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Abstract
The outer planets Uranus and Neptune have long challenged the plan-

etary science community with their highly different measured intrinsic

heat fluxes. I have developed a new planetary modelling and evolu-

tion computer program in order to investigate the thermal evolution

of these planets more closely. Here, I present the principles by which

this code works, as well as study the influences different parameters

have on Uranus’ and Neptune’s possible evolution. Standard adiabatic

evolution calculations using state-of-the-art equation of state data are

shown and the influence of different assumptions regarding the en-

ergy balance of the planet with the solar irradiation, as well as that of

equation of state data, on the cooling behaviour is discussed. I con-

firm the previous findings of a large difference in Uranus’ and Nep-

tune’s calculated cooling times using the adiabatic assumption, but

find generally lower cooling times for both Uranus and Neptune. Fur-

thermore, Uranus and Neptune evolution models under the assump-

tion of a thermal boundary layer are shown. This boundary separates

an ice- and rock-rich inner envelope and a hydrogen- and helium-rich

outer envelope and traps primordial heat inside the planet for a por-

tion of the planet’s evolution. I have investigated a wide range of

parameters for this thermal barrier and was able to show that this

mechanism can influence the planet’s evolution drastically, making it

appear either fainter or brighter than the adiabatic case. Thus, the

possibility of a thermal boundary layer allows for an explanation of

both Uranus’ and Neptune’s luminosities within the same framework.
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Zusammenfassung
Die beiden äußersten Planeten des Sonnensystems, Uranus und Nep-

tun, haben die Planetenwissenschaft seit langem mit ihren hochgra-

dig verschiedenen gemessenen intrinsischen Wärmeflüssen vor Her-

ausforderungen gestellt. Ich habe ein neues Computerprogramm zur

Berechnung von Struktur- und Evolutionsmodellen von Planeten er-

stellt, um die thermische Entwicklung dieser beiden Planeten näher

zu untersuchen. In dieser Arbeit präsentiere ich die Prinzipien, nach

denen das Programm arbeitet, und studiere die Einflüsse verschie-

dener Faktoren auf die mögliche Entwicklung von Uranus und Nep-

tun. Evolutionsrechnungen mit der Standardannahme eines adiabati-

schem Inneren, die aktuelle Zustandsgleichungen verwenden, werden

vorgestellt und der Einfluss verschiedener Annahmen bezüglich Zu-

standsgleichung und Energiebilanz mit der Sonne wird diskutiert. Da-

mit bestätige ich die früheren Ergebnisse eines deutlich unterschiedli-

chen Abkühlungsverhaltens für Uranus und Neptun mit diesen Annah-

men, aber erhalte insgesamt niedrigere Kühlzeiten für beide Plane-

ten. Darüber hinaus werden Evolutionsmodelle für Uranus und Nep-

tun unter der Annahme einer thermischen Grenzschicht vorgestellt.

Diese Grenze trennt den eis- und gesteinsreichen inneren Mantel vom

wasserstoff- und heliumreichen äußeren Mantel des Planeten und hält

für einen Teil der Planetenevolution die Wärme aus dem Entstehungs-

prozess im Inneren fest. Ich habe eine Reihe von Parametern bezüglich

dieser thermischen Barriere untersucht und konnte zeigen, dass die-

ser Mechanismus die Abkühlung des Planeten drastisch beeinflussen

kann und diesen zum heutigen Zeitpunkt entweder heller oder dunk-

ler als den adiabatischen Fall erscheinen lassen kann. Daher erlaubt

die Annahme einer solchen thermischen Grenzschicht die Erklärung

der Wärmeflüsse sowohl von Uranus als auch Neptun in einem ge-

meinsamen Rahmen.
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Chapter 1.

Introduction

Uranus and Neptune are two neighbouring planets in the outer reaches of the Solar

System. Their masses of MU = 14.5 ME and MN = 17.2 ME (with the Earth mass 1 ME =
5.97 × 1024 kg) lie between those of Mercury, Venus, Earth, and Mars (0.06−1 ME) and

those of Saturn and Jupiter (95 − 318 ME); the same is true for their radii. For this

reason, they have been put in their own category between the rock-dominated inner

planets, and the hydrogen- and helium-dominated gas giants Jupiter and Saturn, and

have been dubbed “ice giants”, in reference to the supposition that they are primarily

composed from so-called ice-forming volatile compounds such as water, methane, and

ammonia.

In contrast to the other planets out to Saturn, which had already been observed and

studied by ancient human civilisations, both Uranus and Neptune were only discovered

in the modern period, as they are considerably farther from Earth and therefore ap-

pear fainter in the sky. Specifically, Uranus was discovered in 1781 by William Her-

schel [55], who first thought he had observed a new comet. Neptune’s existence and

orbit was theoretically predicted by Urbain Le Verrier [78] as an explanation for per-

Fig. 1.1.: Images of Uranus (left) and Neptune (right), taken by the Voyager 2 probe during flyby.
Image courtesy of NASA/JPL-Caltech.
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2 Introduction

turbations in Uranus’ orbit, and then observed for the first time later the same year by

Johann Gottfried Galle and Heinrich Louis d’Arrest [21]. Until the late 20th century,

obtaining physical characteristics was limited to Earth-based observations. Then, our

knowledge of empirical information about Uranus and Neptune took a leap forward

when the Voyager II probe performed flybys of Uranus in 1986 and of Neptune in

1989. To date, it is the only spacecraft to have reached and explored these planets.

It provided more accurate information on, among other things, shape, luminosity, Al-

bedo, atmospheric composition, and motion of the satellites, which is important in

determining the gravitational field. After Voyager had passed, further measurements

were only by ground-based facilities and the Hubble Space Telescope, launched in

1990. Recently, in light of the upcoming NASA Planetary Science Decadal Survey

2023, there has been a growing renewed interest in exploring Uranus, Neptune and

their satellites further with a dedicated spacecraft mission [23, 57, 123], following

the highly successful missions Cassini, exploring Saturn and its satellites, and Juno,

directed at Jupiter.

Uranus and Neptune feature a number of similarities beyond their mass and radius

range. Both planets exhibit a strongly hydrogen- and helium-dominated atmosphere

with a high carbon abundance of 85 (Uranus) and 89 (Neptune) times the solar

value [50]. Furthermore, both planets’ magnetic fields were measured to be highly

non-dipolar and non-axial-symmetric, which is different from the other planets in

the Solar System [18], and their rotation periods of ca. 17.2 h (Uranus) and 16.1 h
(Neptune) are relatively close to each other. However, there are also some key dif-

ferences. For example, Uranus’ bulk density of 1.27 g cm−3 is smaller than Neptune’s

(1.64 g cm−3) [45], suggesting that it has a smaller amount of heavy elements. Also,

interior models based on the gravitational moments suggest that Uranus has its heavy-

element content more concentrated to the centre. Furthermore, while Neptune’s ob-

liquity – the angle between equatorial plane and orbital plane – is relatively low with

28.3°, Uranus is heavily tilted with an obliquity of 97.8° [145]. Moreover, Neptune’s

atmosphere shows stronger signs of activity in form of vortices and storms than Ur-

anus’ [50]. And finally, there is the difference I will focus on in this work, which is

their highly different intrinsic heat fluxes.

Already in the late 1970s, brightness measurements in the infrared spectrum revealed

that Uranus’ total luminosity was only slightly higher than the irradiation it received

from the sun [22], while Neptune was found to radiate almost twice as much as it re-

ceived [86]. Early numerical evolution models by Hubbard & MacFarlane (1980) [62]

could only produce a cooling time close to the age of the Solar System if both plan-
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ets started their evolution less than 20 K above their measured effective temperat-

ures, which was considered highly unlikely. Following advances both in observations

– thanks in no small part to the Voyager mission – and in equation of state data –

particularly in the high-temperature, high-pressure regime – newer models were cal-

culated. Those were still found to overestimate Uranus’ present-day luminosity, which

is equivalent to saying that the models require too long to cool from a hot initial state

right after the planet formation to the observed state. On the other hand, Neptune’s

luminosity was usually in line with the measurements [24, 85, 105]. While this simple

framing as “Neptune is consistent with standard evolution models, while Uranus is too

faint to be explained” might not be entirely correct, as will be the subject of a portion

of this work, the fact remains that there is this fundamental difference in the internal

heat fluxes of these otherwise quite similar planets.

A number of theories to explain this behaviour have been put forth, though most of

them focus on Uranus. One explanation could lie in atmospheric dynamics. Kurosaki

& Ikoma (2017) [77] find that the latent heat released from condensation of initially

enriched ice species H2O, NH3, and CH4 lead to an acceleration in the cooling of Ur-

anus, bringing its cooling time in line with the observations. However, in their models,

reproducing both the correct radius and luminosity would require an atmosphere more

enriched in heavy elements than the underlying envelope, which they note would be

hydrodynamically unstable [77]. Conversely, Leconte et al. (2017) [81] report that the

inhibition of convection due to water condensation actually slows down cooling of the

interior significantly [81]. Markham & Stevenson (2021) [92] find that the condensa-

tion of methane in the atmosphere can speed up cooling, although not to a sufficient

degree to completely account for Uranus’ faintness, while the water condensation at

deeper levels works in the other direction and causes a slowdown [92]. With both

of these effects working against each other, this might help account for differences

between the two ice giants, with the accelerating effect of methane dominating for

Uranus and the decelerating effect of water dominating for Neptune.

Another theory is that there might be some mechanism in the deep interior inhibiting

convection, as argued, for example, by Podolak et al. (1991) [112] or Hubbard et al.
(1995) [64], most likely in the form of a gradient in the composition. Since convection

is a highly effective way of transporting energy, such a stably stratified region would

act as a thermal barrier, effectively trapping part of the planet’s heat inside and there-

fore speeding up the outside cooling. Nettelmann et al. (2016) [102] showed that

assuming a thermal barrier in the interior, represented by a forced temperature gradi-

ent in the planet that grows with time, was sufficient to explain Uranus’ low intrinsic
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Fig. 1.2.: Illustration of the model structure employed by Nettelmann et al. (2016) for explaining
Uranus’ unusually low intrinsic luminosity. A hydrogen and helium dominated, convective
outer envelope is located on top of a convective inner envelope composed of water, methane,
ammonia, basalt, and small amounts of hydrogen and helium. Separating the envelopes is a
thermal boundary layer (TBL) at approximately 13 GPa, that is rendered as a jump in
temperature of several thousand Kelvin. Figure was taken from Ref. [102].

heat flow. An illustration of their model structure is shown in Fig. 1.2. More recently,

Vazan & Helled (2020) [138] performed planetary evolution calculations based on

a range of primordial composition gradients and found that such stably stratified re-

gions could indeed survive over the planet’s lifetimes and reproduce Uranus’ observed

luminosities. There is also the factor that an electrically conducting, non-convecting

area in the planet’s deep interior was found to be able to contribute to generating a

magnetic field similar to those observed in Uranus and Neptune in models by Stan-

ley & Bloxham [131, 132], although models by Soderlund et al. (2013) [130] have

also produced similar magnetic fields using a very thick convective dynamo zone and

a comparatively large solid core. There has been considerably less attention devoted

to Neptune, probably because in the past, its luminosity was usually found to be in

line with a convective interior. As to why the above composition gradients would af-

fect only Uranus but not Neptune, it was argued, e.g. by Stevenson (1986) [133] or

Reinhardt et al. (2020) [122], that this difference can be traced back to giant impact

events that hit and subsequently affected the planets differently, and could also be re-

sponsible for Uranus’ high axial tilt. On the other hand, Helled & Fortney (2020) [50]

remind us that the similarity between Uranus and Neptune might only be superficial

and not due to similar formation and interior structure at all. The question of Uranus’

and Neptune’s evolution is far from settled.

Constraining the thermal evolution is important because it is intimately linked to the
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interior structure and to formation models. The temperature profile depends strongly

on the energy transfer mechanism and therefore the evolution, and can have impact

on the composition inferred from the observations [114]. The inferred composition

can then serve as a constraint on planet formation models, which in turn influence

valid evolution scenarios. Thus, planet evolution is an important part of planetary

science, a field that has been ever-expanding since the discovery of extrasolar plan-

ets began. A large number of these have radii in the range between 2 and 4 Earth

radii, and therefore are of similar size to Uranus/Neptune or intermediate between

the Solar System ice giants and Earth-like rocky planets, which are often called ‘sub-

Neptunes’ [38, 61, 140]. While that does not necessarily mean that they share the

same composition, it does underline that Uranus and Neptune represent a type of

planet that can reasonably be expected to be common in our galaxy.

Thus, in this work I want to examine Uranus’ and Neptune’s thermal evolution and

their luminosity problem in detail. In Chapter 2, I will lay out the theoretical prin-

ciples of planet modelling, in Chapter 3 how they are applied in the computer code

developed for this research, as well as how this code is constructed. Chapter 4 deals

with the constituents Uranus and Neptune are assumed to be composed of and their

material properties. Then, in Chapter 5, I will re-examine adiabatic evolution calcula-

tions using modern equation of state data and gauging the effect of solar irradiation

parameters. In Chapter 6, I turn to a non-adiabatic evolution model under the assump-

tion of a conductive thermal boundary layer in the planet’s interior, building on the

previously mentioned work of Nettelmann et al. (2016) [102]. Finally, in Chapter 7, I

summarise my results and give an outlook on possible future work. The main results

have already been published in References [127] and [128] and are now expanded

upon here.

Certainly, further work will be needed to solve the riddle of Uranus’ and Neptune’s

luminosities or to give a definitive detailed model of the highly complex interiors of

the ice giants. The goal of this work is rather to study the systematic effect of dif-

ferent factors - equation of state, solar irradiation, a deep thermal barrier - on the

planetary evolution and assess their individual effects, regardless of whatever addi-

tional processes may act upon the planet in reality. The real answer will probably lie

in a combination of a number of different factors contributing to the overall planet-

ary evolution and causing Uranus’ and Neptune’s unique characteristics in conjunction

with each other.
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Chapter 2.

Fundamentals of planet modelling

2.1. Equations of planetary structure

There are a number of fundamental equations that describe planetary models. Let us

start with mass conservation:

It is useful to assume the planet to be spherically symmetric and made up of concentric

infinitesimal spherical shells with a mass of dm, a thickness of dr, and a Volume of dV .

Thus, the variable m denotes the total mass contained inside a given shell at a given

time. For a fixed time, the mass of one of the shells - under the assumption that its

local density ρ stays constant within the shell - is:

dm = ρ dV = ρ
(︃4π

3 (r + dr)3 − 4π

3 r3
)︃

= ρ
4π

3
(︂
r3 + 3r2 dr + 3r dr2 + dr3 − r3

)︂
≈ 4πρr2 dr. (2.1)

Since the mass contained in sphere r can change with time, e.g. due to contraction or

mass transport, this leads to the partial derivative

∂m(r, t)
∂r

= 4πρr2. (2.2)

Since the planet’s total mass MP is considered constant in time, while the radius

changes during its lifetime, it is convenient to take m as the independent variable

instead of r, and Eq. (2.2) is transformed to

∂r(m, t)
∂m

= 1
4πρr2 , (2.3)

7



8 Fundamentals of planet modelling

which will be the first basic equation.

Let us now consider the forces acting on an infinitesimal mass element dm at radius r.

The gravitational force acting upon it is

dFgrav = −Gm

r2 dm, (2.4)

where G is the gravitational constant and m, as defined above, is the mass contained

in the sphere of radius r. The gravitational force on the mass element are counter-

balanced by the gradient of the pressure increasing inwards, which generates a force

directed outward. If we take the mass element to be cylindrical, with a base area A,

height dr, volume dV = A dr, and density ρ = dm
dV

, and the main axis parallel to r, this

force is

dFP = P (r, t)A − P (r + dr, t)A = −dV

dr
(P (r + dr, t) − P (r, t)) = −dm

ρ

∂P (r, t)
∂r

,

(2.5)

where P is the local pressure. Under the assumption of hydrostatic equilibrium, for

a non-rotating spherical planet, the forces of gravity and the pressure gradient cancel

each other out and we get

0 = dFgrav + dFP = −Gm

r2 dm − dm

ρ

∂P (r, t)
∂r

,

∂P (r, t)
∂r

= −Gmρ

r2 , (2.6)

which is called the equation of hydrostatic equilibrium.

If rotation is taken into account, in addition to dFgrav and dFP a centrifugal force dF⃗ c

acts on the mass element as

dF⃗ c = − dm ω⃗ × (ω⃗ × r⃗), (2.7)

where ω⃗ is the planet’s angular velocity. Since this force acts perpendicular to the

rotation axis, the problem is no longer spherically symmetric. However, following the

procedure laid out by Ref. [103], we can obtain an approximate term for Fc:

dFc ≈ dm
2
3ω2r. (2.8)
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A derivation of this term can be found in Appendix B.1. Combining Eqs. (2.6) and

(2.8), we obtain

0 = −Gm

r2 dm − dm

ρ

∂P (r, t)
∂r

+ dm
2
3ω2r,

∂P (r, t)
∂r

= −Gmρ

r2 + 2
3ω2rρ. (2.9)

and, using Eq. (2.3) to write the equation in terms of m,

∂P (m, t)
∂m

= − Gm

4πr4 + ω2

6πr
, (2.10)

which is the second basic equation of the models.

Now, we define a quantity for the dimensionless gradient of the temperature T with

pressure [70]

∇T := d ln T

d ln P
= P

T

dT

dP
. (2.11)

With the use of Eqs. (2.10) and (2.11), we can formulate the temperature profile in

the planet with respect to m

∂T (m, t)
∂m

=
(︄

− G m

4π r4 + ω2

6π r

)︄
T

P
∇T , (2.12)

the third fundamental equation. Obviously, ∇T is the key quantity here. It depends

strongly on the conditions in the planet and the process by which energy is transported.

This will be discussed in the following section.

2.2. Heat transport within planets

2.2.1. The luminosity equation

In accordance with Ref. [70], let us define the local luminosity l(m, t) as the heat per

time transported through the surface of the sphere of mass m within the planet. It is

defined such that positive l means heat is transported outward. The total luminosity
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at the planet’s outer boundary is called L, with

L =
∫︂ MP

0

∂l

∂m
dm, (2.13)

where MP is the planet’s total mass. There are several processes contributing to the

luminosity, a few of which are:

dl = dlsec + dlradio + dltide + . . . . (2.14)

The centrepiece of the luminosity for giant planets is the secular cooling dlsec, describ-

ing change in heat content over time. There can be further processes contributing to

the luminosity. For example, dlradio represents heat produced through nuclear reac-

tions, in planets most notable through radioactive decay. Another term is dltide, the

heating through tidal interactions between the planet and its satellite, or, in case of

exoplanets with very small orbital distances to their host stars, between planet and

star. Another influence of significance can be Ohmic dissipation, a process where fast

winds in a hot and irradiated atmosphere of a planet with a strong magnetic field can

induce currents in the deep interior, where they deposit heat through resistive heat-

ing [6, 125]. This process is potentially very relevant for close-in, highly irradiated

exoplanets [6, 25, 76, 125].

Secular cooling is defined as [70]

∂lsec

∂m
= −∂q

∂t
, (2.15)

with q the heat per unit mass. Let us assume a composition that does not change with

time. Then, we can use the first law of thermodynamics for constant particle number

δq = du + P dv = du − P

ρ2 dρ, (2.16)

with the specific internal energy u and specific volume v. Inserting this into Eq. (2.15)

gives

∂lsec

∂m
= −∂u

∂t
+ P

ρ2
∂ρ

∂t
. (2.17)

The two terms on the right represent change of internal energy and mechanical work

through expansion/contraction, which also represents the change in gravitational en-

ergy.
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In this work, I neglect explicit treatment for the other terms in Eq. (2.14). To gain an

approximation of the error made due to not regarding the heat from nuclear reactions,

I use the approximation of Guillot et al. (1995) for the total radioactive luminosity [44]

Lradio

mrocks
= 2 × 1013 W

ME
, (2.18)

where mrocks is the mass of rocky material in the model in question and ME denotes

the Earth mass. For an ice-rich Uranus model with a rock core of about 0.8 ME – e.g.

model “Uranus 2” in Chap. 5 – this is about Lradio ≈ 1.6 × 1013 W, which is about 5 % of

Uranus’ total intrinsic luminosity of about 3.4 × 1014 W [45]. On the other hand, some

of the models calculated for this work have a higher rock content of about 2.5 ME in the

case of the hot superadiabatic Uranus model examined in Sect. 6.6. In that example,

the heating contribution from nuclear reactions in the rocky material is closer to 15 %
of the intrinsic luminosity of Uranus. For Neptune, with its similar rock content to

Uranus but much higher intrinsic luminosity of 3.3 × 1015 W, the relative contributions

are smaller. This means that my models will somewhat underestimate the time it takes

to cool to today’s observed state, or, equivalently, underestimate the present-day total

luminosity. For more information on the influence of lradio, see App. D.

The tidal heating for Neptune ltid primarily results from the obliquity of its largest

moon Triton, i.e. the angle of inclination between Triton’s orbit and Neptune’s equator.

Based on the formula for obliquity heating presented by Millholland (2019) [99], and

using the parameters for Triton from the NASA Neptunian Satellite Fact Sheet [145],

the total obliquity heating term for Neptune can be estimated as

Lobl,N ≈ 1
QN

× 5.3 × 1015 W, (2.19)

where QN is the tidal quality factor of Neptune. Using the value of Zhang & Hamilton

(2018) of QN > 9000, we can estimate Ltidal < 6 × 1011 W, which is only 2 × 10−4 times

Neptune’s intrinsic luminosity of about 3.3 × 1015 W [45], and thus safely negligible.

Even the much lower tidal quality factor of QN = 100 estimated by Goldreich et al.
(1989) [40] leads to Ltidal ≈ 5.3 × 1013 W, which is still only about 1.6 % of Lint. For

Uranus this contribution is even less, because tidal heating scales with the mass of

the satellite, and Uranus’ largest satellite Titania is smaller than Triton by a factor of

about 6, and it additionally has a much smaller obliquity [145]. A second contribution

to tidal heating arises from the satelites’s orbital eccentricity, i.e. how much the orbit

deviates from a circle. This contribution can be estimated using Eq. (4) of Miller et al.
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(2009) [98] to about

Lecc, N ≈ 1
QN

× 1 × 105 W, Lecc, U ≈ 1
QU

× 1 × 106 W, (2.20)

for Neptune and Uranus, respectively, which is even lower than the obliquity contribu-

tion. Therefore, tidal heating can be safely ignored.

