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1. Introduction 

Glaucoma is one of the leading causes of blindness worldwide. Global prevalence 

has been estimated to be 3.54% and the total number of people with glaucoma was 

64.3 million in 2013 with a tendency to increase over the next decades. (1). In 

Germany, glaucoma affects approximately 972.000 people and is responsible for 

15% of all blindness, second only to age related macular degeneration (2). It 

represents an important burden for public health, making the development of an 

effective treatment essential for the future (2) (3). 

Glaucoma is characterized by a progressive loss of optic nerve fibres that results in 

visual impairment with a characteristic visual field loss. The exact mechanism in 

which this takes place is still not fully understood. However, increased intraocular 

pressure (IOP) is an important risk factor and it has been well documented that 

lowering the IOP is effective at preventing further progression of the disease (4). 

During the last century, an enormous effort has been put into finding an effective 

way to control the IOP in patients with glaucoma. Important advances in medical 

therapy have made the use of topically applied glaucoma medication the first-line 

option in the majority of the cases. Laser therapy, including Argon Laser 

Trabeculoplasty (ALT) and Selective Laser Trabeculoplasty (SLT) represent an 

effective alternative in some patients. However, a considerable portion of glaucoma 

patients still need incisional surgery in order to reach and maintain the desired IOP. 

Filtration glaucoma surgery and trabeculectomy have been the most widely used 

procedures. Nonetheless, the potential risk for postoperative complications, some 

of them vision threatening, limit the wide application of these techniques that are 

reserved for moderate to advanced cases of glaucoma (5). 

During the last years, a number of minimally invasive glaucoma surgical techniques 

(MIGS) have been developed in order to minimize the risk of surgery and reduce 

the IOP in glaucoma patients safely and effectively. MIGS share a number of key 
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characteristics that distinguish them from conventional glaucoma surgery. They are 

frequently performed ab interno through a clear corneal incision, thus sparing the 

conjunctiva. They are minimally traumatic and do not alter the ocular anatomy 

significantly. Recovery is generally fast and the need for postoperative care not as 

intense as in conventional filtration glaucoma surgery (6). 

MIGS encompass a variety of surgical techniques. Some of them use micro-stents 

that redirect aqueous flow (6) while others achieve similar results with the help of 

lasers (7) or specialized cutting instruments (8) that alter the physiologic outflow 

pathways of aqueous humour. The basic principles for reducing the IOP remain 

however the same as in classical glaucoma surgery. MIGS can therefore achieve 

IOP reduction either by improving trabecular outflow (9) or by redirecting aqueous 

into the subconjunctival or suprachoroidal space (6). 

Until now, the efficacy of MIGS procedures has been mainly assessed by the 

postoperative IOP values and the reduction in the number of IOP lowering 

medications that are needed postoperatively. Studies that examine the changes in 

aqueous dynamics in patients after MIGS surgery are limited. Given the abundance 

of different MIGS techniques and the lack of long-term studies, the development of 

an additional test that will examine the changes that occur in the outflow system of 

the eye after MIGS surgery will be able to better evaluate the IOP lowering potential 

of these procedures. It will also add to the understanding of how MIGS surgery 

works and will help in clinical decision making and future development of MIGS 

techniques. Recently, a new oculopressor device was developed in order to test the 

effectiveness of such MIGS procedures in a clinical setting (10). 

In this study the new oculopressor device was used to examine the efficacy of 

different MIGS techniques. The changes of IOP that occur after oculopression were 

measured in glaucoma patients who underwent MIGS surgery and were compared 

with the results of healthy individuals and glaucoma patients without previous 
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surgery. To our knowledge, this is the first clinical study that tests the efficacy of 

MIGS surgery using the new oculopressor and one of only few studies that assess 

aqueous dynamics after MIGS surgery in glaucoma patients (11). 
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2. Principles 

2.1. Anatomy and Physiology of the Eye 

In order to fully understand the intraocular changes that occur after MIGS surgery 

and how different MIGS procedures work, it is essential to be familiar with the normal 

anatomy and physiology of the human eye. In the next chapters, the basic concepts 

of ocular anatomy and physiology are explained with particular attention to aqueous 

humour, its production from ciliary body and outflow pathways, as well as the 

characteristic changes that occur in glaucoma. 

 

2.1.1. Gross Anatomy 

The human eye is located in the anterior part of the orbit and is held in position by 

six extraocular muscles, the superior, inferior, medial and lateral recti and superior 

and inferior oblique muscles. The walls of the orbit protect the eye from external 

injuries and provide attachment sites for the extraocular muscles while the 

connective tissue of the orbit offers additional support for the eye and the vascular 

and neural elements that enter and exit the globe (Figure 1). A thin layer of 

connective tissue, the fascia bulbi (Tenon’s capsule) covers the eye all the way from 

the optic nerve posteriorly to the corneoscleral junction anteriorly and separates it 

from the orbital fat (12). 

 

     

Figure 1: External anatomy of the eye and its relation with surrounding 

structures, the extraocular muscles and optic nerve (13) 
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The outer tunic of the eye consists of the sclera posteriorly and the transparent 

cornea anteriorly. The primary role of the sclera is to protect the intraocular 

structures and offer sufficient rigidity in order to maintain the shape of the eye. The 

cornea is part of the optical media and together with the lens offers sufficient 

refractive power in order to focus the light on the retina. 

The uveal tract is the middle or vascular tunic of the eye and consists of the choroid 

posteriorly and the ciliary body and iris anteriorly. The principal role of the choroid is 

to provide nutrients to the underlying retina. The ciliary body is an extension of the 

choroid anteriorly and serves a number of important functions including production 

of the aqueous humour, anchoring of the lens via suspensory ligaments and 

accommodation for near vision. The iris can be seen as a mobile diaphragm that 

separates the anterior and posterior chambers of the eye and regulates the amount 

of light that enters the eye. 

The crystalline lens of the eye is located behind the iris and is held in position by the 

suspensory ligaments (lens zonules) that anchor the lens to the ciliary body. 

Accommodation for near vision is achieved by contraction of the ciliary muscle 

releasing the tension of the lens zonules. 

The retina lies internal to the choroid and is the primary organ of vision. Posteriorly 

the axons of ganglion cells exit the globe by penetrating through the sclera and form 

the optic nerve (Figure 2) (12) (13). 
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Figure 2: Illustration of the internal anatomy of the human eye (14). 

 

The sclera is organized in three layers. The episclera is a thin superficial layer that 

connects the sclera to Tenon’s capsule. The middle part is called sclera proper and 

makes up more than 95 percent of its thickness, while the suprachoroidal lamina is 

a thin layer that connects the sclera to the underlying choroid. 

Along its surface, the sclera contains numerous openings and canals, some of them 

for blood vessels and nerves that enter and exit the eye. Most prominent of these 

are the anterior scleral foramen that is defined by the corneoscleral junction 

anteriorly and the posterior scleral foramen that supports the ganglion cell axons 

and blood vessels of the optic nerve. Several smaller openings are organized into 

emissary channels and vortex vein channels. 

The cornea is the transparent portion of the outer tunic of the eye and has a diameter 

of approximately 11.7 mm in the horizontal plane and 10.6 mm in the vertical plane 

in adults. It is organized in five layers, the corneal epithelium, Bowman’s layer, 

stroma, Descemet’s membrane and corneal endothelium. The corneal epithelium 

has a thickness of 50 µm and consists of stratified nonkeratinized epithelial cells 

organized in approximately 5-6 layers that lie on Bowman’s membrane. The corneal 

stroma constitutes approximately 90% of the corneal thickness. The uniform 
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organization of its collagen fibrils, in contrast to that of sclera, is responsible for the 

corneal transparency. The corneal endothelium consists of a single layer of cells 

that rest on Descemet’s membrane. Corneal thickness measures between 520 and 

670 µm, being thinnest centrally and thickest peripherally near the limbus. 

The transition between cornea and sclera at the corneoscleral junction, as well as 

the structures of the anterior chamber angle constitute an important anatomic 

location. The scleral sulcus, a notch on the inner surface of the sclera near this 

location, forms the external wall of Schlemm’s canal, the main outflow pathway for 

aqueous humour (12) (13) (14). 

 

2.1.2. The Ciliary Body and the Formation of Aqueous Humour 

The ciliary body was named by early anatomists after its unique resemblance to 

eyelashes or "cilia" and it has been a subject of research for centuries. It is part of 

the uveal tract and is positioned between the iris and choroid forming a slightly 

asymmetric girdle that encircles the eye. Its length varies, being broader temporally 

and inferiorly and shorter on the nasal side. In cross section it is triangular in shape 

with the base of the triangle facing anteriorly and the apex pointing to the opposite 

direction towards the choroid (Figure 3). On its anterior end the ciliary body is firmly 

attached to the scleral spur, while posteriorly it is only loosely attached to the sclera 

(13) (15). The iris inserts into the anterior surface of the ciliary body and in doing so, 

it leaves a small band of ciliary body tissue facing the anterior chamber that can be 

seen by gonioscopy between the root of the iris and scleral spur (4). The ciliary 

sulcus represents the anatomic region that is formed between the posterior surface 

of the iris and the most anterior ciliary processes. The ora serrata is the posterior 

end of the ciliary body. At this site the ciliary body epithelium ends abruptly and 

meets the retina.  
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The ciliary body can be divided morphologically and functionally into two parts. The 

anterior one third forms the pars plicata (or corona ciliaris) and is characterized by 

the presence of approximately 70-80 radially oriented ciliary processes with smaller 

ridges (minor plicae) in the valleys between them. The posterior two thirds have a 

smoother surface and constitute the pars plana (or orbiculus ciliaris). The pars plana 

and pars plicata of ciliary body are meridionally organized into ciliary process units. 

Each unit is made of a centrally located ciliary process that is bordered on each side 

by a pigmented ciliary ridge. (13) (16) (17). 

 

 

Figure 3: The ciliary body in cross section in relation to surrounding structures. 

Hematoxylin and Eosin (18). 

 

The zonular apparatus of the lens consists of zonular fibres arranged in bundles that 

extend from the pars plana of ciliary epithelium posteriorly to the lens capsule 

anteriorly. Throughout their course they are closely associated with the valleys of 

ciliary body, the ciliary processes and minor plicae, exhibiting varying degrees of 

attachment with them (Figure 4) (13). 
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Figure 4: Scanning electron microscopy of the ciliary body (CB), ciliary processes 

(CP), lens zonules (Z), lens (L), sclera (S) and Schlemm’s canal (SC) in 

cynomolgus monkey, x50 (19). 

 

Microscopically, the ciliary body is composed of ciliary muscle, vascular tissue, 

stroma and an overlying double-layered ciliary epithelium (13) (15). The epithelium 

of ciliary body is responsible for the formation of aqueous humour and has a unique 

architectural configuration, in which two epithelial monolayers are in direct apical-

to-apical apposition to each other (20) (21). This unique characteristic is the direct 

result of the infolding of optic vesicle that takes place during fetal development. The 

cells of ciliary body epithelium are extensively interconnected to each other with 

various junctional complexes suggesting that the two epithelial layers work together 

as a metabolic and functional unit (13) (20) (21). 

