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Summary 

Since their emergence about 4 billion years ago, bacteria have developed an unrivaled 

variety that allows them to conquer every conceivable habitat. Microbial metabolic 

processes are the basis of all life on earth. The physiological diversity of microbial 

communities enables specific and distinguishable reactions to environmental stimuli. 

Conversely, this means that by exploring the communities, conclusions can be drawn about 

their environment. Modern high-throughput sequencing methods such as next generation 

sequencing allow for the determination of community composition at the taxonomic level via 

phylogenetic marker genes. Similarly, the functional potential of a community can be 

determined by the totality of existing genes as well as the corresponding activity profile by 

sequencing the gene transcripts. These methods produce a large amount of data, which 

has to be interpreted by bioinformatics and multivariate analysis. Machine learning (ML) 

methods can be used to identify from this amount of information the relevant part for the 

recognition of specific environmental stimuli. These methods try to train a model that links 

the input (microbial community information) with the output (environmental stimulus). In the 

context of this PhD thesis it was investigated whether the analysis of microbial community 

data by ML can predict contamination. As specific environmental stimuli, contamination 

events by glyphosate and 2,4,6-trinitrotoluene (TNT) in the Baltic Sea were studied. The 

potentials and limitations of this approach were explored. The relevant parts of the 

community were examined in detail to determine whether there are actual interactions 

between bacteria and pollutants. Only in this case the observation of the relevant bacteria 

can provide indications of contamination, a so-called indicative microbial fingerprint. 

Furthermore, it was investigated whether microbial communities react with a delay to the 

decrease of a contaminant, because in this case the community would still indicate the 

pollutant, although the latter could not be detected analytically. 

The microbial communities were described by 16S rRNA (gene) amplicon sequencing and 

additionally DNA shotgun sequencing. Further metabolites and environmental factors as 

well as cell counts and, if applicable, geochemical and sedimentological parameters were 

determined. The two methods Random Forest and Artificial Neural Network were used to 

predict the presence of the contaminants from the community data. Statistical and 

bioinformatic analyses were conducted to evaluate the ecological and biological 

significance of the ML results. The R package phyloseq2ML was developed to facilitate the 

use and analysis of microbiological data sets for machine learning. The described approach 

was first tested in the laboratory and then in field experiments. In the 140-day laboratory 

trial, the herbicide glyphosate was added to a continuously operated Baltic Sea-imitating 

microcosm. The presence of glyphosate could be predicted by the microbial community with 
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up to 99.9 % accuracy, with Random Forest consistently providing more accurate 

predictions. Glyphosate affected microbial succession and was degraded to the metabolite 

AMPA; an increase in cell count, the metabolite AMPA and the required gox gene were 

detected. The potentially responsible organisms were identified by ML and statistical 

models. A selection of a few bacterial taxa achieved on average better predictions than by 

using the entire community composition, for glyphosate the genus Parvibaculum alone was 

sufficient due to the simple experimental design. It was also shown that free-living bacteria 

were more often, but for shorter durations, affected by glyphosate than those existing in the 

biofilm. Most of the measured responses to glyphosate ended while the herbicide was still 

detectable at 1 µM and it was concluded that the concentrations detected in the Baltic Sea 

are not sufficiently valuable as a food source to be degraded. The environmental samples 

came from the munitions dumpsite Kolberger Heide near Kiel and were contaminated with 

various explosives. Prediction of TNT with up to 84 % (balanced) accuracy was more 

challenging due to the multiple influences a natural habitat is exposed to, complicated by 

the complexity of sedimentary communities, sample composition and low concentrations of 

TNT in the pmol∙g-1 range. Nevertheless, 25 decision-relevant genera could be identified, 

which allowed more accurate predictions than the use of sediment information such as grain 

size distribution, element contents or sum parameters such as total nitrogen. Based on the 

misclassifications it was possible to determine from which regions of the Kolberger Heide 

further samples are needed and which samples were potentially formerly contaminated with 

TNT. The results of my PhD thesis demonstrate the potential to predict environmental 

influences, more precisely, contamination events in the Baltic Sea by ML-analyzed microbial 

communities. Taxa contributing to indicative fingerprints could be identified, but a higher 

number of samples is necessary for final confirmation. It was recognized that dependencies 

(e.g. spatial) between ecological samples allow overoptimistic prediction accuracies. 

However, their occurrence is pervasive in experiments investigating ecological hypotheses. 

In order to identify potential dependencies and to estimate their influence as well as to draw 

conclusions for ecology from ML-relevant information, interpretable ML methods should be 

prioritized. It was shown that the implementation of the presented approach into regular 

monitoring operations would improve assessment of the environmental state, is possible 

both in terms of methodology and resources and in return offers the required extension of 

the sample size for ML. 
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Zusammenfassung 

Bakterien haben seit ihrer Entstehung vor ca. 4 Milliarden Jahren eine unerreichte Vielfalt 

entwickelt, die es ihnen gestattet, jeden denkbaren Lebensraum zu erobern. Mikrobielle 

Stoffwechselprozesse sind Grundlage jeglichen Lebens auf der Erde. Die physiologische 

Diversität mikrobieller Gemeinschaften ermöglicht spezifische Reaktionen auf Umweltreize. 

Im Umkehrschluss bedeutet dies, dass über die Erkundung der Gemeinschaften 

Rückschlüsse auf deren Umwelt gezogen werden können. Moderne Hochdurchsatz-

Sequenziermethoden wie das Next generation sequencing erlauben die Ermittlung der 

Gemeinschaftszusammensetzung auf taxonomischer Ebene über phylogenetische 

Markergene. Ebenso ist das funktionelle Potential einer Gemeinschaft über die Gesamtheit 

der vorhandenen Gene als auch das entsprechende Aktivitätsprofil durch die 

Sequenzierung der Gentranskripte zugänglich. Diese Methoden produzieren eine 

unübersichtliche Menge an Daten, die mithilfe von bioinformatischer Aufbereitung und 

multivariater Analyse interpretiert werden muss. Verfahren des maschinellen Lernens (ML) 

können eingesetzt werden, um aus dieser Menge an Informationen den relevanten Anteil 

zur Erkennung spezifischer Umweltreize zu identifizieren. Diese Verfahren versuchen 

selbstständig ein Modell zu trainieren, das den Input (mikrobielle 

Gemeinschaftsinformationen) mit dem Output (Umweltreiz) verknüpft. Im Rahmen dieser 

Doktorarbeit wurde untersucht, ob die Analyse von mikrobiellen Gemeinschaftsdaten durch 

ML eine Vorhersage von Kontaminationsereignissen ermöglicht. Als spezifische 

Umweltreize wurden Kontaminationsereignisse durch Glyphosat und 2,4,6-Trinitrotoluol 

(TNT) in der Ostsee studiert, die für die dicht besiedelte Region von besonderer Relevanz 

sind. Dabei wurden die Potentiale und Limitationen dieses Ansatzes ausgelotet. Die 

relevanten Anteile der Gemeinschaft wurden im Detail untersucht, um festzustellen, ob es 

sich um tatsächliche Wechselwirkungen zwischen Bakterien und Schadstoffen handelt. Nur 

in diesem Falle kann die Beobachtung der entsprechenden Bakterien Indikationen für eine 

Kontamination liefern, einen sogenannten indikativen, mikrobiellen Fingerabdruck. 

Weiterhin war es Gegenstand der Untersuchungen, ob mikrobielle Gemeinschaften 

verzögert auf das Verschwinden eines Kontaminanten reagieren, da in diesem Falle die 

Gemeinschaft immer noch den Schadstoff indiziert, obwohl der selbige nicht mehr 

analytisch feststellbar wäre. Die mikrobiellen Gemeinschaften wurden per 16S rRNA (Gen) 

Amplikonsequenzierung und zusätzlich DNA-Shotgunsequenzierung beschrieben. 

Außerdem wurden weitere Metabolite und Umweltfaktoren sowie Zellzahlen und 

gegebenenfalls geochemische und sedimentologische Parameter ermittelt. Die beiden 

Methoden Random Forest und Artificial Neural Network wurden eingesetzt, um aus den 

Gemeinschaftsdaten eine Präsenz der Kontaminanten vorherzusagen. Statistische und 
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bioinformatische Analysen wurden angewandt, um die ökologische bzw. biologische 

Sinnhaftigkeit der ML-Ergebnisse zu evaluieren. Das R Package phyloseq2ML wurde 

entwickelt, um den Einsatz und die Analyse mikrobiologischer Datensätze für Maschinelles 

Lernen zu vereinfachen. Der beschriebene Ansatz wurde zuerst im Labor und dann im 

Feldversuch erprobt. Im 140 Tage währenden Laborversuch wurde das Herbizid Glyphosat 

zu einem kontinuierlich betriebenen Ostsee-nachempfundenen Mikrokosmos gegeben. Die 

Anwesenheit von Glyphosat konnte durch die mikrobielle Gemeinschaft mit bis zu 99,9 % 

Genauigkeit vorhergesagt werden, wobei Random Forest durchgängig präzisere 

Vorhersagen erstellte. Glyphosat beeinflusste die mikrobielle Sukzession und wurde zum 

Metaboliten AMPA abgebaut; ein Anstieg der Zellzahl, der Metabolit AMPA sowie das 

benötigte gox Gen wurden nachgewiesen. Die potentiell verantwortlichen Organismen 

konnten durch ML und statistische Modelle übereinstimmend identifiziert werden. Eine 

Auswahl weniger bakterieller Taxa als Input für die Modelle erreichte im Schnitt bessere 

Vorhersagen als unter Einsatz der gesamten Gemeinschaftszusammensetzung, für 

Glyphosat reichte aufgrund des simplen Versuchsdesigns allein die Gattung Parvibaculum. 

Ebenfalls konnte gezeigt werden, dass freilebende Bakterien häufiger, aber kürzer von 

Glyphosat beeinflusst wurden als im Biofilm existierende. Die gemessenen Reaktionen auf 

Glyphosat endeten bereits größtenteils während das Herbizid noch mit 1 µM nachweisbar 

war und es wurde geschlussfolgert, dass die in der Ostsee nachgewiesenen 

Konzentrationen nicht ausreichend wertvoll als Nahrungsquelle sind, um abgebaut zu 

werden. Die Umweltproben stammten aus dem Munitionsversenkungsgebiet Kolberger 

Heide nahe Kiel und waren kontaminiert mit verschiedenen Sprengstoffe. Die Vorhersage 

von TNT mit bis zu 84 % (balancierter) Genauigkeit gestaltete sich anspruchsvoller 

aufgrund der vielfältigen Einflüsse, denen ein natürliches Habitat ausgesetzt ist, weiterhin 

erschwert durch die Komplexität der im Sediment angesiedelten Gemeinschaften, die 

Probenzusammenstellung und die niedrige Konzentration von TNT im pmol∙g-1 Bereich. 

Nichtsdestotrotz konnten 25 entscheidungsrelevante Gattungen ermittelt werden, die 

genauere Vorhersagen erlaubten als die Nutzung der Sedimentinformationen wie z.B. 

Korngrößenverteilung, Elementgehalte oder Summenparameter wie Gesamtstickstoff. 

Anhand der Fehlklassifikationen konnte ermittelt werden, aus welchen Regionen der 

Kolberger Heide weitere Proben benötigt werden und welche Proben potentiell ehemals mit 

TNT kontaminiert waren. Die Ergebnisse meiner Doktorarbeit demonstrieren das Potential, 

Umwelteinflüsse, genauer, Kontaminationsereignisse in der Ostsee durch ML-analysierte 

mikrobielle Gemeinschaften vorhersagen zu lassen. Taxa, die zu indikativen Fingerprints 

beitragen, konnten ermittelt werden, zur endgültigen Bestätigung ist jedoch eine höhere 

Probenzahl notwendig. Es wurde erkannt, dass Abhängigkeiten (z.B. räumliche) zwischen 

ökologischen Proben überoptimistische Vorhersagegenauigkeiten ermöglichen. Ihr 
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Vorkommen ist aber für Experimente, die ökologische Zusammenhänge untersuchen, weit 

verbreitet. Sowohl um potentielle Abhängigkeiten zu erkennen und ihren Einfluss 

abzuschätzen, als auch um ökologische Zusammenhänge aus den ML-relevanten 

Informationen ermitteln zu können, sollten interpretierbare ML-Methoden priorisiert werden. 

Es wurde gezeigt, dass die Implementierung des dargestellten Ansatzes in den regulären 

Monitoringbetrieb sowohl in Bezug auf die Methodik als auch ressourcentechnisch möglich 

ist und im Gegenzug die benötigte Ausweitung der Probenmenge anbietet.   
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General introduction 

Formation of Earth and life 

The earth was formed out of solar nebula about 4.54 billion years ago (Dalrymple, 2001). 

The earliest specimen of the genus Homo has been estimated to be about 2.8 million years 

old (Villmoare et al., 2015), Homo sapiens about 300,000 years. Such geological time spans 

are difficult to imagine; it appears that humankind existed and experienced evolutionary 

forces over a long time. To put this impression into perspective, it has been confirmed that 

the microfossils of the earliest life forms are 3.5 billion years old (Bernard and Papineau, 

2014), with more finds gathered near submarine-hydrothermal vents indicating microfossils 

between 3.77 and potentially up to 4.3 billion years ago (Dodd et al., 2017). These 

microfossils, potentially originated “only” 200 million years after formation of Earth, are 

remnants of the first microorganisms. Today’s bacteria are descendants of those ancient 

microorganisms (Di Giulio, 2003), which have become the most abundant life forms on 

earth. They were subjected to the mechanisms of evolution for billions of years. The 

selective processes took rapid effect due to average bacterial generation times of hours to 

days (Vieira-Silva and Rocha, 2010). An unmatched variety of physiologies evolved, 

allowing prokaryotes to conquer by now virtually all environments on Earth, including 

habitats no other life forms are equipped for. To give some examples of the extraordinary 

capabilities of bacteria, alive cells, millions of years old, have been reported from samples 

taken 2.5 km below the sea sediment surface, where they were estimated to reproduce 

every 10,000 years (Inagaki et al., 2015). Microbial life has been retrieved from deep marine 

sediment, where almost no energy source was available, and subsequently stimulated and 

promoted to grow after 100 million years (Morono et al., 2020). Furthermore, bacterial cells 

survive freezing, or more specific, vitrification of the cell interior. This quality is exploited for 

long term storage of microbial cultures, but also enables them to survive in permafrost for 

millions of years (Christner et al., 2003). On the opposite side of the thermal scale, Archaea 

can grow at up to 122 °C and Eubacteria at up to 100 °C (Clarke, 2014). Bacteria of the 

family Deinococcaceae possess efficient DNA repair mechanisms sufficient to live within 

the cooling system of nuclear reactors as well as to survive clinical instrument sterilization 

via irradiation (Makarova et al., 2001). Growth of the acidophile archaeum Ferroplasma 

acidarmanus has been reported at pH 0 (Dopson et al., 2004). The currently known limits 

of microbial life demonstrate their range of ecological niches and life styles. However, 

bacteria living in ordinary conditions are still remarkable. To understand the importance of 

microorganisms to a given habitat (including the whole Earth, ultimately), their size, usually 

in the range of micrometers, must be considered an advantage. Therefore, 1 mL of sea 

water may contain more than 1,000,000 cells (Heinänen, 1991) of 1000s of species, and 
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1 g of sediment holds over 10,000,000,000 cells (Braun et al., 2016). Their cell size of, on 

average, 0.1 µm³, allows them to efficiently interact with their surroundings by diffusion, 

depending on the surface to volume ratio (Schulz and Jørgensen, 2001). These features 

are the reasons why microorganisms are the driving force of the biogeochemical cycles, or, 

as Falkowski et al. (2008) state “[…] Earth’s redox state is an emergent property of microbial 

life on a planetary scale”. 

Bacterial lifestyles and strategies 

Bacteria virtually always co-exist in microbial communities, displaying a variety of lifestyles. 

For example, the principles of oligotrophic and copiotrophic growth strategies, referring to 

bacteria adapted to environments with less and more nutrients available, respectively, have 

been discussed by Koch (2001). In terms of co-existence, one can distinguish free-living 

cells and surface-colonization via biofilms (Rieck et al., 2015). The majority of bacterial life 

occurs in biofilms, displaying high cell abundances and activities (Costerton et al., 1995). 

Nonetheless, free-living and biofilm-involved (also named planktonic and sessile) lifestyles 

can be expressed by the same organisms (Marshall, 2013). Biofilms can be formed at any 

kind of surface or interface and are as ubiquitous as bacteria themselves (Flemming and 

Wuertz, 2019).  

Bacteria living in biofilms on sediments, are commonly referred to as particle-associated 

(Meyer-Reil, 1994; Rieck et al., 2015). Sediments provide characteristics which affect the 

physical conditions of a habitat and ultimately the microbial community composition. Most 

notably the grain size distribution affects the penetration depth of oxygen into the sediment 

and the begin of reducing conditions, a major selection criterion for microbial communities 

(Broman et al., 2017). The composition and shape of the sediment grains is important, as 

it, together with the grain size, determines which material may adsorb to the particles and 

thereby defining what nutrients are bioavailable (Zinke et al., 2018). Furthermore, sediments 

and even single sediment grains comprise microhabitats, allowing for the coexistence of 

e.g. aerobic and anaerobic species in mm range (Edlund, 2007). 

Reactions of microbial communities towards changing environments 

Summarizing the previously described findings, bacteria can be found everywhere. They 

co-exist in communities, they are very old and have therefore developed a broad range of 

physiological traits. Due to their contribution to the biogeochemical cycles as well as being 

the foundation of the food web, they are of indispensable value for the environment and 

actively shaping it. Classical community ecology prioritized determining the (environmental) 

factors that shape community composition (Paliy and Shankar, 2016). Having thus 

assembled an extensive knowledge about these factors, one can now in return explore the 
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potential to derive information about a specific environment solely from the microbial 

community composition. Interactions between the environment and microbial communities 

are the foundation for the studies of this thesis. The physiological diversity of bacteria leads 

to specific, distinguishable assemblages for ecological niches, from the gut of insects 

(Douglas, 2015) to the anoxic regions of the Baltic Sea (Thureborn et al., 2016). Such 

assemblages are not static, they inherit levels of intrinsic variability; the “normal operating 

range” (Orwin and Wardle, 2004). Deviations from this range indicate a condition of stress, 

caused e.g. by a disturbance. Disturbance is defined as either a) indirectly affecting the 

environment of a community, e.g. a saltwater inflow into a brackish system and thereby 

changing the osmotic conditions for the bacterial cell (Bergen et al., 2018), or b) directly 

affecting the microbial community itself (Rykiel Jr., 1985; Glasby and Underwood, 1996), 

for example, due to the availability of hydrocarbons during an oil spills (Smith et al., 2015). 

Furthermore, disturbances can be distinguished as pulse and press. A pulse is a short-term 

stressor whereas a press effects the system over a longer period of time or even 

continuously (Shade et al., 2012). A common case of disturbance is an anthropogenic 

contamination event, where foreign substances are introduced to an ecosystem. The 

pollutants may be of synthetic or natural origin, but the concentration is significantly above 

the natural background (e.g. radioactivity, hydrocarbons, heavy metals), sometimes also 

described as “degree of contamination” (Shirani et al., 2020). Depending on the type and 

strength of disturbance, specific members of the community can take advantage of e.g. 

nutrient availability, and outgrow their competitors (Lindh and Pinhassi, 2018) or are 

capable of degrading substances useless or even harmful for other members (Fahy et al., 

2005). Bacteria can express different genes to adjust their metabolism or to exchange 

genetic information via horizontal gene transfer to overcome the effects of the disturbance 

(Thureborn et al., 2016). Ultimately, all of these scenarios potentially result in the same 

outcome: the abundances of taxa change, hence, the microbial community composition is 

altered. Resilience in that context is defined as the rate at which a community returns to its 

original composition after being disturbed, also known as community recovery. Resistance 

describes the degree to which a microbial composition remains the same amidst a 

disturbance. However, disturbances may also have initiated microbial succession towards 

another stable state of the ecosystem, as microbial communities can have multiple stable 

states (Shade et al., 2012).  

A resilient microbial community in recovery reflects an environmental condition which no 

longer prevails (the disturbance) and which therefore could not be detected by direct 

analyses. In consequence, the microbial community maintains information about a 

disturbance for the duration of community recovery. Resilient community compositions have 
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been exploited in that manner to detect former oil spills, after the hydrocarbon levels had 

returned to background levels (Smith et al., 2015). 

Accessing microbial communities via next generation sequencing 

Being able to analyze microbial community compositions is the requirement to access the 

information they contain. For a long time, bacterial strains had to be isolated to enable 

further investigations. However, the majority of bacteria are yet not cultivatable (reviewed 

by Bodor et al., 2020). Clone libraries (Green and Sambrook, 2012) and fingerprinting 

techniques such as denaturing gradient gel electrophoresis (Fischer and Lerman, 1980) 

and single-strand conformation polymorphism (Orita et al., 1989) enabled enquiry into the 

dominant taxa independent of cultivating. In recent years, the sequencing coverage of 

microbial communities has improved significantly by the advent of next generation 

sequencing (NGS) technology, namely the 454 Pyrosequencing (reviewed in Clarke, 2005; 

Leamon and Rothberg, 2009) and then the Illumina sequencing by synthesis platforms 

(Caporaso et al., 2011). Depending on the sequencing depth and habitat complexity, NGS 

provides utilizable information on taxa of relative abundances < 0.1 % (Janßen et al., 

2019b). Cultivation techniques are still and will be essential to investigate the physiology 

and other characteristics of bacteria. Yet the phylogenetic identity and functional potential 

of organisms are encoded by the genome and the expressed genes constitute the 

transcriptome. Therefore, sequencing of DNA or RNA allows us to identify which bacteria 

are present, what they are capable of (both DNA) and what genetic functions they are 

actually utilizing (RNA). The methods used for this thesis include i) the sequencing of a 

specific region determined by a primer set (“amplicon” sequencing) and ii) shotgun 

sequencing, a primer-less method. 

In amplicon sequencing, the target region is flanked by a set of oligonucleotide primers and 

becomes specifically amplified by PCR before sequencing. This approach is commonly 

applied to sequence several functional genes, but most important is probably the 16S rRNA 

gene (Caporaso et al., 2011). Due to its essential, and therefore conserved sequence 

regions, it was possible to design primers targeting parts of the 16S rRNA gene within a 

large variety of prokaryotes (Takahashi et al., 2014). Amplicons ensure that the capacity of 

the sequencing device can be fully utilized by sequencing only the targeted regions, 

avoiding spending capacity on irrelevant sequences. Therefore, amplicon sequencing is the 

method of choice to retrieve microbial community compositions or the abundance of specific 

functional genes. The genetic data of a sample prepared for sequencing is called a library; 

the output consists of the sequences and their abundances per library. Bioinformatic 

pipelines (e.g. mothur by Schloss et al., 2009, DADA2 by Callahan et al., 2016) query 16S 
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rRNA data bases (e.g. SILVA by Yilmaz et al., 2014) with sequence similarity-comparing 

algorithms to provide a phylogenetic classification and a taxonomic annotation of such 

sequences.  

Shotgun sequencing refers to the method of breaking up the total DNA or reverse 

transcribed RNA into fractions of appropriate size to sequence it in totality (Leamon and 

Rothberg, 2009). The DNA of an environmental sample is represented by its metagenome, 

the RNA as metatranscriptome, respectively. Compared to amplicon sequencing, shotgun 

sequencing results in a larger amount of sequencing data, followed by more complex 

bioinformatic processing (e.g. MetaSPAdes by Nurk et al., 2017; MetaWRAP by Uritskiy et 

al., 2018). In return, both metagenomes and transcriptomes provide information not only 

about the taxonomic composition of a sample, independent of primer sequences, but of all 

encoded or transcribed information. Further processing steps involve the functional 

annotation of genes (e.g. Prokka by Seemann, 2014) and the recreation of metabolic 

pathways (e.g. MinPath by Ye and Doak, 2011) using appropriate data bases (e.g. MetaCyc 

by Caspi et al., 2020). Binning tools collect sequences of similar nucleotide composition 

and sequencing coverage in an attempt to recompose distinct genomes from metagenomes 

(e.g. CONCOCT by Alneberg et al., 2014; MaxBin by Wu et al., 2014). A table comprised 

of the absolute counts of either genes, transcripts or taxa per library is the primary outcome 

of amplicon and shotgun sequencing, respectively.  

Microbiological data sets have specific characteristics 

For reliable and sound interpretation of data generated by sequencing, it has to be kept in 

mind that such tables are not exact representations of the community composition of the 

sampled habitat due to a variety of reasons, here ordered along the sample processing: 

biological systems may react to the sampling itself, therefore the state while sampled has 

to be preserved (Charvet et al., 2019). The sampling of a habitat usually cannot and should 

not be exhaustive, but representative. However, it is not trivial to provide evidence for a 

representative sampling. Laboratory processing introduces further bias, such as the 

protocol used for extracting the nucleic acids, the chosen primer set in terms of amplicon 

sequencing, the sequencing depth and the sequencing itself. Bioinformatic programs 

designed for large data amounts involve heuristics and probability (e.g. the read mapper 

kallisto by Bray et al., 2016), which possibly leads to varying results for the same analysis 

step. The resulting library therefore contains a subset of the microbial community in form of 

compositional data (Gloor et al., 2017). The underlying probability distribution remains 

largely unknown. An additional issue is that a large number of bacteria are not described 

yet. 
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Machine learning to classify microbial community compositions 

In order to analyze microbial community compositions to learn about their environment, 

NGS allows the retrieval of a wealth of information, although the described limits and 

constraints apply. Machine learning (ML) is a field of statistics and data analyses with 

proven capability to find relationships and patterns in complex data sets of unknown 

distribution. ML is also called statistical learning or algorithmic modelling. Bzdok (Bzdok, 

2017; Bzdok et al., 2018) has described an increased usage of ML in general biology-

related sciences. More specifically, microbial community data has been increasingly 

analyzed and used for predictions by ML algorithms (reviewed by Qu et al., 2019). For a 

short introduction, statistical analysis involves on the one hand descriptive statistics to 

understand the gathered data, using measures such as range, mean or median. These 

results are specific for the collected samples. On the other hand, statistical inference aims 

to draw further conclusions beyond the exact collected samples, such as how likely is a 

measured effect to occur by chance.  

 
Figure A: Comparison on the description of an unknown system by statistical and ML models. Statistical models 
are chosen a priori and therefore require certain knowledge or assumptions about the system they describe. ML 
derives a model from the data, the resulting model does not claim to be a true representation of the system. 
Modified after Breiman (2001b) and Bzdok (2017). 

Statistical inference requires a statistical model (Figure A), which can essentially be 

described as a set of assumptions about the probability distribution of the population the 

sample was drawn from. To illustrate, after a coin toss the chance for each side facing 

upwards is ½, which is already a statistical model. It allows the calculation of further data 

points without additional sampling (or coin tossing). It is important to notice that any 

statistically inferred conclusion from the measured data is based on the chosen model 
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(Steel et al., 2013). Parametric and non-parametric tests can be applied (Oksanen, 2015) 

to test e.g. for significance, confidence intervals or hypotheses rejection. 

In most data sets and especially in environmental biological systems, there are more 

variables and outcomes than “flipped coin lands on either side” (Økland, 2007). Data 

collection for microbiological and ecological studies is not trivial, as described earlier, and 

both time and money expensive, with the data itself being compositional (Gloor et al., 2017). 

The resulting limited sample size aggravates the estimation of potentially complex 

underlying probability distributions and thus, the selection of the appropriate statistical 

model (Økland, 2007).  

ML prioritizes the detection of generalized patterns for predictions on new data sets over 

inference and interpretability: “Statistics draws population inferences from a sample, and 

ML finds generalizable predictive patterns.” (Bzdok et al., 2018). Statistical inferences are 

therefore drawn from the whole data, which however complicates the detection of irrelevant 

information (“noise”); including noise results in a phenomenon called overfitting (Dietterich, 

1995). As a simple example drawn from image analysis, imagine different pictures of a 

chair. Let us define that all chairs have four legs, a seat and a back. These features 

represent a generalized pattern (an abstraction of a chair), allowing a model to classify 

unknown images as showing chairs. Yet, an overfitted model would additionally include 

irrelevant or misleading data such as the background of the image, the color of the legs or 

the material of the seat. As consequence, the overfitted model cannot identify chairs that 

do not exactly look like the one earlier presented to it. Data sets subjected to ML analysis 

are split into training and test data to identify overfitting. Cross validation performs multiple 

splits and serves the same purpose, it is applied by ML and also by statistical models 

(Stone, 1974). ML performance is evaluated based on its predictive power about the holdout 

test data (or otherwise new and unseen data), assuming that “Higher predictive accuracy 

indicates capturing of underlying mechanisms.” (Breiman, 2001b). In comparison, statistical 

models use p values, goodness of fit and analysis of residuals for their validation. Statistical 

inference leads to the single, best solution for the whole data set, based on a priori chosen 

model assumptions, to perform model-driven hypothesis testing (Figure A). A potential 

problem is the existence of similarly good alternative solutions, which however would lead 

to different inferred conclusions (Breiman, 2001b). ML in contrast uses data-driven learning 

algorithms, where “hypothesis” has a different meaning. A hypothesis is a single possible 

state of a ML model, much like an allele is a single possible state of a gene. The parameters 

of the model, defining its state, are adjusted during learning from data: while training, the 

model explores the sum of hypotheses, the hypothesis space, for the optimal solution (also 

called function approximation). To conclude, ML models are rather “derived” from linking 
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input to output data (Bzdok, 2017). Due to its model-deriving concept, ML is usually deemed 

non-parametric. The only statistical assumption for various ML algorithms is that the 

variables are independent and identically distributed (i.i.d.), which is often violated for real 

world cases (Dundar et al., 2007). Furthermore, Økland (2007) states that “samples with 

statistically desirable properties will be ecologically irrelevant”.  

I find it important to mention that the distinction between statistic models and statistical/ 

machine learning was and still is the topic of heated discussions. Breiman referenced this 

controversy in his 2001 article “Statistical modeling: The Two Cultures“, where he gave 

detailed examples. He discussed in favor of embracing the use of ML and answering 

comments from several critics. A comprehensive comparison including both terminology 

and examples is provided in this non-peer-reviewed blog post by Matthew Stewart, who 

addresses the claim that machine learning and statistics are identical: 

https://towardsdatascience.com/the-actual-difference-between-statistics-and-machine-

learning-64b49f07ea3. He uses the example of linear regression, which can be applied by 

machine learning as well as by statistical models, to explain the potential of conflating both 

terms. 

Shallow and deep machine learning algorithms 

Machine learning algorithms belong to the larger field of artificial intelligence and are 

important tools for data mining, data analysis and prediction (Mitchell, 1997). They can be 

categorized in shallow- and deep-learning algorithms. This distinction stems originally from 

artificial neural networks (ANN), which could comprise several processing layers to 

manipulate the data. An undecided number of required processing layers made the ANN 

“deep” (Schmidhuber, 2015). The definition is maybe more clearly expressed by naming 

everything “shallow” which is not an ANN with multiple processing layers. An extensive 

review, foremost on deep learning, but including a detailed ML timeline can be found in 

Schmidhuber (2015). The beginnings of ML include the first symbolic ANN described by 

Minsky in 1951. Those models did not learn until backpropagation with gradient descent 

was invented. This enabled the use of the difference (“loss”) between the predicted and true 

values to improve the model. Today, vast amounts of training data and ML software 

implementations are publicly and freely available. The hardware is sufficiently powerful and 

in parts specifically designed (e.g. chips like the tensor processing units) for the calculation 

of deep learning models. 

Throughout the thesis, the focus was to train ML models with community composition data. 

Additionally, in Chapter III, environmental parameters were included as independent 

variables. The data used for machine learning is ambiguously described as features; the 

https://towardsdatascience.com/the-actual-difference-between-statistics-and-machine-learning-64b49f07ea3
https://towardsdatascience.com/the-actual-difference-between-statistics-and-machine-learning-64b49f07ea3


General introduction   14 

 

 

meaning differs between shallow and deep learning. In shallow learning, the independent 

variables are equivalent to features. However, such variables include manually manipulated 

ones. For example, total organic carbon (TOC) is commonly not measured directly, but 

calculated from total carbon (TC) and total inorganic carbon (TIC). This process is called 

feature engineering and is deemed essential for the predictive success of ML models. This 

is intuitive, as TOC provides different and potentially more relevant information than the 

measured variables TC and TIC. In contrast, deep learning methods automatically generate 

abstract representations, sometimes also called features, from raw input data (Zhong et al., 

2019). Shallow learning algorithms do not engineer new features from the provided 

independent variables. 

 
Figure B: An exemplified decision tree attempting to classify samples containing microbial community and 
environmental information as independent variables and the presence of TNT as response variable. The split 
rules are derived from training, where the separation capability for each variable is measured, for example by 
increase in the Gini index. The variable with the most efficient separation of classes is considered first (here 
“Taxon x”). A single decision tree with sufficient variables is always able to perfectly separate the response 
classes by overfitting (in this example, the bottom second node could be further split by another variable). To 
prevent this, Random Forest uses multiple decision trees, each grown on different subsets of samples and 
variables (see text and Chapter I for more information). 

The shallow Random Forest (RF; Breiman, 2001a) algorithm uses an ensemble of (the 

typically weak classifiers) decision trees (Figure B) to constitute a so-called forest 

(described in detail in Chapter I). Each tree is based on a different subset of the 

variables/features and observations of the data. This process is called bootstrap 

aggregating or in short, bagging. Bagging reduces variance and avoids overfitting, 

furthermore, it increases the robustness. A majority vote based on all bagged decision trees 
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eventually classifies the data. Bagging results in the use of approximately 2/3 of the 

available data to generate the tree. The remaining third, which was “out-of-bag” is then 

predicted by the newly generated tree and therefore, provides a validation set. This process 

provides the out-of-bag error estimate. For each tree, different samples are used for tree-

generation and tree-validation. Therefore, it is still required to have a separate holdout test 

set, completely uninvolved in training the models. 

RF only possesses two important hyperparameters. These are settings to choose and 

optimize; named in contrast to regular parameters which are adjusted automatically by the 

training process. In RF these are the number of trees and the number of randomly selected 

variables (“mtry”) at each node split. Random forests technically allow for reconstructing 

their decisions, however, in reality it is not feasible to disentangle all split events in all trees. 

 
Figure C: Architecture of the ANN used in Chapter I with exemplary input data. Relative abundances of 
taxonomic clusters per sample are provided to the input layer, consisting of as many nodes as 
variables/features. The combination and feature engineering (see text) occurs in the hidden layers, were each 
node is connected (only a few connections are displayed to maintain clarity) to all nodes of the previous and 
next layer. The signal passed from node to node is adjusted along the connecting path (edge) to map the input 
to the output layer.  

In contrast to RF, ANNs comprise a large class of deep learning algorithms with 

architectures reaching increasing levels of complexity and depth. Essential are an input 

layer for the raw data, various amount of hidden layers, number of nodes per hidden layer, 
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the corresponding processing mechanisms and the output layer (Figure C; more detailed 

explained in Chapter I). All types of neural networks have in common that the raw data is 

processed, manipulated and/or combined passing through each hidden layer. ANNs 

provide a wealth of functionalities like feed forward multilayer perceptrons, convolutional 

neural networks (CNN) for image and spectral data or recurrent neural networks and long 

short-term memory for sequential data. However, they come with a large number of 

hyperparameters to tune. Due to the abstraction of data and its manipulation, the inner 

workings of deep learning models are considered intransparent; hence being described as 

black boxes. Great effort is directed in developing more conceivable and interpretable 

models (Lapuschkin et al., 2019).  

The demand for interpretability is best exemplified by the most efficient class of deep 

learning algorithm for pattern recognition in audio and visual data: CNN utilize automatic 

feature generation (reviewed in LeCun et al., 2015). It is possible to extract which features 

they recognized for pattern recognition across several steps of abstraction. The extracted 

features have frequently identified the “Clever Hans” problem, where accidental or 

confounding features are used to classify or recognize classes (Samhita and Gross, 2013; 

Lapuschkin et al., 2019). An example is the use of background information when animals 

should be classified in images. Hence, it became clear that a certain level of interpretability 

of a ML model is required for oversight and error handling. Rudin strongly expresses her 

opinion to use interpretable models in the first place instead of attempting to partially explain 

black box algorithms (Rudin, 2019). Furthermore, I want to mention the existence of 

adversarial examples. Such previously accurately classified images have received an 

imperceptible amount of perturbation to them which causes misclassification (Szegedy et 

al., 2014). Advanced methods to gain insights into CNNs have been described for example 

by Montavon et al. (2018). They defended deep learning algorithms as being interpretable. 

In summary, both algorithms are capable of deriving patterns from data involving non-linear 

relations, but RF uses only the provided independent variables, whereas ANN can further 

combine the input data to engineer more valuable features. In contrast to formats for visual 

or acoustic data, this thesis only provided structured data as input for ML, referring to tabular 

data. The microbial community compositions were prepared in the form of relative 

abundance per taxa. With reference to the term “artificial intelligence”, it is emphasized that 

none of the algorithms possess a concept about what a bacterial taxa or microbial 

community composition represents at that point.  
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Variable importance and interpretable models 

Certain ML methods provide a variable importance measure, which reports the relevant 

features for the model. Linear support vector machines or logistic regression allow for 

specifically reporting the contribution of each variable due to their linear function space 

(Topçuoğlu et al., 2020). RF has several measures to quantify the importance and calculate 

the significance of variables (Altmann et al., 2010; Janitza et al., 2018; Nembrini et al., 

2018). However, as usual for non-linear classifiers, it is not feasible to exactly trace back 

every decision of even a small model consisting of e.g. 50 trees (Breiman, 2001a). In 

general, however, the variable importance still demands interpretation and more specific to 

this thesis, it does not automatically represent those variables that are indicative for a 

contamination event. 

Although the variable importance by RF is not fully transparent, it is still meaningful, because 

RF leaves each variable unaltered during training and prediction. In contrast, the inherent 

problem with deep learning structures is that a given variable, i.e. taxon, does not exist 

individually anymore after the input layer (LeCun et al., 2015). An alternative is to extract 

and analyze the “flow” of data. However, again due to non-linear activation functions, even 

a small network is complicated to interpret, but it may provide interesting insights into which 

variables were combined. 

Variable importance is limited here to the impact of the input variable on the final prediction 

outcome. It can be estimated e.g. by stepwise removal or addition of variables, followed by 

training the model and logging the prediction outcome. Another way is to permute variables, 

until they no longer contain useful information, and compare the outcome with unpermuted 

variables. This method is commonly applied, also by RF.  

Clustering, classification and regression tasks for models  

The most common applications for ML involve tasks such as classification, regression and 

clustering, stemming from the closely related field of data mining (Fayyad et al., 1996). 

Classification and regression are so-called supervised methods; the data contains a 

response variable in form of class labels or a continuous value. The model tries to map the 

independent variables to the discrete classes (Classification), or for regression, to the 

continuous value. Discretizing continuous values into intervals also enables their 

classification. Clustering is the process of finding similarities between observations and 

underlying patterns without additional info being provided, therefore, analyzing the data 

“unsupervised” (Angermueller et al., 2016). It is thereby similar to exploratory ordination 

methods for multivariate data. Clusters detected in unlabeled data sets can be assigned 

with classes for subsequent supervised classification. In this thesis, ML models have been 
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used to classify Baltic Sea microbial community compositions with regard to the presence 

of a contaminant. Furthermore, unsupervised clustering was used to identify the main 

environmental drivers of microbial communities. 

Pollution of the Baltic Sea 

The Baltic Sea was chosen as a research area to examine the impact of contamination on 

bacterial life as it has a long history of pollution and eutrophication. The brackish microbial 

communities have been analyzed in great detail, although foremost regarding the Baltic Sea 

key characteristics: the spatial distribution along the salinity gradient (Herlemann et al., 

2011), across the redoxcline (Grote et al., 2007) or the temporal gradient during algal 

blooms (reviewed in Lindh and Pinhassi, 2018). However, much effort went into the 

investigation of the influence of specific pollutants such as heavy metal concentration and 

persistent organic pollutants (Edlund, 2007; Thureborn et al., 2013; Rodríguez, 2020).  

The Baltic Sea is particularly susceptible to pollution due to the fact that it is rather shallow. 

The only exit to the North Sea and the Atlantic Ocean is via Kattegat and Skagerrak, 

respectively, therefore, the water residence can be as high as 30 years in the central Baltic 

(Rheinheimer, 1998). As a consequence, pollutants do not get flushed out and do not 

become as diluted as in the oceans, despite the Baltic Sea being the largest inland brackish 

sea (Snoeijs-Leijonmalm and Andrén, 2017). It is bordered by nine states. The drainage 

area is inhabited by 85 million people and is 4 times larger than its sea surface of 

415,000 km² (Sweitzer et al., 1996). Agricultural runoff, (historical) industry, marine traffic 

and the water discharge of large estuaries result in the input of various pollutants and 

provide an oversupply of nutrients (mainly nitrogen and phosphorus compounds). The 

resulting eutrophication (Andersen et al., 2017) allows for strong growth of algal and 

microbial biomass (“algal blooms”). The breakdown of this biomass consumes oxygen, 

leading to its depletion. In 2006, the hypoxic bottom regions, defined as > 2 ml∙L-1 dissolved 

oxygen, covered 67,700 km² (Conley et al., 2009). The influx of nitrogen (N) and phosphorus 

(P) to the Baltic Sea is therefore monitored and part of ongoing research (Ahtiainen et al., 

2014). One of the agricultural run-off substances, despite its proposed soil adsorption 

characteristics (Bergström et al., 2011; Myers et al., 2016), is the herbicide glyphosate 

(Skeff et al., 2015). It is the most-applied herbicide globally since the 1970s, and can be 

found in soil and groundwater (Battaglin et al., 2014), marine and freshwater systems (Van 

Bruggen et al., 2018; Carles et al., 2019) and the Baltic Sea (Skeff et al., 2015; Wirth et al., 

2021). Glyphosate has been shown to disturb microbial communities (Stachowski-

Haberkorn et al., 2008). It furthermore provides carbon (C), N and P for bacteria and fungi 

(Lipok et al., 2007; Duke and Powles, 2008). The most common means of glyphosate 
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biodegradation are towards sarcosine utilizing the phn operon and towards 

aminomethylphosphonic acid (AMPA), enabled by the gox gene (Sviridov et al., 2015).  

