo]VI fragment, all molybdopterin derived enzymes can 

be further distinguished into xanthine oxidases (Figure 1b), sulfite oxidases (Figure 1c) and 
DMSO reductases (Figure 1d).[22] In terms of function, the molybdenum center typically 

catalyzes one-electron redox reactions, commonly switching between the +IV, +V and +VI 

oxidation states.[4] Interestingly, all known mammalian examples of Mo-dependent enzymes 

belong to the molydopterin cofactor derived class. [27]  

 

b) Xanthine oxidases c) Sulf ite oxidases d) DMSO reductases 

   

Figure 1. Molecular structure of several molybdopterin co-factors. 

The second group of molybdenum-containing enzymes hosts the famous nitrogenases. 
Among molybdoenzymes, nitrogenases adopt a unique position, as they do not feature the 

molybdopterin co-factor. Instead they utilize an unusual [MoFe7S9] iron-molybdenum-sulfur 
cluster, called FeMo-co, as the active site.[21] These enzymes exclusively occur in certain 

bacteria and are of outmost importance for the earth´s nitrogen cycle and concomitantly for 

life. They are capable of  fixing and reducing atmospheric dinitrogen into bioavailable ammonia 
under ambient conditions.[28] Per annum, an estimated 200–300 million metric tons of N2 are 

converted into NH3 via this way.[29]  

In terrestrial environments, it has been observed, that excess molybdenum in soils can cause 

severe copper deficiencies in ruminant animals. This so-called copper-molybdenum 
antagonism is based on the reduction of sulfate to sulfide in the rumen of sheep and cattle. 

The produced sulfide reacts with present molybdenum to tetrathiomolybdate [MoS4]2−, which 

readily coordinates and precipitates copper.[21] This effect was initially exploited in the form of 

NH4[MoS4] to treat copper toxicosis in animals.[30] More recently, it showed promising results 
for potential treatment of  Wilson´s disease, a hereditary metabolism disorder in humans 

resulting in high levels of copper in certain body parts. Presumably, tetrathiomolybdate 

competes with copper for absorption in the bowel resulting in lower copper uptakes and 
additionally promotes biliary excretion by in vivo formation of Cu[MoS4].[31] 

a) 
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1.3 Catalytic Homogeneous Hydrogenation 

Catalytic hydrogenation generally describes a chemical reaction upon which dihydrogen is 
added to an (unsaturated) organic substrate by the aid of a catalyst. More specifically, the term 

homogeneous hydrogenation is applied, when the catalyst and reactants are in the same, 

typically the liquid, phase.[32] The most common examples applied to this methodology are the 
reduction of alkynes, olefins and aromatic rings to the corresponding hydrocarbons; aldehydes 

and ketones to primary and secondary alcohols; respectively, esters and carboxylic acids to 

aldehydes and alcohols; nitriles to imines and amines as well as amides and nitro compounds 

to amines. Catalytic hydrogenation as a synthetic strategy originates at the end of the 20th 
century. Pioneering work by French chemist Paul Sabatier disclosed the ability of 

heterogeneous nickel catalysts to hydrogenate olefins to alkanes.[33] In 1912, Sabatier was 

awarded with the Nobel Prize in Chemistry for his achievements and is nowadays commonly 
regarded as the father of catalytic hydrogenation. [34]  

Historically, the first example of a homogeneously catalyzed hydrogenation was reported by 
Calvin in 1938. Applying simple copper acetate as catalyst and a hydrogen pressure as low as 

one atmosphere, he was able to reduce 1,4-benzoquinone to 1,4-dihydroxybenzene in 
quinoline at 100 °C.[35] Interestingly, homogeneously catalyzed hydrogenations remained a 

laboratory curiosity for many years and no significant progress was made.[36] However, in 1965, 

Wilkinson published his seminal report on [RhCl(PPh3)3] and its catalytic activity in the 
hydrogenation of olefins and alkynes. [37] This landmark finding is today often reviewed as the 

origin of modern homogeneous catalysis. [38] Subsequently, Schrock and Osborn made 

profound contributions introducing cationic Ir- and Rh-phosphine complexes, thus paving the 

way for the development of asymmetric protocols.[39] Later, Knowles and co-workers described 
catalysts featuring chiral bisphosphines for the stereoselective reduction of functionalized 

olefins.[40] Eventually, Noyori developed [RuCl2(diphosphine)(1,2-diamine)] catalysts for 

asymmetric reductions of prochiral substrates, especially ketones and aldehydes. By exploiting 

the nowadays famous “metal-ligand bifunctional concept”, the described Ru-complexes offer 
high turnover numbers, high turnover frequencies and high enantioselectivities. [41] In 2001, 

Knowles and Noyori were awarded with the Nobel Prize in Chemistry for their contributions on 

asymmetric catalyzed hydrogenation reactions.[42]  

Nowadays, catalytic homogeneous hydrogenation represents a powerful synthetic 
methodology. It is widely applied in academia and has multiple applications in industry, mainly 

for the (enantioselective) synthesis of agrochemicals and pharmaceuticals (Figure 2). The 

most prominent examples in this respect represent the stereoselective reductions of prochiral 
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precursors for the preparation of L-Dopa 1 (used for the treatment of Morbus Parkinson) and 
the herbicide (S)-metolachlor 2, respectively.[43] 

 

Figure 2. Selected examples of industrially relevant homogeneous hydrogenations.  

Catalytic homogeneous hydrogenation generally offers various unique advantages over the 
application of stoichiometric reducing agents, e. g. metal hydrides like LiAlH4. It operates under 

atom-economic and waste-free conditions and moreover utilizes an abundant, environmentally 
benign, and cheap reductant. Furthermore, the employment of stoichiometric reducing agents 

is typically attributed with poor chemoselectivities.[44] On the contrary, the coordination of an 

organic ligand to a transition metal fragment results in profound changes of the steric and 
electronic properties of the central atom. Consequently, this unique principle allows for the 

design and synthesis of tailor-made catalysts with fine-tuned features e. g. functional group 

tolerance.  

Traditionally, homogenous hydrogenations in academic and industrial setting overwhelmingly 
rely on platinum group metal phosphine catalysts.[45] However, the volatile prices, limited 

availability, and toxic nature of these elements resulted in extensive efforts by the scientific 

community for their replacement with more abundant and environmentally alternatives. In the 
past two decades significant progress in this direction, including stereoselective protocols, has 

been achieved, particularly with respect to iron[46], cobalt[47], and manganese[48] (PNP) pincer 

complexes. In addition to this, also several examples employing nickel[49], copper[50] and zinc[51] 

complexes were reported, highlighting the general aptitude of non-precious metals to serve as 
catalysts for homogeneous hydrogenation reactions. 

1.3.1 Pincer Complexes in Catalytic Homogeneous Hydrogenation 

The development of novel ligand systems, with which the properties of a metal center can be 

easily tuned in a predictable fashion, continues to attract significant attention from synthetic 
chemists. Among the numerous ligand motifs that have been reported in literature, pincer 

ligands and their respective complexes have been a focal point, due to their remarkable 

stability, unique activity, and flexibility. [52] The first examples of pincer ligands and their 

respective organometallic coordination compounds were reported in the late 1970s by Shaw 
and van Koten.[53] However, the term “pincer” was coined by van Koten as late as 1989, due 
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to the distinct coordination mode to metal centers.[54] Structurally, pincer complexes feature a 
metal center whose adjacent coordination sites are occupied by a tridentate ligand, typically in 

a meridional fashion. Related ligands and organometallic compounds can commonly be 

prepared within a few steps. Consequently, they can be easily altered and fine-tuned with 
respect to their steric and electronic properties e.g. by varying the nature of the donor atoms 

L and/or X, or the substituents R at the donor atoms (Figure 3).[55] 

  

Figure 3. General structure of pincer complexes. 

A distinct feature of  pincer complexes is the ability of the ligand to actively participate in 
catalytic transformations, without changing the metals oxidation state.[56]  

 

Scheme 2. Metal-ligand cooperation as well as outer-[57] and inner-sphere[58] mechanism. 
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Consequently, pincer ligands are referred to as non-innocent, and the joint reactivity with the 
metal center is described as metal–ligand cooperation (MLC).[56] Pincer complexes featuring a 

(central) pyridine donor moiety, typically operate through an aromatization/dearomatization 

mode. The ligand backbone is initially dearomatized upon deprotonation with a base (6), and 
rearomatizes subsequently by the activation of H2 or dehydrogenation of substrates like 

alcohols or amines or by C–H bond activation (7) (Scheme 2a).[56b,59] On the contrary, aliphatic 

pincer ligands typically proceed via amine/amide pathway (Scheme 2b).[60] More specifically, 

bond activation can occur by means of an inner- or outer-sphere mechanism. During an outer-
sphere mechanism, no direct metal–substrate interaction is observed (Scheme 2b).[57] 

However, in cases where a direct interaction between the metal center and the substrate takes 

place the reaction works via an inner sphere mechanism (Scheme 2c). [58] 

1.3.1.1 Hydrogenation of Ketones Catalyzed by Base Metal Pincer Complexes 

The catalytic hydrogenation of aldehydes and ketones to the corresponding primary and 
secondary alcohols represents an important synthetic methodology in organic synthesis.[61] 

While noble-metal complexes have long been known to facilitate this 
transformation[52a,52b,59a,62], the activity of base-metal catalysts featuring pincer ligands 

represent a rather new discovery in this field. In 2011, Milstein and co-workers reported Fe-

PNP catalysts Fe-1a and Fe-1b (Figure 4) for the hydrogenation of various aliphatic and 

(hetero)aromatic ketones. Both complexes operate under remarkably mild conditions 
(0.05 mol% Fe-1a/Fe-1b, 0.1 mol% KOtBu, 4.1 atm H2, rt, EtOH) and furnish the desired 

products in high yields Notably, complex Fe-1b represents a dihydride species, which does 

not require the application of KOtBu as base.[63]  

 

Figure 4. Selected examples of base metal pincer complexes, active in the hydrogenation of ketones. 
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Additionally, the group of Kirchner reported a structurally related iron PNP pincer complex, 
which was also shown to be active in the hydrogenation of ketones. However, the described 

system was less active (0.5 mol% Fe-2, 1.0 mol% KOtBu, rt, EtOH) and showed a significantly 

smaller substrate scope.[64] In 2012, Hanson and co-workers described the first cobalt PNP 
catalyst Co-1 (Figure 4), capable of reducing aliphatic and aromatic ketones to the respective 

alcohols. The described methodology operates under mild conditions (1 atm H2, 25–60 °C, 

2 mol% Co-1, 24 h) and yields the desired products in nearly quantitative yield. However, the 

system required the addition of 2 mol% Brookhart´s acid. [65] Later on, the group of Kempe 
reported a series of novel cobalt catalysts based on PN5P pincer ligands. Among the reported 

complexes Co-2 (Figure 4) was found to be the most active example for the hydrogenation of 

carbonyl groups after activation with NaO tBu. Co-2 was shown to be a suitable catalyst for the 
reduction of aryl–alkyl-, diaryl- and aliphatic ketones under mild condition with a good functional 

group tolerance.[66] Additionally, also manganese pincer complexes have been demonstrated 

to be efficient catalysts for the homogeneous hydrogenation of ketones. In their report, Beller 

and co-workers described the application of Mn-PNP pincer complex Mn-1 (Figure 4) as 
catalysts for the hydrogenation of a series of aliphatic and aromatic ketones. The system 

displays a good functional group tolerance as esters, amides, and C=C double bonds remain 

unaffected under the conditions developed.[67] Furthermore, Kempe prepared a series of PN5P 
Mn complexes which were active pre-catalysts for the reduction of ketones. Complex Mn-2 

(Figure 4) was shown to be the most active catalyst and subsequently was applied for the 

hydrogenation of structurally diverse aliphatic and aromatic ketones, with a high functional 

group tolerance.[68] 
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1.3.1.2 Hydrogenation of Amides Catalyzed by Base Metal Pincer Complexes 

The transition metal mediated hydrogenation of carboxamides is a highly desirable 
transformation in homogeneous catalysis. It constitutes an attractive atom-economic and 

environmentally benign access to amines, which are of importance for the chemical and 

pharmaceutical industry.[69]  

 

Scheme 3. Catalytic pathways for the hydrogenation of amides via C–O and C–N bond cleavage. 

However, due to the low electrophilicity of the carbonyl group, amides represent particularly 

challenging substrates for any hydrogenation reaction. In general, amide hydrogenation can 
proceed either through C–N (hydrogenolysis) or C–O (hydrogenation) bond scission of an 

intermediate hemiaminal (Scheme 3). The C–O bond cleavage results in the formation of the 

alkylated/benzylated amine, producing H2O as the only by-product. On the contrary, breaking 

of the C–N bond yields the free amine and the respective alcohol.[69] Moreover, a novel amide 
hydrogenation pathway was disclosed recently, producing the alkylated/benzylated amine 

under specific acidic reaction conditions via a hydrogen borrowing/autotransfer mechanism. [70]  

Initially, homogeneous ruthenium catalysts were explored regarding their potential as catalysts 
for the hydrogenation of amides. Following the seminal work of Cole-Hamilton and co-workers 

in 2012, several Ru-based systems for the highly selective cleavage of the C–N and the C–O 

bond, respectively, were described.[71] However, despite the remarkable advances regarding 

catalytic hydrogenations using base metal pincer complexes in recent years,  reports on 
respective amide reductions are scarce. In 2016, the groups of Milstein, Langer and Sanford 

almost simultaneously published the first examples in this respect, based on iron PNP pincer 

complexes (Fe-3 as well as Fe-4a/b, Scheme 4). The applied catalysts were shown to induce 
C–N bond scission in a number of different amides.[72] Milstein and co-workers demonstrated 

that Fe-3 was a suitable catalyst for the hydrogenolysis of activated aliphatic and aromatic 

2,2,2-trifluoroacetamides. However, activation with KHMDS was required and no reactivity was 
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observed with more common substrates including N-phenylacetamide and N-
phenylbenzamide.[72a] 

 

Scheme 4. Selected examples of non-noble metal pincer complexes for the catalytic hydrogenation of 
amides. 

In contrast to this, catalysts Fe-4a[72b] and Fe-4b[72c] reported by Sanford and Langer, 
respectively, showed broader substrate scopes and could be utilized also for the 

hydrogenation of  unactivated carboxamides. Bernskoetter and co-workers reported the 
pentavalent iron PNP-pincer complex Fe-5 (Scheme 4) for the hydrogenolysis of a several 

secondary formanilides and N-formylmorpholine. The system operates with an extremely low 

catalyst loading (0.018–0.07 mol%) and notably does not require an additional base. 
Interestingly, it was observed that the activity of Fe-5 towards otherwise almost unreactive N-

methylformanilide could be significantly enhanced in the presence of 20 equivalents of 

formanilide. Subsequent NMR experiments indicated that the catalyst forms a different resting 

state in the presence of the additive (Fe-6, Scheme 4). Consequently, Fe-5 is less vulnerable 
towards deactivating side reactions.[73] The observed reactivity was rationalized by 

computational studies, suggesting that the added formanilide assists in the C–N bond scission 

of the hemiaminal intermediate, which is the rate limiting step. [74] The very first example of a 
manganese catalyzed hydrogenolysis of amides was reported by Beller and co-workers. Upon 

activation with exogeneous base, PNN pincer complex Mn-3 (Scheme 4) was highly active for 

the reduction of various secondary and tertiary amides to the corresponding alcohols and 

amines under relatively mild conditions. Subsequently, also more challenging primary amides 
were amenable towards the developed methodology. However, more forcing conditions were 

shown to be necessary to obtain sufficient conversions and yields. Finally, the general 

applicability of the system was showcased by the successful hydrogenation of herbicide 

diflufenican.[75] In addition to this report, Prakash and co-workers described the hydrogenation 
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of several formamides to methanol and amines catalyzed by manganese PNP pincer complex 
Mn-1 (Scheme 4).[76]  

1.3.1.3 Hydrogenation of Nitriles Catalyzed by Base Metal Pincer Complexes 

The reduction of nitriles generally represents an important synthetic strategy for the 

preparation of diverse amines.[77] More specifically, primary amines constitute important 
intermediates for various applications in organic synthesis as well as in the production of bulk 

and fine chemicals.[69] Consequently, numerous methods for their synthesis starting from 

nitriles have been described in the literature, among which catalytic homogenous 
hydrogenation using defined transition-metal complexes is particularly desirable. However, 

due to the underlying reaction mechanism, the selective catalytic hydrogenation of nitriles to 

primary amines is particularly challenging (Scheme 5).[78] Consequently, the development of 

novel (catalytic) methodologies for their synthesis continues to be on-going subject of 
significant relevance. Homogeneous catalysts based on precious metals prevailed for this 

purpose for many years in both, industrial and academic settings. [79] However, in the past two 

decades vast progress has been achieved regarding their substitut ion by more abundant and 
less toxic alternatives, in particular using pincer complexes of Fe, Co and Mn. [67,78b,80]  

 

Scheme 5. Catalytic pathways for the hydrogenation of nitriles. 

In 2014, Beller and co-workers published a report describing the highly selective hydrogenation 

of nitriles to primary amines catalyzed by iron PNP pincer complex Fe-4c (Figure 5). Overall, 
41 substrates including aliphatic and (hetero)aromatic derivatives, were smoothly reduced and 

the desired products were obtained in excellent yields. Fe-4c operates under remarkably mild 

and even base-free conditions. Notably, also of several dinitriles, including industrially relevant 

adiponitrile, were successfully hydrogenated to the corresponding diamines. [80a] The first 
example of a related transformation, catalyzed by a manganese pincer complex, was disclosed 

by our group in 2016. Generally, complex Mn-1 (Figure 5) showed a wide applicability and 



13 
 

aromatic, benzylic, and aliphatic nitriles were shown to be suitable substrates. However, 
harsher conditions compared to Fe-4c were shown to be necessary.[67]  

 

Figure 5. Selected examples of non-noble metal pincer complexes for the catalytic hydrogenation of 
nitriles to primary amines. 

Milstein and co-workers demonstrated that Co-3 (Figure 5) is a suitable catalyst for the 
selective hydrogenation of nitriles to the corresponding primary amines. Generally, 23 different 

aromatic and aliphatic nitriles were successfully hydrogenated, and the desired products were 
obtained in good to high yields. However, in the case of penta- and hexanitrile, the formation 

of the corresponding secondary amines was observed. [80c] Fout and co-workers achieved an 

improved activity based on their air-stable Co(III) complex Co-4 (Figure 5). Notably, Co-4 
represented the first example of a first-row transition metal complex capable of hydrogenating 

acetonitrile and tert-butylnitrile.[80g] Additionally, Beller and co-workers reported an efficient 

cobalt based PNP pincer complex for the selective hydrogenation of  various aliphatic and 

aromatic nitriles to the respective primary amines. The applied Co catalyst Co-5 (Figure 5) 
operates under milder conditions as compared to related cobalt-based systems and only 

requires the addition of NaBHEt3 to obtain catalytic activity.[80k] 

1.4 Molybdenum (PNP) Pincer Complexes and their Application in 

Homogeneous Hydrogenations  

In the past decade, non-noble metal complexes were investigated extensively for the 

application as catalysts in homogeneous hydrogenation reactions.[52b] Significant progress in 
this direction was achieved specifically using PNP pincer complexes of  iron, cobalt, and 

manganese.[63–68,72–73,75–76,80] The “bifunctional” character of these metal-ligand systems 

enables a facile H-atom transfer onto polarized unsaturated substrates.[59c,81] Molybdenum 
would offer an attractive contribution to the field of base metal catalysis, given its comparably 

low cost and environmentally benign nature. However, reports on Mo PNP-pincer complexes 

were exceptionally scarce for a long time as compared to other metals.[82] The first examples 

of these coordination compounds were described by Haupt and Ellermann in 1987 and 1989, 
respectively (Figure 6).[83] Subsequently, the area remained relatively unexplored and only one 

additional complexes of this type was prepared as late as 2006.[84] Subsequently, efforts by 
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Kirchner and co-workers, but also the groups of Nishibayashi, Schneider, Jones, Bernskoetter, 
Berke and others gave access to diverse molybdenum PNP complexes.[85] Notably, the 

reported compounds largely featured pincer ligands with a central pyridine moiety (Figure 6).  

 

Figure 6. Selected examples of molybdenum PNP pincer complexes. 

In stark contrast to their organometallic chemistry, reports on the catalytic activity of 

molybdenum PNP pincer complexes in homogenous hydrogenations continue to be 
surprisingly rare. In 2016, at the beginning of this thesis, only four reports on this topic were 

known.[82,85h,85j,86]  

 

Scheme 6. a) Synthesis of Mo-2. b) Selected examples of the hydrogenation of secondary imines 
catalyzed by Mo-2. 

b) 

a) 
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In 2014, Berke and co-workers published their seminal work regarding the hydrogenation of 
secondary imines to the respective amines, catalyzed by the amido complex Mo-2 (Scheme 

6). This organometallic compound is accessible upon treatment of the parental Mo-chloride 

with NaHMDS (Scheme 6). Interestingly, treatment with KO tBu resulted in the formation of the 
corresponding alkoxide complex via ligand exchange. Applying a catalyst loading of 2 mol% 

and toluene as solvent at 140 °C and 60 bar H2, a series of substrates bearing electron-rich 

and -poor substituents, were fully hydrogenated to the corresponding amines in less than one 

hour. However, a p-NO2 substituted (8) as well as an aliphatic derivative (9) failed to display 
any catalytic activity (Scheme 6). Notably, the system does not require the addition of an 

exogeneous base for catalyst activation. Moreover, Berke and co-workers also tested Mo-2 for 

the hydrogenation of carbonyl compounds, selecting acetophenone and benzaldehyde as 
benchmark substrates. When acetophenone was applied, 1-phenylethanol was obtained in 

only 32% yield (3.5 h reaction time, 140 °C, 60 bar H2 and 1 mol% Mo-2). Interestingly, under 

similar rection conditions, no hydrogenation products of benzaldehyde were observed at all. [82]  

Subsequently, the group of Berke demonstrated, that Mo-2 was also an efficient catalyst for 
the hydrogenation of nitriles to secondary imines, including aliphatic cyclohexanecarbonitrile 

(Scheme 7). Selecting a catalyst loading of 5 mol% and THF as solvent, the system yielded 

the desired reaction products in modest to high yields and selectivities. Halides, including 
bromo-substituents (12) were well tolerated, and no dehalogenation was observed. However, 

application of 2-thiophenecarbonitrile (13), benzyl cyanide (14), and 3-chloro-4-

fluorobenzonitrile (15) resulted in either poor conversions or selectivities. [86] 

 

Scheme 7. Selected examples of the hydrogenation of nitriles catalyzed by Mo-2. 

Moreover, Berke and Bernskoetter described the ability of molybdenum PNP pincer complexes 

for the hydrogenation of CO2 in two independent reports.[85h,85j] Berke´s group successfully 
applied Mo-2 for the reduction of carbon dioxide to formate in the presence of NaHMDS. 

