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ABSTRACT 3 

 

Abstract  

Today vessel detection from remote sensing images is increasingly becoming a 

crucial component in maritime surveillance applications. The increasing number 

of very high and medium resolution (VHR and MR) optical satellites shortens the 

revisit time as it was never before. This makes the technology especially attractive 

for a variety of maritime monitoring tasks. Nevertheless, it is quite a challenge to 

perform object detection on enormous large satellite images that cover several 

hundreds of square kilometers and derive results under near real time constraints. 

This thesis presents an end-to-end multiclass vessel detection method from 

optical satellite images. The proposed workflow covers the complete processing 

chain and involves rapid image enhancement techniques, the fusion with 

automatic identification system (AIS) data, and the detection algorithm based on 

convolutional neural networks (CNN). To train the CNNs, two versions of training 

datasets were generated. The VHR training dataset was produced from the set of 

WorldView-[1-3] and GeoEye-1 images and contains about 40 000 of uniquely 

annotated vessels divided into 14 different classes. The MR training dataset was 

generated from the set of Landsat-8 images and contains about 14 000 of uniquely 

annotated vessels of 7 different classes. 

The algorithms presented are implemented in the form of independent software 

processors and integrated in an automated processing chain as part of the Earth 

Observation Maritime Surveillance System (EO-MARISS). The solution developed 

from the methods presented has proven its usability within different projects and 

is used and further developed at the ground station of the German Aerospace 

Center (DLR) in Neustrelitz.  

 

Keywords: optical remote sensing, vessel detection, ship detection, object 

detection, CNN, deep learning, AIS, data fusion 

  



4  ZUSAMMENFASSUNG 

 

Zusammenfassung 

Schiffserkennung unter Nutzung von Satellitenbildern gewinnt heutzutage 

zunehmend an Bedeutung und leistet inzwischen in Anwendungen der 

Meeresüberwachung einen wichtigen Beitrag. Die zunehmende Anzahl optischer 

Satelliten mit sehr hoher (VHR) und mittlerer (MR) Auflösung ermöglicht eine 

deutliche Verkürzung der Wiederaufnahme gleicher Gebiete. Dies macht diese 

Technologie für eine Vielzahl von maritimen Überwachungsanwendungen immer 

attraktiver. Dabei ist die Objektdetektion auf sehr großen Satellitenbildern, 

welche mehrere hundert Quadratkilometer abdecken, eine enorme 

Herausforderung, insbesondere wenn dies in naher Echtzeit (NRT) geschehen soll. 

In der vorliegenden Arbeit wird eine Methode zur Detektion von Schiffen 

unterschiedlicher Klassen in optischen Satellitenbildern vorgestellt. Diese gliedert 

sich in drei aufeinanderfolgende Funktionen: i) die Bildbearbeitung zur 

Verbesserung der Bildeigenschaften, ii) die Datenfusion mit den Daten des 

Automatischen Identifikation Systems (AIS) und iii) dem auf „Convolutional Neural 

Network“ (CNN) basierenden Detektionsalgorithmus. Um die CNNs zu trainieren, 

wurden zwei Versionen von Datensätzen erzeugt. Der VHR-Datensatz wurde aus 

WorldView-[1-3] sowie GeoEye-1 Bildern erstellt und enthält, eingeteilt in 14 

verschiedene Klassen, mehr als 40 000 eindeutig annotierte Schiffe. Der MR-

Datensatz wurde aus Aufnahmen vom Satelliten Landsat-8 generiert und enthält 

mehr als 14 000 eindeutig annotierte Schiffe in 7 verschiedenen Klassen. 

Die vorgestellten Algorithmen wurden in Form eigenständiger 

Softwareprozessoren implementiert und als Teil des maritimen 

Erdbeobachtungssystems EO-MARISS (Earth Observation Maritime Surveillance 

System) in eine automatisierte Verarbeitungskette integriert. Diese Lösung hat 

ihre Anwendbarkeit innerhalb von verschiedenen Projekten unter Beweis gestellt 

und wird an der Bodenstation des Deutschen Zentrums für Luft- und Raumfahrt 

(DLR) in Neustrelitz eingesetzt und weiterentwickelt. 

Schlüsselwörter: optische Fernerkundung, Schiffsdetektion, Objektdetektion, 

CNN, AIS, Datenfusion. 
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1 Introduction 

From ancient times to today’s world, humanity has been highly dependent on the 

sea. The sea is a great supplier of food, energy and mineral resources. The 

maritime transport is responsible for carrying over 90% of all the goods in the 

world [1] which makes the global economy highly dependent on it. For this reason, 

it is of paramount importance to ensure that our seas are safe and secure, thus 

contributing to the global sustainable development. 

Today’s maritime safety and security faces a number of various threats, natural 

and man-made [2]. Natural threats can be grouped into climatogenic, such as 

hurricanes or storms; and seismogenic, such as earthquakes followed by tsunamis. 

The man-made threats include anthropogenic activities (for example oil pollution) 

and different unlawful actions such as piracy, armed robbery, drug trafficking, 

warlike activities, illegal fishing, illegal border crossing and many others.  

These threats are the forcing power for the authorities at different levels to 

develop and operate maritime surveillance systems. The main objective of such 

type of systems is the collection of wide range of data and transforming them into 

the knowledge about the current situation at sea [3]. 

Currently, satellite remote sensing technologies are being actively used within 

maritime surveillance systems [4] [5]. Satellite images are serving as valuable 

source of information for environmental and sea traffic monitoring. 

This manuscript describes the methodology for vessel detection from optical 

satellite images. Presented algorithms are implemented as a set of independent 

software processors which are developed for use in near-real time (NRT) 

applications as part of maritime surveillance system.  

1.1 Motivation and research objectives 

This thesis addresses the problem of automated vessel detection from optical 

satellite imagery. This problem can be treated as a typical object detection task in 

the computer vision field. A number of researches and operational services over 



12  INTRODUCTION 

 

several years exist in the domain of satellite SAR (synthetic aperture radar) ship 

detection problem [6] [7]. The most popular algorithms which are based on CFAR 

(constant false alarm rate) method are very effective in detection of ships which 

are represented as very bright features on SAR images. However, ship detection 

from optical images requires a completely different approach. The main obstacle 

is heterogeneous vessel appearance on the image and thus making it very hard to 

detect using classical computer vision algorithms. Another topic of interest is not 

only detecting vessels, but also their classification. For many surveillance 

applications such as search and rescue operations, customs control, law 

enforcement and many others, the information about ship types detected on the 

image might be of high interest.  

The recent advances in deep learning methods, especially (Deep) Convolutional 

Neural Networks (CNN) for image classification and object detection have 

achieved impressive results [8] [9] [10] [11] and surpassed all classical computer 

vision algorithms. These methods have been proven by many studies to be 

effective with satellite images as well [12] [13] [14] [15]. Deep learning opens new 

opportunities for vessel detection and classification as well. An overview of some 

related researches is given in the next subchapter. 

The majority of existing works are rather experimental studies which are 

conducted on small and fixed image sizes and are limited in terms of vessel 

classification. The image size problem is related to the CNN architectures and 

hardware capacities. Supported image size by the most popular CNNs is typically 

between 300 and 1500 pixels rendering the longest side. In the computer vision 

world, scaling photographs from the camera of a smartphone would not lead to 

dramatic information loss, as the most interesting objects would still be clearly 

visible. In the RS context this situation becomes a real problem as the objects of 

interest are very small compared to the total image size. Regarding the 

classification problem, it is mainly caused by the lack of publicly available 

annotated datasets for the specific subject context, namely vessels or other 

maritime related objects. Furthermore, varieties of different satellite sensors, 
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from a technical point of view, like spectral characteristics of imaging bands and 

their spatial resolution may limit the use of such datasets from project to project. 

The developments presented in this thesis are an attempt to combine different 

technologies in order to provide an end-to-end automated solution for vessel 

detection from MR (medium resolution) and VHR (very high resolution) optical 

sensors for near-real time (NRT) applications. The developed solution is integrated 

at DLR’s Ground Station Neustrelitz and already in operational use for 

CleanSeaNet [4] and Copernicus Maritime Surveillance Service [5]. 

Covered topics are image pre-processing techniques and vessel detection pipeline 

including data fusion with AIS and generated training datasets.  

1.2 Related researches 

Vessel Detection from optical satellite images is becoming frequently studied by a 

number of researches. First attempts were done years before the deep learning 

revolution in 2012 [8]. During that period, the most popular methods were 

classical computer vision object detection techniques. However, the CNN-based 

solutions outperformed them with a large margin in terms of speed as well as 

accuracy. Therefore, this review will be focused on the most relevant CNN-based 

methods applied on similar datasets as in this research. 

Rainey, et al. [16] experimented with relatively small CNN architecture for ship 

type recognition. Their main intention was to find a suitable setting for such 

possible scenario like search for image locations containing particular vessel types. 

They have selected four classes (barge, cargo, container and tanker) and trained 

CNN-based binary classifiers one-vs-all. This approach allowed them to overcome 

the problem with unbalanced amount of training samples between the classes. 

The training and test datasets were generated out of WorldView-1 and 

WorldView-2 satellite images.  The results showed the potential of CNN for 

discriminating ship types earlier mentioned from other features on the image. 

However, authors pointed out that the experiment suffered from a relatively small 

amount of training samples. Partly, it could be solved by applying data 
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augmentation as well as by using pre-trained CNN models on large dataset such 

as ImageNet [17]. 

Yamamoto and Kazama [18] presented CNN-based approach for extraction of 

ship-containing regions of WorldView-2 satellite images. They proposed to apply 

sliding window on entire satellite image and classifying image patches whether 

they contain vessel or not. Their focus was to find locations containing limited 

types of ships. They use simplified VGG [19] image classification model as a basis 

for that. Individual ship detection and type recognition topics are defined as a 

future research direction.  

Yao, et al. [20] developed ship detection framework which used deep CNN to 

extract features and then region proposal network (RPN) to extract object 

bounding boxes. This concept is similar to Faster R-CNN [21], with the exception 

that CNN is not used as a multicategory classifier. Since the interest was in one 

generic object class “ship”, there is no need to apply an additional classifier. 

Authors report promising results in accuracy as well as performance. 

Nevertheless, with the proposed concept ship type recognition is not possible 

unless some post-classification step is included. The research was performed with 

the use of Google Earth imagery.    

Nie, et al. [22] applied modified version of instance segmentation model Mask R-

CNN [23] to detect vessels in harbor areas. They proposed to use Soft-Non-

Maximum Suppression (Soft-NMS) [24] in order to improve the detection 

performance in harbor areas. This approach helped to reduce information loss in 

situations where the multiple objects (ships) may be located close to each other 

which results in high intersection of their bounding boxes. They could successfully 

extract vessel instances of two classes (merchant ships and battleships) in the 

dense harbor areas. The research dataset was based on a fixed sized image clips 

from Google Earth.    

Štepec, et al. [25] presented a ship detection pipeline designed to work with MR 

satellite images from Copernicus Sentinel-2 and Planet Labs Dove satellites. For 

this task an adapted version Mask R-CNN [23] model was used. Authors utilized 
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AIS data to produce automatically annotated datasets from the above-mentioned 

satellite images, and then manually validated annotations. In addition, they 

resampled to lower resolution the Kaggle Airbus VHR ship detection dataset [26] 

and used it for training purposes. This showed an evidence of successful domain 

adaptation of training data from higher resolution to lower. Reported results 

showed promising performance in terms of detectability, however computational 

cost of the proposed approach is not mentioned. Furthermore, ship type 

recognition problem as well as parameter estimation are not addressed in this 

research.   

1.3 Thesis structure 

This thesis comprises six chapters. Chapter 1 gives an introduction and the 

research objectives of the thesis. It provides an overview of related researches and 

the thesis structure. 