Whereas glyphosate has been detected in the water column, the Baltic Sea sediments have 

been also described to accumulate toxic substances such as polychlorinated biphenyls and 

polycyclic aromatic hydrocarbons (Edlund, 2007) from industrial use. After World War II, 

regions like the Landsort and Gotland Deep were used to dispose of chemical warfare 

agents (Bełdowski et al., 2016a). About 300,000 tons of conventional munition and 

5000 tons of chemical warfare have been estimated to still be present in both the North and 

Baltic Sea (Böttcher et al., 2011). The munitions dumpsite Kolberger Heide is located close 

to the German city of Kiel in the Kiel Bight. It is about 2 km off the beach, about 1260 ha 

large and 10–15 m deep (location included in Figure D). The dumpsite comprises 

conventional, mostly defused, munition and the metal containments display various states 

of progressing corrosion. They contain mainly 2,4,6-trinitrotolouene (TNT) and 1,3,5-

trinitroperhydro-1,3,5-triazine (RDX) as munition compounds (MC). Among other 

explosives, TNT and its degradation products have been detected in water samples and 

biota collected at Kolberger Heide (Gledhill et al., 2019). Little is known about the MC 

concentrations in sediments. For a detailed description of the site including maps, images 

of detonation craters and scattered, bare munition chunks the interested reader is referred 

to Kampmeier et al. (2020), the UDEMM project analyzing the dumpsite is summarized by 

Greinert (2019). 

Monitoring the environmental state of the Baltic Sea 

The examples of eutrophication, oxygen depletion and contamination detailed above 

visualize the importance of environmental monitoring to assess the quality and state of the 

Baltic Sea. The HELCOM members (Baltic Marine Environment Protection Commission or 

Helsinki commission: Denmark, Estonia, European Union, Finland, Germany, Latvia, 

Lithuania, Poland, Russia and Sweden) cooperate to manage and monitor the 

environmental state of the Baltic Sea (HELCOM, 2018). The member states are required to 

implement monitoring programs according to the EU Marine Strategy Framework Directive. 

As a consequence, the Baltic Sea action plan has been developed in 2007 to achieve good 

environmental status by 2021 (Backer et al., 2010). The program has been prolonged, and 

the plan has been updated (“Strategic plan for the BSAP update”), as the goals are unlikely 

to be reached. According to the HELCOM Monitoring Manual, the following organisms are 

currently included: birds, mammals, fish, zoo- and phytoplankton, non-indigenous species, 

the distribution of fauna and flora species and the abundance of the benthic community. 

Furthermore, the inputs and concentrations of contaminants, as well as their biological 



Description of research aims   20 

 

 

effects, are monitored. Microorganisms are not involved except for the abundance and 

species composition of phytoplankton. It is true that the investigation of organisms which 

are not readily seen, sampled, counted, or taxonomically classified poses a challenge for 

their implementation in regular monitoring activities. Yet, research applying NGS for 

monitoring purposes to acquire information on microbial communities, even their functional 

potentials and expression profiles has been undertaken with promising results (e.g. by 

Ininbergs et al., 2015 and by the EU Bonus project BLUEPRINT). 

Description of research aims 

ML could prove to be a powerful tool for investigating the environmental state of a given 

habitat disturbed by a contamination event. This is because, in contrast to classical prior 

selected statistical models, ML derives the models from data. The data, in this case 

microbial community compositions, is obtained via NGS. To investigate this potential, 

microbial communities from the Baltic Sea were first investigated in the laboratory and then 

in situ for their reactions to contaminants. The Baltic Sea is well suited as a research area 

for contamination effects due to a) a multitude of diffuse anthropogenic influences e.g. from 

rivers, agricultural run-off and the atmosphere as well as b) the presence of specific 

contamination events such as point sources and munition dumping and c) due to its higher 

sensitivity towards pollution compared to open oceans. The integration of our approach with 

environmental monitoring to detect, investigate, and manage contaminations is socially 

significant due to 85 million people living close to the Baltic Sea. A taxonomically- or 

functionally-described portion of the community may represent a fingerprint which is 

indicative for an environmental condition. To automatically extract and identify such 

fingerprints using e.g. variable importance measures, machine learning can be of great 

support. These fingerprints then allow to predict the environmental condition of a habitat 

solely based on the community composition. The prediction of ecological niches (by salinity, 

water depth) and lifestyles (free-living or particle associated) using phylogenetic and 

functional information has been demonstrated in Alneberg et al. (2020). Similarly, ML 

models trained on coral reef microbiomes diagnosed shifts in the reef environment, the 

microbiome acted as indicators for temperature, chlorophyll and eutrophication status (Glasl 

et al., 2019). The studies in this thesis describe the training of ML models with Baltic Sea 

microbial communities to predict to the presence of glyphosate or TNT contamination 

events. 
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Figure D: Thesis concept overview with research questions (in green): Microbial community compositions from 
140 days laboratory microcosms and from the Kolberger Heide (purple area) were investigated. 1. Community 
composition (shape = taxon, size = abundance) in an uncontaminated habitat (white ellipse). 2. Contamination 
of the habitat (by TNT or glyphosate) could alter the community composition. 3. After the contamination event, 
the altered composition may require time for recovery. 4. The next stable state in a formerly contaminated habitat 
may be the original state (1.) or a new one. 5. Community composition data from all stages were obtained via 
NGS; the contaminant was determined. 6. The input data for supervised ML model training were the community 
information and the presence of a contaminant. 7. ANN and RF models were trained for comparison of accuracy. 
8. The output consisted of the trained model (for further prediction) and 9. the important variables (for 
interpretation), possibly indicative for the contaminant. 10. Another data set only consisting of community data 
could then be classified by the trained model (8.), to 11. predict the presence of a contaminant. 

The conceptual approach (Figure D), executed on two different data sets, is summarized 

as follows: Data regarding the reactions of microbial community compositions in the 

presence of contamination were collected by a) conducting a laboratory microcosm 

experiment, where the herbicide glyphosate was added after 69 days and b) sampling in 

the Kolberger Heide dumpsite, allowing me to compare community compositions from TNT-

contaminated and uncontaminated sediments. The microbial succession after 

contamination was also analyzed for a potential return to the pre-disturbed state and if, for 

the specific contaminant, community recovery (resilience) as a temporary state exists. 

Information on contaminant presence and further environmental or contextual data was 

collected. Community composition and contamination data was subsequently provided to 

train ML models and compare the aptitude of shallow and deep learning on predicting 

contaminations. The prediction results were analyzed with regard to accuracy and 

generalizability. The reasons for misclassification were also investigated. The results 

enabled to conclude whether the required sample size and independence of variables were 

met. Causal relations between important taxa and contamination were analyzed as a 

requirement for determining a microbial indicative fingerprint. Bioinformatics allowed me to 
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assess whether the findings reported by ML were biologically and ecologically meaningful 

and logical. 

Conducted experiments and analyses 

For the first two studies, I set up a one hundred and forty days long laboratory experiment 

involving two chemostat-like microcosms, containing brackish microbial communities. I 

added 82.45 µmol L-1 glyphosate as a pulsed stressor to one microcosm and monitored the 

planktonic and biofilm microbial succession with high temporal resolution. The goal was to 

assess whether it is feasible to analyze 16S rRNA (gene) amplicon data from free-living 

bacteria by ML to detect glyphosate contaminations. A stochastic subsetting approach for 

deep ANNs was compared against Random forest as a shallow and more interpretable ML 

method, which readily provides measures for variable importance. The ML task was to 

automatically differentiate glyphosate-treated from untreated control communities. As a 

function of this, the amount of taxonomic information required for a reliable classification 

was also investigated. The results are described in Chapter I. 

In Chapter II, the detected correlations determined via ML in Chapter I, which hinted at 

organisms potentially involved in glyphosate biodegradation, were evaluated for their 

plausibility in a biological context. Using a newly developed analytical method for the 

detection of the glyphosate metabolite sarcosine, in combination with metagenomic 

information of free-living organisms, the potential pathways of biodegradation were 

reconstructed. Furthermore, biofilm community compositions were taken into account to 

compare the impact of glyphosate on their state and succession as well as their resilience 

and resistance with the free-living communities. The results enabled to hypothesize whether 

glyphosate entering the Baltic Sea will be degraded. 

Chapter I and II were designed to assess both the potentials and limitations of ANN and RF 

models in a controlled laboratory experiment and validate the biological meaningfulness of 

the predictions. Following this, as described in Chapter III, the proof of principle under 

environmental conditions could be undertaken. ML models were tasked to predict the 

presence of TNT in the sediments at Kolberger Heide. In comparison to the glyphosate 

microcosm experiment, the concentration of TNT was in the range of pmol∙g−1. The 

microbial communities for model training came from 150 different sediment samples, which 

all showed varying physical and chemical attributes in addition to their individual MC 

contamination. Firstly, it was investigated whether prediction was possible under these 

conditions at all. Secondly, it was of particular interest which taxa contributed to the 

classification as part of a potential TNT-indicative microbial fingerprint. Given the variability 

of the samples, the robustness of predictions was evaluated to identify the factors which 
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influence the model’s performance. This included assessing the false positive predictions 

(predicted as “TNT present”, but actually “TNT absent”) specifically, as they may be caused 

by TNT resilient community compositions, still recovering from a former TNT contamination. 

Depending on the community recovery time, such a phenomenon would enable the 

identifying of TNT contaminations when TNT itself is no longer present. Chapter I and III 

allowed comparing the feasibility of ML under laboratory and environmental conditions. 

Furthermore, using microbial communities collected from the munitions dumpsite enabled 

a realistic determination of the benefits of including community data and ML into 

environmental assessment analyses. Potential issues concerning the integration into 

regular monitoring activities were also discussed.  

Summary of published papers 

In Chapter I (Janßen et al., 2019b), both ANN and RF correctly predicted the presence of 

glyphosate with > 99 % accuracy by using only microbial community compositions derived 

from 16S rRNA (gene) amplicon sequencing. A stochastic variable subsetting approach and 

the RF variable importance measure showed consistently that the interaction of a few 

specific taxa, and even a single one (Parvibaculum), were sufficient to predict the presence 

of glyphosate. Several of these important taxa were characterized by an increase in relative 

abundance after the addition of glyphosate, presumably due to them degrading glyphosate 

or indirectly profiting from the degradation. Using DNA or RNA-derived compositions only, 

the sample size was likely too small for meaningful interpretation. If the technical replicates 

were not averaged, but provided as individual data points, the validation sample prediction 

reached near-perfect accuracy due to confounding variables. 

Chapter II (Janßen et al., 2019a) analyzed the implications of glyphosate addition to the 

simulated Baltic Sea environment of the microcosms. The total cell counts increased after 

the addition and glyphosate degradation was ultimately determined by the presence of 

AMPA. These results were combined with shotgun DNA sequencing data, detecting the gox 

gene, which encodes the AMPA-producing glyphosate oxidoreductase. Analysis of the 

microbial succession revealed that the glyphosate pulse was sufficient to be traceable in 

the non-metric multidimensional scaling (nMDS) ordination. The biofilm was not as often 

affected as free-living bacteria, but the few affected biofilm taxa responded over a longer 

time period. Using a statistical model, similar taxa were identified responding to glyphosate 

as in Chapter I by machine learning. These taxa could also be connected to the phylogeny 

of the glyphosate degradation genes. Although glyphosate was still present in the range of 

1 µM, the microbial responses ceased, thus, we concluded that it might persist in the Baltic 

Sea at prevailing concentrations of about 10 nM (Skeff et al., 2015). 
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Chapter III (Janßen et al., submitted) dealt with the prediction of TNT presence in sediments 

from the munitions dumpsite Kolberger Heide. The sediments were diverse, contained 

complex microbial communities and were contaminated with only pmol∙g-1 concentrations 

of TNT. Yet, it was possible for RF and ANN to predict TNT using community compositions 

with > 80 % balanced accuracy, although TNT was not identified as a community driver. 

TNT was to a lesser extent also successfully predicted using geochemical and 

sedimentological parameters. Interestingly, the combination of both data sets revealed that 

the community composition already contained the relevant information. A microbial 

fingerprint of 25 genera was discovered as potentially indicative for the presence of TNT. 

The robustness and underlying factors of the prediction were thoroughly investigated to 

separate the spurious from the TNT-caused relationships. It was determined that the 

sample size has to be increased. In this regard, the analyses informed us that in particular 

training data from samples surrounding a mine mound was insufficient. A potential effect of 

resilient microbial communities was also described based on samples where TNT was not 

detected, but its metabolites. Finally, the implementation of this approach into regular 

monitoring was suggested, specifically with the current limitation of sample size in mind. 

General discussion 

Machine learning algorithms utilized non-i.i.d. sequencing data for accurate 

predictions 

In this thesis, microbial community compositions were used to accurately predict the 

presence of glyphosate in microcosm experiments, as well as the presence of TNT in 

sediment samples collected at a munitions dumpsite. The taxa being most important to 

achieve these predictions could be identified; glyphosate-relevant taxa likely degraded 

glyphosate and their importance was confirmed by statistical models. It was also found that 

Baltic Sea sediment community compositions may conserve information of former TNT 

presence for a longer period, whereas communities ceased their response to glyphosate 

while it was still present. The experimental setup and sample size were particularly 

important for ML analyses. An interpretable ML model should be preferred, as confounding 

variables will likely occur in ecological experiments and may distort accuracy. It was found 

a great potential for implementing microbial community information and their analysis using 

ML into environmental monitoring.  

The use of machine learning to predict contaminations by analyzing solely Baltic Sea 

microbial community compositions was (to my knowledge) not reported previous to the 

publication of Chapter I. The primary goal was reached when in both Chapter I (> 99 % 
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accuracy, required was > 90 %, for more details see below) and Chapter III (> 81 % 

balanced accuracy, required was > 50 %) successful predictions were achieved. However, 

in both studies confounding variables were identified. To avoid confoundation, ML 

algorithms assume that the samples are i.i.d. (Dundar et al., 2007), as do classical statistical 

tests, but satisfying the i.i.d. assumption often conflicts with purposeful ecological 

investigations (Økland, 2007). One part of the i.i.d. assumption is that variables are 

independent of each other. Efforts have been reported to e.g. correct support vector 

machines for confounding factors in biological data classification (Li et al., 2011), or use 

factored spectrally-transformed linear mixed models in genome-wide association studies to 

correct for confounding effects by population structure, family structure or cryptic 

relatedness (Lippert et al., 2011). Glasl et al. (2019) removed collinear variables as 

redundant based on a Pearson correlation coefficient > 0.7 or < 0.7. Collinearity may be 

caused by a confounding variable. In Chapter I a confounding factor could have been the 

experimental set-up. The community compositions in both microcosms were similar, but 

distinguishable (Figure 1.1). One of the two microcosms acted as an undisturbed control 

and therefore only provided samples for the “no glyphosate” class. The other provided both 

a control, and – after the addition of glyphosate – also a treatment class. These confounding 

constraints were known and permitted to calculate an accuracy threshold, indicating if the 

model actually had learned glyphosate-related effects. Accuracies up to 59 % were 

achievable by pure guessing of the majority class (“no glyphosate”) and up to 90.6 % by 

separating the microcosms. This means that a fictional “microcosm”-variable alone would 

enable > 90 % correct classification. Therefore, the achieved accuracies of 99.9 % using 

RF and 95.8 % by ANN (Figure 1.5) with the 10 most important, unfiltered taxa do present 

the identification of glyphosate-related abundance changes, but they comprise about 5–

10 % of the accuracy. However, for less controlled or environmentally biological 

experiments, the degree of variable (in-)dependence which has to be factored in, is often 

not known. In Chapter III potential confounding variables identified were e.g. the sampling 

season and the sample area (Supplementary Material 3.1), approximated by the grain size 

distribution of the sediment as well as the sampling method. TNT classes (68 x present, 82 

x absent [or 55 %]) were more balanced than glyphosate classes (26 x treated, 38 x control 

[or 59 %]), but still the balanced accuracy measure was applied to correct for imbalances 

(Brodersen et al., 2010). Furthermore, data sets mostly of smaller sample sizes can contain 

incidentally useful variables, which again are not related to the response variable. 

Confounding and coincidentally useful variables are a particular obstacle when investigating 

a potential indicative fingerprint such as in Chapter III. The problem is specifically discussed 

e.g. by Darrell et al. (2015), but often not mentioned in literature when deploying models 
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e.g. in the ML framework for microbiome analyses. Topçuoğlu et al. (2020) mentioned in 

general that the correlation structures of a data set should be understood. 

The second precondition described by i.i.d assumes that the data comes from the same (or 

an identical) distribution (Darrell et al., 2015). In biological and environmental samples, often 

the true distribution is unknown and multiple distributions may be involved even for one 

distinct sampling campaign. It furthermore depends on the scope of the experiment: when 

investigating surface sediments, samples from a deep layer of a sediment core may not 

belong to the same distribution. Yet when investigating sediments from a munitions 

dumpsite altogether is the goal, both surface and core samples are included. 

The i.i.d. assumption has been criticized across various research fields (Darrell et al., 2015). 

As Økland (2007) puts it with regard to statistical models explicitly referring to the nature of 

ecological samples: “[…] that samples with statistically desirable properties will be 

ecologically irrelevant [...] because natural phenomena are spatially and temporally 

nonrandom”. However, this should not result in the rejection of ML strategies in ecology. 

The consequences of not being able to satisfy the i.i.d. assumption to maintain ecologically 

relevant analyses are three-fold (derived from Chapter III): a) careful selection is required 

with regard to where and how samples are taken and processed when designing an 

experiment. This meta data must be recorded and considered during analysis, as 

exemplified by the calculation of an accuracy threshold in Chapter I; b) a large number of 

samples is required to avoid incidentally useful variables and identify confounding ones; 

and c) the model must be sufficiently interpretable, so that e.g. the variable importance can 

be analyzed for spurious correlations. Undetected confounding variables can render a 

model useless to the prediction of unseen data or worse, can provide seemingly useful 

predictions which lead to wrong conclusions (Lapuschkin et al., 2019; Rudin, 2019). As 

demonstrated in Chapter III, ML can be applied to environmental data if at least the 

accompanying sample data and variable importance is provided for assessment. 

A step towards comprehending variable importance is to analyze variable values dependent 

on response class and contextual data, thereby potentially identifying their relevance to the 

model, i.e. understanding the model’s decision. It is also a recommendable approach to 

distinguish indicative from spurious correlations. In Chapter I, the relative abundance of 

important variables over time in each microcosm was examined (Figure 1.4) to identify an 

effect of glyphosate presence. Likewise, in Chapter III the relative abundance per area and 

similarity of community composition was investigated (Supplementary Material 3.8). To 

provide further inside into the decision-making, various algorithms allow for the extraction 
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of the decision boundaries for a given model, often mapped to a two-dimensional space 

(see for example Menze et al., 2011).  

In Chapter I, a stochastic subsetting approach was chosen to analyze the variable 

importance in ANN models. More than 2000 sets of 20 or 30 variables were randomly 

selected to train the model, and the resulting accuracy was monitored. Subsetting and 

permutation approaches do not scale well with regard to computational effort, especially if 

more than one variable should be permuted at the same time to identify combinatory effects. 

Therefore, subsetting was feasible for the data set in Chapter I which contained (at 

maximum) 687 taxa; it is not recommended to be applied to a data set of e.g. 80,000 

amplicon sequence variants (ASVs), the total unfiltered data set of Chapter III. To make a 

model more interpretable, it is often recommended to reduce the number of variables. 

Depending on the method, it may be required to have fewer variables than samples (n > p) 

to prevent overfitting. In fact, in both Chapter I and Chapter III, variable selection (10 genera 

and 25 genera, respectively) achieved more accurate predictions than by using the full 

community data. Breiman (2001b) has claimed that overfitting does not occur in RF due to 

bagging and promoted the use of more variables. The author further on cited the interesting 

concept of the “Rashomon effect”; named after the Japanese movie Rashomon, where a 

murder is described in four contradictory ways by four witnesses. Breiman transferred the 

concept with regard to neural nets and decision trees and described it as the “multiplicity of 

good models”. In short, it refers to the phenomenon that several models consisting of very 

few important variables (selected from the same data set) may predict similarly accurate. 

Yet the resulting variable importance leads to different conclusions, thus making the 

inference instable. Bagging was invented to avoid such behavior. In Chapter I, I analyzed 

the accuracy achieved by different variable subsets and identified taxa which had to be 

included for a stable prediction of glyphosate presence, including Parvibaculum and 

Gallaecimonas (Figure 1.3, Filtered data set). 

Variable importance is a precondition to determine indicative microbial fingerprints 

To ensure that a microbial fingerprint, as determined by variable importance, is actually 

indicative for a contaminant, they have to be causally related (further discussed in Chapter 

III). However, using 16S rRNA gene data alone, it is unlikely to identify causal relationships. 

Yet, due to the simple experimental design and high resolution sampling used in Chapter I, 

the distinct increase in abundance by several taxa following the glyphosate pulse was a 

reliable hint. It became evidence when in Chapter II glyphosate degradation to AMPA was 

analytically measured. Important variables included foremost Parvibaculum (Figure 1.4), a 

taxon by itself sufficient for classification. Furthermore, Gallaecimonas (Figure 2.5, Free-

living) provided valuable information. Both increased in abundance after the addition of 
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glyphosate, but Gallaecimonas was also abundant at untreated time points, whereas 

Parvibaculum was only present at higher concentrations in the treated microcosm after 

addition of glyphosate. In contrast, Massilia was likely considered important for another 

reason: it provided information to separate the microcosms from each other – thereby 

representing the fictional “microcosm variable” imagined above as example of a 

confounding variable – regardless of glyphosate treatment, and should therefore not be 

considered as part of an indicative fingerprint (Figure 1.4). In line with this reasoning, 

prediction accuracy dropped to a maximum of exactly 90 % (the microcosm separation 

threshold) when Massilia was the only training variable (Figure 1.5). 

In conclusion, this variable selection does not likely apply to Baltic Sea communities, as the 

laboratory microcosm conditions were different in several ways. Such were the glyphosate 

concentration, temperature, nutrient availability and dispersal from the environmental 

conditions. This is obviously common for a laboratory experiment, but highlights well the 

issue of transferability and purview of an indicative fingerprint with regard to different 

regions, habitats or ecological niches. This problematic nature will be further highlighted by 

an example from Chapter III, but is of general importance. The dumpsite sediment samples 

analyzed therein were diverse in comparison to the microcosm system. They included 

varying grain size distributions across kilometers in the Baltic Sea and changing redox 

regimes in surface samples to multicorer samples 22 cm deep (Supplementary Material 

3.1). The arising interesting question is: how many indicative fingerprints do we expect? For 

example, muddy sediment at 20 cm depth could comprise an indicative microbial fingerprint 

that differs significantly from those of a coarse, oxygenated surface sediment sample. I 

consider this primarily as a problem of goal definition: is a model predicting for both depths 

(i.e. 0 cm and 20 cm) desired, or are the fingerprints, specific to each depth, requested? ML 

models could include both cases to map community composition to the presence of TNT 

(unless a given taxon behaves conflicting across habitats), however, the important variables 

were determined with regard to both depths, resulting in intermingled fingerprints (further 

discussed in Chapter III). The advantage in training separate models for each depth would 

be the elimination of confounding variables, in particular the grain size distribution and the 

redox potential in this example. It is secondly a problem of feasibility, as in this study, there 

were not sufficient samples available to train a model for each habitat; and it is not trivial to 

determine habitat borders based on DNA-derived data (the process of niche separation in 

freshwater systems was reviewed by Pernthaler, 2017). To address this issue and account 

for potentially multiple distributions and confounding variables within the community 

compositions, six different training/test data splits were analyzed to identify a generalizable 

fingerprint (Figure 3.3). Topçuoğlu et al. (2020) also recommended this strategy for 
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microbiological data sets, using up to 100 splits. They however did not mention the resulting 

information leakage. Leakage occurs when training data includes theoretically unavailable 

information (Kaufman et al., 2011). Applying the proposed approach, holdout test samples 

in one split will inevitably be the training samples in another data split, thereby informing the 

choice of hyperparameters. However, it is of reduced importance in comparison to having 

a single training/test split. For a single split, the information leaks only from one test set to 

one training set. Using multiple splits, the flow of information between training and test 

cannot be back traced. The leaked information cannot be identified, but still informs the 

hyperparameter selection e.g. if the in-average best hyperparameters are chosen. Thus, no 

truly detached holdout set was available, as discussed in Chapter III. In the Kolberger Heide 

data, the data splits indeed unveiled multiple distributions and identified 25 genera of 

importance to all data splits, which could be involved in biodegradation (Figure 3.5). The 

presence of TNT metabolites indicated biologically mediated transformation processes 

(Bernstein and Ronen, 2011). However, due to the low concentration of TNT and as no 

times series data was on-hand, it was not clear if TNT degradation took place in situ or 

whether it occurred e.g. in the water column and the metabolites then adsorbed to the 

sediment (Brannon et al., 2005). Next to potential TNT-degrading bacteria, the important 

variables likely also included taxa such as Cobetia and Colwelliaceae affected by 

confounders such as the grain size distribution (Supplementary Material 3.8, C, G). 

Additionally, the variables included taxa like the clade TA06, which was only present in 12 

samples and therefore rather coincidentally useful in separating a small subset of samples 

(Supplementary Material 3.8, Y). Several of the examined 25 important genera are likely 

impacted by TNT, but the number of samples did not yet enable the determination of a truly 

indicative fingerprint. 

The results from the laboratory and the environmental ML analysis raised an interesting 

question involving the specificity of indicative microbial fingerprints. For example, did the 

models in Chapter III learn to predict TNT exactly or does such a model have the ability to 

predict several nitroaromatic compounds, as they are similar in structure and likely cause 

similar reactions for a bacterial taxon (Spain, 1995)? Classification of also the metabolites 

was initially attempted, but unfortunately the classes were either so imbalanced or 

distributed corresponding to confounding variables that a prediction was not meaningful; 

e.g. 2- and 4-ADNT were present in 127 and 133 of the 150 selected samples. The 

glyphosate results resembled this theme: several phn operons, where the encoded 

enzymes potentially degrade glyphosate to sarcosine (Sviridov et al., 2012), were detected 

in the metagenomes. However, phn operons contain genetic information to degrade a 

variety of phosphonates (White and Metcalf, 2004), a common class of phosphorus-
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containing compounds in the environment (Martinez et al., 2010). Yet another microcosm 

disturbed by a phosphonate similar to glyphosate would have enabled to distinguish 

phosphonate-shared from glyphosate-specific reactions. 

Shotgun sequencing requires careful experimental design to support analyses 

The ten metagenomes analyzed in Chapter II ensured that the genetic functions for 

glyphosate degradation in form of gox genes, phn operons and thiO genes was factual. It 

was furthermore possible to connect the abundance and phylogeny of several glyphosate 

degradation gene instances with taxa identified as important (Figure 2.6–8). Ultimately, it 

was made possible to synchronize abundance shifts for taxonomically related 16S rRNA 

genes and degradation-related genes to important variables detected by either ML or the 

statistical model applied by R package DESeq2. However, it was necessary to measure 

parameters such as glyphosate, AMPA, sarcosine, dissolved inorganic phosphate and 

glycine to estimate the utilized degradation pathway. For example, phn operons, 

theoretically providing the capability to degrade glyphosate and extract P, were detected. 

Yet the amount of sarcosine – indistinguishable from L-alanine in the applied HPLC-MS/MS 

method – did not change after the addition of glyphosate, additionally, sarcosine was 

detected in both microcosms. These results indicated, that glyphosate was only degraded 

via the AMPA pathway and the measured substance was probably L-alanine, as part of the 

medium (Chapter II). Five sediments samples from Kolberger Heide were subjected to 

metagenomic analysis as well. Martin processed and analyzed the metagenomes as part 

of her Bachelor Thesis (Martin, 2020), focusing on MC-degradation related, mostly 

nitroreductase-encoding, genes. The analyses were considered challenging, due to the 

complexity of the environmental sediments sampled from five distinct locations (Chapter 

III). Nevertheless, it was assumed that MC had a significant effect on the community 

composition at detonation site Mo7 (TNT: 1,600 pmol∙g−1 wet sediment; summed MC: 

5,700 pmol∙g−1), resulting in a difference between Mo7 and the 4 other investigated sites 

(0–2 pmol∙g−1, summed MC 1–60 pmol∙g−1). The author’s findings showed that the 

abundance and diversity of such genes was indistinctive across samples. It was concluded 

that the impact of MC on degradation-related genes in the metagenomes was not sufficient 

to surpass the different main drivers of the community such as grain size distribution 

(Chapter III).  

In summary, metagenomic data was of limited use in describing the environmental state 

with regard to the specific contaminant or to estimate biodegradation/transformation 

processes, despite the amount of data they provided. These findings demonstrate that the 

usability of metagenomics strongly depends on the research questions and experimental 

conditions, e.g. in anoxic sediments metagenomes may include conserved DNA originating 
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from dead cells (Thureborn et al., 2016). Nevertheless, it was possible to generate large 

contigs and nearly complete bins using concoct (Alneberg et al., 2014) from the 

microcosms. However, the responsive taxa identified via amplicon sequencing were mostly 

low in abundance, thus, their genomes are rarely covered by shotgun sequencing (Ni et al., 

2013). This was also true with regard to the question of MC degradation/transformation in 

Chapter III. The genes (e.g. encoding for the nitroreductases, catalyzing the reduction of 

nitro-moieties as the first step in TNT reduction), are virtually ubiquitous, but do not 

necessarily enable the organism to degrade specifically TNT (Roldán et al., 2008).  

Metatranscriptomic analyses were initially planned as part of the glyphosate degradation 

analysis in Chapter II, but were not conducted due to limitations in time, workforce and 

funding. The sediments from Chapter III were originally sampled for MC analysis by divers 

and hence have not been conserved appropriately for total RNA sequencing. My conclusion 

is to include a few, carefully selected metagenomes as mapping backbone, for bin assembly 

and to assess the functional potential of a habitat. In the case of Baltic Sea pelagic shotgun 

sequences, the assembled and functionally-annotated Baltic Sea Reference Metagenome 

(BARM) provides the required mapping backbone (Alneberg et al., 2018) and reduces the 

computational demands. However, the focus should be on metatranscriptomic analyses as 

a measure of functional activity. Speculating based on the findings of Chapter II, 

metatranscriptomic data could have indicated the activity of the glyphosate degradation 

pathway, among other reactions to the addition of glyphosate. With regard to Chapter III, 

and assuming the required sample conservation and sequencing depth was met, it could 

have been investigated whether MC degradation-related genes were transcribed at all. This 

could have helped to clarify whether TNT metabolites were formed in the sediment or 

originate from the water column (Chapter III) and which bacteria were involved in 

degradation. 

Disturbed communities displayed resistance and resilience  

The prediction of contamination relies on a composition-altering impact by the contaminant 

towards the microbial community. The general capability of glyphosate (e.g. Stachowski-

Haberkorn et al., 2008) and TNT (e.g. Esteve-Núñez et al., 2001) to do so has been 

described. In the experimental realizations of this thesis, glyphosate could be classified as 

a pulse disturbance and the TNT contamination as press disturbance (Shade et al., 2012). 

The glyphosate addition caused an increase in the abundance of specific taxa outside of 

their normal operating range (Orwin and Wardle, 2004). Most water column taxa returned 

to original abundance levels or re-aligned with the prevailing succession before the 

glyphosate pulse, such as the increasing dominance of α-Proteobacteria (Figure 2.2). Put 

in other words, succession led to a changing community composition at all times, but the 
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change was temporarily dominated by the reaction to glyphosate. Similar behavior was 

identified in the metagenomic data and for the cell counts. It can be concluded that the high 

temporal sampling resolution allowed the observation of microbial communities being 

sensitive to higher and recovering at lower concentrations of glyphosate. In the biofilms, 

fewer taxa were identified as responsive, but their reactions were prolonged, partially until 

the end of the experiment (Table 2.1). In light of the fact that glyphosate was applied only 

once and rather served as a nutrient source than a toxic or otherwise negative stressor, this 

type of community reaction seems plausible. It should be noted, that possible sorption and 

desorption of glyphosate on surfaces was investigated in Chapter II and was found to be 

negligible if the microcosm was inoculated days prior to the addition of glyphosate 

(Supplementary Material 2.1). 

Resilience could only be speculated about in Chapter III, as the samples stem from single 

points in time. Further information about past contaminations was drawn from the presence 

of TNT metabolites. Resilience as a common ecological phenomenon (Baho et al., 2012; 

Shade et al., 2012; Meredith et al., 2018) was considered as one explanation for false 

positive classifications (i.e. samples without TNT, but classified as TNT present). In case 

these false positives contained metabolites, they were more likely to be misclassified, 

although without statistical significance due to small sample size (Figure 3.6). Two 

interpretations (or a combination of both) were conceived: a) that the metabolites indicate 

that TNT was once there and had an impact on the community. Subsequently TNT was 

degraded or dissipated, but the resilient community still represents the impact and leads to 

a false positive prediction; or b) the impact of TNT compared to those of its metabolites 

were very similar and were therefore misinterpreted as TNT contamination (Chapter III). 

Resilient microbial communities can act as event recorders and offer a great potential to 

identify disturbances which have already passed, e.g. demonstrated by Smith et al. (2015). 

They detected former hydrocarbon contaminations using ML with microbial community 

compositions, although the hydrocarbon levels had already returned to background levels. 

More research is required to examine long-term reactions of community compositions to 

disturbances (Lindh and Pinhassi, 2018), which include alternative stable states (Allison 

and Martiny, 2008), or cycling through multiple states according to e.g. seasons (Lindh et 

al., 2015). 

Random Forest is preferable to Artificial Neural Networks  

Throughout my thesis I compared RF and ANN for their suitability to analyze community 

composition data. ANNs were included in Chapter I to reveal abstract interactions using 

deep learning. Yet, comparing the predictions using microbial community composition in 

Chapter I and III, RF proved to predict contaminations virtually always more accurately than 
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ANN (Figure , modified from Figure 3.1, amended by ANN scores). It was assumed that the 

prediction of low level TNT would be particularly hard to evaluate. Hence, both methods 

were applied to determine the achievable prediction rates and investigate whether 

misclassifications occurred algorithm- or sample-specific (Figure 3.4, B). The higher 

variance of the accuracy of ANN predictions compared to RF is partially attributable to RF 

being an ensemble classifier (discussed in Chapter III). 

 
Figure D: Correct TNT classifications (Chapter III) per input data in the validation and hold out test set for RF 
(dot) and ANN (triangle). Red indicates community data, blue symbolizes sediment data and red-blue combined 
variables. Of each data type, either all variables were utilized by the model (“Full”), or only the best variables 
based on variable importance (“Top”) or all variables except Top (“Non-Top”). Classification performance is 
displayed as mean and standard deviation of balanced accuracy, the classification results of the six different 
data set splits were averaged. The validation values are out-of-bag estimates. n indicates the number of RF 
(top) and ANN (bottom) models calculated. 

Significant effort with regard to the application of RF and ANN went into optimization, which 

includes hyperparameter tuning as well as manipulating and selecting the input data. 

Optimization was found to increase the mean accuracy by more than 10 % for both methods 

when classifying glyphosate or TNT presence (Chapter I, III). Furthermore, the results in 

Chapter III showed that an optimized model displayed reduced variance (Supplementary 

Material 3.4) and confirmed that increasing the default mtry value – describing the number 
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of variables for each node split in RF, the default for classification is the square root of the 

number of all independent variables – is important for sparse tables with few relevant 

variables, because it heightens the chance detecting those relevant ones (Hastie et al., 

2009). 

In the literature, it was not always clear whether studies investigated variable selection or 

applied an approach similar to an abundance threshold as performed in Chapter I and III. 

Abundance cutoff values mentioned by e.g. Smith et al. (2015) or Glasl et al. (2019) seem 

to stem from the bioinformatics analysis. Moitinho-Silva et al. (2017) did not report a specific 

threshold, but used composition data on phylum, class and operational taxonomic unit 

(OTU) rank to predict sponges as of high or low microbial abundance. In general, higher 

taxonomic ranks remove the lower intra-rank variation, causing a potential loss of 

information. In contrast, comparing predictions based on various ranks includes an 

additional dimension of information. In Chapter II, Pseudomonas OTUs were detected, 

which distinctively responded to the glyphosate pulse (Table 2.1), whereas the genus 

Pseudomonas was not identified as an important variable in Chapter I. Therefore, it could 

be beneficial to reduce the number of variables by selecting important variables on a lower 

rank, instead of agglomerating the lineages. TNT predictions however still worked on class 

rank with 78.8 % mean balanced accuracy (Figure 3.2). Depending on the analysis, higher 

taxonomic ranks may be required, e.g. to predict global patterns of port microbial 

communities (Ghannam et al., 2020) or ballast water discharge (Gerhard and Gunsch, 

2019).  

The hyperparameter tuning and input data selection process is specific to the individual 

experiment. In Chapter III, combinations of relative abundance thresholds and 

hyperparameters were investigated at the same time, as both depend on each other.  The 

hyperparameter tuning was performed for all available taxonomic ranks. A Cartesian grid 

search describes the process to test all combinations of values for e.g. hyperparameter 1 

and hyperparameter 2. For ANN optimization, this becomes tedious and potentially 

unfeasible, as there are too many hyperparameters to investigate at the same time (also 

called combinatorial explosion). Yet e.g. the number of nodes obviously has to be 

investigated dependent on the size of the data set. Therefore, the number of nodes (values 

attempted ranged from 4 to > 1000) in both hidden layers depending on input data sets 

were initially determined. Fifty nodes in the first and 40 nodes in the second hidden layer 

showed the best results. Drop out regularization from 10 % up to 50 % of the nodes to 

prevent overfitting did not improve the prediction accuracy and the Adaptive Moment 

Estimation optimizer function outperformed Root Mean Square Propagation slightly. Two 

hidden layers were deemed sufficient, as they are capable of approximating virtually every 
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non-linear function (Schmidhuber, 2015). More advanced deep learning functions and other 

architectures were not explored, as basic ANNs have been reported as being the most 

successful ML approach for omics data sets (Yu et al., 2019). In conclusion, ANN may have 

achieved better predictions in Chapter I and III using other hyperparameters, however, the 

effort (after pre-conducted optimization) to determine such hyperparameter settings 

outweighs the benefits of a slightly increased accuracy. 

For the ANN models deployed in Chapter I no holdout test set was set aside due to the 

small sample size. Instead, “leave one out cross validation” was used to calculate the 

prediction error: all samples were involved in training the model except one, which is “left 

out”, and has to be classified by the trained model.  The repeated cross validation combined 

with multiple train/test data splits was applied in Chapter III, which is better suited to address 

the level of generalization (Topçuoğlu et al., 2020). A holdout test set should always be 

included in the analysis, even if it only resembles 10 % of the samples. Such a test set is 

also required for precise comparison between ML methods. 

Figure E: Violin plots displaying A) the time to train a model (log transformed) and B) the increase in used 
memory for both algorithms. The information was logged during the optimization phase and is based on the 
models whose classification is shown in Figure A. The mean is represented as black dot. 

Below I want to provide a short comparison between RF and ANN with regard to aspects 

which are not a major part of thesis. The comparison is mostly based on the extensive ML 

analyses for Chapter III. Including logged information from involved hyperparameters and 

input data selections analyzed in Figure A, it was most notable, that RF was magnitudes 

faster and demanded less memory (Figure F). To put the difference into perspective, the 

reported training time was required for a single Random Forest (0.3 s in average) or ANN 
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model (1 s in average). However, RF is an ensemble learner, hence consisting of (in this 

case) 1,000–10,000 decision trees, resulting in the same number of predictions. RF only 

publishes the majority prediction, e.g. if 400 trees classify a sample as “TNT present” and 

600 as “TNT absent”, the output is simply “TNT absent”. However, in the background many 

more weak models have been trained. The training speed of ANN could be significantly 

improved by utilizing graphics processing units (Schmidhuber, 2015). The memory usage 

was affordable for RF, whereas the ANN could crash during training by reaching the 

memory limitation. This is one reason why training models in small sample batches has 

been invented (Chollet and Allaire, 2018). The speed and memory usage depend on the 

implementation of the algorithms. To conduct ANN analysis in Chapter III, a combination of 

R (R Core Team, 2017), R package Keras (Allaire and Chollet, 2020), R package 

TensorFlow (Allaire and Tang, 2020) and the actual TensorFlow software were used. In 

contrast, Random Forest required mainly R, C++ and R package ranger (Wright and Ziegler, 

2017) to perform analyses. However, this comparison is skewed as TensorFlow and Keras 

programs provide access to virtually all deep learning variations, plus visualizations and 

very advanced interfaces for analysis. With regard to input data preparation, no 

transformation or normalization was required for RF analyses. It worked off-the-shelf with 

both continuous and categorical data. ANN input data transformation accelerates the 

convergence of the model during training significantly (Chollet and Allaire, 2018). 

Categorical data has to be one-hot-encoded as dummy variables. To optimize predictions, 

RF only possesses two relevant hyperparameters compared to an unknown greater number 

for ANN. Additionally, RF provides a proximity matrix. It is a distance measure, based on 

similarly classified samples, generated during supervised and unsupervised tasks. The 

matrix can be used to perform e.g. PCA (Chapter I, more detailed explained in III). This 

combination was the method of choice for community and sediment data ordination, 

including the fitting of environmental parameters with community compositions (Chapter III). 

It can be concluded that RF comprises a class of machine learning that is well suited to 

predict (classification/regression) or detect similarities within microbial community 

composition and environmental data, in a fast and efficient manner. 

As the importance of transparent models was stated, linear ML algorithms and other tree-

based methods such as gradient boosting should be considered first, even if deep learning 

would provide slightly better predictions (Topçuoğlu et al., 2020). It has been reported that 

for various typical deep-learning use cases, interpretable models achieved similar prediction 

scores (Rudin, 2019). 
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Phyloseq2ML: an R package which facilitates machine learning with microbial 

communities  

Since the most time-consuming step during ML analyses involves the selection and 

preparation of data, as well as identifying the optimal hyperparameter settings, there is a 

large quantity of software, such as caret for R (https://topepo.github.io/caret/index.html) and 

scikit-learn for Python (https://scikit-learn.org/stable/), as well as programs such as 

DeepLearning4Java (https://deeplearning4j.org/) and platform independent high-level 

interfaces such as Keras (https://keras.io/) to enable ML. My motivation was to write an R 

package specific to the characteristics and requirements of 16S rRNA (gene) amplicon data. 

