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Abstract

Simulating real-world processes on a macroscopic scale with microscopic physical theories
usually requires extensive numerical calculations. This time-consuming procedure is a lim-
iting factor in the evaluation of modern large-scale experiments. In recent years, neural
networks have emerged as powerful artificial intelligence algorithms capable of learning
complex relations from just limited sets of training data. This thesis investigates the pos-
sible application of neural networks in accelerating the evaluation of physical experiments
while minimizing the required simulation effort. One focus is the reconstruction of silver
nanoclusters from single-shot wide-angle scattering patterns with only limited information
content. It turns out that neural networks are capable of inferring universal reconstruction
rules from only a small set of simulated scattering data and offer a significant speed-up
compared to classical reconstruction algorithms. When trained directly on scattering the-
ory, the reconstructions reach an unprecedented level of detail, even for objects outside the
training data space. Further, a dynamic excitation scheme for giant dipole states of Ryd-
berg excitons in cuprous oxide is derived through deep reinforcement learning interacting
with an atomic simulation environment.

Zusammenfassung

Das Simulieren von makroskopischen physikalischen Prozessen mit mikroskopischen Model-
len der theoretischen Physik erfordert immense numerische Berechnungen. Der dazugehö-
rige Zeitaufwand schränkt die Auswertungsmöglichkeiten für datenreiche moderne Experi-
mente stark ein. In den letzten Jahren haben neuronale Netze immer mehr an Bekanntheit
erlangt als künstliche Intelligenzen, die in der Lage sind aus einem sehr eingeschränkten
Datensatz allgemeine Regeln abzuleiten. In dieser Arbeit wird untersucht, wie Neuronale
Netze genutzt werden können um die Auswertung von Experimenten durch Minimierung
des Simulationsaufwandes beschleunigt werden kann. Ein Schwerpunkt ist dabei die Rekon-
struktion von Silber Nanoclustern aus Einzelschuss-Weitwinkel Streubildern, die nur einen
eingeschränkten Informationsgehalt haben. Es zeigt sich, dass Neuronalen Netzen bereits
aus kleinen Datenätzen allgemeine Rekonstruktionsregeln ableiten können und dabei signi-
fikant schneller sind als klassische Rekonstruktionsalgorithmen. Durch Training durch die
Streuphysik selbst erreicht diese Rekonstruktion in einer bisher unerreichten Detailschärfe,
sogar für Objekte, die außerhalb des Raumes der Trainingsdaten liegen. Weiter wird ein
dynamisches Anregungsschema für Giant Dipole Zustände von Rydbergexzitonen in Kup-
feroxydul mittels Deep Reinforcement Learning hergeleitet, das anhand einer atomaren
Simulationsumgebung trainiert wird.
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Notation

Mathematical notation
a scalar variable
x real- or complex valued vector
A matrix or higher dimensional tensor
x quaternion

e Euler’s number
i the imaginary unit
j, k additonal quaternion imaginary units

Acronyms
AI artificial intelligence
ML machine learning
DL deep learning
NN neural network
CNN convolutional neural network
RL reinforcement learning
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1. Introduction

Recent years have seen a rapid advances in artificial intelligence (AI) to a state where AI
systems have integrated in our everyday life [6–8]. This ranges from automatic translation
programs capable of translating the meaning of a text (e.g. Google translate or DeepL)
[7, 9], over driving assistant systems in cars at the brink of automated self-driving (e.g.
Tesla’s autopilot), to AIs even beating humans in even the most complex of games (e.g.
chess or Go [10, 11]). The common ground of all these advanved systems is their core
technique: deep neural networks.

The fundamental idea of a neural network is to mimic the workings of biological ner-
vous systems, like the human brain, with a network of mathematical functions [7]. These
basic building blocks are the artificial neurons and their concept dates back all the way
to the 1940s [12–14]. Although this model oversimplifies the structure of biological ner-
vous system neural networks were reckoned as powerful mathematical functions, capable
of approximating the solution to any given problem [15–17]. Deep neural networks are
data driven machine learning (ML) architectures, meaning that the entire relation func-
tion is extracted from a given set of data, in contrast to just a few parameters of a given
model-function. This, however, comes at the price of requiring an enormous set of function
parameters. The extensive computational effort of optimizing these parameters hampered
the development of neural networks until the early 2000s [7]. These computational re-
sources became widely available not only over time following Moore’s law [18] but also by
advances in graphics cards (GPUs). The introduction of Nvidias CUDA library enabled
parallelization of the optimization of neural network parameters by calculation on GPUs,
that was quickly adopted [19, 20].

The major breakthrough for neural networks, now under the name of deep learning
(DL), came in 2012 with the yearly ImageNet image-classification competition, where AI
systems are tasked with identifying images from 1000 different classes. For the first time,
it was not only won by a neural network [6, 8], but it also outperformed any classical AI
method by far. This brought neural networks back to the general attention and they soon
overtook the field of computer vision [8]. The development of deep learning solutions was
then simplified through specialized programming libraries, like Theano [21], Torch [22]
and TensorFlow [23]. The final factor in popularizing deep learning techniques came
with the GeForce 10 series of graphics cards in 2016, that, through their price and energy
efficiency, made available the required computation power even to home users.

As of today, the field of computer vision is dominated by deep learning. Since 2012, the
aforementioned ImageNet competition is only decided between different neural network
architectures and is generally assumed a solved problem [7]. With their capability of image
recognition and processing, they find practical applications, e.g. in the interpretation of
satellite imagery [24, 25], medical imaging with the identification of tissue types [26] or
cancer recognition [27–29]. While the recognition of hand-written text is one of the oldest
computer vision tasks solved with neural networks [30], modern architectures are capable
of finding text-baselines [31] and even transcribe historical hand-writings [32, 33], like the
DL based software Transkribus. Aside from recognizing the glyphs of words and texts,
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1. Introduction

specialized neural networks are also used in natural language processing [7] for finding
representations for the meaning of a text [34], that in turn is utilized in precise translations
of texts [9]. Moreover, neural networks were even developed to create images on their own.
Advanced architectures like styleGAN can create photo-realistic images of faces [35] based
on comprehensive features and GauGan generates landscapes from simple drawings [36].
Similar, the capability of manipulating existing images has advanced to a point, where
entire photo-realistic video sequences can be created [37–39], like an artificial speech of
former US president Barack Obama in Ref. [38]. In this, AI has advanced thus far that
present society with whole new challenges.

Another field deeply impacted by neural networks is that of problem solving AIs. For a
long time, the game of Chess had been a a benchmark system for problem-solving AI sys-
tems, until in 1996 the IBM’s supercomputer Deep Blue bested the Chess world champion
Garry Kasparov [40]. However, more complex games, like Go, were deemed to complex to
be ever solved by AI systems. Yet, this assumption was proven wrong in 2016 when the
Google DeepMind’s AlphGo, an architecture of several neural networks, bested Lee Sedol,
one of the world’s Go champions [10], in 4 out of 5 games. The follow-up architecture of
AlphaGo Zero was able to learn the game even without seeing human strategies but
from the rules alone [11], which was then generalized to the games of Chess and Shogi in
AlphaZero [41, 42]. With modern architectures, even human level cooperation between
independent AIs is in reach, as demonstrated on the team-based computer game DOTA 2
[43]. Neural networks can also be found at the heart of car driving-assistant systems and
self-driving agents, like Tesla’s autopilot.

With the broad range of applications described above neural networks also become in-
teresting as tools for fundamental sciences where they could aid scientists in understanding
complex systems. This also includes problems in theoretical and experimental physics. In
particle physics, neural networks have had their place already for quite some time: Small
neural networks are used in tandem with classical ML methods in the classification of par-
ticle signals [44–49]. In other fields of physics, the number of neural network applications
has exploded over the past five years, to a degree, that it is almost impossible to keep
a complete overview. Thus, the following list can only cover some topics and may not
be complete. One of the more popular examples is the control of a magneto-optical trap
(MOT) trap [50], which achieved better confinement of a Bose–Einstein condensate (BEC)
than any human scientist. On a larger scale, neural networks help in the simulation of
complex physical processes in the Wendelstein 7-X nuclear fusion experiment [51–53] and
are planned to aid in the control of the confined plasma [54, 55]. In quantum physics, a
special form of neural networks, the restricted Boltzmann-machines (RBMs), are used in
spin-system simulations [56–60]. Further, neural networks appear both as representations
and methods in quantum state reconstructions [58–65] and through their structure enable
the construction of generalized entanglement witnesses [57, 66, 67]. Other fields of appli-
cations include material sciences [44, 68–72], identifications of phase diagrams [73–76], and
the numerical solving of differential equations [77, 78]. The image processing capabilities of
neural networks are of direct use in the inversion of diffractive imaging, which appears both
in sub-wavelength microscopy and holography [79–83] and single-shot diffractive imaging
[84–92].

The goal of this thesis is to further explore possible neural network applications in
physics, especially ones that are practically unsolvable with classical method. This thesis
project started in 2017, at a time, when many of the works cited above had not yet been
published or even developed. We aim to demonstrate the utility of neural networks on two
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previously unsolved tasks and we introduce the required fundamentals of deep learning
in Chap. 2. The first system of interest is an inversion problem in the form of recon-
structing nanoparticles from single-shot wide-angle scattering patterns , like in Ref. [93],
which usually requires human intervention. With the repetition rate of modern free elec-
tron lasers (FELs) human aided reconstruction is futile and automated reconstruction is
required. Therefore, implementing the particle identification task with neural networks
would provide exactly this key capability and may enable even real-time data-evaluation
during experiments. Solving this problem forms the main part of this thesis with Chap. 3.
Another focal point of this thesis is utilizing neural networks in the control of a physical
system. This is done on the example of an exciton, a quasi-particle similar to an atom,
that is to be excited into a giant dipole state. Although predicted by theoretical works
since the 1990s, giant dipole states have never been observed to this day, mainly because of
lacking simple excitation schemes. This is to be solved in Chap. 4 by steering the system
with neural networks. The background of both main topics will be explored in more detail
in the beginning of the corresponding chapters. We give an outlook on the consequences
of our findings and the future development of neural network applications in physics in
Chap. 5.
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2. Fundamentals of Deep Learning

Deep learning as a research field has been popularized over the past decade with the
wide-spread availability of suitable computation hardware in the form of modern graphics
cards. With the advances made, especially in revolutionizing computer vision, deep learn-
ing gained the interest of other scientific fields. In physics in particular, the number of
publications including deep learning techniques has exploded within the past five years.
Nevertheless, it is still an emerging topic and many readers may not be familiar with the
specific terminology or internal structure of neural networks. This chapter gives a brief
introduction to the topics of deep learning most relevant to and necessary in understanding
the later parts of this thesis. An excellent introduction to the field can be found in the
book Deep Learning, Ref. [7], by Ian Goodfellow, Yoshua Bengio, and Aaron Courville,
which also covers general design principles and possible fields of applications. For a more
hands-on introduction on implementing deep learning algorithms we recommend Ref. [8],
written by Francois Chollet.

Artificial Intelligence

(AI)

Machine Learning

(ML )

Deep

Learning

(DL )

Figure 2.1: Deep learning is a specialized field of ma-
chine learning, that itself is part of the larger concept
of artificial intelligence. Simplified, after Ref. [7].

Deep learning (DL) is a special form of
machine learning (ML), that itself belongs
to the overall concept of artificial intelli-
gence (AI), see Fig. 2.1. The field of AI
is not precisely defined and can be best
described with algorithms and machines,
aiding human decision making and solving
tasks [7]. The knowledge on how to solve
the given problem may be given in impera-
tive statements to the algorithm. In ML,
on the other hand, the algorithm has to
extract at least a part of the knowledge
(usually parameters) from a limited set of
data (training data) by itself (the learn-
ing), to later apply this knowledge. ML
encompasses many different techniques and
most physicists may actually be familiar
with some ML techniques [44], albeit unknowingly. A fundamental example is finding
a generalizing dependency in form of a best fit of a linear regression to a set of mea-
surement data. This requires a quantity to optimize, i.e. in case of a linear regression
the mean-squared error between input data and fit-function. Depending on the parame-
ter space and fit-function, the iterative optimization can either be performed directly by
gradient methods, e.g. gradient descent optimization, or stochastically, by random Monte-
Carlo sampling of parameters. An example of a gradient based ML algorithm is Newton’s
method for numerical root finding. An example for a stochastic method are random-forest
algorithm of randomly modified decision-trees [44, 49].

An important factor for the success of a ML method is matching the capacity of the
algorithm to the complexity of a task. For example, a linear fit function (linear capacity)
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2. Fundamentals of Deep Learning

would be insufficient for fitting a set of quadratic data (quadratic complexity), while higher-
order polynomials (polynomial capacity) may deviate strongly for interpolations between
the given data-points [7]. The former case of too low capacity is usually called underfitting,
while the latter case of too high capacity is called overfitting. When fitting a ML algorithm,
the fitting regime can be identified by reserving a part of the training data as a validation
set, that is checked against the optimization measure regularly. Usually, underfitting is
encountered when the optimization measure stagnates on the validation set, whilst still
improving on the training set. Overfitting is observed when the validation measure further
diverges from the training measure, by getting worse with further training [7]. Yet, in
case of noisy training data and an exceedingly high capacity, overfitting can, to a certain
extend, be beneficial to the generalization capability in a process called benign overfitting
[94, 95].

The distinction of deep learning from classical machine learning lies in building a rep-
resentation function from chaining of simple basis functions for solving a given task. Al-
though being only a sub-class of machine learning, the possible range of applications for
DL stretches that of any other ML algorithm and beyond. However, the capacity of DL
algorithms exceeds the complexity of many classical ML tasks. By far the most common
architecture for deep learning algorithms are deep neural networks (NNs), to an extend,
that the terms of DL and NN are commonly used synonymous.

2.1. Deep Neural Networks

The concept of neural networks dates back to the 1940s. The history of neural network
research can be divided into three eras, each coming with different names. The idea of
a mathematical function modeling the signal transmission of biological neurons [12, 13]
coined the name of artificial neural networks (ANNs) [14] and was part of the greater
research field of cybernetics in the 1940s–1960s [7]. The next epoch came under the name
of concetionism, in the 1980s and 1990s and saw the emerging of many theoretical work
on, from modern view, shallow neural networks, at the times called multi-layer perceptrons
(MLPs). This era saw the formulation of the universal approximation theorem, stating that
any function is representable by a neural networks [15–17]. Further, back-propagation was
firstly used successfully in training a neural network [96, 97]. However, it was believed
too unwieldy for any practical application due to the high demand in computation power
[7]. This issue led to the decline of neural network research and only few groups continued
research. Most prominently, the Canadian Institute for Advanced Research (CIFAR) which
united the research groups of Geoffrey Hinton, Yochua Bengio and Yann LeCun [7], possible
the three most famous deep learning scientists, today [6].

The third and current era of neural network started in 2006 with the discovery of the first
efficient training strategies for deep neural networks [7, 30], rapidly improved their gener-
alization [98, 99]. With this development and ever increasing depths of trained networks
also came the notation of deep learning [7]. Outside the existing community, the improve-
ment to neural networks gained attention in 2012, when the yearly image-classification
challenge ImageNet was won by a neural network entry from the group of Geoffrey Hinton.
In prior years, the competition was tackled with classical algorithm and the 2012 neural
network outclassed even the best by a large margin [6, 8]. Today, since then, the challenge
is dominated entirely by neural networks and deemed solved with accuracies well above
95%.
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2.1. Deep Neural Networks

The most common building block of modern neural networks is that of a fully connected
neuron,

y = f

(∑
i

wi xi + b

)
= f (w · x+ b) . (2.1)

It implements an affine transformation of the vector x of input values xi through the scalar
product with the vector w of weights wi and adds a bias parameter b. The transformation
can also be understood as calculating the scaled distance

d = |w|
(
x · w

|w|
+

b

|w|

)
(2.2)

to a hyperplane in the space of x ∈ Rn, defined in Hesse’s normal form by normal vector
w/|w| and offset b/|w|. It is the argument of the, typically non-linear, activation function
f(d). In essence, a fully connected neuron evaluates the scaled distance to a hyperplane in
a non-linear function. Early neuron designs used either linear [13, 14] or binary activation
functions, like the sign(d)-functions [12], that branched into the development of support
vector machines (SVMs) [7]. Later, especially during the second era, differentiable but
saturating function became popular, like the tanh-function or the logistic sigmoid1 function

σ(t) =
1

1 + e−t
, (2.3)

exemplary plotted in Fig. 2.2. Beneficial for gradient-based training, both functions pos-
sess iterative expressions of their derivatives [100]. Yet, they are comparably expensive in
computation relative to a linear function and in modern architectures are mostly encoun-
tered just in the final layer, where their saturation property is used in enforcing parameter
bounds. Instead, the rectified linear-unit (ReLU) function

ReLU(x) = max(0, x) , (2.4)

was developed [101–103], that to offer an optimal balance between non-linearity and sim-
plicity for a majority of tasks. Yet, some specialized task may benefit from using specific,
other activation functions, like in Sec. 3.2 of this thesis.

-3 -2 -1 1 2 3

x

-1.0

-0.5

0.5

1.0

tan (x)

-5 5

x

0.2

0.4

0.6

0.8

1.0

σ(x)

-1.0 -0.5 0.5 1.0

x

0.2

0.4

0.6

0.8

1.0

ReLU (x)

Figure 2.2: The activation functions of neurons most commonly encountered in modern neural network
architectures are the tanh-function (left), the logistic sigmoid (center) and ReLU function (right).

The fully connected neuron in Eq. (2.1) itself is a rather simple mathematical function,
that is the building block of a deep neural network. Several independent neurons are
arranged in parallel, accepting the same input vector x and each return an output yi, that
are arranged in the output vector y ∈ Rn for n neurons. By both accepting and returning

1In the context of neural networks usually called just sigmoid.

7



2. Fundamentals of Deep Learning

vectors, fully connected layers can be stacked after each other, with the output-vector of
the previous layer forming the input of the next layer, like sketched in Fig. 2.3. The final
layer of the neural network is usually called the output layer and has a number of neurons
equal to the dimension of the output vector, e.g. 2 in Fig. 2.3. All previous layers, whose
output vectors are processed internally but never returned as outputs of the complete
neural network are called hidden-layers. The number of neurons in each layer, also called
dimension or size of the layer, can vary and is usually a hyperparameter2 in designing a
neural network.

x1

x2

x3

y1

y2

input
vector

hidden
layers

output
layer

output
vector

Figure 2.3: A neural network is constructed from single neurons (red circles). Neurons arranged in
parallel, accepting the same input vectors form a layer, like the ones inside the blue, dashed boxes. The
output values of the neurons from the final, output layer compose the output vector. Internal layers that
again feed their own outputs into other layers are called hidden layers, as they are not visible to an outside
observer.

Knowing that each neuron implements a distance measure to a hyperplane, the stacking
of fully connected layers also bears a geometric interpretation. A single layer implements
several hyperplanes into the input space X and returns a vector of distance measures.

Especially with ReLU or tanh-activation, these hyperplanes are decision boundaries,
where the activation function changes significantly, e.g. in slope or sign, respectively. Each
neuron of the next layer then implements new decision boundaries on the previous decisions,
combining them into regions. Without activation functions, these decision regions on X
would be faceted polytopes. Here, the non-linearity of the activation function introduced
previously comes into play. It allows for an effective curving of the region boundary in
the vicinity of intersections of hyperplanes from the previous layer. The effect of this
boundary shaping is visible in Fig. 2.4, where a circle in R2 is approximated with a two-
layer neural network with just three hidden and one output neuron. While the three initial
decision boundaries (white lines) form only a triangle, the combined decision boundary
(white area of the red-white-green colormap) is close to circular (black curve).3 In fact,
it was proven with the universal approximation theorem, that a neural network with just
one, sigmoid-activated, hidden layer and a single output neuron can approximate any

2A hyperparameter is a parameter of either the ML algorithm or training process, that is not optimized by
training but pre-definined. Hyperparameters also require optimization that usually requires realization
through systematic exploration rather than gradient methods.

3Of course, this very fundamental problem is trivially solved in polar coordinates by a single decision
plane. From this view, the hidden layer implements a coordinate transformation, projecting the circular
region into a linear, three-dimensional set, while the second layer places the decision plane. However,
finding the right coordinate transformation (or kernel for a SVM) for a given problem usually involves
human intervention while the neural network is capable of inferring it from data.
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2.1. Deep Neural Networks

continuous function up to any precision desired, with a sufficient number of neurons in
the hidden layer [15–17]. However, it does not make a statement on how may neurons
are actually required, which may as well be infinitely many for some cases. While such
elementary neural network architectures may seem a pure academic example, they actually
have precedence in nature. The feeding behavior of the pond snail Lymnaea stagnalis was
found to be controlled by just two neurons,4 one activating if the snail is hungry and the
other if there is food nearby [104].

x1

x2

y

y = σ

(
3∑

k=1

ck σ (ak · x+ bk) + d

)

Figure 2.4: The classification problem of a circular region (black contour) into a region inside (green,
label 1) and outside (red, label 0) is well approximated by a neural network with a single hidden layer
(right) of just three sigmoid-activated neurons (see formula below). The whole network is constituted from
just 13 parameters. The decision planes of the three hidden neurons form an equilateral triangle (white
lines). The red-white-green colormap in the background shows the resulting decision map of the complete
neural network, that achieves a near circular decision boundary (white region, nearly obfuscated entirely)
through combining the non-linear activation results. The network is trained on a set 5000 random points
(red/ green dots), but can also be optimized analytically using a series approximation.

The near perfect approximation of an explicitly known function is, however, not the
task neural networks are usually required for. Instead, neural networks excel in data driven
application, where the relations underlying to a set of data is too complex to be represented
with any classical machine learning algorithm. The most common type of datasets is that
of projections xi → yi between input tensors xi of arbitrary shape and corresponding
output or target tensors yi. On the example of Fig. 2.4, these would be two-dimensional
vectors xi ∈ R2 and boolean values yi ∈ [False,True]. The optimization quantity of the
neural network N (x) on such a dataset is the loss-function L(yi,pi) between the neural
network predictions pi = N (xi) and the targets yi. The optimal choice of the loss-function
is crucial for a good training result and is usually determined by the nature of the target
data. Regression problems, where the output values are ordinary float-point numbers, are
handled well by the mean-squared error

LMSE(y,p) =
1

N

N∑
i=1

(yi − pi)
2 , (2.5)

between linear vectors5 y,p ∈ RN . Other loss-function are derived from information theory,
such as the Kullback-Leibler-divergence between two probability distribution functions or

4To be precise, not two singular neurons but two neuron types, responsible for the snail to switch between
two distinct feeding behaviors: appetite bites and consummatory feeding [104].

5Note, that any tensor of arbitrary shape can be re-arranged into a linear vector.
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2. Fundamentals of Deep Learning

cross-entropy functions for classification tasks [7, 8]. In the context of this thesis, the
binary cross-entropy

H(y,p) =
1

N

N∑
i=1

yi log(pi) + (1− yi) log(1− pi) (2.6)

between two Bernoulli-distributions, i.e. binary values equivalent to labels True/False or
object/void, and it’s extension to systems with a number of C classes in the categorical
cross-entropy

HC(y,p) =
1

N

N∑
i=1

C∑
j=1

yi,j log(pi,j) (2.7)

are of importance.

The high number of free parameters in the weights of any single neuron inside a neural
network typically results in a much higher representation capacity as supported of the
present training data. In many cases, the number of free-parameters may even exceed the
number of available data samples.6 Consequently, neural networks are prone to overfit-
ting, which to a certain degree can be beneficial as benign overfitting [94, 95], but also may
decrease the generalization capability on data outside the training set [7]. In DL, overfit-
ting can be countered7 through regularization, which summarizes different techniques on
adding constraints to the training task [7]. One example are additional loss terms, called
regularization functions, that penalize certain configurations, like the L1-regularization
that adds the sum of all neural networks weights to the loss, thus penalizing large weights
for singular inputs and enforcing a more distributed attention. Other regularizations act
on the structure of the neural network like dropout-layers, that randomly delete entries of
incoming vectors during training, thus muting sections of the neural network and enforcing
a more distributed training. Another regularization approach is to artificially increase the
amount of available training data, called data-augmentation. It is commonplace in com-
puter vision, where images are either rotated or shifted to represent additional angles of
view of noise and defects are added, to focus the recognition of the most important features
[30]. Some design strategies rely on first designing a neural network architecture capable
of overfitting the available data, thus ensuring sufficient capacity, and then introducing
regularization to counteract overfitting and increase generalization [8].

The optimization of the neural network parameters θ in accordance with the loss is
realized though gradient-descend. It involves calculating the gradient of the loss function
L with respect to the set of parameters θ and the subsequent adaption of the parameters,

θ → θ − α∇θL , (2.8)

by a step α in descending direction of the gradient. The gradient calculation of deep neural
networks is computationally expensive and is what held back neural network development
until recently. While it seems desirable to calculate the gradient over the complete dataset
and find the global minimum, it still is too resource-demanding in many cases. Instead, the
gradient is calculated for smaller batches of the dataset individually, holding the additional
benefit of converging much faster due to more frequent parameter updates [7]. By, over

6Note, that in some cases not all of these parameters can be chosen freely but may depend on each other.
7Another common method present in many tutorials is aborting the training at the optimal validation-set

performance, called early-stopping. However, it is often inferior to regularization approaches that can
lead to even better generalization capabilities.

10



2.2. Convolutional Neural Networks

time, averaging to a noise version of the complete gradient, this approach is called stochastic
gradient descent [6]. Each iteration of the complete dataset is called an epoch, episode or
round. The step size α by which the parameters are modified in Eq. (2.8) is determined
by the optimizer function. It may not only depend on the current value of the gradient
but also past values, in form of a momentum [105]. The optimizer can prevent the training
from converging to local minima or around saddle points, where the gradient vanishes, and
is of such importance, that it is dedicated an entire chapter in Ref. [7].

2.2. Convolutional Neural Networks

Figure 2.5: A convolutional neuron acts on an in-
put image by local convolution with a kernel matrix,
producing a single output value. Scanning the kernel
the input image produces a feature map in form of an
output image.

The fully connected neuron in Eq. 2.1 de-
fines the basic principle of operation, from
which many other neuron types are de-
rived. An important development, espe-
cially in image procession architectures, is
that of the convolutional neuron. When
working with two dimensional data. like
images, fully connected layers have three
main drawbacks [106]:

1. The number of weights increases
rapidly with the number of pixels in
an image. A 64 neuron layer process-
ing a 128 × 128 pixel image already
needs more than one million weights.

2. The fully connected weights are posi-
tion sensitive. The same object inside
an image, shifted by a small margin,
is not detected.

3. The local structure and correlation
of an image may be unrecognized
in favor of larger, global features.
However, small scale correlations, like
edges, are important features in image processing.

The solution comes in the form a convolutional neuron, that acts only locally on an
image by convolving it with an input matrix, the kernel. As shown in Fig. 2.5 for a 3× 3
matrix, the kernel usually is smaller than the input image. It therefore acts only on a
part of the image with the same size as the kernel, but in this window is evaluated just
like a fully connected neuron in Eq. 2.1. By scanning the convolution kernel over the
input image, a new output image is created, which contains the activation value of the
convolutional neuron over the input, and therefore is called a feature map of the kernel.
The convolutional neuron is capable of detecting only local structures, like gradient or
edges independent of their position inside the image an map them into the feature map.
Scanning along the edges of the image reduces the lateral (or image) dimension of the
feature map by half the kernel size, which, if desired, can be prevented by scanning beyond
the image borders and filling missing pixels either by constants, like zero, or symmetric,
in a process called padding. The size of the output image is further influenced by the
step-size with which the kernel is transported, the stride. Usually, a stride of 1 is used,
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where the convolution kernels of consecutive steps overlap partially. However, a stride of
2 can be used to half the lateral dimensions of the input image, which is exploited in some
architectures.

Similar to fully connected layers, a convolutional layer is formed by a parallel evaluation
f convolutional neurons on the same input, producing f individual feature maps or filters.
When feeding into the next convolution layer, each kernel matrix now requires a shape
of k × k × f , where k is the kernel-size, to be sensitive to all previous feature maps. In
stacking convolution layers, like in Fig. 2.6, each consecutive convolution filter has access to
higher-order features, that cover increasing areas of the input. For example, an image of a
cat could be recognized by first detecting edges and gradient, combining those to surfaces,
which then combine to more global structures like eyes, legs and ears and finally combine
to a cat. The real recognition process, however, is much more complex and locally driven
than usually assumed [107].

Figure 2.6: Convolutional neural networks are bulid from stacking convolution layers. Here visualized
are 4 consecutive convolution operations, each with stride 2 (halving the lateral dimensions), with 4, 8, 16
and 16 filters, each. The feature maps of each convolutions are grouped in equal colors. The last stack of
feature maps is flattened into a one-dimensional vector and fed into five fully-connected neurons.

The earliest architecture build around convolutional layers was LeNet [106]. In addition
to convolutional layers with stride 1 and kernel sizes of 3 × 3, it uses pooling layers for
dimensional reduction. A pooling layer acts similar to a convolution layer with kernel size
2 and stride 2, in that is scans over the input image with a limited filter window, but then
applies fixed operations like taking the max- or mean-value within the window. A general
design principle for convolutional neural networks is to double the number of filters after
each lateral dimension reduction [7]. After a certain number of convolutions, the entries of
the resulting feature maps are re-arranged into a linear vector through a flattening-layer.
It is the fed into 2–3 fully connected layers, that return the final output tensor. Based upon
this design, many modern convolutional neural network architectures were developed, like
ResNet [108, 109], ResNeXt [110], or fully-convolutional dense-nets (FCdense) [111]. The
concept of convolutions layers also allows generalization to three-dimensional input tensors
and kernels or even arbitrary dimensions.

2.3. Deep Reinforcement Learning

Reinforcement learning (RL) is a field of ML, that revolves around learning to perform
actions that maximize a returned numerical reward. Deep reinforcement learning then
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focuses on solving any such tasks with the help of deep learning methods, or more specif-
ically: neural networks. Solving RL tasks requires additional fundamental equations and
terminology to the previously discussed feed-forward DL problems. A detailed introduction
into the topic of RL can be found in the book Reinforcement Learning: An Introduction,
Ref. [112], and a brief introduction focused specifically on deep RL applications is given
on the website of the OpenAI project, Ref. [113].

agent

environment

action

at

state

st

st+1

reward

rt

rt+1

Figure 2.7: In the agent-environment loop, the agent receives an observation of the current state st of
the environment, nd decides on an action at to take on the environment. This action alters the state of
the environment, resulting in the next observable state st+1. At each step, the agent receives the reward
rt as a performance measure from the environment. After Ref. [112].

The fundamental concept of RL is that of an agent interacting with an environment. The
agent can observe the state s of the environment and decides on an action a to perform,
which may alter the state s. Further, the agent receives feedback on how good the state
s is, in relation to a given goal, in form of the reward r from the environment. The
majority of RL theories demand finite Markovian environments, meaning that the future
evolution of the system is fully determined by the current state s and independent of the
past states. The interaction is usually simulated in cycles, as sketched in Fig. 2.7. An
important restriction of some environments is only partial observation, where the agent
can not directly access s, but only an observation o with partial information of s. However,
this has only limited effect as long as the reward also depends only on o, the information
available to the agent [112]. Thus, s is commonly used instead of o in RL literature [113]
and we will conform with this notation. The reward rt received at any step is determined
by the (environment-specific) reward function R

rt = R(st, at, at+1) (2.9)

from at most the current state st, current action at and next state st+1. In many cases,
however, it depends just on the current state rt = R(st) [113]. In its actions, the agent
aims to maximize the total reward accumulated over (a usually finite) interaction time
with the environment, the return R. Thereby, the agent is reinforced in taking the right
actions to achieve the goal of the environment.

The set of rules by which the agent decides which action to take based upon a state st
(or observation ot) is the policy8 [112]. Fundamentally, one has to differentiate between
deterministic and stochastic policies. Deterministic policies return a specific action, given
a state, while a stochastic policy returns a probability distribution over the available action

8The terms agent and policy are often used interchangeable.
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space, from which a decision on the action is made. This can be done by either choosing the
action of maximal likelyhood (greedy decision) or randomly sampled from the distribution.
The convention is, to denote deterministic policies by µ

at = µ(st) , (2.10)

and stochastic policies by π
at ∼ π(st) . (2.11)

Depending on the environment, the action space, and thereby the return value of the
policy, can be either discrete or continuous. Usually, discrete action are easier to handle
and are found in many classical arcade or computer games (like moving left or right).
Thus, they are commonly used in RL examples, while real-world systems usually allow
continuous action (like moving through velocity in either direction). This distinction is so
fundamental, that many RL architectures function exclusively with either one or the other
[113].

The evolution of an agent-environment interaction in the alternating sequence of states
si and actions ai is a trajectory

τ = {s0, a0, s1, a1, . . . } . (2.12)

Given a trajectory τ , and recalling the reward calculation in Eq. (2.9), the infinite-horizon
discounted return [112]

R(τ) =

∞∑
t=0

γt rt , (2.13)

with the discount factor γ < 1 is calculated. It is usually preferred over the flat sum
of all ri, because it is guaranteed to converge for (close to) infinite trajectories and gives
higher weight to earlier rewards, thereby effectively favoring sooner rewards from immediate
actions over later rewards.

Problematically the rewards from Eq. 2.13 can only be calculated after the fact from a
given trajectory. Yet, the task of the agent is choosing the right action at in the current
state st, that will result in the maximal return. This is formalized in the value function
V π(s), giving the value of a state s in terms of expected return when acting to the policy
π (or µ), and the action-value-function Qπ(s, a), telling the expected return when in the
state s taking the action a and then continuing accordingly.9 Ultimately, one is interested
in the optimal value functions V ∗(s) and Q∗(s, a), telling the values of state and action if
we act according to the optimal policy [112]. Logically, if we know Q∗(s, a), we can act
according to the optimal policy by, each time, choosing the optimal action

a∗(s) = argmax
a

Q∗(s, a) (2.14)

for the given state s.

At this point, is seems like we have come full circle, in that we determine the optimal
policy from the optimal state-value function of a state and action when acting according
to the optimal policy. The value functions, however, obey a recursive relation, following
the basic idea, that the next value is equal to the current value plus the current reward.

9Note, that V π(s) and Qπ(s, a) are connected by the chance of taking the action a
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These are the Bellman equations, that for the optimal value functions read

V ∗(s) = max
a

E
s′∼P

[
r(s, a) + γ V ∗(s′)

]
(2.15)

Q∗(s, a) = E
s′∼P

[
r(s, a) + γmax

a
Q∗(s′, a′)

]
(2.16)

where E
s′∼P

[. . . ] is the expectation value regarding s′ sampled from the transition rules

of the environment [113], that becomes just the evaluation of s′ if the environment is
deterministic. These equations can be solved iteratively by using approximations of the
optimal value functions until convergence to the actual, optimal functions is achieved [112].
To some degree, value function approximation is used in all RL algorithms [113]. The value
function is either used in learning the optimal policy for judging the current performance
or by directly learning the action-value policy function (also called Q-learning) or even a
combination of both [113].

2.3.1. The DDPG algorithm

For the control of a physical system in Chap. 4, we use the deep deterministic policy gradi-
ent (DDPG) algorithm from Ref. [114]. As the name gives away, DDPG is a deterministic
policy algorithm implemented with neural networks. At the time, it represented the first
implementation of a deterministic actor-critic model, in contrast to the classical, stochatic
and discrete actor-critic [115] models. Actor-critic methods simultaneously learn both the
optimal policy µ, in form of the actor, and the action-value function Q, in form of the critic.
In case of DDPG, both are implemented as neural networks. An implementation of DDPG
in Keras and TensorFlow can be found in the Keras github-repository, Ref. [116].