Chapter 2 provides an overview of the main components used for marine traffic 

monitoring tasks as part of complex maritime surveillance systems. Some 

background information as well as functional purposes of the most common 

systems are discussed. 

Chapter 3 presents the developed vessel detection method. The proposed 

workflow includes preprocessing techniques for optical satellite images and data 

from Automatic Identification System (AIS) as well as actual deep learning-based 

vessel detection algorithm.  

Chapter 4 presents the implementation of the proposed method. It describes the 

overall system architecture, processing chain and the hardware environment. 

Further, it covers the core software components developed by the author and 

generated training datasets.  

Chapter 5 discusses the main outcome of this study. A short summary of all 

developments as well as performance evaluation are provided.  

Finally, Chapter 6 concludes the thesis and discusses further research directions.   
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2 Components of Maritime Surveillance Systems 

Maritime surveillance systems can be described as system of systems that 

combine many different sensor and information types in order to build the overall 

situational awareness at sea [3]. Depending on the domain they may include 

cooperative ship reporting systems as well as non-cooperative sensor systems. 

Fusion of information derived from both types of systems helps to reduce 

limitations and performance gaps of any particular system [3]. Figure 2.1 shows 

different sensor systems as components of an integrated maritime surveillance 

system. It combines remote sensing satellites, cooperative ship reporting systems 

as well as other maritime traffic monitoring systems. In particular, this thesis 

presents the technology for vessel detection from optical satellite sensors and 

data fusion with one of the cooperative ship reporting systems. Therefore, this 

chapter provides a short overview of the relevant system types.  

 

Figure 2.1: Components of Integrated Maritime Surveillance System. 
Image credit: ©ESA 
https://www.esa.int/ESA_Multimedia/Images/2007/10/Integrated_maritime_surveillance 
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2.1 Automatic Identification System (AIS) 

The Automatic Identification System (AIS) is an on-board position reporting system 

which was initially designed for collision avoidance. According to the International 

Maritime Organization (IMO) regulation [27], the carriage of AIS is mandatory for 

cargo vessels of 300 gross tonnages and upwards in international voyages and 500 

gross tonnages and upwards in non-international voyages as well as all passenger 

vessels and tankers of any sizes in international voyages. 

The AIS equipment includes very high frequency (VHF) transceiver, Global 

Navigation Satellite System (GNSS) receiver and display or terminal. In addition, it 

may also be connected with other on-board instruments like gyrocompass or rate 

of turn indicator. The device transmits and receives from other cooperative vessels 

information which contains geographical position, speed and course over ground, 

true heading and additional attributes about the vessel such as identification, 

vessel type and size, ports of call and destination. The geographical position and 

other movement attributes are retrieved from appropriate devices (GNSS 

receiver, gyrocompass, etc.); the Maritime Mobile Service Identity (MMSI) number 

of the vessel (unique identification) and vessel static parameters are hardcoded in 

the device; other attributes are entered manually, which is always a subject of 

their reliability. The transmission rate is related to the vessel’s speed. For moving 

vessels, it ranges from 2 to 10 seconds and for anchored it is 3 minutes. The AIS 

broadcast coverage is limited to VHF range, namely line of sight. 

Collection of AIS messages can also be carried by the coastal receivers. This 

opportunity makes the AIS an effective tool for real-time overview of the ship 

traffic in port areas. Coastal AIS reception is frequently integrated as part of Vessel 

Traffic Services (VTS) [3].  The coverage of the coastal receivers is about 40 nm but 

can be extended by installing the antennas on higher elevated positions.  

There has been an active development in the satellite AIS technology over the past 

decade. The concept of this technology is based on the use of VHF receivers 

onboard of low-Earth orbit (LEO) satellite constellation. Collected information is 

then downlinked to the ground stations and distributed to the end users. This 
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approach allows collecting AIS messages on wider and remote areas for use in 

vessel tracking tasks. The main limitations of these systems are related to the 

satellite revisit time which leads to observation time gaps. 

Currently a large number of AIS data providers worldwide are offering access to 

the data collected from the network of terrestrial and satellite AIS receivers. 

Besides the real-time data many of them are offering historical datasets as well. 

The access to the AIS from providers is frequently organized via dedicated web-

based services on a subscription basis. 

2.2 Vessel Monitoring System (VMS)  

The Vessel Monitoring System (VMS) is the type of position reporting systems for 

fishing vessels. Components and functionality of the VMS vary according to the 

nation of the vessel’s registry and the area where it is operating. Using VMS device 

unit, which is sometimes called “blue box” [3], fishing vessels are requested to 

send their identification, position, time, course and speed. These reports are 

transmitted with frequency defined by the authorities (from minutes to hours) or 

could be fetched in the polling mode. Usually the VMS unit is connected to the 

GNSS receiver and operates fully automatically. The satellite communication 

channel is used for data transmission.  

2.3 Long Range Identification and Tracking (LRIT) 

The Long-Range Identification and Tracking (LRIT) is another position reporting 

system designed for security and search and rescue purposes. The LRIT regulations 

are included in SOLAS Chapter V [28] which states its compulsoriness for vessels 

on international voyages of the following categories: passenger ships, mobile 

offshore drilling units and cargoes of 300 gross tonnage and upwards. Compared 

to AIS, the LRIT message contains much less information; it is limited to vessel’s 

identification, position and timestamp. Another difference to AIS is that it is not a 

broadcast system; LRIT messages are confidential and sent to dedicated recipients 

via satellite communication channel.  
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2.4 Vessel Traffic Services (VTS) 

The Vessel Traffic Services (VTS) are shore-side integrated marine traffic 

monitoring systems. Their main tasks are surveillance and provision of safe marine 

trafficking in harbor and coastal areas with an increased risk.  In terms of 

surveillance, the VTS centers are typically equipped with S-, X-, and K-band radar 

as well as closed-circuit television (CCTV) cameras. These non-cooperative sensors 

are used to provide real-time information for a very limited coverage. In addition, 

most of the modern VTS centers are equipped with AIS receivers or connected to 

AIS providers. The new technological trends are aimed at automated fusion of 

radar and AIS signals [3] into one integrated map-like visualization system.    

2.5 Satellite Remote Sensing Data 

Currently the satellite remote sensing data are getting more and more involved in 

maritime surveillance applications. Satellite imagery is an especially attractive 

source of information when there is a need to observe larger and/or remote areas. 

The most frequent use cases of satellite images in this domain are environmental 

and sea traffic monitoring.   

From the technological perspective remote sensing systems can be divided into 

active and passive sensors [29]. The active sensors are emitting energy towards 

the objects and then receiving reflected signals. Measured time delay between the 

emission and return is used to characterize observing objects. The most popular 

representative of active sensors in satellite remote sensing field is the synthetic 

aperture radar (SAR).  The passive sensors on the other hand are receiving energy 

which is different from sensor origin and reflected by the objects. Typically, this is 

sunlight energy or energy emitted by the object itself, such as thermal radiation. 

Optical satellite sensors are the examples of passive sensors.  

Both types of sensors, SAR and optical, are providing unique capabilities for solving 

maritime related observation tasks. Over several decades Synthetic Aperture 

Radar (SAR) satellite data has been proven to be effective for object detection [6] 

[30] and environmental monitoring, such as oil spill detection, as well as sea state 
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parameter estimation [31]. The main advantages of SAR sensors are their weather 

independence and capacity to cover very large areas. However, they are limited in 

terms of ship classification and identification without help of auxiliary datasets.  

Optical satellite images, being closer to human-like perception in visible spectrum, 

as opposed to SAR, can provide more contextual information as well as details 

about the object (vessel) itself, such as texture, shape and color. Medium 

resolution (MR) multispectral optical sensors like the United States Geological 

Survey (USGS) Landsat-8 or Copernicus Sentinel-2 are beneficial for environmental 

monitoring tasks due to their spectral resolution. In addition, MR sensors are 

suitable for sea traffic monitoring as long as detecting targets have large enough 

sizes to appear on the image. This limitation is set by their spatial resolution, which 

is about 10-15 meters per pixel. For example, detectable targets can be large 

vessel types like container carriers or tankers. Another advantage of MR sensors 

is their spatial coverage, sometimes comparable to SAR missions. Very high 

resolution (VHR) optical satellite images are beneficial for sea traffic monitoring. 

The sub-meter spatial resolution of such images enables to detect and classify 

vessels of different types and sizes. Currently, rapid increase in the constellation 

of satellites with VHR optical sensors offers short revisit times for targeting areas. 

For example, the upcoming WorldView Legion (in 2021) constellation will offer 

more than 15 revisits per day. Figure 2.2 shows sample images from all mentioned 

satellite systems with overlapping coverages. 

Authorities at national and supra national levels nowadays are more frequently 

involving remote sensing technologies in maritime surveillance systems. For 

example, in the EU the European Maritime Safety Agency (EMSA) is providing 

operational surveillance services CleanSeaNet [4] and Copernicus Maritime 

Surveillance Service [5] which are based on remote sensing data. Both types of 

sensors, SAR and optical, are used for solving different types of surveillance tasks 

as described above. Furthermore, developments presented in this thesis are 

already contributing to these services.  
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Figure 2.2: Comparison of SAR and MR and VHR optical sensors. 
Colored polygons showing spatial coverages of different sensors: green – SAR 
(Sentinel 1); blue – optical MR (Landsat-8) and red – optical VHR (WorldView-3). 
VHR sensors provide more detailed picture, but they cover much smaller areas 
compared to MR sensors. 
Image credit: ©OpenStreetMap; Copernicus Sentinel 1B © 2019 ESA; Landsat-8 
© 2019 USGS; WorldView-3 © 2020 European Space Imaging / Maxar 
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3 EO-Based Vessel Detection Method 

This chapter describes the developed methods for core functions of the vessel 

detection framework. It covers theoretical aspects as well as developed approach, 

whereas the software implementation is covered in the chapter 4. Algorithms and 

methods are described in the sequence of their occurrence within the processing 

workflow which is visualized in Figure 3.1. The subchapter 3.1 covers image 

preprocessing techniques which include fast atmospheric correction algorithm 

applied on level 1 (L1) satellite images and orthorectification. Further, the 

interpolation of position reporting system AIS is covered in the subchapter 3.2. 

The subchapter 3.3 covers algorithm for vessel detection from VHR and MR optical 

satellite sensors.  

 

Figure 3.1: Vessel detection framework core functions workflow. 
 

3.1 Image preprocessing  

This subchapter presents two image preprocessing procedures applied before it is 

used in the detection process. The purpose of the first procedure is to reduce the 

atmospheric influence on object appearance in the image and it is called 

atmospheric correction. The second procedure is orthorectification which is 

needed to account heterogeneous terrain as well as the satellite movement and 

sensor-specific characteristics in order to increase position accuracy of detected 

vessels. 
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3.1.1 Image-based atmospheric correction 

The amount of electromagnetic energy collected by the optical sensors, especially 

in the visible range, is greatly influenced by atmospheric conditions [29]. Even 

under cloud-free weather conditions, the atmosphere may produce different 

distorting effects such as scattering, absorbing or reflecting the light. The degree 

of these effects depends on specific factors such as the atmospheric composition, 

sun and sensor positions, as well as the angle between them at imaging time and 

location. The most dominant effect is the scattering which is caused by the 

atmospheric gases, aerosols and clouds. 

Scattering means redirection of electromagnetic radiation by particles in the 

atmosphere. Particles and gas molecules with a smaller diameter size than the 

wavelength of radiation passing through the atmosphere exhibit Raleigh 

scattering. Shorter wavelengths (such as blue light) produce more apparent 

scattering. Higher solar zenith and satellite off-nadir (viewing zenith) angles cause 

a longer sun-target-sensor path of the radiation. This is another factor that leads 

to more intensive scattering. The Raleigh scattering can produce haze and 

distorted color appearance of the sensing targets. Mie scattering occurs when the 

wavelength is of similar size as the diameter of the atmospheric particles, visually 

appearing as haze in images. Water vapor, dust and smog are usually the main 

sources of Mie scattering. The non-selective scattering occurs when particles in 

the atmosphere are much larger than the radiation wavelength. For example, 

clouds and fog are the main reasons for non-selective scattering. While non-

selective scattering is almost impossible to correct, the effects produced by the 

absorption as well as Mie and Rayleigh scattering can be minimized. This process 

is called atmospheric correction (AC). 