However, only stoichiometric reactions could be performed and efforts to conduct catalytic 

protocols resulted in maximum yields of up to 4%, even at 140 °C.[85h] Similarly, Bernskoetter 
and co-workers accomplished the reduction of CO2 to formate, employing a structurally unique 
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molybdenum PNP complex. The utilized Mo-compound allows for catalytic hydrogenation in 
the presence of DBU and LiOTf as additives, yielding a maximum TON of 35. [85j]  

In addition to this, only a handful of reports further demonstrated the potential of molybdenum 

PNP pincer complexes in catalytic applications. The group of Nishibayashi explored 

molybdenum based PNP pincer complexes based on pyridines and pyrroles for the reduction 

of N2.[85b,85d,85q] Further on, Jones and co-workers developed an acid-mediated isomerization 

of terminal olefins, catalyzed by PONOP-based hepta-coordinated hydrido-tricarbonyl Mo-PNP 

complexes.[85i]  
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2 Objectives of this work 

The development of efficient non-noble metal catalysts featuring PNP pincer ligands for the 
homogenous hydrogenation of carboxylic acid derivatives has attracted significant attention 

recently. However, the group six metals Cr, Mo and W have been largely overlooked in this 

context. Molybdenum in particular would offer an interesting alternative, given its 

biocompatibility and low cost.[82] The organometallic chemistry of molybdenum PNP pincer 
complexes has been studied intensively for many years and numerous examples have been 

described to date.[83–85] Interestingly, the vast majority feature aromatic ligand structures, while 

exclusively aliphatic motifs are only scarcely investigated. More importantly, the potential of 
these organometallic compounds as catalysts for hydrogenations in general has almost been 

ignored.[82] Based on these observations, the present thesis has two focal points: 

(1) Synthesis and characterization of structurally new molybdenum pincer complexes 

featuring aliphatic (PNP) ligands.  
(2)  Investigation of the performance of the prepared catalysts in the catalytic 

hydrogenation of organic substrates containing reducible C–C and C–X (X = O, N) 

multiple bonds. 

Aside from this, an enantioselective hydrogenation of an industrially relevant intermediate was 
investigated in cooperation with an internationally known industrial company. The aim of the 

project was the development of an efficient Ir-based catalyst system, which provides an 

enantiopure route to the desired target molecule using an industrially feasible catalyst 
loading.[87]  

Moreover, based on a recently published iron mediated example, the application of a cobalt 
based in situ catalyst system for the homogeneous hydrogenation of internal and terminal 

epoxides to anti-Markovnikov alcohols was explored here.[88] 
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3 Results and Discussion  

3.1 Synthesis and Characterization of Molybdenum Pincer Complexes 

At the beginning of our work we focused on the synthesis of new molybdenum pincer 
complexes featuring aliphatic PNP pincer ligands L1–L4 (Figure 7). 

 

Figure 7. Aliphatic PNP pincer ligands L1–L4 used for the synthesis of Mo-PNP complexes. 

Initial efforts reacting commercially available Mo(CO)6 and pincer ligand bis(2-

diisopropylphosphinoethyl)amine L1 in refluxing toluene resulted in the formation of Mo-8 
(Scheme 8) in 91% yield. Next, in order to prepare structurally and electronically more 

sophisticated compounds, we tested known molybdenum precursors 

Mo(η3−allyl)(CO)2(CH3CN)2Br and Mo(CO)2(PPh3)2(CH3CN)2 for the reaction with L1. When 

Mo(η3–allyl)(CO)2(CH3CN)2Br was treated with a slight excess of  L1 in toluene at room 
temperature, we were able to isolate the paramagnetic 17-electron complex Mo-11 

(Scheme 8) from the reaction mixture in 11% yield. Interestingly, the molybdenum central atom 

exists in a formal oxidation number of +I, rather than the anticipated +II state. Next, we 
investigated Mo(PPh3)2(CO)2(CH3CN)2 as the molybdenum precursor for the synthesis of 

corresponding pincer complexes. Applying THF as the reaction solvent under otherwise 

identical conditions as reported for the synthesis of Mo-11, we observed formation of Mo-9 

(Scheme 8) as a pale-yellow solid in 81% yield. Mo-9 is an 18-electron complex, featuring a 
molybdenum(0) atom, which additionally to the pincer ligand, is coordinated by an acetonit rile 

molecule. During our efforts to prepare crystals of Mo-9 suitable for X-ray analysis, we were 

surprised to obtain complex Mo-10 (Scheme 8) when a mixture of CH2Cl2/toluene was used 
as solvent. Complex Mo-10 is another example of a 17-electron molybdenum(I) complex, with 

the chlorine ligand presumably originating from a solvent molecule. Based on this observation, 

we subsequently aimed at the direct synthesis of Mo-10. Accordingly, 

Mo(PPh3)2(CO)2(CH3CN)2 was treated with L1 in DCM as the reaction media, resulting in the 
formation of Mo-10 in 68%, as a pale brownish solid. However, intensive efforts to prepare 

Mo-11 analogously by using dibromomethane as solvent and brominating agent, including 

reaction at −78°C, remained unsuccessful. In addition, an envisaged transformation of Mo-10 
into Mo-11 via chloride/bromide exchange employing KBr and NBu4Br, respectively, also 

failed.[89] 



19 
 

 

 

Scheme 8. a) Synthesis of  molybdenum PNP complexes Mo-8, Mo-9, Mo-10, and Mo-11. 
a) 1.) Toluene, ref lux, 16 h, 1.05 equiv. L1; b) 1.) CH3CN/benzene, 1.10 equiv. C3H5Br, ref lux, 16h; 

2.) 3.00 equiv. PPh3, CH3CN, ref lux, 1 h; 3.) 1.05 equiv. L1, toluene, 23 °C, 16 h; c) 1.) CH3CN/benzene, 
1.10 equiv. C3H5Br, ref lux, 16 h; 2.) 3.00 equiv. PPh3, CH3CN, ref lux, 1 h; 3.) 1.05 equiv. L1, DCM, 

23 °C, 16 h; d) 1.) CH3CN/benzene, 1.10 equiv. C3H5Br, reflux, 16 h; 2.) 1.05 equiv. L1, toluene, 23 °C, 
24 h. b) Molecular structures of Mo-8, Mo-9, Mo-10, and Mo-11 in the solid state. For Mo-8, only one 

molecule of the asymmetric unit is depicted. Thermal ellipsoids are drawn at 30% probability. Hydrogen 

atoms, except the N-bound, are omitted for clarity.  

Mo-8 Mo-9 

Mo-10 Mo-11 

a) 

b) 
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Next, we investigated the observed solvent-dependent reactivity of Mo(PPh3)2(CO)2(CH3CN)2  
with respect to other aliphatic PNP ligands. For this purpose, bis(2-

dicyclohexylphosphinoethyl)amine L2, bis(2-diphenylphosphinoethyl)amine L3 as well as 

bis(2-diethylphosphinoethyl)amine L4 were selected and subsequently tested for the reaction 
with Mo(PPh3)2(CO)2(CH3CN)2 in THF and CH2Cl2, respectively. Employing L3 as ligand for 

the intended transformation in THF under ambient conditions, resulted in a clean reaction and 

we were able to isolate the Mo(0) complex Mo-12a (Scheme 9) in an excellent yield of 91%. 

Interestingly Mo-12a, in contrast to Mo-9, features a PPh3 moiety coordinated to the central 
atom instead the expected acetonitrile ligand. A similar reaction pattern was observed in the 

case of L4, yielding the corresponding molybdenum(0) complex Mo-12b (Scheme 9) in 81% 

yield. However, we were unable to synthesize the corresponding acetonitrile derivatives of Mo-
12a and Mo-12b. On the contrary, when L2 was applied, formation of the intended acetonitrile 

adduct Mo-14 (Scheme 9) occurred. When the reaction media was switched to 

dichloromethane, L2 again reacted similarly to L1, providing access to the corresponding 

Mo(I)-chloride complex Mo-15 (Scheme 9) in a modest yield of 42%. Interestingly, treating 
Mo(PPh3)2(CO)2(CH3CN)2 with L3 in CH2Cl2 again resulted in the formation of Mo-12a 

according to 31P{1H} NMR analysis of the reaction mixture. Mo-12a was stable towards 

chlorination under the applied conditions and remained nearly unaffected even after stirring for 
several days. Nevertheless, the slow formation of a new singlet resonance at +63 ppm was 

observed. Hence, the reaction mixture was heated to reflux for three hours. Subsequent 

analysis by 31P{1H} NMR spectroscopy showed that Mo-12a was no longer present and 

revealed the unknown resonance at +63 ppm as the main species. Consequently, we were 
able to isolate the unknown product and determine its structure, by means of NMR 

spectroscopy as well as X-ray analysis, to be Mo-13a (Scheme 9). Surprisingly, Mo-13a 

represents a hepta-coordinated 18-electron Mo(II)-complex, featuring two chloride ligands 
attached to the central atom. Similar efforts applying L4 as ligand remained inconclusive as 

the formation of complex product mixtures occurred in any case, even at low temperature.[90] 
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Scheme 9. a) Synthesis of  Mo-PNP complexes Mo-12a, Mo-12b, Mo-13a, Mo-14 and Mo-15. 

b) Molecular structures of Mo-12a, Mo-12b, Mo-13a, and Mo-15 in the solid state. For Mo-15 only one 

molecule of the asymmetric unit is depicted. Thermal ellipsoids are drawn at 30% probability. Hydrogen 
atoms, except the N-bound are omitted for clarity. 

Additionally, also NNN pincer ligand bis-(2-pyridylmethyl)amine L5 was reacted with 
Mo(PPh3)2(CH3CN)2(CO)2 in DCM as well as THF, respectively. Interestingly, no difference in 

reactivity was observed regarding the applied solvent and complex Mo-16 (Scheme 10) was 

obtained in each case. Notably, Mo-16 is stable towards chlorinated solvents such as DCM 

and DCE and no chlorinated products were observed even after ref luxing for 24 h.[90] 

Mo-12a 

Mo-13a Mo-15 

Mo-12b 

a) 

b) 
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Scheme 10. a) Synthesis of  molybdenum NNN complex Mo-16. Molecular structure of Mo-16 in the 

solid state. b) Thermal ellipsoids are drawn at 30% probability. Hydrogen atoms, except the N-bound 

are omitted for clarity. 

The solid-state structures of all herein reported coordination compounds were determined by 
X-ray analysis. In general, all described complexes, except for Mo-13a, display a distorted 

octahedral coordination geometry of the donor atoms around the molybdenum center. In 
complexes Mo-8, Mo-12a and Mo-12b as well as Mo-16, the pincer ligands adopts a fac 

geometry around the Mo(0) atom. The remaining coordination sides are occupied by three CO 

ligands (Mo-8) or two CO-ligands and a triphenylphosphine (Mo-12a, Mo-12b and Mo-16), 
respectively. In the case of Mo-12a, Mo-12b and Mo-16, the CO ligands are in a cis orientation 

to each other. The triphenylphosphine ligand adopts a trans orientation to the central nitrogen 

atom of the pincer backbone in Mo-12a and Mo-12b. However, in Mo-16, a cis geometry is 

observed. The PNP ligands in Mo-9, Mo-10, Mo-11 and Mo-15 all exhibit a mer coordination 
mode with the two carbonyl ligands again displaying a cis configuration. Moreover, the 

chloride- (Mo-10, Mo-15), bromide- (Mo-11) and acetonitrile ligands (Mo-9) are all in the 

corresponding cis orientation to the nitrogen atom of the pincer backbone. In hepta-
coordinated molybdenum(II) complex Mo-13a, the coordination geometry around the 

molybdenum center can be best interpreted as distorted capped octahedral. The pincer ligand 

coordinates the metal center in a meridional fashion, while a cis geometry is observed once 

again for the CO ligands. 

 

Mo-16 

a) b) 
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3.2 Catalytic Hydrogenations using Molydenum Pincer Complexes 

3.2.1 Catalytic Hydrogenations of Ketones and Styrenes  

As described in the introduction, Berke and co-workers tested their molybdenum PNP pincer 
complex for the hydrogenation of acetophenone and benzaldehyde, respectively. However 

only poor conversions and product yields were reported, even under harsh conditions (1 mol% 

Mo-catalyst, 140 °C, 60 bar H2).[82] Due to its structural resemblance to Berke´s complex, we 
first tested our molybdenum(I) catalyst Mo-10 under similar conditions for the reduction of 

acetophenone 16. However, no catalytic activity could be detected using NaHMDS as additive 

(Table 2, Entry 2). Subsequent attempts in the absence of any additional reagent as well as 
the presence of 10 mol% KOtBu, respectively, also failed to give any conversion of the starting 

material (Table 2, Entries 1 and 3). Next, we studied the effect of NaBHEt3 (10 mol%), which 

is widely applied in pincer chemistry for catalyst activation, on the catalytic performance of Mo-
10. Interestingly, complete consumption of the starting material was observed after 3.5 h at 
140 °C, resulting in the formation of desired product 1-phenylethanol in 97% yield (Table 2, 

Entry 4). A similar experiment was then conducted using Mo-9, providing comparable results 

regarding conversion and product yield. However, based on practical reasons, we decided to 
select Mo-10 for our further investigations.  

Table 2. Catalytic hydrogenation of acetophenone in the presence and absence of Mo-10 and selected 
additives. 

 

Entry Additive Amount [mol%] Conversion [%][1] Yield [%][1] 

1 − – 0 <1 
2 NaHMDS 10 5 <1 

3 KOtBu 10 3 <1 
4 NaBHEt3

 10 >99 97 

5[2] NaBHEt3
 10 10 8 

Reaction conditions: 0.5 mmol of substrate, 1 mol% Mo-10, 0–10 mol% additive, 2 mL toluene, 
60 bar H2, 140 °C, 3.5 h. [1]Determined by GC analysis, using hexadecane as internal standard. 
[2]Reaction in the absence of Mo-10. 

A careful optimization of the reaction parameters revealed that full conversion for the 

benchmark substrate could still be achieved at 80 °C in toluene. However, the reaction had to 
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be carried out for 16 h with an increased catalyst loading of 5 mol%. Finally, the amount of 
additive needed for an efficient catalytic performance of Mo-10 could be reduced to one 

equivalent with respect to the catalyst. With optimized conditions in hand, we subsequently 

applied a variety of electronically diverse para-substituted acetophenones to our developed 
methodology (Scheme 11). 

 

Scheme 11. Catalytic hydrogenation of acetophenones in the presence of Mo-10/NaBHEt3. Reaction 

conditions:  0.5 mmol Substrate, 5 mol% Mo-10, 5 mol% NaBHEt3 (0.5M in THF), 2 mL toluene, 50 bar 
H2, 80 °C, 16 h. Conversions were determined by GC using hexadecane as internal standard. Isolated 

yields in parenthesis. [1]Reaction carried out for 24 h. 1,3-diphenyl-1-propanol was obtained as the 
reaction product. 

It could be demonstrated that electron-rich as well as -deficient derivatives work equally well, 

giving access to the corresponding secondary alcohols in 84–91% isolated yield. No 
dehalogenation products were detected in case of 4-fluoroacetophenone 16b. Notably, our 

catalyst system tolerated the presence of a thioether moiety (16d) and no catalyst poisoning 

effects were observed. Next, we studied the chemoselectivity of our catalyst system, selecting 
chalcone (16g) as a model substrate. However, under the applied conditions, full 

hydrogenation of both functional groups occurred, and 1,3-diphenyl-1-propanol was obtained 

in 91% yield. 

Subsequently, we decided to probe the general suitability of Mo-10 for the hydrogenation of 
unfunctionalized terminal and internal C=C double bonds, selecting 1-dodecene, styrene, and 

both cis- and trans-stilbene as benchmark substrates (Scheme 12). Only low catalyst activities 

were observed in the case of 1-dodecene, cis- and trans-stilbene, even at 130 °C. However, 
when more reactive styrene was used as a substrate at 130 °C, we were able to detect 
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ethylbenzene in a promising yield of 76%. Based on this result, we subjected electron-rich and 
-poor styrenes to the reaction with Mo-10. It could be demonstrated that the applied substrates 

were hydrogenated in medium to good yields (57–85 %) to the corresponding ethylbenzenes. 

In agreement with the vide supra reported reduction of 16d, no defluorination products were 
detected during the hydrogenation of 4-fluorostyrene 18b. Notably, no cleavage of the 

benzylether moiety took place when 4-benzoyloxy-3-methoxy-styrene 18e was tested. 

 

Scheme 12. Catalytic hydrogenation of  styrenes in the presence of  Mo-10/NaBHEt3. Reaction 
conditions: 0.5 mmol substrate, 5 mol% Mo-10, 5 mol% NaBHEt3 (0.5M in THF), 2 mL toluene, 50 bar 

H2, 80 °C, 24 h. [1]Yield determined by GC using hexadecane as internal standard. [2]Yield determined 
by 19F NMR of  the reaction mixture using hexafluorobenzene as internal standard. [3]Yield determined 

by 1H NMR of  the reaction mixture using 1,3,5-trimethoxybenzene as internal standard. 

More generally, Mo-10 was tested for the selective hydrogenation of diphenylacetylene and 
benzonitrile, respectively, applying the conditions reported in Scheme 12. Diphenylacetylene 

showed a promising conversion of 75%, however formation of a mixture of 1,2-diphenylethane 

(41%), cis- (17%) and trans-stilbene (17%) was detected. In the case of benzonitrile a 
conversion of 42% was observed yielding the secondary imine N-benzylidene benzylamine 

and the benzylamine in 29% and 13%, respectively.  
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3.2.2 Catalytic Hydrogenations of Formanilides 

As part of our on-going interest in base metal catalysis, we attempted the molybdenum 
catalyzed hydrogenation of amides to the corresponding amines and alcohols. Initially, the 

potential of  our Mo-PNP pincer complexes Mo-8, Mo-9, Mo-10, and Mo-11 for the 

hydrogenation of N-methylformanilide 19a was evaluated (Table 3). 

Table 3. Hydrogenation of N-methylformanilide 19a to N-methylaniline 20a and methanol 21 using 
dif ferent [Mo]-catalysts. 

 

Entry [Mo] T [°C] Conv. 19a [%][1] Yield 20a [%][1] 

1 Mo-8 130 10 9 
2 Mo-9 130 >99 99 

3 Mo-10 130 >99 99 
4 Mo-11 130 >99 99 

5[2] – 130 10 8 

6 Mo-10 100 >99 98 
7 Mo-11 100 >99 99 

8 Mo-9 100 76 73 
9 Mo-10 80 >99 99 

10 Mo-11 80 >99 99 
11[3] Mo-10 80 49 47 

12[3] Mo-11 80 46 46 

Reaction conditions: 0.5 mmol substrate, 5 mol% Mo-10, 10 mol% NaBHEt3 (0.5M in THF), 2 mL 
toluene, 50 bar H2, 80 °C, 24 h. Yield of  21 was not determined. [1]Determined by GC using 

hexadecane as internal standard. [2]Reaction in the absence of  [Mo] catalyst. [3]Reaction was 
performed with 2.5 mol% of [Mo] catalyst. 

While catalyst Mo-8 failed to display any activity at all (Table 3, Entry 1), complexes Mo-9, Mo-
10 and Mo-11 performed equally well under the selected reaction conditions (Table 3, Entries 

2–4). A further comparison at reduced temperatures revealed Mo-10 and Mo-11 as the most 
active catalyst systems for the attempted transformation. Interestingly, application of either Mo-

complex resulted in almost similar results, suggesting that both catalysts operate via the same 

active species. However, due to the low yielding synthesis of Mo-11, catalyst Mo-10 was 
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selected for the optimization reactions. Eventually, the desired target molecule N-methylaniline 
20a was obtained in 98% yield, applying a combination of 5 mol% of Mo-10 and NaBHEt3, 

respectively, at 100 °C in toluene in the presence of 50 bar H2 (Table 3, Entry 6).  

Next, we explored various N-methyl formanilides, bearing electron-donating and -withdrawing 
substituents (Scheme 13). Gratifyingly, most meta- and para-functionalized substrates were 

hydrogenated smoothly under the optimized conditions, yielding the desired N-methylanilines 

in good to excellent isolated yields. On the contrary, substituents in ortho-position resulted in 

significantly lower catalyst activities, even at 130 °C (19s and 19t). 

 

Scheme 13. Substrate scope of  amide hydrogenation catalyzed by Mo-10. Reaction conditions: 
0.5 mmol substrate, 5 mol% Mo-10, 5 mol% NaBHEt3 (0.5M in THF), 2 mL toluene, 50 bar H2, 80 °C, 

24 h. Conversions of amides were determined by GC using hexadecane as internal standard. Isolated 
yields of anilines given in parenthesis. Yields of methanol were not determined. [1]Reaction at 130 °C. 
[2]Yield determined by GC using hexadecane as internal standard. 
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Electron-rich derivatives were shown to be less reactive under the developed methodology 
and higher temperatures were required in some cases (19b, 19f, 19g, 19l and 19m). The 

system could tolerate reducible functional groups including fluorides (19h), pyridines (19k), 

benzylic ethers (19f), C=C double bonds (19l) and esters (19m), and no competing side 
reactions were observed. Nevertheless, only low conversions and yields were obtained, when 

cyano- (19n) and nitro- (19o) moieties were applied, presumably due to their strongly 

coordinating nature. Additionally, partial dehalogenation was observed in the presence of 

chloride substituents (19i).  

 

Scheme 14. a) Hydrogenation of different amides to the corresponding amines and alcohols catalyzed 
by Mo-10.[1][2] b) Selective hydrogenation of a formamide moiety in the presence of  another amide 

catalyzed by Mo-10.[1][3] Reaction conditions: 0.5 mmol substrate, 5 mol% Mo-10, 5 mol% NaBHEt3 
(0.5M in THF), 2 mL toluene, 50 bar H2, 80 °C, 24 h. [1]Conversions were determined by GC using 

hexadecane as internal standard. [2]Yields were determined by GC using hexadecane as internal 
standard and refer to anilines. Yields of alcohols were not determined. [3]Isolated yield of 27 given, yield 

of  21 was not determined. 

Subsequently, we investigated the broader applicability of our catalyst system with respect to 
other aromatic amides (Scheme 14). However, with exception of N,N-diphenylformamide 

(22d), only modest conversions and yields were obtained, even in the case of activated 
trif luoroacetamides 24a and 24b. Interestingly, significantly lower reactivities were observed 

for secondary amides (19a vs 22a, 24a vs 24b, 25a vs 25b), thus hinting at a detrimental effect 

a) 

b) 
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of an NH moiety on the catalyst performance. Eventually, based on the observed high 
preference of our molybdenum catalyst towards N-methylated formanilides, we attempted a 

selective hydrogenation in the presence of another amide functionality. Hence, model 

substrate 26 was prepared and subsequently subjected to our benchmark conditions. 
Gratifyingly, the desired selective hydrogenolysis of the formamide moiety was observed, 

yielding target molecule 27 in 93% isolated yield. Notably, the benzamide moiety remained 

molecularly unaffected. 

 

  

Scheme 15. a) Synthesis of catalytic intermediate Mo-17 f rom Mo-10. Reaction conditions: 1.) 100 µmol 
Mo-10, 105 µmol NaBHEt3 (1M in THF), 10 mL THF, 21 °C, 1 h. 2.) 105 µmol N-formylaniline, 21 °C, 

1 h. b) Molecular structure of Mo-17 in the crystal. Only one molecule of the asymmetric unit is depicted. 
Displacement ellipsoids correspond to 30% probability. Hydrogen atoms except the N-bound are omitted 

for clarity. c) Control experiments to get insight on the active catalyst species (dashed arrows) with the 
experimentally observed products (H2 and the crystal structure of  Mo-17) and the intermediates 

proposed (Mo-18 and Mo-19). Gibbs energies calculated for the dehydrogenation of Mo-19 at different 

pressure.  