DDPG is trained in an off-policy way, meaning that training data is not required to be
sampled with the most-recent policy. Instead, the training data of any episode is collected
in a buffer in pairs,

{st, at, rt+1, st+1} , (2.17)

of previous state st, taken action at, resulting reward rt+1 and new state st+1. From this
buffer, batches D of random samples are used to learn the optimal action-value function
Q∗(s, a) through the Bellman-equation. The self-consistent form in Eq. (2.16) comes with
the problem of instability, which is resolved by introducing additional target networks to
the training. For any element d ∈ D, the right hand side of Eq. (2.16) is then calculated
as

y(d) = rt+1 + γ Qtarg(st+1, µtarg) , (2.18)

using the target versions of both the actor µtarg and critic Qtarg. The actual critic is
then optimized for minimizing the mean-squared error between it’s predictions and the
corresponding result of Eq. (2.18) in a normal supervised way, with the mean-squared-
Bellman-error loss

L(D) = E
{st,at,rt+1,st+1}∈D

[(
Q(st, at)−

(
rt+1 + γ Qtarg(st+1, µtarg)

))2]
. (2.19)

Then, according to Eq. (2.14), the current best policy µ is the one maximizing Q on the
current set D

max
µ

E
s∈D

[
Q(s, µ(s))

]
. (2.20)
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In practice, this is achieved by training µ on the set of all states st ∈ D with the critic Q
itself acting as the loss function by gradient ascend.

The two target networks, µtarg and Qtarg are created from the actor and critic initially
as direct copies. However, upon training, their parameters are being adapted only slowly
by fractional copying the parameters θ and φ of the actor and critic, respectively. This is
done by setting

θtarg = (1− τ) θtarg + τ θ , (2.21)
φtarg = (1− τ)φtarg + τ φ , (2.22)

for the parameter θtarg for the target actor µtarg and φtarg for the target critic Qtarg,
respectively, with a small weigth τ = 0.005. This cycle is repeated, parallel to acquiring
ever more data from agent-environments loops, until convergence is achieved.

The DDPG algorithm is known to be highly sensitive to training hyperparameters [117–
119]. Aside from the obvious parameters like the weight-copying parameter τ , the learning
rate, or the batch size [118], this also includes the relative scaling of the loss functions [117].
Compared to ordinary feed-forward learning, where hyperparameters mostly optimize the
generalization quality or training time, for DDPG they easily make the difference in if a
training is successful or fails entirely [118].
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3. Recovery of Structure Information
from Scattering Patterns

The imaging of systems on a nanometer scale is of paramount importance for many
branches in medical, biological, chemical, and physical sciences. The laws of wave op-
tics demand the usage of few nanometer or even smaller wavelenths for the imaging of
such structures [120], i.e. x-ray radiation. The development of x-ray diffraction imaging
has enabled many discoveries funcamental to modern society and our everyday life. It
led to the discovery of the structure of cholesterin, penicillin, vitamin B12, and later in-
sulin [121], resulting in the awarding of the Nobel prize in chemistry of 1964 to Dorothy
Crowfoot Hodgkin [122]. It also facilitated the postulation of the double-helix structure
of DNA by James Watson and Francis Crick [123] (Nobel prize in medicine, 1962 [124])
from measurements by Rosalind Franklin [125]. A more recent example, although using
cryoelectron tomography, is the imaging of the spike-protein of the SARS-CoV-2 virus
[126, 127] responsible for binding to human-cell receptors [128]. A common challenge of all
nanoscale imaging procedures is the small cross-section of the target systems. The discov-
eries of Refs. [121–124] were only possible by crystallizing the target molecules into a lattice
structure, thus increasing the overall cross-section to yield sufficient, measurable scattering
signals. At the same time, the high dose energies carried by x-ray photons also damage such
delicate molecules, deteriorating the sample over time [129, 130]. Consequently, crystals
that are too small or do noit crystallize well to begin with, cannot be investigates with con-
tinuous x-ray sources. Examples would be nanoclusters [93] or membrane proteins [130],
respectively.

Yet, The deterioration of the sample impacting the scattering signal can be avoided
entirely if the scattering occurs on a much shorter timescale than the effects of the damaging
unfold [131]. The use of short-pulse sources, outrunning microscopical processes, also
allows the imaging of unsupported particles in free space, but also require much higher
peak-intensities. Under these conditions, the damaging of the particle is much more severe
in the form of a total ionization and subsequent destruction in a Coulomb explosion [132].
Such short, femtosecond-length high-intensity x-ray pulses are produced by free electron
lasers (FELs) [133, 134]. Because the object features and the probing wavelength are still
of comparable magnitude, the resulting image is dominated by scattering features. As a
result, the underlying real-space structure can needs to be recovered by further processing
[133]. To date, improvements in object reconstruction allowed the investigation of ever
smaller unsupported nanosystems such as viruses [135–137], small protein crystals [129,
130], helium droplets [84, 138, 139], rare-gas clusters [140], or metallic nanoparticles [93,
141].

The scattering patterns captured in x-ray scattering experiments encode information
about both geometric shape [133] and internal structure of an object [136, 142]. In first
Born approximation the scattering into the far-field is calculated by the integral transfor-
mation

E(q) ∼ E0

∫
ρ(r) ei q·r dr (3.1)
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of the object’s electrical density ρ(r), with the transfer momentum q = kout −kin between
the incoming kin and outgoing kout wave-vectors [142] (see Fig. 3.1) and assuming elastic
scattering, i.e. |kin| = |kout| ≡ k. In the asymptotic case of large q, the scattered intensity
by Eq. (3.1) is described by Porod’s law I(q) ∼ q−4 [142, 143]. Thus, the scattered signal
decays rapidly at higher scattering angles until vanishing under natural noise at a value
of qmax. From the definition of the wavenumber k = 2π/λ follows, that qmax ∼ λ−1.
Therefore, the wide-angle scattering decreases rapidly when using smaller wavelengths.
For sufficiently small wavelengths, i.e. large k, the component q∥ parallel to kin of the
detectable transfer momentum q = q⊥ + q∥ becomes negligible small, thereby simplifying
Eq. (3.1) to the Fourier transform

E(q) ∼E0

∫
ρ(r) ei q⊥·r dr (3.2)

= E0

∫
ρp(x, y) e

i (qx x+qy y) dx dy = E0FT [ρp(x, y)] (3.3)

of the projected density ρp(x, y) =
∫
ρ(r) dz [142], also known from the Fraunhofer limit

of diffraction [144]. Hard x-ray radiation with wavelengths in the order of 1 nm usually
falls into this regime. The small-angle scattering formula Eq. (3.3) is invertible by simply
applying the inverse Fourier transform FT −1. Although the phase-information of the
scattering field is lost upon measurement there exist a range of reliable iterative phase
retrieval algorithms capable of recovering the phase information from a single scattering
pattern, given only few assumptions about the object [135, 145]. Despite a single scattering
pattern containing only information of the projected density, the full three dimensional
density can be retrieved using tomographic methods. By recording scattering patterns
from various directions, a full three dimensional scattering volume is assembled by matching
common lines of intersection in the scattering pattern. It is inverted via a three-dimensional
phase retrieval and inverse Fourier transform [136, 137, 141].

While yielding excellent levels of details and allowing for error correction by combining
multiple similar scattering patterns [141], the tomographic small-angle scattering is only
applicable for reproducible objects. If the objects of interest are too dissimilar or inherently
non-reproducible, all information has to be extracted from a singular scattering pattern.
In this situation additional three-dimensional information can be extracted from wide-
angle reflexes of Eq. 3.1 [146], which requires the use of longer wavelengths, i.e. soft x-ray
radiation with λ ∼ 10 nm. Under the assumption of a uniform density ρ(r), the full
scattering integral Eq. (3.1) of a polyhedral object is solved analytically by decomposition
into simplex objects1 γ. With the set V (γ) of vertices P , the scattering integral becomes

E(q) ∼ E0

∫
γ
ei q·x dx = i

∑
P∈V (γ)

| det(PP ′ : P ′ ∈ N(P ))|∏
P ′∈N(P )PP ′·q

eiP ·q (3.4)

wherein N(P ) = {P ′ : P ′ ∈ V (γ) ∧ P ′ ̸= P} is the set of vertices V (γ) without P
itself, derived in Ref. [147] from Ref. [148]. Using Eq. (3.4) the wide-angle scattering
from a tetrahedron is plotted in Fig. 3.1. It highlights the additional three dimensional
information carried by wide-angle contributions through the strong reflexes originating
from the tetrahedron faces. In fact, the scattering profile in the vicinity of high tranfer
momenta is equivalent to small-angle scattering along a tilted object plane, as shown in
Ref. [93]. Utilizing Eq. (3.4), recent theoretical works indicate in principle the completeness

1A simplex is a solid of n+ 1 vertices in an n-dimensional real vector space.
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Figure 3.1: The wide-angle scattering reflexes at large transfer momenta q = kout − kin contain addi-
tional three-dimensional information on the object shape. The scattering around a momentum q contains
information of the object projected to a tilted plane parallel to q, as demonstrated in Ref. [93]. This fact
is highlights by the strongest wide-angle reflexes appearing perpendicular to the triangular faces of the
tetrahedron.

of such three-dimensional information encoded in wide-angle scattering signals [147, 149,
150] for solid convex objects in the first Born approximation and infinitely many exact
measurements.

Despite transporting much more information, the reconstruction problem of finding ρ(r)
from the full scattering integral Eq. (3.1) lacks a direct inversion formula [93, 139, 146].
Further, the optical properties of the material have a much stronger impact in wide-angle
scattering through absorption and repeated scattering, rendering the first Born approxi-
mation insufficient. Moreover, a real detector is always of finite size and can never fulfill
the requirement of perfect measurement and the aforementioned non-reproducibility fur-
ther hinders the independent acquisition of additional shape information using alternative
experimental techniques. Further, under certain experimental conditions, especially in the
case of objects very short along the optical axis,2 the solution to this problem may not
be unique [146, 151, 152]. Thus far, the reconstructions of wide-angle scattering patterns
mostly rely on iterative forward fitting methods, which are based on repeated simulations
of the scattering process of a suitably parametrized object model [84, 93, 139]. While
highly successful and reliable, the repeated scattering simulations are computationally ex-
pensive. Further, the requirement of a parametrized object model in part pre-determines
the outcome of a reconstruction and may restrict the available parameter space too. More-
over, the high variety in object shapes of some experiments even require a coarse shape
identification to use different parameter models.

The idea for this part of this thesis was inspired by a talk on the reconstructions of
silver nanoclusters from wide-angle scattering pattern in Ref. [93], given in 2017. Due to
highly diverse shapes of clusters observed in the experiment, each scattering pattern had

2In the limit of a completely two-dimensional object, the full scattering formula Eq. (3.1) simplifies into
the small-angle case of Eq. (3.3), thus containing no further information even at large scattering angles.
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to be associated manually by a human scientist to a corresponding shape and only size and
orientation could be reconstructed using automated algorithms. On the other hand, the
identification of image contents, i.e. classification, is a prime task for neural networks. At
the time, neural networks applications were just emerging in physics, which then changed
rapidly over the course of the next five years, recall Sec. 1. In diffractive imaging, neu-
ral networks architectures haven been explored for applications in both small-angle and
wide-angle scattering. A first step was automating the pre-sorting of the raw wide-angle
scattering data into blank pulses and actual scattering events and further subdivinding the
latter into different categories of patterns in Ref. [84]. In a follow-up publication, a gen-
erative neural network was trained on creating artificial experimental scattering patterns,
allowing conclusions on the most prevalent features inside the dataset and characteristics
of the detector [85]. On the data of small angle experiments the transitions between dif-
ferent object geometries could be observed in the latent space of an autoencoder, trained
without any knowledge on the exact object shape [92]. Furthermore, direct inversion of the
small angle scattering Eq. (3.3) has been tackled with neural networks. Although reliable,
classical phase retrieval algorithms are a bottleneck in the reconstruction of small-angle
scattering patterns not only by computation time but often by the requirement of very
detailed input information on the object shape. Both phase retrieval and direct density
reconstruction of purely binary two-dimensional object densities with convolutional neural
networks was successfully demonstrated in Ref. [86]. This has further been extended to
the reconstruction of discretized three-dimensional objects models from three-dimensional
Fourier volumes to [87–90]. Almost all of these works are trained an tested solely on
perfect, simulated data. Just recently, benefiting from the inherent error correction of
three-dimensional Fourier volume construction from large sets of small-angle diffraction
patterns, such a neural network was used to successfully to reconstruct an object from
experimental data [90]. Also, neural networks have been tried for denoising and error
corrections on experimental scattering patterns [91].

The goal of this work is to improve and speed up the reconstruction of wide-angle scat-
tering patterns with the help of neural networks. Due to the lack of readily reconstructed
experimental data and the inherent uncertainty, the neural network needs to be trained on
simulated scattering data. Simultaneously, the objective for it is to perform experimental
data that are subject to a wide range of defects. Because it was inspired by the shape iden-
tification problem in Ref. [93], that also provides a set of experimental data reconstructed
by classical algorithms, it is developed along the specific case of silver nanoclusters illumi-
nated by the FLASH FEL. The specifications of the experiments are introduced further in
Sec. 3.1. The first step in improving the reconstruction of wide-angle scattering patterns
with neural networks is matching the capabilities of existing, classical algorithms and is
presented in Sec. 3.2. The feasibility of the initial idea of shape identification through a
neural network classification is analyzed in Sec. 3.3. It ultimately fails due to the over-
simplification of the object-model. Instead, the object density is reconstructed as a full,
three-dimensional model in Sec. 3.4, achieving unprecedented levels of details. This is
achieved by training on directly on the laws of scattering physics. It leads to the discovery
of an entirely new possible shape for silver nanoclusters and the further deployment in
experiments and further development is discussed in Sec. 3.5. Yet, while developed along
the example of Ref. [93], the techniques presented in this chapter are not limited to this
specific problem but rather can be transferred to any wide-angle scattering reconstruc-
tion problem, given a sufficient scattering simulation algorithm for data generation and
eventually training, if so desired.
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3.1. Single-Shot Wide-Angle X-ray Scattering with Silver
Nanoclusters

The scattering setup investigated throughout this chapter is that of silver nanoclusters
illuminated with soft x-rays from the FLASH free electron laser, as discussed in Ref. [93].
The silver metal clusters for the experiment are produced in a modified magnetron sput-
tering source (for details see Ref. [153]), that ejects a beam of condensated metal clusters.
The freshly grown clusters are in transient states and have not relaxed into an equilibrium.
Hence, metastable states are expected that allow insights on the dynamics involved in the
cluster formation process. Further, no two particles may be identical due to the inherent
randomness of the condensation process. Consequently, a single-shot imaging method is
required.

For imaging, the cluster beam is injected into the beamline of the FLASH free electron
laser at DESY and illuminated with soft x-ray3 pulses of wavelength λ = 13.5 nm and
durations of ≈ 100 fs [93]. With the observed cluster sizes between 50 and 400 nm the scat-
tering can be regarded as in the wide-angle limit. The scattering signal was recorded using
a composite detector. The x-ray photons were detected using multichannel plate (MCP)
and converted to optical photons on a phosphorous screen, that in turn are reflected by
a mirror towards a CCD camera outside the vacuum chamber [154]. For protection from
the harmful intensity of the direct x-ray beam, the MCP detector has a central hole (gen-
erally called beam-stop). The detector microchannels are tilted, resulting in a decreased
sensitivity at a scattering angle of 8◦ (sometimes called the 8◦-hole) [142]. Lacking a direct
inversion algorithm, the objects corresponding to the obtained scattering patterns were
reconstructed by forward fitting (see Sec. 3.1.2 below) using a numerical scattering simu-
lation algorithm (see Sec. 3.1.1 below). From reconstructing 100 out of a total of 25 000
scattering patterns recorded, the authors in Ref. [93] report the finding of truncated octa-
hedra, decahedra, icosahedra and truncated twinned tetrahedra. Aside from the truncated
octahedra, neither of these structures are deemed stable for the observed particle shapes.
The reconstructed scattering patterns published in Ref. [93] can be assumed as accepted
object candidates to the experimental scattering patterns. Therefore, they are utilized as
a test bed of real experimental data for any new reconstruction method. For use in this
thesis, the images from Ref. [93] are extracted and re-scaled. The images are zero-padded
to include the full 2π half-sphere into which wide-angle scattering occurs and dimensionally
rescaled to an image size of 128 × 128 pixel, in accordance to the data format described
later in Sec. 3.1.2. The resulting images and reconstructions from Ref. [93] are listed in
Fig. 3.2.

The intensity profiles recorded in experiments like Ref. [93] or obtained by the sim-
ulation algorithm are monochromatic, single channel images, i.e. either sensitive to or
assuming a single wavelength. For better visibility, scattering patterns depicted in the fig-
ures throughout this thesis are scaled logarithmically and converted to false color images.
Still, internally, all data is stored and processed as single-channel grayscale images. A
comparison between a grayscale and false-color version of the same scattering pattern is
given in Fig. 3.3 with a bar-legend for the SunsetColors-colormap used throughout this
chapter.

3Sometimes also classified as XUV [142] or EUV.
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Figure 3.2: The experimental scattering patterns obtained by Ref. [93] (permitted by Creative Commons
CC-BY 4.0 license (http://creativecommons.org/licenses/by/4.0/)) are re-scaled to conform with the
convention and used in testing the neural networks developed in this thesis. The corresponding object
reconstruction from Ref. [93] are assumed as established object candidates, that any newly developed
reconstruction algorithm nedds to either match or achieve better reproduction of the scattering pattern.
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Figure 3.3: Comparison between grayscale (left) and false-color (right) version of the same simulated
scattering pattern of an icosahedron (see Fig. 3.4). The colormap used are the SunsetColors from
Mathematica.
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3.1. Single-Shot Wide-Angle X-ray Scattering with Silver Nanoclusters

3.1.1. Numerical Scattering Simulation

Analyzing the large datasets obtained from scattering experiments requires a scattering
simulation algorithm that does not only yield precise result but is also fast to compute.
This usually means a trade-off between neglecting higher order physical effects and evalu-
ation time. The most basic theory for elastic scattering theory with plane incident wave
is the first Born approximation, neglecting all higher order effects such as absorption, the
finite speed of light, and repeated scattering. For silver nanoclusters, the first Born ap-
proximation with further including an effective absorption model already yields sufficient
results. This is shown in Refs. [93, 142, 155, 156] though extensive comparisons with more
elaborate methods.

Figure 3.4: Visualization of the numerical multi-slice Fourier transform (MSFT) simulation scheme with
absorption for wide-angle scattering after the definition in Ref. [93]. Analytical object models need to
be rasterized on a three-dimensional grid into a discretized object density. Absorption is treated in an
effective theory through an exponential decay with absorption length aabs of the bulk material to obtain
effective visible densities. The elastic scattering into the far field is decomposed into a Fourier transform
and subsequent wide-angle phase modulation depending on the qz-component of the transfer momentum
q. The complete scattering pattern is obtained through the coherent sum of all scattering slices.

Figure 3.5: The absorption length of
bulk silver of 12.5 nm is much smaller
than the present particle diameters. Con-
sequently, a relevant intensity penetrates
only a few slices deep in the discretized
particle model. In this case, only the front-
faces of the icosahedron are illuminated
enough to contribute a measured signal
while the far-side lies within a shadow-
region.

In the following, the optical axis is fixed to the
z-axis. Due to the large number of atoms (typically
on the order of 109), the silver nanoparticles can be
assumed to be macroscopic dielectric bodies, that
are well described by a binary permittivity function
ϵr(r) = ϵsilver for r ∈ Vobject, and ϵr = 1 otherwise
[93]. Absorption is treated in an effective theory
through an exponential decay

ρeff(r) = ρ(r) e−aabs ∆z (3.5)

with absorption length aabs = 12.5 nm of bulk silver
to simulate the effective illuminated object density
ρeff at any depth ∆z from the surface. At the present
cluster sizes of 40 . . . 320 nm, the short absorption
length of silver means that a considerable region of
the object does not receive enough incident radia-
tion (see Fig. 3.5) to add a mearurable contribution
to the scattering pattern. Consequently, some ob-
jects are indistinguishable from their scattering pat-
terns. The numerical scattering simulation is per-
formed in the multi-slice Fourier transform (MSFT)
scheme (see Fig. 3.4) with a discretized optical den-
sity. The optical density is rasterized on a cubic grid,
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3. Recovery of Structure Information from Scattering Patterns

the simulation area, with length l and grid points N along each coordinate axis. The con-
tribution to the far-field scattering pattern of each effective density slice along the z-axis
is calculated individually. The calculation,

Ej(qx, qy) = FT [ρeff,j ]qx,qy e
i qz(qx,qy)

l
N

j , (3.6)

decomposes into a Fourier transform FT and wide-angle phase factor depending on the
qz-component of the transfer momentum q. In order to increase the interpolation density,
the lateral dimensions of the object tensor (and thereby the simulation region) is usually
expanded by zero padding (calculation resolution) before Fourier transform. The region of
Ej(qx, qy) relevant for elastic forward fitting is that where the condition q2x + q2y + q2z = k2

is fulfilled, with wave number k = 2π/λ of the incident beam.

All simulations within this thesis are performed with object resolutions of 192×192×192,
simulation area length l = 318.75 nm and calculation resolutions of 512 × 512, resulting
in a physically relevant region of 128 × 128 pixels for elastic forward scattering. If not
stated otherwise, all calculations are performed with these resolutions. Figures throughout
this thesis are simulated with twice the calculation resolution, increasing the interpolation
density. In general, we demand all objects to be convex, as this a necessary condition
for the existence of a unique solution in the ideal scenario of informationally complete
measurements [149].

3.1.2. Scattering Reconstruction by Forward Fitting

Due to the lack of a direct inversion algorithm the reconstruction of the real-space object
creating a certain scattering pattern classically has to be achieved by comparative methods,
like in Refs. [84, 93, 155]. This usually means an iterative forward fit with a parametrized
object model and some initial assumptions. From there, the object is manipulated slightly
and the corresponding scattering pattern compared to the input. The goal of each iteration
step is to find a set of parameters that achieves a closer fit to the input scattering pattern
than the previous and the cycle is repeated until a convergence is achieved. However, the
dependency of the scattering function not only on the discretized object model used in
MSFT but any set of model parameters is too complex for using gradient based methods.
Instead, a Monte-Carlo simplex algorithm is utilized in Refs. [84, 93, 155]. This stochastic
method involves generating random points inside a simplex in parameter space around
the current values, simulating the corresponding scattering patterns, and advancing the
parameter set as soon as a new-best fit is found until convergence is achieved. Due to the
inherent randomness reconstructing a single scattering pattern requires performing several
Monte-Carlo runs,from different starting parameters. In total, in the order of 105 scatter-
ing simulations are needed for one such reconstruction, which in itself is computationally
expensive. While the MSFT algorithm is considerably faster than e.g. FDTD simula-
tions, it still is too slow to match the repetition rate of FEL experiments, allowing only
reconstruction of a fraction of experimental dataset. Also, creating the object model and
especially in the case of Ref. [93] the initial assumption requires intervention of a human
scientist. Yet, it is an extremely reliable reconstruction method and the inherent model re-
strictions guarantee finding the object, under the given assumptions, that best reproduces
the scattering patterns [84, 93, 155]. Therefore, the predictions obtained by the MCS
MSFT are used as references in testing the neural networks developed in this thesis. Also,
in Sec. 3.2.5, the reconstruction algorithm from Ref. [84] is matched up directly against a
neural network, solving the same parameter reconstruction task.
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3.2. Parameter Reconstruction for Icosahedral Nanoclusters

The first step towards the goal of improving the reconstruction of nanoclusters from single-
shot wide-angle scattering patterns with neural networks is to replicate the capabilities of
existing reconstruction techniques. For the silver nanoclusters introduced in Sec. 3.1 this
means determining the size and orientation of the particle, after the shape has already
been identified manually by a scientist. The main results documented in this section are
published in Ref. [2].

Figure 3.6: The icosahedral nanoclusters of varying size and orientation are illuminated with short-
length soft X-ray pulses from a FEL. The resulting scattering patterns are of varying quality due to noise,
missing regions and further defects. The neural network is trained to reconstruct the size r and orientation
parameters {θ, φ, α} corresponding to the original object. Training is performed with pairs of parameters
and simulated scattering data.

The neural network has to reconstruct size and orientation of a silver nanoparticle of
known shape from the corresponding wide-angle scattering pattern, as sketched out in
Fig. 3.6. The geometry of choice is the icosahedron (see Fig. 3.6, which is one of the shapes
observed in Ref. [93], to which Sec. 3.2.1 is dedicated. The symmetry of the particle has
implications for the representation of rotations, which are elaborated in Sec. 3.2.2. For real-
world application, the neural networks needs to be capable of processing experimental data,
like the one obtained in Ref. [93]. However, the existing set of reconstructed scattering
patterns currently available is too small for the training of a neural network. Instead,
simulated scattering patterns have to be utilized in training, which can be generated using
the MSFT algorithm also used in classical reconstructions [84, 93, 142, 155] (see Sec. 3.1
for details). Simulated data holds the additional advantage of the parameters associated
to a scattering pattern being precise. In contrast, the ground truth parameter set (or even
the exact shape) for an experimental pattern can never be known for sure, as the particle is
destroyed by the FEL pulse. Yet, simulated scattering patterns are clearly distinguishable
from experimental ones, as they are free of any defects. To ensure reliable predictions even
in the presence of heavy image artifacts, data augmentation techniques are used, which
are introduced in Sec. 3.2.3.

The adaptions to the design of the neural network and training process leading to reli-
able and reproducible results are documented in Sec. 3.2.4. Neural networks may offer a
significant time advantage through their nearly instantaneous evaluation time compared
to scattering simulations. This is further investigated in Sec. 3.2.5. Finally, the prediction
capabilities on experimental scattering patterns are demonstrated in Sec. 3.2.6.
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3.2.1. The Icosahedron

The icosahedron (see Fig. 3.7) is a regular polyhedron composed of 20 equilateral triangles.
It is one of the Platonic solids, which are the five regular solids assembled from regular
polygons, namely the tetrahedron (4 triangles), cube (6 squares), octahedron (8 triangles),
dodecahedron (12 pentagons) and icosahedron (20 triangles). They were already known in
ancient Greece, and are named after Plato who assigned them to the four elements4 in his
Timaeus [157]. Due to the universal symmetry, the Platonic solids are commonly used as
playing dice [158, 159], most prominently the cube [160].

Figure 3.7: The icosahedron is formed by 20
equilateral triangles, with 5 triangles meeting at
every vertex. It has five- (green), three- (red)
and two-fold (blue) rotation symmetries around
the vertices, faces and edges, respectively. One
example of each is shown with the correspond-
ing cyclic group symbol Cn for n-fold rotation
symmetries.

The icosahedron is chosen due to its wide-
spread appearance in nanometer-sized objects.
Many viruses have an icosahedral capsid, such
as the herpes simplex virus [161], the macro-
scopic mimivirus [135, 136, 162], some bacterio-
phage [137, 163], and all Adenoviruses5 [165].
These viruses build their shells from the repe-
tition of a single symmetric protein, thus sim-
plifying their genome. With this constraint, the
icosahedron is optimal in offering the most vol-
ume with the simplest building blocks (trian-
gles) for the shell [161]. On a smaller scale, also
organelles of some bacteria are of icosahedral
shape [166]. Clusters of rare-gas molecules, in-
teracting only by van-der-Waals forces, are also
known to form into icosahedra [167] as they
again minimize the surface to volume ratio for
close-sphere packing. Most importantly, silver
clusters are also observed for silver nanoclus-
ters of varying sizes [93, 168, 169] and they are
part of the set of shapes recorded in Ref. [93],
allowing for testing the neural network against
classical reconstruction methods.

As a regular solid, the icosahedron is highly symmetric. It is name-giving to the corre-
sponding symmetry group Ih, the icosahedron group, containing 120 elements. This group
can be decomposed into the group-product Ih = i⊗I of the point inversion group i and the
icosahedral rotation group I with 60 elements. These 60 symmetry rotations are formed
by

• 6 five-fold rotation axes C5 through each pair of opposing vertices,

• 10 three-fold rotation axes C3 through the centers of opposing triangle faces

• 15 two-fold rotation axes C2 through the centers of opposing edges,

of which one is shown in Fig. 3.7, each.

The symmetry properties of the icosahedron pose an additional challenge to the recon-

4Plato assigned the tetrahedron to fire, the cube to earth, the octahedron to air, and the icosahedron to
water. The remaining dodecahedron is assigned to the universe as a whole [157].

5The family of Adenoviruses recently became familiar to the broader public due to the application as
delivery vectors in Covid-19 vaccines such as Vaxzevria (Astra Zeneca), Janssen COVID-19 vaccine
(Johnson & Johnson) and Sputnik V [164]
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struction task. On a playing dice each side is unique due to an individual number carved in
or printed on. In contrast, a perfectly isotropic nanocluster does not have such identifying
features. As a result, for any orientation of a blank icosahedron there exist 59 symmetry
rotations6 resulting in the same shape, although internally the individual (indistinguish-
able) atoms may change places. This inherent symmetry needs to be accounted for in the
representation of icosahedral rotations.

3.2.2. Rotation Representations for Polyhedral Clusters

The orientation of any rigid body in space can universally be defined by a rotation from
a reference orientation. In the case of an icosahedron, the reference is usually a point-up
orientation with one five-fold symmetry axis parallel to the z-axis. Due to the symmetry
of the icosahedron, any orientation can be reached through 60 different rotations from
the reference. This high degree of symmetry is advantageous for the reconstruction task,
as it reduces the overall complexity of possible orientations. Yet, it also introduces a
challenge to any parameter representation. The mapping from scattering patterns in non-
injective, because any object orientation (and in turn scattering pattern) can be assigned
to 60 different sets of parameters.7 However, the degeneracy can be lifted by restricting
rotations into a subset, where every orientation is associated with just one set of rotation
parameters, the so-called fundamental domain. Any set of rotation parameters may be
projected onto one element of the fundamental domain by executing the nearest inverse
symmetry operation from I.

The Lie-algebra so(3) of the three dimensional rotation group SO(3) has three basis
elements and consequently any rotation in the R3 may be represented with just three
parameters. One convention for the representation of rotations are the Euler-angles. They
are a set of three rotation angles about fixed axes, which in combination can represent any
rotation of an object. Depending on the specific convention, these axes can be fixed to
either the rest-frame (extrinsic), the object itself (intrinsic) or less commonly a combination
of both. One example are the three rotation angles pitch, yaw and roll of an airplane, which
are directly accessible through the movable aerodynamic surfaces. Euler angles are also
used in Ref. [93] in reconstructing rotation parameters of nanoclusters, with the third
rotation angle aligned to the beam direction. This choice simplifies the optimization task,
as the third rotation can be accessed through rotation of the scattering pattern without
the need of re-simulating the scattering process. However, Euler-angles have two major
drawbacks: The appearance of singularities (gimbal-lock) and non-trivial combination of
successive rotations into one single rotation.

Another representation of rotations tracing back to Leonard Euler is the axis-angle
representation. It arises from Euler’s rotation theorem, stating that any rotation of a rigid
body may be executed by a single rotation about one axis. Expressed by a unit vector n
and angle ϕ, the rotation of any vector can be calculated using the Rodrigues’ rotation
formula [170] (see App. B.1 for details) or transformation into a rotation matrix. Again,
the combination of two successive rotations into one single rotation is not trivial in the
axis angle representation. It is, however, directly related to another representation offering
exactly this feature: the rotation quaternions.

6Not counting the identity rotation.
7A similar problem arises when inverting the equation sin(x) = y, where an infinte number of solutions

exist for any |y| ≤ 1. Per convention, the arcsin-function as the inverse function of the sin is defined
for the period of the smallest x around the origin, which is defined as the fundamental domain.
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Quaternions are a four-dimensional extension of the imaginary numbers by additional
elements j, k introduced by Sir William Rowan Hamilton8 with the constituting relation

i2 = j2 = k2 = i j k = −1 . (3.7)

A short introduction to quaternions can be found in App. B.1. Any quaternion x may be
expressed by four real-valued parameters {x0, x1, x2, x3} through

x = x0 + x1 i + x2 j + x3 k , (3.8)

and the imaginary quaternions (with real part x0 = 0) are isomorphic to the R3 in the
same way as the complex numbers C are isomorphic to R2. This is the very property that
led to their discovery and motivates the vector notion of quaternions

x = (x0,x) with x =

⎛⎝ x1
x2
x3

⎞⎠ . (3.9)

Further, the rotation of a vector, represented by an imaginary quaternion, is facilitated
through the quaternion product with a unit quaternion (see appendix B.1 for details). The
corresponding rotation quaternion is calculated from the axis-angle representation through

qrot =
(
cos
(ϕ
2

)
, sin

(ϕ
2

)
n
)

. (3.10)

In quaternion space, two consecutive rotations are consolidated into a single rotation
quaternion through the quaternion product of both. The sin-function in the imaginary
part of eq. (3.10) highlights the fact, that any rotation angle ϕ larger than π (sin changes
sign) is equivalent to a rotation of ϕ − π in reverse direction or about the negative axis
−n. However, the rotation is still uniquely identified through the real part of qrot. Even
if restricting rotation angles to 0 ≤ ϕ < π all possible rotations of a rigid body still can be
realized and the rotation quaternion is fully determined by the imaginary part alone. This
allows to map rotations onto points inside a three dimensional unit-sphere in imaginary
quaternion space.

The fundamental domain of the rotations of an icosahedron in quaternion space is de-
scribed in Ref. [171]. Through calculating the shortest rotation angle to the nearest sym-
metry operation (or primordial point in Ref. [171]) from the icosahedral rotation group
I, each rotation inside the unit-quaternion space can be assigned to a proximity domain,
tiling the unit-quaternion space into 60 cells. The fundamental domain is the cell centered
around the identity-rotation. When visualized in imaginary quaternion space, it takes on
the form of a dodecahedron, as depicted in Fig. 3.8. The dodecahedron faces intersect the
axis to the nearest five-fold symmetry rotations (green dots in Fig. 3.8(a)) half-way at a
distance of sin(π/10) [171].

Inside the unit-sphere in imaginary quaternion space, similar rotations are mapped close
to each other, allowing for a metric of similarity between rotations by the quaternion norm
(see App. B.1). Rotations about symmetry axes form straight lines (as in Fig. 3.8(b)),
intersecting several cells. When restricting to the fundamental domain, lines reaching the
fringe of the domain wrap to the opposite end of the domain and again continue straight.

Due to the favorable conditions of the quaternion space, any rotation qrot is easily

8Most prominently known for introducing the mechanics formalism named after him.
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Figure 3.8: In imaginary quaternion space (a) each point inside the unit sphere translates to a rotation.
The dots indicate all symmetry rotations of the icosahedron in green (five-fold), red (three-fold) and blue
(two-fold). The fundamental domain is of dodecahedron shape with the faces intersecting the axis to the
nearest five-fold symmetry rotations at half-angle sin(π/10). Inside the fundamental domain (b) similar
rotations are mapped to points close to each other, indicated by lines for rotations around the five-fold
axis (green), three-fold axis (red) and two-fold axis (blue). At the fringe of the fundamental domain, the
lines wrap to the opposite end of the domain and continue straight until reaching the next fringe.

projected into the fundamental domain, following two steps:

1. determine the closest symmetry rotation qsymm,

2. apply the quaternion product with the inverse symmetry rotation q′rot = qrot q
−1
symm.

