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Zusammenfassung

Um Quanteneffekte aus dem Labor in praktische Anwendungen zu überführen, werden skalier-
bare Plattformen benötigt. Ein Ansatz besteht darin, thermische Gase mit Nanostrukturen
zu koppeln, die die atomaren Wechselwirkungen kontrollieren. Um die zugrundeliegenden
Prozesse besser zu verstehen, untersucht diese Arbeit die Wechselwirkungen thermischer Gase
an einer Oberfläche oder in einer Nanokavität, die nahe ihrer Resonanz angeregt werden. Ein
Schwerpunkt ist der Casimir–Polder Effekt, eine durch thermische und Quantenfluktuationen
verursachte Wechselwirkung zwischen Atomen und Oberflächen. Die zu seiner Messung verwen-
deten spektroskopischen Methoden quantifizieren ihn mit einem effektiven Wechselwirkungskoef-
fizienten. Es zeigt sich, dass sich dieser effektive Koeffizient nicht unmittelbar mit den üblichen
Theoriewerten vergleichen lässt. Außerdem werden die Atom-Atom-Wechselwirkungen von
dichten, thermischen Gasen in Nanokavitäten untersucht. Es zeigen sich dichteabhängige Lin-
ienverschiebungen und -verbreiterungen, die Modelle aus der kontinuierlichen Elektrodynamik
nicht erklären können. Sie lassen sich durch die Eigenschaften der Kavität steuern.

Abstract

Scalable platforms are needed to transfer quantum effects from the laboratory to real-world
applications. One approach is to interface thermal vapors with nanostructures that control
the atomic interactions. To better understand these processes, this thesis investigates the
interactions of thermal vapors that are confined by a planar surface or a nanocavity and
subjected to near-resonant light. One focus is on the Casimir–Polder effect, an atom-wall
interaction caused by thermal and quantum fluctuations. The spectroscopic methods used to
measure the effect quantify it with an effective interaction coefficient. It turns out that this
effective coefficient cannot be directly compared with the usual theoretical values. Furthermore,
the atom-atom interactions of dense thermal vapors in nanocavities are investigated. Density-
dependent line shifts and broadenings beyond continuous electrodynamics models are found.
They can be controlled by the properties of the nanocavities.
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1. Introduction
The understanding of light-matter interactions and the technologies derived from it shape our
daily lives. We have become accustomed to light sources like lasers and LEDs, the sensors of our
digital cameras, the global positioning system (GPS) enabled by atomic clocks, medical imaging
that utilizes x-ray or magnetic resonance imaging (MRI), and many more. The realization
that both light and matter are quantized gave rise to the research field of quantum optics.
Today it has matured to the degree that quantum effects are to be used to open new fields of
applications, marking the beginning of a “second quantum revolution” [1]. Specifically, scientists
aim to construct quantum-enhanced sensors, erect secure quantum communication networks,
and solve simulation and computation problems that lie beyond the reach of classical computers
[2, 3]. Many physical platforms are investigated as candidates to implement their share of these
technologies. One idea is to use hot [4] or cold atoms coupled to nanophotonic structures [5].

Atoms offer a small radiative linewidth and optimal reproducibility because all atoms of
the same kind are equal. Therefore, even photons emitted by two different atoms may be near
identical. This sets atoms apart from artificial light emitters like quantum dots or nitrogen-
vacancy (NV) centers that can be tuned and tailored to the user’s needs, but vary in their exact
properties and feature additional coupling to their environment, e.g. with phonons. Often
alkali atoms are used because of their simple electronic structure with one valence electron,
their long-lived nuclear spins, the high vapor pressure at moderate temperatures [6, 7], and
the transition frequencies accessible by common laser systems. Furthermore, atoms can be
excited to a Rydberg state [8] characterized by a high principal quantum number. Rydberg
atoms are highly sensitive to external fields and exhibit strong dipolar interactions with other
particles. The interaction between two Rydberg atoms can be so strong that the induced line
shift exceeds the linewidth of the laser. This prohibits the excitation of a second Rydberg atom
in the vicinity of a first one, an effect known as Rydberg blockade [9, 10]. Recently, it has
been utilized to build a single-photon source in a thermal vapor [11]. Additionally, experiments
demonstrated coherent light storage [12] in a room-temperature vapor over one second [13].
Such a quantum memory is a key resource for quantum repeaters [14] that are required for
long-distance quantum networks. The advances described above fuel the vision of atomic
vapor-based quantum networks operating under room temperature conditions.

Thermal atomic vapors are usually handled in chemically resilient vapor cells, see Fig. 1.1.
They are attached to a reservoir with an alkali metal deposit which can be heated to release
more atoms into the gaseous phase. Atomic vapor cells are used in a wide variety of applications.
Examples are Faraday filters [19, 20], optical isolators [21], gas detectors [22], motional sensors
[23], DC field sensors [24], microwave electrometers [25, 26] with high spatial resolution [27, 28],
atomic clocks the size of a grain of rice [29, 30], gyroscopes [31, 32] and optical magnetometers
[33–37]. Room-temperature, vapor-cell-based magnetometers are utilized in life science to
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2 Introduction

(a) (b)

Figure 1.1: (a) Vapor cell attached to a rubidium reservoir and bonded with a photonic chip taken from
Refs. [15, 16]. (b) Wedged vapor cell taken from Refs. [17, 18] with visible Newton’s rings interference
patterns. At the center of the rings, the windows are 30 nm apart, which increases to 2 µm near the
stem at the bottom of the photo.

record nerve impulses in animals [38] or the activity of human hearts [39, 40] and brains [41–43].
Many of the above devices are enabled or improved by the trend of miniaturization, which
reduces power consumption and cost, and increases spatial resolution and portability. Atoms
can become confined only nanometers, i.e. only a fraction of a transition wavelength, away
from macroscopic surfaces, e.g., in wedged vapor cell [18, 44] and atomic cladding waveguide
[16, 45] experiments.

In these cases, the electromagnetic properties of the macroscopic environment shape the
interactions between the atomic dipoles. The effects can be studied in the framework of
macroscopic quantum electrodynamics (QED) [46–48] whose modern version was developed in
the 1990s [49, 50]. It provides a representation of field operators in arbitrary absorbing and
dispersing linear media in terms of the classical electromagnetic Green’s tensor. This can be
seen as a generalized mode expansion where photons occupy the same modes as their classical
wave counterparts.

The theory accounts for the quantum fluctuations in matter and fields that can sponta-
neously polarize neutral particles such as atoms and introduce an effective interaction with
the surrounding macroscopic bodies. This atom-wall interaction leads to a radiative line shift
[47, 51, 52] named after Casimir and Polder who computed it in 1948 [53]. It is one of several1

so-called dispersion forces [51] which are caused by fluctuations of the quantum vacuum and
depend on the variations of atom and body properties with frequency2.

The atoms close to the walls of a vapor cell experience a strong shift of their resonance lines.
For most applications, this Casimir–Polder shift constitutes an obstacle. But here it creates the
opportunity to measure the effect accurately. A suitable method for this is selective reflection
(SR) spectroscopy [57] which has already been used over a century ago [58]. In SR, one observes
the change in reflectivity at an interface of a dielectric and an atomic vapor when tuning the

1Analogously, interactions arise between two microscopic particles, called van der Waals interactions, or between
two macroscopic bodies, which are known as Casimir forces [47, 51, 52].

2Fluctuations are linked to dissipation (fluctuation-dissipation theorem) which is linked to a dispersive real
part of the refractive index (Kramers–Kronig relations). Therefore, the fluctuations in a medium (in thermal
equilibrium) depend on its frequency-dependent response function.
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RbSapphire SapphireRbSapphire

(a) (b)

Figure 1.2: Concept sketches of two spectroscopic techniques studied in this thesis. Near-resonant laser
light impinges on (a) a thin rubidium vapor behind a dielectric surface and (b) a dense rubidium vapor
in a planar nanocavity whose width is less or equal to the transition wavelength of rubidium. In (a) the
presence of the vapor causes changes to the reflectivity of the interface that are recorded as a function of
the laser detuning. This so-called selective reflection spectroscopy allows measuring the Casimir–Polder
interaction between the atoms and the dielectric wall. In (b) the transmission through the cavity is
recorded to probe the properties of a slab of thermal atoms with nanometer thickness. Wedged vapor
cells [54, 55] offer thicknesses that vary linearly along the wedge over macroscopic distances. The increase
is so small that locally the walls can be assumed to be parallel as in (b). Sapphire is an established cell
material that can withstand chemically aggressive rubidium vapor [56].

laser frequency across the atomic resonance, see Fig. 1.2 a. Since atoms with different distances
to the wall contribute to the SR signal, a theoretical model is required to extract information
on the Casimir–Polder shift3. Usually, one assumes the shift to decay as C3/z

3, where z is
the atom-surface distance and C3 is a constant interaction coefficient that is to be determined
[60]. However, an exact computation via macroscopic QED shows that the C3 coefficient is
not constant but changes just 10 nm away from the surface. Therefore we rederive the theory
of SR spectroscopy in the framework of macroscopic QED and explore the consequences of
the more complex behavior on the determination of the Casimir–Polder effect. In addition,
we do the same for the transmission spectra of thin cells, see Fig. 1.2 b. This setup has the
advantage that the cell walls, which can be only tens or hundreds of nanometers apart, limit
the atom-surface distances that contribute to the signal.

Experiments to detect atom-wall interactions are usually conducted with a low vapor density.
However, thermal vapor cells are also ideal for studying the interactions in dense vapors because
the number of atoms in the gas phase varies nearly exponentially with temperature [6, 7]. When
such a vapor is resonantly excited, transient atomic dipoles are produced, which mutually
interact. This thesis analyzes how the presence of material boundaries modifies these resonant
dipole-dipole interactions.

In an ensemble of atoms, where many dipoles interact simultaneously, new properties can
emerge. Famous examples are suppressed or enhanced spontaneous emission rates, known

3One could imagine measuring the shift for each atom-surface distance individually, given that a single atom
can be trapped at a definite position in front of a nanostructure using optical tweezers [59]. However, at
short distances (< 100 nm in Ref. [59]), the Casimir–Polder force exceeds the retention force of the optical
trap. In addition, the trapping potential is challenging to design as the exact Casimir–Polder interaction and
the reflections of the trapping beam from the surface must be taken into account.
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as sub- or superradiance [61, 62], which were first predicted by Dicke in 1954 [63]. Resonant
atom-atom interactions can be undesired, e.g., in an array of atomic clocks where the additional
interaction degrades the precision [64–66]. In contrast, they can also be an asset, e.g., to
enhance light-matter interfaces and to create a perfect mirror out of a single layer of atoms
[67, 68].

One of the most fundamental collective effects is the local field correction that has already
been established in the 19th century [69, 70]. When an atom in a continuous medium is
excited, it polarizes its surrounding. The excited atomic dipole that interacts with the induced
dipoles behaves as if the original field was modified, hence the name local field correction. In
a homogeneously broadened system, the effect can be expressed as a density-dependent line
shift, the so-called Lorentz–Lorenz shift. Since 2014 a series of surprising theoretical [71, 72]
and experimental [73–75] works showed the absence of the Lorentz–Lorenz shift in a dense
cold vapor subjected to near-resonant light. This deviation from textbook electrodynamics
stems from the granular nature of the gas that is not a continuous medium. Theories [71, 72]
suggested that a part of the Lorentz–Lorenz shift is recovered at higher temperatures. This
motivated an experiment with dense thermal vapors in a wedged cell published in 2018 [44].
Wedged cells, like the one shown in Fig. 1.1 b, feature a gas-filled gap whose thickness varies
linearly between 0 nm and the micrometer scale [54, 55]. They can reach an averaged surface
roughness of 1 Å [55] and are a couple of centimeters long. When a laser illuminates a small
area, the local cell walls are almost parallel as in Fig. 1.2 b. One can investigate different
vapor layer thicknesses by illuminating different parts of the wedge. Therefore both density
and geometry dependence can be explored. The experimental transmission spectra could only
be fitted if an additional broadening and shift are included that grow linearly with density
[44]. These collective shifts and broadenings did not comply with the textbook Lorentz–Lorenz
theory and instead featured an unprecedented oscillatory dependence on the thickness of the
vapor layer. Our theory can reproduce the observed effects for the first time. Furthermore, we
predict that the collective effects can be tuned using cavity coatings so that our model can be
tested in future experiments.

In this thesis, we focus on simple planar geometries because they allow the closest and
clearest comparison between theory and state-of-the-art thermal vapor experiments. However,
by utilizing macroscopic QED our results can be transferred to any other system for which
the electromagnetic Green’s tensor is available. Thereby, they might contribute to the future
description and design of devices that couple atoms and photonic nanostructures in the spirit
of the “second quantum revolution”.

In chapter 2, we derive our basic formalism using the framework of macroscopic QED. In
chapter 3, we investigate the Casimir–Polder effect and the methods with which it is commonly
determined in vapor cells. In chapter 4, we study atom-atom interactions in nanocavities and
compare our findings to recent experiments. Finally, we summarize our findings and give an
outlook on future research.



2. Foundations of atom-field interactions
In this chapter, we present the theoretical foundations that will enable us to study the
interactions of atoms driven by a coherent laser field, thermal fluctuations, and quantum
fluctuations in the planar layered macroscopic environments illustrated in Fig. 1.2. We begin
by reviewing the Green’s functions of classical electrodynamics. They are used to express the
quantized electromagnetic (EM) field in linear macroscopic environments [46, 47]. This field
representation and the standard theory of open quantum systems [76] allow us to derive atomic
equations of motion that explicitly account for atom-wall and resonant atom-atom interactions.
Their stationary solutions provide the atomic dipole moments that lead to the reflection and
transmission spectra that are investigated in the following chapters.

2.1. Classical electrodynamics

The Maxwell equations form the basis for studying electromagnetic interactions. With free
charge density ρ(r, t) and currents j(r, t) they read

∇ · D(r, t) = ρ(r, t), (2.1)

∇ · B(r, t) = 0, (2.2)

∇ × E(r, t) = −Ḃ(r, t), (2.3)

∇ × H(r, t) = j(r, t) + Ḋ(r, t), (2.4)

and are completed by a set of constitutive relations

D(r, t) = ϵ0E(r, t) + P(r, t), H(r, t) = B(r, t)/µ0 − M(r, t), (2.5)

specific to the respective environment. Throughout this thesis, we assume linear, spatially local,
isotropic, and non-magnetic media. The latter assumption is common to optics as the magnetic
response of natural materials vanishes above the Gigahertz regime. With electric susceptibility
χ(r, t), the polarization density can be written as

P(r, t) = ϵ0

∫︂ ∞

−∞
dt′ χ(r, t′)E(r, t− t′). (2.6)

We transform into the Fourier domain, where the constitutive relations become1

D(r, ω) = ϵ0ϵ(r, ω)E(r, ω), H(r, ω) = B(r, ω)/µ0, (2.7)

and the dielectric permittivity is given by

ϵ(r, ω) = 1 +
∫︂ ∞

−∞
dt χ(r, t)eiωt. (2.8)

1We incorporate free charges within metals into the permittivity ϵ(r, ω) = ϵbound(r, ω) + iσ(r, ω)/ω [51].

5



6 Foundations of atom-field interactions

Because χ(r, t) is real, ϵ(r, ω) obeys the Schwarz reflection principle [51]

ϵ∗(r, ω) = ϵ(r,−ω∗), (2.9)

and because χ(r, t) is causal2, ϵ(r, ω) obeys the Kramers–Kronig relations [51, 77]

Re ϵ(r, ω) = 1 + 1
π
P

∫︂ ∞

−∞
dω′ Im ϵ(r, ω′)

ω′ − ω
, (2.10)

Im ϵ(r, ω) = σ(r, 0)
ω

− 1
π
P

∫︂ ∞

−∞
dω′ Re ϵ(r, ω′) − 1

ω′ − ω
, (2.11)

with conductivity σ(r, ω). The Fourier transformed Maxwell equations become

ϵ0 ∇ · [ϵ(r, ω)E(r, ω)] = ρ(r, ω), (2.12)

∇ · B(r, ω) = 0, (2.13)

∇ × E(r, ω) = iωB(r, ω), (2.14)

∇ × B(r, ω) = µ0j(r, ω) − iω

c2 ϵ(r, ω)E(r, ω). (2.15)

Combing the last two relations, we obtain the vectorial Helmholtz equation

∇ × ∇ × E(r, ω) − ω2

c2 ϵ(r, ω)E(r, ω) = iµ0ω j(r, ω), (2.16)

for the electric field whose solution can be written with a classical Green’s tensor as

E(r, ω) = iµ0ω

∫︂
d3r′ G(r, r′, ω)j(r′, ω). (2.17)

The Green’s tensor is uniquely determined by its own vectorial Helmholtz equation

∇ × ∇ × G(r, r′, ω) − ω2

c2 ϵ(r, ω)G(r, r′, ω) = δ(r − r′)I, (2.18)

and the radiation boundary condition G(r, r′, ω) → 0 at |r − r′| → ∞.

2.1.1. Meaning of the Green’s tensor

Let us consider an oscillating dipole moment p(ω) at r0 and its current density

j(r, ω) = −iωp(ω)δ(r − r0). (2.19)

2An action at r′ can cause a reaction at r only if a time t ≥ |r − r′|/c has passed. In our local system with
r = r′, this means χ(r, t) = Θ(t)χ(r, t). After Fourier transformation, this equality leads to the usual
Kramers–Kronig relations. The term σ(r, 0)/ω is caused by the non-vanishing long-time asymptote in metals
[51, 77].
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According to Eq. (2.17), the field produced by that dipole current is given by

E(r, ω) = µ0ω
2G(r, r0, ω)p(ω). (2.20)

Thus, the Green’s tensor describes the field that a dipole located at r0 produces at a probe
point r. Let us further compute the power radiated by our dipole. Using Eqs. (2.19) and (2.20),
we find [78]

P (ω) = −1
2

∫︂
d3r Re {j∗(r, ω) · E(r, ω)} = µ0

2 ω
3p∗(ω) · ImG(r0, r0, ω)p(ω). (2.21)

The emitted power is proportional to the imaginary part of the Green’s tensor with probe and
source point at the dipole’s location. The same Green’s tensor also appears in the spontaneous
decay rate of an atom, as we derive later in Eq. (2.98). In a two-level system with transition
dipole moment deg between ground and excited states g and e, the spontaneous decay rate at
zero temperature is

Γeg = 2µ0
ℏ
ω2

egdeg · ImG(r0, r0, ωeg)dge. (2.22)

One can even determine the fraction of light emitted into a specific mode [16, 79] by expanding
the Green’s tensor into a corresponding basis [80]. The Green’s tensor appears in the radiated
power and the spontaneous decay rate because it determines the number of available modes for
the photons that are about to be emitted. The local density of states (LDOS), i.e. the number
of modes per unit volume and angular frequency for a dipole axis along the ep direction, is
[78, 81]

ρp(r, ω) = 6ω
πc2 ep · ImG(r, r, ω)ep. (2.23)

It is instructive to insert the Green’s tensor of a bulk medium, Eq. (A.8) in App. A.1, in
the above relations to retrieve known results from fundamental physics. Denoting the distance
as ρ = r − r0, we obtain the near- and far-field limits of a dipole in a homogeneous medium as

Efar(r, ω) = k2eikρ

4πϵ0ϵ(ω)ρ [I − eρ ⊗ eρ] p(ω) for |kρ| ≫ 1, (2.24)

Enear(r, ω) = −δ(ρ)p(ω)
3ϵ0ϵ(ω) − I − 3eρ ⊗ eρ

4πϵ0ϵ(ω)ρ3 eikρp(ω) for |kρ| ≪ 1. (2.25)

In the near field, the dipole field decays as 1/ρ3, while in the far field, we obtain a transverse
electric field that decays as eikρ/ρ. Furthermore, we obtain the spontaneous decay rate in free
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space predicted by Wigner and Weisskopf [82] and the density of states3

Γeg =
ω3

eg|deg|2

3πϵ0c3ℏ
, ρ = ω2

π2c3 . (2.26)

The decay rate is the well-known Einstein A coefficient, while the density of states is often used
to derive Planck’s law. The strength of the Green’s formalism is that we are not limited to free
space or homogeneous media. We can immediately determine all of the above characteristics
in any environment once we have obtained the Green’s tensor by solving the corresponding
Helmholtz equation (2.18).

2.1.2. Properties of the Green’s tensor

The Green’s tensor possesses a series of useful, general properties. Like the permittivity, it
obeys the Schwarz reflection principle [51]

G(r, r′,−ω∗) = G∗(r, r′, ω). (2.27)

which implies that the Cauchy-Riemann equations are fulfilled in the upper half of the complex
ω plane. We can quickly derive the high-frequency limit [51]

lim
|ω|→∞

ω2

c2 G(r, r′, ω) = −δ(r − r′)I, (2.28)

noting that ϵ(∞) = 1 and the ω2 term dominates the Helmholtz equation (2.18) when ω → ∞.
Combining these two facts, ω2G(r, r′, ω) is analytic in the upper half of the complex ω plane
and on the real axis4. Therefore, we can treat frequency integrals through contour integration
techniques. Furthermore, the Green’s tensor follows reciprocity. If positions and orientations of
source and probe points are exchanged, we have e2 ·G(r2, r1, ω)e1 = e1 ·G(r1, r2, ω)e2 [51] and

GT (r′, r, ω) = G(r, r′, ω). (2.29)

Additionally, a useful integral relation can be derived. Starting from the Green’s tensor as
the left- and the right-inverse of the Helmholtz equation (2.18), we multiply with G∗ and G,
respectively. Integrating over space and subtracting the two equations leads to [51]

∫︂
d3s ω

2

c2 Im ϵ(s, ω)G(r, s, ω)G∗(s, r′, ω) = ImG(r, r′, ω). (2.30)

Finally, we can utilize the superposition principle of linear optics. Assuming that both source
and probe point reside in the same layer, we can decompose the Green’s tensor into a bulk and

3Im Gbulk(r, r, ω) = Re k(ω)/(6π)I obtained from Eq. (A.8) through a Taylor expansion of exp(ikρ) [48].
4As an exception, ω2G(r, r′, ω) can have a simple pole at ω = 0 if the probe point r is located in a metallic

material. This is caused by the fact that in metals Im ϵ ∝ 1/ω when ω → 0 whereas in dielectrics Im ϵ ∝ ω.
The pole becomes apparent in an appropriate decomposition of the Green’s tensor, see Refs. [46, 51].
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Figure 2.1: Sketch of photon pathways propagated by the bulk (blue dashed lines) and scattering (red
dashed lines) contribution of the Green’s tensor for (a) a surface and (b) a cavity geometry.

a scattering contribution [51], see Fig. (2.1),

G(r, r′, ω) =

⎧⎨⎩Gbulk(r, r′, ω) + Gsc(r, r′, ω), r, r′ in same layer

Gsc(r, r′, ω), r, r′ in different layers
. (2.31)

The bulk contribution describes the field that would be created if all space was filled with
the material of layer j and includes the singularity when probe and source point are equal.
The scattering contribution ensures matching boundary conditions with other materials and
describes the modifications due to the reflections at the material boundaries, as well as the
transmission through different materials, see Fig. (2.1). Hence, the Helmholtz equation (2.18)
is split up as

[∇ × ∇ × −k2
j (r, ω)]Gbulk(r, r′, ω) = δ(r − r′)I, (2.32)

[∇ × ∇ × −k2
j (r, ω)]Gsc(r, r′, ω) = 0. (2.33)

2.1.3. Computation of the Green’s tensor

Whereas the Green’s tensor of bulk media is known analytically (see derivation in App. A.1)
the scattering contribution of Green’s tensor is often challenging to compute. When source and
probe points both lie close to the macroscopic body, the Green’s tensor can be approximated
with the image dipole approach presented in App. A.2. In the nonretarded limit, the source
dipole produces a quasi-static image of itself inside the macroscopic body that can be propagated
to the probe point through the bulk Green’s tensor. This is the simplest method to obtain an
approximate Green’s tensor of a planar surface but may be cumbersome to conduct in other
geometries. An exact, closed-form expression for Green’s tensor is only known for specific
geometries, e.g., planar layered [83], cylindrical layered [84], or spherical layered [85] media.
The Green’s tensors for layered planar surfaces and cavities used in this thesis are derived in
App. A.3 using vector wave functions [86]. Vector wave functions are constructed to fulfill the
homogeneous vector Helmholtz equation and form a complete orthogonal basis in which the
Green’s tensor is expanded. The set of functions is chosen such that the expansion coefficients,
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which ensure that the boundary coefficients are met, can be obtained with reasonable effort for
the given geometry.

0 100 200 300 400 500 600 700 800 900
0

100

200
y/nm

x/nm

100nm

Figure 2.2: Upper part: Scanning electron microscopy (SEM) image of a slot waveguide structure
[16]. The structure was sputtered with gold and cut with a focused ion beam (FIB) to record the cross
section. Lower part: Model of the slot waveguide discretized with cubical unit cells colored according to
the material: vacuum red, sapphire green, and silicon nitrite blue. Cells with multiple materials have
been assigned an average permittivity, weighted according to the respective volume contribution, as a
simple anti-aliasing filter.

In general scenarios, the Green’s tensor can only be obtained by numerical techniques. Here
we describe one of them: the discrete dipole approximation (DDA) [87]. First, we split the
permittivity of our system into a background, for which we know the Green’s tensor Ḡ(r, r′, ω),
and the remaining material, ϵ(r, ω) = ϵ̄(r, ω) + χ(r, ω). As an example, let us consider the slot
waveguide geometry in Fig. 2.2. The background consists of the substrate and the free space
above it. χ(r, ω) describes the contrast between the waveguide material and the free space
background. We split the Helmholtz equation of the total system into two,[︄

∇ × ∇ × −ω2

c2 ϵ̄(r, ω)
]︄
Ḡ(r, r′, ω) = δ(r − r′)I, (2.34)[︄

∇ × ∇ × −ω2

c2 ϵ̄(r, ω)
]︄ [︁

G(r, r′, ω) − Ḡ(r, r′, ω)
]︁

= ω2

c2 χ(r, ω)G(r, r′, ω), (2.35)

such that the additional material behaves as a source term. Thus, we find

G(r, r′, ω) = Ḡ(r, r′, ω) +
∫︂
d3s Ḡ(r, s, ω)ω

2

c2 χ(s, ω)G(s, r′, ω), (2.36)

a volume integral integration that needs to be solved self-consistently. A simple approach is
to approximate the integral by a sum over small elements (see Fig. 2.2), which then act as
point-like, artificial dipoles, hence the name discrete dipole approximation. The discretization
introduces local field corrections depending on the shape and size of the unit cells, see App. A.6.
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For each source point r′, one needs to compute the tensors G(rj , r′) once. Then, one obtains
the Green’s tensor at any probe point r via

G(r, r′, ω) = Ḡ(r, r′, ω) + ω2

c2

N∑︂
j

Ḡ(r, rj , ω)Vj χ(rj , ω)G(rj , r′, ω). (2.37)

The discretized version of Eq. (2.36) is given in App. A.6 and can be solved in several ways.
One is to reinsert the equation in itself, leading to the Born series expansion [52]. However,
the Born series is often oscillatory rather than convergent. In some cases, convergence can be
reached by admixing the zeroth-order term in each step with an appropriate weight [88, 89].
But in general, one needs to solve the linear equation system exactly [87]. A straightforward
attempt has storage requirements of O(n2) and a computation cost of O(n3) for n discrete
dipoles. This is usually too high. Therefore, one utilizes a regular grid of equally sized unit cells.
The resulting matrices involve many repetitions giving rise to a Block Toeplitz structure [90, 91].
These special matrices feature storage requirements of O(nx) and vector-matrix products which
can be conducted with O(nx log nx) effort instead of O(n2

x), see App. A.6.
The discrete dipole approximation has several advantages: It is relatively easy to implement

and can be directly used to compute Green’s tensors at imaginary frequencies, which we require
to compute dispersion interactions. Furthermore, we only need to discretize those parts of
the system that are not covered by our analytical solutions. On the other hand, there are
structures like the waveguide in Fig. 2.2 with a translational symmetry that the DDA cannot
exploit. Instead, we truncate to a finite computational domain introducing an abrupt cutoff.
Furthermore, no adaptive grid can be used without losing the advantages of the Block Toeplitz
structure. This can render the DDA inaccurate or inoperable when the entire structure needs
to be discretized at a fine resolution.

As an alternative to the DDA, one could consider finite difference methods in frequency
[92] or time [93] domain. However, they also discretize known backgrounds such as surfaces
and become cumbersome to implement on non-uniform grids. Green’s tensors have also been
computed with the boundary element method (BEM) [94], which uses flexible meshes, making it
accurate and efficient at the same time [95]. However, the BEM method is tedious to implement
and the existing scuff-em code [96] does not provide Green’s tensors where probe and source
points are non-identical. Recently, there have been promising approaches [97, 98] based on
the expansion of the Green’s tensors into modes that can be computed by the finite element
method (FEM) [94]. They naturally provide Green’s tensors between two arbitrary points and
offer decent evaluation times with precomputed modes. In the following, we only apply Green’s
tensors of planar structures that can be derived analytically and are very fast to evaluate on a
computer.
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2.2. Field quantization in media

We now quantize the EM field in presence of macroscopic bodies utilizing Langevin noise
[46, 48, 51]. In this thesis, the bodies will be surfaces or cavities but the approach applies
to any geometry. The following quantization procedure does not concern the atomic vapor.
Its interaction with the quantized field will be considered in the next section. The effect of
quantum fluctuations can be incorporated into the classical Maxwell equations by introducing
a noise charge ρN (r, ω) and a noise current density jN (r, ω). They derive from the Langevin
noise polarization field PN (r, ω) as

ρN (r, ω) = −∇ · PN (r, ω), jN (r, ω) = −iωPN (r, ω), (2.38)

and fulfill the continuity equation

∇ · jN (r, ω) = iωρN (r, ω). (2.39)

According to Eq. (2.17), the electric field in presence of this noise is

E(r, ω) = iµ0ω

∫︂
d3r′ G(r, r′, ω) jN (r′, ω). (2.40)

We introduce ladder operators that create or annihilate polariton-like excitation quanta in
the coupled medium-field system

f̂ †(r, ω) |n(r, ω)⟩ =
√
n+ 1 |n + 1(r, ω)⟩ , (2.41)

f̂(r, ω) |n(r, ω)⟩ =
√
n |n − 1(r, ω)⟩ , (2.42)

where |n(r, ω)⟩ is a state with n excitation quanta and |0⟩ is the ground state with f̂(r, ω) |0⟩ = 0.
The ladder operators follow the bosonic commutation relations[︂

f̂(r, ω), f̂ †(r′, ω′)
]︂

= δ(r − r′)δ(ω − ω′)Î, (2.43)[︂
f̂(r, ω), f̂(r′, ω′)

]︂
=
[︂
f̂ †(r, ω), f̂ †(r′, ω′)

]︂
= 0̂. (2.44)

All that is missing to achieve quantization is the relationship between the ladder operators and
the Langevin noise field [46, 48, 51],

P̂N (r, ω) = i

√︄
ℏϵ0
π

Im ϵ(r, ω) f̂(r, ω). (2.45)

Combining Eqs. (2.38), (2.40), and (2.45), the spectral electric field operator takes the form

Ê(r, ω) = i

√︄
ℏ
πϵ0

ω2

c2

∫︂
d3r′

√︂
Im ϵ(r′, ω)G(r, r′, ω)f̂(r′, ω), (2.46)
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from which we can infer the spectral magnetic field operator by

B̂(r, ω) = (iω)−1∇ × Ê(r, ω). (2.47)

The complete field operators read

Ê(r) =
∫︂ ∞

0
dω

(︂
Ê(r, ω) + Ê†(r, ω)

)︂
, (2.48)

B̂(r) =
∫︂ ∞

0
dω

(︂
B̂(r, ω) + B̂†(r, ω)

)︂
. (2.49)

Eq. (2.46) can be seen as a generalized mode expansion in terms of the classical Green’s
tensor. The quantum mechanics is solely handled by simple bosonic ladder operators f̂(r, ω)
and f̂ †(r, ω). The consistency of the quantization scheme is reflected in the preservation of the
equal-time field commutation relations [46, 48, 51] 5

[︂
Ê(r), B̂(r′)

]︂
= iℏ
ϵ0
∇r × Î δ(r − r′), (2.50)[︂

Ê(r), Ê(r′)
]︂

=
[︂
B̂(r), B̂(r′)

]︂
= 0̂. (2.51)

The transition from Eq. (2.46) to the free-space case might not be obvious. In App. B.1, we
insert the bulk Green’s tensor to obtain an explicit form of the quantized field in a homogeneous
medium. In the limit ϵ(ω) → 1, we retrieve the free-space plane-wave expansion as [46, 49]

Êfree(z, ω) = i

√︄
ℏω

4πϵ0cA
(︂
â+(ω)e

ω
c

z + â−(ω)e− ω
c

z
)︂
, (2.52)

â±(ω) = lim
n(ω)→1

i

√︃
2nI(ω)ω

c
e∓nI(ω) ω

c
z
∫︂ ±z

−∞
dz′ I⊥f̂(±z′, ω)e−i ω

c
n(ω)z′

, (2.53)

with
[︂
â±(ω), â†

±(ω′)
]︂

= Î⊥δ(ω − ω′).

2.3. Equation of motion

Based on the field quantization, we can formulate a Hamiltonian for the atom-light interactions.
It consists of an atom ĤA, a field ĤF , and an atom-field coupling term ĤAF [51, 52],

Ĥ = ĤA + ĤF + ĤAF (2.54)

Ĥ =
∑︂
A

p̂2
A

2mA
+
∑︂
A

∑︂
n

EA,nσ̂A,nn +
∫︂
d3r̂

∫︂ ∞

0
dω f̂ †(r̂, ω) · f̂(r̂, ω)ℏω + ĤAF , (2.55)

with atomic population or flip operators σ̂A,mn = |mA⟩ ⟨nA| and energies EA,n of atomic state
|nA⟩. Atom-atom interactions do not directly appear in the Hamiltonian but result from the

5In index notation [Êm(r), B̂n(r′)] = iℏ
ϵ0

(∇r × Î)mnδ(r − r′) = iℏ
ϵ0

ϵklm ∂r
k δln δ(r − r′)1̂ = − iℏ

ϵ0
ϵmnk ∂r

k δ(r − r′)1̂.
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interactions of different atoms with the same field. In our study, we only include the energy
levels of the valence electrons of the alkali atoms. That means that the core electrons of the
atoms are considered to be inert to interactions with the EM field, which is certainly justified
at the optical frequencies of an external laser field. However, the quantum fluctuations of the
EM field involve frequencies that can induce (virtual) transitions of the inner electrons. We
will discuss the consequences of this fact and the impact of the valence electron approximation
in Section 2.3.4.

We describe the atom-field interactions in a multipolar coupling scheme [48, 99, 100].
Because the relevant wavelengths of the EM field are usually larger than the extend of the atom
(on the order of 1Å), we can focus on the leading-order electric dipole term. The next order
corrections, namely magnetic dipole, electric quadrupole, and diamagnetic interactions, are
suppressed by 10−3 in the far field6. In electric dipole approximation, the atom-field interaction
Hamiltonian takes the form [51, 52]

ĤAF = −
∑︂
A

d̂A · Ê(r̂A) +
∑︂
A

̇̂rA ·
[︂
d̂A × B̂(r̂A)

]︂
, d̂A =

∑︂
mn

σ̂A,mndA,mn. (2.56)

The calculation of the transition dipole matrix elements, dA,mn = ⟨mA| d̂A |nA⟩, is shown in
App. C. The second summand in Eq. (2.56), called Röntgen term7, describes that a moving
electric dipole appears to carry a magnetic dipole moment that interacts with the magnetic
field. Compared to the electric dipole term, it scales as v/c [102] and can be neglected for
thermal atoms with velocities v ∼ 100 m/s.

Furthermore, we make use of the Born–Oppenheimer approximation [106] and separate the
fast electron and atom-field dynamics from the slow center-of-mass motions of the atoms. As
a result, the center-of-mass operators become parameters, which we replace by their classical
counterparts, r̂A ↦→ rA, ̇̂rA ↦→ ṙA. This also allows us to rescale our Hamiltonian by the kinetic
energy term that now is a classical number. Summarizing, the Hamiltonian used in this thesis is

Ĥ =
∑︂
A,n

EA,nσ̂A,nn⏞ ⏟⏟ ⏞
≡ĤA

+
∫︂
d3r

∫︂ ∞

0
dω f̂ †(r, ω) · f̂(r, ω)ℏω⏞ ⏟⏟ ⏞

≡ĤF

−
∑︂
A

d̂A ·
∫︂ ∞

0
dω [Ê(rA, ω) + Ê†(rA, ω)]⏞ ⏟⏟ ⏞

≡ĤAF

.

(2.57)

Field and atomic operators with the same time argument always commute as atoms and field
are initially decoupled8. Therefore, the terms of the atom-field Hamiltonian can be arbitrarily

6According to Refs. [101] and [102], magnetic dipole, electric quadrupole, and diamagnetic interactions are
suppressed by a factor of (Zeff α0)2 compared to the electric dipole term. Inserting the fine structure constant,
α0 ≈ 1/137, and the effective nuclear charge felt by the valence electron, e.g. Zeff ≈ 5 for rubidium [103, 104],
we obtain (5/137)2 ∼ 10−3.

7Röntgen was the first to observe a force exerted by a magnetic field that originated from a dielectric moving
through an electric field [105].

8The decoupled operators initially obey [Â(0), B̂(0)] = 0̂. Thus [Â(t), B̂(t)] = Û†(t)[Â(0), B̂(0)]Û(t) = 0̂.
Unequal time commutators are usually unknown because they depend on the system’s interactions.
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rearranged. Often, they are brought into normal order9, but all ordering schemes eventually
lead to the same results [107, 108]. Bear in mind that parts of atom and field operators do not
necessarily commute, see App. B.2.