All AC techniques can be grouped in two types: physics based and image based.  

Physics based methods are recommended when the physical reflectance of the 

targeting objects is of high importance, for example precise land cover 

classification or estimation of vegetation indices, time series analysis. Physics 

based methods are more accurate because they employ additional meteorological 
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data at imaging time and location and may also consider surface geometry 

(elevation). The most popular methods are 6S [32] and ATCOR [33]. However, due 

to the fact that meteorological data usually becomes available after significant 

time delays they are not suitable for NRT applications. Image based AC methods, 

in contrast, do not require any additional information and are of low 

computational cost. The most popular image-based AC algorithm is dark object 

subtraction (DOS) [34]. 

The DOS algorithm assumes that the image contains regions which have almost 

zero reflectance, such as water bodies. This assumption perfectly agrees with the 

context of this project, where every image has significant areas covered by water. 

The non-dark appearance of the corresponding pixels is considered to be 

proportional to the atmospheric path radiance, and therefore can be used to 

compensate the additive effects of atmospheric scattering. The traditional DOS 

algorithm involves calculation of haze radiance (𝑳𝒉𝒂𝒛𝒆 𝒃) which is then subtracted 

from the top of atmosphere (TOA) spectral radiance (𝑳𝒃) during the calculation of 

surface reflection (SR) product. This process can be expressed as: 

 

 
𝑺𝑹𝒃 =  

(𝑳𝒃 − 𝑳𝒉𝒂𝒛𝒆 𝒃) ∙ 𝒅𝟐 ∙ 𝛑

𝑬𝒃 ∙ 𝒄𝒐𝒔𝛉𝒔
 

(1) 

where 𝑳𝒃 is the top-of-atmosphere (TOA) spectral radiance for the spectral band 

b (in units of W m-2 sr-1 µm-1); 𝒅 is the Earth-Sun distance in astronomical units; 𝑬𝒃 

is the band-averaged solar exoatmospheric irradiance (in units of W m-2 µm-1);  𝛉𝒔 

is the solar zenith angle;  𝑳𝒉𝒂𝒛𝒆 𝒃 is the top-of-atmosphere spectral radiance for 

the darkest objects on the image. Methods in determining how the 𝑳𝒉𝒂𝒛𝒆 𝒃  is 

estimated vary from one implementation to another [34] [35] [36]. Generally, it is 

always based on some empirical assumptions and may either be set as a static 

value for each band and sensor or computed dynamically on the basis of image 

properties. 

In this project the DOS correction is applied on the TOA reflectance product and 

extended with histogram stretch to increase the image contrast. The algorithm 

consists of the following steps: 
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Step 1: Convert original image DN (digital numbers) into TOA spectral radiance. 

The conversion formula can be slightly different for every specific sensor.  For the 

VHR satellite sensors of MAXAR family, which include WorldView-[1-3] and 

GeoEye-1 satellites, the conversion formula can be expressed as: 

 

 

 

𝑳𝒃 = 𝑫𝑵𝒃 ∙ 𝑮𝒂𝒊𝒏𝒃 ∙
𝒂𝒃𝒔𝑪𝒂𝒍𝑭𝒂𝒄𝒕𝒐𝒓𝒃

𝒆𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉𝒃
+ 𝑶𝒇𝒇𝒔𝒆𝒕𝒃 

 
 

(2) 

 

and for the MR satellite Landsat-8 as: 

 

 

𝑳𝒃 = 𝑮𝒂𝒊𝒏𝒃 ∙ 𝑫𝑵𝒃 + 𝑶𝒇𝒇𝒔𝒆𝒕𝒃 (3) 

where  𝑳𝒃 is the TOA spectral radiance for a given band 𝒃 (in units of Wµm-1 m-2 

sr-1);  𝑫𝑵𝒃  - digital number – is the pixel value of original L1 satellite image;   

𝑮𝒂𝒊𝒏𝒃 and 𝑶𝒇𝒇𝒔𝒆𝒕𝒃 are the absolute radiometric calibration adjustment factors 

that are sensor and band specific; 𝒂𝒃𝒔𝑪𝒂𝒍𝑭𝒂𝒄𝒕𝒐𝒓𝒃 is the absolute radiometric 

calibration factor and 𝒆𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉𝒃  is the effective bandwidth of the 

spectral band. 𝑮𝒂𝒊𝒏𝒃 and 𝑶𝒇𝒇𝒔𝒆𝒕𝒃 are either available in the image metadata or 

published by the vendor separately. The values 𝒂𝒃𝒔𝑪𝒂𝒍𝑭𝒂𝒄𝒕𝒐𝒓𝒃  and 

𝒆𝒇𝒇𝒆𝒄𝒕𝒊𝒗𝒆𝑩𝒂𝒏𝒅𝒘𝒊𝒅𝒕𝒉𝒃  are available in the image metadata. 

Step 2: Calculate the TOA reflectance: 

 

 
𝒑(𝑻𝑶𝑨)𝒃 =  

𝑳𝒃 ∙ 𝒅𝟐 ∙ 𝛑

𝑬𝒃 ∙ 𝒄𝒐𝒔𝛉𝒔
 

(4) 

where 𝑳𝒃 is the TOA spectral radiance for the spectral band b derived in (1); 𝒅 is 

the Earth-Sun distance in astronomical units; 𝑬𝒃  is the band-averaged solar 

exoatmospheric irradiance (in units of W m-2 µm-1);  𝛉𝒔 is the solar zenith angle.  

It is worth to note, that steps 1 and 2 are presented here in order to simplify 

readability, in the software implementation (processor ImageHandler, chapter 

4.2.1) they are merged into a single processing step. Furthermore, the TOA 
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reflectance is calculated only once for every unique DN in the histogram and 

stored as look-up table. 

Step 3: Determine the haze reflection  𝒑(𝑻𝑶𝑨)𝒉𝒂𝒛𝒆 𝒃  which is the maximum 

reflectance 𝒑(𝑻𝑶𝑨)𝒃 of the 0.001 percentile of the image pixels which have the 

lowest reflectance values. It must be calculated for every band separately.  

Step 4: Determine the maximum reflection threshold  𝒑(𝑻𝑶𝑨)𝒎𝒂𝒙𝑻𝒉 𝒃 in order to 

increase the image contrast.  It is the minimum reflectance 𝒑(𝑻𝑶𝑨)𝒃 of the 0.01 

percentile of the image pixels which have the highest reflectance values. It must 

be calculated for every band separately.  

The percentile values for steps 3 and 4 were determined empirically after 

examining dozens of MR and VHR images. 

Step 5: The SR product is calculated as following: 

 

 

𝑺𝑹𝒃 = 𝐦𝐢𝐧( 𝒑(𝑻𝑶𝑨)𝒎𝒂𝒙𝑻𝒉 𝒃,   𝒑(𝑻𝑶𝑨)𝒃 −  𝒑(𝑻𝑶𝑨)𝒉𝒂𝒛𝒆 𝒃) (5) 

The resulting 𝑺𝑹𝒃 is clamped to fit into the value range of 0 and  𝒑(𝑻𝑶𝑨)𝒎𝒂𝒙𝑻𝒉 𝒃 

and remapped to an 8-bit unsigned integer raster image. 

Figure 3.2 shows some examples of images before and after the application of 

proposed AC. One of the most important effects achieved is higher contrast 

between the vessels and surrounding background (mostly water). Furthermore, 

the haze effect is minimized which exposes more objects on the surface. 

The described AC method cannot compensate for atmospheric absorption. It is 

designed for production of visualization-friendly products without the use of 

ancillary datasets within NRT applications. It should not be considered for land 

cover classification and time series analysis. For those tasks physical-based AC 

methods are recommended. However, resulting images are very suitable for 

object detection and visualization tasks.  
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3.1.2 Image orthorectification 

Locations of objects shown in the VHR optical satellite images are highly affected 

by two factors: terrain relief and the tilt of the sensor [29]. Orthorectification aims 

at removing or reducing the spatial distortions on the image which occur due to 

the deviations in terrain relief and viewing angles [37]. The result of this operation 

is a planimetric map-like image (also called as orthoimage or orthophoto) with 

precise positions for the objects and consistent scaling throughout the image.  

The common orthorectification approach involves using a mathematical model to 

describe physical relationship between 2D image space and 3D ground relief.  

The RPC (rational polynomial coefficients) model enables transforming the image 

coordinates (row and column) into the Earth’s surface coordinates [37]. It is 

 

Figure 3.2: Examples of atmospheric correction algorithm results. 
This figure shows the differences between corrected and uncorrected VHR 
images taken at different locations and within different atmospheric conditions. 
Image credit: WorldView-3/GeoEye-1 © 2020 European Space Imaging / 
Maxar 
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computed from the satellite’s position in orbit, its sensor orientation and on the 

basis of the physical sensor model. Most modern VHR optical images, like those 

from MAXAR’s WorldVIew-[1-3] and GeoEye-1 satellites (and many others) are 

supplied with an RPC model.  

Combining RPC model data with precise terrain elevation information such as DEM 

(Digital Elevation Model) significantly minimizes the spatial distortions on the 

image. Orthorectification operation is crucial to retrieving the precise positions of 

the objects, especially in the port areas. Depending on the terrain relief type and 

the image off-nadir view, the position error in the VHR image without 

orthorectification may reach up to 100 meters. In the orthorectified image this 

error may be reduced to a few meters or less, depending on the imaging angles, 

RPC quality and the DEM applied. Figure 3.3 shows one example of an image 

before and after the application of RPC based orthorectification. 

In the open seas, orthorectification is equally important to the harbor or land 

areas. Instead of DEM a constant averaged elevation on open water is used. This 

method still allows reducing geometrical distortions caused by the sensor itself, 

which is especially useful for image mosaicking in case of multi-strip acquisitions. 

 

 

Figure 3.3 Example of orthorectification results 
This figure shows the differences before and after image orthorectification. The 
overlaid red line is the land mask derived from the OSM dataset. In this 
particular example the position difference is approximately 10 meters.  This 
visualization is based on the GeoEye-1 satellite image © 2020 European Space 
Imaging / Maxar 
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3.2 AIS interpolation 

In order to improve detection results as well as to possibly identify detected 

vessels, it is possible to involve ancillary data acquired from position reporting 

systems. Current implementation utilizes AIS data for that purpose, but the 

described method can be applicable to other position reporting systems as well. 

Within the vessel detection framework described in this thesis the L1 image is 

usually available within 10-20 minutes after the downlink. Because of this delay, it 

is possible to collect AIS data not only for the time before the image acquisition, 

but also up to 20 minutes afterwards. This allows reconstruction of vessel tracks 

in order to get an AIS ship position of higher accuracy according to the imagery 

time. The implemented solution enables precise AIS to image data fusion which is 

based on the exact imagery time for every ship and accounts for the following 

problems: 

1) Low AIS update rates. The AIS reports for the moving vessels are being 

broadcasted in different reporting intervals. The transmission of updates depends 

on the SOG of the vessel. Furthermore, updates occur at different intervals 

depending on whether a Class A or Class B transponder is used. Unfortunately, 

complete transmitted reports are not always collected due to various technical 

reasons. Furthermore, AIS providers often aggregate the data by time. As a result, 

in some cases, it could take a few minutes for available AIS reports to be updated.  

2) Timestamp deviations within the image. Depending on the satellite sensor type 

and covered spatial extent different image locations may have big deviations in 

collection timestamps. With VHR sensors these deviations are not significant and 

typically are about a couple of seconds or less. However, with MR sensors, such as 

Landsat-8, time deviations may be up to 30 seconds, which could be a problem 

with moving objects.  For example, a cargo vessel with the speed of 20 knots 

(approx. 10m/sec) would have covered a distance of 300 meters on the open sea. 