Next, we became interested in the nature of the active catalyst species and subsequently  

performed a series of control experiments for this purpose. In the course of our investigations, 

we noticed rapidly occurring gas evolution upon the treatment of Mo-10 with NaBHEt3. This 
gas could either be H2 (formed e.g. by deprotonation of the pincer ligand with NaBHEt3) or CO 

(via replacement of a carbonyl ligand with a hydride). Consequently, a scale up experiment 

(100 μmol of Mo-10) was conducted and the obtained gas was analyzed by GC, revealing it to 

b) c) 

Mo-17 

a) 
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be dihydrogen. Hence, we concluded, that Mo-10 presumably forms a pincer amido species, 
which was additionally supported by analysis of the reaction mixture via HR-ESI mass 

spectrometry. Furthermore, we investigated the catalyst´s poor reactivity regarding secondary 

amides in more detail. Carrying out a stochiometric control experiment, using parental 
formanilide 22a as substrate, we were able to isolate catalyst-substrate complex Mo-17 from 

the reaction mixture (Scheme 15). Interestingly, Mo-17 features two molybdenum centers in 

the formal oxidation states of (0), with the NH moieties of the pincer ligands being intact. The 

obtained structure suggests that a redox reaction has taken place at some point during the 
activation/reaction sequence. Therefore, Mo-10 was analyzed by means of EPR spectroscopy 

after activation with NaBHEt3. However, no signal of a paramagnetic species could be 

detected, indicating, that the observed reduction of the molybdenum central atom already 
occurs at this stage. A potential mechanism was proposed based on DFT calculations, using 

the M06 functional, including toluene solvation by the SMD model (Scheme 15). It could be 

shown that the hydrogenation of Mo-19 to give Mo-18, is nearly isoenergetic, revealing a small 

preference for Mo-19 at 1 bar and for Mo-18 at 50 bar H2, respectively. These results are in 
agreement with the observed evolution of H2 during the catalyst activation. Finally, the potential 

role of Mo-17 in the catalytic cycle was reviewed by carrying out the benchmark reaction in the 

presence of 2.5 mol% of Mo-17. Gratifyingly, full conversion of 19a was observed and we were 
able to isolate N-methylaniline 20a in 92 % yield. 

Moreover, the general reaction mechanism of the Mo-10 catalyzed hydrogenolysis of amides 
was calculated by computational studies (Scheme 16). Generally, two different reaction 

pathways were considered. In absence of alcohol, the molybdenum catalyst induces the 
reduction of the amido carbonyl group to the corresponding hemiaminal and facilitates  the 

subsequent cleavage of the C–N bond (green cycle). N-methylaniline is obtained as the 

reaction product alongside formaldehyde, which is further reduced to methanol by Mo-18. 
Catalyst Mo-19 can then add another molecule of H2 and induce another catalytic cycle. In the 

presence of alcohol, however, a Mo-alkoxide species (Mo-20) is formed, which represents the 

catalyst´s resting state. Mo-20 reacts with a hemiaminal to form Mo-21, which then assists in 

the following cleavage of the hemiaminal C–N bond and thus regenerates Mo-20. Eventually 
the active catalyst is regenerated by methanol displacement upon reaction of Mo-20 with H2. 

Presumably, the catalyst adopts a different resting state when secondary amides are applied. 

Here, a reaction with Mo-18 results in the formation of a relatively stable a catalyst-substrate 
complex (Mo-17) that inhibits the catalytic activity. 
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Scheme 16. General mechanism for the amide hydrogenation in the absence (green) and presence 
(black) of methanol. Squares indicate the catalyst resting state in the presence of MeOH and substrate 

(orange). 
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3.2.3 Catalytic Hydrogenations of Nitriles 

During our investigations regarding the hydrogenation of ketones and styrenes, mediated by 
Mo-9, we also tested the catalyst´s suitability for the selective reduction of benzonitrile 28a to 

benzylamine 29a. Applying 130 °C and 5 mol% catalyst loading in toluene, a modest 

conversion of 42% was observed. However, the system showed a poor product selectivity with 
respect to the intended primary amine (13%).[89] Assuming that catalyst decomposition might 

be a problem, we reinvestigated the desired transformation employing molybdenum 

complexes Mo-8–Mo-16 under milder conditions (100 °C), alongside 10 mol% of NaBHEt3 
(Table 4, Entries 1–13). 

Table 4. Initial screening of [Mo]-catalysts and reaction parameters.  

 

Entry [Mo] Conversion [%][1] Yield 29a [%][1] Yield 30a [%][1] 

1 Mo-9 >99 58 40 
2 Mo-10 >99 52 42 

3 Mo-12a 62 38 20 
4 Mo-12b 70 41 24 

5 Mo-13a <1 <1 <1 
6 Mo-15 78 41 35 

7 Mo-16 <1 <1 <1 
8[2] Mo-9 90 50 38 

9[2] Mo-10 81 42 35 

10[3] Mo-9 >99 55 41 
11[4] Mo-9 >99 96 <1 

12[5] Mo-9 4 <1 <1 
13[6] – 7 <1 <1 

Reaction conditions: 0.5 mmol substrate, 5 mol% [Mo]-catalyst, 10 mol% NaBHEt3 (1M in THF), 
2 mL toluene, 50 bar H2, 80 °C, 24 h. [1]Determined by GC using hexadecane as internal standard. 
[2]80 °C. [3]5 mol% NaBHEt3 (0.5M in THF). [4]0.5 mmol substrate, 5 mL toluene. [5]No NaBHEt3 

added. [6]No catalyst was used.  

The most promising results were obtained using Mo-9 and Mo-10, respectively, while all other 
catalysts either gave incomplete conversion of the starting material or displayed no catalytic 

activity at all. Nevertheless, despite showing promising activities, Mo-9 and Mo-10 were not 

selective under the reported conditions and 29a and 30a we observed as approximately 1:1 
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mixture in both cases (Table 4, Entries 1 and 2). Subsequent experiments eventually showed 
Mo-9 to be the more active catalyst, as compared to Mo-10. In the due course of the 

optimization, a solvent screening revealed toluene to be the solvent of choice. Interestingly, no 

product formation was observed in iPrOH, which is among the most common solvents used in 
base metal catalyzed hydrogenations of nitriles. [67,80a,80d] Additionally, the amount of additive 

could be reduced to 5 mol% without any loss in catalyst activity. Finally, we probed  the 

influence of the substrate concentration on the reaction outcome. Hence, in a series of 

experiments, the volume of the toluene was varied from 1–6 mL, corresponding to 
concentrations of 28a from 0.08–0.5M (Table 5).  

Table 5. Screening of different substrate concentrations. 

 

Entry V [mL] Conc. [M] Conv. [%][1] Yield 29a [%][1] Yield 30a [%][1] 

1 1 0.50 >99 20 72 

2 2 0.25 >99 58 40 
3 3 0.17 >99 62 38 

4 4 0.13 >99 79 13 
5 5 0.10 >99 96 <1 

6 6 0.08 90 87 <1 

Reaction conditions: 0.5 mmol substrate, 5 mol% Mo-9, 5 mol% NaBHEt3 (0.5M in THF), 1–6 mL 
toluene, 50 bar H2, 80 °C, 24 h. [1]Determined by GC using hexadecane as internal standard. 

As summarized in Table 5, deviations from the originally used solvent amount (2 mL, 0.25M) 

resulted in profound changes of the observed product selectivity. Increasing the dilution  
favored the formation of the desired primary amine 29a, while decreasing it had a negative 

impact on the desired reactivity. Optimal results were obtained at a concentration of 0.1M. 

Here, full conversion of the starting material was still achieved, while the yield of  benzylamine 

29a improved to 96%. When the amount of toluene was further increased, a drop of the catalyst 
activity occurred.  

Next, we tested the general applicability of our developed methodology for the hydrogenation 
of electronically diverse benzonitriles (Scheme 17). Generally, it could be demonstrated that 
Mo-9 is particularly well suited for the catalytic reduction of electron rich derivates. Substitution 

in the ortho-, meta-, and para-positions were shown to have only minor influences on the 

catalytic performance of Mo-9. Notably, even a sterically more hindered substrate 28n bearing 
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substituents in both ortho positions was hydrogenated smoothly without harsher conditions 
being required. Moreover, sensitive functional groups were tolerated well. No cleavage of 

benzylic ethers and dehalogenation of chlorides could be detected. In addition, we were able 

to demonstrate the applicability of our catalyst system for the hydrogenation of aliphatic nitriles. 
Decanitrile and cyclohexylcarbonitrile were successfully reduced in the presence of Mo-9 to 

the corresponding primary amines 30 and 31 in 80% and 86% yield, respectively. 

 

Scheme 17. Substrate scope for nitrile reduction catalyzed by Mo-9. Reaction conditions: 0.5 mmol 
substrate, 5 mol% Mo-9, 5 mol% NaBHEt3 (0.5M in THF), 5 mL toluene, 50 bar H2, 80 °C, 24 h. Isolated 

yields given. 

On the contrary, benzonitriles featuring electron-deficient groups, including carbonyl- (32a and 
32b), CO2Me- (32c), CN- (32d), NO2- (32e), and CF3- (32f and 32g), and were significantly 

less reactive under our reaction conditions (Scheme 18). Here, only poor conversions and 
product yields were obtained. However, meta-CF3-substituted nitrile 28l constituted an 

exception to this trend, as its corresponding primary amine could be isolated in 61% yield. 
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Moreover, we tested pyridine (32h), furan (32i), and thiophene (32j) based heteroaromatic 
derivatives. However, the desired primary amines could not be detected.  

 

Scheme 18. Selected examples of  unsuccessful nitriles. Reaction conditions: 0.5 mmol substrate, 

5 mol% Mo-9, 5 mol% NaBHEt3 (0.5M in THF), 5 mL toluene, 50 bar H2, 80 °C, 24 h. Conversions and 
yields (in parenthesis) were determined by GC using hexadecane as internal standard. [1]Secondary 

imine was detected as the main product. 

Finally, to understand the structural nature of the organometallic species formed upon the 
reaction of the pre-catalyst with the applied additive, a stochiometric control experiment was 

conducted (Scheme 19). Therefore, 0.5 mmol of Mo-9 were treated with two equivalents of 
NaBHEt3 under ambient conditions using toluene as solvent. The formation of a clear, intensely 

red solution was observed within less than one minute, indicating a rapidly proceeding reaction.  
31P{1H} NMR spectroscopy after one hour revealed complete consumption of Mo-9 and the 
formation of a new singlet resonance at +74 ppm. We were subsequently able to obtain crystals 

suitable for X-ray analysis from the reaction mixture, which then provided the solid-state 

structure of Mo-9a. Evidently, NaBHEt3 reacts as a base and deprotonates the catalyst 

precursor Mo-9. However, the deprotonation occurs at the CH3-group of the coordinated 
acetonitrile ligand, while the NH moiety of the pincer backbone remains surprisingly unaffected. 

Ultimately, to verify the role of  Mo-9a in the catalytic cycle, the benchmark reaction was 

performed employing 5 mol% of Mo-9a in the absence of any additive. Remarkably, we 

observed full conversion of 28a and formation of benzylamine 29a as the sole reaction product 
in 92% yield. 
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Scheme 19. a) Synthesis of Mo-9a. b) Solid state structure of Mo-9a. Thermal ellipsoids are drawn at 
30% probability level. Hydrogen atoms, except the N-bound are omitted for clarity. Disordered parts of 

the molecule are only shown in one orientation. 

  

Mo-9a 

a) 

b) 
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3.2.4 Ir-Catalyzed Enantioselective Hydrogenation of an Agrochemical Building Block 

The enantioselective hydrogenation of unactivated, sterically hindered C=C bonds represents 
a challenging task in catalysis. Traditionally, the best results are obtained using chiral 

Crabtree/Pfaltz-type Iridium catalysts.[91] The development of an efficient Ir-based catalyst for 

the stereoselective synthesis of chiral tetrahydroquinoline 35, needed for the synthesis of an 
agrochemical, via enantioselective hydrogenation of 34 was the aim of this project (Scheme 

20, a). 

 

Scheme 20. a) Desired transformation. b) Lead structure Ir-1 and potential parameters for structural 

optimization. c) General synthesis of pyridiyl alcohols 37a–r, used for the ligand synthesis. 

At the outset of our studies, a catalyst screening revealed Ir-complex Ir-1 as optimum system. 
Hence, 5a was selected as starting point for a structural optimization, focusing on groups R1, 

R2 and R3 (Scheme 20, b). Chiral building blocks 36a and 36b were used as starting materials 
for the synthesis of ligand precursors 37a–r via a Suzuki cross coupling/deprotection sequence 

and thus allowed for straightforward variations on both, R1 and R3 (Scheme 20, c). Eventually, 

iridium complexes Ir-1–Ir-22 were obtained from the reaction of 37a–r with different 
chlorodialkylphosphines and subsequent treatment of the in situ formed phosphonites with 

[Ir(COD)2]BArF (Scheme 21). Next, the performance of the prepared pre-catalysts in the 

hydrogenation of 1 (60 bar H2, 85 °C, 6–40 h, HFIP, 0.1–0.01 mol% [Ir]) were probed. 

Interestingly, employing a methyl group in the 4-position of the pyridine moiety resulted in more 
reactive catalyst systems (Ir-1 vs. Ir-2, Ir-4 vs. Ir-6 and Ir-12 vs. Ir-19, Table 6, Entries 2 vs. 3, 

a) 

b) 

11

11

11

11

11

11

11

11

11 

c) 
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5 vs. 7 and 12 vs. 17). Similarly, a catalyst bearing cyclohexyl substituents on the phosphorus 
atom was found to provide superior results in comparison to its tBu analog (Ir-2 vs. Ir-6, Table 

6, Entries 4, 7). However, complexes featuring less bulky alkyl groups on the phosphorus atom 

showed reduced activities and enantioselectivities compared to Ir-6 (Ir-5, Ir-7 and Ir-8, Table 
6, Entries 6, 8, 9).  

 

Scheme 21. Synthesis of [Ir]-catalysts. 

Finally, the influence of R2 on the catalyst performance was investigated. Applying electron-
deficient phenyl moieties had a profoundly negative impact on the reaction outcome (Ir-10 and 

Ir-11 vs. Ir-6, Table 6, Entries 7, 10, 11). On the contrary, p-tert-butyl-substituted derivative Ir-
15 provided an enhanced reactivity as compared to Ir-6 (Table 6, Entry 13). Based on this 

observation, alkyl-substituted complexes Ir-16–Ir-18 were prepared. While Ir-16 and Ir-17 
were less active than Ir-15 (Table 6, Entries 14, 15), application of Ir-18 resulted in 98% 

conversion (Table 6, Entry 16). Employing sterically more demanding alkyl substituents did not 

result in catalytically more active systems (Ir-20, Ir-21 and Ir-22; Table 6, Entries 18, 19 and 
20). Notably, excellent conversion of the starting material and high enantioselectivity were 

maintained when the catalyst loading was reduced to 0.01 mol% (Table 6, Ent ry 21). 
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Additionally, the reaction was successfully scaled up to 25 mmol, revealing no loss in reactivity 
and selectivity (Table 6, Entry 22).  

Table 6. Selected hydrogenation results of 34. 

 

Entry [Ir] Time [h] 
Loading 
[mol%] 

Conv. [%] TON ee [%] 

1 Ir-1 16 0.1 99.2 992 98.0 (R) 
2 Ir-1 6 0.1 81.5 815 97.5 (R) 

3 Ir-2 6 0.1 94.5 945 97.5 (R) 

4 Ir-2 16.5 0.05 86.8 1736 97.6 (R) 
5 Ir-4 16.5 0.05 88.2 1764 97.6 (S) 

6 Ir-5 16 0.1 30 300 90.0 (S) 
7 Ir-6 16.5 0.05 94.4 1888 97.3 (R) 

8 Ir-7 6 0.1 76.0 760 96.0 (R) 
9 Ir-8 16.5 0.05 87.9 1758 95.8 (R) 

10 Ir-10 16.5 0.05 34.6 692 83.2 (R) 
11 Ir-11 16.5 0.05 64.7 1294 92.4 (R) 

12 Ir-12 16.5 0.05 98.9 1978 95.8 (S) 

13 Ir-15 16 0.025 91.6 3664 97.3 (R) 
14 Ir-16 16 0.025 42.2 1688 94.5 (R) 

15 Ir-17 16 0.025 81.7 3268 97.9 (R) 
16 Ir-18 16 0.025 98.0 3920 98.1 (R) 

17 Ir-19 16 0.025 94.1 3764 97.5 (R) 
18 Ir-20 16 0.025 60.0 2400 92.1 (R) 

19 Ir-21 16 0.025 74.0 2960 98.0 (R) 

20 Ir-22 16 0.025 97.5 3900 97.3 (R) 
21[1] Ir-18 40 0.01 93.9 9390 98.0 (R) 

22[2] Ir-18 40 0.01 93.4 9340 97.6 (R) 

Reaction conditions: 3 mmol substrate, 0.01–0.1 mol% [Ir]-catalyst, 4 mL HFIP, 60 bar H2, 85 °C, 6–

40 h. [1]12 mmol scale, 16 mL HFIP. [2]25 mmol scale, 33 mL HFIP. 

Ultimately, we investigated whether the reaction proceeds via a direct hydrogenation of the 

internal double bond, or if an initial isomerization to the terminal position at the C2 carbon takes 
place. Hence, a deuteration experiment was conducted, using 0.025 mol% of Ir-18 and 40 bar 

D2 (Scheme 22). 
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Scheme 22. Labeling experiments using D2. Reaction conditions: 3 mmol Substrate, 0.025  mol% Ir-18, 
4 mL HFIP, 40 bar D2, 85 °C, 16h. 

The obtained results suggest that Ir-18 facilitates the direct hydrogenation of the internal C=C 
bond, as indicated by the observed deuteration at C1 and C3. Interestingly, some deuterium 

was also incorporated into the CH3 group attached to C1. This, however, would hint at the 

presence of a second and simultaneously occurring pathway, which involves an isomerization 
of the double bond from the C1–C3 to the C1–C2 position, prior to the deuteration event. 
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3.2.5 Catalytic Hydrogenations of Epoxides to anti-Markovnikov-Alcohols by a 
Cobalt/Triphos Catalyst  

The development of efficient catalytic protocols for the synthesis of alcohols continues to attract 
significant attention from synthetic chemists. [14] Here, the selective hydrogenation of epoxides 

to anti-Markovnikov type alcohols via base metal catalysis represents a particularly interesting 
route.[92] The general feasibility of this methodology was recently demonstrated by our group 

applying a Fe(BF4)2.6H2O/tris(2-(diphenylphosphanyl)phenyl)phosphane (tetraphos) based 

catalyst system. Employing terminal epoxides as starting materials, the reported protocol 

yielded the corresponding primary alcohols in high yields and selectivities. However, internal 
epoxides did not undergo the desired transformation.[93] Hence, we became interested in the 

development of a more broadly applicable catalyst system.  

Table 7. Optimization of cobalt-catalyzed hydrogenation of epoxide 36a. 

 

Entry [Co] Additive] T [oC] Yield 37a (%)[1] 

1[2] Co(BF4)2
.6H2O HNTf 2 120 23 

2[2] Co(NTf 2)2 – 120 43 

3 Co(NTf 2)2 – 100 <10 
4 Co(NTf 2)2 Zn(OTf)2 100 74 

5 Co(NTf 2)2 Zn(OTf)2 80 80 

6 Co(NTf 2)2 In(OTf)3 80 74 
7 Co(NTf 2)2 Al(OTf)3 80 <10 

8 Co(NTf 2)2 Fe(OTf)2 80 18 
9 – Zn(OTf)2 80 – 

10[3] Co(NTf 2)2 Zn(OTf)2 80 – 
11[4] Co(NTf 2)2 Zn(OTf)2 80 85 

12[4] Co(BF4)2
.6H2O Zn(OTf)2 80 80 

13[4] Co(ClO4)2
.6H2O Zn(OTf)2 80 73 

Reaction conditions: 0.5 mmol substrate, 3 mol% [Co]-catalyst, 6 mol% triphos, 3 mol% additive, 

4 mL THF, 40 bar H2, 80–120 °C, 16 h. [1]Determined by GC using hexadecane as internal standard. 
[2]3 mol% triphos. [3]Without triphos. [4]7 mol% Zn(OTf)2. 

Using 2-methyl-3-phenyloxirane 38a as the benchmark substrate, an initial catalyst screening 

revealed the formation of the desired product 39a in 23% yield, when a combination of 
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Co(BF4)2∙6H2O/triphos/HNTf2 was employed at 120°C (Table 7, Entry 1). A more reactive 
catalyst system was obtained when Co(NTf)2 was applied as the cobalt precursor (Table 7, 

Entry 2). Notably, when 3 mol% of Zn(OTf)2 were used as additive, the reaction temperature 

could be reduced to 80°C and 39a was observed in 80% yield (Table 7, Entry 5). Finally, 
optimal results were obtained, using a Co(NTf)2/triphos based in situ catalyst in the presence 

of 7 mol% Zn(OTf)2, providing 39a in 85% yield (Table 7, Entry 11).  

Next, having optimized reaction conditions in hand, we explored the hydrogenation of various 

di- and trisubstituted internal epoxides (Scheme 23). Generally, both aromatic and aliphatic 
derivatives, were hydrogenated smoothly and the desired secondary alcohols were obtained 

in good yields with high regioselectivities. Moreover, the system showed a good functional 

group tolerance and no dehalogenation products were observed in the case of 37f, 37g, 37i 
and 37n. Notably, even an ester moiety (37q), typically hydrogenated by cobalt/triphos 

catalysts, was not reduced under our conditions. [94]  

 

Scheme 23. Cobalt-catalyzed hydrogenation of  internal epoxides. Reaction conditions: 0.5 mmol 
substrate, 3 mol% Co(NTf2)2, 6 mol% triphos, 7 mol% Zn(OTf)2, 4 mL THF, 40 bar H2, 80 °C, 16 h. [1]The 
diastereoisomeric ratio is 1:1.1. [2]3 mol% Co(BF4)2∙6 H2O, 4 mL 1,4-dioxane, 60 °C, 20 h. [3]The 

diastereoisomeric ratio (2.8:1) and yield were determined by GC. 

Additionally, also mono- and di-substituted terminal oxiranes were applicable to our 
methodology, yielding the corresponding linear alcohols in good yields and high 

regioselectivities (Scheme 24). Amide, silyloxy, alkene and ester substituents were well 
tolerated, and no hydrogenated by-products were observed. The versatility of our catalyst 

system was finally highlighted by the successful transformation of natural product -derived 

substrates 40g–40i. 
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Scheme 24. Cobalt-catalyzed hydrogenation of  terminal epoxides. Reaction conditions: 0.5 mmol 
substrate, 3 mol% Co(BF4)2∙6 H2O, 6 mol% triphos, 6 mL 1,4-dioxane, 40 bar H2, 80 °C, 16 h. 
[1]4 mL THF as solvent. [2]Yield was determined by GC using hexadecane as internal standard. 
[3]3 mol% Co(NTf2)2, 7 mol% Zn(OTf)2. [4]The major isomers are shown. 