The purpose of the provided functions by phyloseq2ML is to connect two analysis 

environments with each other (https://github.com/RJ333/phyloseq2ML). On the input or 

source side, the frequently used R package phyloseq (McMurdie and Holmes, 2013) 

contains a large toolkit to analyze and manipulate microbial community data. It allows for 

the linking up of up to five different data sets with each other; the abundance per taxa in the 

community table, the taxonomic annotation, context data such as sampling information or 

measured environmental parameters, the reference sequences representing a taxon and a 

phylogenetic tree. The removal of a taxon or sample in one of these tables prompts 

phyloseq to update the linked data sets. Additionally, the data sets are stored in a defined 

format, regardless of the bioinformatic pipeline used to process the raw sequences. At this 

point, phyloseq2ML is designed to provide a connection to the second environment: the 

machine learning. More specifically, phyloseq2ML currently supports the Keras and 

TensorFlow interfaces for deep learning and the R package ranger for Random Forest. 

Phyloseq2ML functions enable the extraction, manipulation, combination and arrangement 

of data sets conveniently from phyloseq-class objects so they meet the formatting 

requirements of such machine learning implementations. It furthermore calculates a variety 

of performance metrics to evaluate the predictions. It was developed and extensively used 

during the work on Chapter III and hopefully enables other researchers, who rather want to 

focus on the interpretation of their data to use machine learning analysis. 

Applying sequencing data and machine learning analysis to monitoring 

Microbial communities may inform additionally to parameter prediction 

Bacteria are currently not involved in the Baltic Sea environmental monitoring efforts, 

despite being essential to virtually all biogeochemical processes (Backer et al., 2010). The 

knowledge about microbial community compositions, their functions (reviewed with regard 

metagenomic based monitoring in the Baltic Sea by Ininbergs et al., 2015) and expression 

profiles provide insights into essential processes such as nutrient and element cycling, 

indeed bacteria comprise the foundations of the food web.   

https://topepo.github.io/caret/index.html
https://scikit-learn.org/stable/
https://deeplearning4j.org/
https://keras.io/
https://github.com/RJ333/phyloseq2ML
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Table A: Costs and workload for the instrumental analysis of elements and compounds compared with next 
generation sequencing. 

Analyte 
Net cost 

per sample 
(€) 

Workload in 
days (100 
samples) 

Method/ 
Instrument 

Source for cost 
and workload 

estimation 

Mercurya 2 2 DMA 
Ines Scherff, 

personal 
communication 

Total inorganic 
carbona 

2 2–3 Elemental analyzer 
Ines Scherff, 

personal 
communication 

Total carbon, nitrogen, 
sulfura 

2 3–4 Elemental analyzer 
Ines Scherff, 

personal 
communication 

Element composition, 
water, 500 samplesb,c 

8 10 ICP-OES 
Anne Köhler, 

personal 
communication 

Element composition, 
sediment, HCl-
extracted, 500 

samplesc 

9 20 ICP-OES 
Anne Köhler, 

personal 
communication 

Glyphosate and 
AMPA, waterd 

28 45 HPLC-MS/MS 
Marisa A. Wirth, 

personal 
communication 

Element composition, 
water, 100 samplesb 

33 2 ICP-OES 
Anne Köhler, 

personal 
communication 

Munition compounds, 
water and sediment, 

100 samplese 
35 18 UHPLC-ESI-MS 

Aaron J. Beck, 
personal 

communication 

Element composition, 
sediment, HCl-
extracted, 100 

samplesc 

36 4 ICP-OES 
Anne Köhler, 

personal 
communication 

16S rRNA (gene) 
amplicon sequencingf 

80 10–14g Illumina Sequenzing 

Bonus Projekt 
BLUEPRINT BCC 
Report Deliverable 

6_2 

Metagenomic 
sequencingf 

300 10–14 h Illumina Sequenzing 

Bonus Projekt 
BLUEPRINT BCC 
Report Deliverable 

6_2 

Metatranscriptomic 
sequencingf 

350 10–14 h Illumina Sequenzing 

Bonus Projekt 
BLUEPRINT BCC 
Report Deliverable 

6_2 

a) does not include drying and homogenization of sediments 
b) does not include drying and homogenization of sediments, used ICP-MS for Chapter III instead 
c) workload estimate based on 100 samples 
d) more sensitive method compared to Chapter II, appropriate for Baltic Sea samples, does not 
include sarcosine and glycine 
f) Includes filtration and size fractionation, does not involve bioinformatics, Sequencing offers from 
LGC Genomics, Berlin, 2018; and estimated for total DNA and RNA 
g) workload based on own work 
h) workload estimated based on own work on 16S rRNA gene amplicon sequencing  
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However, the specific use of microbial community compositions to predict contaminants and 

environmental conditions using ML raises the question of why not to directly measure the 

variable. In many cases, instrumental analytics are the best approach with regard to costs 

and work efficiency, compared to the prediction of temperature, pH or other 

physicochemical parameters by microbial communities (Glasl et al., 2019; Alneberg et al., 

2020). To assess the actual magnitude of difference, the (estimated) costs were compiled 

for some of the parameters included in Chapter I–III (Table A). The costs due not include 

personnel, therefore, the required working days for 100 samples (plus calibration and 

reference standards) are given. Omitted were variables such as temperature, conductivity, 

chlorophyll a or pH, which can be measured continuously by online sensors (e.g. used 

throughout public transportation such as ferries equipped with the FerryBox to monitor algal 

blooms in the Baltic Sea; Rantajärvi et al., 2003). The cheapest methods which involve 

laboratory work include sum parameters such as total nitrogen or the individual mercury 

determination. The costs and the workload to measure the elemental composition via ICP-

OES depend on whether an extraction step has to be performed. Regardless, this method 

measures a double-digit number of elements at once. The most expensive and workload-

intensive methods involved the analysis of glyphosate and AMPA (28 €, 45 days for 100 

samples) and the suite of MC described in Chapter III (35 €, 18 days for 100 samples), 

returning 2 and about 10 variables, respectively. The methods are sufficiently sensitive to 

determine their respective analytes even strongly diluted in Baltic Sea samples (Gledhill et 

al., 2019; Wirth et al., 2021). Costs for NGS have been constantly decreasing, still, amplicon 

and shotgun sequencing rank as the most expensive methods. Costs for amplicon 

sequencing, however, are of the same order as elemental compositions, MC or glyphosate 

analytics. Shotgun sequencing is the most expensive method, but generates a great amount 

of primer-independent sequence data valuable for monitoring (Ininbergs et al., 2015). As 

more institutions such as the National Genomics Infrastructure at the Science for Life 

Laboratory in Stockholm, Sweden, offer sequencing services, the costs decrease further 

(Anders F Andersson, personal communication). The other important factor is the hands-

on and analysis time. Sequencing (including sample filtration, nucleic acid extraction and 

library preparation) requires fewer working days compared to the MC or glyphosate 

analyses. In research, the subsequent bioinformatic analysis is a major time consuming 

step. For monitoring purposes specific indicators are targeted. This enables streamlined 

and automated processing and analysis, including the ML prediction. In the long term, in 

situ library preparation and sequencing (e.g. at a MARNET monitoring station), data upload 

and fully automated processing and analysis will be possible. 
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Still, it seems unnecessarily complicated to integrate NGS of microbes solely to predict 

another parameter by it. Yet, even more and significant advantages originate from 

information uniquely accessible via sequenced microbial communities analyzed by ML:  

a) The same community data points can be used to predict several parameters, such as 

glyphosate, AMPA and TNT as well as mercury or nitrate and uranium (He et al., 2018) or 

water depth and salinity (Alneberg et al., 2020), rendering the approach more resource-

efficient.  

b) Communities may exhibit resilience towards a disturbance, substance or contaminant, 

which means, that the effect of such is still represented by the community composition, 

although the disturbance itself is over (Shade et al., 2012; Smith et al., 2015). Such 

information is evasive to direct instrumental measurements. 

c) Disturbances of contaminants can only be identified if they actually impact the 

community. In return, a distinguishable community composition supports the determination 

of an impact threshold on microbial ecology (effective concentration) in real world settings. 

To display the sensitivity of this approach, Wood (2019) has shown that bacteria decide 

precisely when building certain enzymes is worthwhile; responses to antibiotics were 

initiated when a given concentration was surpassed, but long before inhibitory 

concentrations were reached. Similarly, glyphosate degradation was likely not worthwhile 

anymore when concentration fell below 1 µM, as demonstrated by the cease in reaction 

towards glyphosate (Chapter II).  

d) Each community composition, together with a set of meta data, is, in itself, a fully valid 

sample set. The data set becomes even more valuable if not only the composition, but the 

metagenome or metatranscriptome were also sequenced. It needs to be made publicly 

available to enable in-depth data mining/analyzes, microbiological and ecological research. 

A central data base, comparable to the BalticMicrobeDB (Alneberg et al., 2018) should be 

provided for organized and accessible data storage, and methods should be standardized 

to reduce the chance of confounding batch effects, such as described by Soneson et al. 

(2014) for publicly available gene expression data sets. 

These points illustrate the significant improvement of environmental monitoring efforts that 

is possible by the inclusion of community composition data and ML analyses. It should be 

stressed that the time when e.g. glyphosate is solely determined by ML prediction has not 

yet arrived; the models have to be trained in a supervised manner, and therefore the 

parameters still have to be analytically measured. Ongoing measurements to ensure and 

calibrate the prediction quality are indispensable. Yet now is a perfect time to start collecting 
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samples for this approach, as all preconditions in terms of equipment, instrumentation, 

software and knowledge are available.  

Microbial monitoring requires specific collection and storage of samples 

Regular monitoring already provides a framework optimal for data analysis, including a set 

of indicators to assess and a set of sample data to record, a system of monitoring stations 

and routes for cruises to cover the ecologically- or socially-relevant areas of the Baltic Sea 

as well as an established infrastructure and the required logistics to store, process and 

analyze the acquired data in a standardized methodology. To integrate NGS into 

monitoring, protocols for molecular biology-suited sampling need to be implemented. DNA 

is more robust; in contrast expression levels captured by metatranscriptomes possess turn-

over time in the seconds’ range. Therefore, DNA samples are advised to be, and RNA 

samples must be conserved in situ (Charvet et al., 2019). The details of integrating NGS 

have been explored in the Bonus Project BLUEPRINT, which I want to refer interested 

readers to. 

One of the advantages of using ML with data generated by NGS comes from the number 

of samples and the breadth of potential response variables collected. However, supervised 

learning demands training data including the response variable, which could be a 

physicochemical parameter or as yet unknown contaminants. In the future, the Baltic Sea 

may be affected by contaminants we currently do not know much about, the so-called 

emerging contaminants (de Wit et al., 2020). It should be avoided starting with zero training 

samples when a new response variable is added on to the list of monitored substances. On 

that account, it should be investigated if a certain amount of retained samples could be e.g. 

deep frozen (–80° C) or otherwise preserved for complicated and sensitive future analyses. 

This furthermore would allow the use of the same community composition for all response 

variables, enabling comparisons between them. Structurally related substances should be 

included to identify the specificity of a fingerprint, e.g. whether a TNT-trained model will also 

report 2,4-DANT-impacted communities. Finally, long-term monitoring could fill a gap of 

statistically powerful investigations on resilience in natural ecosystems (Lindh and Pinhassi, 

2018). The selection of appropriate sampling locations with the desired ecological relevance 

or statistical independence (i.e. determining the habitat borders for individual indicative 

fingerprints) could be based on the environmental parameters, for example above and 

below the redoxcline. In return, an assessment of the model’s prediction robustness can 

inform upcoming sampling campaigns about where additional training data is required 

(Chapter III).  
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Selecting appropriate algorithms for integration with environmental monitoring 

The ML step in monitoring is advised to focus less on most accurate predictions and more 

on the interpretability of the model (Topçuoğlu et al., 2020). One reason is that the i.i.d. 

assumption will likely be violated and the effects of such have to be considered (Økland, 

2007). As a consequence, a meaningful variable importance measure needs to be reported. 

This measure is required to validate that model-relevant variables are actually monitoring-

relevant (like an indicative fingerprint), too. Breiman (2001b), on the contrary, states the 

Occam Dilemma: “Accuracy generally requires more complex prediction methods. Simple 

and interpretable functions do not make the most accurate predictors. Using complex 

predictors may be unpleasant, but the soundest path is to go for predictive accuracy first, 

then try to understand why.” He furthermore mentioned: “The goal is not interpretability, but 

accurate information” and that asking for interpretability is misled. However, Breiman 

(2001b) seemed to already consider Random Forest as uninterpretable, which at least 

readily reports the variable importance, and additionally may not have had ecological data 

sets in mind when making these statements. Rudin (2019) requests the exact opposite and 

strongly promotes the use of interpretable models. This conflict need not be of great 

concern, as it has become the standard to compare various ML methods (Topçuoğlu et al., 

2020). Thus, an assessment on how much more accurate a more complex model can 

become and whether it is worth the loss of interpretability should be, and typically is, 

conducted. However, the community data collected by monitoring cruises likely does not 

require complex deep learning approaches (Yu et al., 2019), such as reviewed by Cao et 

al. (2020). Ultimately, the training speed of the model should not be of primary concern; 

after the optimization phase the model will only be re-trained with new incoming monitoring 

samples. I would gladly witness these assessments of mine refuted with the first 100,000 

samples analyzed by a month-long trained deep learning model, uncovering microbial and 

ecological relationships of unexpected complexity. 
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Conclusion and outlook 

 
Figure G: The findings of this thesis are colored in green. Integration with 12. environmental monitoring would 
enable the required increase in sample size of community compositions and potential response variables, 
allowing for truly indicative fingerprints. 

The contribution of this thesis to the scientific field, with regard to the research questions 

presented at the beginning (Figure D) can be described as follows (Figure G): It was found 

that microbial community compositions were altered to a certain extent by the presence of 

TNT and glyphosate. Machine learning with Baltic Sea community data worked to predict 

contaminations in the laboratory (up to 99.9 % accuracy) and in the environment (up to 

84 % balanced accuracy). It can be concluded that the presence of TNT and glyphosate (at 

environmentally detected concentrations) do not shape the microbial communities as a 

main environmental driver would, and therefore it is not assumed that microbial ecosystem 

functioning is altered or impaired. An R package was written to facilitate the use of microbial 

community composition data for Random Forest and ANN, and its applicability to query 

microbial community composition for information about their habitat and contamination 

status was demonstrated. Random Forest was consistently more accurate and predictions 

varied less compared to ANN. It was also faster, less computationally demanding, had fewer 

hyperparameters to tune, was more interpretable and provided several variable importance 

measures. In general, a partially interpretable model should be included in the ML analysis, 

because confounding variables in ecology most often cannot be avoided and therefore need 

to be monitored. The sample size was not sufficient to unambiguously identify an indicative 

microbial fingerprint for TNT and to capture the underlying data structure completely. 

Glyphosate-disturbed communities demonstrated short community recovery time while 

glyphosate was still present. Potentially resilient communities after the dissipation of TNT 
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were detected based on false positive classification. They could alternatively be explained 

by the structural similarity of nitroaromatic compounds. Current monitoring describes 

insufficient progress on improving the environmental state of the Baltic Sea, but they also 

ignore the bacteria as source of information (the main drivers of the basic processes). 

Integrating microbial community compositions and ML into regular monitoring could provide 

information for more efficient actions, e.g. to detect intermittently occurring contamination 

which is not discovered by analytics at the time of the monitoring cruise. It allows to assess 

environmental state-relevant processes at their origin and could be an important step 

towards holistic modelling of the Baltic Sea. It was also shown that NGS, though being 

relatively expensive, is in the same cost range of analytical methods such as glyphosate or 

MC detection. Monitoring, in return, would provide the urgently required training data, 

including a plethora of environmental parameters and contaminants for supervised learning. 

In fact, limited sample size was identified as main constraint of the analyses. 

With regard to the future, I do believe that the way to unlock the full potential of ML to 

analyze microbial community compositions and predict environmental conditions involves 

a strong increase in the number of samples. This would enable the determination of truly 

generalized patterns and is the distinction to statistical models, which of course also profit 

from increased sample sizes. Studies involving ~ 100–500 samples demonstrate the 

potential and importance of ML in microbial ecology, as I did with this thesis with regard to 

contaminations in the Baltic Sea. Yet they cannot transcend the limitations imposed by the 

sample size. Thus, after having these ~ 100 sample data sets analyzed, new experiments 

or studies are started from scratch, which cannot make use of the existing data. Nowadays, 

interesting studies with more potential include at least one order of magnitude greater 

sample size, such as in Ghannam et al. (2020) with > 1200 samples. In comparison, for 

image classification, it is possible to access or download huge models online pre-trained 

with millions of images and categories: ImageNet contains about 15,000,000 images of 

20,000 classes (Fei-Fei et al., 2010), the pretrained EfficientNet model achieved 84.3 % 

accuracy (Tan and Le, 2019). The BARM and the BalticMicrobeDB (Alneberg et al., 2018) 

already exist as a starting infrastructure to collect community composition data. 

Environmental monitoring should work as a prototype of constantly retraining ML models, 

integrating the newest information, just like physics and climate modelers – and now image 

classifiers – have done it for a long time. 
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Chapter I  

An artificial neural network and Random Forest identify glyphosate-impacted brackish 

communities based on 16S rRNA amplicon MiSeq read counts 

The following chapter was published in the journal Marine Pollution Bulletin as: 

René Janßen, Jakob Zabel, Uwe von Lukas, and Matthias Labrenz (2019). An artificial neural 

network and Random Forest identify glyphosate-impacted brackish communities based on 

16S rRNA amplicon MiSeq read counts. Mar. Pollut. Bull. 149:110530. doi: 

10.1016/j.marpolbul.2019.110530 
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Abstract 

Machine learning algorithms can be trained on complex data sets to detect, predict, or model 

specific aspects. Aim of this study was to train an artificial neural network in comparison to a 

Random Forest model to detect induced changes in microbial communities, in order to support 

environmental monitoring efforts of contamination events. Models were trained on taxon count 

tables obtained via next-generation amplicon sequencing of water column samples originating 

from a lab microcosm incubation experiment conducted over 140 days to determine the effects 

of glyphosate on succession within brackish-water microbial communities. Glyphosate- treated 

assemblages were classified correctly; a subsetting approach identified the taxa primarily 

responsible for this, permitting the reduction of input features. This study demonstrates the 

potential of artificial neural networks to predict indicator species for glyphosate contamination. 

The results could empower the development of environmental monitoring strategies with 

applications limited to neither glyphosate nor amplicon sequence data. 
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1.1 Introduction 

Monitoring the environmental status of the Baltic Sea is required by law as part of the HELCOM 

agreement (Backer et al., 2010), including distinct events such as contamination. Based on 

molecular methods, such as 16S/18S rRNA next generation sequencing (NGS) and meta- 

genomics/-transcriptomics, microbial reactions during known contamination events can be 

identified. With sufficient knowledge about such reactions contamination events potentially can 

be, vice versa, discovered by molecular methods without information about the contamination 

event. Thus, NGS and -omics have the potential to support environmental monitoring of the 

Baltic Sea in the future. However, these methods collect such a large amount of data that the 

data cannot be evaluated manually.  

Machine learning algorithms are important tools to support data analysis and decision-making 

because they are capable of performing regression and classification tasks on complex data 

sets and solving non-trivial tasks. Classification resembles the decision between discrete 

variables, e.g., “yes” or “no”, whereas a regression fits the provided data within the range of a 

continuous variable (Bourdès et al., 2010). The term supervised learning refers to the practice 

that a machine learning algorithm is provided the input data and the correct output and adjusts 

its specific parameters to correlate both (Angermueller et al., 2016). Random Forest (RF) is an 

established machine learning ensemble classifier (Breiman, 2001a). RF makes use of decision 

trees, which on their own are weak classifiers, prone to low robustness and overfitting. 

However, RF as ensemble classifier builds a forest of decision trees, each tree based on a 

different subset of the features and observations of the data, thereby reducing the variance 

and increasing the robustness. A majority vote based on all decision trees eventually classifies 

the data. RF has been applied in many fields of data science with great success (Fernández-

Delgado et al., 2014). RF is also used for analyzing NGS and environmental data because RF 

“off-the-shelf” can process continuous, discrete and logical values as input. An overview for 

supervised learning on microbial community composition data regarding, for instance, the 

classification of the human microbiome, is given in Knights et al. (2011). More focused towards 

contamination events, Smith et al. (2015) used microbial community compositions from a 

nuclear waste site to predict uranium and nitrate levels and from the Deepwater Horizon oil 

spill to classify for hydrocarbon contamination. Similarly, He et al. (2018) analyzed 

groundwater microbiomes for their functional gene richness and diversity using microarrays 

and found that increasing uranium levels led to generally decreased functional richness and 

diversity, while specific functional guilds related to uranium increased.  

The general potential of another common machine learning technique, the artificial neural 

network (ANN), is illustrated by the correct prediction of a XOR-logic gate output, which is 1 

only if exactly one of the inputs is 1. This cannot be achieved by a linear decision boundary 
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(Rosenblatt, 1958) but rather by an ANN with a hidden layer (Sprinkhuizen-Kuyper and Boers, 

1996). Attempts have been made to implement ANNs in NGS data analyses, as NGS is a well-

established method in medicine, environmental microbiology, biotechnology and related fields. 

NGS generates a high number of sequencing reads of DNA and reverse-transcribed RNA. 

Therefore, an appropriate data format to supply the ANN with the information is essential to 

link the methods. Nguyen et al. (2016) applied a convolutional neural network (CNN) to treat 

DNA sequences as a string input and store the position of the nucleotides in the sequence. 

Another option is to use sequencing-derived or processed data, not the raw sequences 

themselves. Larsen et al. (2012) used microbial community composition and environmental 

data to calculate an environmental interaction network, which identified significant 

relationships. This interaction information was used to generate ANNs predicting the 

abundance of microbial taxa depending on changes of environmental factors as a bioclimatic 

model. Using microbial community composition and phylogenetic trees to incorporate similarity 

information in a CNN model, Fioravanti et al. (2018) classified microbial communities 

associated with Inflammatory Bowel Disease.  

ANNs in its various architectures are known to require more information for training than RF, 

but perform better on more complex data sets. Additionally, ANNs may continuously gain 

performance with growing data amounts, which could be provided along a monitoring effort 

(Fernández-Delgado et al., 2014). The aim of our study was to check whether an ANN analysis 

of 16S rRNA NGS data is suitable to detect glyphosate contaminations in the Baltic Sea and 

potentially support environmental Baltic Sea monitoring.  

Glyphosate is the most-applied herbicide globally since the 1970 and acts as a potentially 

harmful herbicide (Van Bruggen et al., 2018), as well as a phosphorus-providing substrate 

(Hove-Jensen et al., 2014). Recent studies have proven that glyphosate is mobile despite its 

soil adsorption characteristics (Bergström et al., 2011; Kwiatkowska et al., 2016; Myers et al., 

2016). Due to its intensive use in agriculture around the world, glyphosate is present in 

significant quantities in soil and groundwater (Battaglin et al., 2014), and has entered the 

brackish Baltic Sea (Skeff et al., 2015). A laboratory microcosm experiment was set up in which 

the herbicide was added as a stressor to a brackish-water microbial community. To assess the 

impact of glyphosate independently of specific glyphosate detection methods, a combined 

approach of artificial neural networks and 16S rRNA and rRNA gene NGS was applied. An 

ANN was trained on compositions, which were declared as glyphosate-impacted or not. The 

ANN was then challenged to classify a previously unknown sample with regard to the presence 

of glyphosate. The aim was to automatically differentiate glyphosate-treated from untreated 

control communities. The robustness of the ANN setup and the amount of taxonomic 

information required for a reliable classification were investigated and, as control, compared 

to Random Forest analysis. 
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1.2 Material and methods 

1.2.1 Laboratory & sampling 

1.2.1.1 Overview of the experimental setup 

Two 12-L (20×30×20 cm) microcosms comprising float glass and silicone glue were obtained 

from Rebie Aquaristik (Bielefeld, Germany). The experiment lasted for 140 days, starting at 

day −69 for an equilibration period until day 0, when a glyphosate pulse introduced the 

incubation period in the treatment microcosm until day 71 (Supplementary Material 1.1). On a 

total of 16 time points (days −25, −7, 0, 3, 7, 10, 14, 17, 22, 29, 36, 43, 50, 57, 64, 71) water 

samples from both microcosms were sampled. In three technical replicates each, 16S rRNA 

and 16S rRNA gene based community compositions were generated, summing up to 12 

communities per time point and a total of 187 communities. For averaged technical replicates, 

64 abundance tables were yielded. 

1.2.1.2 Microcosm setup 

The microcosms were cleaned with EtOH (70 %) and rinsed with sterile, filtered MilliQ water 

before they were filled with the sterilized substrates. Surface brackish water for inoculation was 

collected 2.5 km north of Warnemünde, Germany (54.199412, 12.042317). Five hundred 

milliliters of water was sterile filtered per GVWP filter (0.22 μm, Merck Millipore, Darmstadt, 

Germany) until the collected volume was filtered. The filters were immediately shock frozen in 

liquid nitrogen and stored at −80 °C. Modified artificial brackish water (ABW, Bruns et al., 2002) 

served as the substrate, containing double the amount of KH2PO4 to prevent phosphate 

limitation. A stock solution of 20 g casein hydrolysate (Merck, Darmstadt, Germany)·L−1 

dissolved in MilliQ (Merck Millipore) served as the carbon and nitrogen source. The solution 

was sterile filtered (0.22 μm, Sartorius, Göttingen, Germany) and stored at 15 °C. The casein 

hydrolysate was added to the ABW after autoclaving to a final concentration of 2.5 mL·L−1. 

Fire-dried quartz sand (0.1–0.4 mm, Quarzwerke, Frechen, Germany) was combusted for at 

least 4 h at 500 °C in aluminium trays (Alcan, Brazil) and served as an artificial, carbon-free 

hard substrate. The microcosms were filled with 2 kg of quartz sand (~1.6 L) and 8 L of ABW. 

Combusted GF/F microfibre filters (Ø 47 mm, Whatman, Little Chalfont, UK) were placed into 

the hard substrate to provide easily collectible biofilm-overgrown material. Air pumps (2×200 

L·h−1, 4 W, EHEIM GmbH, Deizisau, Germany) delivered sterile-filtered air (0.2 μm, Midisart 

2000, Sartorius Stedim, Göttingen, Germany). Three thawed GVWP inoculum filters were cut 

in half, with one half placed in each microcosm overnight. ABW was refilled on days −56 and 

−34; the batch mode lasted from day −69 to day −31 to ensure that the bacteria formed biofilms 

on all surfaces, thereby preventing glyphosate adsorption (Supplementary Material 1.1). 

Beginning on day −31, stable nutrient conditions were provided by changing the cultivation 

mode to a chemostat-like continuous culture to prevent substrate depletion and product 
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accumulation. A peristaltic pump (Ismatec IPC 8, Cole Palmer, Wertheim, Germany) 

transported ABW from a sealed, autoclaved 5-L Schott bottle through clean, sterile tubing (Ø 

1.02 mm (ID), silicone peroxide, Ismatec) at a flow rate of 0.37–0.38 mL·min−1 (537–548 

mL·day−1) into the microcosms representing the water column. A second peristaltic pump with 

a flow rate of 0.33–0.34 mL·min−1 (475–489 mL·day−1) removed water from the opposite end 

of the microcosms such that excess volume was available for sampling. The 5-L Schott bottle 

was regularly exchanged together with the inlet tubing. On day 0, a pulse of sterile filtrated 

glyphosate (13.49 mg·L−1 final concentration) was added to the water column of the treatment 

microcosm and mixed by stirring. 

1.2.1.3 Sampling procedure 

Samples were taken for the determination of total cell counts and glyphosate and 

aminomethylphosphonic acid (AMPA) concentrations, respectively. One-hundred-millilitre 

water column samples were sterile filtered in three replicates; for the analysis of biofilm 

communities, three overgrown GF/F filters were picked with sterile tweezers. These filters were 

used for nucleic acid extraction. Samples for the DNA/RNA extraction were shock frozen in 

liquid nitrogen and stored at −80 °C. Five-millilitre samples for the determination of glyphosate 

and AMPA concentrations were stored at 20 °C without further treatment. 

1.2.1.4 Nucleic acid extraction and sequencing 

Nucleic acid extraction and DNA digestion were performed according to Bennke et al. (2018) 

for the filtered water samples. Biofilm samples were extracted using the phenol-chloroform 

method described in Weinbauer et al. (2002). cDNA synthesis was performed using 20 ng 

DNA-free total RNA as the input for the MultiScribe (Fisher Scientific GmbH, Germany) 

Reverse Transcriptase system with reverse primer 1492r (5′ TACGGYTACCTTGTTACGACTT 

(Lane, 1991)). Illumina amplicon sequencing was prepared as described in Bennke et al. 

(2018). The V3–V4 region on the 16S rRNA gene was targeted with the primer set 341f-805r 

(forward: CCTACGGGNGGCWGCAG, reverse: GACTACHVGGGTATCTAATCC (Herlemann 

et al., 2011)). Indexed amplicon libraries were pooled to a concentration of 4 μM. The PhiX 

control was spiked into the library pools at a concentration of 10%. Each final library pool 

(4 pM) was subjected to one of two consecutive individual paired-end sequencing runs for 

water column samples using 600 cycle V3 chemistry kits on an Illumina MiSeq. During the 16S 

rRNA gene amplicons run, 706 K·mm−2 clusters were sequenced; generating 17.6 million 

reads that passed the filter specifications. Over 70 % of the sequencing and index reads were 

found to have a Qscore ≥30. During the 16S rRNA amplicons run, 555 K·mm−2 clusters were 

sequenced. This generated 13.9 million reads passing filter specifications. Over 74 % of the 

sequencing and index reads had a Qscore ≥30. 
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1.2.1.5 Bioinformatic and statistical analysis of amplicon data 

Sequence data preparation for the SILVAngs pipeline was performed as described previously 

(Bennke et al., 2018). The SILVAngs pipeline dereplicated 100 % identical sequences. Of the 

remaining unique 16S rRNA sequences, OTUs with a similarity threshold of 98 % were 

selected. The representative sequence per OTU was taxonomically annotated using the ARB-

SILVA database (SILVA release 128). Identical annotations for different OTUs were merged 

into clusters on the genus level; thus, the term “clusters” is used instead of OTUs. From the 

resulting taxonomy file containing reads per sample per cluster the clusters annotated as “No 

relative” were discarded. The relative abundance per cluster in % was calculated from the read 

fraction of the cluster of the library size of the sample. The unfiltered data set underwent no 

further quality check; for the filtered data set clusters with fewer than five reads were excluded. 

The sequences were deposited in the NCBI database under BioProject ID PRJNA434253 and 

SRA accession SRP151042. 

1.2.1.6 Non-metrical multidimensional scaling (nMDS) and Principal Coordinates 

Analysis (PCoA) 

Ordination methods belong to the first steps of exploratory analysis. nMDS and PCoAs, both 

commonly used in ecology, are approaches to find similar samples and possible patterns in a 

data set. While an unsupervised approach was used to produce a nMDS from our dataset, a 

PCoA was produced on a supervised Random Forest Model that displays patterns generated 

due to class labels. The nMDS was generated by phyloseq v. 1.26.0 (McMurdie and Holmes, 

2013) within R v. 3.5.1 (R Core Team et al., 2017). The distance matrixes required for 

ordination where calculated as follows: the table with the unfiltered relative abundances of 

clusters were square root transformed and the dissimilarity based on Bray-Curtis was 

calculated for nMDS. 100 Random starts were performed to reach the ordination with the 

lowest stress. To visualize the similarity between samples analyzed by a Random Forest 

model, the proximity matrix (see Material and methods: Random Forest) was converted into a 

distance matrix. The R base function cmdscale() was called to perform classic 

multidimensional scaling (MDS) or Principal Coordinates Analysis (PCoA) with a Euclidean 

distance. All plots were created using ggplot2 v. 3.1.0 (Wickham, 2016). 

1.2.2 Machine learning 

1.2.2.1 Neural network architecture 

The Java library for the feed-forward backpropagation ANN was Deep Learning for Java 

(DL4J), with N-dimensional arrays (Patterson and Gibson, 2017) and default values for most 

parameters. ANNs receive data via an input layer with a number of input nodes representing 

the dimensions of the input data; therefore, the input layer contained one neuron per feature 

(taxonomic cluster) in the respective data set, ranging from 1 to 687.  
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The signal is transported from one node to the next (layer), and the strength of the signal is 

altered by the weight of the connection, allowing for separation between more and less 

impactful nodes. The weights were Xavier initialized (default). Scaling of the signal between 0 

and 1 was achieved using Softmax for output normalization. On each node or neuron, a 

threshold must be met by the incoming signal to activate the forwarding to the next layer. The 

neuron activation function was tanh (the default).  

By employing further connected layers, the hidden layers, more complex interactions are 

enabled due to more combinations of input signals. Hidden layer 1 comprised 25 neurons, 

hidden layer 2 comprised 5 neurons and the output layer comprised 2 neurons, one for each 

class “treatment” and “control”. The output layer showed the aggregated result of the signals 

channeled through the preceding nodes. Each layer was fully connected to the next. The ANN 

had to be trained beforehand to classify the microbial community compositions. The option 

used was providing training data of a given format and amount as well as the expected 

classification, consequently the so called supervised learning. Using backpropagation as an 

iterative learning process, the ANN adjusts the weights of the connections between the nodes 

to yield the provided classification. For this, the loss function was the negative log likelihood 

(Glorot and Bengio, 2010). Every experiment used 2000 epochs, with a learning rate of 0.1 for 

each repetition. Prior unknown data of the same format might then be classified by the trained 

ANN. To do so, the initial data set must be split into a training quota and a test quota. A third 

quota is required if, e.g., several ANN setups are to be compared and validated before the 

actual testing. It is therefore only feasible if sufficient data is available (Wu et al., 2013). As 

sequencing is still comparatively expensive, the amount of samples processed for this 

experiment was large but limited. Therefore, the data were split into training and test data sets, 

with the largest portion being training data. 

1.2.2.2 Random Forest 

The RF algorithm selects randomly a set of 16S rRNA (gene) community compositions and 

builds a decision tree, where every decision is a node splitting the observations. The final 

outcomes or ends of a decision tree are the leaves and depending on the values of the feature, 

the respective leaf votes for a class. On each node, a random set of taxonomic clusters is 

selected. The Gini impurity measure describes which of the selected clusters performs best to 

split the samples according to the provided classification and is therefore used. This process 

is repeated for the appointed number of trees; the Random Forest is “grown”. Thus, the 

Random Forest model is based only on the randomly sampled observations, which were “in 

bag”, whereas those not involved in building the Random Forest were “out of bag”. Therefore, 

such samples can be used as testing set to evaluate the out of bag error (OOB). Practically, 

to evaluate the OOB error, a decision tree in a grown Forest asks on a given node for the OOB 

observations, whether the relative abundance e.g. of Parvibaculum spp. is above or below a 
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given threshold. The respective threshold was determined when growing the forest, based on 

the best Gini impurity. Consequently, it begins to separate between samples classified as 

glyphosate treated and nontreated. As one node is usually not sufficient, it proceeds to the 

next higher node and asks for the relative abundances of, e.g., Massilia spp. According to the 

respective values, the remaining not correctly split samples are further divided. This continues 

until no more features are available or no improvement of Gini impurity is observed, the node 

becomes a leaf.  

Due to the Gini impurity measure, important features are placed as first node (root node) or 

early on in the decision tree as they contribute to the classification. The mean minimum depth 

of features estimates the importance across the whole Forest. Therefore, feature sampling 

size and number of trees are important parameters to tune. For classification the default feature 

sample size is n with n = total number of features. In noisy data sets with many unimportant or 

sparsely distributed features, it might improve the classification performance if a higher number 

of features are evaluated at every node, thereby increasing the chance of sampling a valuable 

feature. Increasing feature sample size, however, significantly affects the computational 

efforts. The number of trees per Random Forest should be increased until the OOB error 

stabilizes.  

The frequency of individual samples ending up in the same terminal node of a tree can be 

reported in a proximity matrix. If e.g. sample A and sample B both land in the same end node, 

the proximity between A and B is increased. By this means, the proximity matrix can be used 

as a measure of similarity. 

1.2.2.3 Application of the Random Forest  

To perform the RF analysis on the data sets, the community compositions and the 

corresponding classifications were retrieved from phyloseq to use with the randomForest 

package v. 4.6-14 (Liaw and Wiener, 2002). Mean minimum depth of features were extracted 

by the randomForestExplainer v. 0.9 (Paluszynska and Biecek, 2017). The randomForest 

function was called using ntree = 5000, and the parameter mtry = 40 for the main data sets 

and 16S rRNA and 16S rRNA gene subsets; mtry = default (3) for the various top 10 selections; 

and mtry = default (1) for single clusters. 100 Random Forests were built and evaluated to 

receive a distribution of OOB errors, presented as percentage of correct classification. The 

same input tables as for the ANN were used and, since the OOB error evaluation was used, 

the data was not divided into training and test sets. For the same reason, the remaining 

parallels of a given test sample in the filtered data set were not removed, resulting in one or 

two training sample parallels being very similar to the respective test sample. 



Chapter I   54 

 

1.2.2.4 Format of the main data sets 

The taxonomy tables contained the relative abundance of a taxonomic cluster as the input 

feature for a given sample (Supplementary Material 1.1). Each sample represented a unique 

combination of time point, nucleic acid, microcosm, habitat, and – in case of the filtered data 

sets – technical replicate (2 or 3).  

Main data set 1 was the “unfiltered data” set, which consisted of all 687 clusters and the 

averaged technical replicates, resulting in 64 observations. Note that from the original 

experimental data containing information on water column and biofilm, the relative abundances 

of clusters within the biofilm samples were removed in this study at a later step but remained 

a feature of the taxonomy file format and were considered with an input node. Effectively, it 

represents setting all biofilm-originated clusters to 0. Therefore, the unfiltered data set 

contained 687 taxonomic clusters with 213 being biofilm-originated, resulting in 474 clusters 

different from 0. One observation was randomly selected to test the classification performance 

of the ANN; the remaining tables comprised the training data.  

Main data set 2 was labelled “filtered data”. The tables were filtered before the relative 

abundances were calculated by removing clusters with less than five counts in a sample. 

Additionally, the replications were not averaged but rather used as separate observations, 

yielding 187 observations (111 × “control”, 76 × “treated”). Consequently, the filtered data set 

contained 360 taxonomic clusters with 86 clusters being biofilm-originated, resulting in 274 

clusters different from 0. One observation was randomly selected for testing; the remaining 

tables comprised the training data. Excluded were the remaining tables of the replicate as they 

were very similar to the test observation. Which observations (tables or samples) and which 

features (taxonomic clusters) were additionally used in the various classification setups is 

illustrated in Supplementary Material 1.2. 

1.2.2.5 Note on classification thresholds  

As only the samples from the treatment microcosm after day 0 were in contact with glyphosate 

(denoted as “treated”), those samples were to be separated from both the samples before the 

glyphosate addition and all samples from the second microcosm (denoted as “control”, 

Supplementary Material 1.1). Hence, the unfiltered data set with averaged replicates consisted 

of 38 × “control” and 26 × “treated” tables. Consequently, purely guessing “control” as 

classification would be correct for ~59 % of the tables. Moreover, the 38 control tables combine 

32 tables from the glyphosate-unimpacted microcosm as well as 6 tables from the treatment 

microcosms before the addition of glyphosate. Therefore, a classifier that is able to distinguish 

the microcosms and votes for “control” would be wrong only for the 6 tables which originate 

from the treatment microcosm. Therefore, a classification rate of 1 – (6/64) = 90.625 % could 

be achieved without learning to classify before and after the addition of glyphosate. The 
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corresponding threshold for the filtered data set is 1 – (18/187) = 90.374 %. A classification 

rate superseding those thresholds must be accomplished to evaluate the model as having 

learned more than solely separating the microcosm communities, a task otherwise no machine 

learning is required for (Figure 1.1). We did not duplicate existing “treated” tables to generate 

a 1:1 ratio of “treated” and “control” as the deviation was not considered to be problematic. 

1.2.2.6 Test ANN classification 

The general applicability of ANNs in classifying community composition data was tested using 

the unfiltered data set as the input. The classification was repeated 2000 times. 

1.2.2.7 Identifying clusters present in a successful classification  

To identify the taxonomic clusters participating in successful classifications, a subsetting 

approach was applied. For the unfiltered data set, 30 clusters were chosen randomly, and the 

network was trained with those 30 clusters. For each subset, the classification was repeated 

256 times (so with 64 tables each covering 4 times the test table), and the number of correct 

classifications and the chosen clusters were documented. The order of averages stabilized 

after ~1000 subsets, and the process was stopped at 1220 subsets. Each subset classification 

required approximately 1 h on a virtual machine with 4 CPU cores and 16 GB RAM. 

Comparably for the filtered data set, the top 10 ranking clusters were calculated by the random 

subsetting approach based on a sample size of 20 clusters. Subsetting was performed 1066 

times, and on each subset 1000 classification runs were performed. Four specific clusters 

appearing in the unfiltered and filtered subsets were compared regarding their participation in 

correct classifications. 

1.2.2.8 Determine required feature amount for classification  

The previous experiment ranked each cluster based on the number of times it was present in 

successful classification subsets. From this order, the 10 top-ranked clusters were selected to 

determine whether a classification was possible with a significantly reduced number of 

features. Furthermore, the limitations of cluster reduction were explored by sequentially 

removing the lowest-ranked cluster of the top 10. 

1.2.2.9 Determine required number of observations for classification 

To examine whether 16S rRNA or 16S rRNA gene data alone were sufficient input for 

classification and which is better suited, the unfiltered data set was split into 32 16S rRNA gene 

and 32 16S rRNA tables, with 31 tables used for training and the remainder for testing. We 

conducted 13568 repetitions for classification based on 16S rRNA gene and 2048 repetitions 

based on 16S rRNA. Additionally, to investigate the required sampling resolution, half of the 

time points from the unfiltered data set were evenly distributed removed from the data set, and 

the classification was tested 6656 times. 
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1.2.2.10 Machine learning algorithms from other tool kits tested 

In the process of analyzing the community assemblage data, Weka toolkit implementations of 

Decision Table, Random Forest and ANNs were tested (Hall et al., 2009). None of the WEKA 

approaches provided correct classifications with standard parameters, and the computation 

times of the respective ANNs were excessive. 

1.3 Results 

1.3.1 ANN identifies glyphosate-treated microbial communities 

The unfiltered community composition data was displayed by PCoA (data not shown) and 

nMDS ordination (Figure 1.1). The nMDS provided substantially better clustering, outlining the 

community dissimilarities across nucleic acids and treatments. Applying an ANN to the same 

data achieved 1905 correct classifications out of 2000 repetitions (95.25 %). As explained 

above in the methods, a classification based purely on guessing would have been correct 

~59 % of the time and if only microcosms were separated, a 90.625 % correct classification 

could theoretically be reached at best. It is therefore generally possible to use an ANN to 

separate community composition data. The Random Forest classification was used as the 

reference machine learning algorithm and evaluated on the OOB error, classified 97.1 % 

correctly. 