2.3.1. The quantum optical master equation

Following Refs. [76, 109], we introduce a theoretical framework that allows us to make the
atom-atom interactions explicit by tracing over the field degrees of freedom. This will result in
a quantum master equation. We start with a brief recap of the interaction picture by defining
the uncoupled system Hamiltonian, Ĥ0 = ĤA + ĤF , and the unitary time evolution operators

Û0(t) = exp
(︃

− i

ℏ
Ĥ0t

)︃
, Û(t) = exp

(︃
− i

ℏ
Ĥt

)︃
, ÛI(t) = Û †

0(t)Û(t). (2.58)

By computing the expectation value of Schrödinger picture operators ÔS(t), we can infer the
interaction picture representation of operators ÔI(t) and the density matrix ρ̂I(t),

⟨Ô(t)⟩ = Tr
(︂
ÔS(t)Û(t)ρ̂(0)Û †(t)

)︂
= Tr

(︂
Û †

0(t)ÔS(t)Û0(t)⏞ ⏟⏟ ⏞
=ÔI(t)

ÛI(t)ρ̂(0)Û †
I (t)⏞ ⏟⏟ ⏞

=ρ̂I(t)

)︂
. (2.59)

The system Hamiltonian commutes with itself and remains unchanged in the interaction picture,
ĤI

0 = Ĥ0, while the atom-field interaction Hamiltonian transforms according to

ĤI
AF (t) = Û †

0(t)ĤS
AF Û0(t). (2.60)

With the above definition and some algebra, we quickly arrive at the equations of motion of
the interaction picture operators

d

dt
ÛI(t) = − i

ℏ
ĤI

AF (t)ÛI(t), d

dt
ρ̂I(t) = − i

ℏ

[︂
ĤI

AF (t), ρ̂I(t)
]︂
. (2.61)

The atomic part of the density matrix can be extracted by conducting the partial trace over
the field degrees of freedom, ρ̂A(t) = TrF ρ̂. In our vapor cells, we are dealing with two sources
of light: an external laser field (a coherent state) that excites the atoms and the thermal field
(or the vacuum if T = 0 K) of the environment. We assume these two fields to be completely
uncorrelated as they are generally independent of one another [110–112]. As in classical physics,
the response of the system becomes a sum of the coherent and thermal contribution, identified
by an index C or T

d

dt
ρ̂I

A(t) = d

dt
TrF ρ̂

I(t) = − i

ℏ
TrC

[︂
ĤI

AF (t), ρ̂I(t)
]︂

− i

ℏ
TrT

[︂
ĤI

AF (t), ρ̂I(t)
]︂
. (2.62)

9Normal order puts f̂ (r, ω) to the right and f̂ †(r, ω) to the left, i.e. −
∑︁

A

∫︁∞
0 dω [d̂A · Ê(rA, ω)+ Ê†(rA, ω) · d̂A].
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In order to understand the role of the thermal field, we compute its electric field expectation
values in App. B.3 (see also Refs. [52, 113]) and find

⟨Ê†(r, ω)⟩T = ⟨Ê(r, ω)⟩T = 0, (2.63)

⟨Ê†(r, ω) ⊗ Ê†(r′, ω′)⟩T = ⟨Ê(r, ω) ⊗ Ê(r′, ω′)⟩T = 0, (2.64)

⟨Ê†(r, ω) ⊗ Ê(r′, ω′)⟩T = ℏµ0
π
n(ω)ω2ImG(r, r′, ω)δ(ω − ω′), (2.65)

⟨Ê(r, ω) ⊗ Ê†(r′, ω′)⟩T = ℏµ0
π

[1 + n(ω)]ω2ImG(r, r′, ω)δ(ω − ω′), (2.66)

n(ω) = 1
eℏω/(kBT ) − 1

, (2.67)

where n(ω) is the Bose–Einstein distribution. The electric field vanishes on average, but the
square of the electric field, i.e. the intensity, does not. In Sec. 2.3.3, it will become clear that
these contributions lead to stimulated emission and absorption triggered by thermal photons
(the terms ∝ n(ω)) and the vacuum (the term with prefactor 1), respectively. The latter case is
better known as spontaneous emission. To utilize Eqs. (2.65) and (2.66), we need expressions
that contain the field operator at least to second order. Thus, we insert the formal solution of
Eq. (2.61), ρ̂I(t) = ρ̂(0) − i

ℏ
∫︁ t

0 dt
′
[︂
ĤI

AF (t′), ρ̂I(t′)
]︂
, into Eq. (2.62) to obtain10

d

dt
ρ̂I

A(t) = − i

ℏ
TrC

[︂
ĤI

AF (t), ρ̂I(t)
]︂

− 1
ℏ2 TrT

∫︂ t

0
dt′
[︂
ĤI

AF (t),
[︂
ĤI

AF (t′), ρ̂I(t′)
]︂]︂
. (2.68)

Initially, atoms and field are uncoupled such that the density matrix is the direct product
of the atom and field contribution ρ̂(0) = ρ̂A(0) ⊗ ρ̂F . When the coupling between field and
atoms is weak, the field is approximately unchanged and the density matrix remains a direct
product ρ̂I(t) ≈ ρ̂I

A(t) ⊗ ρ̂F where ρ̂F is the stationary state of the field. This factorization
is known as the Born approximation [76]. Furthermore, when the typical timescale, over
which the atomic subsystem ρ̂I

A(t) varies, is much larger than the typical decay time of the
field correlations, we can replace ρ̂I

A(t′) by ρ̂I
A(t). Additionally, we can transform the integral∫︁ t

0 dt
′f(t′) =

∫︁ t
0 dsf(t − s). Carrying on our assumption that the period from 0 to t can be

considered infinite with regard to the field correlations, we set
∫︁ t

0 dsf(t− s) ≈
∫︁∞

0 dsf(t− s).
As a result, the evolution of the density matrix only depends on its current state at time t
and bears no memory of its previous values. This is the Markov approximation [76]. The
combination of Born and Markov approximation yields

d

dt
ρ̂I

A(t) = − i

ℏ
TrC

[︂
ĤI

AF (t), ρ̂I
A(t) ⊗ ρ̂F

]︂
⏞ ⏟⏟ ⏞

=TC

− 1
ℏ2 TrT

∫︂ ∞

0
ds
[︂
ĤI

AF (t),
[︂
ĤI

AF (t− s), ρ̂I
A(t) ⊗ ρ̂F

]︂]︂
⏞ ⏟⏟ ⏞

=TT

.

(2.69)

10Since the average value of electric field is zero, Eq. (2.63), TrT

[︁
ĤI

AF (t), ρ̂A(0) ⊗ ρ̂F

]︁
= 0 vanishes.
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In a weakly coupled system, the atomic evolution is usually governed by decay rates and level
flopping frequencies in the Megahertz to Gigahertz range or even lower. The corresponding
timescales (nanoseconds and longer) are six orders of magnitude larger than those of optical fields
(femtoseconds) and their correlations. Thus, the Born–Markov approximation is excellently
suited to study atom-light interactions under our assumptions. Sometimes Eq. (2.69) is referred
to as quantum optical master equation [76].

2.3.2. The Heisenberg equation of motion

Next, we determine the time evolution of the atomic observables that results from the master
equation (2.69). First, we must transform the atom-field Hamiltonian into the interaction
picture. Since atom and field operators commute, we have

ĤI
AF (t) = −

∑︂
B

eiĤAt/ℏd̂Be
−iĤAt/ℏ · eiĤF t/ℏ

∫︂ ∞

0
dω
[︂
Ê(rB, ω) + Ê†(rB, ω)

]︂
e−iĤF t/ℏ. (2.70)

The ladder operators are eigenoperators to their respective Hamiltonian [76], i.e.

[ĤA, σ̂B,mn] = ℏωB,mnσ̂B,mn, ωB,nm = [EB,n − EB,m]/ℏ, (2.71)

[ĤF , f̂(r, ω)] = −ℏωf̂(r, ω), [ĤF , f̂ †(r, ω)] = ℏωf̂ †(r, ω). (2.72)

With some helpful lemmas from operator algebra [114]

eX̂ Ŷ e−X̂ =
∞∑︂

m=0

1
m! [X̂, Ŷ ]m, with [X̂, Ŷ ]m = [X̂, [X̂, Ŷ ]m−1] and [X̂, Ŷ ]0 = Ŷ , (2.73)

eX̂ Ŷ e−X̂ = esŶ , if [X̂, Ŷ ] = sŶ , (2.74)

we conclude that

ĤI
AF (t) = −

∑︂
B

∑︂
mn

dB,mnσ̂B,mne
itωB,mn

⏞ ⏟⏟ ⏞
=d̂I

B(t)

·
∫︂ ∞

0
dω
(︂
Ê(rB, ω)e−iωt + Ê†(rB, ω)eiωt

)︂
⏞ ⏟⏟ ⏞

=ÊI(rB ,t)

. (2.75)

We can now compute the contribution of the coherent laser field TC . With the right-hand
eigenstate property of coherent states [48, 52], Ê(r, ω) |Einc(r, ω)⟩ = Einc(r, ω) |Einc(r, ω)⟩,

TC = i

ℏ

[︄∑︂
B

d̂I
B(t) ·

∫︂ ∞

0
dωTrC

{︂
Ê(rB, ω)e−iωtρ̂F + Ê†(rB, ω)eiωtρ̂F

}︂
, ρ̂I

A(t)
]︄

(2.76)

= i

ℏ

[︄∑︂
B

d̂I
B(t) ·

∫︂ ∞

0
dωEinc(rB, ω)e−iωt + E∗

inc(rB, ω)eiωt, ρ̂I
A(t)

]︄
(2.77)

= i

ℏ

[︄∑︂
B

d̂I
B(t) · Einc(rB, t), ρ̂I

A(t)
]︄
. (2.78)
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In the last line, we have conducted the inverse Fourier transformation [52]. The thermal
contribution TT becomes

TT =
∫︂ ∞

0
ds
∑︂
C,D

(︂
− d̂I

C(t) · ΞCD(t, s)d̂I
D(t− s)ρI

A(t) + d̂I
C(t)ρI

A(t) · ΨT
DC(t, s)d̂I

D(t− s)

+ d̂I
D(t− s) · ΞT

CD(t, s)ρI
A(t)d̂I

C(t) − ρI
A(t)d̂I

D(t− s) · ΨDC(t, s)d̂I
C(t)

)︂
, (2.79)

with coefficients ΞCD(t, s) and ΨCD(t, s) evaluated using Eqs. (2.75), (2.64), (2.65), (2.66),

ΞCD(t, s) = 1
ℏ2 TrF

{︂
ÊI(rC , t) ⊗ EI(rD, t− s)ρI

F

}︂
(2.80)

= µ0
πℏ

∫︂ ∞

0
dω

{︂
[1 + n(ω)] e−isω + n(ω)eisω

}︂
ω2ImG(rC(t), rD(t− s), ω) (2.81)

≈ µ0
πℏ

∫︂ ∞

0
dω

{︂
[1 + n(ω)] e−isω + n(ω)eisω

}︂
ω2ImG(rC(t), rD(t), ω), (2.82)

ΨCD(t, s) = 1
ℏ2 TrF

{︂
ÊI(rC , t− s) ⊗ EI(rD, t)ρI

F

}︂
= Ξ∗

CD(t, s). (2.83)

The approximation of the time argument within the Green’s tensor is justified for slow, thermal
atoms in the weak coupling regime and detailed in App. B.4. Next, we can conduct the time
integral over s using the identity11

∫︂ ∞

0
ds e−iωs ≃ lim

ϵ→0+

∫︂ ∞

0
ds e−iωs−ϵs = πδ(ω) − iP 1

ω
, (2.84)

and the complete equation of motion becomes

d

dt
ρI

A(t) = i

ℏ
∑︂
C

∑︂
m,n

eitωC,mndC,mn · Einc(rC , t)
[︂
σ̂C,mn, ρ̂

I
A(t)

]︂
+
∑︂
C,D

∑︂
m,n

∑︂
i,j

eit(ωC,mn+ωD,ij)

×
{︄

dC,mn · HD,ji(rC , rD)dD,ij

(︂
σ̂C,mnσ̂D,ijρ

I
A(t) − σ̂D,ijρ

I
A(t)σ̂C,mn

)︂

+ dC,mn · H∗
D,ij(rC , rD)dD,ij

(︂
−σ̂C,mnρ

I
A(t)σ̂D,ij + ρI

A(t)σ̂D,ij σ̂C,mn

)︂}︄
, (2.85)

where we introduced the abbreviations

HA,nm(r, r′) = −1
2EA,nm(r, r′) − iFA,nm(r, r′), (2.86)

EA,nm(r, r′) = AA,nm(r, r′) + CA,nm(r, r′) + CA,mn(r, r′), (2.87)

FA,nm(r, r′) = DA,nm(r, r′) + BA,nm(r, r′) − DA,mn(r, r′), (2.88)

11We utilize the Sokhotski–Plemelj theorem, limϵ→0+ (x ± iϵ)−1 = P
x

∓ iπδ(x), see, e.g., Chapter 3.1 of Ref. [115].
Another approach to the identity is presented in Chapter 4.9 of Ref. [107].
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AA,nm(r, r′) = 2µ0
ℏ

Θ(ωA,nm)ω2
A,nmImG(r, r′, ωA,nm), (2.89)

BA,nm(r, r′) = −µ0
ℏπ

P
∫︂ ∞

0
dω

ω2ImG(r, r′, ω)
ω − ωA,nm

, (2.90)

CA,nm(r, r′) = 2µ0
ℏ

Θ(ωA,nm)n(ωA,nm)ω2
A,nmImG(r, r′, ωA,nm), (2.91)

DA,nm(r, r′) = −µ0
ℏπ

P
∫︂ ∞

0
dω

n(ω)ω2ImG(r, r′, ω)
ω − ωA,nm

. (2.92)

The coefficients BA,nm(r, r′) and FA,nm(r, r′) can be transformed using contour integration
techniques, demonstrated in App. B.5.

As a next step, we transform the master equation (2.85) into the Schrödinger picture.
Recalling that ρI

A(t) = eiĤAt/ℏρS
A(t)e−iĤAt/ℏ and after some of algebra (see App. B.6), we find

d

dt
ρS

A(t) = − i

ℏ

[︄
ĤA −

∑︂
C

∑︂
m,n

dC,mn · Einc(rC , t)σ̂C,mn, ρ̂
S
A(t)

]︄
+
∑︂
C,D

∑︂
m,n

∑︂
i,j

×
{︄

dC,mn · HD,ji(rC , rD)dD,ij

(︂
σ̂C,mnσ̂D,ijρ

S
A(t) − σ̂D,ijρ

S
A(t)σ̂C,mn

)︂

+ dC,mn · H∗
D,ij(rC , rD)dD,ij

(︂
−σ̂C,mnρ

S
A(t)σ̂D,ij + ρS

A(t)σ̂D,ij σ̂C,mn

)︂}︄
. (2.93)

Finally, we can infer the corresponding evolution of an operator Ô(t) in the Heisenberg
picture. The expectation values are independent of the quantum mechanical picture, i.e.
Tr
{︂
Ô(0)ρ̂(t)

}︂
= Tr

{︂
Ô(t)ρ̂(0)

}︂
and Tr

{︂
Ô(0)∂tρ̂(t)

}︂
= Tr

{︂
∂tÔ(t)ρ̂(0)

}︂
. Thus, we obtain (see

App. B.6)

d

dt
Ô(t) = i

ℏ

[︄
ĤA(t) −

∑︂
C

∑︂
m,n

dC,mn · Einc(rC , t)σ̂C,mn(t), Ô(t)
]︄

+
∑︂
C,D

∑︂
m,n

∑︂
i,j

dC,mn ·
{︄

HD,ji(rC , rD)
(︂
Ô(t)σ̂C,mn(t)σ̂D,ij(t) − σ̂C,mn(t)Ô(t)σ̂D,ij(t)

)︂

+ H∗
D,ij(rC , rD)

(︂
−σ̂D,ij(t)Ô(t)σ̂C,mn(t) + σ̂D,ij(t)σ̂C,mn(t)Ô(t)

)︂}︄
dD,ij . (2.94)

2.3.3. The coupled dipole model

With the Heisenberg equation of motion, we can now study the atomic dipole moments
produced by the atom-light interactions. They are the key to infer the spectroscopic profiles
that are the subject of the next chapters. We take our laser field to be monochromatic,
i.e. Einc(r, t) = Einc(r)e−iωLt. Furthermore, it shall be near-resonant to an atomic transition
from the ground state (S1/2) to one of the first excited states (P1/2 or P3/2), i.e. the D1 or
D2 line of our interacting alkali atoms. The atomic energy levels possess magnetic substates
that are degenerate in free space, see Fig. 2.3. We label the ground state energy level g, the
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52S1/2

52P3/2

F=3

F=4

-4 -3 -2 -1 0 +1 +2 +3 +4mF

 
λ≈780nm

85Rb D2 line

Figure 2.3: A ground state and an excited state of 85Rb with magnetic mF sublevels. The red arrow
shows one example coherence that can be excited by a dipole-allowed transition.

targeted excited state energy level e, and the selected substates µ and ν, respectively. To
compute the dipole moment of the overall transition, we need to sum over the substate pairs,
⟨d̂A,ge⟩ = ∑︁

µ,ν ⟨σ̂
A

ge
µν

⟩ d
A

ge
µν

. Hence, Eq. (2.94) has to be solved for the expectation value of the
ground and excited state coherence ⟨σ̂

A
ge
µν

(t)⟩. The corresponding equation of motion can be
greatly simplified through four approximations that get us closer to classical physics.

First, following Ref. [116], we assume the operators of two different atoms A and B to be
uncorrelated such that we can factorize the expectation values ⟨σ̂

A kl
κµ
σ̂

Bij
δϵ

⟩ ≈ ⟨σ̂
A kl

κµ
⟩ ⟨σ̂

Bij
δϵ

⟩.
Second, we perform the rotating wave approximation, which is often undertaken in con-

junction with the previous Born–Markov approximation [76]. The atomic operators feature
a free time evolution ⟨σ̂A,mn⟩ ∝ eitωA,mn . Multiplying our equation with eitωL , we keep the
slowly evolving terms ∝ eit(ωL−ωA,eg) and discard all other fast-rotating terms ∝ eit(ωL−ωA,mn).
The latter presumes that the laser field is far detuned from all transitions other than g → e

such that (ωL − ωA,mn) ≫ (ωL − ωA,eg). Finally, we transform into the rotating frame of the
laser field, and to introduce the slowly varying amplitudes ⟨ˆ̃σ

A
ge
µν

⟩ = eiωLt ⟨σ̂
A

ge
µν

⟩ accordingly.
Conducting the algebra of the decorrelation assumption and the rotating wave approximation,
we find (see App. B.7)

d

dt
⟨ˆ̃σ

A
ge
µν

(t)⟩ = i(ωA,ge + ωL) ⟨ˆ̃σ
A

ge
µν

(t)⟩ + i

ℏ
∑︂

κ

(︃
⟨ˆ̃σ

A
gg
µκ

(t)⟩ dAeg
νκ

− ⟨ˆ̃σAee
κν

(t)⟩ d
A

eg
κµ

)︃
· Einc(rA)

+
∑︂

B ̸=A

∑︂
δϵκ

{︄
dAeg

νκ
· i
ℏ

G(rA, rB, ωB,eg)d
B

ge
δϵ

⟨ˆ̃σ
A

gg
µκ

(t)⟩ ⟨ˆ̃σ
B

ge
δϵ

(t)⟩

− d
A

eg
κµ

· i
ℏ

G(rA, rB, ωB,eg)d
B

ge
δϵ

⟨ˆ̃σAee
κν

(t)⟩ ⟨ˆ̃σ
B

ge
δϵ

(t)⟩
}︄

+ i
∑︂

ϵ

(︃
−ωCP

A e
νϵ

+ i

2ΓA e
νϵ

)︃
⟨ˆ̃σ

A
ge
µϵ

(t)⟩ + i
∑︂

ϵ

(︃
ωCP

A
g
µϵ

+ i

2Γ
A

g
µϵ

)︃
⟨ˆ̃σBge

ϵν
(t)⟩ . (2.95)

For brevity, we have introduced

G(r, r′, ω) = µ0ω
2G(r, r′, ω). (2.96)

After conducting the second approximation, we can see the meaning of the first approximation
which has decorrelated the population of atom A from the coherence of atom B. For a near-
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resonant laser field our atoms have become quasi two-level systems, where levels other than g

and e only enter via the coefficients (see App. B.7 and App. B.5)

ωCP
A n

νδ
= − 1

ℏ
∑︂

k
κ

d
Ank

νκ
·
{︄

{Θ(ωA,nk)[n(ωA,nk) + 1] − Θ(ωA,kn)n(ωA,kn)} Re Gcav(rA, rA, ωA,nk)

− 2kBT

ℏ

∞∑︂
j=0

′ωA,nkGcav(rA, rA, iξj)
ξ2

j + (ωA,nk)2

}︄
d

Akn
κδ
, (2.97)

ΓA n
νδ

= 2
ℏ
∑︂

k
κ

d
Ank

νκ
·
{︄

Θ(ωA,nk)[1 + n(ωA,nk)]Im G(rA, rA, ωA,nk)

+ Θ(ωA,kn)n(ωA,kn)Im G(rA, rA, ωA,kn)
}︄

d
Akn

κδ
. (2.98)

Here, ξj = 2πkBT
ℏ j denotes the Matsubara frequencies and ∑︁∞

j=0
′ = ∑︁∞

j=0

(︂
1 − 1

2δj0
)︂
. The

Matsubara sum originates from the poles of the Bose–Einstein distribution on the imaginary
axis. At zero temperature, it becomes an integral over the imaginary frequencies, see App. B.5.

We first consider the coefficients (2.97) and (2.98) with ν = δ. The terms describe the shift
ωCP

A n
νν

and the broadening ΓA n
νν

of the n, ν state. Such a shift was first computed by Casimir
and Polder [53] and is referred to as Casimir–Polder (CP) shift [51, 52]. As a limiting case the
broadening contains the free-space rate at zero temperature (2.26). It also accounts for the
modifications of the local density of states due to the presence of the cavity. This can lead to
an enhanced decay rate, an effect first predicted by Purcell [117, 118].

Let us set aside the substates for a moment and focus on the energy levels n and k to
interpret Eq. (2.97). The expression dA,nk · Re Gcav(rA, rA, ωA,nk)dA,kn read from right to
left says that atom A transitions from state n to state k realizing a photon with frequency
ωA,nk that travels from the atom to the cavity12 and back to the atom where it is reabsorbed
such that the atom transitions back from k to n as sketched in Fig. 2.4 a. The transitions
are either triggered by the stimulated emission and absorption of a thermal photon (n(ωA,nk)
and n(ωA,kn) terms) or by the stimulated emission due to vacuum fluctuations (1 term). The
expression −2

ℏ
∑︁

k
ωA,nkdA,nk⊗dA,kn

ξ2
j +(ωA,nk)2 can be identified as the polarizability of the atom A for a

virtual photon of frequency iξj [51, 52]. Hence, the second line of Eq. (2.97) says that the atom
is spontaneously polarized, releasing an off-resonant virtual photon that travels from the atom
to the body and back (Gcav(rA, rA, iξj) term) and restores the atom’s original state.

Mathematically the shift (2.97) should contain the full Green’s tensor like the broaden-
ing (2.98). But we have replaced it with the Green’s tensor of the cavity environment following
[51, 52]. The missing free space part of the Green’s tensor formally gives an infinite result.
But it can be renormalized and then gives the Lamb shift [51], here complemented by an AC
Stark shift caused by the finite temperature [76]. The Casimir–Polder shift is the Lamb shift in

12Take Fig. 2.1 b and put source and probe point on the same spot to visualize Gcav(rA, rA, ωA,nk).
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media. The free space Lamb shift is naturally independent of the macroscopic environment
and the position of the atoms. Starting from Eq. (2.95), we take it to be incorporated into the
atomic transition frequency ωA,ge. A more elaborate discussion of the free space Lamb shift
and the renormalization process can be found in Refs. [51, 76, 107] and the references therein.

52S1/2

52P3/2

F=3

F=4

-4 -3 -2 -1 0 +1 +2 +3 +4mF(b)(a)

ε(ω)

Figure 2.4: (a) Schematic illustration of the Casimir–Polder interaction: a spontaneously generated
atomic transition releases a photon that is reflected upon the macroscopic environment and reabsorbed
by the atom. (b) The 85Rb ground state and an excited state from Fig. 2.3 in presence of a macroscopic
body. The atom-wall interaction lifts the degeneracy of the mF substates. Furthermore, it may cause a
substate interaction (light red dashed arrow) that couples a coherence (dark red solid line) other others
with the same initial or final state (light red solid line).

Let us now consider the coefficients (2.97) and (2.98) with ν ≠ δ. When a photon is
reflected upon a macroscopic body, it may change its spin. When a photon with altered spin is
reabsorbed as part of the atom-wall interaction, the atom ends up in a different substate than
the one in which it started. In Eq. (2.95) this substate interaction couples coherences that start
from the same ground state or end up in the same excited state, see Fig. 2.4 b.

52S1/2

52P3/2

F=3
F=2

F=4
F=3
F=2
F=1

-4 -3 -2 -1 0 +1 +2 +3 +4 52P3/2 F=4, mFx=-2

52S1/2 F=3, mFx=-1
Sx=-

52S1/2 F=3, mFx=-1
Sx=+

52P3/2 F=4, mFx=0

z

x

Figure 2.5: Left: Overview of dipole allowed transitions connecting the states 52P3/2F = 4,mF x = −2
and 52P3/2F = 4,mF x = 0 (dashed, dark red lines) and 52S1/2F = 3,mF x = −1 and 52S1/2F =
3,mF x = +1 (pointed, light red lines) through intermediate states on the 52P3/2 and 52S1/2 manifolds.
Right: The transitions are accomplished by a photon that is emitted, has its spin changed upon reflection,
and is then reabsorbed.

Let us consider an example where our laser drives a 85Rb atom from the ground state
52S1/2F = 3 to the excited state 52P3/2F = 4 in front of a flat surface. We consider sublevels
with respect to a quantization axis in the x-direction, see Fig. 2.5. The one-point Green’s
tensor of our system, G(r, r, ω) = diag(G∥(r, r, ω), G∥(r, r, ω), G⊥(r, r, ω)), features different
components parallel (x and y) and perpendicular (z) to the surface. A ∆mF x = 1 transition
emits a photon whose electric field components Ey and Ez are treated differently by the surface
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such that the spin of the photon may change from Sx = −ℏ to Sx = +ℏ, see Fig. 2.5. An atom
that starts an excited me,F x = −2 state ends a me,F x = 0, the coefficient ωCP

A
e

0,−2,x
is nonzero.

This causes two coherences, which both start from a mg,F x = −1 ground state but end in the
excited substates me,F x = 0 and me,F x = −2, to interact.

To get a quantitative impression, we used Eq. (2.97) to compute13 the usual Casimir–Polder
shift ωCP

A
e

0,0,x
and the interaction term ωCP

A
e

0,−2,x
10 nm away from a perfect mirror. The interaction

term is about 6% of the shift.
This stands in stark contrast to the ground state where the substate interaction is basically

zero. As an example, we consider ωCP
A

g
−1,+1,x

. A series of transitions exist between mg,F x = −1
and mg,F x = +1 that are shown in Fig. 2.5. Their dipole moments cancel each other out exactly,∑︁

κ dAge
νκ

⊗ d
A

eg
κµ

= 0. The cancellation is not exact if one takes into account the small energy
differences between the hyperfine states as in Ref. [119]. However, the interaction term is then
still eight orders of magnitude smaller than the Casimir–Polder shift between the ground and
excited state [119]. The behavior is not specific to this example. The substate interaction term
is also negligible (at least for a planar geometry) for other ground state sublevels and when
other excited states in the n2P1/2 and n2P3/2 manifolds are included as intermediate states.

For our planar geometry, we have the rare opportunity to evade the sublevel interaction
terms altogether by choosing an atomic basis with the quantization axis in the z-direction.
The reason is that photons released through a ∆mF z = ±1 transition only have electric field
components in the x-y plane, which are treated equally by the surface. Therefore, their spin
cannot change upon reflection and we can further simplify our equation of motion. Since the
substate interaction is present in one atomic basis set and absent in the other, one might fear
that the physics changes depending on which scenario is investigated. However, in Sec. 3.1.3,
we will find that the atomic polarizability is the same for both scenarios precisely because of
the presence of the substate interaction in one case and its absence in the other.

After this excursion into the atom-wall interaction, we continue with the third approximation
that follows the decorrelation and the rotating-wave approximations. We assume the atoms to
start with and remain in an incoherent classical mixture of sublevels [116], i.e. ⟨σ̂

A
gg
µν

⟩ = δµνfA
g
µ

with occupation numbers f
A

g
µ
. In thermal equilibrium, the occupation number of an energy level,

fA,g = ∑︁
µ fA

g
µ
, is given by a Maxwell–Boltzmann distribution fA,n = e−EA,nβ/(∑︁k e

−EA,kβ).
For a rubidium atom at T = 300 K, the first two excited states 5P1/2 and 5P3/2 feature thermal
population probabilities < 10−26. Thus, for the scope of this thesis, we can assume that only
the ground state is initially populated.

As the fourth approximation, we assume that the incident field is weak enough that the
excited state population remains negligible, i.e. ⟨σ̂A,kk⟩ ≈ 0 if k ̸= g. Then our unsaturated,

13For this we must not only take into account the states shown in Fig. 2.5 but all possible intermediate states in
n2S1/2, n2D3/2 and n2D5/2 manifolds.
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coherence-free atoms follow the equation of motion

d

dt
⟨ˆ̃σ

A
ge
µν

(t)⟩ = i(ωA,ge + ωL) ⟨ˆ̃σ
A

ge
µν

(t)⟩ + i

ℏ
f

A
g
µ
d

A
eg
νµ

· Einc(rA)

+ i

ℏ
f

A
g
µ
d

A
eg
νµ

·
∑︂

B ̸=A

G(rA, rB, ωB,eg)
∑︂
δϵ

d
B

ge
δϵ

⟨ˆ̃σ
B

ge
δϵ

(t)⟩

+ i
∑︂

ϵ

(︃
−ωCP

A e
νϵ

+ i

2ΓA e
νϵ

)︃
⟨ˆ̃σ

A
ge
µϵ

(t)⟩ + i
∑︂

ϵ

(︃
ωCP

A
g
µϵ

+ i

2Γ
A

g
µϵ

)︃
⟨ˆ̃σDge

ϵν
(t)⟩ . (2.99)

The first term of Eq. (2.99) describes the free time evolution, the second the contribution of
driving laser field, the third the resonant interactions with the other atomic dipoles, and the last
two terms contain the fluctuation-induced shifts and broadenings of ground and excited states.
Remarkably, the finite temperature only impacts shifts and broadenings but does not contribute
to the resonant dipole-dipole interaction. To the best of my knowledge, this derivation is the
first to showcase this fact.

Finally, we take the quantization axis of our atoms in z-direction such that the substate
interaction terms are zero. We introduce the detuning δA between the vacuum transition
frequency and the laser field, the Casimir–Polder shift of the transition line ωCP

A
eg
νµ

, and the
natural broadening of the line γ

A
eg
νµ

,

δA ≡ ωL − ωA,eg, ωCP
A

eg
νµ

= ωCP
A e

νν
− ωCP

A
g

µµ
, γ

A
eg
νµ

=
(︃

ΓA e
νν

+ Γ
A

g
µµ

)︃
/2. (2.100)

Hence, the coupled dipole model in a planar geometry takes the compact form

d

dt
⟨ˆ̃σ

A
ge
µν

(t)⟩ = i

(︃
δA − ωCP

A
eg
νµ

(rA) + iγ
A

eg
νµ

(rA)
)︃

⟨ˆ̃σ
A

ge
µν

(t)⟩ + i

ℏ
f

A
g
µ
d

A
eg
νµ

· Einc(rA)

+ i

ℏ
f

A
g
µ
d

A
eg
νµ

·
∑︂

B ̸=A

G(rA, rB, ωB,eg)
∑︂
δϵ

d
B

ge
δϵ

⟨ˆ̃σ
B

ge
δϵ

(t)⟩ , (2.101)

In our planar geometries, the incident field generally consists of forward and backward propa-
gating planar waves components

Einc(r) = E+
ince

ikz + E−
ince

−ikz. (2.102)

Due to our assumption of an unsaturated vapor, the linear superposition principle applies. The
total atomic response ⟨ˆ̃σ

A
ge
µν

⟩ can be written as the sum of two independent responses to the
fields E+

ince
ikz and E−

ince
−ikz, which each fulfill their own coupled dipole model, respectively.

Due to the thermal motion, the vapor can change locally or due to influx from other
positions. This is captured by the hydrodynamic derivative

d

dt
⟨ˆ̃σ

A
ge
µν

⟩ = ∂

∂t
⟨ˆ̃σ

A
ge
µν

⟩ + vA · ∇ ⟨ˆ̃σ
A

ge
µν

⟩ , (2.103)
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which results from the chain rule. The term vA ·∇ ⟨ˆ̃σ
A

ge
µν

⟩ encodes two effects: First the Doppler
shift and second a nonlocal behavior because a moving atom can be excited in one place but
radiate at another. Both will be elucidated in more detail in Chapter 3. In the following, we
will study the stationary state of the vapor, where the explicit time dependence vanishes,

vA · ∇ ⟨ˆ̃σ
A

ge
µν

⟩ = i

(︃
δA − ωCP

A
eg
νµ

(rA) + iγ
A

eg
νµ

(rA)
)︃

⟨ˆ̃σ
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ge
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(t)⟩ + i

ℏ
f

A
g
µ
d

A
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· Einc(rA)
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ℏ
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A
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d
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eg
νµ

·
∑︂

B ̸=A

G(rA, rB, ωB,eg)
∑︂
δϵ

d
B

ge
δϵ

⟨ˆ̃σ
B

ge
δϵ

(t)⟩ . (2.104)

2.3.4. Limitations of the coupled dipole model

It is helpful to review the approximations that have been used to derive the coupled dipole (2.104)
to clarify their robustness and their restrictions. We also sketch how these limitations may be
overcome.

We have assumed that the incident field is so weak that the population of the excited state
is negligible. As a result, the atoms can always absorb a photon, i.e. they do not saturate. The
atomic response is linear and follows the superposition principle, which immensely facilitates
the modeling and the numerical evaluation. However, in an experiment, it might be necessary
to use stronger incident fields to get a better signal-to-noise ratio. Additionally, the field
enhancement in a cavity environment can lead to a violation of the weak-field limit. To include
saturation, one has to consider Eq. (2.95) instead of Eq. (2.101). Equations of motion for the
populations ⟨ˆ̃σAee

ϵδ
(t)⟩ and ⟨ˆ̃σ

A
gg
ϵδ

(t)⟩ need to be set up. Subsequently, the coupled equation
system of diagonal and off-diagonal density matrix elements has to be solved.

In our Hamiltonian, we have only included the dipole terms arguing that higher-order
multipoles present only small corrections in the far field. However, a random ensemble will
inevitably include atoms that are so close to each other that higher-order multipole terms do
play a role and even exceed the dipole contribution in the total interaction potential. Ironically,
at the smallest of distances where these deviations are most pronounced, they do not affect the
atomic spectra. The strong interactions shift the atomic lines so far away from their original
resonance that the external laser field can no longer couple to the atom. The atom pairs are
literally left in the dark and the dipole term alone suffices to cause that effect. Higher-order
multipoles can only affect the spectra in an intermediate distance regime. In this thesis, we
study the ground state and the few first excited states whose wave functions have a small
spatial extend. As a result, the dipole approximation still holds for relatively small distances
and no significant distance window is opened for contributions from higher-order multipoles.
However, one could also study excited states with very high principal quantum numbers, i.e.
Rydberg states, which possess much larger wave functions [8]. Then deviations from the dipole
approximation occur at a much wider range of distances and the next-order multipole terms,
i.e. electric quadrupole and magnetic dipole, should be included to provide a more reliable
description.
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Rydberg states are characterized by enormous polarizabilities, large transition dipole
moments, and small transition frequencies between adjacent states [8]. They feature strong
atom-wall interactions. The resulting line shifts may no longer be perturbatively small compared
to the atomic transition frequencies. In this case, Casimir–Polder and Purcell have to be obtained
from a self-consistent iterative treatment [102, 120] or by exact diagonalization [121]. In a dense
vapor, a self-consistent treatment must also include the other vapor atoms. For example, it is
known that the Casimir–Polder shifts and Purcell rates are modified when emitters are placed
in a continuous medium of refractive index n [122–124]. However, as we will show in Chapter
4, the atomic vapor does not behave like one would expect from continuous medium theory
because it is a granular medium. Here, a perturbative treatment of the atom-wall interaction
suffices because we consider only the first few excited states that feature weaker interactions.

Furthermore, we have assumed that our interactions take place in the weak coupling regime,
which enabled us to use the Born–Markov approximation. There are, however, cavity and
waveguide structures whose Green’s tensors feature sharp peaks at the frequencies of the guided
modes. In photonic crystal cavities, such resonances can be tailored to the user’s needs [125].
If the resonance matches one of the relevant atomic transition frequencies, a coherent exchange
of energy between atoms and field occurs. The time scales of atoms and field can no longer be
separated and the density matrix can no longer be factorized: the Born–Markov approximation
breaks down. In some simple situations, such a strong coupling can be accounted for by an
exact analytic solution of the Heisenberg equation of motion [52, 120]. In general, no analytic
solution is available. In this case, one can systematically include non-Markovian dynamics with
the time-convolutionless projection operator technique [76]. It offers a perturbative expansion
that in second order is identical to our master equation in Born–Markov approximation [76].
The simple planar dielectric cavities considered in this thesis do not possess sharp resonances
at the atomic frequencies such that the inclusion of non-Markovian terms is not necessary.

The higher-order terms of the perturbation series also contain other physical effects. The
fourth order reveals the van der Waals (vdW) interaction, the fluctuation-induced interaction
between two atoms [47, 51, 52, 126]. Van der Waals and Casimir–Polder theories transition into
one another when one replaces the macroscopic body with a dilute collection of atoms. The
vdW interaction involves the exchange of two virtual photons between the atoms and therefore
contains two Green’s tensors [47, 51, 52, 126]. In free space and at nonretarded distances
the vdW interaction decays accordingly as C6/r

6, much faster than resonant dipole-dipole
interactions proportional to 1/r3. For the ground state and the first few excited states studied
in this thesis, the C6 coefficient is relatively small such that vdW interactions are neglected
in this thesis. However, vdW interactions can become important for Rydberg atoms because
the interaction coefficient C6 ∝ (n∗)11 features an extremely strong scaling with the effective
principal quantum number n∗ [8] 14.