To understand the underlying reaction mechanism, a series of control experiments was carried 

out (Scheme 25). Initially, 36a was reacted under benchmark conditions in the absence of  
dihydrogen, using an argon atmosphere. 1-Phenylpropan-2-one 38a was isolated in 94% yield 

from the reaction mixture, indicating that a rearrangement to the carbonyl compound takes 

place in the first step of the reaction. 

 

Scheme 25. Selected mechanistic studies. a) 0.5 mmol Substrate, 3 mol% Co(NTf 2)2, 6 mol% triphos, 
7 mol% Zn(OTf)2, 4 mL THF, 80 °C. 
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Consequently, in separate experiments, 38a was exposed to our catalyst system in the 
presence of 40 bar H2 and D2 respectively, resulting in the formation of 37a and [D]2-37a in 

92% and 71% yield. Moreover, we investigated the influence of  the applied cobalt and zinc 

salts on the observed Meinwald rearrangement of 36a to 38a (Table 8). Interestingly, the 
reaction already proceeded in the absence of the co-catalyst yielding 38a in 53% (Table 8, 

Entry 2). Nevertheless, in the presence of Zn(OTf)2, an improved yield of 38a was observed 

(Table 8, Entry 4). 

Table 8. Control experiments regarding the role of Zn(OTf)2. 

 

Entry 
Co(NTf)2 
[mol%] 

Triphos 
[mol%] 

Zn(OTf)2 
[mol%] 

Yield  

36a [%][1] 

Yield  

38a [%][1] 

1 – – – 98 – 
2 3 6 – 41 53 

3 – – 7 <1 >99 
4 3 6 7 30 64 

Reaction conditions: 0.5 mmol substrate, 0–3 mol % Co(NTf 2)2, 0–6 mol% triphos, 0–7 mol% 

Zn(OTf)2, 4 mL THF, 40 bar N2, 80 °C, 16 h. [1]Determined by GC using hexadecane as internal 
standard. 

 

Based on the obtained results, we concluded that the reaction generally proceeds via a Lewis 

acid induced rearrangement of the epoxide to the corresponding carbonyl compound followed 

by subsequent cobalt/triphos mediated hydrogenation to the respective anti-Markovnikov 
alcohol. 
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4 Summary and Outlook 

The aim of the present work was the preparation and structural characterization of 

molybdenum complexes featuring aliphatic pincer ligands and, more importantly, the 

exploration of their potential as catalysts in homogeneous hydrogenation reactions. Reports 
on the synthesis of  these coordination compounds and their utilization in catalytic reductions 

were exceptionally scarce until recently. 

Initially, a synthetic methodology for the synthesis of the mentioned coordination compounds 

was developed, giving access to ten previously unknown Mo pincer complexes (Figure 8). 

Employing Mo(PPh3)2(CO)2(CH3CN)2 as molybdenum precursor, a strong influence, 
particularly of the employed solvent, but also of the applied ligand on the reaction outcome 

was observed. Interestingly, three 17-electron complexes featuring a molybdenum center in 

the unusual formal oxidation state of +I could be obtained (Mo-10, Mo-11, and Mo-15). 

 

Figure 8. Overview of synthesized molybdenum complexes. 

The synthesized molybdenum catalysts were subsequently investigated in more detail 

regarding their ability to hydrogenate different organic substrates. Extensive efforts 
demonstrate that Mo-9 and Mo-10 in particular are efficient catalysts for the (selective) 

hydrogenation of acetophenones, styrenes, N-methylated formanilides, and both aromatic and 

aliphatic nitriles. The catalytic reduction of carboxamides by Mo-10 was investigated more 

closely by means of DFT studies, which provided in-depth information regarding the potential 
active catalyst species, as well as the underlying reaction mechanism. Notably, we were able 

to isolate and structurally characterize catalytic intermediate Mo-17. The active role of this 

catalyst/substrate complex in the catalytic cycle was established in control experiments. 
Notably, this report constitutes the first example of a molybdenum pincer catalyzed 

hydrogenation of amides. In addition, we developed the first Mo-pincer based catalyst capable 

of selective hydrogenation of nitriles to primary amines in absence of ammonia. More 
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specif ically, Mo-9 was shown to hydrogenate electron-rich benzonitriles and aliphatic nitriles 
smoothly, even in the presence of other reducible functional groups. Benzonitriles bearing 

electron-withdrawing groups on the aromatic moiety worked less efficiently under the 

described conditions. Gratifyingly, we were able to isolate and characterize the molecular 
structure of Mo-9 after activation with NaBHEt3, revealing a new mode of catalyst activation in 

pincer chemistry (Mo-9a). 

Asides from the described results, we developed a chiral Ir-catalyst for the enantioselective 

hydrogenation of an agrochemical intermediate in cooperation with an industrial partner. The 
catalyst system efficiently operates at a catalyst loading as low as 0.01 mol% and converts the 

applied starting material with an ee of 98% and a maximum TON of 9340.[87] Additionally, we 

reported a cobalt/triphos based catalyst for the hydrogenation of epoxides to anti-Markovnikov 
type alcohols. The in situ formed system hydrogenated terminal and internal oxiranes to the 

desired products with high yields and excellent regioselectivities.[88] 

Over the course of the present thesis, we demonstrated the general ability of  aliphatic 

molybdenum (PNP) pincer complexes to act as catalysts for hydrogenation reactions.[89,90,95] 
However, the reported systems generally required relative high catalyst loadings of 5 mol% 

and temperatures around 100 °C. For future studies it would be interesting to develop aromatic 

Mo-PNP derivatives and investigate their catalytic potential in the reported transformations. 
Here, the different modes of catalyst activation could increase the catalyst performance and/or 

lead to new reactivities. Moreover, also the application of pincer ligands exhibiting different 

donor motifs, e.g. SNS and PNN, might result in more active catalysts. In addition, the 

development of chiral molybdenum pincer complexes for the asymmetric reductions, e.g. of 
ketones, would be an interesting future research topic. Currently, such a transformation has 

not been reported with respect to molybdenum pincer-based catalysts. 
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6 Selected Publications 

The following chapter contains the original publications wherein the previously presented 

research was reported. My contribution to each chapter is outlined in the subchapters:  

 

6.1 Molecular Defined Molybdenum Pincer Complexes and Their 

Application in Catalytic Hydrogenations 

Thomas Leischner, Anke Spannenberg, Kathrin Junge, Matthias Beller 

Organometallics 2018, 37, 4402–4408. 

This manuscript regarding the synthesis of various molybdenum pincer complexes and their 

subsequent application in the catalytic hydrogenation of  ketones and styrenes was prepared 
by me. I conducted all the experimental work described in the publication and mainly wrote the 

manuscript, including the supporting information. The determination of the reported solid -state 

structures alongside the corresponding measurements were carried out by Anke 
Spannenberg. My contribution to this publication is 80%. 

  



Molecular Defined Molybdenum−Pincer Complexes and Their
Application in Catalytic Hydrogenations
Thomas Leischner, Anke Spannenberg, Kathrin Junge, and Matthias Beller*

Leibniz Institut fu r Katalyse e.V. an der Universita  t Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany

*S Supporting Information

ABSTRACT: A family of low-valent molybdenum complexes,
supported by the pincer ligand (iPr2PCH2CH2)2NH, was
prepared and characterized. After activation by NaBHEt3
coordination compounds 2 and 3-Cl were found to be suitable
catalysts for the hydrogenation of ketones and olefins.

■ INTRODUCTION

Pincer ligands represent a well-known class of tridentate
ligands, and their coordination chemistry has been intensively
studied since the 1990s.1 Especially in the past decade,
numerous transition-metal complexes were reported, in part
with interesting catalytic properties.2 Notably, even the first
industrial applications have been realized employing these
compounds.3

Among the huge variety of different pincer ligands,
complexes featuring PNP backbones have been shown to be
particularly well suited for homogeneous hydrogenation
reactions.4 Here, the “bifunctional” character of the metal−
ligand system allows for a facile H atom transfer onto
unsaturated substrates.5,6

In comparison to other metals, the organometallic chemistry
of group 6 PNP-pincer complexes, in particular of Mo, was
poorly developed for a long time.5 Although this type of
complex was already described for the first time in the late
1980s by Haupt and Ellermann, only three different
compounds of this type were known as late as 2006.7 Later
on, especially Kirchner and co-workers, but also the groups of
Nishibayashi, Schneider, Jones, Bernskoetter, and Berke
reported on the synthesis of molybdenum PNP complexes.
The vast majority of the known compounds feature pincer
ligands with a central pyridine moiety (Figure 1).5,8

In contrast to the well-studied metal organic chemistry of
these Mo(PNP) complexes, reports on their catalytic activity
remain scarce. As an example, Berke and co-workers showed
that their Mo amido pincer complex (Figure 1), generated
from the parent Mo chloride upon treatment with NaHMDS,
was active in the catalytic hydrogenation of secondary imines,
nitriles, and CO2.

5,9 In addition, Bernskoetter described the
reduction of carbon dioxide to formate by a molybdenum PNP
complex in the presence of DBU, LiOTf, and dihydrogen.8i To
the best of our knowledge, these are the only examples of
Mo(PNP)-catalyzed reductions using molecular H2.
Apart from that, only two other reports demonstrated the

potential of this class of complexes in catalytic applications. In

addition to the works of Nishibayshi on the reduction of
dinitrogen, Jones and co-workers established the acid-assisted
isomerization of terminal olefins in the presence of PONOP-
based heptacoordinated hydrido tricarbonyl Mo PNP cata-
lysts.8h,10

As part of our ongoing interest in base-metal catalysis, we
herein report the synthesis of a series of new Mo(PNP) pincer
complexes containing the commercially available ligand
(iPr2PCH2CH2)2NH (Figure 2).
In addition, we report the hydrogenation of various ketones

and styrenes using molecular dihydrogen with 3-Cl as catalyst.

Special Issue: Organometallic Complexes of Electropositive Ele-
ments for Selective Synthesis

Received: June 13, 2018
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Figure 1. Selected examples of Mo(PNP) complexes.

Figure 2. Selected examples of Mo(PNP) pincer complexes.
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■ RESULTS AND DISCUSSION

Synthesis of Molybdenum(0) and Molybdenum(I)
Complexes. We started our studies by preparing the complex
[Mo(PNP-iPr)(CO)3] (1). This compound can be easily
synthesized in 91% yield by refluxing Mo(CO)6 with a slight
excess of the PNP ligand (iPr2PCH2CH2)2NH in toluene for
16 h (Figure 3). It has to be noted that, in 1989, Ellermann
and co-workers already reported the synthesis of the related
complex [Mo(PNP-Ph)(CO)3] in 66% yield, using a related
methodology.7b,11

Next, we prepared the known molybdenum precursors
M o ( η 3 - a l l y l ) ( C O ) 2 ( C H 3 C N ) 2 B r a n d M o -
(PPh3)2(CO)2(CH3CN)2 according to literature procedures.12

Subsequent treatment with the aforementioned PNP ligand in
toluene at room temperature resulted in the formation of the
new Mo complexes 2 and 3-Br, respectively, in 82% and 11%
yields. The paramagnetic 17-electron complex 3-Br, which
originates from the reaction between Mo(η3-allyl)-
(CO)2(CH3CN)2Br and (iPr2PCH2CH2)2NH, features a
molybdenum center in the oxidation state +I, instead of the
expected oxidation number +II.13 When we used Mo-
(PPh3)2(CO)2(CH3CN)2 as the molybdenum source, we
obtained complex 2 as a pale yellow and poorly soluble
precipitate as the reaction product. Thereby, we were surprised
to find that the central molybdenum atom in 2 still coordinates
an acetonitrile molecule in place of an anticipated PPh3 ligand.
When we attempted to obtain X-ray-quality single crystals of

complex 2 via crystallization from DCM/toluene, the desired
complex was not obtained, however. Instead, the 17-electron
Mo(I) complex 3-Cl was formed.13 Presumably the chlorine
atom originates from the solvent.
We subsequently tried to prepare 3-Cl directly from

Mo(PPh3)2(CO)2(CH3CN)2 and (iPr2PCH2CH2)2NH by
using DCM as the solvent. Indeed, we were able to isolate
3-Cl in 68% yield as a pale brown powder. Attempts to
synthesize compound 3-Br via the same route using CH2Br2 as
the solvent resulted in the formation of an inseparable mixture
of different species, even at low temperatures. Additional
attempts to prepare 3-Br starting from 3-Cl via halide

exchange using KBr and NBu4Br, respectively, were also
unsuccessful.
The herein reported coordination compounds have all been

characterized using IR spectroscopy and elemental analysis.
Additionally, the solid-state structures of all reported
complexes have been determined by X-ray crystallography.
Structural views are depicted in Figures 4−7, respectively, with

selected bond distances and angles given in the captions.
However, we were only able to characterize complex 1 using
standard NMR techniques. Due to the extremely low solubility
of complex 2 in most organic solvents, including benzene,
toluene, acetonitrile, THF, acetone, DMSO, and methanol, we
were unable to obtain any NMR data of complex 2. Moreover,
complex 2 proved to be unstable in CD2Cl2 and CDCl3,
presumably due to the acidic nature of these solvents or
insertion into the C−Cl bond. Complexes 3-Cl and 3-Br are

Figure 3. Synthesis of the reported Mo-PNP pincer complexes.
Legend: (a) toluene, reflux, overnight, 1.05 equiv of
(iPr2PCH2CH2)2NH; (b) (1) MeCN/benzene, 1.10 equiv of
C3H5Br, reflux, overnight, (2) 3.00 equiv of PPh3, MeCN, reflux, 1
h, (3) 1.05 equiv of (iPr2PCH2CH2)2NH, toluene, room temperature,
overnight; (c) (1) MeCN/benzene, 1.10 equiv of C3H5Br, reflux,
overnight, (2) 3.00 equiv of PPh3, MeCN, reflux, 1 h, (3) 1.05 equiv
of (iPr2PCH2CH2)2NH, DCM, room temperature, overnight; (d) (1)
MeCN/benzene, 1.10 equiv of C3H5Br, reflux, overnight, (2) 1.05
equiv of (iPr2PCH2CH2)2NH, toluene, room temperature, 24 h.

Figure 4. Molecular structure of 1 in the crystal. Only one molecule
of the asymmetric unit is depicted. Displacement ellipsoids
correspond to 30% probability. Hydrogen atoms except those
bound to N are omitted for clarity. Selected bond lengths (Å) and
bond angles (deg): N1−Mo1 = 2.3505(16), P1−Mo1 = 2.5387(5),
P2−Mo1 = 2.5304(5), Mo1−C17 = 1.974(2), Mo1−C18 =
1.9489(19), Mo1−C19 = 1.948(2); P1−Mo1−N1 = 76.92(4), P2−
Mo1−N1 = 77.59(4), P1−Mo1−P2 = 100.778(16), N1−Mo−C17 =
94.21(7), N1−Mo1−C18 = 171.83(7), N1−Mo1−C19 = 100.13(7).

Figure 5. Molecular structure of 2 in the crystal. Displacement
ellipsoids correspond to 30% probability. Hydrogen atoms except for
those bound to N are omitted for clarity. Selected bond lengths (Å)
and bond angles (deg): N1−Mo1 = 2.3228(13), P1−Mo1 =
2.4389(4), P2−Mo1 = 2.4296(4), Mo1−C19 = 1.9201 (16), Mo1−
C20 = 1.9156(17), Mo1−N2 = 2.2274(14); N1−Mo1−P1 =
79.28(3), N1−Mo1−P2 = 79.14(3), N1−Mo1−C19 = 174.57(6),
N1−Mo1−C20 = 99.55(6), N1−Mo1−N2 = 80.67(5).
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NMR silent due to their paramagnetic nature and therefore
could not be analyzed by this method.
In accordance with the initial report of Ellermann and co-

workers on the related compound [Mo(PNP-Ph)(CO)3],
complex 1 also adopts a fac coordination geometry in the solid
state.7b The recorded IR spectrum likewise shows three
absorption bands at 1924, 1805, and 1758 cm−1, respectively.
The IR spectra for 2, 3-Cl, and 3-Br all show medium to
strong carbonyl absorption bands between 1889 and 1676
cm−1.
Complexes 2, 3-Br, and 3-Cl all exhibit a distorted-

octahedral arrangement of the donor atoms around the Mo
center with the CO ligands being in a cis orientation. The N1−
Mo, P1−Mo, and P2−Mo bond lengths as well as the N1−
Mo−P1 and N1−Mo−P2 bond angles are in the same range
for all of the mentioned compounds. Noteworthy are the
deviations of the bond angles N1−Mo−C18 for 3-Br and 3-Cl
and N1−Mo−C19 for 2 from ideal linearity. This deviation is

the most pronounced for 3-Br (164.55(10)°) and steadily
decreases from 3-Cl (171.20(9)°) to 2 (174.57(6)°).

Catalytic Hydrogenation of Acetophenones and
Styrenes with 3-Cl. In initial attempts we tested
molybdenum PNP pincer complex 1 for the reduction of
carbonyl moieties using acetophenone as the benchmark
substrate. Unfortunately, with or without additives (vide
supra) no conversion was obtained. Similarly, when 3-Cl was
used in the absence of additives or in the presence of 10 mol %
of KOtBu or NaHMDS, we did not observe any conversion of
the starting material. However, addition of 10 mol % of
NaBHEt3 resulted in full conversion of acetophenone under
the given conditions (Table 1). Using the same methodology,

we demonstrated that complex 2 gave the same result.
Nevertheless, due to practical reasons, we focused on 3-Cl in
the further course of our studies.
In order to rule out any heterogeneous side reactions during

the hydrogenation catalysis, a mercury poisoning experiment
was carried out. For this purpose, a drop of mercury was placed
in the reaction vial and the catalysis was carried out as
described above. To our delight, GC analysis of the resulting
reaction mixture still showed full conversion of the benchmark
substrate after 3.5 h, thus indicating that the developed system
follows a homogeneous pathway. Deterred by the harsh
conditions, we decided to investigate whether an increased
catalyst loading would allow for a lower reaction temperature.
Indeed, increasing the catalyst loading to 5 mol % led to full
conversion of acetophenone in toluene at 80 °C, though an
extended reaction time of 16 h was necessary. Additionally, we
were able to reduce the amount of NaBHEt3 used to 5 mol %.
Next, a variety of para-substituted acetophenones was
subjected to the reaction conditions developed. For the
given starting materials excellent conversions (90−100%)
and isolated yields (84−91%) were obtained in all cases
(Table 2).
When we used chalcone (Table 2, entry 7) as a substrate, in

order to investigate whether our catalyst system displayed any
selectivity toward either the CC double bond or the
carbonyl moiety, we found complete reduction of both
functional groups and were able to isolate 1,3-diphenyl-1-
propanol in 91% yield.
On the basis of this result, we decided to investigate the

general reactivity of our catalyst system toward terminal and
internal CC double bonds in more detail. Here, 1-dodecene,

Figure 6. Molecular structure of 3-Br in the crystal. Only one
molecule of the asymmetric unit is depicted. Displacement ellipsoids
correspond to 30% probability. Hydrogen atoms except for those
bound to N are omitted for clarity. Selected bond lengths (Å) and
bond angles (deg): N1−Mo1 = 2.298(2), P1−Mo1 = 2.5208(7), P2−
Mo1 = 2.4834(7), Mo1−C17 = 1.923(3), Mo1−C18 = 1.970(3),
Mo1−Br1 = 2.7435(3); N1−Mo1−P1 = 76.57(5), N1−Mo1−P2 =
78.96(5), N1−Mo1−C17 = 97.05(9), N1−Mo1−C18 = 164.55(10),
N1−Mo1−Br1 = 82.10(5).

Figure 7. Molecular structure of 3-Cl in the crystal. Displacement
ellipsoids correspond to 30% probability. Hydrogen atoms except for
those bound to N are omitted for clarity. Selected bond lengths (Å)
and bond angles (deg): N1−Mo1 = 2.3029(15), P1−Mo1 =
2.5002(5), P2−Mo1 = 2.4877(5), Mo1−C17 = 1.9118(19), Mo1−
C18 = 1.954(2), Mo1−Cl1 = 2.5817(4); N1−Mo1−P1 = 77.10(4),
N1−Mo1−P2 = 78.80(4), N1−Mo1−C17 = 100.53(7), N1−Mo1−
C18 = 171.20(9), N1−Mo1−Cl1 = 81.05(4).

Table 1. Catalytic Hydrogenation of Acetophenone Using 3-
Cl and Different Additivesa

additive amount (mol %) conversion (%)b yield (%)c

none 0 0
KOtBu 10 3 0
NaHMDS 10 5 0
NaBHEt3 10 100 97
NaBHEt3

d 10 10 8
a0.5 mmol of substrate was used. bConversions were determined by
GC analysis using hexadecane (20 mg) as internal standard. cYields
were determined by GC analysis using hexadecane (20 mg) as
internal standard. dNo catalyst was used.
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styrene, and cis- and trans-stilbene were applied as model
substrates. While 1-dodecene, as well as cis- and trans-stilbene,
only showed low conversions of 4%, 25%, and 29%,
respectively, styrene gave 76% conversion into ethylbenzene.
Hence, we tested a number of different styrenes, bearing
electron-donating and -withdrawing substituents on the
aromatic ring (Table 3). In general, we obtained medium to
good yields (57−85%), though harsher conditions in
comparison to those for the reduction of acetophenones
were needed. Notably, no cleavage of the benzyl ether moiety
was observed during the reduction of 3-benzoyloxy-3-
methoxystyrene (Table 3, entry 5).
In order to evaluate the potential of complex 3-Cl in a

broader sense, we finally tested diphenylacetylene and
benzonitrile as substrates under the conditions shown in
Table 3. When diphenyleneacetylene was applied, we obtained
a conversion of 75%. However, the reaction turned out to be
unselective, yielding a mixture of 41% 1,2-diphenylethane, 17%
cis-stilbene, and 17% trans-stilbene. The hydrogenation of

benzonitrile proceeded with a modest conversion of 42% and
gave N-benzylidenebenzylamine as the major reaction product
with a yield of 29% along with 13% of benzylamine. All yields
and conversions reported in this paragraph were determined by
GC using hexadecane (20 mg) as internal standard.

■ CONCLUSIONS
In conclusion, we have synthesized a series of four structurally
new molybdenum complexes featuring the commercially
available PNP-pincer ligand (iPr2PCH2CH2)2NH. These new
coordination compounds can all be prepared in a straightfor-
ward manner by starting from known molybdenum precursors
and were characterized by IR spectroscopy, elemental analysis,
and X-ray crystallography. We demonstrated that the Mo(I)
species 3-Cl is a suitable catalyst for the hydrogenation of
various acetophenones and styrenes in the presence of
NaBHEt3 as an additive. Moreover, we could show that 3-Cl
is active in the hydrogenation of diphenylacetylene and
benzonitrile, though low selectivities were observed.

■ EXPERIMENTAL SECTION
General Experimental Information. Unless otherwise stated, all

reactions were performed under an argon atmosphere with exclusion
of moisture and air from reagents and glassware using standard
Schlenk and glovebox techniques for manipulating air-sensitive
compounds. Dry and oxygen-free solvents (acetonitrile, DCM,
toluene, THF, and heptane) were collected from an Innovative
Technology PS-MD-6 solvent purification system and stored over 3 Å
molecular sieves. CD2Cl2 was purchased from Eurisotop, degassed by
freeze−pump−thaw techniques, and subsequently dried over 3 Å
molecular sieves. All other chemicals were purchased and used

Table 2. Hydrogenation of Various Acetophenones with 3-
Cl/NaBHEt3

a

a0.5 mmol of substrate was used. bConversions determined by GC
using hexadecane (20 mg) as internal standard. cIsolated yields given.
d24 h reaction time.