Therefore, for prediction of the AIS position at imagery time, a specific timestamp 

at any position in the image should be considered.  
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Initially the AIS track is filled with interpolated points so that the minimum time 

gap between positions will not exceed 10 seconds.  The new calculated positions 

are derived using “dead reckoning” concept, based on the closest known positions 

from both sides (when available), and accounting their speed and course over 

ground as illustrated in Figure 3.4.  

 

Figure 3.4: AIS track reconstruction. 
 

If the new position intersects the coast line it will be iteratively corrected until it 

meets the following two conditions: 1) it is located on water and 2) it is located in 

the minimum possible distance between known positions under valid condition 1 

(see Figure 3.4-b). The water polygons from OpenStreetMap (OSM) project [38] 

are used in this project. 

The new attribute values for speed and course over ground are calculated by linear 

interpolation from known surrounding points, which can be expressed as:    

 

 

𝒂𝒊 =  𝒂𝒊−𝟏𝒘𝒊−𝟏 + 𝒂𝒊+𝟏𝒘𝒊+𝟏 (6) 

  

 
where 𝒂𝒊 is the attribute value for a new point to be calculated, 𝒂𝒊−𝟏 and 𝒂𝒊+𝟏 are 

the attribute values from neighboring points, 𝒘𝒊−𝟏 and 𝒘𝒊+𝟏 are corresponding 

weights for the known attributes and are based on their distance from predicted 

point: 

 

 

𝒘𝒊−𝟏 =  𝟏 −  
𝒅𝒊−𝟏

𝒅𝒊−𝟏+𝒅𝒊+𝟏
 and 𝒘𝒊+𝟏 =  𝟏 −  

𝒅𝒊+𝟏

𝒅𝒊−𝟏+𝒅𝒊+𝟏
 (7) 
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where 𝒅𝒊−𝟏 is the distance from the “left” known point to predicted, and 𝒅𝒊+𝟏is 

the distance from the “right” known point to predicted.  

If the predicted point is outside of the known track, meaning it has only one known 

neighbor, then the last known attribute is taken as the new point. 

AIS positions at imagery time are derived in the following way. The reference time 

for the whole image must be defined. The optimal choice is to take a middle 

timestamp between the start and stop image collection timestamps. Then, it is 

necessary to find the closest AIS reports in time relative to the reference time. In 

the next step, AIS geographical coordinates that are reported closest to the 

reference time are used to determine on which part of the image they would 

appear. Corresponding image pixel coordinates are used to calculate the exact 

timestamp for this location. Finally, the new AIS report for the extracted 

timestamp is estimated in accordance to the procedure described above.  

3.3 Vessel detection from VHR and MR optical satellite images  

In this subchapter the two-stage vessel detection algorithm is presented. The first 

stage is responsible for fast preselection of vessel containing image parts, whereas 

the second stage is the actual vessel detection and parameter estimation. Both 

detection stages are based on the use of convolutional neural networks (CNN), 

therefore a short introduction to CNNs is given. Afterwards the detection stages 

in the sequence of their occurrence in the algorithm are described. 

3.3.1 Introduction to Convolutional Neural Networks (CNN) 

Convolutional Neural Network (CNN) is a class of deep neural networks mostly 

applied for the image content analysis in the computer vision domain. In particular 

it is very effective for image classification and object detection tasks. The goal of 

image classification is assigning one (or more) label(s) to the entire image to 

describe its content. This is different from the commonly used definition in the 

remote sensing community, where the image classification means labelling every 

single pixel in the image. For example, a satellite image may be classified in a 

computer vision way with a single label “vessel” indicating that there is actually a 
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vessel on this image. CNN based image classification assumes prediction of the 

image label by the neural network model which is trained in advance with labelled 

data of some categories. Object detection is a more complex process which 

extends the image classification problem: its objective is to detect the presence of 

different objects in the image, to find their locations and to predict their labels.  

The process by which CNN works is inspired by the organization of the visual cortex 

of animals [39] [40] [41], whose individual neurons respond on receptive fields of 

restricted regions which form the entire field of vision. Similarly to that, the 

general idea of CNN is to split an image into small subsets (regions) and then, with 

the help of series of convolutions, to extract the low-level features such as lines, 

edges, and colors. At the later steps, low-level features are forming the high-level 

features such as car wheels or zebra lines and are then used to identify the object. 

The CNN’s typical architecture contains three types of building blocks: convolution 

layer, pooling layer and fully connected layers. Figure 3.5 is showing a very simple 

CNN architecture containing sequences of convolutional, pooling and fully 

connected layers. 

The process by which the input data (image) passes through the CNN in the 

forward direction is called inference or forward propagation. During this process 

each layer in the network produces the inputs for the successive layer. The loss 

function is used to evaluate the CNN performance and to adjust the parameters 

which learn the CNN - learnable parameters (also referred as weights). This 

process is called back propagation. The training process of the CNN consists of a 

large number of full cycles of the forward propagation followed by the back 

propagation aiming at minimizing the difference between the network outputs 

and the ground truth annotations. The parameters which are set manually and 

define the network configuration are called hyperparameters. 
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Figure 3.5: An example of simple CNN architecture. 
 

The convolutional layer (conv) is the main element in the CNNs and it is 

responsible for the feature extraction. Typically, a convolutional layer combines 

two mathematical operations: linear convolution and activation function. This 

process is visualized in Figure 3.6. 

 

Figure 3.6: Convolution layer. 
 

Convolution is the linear operation used for feature extraction. It involves the set 

of learnable kernels to determine the presence of different patterns or features in 

the input array. The kernel is usually expressed as a small square matrix with the 

same depth as the input array. The width and height of the kernel can be treated 

as the receptive field. Each element within the receptive field in the input array is 

multiplied by the corresponding element in the kernel and then summed up to 

obtain the value at the corresponding location in the output feature map. The 

kernel is sliding across the input array until the complete feature map is generated. 
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The sliding step of the kernel is called a stride. The stride, the receptive field size 

and the number of kernels are the hyperparameters, whereas the coefficients in 

the kernels are the learnable parameters. In order to allow the center of the kernel 

to overlap the outermost elements in the input array a padding technique is used. 

This ensures the same dimension of the feature map as in the input array. The 

most popular padding technique in modern CNNs is zero padding, which is 

visualized in Figure 3.6. Basically, it pads additional rows and columns filled with 

zero values to all four sides of the input array.  

An activation function is used to add non-linearity to the network. The most 

popular functions are sigmoid, hyperbolic tangent (tanh) and rectified linear unit 

(ReLU). Due to its simplicity and computational efficiency the ReLU is the most 

popular activation function used today [8]. The main advantage of ReLU is that it 

truncates all negative values which reduce the number of activated neurons. This 

leads to dramatic performance increase and it is several times faster than tanh 

and sigmoid. 

 

Figure 3.7: Activation functions. 
 

The Pooling layer (pool) is frequently used between the convolutional layers to 

reduce the dimensionality of the activated feature maps in order to decrease the 

number of learnable parameters in the network. Additional effects of this 

operation are noise reduction and feature position invariance in the output layer. 

The pooling layers have no learnable parameters, whereas their kernel size, stride 

and padding are hyperparameters which are set by the network architect. The two 

most popular pooling types Max Pool and Average Pool are visualized in Figure 

3.8. 
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Figure 3.8: Pooling layer. 
 

The pooling operation results in a downsampled feature map where each element 

corresponds to the maximum or averaged (depending on selected method) value 

within the kernel at the appropriate location in the input feature map. The most 

frequent configuration for pooling is the kernel size of 2x2 and the stride of 2, 

which produces the downsampled feature maps by a factor of 2. 

The fully connected layers are responsible for classification of extracted features 

in convolution layers and therefore are usually placed at the end of the network. 

Derived feature maps from the series of convolution and pooling layers are 

transformed into one-dimensional vector. Elements of this vector are then 

connected to each neuron in the fully connected layer. The strength of these 

connections between the inputs and the outputs is dependent on the learnable 

parameters, which are adjusted during the training process. The network 

architecture may contain sequence of several fully connected layers as shown in 

Figure 3.9.  

All fully connected layers are usually followed by the activation function, for 

example ReLU. Functionally, the fully-connected layers are attempting to describe 

non-linear connections between the detected features. The activation function 

applied in the last layer is usually different from the ones used in the previous 

layers. For multiclass classification tasks, the most suitable function is Softmax, 
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which outputs the probability distributions between the classes. The Softmax 

function can be expressed as: 

 
𝝈(𝒛𝒋) =

𝒆𝒛𝒋

∑ 𝒆𝒛𝒄𝑴
𝒄=𝟏

 
(8) 

where 𝒛 is the inputs to the output layer; 𝑴 is the total number of output classes; 

𝒋 and 𝒄 are the class indexes. 

 

Figure 3.9: Fully-connected layers. 
 

The loss function (also referred as cost function) is used to evaluate the deviations 

between the predicted output by the network and the expected (ground truth) 

value. The value derived by the loss function is used by the optimization algorithm 

in the back propagation process to adjust the learnable parameters. The common 

choice of the loss function for multiclass classification is the cross entropy, which 

can be expressed as: 

 
𝒍𝒐𝒔𝒔(𝒙) = − ∑ 𝒍𝒐𝒈 (𝒚𝒄,𝒑)𝒚′𝒄,𝒑

𝑴

𝒄=𝟏

 
(9) 

where 𝒙 is the input image (in case of image classification CNN);  𝑴 is the number 

of classes; 𝒄 is the class index; 𝒚𝒄,𝒑 is predicted probability (score) for class 𝒄; and  

𝒚′𝒄,𝒑 is the true probability for the class 𝒄 (0 or 1). 
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The optimization algorithm gradient descent [42] [43] [44] is used in 

backpropagation for updating the learnable parameters in the CNNs towards the 

minimization of the loss function. The calculated gradient of the loss function 

defines the direction for iterative update of the learnable parameters with the 

step size according to the predefined hyperparameter learning rate. This process 

can be expressed as: 

 
𝒘 = 𝒘 − 𝒆

𝝏𝒍𝒐𝒔𝒔(𝒙)

𝝏𝒘
 

(10) 

where 𝒘 is the learnable parameter (weight); 𝒆 is the learning rate; 𝒍𝒐𝒔𝒔(𝒙) is the 

loss from (9). 

It is worth to mention, that all learnable parameters in the network are initially 

randomly set. The initial value for parameter learning rate is usually selected 

empirically for the specific CNN architecture and the dataset. Typically, it is set in 

the range between 0.0 and 1.0. Setting this parameter too small may require more 

training time, whereas setting it too large may result in not finding the optimal 

values for learnable parameters. In some applications the learning rate remains 

the same during the entire training process (static), whereas in other applications 

it is possible to find scheduled as well as adaptive modification of the learning rate. 

The hyperparameter batch size of the gradient descent defines the number of 

training samples to process through the network before learnable parameters are 

updated. If the batch size equals to the number of training samples the algorithm 

is called batch gradient descend [44]. This type of optimization algorithm is 

required to process the entire training dataset before every update of the 

learnable parameters. This scenario can be very slow and may require enormous 

hardware resources. Therefore, the more optimized stochastic gradient descent 

(SGD) (batch size = 1) or mini-batch gradient descend (batch size > 1) and number 

of their improved versions such as Momentum, Adam, Adagard and others are 

frequently used [44]. Many of the optimization algorithms from the gradient 

descent family are available by default in all modern machine learning software 

frameworks, such as TensorFlow [45]. The parameter controlling which 

optimization algorithm to use is also one of the hyperparameters. 
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The hyperparameter number of epochs controls how many times the training 

algorithm will work through the entire training dataset. Alternatively, the amount 

of training cycles may be controlled by the hyperparameter number of training 

steps which corresponds to the number of gradient updates. One epoch is 

comprised of (number of training samples) / (batch size) training steps. 