14The effective principal quantum number n∗ is the principal quantum number minus the quantum defect [8].
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Another approximation that requires closer examination concerns our atomic model that
only includes the transitions of the valence electron. This is a standard assumption as the
laser photons, due to their limited energy, do not excite the core electrons. However, quantum
fluctuations occur at all frequencies and therefore induce virtual transitions to the core electrons
too. The core polarizability accounts for 16% of the Casimir–Polder shift in ground-state sodium
atoms and for 50% in ground-state francium atoms [127] that possess more core electrons and
protons. The core polarizability weakly depends on the atomic state due to the Pauli exclusion
principle, which prevents transitions of the core electrons to the state occupied by the valence
electron [128, 129]. But this concerns only a small fraction of all possible transitions such that
the state dependence can usually be neglected. Our model only includes the difference of the
Casimir–Polder shifts of the lower and upper level such that the core polarizability contributions
approximately cancel. Therefore, we can only consider the transitions of the valence electron.
However, the Casimir–Polder interaction also introduces a force that has to be computed for
ground and excited state separately. Then the core electron contribution has to be taken into
account15 as experiments showed [130]. Tabulated values for the core polarizability of alkali
atoms can be found in Ref. [129]. In this thesis, we neglect the Casimir–Polder force because
the relevant Casimir–Polder potentials are much smaller than the kinetic energy of the thermal
atoms16.

For our model, we assumed that the external laser field is nearly resonant with one atomic
transition and far detuned from all others. While this assumption is robust for fine structure
states that are well separated, it can become an issue when hyperfine transitions are included,
which are usually Gigahertz or less apart from one another. If the interaction potentials of
the atoms remain smaller than these separations and the assumption of an unsaturated vapor
holds, one can simply use the linear superposition principle and add the responses of the
individual hyperfine transitions. However, when the transitions overlap due to large atom-atom
interactions, i.e. in a dense vapor, the model needs to include the couplings between the
different hyperfine ground and excited states and diagonalize the resulting system of equations.
In the following chapters, we perform numerical computations only using the fine structure of
the atoms because this already represents the realistic size of the expected effects. However, an
optimal model of a specific experiment should include the hyperfine structure and, if necessary,
consider the coupling of the hyperfine components.

Finally, it should be noted that we have neglected the possibility that the atom-atom
interactions constitute coherences between different ground states [116]. Although we start
from a classical mixture of sublevels, coherences can be built up over time. When internal-level
many-body quantum correlations are present, the effects covered by our model still occur, but

15The higher the excited state, the lower the relative contribution of the core electrons to the shift. Therefore
this is mainly relevant for the ground state and the first few excited states.

16Let us estimate that Casimir–Polder shift should be smaller than 100 GHz so that the atom can still be excited.
This corresponds to an energy of 0.4 meV, whereas the thermal energy at room temperate is around 25 meV.
The work that the Casimir–Polder effect can do cannot significantly accelerate the system.
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are augmented by others. Quantum correlations complicate the model considerably. Their
treatment is, unfortunately, beyond the scope of this thesis. More details on the topic can be
found in Ref. [116].

2.3.5. Polarizability and atom-atom interactions at zero temperature

The close correspondence of our coupled dipole model (2.104) to classical physics can be
illustrated at zero temperature17. By introducing the near-resonant atomic polarizability

αA,ge = −1
ℏ
∑︂
µ,ν

f
A

g
µ
d

A
ge
µν

⊗ d
A

eg
νµ

δA − ωCP
A

eg
νµ

(rA) + iγ
A

eg
νµ

(rA)
, (2.105)

the coupled dipole model (2.104) can be recast in the compact form

pA,ge = αA,ge

⎡⎣Einc(rA) +
∑︂

B ̸=A

G(rA, rB, ωB,eg)pB,ge

⎤⎦ , (2.106)

where pA,ge ≡
∑︁

µ,ν d
A

ge
µν

⟨ˆ̃σ
A

ge
µν

⟩ is the atomic dipole moment. According to Eq. (2.106), the
dipole moment of atom A is proportional to the electric field acting on atom A, which consists
of the contribution of the external field and the field scattered by all other atoms onto A.
The proportionality constants are the components of the polarizability tensor (2.105). Let us
consider the solution of the problem with two atoms A and B. Using the block matrix inversion
presented in App. B.8, we find the dipole moment of atom A to be

pA,ge = [I − αA,geG(rA, rB, ωB,eg)αB,geG(rB, rA, ωB,eg)]−1

× {Einc(rA) + αA,geG(rA, rB, ωA,eg)Einc(rB)} (2.107)

=
∞∑︂

n=0
{αA,geG(rA, rB, ωB,eg)αB,geG(rB, rA, ωB,eg)}n

× {Einc(rA) + αA,geG(rA, rB, ωA,eg)Einc(rB)} . (2.108)

For the second equality, we used the Neumann series18, which is the matrix analog to the
geometric series. Our result can be immediately understood as the Born series summed up to
infinite order, as illustrated and elaborated in Fig. 2.6.

Finally, a few remarks on the polarizability (2.105) should be made. Due to our assumption
of a near-resonant incident field, it contains only a single resonant denominator with detuning
δA = ωL −ωA,eg and not a second term with an anti-resonant denominator containing ωL +ωA,eg.
An exact expression for the polarizability is cumbersome to obtain. It must fulfill the reflection
principle, α(−ω) = α∗(ω), and the optical theorem that connects the imaginary part of α(ω)

17In Sec. 3.2.2, we also showcase a polarizability expression at finite temperature in a local, continuous medium.
18We assume that the infinite series converges for the chosen Green’s tensors and atomic polarizabilities.
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Figure 2.6: Illustration of the Born series in Eq. (2.108). The total field acting on atom A originally
steams from two sources: The incident field on atom A (left) and the incident field on B that is scattered
on atom A (right to the first dots). A dipole moment in A produces an additional dipole moment B
that acts back on A. The repetition of this process induces the higher-order terms abbreviated by dots.

to the scattering cross section σsc(ω)19 as [131, 132]

ω

ϵ0c
Imα(ω) = ω4

2πϵ20c4 |α(ω)|2 = σsc(ω). (2.109)

The optical theorem states energy conservation, i.e. the energy that the atom absorbs from the
incidence beam has to be scattered from it at the same rate. Off resonance, both demands can
only be met by a frequency-dependent linewidth that can be derived either in a calculation
beyond rotating wave and Markov approximations [131–133] or through a special unitary
transformation method [134]. In this thesis, we restrict ourselves to the near-resonant case,
where detuning and homogeneous broadening are much smaller than the resonance frequency
and such approaches are not necessary.

2.4. The scattered light field

Experiments usually detect the light fields that are scattered by the atomic dipole moments
[135, 136]. We now derive the relation between the two. Since our interaction picture master
equation has been formulated only for atomic operators, we now take a complementary path
and consider Heisenberg equations of motion. In the Heisenberg picture, the photonic ladder
operator obeys the equation of motion

∂tf̂(r, ω, t) = 1
iℏ

[̂f(r, ω, t), Ĥ(t)] (2.110)

= −iωf̂(r, ω, t) +
∑︂
A

√︄
Im ϵ(r, ω)
πϵ0ℏ

ω2

c2 G
+(rA, r, ω)d̂A(t), (2.111)

where G+ = G∗T denotes the conjugate transpose. The solution takes the form20

f̂(r, ω, t) = e−iωtf̂(r, ω, 0) +
∑︂
A

√︄
Im ϵ(r, ω)
πϵ0ℏ

ω2

c2

∫︂ t

0
dt′ e−iω(t−t′)G+(rA(t′), r, ω)d̂A(t′). (2.112)

19There is a very well-known limiting case for the scattering cross section when the light frequency is much
smaller than the atomic resonance frequency such that the polarizability is constant. The given equation then
shows σsc(ω) ∝ ω4, i.e. the Rayleigh scattering’s 1/λ4 dependence that explains the blue color of the sky.

20The initial value problem ȧ = Ωa + f(t) has the unique solution a(t) = a(0)eΩt +
∫︁ t

0 dt′eΩ(t−t′)f(t′).
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We now insert this result into Eq. (2.46) and use Green’s tensor identity (2.30) to obtain the
positive frequency component of the electric field operator

Ê(r, ω, t) = e−iωtÊ(r, ω, 0) + iµ0ω
2

π

∑︂
A

∫︂ t

0
dt′ e−iω(t−t′)ImG(r, rA(t′), ω)d̂A(t′) (2.113)

≈ e−iωtÊ(r, ω, 0) + iµ0ω
2

π

∑︂
A

∫︂ t

0
dt′ e−iω(t−t′)ImG(r, rA(t), ω)d̂A(t′). (2.114)

In the last line, we neglected velocity-dependent corrections as in Eq. (2.82) and App. (B.4).
The complete electric field operator (2.48) takes the form

Ê(r) =
∫︂ ∞

0
dω
[︂
Ê(r, ω)e−iωt + Ê∗(r, ω)eiωt

]︂
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ω2ImG(r, rA, ω)d̂A(t′). (2.115)

For our weak coupling case, this relation can be simplified by Born–Markov approximations.
First, we perform a field averaging and retrieve the incident electric field as in Eq. (2.78). Next,
we rewrite the integral

∫︁ t
0 dt

′f(t′) =
∫︁ t

0 dsf(t− s) as for Eq. (2.69)
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A
mn
µν

(t− s)⟩ . (2.116)

In Markov approximation, the field only depends on atomic operators at the same time t. We
can achieve that by assuming that the atomic time evolution under the integral is approximately
harmonic

σ̂
A

mn
µν

(t− s) ≃ e−iωA,mnsσ̂
A

mn
µν

(t). (2.117)

As in Section 2.3.3, we take the laser to be far detuned from all transitions other than g → e.
As a result, the free time evolution (eitωA,mn) and the laser time evolution (eiωLt), lead to
fast-rotating terms that can be neglected except when m = g and n = e. Denoting the variables
in the laser frame by ⟨ ˆ̃E(r)⟩ = ⟨Ê(r)⟩ eiωLt, we have
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Next, we extend the upper limit of the time integral to infinity as in Eq. (2.69) and use the
distribution identity (2.84) to conduct the time and frequency integrals. We obtain
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(t)⟩ eiωLt. (2.119)

This can be further simplified using the Kramers–Kronig relation21 for the Green’s tensor [52],

ω2ReG(r, r′, ω) = 1
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With pA,ge = ∑︁
µ,ν d

A
ge
µν

⟨ˆ̃σ
A

ge
µν

⟩, the expectation value of the electric field becomes

⟨ ˆ̃E(r)⟩ = Einc(r) + µ0ω
2∑︂

A

G(r, rA, ωA,eg)pA,ge, (2.122)

as expected from the superposition principle and Eq. (2.20). Since we made no assumption on
the atomic population, Eq. (2.122) holds for both saturated and unsaturated atoms.

2.4.1. Light transmission and reflection of an atomic ensemble

The scattered field patterns of a random atomic ensemble, which result from Eq. (2.122), are
spatially very complex [72]. However, in practice, one collects light from a spatial region over
which the field can be integrated. To this end, we assume that a lens right behind the vapor
focuses all scattered light onto a single point where it is detected [137], see Fig. 2.7. As a result,
transmission and reflection can be expressed by a single number, respectively. Assuming that
the focal point is so far away that the far field or Fraunhofer approximation applies, the field at
the detector is given by [138]

E(f) = −ieikn1f

λ1f

∫︂
lens

dAE(r). (2.123)

Inserting Eq. (2.122), we have to integrate the Green’s tensor over the lens area. This can be
done analytically if the lens area is assumed to be effectively infinite, see App. (A.5). We end
up with the Green’s functions of the 1-D Helmholtz equation∫︂

dA′G(r, r′, ω) = diag(G1D(z, z′, ω), G1D(z, z′, ω), 0), z ̸= z′. (2.124)

21The KK relation is a general consequence of the analyticity of ω2G(r, r′, ω) in the upper half of the complex
plane. It can be derived using the same contour integration techniques as those utilized in App. B.5.
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Figure 2.7: A lens collects the backward (a) or forward (b) scattered light and focuses it onto a single
point where it is detected. Reflection and transmission can be described by a single number instead
through a complex scattering pattern that changes rapidly as the atoms move around.

The above shows that only the transverse field components are propagated. The 1-D Green’s
function of the surface and the cavity geometry in Fig. 2.7 with z in region 1 and z′ in region 2
are

G1D
surf,out(z, z′, ωeg) = i

2k t21 e
ikn1|z|+ikz′

, (2.125)

G1D
cav,out(z, z′, ωeg) = i

2k t21 e
ikn1(z−w) e

ik(w−z′) + r21e
ik(w+z′)

1 − r2
21e

2ikw
, (2.126)

with the standard Fresnel coefficients (see Ref. [138] and App. A.3.2) of the macroscopic
geometry with vacuum instead of the atomic vapor

r21 = 1 − n1
1 + n1

, r12 = n1 − 1
n1 + 1 , t21 = 2

1 + n1
, t12 = 2n1

1 + n1
. (2.127)

The 1-D Green’s function (2.125) is intuitive to read when keeping the geometry in Fig. 2.7a
in mind. The function describes a plane wave running from the right (z′ in region 2) to
the left (z in region 1). First, it propagates in vacuum (eikz′) then it passes from region 2
to region 1 (t21) and finally propagates to z in region 1 (eikn1|z|). An analogous reasoning
applies to the cavity Green’s function (2.126) where additionally a geometric sum appears∑︁∞

n=0 [r2
21 exp(2ikw)]n = 1/(1 − r2

21 exp(2ikw)) due to the multiple reflections inside of the
cavity.

Throughout this thesis, we will assume that the incident field is polarized in x-direction.
This is without loss of generality because we consider atoms with equally populated ground
state sublevels that do not distinguish any polarization direction. The scattered field is then
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also x-polarized. The reflection coefficient of a dielectric-vapor interface becomes

r = r12 +
k2

ϵ0

∑︁
AG

1D
surf,out(0, z′, ωeg)px,A,ge∫︁

lens dAE0
(2.128)

= r12 + ikt21
2ϵ0A

∑︂
A

eikzA
px,A,ge

E0
, (2.129)

where A is the lens area and E0 is the amplitude of the incident field before the interface.
Analogously, one finds the transmission coefficient of the vapor-filled cavity to be

t = t0 + ikt21e
ikw(1−n1)

2ϵ0A
∑︂
A

e−ikzA + r21e
ikzA

1 − r2
21e

2ikw

px,A,ge

E0
, (2.130)

where t0 = (t12t21e
ikw(1−n1))/(1 − r2

21e
2ikw).

The atomic dipole moments are determined by the coupled dipole model (2.104) and the
corresponding spectra by Eqs. (2.129) and (2.130). Equipped with these foundations, we
can now study the atom-wall interactions in Chapter 3 and the atom-atom interactions in a
nanocavity in Chapter 4.



3. The Casimir–Polder effect in
spectroscopy
In this chapter, we show how the atom-wall interaction via the Casimir–Polder (CP) effect
alters the spectroscopic response of atoms and how this fact can be used to determine the
Casimir–Polder effect in vapor cells. In general, there are two main classes of approaches to
measure the CP effect. The first group investigates the impact of the CP force on atomic
motion, while the second probes the CP line shift.

The first group includes experiments that determine the strength of the CP interaction from
the center-of-mass oscillations of an atomic cloud that is optically trapped above a surface [139–
141]. Furthermore, there are matter-wave diffraction experiments that record the interference
patterns of atoms and molecules when they pass a nanograting. Some particles cannot pass the
grating as the attractive CP force deflects them onto the surface, which impacts the intensity
pattern [130, 142–144]. Additionally, the force imprints a phase on the particles that do pass
[145, 146]. Other experiments utilize an evanescent laser field emanating from the surface with
which the atoms interact. The field produces a repulsive dipole force that counteracts the CP
attraction such that its strength can be inferred from the height of the energy barrier [147, 148].
Furthermore, in quantum mechanics, an atom can be reflected from a purely attractive CP
potential that increases sharply near the surface. This type of quantum reflection has been
used to determine the CP force on metastable neon atoms [149]. Other experiments measured
the deflection of ground-state sodium atoms traveling through a micron-sized parallel-plate
cavity [150] or performed spectroscopy on an atomic beam of Rydberg atoms passing through a
gold cavity [151, 152].

This leads to the second group of spectroscopic methods that investigate the Casimir–Polder
line shift. While force-based methods work well for long-lived states such as ground or highly
excited Rydberg states, spectroscopic techniques can also access short-lived excited states. In
this thesis, we focus on two relatively simple but very powerful methods based on thermal
vapor cells: Selective reflection spectroscopy [57, 60, 153–155] that measures the reflection
from a planar dielectric-vapor interface depending on the detuning from the atomic resonance
and thin cell spectroscopy [54, 156–158] where transmission spectra can be recorded through
vapor layers of nanometer thickness. Selective reflection produces high resolution, sub-Doppler
spectra [57, 60]. It was used to demonstrate a repulsive Casimir–Polder potential for atomic
states whose transition frequencies coincide with resonances of the dielectric surface [159, 160]
and to showcase the temperature dependence of atom-surface interactions [161]. The spectrum
originates from atoms with a wide variety of distances to the surface. Nanocells, on the other
hand, cap the maximal atom-surface distance. Wedged nanocells specifically allow probing
vapor layers of different thicknesses by shining light through different positions of the wedge
[54]. A recent work has extracted Casimir–Polder coefficients from the transmission spectra

34
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of wedged nanocells [158]. The experimental progress in the field invites a refined theoretical
description. Since selective reflection and thin cell spectroscopy integrate over atoms with
different atom-surface distances, a fit model is required to extract the value of the Casimir–
Polder shift. Most experimental studies utilize approximate models that neglect the interactions
between the atoms, the anisotropy of the atomic polarisability, the Purcell effect, as well as the
retardation of the Casimir–Polder potential. In this chapter, we explore the consequences of
these simplifications for the determination of the Casimir–Polder effect.

We first compute and discuss numerical Casimir–Polder line shifts and Purcell line widths.
We transfer our coupled dipole model of interacting particles to the description of the atomic
vapor as a continuous medium. This allows us to theoretically calculate selective reflection and
thin cell spectra both with and without the usual simplifications. We demonstrate that the exact
spectra can be fitted with the simplified models which, however, leads to altered Casimir–Polder
interaction coefficients. This finding has important implications for the quantitative comparison
of theoretical and experimental results.

3.1. Computation of Casimir–Polder shifts

Before we calculate Casimir–Polder shifts, it is appropriate to point out that there are two
different uses of the term “Casimir–Polder interaction”. A short excursion into science history
helps to understand them. Casimir and Polder determined the dispersion interaction between
an atom and a perfect conductor in 1948 [53] using second-order perturbation theory. This
served as preparation to study atom-atom dispersion interactions over long distances, which
requires at least fourth-order perturbation theory. As a consequence, older works in quantum
optics and atomic physics use “Casimir–Polder interaction” to describe the long-distance limit
of a dispersion interaction where retardation due to the finite speed of light is essential. The
opposite, nonretarded or static interaction regime, which has been known prior, is then called
“van der Waals interaction”. Since critical parts of the atom-wall interaction take place in a
regime where neither extreme strictly applies, we adopt the more practical, modern naming
scheme of macroscopic QED. It distinguishes which types of objects interact: The interaction
of two microscopic objects (e.g. two atoms) is referred to as van der Waals interaction, the
interaction of a microscopic and a macroscopic object (e.g. an atom and a surface) as Casimir–
Polder interaction and the interaction of two macroscopic objects (e.g. two surfaces) as Casimir
interaction. Each is named after the scientists who first prominently tackled the respective case
[47, 51, 52]. The different names reflect that the Casimir–Polder interaction of an atom and a
surface is not the same as independently summing up the van der Waals interactions of the atom
with each individual surface molecule1. The presence of the surrounding molecules modifies the
interactions of each van der Waals pair [51, 52] which the expression for the Casimir–Polder
shift elegantly incorporates by using the Green’s tensor.

1Although such a pairwise summation serves as an approximation known as the Hamaker approach [51].
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3.1.1. The nonretarded limit

As a first step, we show that the Casimir–Polder shift in front of a surface can be expressed as
C3/z

3 if the atom-surface distance z is sufficiently small. This nonretarded or static limit is
the most common way to describe Casimir–Polder interactions in atomic physics and has a
very illustrative explanation as we will see. To perform the quantitative derivation, we split
the exact Casimir–Polder shift (2.97) into a resonant and an off-resonant contribution [52],
ωCP

A n
νν

= ωoffres
n
ν

(rA) + ωres
n
ν

(rA),

ωoffres
n
ν

(rA) = 1
ℏ
∑︂

k
κ

d
Ank

νκ
· 2kBT

ℏ

∞∑︂
j=0

′ωA,nkGsurf(rA, rA, iξj)
ξ2

j + (ωA,nk)2 d
Akn

κν
, (3.1)

ωres
n
ν

(rA) = 1
ℏ
∑︂

k
κ

n(ωA,kn)d
Ank

νκ
· Re Gsurf(rA, rA, ωA,nk)d

Akn
κν
. (3.2)

The former involves the Green’s tensors with real frequency arguments, which propagate real
photons, and the latter Green’s tensors with imaginary frequency arguments which propagate
virtual photons. To express the resonant contribution in the above form, we rewrite the
Bose–Einstein distribution as n(−ω) = −[n(ω) + 1].

At nonretarded distances, zω/c ≪ 1, and for a surface with permittivity ϵ1(ω), the surface
part of the one-point Green’s tensor becomes (see App. A.2)

Gnr
surf(r, r, ω) = ϵ1(ω) − 1

ϵ1(ω) + 1
diag(1, 1, 2)

32πϵ0z3 . (3.3)

For the resonant contribution, the nonretarded approximation requires the atom-wall distance
to be small compared to the atomic transition wavelength, z ≪ c/|ωA,nk|. For the off-resonant
contribution, the atom-wall distance has to be small compared the reduced wavelength2 of a
thermal photon, z ≪ c/ξj = λth/(2πj). Ultimately, z ≪ λth/(2πj) cannot be fulfilled when j

becomes infinitely large. But since z ≪ c/|ωA,nk|, the nonretarded approximation is still valid
when ξj ≈ |ωA,nk|, while terms with ξj ≫ |ωA,nk| barely influence the sum due to the prefactor
1/[ξ2

j + (ωA,nk)2].
Under the above conditions, we can insert the nonretarded Green’s tensor (3.3) and

immediately obtain a Casimir–Polder potential ωCP
A n

νν
= C3/z

3 with

C3 = 1
32πϵ0ℏ

∑︂
k
κ

d
Ank

νκ
· diag(1, 1, 2)d

Akn
κν

(︄
n(ωA,kn)ϵ1(ωA,kn) − 1

ϵ1(ωA,kn) + 1

+ 2kBT

ℏ

∞∑︂
j=0

′ ωA,nk

ξ2
j + (ωA,nk)2

ϵ1(iξj) − 1
ϵ1(iξj) + 1

)︄
. (3.4)

2The reduced wavelength is λ ≡ λ/(2π). At room temperature λth = ℏc/(kBT ) ≈ 8 µm.
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The C3 coefficient can be significantly simplified if we neglect dispersion, i.e. set ϵ1(ω) ≈ ϵ1.
Then, the Matsubara sum can be carried out analytically using [52]

∞∑︂
j=0

′ 1
a2 + j2 = π

2a coth(πa), coth
(︃ℏωA,nk

2kBT

)︃
= −2n(ωA,kn) − 1, (3.5)

and the Casimir–Polder shift takes the compact form [52]

ωCP
A n

νν
= − 1

64πℏϵ0z3
A

ϵ1 − 1
ϵ1 + 1

∑︂
k
κ

d
Ank

νκ
· diag(1, 1, 2)d

Akn
κν

(3.6)

= − 1
2ℏ
∑︂

k
κ

d
Ank

νκ
· Gsurf(rA, rA, 0)d

Akn
κν
. (3.7)

This result can be intuitively understood with the help of the image-dipole construction of
electrostatics. In this approach, one considers an electric charge in front of a dielectric surface
and seeks the electric field. It can be shown [101] that the field is the same as in a replacement
system where no surface exists but a mirror charge of a certain magnitude is placed on the
opposite side of the former interface3.

+

-

ϵ1 ϵ2=1

0 z

+

-

Figure 3.1: The mirror dipole picture of the nonretarded Casimir–Polder interactions. An atomic
dipole that is spontaneously produced by atomic or field fluctuations induces a mirror dipole on the other
side of the surface. The interaction of the original and the mirror dipole gives rise to the Casimir–Polder
line shift.

According to Eq. (3.7), the Casimir–Polder interaction can be pictured as in Fig. 3.1:
Fluctuations spontaneously create a dipole moment in the atom that induces a mirror dipole
on the opposite side of the surface. This mirror dipole exerts the field Gmirror(rA, rA, 0)d

Akn
κν

on the atomic dipole d
Ank

νκ
. The potential energy of this dipole-dipole interaction causes the

Casimir–Polder line shift. We get a prefactor of 1/2 because some of the energy is already used
up to induce the mirror dipole [162]. The minus sign indicates that dipole and mirror dipole by
default are orientated such that they attract one another as in Fig. 3.1. In the next section, we
investigate the accuracy of the C3 approximation via exact numerical computation.

3In App. A.2 we use this reasoning to derive the nonretarded surface Green’s tensor (3.3).
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3.1.2. Rigorous computations for the rubidium D2 line

We evaluate the Casimir–Polder shift (2.97) and the Purcell line broadening (2.98) with the
exact surface Green’s tensor (A.54) derived in App. A.3 for the rubidium D2 line, i.e. the
transition from the ground state 5S1/2 to the second excited state 5P3/2.

First, we consider a perfectly reflecting surface, that is an idealization of a metal or a
superconductor, at zero temperature. This is the most minimalist example, and the results
solely depend on the properties of the atoms. Fig. 3.2 shows the atomic transitions that
dominate the CP shift. The nonretarded limit can be expected for z ≪ 780 nm/(2π) ≈ 125 nm,
the smallest reduced wavelength of an important transition.

5S1/2

5P3/2

54%
4D3/2

4D5/2
6S1/2

5D3/2

6D3/2

17%

16%

6%

3%

1%

5S1/2

5P1/2

5P3/2

66%

33%
795nm

780nm

780nm

1.5μm

1.4μm

Figure 3.2: Selected transitions from the energy level diagram of rubidium which dominate the
Casimir–Polder potential in front of a perfect reflector at T = 0 K. The percent values alongside the
arrows indicate the relative contribution of the transition to the total C3 coefficient of a rubidium atom
in the 5S1/2 state (left) or the 5P3/2 state (right). The lengths refer to the transition wavelength in
vacuum.

The line shifts and broadenings are shown in Fig. 3.3. The mj = ±3/2 and mj = ±1/2
sublevels of the excited state experience different Casimir–Polder effects, recall Fig. 2.4 b, such
that two different line shifts and linewidths exist depending on the excited state sublevel. The
C3 panel in Fig. 3.3 shows that the exact shift follows a C3(z)/z3 behavior. The effective C3(z)
changes up to 50% between z = 1 nm and z = 100 nm. For larger distances, the potential
approaches the retarded regime and oscillates [52], see right side of Fig. 3.3. This originates
from the resonant part of the potential, more precisely from the propagation of the real photons
emitted from the 5P3/2 → 5S1/2 downward transition that go to the surface and are reabsorbed
by the atom that restores its original excited state, recall Fig. 2.4 a. Since the photon travels a
distance 2z, the oscillation period in Fig. 3.3 is 780 nm/2 = 390 nm. The oscillation amplitude
decreases as 1/z, recall Eq. (2.24), such that the shift vanishes at infinity. Analogous oscillations
appear in the long distances limit of the excited state linewidth, which approaches its free space
value at an infinite distance to the surface. In Fig. 3.3 the free space linewidth is indicated
by the dashed line in the lower panel. At short distances, the linewidth of the excited states
with mj = ±1/2 is nearly constant but it is larger than in free space as the surface enhances
the local density of states. In contrast, the surface prohibits the decay of the mj = ±3/2
excited states as the atom-surface distance approaches zero. Consequently, the linewidth
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Rb atoms in front of a perfect mirror surface at T=0K
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Figure 3.3: Casimir–Polder shift of the D2 line (upper part) and Purcell line broadening (lower part)
over the distance z between the rubidium atom and a perfect reflector at zero temperature. They are
given for the mj sublevel of the lower state (µ) and upper state (ν). The results are the same if the
signs of µ and ν are reversed, e.g. from µ = 0.5 → ν = 1.5 to µ = −0.5 → ν = −1.5. At short distances,
the potential is multiplied by z3 to obtain an effective C3 interaction coefficient. The natural linewidth
of the transition is the same as the linewidth of the excited state because the ground state cannot decay
any further.

vanishes. The mj = ±3/2 states can only decay into mj = ±1/2 states, thus releasing circularly
polarized photons whose electric field components would lie parallel to the surface. However,
the tangential electric field components on the surface of a perfect electric conductor are zero
such that these photons cannot be emitted.

Next, we consider a dielectric sapphire surface. Sapphire is frequently used in the construction
of vapor cells because it withstands chemically aggressive alkali atoms and relatively high
temperatures [56]. It is also birefringent. We assume that its optical axis is aligned normal to the
surface and report the corresponding Green’s tensor in App. A.4. The resulting Casimir–Polder
line shift and width are shown in Fig. 3.4. It turns out that the results are only marginally
different from an isotropic surface whose permittivity is the geometric mean of the permittivities
for the ordinary and extraordinary rays4. The permittivity function of sapphire was taken from
Ref. [163]. The modeling of many other real materials is discussed in App. D.

4In the nonretarded limit, the geometric mean description is exact, see App. A.4. For optical frequencies, the
ordinary and extraordinary permittivity of sapphire only deviate by around 3%, which translates into a
change of around 1% in the Casimir–Polder potential at larger (retarded) distances when one compares the
simplified isotropic description against the exact birefringent result.



40 The Casimir–Polder effect in spectroscopy

Rb atoms in front of a sapphire surface at T=0K
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Figure 3.4: Casimir–Polder shift of the D2 line (upper part) and Purcell line broadening (lower part)
over the distance z between the rubidium atom and a sapphire surface at zero temperature, analogous
to Fig. 3.3.

The sapphire surface produces weaker image dipoles than the perfect reflector and features
a smaller effective C3(z) coefficient. On the other hand, close to the surface, the linewidth
reaches even larger values than before. In the immediate vicinity to the surface (z ≤ 3 nm)
it even diverges as Γ3/z

3, following the nonretarded Green’s tensor (3.3). However, due to
the low absorption of sapphire at the atomic transition frequency, the imaginary part of the
nonretarded approximation in Eq. (3.3) becomes quickly negligible for any distance more than a
few nanometers away from the surface. The change in the local density of states and hence the
linewidth is then governed by small propagating wave terms (see Ref. [52]) that are included in
the exact Green’s tensor. The linewidth declines slowly with increasing z. At larger distances,
it follows the same oscillatory behavior as before but with a smaller amplitude.

Next, we investigate the impact of finite temperature on the Casimir–Polder shift and
Purcell linewidth. The atom-surface separations that we are interested in are much smaller
than the reduced wavelength of room temperature photons of 8 µm. The atomic transitions
that are relevant for the rubidium D2 line have transition wavelengths between 780 nm and
1.5 µm, see Fig. 3.2. Room temperature is not enough to excite these transitions, i.e. the
Bose-Einstein distribution factors n(ωA,nm) are almost the same as at zero temperature. The
two comparisons above show us that we are both geometrically and spectroscopically in a
low-temperature regime, such that only small changes to the zero temperature result can be
expected. Unfortunately, a spectroscopically small temperature implies that a large number of
Matsubara frequencies must be considered for the Casimir–Polder shift (2.97) to converge. To
make the numerics fast and accurate nonetheless, we apply a convergence accelerating method
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from Ref. [164] to the Matsubara sum. At 300 K, the Casimir–Polder shift changes by less
than 1% and at 900 K by less than 5% for all distances z ≤ 1 µm where the Casimir–Polder
shift is not close to zero. The changes to the linewidth are negligible in both cases. Thus the
zero-temperature results shown in Fig. 3.4 remain a good approximation for a thermal vapor.

Still, this does not mean that temperature can be neglected in general when computing
Casimir–Polder shifts. In App. E.3, we investigate a 5P3/2 → 6D3/2 transition where adjacent
states are separated by much smaller energy gaps. Then the room temperature is no longer
spectroscopically low and can cause significant changes. The 6D3/2 state of rubidium features
at transition whose frequency matches a resonance of the dielectric surface. This results in a
CP shift that is repulsive instead of attractive in the immediate vicinity of the surface.

3.1.3. The polarizability of the rubidium D2 line

Rb D2 line, sapphire surface at T=0K
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Figure 3.5: Components of the polarizability tensor of a rubidium ground state atom over the detuning
δ from its free space D2 line resonance. The atom is located z = 20 nm (left) or z = 50 nm (right)
away from a sapphire surface and influenced by the Casimir–Polder interaction and Purcell effect
shown in Fig. 3.4. The polarizability tensor αA,ge = diag(αxx, αyy, αzz) is diagonal but not isotropic
αxx = αyy ̸= αzz.

We can now examine the impact of the atom-wall interactions on the properties of the
atoms. For this, we determine the atomic polarizability (2.105) for near-resonant excitation
of the D2 line of a single rubidium atom in front of a sapphire surface at zero temperature.
Fig. 3.5 shows the polarizability over the detuning from the free space resonance for two different
atom-surface distances, z = 20 nm and z = 50 nm. We have assumed that the two ground-state
sublevels 5S1/2,mj = ±1/2 are populated with equal probability. As a result, the polarizability
tensor is diagonal, αA,ge = diag(αxx, αyy, αzz), but anisotropic, αxx = αyy ̸= αzz, due to the
lifted degeneracy between the mj = ±1/2 and mj = ±3/2 sublevels of the excited state. The
Casimir–Polder effect shifts the atomic resonance to the red.
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The polarizability components parallel to the surface αxx,yy exhibit two peaks5 that merge
into one as the atom-surface distance increases from z = 20 nm to z = 50 nm. This indicates
that a phenomenological description of one polarizability component with a single peak can be
successful, especially when additional broadenings due to temperature or atom-atom interactions
come into play. On the other hand, Fig. 3.5 contradicts the use of a single isotropic polarizability
for both αxx,yy and αzz.

Rb atoms with different quantization axis (x,z) in front of a sapphire surface at T=0K
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Figure 3.6: Upper panel: Casimir–Polder shift of the D2 line and Purcell broadening over the distance
z between the rubidium atom and a sapphire surface at zero temperature. µz and µx refer to mj

sublevels of the ground state with quantization axes perpendicular (z) or parallel (x) to the surface. In
the former case the curves are the same as in Fig. 3.4. Lower panel: Sublevel interaction terms (recall
Eqs. (2.97) and (2.98)) between excited state sublevels with a quantization axes parallel to the surface
over the atom-surface distance z. They cause coherences from the µ = 1/2 ground state to the ν = 3/2
and ν = −1/2 excited substate to depend on one another. Before a polarizability can be computed, the
coupled equation system of the coherences has to be solved first.

Our atoms could also start as a statistical mixture of mj = ±1/2 states that are quantized
along an axis that is parallel, not perpendicular to the surface. We then obtain different
Casimir–Polder shifts and Purcell linewidths, as shown in Fig. 3.6. In addition, we encounter
non-zero sublevel coupling terms (recall Fig. 2.5), namely ωCP

A
e

0.5,−1.5,x
and Γ

A
e

0.5,−1.5,x
that are

also shown in Fig. 3.6. They cause the coherences ⟨ˆ̃σ
A

g e
0.5,1.5

, x⟩ and ⟨ˆ̃σ
A

g e
0.5,−0.5

, x⟩ to depend

on one another. For a single atom, we solve the coupled equation system (2.99). Subsequently,
5The large peak is caused by 5S1/2, mj = ±1/2 → 5P3/2, mj = ±3/2 transitions and the smaller by 5S1/2, mj =

±1/2 → 5P3/2, mj = ∓1/2 transitions. The αzz component is governed by the 5S1/2, mj = ±1/2 →
5P3/2, mj = ±1/2 transitions.
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we compute the polarizability, which turns out to be the same as before. The coupling terms
compensate for the different line shifts and linewidth. This highlights the significance of
the sublevel coupling terms and shows that our choice of initial states does not affect the
spectroscopic properties of the atoms. Having calculated and understood the Casimir–Polder
and Purcell effects, we can now set up a theory to determine their impact in spectroscopy.

3.2. The continuous medium approximation

Rb

1 12 1 2 1

Rb

Figure 3.7: In standard electrodynamics, an atomic vapor is thought of as a continuous medium.

Selective reflection and thin cell spectroscopy are based on the description of an atomic
vapor as a continuous medium as shown in Fig. 3.7. In the following, we transfer our coupled
dipole model (2.104) to this perspective. As a result, certain microscopic effects such as
atomic collisions are no longer explicitly considered. Instead, they are expressed as effective
contributions to the line widths, line shifts, and atomic transition rates. We make the simplest
possible assumption and add a line shift and a broadening that are both spatially independent
and equal for all atoms. Thus, the new linewidth and shift become

∆̄eg
νµ

(z) = ωCP
eg
νµ

(z) + ∆col
eg
νµ
, γ̄eg

νµ
(z) = γeg

νµ
(z) + γcol

eg
νµ
. (3.8)

In the following, we drop the e, g subscript of these quantities for a more compact notation.
The exact form of the new terms is considered in Sec. 3.2.4.

For the sake of simplicity, we assume that the incident field is normal to the interface6.
Thus, the expectation values of the atomic flip operators become continuous functions

⟨ˆ̃σ
A

ge
µν

⟩ ↦→ σge
µν

(z, vz), (3.9)

that only depend on z and vz due to the overall cylindrical symmetry. Consequently, σge
µν

(z, vz)
carries the unit of an inverse velocity. Additionally, we assume the same sublevel population
numbers fg

µ
for all atoms and assert a velocity distribution W (vz),

f
A,

g
µ
(vz) ↦→ W (vz)fg

µ
, (3.10)

6Oblique incidence has two main effects: It adds a Doppler broadening originating from the motion in x and y
direction [60] and the CP shift perpendicular to the surface, not only the one parallel to it, takes effect.
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that is usually assumed to be a Maxwell–Boltzmann distribution

W (v) = 1
vth

√
π
e−v2/v2

th , vth =
√︄

2kBT

m
, (3.11)

where vth is the most probable speed |v| of an atom. The use of the Maxwell–Boltzmann
distribution for atoms in front of a surface is further discussed in Sec. 3.2.5.