The ciliary muscle is described traditionally as having three distinct parts, the outer 

longitudinal fibres, the middle radial or reticular fibres and the inner circular fibres. 

All of the muscle fibres originate from the common ciliary tendon that is located in 

the region of scleral spur and trabecular meshwork (13) (15) (22). The ciliary muscle 

serves two important functions. Firstly, it enables accommodation of the lens for 

near vision and secondly, it regulates aqueous outflow through its effect on 

Schlemm's canal, trabecular meshwork and outflow system (Figure 5) (22) (23). 
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Figure 5: Ciliary muscle of monkey eyes treated with atropine (left) and 

pilocarpine (right). During contraction, ciliary muscle moves anterior and inward 

resulting in spreading of the trabecular meshwork lamellae and widening of the 

Schlemm's canal (24). 

 

The ciliary body and anterior part of the uvea, including the iris derive their blood 

supply from the anterior and long posterior ciliary arteries. The vasculature 

supplying these anterior parts of the uvea forms a system of anastomoses in three 

levels. At first, the anterior ciliary arteries branch extensively near the limbus to form 

the episcleral plexus. In addition, perforating branches from the anterior ciliary 

arteries, as well as branches from the long posterior ciliary arteries enter the ciliary 

muscle and form the intramuscular plexus. Finally, branches from both the anterior 

and long posterior ciliary arteries reach the root of the iris and together form the 

major arterial circle. Ciliary processes in primates are supplied from branches of the 

major arterial circle (25) (26). 

There is sufficient evidence from microvascular casting studies of primate eyes 

showing that the blood supply to ciliary processes consists of two separate systems. 

Anterior arterioles branch from the major arterial circle and supply the anterior parts 

and tips of the major ciliary processes. These arterioles show focal areas of 

constrictions before entering into the ciliary processes that may represent arteriolar 
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sphincters possibly regulating the blood flow to these areas that are responsible for 

aqueous humour production. On the other hand, the posterior arterioles that arise 

from the major arterial circle lack arteriolar constrictions, enter the major ciliary 

processes posteriorly to the anterior arterioles and are responsible for the blood 

supply of their middle and basal parts. Both anterior and posterior arterioles branch 

laterally to form interprocess capillary networks and ultimately drain into choroidal 

veins (Figure 6) (26) (27). 

 

   

Figure 6: Montage of ocular casting technique of cynomolgus monkey. On the 

left side, anterior ciliary arteries (ACA) arborize at the limbus and interconnect 

via lateral branches to form the episcleral circle (EC). On the right side the 

same eye as left with anterior ciliary arteries and ciliary muscle (CM) removed. 

Branches of perforating anterior ciliary arteries (PACA) and long posterior 

ciliary arteries (LPCA) interconnect to form the intramuscular circle (IMC). 

RCA, recurrent ciliary artery; CV choroidal veins. Magnification 20x (25). 

 

Until the early part of the 20th century, aqueous humour was thought to be a 

stagnant fluid that did not circulate. Since then, physiology of the aqueous humour 

production and outflow and its relationship with the development of glaucoma has 
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been a subject of intense research. It is now well known that aqueous humour is 

being continuously produced from the anterior parts of ciliary processes in the 

posterior chamber. It then follows a path from the posterior chamber into the anterior 

chamber passing through the pupil. In the anterior chamber, aqueous humour 

circulates under the effect of convection, flowing downwards near the cold cornea 

and upwards near the warmer iris. It finally exits the anterior chamber at the angle 

where it passes through the trabecular meshwork into Schlemm's canal and is 

ultimately drained into the aqueous channels and episcleral veins. A portion of 

aqueous humour exits the anterior chamber through a secondary "unconventional" 

uveoscleral pathway and it passes through the root of the iris and ciliary muscle into 

the suprachoroidal space (Figure 7). Aqueous humour serves a number of important 

functions in the eye including providing a clear fluid for optimal refraction of light, 

transport of nutrients and removal of waste products from avascular structures such 

as the cornea and lens as well as maintaining the intraocular pressure. 
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Figure 7: Schematic representation of the primate anterior ocular segment. 

Arrows indicate aqueous humour flow pathways. Aqueous humour is formed by 

the ciliary processes, enters the posterior chamber, flows through the pupil into the 

anterior chamber and exits at the chamber angle via the trabecular and 

uveoscleral routes (28). 

 

The exact molecular mechanisms that take place during aqueous humour formation 

are until this day not entirely understood. The three main mechanisms that 

contribute to aqueous humour formation are diffusion, ultrafiltration and active 

secretion of ions and other molecules across the ciliary epithelium into the posterior 

chamber (28) (29). Ultrafiltration describes the passage of blood plasma through the 

highly fenestrated capillary endothelium of ciliary processes into the interstitial 

space between ciliary capillaries and ciliary epithelium. The main driving force of 

ultrafiltration is the osmotic and hydrostatic pressure gradients between capillaries 

and stroma. Diffusion occurs in parallel and describes the movement of molecules 
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down their concentration gradient. With the help of ultrafiltration and diffusion a 

"plasma reservoir" is accumulated in the stroma of ciliary processes between 

capillaries and ciliary epithelium. Further movement of this plasma reservoir into the 

posterior chamber is halted by the tight junctions between adjacent cells of the non-

pigmented ciliary epithelium. The ciliary epithelium is able to selectively transport a 

number of molecules and ions across this blood-aqueous barrier in an energy 

dependent manner generating an osmotic gradient. Water moves into the posterior 

chamber through specialized water channels in the ciliary epithelium called 

aquaporins or through a paracellular route down the osmotic gradient that is 

generated from the ion transport (30) (31) (32). During this process, cells of the non-

pigmented ciliary epithelium actively pump Na+ ions into the posterior chamber with 

the help of Na+/K+ ATPase. A number of other molecules and membrane 

transporters also contribute to this process including Na+/H+ antiports, Cl-/HCO3- 

antiports and Na-K-2Cl contransporters in the pigmented epithelium as well as the 

enzyme carbonic anhydrase that provides the needed HCO3- ions and regulates pH 

(Figure 8). The final composition of aqueous humour is therefore quite different from 

that of a simple plasma ultrafiltrate. It is characterized by a very low concentration 

of protein and relative higher concentration of ascorbate in relation to blood plasma. 

Moreover, it is slightly hypertonic and acidic with a pH of 7.2. Finally, exchange of 

substances between cornea, lens and neighboring structures gives aqueous 

humour its final composition. Lactate, for example, is found in slight excess in 

aqueous humour and may reflect the glycolytic activity of avascular structures such 

as the cornea and lens (29) (30). 
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Figure 8: Overview of aqueous formation. Open circles with arrows: 

transporters/cotransporters/antiporters; arrows: movement via ionic channels or 

diffusion. Pa, extraocular arterial pressure; Ra, ciliary arterial resistance; BF, ciliary 

blood flow; Pc, ciliary capillary pressure; πc, capillary plasma oncotic pressure; Pt, 

stromal tissue hydrostatic pressure; πt, stromal tissue oncotic pressure; Pv, ciliary 

venous pressure; Rv, ciliary venous resistance; VO2, mitochondrial oxygen 

consumption; πa, aqueous oncotic pressure; F, aqueous flow; Ptd Ins, 

phosphatydalinositol; G, G-protein complex; R, receptor; C, adenylate cyclase; Gs, 

stimulatory G-protein complex; Gi, inhibitory G-protein complex; Rs, stimulatory 

receptor; Ri, inhibitory receptor; GJ, gap junction; TJ, tight junction; ATPase, Na/K 

ATPase (33). 
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Ultrafiltration and diffusion are responsible for approximately 10% of the aqueous 

humour production. The remainder 80-90% of aqueous humor formation is 

dependent on the active transport mechanisms that take place across the ciliary 

epithelium. The active part of aqueous humour secretion is pressure-insensitive and 

does not depend on the actual intraocular pressure when this is in the near-normal 

range. On the other hand, ultrafiltration depends on the pressure gradient that is 

present between the capillaries and posterior chamber. The rate of aqueous humour 

production in the human eye is approximately 2.5 - 2.75 µl/min and the aqueous 

humour turnover is estimated to be 1.0 - 1.5 percent of the aqueous humour volume 

per minute (29) (30) (31) (33). There is a marked diurnal variation of the rate of 

aqueous humour formation with higher rates during the day and lower rates during 

the night. The exact mechanism responsible for this circadian rhythm is not fully 

understood but several hypotheses have been proposed. Circulating epinephrine 

levels may play a role in regulating this circadian rhythm. Moreover, aqueous 

humour production is known to decrease with age, with an approximately 2 - 2.5% 

reduction per decade (31) (34) (35). 

 

2.1.3. Anterior Chamber Angle and the Outflow of Aqueous Humour 

The anterior chamber angle is formed by the root of the iris, a small band of ciliary 

body tissue, the trabecular meshwork and Schlemm's canal near the corneoscleral 

junction and constitutes the major route of aqueous humour outflow of the eye. 

During gonioscopy, the structures of the anterior chamber angle can be directly 

visualized and examined (Figure 9). The inner surface of sclera near the limbus has 

a small indentation, the scleral sulcus with a sharp posterior border called scleral 

spur and a smoother anterior end that reaches the inner surface of the cornea. The 

trabecular meshwork is a specialized three-dimensional structure that bridges the 

gap of the scleral sulcus and transforms it into a canal, the Schlemm's canal. At the 
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anterior end of trabecular meshwork, a pigmented line represents the transition to 

corneal endothelium and is called Schwalbe's line. The trabecular meshwork 

provides the necessary resistance to aqueous outflow that is needed, in order to 

maintain the intraocular pressure. In addition, the anterior tendons of ciliary muscle 

connect directly to different parts of the trabecular meshwork at the scleral spur (4) 

(15) (29). Contraction of the ciliary muscle has therefore a direct effect on the three-

dimensional arrangement of the trabecular meshwork lamellae and is able to 

change outflow resistance and facilitate aqueous humour outflow (24). 

 

 

Figure 9: Anterior chamber angle and gonioscopic findings. C, cornea; TM, 

trabecular meshwork; SS, scleral spur; CBB, ciliary body band; I, iris (4). 

 

The trabecular meshwork can be divided into three distinct parts based on its 

ultrastructural characteristics (Figure 10). The inner, lamellated part consists of the 

uveal and corneoscleral meshwork and the outer non-lamellated part consists of the 

juxtacanalicular meshwork. The uveal and corneoscleral parts of trabecular 

meshwork consist of irregularly arranged bands of extraceullular matrix covered by 

a monolayer of trabecular meshwork (TM) cells. On the other hand, the 

juxtacanalicular meshwork is made of a ground substance of extracellular matrix 

with several discontinuous layers of juxtacanalicular (JCT) cells resting on its 
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trabecular surface and embedded into it. The outer surface of juxtacanalicular 

meshwork faces the lumen of the Schlemm's canal and is covered by a continuous 

monolayer of endothelial cells. 

