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Summary  
Alzheimer’s disease (AD) is recognised as a complex, multifactorial disease that manifests itself 

along a continuum of conditions, ranging from asymptomatic preclinical phase to mild cognitive 

impairment (MCI) and finally end up with dementia. However, a wide diversity is observed in 

individuals’ clinical course and transition time between continuum phases of the disease. 

Conventional approaches using established biomarkers are not precise enough to predict the 

progression of AD and hence individuals’ future risk of cognitive decline.  

The purpose of this doctoral dissertation is to explore novel biomarker candidates that could 

reinforce the diagnostic accuracy and predict disease progression at preclinical and early phases of 

AD. Such biomarkers are expected to allow the stratification of individuals based on the risk 

associated with their specific pathology burden, i.e., region-specific cortical amyloidosis and lipids 

dysregulations.  

Within the frame of this dissertation, our first study demonstrated the validity and replicability of a 

recently proposed PET-based in-vivo amyloid staging scheme in a cohort of cognitively normal 

seniors at higher risk of AD. This amyloid staging scheme allowed for identifying ~ 50 % of 

individuals having evidence of regional amyloid deposition in the preclinical cohort as opposed to 

the 21.5 % identified using the conventional global amyloid status. The second study shows the 

clinical utility of this amyloid staging approach, where higher amyloid stages (from stage II 

onwards) were associated with a higher risk for clinical progression, particularly in cognitively 

normal older individuals. These results were robustly replicated across independent samples from 

two different cohorts. Finally, we identified peripheral lipidomics signature associated with AD 

pathology biomarkers using data from the ADNI cohort in the third study. Ether-

glycerophospholipids, their lyso derivatives, free-fatty acids, cholesterol esters, and complex 

sphingolipids were altered in the plasma of preclinical and prodromal AD cases. Depletion of 

PUFA- plasmalogens, long-chain sphingomyelins, and dihydro-ceramides together with higher 

levels of cholesterol esters, complex ceramides identified a distinct endophenotype associated with 

a higher risk of progression in prodromal AD cases. 

In summary, this work provides evidence for robustness and clinical utility of the in-vivo amyloid 

staging approach for risk stratification of AD cases, particularly at the preclinical phase. Lipidomics 

data offers complementary information contributing to AD risk and subsequent clinical trajectories. 

Both approaches could enable higher precision in research participants' characterisation, which 
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could be particularly important in guiding and planning clinical trials and adapting intervention 

regimens to different target subpopulations in prevention trials.  
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Zusammenfassung 
Die Alzheimer-Krankheit (AD) gilt als komplexe, multifaktorielle Erkrankung, die sich entlang 

eines Kontinuums von Zuständen zeigt, das von der asymptomatischen präklinischen Phase über 

die leichte kognitive Beeinträchtigung (MCI) bis hin zur Demenz reicht. Der klinische Verlauf und 

die Übergangszeiten zwischen den einzelnen Phasen der Krankheit sind jedoch sehr unterschiedlich. 

Herkömmliche Verfahren, die sich auf etablierte Biomarker stützen, sind nicht ausreichend, um das 

Fortschreiten der Alzheimer-Krankheit und damit das zukünftige Risiko des kognitiven Verfalls von 

Personen vorherzusagen.  

Das Ziel dieser Dissertation ist es, neue Biomarker zu identifizieren, die die diagnostische 

Genauigkeit unterstützen und das Fortschreiten der Krankheit in präklinischen und frühen Phasen 

der Alzheimer-Krankheit vorhersagen könnten. Mit Hilfe dieser Biomarker wird eine Stratifizierung 

von Personen auf der Basis des Risikos ermöglicht, dass mit ihrer spezifischen Pathologiebelastung 

verbunden ist, d. h. regionsspezifische kortikale Amyloidose und Lipidstörungen. 

Im Rahmen dieser Dissertation hat unsere erste Studie die Gültigkeit und Reproduzierbarkeit eines 

neulich vorgeschlagenen PET-basierten In-vivo-Amyloid-Staging-Schemas in einer Kohorte 

kognitiv normaler Senioren mit erhöhtem Alzheimer-Risiko nachgewiesen. Mit diesem Amyloid-

Staging-Schema konnten ~ 50 % der Personen identifiziert werden, die Anzeichen für regionale 

Amyloid Ablagerungen in der präklinischen Kohorte aufwiesen, im Gegensatz zu den 21,5 %, die 

mit dem herkömmlichen globalen Amyloidstatus ermittelt wurden. Die zweite Studie hat den 

klinischen Nutzen dieses Amyloid-Staging-Ansatzes aufgezeigt, wobei höhere Amyloidstadien (ab 

Stadium II) mit einem höheren Risiko für ein klinisches Fortschreiten verbunden waren, 

insbesondere bei kognitiv gesunden älteren Menschen. Diese Ergebnisse konnten in unabhängigen 

Stichproben aus zwei verschiedenen Kohorten zuverlässig repliziert werden. Schließlich 

bestimmten wir in der dritten Studie anhand von Daten aus der ADNI-Kohorte eine periphere 

Lipidomics-Signatur, die mit Biomarkern der AD-Pathologie assoziiert ist. Es wurde festgestellt, 

dass Ether-Glycerophospholipide, Lyso-Glycerophospholipide, freie Fettsäuren, Cholesterinester 

und komplexe Sphingolipide im Plasma von präklinischen und Prodromal-AD-Fällen dysreguliert 

sind. Die Abnahme von PUFA-Plasmalogenen, langkettigen Sphingomyelinen und 

Dihydroceramiden zusammen mit höheren Gehalten an Cholesterinestern und komplexen 

Ceramiden ergab einen ausgeprägten Endophänotyp, der mit einem höheren Risiko für das 

Fortschreiten der Alzheimer-Krankheit im Prodromalstadium verbunden ist. 
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Insgesamt liefert diese Doktorarbeit Beweise für die Zuverlässigkeit und den klinischen Nutzen des 

Amyloid-Staging Verfahrens für die Risikostratifizierung von AD-Fällen, insbesondere in der 

präklinischen Phase. Lipidomics-Daten bieten zusätzliche Informationen, die zum Alzheimer-

Risiko und den nachfolgenden klinischen Verläufen beitragen könnten. Beide Ansätze könnten eine 

genauere Charakterisierung von Forschungsteilnehmern ermöglichen, was besonders wichtig für die 

Leitung und Planung klinischer Studien und die Anpassung von Interventionsschemata an 

verschiedene Zielgruppen in Präventionsstudien sein könnte. 
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1. Introduction 

1.1 An overview of Alzheimer’s disease. 

Alzheimer’s disease (AD) is a progressive neurogenerative disease characterised by initial memory 

impairment and deterioration in other cognitive abilities that ultimately affect behaviour, speech, 

visuospatial orientation and interfere with daily living activities in the dementia stage (1). AD is 

considered the most common cause of dementia in older people above the age of 65 since it accounts 

for 60-80% of all dementia cases (1–3). 2021 World Alzheimer Report estimated that over 55 

million people worldwide live with Alzheimer’s disease or a related form of dementia (4), and the 

prevalence is increasing worldwide. Rising life expectancy contributes to the rapid increase in 

prevalence (5). Hence, it is anticipated that by 2050 the number of people living with dementia 

worldwide will be greater than 131 million (5). On a national level, Germany belongs to the top 10 

countries with the largest number of people with dementia worldwide (6). The current number of 

dementia cases is estimated to be over 1.6 million, with an annual incidence of over 300,000 new 

cases (7). 

 From an economic perspective, dementia is considered one of the costliest chronic illnesses in old 

age due to substantial medical and social care burdens, both direct and informal (4,5,7). The 2015 

global societal economic cost of dementia was estimated as 818 billion US$, with a considerable 

impact on the quality of life both for individuals living with dementia and for their families and 

caregivers (5). This cost is forecast to steadily increase in the coming years to cross 2 trillion US$ 

by 2030 (5). AD has become a tremendous public health and socio-economic challenge of the 21st 

century (2,8). To date, none of the available pharmacological treatments can halt or slow down the 

damage and destruction of neurons caused by the disease (2,3), which makes the development of 

disease-modifying therapeutic procedures an urgent need (8). 

1.2 Pathophysiology of Alzheimer’s disease and Amyloid 

cascade theory. 

The core pathological hallmark of Alzheimer's disease is the accumulation of two abnormal protein 

fragments, extracellular beta-amyloid and intracellular abnormal tau, known as beta-amyloid (Ab) 

plaques and neurofibrillary tangles (NFT) (9,10). Ab peptides result from sequential cleavage of 
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amyloid precursor protein (APP) by beta- and gamma- secretases (1,8,11,12). On the other hand, 

Ab is cleared from the central nervous system through several mechanisms, including phagocytosis 

from microglia, enzymatic breakdown, or vascular mechanisms (11) and perivascular drainage of 

interstitial fluid in the brain (12,13). In AD, Ab levels are elevated due to an imbalance between the 

production and clearance pathways (1,11). Late-onset sporadic AD is usually associated with 

reduced beta-amyloid clearance, whereas familial early-onset AD is due to overproduction (11). 

Elevated Ab peptides, particularly Ab-42, promote their aggregation into higher-order oligomers, 

fibrils, and plaques (8). Both Ab plaques and oligomers contribute to impairment of synaptic activity 

and synapse loss (11), cerebral capillary blood flow impairment, and direct promotion of tau 

pathology by stimulating tau hyperphosphorylation (8,12,14,15). Ab species can further trigger 

several downstream events, such as oxidative stress, mitochondrial dysfunction and specifically 

neuroinflammation (11,12,15). 

Tau, a microtubule-associated protein, is the principal constituent of neurofibrillary tangles (16,17). 

The tau proteins in NFT are formed of paired helical filaments, which are hyperphosphorylated and 

abnormally folded with an increased affinity to aggregate as intercellular tangles (16,18). Hence, 

hyperphosphorylated tau loses its ability to bind and stabilise axonal microtubules, which impairs 

the anterograde transport of nutrients and organelles, including mitochondria, along axons to the 

synapse and in turn leads to neurodegeneration (11,17,19).  

The amyloid cascade hypothesis posits Aβ as the earliest molecular driver of the disease (20,21), 

given that Aβ levels in the brain start to increase decades preceding the development of clinical 

symptoms (20,22). This hypothesis proposes that Aβ peptides trigger a cascade of downstream 

cellular and molecular changes, including tangles aggregation, microgliosis, neuritic dystrophy that 

finally lead to neurodegenerative changes, cognitive impairment, and dementia (Figure 1) 

(20,21,23). 

A definite AD diagnosis can only be made post-mortem since it requires an extensive 

neuropathologic evaluation considering the morphology and density of lesions and their topographic 

distribution (1,24–26). However, advances in biomarkers have enabled the depiction of AD 

neuropathologic changes in living persons with reasonable validity using cerebrospinal fluid (CSF) 

or positron emission tomography (PET) imaging biomarkers (24,27,28) as surrogate markers for 

cerebral beta-amyloid and tau deposition (26,29). A key advantage of PET imaging over fluid 

biomarkers is the in-vivo depiction of AD pathology biomarkers' magnitude and topographic 

distribution (24,26–28).  
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Figure 1: The sequence of major pathogenic events leading to AD as proposed by the amyloid 

cascade hypothesis. 

The curved blue arrow indicates that Aβ oligomers may directly injure the synapses and neurites of brain 

neurons, in addition to activating microglia and astrocytes. Adapted from Selkoe and Hardy (20). 

1.3 NIA-AA 2018 research framework. 

In 2018, the National Institute on Aging and Alzheimer’s Association (NIA-AA) formulated an 

updated and unified framework for defining and staging individuals in Alzheimer’s disease 

continuum in the research setting before being adopted into clinical practice (26). According to this 

research framework, the definition of AD was shifted to a biological construct based on detection 

of AD neuropathologic changes, for instance, amyloid deposition, pathologic tau, and 

neurodegeneration [AT(N)], in living subjects using biomarkers rather than the clinical sequence of 

the disease, i.e., symptoms and signs (26). This definition will ensure a more accurate 

characterisation of research participants and advance understanding of the sequence of downstream 

pathologic events that may contribute to the cognitive impairment associated with AD (26). This 

strategy will additionally enable a more precise approach to interventional trials where specific 

pathways can be targeted in the disease process and the appropriate people (26). 
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According to the AT(N) scheme (26), abnormality in both Ab deposition and pathological tau 

biomarkers are mandatory to make a diagnosis of AD (9,26,30). While abnormality in Ab deposition 

alone implies the presence of Alzheimer’s pathological changes (26). Consequently b-amyloidosis 

is widely viewed as the defining signature of AD and the earliest evidence of related 

neuropathologic change detectable in living persons (31,32). b-amyloidosis is further recognised as 

being capable of inducing downstream pathologic processes, i.e., tauopathy and neurodegeneration, 

and ultimately leading to cognitive impairment (Figure 2) (33–35).  

 
Figure 2: Hypothetical time course of pathological changes throughout the Alzheimer's disease (AD) 

continuum. 

First, biomarkers for amyloid-β become abnormal [cerebrospinal fluid (CSF) amyloid-β 1-42 preceding PET], 

followed by abnormal tau (CSF p-tau preceding PET), neurodegeneration, and cognitive decline. Adapted from 

Jack et al. (36,37) and Leuzy et al. (38). 

Despite the validity of the established biomarkers, it is crucial to bear in mind that their sensitivity 

is restricted by the in-vivo limit of detection (26). For instance, PET scans of individuals with early 

phases of amyloid deposition, as determined by the autopsy, were usually labelled as normal or 

negative scans regardless 11C Pittsburgh compound B (PIB) (27,28,39) or fluorine (18F) 

radiolabelled ligands (40–42) were used. 

1.4 b-Amyloid progression and staging in autopsy and in-vivo. 

Neuropathological studies in autopsy suggested that Aβ deposition follows a distinct sequence of 

hierarchical regional involvement (43–46). Dietmar Thal proposed a staging scheme to define 

phases of amyloid pathology progression in the brain during the course of AD (43). This staging 

scheme has been later adopted by NIA-AA 2011 for the assessment of Aβ deposits [A] in the 
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autopsy gold standard (9,30). In Thal’s scheme, Phase 1, the neocortex is involved, expanding to 

the allocortex in Phase 2, subcortical nuclei, including the striatum, thalamus and basal forebrain 

cholinergic nuclei, were involved in Phase 3 (43). Brainstem nuclei were first engaged in Phase 4 

and finally the cerebellum in Phase 5 (Figure 3) (43). He observed that AD cases typically exhibit 

Aβ phases 4, 5 and occasionally 3, representing a relatively late AD stage (9,30,43). However, early 

Aβ phases, particularly 1 and 2, were only observed in asymptomatic individuals; hence these phases 

could be recognised as preclinical phases of AD (43). He further claimed that the success of AD 

modifying treatments strongly relies on targeting nondemented individuals in early Aβ phases, i.e., 

phases 1 and 2, before the massive expansion of Aβ and consequently tau pathology in the brain 

(28,43).  

 
Figure 3: Schematic representation of Thal amyloid deposition phases and their correspondence to the 

clinical status. 

Different brain regions develop Aβ deposits in a distinct hierarchical sequence. The red colour shows the newly 

involved regions in each phase, while the black represents the regions already involved from the previous phase. 

Adapted from Thal et al. (40) and Koychev et al.(47). 

Amyloid sensitive PET imaging is considered a direct in-vivo measure of cortical amyloid load with 

high specificity and relatively strong correlation with the autopsy gold standard (24,26,28,39,48). 

Global cortical retention of amyloid-specific radiotracer is conventionally calculated by signal 

averaging over a meta-region of interest mask, including bilateral prefrontal, orbitofrontal, temporal, 

parietal, anterior cingulate, posterior cingulate, and precuneus brain regions (49). Then PET scans 

are binary classified, as positive or negative scan, based on the radiotracers-specific optimised 

threshold (39). This classification approach was implemented in the clinical setting and basically 

the inclusion of subjects in clinical trials (39). Several studies have investigated the correspondence 

AD
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between the global cortical retention and the post-mortem neuropathological evaluation and Thal 

Aβ phases (27,28,39–41). However, these studies assumed the low sensitivity of this approach to 

detect early amyloid deposition (27,28,39–41). Using PIB PET scan, Murray et al. have 

demonstrated that PIB SUVR of 1.40 corresponds to Thal amyloid Phase 2 (28). They also declared 

that individuals with Thal phase 1 were labelled as negative PET scans (28). Comparable 

observations were obtained using fluorine (18F) labelled radiotracers (40–42). Both studies by Thal 

et al. and Salloway et al. have shown that 18F flutemetamol amyloid PET scans were classified as 

positive in Thal amyloid phase 4 and 5 cases. In contrast, all Thal amyloid phases 0, 1 and 2 cases 

were labelled as negative scans (40,42). Only third of the individuals with Thal amyloid phase 3 

was assigned as positive for amyloid based on PET scans (40).  

Subsequently, a more sensitive approach was suggested to identify early amyloid accumulators 

while their cognitive functions are still preserved (28,39,41). Many studies recommended using a 

lower, liberal cut-off than those conventionally used to assign positivity based on global cortical 

retention (28,39,41). Villeneuve et al. determined an optimal threshold for early amyloid detection 

(SUVR of 1.21) based on the PIB PET scan (39). They showed that this liberal threshold yielded 

better sensitivity, yet comparable specificity, to the commonly used conservative threshold (SUVR 

of 1.40) (39). This approach, however, increased false-positive findings (39). 

Alternatively, detailed topographical distribution of amyloid was proposed to characterise and stage 

amyloid progression in-vivo analogous to Thal amyloid deposition phases in post-mortem autopsy 

(28,50–54). Grothe et al. adopted a data-driven approach to determine in-vivo regional amyloid 

progression sequence based on the frequency of regional amyloid positivity across cognitively 

normal older participants enrolled in the Alzheimer’s disease Neuroimaging Initiative (ADNI) study 

(53). Then a hierarchical four-stage model was constructed (Figure 4), where temporo-basal and 

fronto-medial areas were initially involved in stage (I), then spread over the remaining associative 

neocortex in stage (II). The primary sensory-motor cortex and the medial temporal lobe were 

involved in stage (III), and finally, the subcortical regions, striatum and thalamus, in stage (IV) (53). 

Given the high consistency of the hierarchical amyloid progression pattern across brain regions, 

almost all cases profiles (>98%) were classified into one of the four progressive amyloid stages in 

their study (53). The earliest amyloid deposition stages, ~ 25% of stage II and 80 % of stage I, were 

mostly misclassified in the conventional binary assessment of global PET signal, even with more 

liberal thresholds (50,53,55). Increasing amyloid progression stages correlated well with the drop 

in CSF Aβ levels and cognitive deficits in healthy elderly individuals as well as those with mild 
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cognitive impairment (MCI) (53,56–58). Grothe et al. presented a fine-grained amyloid staging 

scheme that may be particularly useful for stratifying early and preclinical stages of AD (53,55–58). 

 
Figure 4: Grothe’s in-vivo amyloid staging model. 

Amyloid staging is a hierarchical model of four distinct stages representing amyloid deposition progression. 

Each amyloid stage is derived by the involvement of the corresponding anatomical division (in red) in addition 

to the previously affected areas (in blue). Figure created in correspondence to the staging model in Grothe et al. 

(53). 

Alternative approaches were proposed for region-based in-vivo amyloid staging schemes (51,52). 

Hanseeuw et al. considered an a priori distinction between early neocortical and later subcortical 

amyloid deposition (52). Accordingly, they classified participants into three PET stages; Stage 0: 

low cortical and low striatal PET signal, Stage 1 high cortical and low striatal and Stage 2 high 

cortical and high striatal (52). Their staging scheme correlated well with tau burden, hippocampal 

atrophy and predicted future cognitive impairment (52). Conversely, Mattsson et al. made use of the 

time lag, up to 10 years, between amyloid positivity based on CSF biomarker and global PET signal 

to distinguish regions of early versus late amyloid accumulation (51,59–61). They identified three 

composites of early, intermediate, and late amyloid deposition; then their final staging scheme 

included four stages; Stage 0: all three composites were negative for amyloid, Stage 1: only early 

composite was positive, Stage 2: early and intermediate composites were positive and Stage 3: all 

three composites were positive (51). They validated their staging scheme in an independent cohort 

using a different radiolabelled ligand (51). Furthermore, they showed a sequential increase of CSF 

p-Tau levels in Stage 1, CSF Tau in Stage 2, and accelerated atrophy in Stage 3 (51). 

Additional file 3 
 
Figure S3 : Model of the hierarchical in-vivo amyloid staging scheme. 

This figure shows the 52 brain regions merged into four larger anatomical divisions 
based on equal partitions of frequency range as initially defined in the original 
model. Then the resulting amyloid progression stage (I-IV) is defined by the 
involvement of the corresponding anatomical division displayed in red in addition 
to the affected areas of the previous stage (displayed in blue). The amyloid 
progression stages are displayed on left, midline sagittal and basal brain views. 
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1.5 The omics approach unveils the link between lipids and AD 

pathophysiology. 