To describe the atomic interactions, the sum over all atoms in Eq. (2.104) is replaced by an
integral featuring the atomic number density N = nAtoms/V ,

∑︂
B ̸=A

f(rA, rB) ↦→ N

∫︂
dV ′ f(r, r′) −N

∫︂
δV ′

dV ′ f(r, r′). (3.12)

Since B = A is excluded from the sum, an integral over an exclusion volume δV ′ around r′ = r
is subtracted. Its contribution is determined by the delta distribution term of the Green’s
tensor. For a cube or spherical exclusion volume, see Eq. (A.8) or Ref. [165], one finds∫︂

δV ′
dV ′ G(r, r′, ωeg)σge

δϵ
(z′, v′

z) = − I

3k2σge
δϵ

(z, v′
z). (3.13)

The remaining integral can be decomposed as
∫︁
dV ′ =

∫︁ w
0 dz′ ∫︁ dA′. We know from Eq. (2.124)

and App. (A.5) that the integral over A′ results in a 1-D Green’s function. When z and z′ are
both in the vapor region, the Green’s functions for a cavity or surface geometry read

G1D
surf(z, z′, ωeg) = i

2k
(︂
eik|z−z′| + r21e

ik(z+z′)
)︂
, (3.14)

G1D
cav(z, z′, ωeg) = i

2k
eik|z−z′| + r21e

ik(z+z′) + r21e
ik(2w−z−z′) + r2

21e
ik(2w−|z−z′|)

1 − r2
21e

2ikw
. (3.15)

As in Sec. 2.4.1, we take our incident field to be x-polarized. Due to the cylindrical symmetry,
the system retains the polarization so that only the x component of field and dipole moment
must be considered. We write our coupled dipole model for the continuous medium as a set of
two coupled equations, one for the atomic polarization

vz∂zσge
µν

(z, vz) = i
[︂
δ − ∆̄νµ(z) + iγ̄νµ(z)

]︂
σge

µν
(z, vz) + i

ℏ
W (vz)fµdx,

eg
νµ
Eloc

x (z), (3.16)

and one for the electric field

Eloc
x (z) = Ex(z) + N

3ϵ0
⟨px(z)⟩v , (3.17)

Ex(z) = Ex,inc(z) +N
k2

ϵ0

∫︂ w

0
dz′G1D(z, z′, ωeg) ⟨px(z′)⟩v . (3.18)

Here Eloc
x (z) denotes the local field, the effective electric field perceived by an atom that

is modified due to the polarization of the surrounding continuous vapor. We postpone the
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discussion of the local field effect to Sec. 3.2.3 because its best-known form requires the refractive
index of the vapor to be derived first. Our target quantity, the atomic dipole moment, results
from an ensemble average over the velocity as

⟨px(z)⟩v =
∑︂
δϵ

d
x,

ge
δϵ

∫︂ ∞

−∞
dv′

z σge
δϵ

(z, v′
z). (3.19)

3.2.1. Formal solution and nonlocal response

To solve Eq. (3.16), we introduce a helper function following Refs. [60, 166]

Lνµ(z) =
∫︂ z

z0
dz′

(︂
−i
[︂
δ − ∆̄νµ(z′)

]︂
+ γ̄νµ(z′)

)︂
, (3.20)

with whom Eq. (3.16) can be recast as

vz∂zσge
µν

(z, vz) = − ∂zLνµ(z)σge
µν

(z, vz) + i

ℏ
W (vz)fg

µ
d

x,
eg
νµ
Eloc

x (z). (3.21)

We assume quenching collisions with the cell walls, which ensure that the atoms are unpolarized
when they depart from a surface,

σge
µν

(z = 0, vz > 0) = σge
µν

(z = w, vz < 0) = 0. (3.22)

For a surface geometry, we take w = ∞ and likewise assume that the atoms arriving from far
away are unpolarized. We find the formal solutions

σge
µν

(z, vz > 0) = i

ℏ
W (vz)
vz

fg
µ
d

x,
eg
νµ

∫︂ z

0
dz′Eloc

x (z′) exp
[︁
Λνµ(z′, z)/vz

]︁
, (3.23)

σge
µν

(z, vz < 0) = i

ℏ
W (vz)
vz

fg
µ
d

x,
eg
νµ

∫︂ z

w
dz′Eloc

x (z′) exp
[︁
Λνµ(z′, z)/vz

]︁
, (3.24)

σge
µν

(z, vz = 0) = i

ℏ
W (0)

(−iδ + i∆̄νµ(z) + γ̄νµ(z))
fµdx,

eg
νµ
Eloc

x (z), (3.25)

where

Λνµ(z′, z) ≡ Lνµ(z′) − Lνµ(z) (3.26)

=
(︂
−iδνµ + γ̄vac

νµ

)︂
(z′ − z)⏞ ⏟⏟ ⏞

=Λvac
νµ (z′,z)

+
∫︂ z′

z
dz′′

(︂
iωCP

νµ (z′′) + γ̄νµ(z′′) − γ̄vac
νµ

)︂
⏞ ⏟⏟ ⏞

=ΛAW
νµ (z′,z)

. (3.27)

Here γ̄vac
νµ = γvac

νµ + γcol
νµ is the sum of the natural and the collisional linewidth in free space and

δνµ ≡ [δ − ∆col
νµ ].

The integration in Eqs. (3.23) and (3.24) indicates that a thermal atomic vapor is a nonlocal
medium. The atomic response at z depends on field values Eloc

x (z′) at other positions z′ because
a moving atom that is excited at z′ travels to position z. To get a better understanding, let



46 The Casimir–Polder effect in spectroscopy

us consider an atomic cloud with the extend of about one wavelength, w ∼ λ, and neglect
the atom-surface interactions such that Λνµ(z′, z) ≈ Λvac

νµ (z′, z) as shown in Fig. (3.8). The
integration range in Eqs. (3.23) and (3.24) is then determined by the exponential function
exp(−γ̄vac

νµ |z− z′|/|vz|). The function shows that the distance between the spot where the atom
is excited z′ and the spot z where it contributes to the polarization cannot be much larger
than the average distance |vz|/γ̄vac

νµ that an excited atom with a lifetime of 1/γ̄vac
νµ travels before

it decays. A small broadening implies that a large region such as the orange one in Fig. 3.8
contributes to the atomic response. However, if the broadening is very large and the atoms
decay quickly, the system response only depends on field values E(z′) ≈ E(z) very close to the
spot excitation. Such a situation is depicted by the blue region in Fig. 3.8 and means that the
atomic vapor behaves approximately as an ordinary local medium.

z'z0 w

vz > 0 vz < 0

Figure 3.8: Illustration of the regions from which polarized atoms of velocity ±vz arrive at a probe
point z to contribute to the atomic response, compare Ref. [167]. We consider a cavity of length
w ∼ λ and neglect Casimir–Polder and Purcell interactions. In case of a large homogeneous broadening
(ξ(vz) = |vz|/γ̄vac

νµ = 0.01w), shown in blue, the atomic polarization originates from a small spatial
region around z within which E(z′) ≈ E(z). The atomic response is approximately local. A smaller
homogeneous broadening (ξ(vz) = 0.1w) shown in light orange leads to a strongly nonlocal scenario,
where atomic polarizations that were originally created at almost any point in the cavity contribute to
the polarization in the center.

3.2.2. Local limit in absence of atom-wall interactions

When the homogeneous broadening is large enough to reach the local limit, we can retrieve
the familiar results from standard electrodynamics where the atomic vapor is described by a
refractive index ng. To facilitate this task, we again neglect the Casimir–Polder interactions
and take Λνµ(z′, z) ≈ Λvac

νµ (z′, z). This only makes sense as long as the focus is on the link
between microscopic dipole-dipole interactions and standard continuous electrodynamics and
not on an accurate description of a nanometer-sized vapor cell.

We start with an ansatz for the local field

Eloc
x (z) = E+eikngz + E−e−ikngz, (3.28)
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with a yet unknown constant ng. Inserting into Eqs. (3.23), (3.24) gives

σge
µν

(z, vz > 0) =
−W (vz)fg

µ
d

x,
eg
νµ

ℏ
∑︂

η=+,−

Eη
(︂
eηikngz − e(iδνµ−γ̄vac

νµ )z/vz

)︂
δνµ − ηkngvz + iγ̄vac

νµ

(3.29)

≈
−W (vz)fg

µ
d

x,
eg
νµ

ℏ

[︄
eikngzE+

δνµ − kngvz + iγ̄vac
νµ

+ e−ikngzE−

δνµ + kngvz + iγ̄vac
νµ

]︄
, (3.30)

σge
µν

(z, vz < 0) =
−W (vz)fg

µ
d

x,
eg
νµ

ℏ
∑︂

η=+,−

Eηeηikngz
(︂
1 − e(iδνµ−γ̄vac

νµ )(w−z)/|vz |
)︂

δνµ − ηkngvz + iγ̄vac
νµ

(3.31)

≈
−W (vz)fg

µ
d

x,
eg
νµ

ℏ

[︄
eikngzE+

δνµ − kngvz + iγ̄vac
νµ

+ e−ikngzE−

δνµ + kngvz + iγ̄vac
νµ

]︄
. (3.32)

As part of our local approximation, we assume a large homogeneous broadening with γ̄vac
νµ

|z|
|vz | ≫ 1

and γ̄vac
νµ

|w−z|
|vz | ≫ 1. Clearly, these inequalities cannot hold in the immediate vicinity to the walls

where z = 0 or z = w and the atomic response is determined by quenching collisions. However,
we can assume that the affected areas are small enough to have no significant effect on the
transmission and reflection spectra such that the deviations that occur there can be neglected.
The above expressions explicitly feature the Doppler shift ±kngvz, whose sign depends on the
relative orientation between the wave vector of the incoming light field and the velocity vector
of the atom. The dipole moment (3.19) takes the compact form

⟨px(z)⟩v = −1
ℏ
∑︂
µ,ν

fg
µ

⃓⃓⃓⃓
d

x,
eg
νµ

⃓⃓⃓⃓2 ∫︂ ∞

−∞
dvz

W (vz)
δνµ − kngvz + iγ̄vac

νµ⏞ ⏟⏟ ⏞
=α

Eloc
x (z). (3.33)

When integrating over all velocities, the sign of the Doppler shift makes no difference because of
the even symmetry of the Maxwell–Boltzmann distribution W (vz) = W (−vz). As a result, the
same polarizability applies to both forward and backward running wave components. Inserting
Eq. (3.33) into Eq. (3.17), we can relate the ordinary and the local electric field (3.17) as

Eloc
x (z) = 1

1 − N
3ϵ0
α
Ex(z). (3.34)

With wise foresight, we introduce the abbreviation

(ϵ− 1) ≡ Nα

ϵ0
/

(︃
1 − N

3ϵ0
α

)︃
. (3.35)

By inserting the above in Eq. (3.18), the electric field is shown to obey

Ex(z) = Ex,inc(z) + ik

2 (ϵ− 1)N
∫︂ w

0
dz′ 2k

i
G1D(z, z′, ωeg)Ex(z′). (3.36)
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The incident field for a surface or a cavity geometry is

Esurf
x,inc = t12E0e

ikz, Ecav
x,inc = t12E0

eikz + r21e
ik(2w−z)

1 − r2
21e

2ikw
, (3.37)

respectively, while the corresponding 1-D Green’s function is given by Eq. (3.14) or (3.15).
We can convert Eq. (3.36) into a differential equation by differentiating7 two times by z and
replacing the integral with the help of the original expression. The result is a common harmonic
oscillator,

E′′
x(z) + k2ϵEx(z) = 0. (3.38)

Hence, we insert the ansatz Ex(z) = Aeikngz + Be−ikngz with ng =
√
ϵ and Imng ≥ 0 into

Eq. (3.36). By comparing coefficients, we find the electric field in a surface or a cavity geometry

Esurf
x (z) = t̃12E0e

ikngz, Ecav
x (z) = t̃12E0

eikngz + r̃21e
ikng(2w−z)

1 − r̃2
21e

2ikngw
, (3.39)

respectively, which feature new Fresnel coefficients

t̃12 = 2n1
n1 + ng

, t̃21 = 2ng

n1 + ng
, r̃21 = ng − n1

ng + n1
, (3.40)

between a wall with index n1 and the vapor with index ng. This result shows the self-consistency
with our ansatz function (3.28) that is now seen to be

Eloc
x (z) = 1

1 − N
3ϵ0
α

t̃12E0
1 − r̃2

21e
2ikngw⏞ ⏟⏟ ⏞

=E+

eikngz + 1
1 − N

3ϵ0
α

t̃12E0r̃21e
2ikngw

1 − r̃2
21e

2ikngw⏞ ⏟⏟ ⏞
=E−

e−ikngz. (3.41)

The cavity field contains two summands and a geometric sum denominator, which can be

21

w0 z

1

...

+

+

Figure 3.9: Photon pathways that determine the field acting inside of a cavity. The two fundamental
paths are followed by multiple internal reflections leading to a geometric sum,

∑︁∞
n=0[(r21)2e2iwk2 ]n.

7Either split the integral into two to remove the absolute value function and recall the Leibniz integral rule
d

dx

(︂∫︁ b(x)
a(x) dy f(x, y)

)︂
= f(x, b)b′(x) − f(x, a)a′(x) +

∫︁ b(x)
a(x) dy ∂xf(x, y) or use the identity ∂2

x|x| = 2δ(x).
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intuitively understood by comparison with the photon pathways shown in Fig. 3.9. By solving
the self-consistent scattering problem (3.36), we have transformed the incident fields (3.37)
featuring the refractive index of vacuum into the acting fields (3.39) featuring a refractive index
ng =

√
ϵ for the atomic vapor.

Of course, we can retrieve not only the fields from standard optics, but also the reflection co-
efficient of the dielectric-vapor interface and the transmission coefficient of the vapor-filled cavity.
In a continuous vapor, the relations for reflection (2.129) and transmission coefficient (2.130)
become

rsurf = r12 + t21
ik

2
N

ϵ0

∫︂ ∞

0
dz eikz ⟨px(z)⟩v

E0
, (3.42)

tcav = t0 + ikt21e
ikw(1−n1)N

2ϵ0

∫︂ w

0
dz

e−ikz + r21e
ikz

1 − r2
21e

2ikw

⟨px(z)⟩v

E0
. (3.43)

Inserting the fields (3.39), we find

rsurf = r̃12, tcav = t̃12t̃21e
iw(kng−k1)

1 − r̃2
21e

2ingkw
, (3.44)

the familiar Fresnel reflection coefficient and the Fabry–Pérot transmission profile. The refractive
index ng is not given directly by the above relations. Eq. (3.33), Eq. (3.35), and ng =

√
ϵ

show that the Doppler shift within the polarizability depends on the refractive index and
that the refractive index depends on the polarizability. An iterative approach can be used to
obtain a self-consistent result. Close to resonance, where Imng is appreciably larger than zero,
another particularity occurs: In addition to the usual Doppler shift kvz Reng, there is also a
contribution of kvz Imng to the linewidth. However, reaching the local limit in a cavity of size
w ∼ 1/k with atoms whose velocities can reach vth implies that γ̄vac

νµ ≳ vthk. Therefore, the
changes to the small Doppler effect can not drastically alter the vapor’s properties.

3.2.3. Lorentz–Lorenz relation

Now that we have established the link between the polarizability and the refractive index,
Eq. (3.35), we can rearrange it in the form of a famous result

αN

3ϵ0
= ϵ− 1
ϵ+ 2 = n2 − 1

n2 + 2 . (3.45)

When the right-hand side denotes (static) permittivities, this equation is known as Clausius–
Mossotti relation and when the right-hand side denotes a refractive index (at optical frequencies)
it is called Lorentz–Lorenz (LL) relation [101, 168]. The LL relation shows that the microscopic
polarizability is not directly proportional to macroscopic susceptibility ϵ−1, but to the fraction8

8Heating liquids like water or carbon disulfide, Ludvig Lorenz showed that the ratio [(n2 − 1)/(n2 + 2)]/N
remains unchanged even as the liquids become vapors and their density changes by orders of magnitude [70].
For vapors with low density where n ≈ 1, one often uses (n2 − 1)/(n2 + 2) ≈ 2/3(n − 1).
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(ϵ− 1)/(ϵ+ 2). It results from the local field correction that we introduced in Eq. (3.17) and
which stems from the volume integral over the singularity of the Green’s tensor in a continuous
environment, Eq. (3.13). Physically, it expresses the fact that the field perceived by an atom in
a medium is not the same as in vacuum due to the polarization of the surrounding. The effect
was discovered independently by Hendrik Lorentz [69] and Ludvig Lorenz [70] and is named
after both of them. For once, this saves us from doubts about how Loren(t)z is spelled correctly9.
One can also define an effective polarizability, αloc = α/ (1 −Nα/(3ϵ0)), that includes the local
field correction and features a direct proportionality (ϵ− 1) = Nαloc/ϵ0.

Let us consider a vapor that is dominated by homogeneous broadening, e.g., an ultracold
vapor or a thermal vapor with a large collisional broadening, such that the Doppler shift and
nonlocal effects can be neglected. Let us further assume that all atomic sublevels feature
the same broadening, the same Casimir–Polder and the same collisional shifts that we write
as ∆̄νµ(z) = ∆̄eg(z) and γ̄νµ(z) = γ̄eg(z). Further, all atomic substates shall be populated
equally, i.e. fg

µ
= 1/(2Jg + 1) in case of a fine structure basis. Together with the abbreviation10

∑︁
µ,ν

⃓⃓⃓⃓
d

x,
eg
νµ

⃓⃓⃓⃓2
= (2Je + 1)|dx,eg|2, the effective polarizability can then be written as

αloc = −1
ℏ

(2Je + 1)
(2Jg + 1)

|dx,eg|2

δ − ∆LL
eg − ∆̄eg(z) + iγ̄eg(z)

. (3.46)

It is the same as the ordinary single atom polarizability except for the shift

∆LL
eg = − (2Je + 1)

(2Jg + 1)
N |dx,eg|2

3ϵ0ℏ
, (3.47)

which is called the Lorentz–Lorenz shift. In this form, the local field correction presents itself
as an attractive (− sign) dipole-dipole interaction (∝ |dx,eg|2) between the atom and the atoms
surrounding it that shifts the atomic resonance to the red. Let us further consider a transition
from the ground state to an excited state that can only decay back to the ground state, e.g.,
the alkali D-line transitions. Then, one can rewrite the LL shift in terms of the decay rate in
free space11 as

∆LL
eg = − (2Je + 1)

(2Jg + 1)
πN

3k3 Γvac
e . (3.48)

The local field correction cannot be rewritten into a simple line shift if the atomic sublevels
possess different Casimir–Polder shifts or when the Doppler shift plays an important role.

9Among others the Lorentz force, the Lorentz transformation, the Lorentzian distribution and the Drude–Lorentz
model are named after Hendrik Lorentz while the Lorenz gauge and the Lorenz factor (the proportionalty
constant of the Wiedemann–Franz law) are named after Ludvig Lorenz.

10We drag out the factor (2Je + 1) to clarify the relation to the quantity |dx,eg|2 =
∑︁

µ

⃓⃓⃓
d

x,
eg
νµ

⃓⃓⃓2
that governs the

linewidth.
11Often a transition Jg = 0 → Je = 1 is considered, such that ∆LL

eg = −π(N/k3)Γvac
e . Bear in mind that

|dx,eg|2 = |deg|2/3.
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3.2.4. Atomic collisions

The Lorentz-–Lorenz relation describes an isotropic dipole-dipole interaction between an atom
and all atoms surrounding it. However, in the immediate vicinity of an atom, the isotropy gets
repeatedly broken by temporary close encounters with individual other atoms, i.e. collisions.
In this section, we elaborate on the theory behind the collisional broadening and shift added
in Eq. (3.8). In general, one can distinguish between inelastic collisions, which change the
atomic states and elastic collisions, which only change the phase of the atomic wavefunction
and result in line broadenings and shifts [169]. For many problems in atomic physics, one can
neglect inelastic collisions (adiabatic approximation) [135]. While unifying semi-classical and
quantum theories exist for elastic collisions, they are most conveniently studied within one of
two opposite limits, the quasi-static or the impact limit, both of which lead to a homogeneous
line broadening [135, 136, 170–172]. This line broadening is proportional to the atomic density,
which in an ideal gas, where p = NkBT , is proportional to the gas pressure. Hence, the effect
is also known as pressure broadening. In our case, where the two colliding atoms are identical,
it is also called self-broadening.

The first of the two common approximations, the quasi-static approximation, assumes the
duration of the collision τC to be much larger than other relevant time scales, such as the time
between two collisions [136]. Then, the interaction potential between the atoms translates
into a line shift that is taken to be constant over the time τC . In an ensemble average over
various atomic distances and orientations, the line shift becomes a line broadening [135]. The
quasi-static approximation is favored when the temperature is low, i.e. τC is long, because of the
slow movement of the atoms, or when the atomic density is high, i.e. the time between collisions
becomes short [136]. The opposite impact approximation assumes that the collision occurs
almost instantaneously compared to the time between collisions. Usually, one considers only two
atoms (binary approximation) moving on classical, straight trajectories. The smallest distance
between the two atoms is called the impact parameter ρ. During the collision, i.e. over the
time τC , the wave train of the emitting atom acquires a phase shift [135]. After averaging over
all impact parameters, this phase shift translates to a line broadening and shift [135, 136]. The
impact parameter that results in a phase shift of unity is called the Weisskopf radius ρW and
provides a typical length scale for the collision [135, 136]. Taking it as a rough estimate for the
section of the trajectory where significant interactions occur, one can estimate the collision time
as τC ≈ ρW /v̄r [135]. Here v̄r =

√︁
8kBT/(πµ) with the reduced mass µ = mAmB/(mA +mB)

of the colliding pair is the mean relative velocity of the two particles, assuming that both follow
a Maxwell–Boltzmann distribution12. The impact approximation is favored at low densities,
when the time between collisions becomes long, and at high temperatures, when the collision
duration is short.

12To compute v̄r =
∫︁

d3v1
∫︁

d3v2W (v1)W (v2)vr one can conveniently use the relative velocity vr = v1 − v2
and the center of mass U = (m1v1 + m2v2)/(m1 + m2) coordinates because d3v1d3v2 = d3vrd3U and
m1v2

1 + m2v2
2 = (m1 + m2)U2 + µv2

r .
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Thermal vapors are often treated in the impact approximation. Experiments in a bulk vapor
(see Ref. [173] and the references therein) show that the collisional broadening Γcol = 2γcol of
the sodium, rubidium, and cesium D-lines, averaged over the degenerate sublevels, follows the
simple form

Γcol = βN ≈ 2π
√︄

(2Je + 1)
(2Jg + 1)Γvac

e
N

k3 , (3.49)

where the degeneracy prefactor
√︂

(2Je + 1)/(2Jg + 1) is 1 for the D1 and
√

2 for the D2 line.
The approximate sign in Eq. (3.49) refers to the theoretical prediction of Lewis [171] that
involves an additional prefactor, which also depends on the angular momentum structure of
the lower and upper state of the colliding atoms. Usually, this prefactor can be approximated
by unity considering the experimental error bounds. The Weisskopf radius ρW =

√︁
β/(2πv̄r) of

the rubidium D2 line at 360◦C is on the order of 10 nm [17]. The binary approximation can be
reformulated into the requirement that only one other atom resides within a sphere with the
Weisskopf radius around the emitting atom. For the rubidium D2 line, this is fulfilled for fairly
large densities N < (4πρ3

W /3)−1 ≈ 180k3.
However, the conditions of the impact approximation are not always fulfilled, especially at

the wings of the spectrum. At these large detunings, the spectrum is impacted by short time
scales 1/(ω − ωeg), e.g., atomic states that are much shorter-lived than the average [136]. Then
the duration of the atomic collision is no longer short and the quasi-static limit usually offers a
better description [135, 136]. Practically, this results in a similar line broadening. Nonetheless,
this regime shift contributes to the many difficulties associated with predicting a collisional line
shift. A variety of qualitatively different results exist depending on the exact conditions and the
exact assumptions made. While some works obtain no shift for an 1/r3 potential [171], others
predict a blueshift [170], while experiments often extract a small redshift [174]. A complete
discussion of the topic and an exact expression for the collisional line shift is, unfortunately,
beyond the scope of this thesis. A more extensive quantitative treatment of collision processes
can be found in the reviews of Lewis [171] and Allard and Kielkopf [172].

The works cited in this section study atomic collisions in free space. We know, however,
that when the distance between the colliding atoms is similar to their distance to a macroscopic
surface, modifications through the surface Green’s tensor must occur. This happens both directly
through the modified dipole-dipole interaction potential and indirectly through the spatially
varying atomic properties that originate from the Casimir–Polder and Purcell effects. It goes
beyond the scope of the present thesis to rederive the theory of collisions in the framework of
macroscopic QED, although such results would be very desirable. When qualitative expressions
for the collisional broadening are needed in this chapter, we utilize the free space result (3.49)
as a rough approximation.
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3.2.5. The velocity distribution in front of a surface

Finally, we discuss the velocity distribution of the atoms. While a free-space vapor in thermal
equilibrium obeys the Maxwell–Boltzmann distribution, our problem involves a surface with
which the atoms constantly collide. In this situation, the Maxwell–Boltzmann distribution
arises when the flux of atoms from and to the surface13 is proportional to the cosine of the angle
between the flux direction and the surface normal [175]. In kinetic gas theory, this is known as
Knudsen’s cosine law [176]. The flux is composed of elastic scattering (specular reflection or
diffraction), inelastic scattering (associated with the creation or annihilation of phonons), and
desorption (following adsorption by the surface) [175]. The cosine law considers only the sum of
these contributions so that individual components can show a different behavior. For example,
multiple works have suggested sharper distributions ∝ cosn θ with n > 1 for surface desorption,
see Ref. [175] and the references therein. The cosine law presumes rectilinear and classical
atomic trajectories. These assumptions may be questionable in close vicinity to the surface,
where a strongly spatially varying Casimir–Polder potential is present and quantum reflection
could play a role. The Casimir–Polder effect could have a significant impact on the trajectories
of atoms that move nearly parallel to the wall. Such atoms dominate the signal in some types
of selective reflection experiments, as we will see in the next sections. Therefore, a recent
experiment [177] investigated atoms leaving the surface at grazing angles of 85◦ − 88.5◦. But no
deviations from the Maxwell–Boltzmann behavior were found, similarly to an older experiment
[178] which used a low-density thermal Na vapor in a long cylindrical glass cell. While there is
no rigorous microscopic justification for an isotropic Maxwell–Boltzmann velocity distribution
in front of a surface, there is also no experimental evidence towards another distribution.
Therefore, the isotropic Maxwell–Boltzmann distribution is our working hypothesis. Because
our theoretical framework remains applicable for other velocity distributions, it can be updated
in the future if necessary.

3.3. Theoretical description of spectroscopic techniques

Utilizing the continuous medium model, we can now present the theory of the spectroscopic
techniques that are used to determine the Casimir–Polder shift in vapor cells.

3.3.1. Selective reflection spectroscopy

The reflectance of the dielectric-vapor interface at the cell wall undergoes characteristic changes
when the light frequency is tuned over the atomic resonance, recall Fig. 1.2 a. The observation
of these changes is termed selective reflection (SR) spectroscopy. Inserting the velocity averaged
dipole moment (3.19) into Eq. (3.42), the amplitude reflection coefficient of a cell wall can be

13We assume thermal equilibrium, such that the particle flux from the surface equals the flux from the surface.
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written as

rsurf = r12 +N
∑︂
µ,ν

ikt21
2ϵ0

∫︂ ∞

−∞
dvz

∫︂ ∞

0
dz

eikz

E0
d

x,
ge
µν
σge

µν
(z, vz)⏞ ⏟⏟ ⏞

=ζ(ωL)

. (3.50)

The measured intensity reflection coefficient RSR = |rsurf|2 is

RSR = |r12|2 +N (r12ζ
∗(ωL) + r∗

12ζ(ωL)) +N2|ζ(ωL)|2 (3.51)

≈ r2
12 + 2Nr12Re ζ(ωL), (3.52)

assuming that the atomic vapor is thin enough that the vapor induced changes are small
compared to the reflection coefficient against vacuum. Usually, one investigates situations where
the dielectric features very low losses14 at the ground to excited state transition frequency such
that we can take r12 ∈ R. Further, one often assumes that the atomic vapor is so thin that
atom-atom interactions can be neglected altogether, such that the electric field is unchanged
by the presence of the atomic vapor, Eloc

x (z) ≈ Ex,inc(z) [60]. Inserting this in Eqs. (3.23) and
(3.24), the atomic contribution ζ(ωL) becomes

ζ(ωL) ≈ −
∑︂
µ,ν

k t12 t21
2ϵ0ℏ

|d
x,

ge
µν

|2fg
µ

∫︂ ∞

0
dz

{︄∫︂ z

0
dz′ eik(z′+z)

∫︂ ∞

0
dvz

W (vz)
vz

exp
(︃Λνµ(z′, z)

vz

)︃

+
∫︂ z

∞
dz′ eik(z′+z)

∫︂ 0

−∞
dvz

W (vz)
vz

exp
(︃Λνµ(z′, z)

vz

)︃}︄
(3.53)

= −
∑︂
µ,ν

k t12 t21
ϵ0ℏ

|d
x,

ge
µν

|2fg
µ

∫︂ ∞

0
dz

∫︂ z

0
dz′ eik(z′+z)

∫︂ ∞

0
dvz

W (vz)
vz

exp
(︃Λνµ(z′, z)

vz

)︃
.

(3.54)

For the second equality, we transformed the velocity integral,
∫︁ 0

−∞ dvf(v) =
∫︁∞

0 dvf(−v), and
the spatial integral,∫︂ a

0
dz

∫︂ z

a
dz′ f(z′, z) = −

∫︂ a

0
dz′

∫︂ a

z′
dz f(z, z′) = −

∫︂ a

0
dz

∫︂ z

0
dz′ f(z, z′). (3.55)

Physically, this means that the atoms departing from and arriving at the surface contribute
equally to the change in reflectance [60, 179]. This peculiarity occurs for a single surface, a
thin atomic vapor with negligible atom-atom interactions and negligible saturation. It is not
valid in general.

14This assumption does not affect the possibility that the surface is resonant with one of the transitions that
enter the Casimir–Polder interaction coefficient.
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3.3.2. Frequency-modulated selective reflection spectroscopy

Selective reflection spectroscopy can be refined by frequency modulation techniques which allow
removing the impact of Doppler broadening. In this approach, sidebands are added to the
optical frequency of the excitation laser field and a beating signal is detected [180–182], see
Fig. 3.10. The sidebands are produced by an electro-optic modulator (EOM) which generates

Monochromatic
laser

Electro-optic
modulator

Sample
Fast

Photodetector

Signal ProcessorRF
Oscillator

Figure 3.10: General scheme of frequency-modulated spectroscopy following Ref. [182].

periodic phase changes with a modulation frequency ωm and of a magnitude that is given by
the modulation index M . Thus, the laser field acquires a time dependence

Einc(t) = E0 e
−i[ωLt+M sin(ωmt)] = E0 e

−iωLt
∞∑︂

n=−∞
Jn(M)e−inωmt. (3.56)

The second equality is the Jacobi–Anger expansion15 for the cylindrical Bessel functions Jn(M)
[183]. In practice, the modulation index is weak, M ≪ 1, such that one can use the Taylor
expansion

Jn(M) = Mn

2nn! + O(Mn+2), for n ∈ N0. (3.57)

The Bessel functions of negative n are obtained via J−n(M) = (−1)nJn(M). Weak modulation
effectively limits the infinite sum in Eq. (3.56) to the first terms from n = −1 to n = +1. Since
our unsaturated vapor obeys the superposition principle, we can calculate and add up the
atomic responses to each frequency component of the incident field. The intensity reflection
coefficient is

RFM =
⃓⃓⃓⃓
⃓Er(t)e−iωLt

E0e−iωLt

⃓⃓⃓⃓
⃓
2

=

⃓⃓⃓⃓
⃓⃓ 1∑︂
n=−1

{r12 +Nζ(ωL + nωm)} Jn(M)e−inωmt

⃓⃓⃓⃓
⃓⃓
2

+ O(M2). (3.58)

Let us further assume that the atomic vapor is so thin that changes to the reflectance on
the order of O(N2) can be discarded. Neglecting also the terms O(M2), the reflection signal

15Taking the Jn(M) as Fourier expansion coefficients, one can use the Jacobi–Anger relation to obtain the Bessel
function definition (A.43).



56 The Casimir–Polder effect in spectroscopy

becomes

RFM ≈RSR +Nr12
M

2
[︂
ζ(ωL + ωm) − ζ∗(ωL − ωm) + ζ∗(ωL) − ζ(ωL)

]︂
e−iωmt + c.c. (3.59)

=RSR +Nr12
M

2

{︄
Re [ζ(ωL + ωm) − ζ(ωL − ωm)] cos(ωmt)

+ Im [ζ(ωL + ωm) − 2ζ(ωL) + (ωL − ωm)] sin(ωmt)
}︄

(3.60)

≈RSR +Nr12M

{︄
ωmRe [ζ ′

µν(ωL)] cos(ωmt) + ω2
m

2 Im [ζ ′′
µν(ωL)] sin(ωmt)

}︄
. (3.61)

In the last line, we approximated the difference quotients by the corresponding derivatives
assuming that the modulation frequency ωm is sufficiently small. Locking onto the in-phase
component (∝ cos(ωmt)) provides access to the first derivative of the real part atomic response,
while the out-of-phase component (∝ sin(ωmt)) is proportional to the second derivative of the
imaginary part of the atomic contribution. Sometimes the real and imaginary parts of the
atomic signal contribution are referred to as dispersive and absorptive response functions [60].

As in the previous subsection, we consider a low-density limit in which atom-atom interac-
tions are neglected. Then, the first derivative of Eq. (3.54) takes the form

ζ ′(ωL) =
∑︂
µ,ν

ik t12t21
ϵ0ℏ

|d
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ge
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|2fg
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0
dvz

W (vz)
v2

z

exp
(︃Λνµ(z′, z)

vz

)︃
.

(3.62)

Let us consider the high temperature or Doppler limit where the Doppler width vthk is much
larger than the detuning, the linewidth, and the Casimir–Polder shift. Then, we can approximate
W (vz) ≈ W (0) and conduct the velocity integral analytically,

ζ ′(ωL) ≈ −
∑︂
µ,ν

ik t12t21
ϵ0ℏ

|d
x,

ge
µν

|2fg
µ

∫︂ ∞

0
dz

∫︂ z

0
dz′ eik(z′+z) (z′ − z)W (0)

Λνµ(z′, z) (3.63)

= t12t21W (0)
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dz′ eik(z′+z) ΛAW
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.

(3.64)

The last line is found by expanding with
(︂
−iδνµ + γ̄vac

νµ

)︂
, adding a zero in the numerator,

0 = ΛAW
νµ (z′, z) − ΛAW

νµ (z′, z), and conducting the double integral over eik(z′+z). The term in
parenthesis is the atomic polarizability without any Doppler shift. Thus the in-phase component
of the frequency-modulated selective reflection (FMSR), Eq. (3.64), is created by atoms with
vz = 0 that are flying parallel to the wall. This elimination of the Doppler shift in the thermal
vapor is possible because of the nonlocal character of the atomic emission and the access to the
first derivative via the frequency-modulated incident field. In absence of atom-wall interactions,
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where ΛAW
νµ (z′, z) = 0, only the first part of Eq. (3.64) remains. One can use this to estimate

that the out-of-phase component of the reflectance (3.61), which includes a second derivative,
is suppressed roughly by a factor of ωm/γ̄

vac
νµ compared to the in-phase component [60].

3.3.3. Thin cell spectroscopy

In contrast to a single wall, or equivalently a large vapor cell, nanocells confine atoms to very
narrow spaces. This limits the maximum atom-wall distance and enables relatively strong
transmission signals despite the resonant interaction due to the short pathway in the vapor.
The amplitude transmission coefficient (3.43) of the cavity geometry can be written as

tcav = t0 +N
∑︂
µ,ν

ikt21e
iwk(1−n1)

2ϵ0E0

∫︂ ∞
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dvz
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x,
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σge

µν
(z, vz) (3.65)

= t0 +Nζcav(ωL). (3.66)

The measured quantity is the intensity transmission coefficient

TNC = t20 +N [t0ζ∗
cav(ωL) + t∗0ζcav(ωL)] +N2 |ζcav(ωL)|2 . (3.67)

For a sufficiently thin vapor, we may again neglect the atom-atom interactions such that
Eloc

x (z) ≈ Ex,inc(z). Utilizing the transformations of the velocity and spatial integrals (3.55),
the atomic response can then be cast into

ζcav(ωL) = −
∑︂
µ,ν

fg
µ
|d

x,
ge
µν

|2ke
iwk(1−n1)

ϵ0ℏ
t12t21

(1 − r2
21e

2ikw)2

∫︂ ∞

0
dvz

W (vz)
vz

∫︂ w

0
dz

∫︂ z

0
dz′

× exp
(︃Λνµ(z′, z)

vz

)︃(︂
r21
[︂
eik(z1+z2) + eik(2w−z1−z2)

]︂
+
(︂
1 + r2

21e
2ikw

)︂
cos[k(z − z′)]

)︂
.

(3.68)

Thin cell spectra can show sub-Doppler features [184–186] that are phenomenologically rem-
iniscent of a work by Robert Dicke [187] and therefore referred to as Dicke-type narrowing.
However, the observations do not seem to be directly related to Dicke’s theory. They result
from the nonlocal response of the vapor and the quenching boundary conditions [188], which
are taken into account by our treatment.

3.4. Calculation of spectra

Finally, we utilize the low-density limits presented in the previous section to compute FMSR
and thin cell spectra based on exact Casimir–Polder shifts, Purcell effect, and sublevel splittings.
Subsequently, we fit the resulting spectra with a single constant C3 coefficient. This establishes
a link between the exact treatment in theory and the simplified treatment often used in
experiments.
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Some experiments exceed the limits for which the low-density approximation strictly holds
to get a stronger signal and a better signal-to-noise ratio. Inspired by a recent experiment
[158], we investigate such a situation in the last subsection. Instead of using the low-density
approximation, we self-consistently compute thin cell transmission spectra at moderate densities
in the continuous medium model. The C3 coefficients are usually negative. Bear in mind that
whenever we compare them in the following, larger and smaller refer to the absolute values of
the coefficients.