 
Figure 1.1: Reduction of multidimensional community composition data using a) the Bray-Curtis 
dissimilarity for nMDS and b) the Random Forest-generated proximity matrix for PCoA with Euclidean 
distance. The nMDS showed four clusters, one for each combination of microcosm and nucleic acid. 
Random Forest classification generated three clusters, regardless of nucleic acid: communities from 
the control microcosm (blue squares), communities from the glyphosate microcosm prior to the 
addition of glyphosate (blue dots) and after the addition of glyphosate (red dots) and was able to 
isolate the treated communities. The separation took mainly place on the PC1 axis with 95.6% variance 
explained. 
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The resulting proximity matrix of sample classification was able to display the separation 

achieved, which is mainly shown along PC1, with 95.6 % of variation being explained. The few 

blue samples in the lower cluster of the MDS plot originate from the treatment microcosm 

before the glyphosate addition and were not separated by nMDS. 

1.3.2 Identification of clusters present in successful classifications by the ANN 

To understand which clusters participate in correct classification and hence are possibly 

important, subsets comprising randomly chosen clusters were tested.  

 
Figure 1.2: Violin plots of correct classification rates by random subsets of size 30 for the unfiltered data set and 
size 20 for the filtered data set, respectively. n is the number of subsets that were generated for the respective data 
set. The dot represents the average; the three horizontal lines within the violin plot depicture the 25%, 50% and 
75% quantiles. The horizontal bar at 59% displays the classification achievable by pure guessing, the upper bar 
marks the threshold for a classification which both separates the microcosms and before and after glyphosate 
addition. A shift from many subsets classifying around the guessing level for the unfiltered data set to improved 
classification rates in the filtered data set is shown. 
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For the unfiltered data set, the subset size was 30 clusters, and 1220 subsets were generated. 

Of 256 classification repetitions for each subset, the number of correct classification ranged 

from 30.1 to 98.4 % (Figure 1.2). For the filtered data set, 1066 subsets with a size of 20 

clusters were selected, and on each subset 1000 classifications were performed, with the 

correct classification per subset ranging from 36.7 to 99.7 %. The range is comparable; the 

distribution of the classification, however, displayed an increase in valuable subsets for the 

filtered data set. Fifty percent of the subsets of unfiltered data achieved a classification rate 

centered around the guessing level, and only a small fraction of subsets was above the 90.625 

% threshold compared with a significantly reduced fraction for the filtered data set at guessing 

level and increased fraction at all higher classification rates, especially around the critical 

90.625 % threshold. Furthermore, an increased average of the classifications was observed, 

as well as reduced computational efforts, as the distribution of classifications stabilized after 

300 subsets for the filtered data set, compared with 1000 subsets for the unfiltered data set. 

 
Figure 1.3: Violin plots of correct classification by subsets containing specific taxonomic clusters for both data sets. 
n is the number of subsets that included the respective cluster. The dot represents the average classification, the 
three horizontal lines within the violin plot depicture the 25%, 50% and 75% quantiles. The horizontal bar at 59% 
displays the classification achievable by pure guessing, the upper bar marks the threshold for a classification which 
both separates the microcosms and before and after glyphosate addition. The filtering step improved the ANN’s 
performance by reducing the range and frequency of less good classifications towards a higher number of better 
classifications. Gallaecimonas spp. containing subsets drastically improved classification rates. 

The ranking, based on the average classification from all subsets a cluster was part of, 

revealed which clusters were frequently part of the correctly classified subsets. The 
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classification of subsets containing the clusters Massilia spp., Parvibaculum spp., 

Gallaecimonas spp. and Limnohabitans spp. were compared (Figure 1.3; relative abundances 

in Figure 1.4 and Supplementary Material 1.3l and r). They appeared in both data sets. In 

particular, Gallaecimonas spp. and Parvibaculum spp. displayed a distinct increased relative 

abundance following the glyphosate addition, which could be useful for the classification by 

the ANN. Limnohabitans spp. increased in abundance in the control treatment after day 0. For 

Massilia spp. the temporal abundance course did not reveal a response to glyphosate but 

rather differed between the two microcosms. Massilia spp. in both data sets were part of the 

well-performing subsets and identified as a very valuable cluster for classification in the setup 

described below.  

 
Figure 1.4: Relative abundances of the taxonomic clusters Parvibaculum spp. and Massilia spp. a) Parvibaculum 
spp. differed between treatment (black) and control (grey) microcosms as well as before and after glyphosate 
addition (dashed vertical line). b) Massilia spp. displayed consistent differences between the microcosms. 

As shown in Figure 1.3, subsets containing Gallaecimonas spp. and Limnohabitans spp. did 

perform poorly on the unfiltered data set, and the classification rates for Gallaecimonas spp. 

containing subsets ranging from 34 to 89 %. This changed for subsets of the filtered data set 

containing Gallaecimonas spp., as a high fraction of the subsets were classified ~90 % 

correctly; however, subsets with Limnohabitans spp. improved, too. Parvibaculum spp. - 

containing subsets showed a good performance in both data sets but improved still in the 

filtered data as they reached the upper threshold for 50 % correctness in the subsets, similar 

to subsets containing Massilia spp. For both data sets it should be noted that performing the 

actual classification with an ANN trained on random subsets is not effective. The averaged 

classification rate over all generated subsets from filtered data is 74.1 % and 69.5 % from 

unfiltered data. 
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1.3.3 Exploring the limits of the required cluster features and assembling a highly 

indicative selection 

The random subsets were expected to be unable to perform a sufficient classification contrary 

to the full data set. But the results indicate that some clusters are more decisive than others. 

Thus, the 10 clusters with the best average classification rate from the subsetting approaches 

were selected as the sole training data for the ANN. This yielded a classification rate of 94.4 

% for the unfiltered data. 95.8 % for the filtered data was achieved if the highly similar technical 

replicates of the test sample were removed; otherwise the ANN classified 97 % correctly 

(Figure 1.5). The two top 10 cluster lists contained 4 shared clusters (Table 1.1). The difference 

is partially due to the removal of low abundance clusters during the filtering step. The maximal 

relative abundance per top 10 clusters ranged from 0.07 % (Dokdonella spp., only unfiltered 

data) and over 0.76 % (Parvibaculum spp., both sets) to 9.27 % (Gallaecimonas spp., both 

sets). Essentially, both top 10 data sets yielded a classification as good as the full unfiltered 

data set (95.25 %).  

In the Random Forest models for the unfiltered and filtered data, the mean minimum depth 

measure was assessed to identify the 10 clusters most important for classification (Table 1.1). 

At minimum, 8 of 10 clusters were identical between the RF selection and the filtered ANN 

selection, thus, the filtering step marginally altered the top 10 RF selection. Random Forest 

classified 99.9 % correctly based on its unfiltered top 10 clusters, the filtered data set 

performed almost as good with 98.9 %. Further reducing the number of features revealed that 

using at least the six best-ranked clusters as the input for the ANN was required to yield a 

classification rate > 90.625 % for filtered data, whereas the unfiltered data sets kept meeting 

the threshold using as few as two clusters. A further stepwise reduction of the filtered data to 

only the top two clusters lowered the classification rate to 88.8 %. Interestingly, the 

classification rate with unfiltered data decreased to near the guessing level (63.5 %) when only 

the best ranked cluster was used (Massilia spp., Figure 1.4b). Massilia spp. comprised a 

cluster only abundant in the control microcosm. In the filtered data set, it achieved 90.32 %, 

within the reach of the microcosm-separating threshold 90.374 %. The second best unfiltered 

cluster was Parvibaculum spp. (84 %), and it was determined to be the best-ranked cluster for 

the filtered data set and, in contrast, performed well on its own (91.7 %). The relative 

abundance of Parvibaculum spp. was different between both microcosms as well as before 

and after the glyphosate addition (Figure 1.4a). It was also observed that 2 clusters yielded a 

better classification than 3 or 4 for filtered data, and the decrease was not linear for the 

unfiltered data.  
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Table 1.1: Listing of the 10 most important taxonomic clusters for classification for both data sets revealed by ANN 
random subsetting and Random Forest, compared with results of bioinformatic analysis achieved by applying R 
package DESeq2. Lineage (SILVA release 128), maximum abundance per 16S rRNA gene or 16S rRNA targeted 
approach and the DESeq2 p value, if available, were included. 
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Random Forest classifications were conducted similarly. Parvibaculum spp. performed well for 

the unfiltered data set with 92.2 % and was close to the 90.374 % for the filtered data set with 

a classification rate of 90.38 %, below the ANN's rate. Massilia spp. gained a correct 

classification of 89.1 % for the unfiltered and 86.1 % for the filtered data set, respectively. RF 

on single clusters performed better for the unfiltered data set. 

 
Figure 1.5: Classification rates achieved by using a top ranked selection of clusters. In black the ANN classifications, 
in grey the RF values. n is the number of classifications performed with the respective clusters by the ANN. The 
horizontal bar at 59% displays the classification achievable by pure guessing, the upper bar marks the threshold 
for a classification which both separates the microcosms and before and after glyphosate addition. Information on 
10 clusters is sufficient to classify as well as using the full data set. Removing one cluster at a time from the input 
did not result in a linear decrease for the ANN. Depending on the cluster, one can provide sufficient data 
(Parvibaculum spp.) for the ANN and the classification was improved by the filtering step. RF was able to classify 
using Parvibaculum spp. in the unfiltered data set, but performance decreased using the filtered data. 

1.3.4 Comparing the use of 16S rRNA gene - vs. 16S rRNA-derived data 

After investigating the number of features used for classification, these approaches targeted 

the number of observations required. The unfiltered data set was used. The classification rate 

of the ANN decreased to 82.2 % if only 16S rRNA gene data was used and to 84.8 % for the 

16S rRNA-derived data (Supplementary Material 1.4). Both values were within the range 

needed to distinguish between the two microcosms regardless of the glyphosate addition. 

Random Forest models showed that 16S rRNA gene data performed successful (96.6 %) and 

better than the 16S rRNA-derived data (92.5 %). Excluding half of the sampling time points, 

which was tested for the ANN, resulted in a classification of 82.1 %. 

1.4 Discussion 

Information collected over 16 time points from a microbial community assemblage obtained in 

a lab microcosm experiment in which glyphosate was applied as a disturbant was used to train 

an ANN for the classification of treated and control communities. Glyphosate is not considered 



Chapter I   63 

 

as strong a microbial stressor as, for example, toxic or antibiotic substances and, in fact, can 

be utilized as a nutrient or energy source by many microbes such that positively reacting 

clusters could be used for classification (McGrath et al., 1997; Hove-Jensen et al., 2014). The 

artificial neural network successfully distinguished between treated and untreated communities 

and demonstrated the general feasibility of the combined NGS-ANN approach. In particular, 

the ANN was required to separate community compositions of two independent microcosms 

with slightly different assemblages from the beginning of the experiment, which was easily 

achieved by standard ordination methods such as non-metric multidimensional scaling (Figure 

1.1). In addition, the experimental design also demanded the ANN to identify traits present in 

the control-labelled samples from both microcosms and to separate those from the treated 

samples, which it successfully accomplished. However, the RF model employed as reference 

for machine learning performed better on this task. 

1.4.1 A statistical approach to identifying decision-important clusters improved with 

fewer features 

The subsequently applied random subsetting method for the ANN was developed because a 

systematic approach was not considered feasible for this study; any expedient selection of 

factors resulted in combinatorial explosion. The subsetting led to two important conclusions: 

1) It was possible to stochastically identify and rank input features. This involved the 

identification of important taxonomic clusters to differentiate between the samples. Therefore, 

it could help determine indicator candidates for environmental monitoring purposes. 

2) The required number of features could be significantly reduced, as demonstrated by the 

equally successful classification by only the top 10 ranked clusters of each data set. Using less 

than approximately 10 clusters might result in a loss of required information (Figure 1.3). This 

was shown by the non-linear decrease in classification rates. This indicated that each cluster 

may contribute a certain dimension of information; the conducted removal of clusters was 

based on their average classification within a subset, which may not reflect the value of these 

pieces of information. To conclude, it is presumably not worth the reduced computational costs 

to base classification on a single-digit number of features. Testing classifications based on a 

single node was a rather theoretical approach, as reducing the feature amount to 1 renders 

the node interaction of the ANN useless, could cause problems with the calculation of a split 

value for the RF, not to speak of the impossibility of bagging. The ANN using filtered single 

clusters was the test where the ANN outperformed the RF. 

RF models provide several metrics as the decrease in Gini impurity; the numbers of times a 

feature was a root node or the mean minimum depth per feature to identify classification-

relevant clusters. It was observed (data not shown) that the top 10 selection from the ANN 

provided as input to the RF slightly reduced the RF's performance. This hints towards a 
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differential utilization of information by RF and ANN. Overall, the selected features by both 

methods were largely the same and the RF classification was significantly improved.  

The filtering of the data shortened the time needed for the ANN's subset ranking to stabilize, 

which might also depend on the size of the subset. In all comparisons between the two data 

sets, e.g., of subsets (Figure 1.2) containing specific clusters (Figure 1.3), the top 10 selections 

and the classification trained solely on Massilia spp. or Parvibaculum spp. abundance (Figure 

1.5), proved a significant increase in the contribution to a successful classification if the data 

was filtered from low abundant clusters. We encourage the application of a filtering step on 

microbial community composition data sets for similar approaches if applying an ANN. All RF 

based models, however, performed slightly worse when processing the filtered data compared 

to their accuracy on unfiltered data. The added noise of the technical replicates might be 

exactly what the ANN requires for generalization, the reduced feature noise possibly supported 

identifying important clusters. The RF did not gain significant improvements by the removal of 

low abundant clusters, as it was shown that the filtering step altered the top 10 selection of the 

RF only marginally and its performance decreased. This is another hint that the RF processes 

the community composition differently than ANN. Solely random subsampling led on average 

to unsatisfactory classification results by the ANN, which indicated that each participating 

cluster may also contribute its information in a misleading way, e.g., clusters that were 

unresponsive to glyphosate or empty clusters. However, a few subsets in both data sets 

breached the classification threshold of 90.625 %. In Figure 1.3, the contribution of certain 

clusters towards the classification performance of their subset is displayed. It can be assumed 

that evenly distributed classifications ranging between many percentages (Gallaecimonas spp. 

in unfiltered data) indicate that the cluster within this subset is not a dominant contributor of 

information; hence, the classification success rather depends on the other members of the 

subset. A distinct range of classification within a subset (filtered data, Parvibaculum spp.) might 

rather indicate a decisive cluster of a subset. The clusters Parvibaculum spp. and Massilia spp. 

were part of both top 10 lists. How Massilia spp. supported a classification, while being present 

in only one microcosm, is a matter of speculation. It may be that the abundance of Massilia 

spp. separates the microcosms while another cluster contributes the information needed to 

distinguish between before and after the glyphosate addition (Figure 1.4). This is supported by 

the sharp fall in classification rate when Massilia spp. were used as a single input feature, 

whereas the ANN solely trained on Parvibaculum spp. succeeded. It however does not explain 

the increase in classification rate increase from the unfiltered to the filtered data set. The 

bioclimatic model of Larsen et al. (2012) predicted bacterial community assemblages on order 

level. It incorporated 16S rRNA gene pyrosequencing data in a preceding data analysis step 

before applying an ANN to spatially and temporally extrapolate microbial diversity. Their 

findings suggested that the strength of the ANNs is to combine the information on abundances 
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of multiple taxa. Another interesting finding of our study was the identification of the practically 

“empty” cluster Nesiotobacter spp. as a member of the top 10 clusters (Supplementary Material 

1.3i). Its appearance in only the unfiltered data suggests that it represented the many “empty” 

clusters that were also part of the “treated” tables. It could also be coincidentally part of the 

well-performing subsets. It points out to the possible issue of finding an appropriate subset 

size and the required amount of subset samplings for a given data set. Environmental 

communities resolved onto OTU level would harbor even more features, making this an 

important computational issue. The abovementioned Gini impurity to identify important 

features in RF is of advantage here, as they directly assess the information value of a feature 

per split in a decision tree. The ANN instead immediately combines information from the 

features to find more generalized, abstract interactions and therefore, after the first fully 

connected layer, the importance of a specific input features is hard to assess. Currently, much 

research effort is targeted towards understanding and visualizing why a neural net decides or 

recognizes as it does. It has to be stressed that both machine learning techniques purely 

correlate the provided data with the provided output, hence, no causal relationship can be 

concluded. This was displayed by ANN findings about Limnohabitans spp. (Supplementary 

Material 1.3r), a feature increasing in the control microcosm after day 0 and therefore helpful 

for classification, but probably not linked to glyphosate treatment. The advantage of community 

composition data (or OMICS data in general) is that each feature has an intrinsic information 

value which is independent from the context. It is more helpful to find that, e.g., Parvibaculum 

spp. or gene phnJ is important for classification compared to “the pixel at position 2,2” in visual 

pattern recognition. However, the most prominent clusters increasing in abundance specifically 

after glyphosate addition - Parvibaculum spp., Gallaecimonas spp. and Hyphomonas spp. - 

were so far not mentioned in literature to be related to glyphosate degradation. In contrast, 

Smith et al. (2015) detected taxa important for the prediction of uranium and oil, which were 

known to interact with these contaminants. It should be considered that the abundance 

changes might not be directly caused by glyphosate utilization of the same cluster, but e.g. by 

a metabolism product or the suppression of a competing taxon. 

1.4.2 More observations should be generated 

In general, more complex data sets require more general models to fit the data. If the data sets 

are also noisy, characterized by a larger variance, even more training data and - more specific 

- more observations to adjust the weights of the ANN are necessary. This was demonstrated 

in experiments with decreased numbers of taxonomic tables. The use of only 16S rRNA- or 

16S rRNA gene-derived data as well as only half of the time points reduced the classification 

rate to below 90.625 % (Supplementary Material 1.4), with 16S rRNA gene data performing 

better than 16S rRNA data. It is possible that the decrease was due to the small sample size. 

RF was not limited by the sample size and accurately classified the microbial communities 
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based on each 32 samples. The RF findings indicated contrastingly that 16S rRNA, the 

expressed 16S rRNA gene as potential activity measure, is a better proxy of glyphosate 

response. These findings indicate that the present number of samples is close to the limit for 

maintaining a correct classification for the ANN. Fortunately, if such an ANN could be 

implemented in monitoring programs, additional data would be generated at each monitoring 

event, which can be progressively included into the model such that the observations-to-

features ratio is continuously improved.  

Different types of neural networks could be explored to compare which architecture achieves 

the most for a given data set. A more sophisticated CNN model including a customized layer 

for phylogenetic similarity was presented in Fioravanti et al. (2018). It should be mentioned 

that Yu et al. (2019) reviewed neural nets in various omics applications and found that basic 

architectures performed better. 

1.4.3 The outcome of the ANN was confirmed by bioinformatic analysis 

The samples from the same glyphosate incubation experiment were also examined with 

bioinformatics tools for a second manuscript, guided by slightly different hypotheses. From the 

20 unique clusters in the unfiltered and filtered top 10 clusters established by ANN and RF 

(Table 1.1), seven were also identified by the R package DESeq2, which tests for statistically 

significant differences in abundance and was developed for NGS data (Love et al., 2014). It 

was applied to compare the cluster abundances before and after the glyphosate pulse. 

Subjecting the DESeq2 input to a filtering step excluded some of the clusters identified by the 

ANN. This step was thought to improve the reliability of statistics. The data suggested that the 

ANN can profit from low abundant clusters as well (Table 1.1). A combination of traditional 

bioinformatic or molecular ecology approaches and ANN technologies seems practical. 

1.4.4 Concluding further steps in the application of ANN with NGS 

While the results presented by this study are promising, the community assemblage data were 

still low-dimensional, containing information on the relative abundance per cluster, time point, 

glyphosate treatment, technical replication, and nucleic acid analyzed. The samples were 

treated as independent observations. To make use of the capacity and potential of machine 

learning technologies, various aspects can be targeted for improvement. For example, the 

number of dimensions could be increased by adding meta data, often available from 

standardized monitoring campaigns, to the input. Temporal or spatial information should be 

included. At this step, a shift from classification to regression could be appropriate.  

Both techniques proved to be powerful and should not be seen as competitive, but as two 

different means to process the same information. Therefore, the hypothesis and the data 

characteristics should inform the choice of which technique to use. As a rule of thumb, we 

suggest starting with Random Forest models, which worked off-the-shelf and provided rapid 
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results. If the data sets grow larger, more complex and noisier, basic ANN models can be 

tested. For further tuning, the variety of neural network architectures provide all means of 

hyperparameter control and abstraction rate. However, the first aim here was a robust ANN 

that can achieve a correct classification based only on sequencing-derived data. OTUs, or in 

this case, clusters, inherit a vast amount of functions, and their predictive ability is therefore 

limited to specific scenarios and environments. This can be leveraged by using available 16S 

rRNA gene amplicon data sets, e.g., from the Baltic Sea with known meta data. ANNs could 

be trained on these data as “standard”, and if a new sample is not classified as “standard”, it 

should be investigated to identify the reason for the deviation. The monitoring would not only 

help to survey the environmental state of the Baltic Sea but would also serve as a steadily 

growing data resource. It was just demonstrated herein that the knowledge about degradation 

abilities of isolates is sparse relative to the number of strains and pollutants. This data resource 

would support the identification of taxa linked to a contamination. Since taxonomic resolution 

achieved by amplicon sequencing is limited, whereas functions can be strain-specific, the next 

logical step is to use data from metagenomic and metatranscriptomic sequencing. This would 

complete the efforts undergone by He et al. (2018) based on microarray data but still include 

the phylogenetic and taxonomic dimensions. With a function- versus phylogeny-targeted 

approach, the features would be the abundance of genes or their transcripts. The general 

principle was already demonstrated by Lin et al. (2017) who, employing a CNN, improved the 

assignment of single-cell RNAseq reads to their cell types of origin. Although our suggested 

approach would necessitate more training data, the approach is feasible, as sequencing costs 

are decreasing, and many suited data sets for training, validation and testing are publicly 

available. It must be stated, that the herein discussed models are based on microcosm data, 

which intrinsically is an abstraction with regard to the environmental situation. However, this 

use of microcosm data allowed us to isolate the influence of glyphosate on a microbial 

community. To transfer a supervised machine learning approach to environmental monitoring, 

the training data set must be sufficient to explain or at least correlate observed changes in the 

microbial communities with the vast spectrum of variables such as salinity, temperature, 

nutrient concentrations, pH, anthropogenic influences and so on. Machine learning offers the 

ability to detect links between features that otherwise might have gone unrecognized, but the 

demand for contextual data is even more essential to utilize such models. There are numerous 

fields of application for our findings and include the monitoring of specific events by classifying 

(e.g., contamination events or algal blooms), as well as more generally fitting microbial 

community compositions via regressions (e.g., a salinity, temperature or temporal gradients) 

and describing a set of indicative organisms for a given classification. Supplementary data to 

this article can be found online at https:// doi.org/10.1016/j.marpolbul.2019.110530  
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Chapter II 

A glyphosate pulse to brackish long-term microcosms has a greater impact on the 

microbial diversity and abundance of planktonic than of biofilm assemblages 
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Abstract 

The widespread herbicide glyphosate has been detected in aquatic coastal zones of the 

southern Baltic Sea. We monitored community dynamics in glyphosate-impacted chemostats 

for 20 weeks to evaluate the potential impact of the herbicide on free-living and biofilm-

associated bacterial community assemblages in a brackish ecosystem. A HPLC-MS/MS 

method was developed to measure glyphosate, aminomethylphosphonic acid and sarcosine 

concentrations within a brackish matrix. These concentrations were analyzed weekly, together 

with prokaryotic succession, determined by total cell counts and next generation 16S rRNA 

(gene) amplicon sequencing. Shotgun metagenomics provided insights into the glyphosate 

degradation potential of the microbial communities. Temporal increases in total cell counts, 

bacterial diversity and the abundances of distinct bacterial operational taxonomic units were 

identified in the water column. Biofilm communities proved to be less affected than pelagic 

ones, but their responses were of longer duration. The increase of glyphosate oxidoreductase 

(gox) and thiO gene as well as the phn operon abundance indicated glyphosate degradation 

by first the aminomethylphosphonic acid pathway and possibly a subsequent cleavage of the 

C-P bond. However, although glyphosate concentrations were reduced by 99 %, 1 μM of the 

herbicide remained until the end of the experiment. Thus, when present at low concentrations, 

glyphosate may evade bacterial degradation and persist in Baltic Sea waters. 
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2.1 Introduction 

Microorganisms are ubiquitous on Earth and respond rapidly to environmental changes. The 

majority of microorganisms live within biofilms, which promote high cell abundances and 

activities (Costerton et al., 1995). In mature biofilms, extracellular polymeric substances 

produced by resident species give rise to a distinct three dimensional structure. That way 

microorganisms are protected from disturbances that for planktonic cells or even higher 

organisms induce toxicity and other forms of stress (Davey and O’Toole, 2000; Reese et al., 

2016). However, biofilms are not completely invulnerable (Qu et al., 2017), as evidenced by 

changes in their assemblages in response to a wide range of disturbances. 

A potential environmental stressor is glyphosate, which has been in use since the 1970s. 

Following assessments demonstrating its relatively low environmental toxicity, it has become 

the most widely produced and sold herbicide worldwide. However, as a synthetic combination 

of glycine and a phosphate residue, coupled to form a stable phosphonate, glyphosate 

provides carbon (C), nitrogen (N), and phosphorus (P) for bacteria and fungi (Lipok et al., 2007; 

Duke and Powles, 2008). Two major routes of glyphosate biodegradation have been described 

according to their first respective intermediate: the sarcosine pathway and the 

aminomethylphosphonic acid (AMPA) pathway, encoded mainly by the phn operon and the 

glyphosate oxidoreductase (gox) gene, respectively. The phn operon encodes a C-P lyase, 

whose activity makes the P component of phosphonate bioavailable. In the AMPA pathway, 

glyphosate is cleaved at the C-N bond, resulting in AMPA and glyoxylate. An alternative 

pathway to yield AMPA from glyphosate was discovered with the enzyme glycine oxidase 

encoded by thiO. However, this enzyme possesses an unspecific Km of 87 mM for glyphosate, 

compared to 0.6 mM for glycine (Pedotti et al., 2009). 

Glyphosate has been detected in marine and freshwater systems (Van Bruggen et al., 2018; 

Carles et al., 2019), representing a disturbance to microbial communities at concentrations 

upwards of 5.92 nM (Stachowski-Haberkorn et al., 2008). Moreover, its dissipation is enhanced 

by biofilms, probably due to their adsorption capacities (Klátyik et al., 2017). The presence of 

glyphosate in the brackish Baltic Sea from agricultural runoff has been reported (Skeff et al., 

2015), but the effects of the herbicide on its ecosystems are as yet unknown. The Baltic Sea 

is known for elevated contamination levels and monitoring of the environmental state is 

mandatory (HELCOM, 2018). Thus, the aim of this study was to investigate the impact of 

glyphosate on the state and succession of bacterial community assemblages in a Baltic-Sea-

like environment. Potential effects were compared between free-living and biofilm 

communities, as biofilm communities are expected to be more resilient. Furthermore, the 

potential for and means of biodegradation, as well as the possibly involved OTUs, were 

analyzed to evaluate the fate of glyphosate entering the Baltic Sea. 
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2.2 Material and methods 

2.2.1 Experimental setup 

2.2.1.1 Microcosm experiment 

The experiment was conducted in two 12 L (20 × 30 × 20 cm) microcosms (Rebie Aquaristik, 

Bielefeld, Germany) made of float glass plates sealed with silicone glue. The microcosms were 

filled with 2 kg of combusted quartz sand as hard substrate, 8 L artificial brackish water (ABW) 

amended with casamino acids as liquid medium (modified after Bruns et al. (2002) and 

combusted GF/F microfiber filters (Ø 47 mm, Whatman, Little Chalfont, United Kingdom) as 

collectible, inert biofilm substrate. An air pump aerated and mixed the system continuously. 

The microcosms were incubated with a Baltic Sea-derived inoculum and the 140-day 

experiment started with an equilibration period from day −69 until day 0 to allow biofilm to form 

and mature. On day −31 the system switched from batch to continuous cultivation mode with 

an average efflux rate of 475–489 mL⋅d–1. During the whole period microbial succession in 

both microcosms was monitored. On day 0, a sterile-filtrated glyphosate solution (final 

concentration of 82.45 μM; Dr. Ehrenstorfer, Augsburg, Germany) was syringe-injected into 

the water column of the treatment microcosm and dispersed throughout by manual stirring. 

Monitoring went on until day +71. For further details on experimental procedures see Janßen 

et al. (2019). 

2.2.1.2 Prevention of glyphosate adsorption to abiotic surfaces 

Glyphosate can adsorb to glass or sediment surfaces (Bergström et al., 2011; Huang and 

Zhang, 2011) and might also adhere to biofilms. Adsorption may affect not only glyphosate 

degradation in the liquid phase but also act as a glyphosate reservoir during incubations. 

However, a surface adsorption test performed prior to the start of our experiment showed 

stable glyphosate concentrations in the water column of the glyphosate-containing microcosms 

(Supplementary Material 2.1). 

2.2.2 Sampling procedure 

Five-mL water samples for glyphosate, AMPA, sarcosine/L-alanine and nutrient analyses were 

stored at −20°C without further treatment. For nucleic acid extraction and subsequent next-

generation sequencing (NGS) of planktonic cells, 100 mL of water was filtered through 0.22-

μM GVWP filters in three replicates. For the analysis of biofilm communities, three overgrown 

GF/F filters were selected with sterile tweezers. The total data set consisted of 287 samples, 

with water samples covering 16 time points (days −25, −7, 0, +3, +7, +10, +14, +17, +22, +29, 

+36, +43, +50, +57, +64, +71) and biofilm filters eight time points (days −7, 0, +7, +17, +29, 

+43, +57, +71). Detailed meta-information describing the samples is provided in 

Supplementary Material 2.2. The filters were shock frozen in liquid nitrogen and stored at 

−80°C until their use for DNA/RNA extractions. Planktonic cell counts were determined in 1-
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mL water samples fixed with 1/10 v⋅v–1 formol (37 %, sterile filtered, Rotipuran p.a. ACS, Carl 

Roth GmbH, Karlsruhe, Germany), incubated for at least 2 h at room temperature or overnight 

at 4°C and processed within 24 h. For C and N analyses, 100 mL of water was collected on 

day +71. 

2.2.3 Determination of total cell counts 

Water column cell counts were determined by 4′,6-diamidino-2-phenylindole (DAPI; Applichem 

GmbH, Darmstadt, Germany) staining according to Porter and Feig (1980). To ensure that 

cells on the filter surfaces were evenly distributed, the cells on the filter were diluted, if 

necessary, using sterile ABW. The cells obtained by filtering 50–500 μL of water on a 

Cyclopore filter (PC BLK, 25 mm, 0.2 μm, Whatman, Maidstone, United Kingdom) were stained 

with 10 mg DAPI⋅L–1 for 3 min and embedded using AF1 (Citifluor Ltd, London, United 

Kingdom) and Vectashield (H 1000, Vector Laboratories, Burlington, CA, United States) at a 

7:1 ratio. Total cell counts were determined in triplicate samples using an Axio Lab. A1 

equipped with a N-Achroplan 100x oil dispersion objective (both Carl Zeiss AG, Göttingen, 

Germany). Twenty small quadrats were counted in 25 different fields of view per filter. 

2.2.4 Significance testing applied to total cell counts 

To test for a statistically significant change in total cell counts after the addition of glyphosate, 

the cell counts prior to (days −7 to +3) and after (days +28 to +36) the cell number increase 

were combined and compared with the counts from days in which cell numbers increased 

(days +7 to +22). A second comparison was performed between treatment and control 

microcosms for the cell counts from day +7 to +22 only. Total cell counts were analyzed in 

triplicate samples using a two tailed t-test for two heteroscedastic samples. Significant changes 

(p < 0.05) are marked with * in Figure 2.1A. 

2.2.5 Nutrient analysis 

To understand the nutritional relevance of glyphosate, particulate organic nitrogen and carbon 

(POC/PON) concentrations were analyzed using an vario Micro element analyzer (Elementar 

Analysensysteme GmbH, Langenselbold, Germany), and dissolved organic carbon and 

nitrogen (DOC/DON) concentrations using a Shimadzu TOC-V + TNM1 analyzer (Duisburg, 

Germany). Dissolved inorganic phosphorus (DIP) was measured following the method of 

Grasshoff et al. (1999). 

2.2.6 Glyphosate and AMPA analysis 

Glyphosate and AMPA analyses followed the procedure of Skeff et al. (2015, 2016). Internal 

standards of glyphosate (1-2-13C2 15N glyphosate) and AMPA (13C 15N AMPA) were prepared 

in the same sample matrices and added to the samples. The samples were adjusted to pH 9 

by the addition of 100 μL of borate buffer and then derivatized by treatment with 100 μL of 

19.8 mM FMOC-Cl in acetonitrile. After 4 h of incubation at 21°C, the derivatized samples were 
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filtered through a 0.45-μm Phenex-RC 15-mm syringe filter and subjected to LC–MS/MS. The 

target compounds were analyzed using an Accela HPLC system connected to a TSQ Vantage 

triple quadrupole mass analyzer with a heated electrospray ionization source interface. 

Chromatographic reversed-phase separation was achieved on a Gemini-NX C18 column 

coupled to a Gemini-NX Security Guard cartridge. The samples were eluted gradually from the 

column with (a) a 2 mM ammonium hydrogen carbonate buffer and ammonia solution (32 %, 

v⋅v–1) at pH 9 and (b) acetonitrile. Before the analysis, the instrument was calibrated for the 

target substances using the same sample matrices. Each compound, including the internal 

standard, was scanned for two transitions in selected reaction monitoring mode. The most 

abundant transition was used for quantification and the other transition for confirmation. 

Additional measurements for AMPA and sarcosine were carried out after an initial evaluation 

of the data. The applied method generally followed the procedure described above, with the 

following differences: After derivatization of the samples, 1 mL of dichloromethane was added 

to the mixture to extract the remaining FMOC-Cl. Samples were shaken and then centrifuged 

for 10 min at 1000 rpm. The supernatant was removed and transferred into a vial for analysis. 

Chromatographic separation and mass spectrometric detection was carried out as described 

above, but with a LC-2040C Nexera-I and a triple quadrupole mass spectrometer LCMS-8060 

as also described in Wirth et al. (2019). Compounds were detected through SRM events, as 

described above. Sarcosine has the same MS fragments and retention time as L-alanine, since 

the two compounds are isomers. Thus, they could not be differentiated with the utilized method. 

To acquire evidence for the presence or absence of sarcosine in the samples, comparative 

measurements between samples from both microcosms were conducted, since the L-alanine 

concentration should be identical. 

2.2.7 Nucleic acid extraction and sequencing 

The kit-based extraction of nucleic acids from free-living bacteria and subsequent DNAse 

digestion of the RNA extracts were performed according to Bennke et al. (2018). Biofilm 

samples were extracted using the phenol-chloroform method described in Weinbauer et al. 

(2002). cDNA synthesis was performed using 20 ng of DNA-free total RNA as the input for the 

MultiScribe (Fisher Scientific GmbH, Germany) reverse transcriptase system using the reverse 

primer 1492r (5′ TACGGYTACCTTGTTACGACTT, Lane, 1991). Illumina amplicon 

sequencing was prepared as described in Bennke et al. (2018). The V3-V4 region of the 16S 

rRNA gene was targeted using the primer set 341f-805r (forward: 

CCTACGGGNGGCWGCAG, reverse: GACTACHVGGGTATCTAATCC, (Herlemann et al., 

2011)). Indexed amplicon libraries were pooled to a concentration of 4 μM. The PhiX control 

was spiked into the library pools at a concentration of 10 %. Each final library pool (4 pM) was 

subjected to one of three consecutive individual paired-end sequencing runs using 600 cycle 

V3 chemistry kits on an Illumina MiSeq. 
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2.2.8 Bioinformatic and statistical analysis of the amplicon data 

Amplicon read processing and annotation were conducted using Mothur v. 1.39.5 (Schloss et 

al., 2009). Sequences were combined in a pre-cluster step if there were less than 2 

mismatches. Chimeras were removed using VSEARCH (Rognes et al., 2016). OTUs were 

picked based on a 98 % similarity threshold. When counting the number of OTUs, singletons 

were ignored, but not removed from the data set. OTUs were only removed where mentioned 

and all parameters are deposited in the Github repository listed in the data availability 

statement. 

The operational taxonomic unit (OTU) and taxonomy table were imported into R v. 3.5.1 (R 

Core Team, 2018) and analyzed using phyloseq v. 1.26.0 (McMurdie and Holmes, 2013), 

ggplot2 v. 3.1.0 (Wickham, 2016) and DESeq2 v. 1.22.1 (Love et al., 2014). Taxonomic 

annotation of the data presented herein was accomplished using the Silva release 132 (Yilmaz 

et al., 2014), including the taxonomic changes proposed by Parks et al. (2018). 

Basic information on the amplicon sequencing-based approaches is provided in 

Supplementary Material 2.3, including the MiSeq run statistics, sequencing depth and average 

sequence length in the 16S complementary rRNA and 16S rRNA gene libraries. 

The composition of the microbial communities was plotted enforcing a relative abundance cut-

off value of 0.15 % at order level to reduce the legend size. To identify OTUs whose abundance 

changed after glyphosate addition, unfiltered 16S rRNA gene and 16S rRNA OTU tables were 

used separately as input for DESeq2, as suggested by (McMurdie and Holmes, 2014). DESeq2 

performed the Wald test on two time points (in three technical replicates) before glyphosate 

addition versus five time points directly thereafter. For the less-frequent biofilm sampling, the 

time span was the same, resulting in comparisons of two time points before versus two time 

points immediately after glyphosate addition. The abundances of selected OTUs were plotted. 

The relative abundances of the OTUs in treatment and control microcosms were compared 

manually to identify those OTUs that responded to glyphosate. 

The similarity of microbial communities was visualized in non-metric multidimensional scaling 

(NMDS) analyses based on Bray–Curtis dissimilarities. Relative abundances were used as 

input, square-root-transformed and Wisconsin double-standardized. The ordination with the 

lowest stress was determined based on 100 runs. OTUs with at least three reads were 

included. OTU tables for the Chao1 richness estimate and Shannon index included singletons. 

A t-test was applied to analyze the significance of a change in α-diversity after glyphosate 

addition and was performed for all sample subsets from day −22 to day 0 vs. day +3 to day 

+17. 
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To include the concentration of glyphosate into the ordination, canonical correspondence 

analysis (CCA) and redundancy analysis (RDA) were performed within phyloseq using its 

ordinate function. The input data was as described for NMDS and glyphosate concentration 

was the constraint. The resulting plots are shown in Supplementary Material 2.4. 

2.2.9 Metagenomic analysis 

For metagenomic analyses, technical replicates of DNA extracts were pooled. Metagenomic 

reads of seven treatment and three control microcosm water-column samples were generated 

by a full run on an Illumina Nextseq500 (LGC Genomics GmbH, Berlin, Germany). Reads were 

quality checked using FastQC v. 0.11.71 and trimmed with Trimmomatic v. 0.38 (Bolger et al., 

2014). The individual samples were merged and co-assembled using MEGAHIT v. 1.1.3 (Li et 

al., 2016) with the k-mer list 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 

89, 93, 97, and 99. The genes were predicted and functionally annotated using Prokka v. 

1.13.0 (Seemann, 2014). For gene quantification, the reads of the individual samples were 

mapped on the assembled contigs using Kallisto v. 0.44.0 (Bray et al., 2016). 

2.2.10 Functional tree calculation 

Correlations between the abundances of OTUs and glyphosate degradation genes were 

identified. Protein sequences of organisms related to the OTUs identified in this study were 

downloaded from UniProt (Bateman et al., 2017). The corresponding genes identified in the 

assembled metagenome were translated and added to this sequence set. After the removal of 

exact duplicates using CD-Hit auxtools v.4.6.8 (Fu et al., 2012), a multiple sequence alignment 

was built using Mafft v. 7.407 (Katoh and Standley, 2013). A phylogenetic tree was calculated 

using RAxML v. 8.2.12 (Stamatakis, 2014), with “PROTCATAUTO” as the amino acid 

substitution model, and plotted together with the respective abundances using R package 

ggtree v. 1.8.2 (Yu et al., 2018). This workflow was implemented in Nextflow v. 18.10.1 (Di 

Tommaso et al., 2017). 

No gox genes were annotated in the metagenomes. Instead, a sequence-based approach was 

used: reference sequences of gox were downloaded from UniProt and GenBank to create a 

DIAMOND database (v. 0.9; Buchfink et al., 2015). The metagenomic sequences were blasted 

against the DIAMOND database (e-value of 1E–8, sequence identity ≥ 40 %, query 

coverage ≥ 70 %) and eventually phylogenetic trees with the corresponding abundance were 

plotted as described above. 

2.3 Results 

2.3.1 Total cell counts, glyphosate and AMPA concentrations and nutrients 

Total cell counts in the water column were in the range of 2–4 × 107 cells⋅mL–1 both in the 

treatment and control water samples (Figure 2.1A). Following glyphosate addition, they  
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Figure 2.1: Total cell counts (A) and glyphosate and AMPA (B) concentrations in the water column of the 
microcosms. A: Total cell counts after glyphosate addition at day 0 increased significantly (*) compared to cell 
numbers before and later after herbicide addition (p < 0.001) and to the cell counts of the control microcosms during 
the same time period (p < 0.001). B: On day 0, the concentration was measured before and after glyphosate 
addition, AMPA was already present in the first sample takes 4 h afterwards, though not at its highest concentration. 
The decrease in the calculated glyphosate concentration was slower than the measured values. Note the different 
scales for glyphosate and AMPA and that at the end of the experiment glyphosate persisted at a concentration > 1 
µM. 
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increased significantly, up to 7 × 107 cells⋅mL–1, and remained elevated over the following 14-

day period, during which the decrease in glyphosate was the strongest (Figure 2.1B). Based 

on the chemostat’s volume and flow rate, the theoretical glyphosate concentration after 

approximately 60 days of incubation was close to zero. With a starting glyphosate 

concentration of 82.45 μM at day 0, the measured glyphosate concentrations, especially within 

the first two weeks of incubation, were 18–24 μM lower than the theoretical values. The results 

of the adsorption test (Supplementary Material 2.1) suggested that glyphosate was neither 

incorporated into biofilms nor adsorbed onto surfaces under our experimental conditions. After 

71 days, glyphosate concentrations were reduced by 99 %. AMPA was detected as soon as 

4 h after addition in the first sample. 3 days later AMPA concentrations ranged from 0.27 μM 

to below the detection limit (LOD) by day +64 and +71. The highest ratio of AMPA to glyphosate 

was 1.35 % on day +29. Peaks representing the isomers sarcosine and L-alanine could also 

be detected but were not reliably quantifiable, as their concentration (−0.017 to 0.016 μM) was 

close to the LOD. The peaks were present in both microcosms, before and after the addition 

of glyphosate. 