In addition, the anterior part of the trabecular meshwork that is directly behind the 

Schwalbe's line is only lightly pigmented and contributes little to the overall filtration 

of aqueous humour. On the other hand, the posterior part of trabecular meshwork 

is more heavily pigmented and is directly associated with the Schlemm's canal, 

providing the main route of aqueous humour outflow. 

Aqueous humour enters Schlemm's canal and is subsequently drained into a 

system of intrascleral aqueous channels that ultimately empty into the episcleral and 

conjunctival veins (Figure 11) (4) (24) (36) (37). 

 

   

Figure 10: Trabecular meshwork (TM) and outflow of aqueous humour. TM can be 

subdivided into an anterior non-filtering part (A) and a posterior filtering part (B) as 

well as into an inner lamellated part and a non-lamellated subendothelial or 

juxtacanalicular part. Aqueous humour leaves through the Schlemm's canal (1) 

and aqueous veins (2) or through a secondary "non-conventional" unveoscleral 

route (C). (3) Scleral spur, (4) ciliary muscle (24) (29). 
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Figure 11: On the left side a scanning electron micrograph of the face of the uveal 

meshwork showing intersecting trabecular beams is illustrated. On the right, a 

schematic illustration of the aqueous outflow pathway from the Schlemm's canal to 

the episcleral vessels is shown (37). 

 

The movement of aqueous across the trabecular meshwork appears to occur in a 

passive, pressure dependent way that is driven by the hydrostatic pressure 

difference between the anterior chamber and the episcleral veins. However, the 

exact anatomic site responsible for the outflow resistance, as well as the actual 

mechanism by which aqueous crosses the juxtacanalicular trabecular meshwork 

remain unknown. 

The intertrabecular openings in the uveal and corneoscleral parts of trabecular 

meshwork seem to be too large to offer any resistance to outflow. According to 

dissection and microcapillary studies, it seems that the deepest 1/4 to 1/3 of the 

trabecular meshwork is the part offering the most resistance to outflow (36) (37). In 

particular, the extracellular matrix of juxtacanalicular meshwork appears to be 

responsible for a significant part of aqueous outflow resistance. A number of stimuli 

are able to influence outflow resistance by regulating extraceullular matrix 

degradation and turnover in the juxtacanalicular meshwork via enzymes of the 

metalloproteinase family. Finally, a number of histopathologic studies have 
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identified giant vacuoles and  pores in the inner wall cells of Schlemm's canal 

suggesting a paracellular route for aqueous humour outflow (36) (38) (39). 

In an effort to explain outflow resistance, some investigators proposed that flow of 

aqueous humour may exhibit a “funneling effect” that is the result of the anatomic 

relation between pores in the inner wall endothelium and juxtacanalicular tissue. In 

this way the “effective” resistance of the juxtacanalicular tissue would markedly 

increase (40). 

While the main bulk of aqueous humour leaves the eye through the ''trabecular'' 

outflow pathway, a secondary ''unconventional'' outflow pathway exists and includes 

the ciliary muscle and suprachoroidal space. A portion of aqueous humour enters 

the ciliary body from the anterior chamber traveling along the interstitial spaces of 

longitudinal fibres of the ciliary muscle and reaching the supraciliary and 

suprachoroidal spaces. From there a number of different arguments exist regarding 

the fate of aqueous humour. One theory suggests that aqueous passes through the 

sclera and episclera into the orbital tissue from where it is absorbed by the 

vasculature. This route is referred as the uveoscleral pathway. A second theory 

suggests that aqueous is absorbed from the choroidal vasculature and then reaches 

the vortex veins. This this route is called uveovortex pathway. It is difficult to 

calculate the proportion of aqueous humour that is removed by this secondary 

outflow pathway but it is estimated to be less than 10% of the total flow in adults and 

it decreases with age (37) (41). 

 

2.1.4. Intraocular Pressure and The Facility of Outflow 

In the healthy human eye, aqueous humour production and outflow are in 

equilibrium and the trabecular meshwork and uveoscleral outflow pathway provide 

the necessary resistance to outflow in order to maintain the intraocular pressure. 
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This relationship between aqueous humour production, outflow and intraocular 

pressure can be summarized by the following formula: 

 

Fin = Fout = (IOP – EVP)C + U 

 

Where Fin the rate of aqueous humour inflow or aqueous humour production and 

Fout the rate the aqueous humour outflow in µl/min; IOP the intraocular pressure and 

EVP the episcleral venous pressure in mmHg; C the facility of outflow in 

µl/min/mmHg and U the uveoscleral outflow rate in µl/min. The facility of outflow C 

can also be expressed as the reciprocal value of resistance to outflow R, where: 

 

C = 1/R 

 

In healthy humans, aqueous humour inflow (Fin) is approximately 2.5 - 2.75 µl/min, 

episcleral venous pressure (EVP) is about 9mmHg, outflow facility (C) 

approximately 0.25-0.3 µl/min/mmHg and the intraocular pressure is maintained at 

approximately 15mmHg. While trabecular outflow increases as the IOP raises in 

order to maintain the balance, the uveoscleral outflow remains fairly constant in the 

physiologic IOP range and seems to be independent of pressure (13) (29) (33). 

The distribution of intraocular pressure in the population resembles a Gaussian 

curve except for an elevation to the right side of the curve, possibly accounting for 

a subpopulation of people with an abnormally elevated intraocular pressure (Figure 

12). IOP increases with increasing age and there seems to be no relation between 

gender and IOP. Intraocular pressure follows a circadian rhythm. Most commonly, 

IOP is higher in the morning and drops to lower values in the evening. Other patterns 

of this diurnal rhythm of IOP can be encountered however in some individuals with 

peak IOP values in the afternoon or during the night. Fluctuations of the IOP of more 
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than 5mmHg are not common and wider oscillations may actually suggest the 

presence of glaucoma. Intraocular pressure is pulsatile following the arterial pulse 

and the cardiac cycle (4) (13) (28). Other factors influencing the IOP are postural 

changes and respiration, with an increase of IOP in the supine position and during 

a Valsalva maneuver (4) (42). 

 

   

Figure 12: On the left side a theoretical distribution of intraocular pressure in the 

population is shown. Note that the curve is slightly skewed to the right. This could 

be explained by two subpopulations. Group B would make up the normal 

population following the Gaussian curve and group C could represent the 

subpopulation with abnormally elevated IOP. On the right side a graphical 

representation of the normal diurnal variation of IOP (13). 

 

Measurement of IOP can be achieved with a variety of methods. Direct 

measurement is invasive, requires a manometer placed inside the eye and is 

possible to perform only in cadaver eyes or in animal studies. On the other hand, a 

number of techniques have been developed that can calculate the IOP by 

measuring the response of the eye to various types of mechanical deformation. The 

method that is used by these techniques is called tonometry and it can be further 

divided into applanation and indentation tonometry. With applanation tonometry a 

force is applied on the corneal surface until it is flattened. With knowing the force 

that is required to flatten or ''applanate'' a specific surface area of the cornea the 



23 
 

IOP can then be calculated. Applanation tonometers can be further subdivided into 

tonometers that use a fixed force and those that flatten a fixed area of the cornea 

with variable forces. One of the first applanation tonometers that were developed 

was the Maklakoff tonometer in 1855 that uses a fixed force technique. It was made 

of a metalic cylinder of known weight and a flat plate on its bottom that rested on the 

cornea. A special dye and anesthetic agent were applied on the eye and the 

tonometer was positioned on the cornea. The applanated area could then be 

measured from the bottom of the tonometer plate (13) (4). Fick developed a fixed 

area applanation tonometer in the late 19th century that was later improved by 

Goldmann and this has been the “gold standard” for IOP measurement since then 

(Figure 13, left). More recently, a non-contact tonometer using the same principle 

as the Goldmann applanation tonometer was introduced by Grolman in 1972 and 

uses an air column to applanate the corneal surface (13) (43) (44). 

The standard indentation tonometer was developed by Schiotz in 1905 and was 

widely used before the modernization of applanation tonometry by Goldmann. While 

applanation tonometers only flattens the corneal surface, indentation tonometers 

indent the cornea resulting in a considerable deformation of the eye and subsequent 

displacement of aqueous that raises the IOP to a new, higher value. With Schiotz 

tonometer the degree of indentation can be read on a scale on the tonometer and 

the IOP can be derived using conversion tables (Figure 13, right). Other types of 

tonometers that use both applanation and indentation principles include the Mackay-

Marg tonometer, the pneumatic tonometer and Tono-Pen (4) (13) (45). 

An induction-based, impact tonometer was developed by Kontiola in 2000 that is 

able to measure the IOP from calculating the rebound motion of a small probe that 

is propelled towards the corneal surface using magnets. The advantage of this 

technique is that it is fast, it requires no local anesthetic agent and it can be 

performed with the help of a small, handheld instrument with minimal patient 
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discomfort (46) (47). The overall reliability of rebound tonometry and its correlation 

with Goldman applanation tonometry has been found to be good making the new 

IOP measuring technique a good alternative to standard tonometry. Nonetheless, 

rebound tonometry tends to slightly overestimate IOP compared to standard 

applanation tonometry (48) (49) (50) (51). 

 

   

Figure 13: On the left photograph the technique of applanation tonometry using 

the Goldman tonometer and, on the right photograph the technique of indentation 

tonometry using the Schiotz tonometer (4). 

 

Tonometry, despite its importance in the everyday clinical practice and in the study 

of glaucoma, has its limitations. In indentation tonometry with the Schiotz tonometer, 

the degree of corneal indentation depends not only on the actual intraocular 

pressure, but also on the ocular rigidity and the distensibility of the ocular structures. 

For routine measurements, a normal ocular rigidity is assumed. This introduces 

however a substantial source of error in eyes with an abnormally high ocular rigidity 

(e.g. hyperopic eyes) or low ocular rigidity (e.g. myopic eyes), giving falsely high or 

low readings respectively. In Applanation tonometry, on the other hand, 

measurements are influenced by the corneal thickness (28). In rebound tonometry, 

IOP measurement seems to depend on the corneal thickness and biomechanical 
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properties of the cornea such as corneal hysteresis and corneal resistance factor 

(47) (50) (51). 

Clinically, the facility of outflow can be determined with the help of tonography. The 

tonographic principle was introduced by Grant in 1950 and was based on the 

observation that repeated Schiotz tonometry resulted in a decrease of the IOP. After 

placing the Schiotz tonometer on the patient’s eye, the IOP is raised resulting in an 

increase of trabecular outflow. If the Schiotz tonometer is left resting on the eye, an 

increasing amount of intraocular fluid will be forced out of the eye and the IOP will 

start to decline. Using an electronic Schiotz tonometer, Grant recorded the slope of 

falling IOP with the tonometer resting on the patient’s cornea (Figure 14) and with 

the help of Friedenwald’s observations on the volume and pressure relationships of 

the eye he calculated the outflow facility from the rate of IOP decline on the 

tonographic curve (52) (53). 