Consequently, because my models only take into account lsec explicitly, the luminosity

equation as relevant for this work is simply Eq. (2.17):

∂l

∂m
= ∂lsec

∂m
= −∂u

∂t
+ P

ρ2
∂ρ

∂t
. (2.21)

In order to formulate the equation in terms of the thermodynamic quantities P, T , we

introduce the isobaric specific heat capacity cp and coefficient of expansion δρ as

cp =
(︄

∂q

∂T

)︄
P

=
(︄

∂u

∂T

)︄
P

+ P

(︄
∂v

∂T

)︄
P

=
(︄

∂u

∂T

)︄
P

− P

ρ2

(︄
∂ρ

∂T

)︄
P

, (2.22)

δρ = −
(︄

∂ ln ρ

∂ ln T

)︄
P

= −T

ρ

(︄
∂ρ

∂T

)︄
P

. (2.23)

One can show that [70]

dq = cp dT − δρ

ρ
dP. (2.24)

The proof for this can be found in Appendix B.2. With this, we can then write Eq.

(2.21) as

∂l

∂m
= cp

∂T

∂t
+ δρ

ρ

∂P

∂t
. (2.25)

The quantities in this relation all depend on T and P via the equations of state u(P, T )
and ρ(P, T ), which will be discussed in Chap. 4. It relates the planetary profile in

P and T to the heat flow and, thus, the planet’s structure to its thermal evolution,

i.e. how its temperature, pressure and radius profiles change over time. The heat is

transported via three major processes - radiation, conduction, and convection - which

shall be discussed in the following sections.
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2.2.2. Radiative and conductive heat transport

Both heat transport by radiation and conduction can be described in a shared frame-

work, following the procedure laid out by Kippenhahn et al. [70].

Heat conduction describes transfer of energy via collisions between particles in the ma-

terial. The conductive heat flux, j⃗Q,cd, i.e. the heat transported per unit area and time,

is proportional to the gradient in temperature according to Fourier’s law of thermal

conduction [70, 129]:

j⃗Q,cd = −λcd gradT, (2.26)

where λcd is the coefficient of thermal conduction, or thermal conductivity. In spher-

ical symmetry, j⃗Q,cd can be replaced by its radial component, and the gradient of the

temperature by its radius derivative, giving

jQ,cd = −λcd
∂T

∂r
. (2.27)

Radiation, on the other hand, is the energy transport via electromagnetic waves, e.g.

visible or infrared light, which can be quantised as photons. If the mean free path of

the photons is shorter than the radius length scale, this process can be described by a

diffusion equation [70]

j⃗Q,rd = −D gradU (2.28)

where U is the energy density of radiation

U = aT 4, (2.29)

a the radiation density constant, and D is the coefficient of diffusion. The latter one

can be written as [20, 70]

D = vℓp

3 . (2.30)

Here, v denotes the mean velocity of the particles in the diffusive process – in this case

photons – and ℓp their mean free path. The velocity is simply the speed of light c and
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ℓp is [70]

ℓp = 1
κρ

, (2.31)

with the Rosseland mean opacity κ. Inserting Eq. (2.31) into (2.30), and inserting

that and Eq.(2.29) into Eq. (2.28), we arrive at

j⃗Q,rd = −4acT 3

3κρ
gradT. (2.32)

This has the same structure as Eq. (2.26), and therefore we can formally define the

radiative conductivity λrd as

λrd = 4acT 3

3κρ
, (2.33)

and, as in the conductive case, make use of spherical symmetry to obtain

jQ,rd = −λrd
∂T

∂r
. (2.34)

The combined heat flux via conduction and radiation can then be written as

jQ = jQ,rd + jQ,cd = −(λrd + λcd⏞ ⏟⏟ ⏞
λ

)∂T

∂r
. (2.35)

Replacing jQ via l = 4πr2jQ, and making use of Eq. (2.3), this can be transformed to

l = −4πr2λ4πρr2 ∂T

∂m
= −16π2r4λρ

∂T

∂m
. (2.36)

Using Eq. (2.12) for the temperature derivative, this becomes

l = −16π2r4λρ

(︄
− G m

4π r4 + ω2

6π r

)︄
T

P
∇T

= 8πr3λρ

(︄
G m

2r3 − ω2

3

)︄
T

P
∇T , (2.37)

as the conductive and radiative luminosity in a region with a particular temperature

gradient ∇T . If we now solve Eq. (2.37) for ∇T , we obtain the temperature gradi-

ent necessary to support a given luminosity l purely by conduction and radiation, a
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quantity we shall call ∇cond,

∇cond = l

8πr3λρ

P

T

(︄
G m

2r3 − ω2

3

)︄−1

= lP

4π G mλρT

(︄
1 − 2ω2 r3

3G m

)︄−1

. (2.38)

This differs from the corresponding term in Kippenhahn et al. [70] mainly in the

second term in parentheses, which describes the influence of rotation on ∇cond, while

Kippenhahn et al. do not take rotation into account there. Since this rotational term

is proportional to r3 and inversely proportional to m, it is largest on the planet’s outer

boundary. For present-day Neptune (MP = 1.02 × 1026 kg, RP = 2.46 × 107 m, ro-

tational period Pω = 5.8 × 104 s), it contributes to ∇cond by about 1.7 %, while for

the more quickly rotating Jupiter (MP = 1.90 × 1027 kg, RP = 6.90 × 107 m, Pω =
3.57 × 104 s) [45], it is about 5.6 %. In the ice giant models presented in Chap. 6, a

simplified temperature gradient of

∇cond ≈ lP

4π G mλρT
(2.39)

was used since the additional term was small in all cases. This is discussed in more

detail in Chap. E.

2.2.3. Convective energy transport

In convection, energy is transported via the movement of mass elements. A mass

package that is, through some fluctuation, slightly hotter than the surrounding, will

rise due to buoyancy, until its density is equilibrated with the surrounding, where

it dissolves and deposits its heat. Thus, convection cannot occur if density in the

surrounding changes more quickly with depth than in the fluid element.

If we assume, following the procedure in Ref. [70], that the element is in pressure

equilibrium with the environment throughout its rise, but has no energy exchange

during it, that means that it behaves adiabatically. Then, convection is suppressed if

dρ

dP
≥
(︄

∂ρ

∂P

)︄
s,{Xj}

, (2.40)
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where the left-hand side is the derivative taken along the planetary profile, represent-

ing the surroundings, and the right-hand side is evaluated for constant composition

and specific entropy s, representing the adiabatically expanding fluid element.

The stability condition Eq. (2.40) can be used to derive a more easily accessible cri-

terion, for which we will follow the approach outlined in the work of Vazan et al.
(2015) [137]. In this description, all thermodynamic quantities depend on pressure

P , temperature T , and the material’s composition, represented by the mass fractions

Xj of the different components. Therefore, the total differential of ρ can be written as

dρ =
(︄

∂ρ

∂P

)︄
T,{Xj}

dP +
(︄

∂ρ

∂T

)︄
P,{Xj}

dT +
∑︂

i

(︄
∂ρ

∂Xj

)︄
P,T,{Xk ̸=i}

dXi, (2.41)

dρ

dP
=
(︄

∂ρ

∂P

)︄
T,{Xj}

+
(︄

∂ρ

∂T

)︄
P,{Xj}

dT

dP
+
∑︂

i

(︄
∂ρ

∂Xi

)︄
P,T,{Xk ̸=i}

dXi

dP
. (2.42)

Using the cyclic chain rule
(︄

∂x

∂y

)︄
z

(︄
∂y

∂z

)︄
x

(︄
∂z

∂x

)︄
y

= −1, we can rewrite

(︄
∂ρ

∂Xi

)︄
P,T,{Xk ̸=i}

= −
(︄

∂T

∂Xi

)︄
P,ρ,{Xk ̸=i}

(︄
∂ρ

∂T

)︄
P,{Xj}

, (2.43)

and therefore, the left-hand side of Eq. (2.40) becomes

dρ

dP
=
(︄

∂ρ

∂P

)︄
T,{Xj}

+
(︄

∂ρ

∂T

)︄
P,{Xj}

dT

dP
−
(︄

∂ρ

∂T

)︄
P,{Xj}

∑︂
i

dXi

dP

(︄
∂T

∂Xi

)︄
P,ρ,{Xk ̸=i}

. (2.44)

Here, we introduce the quantity, again following the nomenclature in Ref. [137],

∇X =
∑︂

i

dXi

dln P

(︄
∂ ln T

∂Xi

)︄
P,ρ,{Xk ̸=i}

= P

T

∑︂
i

dXi

dP

(︄
∂T

∂Xi

)︄
P,ρ,{Xk ̸=i}

. (2.45)

Here, dXi

dP
is the change of composition with increasing pressure along the given planet-

ary profile. The partial derivative
(︂

∂T
∂Xi

)︂
P,ρ,{Xk ̸=i}

represents the change in temperature

due to changing composition locally. For that latter derivative and how it is calculated

in practice, see App. B.4.

We also make use of the quantity already established in Eq. (2.11)

∇T = dln T

dln P
= P

T

dT

dP
, (2.46)
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which is the temperature gradient that is actually realised in the planetary profile and

along which s and {Xi} may vary. With Eq. (2.45) and Eq. (2.46), Eq. (2.44) becomes

dρ

dP
=
(︄

∂ρ

∂P

)︄
T,{Xj}

+ T

P

(︄
∂ρ

∂T

)︄
P,{Xj}

∇T − T

P

(︄
∂ρ

∂T

)︄
P,{Xj}

∇X

=
(︄

∂ρ

∂P

)︄
T,{Xj}

+ T

P

(︄
∂ρ

∂T

)︄
P,{Xj}

[∇T − ∇X ] . (2.47)

Now, for the right-hand side of Eq. (2.40), we can use a multi-variable chain rule,

which in general for two independent variables reads [11]:

∂w(u, v)
∂u

= ∂w(y, z)
∂y

∂y(u, v)
∂u

+ ∂w(y, z)
∂z

∂z(u, v)
∂u

. (2.48)

In our case, we take w = ρ, u = y = P , v = s, and z = T (P, s). Thus, we can switch

from ρ(P, s, X) to ρ(P, T, X) via:

(︄
∂ρ

∂P

)︄
s,{Xj}

=
(︄

∂ρ

∂P

)︄
T,{Xj}

+
(︄

∂ρ

∂T

)︄
P,{Xj}

(︄
∂T

∂P

)︄
s,{Xj}

. (2.49)

Similar to Eq. (2.46), one can introduce

∇ad =
(︄

∂ ln T

∂ ln P

)︄
s,{Xj}

= P

T

(︄
∂T

∂P

)︄
s,{Xj}

, (2.50)

which is the change in temperature with pressure for constant entropy, or, in short, the

adiabatic temperature gradient. With this, Eq. (2.49) becomes

(︄
∂ρ

∂P

)︄
s,{Xj}

=
(︄

∂ρ

∂P

)︄
T,{Xj}

+ T

P

(︄
∂ρ

∂T

)︄
P,{Xj}

∇ad. (2.51)

Now combining Eqs. (2.47) and (2.51), Eq. (2.40) becomes

(︄
∂ρ

∂T

)︄
P,{Xj}

[∇T − ∇X ] ≥
(︄

∂ρ

∂T

)︄
P,{Xj}

∇ad, (2.52)

and, assuming a material with positive thermal expansion coefficient, i. e. where(︄
∂ρ

∂T

)︄
P,{Xj}

< 0 holds, we arrive at:

∇T ≤ ∇X + ∇ad , (2.53)
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as a criterion for dynamical stability, which we shall call the generalised Ledoux cri-

terion, as in Ref. [137]. This shows that convection can be inhibited by a sufficiently

large compositional gradient. In a homogenous medium absent of any changes in

composition, ∇X = 0 and the condition (2.53) becomes the Schwarzschild criterion

∇T ≤ ∇ad. (2.54)

Thus in a convective, homogeneous region of the planet, the medium adopts a tem-

perature gradient ∇T with

∇ad < ∇T < ∇rad. (2.55)

To calculate ∇T accurately, a detailed description of the hydrodynamics of convec-

tion is needed. For this, the Navier-Stokes equations of fluid dynamics have to be

calculated, including a detailed description of local particle fluxes [108, 135]. This

is beyond the scope of stellar and planetary structure and evolution codes due to the

high computational cost involved. There is, however, a way of approximating it us-

ing mixing-length theory [70]. It is based on the assumption that convecting fluid

elements travel an average distance, the mixing length lm, before dissolving in their

surroundings, and that the heat flux and local temperature gradient can be calculated

based on that. The mixing length is usually expressed in terms of the pressure scale

height lm = αHP , where α is called the mixing length parameter, which is not known

and for which an assumption has to be made [46, 70]. Using mixing length theory,

one can derive an expression for the superadiabaticity, i.e. the amount the local ∇T

exceeds the adiabatic gradient, which reads [46]:

∇T − ∇ad =
⎛⎝ 4

√
2jQ,conv

α2cpT
√︂

δρρP

⎞⎠ 2
3

, (2.56)

where jQ,conv is the heat flux transported by convection. Using the assumption of α = 1,

as well as the total observed heat flux jQ,surface as an upper bound for jQ,conv, Guillot

et al. (2004) [46] estimate the superadiabaticity inside Jupiter to be about 1 × 10−5

in the atmosphere and smaller than 1 × 10−8 in the deep interior. Using the same

approximations for jQ,conv and α as Ref. [46], and taking the material properties along

adiabatic Uranus and Neptune profiles Uranus 2 and Neptune 2 from Sect. 5, yields

values for ∇T − ∇ad < 7 × 10−6 at the outer edge of the planets and ∇T − ∇ad <

1 × 10−8 in the deep interior. It is thus a reasonable approximation to assume the
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temperature gradient in convective zones as adiabatic for our ice giant models as well

as for Jupiter-like planets. Using the thermodynamic quantities P , T , and ρ, as well as

the material properties cp and δρ, the adiabatic temperature gradient can be calculated

as

∇ad = Pδρ

Tρcp

, (2.57)

which is derived in App. B.3.

The real situation of energy transport is not quite as clear-cut as implied by the descrip-

tion here. Apart from strong, overturning convection and complete stable stratifica-

tion with heat transported by pure conduction and radiation, there are intermediate

regimes which can occur. In the event of a stabilising compositional gradient and

a destabilising thermal gradient – i.e. if a region is stable according to the Ledoux

criterion (2.53), but would be unstable under the Schwarzschild criterion (2.54) – a

family of processes called “double diffusive convection” can occur [135]. This takes

the form of either oscillatory convection, where mass elements oscillate around an

equilibrium position, resulting in heat transport without particle transport [39, 136],

or layered convection, where a number of small convective layers are separated by con-

ductive interfaces, which are prone to frequent turbulence [79, 101].

Whether such a region is stably stratified or in one of these double-diffusive regimes

depends on a large number of material properties, among them the viscosity, thermal

conductivity, heat capacity, and diffusion coefficients of the different materials in the

mixture. For a more in-depth explanation of double diffusive processes, see Chap.

11 in Turner (1973) [135]. Regarding the applications in planetary physics, see e.g.

Leconte & Chabrier (2012) [79] or Nettelmann et al. (2015) [101], both relating

to Jupiter, and references therein. For Uranus and Neptune, French & Nettelmann

(2019) [34] estimate, using viscosity and conductivity values for pure water, that there

is only a rather narrow window of parameters for double diffusive convection to occur,

without it turning into full overturning convection or being stably stratified. Because

of this, as well as the fact that an explicit treatment of double-diffusive convection is

quite complex and beyond the scope of this work, it is not directly included in the

models of this work. Nevertheless, since there are still uncertainties surrounding this

topic, double diffusive convection might very well play an important role and cannot

be wholly dismissed.
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2.3. Summary of basic equations

To summarise, the four basic equations, as derived previously and presented in Eqs.

(2.3), (2.10), (2.12), and (2.25), are:

∂r

∂m
= 1

4π r2 ρ
, (2.58a)

∂P

∂m
= − G m

4π r4 + ω2

6π r
, (2.58b)

∂T

∂m
=
(︄

− G m

4π r4 + ω2

6π r

)︄
T

P
∇T , (2.58c)

∂l

∂m
= −∂u

∂t
+ P

ρ2
∂ρ

∂t
= −cp

∂T

∂t
+ δρ

ρ

∂P

∂t
, (2.58d)

where ∇T in Eq. (2.58c) changes depending on which regime of energy transport the

material adopts, for which we have presented methods of calculating under various

conditions. Solving these equations will yield a series of profiles representing the

planet’s evolution. The procedure to do so will be detailed in the next Chap. 3.



Chapter 3.

Numerical procedure

After deriving the basic equations of planet modelling and evolution in Chap. 2, let

us now turn to the question of how to solve them. First, I will present at the bound-

ary conditions of these planetary models, followed by a discussion of the theoretical

method used for the models presented in this work, which is an adaptation of the

Henyey-method for stellar structure and evolution calculations. Then I will present

information regarding the practical implementation of that method in the computer

program I have developed for this work.

3.1. Boundary Conditions

In the planet’s centre at m = 0, it is evident that r(m = 0) = 0 must hold. Based on the

assumption that ρ does not vary near the centre for sufficiently small values of m and

r, Eq. (2.58a) can be approximately integrated near the centre for constant ρc [70]:

rc =
(︄

3mc

4πρc

)︄ 1
3

. (3.1)

Similarly, since there are no energy sources in the centre, it must also hold that l(m =
0) = 0 and therefore, that the luminosity at the innermost point in our model is

lc =
(︄

−cp
∂T

∂t
+ δρ

ρ

∂P

∂t

)︄
mc, (3.2)

where mc is the innermost mass shell.

A comprehensive treatment of the outer boundary conditions would involve model-

21
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ling atmospheric processes where, due to the low density and low opacity, radiative

transport becomes increasingly important. Since this work is more interested in the

structure and processes of the deep interior, we will instead adopt an approximation

inspired by, e.g., Ref. [105]. First, we define the surface of our models to be at a

pressure of

P (m = MP) := 1 bar, (3.3)

which is standard practice in many interior models of Uranus and Neptune, cf., e.g.,

Refs. [4, 46, 105], and evolution models, e.g. [24, 102, 105], due to the fact that the

atmospheric P -T -profile inferred from Voyager measurements for Uranus [83] and

Neptune [84] are close to an adiabat below that pressure. Eq. (3.3) will serve as the

first outer boundary condition. For the second, we turn to the observed luminosity of

the planet, which is

Lobs = Lint + Lsol, (3.4)

where Lint is the total intrinsic luminosity of the planet, and thus Lint = l(m = MP),
and Lsol the solar irradiation absorbed and then re-emitted by the planet. Using the

Stefan-Boltzmann law [70], we can express Lint and Lsol as functions of the planet’s

effective and equilibrium temperatures respectively:

L = 4πR2
PσBT 4

eff, (3.5)

Lsol = 4πR2
PσBT 4

eq. (3.6)

The effective temperature Teff of the planet is the temperature at which a black body

sphere of the same radius as the planet would have to radiate heat with the same total

luminosity. The equilibrium temperature Teq is the effective temperature the planet

would have, if it was in complete thermal equilibrium with its star. Thus, our second

boundary condition is

l(m = MP) := 4πR2
PσBT 4

eff − 4πR2
PσBT 4

eq. (3.7)

The equilibrium temperature Teq can be calculated from the stellar and orbital para-

meters [102]

T 4
eq = 1

4T 4
∗ (1 − A)

(︃
R∗

a

)︃2
, (3.8)
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where T∗ and R∗ are the stellar temperature and radius, respectively, and a is the

planet’s mean orbital distance. A is its Bond albedo, that is, the share of irradiation

that is outright reflected instead of absorbed and re-emitted. On the other hand, Teff

has to somehow be linked to a temperature inside the planet, where the P -T -profile

follows an adiabat, in our case the 1-bar level, see Eq. (3.3). To this end, we will use

a relation from Guillot et al. (1995) [44],

T1bar = Kg−1/6T
3.73/3
eff . (3.9)

This is based on a formula by Hubbard (1977) [63], interpolating model atmospheres

for Jupiter calculated by Graboske et al. (1975) [41]. Here, g = GMP/R2
P is the grav-

itational acceleration at the planet’s surface, and K is an empirical parameter chosen

so that the observed 1-bar-temperature emerges from Eq. (3.9). Using Uranus’ and

Neptune’s accepted values for Teff and T1bar – see App. A – gives values of KU = 1.481
for Uranus and KN = 1.451 for Neptune.

This description of the atmosphere is a simplification, as the model it is based on was

developed for Jupiter which has a hotter and less heavy-element rich atmosphere than

Neptune. Fortney et al. (2011) [24] calculated adiabatic Uranus and Neptune mod-

els both with the description used here and with a more detailed atmosphere model

developed for the ice giants. They found that their own atmosphere model produced

longer cooling times. For Neptune, this effect is on the order of ∼ 0.2 Gyr. For Uranus,

due to its very slow present-day cooling, it was found to be several Gyr, but the effect

was shown to be no greater than that of the observational uncertainties of the intrinsic

luminosity, and even their fastest-cooling Uranus model still strongly predicts an age

that is too high [24]. Therefore, due to its ease of use, I will utilise Eq. (3.9), while

noting that this probably produces too short cooling times for Uranus.

Having taken care of the boundary conditions, let us turn to the actual solution strategy.

3.2. The Henyey method

The approach used in this thesis to solve the structure equations is based on the de-

scription of the Henyey method of calculating stellar structure and evolution [54] in

Chap. 12 of Kippenhahn et al. (2012) [70], with additional details for the implement-

ation taken from Hofmeister et al. (1964) [56] and Kippenhahn et al. (1967) [69].
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Equations (2.58) can be recast to the form

f0 = ∂y0

∂ξ
= − Mx

4π ρ
exp [ξ − 3y0] , (3.10a)

f1 = ∂y1

∂ξ
= G M2

x

4π

(︂
1 − eξ

)︂
exp [ξ − 4y0 − y1] − ω2Mx

6π
exp [ξ − y0 − y1] , (3.10b)

f2 = ∂y2

∂ξ
= G M2

x

4π
∇T

(︂
1 − eξ

)︂
exp [ξ − 4y0 − y1] − ω2Mx

6π
∇T exp [ξ − y0 − y1] , (3.10c)

f3 = ∂y3

∂ξ
= −Mx

(︄
−cp

∂

∂t
ey2 + δρ

ρ

∂

∂t
ey1

)︄
exp [ξ − y3] . (3.10d)

Here yi are the logarithmic main variables y0 = ln(r), y1 = ln(P ), y2 = ln(T ), and

y3 = ln(l + Lc), where Lc is a constant added to the luminosity in cases where we

have to allow for l < 0. The mass coordinate of the models is ξ = ln
(︂
1 − m

Mx

)︂
, with

Mx = 1.05 Mp, following Ref. [69].