Table 3. Hydrogenation of Various Sytrenes with 3-Cl/
NaBHEt3

a

a0.5 mmol of substrate was used. bYield determined by GC using
hexadecane (20 mg) as internal standard. cNMR yield determined by
19F NMR of the crude mixture using C6F6 as internal standard.

dNMR
yield determined by 1H NMR of the crude mixture using 1,3,5-
trimethoxybenzene as internal standard.
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without further purification. Mo(CO)6, NaBHEt3 (1 M in THF),
acetophenone, 4-F-acetophenone, 4-MeO-acetophenone, 4-CF3-ace-
tophenone, 4-MeS-acetophenone, chalcone, 3-benzoyloxy-3-methox-
ystyrene, and trans-stilbene were purchased from Sigma-Aldrich.
(iPr2PCH2CH2)2NH was obtained from Strem (10 wt % solution in
THF). Styrene, 4-F-styrene, 4-MeO-styrene, and 4-CF3-styrene were
purchased from TCI. 4-Ethylacetophenone and cis-stilbene were
purchased from Alfa Aesar. 1-Dodecene was obtained from Fluka.
M o ( η 3 - a l l y l ) ( C O ) 2 ( C H 3 C N ) 2 B r 1 2 a n d M o -
(PPh3)2(CO)2(CH3CN)2

12 were prepared according to literature
procedures. 1H, 13C, and 19F NMR spectra were recorded on Bruker
AV 300 and Bruker AV 400 spectrometers. Chemical shift values in
1H and 13C NMR spectra were referenced internally to the residual
solvent resonances, whereas 19F and 31P NMR spectra were referenced
externally to CCl3F and H3PO4, respectively. Abbreviations used in
the reported NMR experiments are as follows: b, broad; s, singlet; d,
doublet; t, triplet; m, multiplet. All measurements were carried out at
room temperature. Infrared spectra were recorded in the solid state on
a Bruker Alpha P FT-IR spectrometer. Elemental analyses were
carried out using a Leco TruSpec Micro CHNS device. Gas
chromatography was performed on a HP 6890 instrument with an
HP5 column (Agilent) unless stated otherwise. All hydrogenation
reactions were set up under Ar in a 300 mL autoclave (PARR
Instrument Co.). In order to avoid unspecific reductions, all catalytic
experiments were carried out in 4 mL glass vials, which were set up in
an alloy plate and placed inside the autoclave.
Synthesis of 1. Under an argon atmosphere, a 50 mL Schlenk

flask, equipped with a magnetic stirring bar and a reflux condenser,
was charged with Mo(CO)6 (105.6 mg, 400.0 μmol, 1.00 equiv). A 10
mL portion of toluene was added, and the suspension was
subsequently treated dropwise with (iPr2PCH2CH2)2NH (1.46 mL
of a 10 wt % solution in THF, 420.0 μmol, 1.05 equiv) at room
temperature. The reaction mixture was heated to reflux overnight, and
the resulting orange-red solution was cooled to room temperature
again. The solvent was removed under reduced pressure until product
precipitation occurred. The orange precipitate was filtered off, washed
two times with 5 mL of toluene, and afterward redissolved in the
minimum amount of DCM. Heptane was added until product
precipitation occurred again. The resulting yellow solid was filtered
off, washed two times with 5 mL of heptane/DCM 3/1 (v/v), and
dried in vacuo to yield 176.7 mg (91%) of complex 1 as an intense
yellow solid. Crystals suitable for X-ray analysis were obtained from a
saturated solution of 1 in acetonitrile at 4 °C. Alternatively single
crystals can be obtained by slowly allowing a layer of heptane to
diffuse into a saturated solution of 1 in DCM or toluene at room
temperature. 1H NMR (400 MHz, CD2Cl2): δ 3.23−3.10 (m, 2H),
2.47−1.41 (m, 1H), 2.18−1.95 (m, 8H), 1.40−1.31 (m, 2H), 1.25−
1.11 (m, 24H). 13C{1H} NMR (101 MHz, CD2Cl2): δ 232.1 (t, J =
6.1 Hz), 218.8 (t, J = 10.5 Hz), 216.2 (t, J = 9.0 Hz), 53,57 (t, J = 8.1
Hz), 30.71 (t, J = 13.1 Hz), 29.06 (t, J = 9.1 Hz), 26.47 (t, J = 10.1
Hz), 19.93 (t, J = 3.0 Hz), 19.43 (t, J = 3.0 Hz), 18.99 (t, J = 3.0 Hz),
18.73 (s). 31P{1H} NMR (162 MHz, CD2Cl2): δ 75.6. Anal. Calcd for
C19H37MoNO3P2: C, 47.01; H, 7.68; N, 2.89. Found: C, 47.35; H,
7.86; N, 2.84. IR (ATR, cm−1): 1924 (νCO), 1805 (νCO), 1758 (νCO).
Synthesis of 2. In a 25 mL Schlenk flask, Mo-

(PPh3)2(CO)2(CH3CN)2 (304.8 mg, 401.7 μmol, 1.00 equiv) was
suspended in 10 mL of THF and treated dropwise with
(iPr2PCH2CH2)2NH (1.45 mL of a 10 wt % solution in THF,
421.8 μmol, 1.05 equiv) at room temperature. The reaction mixture
was stirred overnight, and the precipitated solid was filtered from the
supernatant. Subsequent washing of the obtained pale yellow solid
with three 5 mL portions of THF followed by removal of residual
solvent under reduced pressure gave 126.3 mg (81% yield) of 2 as a
pale yellow solid. Crystals suitable for X-ray analysis were obtained by
slowly allowing a layer of toluene to diffuse into a saturated solution
of 2 in THF at −30 °C. Anal. Calcd for C20H40MoN2O2P2: C, 48.19;
H, 8.09; N, 5.62. Found: C, 48.26; H, 8.30; N, 5.54. IR (ATR, cm−1):
2246 (νCN), 1762 (νCO), 1676 (νCO).
Synthesis of 3-Br. In a 10 mL Schlenk flask, Mo(η3-allyl)-

(CO)2(CH3CN)2Br (150.4 mg, 423.6 μmol, 1.00 equiv) was

suspended in 5 mL of toluene and cooled to 0 °C in an ice bath.
(iPr2PCH2CH2)2NH (1.54 mL of a 10 wt % solution in THF, 444.8
μmol, 1.05 equiv) was added dropwise, and the reaction mixture was
warmed to room temperature overnight. The resulting opaque liquid
was filtered, and the solid residue was extracted two times with 2 mL
of toluene. The combined filtrates were dried under reduced pressure,
and the resulting orange-brown solid was washed two times with 5
mL of heptane. The remaining residue was dissolved in the minimum
amount of DCM and layered with heptane to afford 16.2 mg (11%
yield) of 3-Br as tiny brownish crystals. Crystals suitable for X-ray
analysis were obtained by slowly allowing a layer of heptane to diffuse
into a saturated solution of 3-Br in DCM at room temperature. Anal.
Calcd for C18H37BrMoNO2P2: C, 40.24; H, 6.94; N, 2.61. Found: C,
40.42; H, 7.01; N, 2.65. IR (ATR, cm−1): 1894 (νCO), 1780 (νCO),
1751 (νCO).

Synthesis of 3-Cl. In a 50 mL Schlenk flask, Mo-
(PPh3)2(CO)2(CH3CN)2 (540.2 mg, 712.0 μmol, 1.00 equiv) was
suspended in 15 mL of DCM and cooled to 0 °C in an ice bath.
(iPr2PCH2CH2)2NH (2.6 mL of a 10 wt % solution in THF, 747.6
μmol, 1.05 equiv) was added dropwise, and the reaction mixture was
warmed to room temperature overnight. The resulting clear brown
liquid was filtered, and the solvent was removed under reduced
pressure until product precipitation occurred. The supernatant was
filtered off, and the remaining ocher solid was washed three times
with 5 mL of heptane/DCM 3/1 (v/v) and three times with 5 mL of
THF. Removal of residual solvent under reduced pressure
subsequently gave 238.6 mg (68% yield) of 3-Cl as a pale brown
powder. Crystals suitable for X-ray analysis were obtained from a
saturated solution of 3-Cl in acetonitrile at 4 °C. Alternatively single
crystals can be obtained by slowly allowing a layer of heptane to
diffuse into a saturated solution of 3-Cl in DCM at room temperature.
Anal. Calcd for C18H37ClMoNO2P2: C, 43.87; H, 7.57; N, 2.84.
Found: C, 43.89; H, 7.30; N, 2.75. IR (ATR, cm−1): 1889 (νCO),
1782 (νCO), 1747 (νCO).

General Procedure for Catalytic Experiments. Under an
argon atmosphere, a 4 mL glass vial containing a stirring bar was
charged with complex 3-Cl (12.5 mg; 5 mol %). Afterward, the
reaction vial was capped with a septum and equipped with a syringe
needle and toluene (2 mL) was added. The resulting brown
suspension was treated with NaBHEt3 (0.5 M in THF, 0.05 mL, 5
mol %) and stirred for 10 min, and the corresponding substrate was
subsequently added to this mixture. The reaction vial was transferred
into an autoclave. Once sealed, the autoclave was purged 10 times
with 10 bar of dihydrogen, before the pressure was set to the desired
value (50 bar). The reaction mixture was stirred for 16 h in a
preheated aluminum block at 80 °C for ketones and 24 h at 130 °C
for styrenes, respectively. Afterward, the autoclave was cooled in an
ice bath and the remaining gas was released carefully. The solution
was subsequently diluted with ethyl acetate and filtered through a
small pad of Celite (1 cm in a Pasteur pipet). The Celite was washed
with methanol (2 mL), and the combined filtrates were evaporated to
dryness afterward. The remaining residue was purified by column
chromatography (SiO2, heptane/EtOAc, gradient 100/0 → 0/100).
For the characterization of the products of the catalysis, see the
Supporting Information.
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6.2 Highly Selective Hydrogenation of Amides Catalyzed by a Molybdenum 
Pincer Complex: Scope and Mechanism. 
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Chem. Sci. 2019, 10, 10566–10576. 
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as the corresponding part in the manuscript/supporting information were done by L. A. Suarez 
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ydrogenation of amides catalysed
by a molybdenum pincer complex: scope and
mechanism†

Thomas Leischner,a Lluis Artús Suarez, b Anke Spannenberg,a Kathrin Junge,a

Ainara Nova *b and Matthias Beller *a

A series of molybdenum pincer complexes has been shown for the first time to be active in the catalytic

hydrogenation of amides. Among the tested catalysts, Mo-1a proved to be particularly well suited for the

selective C–N hydrogenolysis of N-methylated formanilides. Notably, high chemoselectivity was

observed in the presence of certain reducible groups including even other amides. The general catalytic

performance as well as selectivity issues could be rationalized taking an anionic Mo(0) as the active

species. The interplay between the amide C]O reduction and the catalyst poisoning by primary amides

accounts for the selective hydrogenation of N-methylated formanilides. The catalyst resting state was

found to be a Mo–alkoxo complex formed by reaction with the alcohol product. This species plays two

opposed roles – it facilitates the protolytic cleavage of the C–N bond but it encumbers the activation of

hydrogen.
Introduction

The reduction of carboxylic acid derivatives via catalytic
homogeneous hydrogenation represents an attractive atom-
economic and environmentally benign methodology.1,2 To
date, the vast majority of homogeneous catalysts for these
transformations rely on noble metals.3 The limited availability
of these elements along with their toxicity and pollutive nature
initiated efforts for their replacement. Signicant progress in
this direction has been achieved in the past decade, in partic-
ular with respect to iron,4 manganese5 and cobalt6 based
systems. Thus, several examples of base metal catalysed
hydrogenations of aldehydes, ketones, carboxylic acids, esters
and nitriles have been reported in recent years, some of them
with remarkable activities and selectivities.2a,7 On the contrary,
hydrogenation of amides is known to a much less extent.8 The
latter can be attributed to the extremely low electrophilicity of
the carbonyl group, which renders their hydrogenation partic-
ularly challenging.

In general, catalytic hydrogenation of amides can proceed
via either C–N (hydrogenolysis) or C–O (hydrogenation) bond
cleavage of the intermediate hemiaminal (Scheme 1). While the
rt-Einstein-Straße 29a, Rostock, 18059,

s.de

r Sciences, Department of Chemistry,

, N-0315, Oslo, Norway. E-mail: Ainara.

tion (ESI) available. See DOI:

0576
C–O bond scission results in the formation of the alkylated/
benzylated amine with H2O as the only by-product, the C–N
bond cleavage leads to the free amine and the corresponding
alcohol. Recently, an additional amide hydrogenation pathway
was demonstrated, where the alkylated/benzylated amine is
produced by a hydrogen borrowing/autotransfer mechanism
from the initially formed alcohol and amine under specic
acidic reaction conditions.9 Until today, the development of
catalytic systems that enable these chemoselective trans-
formations continues to be challenging and therefore are
subject of ongoing research.

Initial efforts in this direction mainly focused on homoge-
neous ruthenium catalysts.10 Since the inspiring report by Cole-
Scheme 1 Pathways for amide reduction.
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Table 1 Hydrogenation ofN-methylformanilide 1a toN-methylaniline
2a and methanol 3 using Mo catalysts Mo-1a–c and Mo-2
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Hamilton and co-workers in 2012, various Ru-based systems for
the highly selective scission of either the C–N or the C–O bond
have been described.10

In sharp contrast, reports on homogeneous base metal
catalysts for this important reaction are particularly scarce.
Pioneering work in this area was published by the groups of
Milstein, Langer and Sanford only as late as 2016.11–13 For the
rst time, they could demonstrate the ability of certain iron PNP
pincer complexes (Fe-1 as well as Fe-2a/b, Scheme 2) to promote
the C–N bond cleavage in a number of different amides.

More specically, Milstein and co-workers reported, that Fe-1,
aer activation with KHMDS, induced the hydrogenolysis of
activated aliphatic and aromatic 2,2,2-triuoroacetamides.
However, no reaction was observed, with more common
substrates such as N-phenylacetamide and N-phenylbenzamide.11

The protocols described by Sanford (Fe-2a) and Langer (Fe-2b)
showed more general substrate scopes and obtained notable
conversions and yields also for unactivated amides.12,13

Additionally, Bernskoetter and co-workers showed that the
pentavalent iron PNP-pincer complex Fe-3 is particularly active
for the hydrogenolysis of a number of secondary formanilides
and N-formylmorpholine (Scheme 2). The system stands out
due to its extremely low catalyst loading (0.018–0.07 mol%) and
notably operates under base-free conditions. Interestingly, the
group of Bernskoetter demonstrated that an addition of 20
equivalents of formanilide resulted in a signicantly improved
activity of the system towards otherwise almost unreactive N-
methylformanilide. Based on NMR experiments, the authors
concluded that the catalyst adopts a different resting state in the
presence of the additive (Fe-4, Scheme 2) and thus is less prone
towards deactivating side reactions.14 The computational study
of this reaction also suggested that the formanilide additive is
involved in the C–N bond cleavage of the hemiaminal inter-
mediate, which is the rate limiting step.15

Recently, our group reported the very rst example of
a manganese catalysed deaminative hydrogenation of amides
Scheme 2 Base metal catalysts reported for the hydrogenolysis (C–N
bond cleavage) of amides.

This journal is © The Royal Society of Chemistry 2019
under relatively mild conditions.16 Aer activation with exoge-
nous base, the PNN pincer complex Mn-1 (Scheme 2) exhibits
remarkable activity for the hydrogenation of a broad scope of
secondary and tertiary amides to the corresponding alcohols
and amines. Notably, also more challenging primary amides
were successfully cleaved in modest yields, tough more forcing
conditions were shown to be necessary. The generality of the
system was nally highlighted by the cleavage of the amide
bond in the herbicide diufenican. To date, Mn-1 represents
one of the most active and broadly applicable non-noble metal
catalysts for amide hydrogenation. In a related study, Prakash
and co-workers demonstrated that the manganese PNP pincer
complex Mn-2 is a suitable catalyst for the hydrogenation of
formamides. The reaction proceeds via cleavage of the C–N
bond to produce methanol and the corresponding amine.17

In 2018, we published the synthesis of a number of struc-
turally related molybdenum PNP pincer complexes. Among the
described complexes, Mo-1a (Table 1) was shown to be active in
the catalytic hydrogenation of different acetophenones and
styrenes.18 Similar Mo-systems have also been used for the
hydrogenation of CO2, imines and nitriles.19 Based on these
reports and our previous work, we became interested in the
behaviour of such base-metal catalysts for the reductive
cleavage of amides. Herein, we demonstrate its suitability for
the hydrogenolysis of N-methylated formanilides under rela-
tively mild conditions. To the best of our knowledge, PNP pincer
supported molybdenum complexes have not been described for
such transformations. Interestingly, the optimal catalyst
Entrya,b [Mo] T [�C] Convc. [%] 2ac [%]

1 Mo-1a 130 >99 99
2 Mo-1b 130 >99 99
3 Mo-1c 130 >99 99
4 Mo-2 130 10 9
5d — 130 10 8
6 Mo-1a 100 >99 98
7 Mo-1b 100 >99 99
8 Mo-1c 100 76 73
9 Mo-1a 80 89% 86%
10 Mo-1b 80 87% 84%
11e Mo-1a 80 49 47
12e Mo-1b 80 46 46

a Standard reaction conditions: N-methylformanilide 1a (67.6 mg, 0.5
mmol), NaBHEt3 (50 mL, 0.05 mmol, 10 mol%), 2 mL toluene, 50 bar
H2, 24 h. b Yield of 3 was not determined. c Conversion of 1a and
yield of 2a were determined by GC using hexadecane as internal
standard. d No catalyst was used. e Reaction was performed with
2.5 mol% of Mo catalyst.

Chem. Sci., 2019, 10, 10566–10576 | 10567
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exhibits a high selectivity for formamides. This preference has
been rationalized by means of DFT calculations, which suggest
that the produced MeOH reacts with the catalyst and changes
the mechanism and rate limiting step of the reaction. This
result, which is not observed in related Fe-catalysts, indicates
that the catalyst design strategy should be adapted to the nature
of the metal centre.
Fig. 1 Study of the solvent effect in the hydrogenation of N-methyl-
formanilide 1a toN-methylaniline 2a andmethanol 3 catalysed byMo-
1a.
Results and discussion
Catalytic hydrogenation of amides using molybdenum pincer
complexes

At the outset of our study, we explored molybdenum-based PNP
pincer complexes Mo-1a–c and Mo-2 (Table 1), recently syn-
thesised by our group, as potential catalysts for the hydroge-
nation of amides. Using N-methylformanilide 1a as benchmark
substrate, preliminary experiments were conducted using
5 mol% of Mo catalyst in toluene at 50 bar H2 and 130 �C, in the
presence of 10 mol% of NaBHEt3. The reaction proceeded
smoothly for complexesMo-1a–c to affordN-methylaniline 2a in
quantitative yield along with methanol as the only by-product
(Table 1, entries 1–3). However, complex Mo-2 failed to
display any catalytic activity (Table 1, entry 4). Next, the activity
of the complexes was tested at reduced temperatures (Table 1,
entries 6–10). It was found, that complexesMo-1a as well asMo-
1b were equally efficient, when the reaction was conducted at
100 �C. Catalyst Mo-1c, however, gave a somewhat lower
conversion and yield. Further reduction of the reaction
temperature to 80 �C resulted once again in similar conversions
and yields for Mo-1a and Mo-1b, respectively. Based on these
observations, the catalyst loading was reduced to 2.5 mol%
under otherwise identical reaction conditions (Table 1, entries
11 and 12). It turned out, that changing this parameter also led
to almost identical outcomes for both catalytic systems.
Therefore we concluded that, under reaction conditions, Mo-1a
andMo-1b very likely form the same active species. On the basis
of the obtained results and due to the more challenging
synthesis ofMo-1b, we decided to focus on catalystMo-1a in the
due course of the study.

Selecting 80 �C reaction temperature and 5 mol% of Mo-1a
(Table 1, entry 8) as the optimal setting for further optimization,
we tested several different solvents. In contrast to previous work
on manganese catalysed hydrogenolysis of amides, toluene was
found to give the best results. Cyclohexane yielded slightly lower
activities, while n-heptane as well as polar solvents, were shown
to be signicantly less suitable for the attempted trans-
formation (Fig. 1).

Subsequently, we studied the inuence of dihydrogen pres-
sure, catalyst loading as well as the amount of additive used on
the reaction outcome (Table 1, see ESI†). Lowering the pressure
to 30 bar H2 resulted in a sharp drop in activity. However, no
loss of reactivity was observed when the amount of NaBHEt3
was decreased to 5 mol%. A rise of the reaction temperature to
100 �C resulted in full conversion of the benchmark substrate to
N-methylaniline in the presence of 5 mol%NaBHEt3 andMo-1a,
respectively. Further mitigation of the catalyst loading as well as
10568 | Chem. Sci., 2019, 10, 10566–10576
the amount of NaBHEt3, however, had negative effects on the
catalytic performance of the system.

Having optimised conditions in hand, we proceeded to the
application of Mo-1a in the hydrogenation of a variety of
different N-methylformanilides to the corresponding anilines
and methanol (Table 2).

Most substrates were hydrogenated in good to excellent
yields under optimised conditions at 100 �C and 50 bar H2 over
24 h, using toluene as solvent. In general, meta- and para-
substitution were well tolerated, while substituents in ortho-
position (Table 2, entries 19 and 20) appeared to be trouble-
some, probably due to steric hindrance. Amides containing
electron donating groups were less reactive under standard
conditions as compared to the benchmark substrate. In some
cases higher reaction temperatures were required, in order to
achieve good conversions (Table 2, entries 2, 6, 7). Notably, the
thiomethyl substituted derivative (Table 2, entry 3) was fully
hydrogenated and no catalyst poisoning effect was observed.
Moreover, the system tolerated uoro-substituents (Table 2,
entries 8, 17, 20) and no dehalogenation products were detec-
ted. Interestingly, the system showed a good functional group
tolerance towards substrates containing other reducible moie-
ties such as benzyl ethers, C]C double bonds and esters (Table
2, entries 6, 12, 13). Noteworthy, no double bond isomerisation
occurred during the reduction of a stilbene derivative (Table 2,
entry 12). Additionally, pyridines, nitriles and nitro arenes
remained unaffected under our reaction conditions; however,
only poor to modest conversions were observed when the
reaction was carried out at 130 �C (Table 2, entries 11, 14, 15).
Presumably, this effect originates from substrate coordination
to the metal centre and subsequent catalyst deactivation. The
system turned out to be sensitive towards halides other than
uorine. Hence, during one of the hydrogenations, small
amounts of the dehalogenation product were detected (Table 2,
entry 9).
This journal is © The Royal Society of Chemistry 2019
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Table 2 Substrate scope in the hydrogenation of N-methyl-
formanilides toN-methylanilines 2 andmethanol 3 catalysed byMo-1a

Entrya,b Formamide Convc. (%) Yieldd of 2 (%)

1 >99 94

2e >99 96

3 >99 95

4 83 80

5 87 84

6e 56 52

7eg 46 43

8 98 93

9 40 34f

Table 2 (Contd. )

Entrya,b Formamide Convc. (%) Yieldd of 2 (%)

10 >99 >99

11e 52 50

12 95 92

13 >99 97

14e 14 12f

15e 8 6f

16 >99 97

17 >99 98

This journal is © The Royal Society of Chemistry 2019 Chem. Sci., 2019, 10, 10566–10576 | 10569
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Table 2 (Contd. )

Entrya,b Formamide Convc. (%) Yieldd of 2 (%)

18 >99 93

19e 12 9f

20e 18 15f

a Standard reaction conditions:N-methylformanilide (0.5 mmol),Mo-1a
(12.5 mg, 5 mol%), NaBHEt3 (50 mL, stock solution 0.5 M in THF,
5 mol%), 2 mL toluene, 50 bar H2, 24 h. b Yield of 3 was not
determined. c Conversions of N-methylformanilides were determined
by GC using hexadecane as internal standard. d Isolated yields.
e Reaction was carried out at 130 �C. f Yields were determined by GC
using hexadecane as internal standard. g Yield was determined based
on the hydrochloride salt.
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Subsequently, we investigated the more general applicability
of our PNP pincer complexMo-1a in the hydrogenation of other
amides. Initial experiments focussed on the role of the nitrogen
Scheme 3 Hydrogenation of different amides (4–7) to the corre-
sponding amines and alcohols catalysed by Mo-1a. aConversions of
amideswere determined by GC using hexadecane as internal standard.
bYields were determined by GC using hexadecane as internal standard
and refer to anilines, yields of alcohols were not determined. cIsolated
yields of anilines.