It was shown that glaucomatous eyes have a decreased facility of outflow and that 

the slope of the declining IOP during tonography was not as ‘’steep ‘’ as the one 

derived from healthy individuals. It was also shown that the primary reason of 

increased IOP in glaucomatous eyes was an increased resistance to aqueous 

outflow and not a hypersecretion of aqueous humour as it was previously falsely 

believed. As in indentation tonometry, the tonographic measurements are 

influenced by the ocular rigidity. Grant used for his mathematic formulas an average 

of ‘’normal’’ ocular rigidity. While quite accurate in most eyes, tonography should be 

performed with care in eyes with an abnormal rigidity as is the case in patients with 

high myopia. In addition, a number of ocular parameters change upon placing the 

tonometer on the eye, including ocular blood flow, the episcleral venous pressure 

and the rate of aqueous humour production, that are not taken into account in 

Grant’s mathematical formulations for calculating outflow facility (53) (54). 
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Another method that examines aqueous dynamics and the aqueous outflow system 

is Ulrich’s oculopression tonometry. Ulrich et al developed a new technique in 1987 

that used a suction cup placed on the conjunctiva that was able to raise the IOP to 

a predetermined level independent of the baseline IOP. The device was coupled to 

a slit lamp, so that the IOP could be directly measured using an applanation 

tonometer at any time during the oculopression (Figure 15). In his protocol, the IOP 

was raised to 45 mmHg and was maintained at this level for 8 minutes. He showed 

that the IOP after oculopression was significantly higher in glaucoma a patients in 

comparison to healthy individuals and proposed this new technique as an additional 

diagnostic test for assessing glaucoma suspects (55) (56). 

 

   

Figure 14: On the left side a tonographic unit and on the right side a tonographic 

curve showing the steady decline of IOP during tonography. Fine oscillations are 

due to IOP variations following the cardiac cycle while larger waves are the result 

of respiration and periodic variations of systemic blood pressure (Traube-Hering 

waves) (4). 
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Figure 15: Ulrich’s oculopression tonometry with the two suction cups coupled to a 

slit lamp and an applanation tonometer. The graph in the middle (a) is that of a 

healthy individual and the graph on the right side (b) that of a patient with open-

angle glaucoma. Note the difference in the IOP after oculopression (PR0) between 

the two subjects (55). 
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2.2. Glaucoma: Basic Concepts in Diagnosis and Treatment 

2.2.1. Etiology and Classification of Glaucoma 

Glaucoma does not refer to a single disease entity. It rather comprises a larger group 

of ocular disorders sharing a set of characteristic abnormalities including cupping 

and atrophy of the optic nerve head that leads to progressive deterioration and loss 

of the visual field. In most but not all the cases there is a direct relation to an 

abnormally increased IOP. Classically, glaucoma has been divided into open-angle 

and angle-closure types. A third group of “developmental glaucoma” is associated 

with abnormal development of the anterior segment and aqueous outflow system 

and tends to appear earlier in life. Open-angle glaucoma can be further subdivided 

into a primary type or be caused by a secondary mechanism due to an underlying 

disorder. Angle-closure glaucoma can also be further characterized according to its 

clinical presentation as acute, subacute or chronic. The following table (Table 1) 

summarizes the current classification scheme for glaucoma (28). 

 

Open-angle 
glaucoma 

Primary open angle glaucoma (associated with high 
intraocular pressure) 
 
Low tension glaucoma (intraocular pressure within normal 
range) 
 
Secondary open angle glaucomas 

• Pseudoexfoliation glaucoma 
• Pigmentary dispersion glaucoma 
• Steroid induced glaucoma 
• Lens-induced glaucoma 

a. Phacolytic glaucoma 
b. Lens-particle glaucoma 
c. Phacoanaphylaxis 

• Glaucoma after cataract surgery 
a. α-Chymotrypsin glaucoma 
b. Glaucoma associated with viscoelastics 
c. Glaucoma associated with pigment dispersion 

and intraocular lens 
d. UGH syndrome (uveitis, glaucoma, hyphema) 
e. Glaucoma after Nd:YAG posterior capsulotomy 

• Posttraumatic glaucoma 
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• Glaucoma associated with intraocular hemorrhage 
a. Ghost cell glaucoma 
b. Hemolytic glaucoma 
c. Hemosiderosis 

• Glaucoma associated with retinal detachment 
• Glaucoma associated with uveitis 

a. Fuch’s heterochrmomic iridocyclitis 
b. Posner-Schlossman syndrome 
c. Uveitis associated with Herpes simplex or 

Herpes zoster 
• Glaucoma after vitreoretinal surgery (intraocular gas 

or silicone oil) 
• Glaucoma associated with an intraocular tumor 
• Amyloidosis 
• Glaucoma associated with increased episcleral 

venous pressure 
a. Superior vena cava obstruction 
b. Arteriovenous fistula 

 
 

Angle-closure 
glaucoma 

Primary angle-closure 

• Pupillary block 
• Plateau iris 
• Phacomorphic block 

 
Secondary angle-closure 

• Neovascular glaucoma 
• Iridocorneal endothelial syndrome 
• Epithelial downgrowth 
• Fibrous ingrowth 
• Ciliary block 
• Suprachoroidal hemorrhage 
• Choroidal effusion 

Developmental 
glaucoma 

Primary glaucoma 

• Congenital glaucoma 
• Autosomal dominant juvenile glaucoma 
• Glaucoma associated with systemic abnormalities 

a. Chromosomal disorders 
b. Neurofibromatosis 
c. Oculocerebrorenal or hepatocerebrorenal 

syndrome 
d. Sturge-Weber syndrome 
e. Mucopolysachcharidosis 

• Glaucoma associated with ocular abnormaligies 
a. Axenfeld-Rieger syndrome 
b. Peters syndrome 
c. Aniridia 
d. Microcornea syndromes 
e. Sclerocornea 

 
 



30 
 

Secondary glaucoma 

• Posttraumatic glaucoma 
• Glaucoma associated with an intraocular neoplasm 

a. Retinoblastoma 
b. Leukemia 

• Glaucoma associated with uveitis 
• Lens-induced glaucoma 

a. Subluxation with pupillary block (Marfan 
syndrome, Homocysteinuria) 

b. Spherophakia with pupillary block 
• Glaucoma associated with congenital cataract 

surgery 
• Steroid induced glaucoma 
• Neovascular glaucoma 

a. Coat’s disease 
b. Familial exsudative vitreoretinopathy 
c. Retinoblastoma 

• Secondary angle-closure glaucoma 
a. Microphthalmos 
b. Nanophthalmos 
c. Retinopathy of prematurity 
d. Persistent hyperplastic primary vitreous 
e. Aniridia 
f. Iridoschisis 
g. Cornea plana 

• Glaucoma associated with increased episcleral 
venous pressure 
a. Idiopathic elevated episcleral venous pressure 
b. Orbital vascular malformations 

• Glaucoma secondary to intraocular infections 
a. Toxoplasmosis 
b. Herpetic iritis 
c. Congenital rubella 

 

Table 1: Classification of glaucoma (4) (28). 

 

Regardless of the type of glaucoma, the final common pathway is that of progressive 

loss of optic nerve fibres and resulting atrophy of the optic nerve head. This is 

clinically manifested with a characteristic pattern of visual field loss. The single most 

strongly associated risk factor with the presence of glaucoma is an increased IOP 

and it has been shown that lowering the IOP can substantially decrease the risk of 

disease progression. Other risk factors have also been identified. These include a 

positive family history, increasing age, myopia, diabetes mellitus and migraine. A 
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strong association between a glaucoma and a low diastolic ocular perfusion 

pressure (i.e. the difference between diastolic arterial blood pressure and intraocular 

pressure) has also been identified (4). 

 

2.2.2. Diagnosis of Glaucoma 

A wide variety of diagnostic tools have been developed in order for the 

ophthalmologist to be able to detect glaucomatous changes in their earliest stages, 

before advanced visual field loss has already taken place and when intervention 

with IOP lowering regimens would be most beneficial. 

The most basic of the examinations is the appearance of the optic nerve head during 

fundus examination with a dilated pupil (Figure 16). Characteristic glaucomatous 

changes of the optic nerve head include thinning and notching of the neural rim, 

deepening of the optic cup, exposure of the lamina cribrosa, splinter hemorrhages 

near the margin of the optic nerve head, appearance of vessels that bridge an 

enlarged optic cup, baring of the circumlinear vessels and nerve fibre layer defects. 

Special investigations with the help of confocal scanning laser tomography (HRT-III 

Heidelberg Engineering), confocal scanning laser polarimetry (Nerve Fiber Analyzer 

NFA-I) and spectral domain optical coherence tomography (SD-OCT) can deliver 

substantially more information regarding the anatomy of the optic nerve head, the 

thickness of the retinal nerve fibre layer (RNFL) and the configuration of optic 

cupping in relation to the neural rim (4). 
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Figure 16: On the left side a photograph of the optic disc of a patient with primary 

open-angle glaucoma and on the right side the same eye after a 12-year interval 

showing progression of the glaucomatous cupping and atrophy with concentric 

enlargement of the cup and focal thinning of the neural rim in the superotemporal 

quadrant (28). 

 

Functional examinations include visual acuity, visual field testing, color vision and 

contrast sensitivity. Visual field is a technique used to assess the central as well as 

the peripheral vision and measures the ability of the retina to distinguish a bright 

stimulus against a less illuminated background. Typical visual field defects for 

glaucoma include a generalized depression of the visual field, nasal step or 

depression, Seidel’s scotoma (i.e. enlargement of the blind spot in an arcuate 

manner) and isolated paracentral scotomata that may progressively enlarge and 

coalesce to form classic arcuate defects (Bjerrum scotomata). Advanced 

glaucomatous visual field defects can take the form of small central islands with or 

without sparing of the temporal visual field (28). 

 

2.2.3. Treatment of Glaucoma 

At present, the only proven method for delaying the progression of glaucomatous 

optic atrophy in patients with glaucoma is lowering the IOP. 
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Topically administered IOP-lowering agents can decrease the intraocular pressure 

by decreasing aqueous humour production or by increasing the rate of aqueous 

humour outflow. Currently there are five groups of locally administered antiglaucoma 

medications in clinical use. These include prostaglandin analogues, beta-receptor 

antagonists, carbonic anhydrase inhibitors, alpha-2 selective adrenergic agonists 

and parasympathomimetics. Systemically administered agents (carbonic anhydrase 

inhibitors and osmotics) are usually given only for a limited period of time when the 

IOP is very high and cannot be otherwise controlled and until a more definitive 

treatment can be planned, usually that being some kind of surgical intervention. 

Often the first line of therapy is a monotherapy involving a single topically 

administered IOP lowering medication. The IOP should be sufficiently reduced to a 

level in which the progression of glaucomatous visual field loss is kept to a minimum 

(4) (5).  