The DIP concentration on day −69 was 15 μM, and on day 0 before and after glyphosate 

addition 23.3 and 24 μM, respectively. On day +71, at the end of the experiment, it declined to 

16 μM. DOC and DN concentrations in the microcosms on day +71 were 80,000 and 20,000 

μM, respectively. The resulting DOC:DN:DIP ratios were 238:56:1 for 24 μM DIP and 380:90:1 

for 15 μM DIP. 

2.3.2 16S rRNA and rRNA gene based community compositions 

Among the 12,852 OTUs with more than one read, 10,692 originated from the water column. 

Two thousand nine hundred and three OTUs stem from the biofilm and 743 OTUs were present 

in both habitats. Planktonic 16S rRNA was roughly twice as rich in OTUs as either the 

planktonic 16S rRNA genes or the biofilm communities (Supplementary Material 2.2). Based 

on the number of reads, free-living (Figure 2.2) and biofilm (Supplementary Material 2.5) 

microbial community assemblages consisted almost exclusively of Proteobacteria, mainly 

Alpha- and Gammaproteobacteria. After the glyphosate pulse Alphaproteobacteria eventually 

comprised > 90 % of the bacterial assemblages in the treatment microcosm. Therein, 

Rhizobiales and Rhodospirillales represented large and increasing portions thereof.  
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Figure 2.2: Relative planktonic community composition in the treatment and control microcosms based on 16S 
rRNA gene and 16S rRNA abundances. Taxa were cumulated on the order level, sorted by class. α = 
Alphaproteobacteria, γ = Gammaproteobacteria. All orders with a relative abundance > 0.15 % are displayed. 
Glyphosate addition is indicated by a vertical dashed line. Notice the dominance of Proteobacteria and the overall 
increase of planktonic Alphaproteobacteria. 

Unclassified Rhizobiales OTU 1 was the most abundant OTU, up to 84 % in the biofilm 16S 

rRNA (Supplementary Material 2.6). However, Pseudomonas OTU 7 reads (Supplementary 

Material 2.6) represented up to 25 % of the 16S rRNA community in the water column of the 

treatment microcosm. Pseudomonas OTU 7 increased in abundance after the glyphosate 

pulse together with Alteromonadales, which includes the genus Gallaecimonas. In total, the 

OTUs covered > 320 genera, with 280 genera represented by 1–10 OTUs each. Ten very 

abundant genera, including Hoeflea, Ferrovibrio and undistinguished taxa (e.g., “unclassified” 

or “uncultured”), were represented by 100–318 OTUs. Based on a 0.01 % relative abundance 

threshold, the biofilm community consisted of 90 genera and the water column community of 

75 genera, with 59 shared genera (Supplementary Material 2.2). The diversity of members of 

the Gammaproteobacteria was evidenced by the finding that 10,088 of the 12,852 OTUs 

belonged to Pseudomonas, although > 98 % of them were present at abundances of < 0.01 %. 

2.3.3 NMDS ordination 

Overall changes in 16S rRNA and 16S rRNA gene OTU composition were visualized via 

NMDS. Both 16S rRNA genes and 16S rRNA based assemblages were mainly arranged along 

the NMDS 2 axis, thus correlating with the sampling time (Figure 2.3). Samples from treatment 

and control microcosms were clearly separated. The PERMANOVA yielded p-values of 

< 0.001, with no significant differences in the dispersion of the control vs. the treatment groups 
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for all subsets. In general, the water column samples from the treatment microcosms were 

more similar along NMDS 2 than were the control microcosms. Water column 16S rRNA gene 

(stress 0.113) and 16S rRNA (stress 0.102) based community compositions produced similar 

ordinations. However, the 16S rRNA gene data formed two main clusters that were separated 

by the glyphosate pulse (day 0 vs. day +3). As long as glyphosate concentrations exceeded 

5.92 μM (day +3 to day +22), the free-living community composition in the treatment microcosm 

formed a subcluster (red polygons in Figure 2.3). These observations also applied to the 16S 

rRNA data but the differences were less distinctive. 

 
Figure 2.3: NMDS ordination plots based on the Bray-Curtis dissimilarity of the square-root-transformed and 
Wisconsin double-standardized 16S rRNA gene and 16S rRNA based community composition in the biofilms and 
water column. The axis direction for the biofilm ordinations was reversed to correspond to the pelagic orientation. 
The numbers refer to the sampling day; glyphosate was added before day 3. Technical replicates are connected by 
a polygon colored according to the measured glyphosate concentration. 

Based on 16S rRNA gene data from the biofilm (stress 0.042), all communities remained 

stable. Biofilm community succession was generally less pronounced than that of planktonic 

communities, while control and treatment assemblages spanned a similar distance on NMDS2. 



Chapter II   80 

 

In contrast to the control samples, the overall biofilm 16S rRNA (stress 0.072) communities 

before and after glyphosate addition (days −7 to +7) formed distinguishable clusters. 

2.3.4 Alpha diversity measures 

The Shannon index was statistically assessed to test the impact of glyphosate on community 

diversity. Samples were grouped before and after day 0. For planktonic samples, the trend in 

the diversity of control microcosm communities was toward lower indices whereas in the 

treatment microcosm diversity increased temporarily after glyphosate addition, from a 

Shannon index of about 2.2 to > 2.5 (Figure 2.4). This development was again more 

pronounced for the 16S rRNA gene data, in which a significantly higher estimated richness 

(Chao1) after the pulse was also evident. 

 
Figure 2.4: The change in α-diversity (Shannon index) of the free-living and biofilm communities according to the 
16S rRNA gene and 16S rRNA data from the treatment and control microcosms. The vertical dashed line indicates 
the time of glyphosate addition. Samples obtained between the start of the experiment and day 0 (group 1) and 
from day +3 to day +17 (group 2) were compared in a t-test. The increase in the diversity of the free-living 
communities was significant. 

By contrast, the Shannon index of the biofilm community samples decreased after day 0 

regardless of the treatment, from approximately 2.7–2.3 (16S rRNA gene) and from 1.8–1.2 

(16S rRNA), hence displaying a uniform mode of succession. A decrease in the diversity of the 
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planktonic control communities was also observed. Shannon indices between sample groups 

before and after day 0 were significant, ranging from a p-value of 1.04⋅10–7 for changes in the 

16S rRNA gene of the treated planktonic samples to 0.03 for changes in the control 16S rRNA 

of the biofilm (Supplementary Material 2.7). 

2.3.5 OTUs increasing in abundance after glyphosate treatment 

The succession in planktonic and biofilm community composition was analyzed based on the 

relative OTU abundances that increased significantly after glyphosate addition. The analysis 

identified 24 OTUs, assigned to seventeen genera, that responded to glyphosate in the water 

column; three more OTUs originated from biofilms (Table 2.1, detailed statistics are provided 

in Supplementary Material 2.8). Distinctive positive responses were determined for OTUs of 

three Gallaecimonas spp. (Figure 2.5 and Supplementary Material 2.6, OTU 109/129),  

 
Figure 2.5: Changes in the relative abundance of Gallaecimonas OTU 11 in the treatment and control microcosms 
over time as determined by 16S rRNA gene and rRNA amplicon analyses. The vertical dashed line indicates the 
time of glyphosate addition. There was no evidence of an impact of glyphosate on the biofilms whereas planktonic 
abundance responded rapidly based on 16S rRNA gene and 16S rRNA abundances. 

Methylotenera spp., Hyphomonas spp. and Parvibaculum spp., with both 16S rRNA and rRNA 

gene abundances increasing immediately after glyphosate addition (Supplementary Material 

2.6, OTU 44/25/46). In agreement with the results reported above, the corresponding biofilm 

abundances for these OTUs remained stable.The genus Pseudomonas accounted for most of 

the overall diversity within the microcosms, with variable responses by individual 

Pseudomonas OTUs to glyphosate addition. Thus, while  



Chapter II   82 

 

Table 2.1: Differentially abundant OTUs in the treatment microcosms after the addition of glyphosate. OTU 
abundance before and after glyphosate addition were first tested using the Wald test for Benjamini-Hochberg 
corrected p-values < 0.01. From this selection, 24 OTUs in the water column and 3 in the biofilm were then identified 
as potentially glyphosate-responsive based on a visual comparison with the corresponding OTUs in the control 
microcosm. 

 

2.3.6 Duration of the detected signals 

The detected microbial signals representative of free-living and biofilm communities after the 

glyphosate pulse differed in length and intensity. Total cell counts in the water column 
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increased significantly from day +7 to day +22, whereupon the glyphosate concentration 

remained ≤ 4.4 μM and AMPA < 0.1 μM. The Shannon index increased significantly from day 

+3 to day +17 for both the 16S rRNA and 16S rRNA gene based planktonic communities. The 

clusters in the NMDS of the 16S rRNA gene (except for one technical replicate) and 16S rRNA 

data from free-living bacteria indicated that the community composition from day +3 to +22 

(Figure 2.3; red polygons) was more similar among these samples than in subsequent 

samples. The relative abundances of the responding planktonic OTUs generally increased 

from day +3 to day +22. Some of the detected planktonic OTUs retained elevated abundances 

for a longer period, until day 64, such as several Pseudomonas OTUs. However, this behavior 

was commonly observed for biofilm OTUs, and specifically for Brevundimonas OTU 42, 

Defluviimonas OTU 98 and Pseudolabrys OTU 38 (Supplementary Material 2.6). The increase 

in abundance began gradually and was first detected typically after day +7, but it continued 

until the end of the experiment. For these biofilm OTUs, the continuously high abundances 

were accompanied by corresponding changes in planktonic abundances. Thus, biofilm 

reactions were maintained whereas most planktonic reactions ended on day +22, when the 

glyphosate concentration was 12.7 μM. 

2.3.7 Distribution of glyphosate degradation genes in metagenomic samples 

Metagenomes of free-living microbial communities were analyzed to gain insights into 

glyphosate-related bacterial functions. All relevant glyphosate-degradation genes gox, thiO 

and phnC-P were detected. The phn operon might be involved in metabolization at two steps, 

either degrading glyphosate to sarcosine or cleaving the C-P bond in AMPA. Identifying the 

responsible pathway, if not all of them, was required. For the sarcosine pathway, whether a 

particular phn operon enables glyphosate degradation at all depends on the encoded substrate 

specificity. Therefore, we screened for sequence clusters that became more abundant after 

glyphosate addition, as these may also have contained sequence motifs typical of glyphosate 

degradation. An example is the phnJ gene, which codes for an essential protein within the C-

P lyase multienzyme core complex. Nonetheless, in samples from the treatment microcosm, 

the abundance profiles proved to be complex even for closely related sequences of phnJ genes 

(Figure 2.6). Based on phylogenetic analyses, phnJ genes similar to that of the 

alphaproteobacteria Yoonia vestfoldensis spp. (formerly Loktanella vestfoldensis, UniProtKB: 

A0A1Y0ECC7) were most abundant on day +14, when the total cell count reached a peak. 

This development was similar for the phnJ sequences of Ruegeria pomeroyi strain ATCC 

700808 (UniProtKB: Q5LW71), Rhizobium meliloti strain 1021 (UniProtKB: Q52987) and 

Agrobacterium radiobacter strain ATCC BAA-868 (UniProtKB: B9J6Q8). Moreover, phnJ 

sequence reads correlated with the abundance of 16S rRNA gene OTUs, such as those of 

Yoonia spp., based on the taxonomy of the reference genes (Supplementary Material 2.6, OTU 

59). 
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Figure 2.6: Multiple sequence alignment of protein fasta sequences of the phnJ gene (A) from the free-living 

treatment metagenomes. As a reference, the tree contains sequences from cultivated organisms related to the 
differentially abundant OTUs detected in this experiment. Taxonomy is presented according to UniProt. The heat 
map shows the abundance of a given phnJ gene relative to the other samples over time. Four groups are labeled, 
the first two consisting exclusively of Alphaproteobacteria and Gammaproteobacteria, respectively. 

From the 29 phnJ genes annotated in the treatment microcosm, four main groups could be 

recognized. Based on the embedded reference genes from known organisms, the largest 

group consisted solely of the alphaproteobacterial phnJ sequences grouping with sixteen 

genes from the metagenomes. Alphaproteobacteria were by far the most abundant class 

inhabiting the microcosms. The second group solely contained gammaproteobacterial 

reference genes and six metagenomic genes. For the first two groups, phylogenetic 

relationships based on the 16S rRNA gene were similar to the clustering of the phnJ 

sequences, as highlighted by the subgroup of sequences from Enterobacter cloacae ssp. 

cloacae strain ATCC 13047 (UniProtKB: A0A0H3CFJ4) and Escherichia coli K12 (UniProtKB: 

P16688). Groups 3 and 4 gathered phnJ sequences from several less-related organisms. Also 
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in these groups multiple phnJ sequences were those of the alphaproteobacteria Yoonia 

vestfoldensis spp. and were encountered in the first, third and fourth group. In the latter two 

groups, there was a low similarity with their closest relatives, which even included the 

cyanobacterium Nostoc sp. strain PCC 7120. Interestingly, the highly diverse genus 

Pseudomonas was represented by only three sequences; these were most closely related to 

phnJ from P. fluorescens strain SBW25 (UniProtKB: C3K5L9). Comparable results, i.e., 

varying numbers of Pseudomonas-related genes (data not shown), were achieved for other 

phn and the sarcosine oxidase (sox) genes. 

 
Figure 2.7: Multiple sequence alignment of protein fasta sequences of the gox and dadA genes deposited in UniProt 
and GenBank clustered separately with the metagenomic sequences more related to gox. The purple ellipse marks 
sequences similar to those of the genus Hoeflea. 

The gox gene was not identified by Prokka in the metagenomes. A manually conducted 

comparison, however, detected thirteen closely related sequences which were annotated by 

Prokka as dadA (D-amino acid dehydrogenase), but instead appear to be more closely related 

to gox genes. The reference gox genes create a distinct group (UniProtKB: D2KI28, 
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A0A142MF04, D4NZ76, D4NZ75; GenBank: ATE50174.1, ADV58259.1), whereas the 

metagenomic sequences are distinguished from this group (Figure 2.7). When challenged, the 

annotation of these sequences, by adding the Prokka-referenced dadA sequences 

(UniProtKB: P0A6J5, Q9HTQ0, A3KEZ1), the metagenomic sequences were indeed more 

similar to gox genes. The abundance of the potential gox sequences gox_1, 3, 5, 12, and 13 

converged with the total cell counts peak. Due to the separate clustering of the reference 

sequences, the taxonomic inference remains unknown. However, a basic online BLASTp 

analysis assigned gox_10, 11 and 12 (Figure 2.7, purple ellipse) to FAD-binding 

oxidoreductase from Hoeflea marina (UniProtKB: A0A317PMM8) and Hoeflea sp. BRH c9 

(UniProtKB: A0A0F2P8D1) with a query coverage of 100 % and an identity > 88 %. 

 
Figure 2.8: Multiple sequence alignment of protein fasta sequences of the thiO gene could be different between the 
same or closely related organisms such as Yoonia vestfoldensis or Pseudomonas. The presence of thiO genes 
over all sampled time points was less comprehensive compared to gox and phnJ genes. 

thiO sequences were detected 28 times (Figure 2.8) with no clear taxonomic separation based 

on the positioning of the reference sequences. Three sequences were most abundant at day 
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+14 in time with the cell counts peak (thiO_9, 12, 19) with thiO_19 being somewhat related to 

Yoonia vestfoldensis (UniProtKB: A0A1Y0E718). thiO_1 to 9 grouped with Pseudomonas 

aeruginosa ATCC 15692 (UniProtKB: G8PX29). Betaproteobacteria clustered together 

(Cupriavidus, UniProtKB: Q0KF33, G0ETC1, A0A1K0I947 and Burkholderia, UniProtKB: 

A0A0H3HPX7), although alphabacterial sequences were also similar. Interestingly, Yoonia 

vestfoldensis (UniProtKB: A0A1Y0EFI8, A0A1Y0E718) and Pseudomonas (UniProtKB: 

P33642, G8PX29) harbored dissimilar thiO sequences, which might be obtained by horizontal 

gene transfer. 

2.4 Discussion 

2.4.1 Potential impacts of glyphosate on a brackish microbial ecosystem 

A glyphosate incubation experiment with a brackish water community was conducted to 

investigate the impact of glyphosate on free-living and biofilm microbial assemblages. 

Following the glyphosate pulse, changes in community composition and increases in total cell 

counts, α-diversity and the abundances of specific 16S rRNA (gene) OTUs were detected in 

the water column. By contrast, with a few exceptions, the biofilm, which was 69 days old when 

glyphosate was added, remained undisturbed. Other studies have also shown that organisms 

embedded in a biofilm are less responsive to disturbances in the surrounding medium (Davey 

and O’Toole, 2000; Tlili et al., 2011). Similarly, in this study, compared to the water column, 

fewer OTUs in the biofilm were affected by glyphosate. A smaller impact of glyphosate on 

freshwater biofilms, and especially on phototrophic organisms, was previously reported. 

Khadra et al. (2018) investigated periphytic biofilms differing in age (at least 2 months) and 

exposed to different glyphosate concentrations (35.4, 383.5, and 3540 nM) in a lake. They 

concluded that glyphosate had no effect on biofilms, a finding also reported by Lozano et al. 

(2018), who showed that periphyton was more resistant than phytoplankton to 17.7 μM 

glyphosate. Although the latter study did not find a biomass-based effect on periphyton, the 

abundance of certain taxa decreased. Vera et al. (2010) noted a delayed increase in the 

biomass of periphyton exposed to 47.3 μM glyphosate in freshwater mesocosms. 

In our study, from the initial 82.45 μM glyphosate added at day 0, 1 μM remained at the end of 

the experiment. Thus, with the decreasing availability of glyphosate, the cost-benefit ratio of 

producing proteins for its metabolism seems to become increasingly unfavorable. This is 

supported by the absence of AMPA as indication of degradation in the later samples. Given 

that at 4.4 μM glyphosate a response by planktonic communities was no longer detectable, 

then at the pM to nM concentration ranges measured in estuaries of the Baltic Sea (Skeff et 

al., 2015) neither biofilms (harboring the majority of microbial cells) nor planktonic bacteria in 

the Baltic Sea are likely to be disturbed by the herbicide. However, the nutrient regime in Baltic 

seawater differs from that of the rich medium provided in this study. In addition, the long-term 
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effects of glyphosate on microbial communities are as yet unknown. Mercurio et al. (2014) 

demonstrated an unexpected glyphosate persistence in seawater in the presence and absence 

of light. The study of Stachowski-Haberkorn et al. (2008) suggested that even low-nM 

glyphosate concentrations can affect natural coastal microbial communities in marine 

environments. According to our results, planktonic bacteria better reflect short-term 

disturbances, whereas the accompanying biofilm provides a reference for examining overall 

succession trends occurring as a result of exchange with the water column. A biofilm response 

would thus indicate that a threshold of disturbance tolerance had been exceeded. Expanding 

the shotgun sequencing to involve the biofilms could support this idea. 

2.4.2 Differences in the responses of water column and biofilm communities to 

glyphosate addition 

The response of biofilm OTUs to glyphosate addition, as measured by abundance, was minor 

but detectable until the end of the experiment. One interpretation of this result is that the 

glyphosate pulse favored these OTUs over others in the biofilm community. Glyphosate has 

been shown to accumulate in biofilms, including those within a Brazilian river (59.2–

1806 nmol⋅kg–1, AMPA 450.29–6033.89 nmol⋅kg–1; Fernandes et al., 2019), or to persist at a 

very small percentage of the initial concentration, as demonstrated in a microcosm study of 

biofilms in a French river (Carles et al., 2019). Either would provide glyphosate-degrading 

OTUs with a nutritional advantage. Our initial tests conducted prior to the experiment showed 

that the biofilms did not enrich glyphosate, at least not during the first 3 days after the 

glyphosate pulse. However, in the few cases in which a response by biofilm OTUs was 

identified, the respective signal was also detected in the water column, both for a longer time 

and indicative of a higher abundance. Several of the abundant biofilm OTUs, however, were 

characterized by a concise albeit constant changes in abundance regardless of the condition, 

which complicated the detection of glyphosate-responding OTUs (Figure 2.5). It should be 

noted that the growth substrates for the biofilm were initially sterile and that all colonization 

occurred via the inoculated water column. This could explain the overall concordance between 

abundant OTUs in the water column and in the biofilms. 

Microbial responses within the water column were in most cases limited to day +22, which 

coincided with the strongest decrease in the glyphosate concentration to ≤ 4.4 μM, the AMPA 

concentration fell below 0.1 μM afterward. Transient effects on microbial communities by 

glyphosate have been previously described. For example, Weaver et al. (2007) found small, 

brief (< 7 days) changes in the levels of fatty acid methyl esters and a reduction in the hydrolytic 

activity of a soil microbial community exposed to a glyphosate concentration of 277–

828 μmol⋅kg–1. Using Biolog assays and phospholipid fatty acids analyses, Ratcliff et al. (2006)  

measured a non-specific, short-term stimulation of bacteria at a high glyphosate concentration. 

The increased α-diversity determined in this study confirmed the findings of Lu et al. (2017), 
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who analyzed the rhizosphere of a glyphosate-tolerant soybean line based on 16S rRNA gene 

amplicon sequencing. The authors also found a higher diversity and varying OTU abundances 

in the rhizosphere of the treated than of the control cultivar. In a metatranscriptomic analysis, 

Newman et al. (2016) investigated changes in bacterial gene patterns in response to long-term 

glyphosate exposure. The results indicated a potential shift in bacterial community composition 

toward more glyphosate-tolerant bacteria. Wang et al. (2017) described the effects of two 

glyphosate concentrations on the microbial community associated with the dinoflagellate 

Prorocentrum donghaiense and showed that 36 μM glyphosate caused a decrease and 

360 μM an increase in α-diversity. Several OTUs detected in our study belonged to genera 

whose abundance increased following glyphosate treatment (Methylotenera, Pseudomonas, 

Sphingobium, Thalassobaculum), demonstrating the ability of glyphosate to cause favorable 

conditions for these genera across various habitats. On a further note, the herein identified 

Rhodobacteraceae and Rhizobiaceae OTUs were confirmed in a novel approach using 

artificial neural networks and Random Forest to detect responding OTUs (Janßen et al., 

2019b). 

2.4.3 Glyphosate-induced changes in OTU abundance 

In our study, temporally highly resolved NGS data revealed increased OTU abundances, but 

the mechanisms of the increases were unclear. While glyphosate can be considered as a 

source of C, N, or P, the microcosms were supplied with sufficient amounts of C and N 

(evidenced by the medium composition and end-of-experiment data points) and P from other 

sources. 

Specific reactions to glyphosate have been described in studies of bacterial cultures, especially 

those of degraders (Wang et al., 2016a) and resistant cyanobacteria (López-Rodas et al., 

2007). Within the same species, different strains may or may not be capable of degrading 

glyphosate and several pathways for glyphosate degradation may be present in a single strain. 

This is the case in Pseudomonas (Jacob et al., 1988; White and Metcalf, 2004; Zhao et al., 

2015; Lidbury et al., 2016) and would explain why some, but not all of the Pseudomonas OTUs 

detected in our study became abundant after glyphosate addition. Thus, the pronounced 

diversity of Pseudomonas was also expressed by its reactions toward glyphosate. 

2.4.4 Probability of glyphosate degradation 

The responses mainly by free-living bacteria, such as the increase in cell counts and the 

presence of AMPA indicated that glyphosate was degraded. The amount of AMPA detected in 

comparison to the corresponding glyphosate concentrations suggests that only a minor fraction 

was metabolized, a quality associated with the glycine oxidase thiO. The increase in total cell 

counts and the discrepancy between the measured and the calculated glyphosate levels 

require a more complete degradation of glyphosate. Sarcosine/L-alanine levels do not 
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compensate for this difference and as they did not change after glyphosate addition and were 

present in both microcosms it was more likely only L-alanine was present due to the inclusion 

of the casamino acids. This implicates that glyphosate was not metabolized by the sarcosine 

pathway. It is possible that rapid degradation of the intermediate product could have occurred, 

thus rendering it hardly detectible. However, it is unlikely that the glycine oxidase would be 

capable of such a degradation rate due to its low specificity toward glyphosate. A possible 

explanation is the degradation of glyphosate by gox into AMPA with an immediate continuation 

by C-P lyase. Sviridov et al. (2015) concluded in their review that the majority of described 

glyphosate-degrading bacteria use the gox gene and consequently export AMPA into their 

environment, but also stated that organisms not being capable of degrading glyphosate might 

still metabolize AMPA. 

Furthermore, the abundances of gox genes, thiO genes, the phn operon, sox genes and aroA 

genes correlated with those of the detected OTUs (via multiple sequence alignment and 

reference sequences; Figure 2.6). It must be noted that phn operons encode functions that 

result in the degradation of a variety of phosphonates, although not necessarily including 

glyphosate. The respective genes are subject to extensive lateral transfer, which complicates 

data interpretation (Huang et al., 2005). The results of our metagenomic analysis suggested 

that phn genes have a higher sequence similarity based on phylogeny than on substrate 

specificity. Sequence abundances of a phnJ gene correlated with OTU 59 (classified as 

Yoonia/Loktanella spp.). This suggested that this OTU possesses phn genes whose 

abundances’ increase might be in response to the presence of glyphosate or AMPA as a 

nutrient source. The same reference organism, as well as Pseudomonas aeruginosa, 

correlated with the abundance of thiO genes. The phylogenetic comparison of gox, dadA and 

our metagenomic sequences (Figure 2.7) underlined the demand of properly described 

references and the potential of undiscovered gox variants. For the Hoeflea-related gox 

sequences, no treatment-specific abundance change could be assigned to Hoeflea OTUs. In 

conclusion, a metatranscriptomic analysis that describes the expressed phn, gox, and thiO 

mRNAs may have provided clearer evidence of the pathways used for glyphosate degradation 

(Martínez et al., 2013; Wang et al., 2016b) as well as the involved organisms. 

However, amplicon sequences still proved to be a cost efficient and sensitive method for 

community analysis, as comparisons of 16S rRNA (gene) and shotgun sequencing data 

indicated that glyphosate-responsive low-abundance OTUs were not covered in the 

metagenome. Furthermore, the 16S rRNA gene amplicon counts were a better indicator of 

community changes than 16S rRNA, indicating that DNA is a better proxy of abundance. Field 

experiments or laboratory studies involving more than one determinant should further 

investigate the potential of using detailed community composition data as an indicator of 

community disturbance. 
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2.5 Data availability statement 

The datasets generated for this study can be found in the NCBI database under BioProject ID 

PRJNA434253 and SRA accession SRP151042. OTU and taxonomy table as well as 

corresponding code to process and analyze the data are available in the GitHub repo: 

https://github.com/RJ333/Glyphosate_gene_richness, code for the metagenomic analysis is 

available under https://github.com/RJ333/calculate-functional-trees. 

  

https://github.com/RJ333/calculate-functional-trees
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Abstract 

Bacteria are ubiquitous and live in complex microbial communities, which can react rapidly to 

changing environmental conditions. Their physiological variety enables communities to 

respond in specific ways to environmental drivers, potentially resulting in distinct microbial 

fingerprints for a given environmental state. Our goal was to assess the opportunities and 

limitations of machine learning to detect fingerprints indicating the presence of the munition 

compound 2,4,6-trinitrotoluene (TNT) in southwestern Baltic Sea sediments. 

Over 40 environmental variables including grain size distribution, elemental composition and 

concentration of munition compounds (mostly at pmol g-1 levels) from 150 sediments collected 

at the near-to-shore munition dumpsite Kolberger Heide by the German city of Kiel were 

combined with 16S rRNA gene amplicon sequencing libraries. Prediction was achieved using 

Random Forests; the robustness of predictions was validated using Artificial Neural Networks. 

To facilitate machine learning with microbiome data we developed the R package 

phyloseq2ML. 

Using the most classification-relevant 25 bacterial genera exclusively, potentially representing 

a TNT-indicative fingerprint, TNT was predicted correctly with up to 81.5 % balanced accuracy. 

False positive classifications indicated that this approach has also the potential to identify 

samples where the original TNT contamination was no longer detectable. The sensitivity of this 

approach can be deduced from the fact that TNT presence was neither identified among the 

main drivers of the microbial community composition, nor did it correlate with sediment metal 

content, demonstrated by decreased prediction rates using environmental variables.  

Our results suggest that microbial communities can predict even minor influencing factors in 

complex environments, demonstrating the potential of this approach for the discovery of 

contamination events over an integrated period of time and for environmental monitoring in 

general.   
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3.1 Introduction 

Microbes are the most diverse, abundant and ubiquitous life forms on Earth. They live in 

complex microbial communities, which can react rapidly to environmental changes, a result of 

consistent evolutionary pressures applied by fluctuating conditions (Lindh and Pinhassi, 2018). 

The developed variety of physiologies enables communities to respond in specific ways to 

environmental drivers, hence functioning as indicator for surrounding conditions. This principle 

was demonstrated for very different habitats: it was possible to match individual human skin 

microbiomes with those on the occupant’s household surfaces (Wilkins et al., 2017), to 

associate subway microbiomes to the major cities they were located in (Ryan, 2019) or to 

distinguish microbial communities in the brackish Baltic Sea along the salinity gradient 

(Herlemann et al., 2011) and its anoxic regions (Thureborn et al., 2016). However, relevant 

indicative fractions of the communities, conceivably acting as microbial fingerprints, may only 

emerge by analyzing a sufficiently large number of communities. Next generation sequencing 

allows for processing such larger amounts of samples to extract this information, but it might 

be accompanied by a large portion of irrelevant data with regard to the particular indication.  

The ensemble classifier Random Forest (RF) is capable of identifying such potential 

fingerprints – even if they include nonlinear relations - in large and complex data sets (Breiman, 

2001a). RF is among the most popular machine learning methods and has frequently been 

used in biological sciences (Fernández-Delgado et al., 2014). The features relevant for the 

model’s decisions can be assumed equivalent to an indicative fingerprint and the RF variable 

importance measure readily identifies them (e.g. Altmann et al., 2010; Janitza et al., 2018). 

Fingerprints related to community-shaping drivers are revealed by performing unsupervised 

classification, whereas specific influences can be targeted by the application of supervised 

machine learning. In microbiological studies, RF has been deployed to localize the geographic 

origin of port water across three continents based on dominant bacterial phyla (Ghannam et 

al., 2020). Moitinho-Silva et al. (2017) used RF among other classifiers to separate between 

sponges of high and low microbial abundance. Thompson et al. (2019) used RF and artificial 

neural networks (ANN) to identify important taxa for the prediction of dissolved organic carbon 

concentrations. In a previous study we demonstrated the identification of glyphosate-impacted 

free-living community compositions by ANN and RF after a 82.45 nmol∙mL−1 glyphosate pulse 

in a lab microcosm experiment (Janßen et al., 2019b).  

In this study, we are particularly interested in the question to what extent environmental 

microbial communities can reliably predict anthropogenic pollutants using the above 

algorithms. We tested this approach for a munitions dumpsite in the southwestern Baltic Sea, 

where sediments are contaminated with explosive compounds such as 2,4,6-trinitrotolouene 

(TNT). The munitions dumpsite Kolberger Heide in the Kiel Bight (Germany) is an 
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approximately 1260 ha large area of 10 - 15 m water depth. Conventional munition, mostly 

incomplete or unfused was disposed of at this site after World War II (Kampmeier et al., 2020). 

About 30.000 tons are estimated to be still on site, containing mainly of TNT and 1,3,5-

trinitroperhydro-1,3,5-triazine (RDX) as munition compounds ([MC], Böttcher et al., 2011). The 

containments such as mines, shells and torpedo heads display various states of corrosion 

(Kampmeier et al., 2020), resulting in the leakage of MC (Beck et al., 2019). In addition, bare 

munition chunks are scattered across the sediment bed, potentially due to low-order, or 

incomplete detonation during blow-in-place clearance activities (Pfeiffer, 2009; Maser and 

Strehse, 2020). Dissolved TNT can be rapidly dissipated or metabolized in direct proximity to 

its source, complicating the quantification of TNT released into the environment (Elovitz and 

Weber, 1999; Beck et al., 2019). However, the presence of MC including TNT and its 

transformation products in the Kolberger Heide water column samples (ca. 1 – 15 ng∙L−1) and 

biota (1 – 24000 ng∙g−1) has been reported (Gledhill et al., 2019). Little is known about the MC 

concentrations in accordant sediments. 

Sediment in the Kolberger Heide is contaminated by TNT at pmol∙g−1 levels. It was our aim a) 

to investigate if machine learning is capable of predicting TNT in sediments and identifying 

indicative microbial fingerprints; b) to assess how robust the predictions are and which factors 

influenced the model’s performance; c) to evaluate whether a microbial fingerprint is sufficiently 

persistent to detect a history of TNT, indicated by TNT transformation products. Finally, we 

discuss how the described approach could supplement and be integrated into regular 

monitoring activities.  

3.2 Material and methods 

3.2.1 Collection of sediments and determination of munition compounds 

One hundred sixty-seven sediment samples were collected within the Kolberger Heide 

munitions dumpsite and its surroundings during the course of the UDEMM (Environmental 

monitoring for the delaboration of munitions on the seabed, Greinert, 2019) project. Samples 

were obtained during several cruises and individual sampling events. Additional sampling took 

place at defined distances from mines and at a site of a controlled detonation. Sediment 

samples within the dumpsite were collected manually by scientific divers, or using an ROV. 

Outside the dumpsite’s restriction zone, surface sediments were collected using a Van Veen 

grab. Duplicate sediment cores were collected using a multi-corer at two sites east and west 

of the dumpsite (map provided in Supplementary Material 3.1). Sampling was conducted in 

December 2016 and from June to December 2017. Supplementary Material 3.2 details 

contextual data such as position of sample collection, cruises and experiments as well as 

measured parameters. “Experiments” refer to the goal of a sampling, e.g. investigating a spatial 

MC gradient in cardinal directions around a mine, analyzing the MC distribution across a mine 
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mound or along a sediment profile. Sediments were stored in sealable plastic bags (Whirl-

paks; Nasco, Madison, WI, USA) at -20 °C for subsequent MC analysis using an ultra-high 

performance liquid chromatographic system coupled to a heated electrospray ionization 

source and a high resolution quadrupole/orbitrap mass analyzer (UHPLC-HESI-MS, Q 

Exactive, ThermoScientific) detection after thawing and extraction using LCMS-grade 

acetonitrile (Fisher). Munition compounds were measured according to Gledhill et al. (2019) 

including TNT, RDX, 2-amino-4,6-dinitrolouene (2-ADNT), 4-amino-2,6-dinitrolouene (4-

ADNT), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT), 1,3-dinitrobenzene (DNB), 

1,3,5-trinitrobenzene (TNB), Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and Tetryl 

(N-methyl-N-2,4,6-tetranitrolaniline). The TNT transformation products, 2,4-diamino-6-

nitrotoluene (2,4-DANT) and 2,6-diamino-4-nitrotoluene (2,6-DANT) are not included in the 

Gledhill and colleagues (2019) suite of compounds, but were analyzed using the same method, 

and quantified after standardization using single-compound standards (AccuStandard, 

Connecticut, USA). For geological and molecular biology analyses sediments were slowly 

thawed, homogenized under a clean bench, and split into two 15 mL aliquots. The aliquots 

were stored at -80 °C.  

3.2.2 Geochemical and sedimentological analyses 

3.2.2.1 Sample preparation 

The frozen (–20 °C) sediment samples were freeze-dried (Christ LOC-1M Alpha 1-4 and Christ 

Delta 1-24 LSCplus, Osterode am Harz, Germany) for 60 – 72 hours. Except for the grain size 

analyses, the dried samples were homogenized in an agate ball mill (Fritsch Pulverisette, Idar-

Oberstein, Germany) at 200 rpm for 10 min. 

3.2.2.2 Carbon, nitrogen, and sulfur 

About 10 – 17 mg of the sediments were weighted into tin crucibles, a spatula tip of 

vanadium(V) oxide (Alpha Resources, Stevensville, MI, USA) was added as catalyzer and total 

C, total N, and total S were determined by an elemental analyzer (EuroEA, HEKAtech, 

Wegberg, Germany). For total inorganic carbon, 50 – 70 mg of sediment was treated with 40 

% orthophosphoric acid and analyzed with an elemental analyzer (multiEA 4000, Analytik 

Jena, Jena, Germany). Total organic carbon was calculated by subtracting total inorganic 

carbon from total carbon. Precision and trueness were checked with in-house standards 

(MBSS, OBSS) and were <3.5% (Häusler et al., 2018).  

3.2.2.3 Mercury 

The sedimentary mercury content was determined by a direct mercury analyzer (DMA 80, 

Milestone Srl, Italy) using 100 - 120 mg per analysis (50 mg for sample “Udemm1277”, which 

exceeded the calibration range). Precision and trueness were checked with the certified 

reference material BCR-142R (Community Bureau of Reference) and an in-house standard 
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comprising Baltic Sea sediments (Mecklenburg Bay Sediment Standard, MBSS) and were 

<3% and <10%, respectively (Häusler et al., 2018). Sediments exceeding 1000 µg Hg kg−1 

were measured three times and averaged. 

3.2.2.4 Reactive iron and trace element contents 

For determination of reactive element contents, about 200 mg of sediment material was 

weighed into pre-cleaned 11.5 mL polystyrene tubes and 10 mL of 0.5 M HCl was added. The 

tubes were shaken for 60 min at 175 rpm, followed by 6 min of centrifugation at 4000 x g and 

filtration of the solutions with 0.45 µm syringe filters. Three procedural blanks were analyzed 

together with the samples. The contents of Fe, P, and trace metals in the 0.5 M HCl extracts 

were determined by Q-ICP-MS (iCAP Q; Thermo Fisher Scientific, Germany) after automated 

50-fold dilution with 2 vol% HNO3 via a prepFAST module (Elemental Scientific, Omaha, NE, 

USA) and external calibration. Helium was used as collision gas (KED mode) to minimize 

polyatomic interferences and a Rh and Ir containing solution added online by the prepFAST 

module served as internal standard to compensate for matrix effects and instrument 

fluctuations. The calibration was checked with the international reference material SGR-1b 

(USGS), which underwent total acid digestion in closed PTFE vessels using a HNO3-HF-HClO4 

mixture (Dellwig et al., 2019). For stable 206/207Pb isotope ratios the NIST SRM-981 was used 

as reference material (Dellwig et al., 2018). Precision and trueness of the measurements of 

the reference materials were <4.4% and 8.1%, respectively. 

3.2.2.5 Grain size distributions 

The grain size of the <2 mm sediment faction was measured using a Hydro EV accessory to 

the Mastersizer 3000 (Malvern Panalytical GmbH, Herrenberg, Germany). The samples were 

stirred at 2500 rpm and sonicated for 10 s. Eight measurements were performed per sample, 

followed by purging steps with distilled water. Outliers (values exceeding 1.5 times the 

interquartile range) were removed and the remaining values per sediment were averaged. 

3.2.3 Molecular biology and bioinformatics 

The methods described in the following were applied to the molecular biology aliquots of each 

sediment sample. 

3.2.3.1 Extraction of nucleic acids 

The sediments were collected using the appropriate collection and storage procedures for the 

determination of MC. To retrieve the best possible results in subsequent molecular biological 

analyses and due to the long term presence of TNT in the Kolberger Heide, the more robust 

16S rRNA gene was preferred over the more sensitive 16S rRNA as sequencing target. DNA 

was extracted from 250 mg wet sediment using the Qiagen PowerSoil DNA Kits or from 2000 

mg wet sediment using the Mobio PowerSoil RNA kit with the DNA elution kit (Hilden, 
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Germany). For each kit an extraction control without sediment was processed along with 

regular samples. 

3.2.3.2 Sequencing 16S rRNA gene amplicons 

The V4 region of the 16S rRNA gene was targeted with the primer set 515f-806r (forward 

5' GTGCCAGCMGCCGCGGTAA 3', reverse 5' GGACTACHVGGGTWTCTAAT 3', Caporaso 

et al., 2011). Indexed amplicon libraries were pooled to a concentration of four µM. As usual 

for low diversity libraries, the PhiX control was spiked into the library pools at a concentration 

of 40 pM (10%).Each final library pool (4 pM) was subjected to 1 of 3 consecutive individual 

paired-end sequencing runs using 500 cycle V2 chemistry kits on an Illumina MiSeq (Berlin, 

Germany). Additional information with regard to the 16S rRNA gene libraries is provided in 

Supplementary Material 3.3. 

3.2.3.3 Processing 16S rRNA gene amplicon sequences 

Amplicon read processing – including the removal of primer and two-parent chimera 

sequences, the quality filtering step and the taxonomic annotation - was conducted using the 

DADA2 pipeline v 1.10.0 (Callahan et al., 2016) with R v. 3.5.1 (R Core Team, 2017). DADA2 

corrected for sequencing errors during the generation of amplicon sequence variants (ASV). 

As recommended, such a correction was applied separately for each sequencing run. The 

individual tables were merged afterwards. Only ASV of length from 231 – 272 bp were kept 

according to the expected amplicon lengths reported in Ziesemer et al. (2015). 

Taxonomic annotation of herein presented data was accomplished using the Silva release 132 

(Yilmaz et al., 2014), including the taxonomic changes that were proposed by Parks et al. 

(2018). The ASV and taxonomy table were imported to and analyzed with phyloseq v. 1.30.0 

(McMurdie and Holmes, 2013) accelerated by speedyseq v. 0.1.1 (McLaren, 2020). Plots were 

generated using ggplot2 v. 3.3.1 (Wickham, 2016).  

ASV which were present in negative PCR or extraction controls and also found abundantly in 

actual samples were individually checked due to potential cross contamination directed from 

samples towards the controls. ASV with more than 35 reads in controls were removed from 

the dataset. ASV00001 was excluded from this rule because it was much more abundant in 

actual samples (extraction control: 75 reads, samples: > 10000 reads). ASV which were 

present in controls and less abundant in samples were removed. Subsequently, it was checked 

if any of the as important detected taxa were also present in control samples. ASV00063 

belonged to the important genus Maribacter (4 reads in positive PCR control) and ASV00074 

to Cobetia (5 reads in negative PCR control). As no reads were found in the extraction control 

and they were as abundant as up to 3000 reads in sediments, these ASV were left unaltered. 
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3.2.4 Machine learning analyses 

Analyses were carried out on six virtual machines provided by the German Network for 

Bioinformatics Infrastructure (de.NBI Cloud). The virtual machines ran Ubuntu 18.04.4 LTS as 

operating system on 28 Intel Xeon Gold 6140s cores with 256 - 512 GB memory available. RF 

analyses were performed utilizing R package ranger v. 0.12.1 (Wright and Ziegler, 2017). 

