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Abstract

The findings of gauge theory, both Abelian and non-Abelian, apply to areas beyond the
theories of fundamental interactions. A gauge potential acting on a quantum state results
in an evolution that is determined by a quantum holonomy. A striking feature of these
geometric and topological proposals is that nontrivial quantum information processing
can be performed even in the presence of a vanishing Hamiltonian, thus leading to desir-
able fault-tolerance features. The thesis at hand deals with the emergence of quantum
holonomies in systems of coupled waveguides. Several proposals for their realisation
in arrays of laser-written fused-silica waveguides are presented, including experimental
results. I develop an operator-theoretic framework for the photon-number independent
description of these optical networks. Finally, quantum holonomies will be embedded into
schemes for measurement-based quantum computation, with the aim of approximating
Jones polynomials.

Zusammenfassung

Die Erkenntnisse Abelscher und nicht-Abelscher Eichtheorien sind auf Problemstellungen
anwendbar, welche sich über den Bereich moderner Quantenfeldtheorien hinaus erstrecken.
Ein Eichpotential, welches auf einen Quantenzustand wirkt, führt zu einer Evolution, welche
durch eine Quantenholonomie beschrieben wird. Eine bemerkenswerte Eigenschaft dieser
geometrischen und topologischen Transformationen liegt in der Möglichkeit Quantenin-
formation unabhängig von dynamischen Einflüssen zu verarbeiten. Dies weist auf vielver-
sprechende Fehlertoleranzeigenschaften dieser Transformationen hin. Die vorliegende
Thesis untersucht die Konzipierung von Quantenholonomien in Systemen gekoppelter
Wellenleiter. Eine Vielzahl möglicher Realisierungen mittels lasergeschriebener Wellenleiter
in Quarzglas wird präsentiert und zugehörige experimentelle Ergebnisse erläutert. Die
Entwicklung einer operatortheoretischen Darstellung für die photonenzahlunabhängige
Beschreibung dieser optischen Netzwerke wird vorgenommen. Abschließend werden
Quantenholonomien für die messinduzierte Quantenberechnung von Jones-Polynomen
verwendet.
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I | Prologue

The individuation of promising physical systems for implementing the "gauge-theoretic" quan-
tum computer we have been discussing in this Letter is still an open problem that will require
a deal of further investigations. [1]

P. Zanardi & M. Rasetti (1999)

1.1 Introduction

The emergence of quantum theory in the first half of the 20th century revised our under-
standing of Nature. The often counter-intuitive behaviour of quantum systems emerges
when exploring increasingly smaller length and energy scales. Understanding these prop-
erties enabled a first technological revolution, transforming industrialised societies. The
ongoing miniaturisation of modern technology — be it mechanical, electronic, or photonic
— is limited through the regime in which such quantum effects become dominant.

Rather than seeing the occurrence of quantum-mechanical effects as a restriction, more
recent developments put forward the idea to design and construct devices that harness
these very effects to outperform contemporary means of information processing and com-
munication [2]. In order to benefit from this quantum advantage [3], the superposition
principle in individual systems, as well as quantum entanglement between multiple parties
[4], can be put into action. The former allows computational operations to be applied in
parallel and in particular renders larger coding space possible, while the latter is responsible
for connecting the individual components of a quantum network such that multi-partite
interactions enable algorithmic shortcuts. Early academic proposals include the search of
large databases [5, 6], the efficient factorisation of prime numbers [7], and the simula-
tion of increasingly complex quantum systems [8, 9]. Combining entanglement with the
probabilistic nature of quantum measurements allows one to protect quantum channels
against eavesdropping, thus enabling secure handling of classical and quantum information
[10, 11]. By now, quantum information processing (QIP) matured into an industrialised
field of research — marking a transition towards quantum engineering — where an in-
creased interest on quantum machine learning [12], quantum programming languages
[13], as well as the emergence of commercial start-ups [14] and (inter)national programs
for building quantum computers, can be witnessed.

Fundamentally, the aforementioned ventures all rely on the precise control of quantum
bits, aka qubits. Each physical architecture that is used to prepare, manipulate, and
measure qubits comes with its own inherent and distinct benefits and drawbacks. Popular
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2 Prologue

platforms are based on superconducting qubits [15], trapped ions [16], or quantum-dot-
based quantum computers [17], each utilising different physical effects to perform QIP.
Moreover, large quantum codes can be realised in cold atomic ensembles placed in optical
lattices. These atoms can then be controlled and entangled using lasers, and a 10000-
atom quantum simulator has already been realised [18]. Less popular, but still relevant,
approaches involve electron-on-helium qubits [19], cavity quantum electrodynamics [20],
and nuclear magnetic resonance [21].

Arguably, the photon, the fundamental excitation of the quantised electromagnetic field,
is one of the primary contestant for quantum computation (QC) and quantum communi-
cation [22]. Starting from early bulk-optical components, including beam splitters and
phase shifters for linear transformations as well as nonlinear materials for the creation of
entangled photons, quantum photonics matured into an industrialised area of research
pursuing the design of integrated photonic platforms to achieve QC [23]. For example,
these modern components include tailored optical fibres [24], silica-on-silicon chips [25],
and laser-written waveguides [26]. Integrated photonic chips provide a high degree of
interferometric stability, making it possible to sustain a substantial number of optical modes
[27]. As photons rarely interact with each other, they are inherently robust towards dis-
tortions by neighbouring qubits (i.e., other photons). Still, interactions between photons
are necessary to create an entangled quantum state. The therefore required nonlinearities
can be designed, e.g., via quantum mechanical measurements [28, 29] or nonlinear optical
chips [30].

Naturally, these microscopic systems are more sensitive to errors than classical platforms,
so that the quest for providing reliable quantum systems significantly accelerated in recent
years [31]. Even though pioneering experiments achieved error rates of less than one
error in every 1000 operations [32], viable and sustainable quantum algorithms require
millions of operations, and even small perturbations can result in a fatal error. Besides
great patience and care of experimentalists, there exist several theoretical tools for realising
a passive protection against errors, including decoherence-free subspaces [33], dynamical
decoupling [34], noiseless subsystem codes [35], and adiabatic QC [36]. In contrast to
codes that actively correct errors [37, 38], these methods rely on an avoidance of errors by
shielding the system against, e.g., environmental interactions, anticipated imperfections,
and parametric fluctuations. The arguably most successful approach for achieving this
is topological QC [39, 40], which is based on the preparation of quantum systems in a
highly symmetric fashion. In other words, it addresses error correction already at the
hardware level by making qubits agnostic towards a variety of errors. There are several
strategies to ensure this. For instance, quantum systems in an effectively (2+1)-dimensional
configuration space enable anyonic quasi-particle statistics [41] that exhibit sophisticated
exchange symmetries beyond those of bosons and fermions. In this picture, quantum
algorithms are performed by braiding the anyons (qubits) around each other. The final
output of the QC does only depend on the specific sequence of braids but is independent
of any local perturbation of the anyon’s path. Witten pointed out that pair annihilation
of anyons contains information on the knot formed by their world lines [42], hinting
at a deep connection between topological quantum field theory and topics in modern
mathematics [43].
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On the other hand, topological codes do not aim at protecting individual qubits but
rather structure the entire quantum computer in a way that provides a sort of global
geometric protection. This idea goes back to Kitaev who first suggested this approach for
a lattice of qubits with appropriate boundary conditions such that the system resembles
a torus [44]. Therein, logical operations are applied to qubits in a toric code in the form
of closed paths, tolerating all kinds of errors that deform the loop without breaking it. In
the last decade, further generalisations, such as surface [45] and colour codes [46], were
proposed. These are currently the best performing quantum codes at our disposal [31].