The decision on how each of the hyperparameters is set is usually based on 

empirical findings taking into consideration such factors as CNN overall 

architecture, quality and amount of training data samples as well as hardware 

resources available.  

In the situations when the amount of training data samples is not sufficient a 

transfer learning technique can be used. In the image classification CNN world, 

transfer learning assumes training the CNN on the large training dataset (like 

ImageNet [19]), and retraining the last layers of the CNN on the new dataset.  

The described CNN architecture (shown in Figure 3.5) in this chapter contains 

seven layers only. Its purpose is to demonstrate the main components of CNNs 

and not to solve any real problem. In modern image classification and object 

detection applications much deeper CNN architectures are used.  

Although the general concept of CNN was proposed back in the late 1980s, the 

hardware resources were the biggest limitation factor in its application. Since the 

mid-2000s, there has been increased interest in the use of CNNs for visual 

recognition problems. The tipping point in the use of CNNs was the introduction 

of the image classification network AlexNet in 2012 [8]. Since then a number of 

new deeper and more accurate networks have been introduced such as Inception 

[9] [46]. The extended models for object detection task were invented afterwards. 

In particular the region-based convolutional neural networks (RCNN), such as very 

popular Fast(er)-RCNN [21] which can predict bounding boxes of the objects, and 

later Mask-RCNN [23] which can also label the pixels belonging to the detected 

objects.  
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3.3.2 Global region search 

The Global Region Search is the first stage of the two-stage vessel detection 

algorithm. The goal of this step is to detect potential regions with vessel presence 

prior to the object detection, thus to reducing the computation cost of the entire 

processing chain.  

Frequently, the observation areas in the maritime domain are covering ports and 

coastal areas. In that scenario a significant part of the image may be occupied by 

land. For these kinds of situations, the initial step of the global region search is 

land discrimination. With help of the geographically annotated ancillary data, the 

land areas are excluded from the detection. The water polygons available from the 

OSM project [38] are used for this purpose. The OSM dataset provides a very good 

level of detail for both ports and rural coastal areas. To avoid any information loss 

along the coastline, a buffer of 50 meters in the direction to the land is considered 

in the case of VHR scenarios. For the MR scenarios, due to the lower image 

resolution, the coastal areas are excluded from detection by applying a buffer of 

50 meters in the opposite direction from land. The resulting vector layer is 

rasterized with the same pixel size and spatial extent as the input image. The final 

land masking raster layer is used to exclude land areas from the detection process. 

The land masking process is shown in Figure 3.10-a. 

After the land areas are excluded, the remaining image parts are divided into small 

tiles of size 224x224 pixels with stride of 180 pixels. Then, every tile is classified by 

the image classification CNN whether it contains vessel/vessel parts or not (binary 

classification). In some way this approach is following the idea presented in the R-

CNNs [47], where the features extracted from the image classification CNN are 

used for binary tests of the predefined set of regions indicating the presence of an 

object. The tile size is chosen on the basis of the selected CNN architecture which 

is described below. 
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Figure 3.10: Global region search workflow. 
a. Land masking with OSM water polygons 
b. Extracting region proposals with image classification CNN 
This visualization is based on the WorldView-3 satellite image © 2020 
European Space Imaging / Maxar 
    

Because of the NRT-oriented nature of this project, the processing timeline is very 

crucial. This was a motivating factor to search for a CNN architecture which is 

proven to be efficient under computational constraints. The choice was made in 

favor of the image classification CNN MobileNet [10]. The MobileNet is a 

lightweight CNN which is designed to work under computationally limited 

conditions, for example to run on mobile devices. Instead of standard convolutions 

it applies the depthwise separable convolutions [48]. As described in the 

introduction to CNN section of this thesis a standard convolution applies a set of 

filters (kernels) on every input channel to generate a set of output channels in one 

layer. In depthwise separable convolutions this operation is divided into two 

layers: depthwise convolutions (filtering) and pointwise convolutions which 

combine the results into the final output layer. For both layers batch normalization 

[49] and ReLU activation function are used. Furthermore, in MobileNet only one 
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filter per channel is applied. Although this approach may potentially lead to 

accuracy degradation, it allows for a reduction in the number of parameters in the 

network which consequently leads to a reduction in the total number of floating-

point multiplications.  

The accuracy assessment provided in [10] demonstrates the reasonable 

performance for the image classification task (up to 70.7% on ImageNet dataset) 

while at the same time being up to 30x computationally cheaper as compared to 

the full-size models, such as Inception (for example v3 showed accuracy of 78.1% 

on ImageNet dataset).  

The regions which are classified by MobileNet as “vessel” class are merged into 

the clusters. Every cluster is formed by the set of overlapping and neighboring 

regions. The cluster sizes are set to 1500x1500 pixels for VHR images and 600x600 

pixels for MR images. The cluster origin is the top-left corner with the first 

detected region. 

Other positively classified regions which are overlapping the cluster with an 

intersection area of more than 70% from their own area are included in this 

cluster. Regions with intersection of less than 70% or completely outside are 

becoming members of the new cluster. This process is visualized in Figure 3.11.  

Besides the MobileNet classification results, additional region proposals extracted 

from the two ancillary data sources: 1) AIS signals acquired or interpolated at 

imaging time and location and 2) previous vessel detection results for imaging 

location if any. If any of the points extracted from these two sources do not 

intersect with MobileNet classified region proposals, they are used to create 

additional region proposals whose sizes are dependent on the vessel sizes 

reported by the AIS or estimated by the previous detection at current location. 

These region proposals contribute to cluster generation as well.  
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Figure 3.11: Clustering of preselected regions. 
Preselected regions by MobileNet are shown in red and the resulting clusters 
are in green. 

 

3.3.3 Vessel detection and parameter estimation 

The object detection network Faster R-CNN [21] is applied on the regions 

extracted in the global region search step. The Faster R-CNN can be described as 

architecture with two modules: the region proposal network (RPN) and the Fast 

R-CNN [47]. For computational efficiency, both modules share the same feature 

maps extracted only once by the backbone image classification CNN. The overall 

architecture of the Faster R-CNN is illustrated in Figure 3.12. 

 

Figure 3.12: The Faster R-CNN network architecture. 
 

The RPN is responsible for the prediction of class-agnostic local region proposals, 

which afterwards are used by the Fast R-CNN. The RPN is testing the CNN’s feature 

maps against the set of spatially distributed anchor boxes with different sizes and 

aspect ratios. The anchor boxes are built around the anchor points which are 

equally distributed over the feature map with vertical and horizontal stride set to 

16 or 8 pixels for VHR and MR images correspondingly. For VHR images, the anchor 

boxes are generated at scales [0.5, 1.0, 2.0] and aspect ratios [0.5, 1.0, 2.0]. For 

MR images scale [0.5, 1.0] and aspect ratios [0.5, 1.0, 2.0] are used. To deal with 

overlapping region proposals the soft non-maximum suppression (S-NMS) [24] 
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with IoU threshold of 0.6 is applied. After the S-NMS, the top 300 proposals 

(ranked by their score) are used for further processing. The Fast R-CNN has two 

inputs: region proposals from the RPN and CNN feature maps. Its objective is to 

predict object classes/labels and to refine detected bounding boxes.  

As the backbone CNN one of the state-of-the-art models ResNet [46] is chosen. 

During the last few years the deep CNNs have shown very impressive results in 

image classification [9]. At that time the general trend formed to produce ever 

deeper networks. On one hand this trend improved classification accuracy, but on 

the other hand it has its limits; such networks due to their complexity became 

difficult to train and the accuracy degraded after a certain point. The ResNet is 

partly solving this problem by skipping connections between some layer stacks 

which forms residual blocks, as it is shown in Figure 3.13. This approach allows 

designing deeper networks without the dramatic increase of their complexity. 

Currently, several ResNet configurations such as ResNet50, ResNet101 and 

ResNet152 are popular choices to use as a standalone image classification CNN or 

as a backbone for the object detection frameworks [11]. The main difference 

between them is the number of layers they have, which is indicated by the 

numbers 50, 101 and 152 in their names. More layers mean more parameters in 

the network which would require more hardware resources. The decision on the 

choice of a network is always a trade-off. The general rule of thumb is that more 

detailed images and complex objects require more parameters in the CNN in order 

to build non-linear descriptors. Based on this generalization ResNet50 for MR 

images and ResNet101 for VHR images have been chosen.  

 

Figure 3.13: Residual CNN block. 
reproduced from [46] 
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The Faster R-CNN model does not account for orientation of detected objects. Its 

outputs are objects horizontal bounding boxes (HBB), their type labels and 

detection scores. Since detected vessels are always arbitrary oriented, it is not 

possible to estimate their size directly from the HBB. Several attempts were made 

to estimate rotated bounding boxes (RBB) by modifying RPNs as presented in [50] 

[51] [52], but these approaches, while being accurate, involve an additional 

parameter to the network – angle for region proposals, which dramatically 

increase the amount of region proposals to test, thus increasing the inference 

time. In the RS context with enormous large images, especially in the VHR domain, 

it dramatically increases the overall processing time. In this thesis an alternative 

solution is proposed, where the RBBs are estimated only on confirmed detections 

with HBBs. The proposed method is designed specifically to detect vessels, whose 

generalized shape has rectangular representation, and not applicable for other 

object types. The process is carried out outside the Faster R-CNN, but it involves 

its backbone CNN as well as a priori knowledge about the vessel-type dependent 

dimensional characteristics. 

It is assumed that RBB is a close-enough vessel parameter representation. The 

width and length of the RBB are equal to the beam (width) and length of the vessel; 

its orientation corresponds to the heading of the vessel normalized to [0..170] 

degrees range without differentiating where the bow and stern are. To estimate 

the RBBs, the algorithm accounts for vessel type specific size characteristics which 

are shown in the Table 3.1 and Table 3.2. Provided numbers are estimated during 

the collection of training datasets (described in chapters 4.3 and 0), they are based 

on the AIS reported vessel sizes as well as on manual annotations. These numbers 

agree with vessel construction standards, which are particularly discussed in [53] 

[54] [55].  

In the first step, the initial size of the rotated bounding box (RBB) is estimated. It 

is assumed that the vessel length 𝑳 will not exceed 0.95 of the HBB diagonal and 

will fit in the length limits of its type, which are shown in the Table 3.1.  
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Table 3.1: Vessel type-dependent dimensional parameters. 
Note that all the values in this table are estimated statistically from the VHR 
training dataset. They are mostly based on vessel appearance on satellite images 
in combination with supplied AIS (when available) and do not represent the 
precise dimensional characteristic of any particular vessel class. These values 
must be interpreted as reference only. 
 

Class label min length max length min beam max beam 

Generic cargo vessel 10 400 4 60 

Oil tanker 35 299 6 50 

Service/tug boat 8 143 2 70 

Generic Leisure boat / skiff / 
speedboat /rib 

3 75 2 14 

Generic Passenger ship / Ferry 14 330 4 52 

Generic Warship 18 206 4 36 

Container carrier 37 400 7 73 

Generic fishing boat 3 65 1 17 

Sloop /Sailing boat 4 94 2 17 

LNG/Chemical/Gas tanker 20 290 5 74 

Patrol vessel 6 90 2 20 

Yacht / Superyacht 4 103 2 15 

Cruise boat 25 297 4 45 

Catamaran 6 21 2 10 

Unknown 2 157 1 71 

 

Then, the vessel beam is calculated as: 

 𝑩 =
𝑳

𝒎𝑳𝑩𝑹
 (11) 

where 𝑩 is the vessel beam and 𝒎𝑳𝑩𝑹 represents the mean length-beam ratio. 

The length-beam ratio is dependent on specific ship design and also not linearly 

changing within different vessel sizes. Therefore the 𝒎𝑳𝑩𝑹 was calculated not 

only for every vessel class separately, but also for six different size classes as it is 

shown in the Table 3.2. 