To solve this system of differential equations, a variant of the Henyey method of cal-

culating stellar structure and evolution [54] is used, as presented in Kippenhahn et
al. (2012) [70]. The model is calculated on a discretised 1-dimensional grid of N

mass points, numbered j = 0 . . . N − 1, where j = 0 denotes the outer boundary

and j = N − 1 the innermost grid point. Instead of integrating the differential equa-

tions along the mass coordinate, as is the practice in the commonly used Runge-Kutta

method, in this approach, the values of the dependent variables are solved for simul-

taneously, by solving a grid of difference equations using the Newton-Raphson method.

The derivatives in Eqs. (3.10) are approximated as the corresponding difference quo-

tients between the j-th and (j + 1)-st grid point

∂yi

∂ξ
≈ yj+1

i − yj
i

ξj+1 − ξj
= yj+1

i − yj
i

∆ξj+1

For a profile of quantities yi to fulfil the equations (3.10) in this approximation, the

following equations must hold at every point:

Gj
i := yj+1

i − yj
i

∆ξj+1 − fi

(︃
y

j+ 1
2

0 , y
j+ 1

2
1 , y

j+ 1
2

2 , y
j+ 1

2
3

)︃
= 0, with i = 0, . . . , 3 (3.11)

where the values y
j+1/2
i are obtained as the arithmetic mean of the values at the jth

and (j + 1)st point and fi are the functions defined by Eqs. (3.10). Similarly, the two

outer boundary conditions (3.3) and (3.7) can be written as the two functions (with
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P0 = 1 bar:

B0 := ey0
1 − P0 = 0, (3.12)

B1 := ln(l0) − ln (4πσB) − 2y0
0 − ln

(︂
T 4

eff − T 4
eq

)︂
= 0. (3.13)

Between the last and the second-to-last grid point ξN−1 and ξN−2, another set of equa-

tions is employed based on one of the central boundary conditions Eq. (3.1), follow-

ing [56]. First, we take Eq. (3.1) to be true at ξN−2 as well,

r(m) ≈
(︄

3m

4πρc

)︄ 1
3

. (3.14)

Converted into our logarithmic units and discretised similarly to Eqs. (3.11), this

becomes

C0 := 3yN−2
0 − ln

(︃ 3
4π

)︃
+ ln (ρc) − ln

(︃
Mx

(︂
1 − eξN−2)︂)︃ = 0. (3.15)

Next, inserting Eq. (3.1) into Eq. (3.10b) gives a similar approximation for the pres-

sure difference near the centre

∂ ln y1

∂ξ
≈ 1

6π

(︃4π

3

)︃ 1
3

M
2
3

x

(︂
1 − eξ

)︂− 1
3 exp[ξ − y1]

(︃
2πGρ

4
3
c − ω2ρ

1
3
c

)︃
, (3.16)

which leads to the relation

C1 := yN−1
1 − yN−2

1
ξN−1 − ξN−2 − 1

6π

(︃4π

3

)︃ 1
3

M
2
3

x

(︂
1 − eξN−2)︂− 1

3 ×

× exp[ξN−2 − yN−2
1 ]

(︃
2πGρ

4
3
c − ω2ρ

1
3
c

)︃
= 0. (3.17)

For the third function near the centre the definition of ∇T , Eq. (2.11), is used and we

arrive at

C2 := yN−1
2 − yN−2

2

yN−1
1 − yN−2

1
− ∇T = 0. (3.18)

No simplification is used for the fourth equation, and we use Eq. (3.10d) directly to

arrive at

C3 := yN−2
3 − yN−1

3
ξN−1 − ξN−2 − f3

(︃
y

N− 3
2

0 , y
N− 3

2
1 , y

N− 3
2

2 , y
N− 3

2
3

)︃
= 0. (3.19)
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Note that these functions differ somewhat from those presented in, e.g., Hofmeister et
al. [56], because these forms turned out to be numerically more stable, and this work

includes a description of rotation, which Hofmeister et al. neglect.

Thus, for N grid points in the model, this gives a system of 4N − 2 equations. The

unknown variables are yj
i for j = 0 . . . N − 1. The variables yN−1

0 and yN−1
3 directly at

the innermost point can be excluded, as their values are known via the central bound-

ary conditions (3.1) and (3.2), leading to 4N − 2 variables which the above 4N − 2
equations have to be solved for.

To solve this system, a multi-dimensional Newton-Raphson method can be applied [70].

Let us assume that an approximate profile (yn
k )0; k = 0, . . . 3; n = 0, . . . N − 1 is avail-

able that does not fulfil Eqs. (3.11). Ideally, corrections δyn
k have to be found so that

yn
k = (yn

k )0 + δyn
k , (3.20)

Gj
i (yn

k ) = Gj
i

(︂
(yn

k )0 + δyn
k

)︂
= (Gj

i )0 + δGj
i = 0,

k = 0, . . . 3; n = 0, . . . N − 1.

(3.21)

We can Taylor-expand the functions Gj
i with respect to the variables yn

k around the

initial estimate solution (yn
k )0 [11]:

Gj
i = (Gj

i )0 +
3∑︂

k=0

N−1∑︂
n=0

∂Gj
i

∂yn
k

(︂
yn

k − (yn
k )0
)︂

⏞ ⏟⏟ ⏞
δyn

k

+

⎛⎜⎜⎜⎝
3∑︂

k=0

N−1∑︂
n=0

∂

∂yn
k

(︂
yn

k − (yn
k )0
)︂

⏞ ⏟⏟ ⏞
δyn

k

⎞⎟⎟⎟⎠
2

Gj
i + . . . ,

(3.22)

and then, as a linear approximation, take only into account the terms linear in δyn
k .

Additionally, we can see from the definitions of Gj
i that they only depend on the values

of yj
n and yj+1

n at the neighbouring points ξj and ξj+1, so that we arrive at [70]

0 = Gj
i ≈ (Gj

i )0 +
3∑︂

k=0

∂Gj
i

∂yj
k

δyj
k + ∂Gj

i

∂yj+1
k

δyj+1
k . (3.23)

Combining this with similar treatments for the boundary conditions Bi, a system of

equations can be formulated that has to be solved for the δyk
n:

∂Bi

∂y0
0

δy0
0 + ∂Bi

∂y0
1

δy0
1 + ∂Bi

∂y0
2

δy0
2 + ∂Bi

∂y0
3

δy0
3 = −(Bi)0, (3.24)

i = 0, 1 ,
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∂Gj
i

∂yj
0

δyj
0 + . . . + ∂Gj

i

∂yj
3

δyj
3 + ∂Gj

i

∂yj+1
0

δyj+1
0 + . . . + ∂Gj

i

∂yj+1
3

δyj+1
3 = −(Gj

i )0, (3.25)

i = 0, . . . , 3 , j = 0, . . . , N − 2.

This can be recast as the following matrix equation:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂B0

∂y0
0

∂B0

∂y0
1

· · · 0

∂B1

∂y0
0

∂B1

∂y0
1

· · · 0

∂G0
0

∂y0
0

∂G0
0

∂y0
1

· · · 0

...
... . . . ...

0 0 · · · ∂C3

∂yN−1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

H

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δy0
0

δy0
1

δy0
2

...

δyN−1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

δy⃗

= −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(B0)0

(B1)0

(G0
0)0

...

(C3)0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

G⃗

. (3.26)

The vector G⃗ and matrix H are calculated for the estimated starting solution y⃗0, and

then equation (3.26) is solved for δy⃗ and with this, a new solution y⃗1 is constructed.

Now, because we used a linearisation in Eq. (3.23), the new profile is also unlikely

to actually fulfil Gj
i = 0, and is instead used to calculate updated G⃗ and H. This is

repeated until an intended level of convergence is found, see Sect. 3.3 for more on the

convergence criterion.

As an example, consider a model with 4 points, j = 0, . . . , 3. The structure of the H-

matrix for this case is shown in Fig. 3.1. As was already mentioned in the derivation of

the method, because the functions Gj
i only depend on yk

n at two neighbouring points

each, the H-matrix is non-zero only in overlapping 8 × 4 blocks around the main

diagonal, and zero everywhere else.

3.3. The OTTER Code

For this thesis, a computer program based on the principles outlined in Sect. 3.2 has

been developed. It is called OTher Thermal Evolution Realisation or OTTER for short
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j=0⏟ ⏞⏞ ⏟ j=1⏟ ⏞⏞ ⏟ j=2⏟ ⏞⏞ ⏟ j=3⏟ ⏞⏞ ⏟
y0

0 y0
1 y0

2 y0
3 y1

0 y1
1 y1

2 y1
3 y2

0 y2
1 y2

2 y2
3 y3

1 y3
2

B1

B2

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

C0

C1

C2

C3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗
0 0 0 0 0 0 0 0 ∗ ∗ ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3.1.: The layout of the H matrix for an example model with 4 points. On the left are the 14
equations of the model, at the top we have the 14 independent variables. Non-zero entries are
represented by an ∗. As an example, the entry in the third row (G0

0), second column (y0
1)

represents the derivative ∂G0
0/∂y0

1 . The figure is based on an analogous illustration in
Ref. [70].

and is written in C++. To solve the matrix equation (3.26), the code makes use of the

vector and sparse matrix functions from the Eigen library [43].

To obtain a planetary evolution track, a succession of profiles at different time steps is

calculated. For a given point in time, an approximate solution is iteratively improved

until a converged profile is found. This profile and the one from the previous time step

are then used to estimate a solution for the next step, for which the whole process is

then repeated. This series of profiles is linked via the time-derivatives in Eq. (2.58d),

and from these, evolution curves of R(t), Teff(t), etc. can be constructed.

For the beginning of an evolution track, a profile with a predefined outer temperature

T1bar is calculated as a starting point. The initial estimate that serves as starting solu-

tion for that profile, as well as the starting solution for the profile after the first time

step, are usually taken from previous evolution calculations, or, for the first trial runs
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with a new planet, were calculated with Nadine Nettelmann’s planetary modelling tool

MOGROP [103, 104].

The convergence criterion for the iterative solving of Eq. (3.26) at a certain time is

δyj
i < 5 × 10−8 for all i, j. For an arbitrarily chosen Neptune profile, this usually leads

to Gj
i ≲ 2 × 10−4, except for GN−1

3 - the luminosity equation at the innermost point -

which is on the order of ∼ 0.1. For an evolution calculation for an adiabatic Neptune

model over ca. 3.7 Gyr, the difference in effective cooling time between using this

convergence criterion and using δyj
i < 1 × 10−10 is on the order of ∼ 1 × 10−9 Gyr.

Usually, convergence is found within 10 iterations. Occasionally, a particular profile

in an evolution calculation fails to converge in 80 steps, as the luminosity profile does

not settle into a stable state. In these cases, if the changes in the profile over an itera-

tion are within δyj
i < 1 × 10−4, the evolution is continued with the last iteration of the

current profile.

The length of the first time step is manually chosen. Then, with each time step, the

length of the step is multiplied by a certain factor ft, because planets usually change

more quickly and strongly at the beginning of their lifetime than later. For the models

presented in Chaps. 5 and 6, a starting time step of 1 Myr and a factor of ft = 1.005
was chosen, leading to an evolution run of about 650 profiles for a time of t = 5 Gyr.
The total number of points N in a model is not fixed. For the earlier models presented

in Chap. 5, a constant number of about 1000 mass points was used for each model,

based on the original guess solution calculated with MOGROP. For the more recent

models in Chap. 6, an adaptive scheme is used. Whenever one of the main quantities

yi changes by more than ∆ymax = 10−3 between neighbouring mass points ξj and ξj+1,

an additional mass point is inserted in between the two. Conversely, if all yi differ

by less than 1 × 10−8 between two neighbouring points, one of the points is removed.

This leads to mass grids of N = 1500 . . . 2000 for individual profiles.

In addition to the Henyey formalism described extensively in this section, OTTER also

features a reduced version of that formalism that only solves Eqs. (3.10a) – (3.10c)

for r, P , and T , while ignoring l. This is used for calculating the first profile in any

evolution calculation, which has a defined temperature at the 1-bar-level T1bar. Addi-

tionally, particular structure models with a defined outer temperature that are not part

of a planetary evolution are also calculated with this formalism. This reduced version

operates according to the same algorithm and equations as the full version, just with

3 instead of 4 equations and unknowns.
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Fig. 3.2.: Effective cooling times to reach the observed Teff = 59.1 K for Uranus evolution calculations
with different values for initial time steps ∆t and time step factor ft. The model is the one
designated “Uranus 2” in Sect. 5.1. The boxed conditions are used for the models in this work.
See Sect. 3.3 for explanation of the values.
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Fig. 3.3.: Radius of a Neptune model with a fixed T1bar = 72 K for an adaptive mass grid with different
values of ∆ymax and thus N . The model is the one designated "Neptune 2" in Sect. 5.1.
Calculations were performed using the reduced Henyey formalism for r, P, T . The boxed
conditions are used for the models in this work. See Sect. 3.3 for explanation.

3.4. Benchmarking the evolution calculations

3.4.1. Convergence with respect to time steps and mass points

To ensure that the evolution model is converged with regards to the length of the time

steps, the evolution of an adiabatic Uranus model was calculated for different values

of initial time step ∆t and factor ft. See section 5.1, specifically the model “Uranus 2”,

for more information on how the evolution was set up. The resulting cooling times τ ,

i.e. the time required to reach the observed effective temperature Teff = 59.1 K, are

shown in Fig. 3.2. With a set of ∆t = 1 Myr and ft = 1.005, τ is converged to within

50 Myr compared to the most accurate test case, which is less than 1 % of the cooling

time.
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Fig. 3.4.: Evolution of a 300ME planet with a 2ME rock core and an adiabatic hydrogen envelope.
Shown are comparisons between the OTTER code (green, this work) and the MOGROP code
(black) based on Nettelmann et al. (2012) [104] for two different hydrogen equations of state
–thin: SCvH-EOS [126]; thick: REOS.3 [7]– as well as different ways of calculating luminosity
in case of MOGROP. Figure taken from [127], MOGROP curves courtesy of N. Nettelmann.

With regards to mass point number N , a Neptune model was calculated for different

values of ∆ymax – see previous section for details – and the resulting radii are compared

in Fig. 3.3. As can be seen, our chosen value of ∆ymax = 1 × 10−3 is well converged.

The outer radius RP differs from a model with more than 4 times the points by less

than 0.5 %.

3.4.2. Comparison with an established code

In order to verify the results given by the OTTER code, the evolution of a test planet

with MP = 300ME is calculated. A small rock core of 2 ME is surrounded by a single,

uniform, adiabatic hydrogen envelope. Planetary evolution tracks for this planet were

calculated with OTTER as well as with MOGROP [103, 104]. These calculations were

done with both the SCvH-EOS [126] and H-REOS.3 [7] (cf. Sect. 4.2.1) for hydrogen.

The resulting evolutionary tracks can be seen in Fig. 3.4.

The evolution curves of both methods are very similar for the calculations using SCvH-

EOS, showing the same curve shape and differing by only ∼ 1.2 % after 1.3 Gyr. How-

ever, for models using the H-REOS.3, the agreement is dependent on the method by
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which the heat loss or luminosity profile is calculated. With MOGROP, the standard

way of calculating an evolution is slightly different than presented here: a planet’s

adiabat is found by seeking out a (T, ρ)-path of constant entropy, where s is calculated

via thermodynamic integrations from internal energy and density. Then, utilising the

explicit entropy profiles, the heat loss from one profile to the next can be calculated

with a variation of Eq. (2.15) directly. In our example case, this gives a strongly dif-

ferent evolution curve from the OTTER results, as shown by the dot-dashed green and

solid black curves in Fig. 3.4. On the other hand, MOGROP also features the option to

use partial derivatives of the EOS quantities for calculating the adiabat, as described

e.g. by Ref. [97], and using Eq. (2.21) to calculate the time evolution. In this case,

MOGROP produces results much closer to the OTTER curve, as seen with the black

dashed curve. With this method, both curves show the same progression and their

1-bar-temperatures differ by only ∼ 2.4 % after 2 Gyr.
As described in Sect. 4.2.1, the SCvH-EOS is constructed from a thermodynamically

consistent Helmholtz free energy model, and provides the adiabatic temperature gradi-

ent and the entropy directly. H-REOS.3, on the other hand, is constructed using data

from several sources and not perfectly thermodynamically consistent over its whole

range. This leads to uncertainties in the entropy in MOGROP, and therefore uncer-

tainties in evolution models calculated with this method. Judging from the example

shown here, it seems that the uncertainties in the heat loss might be much smaller

when calculated from local derivatives of u and ρ directly, instead of utilising the en-

tropy, which necessitates integrating over a large range of EOS-data.

To summarise, OTTER is able to reproduce results of the established code MOGROP, if

in both cases the cooling equation is solved using local derivatives of the EOS data. It

has also become clear that explicit knowledge of the entropy is not required to calcu-

late homogeneous planetary evolution models. However, since the derivation of Eqs.

(2.21) and (2.25) require a composition that is constant in time, these evolution calcu-

lations preclude models that include particle transport, e.g. by diffusion or convective

mixing.



Chapter 4.

Materials and their properties in
planetary modeling

4.1. The composition of Uranus and Neptune

Both Uranus and Neptune are located in the Solar System’s outer reaches. Their orbital

distance is beyond the boundary where water, methane, and ammonia – all thought

to have been present in the protosolar cloud from which the Solar System formed –

would have existed in solid form. Thus, these materials would have been able to form

ice-rich pebbles or planetesimals, which could be easily accreted by the planets as they

were forming. For this reason, both Uranus and Neptune are thought to contain sig-

nificant amounts of oxygen, carbon, and nitrogen, usually in the form of planetary

ices H2O, CH4 and NH3. These are collectively called ice – which should not be taken

as a comment on their phase but simply material composition – whereas the heavier

compound materials such as silicates or MgO are called rocks. Both of these groups are

collectively referred to as metals or heavy elements in astrophysics, as are any materials

with a molecular weight above that of helium.

In the absence of direct measurements of the planets’ material composition, especially

in the interior, the composition has to be inferred from secondary constraints, most

notably structure models constructed to reproduce the available observables, such as

mass, radius, and gravitational field. This can be done in one of two ways: one is to

make assumptions on the components, take physical equations of state (EOSs) of the

relevant materials and calculate models based on those by adjusting the composition

to fit the observables, as was done by Podolak et al. (1995) [113] or Nettelmann et al.
(2013) [105], for example. The other is to construct density profiles that result in the

right gravitational field without assuming a composition first, and then to interpret

33
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these profiles based on EOSs and the assumed thermal profile, see for example Marley

et al. (1995) [93], Helled et al. (2011) [48], or Podolak et al. (2019) [114].

Models from both approaches have one characteristic in common: it seems to be im-

possible to satisfy the measured gravity field without any kind of increase in heavy-

element content from the planet’s outside to the interior, with the works of the first

method generally focusing on models with sharp layer boundaries, while the second

method models usually feature a more gradual composition increase. Beyond that

commonality, there are a wide variety of possible structures found in the literature.

For example, models have been calculated that consist of a mixture of rocks with H

and He, without any ices [48, 52], as well as models with a high ice:rock ratio of 19

by mass [9]. It is also possible that one of the planets is rock-rich and the other ice-

rich [50]. As explained by Helled & Fortney (2020) [50], even if we had perfect know-

ledge of a planets’ mass, radius, shape, and gravity field, the solution space that fulfils

these characteristics in terms of density profiles is non-unique. Additionally, assump-

tions about the planets’ energy transfer mechanisms, and thus the models’ temperature

profile, influence the inferred compositions. If, as is quite possible, the temperature

gradient within part of the planets is significantly higher than the adiabatic gradient,

resulting in a comparatively hot interior, a higher amount of heavy elements as well

as a lower ice:rock ratio is generally required to fulfil the observables [9, 102, 138].

Furthermore, there are uncertainties about material properties (discussed below) and

mixing behaviour under planetary conditions. As an example, there is experimental

evidence by Kraus et al. (2017) [74] and Kadobayashi et al. (2021) [67] of hydrocar-

bons under conditions typically predicted for adiabatic Uranus models separating into

hydrogen and carbon, when the latter forms nano-diamonds. In a planet, the carbon

would sink downward and might form an additional layer of deep carbon on top of

the core.

The “traditional” structure assumed in many works (cf. Refs. [102, 105, 113]), which

is also the simplest composition assumption to be consistent with the available grav-

ity data, consists of a small rock core, surrounded by an inner envelope primarily

composed of ice, surrounded by an outer envelope dominated by H and He. The com-

position is taken to be uniform in the layers with discontinuities at the boundaries.

The reason for such a distinct layering might be de-mixing between H2 and H2O, as

recently explored by Bailey & Stevenson [4], or a remnant of planet formation. This is

the type of structure used in models calculated in this work. Heavy elements outside

the core are represented either by pure water, or, if that is not sufficient to reproduce

the observed bulk density, by a mixture of water and basalt. This is certainly a simpli-
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fication, since former work showed that using NH3-H2O-CH4 mixtures leads to a higher

mass fraction of ice and thus to lower central temperatures than for pure water [9].

However, in light of the uncertainties in the planets’ material composition, and given

the fact that the purpose of this work is to examine trends rather than developing a

definitive model for the ice giants, this should not heavily impact the conclusions of

this work. The details of how this general structure is implemented in the different

models can be found in Chaps. 5 and 6.

4.2. Equations of state

In general, theoretical equations of state for the warm dense matter found in planetary

interiors fall into one of two broad categories:

In the chemical picture [73, 75], selected states of the material, such as H2, H, H+ and

e− in the case of hydrogen, are considered as separate quasi-particle species. Their

relative abundances are determined via chemical equilibria of the corresponding ion-

isation and dissociation reactions. Quasi-article interactions are treated via effective

pair potential functions that are based either on experiments or on ab initio methods

(see below). However, this approximate treatment of many-body interactions breaks

down for the higher densities found in the interior of planets, and thus chemical pic-

ture EOSs are usually inaccurate there [51].

On the other hand, in the physical picture [73, 75], electrons and nuclei are treated

with quantum mechanical methods, and all bound or ionised states of the material

are instead just long-lasting correlations between those. Because, ideally, these cal-

culations are based only on physical laws and do not rely on a-priori assumptions

about e.g. the bound states found in the system, they are referred to as ab initio.