While a topological QC depends on a number of discrete variables, there are continuous
transformations of quantum states that are closely related to the braiding of anyons. It
was first noticed by Berry that in a slowly (adiabatically) changing quantum system, the
initial state accumulates a phase that solely depends on the geometry of its path through
state space [47]. Unlike dynamical phases, such a geometric phase cannot be removed by
a rescaling of the energy. A famous example for this is the so-called Aharonov-Bohm effect
[48, 49], in which the wave function of an electron traveling around a solenoidal magnetic
field picks up a phase proportional to the flux through the surface enclosed by the trajectory
of the electron. Pancharatnam studied this phenomenon in the context of polarisation
optics [50] where it manifests itself in the interference of light. It was pointed out by Simon
[51] that this purely geometric signature of a quantum evolution has to be attributed to
adiabatic parallel transport of the state vector along a path in a projective Hilbert space.
There exists a (conceptually) deep relation between geometric phases and the interactions
that elementary particles experience in high-energy physics. Precisely speaking, both types
of transformations can be attributed to the presence of a gauge potential that incorporates
some intrinsic symmetry of the theory. Wilczek and Zee [52] noticed that states in an
adiabatic subspace give rise to such a symmetry, because these cannot be distinguished
by measurement of their energy (degenerate spectrum). They argued that this could
potentially result in the emergence of non-Abelian (i.e., noncommuting) gauge potentials.
In this case, the state after an evolution does not only acquire a geometric phase but differs
from the initial one by a unitary matrix known as the quantum holonomy (non-Abelian
geometric phase). Anandan and Aharonov showed that, under certain conditions, even
nonadiabatic phase factors can be of purely geometric origin [53, 54]. The concept of
holonomy, that is parallel transport along a closed loop, was first introduced by Cartan in
1926 [55, 56] within the context of Riemannian geometry. Therefore, holonomies might be
viewed as the continuous differential-geometric counterpart to the braiding of anyons [57].

Based on these ideas borrowed from gauge theory, Zanardi and Rasetti proposed that a
quantum-gate logic could be realised even on a subspace on which the Hamiltonian of a
system vanishes completely [1]. Holonomic QC, both adiabatic [58, 59] and nonadiabatic
[60], is an all-out geometric approach to QIP, in which holonomies play the role of the
fundamental gate set from which quantum algorithms are to be implemented. Due to their
geometric features, holonomic gates possess an inherent robustness towards fluctuations in
the spectrum, timing errors, and local (parametric) perturbations [61, 62, 63]. Physical
realisations of holonomic gates exist in systems of trapped ions [64, 65], superconducting
qubits [66, 67], solid state spins in a diamond [68], and NMR-based systems [69]. Viewing
this paradigm as a form of gauge-theoretic QC highlights the relation between the holonomy
and the Wilson loop in lattice-gauge theory [70, 71]. The latter is an expression for the
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flow of a gauge potential through a spacetime plaquette. As holonomies are ubiquitous
in physics, they might play a central role in the quantum simulation of quantum field
theories, or loop-quantum gravity [72]. The latter is a background-independent approach
to quantum field theory that incorporates gravitational effects.

In this thesis, I study the propagation of quantum light within networks of integrated
photonic waveguides that realise a quantum holonomy. Main emphasis lies on the all-out
geometric photon transfer between coupled modes. Several quantum photonic proposals
for the generation of holonomies are presented [P1], even accounting for transverse mode
overlap between strongly coupled waveguides [P2]. I show how arbitrary degeneracy can be
realised in these systems. Moreover, I elucidate the relation between the holonomy and the
number of photons involved in the evolution [P3]. Fabrication of these optical networks is
considered in terms of laser-written fused-silica waveguides, and novel experimental results
for quantum holonomies, both adiabatic and nonadiabatic, verify theoretical predictions to
a high degree of accuracy [P4, P5]. An elegant operator formulation, based on a holonomic
Heisenberg picture, enables analytical calculations even for large networks involving many
photons [P6]. A possible road for building an all-out photonic holonomic quantum computer
is devised using measurement-based design strategies [P7]. The paradigm is illustrated
by showcasing a measurement-based version of the Hadamard test, which is a quantum
algorithm estimating Jones polynomials.

1.2 Structure of the Thesis

I have endeavoured to write this thesis as coherent and self-containing as possible. Nev-
ertheless, additional details and comments of more technical nature, in particular with
regards to experimental setups, might be reserved for the published articles and prepared
manuscripts [P1-P7].

The structure of the thesis is as follows. In Chapter II, the basic theory for the propaga-
tion of quantum light in systems of integrated photonic waveguides is presented. Particular
emphasis lies on the description of networks of coupled waveguides in terms of a coupled-
mode theory. Chapter III contains a discussion of quantum holonomies as a special class of
unitaries. These quantities emerge in the context of adiabatic and nonadiabatic evolutions
of quantum states that are confined to a subspace on which the Hamiltonian vanishes.
Several proposals for their realisation in arrays of coupled waveguides are devised. Ex-
perimental results involving single and two-photon states are briefly presented. After this
general discussion of quantum holonomies, Chapter IV is concerned with their usage in
the holonomic processing of qubits. Photonic realisations of holonomic quantum gates are
considered. For the case of nonadiabatic gates, I explicitly show how to combine holonomic
QC with measurement-based QC resulting in a purely geometric manipulation of graph
states. This hybrid approach can be utilised for the efficient quantum calculation of Jones
polynomials. The design strategy for this algorithm is presented in Chapter V using a
measurement-based version of the Hadamard test. Finally, Chapter VI contains a discussion
of the results and some concluding remarks on the prospects of all-out photonic QIP in
terms of holonomies.



II | Integrated Quantum Optics

The field of optics — that is the study of light and its interaction with matter — constitutes
the backbone of many modern technologies including telecommunication devices, medical
equipment, as well as sensitive measurement instruments, to name but a few. Classi-
cally, light is viewed as an electromagnetic wave propagating through space according to
Maxwell’s equations. Einstein [73] and Planck [74] challenged this well established notion
at the beginning of the 20th century with their discovery of the light quanta, nowadays
more commonly referred to as the photon. Photons, being the fundamental excitations
of the quantised electromagnetic field, became one of the primary subjects of interest in
the field of quantum optics. Since then, promising experiments in optical networks were
conducted, verifying the potential for low-decoherence and high-control setups. Specifically,
it is possible to create multi-photon entangled states [75, 76, 77] and induce quantum
correlations that are without any classical counterpart [78, 79].