10570 | Chem. Sci., 2019, 10, 10566–10576
substitution on the reaction outcome. For this purpose, a series
of different secondary and tertiary formanilides were subjected
to our protocol (Scheme 3). The presence of an NH moiety
turned out to be detrimental, as was observed for the parental
formanilide (4a). This is in sharp contrast with the results ob-
tained with Fe pincer complexes, in which formanilide deriva-
tives give the highest conversion.14 In order to further validate
this, 2,2,2-triuoroacetanilide (6a) and simple benzanilide (7a)
were employed and results comparable to formanilide (4a) were
obtained. Likewise, only low conversions and yields were ob-
tained in the case of N-iPr- (4b) and N-allylformanilide (4c),
respectively. Surprisingly, when N-allylformanilide was tested as
substrate, the formation of N-allylaniline was only observed in
traces. The main product was identied to be aniline, thus
hinting at a deallylation pathway that additionally takes place to
the envisaged hydrogenolysis. In contrast, N,N-diphenylforma-
nilide (4d) was reduced smoothly and N,N-diphenylamine was
isolated in excellent yield. Next, the hydrogenation of N-meth-
ylacetanilide (5) and the more activated 2,2,2-N-methyl-
triuoroacetanilide (6b), respectively, were attempted. In
either case, only poor conversions were determined demon-
strating the high preference of this complex for specic for-
manilides. This was further supported by the low reactivity of N-
methylbenzanilide (7b) and some aliphatic formamides (see
Table 2, ESI†).

Based on these observations, we were curious to demon-
strate selective formamide reduction in the presence of other
amide moieties. In a proof of concept experiment, the hydro-
genation of the benchmark amide in the presence of benzamide
7a was conducted (Scheme 4, eqn (a)). It could be shown that
Mo-1a was capable to cleave N-methylformanilide (1a) with
extremely high preference. Notably, the reaction still proceeded
with 80% conversion with respect to N-methylformanilide (1a).
To further highlight the scope of our system, we designed
model substrate 9 combining two amide functionalities in one
structure. Aer 24 h reaction, the intended hydrogenolysis of
Scheme 4 Selective hydrogenations of (a) N-methylformanilide 1a in
the presence of benzamide 7a and (b) N-methyl-N-(4-(N-methyl-
formamide)phenyl)benzamide 9. Standard conditions: substrate(s)
0.5 mmol (each), Mo-1a (12.5 mg, 0.025 mmol, 5 mol%), NaBHEt3 (50
mL, 0.5 M stock solution in THF, 0.025 mmol, 5 mol%), toluene (2 mL),
50 bar H2, 100 �C, 24 h. aConversions determined by GC using hex-
adecane as internal standard. bYields determined by GC using hex-
adecane as internal standard. cIsolated yield.

This journal is © The Royal Society of Chemistry 2019
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the formamide moiety in 9 had occurred smoothly and the
target molecule 10 was isolated in a very high yield (92%).
Notably, no cleavage of the benzamide was observed.

We believe these results could pave the way towards new and
selective deprotection strategies in organic synthesis mediated
by this base metal PNP pincer complex.
Fig. 2 Molecular structure of Mo-4 in the crystal (see Scheme 5 for
a graphical representation). Displacement ellipsoids correspond to
30% probability. Hydrogen atoms except the N-bound are omitted for
clarity.
Reaction mechanism

In order to understand the general reactivity of Mo-1a and its
performance with different amides, DFT calculations and sup-
porting experiments were conducted. Scheme 5 shows the
experiments performed to determine the active catalyst species.
Treatment of Mo-1a with NaBHEt3 resulted in rapid hydrogen
evolution. The nature of the gas was determined in a scale up
experiment (100 mmol of Mo-1a) using GC-analysis. This
observation prompted us to assume that the obtained reaction
product was likely to be a pincer amido species such asMo-3, in
which Mo(I) has been reduced to Mo(0). This conclusion was
further supported by HR-ESI mass spectrometry of the corre-
sponding reaction mixture. When the distinct reactivity of the
catalyst towards formanilide was studied, we isolated Mo-4 in
form of colorless needles from the reaction mixture (Fig. 2; for
detailed experimental procedure see ESI†).

Notably, the crystal structure of Mo-4 (Fig. 2 and Scheme 5)
features two anionic Mo(0) complexes neutralized by two Na+

cations interacting with the CO ligands. In order to investigate,
whether Mo-4 is involved in the catalytic cycle, the reduction of
N-methylformanilide was carried out using 2.5 mol% of Mo-4
under conditions optimized for Mo-1a. In fact, we observed full
conversion of the substrate and isolated N-methylaniline in
92% yield. Thus, we conclude, that the catalytically active
species contains a Mo(0) center. This is also consistent with the
EPR-silent nature of the product formed in the activation ofMo-
1a by NaBHEt3.
Scheme 5 Reactions performed to get insight on the active catalytic
species (in dashed arrows) with the experimental observed products
(H2 and the crystal structure of Mo-4, in color) and the intermediates
proposed (Mo-3 and Mo-5). Gibbs energies calculated for the de-
hydrogenation of Mo-5 at different pressure.

This journal is © The Royal Society of Chemistry 2019
The observed activity of Mo-4 suggests that the Mo(0)-
complexes Mo-3 and Mo-5, shown in Scheme 5, are presum-
ably the main catalytic intermediates. Similar species have been
proposed for the isoelectronic Fe(II)-complexes Fe-2, Fe-3 and
the Mn(I)-complex Mn-2 (Scheme 2).20

Based on these results, DFT calculations, with the M06
functional, including toluene solvation with the SMD model,
were used to get further insights into the reaction mechanism
(see computational details and ESI for details†). The hydroge-
nation of Mo-3 to yield Mo-5, was found to be almost iso-
energetic, with a small preference forMo-3 at 1 bar andMo-5 at
50 bar (Scheme 5). These energies agree with the bubbling of H2

observed experimentally during the catalyst activation reaction.
As represented in Scheme 1, amide hydrogenolysis is

proposed to consist in three steps: amide C]O reduction, C–N
bond protonolysis of the formed hemiaminal, and aldehyde
C]O reduction. These steps were computed for N-methyl-
formanilide and the energy proles for the preferred pathways
are given in Fig. 3 and 5, and the ESI.†

The mechanism for the amide C]O hydrogenation by Mo-5
consists of the hydride transfer from Mo to the amide carbonyl
group (Mo-ts-6-7), followed by proton transfer from the ligand
nitrogen to the amide oxygen (Mo-ts-7-8). This pathway was
computed for formanilide (Mo-ts-6-7NH in Fig. 3) and N-meth-
ylformanilide. With both substrates, the hydride transfer has
the highest energy barrier (10.6 kcal mol�1 with formanilide
and 13.1 kcal mol�1 with N-methylformanilide). Interestingly,
these energies are lower than those reported by us for the
analogous Fe catalyst with formanilide (15.8 kcal mol�1, Fe-ts-6-
7 in Fig. 3).15

The mechanism for the C–N bond cleavage from the formed
hemiaminal (Scheme 1) was also investigated. In the case of Fe-
3, this step was reported to proceed via the transition state Fe-ts-
CH–NH (Fig. 4).15 With Mo and N-methylformanilide, the same
pathway involves a Gibbs energy barrier of 22.9 kcal mol�1 (Mo-
ts-CH–NMe). An increase of less than 1 kcal mol�1 is observed by
changing the substrate to N-methylacetanilide (Mo-ts-CMe–

NMe).
Chem. Sci., 2019, 10, 10566–10576 | 10571
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Fig. 3 Reaction pathway for the hemiaminal formation from the N-
methyl formanilide with Mo-5. Gibbs energies in toluene (SMD) at 50
atm and 373 K are given in kcal mol�1. In blue and green, energies for
the hydride transfer using formanilide and N-methylacetanilide,
respectively. In red, energy for the hydride transfer using the reported
Fe-3 complex at 30 atm (Scheme 2).15

Fig. 5 Reaction pathway of the MeOH assisted hemiaminal proton
transfer and posterior C–N bond cleavage. Gibbs energies in toluene
(SMD) at 50 atm and 373 K are given in kcal mol�1.
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The similar energy barriers obtained with these substrates
did not account for the large differences in yield observed
experimentally (99% Conv. in N-methylformanilide vs. 20%
Conv. in N-methylacetanilide). In addition, the lower energy
barriers obtained with Mo compared to Fe are inconsistent with
the higher H2 pressure and time required to accomplish amide
hydrogenation with Mo-1a compared to Fe-3.14

These discrepancies were explained by considering the
reaction of Mo-3 with methanol leading to the Mo-methoxy
intermediate Mo-9a (Fig. 5). This reaction, which involves the
deprotonation of MeOH by the amido ligand (Mo-ts-3-9a), has
a low energy barrier (DG‡ ¼ 2.8 kcal mol�1) and is highly exer-
gonic (DG ¼ �11.4 kcal mol�1). The formation of related M-
methoxy species have been observed for similar Fe, Ru, Os
and Mn PNP-pincer complexes.20c,21,22 This species can promote
the protonolysis of the C–N bond by assisting the OH-
deprotonation and N-protonation of the hemiaminal
Fig. 4 TSs for the C–N bond cleavage step via the mechanism
previously reported for Fe-3.15

10572 | Chem. Sci., 2019, 10, 10566–10576
intermediate (Mo-ts-11-9a). The highest energy of this process is
10.8 kcal mol�1, which corresponds to the zwitterion hemi-
aminal intermediate interacting with the methoxide–Mo
complex (Mo-11). This energy is lower than the energy barrier
for the hydride transfer (13.1 kcal mol�1), indicating that the
C–N bond cleavage is not the rate limiting step once MeOH is
formed (note: for a comparison of this mechanism with Mo and
Fe-systems see ESI†).

The reaction of Mo-5 with MeOH yields hydrogen and is
exergonic (DG ¼ �9.7 kcal mol�1, Scheme 6). The methoxy
intermediate Mo-9a is thus the resting state of the catalyst.

Formanilide, and other secondary amides, can also displace
H2 from the catalyst (Mo-12 in Scheme 6). This reaction is even
more exergonic (DG ¼ �16.2 kcal mol�1) than with MeOH
increasing the global energy barrier for the hydride transfer
from 10.6 to 26.8 kcal mol�1 with formanilide. This energy may
increase to 31.4 kcal mol�1 by reaction with BEt3 (Mo-4). In
Scheme 6 Calculated Gibbs energies (kcal mol�1) for the substitution
of H2 inMo-5 by methanol, ethanol, formanilide and BEt3 yieldingMo-
9a, b, Mo-10 and Mo-4, respectively.

This journal is © The Royal Society of Chemistry 2019

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sc03453f


Fig. 7 Microkinetic simulation of N-methylformanilide 1a conversion
with 0% (green), 50% (brown) and 200% (red) ethanol in solution. The
initial concentration of reactants were the same as those used in the
experiments; i.e. 0.25 M N-methylformanilide 1a, 0.207 M of dihy-
drogen and 12.5 mM of Mo-5. Experimental values at 24 hours rep-
resented with triangles.
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contrast, with N-methylformanilide, the only penalty to pay is
the addition of MeOH. Therefore, the energy barrier for the
hydride transfer increases from 13.1 to 22.9 kcal mol�1, which is
lower than the barrier for formanilide, consistent with the
larger conversion obtained with N-methylformanilide. In the
case of N-methylacetanilide, the addition of ethanol instead of
methanol is expected. The higher stability of the ethoxide
complexMo-9b compared toMo-9a by ca. 2 kcal mol�1 (Scheme
6), together with the higher energy barrier for the hydride
transfer with this substrate (DG ¼ 20.9 kcal mol�1, Fig. 3), is
consistent with the low yields obtained experimentally with N-
methylacetanilide.

The mechanism of catalyst recovery by addition of H2 to the
methoxide complexMo-9a is shown in Fig. S3.† In this pathway,
methanol assists the activation of the Mo–H2 complex (Mo-14)
by acting as a proton-shuttle with a global energy barrier of
23.0 kcal mol�1. Similar mechanisms have been proposed with
Ru–N and Fe–N complexes (see ESI†).21b,23

The results from the computational study can be summa-
rized in the catalytic cycle represented in Fig. 6. In the absence
of alcohol, the Mo-catalyst is involved in the hemiaminal C–N
bond cleavage aer the amide C]O reduction (blue cycle). This
reaction yields amine and formaldehyde, which is reduced to
alcohol by the catalystMo-5 in a subsequent reaction (in red). In
the presence of alcohol, a Mo-alkoxo intermediate is formed,
Mo-9a. This species, which becomes the catalyst resting state, is
involved in the hemiaminal C–N bond cleavage. Finally, the
Fig. 6 General mechanism for the amide hydrogenation in the
absence (in blue) and presence (in black) of methanol with the form-
aldehyde hydrogenation in red. Dashed squares indicate the catalyst
resting state in the presence of MeOH and 2ari amides (in green).

This journal is © The Royal Society of Chemistry 2019
catalyst recovery takes place by the displacement of alcohol by
H2. The nature of the catalyst resting state may change with
secondary amides, which reacts with the catalyst forming an
adduct (Mo-4, in green) that hampers the reaction.

In order to validate this mechanism and the nature of Mo(0)
active species, the role of the counter-cation in this reaction was
explored computational and experimentally by using LiHBEt3,
NaHBEt3, and KHBEt3. Carrying out the benchmark reaction at
80 �C, 5 mol% of the alkali metal hydrides were added to acti-
vate Mo-1a. It could be shown, that for NaBHEt3 and KBHEt3
similar conversions of N-methylformanilide (1a) (76% and 77%,
respectively) and yields of 2a (75% and 73%, respectively) were
obtained. However, when LiBHEt3 was used, only 10% conver-
sion of 1a and 9% yield of N-methylaniline 2a was obtained.
These results were in agreement with the trends on the energy
barriers obtained for the amide C]O reduction step, which are
22.9, 23.0 and 28.8 kcal mol�1 with Na+, K+ and Li+, respectively,
taking Mo-9a as energy reference. The stronger electrostatic
interaction of Li+ with the methoxide intermediate (Mo-9aLi),
accounts for the highest energy barrier predicted for this system
(see ESI†).

Next, the role of the alcohol was explored by adding different
amounts of ethanol to the benchmark system. In the presence
of 50 mol% of EtOH, 96% conversion of N-methylformanilide
(1a) and 93% product yield were obtained. However, the addi-
tion of 200mol% resulted in a sharp decrease in conversion and
yield (35% conversion, 32% yield). Thus, it was concluded that
ethanol has a detrimental effect on the performance of the
catalytic system. Notably, these trends were reproduced with
a microkinetic model based on the general mechanism repre-
sented in Fig. 6 (in Fig. 7). This model predicted 100% conver-
sion aer 24 h of reaction for both 0% and 50% concentrations
of ethanol. In contrast, and in line with the experiments, the
same model predicted a signicant decrease of conversion to
64% with an ethanol concentration of 200% (see ESI for further
details†).
Chem. Sci., 2019, 10, 10566–10576 | 10573
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Conclusions

Well-dened molybdenum–PNP pincer complexes have been
used for the rst time in the hydrogenation of a range of amides
to the corresponding alcohols and amines. N-Alkylated and N-
arylated formamides can be hydrogenated to the corresponding
products in good to high yields. Applying complex Mo-1a high
selectivity for the hydrogenation of formamides was observed in
the presence of other reducible groups. These results pave the
way for potential applications of this type of complexes in
synthetic methodologies.

The DFT study shows that the active Mo(0) species (Mo-5)
reduces the C]O group of the amide through low-energy
barriers, compared to Fe-based systems. However, the alcohol
product and secondary amides react with the catalyst forming
stable adducts encumbering catalyst recovery and increasing
the overall barrier for the reduction of the C]O group. These
results suggest that further catalyst design should focus on
preventing the formation of these adducts, while keeping the
high hydricity of the complex.
Experimental details
General experimental information

All hydrogenation reactions were set up under Ar in a 300 mL
autoclave (PARR Instrument Company). In order to avoid
unspecic reductions, all catalytic experiments were carried out
in 4 mL glass vials, which were set up in an alloy plate and
placed inside the autoclave.

In a glove box, a 4 mL glass vial containing a stirring bar was
charged with complexMo-1a (12.5 mg; 5 mol%). Toluene (2 mL)
was added and the corresponding brown suspension was
treated with NaBHEt3 (0.5 M in THF; 50 mL; 10 mol%). The
reaction mixture was stirred for 10 minutes and the corre-
sponding substrate was subsequently added. Aerwards, the
vial was capped and transferred into an autoclave. Once sealed,
the autoclave was purged three times with 10 bar of hydrogen,
then pressurized to the desired hydrogen pressure (50 bar), and
placed into an aluminum block that was preheated to the
desired temperature (100 �C). Aer 24 h, the autoclave was
cooled in an ice bath and the remaining gas was released
carefully. The solution was subsequently diluted with ethyl
acetate and ltered through a small pad of Celite (1 cm in
a Pasteur pipette). The Celite was washed with methanol (2 mL)
and the combined ltrates were subsequently evaporated to
dryness. The remaining residue was puried by column chro-
matography (SiO2, heptane/EtOAc, gradient 100 : 0 / 0 : 100).
In the case of substrate 7, the puried product was dissolved in
5 mL of Et2O and subsequently treated with 1 mL of HCl (2 M in
Et2O). The reddish precipitate was ltered off, washed three
times with 5 mL of Et2O and nally dried in vacuo. For the
characterization of the products of the catalysis, see ESI.†
Computational details

DFT calculations were carried out with Gaussian 09 24 with the
M06 25 functional and the double-z LANL2DZ (on Mo, including
10574 | Chem. Sci., 2019, 10, 10566–10576
relativistic effects)26 and 6-31+G** (on all other elements)27 basis
sets. Calculations were done using the full system. The location
of the Na+ cation was evaluated in some of the intermediates,
and the preferred position is represented in gures and
schemes of the manuscript (see ESI†). The geometry optimiza-
tion and energies of the possible spin states of Mo-1a and Mo-4
were consistent with a doublet and singlet ground state,
respectively (see ESI†). Vibrational frequencies were computed
at the same level of theory to obtain the thermochemistry
corrections (zero-point, thermal and entropy energies) at the
experimental p ¼ 50 atm and T ¼ 373.15 K. The energy of the
optimized geometries was rened by single point calculations
with triple-z quality basis sets, including the LANL2TZ26 on Mo
and the 6-311+G** on all other elements.28 The energies re-
ported in the text were obtained by adding the thermochemistry
corrections to the rened potential energies. The solvation
effects of toluene were included in both the geometry optimi-
zations and energy renements using the continuum SMD
model.29 The ultrane (99 590) grid was used in all calculations
for higher numerical accuracy. A repository containing all input
and output les is available on-line from ioChem BD at https://
iochem-bd.bsc.es/browse/handle/100/193698.30 Microkinetic
models were simulated with the COPASI soware31 using the
LSODA algorithm. See ESI for further details.†
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6.3 Synthesis of Molybdenum Pincer Complexes and Their Application in 

the Catalytic Hydrogenation of Nitriles 

T. Leischner, A. Spannenberg, K. Junge, M. Beller 

The publication describing the preparation of several molybdenum pincer complexes and their 

subsequent application in the catalytic hydrogenation aromatic and aliphatic nitriles was 

prepared by me. I performed all the experimental work described in the publication and mainly 
wrote the manuscript, including the supporting information. The determination of the reported 

solid-state structures, alongside the corresponding measurements were carried out by Anke 

Spannenberg. My contribution to this publication is 80%. 

ChemCatChem 2020, 12, 4543–4549.  
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Synthesis of Molybdenum Pincer Complexes and Their
Application in the Catalytic Hydrogenation of Nitriles
Thomas Leischner,[a] Anke Spannenberg,[a] Kathrin Junge,[a] and Matthias Beller*[a]

Dedicated to Prof. Dr. Uwe Rosenthal on the occasion of his 70th birthday

A series of molybdenum(0), (I) and (II) complexes ligated by
different PNP and NNN pincer ligands were synthesized and
structurally characterized. Along with previously described
Mo�PNP complexes Mo-1 and Mo-2, all prepared compounds
were tested in the catalytic hydrogenation of aromatic nitriles
to primary amines. Among the applied catalysts, Mo-1 is

particularly well suited for the hydrogenation of electron-rich
benzonitriles. Additionally, two aliphatic nitriles were trans-
formed into the desired products in 80 and 86%, respectively.
Moreover, catalytic intermediate Mo-1a was isolated and its
role in the catalytic cycle was subsequently demonstrated.

Introduction

Reduction of nitriles continues to attract significant attention of
synthetic chemists for the preparation of diverse amines.[1]

Traditionally, these reactions are carried out on laboratory scale
using an excess of stoichiometric reducing agents, resulting in
at least equimolar amounts of waste products.[2,3] On the
contrary, catalytic homogenous hydrogenation using defined
organometallic complexes provides an environmentally benign
alternative, as it is more atom-economic with less waste
generation.[3b,4] Nevertheless, the selective catalytic hydrogena-
tion of nitriles to primary amines remains to be challenging for
certain substrates, due to the underlying reaction mechanism
(see Scheme 1).[5]

In general, primary amines are important intermediates for
various applications in organic synthesis as well as in the
production of bulk and fine chemicals.[6] Therefore, the develop-
ment of novel (catalytic) protocols for their synthesis remains of
particular interest. Until recently, noble metal-based catalyst
systems prevailed for this purpose in both, industrial processes
and academic research.[7] However, their comparably high price,
limited availability and toxicity issues, set incentives for their
replacement. Yet, in the past two decades significant progress
in this direction has been achieved using for example Fe, Co
and Mn complexes supported by pincer ligands.[8]

In this respect, also molybdenum constitutes an attractive
substitute for precious metals, due to its low costs and
environmentally benign nature.[9] Although the organometallic
chemistry of molybdenum, particularly of its pincer complexes,
has been studied in-depth in recent years,[10] reports on its
application in catalytic homogeneous nitrile hydrogenation are
exceptionally scarce. In fact to date, only three examples have
been reported for related reductions (Scheme 2). In 2012,
Nikonov and co-workers described the application of imido-
hydrido Mo(IV) complex I for the catalytic hydroboration of
nitriles in the presence of HBCat (Cat=catechol). However, only
aceto- and benzonitrile were tested as substrates.[11]

The group of Berke developed a molybdenum-catalyzed
homogeneous nitrile hydrogenation, based on molybdenum(I)-
amido pincer catalyst II. However, the developed protocol
operated under relatively harsh conditions (5 mol% catalyst,
140 °C) to yield secondary imines in high selectivity.[5]

In 2020, Wang and co-workers published an efficient trans-
fer hydrogenation of nitriles using molybdenum-thiolate com-
plex III in combination with NH3·BH3 as hydrogen donor.