3.4.1. Low-density frequency-modulated selective reflection spectra

Using Eqs. (3.52) and (3.64), we compute the FMSR spectra of the rubidium D1 and D2 lines
for a sapphire surface at T = 300 K. The density of N = 0.01k3 is small enough to neglect
vapor-induced changes to the incident field. We also disregard the collisional broadening, which
is smaller than 9% of the vacuum linewidth, such that the only density dependence of our
spectrum is in the prefactor 2Nr12.

For the numerical evaluation, the upper bound of the z integral in Eq. (3.64) needs to be
truncated to a finite value w. However, the result obtained this way oscillates with w and very
large values of w may be required to obtain convergence. We cope with this challenge through
an averaging scheme that is presented in Sec. E.1. It allows us to include only distances up to
two transition wavelengths for the D-lines16. Of course, this only works because the FMSR
signal is determined by the atoms close to the surface.

The computed spectra are shown in Fig. 3.11 together with a fit model that replaces the
exact atom-wall interaction17 with a simple C3 expression18 and additionally adjusts the vacuum
linewidth and a prefactor. The simple model provides an excellent phenomenological description.
The fitted prefactor of the D2 (D1) line is only 3% (5%) smaller than in the exact computation
and the fitted linewidth is only 5% (9%) larger than its vacuum value. The uncertainty of
all fitted parameters is on the order of 1% or smaller. The fitted C3 coefficients are roughly
40% larger19 than the exact results in immediate vicinity to the surface, see Fig. 3.11. This
larger value compensates for the Purcell effect and the CP shift at larger distances that exceed
what one would expect from a pure C3/z

3 potential, recall Fig. 3.4. These results conform with
the findings on cesium in Ref. [189], which is the only other work known to the author that
incorporates the exact CP shift and Purcell effect in vapor cell spectra. Ref. [189] adds a fourth
parameter to its model, a collisional shift, that is also used to fit experimental spectra. In our
calculation, it has no physical motivation, is not required to reach a good match, and has only

16For the D line spectra, we apply the oscillation correction from Sec. E.1 to a distance of λ/2 subsequently to
two oscillation periods of λ and λ/2.

17ΛAW
νµ (z′, z) = LAW

νµ (z′) − LAW
νµ (z) is efficiently computed by interpolating precalculated integrals LAW

νµ (zi).
18ΛAW

νµ (z′, z) ↦→ iC3/2 × (1/z2 − 1/z′2) where the same C3 is used for all ν, µ pairs.
19For the D2 line, we compare the fitted value with the result for the µ = 1/2 → ν = 1.5 transition that

dominates the signal in the exact computation because its squared dipole moment is three times as large as
for the µ = 1/2 → ν = ±0.5 transition.
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Figure 3.11: Upper panel: FMSR spectra of the rubidium D1 and D2 line, respectively, for a sapphire
surface at T = 300 K and a density of N = 0.01k3. The dotted line indicates the result one would obtain
if no atom-wall interaction was present. The exact result largely overlaps with a three-parameter fit that
includes a prefactor, a constant linewidth, and a constant C3 coefficient that are equal for all substates.
Lower panel: C3 coefficient from the fit together with the effective C3 from the exact computation.

a small impact on the other parameters20 when included. In addition, Ref. [189] appears to
have used the same (isotropically averaged) Casimir–Polder shifts and Purcell broadenings for
all substate pairs µ, ν. Our D2 line result in Fig. 3.4 shows that a fit with a single C3 coefficient
can still be applicable even when the exact CP shifts differ between the substates pairs.

Furthermore, Ref. [189] suggested that the fitted C3 coefficient can change as the homoge-
neous linewidth increases through atomic collisions. Conceptually, this is plausible. A larger
homogeneous linewidth allows exciting atoms with larger Casimir–Polder shifts which occur
when atoms are closer to the surface. The effective C3 coefficient differs as one approaches the
surface, recall Fig. 3.4. This should impact the fitted C3 coefficient. However, a considerable
change in the collisional broadening implies a considerably large density. In general, it is
therefore not compatible with the low-density approximation used in Ref. [189]. Instead, a
self-consistent treatment, which we will discuss in Sec. 3.4.3, is required to avoid a bias.

Finally, we should address the limits of the flat velocity distribution W (vz) ≈ W (0) used
to obtain Eq. (3.64). Without this assumption, the velocity integral requires an expensive
numerical computation. The flat velocity distribution suffices for D-line FMSR spectra in
Fig. 3.11. But in App. E.3.1, we also consider a 5P3/2 → 6D3/2 transition that features

20The fitted C3 and linewidth become roughly 1% [4%] smaller for the D2 [D1] line.
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a much larger Casimir–Polder shift and much larger Purcell line broadening. Both are no
longer small compared to the Doppler shift kvth, which is the condition for the approximation
W (vz) ≈ W (0). If one conducts the approximation nonetheless and calculates an FMSR
spectrum with Eq. (3.64), the result will contain artifacts, as shown in App. E.3.1. In general,
it is therefore necessary to perform the integral over the full velocity distribution instead of
using Eq. (3.64). This is, however, left to future work.

3.4.2. Low-density thin cell transmission spectra

We have seen that at a single surface, the fitted C3 coefficient turns out to be larger than
the nonretarded C3 in the z → 0 limit because of the long-range behavior of the shift that
is underestimated by C3/z

3 law. In a nanocavity with a small width w, however, all atoms
approximately follow a C3 law as the atom surface distance can never be larger than w/2. This
makes it interesting to perform a C3 fit in cavity geometry and compare the results with those
for a surface from the previous subsection.

For this purpose, we must first compute the exact Casimir–Polder shift and Purcell broad-
ening of the rubidium D-lines in a cavity with two sapphire walls using the exact Green’s
tensor (A.46) derived in App. A.3. They are shown in Fig. 3.12 and Fig. 3.13. Since the cavities
are mirror-symmetric, it is sufficient to present the results only for z smaller or equal to half
of the cavity width w. The effective C3 coefficient is computed by dividing the shift with
(1/z3 + 1/(w − z)3), i.e. the proportionality factor one would expect if the cavity shift was
the sum of the two surface shifts21. The most striking difference between cavity and surface
geometries is, as one would expect, the strong increase of the Purcell effect for some mj . We
will see the consequences of this down below.

With the exact atom-interactions known, we compute the corresponding thin cell trans-
mission spectra (3.67) at T = 300 K. Analogously to the previous subsection, the density is
N = 0.01k3 and thus small enough to use the low-density approximation of Eq. (3.68). The
velocity integration in Eq. (3.68) poses a challenge in presence of atom-wall interactions as
the integrand becomes highly oscillatory in close vicinity to the surfaces22. Standard adaptive
quadrature schemes can still cope with the spectra in this subsection, presuming that suitable
adjustments to the upper and lower boundaries of the velocity integral are made. In more
general scenarios, it is most likely necessary to use specialized integrators such as Levin’s rule
[190, 191] which is also implemented in Wolfram Mathematica’s NIntegrate command.

As an example, we show the spectra for one cavity width in Fig. 3.14 together with
a simplified fit model. Analogously to the previous section, the fit parameters are the C3

21Generally, the two surfaces impact one another, as a mirror dipole produced in one surface also induces one on
the other and so on. In the nonretarded limit, however, this effect would only cause a few percent deviation
from C3(1/z3 + 1/(w − z)3) [158]. The distance dependence of the effective C3(z) occurs mainly because the
nonretarded limit is not strictly adhered to at nonzero distances from the surfaces.

22The exponential exp [Λνµ(z′, z)/vz] involves terms similar or equal to exp
(︁
iC3/(2z2v)

)︁
, whose oscillation

frequency becomes infinitely large as z → 0.
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Figure 3.12: Casimir–Polder shift and Purcell broadening of the rubidium D2 line at a sapphire surface
and in sapphire cavities of different width w at T = 300 K. The upper and lower panel correspond to
transitions with different mj sublevels. The effective C3 is computed by dividing the shift by 1/z3 for
the surface and by 1/z3 + 1/(w− z)3 for the cavities. The cavity results are only shown up to a distance
of w/2 since they are mirror-symmetric for the remaining z values.
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Figure 3.13: Casimir–Polder shift and Purcell broadening at a sapphire surface and in sapphire cavities
of different width w analogously to Fig. 3.12 but for the rubidium D1 line.

coefficient, the linewidth, and a prefactor. The phenomenological description with the fit is
again excellent. The fitted prefactor is always close to one23. The fitted shift and linewidth

23The largest deviation is only 1.4%.
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are shown in Fig. 3.15. The fitted linewidth grows as the cavity width shrinks because of the
stronger Purcell effect demonstrated in Fig. 3.12 and Fig. 3.13. The fitted C3 coefficient, on the
other hand, changes by less than 5% for different w and can therefore be considered roughly
constant. This matches the observations in a recent experiment [158] that found a fitted C3

that is constant for different cavity widths within the error bars. Furthermore, the absolute
value of the fitted C3 is smaller for the nanocell than for the surface, as expected based on the
lack of long-range contributions. Nonetheless, the fitted C3 coefficients are still around 15% to
18% larger than the nonretarded C3 for z → 0 that is often used for comparison. The reason is
that even in thin cavities, whose width is smaller than the reduced transition wavelength, the
effective C3 can still be 20% larger at the center than at the border of the cavity, see Fig. 3.12
and Fig. 3.13.
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Figure 3.14: FMSR spectra of the rubidium D1 and D2 line for a sapphire cavity of width w = 190 nm
and w = 186 nm at T = 300 K and a density of N = 0.01k3. The dotted line indicates the result
one would obtain if no atom-wall interaction was present. The exact result largely overlaps with a
three-parameter fit that includes a prefactor, a constant linewidth, and a constant C3 coefficient that
are equal for all substates.
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the rubidium D1 and D2 line. The corresponding spectra for the largest w are shown in Fig. 3.14. The
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geometry.

In conclusion, we have shown that in the low-density limit, FMSR spectra from a surface and
thin cell transmission spectra can be excellently described by fitting to a model with a simple
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C3 coefficient. However, this fitted C3 varies between methods as different spatial regions are
integrated. In our examples, it is 20% to 40% larger than the result of a nonretarded calculation.
Often a fitted C3 from an experiment is compared to a nonretarded C3 from a theoretical
calculation. This comparison may not be very significant in quantitative terms. Instead, one
should compute the exact shift and use the same fit function as for the experimental data to
obtain a theoretical fitted C3 that could be compared against the experimental result.

Furthermore, the theoretical prediction should include the sublevel splitting and the induced
anisotropy. Often, however, only isotropically averaged values are used for theoretical predictions.
In the following, we will use the example of the D2 line to demonstrate how this can lead
to erroneous conclusions. Out of the two types of sublevel transitions (±1/2 → ±3/2 and
±1/2 → ∓1/2) that enter into the transmission spectrum, the ±1/2 → ±3/2 transitions
dominate due to their larger dipole moment. This is reflected by the fitted C3 shown in Fig. 3.15
that is much closer to the effective C3 of the ±1/2 → ±3/2 transitions than the effective C3 of
the ±1/2 → ∓1/2 transitions. The latter is roughly 30% larger than the former, see Fig. 3.12
and Fig. 3.13. An isotropic average leads to a value of C3 = −7.8 THz rad nm3 that is larger than
the C3(z → 0) = −6.3 THz rad nm3 of the dominant ±1/2 → ±3/2 transition. The increase of
static C3 by isotropic averaging brings it close to the fitted of C3 ≈ −7.5 THz rad nm3. If one
would not further evaluate the actual distance dependence, this could create the impression of
a quantitative match within 4%, although it is pure coincidence.

Finally, we should state that an optimal theoretical description of an experiment accounts
for the hyperfine structure of the atoms. The corresponding dipole moments are given in App. C
and have been implemented in the context of this work. The main reason for using the fine
structure instead was to avoid a confusingly large amount of sublevel transitions that would
have obscured the fundamental points of this chapter.

3.4.3. Atom-atom interactions in thin cell spectra

At low atomic densities, like N = 0.01 k3, there are only small changes in the transmission
as can be seen in Fig. 3.14. In an experiment, it may be difficult to distinguish them from
background noise. Therefore, a recent experiment in thin cells [158] has been conducted at
a much higher density N ≈ 17 k3 [188] 24 that may no longer comply with the low-density
approximation that we have used so far.

To investigate the matter, we need to solve the equations for atomic polarization (3.23),
(3.24) and field (3.17), (3.18) in a self-consistent fashion. First, we compute the atomic response
(starting with Eloc

x (z) ≈ Ex,inc(z) in the first step) and infer the electric field inside the cavity.
This new field is then used to compute a new atomic response and the process is repeated until
a convergent result is found. Here we also include the collisional broadening (3.49). Fig. 3.16
shows the thin cell transmission spectra for two cavity widths, λ/(4π) ≈ 62 nm and 186 nm,

24The experiments have been conducted on the cesium D1 line where λ = 895 nm. The k in N ≈ 17 k3

corresponds to this wavelength.



64 The Casimir–Polder effect in spectroscopy

-5 0 5 10
/ / (k vth)

-0.2

-0.1

0

(T
-|t

0|2 )

TC Rb D2 line, w=186nm, N=1k3

low density approx
self-consistent
with local field

-5 0 5 10
/ / (k vth)

-0.6

-0.4

-0.2

0

(T
-|t

0|2 )

TC Rb D2 line, w=186nm, N=10k3

low density approx
self-consistent
with local field

-4 -2 0 2 4
/ / (k vth)

-0.02

-0.015

-0.01

-0.005

(T
-|t

0|2 )

TC Rb D2 line, w=62nm, N=1k3

low density approx
self-consistent
with local field

-10 -5 0 5 10
/ / (k vth)

-0.1

-0.05

0
(T

-|t
0|2 )

TC Rb D2 line, w=62nm, N=10k3

low density approx
self-consistent
with local field

Figure 3.16: Thin cell transmission spectra of the rubidium D2 line in sapphire cavities at T = 300 K.
We consider two different cavity widths w = 62 nm and w = 186 nm and at two different densities N = 1 k3

and N = 10 k3. Three different continuous medium models have been used: a low-density approximation,
a self-consistent treatment but without the local field correction, and a self-consistent treatment with
the traditional local field correction. The typical Doppler shift is roughly vthk ≈ 2 GHz rad.

at densities of N = 1 k3 and N = 10 k3. Three different models are shown. The first is the
low density approximation with Eloc

x (z) ≈ Ex,inc(z). The other two are self-consistent spectra,
one of which includes the local field correction (3.17) and the other disregards it, setting
Eloc

x (z) ≈ Ex(z). The spectra for w = 186 nm and N = 1 k3 show differences mainly very
close to the resonance. This is where the atomic polarization is the strongest and therefore
fosters the most pronounced change to the electric field inside the cavity. Naturally, the three
models feature much more pronounced differences at N = 10 k3 where also a wider frequency
range is affected. It is striking that the differences between the models are much smaller in the
smaller cavity with w = 62 nm. In the small cavity, all atoms are strongly influenced by the
Casimir–Polder shift, whereas the larger cavity includes atoms further away from the surface
that are only mildly affected. The CP interactions decrease the atomic polarization, suppress
changes in the field, and weaken the role of atom-atom interactions. Despite the high density of
N ≈ 17 k3, Ref. [158] was able to fit experimental spectra with a model that ignores atom-atom
interactions. This may be attributed to the dominant role of the Casimir–Polder effect for the
small cavities with w ≤ 100 nm under the conditions in Ref. [158]. However, even if that is
the case, a self-consistent model should still be consulted to check whether the omission of the
atom-atom interaction biases the extracted C3 coefficient in any way.

Previous works have investigated the impact of atom-atom interactions on standard selective
reflection spectroscopy at a single surface [153, 192]. However, the model with atom-atom
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interactions was not used for the evaluation of experimental results [155] published by partly
the same authors due to the “excessive computation time” [155] that would have been required
at the time. Other works that presented a self-consistent treatment for a cavity, e.g., Ref. [193]
ignored the Casimir–Polder interaction.

Fig. 3.16 shows that when a self-consistent treatment leads to differences, local field
corrections also play an important role. However, the validity of the Lorentz–Lorenz treatment
of local field corrections has been called into question by a series of recent experimental [44, 73]
and theoretical findings [71, 72, 194] when it comes to the near-resonant excitation of atomic
vapors. The reason is that an atomic vapor is granular and behaves differently from a continuous
medium for which the Lorentz–Lorenz relation has been derived. Since the spectra in Fig. 3.16,
as well as older works like Refs. [153, 192], are based on the assumption of a continuous medium,
they cannot be considered exact in the light of these new facts. Instead, it is necessary to
uncover the role of the granular nature of atomic gas on the atom-atom interactions in a
nanocavity. This is the subject of Chapter 4.



4. Atom-atom interactions in nanocavities
In this chapter, we show how a macroscopic environment shapes the light-induced atom-atom
interactions. As a first step, we demonstrate that the response of dense atomic ensembles
deviates from the established continuous medium theory. In particular, we address the so-called
collective Lamb shift. Then, we present a granular simulation approach and use it to compute
the near-resonant transmission of light through a thermal rubidium vapor in a planar nanocavity.
We find density-dependent line shifts and broadenings beyond continuous electrodynamics
models that oscillate with the cavity width and compare them with similar observations that
have been made in a recent experiment [44]. Furthermore, we predict that the amplitudes of the
oscillations can be controlled by coatings that modify the cavity’s finesse. Future experiments
can probe this prediction and assess the validity of our theory. These findings have also been
published in Ref. [194]. Finally, we address cold atomic gases in free space and showcase the
differences to thermal gases. We briefly review a new approach to solve the coupled dipole
model [195] that might contribute to a computationally more efficient treatment of thermal
gases in the future.

4.1. The collective Lamb shift

In Chapter 3, we treated the atomic vapor as a continuous medium, although it is actually
a random ensemble of atomic particles. In the latter case, there is no explicit local field
correction (3.17) or a Lorentz–Lorenz shift (3.48) because only vacuum exists in the immediate
vicinity of each atom. Adopting the granular perspective on the atomic vapor, we can utilize
ergodicity and compute its time average by performing an ensemble average. To that end, we
solve the coupled dipole model (2.104) for many different random atomic configurations. One
could expect that the Lorentz–Lorenz effect emerges again as a consequence of the averaged
atom-atom interactions.

To test this, we consider a slab of rubidium atoms in free space with a thickness of
w = 1.5/k ≈ 186 nm at zero temperature. Fig. 4.1 shows the transmission for the near-resonant
excitation of the D2 line for different atomic densities N that have been computed by an average
over thousands of random atomic configurations1. According to the continuous medium theory,
one expects a red shift of the transmission minimum with increasing density. This shift is
not given directly by the Lorentz–Lorenz expression (3.48) as it also depends on the sample
geometry. In 1973 Friedberg, Hartman, and Manassah [170] derived the so-called “collective
Lamb shift” (CLS) that incorporates the geometry dependence. For a slab of width w, it reads

∆CLS = ∆LL − 3∆LL
4

(︃
1 − sin(2kw)

2kw

)︃
. (4.1)

1The simulation method is detailed in Sec. 4.2.3.
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Figure 4.1: Left: Light transmission through a slab of rubidium atoms with width w in free space.
Right: Corresponding spectra for the near-resonant excitation of the D2 line for different atomic densities
N at zero temperature.

In our example, this suggests a minimum at −0.9 Γvac for a density of N = 1.5 k3 where
∆LL = −πΓvac. But in Fig. 4.1, no shift can be seen. This absence of a density-dependent shift
in the simulation of an interacting cold atomic ensemble was first reported by Javanainen et al.
[71] in 2014. Experiments followed that confined varying numbers of cold atoms in ellipsoid
[73, 196] and disc-shaped potentials [75]. While some experiments confirmed the absence of the
shift [73–75], others agreed with the CLS prediction for the respective geometry [196].

The theoretical study of Javanainen et al. [71] also predicted that the CLS is partially
restored in a thermal vapor due to the inhomogeneous broadening by the Doppler effect. Wedged
cells that confine thermal vapor layers with nanometer thicknesses are the ideal platform to probe
predictions across different densities and thicknesses. The first experiment in wedged nanocells
was published in 2012 [18] and seemed to agree with the CLS shift (4.1). However, inspired by
the cold atom debate, a new measurement partly by the same authors was published in 2018
[44]. Although the experimental results were equivalent, the new evaluation assessed the initial
agreement with the CLS prediction to be fortuitous [44]. In addition, theoretical arguments
were raised [44, 72] against applying Eq. (4.1) to vapor cells. To elucidate these unusual
developments and the physics behind them, we must first rederive the CLS expression (4.1)
from our coupled dipole model.

4.1.1. Derivation and discussion

We consider a slab of atoms of thickness w that is dominated by homogeneous broadening such
that the coupled dipole model is given by Eq. (2.105) and Eq. (2.106). We transform the model
for a continuous medium as in Sec. 3.2 and find

px(z) = αloc
xx E0e

ikz + Nαloc
xx k

2

ϵ0

∫︂ w

0
dz′G1D

free(z, z′, ωeg)px(z′). (4.2)
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The polarizability αloc
xx incorporates the local field correction as discussed in Sec. (3.2.3). The

calculation of a CLS usually includes the atom-atom interactions only to first order in the
Green’s tensor, see, e.g., Refs. [170] and [196]. This constitutes a single scattering or first Born
approximation. To conduct it here, we insert the zeroth-order solution px(z) ≈ αlocEx,inc(z) in
the integral and find

px(z) ≈ αloc
xx E0

(︃
eikz + χk2

∫︂ w

0
dz′G1D

free(z, z′, ωeg)eikz′
)︃
, (4.3)

where χ(z) = Nαloc
xx (z)/ϵ0 denotes the susceptibility. The transmission (3.43) through the vapor

slab is then given by

t = 1 + ikχw

2 (1 + χξ) with ξ = k2

w

∫︂ w

0
dz

∫︂ w

0
dz′G1D

free(z, z′, ωeg)eik(z′−z). (4.4)

We assume the same population of all substates, f
i
g
µ

= 1/(2Jg +1), and express the susceptibility
χ = 3∆LL/(δ − ∆LL + iγ0) in terms of the Lorentz–Lorenz shift ∆LL. Since the first Born
approximation takes χ to be small, we can use 1 + x ≈ 1

1−x for x ≪ 1 and approximate the
transmission profile by a Lorentz curve

t ≈ 1 − kwχ

2i
1

1 − χξ
= 1 − 3∆LLkw

2i(δ − ∆LL − 3∆LLRe ξ) + 6∆LLIm ξ − 2γ0
. (4.5)

The shift of the Lorentz profile is the CLS. The integral we have to solve is the same2 as
Eq. (4.1) in the work of Friedberg, Hartman, and Manassah [170],

∆CLS = ∆LL + 3∆LL Re ξ = ∆LL + 3∆LLk
2

w
Re

∫︂ w

0
dz

∫︂ w

0
dz′ i

2ke
ik|z′−z|eik(z′−z) (4.6)

= ∆LL − 3∆LL
4

(︃
1 − sin(2kw)

2kw

)︃
. (4.7)

The above derivation of the “collective Lamb shift” requires only classical physics, whereas the
Lamb shift has its origin in the quantum fluctuations of matter and fields. The name “collective
Lamb shift” is therefore misleading. While some works on the CLS adopt the continuous medium
approximation, e.g., Ref. [170], others retain the granular nature of the vapor [196]. But all
works known to me adopt the first Born approximation, which is intrinsically problematic3 for
a density-dependent effect. As the density increases and the effect should become more distinct,
the truncation of the Born series to the first-order term ceases to be a reliable approximation.
Fig. 4.2 compares the CLS against the minimum position in the Fabry–Pérot profile of a cavity

2The only difference is that we have already conducted the area integral over the 3-D Green’s tensor that led to
the 1-D Green’s function and that we have already included the bulk shift ∆LL.

3Another problematic approximation is the use of the far-field Green’s tensor. It may be justifiable in Ref. [196]
specifically because of the low densities N ≤ k3/80 considered there. But larger densities around 1 k3 imply
that the distance between neighboring atoms is only a fraction of the transition wavelength such that the
exact Green’s tensor has to be used.
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with vacuum “walls” that constitutes the exact all order solution in a continuous medium, recall
Sec. 3.2.2. At very small densities N ∼ 0.01 k3, the exact result approaches the CLS (4.1) [72].
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Figure 4.2: Detuning with minimal transmission through a Fabry–Pérot cavity with vacuum “walls”
filled a vapor of two-level atoms plotted against the cavity size, compare Ref. [72].

This density is similar to the maximum density of around k3/90 used in the experiment [196]
that agreed with a CLS prediction. It is also much smaller than the N ∼ 1 k3 investigated in the
experiment [73] that disagreed with the CLS prediction. This is not necessarily a contradiction:
Due to the smaller density, the first Born approximation or CLS may be sufficient for the first
experiment but not for the second, while both can be explained by a coupled dipole model.
The shift observed in Ref. [196] is likely attributed to the global geometry of the sample4 and
not to a local field correction effect.

The CLS has also been successfully probed with x-rays in solid targets, namely iron and
tantalum nuclei sandwiched between nanometer-thin, solid layers of other materials [197, 198].
It is possible that the parameters of these experiments also justify the use of the first Born
approximation. This is speculative, though, and a precise investigation of these very different
systems is beyond the scope of this thesis.

The above analysis shows that the CLS (4.1) only holds when a vacuum surrounds the
vapor and the density is small N ∼ 0.01 k3. Both of these conditions are not fulfilled in the
nanocell experiment from 2012 [18] that involved sapphire walls and densities N ∼ 50 k3. In
Ref. [18], the shift was extracted based on a fit model that partly accounted for cavity effects to
produce the correct line shape. A closer inspection shows that this model, which is detailed in
Ref. [17] and the supplemental of Ref. [44], was not designed in a physically correct manner. In
particular, it does not comply with the Fabry–Pérot formula (3.44) [44]. Curiously, this mistake
resulted in a shift that closely resembled Eq. (4.1), although there is no physical connection
between the two. The new study from 2018 [44] was able to fit the observed transmission
spectra by a Fabry–Pérot lineshape with an additional density-dependent broadening and shift.
Surprisingly, these two parameters still showed an oscillatory dependence on the thickness of
the vapor layer [44]. This could not be explained by the theories at that time, which had only
been conducted in free space, see Ref. [72]. Our coupled dipole model includes the influence of
the cavity on the atom-atom interaction and our simulation leads to broadenings and shifts
that are similar to the observations in Ref. [44] as we show in the next section.

4In the same way that a Fabry–Pérot profile has a shifted transmission minimum.
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4.2. Atom-atom interactions in sapphire nanocavities

We first present the necessary equations to simulate the transmission through discrete atomic
ensembles in a nanocavity. Then, we develop a continuous reference model with two fit
parameters, an additional broadening and an additional shift. Finally, we present our simulation
procedure and fit our theoretical spectra with the continuous reference model, which allows a
comparison with recent experimental results [44, 194].

4.2.1. Granular model

The spatial dependence of the incident field, Einc(z) = E+
inc e

ikz + E−
inc e

−ikz, imprints a distance
dependence on the atomic response that can be captured by an ansatz

⟨ˆ̃σ
A

ge
µν

(z)⟩ = ⟨ˆ̃σ+
A

ge
µν

⟩ eikz + ⟨ˆ̃σ−
A

ge
µν

⟩ e−ikz. (4.8)

The coupled dipole model (2.104) can be rewritten as two independent equations for the atomic
responses ⟨ˆ̃σ+

A
ge
µν

⟩ and ⟨ˆ̃σ−
A

ge
µν

⟩ to each of the incident field components. This reflects the linear
superposition principle and leads to

vA · ∇ ⟨ˆ̃σ±
A

ge
µν

⟩ e±ikzA = i

(︃
δ −

[︃
ωCP

A
eg
νµ

(rA) ± kvA,z

]︃
+ iγ

A
eg
νµ

(zA)
)︃

⟨ˆ̃σ±
A

ge
µν

⟩ e±ikzA

+ i

ℏ
f

A
g
µ

d
A

eg
νµ

·

⎛⎝E±
inc e

±ikzA +
∑︂

B ̸=A

G(rA, rB, ωB,eg)
∑︂
δϵ

d
B

ge
δϵ

⟨ˆ̃σ±
B

ge
δϵ

⟩ e±ikzB

⎞⎠ . (4.9)

The ansatz has made the zeroth-order Doppler shift kvA,z explicit. Finally, we perform a
local approximation and take ∇ ⟨ˆ̃σ±

A
ge
µν

⟩ ≈ 0. The physical justification is that the atom-atom
interactions in a dense vapor effectively give rise to a large homogeneous broadening that
suppresses the nonlocal character of the thermal vapor, recall Sec. 3.2.1. The approximation
also neglects the changes to the Doppler shift kvA,z when the effective wavenumber in the
vapor changes with increasing density, recall Sec. 3.2.2. Physically, it would be desirable to
waive the approximation, especially for moderate densities N ∼ 1 k3. Practically though, it is
indispensable because of the high computational requirements of the discrete coupled dipole
model which we encounter in the next sections. Neglecting the spatial derivative, we can rewrite
the coupled dipole model in a compact form, analogously to Sec. 2.3.5. For the dipole moment
pA = p+

A e
ikz + p−

A e
−ikz, we find the two equation sets

p±
A e

±ikzA = α±
A,ge

⎡⎣E±
inc(rA)e±ikzA +

∑︂
B ̸=A

G(rA, rB, ωB,eg)p±
B e

±ikzB

⎤⎦ , (4.10)

α±
A,ge = −1

ℏ
∑︂
µ,ν

f
A

g
µ

d
A

ge
µν

⊗ d
A

eg
νµ

δ − ωCP
A

eg
νµ

(rA) ∓ kvA,z + iγ
A

eg
νµ

(rA)
. (4.11)
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When the dipole moments pA are known, the transmission can be computed via Eq. (2.130).

4.2.2. Continuous fit model

Next, we construct a continuous version of Eq. (4.10). It includes an additional broadening
Γp and a shift ∆p which phenomenologically account for the missing effects from the discrete
model. We assume that all atomic substates are equally populated and introduce the helper
expressions

⟨α(z)⟩v = 1
(2Jg + 1)

∑︂
µ,ν

⟨αge
µν

(z)⟩v, Bµν(z) = δ − ωCP
eg
νµ

(z) − ∆p + i

[︃
γeg

νµ
(z) + γp

]︃
. (4.12)

For the polarizability (4.11), we conduct the ensemble average over the velocity distribution

⟨αge
µν

(z)⟩v = −1√
πℏvth

dge
µν

⊗ deg
νµ

∫︂ ∞

−∞
dv

1
Bµν(z) ∓ kv

e−v2/v2
th

= −
√
π

ℏωD
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µν
⊗ deg

νµ

[︄
D

(︃
Bµν(z)
ωD

)︃
− i exp

(︄
−
B2

µν(z)
ω2

D

)︄
sign

(︃ ImBµν(z)
ωD

)︃]︄
. (4.13)

Here ωD = kvth and D(x) = ex2 ∫︁ x
0 dt e

−t2 denotes the Dawson function for which stable
numerical implementations are available [199]. Due to the velocity integration, the same
polarizability applies for both components of the incident field. A division into ± components
for forward and backward running waves is no longer necessary. The coupled dipole model (4.10)
can be mapped to its continuous counterpart using the techniques from Sec. 3.2. The result
can be cast into the form

Ex,inc(z) = 1
⟨αxx(z)⟩v

⟨px(z)⟩v −N
k2

ϵ0

∫︂ w

0
dz′G1D

cav(z, z′, ωeg) ⟨px(z′)⟩v . (4.14)

Unlike in Sec. 3.2.2, Eq. (4.14) cannot be solved analytically because of the spatial dependence
of the Casimir–Polder and Purcell effects. The integral in Eq. (4.14) is replaced by a sum
using a Gauss–Legendre quadrature rule. The resulting linear equation system can be solved
numerically. Subsequently, the transmission (3.43) can be computed using the same quadrature
knots. Eq. (4.14) does not include the local field correction. It can be easily added by replacing
the prefactor 1/ ⟨αxx(z)⟩v with [1/ ⟨αxx(z)⟩v −N/(3ϵ0)].

4.2.3. Simulation procedure

Our simulations are conducted for 85Rb atoms at room temperature whose Doppler width
(FWHM) is roughly 85 Γvac that are confined in sapphire nanocavities as depicted in Fig. 1.2 b
and Fig. 2.7 b. The transmission spectra are computed for the near-resonant excitation of the
D2 line (5S1/2 → 5P3/2 transition), whose Casimir–Polder shift and Purcell broadening have
been discussed in Chapter 3. For the numerical implementation, we truncate the slab of atoms
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to a cylinder of radius R =
√

256π/k [72]. In each simulation run, we assign random positions,
ground-state populations (mj = +1/2 or mj = −1/2 state) and Doppler shifts sampled from the
Maxwell–Boltzmann distribution5 to the otherwise static atoms. Then, we solve the two coupled
dipole models (4.10) for the two incident field components for various detunings δ and infer the
transmission using Eq. (2.130). We compute the mean value of the intensity transmission over
thousands of random atomic realizations until the transmission profile converges. These steps
are performed for various atomic number densities N and cavity width w. An exemplary result
is shown on the left side of Fig. 4.3.
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Figure 4.3: Left: Transmission spectra through a sapphire nanocavity filled with rubidium vapors
with different densities N at room temperature. They are plotted against the detuning δ from the
D2 line resonance in a vacuum. The dots are obtained from the microscopic simulation with the coupled
dipole model, the dashed lines from standard continuous medium theory with a local field correction.
The straight lines show a fit of a continuous medium model without local field correction but with an
additional shift ∆p and a broadening Γp to the dotted simulation results. Right: The fit parameters ∆p

and Γp from the spectra on the left are plotted against the corresponding vapor density. The lines show
a linear fit.

The simulation results (dots) differ significantly from the standard continuous medium
theory (dashed lines), especially when the atomic number density N becomes larger. They
are well described by fitting an additional shift ∆p and an additional broadening Γp with
our continuous medium model (4.14) (straight lines). On the right side of Fig. 4.3, the fit
parameters are plotted against the corresponding atomic densities. The relation can be very
well described by a linear fit with gives constant slopes ∂N ∆p and ∂N Γp as in the experiment
[44]. The density is directly proportional to the number of interaction partners available to each
atom. Thus, the linear increase with density is expected for a shift and a broadening caused
by atom-atom interactions. The slopes describe the collective atom-atom interactions that
are present in a granular vapor but are not accounted for in the standard continuous medium
theory. The fit parameters ∆p and Γp feature statistical uncertainties that we estimate from

5The velocities, vz,A =
√︁

kBT/m N (0, 1), are random numbers drawn from a normal distribution N (µ, σ2)
with variance σ2 = kBT/m and mean µ = 0.
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the fit to the continuous medium model. We propagate these errors in the linear fit by utilizing
the estimation method of York et al. [200] instead of a simple polynomial regression.

It should be emphasized that the additional homogeneous broadening and the additional
homogeneous shift pose an effective phenomenological description. In chapter 3, we were able
to fit spectra with a simple C3 interaction coefficient, although the underlying Casimir–Polder
shift effect had a much more complex spatial dependence. Analogously, it is plausible that the
“real” broadening and shift in the cavity also feature a more complex spatial dependence, an
inhomogeneity between atoms, etc. Nonetheless, the fitted values for C3, Γp, and ∆p quantify
the (averaged) strength of the atom-wall or atom-atom interaction, respectively. They can be
determined and compared in theory and experiment, which is sufficient for the purpose of this
chapter.

Atom-atom interactions become significant at a density on the order of N ∼ 1 k3 ≈
5 × 1020 m−3. That is also the regime considered in Fig. 4.3. For N ∼ 1 k3 the Lorentz–Lorenz
shift (3.48) and the collisional broadening (3.49) become comparable to or larger than the
natural linewidth in vacuum. Yet, even a rubidium vapor with N = 100 k3 ≈ 5 × 1022 m−3

has a much smaller density than air under normal conditions, Nair = 2.5 × 1025 m−3. Due to
the strong interaction at resonance, a rubidium vapor with a density of N ≤ 5 × 1022 m−3

reaches a refractive index of 1.31 [17], which is comparable to the refractive index of liquid
water of 1.33, although water’s atomic number density, N ≈ 3 × 1028 m−3, is almost a million
times larger. It would be very desirable to simulate densities like N ∼ 50 k3 that are reached in
nanocell experiments [18, 44]. However, this is not practical due to the high computational cost
of coupled dipole model for which large linear equation systems have to be solved. The effort
scales with the number of atoms cubed. This limits our simulations to less than 1500 atoms
and caps the densities on the order of 1 k3 when larger cavity widths up to w ∼ λ are also to be
investigated. Our simulation model does not account for the nonlocal response of the vapor that
still plays a role at the moderate densities ∼ 1 k3. An experimental investigation at N = 1 k3

would likely result in spectra that are different from Fig. 4.3. Still, we want to compare against
experiments that took place at densities of N ∼ 50 k3 and obey the local limit. For this purpose,
it is consistent to use our local theory when we assume that the extracted slopes ∂N ∆p and
∂N Γp also apply to larger densities. The radius R =

√
256π/k to which we have truncated our

computational domain is also a compromise between accuracy and numerical effort. We have
checked in sample computations that the influence of the finite radius on the slopes is well
within our statistical error. However, if these error bars are to be improved by higher statistics,
a larger radius may also be required, which will increase the numerical effort considerably.