ANNs were generated with the R Keras framework v.2.3.0.0 (Allaire and Chollet, 2020) and 

the TensorFlow back end v 2.2.0 (Allaire and Tang, 2020). Our efforts to extract abundance, 

taxonomical and contextual data from phyloseq objects and subject those to machine learning 

led to the development of the R package phyloseq2ML v. 0.5.1 

(https://github.com/RJ333/phyloseq2ML). It facilitates modification and combining such data 

sets as needed – using objects of class “phyloseq” as source - and formats the data for the 

above mentioned machine learning implementations in R. 

3.2.4.1 Challenges of a small biological data set  

The presented data set consists of contextual subsets (e.g. by specific transects or sampled 

by a given method) which are likely to contain samples more similar to each other than to those 

of other subsets. To ensure that the model’s decision making was based on the presence of 

TNT rather than to a particular cruise or experiment, we developed guidelines to assess which 

samples were appropriate for ML analyses. First, the technical replicates were averaged. 

Then, if for a given subset of samples all of the following questions could be answered with 

yes, samples had to be removed from the subset to prevent potential spurious relationships 

between the presence of TNT and the prediction accuracy: 

For all samples from the same cruise (incl. biological replicates)  do they originate from the 

same experiment?  and the same area?  and do the sediment sampling positions have 

horizontal distance of less than 20 m  and do they only contain one class (TNT present or 

TNT absent) OR is there a strong imbalance (e.g. 20 x TNT absent, 1 x TNT present)?  

Following this guideline, led to a removal of 17 of the original 167 sediments (Supplementary 

Material 3.2). 

3.2.4.2 Machine learning workflow 

The remaining 150 samples were split into a training-validation set (in short: training set) 

consisting of 112 samples (75 %) and a holdout test set of 38 samples (25 %). This procedure 

was repeated to yield six different, random and reproducible splits of training and test sets. 

In supervised learning, the training set for a model contains the independent variables and the 

corresponding continuous or discrete response variable. The measured TNT concentrations 

were categorized as response classes “absent” for concentrations below the detection limit 

(0.01 ng∙g−1 or 0.044 pmol∙g−1 wet sediment) and “present”.  
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Settings automatically derived from the learning process are called parameters, such as the 

weights between ANN nodes. Hyperparameters, instead, are model settings chosen before 

training has started. Random forests are controlled via two main hyperparameters: the number 

of trees per forest and the number of variables “mtry” to consider for sample separation at each 

tree node. The default value for mtry for classification tasks is the square root of the total 

number of independent variables. As this default value might not be optimal for sparse data 

such as ASV abundance tables, a factor multiplying this number of variables was used instead 

and will be referred to as “mtry factor” (Hastie et al., 2009). 

RF models were trained on various combinations of hyperparameter values and input data to 

estimate the best performance on the holdout set. This process is called a grid search and 

combinations were compared using the out-of-bag validation error. A confusion matrix was 

generated to calculate performance metrics. Balanced accuracy was used as score. It corrects 

for imbalanced response variables and allowed comparisons across training set splits, which 

displayed class ratios of 43 - 48 % “TNT present” (Brodersen et al., 2010). The validation 

results of the six data splits were averaged to select the best performing hyperparameter 

values and input sets. When predicting the holdout set, the model was trained on the full 

training-validation set. The holdout predictions for the various input data sets took place after 

all hyperparameter values were determined. This is required to prevent data leakage. 

3.2.4.3 TNT presence prediction based on Random forest grid search 

Data sets designed as model input were threefold: a) community data: describing data deriving 

from 16S rRNA gene amplicon sequencing; b) sediment data: sediment parameters derived 

from geochemical and sedimentological analyses; c) combined, a combination of both 

aforementioned input sets. 

The grid search with community data was performed as follows: All combinations of relative 

abundance thresholds, the number of trees and the mtry factor were investigated. ASV had to 

be more abundant than a given threshold in at least one sample. If so, the ASV remains without 

change, otherwise it was filtered out. Thresholds were: 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 

0.8 and 1 %. Each of the resulting input sets was provided to models consisting of 100, 500, 

1000, 5000, 10000 and 20000 trees along with mtry factors ranging from 1 to 13 by 2. For each 

combination 50 models were trained and validated.  

Subsequently, the filtered relative ASV abundances were accumulated by taxonomic ranks 

genus through phylum to train 200 models with the previously identified hyperparameter values 

of 10000 trees, an mtry factor of 5 and a threshold of 0.08 %.  

The sediment data contained 41 independent variables including reactive element contents, 

sum parameters such as total nitrogen, and the grain size distribution. Hundred models were 
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trained with 1000, 5000, 10000 trees and mtry factors 1, 3, and 5. For combined input data it 

was found sufficient to apply the same hyperparameters as were applied to the community 

data. 

Validation and holdout scores were tested separately for significant differences between input 

data sets. Equal means were tested with unequal variance and one-way analysis of variance. 

The results of the analysis of variance were further subjected to the Tukey multiple 

comparisons of means with 95 % family-wise confidence level to identify the pairwise 

significances. 

3.2.4.4 Selection of most important variables 

The most important variables for classification were retrieved from models trained with 

community, sediment and combined data. Importance for community data (0.08 % threshold, 

genus rank) and combined data was calculated utilizing the corrected Gini impurity (Nembrini 

et al., 2018), followed by p value estimation after Janitza et al. (2018). A 100 models using 

10000 trees and an mtry factor of 5 were trained and the results averaged. Variable importance 

and associated p value for sediment data required the permutation-based approach by 

Altmann et al. (2010). A 1000 permutations with mtry factor 1 and 10000 trees were applied. 

The analysis involved elements Zr, which likely was not soluble by HCl extraction as well as 

Ca and Sn, where the measurement by ICP-MS was later identified as unreliable. The 

elements were still included in the training data, but were not reported as important and 

removed for other analysis such as the Spearman rank correlation. 

The variables were ordered by average importance over all splits. The number of variables for 

further analyses were selected based on decreasing decline in importance, meaning if the 

variables became more similarly important to each other, the cutoff was set. Thus, 25 genera 

were selected with Janitza importance > 0.25, p < 0.01 and 9 sediment parameters with 

Altmann importance > 0.001 and p < 0.05. The most important 50 combined variables (equal 

to Janitza importance > 0.15 and p < 0.01) were compared to the 25 community and 9 sediment 

variables. 

3.2.4.5 Random forest’s proximity matrix for PCA ordination and correlation 

Ordination methods are useful to explore multivariate data sets such as microbial community 

compositions. The proximity matrix generated by random forests keeps count of samples 

which end up in the same terminal node of a decision tree and, therefore, is a measure of (dis-

) similarity. It can be used with unsupervised classification: a synthetic data set is added to the 

original data set. This consists of shuffled columns of the actual data, thus breaking all 

relationships between variables. The model (10000 trees, mtry factor 1) tries to distinguish 

between permuted and original data and thereby identifies correlations and clusters in the 
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actual data set. For supervised classification, the actual classes were used and no synthetic 

data set was required. 

Principal component analysis (PCA) was performed based on the proximity matrix for the most 

important 25 genera. To identify microbial community shaping influences for the unsupervised 

classification, the sediment parameters were correlated with the PCA ordination. The function 

envfit() from R package vegan v. 2.5-6 (Oksanen et al., 2019) with 9999 permutations was 

used to achieve this. Correlating parameters with p < 0.001 and R² > 0.3 were displayed. The 

PCA ordination was performed for sediment data as described above, except the envfit() step. 

Complementary, Spearman’s rank-order correlations between sediment variables were 

investigated. The results were hierarchically clustered and variables with p < 0.01 were marked 

significant. 

3.2.4.6 Assessing robustness of classification with random forest and artificial neural 

nets 

The classification consistency was examined to increase the understanding of the predictions. 

All 150 samples were used as training and validation set for 1000 models (10000 trees, mtry 

factor 1). Mean prediction errors < 0.5 % or > 99.5% accuracy were rounded to 0 and 100 %, 

respectively. 

Artificial neural networks (ANN) were additionally deployed to measure classification 

robustness across algorithms. The input data for ANNs required additional steps including the 

one-hot encoding of categorical variables and scaling of the independent variables: the mean 

of each variable was subtracted, and it was divided by the standard deviation. This yielded 

values centered around 0 with a standard deviation of 1. ANN grid searches were performed 

complementary to what is described for random forest above. Results suggested that 50 nodes 

in the first hidden layer and 40 nodes in the second hidden layer were appropriate values, 

along a mini-batch training size of 4. No regularization was applied. The optimizer function 

Adaptive Moment Estimation outperformed Root Mean Square Propagation. Binary cross 

entropy was set as loss function, with accuracy as metric. Learning took a maximum of 100 

epochs, stopped by an early callback if the validation loss did not decrease for 2 ongoing 

epochs. The node within the hidden layers were rectified linear unit-activated whereas the 

output nodes’ activation function was sigmoid. Further hyperparameters and settings were 

default values of the keras R package. 

Performance assessment was achieved by splitting the training data into three different, non-

overlapping equally proportioned subsets. Two partitions were used for training and the 

remaining one for validation. These three subsets were composed differently for each of the 
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conducted 333 runs. This 333 times repeated 3-fold cross validation yielded a total of 999 

predictions. 

3.2.5 Data availability 

Code, scripts and files are available under GitHub (https://github.com/RJ333/). The R package 

phyloseq2ML is deposited at https://github.com/RJ333/phyloseq2ML. Sequences were 

deposited in the NCBI database under BioProject ID PRJNA632711 and SRA accessions 

SAMN14917999 - SAMN14918370. Geochemical data is included in Supplementary 

Material 3.2. 

3.3 Results 

3.3.1 TNT contamination of Kolberger Heide sediments 

To provide an overview of the contamination levels and distribution at Kolberger Heide 

munitions dumpsite, information from all 167 sediments was taken into account. A selection of 

150 sediments was then used specifically for ML. Out of 167 original sediments, 148 contained 

MC: TNT (detected in 70 sediments), 2-ADNT (135), 4-ADNT (144), 2,4-DANT (70), 2,6-DANT 

(55). None of the other MC (2,4-DNT, 2,6-DNT, DNB, TNB, HMX, RDX, Tetryl) were detected 

in more than 8 sediments (Supplementary Material 3.2). 

TNT was determined to be present at levels less than 25 pmol∙g−1 wet sediment in 65 samples. 

Notably, the highest values of 587, 690 and 3485 pmol∙g−1 were found in three sediments 

retrieved from a detonation site, where exposed munition chunks were spread over the sea 

floor. 

The heavy metals mercury and lead were used as proxies for primary explosive compounds 

in conventional ammunition, which potentially could be present at the dumpsite; chemical 

warfare agents can contain arsenic. Mercury contents ranged in Kolberger Heide sediments 

from 3.7 to 4503 µg Hg∙kg−1 dry sediment, with a median of 21 µg Hg∙kg−1 and 15 samples 

exceeding 450 µg Hg∙kg−1. The maximal content of 4503 µg Hg∙kg−1 was found during a line 

transect, where samples were taken every 20 m. The neighboring samples to the maximal 

value contained 8 and 12 µg Hg∙kg−1, demarcating a precise area of elevated Hg presence. 

Arsenic appeared on level between 0.4 and 4.8 mg kg−1 with a median of 0.8 mg∙kg−1 and lead 

ranged from 1 to 75 mg∙kg−1 with a median of 2 mg∙kg−1. 

The microbial community composition of the sediments was investigated for measurable 

effects caused by the TNT. A total of 279 16S rRNA gene libraries were generated from the 

167 sediments; 259 libraries from 150 sediments were selected to be appropriate for ML 

purposes. The selected libraries had a mean size of 82219 reads, with the 95 % confidence 

intervals being 78115 and 86322 reads (Supplementary Material 3.3). Averaging ultimately 

yielded 150 community tables comprising 66230 ASV, 1703 genera and 78 phyla available for 

https://github.com/RJ333/
https://github.com/RJ333/phyloseq2ML
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machine learning. The 150 samples selected for Machine Learning contained TNT in 68 cases 

(45.3 %). Due to the skewed distribution a binary classification approach was adopted. 

3.3.2 Community data predicted TNT presence more accurate than sediment data 

A selection of eight input data sets was compared for their potential to predict the presence of 

TNT. The achieved validation and prediction scores were averaged over the six training/test 

splits (Figure 3.1). Full sediment contained 41 independent variables and Full community 

(0.08 % relative abundance threshold) included 542 genera. The mtry factor 5 allowed for 115 

genera being considered at each node. The 0.08 % threshold yielded the second highest mean 

balanced accuracy among the examined threshold values, and showed a more distinct 

classification distribution (Supplementary Material 3.4), therefore it was applied to all 

community data sets presented here.  

 
Figure 3.1: Correct TNT classifications per input data in the validation and hold out test set. Red indicates community 
data, blue symbolizes sediment data and red-blue combined variables. Of each data type, either all variables were 
utilized by the model (“Full”), or only the best variables based on variable importance (“Top”) or all variables except 
Top (“Non-Top”). Classification performance is displayed as mean and standard deviation of balanced accuracy, 
the classification results of the six different data set splits were averaged. The validation values are out-of-bag 
estimates. The letters indicate which groups were significantly (adjusted p < 0.005) different to all other groups 
within the data set. The shaded area indicates the distribution of samples containing TNT among the six data set 
splits. n indicates the number of models calculated. 

With reference to the validation set, which was used to optimize the classification, selections 

of either the most important 25 genera or 9 sediment parameters yielded more accurate 
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classifications than by using all variables; the lowest scores were achieved by putting the 

remaining non-important variables to use. In this order, the mean balanced accuracy for 

sediment data decreased from 78.4 over 77.2 to 71.7 % and for the community data from 83.2 

over 80.6 to 72.6 %. Using the most important variables from both data sets combined also 

improved the classification from 80.5 to 83.0 %. The Top25 community represents 4.6 % of 

the genera and increased the balanced accuracy, whereas the other 517 genera significantly 

reduced it. For each variable selection (Full, Top, Non-Top), the community data performed 

better than the corresponding sediment data. The combined input data achieved classifications 

similar to community data alone.  

TNT was present in 44 to 48 % of the samples in the six training data sets. The holdout set 

contained fewer samples; consequentially one sample’s classification represented > 2.5 % 

accuracy. This led to more widespread class ratios from 36 to 52 % and a higher standard 

deviation. Best predictions reached 83.8 % with Full community and 82.7 and 82.6 % with Full 

combined and Top combined, respectively. Predictions on the holdout set were slightly better 

than the corresponding validation scores, excluding Top combined and Top genus. The largest 

difference between validation and holdout scores was an increase of 4 % for “Non-Top25 

community”. Validation and holdout scores met the same range from 70 to 85 %, but showed 

no further relation.  

All balanced accuracy means in the validation set were significantly different from each other 

(adjusted p < 0.005) except “Full community” to “Full combined” (D) and “Top25 community” 

to “Top combined” (E) in the validation set. This extended to all groups in the holdout set but 

“Full combined” to “Top combined” (J). 

The hierarchical structure of the taxonomic annotation allowed investigating the influence of 

pooling the relative abundance by taxonomic ranks (Figure 3.2) to identify the best compromise 

between the number of taxa and the information contained in inter-taxa abundance variability. 

The highest mean balanced accuracy was achieved by ASV (82.9 %) and decreased towards 

the broader order rank (74.9 %). Training with relative abundance per class (78.8 %) and 

phylum (76.9 %), however, still resulted in acceptable predictions, yielding more accurate 

classifications than on order rank. The genus rank (80.6 %) was chosen for further analyses, 

because it contained fewer and more interpretable variables. 
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Figure 3.2: Violin plots with median and interquartile range of correct TNT classifications of the validation set. The 
relative abundances were agglomerated on the taxonomic ranks. The dot represents the mean balanced accuracy; 
the classification results of the six different data set splits were averaged. n indicates the number of models 
calculated, Taxa represents the number of variables for each rank. 

The distribution of information among samples was then assessed by comparing the validation 

scores for the six sample compositions. The results showed that Full community was more 

accurate for each set (Figure 3.3). Between the splits, a range > 5 % in the scores for Full 

sediment (75.1 - 80.5 % mean balanced accuracy) and Full community (77.9 - 83.2 %) was 

observed. Shifts in balanced accuracy between splits were not consistent for sediment and 

community data. For example, comparing Data split 1 and 2 the Full sediment classification 

performance dropped whereas the Full community balanced accuracy was maintained. These 

findings signal that the available sediment parameters and taxa abundances did not supply 

equivalent information. 
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Figure 3.3: Violin plots with median and interquartile range of correct TNT classifications for six different validation 
sets. Full community (red) always performed better than Full sediment (blue) and their performances changed 
independent of each other towards the different validation set compositions. The dot represents the mean balanced 
accuracy; n indicates the number of models calculated. 

3.3.3 Grain size distribution as the major driver of community composition 

After successful classifications were achieved using community information, TNT was 

investigated with regard to its potential as important driver of the microbial community 

composition; as such influence would facilitate the process of prediction. PCA ordination of the 

Top25 community was performed using the sample proximity obtained by an unsupervised 

random forest classification. PC 1 explained 56.1 % variation. Along PC1, the grain size 

fractions < 125 µm were separated from those > 250 µm (Figure 3.4 A).  
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Figure 3.4: PCA ordination based on the abundance of the most important 25 genera. Dissimilarity between samples 
was calculated using the proximity matrix of an unsupervised random forest. A) The microbial communities were 
colored by sample area and shaped to indicate the presence of TNT. The length and shade of correlating sediment 
parameters (p < 0.001, R2 > 0.3) represents the goodness of fit. The black outline marks East (yellow) and West 
(purple) samples which were not MUC samples. Similarly, the outline marks Restricted Area samples that were not 
part of a transect. B) Using the same ordination as in A, the fraction of misclassifications per 1000 (RF, top) and 
999 (ANN, bottom) predictions is displayed for each sample. Light blue colored samples were always correctly 
predicted, black displays consistently misclassified samples. Please note: the y-axis (PC2 in A) was stretched to 
accommodate the results from both methods. 

The latter spread along PC2, which explained 18.8 % variation. The former fractions co-

correlated with further sediment parameters; some of those were important variables for 

random forest when using Full sediment (vanadium, cobalt, total nitrogen). Significant 

correlations with MC were not found. The highest accordance among MC with the community 

composition ordination was shown by 2,6-DNT with R² of 0.033 and p 0.07. TNT (R²: 0.014, p: 
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0.38) was detected across all clusters, but predominantly present in mine mound samples. 

Only a few core samples contained TNT. 

The multicorer samples comprised smaller sized particles than most surface sediments. They 

were sliced at 2 cm, from the sediment-water interface to 22 cm depth (Figure 3.4 A, West and 

East areas, no black outline) and formed a prominent cluster, with communities driven by the 

grain size distribution and presumably the redox potential declining with depth. The region did 

not play a role for clustering, as cores were collected kilometers east and west of the mine 

mound, which itself is centrally located in the restricted area (Supplementary Material 3.1). 

The samples from the mine mound area (a cluster of about 70 mines) were mostly taken within 

a defined distance of 0 - 5 m to a mine. Although this is a part within the restricted area, the 

communities mostly grouped together. Several transects with sampling intervals of 20 m were 

conducted across the restricted area, surrounding the mine mound (Figure 3.4 A, Restricted 

Area, no black outline). The corresponding communities formed a distinct cluster, too. Three 

more samples with no detected TNT were collected multiple kilometers away towards 

northwest.  

An ordination based on only the sediment parameters including the MC was generated to 

compare with the microbial community ordination. Again, no separation based on TNT 

presence was observed (Supplementary Material 3.5). Furthermore, the mine mound and the 

overall restricted area sediments clustered alongside, with eastern samples placed in 

proximity. In this ordination the MUC samples to the east and west were clearly separated, 

with west and far northwest samples forming a remote cluster.  

The seasonal conditions during sampling should be mentioned, as they might have influenced 

the community composition more strongly than the sediment parameters. The restricted area 

was sampled mostly manually in June and September 2017 at the sediment surface by divers; 

three more sediments were obtained using Van Veen grab samplers. The mine mound 

samplings by divers took place in December 2016 and November and December 2017, which 

could explain the division between mine mound and restricted area microbial communities. 

The cores were collected on one day in October 2017.  

Random forest was able to predict TNT using only sediment parameters, although no driving 

influence by MC were detected in the ordinations. Therefore, Spearman rank-order correlation 

was performed to investigate which variables significantly (p < 0.01) correlated with TNT. A 

cluster of MC consisting of TNT and its metabolites 2-ADNT, 4-ADNT, 2,4-DANT and 2,6-

DANT was identified, which also showed a loose positive correlation with RDX (Supplementary 

Material 3.6). Another cluster consisted of DNB, HMX, TNB, 2,4-DNT and 2,6-DNT. The latter 
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two MC are co-contaminants of TNT. However, the MC were not part of the random forest 

input data set. Furthermore, some weaker correlations with TNT were identified.  

The results confirmed that community compositions were primarily controlled by factors other 

than the presence of TNT; therefore, supervised classification was applied to still extract such 

a potential impact. Both community and sediment data-based ordination demonstrated as well, 

that the distribution of TNT containing samples was appropriate to utilize machine learning. 

3.3.4 Community information important in combined data sets 

Foregoing results indicated that a potential impact of TNT was masked by stronger drivers. 

Therefore, it was essential to investigate the variables that enabled RF predictions. Potential 

microbial fingerprints (in case of community data) indicative for the presence of TNT were 

examined. The variable importances, extended by maximal relative abundances and 

taxonomic lineage of the genera are provided in Supplementary Material 3.7. 

 

Figure 3.5: The variable importance and p values for the classification of TNT presence. Twenty-five genera of the 
Full community and 9 sediment parameters of Full sediment were selected. The most detailed taxonomic annotation 
was provided in case none was available at genus rank. Importance and p values were generated after Altmann 
(Full sediment) and Janitza (Full community) for six data split and subsequently averaged. 
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The most supportive genera (Figure 3.5) were Cocleimonas (1.65 % maximal relative 

abundance), the unclassified Anaerolineae SBR1031 A4b (0.11 %) and an unclassified 

Gemmatimonadaceae (0.38 %). Relative abundances of the Top25 genera ranged from 

5.65 % for the unclassified Cyanobacterium Sericytochromatia to 0.09 % for the unclassified 

Planctomycete Gimesiaceae. The important sediment variables contained grain size fractions, 

elemental contents, and total nitrogen as a sum parameter for various nitrogen compounds. 

Among these, arsenic and the 63 – 125 µm fraction were most important. This grain size 

fraction correlated with sum parameters of sulfur and carbon and element contents of e.g. 

molybdenum and uranium in direction of the MUC samples. 

The 50 most important Full combined variables were then compared against the foregoing top 

Full community and Full sediment variables. Interestingly, out of 50 variables only 6 were 

sediment parameters (arsenic (#9), zinc (#21), 63 – 125 µm fraction (#35), vanadium (#40), 

mercury (#45), cobalt (#48)), all of them were part of the Top9 sediment. The achieved 

classification score of Full combined was as accurate as by Full community input (Figure 3.1). 

The 44 genera included all of the Top25 community genera. Further genera were related to 

them on family or order level, for example Flavobacteriaceae, Clostridiales, 

Sphingomonadaceae and Desulfobulbaceae. Overall, recovered variables in the combined 

data set were as important as in individual data sets. Sediment importance ranking concurred, 

although they were calculated using two different methods for Full community and Full 

combined. 

3.3.5 Processing of all samples depends on a combination of important variables 

To understand the model’s approach to classify the samples and to validate a potential 

indicative fingerprint, the reasons for the determination of important variables had to be 

identified. By analyzing their relative abundance it became clear that 23 of 25 important genera 

were in average more abundant in surface than core samples, the opposite was true for the 

clostridium Anaeromicrobium and TA06 (Supplementary Material 3.8, I, Y).    

Although the abundance of the most important Cocleimonas could be very low in samples 

regardless of class, it mostly occurred in samples with TNT. Second most important 

Anaerolineae SBR1031 A4b proved to be more abundant overall in samples with TNT. Clade 

TA06, however, was found in as few as 12 samples, and was abundant in very similar 

sediments of both classes (Supplementary Material 3.8, H, P, Y). The presence of some 

genera was linked to grain sizes: Cobetia was present in medium to finer sediments, 

Colwelliaceae on the contrary in coarser samples (Supplementary Material 3.8, C, G). This 

goes along with the finding that in a combined data set the grain size information was not as 

important anymore. But other important genera such as the up to 4.1 % abundant Maribacter, 

Maritimonas (3.5 %) and Blastopirellula (4.6 %) were present in 131 to 142 of 150 samples 
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(Supplementary Material 3.8, B, D, E). In a similar fashion, the concentrations of sediment 

parameters were displayed in Supplementary Material 3.9.  

3.3.6 RF predictions were consistent, with transect samples being most challenging 

With achieved classification scores for the presence of TNT well above 80% the inner works 

of the model for the important variables became understandable, but additional information on 

misclassified samples was required. By recording the mean of 1000 predictions, it was possible 

to identify consistently and/or incorrectly classified samples (Figure 3.4 B). 

Random Forest had cumulatively 24 of 150 samples misclassified (84 % accuracy), including 

5 of 35 core samples and 6 of 58 sediments near the mine mound. These predictions were 

robust; a classification was either wrong or correct, taken 0.5 % tolerance into account. Only 

four samples showed varying classifications, being incorrectly classified 1.3, 71, 79 and 93 % 

of the time. 

A PCA ordination based on a TNT classifying model showed the attempt to cluster by class: 

clusters in top right and bottom center were predominantly TNT-present and in the top left 

mostly TNT-absent (Supplementary Material 3.10). The center region displayed communities 

of both classes intermingled. Samples of all areas were observed there, but those from the 

restricted area were most present with both classes. It is likely that the samples in the center 

region were more often misclassified. Finding two separate clusters for TNT-present samples 

indicated that two distinct groups of important variables contained in the model were required 

to achieve classifications of those samples. 

The restricted area achieved the highest misclassification rate. Within a total of 51 sediments 

for this region, all 13 misclassifications could be attributed to 41 samples collected by four 

transects (Supplementary Material 3.10, Restricted area, no black outline, see also Figure 3.4 

A). The 200 m long transects, each consisting of 9 to 11 sampling points, covered different 

sections of the restricted area.  

In general, the less abundant class in a given region is prone to misclassification; however, 

minority class samples were also predicted correctly. The inconsistently classified samples can 

be imagined close to the decision boundaries between predominantly “present” and “absent” 

groups (Figure 3.4 B, Random Forest). 

The robustness test utilizing an ANN gathered 70 wrongly predicted samples in 999 

classifications. Sixty-four of those were not robust. More specifically, 30 samples were 

misclassified less than 10 % of the time and another 11 samples were almost more frequently 

than 99.5 % misclassified. Furthermore, all samples incorrectly classified by random forest 

were misclassified by the ANN, too. Regarding the higher prediction variance of the ANN it 

should be noted that RF is an ensemble classifier (see Discussion). 
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3.3.7 TNT metabolites containing samples more likely to be classified false positive 

The presence of ADNTs or DANTs in sediments indicates that TNT had been present. It was 

hypothesized that such former TNT-containing sediments might harbor community 

compositions which “look like” TNT was still present after its dissipation due to resilience. In 

consequence such samples should be predicted falsely positive. A “clean” sample on the other 

hand contains neither TNT nor its metabolites, indicating that it was not contaminated with TNT 

for a longer time. 

 

Figure 3.6: Misclassification rates of samples which were predicted “TNT present” but did not contain the explosive 
(False positive prediction). Red indicates whether a false positive samples contained TNT metabolites, i.e. ADNTs 
and DANTs. Samples containing metabolites were more likely to be misclassified as false positives. 

The RF models predicted eight false positives; two of them were not consistently misclassified 

(Figure 3.6). Interestingly, seven of the false positives actually contained TNT metabolites and 

the one “clean” sample was only 1.3 % times incorrectly classified. The ANN predicted 36 false 

positives, 5 of those without metabolites. Their prediction errors ranged from 0.3 – 25 % with 

an average of 10.6 %, compared to a mean prediction error of 38.3 % for the remaining false 

positives with metabolites. Furthermore, prediction rates for false positives did not correlate 

with the individual or summed concentration of TNT metabolites. 

It was additionally verified whether a higher TNT concentration goes together with a stronger 

impact on the community composition, thereby decreasing the probability of a false negative 

prediction. However, the RF predictions contained only two suitable false negative samples. 

For ANN a higher TNT concentration did not lead to better prediction rates of the sample. 
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3.4 Discussion 

In this study, microbial communities were used to predict the presence of TNT in sediments 

(at pmol∙g−1 levels) in and around a munitions dumpsite in the German Baltic Sea with about 

84 % balanced accuracy. Genera and sediment parameters being most important to reach this 

value, and the samples that were a challenge to the models, could be identified. Moreover, 

many TNT false-positive samples had traces of TNT metabolites, indicating that microbial 

community compositions may conserve information of former TNT presence for a longer 

period. 

3.4.1 Model-relevant genera were related to TNT-degrading taxa 

A selection of 9 sediment parameters or 25 bacterial genera predicted TNT as well (holdout 

set) or even better (validation) compared to using all variables. This is a result similar to the 

results of Thompson et al. (2019), who conducted a study to predict concentrations of dissolved 

organic carbon using most effectively a subset of the microbial community compositions of a 

plant litter decomposition experiment. One reason for such improved performances could be 

a lower likelihood of overfitting.  

The subset was identified by the variable importance metric, which indicates correlation with 

the response variable. A potential causation between TNT presence and identified important 

genera is attributable to TNT as a source for biomass generation, energy supply or toxic stress 

(George et al., 2009; Gallagher et al., 2010). The bacterial enzymatic degradation of TNT is 

mediated by nitroreductases. Nitroreductases and other common enzyme families have been 

reported as responsible for the reduction of nitro groups (Esteve-Núñez et al., 2001), which 

are among the first steps of microbial TNT transformation. Such enzymes are widely distributed 

among microorganisms, rendering microbial TNT metabolization possible in marine sediments 

(Roldán et al., 2008). In fact, TNT degradation products as ADNTs and DANTs were present 

in Kolberger Heide sediments. The ability to degrade TNT was specifically proven for more 

than 20 different genera, ranging from anaerobic members of the family Clostridiaceae to 

aerobic members of the family Pseudomonadaceae (Esteve-Núñez et al., 2001). Relatives of 

these organisms are important for the models of our study; for instance, the Top25 and Top50 

members Anaeromicrobium and Clostridiaceae sensu stricto 13, respectively, are phylogenetic 

members of the Clostridiaceae. Top25 Altererythrobacter is also phylogenetically related to 

TNT-degrading Sphingomonas sanguinis (Habineza et al., 2017). However, deriving bacterial 

activities from phylogenetic relations has to be handled carefully as phylogeny can be an 

unreliable indicator of bacterial ecology. Thus, it is also possible that the obligate anaerobic 

Anaeromicrobium acted as redox indicator for reduced conditions in the investigated 

sediments.  
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It was furthermore shown that multiple genera were required to separate classes in all samples, 

because some important taxa, such as clade TA06, were only detected in 12 samples. 

Consequently, their contribution to classification was limited. However, these genera were 

likely important, because they allowed classification of otherwise similar samples. In this 

regard, other variables could not replace this information. 

The prediction of TNT was still successful using the available sediment information alone. We 

assume that, in this case, many samples were separated first and foremost by the grain size 

distribution, as the finer multicorer samples contained many TNT-free sediments, compared to 

the coarser mine mound samples, consisting of many TNT-contaminated sediments. The other 

parameters further on separated within those groups specifically. In order to supplement 

microbial community variables one might intuitively assume that at least grain size and, where 

appropriate, redox conditions should be measured as major proxies to inform the model. 

However, the combined usage of community compositions and sediment parameters did not 

lead to predictions more accurate than by using the community data on its own. It turned out 

that the second most important Full sediment variable (63 – 125 µm grain size fraction) was 

only the 35th most important Full combined variable and the other grain size fractions were not 

included in the Top50. These findings show that taxa abundances can replace the grain size 

information because it is reflected by the community data.  

More information would be required to conclusively determine the reason why samples from 

the mine mound area, which is located in the center of the restricted area, formed a distinct 

cluster in the unsupervised PCA ordination (Fig. 4 A). This was noticeable, as the transect 

samples formed another distinct cluster, though the transects geographically encircled the 

mine mound. We suggest the sampling of the mine mound in a different season than the 

conduct of the transects as a main reason for varying assemblages (Meyer-Reil, 1983), but 

the proximity to mines as factor cannot be ruled out. Such an influence, however, was not 

displayed by the measured sediment variables (Supplementary Material 3.5), where sediments 

from the mine mound and the restricted area clustered more similarly. 

3.4.2 The microbial fingerprint requires further data to become indicative 

A meaningful indicative microbial fingerprint is equivalent with the abundances of important 

variables per response class, if they are causally related. Yet the clade TA06 was detected in 

12 of 150 samples, which increases the likelihood of being only coincidentally useful; in other 

words, the sample size is too small to know whether overfitting occurred (Dietterich, 1995). 

Thus, there is a need to reduce the potential of spurious relationships. To receive a reliable, 

generalizable and informative fingerprint we propose to: a) maximize the sample to variable 

ratio by using a minimum number of taxa while still reaching acceptable predictions, e.g. using 

backward elimination (Guyon et al., 2002); b) add samples of further targeted sites and 
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conditions, which cover all response classes, and c) perform regression instead of 

classification as long as the concentration of the response variable is appropriately distributed 

and covered. Regression yields a more informative relation between response and community 

composition and avoids arbitrary limits between response classes. 

In our study, the 150 samples were split into six different training and test sets. The test set is 

usually the ultimate benchmark for the predictive potential of the model, but it was likely that 

not all samples in our data set were equally different from each other. Therefore, the 

hyperparameters as well as the important variables were based on averaged results from the 

six sample set compositions. This approach can be seen as extra layer of repeated cross 

validation and helps to maximize the generality of the fingerprint and the chosen settings. It 

also resulted in more reliable prediction accuracies, as for an individual sample split mean 

balanced accuracies > 90 % were achieved. Important is that by this approach a training 

sample of one split is also a test sample of another split. This results ultimately in information 

leakage, although in a rather indirect way (Kaufman et al., 2011). We argue that this approach 

is justifiable for our small data set, where the detection of a generalized TNT-indicative 

microbial fingerprint as proof of principle was the priority. But in larger data sets, or to compare 

different prediction methods, regular approaches with a fixed hold out test set should be 

applied. It should also be remembered that if such a model would be actually deployed, the 

data to be predicted, e.g. from the next sampling campaign, would not yet exist. 

With regard to an indicative fingerprint, we conclude that the presented data set probably 

contains essential parts of it, but is not yet suited to distinguish accidentally valuable from truly 

influenced variables. However, we conclude that the first steps were successfully taken to 

determine a microbial fingerprint indicative of TNT contamination in Kolberger Heide. 

3.4.3 An indicative microbial community fingerprint may differ between habitats 

Given the existence of such a fingerprint, part of its value is to use it for other areas of interest. 

In this regard, the usage of microbial community compositions has both advantages and 

drawbacks. Advantageous is that the features were assigned at least a partial taxonomy; thus, 

are interpretable and relatable to literature or cultivation dependent complimentary 

investigations. Yet, using taxa infers using a proxy, depending on many influences such as 

nutrients, salinity, redox, pH, temperature (Lindh and Pinhassi, 2018) or as described in this 

study, grain size.  

In order to create meaningful fingerprints, communities likely need to originate from a 

somewhat similar habitat under specific conditions. But, importantly, our models still could 

predict using data from various habitats - as from deeper multicorer and surface sediment 

samples - albeit the variable importance would be a mixture of habitat fingerprints and therefore 

less interpretable. Additionally, the important taxa might not occur everywhere. To address this 
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issue, higher tax ranks can be used, which are more likely to be found in various areas. 

Ghannam et al. (2020), for instance, used phyla to differentiate geographic locations on global 

scale. In our spatially restricted samples the phylum rank also achieved 76.9 % mean balanced 

accuracy, which is still well above coincidence. But the context of the response variable should 

be considered, as a higher taxonomic rank is reasonable to cover taxa globally. However, in a 

previous study we detected distinct reactions to the herbicide glyphosate at OTU-level for 

Pseudomonas, which were not distinguishable anymore on genus level (Janßen et al., 2019a). 

An alternative is to combine important variables from all taxonomic ranks and train with those. 

Furthermore, it is conceivable to target functions (genes or transcripts) directly by shotgun 

sequencing instead of using taxa as proxy. Alneberg et al. (2020) demonstrated that functional 

genes from metagenome assembled genomes predicted salinity and depth in Baltic Sea 

waters. 

3.4.4 Misclassified samples define further sampling campaigns 

Two mechanistically different ML algorithms were able to predict the presence of TNT in 

Kolberger Heide sediments using 25 genera. The samples misclassified by RF were also 

misclassified by the ANN, indicating that the data were insufficient in that case, independent 

of the algorithm in use. The more consistent predictions of RF stem in part from it being an 

ensemble classifier (Breiman, 2001a). Thus, all the individual predictions of the tree models 

are not published, as they are for ANNs, but reduced to a single prediction based on a majority 

vote. As ANNs do not have this leveling mechanism by default, more variance in cumulated 

classifications was observed.  

It seems reasonable to explore the microbial community composition by proximity matrix-

based ordinations, using the same distance metric that is used for the supervised classification. 

It allows correlating environmental variables, the addition of context data and provides an 

understanding on the data set dynamics. Combined with the classification robustness it 

becomes a powerful approach to determine model limitations as well as their overcoming (e.g. 

more transect samples, Supplementary Material 3.10). It can be compared to the supervised 

ordination, which indicates the separation by TNT presence or absence and confirmed that 

many of the samples consistently misclassified were not well separated. For more insights, 

decision boundaries can be added (for one model at a time [Hastie et al., 2009]). 

3.4.5 Resilience of TNT presence as a tool to detect historical contaminations 

In addition to investigating whether the composition of microbial communities can indicate 

TNT-contaminated sediments, it was of interest to us whether these indications could be 

maintained for a longer period of time, even if the sediment only contained TNT metabolites or 

was already TNT-free again. In this case, samples would be characterized as being false-

positive. Indeed, based on our approach it became apparent that especially samples 
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containing no metabolites at all had a lower chance of a false positive prediction. Unfortunately, 

the sample size did not allow a meaningful test of significance yet. The possible implications 

are relevant though, as shown by Smith et al. (2015), who successfully classified microbial 

communities affected by the Deepwater Horizon oil spill. Their random forest models classified 

samples falsely positive, which were once contaminated, yet subsequently the hydrocarbon 

concentrations had returned to background levels. 

To investigate such a phenomenon based on ecological resilience (Shade et al., 2012) at 

Kolberger Heide, it should be considered whether TNT and its metabolites result in similar 

variable importance and fingerprints due to their structural similarity as nitroaromatic 

compounds. In such a case, a test of true resilience after a TNT contamination - and therefore 

the time span to detect such – would require to work with once contaminated samples then 

free of TNT and its metabolites. It should also be ensured that the metabolites were not formed 

e.g. in the water column and subsequently adsorbed to the sediment.  

3.4.6 Importance of microbiological surveys as a key component in environmental 

monitoring 

The Kolberger Heide munitions dumpsite is a stressor to blue mussels (Mytilus edulis, Strehse 

et al., 2017; Appel et al., 2018) and dab (Limanda limanda, Koske et al., 2020); our study 

verified the presence of explosives and their transformation products in sediments as well. 

Furthermore, mines at Kolberger Heide have been proposed as point sources of mercury due 

to, e.g., mercury(II) fulminate fuses (Bełdowski et al., 2019). However, despite spottily 

occurring concentrations up to 4503 µg Hg∙kg−1 dry sediment, no correlation with the distance 

to mines was detected (Supplementary Material 3.11). Additionally, most mines on-site are 

registered as discarded munition material (Kampmeier et al., 2020). In comparison to 

unexploded ordnance, those were not fused and therefore should not contain mercury(II) 

fulminate. 

TNT was found strongly correlated with DANTs and ADNTs, though (Supplementary Material 

3.6). The presence of TNT metabolites proves that Kolberger Heide also represents a 

disturbance towards the microbial community, as it reacted to the explosives. But it is not clear 

yet to which extent the community is affected. A potential impact of TNT was surpassed by the 

main driving grain size distribution and correlating factors (Figure 3.4 A), which is expected for 

such low levels of TNT. Wikström et al. (2000) reported small amounts of degradation and 

increased microbial growth following the addition of TNT to lake microcosms. However, they 

did not find a permanent alteration of microbial communities based on random amplified 

polymorphic DNA analysis. In a study evaluating the toxicity of Harz soil extracts containing 

TNT, the Allivibrio fischeri luminescence test (EN ISO 11348) reported a long-term EC20 of 60 

– 90 ng∙g−1 or 264 pmol∙g−1 - 396 pmol∙g−1 (assuming 1 mL = 1 g [Frische, 2002]). Such 
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concentrations were met in the Kolberger Heide in exceptional cases, e.g. at the detonation 

site. A summary of various studies investigating a disturbing or toxic impact on soil 

microorganisms can be found in the article of Kuperman et al. (2009), although effects were 

only observed at soil TNT content 103 to 106-fold higher than measured in the current study. 

The information of a potential MC impact could have been recorded by microbial communities. 

Such information could be utilized in cases were direct measurements are problematic to 

realize: it was reported that TNT is hard to detect just in centimeters distance from 

containments because it slowly dissolves but is rapidly transformed or bound to sediment 

(Porter et al., 2011; Gledhill et al., 2019). In fact, TNT can be bio-transformed in minutes 

(Elovitz and Weber, 1999). Therefore, measured TNT concentrations may not fully capture the 

impact towards the environment and the microbial community specifically. Furthermore, it 

should be kept in mind that many more sediments contained MC other than TNT; the impact 

on the environment has to be considered for all MC in terms of combined effects and quantity, 

especially with the background of continuously corroding of metal housings. There is even an 

urgent demand to merely identify the actual MC composition of the dumped ammunitions (Beck 

et al., 2019). The release of MC might also be intermittent (“sudden release”), which 

emphasizes the advantages of a resilient indicative fingerprint.  