AD is increasingly recognised as a complex and multifactorial disease that manifests itself along a 

continuum of conditions, ranging from asymptomatic preclinical phase to mild cognitive 

impairment (MCI) and finally end up with dementia (62). Heterogeneity was observed in 

individuals’ specific clinical course and transition rates between continuum phases of the disease 

(62,63). However, established AD biomarkers fall short in explaining individual clinical trajectories 

and precisely predicting future risk of cognitive decline (62). Thus, high-throughput ‘Omics’, an 

unbiased data-drive approach, was recently deployed for a more comprehensive and deeper insight 

into individuals’ molecular and metabolic pathways (62,64,65). Alterations in these pathways may 

reflect ongoing downstream pathologic events due to AD pathology as well as individual’s specific 

comorbidities and genetic characteristics (62,65).  

Growing evidence supports the role of lipid dysregulation in the aetiology of AD as early as 

preclinical phases of the disease (66–68). Lipids play critical structural and physio-chemical roles 

in the brain since they are an essential membrane constituent of the cell and its organelles and are 

actively involved in cellular transport, energy storage, and signalling pathways (69–71). Changes in 

membranes’ lipid composition and organisation interfere with the processing and trafficking of 

proteins and metabolites, hence modulating the activity of transmembrane proteins, e.g., amyloid 

protein precursor (APP) and its secretases as well as ion-channels (69,71). Moreover, perturbation 

of membrane lipids can have devastating consequences on cellular signalling, energy balance, 

blood-brain barrier (BBB) function and myelin and synapses integrity (71). Essentially, lipids, 

particularly polyunsaturated fatty acids (PUFA), play a crucial role in regulating inflammatory 

response through pro-inflammatory and pro-resolving lipid mediators, as well as response to 

oxidative stress (71).  

Regarding AD genetic risk, the APOE gene, particularly its E4 allele, is the strongest common 

genetic risk factor for late-onset sporadic form. APOE is the primary lipoprotein in the brain, which 

has an abundant role in the lipids’ transport and metabolism (71). Recent genome-wide association 

studies (GWAS) identified several genes involved in lipid metabolism and are significantly 

associated with increased risk for AD (72,73). For instance, genes involved in cholesterol 

metabolism and transport such as Clusterin (CLU) (74), SORL1, ABCA7 and APOE (72,73,75). 

Additional potential loci were identified including, PICALM (72–75), phospholipase-D3 (PLD3) 
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(75,76) and the microglia related phospholipase C-gamma (PLCG2) (77,78). PICALM is involved 

in the intracellular trafficking of proteins and lipids (79), while PLD3 and PLCG2 are involved in 

lipid metabolism and crucial downstream signalling pathways (76–78). Taken together by biological 

and genetic evidence, lipid metabolism can capture several facets in the complex pathophysiology 

of AD (Figure 5) and, therefore could serve as a potential biomarker in early asymptomatic stages 

of AD (71,80). 

 
Figure 5: Role of lipids in the pathophysiology of AD. 

Several mechanisms link lipids dysregulation and AD, including modulating transmembrane proteins, neuronal 

signalling pathway, BBB disruption, mitochondrial dysfunction, oxidative stress, and inflammation, leading to 

synaptic loss and ultimately memory impairment. Adapted from Kao et al.(80).  

Lipidomics, an omics approach, aims to quantitively and comprehensively analyse lipid pathways 

and networks in biological systems (70,81). Advances in lipidomics platforms enabled identifying 

thousands of lipid species with a high level of sensitivity and precision (70,81). Plasma lipidome is 

complex and consists of many lipid species that share similar elemental composition, yet they might 

display specific associations with biological outcomes (65). Now, it is feasible to examine in detail 

the comprehensive plasma lipidome in a human population or clinical study using recent ultra-high-

performance high-resolution mass spectrometry and high-performance liquid chromatography (65).  

1.6 Experimental aims and research questions. 

The purpose of this doctoral dissertation was to explore novel biomarkers that could reinforce the 

diagnostic accuracy and predict disease progression at preclinical and early phases of AD when the 

utility of clinical data is limited. We believe that these biomarkers will enable the stratification of 
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individuals based on the risk associated with their specific pathology burden, i.e., region-specific 

cortical amyloidosis and lipids dysregulations. Such stratification could be of particular importance 

in guiding the selection of individuals in clinical trials and adaptation of intervention regimens to 

different target subpopulations in prevention trials (62,64). Our aim was addressed through the 

following objectives in three different studies: 

I- Investigate the validity and replicability of a fine-grained PET-based in-vivo amyloid 

staging scheme in a cohort of cognitively normal seniors at higher risk of AD (55): 

The first study used 18F-florbetapir PET data of cognitively intact older individuals with subjective 

memory decline (SMC) from an independent monocentric cohort (INSIGHT-preAD). We projected 

their regional amyloid uptake signal into the previously designated hierarchical regional amyloid 

staging. Subsequently, we determined the adherence to this model across all cases. Finally, we tested 

the association between increasing in vivo amyloid stage and cognitive performance using 

ANCOVA models as well as the frequency of the APOE-ε4 allele. 

II- Evaluate the associated risk of the amyloid stages with future cognitive decline in 

cognitively normal seniors at higher risk of AD (58): 

In the second study, we were interested in determining the usefulness of the previously designated 

regional amyloid staging to predict conversion of cognitively normal people with and without 

subjective cognitive/memory decline (SCD/ SMC) to MCI or AD dementia. We additionally 

evaluated the risk of MCI cases conversion to dementia. We used clinical dementia rating scale 

(CDR) scores as the primary endpoint to assess change in cognitive function. 

III- Identifying the lipid dysregulations in the blood associated with AD pathology biomarkers 

in preclinical and prodromal AD cases and inspecting their possible contribution to the 

risk of future cognitive decline (82):  

We identified dysregulated lipids in the blood (plasma) of preclinical and prodromal AD cases using 

targeted lipidomics data derived from the ADNI cohort. We adopted a Bayesian elastic net 

regression method to select salient plasma lipid classes associated with CSF pTau/Aβ42 ratio as a 

combined biomarker of AD pathology. Then we determined lipidomic endophenotypes within 

prodromal and preclinical cases, respectively, using a consensus clustering approach applied to the 

selected lipid classes. Finally, we investigated the possible contribution of these lipid 

endophenotypes to the risk of future cognitive decline.  
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2. Methods 

2.1 Studies cohorts overview 

As explained below, we used different cohorts to achieve our goals and objectives.  

Study 1: (55) We used the INSIGHT-preAD cohort, which consisted of 318 cognitively normal 

Caucasian individuals with subjective memory complaints between 70 and 85 years old. All 

the study participants underwent comprehensive neuropsychological evaluation as well as 

amyloid PET scans to define their brain amyloid status. Demographic characteristics of the 

study cohort are summarised in Table 1. 

Table 1: Demographic characteristics of INSIGHT-preAD cohort. 

 N Age (sd) 

[years] 

Gender 

(F/M) 

APOE- ε4 MMSE score 

(sd) 

[0-30] 

Education 

(sd) 

[0-8] 

Amyloid +ve 68 76.6 ± 3.6 44 / 24 38.2 % 28.5 ± 0.91 6.0 ± 2.1 

Amyloid -ve 250 75.9 ± 3.5 157 / 93 12.8 % 28.7 ± 0.96 6.2 ± 2.0 

All subjects 318 76.1 ± 3.5 201 /117 18.2% 28.67 ± 0.95 6.2 ± 2.0 

Study 2: (58) We used three samples derived from two independent cohorts, i.e., ADNI and 

INSIGHT-preAD. The first sample (ADNI-A) consists of cognitively normal seniors and MCI 

subjects. Participants of the (ADNI-A) sample were previously used to construct the in-vivo 

amyloid staging model. The second sample (ADNI-B) consists of cognitively normal seniors and 

MCI subjects, in addition to participants with SCD. Finally, the third sample was derived from 

(INSIGHT-preAD), the same sample used in our first study. Both ADNI and INSIGHT-preAD 

participants underwent amyloid PET imaging and comprehensive neuropsychological 

examinations at least every 12 months. The Mini-Mental State Examination (83) was available 

for both cohorts to assess global cognition. We used the CDR score (84) as the primary endpoint 

to evaluate change in functional status. 
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Table 2: Summary of study samples derived from ADNI and INSIGHT-preAD cohort. 

Cohorts 

/ Diagnoses 

N M/F Age (SD) 

[years] 
MMSE 
(SD) 

Median follow-up 

[months] 

(interquartile 

range) 

ADNI-A  
    

Controls 179 88/91 73.8 (6.5) 29.1 (1.2) 65 (54; 68) 

MCI 403 220/183 71.8 (7.6) 28.1 (1.7) 47 (43; 51) 

ADNI-B  
    

Controls 75 36/39 79.2 (5.2) 29.2 (1.3) 64 (60; 71) 

MCI 124 79/45 75.4 (8.1) 27.8 (1.8) 52 (49; 56) 

SCD 103 42/61 72.4 (5.6) 29.0 (1.2) 51 (38; 59) 

INSIGHT-preAD  
    

SMC 318 114/204 76.5 (3.5) 28.7 (1.0)  

Key: MMSE, Mini-Mental State Examination; SCD, subjective cognitive decline according to the definition in the 

ADNI cohort (85). SMC, subjective memory complaints as defined in the INSIGHT-preAD cohort (86). 

Study 3: (82) We used a cohort of 529 participants derived from the ADNI cohort. All the 

participants have a baseline diagnosis of cognitively normal or MCI, in addition to complete CSF-

biomarkers, plasma Lipidomics, APOE genotype and BMI data. Based on their CSF- biomarkers 

status and baseline clinical diagnosis, the final cohort was classified into three diagnostic groups: 

1. The cognitively normal control group (CN) with negative CSF biomarkers and baseline 

diagnosis of cognitively normal (CDR= 0), 2. The preclinical group with positive CSF biomarkers 

and baseline diagnosis of cognitively normal (CDR= 0) and 3. The prodromal group with positive 

CSF biomarkers and baseline diagnosis of mild cognitive impairment (CDR= 0.5) (Table 3).  

Table 3: Summary of demographic characteristics of ADNI cohort used in the third study. 

Characteristics are described as Number (N) and the corresponding percentage (per cent %) or Mean value and 

standard deviation (sd) as convenient. Group differences were tested using Bayesian ANOVA (a) and Bayesian test 

of association (b). Results were interpreted in terms of Bayes Factor (BF) in favour of the presence of group 

differences in the tested variables, where BF of (3–20) represented moderate evidence (∗), BF of (20–150) expressed 
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strong evidence (∗∗). In contrast, BF of (>150) represented very strong evidence (∗∗∗). Differences in CSF 

biomarkers levels between Preclinical and Prodromal are marked by (#). 

 

2.2 Amyloid-PET data pre-processing and in-vivo staging. 

Both structural MRI (T1-weighted) images and 18F-Florbetapir amyloid PET images were acquired 

in ADNI and INSIGHT-preAD cohorts (87–89). The pre-processing pipeline followed the 

previously described procedures in the study by Grothe et al. (53). Briefly, MRI images were 

realigned, segmented into tissue types, and spatially normalised to an ageing/AD-specific reference 

template space using Statistical Parametric Mapping software (SPM8, the Wellcome Trust Centre 

for Neuroimaging) implemented in MATLAB 2013. Averaged PET frames were co-registered to 

their corresponding structural MRI scan in native space and corrected for partial volume effects 

(PVE) using the 3-compartmental “Müller-Gärtner” method (90,91). Then corrected PET images 

were spatially normalised to the reference template space using transformation parameters from the 

corresponding MRI. Fifty-two brain regions of interest were defined using the Harvard–Oxford 

structural atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) (92), which included forty-eight 

cortical regions in addition to the subcortical regions. Regional standard uptake value ratios 

(SUVRcereb) were computed by scaling the mean tracer uptake values by the mean uptake value of 

the whole cerebellum, estimated in non–PVE-corrected PET data (53,90,93,94). 

 
 CN Preclinical Prodromal Whole 

cohort 
N 182 73 274 529 

Mean age (sd) a 73.2 (5.9) 75.9 (5.2) 73.3 (7.0) 73.6 (6.5) 

Sex – Females b 
N (percent %) 88 (48 %) 41 (56 %) 109 (40 %) 238 (45 %) 

APOE4 carriers b***  
N (percent %) 32 (18 %) 43 (59 %) 195 (71 %) 270 (51 %) 

BMI b*** N (percent %) 
- Low 
- Medium 
- high 

 
50 (27%) 
85 (47%) 
47 (26 %) 

 
38 (52%) 
21 (29%) 
14 (19 %) 

 
113 (41%) 
126 (46%) 
35 (13%) 

 
201 (38%) 
232 (44%) 
96 (18%) 

Mean Education years (sd) a 16.3 (2.7) 16.0 (2.8) 15.9 (2.9) 16.1 (2.8) 

CSF biomarkers 

Mean Ab42 (sd) a*** 1727.0 (524.0) 634.0 (185.0) 630.0 (167.0) 1007.8 (620.4) 

Mean pTau (sd) a*** 20.1 (6.6) 28.8 (10.4) # 35.4 (14.1) # 29.2 (13.4) 

Mean pTau/ Ab42 ratio (sd) a***  0.012 (0.003) 0.049 (0.025) # 0.059 (0.028) # 0.042 (0.03) 
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The pre-processed PET data were then projected into Grothe in-vivo amyloid staging scheme (53) 

(Figure 4). In the staging scheme, the 52 brain regions were merged into a simplified progression 

model across four broader anatomical divisions (53,55). Each anatomical division was considered 

positive for amyloid pathology if at least 50% of regions of interest within this division displayed 

suprathreshold signal, i.e., SUVRcereb = 0.92 in the ADNI cohort (58) and SUVRcereb = 0.98 in 

the INSIGHT-preAD cohort (55). The individual in-vivo amyloid stage was then assigned based on 

the estimated hierarchical involvement of anatomical divisions (53). Stage I was defined as positive 

in the first anatomical division but negative in all following divisions (53). Then, the successive 

stages II-IV were determined by the additional involvement of their corresponding divisions 2, 3, 

and 4, respectively (53). Individuals who exhibited amyloid positivity in any division without 

concurrent amyloid positivity in the preceding divisions were classified as non-stageable (53).  

2.3 Validity of in-vivo amyloid stages and association with the 

cognitive performance  

In our first study (55), we assessed the validity of Grothe’s in-vivo amyloid staging scheme in a 

completely independent sample derived from a cohort of cognitively normal seniors at higher risk 

of AD, “INSIGHT-preAD”. Then we investigated the association between increasing in vivo 

amyloid stage and cross-sectional cognitive performance using ANCOVA models as well as the 

frequency of APOE-ε4 allele. 

The second study (58) explored the association between in-vivo amyloid stages and the longitudinal 

decline in global cognition in the three different samples from ADNI and INSIGHT-preAD cohorts 

(58). Hence, we used Cox regression to predict time to conversion in CDR status (from 0 to 0.5 or 

higher, and from 0.5 to 1 or higher) while adjusting for age and sex (58). The Cox regression models 

performance was determined by the Akaike information criterion (AIC) as a measure of overall 

model fit (58). 

Additionally, we compared the clinical utility of the amyloid stages against the current analytical 

approach based on the global amyloid status in both the first and second studies (55,58). Thus, we 

determined the amyloid positivity based on global mean uptake using the thresholds (SUVRcereb 

> 1.17) (58) for the ADNI cohort and (non-PVE corrected SUVRcereb > 1.1) (55) in the first study 

and (PVE corrected SUVRcereb > 0.88) (58) in the second study for the INSIGHT-preAD.  
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2.4 Lipidomics data preparation and analysis. 

Targeted high-resolution Lipidomics data were derived from the plasma samples of ADNI cases 

using ultra-high-performance liquid chromatography (82). Lipid species (692) were then merged 

into one hundred and seven (107) composite scores through applying a hierarchical clustering 

approach within each of the lipid subclasses/classes (82). We used Bayesian elastic net regression 

to identify lipid classes/ subclasses alterations associated with the CSF pTau/Ab 42 ratio as a 

combined biomarker of AD pathology in preclinical and prodromal AD cases (82). Consensus 

clustering of the selected lipid classes/ sub-classes was used to identify distinctive lipidomic 

endophenotypes and study their association with clinical progression (82). 
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3. Results 

3.1 Validity of PET-based in-vivo amyloid staging scheme in 

cognitively normal seniors at higher risk of AD 

We determined the validity of the hierarchical amyloid staging scheme by the proportion of 

participants that adhere to the regional hierarchy implied by the progression model. In the 

INSIGHT-preAD cohort, one hundred fifty-six participants (49%) showed evidence of regional 

amyloid deposition (Figure 6) as opposed to the 21.5% identified using the conventional global 

amyloid status. Only two (0.6%) out of the whole cohort subjects (318) violated the proposed 

regional hierarchy and thus were labelled non-stageable. Across all the inspected samples from 

ADNI and INSIGHT-preAD cohorts, 1.4% (17 out of 1202 cases) were marked non-stageable. The 

distribution of non-stageable cases across cohorts and diagnoses is shown in Table 4. 

 
Figure 6: In-vivo amyloid stages in INSIGHT-preAD cohort. 

Mean PET images representative for each stage of the amyloid progression model in the INSIGHT-preAD cohort 

are displayed on both axial and sagittal views. 

 

 

 

 

Fatemah Sakr
   SUV
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Table 4: Distribution of the non-stageable cases across ADNI and INSIGHT-preAD cohorts. 

Cohorts 

/ Diagnoses 

N Non-stageable 

ADNI-A 582 
 

Controls 179 3 (1.7%) 

MCI 403 4 (0.7%) 

ADNI-B 302 
 

Controls 75 1 (1.3%) 

MCI 124 3 (2.4%) 

SCD 103 4 (3.9%) 

INSIGHT-preAD 318 
 

SMC 318 2 (0.6%) 

We further explored the correspondence between the amyloid stages and the conventional binary 

classification based on a global signal and threshold of SUVRcereb > 1.10 in the INSIGHT-preAD 

cohort. Almost all stage III or IV (96.8% and 100%, respectively) cases were classified as amyloid 

positive, while most of stage I (98.7%) and ~ 30 % of stage II were classified as amyloid-negative 

(Table 5).  

Table 5: Distribution of the in vivo amyloid stages among the INSIGHT-preAD participants compared 

to conventional global amyloid status. 

Data represents the number of participants with global cortical retention exceeding the thresholds of (SUVR = 

1.1) and (SUVR = 1.135), respectively, and their percentage among the total participants comprising the respective 

stage. The cut-off of (SUVR = 1.1) is the most used threshold to detect early amyloid positivity, while the cut-off 

of (SUVR = 1.135) is equivalent to the threshold used to assign regional positivity. 
 

Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 
Non-

stageable 

SUVR > 1.1 3 (1.9%) 1 (1.3%) 29 (72.5%) 31 (96.9%) 4 (100%) 0 (0%) 

SUVR > 1.135 0 (0%) 0 (0%) 24 (60%) 31 (96.9%) 4 (100%) 0 (0%) 

Number of subjects 162 78 40 32 4 2 
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3.2 Association of in-vivo amyloid stages with APOE genotype 

and cross-sectional cognitive performance. 

In vivo amyloid stages was significantly associated with ApoE-ε4 status, such that the percentage 

of ApoE-ε4 carriers increased with increasing amyloid stage (chi-squared ( χ 2) test, p = 0.001). 

Neither the in-vivo amyloid stage nor the global amyloid status showed significant association with 

cross-sectional cognitive performance in the INSIGHT-preAD cohort. 

3.3 Association of in-vivo amyloid stages with longitudinal 

cognitive decline. 

In almost all cohorts and diagnostic sub-groups, in-vivo amyloid stages III/ IV were associated with 

increased risk of CDR conversion from 0 to 0.5 or higher in cognitively normal and SCD/SMC 

cases and from 0.5 to 1 or higher in MCI cases. In cognitively normal subjects from ADNI-A and 

ADNI-B samples, amyloid stage II was also associated with a higher rate of CDR conversion than 

stage 0 cases. Based on the global amyloid status, amyloid positive cases showed a higher rate of 

CDR conversion relative to negative amyloid cases in almost all comparisons, except for ADNI-B 

SCD cases. Using AIC, we assessed the performance of all Cox regression models using in-vivo 

amyloid stages compared to global amyloid status. A better performance was reported in all 

comparisons favouring amyloid staging over the global amyloid status models except for the ADNI-

B controls model. The probability for the global amyloid status to provide a better fit than the staging 

model was below 0.002 for the ADNI-A controls and the ADNI-B MCI and SCD cases, and below 

0.3 for the ADNI-A MCI and the INSIGHT-preAD SMC cases. Table 6 summarises the results and 

performance parameters of all the conducted Cox regression models. 