Our continuous fit model incorporates the atom-wall interactions via the Casimir–Polder
and Purcell effect. These interactions create inert vapor layers at the surfaces because they
detune the resonances to such an extent that the atoms can no longer be excited by the laser
field. Approximately 60 nm away from the surface, the Casimir–Polder shift is weak enough to
be comparable to the natural linewidth. Then, the atomic response approaches the value that
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Figure 4.4: Polarization density of a rubidium vapor in a sapphire cavity of width w ≈ 280 nm plotted
against the location z in the cavity for one specific detuning δ from the D2 line resonance. The straight
lines show the spatial profile from the fitted continuous medium model. By integrating this profile
according to Eq. (3.43), one obtains the data point for the transmission at δ = 2.5 Γvac in Fig. 4.3. The
same model was used for the dashed lines except that the Casimir–Polder and Purcell effects have been
omitted.

would be obtained if there was no atom-wall interaction as shown in Fig. 4.4. Furthermore,
we have conducted simulations without including atom-wall interactions. For cavities of width
w ≥ 1/k that are not dominated by atom-wall interactions, we find the same collective atom-
atom interaction parameters ∂N ∆p and ∂N Γp within the statistical uncertainty. This means
that the two parameters are solely determined by the two-level transition 5S1/2 → 5P3/2, which
can be fully characterized just by the transition wavelength and the transition dipole moment.
We can express our cavity width w in terms of the wavelength and the slopes ∂N ∆p and ∂N Γp

in terms of the slope of the Lorentz–Lorenz shift ∂N ∆LL. These dimensionless quantities apply
to any effective two-level system, i.e. any of the D lines of any of the alkali vapors.

4.2.4. Theory vs. experiment

The first experiment with dense atomic vapors in wedged nanocells in 2012 was conducted
with rubidium atoms [18], like our simulations. The second experiment in 2018 used potassium
atoms6 [44]. Using our dimensionless units, we can perform a cross-species comparison and
plot the experimental findings of Ref. [44] against our simulation results in Fig. 4.5. The
experimental data points end at a certain cavity thickness because the absorption becomes too
strong to obtain a transmission signal.

Theoretical and experimental collective shifts both show an oscillatory behavior with a
similar period and amplitude. The experimentally observed shift could be represented by a cosine
function with a period of (0.50±0.02)λ for a cavity size between 0.1λ to 0.75λ [44]. This period
approximately matches the series of dips and peaks in the simulation located at 0.52λ, 0.80λ
and 1.06λ. However, the shift does not follow a simple analytic function like a cosine in regions

6Potassium atoms feature a particularly small hyperfine splitting. While rubidium atoms produce a series of
transmission dips caused by the transitions between the various hyperfine states, these dips virtually merge
in a thermal potassium vapor. Dealing with a single line is more convenient in the experiment.
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Figure 4.5: Slope of collective shift (top) and broadening (bottom) over width w of a vapor-filled
sapphire cavity in simulation (85Rb, room temperature, density ≃ 1 k3) and experiment [44] (39K,
temperature varied up to 600 K, density up to 100 k3). In textbook electrodynamics, a constant Lorentz–
Lorenz shift (dotted line) is expected. Simulation error bars correspond to 1σ, solid lines are spline
interpolations. The figure is also published in Ref. [194].

larger than 0.75λ. The first dip for the shift is displaced between simulation and experiment by
about 0.1λ but features the same minimum of ∂N ∆p = (−1.0 ± 0.1)∂N ∆LL in the experiment
and ∂N ∆p = (−1.1 ± 0.1)∂N ∆LL in the simulation. The simulated collective broadening
oscillates similarly to the shift and partially overlaps with the experimental broadening around
0.4λ and 0.5λ and around a cavity width of 0.7λ. As a major difference, the experiment shows
a pronounced dip in the broadening around 0.55λ that is not present in the simulation.

The experiment (N up to 100 k3 [44]) and the simulations (N up to 1.5 k3) have been
conducted at very different densities, such that the comparison relies on the extrapolation of
a linear trend. Another difference is that all simulations have run at the same temperature
(T ≈ 300 K), while in the experiment different temperatures are used to reach different vapor
densities7. The experiment reaches substantially higher temperatures (up to T = 600 K) while
using lighter 39K atoms. In order to determine the influence of the temperature, we have carried
out some example calculations at higher temperatures but found no significant changes to our
collective shifts and broadenings. Furthermore, three effects could influence the experiment
that are not covered by the theoretical model.

First, atom-wall collisions may change the atomic velocity distribution away from a Maxwell–
Boltzmann shape. As we discussed in Sec. 3.2.5, the Maxwell–Boltzmann distribution is a
working hypothesis that can and should be replaced when new evidence hints towards another
distribution. Second, the simulation does not fully account for atomic collisions. We average

7The vapor density is controlled by heating the metallic deposit in the reservoir to a particular temperature. In
the nanocell experiments, this temperature also applies to the cell.
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interaction over different static configurations, which resembles the treatment of the quasi-static
regime in collision theories, recall Sec. 3.2.4. In thermal vapors, however, the collisions take
place in the impact regime, for which the trajectories and the motion of the atoms must
be included. Both collisional effects and static interaction effects like the Lorentz–Lorenz
shift scale linearly with density. This makes them hard to distinguish in the experiment8.
Interestingly, the collisional broadening (3.49) differs between D1 and D2 line by a factor of

√
2.

For the Lorentz–Lorenz shift (3.48) and the collective broadening Γp the ratio is 2. Therefore,
conducting experiments on D1 and D2 lines might help to distinguish the effects. Third, we
neglect temporal and spatial derivatives in a simplistic manner. As a result, the Doppler shift is
approximated to the “zeroth order” [72] by the vacuum shift. Deviations can be caused, e.g., by
the effective refractive index of the gas, recall Sec. 3.2.2. In addition, the finite spectrum of the
laser field and the light emitted by the atoms are not taken into account. Instead, we conduct
our simulations in a monochromatic approximation that treats each frequency component of
the light field independently. To overcome these limitations, one could solve the interaction
problem of moving atoms in the time domain and conduct the average there. But this increases
the numerical effort tremendously, and no successful implementation of such an approach for
an interacting dense vapor is known to me at the time of writing.

Collisions are the most likely cause for the discrepancies between theory and simulation
because they also scale linearly with density and have a profound impact on thermal vapors.
The similarity between simulation and experiment in Fig. 4.5 suggests that the collective shift
and broadening observed in the experiments are caused by the granular nature of the atomic
gas and the modified atom-atom interactions in the nanocavity environment. To test this
conjecture, we suggest a series of new experiments in coated cavities.

4.3. Atom-atom interactions in coated nanocavities

The atom-atom interactions in the cavity depend on the reflectance of the cavity walls. Cavity
coatings adjust this reflectance and should be able to change the collective broadening and
shift.

An increase can be accomplished by equipping the cavities with distributed Bragg reflectors
(DBR) made out of λ/4 stacks, see Fig. 4.6 c and 4.6 d. We use alternating layers of silica
(n = 1.45) and sapphire (n = 1.77). The topmost layer is always sapphire. Therefore, unknown
effects connected to the surface, such as possible deviations from the Maxwell–Boltzmann
velocity distribution, should occur in the same way in different cavities. In an experiment, this
might help to segregate their impact. The transmission and reflection coefficients of the cavity
coatings are calculated with the matrix input-output formalism presented in App. E.2. We
label the cavities by their finesse F = π|r21|/(1 − |r21|2) [138], a figure of merit that increases

8The experiment in Ref. [174] distinguished the effects using the third-order nonlinear optical response. However,
the work relies on the assumption of a continuous medium and ignores the granular character of the vapor.
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Figure 4.6: Cavity designs of finesse F with (a) no, (b) anti-reflection, or (c,d) Bragg mirror coating
with λ/(4n) layers. Figure also published in Ref. [194].
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Figure 4.7: Left: Transmission spectra through a nanocavity filled with rubidium vapor for two
different cavity width w. Right: Fitted collective broadening and shift ∆p, Γp plotted against the vapor
density. The graphs are analogous to Fig. 4.3 but for a coated cavity with Finesse 2.8, see Fig. 4.6 d.

monotonically with reflectance. Although our finesses are small9, they are sufficient to cause
prominent changes.

9Good cavities can reach finesses above 105. But high finesses would not be helpful to us because they allow
transmission only for specific cavity thicknesses and vapor densities.
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Exemplary spectra for the cavity design with finesse 2.8 are shown in Fig. 4.7. We
immediately see stark differences in the slopes of the collective broadening and shift depending
on the cavity width. Coincidentally, the standard local field correction works very well for
w = 3/k. This is an exception, though, and not true for almost any other cavity widths, see
also Fig. E.6 in the appendix. Furthermore, Fig. 4.7 shows that the linear fits do not generally
extrapolate to a shift and broadening of zero at zero density. Such a small offset also occurs for
the uncoated sapphire cavities for some thicknesses. It reminds us that the description with a
homogeneous shift and broadening is only phenomenological and not exact. Furthermore, a
higher finesse also raises the asymmetries in the transmission spectrum that occur for some
cavity widths, see Fig. E.6 in the appendix.
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Figure 4.8: Slope of the collective shift (top) and broadening (bottom) over width d of the atomic
layer. The atoms are in free space or in the coated cavities depicted in Fig. 4.6, respectively. Error bars
correspond to 1σ, solid lines are spline interpolations. Compare Ref. [194].

In Fig. 4.8, we plot the slops of the collective shift and broadening against the cavity width
for all cavity designs from Fig. 4.6. This also includes a cavity with smaller finesse due to an
anti-reflection (AR) coating shown in Fig. 4.6 b. For this, we use a λ/4 magnesium fluoride
(n = 1.38 [201]) layer, which provides a decent reflection suppression (R ≈ 0.1%). For the
sake of simplicity, we have not included a thin sapphire layer on top (∼ 10 nm) that would
likely be required in an experiment to protect the AR coating against the chemically aggressive
alkali vapor. With increasing cavity finesse, we get a prominent enhancement of the amplitudes
of the oscillatory features in the collective shift and broadening as depicted in Fig. 4.8. At
the same time, the oscillations are strongly suppressed in the AR-coated cavity. We attribute
the oscillatory dependence to the constructive or destructive interference of the photons that
mediate the atom-atom interactions inside the cavity. Because a higher finesse sharpens these
interferences, it is plausible that the shift and broadening can be enhanced with higher finesse
and suppressed with lower finesse. The collective shift and broadening in an AR-coated cavity
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are similar but not identical to those in free space, as shown in the appendix in Fig. E.7. The
AR coating only suppresses reflection at normal incidence, whereas the light fields scattered
between atoms also hit the cavity walls under oblique angles. In conclusion, we have shown
that the density- and width-dependent shifts and broadenings in a nanocavity can be tuned by
adjusting the cavity’s reflectance with coatings. The systematic changes predicted in Fig. 4.8
can be tested in future experiments.

4.4. Cold gases in free space

Although the coupled dipole model applies to all temperatures, the effective description in
continuous medium models differs between hot and cold vapors. In Fig. 4.9, we show the
transmission spectrum of a cold rubidium vapor in free space (dots), analogously to Fig. 4.1. It
features significant deviations from a fit attempt with a Fabry–Pérot profile with an additional
homogeneous line broadening and shift (straight lines) as we have used it for the thermal vapors.
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Figure 4.9: Transmission spectra through a slab of rubidium atoms in free space at zero temperature
excited near-resonantly to the D2 line for different atomic densities N . The coupled dipole simulation
results (dots) are shown together with a fit attempt based on a Fabry–Pérot profile with an additional
homogeneous broadening and a homogeneous shift.

Yet, a very recent work by Andreoli et al. [195] found an excellent continuous medium
description for a cold vapor. Instead of using two parameters for the entire spectrum, the
authors of Ref. [195] fitted the real and imaginary part of the vapor’s refractive index for each
detuning individually. Such an approach is only possible in free space, where no atom-wall
interactions exist and the refractive does not vary spatially. To facilitate a refractive index fit for
our simulation results, we compute not only the ensemble average of the intensity transmission
coefficient but also of the amplitude transmission coefficient like Ref. [195]. In an ensemble
of moving atoms, each atomic configuration corresponds to a different point in time. Each
configuration scatters a different light intensity onto the detector which effectively averages the
intensity over its finite response time. We mimic this by computing the average of the intensity



80 Atom-atom interactions in nanocavities

transmission coefficient. An average over the amplitude transmission coefficient, on the other
hand, causes scattered light fields originating from different atomic configurations to interfere.
Therefore, the two averages are not identical. However, in our examples, the results of both
approaches are so close to each other that the amplitude coefficient can be used too. Instead
of a single real number |t|2, we get a complex value t that can be converted into a complex
refractive index by using Eq. (3.43). In Fig. 4.10, we fit the transmission profiles of different
cavity widths w with the same complex refractive index n.
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Figure 4.10: Left: Transmission spectra through slabs of rubidium atoms of different thicknesses w in
free space at zero temperature excited near-resonantly to the D2 line. The coupled dipole simulation
results (dots) are shown together with a fit to a Fabry–Pérot profile with the real and imaginary part of
the vapor’s refractive index as parameters. Right: Fitted real and imaginary part of the vapor’s refractive
index plotted against the detuning. They are shown as points with error bars that largely overlap close
to resonance. The straight yellow line indicates the result of a Kronig–Kramers transformation (4.15) of
the fitted imaginary part of the refractive index.

It might seem inappropriate to compute an average over random atomic positions at absolute
zero where atoms do not move. However, we find results that are analogous to those shown
in Fig. 4.9 and Fig. 4.10 also for small temperatures like T = 0.1 K where atomic velocities of
vth ≈ 4 m/s enforce a time or configurational average. It is noteworthy that a single10 refractive
index in a Fabry–Pérot profile (3.43) can explain the spectra at different cavity widths. However,
it is not very conclusive to fit just eight numbers (real and imaginary parts of the transmission
coefficient for four different cavity widths) with two parameters.

If the fitted values for Ren(δ) and Imn(δ) are proper physical quantities, they must obey
Kronig–Kramers relations analogously to Eqs. (2.10) and (2.11). Using the results from App. D
and the fact that the detuning is small compared to the resonance frequency, |δ| ≪ ωeg, the
Kronig–Kramers relation for the real part of the refractive index can be written as

Ren(δ) ≈ 1 + 1
π

P
∫︂ δb

δa

dδ′ Imn(δ′) − Imn(δ)
δ′ − δ

+ Imn(δ)
π

ln
(︃
δb − δ

δ − δa

)︃
, (4.15)

10Within a certain error bound indicated in Fig. 4.10.
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where δa < δ < δb. Here δa and δb border the interval where Imn(δ) is appreciable larger than
zero. Using Eq. (4.15), we have computed the real part of the refractive index from the fitted
Imn(δ) and have indicated the result by a straight yellow line in Fig. 4.10. We find that the
Kronig–Kramers relations are fulfilled. The fact that a physical description with refractive
indices is possible but a fit with a homogeneous broadening and line shift fails means that we
must have an inhomogeneous broadening in the vapor. Ref. [195] presents a new path to solve
the coupled dipole model that elucidates the physical mechanism behind this inhomogeneity.

4.4.1. Renormalization group approach

The renormalization group (RG) approach of Andreoli et al. [195] solves the coupled dipole
model by approximately diagonalizing the many-body interaction matrix in terms of pairwise
blocks. Let us consider two atoms close to one another, i.e. k|r1 − r2| → 0. Their interactions
matrix has two eigenstates shifted as ω− and ω+ [195]. These shifts diverge as 1/r3

21 which
leads to two well-separated resonances with broadenings11 of Γ+ ≈ 2Γvac and Γ− ≈ 0 [195],
respectively. In the renormalization group (RG) approach, the two interacting atoms are
replaced with an optically equivalent pair of noninteracting but shifted atoms that show the
same scattering behavior.

Initially, the RG algorithm of Ref. [195] allows all atoms to interact. After the first step it
discards the interaction potential of the strongest interacting pair and instead randomly assigns
them the shifts ω− and ω+ that are obtained from the exact solution of their two-body problem.
Importantly, the line broadening is left unchanged. Unlike the shift, the broadening does not
diverge and therefore cannot be approximated pairwise [195]. If the modified broadenings Γ+

and Γ− are included, the scheme leads to nonphysical solutions [195]. The algorithm continues
to replace the pair with the strongest effective interaction with a shifted noninteracting pair
until the strongest effective interaction drops below a certain threshold, see Fig 4.11. A single
atom can gather multiple shifts when it is part of multiple pairs, but each pair is only replaced
once. As in the coupled dipole model, the RG approach is applied for various detunings and the
resulting transmission is averaged over sets of random positions. The algorithm accomplishes a
transition from a microscopic perspective that involves complex interactions to a self-similar
system with renormalized resonance frequencies where complex details must no longer be
considered. Therefore it is referred to as a renormalization group approach.

The new effective resonance frequencies can be characterized by a smooth probability
function P (ωeff) [195]. The distribution can also be obtained from the exact diagonalization
of the coupled dipole model for each atomic configuration. Both results are reported to agree
very well, demonstrating the validity of the RG approach [195]. Microscopically, the vapor is
a random arrangement of atoms whose different distances from each other lead to different
effective resonance frequencies. Therefore, the macroscopic description of the vapor with a
refractive index n includes an inhomogeneous broadening given by P (ωeff). This inhomogeneous
11These broadenings are also known from Dicke superradiance [61].
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RG RG RG
...

Figure 4.11: Concept of the renormalization group (RG) approach, compare Ref. [195]. In each step,
the strongest interacting pair of atoms is replaced by an optically equivalent non-interacting pair with
shifted resonance frequencies. The procedure is repeated until all strongly interacting pairs are replaced.

broadening prevents the refractive index of the vapor from exceeding a certain maximum value
no matter how large the atomic density becomes. This is the central finding of Ref. [195]
and stands in stark contrast to the homogeneous Lorentz–Lorenz shift (3.48) from standard
continuous electrodynamics that allows an arbitrary high refractive index. The cause of a
maximum value for Ren is the limited number of near-resonant atoms for light to interact with.
At some point, adding more atoms merely shifts the same amount of preexisting atoms out of
resonance. In Ref. [195] there are approximately 0.3 near-resonant atoms in a volume of 1/k3

regardless of how large the atomic density becomes.
The treatment in Ref. [195] involves a few approximations: It uses the nonretarded version of

the free-space Green’s tensor and takes fields and dipoles to be scalar quantities such that only
the xx component of the Green’s tensor enters the interaction matrix. The latter decreases the
number of rows and columns in the interaction matrix by a factor of three and greatly reduces
the computational cost. This also facilitates certain improvements compared to our treatment.
Andreoli et al. simulated atomic samples with a significantly wider radius, used a Gaussian beam
profile for the incident field, and integrated the scattered light fields over a hemispherical surface
far from the atomic ensemble. From our cold vapor spectra, we could not straightforwardly
extract reasonable refractive indices for some larger cavity widths and densities. The larger
computational domain in Ref. [195] might help to reduce such issues. Furthermore, we have
extracted12 the refractive index data from Ref. [195] and found them to comply excellently with
Kramers–Kronig relations. It would be very desirable to extend Ref. [195] to the exact 3-D
Green’s tensor, to include Doppler shifts and macroscopic environments. A (semi-)analytical
solution to the RG approach could greatly reduce the computational complexity. In this way,
the RG approach could have a great potential for thermal gases as it could allow investigating
higher atomic densities, nonlocal effects, or any other effect whose study is limited by the high
computational cost of the model.

12A useful tool for this is the WebPlotDigitizer [202].



5. Conclusion and outlook
This work investigated the interactions of thermal atomic vapors at a planar surface and
in planar nanocavities that are subjected to near-resonant laser light. In Chapter 2, we
revisited the formalism of macroscopic quantum electrodynamics and showed how the quantized
electromagnetic field could be expressed in the presence of linearly absorbing and dispersing
media utilizing the classical electromagnetic Green’s tensor. Our system included thermal and
electromagnetic ground state fluctuations. Starting from a Hamiltonian with an atom-field
coupling, we derived an equation of motion for the atomic coherence between the ground and
an excited state that includes atom-wall (Casimir–Polder and Purcell effects) and resonant
atom-atom interactions up to second order in perturbation theory. We considered the often
overlooked role of the magnetic atomic sublevels mj in the atom-wall interaction, especially the
sublevel splitting and coupling. The stationary limit of the atomic equation of motion led to the
coupled dipole model that has been used in the remainder of this thesis. By solving the coupled
dipole model, one obtains the light-induced dipole moments from which the scattered light
fields, the reflection spectra at a surface, and the transmission spectra through a nanocavity
can be computed.

Chapter 3 investigated how the strength of Casimir–Polder interactions can be inferred from
reflection and transmission spectra of thermal vapor cells and nanocavities, respectively. First,
we determined the Casimir–Polder and Purcell effects at a planar surface. In the nonretarded
limit, the shift follows a C3/z

3 law. But we showed numerically that the C3 coefficient starts
to change just 10 nm away from the surface. As a prerequisite for understanding the theories
commonly used to evaluate experimental spectra, we transferred the coupled dipole model
to a continuous medium description of the atomic vapor. As a cross-check, we demonstrated
how the well-known Fabry–Pérot transmission profile could be retrieved from our theory.
Furthermore, we discussed the local field correction that arises in a continuous medium and
that in a homogeneously broadened system can be rewritten into a homogeneous shift, the
Lorentz–Lorenz shift. Assuming low atomic densities, we derived theoretical reflection spectra
of a vapor cell (selective reflection and frequency modulated selective reflection spectroscopy)
and the transmission spectra of a nanocell. We computed spectra based on the exact Casimir–
Polder shifts and Purcell line broadenings and subsequently fitted them with a simplified model
containing a constant C3 coefficient. The phenomenological description was excellent, but the
fitted C3 coefficient was 20% to 40% larger than one would expect from nonretarded theory.
Many works compare a C3 from nonretarded theory with a fitted C3 from an experiment. In
quantitative terms, this may not be very meaningful. Instead, one could attempt a comparison
with an effective C3 that is computed from a theoretical spectrum without the nonretarded
approximation.

83
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Chapter 4 studied the atom-atom interactions of dense vapors in nanocavities. We reviewed
recent theoretical and experimental evidence that resonantly excited atomic vapors deviate from
the expectations from standard continuous electrodynamics. Specifically, the Lorentz–Lorenz
shift does not apply or is modified because an atomic vapor is a granular and not a continuous
medium. We aimed to develop a theoretical model for a recent experiment with a dense thermal
vapor in a wedged nanocell by Peyrot et al. [44]. For this, we simulated the light scattering of
random atomic ensembles in a sapphire nanocavity. Like the experimental spectra, our simulated
spectra could only be described by continuous medium models when an additional shift and
broadening were included. Both of them grow linearly with density. Their slops featured a
similar oscillatory dependence on the cavity width w in both theory and experiment. However,
the high computational cost constrains the simulations to moderated atomic densities around
1 k3 while the experiments reach densities up to 100 k3. Furthermore, we conducted simulations
in nanocavities that were equipped with coatings to increase or decrease the reflectance of the
cavity walls. We found that a higher reflectance massively increases the amplitudes of the
oscillations of the additional broadening and shift while an anti-reflection coating suppresses
the oscillations. These systematic changes can be probed in future experiments to test the
validity of our theory. Finally, we showed that in a cold vapor the atom-atom interactions lead
to an inhomogeneous broadening. This finding is part of a recent work by Andreoli et al. [195]
who developed a new approach to approximate the solution of the coupled dipole model using
renormalization group theory.

Our theoretical description of thermal vapors in macroscopic environments is by no means
complete and leaves many open questions for future works. It would be very desirable to solve
the coupled dipole model for densities as high as in the experiment and to solve the model
for atoms that move over a period of time. The latter helps to account for nonlocal effects,
changes to the Doppler shifts, atomic collisions, and much more. The main obstacle standing
in the way of these advancements is the high numerical cost of finding exact solutions to the
coupled dipole model. Only recently, the renormalization group approach has offered a new
way of approximating solutions. This could help to decrease the numerical effort, especially if
(semi-)analytical solutions for the process would be found. The first step is to see if the scheme
can be extended to include the exact 3-D Green’s tensor, randomly assigned Doppler shifts,
and Green’s tensors of a macroscopic geometry.

Furthermore, our three-dimensional coupled dipole model could be applied to other macro-
scopic geometries. So far, (cold) atom-atom interactions have been explored in one- and
two-dimensional photonic crystals [203–206]. But hot or cold atoms have also been interfaced
with microresonators [207], nanofibers [208], hollow-core fibers [209], superconducting chips
[210], or atomic cladding waveguides [16, 45]. The dipole-dipole interactions in these systems
can be studied by inserting the Green’s tensor for the respective geometry into our scheme.
Nonetheless, in some systems, the model must be extended by the transit time broadening
when dealing with thermal atoms. When fields are strongly localized, e.g. around a waveguide,
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thermal atoms enter and leave the field region. As a result, they only interact for a finite
amount of time which leads to the transit time broadening.

In many experiments, atom-atom interactions have not been a concern because the atomic
densities used were too low for them to have a significant impact. However, that can change
when the atoms are excited to higher levels, especially to Rydberg states. The transitions
between Rydberg levels have much smaller wavenumbers k such that much fewer atoms are
needed to reach the critical density of 1 k3. To study Rydberg atoms, the present coupled
dipole model should be extended by two aspects. First, coherences between multiple levels
should be considered because Rydberg atoms are usually produced by two excitation steps.
Second, atom-wall and atom-atom interactions should be treated self-consistently. Rydberg
atoms feature strong interactions and small energy gaps between adjacent states. Therefore,
it is likely that the effect of interactions is no longer perturbatively small. Works on both of
these points exist but there is no unified model that can be applied to dense thermal vapors in
arbitrary geometries.

Another related line of research is the inclusion of atomic saturation, i.e. that there is
a significant excited state population when the light intensity rises. In essence, this means
extending the work of Lehmberg [211, 212] to a macroscopic environment. This advance is
particularly important for cavities and waveguides because they feature local field enhancements
which promote saturation. The next step is to drop the weak-coupling approximation. This
can be done, e.g., by including fourth-order terms with the time-convolutionless projection
operator technique [76]. A theory in a macroscopic environment beyond weak coupling would
be beneficial to experimental proposals [125] that aim to produce strong atom-photon coupling
in a thermal vapor via a photonic crystal cavity. This proposal reflects the key concept of
quantum optics with thermal vapors: The short interaction and coherence times are overcome
by a much stronger atom-photon coupling.

Once all the crucial effects of a system are described, the macroscopic QED formalism
can show its greatest strength: A macroscopic environment, i.e. the Green’s tensor, can be
designed such that the system follows a particular behavior. First works on such an inverse
design approach have recently been presented [213, 214]. In the long term, an inverse design has
the potential to improve existing applications such as vapor-based single-photon sources and
quantum memories and to enable completely new ones. In this way, further development of the
concepts presented in this thesis might one day contribute to the “second quantum revolution”.



A. Electromagnetic Green’s tensors

A.1. The Green’s tensor of bulk media

We derive the electromagnetic Green’s tensor for a homogeneous medium of permittivity ϵ(ω)
following Refs. [51, 126]. We need to solve the Helmholtz equation

[∇ × ∇ × −k2]Gbulk(r, r′, ω) = Iδ(r − r′), (A.1)

where k2 = ϵ(ω)ω2

c2 . Using the identity ∇ × ∇× = ∇ ⊗ ∇ − ∆I, we obtain

[∆ + k2]Gbulk(r, r′, ω) = ∇[∇ · Gbulk(r, r′, ω)] − Iδ(r − r′). (A.2)

Applying the divergence operator on (A.1), we find

∇ · Gbulk(r, r′, ω) = −∇ · Iδ(r − r′)
k2 . (A.3)

Combining the above relations,

[∆ + k2]Gbulk(r, r′, ω) = −
[︃
I + 1

k2∇ ⊗ ∇
]︃
δ(r − r′). (A.4)

This equation can be solved by an ansatz

Gbulk(r, r′, ω) =
[︃
I + 1

k2∇ ⊗ ∇
]︃
g(r, r′, ω), (A.5)

where g(r, r′, ω) is the well-known (retarded) solution of the scalar Helmholtz equation

[∆ + k2] g(r, r′, ω) = −δ(r − r′) ⇒ g(r, r′, ω) = exp(ik|r − r′|)
4π|r − r′|

. (A.6)

Thus, the bulk Green’s tensor with a spherical exclusion volume around r = r′ [165] is

Gbulk(r, r′, ω) =
[︃
I + 1

k2∇ ⊗ ∇
]︃ exp(ik|r − r′|)

4π|r − r′|
(A.7)

= −δ(ρ)I
3k2 − eikρ

4πk2ρ3

(︃
[1 − ikρ− (kρ)2] I − [3 − 3ikρ− (kρ)2] eρ ⊗ eρ

)︃
. (A.8)

where ρ = r − r′, ρ = |ρ|, and eρ = ρ/ρ.
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A.2. The image dipole method

ϵ1 ϵ2

+
- +

-

z'-z' z
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y

Figure A.1: A dipole in front of a surface located at (x′, y′, z′)T produces a mirror dipole at (x′, y′,−z′)T

emitting light to a probe point (x, y, z)T . Probe and source point are taken to located in region 2.

With the image dipole technique, one can easily construct the Green’s tensor of a planar interface
in short-distance approximation, see, e.g., Ref. [215]. At short or nonretarded distances, the
source dipole is effectively static and produces a mirror dipole inside the surface, see Fig. A.1.
The surface contribution to the Green’s tensor is the field emitted by that artificial dipole
computed through the nonretarded limit (ρk ≪ 1) of the bulk Green’s tensor, Eq. (A.8),

µ0ω
2Gnr

bulk(r, r′, ω) = − δ(ρ)I
3ϵ0ϵ2(ω) − [I − 3eρ ⊗ eρ]

4πϵ0ϵ2(ω)ρ3 , (A.9)

with ρ = (x− x′, y − y′, z − z′)T . We assume that the probe and source point of the surface
Green’s tensor lie in front of the interface. The magnitude of the image charges is given by the
ratio ϵ1(ω)−ϵ2(ω)

ϵ1(ω)+ϵ2(ω) [101] and the orientation of the image dipole is flipped in the xy-plane, so that

µ0ω
2Gnr

surf(r, r′, ω) = ϵ1(ω) − ϵ2(ω)
ϵ1(ω) + ϵ2(ω)µ0ω

2Gnr
bulk(r, (x′, y′,−z′), ω) diag(−1,−1, 1) (A.10)

= ϵ1(ω) − ϵ2(ω)
ϵ1(ω) + ϵ2(ω)

[I − 3eρ̃ ⊗ eρ̃]
4πϵ0ϵ2(ω)ρ̃3 diag(1, 1,−1), (A.11)

with ρ̃ = (x−x′, y− y′, z+ z′)T . If probe and source points coincide, the surface Green’s tensor
takes the simple form

µ0ω
2Gnr

surf(r, r, ω) = ϵ1(ω) − ϵ2(ω)
ϵ1(ω) + ϵ2(ω)

diag(1, 1, 2)
32πϵ0ϵ2(ω)z3 . (A.12)

In the limit of non-absorbing media, Im ϵ2(ω), Im ϵ1(ω) → 0, the above expressions are only
valid for the absolute value and the real part of the Green’s function. The imaginary part has to
be computed from the exact expression of the surface Green’s tensor presented in Appendix A.3.
For a perfect mirror, we can obtain an exact result from the image dipole technique if we use
the exact bulk Green’s tensor instead of the nonretarded approximation.
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A.3. Construction of surface and cavity Green’s tensors

We derive the Green’s tensor in planar layered media following the treatment in Ref. [51].

A.3.1. Vector wave functions

To construct the scattering contribution of the Green’s tensor, see Eq. (2.31), we make use of
so-called vector wave functions (VWF) that derive from a scalar function ψj

λ(r) as [86]

Lj
λ(r) = ∇ψj

λ(r), Mj
λ(r) = ∇ × c(r)ψj

λ(r), Nj
λ(r) = 1

kj
∇ × Mj

λ(r), (A.13)

with pilot vector c(r) and mode label λ. Mj
λ(r) and Nj

λ(r) represent the (divergence-free) curl
part of the field, whereas Lj

λ(r) contains the (curl-free) source part. The VWFs form a complete
orthogonal basis [86]. The functions ψj

λ(r) obey the scalar Helmholtz equation in layer j

[∆ + k2
j ]ψj

λ(r) = 0. (A.14)

where kj =
√︂
ϵj(ω)ω/c with Im kj ≥ 0. As a result, the VWFs fulfill the vector Helmholtz

equation (2.33) [86] and transfer this property to a Green’s tensor that is constructed as linear
superposition of VWFs as

Gsc(r, r′, ω) =
∑︂∫︂

λ

[︂
Lj

λ(r) ⊗ cL,λ(r′) + Mj
λ(r) ⊗ cM,λ(r′) + Nj

λ(r) ⊗ cN,λ(r′)
]︂
. (A.15)

Finally, we must determine expansion coefficients cL/N/M,λ(r) such that G(r, r′, ω) obeys the
boundary conditions to obtain the unique solution of the vector Helmholtz equation.

In our planar geometry, the scalar Helmholtz equation is solved by plane waves

ψj
k±(r) = eikj,±·r = eik∥·r±k⊥

j z. (A.16)

We decompose the wave vector into components parallel and orthogonal to the surface,
kj = k∥ + k⊥

j , and distinguish forward and backward propagating waves, ψj
k+(r) and ψj

k−(r),
respectively. Next, we introduce a basis of s (perpendicular = German "senkrecht") and p

(parallel = German "parallel") polarized plane waves

ej
s± = ek∥ × ez, ej

p± = 1
kj

(k∥ez ∓ k⊥
j ek∥). (A.17)

Together with the vector ej
k± = (k∥ek∥ ± k⊥

j ez)/kj , the vectors (ej
p±, e

j
s±, e

j
k±) form an orthog-

onal right-handed coordinate system (see Fig. A.2). Choosing the pilot vector as c = ez [86],
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Figure A.2: Right-handed coordinate system of (ej
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k+) and (ej

p−, e
j
s−, e

j
k−).

the VWFs (A.13) become [51]

Mj
k±(r) = ik∥ej

s±e
ik∥·r±k⊥

j z = ik∥M̃j
k±(r), (A.18)

Nj
k±(r) = k∥ej

p±e
ik∥·r±k⊥

j z = k∥Ñj
k±(r). (A.19)

It is convenient to switch to renormalized VWFs M̃j
k±(r), Ñj

k±(r) with renormalized expansion
coefficients c̃M/N,λ(r) [51]. Here we do not require the Lj

λ(r) functions as there are no external
sources and currents in our problem that would produce curl-free fields.

Next, we express the bulk Green’s tensor with VWFs. Invoking a Fourier transformation,
the scalar Green’s function of the bulk medium, Eq. (A.6), can be rewritten as [51]

g(r, r′, ω) = 1
8π3

∫︂
d3k′ e

ik′·(r−r′)

k′2 − k2
j

= i

8π2

∫︂
d2k∥ e

ik∥·(r−r′)+ik⊥
j |z−z′|

k⊥
j

. (A.20)

Since ∂z|z| = Θ(z) − Θ(−z) and ∂2
z |z| = 2δ(z), the bulk Green’s tensor (A.5) becomes [51, 216]

Gbulk(r, r′, ω) = −ez ⊗ ez

k2
j

δ(r − r′) + i

8π2

∫︂
d2k∥ e

ik∥·(r−r′)

k⊥
j

×
∑︂

σ=s,p

{︂
ej

σ+ ⊗ ej
σ+e

ik⊥
j (z−z′)Θ(z − z′) + ej

σ− ⊗ ej
σ−e

−ik⊥
j (z−z′)Θ(z′ − z)

}︂
. (A.21)

The singular term corresponds to the one for a disk-shaped exclusion volume [86, 165]. It differs
from the singular term in Eq. (A.8) that applies to a spherical exclusion volume. However, the
trace is the same in both cases, as it is independent of the shape of the exclusion volume [165].
We can read off the expansion coefficients from Eq. (A.21)

c̃M/N,k±(r′) = i

8π2k⊥
j

ej
s/p±e

−(ik∥·r′±k⊥
j z′). (A.22)

Eq. (A.21) has a straightforward interpretation: When z > z′ (z < z′), a forward (backward)
propagating s- or p-polarized plane wave is leaving from r′ and arriving at r as a forward
(backward) propagating s- or p-polarized wave. With this physical intuition and the known
form of the expansion coefficients, we can infer Green’s tensor for a surface with z′ > 0, z′ > z
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from the possible photon paths in Fig. A.4 a [51]

Gsurf(r, r′, ω) =

⎧⎪⎨⎪⎩
i

8π2
∫︁
d2k∥ eik∥·(r−r′)

k⊥
2

∑︁
σ=s,p r

21
σ e2

σ+ ⊗ e2
σ−e

ik⊥
2 (z+z′), z > 0,

i
8π2

∫︁
d2k∥ eik∥·(r−r′)

k⊥
2

∑︁
σ=s,p t

21
σ e1

σ− ⊗ e2
σ−e

−ik⊥
1 z+ik⊥

2 z′
, z < 0.