For practical application, is is usually not required to know which of the symmetry opera-
tion is the closest. Hence, the procedure is simplified by calculating the quaternion product
with all 60 symmetry rotations and then selecting the one with the smallest rotations angle
through either the maximal real part or shortest imaginary part.

The fundamental domain projection generates a unique mapping between rotation pa-
rameters and icosahedron orientations. It allows for generation of a training dataset
with fully randomized rotations, that are mapped into the fundamental domain in a pre-
processing step before training the neural network. Yet, the very same projection could
also be utilized inside a loss function, that calculates the loss for all symmetry rotations
and selects the best. This approach, however, is more suited for systems with a smaller
number of symmetry operations, like the one in App. B.3.

With the rotation quaternions, icosahedra are represented by five parameters: a size pa-
rameters and the four components of the rotation quaternion. Trough using all four com-
ponents of the quaternion, the rotation inside the fundamental domain is over-determined.
This, however, is beneficial for checking the confidence of predictions made by the neural
network. If a predicted quaternion is not of unit length it is most likely erroneous.

3.2.3. Simulating Artifacts in Data Augmentation

The scattering patterns obtained in experiments show a number of deviations when com-
pared to simulated patterns [93]. these deviation can mostly be divided between quality
defects and restrictions of the experiment. The quality of the image recorded is reduced
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Figure 3.9: The simulated scattering patterns (top left) are modified with a variety of defects in an
image augmentation step in order to both increase the robustness of the neural network against defects
appearing in real experiments and increase the effective size of the dataset. The augmentation filters
can be divided into quality defects such as noise or blur and sensor effects like deleting a central hole or
restricting the angular range by cropping. Also random combinations of the previous effects and a special
combination inspired by experiment data is used. The defect strength is randomly selected from a range
largely exceeding the magnitude in real experimental data.

by noise and scattering patterns appear blurred compared to simulations. As it will be-
come apparent in Sec. 3.4, the blurring can be attributed to deviations from the perfect
icosahedral shape. Further, the shape of the detector limits the information content of the
scattering patterns. The multichannel detector used in most wide-angle scattering experi-
ments is flat, limiting the angular range available for recording. Further, it sports a central
hole to let the unscattered direct beam pass, as otherwise it would damage the detector
through intense radiation.

The appearance of such artifacts hold the possibility to result in patterns outside the
interpolation-range of the neural network. Testing shows a relative robustness for a network
trained on clean simulation data. The introduction of cropping or central hole, however,
exceeds the capabilities of the trained network and results in erroneous or even outright
nonsensical predictions such as the rotation quaternions not having unit-length. Hence,
the regularization technique of image augmentation [7] is utilized to alter the input images
upon training. In computer vision tasks, image augmentation is used to increase the
generalization capability of a neural networks by shifting, rotating and partially deleting
existing images or applying noise and other image defects [7, 8]. It also prevents relying on
single image-features that identify whole attributes. For example, size of the icosahedra is
encoded in the spacing of the fringe pattern and it could be reconstructed by focusing on
a small windows of the image, which is prevented through obfuscation or outright deleting
by augmentation filters.

In our case, a number of different image defects are introduced, listed in Tab. 3.1 and
an example for each shown in Fig. 3.9. Most of these filters are either inspired by defects
appearing in experiments (such as the detector hole) or general image distortion (like jitter).
The upper limit for the magnitude of the defects are aimed to exceed the experiments by
a good margin order to guarantee good prediction results on experimental data. The
augmentation filters are designed to generalize types of defects. They are not tailored
specifically for a specific target dataset, as it would easily be possible e.g. with the size of
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3.2. Parameter Reconstruction for Icosahedral Nanoclusters

the hole and detector range. This is done to achieve a robustness against changes in the
setting, as e.g. view angles or detector sensitivity can vary even over the course of a single
measurement sequence.

Before training, an augmented dataset is created by applying each filter from the list
in Tab. 3.1 to each of the scattering patterns in the training-dataset, thereby increasing
the effective size 11-fold. This augmentation is performed once before training and the
resulting set is kept for a complete training run.

Table 3.1: Full list and description of the augmentation filters used.

Filter Name Decription
identity Returns the input image.
uniform noise Add uniformly sampled values between 0 and 0.1 to any pixel

to simulate noise in general.
blur Convolve the image with a Gaussian kernel of size r ∈ [0, 3].

As will later be shown, the blur can be attributed to devia-
tions from the perfect icosahedral shape in the object.

jitter Each pixel is replaced randomly with another pixel in a rect-
angle of size r around the pixel. The sampling window r is
randomly chosen between 0 and 2.

salt & pepper A fraction f of the image pixels is set to either 0 (black) or
1 (white). The fraction f is randomly chosen between 0 and
0.05. It simulates defect detector units.

central hole The pixels inside a circle of radius r around the center of
the image are set to 0, with r ∈ [6, 20]. It simulates the
central hole in the detector to let the direct x-ray beam pass
without damaging the detector.

cropping Crop the image in both height and with to a length of down
to 64 pixels, individually, and fill the missing regions with
zeros. It recreates the limited angular range of experimental
setups.

shift Shift every pixel by an random value between -5 and 5 in
both horizontal and vertical direction. Pixels mapped to
regions outside the image are discarded and missing regions
filled with zeros.

blind spot Multiply every pixel of the image with a Gaussian defect
function 1− exp{−((x− x0)

2 + (y − y0)
2)/(2σ2)} around a

random point (x0, y0)
T and Variance between 0 and 0.2. It

simulates an uneven sensitivity of the detector pixels and
also the detector blindspot, appearing in MCP detectors as
in Ref. [93] due to the tilting angle of the channels.

random combination Randomly choose between 2 and 5 different filters from the
above list (without identity) and apply them consecutively.

simulated experiment In order, apply the filters shift, central hole, uniform
noise, blur, blind spot and cropping. It combines the
individual defects observed in experimental scattering pat-
terns from Ref. [93].
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3. Recovery of Structure Information from Scattering Patterns

3.2.4. Network Design for the Reconstruction of Icosahedra

We have established the data format for the reconstruction of icosahedral nanoclusters
from scattering patterns. The icosahedra are represented by a set of five parameters: the
four components of the rotation quaternion q of the orientation relative to the reference
orientation and one size parameter. Because all vertices of the icosahedron lie on the surface
of a sphere around the center of the icosahedron, the radius R of this circumsphere is used
as the size parameter. Hence, any icosahedron is uniquely represented by a parameter
vector

v = (q0, q1, q2, q3, R)
T . (3.11)

These five components are of different character, each. The imaginary parts q1, q2, q3 are
limited to sin(π/10) ≈ 0.31 and the real part q0 lies between cos(π/10) ≈ 0.95 and 1.0
due to the restriction to the fundamental domain. The radius R, on the other hand, is a
dimensional parameters and clusters sizes in a range of 30 nm ≤ R ≤ 160 nm are considered.
To avoid unbalanced learning due to the uneven scaling between the parameters, both the
real part of the quaternion and the size are re-scaled by

v =

⎛⎜⎜⎜⎜⎝
q0
q1
q2
q3
R

⎞⎟⎟⎟⎟⎠→ v′ =

⎛⎜⎜⎜⎜⎝
10 (1− q0)

q1
q2
q3

(R− 30 nm)/(130 nm)

⎞⎟⎟⎟⎟⎠ (3.12)

to a dimensionless unit in the range of 0 to 1.

For the purpose of generating a dataset, the parameter vectors v are randomly sampled.
The radius R is uniformly sampled from the size range 30 nm ≤ R ≤ 160 nm. The rotation
is generated in the axis-angle representation. The rotation axis n is sampled from a uni-
form distribution over the surface of the unit sphere and the rotation angle from the linear
interval ϕ ∈ [0, 2π[. For simulation of the corresponding scattering pattern a discretized
density matrix of 192 × 192 voxels is created from a cubic volume of 320 nm in length.
The entries of the three dimensional tensor are set to either 1 (inside the icosahedron) or
0 (outside). This object tensor is zero padded to a size of 512× 192 in the lateral dimen-
sion and the scattered electric field is calculated through the MSFT algorithm described
in Sec. 3.1. The resulting field is cropped to the central 128 × 128 pixels containing a
physical signal, which corresponds to a field of view of 2π in beam direction, recall the half
sphere in Fig. 3.1. To simulate a measurement, the scattering field is converted into an
intensity profile and a random dark-noise factor is added. The intensity is further scaled
logarithmically to account for the range of relevant intensities, spanning over several or-
ders of magnitude. Finally, the logarithmic intensity is normalized to a range of 0 to 1
and the scattering pattern is saved as a .png-image file and the corresponding parameters
are written to a table. Through the normalization process, the information of the signals
magnitude is lost. This information, however, is also unavailable in experiments as the
FELs intensity can vary between individual shots. The data generation is performed in
Mathematica and each generation takes roughly 30 s. Hence, the dataset is pre-generated
and stored on a hard drive and can later be loaded in a relatively short time. Upon import,
the axis-angle parameters are converted into rotation quaternions and projected into the
fundamental domain, as described in Sec. 3.2.2. The dataset is split into a larger training
set and a validation set at a ratio of 0.2 [7]. The scattering patterns of the training set
are augmented according to Sec. 3.2.3 and randomly shuffled. The size of the dataset was
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3.2. Parameter Reconstruction for Icosahedral Nanoclusters

increased in parallel to the development of the neural network until a convergence of the
prediction performance on the validation portion relative to the set-size was observed. The
final dataset contains 25 361 scattering pattern-parameter pairs.

With the structure of both input- and output-data determined, the neural network needs
to predict a five-dimensional continuous parameter vector from a two dimensional, 128×128
sized, single color-channel image. Convolutional neural networks are particularly well
suited for solving this image-regression task, recall Sec. 2.2. Yet, tests with a simple LeNet-
style architecture (recall Sec. 2.2) did not yield adequate results, likely due to vanishing
gradients. Instead, a ResNet (from Residual Network) architecture is used [108]. It
implements convolution operations f as residual operations xi+1 = xi + f(xi) through the
use of identity shortcuts to add up the input tensor xi with the output of the convolution
operation.
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Figure 3.10: The neural network design is adapted from the ResNet34 architecture [108], constructed
from res-blocks (top left section). It realized the residual operation, by adding up the input tensor with the
ouput of a double convolution- and batch normalization (BN) stack with central activation in a plus layer.
The sum is then post-activated in another elementwise activation layer (act.). Dimensionality reduction is
achieved through a modified version, the dim-block (top right section), using a 3×3 convolution layer with
stride 2 in the conv-stack and a 1 × 1 convolution with stride 2 as the skip-connection. The input stage
of the network is formed by a 7 × 7 convolution layer with stride 2 (also followed by BN and act.) and a
max-pooling layer. The main body consists of 14 residual blocks, arranged in four stages of doubling filter
dimensions and halving lateral dimensions. The final 512 convolution filter maps of lateral dimensions
4× 4 are flattened through a global average pooling layer, converting each convolution map into its mean
value. It feeds into the final five fully connected neurons, forming the output stage of the network. All
activation functions are set to tanh.

We use a modified version of the 34-layer deep ResNet34 from [108], sketched out in
Fig. 3.10. The basic building block is that of a so-called res-block, see top of Fig. 3.10,
realizing the residual operation. The input tensor feeds into a stack of 3 × 3 convolution
layer, batch normalization, element-wise activation, another convolution layer and, again,
batch normalization. It is then added to the original input tensor through a plus layer,
followed by the the second activation layer in a post-activation design. Different to the
original ResNet design, all activation functions are set to tanh, resulting in more consistent
results over multiple training runs with random initialization. ResNet utilizes convolution
operation with a stride of 2 for lateral dimension reduction, skipping every other input
pixel, instead of pooling layers. The dimension operations are also embedded into modified
res-blocks, called dim-blocks (see top-right of Fig. 3.10). Therein, the identity shortcuts
are implemented by 1×1 convolution operations with stride 2, to match the dimensionality
of the convolution path. In total, ResNet34 contains 16 residual blocks.
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3. Recovery of Structure Information from Scattering Patterns

In the input stage of the neural network, a quick reduction in the lateral dimension is
achieved through two operation: one 7 × 7 wide convolution operation with stride 2 and
a single max-pooling operation. Another feature of ResNet is the usage of Mean-pooling
before transition to the terminal fully-connected layer instead of a flattening operation. It
effectively converts the 512 4× 4 convolution feature maps into a vector of the 512 mean-
values of each of the feature maps. They feed into five fully-connected neurons, giving the
final output of a five-dimensional parameter vector. In total, the network has 21 302 917
trainable parameters.

The loss function to be optimized upon training is the mean-squared error between the
predicted parameter vector p and target vector t of each sample. The complete data-
handling, neural network and training is performed in Mathematica. We use the ADAM
(adaptive moments) optimizer [7, 172] and a batch size of 128. Training is performed over
40 full iteration of the training dataset, containing 223 168 augmented samples. At the
end of each full iteration of the dataset (epoch), the average loss on the validation set is
calculated for monitoring. An example learning curve with both training loss (smoothed,
for each batch) and validation loss (for each epoch) is shown in Fig. 3.11. A convergence
on the validation set is observed at 40 epoch, with a clear overfitting to the training
set.9 The calculations are executed on the computer qoms with a single Nvidia GTX1060
consumer graphics card and takes approximately 4h 30min. For simplicity, this trained
neural network is later referred to as IcoNet.

training

validation

0 10 20 30 40
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10-4
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Figure 3.11: The learning curve of the neural network training converges within 40 epoch for the (epoch-
wise) value of the validation loss (blue curve). The (batch-wise, smoothed) training loss (orange curve)
indicates significant overfitting to the training dataset.

The prediction consistency and accuracy of the trained neural network is tested on an
independent training set, containing 5000 images, generated with the same procedure as
the main dataset. The re-normalization of the parameter vector v in Eq. (3.12) still applies
slightly different weights to the single parameters. So, an evenly weighted parameter-vector
difference is defined

dpar(p, t) =

⎛⎜⎜⎜⎜⎝
|p0 − t0|/

√
1− q2max

|p1 − t1|/(2 qmax)
|p2 − t2|/(2 qmax)
|p3 − t3|/(2 qmax)
|pR − tR|/(130 nm)

⎞⎟⎟⎟⎟⎠ , (3.13)

by dividing the absolute difference between the components of each vector by the allowed

9In this case, we see benign overfitting [94, 95], due to the limited information content of the scattering
patterns. This introduces an effective noise onto the training data.
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3.2. Parameter Reconstruction for Icosahedral Nanoclusters

parameter range. The range of the imaginary quaternions is limited by the diameter of the
circumsphere of the fundamental domain with radius qmax =

√
3 (2 cos(π/5))−3. From this

evenly weighted parameter difference, error measures can be derived. Most importantly,
the mean-error and max-error with the corresponding function applied to the difference-
vector, respectively. The distribution of both error metrics is shown in Fig. 3.12(a).
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Figure 3.12: The parameter prediction errors (a) of the IcoNet on the test set are evaluated in both the
mean-error (blue) or maximum-error (red). For the majority of test-samples, the mean-prediction error is
below 2%. The right-most bin contains all samples with errors above 5%. These can mainly be attributed
to self-inconsistent prediction. They can be identified (b) through inconsistencies in between the four
quaternion parameters, by exploiting the unit-length relation in eq. (3.14). While the target parameters
(black dots) form a straight diagonal line and most predictions (red dots, connected to targets by gray
lines) are scattered closely around the diagonal, some major outliers appear at large rotation angles. These
appear close to the border of the fundamental domain.

The performance is slightly worse than on the validation set, mainly due to some quad-
rants of the fundamental domain being underrepresented in validation set due to an error
in the sampling distribution. Still, for a large majority of the samples the mean-prediction
error is below 2%. In the last bin in Fig. 3.12(a) all predictions with an error above 5%
are collected. These mainly correspond to self-inconsistent predictions, with conflicting
quaternion parameters. To form a unit quaternion, the relation

q0
2 = 1−

(
q1

2 + q2
2 + q3

2
)

(3.14)

between the quaternion parameters qi needs to be fulfilled. When plotting the right-hand
side over the left-hand side of Eq. (3.14), as done in Fig. 3.12(b), the target parameters
(black dots) form a straight line. Most predictions follow this line (red dots, connected
to corresponding target by gray line), with some major outliers. The outliers appear
mostly at large rotation angles, close to the border of the fundamental domain where
continuing rotations are mapped to the opposite end end of the domain. As already
discussed in Sec. 3.2.2, the use of all four quaternion parameters enables us to easily detect
such prediction errors to improve the overall prediction result.

3.2.5. Comparison to Classical Reconstruction Methods

We have demonstrated, that a trained neural network is capable of reconstructing size
and orientation parameters for known particle shapes from scattering patterns with high

35



3. Recovery of Structure Information from Scattering Patterns

accuracy. However, in this task it has to compete with the classical Monte-Carlo-simplex
(MCS) algorithm utilized in Refs. [84, 93, 155]. For comparison with this established
forward fitting method, we also reconstruct 30 random scattering patterns of the test set
with the state-of-the-art Monte Carlo simplex procedure, as used in [84].

1 2 5 10 20 25 30
0

5

10

15

20

effort in units of # scatter simulations (103)

p
re
d
ic
ti
o
n
er
ro
r
(%

)

5k

10k 20k 25k

MCS

set size

NN

Figure 3.13: From the test set, 30 random samples are reconstructed with the Monte-Carlo-Simplex
(MCS) algorithm, with 50 random starting parameters, each. The median accuracy (blue line) of the
parameter errors as defined in Sec. 3.2.4 reaches a value of 0.37% within 50 iterations, of which each require
4 scattering simulations, on average. The blue shaded area outlines the region between the minimal and
the 90% quantile of the best-fit runs for each image, visualizing the error margin of the MCS method. In
comparison, the performance of neural networks trained only on subsets of the dataset of different sizes
are marked by red dots and orange bars, representing the median error and 90% quantile, respectively.
Each neural network marker is positioned horizontally at the sum of the training set size and scattering
simulation equivalent of the training time. On the full dataset (25k) a comparable accuracy is achieved
with a computation effort of only a few MCS reconstructions.

For each sample, the MCS reconstruction is started from 50 random initial points in
parameter space and iterated over 50 simplex optimization steps. On average, each iter-
ation step required the simulation of four scattering patterns. Depending on the starting
conditions and trajectories, some iterations do not reach the optimal set of parameters.
The convergence of the reconstruction error as a function of scattering pattern images
simulated is drawn in Fig. 3.13. The solid line marks the median best approximation, and
the shaded area outlines the 90% quantile. By using the median and 90% quantile, the
impact of stark outliers is limited.

Each MCS reconstruction required the simulation of roughly 10 000 scattering patterns,
which is on a similar magnitude with the dataset of 30 000 scattering patterns used in
training the neural network. The evaluation time of the neural network for any scattering
pattern is 5ms, which is nearly instantaneous compared to a single scattering simulation.
However, the neural network also requires time for training beforehand. To allow a direct
comparison, the training time is converted into a scattering simulation equivalent. On
a hexa-core Intel Xeon E5, the optimized scattering code from Ref. [84] implemented in
Matlab requires ∼ 2.5 s per image. The training of the neural network takes 4.5 h for 40
epoch on the full dataset of 25 361 scattering patterns, resulting in a time equivalent of
31k scattering pattern calculations to yield the ready-to-use neural network.

As a direct comparison, the prediction accuracy and total time equivalent for neural
networks trained only on portions of the full dataset are marked in Fig. 3.13, again as
median error (red dots) and 90% quantile (orange bars) for the complete test set. Already
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with a dataset of 10k scattering patterns the neural network accuracy is close to the MCS
algorithm. Training with the full dataset matches the accuracy of the MCS method, re-
quiring a time equivalent of three MCS reconstruction. Consequently, already for a small
number of reconstructed images, in this case three, the computational overhead of gener-
ating a training dataset and network training are compensated by the near instantaneous
reconstruction speed whilst achieving results of comparable accuracy. Therefore, the time
required for running reconstructions on larger datasets is reduced significantly and would
even allow to reconstruct entire experimental datasets instead of small sample portions.
With the megahertz repetition rate of modern FEL experiments [173] fast reconstruction
methods become especially important. Given the right hardware neural networks further
unlock the real-time reconstruction of experimental data.

3.2.6. Evaluation on Experimental Data

The neural network trained on augmented simulated data has shown excellent parame-
ter reconstruction capabilities matching existing MCS methods on simulated data. The
network’s ability in recognizing the size and orientation parameters from imperfect exper-
imental images can be tested on the data from Ref. [93], wherein the parameters for two
scattering patterns attributed to icosahedra (left column in Fig. 3.14) haven been recon-
structed using the MCS method. The size and spatial orientation reconstructed by the
neural network are shown in Fig. 3.14 (central column) in the same view-direction as in
Ref. [93]. As the true parameters of the objects are impossible to know (hence, the ef-
fort of reconstruction), the only way of validating the prediction is to again simulate the
corresponding scattering pattern (right column in Fig. 3.14). The neural network predic-
tions match the MCS results published in Ref. [93], with the exception of the radius of
particle (b) with the triangle face in beam-direction. We attribute this deviation to the
reduced visibility of the radial fringes due to noise, which complicates an accurate radius
determination with any method.

Our results demonstrate, that neural networks are capable of matching the reconstruction
accuracy for spatial parameters of established, classical algorithms. They are capable of
extracting plausible parameters even on experimental data, while being trained solely on
simulated data with the help of data augmentation techniques. They offer a significant
computation speedup with their near instantaneous execution time over iterative methods,
as the time overhead of dataset generation and training is offset by only a small number
of MCS reconstructions.

The approach presented here is transferable to any object geometry without any change
to the neural network, as long as the rotational symmetry group is known. However,
similar to the MCS approach with a parametrized object model, it requires that the object
geometry is already identified. This shape identification is crucial, as the neural network,
trained solely on icosahedra, will always predict an icosahedron that matches the input
pattern as closely as possible from its experience, even if the input particle is not an
icosahedron. We will later see in Sec. 3.4.9 that in fact the scattering pattern with five-fold
symmetry in Fig. 3.14(a) may not belong to an icosahedron, but a very similar particle
with the same symmetry along the observed orientation. Consequently, the correct shape
identification is paramount.
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Experiment Reconstruction Simulation

(a)

r = 151 nm

(b)

r = 144 nm

Figure 3.14: The interpretation capacity of the neural network on experimental data is tested with scat-
tering patterns taken from Ref. [93] (left column, permitted by Creative Commons CC-BY 4.0 license
(http://creativecommons.org/licenses/by/4.0/)). The central column shows the reconstructed radii
and orientation as observed in beam direction and is very close to the MCS results in Ref. [93]. Scattering
patterns simulated from the reconstructed parameters (right column) reproduce the features of the exper-
imental very well. The simulated intensities are clipped at a maximum intensity to account for saturation
effects in the MCP detector.
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3.3. Identification of Object Shapes from Scattering Patterns

In the reconstruction of silver nanoclusters from wide-angle scattering patterns, the correct
identification of the particle shape is a crucial step. Currently, this task still needs to be
performed by a human scientist, as the shape of silver nanoclusters observed in Ref. [93]
offer no simple general parametrization, in contrast to e.g. Helium nanodroplets in Ref. [84].
Conveniently, the identification of an object shape from an image is an excellent example
of an image classification task, in that a scattering pattern (image) is to be associated with
a label (name of the object shape) from a limited set. Image classification tasks are of the
core applications for neural network, where even simple architectures have outclassed any
classical algorithm for the last decade [6–8]. Consequently, the particle shape identification
of a nanoparticle from the corresponding scattering pattern should be a task well suited for
a neural network. In fact, this very assumption sparked the idea, that led to the discoveries
documented in this whole chapter.

The training set is generated in Mathematica, just as for the icosahedra in Sec. 3.2.
The choice of base shapes is introduced in Sec. 3.3.1. The neural network construction
and training is done in python with the TensorFlow framework and Keras frontend,
due to the better performance and customizability. Switching to python also offers more
dynamic data augmentation, described in Sec. 3.3.2. The neural network architecture
and training performance on simulated data are reported in Sec. 3.3.3. In Sec.3.3.4 the
incapability of the neural network in classifying experimental data is analyzed.

3.3.1. Base Shapes for Classification

For a successful identification of base shapes from scattering patterns, all geometries ap-
pearing in the experiment also have to be present in the training dataset. The experiment
in Ref. [93] surprised in this regard, as it indicates the existence of previously unexpected
shapes. A good example are the decahedra or icosahedra with five-fold symmetries, which
are deemed unstable for atom counts above 106 [93]. Additionally, the high degree of
symmetry in the observed scattering patterns is linked to a highly symmetric shape of
the solids. To include a large variety of highly symmetric but still distinguishable convex
object shapes, we assemble our basis set from all Platonic solids, all Archimedean solids
(except the snub dodecahedron), the decahedron (or pentagonal dipyramid) and truncated
twinned tetrahedron as well as spheres and convex polyhedra with fully random vertices,
named potatos. This set is depicted in Fig. 3.15 and sample scattering patterns can be
found in the App. B.2. The objects from the random class are formed from the enclosure
of 50 random vertices, and it is meant as a fallback case if non-symmetric objects appear.
It is worth noting, that some of the included geometries, especially the tetrahedron, are
highly unlikely to ever be formed by silver atoms in an experiment. They are included
nonetheless, to allow identification of other currently unexpected geometries.

For data generation, one object class is randomly chosen (with even weights) and scaled
and rotated randomly. The radius, as a size parameter, is defined by the distance between
the center of mass and the farthest vertex, and ranges from 31.875 nm to 159.375 nm (or
0.2 to 1.0 ).
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Figure 3.15: The basis set of 21 shapes is assembled from all Platonic and Archimedean solids (except
for the snub dodecahedron) and, additionally, the decahedron, the truncated twinned tetrahedron, spheres
and polyhedras with random vertices. An example of each is given with it’s name and space symmetry
group symbol.

3.3.2. Augmentations for Classification Tasks

The successful extraction of size and orientation parameters from experimental data in
Sec. 3.2 has proven the feasibility of a training on simulated data when utilizing image
augmentation filters for introducing image defects. Switching from Mathematica to
python requires re-implementation of the augmentation filters listed in Sec. 3.2.3. On the
upside, the data generator class of Keras allows for live-augmentation during training.
Instead of loading the complete dataset into the RAM and creating augmented versions
of the scattering patterns before training the image files are read, loaded and augmented
parallel to the training process in batches when needed and discarded afterwards. This
procedure does not only save RAM space, it also even more limits overfitting. The repeated
augmentation ensure that the neural network is never presented with the exact same image
twice.

The full list of augmentation filters is given in Tab. 3.2 and examples are shown in
Fig. 3.16. Wherever the definition of an augmentation filter is unchanged, Tab. 3.1 is
referenced. In accordance with common practice in computer vision tasks and the identity
filter is dropped. Therefore,the neural network is always challenged with an augmented
image [7]. Additionally, scattering patterns are allowed to be rotated for the classification
task in order to expand the space of rotations experienced. There are two different ways of
approaching such rotations. The first being randomly rotating scattering patterns during
training and later feeding input patterns in their original orientation, which allows for
checking the consistency of a prediction through feeding the neural networks a set of random
rotations of the same pattern. An alternative approach is to perform a principal rotation.
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Table 3.2: Full list and description of the augmentation filters used.

Filter Name Decription
uniform noise Add a uniformly sampled value between 0 and 0.2 to any

pixel to simulate noise in general.
Poissonian noise Add a a value of 0.1 p with p sampled from a Poissonian dis-

tribution with λ = 1.0 to any pixel. Although not correctly
simulating shot noise, it helps in mimicing the graininess
appearing in some experimental patterns.

blur Same as in Tab. 3.1.
salt & pepper Same as in Tab. 3.1.
saturation The intensity values of the scattering pattern are multiplied

with a scalar between 1 and 2 and clipped at 1 to represent
saturation effects of the detector.

central hole Same as in Tab. 3.1 but with radius r ∈ [0, 10].
cropping Same as in Tab. 3.1 but down to lengths of 43 pixels.
shift Same as in Tab. 3.1.
simulated experiment In order, apply the filters central hole, uniform noise,

blur, Poissonian noise, saturation, and cropping.

By dividing the scattering pattern into angular sectors and rotating the sector with the
highest total intensity upwards, the network effectively has to learn fever rotations of the
same particle and lifts the burden of identifying the main reflex from the neural network.
Both approaches are tested during training with equal results.

simulation uniform noise Poissonian noise blur
salt &

pepper noise

shift central hole cropping
detector
saturation

simulated
experiment

Figure 3.16: The simulated scattering patterns (top left) are modified with a variety of defects in an
image augmentation step, in order to both increase the robustness of the neural network against defects
appearing in real experiments and increase the effective size of the dataset.

3.3.3. Neural Network Identification of Cluster Shapes

The dataset for training a neural network in the classification task of determining the object
shape from the corresponding wide-angle scattering pattern is composed of 58 241 individ-
ual samples with an approximately even distribution, as listed in Tab. 3.3.
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3. Recovery of Structure Information from Scattering Patterns

Table 3.3: Counts of samples per class in the classi-
fication dataset in descending order.

Shape Count
Sphere 2870
Octahedron 2854
Truncated Cuboctahedron 2838
Truncated Twinned Tetrahedron 2833
Icosidodecahedron 2832
Truncated Octahedron 2811
Dodecahedron 2808
Truncated Tetrahedron 2795
Cube 2784
Tetrahedron 2784
Rhombicuboctahedron 2778
Cuboctahedron 2758
Truncated Rhombicosidodecahedron 2754
Truncated Dodecahedron 2754
Truncated Icosahedron 2745
Truncated Cube 2735
Potato 2721
Snub Cube 2720
Decahedron 2714
Icosahedron 2692
Rhombicosidodecahedron 2661

Again, the full dataset is split at a ratio
of 0.2 into a training and a validation set.
The dataset is loaded in form of a table
containing the path to the image-file of the
scattering pattern and corresponding shape
label. As described in Sec. 3.3.2, batches of
data-pairs are loaded parallel to the train-
ing process. The images files of the afflicted
selected entries are loaded from their data-
paths and augmented with a random aug-
mentation filter. Afterwards they are ro-
tated either randomly or to their principal
rotation. The class labels are converted
into 21-entry long vectors using one-hot-
encoding, where each position of the vec-
tor corresponds to one object shape and
the corresponding entry gives the proba-
bility for that class. Logically, the dataset
labels are binary values of either 1 or 0.
The indices of the training dataset are shuf-
fled randomly at the start of each training
epoch, giving a random order for each iter-
ation of the dataset. The validation set is neither augmented nor shuffled, but the principal
rotation is applied if active for the training run.

Motivated by the success in the parameter reconstruction in Sec. 3.2, the neural network
is constructed as a stock ResNet34 with ReLu activation functions, as in Ref. [108], and a
terminal layer of 21 neurons with softmax-activation. The ResNet34 incorporates a total
number of 21 293 397 trainable parameters. The deeper ResNet50 and ResNet100 [109]
structures are also tested, but offer no significant performance boost while requiring longer
training times. The softmax function of the terminal layer normalizes the entire output
vector. Accordingly, the neural network output is interpreted as a probability distribution
over the set of basis classes, and ideally should converge to a near-binary distribution.
The loss function best suited for a multi-label classification is the categorical crossentropy
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Figure 3.17: The metrics for the training of the neural network identifying cluster shapes through clas-
sification are the loss (left) and error rate of the predictions (right). The validation set metrics (orange)
are consistently lower than the training set metrics (metrics), due to the absence of augmentations on
the validation set. The lack of significant overfitting highlights the improved regularization of utilizing
live-augmentation.
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3.3. Identification of Object Shapes from Scattering Patterns

function [7]

H(p, t) =
21∑
i=1

ti ∗ log(pi) , (3.15)

between the predicted probability vector p and the target vector t. Further, as a metric the
prediction accuracy is recorded. It counts the fraction of predictions, where the index of the
highest probability of the prediction vector p conforms with the target vector t. While the
accuracy counts only if the largest probability in the prediction vector matches the correct
class, the loss function also takes into account the confidence of the prediction through the
amplitude of the vector entries. The training is performed on the server rechenkencht, on
a Nvidia GTX1080ti consumer graphics card, over 200 epochs, taking 4h 20min in total.
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Figure 3.18: Visualizing the number of predicted classes (horizontal axis) in relation to the true target
classes (vertical axis) on the validation set in a confusion matrix reveals a near complete diagonal matrix
with only few false classification. The highest number of confusions appear for objects form the potato
class, which due to their random nature may sport similar structures to other classes or may lie outside of
the training space of the neural network.

The learning curves for loss and error ratio as the fraction of false predictions (1 -
accuracy) is shown in Fig. 3.17. The validation set metrics are consistently better than the
training values. In comparison to the training of the icosahedron reconstructor in Fig. 3.11,
it highlights the improved prevention of overfitting through live-augmentation. In this case,
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3. Recovery of Structure Information from Scattering Patterns

the validation set metrics are expected to be consistently lower than the training set metrics
due to the lack of augmentations. The loss curve does not fully converge during the 200
epochs of training, but still reaches near perfect accuracy (zero error rate). The neural
network trained while recording the metrics in Fig. 3.17 is used in the following as the
example network under the name ShapeNet.

The prediction accuracy on the validation set is visualized through the confusion matrix
in Fig. 3.18, plotting a heatmap of the predicted shapes (horizontal axis) over the target
shapes (vertical axis). It forms a nearly perfect diagonal matrix. The most false classifica-
tion appear for the randomly shaped potato class. This is an expected outcome, because
some of the randomized shapes may actually come close to objects of other classes. The
results are very consistent between individual training runs started from random initial-
izations.

3.3.4. Shape Identification from Experimental Data

The reliability of the shape identification neural network on experimental data is tested
with the full set of 8 scattering patterns from Ref. [93]. Although the number of patterns
is very limited, it is still sufficient for our purposes. The example network achieves a
good success rate and the predictions are listed in Fig. 3.19. However, between individual

pattern shape pattern shape

Decahedron
0.9999349

Decahedron
0.9998956

Truncated Octahedron
0.6077950

Truncated Octahedron
0.0212663

Potato
0.607795

Icosahedron
2.1× 10−7

Tetrahedron
0.999969

Icosahedron
0.900110

Truncated
Twinned Tetrahedron
0.995048

Truncated
Twinned Tetrahedron
0.999417

Figure 3.19: The shape predictions of the neural network are tested on the experimental patterns from
Ref. [93] (permitted by Creative Commons CC-BY 4.0 license (http://creativecommons.org/licenses/
by/4.0/)). If the neural network prediction agrees with the classical identification from Ref. [93], the label
is colored green and the prediction amplitude is given underneath the label. If a disagreement occurs, the
neural network prediction is colored red and the shape from Ref. [93] is given in black.
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3.3. Identification of Object Shapes from Scattering Patterns

training runs the results vary substantially. Most trained neural networks agree with
Ref. [93] in identifying all the pattern associated to decahedra and truncated twinned
tetrahedra in the first and last row of Tab. 3.19, respectively. The predictions on the
second row (truncated octahedra by Ref. [93]) and the three-fold icosahedron pattern vary
substantially with low confidence by the neural network. The low reproducibility indicates
that the experimental scattering patterns are too different from the samples seen during
training.