Although topical IOP-lowering medications are able to decrease the IOP 

substantially and in most cases sufficiently enough in order to halt the progression 

of the disease, an additional factor that must be taken into account is that of patient 

compliance and adherence to the treatment plan. In a systematic review of the 

literature, Reardon et al found that according to electronic monitoring more that 20% 

of the patients met criteria for poor compliance and according to prescription records 

only 31% of the patients had not discontinued their treatment at 12 months (57). In 

a more recent study, Rajurkar K et al found that among 151 glaucoma patients that 

were interviewed, 49% of them reported problems in using glaucoma medication, 

16% reported total non-compliance and 35% had an improper technique for 

administering the eye drops (58). The most common reasons for poor compliance 

and adherence to the treatment are complexity of the medication regimen, side 

effects, poor manual coordination, forgetfulness and cost of medication (59). In a 

recent study from Germany, Frech S et al found that the mean level of adherence 
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in terms of prescriptions filled was 66.5%. Risk groups for non-adherence were 

patients between the ages of 50 and 59, as well as patients older than 80 years, 

patients with a longer duration of glaucoma and patients with considerable 

comorbidity (60). 

Besides medical therapy, there are a number of alternative treatment modalities for 

glaucoma patients who need further IOP reduction or patients with poor compliance. 

Argon laser trabeculoplasty (ALT) and selective laser trabeculoplasty (SLT) are both 

effective and safe treatment options for lowering the IOP. Both ALT and SLT are 

performed at the slit lamp with the help of an argon or Nd:YAG laser and a Gonio-

lens. (5). ALT and SLT reduce the IOP by increasing trabecular outflow facility (61) 

(62) (63). Nonetheless, several studies showed that the IOP-lowering effect of both 

ALT and SLT wears off with time and that approximately half of the patients treated 

with either technique will have lost the IOP-lowering effect after 5 years (4) (5). 

Traditional glaucoma filtration surgery has the advantage of being able to decrease 

the IOP substantially for a long time in most patients and is being used in moderate 

to advanced glaucoma for optimal IOP control. However, the risk of postoperative 

complications, in some cases vision-threatening, has urged clinicians into searching 

for a better alternative. Non-penetrating glaucoma surgery techniques, including 

deep sclerectomy, viscocanalostomy and canaloplasty have the advantage of not 

entering the anterior chamber directly during surgery and thus minimizing the risk of 

postoperative complications such as hypotony, shallow anterior chamber, hyphema 

and choroidal effusions (4) (5) (64).  

During the last years a number of minimally invasive glaucoma surgical procedures 

have been developed that use small intraocular implants or laser energy in order to 

reduce the IOP to the desired level (6) (7). During the next paragraphs a number of 

these surgical procedures will be discussed. Finally, a new test based on a simplified 
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oculopression technique will be introduced for assessing the effectiveness of these 

new surgical techniques in glaucoma patients postoperatively. 
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2.3. Microinvasive Glaucoma Surgery 

2.3.1. The iStent Inject System: A Trabecular Micro-Bypass Device 

The iStent inject (model GTS400) is a second-generation trabecular micro-bypass 

device that is implanted into the Schlemm’s canal in the nasal portion of the anterior 

chamber angle using an ab interno approach, clear corneal incision and a 

specialized injector system for the treatment of glaucoma. The implant is 360 µm in 

length, with a maximum width of 230 µm. It is cone-shaped and is made of heparin 

coated, gamma-sterilized titanium. The injector system is preloaded with two stents, 

so that it can deliver both of them without exiting the eye between the first and 

second implantation (Figure 17). After a successful implantation the stent is 

positioned with its flange residing in the anterior chamber, the thorax embedded in 

the trabecular meshwork and its head inside Schlemm’s canal (Figures 18 and 19). 

It has an inlet orifice on its one end facing the anterior chamber and four outflow 

openings on the opposite end that resides inside Schlemm’s canal. The device 

bypasses the trabecular meshwork and works by improving the aqueous outflow 

facility (9). 
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Figure 17: The G2-M-IS injector system is preloaded two GTS400 stents. The 

injector enters the eye with an anteriorly placed 23-gauge stainless steel insertion 

tube and delivers the stents into Schlemm’s canal after activation of the trigger 

mechanism by the surgeon. Normally two iStent inject devices are implanted into 

Schlemm’s canal at the nasal portion of anterior chamber angle, separated by 2-3 

clock hours (65). 

 

 

Figure 18: The GTS400 iStent inject device is a cone-shaped, heparin-coated, 

titanium micro-stent. It consists of a flange, thorax and a conical head. After 

implantation of the stent with the automated injector system the iStent inject is 

positioned with its flange facing the anterior chamber and the head residing inside 

Schlemm’s canal (66). 

 

Several studies have examined the efficacy and safety profile of iStent inject. 

Implantation can be performed either as a stand-alone operation or in combination 

with cataract surgery. The procedure has been shown to be safe with only few 
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postoperative adverse events, most of which are minor and not vision-threatening 

(6). In a large meta-analysis of 1767 eyes, the most common postoperative 

complications were elevation of the intraocular pressure, stent blockage or 

obstruction, stent malposition and hyphema (67). 

 

 

Figure 19: Two GTS400 stents gonioscopically visible after successful 

implantation in the anterior chamber angle (68). 

 

2.3.2. The XEN45 Gel Stent System: A Subconjunctival Micro-Stent 

XEN gel stent is a subconjunctival micro-stent designed for the treatment of 

glaucoma. It is a 6 mm long tube made of porcine collagen cross-linked with 

glutaraldehyde with a lumen diameter of 45 µm. The material of the stent has the 

distinctive ability to remain stiff when dehydrated while it softens upon contact with 

aqueous humour. The XEN gel stent is implanted into the subconjunctival space on 

the upper nasal part of the conjunctiva through an ab interno approach with clear 

corneal incision and the help of a specialized inserter device (Figure 20). The 

procedure can be performed as a stand-alone operation or in combination with 

cataract surgery. After the implantation a conjunctival filtering bleb is formed at the 

site of the stent that results from subconjunctival filtration of aqueous humour. The 

use of an antifibrotic agent is thus generally recommended to avoid scarring (6). 

Most commonly 0.1 ml of mitomycin C (MMC) 0.1 mg/ml is used, it is administered 

under the conjunctiva prior to stent implantation and not washed out (69) (70). After 
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correct placement of XEN gel stent, a small portion of it, approximately 1 mm, is 

visible in the anterior chamber, 2 mm are inside the scleral tunnel that is formed and 

3 mm are visible under the conjunctiva (71). 

 

 

Figure 20: Schematic representation of the XEN gel stent after successful 

implantation. A fistula is created connecting the anterior chamber with the 

subconjunctival space allowing for the filtration of aqueous humour through the 

stent lumen (72). 

 

2.3.3. Excimer Laser Trabculostomy 

Krasnov, in his original 1973 paper, was the first to describe the use of a Q-switched 

laser to produce “micropunctures” in the outflow region of anterior chamber angle 

for the treatment of open-angle glaucoma (Figure 21). In contrast to previous types 

of lasers, the Q-switched, modulated laser used by Krasnov was able to deliver a 

very large amount of energy in a short burst, thus eliminating the thermal and 

coagulative effects on tissues that were observed with previous types of lasers. The 

result was the formation of microscopic holes on the outflow region of anterior 

chamber angle with an improvement of outflow facility and drop of IOP. The new 

technique was named laseropuncture (73). While the technique described by 

Krasnov did not find widespread clinical use, it did open the way into the 
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development of other laser techniques that targeted the anterior chamber angle and 

the trabecular outflow pathway of the eye. 

 

   

Figure 21: Photograph of the Krasnov goniolens used in laseropuncture (left) and 

the original Q-switched laser unit adapted to a slit lamp (right) (73). 

 

Vogel et al developed a new surgical technique with the help of an excimer laser 

and published their first clinical findings in 1996 and 1997. The new laser could 

ablate the trabecular meshwork and remove the target tissue with only minimal 

thermal and coagulative damage. As a result, a new direct communication between 

the anterior chamber and Schlemm’s canal is achieved. The procedure is performed 

with an ab interno approach, small corneal incision and the help of a laser probe 

under gonioscopy (Figure 22). They documented an IOP lowering effect in 30 out of 

35 treated eyes with the new, minimally invasive technique (74) (75). Since then, 

other studies have also documented the IOP lowering effect of ELT either as stand-

alone operation or combined with cataract surgery and the procedure has been 

shown to be safe with minimal perioperative and postoperative complications (76). 
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Figure 22: Surgical steps of an ab interno excimer laser trabeculostomy (ELT). 

First a paracentesis is performed in the superotemporal quadrant in peripheral 

cornea (upper left) and the anterior chamber is stabilized using a viscoelastic 

agent. The fibre-optic probe enters the anterior chamber and is advanced to 

contact the trabecular meshwork on the opposite side. The position of the laser 

probe is controlled endoscopically (upper right) or using a goniolens (lower left). 

Four to ten channels are created using the excimer laser. The laser probe is 

removed and the viscoelastic agent is washed out and replaced by balanced salt 

solution. Patent trabeculostomy channels are seen gonioscopically after the 

operation (bottom right) (76). 
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3. Materials and Methods 

In previous studies, success and failure of IOP lowering procedures, including 

minimally invasive glaucoma surgical techniques, has been mainly judged 

according to the postoperative IOP, change of IOP from preoperative baseline 

values or the number of glaucoma medications needed in order maintain the IOP at 

the desired level (6). However, IOP is only one of many parameters that define 

intraocular physiology and aqueous humour dynamics in the human eye. 

Tonography, first introduced by Grant and later further developed by Leydhecker, 

has been used to estimate the facility of aqueous outflow and distinguish between 

healthy individuals and patients with glaucoma in the past (52) (53) (54). Ulrich et al 

developed another technique for evaluating aqueous dynamics that eliminated 

several of the limitations encountered in classic tonography. They measured the fall 

of IOP that occurred after a period of oculopression using a suction cup coupled to 

an applanation tonometer in order to identify patients with glaucoma and named the 

technique oculopression tonometry (55) (56). With the development of newer 

techniques that are able to measure the IOP accurately and fast in the sitting 

position with minimal patient discomfort (43) (44) (46), as well as new high resolution 

imaging studies of the optic nerve head that can detect early glaucomatous changes 

(77) (78) (79), tonography and oculopression tonometry have become nowadays 

obsolete in the everyday clinical practice. 

This study attempts to investigate the changes of aqueous dynamics that occur after 

minimally invasive glaucoma surgery in order to better evaluate the efficacy and IOP 

lowering potential of different MIGS procedures. For this purpose, a newly 

developed oculopressor device was used (10). This device is a modification of the 

Taylor oculopressor and consists of a metallic cylinder weighing 60 g that moves 

freely inside a barrel-shaped plastic tube (Figure 23). During the oculopression, the 

foot of the metallic cylinder rests on the closed eyelid and exerts pressure on the 
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eye, raising the IOP at approximately 43mmHg (10). The examiner holds the device 

upright from its plastic part and the patient is asked to fixate at an object on the 

ceiling directly above him (Figure 24). 