(A.23)

The coefficients r21
σ and t21

σ describe reflection and transmission. The total Green’s tensor for
the surface geometry is

G(r, r′, ω) = Gsurf(r, r′, ω) + Θ(z) i

8π2

∫︂
d2k∥ e

ik∥·(r−r′)

k⊥
2

∑︂
σ=s,p

e2
σ− ⊗ e2

σ−e
ik⊥

2 (−z+z′). (A.24)

A.3.2. Boundary conditions and Fresnel reflection coefficients

We can now determine reflection and transmission coefficients through boundary conditions.
Let us consider a point r at the boundary between layers 1 and 2 in a surface geometry, see
Fig. A.4 a. We define r1,2 = limh→0 r±he⊥ and e∥ (e⊥) as a unit vector parallel (perpendicular)
to the interface of layers 1 and 2. Also, we assume that the source point of the Green’s tensor
is not on the boundary. At the interface, the tangential components of E(r) and B(r) and (in
absence of external sources and currents) the normal components of D(r) and H(r) must be
steady. Therefore, the Green’s tensor must obey [51]:

e∥ ·
[︁
G(r1, r′, ω) − G(r2, r′, ω)

]︁
= 0T , (A.25)

e∥ ·
[︁
∇ × G(r1, r′, ω) − ∇ × G(r2, r′, ω)

]︁
= 0T , (A.26)

e⊥ ·
[︁
ϵ1(ω)G(r1, r′, ω) − ϵ2(ω)G(r2, r′, ω)

]︁
= 0T , (A.27)

e⊥ ·
[︁
∇ × G(r1, r′, ω) − ∇ × G(r2, r′, ω)

]︁
= 0T . (A.28)

Using ∇ × M̃j
k±(r) = −ikjÑj

k±(r) and ∇ × Ñj
k±(r) = ikjM̃j

k±(r), we obtain six conditions
[51]:

Eq. (A.25) with e∥ = es : 1 + r21
s = t21

s , (A.29)

Eq. (A.25) with e∥ = ek∥ : k⊥
2
k2

(1 − r21
p ) = k⊥

1
k1
t21
p , (A.30)

Eq. (A.26) with e∥ = es : k2(1 + r21
p ) = k1t

21
p , (A.31)

Eq. (A.26) with e∥ = ek∥ : k⊥
2 (1 − r21

s ) = k⊥
1 t

21
p , (A.32)

Eq. (A.27) with e⊥ = ez : ϵ2
k2

(1 + r21
p ) = ϵ1

k1
t21
p , (A.33)

Eq. (A.28) with e⊥ = ez : 1 + r21
s = t21

s . (A.34)
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They are simultaneously fulfilled by the standard Fresnel coefficients [51, 138]

r21
s = k⊥

2 − k⊥
1

k⊥
2 + k⊥

1
, r21

p = ϵ1k
⊥
2 − ϵ2k

⊥
1

ϵ1k⊥
2 + ϵ2k⊥

1
, (A.35)

t21
s = 2k⊥

2
k⊥

2 + k⊥
1
, t21

p = k1
k2

2ϵ2k⊥
2

ϵ1k⊥
2 + ϵ2k⊥

1
. (A.36)

In the main text, we also require coefficients for multilayer interfaces. We can infer them
from the two-layer coefficients, that will now be denoted r̃j+1,j

σ and t̃j+1,j
σ by means of a recursion

relation [51]. By summing up the multiple reflection photon pathways in Fig. A.3, we obtain
the reflection coefficient between layers j + 1 and j, rj+1,j

σ , from the reflection coefficient of
previous interface rj,j−1

σ as

rj+1,j
σ = r̃j+1,j

σ + t̃j+1,j
σ eik⊥

j wjrj,j−1
σ eik⊥

j wj t̃j,j+1
σ

∞∑︂
k=0

(︂
r̃j,j+1

σ rj,j−1
σ e2ik⊥

j wj
)︂k

= r̃j+1,j
σ +

(︁
t̃j+1,j
σ t̃j,j+1

σ − r̃j+1,j
σ r̃j,j+1

σ

)︁
rj,j−1

σ e2ik⊥
j wj

1 − r̃j,j+1
σ rj,j−1

σ e2ik⊥
j wj

= r̃j+1,j
σ + rj,j−1

σ e2ik⊥
j wj

1 − r̃j,j+1
σ rj,j−1

σ e2ik⊥
j wj

. (A.37)

.

j

z

j+1j-1

...

wj

Figure A.3: Photon pathways to determine the effective reflection coefficient of a multilayer interface.
Multiple internal reflections lead to a geometric sum.

A.3.3. Surface and cavity Green’s tensors

The Green’s tensor for the cavity in Fig. A.4 b can be constructed analogously to Eq. (A.23).
With 0 ≤ z, z′ ≤ w we find [51]

Gcav(r, r′, ω) = i

8π2

∫︂
d2k∥ e

ik∥·(r−r′)

k⊥
2

∑︂
σ=s,p

(︄
(r21

σ )2eik⊥
2 (2w+z−z′)

Dσ
e2

σ+ ⊗ e2
σ+ + e2

σ− ⊗ e2
σ+

× r21
σ e

ik⊥
2 (2w−z−z′)

Dσ
+ r21

σ e
ik⊥

2 (z′+z)

Dσ
e2

σ+ ⊗ e2
σ− + (r21

σ )2eik⊥
2 (2w−z+z′)

Dσ
e2

σ− ⊗ e2
σ−

)︄
, (A.38)

where Dσ = 1 − (r21
σ )2e2iwk⊥

2 . To evaluate this expression, we transform into a convenient coor-
dinate system in which the source is located at r2 = (0, 0, z2) and the receiver at r1 = (x, 0, z1).
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2

z0

1

(a) (b)

21

w0 z

1

z'
...

Figure A.4: Photon pathways in (a) a surface and (b) a cavity geometry. The Green’s tensor can be
constructed by examining the direction of the outgoing and incoming waves at the source point and the
receiver point, respectively. Reflections and transmissions give rise to factors of r21

σ and t21
σ , respectively.

The four pathways in the cavity are followed by multiple internal reflections leading to a geometric sum,∑︁∞
n=0[(r21

σ )2e2iwk⊥
2 ]n.

We define the distance x =
√︁

(x1 − x2)2 + (y1 − y2)2 and the angle cosφ = (x1 − x2)/x to the
x-axis. Using the cylindrical symmetry of our planar geometry, we can express the Green’s
tensor Gcav(r1, r2, ω) by the Green’s tensor in our new coordinate system Gcav(x, z1, z2, ω)
through a rotation

Gcav(r1, r2, ω) = Gcav(x, φ, z1, z2, ω) = RT (φ)Gcav(x, z1, z2, ω)R(φ), (A.39)

R(φ) =

⎛⎜⎜⎜⎜⎝
cosφ − sinφ 0

sinφ cosφ 0

0 0 1

⎞⎟⎟⎟⎟⎠ . (A.40)

Using cylindrical coordinates for the wave vector k∥ = k∥(cosφk, sinφk, 0)T , the ej
σ± basis

vectors according to Eq. (A.17) become

ej
s± = (sinφk,− cosφk, 0)T , ej

p± = 1
kj

(∓k⊥
j cosφk,∓k⊥

j sinφk, k
∥)T . (A.41)

Hence, the Green’s tensor Gcav(x, z1, z2, ω) is

Gcav(x, z1, z2, ω)

= i

8π2

∫︂ ∞

0
dk∥ k

∥

k⊥
2

∫︂ 2π

0
dφk e

ik∥x cos φk
∑︂

σ=s,p

(︄
(r21

σ )2eik⊥
2 (2w+z1−z2)

Dσ
e2

σ+ ⊗ e2
σ+ + e2

σ− ⊗ e2
σ+

× r21
σ e

ik⊥
2 (2w−z1−z2)

Dσ
+ r21

σ e
ik⊥

2 (z2+z1)

Dσ
e2

σ+ ⊗ e2
σ− + (r21

σ )2eik⊥
2 (2w−z1+z2)

Dσ
e2

σ− ⊗ e2
σ−

)︄
, (A.42)
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The integral over φk leads to the cylindrical Bessel functions [183]

Jn(x) = 1
2πin

∫︂ 2π

0
dφ eix cos φ cos(nφ). (A.43)

Eventually, the cavity Green’s tensor takes the form

Gcav(x, z1, z2, ω) =
∫︂ ∞

0
dk∥ ik∥

8πk⊥
2

⎛⎜⎜⎜⎜⎝
I1+ 0 I3+

0 I1− 0

I3− 0 I2

⎞⎟⎟⎟⎟⎠ , (A.44)

I1± =
[︂
J0(xk∥) ± J2(xk∥)

]︂
T1 +

[︂
J0(xk∥) ∓ J2(xk∥)

]︂
[T2 − T4] , (A.45)

I2 = 2
(︄
k∥

k⊥
2

)︄2

J0(xk∥) [T2 + T4] , I3± = −2iJ1(xk∥) [T3 ± T5] , (A.46)

where

T1 = r21
s

Ds

[︂
r21

s

(︂
ei(2d+z1−z2)k⊥

2 + ei(2d−z1+z2)k⊥
2
)︂

+
(︂
ei(z1+z2)k⊥

2 + ei(2d−z1−z2)k⊥
2
)︂]︂
, (A.47)

T2 =
(k⊥

2 r
21
p )2

k2
2Dp

(︂
ei(2d+z1−z2)k⊥

2 + ei(2d−z1+z2)k⊥
2
)︂
, (A.48)

T3 =
k⊥

2 k
∥(r21

p )2

k2
2Dp

(︂
ei(2d+z1−z2)k⊥

2 − ei(2d−z1+z2)k⊥
2
)︂
, (A.49)

T4 =
(k⊥

2 )2r21
p

k2
2Dp

(︂
ei(z1+z2)k⊥

2 + ei(2d−z1−z2)k⊥
2
)︂
, (A.50)

T5 =
k⊥

2 k
∥r21

p

k2
2Dp

(︂
ei(z1+z2)k⊥

2 − ei(2d−z1−z2)k⊥
2
)︂
. (A.51)

Analogously, we obtain the surface Green’s tensor as

Gsurf(x, z1 + z2, ω) =
∫︂ ∞

0
dk∥ ik∥

8πk⊥
2
eik⊥

2 (z1+z2)

⎛⎜⎜⎜⎜⎝
I1+ 0 I3

0 I1− 0

−I3 0 I2

⎞⎟⎟⎟⎟⎠ , (A.52)

I1± =
[︂
J0(xk∥) ± J2(xk∥)

]︂
r21

s −
r21

p (k⊥
2 )2

k2
2

[︂
J0(xk∥) ∓ J2(xk∥)

]︂
, (A.53)

I2 = 2
r21

p (k∥)2

k2
2

J0(xk∥), I3 = −2i
k∥k⊥

2 r
21
p

k2
2

J1(xk∥). (A.54)

In general, the remaining integral over k∥ can only be solved numerically. For purely imaginary
frequencies, the numerical integration is straightforward. For real frequencies, however, a
complex integration contour must be used to avoid poles between 0 ≤ k∥ ≤ maxj Re (kj) that
lie close to the real axis [217]. For this purpose, we utilize a simple third order polynomial in
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the range between 0 ≤ k∥ ≤ kR

k̃∥ = k∥ − ikI 8
3

⎡⎣ k∥

kR
−
(︄
k∥

kR

)︄3
⎤⎦ , kR = ω

c
+ max

j
Re (kj), kI = min

(︄
kR

10 ,
10
x

)︄
, (A.55)

whose imaginary part reaches a minimum of around −ikI . The expression for kR includes a
safety margin of ω/c [217]. The value of kI must be capped for large x because the exponential
behavior of Bessel functions Jn(±ikIx) with imaginary arguments. Optionally, for k∥ ≥ kR, one
can use another integration contour with a positive imaginary part or even a contour parallel
to the imaginary axis [217] to speed up convergence.

A.4. The uniaxial birefringent surface

We give the Green’s tensor for a uniaxial birefringent surface interfaced with a vacuum. Assuming
that probe and source points are located in the vacuum region (z, z′ > 0), the Green’s tensor,
analogously to Eq. (A.23), takes the form

Gbisurf(r, r′, ω) = i

8π2

∫︂
d2k∥ e

ik∥·(r−r′)

k⊥
2

∑︂
σ1=s,p

∑︂
σ2=s,p

r21
σ1σ2e2

σ1+ ⊗ e2
σ2−e

ik⊥
2 (z+z′). (A.56)

We assume that the optical axis is perpendicular to the surface, which implies a permittivity
tensor ϵ1 = diag(ϵ∥, ϵ∥, ϵ⊥) where ϵ∥ is the permittivity of the ordinary and ϵ⊥ the permittivity
of the extraordinary ray. Since our permittivity tensor is diagonal, the plane waves do not
change their polarization upon reflection and r21

ps = r21
sp = 0 [218]. As a result, the Green’s

tensor of the birefringent surface is almost the same as for the isotropic surface except for the
new reflection coefficients [218, 219]

r21
ss =

k⊥
s,2 − k⊥

s,1
k⊥

s,2 − k⊥
s,1
, r21

pp =
k⊥

p,2ϵ
∥
1 − k⊥

p,1ϵ
∥
2

k⊥
p,2ϵ

∥
1 + k⊥

p,1ϵ
∥
2
, (A.57)

where the z components of wave vectors for the p and s waves are given by

k⊥
s,i =

√︄
ω2

c2 ϵ
∥
i −

(︁
k∥)︁2, k⊥

p,i =

⌜⃓⃓⎷ω2

c2 ϵ
∥
i − ϵ

∥
i

ϵ⊥i

(︁
k∥)︁2. (A.58)

Naturally, for vacuum k⊥
s,2 = k⊥

p,2 = k⊥
2 =

√︂
ω2/c2 − (k∥)2. For a dielectric surface in the static

limit ω → 0, we have k⊥
2 , k

⊥
s,1 → ik∥ and k⊥

s,1 → i
√︂
ϵ
∥
i /ϵ

⊥
i k

∥ such that the reflection coefficients
become

r21
ss → 0, r21

pp →

√︂
ϵ
∥
1ϵ

⊥
1 − 1√︂

ϵ
∥
1ϵ

⊥
1 + 1

. (A.59)
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This is the image dipole factor (see App. A.2) of an interface between vacuum and an isotropic
surface whose permittivity is the geometric mean

√︂
ϵ
∥
1ϵ

⊥
1 of the ordinary and extraordinary

permittivity. The static Green’s tensor of a birefringent surface is therefore same as the static
Green’s tensor of an isotropic surface with permittivity

√︂
ϵ
∥
1ϵ

⊥
1 [163, 218].

A.5. Cylindrical symmetry and 1-D Green’s function

We compute integrals of type
∫︁
dA′G(r, r′, ω) where A′ is an infinite plane parallel to our planar

interfaces. We start by applying the integral to the Helmholtz equation (2.18),∫︂
dA′

[︂
∆I − ∇ ⊗ ∇ + k2(z)

]︂
G(r, r′, ω) = −

∫︂
dA′Iδ(r − r′) = −Iδ(z − z′), (A.60)

where k2(z) = ϵ(z, ω)ω2/c2. Because of the cylindrical symmetry, the Green’s tensor can be
written in cylindrical coordinates as

G(r, r′, ω) = RT (φ)

⎛⎜⎜⎜⎜⎝
Gxx(0, ρ, z, z′, ω) 0 Gxz(0, ρ, z, z′, ω)

0 Gyy(0, ρ, z, z′, ω) 0

Gzx(0, ρ, z, z′, ω) 0 Gzz(0, ρ, z, z′, ω)

⎞⎟⎟⎟⎟⎠R(φ), (A.61)

where the rotation matrix is given by Eq. (A.40). We can conduct the ρ and φ integrals of
Eq. (A.60) by recalling that ∇ = eρ∂ρ + 1

ρeφ∂φ + ez∂z and by using the radiation boundary
condition that the Green’s tensor vanishes for ρ → ∞. We find that the integrated tensor is of
diagonal form ∫︂

dA′G(r, r′, ω) = diag(G1D(z, z′, ω), G1D(z, z′, ω), G⊥(z, z′, ω)). (A.62)

The scalar entries are the solution of the 1-D Helmholtz equation

[∂2
z + k2(z)]G1D(z, z′, ω) = −δ(z − z′), (A.63)

and a rescaled delta function G⊥(z, z′, ω) = −δ(z − z′)/k2(z). In a bulk medium, the 1-D
Green’s function is

G1D
bulk(z, z′, ω) = i

2ke
ik|z−z′|, (A.64)

as one can quickly validate by inserting into Eq. (A.63). The 1-D Green’s functions are simple
planar waves propagators. Using the Fresnel reflection and transmission coefficients for normal
incidence, one can infer the 1-D Green’s function from a sketch of the wave’s propagation
path. In Fig. A.5, we show the pathways out of the cavity and can immediately specify the
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21

w0 z'

1

z

...

Figure A.5: Photon pathways starting inside and ending outside of the cavity. The two pathways are
followed by multiple internal reflections leading to a geometric sum,

∑︁∞
n=0[(r21)2e2iwk2 ]n.

corresponding Green’s function as

G1D
cav,out(z, z′, ω) = it21

2k2

eik2(w−z′)+ik1(z−w) + r21e
ik2(w+z′)+ik1(z−w)

1 − r2
21e

2ik2w
. (A.65)

For two points inside of the cavity (see Fig. A.4 b), we have a total Green’s function of

G1D
in (z, z′, ω) =G1D

bulk(z, z′, ω) +G1D
cav(z, z′, ω) (A.66)

= i

2k2

eik2|z−z′| + r21e
ik2(z+z′) + r21e

ik2(2w−z−z′) + r2
21e

ik2(2w−|z−z′|)

1 − r2
21e

2ik2w
. (A.67)

Instead of starting over from the Helmholtz equation, one can also integrate an explicit expression
for the Green’s tensor. Ref. [220] follows that path to derive Eq. (A.64) from Eq. (A.8). However,
this approach is often more cumbersome and less general.

A.6. The discrete dipole approximation

In this section, we present the discrete dipole approximation (DDA) [87] in more detail. In the
following, we drop the frequency argument ω for brevity. We discretize Eq. (2.36) and set the
permittivity χj to the volume average within the respective cell j

G(ri, r′) = Ḡ(ri, r′) +
N∑︂
j

(︄∫︂
Vj

d3s Ḡ(ri, s)
)︄
ω2

c2 χjG(rj , r′). (A.68)

Our background Green’s tensor decomposes into the bulk and scattering contribution, Ḡ(r, r′) =
Ḡbulk(r, r′)+Ḡsc(r, r′). We treat the volume integral by a point-like approximation1 and obtain

∫︂
Vj

d3r′ ω
2

c2 Ḡ(ri, r′) ≈

⎧⎨⎩Vj
ω2

c2 Ḡ(ri, rj), i ̸= j

(Mi − Li) + Vi
ω2

c2 Ḡsc(ri, ri), i = j
. (A.69)

1A more precise but also more complex treatment of the volume integral is given in Ref. [221].
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The terms Li and Mi account for the singularity in the Green’s tensor and describe finite-size
effects of the unit cells [87]. For cubes with edge length w, one can find simple analytic
expressions for Li [165] and Mi [222, 223], leading to the so-called LAK model [87]

Li = 1
3I, Mi = 2

3I
[︂
(1 − ik̄ia)eik̄ia − 1

]︂
, (A.70)

where k̄i = ω2

c2 ϵ̄(ri) and a = w
(︂

3
4π

)︂1/3
is the equivalent radius of a sphere. Next, we introduce

the local-field corrected Green’s tensor and a pseudo-polarizability

Gloc(ri, r′) = [I + (Li − Mi)χi]G(ri, r′), (A.71)

αi = χiVi [I + (Li − Mi)χi]−1 . (A.72)

An important special case arises when finite size effects can be neglected, Mi = 0, and we
replace χi → ϵ̃i − 1. The pseudo-polarizability, αi = 3Vi

ϵi−1
ϵi+2 , transitions to the well-known

Clausius–Mossotti relation [101]. For the local fields, we obtain the linear equation system

Gloc(ri, r′) = Ḡ(ri, r′) + ω2

c2 Ḡsc(ri, ri)αiG
loc(ri, r′) +

N∑︂
j ̸=i

ω2

c2 Ḡ(ri, rj)αjG
loc(rj , r′). (A.73)

Once we have computed the Gloc(ri, r′) for a given source point r′, we can infer the Green’s
tensor to any probe point r by

G(r, r′) = Ḡ(r, r′) + ω2

c2

N∑︂
i

Ḡ(r, ri)αiG
loc(ri, r′). (A.74)

Instead of solving Eq. (A.73) directly, one often introduces a polarization like tensor (compare
Ref. [87]), P (ri, r′) ≡ αiG

loc(ri, r′), and implements

Ḡ(ri, r′) =
[︄
α−1

i − ω2

c2 Ḡsc(ri, ri)
]︄
P (ri, r′) −

N∑︂
j ̸=i

ω2

c2 Ḡ(ri, rj)P (rj , r′). (A.75)

This brings the advantage that the terms under the sum do not depend on the material
composition of each dipole scatterer. With known values for P (rj , r′), the Green’s tensor to
the probe point is

G(r, r′) = Ḡ(r, r′) +
N∑︂
i

ω2

c2 Ḡ(r, ri)P (ri, r′). (A.76)
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A.6.1. Block Toeplitz matrices

Our Eq. (A.75) can be cast into a matrix form as

(B + A + R) P̃ = ˜̄G. (A.77)

The known ˜̄G and the unknown P̃ are composed of N 3 × 3 matrices

P̃ = [P (r1, r); . . . ;P (rN , r)] , ˜̄G =
[︁
Ḡ(r1, r); . . . ; Ḡ(rN , r)

]︁
. (A.78)

The matrix B is a diagonal matrix that contains the inverse pseudo-polarizabilities of the
discrete dipoles

B = diag
(︂
α−1

1x , α
−1
1y , α

−1
1z , . . . , α

−1
Nx, α

−1
Ny, α

−1
Nz

)︂
. (A.79)

The 3N × 3N matrices A and R account for direct (A) and body assisted (R) interactions
between the discrete dipoles

A =

⎡⎢⎢⎢⎢⎣
A11 . . . A1N

...
...

AN1 . . . ANN

⎤⎥⎥⎥⎥⎦ where Aij =

⎧⎨⎩0 for i = j

−Ḡbulk(ri, rj) for i ̸= j
, (A.80)

R =

⎡⎢⎢⎢⎢⎣
R11 . . . R1N

...
...

RN1 . . . RNN

⎤⎥⎥⎥⎥⎦ where Rij = −Ḡsc(ri, rj). (A.81)

The equation system (A.77) is usually solved iteratively [87]. We employ the BiCGSTAB
algorithm [224] together with a Jacobi preconditioner.

When the background is a planar surface and one discretizes on a regular grid, the interaction
matrices A and R have a special form that allows for a great reduction of the computational
costs of the DDA. The direct part of the Green’s tensor Ḡbulk(r, r′, ω) only depends on the
distance r − r′. The scattering part of a surface Ḡsurf(r, r′, ω) only depends on the distance
between the mirror dipole of the source point r′ and the probe point r, assuming that both
points lie above the substrate. Thus,

Gbulk(r, r′, ω) = Gbulk(x− x′, y − y′, z − z′, ω), (A.82)

Gsurf(r, r′, ω) = Gsurf(x− x′, y − y′, z + z′, ω). (A.83)

Therefore, only a fraction of the entries inside the interaction matrices is unique. One can sort
the equally sized discrete dipoles by rows, columns, and lines. Wherever necessary, artificial
dipoles with a small χi = 10−6 are added such that one obtains a rectangular parallelepiped
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of dipoles that encloses the entire geometry. This way, the interaction matrices inherit the
symmetries of the background Green’s tensor and acquire a block Toeplitz (BT) structure,
where Mij = Mj−i, e.g. for n rows

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

m0 m1 . . . mn

m−1 m0
. . . ...

... . . . . . . m1

m−n . . . m−1 m0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (A.84)

The pattern repeats itself within the mi such that R becomes a 2-level BT matrix and A a
3-level BT matrix [90, 91]. For each matrix, only the unique building blocks need to be stored.
The iterative solver is based on products between the interaction matrices and arbitrary vectors
that usually have O(n2) complexity. For BT matrices, however, the products can be seen as
discrete convolutions and thereby be replaced by simple O(n) vector-vector products in the
Fourier domain. This provides an enormous speed-up, see, e.g., [225], as we are now limited by
fast Fourier transformations (FFT) with a complexity of only O(n log(n)).

We have implemented the scheme by Barrowes et al. [91] which allows for 3D Fourier
acceleration for products with A and 2D Fourier acceleration for products with R. Recent
approaches [226] also enable a 3D Fourier acceleration for R, although the symmetry in z-
direction is broken in the presence of a surface. The remaining diagonal matrix B is stored as
a vector. Its contribution can be computed by a cheap vector-vector product.

It can be helpful to reduce the number of points for which the Green’s tensor has to be
computed. Especially for one-point Green’s tensors at imaginary frequencies, one can do so by
interpolating correction factors GDDA(r, r)/G1stBorn(r, r) between points where the full DDA
computation was conducted. Compared to the Green’s tensor, these correction factors do not
vary as strongly with surface distance or frequency, and the interpolation can be reasonably
accurate (usually much better than 5%). The tensors in first Born approximation G1stBorn(r, r)
can usually be computed very fast.



B. Auxiliary calculations on atom-light
interactions

B.1. Field quantization in homogeneous media

Following Ref. [49], we present the quantized electric field in a homogeneous medium, which
includes free space as a limiting case. First, we conduct the replacement f̂(r, ω) → f̂(z, ω)/

√
A,

where A is the normalization area perpendicular to the propagation direction that we assume
to be along the z-axis. Invoking the shorthand notations

√︁
ϵ(ω) = n(ω) = nR(ω) + inI(ω),

ϵ(ω) = ϵ(ω) + iϵ(ω) and Eqs. (A.8) and (2.46), the electric field operator in a bulk material
reads

Êbulk(r, ω) = i

√︄
ℏ

πϵ0A
ω2

c2

∫︂ ∞

−∞
dz′

∫︂
dA′

√︂
Im ϵ(ω)Gbulk(r, r′, ω)f̂(z′, ω)

= i

√︄
ℏ

πϵ0A
ω2

c2

∫︂ ∞

−∞
dz′ ic

2n(ω)ωe
in(ω) ω

c
|z−z′| diag(1, 1, 0)

√︂
Im ϵ(ω) f̂(z′, ω). (B.1)

Since
∫︁∞

−∞ dz′f(z′) =
∫︁ z

−∞ dz′f(z′) +
∫︁−z

−∞ dz′f(−z′), we can rewrite the field with new operators

Êbulk(z, ω) =
√︄

ℏωnR(ω)
4πϵ0cA

i

n(ω)
(︂
â+(z, ω)enR(ω) ω

c
z + â−(z, ω)e−nR(ω) ω

c
z
)︂
, (B.2)

â±(z, ω) = i

√︃
2nI(ω)ω

c
e∓nI(ω) ω

c
z
∫︂ ±z

−∞
dz′e−i ω

c
n(ω)z′

I⊥f̂(±z′, ω), (B.3)

where I⊥ = diag(1, 1, 0) and we applied ϵI = Imn2 = 2nRnI . We compute the commutator of
the new ladder operators using Eq. (2.44)

[︂
â±(z, ω), â†

±(z′, ω′)
]︂

= 2nI(ω)ω
c
e∓nI(ω) ω

c
(z+z′)

∫︂ ±z

−∞
dα e−in(ω) ω

c
α

×
∫︂ ±z′

−∞
dα′ ein∗(ω) ω

c
α′
I⊥δ(α− α′)δ(ω − ω′)

= 2nI(ω)ω
c
e∓nI(ω) ω

c
(z+z′)

∫︂ ±z

−∞
dα e2nI(ω) ω

c
αΘ(±z′ − α)I⊥δ(ω − ω′)

= e−nI(ω) ω
c

|z−z′|I⊥δ(ω − ω′). (B.4)

The definitions of â±(z, ω) have different signs than in Ref. [49]. This originates from the sign
on the right-hand side of the one dimensional Helmholtz equation, i.e. −δ(z − z′) here and
+δ(z − z′) in Ref. [49].

100
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B.2. Commutation rules of partial atom and field operators

The equal-time commutation rules between field and atomic operators apply to complete opera-
tors [227] but not necessarily to partial contributions. In the Heisenberg picture, Eq. (2.114),
one can decompose the electric field operator into an external field and an atomic part

Ê(r, ω, t) = Ê(r, ω, 0)e−iωt⏞ ⏟⏟ ⏞
=Êfree(r,ω,t)

+ iµ0ω
2

π

∑︂
A

∫︂ t

0
dt′e−iω(t−t′)ImG(r, rA(t′), ω)d̂A(t′)⏞ ⏟⏟ ⏞

=Êatoms(r,ω,t)

. (B.5)

Due to [Ê(r, ω, t), σ̂A,mn(t)] = 0̂, we can have nonzero commutators for the partial fields[︂
Êfree(r, ω, t), σ̂A,mn(t)

]︂
= −

[︂
Êatoms(r, ω, t), σ̂A,mn(t)

]︂
̸= 0̂, (B.6)

because [d̂A(t′), σ̂A,mn(t)] does not always vanish. There are situations where Eq. (B.6) is zero
but this should be shown explicitly [227].

B.3. Expectation values of thermal fields

In this section, we compute the electric field expectation values of a thermal field. The density
matrix of the thermal field reads [52, 113]

ρT = e−ĤF /(kBT )

Z
, Z = Tr

(︂
e−ĤF /(kBT )

)︂
. (B.7)

Since the thermal state is diagonal in the photon number, the expectation values of unequal
numbers of creation and annihilation operators vanish

⟨Ê†(r, ω)⟩T = ⟨Ê(r, ω)⟩T = ⟨Ê†(r, ω) ⊗ Ê†(r′, ω′)⟩T = ⟨Ê(r, ω) ⊗ Ê(r′, ω′)⟩T = 0. (B.8)

Nonzero results are expected for ⟨Ê†(r, ω) ⊗ Ê(r′, ω′)⟩T and

φ ≡ ⟨f̂ †(r, ω) ⊗ f̂(r′, ω′)⟩T = Tr
{︂

f̂ †(r, ω) ⊗ f̂(r′, ω′)ρT

}︂
, (B.9)

if r = r′ and ω = ω′. In order to evaluate the trace, it is sufficient to consider the single-mode
subset of the Hilbert space, ∑︁∞

j=0 |j(r, ω)⟩ ⟨j(r, ω)|, that contributes to nonzero values of φ. The
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corresponding normalization constant is

Z =
∞∑︂

j=0
⟨j(r, ω)| exp

[︃
−
∫︂
d3r′

∫︂ ∞

0
dω′ f̂ †(r′, ω′) · f̂(r′, ω′) ℏω′

kBT

]︃
|j(r, ω)⟩ (B.10)

=
∞∑︂

j=0
⟨j(r, ω)| exp

[︃
−
∫︂
d3r′

∫︂ ∞

0
dω′ jδ(ω − ω′)δ(r − r′) ℏω′

kBT

]︃
|j(r, ω)⟩ (B.11)

=
∞∑︂

j=0
e−jℏω/(kBT ) = 1

1 − e−ℏω/(kBT ) , (B.12)

and the expectation value of ladder operators

φ = 1
Z

∞∑︂
j=0

⟨j(r, ω)| f̂ †(r, ω) ⊗ f̂(r′, ω′) exp
[︃
−
∫︂
d3r2

∫︂ ∞

0
dω2 f̂ †(r2, ω2) · f̂(r2, ω2) ℏω2

kBT

]︃
|j(r, ω)⟩

= 1
Z

∞∑︂
j=0

⟨j(r, ω)| f̂ †(r, ω) ⊗ f̂(r′, ω′)e−jℏω/(kBT ) |j(r, ω)⟩ (B.13)

= 1
Z

∞∑︂
j=0

je−jℏω/(kBT )Iδ(r − r′)δ(ω − ω′) = n(ω)Iδ(r − r′)δ(ω − ω′), (B.14)

where we use the geometric sum ∑︁∞
j=0 jq

j = q∂q
∑︁∞

j=0 q
j = q

(1−q)2 and the Bose-Einstein distri-
bution (2.67). Combing the above with Eqs. (2.30) and (2.46), we obtain ⟨Ê†(r, ω) ⊗ Ê(r′, ω′)⟩T ,
i.e. Eq. (2.65) of the main text. Using Eqs. (2.44), (2.46), and (2.30), we compute the commu-
tator ∫︂ ∞

0
dω′

[︂
Ê(r, ω), Ê†(r′, ω′)

]︂
= ℏµ0

π
ω2ImG(r, r′, ω), (B.15)

and infer ⟨Ê(r, ω) ⊗ Ê†(r′, ω′)⟩T from ⟨Ê†(r, ω) ⊗ Ê(r′, ω′)⟩T .

B.4. Position memory of the Green’s tensor

We aim to simplify the coefficient

ΞCD(t, s) = µ0
πℏ

∫︂ ∞

0
dω

{︂
[1 + n(ω)] e−isω + n(ω)eisω

}︂
ω2ImG(rC(t), rD(t− s), ω), (B.16)

through a Taylor series expansion in the time argument within the Green’s tensor. We can
approximate the position rD(t− s) ≈ rD(t) − svD(t) and the Green’s tensor as [52]

G(rC , rD(t− s), ω) ≈ G(rC , rD(t), ω) + G(rC , rD(t), ω)[∇rD · vD](−s). (B.17)



Auxiliary calculations on atom-light interactions 103

With −se±isω = ±i d
dωe

±isω, we find

ΞCD(t, s) ≈ µ0
πℏ

∫︂ ∞

0
dω

{︂
[1 + n(ω)] e−isω + n(ω)eisω

}︂
ω2ImG(rC(t), rD(t), ω)

+ iµ0
πℏ

∫︂ ∞

0
dω

d

dω

{︂
− [1 + n(ω)] e−isω + n(ω)eisω

}︂
ω2ImG(rC(t), rD(t), ω)[∇rD · vD]. (B.18)

We can transform the above expression through integration by parts. Due to the high frequency
limit (2.28) and the reflection principle (2.27), the Green’s tensor is purely real at the integration
boundaries

lim
ω→0

ω2ImG(r1, r2, ω) = lim
ω→∞

ω2ImG(r1, r2, ω) = 0. (B.19)

Thus,

ΞCD(t, s) = µ0
πℏ

∫︂ ∞

0
dω

{︂
[1 + n(ω)] e−isω + n(ω)eisω

}︂
ω2ImG(rC(t), rD(t), ω)

− iµ0
πℏ

∫︂ ∞

0
dω

{︂
− [1 + n(ω)] e−isω + n(ω)eisω

}︂ d

dω

[︂
ω2ImG(rC(t), rD(t), ω)

]︂
[∇rD · vD].

(B.20)

The importance of the second term is reflected by the ratio

d

dω

[︂
ω2ImGij(rC , rD, ω)

]︂
[∇rD · vD]/

(︂
ω2ImGij(rC , rD, ω)

)︂
, (B.21)

which becomes considerable if the velocity of the atom is large and/or the imaginary part of the
Green’s tensor is strongly peaked in the frequency domain. The latter usually implies a strong
atom-field coupling and is therefore not compatible with the Born–Markov approximation [52]
which is used to obtain the integral in the first place. A peak of the Green’s tensor has two
common causes: a resonance in the permittivity or a narrow mode in a waveguide geometry.
The first case occurs for basically all macroscopic bodies and is most important to our study.
We investigated the above ratio for atoms with a thermal velocity of v = 100 m/s and a flat
sapphire surface. Even under ideal conditions, i.e. at a resonance frequency (≈ 17 THz) and
with probe and source point 1 nm away from the surface, the ratio only reaches ∼ 1%. At
10 nm it is only ∼ 10−3. Away from the resonance, e.g., at optical frequencies, larger ratios
are found at larger distances from the surface, e.g., 10−6 at 10 nm distance and 10−5 at 1µm
distance. Overall, the ratios remain small, so it is sufficient to consider only the first term of
Eq. (B.20) in this thesis. However, the correction term deserves a closer look when faster atoms
and/or structures and materials with stronger resonances are studied.
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B.5. Green’s tensor contour integration

In this section, we transform the real frequency integrals of BA,nm(r, r′) and FA,nm(r, r′),
Eqs. (2.90) and (2.88), into a form feasible for numerical evaluation following Ref. [52].
For BA,nm(r, r′), we first split our expression into two integrals using ImG(ω) = [G(ω) −
G(−ω)]/(2i). We utilize the analyticity of the Green’s tensor and the residue theorem to
reformulate the frequency integrals on closed integration contours along the imaginary axis, see
T = 0 K case of Fig. B.1. We circumvent the poles along the real axis by semi-circles and obtain

BA,nm(r, r′) = − µ0
ℏπ2iP

∫︂ ∞

0
dω

ω2G(r, r′, ω)
ω − ωA,nm

+ µ0
ℏπ2iP

∫︂ −∞

0
dω

ω2G(r, r′, ω)
ω + ωA,nm

= − µ0
ℏπ2i

(︄
−
∫︂ 0

∞
dξ i

(iξ)2G(r, r′, iξ)
iξ − ωA,nm

+ iπΘ(ωA,nm)ω2
A,nmG(r, r′, ωA,nm)

)︄

+ µ0
ℏπ2i

(︄
−
∫︂ 0

∞
dξ i

(iξ)2G(r, r′, iξ)
iξ + ωA,nm

− iπΘ(ωA,nm)ω2
A,nmG(r, r′,−ωA,nm)

)︄

= − µ0
ℏ

Θ(ωA,nm)ω2
A,nmReG(r, r′, ωA,nm) − µ0

ℏπ

∫︂ ∞

0
dξ

ωA,nm

ω2
A,nm + ξ2 ξ

2G(r, r′, iξ).

(B.22)

Analogously, we tackle DA,nm(r, r′) that includes finite temperature contributions. The Bose-
Einstein distribution exhibits poles on the imaginary axis (see T > 0 K case of Fig. B.1) at the
so-called Matsubara frequencies [52], ξj = 2πkBT

ℏ j with j ∈ N0. In their vicinity, we may use a
Taylor expansion on the Bose-Einstein function (2.67), n(ω) ≃ kBT/[ℏ(ω − iξj)], to read off
the residue kBT/ℏ. The pole at j = 0 is surrounded by a semicircle and thereby carries half

weight. It is useful to introduce the shorthand notation
∞∑︂′

j=0
f(ξj) = 1

2f(ξ0) +
∞∑︂

j=1
f(ξj).

-ωA,nm ωA,nm Re ω 

Im ω 

ξ0

ξ1

..
.

ξ2

ξ3

-ωA,nm ωA,nm Re ω 

Im ω 
T=0 K T>0 K

Figure B.1: Integration contours used for evaluating the real frequency integrals of BA,nm(r, r′)
(T = 0 K case) and FA,nm(r, r′) (T > 0 K case) following Ref. [52].
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Recalling that n(−ω) = −[n(ω) + 1], we find

FA,nm(r, r′) = µ0
ℏπ

P
∫︂ ∞

0
dω ω2ImG(r, r′, ω)

[︄
− [n(ω) + 1]
ω − ωA,nm

+ n(ω)
ωA,nm + ω

]︄

= µ0
2iℏπP

∫︂ ∞

−∞
dω ω2G(r, r′, ω)

[︄
− [n(ω) + 1]
ω − ωA,nm

+ n(ω)
ωA,nm + ω

]︄

= 2πi µ0
2iℏπ

kBT

ℏ

∞∑︂′

j=0
(iξj)2G(r, r′, iξj)

[︄
1

−iξj + ωA,nm
+ 1
ωA,nm + iξj

]︄

+ πi
µ0

2iℏπ
(︂
[−n(ωA,nm) − 1]G(r, r′, ωA,nm) + n(−ωA,nm)G(r, r′,−ωA,nm)

)︂
= − µ0

ℏ
(Θ(ωA,nm)[n(ωA,nm) + 1] − Θ(ωA,mn)n(ωA,mn)) ReG(r, r′, ωA,nm)

− 2µ0kBT

ℏ2

∞∑︂′

j=0

ωA,nmξ
2
jG(r, r′, iξj)

ξ2
j + (ωA,nm)2 . (B.23)

The coefficient BA,nm(r, r′) is the zero-temperature limit of FA,nm(r, r′). The transition of the
Matsubara sum to the zero frequency integral can be accomplished by means of the Abel–Plana
relation [52].