A prominent example of this approach is a combination of density functional theory

(DFT) [58, 71, 96] for the electrons, and molecular dynamics (MD) [1] for the nuc-

lei. In this framework, the Born-Oppenheimer approximation [10] is used to separate

electronic and ionic motion. The electronic structure is solved self-consistently for a

given ionic configuration, and then the ions are moved according to the forces exerted

by the electrons and by other ions. This procedure repeated for a given T and ρ until

the equilibrium in the configuration of the nuclei is reached, and then the equilibrium

state is simulated for several thousand time steps, which are the basis for extracting

thermodynamic quantities via averaging over the time steps. In the DFT description of

the electrons, the approach is not to solve the many-particle Schrodinger equation for
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the electron wave functions directly. Instead, the electron density is used, and the sys-

tem of interacting particles in an external potential is instead described as a reference

system of non-interacting particles in a modified external potential that includes all

the interaction effects between electrons. This approach is based on the work by Ho-

henberg & Kohn (1964) [58] and Kohn & Sham (1965) [71] for the zero-temperature

case, modified by Mermin (1965) [96] for finite temperatures. It is, in principle, an

exact description. However, the recast equations contain a term describing the ex-

change and correlation effects between the electrons, which is not known exactly and

thus requires assumptions. Several approximations exist for this term, which is called

the exchange-correlation (XC-) functional, and their choice can impact the results of

DFT-MD simulations strongly [51]. There is not one best choice for all simulation

scenarios, and their use has to be benchmarked with regards to what high-pressure

experiments are available. Nevertheless, this approach is a potent tool to gain insight

into material properties of warm dense matter and is more accurate for high pressures

and temperatures than calculations using the chemical picture.

Another emerging form of ab initio EOS calculations is called Quantum Monte Carlo

(QMC) [26]. In this approach, instead of formulating the many-particle-problem in

terms of the electron density, as is done in DFT, the electron wave functions are calcu-

lated via a stochastical random sampling approach. This includes a direct description

of the electron correlations, which makes it, in principle, more accurate than DFT.

However, QMC is computationally highly expensive compared to DFT-MD calculations

and can usually only be performed for smaller electron numbers, although it is well

suited for multi-processor parallelisation. This makes it ideal for benchmarking DFT-

MD calculations (e.g. Ref. [17]), but not (yet) well suited for wide-range calculation

of EOS data [51, 95]. In the following, I will give an overview over the equations of

state (EOS) used in models in this work. A more in-depth insight into the different

data sets can be found in the original references cited there, as well as review articles

such as by Helled et al. [51] for hydrogen and helium.

4.2.1. Hydrogen and helium

One of the most widely used equations of state for H and He is the one by Saumon et
al. (1995) [126], called SCvH-EOS hereafter. It covers a space of 2.1 < lg(T/K) < 7.06
and −6 < lg(P/GPa) < 9 and gives values for density ρ, specific entropy s, specific

internal energy u, mass fractions of molecular and atomic hydrogen XH2, XH – or
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of atomic and ionised helium XHe, XHe+ for the He-EOS – as well as the derivatives(︄
∂ρ

∂T

)︄
P

,

(︄
∂ρ

∂P

)︄
T

,

(︄
∂s
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)︄
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,

(︄
∂s
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)︄
T

, and the adiabatic temperature gradient ∇ad, each

as a function of P, T . The data are calculated using the chemical picture, where inter-

particle effects are included via effective pair potential functions that are benchmarked

against experimental results, where available. The state of chemical equilibrium is ob-

tained by minimising the Helmholtz free energy F (V, T, {Ni}), and then P and s are

calculated via differentiation of F and all other quantities from there. The resulting

data set has the advantage of not only being thermodynamically consistent, but also

providing the important quantities of s and ∇ad directly. On the other hand, as men-

tioned in the preceding section, chemical picture EOSs are somewhat inaccurate under

the conditions in the deep interior of planets compared to ab initio EOSs.

A set of EOS used in most of the models presented in this work is version 3 of the

Rostock Equation of State for hydrogen and helium, referred to as REOS.3 here-

after. That version was published by Becker et al. (2014) [7] and covers a range

of 60 K < T < 107 K and 10−10 g cm−3 < ρ < 103 g cm−3. The data sets are composed

of different sources of EOS data for different thermodynamic conditions. The area of

ρ > 10−1 g cm−3 and T ≲ 106 K in for He, and 10−1 g cm−3ρ < 102 g cm−3 and T < 105 K
for H, is made up of data calculated via DFT-MD directly for that publication. In the

case of hydrogen, the low-density, low-temperature data is supplied by the generalised

fluid variational theory EOS (FVT-EOS) published by Holst et al. (2007) [60], which is

a chemical model, and for 1000 K < T < 10 000 K, the aforementioned SCvH-EOS. In

the high-temperature and high-density range, where hydrogen can be expected to be

fully ionised, a plasma-EOS by Chabrier & Potekhin (1998) [15] is used. In the case

of helium, the ab initio data is supplemented by SCvH-EOS for high temperatures, as

well as a virial expansion EOS for the low-ρ, low-T -regime. The resulting data cover

a wide range of temperatures and densities encountered in planetary models. While

they lack the inherent thermodynamic consistency found in the SCvH-EOS, the ab ini-
tio calculations ensure that it is more accurate in the deep interior of the planets.

Recently, another wide-range H/He-EOS was released by Chabrier et al. (2019) [14].

This new table, which will be called CMS19-EOS hereafter, features the Chabrier-

Potekhin EOS for high temperatures and high densities, and SCvH data in the low-

T , low-ρ limit, where H and He are either molecular or atomic. For conditions of

5 × 10−2 g cm−3 < ρ < 101 g cm−3 and T < 105 K for hydrogen, or 10−1 g cm−3 < ρ <

101 g cm−3 and T < 106 K for helium, various ab initio data sets were utilised. Like the

SCvH data, this EOS provides the entropy and adiabatic temperature gradient expli-

citly.
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4.2.2. Heavy elements

Water

In this work, two particular EOS data sets are used for water:

The SESAME 7150 EOS for water, hereafter called Ses7150-EOS, from the SESAME

database 1992 [90], was constructed by Ree (1976) [121]. It covers the range of

2 × 10−6 g cm−3 < ρ < 400 g cm−3 and 290 K < T < 1.74 × 108 K. It combines exper-

imental results in the area of ρ < 1 g cm−3 and T ≲ 1000 K with various theoretical

chemical picture calculations in the high-T and high-ρ regions.

A more up-to-date EOS for water is the one by Mazevet et al. (2019) [94], hereafter

called MLCP19-EOS. It comprises data from several sources in different ρ-T regions

and fits a parameterisation of the Helmholtz free energy on this, resulting in a ther-

modynamically consistent EOS over a wide range of conditions, up to about 5 × 104 K
and 100 g cm−3. The EOS is primarily based on ab initio calculations obtained via

DFT-MD, supplemented with further ab initio data from French et al. (2009) [32].

For ρ > 50 g cm−3, a simplified calculations using Thomas-Fermi Molecular Dynam-

ics is employed, and for ρ < 1 g cm−3 and T < 1000 K, the EOS by Wagner & Pruß

(2002) [139] is used, which is a Helmholtz free energy fit to experimental data in this

region.

Both the Ses7150-EOS and the MLCP19-EOS feature the liquid-vapour phase trans-

ition in the low-T region, which manifests as a region of constant pressure over a

range of densities. In the Ses7150-EOS, this is part of the original data, while for

the MLCP19-EOS, this was the result of a Maxwell construction performed by Martin

French, which he kindly provided to me. However, because typical planetary adiabats

for Uranus and Neptune pass right through this region and the rather abrupt isobaric

region caused an overshooting in the spline interpolation employed in my program,

I use an ideal gas EOS for water calculated by Nadine Nettelmann for temperatures

T < 800 K for both of these EOSs, where the internal energy contains contributions

from vibrational and rotational energy states of H2O, based on rigid rotor and har-

monic oscillator models from Ref. [36].

Rocks

For both the small central core of these models as well as the inner envelope in some

of the models presented in Chap. 6 that are particularly hot in the deep interior, a ma-
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terial of higher density than water is needed for the metals to reproduce the observed

planetary radius. One example of an EOS for this kind of rock material is the one by

Cebulla & Redmer (2014) [13] for MgO. It was calculated via DFT-MD simulations and

agrees with data from compression experiments, where such are available. However,

for high temperatures it covers only pressures of more than ca. 50 GPa, which makes

its P − T range smaller than the one needed for the inner envelope regions of the

models in this work.

Therefore, in an effort to use a consistent rock EOS in all planetary regions, the models

calculated here use the SESAME 7530 EOS (basalt) [90] for all rocky material. This

EOS, from the report by Barnes & Lyon (1988) [5], represents a mixture of various

oxides. The three most abundant by mass of these are SiO2, Al2O3, and CaO, and is

based on experimental shock data for the materials, which were then weighted accord-

ing to their abundances. This EOS was used here because it provides a description of

rocky material over a wide range of temperatures and densities. This use follows the

example of Nettelmann et al. (2016) [102], who also used this description of basalt

to obtain a rock-ice mixture in the inner envelope of Uranus. Recently, Kim et al.
(2021) [68] found experimental evidence for the solubility of MgO and H2O at condi-

tions similar to the beginning of the metal-rich deep envelope in three-layer ice giant

models, lending credence to using a mixtures of water and rocks in this region.

4.2.3. Linear mixing

The EOSs for the different materials are combined using the additive volume law. For

a system of N components, the specific internal energy and density of the mixture are

calculated as

u(P, T ) =
N∑︂

i=1
Xiui(P, T ), (4.1)

1
ρ(P, T ) =

N∑︂
i=1

Xi

ρi(P, T ) , (4.2)

where Xi are the mass fractions of the individual components. Using this treatment for

planetary models goes back to early Jupiter and Saturn models calculated by DeMarcus

(1958) [19] and Peebles (1964) [111], and has become standard practice in planet

modelling. In 2013, Wang et al. [141] compared QMD simulations of H-He-mixtures
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with results obtained via different mixing rules and found overall good agreement

with linear mixing at constant pressure, as discussed here. Similarly, Bethkenhagen

et al. (2017) [9] performed DFT-MD simulations mixtures of water, methane, and

ammonia and found that the linear mixing rule differed by less than 4% in ρ and

4 kJ g−1 in u for binary mixtures, with lower deviations for the ternary mixtures of

all three materials in solar proportions. These rather good agreements as well as the

convenience of using the linear mixing rule justify the use of this procedure in our

models, especially considering the alternative would be to use full mixture EOSs for

a variety of relative abundances, which, barring some specific cases, do not exist and

would be prohibitively computationally costly to calculate.

4.3. Thermal conductivity

A key quantity for modelling the interior of the planets is the thermal conductivity

λ, particularly in regions that are not vigorously convecting and are therefore not

adiabatic. However, finding widely applicable and reliable values for λ under the con-

ditions in the interior of ice giants is very difficult, because there have not been many

experiments or ab initio calculations supplying λ there.

For pure water, thermal conductivity values have been calculated via DFT-MD simu-

lations in a wide range of conditions, covering densities of 0.1 – 10 g cm−3 and tem-

peratures of 1000 – 50 000 K. The contributions of the electrons were presented by

French & Redmer (2017) [35], and the ionic part by French (2019) [29]. It is shown

there that the values produced by this method are consistent with measurements for

385 K and 1.1 g cm−3 as well as experiments for the ice VII phase in the high-pressure,

room-temperature regime. These combined λ values from Refs. [35] and [29] will be

referred to as λH2O from now on. Grasselli et al. (2020) [42] also calculated λ for H2O

from ab initio methods for five (ρ, T )-points in total. They are of the same order as the

French-data [29, 35], but consistently larger for reasons not readily known. According

to French [29], ionic heat conduction is stronger in water for T ≲ 6 × 103 K, while for

T ≳ 104 K and ρ ≳ 2 g cm−3 the electronic part becomes dominant. These are con-

ditions routinely found in models of Uranus and Neptune, especially at a young age

or in the presence of a strong superadiabatic temperature gradient, indicating that a

model focusing purely on the ions would not be valid for modelling the ice giants.

The electronic contribution to the thermal and electrical conductivities of hydrogen

were calculated by Holst et al. (2011) in a wide range of densities (0.1 − 5 g cm−3) and
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temperatures (1000 - 50 000 K) using DFT-MD calculations [59]. Additionally, French

et al. (2012) [30] calculated both of these quantities, including the ionic contribution

for λ, for a mixture of hydrogen and helium in solar proportions of XHe = 0.275 along

an adiabatic Jupiter profile. They found the ionic contribution to be relevant for tem-

peratures less than about 5000 K for λ. For larger temperatures, where hydrogen is

ionised, λH according to Ref. [59] is larger than λH2O by Refs. [29, 35]. The addition

of helium to a mixture under these conditions would probably lower the overall λ

somewhat because He is not ionised for T ≲ 20 × 103 K even at P = 1000 GPa [116],

but the λ values calculated by French et al. (2012) [30] for a H-He mixture along a

Jupiter adiabat are still larger than those of pure water for the same (ρ, T ) conditions.

Unfortunately, for planetary ices other than water, there are, to the best of my know-

ledge, no values for λ in the warm dense conditions of the deep interior of planets

available. Thus, the best we can do for these is to estimate how the conductivities of

an ice mixture might behave in relation to pure water, based on the Wiedemann-Franz
law. This relation states that in a highly degenerate electron gas, λ is proportionate to

the electrical DC conductivity σ for constant temperature [87, 144] with

λ

σ
= k2

B

e2 ΛLT, (4.3)

where kB is the Boltzmann constant, e the elementary charge, and ΛL the Lorenz num-
ber. Such highly degenerate conditions are not to be expected in the warm dense

matter regime of planetary interiors [28], but the Wiedemann-Franz law might give a

rough idea how λ might change due to the addition of planetary ices other than water.

For ammonia, Ravasio et al. (2021) [119] have calculated σ along the Hugoniot curve

using DFT-MD. They find for pressures larger than about 50 GPa – corresponding to

about 1.7 g cm−3 according to their shock wave experiments – that the ammonia con-

ductivities are substantially larger than the water values by French et al. (2010) [33]

along the water Hugoniot. This could indicate that a H2O-NH3 mixture would have a

higher λ than pure water for high pressures and temperatures.

Chau et al. (2011) [16] have measured σ for a synthetic Uranus mixture – a H-C-N-

O mixture in roughly solar proportions – at pressures between 74 and 190 GPa and

temperatures between 4300 and 8400 K and found them to be about half of the water

values at similar pressures measured by Chau et al. (2001). This might mean that λ

of an ice mixture is lower than λH2O by about the same factor for these high pressures

and temperatures, if the Wiedemann-Franz law can be applied.

Again, these are only rough estimates of the trends, especially because in the most im-
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portant region for λ in our models, around the transition from the outer to the inner

envelope at P ≈ 10 . . . 30 GPa and T ≈ 2000 . . . 10 000 K (with ρ ≈ 0.3 . . . 1.4 g cm−3),

various materials are only partially ionised, and therefore Eq. (4.3) is not valid there.

So, we have seen that there are considerable uncertainties, not both in the conduct-

ivity data discussed here and in the material composition of Uranus and Neptune, as

discussed in Sect. 4.1. Given that, as well as the fact that the models in this work use

an EOS of water as a proxy for the unknown complex mixture of H-C-N-O materials

expected in the deep interior of these planets, this work will also use the λH2O values

of French [29] and French & Redmer [35] for the conductive regions of the models

presented here. Because our estimates point towards the thermal conductivity of the

real mixture being higher than for pure water, λH2O be treated as an approximate lower

bound to the real λ. When presenting non-adiabatic models in Chap. 6, there will be

a discussion on the influence a higher λ has on the models.

It becomes clear that even though our understanding of heat transport properties of

planetary ices under warm dense matter conditions has improved considerably in re-

cent years, there is still a need for further wide-range material data at extreme con-

ditions as provided for water by DFT-MD calculations, and experimental verification

thereof.



Chapter 5.

Adiabatic evolution of Uranus and
Neptune

As a first application of the OTTER code, let us calculate a number of what might

be called “traditional” evolution models for Uranus and Neptune, which are assumed

to be convective and therefore fully adiabatic in the interior. This will allow us to

systematically test the influence of solar energy influx and different EOS data on the

resulting cooling times. The majority of the work in this chapter has been published

in Scheibe et al. (2019) [127], hereafter referred to as Paper I.

Model name H/He-EOS H2O-EOS Z1 Z2 m12 mcore mH/He J2 J4

[ME] [ME] [ME] ×102 ×104

Uranus 1 REOS.3 Ses7150 0.261 0.941 12.5 0.25 2.2 0.28424 -0.2560

Uranus 2 REOS.3 MLCP19 0.273 0.96 12.44 0.79 2.0 0.29157 -0.2711

Neptune 1 REOS.3 Ses7150 0.42 0.91 15.0 1.06 2.4 0.33192 -0.3175

Neptune 2 REOS.3 MLCP19 0.42 0.929 15.17 1.04 2.2 0.35212 -0.3466

Neptune 3 CMS19 MLCP19 0.424 0.92 15.17 1.05 2.3 0.35312 -0.3480

Tab. 5.1.: Parameters for the adiabatic Uranus and Neptune models. Shown are H/He-EOS and
water-EOS (see Sect. 4.2 for details), outer envelope water content Z1, inner envelope water
content Z2, mass coordinate for transition between outer and inner fluid envelope m12, and
core mass mcore. Additionally, there are resulting model properties: combined mass of H and
He mH/He and gravitational moments J2, J4 calculated using MOGROP [104] according to the
1 bar surface level. Reference values for the latter can be found in App. A.
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Fig. 5.1.: Outline of the assumed structure for the adiabatic models considered in this chapter and
Paper I: isothermal rock core of mass mcore, surrounded by a water-rich inner envelope,
surrounded by a H/He-rich outer envelope. Both envelopes are convecting and therefore
adiabatic, with an isothermal core. m12 marks the transition between the envelopes.

5.1. Parameters and model assumptions

The models calculated here follow the standard 3-layer approach (see Sect. 4.1). The

envelope is separated into a H/He-rich outer envelope with water representing heavy

elements, and a water-rich inner envelope with only a small amount of H/He. The

centre is made up of a small rocky core. Both envelopes are assumed to be strongly

convecting, which, as was discussed in Sect. 2.2.3, can reasonably be described with

an adiabatic temperature gradient. The core is assumed to be isothermal. Note that

these models have a discontinuity in composition at the layer boundaries. Both Uranus

and Neptune models were calculated with water described by the Ses7150-EOS and

by the MLCP19-EOS (see Sect. 4.2.2 for details). An overview of the models and the

parameters used for them can be found in Tab. 5.1. They were chosen roughly based

on previously published models [105] in order to reproduce the present-day radius.

The models featuring Ses7150-EOS for water (Uranus 1, Neptune 1) will be referred

to as Ses7150-models collectively, the models with MLCP19-EOS (Uranus 2, Neptune

2, Neptune 3) as MLCP19-models.

The total mass of H and He for these models, which is presented in Tab. 5.1, falls

into the range of published models able to reproduce the gravitational moments [52].

However, 3-layer models by Nettelmann et al. (2013) [105] feature a layer transition

further outside than in these models, especially for Uranus, so that those are less cent-
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rally condensed. As a consequence, the gravitational moments J2, J4 of the models,

which are also given in Tab. 5.1, are lower than the measured values by about 20 %
for Uranus and 5 % for Neptune, except for the model Neptune 3. Uranus is especially

sensitive to small changes in the parameters, due to it being so close to solar equi-

librium – a point discussed in more detail in Sect. 5.2 – and therefore this deviation

could mean that the cooling times presented here for Uranus might be shifted by up

to 1 Gyr. However, as the main purpose of this chapter is to study systematic trends

with various parameters, those overall conclusions are likely not affected.

To study the influence of solar irradiation, three different methods are used, based on

Eq. (3.7) in Sect. 3: in the first, solar irradiation is treated as non-existent, by setting

Teq = 0. In the second, Teq is calculated according to today’s solar parameters and

kept constant on this value for the entire evolution. In the third, Teq changes with

time. Here, the solar luminosity L∗ is assumed to be linearly growing with time, from

a value of 0.7 L∗,present at t = 0, based on a solar evolution model by Sackmann et al.
(1993) [124]. In this last instance, Uranus’ cooling times proved to be longer than

the age of the solar system. To ensure that the planet was able to reach its observed

temperature despite the rising Teq, the evolution tracks for the Uranus models were

set to begin at t = −1.1 Gyr instead of t = 0. This means that they usually reach their

observed Teff at times t < 4.56 Gyr, where Teq < Teq,observed. Thus, the cooling is slightly

accelerated and the resulting adiabatic ages for Uranus should be taken as a lower

bound.

Regardless of the model used, all the evolution curves presented in the figures of this

chapter were shifted to match their planet’s observed Teff at t = 4.56 Gyr after the cal-

culation was finished. This allows for a quick comparison of resulting cooling times at

first glance.

5.2. Influence of solar irradiation

This work considers three cases of Teq = 0, Teq = const., and Teq = Teq(t) for each evol-

ution model, which are shown in Fig. 5.2. Despite the fact that Uranus and Neptune

orbit far out in the solar system, at 19 AU and 30 AU, respectively, we see a noticeable

impact from solar irradiation on the evolution behaviour. Entirely neglecting it gives

much shorter cooling times than the other cases. Interestingly, in this case Uranus

actually cools more quickly than Neptune. On the other hand, when fixing the irra-

diation over the whole lifetime, we get much longer cooling times than in the more
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nuanced third case of Teq(t). The surface luminosity acts as a cap on how quickly the

planet can cool, and if the difference between intrinsic luminosity and solar irradiation

is smaller, this slows down cooling considerably.

This also explains why we see a much more pronounced effect of these three treat-

ments on Uranus than on Neptune. While having the irradiation change with time

shortens Neptune’s cooling times by about 0.1 Gyr, it does so for Uranus by several

Gyr. The reason is that Uranus’ Teff = 59.1 K is very close to its Teq = 58.1 K, com-

pared to Neptune (Teff = 59.3 K, Teq = 46.4 K). Since cooling speed depends on the

difference between those two, the slope of the evolution curve becomes very shallow

as equilibrium is approached. This means that small changes in how that equilibrium

is handled affect Uranus more strongly than Neptune. The same is true for small dif-

ferences in other assumptions, such as the radial distribution of heavy elements.

This can also be seen when varying the planetary Bond albedo. Fig. 5.3 shows cooling

times for Neptune and Uranus models for different values of A. Higher albedo means

less energy absorbed by the planet and thus a lower Teq as per Eq. (3.8), and therefore

leads to lower cooling times. As has already been discussed for Fig. 5.2, the influence

on Uranus’ evolution is more conspicuous than on Neptune’s and an albedo of ∼ 0.4
could bring Uranus’ cooling time down to the age of the solar system. For Neptune,

however, all considered values of A lead to a cooling time that is too short.