In addition, if AIS signal at imaging time within the HBB is available and if its 

reported type can be mapped to the detection type; and difference between the 

reported beam and length and estimated values is less than the predefined 

threshold (20% for VHR and 40% for MR scenarios) it is assumed to be the same 

object with correctly reported dimensional attributes. The reported beam and 

length in that case are used as 𝑳 and 𝑩 for further processing. 
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Table 3.2: Vessel type and size dependent mLBR. 
Note that the mLBR values are estimated statistically and do not represent precise 
dimensional characteristic of any particular vessel class, it should be interpreted 
as reference only. Vessel length ranges is given in meters. 

                                        Length 
Class label 

very 
small 
< 10 

small 
[10-15)  

medium 
[15-20) 

medium-
large 

[20-50) 

large 
[50-100) 

very large 
[100-450] 

Generic cargo vessel - 3.31 3.75 4.37 6.06 5.65 

Oil tanker - - - 4.98 6.98 6.09 

Service/tug boat 4.34 3.37 3.48 3.71 5.14 6.59 

Generic Leisure boat / skiff / 
speedboat /rib 

2.94 3.17 3.52 4.14 - - 

Generic Passenger ship / Ferry - 3.25 3.17 3.95 5.44 5.72 

Generic Warship - - 2.59 4.48 5.87 4,38 

Container carrier - - - 4.11 5.75 5.55 

Generic fishing boat 2.8 3.31 3.25 4.01 5.04 - 

Sloop / Sailing boat 2.87 3.13 3.23 5.5 7.42 - 

LNG/Chemical/Gas tanker - - - 4.05 5.91 4.35 

Patrol vessel - 3.35 3.3 4.15 5.5 - 

Yacht / Superyacht 2.71 3.31 3.47 4.14 5.48 - 

Cruise boat - - - 7.22 6.61 - 

Catamaran 3.04 3.45 2.74 2.14 - - 

Other / Unknown 3.06 3.39 3.71 3.91 4.96 - 

 

In the next step, the RBBs with the derived size and rotation from 0 to possible 

170 degrees with step of 10 degrees are generated. The amount of generated RBBs 

is limited to the number that fit into the HBB. The RBB is considered to fit in the 

HBB if 80% of its area is inside the HBB, thus smaller aspect ratio of the HBB leads 

to smaller amount of RBBs to test.  The center of the RBBs corresponds to the 

center of the HBB. The resulting RBBs are used to create the square image subsets 

and to mask out everything outside of their bounds. Then, the cropped image 

subsets are tested with the backbone CNN that is used in the Faster R-CNN. The 

RBB with the highest score is considered to be the correct one.  

In the next step, the image subset within the correct RBB is binarized. Afterwards 

the vessel contour is extracted to derive precise vessel length and width. The 

contour search is based on the algorithm proposed in [56]. With help of principle 

component analysis (PCA), the extracted contour is used to refine the final vessel 

heading. The entire process of parameter estimation is visualized with two 

different examples in Figure 3.14. 
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Figure 3.14: Vessel parameter estimation workflow. 
This visualization is based on the WorldView-3 satellite image © 2020 European 
Space Imaging / Maxar    
 

The final vessel location is considered to be the centroid of the extracted vessel 

contour. With the help of the affine transformation of the input satellite image the 

pixel coordinates are translated into geographical coordinates. Detected objects 

are matched with AIS reports using nearest neighbor search within the pre-

defined distance of 10 meters in open waters and 3 meters in port areas. In the 

case of successful AIS match, all AIS attributes are assigned to the detected 

objects. Furthermore, if any of the reported attributes does not match the 

detected values, it is marked as a probable anomaly which is of potential interest 

to the end-users.  
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4 Software Implementation and Hardware Environment  

This chapter describes the implementation of the vessel detection framework 

deployed at DLR’s Ground Station Neustrelitz. Subchapter 4.1 covers short 

descriptions of the processing chain and the hardware setup. Subchapter 4.2 

describes the main tools developed by the author. Subchapters 4.3 and 4.4 

present generated training datasets. Subchapter 4.5 provides descriptions about 

CNN training configurations. 

4.1 Earth Observation Maritime Surveillance System (EO-MARISS) 

The vessel detection framework is implemented as part of the EO-MARISS (Earth 

Observation Maritime Surveillance System) [57] which architecture is shown in 

Figure 4.1.  

 

Figure 4.1: EO-MARISS Vessel Detection Chain. 
The red frame highlights the core processors of the vessel detection framework 
developed by the author 
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The system supports request- and/or data-driven scenarios for processing 

initialization. In the case of the request-driven scenario, a special request file must 

be filled by the user which indicates the observation AOI, possible time window 

and which data source (satellite) should be used. The request file triggers the 

system to generate the runtime workflow and initiate the processing chain. The 

input satellite imagery is then automatically collected via dedicated pickup points, 

either from the local ground station or from the partner ground stations and data 

providers.  For the data-driven scenario, the system can be pre-configured for the 

dedicated data source(s) and AOI(s). In that case, the processing chain is triggered 

every time upon the new data arrives to the pick-up point.  

The processing chain is managed by the Processing System Management (PSM), 

the software developed jointly by the DLR’s institute DFD (German Remote 

Sensing Data Center) and private company Werum Software & Systems AG [58]. 

The PSM is the orchestration software for the hardware resources and the 

processing workflow. The PSM supports sequential as well as parallel and/or 

mixed processing workflows.  

The vessel detection processing sequence is configured in accordance to the 

workflow presented in the chapter 3 and shown in Figure 3.1. It starts with 

simultaneously running the image processing software “ImageHandler” 

(described in 4.2.1) and the processor “AISFetcher” (described in 4.2.2) which is 

responsible for collection and interpolation of AIS data. The outputs produced by 

these processors are used in the next step by the software “VesselDetector” 

(described in 4.2.3). After that, vessel detection results can be optionally validated 

and enhanced within the special interactive tool “Visual Analyst” (described in 

4.2.4). In the final step, results are distributed to the end users via different 

dissemination options, which include OGC-standardized raster and vector file 

formats; file formats specified by the EMSA; and web-based mapping services as 

described in [57].  

The vessel detection system has a self-learning design. This means that all 

validated detections are constantly filling the training dataset. Once the amount 

file:///C:/Users/voin_sr/Documents/PhD/thesis/ImageHandler%23_Processor_
file:///C:/Users/voin_sr/Documents/PhD/thesis/AISFetcher%23_Processor_
file:///C:/Users/voin_sr/Documents/PhD/thesis/VesselDetector%23_Processor_
file:///C:/Users/voin_sr/Documents/PhD/thesis/Visual%23_Analysis_tool_
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of new training datasets is considered to be sufficient, the system triggers to 

retrain the CNN models. In the current implementation the sufficiency criterion is 

set to acquire at least 200 new samples per class. 

The processing system is deployed in a cluster of virtual machines sharing the 

following hardware resources: GPU NVIDIA Tesla™ T4 16GB, 128 GB RAM and 96 

physical cores of Intel(R) Xeon(R) CPU E7-4870 v2 2.30GHz. Every processor is 

encapsulated together with its external dependencies into Docker [59] container.  

The training environment is configured on independent server with following 

hardware: 2x Eight-Core Intel® Xeon® Processor E5-2667 v4 3.20GHz, 256 GB RAM 

and NVIDIA® Tesla™ V100 GPU card.  

4.2 Tools developed 

4.2.1 Processor “ImageHandler” 

The processor “ImageHandler” is responsible for image enhancement, 

orthorectification and mosaicking (in case of multi-strip acquisition). For 

performance reasons, the processor is written in C++ programming language with 

use of APIs from the GDAL (Geospatial Data Abstraction Library) [60] and the Intel 

TBB (Thread Building Blocks) [61] libraries. The GDAL library is used mainly for 

raster read/write operations as well as for image warping while the Intel TBB 

serves for parallelization of the application. 

The functional diagram of the ImageHandler is visualized in Figure 4.2. In case of a 

multi-strip acquisition, the processor runs AC in parallel threads for every image 

strip. One additional thread is run for production of Digital Elevation Model (DEM) 

mosaic, which will be used for the orthorectification process.    

The implemented AC algorithm is described in the chapter 3.1.1. For computation 

efficiency the entire image is read into the RAM buffer. All pixel modifications are 

implemented in place without any intermediate data copying. The image 

histogram is used to generate a look-up table with atmospherically corrected 

values. This approach allowed to run iteration over the image pixels only twice and 
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to avoid complex computations within the loop. At first iteration the image 

histogram is calculated. The histogram for every band is calculated in parallel 

threads. In the second iteration the pixel values are replaced with calculated look-

up tables (for each band and raster line in parallel). With this implementation the 

entire AC of one single image file has duration that is slightly longer than file copy 

on the SSD (Solid-State Drive). 

 

Figure 4.2: ImageHandler functional diagram. 
 

The orthorectification (described in chapter 3.1.2) is only applied when the RPC 

model for the image is available (usually the case for VHR images).  

The RPC-based orthorectification and image mosaicking processes (in case of 

multi-strip collection) are carried out with the help of the Warp C++ API, part of 

the GDAL library. The following DEMs are used on the basis of the best available 

resolution at location and available license for specific end-user: Copernicus DEM 

GLO-90 [62], DLR’s SRTM-X DEM [63], Copernicus EU-DEM [64], Copernicus DEM 

GLO-30 [62] and Copernicus DEM EEA-10 [62]. 

The resulting image is used in the VesselDetector processor, and also delivered to 

the end-users by request.      

 

file:///C:/Users/voin_sr/Documents/PhD/thesis/VesselDetector%23_Processor_
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4.2.2 Processor “AISFetcher” 

The purpose of the processor “AISFetcher” is to collect and preprocess the AIS 

data in accordance to the image extent and acquisition time. The processor is 

written in Java programming language, which offers a rich API and extensions for 

processing of http data streams and database interactions. In addition, it allows 

deeper integration with PSM, which is also a Java application. The processor’s 

functional diagram is visualized in Figure 4.3. 

 

Figure 4.3: AISFetcher functional diagram. 
 

Current implementation supports http query APIs from several AIS providers as 

well as decoding raw AIS data from the receiver (in NMEA format). Selection of 

any particular AIS data source is a subject of agreement with any particular end-

user. All results of successful requests from the AIS providers are stored for 

reproduction capacities in the local SQL DB.  

Every sequence of extracted AIS messages are processed with embedded AIS 

Plausibility Module [65] developed in the Institute of Communications and 

Navigation, part of DLR. The module estimates plausibility of vessel movement 

taking into account dynamic attributes of AIS messages, such as speed or course 
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over ground. In case of suspicious behavior, corresponding messages are marked 

as to be potentially anomalous. 

The implemented AIS interpolation algorithm is described in the chapter 3.2. The 

processor fills the time gaps between the real AIS reports and then calculates 

positions for the exact acquisition time within the image. Resulting point dataset 

is used in the VesselDetector processor for the two following purposes: to attract 

an attention at global region search stage and to identify detected targets if their 

positions correlate with AIS reports. 

4.2.3 Processor “VesselDetector” 

The vessel detection processor “VesselDetector” implements the algorithm 

described in the chapter 3.3. It is written in C++ programming language and uses 

the following software libraries: GDAL [60], OpenCV [66], TensorFlow [45] and 

Intel TBB [67]. The processors functional diagram is shown in Figure 4.4. 