A special case is the scattering pattern with five-fold symmetry in the third row of Ta-
ble 3.19, previously assumed as icosahedral in Sec. 3.2.6. Here, the neural networks of any
training run consistently identify it as a tetrahedron instead of an icosahedron. Yet, this
association is highly unlikely, both from the view of cluster formation and scattering the-
ory. The scattering transformation translates symmetries of the object into the scattering
pattern, and the tetrahedron with symmetry group Td features only two- and three-fold
symmetries. A comparison between a tetrahedral scattering pattern and the experimental
pattern is shown in Fig. 3.20. To a human observer the difference becomes immediately
obvious in the number of reflexes in the scattering pattern: The tetrahedron (left) pro-
duces six, while the experimental pattern in the center of Fig. 3.20 has only five. Neural
networks, however, are known to base their decisions also on other features, less obvious
to a human observer. This was prominently featured in Ref. [107] through the fact that
convolutional neural networks trained on the ImageNet dataset base their decision nearly
entirely on the microstructure of an image. As an example, a simple overlay of an image
of a cat with the texture of elephant hide, still readable as a cat to a human observer, is
enough to make the neural network predict an elephant. A similar effect may be present
in the experimental scattering pattern in Fig. 3.20. The fringe pattern of the reflexes is
much smoother than for the icosahedron (right panel) and the smoothest fringes from the
whole dataset are produced by the tetrahedron. Hence, the neural network may be tricked
into predicting a tetrahedron with almost complete certainty just from the microstructure.

The confusion of the neural network opens the question of what was exactly the object
producing the five-fold pattern. The steep angles between the triangle faces are the unique
feature of the tetrahedron and are by far the smallest over the whole dataset. At the same
time, the object producing the five-fold pattern is required to possess a five-fold symmetry
along the beam axis. Combining both features is possible in stretching a pentagonal
bipyramid along the five-fold symmetry axis, as shown in the bottom panel of Fig. 3.20.
The decahedron is related to the icosahedron, in that the latter can be sectioned along any
diagonal line into a front-facing pentagonal pyramid, a mantle of ten alternating triangles
and a second rotated pentagonal pyramid. In the present orientation, the scattering pattern
of the icosahedron is dominated by the mantle faces, aligned nearly parallel to the optical
axis. Their contribution to the scattering signal is a five-fold star with broad arms, that
dominates at small scattering angles. The front face contribution is only noticeable at
wide scattering angles. In contrast, a regular decahedron produces a scattering pattern
with ten-fold symmetry. However, the elongation of a decahedron breaks that symmetry
in the wide-angle scattering pattern, resulting in two distinct sets of five reflexes, each,
with different intensities. This can be seen in the bottom central panel of Fig. 3.20. Due
to the shared symmetry, the orientation parameters predicted by IcoNet in Sec. 3.2
are directly transferable. The rotation of the elongated decahedron about the C5 axis
in Fig. 3.20 is the very same as for the icosahedron. Only the predicted size has to be
converted by matching the pentagonal bases of both the icosahedrons and decahedron front-
facing pyramid. The resulting circumradius of the pentagon from IcoNets prediction is
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experiment

tetrahedron elongated decahedron icosahedron

Figure 3.20: The five-fold experimental pattern (top panel, taken from Ref. [93], permitted by Cre-
ative Commons CC-BY 4.0 license (http://creativecommons.org/licenses/by/4.0/)), is associated to
a tetrahedron (bottom left panel) by the neural network, even though the global six-fold symmetry of
the tetrahedral scattering pattern contradicts this association. The five-fold star pattern is much closer
reproduced by an icosahedron, but with a more prominent fringe pattern. Combining both the steep face
angles of the tetrahedron and the front-face of the icosahedron is possible in the shape of an elongated
decahedron (bottom, center panel), with a scattering pattern replicating the experimental pattern much
closer, but still not perfectly.

134 nm which is confirmed by matching the fringe spacing in the radial profile. This result
indirectly confirms that IcoNet indeed finds the best fitting icosahedron even for non-
icosahedral particles. The elongation factor s, by which the decahedron is stretched, is
determined from a grid search with increments of 0.1 and the best-fit value is s = 1.6.
Therein, it combines the pentagonal geometry of the scattering pattern with steep face-
angles, like appearing in the tetrahedron.

Summarizing, the incapability of the neural network to determine viable structure can-
didates from experimental scattering patterns may result from an insufficient training set
space. Adding elongations as deformations to the training set could help in circumvent-
ing the problem. It would require an additional label for elongations, but still may be
insufficient to cover all major defects appearing in experimental scattering patterns. One
example are varying truncation rates, as reported in Ref. [93]. Further, the experimental
scattering patterns in Fig. 3.19 feature small asymmetries linked to deviations from a com-
pletely symmetric shape. Hence, the classification approach is discontinued in favor of a
more flexible object model capable of directly representing any defects or asymmetries.
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3.4. Model Independent Three-Dimensional Object Reconstruction

3.4. Model Independent Three-Dimensional Object
Reconstruction

Identifying the shape of silver nanoclusters in Sec. 3.3 through a classification approach fails
due to the the complex geometries appearing in experiments. Nonetheless, the parameter
reconstruction network IcoNet has proven its robustness even in the presence of unknown
shapes. Consequently, solving the reconstruction task with neural networks may still be
possible when giving the neural network enough freedom in the shape representation. The
scattering simulation through the MSFT scheme, recall Sec. 3.1, already involves such a
representation: the discretized density. For simulation, the optical density of the object
is discretized on a cubic coordinate grid and processed numerically. The grid elements
can be understood as voxels10, the volumetric equivalent of a pixel. Such a voxel model
is able to represent any shape resolvable with the given grid spacing. Hence, designing a
neural network that predicts a discretized three-dimensional object density from an input
scattering pattern (called VoxelNet) would allow universal reconstruction of any cluster
shape. The main results documented in this section are published in Ref. [1]. The source
code is available with a sample portion of each dataset within the repository [174].

Being able to create a three-dimensional model of an object from photographs, also called
3D scanning is beneficial for many practical application, e.g. in re-manufacturing existing
parts of machinery. As many problems in computer vision, it already has been efficiently
tackled with neural networks [175, 176]. Of special interest for this thesis is Ref. [176].
Therein, a voxel model is utilized in reconstructing objects from a set of images taken at
different view-points. The neural network is designed in an encoder-decoder architecture
with recurrent elements in the latent space to process sequences of input images. Still,
the network is also capable of reproducing all visible features from just one view angle.
Ref. [176] bears a strong similarity to the cluster reconstruction task described above. The
main difference between the 3D scan and the scattering reconstruction is that only a single
wide-angle scattering pattern is available for each reconstruction. Yet, this single pattern
includes object information from many view angles simultaneously. For this reason, it
appears promising to employ an encoder-decoder network, similar to that of Ref. [176],
to reconstruct full voxel models of silver nanoclusters from single wide-angle scattering
patterns.

A simplified version of the discretized density reconstruction can be achieved through
eliminating one dimension from the task. By projetion into the xy-plane the problem
is effectively reduced to a two-dimensional small-angle reconstruction problem.11 Due to
the lower dimensionality it is much more favorable in terms of runtime for testing out
methods before implementing them in the three dimensional problem. The solution of
this simplified reconstruction is documented in App. B.3 in close relation to the methods
described throughout this section.

The exact representation of silver nanoclusters in a discrete voxel model and the method
of object generation are given in Sec. 3.4.1. Sec. 3.4.2 revisits the topic of image aug-
mentation in the context of detailed reconstructions which are not confined to distinctive
shapes. The neural network architecture itself is described in Sec. 3.4.3. The training of
the discrete reconstruction network differs from previous tasks in the special requirements

10A voxel (short for: volumetric pixel) is the volumetric extension of the 2D pixel. In turn, the word pixel
stands for picture (short: pix) element.

11For two dimensional objects, even wide-angle reflexes cannot pick up additional phases. Consequently,
the Fraunhofer approximation is always applicable, which is equivalent to the small-angle regime.
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to the loss function, which is introduced in Sec. 3.4.4 with the concept of physics informed
learning. The training performance is documented in Sec. 3.4.5, followed by an analysis
of the test metrics and interpretation in Sec. 3.4.6. A further comparison between train-
ings with different loss functions is drawn in Sec. 3.4.7 and demonstrates the necessity of
the chosen approach. The neural network is applied to experimental scattering patterns
in Sec. 3.4.8, where it yields object tensors with currently unmatched levels of details.
Finally, we report the prediction of novel shaped candidates in Sec. 3.4.9.

3.4.1. Generation of Discretized Object Densities

As described in Sec. 3.1 the silver nanoclusters can be assumed as macroscopic objects
of homogeneous optical density with permittivity ϵsilver of bulk silver. By including the
value of ϵsilver in the scattering algorithm it suffices to define the object density as a binary
function

ρ(r) =

{
1 for r ∈ Vobject ,
0 otherwise, (3.16)

which takes on the value of 1 within and 0 outside the object, respectively. As in previous
sections, a resolution of 192×192×192 is used for the generation of training data. However,
this resolution is unwieldy for a neural network output for two major reasons. Firstly, it
is not a power of two, thus complicating the design of the neural network while following
the general design rule of of changing lateral dimensions and kernel sized by the same
factor [7]. Secondly, the deconvolution operations used for unfolding the three-dimensional
object are costly operations, both in computation time and memory consumption under
back-propagation. In the context of the already considerable demands for computation
resources it is sensible to restrict the size of the predicted density. A tradeoff between
retaining enough detail and a small volume size is the a resolution of 64× 64× 64 voxels.
An example of an icosahedron rasterized at this resolution is shown in Fig. 3.21(a).

(a) (b) (c)

Figure 3.21: In the voxel representation (top row), (a) objects are discretized on a three dimensional
grid (here with a resolution of 64 × 64 × 64), as for the already familiar icosahderon. It allows for the
introduction of arbitrary deformations like (b) stretching of the base solids, shown here on a truncated
octahedron. For testing the neural networks, (c) chopped objects are used, which are truncated along one
random symmetry axis, like the elongated decahedron. The red arrowed line in each real-space volume
marks the optical axis and the corresponding scattering patterns are found in the bottom row.

48



3.4. Model Independent Three-Dimensional Object Reconstruction

While the voxel model allows for creating any possible geometry, we still demand all ob-
jects to be convex, recall Sec. 3.1. We do so in order to meet the conditions for unique inver-
sion under ideal conditions [149]. The set of shapes used for classification in Sec. 3.3.1 still
covers a wide range of convex geometries, despite the limitations encountered in Sec. 3.3.
These elements are used as base solids for object generation. Aside from scaling and ro-
tation, the base solids are further deformed by stretching or squashing the whole object
along a randomly chosen symmetry axis, as demonstrated in Fig. 3.21(b). Henceforth, each
base solid produces a wider family of generalized objects, like the sphere generalizing to
both prolate and oblate ellipsoids. With the freedom of the voxel representation the neural
network may be able to interpolate between known geometries even for objects outside of
this basis space. To test this hypothesis a separate test set is created. The test set objects
are truncated along a single random symmetry axis (see Fig. 3.21(c)). The terminology
of truncation is already occupied in the context of regular polyhedra. Therefore, this op-
eration is called chopping of the solids. The name is illustrative of the operation being
similar to chopping off a slice from each side of the object, like the tips of the elongated
decahedron in Fig. 3.21(c).
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Figure 3.22: Representation of the icosahedron from
Fig. 3.21(a) as a two dimensional image, that can be
stored as a PNG-file. Each slice of the object den-
sity in z direction (red arrowed line in Fig. 3.21(a))
is converted into a black-and-white image (black =
object). The images are then assembled in order to a
square image. The red number in the top right is the
index of the slice in beam-propagation direction.

The object rasterization as well as the
MSFT scattering calculations require con-
siderable computation times. Therefore, a
data set of 140 000 objects is pre-generated
and stored. As in previous sections, scat-
tering patterns are stored as single-channel
PNG-images. Further, the original dis-
cretized object densities used in simulating
the scattering patterns are stored as PNG-
images on the full resolution of 192×192×
192 voxels. This is achieved by convert-
ing each object slice in z-direction (beam
propagation direction) into a black-and-
white image and assembling the images in
a square grid. In Fig. 3.22 this technique is
demonstrated on a smaller resolution with
the icosahedron from Fig. 3.21(a). The
data generation is executed in Mathemat-
ica, distributed over the computers qoms,
QuantumChaos and computationPi12. The
neural network training is executed on the
GPU server eve (see App. A.1 for hardware
details). Storing the object densities as
PNG-images ensure compatibility and fur-
ther minimizes the file size. Upon read-in,
the composite images are decomposed into the constituent layer-images and re-stacked into
a three dimensional tensor. This 192 × 192 × 192 tensor is then scaled down to dimen-
sions 64 × 64 × 64. To prevent the computational overhead of this pre-processing from
thwarting the entire training it is executed in advance and the object tensors are stored as
fast-loading binary files on the training server.

12Over the course of a several months even a Raspberry Pi can contribute over 1000 samples (see App. A.1
for hardware details).
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The randomized object generation is performed exactly as in Sec. 3.3.1 with evenly dis-
tributed parameters, but with the addition of defects. For elongation one of the symmetry
axes of the corresponding symmetry group, recall Fig. 3.15, is selected by random and a
scaling parameter between 0.5 and 2.0 is applied. It is clipped at the inradius of the real
space volume, to prevent the object from protruding from the sampling area. For the test
set, the chopping is executed along the same axis as the elongation at a random fraction
between 0.2 and 1.0 of the size parameter. In total, a training dataset of 140 000 objects
is generated. The set is organized into portions of 10 000 samples and generation was
distributed over the aforementioned computers. The test set is created with 1000 objects.

3.4.2. Simulating Experimental Artifacts by Image Augmentation

simulation uniform noise Poissonian noise
salt &

pepper noise
shot noise shift

central hole cropping
detector
saturation

blind spot
simulated
experiment

Figure 3.23: The simulated scattering patterns (top left) are modified with a variety of defects in an
image augmentation step. An example for each filter listed in Tab. 3.4 is shown in each panel. Upon
training, the neural network is always presented with a different augmented image in each epoch and never
sees the original simulated scattering pattern.

Like in previous section, the discrete reconstruction neural network is trained with data
augmentation to achieve robustness against experimental artifacts. Like in Sec. 3.3.2 train-
ing is performed in Python using Keras with on-the-fly augmentation and using the
existing augmentation filters, with slight modifications. For a full list, see Tab. 3.4. The
blur augmentation is not included, because it is related to the exact type of shape de-
viations the VoxelNet is meant to reconstruct. The blindspot filter form Sec. 3.2.3 is
re-introduced and the cropping filter is improved to include both rectangular and circular
masks. Finally, a new augmentation filter is introduced in the shot noise function. It
aims at generating a similar effect to the shot noise originating from the discrete nature
of photons visible at low intensities. In an exact implementation the intensity profile itself
would serve as the argument λ of the Poissonian distribution. Yet, this would require
knowledge of the absolute intensity value, which is unavailable from the existing scattering
pattern. It would also significantly increase the computation time of this specific filter
beyond a critical limit, thus slowing down the overall training process. An example of each
augmentation filter is shown in Fig. 3.23.
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Table 3.4: Full list and description of the augmentation filters used.

Filter Name Decription
uniform noise Same as in Tab. 3.2.
Poissonian noise Same as in Tab. 3.2.
shot noise Multiply the scattering pattern with a random Poissonian

matrix with variance λ = 10r+1 where r is an uniform ran-
dom number from the interval [0, 1]. Although not physically
accurate, this filter approximates the shot noise originating
in the discrete nature of photons in the low-intensity limit
with a minimal computational effort.

salt & pepper Same as in Tab. 3.1.
saturation Same as in Tab. 3.2, but with a multiplier between 1.0 and

1.5.
blindspot Similar to Tab. 3.1. Multiply every pixel of the image with

a Gaussian defect function
1− exp{−((x− x0)

2 + (y − y0)
2)/(2σ2)}

around a random point (x0, y0)T from the central half of the
image in both width and half, respectively, and variance σ
between 0 and 0.25.

central hole Same as in Tab. 3.2.
cropping Simulate a limited angular range by multiplying the inten-

sity with both a rectangular and circular binary mask, i.e.
setting the affected regions to 0. The size of the central
rectangular mask is between 1 and 0.5 times the image di-
mension in both height and width, deleting up to half of the
pixels in both dimensions. The radius of the circular mask is
randomly selected between 0.5 and 1 times the larger image
dimension.

shift Same as in Tab. 3.1.
simulated experiment In order, apply the filters shot noise, shift, blindspot,

saturation, central hole, cropping, and shift.

3.4.3. Design of the Discrete Scattering Reconstruction Network

The reconstruction of a three-dimensional object density from a two-dimensional single-
channel image is very similar to the creating of a three-dimensional model from a series of
photographs. The latter is a well known task in classical image processing, which has suc-
cessfully been solved using neural networks [175, 176]. The dimensional conversion usually
requires the use of encoder-decoder architectures, where the input information is encoded
into a latent space and then expanded into the target space. Multi-view reconstructions
further require the use of recurrent elements in the latent space. Without the recurrent
elements, the 3D-R2N2 architecture from Ref. [176] implements a conversion from a two
dimensional image to a discrete three dimensional object. It inspired the general architec-
ture of VoxelNet, but was strongly modified to conform with the given task.

The general design idea is to use convolution layers within the encoder and pooling
operations to compress the two-dimensional input image into an one-dimensional latent
space. The decoder then uses three-dimensional convolution operations and upsampling
operations to create three-dimensional feature maps and combines them into one output
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Figure 3.24: The VoxelNet is build in an encoder-decoder structure. The encoder (left column) consists
of five residual blocks, each containing two consecutive 2D convolution layers with 3× 3 kernels. The filter
size is doubled with each residual block, while the lateral dimensions are reduced by pooling layers. The
latent space (bottom) is one-dimensional and is cross-linked by a dense layer. After reshaping, the decoder
(right column) applies 2 × 2 × 2 upsampling operations followed by two 3D convolution layers each. All
convolution layers are regularized with a dropout ratio of 0.2 and batch normalization is applied before
the leaky ReLU activation.

density tensor. The upsampling operation (also referred to as deconvolution) is the reverse
operation to the pooling operation. It increases the output dimensionality by multiplying
each input with a higher dimensional kernel. In our case, we multiply one voxel from
the feature maps with a 2 × 2 × 2 tensor. The large number of free parameters of any
upsampling neuron makes this operation comparably expensive for backpropagation.

The complete design of VoxelNet is sketched in Fig. 3.24. The input stage of the en-
coder is a single convolution layer with 7× 7 convolution kernels and stride 2, followed by
Max pooling operations. It is used to rapidly convert the input tensor size from 128×128×1
to 32× 32× 64 elements. The main body of the encoder is constructed from five residual
blocks. Each is formed by a sequence of two 3 × 3 convolution layers and an identity
shortcut, implemented by 1× 1 convolution operations for dimensionality matching, recall
Sec. 3.2.4. Both paths are added up in a summation layer. Each residual block is imme-
diately followed by a max pooling operation. While the lateral dimension halves between
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each block, the filter size is doubled, following the general design principles formulated in
Ref. [7]. After the fifth residual block, the tensor shape is reduced to 1× 1× 2048 and the
trivial dimensions are removed by a flatten operation. Interconnections within the latent
space are realized by a fully connected layer with 2048 neurons. The decoder stage of the
neural network starts with a reshape layer, adding three trivial dimensions, resulting in
1 × 1 × 1 × 2048 tensors. Similar to the encoder, the decoder is constructed from blocks,
but in reverse order. Each starts with a 2 × 2 × 2 3D upsampling layer (the inverse of
a pooling layer) and is followed by a sequence of two 3 × 3 × 3 3D convolution layers.
Different to the encoder, the structure is entirely linear and no residual connections are
included. Empirically, we find that residual connections in the decoder stage do not have
the same benefits as in the encoder stage but increase the training time significantly. The
decoder contains six blocks, resulting in a final tensor with dimensions 64× 64× 64× 64,
i.e. 64 feature maps of three dimensional cubic volumes with length 64. The output stage
is formed by a single 1× 1× 1 3D convolution filter, combining all 64 feature maps into a
single density volume. It is sigmoid-activated, which suits the binary nature of the object
densities.

Aside from the terminal layer and inspired by Ref. [176] all convolution and fully con-
nected layers are activated by the leaky ReLU function

lReLU(x) =

{
x if x > 0 ,
0.01x otherwise. (3.17)

Further, any convolution layer, both 2D and 3D, includes regularization functions. All
convolutions layers are implemented as a stack of

1. convolution operation with padding,

2. dropout regularization with ratio 0.2,

3. batch normalization,

4. activation.

The heavy use of regularization in every layer is a necessary adaption. It ensures consistent
convergence results independently of the randomized initialization. Batch normalization
counteracts the convergence to no-objects predictions (all voxels are zero), which represent
a trivial plateau of the loss-function. Simultaneously, dropout regularization prevents
learning non-physical predictions. These are objects like non-binary point clouds that form
no solid convex (or at least star-shaped) bodies but produce similar scattering patterns.
The full network has 195 813 825 free parameters.

3.4.4. Physics Informed Training

Untouched by the dimensionality, training a neural network in predicting a three dimen-
sional tensor from an image is a straightforward process. In a classical supervised training
the neural network is presented with batches of image-tensor-pairs and it is optimized to
minimize a loss function between the prediction p and target-tensor t, as illustrated in
Fig. 3.25(a). The binary nature of the object tensors (object vs. no object) is effectively a
binary classification task. It is served best by the use of the binary cross-entropy function
[7]

H(t,p) =
1

N3

N∑
i,j,k=1

[
ti,j,k log(pi,j,k) + (1− ti,j,k) log(1− pi,j,k)

]
. (3.18)
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However, it turns out that this approach is not ideal. The reason lies in the optical

(a) Classical Supervised Learning

(b) Physical Loss Learning

Figure 3.25: In classical supervised learning (a), the neural network is optimized to match the input object
through the loss score, which is determined by the binary cross-entropy between the network prediction
and the target entry of each data pair. In the physical learning scheme (b), the loss score is calculated
within the scattering space rather than the object space. This is done by simulating the scattering pattern
of both the network prediction as well as the target object, and calculating their mean squared difference
(scatter loss). To enforce the binary nature of the object model, an additional regularization function
(binary loss) is applied to the prediction.

properties influencing the light scattering. To recall from Sec. 3.1, the absorption length of
bulk silver for the present wavelength is 12.5 nm. This is a relatively short length compared
to the considered cluster diameters ranging from 63 to 320 nm. Consequently, the incoming
radiation intensity decays rapidly along the penetration depth and a substantial part of the
particle contributes no significant signal to the final scattering pattern. This is especially
true for the far side13 of the particle, which is shadowed from the incoming radiation. As
a result, by using the binary cross-entropy from Eq. (3.18) the neural network is urged to
correctly reconstruct portions of the particle that have no representation in the scattering
pattern. It either has to reconstruct these sections through symmetric completion from
visible sections (which is indeed observed to some degree) or is driven into severe overfitting.
The consequence is a poor generalization capability, that will be analyzed in the next
section.

At this point it is sensible to recall what the exact goal of the scattering reconstruction
is: When working with experimental data the ground truth shape of the object is always
unknown, hence there is no target object to match. Instead, we aim to create an object
that produces the exact same scattering pattern (under simulation) as the input, while
13Similar to the far side of the moon being not visible from earth.
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simultaneously fulfilling the restrictions we impose on its geometry, like done with classi-
cal algorithms in Refs. [84, 93, 142, 155]. This very approach can be transferred to the
training of a neural network through modifying the loss function. Instead of minimizing
the difference between predicted p and target t object tensor in Eq. (3.18) we train the
neural network to minimize the difference between the scattering patterns calculated from
p and t via

Ls(t,p) =
1

M2

M∑
i,j=1

[
log

(⏐⏐⏐EMSFT(t)i,j

⏐⏐⏐2 + ϵ

)
− log

(⏐⏐⏐EMSFT(p)i,j

⏐⏐⏐2 + ϵ

)]2
. (3.19)

The scattering patterns of both p and t are simulated using the MSFT algorithm, as
indicated by |EMSFT|2, adapted to the reduced resolution. Further, we need to enforce the
assumptions of our object model, i.e. the binary nature of our density function. While the
output neurons are sigmoid-activated non-binary float-point predictions are still possible,
but conflict with the assumed object model. Therefore, the binary condition is enforced
by the introduction of a regularization function: the binary loss

Lb(t,p) =
1

N3

N∑
i,j,k=1

(pi,j,k)
2 (1− pi,j,k)

2 . (3.20)

It is added to the scatter loss from eq. (3.19) and weighted by a parameter w to form the
total physical loss function

Lphys(t,p) = Ls(t,p) + wLb(t,p) . (3.21)

The weight parameter w is a hyperparameter of the training and a good balance is achieved
with w = 0.1. For larger w, the binary regularization overrules the learning from differences
in the scattering pattern, while for smaller w the neural network is not penalized enough
for non-binary predictions that approximate the target scattering pattern. A comparison
between the full physical training scheme and the classical supervised approach is depicted
in Fig. 3.25(a). The physical loss function Eq. (3.21) is implemented in TensorFlow to
enable the backpropagation algorithm to trace gradients through. The source code can be
found in the code repository Ref. [174].

The method of enforcing physical constraints and implementing generative equation into
loss functions is known from the field of PDE solving with neural networks by the term
physics informed learning (PIL) [77, 78]. Accordingly, our approach of a physical loss func-
tion in Eq. (3.21) also qualifies as a case of PIL. Physics informed neural networks (PINNs)
usually combine supervised loss functions, in our case Eq. (3.18), with pure physical loss
functions. In a similar fashion, the physics loss Eq. (3.21) originally was envisioned as an
auxiliary loss function to implement the hybrid loss function

Lhybrid(t,p) = Lphys(t,p) + wH H(t,p) , (3.22)

combining Eqs. (3.18) and (3.21) with weight wH . However, the training with the hybrid
loss proves unstable with non-convex predictions and stabilizes only in the limit wH → 0,
equal to the pure physics loss Eq. (3.21). As a result, the training with the physical loss
function in Eq. 3.21 is preferred over other approaches. However, a deeper comparison
between all three loss functions introduced in this section is made in Sec. 3.4.7, using
insights gained from the physical loss training. Further, we refrain from the term of
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physics informed learning and use the respective names of the loss functions instead, to
avoid confusion.

3.4.5. Training the Discrete Cluster Network

training

validation

0 10 20 30 40 50

0

1

2

3

4

5

6

epoch

p
h
y
si
cs

lo
ss

(1
0
-
3
)

0 10 20 30 40 50

0

5

10

15

epoch

sc
a
tt
er

lo
ss

(1
0
-
3
)

Figure 3.26: The training loss of the ScatterNet
converges within 50 full cycles of the training set
(epochs) to a near halt. The loss on the validation
set follows a similar trajectory, but is consistently
smaller than the training loss, due to the absence of
augmentations and regularization on the data and
the successful prevention of overfitting.

Figure 3.27: Scatter loss recorded over the train-
ing of a reconstruction neural network by binary
cross-entropy (blue, dotted), hybrid loss (green,
dashed) and physics informed training (red, solid).
The regular curves mark the training set perfor-
mance over each iteration of the training set, while
the desaturated curves correspond to the validation
set.

The VoxelNet neural network and loss functions from Sec. 3.4.4 are implemented
within the TensorFlow 2.3.1 Keras framework and Python 3.6.6, with the code pub-
lished in Ref. [174]. The complete dataset, containing 140 000 samples, is split with a ratio
of 0.2 into a training set and validation set. The pre-generated and pre-processed object
tensors and scattering patterns are read-in from the hard drive parallel to training. Equal
to the procedure described in Sec. 3.3.3, the training set is shuffled randomly every epoch
and the training scattering patterns are augmented on-the-fly. The validation dataset is
neither shuffled nor augmented and the performance metrics are recorded at the end of
every epoch. Again, the network parameters are optimized using ADAM [7, 172]. Training
was executed on a the dedicated GPU sever eve, distributed over four Nvidia RTX2080ti
GPUs. The distributed training enabled batch sizes up to 32 and training with the physical
loss converges within 50 epochs. The heavy use of regularization ensures reliable conver-
gence on any individual training run. The corresponding learning curve of the network
used throughout the rest of this section is shown in Fig. 3.26(b). For the sake of simplicity,
it will be referenced as the ScatterNet. In total, the training over 50 epochs on four
GPUs takes 63h. The scattering loss adds a major share to the computation time. For
comparison, training with the binary cross-entropy loss (allowing a batch size on 64 on
four GPUs) takes only 22h. It is used as a benchmark to the ScatterNet further down
this section and is named SupervisedNet.

During training, the scatter loss is recorded as a separate metric at each round. It repre-
sents the capability of each neural network to reproduce the input scattering patterns from
both the training and validation set. In Fig. 3.27 the metrics for the ScatterNet (red /
orange solid), SupervisedNet (blue dotted) and a HybridNet (green, dashed), trained
with the hybrid loss from Eq. (3.22), are traced over 50 training epoch, each. Unsurpris-
ingly, both ScatterNet and HybridNet perform much better than SupervisedNet,
because they are directly optimized on this metric.
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3.4.6. Testing the Discrete Cluster Reconstruction

The generalization capability of the ScatterNet is monitored on the validation set during
training. Therein, the learning curve in Fig. 3.26 promises good interpolation results for
objects outside the training set. Still, the validation set is based on the same generation
rules as the elements of the training set. Consequently, we challenge the neural network by
testing the predictions on the test set, described in Sec. 3.4.1, consisting of chopped down
versions of the base solids.

(a) input pattern simulation

ground truth prediction

(b) input pattern simulation

ground truth prediction

Figure 3.28: For most of the scattering patterns from the test set, the ScatterNet is capable of re-
constructing the modified shapes of the real-space objects, like for the heavily shopped rhombicosidodec-
ahedron in panel (a). For some examples, the predicted object is reconstructed without the far side or
sports a shallow dome in the beam direction (b), both of which have no significant impact on the scattering
pattern.

In the first stage, the network is tested on the unaugmented pristine versions of the test
set images. For most of the test samples ScatterNet is capable of detecting the new
deformations. An example is shown in Fig. 3.28(a) with a heavily truncated rhombicosi-
dodecahedron. The original object (bottom left) appears almost disc-like and the neural
network prediction closely resembles this shape, with slightly smoothed edges. Yet, the
corresponding scattering patterns are almost indistinguishable and the additional speckles
appearing in the simulation of the prediction can be attributed to artifacts of the decreased
object resolution.

The second example in Fig. 3.28(b), a chopped elongated icosahedron, helps in high-
lighting object defects that are intrinsically connected to the physical loss training. At
first sight, the ground truth object (bottom left) and neural network prediction (bottom
right) seem to deviate severely. At the same time, the corresponding scattering patterns
(top row) are extremely similar and deviate only by speckles. This effect is also observed
on the validation set and even the training set and originates in the imbalance in the con-
tributions to the scattering pattern from different parts of the object. Most prominently,
the far-side of the prediction in Fig. 3.28(b) is missing entirely. Recalling Secs. 3.1 and
3.4.4 this behavior is to be expected. The incoming intensity reaching the far side is too
weak to contribute to the scattering pattern due to the large absorption of silver. Con-
sequently, the ScatterNet has no information on what lies behind the object. Mainly,
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one of three different behaviors is observed. ScatterNet either performs a symmetric
completion (see Fig. 3.28(a)), reconstructs nothing (see Fig. 3.28(b)), or adds a narrowing
smooth droplet-profile to the far-side. Another difference between predictions and targets
is the relative position of the object inside the real-space volume. The Fourier transform
does not conserve the absolute position and the predicted objects are only roughly placed
in the vicinity of the volume center. This is different to the ground truth data, which are
fixed with their center of mass to the center of the volume and the exact positioning of
any prediction varies even between different training runs.
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Figure 3.29: The scattered intensity signals of a
truncated triangle with a footprint of 212.5 nm and
of the same object equipped with a shallow tip of
25% of its height are almost identical.

The last important defect visible in
Fig. 3.28(b) is the so-called domeing on the
front-face of the object prediction. Instead
of a flat surface of the ground truth object
the prediction has a shallow rounded dome.
A similar effect was already encountered in
Sec. 3.3.4 in the discussion of the icosahe-
dral scattering pattern. Steep angled sur-
faces, like the mantle sides of an icosahe-
dron, contribute much stronger reflexes to
the scattering pattern than shallow angled
surfaces. The same effect is demonstrated
in Fig. 3.29 for a two dimensional slice of a
trapezoid (black). If added a shallow trian-
gle face (orange), the change in the one-
dimensional scattering signal profile over
the full forward-scattered range is barely
visible and easily obfuscated by image defects such as noise or lost in limited detector
resolutions. Stronger reflexes of these surfaces could be observed in a full 4π detector
configuration in the back-scattered signal. However, this is usually inaccessible at FEL
experiments. The effects discussed here are important to keep in mind when further an-
alyzing predictions made by the ScatterNet and should always be considered before
making assumptions about predicted objects.

The difficulty of the reconstruction test is increased by applying augmentations to the
test set. The scattering transformation projects small sized and delicate features of the
objects to high frequency regions, i.e. large scattering angles. Hence, the first test is to
limit the simulated detector range. This is done incrementally through a circular cropping
mask. The predictions for a series of decreasing detector ranges are shown in Fig. 3.30.
Between full-sized image (top row) and cropping to half detector diameter (center row) the
predicted object does not change significantly, indicating that even at half range the image
contains enough information about the object. Again, slight domeing is observed on the
originally flat surfaces of the polyhedron. Still, it is more pronounced at half detector range.
With less than half the detector range, the reconstruction quality deteriorates rapidly and
at a quarter angular range (bottom panel) just the general dimensions of the object are
recognizable. However, at such extreme view-angle limitations nearly to no wide-angle
information is preserved and the scattering transitions to the small-angle regime. Yet,
inside the visible region (gray mask) the prediction (right panel) still matches the input
pattern to a considerable degree.

In summary, when trained in a classical supervised manner, the generalization capability
of SupervisedNet on the test set is still comparable to ScatterNet. The Supervised-
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crop. input prediction pred. scatter

Figure 3.30: Shrinking the angular span of the detection range (left column) leads to the loss of high-
frequency information in the scattering pattern. Thus, the neural network predictions (central column)
appear less crisp, and corners and edges are rounded, while the corresponding scatter simulation (right
column) still matches the input pattern within the input region (framed by gray mask).

Net produces much shaper edges and, enforced by training, also constructs far-sides, see
Fig. 3.31(a) and (b). Yet, for some objects, like the chopped, elongated icosahedron in
Fig. 3.31 it does not reconstruct the defects but rather recalls the closest unperturbed
object from the training set space.

3.4.7. Comparing supervised and physics informed learning

So far, the ScatterNet did only show a slight superiority over the SupervisedNet in
reproducing the input scattering patterns, while returning object predictions with distinct
uncertainty elements. However, the superiority of the physics informed training becomes
apparent once challenging both networks with conditions similar to that of experimental
data. The neural networks are evaluated on the scattering patterns of the test set, aug-
mented with the simulated experiment filter from Tab. 3.4. The result for one sample
is shown in Fig. 3.32. It is a chopped elongated decahedron, chopped perpendicular to
the five-fold symmetry axis at half height. The comparison also includes a HybridNet,
trained with the hybrid loss function from Eq. (3.22). Darker regions of the object predic-
tions indicate uncertainty regions, where the prediction is not binary but an intermediate
value.