5.3. Influence of different equations of state

Let us now consider the influence of different EOSs on these adiabatic evolution mod-

els. Fig. 5.4 shows evolution curves for different Neptune models calculated with

hydrogen and helium described by either REOS version 1, REOS version 3, or CMS19-

EOS, as well as with different planetary evolution codes (see Sect. 4.2.1 for details). It

becomes clear that the models using REOS.3 data produce a quicker cooling than the

reference model using REOS.1; the cooling time shortens by at least 0.7 Gyr. While

the cooling time clearly also varies depending on the code used and on the water EOS,

the shorter age is visible with both MOGROP and OTTER and thus seems to be caused

by the different H/He-EOS. A further shortening occurs when using the CMS19-EOS

for H/He, which again serves as a reminder not to underestimate the importance of H

and He for the cooling behaviour despite its low overall mass abundance.

The other main material of interest in these models is water. The models were cal-
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culated with both Ses7150-EOS and MLCP19-EOS. The resulting deep interior P − T

profiles are shown in Fig. 5.5. While the MLCP19-profiles are colder in most of the

inner envelope, as is usual for models with higher ice content [9], the core temperat-

ure is only weakly affected by the choice of water EOS, about 5700 K for Uranus and

5500 K for Neptune. In Fig. 5.2, we can see the effect of the difference in H2O-EOS

on the cooling times for different irradiation scenarios. In all cases, MLCP19-models

produce about 5 % shorter cooling times than Ses7150-models. The latter also fea-

ture an edge at Teff ∼ 120 K where cooling is temporarily slowed. This behaviour can

possibly be traced to the deep interior at about 100 GPa and 5000 − 7000 K, see Fig.

5.6. While the MLCP19-profiles run roughly parallel for pressures over ca. 50 GPa,

the Ses7150-profiles begin to develop a bend in their curve shape at about 100 GPa,

meaning an accelerated cooling of the deep interior, leading to a stronger release of

energy and thus slowdown of surface cooling. However, the impact of the water-EOS

on the cooling curve, while noticeable, is smaller than the other influences explored

in this chapter.
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5.4. Discussion of adiabatic models

The preferred models here for Uranus and Neptune, using H/He-REOS.3 and MLCP19-

EOS for water as well as a linearly rising solar luminosity, result in cooling times of

about τU = 5.1 Gyr for Uranus and τN = 3.7 Gyr for Neptune. These, as well as the

other cooling times from models in this section, are noticeably shorter than previous

calculations, e.g. by Fortney et al. (2011) [24] or Nettelmann et al. (2013) [105],

who find ages of 9 − 10 Gyr for Uranus and 4.3 − 4.8 Gyr for Neptune. Several factors

contribute to this discrepancy: first, let us keep in mind that these publications treat

Teq as constant, so the most appropriate comparison would be the second case from

Sect. 5.2, which gives the longest cooling times, albeit still shorter than the literature.

Second, the models presented here use different EOS data, particularly for H and He.

Both Fortney et al. [24] and Nettelmann et al. [105] use Version 1 of the H/He-REOS,

while these models use version 3, which can lead to a significant shortening, as shown

in Sect. 5.3. Third, as discussed in Sect. 3.4, different methods of calculating the heat

loss rate lead to different evolution curves when not using entirely thermodynamically

consistent EOS data. And last, as mentioned in Sect. 5.1, there is probably a rather

large uncertainty associated with the Uranus cooling times of this chapter because

their gravitational moments deviate noticeably from the observed values. Neverthe-

less, it is clear from these results here that there is a strong difference in adiabatic

cooling behaviour for Uranus and Neptune. They cannot both be explained by an

adiabatic interior unless different assumptions are made, and the results confirm pre-

vious conclusions, that models beyond the pure adiabatic interior are needed to bring

the ice giants into agreement with the observations [24, 64, 105, 112]. Additionally,

the shorter cooling times for Neptune serve to shed doubt on the usual framing that

Neptune’s luminosity is consistent with adiabatic evolution, while attempts to go bey-

ond simple adiabatic models have so far usually focused on Uranus.

Furthermore, solar irradiation has a pronounced influence on the planetary evolution,

particularly once the planet nears thermal equilibrium. This effect is larger for Ur-

anus than for Neptune but cannot be discounted for either of them. The observational

uncertainties of Teff introduce an error of about 0.5 Gyr for Uranus and 0.3 Gyr for

Neptune. Additionally, the measured Bond albedos of Uranus and Neptune, and thus

their Teq-values, have relatively large observational uncertainties, which might even

be larger than previously thought: in 2018, Li et al. [82] re-evaluated Jupiter’s Bond

albedo based on more recent measurements from the Cassini mission and found it to

be at 0.503, significantly higher than the previously accepted Voyager value of 0.343.
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Thus, improving the observational constraints on the existing measurements of A and

Teff, while not sufficient on their own, is vital to help constrain interior evolution scen-

arios.
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Chapter 6.

Ice giant evolution in the presence of a
deep internal thermal boundary layer

As was shown in Chap. 5, adiabatic evolution models fail to reproduce the measured

present-day luminosities of both Uranus and Neptune, and they also give quite differ-

ent results for both planets. There are several possible explanations for this behaviour,

an overview of which was given in the introduction to this work. Here we want to

investigate the possibility of a thin, thermally conducting interface between the ice-

rich interior and the H/He-rich exterior of the planet, which we shall call a thermal
boundary layer, or TBL for short.

This idea, presented for the ice giants by e.g. Podolak et al. (1991) [112] or Hubbard et
al. (1995) [64], is based upon the possibility of a compositional gradient stabilising an

area of the planet against convection. This would impede heat transfer from the deep

interior to the surface and cause a large amount of primordial heat to still be trapped

inside, potentially shortening the cooling time of the surface or outer areas. The reason

for such a gradient in composition might be a result of the formation process or, al-

ternatively, of a more recent sedimentation process through, e.g., H2-H2O demixing.

Nettelmann et al. (2016) [102] investigated this idea for ice giants by assuming a

steep temperature gradient between outer and inner envelope, whose evolution was

described by ad-hoc functions designed so that the temperature difference grows with

time, which was shown to reproduce Uranus’ measured luminosity. Recently, Vazan &

Helled (2020) [138] showed that the inhibited heat flow due to stably stratification

as a result of primordial composition gradients could indeed survive for timescales of

planetary evolution and were sufficient to reproduce Uranus’ low luminosity. Leconte

& Chabrier (2013) [80] performed evolution calculations for Saturn, whose age had

been consistently underestimated by adiabatic models, and found that an area of in-
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surrounded by a heavy-element-rich inner envelope, surrounded by a H/He-rich outer
envelope. There is a conducting TBL of fixed thickness ∆m between inner and outer envelope,
leading to a temperature difference of ∆T .

hibited heat transfer due to layered convection – see Sect. 2.2.3 – could actually slow

down the cooling time of the planet’s outer layers and thus bring Saturn models in

line with the observed luminosity. Likewise, it was shown by Helled et al. (2020) [52],

that taking the ad-hoc functional description of a TBL from Nettelmann et al. [102]

but allowing for the temperature difference from outer to inner envelope to decay dur-

ing the planet’s life, can possibly produce higher present-day luminosities than in the

adiabatic case and might thus help explain the brightness of Neptune. Therefore, it is

worthwhile to examine the effects of a stably-stratified TBL inhibiting heat transfer in

the planet interior for both Uranus, whose age is overestimated by adiabatic models,

and Neptune, whose age is underestimated, see Chap. 5.

The results presented here have been published in Ref. [128], hereafter referred to as

Paper II.

6.1. Model assumptions

The assumed structure of our models is illustrated in Fig. 6.1. Similarly to Nettelmann

et al. [102], we assume a three-layer model structure like the one discussed in Chap. 5,

with an isothermal rock core surrounded by an inner envelope composed of heavy ele-

ments, in turn surrounded by an outer envelope of H, He, and H2O. Both envelopes

are, at least initially, considered to be strongly convecting and therefore adiabatic and
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homogeneously mixed. However, in contrast to the setup chosen in Chap. 5, there

is a thin interface between the two envelopes - the thermal boundary layer or TBL -

where heat transport is inhibited due to the compositional gradient. In the TBL, the

temperature gradient follows the conductive description laid out in Sect. 2.2.2, with

∇T given by Eq. (2.39). Within the TBL, the composition is set to a linear progres-

sion of the mass fractions Xi with regard to mass m from the outer envelope values

to the inner envelope values. The transition between outer envelope and TBL is set

to a specific mass m12. Its thickness in terms of mass is ∆m, which is kept constant

throughout the evolution, so that the bottom of the TBL lies at m12 − ∆m. Because of

the linear composition gradient in the TBL, a higher ∆m causes a shallower gradient

in heavy elements, see Fig. 6.2. Thus, the overall heavy element content of the mod-

els decreases slightly with increasing ∆m, however, this effect is only relevant for the

highest thicknesses considered.

All calculations start with a hot adiabatic profile of T1bar = 700 K. This leads to early

luminosities after the first time step on the order of LP ∼ 5 × 1018 W (about 1.3 × 10−8

times the present-day solar luminosity). This is close to the lower limit of initial lu-

minosities extrapolated from results predicted by Mordasini et al. (2017) for H/He

planets by cold start core accretion models [100]. After the initial profile, the inner

envelope locally adopts either the conductive or the adiabatic temperature gradient,

whichever is lower, according to Schwarzschild’s criterion. The equilibrium temperat-

ure Teq increases according to a linearly rising solar luminosity, as presented in Sect.

5.1, between t = 0 and the present time t = 4.56 Gyr. and Teq is held constant at

that level afterwards. The Bond albedo is held constant at A = 0.3 for all models, in

accordance with the measured values [109, 110]. Tab. 6.1 shows the key model para-

meters common to all models examined here, while Tab. 6.2 gives the radial extent of

the TBL for some example models.

For most models here, the inner envelope is completely composed of heavy elements

described by water, so unless noted otherwise, Z2 = Z2,H2O = 1. However, as a lot

of these models usually end up a lot hotter in the interior than adiabatic ones, their

present-day radii are often larger than the observed values of Uranus and Neptune.

So for some models, a mixture of H2O and basalt was used for the inner envelope, see

Sect. 6.5 for details. For simplicity’s sake, these models still have a pure rock core,

as shown in Fig. 6.1. This might be another simplification, as the existence of such a

distinct core is still an open question and models both with and without a rock core

separate from an ice-dominated inner envelope can reproduce the observed gravity

fields [105].
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H and He are described by REOS.3, and the modified MLCP19-EOS is used for H2O

as described in Chap. 4.2. Thermal conductivity values for pure water are used as

discussed in Sect. 4.3, however, in Sect. 6.4.2 there will also be an exploration on how

a higher thermal conductivity and more efficient energy transport can influence the

results. Fig. 6.12 in Sect. 6.6 will give an overview about typical λH2O values along an

example model.

These models take a simplified approach and account for only some of the properties

of real Uranus and Neptune. While the observed mass, mean radius and luminosity

are taken into consideration, and the parameters in Tab. 6.1 are similar to those that

do fit the gravitational moments [105], it is not the aim of these models to repro-

duce the measured gravity field. Likewise, particle transport and interior dynamics

such as possible miscibility or immiscibility of materials or convective mixing are not

considered here. The purpose is rather to study the effect of an interface in the deep

interior that acts as a barrier to efficient energy transport in planets similar to the ice

giants. As such, the models will be called ’Uranus’ and ’Neptune’ despite not being

accurate reproductions, because they serve as representations of these planets.
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Uranus Neptune

Z1 0.26 0.42

m12 / ME 12.95 15.168

mcore / ME 0.15 1.04

Tab. 6.1.: Parameters used for the TBL models presented here. Quantities are outer envelope
heavy-element content Z1, mass shell that marks the top of the TBL m12, and core mass mcore.
Inner envelope heavy-element content Z2 = 1 unless specified otherwise.

Uranus Neptune

∆m [ME] ∆r [km] Ztotal ∆r [km] Ztotal

0.0015 3.0 0.9190 2.2 0.9329
0.005 10.6 0.9189 7.4 0.9328
0.01 21.5 0.9188 15.0 0.9327
0.03 65.2 0.9183 45.6 0.9324
1.0 2320 0.8935 — —

Tab. 6.2.: Example TBL thicknesses ∆m and corresponding radial extent ∆r and total heavy element
contetn Ttotal. ∆r is given for t = 4.56 Gyr and is about 20 − 45 % smaller than at t = 0 due to
contraction. All models used in these examples feature Z2,H2O = 1 and λ = λH2O.

6.2. TBL stability considerations

To evaluate whether such a TBL as assumed in these models would remain stable, one

can make use of the generalised Ledoux criterion Eq. (2.53), presented in Sect. 2.2.3:

∇T ≤ ∇X + ∇ad, (6.1)

where ∇cond according to Eq. (2.39) is used for ∇T in our conductive TBL. This relation

has been evaluated as an example for a Uranus and a Neptune model that both end

up with a present-day effective temperature and radius close to the observed values

for their respective planets. Fig. 6.3 (a) and (b) show the contributions to the Ledoux

criterion, ∇cond and ∇ad + ∇X , across the TBL for these models at different points in

their evolution. Note that since usually ∇ad ≈ 0.2 . . . 0.3, while ∇X ≈ 101 . . . 103, ∇ad

does not contribute heavily to the relation in these cases. For the Uranus model, which

features a comparatively thick TBL and thermal conductivity of 1 × λ, we see that the

conductive temperature gradient exceeds the stabilising compositional gradient at the

very outside edge of the TBL for all points in time. That means that this particular part

of the planet would be unstable to convection, wheras the majority of the TBL is stably
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stratified. To properly assess how the small region of instability would influence the

evolution of the TBL and if it would lead to a partial or even near-complete erosion of

the interface, it would be necessary to implement convective mixing and the dynamical

growth and shrinking of stable layers into the calculation code, for example via a

mixing length approach similar to that presented by Vazan et al. (2015) [137] for

their giant planet evolution program. Unfortunately, this is beyond the scope of this

work.

The Neptune model presented in Fig. 6.3 b) features a considerably smaller TBL of

∆m = 0.0003 ME and strongly enhanced conductivity of λ = 100 × λH2O. This results

in a steeper compositional gradient and a lower ∇cond due to the more potent heat

transfer, and that means that the stabilising ∇X exceeds the temperature gradient for

all considered times. Thus, this class of models, which will be further presented in

Sect. 6.4.2, exhibits a comfortably stably stratified TBL over the entire evolution.

An interesting note here is that ∇cond can vary over several orders of magnitude within

the relatively small extent of the TBL. It is inversely proportional to the temperature

T , which rises sharply over several thousand Kelvin within the TBL, as seen in Sect.

6.6, where a closer look at the interior profiles is taken. This is reinforced by the

fact that for early times, the local luminosity l – which ∇cond is directly proportional

to – decreases from very high values in the outer envelope, where efficient convective

energy transport is possible, by several orders of magnitude toward the inner envelope,

where almost no energy can flow due to the TBL’s insulation.

6.3. Influence of a conductive interface on the cooling

behaviour

In order to investigate the general influence of a thermal barrier on the planetary

cooling, let us begin with example models of Uranus and Neptune featuring a TBL of

∆m = 0.0015 ME. Figure 6.4 shows the evolution of these models, with Teff in panel

(a) and temperature difference across the TBL ∆T , local luminosity at the top of the

TBL l1, and planetary luminosity L in panel (b). Dashed lines in panel (a) show the

evolution of a model featuring the same composition but no TBL, called the adiabatic

case. There are four characteristic epochs:

(I) the TBL models rapidly become fainter than the adiabatic case even within the first

few time steps. Since energy transport across the TBL is a lot less efficient than in
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Paper II.

convective regions, the inner envelope is almost cut off from cooling, and mainly the

outer envelope releases heat. This results in large ∆T ∼ 1000 K already after the first

time step, although the abrupt, step-like behaviour is probably due to the hot start and

the sudden switch from a completely adiabatic initial profile to one with a conductive

zone.

(II) After the initial few steps, the outer envelope continues to cool with little energy
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contributed by the deep interior, leading to ∆T rising with time. Because a steeper

temperature gradient leads to a more efficient conductive heat transport, the luminos-

ity at the outer edge of the TBL l1 also rises slowly. The outer envelope, meanwhile,

continues to radiate heat into space and to contract, meaning the planet’s overall lu-

minosity L and Teff decreases. The contraction deposits more gravitational energy in

the interior than can be radiated away through the TBL, and so the inner envelope

heats up very slightly during the first ∼ 100 Myr, as will be seen in Sect. 6.6.

Towards the end of phase II, the temperature at the top of the TBL has significantly

fallen (low T12), the cooling of the planet’s atmosphere is less efficient – as Teff and

L are low – and further contraction of the initially hot and compressible envelope is

countered by repulsive particle interaction as the matter becomes denser. As the rising

l1 and the falling L approach each other as shown in Fig. 6.4 b), the decreasing L

acts as a cap on l1 and prevents it from further rising, so that it consequently adopts a

maximum.

(III) At this time, the outer envelope is significantly cooler and has contracted more

than in the adiabatic model, while the inner envelope still constitutes an enormous

energy reservoir for transporting heat outside. This slows the outer envelope’s further

cooling significantly and Teff adopts an almost plateau-like behaviour. Since the planet

is still cooling, albeit slowly, both L and R are still decreasing and l1 is forced to do

the same. Because it is now mainly the inner envelope that cools, ∆T begins to slowly

decrease as well.

(IV) After some time has elapsed, which can take billions of years, the bulk of the

stored heat from the deep interior has been released. Cooling, and in particular the

decrease of Teff, begins to accelerate again.

This general behaviour broadly applies to models with all considered λ values and thin

to moderate TBLs, with variations that will be discussed in the next chapter. Notably,

the planet can appear fainter (phase II and early phase III) or brighter (late phase III

and phase IV) than the adiabatically cooled planet of the same age, providing room to

reproduce both Neptune’s and Uranus’ luminosity depending on the exact assumptions

used.
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Fig. 6.5.: Evolution of Teff for (a) Uranus and (b) Neptune models of varying TBL thicknesses ∆m. In
each figure, the black curve shows an adiabatic model of the same composition. Figures
adapted from Paper II.

6.4. Parameters influencing the TBL cooling behaviour

6.4.1. TBL thickness

In Fig. 6.5, the evolution of Teff for Uranus and Neptune models with varying TBL

thicknesses ∆m is presented. Fig. 6.6 shows the evolution of several other key quant-

ities of the TBL for the same Uranus models as in Fig. 6.5 a). The more extended
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Fig. 6.6.: TBL evolution for Uranus models of varying TBL thickness ∆m. (a) temperature difference
across TBL ∆T , (b) - luminosity at the outer edge of TBL l1, (c) - temperature at the inner
edge of TBL. Figures taken from Paper II.

the TBL is, the less efficient the heat transport becomes, leading to a decrease in the

luminosity on top of the TBL l1 with higher ∆m, see Fig. 6.6 b). A steeper temperat-

ure gradient is required to transport the heat from the deep interior to the outside for

thicker TBLs and thus more time elapses before phase III begins, as can be seen in Fig.

6.5. By that later time, the outer envelope has cooled and contracted even more than

for smaller ∆m, meaning it can now cool even less quickly, which causes phase III to

feature a flatter plateau in Teff for higher ∆m, as can be seen in Fig. 6.5.

If the transition from phase II to III happens sufficiently late, Teff can be so low that

it approaches the equilibrium temperature Teq, though complete thermal equilibrium
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is never reached in these models. As can be seen from the outer luminosity boundary

condition Eq. (3.7), and was already relevant for the discussion of the influence of

Teq on the planetary evolution in Chap. 5, the ability of the surface to radiate heat

depends on the difference between Teff and Teq. Therefore it is almost impossible for

a planet with Teff near its Teq to cool and its temperature profile stays largely the same

over a long period of time (see also Sect. 6.6). In this scenario, Teff can follow the

rising Teq and thus even a slight re-heating of the outer envelope can occur, as can be

seen in Fig. 6.5. This happens for the Uranus models over a wide range of medium

and high ∆m, while for Neptune, whose Teq is much lower, the re-heating occurs only

very slightly and only for the highest of considered ∆m values. This difference is im-

portant for the range of viable solutions to reproduce the observed luminosity, as will

be discussed in Sect. 6.5.

6.4.2. Thermal conductivity

As discussed in Sect. 4.3, the use of pure H2O values for λ is a simplification for the

mixture of materials likely present in the ice giants’ interiors. Here, I take it as an

approximate lower bound of the real conductivity. Additionally, the TBL itself might

not be a purely conducting region and there might be energy transport mechanisms

at work which are more efficient. For example, a region that is stable according to

Ledoux’ criterion but unstable according to Schwarzschild’s criterion is usually thought

to develop semi-convection, a relatively slow mixing process that features slower heat

transfer than full convection but faster than conduction, see the end of Sect. 2.2.3.

Although French & Nettelmann (2019) [34] found, using ab initio viscosity values for

water, that the range of parameter values that enable semi-convection in Uranus and

Neptune is somewhat narrow, it is still quite possible that this occurs in a hypothetical

TBL region.

Both of these points suggest that there might be more potent heat transfer across the

TBL region than assumed in our models so far. It is therefore prudent to investigate

the effect of higher thermal conductivity on the TBL models. This was simply done

by multiplying the λH2O values given by [29, 35] by constant factors of up to 1000.

Conductivities enhanced by 100 or 1000 are unlikely to be actually encountered in any

purely conductive regions in the planets, as even a hydrogen plasma of 20 000 K has

λ < 5 × 104 W K−1 m−1 for conditions similar to our models [59], which is less than

100 times the water values at similar (ρ, T )-conditions. Therefore, these very high λ
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Fig. 6.7.: Evolution of Teff for (a) Uranus models and (b) Neptune models, both with fixed ∆m and
varying values for the thermal conductivity λ. Figures adapted from Paper II.

enhancements serve primarily as a rough guide to the aforementioned more effective

heat transport processes.

Fig. 6.7 shows evolution curves of Teff for Uranus models with a TBL of ∆m = 0.05 ME

and Neptune models with ∆m = 0.005 ME with enhanced λ values. In general, the

behaviour seen here is the same as observed in Sect. 6.3 and we clearly see the phases

I – IV as described there. However, higher λ values cause the transition from phase

II to III to occur at earlier times, and thus at higher Teff. This makes sense because,

with the more efficient heat transport, energy from the deep interior can contribute to
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the overall evolution more easily. This leads to the outer envelope getting significant

contributions from the deep interior already at times when it is more extended than

in the λ = 1 × λH2O case, and consequently is still able to radiate away energy faster.