During the Global Region Search stage, as it is described in the chapter 3.3.2, the 

land areas are masked out with the help of water polygon layer. The vector dataset 

containing water polygons is extracted for the exact geographical extent that 

corresponds to the input image. Afterwards, a binary raster mask with the same 

GSD (ground sampling distance) and dimensions as in the input image is generated 

with help of GDALRasterize API [60]. Resulting water mask is used to set pixel 

values in the input image to zero so that they will not produce any false recalls by 

the CNNs in the later processing. Furthermore, image tiles containing zero pixels 

only are completely excluded from the remaining processing steps. The image 

classification CNN is used to classify the image tiles as vessel containing or not 

containing regions. In addition to the image classification CNN results, 

complementary region proposals are generated on the basis of AIS reports and 

historical detections within the geographical bounds of the input image.  

file:///C:/Users/voin_sr/Documents/PhD/thesis/VesselDetector%23_Processor_
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Figure 4.4: VesselDetector functional diagram. 
 

Vessel detection and parameter estimation methods are described in the chapter 

3.3.3. Object detection CNN is used to detect vessels without their orientations; 

however, its backbone CNN is used once again in the post-processing step for 

vessel parameter estimation. This process accounts ancillary AIS dataset for vessel 

identification and/or potential anomaly detection. 

For performance reasons, image tiling and region selection for the image 

classification and object detection CNNs is done virtually, without copying the 

image subsets from the original input image. Instead, a pointer to the fraction of 

RAM containing the selected image is fed directly to TensorFlow [45] session 

object with activated CNN model to perform inference.   

In the current implementation, the image classification CNN MobileNet [10] and 

object detection Faster R-CNN [18] with backbone ResNet101 (for VHR) and 

ResNet50 (for MR) [43] are used. Nevertheless, the software design allows to use 

any image classification and object detection CNN model compatible with the 

machine learning framework TensorFlow.  
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The output produced by the VesselDetector is a geojson file, which contains all 

estimated attributes and rectangular vessel polygons with geographical and image 

pixel coordinates. 

4.2.4 Analysis tool “Visual Analyst” 

The Visual Analyst tool is the only (and optional) manual step in the entire 

processing chain. It serves for the following purposes: manual vessel detection and 

validation/correction of automatically detected vessels. It is an interactive tool 

that combines GIS and image analysis functionalities. The software is written in 

Java and based on the NASA WorldWind Java API [68]. Figure 4.5 shows a 

screenshot of the Visual Analyst user interface. 

The Visual Analyst is composed of different modules which can be divided in two 

main groups: Visualization and Analysis. The Visualization modules are responsible 

for visual representation of EO derived image products. The internal map frame 

supports different configuration options for visualization such as specifying 

different band combinations, change brightness or opacity and others.  

The Analysis modules provide all the functionalities needed for analysis and 

classification, for example such as adding/removing or modifying detected vessel 

geometries as well as setting different annotation attributes.  

The Visual Analyst is the client application which is running on the remote working 

stations on a thin client. Multiple requests can be processed by different operators 

simultaneously. The application uses socket-based connection with PSM for the 

data exchange. The full resolution image data is served to the client via WMS [69] 

interface from the Geoserver [70] instance located on the same host as the PSM.   
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Figure 4.5: Visual Analyst user interface. 
This Visual Analyst tool allows modifying and creating new vessel objects and 
setting different attributes. For better classification by the operator, an 
embedded photograph for every vessel class is available. 
 

4.3 VHR Training dataset 

The VHR vessel detection training dataset was generated from the collection of 

WorldView-[1-3] and GeoEye-1 satellite images acquired around the world in the 

densest shipping areas. These images were provided by the European Space 

Imaging company and restricted exclusively for use within the joint projects. The 

first version of the dataset was presented in [71] and in [72]. It contained more 

than 36 000 of annotated vessels of 9 different classes: yacht, sailing boat, 

passenger ship, service/tug, fishing boat, container carrier, tanker, cargo and 

warships. The annotated attributes were vessel classes and horizontal bounding 

boxes (HBB). Selected classification was based mainly on vessel classes present in 

AIS specifications [73]. Later on, it was discovered, that presented classification 

can be extended, for example class “tanker” can be divided into “oil tanker” and 

“LNG/chemical tanker”. Furthermore, additional attributes about the vessel, for 

example its geographical coordinates, dimensions, orientation as well as AIS-

derived information might be of high interest for further research.  
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The second version (v.2) of the dataset is initially generated out of 100+ scenes 

and is continuously extended with the new samples produced by the system itself. 

The images have different sizes (from about 5 000 x 5 000 to 200 000 x 100 000 

pixels), different aspect ratios and a spatial resolution of 0.3-0.5m per pixel. The 

dataset has 14 vessel classes (as shown in Figure 4.6) plus 1 additional “unknown” 

class for those vessels which were hard to classify. In the current state (06-2020) 

the dataset contains nearly 40 000 of unique annotated vessels, with 500 - 5 000 

for every class. One unique annotation means one unique appearance on the 

satellite image. 

 

Figure 4.6: VHR Vessel detection training dataset classification. 
This visualization is based on the collection of WorldView-3 and GeoEye-1 
satellite images © 2020 European Space Imaging / Maxar   
  

The annotations in the v.2 dataset include the following information: pixel 

coordinates, geographical coordinates, horizontal bounding box, rotated 

bounding box, true heading, object state (stopped or moving), object dimensions 

and all available attributes derived from the AIS (except identification). One 

training image sample is a 1500x1500 pixels crop from the full resolution satellite 

scene which can be either PAN or RGB images and may contain one or more 

vessels. Image samples are created using sliding window over the full satellite 
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scene with the step size of 300 pixels in both, x and y directions. If any annotated 

object found within the sliding window it is used to create an image crop. As the 

result, the same object/object part may appear within different image crops, but 

it will have always different pixel coordinates. This can be considered as sort of 

data augmentation. Depending on the vessel classes appearing within the image 

crops, up to 15 additional augmented samples may be produced in order to 

harmonize the distribution of training samples between the classes. For 

augmentation different color filters, rotations and flips were applied. Several color 

filtering strategies have been developed: addition of green or blue colors in order 

to imitate possible atmospheric effects; transformation to black and white to 

imitate PAN (in case of original RGB image); and smoothing with averaging filter 

with kernel size of 5. For rotated augmentation random angles in the range of [0-

359] degrees were used. 

 

Figure 4.7: Examples of VHR training samples. 
overlaid horizontal bounding boxes (white) and rotated bounding boxes (red)  
This visualization is based on the collection of WorldView-3 and GeoEye-1 
satellite images © 2020 European Space Imaging / Maxar    
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4.4 MR Training dataset 

The MR vessel detection training dataset is initially generated from the collection 

of 100 pan-sharpened Landsat-8 images. All images have similar sizes, which is in 

average 16 000 x 16 000 pixels. The dataset has the same structural design as VHR 

Training dataset v.2, but different vessel classification and image crop sizes.  

One training image sample is a 300x300 pixels crop from the full resolution 

satellite images with RGB color space and may contain one or more vessels. Image 

samples are created using sliding window over the full satellite scene with step 

size of 100 pixels in both, x and y directions. The augmentation strategy is the same 

as in VHR v.2. The dataset has 7 vessel classes (as shown in Figure 4.8). In the 

current state (06-2020) the dataset contains nearly 14 000 of unique annotated 

vessels, with 1 000 - 3 000 for every class.  

 

Figure 4.8: MR Vessel detection training dataset classification. 
This visualization is based on the Landsat-8 satellite images ©2020 USGS    
 

4.5 Training configuration 

All CNN models used in this project are pre-trained on the ImageNet [17] dataset. 

Two instances of MobileNet models are retrained, one for VHR and another for 

MR data. Both MobileNet instances trained for the two classes only: vessel and 

non-vessel. To train them the TF-slim API [74] has been used.  

The VHR MobileNet instance was retrained on 400 000 full resolution image crops 

with the size of 224x224 pixels. Additional 50 000 image snippets were used for 
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training evaluation. This dataset is derived from the original multiclass dataset 

described in the subchapter 4.3. The samples which are labelled as vessels may 

contain entire vessel(s) or just some parts of it. In particular, this is mostly the case 

for very large vessels, such as cargo or tankers. The network is re-trained for 30 

epochs with constant learning rate of 0.001 and mini-batch gradient descend 

optimizer with batch size of 64.  

The MR MobileNet instance was retrained on 10 000 scaled image samples to the 

size of 224x224 pixels. Another 2 000 samples were used for evaluation. The 

dataset for MR MobileNet is derived from the original multiclass dataset described 

in the chapter 4.4. The network is re-trained for 20 epochs with constant learning 

rate of 0.001 and mini-batch gradient descend optimizer with batch size of 64. 

The object detection CNNs are trained with the TensorFlow Object Detection API 

[11] [75]. For VHR vessel detection, the Faster R-CNN ResNet-101 was retrained 

on 90% of the complete VHR v.2 dataset. Another 10% is used for evaluation. The 

network is re-trained for 20 epochs with batch size of 1, initial learning rate of 

0.0003 with scheduled learning rate decrease (on epoch 5 → 0.00003 and on 

epoch 10 and onwards → 0.000003) and SGD optimizer with momentum 0.9. 

The Faster R-CNN ResNet-50 that is used for MR vessel detection was retrained on 

90% of the MR dataset and another 10% is used for evaluation. The network is re-

trained for 15 epochs with the learning rate set to 0.0001 and decreased to 

0.00001 on epoch 5, and mini-batch gradient descend optimizer with batch size of 

2. 

The initial learning rates in this project are set to small values because all models 

are pre-trained on large dataset ImageNet [17] and higher values may introduce a 

risk to lose previously acquired knowledge. Other training hyperparameters are 

determined empirically by using different commonly used configurations and 

analyzing the loss values and evaluation results after every epoch. It is a still an 

open research question to find the best configuration. Furthermore, the increasing 

amount of training data samples may require to revise hyperparameters 

accordingly.  
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5 Results and Discussions 

The result of this dissertation is a methodology for vessel detection which is 

implemented as fully functional software framework. It operates with VHR images 

acquired from WorldView-[1-3] and GeoEye-1 satellites as well as with MR images 

acquired from Landsat-8 satellite. The developed method includes image and AIS 

data pre-processing, two-stage detection and fusion with AIS methods. The 

presented algorithms are implemented in the form of independent software 

processors which are configured to run in predefined sequence. One of the key 

requirements for the implementation was NRT applicability of developed 

methods. Therefore, the focus was on the efficient use of existing or newly created 

techniques.  

The core algorithm for vessel detection is based on the use of artificial neural 

networks, namely CNNs. For that purpose, two versions of training datasets were 

generated: VHR and MR. The initial VHR training dataset is produced from the set 

of more than 100 of WorldView-[1-3] and GeoEye-1 images and contains about 40 

000 of uniquely annotated vessels divided in 14 different classes. The initial MR 

training dataset is generated from the set of 100 of Landsat-8 images and contains 

about 14 000 of uniquely annotated vessels of 7 different classes. During the 

framework operation, both datasets are constantly filling with the new data in 

order to potentially increase detection accuracies in the future. 

In order to provide the performance overview of the developed framework, a 

special benchmark with a set of 25 VHR and 25 MR images was accomplished. 

These images did not contribute to the training dataset and was not used for CNN 

training evaluation. However, most of them have the same geographical 

coverages as the images in the training dataset – the densest port and marine 

trafficking areas around the world, but acquired at different dates. All the vessels 

on the test images were with help of AIS or completely manually annotated. Even 

those objects which had AIS signals were manually validated. For the accuracy 

assessment following metrics has been calculated: detectability, F1 score and 

accuracies of the estimated vessel parameters length, beam and heading. The 
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detectability represents a percentage of all the detected vessels on the image in 

relation to all manually annotated vessels. The F1 score is used to evaluate the 

classification accuracy among detected vessels. It combines classification precision 

and recall by taking their harmonic mean. The F1 score (presented in Table 5.1 and 

in Table 5.3) is calculated as follows: 

 
𝑭𝟏 = 𝟐 ∙

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∙  𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 +  𝑹𝒆𝒄𝒂𝒍𝒍
 

(12) 

where 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝒕𝒑

𝒕𝒑 +  𝒇𝒏
 and 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =

𝒕𝒑

𝒕𝒑 +  𝒇𝒑
 (13) 

 

where tp is true positives, fn is false negatives and fp is false positives. 