However, when based on mirrors, phase shifters, and beam splitters, the scalability
of these experiments is strongly restricted, due to thermal fluctuations and mechanical
vibrations. This results in an interferometric instability that limits the size of the overall
setup. This apparent loss of coherence can be addressed by utilising integrated optical
structures such as optical fibres or photonic waveguides. In this thesis, I will be primarily
concerned with the latter implementation. Systems of photonic waveguides were already
studied in 1970 [80] and by now, these structures allow for the controlled coupling of
numerous modes within a photonic pocket lab [81].

Describing the light field in such structures in terms of a collection of individual modes,
each being tightly localised around a waveguide, allows for an extremely elegant theoretical
description of the ongoing dynamics. This approach is known as coupled-mode theory.
Since its inception in electromagnetic systems [82, 83], coupled-mode theory has become
a well-established tool in the description of waveguide structures, optical fibre networks,
and a plethora of other optoelectronic structures [84, 85].

In this chapter, the basic theory of light propagation in integrated photonic waveguides is
outlined. Particular attention lies on fused-silica laser-written waveguides. After reviewing
the classical theory in Sec. 2.1, Sec. 2.2 contains a canonical quantisation of the coupled-
mode equations allowing for the study of multi-photon dynamics in an array of coupled
waveguides. Both the overlap between (nonorthogonality of) adjacent modes and photon
loss, due to a bending of waveguides, are addressed.

5



6 Integrated Quantum Optics

Figure 1.: Fabrication of fused-silica waveguides using the femtosecond (fs) laser-writing
technique. A high-intensity laser pulse alters the molecular structure of the glass sample,
thus resulting in a local change of the refractive-index profile along which light is guided.

2.1 Integrated Photonic Waveguides

As we are concerned with the propagation of light in dielectric materials, the starting point
of any discussion must be the macroscopic Maxwell equations without free charges or
currents

∇ · D(r , t) = 0, ∇× E(r , t) = −∂t B(r , t),
∇ · B(r , t) = 0, ∇×H(r , t) = ∂t D(r , t).

For a linear and isotropic medium the constitutive equations between the microscopic fields
E, B and macroscopic fields D, H are

D(r , t) = ϵ(r )E(r , t), H(r , t) = µ−1B(r , t). (2.1)

In Eq. (2.1), I allowed for an inhomogeneous medium with spatially varying permittivity
ϵ(r ) = ϵ0ϵr(r ), while the permeability µ= µ0 is considered to be constant to satisfactory
precision. Taking the curl of Faraday’s law ∇× E = −∂t B, making use of the Grassmann
identity∇×∇× =∇(∇· )−∇2, while minding µ−1∇×B = ϵ∂t E, leads to an inhomogeneous
wave equation

∇2E −∇(∇ · E) = ϵr

c2
∂ 2

t E, (2.2)

where ∇2 denotes the Laplacian and c = 1/
p
µ0ϵ0 is the vacuum speed of light.

Suppose that the material under investigation consist of a host medium with constant
refractive index n0 and a weak inhomogeneity ∆n given by the index contrast, i.e., ϵr(r ) =
n2(r ) with n(r ) = n0 +∆n(r ). The assumption of a weakly modulated index contrast is
certainly satisfied for femtosecond laser-written waveguides in fused-silica [26, 86] (Fig. 1),
where 10−3 <∆n< 10−8 [87, 88], but does not necessarily hold in other structures such
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as silica-on-silicon waveguides [25] or lithium-niobate based systems [89]. Making use
of the assumption, one gets ∇ · E ≈ ϵ−1∇ · D = 0, turning Eq. (2.2) into a homogeneous
wave equation. Moreover, the vector character of the Helmholtz equation can be neglected
by factoring out a constant unit vector ν, because polarization effects at the interface of
a waveguide become unimportant, so that scalar wave theory can be applied [90, 91].
Hence, E(r , t) = E(r )ei(kz−ωt)ν for a monochromatic plane wave that predominantly
propagates in z-direction. Here, k = n0ω/c is the wave vector amplitude in the ambient
medium. Employing the paraxial wave approximation that states that the change of the
amplitude E(r ) over one wavelength is negligible (slowly varying envelope ∂ 2

z E ≈ 0) and
remembering that n2(r )≈ n2

0 + 2n0∆n(r ) in good approximation, we finally arrive at the
paraxial Helmholtz equation for the electric field

iλ̄∂z E(r ) +
λ̄2

2n0
∇2
⊥E(r ) +∆n(r )E(r ),= 0 (2.3)

where λ̄ = λ/2π = n0/k was introduced, and ∇2
⊥ = ∂

2
x + ∂

2
y is the Laplacian for the

transverse plane.

2.1.1 Coupled-mode theory

For an array of M waveguides, the refractive-index contrast can be modelled as ∆n(r ) =∑M
k=1∆nk(r ), with ∆nk being the index profile of the kth waveguide. For the moment

radiation losses (coupling to continuum modes of the host material) will be neglected. The
overall electric field may then be expanded in terms of tight-binding modes only, viz.

E(r ) =
M∑

k=1

αk(z)wk(r )e
iβkz, (2.4)

where wk is the transverse field mode that is localized around the waveguide ∆nk (Fig. 2),
and αk is the corresponding longitudinal field amplitude determining the dynamics of the
light field. The parameter βk denotes the propagation constant of the individual waveguide.

In the following, it is assumed that the shape of the transverse field wk remains constant
throughout the propagation. This appears to be valid whenever the fabrication process is
stable and in particular βk should be constant along the propagation direction. However,
because the position of the waveguides might vary along the z-axis, the corresponding
mode has to follow, i.e., wk(r ) = wk(x − xk(z), y − yk(z)), where (xk, yk) marks the center
of the kth waveguide. On the other hand, in any typical setup the waveguide position
changes only gradually over the propagation length (paraxial approximation), that is
∂z xk ≈ ∂z yk ≈ 0 [92, P2]. Hence, one can safely assume wk(r )≈ wk(r⊥) depends only on
the transverse coordinates r⊥ = (x , y). In the absence of any neighbouring waveguides,
the kth transverse mode satisfies its own Helmholtz equation

λ̄2

2n0
∇2
⊥wk(r⊥) +∆nk(r )wk(r⊥) = 0. (2.5)
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wk

wk+1

Figure 2.: Schematic front view of coupled waveguides (black circles). Each site k supports
a fundamental transverse mode wk (shaded areas). The modes extend towards the nearest
neighbouring sites. Taken from Ref. [P2].