  

 

Figure 23: The Taylor oculopressor (left) uses a metallic piston connected to two 

weights on each side. The new modified version (right) uses a similar metallic 

cylinder that is held upright inside a barrel shaped plastic tube. The IOP is 

measured using the iCare Tonometer. The result is a curve of IOP. P0 is the IOP 

at baseline before oculopression, PR0 the IOP directly after removal of the 

oculopressor from the eye and PR4 the IOP after a recovery period of 4 minutes 

(10). 
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Figure 24: Measurement of the IOP with the iCare tonometer is followed by a 4-

minute long oculopression in the supine position. IOP is measured immediately 

after removal of the oculopressor and again 4 minutes later. 

 

Even though it is a new technique, the underlying theory is well established from 

previous works on tonography and oculopression tonometry (52) (53) (55). It is 

known, that upon placing the oculopressor on the eye the rate of aqueous outflow 

is artificially increased resulting in the displacement of a set amount of intraocular 

fluid. As a result, after removal of the oculopressor from the eye the IOP has fallen 

into a new, lower level. Eventually the IOP starts to rise again slowly until a steady 

state of aqueous humour production and outflow is achieved once again. The 

modified oculopression technique can therefore be regarded as a kind of “stress 

test” and the IOP reduction that occurs after oculopression reflects the overall 

outflow facility of the eye. 

In the study protocol IOP was first measured in the sitting position using the iCare 

tonometer. Oculopression was then performed on the study eye in the supine 

position for 4 minutes. The IOP was measured immediately after removal of the 

oculopressor from the eye and again 4 minutes later. The results can be outlined in 

a graph where P0 is the IOP at baseline, PR0 the IOP directly after removal of the 

oculopressor and PR4 the IOP after a recovery period of 4 minutes (Figure 23). 
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A 4-minute long oculopression has the advantage of being short enough in duration, 

in order to be able to examine patients routinely during consultation hours. It is also 

of sufficiently long duration, so that the IOP reduction that occurs can generate an 

IOP curve that can be measured accurately. 

In comparison to Ulrich’s oculopression tonometry, in which a repeated IOP 

measurement with the Goldmann applanation tonometer and the use of a suction 

cup placed on the conjunctiva is necessary for the measurements, the modified 

technique that we propose has the additional advantage of being more comfortable 

for the patients as no parts of the oculopession device come in direct contact with 

the cornea or conjunctiva during the test. 

Moreover, measurement of the IOP with the iCare tonometer is sufficiently fast and 

accurate and it can be easily performed immediately after the patient stands up from 

the supine position. 

Selection of patients was performed retrospectively after careful examination of 

patient files, diagnoses, previous surgeries and other ocular diseases from patient 

records. Exclusion criteria were extensive corneal scarring or previous corneal 

surgery that could otherwise influence an accurate IOP measurement with the iCare 

tonometer, ALT or SLT during the previous 3 years as well as previous filtration 

glaucoma surgery, as these procedures could have an impact on the oculopression 

curve that we measure and finally advanced glaucoma with considerable visual field 

loss. Most of the glaucoma patients that received a MIGS surgery between the years 

2015 and 2018 in the department of ophthalmology (Rostock University Medical 

Center) and were available for further screening were recruited in the study. An 

additional group of healthy individuals and a group of patients with glaucoma but 

without previous ocular surgery were examined with the same protocol for 

comparison. 
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All patients and healthy subjects underwent a thorough ophthalmological 

examination including examination of the anterior segment at the slit-lamp, fundus 

examination, gonioscopy (only in glaucoma patients) and documentation of local 

medication before and after the surgery, as well as documentation of any adverse 

events. Diagnosis and assessment of glaucoma was based on the funduscopic 

appearance of the optic nerve head and changes in the visual field, as well as 

findings in HRT (Heidelberg Retina Tomograph) and OCT (Optical Coherence 

Tomography) of the optic nerve head. All participants were asked to sign an 

informed consent before their participation in the study. 

Finally, a thorough statistical analysis of the results was performed using standard 

tests with SPSS software (Statistical Package for the Social Sciences) including 

descriptive statistics, one-sample Kolmogorov-Smirnov test for assessing test 

distribution, Kruskal-Wallis, Mann-Whitney and one-way ANOVA tests for further 

evaluation of the test variables. 
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4. Results 

Overall, 86 individuals were examined and divided into 5 different groups. All study 

subjects underwent IOP measurements and oculopression of the study eye 

according to the aforementioned protocol. The first group consisted of 38 healthy 

individuals between the ages of 23 and 81 (mean age was 36.9 ± 16.6 years) that 

had no history of previous ocular surgery or other eye disease. The second group 

consisted of 10 patients between the ages of 54 and 82 (mean age was 72.7 ± 8.8 

years) that were diagnosed with glaucoma and had no history of previous ocular 

surgery. Eight patients from the second group had a primary open-angle glaucoma, 

one patient had open-angle glaucoma secondary to pseudoexfoliation syndrome 

(PEX) and one patient had open-angle glaucoma secondary to pigment-dispersion. 

Groups 3, 4 and 5 consisted of 38 patients between the ages of 33 and 91 years 

(mean age was 70.4 ± 10.9 years) with different types of glaucoma and had 

previously undergone one of three different MIGS procedures (iStent inject 

implantation, XEN stent implantation and ELT). The procedures were performed 

either as stand-alone operations or combined with a cataract surgery. In group 3, 

19 patients with glaucoma had previously received an iStent inject implantation. In 

group 4, 14 patients had previously received a XEN stent implantation and in group 

5, 5 patients had undergone ELT (see Table 2). The average time interval between 

surgery and oculopression was 7.3 ± 5.9 months in group 3, 10.5 ± 11.0 months in 

group 4 and 4.8 ± 5.3 months in group 5. 
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Group Definition Number of 

individuals 

Age (range, mean 

± SD) in years 

1 Healthy individuals without previous 
ocular surgery or eye disease 

38 23-81, 36.9 ± 16.6 

2 Patients with diagnosed glaucoma 
without previous surgery 

10 54-82, 72.7 ± 8.8 

3 Patients with diagnosed glaucoma 
and previously performed iStent 
inject implantation (stand-alone or in 
combination with cataract surgery) 

19 57-85, 74.3 ± 7.1 

4 Patients with diagnosed glaucoma 
and previously performed XEN gel 
stent implantation (stand-alone or in 
combination with cataract surgery) 

14 55-91, 70.4 ± 9.3 

5 Patients with diagnosed glaucoma 
and previously performed ELT 

5 33-76, 55.6 ± 15.4 

 

Table 2: Definition of groups, number of individuals in each study group and 

corresponding range, mean and standard deviation (SD) of age in each of the 

groups. 

 

In most test subjects, the IOP curve that was obtained followed the same trend with 

an initial reduction of IOP after the 4-minute long oculopression and a gradual rise 

of IOP during the recovery phase (Figure 25, Figure 28). 

 



49 
 

 

Figure 25: Oculopression curve in groups 1 through 5. Group 1 (Healthy 

individuals), Group 2 (Patients with diagnosed glaucoma without previous 

surgery), Group 3 (Patients after iStent inject implantation), Group 4 (Patients after 

XEN gel stent implantation), Group 5 (Patients after ELT). 

 

By calculating the Spearman’s rank correlation coefficient, a statistically significant 

correlation (p<0.05) between the baseline IOP (P0) and the degree of IOP reduction 

that occurred after oculopression (PR0-P0) was found in groups 1 through 4. 

Generally, patients with higher baseline IOP had a more pronounced reduction of 

IOP after oculopression. In order to eliminate this problem and be able to assess 

the “oculopressive” effect independently, we introduced an additional parameter and 

calculated the percentage of IOP reduction in relation to baseline IOP with the 

following formula: 

IOP Reduction (percentage) = [(PR0-P0)/P0]x100 % 

P0 PR0 PR4
Group 1 16,2 9,7 12,1
Group 2 15,2 10,3 12,7
Group 3 15,2 9,4 11,4
Group 4 12,6 7,2 10,1
Group 5 16,8 13,2 14,4
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Mean baseline IOP was 16.2 ± 3.6mmHg in group 1 (healthy individuals) and 

decreased to 9.7 ± 3.0mmHg after oculopression representing a 40.7 ± 11.8% drop 

from baseline. In the recovery phase IOP increased to 12.1 ± 3.7mmHg. In group 2 

(patients with glaucoma and without previous surgery) mean IOP at baseline was 

15.2 ± 5.8mmHg under local medication, it decreased to 10.3 ± 5.0mmHg after 

oculopression, representing a 34.3 ± 9.5% drop and increased again after the 

recovery period to 12.7 ± 5.2mmHg. Patients after implantation of iStent inject 

(group 3) had postoperatively a mean IOP of 15.2 ± 4.3mmHg at baseline. IOP 

dropped to 9.4 ± 2.7mmHg after oculopression, representing a 36.5 ± 14.0% 

decrease from baseline and rose again to 11.4 ± 2.9mmHg after the recovery phase. 

Patients after implantation of XEN stent (group 4) had the lowest mean IOP at 

baseline with 12.6 ± 2.9mmHg. IOP decreased after oculopression to 7.2 ± 

2.0mmHg, the lowest IOP after oculopression in all of the groups, representing a 

42.8 ± 10.2% drop from baseline and increased again after the recovery phase to 

10.1 ± 3.6mmHg. Group 5 (glaucoma patients after ELT) had a mean IOP of 16.8 ± 

6.5mmHg at baseline, the highest among all groups. It decreased after 

oculopression to 13.2 ± 7.0mmHg representing only a 25.7 ± 13.9% drop. It then 

rose again to 14.4 ± 6.0mmHg after the recovery period (Figures 25, 26 and 27). 

The change of IOP in respect to baseline values is graphically depicted in Figure 

28. During the recovery phase mean IOP increased in all groups but did not reach 

the initial IOP values in any of the studied groups. 

The IOP reduction after oculopression (PR0-P0) was statistically significantly lower 

(p=0.021) in group 2 (patients with glaucoma and without previous surgery) in 

comparison to group 1 (healthy individuals). PR0-P0 did not differ significantly in 

patients after iStent implantation (group 3) or XEN Stent implantation (group 4) in 

comparison to healthy probands (p=0.142 and p=0.058 respectively). 
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Figure 26: The fall of IOP immediately after oculopression (PR0-P0) in absolute 

values in groups 1 through 5. 

 

 

Figure 27: The fall of IOP immediately after oculopression [(PR0-P0)/P0] in 

percentage in groups 1 through 5. 
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Figure 28: The change of IOP in relation to baseline IOP during the oculopression 

test in groups 1 through 5 (Average values). 

 

The mean number of different IOP lowering medications was 2.5 ± 1.3 in the group 

of glaucoma patients without previous operations (group 2). In glaucoma patients 

after XEN stent or iStent inject implantation (groups 3 and 4) the number of IOP 

lowering medications that were needed was statistically significantly lower in 

comparison to group 2 (p=0.006 and p=0.01 respectively) (Figure 29). Patients after 

implantation of XEN gel stent (group 4) needed the least amount of medications 

(n=0.4 ± 0.9), followed by patients after iStent inject implantation (n=0.8 ± 1.4) and 

patients after ELT (n=1.6 ± 0.9). Only 6 out of 19 patients after iStent inject and 2 

out of 14 patients after XEN stent implantation needed further IOP reduction using 

locally administered eye drops. In contrast, only 1 out of the 5 individuals who 
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received an ELT could discontinue the antiglaucoma medication postoperatively 

(Figure 30). It is important to notice that what was documented here was the number 

of different medication classes that the patient was using and not the number of 

daily applications. For example, if a patient had a beta-blocker agent in his 

medication plan that was applied two times per day, the number of IOP lowering 

medications was 1, even though he had to take the same eye drops twice, in the 

morning and in the evening. 