The parameter accuracies (presented in Table 5.2 and in Table 5.4) are estimated 

as: 

 
𝒑𝑨 =

𝒎𝒊𝒏(𝒆𝒗, 𝒕𝒗)

𝒎𝒂𝒙(𝒆𝒗, 𝒕𝒗)
 

(14) 

where pA is estimated accuracy for particular parameter, ev is estimated value 

and tv is ground truth value.  

Besides the accuracy metrics, the processing time of the processors 

VesselDetector and ImageHandler was measured. The processing time of 

AISFetcher is considered to be not critical point to evaluate, as it runs in parallel 

to ImageHandler, and during all the tests it was simply faster, and thus did not 

affect the overall processing time. 

5.1 Framework performance on VHR images 

The measured averaged detectability from the validation VHR satellite images was 

about 67%. In the open waters the detectability achieved 84%, whereas in the 

coastal areas it was 49% only. The coastal area is considered to be within the 

distance of 50 meters from the coastline or any man-made infrastructure. The 

lower detectability in the coastal areas was expected. The main obstacle in those 
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regions is related to the high concentration of very small boats which sometimes 

occupying a few pixels only without clear visible pattern, like those shown in Figure 

5.1. 

 

Figure 5.1: Harbor area with high concentration of small boats. 
Image resolution per pixel is 0.5x0.5 m, all boats have length of less than 10 m.  
Image credit: GeoEye-1 © 2020 European Space Imaging / Maxar 
 

The F1 score is used to evaluate the classification performance. The classification 

confusion matrix as well as corresponding F1 scores for each class are shown in 

Table 5.1. The highest F1 score of 0.86 was achieved for the warship class, whereas 

the lowest F1 of 0.38 was for the yacht class. The warship class can be disregarded 

from the assessment because in the test dataset there were only 8 vessels of this 

class, however other classes with the highest F1 scores are representing the real 

picture. Larger vessel classes have higher F1 scores than smaller. Such diversity in 

F1 scores between the classes was expectable. In particular, large vessels, such as 

cargoes, container carriers or tankers may be treated as easy objects; they are 

mostly large and have some unique features present on them. On the other hand, 

yachts or sailing boats are mostly small white objects which are difficult to 

differentiate from other small boats such as leisure boats, although the latter ones 

showed relatively high F1 score.  
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Table 5.1: Classification confusion matrix and F1 score of detected vessels from 
VHR validation dataset. 
Class IDs: 1 - passenger / ferry; 2 - yacht; 3 - sailing boat; 4 – catamaran;  
5 - leisure boat; 6 - service / tug; 7 – fishing; 8 – patrol; 9 – warship; 10 – cruise;  
11 – cargo; 12 - container carrier; 13 - oil tanker; 14 - LNG / Chemical tanker 
The numbers in the main diagonal representing the amount of vessels whose 
predicted class match to the ground truth. 
 

  
 
To evaluate accuracy of estimated vessel parameters the averaged accuracies for 

every class have been calculated. Table 5.2 provides the mean accuracies of 

estimated parameters per vessel class.  

Table 5.2: Averaged accuracy of estimated parameters of detected vessels from 
VHR validation dataset. 
The values are calculated in accordance to (14) 
 

 

length beam
heading 

(0..180)°

passenger / ferry 0.88 0.79 0.81

yacht 0.68 0.58 0.72

sailing boat 0.71 0.86 0.6
catamaran 0.83 0.6 0.5
leisure boat 0.69 0.66 0.81
service / tug 0.88 0.83 0.92
fishing 0.85 0.89 0.82
patrol 0.81 0.76 0.91
warship 0.88 0.86 0.8
cruise 0.87 0.82 0.9

cargo 0.92 0.94 0.91

container carrier 0.87 0.88 0.92

oil tanker 0.95 0.91 0.96

LNG / Chemical 0.9 0.89 0.95
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Provided mean accuracies showing similar picture to that with F1 scores. The 

general trend is that larger vessels are not only easier to detect and classify, but 

also to estimate their dimensions and orientations. Some detection results from 

VHR satellite images are demonstrated in Figure 5.4, in Figure 5.3 and in Figure 

5.4. 

Due to very different VHR image sizes in the validation dataset, which are varying 

from 10 000 pixels to maximum 200 000 pixels in one dimension, it is hard to 

impossible to estimate the absolute processing speed metrics. Because of this 

reason, it was decided to calculate the average processing speed of one square 

image block (evaluation block) with 10 000 pixels in one dimension, for every 

scene and then for the entire dataset. For that, the overall processing time is 

divided by the amount of evaluation blocks that would fit into the scene. 

The average processing time for one evaluation block needed by the 

ImageHandler was 31 seconds and additional 42 seconds needed by the 

VesselDetector.  Nevertheless, for VesselDetector this value should not be treated 

as an absolute metric, as it highly depends on several unpredictable factors, such 

as: the number of the detected regions at the global region search stage as well as 

the number of objects in particular region. 
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Figure 5.2: Example of VHR vessel detection results in port and harbor areas. 
Greece, 2016, zoomed-in image clip  
Image credit: GeoEye-1 © 2020 European Space Imaging / Maxar 
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Figure 5.3: Example of VHR vessel detection results in open sea. 
Singapore, 2015, zoomed-in image clip  
Image credit: WorldView-2 © 2020 European Space Imaging / Maxar 
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Figure 5.4: Example of VHR vessel detection results – full satellite scene. 
Greece, 2017, full satellite image scene. Clustered visualization of detection    
results.  The number in the red circles represents the amount of vessels 
detected at particular image region. 
Image credit: GeoEye-1 © 2020 European Space Imaging / Maxar 
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5.2 Framework performance on MR images 

The measured averaged vessel detectability from the validation MR satellite 

images was about 62%. Since the coastal areas are excluded from the detection in 

the MR scenario, there was no additional location dependent evaluation. After the 

detailed inspection, it was observed one expectable effect that larger vessels are 

easier to detect.  This is a similar problem to that occurred with the VHR scenario, 

but with shifting low detection scores to larger physical vessel sizes. The lower 

image resolution of Landsat-8, which is 15 meters, sets the limitation on 

detectable object sizes. For example, a medium sized fishing or tug boat with 

length of 30 meters would appear as a few bright pixels only as it demonstrated in 

Figure 4.8. However, under certain circumstances they are still detectable. When 

these kinds of targets are in the open waters and in the moving states they 

produce unique patterns. Thus, the threshold of 30 meters is considered to be the 

minimum detectable vessel size on the MR Landsat-8 images. 

The F1 score is used to evaluate the classification performance. The classification 

confusion matrix as well as corresponding F1 scores for each class are shown in 

Table 5.3.  

Table 5.3: Classification confusion matrix and F1 score of detected vessels from 
MR validation dataset. 
Class IDs: 1 – generic cargo; 2 - tanker; 3 - service / tug; 4 – small passenger;  
5 - passenger / ferry; 6 - container carrier; 7 – fishing 
The numbers in the main diagonal representing the number of vessels whose 
predicted class match to the ground truth. 
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The highest F1 score of 0.66 was achieved for the container class, whereas the 

lowest F1 of 0.31 was for the small passenger class. As it was with VHR scenario, 

the larger vessel classes have higher F1 scores than the smaller. Small objects of 

classes 3, 4 and 7 are mostly having very similar appearance and therefore most 

of inter-class confusions occurred between them.  

To evaluate accuracy of estimated vessel parameters the averaged accuracies for 

every class have been calculated. Table 5.4 provides the mean accuracies of 

estimated parameters per vessel class. Comparing to VHR results, parameter 

estimation from MR detections have significant lower accuracy. This is especially 

notable on smaller objects, which apparent size (mostly in width dimension) is 

larger than their physical (up to by factor 2). Some detection results from the MR 

satellite images are demonstrated in Figure 5.5 and in Figure 5.6. 

Table 5.4: Averaged accuracy of estimated parameters of detected vessels from 
MR validation dataset. 
The values are calculated in accordance to (14) 
 

 

Due to the similar sizes of Landsat-8 scenes which is in average 16 000 x 16 000 

pixels the processing time was measured for the entire image. The average 

processing time for one image needed by the ImageHandler was 35 seconds and 

additional 31 seconds needed by the VesselDetector. Nevertheless, for 

VesselDetector this value should not be treated as an absolute metric, as it highly 

depends on several unpredictable factors, such as: the number of the detected 

regions at the global region search stage as well as the number of objects in 

particular region. 

length beam
heading 

(0..180)°

Generic cargo 0.71 0.61 0.79

Tanker 0.73 0.58 0.87

service / tug 0.61 0.34 0.51

Small passenger 0.54 0.51 0.49

Passenger / ferry 0.75 0.66 0.83

Container carrier 0.83 0.69 0.81

Fishing 0.48 0.31 0.54
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Figure 5.5: Example of MR vessel detection results: Gibraltar. 
Gibraltar, 2020 
Clustered visualizations of detection    results.  The number in the red circles 
represents the number of vessels detected at particular image region. 
Image credit: Landsat-8 © 2020 USGS 
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Figure 5.6: Example of MR vessel detection results: German Bight. 
German Bight, 2020 
Clustered visualizations of detection    results.  The number in the red circles 
represents the number of vessels detected at particular image region. 
Image credit: Landsat-8 © 2020 USGS 
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6 Conclusion  

The satellite remote sensing data is valuable source of information for ensuring 

maritime situational awareness. In particular, the vessel detection product derived 

from VHR and MR optical satellite sensors can serve as a standalone or a 

complementary tool for sea traffic monitoring systems. 

The goal of this thesis was to develop a method for vessel detection from VHR and 

MR optical satellite images that would be applicable in real life applications. The 

presented approach covers the complete processing chain and involves rapid 

image enhancement techniques, the fusion with automatic identification system 

(AIS) data, and the detection algorithm based on convolutional neural networks 

(CNN). Besides the vessel’s position and its type, the method allows extracting its 

dimensions and orientation. 

One of the key factors for successful machine learning projects is the availability 

of the training datasets. This project was not an exception from this rule. To train 

the CNNs, two versions of training datasets were generated. The VHR training 

dataset was produced from the set of WorldView-[1-3] and GeoEye-1 images and 

initially contained about 40 000 of uniquely annotated vessels divided into 14 

different classes. The MR training dataset was generated from the set of Landsat-

8 images and initially contained about 14 000 of uniquely annotated vessels of 7 

different classes. 

The presented algorithms are implemented in the form of independent software 

processors and integrated in an automated processing chain as part of the Earth 

Observation Maritime Surveillance System (EO-MARISS) [57]. The system has a 

self-learning design, which means that any successfully processed and validated 

image will contribute back to the training dataset. It is expected that in the future 

it will improve accuracies of predictions by the CNNs. In addition, historical 

datasets are directly used within the detection algorithm in order to extract 

potentially vessel-containing regions. Furthermore, constantly extending training 

datasets may offer some new research directions, for example analysis of vessel 

type dependent traffic patterns and many others. 
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The processing performance and accuracy assessment conducted on validation 

datasets showed promising results for maritime NRT surveillance applications, 

although there are opportunities for improvements. Not surprisingly, vessel 

detection from MR images has shown lower accuracies of estimated parameters 

as well as classification scores. This is due to the significantly lower image 

resolution. A similar situation exists with VHR based scenario in dense harbor 

areas with high concentration of small boats. One probable research topic in the 

direction to solve this problem may be selective image resampling to higher 

resolution employing the CNNs. Further research topics may include experiments 

with different CNN architectures as well as modelling additional parameters. For 

example, vessel speed estimation based on dependencies of its type, size and 

apparent wake patterns. 

The solution presented in this thesis has proven its usability within different 

projects and is used and further developed at the ground station of the German 

Aerospace Center (DLR) in Neustrelitz.  
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