[a] T. Leischner, Dr. A. Spannenberg, Dr. K. Junge, Prof. Dr. M. Beller
Leibniz Institute for Catalysis
Albert-Einstein-Straße 29a, 18059 Rostock (Germany)
E-mail: Matthias.Beller@catalysis.de
Supporting information for this article is available on the WWW under
https://doi.org/10.1002/cctc.202000736

This publication is part of a joint Special Collection with EurJIC on “Pincer
Chemistry & Catalysis”. Please follow the link for more articles in the col-
lection.

© 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This
is an open access article under the terms of the Creative Commons Attri-
bution Non-Commercial License, which permits use, distribution and re-
production in any medium, provided the original work is properly cited and
is not used for commercial purposes.

Scheme 1. General scheme for the hydrogenation of nitriles.
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Notably, this methodology applies particularly mild conditions
and is compatible with aliphatic and aromatic nitriles selectively
forming primary amines. The versatility of the developed system
is highlighted by the successful reduction of both cyano groups
of industrially relevant adiponitrile to corresponding 1,6-
diamino-hexane in 70% yield.[12]

In 2018, we described the synthesis of a series of molecular
defined molybdenum PNP-pincer complexes and subsequently
demonstrated their activity in the catalytic hydrogenation of
acetophenones, styrenes and formamides (Figure 1).[13] Based
on these works, herein we report the synthesis and structural
characterization of a series of previously unknown molybdenum

pincer complexes and their behavior in the hydrogenation of
nitriles to primary amines.

Results and Discussion

At the outset of our studies, we investigated whether our
previously developed method for the synthesis of molybdenum
complexes Mo-1 and Mo-2, could be extended to other pincer
ligands (Scheme 3).[13] Thus, PNP ligands (Cy2PCH2CH2)2NH,
(Ph2PCH2CH2)2NH, (Et2PCH2CH2)2NH as well as the NNN pincer
ligand bis-(2-pyridylmethyl)amine were reacted with Mo
(PPh3)2(CH3CN)2(CO)2 in either dichloromethane (DCM) or tetra-
hydrofuran (THF). Applying (Cy2PCH2CH2)2NH as ligand in DCM,
resulted in the intended formation of Mo(I) complex Mo-6 in
46% yield. However, when the reaction was carried out in THF
as reaction solvent, the formation of a light green, ill-soluble
powder was observed. Due to the extremely low solubility of
this powder in all common organic solvents, we were not able
to unequivocally confirm its identity by either NMR experiments
or X-ray analysis of suitable single crystals. Nevertheless, EA, IR
and HR/ESI-MS experiments strongly suggest the formation of
the corresponding Mo(0) complex Mo-5.

Next, we subjected (Ph2PCH2CH2)2NH to the reaction with
Mo(PPh3)2(CH3CN)2(CO)2 in THF. Interestingly, we obtained Mo
(0)-complex Mo-3a, featuring a PPh3 ligand coordinated to the
metal center, as the sole reaction product, in 91% yield.
Attempts to transform Mo-3a into the corresponding CH3CN

Scheme 2. Reported examples of molybdenum-catalyzed homogeneous
nitrile reductions.

Figure 1. Catalytically active molybdenum pincer complexes recently synthe-
sized by our group.

Scheme 3. Synthesis of new molybdenum PNP pincer complexes.
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derivative remained unsuccessful. Surprisingly, when the reac-
tion was carried out in DCM under otherwise identical
conditions, selective formation of Mo-3a was observed again.
Even after stirring for several days at room temperature, 31P{1H}
NMR analysis revealed Mo-3a as the main species. However,
slow formation of a new resonance at 63 ppm occurred.
Assuming, that Mo-3a is relatively stable towards chlorination,
the reaction mixture was heated to 40 °C for three hours. 31P{1H}
NMR analysis showed complete conversion of Mo-3a into the
new species at 63 ppm. Subsequent isolation and character-
ization provided diamagnetic Mo(II) pincer complex Mo-4a in
56% yield.

When exploring the reactivity of (Et2PCH2CH2)2NH, we
observed a similar reaction behavior as compared to
(Ph2PCH2CH2)2NH. Performing the reaction in THF, we were able
to isolate the corresponding Mo(0) Mo-3b in 82% yield.
Nevertheless, carrying out the reaction in DCM resulted in the
formation of complex product mixtures, even at �20 °C.

Finally, the NNN pincer ligand bis-(2-pyridylmethyl)amine
was applied. The ligand reacted readily with Mo

(PPh3)2(CH3CN)2(CO)2 in DCM and THF, respectively, resulting in
the formation of Mo-7 in both cases (Scheme 4).

Complex Mo-7 proved to be remarkably stable towards
chlorination and remained molecularly unchanged even after
refluxing for 24 h in DCM and DCE, respectively. All prepared
coordination compounds have been characterized by standard
techniques including 1H, 13C and 31P{1H} NMR (except Mo-6 and
Mo-7, see vide infra) and IR spectroscopy as well as elemental
analysis (for NMR and IR spectra, see supporting information).
Additionally, we were able to determine solid-state structures of
complexes Mo-3a, Mo-3b, Mo-4a, Mo-6 as well as Mo-7 by X-
ray analysis of suitable single crystals. Their structural views are
depicted in Figure 2. However, due to the insolubility of Mo-7
in all common NMR solvents, including benzene, toluene, THF,
acetonitrile, DMSO and methanol, as well as the paramagnetic
nature of Mo-6, we were unable to obtain meaningful NMR
data of these complexes.

Complexes Mo-3a, Mo-3b and Mo-7 adopt a distorted
octahedral coordination geometry at the molybdenum center,
with the CO ligands being in a cis-orientation. The coordinated
pincer ligands all exhibit a fac-arrangement around the central
metal atom. However, in complex Mo-6 the mer-coordination
mode of the pincer ligand is observed with the CO ligands
being in a cis-arrangement. The described characteristics for
Mo-6 are in agreement with our previously published solid
state structure of Mo-2.[13] The coordination geometry at the Mo
atom of the heptacoordinated Mo(II)-complex Mo-4a can be
best described as distorted capped octahedral.

The recorded IR spectra of the reported complexes all show
medium to strong carbonyl absorption bands between
1921 cm�1 and 1679 cm�1.

Next, we tested the catalytic activity of the newly described
molybdenum pincer complexes Mo-3a, Mo-3b, Mo-4a, Mo-6Scheme 4. Synthesis of previously unknown molybdenum NNN pincer

complex Mo-7.

Figure 2. Molecular structures of Mo-3a, Mo-3b, Mo-4a, Mo-6 and Mo-7 in the solid state. Thermal ellipsoids are drawn at 30% probability level. Hydrogen
atoms, except the N-bound are omitted for clarity. For Mo-6, only one molecule of the asymmetric unit is shown.
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and Mo-7, as well as of the previously reported compounds
Mo-1 and Mo-2, in the catalytic hydrogenation of benzonitrile
1a. It has to be noted, that in our initial work some activity was
reported in this transformation, using Mo-2 as the catalyst,
without further optimization. However, under the reported
conditions, only modest conversion (42%) and poor product
selectivity (13%) for the desired primary amine were
observed.[13] In order to minimize potential decomposition of
the homogeneous molybdenum catalysts, the initial catalyst
screening was carried out at 100 °C in the presence of 10 mol%
NaBHEt3. Under these conditions full conversion was observed
for Mo-1 and Mo-2, yielding approximately 1 :1 mixtures of 2a
and 3a (Table 1, entries 1–2). All other Mo-complexes, however,
provided inferior results (Table 1, entries 3–7). Interestingly, Mo-
4a as well as Mo-7 failed to give any conversion at all.

The activity of Mo-1 and Mo-2 was subsequently compared
at a reduced temperature of 80 °C (Table 1, entries 8 and 9).
Here, Mo-1 provided a superior conversion of 90%. Based on
this result and its more convenient synthesis, we focused on
Mo-1 in the due course of the optimization process. Selecting

80 °C reaction temperature and 5 mol% of Mo-1 (Table 1,
entry 8) as the optimal setting, we explored several different
solvents. In contrast to previous reports on base metal catalyzed
hydrogenation of nitriles, Mo-1 was found to be completely
inactive in i-PrOH, while toluene as solvent provided the best
results. Applying THF, 1,4-dioxane and Bu2O resulted in
significantly lower activities and predominantly yielded 3a as
the reaction product. Other aliphatic solvents such as n-heptane
and cyclohexane, were not suitable for the attempted trans-
formation (Figure 3).

Subsequently, we investigated the influence of dihydrogen
pressure, catalyst loading, the amount of additive used
(Table S1, see supporting information), as well as the substrate
concentration (Table S2, see supporting information) on the
reaction outcome. Reducing the catalyst loading to 2.5 mol%
resulted in a significantly less active system. However, lowering
the amount of additive to 5 mol% led to no loss in reactivity.

Increasing the H2 pressure to 80 bar showed no observable
effect. Albeit, carrying out the reaction at 30 bar of dihydrogen
caused a sharp drop in catalyst activity. A rise of the reaction
temperature to 100 °C eventually resulted in full conversion of
1a in the presence of 5 mol% NaBHEt3 and Mo-1, respectively
(Table 1, entry 10). Next, we evaluated several substrate concen-
trations based on 0.5 mmol of 1a, ranging from 0.08 to 0.5 m.
Notably, using 5 mL of toluene proved to be the optimal
concentration, providing the desired product benzylamine 2a in
96% yield (Table 1, entry 11). Finally, a series of control experi-
ments were carried out. In the absence of Mo-1, no catalytic
reaction took place (Table 1, entry 12). Similarly, no product
formation could be detected, when the reaction was performed
in the absence of NaBHEt3 (Table 1, entry 13). In order to
confirm, that no heterogeneous catalysis takes place, a mercury
poisoning experiment was conducted, revealing no loss of
activity (Table S2, see supporting information).

Having optimized conditions in hand, we proceeded to the
application of Mo-1 in the hydrogenation of a variety of
different benzonitriles to the corresponding benzylamines. As
shown in Scheme 5 our developed methodology appeared to
be particularly well suited for electron-rich benzonitriles and
the intended primary amines were consistently obtained in
high yields. Substituents in para-, meta- and ortho-position of
the phenyl ring were well tolerated and even sterically hindered
nitriles 1k and 1m were successfully converted, furnishing 2k
and 2m in isolated yields of 68% and 91%, respectively.
Notably, when the steric bulk was further increased, using 2,6-
dimethylbenzonitrile 1n, we were still able to isolate the desired
primary amine 2n in a good yield of 72%. The system proved to
be insensitive towards halides such as fluoride and chloride (2b
and 2c) and no dehalogenation products were observed during
the catalysis. This was additionally the case when 3,5-dichlor-
obenzonitrile 1o was employed, providing 3,5-dichlorobenzyl-
amine 2o in 60% isolated yield. Moreover, also a benzylether
moiety, often cleaved under hydrogenation conditions, re-
mained unaffected and no deprotection could be detected in
product 2h. However, some (hetero)benzonitriles with substitu-
ents in either ortho- or para-position, such as H2N�, CF3�,
CO2Me�, carbonyl-, cyano- and nitro groups, either gave only

Table 1. Initial screening of Mo-catalysts and reaction parameters.[a]

Entry Catalyst Conv. [%][b] Yield 2 [%][b] Yield 3 [%][b]

1 Mo-1 >99 58 40
2 Mo-2 >99 52 42
3 Mo-3a 62 38 20
4 Mo-3b 70 41 24
5 Mo-4a <1 <1 <1
6 Mo-6 78 41 35
7 Mo-7 <1 <1 <1
8[c] Mo-1 90 50 38
9[c] Mo-2 81 42 35
10[d] Mo-1 >99 55 41
11[e] Mo-1 >99 96 <1
12[f] – 4 <1 <1
13[g] Mo-1 7 <1 <1

[a] Reaction conditions: 0.5 mmol substrate, 2 mL toluene, 5 mol% catalyst,
10 mol% NaBHEt3 (1 m in THF), 50 bar H2, 100 °C, 24 h. [b] Determined by
GC using hexadecane as internal standard. [c] 80 °C. [d] 5 mol% NaBHEt3
(0.5 m in THF). [e] 5 mL toluene, 0.5 mmol substrate. [f] No catalyst was
used. [g] No NaBHEt3 added.

Figure 3. Study of the solvent effect in the hydrogenation of benzonitrile 1a
to benzylamine 2a and N-benzylidenebenzylamine 3a catalyzed by Mo-1.
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poor conversions or did not yield the desired primary amines in
sufficient quantities (see Table S3, supporting information).
Clearly, in these cases the observed reactivity of the catalyst is
not an easy function of the electron-donating or electron-
withdrawing character of the respective substituents. Appa-
rently, there are several factors influencing the observed
reactivity. In Table S3 some of the observed side products are
mentioned.

Interestingly, for 2- and 4-trifluoromethyl-substituted benzo-
nitriles low conversions and negligible product yields were
observed, while in the case of meta-CF3-substituted nitrile 1l the
corresponding primary amine 2l could be isolated in 61% yield.
Furthermore, we successfully applied two aliphatic nitriles 1p
and 1q to our reported protocol. In both cases, Mo-1 proved to
be a suitable catalyst and we were able to isolate the intended
reaction products 2p and 2q in 80% and 86% yield,
respectively.

Finally, with respect to the mechanism we became inter-
ested in the molecular structure of the organometallic species
formed from the reaction of Mo-1 and NaBHEt3. Hence, we
conducted a control experiment, treating 0.5 mmol of Mo-1
with an excess of NaBHEt3 in toluene at room temperature (for
experimental details, see Supporting Information). The reaction
proceeded rapidly, resulting in the formation of a clear red
solution within less than one minute. The 31P{1H} NMR analysis
of the crude reaction mixture revealed the formation of a strong

singlet resonance at 74 ppm as the main product alongside
some free ligand. Attempts to characterize the corresponding
species by X-ray analysis of suitable crystals were successful and
provided the solid-state structure of Mo-1a (Scheme 6). As
expected, the applied additive acts as base and abstracts a
proton from Mo-1. Interestingly, the deprotonation does not
involve the NH moiety of the pincer ligand but takes place at
the CH3-group of the coordinated acetonitrile ligand, resulting
in the formation of a covalent C�B bond. This observed
reactivity is in sharp contrast to classical reaction patterns
observed for pincer supported (base) metal catalysts, where
basic additives typically activate the catalyst by deprotonation
of the ligand backbone.[14]

In order to confirm that Mo-1a indeed plays an active role
in the catalysis, the benchmark reaction was carried out using
5 mol% Mo-1a in the absence of NaBHEt3 under otherwise
identical conditions. Benzylamine 2a was observed in 92%
yield, proofing the involvement of Mo-1a in the catalytic
hydrogenation of benzonitrile 1a. Next, we were interested in
the reactivity of Mo-1a towards dihydrogen. Therefore, Mo-1
was activated with two equivalents of NaBHEt3 in d8-toluene
and subsequently stirred for 3 h at 100 °C in the presence of
50 bar H2 (for experimental details see Supporting Information).
Analysis of the reaction mixture by 31P NMR spectroscopy
revealed two new main resonances at 89.1 and 75.9 ppm, thus
proving that Mo-1a had undergone a reaction with H2.
However, no hydride signals could be detected according to
the obtained 1H NMR spectrum. The resonance at 75.9 ppm
corresponds to the Mo(0) complex fac-[(iPr2PCH2CH2)2NH]Mo
(CO)3,

[13a] revealing a potential catalyst deactivation pathway.
Furthermore, to understand the poor catalytic performance

of Mo-1 when electron deficient nitriles are applied, a series of
control experiments were conducted, too (Scheme 7).

Adding 0.5 mmol of 4-(trifluoromethyl)benzonitrile 1r to the
benchmark reaction resulted in a complete shut-down of
catalyst activity and no benzylamine 2a could be detected.

Scheme 5. Substrate scope for nitrile reduction with molybdenum pincer
complex Mo-1.

Scheme 6. Synthesis of Mo-1a (top). Molecular structure of Mo-1a in the
solid state (bottom). Thermal ellipsoids are drawn at 30% probability level.
Hydrogen atoms, except the N-bound are omitted for clarity. Disordered
parts of the molecule are only shown in one orientation.
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Interestingly, also in the presence of only 10 mol% of 1r, no
formation of 2a occurred. We therefore conclude, that 1r acts as
a strong catalyst poison and thus inhibits the catalysis (for
experimental details on the described reactions, see Supporting
Information). Subsequently, we investigated whether the corre-
sponding primary amine, 4-(trifluomethyl)benzylamine 2r, could
act as catalyst poison too. Interestingly, adding 10 mol% of 2r
resulted in full conversion of 1a and benzylamine was observed
in 72% yield.

Conclusions

In summary, we reported the synthesis and structural character-
ization of a series of previously unknown molybdenum pincer
complexes. Depending on the used pincer ligand and the
reaction solvent, different complex structures are obtained.
Furthermore, the first molybdenum-catalyzed reduction of
nitrile to primary amines using molecular hydrogen is de-
scribed. In fact, Mo-pincer complex, Mo-1, can be used as
efficient catalyst for the selective catalytic hydrogenation of
selected aromatic and aliphatic nitriles to give the correspond-
ing primary amines. Additionally, we isolated and identified
catalytic intermediate Mo-1a and subsequently proved its role
in the catalytic process.

Experimental Section
General Procedure for Catalysis Experiments: All hydrogenation
reactions were set up under Ar in a 300 mL autoclave (PARR
Instrument Company). In order to avoid unspecific reductions, all
catalytic experiments were carried out in seperate 8 mL glass vials,
which were set up in an alloy plate and placed inside the autoclave.

In a glove box, an 8 mL glass vial containing a stirring bar was
charged with complex Mo-1 (12.5 mg; 5 mol%). Toluene (5 mL) was
added and the corresponding greenish suspension was treated
with NaBHEt3 (0.5 m in THF; 50 μL; 5 mol%). The reaction mixture
was stirred for 20 minutes and the corresponding substrate was
subsequently added. Afterwards, the vial was capped and trans-
ferred into an autoclave. Once sealed, the autoclave was purged
three times with 10 bar of hydrogen, then pressurized to the
desired hydrogen pressure (50 bar) and placed into an aluminum
block that was preheated to the desired temperature (100 °C). After
24 h, the autoclave was cooled in an ice bath and the remaining
gas was released carefully. The solution was subsequently diluted
with 50 mL Et2O and filtered through a small pad of silica. The silica
was washed with DCM (10 mL) and the combined filtrates were
treated with 2 mL of HCl (2 m in Et2O). The obtained precipitate was
filtered off, washed two times with 20 mL ethyl acetate and two
times with 20 mL Et2O and subsequently dried in vacuo. For the
characterization of the products of the catalysis, see Supporting
Information.
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Aminoindanes are important building blocks for the
synthesis of aminoindane amides (Scheme 1), which

were disclosed to be active compounds for the control of
phytopathogenic fungi.1 The first protocols for the preparation
of this class of compounds were reported in 1985 by the
Sumitomo Chemical Company.2 Since then, the majority of
commercially available fungicides of this type have been used as
racemic mixtures. Since the individual enantiomers usually
exhibit different performances, an enantioselective synthesis is
highly desirable for efficiency and sustainability. Thus, the first
attempts to isolate enantiomerically pure building blocks used
crystallization of diastereomeric salts with D-tartaric acid.3

However, the asymmetric hydrogenation of 1-(2,2,4-
trimethylquinolin-1(2H)-yl)ethan-1-one would represent a
much more elegant solution, as it offers advantageous features
such as excellent atom economy and quantitative yields as well as
high levels of stereoselectivity. Following this approach, a
selective hydrogenation of the nonfunctionalized trisubstituted
alkene moiety has to be achieved. The selective hydrogenation
of such types of double bonds is still challenging, and the best
results are typically obtained using chiral Crabtree/Pfaltz-type
iridium complexes.5 Previously, it was discovered that replacing
the established hexafluorophosphate anion with the weakly
coordinating BArF

− anion not only enabled the use of catalyst
loadings lower than 1 mol % but also provided a catalytic system
that is less sensitive to moisture.6 Impressive examples of
asymmetric hydrogenation using these complexes were the
hydrogenation of γ-tocotrienyl acetate7 and the total synthesis of
demethyl methoxycalamenene.8 Unfortunately, utilizing a 1.25
mol % loading of the commercially available complex [Ir-
(COD)ThrePHOX]BArF for the asymmetric hydrogenation of
1 to 2 resulted only in 14% conversion and low enantioselectivity
(31% ee) (Figure 1).9 Clearly, from an industrial point of view
neither the activity nor the selectivity is suitable for any
application. In order to justify the use of an expensive iridium
precursor, a lower catalyst loading and a higher selectivity have
to be achieved.
Here we report a state-of-the-art process for this trans-

formation that allows for the first time a practical and industrially
feasible synthesis of 2 and related building blocks via asymmetric
hydrogenation.