The object prediction made by the SupervisedNet is only superficially similar to the
ground truth object and includes large regions with intermediate prediction. Although
sporting a pentagonal base, it is rotated perpendicular (by π/5 rad) to the ground-truth
base-pentagon. Moreover, the corresponding scattering pattern bears little resemblance to
the input scattering pattern. The given condition clearly supersede the generalization ca-
pabilities of the SupervisedNet and it is questionable if it could return usable predictions
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(a) input pattern simulation

ground truth prediction

(b) input pattern simulation

ground truth prediction

Figure 3.31: Challenged with unperturbed samples of the test set, the SupervisedNet produces much
sharper object shapes. The far-sides are usually completed from symmetrically, as visible in both panel
(a) and (b). In some cases, like the chopped elongated icosahedron in panel (b), SupervisedNet does not
recognize the deformation but rather recalls the closest uperturbed object from the training set space. In
this case, a perfect elongated icosahedron.

on real experimental data.

The prediction of the HybridNet in the third column of Fig. 3.32 highlights the in-
stability of the hybrid training approach. The predicted object is that of an un-chopped
version of the ground-truth elongated decahedron, surrounded by a funneled halo of non-
binary voxels. The resulting scattering pattern closely resembles the input pattern, but the
object prediction does not conform with the restrictions to convex, binary objects. Instead,
the HybridNet seems to have learned general rules how to crate artifacts that are not
penalized enough by both binary regularization and cross-entropy loss while optimizing
the scatter loss. To recall, the impact of both scatter loss and cross-entropy is balanced by
the weight parameter wH with the limiting cases of supervised training for wH → ∞ and
purely physics loss training for wH → 0. Trials showed the object artifacts only disappear
if the contribution of the supervised loss is reduced to an effective wH → 0 case.

Finally, the right column of Fig. 3.32 shows the prediction of the physics loss trained
ScatterNet. The predicted objects is subject to the known artifacts. In this sample, the
shadow region behind the object is clearly visible as a gray-colored, i.e. non-binary valued,
veil. Also, a smooth dome is added to the flat front-face of the object. More importantly,
the side-face angles and edge-position match the ground-truth object and the scattering
pattern reproduces the input pattern inside the available view-range quite well. The result
is not as crisp as for the hybrid approach, but the predicted object fully conforms with
the assumed object model. Therefore, the ScatterNet is the only viable candidate for
application to real experimental data.

3.4.8. Discrete Density Reconstructions from Experimental Data

After extensive testing on simulated data and understanding the predictions made by
ScatterNet, the final challenge is a test on real experimental data. Again, we use the
scattering patterns published in Ref. [93] and treat the object candidates obtained by
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input supervised hybrid physics informed

Figure 3.32: The augmented scattering pattern (bottom left) of an elongated decahedron, cut at half
distance along the five-fold symmetry axis (top left) is used to test the generalization capabilities of neural
networks tested in different training schemes. The upper row shows the object predictions made from the
test pattern, while the bottom row illustrates the corresponding scattering patterns.

classical methods as references.

The prediction results are shown in Figs. 3.33 and 3.34. The experimental input patterns
(top rows) are re-scaled and zero-padded to conform with the dimensions required by
ScatterNet. The reference object candidates from Ref. [93] are placed in the second row
in the form of vectorized polyhedra and are scaled to the correct dimensions. The third
rows contain the predictions made by ScatterNet. The bottom rows contain simulated
scattering patterns, calculated from the ScatterNet predictions. Therein, the available
detector region is traced by a gray mask to highlight the comparable regions.

Again, we see the uncertainty defects in the predictions made by ScatterNet. The
far-sides of the objects are either missing (e.g. first column in Fig. 3.33 or second column
in Fig. 3.34) or droplet shaped (e.g. 2nd column in Fig. 3.33 or third column in Fig. 3.34).
Also the previously discussed doming appears, most prominently on the twinned-truncated
tetrahedron in the third row of Fig. 3.34. Overall, the neural network predictions appear
smoothed with less sharp edges than the reference solids. However, the scattering patterns
also contain no information related to such small structures due to the limited angular
range of the detector.

Aside from the deviations originating from the different object models, both methods
agree quite well on most solids. The main facets are reconstructed reliably, resulting in
a similar global structure. However, the neural network predicts some elongated objects,
most prominently the decahedron in the first column of Fig. 3.33 and the truncated octa-
hedron in the third column of Fig. 3.34. Moreover, the reconstructed objects are no longer
perfectly symmetric, contrary to the assumption of the parametrized model. Through this
local defects, also the corresponding simulated scattering patterns are no longer perfectly
symmetric. In this, they close to perfectly reproduce the non-symmetric features of the
input scattering patterns within the available region. A good example are the slightly
curved and narrowed main-reflexes of the icosahedron in the second column of Fig. 3.34.
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Figure 3.33: The neural network is tested with the first half of the experimental scattering patterns from
Ref. [93] (left top row, permitted by Creative Commons CC-BY 4.0 license (http://creativecommons.
org/licenses/by/4.0/)) and the corresponding shape candidates obtained by forward fitting (second row,
green solids). The neural network predictions are shown in gray in the third row. The simulated scattering
patterns (bottom row) show excellent agreement with the input pattern inside the available region (confined
by the gray masks).

3.4.9. Uncovering Novel Structures of Silver Nanoclusters

The one exception from the overall agreement between classical forward fit and Scat-
terNet prediction is the star-shaped pattern with five-fold symmetry (first column in
Fig. 3.34), which was attributed to an icosahedron in Ref. [93]. It is the very same pat-
tern that had already been discussed in Sec. 3.3.4 and had been consistently identified as
tetrahedral by ClassNet. This disagreement was one of the main reasons that led to the
development of the discrete reconstruction approach in the first place.

A closer comparison for this specific scattering pattern is given in Fig. 3.35. The icosa-
hedral candidate from Ref. [93] is placed in the left column and the elongated decahedron
proposed in Sec. 3.3.4 in the right-most column, with their respective scattering pattern in
the center row, each. The prediction from ScatterNet is placed in the second column,
just below the experimental pattern. The proposed object clearly has a pentagonal base
with approximately triangular front faces that ends in a shallow tip. Different to an icosa-
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3.4. Model Independent Three-Dimensional Object Reconstruction

Figure 3.34: The neural network is tested with the second half of the experimental scattering patterns from
Ref. [93] (left top row, permitted by Creative Commons CC-BY 4.0 license (http://creativecommons.
org/licenses/by/4.0/)) and the corresponding shape candidates obtained by forward fitting (second row,
green solids). The neural network predictions are shown in gray in the third row. The simulated scattering
patterns (bottom row) show excellent agreement with the input pattern inside the available region (confined
by the gray masks).

hedron it has no prominent mantle surface but abruptly ends in an amorphous far-side.
Consequently, the only surface relevant in the scattering process is the front-facing pen-
tagonal pyramid. The surface angles precisely match those of the elongated decahedron
proposed in Sec. 3.3.4, but with a slightly smaller base area and a dull tip. Considering
the doming effect, the rounded tip could indicate that the decahedron is chopped, like
shown in the third column of Fig. 3.35. Yet, when comparing the scattering patterns of
both elongated and chopped elongated decahedron they appear indistinguishable within
the available detector region. Hence, they are treated as equal candidates.

To obtain an objective measure of similarity, the mean-squared difference between the
simulated scattering patterns of the prediction candidates and the input scattering pattern
within the detector region is calculated, i.e. the scatter loss within the detector region. The
reference value is provided by the icosahedron with a benchmark value of 7.10×10−3. The
elongated decahedra achieve a difference of 4.74× 10−3 and the ScatterNet prediction
reaches an error of 4.63 × 10−3. Both decahedra and ScatterNet yield a much closer
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experiment
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Figure 3.35: The quality of different prediction candidates (bottom row) can be judged by comparing the
corresponding scattering patterns (center row) to the experimental input scattering pattern (top panel,
taken from Ref. [93], permitted by Creative Commons CC-BY 4.0 license (http://creativecommons.org/
licenses/by/4.0/)).

fit than the icosahedron, with ScatterNet slightly ahead. The scattering patterns of all
four candidates differ significantly outside the available detector region, traced by the gray
mask. This implies that the reconstruction quality is mostly limited by the angular range
and could only be improved through using larger detectors.

In summary, ScatterNet achieves a much closer fit than the parametrized forward fits
through successful interpolation between the object classes learned during training. The
predicted structure on the five-fold scattering pattern resembles an elongated, possibly
chopped, decahedron and is a novel observation for silver nanoclusters of the given size, to
the best of our knowledge. This result showcases how neural network reconstructions can
advance diffractive imaging techniques by uncovering novel and more detailed structures,
which currently lie outside the scope of classical reconstruction algorithms. The Scatter-
Net in its current state is ready for deployment onto larger datasets of scattering patterns
currently unidentified. Investigating a broader dataset could potentially reveal even more
novel structures and also support the prediction made for the five-fold pattern in Fig. 3.35
if more similar shaped objects could be found in different orientations.
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3.5. Deployment and Future Development

We have progressively tackled increasingly harder reconstruction problems for wide-angle
scattering patterns with neural networks. The reconstruction of structure parameters with
neural networks, presented in Sec. 3.2, matches the accuracy and capability of existing
methods, while offering an exceptional speedup. The failed identification of particle shapes
in the form of a simple classification highlights how a biased object model can influence
the interpretation of scattering patterns. The obvious misclassification of experimental
scattering patterns at the end of Sec. 3.3 further demonstrates how features hidden to the
human observer can be uncovered by deep learning systems.

The result of this development is the physics informed training of VoxelNet in Sec. 3.4.
Given the available reference data, it predicts novel shapes for silver nanoclusters beyond
the interpretation scope of classical reconstruction algorithms. The neural network, as is, is
ready for deployment to a larger dataset of currently unidentified data. An investigation of
a broad dataset could support and refine the new object candidates through patterns from
similar structures in varying orientations or even reveal more unexpected and remarkable
shapes. Despite the complexity of the neural network, the evaluation time on sufficient
hardware is still in the µs range. In this it paves the way to a fully automated reconstruction
of the complete structure of nanoparticles from single-shot wide-angle scattering images in
real time, even with the increased repetition rate of modern FEL experiments [173]. Still,
there are some additions and changes to different aspects of the architecture and training
of ScatterNet that could improve the prediction quality even further.

Dataset

The set of base solids described in Sec. 3.4.1 already covers a broad range of convex solids
and the results on the test set have proven the capability of the neural network to handle
unknown shapes. However, directly including the chopping modifications of the test set
will always improve the generalization capability through covering an even larger object
space during training. Aside from the Platonic and Archimedean Solids, the basis set
includes some singular shapes, i.e. the twinned truncated tetrahedron and decahedron (or
pentagonal dipyrimid), that currently do not fall into a general class of objects. Yet,
both can be generalized into a single object class, that of the chopped, elongated n-gonal
bipyramids (see top row first in Fig. 3.36). Similar to the pentagonal bipyramids, these
solids are formed from a regular polygon with n vertices as a basis, connecting to vertices
above and below the center to form n-faced pyramids on both sides. The truncated twinned
tetrahedron is then created by chopping a hexagonal bipyramid along the pyramidal axis.
Also, further object classes can be derived from chopped versions of the existing base solids.
The mantle section of a rhombicuboctahedron is an eight-fold prism (top row second in
Fig. 3.36), while the mantle-section of an icosahedron is a ten-fold antiprism (top row third
in Fig. 3.36). Aside from bipyramids, prisms and antiprisms, another large class of regular
polyhedra are the Catalan solids. These are the dual solids to the Archimedean solids
and depicted in the bottom two rows of Fig. 3.36. Both highly symmetric regular convex
polyhedra, the Archimedean solids are constructed from different regular n-gonal polyhedra
and have identical vertices, while each Catalan solid is constructed from repetitions of only
one (not regular) polygon and in return sport different classes of vertices. Extending the
basis set in such a way would greatly extend the object space cover during training and
expose the neural network to even more structures and facet-reflexes. Diversifying the
training set also simplifies the transfer of the existing neural network to other materials.
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Figure 3.36: Some of the existing objects in the train- and test-set can be generalized into larger classes
of objects. Both decahedron and truncated twinned tetrahedron are special cases of the chopped elongated
n-gonal dipyramid (top row, first). The mantle faces of a rhombicubocahedron, isolated by chopping, form
a octagonal prism (top row, second), that generalizes to the class of n-gonal prisms. Similar, the mantle
faces of an icosahedron (top row, third) belongs to the n-gonal antiprisms. Another class of regular convex
polyhedra are the Catalan solids (center and bottom rows), that are the dual solids to the Archimedean
solids.

Scattering Algorithm

The MSFT algorithm with an effective absorption model approximates the scattering off
silver nanoparticles to a high level of detail. This was shown in Ref. [93] through com-
parisons with finite-difference time-domain (FDTD) simulations respecting the full light-
matter interaction. Still, the higher accuracy comes at the cost of extensive computation
times. Since time is a crucial factor when analyzing (or generating) large datasets, the
small errors made by MSFT might be acceptable. For physics informed learning, MSFT
also is favorable as it translates into a single tensor operation on a three-dimensional object
tensor projected into a three dimensional Fourier-space and then compressed into a two-
dimensional image. While keeping the simple calculation structure, the MSFT algorithm
can be improved to also include multiple scatterings of the signal through the propaga-
tion MSFT (pMSFT) algorithm [177]. The existing TensorFlow code could easily be
modified to pMSFT if required.

Prediction Resolution

The resolution of 64 × 64 × 64 voxel of the predicted object tensor is a trade-off between
resource demand for training and sufficient detail of the object. The reconstruction quality
on view-range limited scattering patterns demonstrates that the existing resolution is suf-
ficient given the information content of the scattering patterns. For simulation, however,
the limited resolution is responsible for artifact. This can be indentified from Fig. 3.37

66



3.5. Deployment and Future Development

where the same object is simulated on different object resolutions. With the general con-

32 64 128 192 256

Figure 3.37: At lower object resolutions, like 32 or 64 voxels in length, the scattering simulates produces
significant artifacts, that break the symmetry inherited from the object shape, in this case an icosahedron.
At a resolution of 128 voyels, the result is already comparable to the quality of the dataset generated with
192 voxels in length. An increase to 256 voxel does not appear to yield any more improvements.

cept proven in this thesis, it would be beneficial to increase the output resolution to at
least 128 or even 256 voxels in each dimensions. The demands in computational power
and especially VRAM space are easily met with the current generation of graphics card
or specialized tensor cards. In the current implementation, the artifacts in the scattering
patterns due to limited resolutions do not lead to false reconstructions. This is because
both prediction and target tensor are scatter-simulated on the same resolution and the
resolution artifacts can give away additional orientation information on the particle. They
will, however, become problematic when dropping the technically redundant scattering
simulation of the target tensor.

Unsupervised Learning

The physics informed training as described in Sec. 3.4 still is a supervised training in
that it requires both input scattering patterns as well as the corresponding target object.
Interestingly, including the scattering simulation into the loss function also allows the im-
plementation of an unsupervised training, as sketched in Fig. 3.38, without the need for
ground-truth object tensors. In this configuration, the loss functions needs further modifi-
cations. First, it need to be handed a mask-function, indication which portion of the image
are to be reconstructions as it would otherwise be forced to create scattering patterns that
reproduce the beamstop-artifact. Second, the loss function also needs to be indifferent
to noise appearing in the input pattern and other defects introduced by augmentation.
Without the need for ground-truth data and learning solely from the scattering algorithm,
the unsupervised training could even be performed directly on experimental data. It would
require exact knowledge of the detector characteristics and artifacts appearing in the ex-
periment. Theoretically, this identification of common features could also be implemented
into a neural network, as done with the generative network in Ref. [85] for wide-angle
scattering patterns of Helium nanodroplets.
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Figure 3.38: The physics informed training of the discrete cluster reconstruction neural network also
enables unsupervised training, where the need for a ground-truth object is eliminated. It requires further
modification to the mean-squared-error (mse) comparison to make it robust against artifacts on the input
scattering pattern.
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4. Excitonic Giant Dipole States in
Cuprous Oxide

The boundaries between the microscopic and macroscopic world were always of special
interest for all sciences. It is here were some effects of one world have to wane off and
other effects appear. The silver nanoclusters analyzed in the previous chapter fall in
this regime. Over their growth, they cross the boundary between a small molecule and
a bulk solid, both favoring very different crystal structures and geometries. At an even
smaller scale, Rydberg states of atoms reach onto the border between quantum and classical
world,1 where the wave function of the highly excited atom behaves almost like a classical
Bohr radius [181]. Molecules formed from just one Rydberg atoms with one ground state
atoms reach such sizes, that they appear from the outside as classical particles, e.g. in
having a quantum-mechanically forbidden permanent electric dipole moment [182, 183].
Another kind of atomic states where electron and core are still bound (but separated
over macroscopic distances) are the so-called giant dipole (GD) states [184–187]. GD
states are predicted to form in the presence of extreme external electromagnetic states and
thus could not be observed directly up to this day. This could change with the recent
advances in the excitations of Ryberg states of excitons in cuprous oxide (Cu2O) [188].
These excitons experience a relative amplification of external fields, putting GD states into
realistic range of existing experiments [189–192]. The macroscopic distance of a GD states
prevents a direct optical excitation. Instead, a dynamic excitation scheme is required [193].
Meanwhile, the higher field-sensitivity of excitons forbids the usage of existing proposals,
developed for atomic beam experiments. Thus, a new excitation scheme adapted to the
special conditions of the excitonic system needs to be developed [192].

Motivated by the recent advances in the control of physical systems with neural networks
and the success in inverting scattering patterns in Chap. 3, we aim to develop this excitation
scheme with deep reinforcement learning. Related to previous works [193], this is done
in a semi-classical approach by the simulation of classical trajectories. Throughout the
past, the existence of GD states has been debated controversially. The history of giant
dipole states is reflected in Sec. 4.1, together with the current state of Rydberg exciton
research in cuprous oxide. Further, the derivation of the giant dipole Hamiltonian for
arbitrary hydrogenic systems is documented in a closed-form in Sec. 4.2 and transferred
to the excitonic system. It is the foundation for the simulation environment, described in
Sec. 4.3, required for the training of a reinforcement learning agent in Sec. 4.4. The results
and insights gained from this approach are discussed in Sec. 4.5.

1Some quantum effects also manifest over macroscopic ranges, like entanglement [178] or the Casimir
effect [179, 180].
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4.1. Permanent Atomic-Level Dipole Moments

A Rydberg state of an atoms is characterized by one valence electron being excited to very
large principal quantum numbers n. They earn their name from approximately conforming
with the Rydberg formula of the transition wavelength between atomic states [194]

1

λ
= R

(
1

n21
− 1

n22

)
, (4.1)

originally derived to describe the spectrum of hydrogen. The spectrum of any other element
with more than one electron usually is much more complex due to interactions between
the electrons. However, if only one electron is excited to very large principal quantum
numbers n this interaction becomes less important as the spatial distribution overlaps
less with the inner electrons. With the limited interaction, the system becomes almost
hydrogen-like. When further increasing the angular quantum number l the wave function
can be completely expelled from the inner shell region and becomes circular, centered
around the classical Bohr orbits.

Nowadays, Rydberg atoms are not only subject of research on their own but also a tool
for high precision measurements of matter-light interaction. Maybe the most prominent
example are the direct measurement of the quantized nature of the light field in a cavity
through Rabi oscillations between neighboring circular Rydberg states [195], and observing
the life cycle of a single photon inside a cavity by the group of Serge Haroche [196]. These
groud-breaking experiments led to the awarding of the 2012’s Nobel prize in physics to
Serge Haroche and David Wineland [197]. Other applications of Rydberg atoms as tools of
measurements include but are not limited to trace gas detection [198], cooling of molecular
gases [199], orientation control of polar molecules [200], and the study of macroscopic
quantum effects like the Casimir-Polder effect [5].

Polar Rydberg Molecules

Experiments of such precision are only possible due to the fine control of Rydberg states.
Currently, the highest excitable states in rubidium are just above a principal quantum
number of n = 200, where the expectation value of the orbits radius even exceeds the
dimensions of the cloud of ultra-cold atomic vapor from which it is excited [201]. The
corresponding spectra show, aside from the main excitation peak, also features of the
interaction of the Rydberg electron with every other ground state atom of the cloud [202].
The first signs of interactions of Rydberg states with ground states atoms were discovered
simultaneously in the 1930 by Christian Füchtbauer at the University of Rostock [203–
205] and Eduardo Amaldi and Emilio Segrè in Rome [206, 207]. They reported line shifts
in both the red- and blue-regime depending on the type of surrounding gas and density,
which, at the time, came as a surprise. The corresponding theory was developed by Enrico
Fermi, based upon the scattering of the Rydberg electron off a ground state perturber
atom [208].

Further advances in theory and experiments, revealed the possibility of the formation
of so-called Rydberg molecules from the scattering-interaction as a bound state between a
Rydberg atom and a ground atom [182]. While ordinary binuclear molecules have binding
lengths in the order of 0.1 nm, like e.g. water [209], the inter-nuclear distance of Rydberg
molecules is several hundred times larger, in the order of 50 nm. In the simplest approxi-
mation, Rydberg molecules fall into two classes. For states with small angular momentum
quantum numbers l, i.e. S, P, and D-states, molecules with binding lengths of several
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hundred Bohr-radii are predicted and measured [210]. Although intrinsically neutral, they
also possess a small permanent dipole moment due to admixtures of the second type of
molecular states [211].

Figure 4.1: The electron density ρ|ψ(ρ, z, 0)| in cylindrical coordinates of a trilobite state (left) is highly
concentrated around the perturber atom, here located at the potential minimum of the n = 30 high-l
manifold at z = 1232 a0. Within the ρ-z-plane, the density function appears oval shaped with regular
ripples, similar to the appearance of a trilobite fossil (right), thus earning the name of trilobite-states. The
trilobite specimen shown here is of the species elrathia kingii with an age of approximately 520 million
years (private collection).

This second type of Rydberg molecules arises from a superposition of high-l Rydberg
states, that are all energetically degenerate due to vanishing quantum defects. The result
is a concentration of the wave-function of the Rydberg electron in a fringe pattern, plot-
ted in Fig. 4.1, with a strong concentration around the perturber atom at a distance of
1000s Bohr radii. The pattern of the wave function strongly reminds of a trilobite fossil,
henceforth, they were named trilobites states. The high angular momentum makes exci-
tation considerably harder, which could only be achieved just recently [212]. For trilobite
molecules, the intra-nuclear distance is so large, that the period time of any rotation mode
is longer than the state-lifetime [183]. As a result, the role of Rydberg atom and perturber
can not be switched through exchange interaction and the polarity is conserved. Com-
bined with the concentration of the electronic wave function around the wave-function, an
excessively large permanent dipole moment, several orders of magnitude stronger than in
any other known molecule. Ordinary ultracold heteronuclear polar molecules [213, 214]
(such as K-Rb) already find application not only as microscopic antennas but also for the
control of chemical reactions [215] and the considerably larger dipole moments of trilobite
states may open routes to even more discoveries [211, 216–218].

Giant Dipole States

The separation distance of Rydberg-electron and ionic-core of a trilobite molecule stretches
over macroscopic lengths. There exists, at least theoretically, an even larger kind of sep-
arated polar atomic state: the giant dipole (GD) states. Instead of a perturber, the sep-
aration in a GD state is realized through interaction with strong external crossed electric
and magnetic field. In this configuration, a free electron would travel in a spiral trajectory,
like the one in Fig. 4.2. The Hamiltonians of the electric and magnetic field interactions,
on the other hand, are linear and parabolic, respectively. Thus, for sufficiently large field
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Figure 4.2: Example trajectory for a posi-
tively charged particle inside crossed homoge-
neous electric and magnetic fields with the mag-
netic field pointing in z-direction and electric
field in y-direction.

Figure 4.3: The effective single particle poten-
tial of a hydrogen atom in crossed electric and
magnetic fields (E-field in x-direction, B-field in
z-direction) is a superposition of the Coulomb-
potential around r = 0, a linear Stark-term and
an effective parabolic potential from the mag-
netic field coupling. For suitable field strengths,
a local parabolic minimum can form at distances
of 100 000 a0. After Ref. [187].

strengths, it would be possible to create a parabolic potential well outside the Coulomb-
potential of an atom, like plotted in Fig. 4.3. The exact physics is, however, not as simple,
as one would hope for.

The theoretical foundations of giant dipole states have been discovered at least two
times, independently. The earliest publication by scientists from the Leningrad State
University dates back to 1976 [184]. They derived an atomic potential with an outer
harmonic minimum for a hydrogenic system in crossed homogeneous electric and magnetic
fields under symmetric gauge and for a static proton of infinite mass. Aside from atomic
hydrogen, which at the time was not yet available for experiments in crossed fields, they also
considered excitons in semiconductors as a possible route for the realization of giant dipole
states. The same derivation was also published independently in 1979 [219]. However,
in these early works the position of the potential minimum depends on the choice of
gauge, and thus directly violates the gauge freedom of electromagnetism. Accordingly, the
magnetic field can not impose a localized potential on the electron and the giant dipole
minimum should not exist. This was argued in Ref. [220] and in their place the quasi-
Penning resonances or Stark-saddle states were proposed. They are localized above the
local maximum in Fig. 4.3 at the point where the Coulomb attraction and external electric
force cancel each other and are stabilized by the magnetic field interaction, similar to ions
in a Penning-trap [220–222].

Despite the fundamental theoretical differences between giant dipole states and Stark-
saddle states they both share the fundamental property of being field-separated states of
ion-electron-pairs with a large directed separation and hence a permanent dipole moment.
A first attempt of measuring such states was made in 1987 with a cold-atom beam ex-
periment with rubidium [223]. It was set up with an inhomogeneous electric field, that
should deflect bound states with a permanent electric dipole moment in an angle and allow
detection and calculation of the dipole moment. Although a deflected beam was detected,
the signal was weak and no statement about the nature of the underlying states could be
made. Shortly after, the first experiment with an atomic hydrogen beam in crossed electric
and magnetic fields with a similar setup was realized [224]. Here, a manifold of states in
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the right energy regime appeared which coincide with closed-loop, polar classical trajecto-
ries. Yet still, no direct evidence for atomic states with a permanent dipole moment was
found. Improvements on the 1987 experiment with rubidium atoms led to the, up to this
date, most precise measurements of polar atomic states, which were submitted in 1991
and published in 1993 [225]. By measuring the signal of the deflected beam via an MCP
detector, recall Sec. 3.1, with angular resolution the appearance and position of a beam
deflections could be detected for excitations around the ionization threshold. Also, the de-
pendency of the deflection and conversely the induced dipole moment could be shown. On
the downside, the experimental results were interpreted with the theory of a static proton
of infinite mass and fixed gauge, just like in Ref. [184]. This led to an intense debate with
alternative interpretations of the measurement results [226].

Parallel to this controversy, a new theory of giant dipole states was developed, drop-
ping all approximations in also including the finite mass of the proton. This had previ-
ously been neglected, in order to eliminate the center-of-mass dependency from the system
Hamiltonian and yielding a solvable single-particle problem. An exact solution is, however,
possible by using the pseudomomentum as a constant of motion of atoms in homogeneous
electromagnetic fields [227]. Including the coupling of the proton to the magnetic field
results in the appearance of a small effective gauge-free harmonic potential, which was
first demonstrated in Ref. [185] through introducing gauge-independent canonic variables.
A more descriptive derivation was published shortly after in 1993, identifying the kinetic
terms of the pseudo-separated Hamiltonian and thereby extracting the harmonic potential
contribution to the effective potential [186]. A follow-up publication demonstrated the
complete gauge-independence of this effective single-particle Hamiltonian and derived the
quantum-mechanic spectrum of states bound in the local minimum [187]. This effective
harmonic potential arrives as a residual from the coupling difference between electron and
proton to the magnetic field. Thus, the effective potential is much weaker, resulting in
only loosely bound giant dipole states are localized at much greater distances. Ref. [187]
reports binding lengths of around 100 000 Bohr radii (plotted in Fig. 4.3), which in turn
may explain the lack of polar states in previous states such as Ref. [224], as the overlap of
such states with a ground-state wave-function and tunneling probabilities for excited states
are effectively non-existing. An alternative route of excitation was described in Ref. [193]
for atomic beam experiments. By exciting an initial state in a magnetic-field region with-
out an electric field, the latter can be increased along the propagation axis of the beam,
resulting in an effective time-profile of the electric field in the frame of the atom. While
ramping up the electric field, the electron can propagate outwards over the forming saddle
point and may get trapped once the full internal barrier between giant-dipole minimum
and Coulomb-well is build up. By simulating classical trajectories, an optimal profile for
the electric field could be found, that, however, was never implemented in an experiment.

The electron in a giant dipole states experiences only a very shallow potential with even
weaker kinematics than in a Rydberg states. Hence, if the giant dipole electron meets a
perturber atom, the interaction meets the same conditions as in Rydberg molecules [228].
This is a non-negligible scenario as the the giant dipole wave function spans over a consider-
able volume, especially in the unrestricted magnetic field direction. In case of an attractive
interaction, as the triplet S-wave interaction for rubidium, the formation of Rydberg-like
molecules could help stabilizing giant dipole states [4, 228]. From Rydberg molecules it is
known, that the interaction between electron and perturber depends strongly on the rela-
tive orientation of the electronic spins in singlet or triplet configuration. In the presence of
magnetic fields, singlet and triplet combinations are no pure eigenstates anymore, as both
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spins couple to the magnetic field independently [229]. As giant dipole states can only exist
in very strong magnetic field, the effect is even stronger, separating the molecular poten-
tials into four distinct branches of the distinct spin configurations (|↓↓⟩,|↓↑⟩,|↑↓⟩,|↑↑⟩) [3].
From these, the parallel eigenstates observe only triplet character, while the anti-parallel
eigenstates couple equally to the singlet- and triplet-scattering channel. Still, all of these
branches support bound molecular states, which could indeed aid in stabilizing possible
giant dipole states.

As of today, no clear and direct detection of giant dipole states could be achieved. A
major problem stays that of the excitation, as the giant dipole ground state predicted
in Ref. [187] is located at an energy equivalent to a principal quantum number of n ≈
200, which even nowadays is the highest state excited in a controlled way in a field-free
environment [201]. Nevertheless, to this problem could be overcome by the use of excitons,
like initially proposed in Ref. [184].

Rydberg Excitons in Cupruos Oxide

An exciton inside a semiconductor material is a quasi-particle, which is formed as a bound
state of an electron and a hole. The hole itself is a quasi particle, too, as it represents
a missing electron inside the valence band. Yet, the collective motion of the residual
electron enables the description as a positively charged quasi-particle. Excitons in bulk
semiconductors can be approximated as a hydrogen-like system with the effective masses
of electron and hole replacing the masses of free electron and proton and the Coulomb
potential attenuated by the relative permittivity, respectively. In consequence, the exciton
is described with the same quantum theory as the hydrogen atom, but the associated
Rydberg energy is much lower (for example 4.2meV in gallium arsenide GaAs), while the
coupling to external fields is nearly unchanged or even amplified through the lower effective
mass. Unfortunately, the smaller energy spacing together with the intrinsic linewidth
usually limits the number of resolvable exciton states to low quantum numbers, like n = 3
for GaAs [230]. Since the hole represents a missing electron, the effective hole mass usually
is of similar magnitude to the electron mass, which is at a stark contrast to atoms. Hence,
when discussing exciton dynamics, the approximation of the internal motion as mainly the
electron’s motion is no longer valid and always has to be processed as true two-particle
motion.

Excitons in bulk semiconductor materials were first observed in 1956 in cuprous oxide
Cu2O [233]2. Cuprous oxide, also called cuprite in mineralogy, is a rare occurring oxide of
copper. It forms red crystals (see Fig. 4.4), that are also used as gemstones. The lattice
structure of Cu2O (see Fig. 4.5) is cubic, with a bcc lattice of O-atoms embedded into an fcc
lattice of Cu-atoms, shifted by 1/4 along the cell diagonal. So far, synthesizing Cu2O proves
challenging and the purest and best samples are still obtained from a few naturally formed
crystals [234, 235]. The band structure of Cu2O supports four series of excitons between
the closest valence- and conduction bands, labeled after their corresponding wavelenths as
yellow, green, blue and violet series [236]. In most cases, the yellow exciton series of Cu2O
with a gap energy of Eg = 2.17 eV is investigated. The first high Rydberg states of excitons
were discovered in the very same material, when the original experiment was repeated with
modern equipment as part of a Bachelor’s thesis in Dortmund. Subsequent measurements
resolved the exciton series up to a quantum number of n = 25, which laid the foundations

2The publication reports observations of exciton states up to n = 8 in a liquid helium cooled cryostate
at T = 1.3K. Modern experiment are conducted at similar temperatures [188]. Nevertheless, states up
to n = 6 are already visible with a liquid nitrogen cooling at T = 77.3K [233].

74



4.1. Permanent Atomic-Level Dipole Moments

Figure 4.4: A natural cuprite crystal from the
Altai region, Russia (private collection). The
large crystal has octahedral shape, which is a
shape from the cubic symmetry group Oh. Due
to impurities, a large portion of the crystal has
a silvery metallic shine, which is a common
feature of cuprites from the Rubtsovsk mine
[231, 232]. The yellow rectangles mark relatively
pure cuprous oxide crystallites with the charac-
teristic translucent ruby color.

Figure 4.5: The lattice structure of cuprous
oxide Cu2O is cubic (space group Oh), composed
from a fcc Cu-sublattice with an embedded bcc
O-sublattice shifted a quarter length along the
cell diagonal.

of Rydberg exciton science [188]. This observation exceeded older experiment with n = 8
[233] or n = 12 [237] by far and was only superseded just recently with resonances up to
n = 28 with improved cooling [238] and n = 30 inside a different natural crystal [239].
The fact that excitons are quasi-particles implies some differences to atoms. Firstly, the
1S state, which is the ground state of a hydrogen atom, is just the lowest exciton state
but not the ground state. Instead, the ground state of the semiconductor is the excitonic
vacuum, where the valence band is completely filled, and from which an exciton is created
by excitation. Secondly, defining the effective mass for the electron and hole depends on
the parabolicity of the conduction and valence band, respectively. This however, is only
true to a certain degree of approximation around the Γ-point, as the band structure of
Cu2O is much more complex [240]. This in turn leads to deviations from the n−2 series of
the energy levels. Still, the deviations are only minor and can be treated by introducing a
quantum defect δn,l to the principal quantum number n∗ = n + δn,l [241]. This is similar
to the treatment of atoms, where the quantum defect arises from the interactions with the
lower closed electron shells [181]. Thirdly, the semiconductor environment allows for more
decay channels than in atoms, since electron and hole are an anti-particle pair. For Cu2O,
the decay is dominated by scattering with optical phonons which mediate transitions into
low lying states such as the the1s state [242], limiting the lifetimes to few nanoseconds
[188].