For simplicity, it is assumed that each waveguide supports only its first transverse mode. This
is not too limiting of an assumption, because monomode operation and mode synchronism
are often required as operating conditions [91].

Inserting the ansatz (2.4) into Eq. (2.3) and making use of Eq. (2.5) leads to

M∑
k=1

�
iλ̄∂zαkwk + λ̄βkαkwk +

M∑
m=1
m̸=k

∆nmαkwk

�
= 0. (2.6)

When multiplying Eq. (2.6) with w∗j and integrating over the entire (x , y)-plane S∞, an
overlap of the transverse fields with the surrounding waveguides induces transfer of light
between the modes (Fig. 2). We recognise two different contributions that occur in Eq. (2.6)
after contraction, namely

κk j =
1
λ̄

M∑
m=1
m̸=k

∫

S∞

∆nmw∗j wkd2r⊥, σk j =

∫

S∞

w∗j wkd2r⊥. (2.7)

Here, κk j ≈ 1
λ̄

∫
∆n jw

∗
j wkd2r⊥ is the evanescent coupling between the waveguides j and

k and σk j describes the overlap of their respective transverse modes. In particular, there
is also a self-coupling νk = κkk due to the presence of other waveguides around the kth
mode. The latter is usually the smallest contribution to the propagation and will therefore
be neglected in the following discussion, i.e., νk ≈ 0. This can be justified using Fig. 3. (a)
where these quantities were computed for two cylindrical waveguides as a function of their
separation. For such highly symmetric step-index waveguides an analytical expression for
the transverse mode w j(r⊥) can be given in terms of Bessel functions [93]. Details on the
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Figure 3.: (a) Coupling κ in mm−1, overlap σ, and self-coupling ν in mm−1 between
two adjacent waveguides as a function of their separation δ. The results are shown for
cylindrical waveguides of radius R = 4.8µm with bulk index n0 = 1.452 and weak contrast
∆n = 6.53×10−4 for the inside of each waveguide. The wavelength of the considered light
beam is λ= 633nm. Taken from Ref. [P2]. (b) Coupling κExp in mm−1 and overlap σExp

between two fused-silica laser-written waveguides as a function of their separation δ.

calculation can be found in Appendix A.1. In Fig. 3. (b) coupling and overlap between two
laser-written waveguides in fused silica are plotted. Markers in the plot label values of κExp

and σExp extracted from an intensity measurement1.
Given the definitions from Eq. (2.7), the coupled-mode equations become [91, 94]

M∑
k=1

�
iσk j∂zαk + κk jαk + βkσk jαk

�
= 0. (2.8)

This form of the paraxial Helmholtz equation resembles a discrete Schrödinger equation.
Equation (2.8) can be reformulated as the matrix equation Σ∂zα = iKα, with (K) jk =
κ jk + βkσ jk and (Σ) jk = σ jk being the coupling and power matrix, respectively. Because
K and Σ do not commute in general, the matrix Σ−1K governing the propagation is not
necessarily Hermitian, and

�
αT
�∗
α would not be conserved throughout the propagation.

Nevertheless, the modified intensity distribution
�
αT
�∗
Σα remains constant along z.

2.1.1.1 Normal-mode expansion

The non-Hermitian nature of the coupled-mode equations (2.8) can be lifted by transforming
to a set of longitudinal normal modes (b)k = bk(z) (also known as supermodes [91]). Even
though our analysis did not start from power-orthogonal modes, conservation of energy
demands that such normal modes exist [85]. Obviously, in contrast to the waveguide mode
αk, the associated normal mode bk will contain contributions from adjacent waveguides.

1The experiment was conducted by Johannes Bentzien from the Experimental Solid-State Optics group
under Professor Alexander Szameit.
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More generally, their relation is given by the conserved quantity
�
bT
�∗

b =
�
αT
�∗
Σα.

Moreover, because the power matrix Σ is positive definite, there exists a (non-unique)
matrix Q such that Σ =

�
QT
�∗

Q. Once such a factorisation is known, the normal modes are
obtained from b = Qα. With respect to the normal modes, Eq. (2.8) can be written as [85]

∂z b = iHb,

where H is given by [85]

H=
��

Q−1
�T�∗

KQ−1, (2.9)

which is Hermitian, because the coupling matrix is Hermitian, i.e., K =
�
KT
�∗

. From similar-
ity with Eq. (2.9) it follows that the non-Hermitian matrix Σ−1K can always be diagonalised
with real spectrum. The matrix H might be viewed as a generalised coupling matrix medi-
ating population transfer between the normal modes. However, its off-diagonal elements
have a fundamentally different distance behaviour as the usual evanescent couplings κk.
This distortion due to nonorthogonality was observed experimentally in Refs. [95, 96]
by means of a fluorescence measurement. As this kind of measurement highlights the
non-Hermitian nature of Eq. (2.8), it can potentially be utilised to simulate the dynamics of
a PT -symmetric Hamiltonian [97] without gain and loss, a field of research that attracted
substantial interest in recent years [98].

2.1.1.2 Orthogonal coupled-mode theory

The nonorthogonality of transverse modes can be neglected if the distance between adjacent
waveguides is sufficiently large, i.e., σk j ≈ 0 for j ̸= k and σkk = 1 by normalisation. Then
one works in the regime of an orthogonal coupled-mode theory [26, 84]. In this case, the
coupled-mode equations (2.8) simplify to

i∂zαk + βkαk +
M∑

j=1

κ jkα j = 0. (2.10)

Hence, the normal modes approximately coincide with modes of the individual waveguides,
that is b ≈ α and

�
αT
�∗
α is conserved throughout the propagation, thus resembling the

intensity of a coherent light beam propagating through the M -mode network.

2.2 Quantised Electromagnetism in a Waveguide Array

The quantisation of a classical field theory can be conducted in several different ways,
which all aim at establishing a consistent quantum theory [99]. Fundamental excitations
of the fields then present the elementary particles of the theory, for example, photons in
the case of the electromagnetic field. Let us proceed with a canonical quantisation of the
orthogonal coupled-mode equations (2.10) governing the propagation of a classical light
field in an array of waveguides. This is achieved by promoting the amplitude αk(z) in the
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kth spatial mode to a Hilbert-space operator âk(z) satisfying equal-z commutation relations

[â j(z), âk(z)] = 0, [â j(z), â†
k(z)] = δ jk, [â†

j (z), â†
k(z)] = 0. (2.11)

The operators â†
k(z) and âk(z) describe the creation and annihilation of a photon in the

kth waveguide that passes the area at z (at the time t = z/c), respectively. Postulating an
M -mode vacuum state |0〉 =⊗M

k=1 |0k〉, photon-number states (Fock states) are introduced
by applying products and powers of bosonic creation operators to the vacuum2. After the
quantisation, the coupled-mode equations (2.10) become

i∂z âk(z) + βk âk(z) +
M∑

j=1

κ jk(z)â j(z) = 0.