Compared to global amyloid status, regional amyloid stages allowed identifying a subsample of 

people with a very high risk of conversion, i.e., amyloid stage III/IV cases. For example, MCI cases 

with amyloid stage IV had a 47% rate of conversion to dementia compared with 38% estimated for 

the global amyloid-positive cases in the ADNI-A sample. Analogously, in the INSIGHT-preAD 

cohort, 22% of stage III/IV individuals with SMC converted to CDR 0.5 or higher compared with 

only 14% in the global amyloid-positive cases.
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Table 6: Results of Cox regression models. 

For both staging and global amyloid status-based models, the number of cases (N), Hazards ratio (HR) and 

corresponding standard error (SE) and p-value were provided. The performance of models was compared 

regarding the AIC and probability of the global amyloid status model to minimise AIC compared with the 

staging model. 

Key: Amyloid stages (I-IV); A+: amyloid positive according to the global threshold; n.s.: non-significant. 

 

3.4 Lipidomic signature in blood of preclinical and prodromal 
AD. 

Bayesian elastic net regression identified lipid classes/ subclasses which were dysregulated in 

the blood (plasma) of preclinical and prodromal AD participants (Figure 7). lyso-

glycerophospholipids (specifically LPC), glycerophospholipids (acyl, alkyl, and alkenyl), free 

fatty acids (FFA), cholesterol esters and sphingolipids (complex ceramides) lipid 

classes/subclasses were accounted on top of the list. Lipid species harbouring polyunsaturated 

fatty acids (PUFA) and ether bonds were particularly affected. 

Clinical 
diagnosis Model 

Sample 

ADNI-A ADNI-B INSIGHT-preAD 

N HR (SE) p AIC  N HR (SE) p 
 AIC  N HR (SE) p AIC 

Cognitively 
normal 

Staging 
model  

0 

I 

II 

III 

IV 

95 

27 

15 

20 

12 

 

< 0.1 

4.4 (0.49) 
1.8 (0.60) 

4.8 (0.54) 

 

n.s. 

< 0.003 
n.s. 

< 0.004 

237 

0 

I 

II 

III/ IV 

37 

9 

11 

13 

 

1.3 (0.82) 

4.1 (0.60) 
8.7 (0.56) 

 

n.s. 

< 0.02 
< 0.0002 

173      

Global 
amyloid 
status 

A- 132   260 
(p < 
0.0001) 

 

A- 48   170 
(p < 
0.002) 

     

A+ 40 3.1(0.40) < 0.004 A+ 23 6.2 (0.47) < 0.0001      

SMC/SCD 

Staging 
model  

 

    

0 

I 

II 

III 

IV 

49 

14 

11 

13 

9 

 

0.9 (0.81) 

1.1 (0.86) 

3.2 (0.62) 

4.9 (0.64) 

 

n.s. 

n.s. 

n.s. 

< 0.02 

176 

0 

I 

II 

III/IV 

162 

78 

40 

36 

 

1.0 (0.64) 

0.48 (1.1) 

5.5 (0.52) 

 

n.s. 

n.s. 

< 0.002 

211 

Global 
amyloid 
status 

     A- 62   
193 

A- 255   214 
(p = 
0.22)      A+ 37 1.9 (0.43) n.s. A+ 63 3.2 (0.45) < 0.02 

MCI 

Staging 
model  

0 

I 

II 

III 

IV 

136 

34 

44 

75 

85 

 

0.7 (1.1) 

1.6 (0.59) 

7.0 (0.38) 
9.6 (0.36) 

 

n.s. 

n.s. 

< 0.0001 
< 0.0001 

790 

0 

I 

II 

III 

IV 

39 

11 

14 

20 

21 

 

< 0.1 

6.0 (1.2) 

18.0 (1.06) 
27.1 (1.06) 

 

n.s. 

n.s. 

< 0.007 
< 0.002 

173      

Global 
amyloid 
status 

A- 194   794 
(p = 
0.13) 

A- 50   186 
(p < 
0.002) 

    
 

A+ 183 7.7 (0.32) < 0.0001 A+ 58 23.5 (1.03) < 0.0003     

 

Fatemah Sakr

Fatemah Sakr
(p < 0.002)



Results 

 20 

  
Figure 7:Dysregulated Lipids in preclinical and prodromal AD. 

 Salient lipid scores are represented as posterior b-coefficients (points) with their respective 50% and 90% credibility 

intervals as thick and thin error bars, respectively, points’ colour codes for their corresponding lipid class. 

3.5 Association of lipid endophenotypes with future cognitive 
decline 

Consensus clustering identified five distinct lipid endophenotypes within prodromal participants. 

Two specific lipid endophenotypes (cluster II and V) were associated with a higher risk for cognitive 

decline (Table 7). Sex differences were also noted in the association of lipids with anticipated 

cognitive decline. In women, only cluster (II) showed a high risk of conversion, while cluster (III) 

showed a lower risk of conversion relative to the reference cluster (IV), yet only in men. 

Endophenotypes at high risk of conversion to dementia were distinguished by depletion of PUFA- 

plasmalogens associated with a compensatory increase of species containing saturated and 

monounsaturated FAs. Additionally, we observed higher levels of cholesterol esters and complex 

ceramides together with the depletion of long-chain sphingomyelins and dihydro-ceramides in this 

subgroup of high-risk prodromals.  
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Key: 

LPC-O-2: Lyso-alkyl-phosphatidylcholine (long 
FA), Choles ester-3: Cholesteryl ester (PUFA), 
hexCER: Hexosylceramide, FA-3: Free fatty acid 
(AA), PC-5: Phosphatidylcholine (AA), LPC-7: 
Lysophosphatidylcholine (PUFA), AC-4: 
Acylcarnitine (PUFA), GM1: GM1 gangliosides, 
Choles ester-2: Cholesteryl ester, SULF-1: 
Sulfatides, LPE-1: Lyso-
phosphatidylethanolamine (saturated FA), PI-1: 
Phosphatidylinositol (PUFA), LPI-3: Lyso-
phosphatidylinositol (AA), GM3-3: GM3 
gangliosides (very long FA), dhCER: 
Dihydroceramide, LPC-P-2: Lyso-alkenyl-
phosphatidylcholine (long FA), SM-3: 
Sphingomyelin (very long saturated FA), PI-2: 
Phosphatidylinositol (saturated, monounsaturated 
FA), LPC-5: Lysophosphatidylcholine (long, very 
long FA), LPC-2: Lysophosphatidylcholine (odd 
numbered FA), TG O 3: Alkyl-diacylglycerol, DG 
3: diacylglycerol (EPA & DHA), PC-P-2: Alkenyl-
phosphatidylcholine (saturated and mono-
unsaturated FA), PE-P-5: Alkenyl-
phosphatidylethanolamine (AA, DHA), PC-P-5: 
Alkenyl-phosphatidylcholine (DHA & EPA) and 
FA 1: Free fatty acid. 
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Table 7:Risk of clinical progression among prodromal lipidomic endophenotypes. 
Bayesian survival analysis was conducted to estimate the relative risk of progression to dementia among prodromal 

lipidomic endophenotypes while adjusting for APOE4. Then, this model was replicated on male and female subsets 

separately to explore the sex-specific effect of lipidomic endophenotypes on clinical progression. We set cluster 

(IV) as our reference group throughout the analysis. Results were interpreted in terms of credibility intervals (CI) of 

posterior distributions, where hazard ratios with CI not covering (1) were considered relevant and reported in red. 

Model Cluster + APOE4 Male subset Female subset 

  Median 
(MAD) 

Hazard 
ratio CI Median 

(MAD) 
Hazard 

ratio CI Median 
(MAD) 

Hazard 
ratio CI  

Intercept: 
IV 

 
-9.03 (1.80) 

 
   

-8.46 (2.20) 

 
   

-9.24 (2.72) 

 
  

I 0.02 (0.26) 1.02 0.68-1.52 -0.16 (0.32) 0.85 0.54- 1.51 0.28 (0.42) 1.33 0.68- 2.72 

II 0.68 (0.28) 1.97 1.26- 3.10 0.56 (0.35) 1.75 1.04- 3.16 0.84 (0.43) 2.32 1.15- 4.57 

III -0.41 (0.42) 0.66 0.36- 1.22 -1.08 (0.58) 0.34 0.13- 0.89 0.09 (0.54) 1.10 0.48- 2.56 

V 0.69 (0.26) 1.99 1.30- 3.00 0.85 (0.34) 2.35 1.38- 4.06 0.55 (0.43) 1.74 0.89- 3.53 

APOE4 0.39 (0.21) 1.48 1.07- 2.05 0.40 (0.27) 1.50 1.00- 2.25 0.27 (0.33) 1.31 0.76- 2.23 
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4. Discussion 

In light of our research questions, I will discuss the major findings of our studies integrated into the 

existing literature in the field. Finally, the chapter will be wrapped up with a general conclusion 

while pointing out future research directions. 

4.1 Validity of PET-based in-vivo amyloid staging. 
Our first study provided evidence for the general validity of Grothe’s in-vivo amyloid staging 

scheme in an independent sample enriched for preclinical AD derived from the “INSIGHT-preAD” 

cohort (55). Indeed ~ 99% of cases adhered to the regional hierarchy implied by the four-stage 

model (55). Essentially identical findings were observed on an extended sample, including 

preclinical and prodromal AD cases (58). A crucial advantage of the regional amyloid stages is 

identifying individuals with incipient amyloid deposition, i.e., amyloid confined to the neocortex, 

corresponding to the earliest Thal phase (Phase 1) in autopsy (55). Conversely, global amyloid status 

usually misinterprets early Thal amyloid phases as negative scans (27,28,40–42,48,54). A follow-

up study further confirmed the strong association between the regional amyloid stages and 

neuropathological Thal phases as well as CERAD ratings of neuritic and diffuse plaque densities in 

autopsy (50). In a Bayesian framework, regional amyloid stages were forty-four times more likely 

to associate with Thal phases than global amyloid status (50). 

Hanseeuw et al. and Mattsson et al. also proposed alternative region-based amyloid staging schemes 

(51,52). Hanseeuw et al.'s three-stage scheme employed a distinction between striatal and 

neocortical amyloid load (52), while Mattsson et al. constructed their staging scheme based on the 

frequency of longitudinal regional involvements (51). Despite the different approaches, the results 

converged in many aspects. Overall, the amyloid staging schemes predicted a relatively similar 

pattern of amyloid progression in the brain (51,53,55,56). Ab deposition in the orbitofrontal cortex, 

anterior and posterior cingulate gyri, precuneus and insula precedes the late accumulator brain 

regions, namely precentral, postcentral, lingual and calcarine cortices (51,53,55–57). Subcortical, 

particularly striatal, Ab occurs later in the course of the disease following cortical amyloidosis 

(52,53,55–57). Keeping with Cho et al.'s study, we also observed early amyloid deposition in the 

temporal neocortex, whereas the medial temporal lobe was the least involved (53–55). A recent 

study demonstrated that individuals’ longitudinal amyloid progression closely follows the initial 

cross-sectionally estimated staging scheme (56).  
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Several methodological considerations were raised against our initial amyloid staging approach, for 

example, using global versus region-specific threshold for defining regional positivity and the 

validity of our approach using different PET radiotracer or DVR instead of SUVR values. First, our 

focus was assessing the validity of the initial staging approach proposed by Grothe, adopting a 

constant global threshold and the widely used SUVR values. We also believe that the 

methodological choices offered by the initial approach could easily enable its future implementation 

in the clinical setting (55,58). The sensitivity analysis in (53) also suggested limited variability of 

inter-regional noise levels after PVE correction of PET images since it accounts for the spill-in 

effects from high non-specific white matter signals (90). Finally, follow up studies from our group 

(56,57) further addressed all these considerations. Although using different methodological choices 

resulted in some alterations in the temporal ordering of the neocortical regions, the overall amyloid 

progression pattern remained consistent. Among all the methodological factors, the region-specific 

threshold exerted the most remarkable effect (56,57). 

4.2 Clinical utility of amyloid stages and advantage over global 
amyloid status approach. 

As per the preclinical AD (INSIGHT-preAD) cohort, we presumed the lack of associations between 

cross-sectional cognitive performance and amyloid burden regardless regional amyloid stages or 

global amyloid status approach was used (55). Our findings contradict previous studies that reported 

subtle episodic memory changes associated with amyloid burden in preclinical stages of AD (95–

97). Further studies adopting our regional amyloid stages showed that higher amyloid stages were 

associated with worse memory scores, i.e., delayed recall score, in cognitively normal seniors 

(53,56). This contradiction may be attributable to the inclusion criteria of the INSIGHT-preAD 

cohort, which implied normal performance on cognitive tests, i.e., the FCSRT total recall. Hence, 

the amyloid burden association with cross-sectional memory scores is possibly masked by the 

limited variability in episodic memory performance in this cohort (55). 

Based on a larger sample, including preclinical and prodromal AD cases, advanced amyloid stages, 

specifically III and IV, were associated with a higher risk of cognitive decline (58). Comparable 

results were also obtained using the global amyloid status (58). However, the added value of the 

regional amyloid stages over global amyloid status is the stratification of individuals into 

subsamples that differ for their risk of cognitive decline (58). This risk stratification could be of 

particular relevance in future clinical trials since it allows the selection of participants to match the 

trial specific aims, thus targeting earlier or later preclinical or prodromal Alzheimer’s stages (52,58). 
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For instance, some amyloid targeted clinical trials may consider including participants at very high 

risk of cognitive decline, i.e., stage IV, which would translate into shorter times to progression and 

follow up duration (52,58). Other prevention trials may prefer to enrol participants exclusively with 

incipient amyloidosis, i.e., stage I or II (52). Although this approach will imply a greater screening 

effort in clinical trials, the cost benefit is reasonably justifiable compared to including many cases 

with a low risk of conversion (52,58). Suppose a 20% reduction of conversion rate should be 

detected at a significance level of 5% with 80% power. Then a trial would need to enrol 429 cases 

in case of stage IV MCI cases, having an initial conversion rate of 47%, whereas this sample size 

should be expanded to 607 cases in case of global amyloid-positive MCI with an initial conversion 

rate of 38% (58). 

Following the same notion, Hanseeuw et al. and Mattsson et al. explored the association of their 

region-based staging schemes with rates of cognitive decline (51,52). In the Hanseeuw staging 

scheme, Stage 2, having high neocortical and striatal signal predicted faster cognitive decline than 

elevated cortical signal alone (Stage 1) (52). Their Stage 2 roughly corresponds to Stage IV in our 

regional staging scheme; however, our staging scheme offers a fine-grained differentiation of 

cortical involvement. Analogously Mattsson et al. showed that advanced amyloid stages were 

associated with high rates of cognitive decline (51). In contrast to both studies, we further assessed 

the stage-specific risk of functional conversion and compared it to standard global amyloid status, 

thus providing evidence for significant risk enrichment in advanced stages of amyloid progression 

(58). 

4.3 Lipidomics signature and contribution to the risk of AD and 
clinical progression 

Our third study (82) identified subsets of functionally similar lipid species that were altered early in 

the blood of preclinical and prodromal AD cases using high-resolution lipidomics data, considering 

fatty acids saturation and chain length. In agreement with previous studies, ether and PUFA 

containing glycerophospholipids, their lyso derivatives, sphingolipids, free fatty acids, and 

cholesterol esters lipid classes were dysregulated (65,66,98–101). A remarkable finding in our 

analysis was the depletion of plasmalogen ether glycerophospholipids in AD cases. Plasmalogens 

depletion was frequently linked to AD pathology (102–108) as well as age and APOE4, as two 

major risk factors (109). Consistent with Toledo’s study (98), our results suggested an early role of 

arachidonated phosphatidylcholines, particularly long-chain alkyl isomers and their lyso 
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derivatives, in AD pathogenesis. These phosphatidylcholine species are key precursors of potent 

inflammatory mediators, including platelet-activating factor (PAF) and arachidonic acid (110,111). 

We also presumed that a higher risk of AD progression was associated with distinct lipid 

endophenotype in prodromal cases (82). For instance, the abundance of cholesterol esters, 

alterations in ether-glycerophospholipids and sphingolipids profile was observed among high-risk 

AD cases. A recent study found that cholesterol esters could trigger both amyloidosis and tau 

pathological changes through independent pathways (112). Ether-glycerophospholipids profile 

remodelling occurred such that species susceptible to oxidative stress were depleted compared to 

the preserved or increased more stable species, harbouring saturated fatty acids and/or alkyl bonds 

(82). Such remodelling could suggest a compensatory mechanism to overcome the increasing 

oxidative stress due to ageing and b-amyloid and thus subsequent lipid peroxidation and 

inflammatory mediator’s release. Keeping with literature, we found a shift in sphingolipids 

metabolism towards accumulating ceramides accompanied by depletion of long-chain 

sphingomyelins and di-hydro-ceramides (113–117). Alterations in sphingolipids’ metabolism could 

reflect cell signalling disturbances mediated by ceramide, sphingosine, and their respective 1-

phosphates (C1P and S1P) (118). These signalling molecules are actively involved in cell survival 

and regulation of pro and anti-inflammatory responses (118). 

4.4 Conclusion and Future directions 

Briefly, our dissertation provides evidence for robustness and clinical utility of the in-vivo amyloid 

staging approach for risk stratification of AD cases, particularly at the preclinical phase. Given the 

multifactorial nature of AD, amyloid stages may need to be combined with other markers of the 

associated pathological mechanisms to precisely predict individuals’ cognitive trajectories and 

progression risk. Lipidomics data offers comprehensive information encompassing additional 

pathological mechanisms, namely neuroinflammation, mitochondrial dysfunction, response to 

oxidative stress and cell survival, contributing to AD risk. Hence, the lipidomic profile could 

provide complementary information reflecting individual-specific vulnerability or resilience to AD 

pathology. Refining and validating lipidomic/ metabolic profiling could further open a new avenue 

to exploring possible adjuvant therapies modulating metabolic pathways and targeting the 

appropriate subpopulations in prevention trials. Future studies will be needed to evaluate the 

usefulness of combining lipidomic/metabolic profiling with amyloid burden in characterising AD 

cases and stratifying individuals based on their cumulative risk.
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Applicability of in vivo staging of regional
amyloid burden in a cognitively normal
cohort with subjective memory complaints:
the INSIGHT-preAD study
Fatemah A. Sakr1,2*† , Michel J. Grothe2†, Enrica Cavedo3,4,5,6,7, Irina Jelistratova2, Marie-Odile Habert8,9,10,
Martin Dyrba2, Gabriel Gonzalez-Escamilla11, Hugo Bertin9, Maxime Locatelli8,9,10, Stephane Lehericy5,9,12,13,
Stefan Teipel1,2, Bruno Dubois4,5,6, Harald Hampel3,4,5,6, for the INSIGHT-preAD study group and the Alzheimer
Precision Medicine Initiative (APMI)

Abstract

Background: Current methods of amyloid PET interpretation based on the binary classification of global amyloid
signal fail to identify early phases of amyloid deposition. A recent analysis of 18F-florbetapir PET data from the
Alzheimer’s disease Neuroimaging Initiative cohort suggested a hierarchical four-stage model of regional amyloid
deposition that resembles neuropathologic estimates and can be used to stage an individual’s amyloid burden in
vivo. Here, we evaluated the validity of this in vivo amyloid staging model in an independent cohort of older
people with subjective memory complaints (SMC). We further examined its potential association with subtle
cognitive impairments in this population at elevated risk for Alzheimer’s disease (AD).

Methods: The monocentric INSIGHT-preAD cohort includes 318 cognitively intact older individuals with SMC. All
individuals underwent 18F-florbetapir PET scanning and extensive neuropsychological testing. We projected the
regional amyloid uptake signal into the previously proposed hierarchical staging model of in vivo amyloid
progression. We determined the adherence to this model across all cases and tested the association between
increasing in vivo amyloid stage and cognitive performance using ANCOVA models.

Results: In total, 156 participants (49%) showed evidence of regional amyloid deposition, and all but 2 of these
(99%) adhered to the hierarchical regional pattern implied by the in vivo amyloid progression model. According to
a conventional binary classification based on global signal (SUVRCereb = 1.10), individuals in stages III and IV were
classified as amyloid-positive (except one in stage III), but 99% of individuals in stage I and even 28% of individuals
in stage II were classified as amyloid-negative. Neither in vivo amyloid stage nor conventional binary amyloid status
was significantly associated with cognitive performance in this preclinical cohort.
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Conclusions: The proposed hierarchical staging scheme of PET-evidenced amyloid deposition generalizes well to
data from an independent cohort of older people at elevated risk for AD. Future studies will determine the
prognostic value of the staging approach for predicting longitudinal cognitive decline in older individuals at
increased risk for AD.