Because of the smaller binding energies and lower effective masses, the relative coupling
of excitonic states to external electric and magnetic fields is amplified, compared to atoms
[243]. Already with magnetic fields up to 7T, the Landau-regime can be reached, where
the diamagnetic coupling dominates the Hamiltonian and all anti-unitary symmetries are
broken [244]. The quasi-Landau levels that appear in this regime even above the band-gap
(which is equivalent to the classical ionization threshold) can be observed up to a principal
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quantum number of n = 50 [189]. Also the polarizing effects of external electric fields with
strengths up to 2.6 kV/cm have been studied with the observation of strong Stark-splitting
bridging the gap between neighboring n-levels and leading to state crossings [190, 245]. The
strong couplings even allow for a direct observation of the influence of the pseudomomentum
on the internal exciton dynamics through the magneto-Stark effect [246]. In this case, if
the pseudomomentum is non-vanishing, the motion through the magnetic field induces
an effective electric field, acting on the internal dynamics [191]. The availability of both
Rydberg states, relative field amplifications and strong fields already implemented offer
a perfect environment for a realization of giant dipole potentials. In fact, theoretical
calculations indicate the possibility of the formation of excitonic giant dipole potentials at
energies equivalent to n = 6 with reasonable field strengths [192]. Yet, through the coupling
of the band structure to the external fields, these potentials are highly dependent on the
field orientations relative to the crystal axes. While the separation length of giant dipole
states at low energy levels is much smaller, the energy space is also less dense populated
as for high quantum numbers. Therefore, relevant resonances are much easier to identify,
compared with the dense spectra observed in atom experiments in Refs. [223–225].

Despite these favorable conditions for the creation of giant dipole potentials, the question
how to excite a giant dipole state with the wave function located in the outer potential
well remains unsolved. As the exciton is created from the electron being excited from
the hole position, there is no spatial overlap with the giant dipole wave function, just
like with atomic ground states. Further, the lifetimes of excitons, shortened by the rapid
phonon-scattering decay [242], may be too short for tunneling of an excited state into the
giant dipole well to occur. Therefore, a similar solution as proposed in Ref. [193] may be
required, where an initial state is transferred into a giant dipole state by temporal variation
of the external electric field. However, whereas Ref. [193] aimed for a highly controlled,
slow transition, the transitions needs to be performed as swiftly as possible. Recently, deep
reinforcement learning algorithms have outperformed human control and imagination not
only in games such as Go [10, 11] but also in the optimization of experimental setups
like the control of a MOT trap [50]. In the previous chapter it was shown how neural
networks can master even complex non-unique inversion problems. Thus, we implement a
reinforcement learning agent for finding an optimal transition scheme for giant dipole states
of excitons. Reinforcement learning algorithms are notorious for their unstable learning
behavior. Therefore, it is advised to start with the simplified task of the hydrogenic
approximation of the exciton.
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4.2. The Giant Dipole Hamiltonian

The controversy around the existence of giant dipole states has continued, in parts, up
to this date. It is further not helped by the lack of any direct experimental evidence.
Moreover, the complete derivation of the giant dipole potential in its full form is distributed
over several publications. Therefore, in the following, we will repeat the complete derivation
of the GD Hamiltonian, including all crucial steps which currently can only be found
distributed over Refs. [186, 187, 246]. Further, the derivation is executed in full SI units
rather than in atomic units. Although it is possible to define system-specific atomic units,
such as excitonic atomic units as derived in App. C.1, carrying over all constants aids
in highlighting the small but important differences arising between hydrogen atoms and
excitons. We then transfer this Hamiltonian to the hydrogenic model of excitons in cuprous
oxide and identify possible start- and target-state for giant dipole transitions.

4.2.1. Derivation of the Giant Dipole Hamiltonian

In the following, we assume a system of two oppositely charged particles, e and p, from
which are the negatively and positively charged constituents of the system, respectively.
Identified by the sign of their charge, e is the electron-like particle with mass me and
charge qe = −q0 and p is the proton-like particle with mass mp and qp = +q0. We will
further assume a surrounding medium with arbitrary permittivity ε = εr ε0. In accordance
with existing literature, we refrain from explicitly marking quantum mechanical operators
unless it is necessary to avoid confusion with their classical counterparts. Starting from
the minimal coupling Hamiltonian [246, 247],

H =
1

2m
(p− qA(r))2 − qΦ(r) (4.2)

of a spin-free charged particle, the full system Hamiltonian reads

H =
1

2mp
(pp − q0A(rp))

2 +
1

2me
(pe + q0A(re))

2 + q0 φ (re − rp)−
q0

2

4πε

1

|re − rp|
. (4.3)

We further assume constant external fields E, B. The choice of gauge is left open, by in-
cluding an arbitrary gauge field Λ(r) into the symmetric gauge. Hence, the electromagnetic
potentials are defined as

A(r) =
1

2
B × r +∇Λ(r) , (4.4)

φ(r) = E · r . (4.5)

Inserting these potentials into the Hamiltonian (4.3) results in a Hamiltonian

H =
1

2mp

(
pp − q0

2
B × rp − q0∇rpΛ(rp)

)2
+

1

2me

(
pe +

q0
2
B × re + q0∇reΛ(re)

)2
+ q0E (re − rp)−

q0
2

4πε

1

|re − rp|
, (4.6)

of two particles coupled to the external fields E, B. The first step for the transformation
into a single-particle problem of the internal dynamics is the introduction of the center-of-
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mass coordinates

R =
mp rp +me re

M
, (4.7)

P =M R , (4.8)

with the total mass M = me +mp, and relative coordinates

r = re − rp , (4.9)
p = µr , (4.10)

with the reduced mass µ = (mpme)/M . The coordinate transformation {rp, re} → {R, r}
transforms the gradient operators

∇rp =
∂R

∂rp

∂

∂R
+

∂r

∂rp

∂

∂r
=
mp

M
∇R −∇r (4.11)

∇re =
me

M
∇R +∇r (4.12)

By further defining Λp = Λ(R − rme/M) and Λe = Λ(R + rmp/M), the Hamiltonian
(4.6) is transformed into

H =
1

2mp

(mp

M
P − p− q0

2
B ×

(
R− me

M
r
)
− q0

(mp

M
∇R −∇r

)
Λp

)2
+

1

2me

(me

M
P + p+

q0
2
B ×

(
R+

mp

M
r
)
+ q0

(me

M
∇R +∇r

)
Λp

)2
+ q0E (r)− q0

2

4πε

1

|r|
(4.13)

Due to the coupling terms between the canonical momentum operators and the magnetic
field inside the quadratic brackets, the center-of-mass momentum P is not a preserved
quantity and hence can not be traced out of the Hamiltonian. Instead, for a given particle
i of charge qi the pseudomomentum

ki = miṙi + qiB × ri = pi − qiA(ri) + qiB × ri (4.14)

is the preserved quantity of the motion inside a constant magnetic field [227, 246] and
commutes with the mechanical momentum (pi − qiA(ri)). As shown in App. C.2, the
pseudomomentum can be interpreted as a quantity similar to the mean value of the total
momentum P , although this interpretation is not exactly true (see Ref. [246] and references
therein), since the value of the pseudomomentum is gauge dependent. For systems with
vanishing net charge Q =

∑
i qi = 0 the total pseudomomentum K =

∑
i ki is a preserved

quantity of the system Hamiltonian [227]. In our case, the total pseudomomentum reads

K = P − q0
2
B × r − q0

((mp

M
∇R −∇r

)
Λp −

(me

M
∇R +∇r

)
Λe

)
. (4.15)

This allows an ansatz that separates the eigenfunctions of H into a unitary part depending
on the center-of-mass coordinates R and a purely internal part:

ψr,R = U(r,R)ψ0(r) . (4.16)
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Since K is a preserved quantity of H, they need to share a common spectrum. Hence
the eigenequation of the operator K̂ ψ(r,R) = Kψ(r,R) must hold true. As K only
includes P , the same equation K̂ U(r,R) = K U(r,R) applies to the unitary part. This
can be fulfilled by the ansatz [187]

U(r,R) = exp

{
i

~

(
K ·R+

q0
2
(B × r) ·R+ χ(r,R)

)}
, (4.17)

which leads to

P̂U(r,R) = −i~∇RU(r,R) =K +
q0
2
B × r +∇rχ(r,R) (4.18)

when applied to the momentum operator P̂ . Consequently, the function χ(r,R) is deter-
mined by the gauge terms in Eq. (4.15) through the differential equation

∇rχ(r,R) = q0

((mp

M
∇R −∇r

)
Λp −

(me

M
∇R +∇r

)
Λe

)
. (4.19)

Noting the relation of ∇rΛp = −me
M ∇RΛp and ∇rΛe =

mp
M ∇RΛp, the differential equa-

tion (4.19) is reduced to contain only derivatives in R as

∇rχ(r,R) = q0∇R (λp − Λe) . (4.20)

It is solved by
χ(r,R) = q0 (λp − Λe) + f(r) , (4.21)

which is fully determined up to an internal gauge function f(r) [187]. Tracing out
U †(r,R)HU(r,R) leads to the cancellation of all gauge dependent terms Λp and Λe in
Eq. (4.13), resulting in the effective Hamiltonian of the internal motion

Heff =
1

2mp

(mp

M
K +

q0
2
B × r − p−∇rf(r)

)2
+

1

2me

(me

M
K +

q0
2
B × r + p+∇rf(r)

)2
+ q0E (r)− q0

2

4πε

1

|r|
. (4.22)

By expanding the quadratic brackets and using the reduced masses µ = (mpme)/(mp+me)
and µ̃ = (mpme)/(mp −me) the effective Hamiltonian can be rewritten as

Heff =
1

2µ

(
p2 +

µ

µ̃

q0
2
((B × r) · p+ p · (B × r)) +

(q0
2
B × r

)2
+ q0 (B × r) ·∇rf(r) + (p ·∇rf(r) +∇rf(r) · p) + (∇rf(r))

2

)
+
K2

2M
+ q0

(
K ×B
M

+E

)
· r − q0

2

4πε

1

|r|
, (4.23)

while respecting the order of non-commuting pairs of operators like [r̂, p̂] ̸= 0.

It is worth noting, that by fixing the gauge by assuming f(r) ≡ 0 and using the def-
inition of the projection angular momentum operator L̂n = 1

2
n
|n| · (r × p+ p× r) the
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Hamiltonian (4.23) reduces to

Heff =
1

2µ

(
p2 +

µ

µ̃
q0B LB +

(q0
2
B × r

)2)
+

|K|2

2M
+ q0

(
K ×B
M

+E

)
· r − q0

2

4πε

1

|r|
,

(4.24)
which is exactly the form described in the older Refs. [184, 219, 225].

4.2.2. Identifying the Giant Dipole Potential

We are interested in finding a closed form respecting any gauge freedom, which is not
fulfilled with Eq. (4.24). Therefore, we need to find a simplification of Hamiltonian (4.22)
with all contributions of the internal gauge function f(r). This can be done by exploiting
1/µ = µ/µ̃2 + 4/M to split the term proportional to (B × r)2 in Eq. (4.23) in order to
form two new quadratic brackets

Heff =
1

2µ

(
p+

µ

µ̃

q0
2
B × r +∇rf(r)

)2

+
1

2M
(K + q0B × r)2+q0E ·r− q0

2

4πε

1

|r|
, (4.25)

which is the very same form as derived in Ref. [187]. The first term of this Hamiltonian
bears a striking resemblance to the kinetic energy terms in Eq. (4.6). That this term
is in fact the kinetic energy term of the internal motion can be deduced in the classical
equivalent of the Ehrenfest theorem [248], using the Hamiltonian equations of motion

∂

∂t
xi =

∂H
∂pi

, (4.26)

∂

∂t
pi = −∂H

∂xi
. (4.27)

For the expectation values of Heff we arrive at [186]

∂

∂t
R =

∂Heff

∂K
=

1

M
(K + q0B×) , (4.28)

∂

∂t
K = −∂Heff

∂R
= 0 , (4.29)

∂

∂t
r =

∂Heff

∂p
=

1

µ

(
p+

µ

µ̃

q0
2
B × r +∇rf(r)

)
, (4.30)

∂

∂t
p = −∂Heff

∂r
= − 1

2µ

(
p+

µ

µ̃

q0
2
B × r +∇rf(r)

)
∆rf(r)

+
q20
M
B ×B × r + q0

(
K ×B
M

+E

)
− q20

4πε

r

|r|3
. (4.31)

In turn, the kinetic energy is defined through the canonical velocities ẋi as Ti = 1
2miẋi

2.
Combined with the result of the Hamiltonian equation of motion in Eq. (4.30) it allows to
specify the kinetic energy of the internal motion of Heff as

Tint =
1

2
µ

(
∂r

∂t

)2

=
1

2µ

(
p+

µ

µ̃

q0
2
B × r +∇rf(r)

)2

, (4.32)

which exactly is the first term of the Hamiltonian (4.25) [186]. It has the same form as the
kinematic term of the minimal coupling Hamiltonian in Eq. (4.2) for a single particle of
effective charge qeff = −q0 µ/µ̃ but with the vector potential A(r) = 1

2B× r− 1/q∇rf(r).
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The full Hamiltonian Heff can then be understood as describing such a particle with effective
charge qeff inside a constant magnetic field that is further subject to an effective potential
Veff [187]. This effective internal potential Veff can be determined as

Veff = Heff − Tint =
1

2M
(K + q0B × r)2 + q0E · r − q0

2

4πε

1

|r|
(4.33)

=
K2

2M
+

q20
2M

(B × r)2 + q0

(
K ×B
M

+E

)
· r − q0

2

4πε

1

|r|
. (4.34)

The effective potential contains both terms in the order of r2 and r. It is explicitly
dependent on B but also completely independent of the gauge of the vector potential.
Most importantly, it may possess a local parabolic minimum for specific combinations of
the fields B, E and the pseudomomentum K. In Eq. (4.34) the bracket ((K×B)/M+E)
also illustrates the action of the magnetic field as an effective electric field for non-vanishing
pseudomomentum. This is the so-called motional Stark-effect [246]. Due to his equivalence,
some authors, such as in Ref. [187], introduce a modified pseudomomentum

K ′ =K −M vD , (4.35)

with the drift velocity vD = (E×B)/B2, to eliminate the E-dependency from Eq. (4.34).
Yet, in this work, we keep both K and E as separate parameters and we will later set
K ≡ 0.

4.2.3. Excitonic Giant Dipole States

As discussed previously, excitons in cuprous oxide can be approximated as a hydrogenic
system [188]. Excitons in bulk semiconductors are of the Wannier-type, where the distance
between the constituents spans over several elementary cells. Hence, the Coulomb inter-
action can be modeled as traversing the bulk semiconductor as a background dielectric
medium with relative permittivity εr = 7.5 in Cu2O. The second main difference is the
mass of the positively charged component, which for an exciton is the hole whose effective
mass is determined by the curvature of the valence band [241]. For the yellow series of
Cu2O, it assumes the value of mp = 0.58m0, while the electron mass of me = 0.99m0

remains nearly unchanged. The Rydberg energy is

Ry∗ =
µ e4

2 (4π ε0 εr)2~2
= 88.5meV . (4.36)

A fit to the raw experimental data yields a Rydberg energy of 92meV [188], whereas
respecting deviations originating from the anisotropic band structure in the form of a
quantum defect gives 86meV [241]. The value in Eq. (4.36) lies in between these fit results
and is used throughout this chapter for self-consistency.

A measure for the relative strength of the magnetic field interaction is the quotient
γ = (~ωc)/(2Ry

∗) between the Rydberg energy Ry∗ and the Landau-spacing of the non-
interacting system inside the present magnetic field with cyclotron frequency ωc = eB/µ.
The value of γ is an indicator for the coupling regime with γ ≪ 1 indicating a perturbative
coupling for weak B-fields while γ ≫ 1 indicates the quasi-Landau regime [249]. This
quotient between hydrogenic and Landau energy spacing holds for both atoms and excitons.
In turn, γ may also be used to calculate the relative field amplification that the excitonic
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system experiences compared to the atom. With

γ =
2 (4π ε0 εr)

2~2

µ e4
~ eB
µ

=
2(4π ε0)

2~3

e4m2
0

B
m2

0 ε
2
r

µ2
= γ0

m2
0 ε

2
r

µ2  
sB

(4.37)

and the reduced mass µ = 0.366m0 of the excitonic system, the amplification factor is
sB = 420. In essence, for a given magnetic field strength B, the dynamics of the excitonic
system are equivalent to the hydrogen atom exposed to a field of 420×B.

When considering the electric field scaling, one has to distinguish between the external
(vacuum) field Evac and internal field Eint = εr Evac due to the dielectric polarization.
Unless otherwise stated, the internal electric field Eint is used throughout this chapter and
labeled as E. The scaling factor for the internal electric field sE = m0ε

2
r/µ = 154 is defined

in the same manner as Eq. (4.37). On the experimental side, realizations of magnetic fields
up to 7T are published [189, 244], as well as external electric fields up to 2.7 kV/cm [190],
that translate into internal fields of 356V/cm.

Aside from the magnetic field B and electric field E, the existence and shape of a giant
dipole potential in Eq. (4.34) further depends on and the pseudomomentum K. Through
conversation of momentum, an optically excited exciton is equipped with a pseudomo-
mentum equal to the photon’s momentum [191]. The magneto-Stark and Stark term in
Eq. (4.34)

HS = q0

(
K ×B
M

+E

)
· r (4.38)

depends through the cross product solely on the projection K⊥ of the pseudomomentum
perpendicular to the magnetic field. Hence, if the magnetic field and optical axis are aligned
parallel (also called Faraday configuration [191]), we can assume K ≡ 0, similar to the case
in atomic beam experiments [193]. The opposite case is the Voigt configuration, where the
exciting photon travels perpendicular to the magnetic field. With an intermediate wave
number of 2.79× 107 m−1 for the yellow series of Cu2O [191], the effective magneto-Stark
field strength is

EmS =
K⊥B

M
= 7.52

V/cm
T

×B . (4.39)

This electric field contribution, scaling linearly with B, is too small to create a local
minimum in the effective potential in Eq. (4.34), as the minimal required field for creating
at least a saddle point scales with B4/3 (see App. C.3 for derivation). As a result, we can
neglect the influence of K entirely and assume K ≡ 0.

With further fixing the field orientations with B in z-direction and E in x-direction the
effective potential in Eq. (4.34) simplifies to

Veff =
e2B2

2M

(
x2 + y2

)
+ eE x− e2

4πε0εr

1√
x2 + y2 + z2

. (4.40)

From the residual degrees of freedom, the magnetic field dictates how close to the Coulomb
center the giant dipole well can be formed. The distance at which a saddle point for
sufficient electric fields forms scales with B−2/3 (see App. C.3). In return, increasing
the electric field deepens the giant dipole well, while also shifting the position of the
minimum outwards, away from the Coulomb center. While in atoms the choice of fields
is mainly restricted by the magnetic field strengths available to experiments, the field
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Figure 4.6: Under a magnetic field of B = 0.391T, a saddle point (a) is formed at an electric field strength
of 74V/cm. It is located at a distance of 300 a0 and energetically between the n = 6 and n = 7 state
energy levels of the field-free exciton. (b) At an electric field up of E = 200V/cm, a giant dipole well is
formed at a distance of x0 = −1067 a0. Below the dissociation threshold (dashed gray line) the shape of
the potential around the local minimum can be approximated harmonically (dashed blue curve). Above
the giant dipole ground state (state energy level marked by green line) several excited giant dipole states
are supported.

amplifications in Cu2O would even allow locating the giant dipole minimum energetically
below the excitonic ground state with a field of B = 7T. As a result, the choice of
the magnetic field is more of a balance between desired depth, saddle point height, and
distance to the Coulomb center. A good balance can be achieved with a magnetic field
of B = 70 × 10−5 a.u., equal to B = 0.391T. A saddle point then appears at an electric
field strength of 74V/cm (see Fig. 4.6(a)) at an energy just below the field-free n = 7
state energy level. Increasing the electric field up to E = 200V/cm creates a giant dipole
well at a distance3 of x0 = −1067 a0 (see Fig. 4.6(b)) or 1.17µm. Following the definition
in Ref. [3], the harmonic approximation (dashed blue curve in Fig. 4.6(b)) is viable up
to the dissociation threshold (dashed gray line) and above the ground state (green line)
the potential supports several m- and nz-excited states as well as one n-excitation (see
Refs. [3, 250] for details on the giant dipole quantum numbers in cylindrical approximation).

The giant dipole transition scheme proposed in Ref. [193] starts with an initial state
in the form of a chaotic trajectory of the electron4 with only the magnetic field present.
The energy of the chosen trajectory corresponds to the energy of the n = 60 state of the
field-free hydrogen atom but seems unrelated to an exact quantum state of the atom-field-
system.5 In our case, however, with the n = 7 energy level of the exciton being located
just above the saddle point, it is very much possible to calculate exact eigenstates. This is
done in the basis of hydrogen wave functions ψnlm(r) in a series

Ψi(r) =

nmax∑
n=1

n−1∑
l=0

l∑
m=−l

cnlm ψnlm(r) (4.41)

up to a maximum principal quantum number of nmax. Although this basis is not complete

3Admittedly, working with a distance of exactly 300 a0 under a field of nearly 75V/cm and a distance of
nearly 1000 a0 at field of exactly 200 v/cm is quite satisfying.

4In case of the hydrogen atom, the single particle system can still be considered as the action of the
electron alone to a good degree of approximation

5Which even today is very challenging to diagonalize due to the rapid increase in sub-states of l and m
to consider with increasing n.
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4. Excitonic Giant Dipole States in Cuprous Oxide

and calculating the full quasi-Landau spectrum of resonances above the band-gap energy
[181] would require either inclusion of the Landau wave functions [181, 249] or use of
Coulomb-Sturmian functions [191, 251–253], it is sufficient for the low lying n states. With
nmax = 20 the basis contains 2870 elements and eigenstates and energies are calculated in
the range of 0 . . . 7T (for details on the numerical diagonalization see App. C.4) with the
result shown in Fig. 4.7. The linear Zeeman splitting commonly seen in atoms for weak
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Figure 4.7: The energy levels of magnetoexcitons in the hydrogen model can be obtained by diagonaliza-
tion in a hydrogen basis for low states below the band gap. The energy splitting is dominated from the
diamagnetic coupling, resulting in parabolic curves with linear splitting appearing only below B < 1T.
The splitting is strong enough for intersections between different n-fans to appear. Due to the tight cou-
pling restrictions for hydrogenic wave functions only a few avoided crossings appear. The dashed vertical
line marks the magnetic field of B = 0.391T, required for the formation of giant dipole states. Energies
are given as binding energies below the band gap.

magnetic fields is barely visible for fields of B < 0.1T and the spectrum is dominated by
the diamagnetic term with its quadratic B-dependency. Increasing with n, the coupling
is strong enough to result in not only l-mixing but also the mixing of n-states. The only
good quantum number preserved by the magnetic field is the magnetic quantum number
m. The magnetic field of B = 0.391T required for giant dipole states is traced with a
dashed vertical line. At this field strength, the fan originating from the n = 7 state is
mostly affected by l-mixing. Due to the even parity of the valence and conduction band,
only excitonic states with odd parity (like P and F states) are dipole-allowed for photonic
excitation from the ground state [254]. Consequently, a possible initial state for the giant
dipole transition excited from the excitonic vacuum needs sufficient admixtures of the 7P
state. Possible states are the 120th, 121st, and 129th state,6 which can be traced back
to the field free 7P m = −1, m = 0, and m = 1 hydrogen wave functions, respectively.
The most relevant mixture amplitudes cnlm as defined in Eq. (4.41) for these states are

6Here, the states are counted by the index i in energetic order at B = 0.391T, starting from the lowest
exciton state, which is the nearly pure 1S state.
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i = 120

{n, l,m} cnlm
{7, 1,−1} 0.894
{7, 3,−1} −0.431
{7, 5,−1} 0.108
{8, 1,−1} 0.050
{8, 3,−1} −0.033
{6, 1,−1} −0.022
{8, 5,−1} 0.015
{9, 1,−1} 0.010
{6, 3,−1} 0.009
{9, 3,−1} −0.006

i = 121

{n, l,m} cnlm
{7, 3, 0} 0.733
{7, 1, 0} −0.607
{7, 5, 0} −0.302
{8, 3, 0} 0.039
{8, 5, 0} −0.029
{8, 1, 0} −0.022
{6, 1, 0} 0.014
{6, 3, 0} −0.013
{8, 7, 0} 0.008
{9, 3, 0} 0.007

i = 129

{n, l,m} cnlm
{7, 1, 1} −0.894
{7, 3, 1} 0.431
{7, 5, 1} −0.108
{8, 1, 1} −0.050
{8, 3, 1} 0.033
{6, 1, 1} 0.022
{8, 5, 1} −0.015
{9, 1, 1} −0.010
{6, 3, 1} −0.009
{9, 3, 1} 0.006

Table 4.1: Weight parameters cnlm for the three states with the highest 7P admixture at B = 0.391T
arising from the m = −1, m = 0 and m = 1 states respectively. For each state the largest 10 amplitudes
are given. The states are mixed in both l and n, with only the magnetic quantum number m preserved.
Both the m = 1 and m = −1 states are dominated by the 7P state with only one more relevant admixture
of the 7F state. The m = 0 state has much larger contributions from higher l states, even exceeding the
7P contribution.

listed in Tab. 4.1. It is worth noting that the state with the highest admixture of the
7P m = 0 wave is not dominated by this state but superimposed with l = 3 and l = 5
wave. The 120th and 129th state, however, are dominated by the 7P wave with a smaller
7F admixture. Consequently, these two states are the most accessible states of the n = 7
fan and are chosen as initial states for the giant dipole transition. Further, due to the
dominance of the 7P weights, they are in the following reduced to pure 7P states in order
to simplify the sampling of the initial state.

4.3. Excitonic Simulation Environment

The GD Hamiltonian in Eq. (4.25) breaks all spatial symmetries of the Coulomb potential
through the magnetic- and electric-field interactions. In its general form, it does not pos-
sess an obvious eigenbasis and the double-well structure in combination with the residual
gauge term complicates an exact diagonalization. Deep learning approaches, on the other
hand, are data-driven and require extensive amounts of training data. In the case of deep
reinforcement learning, they are obtained through interaction between agent and environ-
ment and thus require a sufficiently fast simulation. Here, the correspondence principle
allows for the approximate solution of quantum systems through classical trajectories [193].
Consequently, we aim to demonstrate the feasibility of optimizing a GD excitation scheme
with deep reinforcement learning on a semi-classical simulation.

The only outside control of the GD system in Eq. (4.25) comes through the fields E,B.
From these, only the electric fieldE can possibly be manipulated on a sufficient timescale by
voltage regulation, while changing B would require regulation of superconducting currents
[243]. Continuing with the fields E(t) = E(t) ex and B ≡ B ez from Sec. 4.2.3, and the
corresponding effective potential in Eq. (4.40), the general GD Hamiltonian from Eq. (4.25)
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simplifies to

Heff =
1

2µ
(p2x + p2y + p2z) +

eB

µ̃
(x py − y px) +

e2B2

8µ
(x2 + y2)

+ eE(t)x− e2

4πε0εr

1√
x2 + y2 + z2

+ eEs z . (4.42)

Therein, the single-particle gauge-term ∇rf(r) has been neglected, as it has, by definition,
no effect on the following classical equations of motion. Further, a stray electric field Es in
z direction bas been introduced. It simulates either misalignments of the external electric
fields or other perturbations that act in the z-direction where the magnetic field does not
confine the particle motion [193]. Thus, it may ionize trajectories that are only metastable.
The equation of motion, corresponding to Eq. (4.42), are obtained through the Hamilton
equation of motion, recall Eqs. (4.26), (4.27), through derivation:

ẋ =
∂Heff

∂px
=
px
µ

− eB

µ̃
y , (4.43)

ẏ =
∂Heff

∂py
=
py
µ

+
eB

µ̃
x , (4.44)

ż =
∂Heff

∂pz
=
pz
µ

, (4.45)

ṗx = −∂Heff

∂x
= −eB

2µ̃
py −

e2B2

4µ
x− eE(t)− e2

4πε0εr

x√
x2 + y2 + z2

3 , (4.46)

ṗy = −∂Heff

∂y
=
eB

2µ̃
px −

e2B2

4µ
y − e2

4πε0εr

y√
x2 + y2 + z2

3 , (4.47)

ṗz = −∂Heff

∂z
= −eEs −

e2

4πε0εr

z√
x2 + y2 + z2

3 . (4.48)

From a starting phase space point γ0 = (r0,p0)
T , the complete phase space trajectory is

obtained by numerical integration of the equations of motion. All calculations are executed
in atomic units (see App. C.1). The integration is perfomed with a Runge–Kutta method
[255, 256]. It solves the differential equation y′(t) = f(t, y(t)) iteratively with a t-step size
of ∆t from a starting point (t0, y0) through the relation

k1 = f (ti, yi) , (4.49)

k2 = f

(
ti +

∆t

2
, yi +

∆t

2
k1

)
, (4.50)

k3 = f

(
ti +

∆t

2
, yi +

∆t

2
k2

)
, (4.51)

k4 = f (ti +∆t, yi +∆t k3) , (4.52)

yi+1 = yi +
∆t

6
(k1 + 2 k2 + 2 k2 + k4) . (4.53)

The divergence of the Coulomb potential at small distances destabilizes the numerical
integration when performed with constant step sizes. This is either resolved by projection
into a four-dimensional space [222], or, as in our case, an adaptive time-scaling. The time
steps

∆t = ∆τ min(
√
x2 + y2 + z2, 100) (4.54)
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are scaled from a base value of ∆τ = 0.2×10−3 a.u. with the distance r from the Coulomb
center in atomic units. The scaling is further clipped at a value of 100 since the curvature
is sufficiently flat beyond this radius. The step size was determined by testing the stability
of known closed orbits over several orbit periods. Yet, the level of detail for observation
purposes is still sufficient if only recording every 5× 104th value of the iteration.

The starting phase space point of the trajectory is sampled semi-classically from the
approximate quantum eigenstate {n, l,m} = {7, 1,−1}, recall Sec. 4.2.3. The position is
sampled from the hydrogenic wavefunction ψnlm(r, θ, φ) = Rnl(r)Y

m
l (θ, φ) by fixing θ = 0,

φ = 0 and randomly sampling r from the cumulative probability distribution

c(r) =

∫ r

0
Rnl(ρ)

2 ρ2 dρ . (4.55)

The momentum components are then determined by solving the semi-classical angular
momentum projection, yielding py,

m
!
= Lz = x py − y px , (4.56)

the semi-classical equation of the angular-momentum quantum number, for pz,

l(l + 1) = r × p , (4.57)

and, finally, the classical energy conservation in first order perturbation theory,

En,m = − 1

2n2
+
B

µ̃
m

!
=

|p|2

2µ
+

1

|r|
, (4.58)

|p|2 = p2x + p2y + p2z , (4.59)

giving the last, px-component. This semi-classical, self-consistent phase point is integrated
for a random number of 4×106 . . . 6×106 iteration steps with E(t) ≡ 0 to further randomize
especially the staring position in the y-z-plane.

4.3.1. Environment Interaction and Intuitive Strategies

The simulated excitonic system is only partially observable under real-world conditions,
with just the current time t and field strength E(t) known at any moment. The training
of an RL algorithm further requires the system to provide the same trajectory information
as used for the reward calculation [112]. In our case, this is the trajectory center r(t)
defined by the mean-position of the particle integrated over a certain period. Therefore,
the state observation si at any step i comprises of the elements time ti, field strength
Ei = E(ti), and trajectory center ri. Provided this information, the agent can interact
with the simulation environment by stipulating the slope of the electric field ∂E = ∆E/∆t
by which it is propagated over the next iteration interval.

The simulation environment is implemented in Mathematica with a compiled iteration
function. Still, simulation times are considerable, with an average of 12min on Quantum-
Chaos and 24min on qoms for a single episode. The small data-structures even allow for
running the training on the Raspberry Pi ComputationPi, taking 1 h per episode.

87



4. Excitonic Giant Dipole States in Cuprous Oxide

Environment Constraints

The simulation environment is restricted in its parameters. The propagation time is lim-
ited to tmax = 5.0 ns = 1.34 × 106 a.u.. The position-space is normalized to a range of
rmax = 2000 a0 and constrained to a cubic volume of 2 rmax. Any trajectory surpassing
this boundary is assumed to ionize, which leads to an instant termination of the simulation.
It is the only hard failure condition. The absolute value of the electric field is capped at a
value of Emax = 300V cm−1, well below the limit of existing experiment setups [190, 245],
and the slope is limited to ∂Emax = 150V cm−1 ns−1. It still allows reaching Emax within
2 ns. Between each agent-environment iteration, the environment integrates the equations
of motion for Nit = 5 × 105 steps and calculates ri as the mean of the position-space
trajectory. The number of integration steps for every environment iteration is a trade-off
between decision frequency and precision of the trajectory-center calculation. For a sen-
sible result, it is required to cover at least one complete orbital period of the trajectory
but it also has to be short enough to allow frequent interactions. Because the oscillation
period in z-direction is considerably longer than in the xy-plane, the observation of the
trajectory-center is oversampled by a factor of 2, meaning that the returned observation
of ri is calculated as the mean of both ri and ri−1. With these parameters an average of
280 agent-environment loops are executed until the simulated time reaches tmax.

Intuitive Strategies
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Figure 4.8: The field evolution from Eqs. (4.60), (4.61), and (4.62) are plotted in panel (a). The particle
trajectory of a sample simulation with the classical strategy (solid blue line) are shown in panels (b) and
(c), respectively. The time evolution of the trajectory center in (b) reveals that the particle moves to the
outer well at 1.5 ns, indicated by a dashed line. The extent and period of the orbit in z direction is much
larger than in the xy-plane due to the weaker confinement along the magnetic field axis.

When searching for the optimal field evolution it is rational to benchmark it against
simple and intuitive excitation strategies. A strategy for highly excited Rydberg states of

88



4.3. Excitonic Simulation Environment

hydrogen atoms was developed in Ref. [193] in the form of a composite function

Eclass(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ec sin

(
π t
2 t1

)
t ≤ t1 ,

Ec t1 < t ≤ t2 ,
Ec + (Ef − Ec) sin

(
π (t−t2)
2 (tf−t2)

)
t2 < t ≤ tf ,

Ef t > tf .

(4.60)

The first step of this evolution is to increase the field strength up to the formation of
saddle point Ec and then wait for a certain timespan t2− t1 to let all trajectories pass over
the saddle point before increasing the field to the final value Ef . Letting all trajectories
pass at the same field value guarantees a narrow energy distribution of the final states
[193]. This strategy can be transferred to the excitonic system by modifying the constants
t1 = 1.5 ns, t2 = t1 + 0.5 ns, tf = t2 + 1.0 ns, Ef = 200V cm−1, and Ec = 150V cm−1.
It is plotted in Fig. 4.8(a) and the corresponding state evolution of a sample simulation
is shown in the panels (c) and (b) with the trajectory and trajectory-center, respectively.
It is worth noting that any trajectories only traverse from the Coulomb well to the outer
potential well at a field strength of Ec = 150V cm−1, although the saddle point already
forms at a value of E = 74V cm−1. Another noteworthy observation is the much longer
orbit period and amplitude of the trajectory center in the z-direction compared to the x-
or y-coordinate. It is another side-effect of the weak confinement along the magnetic field
axis and needs to be considered in shaping the reward function.

In contrast to the atomic case we observe the excitation trajectories to travel into the
outer potential well almost simultaneously, varying only within one orbit period. With the
field plateau having no notable effect the field evolution can be simplified to a linear ramp
the field strength until Ef is reached and then keep the field constant

Eramp(t) =

{
Ef

t
t1

t ≤ t1 ,
Ef t > t1 .

(4.61)

Another possible field evolution could also feature an over-swing of the field above the
value of Ef and a subsequent return, e.g. in the form of

Eswing(t) =

⎧⎪⎪⎨⎪⎪⎩
Esw sin

(
πt
2tsw

)
t ≤ tsw ,

Esw + (Ef − Esw)
(
1− cos

(
π (t−tsw)
2 tsw−tsw

))
/2 tsw < t <= 2tsw

Ef t > 2tsw .