This makes the Teff-plateau observed as a feature of phase III less flat than in the

λ = 1 × λH2O case, and the slowing down of cooling is less pronounced. This means

that a higher λ value acts in the same way as a lower ∆m, which will be important

when evaluating the resulting present-day Teff values in Sect. 6.5.

Towards the end of the evolution, during phase IV, the evolution curves in Fig. 6.7 a)

then converge towards the adiabatic baseline model. This convergence occurs earlier

for higher λ. The exception are very high conductivities of λ = 1000×λH2O where, after

a certain time, ∇cond is smaller than ∇ad in the whole of the inner envelope, making

it purely stably stratified and conducting, which has a visible effect on the evolution

curve.

6.4.3. TBL onset time

In all models presented so far, the conductive TBL is presumed to be present from

right after the planet has formed and thus active for the whole evolution. This is not

necessarily realistic. For example, if it is compositional differentiation that leads to the

stabilising gradient, such as hydrogen and water becoming immiscible and differenti-

ating, as recently explored by Bailey & Stevenson (2021) [4], the TBL could be formed

at lower temperatures than in our initial hot profile and therefore later in the planet’s

lifetime. Thus, for the models presented in this section, which can be called late-onset

models, I assume a model of the same composition as so far, but with all layers of the

planet being adiabatic until a certain time is reached, which I call the onset time. At

that point, the temperature regime in the TBL is switched from adiabatic to conductive

and the evolution continues. This is, of course, a simplification again. A TBL formed

by H-H2O demixing, for example, would mean that an initially homogeneous planet

would slowly differentiate over time, as a gradient in the heavy-element content Z

develops gradually and the water settles deeper in the planet. Such a planet would

evolve differently from an already differentiated body where the existing interface is

simply switched to a different heat transport scheme partway through the evolution. If

the differentiation indeed happened because of H2-H2O-immiscibility or a similar sed-

imentation mechanism, then additional gravitational energy would be released and

the planet’s outside luminosity would increase. This effect, only for H2-He demixing,
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Fig. 6.8.: Evolution of (a) Teff(t) and (b) ∆T (t) for a Neptune model with a TBL of ∆m = 0.0015 ME
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II.

is thought to contribute substantially to the evolution of Saturn, for which “standard”

adiabatic evolution calculations predict an age that is too low (see e.g. [91, 118, 134]).

However, despite these additional contributing factors, the approach taken here is an

easy approximation to gauge the influence of a thermal barrier that is formed later in

the planet’s lifetime.

In Fig. 6.8, we see the evolution of such a late-onset Neptune model with ∆m =
0.0015 ME and λ = 1 × λH2O, with TBL onset after 0.1, 0.5, and 1 Gyr. Once the TBL
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Fig. 6.9.: Same as Fig. 6.8 a), but for Uranus. Figure adapted from Paper II.

is active, a highly accelerated reduction in Teff is seen, similar to phase I and II in the

former models. The curve then transitions to a plateau in Teff, corresponding to phase

III. In contrast to early-onset models, however, by that point a significant amount of

the planet’s primordial heat has already left the planet, leaving it with much lower

internal heat flow and therefore lower ∇cond in the TBL. Consequently, the initial tem-

perature difference across the interface can be orders of magnitude lower than in

previous models, and also the maximum ∆T at the start of phase III is lower. Later

onset times lead to lower ∆T .

Late-onset Uranus models presented in Fig. 6.9 show the same general behaviour, with

the exception that they, of course, cannot reach Teff substantially below the observed

present-day value due to Uranus being so close to equilibrium with the solar irradi-

ation. This also meas that Uranus models from this method are less sensitive to the

onset time than Neptune models, as long as the TBL onset occurs after about 0.5 Gyr.
Neptune, on the other hand, would need an earlier onset to match its observed Teff,

because it otherwise cools too quickly. However, taking into consideration the previ-

ously discussed additional heat released from the sedimentation, some of this too fast

cooling might actually be counteracted. In contrast, for Uranus models this additional

energy source requires the presence of a thermal barrier even more, because evol-

ution calculations give already too high luminosities compared to the observations.

Ultimately, this can only serve as a basic guide, and the exact effects will have to be
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studied in future work where such sedimentation processes have to be specifically and

explicitly included.

6.5. Range of present-day effective temperatures

It has already been shown that different parameters can have significant influence on

the cooling behaviour of the TBL models. Because one key characteristic to constrain

the evolution models is whether they match the measured temperature, let us take

a look at the Teff values after t = 4.6 Gyr for various values of ∆m and λ, as shown

in Fig. 6.10. Models that end within 1 K of the observed Teff, which corresponds to

about three times the standard uncertainty for Uranus and a little above the standard

uncertainty for Neptune, cf. App. A, are shown in white, those that end up too hot

in red, and those that are too cold in blue. The resulting colours follow a diagonal

pattern from the lower left to the upper right side, owing to the fact that both a higher

λ and a lower ∆m allow for more efficient heat transfer across the TBL. Therefore,

higher λ is able to somewhat compensate a higher ∆m, and vice versa (see Sect. 6.4.1

and 6.4.2).

For Uranus, where adiabatic models predict a present-day luminosity higher than

the observed value, parameters that result in Teff near the measurement are loc-

ated towards the lower right corner, featuring low-to medium λ and thicknesses of

∆m > 0.05 ME. In these models, the deep interior was insulated from the outer

envelope sufficiently strongly, so that the outside cooled very rapidly and reached

near-equilibrium with solar irradiation, leaving the planet almost incapable of cooling

further. Neptune, in contrast, for which adiabatic models predict a luminosity below

the observed value, features a smaller band of solutions starting at medium thicknesses

of about ∆m = 0.015 ME, where the planet ends up with Teff close to the observations.

Along this slice of solutions, the planet would be in phase III at the present time, and

the plateau in Teff would be close to the measured value.

However, Neptune features a second set of solutions that are valid in this sense: for

a thin TBL of about ∆m = 0.003 ME and strongly enhanced conductivity of about

100×λH2O, the planet would already be in phase IV of the evolution, while the already

completed phase III has delayed the outside cooling just long enough to bring the

planet into agreement with the measured luminosity. In this case, the delay in heat

release caused by the TBL is only on the order of 10 − 100 Myr, which means that

even a transient and relatively short-lived period of reduced cooling, maybe caused
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Fig. 6.10.: Effective temperature ranges at t = 4.6 Gyr of different planetary evolution models for (a)
Uranus and (b) Neptune as a function of TBL thickness ∆m and thermal conductivity factor.
Models shown as circles have inner envelope water abundances of Z2,H2O = 1, those shown as
diamonds – near the panel bottoms and in the white halo in (b) – have an inner envelope of
either basalt-H2O-mixture or H-He-H2O-mixture chosen so that the observed RP is reproduced
at t = 4.6 Gyr, see text for details. The Background shading is a rough guide to the eye. Grey
area: no data available. Models marked with an arrow are discussed in detail in Sect. 6.6.
Figure adapted from Paper II.
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by temporary semi-convection, might bring the planet in line with the observed heat

flux. This second set of solutions is not observed in Uranus, while, taken at face value,

moderate ∆m and 1 × λH2O give viable heat fluxes for both ice giants. This will be

further discussed in Sect. 6.7.

It should be noted that the majority of models that make up Fig. 6.10 use an inner

envelope of pure water Z2,H2O = 1. However, the inner envelope temperature profile

varies from model to model, and especially all low-λ models are several thousands of

Kelvin hotter in the interior – and, consequently, less dense – than adiabatic ones. This

leads to variations in the planet’s radius at the present day (t = 4.6 Gyr). Almost none

of the models depicted as circles reproduce the observed mean radius today. Models

near the bottom of the plot (lower λ) feature hot interiors with most of the primordial

heat still trapped inside, and thus their overall radii at t = 4.6 Gyr are too large. Those

near the top (high λ) have a rather cool interior and therefore a smaller present-day

radius compared to observations. In the first case – hot, low-density interior – it is

necessary to use a mixture of water and about 10 − 20 % rocks in the inner envelope,

the exact amount depending on the planet and the interface thickness, to have the

models reproduce the observed radius at the present. In the second case – cool, dense

deep interior – a mixture of water and about 7 % H/He in protosolar proportions is

needed. Making these adjustments is a rather time-consuming process as it involves

multiple full evolution calculations for each parameter set, and is thus not feasible to

do for every model here due to the high computation cost. However, for a subset of

models the composition has indeed been fine-tuned such that the planet reproduces

the observed radius at t = 4.6 Gyr within less than 0.3 %. Those adjusted models are

shown as diamonds in Fig. 6.10, and the adjustments produce variation in present-day

Teff of up to 2 K. This is substantial, but we also see that this radius adjustment, or

rather the lack thereof in the other models, does not seem to shift the resulting trends

by much, and, specifically, the parameter ranges identified as producing a valid Teff

do not change. Consequently, while most models in Fig. 6.10 produce radii diverging

from the observed values, this does not overly affect the discussed behaviour.

6.6. Interior Profiles

In order to examine the effect the TBL has on the interior profiles of the planet, let us

take as an example a Uranus model with a TBL of ∆m = 0.075ME and an inner envel-

ope rock content of Z2,rocks = 0.18, while the Neptune model features ∆m = 0.015ME
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Fig. 6.11.: Interior profiles for Uranus (red) and Neptune (blue) models that reproduce today’s radius
and effective temperature, at different time steps. (a) Temperature, (b) local luminosity over
mass shell. Figures adapted from Paper II.

and Z2,rocks = 0.11, and both use λ = 1 × λH2O. These specific models are chosen here

because they reasonably reproduce today’s measured Teff and RP. In Fig. 6.11, we

see the profiles of temperature T and local luminosity l along the mass coordinate for

different points in time during their evolution. In the beginning, the outer luminosity

L is high and the outer envelope can cool efficiently, meaning a high local luminosity

l in the outer part of the planet. At the TBL, l goes close to zero, indicating almost no

net energy transport outside, as the boundary layer inhibits heat transfer. This dip can
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Fig. 6.12.: Thermal conductivity profile for the same Uranus model as in Fig. 6.11 a), shown at
different times in the planet’s evolution. The inset gives a close-up of the TBL region. Figure
adapted from Paper II.

reach even small negative numbers for models with high ∆m, where we have a net

heat transport inside, due to the cooling and contracting outer envelope compressing

the deeper interior. This contraction effect leads to a slight increase in temperature in

the inner envelope during evolution phase II.

As time passes and the growing ∆T across the TBL drives a stronger conductive heat

transport, the dip in l at the TBL shrinks until it has completely vanished by the start

of phase III. At this time, the outer envelope of Uranus is already very close to equilib-

rium with the solar incidence flux, which means efficient cooling is no longer possible

and the inner envelope’s temperature profile stays very close to the hot initial model

for the entirety of the evolution. In contrast, the Neptune model can still cool even

in phase III, and it therefore has a higher present-day luminosity, which matches the

observations (Fig. 6.11 b), and a slightly colder inner envelope than in the beginning.

It is, however, still significantly hotter than an adiabatic profile and has a rather high

∆T ∼ 7000 K across the TBL after 4.56 Gyr.
Fig. 6.12 shows the values of λ along the Uranus model at different times in its evolu-

tion. Because λ increases strongly with both temperature and density, it grows roughly

by a factor of 10 across the TBL and about by a factor of 25 throughout the inner en-

velope. However, λ does not change significantly with time, as the TBL essentially

preserves the initial conditions in the inner envelope.
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∇T value by several orders of magnitude (cf. Fig. 6.3). The vertical dashed lines in (a) mark
the upper end of a conductive zone in the deep interior. Figures taken from Paper II.

In Fig. 6.13, we see the temperature gradient throughout the planet models, again

at different points during its evolution. The value at the outside of the TBL is larger

than the rest of the displayed values by several orders of magnitude. This makes the

very outside part of the TBL unstable to convection under the Ledoux criterion, while

the majority of the TBL remains stably stratified throughout the evolution, as was dis-

cussed in Sect. 6.2. In the Uranus model, the low l(m) in the inner envelope leads
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to low ∇cond (as seen from Eq. (2.39)), and in some parts of the interior, this results

in ∇cond < ∇ad, which means these regions become stably stratified according to the

Schwarzschild criterion, Eq. (2.54). After about 0.4 Gyr a single deep stable and con-

ductive region is seen, extending from the core to about 0.6 MP. This stable area then

steadily shrinks from the core as l(m) slowly begins to rise towards the transition to

phase III, but is still present at t = 4.6 Gyr, although only extending to up to ∼ 0.2 MP

– corresponding to about ∼ 0.4 RP – at this point. In contrast, the Neptune model,

due to its smaller ∆m and thus somewhat higher l(m) in the inner envelope, does

not develop any stably stratified regions in the deep interior beyond the first few time

steps, despite the similarity between the two models seen otherwise.

6.7. Discussion of TBL models

In this chapter, I have presented evolution calculations for Uranus and Neptune models

that feature a standard three-layer structure with two extended envelopes and a rock

core with a comparatively thin thermally conducting thermal boundary layer between

outer and inner envelope. The results show that the inclusion of a thermal barrier

of as little as a few km thickness impacts a planet’s thermal evolution dramatically

compared to the adiabatic case. This may seem somewhat surprising, as Vazan &

Helled (2020) [138] estimate that a conductive layer has to be at least ∼ 100 km
thick to meaningfully affect the planetary evolution of Uranus, while most models

considered in this work feature a significantly smaller TBL (cf. Tab. 6.2). Vazan &

Helled arrive at their value based on the diffusion time scale for thermal conduction

τc = ∆r2ρcp/λ.

and demanding a thermal diffusion time of at least 1 − 5 Gyr in order to meaningfully

affect the evolution of the planet. Indeed, if we use the same formula and put in values

from our models in this chapter – ρ = 0.3 g cm−3, λ = 2 W m−1 K−1, cp = 15 kJ kg−1,

and radial thicknesses of ∆r = 4 − 50 km (corresponding to ∆m = 0.0015 − 0.03 ME) –

we arrive at significantly shorter time scales of τcond ∼ 1−100 Myr. However, this short

time scale is consistent with the fact that in my calculations, ∆T increases to several

thousand K within just a few million years, which then has a significant influence on

the long-term evolution. In essence, a delay in heat transport of a few million to a few

hundred million years are seen to be sufficient to strongly change the planet’s cooling



76 Ice giant evolution in the presence of a deep internal thermal boundary layer

behaviour.

At first, the TBL in these models here leads to a significant drop in outer luminosity

and the outer layer cools significantly more quickly compared to an adiabatic case, as

effectively only that part can release heat (phase I and II). But when the heat from

the interior begins to meaningfully contribute, the cooling of the outer layer is slowed

down significantly (phase III), before eventually accelerating again (phase IV). This

means that a planet affected by a TBL can either appear brighter or fainter than an

adiabatic planet, depending on the stage of the evolution it is in. The latter case is

a possibility to bring Uranus models in line with the observed luminosity, while the

former provides the same chance for Neptune.

Specifically, these Uranus models are only able to reproduce the measured luminosity

if the TBL is sufficiently thick to cut off the deep interior from cooling long enough

that the outer envelope hits near-equilibrium with the solar irradiation. This leads to

a long time period of the effective temperature evolving in parallel with the equilib-

rium temperature. In this scenario, the inner envelope remains hot throughout the

evolution, with core temperatures of about 2.2 × 104 K and a steep temperature dif-

ference of about 8000 K can be found between outer and inner envelope. The high

central temperature and hot deep interior is similar to Uranus model No. 2 in [138],

that is also characterised by a steep composition gradient between an ice-poor exterior

and an ice-rich interior. These central temperatures in this case are also well above

those where water would go into the superionic phase as predicted by French et al.
(2016) [31], which has been put forth as a possible explanation for the ice giants’

unusual magnetic field by Redmer et al. (2011) [120]. We do observe a deep stably

stratified region in these models, as has been a feature in magnetic field simulations

by Stanley & Bloxham (2004) [131] and (2006) [132], that reproduce the ice giants’

magnetic field. In the example model discussed more closely in Sect. 6.6, it is found

below about 0.4 RP, which is towards the lower bound for stable layer radii of models

favoured by in [132], which fall in the range of 0.4 − 0.55 RP.

Neptune models, on the other hand, can reproduce the observed luminosity in two

scenarios: first, if the planet is currently in a Teff plateau as part of evolution phase III.

Similarly to the Uranus solutions of the previous paragraph, these models feature a

hot and only very slowly cooling interior, making the inside conditions of both planets

very similar. Second, the Neptune models give another set of solutions for narrow

TBLs and a strongly enhanced conductivity, where phase III is already completed and

has delayed the cooling just enough to bring its luminosity up to the observations. This

second effect is similar to the results by Leconte & Chabrier (2013) [80], who found
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that a region of inhibited heat transfer – in that case caused by layered convection

– can prolong the evolution of Saturn and provide an explanation for why adiabatic

evolution models underestimate that planet’s age. This could suggest that a similar

process of semi-convection is or has been a factor in Neptune’s evolution. Models from

this range of parameters, due to the efficient energy transport through the TBL, fea-

ture central temperatures of about 5400 K, which is in the same range as the adiabatic

models presented in Chap. 5, making their present-day interior barely superadiabatic.

However, while for the Uranus models we can observe a similar effect of a decreasing

Teff compared to λ = 1×λH2O in that parameter range, those models are still more than

3 K hotter than the observed Teff. Furthermore, solutions in this area are in phase IV

of their evolution and therefore hotter than an equivalent adiabatic model, and adia-

batic evolution models already overestimate Uranus’ present-day luminosity. Thus, not

even a thinner TBL or changes in Uranus’ Bond albedo within the standard uncertainty

would help find a viable solution in this range for Uranus. The only way for Uranus

to be compatible with this kind of models would be an albedo of greater than 0.4. As

briefly discussed in Sect. 5.4, this is not out of the question, but would be a fairly spe-

cific case. Additionally, French & Nettelmann (2019) [34] found a somewhat narrow

range of parameters for semi-convection without the dynamics in the region turning

into either full overturning convection or complete stable stratification.

As has been discussed in Sect. 6.1, the calculations presented here are highly sim-

plified. First, for these models I have neglected the rotational term in the calculation

of ∇T . However, as can be seen in App. E, the effect of this is small enough not to im-

pact the conclusions drawn here. Other assumptions and simplifications in our models

that cannot be quantified as easily and should be taken into consideration when eval-

uating these results, will be briefly discussed below:

The evolution models start form a hot, adiabatic model of T1bar = 700 K. Different

initial temperatures mean different initial energy budgets for the planets, which can

influence the evolution by changing the position of the Teff-plateau in phase III. Also,

while the structure assumed here was clearly differentiated and layered, some forma-

tion models predict more gradual composition changes for gas-dominated planets (e.g.

Refs. [53, 88]), although for ice giants specifically, Frelikh & Murray-Clay (2017) [27]

find that formation models require a certain amount of fine-tuning to explain their ori-

gin, so it is not easy to find reliable predictions. For both of these issues it is necessary

for future work to tie the evolution models more closely to viable planet formation

scenarios and to explore how exactly different initial conditions affect the evolution.
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Furthermore, atmospheric processes where neglected here, such as the condensation

of ice species in the deep atmosphere. This is is certain to occur in the real planets,

because the planetary P -T -curve crosses several phase boundaries, which can signific-

antly influence the surface luminosity [37, 77, 81, 92].

Additionally, the models did not consider the possible erosion of the TBL through the

temperature gradient overcoming the stabilising compositional gradient and the sub-

sequent convective mixing, as indeed is the case in the top of the TBL in some of these

models.

Ultimately, the existence and exact nature of a deep-lying TBL remains an open ques-

tion. However, it has been shown that it poses a promising possibility to explain the

luminosities of both Uranus and Neptune without necessitating separate assumptions

for both planets.



Chapter 7.

Summary and outlook

In this work, I have studied scenarios for the thermal evolution of ice giant planets, in

particular Uranus and Neptune. To this end, I have developed a computer code called

OTTER, modelling the structure and evolution of giant planets. I have laid out the

theoretical foundations and equations the code is based on, as well as the numerical

methods employed to solve these equations.

First, I have used these methods to calculate and present a number of homogeneous

evolution tracks with adiabatic 3-layer interior models for Uranus and Neptune, us-

ing different equations of state and methods of characterising stellar irradiation. The

cooling times were notably shorter than previous results. In particular, while Uranus

was still found to cool too slowly, Neptune on the other hand was found to cool too

quickly, meaning neither planet’s present-day luminosity is in line with an adiabatic in-

terior. This further reinforces the previous conclusion that non-adiabatic processes are

needed to accurately model these planets [24, 64, 105, 112], which explicitly pertains

also to Neptune, according to my results. We have also seen a significant influence of

solar irradiation on the cooling time via treatment of the time dependence of the solar

luminosity and the value of planetary Bond albedo. This is especially true for Uranus

because it is very close to equilibrium with the sun. These uncertainties relating to

the influx of energy should be kept in mind while evaluating further evolution calcu-

lations.

I have then presented results for ice giant evolution calculations under the assump-

tion of a thermal boundary layer separating the outer and inner envelope, continuing

the work of Nettelmann et al. (2016) [102], and have investigated the influence of

TBL thickness, thermal conductivity and onset time. This has shown that even a thin

thermally conducting interface of a few kilometres can influence the cooling in signific-

ant ways, making the planet appear either fainter or brighter than an adiabatic model
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of equivalent composition, depending on parameters. This means that both Uranus’

and Neptune’s luminosities are reproducible in this framework, though a certain fine-

tuning of the assumptions is still required. Two entirely separate sets of assumptions

about the structure and interior dynamics for both planets, as suggested for example

by Helled et al. (2020) [52], remain a possibility, but are not a necessity. A number of

these models compatible with present-day radius and luminosity measurements end

up with an interior much hotter than indicated by fully adiabatic models, which is

in line with previous non-adiabatic models of Uranus and Neptune [102, 138]. This

would make some of the predictions regarding processes in their interior, such as dia-

mond formation [67, 74] and the presence of a superionic water phase [120], at least

somewhat doubtful, although not impossible.