 

 

Figure 29: Mean number of antiglaucoma medications used at the time of the 

study in groups 1-5. 
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Figure 30: Number of patients that needed further IOP reduction with topical 

medication (orange) and medication free patients (blue) after MIGS surgery. 

 

The age of test subjects did not show any consistent correlations neither with 

baseline IOP nor with the IOP decrease after oculopression in the examined 

population. 

Due to the nature of the operation, a considerable portion of patients after 

implantation of XEN stent had to come for surgical revision and needling of the 

filtering bleb due to conjunctival scarring in our clinic. Five out of the 14 patients that 

were included in the study had at some point received a surgical revision with 

needling of the filtering bleb and one of these 5 patients had undergone needling 

three times by the time of the study. The needling rate was thus calculated to be 

35% in the selected population. 
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5. Discussion 

Several studies have assessed the IOP lowering effect of MIGS surgical techniques 

in the past. In this chapter we will first discuss some of the similarities between those 

studies and our findings. We will then describe in which way our approach differs 

from that of previous studies and how our findings contribute to the overall 

understanding of how MIGS surgery works. Finally, we will try to explain the 

advantages that microinvasive surgical techniques offer in modern glaucoma 

surgery but at the same time define their limitations as well. 

With some exceptions, our results generally follow the same trend seen in published 

literature. Regarding the older techniques, the oculopression curves that were 

obtained in our study were similar to that of tonography and oculopression 

tonometry, which also produce a gradual IOP reduction after a force is applied on 

the eye surface (in the case of tonography) or when the IOP is artificially increased 

using suction cups placed on the conjunctiva (in the case of oculopression 

tonometry) (52) (55). This finding supports the theoretical basis of our study and 

confirms our hypothesis, that our technique can be regarded as a kind of “stress 

test” that reflects the outflow facility of the eye (IOP reduction in the first part of the 

oculopression curve) and the physiologic return to the steady state (rise of IOP in 

the second part of the oculopression curve during the recovery period). 

As far as baseline IOP after MIGS surgery is concerned, our measurements agree 

with the results of previous studies in several instances. We found a mean IOP of 

15.2 ± 4.3mmHg after iStent inject implantation. In several studies mean IOP after 

implantation of iStent inject has been documented to be in the range between 13.0 

and 16.25mmHg (6) (66) (80) (81). 

Arriola-Villalobos et al evaluated the efficacy and safety of iStent inject combined 

with phacoemulsification in 20 patients with a mean follow up of 47.40 ± 18.46 

months. Mean IOP at baseline was 19.95 ± 3.71mmHg under medication and 26.0 
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± 3.11mmHg after medication washout. At the end of the follow up period mean IOP 

was 16.25 ± 1.99mmHg with a 36.92% decrease from baseline IOP (80). Voskanyan 

et al examined 99 patients with open-angle glaucoma that underwent implantation 

of two GTS400 stents over a period of 12 months. Mean IOP at screening was 22.1 

± 3.3mmHg under medication and 26.3 ± 3.5mmHg after medication washout. At 

month 12, mean IOP was 15.7 ± 3.7mmHg representing a 39.7% decline from 

baseline IOP (66). In a more recent study, Clement et al evaluated the safety and 

efficacy of iStent inject combined with cataract surgery in a retrospective study of 

165 eyes of patients with various types of glaucoma or ocular hypertension. They 

found that mean IOP decreased significantly from 18.27 ± 5.41mmHg at baseline to 

14.04 ± 2.98mmHg at month 12, which equals a 23.2% reduction (81). Best et al 

investigated the efficacy of iStent inject in combination with cataract surgery in a 

prospective, randomized, simple-blind study. They examined 65 eyes from 56 

patients with primary open-angle glaucoma, 31 of which underwent a combined 

cataract surgery with implantation of two GTS400 stents and 34 of which underwent 

cataract surgery without stent implantation. Mean follow-up time was 14 months. 

Patients that received the combined surgery showed a mean IOP reduction of 

5.9mmHg or 23.5% from baseline while patients that received cataract surgery 

alone showed a mean IOP reduction of 2.1mmHg or 9.5% from baseline (68). In 

another study, Klamann et al evaluated 35 patients with open-angle glaucoma that 

received two GTS400 stents. They found an average IOP decrease of 33% from 

baseline at 6 months (82). All studies found a significant reduction of antiglaucoma 

medication postoperatively (66) (68) (80) (81) (82). 

Nevertheless, in our test we do not simply measure the IOP postoperatively. The 

oculopression test in our study is a dynamic measurement and the IOP reduction 

that occurs (PR0-P0) in the first part of the test reflects the outflow facility of the eye. 

In patients after iStent inject implantation (group 3) we found a more pronounced 
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IOP reduction after oculopression in relation to non-operated glaucoma patients 

(group 2). it can therefore be suggested that iStent inject implantation had a positive 

effect on aqueous outflow facility. 

Currently there are only few studies that measure aqueous dynamics in patients 

after MIGS surgery. A study from Fernández-Barrientos et al measured the changes 

in aqueous humour dynamics using fluorophotometry in a group of 33 patients with 

open-angle glaucoma or ocular hypertension scheduled to receive cataract surgery 

with or without implantation of iStent (first generation implant). In both groups 

aqueous flow (F) was similar before surgery and did not change postoperatively. 

Trabecular outflow facility (Ct) however increased in both groups. In the first group 

that received cataract surgery with iStent, Ct increased by 275% to 0.45 ± 0.27 

µl/min/mmHg while in the second group that received cataract surgery alone Ct 

increased by 46% to 0.19 ± 0.05 µl/min/mmHg (11). 

The results from Fernández-Barrientos et al agree in this regard with the findings in 

our study. Though not measuring the outflow facility directly, our test also assesses 

the aqueous outflow system. 

Nonetheless, fluorophotometry and oculopression tonometry are inherently different 

methods for assessing aqueous humour dynamics. The main difference lies in the 

fact that in oculopression techniques an external force is applied on the surface of 

the eye. The intraocular changes that occur in response to this external force are 

then measured using tonometry. On the other hand, studies of aqueous dynamics 

that use the principle of fluorophotometry measure aqueous flow without altering the 

physiologic steady state of the eye. 

Patients after XEN stent implantation had a considerably lower IOP at baseline in 

our study compared to previous studies in the published literature. Baseline mean 

IOP was 12.6 ± 2.9mmHg in our study and it has been documented to be between 

14.8 and 17.1mmHg in several other studies (6) (69) (71) (83). This could be in part 
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explained by the low target IOP in the selected patients and the tendency of 

relatively prompt intervention (e.g. Needling or surgical revision of the filtering bleb) 

in patients where the IOP increased above the desired level in our clinic.  

In our study, patients after XEN stent implantation demonstrated a large reduction 

of IOP after oculopression (PR0-P0) and in percentage values, they had the largest 

IOP reduction among all groups, even in comparison to healthy individuals (IOP 

reduction after oculopression was -40.7 ± 11.8% in healthy individuals and -42.8 ± 

10.2% in the XEN stent group). In addition, the lowest value among all IOP 

measurements was 7.2 ± 2.0mmHg, the mean IOP directly after oculopression in 

the XEN stent group.  

Previous studies have documented the IOP lowering efficacy of XEN get stent. 

Reitsamer et al evaluated 218 eyes of 199 patients with moderate primary open-

angle glaucoma that received a XEN gel stent with or without concomitant cataract 

surgery. The follow up time was 24 months. Mean IOP was reduced from 21.4 ± 

3.6mmHg at baseline to 14.9 ± 4.5mmHg at month 12 (representing a -29.3% 

reduction) and 15.2 ± 4.2mmHg at month 24 (representing a -27.8% reduction), 

while the number of IOP lowering medications was decreased from 2.7 ± 0.9 at 

baseline to 0.9 ± 1.1 and 1.1 ± 1.2 at month 12 and 24 respectively. Needling rate 

was documented to be 41.1% and mean number of needling procedures was 1.6 ± 

1.1 at 24 months (71). In another study from Smith et al, 1-year outcomes after XEN 

gel stent implantation in 68 patients with glaucoma were evaluated. Mean IOP 

decreased from 22.1mmHg at baseline to 14.8mmHg at 12 months, representing a 

33% reduction. Mean number of IOP lowering medications reduced from 2.9 at 

baseline to 1.1 at 12 months. Revision or needling of the subconjunctival bleb was 

necessary in 30 patients (44.1%) and 15 patients (22.1%) developed a significant 

perioperative or postoperative complication, including hyphema (n=6), iris prolapse 

(n=1), hypotony (n=5), choroidal effusions (n=1), tube exposure requiring surgical 
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revision (n=1) and hypotony with severe choroidal effusion (n=1) (83). In a 

retrospective study, Heidinger et al evaluated 199 eyes from 160 patients that 

received a XEN gel stent from 2014 to 2016. They found that mean IOP decreased 

from 22.8 ± 6.9mmHg at baseline to 17.1 ± 6.1 mmHg, 17.1 ± 5.9mmHg and 16.4 ± 

3.8mmHg after 1, 12 and 18 months. Mean number of medications was also 

reduced from 2.9 ± 1.0 at baseline to 1.8 ± 1.4 after one year (69). 

Our findings, as well as the results from previously published studies that 

investigated the efficacy of XEN gel stent indicate that the subconjunctival filtering 

pathway can be very effective at lowering the IOP, and possibly more effective than 

interventions that target the trabecular outflow (i.e. iStent inject or ELT). 

The subconjunctival filtering pathway that is created during XEN gel stent surgery is 

however a “non-physiologic” state for the human eye, in that normally the aqueous 

humour does not reach the subconjunctival spaces. Subconjunctival filtration is the 

principle that is also used in some of the more invasive glaucoma surgeries, such 

as trabeculectomy (4). The drawback in all of these surgical techniques is the 

possibility of conjunctival scarring and resulting bleb failure. Patients must therefore 

be informed of the potential risks that are associated with every filtering procedure 

that result in the formation of a subconjunctival bleb, including that of XEN gel stent 

as well as the necessity of an intensive postoperative care and the relatively high 

probability of needling or surgical revision (69) (4). 

As mentioned above, we found a needling rate of 35% in our patients after XEN gel 

stent implantation. The results are comparable to the aforementioned studies from 

Reitsamer et al (41.1% needling rate) and Smith et al (44.1% needling rate). 