(4.62)

with tsw = 2.5 ns and Esw = 250V cm−1. A comparison of all three field evolutions
presented here is plotted in Fig. 4.8(a). We observe an ionization rate of approximately
40% over a test of 100 trajectories for all three strategies, each. This rate is considerably
higher than for the atomic case in Ref. [193] and is likely caused by the weaker confinement
of the excitonic system along the magnetic field direction. It also appears to be independent
of the specific field evolution.

4.3.2. Simplified Environment

The computation time of the excitonic simulation environment of 12min in the best case
is considerably larger than that of typical example systems. This hampers the ability to
perform large scale tests like hyperparameter optimizations within a reasonable timeframe.
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Figure 4.9: The center of the GD trajectory
ideally should coincide with the position of the
GD minimum. Where existent, its position x0
depends approximately linearly on the electric
field strength E.

Figure 4.10: Under the interaction with the
classical field evolution from Eq. (4.60) the sim-
plified simulation environment calculates a sim-
ilar trajectory as in Fig. 4.8(b), but is lacking
the temporal correlation.

Yet, the effective propagation of the excitonic systems can be approximated through a set
of simple relations. If neglecting the delayed transfer to the GD well seen in Fig. 4.8
the trajectory center should always fall in the vicinity of either an existing GD minimum
or the origin. The position of the GD minimum x0(E) depends approximately linearly
on the electric field strength E [186, 187]. The approximation is refined by numerically
determining the minimum of the effective GD potential from Eq. (4.40) and interpolating
linearly between these values, like shown in Fig. 4.9. The oscillations visible in Fig. 4.8 are
replaced with uniform noise. Further, the overall timestep length ∆t over N iterations is
approximated by multiplying the value of Eq. (4.54) for the initial trajectory center by N .
Thus, the evolution of the exact simulation environment over Nit iterations is simulated
by a set of three equations. Given a field slope ∂E, any system state with time ti, field Ei,
and trajectory center ri evolves by:

ti+1 = ti +∆t = ti +∆τ min(|ri|, 100)Nit , (4.63)
Ei+1 = Ei +∆t ∂E , (4.64)

ri+1 = (x0(Ei+1), 0, zi)
T + 20vn

{
1 |ri| < 100
10 |ri| ≥ 100

, (4.65)

with a uniform noise vector v ∈ R3 sampled from the interval [−1, 1]. The larger oscillation
in z-direction and occasional ionization is simulated by a random process of accumulating
the noise in the z-component. An example evolution of the simplified simulation is plotted
in Fig. 4.10. The mean of the trajectory center follows a similar evolution like Fig. 4.8(b)
but with much less temporal correlations. With evaluation times in the sub-second regime
and equal variable scaling as the exact simulation it enables us to perform large scale tests
within a reasonable timeframe.
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4.4. Dynamic Field Optimization through Deep
Reinforcement Learning

The goal of the GD excitation is to bring the effective single particle7, described by the
Hamiltonian in Eq. (4.42), into a stable orbit around the targeted GD minimum rtarg =
(xtarg, 0, 0)

T with xtarg = −1067 a0, recall Sec. 4.2.3. Consequently, the RL agent needs
to be rewarded for minimizing the distance between the orbit-center r(t), as a mean value
of the trajectory r(t) over some time interval, and the target point rtarg. The simulation
environment is implemented in Mathematica, due to requiring specific analytic functions
. Consequently, the DDPG RL algorithm is implemented in Mathematica, too.

Agent Design
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Figure 4.11: The design of the actor and critic networks is adopted from Ref. [116]. The actor (a)
normalizes the three state-input variables before concatenation [C] into a single vector with five entries
(gray numbers mark the vector sizes). It is then processed by a stack of two fully connected layers with
256 neurons each with are ReLU-activation (see small plots above). The normalized action output value is
obtained from a single, tanh-activated neuron. The critic uses a similar structure for processing the state
input but with fewer neurons. The action input is further processes by a single fully connected layer and
the two input-branches are consolidates into a single vector of size 64. It is then processed by a stack of
two fully connected layers. The terminal layer is also a single linear-activated neuron.

The deep reinforcement learning agent chosen for controlling the GD excitation is the
DDPG algorithm [114] introduced in Sec. 2.3.1. It is an actor-critic model composed of two
neural networks. The actor learns the policy a = µ(s), and the critic learns the action-value
function Q(s, a). The design of both actor and critic is adopted from the implementation in

7In the context of an hydrogen atom, this would be the electron. With the similar mass of the electron
and hole of an exciton, the single-particle trajectory describes the relative distance of both the electron-
and hole-orbits.
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Ref. [116] and depicted in Fig. 4.11. Both actor and critic are designed to accept the state
components time t, field E(t), and trajectory center r in atomic units. In the first layer
of the network, these three state inputs are normalized by the corresponding environment
constraints and then concatenated into a single vector. The actor uses two fully connected,
ReLU-activated layers with 256 neurons each for processing the state input and a final
single neuron with tanh-activation to predict the single output action. Different to the
state-variables the action is normalized to the interval [−1, 1] for all learning purposes.
Only when given to the environment, the action is scaled to atomic units by multiplication
with ∂Emax. The critic uses a similar structure of two fully connected layers for processing
the state input, but with just 16 and 32 neurons, respectively. It further processes the
action input in a single fully connected layer with 32 neurons and combines bot input
branches by a concatenate layer. From this, the Q-function is calculated by a stack of two
fully connected layers with 256 neurons and a single linear activated neuron.

Reward Shaping and Local Attractors

With the goal of bringing the system into a GD state the reward should be given depending
on the distance of the trajectory center r to the target point rtarg. Still, the question
remains how to calculate this reward. The design of the reward signal (also called reward
shaping) is a critical part of an RL application [112]. While some rewards appear intuitive
for the human mind, they may get exploited by an RL agent to accumulate rewards in
an unintended way. An additional challenge of the GD environment lies in its dynamics.
Because the particle can only leave the Coulomb well beyond a certain electric field value,
there exists a region where the particle position the reward does not change significantly.
Conversely, once leaving the Coulomb well the propagation is comparably fast and it is
quite likely to overshoot the target position. These challenges result in the existence of two
local attractors of learned strategies which are near impossible to escape even with strong
exploration. The first is to keep the particle inside the Coulomb well by regulating the
electric field around zero-value. We call this the do-nothing strategy. The second attractor
is to try to constantly increase the field with maximum slope, even when reaching Emax,
dubbed max-field.
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Figure 4.12: The reward function, plotted along the x-coordinate in (a), is a combination of a Gaussian-
shaped positive reward around the target point of xtarg ≈ 1000 and a negative, linear penalty. As a result,
an increasing reward can only be accumulated in the direct vicinity of the target position. Otherwise the
reward is even decreasing over time. In the xz-plane (b), the increased width of the Gaussian z-direction
can be seen, which accounts for the greater oscillation lengths in this direction due to weaker confinement.
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We found the best performance by implementing a composite reward function that im-
plements a linear global slope added to a Gaussian reward in the direct vicinity of the
target position. The reward function

rw(r) = sr

(
e
−
(

(x−xtarg)
2

2σ2
r

+ y2

2σ2
r
+ z2

2(5σr)2

)
− 0.5

|r − rtarg|
rmax

)
, (4.66)

gives a positive reward in the direct vicinity of the target position rtarg and returns a
penalty at larger distances (see Fig. 4.12). The variance σr = 125 a0 of the Gaussian is
multiplied by a factor of 5 in z-direction to compensate for the sweeping oscillation in
this direction, recall Fig. 4.8. The entire reward function is scaled by a factor sr which
is known as a hyperparameter for the training of a DDPG algorithm [117]. The dynamic
scaling of the simulation timesteps in Eq. (4.54) also requires a time normalization of the
returned reward in order to obtain consistent returns. The time normalization between
two iteration steps i and i + 1 is performed through multiplying rw by ∆t/∆tmax, with
∆t = ti+1 − ti and ∆tmax = 100∆τ Nit.

Exploration Noise

The DDPG algorithm is a deterministic agent and thus always acts according to the most
recent policy. In order to learn new strategies, an algorithm needs to explore new actions
outside the current policy. Therefore, a deterministic agent needs outside help for explo-
ration in form of an exploration noise function Ne. In the original publication, Ref. [114],
of the DDPG the use of an Ornstein–Uhlenbeck process [257] is proposed. It simulates
the time-correlated fluctuations of a Brownian motion, an example of which is shown in
Fig. 4.13. Knowing that the excitation of a GD state requires a long, time-correlated
action, this choice of exploration noise is more appropriate than uncorrelated noises [258].
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Figure 4.13: The exploration noise is sampled
from an Ornstein–Uhlenbeck process [257], here
shown for long-term mean µ = 0, volatility σ =
1.0, mean reversion speed θ = 0.15 and initial
value n0 = 0.2 also marked by the gray line.

Figure 4.14: The volatility σ is decreased over
progressing episodes ep to reduce the variance
of the exploration noise.

For noise generation, the Ornstein–Uhlenbeck process is simulated with long-term mean
µ = 0, volatility σ, mean reversion speed θ = 0.15 and a random initial value n0 ∈
[−1, 1]. The volatility σ is a hyperparameter and also determines the variance of the
noise distribution. We aim for a wider exploration in the earlier stages that narrows down
during training and subsequently allows finer tuning in the later training episodes ep. This
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4. Excitonic Giant Dipole States in Cuprous Oxide

is achieved by an exponential decay

σ(ep) = 0.1 + 1.4 e−
ep−1
1000 , (4.67)

plotted in Fig. 4.14. It is also used for scaling the initial value n′0 = σ(ep)n0. During
training, the actions are determined by the noise-modified policy

µ′(s) = µ(s) +Ne(ep) , (4.68)

and are further clipped to the interval [−1, 1] to conform with the environment constraints
on legal actions. Note that the noise itself is not clipped and thus may override the actor in
some cases. This helps further with exploration especially in the earlier stages of training.

Hyperparameter Optimization

Table 4.2: Optimized hyperparameters

quantity value
loss scaling sr 0.1
actor learning rate 1.0× 10−3

critic learning rate 2.0× 10−3

critic L2-regularization 2.0× 10−5

batch size 1024
buffer length ∞

The learning performance of the DDPG algo-
rithm is known to be highly sensitive to hyper-
parameters [118, 119]. For the present GD ex-
citation task none of the sets of hyperparam-
eters reported in Refs. [114, 116, 118] achieve
a stable convergence and requires optimization.
However, the slow evaluation speed of the sim-
ulation environment prevents a wide parame-
ter scan within a reasonable time. Instead, a
broad parameter search is performed using the
simplified simulation environment described in
Sec. 4.3.2 to find a set of parameters that is then fine-tuned on the exact simulation. The
final set of hyperparameters is listed in Tab. 4.2. In agreement with Ref. [117] we find that
the training stability improves by scaling the reward by sr = 0.1. The stability if further
improved by increasing the batch size to 1024 whilst even larger batch sizes hamper the
convergence. An important hyperparameter for the long-term stability of the training is
the L2-regularization of the critic, which needs to be balanced against the learning rates
of both actor and critic. Without regularization the critic frequently runs into a positive
feedback loop with the target-critic in Eq. (2.19) that leads to exploding values and a
subsequent breakdown of the training. Yet, too heavy regularization denies any learning
progress at all. The most stable solution was found by combining the learning rates from
Ref. [116] with an L2 regularization of 2.0 × 10−5. The long term stability benefits fur-
ther from observation buffer lengths capable of preserving all observations of the training.
Thus, it is effectively set of infinity by never deleting any old observations from the buffer.

With the given set of hyperparameters the DDPG algorithm converges on the simplified
environment within 500 – 1000 episodes. An example learning curve is shown in Fig. 4.15.
The learned strategy is almost time-invariant and instead depends only on the x-coordinate
of the trajectory-center and the value of the electric field. It implements a decision bound-
ary through the target point in the xE-plane, with slope +∂Emax below and −∂Emax
above the target point. Effectively, it implements the same temporal field evolution as the
ramp-strategy in Eq. (4.61). With the fast evaluation speed of the simplified environment
it is further possible to cross-check this result with a Monte–Carlo approach. It is imple-
mented as an on-policy learning by starting out with a random field function E(t) and then
adding the same decaying exploration noise as for the DDPG algorithm. If the total reward
after any episode is larger than the current best result it is adopted as the new strategy.
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Figure 4.15: The total reward received (blue dots)
varies widely between the training episodes due to
the strong exploration noise. Averaged over 10
episodes each, the global trend and convergence
within 1000 episodes becomes apparent.

Figure 4.16: On the simplified simulation envi-
ronment a Monte–Carlo learning algorithm with
decaying exploration noise converges within 5000
episodes.

The learning curve in Fig. 4.16 shows convergence after 5000 episodes. The Monte–Carlo
approach agrees with the DDPG algorithm in also learning the ramp-strategy.

Optimized Field Results
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Figure 4.17: The learning curve shows the total
reward gained from all simulation runs during each
episode as blue dots, with four dots per episode repre-
senting the parallelized simulations. The distribution
of rewards is very broad due to the strong exploration
noise employed. When taking the rolling average over
ten episodes (orange curve) the improvement in the
total rewards are clearly visible.

Executed on the exact simulation environ-
ment the training with the DDPG algo-
rithm proves less stable than on the sim-
plified environment. A large portion of
the overall training process is taken up
with finding the rather narrow region of
a valid excitation strategy that involves
bringing the particle into the outer well
and then stabilizing it. However, the ex-
istence of the previously described local at-
tractors frequently results in the RL agent
never finding a suitable strategy. The tests
with the simplified simulation environment
has shown that the ramp-strategy from
Eq. (4.61) is a valid solution for the sim-
plified simulation environment. Therefore,
we aim to accelerate the training and help
with exploration by pre-filling the observa-
tion buffer with observation data from valid
strategies. These are obtained from simu-
lations with the intuitive strategies from Sec. 4.3.1. We perform 20 simulations with each
of the three strategies.

The reason for the training instability appears to lie in the much larger ionization rates
in z-direction of the exact environment. By controlling only the electric field in x-direction
the possible influence on this dynamic is limited to the levels of being nearly nonexistent.
For comparison, about half of the simulations performed for pre-filling the observation
buffer do ionize independently of the present strategy. Thus, the virtually random process
of state ionization can lead to confusion during the training when frequently encountering
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4. Excitonic Giant Dipole States in Cuprous Oxide

ionizing trajectories along an otherwise successful strategy. We overcome this statistical
challenge by acquiring more data during training. The trajectory simulation is a time
consuming, consecutive task that only can be parallelized by executing several independent
simulations simultaneously. This also allows to a much more efficient use of modern multi-
CPU computers. For each training episode we initialize as many independent trajectories
as physical CPUs available which are propagated simultaneously. The actions for each
simulation are computed individually with the same actor-net but all parallel simulations
are modified by the same exploration noise. It leads to a much faster exploration of
the reward statistic starting from a certain state. The learning curve corresponding to
this training setup is shown in Fig. 4.17. The total rewards gained from the individual
simulation runs are still widely distributed due to the strong exploration noise. However,
it converges more steadily and faster than in Fig. 4.15, benefiting from the pre-generated
observation data and improved statistics. In total, the training requires only 160 episodes
with a parallelization of four.

Figure 4.18: The state activation map of the actor is plotted over the observation space of the trajectory
center component x and field strength E. The dashed lines mark the positions of the GD minimums
for both positive and negative field values. From the starting point (central circle), the action is positive
propagating the system state in positive field direction (yellow arrow in left panel). The position component
of the state can not leave the confines of the Coulomb well until a critical field strength is surpassed (yellow
arrow in central panel) at which the center of the trajectory moves to the outer minimum along the dashed
green line. With increasing field strength the system state travels along this line until the action changes
sign when crossing the target position xtarg = 1000 a0, thus balancing the system around the target state.

The strategy learned by the DDPG algorithm is an improvement on the ramp-strategy
in Eq. (4.61). The global strategy can be read from the activation map of the actor
plotted in the xE-plane of the state space in Fig. 4.18. The system is initialized at t = 0
(left panel) inside the central black circle and the activation map is entirely positive with
action a = +∂Emax. The action results in a rapid increase of the field strength, while
the trajectory is still trapped inside the Coulomb well. At t = 1 ns a region of negative
action form in the top right corner. At this point in time, the field could not yet have
reached the threshold value of E = 150 v cm−1. Once surpassing this value, the trajectory
travels into the outside potential well (yellow arrow) and centers around the position of
the outer minimum, traced by the dashed green line. At t = 3 ns we see that the activation
value changes sign at the target position, meaning that the system is balanced by the actor
around the target point.

The actions as visible from the activation map in Fig. 4.18 equal the ramp-strategy from
Eq. (4.61). Finer details of the learned strategy become visible when testing it on sample
trajectories. Fig. 4.19 shows the interaction with 10 randomly initialized trajectories.
Overall, all field profiles generally follow a ramp-strategy with at first increasing the field
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Figure 4.19: The RL agent is tested on 10 randomly initialized trajectories. The top left plot shows
the evolution of the corresponding electric fields. Effectively, the RL agent learns an improved version
of the ramp-strategy from Eq. (4.61). The left central panel shows the x-component of the trajectory
centers, where it can be seen that all trajectories move into the outer well almost simultaneously. In the
bottom plot of the corresponding z-component, ionization loss of some trajectories becomes visible. The
remaining trajectories form stable orbits around the target point, which can be seen in the right panels
with projections into the xy-plane and xz-plane. The electric field curves show oscillations of the same
period as the z-component of the trajectory center (compare left column top and bottom) but with a phase
difference. This leads to a long-term damping of the oscillations in z-direction.

with maximum slope (dashed diagonal) and then regulating the field along the target value.
However, the oscillations in the balancing region show oscillations with regular periods and
appear larger than required. These oscillations translate directly into the x-position of the
trajectory center (left central panel). When comparing the field profiles in the top panel
to the z-coordinate of the trajectory center in the bottom panel it appears that the field
oscillations share the period length of the harmonic oscillations in z-direction but are shifted
out of phase. It further can be noticed that the z-oscillations decrease in amplitude over
time. This is a behavior that could not be observed when testing the intuitive strategies.
The z-direction is the only coordinate in which the state can be ionized, like visible with e.g.
the violet and yellow trajectories. The RL algorithm seems to have learned how to damp
these oscillations which in turn leads to closer and more stable trajectories that ultimately
return higher rewards. However, this strategy may not be relevant for the experimental
realization of GD states. The transition into the GD state is already finished for all non-
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ionizing trajectories at t = 1.3 ns when the electric field reaches E = Ef . Further, it is
not certain that the stabilizing actions on the classical trajectory would have the same
effect on the real quantum states. Therefore, it can be concluded that the RL algorithm
effectively proposes an excitation via the ramp-strategy.

4.5. Implications for the Realization of Giant Dipole States

The reinforcement learning agent succeeds in transferring a Rydberg exciton in cuprous
oxide into a giant dipole state in a hydrogenic model. The optimal solution from the
value function of the RL agent is to increase the electric field strength as fast as possible
to the target value. This is a much simpler field evolution as proposed for atoms in
Ref. [193]. However, in contrast to the atomic case, the crossing of the particle trajectories
from the Coulomb well into the outer minimum happens almost simultaneously for all test
trajectories. Therefore, no long-lasting field plateau is required. Still, the ionization rate
is rather high in the excitonic case, due to the much weaker binding strength compared to
the atomic case. This could be counteracted by giving either a strong penalty to ionizing
trajectories (above the already high penalty collected at large z-distances) or by giving a
high reward for states surviving until tmax is reached. Yet, this again needs to be balanced
against other rewards to not create new, unintended local attractors.

The simplicity of the present solutions makes it easy to implement and test in existing
experimental setups. The excitation of the giant dipole state is finished at the end of the
linear field-ramp and all further interaction revolves around stabilizing the state around the
target point. Therefore, it it could be implemented by a sawtooth or triangle wave. The
ramp-time of 1.3 ns is equivalent to a sawtooth wave with a radio frequency of 780MHz
and voltage amplitude of 11.25V in the experimental experimental setup of Ref. [190]. It
is currently unknown how the polarization effects of Cu2O would influence the temporal
evolution of the internal electric field on such short time-scales. Still, the excitation process
has to unfold at a shorter time than the decay of the excitons, which is known from
experiments like Ref. [188] to be in the range of 1 ns. Under this constraint, the excitation
scheme proposed here may be barely fast enough. Yet, most likely, only the transition into
the outer potential minimum may be required to be achieved within this time window.
The fast decay of the observed Rydberg excitons happens through a phonon-scattering
mediated transition into low lying states like the 1s exciton [242]. Yet, in a giant dipole
state, the spatial separation leads to a vanishing overlap with the 1s or any other core-
centric wavefunction, as demonstrated for positronium in Ref. [259].

Based on our results, the excitation scheme can further be improved, mainly by reducing
the number of approximations in the simulation environment. The first improvement would
be a transfer to actual quantum calculations of the hydrogenic system but propagated
adiabatically. It could be followed by implementing the full band-Hamiltonian. The last
modification would be to also implement full quantum time-propagation through a master
equation. This, however, has not yet been done for excitons in Cu2O. Still, it would allow
for testing coherent-control excitations that could offer a direct transition route from an
ordinary Rydberg exciton into a giant dipole state without the need to propagate the
external fields.
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5.1. Summary

In this thesis we have explored several applications of neural networks in physics. They
are grouped in the data-driven solution of inversion problems, on the example of scattering
reconstructions, and optimizing the control of a physical system through deep reinforcement
learning. Our approaches offer a significant speed-up over existing methods and some are
capable of solving problems that lie beyond the reach of classical algorithms.

In Chap. 3 we have investigated how neural networks can aid in the reconstruction of the
shapes of silver nanoclusters from single-shot wide-angle scattering patterns. Even with
classical methods, the inversion of single-particle scattering patterns is an inherently data-
driven problem. Classical algorithms, both forward fitting and iterative phase retrieval,
rely on repeated forward calculations and convergence from random initial conditions.
In this, their reconstruction tasks are not too dissimilar from classical computer vision
tasks and prime candidates for the application of neural networks. We have shown in
Sec. 3.2 how neural networks can solve the task of extracting the size and orientation of a
particle with known shape and found a significant speed-up over classical methods. The
scattering simulation effort required for reconstructing just a few scattering patterns is
already sufficient for generating a randomized dataset and training a neural network that
evaluates in milliseconds. Neural networks offer fast evaluation times, required for fully
analyzing datasets obtained from modern FEL experiments, that can contain several 10 –
100 thousand images [93, 173].

Equipped with the knowledge learned from reproducing the capability of existing re-
construction techniques we have advanced the reconstruction capability of neural network
beyond the scope of classical algorithms. With the discrete density reconstruction de-
scribed in Sec. 3.4 we perform reconstructions at the limit of object-information contained
in scattering patterns. The generalization capability was considerably improved through
training the neural network in a physics-informed approach, on the scattering formula
itself. Although trained only on simulated data the neural network is capable of inter-
preting experimental data and predicts a novel shape for silver nanoclusters from publicly
available scattering data. In its present state, it is ready for deployment on larger exper-
imental dataset and our method is easily transferable to different single-shot wide-angle
reconstruction tasks.

The field optimization for the excitation of a giant dipole state through deep reinforce-
ment learning in Chap. 4 has yielded mixed results. We succeeded in training a neural
network in reliably controlling the transition of a hydrogenic exciton into a giant dipole
state. The solution is of rather simple character, which however may be attributed to the
simplified character of the simulation environment. However, trough its simplicity, the
excitation scheme could easily be implemented in in experimental setups and tested. In a
next step, our approach should be transferred to a full quantum mechanical simulation of
the exciton-environment.
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5.2. Outlook

We expect neural networks to become a key tool in the processing of FEL scattering pat-
terns in the near future. With ever increasing repetition rates of FEL experiments [173]
and thereby dataset sizes, full analyses are only possible with ultra-fast reconstruction
algorithms. The generalization capability of neural networks in interpolating between the
known basis shapes further adds to their benefits. The prediction is reinforced by the
increasing number of manuscripts published on the neural network aided reconstruction of
FEL scattering patterns like Refs. [84–86], with an emphasis on three-dimensional recon-
struction from sets of small-angle scattering patterns in the year 2021 with Refs. [87–92].

For the future of reinforcement learning in physics we see potential especially in the
control of large scale experiments around a stable operating state. This has already been
demonstrated with Refs. [50, 54] on both small-scale experiments and control of large-scale
machines.

During the past five years, we did not only observe the developing field of neural network
applications in physics but actively contributed to it with Refs. [1, 2] and through peer-
reviewing of manuscript. We see a recurring theme in the repeated re-invention of the same
idea from different sub-communities, that aim to solve similar problems but are oblivious
of each other due to using different terminology. A good example of this are the different
branches of optical diffraction, that all aim to reconstruct some kind of real-space density
from an image that is, to a varying degree, subject to diffraction signals. Here, we see a
strong need for better coordination between the different fields of physics, that could be
achieved through interdisciplinary conferences focused on DL applications in physics or
natural sciences in general or joint journals.

Overall, we expect deep learning to become a staple tool for solving data-driven prob-
lems in physics. The universal representation capabilities of neural networks allows the
adaptions to a wide range of tasks. Still, we do not expect DL to fully replace traditional
ML methods in physics. Neural networks allow the fast solution of highly complex tasks in
environments with an abundance of experimental data. Examples are modern large-scale
research facility like FELs or particle accelerators. Therein, neural networks could aid in
solving open questions at the frontiers of modern physics.
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A. Appendix: Supporting Material

A.1. Computing Hardware List

In obtaining the findings of this thesis, several different computers have been used. because
the computation times, or batch sized in case of neural network trainings, scale with the
available resources, all computers, identified by their hostname, are listed below.

name description OS CPU GPU RAM disc space
qoms main

workstation
Ubuntu 20 LTS Intel Xeon

E5-1650
6 × 3.2GHz

Nvidia
GTX1060

32GB 256GB SSD
500GB HDD

QuantumChaos personal
computer

Windows 10 Intel
i7-6700K
4 × 4.0GHz

Nvidia
GTX1080

32GB 1TB SSD
3TB HDD

rechenknecht server CentOS 7 2× Intel Xeon
E5-2643
6 × 3.4GHz

Nvidia
GTX1080ti

64GB 500GB SSD
2TB HDD

eve deep learning
server

Ubuntu 20 LTS 2× Intel Xeon
Silver 4216
16 × 2.1GHz

4× Nvidia
RTX2080ti

192GB 2TB SSD
2TB HDD

computationPi Raspberry Pi 4 Raspberry Pi
OS 5.10

Cortex-A72
4 × 1.5GHz

n.a. 4GB 64GB SD card
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B.1. Quaternion Fundamentals

The Quaternions Q (also sometimes H) are a four-dimensional extension of the complex
numbers C. They were discovered by Sir William Rowan Hamilton in 1843 as a solution
on how to extend the isomorphism between the R2 and C to the R3 [260, 261]. The final
idea for the full concept of quaternions came to Hamilton on a walk along the Royal Canal
in Dublin with his wife on the 16th of October 1843 and he carved the formula

i2 = j2 = k2 = i j k = −1 (B.1)

into the stone of the Brougham Bride [261, 262]. While the carving is long gone, today, a
plaque reminds of Hamilton’s idea and yearly the Hamilton Walk is celebrated with many
prominent mathematicicans and scientists attending [262]. Although the same concept was
independently discovered by Olinde Rodrigues in 1840 and Carl Friedrich Gauss in 1819,
they missed to publish their results.

The defining properties of the quaternions expressed in Eq. (B.1) are the introduction
of two additional imaginary units j and k which do not commute with i or each other.
Instead, the sign changes under commutation as

i j = −j i , (B.2)
j k = −k j , (B.3)
k i = −i k . (B.4)

Each quaternion xq can be represented by a set of four real numbers {x0, x1, x2, x3} through

xq = x0 + x1 i + x2 j + x3 k . (B.5)

Like complex numbers, quaternions can be separated into a real part x0 and an imaginary
part x1 i + x2 j + x3 k. Further, complex conjugation is defined by

xq = x0 − x1 i− x2 j− x3 k , (B.6)

which allows for the definition of a scalar norm

|xq|2 = xq xq = x20 + x21 + x22 + x23 . (B.7)

Another representation for the imaginary part of the quaternion is that of a vector x =
(x1, x2, x3)

T , allowing to express a full quaternion through the form

xq = (x0, x) . (B.8)

This vector notation comes in handy when writing down the quaternion product of two
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quaternions aq and bq

aq bq =a0 b0 − a1 b1 − a2 b2 − a3 b3

+ (a0 b1 + a1 b0 + a2 b3 − a3 b2) i

+ (a0 b1 − a1 b3 + a2 b0 + a3 b1) j

+ (a0 b2 + a1 b2 − a2 b1 + a3 b0) k

(B.9)

as
aq bq = (a0, a) (b0, b) = (a0 b0 − a · b, a0 b+ b0 a+ a× b) (B.10)

through utilizing the vectorial scalar product · and cross product ×.

The vector notation of quaternions already reveals the relation between quaternions and
the R3, in that the imaginary (or pure) quaternions are isomorphic to the R3. If we take
two vectors x,y ∈ R3, then the corresponding imaginary quaternions are xq = (0,x) and
yq = (0,y). In this formulation, addition and multiplication with a real valued scalar are
expressed in the same way in quaternion space and R3. However, both scalar product and
crossed product are yielded by the quaternion product from the real and imaginary part,
respectively, through

x · y = Re {xq yq} , (B.11)
x× y = Im {xq yq} . (B.12)

The rotation of pure quaternions can be achieved by utilizing unit quaternions, similar
to the rotation of complex numbers by multiplication with a factor of eiφ. Unit quaternions
uq are of unit length |uq| = 1 and conversely can be inverted by conjugation u−1

q = uq.
Through Euler’s rotation theorem, it is known that any rotation in R is fully defined by
a single rotation of an angle α about a single axis n. Such a rotation translates to the
rotation quaternion

qrot =
(
cos
(α
2

)
, sin

(α
2

)
n
)

, (B.13)

which rotates the pure quaternion xq = (0, x) by

x′q = qrot xq q
−1
rot =

(
0, (x− n (n · x)) cosα+ (n× x) sinα+ n (n · x)

)
. (B.14)

The imaginary quaternion expression in Eq. (B.14) is equivalent to Rodrigues’ rotation
formula [170]. By successively rotating x by two rotation quaternions q and p

x′q = p q xq q̄ p̄ = (p q) xq (p q) (B.15)

it becomes apparent, that subsequent rotations can be contracted into a single rotation
quaternion by simple multiplication.

Historically, the quaternion algebra with imaginary quaternions paved the way for defin-
ing the first algebra on the real space R3. Subsequently, the modern vector algebra was
developed by Willard Gibbs and Oliver Heaviside in the late 19th century on the founda-
tion of the quaternion algebra. The modern notation of vector algebra was formalized in
1901 with Ref. [263] and as a relic from the quaternion origin some textbooks still introduce
the cross product with basis elements named i, j, k. However, there still remain some fields
of applications for quaternions, especially for unit quaternions in the representation and
handling of rotations.
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B.2. Scattering Patterns of Platonic and Archimedean Solids

The Platonic and Archimedean solids all share either the tetrahedral, cubic or icosahedral
symmetry (aside from the snub solids). When grouped in their respective symmetry group,
a transition between the scattering patterns along equal axis can be observed, as shown in
Fig. B.1. In each case, the Platonic solids form the edge cases with the cube and octahedron
for cubic symmetry Oh and icosahedron and dodecahedron for the icosahedral symmetry
Ih, respectively, while the Archimedean Solids combine features of both edge cases.
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Figure B.1: All Platonic and most Archimedean solids share either the tetrahedral Td, cubic Oh or
icosahedral Ih symmetry group. Grouped accordingly, the scattering patterns of the Archimedian solids
(along shared axes) combine features from the related Platonic solids (edge cases) to varying degrees.

106



B.3. Scattering Inversion for Two Dimensional Shutters with Neural Networks

B.3. Scattering Inversion for Two Dimensional Shutters with
Neural Networks

The reconstruction of discretized object densities from scattering patterns in Sec. 3.4 is
simplified by removing one dimension from the real-space volume. This is either done by
removing a lateral dimension reducing to a two-dimensional slice parallel to the optical axis,
or by removing the propagation dimension, resulting in an effective small-angle problem.
The effective density projection observed in small-angle scattering usually is an inhomo-
geneous density function, recall Eq. (3.3). The case of a binary two-dimensional object
density, just as assumed in Ref. [86], is more similar to the setup of a shutter, cut from a
solid plane, as depicted in Fig. B.2. This exact experiment is realizable on a macroscopic
level using a low-intensity optical laser. Due to the smaller dimensionality, training times
are much smaller compared to the full three-dimensional problem in Sec. 3.4. Throughout
the development of this thesis the shutter-system served as a testbed for architectures and
loss functions, especially the much simpler scatter loss function. Yet, lacking a wide-angle
interference information the inversion problem becomes degenerate introducing a new chal-
lenge unique to the small-angle regime. This section follows the general structure of the
sections of Chap. 3 with even demonstrating the evaluation on experimental data, obtained
through an improvised setup.

Figure B.2: The scattering on two-dimensional object densities is equivalent to diffraction of optical light
(like a laser) on an opening in a two-dimensional plane.

The far-field scattering intensity for a two-dimensional object density ρ(x, y) is that of
the Fraunhofer approximation [144]

Iscatt(qx, qy) ∼
⏐⏐⏐⏐∫ ρ(x, y) ei (qx x+qy y) dx dy

⏐⏐⏐⏐2 (B.16)

=
⏐⏐⏐FT [ρ(x, y)] (qx, qy)

⏐⏐⏐2 . (B.17)

This projection from the object density ρ(x, y) to the scattered intensity I(qx, qy) is in-
herently degenerated, due to the loss of the phase information. The two degeneracies are
most easily demonstrate, when assuming a one-dimensional Fourier transform

f(q) =

∫ ∞

−∞
ρ(x) e2πix q dx . (B.18)

The first degeneracy, also present in wide-angle scattering, is that of translational invari-
ance. For a finite object density, that is constant for |x| → ∞, a finite shift d results

107



B. Appendix: Scattering Inversion

in

f̃(q) =

∫ ∞

−∞
ρ(x+ d) e2πix q dx (B.19)

x→x−d
=

∫ ∞

−∞
ρ(x) e2πi (x−d) q dx = e2πi d q f(q) , (B.20)

which differs from Eq. (B.18) by nothing but a phase factor, that vanishes upon intensity
measurement. The second degeneracy, not present in wide-angle scattering, is that of
inversion symmetry. For the mirrored density ρ(−x), the Fourier transform,

f̃(q) =

∫ ∞

−∞
ρ(−x) e2πix q dx (B.21)

x→x−d
=

∫ ∞

−∞
ρ(x) e−2πi (x) q dx = f(q) , (B.22)

is the complex conjugate of Eq. (B.18), that again becomes identical under intensity mea-
surement. Both degeneracies are problematic for the training of a neural network in solving
the inverse problem of I(qx, qy) → ρ(x, y) and have to be accounted for.

Figure B.3: The two triangles in the left and right panel are inversion symmetric, in that they were
produced by point mirroring at the panel-center, which does not coincide with their center-of-mass. Still,
they both produce the exact same scattering intensity profile in the central panel.