Keywords: Amyloid PET, In vivo staging, Subjective memory complaint,

Background
Amyloid PET imaging is considered a direct in vivo
measure of cortical amyloid load with a high specificity
and a relatively strong correlation between the in vivo
amyloid signal in PET and the post-mortem quantifica-
tion of neuritic amyloid plaque load [1–3]. Currently,
the majority of studies use a binary classification of glo-
bal amyloid signal into positive and negative categories.
Several postmortem studies, however, suggest a relatively
consistent pattern of sequential regional amyloid in-
volvement, with initial amyloid accumulation in the as-
sociative neocortex, then spreading through the primary
sensory-motor cortex and the medial temporal allocor-
tex to subcortical regions (striatum, thalamus, and cho-
linergic basal forebrain) and finally to the brain stem
and cerebellum [3–6]. Based on these findings, two re-
cent studies explored the topographical pattern of amyl-
oid spread in vivo using regional analysis of amyloid
PET signal in cognitively normal (CN), mild cognitive
impairment (MCI), and Alzheimer’s disease (AD) indi-
viduals, which revealed highly consistent results with the
findings described by post-mortem studies [6, 7].
Grothe et al. further tested the utility of this progres-

sion model for staging of individual deposition patterns
[7]. They found that the individual deposition patterns
closely adhered to the regional hierarchy implied by the
progression model, allowing them to classify over 95% of
participants with detectable regional amyloid deposition
into one of four successive amyloid stages. Although the
earliest in vivo amyloid stages were mostly missed by
conventional binary classification approaches based on
global amyloid signal, they were associated with signifi-
cantly reduced cerebrospinal fluid (CSF) Aβ42 levels,
corroborating the pathologic origin of these PET signal
elevations [7]. Moreover, advanced in vivo amyloid
stages were most frequently observed in cognitively im-
paired patients (MCI or AD dementia) and correlated
with cognitive deficits in healthy elderly individuals [7].
The primary goal of the current study was to explore

the validity of this recently proposed in vivo staging
scheme [7] and its association with cognitive function in
independent data from a large cohort of cognitively in-
tact older individuals with subjective memory com-
plaints, the “INSIGHT-preAD” cohort [8–10].

Methods
Participants
All the data for this project were collected for the
INSIGHT-preAD study which is a mono-centric aca-
demic university-based cohort derived from the Institute
for Memory and Alzheimer’s Disease (IM2A) at the
Pitié-Salpêtrière University Hospital in Paris, France,
with the objective of investigating the earliest preclinical
stages of AD and its development including influencing
factors and markers of progression [11].
The INSIGHT-preAD study includes 318 cognitively

normal Caucasian individuals from the Paris area, be-
tween 70 and 85 years old, with subjective memory com-
plaints and with defined brain amyloid status. The study
aims at 7 years of follow-up, with the 2-year follow-up
being completed in 2017. Demographic, cognitive, func-
tional, nutritional, biological, genetic, genomic, imaging,
electrophysiological, and other assessments were per-
formed at baseline. Subjective memory complaints were
confirmed by an affirmative answer to both of the fol-
lowing questions: (i) “Are you complaining about your
memory?”, and (ii) “Is it a regular complaint which lasts
more than 6 months?”
Demographic characteristics, including cognitive per-

formance and ApoE genotype, are shown in Table 1.
Each participant had a total recall at the Free and Cued
Selective Reminding Test in the normal range (mean
46.1 ± 2.0). Written informed consent was provided by
all participants. The study was approved by the local
Institutional Review Board and has been conducted in
accord with the Helsinki Declaration of 1975.

Cognitive tests
A comprehensive neuropsychological battery was admin-
istered to all participants of the INSIGHT-preAD cohort
including the Mini-Mental State Examination (MMSE)
[14] to asses global cognition, the Free and Cued Select-
ive Reminding Test (FCSRT) and Memory Binding Test
(MBT) [15–17] for episodic memory, Letter and Cat-
egory Verbal Fluency test [18–20] for instrumental and
executive functions, the Rey-Osterrieth Complex Figure
Copy [21] for visuo-spatial abilities; Digit span (forward
and backward) [22, 23], the Trail Making Test (TMT)
[24], and the Frontal Assessment Battery [25] for the
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assessment of working memory and executive function.
In order to reduce the high dimensionality of the de-
tailed cognitive test data, we ran a principal component
analysis (PCA) on standardized z-scores of the 15 avail-
able cognitive test scores to sum up the covariates into
representative eigenvectors. However, we excluded from
the PCA analysis the scores of MMSE, Frontal Assess-
ment Battery, and total (free and cued) delayed recall of
FCSRT (index test for study inclusion) due to lack of
variance in their scores among participants.

ApoE genotype
DNA was prepared from frozen blood samples using the
5Prime Archive Pure DNA purification system according
to the manufacturer’s instructions. ApoE genotypes were
determined for each individual using PCR-based Sanger
sequencing. Exon 4 from ApoE gene containing the SNP
corresponding to the ε3/ε4 alleles was amplified using
PCR with the following primers: ApoE sense, 5′-TAAG
CTTGGCACGGCTGTCCAAGGA-3′; ApoE antisense,
5′-ACAGAATTCGCCCCGGCCTGGTACAC-3′. For each
sample, the reaction mixture (50 μl) contained 200 ng
of genomic DNA, 10 μl PCR Flexi buffer (5×), 3 μl
MgCl2 (25 mM), 1 μl dNTPs (10 mM), 1 μl of each
forward and reverse primers (10 μM), and 0.25 μl GO
Taq DNA polymerase (Promega). The cycling pro-
gram was carried out after a preheating step at 95 °C
for 2 min and 35 cycles of denaturation at 95 °C for 1 min,
annealing at 68 °C for 1 min and extension at 72 °C
for 1 min. The amplified fragments were then purified
and sequenced using the same primers [11].

Imaging data acquisition
In the Pitié-Salpêtrière University Hospital in Paris, all
the amyloid PET scans were acquired in a single session
on a CT-PET scanner (Gemini GXL, Philips, Cleveland,
USA) 50 ± 5min after the injection of approximately
370MBq (333–407MBq) of 18F-florbetapir (AVID ra-
diopharmaceuticals). PET acquisition consisted of 3 ×
5-min frames, in a 128 × 128 acquisition matrix, with a
voxel size of 2 × 2 × 2mm3.
Images were then reconstructed using the iterative

LOR-RAMLA algorithm (10 iterations). Reduction of
noise was modulated by the relaxation parameter

lambda, which was set to 0.7. All corrections (attenu-
ation, scatter, and random coincidence) were integrated
in the reconstruction [26]. The reconstructed PET image
resolution was 7.5 mm FWHM.
MRI scans were acquired on a Siemens Verio 3 T scan-

ner at the CENIR in the Brain and Spine Institute, Paris,
France. A T1-weighted image was acquired using a fast
three-dimensional gradient echo pulse sequence using a
magnetization preparation pulse (Turbo FLASH) and
with the parameters of TR = 2300 ms; TE = 2.98 ms; IT =
900 ms; flip angle = 9°; 1-mm isotropic voxel size; matrix
256 × 240; bandwidth 240 Hz/Px [26].

Imaging data pre-processing
Images were preprocessed using Statistical Parametric
Mapping software version 12 (SPM12) (The Wellcome
Trust Centre for Neuroimaging, Institute of Neurology,
University College London) implemented in Matlab 2013.
The pre-processing pipeline followed the routine previ-
ously described in Grothe et al. [7]. First, each subject’s av-
eraged PET frames were co-registered to their
corresponding T1-weighted MRI scan. Then, partial vol-
ume effects (PVE) were corrected in native space using
the three-compartmental voxel-based post-reconstruction
method as described by Müller-G rtner and colleagues
(MG method) [27]. The corrected PET images were
spatially normalized to an aging/AD-specific reference
template using the deformation parameters derived from
the normalization of their corresponding MRI. The
pre-processing pipeline is summarized in the schematic
diagram provided in Additional file 1: Figure S1.
The regional 18F-florbetapir PET mean uptake values

were estimated for 52 brain regions defined by the Har-
vard–Oxford structural atlas [28], including both cortical
and subcortical regions (https://fsl.fmrib.ox.ac.uk/fsl/
fslwiki/Atlases). Standard uptake value ratios (SUVRcereb)
were computed for the 52 brain regions by dividing the
mean uptake values by the mean uptake value of the
whole cerebellum as estimated in non-PVE-corrected PET
data [7, 29–31].
In accordance with the methods used for the pub-

lished PET-based amyloid staging approach, we based
the cutoff used for determining regional amyloid positiv-
ity on a cutoff value of SUVRcereb = 1.135 [7], which lies

Table 1 Summary of participants’ demographics

N Age (years) Gender (F/M) ApoE-ε4 MMSE score (0–30) Education (0–8)

Amyloid +ve 68 76.6 ± 3.6 44/24 38.2% 28.5 ± 0.91 6.0 ± 2.1

Amyloid −ve 250 75.9 ± 3.5 157/93 12.8% 28.7 ± 0.96 6.2 ± 2.0

All subjects 318 76.1 ± 3.5 201/117 18.2% 28.67 ± 0.95 6.2 ± 2.0

The table presents the demographic features among the whole INSIGHT-preAD cohort as well as the distribution within two main categories, amyloid-positive and
amyloid-negative as classified using the conventional threshold of SUVR = 1.10 applied to global 18F-florbetapir PET signal intensity normalized to the average
signal in the whole cerebellum [12, 13]. Data are mean values ± standard deviation
N number of participants in each category, ApoE-ε4 percent of participants positive for ε4 allele, MMSE Mini Mental State Examination
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in between the two most widely used global signal cut-
offs for non-PVE-corrected 18F-florbetapir PET SUVRs,
i.e., SUVRcereb = 1.10 [12, 13, 32], which represents the
upper limit of observed signal in a group of healthy con-
trols, and SUVRcereb = 1.17, which corresponds to the
lowest signal observed in a group of AD dementia patients
[33, 34]. This threshold was converted to PVE-corrected
data employed in the regional staging approach using
linear regression. Thus, global 18F-florbetapir PET uptake
mean values within a cortical composite mask were calcu-
lated on PET data both corrected and non-corrected for
PVE and these were scaled to the mean signal of the
whole cerebellum (extracted from non-PVE-corrected
data). Global 18F-Florbetapir PET SUVRcereb of both
non-corrected (X-axis) and PVE-corrected PET (Y-axis)
data were plotted, and linear regression analysis indi-
cated a very strong correlation between the two values
(R = 0.94). The linear regression equation was used to
transform the mean cutoff value of SUVRcereb = 1.135
to a value of SUVRcereb = 0.98 in the PVE-corrected
PET data used in our present study [7] (Additional file 2:
Figure S2).

Data analysis
Individual staging of amyloid deposition according to
previously reported four-stage model
We projected our regional SUVRcereb values on the
previously published four-stage model of amyloid
pathology progression derived from 18F-Florbetapir
PET data of cognitively normal older individuals enrolled
in the Alzheimer’s disease Neuroimaging Initiative (ADNI)
study [7]. This four-stage model was estimated by count-
ing the frequency of amyloid positivity across the 52 brain
regions defined in the Harvard–Oxford structural atlas
and then merging the regions into four broader anatom-
ical divisions based on equal proportions of the observed
range of involvement frequencies. The four anatomical
divisions defining the staging scheme are illustrated in
Additional file 3: Figure S3, and full details on the de-
velopment of this staging approach are provided in the
original publication [7].
Following the approach described in [7], an ana-

tomical division was considered positive for amyloid
pathology if at least 50% of the regions included in
this division exceeded the cutoff value (SUVRcereb =
0.98) in the respective participant. Subsequently, par-
ticipants were classified as stage I if only the first
division was considered positive. Then, the succes-
sive stages II–IV were defined by the additional in-
volvement of their corresponding divisions 2, 3, and
4, respectively. Participants who exhibited amyloid
positivity in any division without concurrent amyloid
positivity in the preceding divisions were classified
as non-stageable (mismatch).

For comparison, 18F-Florbetapir PET scans were also
conventionally classified into global amyloid-positive or
amyloid-negative categories based on a commonly used
cutoff of SUVRcereb > 1.10, applied to the global com-
posite SUVRCereb values (non-PVE-corrected).

Reproducibility of the amyloid progression model
In order to assess the reproducibility of the regional pro-
gression model underlying the hierarchical staging
scheme, we re-estimated the model by calculating the re-
gional frequency of amyloid positivity across the
18F-Florbetapir PET scans of the INSIGHT-preAD co-
hort. Correspondence between the model derived from
the INSIGHT-preAD cohort and the original model de-
rived from the ADNI cohort was assessed quantitatively
using the Spearman correlation between the respective
ranks of the 52 studied brain regions.

Statistical analysis
All the data were statistically analyzed using the SPSS
Statistics software package, version 23.0, developed by
IBM. An association between in vivo amyloid stage and
ApoE-ε4 allele frequency was assessed using chi-squared
(χ2) test. Analysis of covariance (ANCOVA) was used to
examine the covariation between amyloid stage and
scores of the cognitive principal components, as well as
the cognitive tests scores being most representatives for
each of these components, while adjusting for the covar-
iates age and gender. For comparison, we also applied
the ANCOVA analysis to the conventional binary amyl-
oid status. P values were corrected for multiple compari-
sons using the Bonferroni correction.

Results
Individual staging based on hierarchical four-stage model
of regional amyloid deposition
The individual staging of INSIGHT-preAD participants
based on regional amyloid burden is displayed in Fig. 1.
One hundred fifty-six participants (49%) showed evi-
dence of regional amyloid deposition, and only two of
these (1.3%) were found to violate the proposed regional
hierarchy implied by the four-stage model, providing evi-
dence for the consistency of this stage model across dif-
ferent cohorts. Both mismatching individuals were found
to be positive for the second anatomical division while
lacking amyloid positivity for the regions of the first ana-
tomical division. Among the five regions comprising the
first anatomical division, the mismatching individuals
exhibited positivity for the inferior temporal gyrus (both
anterior and posterior divisions) while lacking amyloid
deposition in the remaining regions, namely anterior
cingulate gyrus, temporal fusiform cortex, and parietal
operculum.
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Exploring the distribution of the different stages of
the model against the conventional binary classifica-
tion model (based on a global signal threshold of
SUVRcereb > 1.10), we observed that almost all the
subjects in stage III or IV (96.8% and 100%, respect-
ively) were classified as amyloid-positive. By contrast,
almost all the subjects who belonged to stages 0 and
I were classified as amyloid-negative (98.1% and
98.7%, respectively). Moreover, about 30% of individ-
uals in stage II were classified as amyloid-negative
(Table 2). When matching the global signal cutoff to
the cutoff used for determining regional positivity
(SUVRcereb = 1.135), the percentage of negatively
classified individuals in stage II rose to 40%.

Association of amyloid stage with APOE genotype and
cognitive performance
In vivo amyloid stage was significantly associated with
ApoE-ε4 status, such that the percentage of ApoE-ε4
carriers increased with increasing amyloid stage (chi-s-
quared (χ2) test, p = 0.001) (Table 3).
The principal component analysis of the cognitive

tests, including memory, executive, and attention func-
tions, identified three main components that accounted
for 45.5% of the variance in the data (Additional file 4:
Table S1). The highest loading in the first component
was for FCSRT “Total free recall scores” and in the sec-
ond component for the MCT “Immediate Total Free Re-
call List 1 and 2.” The third component mainly
represented tests of executive and attention functions
and showed highest loadings on “TMT-B scores.”
In vivo amyloid stage was not significantly associated with

any of the principal component scores, but showed rela-
tively weak effects on FCSRT total recall scores (p = 0.022,
partial η2 = 0.063) and TMT-B scores (p = 0.036, partial
η2 = 0.056), which did not survive correction for multiple
comparisons. Moreover, the effects appeared to be primar-
ily driven by low cognitive scores of the few participants in
amyloid stage IV (N = 4) and did not remain (nominally)
significant when these participants were removed. The bin-
ary conventional approach had no significant effect on any
of the three principal components or their most representa-
tive individual tests scores (full statistics for all tests and
plots of the data are reported in Additional file 5: Table S2).

In vivo amyloid progression model based on frequency of
regional involvement
In the INSIGHT-preAD cohort, the inferior temporal
gyri showed the highest frequency of involvement (about
~ 90%) followed by the lateral occipital cortices and mid-
dle temporal gyri (~ 70% and ~ 60% respectively) and
the other associative cortex regions. The precuneus cor-
tex and the cingulate gyri surprisingly showed an inter-
mediate frequency of involvement (~ 20%) which was
rather close to the primary sensory-motor regions (~
15–20%). The brain areas less involved were the striatum
and the parahippocampal regions (~ 2–5%), while no re-
gional amyloid pathology was detected in the thalamus
and hippocampus (Additional file 6: Figure S4).

Fig. 1 Individual staging of INSIGHT-preAD cohort participants
based on regional amyloid burden. This figure shows the individual
staging of the INSIGHT-preAD cohort, where each row represents a
participant in the study while the columns represent the 4
anatomical divisions. The red and the gray colors denote presence
and absence of amyloid, respectively, in each anatomical division.
The yellow arrows point to mismatching individuals

Table 2 Comparing individual amyloid stages to conventional binary amyloid status
Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

SUVR > 1.1 3 (1.9%) 1 (1.3%) 29 (72.5%) 31 (96.9%) 4 (100%)

SUVR > 1.135 0 (0%) 0 (0%) 24 (60%) 31 (96.9%) 4 (100%)

Number of subjects 162 78 40 32 4

The table presents the distribution of the stages of the in vivo amyloid staging model among the INSIGHT-preAD participants compared to conventional binary
amyloid status. Data represents the number of participants with global cortical measure exceeding the cutoff of (SUVR = 1.1) and cutoff of (SUVR = 1.135),
respectively, and their percentage among the total participants comprising the respective stage
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Figure 2 compares the ranks of the 52 studied brain
regions between the estimated progression model in the
INSIGHT-preAD cohort and the originally estimated
model in the ADNI data [7]. Overall, the two models
showed a relatively good correspondence with a Spear-
man correlation between the respective ranks of R =
0.75 (p < 0.001). Both models generally agreed on a
pattern of involvement frequencies that are highest in
the inferior temporal lobe and other heteromodal associ-
ation areas, intermediate in several primary
sensory-motor regions (e.g., precentral gyrus and cuneal
cortex), and lowest in the medial temporal lobe and sub-
cortical areas. However, some discrepancies between
both models were also notable. For example, the
INSIGHT-preAD cohort showed a relatively higher fre-
quency of involvement in posterior (occipital and par-
ietal) brain regions and the lateral temporal lobe (middle
and superior temporal gyri), whereas the anterior and
posterior cingulate gyri, fronto-orbital and opercular re-
gions were relatively less frequently involved.