We suggest that microbial community data should be included with monitoring strategies and 

could potentially act as an information repository to complement the snapshot which is 

generated by standard monitoring methods. In return, monitoring provides a standardized 

solution to retrieve more and even specifically required samples to overcome the most severe 

hindrance for ML: limited sample size. With sufficient data, supervised machine learning could 

identify impacts of contaminants without being main community drivers. Depending on 

available context information, the sequenced community data can be utilized to train for other 

variables, e.g., the prediction of heavy metal contents, or to classify communities based on 

their distance from mines and investigate the corresponding fingerprint. 

3.5 Conclusion 

This study demonstrated successfully the prediction of TNT presence in Kolberger Heide 

sediments using microbial community information, and highlighted regions of the munitions 

dumpsite where further samples should be collected. A possible TNT indicative fingerprint on 

genus rank was identified as successful proof of principle. Finally, a potential for TNT-

dissipation resilient community compositions was observed. 

The importance of environmental monitoring including the implementation of the 

aforementioned approach was laid out, harnessing its predictive potential. In this regard, 

resilient microbial communities would allow to fill gaps between sporadic samplings; thus, to 
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identify contamination events not measurable at all times. As surplus, each monitoring event 

would generate more training data for more accurate predictions. This may ultimately lead to 

a more fundamental monitoring of marine ecosystems; based on highly-resolved biological 

variables and potentially automatable or autonomously operable. 



Curriculum vitae   122 

 

Bibliography 

Ahtiainen, H., Artell, J., Elmgren, R., Hasselström, L., and Håkansson, C. (2014). Baltic Sea 
nutrient reductions – What should we aim for? J. Environ. Manage. 145, 9–23. 
doi:10.1016/j.jenvman.2014.05.016. 

Allaire, J. J., and Chollet, F. (2020). keras: R interface to “Keras.” Available at: https://cran.r-
project.org/package=keras. 

Allaire, J. J., and Tang, Y. (2020). tensorflow: R interface to “TensorFlow.” Available at: 
https://cran.r-project.org/package=tensorflow. 

Allison, S. D., and Martiny, J. B. H. (2008). Resistance, resilience, and redundancy in 
microbial communities. Proc. Natl. Acad. Sci. 105, 11512–11519. 
doi:10.1073/pnas.0801925105. 

Alneberg, J., Bennke, C., Beier, S., Bunse, C., Quince, C., Ininbergs, K., et al. (2020). 
Ecosystem-wide metagenomic binning enables prediction of ecological niches from 
genomes. Commun. Biol. 3, 1–10. doi:10.1038/s42003-020-0856-x. 

Alneberg, J., Bjarnason, B. S., Bruijn, I. De, Schirmer, M., Quick, J., Ijaz, U. Z., et al. (2014). 
Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1114. 
doi:10.1038/nmeth.3103. 

Alneberg, J., Sundh, J., Bennke, C., Beier, S., Lundin, D., Hugerth, L. W., et al. (2018). 
BARM and BalticMicrobeDB, a reference metagenome and interface to meta-omic data 
for the Baltic Sea. Sci. Data 5, 180146. doi:10.1038/sdata.2018.146. 

Altmann, A., Toloşi, L., Sander, O., and Lengauer, T. (2010). Permutation importance: A 
corrected feature importance measure. Bioinformatics 26, 1340–1347. 
doi:10.1093/bioinformatics/btq134. 

Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fleming-Lehtinen, V., 
Gustafsson, B. G., et al. (2017). Long-term temporal and spatial trends in eutrophication 
status of the Baltic Sea. Biol. Rev. 92, 135–149. doi:10.1111/brv.12221. 

Angermueller, C., Pärnamaa, T., Parts, L., and Stegle, O. (2016). Deep learning for 
computational biology. Mol. Syst. Biol. 12, 878. doi:10.15252/msb.20156651. 

Appel, D., Strehse, J. S., Martin, H. J., and Maser, E. (2018). Bioaccumulation of 2,4,6-
trinitrotoluene (TNT) and its metabolites leaking from corroded munition in transplanted 
blue mussels (M. edulis). Mar. Pollut. Bull. 135, 1072–1078. 
doi:10.1016/j.marpolbul.2018.08.028. 

Backer, H., Leppänen, J. M., Brusendorff, A. C., Forsius, K., Stankiewicz, M., Mehtonen, J., 
et al. (2010). HELCOM Baltic Sea Action Plan - A regional programme of measures for 
the marine environment based on the Ecosystem Approach. Mar. Pollut. Bull. 60, 642–
649. doi:10.1016/j.marpolbul.2009.11.016. 

Baho, D. L., Peter, H., and Tranvik, L. J. (2012). Resistance and resilience of microbial 
communities - Temporal and spatial insurance against perturbations. Environ. Microbiol. 
14, 2283–2292. doi:10.1111/j.1462-2920.2012.02754.x. 

Bateman, A., Martin, M. J., O’Donovan, C., Magrane, M., Alpi, E., Antunes, R., et al. (2017). 
UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169. 



Curriculum vitae   123 

 

doi:10.1093/nar/gkw1099. 

Battaglin, W. A., Meyer, M. T., Kuivila, K. M., and Dietze, J. E. (2014). Glyphosate and its 
degradation product AMPA occur frequently and widely in U.S. soils, surface water, 
groundwater, and precipitation. JAWRA J. Am. Water Resour. Assoc. 50, 275–290. 
doi:10.1111/jawr.12159. 

Beck, A. J., van der Lee, E. M., Eggert, A., Stamer, B., Gledhill, M., Schlosser, C., et al. 
(2019). In situ measurements of explosive compound dissolution fluxes from exposed 
munition material in the Baltic Sea. Environ. Sci. Technol. 53, 5652–5660. 
doi:10.1021/acs.est.8b06974. 

Bełdowski, J., Klusek, Z., Szubska, M., Turja, R., Bulczak, A. I., Rak, D., et al. (2016a). 
Chemical Munitions Search & Assessment-An evaluation of the dumped munitions 
problem in the Baltic Sea. Deep. Res. Part II Top. Stud. Oceanogr. 128, 85–95. 
doi:10.1016/j.dsr2.2015.01.017. 

Bełdowski, J., Szubska, M., Emelyanov, E., Garnaga, G., Drzewińska, A., Bełdowska, M., et 
al. (2016b). Arsenic concentrations in Baltic Sea sediments close to chemical munitions 
dumpsites. Deep. Res. Part II Top. Stud. Oceanogr. 128, 114–122. 
doi:10.1016/j.dsr2.2015.03.001. 

Bełdowski, J., Szubska, M., Siedlewicz, G., Korejwo, E., Grabowski, M., Bełdowska, M., et al. 
(2019). Sea-dumped ammunition as a possible source of mercury to the Baltic Sea 
sediments. Sci. Total Environ. 674, 363–373. doi:10.1016/j.scitotenv.2019.04.058. 

Bennke, C. M., Pollehne, F., Müller, A., Hansen, R., Kreikemeyer, B., and Labrenz, M. 
(2018). The distribution of phytoplankton in the Baltic Sea assessed by a prokaryotic 
16S rRNA gene primer system. J. Plankton Res. 40, 244–254. 
doi:10.1093/plankt/fby008. 

Bergen, B., Naumann, M., Herlemann, D. P. R., Gräwe, U., Labrenz, M., and Jürgens, K. 
(2018). Impact of a major inflow event on the composition and distribution of 
bacterioplankton communities in the Baltic Sea. Front. Mar. Sci. 5, 1–14. 
doi:10.3389/fmars.2018.00383. 

Bergström, L., Börjesson, E., and Stenström, J. (2011). Laboratory and lysimeter studies of 
glyphosate and aminomethylphosphonic acid in a sand and a clay soil. J. Environ. Qual. 
40, 98–108. doi:10.2134/jeq2010.0179. 

Bernard, S., and Papineau, D. (2014). Graphitic carbons and biosignatures. Elements 10, 
435–440. doi:10.2113/gselements.10.6.435. 

Bernstein, A., and Ronen, Z. (2011). “Biodegradation of the explosives TNT, RDX and HMX,” 
in Microbial Degradation of Xenobiotics, ed. S. N. Singh, 135–176. doi:10.1007/978-3-
642-23789-8_5. 

Bodor, A., Bounedjoum, N., Vincze, G. E., Erdeiné Kis, Á., Laczi, K., Bende, G., et al. (2020). 
Challenges of unculturable bacteria: environmental perspectives. Rev. Environ. Sci. 
Biotechnol. 19, 1–22. doi:10.1007/s11157-020-09522-4. 

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina 
sequence data. Bioinformatics 30, 2114–2120. doi:10.1093/bioinformatics/btu170. 

Böttcher, C., Knobloch, T., Rühl, N.-P., Sternheim, J., Wichert, U., and Wöhler, J. (2011). 
Munitionsbelastung der deutschen Meeresgewässer – Bestandsaufnahme und 
Empfehlungen. Available at: www.munition-im-meer.de. 



Curriculum vitae   124 

 

Bourdès, V., Bonnevay, S., Lisboa, P., Defrance, R., Pérol, D., Chabaud, S., et al. (2010). 
Comparison of artificial neural network with logistic regression as classification models 
for variable selection for prediction of breast cancer patient outcomes. Adv. Artif. Neural 
Syst. 2010, 1–11. doi:10.1155/2010/309841. 

Brannon, J. M., Price, C. B., Yost, S. L., Hayes, C., and Porter, B. (2005). Comparison of 
environmental fate and transport process descriptors of explosives in saline and 
freshwater systems. Mar. Pollut. Bull. 50, 247–251. 
doi:10.1016/j.marpolbul.2004.10.008. 

Braun, S., Morono, Y., Littmann, S., Kuypers, M., Aslan, H., Dong, M., et al. (2016). Size and 
carbon content of sub-seafloor microbial cells at Landsort Deep, Baltic Sea. Front. 
Microbiol. 7, 1–13. doi:10.3389/fmicb.2016.01375. 

Bray, N. L., Pimentel, H., Melsted, P., and Pachter, L. (2016). Near-optimal probabilistic 
RNA-seq quantification. Nat. Biotechnol. 34, 525–527. doi:10.1038/nbt.3519. 

Breiman, L. (2001a). Random Forests. Mach. Learn. 45, 5–32. 
doi:https://doi.org/10.1023/A:1010933404324. 

Breiman, L. (2001b). Statistical Modeling: The Two Cultures (with comments and a rejoinder 
by the author). Stat. Sci. 16, 199–231. doi:10.1214/ss/1009213726. 

Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M. (2010). The balanced 
accuracy and its posterior distribution. in 2010 20th International Conference on Pattern 
Recognition (IEEE), 3121–3124. doi:10.1109/ICPR.2010.764. 

Broman, E., Sachpazidou, V., Pinhassi, J., and Dopson, M. (2017). Oxygenation of hypoxic 
coastal Baltic Sea sediments impacts on chemistry, microbial community composition, 
and metabolism. Front. Microbiol. 8, 1–15. doi:10.3389/fmicb.2017.02453. 

Bruns, A., Cypionka, H., and Overmann, J. (2002). Cyclic AMP and acyl homoserine 
lactones increase the cultivation efficiency of heterotrophic bacteria from the central 
Baltic Sea. Appl. Environ. Microbiol. 68, 3978–3987. doi:10.1128/AEM.68.8.3978-
3987.2002. 

Buchfink, B., Xie, C., and Huson, D. H. (2015). Fast and sensitive protein alignment using 
DIAMOND. Nat. Methods 12, 59–60. doi:10.1038/nmeth.3176. 

Bzdok, D. (2017). Classical statistics and statistical learning in imaging neuroscience. Front. 
Neurosci. 11, 1–23. doi:10.3389/fnins.2017.00543. 

Bzdok, D., Altman, N., and Krzywinski, M. (2018). Statistics versus machine learning. Nat. 
Methods 15, 233–234. doi:10.1038/nmeth.4642. 

Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. 
P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nat. 
Methods 13, 581–583. doi:10.1038/nmeth.3869. 

Cao, Y., Geddes, T. A., Yang, J. Y. H., and Yang, P. (2020). Ensemble deep learning in 
bioinformatics. Nat. Mach. Intell. doi:10.1038/s42256-020-0217-y. 

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Lozupone, C. A., Turnbaugh, 
P. J., et al. (2011). Global patterns of 16S rRNA diversity at a depth of millions of 
sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522. 
doi:10.1073/pnas.1000080107. 



Curriculum vitae   125 

 

Carles, L., Gardon, H., Joseph, L., Sanchís, J., Farré, M., and Artigas, J. (2019). Meta-
analysis of glyphosate contamination in surface waters and dissipation by biofilms. 
Environ. Int. 124, 284–293. doi:10.1016/j.envint.2018.12.064. 

Caspi, R., Billington, R., Keseler, I. M., Kothari, A., Krummenacker, M., Midford, P. E., et al. 
(2020). The MetaCyc database of metabolic pathways and enzymes - a 2019 update. 
Nucleic Acids Res. 48, D445–D453. doi:10.1093/nar/gkz862. 

Charvet, S., Riemann, L., Alneberg, J., Andersson, A. F., von Borries, J., Fischer, U., et al. 
(2019). AFISsys - An autonomous instrument for the preservation of brackish water 
samples for microbial metatranscriptome analysis. Water Res. 149, 351–361. 
doi:10.1016/j.watres.2018.11.017. 

Chollet, F., and Allaire, J. J. (2018). Deep Learning with R. Manning Publications USA 
Available at: https://www.manning.com/books/deep-learning-with-r. 

Christner, B. C., Mosley-Thompson, E., Thompson, L. G., and Reeve, J. N. (2003). Bacterial 
recovery from ancient glacial ice. Environ. Microbiol. 5, 433–436. doi:10.1046/j.1462-
2920.2003.00422.x. 

Clarke, A. (2014). The thermal limits to life on Earth. Int. J. Astrobiol. 13, 141–154. 
doi:10.1017/S1473550413000438. 

Clarke, S. C. (2005). Pyrosequencing: nucleotide sequencing technology with bacterial 
genotyping applications. Expert Rev. Mol. Diagn. 5, 947–953. 
doi:10.1586/14737159.5.6.947. 

Conley, D. J., Björck, S., Bonsdorff, E., Carstensen, J., Destouni, G., Gustafsson, B. G., et al. 
(2009). Hypoxia-related processes in the Baltic Sea. Environ. Sci. Technol. 43, 3412–
3420. doi:10.1021/es802762a. 

Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., and Lappin-Scott, H. M. 
(1995). Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745. 
doi:10.1146/annurev.mi.49.100195.003431. 

Dalrymple, G. B. (2001). The age of the Earth in the twentieth century: a problem (mostly) 
solved. Geol. Soc. London, Spec. Publ. 190, 205–221. 
doi:10.1144/GSL.SP.2001.190.01.14. 

Darrell, T., Kloft, M., Pontil, M., Rätsch, G., Rodner, E., License, G. R., et al. (2015). Machine 
learning with interdependent and non-identically distributed data. 
doi:10.4230/DagRep.5.4.18. 

Davey, M. E., and O’Toole, G. A. (2000). Microbial biofilms: from ecology to molecular 
genetics. Microbiol. Mol. Biol. Rev. 64, 847–867. doi:10.1128/MMBR.64.4.847-
867.2000. 

de Wit, C. A., Bossi, R., Dietz, R., Dreyer, A., Faxneld, S., Garbus, S. E., et al. (2020). 
Organohalogen compounds of emerging concern in Baltic Sea biota: Levels, 
biomagnification potential and comparisons with legacy contaminants. Environ. Int. 144, 
106037. doi:10.1016/j.envint.2020.106037. 

Dellwig, O., Schnetger, B., Meyer, D., Pollehne, F., Häusler, K., and Arz, H. W. (2018). 
Impact of the major baltic inflow in 2014 on manganese cycling in the Gotland Deep 
(Baltic Sea). Front. Mar. Sci. 5, 1–20. doi:10.3389/fmars.2018.00248. 

Dellwig, O., Wegwerth, A., Schnetger, B., Schulz, H., and Arz, H. W. (2019). Dissimilar 



Curriculum vitae   126 

 

behaviors of the geochemical twins W and Mo in hypoxic-euxinic marine basins. Earth-
Science Rev. 193, 1–23. doi:10.1016/j.earscirev.2019.03.017. 

Di Giulio, M. (2003). The universal ancestor and the ancestor of Bacteria were 
hyperthermophiles. J. Mol. Evol. 57, 721–730. doi:10.1007/s00239-003-2522-6. 

Di Tommaso, P., Chatzou, M., Floden, E. W., Barja, P. P., Palumbo, E., and Notredame, C. 
(2017). Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 
316–319. doi:10.1038/nbt.3820. 

Dietterich, T. (1995). Overfitting and undercomputing in machine learning. ACM Comput. 
Surv. 27, 326–327. doi:10.1145/212094.212114. 

Dodd, M. S., Papineau, D., Grenne, T., Slack, J. F., Rittner, M., Pirajno, F., et al. (2017). 
Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–
64. doi:10.1038/nature21377. 

Dopson, M., Baker-Austin, C., Hind, A., Bowman, J. P., and Bond, P. L. (2004). 
Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., 
extreme ccidophiles from acid mine drainage and industrial bioleaching Environments. 
Appl. Environ. Microbiol. 70, 2079–2088. doi:10.1128/AEM.70.4.2079-2088.2004. 

Douglas, A. E. (2015). Multiorganismal insects: Diversity and function of resident 
microorganisms. Annu. Rev. Entomol. 60, 17–34. doi:10.1146/annurev-ento-010814-
020822. 

Duke, S. O., and Powles, S. B. (2008). Glyphosate: a once-in-a-century herbicide. Pest 
Manag. Sci. 64, 319–325. doi:10.1002/ps.1518. 

Dundar, M., Krishnapuram, B., Bi, J., and Rao, R. B. (2007). Learning classifiers when the 
training data is not IID. IJCAI Int. Jt. Conf. Artif. Intell., 756–761. 

Edlund, A. (2007). Microbial Diversity in Baltic Sea Sediments. Dr. Thesis. 

Elovitz, M. S., and Weber, E. J. (1999). Sediment-mediated reduction of 2,4,6-trinitrotoluene 
and fate of the resulting aromatic (poly)amines. Environ. Sci. Technol. 33, 2617–2625. 
doi:10.1021/es980980b. 

Esteve-Núñez, A., Caballero, A., and Ramos, J. L. (2001). Biological degradation of 2,4,6-
trinitrotoluene. Microbiol. Mol. Biol. Rev. 65, 335–352. doi:10.1128/MMBR.65.3.335. 

Fahy, A., Lethbridge, G., Earle, R., Ball, A. S., Timmis, K. N., and McGenity, T. J. (2005). 
Effects of long-term benzene pollution on bacterial diversity and community structure in 
groundwater. Environ. Microbiol. 7, 1192–1199. doi:10.1111/j.1462-2920.2005.00799.x. 

Falkowski, P. G., Fenchel, T., and Delong, E. F. (2008). The microbial engines that drive 
Earth’s biogeochemical cycles. Science (80-. ). 320, 1034–1039. 
doi:10.1126/science.1153213. 

Fayyad, U., Piatetsky-Shapiro, and Smyth, P. (1996). From data mining to knowledge 
discovery in databases. AI Mag. 17, 37–54. 

Fei-Fei, L., Deng, J., and Li, K. (2010). ImageNet: Constructing a large-scale image 
database. J. Vis. 9, 1037–1037. doi:10.1167/9.8.1037. 

Fernandes, G., Aparicio, V. C., Bastos, M. C., Gerónimo, E. De, Labanowski, J., Damian, P. 
O., et al. (2019). Indiscriminate use of glyphosate impregnates river epilithic biofilms in 



Curriculum vitae   127 

 

southern Brazil. Sci. Total Environ. 651, 1377–1387. 
doi:10.1016/j.scitotenv.2018.09.292. 

Fernández-Delgado, M., Cernadas, E., Barro, S., and Amorim, D. (2014). Do we need 
hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 
15, 3133–3181. doi:10.1080/13216597.1999.9751892. 

Fioravanti, D., Giarratano, Y., Maggio, V., Agostinelli, C., Chierici, M., Jurman, G., et al. 
(2018). Phylogenetic convolutional neural networks in metagenomics. BMC 
Bioinformatics 19, 1–13. doi:10.1186/s12859-018-2033-5. 

Fischer, S. G., and Lerman, L. S. (1980). Separation of random fragments of DNA according 
to properties of their sequences. Proc. Natl. Acad. Sci. 77, 4420–4424. 
doi:10.1073/pnas.77.8.4420. 

Flemming, H.-C., and Wuertz, S. (2019). Bacteria and archaea on Earth and their abundance 
in biofilms. Nat. Rev. Microbiol. 17, 247–260. doi:10.1038/s41579-019-0158-9. 

Frische, T. (2002). Screening for soil toxicity and mutagenicity using luminescent bacteria—a 
case study of the explosive 2,4,6-trinitrotoluene (TNT). Ecotoxicol. Environ. Saf. 51, 
133–144. doi:10.1006/eesa.2001.2124. 

Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for clustering the 
next-generation sequencing data. Bioinformatics 28, 3150–3152. 
doi:10.1093/bioinformatics/bts565. 

Gallagher, E. M., Young, L. Y., McGuinness, L. M., and Kerkhof, L. J. (2010). Detection of 
2,4,6-trinitrotoluene-utilizing anaerobic bacteria by 15N and 13C incorporation. Appl. 
Environ. Microbiol. 76, 1695–1698. doi:10.1128/AEM.02274-09. 

Garnaga, G., Wyse, E., Azemard, S., Stankevičius, A., and de Mora, S. (2006). Arsenic in 
sediments from the southeastern Baltic Sea. Environ. Pollut. 144, 855–861. 
doi:10.1016/j.envpol.2006.02.013. 

George, I. F., Liles, M. R., Hartmann, M., Ludwig, W., Goodman, R. M., and Agathos, S. N. 
(2009). Changes in soil Acidobacteria communities after 2,4,6-trinitrotoluene 
contamination. FEMS Microbiol. Lett. 296, 159–166. doi:10.1111/j.1574-
6968.2009.01632.x. 

Gerhard, W. A., and Gunsch, C. K. (2019). Metabarcoding and machine learning analysis of 
environmental DNA in ballast water arriving to hub ports. Environ. Int. 124, 312–319. 
doi:10.1016/j.envint.2018.12.038. 

Ghannam, R. B., Schaerer, L. G., Butler, T. M., and Techtmann, S. M. (2020). Biogeographic 
patterns in members of globally distributed and dominant taxa found in port microbial 
communities. mSphere 5. doi:10.1128/mSphere.00481-19. 

Glasby, T. M., and Underwood, A. J. (1996). Sampling to differentiate between pulse and 
press perturbations. Environ. Monit. Assess. 42, 241–252. doi:10.1007/BF00414371. 

Glasl, B., Bourne, D. G., Frade, P. R., Thomas, T., Schaffelke, B., and Webster, N. S. (2019). 
Microbial indicators of environmental perturbations in coral reef ecosystems. 
Microbiome 7, 1–13. doi:10.1186/s40168-019-0705-7. 

Gledhill, M., Beck, A. J., Stamer, B., Schlosser, C., and Achterberg, E. P. (2019). 
Quantification of munition compounds in the marine environment by solid phase 
extraction – ultra high performance liquid chromatography with detection by electrospray 



Curriculum vitae   128 

 

ionisation – mass spectrometry. Talanta 200, 366–372. 
doi:10.1016/j.talanta.2019.03.050. 

Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., and Egozcue, J. J. (2017). Microbiome 
datasets are compositional: And this is not optional. Front. Microbiol. 8, 1–6. 
doi:10.3389/fmicb.2017.02224. 

Glorot, X., and Bengio, Y. (2010). Understanding the difficulty of training deep feedforward 
neural networks. in JMLR W&CP: Proceedings of the Thirteenth International 
Conference on Artificial Intelligence and Statistics (AISTATS 2010), 249–256. 

Grasshoff, K., Kremling, K., and Ehrhardt, M. eds. (1999). Methods of Seawater Analysis. 
Third. Wiley doi:10.1002/9783527613984. 

Green, M. R., and Sambrook, J. (2012). Molecular cloning: a laboratory manual. Fourth Edi. 
Cold Spring Harbor Laboratory Press. 

Greinert, J. (2019). UDEMM - Practical guide for environmental monitoring of conventional 
munitions in the seas. Berichte aus dem GEOMAR Helmholtz-Zentrum für Ozeanforsch. 
Kiel 54. doi:10.3289/GEOMAR_REP_NS_54_2019. 

Grote, J., Labrenz, M., Pfeiffer, B., Jost, G., and Jürgens, K. (2007). Quantitative distributions 
of Epsilonproteobacteria and a Sulfurimonas subgroup in pelagic redoxclines of the 
central Baltic Sea. Appl. Environ. Microbiol. 73, 7155–7161. doi:10.1128/AEM.00466-
07. 

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer 
classification using support vector machines. Mach. Learn. 46, 389–422. 
doi:10.1023/A:1012487302797. 

Habineza, A., Zhai, J., Mai, T., Mmereki, D., and Ntakirutimana, T. (2017). Biodegradation of 
2,4,6-trinitrotoluene (TNT) in contaminated soil and microbial remediation options for 
treatment. Period. Polytech. Chem. Eng. 61, 171–187. doi:10.3311/PPch.9251. 

Hall, M., National, H., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., et al. (2009). 
The WEKA Data Mining Software: An Update. ACM SIGKDD Explor. Newsl. 11, 10–18. 
doi:10.1145/1656274.1656278. 

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical learning. 
Second Edi. New York, NY: Springer New York doi:10.1007/b94608. 

Häusler, K., Dellwig, O., Schnetger, B., Feldens, P., Leipe, T., Moros, M., et al. (2018). 
Massive Mn carbonate formation in the Landsort Deep (Baltic Sea): Hydrographic 
conditions, temporal succession, and Mn budget calculations. Mar. Geol. 395, 260–270. 
doi:10.1016/j.margeo.2017.10.010. 

He, Z., Zhang, P., Wu, L., Rocha, A. M., Tu, Q., Shi, Z., et al. (2018). Microbial functional 
gene diversity predicts groundwater contamination and ecosystem functioning. MBio 9, 
1–15. doi:10.1128/mBio.02435-17. 

Heinänen, A. (1991). Bacterial numbers, biomass and productivity in the Baltic Sea: a cruise 
study. Mar. Ecol. Prog. Ser. 70, 283–290. doi:10.3354/meps070283. 

HELCOM (2018). State of the Baltic Sea - Second HELCOM holistic assessment 2011-2016. 
Balt. Sea Environ. Proc. 155, 1–155. Available at: www.helcom.fi/baltic-sea-
trends/holistic-assessments/state-of-the-baltic-sea-2018/reports-and-materials/. 



Curriculum vitae   129 

 

Herlemann, D. P., Labrenz, M., Jürgens, K., Bertilsson, S., Waniek, J. J., and Andersson, A. 
F. (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the 
Baltic Sea. ISME J. 5, 1571–1579. doi:10.1038/ismej.2011.41. 

Hove-Jensen, B., Zechel, D. L., and Jochimsen, B. (2014). Utilization of glyphosate as 
phosphate source: Biochemistry and genetics of bacterial carbon-phosphorus lyase. 
Microbiol. Mol. Biol. Rev. 78, 176–197. doi:10.1128/MMBR.00040-13. 

Huang, J., Su, Z., and Xu, Y. (2005). The evolution of microbial phosphonate degradative 
pathways. J. Mol. Evol. 61, 682–690. doi:10.1007/s00239-004-0349-4. 

Huang, X.-L., and Zhang, J.-Z. (2011). Phosphorus sorption on marine carbonate sediment: 
Phosphonate as model organic compounds. Chemosphere 85, 1227–1232. 
doi:10.1016/j.chemosphere.2011.07.016. 

Inagaki, F., Hinrichs, K. U., Kubo, Y., Bowles, M. W., Heuer, V. B., Hong, W. L., et al. (2015). 
Exploring deep microbial life in coal-bearing sediment down to 2.5 km below the ocean 
floor. Science (80-. ). 349, 420–424. doi:10.1126/science.aaa6882. 

Ininbergs, K., Bergman, B., Larsson, J., and Ekman, M. (2015). Microbial metagenomics in 
the Baltic Sea: Recent advancements and prospects for environmental monitoring. 
Ambio 44, 439–450. doi:10.1007/s13280-015-0663-7. 

Jacob, G. S., Garbow, J. R., Hallas, L. E., Kimack, N. M., Kishore, G. M., and Schaefer, J. 
(1988). Metabolism of glyphosate in Pseudomonas sp. strain LBr. Appl. Environ. 
Microbiol. 54, 2953–2958. 

Janitza, S., Celik, E., and Boulesteix, A. L. (2018). A computationally fast variable importance 
test for random forests for high-dimensional data. Adv. Data Anal. Classif. 12, 885–915. 
doi:10.1007/s11634-016-0276-4. 

Janßen, R., Beck, A. J., Werner, J., Dellwig, O., Alneberg, J., Kreikemeyer, B., et al. (2020). 
Machine learning predicts the presence of 2,4,6-trinitrotoluene in sediments of a Baltic 
Sea munitions dumpsite using microbial community compositions. Front. Microbiol. 

Janßen, R., Skeff, W., Werner, J., Wirth, M. A., Kreikemeyer, B., Schulz-Bull, D., et al. 
(2019a). A glyphosate pulse to brackish long-term microcosms has a greater impact on 
the microbial diversity and abundance of planktonic than of biofilm assemblages. Front. 
Mar. Sci. 6, 1–17. doi:10.3389/fmars.2019.00758. 

Janßen, R., Zabel, J., von Lukas, U., and Labrenz, M. (2019b). An artificial neural network 
and Random Forest identify glyphosate-impacted brackish communities based on 16S 
rRNA amplicon MiSeq read counts. Mar. Pollut. Bull. 149, 110530. 
doi:10.1016/j.marpolbul.2019.110530. 

Kampmeier, M., van der Lee, E. M., Wichert, U., and Greinert, J. (2020). Exploration of the 
munition dumpsite Kolberger Heide in Kiel Bay, Germany: Example for a standardised 
hydroacoustic and optic monitoring approach. Cont. Shelf Res. 198, 104108. 
doi:10.1016/j.csr.2020.104108. 

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 
7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. 
doi:10.1093/molbev/mst010. 

Kaufman, S., Rosset, S., and Perlich, C. (2011). Leakage in data mining: Formulation, 
detection, and avoidance. Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 
556–563. doi:10.1145/2020408.2020496. 



Curriculum vitae   130 

 

Khadra, M., Planas, D., Girard, C., and Amyot, M. (2018). Age matters: Submersion period 
shapes community composition of lake biofilms under glyphosate stress. FACETS 3, 
934–951. doi:10.1139/facets-2018-0019. 

Klátyik, S., Takács, E., Mörtl, M., Földi, A., Trábert, Z., Ács, É., et al. (2017). Dissipation of 
the herbicide active ingredient glyphosate in natural water samples in the presence of 
biofilms. Int. J. Environ. Anal. Chem. 97, 901–921. 
doi:10.1080/03067319.2017.1373770. 

Knights, D., Costello, E. K., and Knight, R. (2011). Supervised classification of human 
microbiota. FEMS Microbiol. Rev. 35, 343–359. doi:10.1111/j.1574-6976.2010.00251.x. 

Koch, A. L. (2001). Oligotrophs versus copiotrophs. BioEssays 23, 657–661. 
doi:10.1002/bies.1091. 

Koske, D., Straumer, K., Goldenstein, N. I., Hanel, R., Lang, T., and Kammann, U. (2020). 
First evidence of explosives and their degradation products in dab (Limanda limanda L.) 
from a munition dumpsite in the Baltic Sea. Mar. Pollut. Bull. 155, 111131. 
doi:10.1016/j.marpolbul.2020.111131. 

Kuperman, R. G., Simini, M., Siciliano, S. D., and Gong, P. (2009). “Effects of energetic 
materials on soil organisms,” in Ecotoxicology of Explosives, eds. G. I. Sunahara, G. 
Lotufo, R. G. Kuperman, and J. Hawari (CRC Press), 35–76. 
doi:10.1201/9781420004342. 

Kwiatkowska, M., Jarosiewicz, P., Michałowicz, J., Koter-Michalak, M., Huras, B., and 
Bukowska, B. (2016). The impact of glyphosate, its metabolites and impurities on 
viability, ATP level and morphological changes in human peripheral blood mononuclear 
cells. PLoS One 11, e0156946. doi:10.1371/journal.pone.0156946. 

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., and Müller, K. R. 
(2019). Unmasking Clever Hans predictors and assessing what machines really learn. 
Nat. Commun. 10, 1–8. doi:10.1038/s41467-019-08987-4. 

Larsen, P. E., Field, D., and Gilbert, J. A. (2012). Predicting bacterial community 
assemblages using an artificial neural network approach. Nat. Methods 9, 621–625. 
doi:10.1038/nmeth.1975. 

Leamon, J. H., and Rothberg, J. M. (2009). “DNA sequencing and genomics,” in 
Encyclopedia of Microbiology (Elsevier), 148–161. doi:10.1016/B978-012373944-
5.00024-9. 

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444. 
doi:10.1038/nature14539. 

Leipe, T., Moros, M., Kotilainen, A., Vallius, H., Kabel, K., Endler, M., et al. (2013). Mercury 
in Baltic Sea sediments - Natural background and anthropogenic impact. Geochemistry 
73, 249–259. doi:10.1016/j.chemer.2013.06.005. 

Li, D., Luo, R., Liu, C.-M., Leung, C.-M., Ting, H.-F., Sadakane, K., et al. (2016). MEGAHIT 
v1.0: A fast and scalable metagenome assembler driven by advanced methodologies 
and community practices. Methods 102, 3–11. doi:10.1016/j.ymeth.2016.02.020. 

Li, L., Rakitsch, B., and Borgwardt, K. (2011). ccSVM: correcting support vector machines for 
confounding factors in biological data classification. Bioinformatics 27, i342–i348. 
doi:10.1093/bioinformatics/btr204. 



Curriculum vitae   131 

 

Liaw, A., and Wiener, M. (2002). Classification and regression by randomForest. R News 2, 
18–22. Available at: https://cran.r-project.org/doc/Rnews/. 

Lidbury, I. D. E. A., Murphy, A. R. J., Scanlan, D. J., Bending, G. D., Jones, A. M. E., Moore, 
J. D., et al. (2016). Comparative genomic, proteomic and exoproteomic analyses of 
three Pseudomonas strains reveals novel insights into the phosphorus scavenging 
capabilities of soil bacteria. Environ. Microbiol. 18, 3535–3549. doi:10.1111/1462-
2920.13390. 

Lin, C., Jain, S., Kim, H., and Bar-Joseph, Z. (2017). Using neural networks for reducing the 
dimensions of single-cell RNA-Seq data. Nucleic Acids Res. 45, e156–e156. 
doi:10.1093/nar/gkx681. 

Lindh, M. V., and Pinhassi, J. (2018). Sensitivity of bacterioplankton to environmental 
disturbance: A review of Baltic Sea field studies and experiments. Front. Mar. Sci. 5, 1–
17. doi:10.3389/fmars.2018.00361. 

Lindh, M. V., Sjöstedt, J., Andersson, A. F., Baltar, F., Hugerth, L. W., Lundin, D., et al. 
(2015). Disentangling seasonal bacterioplankton population dynamics by high-frequency 
sampling. Environ. Microbiol. 17, 2459–2476. doi:10.1111/1462-2920.12720. 

Lipok, J., Owsiak, T., Młynarz, P., Forlani, G., and Kafarski, P. (2007). Phosphorus NMR as a 
tool to study mineralization of organophosphonates—The ability of Spirulina spp. to 
degrade glyphosate. Enzyme Microb. Technol. 41, 286–291. 
doi:10.1016/j.enzmictec.2007.02.004. 

Lippert, C., Listgarten, J., Liu, Y., Kadie, C. M., Davidson, R. I., and Heckerman, D. (2011). 
FaST linear mixed models for genome-wide association studies. Nat. Methods 8, 833–
835. doi:10.1038/nmeth.1681. 

López-Rodas, V., Flores-Moya, A., Maneiro, E., Perdigones, N., Marva, F., García, M. E., et 
al. (2007). Resistance to glyphosate in the cyanobacterium Microcystis aeruginosa as 
result of pre-selective mutations. Evol. Ecol. 21, 535–547. doi:10.1007/s10682-006-
9134-8. 

Love, M. I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. doi:10.1186/s13059-
014-0550-8. 

Lozano, V. L., Vinocur, A., Sabio y García, C. A., Allende, L., Cristos, D. S., Rojas, D., et al. 
(2018). Effects of glyphosate and 2,4-D mixture on freshwater phytoplankton and 
periphyton communities: a microcosms approach. Ecotoxicol. Environ. Saf. 148, 1010–
1019. doi:10.1016/j.ecoenv.2017.12.006. 

Lu, G.-H., Zhu, Y.-L., Kong, L.-R., Cheng, J., Tang, C.-Y., Hua, X.-M., et al. (2017). Impact of 
a glyphosate-tolerant soybean line on the Rhizobacteria, revealed by Illumina MiSeq. J. 
Microbiol. Biotechnol. 27, 561–572. doi:10.4014/jmb.1609.09008. 

Makarova, K. S., Aravind, L., Wolf, Y. I., Tatusov, R. L., Minton, K. W., Koonin, E. V., et al. 
(2001). Genome of the extremely radiation-resistant bacterium Deinococcus 
radiodurans viewed from the perspective of comparative genomics. Microbiol. Mol. Biol. 
Rev. 65, 44–79. doi:10.1128/MMBR.65.1.44-79.2001. 

Marshall, K. C. (2013). “Planktonic versus sessile life of prokaryotes,” in The Prokaryotes 
(Berlin, Heidelberg: Springer Berlin Heidelberg), 191–201. doi:10.1007/978-3-642-
30123-0_49. 



Curriculum vitae   132 

 

Martin, C. W. (2020). Impact of sea-dumped ammunition on microbial communities in Baltic 
Sea sediments analysed through shotgun metagenomics. 

Martinez, A., Tyson, G. W., and Delong, E. F. (2010). Widespread known and novel 
phosphonate utilization pathways in marine bacteria revealed by functional screening 
and metagenomic analyses. Environ. Microbiol. 12, 222–238. doi:10.1111/j.1462-
2920.2009.02062.x. 

Martínez, A., Ventouras, L. A., Wilson, S. T., Karl, D. M., and DeLong, E. F. (2013). 
Metatranscriptomic and functional metagenomic analysis of methylphosphonate 
utilization by marine bacteria. Front. Microbiol. 4, 1–18. doi:10.3389/fmicb.2013.00340. 

Maser, E., and Strehse, J. S. (2020). “Don’t Blast”: blast-in-place (BiP) operations of dumped 
World War munitions in the oceans significantly increase hazards to the environment 
and the human seafood consumer. Arch. Toxicol. 94, 1941–1953. doi:10.1007/s00204-
020-02743-0. 

McGrath, J. W., Ternan, N. G., and Quinn, J. P. (1997). Utilization of organophosphonates by 
environmental microorganisms. Lett. Appl. Microbiol. 24, 69–73. doi:10.1046/j.1472-
765X.1997.00350.x. 

McLaren, M. (2020). speedyseq: Faster implementations of common phyloseq functions. 
Available at: https://github.com/mikemc/speedyseq. 

McMurdie, P. J., and Holmes, S. (2013). phyloseq: An R package for reproducible interactive 
analysis and graphics of microbiome census data. PLoS One 8, e61217. 
doi:10.1371/journal.pone.0061217. 

McMurdie, P. J., and Holmes, S. (2014). Waste not, want not: why rarefying microbiome data 
is inadmissible. PLoS Comput. Biol. 10. doi:10.1371/journal.pcbi.1003531. 

Menze, B. H., Kelm, B. M., Splitthoff, N., and Hamprecht, F. A. (2011). “On oblique random 
forests,” in Machine Learning and Knowledge Discovery in Databases, 453–469. 

Mercurio, P., Flores, F., Mueller, J. F., Carter, S., and Negri, A. P. (2014). Glyphosate 
persistence in seawater. Mar. Pollut. Bull. 85, 385–390. 
doi:10.1016/j.marpolbul.2014.01.021. 

Meredith, H. R., Andreani, V., Ma, H. R., Lopatkin, A. J., Lee, A. J., Anderson, D. J., et al. 
(2018). Applying ecological resistance and resilience to dissect bacterial antibiotic 
responses. Sci. Adv. 4, eaau1873. doi:10.1126/sciadv.aau1873. 

Meyer-Reil, L.-A. (1983). Benthic response to sedimentation events during autumn to spring 
at a shallow water station in the Western Kiel Bight. Mar. Biol. 77, 247–256. 
doi:10.1007/BF00395813. 

Meyer-Reil, L. A. (1994). Microbial life in sedimentary biofilms - The challenge to microbial 
ecologists. Mar. Ecol. Prog. Ser. 112, 303–311. doi:10.3354/meps112303. 

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Science/Engineering/Math. 

Moitinho-Silva, L., Steinert, G., Nielsen, S., Hardoim, C. C. P., Wu, Y. C., McCormack, G. P., 
et al. (2017). Predicting the HMA-LMA status in marine sponges by machine learning. 
Front. Microbiol. 8, 1–14. doi:10.3389/fmicb.2017.00752. 

Montavon, G., Samek, W., and Müller, K. R. (2018). Methods for interpreting and 
understanding deep neural networks. Digit. Signal Process. A Rev. J. 73, 1–15. 



Curriculum vitae   133 

 

doi:10.1016/j.dsp.2017.10.011. 

Morono, Y., Ito, M., Hoshino, T., Terada, T., Hori, T., Ikehara, M., et al. (2020). Aerobic 
microbial life persists in oxic marine sediment as old as 101.5 million years. Nat. 
Commun. 11. doi:10.1038/s41467-020-17330-1. 

Myers, J. P., Antoniou, M. N., Blumberg, B., Carroll, L., Colborn, T., Everett, L. G., et al. 
(2016). Concerns over use of glyphosate-based herbicides and risks associated with 
exposures: a consensus statement. Environ. Heal. 15, 19. doi:10.1186/s12940-016-
0117-0. 

Nembrini, S., König, I. R., and Wright, M. N. (2018). The revival of the Gini importance? 
Bioinformatics 34, 3711–3718. doi:10.1093/bioinformatics/bty373. 

Newman, M. M., Lorenz, N., Hoilett, N., Lee, N. R., Dick, R. P., Liles, M. R., et al. (2016). 
Changes in rhizosphere bacterial gene expression following glyphosate treatment. Sci. 
Total Environ. 553, 32–41. doi:10.1016/j.scitotenv.2016.02.078. 