A comparison with the Heisenberg equation of motion ∂z âk = i[âk, H] for the kth bosonic
mode only allows a Hamiltonian of the form3 [100]

H =
M∑

j,k=1
j ̸=k

�
κ jk â j â

†
k + κ

∗
jk â†

j âk

�
+

M∑
k=1

βk n̂k, (2.12)

where the commutation relations (2.11) were used, while demanding Hermiticity of H. In
the above equation, n̂k = â†

k âk denotes the number operator of the kth bosonic mode.
Because in the coupled-mode equations the propagation length z plays a similar role as

the time parameter t in a free-space quantisation, the Hamiltonian does not correspond to
the energy observable but is given in units of inverse length. Strictly speaking, it therefore
corresponds to the momentum operator (with ħh= 1) satisfying an analogous Heisenberg
equation of motion as used above [100, 101].

While a canonical quantisation of the free-space electromagnetic field leads to a contin-
uous set of infinitely-many uncoupled harmonic oscillators [102], the Hamiltonian (2.12)
describes a discrete (and finite) collection of coupled harmonic oscillators. Even though
the given derivation was carried through for a network of weak-index contrast waveguides,
coupled-mode Hamiltonians of the form (2.12) can arise in a variety of different settings,
including bulk-optical setups (beam splitters and phase shifters), high-index contrast wave-
guides [103], and even optomechanical oscillators [104]. These are formally summarised
as multi-port systems or linear-optical networks [105].

The Hamiltonian (2.12) is bilinear in the creation and annihilation operators. It can
therefore be written as H = â†Kâ, where K is the classical coupling matrix of the M -mode
network. The structure of these systems leads their dynamical evolution to be completely
determined by the transfer matrix U = eiK(zf−z0) (scattering matrix) of the network [105],

2For the sake of brevity, the notation |n jnk〉= |0, . . . , n j , 0, . . . , 0, nk, 0, . . . , 0〉 is often used throughout the
thesis. The total number of modes in a system will always be clear from the context.

3Throughout the thesis, Hilbert-space operators will be denoted by capital letters, with the exception of the
bosonic operators âk, n̂k = â†

k âk acting on Fock space, which instead are equipped with a hat.
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i.e.,

â(zf) = U
�
â(z0)
�
.

Once the modes at the end of the propagation â(zf) are known, the propagation of any
multi-photon state can immediately be given. In particular, the overall photon number in
linear optical setups is preserved throughout evolution. In the context of quantum field
theory, the Hamiltonian (2.12) is sometimes referred to as a noninteracting model [99],
because the presence of additional photons in a mode does not influence the photon’s
propagation.

2.2.1 Photon loss

So far photon loss was neglected in the discussion. In any realistic scenario such losses
will occur for various reasons, including absorption by the ambient medium [106], scatter-
ing centers [107] due to abrupt modulation of the refractive-index profile, and bending
losses due to changes in the waveguide position along z. I conclude this chapter by
briefly discussing how photon loss can be introduced heuristically by referring to a system-
environment approach [108]. This is necessary as a full characterisation of a waveguide
network and its surroundings would introduce coupling to a continuum of modes, making
diagonalisation of the corresponding Hamiltonian impossible.

In order to avoid such complications, we shall assume that the overall Hamiltonian

H = HS +HR +HI,

consists of the system part HS, the reservoir or environment HR, and an interaction HI

between them that is reasonably weak [Fig. 4. (a)]. To make this precise, the quantum
state ϱ of the combined system is assumed to propagate as a product

ϱ(z)≈ ϱS(z)⊗ϱR(0). (2.13)

Here, ϱS(z) = TrRϱ(z) is the reduced density operator of the system. Equation (2.13)
has the physical interpretation of an interaction that is strong enough to distort the state
of the system, but does not alter the reservoir throughout the propagation. Uncertainty
in our knowledge about the state of the system, due to a leakage (amplification) of the
wave function into (by) the environment, is formally known as decoherence. In this case,
the state of the system cannot be given by a pure state, i.e., a Hilbert-space vector. The
factorisation (2.13) is known as the Born approximation and appears to be justified in
systems of coupled waveguides, because the loss of a few photons does not alter the ambient
medium in any meaningful way.

Additionally, the Markov approximation will be employed, which states that the future
propagation of the state ϱ(z) is only affected by its state in the present. This is often
described as removing any memory effects from the evolution. Hence, scattered photons
are assumed to be irrevocably lost from the network. Under the given assumptions, explicit
quantum master equations can be derived for the propagation of a quantum state of light
[108, 109].
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(a) (b)

κ

γ

Figure 4.: (a) In an open system approach the overall Hilbert space is partitioned into
environmental and the system’s degrees of freedom. Their separate dynamics are induced
by the Hamiltonians HR and HS, respectively. The influence of the reservoir onto the system
is described by the interaction part HI. (b) Illustration of photon loss due to a bending of
waveguides.

For a system of M lossy photonic waveguides the dynamics are governed by

∂zϱ = i
�
ϱ, HS

�
+

M∑
k=1

γk

�
2âkϱâ†

k − n̂kϱ −ϱn̂k

�
, (2.14)

where γk(z) are Markovian dissipators describing photon loss in the kth bosonic mode and
HS is the coupled-mode Hamiltonian (2.12). The z-dependence of the loss rate γk is no
deterrent to the Born-Markov approximation (neither is the z-dependence of the couplings),
as long as they are slowly varying4.

The specific form of the dissipators γk might be derived from first principles by refer-
ring to a microscopic model for the system-reservoir interaction, or are retrieved from
phenomenological arguments, e.g., interpolation with experimental data. For instance,
absorption within a waveguide can be modelled in terms of a constant loss rate γk (ab-
sorption coefficient) that is specified by the given material. On the other hand, describing
photon loss due to a bending of waveguides [Fig. 4. (b)] is a more subtle task. Following
the approach from Ref. [112], this type of loss depends on the Gaussian radius of curvature

rk(z) =

�
1+
�
∂z xk(z)
�2� 32

|∂ 2
z xk(z)|

,

4One could imagine a situation in which the waveguide position is modulated rapidly oscillating, thus
rendering a reentering of scattered photons into the waveguide possible. The study of such systems would
demand for a post-Markovian [110] or non-Markovian [111] analysis of the underlying dynamics.
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where xk(z) is the position of the kth waveguide (measured from the center). The lose rate
is of the form

γk(z) = K1e−K2rk(z),

with material parameters K1 and K2 [113].

2.2.1.1 Bending losses in the three-waveguide coupler

For the purpose of illustration, consider an array of three waveguides. The outer modes
W and E interact solely with the central one C via the evanescent coupling κW and κE,
respectively. In other words, the outer modes are assumed to have negligible next-nearest
neighbour (second-order) coupling. The tight-binding Hamiltonian of the system reads

HS(z) = κW(z)
�
âWâ†

C + â†
WâC

�
+ κE(z)
�
âEâ†

C + â†
EâC

�
.