Discussion
Here, we adopted a hierarchical region based in vivo
amyloid staging model proposed recently [7] and applied
it on a large independent cohort of older individuals at
elevated risk for AD [8, 10]. Our findings provide evi-
dence for the applicability of the in vivo amyloid staging
model proposed by Grothe and colleagues to different

cohorts. Indeed, 99% of the 156 individuals with detect-
able amyloid load in the INSIGHT-preAD cohort ad-
hered to the sequential regional pattern of the model.
Moreover, it allowed for identifying 49% of clinically
normal older individuals as having evidence of regional
amyloid deposition in this preclinical cohort opposed to
the 21.5% identified as being amyloid-positive using the
conventional global measure. Almost all individuals clas-
sified as stage I and about 30% of individuals classified
as stage II according to the regional staging approach
were considered amyloid-negative according to the con-
ventional global measure. Both stages correspond to
Thal amyloid phase 1 denoting amyloid deposits con-
fined to the associative neocortex [5]. Thus, in vivo
amyloid staging could have crucial implications for clin-
ical trials, as it may allow the identification of individuals
at the very early stages of disease pathogenesis.
These findings are consistent with the results of previ-

ous studies exploring the correspondence between Thal
amyloid staging at autopsy and the ante-mortem
depicted PET signal using different radioisotope ligands,
namely C11 PiB and F18 radiolabeled ligands [2, 3, 6].
Some studies concluded that amyloid PET scans are par-
ticularly effective in detecting advanced Thal phases and
that the early Thal phases (0–2) with amyloid deposition
confined to the neocortex were always associated with a
negative scan [3, 35, 36]. Analogously, Murray et al. sug-
gested that PET positivity assigned based on global PET

Table 3 Amyloid progression model stages and ApoE-ε4 status

N Stage 0 Stage 1 Stage 2 Stage 3 Stage 4

ApoE-ε4 (+ve) 58 17 (10.5%) 12 (15.4%) 15 (37.5%) 13 (40.6%) 1 (25.0%)

ApoE-ε4 (−ve) 258 145 (89.9%) 66 (84.6%) 25 (62.5%) 19 (59.4%) 3 (75.0%)

All subjects 316 162 78 40 32 4

The table presents the distribution of stageable participants (316 out of 318) in the INSIGHT-preAD cohort among the in vivo amyloid stages and their
corresponding ApoE-ε4 status
N number of participants in each category, ApoE-ε4 apolipoprotein E (ε4 allele)

Fig. 2 Comparison of the in vivo amyloid progression model derived from the INSIGHT-preAD cohort versus the original model. This figure
displays the ranks of the 52 studied brain regions according to the re-estimated amyloid progression model in the INSIGHT-preAD cohort (violet
bars) and directly compares them to the ranks in the originally estimated model in the ADNI data (red bars)
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signal and the currently used thresholds fail to recognize
initial amyloid phases [2]. They showed that a cutoff
point of 1.4 SUVR on ante-mortem PiB PET normalized
to whole cerebellar signal corresponded to Thal amyloid
phase 2 at autopsy [2, 36]. However, Ikonomovic et al.
compared the regional CERAD neuritic plaque score at
autopsy with ante-mortem PET scans and suggested that
18F-flutemetamol PET may detect amyloid-β plaques
early in neocortex even below the level usually associ-
ated with clinically significant (moderate) burden [3].
Subsequently, they recommended modifying the amyloid
PET scans interpretation method to fit the targeted clin-
ical setting, using a more sensitive method for identify-
ing at risk subjects with still preserved cognitive
functions [3]. Consequently, many studies recommended
using a lower cutoff than the currently used to assign
amyloid positivity based on global PET signal [2, 37].
This approach, however, increases the risk of false posi-
tive findings. The solution proposed by the regional sta-
ging approach is to consider detailed topographical
differences between individuals to identify the early
amyloid accumulators who are usually misclassified as
negative for amyloid [2], while minimizing misclassifica-
tion of low unspecific binding.
The second goal of our study was to explore the asso-

ciation between amyloid stage and cognitive perform-
ance in this cohort of cognitively intact individuals with
subjective memory complaints. We included in our ana-
lysis scores of neuropsychological tests that assess the
various disease-specific cognitive domains, such as epi-
sodic memory and memory binding, executive functions,
processing speed and attention [38–42]. Overall, associa-
tions between cognitive performance and amyloid load
showed only small and non-significant effects, regardless
of whether amyloid load was assessed using in vivo
amyloid stage or conventional binary amyloid status.
This could be attributed to the limited variability of the
cognitive test scores in a cognitively normal performing
cohort. In subsequent follow-up data from the
INSIGHT-preAD cohort, we will be able to determine
whether regional amyloid stages associate with a
stage-proportional risk for longitudinal cognitive decline,
thus potentially providing more fine grained risk stratifi-
cation compared with the binary classification of global
amyloid load [43]. The lack of associations between epi-
sodic memory and amyloid load in our cohort contra-
dicts previous studies that found that subtle episodic
memory changes occur in early, preclinical stages of the
disease [39, 44–48]. This contradiction may be attribut-
able to the inclusion criteria of the INSIGHT-preAD co-
hort requiring normal performance in the FCSRT total
recall scores, thus restricting the variability in episodic
memory performance in this cohort and possibly mask-
ing its cross-sectional association with amyloid burden.

In a secondary analysis, we also assessed the reprodu-
cibility of the regional amyloid progression model under-
lying the hierarchical staging scheme by calculating the
regional frequency of amyloid positivity across the
18F-florbetapir PET scans of the INSIGHT-preAD co-
hort. Overall, the re-estimated model in the
INSIGHT-preAD cohort showed a relatively good cor-
respondence with the originally estimated model in the
ADNI data. Both models agreed on a general pattern of
involvement frequencies that are highest in the inferior
temporal lobe and other heteromodal association areas,
intermediate in several primary sensory-motor regions
and lowest in the medial temporal lobe and subcortical
areas. This pattern also largely agrees with regional in-
volvement frequencies observed in a previous study
using 18F-florbetaben PET data [6] and is consistent
with long-standing neuropathologic estimates of region-
ally progressing amyloid pathology [5, 49]. However, be-
sides the relatively good overall correspondence, on a
regionally more detailed level, some notable discrepan-
cies were also evident between the models derived from
the INSIGHT-preAD and ADNI cohorts (Fig. 2), which
may relate to differences in the specific characteristics of
both cohorts. Thus, the INSIGHT-preAD cohort is a
highly selected mono-centric cohort of very old seniors
who lack any objective cognitive decline despite present-
ing with subjective memory complaints. Due to the ad-
vanced age, a high prevalence of co-morbid pathologies,
particularly cerebrovascular disease and cerebral amyloid
angiopathy (CAA), can be expected and these may inter-
act with the regional patterns of amyloid deposition. For
example, CAA has been reported in up to 57% of indi-
viduals over 70 years and affects primarily the occipital
and parietal lobes [50, 51]. Hence, the relatively higher
involvement of posterior (occipital and parietal) over
frontal brain regions in the INSIGHT-preAD data may
potentially be explained by a higher prevalence of CAA
in this relatively old cohort. On the other hand, the pre-
served cognitive performance of these individuals points
to a higher brain resilience that may provide a relative
resistance to regional pathology progression [52, 53].
Due to these specific cohort characteristics, a regional
progression model derived from the INSIGHT-preAD
cohort may not generalize well to the broader popula-
tion of older people. However, it is notable that the re-
gional differences in amyloid distribution in the
INSIGHT-preAD data did not translate into an increased
number of mismatching individuals in this cohort. Thus,
overall amyloid deposition patterns across the four larger
anatomical divisions considered in the original staging
scheme based on ADNI data also showed a very consist-
ent regional hierarchy across INSIGHT-preAD individ-
uals. This highlights the potential of the proposed staging
approach to provide a consistent staging of an overall
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amyloid progression pattern across four larger anatomical
systems, while accounting for inter-individual differences
in amyloid deposition at a higher regional resolution.
It is important to note that the proposed in vivo amyl-

oid staging approach relies on a range of methodologic
conditions that may affect the final staging outcomes, in-
cluding for example the employed radiotracer (18F-Flor-
betapir), the methods used for signal quantification
(PVE-corrected SUVR values) and for defining brain re-
gions (Harvard-Oxford atlas), as well as the methods
and thresholds used to define amyloid positivity for a re-
gion and for an anatomical division. While outside the
scope of the present study, it would be important in fu-
ture methodological studies to analyze in more detail the
differential effects that these methodical choices may
have on the staging outcomes and which methods may
be the most accurate when compared to neuropatho-
logic data as the gold standard.
For example, the described in vivo amyloid staging ap-

proach relies on PVE-corrected SUVR values for regional
PET signal quantification [7]. While SUVR values are by
far the most widely used metric for 18F-florbetapir PET
scans [33] and for amyloid PET imaging in large-scale
cohort studies with high-throughput PET scanning in
general [26, 54–57], they are also known to lead to biased
estimates when compared to the gold standard estimates
derived from tracer kinetic modeling using dynamic PET
acquisitions (i.e. BPND or DVR values) [58–60]. Thus,
using DVR values, particularly arterial input-based values,
could be an interesting option to further refine the in vivo
amyloid staging model in future research.
Partial volume effect correction has been shown to en-

hance the accuracy of regional amyloid PET signal quan-
tification and allows for inter-regional quantitative
comparison as it alleviates the differential impact of par-
tial volume effects on different brain regions [61, 62]. In
healthy populations, it was described a decline in the
global SUVR values following partial volume effect cor-
rection due to the predominant spill-in effects from the
WM to the GM particularly in case of low brain atrophy
and when using 18F-labeled amyloid tracers character-
ized by high non-specific binding to WM [63–65]. An-
other advantage of applying partial volume correction
on PET data is that it enhances the sensitivity of detect-
ing small changes in follow-up studies as it attenuates
the bias induced by the concomitantly progressing cor-
tical atrophy leading to underestimation of the SUVR in
non-corrected PET data [29, 62, 63, 66]. This will enable
us to further study the amyloid deposition model longi-
tudinally, explore the transition rates between the identi-
fied stages of amyloid deposition, and study the
correlation between the rates of transition and the rates
of cognitive decline in the upcoming follow up data of
the INSIGHT-preAD cohort.

For detection of regional amyloid-positivity the in vivo
staging approach applies a constant threshold to all
brain regions. This threshold is based on the mean value
of the two most widely used cutoffs for defining
amyloid-positivity based on global 18F-florbetapir PET
SUVRs (SUVRcereb = 1.10 [12, 13, 32] and 1.17 [33, 34],
respectively), which is further extrapolated to the
PVE-corrected PET data used in the staging approach
[7]. Grothe et al. used this relatively high and more con-
servative threshold owing to a potentially higher signal
to noise ratio depicted when exploring the PET signal on
a detailed regional level compared to the global PET
measure. When estimating the global PET signal, the
signal is averaged across all the regions comprising the
global mask. Thus, in early amyloid deposition phases,
when not all the included regions have already accumu-
lated amyloid, the overall global signal may lie below the
conventionally used thresholds, resulting in an
amyloid-negative classification although considerable
amyloid load may have already deposited in specific re-
gions of the neocortex. However, using a fixed regional
threshold for assigning regional amyloid-positivity re-
gardless of differences in gray matter density and surface
area between the different brain regions is a potential
limitation of the described in vivo staging approach and
an important methodological aspect to be further inves-
tigated. However, Grothe et al. conducted sensitivity
analyses across the range of values between the two
widely used cutoffs to confirm reproducibility of the
amyloid deposition model in normal healthy individuals
of the ADNI cohort across the entire range of amyloid
cutoffs, suggesting relatively little inter-regional variabil-
ity in noise levels in the PVE-corrected PET signal [7].
In contrast to the approach used by Grothe et al. [7],
Cho et al. in their study determined regional
amyloid-positivity using Z scores based on an older,
globally negative, control population and a cutoff of Z
score > 2.5 [6]. While the use of such region-specific
thresholds may potentially account better for region-
ally differing noise levels, the definition of these
thresholds will depend on the specific control cohort
used, which limits the transferability of this approach
and the generalization of the study results to other
cohorts.

Conclusions
In conclusion, our results support the validity and repro-
ducibility of the in vivo staging model of regionally pro-
gressing amyloidosis in an independent preclinical
cohort at elevated risk for AD. Further evaluation of
the staging approach in parallel with longitudinal
multi-domain cognitive performance will be crucial
for assessing its prognostic value for predicting cognitive
decline along the course of the disease.
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Additional file 1: Figure S1. Schematic diagram summarizing the pre-
processing pipeline. (PDF 276 kb)

Additional file 2: Figure S2. Regional amyloid positivity cutoff value
estimation. The figure shows the linear regression plot of the Global 18F-
florbetapir PET SUVRcereb of both non-corrected (X-axis) and PVE-
corrected PET (Y-axis) along with the generated equation that was used
to transform the regional cutoff value of SUVRcereb = 1.135 to a value of
SUVRcereb = 0.98 in the PVE-corrected PET data. (PDF 190 kb)

Additional file 3: Figure S3. Model of the hierarchical in vivo amyloid
staging scheme. This figure shows the 52 brain regions merged into four
larger anatomical divisions based on equal partitions of frequency range
as initially defined in the original model. Then the resulting amyloid
progression stage (I-IV) is defined by the involvement of the
corresponding anatomical division displayed in red in addition to the
affected areas of the previous stage (displayed in blue). The amyloid
progression stages are displayed on left, midline sagittal and basal brain
views. (PDF 312 kb)

Additional file 4: Table S1. Principal component analysis applied on
the neurocognitive test scores. The table shows the three main
components that could be identified based on the principal component
analysis and subsequently the contributing tests in each component.
(PDF 97 kb)

Additional file 5: Table S2. Associations between in vivo amyloid stage
and cognitive performance. Analysis of Covariance (ANCOVA) assessing
the effect of amyloid stage and conventional binary amyloid status on
scores of the main principal components as well as the most
representative tests for each of these components. (PDF 240 kb)

Additional file 6: Figure S4. Amyloid progression model in the
INSIGHT-preAD data. This figure shows the amyloid progression model in
the INSIGHT-preAD data as implied by the frequency of involvement of
the 52 studied brain regions. The frequencies were displayed on left, mid-
line sagittal and basal brain views. (PDF 252 kb)
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Abstract 

We tested the usefulness of a regional amyloid staging based on amyloid sensitive Positron 

Emission Tomography (PET) to predict conversion to cognitive impairment and dementia in 

preclinical and prodromal Alzheimer’s disease (AD). We analyzed 884 cases, including  

normal controls, and people with subjective cognitive decline or mild cognitive impairment 

(MCI), from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with a maximum follow-

up of 6 years and 318 cases with subjective memory complaints with a maximum follow-up 

time of three years from the INveStIGation of AlzHeimer’s PredicTors cohort (INSIGHT-

preAD study). Cox regression showed a significant association of regional amyloid stages 

with time to conversion from a cognitively normal to a MCI, and from a MCI to a dementia 

status. The most advanced amyloid stages identified very high-risk groups of conversion. All 

results were robustly replicated across the independent samples. These findings indicate the 

usefulness of regional amyloid staging for identifying preclinical and prodromal AD cases at 

very high risk of conversion for future amyloid targeted trials.  

 

Key words: amyloid; longitudinal study; dementia; MCI; subjective cognitive decline 
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Introduction 

Cerebral amyloid deposition is considered an upstream event in the pathogenesis of 

Alzheimer’s disease (AD) (Thal et al., 2006). In-vivo imaging using amyloid sensitive Positron 

Emission Tomography (PET) detected increased levels of amyloid in 15-30% of cognitively 

normal people older than 70 years, and in at least 50% of people with a clinical phenotype of 

amnestic mild cognitive impairment (MCI) (Quigley et al., 2010). However, the positive 

predictive value of increased amyloid signal in PET for subsequent cognitive decline in 

preclinical or prodromal AD cases is limited. In cognitively normal people, the positive 

predictive value of a positive amyloid PET status for subsequent conversion to MCI or 

dementia is only about 25% over 3 to 5 years of follow-up (Baker et al., 2017; Morris et al., 

2009; Villemagne et al., 2011). In people with MCI, the positive predictive value of positive 

amyloid status for subsequent conversion to AD dementia is about 65% to 84% for a follow-

up period of 3 to 5 years (Martinez et al., 2017; Zhang et al., 2014). 

The current standard of amyloid PET imaging data analysis is a dichotomous 

classification in amyloid positive or amyloid negative cases (Klunk et al., 2015). Recently, we 

have developed a more fine grained (Grothe et al., 2017) and replicable (Sakr et al., 2019) 

PET-based in-vivo amyloid staging scheme that considers five regional stages of progressive 

cerebral amyloid deposition. The staging identified neurobiologically meaningful regional 

variation of amyloid deposition even in people with an amyloid negative status, as shown by 

associations of amyloid stages with cerebrospinal fluid (CSF) Aβ1-42 concentrations and 

cognitive performance. An alternative tripartite staging approach has been based on 

differential involvement of cortical vs subcortical structures (amygdala, putamen, and 

caudate nucleus) (Cho et al., 2018). This previous study showed promising results for the 

predictive utility of amyloid staging but lacked a differentiation of cortical stages and a 

comparison with the standard binary classification.  

Here, we evaluated the usefulness of regional amyloid staging to predict conversion 

of cognitively normal people with and without subjective cognitive decline (SCD) or subjective 
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memory complaints (SMC) to MCI or AD dementia and of MCI cases to AD dementia, 

respectively. We compared our results with classical binary amyloid classification. We 

studied replicability of effects in three different longitudinal samples: a sample from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) that had previously been used for 

establishing the regional amyloid staging approach (Grothe et al., 2017), a second sample 

from ADNI that was not part of the development of the staging scheme, and an independent 

cohort of SMC cases from the monocentric INveStIGation of AlzHeimer’s PredicTors in 

subjective memory complainers (INSIGHT-preAD cohort) (Dubois et al., 2018). As endpoint 

we assessed functional conversion as defined by transition in clinical dementia rating scale 

(CDR) scores (Berg, 1988). 
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Material and Methods 

Data source 

Data used in the preparation of this article were obtained from two independent 

cohorts. The first cohort contained data from the ADNI database (http://adni.loni.usc.edu/). 

The ADNI was launched in 2003 by the National Institute on Aging, the National Institute of 

Biomedical Imaging and Bioengineering, the Food and Drug Administration, private 

pharmaceutical companies and non-profit organizations, with the primary goal of testing 

whether neuroimaging, neuropsychologic, and other biologic measurements can be used as 

reliable in-vivo markers of AD pathogenesis. A fuller description of ADNI and up-to-date 

information is available at www.adni-info.org. The second cohort was taken from the 

INSIGHT-preAD study (Dubois et al., 2018). The INSIGHT-preAD study is a monocentric 

university based cohort derived from the Institute for Memory and Alzheimer’s Disease 

(IM2A) at the Pitié-Salpêtrière University Hospital in Paris, France, that aims to investigate 

the earliest preclinical stages of AD and its development including influencing factors and 

markers of progression.  

 

Study participants 

From the ADNI cohort, we retrieved two different samples: first, a sample of 582 

cases that was previously used to establish the regional amyloid staging approach (Grothe et 

al., 2017), henceforth termed ADNI-A sample, and second an independent sample of 302 

cases that had not been part of the previous analysis, henceforth termed ADNI-B sample. 

Both samples provided amyloid PET data at baseline as well as longitudinal clinical follow-up 

using cognitive testing over a maximum interval of 6 years. ADNI-A included data of 179 

cognitively normal elderly subjects, and 403 subjects with MCI. Mean follow-up time was 3.3 

(SD 1.8) years. ADNI-B included data of 75 cognitively normal older subjects, 103 subjects 

with SCD, and 124 subjects with MCI. Mean follow-up time was 3.2 (SD 1.8) years. Detailed 

inclusion criteria for the diagnostic categories can be found at the ADNI web site 

(http://adni.loni.usc.edu/methods/).  
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The INSIGHT-preAD study included 318 cognitively normal Caucasian individuals 

from the Paris area at baseline, between 70-85 years old, with subjective memory complaints 

and with defined brain amyloid status.(Dubois et al., 2018) The study aims at a total of 7-

years of annual follow-up, with the first three years follow-up being available for the current 

analysis; the mean follow-up time was 2.7 (SD 0.8) years. Details on participants’ 

demographics for the three samples are shown in Table 1. 

All procedures performed in the ADNI studies and The INSIGHT-preAD study 

involving human participants were in accordance with the ethical standards of the institutional 

research committees and with the 1975 Helsinki declaration and its later amendments. 

Written informed consent was obtained from all participants and/or authorized 

representatives and the study partners before any protocol-specific procedures were carried 

out in the ADNI or INSIGHT-preAD studies, respectively.   

 

Cognitive tests 

Both ADNI and INSIGHT-preAD cohorts underwent comprehensive 

neuropsychological examinations at least every 12 months. The MMSE (Folstein et al., 1975) 

was available for both cohorts to assess global cognition. We used the CDR score (Berg, 

1988) as primary endpoint to assess change in functional status.  

 

Imaging data acquisition 

Detailed acquisition and standardized pre-processing steps of ADNI imaging data are 

available at the ADNI website (https://adni.loni.usc.edu/methods/). Amyloid-PET data was 

collected during a 50- to 70-minute interval following a 370 MBq bolus injection of 18F-

Florbetapir. To account for the multicentric acquisition of the data across different scanners 

and sites, all PET scans undergo standardized pre-processing steps within ADNI.  

The methods and results for the PET data acquisition in the INSIGHT-preAD cohort 

have been detailed in a previous paper (Habert et al., 2017). All amyloid PET scans were 

acquired in a single session on a Philips Gemini GXL CT-PET scanner 50 (± 5) minutes after 
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the injection of approximately 370 MBq (333-407 MBq) of 18F-Florbetapir (AVID 

radiopharmaceuticals).  

For anatomical reference and pre-processing of the PET scans we used the 

corresponding structural MRI scan that was closest in time to the Florbetapir PET scan. In 

the ADNI-A sample MRI data were acquired on multiple 3T MRI scanners using scanner-

specific T1-weighted sagittal 3D MPRAGE sequences. The ADNI-B sample additionally 

included 1.5 T MRI scans from 155 cases. Similar to the PET data, MRI scans undergo 

standardized preprocessing steps aimed at increasing data uniformity across the multicenter 

scanner platforms (see https://adni.loni.usc.edu/methods/ for detailed information on 

multicentric MRI acquisition and preprocessing in ADNI). MRI scans for INSIGHT-preAD 

were acquired on a Siemens Verio 3T scanner at Pitié-Salpêtrière Hospital, Paris. A T1 

weighted image was acquired using a fast three dimensional gradient echo pulse sequence 

using a magnetization preparation pulse (Turbo FLASH) (Habert et al., 2017). 