Nguyen, N. G., Tran, V. A., Ngo, D. L., Phan, D., Lumbanraja, F. R., Faisal, M. R., et al. 
(2016). DNA sequence classification by convolutional neural network. J. Biomed. Sci. 
Eng. 09, 280–286. doi:10.4236/jbise.2016.95021. 

Ni, J., Yan, Q., and Yu, Y. (2013). How much metagenomic sequencing is enough to achieve 
a given goal? Sci. Rep. 3, 1968. doi:10.1038/srep01968. 

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017). metaSPAdes: a new 
versatile metagenomic assembler. Genome Res. 27, 824–834. 
doi:10.1101/gr.213959.116. 

Økland, R. H. (2007). Wise use of statistical tools in ecological field studies. Folia Geobot. 
42, 123–140. doi:10.2307/41245506. 

Oksanen, J. (2015). Multivariate analysis of ecological communities in R: vegan tutorial. 
Available at: https://linkinghub.elsevier.com/retrieve/pii/0169534788901243. 

Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., et al. (2019). 
vegan: Community Ecology Package. Available at: https://cran.r-
project.org/package=vegan. 

Orita, M., Iwahana, H., Kanazawa, H., Hayashi, K., and Sekiya, T. (1989). Detection of 
polymorphisms of human DNA by gel electrophoresis as single-strand conformation 
polymorphisms. Proc. Natl. Acad. Sci. 86, 2766–2770. doi:10.1073/pnas.86.8.2766. 

Orwin, K. H., and Wardle, D. A. (2004). New indices for quantifying the resistance and 
resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 36, 1907–1912. 
doi:10.1016/j.soilbio.2004.04.036. 

Paliy, O., and Shankar, V. (2016). Application of multivariate statistical techniques in 
microbial ecology. Mol. Ecol. 25, 1032–1057. doi:10.1111/mec.13536. 

Paluszynska, A., and Biecek, P. (2017). randomForestExplainer: Explaining and visualizing 
random forests in terms of variable importance. Available at: https://cran.r-
project.org/package=randomForestExplainer. 

Parks, D. H., Chuvochina, M., Waite, D. W., Rinke, C., Skarshewski, A., Chaumeil, P.-A., et 
al. (2018). A standardized bacterial taxonomy based on genome phylogeny substantially 
revises the tree of life. Nat. Biotechnol. 36, 996–1004. doi:10.1038/nbt.4229. 



Curriculum vitae   134 

 

Patterson, J., and Gibson, A. (2017). Deep learning. , eds. M. Loukides and T. McGovern 
O’Reilly Media. 

Pedotti, M., Rosini, E., Molla, G., Moschetti, T., Savino, C., Vallone, B., et al. (2009). 
Glyphosate resistance by engineering the flavoenzyme glycine oxidase. J. Biol. Chem. 
284, 36415–36423. doi:10.1074/jbc.M109.051631. 

Pernthaler, J. (2017). Competition and niche separation of pelagic bacteria in freshwater 
habitats. Environ. Microbiol. 19, 2133–2150. doi:10.1111/1462-2920.13742. 

Pfeiffer, F. (2009). Bericht über die in-situ-Begleituntersuchungen zur Munitionssprengung in 
der Ostsee vom 18.2.2009. Available at: https://www.schleswig-
holstein.de/DE/Fachinhalte/M/meeresschutz/Downloads/Bericht_Begleituntersuchung_2
009.pdf. 

Porter, J. W., Barton, J. V., and Torres, C. (2011). “Ecological, radiological, and toxicological 
effects of naval bombardment on the coral reefs of Isla de Vieques, Puerto Rico,” in 
Warfare ecology: A new synthesis for peace and security, eds. G. E. Machlis, T. 
Hanson, Z. Špirić, and J. E. McKendry, 65–121. doi:10.1007/978-94-007-1214-0_8. 

Porter, K. G., and Feig, Y. S. (1980). The use of DAPI for identifying and counting aquatic 
microflora. Limnol. Ocean. 25, 943–948. doi:10.4319/lo.1980.25.5.0943. 

Qu, K., Guo, F., Liu, X., Lin, Y., and Zou, Q. (2019). Application of machine learning in 
microbiology. Front. Microbiol. 10, 1–10. doi:10.3389/fmicb.2019.00827. 

Qu, X., Ren, Z., Zhang, H., Zhang, M., Zhang, Y., Liu, X., et al. (2017). Influences of 
anthropogenic land use on microbial community structure and functional potentials of 
stream benthic biofilms. Sci. Rep. 7, 15117. doi:10.1038/s41598-017-15624-x. 

R Core Team (2017). R: A language and environment for statistical computing. Vienna, 
Austria Available at: https://www.r-project.org/. 

R Core Team, Team, R. C., and others (2017). R: A language and environment for statistical 
computing. 3. doi:ISBN 3-900051-07-0, URL http://www.R-project.org/. 

Rantajärvi, E., Flinkman, J., Ruokanen, L., Hällfors, S., Stipa, T., Suominen, T., et al. (2003). 
Alg@line in 2003: 10 years of innovative plankton monitoring and research an 
operational information service in the Baltic Sea. 

Ratcliff, A. W., Busse, M. D., and Shestak, C. J. (2006). Changes in microbial community 
structure following herbicide (glyphosate) additions to forest soils. Appl. Soil Ecol. 34, 
114–124. doi:10.1016/j.apsoil.2006.03.002. 

Reese, A. T., Savage, A., Youngsteadt, E., McGuire, K. L., Koling, A., Watkins, O., et al. 
(2016). Urban stress is associated with variation in microbial species composition—but 
not richness—in Manhattan. ISME J. 10, 751–760. doi:10.1038/ismej.2015.152. 

Rheinheimer, G. (1998). Pollution in the Baltic Sea. Naturwissenschaften 85, 318–329. 
doi:10.1007/s001140050508. 

Rieck, A., Herlemann, D. P. R., Jürgens, K., and Grossart, H.-P. (2015). Particle-associated 
differ from free-living bacteria in surface waters of the Baltic Sea. Front. Microbiol. 6. 
doi:10.3389/fmicb.2015.01297. 

Rodríguez, J. (2020). Bacterial communities in polluted Baltic Sea environments in a 
changing climate. 



Curriculum vitae   135 

 

Rognes, T., Flouri, T., Nichols, B., Quince, C., and Mahé, F. (2016). VSEARCH: a versatile 
open source tool for metagenomics. PeerJ 4, e2584. doi:10.7717/peerj.2584. 

Roldán, M. D., Pérez-Reinado, E., Castillo, F., and Moreno-Vivián, C. (2008). Reduction of 
polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev. 32, 
474–500. doi:10.1111/j.1574-6976.2008.00107.x. 

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and 
organization in the brain. Psychol. Rev. 65, 386–408. doi:10.1037/h0042519. 

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes 
decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215. 
doi:10.1038/s42256-019-0048-x. 

Ryan, F. J. (2019). Application of machine learning techniques for creating urban microbial 
fingerprints. Biol. Direct 14, 13. doi:10.1186/s13062-019-0245-x. 

Rykiel Jr., E. J. (1985). Towards a definition of ecological disturbance. Aust. J. Ecol. 10, 361–
365. Available at: 
http://www.buyteknet.info/fileshare/data/analisis_lect/towards_a_definition_of_ecological
_disturbance_122.pdf. 

Samhita, L., and Gross, H. J. (2013). The “Clever Hans Phenomenon” revisited. Commun. 
Integr. Biol. 6, e27122. doi:10.4161/cib.27122. 

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. 
(2009). Introducing mothur: Open-source, platform-independent, community-supported 
software for describing and comparing microbial communities. Appl. Environ. Microbiol. 
75, 7537–7541. doi:10.1128/AEM.01541-09. 

Schmidhuber, J. (2015). Deep learning in neural networks: an overview. Neural Networks 61, 
85–117. 

Schulz, H. N., and Jørgensen, B. B. (2001). Big bacteria. Annu. Rev. Microbiol. 55, 105–137. 
doi:10.1146/annurev.micro.55.1.105. 

Seemann, T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–
2069. doi:10.1093/bioinformatics/btu153. 

Shade, A., Peter, H., Allison, S. D., Baho, D. L., Berga, M., Bürgmann, H., et al. (2012). 
Fundamentals of microbial community resistance and resilience. Front. Microbiol. 3, 1–
19. doi:10.3389/fmicb.2012.00417. 

Shirani, M., Afzali, K. N., Jahan, S., Strezov, V., and Soleimani-Sardo, M. (2020). Pollution 
and contamination assessment of heavy metals in the sediments of Jazmurian playa in 
southeast Iran. Sci. Rep. 10, 4775. doi:10.1038/s41598-020-61838-x. 

Skeff, W., Neumann, C., and Schulz-Bull, D. E. (2015). Glyphosate and AMPA in the 
estuaries of the Baltic Sea method optimization and field study. Mar. Pollut. Bull. 100, 
577–585. doi:10.1016/j.marpolbul.2015.08.015. 

Skeff, W., Recknagel, C., and Schulz-Bull, D. E. (2016). The influence of salt matrices on the 
reversed-phase liquid chromatography behavior and electrospray ionization tandem 
mass spectrometry detection of glyphosate, glufosinate, aminomethylphosphonic acid 
and 2-aminoethylphosphonic acid in water. J. Chromatogr. A 1475, 64–73. 
doi:10.1016/j.chroma.2016.11.007. 



Curriculum vitae   136 

 

Smith, M. B., Rocha, A. M., Smillie, C. S., Olesen, S. W., Paradis, C., Wu, L., et al. (2015). 
Natural bacterial communities serve as quantitative geochemical biosensors. MBio 6, 1–
13. doi:10.1128/mBio.00326-15. 

Snoeijs-Leijonmalm, P., and Andrén, E. (2017). “Why is the Baltic Sea so special to live in?,” 
in Biological Oceanography of the Baltic Sea, eds. P. Snoeijs-Leijonmalm, H. Schubert, 
and T. Radziejewska (Dordrecht: Springer Netherlands), 23–84. doi:10.1007/978-94-
007-0668-2_2. 

Soneson, C., Gerster, S., and Delorenzi, M. (2014). Batch effect confounding leads to strong 
bias in performance estimates obtained by cross-validation. PLoS One 9, e100335. 
doi:10.1371/journal.pone.0100335. 

Spain, J. C. (1995). Biodegradation of nitroaromatic compounds. Annu. Rev. Microbiol. 49, 
523–555. doi:10.1146/annurev.micro.49.1.523. 

Sprinkhuizen-Kuyper, I. G., and Boers, E. J. W. (1996). The error surface of the simplest 
XOR network has only global minima. Neural Comput. 8, 1301–1320. 
doi:10.1162/neco.1996.8.6.1301. 

Stachowski-Haberkorn, S., Becker, B., Marie, D., Haberkorn, H., Coroller, L., and de la 
Broise, D. (2008). Impact of Roundup on the marine microbial community, as shown by 
an in situ microcosm experiment. Aquat. Toxicol. 89, 232–241. 
doi:10.1016/j.aquatox.2008.07.004. 

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of 
large phylogenies. Bioinformatics 30, 1312–1313. doi:10.1093/bioinformatics/btu033. 

Steel, E. A., Kennedy, M. C., Cunningham, P. G., and Stanovick, J. S. (2013). Applied 
statistics in ecology: common pitfalls and simple solutions. Ecosphere 4, art115. 
doi:10.1890/ES13-00160.1. 

Stone, M. (1974). Cross-validatory choice and assessment of statistical predictions. J. R. 
Stat. Soc. Ser. B 36, 111–133. doi:10.1111/j.2517-6161.1974.tb00994.x. 

Strehse, J. S., Appel, D., Geist, C., Martin, H. J., and Maser, E. (2017). Biomonitoring of 
2,4,6-trinitrotoluene and degradation products in the marine environment with 
transplanted blue mussels (M. edulis). Toxicology 390, 117–123. 
doi:10.1016/j.tox.2017.09.004. 

Sviridov, A. V., Shushkova, T. V, Ermakova, I. T., Ivanova, E. V, Epiktetov, D. O., and 
Leontievsky,  a a (2015). Microbial degradation of glyphosate herbicides (Review). Appl. 
Biochem. Microbiol. 51, 188–195. doi:10.1134/S0003683815020209. 

Sviridov, A. V, Shushkova, T. V, Zelenkova, N. F., Vinokurova, N. G., Morgunov, I. G., 
Ermakova, I. T., et al. (2012). Distribution of glyphosate and methylphosphonate 
catabolism systems in soil bacteria Ochrobactrum anthropi and Achromobacter sp. 
Appl. Microbiol. Biotechnol. 93, 787–796. doi:10.1007/s00253-011-3485-y. 

Sweitzer, J., Langaas, S., and Folke, C. (1996). Land cover and population density in the 
Baltic Sea drainage basin: A GIS database. Ambio 25, 191–198. doi:10.2307/4314452. 

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., et al. (2014). 
Intriguing properties of neural networks. in 2nd International Conference on Learning 
Representations, ICLR 2014 - Conference Track Proceedings, 1–10. 

Takahashi, S., Tomita, J., Nishioka, K., Hisada, T., and Nishijima, M. (2014). Development of 



Curriculum vitae   137 

 

a prokaryotic universal primer for simultaneous analysis of bacteria and archaea using 
next-generation sequencing. PLoS One 9, e105592. doi:10.1371/journal.pone.0105592. 

Tan, M., and Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural 
networks. 36th Int. Conf. Mach. Learn. ICML 2019 2019-June, 10691–10700. 

Thompson, J., Johansen, R., Dunbar, J., and Munsky, B. (2019). Machine learning to predict 
microbial community functions: An analysis of dissolved organic carbon from litter 
decomposition. PLoS One 14, 1–16. doi:10.1371/journal.pone.0215502. 

Thureborn, P., Franzetti, A., Lundin, D., and Sjöling, S. (2016). Reconstructing ecosystem 
functions of the active microbial community of the Baltic Sea oxygen depleted 
sediments. PeerJ 4, e1593. doi:10.7717/peerj.1593. 

Thureborn, P., Lundin, D., Plathan, J., Poole, A. M., Sjöberg, B.-M., and Sjöling, S. (2013). A 
metagenomics transect into the deepest point of the Baltic Sea reveals clear 
stratification of microbial functional capacities. PLoS One 8, e74983. 
doi:10.1371/journal.pone.0074983. 

Tlili, A., Corcoll, N., Bonet, B., Morin, S., Montuelle, B., Bérard, A., et al. (2011). In situ 
spatio-temporal changes in pollution-induced community tolerance to zinc in autotrophic 
and heterotrophic biofilm communities. Ecotoxicology 20, 1823–1839. 
doi:10.1007/s10646-011-0721-2. 

Topçuoğlu, B. D., Lesniak, N. A., Ruffin, M. T., Wiens, J., and Schloss, P. D. (2020). A 
framework for effective application of machine learning to microbiome-based 
classification problems. MBio 11. doi:10.1128/mBio.00434-20. 

Uritskiy, G. V., DiRuggiero, J., and Taylor, J. (2018). MetaWRAP—a flexible pipeline for 
genome-resolved metagenomic data analysis. Microbiome 6, 158. doi:10.1186/s40168-
018-0541-1. 

Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., et al. (2018). 
Environmental and health effects of the herbicide glyphosate. Sci. Total Environ. 616–
617, 255–268. doi:10.1016/j.scitotenv.2017.10.309. 

Vera, M. S., Lagomarsino, L., Sylvester, M., Pérez, G. L., Rodríguez, P., Mugni, H., et al. 
(2010). New evidences of Roundup® (glyphosate formulation) impact on the periphyton 
community and the water quality of freshwater ecosystems. Ecotoxicology 19, 710–721. 
doi:10.1007/s10646-009-0446-7. 

Vieira-Silva, S., and Rocha, E. P. C. (2010). The systemic imprint of growth and its uses in 
ecological (meta)genomics. PLoS Genet. 6, e1000808. 
doi:10.1371/journal.pgen.1000808. 

Villmoare, B., Kimbel, W. H., Seyoum, C., Campisano, C. J., DiMaggio, E. N., Rowan, J., et 
al. (2015). Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science (80-. ). 347, 
1352–1355. doi:10.1126/science.aaa1343. 

Wang, C., Lin, X., Li, L., Lin, L. X., and Lin, S. (2017). Glyphosate shapes a dinoflagellate-
associated bacterial community while supporting algal growth as sole phosphorus 
source. Front. Microbiol. 8. doi:10.3389/fmicb.2017.02530. 

Wang, C., Lin, X., Li, L., and Lin, S. (2016a). Differential growth responses of marine 
phytoplankton to herbicide glyphosate. PLoS One 11, 1–20. 
doi:10.1371/journal.pone.0151633. 



Curriculum vitae   138 

 

Wang, S., Seiwert, B., Kästner, M., Miltner, A., Schäffer, A., Reemtsma, T., et al. (2016b). 
(Bio)degradation of glyphosate in water-sediment microcosms - A stable isotope co-
labeling approach. Water Res. 99, 91–100. doi:10.1016/j.watres.2016.04.041. 

Weaver, M. A., Krutz, L. J., Zablotowicz, R. M., and Reddy, K. N. (2007). Effects of 
glyphosate on soil microbial communities and its mineralization in a Mississippi soil. 
Pest Manag. Sci. 63, 388–393. doi:10.1002/ps.1351. 

Weinbauer, M. G., Fritz, I., Wenderoth, D. F., and Höfle, M. G. (2002). Simultaneous 
extraction from bacterioplankton of total RNA and DNA suitable for quantitative structure 
and function analyses. Appl. Environ. Microbiol. 68, 1082–1087. 
doi:10.1128/AEM.68.3.1082-1087.2002. 

White, A. K., and Metcalf, W. W. (2004). Two C-P lyase operons in Pseudomonas stutzeri 
and their roles in the oxidation of phosphonates, phosphite, and hypophosphite. J. 
Bacteriol. 186, 4730–4739. doi:10.1128/JB.186.14.4730. 

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer-Verlag New York. 

Wikström, P., Andersson, A. C., Nygren, Y., Sjöström, J., and Forsman, M. (2000). Influence 
of TNT transformation on microbial community structure in four different lake 
microcosms. J. Appl. Microbiol. 89, 302–308. doi:10.1046/j.1365-2672.2000.01111.x. 

Wilkins, D., Leung, M. H. Y., and Lee, P. K. H. (2017). Microbiota fingerprints lose 
individually identifying features over time. Microbiome 5, 1. doi:10.1186/s40168-016-
0209-7. 

Wirth, M. A., Schulz-Bull, D. E., and Kanwischer, M. (2021). The challenge of detecting the 
herbicide glyphosate and its metabolite AMPA in seawater - method development and 
application in the Baltic Sea. Chemosphere. 

Wirth, M. A., Sievers, M., Habedank, F., Kragl, U., Schulz-Bull, D. E., and Kanwischer, M. 
(2019). Electrodialysis as a sample processing tool for bulk organic matter and target 
pollutant analysis of seawater. Mar. Chem. 217, 103719. 
doi:10.1016/j.marchem.2019.103719. 

Wood, K. (2019). Microbial ecology: Complex bacterial communities reduce selection for 
antibiotic resistance. Curr. Biol. 29, R1143–R1145. doi:10.1016/j.cub.2019.09.017. 

Wright, M. N., and Ziegler, A. (2017). ranger: A fast implementation of Random Forests for 
high dimensional data in C++ and R. J. Stat. Softw. 77. doi:10.18637/jss.v077.i01. 

Wu, W., May, R. J., Maier, H. R., and Dandy, G. C. (2013). A benchmarking approach for 
comparing data splitting methods for modeling water resources parameters using 
artificial neural networks. Water Resour. Res. 49, 7598–7614. 
doi:10.1002/2012WR012713. 

Wu, Y.-W., Tang, Y.-H., Tringe, S. G., Simmons, B. A., and Singer, S. W. (2014). MaxBin: an 
automated binning method to recover individual genomes from metagenomes using an 
expectation-maximization algorithm. Microbiome 2, 26. doi:10.1186/2049-2618-2-26. 

Ye, Y., and Doak, T. G. (2011). “A parsimony approach to biological pathway 
reconstruction/inference for metagenomes,” in Handbook of Molecular Microbial 
Ecology I (Hoboken, NJ, USA: John Wiley & Sons, Inc.), 453–460. 
doi:10.1002/9781118010518.ch52. 

Yilmaz, P., Parfrey, L. W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., et al. (2014). The 



Curriculum vitae   139 

 

SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids 
Res. 42, D643–D648. doi:10.1093/nar/gkt1209. 

Yu, H., Samuels, D. C., Zhao, Y., and Guo, Y. (2019). Architectures and accuracy of artificial 
neural network for disease classification from omics data. BMC Genomics 20, 167. 
doi:10.1186/s12864-019-5546-z. 

Zaborska, A. (2014). Anthropogenic lead concentrations and sources in Baltic Sea sediments 
based on lead isotopic composition. Mar. Pollut. Bull. 85, 99–113. 
doi:10.1016/j.marpolbul.2014.06.013. 

Zhao, H., Tao, K., Zhu, J., Liu, S., Gao, H., and Zhou, X. (2015). Bioremediation potential of 
glyphosate-degrading Pseudomonas spp. strains isolated from contaminated soil. J. 
Gen. Appl. Microbiol. 61, 165–170. doi:10.2323/jgam.61.165. 

Zhong, G., Ling, X., and Wang, L. (2019). From shallow feature learning to deep learning: 
Benefits from the width and depth of deep architectures. WIREs Data Min. Knowl. 
Discov. 9, 1–14. doi:10.1002/widm.1255. 

Ziesemer, K. A., Mann, A. E., Sankaranarayanan, K., Schroeder, H., Ozga, A. T., Brandt, B. 
W., et al. (2015). Intrinsic challenges in ancient microbiome reconstruction using 16S 
rRNA gene amplification. Sci. Rep. 5, 16498. doi:10.1038/srep16498. 

Zinke, L. A., Glombitza, C., Bird, J. T., Røy, H., Jørgensen, B. B., Lloyd, K. G., et al. (2018). 
Microbial organic matter degradation potential in Baltic Sea sediments is influenced by 
depositional conditions and in situ geochemistry. Appl. Environ. Microbiol. 85, 1–18. 
doi:10.1128/AEM.02164-18. 

 

  



Curriculum vitae   140 

 

List of figures 

Figure A: Comparison of statistical models and machine learning models ............................11 

Figure B: Simplified representation of a decision tree ...........................................................14 

Figure C: Simplified representation of the ANN of Chapter I .................................................15 

Figure D: Concept with research questions for the thesis .....................................................21 

Figure E: Correct TNT classifications per input data for Random Forest and ANN ...............33 

Figure F: Training times and memory usage compared for Random Forest and ANN ..........35 

Figure G: Concept with research findings of this thesis ........................................................43 

Figure 1.1: Reduction of multidimensional data using nMDS and Random Forest-PCA .......56 

Figure 1.2: Violin plots of correct classification rates by random subsets ..............................57 

Figure 1.3: Violin plots of correct classification by subsets of specific taxonomic clusters .....58 

Figure 1.4: Relative abundance of the taxonomic clusters Parvibaculum and Massilia .........59 

Figure 1.5: Classification rates achieved by using a top-ranked selection of clusters. ..........62 

Figure 2.1: Total cell counts and glyphosate and AMPA concentrations ...............................76 

Figure 2.2: Relative planktonic community composition in microcosms ................................78 

Figure 2.3: nMDS ordination plots of planktonic and biofilm community compositions………..79 

Figure 2.4: Change in α diversity of planktonic and biofilm community compositions ............80 

Figure 2.5: Change in relative abundance of Gallaecimonas OTU 11 ...................................81 

Figure 2.6: Multiple sequence aligment tree with abundance for phnJ ..................................84 

Figure 2.7: Multiple sequence aligment tree with abundance for gox ....................................85 

Figure 2.8: Multiple sequence aligment tree with abundance for thiO ...................................86 

Figure 3.1: Correct TNT classifications per input data for validation and hold out test set ... 105 

Figure 3.2: Violin plots of correct TNT classification per taxonomic rank............................. 107 

Figure 3.3: Violin plots of correct TNT classification per data split ...................................... 108 

Figure 3.4: PCA ordination and prediction robustness using 25 genera .............................. 109 

Figure 3.5: Variable importance and p values for the classification of TNT presence ......... 111 

Figure 3.6: Misclassification rates of false positive samples ............................................... 114 

List of tables 

Table A: Comparison of analytical methods and NGS with regard to costs and workload .....38 

Table 1.1: Glyphosate-distinctive taxa identified by ANN, RF and DESeq2 ..........................61 

Table 2.1: Differentially abundant OTUs after addition glyphosate by DESeq2 .....................82 

  



Curriculum vitae   141 

 

List of abbreviations 

p,µ,n,m,c,k,M Pico, micro, nano, milli, centi, kilo, mega 

², ³ Squared, cubic 

  

16S rRNA 16S ribosomal ribonucleic acid 

2-ADNT 2-amino-4,6-dinitrolouene 

2,4-DANT 2,4-diamino-6-nitrotoluene  

2,6-DANT 2,6-diamino-4-nitrotoluene  

2,4-DNT 2,4-dinitrotoluene  

2,6-DNT 2,6-dinitrotoluene  

4-ADNT 4-amino-2,6-dinitrolouene  

ABW Artificial brackish water 

ADAM Adaptive Moment Estimation 

AMPA Aminomethylphosphonic acid 

ANN Artificial neural network 

ASV Amplicon sequence variant 

B Byte 

Bagging Bootstrap aggregating 

BARM Baltic Sea Reference Metagenome 

BLAST Basic Local Alignment Search Tool 

BLUEPRINT Biological lenses using gene prints 

BSAP Baltic Sea Action Plan 

C Carbon 

°C Degree Celsius 

CCA Canonical correspondence analysis 

cDNA Complimentary DNA 

CNN Convolutional neural network 

CPU Central processing unit 

CV Cross validation 

d Days 

DAPI 4',6-diamidino-2- phenylindole 

de.NBI  German Network for Bioinformatics Infrastructure 

DIP Dissolved inorganic phosphorus 

DMA Direct mercury analyzer 

DNA Deoxyribonucleic acid 

DNB 1,3-dinitrobenzene 

DOC Dissolved organic carbon  

DON Dissolved organic nitrogen 

ESI Electrospray ionization 

EtOH Ethanol 

EU European Union 

FMOC Fluorenylmethoxycarbonyl group 

g Gram 

x g Times gravity 

GF/F Glass microfibre filters, grade GF/F 

GPU Graphics processing unit 



Curriculum vitae   142 

 

h Hours 

HCl Hydrochloric acid 

HELCOM Helsinki commission 

HMX Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine  

HPLC High performance liquid chromatography 

ICP-MS Inductively coupled plasma mass spectrometry 

ICP-OES Inductively coupled plasma optical emission spectrometry 

i.i.d. Independent and identically distributed 

L Liter 

LOD Limit of detection 

m Meter 

max. Maximum 

MBSS Mecklenburg Bay Sediment Standard 

MC Munition compounds 

MilliQ Ultrapure water 

min Minutes 

M Mole per litre 

ML Machine learning 

mol Mole 

MS Mass spetrometry 

mtry 
Number of variables to randomly select from to split a decision tree 
node 

N Nitrogen 

n Number, e.g of samples ("n > p") or repetitions 

NCBI National Center for Biotechnology Information 

NGS Next generation sequencing 

nMDS Non-metric Multidimensional Scaling 

nt Nucleotides 

OOB Out-of-bag 

OTU Operational taxonomic unit 

p Number of variables (e.g. in "n>p"), not to confuse with p value 

P Phosphorus 

PCA Principal component analysis 

PCoA Principal coordinate analysis 

PCR Polymerase chain reaction 

PERMANOVA Permutational multivariate analysis of variance 

pH Potential of hydrogen, acidity of aqueous solutions 

POC Particulate organic carbon 

PON Particulate organic nitrogen 

ppb Parts per billion 

ppm Parts per million 

RDA Redundancy analysis 

RF Random Forest 

rcf Relative centrifugal force 

RDX 1,3,5-trinitroperhydro-1,3,5-triazine 

rmsprop Root Mean Square Propagation 

RNAseq Total RNA sequencing 



Curriculum vitae   143 

 

rpm Revolutions per minute 

S Svedberg (e.g. in "16S") / Sulfur 

sp. Species 

spp. Species pluralis 

SRA Short read archive 

T Temperature 

TC Total carbon 

TIC Total inorganic carbon 

TN Total nitrogen 

TNB 1,3,5-trinitrobenzene 

TNT 2,4,6-trinitritoluene 

TOC Total organic carbon 

TS Total sulfur 

UHPLC Ultrahigh performance liquid chromatography 

UniProtKB UniProt Knowledgebase 

UXO Unexploded ordnance 
 

  



Curriculum vitae   144 

 

Supplementary materials 

Chapter I 

Supplementary Figures 

 
Supplementary Material 1.1: A timeline of the laboratory work flow followed by wet lab downstream processing, 
MiSeq sequencing and bioinformatic analysis. The taxonomic annotation was performed by the SILVAngs pipeline 
and the NMDS ordination plot was generated using the metaMDS function from R package vegan based on Bray 
Curtis dissimilarity. Red labeled samples experienced contact with glyphosate. The ascending alpha gradient 
indicates passing time. 
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Supplementary Material 1.2: A flow chart displaying the various approaches to detect the limits of reasonable 
classification by the ANN by reducing the amount of features and observations. Steps on unfiltered data are marked 
in red, filtered in green. 
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Supplementary Material 1.3: All top 10 ranked clusters (Table 1.3) from the filtered and unfiltered data plus 
Limnohabitans spp. were displayed based on their relative abundance with 16S rRNA gene- and 16S rRNA- derived 
data for both microcosms. The technical replicates are shown as dots, the mean as line. The 16S rRNA gene is 
shown as continuous and 16S rRNA as broken line. The black vertical line demarks the addition of glyphosate. Due 
to abundance differences in orders of magnitude, the y scale is adjusted for each plot:  

a) Massilia spp.; b) Parvibaculum spp.; c) Dokdonella spp.; d) Reyranella spp.; e) B38/Gammaproteobacteria; 
f) Loktanella spp.; g) Caulobacter spp.; h) Aminobacter spp.; i) Nesiotobacter spp.; j) Idiomarina spp.; 
k) Hyphomonas spp.; l) Gallaecimonas spp.; m) Thalassobaculum spp.; n) Sphingopyxis spp.; o) Rhizobium spp.; 
p) Brevundimonas spp.; q) Sphingomonas spp.; r) Limnohabitans spp. 
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Supplementary Material 1.4: Classification rates after removal of observations. n is the number of classifications 

performed with the respective setup by the ANN. The horizontal bar at 59% displays the classification achievable 
by pure guessing, the upper bar marks the threshold for a classification which both separates the microcosms and 
before and after glyphosate addition. None of the ANN setups was able to reach the upper threshold, whereas RF-
based classification was successful using solely 16S rRNA or 16S rRNA gene samples. 
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Supplementary Tables 

Supplementary Material 1.5 can be found as digital appendix and in the final publication as 

Supplementary Table 1. 
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Chapter II 

Supplementary Figures 

 
Supplementary Material 2.1: Glyphosate adsorption test. A possible adsorption effect of glyphosate to various 
surfaces was described previously (Bergström et al., 2011; Huang and Zhang, 2011). Adsorption contributes to the 
decrease and acts as glyphosate reservoir in the experiment. As glyphosate was measured in the water column, 
adsorption to biofilm or surfaces would be not distinguishable from dissipation. To assess the behavior of glyphosate 
in presence of biofilms in a microcosm, the following conditions were set up: a) 500 mL ABW (blue); b) 500 mL 
ABW and 250 g quartz sand (black) and c) 500 mL ABW and 250 g quartz sand and ½ inoculum filter (red), 
respectively, each prepared in 1 L glass bottles and in 1 L polypropylene bottles. The inoculation for c) took place 
for 5 days before the filter were removed. Bottles a) and b) were set up after the inoculation step for c). Glyphosate 
(Dr. Ehrenstorfer GmbH, Augsburg, Germany) was added to all bottles at the same time to a final concentration of 
0.296 µM. The bottles were thoroughly mixed and the first sample (t0, 800 µL) was taken in triplicate from each 
bottle. The bottles were further incubated at room temperature, stirred at 100 rpm and samples were taken in 
triplicate after 4 h, 24 h, 48 h and 72 h. The samples were stored at -20°C until measurement. The figure shows the 
results of the glyphosate adsorption test in glass and polypropylene bottles. The biota incubated bottles displayed 
smallest loss and fluctuation in glyphosate concentration. The glyphosate concentration at the end of the microcosm 
experiment was 1.01 µM and we suggest that in this range no degradation appears in a nutrient-rich environment. 
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Supplementary Material 2.4 A: Canonical correspondence analysis. Free-living communities are partially over-
clustering, but a clear separation between treatment and control and largely as well for the different glyphosate 
concentrations was achieved. Biofilm samples are better separated compared to the NMDS ordination (Figure 3). 
Treatment communities’ direction of succession changes from day -7 to 0 compared to day 0 to the samples treated 
with glyphosate (interpreting day 0 as a return point). This change of direction can be assumed in the free-living 
communities from day -25 to day 0 compared to the following samples. 
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Supplementary Material 2.4 B: Redundancy analysis. In the free-living communities, the “turning point” described 
in Supplementary Material 2.4 A can be observed again. 16S rRNA gene samples overlap partially, control and 
treatment samples are clearly separated. Except shortly after glyphosate addition, the change along the axes 
converges with the temporal gradient or the glyphosate concentration decrease. The 16S rRNA gene samples are 
well separated, but show a relative proximity between control and treatment communities. The results for Biofilm 
16S rRNA communities do not help to explain the impact of glyphosate. 
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Supplementary Material 2.5: Relative biofilm community composition in the treatment and control microcosms 
based on 16S rRNA gene and 16S rRNA abundance. Taxa were cumulated on order level, sorted by class. α = 
Alphaproteobacteria, γ = Gammaproteobacteria. All orders > 0.15 % relative abundance are displayed. Glyphosate 
addition is marked by a vertical dashed line. Notice the dominance of Rhizobiales and the overall stability of the 

communities, especially based on the 16S rRNA gene.  
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Supplementary Material 2.6 can be found as digital appendix and in the final publication as 

Supplementary Material 6. 
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Supplementary Tables 

Supplementary Material 2.2, 2.3, 2.7 and 2.8 can be found as digital appendix and in the final 

publication as Supplementary Material 2, 3, 7 and 8. 
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Chapter III 

Supplementary Figures 

 

Supplementary Material 3.1: A map of the sampling sites at Kolberger Heide munitions dumpsite, located in the 
Baltic Sea near the city of Kiel, Germany. The restricted area is demarked by a dashed box. The multicorer sampling 
took place at the sites names “Depth profile”. Sampling sites featured in the study within the restricted area were 
the short transects of 200 m total length, with samplings every 20 m around the mine mound. The mine mound was 
subject to several sampling campaigns, including the sampling in defined distances to an individual mine. Craters 
caused by detonation of munition are located at the “Detonation site”, MC concentrations were there about 1000 
times higher than in average. For more details the reader is referred to Kampmeier et al., (2020). 
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Supplementary Material 3.4: Violin plots of correct TNT classifications using different thresholds on relative 
abundance per ASV for the validation set. The dot represents the mean balanced accuracy, averaged over six 
different data set splits. n indicates the number of models calculated. The random forest models consisted of 10000 
trees with an mtry factor of 5. The mean balanced accuracy ranged from 80.4 – 83.0 %. 0.08 % was chosen as the 
distribution became more distinct compared to the slightly better performing 0.06 % threshold. 
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Supplementary Material 3.5: PCA ordination for sediment data. The proximity matrix was generated by an 
unsupervised random forest classifying Full sediment data. In comparison to the PCA ordination based on the 
Top25 community, the core samples (West and East without black outline) were well separated herein. Furthermore, 
samples from the mine mound and the overall restricted area are more similar based on sediment parameters. PC1 
explained 62.5 % variation, which likely correlated mostly with grain size fractions, the coarser directed to the left 
and the finer towards the right. It is shown that samples with and without TNT were well intermixed, which might be 
a reason for the lower classification scores achieved by sediment data. 
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Supplementary Material 3.6: Spearman rank correlation of sediment parameters. Correlations of p > 0.01 were 
signed as insignificant with an X. This analysis was performed to investigate which sediment parameters could be 
useful to predict TNT due to correlations. Positive correlations were found between TNT and its metabolites such 
as ADNTs and DANTs as well as iron, thallium, manganese, arsenic and cobalt. Furthermore, the grain size 
fractions 500 – 1000 µm and > 1000 µm, distinctive of the predominantly TNT-present mine mound samples, were 
identified. TNT was also negatively correlated with total nitrogen, antimony, silver, phosphorus, bismuth and 
sediment depth, hinting at the mostly TNT-absent MUC samples. Arsenic, cobalt, total nitrogen and grain sizes 
were important variables for the random forest model. In further leading investigations, lead, the lead isotope ratio 
206Pb/207Pb and mercury (proposed to leak from UXO) were not found to correlate with any MC except for a weak 
negative tie between 2,4-DANT and lead. Two groups of MC were discernable: TNT and its metabolites and 
secondly, DNTs, TNB, HMX and DNB. RDX was loosely connected to both groups and Tetryl showed no correlation 
to any other MC. These results suggested that predicting TNT using other sediment parameter than its metabolites’ 
concentrations would turn out challenging. 

  



Curriculum vitae   160 

 

 

Supplementary Material 3.10: PCA ordination based on the abundance of the most important 25 genera. 
Dissimilarity calculated using the proximity matrix of TNT-classifying supervised random forest. The microbial 
communities were colored by sample area and shaped indicating the presence of TNT. The East (yellow) and West 
(purple) samples with a black outline were not MUC samples. The restricted area samples with a black outline were 
not part of a transect. Sediments containing TNT could be separated to the top right and to the center bottom, 
absent samples were located in the top left. The central area contained sediments with and without TNT. 
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Supplementary Figure 3.11: This document contains further information on the presence of 

certain heavy metals within all collected sediments and more specifically along depth profiles 

and in defined distances to mines. 

Results and discussion: 

In 167 sediments, Hg ranged from 3.7 to 4503.4 µg Hg∙kg−1 dry sediment, with a median of 

20.5 µg and 15 samples exceeding 450 µg. The maximal concentration was found during a 

line transect, where the neighboring samples in 20 m distance contained 8 and 12 µg. Arsenic 

was detected from 0.4 to 4.8 ppm with a median of 0.8 and lead ranged from 1 to 75 ppm with 

a median of 2. 

UXO have been proposed as point sources of heavy metals, especially mercury and lead. 

They were installed as highly toxic primary explosives mercury(II) fulminate, lead azide and 

lead styphnate. The mercury background in the Baltic Sea was estimated at 20 to 50 µg 

Hg∙kg−1 dry sediment (Leipe et al., 2013). They also mentioned 250 µg∙kg−1 as highest surface 

value in the northern Baltic sea and 450 µg∙kg−1 several cm deeper of. A similar trend was 

shown within the western MUC cores, although concentrations at 10 cm depth reached up to 

900 µg Hg∙kg−1.  
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Mercury concentrations along the depth profiles taken with a multicorer east and west of the Kolberger Heide. 
Please not the different scales on the x axis. 

Bełdowski et al. (2019) detected a maximal concentration of 322.2 µg Hg∙kg−1 mercury in 8 

Kolberger Heide top layer sediments with high variance between sediments. In our study 

spottily occurring high values of up to 4503 µg Hg∙kg−1 were detected, too. Within 2 m of a 

mine the highest values were measured at 0.5 m distance (mean 329 µg Hg∙kg−1, median 75.6 

µg Hg∙kg−1) distance. However, the other sediments within 2 m radius of the same mine did 

not show such elevated levels, potentially because the mines at Kolberger Heide are classified 

as discarded munition material. In comparison to unexploded ordnance, those were not fused 

and therefore should not contain mercury(II) fulminate. 
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Mercury concentrations in sediments sampled in a maximal distance of 5 m around mines. The black filled dot is 
the median concentration. Samples from 0.5 to 2 m distance originated from a cardinal direction wise sampling 
around 3 distinct mines. Sediments of 0 and 5 m stem from a linear distance sampling. All sampling took place in 
the mine mound area. 

It has yet to be determined why rare samples demonstrate such high concentrations. There 

was no significant correlation over all sediment samples for Hg with TNT, though both 

substances would likely be transported differently if originating from the same mine. Lead 

concentrations fitted within expected Baltic Sea sediment background (Zaborska, 2014). The 

important variable arsenic caught our attention, as it also is a compound of chemical warfare 

agents. However, its median concentration did not exceed e.g. the average southeastern Baltic 

Sea background of 3.4 ppm (Garnaga et al., 2006). and chemical warfare agents were to our 

knowledge not disposed of in the Kolberger Heide (Böttcher et al., 2011; Bełdowski et al., 

2016b). 
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Supplementary Material 3.8 and 3.9 can be found as digital appendix and in the final 

publication as Supplementary Figures 8 and 9. 
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Supplementary Tables 

Supplementary Material 3.2, 3.3 and 3.7 can be found as digital appendix and in the final 

publication as Supplementary Table 2, 3 and 7. 
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Digital appendix 

The appendix includes the Supplementary Material, that was left out for the printed thesis due 

to formatting restrictions 

 Chapter I: Supplementary Table 1 (here Supplementary Material 1.5) 

 Chapter II: Supplementary Tables 2, 3, 7, 8 (here Supplementary Material 2.2, 2.3, 

2.7, 2.8), Supplementary Figure 6 (here Supplementary Material 2.6) 

 Chapter III: Supplementary Figures 8, 9 (here Supplementary Material 3.8, 3.9), 

Supplementary Tables 2, 3, 7 (here Supplementary Material 3.2, 3.3, 3.7)  

Furthermore, the tables used as input for analysis and plotting, including the taxa abundance 

tables, taxonomy tables and further meta data as well as the machine learning results are 

provided. 

This data will be uploaded to  

https://owncloud.io-warnemuende.de/index.php/s/0nvEnzEbiFtrC5c 

The password is “my_thesis” 

The code for the Chapters and the R package can be found in the according repos at 

https://github.com/RJ333/ 

The code for Chapter III is still under development, as the manuscript is only submitted: 

https://github.com/RJ333/Kolberger_Heide_manuscript 

  

https://owncloud.io-warnemuende.de/index.php/s/0nvEnzEbiFtrC5c
https://github.com/RJ333/
https://github.com/RJ333/Kolberger_Heide_manuscript
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