At this point, it is important to reiterate that these models are simplifications designed

to assess the impact of certain separate factors on the planets’ cooling behaviour. The

real structure is almost certainly more complex than presented here and is likely to

be a result of several influences, such as atmospheric dynamics, deep-interior strati-

fication and demixing processes. The results from this work can now serve as a basis

for further investigations into the ice giants. For example, it would be worthwhile to

include the possibility of H2-H2O-demixing explicitly in Uranus and Neptune models,

continuing the work of Bailey & Stevenson [4], using for example recent new simula-

tions by Bergermann et al. [8]. Another promising direction would be to extend the

model to allow for a dynamic onset of convection and subsequent mixing, similarly to

that used by Vazan & Helled [138], which would provide the opportunity to study the

stability and possible erosion of composition gradients. Atmospheric processes such as

condensation of volatiles also play an important role and coupled interior-atmosphere

evolution models would help assess their impact. Furthermore, evolution scenarios

with a deep-lying TBL are not only of interest for Uranus and Neptune. For example,

evolution calculations for hot gas giant exoplanets which appear too large for their age,

(so-called inflated hot Jupiters), such as WASP-39b [115], display a plateau in their

outside luminosity similar to some of the TBL models presented here [115]. Since it is

not yet completely understood how these planets have managed to stay that inflated

over their evolution, an interior TBL might be a contributor.

The results for Uranus and Neptune models do, however, already indicate that there

is a vast wide array of possible structures and dynamics within these planets, and that

the existing observables are insufficient to constrain valid evolution models. Smaller

observational uncertainties on effective temperature, albedo and atmospheric temper-

ature profile are needed. For example, as we have seen in Chap. 5, raising Uranus’
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assumed Bond albedo changes its cooling time dramatically. The most direct way

to lessen the uncertainties due to observables will be to conduct another spacecraft

mission exploring one or both of the ice giants, which is imperative to further our un-

derstanding of this class of planets. On the other hand, improved material data like

thermal conductivities of H-C-N-O mixtures, following the simulations for water by

e.g. French [29], French & Redmer [35], and Grasselli et al. [42], are sure to greatly

improve future models. In order to benchmark such simulation data, high-pressure,

high-temperature measurements of these material properties are needed, as has been

done for example for the thermal conductivity of iron using a laser-heated diamond

anvil cell [72].

Ultimately, this work represents a stepping-stone in the endeavour of characterising

the processes that presently occur and have occurred inside ice giant planets and as

a step towards understanding this unique class of planets in our Solar System and

beyond.
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Appendix A.

Parameters and Observables

Here, I will give a quick overview about the different quantities that can be observed

or directly inferred for the ice giants, insofar as they are relevant for my models.

Mass & Gravity. The planets’ gravitational fields are determined by observing the or-

bits of Uranus’ and Neptune’s satellites as well as evaluating the trajectory of a passing

spacecraft. This yield’s the planet’s total mass MP – or rather, the product of gravita-

tional constant and mass GMP – as well as the gravitational moments J2 and J4. These

are coefficient in an expansion of the gravitational field into Legendre polynomials

and they are affected by the density profile, making it possible to infer the latter from

them to a certain degree.

The mass values in Tab. A.1 are taken from Guillot & Gautier (2015) [45], who used

the 1987 CODATA value of G to compute M . For Uranus, the mass is based on the

Uranus Neptune

Mass Mp / 1026 kg [45] 0.86832(1 ± 0.013%) 1.02435(1 ± 0.013%)
Mean radius Rp / 107 m [45] 2.5364 ± 0.0010 2.4625 ± 0.0020
1-bar-temperature T1bar / K [45] 76 ± 2 72 ± 2
Effective temperature Teff K [45] 59.1 ± 0.3 59.3 ± 0.8
Bond albedo A [109, 110] 0.300 ± 0.049 0.290 ± 0.067
Equilibrium temperature Teq / K [109, 110] 58.2 ± 1.0 46.6 ± 1.1
Rotational period Pω / s [45] 62060 ± 40 58000 ± 200
2nd order grav. moment J2 / 10−2 [105] 0.351099 ± 0.000072 0.35294 ± 0.00045
4th order grav. moment J4 / 10−4 [105] −0.3361 ± 0.0100 −0.358 ± 0.029
Mean orbital distance a [AU] [145] 19.201 30.048

Tab. A.1.: Observables for Uranus and Neptune. For discussion of the different values, see text.
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Solar system age t⊙ / 109 yr [3] 4.56
Solar effective temperature T⊙ / K [117] 5772

Solar Radius R⊙ / 108 m [47] 6.9566
Mean earth radius RE / 106 m [145] 6, 3710

Earth mass ME / 1024 kg [89] 5, 9722
Tab. A.2.: Further astronomical quantities used in the models

product GMP from Anderson et al.(1987) [2] that uses Voyager measurements sup-

plemented by previous earth-based observations of the satellites. Neptune’s mass is

based on Jacobson (2009) [65], who also uses Voyager and ground-based values,

but additionally makes use of observations of Neptune’s second-largest moon Proteus.

The reference values of J2 and J4 in Tab. A.1 are taken from Nettelmann et al.(2013)

[105], who scaled existing literature values to the equatorial 1-bar radius. It should be

noted that in the interim, updated values of J2, J4 have been calculated for Uranus by

Jacobson (2014) [66] and of J2 for Neptune by Brozović et al.(2020) [12], however,

as they are compatible with the values given here and the gravitational moments are

not the focus of this work, I use the slightly older values.

Rotation period. There is no unique way to define the rotational frequency of a planet

that is fluid to a significant degree. Different layers of the planet might rotate with a

different speed. This effect, mostly seen in the planets’ atmosphere, could even extent

into the planet’s deep interior. The value given in Tab. A.1 from [45] is the value cal-

culated by Warwick et al.(1986, Uranus) [143] and Warwick et al.(19891, Neptune)

[142] to be the rotational period of the planets’ magnetic fields, based on radio meas-

urements during the Voyager 2 flyby. Helled et al.(2010) [49] have derived different

values by minimising atmospheric wind velocities constrained by the measured atmo-

sphere profile and gravitational moments, deriving about 16.6 h for Uranus and 17.5 h
for Neptune.

Energy balance. During its flyby, the infrared and radio spectrometer aboard Voyager

2 measured the radiation given off by the planets. By extrapolating the measured in-

frared spectrum and calculating the total thermal flux from it, the planet’s effective

temperature can be obtained, and evaluation of broad-spectrum reflected radiation

from different observation angles can be used to estimate the Bond albedo. These

calculations were done by Pearl et al.(1990) for Uranus [110] and by Pearl & Con-

rath (1991) for Neptune [109]. Although more precise and reliable than previous

earth-based observations, they still rely on assumptions for atmosphere and seasonal

variations, and therefore more direct on-site measurements will help dramatically.
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1-bar temperature. During the Voyager flyby, the deviation of radio signals via the

atmosphere was measured, which allows inferences about the atmospheric structure,

a process called radio occultation. These measurements were evaluated using atmo-

spheric models and composition constraints via infrared emission spectra to give es-

timates of, among other things, the atmosphere’s P − T structure. These calculations,

performed by Lindal et al.(1987) for Uranus [83] and Lindal (1992) for Neptune [84],

give values for T1bar and also indicate that the atmospheric profile adopts a form close

to an adiabat below 1 bar. However, the uncertainties on these values are relatively

large due to the sparse measurements.

Radius. The aforementioned analysis of radio occultation measurements also allows

the estimation of Uranus’ and Neptune’s radii. The values used here refer to the

1-bar-level. Because Uranus and Neptune are rotating bodies, they are slightly ob-

late and their polar radius Rpol is smaller than the equatorial one Req. In order to

have a constraint for a spherical model of the planet, the arithmetic mean radius

Rp = (2Req + Rpol)/3 is used. The values given in Tab. A.1 are taken from Guillot &

Gautier (2015), who calculated them based on Req and Rpol from Lindal (1992) [84].
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Appendix B.

Derivations & Proofs

B.1. Approximating the effect of rotation in spherical

symmetry

This follows the procedure laid out in [103]. Let us start from the centrifugal force as

formulated in Eq. (2.7)

dF⃗ c = − dm ω⃗ × (ω⃗ × r⃗). (B.1)

We start by considering cylinder coordinates ρ, φ, z, where e⃗z is parallel to the axis of

rotation. Note that ρ here denotes the distance to the rotation axis and not the density.

In this description, we have

ω⃗ = ωe⃗z, (B.2)

r⃗ = ρe⃗ρ + ze⃗z, (B.3)

dF⃗ c = − dm ω⃗ × (ω⃗ × r⃗) = − dm ω⃗ × (ρωe⃗φ) , (B.4)

dF⃗ c = dm ρω2e⃗ρ. (B.5)

We can define a centrifugal potential Q by

dF⃗ c = − dm gradQ, (B.6)
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and, using the above expression for Fc and the formulation of the gradient in cylinder

coordinates [11]

gradQ = ∂Q

∂ρ
e⃗ρ + 1

ρ

∂Q

∂φ
e⃗φ + ∂Q

∂z
e⃗z, (B.7)

the definition (B.6) is satisfied by the potential

Q = −1
2ω2ρ2. (B.8)

If we now switch to spherical coordinates r, φ, θ, this becomes

Q = −1
2ω2(r sin θ)2, (B.9)

Q = −1
3ω2r2 (P0 − P2(cos θ)) . (B.10)

In this form, Q is expressed as an expansion in terms of Legendre polynomials Pi, with

P0(x) = 1, (B.11)

P2(x) = 3
2x2 − 1

2 . (B.12)

If we now approximate Eq. (B.10) to the zeroth order, i.e. take only the term P0, we

obtain

Q ≈ −1
3ω2r2, (B.13)

dFc = |dF⃗ c| ≈ dm
2
3ω2r, (B.14)

which is Eq. (2.8).

B.2. Formulating δq in Terms of T and P

This section follows the description laid out by Kippenhahn et al.in Sect. 4.1 of [70].

Let us start with Eq. (2.16), the first law of thermodynamics

δq = du + P dv = du − P

ρ2 dρ. (B.15)
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Because, for fixed composition, u depends only on, say, ρ and T , we can write its total

differential as

du =
(︄

∂u

∂ρ

)︄
T

dρ +
(︄

∂u

∂T

)︄
ρ

dT, (B.16)

which, inserted into Eq. (B.15), leads to

δq =
[︄(︄

∂u

∂ρ

)︄
T

− P

ρ2

]︄
dρ +

(︄
∂u

∂T

)︄
ρ

dT. (B.17)

Now, let us take a look at the fundamental thermodynamic relation for the entropy

[107]

ds = 1
T

du + P

T
dv = 1

T
du − P

ρ2T
dρ, (B.18)

where s and v are the specific values of entropy and volume, respectively. Using again

the relation for du (B.16), this becomes

ds =
[︄

1
T

(︄
∂u

∂ρ

)︄
T

− P

ρ2T

]︄
dρ + 1

T

(︄
∂u

∂T

)︄
ρ

dT. (B.19)

Since this is a total differential form, the Schwarz integrability condition

∂

∂ρ

(︄
∂s

∂T

)︄
= ∂

∂T

(︄
∂s

∂ρ

)︄
(B.20)

gives us

∂

∂ρ

⎡⎣ 1
T

(︄
∂u

∂T

)︄
ρ

⎤⎦ = ∂

∂T

[︄
1
T

(︄
∂u

∂ρ

)︄
T

− P

ρ2T

]︄

⇔ 1
T

∂2u

∂ρ ∂T
= 1

T

∂2u

∂T ∂ρ
− 1

T 2

(︄
∂u

∂ρ

)︄
T

− 1
ρ2T

(︄
∂P

∂T

)︄
ρ

+ P

ρ2T 2

⇔
(︄

∂u

∂ρ

)︄
T

= P

ρ2 − T

ρ2

(︄
∂P

∂T

)︄
ρ

. (B.21)

If we now insert Eq. (B.21) into (B.17), we get

δq =
(︄

∂u

∂T

)︄
ρ

dT − T

ρ2

(︄
∂P

∂T

)︄
ρ

dρ. (B.22)
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For fixed composition, the density depends on P and T and we can write its total

differential as

dρ =
(︄

∂ρ

∂P

)︄
T

dP +
(︄

∂ρ

∂T

)︄
P

dT, (B.23)

which we can insert into Eq. (B.22), making use of the definition of δρ (2.23),(︄
∂ρ

∂T

)︄
P

= − ρ
T

δρ, which gives us

δq =
(︄

∂u

∂T

)︄
ρ

dT − T

ρ2

(︄
∂P

∂T

)︄
ρ

[︄(︄
∂ρ

∂P

)︄
T

dP − ρδρ

T
dT

]︄
(B.24)

=
⎡⎣(︄ ∂u

∂T

)︄
ρ

+ δρ

ρ

(︄
∂P

∂T

)︄
ρ

⎤⎦ dT − T

ρ2

(︄
∂P

∂T

)︄
ρ

(︄
∂ρ

∂P

)︄
T

dP,

which, by use of the cyclic chain rule,

−1 =
(︄

∂ρ

∂P

)︄
T

(︄
∂P

∂T

)︄
ρ

(︄
∂T

∂ρ

)︄
P

, (B.25)(︄
∂ρ

∂P

)︄
T

= −
(︄

∂T

∂P

)︄
ρ

(︄
∂ρ

∂T

)︄
P

= ρδρ

T

(︄
∂T

∂P

)︄
ρ

, (B.26)

then becomes

δq =
⎡⎣(︄ ∂u

∂T

)︄
ρ

+ δρ

ρ

(︄
∂P

∂T

)︄
ρ

⎤⎦ dT − δρ

ρ
dP. (B.27)

To switch over from a description u(ρ, T ) to u(P, T ), we use the multi-variable chain

rule, which in general for two independent variables reads [11]:

∂w(β, γ)
∂β

= ∂w(y, z)
∂y

∂y(β, γ)
∂β

+ ∂w(y, z)
∂z

∂z(β, γ)
∂β

, (B.28)

where we set w = u, β = y = T , γ = P , and z = ρ, which gives us

(︄
∂u

∂T

)︄
P

=
(︄

∂u

∂T

)︄
ρ

+
(︄

∂u

∂ρ

)︄
T

(︄
∂ρ

∂T

)︄
P

. (B.29)
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We can again insert (B.21) and also use the definition of δρ (2.23), leading to

(︄
∂u

∂T

)︄
P

=
(︄

∂u

∂T

)︄
ρ

−

⎡⎣P

ρ2 − T

ρ2

(︄
∂P

∂T

)︄
ρ

⎤⎦ ρ

T
δρ

=
(︄

∂u

∂T

)︄
ρ

− Pδρ

ρT
+ δρ

ρ

(︄
∂P

∂T

)︄
ρ

⇔
(︄

∂u

∂T

)︄
ρ

=
(︄

∂u

∂T

)︄
P

+ Pδρ

ρT
− δρ

ρ

(︄
∂P

∂T

)︄
ρ

. (B.30)

Inserting Eq. (B.30) into Eq. (B.27) gives

dq =
[︄(︄

∂u

∂T

)︄
P

+ Pδρ

ρT

]︄
dT − δρ

ρ
dP,

=
[︄(︄

∂u

∂T

)︄
P

− P

ρ2

(︄
∂ρ

∂T

)︄
P

]︄
dT − δρ

ρ
dP (B.31)

which, using the definition of cp (2.22) finally leads to

dq = cp dT − δρ

ρ
dP. (B.32)

B.3. The adiabatic temperature gradient

To derive an expression for the adiabatic temperature gradient ∇ad, we start with the

cyclic chain rule
(︄

∂x

∂y

)︄
z

(︄
∂y

∂z

)︄
x

(︄
∂z

∂x

)︄
y

= −1, specifically

(︄
∂T

∂P

)︄
s

= −

(︄
∂s

∂P

)︄
T(︄

∂s

∂T

)︄
P

. (B.33)

Taking the fundamental thermodynamic relation for the enthalpy

dh = T ds = v dP, (B.34)
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where h, s, v are the specific values of enthalpy, entropy and volume, respectively, and

rearranging Eq. (B.34), we find

ds = 1
T

dh − v dP, (B.35)

and therefore, (︄
∂s

∂T

)︄
P

= 1
T

(︄
∂h

∂T

)︄
P

. (B.36)

Additionally, let us take the Maxwell relation

(︄
∂s

∂P

)︄
T

= −
(︄

∂v

∂T

)︄
P

, (B.37)

and Eq. (B.33) becomes (using h = u + Pv, as well as the definitions for δρ and cP ):

(︄
∂T

∂P

)︄
s

=

(︄
∂v

∂T

)︄
P

1
T

(︄
∂h

∂T

)︄
P

(B.38)

=
T

(︄
∂v

∂T

)︄
P(︄

∂u

∂T

)︄
P

+ P

(︄
∂v

∂T

)︄
P

(B.39)

=

δρ/ρ⏟ ⏞⏞ ⏟
− T

ρ2

(︄
∂ρ

∂T

)︄
P(︄

∂u

∂T

)︄
P

− P

ρ2

(︄
∂ρ

∂T

)︄
P⏞ ⏟⏟ ⏞

cp

(B.40)

= δρ

ρcp

(B.41)

and therefore

∇ad = P

T

(︄
∂T

∂P

)︄
s

= Pδρ

Tρcp

. (B.42)
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B.4. Calculating the composition gradient ∇X

The quantity ∇X was defined in Eq. (2.45) as

∇X =
∑︂

i

dXi

dln P

(︄
∂ ln T

∂Xi

)︄
P,ρ,{Xk ̸=i}

= P

T

∑︂
i

dXi

dP

(︄
∂T

∂Xi

)︄
P,ρ,{Xk ̸=i}

. (B.43)

The first factor is the change in the different abundances along the pressure profile of

the planet. It is approximated as the corresponding difference coefficient

dXi

dln P
≈ Xj+1

i − Xj−1

ln P j+1 − ln P j−1 (B.44)

where j refers to the mass point where the quantity is evaluated. For the second term,

we use the cyclic chain rule again

(︄
∂T

∂Xi

)︄
P,ρ,{Xk ̸=i}

= −

(︄
∂ρ

∂Xi

)︄
P,T,{Xk ̸=i}(︄

∂ρ

∂T

)︄
P,{Xj}

. (B.45)

Both of these can be calculated from the equation of state relation ρ = ρ(P, T, {Xj}).
The denominator is analogous to the coefficient of isothermal expansion (2.23), while

the numerator represents the change in density for changing abundances. For the lat-

ter, there is now the question on how exactly to calculate it.

Case 1: If the material abundances are treated as independent quantities, then
(︄

∂ρ

∂Xi

)︄
P,T,{Xk ̸=i}

can straightforwardly be calculated from the ideal mixing rule, as presented in Eq.

(4.2):

1
ρ(P, T, {Xj}) =

∑︂
k

Xk

ρk(P, T ) , (B.46)(︄
∂1/ρ

∂Xi

)︄
P,T,{Xk ̸=i}

= 1
ρi

, (B.47)

Case 1:
(︄

∂ρ

∂Xi

)︄
P,T,{Xk ̸=i}

= −ρ2

ρi

. (B.48)



94 Derivations & Proofs

However, this ignores the condition that, because Xi are mass fractions, they have to

hold to

∑︂
i

Xi = 1, (B.49)

so are not truly independent quantities. This condition is enforced for every point

along the planetary profile, so it is automatically accounted for in the calculation of

Eq. (B.44). However, it is less clear how exactly Eq. (B.49) has to be considered when

calculating the partial derivative
(︄

∂ρ

∂Xi

)︄
P,T,{Xk ̸=i}

. An intuitive way to account for this

constraint is to pick one of the abundances and have it depend on the others:

Case 2: Let us say, with no loss of generality, that every Xi except for XH is independ-

ent, and that XH changes so that the sum stays conserved. In this case, the density is

calculated as

XH = 1 −
∑︂
k ̸=H

Xk (B.50)

1
ρ(P, T, {Xj}) = 1

ρH(P, T )

⎛⎝1 −
∑︂
k ̸=H

Xk

⎞⎠+
∑︂
k ̸=H

Xk

ρk(P, T ) (B.51)

Case 2:
(︄

∂ρ

∂Xi

)︄
P,T,{Xk ̸=i}

= −ρ2
(︄

1
ρi

− 1
ρH

)︄
(B.52)

To evaluate, how ∇X would look in these two cases, let us recast Eq. (B.43) with the

help of Eq. (B.45) as

∇X = −P

T

(︄
∂ρ

∂T

)︄−1∑︂
i

dXi

dln P

(︄
∂ρ

∂Xi

)︄
P,T,{Xk ̸=i}⏞ ⏟⏟ ⏞

σ

, (B.53)

and concentrate on the term designated as σ. In our case 1, this becomes

σ1 =
∑︂

i

− dXi

dln P

ρ2

ρi

(B.54)

= −
∑︂
i̸=H

dXi

dln P

ρ2

ρi

− dXH

dln P

ρ2

ρH
, (B.55)

where we have simply moved the first addend of the sum out to an extra term. As

mentioned before, along the planetary profile the condition of
∑︁

i Xi = 1 is in effect,
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which leads to dXH = −∑︁
i̸=H dXi, and thus:

σ1 = −
∑︂
i̸=H

dXi

dln P

ρ2

ρi

+ ρ2

ρH

∑︂
i̸=H

dXi

dln P
(B.56)

= −
∑︂
i̸=H

(︄
dXi

dln P

ρ2

ρi

− ρ2

ρH

dXi

dln P

)︄
(B.57)

=
∑︂
i̸=H

−ρ2 dXi

dln P

(︄
1
ρi

− 1
ρH

)︄
= σ2 (B.58)

(B.59)

which equals the σ-term in case 2. So, both approaches give the same result for the fi-

nal ∇X , and the condition (B.49) can be disregarded when calculating
(︄

∂ρ

∂Xi

)︄
P,T,{Xk ̸=i}

,

as long as it is enforced in the planet profile itself.
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Appendix C.

Functions and derivatives for the
H-matrix

To calculate the matrix H in equation (3.26), the functions

Gj
i := yj+1

i − yj
i

∆ξj+1 − fi

(︃
y

j+ 1
2

0 , y
j+ 1

2
1 , y

j+ 1
2

2 , y
j+ 1

2
3

)︃
= 0, i = 0, . . . , 3, (C.1)

as well as their derivatives with respect to yj
i and yi+1

i have to be formulated. The

superscript j refers to the mass point at which the functions are evaluated, with j = 0
at the planet’s surface and j = N − 1 in its centre. First, let us remind ourselves of the

definitions

y0 = ln r,
∂r

∂y0
= r,

y1 = ln P,
∂P

∂y1
= P,

y2 = ln T,
∂T

∂y2
= T,

y3 = ln(l + Lc),
∂l

∂y3
= l + Lc,

y
j+ 1

2
i = yj

i + yj+1
i

2 ,

ξ = ln
(︄

1 − m

(1 + η)Mges

)︄
= ln

(︃
1 − m

Mx

)︃
,

m = Mx

(︂
1 − eξ

)︂
,

∂m

∂ξ
= −Mxeξ

z0 = r, z1 = P, z2 = T, z3 = l.
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Because the functions fi in Eq. (C.1) only depend on the variables y
j+ 1

2
k , therefore it

must hold that

∂fi

∂yj
k

= 1
2

∂fi

∂y
j+ 1

2
k

= ∂fi

∂yj+1
k

,

∂Gj
i

∂yj
i

= − 1
∆ξj+1 − ∂fi

∂yj
i

= − 1
∆ξj+1 − 1

2
∂fi

∂y
j+ 1

2
i

= 1
∆ξj+1 − 2

∆ξj+1 − ∂fi

∂yj+1
k

= ∂Gj
i

∂yj+1
i

− 2
∆ξj+1 ,

∂Gj
i

∂yj
k

= − ∂fi

∂yj
k

= −1
2

∂fi

∂y
j+ 1

2
k

= − ∂fi

∂yj+1
k

= ∂Gj
i

∂yj+1
k

, for k ̸= i,

which means that only four derivatives per function have to be calculated.