 

Imaging data pre-processing 

Images were preprocessed using Statistical Parametric Mapping software version 8 

(SPM8) (The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University 

College London) implemented in Matlab 2013. The pre-processing pipeline followed the 

routine previously described in (Grothe et al., 2017). First, each subject’s averaged PET 

frames were co-registered to their corresponding T1-weighted MRI scan. Then, partial 

volume effects (PVE) were corrected in native space using the 3-compartmental voxel-based 

post-reconstruction method as described by Müller-Gӓrtner and colleagues (Gonzalez-

Escamilla et al., 2017; Müller-Gärtner et al., 1992). The corrected PET images were spatially 

normalized to an aging/AD-specific reference template using the deformation parameters 

derived from the normalization of their corresponding MRI. 

The regional 18F-Florbetapir-PET mean uptake values were estimated for 52 brain 

regions defined by the Harvard–Oxford structural atlas (Desikan et al., 2006), including both 

cortical and subcortical regions (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). Standard uptake 
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value ratios (SUVRCer) were computed for the 52 brain regions by dividing the mean uptake 

values by the mean uptake value of the whole cerebellum as estimated in non-PVE-

corrected PET data (Catafau et al., 2016; Gonzalez-Escamilla et al., 2017; Grothe et al., 

2017; Klunk et al., 2015). 

In accordance with the methods used for the published PET-based amyloid staging 

approach, we based the cutoff used for determining regional amyloid positivity on a cutoff 

value of SUVRCer = 1.135 (Grothe et al., 2017), which lies in between the two most widely 

used global signal cutoffs for non-PVE-corrected 18F-Florbetapir-PET SUVRs, i.e. SUVRCer 

= 1.10 (Clark et al., 2012; Joshi et al., 2012; Landau et al., 2013) and SUVRCer = 1.17 (Clark 

et al., 2011a; Clark et al., 2011b; Fleisher et al., 2011). This threshold was converted to the 

PVE-corrected PET data used for the regional staging approach using linear regression 

between PVE-corrected and non-corrected global SUVRCer values, which resulted in a value 

of SUVRCer = 0.92 in the ADNI cohort (Grothe et al., 2017) and of SUVRCer = 0.98 in the 

INSIGHT-preAD cohort (Sakr et al., 2019). 

 

PET data analysis 

Staging of regional amyloid deposition followed the previously developed 4-stage 

model of amyloid pathology progression derived from 18F-Florbetapir-PET data of cognitively 

normal older individuals enrolled in the ADNI study (Grothe et al., 2017). This 4-stage model 

was estimated by counting the frequency of amyloid positivity across the 52 brain regions 

defined in the Harvard–Oxford structural atlas and then merging the regions into four broader 

anatomical divisions based on equal proportions of the observed range of involvement 

frequencies. The four anatomical divisions defining the staging scheme are illustrated in 

Figure 1.  

According to this staging approach (Grothe et al., 2017), an anatomical division was 

considered positive for amyloid pathology if at least 50% of the regions included in this 

division exceeded the cutoff value in the respective participant. Subsequently, participants 

were classified as stage I if only the first division was considered positive. Then, the 
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successive stages II-IV were defined by the additional involvement of their corresponding 

divisions II, III, and IV, respectively. Participants who exhibited amyloid positivity in any 

division without concurrent amyloid positivity in the preceding divisions were classified as 

non-stageable (mismatch). 

For comparison, we also studied conventional classifications of 18F-Florbetapir-PET 

scans into global amyloid-positive or amyloid-negative categories. For the ADNI data this 

classification was derived using centrally calculated global composite SUVRCer values that 

are made available on the ADNI server (Jagust Lab, UC Berkley; 

adni.loni.usc.edu/methods/pet-analysis). Originally, amyloid-positivity was defined using a 

cutoff of SUVRCer > 1.17 (Clark et al., 2011b; Fleisher et al., 2011). The even more widely 

recommended cutoff of SUVRCer > 1.1 (Clark et al., 2012; Joshi et al., 2012; Landau et al., 

2013) yielded inferior results for the prediction accuracy so that we decided to use the better 

performing cutoff for the reference test of global amyloid status. For the INSIGHT-preAD data 

the classification was based on centrally calculated global composite values published by the 

INSIGHT-preAD PET core, and amyloid-positivity was defined using a recommended cutoff 

of 0.88 for this data, which resulted from a conversion of the above mentioned cutoff of 

SUVRCer > 1.1 to the specific processing pipeline used by the INSIGHT-preAD PET core 

(Habert et al., 2018). A lower cut-off of SUVR > 0.79 that was also published by the 

INSIGHT-preAD PET core yielded lower prediction performance in our analyses so that 

again we decided to use the better performing cutoff for the reference test. 
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Statistical analysis 

We predicted time to conversion in CDR status (from 0 to 0.5 or higher, and from 0.5 

to 1 or higher, respectively) using Cox regression with regional amyloid stages, age, and sex 

as predictors taking censoring into account. For comparison, we replaced regional amyloid 

stages by binary amyloid status in the model. This analysis was conducted using the R 

library “survival” with the command “coxph” for Cox regression. We compared overall model 

fit as estimated from Akaike information criterion (AIC) between Cox regression models 

based on staging vs. models based on global amyloid load. We selected the AIC as fit index 

as it penalizes the use of a higher number of parameters, hence discourages overfitting 

(Burnham and Anderson, 2004). In addition, we conducted survival curve analysis with 

regional amyloid stages as predictor, adjusted for average age and sex distribution within 

each stratum. For comparison, we replaced regional amyloid stages by binary amyloid status 

in the curve fitting. This analysis used the R library “survminer” with the command “survfit” for 

survival curve plotting. Analyses were performed with RStudio, version 1.1.463, a user 

interface of R Project for Statistical Computing Analyses. The libraries used are available at 

http://cran.r-project.org/web/packages. 
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Results  

Staging 

Across the 1,202 cases we found 17 cases (1.4%) that were non-stageable, i.e. 

whose regional amyloid distribution violated the regional staging scheme depicted in Figure 

1. The distribution of non-stageable cases across cohorts and diagnoses is shown in Table 

1. The subsequent analyses exclude these non-stageable cases.  

The following results report hazard ratios (HR) and 95% confidence intervals relative 

to stage 0 for the amyloid stages and relative to the amyloid negative cases for the binary 

classification based on global amyloid.  

ADNI-A sample 

For prediction of CDR conversion in the cognitively normal controls, HR relative to 

stage 0 was 4.4 (95% confidence interval 1.7 to 11.6) for stage II and 4.8 (1.7 – 13.8) for 

stage IV, but there was no significant effect for stages I and III. For binary amyloid the hazard 

ratio was 3.1 (1.4 – 6.6) relative to amyloid negative cases (see Table 2 for details). 

Correspondingly, the stage IV cases had 50% conversion compared with 35% conversion for 

global amyloid increase. 

For prediction of CDR conversion in the MCI cases, we found significant effects for 

amyloid stage III with a HR of 7.0 (3.3 – 14.7), and stage IV with a HR of 9.6 (4.7 – 19.5). 

The prediction by global amyloid (SUVRCer > 1.17) was significant as well with a HR of 7.7 

(4.1 – 14.4) (see Table 2 for details). Risk enrichment was strongest in the stage IV cases 

with 47% conversion compared with 38% for global amyloid increase (Figure 2).   

Both for controls and MCI cases, the lower cutoff for global amyloid of SUVRCer > 1.1 yielded 

inferior results. 

 

ADNI-B sample 

For prediction of CDR conversion results were similar to those in the ADNI-A sample. 

In the MCI cases, hazard ratio was 18.0 (2.3 – 142.4) for stage III, and 27.1 (3.4- 216.2)  for 

stage IV, but there was no significant effect for stages I and II. For binary amyloid the hazard 
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ratio was 23.5 (3.1 – 175.3) (see Table 2 for details). The stage III cases had 55% 

conversion and the stage IV cases 52% conversion, compared with 45% conversion for 

global amyloid increase (Figure 3). 

Only two cases of the cognitively normal controls were amyloid stage IV, so that we 

pooled amyloid stages III and IV (henceforth stage III/IV). For the cognitively normal controls, 

the hazard ratio was 4.1 (1.3 – 13.3) for stage II, and 8.7 (2.9 – 26.2) for stage III/IV. For 

binary amyloid the hazard ratio was 6.2 (2.5 -15.6) (see Table 2 for details). The stage II 

cases had 55% conversion, and the stage III/IV cases 77%, compared with 65% conversion 

for global amyloid increase. 

For the cases with SCD, the hazard ratio was 4.9 (1.4 – 17.3) for stage IV, but there 

was no significant effect for stages I through III. For binary amyloid the hazard ratio was not 

significant (see Table 2 for details). The stage IV cases had 56% conversion, compared with 

32% conversion for global amyloid increase. 

 

Insight-preAD sample 

For the INSIGHT-preAD SMC cases only four cases were amyloid stage IV at 

baseline, so that we pooled amyloid stages III and IV (henceforth stage III/IV).  

For prediction of CDR conversion in the INSIGHT-preAD SMC cases, we found 

significant effects for amyloid stage III/IV with a HR of 5.5 (1.8 – 15.2). The prediction by 

global amyloid (SUVRCer > 0.88) was significant as well with a HR of 3.2 (1.2 – 7.7) (see 

Table 2 for details). The lower cut-off for global amyloid of SUVRCer > 0.79 yielded inferior 

results. Risk enrichment was strongest in the stage III/IV cases with 22% conversion 

compared with 14% for global amyloid increase (Figure 4).    

 

Model fit 

As reported in Table 2, for all except one comparison the staging based models had 

lower AIC than the global amyloid load based model so that the staging based models would 

be preferred. The probability for the global amyloid model to provide a better fit than the 
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staging model was below 0.002 for the ADNI-A controls and the ADNI-B MCI and SCD 

cases, and below 0.3 for the ADNI-A MCI cases and the INSIGHT-preAD SMC cases. Only 

for the ADNI-B controls was the fit as measured by AIC better for the binary than the stage 

model. 
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Discussion 

We found a significant association of regional amyloid stages and global amyloid 

status with time to conversion from a functionally healthy status to mild functional impairment 

and from mild functional impairment to dementia, respectively. These findings were widely 

consistent across the three independent samples. 

The association of global amyloid status with change in functional status agrees with 

previous studies using amyloid sensitive PiB-PET as summarized in a meta-analysis 

covering controls and MCI cases (Chen et al., 2014) and replicated in subsequent studies on 

MCI cases (Frings et al., 2018; Iaccarino et al., 2017). Similar results were reported for 

amyloid sensitive 18F tracers in MCI (Schreiber et al., 2015), with limited evidence for 

predicting conversion of healthy controls to MCI using 18F tracers. Here, we used change in 

functional status as outcome, i.e. from CDR score 0 to CDR score > 0.5, and from CDR 

score 0.5 to CDR score > 1. The global CDR score provides a commonly defined 

operationalized standard for functional assessment with high reliability across different 

cohorts (Schafer et al., 2004) and raters (Burke et al., 1988). Also, the CDR is being used as 

primary or secondary outcome in ongoing clinical trials on AD. Diagnosis of MCI and 

dementia is closely linked with functional assessment using the CDR score (Woolf et al., 

2016). 

From a clinical perspective, the most interesting finding is the added value of regional 

amyloid stages over global amyloid status to identify a subsample of people with a very high 

risk of conversion. Thus, amyloid stage IV MCI cases had a 47% rate of conversion to 

dementia compared with 38% of the global amyloid-positive MCI cases in the ADNI-A 

sample, and in the INSIGHT-preAD cohort, 22% of the stage III/IV individuals with SMC 

converted to CDR 0.5 or higher compared with only 14% in the global amyloid-positive 

cases. The effects were similar in the ADNI-B MCI sample. Assessment of the model fit 

using AIC as fit criterion that penalizes for the higher number of parameters (Burnham and 

Anderson, 2004) with the amyloid staging compared to the binary global amyloid status 

supports the notion that the staging model would be preferred over the binary model in 
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almost all cohorts and diagnostic subgroups except for the ADNI-B controls. In consequence, 

regional amyloid staging would allow identifying a high risk group of preclinical or prodromal 

cases for future amyloid targeted treatment studies. This would require a larger screening 

effort as for example only 7% of controls and 23% of MCI cases in the ADNI-A sample were 

in amyloid stage IV, compared with 23% global amyloid-positive controls and 49% global 

amyloid-positive MCI cases. However, a larger effort in screening is less costly than including 

people with a low risk of conversion. For example, at an initial conversion rate of 47% for 

stage IV MCI cases, one would need 429 cases to detect a 20% reduction of conversion rate 

at a level of significance of 5% with 80% power. However, at an initial conversion rate of 38% 

for global amyloid-positive MCI, this number would increase to 607 cases.1 

In an alternative approach, global amyloid SUVR has been classified according to 

tertiles, where MCI cases in the highest tertile of global SUVR values had the highest hazard 

ratio for conversion (HR 9.4) (Jun et al., 2019), similar to the hazard ratios of the regional 

stage III and IV MCI cases in our ADNI-A and ADNI-B samples. Both approaches are 

similarly easy to apply. However, the usefulness of the tertile staging scheme for predicting 

functional decline in cognitively healthy people and SMC cases has not been assessed so 

far. Another approach used an a priori distinction between neocortical and striatal amyloid 

deposition to define three stages based on (i) overall low amyloid, (ii) high cortical but low 

striatal amyloid, and (iii) high cortical and high striatal amyloid load (Hanseeuw et al., 2018). 

They found a significant association of these stages with rates of cognitive decline, with 

striatum amyloid load adding to the cortical amyloid load alone. We further extend this 

previous evidence for significant risk enrichment in advanced stages of amyloid progression 

by assessing the stage-specific risk of functional conversion and comparing it to more fine-

grained stages of differential cortical involvement as well as to standard global amyloid 

status. Also a recent staging scheme based on frequency of longitudinal regional 

                                                           
1
 Using the formula from Chow, S., Shao, J., Wang, H., 2008. Sample Size Calculations in Clinical Research, 2nd 

ed. Chapman & Hall/., page 89, implemented in http://powerandsamplesize.com/Calculators/Compare-2-

Proportions/2-Sample-Equality (last access 8/2019) 
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involvement showed higher rates of cognitive decline with more advanced amyloid stages 

(Mattsson et al., 2019), but did not assess prediction of functional conversion. One can 

assume that stratification of global amyloid not only in two but in a higher number of classes 

will lead to more precise prediction of functional conversion as well. This is comparable to a 

top down approach, where driven by the precision of prediction, a range of global thresholds 

would be defined. Here, we used a bottom-up approach with regional staging that was 

motivated by the notion of a consistent distribution of amyloid across cortical regions and 

compared its ability to predict functional conversion with the current standard of binarized 

global amyloid levels. For both ADNI and INSIGHT-.preAD the more lenient cut-off yielded 

consistently lower performance so that we only reported the analysis results for the higher 

cut-off. In clinical practice, however, often not binarized amyloid levels are being used but 

expert visual reads of PET scans. A comparison with this clinical standard, however, was 

beyond the scope of the current study. One potential disadvantage of the method is the 

occurrence of mismatch cases that do not fit with the staging scheme. In the current analysis 

only 17 of 1,202 cases did not match the regional staging scheme.  

Our study presents some caveats. First, even when using regional amyloid stages, 

prediction accuracy falls short of a useful biomarker for individual counselling. Rather, 

regional amyloid stages seem useful as marker for risk enrichment of study samples at a 

group level. The use of regional amyloid stages to predict an individual’s cognitive decline 

will likely need combination with markers of tau pathology, such as CSF p-tau concentration 

or Tau PET, or markers of neuronal degeneration, such as FDG PET or MRI volumetry. 

Secondly, the numbers of MCI and SMC cases in stages III and IV are substantial across the 

three cohorts, but for controls numbers are small so that inference for the controls is based 

on a small number of conversion events. However, the consistency of findings across the 

independent cohorts lends some credibility to the results. Thirdly, we want to point out that 

we want to avoid the impression that the current data on the amyloid stages somehow prove 

a regional spread of amyloid through the brain. It is an intriguing observation that the large 

majority of cases with higher stage positive regions have also lower stages positive regions, 
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but not the other way round, with only 17 of 1,202 cases deviating from this pattern. This 

does, however, not prove a longitudinal spread of amyloid through the brain but would only 

conceptually fit to such assumption. Fourthly, on a methodological note, here we used a 

constant threshold for determining regional amyloid positivity as previously defined (Grothe 

et al., 2017). As an alternative approach, one could define region-specific cutoffs that may 

better account for regionally differing noise levels and signal confounds in the amyloid-PET 

data. For example, subcortical nuclei such as the striatum that are entirely embedded in the 

white matter may be differentially affected by spill-in effects from the typically high non-

specific white matter signal compared with neocortical areas (Matsubara et al., 2016). We 

partially addressed this confound by using a 3-compartmental PVE correction method 

(Gonzalez-Escamilla et al., 2017), but this technique would not account for intrinsic 

differences in regional noise levels, such as signal confounds from traversing white matter 

bundles within the striatum itself. We work in parallel on a region-specific threshold approach 

but decided to use the constant threshold approach here, as it provided robust findings 

across two different cohorts in our previous analyses (Grothe et al., 2017; Sakr et al., 2019) 

and may be more easily applicable in future routine use. Still, a comparison of predictive 

accuracy of regional staging using constant vs. region-specific thresholds is currently lacking. 

In summary, we found that regional amyloid stages led to identify a high-risk group of 

controls, SMC and MCI cases for subsequent functional decline. This finding may be useful 

for future clinical trials on amyloid targeted interventions to enrich the risk of conversion. 

Future studies are needed to explicitly model a direct vs. an indirect effect of amyloid stages 

on cognitive decline via supposedly downstream markers such as regional hypometabolism 

or atrophy. 
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Table 1: Participant’s demographics 

 m/f Age (SD) 

[years] 

MMSE (SD) non stage-

able 

Median follow-

up [months] 

(interquartile 

range) 

ADNI-A 

Controls 88/91 73.8 (6.5) 29.1 (1.2) 3 (1.7%) 65 (54; 68) 

MCI 220/183 71.8 (7.6) 28.1 (1.7) 4 (0.7%) 47 (43; 51) 

ADNI-B 

Controls 36/39 79.2 (5.2) 29.2 (1.3) 1 (1.3%) 64 (60; 71) 

MCI 79/45 75.4 (8.1) 27.8 (1.8) 3 (2.4%) 52 (49; 56) 

SCD 42/61 72.4 (5.6) 29.0 (1.2) 4 (3.9%) 51 (38; 59) 

INSIGHT-preAD 

SMC 114/204 76.5 (3.5) 28.7 (1.0) 2 (0.6%) Non estimable1 

      

 

SCD – subjective cognitive decline according to the definition in the ADNI cohort (Risacher et 

al., 2015) 

SMC - subjective memory complaints as defined in the INSIGHT-preAD cohort (Dubois et 

al., 2018) 

1The proportion of censoring in the reversed survival plot with censored data assigned as 

events did not reach the median value during the available observation time  
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Table 2: Results of Cox regression models 

Cohort Group Amyloid-

Status 

Number 

of cases 

HR (SE) p AIC median 

time to 

conversion 

[months] 

ADNI-A Controls 0 95 - -  

 

 

 

237 

n.r. 

  I 27 < 0.1 n.s. n.r. 

  II 15 4.4 (0.49) < 0.003 70 

  III 20 1.8 (0.60) n.s. n.r. 

  IV 12 4.8 (0.54) < 0.004 66 

  A- 132 - -  

260** 

n.r. 

  A+ 40 3.1 (0.40) < 0.004 70 

 MCI 0 136    

 

 

 

790 

n.r. 

  I 34 0.7 (1.1) n.s. 70 

  II 44 1.6 (0.59) n.s. n.r. 

  III 75 7.0 (0.38) < 0.0001 66 

  IV 85 9.6 (0.36) <0.0001 55 

  A- 194 - -  

794$ 

n.r. 

  A+ 183 7.7 (0.32) < 0.0001 63 

ADNI-B Controls 0 37 - -  

 

 

173 

n.r. 

  I 9 1.3 (0.82) n.s. n.r. 

  II 11 4.1 (0.60) < 0.02 37 

  III/IV 13 8.7 (0.56) < 0.0002 35 

  A- 48 - -  

170 

n.r. 

  A+ 23 6.2 (0.47) < 0.0001 35 

 MCI 0 39 - -  

 

n.r. 

  I 11 < 0.1 n.s. n.r 
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Cohort Group Amyloid-

Status 

Number 

of cases 

HR (SE) p AIC median 

time to 

conversion 

[months] 

  II 14 6.0 (1.2) n.s.  

 

173 

63 

  III 20 18.0 

(1.06) 

< 0.007 36 

  IV 21 27.1 

(1.06) 

< 0.002 36 

  A- 50 - -  

186* 

n.r. 

  A+ 58 23.5 

(1.03) 

< 0.003 63 

 SCD 0 49 - -  

 

 

 

176 

n.r. 

  I 14 0.9 (0.81) n.s. n.r. 

  II 11 1.1 (0.86) n.s. n.r. 

  III 13 3.2 (0.62) n.s. n.r. 