For simplicity, let the central mode C remain at its position. Then, the z-dependent couplings
κk(z) imply a change of the waveguide position xk(z) of the outer modes k =W, E. The
relation between the coupling and the distance to the central waveguide can be approxi-
mated by an exponential behaviour κk(z) = K3e−K4 xk(z), with material parameters K3 and
K4. Once the geometry (xW, xE) is known, couplings and photon loss can be calculated.

Injecting a single photon into the setup, the Master equation (2.14) can be written
down explicitly with respect to the number states |0〉 and â†

j |0〉, with j = W, C,E. The
propagated state ϱ(z) can be obtained by numerical solution of the system of first-order
differential equations

∂zϱWW = −2 Im(κWϱWC)− 2γWϱWW, ∂zϱEW = i(κWϱEC − κEϱ
∗
WC)− (γW + γE)ϱEW,

∂zϱEE = −2 Im
�
κEϱEC

�− 2γEϱEE, ∂zϱWC = i
�
κW(ϱWW −ϱCC) + κEϱ

∗
EW

�− γWϱWC,

∂zϱCC = 2 Im(κWϱWC + κEϱEC), ∂zϱEC = i
�
κE(ϱEE −ϱCC) + κWϱEW

�− γEϱEC,

∂zϱ00 = 2γWϱWW + 2γEϱEE,
(2.15)

where Im( · ) stands for the imaginary part of a function. Note that the central waveguide is
lossless (i.e., γC = 0) as its position is not altered throughout the propagation. In Sec. 4.3.2,
the three-waveguide coupler will be utilised for the manipulation of quantum information.
Solutions of Eq. (2.15) quantify the accumulation of errors due to photon loss.



III | Quantum Holonomies

Symmetries are fundamental to any physical theory — both classical and quantum. They
characterise what can be changed about a system without affecting any of its properties.
Prominent examples for this are the translation invariance in homogeneous spaces and the
invariance under rotations in isotropic or spherical systems. On the other hand, not all
physical systems can be in complete symmetry, as then the entire universe would ultimately
be static.

The occurrence of symmetries is closely linked to the emergence of gauge potentials.
The potential’s behaviour under a gauge transformation is such that physical observables
remain unaffected. The set of all such transformations is aptly called the symmetry group.
The theories of fundamental interactions draw heavily from this notion of gauge symmetry.
For instance, electrodynamics is founded on the invariance of the electromagnetic field
under certain changes of the vector potential, which are associated with an Abelian U(1)
gauge symmetry. In contrast, the weak and strong interactions are both understood as
non-Abelian gauge theories with symmetry groups SU(2) and SU(3), respectively [114].

It took a considerable amount of time until Wilczek and Zee noticed that any quantum
system (with a d-fold degenerate subspace) can potentially give rise to a U(d) gauge
symmetry [52]. More precisely, if the physical parameters of the system are varied slowly
then, in the adiabatic limit [115], the system’s evolution is governed by a gauge potential,
instead of its Hamiltonian. The presence of a gauge potential manifests itself in the
difference between the initial state of a system and the final output after evolution. This
difference is given by a unitary operator that only depends on the path the quantum state
has taken through Hilbert space, and is known as a quantum holonomy (non-Abelian
geometric phase). The concept was extended by Anandan and Aharonov, who showed that
even nonadiabatic evolutions can remain purely geometric in their characteristics [53, 54].

In this chapter, I will lay out the theory of quantum holonomies in bosonic systems.
Starting with the study of adiabatic quantum holonomies in Sec. 3.1, a compendium on
how to design these transformations in terms of coupled waveguides is given, including
experimental results. Section 3.2 explores the relation between holonomies and the number
of particles participating in an evolution. In Sec. 3.3, nonadiabatic quantum holonomies
are examined and their emergence in systems of coupled waveguides is discussed. The
relation between gauge potentials and parallel transport is briefly elucidated in Sec. 3.4.
Finally, an operator formalism, which allows for an elegant photon-number independent
description of quantum holonomies is developed in Sec. 3.5.

15
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3.1 Adiabatic Geometric Phases

All quantum field theories that have proven successful in describing real world phenomena
are non-Abelian gauge theories [114]. The variety of different (gauge) transformations
under which the relevant physics stay unaffected constitute a symmetry group. Quantum
mechanics itself gives rise to symmetries in simple dynamical systems. The evolution of a
quantum state |Ψ〉 is given by Schrödinger’s equation (ħh= 1 throughout the thesis)

i∂t |Ψ(t)〉= H(t) |Ψ(t)〉 , (3.1)

where H(t) denotes the Hamiltonian of the quantum system. If the system is initially in the
state |Ψ(0)〉, then after a time period T , the wave packet evolves into |Ψ(T )〉 = U(T ) |Ψ(0)〉,
being a formal solution to Eq. (3.1). Conservation of the overall probability, that is
〈Ψ(t)|Ψ(t)〉 = 1 at every instant t ∈ [0, T], demands for U(t) to be a unitary operator,
i.e., U† = U−1. An explicit form of the time-evolution operator is given in terms of a
time-ordered matrix exponential (Dyson series)

U(T ) = T̂ exp

�
−i

∫ T

0

H(t)dt

�
.

Solutions to Eq. (3.1) are in general complex [116], but measurement outcomes are
determined by absolute values of the wave function. Hence, any knowledge of a phase
factor in |Ψ〉 can be discarded1. It follows that one can replace |Ψ(t)〉 by eiΛ(t) |Ψ(t)〉without
changing any of the physics. This is the most simple example of a U(1) gauge symmetry.

More intriguing symmetries are found in systems of specific configuration. Let therefore
H(t) be the time-dependent Hamiltonian of a quantum system. The system shall be
expressible in terms of local control parameters κµ, µ = 1, . . . , D. Depending on the
underlying physics the set {κµ}µ might include external driving fields, subsystem couplings
or hopping probabilities between different states. In this picture, a time evolution of
the system is associated with a specific path C(t) in the D-dimensional parameter space
M (control manifold) containing all possible configurations of the system. Furthermore,
assume that the Hamiltonian supports a d-fold degenerate subspace H0 with energy ϵ0 = 0
and a nonvanishing gap ∆ϵ that separates it from adjacent eigenenergies. The subspace
H0 is spanned by the zero-eigenvalue eigenstates |ψa(t)〉, a = 1, . . . d, in many contexts
referred to as dark states [64, 117, 118]. If one changes the parameters κ(t) = (κµ(t))µ
slowly compared to the inverse energy gap ∆ϵ, then the evolution is said to be adiabatic
[115]. Precisely speaking, the condition ∆κµ/∆t ≪∆ϵ must be valid at every instant in
time. Hence, level crossing between ϵ0 and adjacent eigenenergies is strictly prohibited, as
this would entail ∆ϵ→ 0. This implies that there is no transfer of population into states of
different energy. However, the transfer of population within the degenerate subspace H0 is
still possible.