However, due to the exclusion criteria that we used; patients that had to undergo a 

different kind of surgery due to stent failure (e.g. trabeculectomy) were not included 

into our calculations. It is therefore safe to assume that the complication and revision 

rate were actually higher than the numbers our data show. 
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Interestingly, ELT has not been able to achieve the same level of IOP reduction as 

iStent inject or XEN stent in our study. We found a baseline mean IOP after ELT of 

16.8 ± 6.5mmHg. This agrees in part with observations in previous studies, where 

IOP was between 16.5mmHg and 19.6mmHg after ELT, considerably higher than 

the IOP after iStent inject or XEN stent (7) (84) (85). 

ELT patients also exhibited the lowest IOP reduction after oculopression in our study 

with -3.6 ± 0.9mmHg in absolute values and -25.7 ± 13.9% reduction in regard to 

baseline IOP. However, with only 5 patients in the ELT group, further conclusions 

are difficult to be made at this point due to the low number of participants. 

Current literature regarding ELT is limited. A number of studies have examined 

however the IOP lowering effect after ELT. Pache et al examined 135 patients with 

open-angle glaucoma or ocular hypertension that received ELT as stand-alone 

procedure or combined with cataract surgery. The two groups were further 

subdivided according to baseline IOP (group 1 when IOP was ≥ 22mmHg and group 

2 when IOP was ≤ 22mmHg). In the group that received ELT without cataract 

surgery, mean IOP decreased from 27.9 ± 3.9mmHg to 19.3 ± 5.5mmHg after 1 

year when baseline IOP was ≥ 22mmHg and from 20.2 ± 1.1mmHg to 17.6 ± 

3.3mmHg when baseline IOP was ≤ 22mmHg. In the second group that received 

ELT combined with cataract surgery, mean IOP decreased from 26.4 ± 2.75mmHg 

to 16.7 ± 2.75mmHg after 1 year when baseline IOP was ≥ 22mmHg and from 19.6 

± 1.1mmHg to 16.3 ± 2.2mmHg when baseline IOP was ≤ 22mmHg (7). Töteberg et 

al evaluated 24 eyes of 24 patients with cataract and open-angle glaucoma or ocular 

hypertension that received a combined operation of ELT with phacoemulsification 

and intracapsular lens implantation. The follow up time was 12 months. Mean best 

corrected visual acuity (BVCA) increased from 0.45 ± 0.25 at baseline to 0.78 ± 0.30 

at 12 months while mean IOP decreased from 25.33 ± 2.85mmHg to 16.54 ± 

4.95mmHg representing a 34.70% reduction. Mean number of IOP lowering 
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medications decreased from 2.25 ± 1.26 to 1.46 ± 1.38 at 12 months (84). Another 

study from Babighian et al examined the efficacy and safety of ELT in 21 eyes from 

21 patients with primary open-angle glaucoma. They found that mean IOP 

decreased from 24.8 ± 2.0mmHg at baseline to 16.9 ± 2.1mmHg after a mean follow-

up of 25.3 ± 1.3 months corresponding to a 31.8% reduction. Mean number of IOP 

lowering medications also decreased from 2.24 ± 0.6 to 0.71 ± 0.8 (85). 

In our study, we documented a significant reduction in the amount of IOP lowering 

medications in patients after iStent and XEN stent surgery. Mean number of 

antiglaucoma medications was 0.8 ± 1.4 after iStent inject and 0.4 ± 0.9 after XEN 

stent implantation. Patients after ELT still needed fewer medications compared to 

non-operated glaucoma patients (1.6 ± 0.9 versus 2.5 ± 1.3) but the number of 

antiglaucoma medications that they needed was considerably higher than iStent and 

XEN stent patients. Our results agree with the results of previous studies that have 

examined MIGS techniques and have also found a significant decrease of 

antiglaucoma medications postoperatively (6) (7) (66) (69). 

To conclude, it is important to keep in consideration that, compared to the 

aforementioned studies in most cases of which the preoperative – postoperative 

IOP reduction after MIGS surgery was simply calculated, we measured the IOP 

reduction that occurred after oculopression postoperatively. In this regard, our test 

measures something fundamentally different from that in previous studies and 

therefore it cannot be directly compared with them. In our opinion, our test 

introduces an important new parameter that describes not only the current IOP but 

offers some additional information regarding the status of aqueous outflow system 

and intraocular physiology. Many researchers have been examining these 

physiological events since decades. It is however the simplicity of the modified 

oculopressor technique and the ease of use of rebound tonometry that enabled us 

to carry out such an examination in a clinical setting in patients after MIGS surgery. 
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In our study, the most important parameters were the IOP reduction that occurred 

after oculopression (calculated in absolute values, PR0-P0 and also in relation to 

the baseline IOP, [PR0-P0]/P0x100%). Both measurements differed among the 

studied groups as seen in figures 26 and 27 and in regard to PR0-P0, healthy 

individuals showed a significantly larger reduction of IOP after oculopression 

compared to non-operated patients with glaucoma (-6.6 ± 2.1mmHg reduction in 

healthy individuals versus -4.9 ± 1.6mmHg reduction in non-operated glaucoma 

patients). This agrees with older observations with tonography and oculopression 

tonometry that also show a distinctive difference in outflow facility between healthy 

individuals and patients with glaucoma (53) (54) (55). The oculopression curves of 

patients after XEN stent and iStent inject implantation were different compared to 

non-operated glaucoma patients and their results approximated those of healthy 

individuals. This suggests that the intraocular implants positively influenced 

aqueous outflow and that they had a “corrective” effect on the oculopression curve 

in the selected patients. However, a direct comparison between the different MIGS 

procedures is not possible at this point, as the number of the examined patients is 

limited. Moreover, in future studies preoperative as well as postoperative 

measurements with the oculopression test in patients that are scheduled to receive 

a MIGS surgery should be carried out in order to better examine the effect that these 

procedures have on aqueous outflow. 

Nonetheless, based on our findings we can still make some additional observations 

regarding MIGS techniques. In our study, the trabecular approaches that we 

examined (ELT and iStent inject implantation) were considerably simpler, safer and 

less invasive compared to the subconjunctival approach used during XEN stent 

implantation. This is also evident in the number of postoperative complications and 

number of surgical revisions needed (35% needling rate after XEN Stent 

implantation). However, patients after XEN stent implantation benefitted from lower 
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IOP values postoperatively. Apparently, there is a kind of trade-off between the 

“invasiveness” of a glaucoma surgery and its IOP lowering effect that needs to be 

considered during clinical decision making. In general, we could say that the more 

invasive an operation is, the greater its IOP lowering effect. With MIGS, the 

glaucoma surgeon tries to achieve the best postoperative IOP, while keeping a low 

complication profile. During the last years, MIGS surgery has revolutionized the way 

decision making is being made when considering IOP reduction in glaucoma 

patients. More patients are operated early in the disease course in order to prevent 

side effects of local medication or reduce the amount of eye drops a patient may 

need. More invasive glaucoma surgeries like trabeculectomy and other incisional 

techniques are nowadays reserved for more advanced cases of glaucoma, where 

other approaches have failed. A substantial number of patients could thus benefit 

from such microinvasive glaucoma surgeries, postponing or even avoiding some of 

the more invasive procedures. 

The best surgical technique that will achieve a substantial and long-lasting IOP 

reduction with minimal complications is still to be found. It is our belief, that the newly 

introduced oculopression technique will have an important place in the assessment 

of current glaucoma surgical techniques and in the development of new MIGS 

surgical techniques in the future. As more intraocular implants and MIGS techniques 

are being developed, more reliable parameters that can assess the IOP lowering 

potential of these procedures are needed, and the new oculopression technique 

could be one of them. However, a larger number of patients will have to be 

examined, in order to detect differences between individual surgical techniques. 

We hope, that the oculopression technique that we introduced, will be able to help 

in clinical decision making and the evolution of glaucoma surgery in the future. 

 

 



64 
 

6. Summary 

Glaucoma is one of the most common causes of blindness worldwide. The only 

evidence-based treatment to slow down the progression of glaucoma is the 

reduction of intraocular pressure (IOP) using local medication or through surgery. 

During the last years, a large number of microinvasive glaucoma surgery techniques 

(MIGS) have been developed, in order to reduce the IOP in glaucoma patients safely 

and effectively. Until now, efficacy of MIGS has been assessed mainly according to 

the postoperative IOP and the number of medications used. Results from long-term 

studies are rare or currently not available in the majority of the cases. In order to 

better evaluate the functionality of MIGS, a new examination method has been 

developed with the help of a new oculopressor device. In this study the efficacy of 

different MIGS techniques was examined using the new oculopressor. 

At first, glaucoma patients that had previously received a MIGS surgery (iStent 

inject, XEN Stent, ELT) were examined with the new oculopression test. Their 

results were compared with those of non-operated patients and healthy individuals. 

Overall, 38 healthy subjects (group 1), 10 non-operated patients (group 2), 19 

patients after iStent inject implantation (group 3), 14 patients after XEN Stent 

implantation (group 4) and 5 patients after ELT (group 5) were examined. The new 

examination measures the reduction of IOP that occurs after oculopression and can 

be seen as an indirect measurement of the outflow facility of the eye. 

The IOP-reduction after oculopression differed among the study groups. Non-

operated patients showed a significantly lower IOP-reduction compared to healthy 

individuals. Patients after iStent inject and XEN stent implantation showed a larger 

reduction of IOP after oculopression in relation to non-operated patients and their 

results approximated those of healthy individuals. These patients needed fewer 

medications postoperatively in relation to non-operated patients. Patients after ELT 
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showed postoperatively a smaller reduction of IOP after oculopression compared to 

iStent inject and XEN stent patients. 

MIGS can increase the outflow facility of the eye in patients with glaucoma. Though 

ELT had the lowest impact on the aqueous outflow among the studied procedures 

in this study. The new test can help in the evaluation of current and further 

development of new MIGS in the future. 
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Doctoral Theses 

 

• A new oculopression technique was successfully used in a 

clinical setting for assessing the efficacy of microinvasive 

glaucoma surgery. 

 

• Most of the examined subjects showed an initial decrease of 

IOP after the 4-minute long oculopression with a subsequent 

rise of IOP during the recovery period. This finding supports our 

hypothesis, that the new oculopression technique could be used 

as an indirect measurement of aqueous outflow facility. 

 

• The extent of the initial IOP reduction after oculopression (PR0-

P0) varied among the studied groups. 

 

• Healthy subjects showed the largest IOP reduction after 

oculopression (PR0-P0) and their results were statistically 

significantly different in comparison to non-operated glaucoma 

patients. 

 

• The IOP curve of glaucoma patients after XEN Stent or iStent 

inject implantation approximated that one of healthy subjects, 

suggesting that these intraocular implants had positively 

influenced aqueous outflow and “corrected” the IOP curve of 

glaucoma patients. 



xv 
 

• Patients after MIGS surgery benefited from a relatively low 

complication profile and a significant reduction in the topically 

applied antiglaucoma medication. 

 

• In future studies, the new oculopression technique can be used 

to reveal differences between individual MIGS techniques. In 

order to do that, a larger number of patients must be examined, 

with preoperative and postoperative measurements of the same 

individuals. 
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