Received: October 28, 2019
Published: February 20, 2020

Scheme 1. Selected Example of the Synthesis of an
Aminoindane Amide Fungicide4

Figure 1. Crabtree/Pfaltz-type iridium complexes for the desired
transformation.
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■ RESULTS AND DISCUSSION
A preliminary catalyst screening using commercially available
and tailor-made iridium complexes revealed complex 5a as a

benchmark catalyst (Figure 2).10 Notably, this type of complex
was originally introduced by Pfaltz and co-workers for
asymmetric hydrogenation of olefins and furan derivatives.11

Initially, we investigated the influence of different substituents
of 5a (indicated by the R groups in Figure 2). Following the
protocol reported by Pfaltz and co-workers, we started
synthesizing chiral pyridyl alcohols using the building blocks
(R)-7-((tert-butyldimethylsilyl)oxy)-2-chloro-6,7-dihydro-5H-
c y c l o p en t a [ b ] p y r i d i n e (3a ) a nd (S ) - 7 - ( ( t e r t -
butyldimethylsilyl)oxy)-2-chloro-4-methyl-6,7-dihydro-5H-
cyclopenta[b]pyridine (3b) (Scheme 2).12 Eighteen different
pyridyl alcohols (4a−r) were obtained overall in moderate to
good yields from the Suzuki reaction of 3a or 3b with the
corresponding boronic acids followed by deprotection of the
silyl ether.
For the majority of the boronic acids, [1,3-bis(2,6-

diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene](chloro)(3-
phenylallyl)palladium(II) (CX 32) was found to be a suitable
precatalyst for the coupling step. However, for highly bulky
boronic acids, higher temperatures and longer reaction times
(for 4m, 4n, and 4r) or even other palladium precursors
((dppf)PdCl2·DCM for 4o or Pd(PPh3)4 for 4q) were necessary
in order to obtain decent product yields. Next, these pyridyl
alcohols were used to synthesize 22 different bench-stable
iridium precatalysts via the corresponding phosphonites
(Scheme 3).
We then investigated the effect of the different precatalysts in

the benchmark hydrogenation of 1 (60 bar H2, 85 °C, 6−40 h,
HFIP, 0.1−0.01 mol % Ir). In order to get a fast insight into the
catalytic behavior of the precatalysts and to avoid single
hydrogenation reactions, all of the experiments were performed
in a 6-fold parallel manner (see the Supporting Information). To
our delight, in this “1st generation” screening a positive influence
on the reaction outcome was obtained by replacing the proton at
the 4-position of the pyridine moiety (R1) with a methyl group
(5a vs 5b; Table 1, entries 2 and 3). This observation was also
confirmed by later examples (5d vs 5f and 5l vs 5s; Table 1,
entries 6, 8, 15, and 22). Next, a set of complexes were
synthesized in order to elucidate the influence of the R2 groups
on the phosphorus atom (Scheme 3, “2nd generation”). Since
aryl-substituted phosphinites showed poor activity, we focused
on alkyl phosphonites. Gratifyingly, when the tert-butyl groups
on the phosphorus atom were replaced with cyclohexyl groups,
increased activity and high enantioselectivity were observed (5b
vs 5f; Table 1, entries 4 and 8) at a low catalyst loading (0.05mol
%). This result is in contrast to previous work by Pfaltz and co-
workers using similar types of ligands for the hydrogenation of
(E)-2-(4-methoxyphenyl)-2-butene. In their work, usually the
tert-butyl-substituted complexes gave significantly higher

enantioselectivities than the cyclohexyl-substituted ones.11a

Inspired by the work of Woodmansee et al.,11b we synthesized
other complexes with less sterically demanding alkyl groups on
the phosphorus atom.13 However, the resulting complexes were
less active and also less selective than 5f (5e, 5g, and 5h; Table 1,
entries 7, 9, and 10).

From the evaluation of complexes 5i−v in the benchmark
reaction (Scheme 3, “3rd generation”), some interesting trends
were found. An electron-withdrawing group, such as fluoro or
trifluoromethyl, at the para position of the phenyl moiety
lowered the activity as well as the selectivity dramatically (5j and
5k vs 5d; Table 1, entries 6, 13, and 14). Interestingly, previous
work by Zhou’s group did not show a similar trend in activity.14

Replacing the phenyl group at the 2-position of 5d with an
anthracenyl group led to a more active catalyst (5l), which gave
nearly full conversion at a 0.05 mol % catalyst loading and still
good conversion of 79.5% when a 0.025 mol % loading was used.
The naphthyl-substituted analogue 5n, however, was slightly less
active than its phenyl-substituted counterpart 5f (Table 1,
entries 8 and 17). As expected, 5swas more active than 5l, giving

Figure 2. Benchmark catalyst for the hydrogenation of 1.

Table 1. Results for Hydrogenation of 1a,b

entry complex
time
[h]

loading
[mol %]

conv.
[%] TON ee [%]

1 5a 16 0.1 99.2 992 98.0 (R)
2 5a 6 0.1 81.5 815 97.5 (R)
3 5b 6 0.1 94.5 945 97.5 (R)
4 5b 16.5 0.05 86.8 1736 97.6 (R)
5 5c 6 0.1 91.2 912 97.0 (R)
6 5d 16.5 0.05 88.2 1764 97.6 (S)
7 5e 16 0.1 30 300 90.0 (S)
8 5f 16.5 0.05 94.4 1888 97.3 (R)
9 5g 6 0.1 76.0 760 96.0 (R)
10 5h 16.5 0.05 87.9 1758 95.8 (R)
11 5i 16.5 0.05 98.4 1968 96.8 (S)
12 5i 16 0.025 67.2 2688 97.3 (S)
13 5j 16.5 0.05 34.6 692 83.2 (S)
14 5k 16.5 0.05 64.7 1294 92.4 (S)
15 5l 16.5 0.05 98.9 1978 95.8 (S)
16 5l 16 0.025 79.5 3180 97.5 (S)
17 5n 16.5 0.05 92.4 1848 96.9 (R)
18 5o 16 0.025 91.6 3664 97.3 (R)
19 5p 16 0.025 42.2 1688 94.5 (R)
20 5q 16 0.025 81.7 3268 97.9 (R)
21 5r 16 0.025 98.0 3920 98.1 (R)
22 5s 16 0.025 94.1 3764 97.5 (R)
23 5m 16 0.025 7.2 288 70.8 (S)
24 5t 16 0.025 60.0 2400 92.1 (R)
25 5u 16 0.025 74.0 2960 98.0 (R)
26 5v 16 0.025 97.5 390 97.3 (R)
27c 5r 40 0.01 93.9 9390 98.0 (R)
28d 5r 40 0.01 93.4 9340 97.6 (R)

aIn general, only the lowest tested catalyst loading for each complex is
presented. bStandard reaction conditions: 1 (3 mmol), [Ir], HFIP (4
mL), H2 (60 bar), 85 °C.

c12 mmol scale, 16 mL of HFIP. d25 mmol
scale, 33 mL of HFIP.
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a very good conversion of 94.1% at a 0.025 mol % catalyst
loading (Table 1, entry 22). While the methoxy-substituted
complex 5cwas less active than 5b (Table 1, entries 3 and 5), the
p-tert-butyl-substituted derivative 5o was more active than 5f,
providing the product in 91.4% yield (Table 1, entry 18).
Encouraged by the results achieved with 5o, we synthesized the
complexes 5p−r using the corresponding commercially
available boronic acids. While 5p and 5q exhibited lower
performance than 5o (Table 1, entries 19 and 20), 5r gave 98%

conversion at a 0.025 mol % catalyst loading (Table 1, entry 21).
Further increasing the steric demand of the ligand led to either a
less active catalytic system (5u; Table 1, entry 25) or an equally
active catalytic system (5v; Table 1, entry 26). The motif in
complex 5t, which was used before by Pfaltz’ group,11b gave only
poor results for the desired reaction. As 5r gave a higher yield
and selectivity compared with 5v, we continued working with
this complex. Notably, using only a 0.01 mol % loading of 5r was
sufficient to give a 93.9% yield of the product with an ee of 98%

Scheme 2. Synthesis of Chiral Pyridyl Alcohols

aIsolated yield over two steps. bIsolated yield of the Suzuki reaction. c3b (2 mmol), boronic acid (2.3 mmol), CX 32 (2 mol %), NaOH, iPrOH,
H2O, 115 °C, 48 h.

d3a (2 mmol), trimethylboroxine (1.5 equiv), (dppf)PdCl2·DCM (5 mol %), K2CO3 (3 equiv), 1,4-dioxane, 120 °C, 20 h.
e3b

(1 mmol), (2,4,6-triisopropylphenyl)boronic acid (1.2 equiv), Pd(PPh3)4 (15 mol %), K3PO4 (5.0 equiv), H2O (1.0 mL), DME (5.0 mL), 110 °C,
24 h.
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(R). Furthermore, this reaction was successfully scaled up to 25
mmol, yielding 2 in 93.4% yield with an excellent enantiose-
lectivity of 97.6% ee.

■ CONCLUSION
We synthesized and tested 22 different chiral iridium complexes
for the hydrogenation of 1 to 2, which is of general interest for
the preparation of novel agrochemicals. In the presence of the
optimal iridium catalyst 5r, this transformation proceeds with
high efficiency (turnover number (TON) > 9300) and excellent
enantioselectivity (up to 98% ee), allowing industrially viable
catalyst loadings to be achieved.

■ EXPERIMENTAL PROCEDURES
General Experimental Procedure. The Ir complex

(catalyst loading given) and the substrate (3 mmol) were
placed in an 8 mL autoclave vial containing a PTFE-coated
stirring bar. The autoclave vial was closed using a screw cap with
a septum, placed in a fitted metal plate, connected to a Schlenk
line, and subsequently flushed with argon (10 min). HFIP (4
mL) was added to the vial via the septum. The vial was placed in
an argon-containing autoclave, and the autoclave was flushed
with argon (10 min). The autoclave was pressurized with
hydrogen gas (10 bar) and subsequently depressurized to
atmospheric pressure three times. After this, the autoclave was
pressurized to a hydrogen pressure of 60 bar and placed in a
suitable alumina block. After heating to 85 °C (∼4 °C/min; 15
min), the reaction mixture was kept at this temperature for the
given time. The autoclave was placed in an ice bath to allow fast
cooling to room temperature. After depressurization, the vial

was taken out of the autoclave, and the reaction outcome was
determined by GC-FID analysis (diluted with EtOH) and the
enantiomeric excess by HPLC analysis.

General Procedure for the 12 mmol Scale-Up Experi-
ment. Complex 5r (0.01 mol %) and the substrate (12 mmol)
were placed in a 25 mL autoclave containing a PTFE-coated
stirring bar and dissolved in HFIP (16 mL). The autoclave was
closed, flushed with Ar for 10 min, and subsequently pressurized
with hydrogen gas (10 bar) and depressurized to atmospheric
pressure three times. After this, the autoclave was pressurized to
a hydrogen pressure of 60 bar and placed in a suitable alumina
block. After heating to 85 °C (∼4 °C/min; 15 min), the reaction
mixture was kept at this temperature for the given time. The
autoclave was placed in an ice bath to allow fast cooling to room
temperature. After depressurization, the reaction outcome was
determined by GC-FID analysis (diluted with EtOH) and the
enantiomeric excess by HPLC analysis.

General Procedure for Scale-Up Experiment (25
mmol). Complex 5r (0.01 mol %) and the substrate (25
mmol) were placed in a 50 mL autoclave containing a PTFE-
coated stirring bar and dissolved in HFIP (33 mL). The
autoclave was closed, flushed with Ar for 10 min, and
subsequently pressurized with hydrogen gas (10 bar) and
depressurized to atmospheric pressure three times. After this,
the autoclave was pressurized to a hydrogen pressure of 60 bar
and placed in a suitable alumina block. After heating to 85 °C
(∼4 °C/min; 15 min), the reaction mixture was kept at this
temperature for the given time. The autoclave was placed in an
ice bath to allow fast cooling to room temperature. After
depressurization, the reaction outcome was determined by GC-

Scheme 3. Synthesis of Iridium Precatalysts
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FID analysis (diluted with EtOH) and the enantiomeric excess
by HPLC analysis.
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AGeneral Regioselective Synthesis of Alcohols by Cobalt-Catalyzed
Hydrogenation of Epoxides
Weiping Liu+, Thomas Leischner+, Wu Li, Kathrin Junge, and Matthias Beller*

Abstract: A straightforward methodology for the synthesis of
anti-Markovnikov-type alcohols is presented. By using a spe-
cific cobalt triphos complex in the presence of Zn(OTf)2 as an
additive, the hydrogenation of epoxides proceeds with high
yields and selectivities. The described protocol shows a broad
substrate scope, including multi-substituted internal and ter-
minal epoxides, as well as a good functional-group tolerance.
Various natural-product derivatives, including steroids, terpe-
noids, and sesquiterpenoids, gave access to the corresponding
alcohols in moderate-to-excellent yields.

Alcohols are a class of important organic compounds that
are ubiquitous in bulk and fine chemicals, as well as in natural
products.[1] Among the numerous established procedures for
the synthesis of alcohols, the classic hydroboration/oxidation
protocol still prevails on a laboratory scale (Figure 1A).
Advantageously, this methodology allows for a formal anti-
Markovnikov functionalization of linear alcohols from ole-
fins, however, stoichiometric amounts of borane agents have
to be employed.[2] To overcome this problem, various catalytic
approaches to provide similar products have been developed.
For example, a formal anti-Markovnikov hydration of mono-
substituted styrenes by triple-relay catalysis was demon-
strated by Grubbs and co-workers.[3] More recently, Lei and
co-workers established a visible-light-mediated anti-Markov-
nikov hydration of water to olefins, by using a photoredox
catalyst in combination with a redox-active hydrogen-atom
donor.[4] Additionally, the Arnold group realized a regio-
selective redox hydration of styrenes catalyzed by ametal-oxo
enzyme.[5]

Conceptually, the selective hydrogenation of epoxides,
which are readily available from alkenes by a one-step
oxidation using peroxyacids or hydrogen peroxide,[6] offers an

attractive alternative (Figure 1B).[7] Heterogeneous catalysts
such as Pd/C generally facilitate this transformation, but are
limited to aryl epoxides, whereas Markovnikov-type alcohols
are formed as the major products in the case of alkyl
epoxides.[8] On the contrary, homogeneous catalysts have
been scarcely investigated for this task. Until very recently,
the only known examples featured rhodium- and ruthenium-
based systems and suffered from poor product selectivities.[9]

In 2019, Gans�uer, Norton, and co-workers disclosed an
elegant strategy that used cooperative catalysis to give linear
alcohols by combining titanocene-mediated[10] epoxide open-
ing with chromium-catalyzed hydrogen activation and radical
reduction (Figure 1C).[11] Independently, our group devel-
oped the first non-noble-metal-catalyzed hydrogenation of
terminal epoxides to give primary alcohols. Using a combina-
tion of Fe(BF4)2·6H2O and tris(2-(diphenylphosphanyl)phe-
nyl)phosphane (tetraphos) the desired products are obtained
in high yields and selectivities.[12] However, a drawback of this
procedure was that only terminal epoxides were suitable

Figure 1. Synthesis of alcohols from olefins and hydrogenation of
epoxides to alcohols.
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substrates and internal epoxides did not undergo hydro-
genation to provide secondary alcohols (Figure 1D).

Herein, we describe a general and efficient non-noble-
metal catalyst system[13] to enable selective hydrogenation[14]

of both internal and terminal epoxides to the corresponding
alcohols under mild conditions (Figure 1E).

Based on our former studies, we explored the hydro-
genation of 2-methyl-3-phenyloxirane (1a) as a benchmark
substrate. As expected, the previous Fe(BF4)2/tetraphos
system gave no significant amount of alcohols. Similarly, in
the presence of related multidentate phosphines, for example,
1,1,1-tris(diphenyl-phosphinomethyl)ethane (triphos), no
desired product formation occurred. Moreover, well-known
molecularly defined noble-metal complexes [Ru(acac)3/tri-
phos][15] and [Rh(PPh3)3Cl] also failed to furnish the desired
product under otherwise identical reaction conditions (for
experimental details, see the Supporting Information). Inter-
estingly, applying the combination of Co(BF4)2·6H2O and
tetraphos in the presence of HNTf2 resulted in formation of
the desired anti-Markovnikov-type product 1-phenylpropan-
2-ol (2a), albeit in a low yield (17%), with 1-phenylpropan-2-
one (2a’) produced as a side product (for experimental
details, see the Supporting Information). When triphos was
tested as the ligand, a slight increase in activity was observed
(Table 1, entry 1). Changing the catalyst precursor to
Co(NTf2)2 further improved the observed yield (Table 1,
entry 2); however, when the reaction temperature was
decreased (to 100 8C), the hydrogenation process almost
completely stopped and only minor amounts of 2a could be
detected (Table 1, entry 3). Notably, the addition of catalytic
amounts of Zn(OTf)2 (3.0 mol%) significantly improved
catalyst activity, even at a lower temperature (80 8C)
(Table 1, entries 4 and 5).

Other Lewis acids, such as In(OTf)3, Al(OTf)3, and
Fe(OTf)2, provided inferior results (Table 1, entries 6–8).
Control experiments indicated that the synergistic combina-
tion of triphos and cobalt precursor is crucial for the epoxide
hydrogenation process (Table 1, entries 9 and 10). Increasing
the amount of additive further improved the obtained yield of
2a to 85% (Table 1, entry 11). In general, other cobalt
precursors could be applied in this benchmark process, but
resulted in slightly lower catalyst activities (Table 1, entries 12
and 13). It should be noted that standard heterogeneous
catalysts, such as PtO2, Pd/C, and Raney-Ni, exhibited
significantly lower or even no activity, even in the presence
of Zn(OTf)2 (for experimental details, see the Supporting
Information).

With the optimized reaction conditions in hand, we tested
the suitability of our methodology towards various internal
epoxides. As shown in Scheme 1, various di- and tri-substi-
tuted internal epoxides were successfully applied and yielded
the desired secondary alcohols in good yields and high
regioselectivities. All the reactions occurred under relatively
mild conditions and importantly, tolerate a variety of valuable
substituents and functional groups irrespective of their
location at the ortho-, meta-, or para-position. Notably, ester
2q, which is typically reduced by cobalt/triphos catalysts,
remained unaffected under the applied conditions and led to
the corresponding alcohol in 74% yield (Scheme 1).[13a] In
addition, asymmetric dialkyl-substituted internal epoxides
2k, 2m, and 2r were successfully transformed to diastereo-
meric secondary alcohols.

However, when the tetra-substituted epoxide 2,2,3,3-
tetramethyloxirane 1s (see the Supporting Information) was

Table 1: Optimization of Cobalt-catalyzed hydrogenation of epoxide
(1a).[a]

Entry Catalyst Additive T [8C] 2a [%][b]

1[c] Co(BF4)2·6H2O HNTf2 120 23
2[c] Co(NTf2)2 – 120 43
3 Co(NTf2)2 – 100 <10
4 Co(NTf2)2 Zn(OTf)2 100 74
5 Co(NTf2)2 Zn(OTf)2 80 80
6 Co(NTf2)2 In(OTf)3 80 74
7 Co(NTf2)2 Al(OTf)3 80 <10
8 Co(NTf2)2 Fe(OTf)2 80 18
9 – Zn(OTf)2 80 –
10[d] Co(NTf2)2 Zn(OTf)2 80 –
11[e] Co(NTf2)2 Zn(OTf)2 80 85
12[e] Co(BF4)2·6H2O Zn(OTf)2 80 80
13[e] Co(ClO4)2·6H2O Zn(OTf)2 80 73

[a] Reaction conditions: 1a (0.5 mmol), [Co] (3.0 mol%), triphos
(6.0 mol%), additive (3.0 mol%), THF (4 mL), 16 h, yields were
determined by GC analysis with n-hexadecane as an internal standard.
[b] 1-Phenylpropan-2-one 2a’ is the main side product. [c] triphos
(3.0 mol%). [d] Without triphos. [e] Zn(OTf)2 (7.0 mol%).

Scheme 1. Cobalt-catalyzed hydrogenation of internal epoxides. Reac-
tion condition: 1 (0.5 mmol), Co(NTf2)2 (3.0 mol%), triphos
(6.0 mol%), Zn(OTf)2 (7.0 mol%), THF, 80 8C, 16 h. [a] The diastereo-
isomer ratio is 1:1.1. [b] Co(BF4)2·6H2O (3.0 mol%), 1,4-dioxane,
60 8C, 20 h, the diastereoisomer ratio (2.8:1) and yield were deter-
mined by GC analysis.
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applied to our reaction conditions, only the formation of
a complex product mixture was observed.

The applied cobalt-based catalyst system is not restricted to
the hydrogenation of internal oxiranes. In fact, numerous terminal
epoxides, including several natural-product derivatives (steroids,
terpenoids, and sesquiterpenoids), were effectively hydrogenated
to the linear alcohols with high regioselectivities. Compared to
our previously disclosed iron/tetraphos catalyst system, the
cobalt/triphos catalyst demonstrated a wider applicability for
such substrates (Scheme 2).[12] More specifically, both mono-
and di-substituted terminal epoxides were suitable substrates
and provided the desired anti-Markovnikov-type alcohols in
good yields, tolerating amide, silyloxy, alkene, and ester
substituents. Using renewable terpenes, such as (�)-cam-
phene (3g), (�)-b-pinene (3h), and (+)-aromadendrene (3 i),
which are the main constituents of essential oil, the respective
primary alcohols were isolated in high yields and selectivities.

Additionally, the bioactive pentacyclic triterpenoid betu-
lin (3k), which is abundant in the bark of birch trees and,
moreover, plays an active role in antiviral, analgesic, and
antineoplastic agents, also furnished the hydrogenated prod-
ucts in good yields. Similarly, pregnenolone (3j), an important
steroid, underwent the hydrogenation process smoothly,
providing the isolated diastereomeric alcohols in 77% yield.

To better understand the strong performance of our cobalt/
triphos catalyst, a set of mechanistic experiments was per-
formed. Firstly, kinetic studies using the model substrate
2-methyl-3-phenyloxirane (1a) were performed. As shown in
Scheme 3a, 1a is quickly isomerized[16] to 1-phenylpropan-2-one
(2a’), followed by subsequent hydrogenation to the desired
alcohol 2a.[17] To further prove that 2a’ is indeed a reaction
intermediate, a control experiment employing 1a as the starting
material under an argon atmosphere without hydrogen present
was conducted. Accordingly, 1-phenylpropan-2-one (2a’) was
isolated in almost quantitative yield. Next, 2a’ was used as the
substrate under the standard reaction conditions, yielding the
corresponding hydrogenation product 2a in 92% yield (Sche-
me 3b). In agreement with these observations, [D]2-2a was
obtained as the final product in a deuterium-labelling experi-
ment that applied D2 instead of H2 (Scheme 3c). Finally, to
understand whether the cobalt or zinc salts catalyze the
isomerization of epoxides to the corresponding ketones, several
control experiments were conducted (Supporting Information).
Interestingly, the Meinwald rearrangement of 1a to 2a’ also
proceeded without a co-catalyst; however, addition of Zn(OTf)2
improved this reaction step. Based on the obtained results, we
propose that the reaction takes place viaMeinwald rearrange-
ment of the epoxide to the corresponding carbonyl com-
pound, followed by subsequent cobalt/triphos-catalyzed
hydrogenation to the desired anti-Markovnikov alcohols.

In summary, the first cobalt-catalyzed hydrogenation of
epoxides for the synthesis of anti-Markovnikov alcohols is
reported. The presented methodology is suitable for internal,
as well as terminal, epoxides and works smoothly even with
multi-substituted derivatives under mild conditions. This
novel cascade transformation is well-suited for the reduction
of natural-product-derived epoxides, including steroids, ter-
penoids, and sesquiterpenoids. Mechanistic studies indicate
that initially aMeinwald rearrangement of the epoxides to the
corresponding ketones/aldehydes takes place followed by
cobalt/triphos-catalyzed hydrogenation. In general, this trans-
formation offers an attractive alternative compared to the
traditional hydroboration/oxidation protocol of olefins.

Scheme 2. Cobalt-catalyzed hydrogenation of terminal epoxides. Reac-
tion condition: 3 (0.5 mmol), Co(BF4)2·6H2O (3.0 mol%), triphos
(6.0 mol%), 1,4-dioxane (6 mL), 80 8C, 16 h. [a] THF (4 mL) as solvent.
[b] Yields were determined by GC analysis with n-hexadecane as an
internal standard. [c] Co(NTf2)2 (3.0 mol%), Zn(OTf)2 (7.0 mol%).
[d] The major isomers are shown. TBS= tert-Butyldimethylsilyl. Scheme 3. Selected mechanistic studies.
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