In the adiabatic limit, a collection of evolving orthonormal states {|ηa(t)〉}da=1 prepared
in H0 at t = 0, has to reside in this subspace. The evolving states, governed by Schrödinger’s

1Nevertheless, such information can become relevant in interference experiments, such as double-slit
experiments or Mach-Zehnder interferometers, to name a few.



Quantum Holonomies 17

equation, then satisfy 〈ηb|∂t |ηa〉= 0, because of ϵ0 = 0. The expression can be expanded
in terms of a superposition of the eigenstates, i.e., |ηa(t)〉= U(t) |ψa(t)〉 with U(t) acting
solely on H0. Subsequent differentiation yields

�
U†∂t U
�

ab
= (At)ba,

where (At)ba = 〈ψa|∂t |ψb〉 is an anti-Hermitian d × d matrix, i.e., (At)∗ba = −(At)ab. As the
evolution resides in a single eigenspace, the time-evolution operator U is independent of
fluctuations in the spectrum of H(t).

If the configuration is driven in a cyclic manner, i.e., κ(0) = κ(T), integration is
performed along a loop C in M . The time-evolution operator acting on the subspace
becomes a quantity of the loop only, that is known as a quantum holonomy (non-Abelian
geometric phase)

UA(C) = P̂ exp

∮

C

A, (3.2)

where A=
∑
µ Aµdκµ is the adiabatic connection [52]. Its components are computed from

the eigenstates via

(Aµ)ba = 〈ψa|∂µ|ψb〉 , (3.3)

with ∂µ = ∂ /∂ κµ being a shorthand. In Eq. (3.2), the path ordering symbol P̂ accounts for
the noncommuting nature of the connection, i.e., [Aµ, Aν] ̸= 0 in general. The path-ordering
prescription makes an immediate evaluation of Eq. (3.2) generally unfeasible. Nevertheless,
there are always parameter plaquettes that satisfy the path ordering automatically [40, 119].

Note that the explicit form of an eigenstate |ψa〉 ∈ H0 is not unique. While the
d-dimensional subspace H0 is unaffected by a change of basis |ψg

c 〉 =
∑

a gca |ψa〉 for
arbitrary g ∈ U(d), the connection (3.3) becomes

Ag
µ
= gAµg† − g∂µg†,

which is the transformation behaviour of a U(d) gauge theory, familiar from the theories of
elementary particles [114]. Under such a change of basis the holonomy (3.2) transforms
in a gauge covariant manner, that is

U g
A (C) = gUA(C)g

†.

Quantities which transform gauge covariantly preserve their spectral properties, and in
particular leave expectation values unchanged [114]. Moreover, a gauge-invariant quantity
— the Wilson loop — can always be constructed, that is WC = Tr{UA(C)}. It is immediately
clear, that |WC |= d for a collection of Abelian subsystems, i.e., UA(C) = eiφ(C)1 with φ(C)
being a scalar [120]. I should stress, that holonomies can be matrix-valued while still being
Abelian, i.e., UA(C1)UA(C2) = UA(C2)UA(C1) for arbitrary loops C1 and C2 in M .
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Figure 5.: Closed parameter variations resemble loops in the parameter space M . (a) The
base point κ0 of a loop can be moved to κ′0 by employing a path that is traversed forwards
and backwards at the beginning and at the end of the loop, respectively. (b) Composition
of two subsequent loops C1 and C2 at the base point κ0. (c) The inverse of a loop C is
obtained when traversing the same loop but with opposite orientation, i.e., backwards.

3.1.1 Properties of quantum holonomies

Quantum holonomies have a number of intriguing properties [40] that can be derived from
Eq. (3.2).

(a) Remaining at rest at a point κ0 in the parameter space M amounts to a trivial action
on the subspace H0, i.e., UA(C0) = 1 with C0(t) = κ0.

(b) Given a composition of two loops

(C2 ◦ C1)(t) =

¨
C1(t), t ≤ T

2 ,

C2(t), t > T
2 ,

a sequence of unitaries is induced, i.e., UA(C2 ◦ C1) = UA(C2)UA(C1).

(c) Traversing the loop C with reversed orientation (i.e., backwards) yields the inverse
transformation, i.e., UA(C−1) = U−1

A (C) for C−1(t) = C(T − t).

(d) As long as adiabaticity holds, the rate at which the loop is traversed does not change
the unitary operator, i.e., UA(C f ) = UA(C) with C f (t) = C( f (t)) and f is any diffeo-
morphism of [0, T].

Finally, it should be emphasised that the holonomy UA(C) only depends on the area enclosed
by the loop C (up to orientation) and is therefore invariant even under strong deformations
[62]. It follows that, the transformation is independent of the chosen base point κ0 at which
the loop C starts and ends. The proof of this statement is illustrated in Fig. 5. (a), where
the base point is moved from κ0 to κ′0, the loop C is traversed, and then κ′0 is moved back
to κ0. The first and last step cancel each other out, because moving the base point does not
enclose any area. Furthermore, the properties (b) and (c) are illustrated in Fig. 5. (b) and
(c), respectively.
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3.1.2 The holonomy group

By traversing different loops in M one can potentially access a variety of different unitaries
UA(C). The set of all such transformations forms the holonomy group

Hol(A) =
�

UA(C)
��C(0) = C(T ) = κ0

	
.

It is a subgroup of the unitary group U(d) [check properties (a) to (c)], and due to the
previous argument [Fig. 5. (a)] it is independent of the chosen base point κ0 ∈M . If it is
possible to design any unitary matrix by driving a sequence of loops in M , Hol(A) coincides
with the entire unitary group U(d), and the connection A is said to be irreducible.

A convenient way to assess whenever this is fulfilled, is given by the local curvature F
(non-Abelian field strength) whose anti-symmetric components (Fµν = −Fνµ) are given by

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν]. (3.4)

It is related to the holonomy via the (non-Abelian) Stokes theorem
∫∫

D
F =
∮

C
A, where

D ⊂M is the area enclosed by the loop C [119, 121]. The curvature2 measures how much
the eigenstates |ψa(κ)〉 in H0 change under variation of the parameters κµ in M .

According to a statement from differential geometry [121], if there are d2 linear-
independent matrices Fµν, it is possible to design any element of the unitary group U(d) in
terms of holonomies, a result known as the Ambrose-Singer theorem [123]. In this case, the
components Fµν are the (infinitesimal) generators of the holonomy group Hol(A) = U(d)
[114]. However, in general, the number of linear-independent Fµν gives only a lower bound
to the dimension of Hol(A). In this context, dimension refers to the degrees of freedom
that completely determine an element in a group. For instance, a unitary matrix in U(d)
is completely characterised by specifying d2 real numbers, i.e., dim U(d) = d2. In order
to obtain all the generators of Hol(A) we have to compute the algebra spanned by the
curvature and its higher-order covariant derivatives3 [124, 125]

∇σFµν, ∇δ∇σFµν, ∇ε∇δ∇σFµν, . . .

where the derivative operator is defined as

∇σ = ∂σ + [Aσ, · ].