  IV 9 4.9 (0.64) < 0.02 50 

  A- 62 - -  

193* 

n.r. 

  A+ 37 1.9 (0.43) n.s. n.r. 

INSIGHT-

preAD 

SMC 0 162 - -  

 

 

211 

n.r. 

  I 78 1.0 (0.64) n.s. n.r. 

  II 40 0.48 (1.1) n.s. n.r. 

  III/IV 36 5.5 (0.52) < 0.002 n.r. 

  A- 255 - -  

214$$ 

n.r. 

  A+ 63 3.2 (0.45) < 0.02 n.r. 
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HR - Hazard ratio with standard error (SE) from cox regression models, including 

age and sex as covariates 

SCD - subjective cognitive decline according to the definition in the ADNI cohort 

(Risacher et al., 2015) 

SMC - subjective memory complaints as defined in the INSIGHT-preAD cohort 

(Dubois et al., 2018) 

I – IV  - amyloid stages  

A+ - amyloid positive according to global threshold 

 

* - Probability p < 0.002 that the binary model minimizes AIC compared with the 

staging model 

** - Probability p < 0.0001 that the binary model minimizes AIC compared with the 

staging model 

$  -  Probability p = 0.13 that the binary model minimizes AIC compared with the 

staging model 

$$ - Probability p = 0.22 that the binary model minimizes AIC compared with the 

staging model 

n.r.  - not reached  
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Figure legends 

Figure 1: Regional amyloid stages 

Stages I to IV of nested regional amyloid accumulation, according to the previously 

established staging approach (Grothe et al., 2017). Adapted with permission from the 

previous publication (Grothe et al., 2017). 

 

Figure 2: Survival curves for amyloid in the ADNI-A sample, adjusted for age and sex 

Survival curves comparing time-to-conversion of amyloid stages strata (Figure 2a) vs. global 

amyloid load (Figure 2b) in the ADNI-A MCI sample. Curves were adjusted for the average 

age and sex distribution within each amyloid stratum. 

 

Figure 3: Survival curves for amyloid in the ADNI-B sample, adjusted for age and sex 

Cumulative survival of CDR conversion endpoint vs. censoring comparing amyloid stages 

(Figure 3a) vs. global amyloid load (Figure 3b) in the ADNI-B MCI sample. Curves were 

adjusted for the average age and sex distribution within each amyloid stratum. 

 

Figure 4: Survival curves for amyloid in the INSIGHT-preAD sample, adjusted for age 

and sex 

Cumulative survival of CDR conversion endpoint vs. censoring comparing amyloid stages 

(Figure 4a) vs. global amyloid load (Figure 4b) in the INSIGHT-preAD sample. Curves were 

adjusted for the average age and sex distribution within each amyloid stratum. 
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Figure 1: Regional Amyloid Stages 
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Figure 2: Survival curves for amyloid in the ADNI-A sample, adjusted for age and sex 

Figure 2a) Amyloid stages – ADNI-A MCI sample  

 

Figure 2b) SUVR binary – ADNI-A MCI sample 

Likelihood ratio test=74.87  

on 6 df, p=4.1e-14 

Likelihood ratio test=66.41  

on 3 df, p=2.5e-14 
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Figure 3: Survival curves for amyloid in the ADNI-B sample, adjusted for age and sex 

Figure 3a) Amyloid stages – ADNI-B MCI sample  

 

Figure 3b) SUVR binary – ADNI-B MCI sample 

Likelihood ratio test=44.03  

on 6 df, p=7.3e-08 

Likelihood ratio test=35.99  

on 3 df, p=7.5e-08 
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Figure 4: Survival curves for amyloid in the INSIGHT-preAD cohort, adjusted for age 
and sex 

Figure 4a) Amyloid stages – INSIGHT-preAD cohort  

 

  

Likelihood ratio test=22.9  

on 5 df, p<0.0004 
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Figure 4b) SUVR binary - INSIGHT-preAD cohort 

 

Likelihood ratio test=16.02  

on 3 df, p<0.002 
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Abstract.
Background: Lipidomics may provide insight into biochemical processes driving Alzheimer’s disease (AD) pathogenesis
and ensuing clinical trajectories.
Objective: To identify a peripheral lipidomics signature associated with AD pathology and investigate its potential to predict
clinical progression.
Methods: We used Bayesian elastic net regression to select plasma lipid classes associated with the CSF pTau/A�42 ratio
as a biomarker of AD pathology in preclinical and prodromal AD cases from the ADNI cohort. Consensus clustering of the
selected lipid classes was used to identify lipidomic endophenotypes and study their association with clinical progression.
Results: In the APOE4-adjusted model, ether-glycerophospholipids, lyso-glycerophospholipids, free-fatty acids, cholesterol
esters, and complex sphingolipids were found to be associated with the CSF pTau/A�42 ratio. We found an optimal number
of five lipidomic endophenotypes in the prodromal and preclinical cases, respectively. In the prodromal cases, these clusters
differed with respect to the risk of clinical progression as measured by clinical dementia rating score conversion.
Conclusion: Lipid alterations can be captured at the earliest phases of AD. A lipidomic signature in blood may provide a
dynamic overview of an individual’s metabolic status and may support identifying different risks of clinical progression.

Keywords: Alzheimer’s disease, heterogeneity, lipidomics, risk assessment
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INTRODUCTION

Current diagnostic research criteria for the
early detection of Alzheimer’s disease (AD) are
based on disease-defining biomarkers of amyloi-
dosis, tauopathy, and neurodegeneration [1]. These
biomarkers, however, are not precise enough to
predict individual clinical trajectories and risk of
clinical conversion [2]. More recently, multi-omics
approaches have been studied to account for the
heterogeneity of clinical courses in AD and iden-
tify different clinic-pathological endophenotypes
as a potential basis for personalized medicine
[3, 4].

As one important example, lipidomics provides
insight into metabolic endophenotypes that may mod-
ify the effect of AD pathology on neurodegeneration
and clinical trajectories. Thus, lipids are involved
in many downstream processes of AD pathology,
such as membrane remodeling, modulation of trans-
membrane proteins, including amyloid-� protein
precursor (A�PP) and its secretases, maintaining
blood-brain barrier function, myelination, cell sig-
naling, and inflammation. In addition, they may even
influence upstream events such as oxidative stress
pathways and alterations of energy balance [5, 6].
Recent genetic studies supported the role of lipids
in AD pathogenesis even beyond the apolipopro-
tein E �4 allele (APOE4), which is considered the
major genetic risk factor for late-onset sporadic
AD (LOAD) [7]. Genome-wide association studies
(GWAS) have identified associations between disease
status and several genes involved in lipid homeosta-
sis, such as CLU (clusterin), SORL1 (sortilin-related
receptor 1), ABCA7 (ATP-binding cassette, sub-
family A, member 7), and PLD3 (phospholipase-D3)
[7] in addition to the microglia related PLCG2 (phos-
pholipase C-gamma) [8].

Our study used targeted lipidomics data from
the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) cohort to identify lipid alterations in the
blood associated with AD pathology biomarker,
namely cerebrospinal fluid (CSF) pTau/A�42 ratio,
in people with preclinical or prodromal AD. In
a secondary exploratory analysis, we determined
lipidomic endophenotypes within prodromal and
preclinical cases, respectively, using a consensus
clustering approach. We investigated whether these
lipidomic endophenotypes contributed to predicting
subsequent clinical progression as determined by
dementia rating score (CDR) conversion in preclini-
cal and prodromal AD cases.

MATERIALS AND METHODS

Cohort overview

This study used data provided by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database
(http://adni.loni.usc.edu). ADNI is a large, multicen-
ter, longitudinal study of older adults launched in
2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering,
the Food and Drug Administration, private phar-
maceutical companies, and non-profit organizations.
The study was designed to acquire serial neuroimag-
ing, clinical and neuropsychological assessments,
and other biologic markers to monitor the progression
of mild cognitive impairment (MCI) and early AD. A
full description of the study protocols and analytical
methods are provided at (http://www.adni-info.org/).

The final cohort consisted of 529 participants
from the ADNI cohort having a baseline diagno-
sis of either cognitively normal or mild cognitive
impairment along with complete CSF- biomarkers,
lipidomics, and body mass index (BMI) data. BMI
values were sorted into three categories as follows:
BMI low (average weight): 18.5–24.9 or (under-
weight): < 18.5, BMI medium (overweight): 25–29.9
and BMI high (at least moderately obese): > 30. We
further classified our participants into three diagnos-
tic groups based on their CSF pTau/A�42 status, such
that the cognitively normal (CN) group represents
cognitively normal participants with CSF pTau/A�42
below the cut-off (0.025) [9]. Preclinical and prodro-
mal groups had CSF pTau/A�42 above the optimized
cut-off and an initial diagnosis of cognitively normal
and MCI, respectively.

APOE genotyping

At the baseline visit, blood samples were obtai-
ned from the participants, shipped to the central
biomarker analysis lab at the University of Penn-
sylvania, and processed using an APOE genotyping
kit, as further described (http://adni.loni.usc.edu/wp-
content/uploads/2010/09/ADNI GeneralProcedures
Manual.pdf). For subsequent analysis, we coded par-
ticipants’ APOE genotype according to the presence
of �4 allele present as follows; 0: no �4 allele, 1 : 1
or 2 �4 alleles.

CSF biomarkers measurements

CSF amyloid-� (1-42) (CSF A�42) and CSF
Phospho-Tau (181P) (CSF pTau) were measured

http://adni.loni.usc.edu
http://www.adni-info.org/
http://adni.loni.usc.edu/wp-content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf
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using the fully automated Roche Elecsys® immuno-
assay platform at the UPenn/ADNI Biomarker Labo-
ratory. CSF biomarkers A�42 and pTau/A�42 were
binary classified based on the optimized cut-offs
977 pg/ml and 0.025, respectively. These cut-offs
were determined on the ADNI cohort then vali-
dated against the visual reads of amyloid-� PET, as
explained in [9].

Lipidomics data

Targeted Lipidomics analysis was carried out on
the plasma samples from ADNI participants using
ultra-high-performance liquid chromatography cou-
pled with chromatographic separation to characterize
isomeric and isobaric lipid species. Mass spectrom-
etry analysis was performed on an Agilent (6490
QQQ) mass spectrometer in positive ion mode with
dynamic scheduled multiple reaction monitoring
(MRM). The analysis was conducted following the
lipidomics protocol developed by Kevin Huynh and
Peter Meikle in Baker Heart and Diabetes Institute,
Metabolomics laboratory. A detailed description of
their lipidomics platform was provided in the method-
ology file (ADNI ADMCLIPIDOMICSMEIKLEL
ABLONG METHODS 20210121.pdf) and respec-
tive articles [10,11].

After applying the standard normalization and
batch correction procedures, measurements from 692
lipid species were provided in the file (ADMCLIPI
DOMICSMEIKLELABLONG.csv). All the lipid
measurements were log10 and z-transformed before
any analysis. Lipid species (692) were then merged
into one hundred and seven (107) composite scores
defined through a hierarchical clustering approach
that was applied within each of the lipid sub-
classes/classes.

Statistical analysis

Selection of salient lipids associated with
biomarkers of AD pathology

We used Bayesian elastic net regularized logistic
regression to select lipid composite scores associated
with the CSF pTau/A�42 ratio as a biomarker of AD
pathology. Regularized logistic regression methods
were developed to carry out simultaneous parame-
ter estimation and variable selection [12, 13]. Elastic
net offers an optimum regularization and variable
selection, particularly in high dimensional data set-
tings, such as the current lipidomics data, where
features are often highly collinear, and their num-
ber exceeds the sample size [13, 14]. As one of

the regularization approaches, the elastic net pro-
vides a reasonable compromise between both ridge
(L2) and lasso (L1) penalties [13, 14]. It performs
an effective feature selection via the lasso penalty
while better handling correlated features via the ridge
penalty [14, 15]. Adopting a Bayesian approach pos-
sesses several advantages over classic elastic net
regularized regression [12, 16]. First, Bayesian meth-
ods provide a straightforward statistical inference
for the estimated coefficients through the posterior
distributions and credibility intervals [12, 16]. Sec-
ond, it allows for simultaneous estimation of both
penalty parameters (L2 & L1) and model parameters
[12, 16]. This is particularly important in controlling
the double shrinkage problem (too small, estimated
coefficients) due to sequential estimation of penalty
parameters through cross-validation procedure in the
classic method. Additionally, Bayesian approaches
have shown better variable selection in real data
examples and simulation studies [12].

Before conducting the analysis, lipid composite
scores were transformed into W-scores using regres-
sion models estimated on the control group. W-scores
are analogous to Z-scores yet adjusted for particular
covariates, namely age and sex [17]. An initial filter-
ing step was carried out to include only the top 60%
of lipid composite scores correlated with the CSF
pTau/A�42 status in the regularized logistic regres-
sion models. Then, a Bayesian logistic regression
model with elastic net regularization was fitted in
the RStan interface. We adapted the scripts provided
by Sara van Erp on GitHub (https://github.com/sara-
vanerp/bayesreg), implementing elastic net priors in
Bayesian regularized regression models using Stan
language [16]. A training dataset (80% of the whole
cohort) was used for estimation of model parame-
ters through Markov Chain Monte Carlo (MCMC)
sampling (No-U-Turn Sampler (NUTS) algorithm).
The resulting estimates were then used to predict
the outcome in the test dataset (20 % of the whole
cohort). Lipid composite scores were selected based
on the credible interval criterion, where a variable is
excluded if the credibility interval covers 0. A credi-
bility interval level of 50% was used as recommended
in [12]. Salient lipid composite scores were deter-
mined based on being selected in more than 50%
of the cross-validation 100 iterations. Three different
models were calculated: 1) Reference model, using
the demographic criteria (Age and Sex); 2) Lipid
model, using lipid composite W-scores, and 3) Lipid
model + APOE4, where participants’ APOE4 status
was added as a covariate to the Lipid model.

https://github.com/sara-vanerp/bayesreg
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Prediction of clinical progression
Lipidomic endophenotypes based on consensus

clustering. We applied a hierarchical clustering on
those lipid composite scores that had been found
associated with the CSF pTau/A�42 ratio in the
previous regularized regression analysis. The clus-
tering was performed separately in the preclinical
and prodromal subgroups, respectively. We employed
a consensus clustering approach using data sub-
sampling [18, 19], repeated 5,000 times to ensure
the stability and robustness of clustering results.
During each repetition, 80% of the data samples
(participants) were randomly selected for agglomer-
ative hierarchical clustering using Ward’s criterion
to minimize the total within-cluster variance. A con-
sensus matrix/cluster-based similarity matrix was
then constructed. Each element in the matrix is a
number between 0 and 1 inclusive, representing
the proportion of times that two samples (partic-
ipants) were clustered together out of the times
that the same samples were chosen in the bootstrap
sub-sampling process. Then final cluster assignment
was defined through the consensus function, cluster-
based similarity partitioning algorithm (CSPA), first
introduced by Strehl and Ghosh and implemented
in diceR library [18]. CSPA is an efficient con-
sensus function that re-clusters the data samples
through applying hierarchical clustering on the
constructed consensus matrix [18, 19]. Hence the
cluster labels are inferred at the hierarchy level
of the optimal number of clusters (k) previously
defined.

The optimal number of clusters was defined based
on a composite score combining the proportion of
ambiguous clustering (PAC) score and Dunn’s index
estimated within the consensus clustering. PAC is
a robust estimate of cluster stability, mainly when
data samples are not independent [20], an intrinsic
feature of omics data. PAC score is the fraction of
sample pairs with consensus index values falling in
the intermediate interval, i.e., PAC window. In a per-
fect clustering, the consensus matrix would consist
of zeros or ones, and therefore the PAC score would
be zero [20]. Thus, the lower the PAC score, the more
stable and near perfect the clusters. We used a PAC
window of (0.1,0.9) in our analysis.

Conversely, Dunn’s index estimates clustering
internal validity considering compactness and separa-
tion measures [21]. The larger the Dunn’s index, the
better the inter-cluster separability and intra-cluster
compactness. The composite score was computed
as PAC score divided by Dunn’s index value;

accordingly, the lower the composite score, the better
the clustering.

Lipidomic endophenotypes and risk of CDR
conversion. We assessed the potential of the
defined lipidomic endophenotypes to predict Clini-
cal Dementia Rating score (CDR) conversion from a
value of 0 to 0.5 or 0.5 to 1 or higher in the preclin-
ical and prodromal sub-cohorts, respectively. Using
Bayesian survival analysis, we estimated the risk of
conversion over a follow-up period of six years (aver-
age follow-up = 4.15 + 1.72) while accounting for
censoring. We further explored the effect of several
covariates, namely age, sex, BMI, APOE4, and years
of education, on the estimated risk of conversion.
Finally, Bayesian multivariate analysis (MANOVA)
was conducted to reveal which lipid composite scores
distinguished clusters at low versus high risk of clin-
ical progression.

The whole analysis workflow is summarized in
Fig. 1. All analyses were performed in R (version
3.6.3) using the following packages: RStan (version
2.21.2), RStanArm, brms, bayestestR, BayesFactor,
pROC, diceR.

RESULTS

Demographic characteristics

A summary of the demographic characteristics of
our final cohort is provided in (Table 1). The diag-
nostic groups did not differ in age, sex, or education
years. The distribution of BMI categories differed
between groups; the preclinical group had the high-
est proportion of BMI-low category. As expected, the
APOE �4 allele was more prevalent in preclinical
and prodromal groups (≥60%) compared with the
normal control group (pTau/A�42 -ve) (18%). AD
CSF biomarker levels (pTau and pTau/A�42) were
higher in prodromal participants than in the preclini-
cal group.

Selection of salient lipids associated with
biomarkers of AD pathology

Bayesian elastic net regularized logistic
regression models performance

Using only age and sex as predictors, the per-
formance of the Reference model was not better
than random prediction. The Lipid model improved
the prediction accuracy. The cross-validated area
under the receiver operating curves (CV-AUC),
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Fig. 1. Overview of the data analysis workflow. This figure summarizes the analysis workflow adopted by this study as described in
the Materials and Methods section. Panel A displays the preparation of the final cohort based on the defined inclusion criteria then the
classification of the final diagnostic groups based on the CSF pTau/A�42 ratio. The statistical analysis is demonstrated in panels B and C.
Panel B illustrates the selection of salient lipids associated with biomarkers of AD pathology through Bayesian elastic net regularized logistic
regression models. Panel C explains the steps to predict clinical progression in the diagnostic groups, namely prodromal and preclinical.
First, we defined clusters of participants having similar lipid profiles within each diagnostic group. Then we explored the defined clusters
for the risk of conversion to MCI or dementia.

Table 1
Overview of cohort demographics

CN Preclinical Prodromal Whole cohort

N 182 73 274 529
Mean age (sd)a 73.2 (5.9) 75.9 (5.2) 73.3 (7.0) 73.6 (6.5)
Sex – Femalesb N (percent %) 88 (48 %) 41 (56 %) 109 (40 %) 238 (45 %)
APOE4 carriersb∗∗∗ N (percent %) 32 (18 %) 43 (59 %) 195 (71 %) 270 (51 %)
BMIb∗∗∗ N (percent %)

Low 50 (27%) 38 (52%) 113 (41%) 201 (38%)
Medium 85 (47%) 21 (29%) 126 (46%) 232 (44%)
High 47 (26 %) 14 (19 %) 35 (13%) 96 (18%)

Mean Education y (sd)a 16.3 (2.7) 16.0 (2.8) 15.9 (2.9) 16.1 (2.8)
CSF biomarkers
Mean A�42 (sd)a∗∗∗ 1727.0 (524.0) 634.0 (185.0) 630.0 (167.0) 1007.8 (620.4)
Mean pTau (sd)a∗∗∗ 20.1 (6.6) 28.8 (10.4)# 35.4 (14.1)# 29.2 (13.4)
Mean pTau/A�42 ratio (sd)a∗∗∗ 0.012 (0.003) 0.049 (0.025)# 0.059 (0.028)# 0.042 (0.03)

Summary of the demographic characteristics of our cohort split into the final three diagnostic groups cognitively
normal elderly (CN), preclinical and prodromal. Characteristics are described as Number (N) and the corresponding
percentage (percent %) or Mean value and standard deviation (sd) as convenient. Group differences were tested
using Bayesian ANOVA (a) and Bayesian test of association (b). Results were interpreted in terms of Bayes Factor
(BF) in favor of presence of group differences in the tested variables, where BF of (3–20) represented moderate
evidence (∗), BF of (20–150) represented strong evidence (∗∗) while BF of (>150) represented very strong evidence
(∗∗∗). Differences in levels of CSF biomarkers levels between Preclinical and Prodromal are marked by (#).