B.6. Transformation between quantum mechanical pictures

In this section, we detail the transformation of the master equation in the interaction picture,
Eq. (2.85), to the master equation in the Schrödinger picture, Eq. (2.93), and finally to the
equation of motion of an operator Ô(t) in the Heisenberg picture, Eq. (2.94). First, we replace
the density matrix in the interaction picture by the corresponding Schrödinger picture density
matrix, ρ̂I

A(t) = Û †
A(t)ρS

A(t)ÛA(t), where ÛA(t) = exp
(︂
− i

ℏĤAt
)︂
. The left-hand side derivative

in Eq. (2.85) becomes

d

dt
ρ̂I

A(t) = d

dt

(︂
Û †

A(t)ρS
A(t)ÛA(t)

)︂
= Û †

A(t)dρ
S
A(t)
dt

ÛA(t) + i

ℏ
Û †

A(t)
[︂
ĤA, ρ

S
A(t)

]︂
ÛA(t). (B.24)

We then remove the outer time evolution operators by applying ÛA(t) from left and Û †
A(t) from

the right on both sides of the equation. For the operator expressions on the right-hand side of
Eq. (2.85) we find, e.g.,

ÛA(t)σ̂C,mnσ̂D,ijÛ
†
A(t)ρS

A(t)ÛA(t)Û †
A(t)eit(ωC,mn+ωD,ij)

= ÛA(t)σ̂C,mnÛ
†
A(t)⏞ ⏟⏟ ⏞

=σ̂C,mne
−itωC,mn

ÛA(t)σ̂D,ijÛ
†
A(t)⏞ ⏟⏟ ⏞

=σ̂D,ije
−itωD,ij

ρS
A(t)eit(ωC,mn+ωD,ij) = σ̂C,mnσ̂D,ijρ

S
A(t). (B.25)

We treat all other terms analogously and arrive at Eq. (2.93), the master equation in the
Schrödinger picture.
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Next, we use our result to compute the expectation value of an arbitrary operator ⟨Ô(t)⟩ =
Tr
{︂
ρ̂(t)Ô(0)

}︂
. Utilizing the cyclic properties of the trace, we factor out the density matrix in

the operator expressions on the right-hand side, e.g.,

Tr
{︂[︂
ĤA, ρ

S
A(t)

]︂
Ô
}︂

= Tr
{︂

−
[︂
ĤA, Ô

]︂
ρS

A(t)
}︂
, (B.26)

Tr
{︂
σ̂C,mnσ̂D,ijρ

S
A(t)Ô

}︂
= Tr

{︂
Ôσ̂C,mnσ̂D,ijρ

S
A(t)

}︂
. (B.27)

Because Tr
{︂
ρ̂(t)Ô(0)

}︂
= Tr

{︂
Ô(t)ρ̂(0)

}︂
, we can now easily transform into the Heisenberg

picture, e.g.,

Tr
{︂
Ôσ̂C,mnσ̂D,ijρ

S
A(t)

}︂
= Tr

{︂
ÔH(t)σ̂H

C,mn(t)σ̂H
D,ij(t)ρA(0)

}︂
. (B.28)

Analogously, we utilize Tr
{︂

dρ̂(t)
dt Ô(0)

}︂
= Tr

{︃
ρ̂(0)dÔ(t)

dt

}︃
for the derivative on the left-hand side.

Since the resulting equation must hold for arbitrary density matrices ρA(0), we can read off the
equation of motion of the operator ⟨Ô(t)⟩ and arrive at Eq. (2.94) in the main text.

B.7. Conducting the rotating wave approximation

We present the intermediate steps taken to conduct the rotating wave approximation, which
result in Eq. (2.95). First of all, we insert Ô = σ̂

A
ge
µν

(t) into the Heisenberg equation of motion,
Eq. (2.94), and find

d

dt
⟨σ̂

A
ge
µν

(t)⟩ = iωA,ge ⟨σ̂
A

ge
µν

(t)⟩ + i

ℏ
∑︂

k
κ

(︃
⟨σ̂

Agk
µκ

(t)⟩ d
Aek

νκ
− ⟨σ̂

Ake
κν

(t)⟩ d
Akg

κµ

)︃
· Einc(rA, t)

+
∑︂
D

∑︂
ijk
δϵκ

{︄
d

Aek
νκ

· HD,ji(rA, rD) ⟨σ̂
Agk

µκ
(t)σ̂

Dij
δϵ

(t)⟩ − d
Akg

κµ
· HD,ji(rA, rD) ⟨σ̂

Ake
κν

(t)σ̂
Dij

δϵ
(t)⟩

− d
Aek

νκ
· H∗

D,ij(rA, rD) ⟨σ̂
Dij

δϵ
(t)σ̂

Agk
µκ

(t)⟩ + d
Akg

κµ
· H∗

D,ij(rA, rD) ⟨σ̂
Dij

δϵ
(t)σ̂

Ake
κν

(t)⟩
}︄

d
Dij

δϵ
.

(B.29)

Note that the sum over C reduces to the C = A term. When C ̸= A, the atomic operators
of atoms A and C commute and the corresponding terms mutually cancel. Next, we split the
sum into terms B = A and B ̸= A, and factorize the operator product of two different atoms
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according to the decorrelation approximation presented in the main text

d

dt
⟨σ̂

A
ge
µν

(t)⟩ = iωA,ge ⟨σ̂
A

ge
µν

(t)⟩ + i

ℏ
∑︂

k
κ

(︃
⟨σ̂

Agk
µκ

(t)⟩ d
Aek

νκ
− ⟨σ̂

Ake
κν

(t)⟩ d
Akg

κµ

)︃
· Einc(rA, t)

+
∑︂

B ̸=A

∑︂
ijk
δϵκ

{︄
d

Aek
νκ

· HB,ji(rA, rB) ⟨σ̂
Agk

µκ
(t)⟩ ⟨σ̂

Bij
δϵ

(t)⟩ − d
Akg

κµ
· HB,ji(rA, rB) ⟨σ̂

Ake
κν

(t)⟩ ⟨σ̂
Bij

δϵ
(t)⟩

− d
Aek

νκ
· H∗

B,ij(rA, rB) ⟨σ̂
Bij

δϵ
(t)⟩ ⟨σ̂

Agk
µκ

(t)⟩ + d
Akg

κµ
· H∗

B,ij(rA, rB) ⟨σ̂
Bij

δϵ
(t)⟩ ⟨σ̂

Ake
κν

(t)⟩
}︄

d
Bij

δϵ

+
∑︂
jk
ϵκ

{︄
d

Aek
νκ

· HA,jk(rA, rA)d
Akj

κϵ
⟨σ̂

Agj
µϵ

(t)⟩ − d
Akg

κµ
· HA,je(rA, rA)d

Aej
νϵ

⟨σ̂
Akj

κϵ
(t)⟩

− d
Aek

νκ
· H∗

A,jg(rA, rA)d
Ajg

ϵµ
⟨σ̂

Ajk
ϵκ

(t)⟩ + d
Akg

κµ
· H∗

A,jk(rA, rA)d
Ajk

ϵκ
⟨σ̂

Bje
ϵν

(t)⟩
}︄
. (B.30)

We conduct the rotating wave approximation by inserting the incident field, Einc(r, t) =
Einc(r)e−iωLt, multiplying with eiωLt, and discarding all the fast rotating terms that are not
proportional to eit(ωL−ωA,eg). This still allows expressions like ⟨σ̂

Agk
µκ

(t)⟩ ⟨σ̂
Bke

δϵ
(t)⟩. However,

since we assumed the transitions g → k and k → e to be far detuned from the laser field, we
can self-consistently neglect these contributions. Terms containing dA,ekdA,kg or d

Akk
νµ

vanish
due to the dipole selection rule ∆l = ±1. We can abbreviate our result by introducing the
slowly varying amplitudes ⟨ˆ̃σ

A
ge
µν

⟩ = eiωLt ⟨σ̂
A

ge
µν

⟩, such that the left-hand side of our equation
becomes d

dt ⟨σ̂
A

ge
µν

(t)⟩ = d
dt ⟨ˆ̃σ

A
ge
µν

(t)⟩ − iωL ˆ̃σ
A

ge
µν

(t). The equation of motion takes the form

d

dt
⟨ˆ̃σ

A
ge
µν

(t)⟩ = i(ωA,ge + ωL)ˆ̃σ
A

ge
µν

(t) + i

ℏ
∑︂

κ

(︃
⟨ˆ̃σ

A
gg
µκ

(t)⟩ dAeg
νκ

− ⟨ˆ̃σAee
κν

(t)⟩ d
A

eg
κµ

)︃
· Einc(rA)

+
∑︂

B ̸=A

∑︂
δϵκ

{︄
dAeg

νκ
·
[︂
HB,eg(rA, rB) − H∗

B,ge(rA, rB)
]︂

d
B

ge
δϵ

⟨ˆ̃σ
A

gg
µκ

(t)⟩ ⟨ˆ̃σ
B

ge
δϵ

(t)⟩

+ d
A

eg
κµ

·
[︂
H∗

B,ge(rA, rB) − HB,eg(rA, rB)
]︂

d
B

ge
δϵ

⟨ˆ̃σAee
κν

(t)⟩ ⟨ˆ̃σ
B

ge
δϵ

(t)⟩
}︄

+
∑︂

k
ϵκ

{︄
d

Aek
νκ

· HA,ek(rA, rA)d
Bke

κϵ
⟨ˆ̃σ

A
ge
µϵ

(t)⟩ + d
Akg

κµ
· H∗

A,gk(rA, rA)d
Bgk

ϵκ
⟨ˆ̃σBge

ϵν
(t)⟩

}︄
. (B.31)
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Computing

HB,eg(rA, rB) − H∗
B,ge(rA, rB)

= − 1
2EB,eg(rA, rB) − iFB,eg(rA, rB) + 1

2EB,ge(rA, rB) − iFB,ge(rA, rB) (B.32)

= − 1
2AB,eg(rA, rB) + 1

2AB,ge(rA, rB) − iBA,eg(rA, rB) − iBA,ge(rA, rB) (B.33)

= i
µ0
ℏ
ω2

B,eg G(rA, rB, ωB,eg) (B.34)

and introducing the line shifts and broadenings according to

δωA n
νδ

=
∑︂

k
κ

d
Ank

νκ
· FA,nk(rA, rA)d

Akn
κδ
, ΓA n

νδ
=
∑︂

k
κ

d
Ank

νκ
· EA,nk(rA, rA)d

Akn
κδ
. (B.35)

we arrive at Eq. (2.95).

B.8. The two-atom coupled dipole model at zero temperature

We solve the coupled dipole model (2.106) for two atoms at zero temperature analytically. In
matrix notation, the problem takes the form⎡⎢⎣αA,ge Einc(rA)

αB,ge Einc(rB)

⎤⎥⎦ =

⎡⎢⎣ I −αA,ge G(rA, rB, ωB,eg)

−αB,ge G(rB, rA, ωA,eg) I

⎤⎥⎦
⎡⎢⎣pA,ge

pB,ge

⎤⎥⎦ . (B.36)

Using the Schur complement, the inverse of a block matrix can be written as [228]

⎡⎢⎣A B

C D

⎤⎥⎦
−1

=

⎡⎢⎣(︁A − BD−1C
)︁−1 (︁

C − DB−1A
)︁−1(︁

B − AC−1D
)︁−1 (︁

D − CA−1B
)︁−1

⎤⎥⎦ . (B.37)

For our problem, we can infer
⎡⎢⎣I B

C I

⎤⎥⎦
−1

=

⎡⎢⎣ (I − BC)−1 −(I − BC)−1B

−(I − CB)−1C (I − CB)−1

⎤⎥⎦ , (B.38)

using [C − B−1]−1B−1B = [BC − I]−1B. The solution of Eq. (B.36) is

pA,ge = [I − αA,ge G(rA, rB, ωB,eg)αB,ge G(rB, rA, ωB,eg)]−1

× {Einc(rA) + αA,ge G(rA, rB, ωA,eg)Einc(rB)} , (B.39)

pB,ge = [I − αB,ge G(rB, rA, ωA,eg)αA,ge G(rA, rB, ωA,eg)]−1

× {Einc(rB) + αB,ge G(rB, rA, ωB,eg)Einc(rA)} . (B.40)



C. Transition dipole moments
The transition dipole moment of the valence electron between states |n⟩ and |m⟩ is ⟨m|d̂|n⟩ =
⟨m|er̂|n⟩. We compute it in a spherical basis given by [106]

d̂−1 = 1√
2

(d̂x − id̂y), d̂0 = d̂z, d̂+1 = − 1√
2

(d̂x + id̂y), (C.1)

when the quantization axis lies along the z-direction. The components {−1, 0, 1} correspond
to the usual {σ−1, π, σ+1} transitions and are directly related to the spherical harmonics
by d̂q = er

√︁
4π/3Y q

1 (θ, φ) [229]. The Wigner–Eckart theorem states that transition dipole
moments can always be decomposed into an integral over radial wave functions and an angular
coupling part [106]. Between two fine structure states with j = l + s, the decomposition takes
the form [106, 229, 230]

⟨n1l1j1mj1 |d̂q|n2l2j2mj2⟩ = (−1)j1−mj1

⎛⎜⎝ j1 1 j2

−mj1 q mj2

⎞⎟⎠ ⟨j1||d̂q||j2⟩ , (C.2)

⟨j1||d̂q||j2⟩ = (−1)l1+s1+j2+1δs1,s2

√︂
(2j1 + 1)(2j2 + 1)

⎧⎪⎨⎪⎩ j1 1 j2

l2 s l1

⎫⎪⎬⎪⎭ ⟨l1||d̂q||l2⟩ , (C.3)

⟨l1||d̂q||l2⟩ = (−1)l1
√︂

(2l1 + 1)(2l2 + 1)

⎛⎜⎝ l1 1 l2

0 0 0

⎞⎟⎠ ⟨n1l1j1|er̂|n2l2j2⟩ , (C.4)

where the round and curly brackets denote Wigner-3j and Wigner-6j symbols [106, 230],
respectively. Combining the above expressions, we have

⟨n1l1j1mj1 |d̂q|n2l2j2mj2⟩ =

⎧⎪⎨⎪⎩ j1 1 j2

l2 s l1

⎫⎪⎬⎪⎭
⎛⎜⎝ l1 1 l2

0 0 0

⎞⎟⎠
⎛⎜⎝ j1 1 j2

−mj1 q mj2

⎞⎟⎠
× ⟨n1l1j1|er|n2l2j2⟩ (−1)j1−mj1 +s+j2+1

√︂
(2j1 + 1)(2j2 + 1)(2l1 + 1)(2l2 + 1). (C.5)

Our alkali atoms have spin s = 1/2. The radial part, also called reduced dipole moment,
⟨n1l1j1|er|n2l2j2⟩ can be easily computed for Rydberg states with large principal quantum
numbers. In that case, the inner electrons are accounted for by a quantum defect and we are
left with a hydrogen-like Schrödinger equation that can be solved using Numerov’s method
[126]. For states with low principal quantum numbers, the many-electron Schrödinger equation
has to be solved. We use the tabulated values for rubidium transitions from Refs. [128, 231]
that have been obtained by a coupled cluster approach [232]. If no tabulated value is available,
we resort to our Numerov code that utilizes tabulated effective quantum defects to include the
exact energies of the levels with low principal quantum numbers. The splitting between reduced
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dipole moment and angular coupling contribution is not unique. Factors like
√︁

(2j1 + 1) may
be included in one or the other. Therefore, it is advisable to pay close attention to the definition
used in each reference and to cross check the extracted transition dipole moments by computing
known values like spontaneous emission rates and/or (static) polarizabilities. We have also
implemented a cross-link to the ARC code [233, 234] that provides dipole moments for all alkali
species utilizing techniques analogous to those described above.

We can treat the hyperfine structure analogously to the fine structure. Taking into account
the additional coupling f = j + I, we obtain

⟨n1l1j1f1mf1 |d̂q|n2l2j2f2mf2⟩ = ⟨n1l1j1f1|er|n2l2j2f2⟩ (−1)f1+f2+j1+j2+s+I−mf1

×

⎧⎪⎨⎪⎩ f1 1 f2

j2 I j1

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩ j1 1 j2

l2 s l1

⎫⎪⎬⎪⎭
⎛⎜⎝ l1 1 l2

0 0 0

⎞⎟⎠
⎛⎜⎝ f1 1 f2

−mf1 q mf2

⎞⎟⎠
×
√︂

(2f1 + 1)(2f2 + 1)(2j1 + 1)(2j2 + 1)(2l1 + 1)(2l2 + 1). (C.6)

Due to the very small hyperfine splitting, we can usually neglect the F dependence of the
reduced dipole moment, ⟨n1l1j1f1|er|n2l2j2f2⟩ ≈ ⟨n1l1j1|er|n2l2j2⟩. The Wigner 3j and 6j
symbols vanish unless certain bounds are fulfilled. From these inequalities and the above
expressions, we obtain the well-known dipole selection rules1:

∆l = ±1; ∆j = 0,±1; ∆mj = 0,±1; ∆f = 0,±1; ∆mf = 0,±1. (C.7)

After we have computed the dipole moments in a spherical basis, we return to the Cartesian
basis used to evaluate the Green’s tensor. With the quantization axis in z- or x-direction, we
have [106]

dz =
(︃
d−1,z − d+1,z√

2
, i

[d−1,z + d+1,z]√
2

, d0,z

)︃T

, (C.8)

dx =
(︃
d0,x, i

[d−1,x + d+1,x]√
2

,
d−1,x − d+1,x√

2

)︃T

, (C.9)

respectively. The atomic energy levels can be found in the NIST Atomic Spectra Database
[235].

1Additionally 0 ↔ 0 transitions of j and f are forbidden and if ∆j = 0 or ∆f = 0 the corresponding mj1 = 0
to mj2 = 0 is also forbidden.



D. Permittivity models
The computation of dispersion interactions such as the Casimir–Polder shift requires knowledge
of the permittivity across the electromagnetic spectrum. Permittivity models have to be
Kramers–Kronig consistent, Eqs. (2.10) and (2.11), to provide reliable results at imaginary
frequencies. We present techniques that meet these high demands and hint at their limitations.

The simplest causal description of a medium is a combined Drude and Drude–Lorentz model.
The Drude–Lorentz terms account for bound charges through a set of harmonic oscillators.
Free charges are described by an additional Drude term with a resonance or plasma frequency
ωp. The permittivity takes the form [236]

ϵ(ω) = 1 − f0ωP

ω(ω + iΓ0) +
∑︂

j

fjω
2
P

(ω2
j − ω2 − iωΓj) , (D.1)

with damping constant Γj , resonance frequency ωj , and oscillator strength fj of the jth oscillator,
respectively. Ref. [236] provides the parameters for various metallic films. Furthermore, the
optical constants of many materials may be found in the five-volume book set by Palik [201].

Besides the intraband transitions accounted for by the Drude and Drude–Lorentz terms,
there are also interband transitions where electrons have to bridge an energy gap Eg. At small
frequencies (ω ≪ Eg/ℏ), the contribution of these terms can be written as a real constant ϵ(∞).
Since our frequency integrals reach beyond the regime where a constant is a valid description,
it is sensible to look for a better model. A harmonic oscillator is no viable choice because it
does not describe the sudden onset of absorption when the photon energy reaches the gap band
energy. Instead, one can combine a model for the joint density of states (following Tauc) with
a quantum mechanical calculation (sometimes named after Lorentz) and obtains an expression
for the imaginary part of the permittivity that is referred to as Tauc–Lorentz model [237, 238].
Through Kramers–Kronig transformation, one obtains a lengthy but closed-form expression for
the real part. The susceptibility of a single Tauc–Lorentz transition reads [237, 238]

χTL(ω) = AC

2πζ4αE0

[︂
(E2

g − E2
0)ℏ2ω2 + E2

gC
2 − E2

0(E2
0 + 3E2

g )
]︂

ln
(︄
E2

0 + E2
g + αEg

E2
0 + E2

g − αEg

)︄

− A

πζ4E0

[︂
(ℏ2ω2 − E2

0)(E2
0 + E2

g ) + E2
gC

2
]︂ (︃
π − arctan

(︃2Eg + α

C

)︃
+ arctan

(︃
α− 2Eg

C

)︃)︃
+ 2AE0Eg

ℏ2ω2 − γ2

πζ4α

(︄
π + 2 arctan

(︄
2(γ2 − E2

g )
αC

)︄)︄
−AE0C

ℏ2ω2 + E2
g

πζ4ℏω
ln
(︄

|ℏω − Eg|
ℏω + Eg

)︄

+ 2AE0CEg

πζ4 ln

⎛⎝ |ℏω − Eg|(ℏω + Eg)√︂
(E2

0 − E2
g )2 + E2

gC
2

⎞⎠+ i
Θ(ℏω − Eg)AE0C(ℏω − Eg)2

ℏω[(ℏ2ω2 − E2
0)2 + C2ℏ2ω2] , (D.2)
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using the abbreviations

α =
√︂

4E2
0 − C2, γ =

√︂
E2

0 − C2/2, ζ4 = (ℏ2ω2 − γ2)2 + (α2C2)/4. (D.3)

Here E0 is the peak transition energy, C is a broadening parameter and A is the proportionality
factor of the absorption strength. Bear in mind that the correct form of the model is stated in
the erratum [238] not in Ref. [237]. The model can be further improved, e.g., by taking into
account that the band edge is not sharp but possesses an exponential tail [239]. In practice, one
fits tabulated high-frequency data, e.g., from Ref. [201] to one or more Tauc–Lorentz transitions.
The total permittivity is the sum of Drude–Lorentz and Tauc–Lorentz terms.
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Im[ϵ(ω)]
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4
ϵ(iξ)

Figure D.1: Permittivity of fused silica [126]. The real frequencies data (a) was taken from Ref. [240];
the data at imaginary frequencies (b) was obtained through Kramers–Kronig transformation. The
extremely low losses in the optical window between ω = 2.7 × 1015 Hz and ω = 4.7 × 1015 Hz are a
distinctive feature of glass.

In rare cases, the literature offers complete permittivity data over all relevant frequencies,
e.g., for fused silica [240]. Then, the permittivity at imaginary frequencies can also be obtained
through a numerical Kramers–Kronig transformation, Eq. (2.10),

ϵ(iξ) = 1 + 2
π

∫︂ ∞

0
dω
ωIm ϵ(ω)
ω2 + ξ2 . (D.4)

The results are shown in Fig. D.1. Notice that due to the reflection principle (2.9), the
permittivity of purely imaginary frequencies is always a real function. We can check the
consistency of our data by comparing the static value of the permittivity with the result of the
Kramers–Kronig transformation. We find that limω→0 ϵ(ω) = 3.7 and limξ→0 ϵ(iξ) = 3.9 deviate
by about 6% [126]. This is acceptable given the fact that we are integrating uncertainties over
many orders of magnitude and across the many different experimental works that have been
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compiled in Ref. [240]. The Kramers–Kronig can also be used at real frequencies

Re ϵ(ω) − 1 = 1
π

P
∫︂ ∞

0
dω′ Im ϵ(ω′)

ω′ − ω
+ 1
π

P
∫︂ ∞

0
dω′ Im ϵ(ω′)

ω′ + ω
(D.5)

≈ 1
π

P
∫︂ b

a
dω′ Im ϵ(ω′)

ω′ − ω
+ 1
π

P
∫︂ b

a
dω′ Im ϵ(ω′)

ω′ + ω
, (D.6)

where a and b border the interval where Im ϵ(ω) is appreciable larger than 0. The divergence
at ω = ω′ requires special treatment. A standard approach is to add a term 0 = I − I with

I = 1
π

∫︂ b

a
dω′ Im ϵ(ω)

ω′ − ω
= Im ϵ(ω)

π
ln
(︃
b− ω

ω − a

)︃
, (D.7)

where a < ω < b. Then,

Re ϵ(ω) ≈ 1 + 1
π

P
∫︂ b

a
dω′

(︃ Im ϵ(ω′) − Im ϵ(ω)
ω′ − ω

+ Im ϵ(ω′)
ω′ + ω

)︃
+ Im ϵ(ω)

π
ln
(︃
b− ω

ω − a

)︃
, (D.8)

which can be handled by standard numerical integration techniques. Due to the added zero,
the integrand approaches the well-defined derivative Im ϵ′(ω) at ω′ = ω instead of running into
a logarithmic divergence.

In the context of dispersion interactions, even extensive permittivity data and models must
always be taken with a grain of salt. The permittivity depends on many factors that will vary
across different experiments, such as variations in the material preparation or composition,
layer sizes, dopants, impurities, temperature, and so on. When a dominant atomic transition
is very close to a material resonance, the Casimir–Polder shift strongly depends on the exact
modeling of the material resonances as observed in [159, 160].



E. Additions regarding spectra and their
computation

E.1. Oscillation correction

Suppose we have a function g(x) that is obtained through an expensive numerical computation1.
It shall feature a rapid oscillation on top of a slow or constant trend c(x) that we seek to extract
from it. We assume g(x) to be of the form

g(x) = cos
(︃

2π x
L

+ φ0

)︃
f(x) + c(x), (E.1)

where the oscillation period L is known, but φ0, f(x), and c(x) are unknown. Furthermore,
we assume that over the course of one oscillation period, we can approximate c(x) ≈ c(x0)
as constant and f(x) ≈ f(x0) + (x − x0)f ′(x0) by the linear part of its Taylor series. Then,
starting from an arbitrary x0, we evaluate g(x) at

g(x0) = cos
(︃

2πx0
L

+ φ0

)︃
f(x0) + c(x0), (E.2)

g(x0 + L/2) = − cos
(︃

2πx0
L

+ φ0

)︃[︃
f(x0) + L

2 f
′(x0)

]︃
+ c(x0), (E.3)

g(x0 + L) = cos
(︃

2πx0
L

+ φ0

)︃ [︁
f(x0) + Lf ′(x0)

]︁
+ c(x0). (E.4)

Solving this linear equation system, one finds that

c(x0) = g(x0) + 2g(x0 + L/2) + g(x0 + L)
4 , (E.5)

which may be much cheaper to compute than g(x → ∞) at a given precision. If g(x) contains
multiple oscillation frequencies, the oscillation correction is subsequently applied for each one
of them.

E.2. Input-output relation for multilayered media

To obtain the reflectivity and transmissivity of a dielectric stack for normal incidence, we
have used the input-output formalism of Ref. [138] that is reproduced in the following. The
input-output matrix S, illustrated in Fig. E.1 b, is directly connected to standard transmission
and reflection coefficients. The M matrix, on the other hand, swaps particular input and
output variables as shown in Fig. E.1 a. It is less intuitive but has the advantage that a stack
of layers can be described by consecutively applying the M matrices of the individual layers,

1Here this is usually a selective reflection integral whose upper bound has been truncated to the finite value x.
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M

U1(+)

U1(-)

U2(+)

U2(-)

(a)

S
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U1(-)
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U2(-)

(b)

(c)

M1 M2 ... MN

Figure E.1: Illustration of matrix input-output relations, compare [138].

M = MN · · ·M2M1 as in Fig. E.1 c. The S and M matrices are given as⎛⎜⎝U (+)
2

U
(−)
1

⎞⎟⎠ =

⎛⎜⎝t12 r21

r12 t21

⎞⎟⎠
⏞ ⏟⏟ ⏞

=S

⎛⎜⎝U (+)
1

U
(−)
2

⎞⎟⎠ ,
⎛⎜⎝U (+)

2

U
(−)
2

⎞⎟⎠ =

⎛⎜⎝A B

C D

⎞⎟⎠
⏞ ⏟⏟ ⏞

=M

⎛⎜⎝U (+)
1

U
(−)
1

⎞⎟⎠ . (E.6)

To describe each layer of a dielectric stack, we need two types of M matrices: One for the
propagation over a distance w in a medium of refractive index n and one for the transition
from a medium of index n1 to a medium of index n2 [138]

Mw =

⎛⎜⎝einkw 0

0 e−inkw

⎞⎟⎠ , M12 = 1
2n2

⎛⎜⎝n2 + n1 n2 − n1

n2 − n1 n2 + n1

⎞⎟⎠ . (E.7)

The total M matrix can be computed and is then converted into the S matrix form. Following
the definitions (E.6) we can obtain it from the M matrix elements as

S = 1
D

⎛⎜⎝AD −BC B

−C 1

⎞⎟⎠ . (E.8)

The elements of S can be identified as transmission or reflection coefficients of the total stack
according to Eq. (E.6).

E.3. Casimir–Polder effect with an atom-surface resonance

In this section, we investigate the strong Casimir–Polder shift and Purcell broadening of a
rubidium 5P3/2 → 6D3/2 transition in front of a sapphire surface. First, let us take a closer
look at the 6D3/2 state and the transitions in Fig. E.2 that determine its Casimir–Polder shift
against a perfect reflector and its linewidth in free space. We can infer a general characteristic
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Figure E.2: Selected transitions from the energy level diagram of rubidium around the 6D3/2 state
that are (a) important for its Casimir–Polder shift in front of a perfect reflector or (b) important its
free-space linewidth at zero temperature. The percent values alongside the arrows indicate the relative
contribution of the transition to the total C3 coefficient (a) or the linewidth (b). The lengths refer to
the transition wavelength in vacuum.

of higher excited states: The line shift is governed by transitions to adjacent states because
it predominantly depends on the atomic transition dipoles moment. The linewidth, on the
other hand, favors transitions to the lowest energy states with the largest ωA,nm as it depends
on ω3

A,nm|dA,nm|2, recall Eq. (2.26). Since the wave functions of the excited states are much
larger than those of the lowest energy states, there is little spatial overlap between them. The
transition dipole moments are small. The larger ωA,nm values cannot compensate this so that
usually the higher the atom is excited, the smaller the linewidth becomes [8]. Despite its
small principal quantum number, the state 6D3/2 behaves almost like a Rydberg state. Its
free space linewidth (3.9 MHz rad) is ten times smaller compared to the 5P3/2 state, while its
Casimir–Polder shift at a perfect reflector is roughly 40 times larger due to its high polarizability.

However, the most important property of the rubidium 6D3/2 state for this section is that
its atom-wall interaction is impacted by the 6D3/2 → 7P1/2 transition, whose wavelength of
11.7 µm (see Fig. E.2) coincides with a strong resonance of the sapphire surface2 at 12 µm
[159, 160]. Such a match between a material resonance and an atomic transition frequency leads
to a strong, resonant Casimir–Polder interaction [159, 160]. In order to probe it, the 6D3/2

state can be reached with a dipole-allowed transition starting from the 5P3/2 state3 that we
already investigated in Sec. 3.1.2. The results for our state pair at zero temperature are shown
in Fig. E.3. The effective C3 coefficient features a positive4 sign. This can be understood,
as so often, with the help of a harmonic oscillator. When driven close to its resonance, a
harmonic oscillator features a phase shift between driving force and response. Here, such a
resonance-induced phase shift reverses the orientation of the mirror dipole in Fig. 3.1, which
leads to a repulsive force between atom and surface and an inverted sign in the interaction

2More precisely, it is the resonance of image charge factor [ϵ2(ω) − 1]/[ϵ2(ω) + 1] of the sapphire-vacuum
interface that determines the surface Green’s function, recall App. A.2.

3One could also use a 5P1/2 → 6D3/2 transition, which has an even more preferable dipole moment, see Fig. E.2.
4Other works define their potential as −C̃3/z3 and hence find a negative C̃3.
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Rb atoms in front of a sapphire surface at T=0K
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Figure E.3: Casimir–Polder line shift of the rubidium 5P3/2 → 6D3/2 transition (upper part) and
Purcell line broadening of a 6D3/2 state (lower part) over the distance z between rubidium atom and a
sapphire surface at zero temperature. They are given with respect to the mj sublevel of the lower (µ)
and upper state (ν) state. The results are the same when the signs of µ and ν are reversed, e.g., from
µ = 0.5 → ν = 1.5 to µ = −0.5 → ν = −1.5. At short distances, potential and linewidth are multiplied
by z3 to obtain an effective C3 or Γ3 coefficient. The properties of the 5P3/2 → 6D3/2 transition also
depend on the broadening of the 5P3/2 state shown in Fig. 3.4.

potential. It is important to note that the CP shift depends not only on the resonant transition
but also on many others (recall Fig. E.2) that contribute to an attractive interaction. The
overall result is a balance of both effects. Due to the large transition wavelength > 10 µm,
finite temperature plays an important role for the interaction. Since it affects transitions with
different wavelengths unequally, it can tilt the balance of attractive and repulsive terms or the
relative strength of the upper and lower level shift, such that the sign of the Casimir–Polder
shift can change as shown in Fig. E.4.

Another signature of atom-surface resonance is the fact that the linewidth is approximately
proportional to 1/z3 over the same distance regime as the shift. Due to the large surface
absorption, the nonretarded approximation in Eq. (3.3) applies to both real and imaginary part
of the Green’s tensor. We encounter large shifts and broadenings on the order of 0.5 THz rad and
2 THz rad, respectively, already at a 10 nm distance from the surface. The angular frequency of
the 6D3/2 → 7P1/2 transition is only ωeg ≈ 160 THz rad. Therefore our assumption that the
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Figure E.4: Casimir–Polder shift of the rubidium 5P3/2 → 6D3/2 transition and Purcell line broadening
of the 6D3/2 state at T = 300 K and divided by the respective T = 0 K value over the distance z between
rubidium atom and a sapphire surface. The ratios are given with respect to the mj sublevel of the lower
(µ) and upper state (ν) state.

effect of the atom-wall interaction is perturbatively small compared to the original transition
frequency will likely not hold for atoms much closer than 10 nm to the surface. However,
due to the large linewidth, such atoms only have a very small polarizability, decay almost
instantaneously and should have no significant impact on the vapor cell spectra.

In presence of an atom-surface resonance, the predication of the atom-wall interaction is
notoriously difficult as it depends sensitively on the exact atomic dipole moments and surface
properties. For sapphire, for example, the orientation of the optical axis is relevant [218].
But many other factors like roughness, impurities, preparation methods, temperature5 take
effect too. Usually, not all of these influences are known or well characterized, which leads to
uncertainties that must be carefully considered when comparing theory and experiment.

E.3.1. Frequency-modulated selective reflection spectrum

Analogously to Sec. 3.4.1, we have computed the FMSR spectrum of the rubidium 5P3/2 → 6D3/2

transition at a sapphire surface at T = 300 K using Eqs. (3.52) and (3.64). Again, we assume
that the mj sublevels of the lower state, here the 5P3/2 state, are equally populated. In an
experiment, this requires a careful state preparation protocol, see Ref. [160]. We have again
used the oscillation correction scheme6 from App. E.1 to truncate the computational domain to
a maximum atom-surface distance of 5.6 µm. The resulting spectrum is shown in Fig. E.5.

5Temperature may modify not only fluctuations but also the material’s permittivity such that ϵ = ϵ(ω, T ).
6We start at w = 3.0 µm and average out three different oscillation periods. First the usual two, the probe field

with 630 nm and half of it 315 nm = 630/2 nm and then a third that is a mixture of the CP oscillation period
of the 5P3/2 state with 390 nm = 780/2 nm and half the probe field period that becomes roughly 1640 nm,
where −1/390 + 1/315 ≈ 1/1638.



Additions regarding spectra and their computation 119

-10 -5 0 5
/ / !vac

-6

-4

-2

0

2

4

6

N
 R

e 
1'(
/
) /

 (1
0-1

4  s
)

FMSR Rb 5P3/2 ! 6D3/2 with sapphire at T=300K

exact
degenerate fit
without CP

Figure E.5: FMSR spectra of the rubidium 5P3/2 → 6D3/2 at a sapphire surface at T = 300 K and a
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was present. Additionally, a four-parameter fit is shown that includes a prefactor, a constant linewidth,
a constant C3, and a Γ3 coefficient that are equal for all substates.

Besides the usual line shape, we see another dip in the blue that cannot be described by
our simplified fit model (see Sec. 3.4.1), although the model has been extended by a fourth
parameter Γ3. The dip also appears when the zero temperature shifts and broadening of
Fig. E.3 are used. To the best of my knowledge, it has no precedence in experimental studies.
It appears to be caused by the long-range behavior of the exact linewidth and shift that at
some point no longer obey the 1/z3 law. It is quite possible that the dip is an artifact with no
physical significance as it could originate from the assumption of a flat velocity distribution in
Eq. (3.52). This treatment was based on the assertion that the relevant Casimir–Polder shift,
the Purcell line broadening, and detuning are small compared to the Doppler shift kvth. For
the D-line FMSR spectra in Sec. 3.4.1, the assertion seems to hold. In a sample computation
at δ = 0, we found that the integrand of Eq. (3.64) agrees with an exact numerical velocity
integration on the order of 1%7. However, the transition considered here features much larger
shifts and broadenings, and the same comparison shows deviations on the order 10%. In the z
and z′ plane, the integrand looks like a series of mountains and valleys. The integral involves
the cancellation of positive and negative contributions, which makes it possible for even small
deviations to have a considerable effect on the total. Therefore, the spectra must be recalculated
using the full velocity distribution W (vz) before any inferences can be made. This requires a
considerable numerical effort and/or a sophisticated implementation of the highly oscillatory v

integral and must be left to future work.

7On a grid of sample points zi, z′
i that covers the area important for the z and z′ double integral, we computed

the difference between an integrand f(zi, z′
i) obtained from the flat distribution and an integrand g(zi, z′

i)
obtained from the Maxwell-Boltzmann distribution. We normalised the result with the largest value of
g(zi, z′

i). The largest deviation found like this was 1%.
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E.4. Additional dense vapor spectra
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Figure E.6: Left: Transmission spectra through a nanocavity filled with rubidium vapor for two
different cavity widths w. Right: Fitted collective broadening and shift ∆p, Γp plotted against the vapor
density. The graphs are analogous to Fig. 4.3 but for a coated cavity with Finesse 2.8, see Fig. 4.6.
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Figure E.7: Slope of collective shift (top) and broadening (bottom) over width d of an atomic layer in
free space, a sapphire cavity, or a cavity with anti-reflection coating depicted in Fig. 4.6. Error bars
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