The first degeneracy of translational invariance can already be eliminated in the dataset
generation stage by defining a common point of origin. This is achieved by calculating the
center-of-mass of the binary density functions and shifting it to the origin. For the rotation
symmetry two approaches were explored.

1. The degeneracy is removed in the data generation stage by always rotating object
densities “point-up”. For polynomial densities the mean-position of all vertices above
and below the x-axis is calculated. The density is then mirrored around the origin
to place the larger vertex-mean-norm above the x-axis resulting in a “pointy-end-up”
orientation. Recalling Sec. 3.2.2, this can be understood as a fundamental-domain
projection. Still, it struggles with close-to axis-symmetric objects.

2. The loss function is tailored to both rate the original target density and its mirror
image as correct densities. It is implemented by comparing the prediction to both
original and mirrored target and returning the better loss of the two.

The latter is implemented in Sec. B.3.2. Anyhow, all of these degeneracies are handled
intrinsically, when training the neural network in a physical loss scheme, similar to the
scatter- and binary-loss of the wide-angle case from Sec. 3.4.4. This training regime was
first tested on the two-dimensional system and is further introduced in Sec. B.3.2. As a
side-note, none of the above effects seems to be accounted for in Ref. [86], which appears
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puzzling to the author.

B.3.1. Shutter Data Generation

Similar to the three dimensional case in Sec. 3.4 the object densities are rasterized as binary
tensors, but with just two-dimensions. The densities are sampled from random n-gons with
n ∈ [3, 8], and circles (see Fig. B.4). The n-gons are created by choosing n points from the
unit circle via uniformly sampling their angles and multiplying them with a size parameter
relative to the size of the object space. The vertices are further translationally normalized
by shifting them for the center-of-mass of the resulting figure to coincide with the origin
in the center of the real-space window. Any density is rasterized on a grid of 128 × 128
pixels. The main dataset is created from 30 000 random samples. Further, a test-set of
100 random n-gons with 9–12 vertices is created. For scattering calculation the object
densities are zero-padded to 512 pixels and the Fourier-transformed. From the resulting
scattering field the central 256 × 256 pixels are taken as the intensity profile and plotted
on a logarithmic scale, like in Fig. B.4.

Figure B.4: A set of samples from the main dataset consisting of circles (a) and random n-gons with 3–8
vertices (b)-(d).

Meant as a toy model, all scattering simulations were performed scale free and due to
the lack of a wide-angle phase it is in fact scale independent. If we assume an arbitrary
side-length lreal of the real-space window the grid spacing is ∆r = lreal/128. It translates
into the transfer-momentum range qrange = π/∆r covered by the Fourier-transform that
in turn determines the Fourier grid-spacing ∆q = qrange/512. Finally, in the small-angle
approximation, the transfer momentum is connected to the radial scattering angle θ by
q = k sin(θ) with wave number k = 2π/λ. In this relation, assuming a different qrange,
for example by a false scaling of an input image by a factor s, is equivalent to scaling
the corresponding object by a factor of 1/s without any further changes to the scattering
pattern.

B.3.2. Symmetric and Physics Informed Loss

The inherent inversion symmetry poses an additional challenge for training a neural net-
work in the reconstruction of small-angle scattering patterns. Nevertheless, it is an ideal
system for demonstrating the application of a symmetric loss function, like proposed but
not implemented in Sec. 3.2.2. The binary nature of the object densities favors the binary
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cross-entropy (BCE) loss from Eq. (2.6). The symmetric BCE loss is defined as

Hsymm(y,p) = min
[
H(y,p), H(Jy J,p)

]
, (B.23)

with the exchange matrix J generating the point-inverted object density Jy J. It returns
the best-fit BCE loss to either the original or point-inverted version of the target tensor y.

The second approach to handle the underlying symmetries inside the loss function is by
not comparing object tensors but the corresponding scattering patterns via the scatter loss
introduced in Sec. 3.4.4. In the small-angle regime the scatter loss

Lscatter(y,p) =
{
log
(⏐⏐FT [y]

⏐⏐2 + nd

)
− log

(⏐⏐FT [p+ ϵ]
⏐⏐2 + nd

)}2
(B.24)

is the mean-squared difference between the logarithmized intensity patterns (with constant
dark-noise nd) of the Fourier transforms of both prediction and target object tensors.
The prediction object tensor is modified by a small noise tensor ϵ of uniform noise with
magnitude 10−3 to zero-predictions, that causes value exceptions in the Fourier transform.
Again, an additional binary loss

Lb(t,p) =
1

N2

N∑
i,j=1

(pi,j)
2 (1− pi,j)

2 , (B.25)

is needed to enforce the binary nature of the object densities. Together, they form the
(small-angle) version of the physical loss function

Lphys(t,p) = Ls(t,p) + wLb(t,p) , (B.26)

with a balancing hyperparameter w = 0.001.

B.3.3. Network Design & Training

The neural network for the reconstruction of two dimensional shapes from their correspond-
ing scattering pattern, ShutterNet, is designed in a u-Net pattern, following Ref. [26].
The architecture is sketched in Fig. B.5. Derived from an autoencoder architecture with
encoder- and decoder stage it includes additional skip connections spanning from encoder-
to decoder-sections with equal tensor sizes. These aid in providing later stages of the net-
work with better access to original positional features of the image, that do not have to be
transported through the latent space. As in Sec. 3.4.3, each convolution layer marked in
Fig. B.5 includes heavy regularization. Inspired by Ref. [109], they are further designed in
a pre-activation scheme. Aside from the initial 5 × 5 conv-layer with stride 2, each 3 × 3
conv-layer in Fig. B.5 is a stack of

1. batch normalization,

2. ReLU activation,

3. 3× 3 convolution,

4. dropout regularization with rate 0.2.

The pre-activation scheme was found to not offer any benefit over the classical post-
activation. Therefore, it was not implemented in the VoxelNet architecture in Sec.3.4.3.
The ShutterNet has a total of approximately 34.5 million trainable parameters.
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Figure B.5: The ShutterNet is designed after the original u-net scheme from Ref. [26]. In principle an
autoencoder-architecture, it employs additional skip-connection from the encoder- to the decoder-stage of
the network, that transport tensors with equal lateral dimensions. By concatenating these earlier features
maps, the later stages of the decoder are provided with further spatial structure information.

The training of the ShutterNet is performed under the same conditions as the Vox-
elNet in Sec.3.4.5 using the TensorFlow 2.3.1 Keras framework and Python 3.6.6. The
main dataset is split at a ratio of 0.2 into training and validation set, and the images are
read from the hard-drive parallel to training. The training set is shuffled at each epoch
and the scattering patterns are augmented using the exact same augmentations as for the
VoxelNet in Sec. 3.4.2, regardless whether they are sensible for the given problem. The
network is trained for 200 epoch with a batch size of 32 using the ADAM optimizer. Unlike
the wide-angle scattering, the calculation of the scatter loss adds no significant overhead
to the training time. The training takes 24 h in QuantumChaos and 20 h on eve (see
App. A.1 for hardware configurations). During training, both the scatter loss and the
symmetric mean-squared-error defined equally to Eq. (B.23) are recorded as metrics. Both
the learning curves for training with symmetric BCE loss and physical loss are shown in
Fig. B.6(a) and (b), respectively.
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Figure B.6: The training of the ShutterNet with (a) symmetric BCE loss shows minimal overfitting
(left panel) between the training set (blue curve) and validation set (orange curve). The same effect is
also visible in the symmetric-means-squared error metric, but with a smaller magnitude. The scatter loss
recorded over the training run (right panel) shows no clear sign of overfitting. The learning curve (b) of
the training with physical loss shows absolutely no overfitting with the validation curve closely following
the training curve. The symmetric mean-squared-error is much worse than for the BCE training, due to
the unaccounted translation invariance. The pure scatter loss metric is slightly better than for the BCE
training.

The training with symmetric BCE loss in Fig. B.6(a) shows minimal overfitting (left
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panel) between the training set (blue curve) and validation set (orange curve). The same
effect is also visible in the symmetric-means-squared error metric, but with a smaller
magnitude. The scatter loss recorded over the training run (right panel) shows no clear sign
of overfitting. This indicates that the reconstruction accuracy reaches close to the limit of
information contained within the input scattering patterns. The training with the physical
loss from Eq. (B.26) in Fig. B.6(b) shows no overfitting. Instead, the validation curve
closely follows the training curve with just a few outliers. The symmetric mean-squared
error in the center panel is much worse than for the BCE training, because the physical
loss is invariant to translations of the object density, and thus performs no centering as
present in the dataset. The scatter loss in the right panel converges to even better values
than the BCE training, which comes at little surprise as it is the direct optimization goal
of the training.

B.3.4. Evaluation on Test Data
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Figure B.7: Test set prediction results of the ShutterNet trained with the symmetric BCE loss. The
predictions on samples (a), (b), and (d) show good agreement with the targets. On samples (c) and (e),
however, the predictions appear close to point-symmetric and include non-binary (gray colored) regions of
low prediction confidence. The corresponding scattering patterns (bottom row) deviate significantly from
the inputs (top row) at large scattering angles (outer regions).

Both symmetric and physical trained ShutterNets are tested on the pre-generated test
set composed of n-gons with 9–12 edges. With the training set containing 3–8-gons and
circles (∞-gons) it is hypothesized, that the trained neural networks should be capable of
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interpolating such shapes. The predictions on sample of 5 training set elements are shown
in Figs. B.7, B.8.
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Figure B.8: Test set prediction results of the ShutterNet trained with the physics loss. The predictions
are near perfect reconstruction of the target object densities and only (d) shows a minor defect in form of
a small extrusion. The simulated scattering patterns are in perfect agreement with the input patterns.

The symmetric BCE trained ShutterNet succeeds in reconstructing most shapes, like
the samples (a), (b), and (d) in Fig. B.7. On samples (c) and (e), however, the predic-
tions include non-binary regions (gray colored), resulting in a overall rounded appearance.
Especially in Fig. B.7(e), the predicted tensor is nearly a superposition of both the target
and point-inverted target. The corresponding scattering patterns (bottom row) deviate
significantly from the inputs (top row) at large scattering angles (outer regions) and lack
entire reflexes.

On the other side, the physics loss trained ShutterNet successfully handles all samples
of the test set, shown in Fig. B.8. Only a very minor artifact is visible on (d), with a small
non-binary extrusion, that has no impact on the scattering pattern. Overall, the simulated
scattering patterns achieve an excellent agreement with the input images.

B.3.5. Application to Experimental Data

The scattering setup sketched in Fig. B.2 can be realized with all optical (meaning the
visible spectrum) components and only commonplace materials. As a light source, a cheap
laser-diode with λ = 650 nm is used. Shutter shapes are cut from a sheet of paper using a
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Figure B.9: The diffraction patterns (top row) created with a red laser diode and paper shutters are
photographed using a normal camera. The corresponding shutter shapes (bottom row) are obtained using
an optical USB microscope. The images are rectangular cropped and resized to conform with the shapes
required by ShutterNet.

scalpel. The shutter is fixed in the laser beam using clothespins and the scattering pattern is
projected down a 5m-long hallway onto a white sheet of A4 paper, attached to a wall. The
scattering patterns of five different shutters are photographed using an ordinary camera.
The corresponding shutter shapes are obtained using an USB microscope. The acquired
dataset is shown in Fig. B.9. The view ranges are matched using the relation between
λ, lreal and qrange described in Sec. B.3.1. Fur further processing, the shutter images
are binarized by manually determining a threshold value and the scattering patterns are
converted to gray-levels, ignoring the non-linear response of the multi-color CCD sensor.
The monochromatic response is assumed to be logarithmic.

Again, both versions of ShutterNet are tested on this experimental dataset. The
symmetric BCE trained version is incapable of handling the experimental data and fails
entirely in its predictions, as apparent from Fig. B.10. Just the triangle in (a) is a valid
object density that also bears a resemblance to the target shape. All other predictions
have large uncertainty regions. The binarized versions of the shutter photographs in the
second row reveal that the shapes are not cut clean from the paper. The triangle in (a)
is surrounded by additional line-cuts and the edges of the other patterns are not straight
but have paper-fibers pertruding. They have a significant impact on the experimental
scattering patterns in the top row. They add interferences resulting in much more irregular
fringe patterns and point clouds, that obscure the main pattern produced by the global
structure. Such shapes lie clearly outside the training set space of convex shapes.

In contrast, the physical trained version of ShutterNet is capable of processing the
experimental data to some extend. It reconstructs both the triangles in (a) and (e) to an
acceptable accuracy ignoring the small perturbations to the object shape by paper fibers or
stray cuts. On the other samples, (b), (c), and (d), it returns valid, binary object densities,
in stark contrast to the BCE version in Fig. B.10. However, they deviate strongly from
the target shapes obtained by microscopy, which are the most perturbed samples. Still,
the simulated scattering patterns succeed in re-creating the most prominent reflexes from
the input scattering patterns.

B.3.6. Further Development

The reconstruction of two-dimensional binary object densities from single (small-angle)
scattering patterns mainly served as a toy model and testbed in the development of the
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Figure B.10: The symmetric BCE trained version of ShutterNet fails entirely on the experimental
dataset. Just the triangle in (a) bears a little resemblance of the input pattern. All other predictions show
large regions of intermediate, uncertain predictions.

three-dimensional object reconstruction from single-shot wide-angle scattering patterns
in Sec. 3.4. A similar two-dimensional reconstruction approach has been published in
Ref. [86], but lacking the symmetry considerations of Sec. B.3.2. Small-angle scattering
experiments in FELs are usually performed with reproducible targets allowing the collec-
tion of three-dimensional Fourier-densities [136]. Just recently, neural networks capable
of reconstructing three-dimensional object densities from such Fourier-volumes have been
developed based upon three-dimensional versions of u-net [87, 90].

Still, the simplicity of the system assumed in this appendix make it a perfect environ-
ment for demonstrating different techniques. With the easy-to-understand all optical setup
and relatively fast training it could be implemented as an advanced student lab course.
It would cover the topics of optical diffraction in the Fraunhofer limit, numerical phase
retrieval and fundamentals of neural networks. In order to improve reconstruction results
the manufacturing of shutters and recording of scattering patterns need to be improved.
Further, the training dataset could be extended to also cover ellipses. A more advanced ex-
tension would be to modify the input shutter shapes with random non-convex defects and
simulate scattering patterns on-the-fly to obtain robustness against the defects observed in
Fig. B.11. Overall, developing such a lab course could help in introducing physics students
to the rapidly advancing field of deep learning and possible applications in physics.
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Figure B.11: The physical trained version of ShutterNet is to some extend capable of handling the
experimental training data. The reconstruction of the triangular shapes in (a) and (e) is acceptable. On
samples (b), (c), and (d), the shapes clearly deviate. These shapes are, however, the ones with the strongest
perturbations from paper fibers pertruding into the shutter. Nevertheless, the simulations for samples (b)
and (c) succeed in re-creating the position of the main-reflexes of the input scattering patterns.
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Excitons

C.1. Generalized Atomic Units

Many fields of physics make use of special, non-SI unit systems. A popular example
are the natural units used in high-energy physics, directly illustrating the energy-mass
equivalence. Theoretical works in atomic physics often use the so-called atomic units,
which are abbreviated with a.u. or au. From a theoretical standpoint, the introduction of
atomic units can be motivated by the desire to eliminate all unnecessary constants from
the eigenequation (

− ~2

2µ
∆− e2

4πε

1

|r|
− E

)
ψ(r) = 0 , (C.1)

of a hydrogenic one-particle system with reduced mass µ within a surrounding medium of
permittivity ε. In atoms, the reduced mass µ is often set equal to the electron mass m0

due to the huge mass difference between electron and proton without introducing much
of an error. For different systems, however, where the masses of positively and negatively
charged particles are of similar magnitude, the reduced mass has to be used. The reduction
of Eq. (C.1) can be accomplished with just two units. The first atomic unit to be defined
is usually the Bohr radius

a0 =
4πε~
µe2

(C.2)

as the unit of length. It is followed by the Hartree energy

EH =
~2

µa20
(C.3)

as the unit of energies. By replacing ρ = r/a0 and E = E/EH, the hydrogenic eigenequa-
tion (C.1) is reduced to (

−∆ρ − 1

|ρ|
− E

)
ψ(ρ) = 0 , (C.4)

where all constants are absorbed into the units of the variables. In the same way, any other
atomic unit can be deduced from their interaction with the Hamiltonian of the hydrogenic
system. A list of atomic units relevant to this work can be found in Tab. C.1 together
with their value for excitons in Cu2O. In reverse, the introduction of atomic units can also
be motivated by setting the four base units reduced mass µ, elementary charge e, reduced
Planck’s constant ~, and Coulomb’s constant ke = 1/(4πε) to unity, each. The use of
atomic units offers several advantages. For once, all unnecessary prefactors vanish from
equations, which simplifies writing and helps in identifying the most important features.
It also simplifies the linking to standard solutions from mathematical literature. Further,
quantities are normalized to the ground state dimensions of the system and so may be
represented as float-point numbers without exponents for numerical calculations. This in
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Table C.1: Atomic units of various physical constants appearing throughout this thesis with their cor-
responding conversions factors to SI units for hydrogenic excitons in Cu2O with masses me = 0.99m0,
mh = 0.65m0 and relative permittivity εr = 7.5 (ε = εr ε0).

Quantity Atomic Unit SI value
mass µ = memh/(me +mh) 3.331 597 478 · 10−31 kg

charge e 1.602 176 634 · 10−19 C
length a0 = (4πε~)/(µe2) 1.075 988 196 · 10−9 m
energy EH = ~2/(µa20) 2.883 266 352 · 10−20 J
time ~/EH 3.657 559 397 · 10−15 s

velocity v0 = a0EH/~ 2.941 820 158 · 105 m/s
momentum k0 = ~/a0 9.800 960 619 · 10−26 kg m/s

angular momentum ~ 1.054 571 726 · 10−34 J s
magnetic field strength B0 = ~/(ea20) 5.661 155 614 · 102 T
electric field strength E0 = EH/(ea0) 1.665 410 170 · 108 V/m

turn prevents numerical instabilities due to limited precision in the presence of extreme
magnitudes. When using their specific atomic units, different hydrogenic systems are easier
to compare than in SI units and may be converted by simply replacing the corresponding
units.

On the other hand, the negligence of all prefactors can hinder the transfer of results and
equations to systems with slightly different parameters and may require full re-derivations
in order to trace the correct prefactors and constants. Hence, in this thesis, all equations
are written in SI units, while numerical calculations are performed in atomic units. Results
are usually given in the most descriptive unit. For example, the relative distance within
the exciton is given in Bohr radii a0, while energies are given in eV.
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C.2. Interpreting the Pseudomomentum

The pseudomomentum

ki = miṙi + qiB × ri = pi − qiA(ri) + qiB × ri (C.5)

of a charged particle i is, at first glance, a rather unintuitive quantity, as it interconnects
position r and momentum p to form a momentum-like quantity. A better understanding
can be achieved by investigating the pseudomomentum in a basic problems in classical
physics.

A charged particle inside a homogeneous magnetic field B experiences the Lorentz force

F = q v ×B . (C.6)

For a magnetic field in z-direction, the corresponding equations of motion form a differential
equation of first order in p with the solution

p(t) =

⎛⎝ p̂x cos(ωct) + p̂y sin(ωct)
−p̂x sin(ωct) + p̂y cos(ωct)

0

⎞⎠ , (C.7)

which is integrated into the trajectory

r(t) =
1

mωc

⎛⎝ p̂x sin(ωct)− p̂y cos(ωct)
p̂x cos(ωct) + p̂y sin(ωct)

0

⎞⎠+

⎛⎝ r̂x
r̂y
0

⎞⎠+
1

mωc

⎛⎝ p̂y
−p̂x
0

⎞⎠ (C.8)

with the cyclotron frequency ωc = q B/m and the initial conditions r(0) = (r̂x, r̂y, 0)
T ,

p(0) = (p̂x, p̂y, 0)
T .

It is apparent from Eq. (C.7) that the momentum vector p is not a conserved quantity for
the motion inside a magnetic field. Although the magnitude |p| =

√
p̂2x + p̂2y is constant,

the direction of p rotates with the cyclotron frequency of the particle. Now, in calculating
the pseudomomentum from Eq. (C.5), the rotation of p(t) is canceled by the rotating
component of r(t), leaving only the constants

k =

⎛⎝ p̂x
p̂y
0

⎞⎠+ q B

⎛⎝ −r̂y
r̂x
0

⎞⎠ = p(0) + qB × r(0) . (C.9)

Consequently, k is a constant of motion for a charged particle inside a magnetic field. The
solution of Eq. (C.9) allows for a more intuitive interpretation. If we assume r(0) = 0, then
the pseudomomentum k = p(0) is equal to the initial momentum with which the particle
has entered the magnetic field. However, the pseudomomentum additionally takes into
account the initial position of the particle with B × r(0), making the pseudomomentum
more than the initial momentum.

119



C. Appendix: Giant Dipole States of Excitons

C.3. Field Scalings for the Existence of a Giant Dipole Well

The conditions under which a giant dipole potential well is formed can be derived from the
simplified effective potential in Eq. (4.40) for a homogeneous magnetic fieldB in z-direction
and electric field E in x-direction. To recall, the potential reads

Veff =
e2B2

2M

(
x2 + y2

)
+ eE x− e2

4πε0εr

1√
x2 + y2 + z2

. (C.10)

A extreme point along the x-axis exists where the condition

∂

∂x
Veff =

e2B2

M
x+ eE +

e2

4πε0εr

x
√
x2

3

!
= 0 (C.11)

is fulfilled. The solution of Eq. (C.11) is that of a polynomial of third order, which can
be expressed analytically but is quite lengthy and not intuitive to understand. Instead,
it is more helpful to recall the physical assumptions made in Sec. 4.2. In the absence
of an electric field, the magnetic term in Eq. (C.10) imposes a parabolic potential over
the Coulomb well. With increasing field strength of E, this parabola is shifted towards
the negative x-direction until a fringe field strength Es is reached, where the curvatures
of magnetic field, electric field, and Coulomb potential cancel out at a point x0 and a
saddle point appears, as in Fig. 4.6(a). By further increasing E, the saddle point turns
into a local minimum and shifts outwards to ever greater distances in negative x-direction.
Consequently, the field configuration where a saddle point appears marks the minimal
electric field for which the potential Eq. (C.10) can be called a giant dipole potential.

A saddle point is an extreme point, that simultaneously is a turning point. The turning
point condition is the vanishing of the second derivative, in our case

∂2

∂x2
Veff =

e2B2

M
− e2

4πε0εr

2

|x|3
!
= 0 . (C.12)

Recalling that x < 0, the solution xs to Eq. (C.12) is trivial with

xs = −
(
2

M

4πε0εr B2

)1/3

. (C.13)

For representing a saddle point, xs additionally has to fulfill the extreme point condition
in Eq. (C.11). Inserting xs into Eq. (C.11) returns the field relation

Es =
3

22/3

(
e3

4πε0εrM2

)1/3

B4/3 (C.14)

for the electric field Es in dependency of the magnetic field B. This field relation is
plotted in Fig. C.1 (line) together with the magneto-Stark field in Voigt configuration
from Eq. (4.39) (orange), which scales only linearly in B. It is clearly visible that Es

exceed the magneto-Stark field by large for any relevant magnetic fields B. Hence, even
in Voigt configuration, the contribution of K through the magneto-Stark effect is safe to
neglect and we can assume K ≡ 0.
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Figure C.1: The fringe electric field strength Es (blue) for which the effective potential in Eq. (C.10)
possesses a saddle point scales with B4/3, whereas the effective magneto-Stark field (orange) is linear in
B and is considerably smaller. Hence, the magneto-Stark effect does not contribution significantly to the
formation of a giant dipole potential.
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C.4. Magnetoexciton Diagonalization in the Hydrogen Basis

The name magnetoexcitons refers to exciton states in the presence of a strong homoge-
neous magnetic field B. When reduced to a hydrogen model, they are described by the
Hamiltonian in Eq. (4.25). Without loss of generality, we can assume the magnetic field
B = B ez to be aligned in z-direction. Further, we set E = 0 in the absence of an electric
field. Following the discussion in Appendix. C.3 and observations in Ref. [191], we further
neglect the magneto-Stark effect and set K = 0. Further, with the dynamics inside the
xy-plane being symmetric around the center of the Coulomb potential we can fix the sym-
metric gauge and set f(r) ≡ 0 for the internal gauge function. With these assumptions,
the Hamiltonian in Eq. (4.25) from Sec. 4.2 reads

Heff =
p2

2µ
− e2

4πε0εr

1√
x2 + y2 + z2  

H0

+
eB

2µ̃
Lz  

HZ

+
e2B2

8µ

(
x2 + y2

)
  

Hdia

, (C.15)

where the quadratic terms of both the kinetic energy and potentials are joined back together
and introducing the angular momentum operator Lz = ez · (p× r+ r×p)/2 is introduced
[181]. As highlighted in Eq. (C.15) the Hamiltonian can be subdivided into three parts:
the hydrogen Hamiltonian H0, the Zeeman term HZ and the diamagnetic term Hdia.

The hydrogenic Hamiltonian H0 possesses the well known orthonormal basis of eigen-
functions

|nlm⟩ = ψnlm(r) = Y m
l (θ, φ)Rnl(r) (C.16)

in spherical coordinates (r, θ, φ) with the spherical harmonics Y m
l (θ, φ) and the radial wave

functions

Rnl(r) =

√(
2

na0

)3 (n− l − 1)!

2n (n+ l)!
e−ρ/2ρl L2l+1

n−l−1(ρ) , (C.17)

with ρ = (2r)/(na0) and the associated Laguerre polynomials Lk
n(x) [181]. The Zeeman

shares the same eigenbasis while acting only on the radial part with the eigenequation

HZ |nlm⟩ = eB

2µ̃
~m |nlm⟩ . (C.18)

The only non-diagonal component of Eq. (C.15) is the diamagnetic term Hdia which in
spherical coordinates reads

Hdia =
e2B2

8µ
r2 sin2(θ) . (C.19)

Hence, we require the calculation of matrix elements

⟨n′l′m′| r2 sin2(θ) |nlm⟩ = ⟨Rn′l′ | r2 |Rnl⟩ ⟨Y m′
l′ | sin2(θ) |Y m

l ⟩ , (C.20)

that can be separated in purely radial and angular integrals. The solution for the radial
matrix elements of arbitrary ranks of r can be found in Ref. [264] for the generalized case
of effective quantum numbers n∗ = n − δl affected by quantum defects δl. Reduction to
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the discrete case and adapting the normalization gives the analytic expression

⟨Rn1l1 | rd |Rn2l2⟩ =
2l1+l2+2

nl1+2
1 nl2+2

2

√
(n1 − l1 − 1)! (n2 − l2 − 1)!

(n1 + l1)! (n2 + l2)!

×
n1−l1−1∑
m1=0

n2−l2−1∑
m2=0

(−2)m1+m2
(l1 + l2 +m1 +m2 + d+ 2)

m1!m2!n
m1
1 nm2

2

(
n1 n2
n1 + n2

)l1+l2+m1+m2+d+3

×
(

n1 + l1
n1 − l1 −m1 − 1

) (
n2 + l2

n2 − l2 −m2 − 1

)
. (C.21)

The angular part can be solved by exploiting the integral relation between three spherical
harmonics∫

Y m1
l1

(θ, φ)Y m2
l2

(θ, φ)Y m3
l3

(θ, φ)dΩ

=

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

4π

(
l1 l2 l3
0 0 0

) (
l1 l2 l3
m1 m2 m3

)
(C.22)

and the Wigner-3J symbols [265]. This requires the transformation

sin2(θ) = 1− cos2(θ) =
2

3
− 1

3

√
16π

5
Y 0
2 (θ, φ) (C.23)

of the sine into a spherical harmonic function. With further utilizing (Y m
l (θ, φ))∗ =

(−1)mY −m
l (θ, φ) the angular matrix elements can be calculated from

⟨Y m1
l1

| sin2(θ) |Y m2
l2

⟩ =2

3
δl1,l2δm1,m2

+ (−1)m1+1 2

3

√
(2l1 + 1)(2l2 + 1)

(
l1 l2 2
0 0 0

) (
l1 l2 2

−m1 m2 0

)
.

(C.24)

The angular matrix elements are non-zero only if either both l1 = l2 and m1 = m2 are
fulfilled at the same time, so both the Kronecker deltas and the Wigner-3J Symbols are
non-zero, or if the condition |l1 − l2| = 2 is fulfilled.

For diagonalization, the magnetoexciton wave functions Ψi are expanded into the basis
of hydrogenic wave functions

Ψi(r) =

nmax∑
n=1

n−1∑
l=0

l∑
m=−l

cnlm ψnlm(r) (C.25)

up to a terminal quantum number nmax. With this representation, the eigenequation

H |Ψi⟩ = Ei |ψi⟩ (C.26)

is solved by diagonalizing the matrix

H = {⟨Ψi|H |Ψj⟩}i,j . (C.27)

The eigenvalues of H are the states eigenenergies Ei, while the corresponding eigenvectors
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vi are composed of the weights cnlm from Eq. (C.25) in the exact ordering chosen in
the flattening into a one-dimensional vector. The diagonalization returns exactly nmax
eigenstates, which usually can only be sorted energetically. When calculating the spectrum
over several values of a variable, like different magnetic field strengths, it can become
problematic to trace certain states if intersections of energy levels occur. In this case, it
is important to analyze if two levels cross each other or if an avoided crossing appears.
This can be done by tracking the eigenvectors along the magnetic field. For this, starting
from B = 0, each weight vector is assigned to the most common weight vector from the
next higher B-field diagonalization. In this way, states can be tracked over several true
crossings and anti-crossings, just like in Fig. 4.7.
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[264] V. A. Kosteleckỳ and M. M. Nieto, Analytical wave functions for atomic quantum-
defect theory, Physical Review A 32, 3243 (1985).

[265] I. I. Sobelman, Atomic spectra and radiative transitions, Vol. 12 (Springer Science &
Business Media, 2012).

144

https://www.jstor.org/stable/20520177
https://www.jstor.org/stable/20520177
https://doi.org/cma/1349803591
https://archive.maths.nuim.ie/hamiltonwalk/HamiltonWalk20years.pdf
https://archive.maths.nuim.ie/hamiltonwalk/HamiltonWalk20years.pdf
https://archive.org/details/117714283/mode/2up
https://archive.org/details/117714283/mode/2up
https://doi.org/10.1103/PhysRevA.32.3243


Danksagung

An dieser Stelle möchte ich allen beteiligten Personen danken, die mich während meiner
Promotion begleitet und auf viele Weisen unterstützt haben:

Zuallererst möchte ich mich bei meinem Doktorvater Stefan Scheel bedanken. Diese
Arbeit wurde nur durch seien fachliche Betreuung und seien Offenheit für neue Themen
ermöglicht. Ich danke ihm für die Chance und die Unterstützung das Hauptthema meiner
Arbeit zu wechseln. Auch möchte ich ihm für das Verständnis für meine familiäre Situation
danken, insbesondere während der Corona Zeit.

Ein allergrößter großer Dank gilt auch meiner Partnerin Imke für die Unterstützung und
Geduld, auch während der vielen kleinen Katastrophen in dieser Zeit. Erwähnt sei auch
unser gemeinsamer Sohn Björn, der seit Anfang des Promotionsprojekts dabei ist und Papa
immer nur widerwillig zur Arbeit gehen lässt. Ich liebe euch beide!

Danken möchte ich auch meinen Eltern und meiner Schwester für die moralische Unter-
stützung, immer ehrlichen Rat und manchmal sehr spontane Kinderbetreuung.

Ein großer Dank gilt auch meinen Freunden und Kommilitionen aus Rostock die meinen
Weg zum Teil schon seit zehn Jahre begleiten und durch die diese Zeit einzigartig geworden
ist.

Darüber hinaus danke ich auch meinen Kollegen aus der Arbeitsgruppe und dem NEISS
Projekt, mit denen ich mich regelmäßig fachlich austauschen konnten und auch bei Lösun-
gen für die vielen verschiedenen Probleme helfen konnten. Darunter ganz besonders Robin,
der mir bei den ersten Schritten in der Welt des Deep Learnings geholfen hat.

Nicht zuletzt danke ich dem Evangelischen Studienwerks Villigst für die finanzielle und
ideelle Förderung durch ein Promotionsstipendium. Desweiteren wurde dieser Arbeit in
Teilen finanziert vom Europäischen Sozialfonds (ESF) und dem Ministerium für Bildung,
Wissenschaft und Kultur des Landes Mecklenburg-Vorpommern innerhalb des Projekts
NEISS - Neural Extraction of Information, Structure and Symmetry in Images (ESF/14-
BM-A55-0007/19), sowie von der Deutschen Forschungsgemeinschaft (DFG) im Rahmen
des Schwerpunktprogramms SPP 1929: Giant Interactions in Rydberg Systems (GiRyd).

145


	Introduction
	Fundamentals of Deep Learning
	Deep Neural Networks
	Convolutional Neural Networks
	Deep Reinforcement Learning
	The DDPG algorithm


	Recovery of Structure Information from Scattering Patterns
	Single-Shot Wide-Angle X-ray Scattering with Silver Nanoclusters
	Numerical Scattering Simulation
	Scattering Reconstruction by Forward Fitting

	Parameter Reconstruction for Icosahedral Nanoclusters
	The Icosahedron
	Rotation Representations for Polyhedral Clusters
	Simulating Artifacts in Data Augmentation
	Network Design for the Reconstruction of Icosahedra
	Comparison to Classical Reconstruction Methods
	Evaluation on Experimental Data

	Identification of Object Shapes from Scattering Patterns
	Base Shapes for Classification
	Augmentations for Classification Tasks
	Neural Network Identification of Cluster Shapes
	Shape Identification from Experimental Data

	Model Independent Three-Dimensional Object Reconstruction
	Generation of Discretized Object Densities
	Simulating Experimental Artifacts by Image Augmentation
	Design of the Discrete Scattering Reconstruction Network
	Physics Informed Training
	Training the Discrete Cluster Network
	Testing the Discrete Cluster Reconstruction
	Comparing supervised and physics informed learning
	Discrete Density Reconstructions from Experimental Data
	Uncovering Novel Structures of Silver Nanoclusters

	Deployment and Future Development

	Excitonic Giant Dipole States in Cuprous Oxide
	Permanent Atomic-Level Dipole Moments
	The Giant Dipole Hamiltonian
	Derivation of the Giant Dipole Hamiltonian
	Identifying the Giant Dipole Potential
	Excitonic Giant Dipole States

	Excitonic Simulation Environment
	Environment Interaction and Intuitive Strategies
	Simplified Environment

	Dynamic Field Optimization through Deep Reinforcement Learning
	Implications for the Realization of Giant Dipole States

	Summary & Outlook
	Summary
	Outlook

	Appendix: Supporting Material
	Computing Hardware List

	Appendix: Scattering Inversion
	Quaternion Fundamentals
	Scattering Patterns of Platonic and Archimedean Solids
	Scattering Inversion for Two Dimensional Shutters with Neural Networks
	Shutter Data Generation
	Symmetric and Physics Informed Loss
	Network Design & Training
	Evaluation on Test Data
	Application to Experimental Data
	Further Development


	Appendix: Giant Dipole States of Excitons
	Generalized Atomic Units
	Interpreting the Pseudomomentum
	Field Scalings for the Existence of a Giant Dipole Well
	Magnetoexciton Diagonalization in the Hydrogen Basis

	Bibliography
	Danksagung