CV-Accuracy, CV-Sensitivity, and CV-Specificity at
the optimum threshold were 0.65, 0.66, 0.68, and
0.61, respectively. However, the best performance
was achieved by the Lipid + APOE4 model; the esti-
mated CV-AUC, CV-Accuracy, CV-Sensitivity, and
CV-Specificity increased to 0.76, 0.71, 0.69, and
0.77, respectively. Supplementary Table 1 provides
an overview of all tested models.

Identification of salient lipids
The Lipid + APOE4 model selected a set of twenty-

eight lipid composite scores in at least 50% of
cross-validation repetitions (Supplementary Table
2). A features’ relative importance and stabil-
ity were determined by the median posterior
�-coefficients and frequency of selection across
the cross-validations. According to these criteria,



AU
TH

O
R 

CO
PY

1120 F. Sakr et al. / Lipid Signature Predicts AD Clinical Outcome

lyso-glycerophospholipids (LPL), alkenyl-glycero-
phospholipids (plasmalogens), free fatty acids
(FFA), cholesterol esters and sphingolipids (complex
ceramides) lipid classes/subclasses ranked on top
of the list. Both lyso-phosphatidylcholine (LPC 7:
poly-unsaturated fatty acid (PUFA)) and lyso-alkyl-
phosphatidylcholine (LPC O 2: long-chain fatty acid
(FA)) were positively associated with the CSF pTau/
A�42 ratio. Similarly, phosphatidylcholine (PC 5:
arachidonic acid (AA)) harboring arachidonic acid
showed a positive association. Conversely, plasmalo-
gens such as alkenyl- phosphatidylcholine (PC P 5:
docosahexaenoic acid (DHA), Eicosapentaenoic acid
(EPA) & PC P 2: saturated and mono-unsaturated
FA) and alkenyl- phosphatidylethanolamine (PE P 5:
AA, DHA) showed negative associations.

Except for AA (FA 3), free fatty acids (FA 1: sat-
urated, mono-unsaturated, PUFA) were negatively
associated with the AD biomarkers. Cholesterol
esters (Chols ester 3: PUFA & Chols ester 2) and
long-chain acyl-carnitines (AC 4: PUFA) were
positively associated with AD biomarkers, while
di-acylglycerol (DG 3: EPA, DHA) and alkyl-di-
acylglycerol (TG O 3) showed negative relation.

Complex ceramides including hexosyl-ceramides
(hexCER 6 & hexCER 7), gangliosides (GM1), and
sulfatides were found to be positively associated with
AD biomarkers yet di-hydro-ceramides (dhCER 1),
gangliosides (GM3 3: very long FA), and sphin-
gomyelin (SM 3: very long FA) were negatively
associated. Figure 2 displays the median posterior �-
coefficients and their credibility intervals across the
cross-validations, as estimated by the Lipid + APOE4
model. Lipid species, constituting each of the salient
lipid composite scores, are listed in Supplementary
Table 3.

Prediction of clinical progression

Lipidomic endophenotypes based on consensus
clustering

We conducted consensus clustering to identify
lipidomic endophenotypes based on the set of lipid
composite scores selected by the Lipid + APOE4
model.

In the prodromal sub-cohort, we determined the
optimum number of clusters to be (k = 5), as demon-
strated in Supplementary Figure 1. Of the prodromal
participants, 28% fell into the cluster (I), 23% in the
cluster (IV), 20% each in the clusters (II) and (V),
and 9% in the cluster (III). Apart from the BMI cate-
gories distribution, there was no conclusive evidence

for differences in age, sex, years of education, APOE4
status, or the CSF levels of AD biomarkers between
the defined clusters (Supplementary Table 4).

Following the same approach, we determined (k =
5) the optimal number of clusters for the preclinical
sub-cohort, as shown in Supplementary Figure 2. Of
these participants, 28% fell into the cluster (I), while
the rest were equally distributed over the remaining
clusters. Details on the distribution of demographic
characteristics, APOE4 genotype, and BMI cate-
gories can be found in Supplementary Table 5.

Lipidomic endophenotypes and risk of CDR
conversion

We evaluated the risk of CDR conversion among
prodromal sub-cohort clusters with and without
adjusting for the effect of covariates as demonstrated
in Supplementary Table 6. Cluster (IV) was chosen as
the reference group since it exhibited a lower risk of
CDR conversion. Moreover, cluster (IV) enclosed a
relatively large proportion of participants. As shown
in Fig. 3, the clusters (II) (HR = 1.97 (1.26–3.10)) and
(V) (HR = 1.99 (1.30–3.00)) had an increased risk of
conversion in the APOE4 adjusted model. To inves-
tigate whether these effects differed between sexes,
we repeated the Bayesian survival models (APOE4
adjusted) in the male and female data subsets, respec-
tively (Table 2). In men, the lipid profiles of clusters
(II and V) showed an increased risk of conversion,
whereas cluster (III) showed a decreased risk of
conversion relative to the reference cluster (IV). In
women, only cluster (II) had an increased risk of
conversion.

Finally, we conducted Bayesian multivariate anal-
ysis to identify differences in lipid composite scores
between the reference cluster (IV) and the remaining
clusters (Supplementary Table 7). Figure 4 shows the
specific lipid profile for each cluster of the prodromal
sub-cohort.

In the preclinical sub-cohort, there was no evidence
of a difference in risk of CDR conversion between
the five clusters. Essentially identical results were
obtained whether we adjusted or not for covariates.

DISCUSSION

We explored different lipid classes in preclinical
and prodromal AD cases to analyze the relationship
between lipid metabolism markers and biomarkers
of amyloid and tau pathology, as well as clinical pro-
gression.
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Fig. 2. Salient lipids associated with CSF pTau/A�42 ratio. We used Bayesian elastic net logistic regression (Lipid+APOE4 model) to select
salient lipid composite scores associated with CSF pTau/A�42 ratio. Estimated posterior �-coefficients are represented as points with their
respective 50% and 90% credibility intervals as thick and thin error bars, respectively. The points’ color codes for their corresponding
lipid class. LPC O 2: Lyso-alkyl-phosphatidylcholine (long/ very long FA), Choles ester 3: Cholesteryl ester (PUFA), hexCER: Hexosyl-
ceramide, FA 3: Free fatty acid (AA), PC 5: Phosphatidylcholine (AA), LPC 7: Lysophosphatidylcholine (PUFA), AC 4: Acylcarnitine
(PUFA), GM1: GM1 gangliosides, Choles ester 2: Cholesteryl ester, SULF 1: Sulfatides, LPE 1: Lyso-phosphatidylethanolamine (satu-
rated FA), PI 1: Phosphatidylinositol (PUFA), LPI 3: Lyso-phosphatidylinositol (AA), GM3 3: GM3 gangliosides (very long FA), dhCER:
Dihydroceramide, LPC P 2: Lyso-alkenyl-phosphatidylcholine (long FA), SM 3: Sphingomyelin (very long saturated FA), PI 2: Phos-
phatidylinositol (saturated, monounsaturated FA), LPC 5: Lysophosphatidylcholine (long, very long FA), LPC 2: Lysophosphatidylcholine
(odd numbered FA), TG O 3: Alkyl-diacylglycerol, DG 3: diacylglycerol (EPA & DHA), PC P 2: Alkenyl-phosphatidylcholine (saturated
and mono-unsaturated FA), PE P 5: Alkenyl-phosphatidylethanolamine (AA, DHA), PC P 5: Alkenyl-phosphatidylcholine (DHA & EPA)
and FA 1: Free fatty acid.

Our first goal was to determine associations be-
tween peripheral lipid alterations and pathology
markers of AD in the CSF. Ether glycerophospho-
lipids, particularly plasmalogens, showed lower
levels in preclinical and prodromal AD participants
compared with controls. Conversely, we found ara-
chidonic acid-containing phosphatidylcholine,
PUFA (omega-3) lyso-phosphatidylcholine and lyso-
alkyl-phosphatidylcholine with predominant satu-
rated/mono-unsaturated long-chain fatty acid to be
increased. Low levels of plasmalogens have been

frequently linked to AD pathology [22], whether
measured in brain tissue [23–25], CSF [25], or
plasma blood samples [26]. Grey matter plasmalo-
gens (DHA and AA at sn-2) depletion was found
associated with disease progression and severity in
AD patients [27–30]. A recent study by Lim et al.
proposed that ether-lipids dysregulation may partly
mediate the effect of two major AD risk factors,
namely, age and APOE4 [31].

Toledo et al. showed that higher baseline levels of
long-chain and PUFA-containing alkyl phosphatidyl-
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Fig. 3. Lipid endophenotypes predict clinical progression to dementia. We conducted a Bayesian survival analysis to estimate the risk of
clinical progression to dementia among the pre-defined clusters of the prodromal sub-cohort. Clinical progression in the prodromal sub-cohort
is defined as the conversion of clinical dementia rating score (CDR) from a value of 0.5 to 1. Clusters (II and V) are found to have � 2 folds
higher risk of progression to dementia compared to the reference cluster (IV).

Table 2
Risk of clinical progression among prodromal lipidomic endophenotypes

Model Cluster + APOE4 Male subset Female subset

Median Hazard HDI Median Hazard HDI Median Hazard HDI
(MAD) ratio (MAD) ratio (MAD) ratio

Intercept: IV −9.03 (1.80) –8.46 (2.20) –9.24 (2.72)
I 0.02 (0.26) 1.02 0.68–1.52 –0.16 (0.32) 0.85 0.54–1.51 0.28 (0.42) 1.33 0.68–2.72
II 0.68 (0.28) 1.97 1.26–3.10 0.56 (0.35) 1.75 1.04–3.16 0.84 (0.43) 2.32 1.15–4.57
III –0.41 (0.42) 0.66 0.36–1.22 –1.08 (0.58) 0.34 0.13–0.89 0.09 (0.54) 1.10 0.48–2.56
V 0.69 (0.26) 1.99 1.30–3.00 0.85 (0.34) 2.35 1.38–4.06 0.55 (0.43) 1.74 0.89–3.53
APOE4 0.39 (0.21) 1.48 1.07–2.05 0.40 (0.27) 1.50 1.00–2.25 0.27 (0.33) 1.31 0.76–2.23

Bayesian survival analysis was conducted to estimate the relative risk of progression to dementia among prodromal lipidomic endophenotypes
while adjusting for APOE4. APOE4 adjusted model was selected based on the sensitivity analysis provided in Supplementary Table 6, which
investigated the relative risk of several covariates. We further replicated the same model on male and female subsets separately to explore
sex-specific effect of lipidomic endophenotypes on clinical progression. Throughout the analysis, we set cluster (IV) as our reference group.
Results were interpreted in terms of high-density intervals (HDI) of posterior distributions, where hazard ratios with HDI not covering (1)
were considered relevant and reported in red.

cholines (PC ae 42 : 4, PC ae 44 : 4) correlated with
abnormal levels of CSF A�42 in preclinical and pro-
dromal AD participants of the ADNI cohort and
predicted conversion from MCI to AD dementia
[32]. In the current study, we observed high levels
of arachidonic acid-containing phosphatidylcholine,
and long-chain alkyl lyso-phosphatidylcholines
(LPC-O), were associated with the CSF pTau/A�42

ratio. Results from both studies suggest an early role
of arachidonated phosphatidylcholines, particularly
long-chain alkyl isomers and their lyso derivatives,
in AD pathogenesis, even in cognitively normal indi-
viduals with pathological levels of CSF AD biomar-
kers. These phosphatidylcholine species are known
precursors of potent inflammatory mediators, includ-
ing platelet-activating factor (PAF) and arachidonic



AU
TH

O
R 

CO
PY

F. Sakr et al. / Lipid Signature Predicts AD Clinical Outcome 1123

Fig. 4. Heterogeneity of lipidomic endophenotypes among the prodromal sub-cohort. The specific lipid profile of each cluster is demonstrated
on a heatmap in terms of average w-scores. On the color scale, red represents scores higher than expected in the age and sex-matched
control group, and blue color represents lower scores. Bayesian multivariate analysis was conducted to identify lipid composite scores
distinguishing clusters at higher risk of clinical progression from the reference group. Cluster (IV) was set as the reference group and
marked by (Ref.). Clusters (II and V) were defined as groups at higher risk of progression and marked by (#). Asterisk (∗) points to lipid
scores that showed evidence of group differences. PC 5: Phosphatidylcholine (AA), PC P 2: Alkenyl-phosphatidylcholine (saturated and
mono-unsaturated FA), PC P 5: Alkenyl-phosphatidylcholine (DHA & EPA), PE P 5: Alkenyl-phosphatidylethanolamine (AA, DHA),
PI 1: Phosphatidylinositol (PUFA), PI 2: Phosphatidylinositol (saturated, monounsaturated FA), LPC 2: Lysophosphatidylcholine (odd
numbered FA), LPC 5: Lysophosphatidylcholine (long, very long FA), LPC 7: Lysophosphatidylcholine (PUFA), LPC O 2: Lyso-alkyl-
phosphatidylcholine (long/very long FA), LPC P 2: Lyso-alkenyl-phosphatidylcholine (long FA), LPE 1: Lyso-phosphatidylethanolamine
(saturated FA), LPI 3: Lyso-phosphatidylinositol (AA), dhCER: Dihydroceramide, hexCER: Hexosyl-ceramide, GM3 3: GM3 gangliosides
(very long FA), GM1: GM1 gangliosides, SM 3: Sphingomyelin (very long saturated FA), SULF 1: Sulfatides, Choles ester 2: Cholesteryl
ester, Choles ester 3: Cholesteryl ester (PUFA), DG 3: diacylglycerol (EPA & DHA), TG O 3: Alkyl-diacylglycerol, FA 1: Free fatty acid,
FA 3: Free fatty acid (AA) and AC 4: Acylcarnitine (PUFA).

acid. Additionally, they are highly abundant in
platelets and immune cells [33, 34]. This points to
a potential regulatory role in inflammation processes
and would represent a possible link between inflam-
mation and AD [32].

Complex ceramides, including glycosylated cera-
mides, GM1 gangliosides, and their precursors
hexosyl-ceramides and sulfatides, showed higher lev-
els in prodromal and preclinical AD participants, in
contrast to di-hydro-ceramides, sphingomyelins, and
GM3 gangliosides, which were decreased. Several
studies suggested a shift in sphingolipids metabolism

towards ceramides accumulation [35, 36] and deple-
tion of sphingomyelins, particularly those with
long-chain FA (C22, C24) [37, 38] and sulfated
sphingolipids [35] early in the course of AD [39].
Ceramides, a key bioactive molecule in sphingolipids
metabolism, were suggested to contribute to the
increased susceptibility of neurons and oligodendro-
cytes to apoptotic cell death [40]. This hypothesis
was further supported by the elevated activity of
enzymes involved in ceramides synthesis, namely
sphingomyelinases and ceramidases, in brain tissue
of AD cases [38]. Consistent with these findings, gene
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expression of sphingomyelinases and serine palmi-
toyl transferase enzymes was found to be upregulated
in AD patients’ brain tissue [36, 39].

The second goal of our study was to identify
distinct lipidomic endophenotypes and assess their
association with clinical progression. Lipidomics
endophenotyping offers a global mapping of the
alterations in biochemical pathways [41]. These alter-
ations may partly reflect underlying AD pathology.
Additionally, these endophenotypes can capture com-
plementary information related to an individual’s
specific comorbidities and/or genomic characteris-
tics that could partly explain the diversity observed
in clinical trajectories within AD populations [3]. In
the prodromal sub-cohort, the lipid profiles of clus-
ters (II and V) were associated with a higher risk of
clinical progression. In both clusters, we observed
lower levels of PUFA (mainly AA) containing plas-
malogens and phosphatidylcholines associated with
a compensatory increase of plasmalogens, mainly
alkenyl phosphatidylcholines, containing saturated
and mono-unsaturated FAs. Higher levels of choles-
terol esters, complex ceramides together with the
depletion of long-chain sphingomyelins, and di-
hydro-ceramides were also noted in clusters (II and
V) participants. Cluster (III) lipidomic profile was
associated with a lower risk of progression (CDR con-
version) yet only in men. Cluster (III) constituted a
group of prodromal participants with a higher preva-
lence of low BMI and a slightly higher proportion of
APOE4 carriers compared with the reference cluster
(IV).

Previous studies used logistic regression or
machine learning algorithms to investigate the asso-
ciation of lipids with dementia risk in cognitively
normal individuals [42–44] and people with MCI
[32, 45]. Several studies have found higher levels of
sphingomyelin, phosphatidylcholines, and lysophos-
phatidylcholine associated with conversion from
MCI to AD/dementia [32, 46, 47]. Conversely, Map-
stone et al. [43] and Ma et al. [45] showed that
lower baseline levels of phosphatidylcholines and
lysophosphatidylcholine were significantly associ-
ated with accelerated cognitive decline [45] and risk
of conversion to MCI/AD compared to cognitively
stable participants [43].

In a different approach, Wood et al. [48] addressed
heterogeneity in lipid alterations patterns within
groups of MCI and AD cases. They defined sub-
groups within each diagnostic group according to
their Mini-Mental State Examination score (low ver-
sus high). Based on the literature, they focused on two

lipid classes, ethanolamine plasmalogens and diacyl-
glycerols. MCI and AD cases had elevated levels
of diacylglycerols and plasmalogens depletion com-
pared with controls [48]. Low and high Mini-Mental
State Examination MCI cases, however, showed no
differences in both lipid classes [48]. In contrast to
such a hypothesis-driven approach, here we explored
the diversity of lipidomic endophenotypes within
prodromal cases using an unsupervised clustering
approach. Thus, our findings serve to generate rather
than confirm hypotheses on the association of lipid
profiles with the risk of conversion.

Recent evidence suggested that sex has an effect on
the association of lipids with AD pathology and rates
of cognitive decline [31, 49, 50]. In our study, cluster
(III) showed a decreased risk of conversion in men but
not in women. This cluster had high levels of long-
chain fatty acids lysophosphatidylcholine (both acyl
and ether) and plasmalogens together with low lev-
els of acylcarnitines. Sex-specific remodeling of lipid
metabolism was suggested before, where high lev-
els of sphingomyelins and phosphatidylcholines were
reported in women [49, 50]. Conversely, lysophos-
phatidylcholine and ceramides were found at higher
levels in men [49]. Thus, phospholipases may have
higher activity in men and sphingomyelin synthetase
may have a higher activity in women [49]. Conse-
quently, we adjusted lipid scores for age and sex based
on the control group in an attempt to control for the
complex interaction of lipids with sex during different
stages of AD. Although we started with a substantial
number of cases, the sample size within preclinical
and prodromal sub-cohorts and their respective lipid
endophenotypes clusters was small, so that it was not
feasible to conduct the full analysis in a sex-stratified
fashion, as recommended in [49, 50].

Lack of consistency across metabolomics studies’
results always was and still is a major limitation
that hinders including lipid markers into diagnostic
biomarker panels of AD [50, 51]. This heterogeneity
is related to many factors, among them variability
in data processing procedures and analytical plat-
forms [51], as well as studies’ design, sample size,
distribution of relevant risk factors, and used sta-
tistical approaches [50]. Another factor probably
is the lack of strong effects which contributes to
inconsistent findings across studies. In our Bayesian
regression models, we observed overall small con-
tributions from individual lipid composite scores to
the association with AD pathology CSF biomark-
ers as indicated by poor model performance as well
as small posterior coefficients with large credibility
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intervals. In addition, metabolomics data are inher-
ently highly collinear. This could contribute to high
variance observed within the models and difficulty
assessing variables’ relative importance [52]. Taken
together, a wide range of variance is observed in
metabolomics data that limits their integration in the
first line of diagnostic workflow and renders them
likely more useful in adding to the accuracy of other
prognostic markers [48].

Several limitations need to be acknowledged in
this study. Instead of using raw lipid scores, we used
composite scores based on hierarchical clustering
applied within each lipid class. Such an approach
could have masked the effects of some individual
lipid species. Our objective was to reduce data dimen-
sionality and overcome the drawback of variables’
multicollinearity, particularly on regression coeffi-
cients estimation and model stability. Concurrently
we wanted to maintain the representation of all inves-
tigated lipid subclasses/classes and identify subsets
of functionally similar lipid species. Finally, given
the heterogeneity of lipidomics data, particularly in
early AD individuals, even larger cohorts are needed
to identify endophenotypes robustly. In future anal-
ysis, we would like to tune and then validate our
approach on a larger sample derived from multiple
cohorts and particularly enriched with participants in
the preclinical stage of AD.

CONCLUSION

Through our study, we have shown that alter-
ations in lipids, particularly those harboring poly-
unsaturated fatty acids and ether bonds, can be
captured at the earliest stages of AD. Lipidomics pro-
files provide an overview of an individual’s metabolic
status whilst incorporating the balance within and
between interacting biochemical pathways. Hence,
identifying distinct lipidomic endophenotypes could
contribute to AD risk and clinical trajectories. Refin-
ing and validating this approach could open a new
avenue to adjuvant interventions modulating lipid
metabolic pathways and allow for targeting subjects
with the largest expected benefit.
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