To a certain extent, the functions Gj
i were checked against those formulated in Ap-

pendix A of Hofmeister et al.(1964) [56]. However, since this thesis includes an ap-

proximative treatment of rotation, which is not the case for Hofmeister et al. or the

similar publication by Kippenhahn et al. (1967) [69], our functions Gj
1 and Gj

2 dif-

fer somewhat from theirs. To the best of my knowledge, the derivatives
∂Gj

i

∂yj
k

are not

published anywhere and were calculated by myself in all cases.

General functions

Let us start with the radius equation f0 (cf. Eq. (3.10a)):

f0 = ∂y0

∂ξ
= − Mx

4π ρ
exp [ξ − 3y0] ,

Gj
0 = yj+1

0 − yj
0

∆ξj+1 + Mx

4π ρj+ 1
2

exp
[︃
ξj+ 1

2 − 3y
j+ 1

2
0

]︃
, (C.2)

∂Gj
0

∂yj
0

= − 1
∆ξj+1 − 3 Mx

8πρj+ 1
2

exp
[︃
ξj+ 1

2 − 3y
j+ 1

2
0

]︃
,

∂Gj
0

∂yj
1

= − Mx

8π
(︂
ρj+ 1

2
)︂2 exp

[︃
ξj+ 1

2 − 3y
j+ 1

2
0 + y

j+ 1
2

1

]︃
∂ρj+ 1

2

∂P j+ 1
2
,

∂Gj
0

∂yj
2

= − Mx

8π
(︂
ρj+ 1

2
)︂2 exp

[︃
ξj+ 1

2 − 3y
j+ 1

2
0 + y

j+ 1
2

2

]︃
∂ρj+ 1

2

∂T j+ 1
2
,

∂Gj
0

∂yj
3

= 0.
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Next, we move on to the pressure equation f1 (cf. Eq. (3.10b)):

f1 =∂y1

∂ξ
= G M2

x

4π

(︂
1 − eξ

)︂
exp [ξ − 4y0 − y1] − ω2Mx

6π
exp [ξ − y0 − y1] ,

Gj
1 =yj+1

1 − yj
1

∆ξj+1 − G M2
x

4π

(︃
1 − eξj+ 1

2
)︃

exp
[︃
ξj+ 1

2 − 4y
j+ 1

2
0 − y

j+ 1
2

1

]︃
(C.3)

+ ω2Mx

6π
exp

[︃
ξj+ 1

2 − y
j+ 1

2
0 − y

j+ 1
2

1

]︃
,

∂Gj
1

∂yj
0

=G M2
x

2π

(︃
1 − eξj+ 1

2
)︃

exp
[︃
ξj+ 1

2 − 4y
j+ 1

2
0 − y

j+ 1
2

1

]︃

− ω2Mx

12π
exp

[︃
ξj+ 1

2 − y
j+ 1

2
0 − y

j+ 1
2

1

]︃
,

∂Gj
1

∂yj
1

= − 1
∆ξj+1 + G M2

x

8π

(︃
1 − eξj+ 1

2
)︃

exp
[︃
ξj+ 1

2 − 4y
j+ 1

2
0 − y

j+ 1
2

1

]︃

− ω2Mx

12π
exp

[︃
ξj+ 1

2 − y
j+ 1

2
0 − y

j+ 1
2

1

]︃
,

∂Gj
1

∂yj
2

=0,

∂Gj
1

∂yj
3

=0.

Moving on to the temperature equation f2 (cf. Eq. (3.10c)):

f2 =∂y2

∂ξ
= Mx

2π
exp[ξ − y0 − y1]

(︄
GMx

2
(︂
1 − eξ

)︂
e−3y0 − ω2

3

)︄
∇T ,

Gj
2 =yj+1

2 − yj
2

∆ξj+1 −Mx

2π
exp

[︃
ξj+ 1

2 − y
j+ 1

2
0 − y

j+ 1
2

1

]︃
×

×
(︄

GMx

2

(︃
1 − eξj+ 1

2
)︃

e−3y
j+ 1

2
0 − ω2

3

)︄
∇j+ 1

2
T ,

(C.4)

∂Gj
2

∂yj
0

=Mx

2π
exp

[︃
ξj+ 1

2 − y
j+ 1

2
0 − y

j+ 1
2

1

]︃ (︄
GMx

(︃
1 − eξj+ 1

2
)︃

e−3y
j+ 1

2
0 − ω2

6

)︄
∇j+ 1

2
T ,

∂Gj
2

∂yj
1

= − Mxeξj+ 1
2

4π

⎛⎝∂∇j+ 1
2

T

∂P j+ 1
2

− e−y
j+ 1

2
1 ∇j+ 1

2
T

⎞⎠(︄GMx

2

(︃
1 − eξj+ 1

2
)︃

e−4y
j+ 1

2
0 − ω2

3 e−y
j+ 1

2
0

)︄
,

∂Gj
2

∂yj
2

= − 1
∆ξj+1 − Mx

4π
exp

[︃
ξj+ 1

2 − y
j+ 1

2
0 − y

j+ 1
2

1 + y
j+ 1

2
2

]︃
×

×
(︄

GMx

2

(︃
1 − eξj+ 1

2
)︃

e−3y
j+ 1

2
0 − ω2

3

)︄
∂∇j+ 1

2
T

∂T j+ 1
2

,
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∂Gj
2

∂yj
3

= − Mx

4π
exp

[︃
ξj+ 1

2 − y
j+ 1

2
0 − y

j+ 1
2

1 + y
j+ 1

2
3

]︃
×

×
(︄

GMx

2

(︃
1 − eξj+ 1

2
)︃

e−3y
j+ 1

2
0 − ω2

3

)︄
∂∇j+ 1

2
T

∂lj+ 1
2

.

This presumes the simplified version of ∇cond, Eq. (2.39). If, instead, the full ∇cond of

Eq. (2.38) is adopted, ∇ can depend on r, and the first derivative becomes:

∂Gj
2

∂yj
0

= −Mxeξj+ 1
2

4π

⎧⎨⎩GMx

2

(︃
1 − eξj+ 1

2
)︃

exp
[︃
−3y

j+ 1
2

0 − y
j+ 1

2
1

]︃⎛⎝∂∇j+ 1
2

T

∂rj+ 1
2

− 4∇j+ 1
2

T e−y
j+ 1

2
0

⎞⎠
− ω2

3 e−y
j+ 1

2
1

⎛⎝∂∇j+ 1
2

T

∂rj+ 1
2

− ∇j+ 1
2

T e−y
j+ 1

2
0

⎞⎠⎫⎬⎭
And, finally, we take the luminosity equation f3 (cf. Eq. (3.10d)):

f3 =∂y3

∂ξ
= −Mx

(︄
−cp

∂T

∂t
+ δρ

ρ

∂P

∂t

)︄
exp [ξ − y3] .

Similar to the mass derivative, the time derivative is approximated as the correspond-

ing difference quotient:
∂z

∂t
≈ z − z∗

∆t
,

where ∆t is the difference between the previous time step and the current one, and z∗

is the value of z from the previous time step. Thus, we arrive at:

Gj
3 =yj+1

3 − yj
3

∆ξj+1 +

⎛⎜⎜⎜⎜⎝−c
j+ 1

2
p

ey
j+ 1

2
2 − ey

∗j+ 1
2

2

∆t⏞ ⏟⏟ ⏞
Ṫ

j+ 1
2

+δ
j+ 1

2
ρ

ρj+ 1
2

ey
j+ 1

2
1 − ey

∗j+ 1
2

1

∆t⏞ ⏟⏟ ⏞
Ṗ

j+ 1
2

⎞⎟⎟⎟⎟⎠×

× Mx exp
[︃
ξj+ 1

2 − y
j+ 1

2
3

]︃
(C.5)

∂Gj
3

∂yj
0

=0,

∂Gj
3

∂yj
1

=
⎛⎝− ∂c

j+ 1
2

p

∂P j+ 1
2
Ṫ

j+ 1
2 + 1

ρj+ 1
2
Ṗ

j+ 1
2

⎛⎝ ∂δ
j+ 1

2
ρ

∂P j+ 1
2

− δ
j+ 1

2
ρ

ρj+ 1
2

∂ρj+ 1
2

∂P j+ 1
2

⎞⎠+ δ
j+ 1

2
ρ

ρj+ 1
2 ∆t

⎞⎠×

× Mx

2 exp
[︃
ξj+ 1

2 − y
j+ 1

2
3 + y

j+ 1
2

1

]︃
,
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∂Gj
3

∂yj
2

=

⎧⎨⎩− ∂c
j+ 1

2
p

∂T j+ 1
2
Ṫ

j+ 1
2 − c

j+ 1
2

p

∆t
+ 1

ρj+ 1
2
Ṗ

j+ 1
2

⎛⎝ ∂δ
j+ 1

2
ρ

∂T j+ 1
2

− δ
j+ 1

2
ρ

ρj+ 1
2

∂ρj+ 1
2

∂T j+ 1
2

⎞⎠⎫⎬⎭×

× Mx

2 exp
[︃
ξj+ 1

2 − y
j+ 1

2
3 + y

j+ 1
2

2

]︃
,

∂Gj
3

∂yj
3

= − 1
∆ξj+1 − Mx

2

⎛⎝−c
j+ 1

2
p Ṫ

j+ 1
2 + δ

j+ 1
2

ρ

ρj+ 1
2
Ṗ

j+ 1
2

⎞⎠ exp
[︃
ξj+ 1

2 − y
j+ 1

2
3

]︃

Outer boundary conditions

The first outer boundary condition is Eq. (3.3)

P (MP) = 1 bar := P0,

B0 = exp
[︂
y0

1

]︂
− P0 = 0, (C.6)

∂B0

∂y0
0

= 0,

∂B0

∂y0
1

= exp
[︂
y0

1

]︂
,

∂B0

∂y0
2

= 0,

∂B0

∂y0
3

= 0.

The second outer boundary condition is a little more involved. Eq. (3.7) says

l(MP) = 4πR2σBT 4
eff − Lsol, (C.7)

with (see Eqs. (3.9) and (3.6))

Lsol = 4πR2σBT 4
eq,

T1bar = Kg−1/6T
3.73/3
eff ,

T 4
eff = K−12/3.73g2/3.73T

12/3.73
1bar = K−12/3.73T

12/3.73
1bar

(︃
GMP

R2

)︃2/3.73
.

Note, that as per Eq. (3.8) Teq is a function of the star’s properties, the planet’s or-

bital distance, and its albedo, and it is thus constant with respect to our four primary



102 Functions and derivatives for the H-matrix

variables. With this, Eq. (C.7) can be rewritten as

Lint =l(MP) = 4πR2σB(T 4
eff − T 4

eq) = 4πR2σBT 4
eff

(︄
1 −

T 4
eq

T 4
eff

)︄
,

ln l(MP) = ln
(︂
ey0

3 − Lc

)︂
= ln(4πσB) + 2y0

0 + 4 ln Teff + ln
(︄

1 −
T 4

eq

T 4
eff

)︄

0 = − ln
(︂
ey0

3 − Lc

)︂
+ ln(4πσB) + 2

3.73 ln
(︂
GMK−6

)︂
+ ln

(︄
1 −

T 4
eq

T 4
eff

)︄

+ 2y0
0 − 4

3.73y0
0 + 12

3.73y0
2

And therefore, the second outer boundary condition is

B1 = ln(4πσB) + 2
3.73 ln

(︂
GMK−6

)︂
+ 3.46

3.73y0
0 + 12

3.73y0
2 − ln

(︂
ey0

3 − Lc

)︂
+ ln

(︄
1 −

T 4
eq

T 4
eff

)︄

(C.8)
∂B1

∂y0
0

= 3.46
3.73 − 4

3.73
1

T 4
eff

T 4
eq

− 1
∂B1

∂y0
1

= 0

∂B1

∂y0
2

= 12
3.73 + 12

3.73
1

T 4
eff

T 4
eq

− 1

∂B1

∂y0
3

= − ey0
3

ey0
3 − Lc

Central equations

As discussed in Sect. 3.2, the functions between the last and second-to-last mass point

differ from the general equations, so different derivatives have to be calculated for

those as well. As a reminder, since the values of yN−1
0 and yN−1

3 are fixed by the inner

boundary condition, they are not considered unknown variables in this description

and the derivatives with respect to them do not have to be calculated (see Sect. 3.2).

We start with the first central equation, given by (3.15), with the central density ρc =
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ρ(P N−1, T N−1):

C0 = 3yN−2
0 − ln

(︃ 3
4π

)︃
+ ln (ρc) − ln

(︃
Mx

(︂
1 − eξN−2)︂)︃

(C.9)

∂C0

∂yN−2
0

= 3

∂C0

∂yN−2
1

= 0

∂C0

∂yN−2
2

= 0

∂C0

∂yN−2
3

= 0

∂C0

∂yN−1
1

= 1
ρc

eyN−1
1

∂ρc

∂P N−1

∂C0

∂yN−1
2

= 1
ρc

eyN−1
2

∂ρc

∂T N−1 .

Next, we turn to C1, given by Eq. (3.17):

C1 = yN−1
1 − yN−2

1
ξN−1 − ξN−2 − 1

6π

(︃4π

3

)︃ 1
3

M
2
3

x

(︂
1 − eξN−2)︂− 1

3 ×

× exp[ξN−2 − yN−2
1 ]

(︃
2πGρ

4
3
c − ω2ρ

1
3
c

)︃ (C.10)

∂C0

∂yN−2
0

= 0

∂C0

∂yN−2
1

= − 1
∆ξN−1 + 1

6π

(︃4π

3 ρc

)︃ 1
3

M
2
3

x

(︂
1 − eξN−2)︂− 1

3 ×

× exp[ξN−2 − yN−2
1 ]

(︂
2πGρc − ω2

)︂
∂C0

∂yN−2
2

= 0

∂C0

∂yN−2
3

= 0

∂C1

∂yN−1
1

= 1
∆ξN−1 − 1

18π

(︃4π

3 ρc

)︃ 1
3

M
2
3

x

(︂
1 − eξN−2)︂− 1

3 ×

× exp[ξN−2 − yN−2
1 ]P N−1

(︄
8πG − ω2

ρc

)︄
∂ρc

∂P N−1

∂C1

∂yN−1
2

= 1
∆ξN−1 − 1

18π

(︃4π

3 ρc

)︃ 1
3

M
2
3

x

(︂
1 − eξN−2)︂− 1

3 ×

× exp[ξN−2 − yN−2
1 ]T N−1

(︄
8πG − ω2

ρc

)︄
∂ρc

∂T N−1

.
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Third, we take a look at C2, given by Eq. (3.18):

C2 = yN−1
2 − yN−2

2

yN−1
1 − yN−2

1
− ∇N− 3

2
T (C.11)

∂C2

∂yN−2
0

= −1
2rN− 3

2
∂∇N− 3

2
T

∂rN− 3
2

∂C2

∂yN−2
1

= yN−1
2 − yN−2

2(︂
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1 − yN−2
1

)︂2 − 1
2P N− 3

2
∂∇N− 3

2
T

∂P N− 3
2

∂C2

∂yN−2
2

= − 1
yN−1

1 − yN−2
1

− 1
2T N− 3

2
∂∇N− 3

2
T

∂T N− 3
2

∂C2

∂yN−2
3

= −1
2ey

N− 3
2

3
∂∇N− 3

2
T

∂lN− 3
2

∂C2

∂yN−1
1

= − yN−1
2 − yN−2

2(︂
yN−1

1 − yN−2
1

)︂2 − 1
2P N− 3

2
∂∇N− 3

2
T

∂P N− 3
2

∂C2

∂yN−1
2

= 1
yN−1

1 − yN−2
1

− 1
2T N− 3

2
∂∇N− 3

2
T

∂T N− 3
2

.

Finally, since function C3 is equal to the general function Gj
3 with j = N − 2, for C3 I

simply refer to Eq. (C.5) and the derivatives calculated there.



Appendix D.

Effect of radioactive decay on the
thermal evolution

My models do not include contributions from nuclear reactions to the planetary lu-

minosity. In order to assess their potential influence I have performed test calculations

with a modified luminosity equation. Different from Eq. (2.25), these expanded mod-

els use the equation

∂l

∂m
= cp

∂T

∂t
+ δρ

ρ

∂P

∂t
+ ∂lradio

∂m⏞ ⏟⏟ ⏞
ε

. (D.1)

The additional term ε represents the additional heating from nuclear reactions, follow-

ing the practice of Ref. [70]. I use the approximation of Guillot et al. (1995) [44], who

estimate the total luminosity from radioactive decay Lradio from a rock core, based on

the concentration of radioactive elements in the Earth, to be

Lradio = 2 × 1013 W mcore

ME
, (D.2)

with mcore the core mass in the planet. Because the models in Ref. [44] contain no rocks

outside the core, while some of my models have rock mixed into the inner envelope, I

generalise this approximation to use the total mass of rocks in the model mrocks instead

of mcore. Assuming for ease of use that this value stays roughly the same over time,

and that generation of this radiogenic luminosity is just dependent on available rock

mass and not the thermodynamic conditions, we arrive at an approximation for ε:

ε = ∂lradio

∂m
= Zrocks × 2 × 1013 W 1

ME
= Zrocks × 3.35 × 10−12 W kg−1, (D.3)
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where Zrocks is the local mass fraction of rocks in the respective mass shell.

I have performed these calculations for two Uranus models; the first is the one desig-

nated “Uranus 2” in Chap. 5, which is an adiabatic 3-layer-model with a core mass of

mcore = 0.79 ME and no other rocky material in the mantle. The other is the model

covered in Sect. 6.6, which is a model with a thermal boundary layer between outer

and inner envelope. It features a rock core of mcore = 0.15 ME and a rock mass fraction

of Zrocks = 0.18, bringing its total amount of rock to mrocks = 2.5 ME. The evolution

tracks for both models with and without nuclear reactions are shown in Fig. D.1.

For both models, both considering and neglecting nuclear reactions produce evolution

curves that are indistinguishable from one another. Specifically, the evolution curves

with and without ε for the TBL model differ by less than 5 × 10−3 K after 5 Gyr. This

is likely because the TBL acts as a strong barrier on the heat released from the inner

envelope, where the rocks and therefore the radiogenic heat sources are located, mak-

ing it very difficult for their contribution to affect the visible evolution. In case of the

adiabatic models, their the Teff values with and without ε differ by about 0.01 K after

5 Gyr, which results in a cooling time difference of under 70 Myr.
However, when interpreting these results we must consider that the adiabatic models

of this work have a very low rock content. As discussed in Sect. 4.1, the use of water as

a proxy for all heavy elements in the planet’s envelope is a simplification in these mod-

els, and a higher amount of rock material than assumed here would also be realistic.

Nettelmann et al. (2016) [102] have found that raising the rock content of Uranus

models leads to longer substantially longer cooling times because of the extra heating

due to nuclear reactions in the rocks, while for their Neptune models with their higher

overall luminosity, the cooling time is affected little by the addition of rocks.

So while the models presented here are not majorly affected by radiogenic heating, it

is an important thing to consider for more rock-rich planets and to keep in mind when

evaluating the uncertainties in terms of composition of the adiabatic models presented

in Chap. 5.

In any case, the influence of ε in these test cases is very low compared to the other

factors considered in this work and we can be reassured that neglecting them does not

impact the conclusions of this work.
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Fig. D.1.: Comparison of evolution tracks for two Uranus models each with and without considering
the effect of nuclear reactions on the luminosity. The adiabatic model is the one designated
“Uranus 2” in Sect. 5.1, the TBL model is a rock-rich model covered in Sect. 6.6 and marked in
Fig. 6.10 b). In both cases, the Teff with and without considering lradio differ by less than
0.03 K after 5 Gyr.
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Appendix E.

Effect of rotational term on the
conductive gradient

As established in Sect. 2.2.2, the conductive temperature gradient is

∇cond = lP

4π G mλρT

(︄
1 − 2ω2 r3

3G m

)︄−1

, (E.1)

while the models featuring a thermal boundary layer in Chap. 6 were calculated using

the simplified version

∇cond = lP

4π G mλρT
. (E.2)

The additional term in parenthesis in (E.1) represents the relative influence of rota-

tion on this quantity. This term is plotted over the mass coordinate in Fig. E.1 for

two different Neptune models at very young times. Since it is proportional to r3 and

inversely proportional to m, it is largest at the planet’s outer edge, and shrinks mono-

tonically towards the centre. The effect is larger for the model with an inner envelope

metallicity of Z2 = 92 % than for the other models because it has a smaller density and

therefore a larger radius. Since the outer envelope is always assumed to be adiabatic,

the point where the deviation has the highest value and while being relevant is the

outer edge of the TBL.

Consequently, Fig. E.2 shows the evolution of the rotation term in ∇cond at the top of

the TBL with time, again for different Neptune models. The term is largest at the start

of the evolution, while the planet is still extended and r large, and shrinks with time.

At all times it is below 1.5 % for all models considered.
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Fig. E.1.: Magnitude of the second addend in ∇cond Eq. (2.38) over mass for two example Neptune
TBL models from Chap. 6 with ∆m = 0.0015 ME, one with Z2 = 1 and λ = λH2O and one with
Z2 = 0.93 and λ = 100 × λH2O. The term is largest on the planet’s surface and gets successively
smaller deeper in the planet.

Finally, to see an example of the effect this has on the evolution curve, Fig. E.3 shows

the evolution of Teff for the Neptune model considered in Sect. 6.6, chosen because it

fulfulls both the observed Teff and Rp at t = 4.6 Gyr, both with and without the rota-

tion term in ∇cond. Neglecting it introduces a deviation of less than 0.1 K in Teff after

5 Gyr in this test case.

Thus, while the effect is noticeable under close inspection, we can be reasonable cer-

tain that it does not impact the conclusions for ice giant models with thermal barriers

presented in this work.
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