2It is not uncommon to refer to Fµν as the curvature of the parameter space M . This is somewhat misleading,
as the Fµν depends not only on the physical parameters (κµ)µ but on the form of eigenstates as well.
Nevertheless, the name has merit to it, because the curvature (3.4) depends on the chosen gauge, and
a gauge transformation merely reparametrises the points in M . Technically speaking, Fµν is a local
representation of the curvature two-form of the U(d)-principal bundle {H0(κ)}κ∈M →M on the base
manifold M [122]. At each point κ in M there is a (typical) fibre H0(κ).

3There is an intuitive, but by no means rigorous, analogy for this. Similar to a Taylor polynomial, which
is a local approximation of a (globally defined) function, the curvature F g

µν = gFµνg† is only valid on a
local patch of M [a specific gauge g ∈ U(d)]. Adding higher-order (covariant) derivatives to the Taylor
polynomial (curvature algebra) improves the approximation.
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In the mathematical literature, this is sometimes referred to as Chow’s theorem [126].
Clearly, if the connection Aσ is Abelian, then ∇σ = ∂σ, and the (linear) span of the matrices
{Fµν,∂σFµν, . . . }µνσ... is one-dimensional. One concludes that Hol(A) is an Abelian subgroup
of U(d), and the connection is reducible (for d > 1). Despite the fact that the above
analysis does not provide an explicit prescription for designing unitary transformations,
there existential nature makes them suitable for estimating the general potency of a quantum
system to generate holonomies. In Chapter IV, we will encounter that the notion of an
irreducible connection is tightly linked to the demand for computational universality in
holonomic QC.

3.1.3 Quantum photonic realisation of a U(2) holonomy

In order to harness the concept of holonomy in systems of coupled waveguides (see
Chapter II), a structure has to be designed that provides the necessary degeneracy. One
suitable setup is a tripod arrangement of waveguides [127], illustrated in Fig. 6. (a). Here
each of three outer modes (denoted as W, E, and A) interacts solely with the central one
C. The strength of the interaction is described by the real-valued couplings κk = κ∗k for
k =W, E,A. The tripod structure was already employed for the generation of geometric
phases using a coherent light beam [128], and a non-Abelian braiding of photonic modes
was performed in Ref. [129] using a single photon. Similar proposals exist for neutral
atoms [117] and trapped ions [64].

Within an orthogonal coupled-mode theory, the system’s Hamiltonian reads [P1]

H(z) =
∑

k∈{W,E,A}
κk(z)
�
âk â†

C + â†
k âC

�
.

If a single photon is subjected to the structure, the system gives rise to two dark states

|d1〉= sinθ |1E〉 − cosθ |1A〉 ,
|d2〉= cosϑ |1W〉 − cosθ sinϑ |1E〉 − sinθ sinϑ |1A〉 .

In the above, the parametrisation θ = arctan(κA/κE) and ϑ = arctan
�
κW/
Æ
κ2

E + κ
2
A

�
was

utilised. A straight-forward calculation of the connection (3.3) leads to (Aθ )21 = sinϑ =
−(Aθ )12 as the only nonvanishing component, and therefore path ordering becomes obsolete.
A subsequent evaluation of the matrix exponential in Eq. (3.2) results in the quantum
holonomy

UA(C) =

�
cosφC − sinφC

sinφC cosφC

�
, (3.5)

with φC =
∮

C
sinϑdϑ being a geometric phase.
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(a) (b)

Figure 6.: (a) Tripod arrangement of photonic waveguides fabricated by the femtosecond
laser-writing technique. The outer modes of the system interact solely with the central
waveguide. The figure shows the realisation of a quantum holonomy via Gaussian coupling
pulses. (b) The strength of these interactions is described by the respective couplings
κµ. The desired loop C (blue) is implemented by parametrising the couplings along the
spatial coordinate 0cm≤ z ≤ 12cm which indicates the longitudinal position within the
sample. In this setting, κW (green) and κE (yellow) follow Gaussian profiles, while κA is
kept constant. Adapted from Ref. [P4].

For the experiments4 reported in Ref. [P4], the Gaussian coupling configuration

κE(z) = Ωexp
�
−(z − z +τ)2

Z2

�
, κW(z) = Ωexp

�
−(z − z −τ)2

Z2

�
, (3.6)

was designed. In the above, Ω = 0.9cm−1, Z = 2.5cm, z = 6cm, and τ = 1.5cm, while
κA = 1.1 cm−1 remains constant. Variation of the couplings is shown in Fig. 6. (b). These
(approximately) form a loop C in the coupling space M . The entire glass sample consists
of a 12cm long holonomy, followed by a 3 cm fan-out.

Due to the finite propagation length, adiabaticity can never be satisfied perfectly. This
results in a population of the nondegenerate bright states

|b±〉=
1p
2

�
sinϑ |1W〉+ cosθ cosϑ |1E〉+ sinθ cosϑ |1A〉 ± |1C〉

�
,

having energy ϵ± = ±
Æ
κ2

E + κ
2
W + κ

2
A. This leads to a dynamical evolution that deviates

from the holonomy (3.5). In the tripod structure, diabatic effects (nonadiabatic coupling)
manifest themselves in photons occupying the central mode C, as this can only be due

4The experimental results reported in Refs. [P4, P5] were obtained by Vera Neef from the Experimental
Solid-State Optics group under Professor Alexander Szameit. The theoretical analysis of these waveguide
structures is due to myself.
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to the excitation of bright states. An appropriate measure of how severely the diabatic
effects harm the generation of geometric phases is the (expected) fidelity5 F(U , N ) between
the desired unitary U , ideally to be realised, and the noisy quantum operation N . In any
realistic scenario, the map N does not only contain diabatic errors, but photon losses,
imprecision in the physical setup (e.g., in the couplings), errors due to a fan-out at the end
of the propagation, etc.

After preparing a single photon in one of the dark states |D1(κ0)〉= |1W〉 or |D2(κ0)〉=
|1E〉 at κ0 = (0,0,κ), that is the photon is at the front facet of the East or West wing of
the tripod, performing repeated measurements on the output state using single-photon
(avalanche-photo diode) detectors allows one to extract the fidelity6. The architecture
realises a quantum holonomy with F = 99.7% showing excellent agreement between
theory and experiment [P4].

3.1.4 Quantum photonic realisation of a U(3) holonomy

The coupling design (3.6), realising the parameter loop C employed in the experiment,
can be viewed as an all-out optical STIRAP (stimulated Raman adiabatic passage) scheme.
STIRAP has its origin in atomic systems [131], where light-matter interactions (so-called
Rabi couplings) are induced slowly varying by means of an external laser field, thus resulting
in adiabatic population transfer between the degenerate ground states of an atom. However,
photonic systems have a distinct advantage over these atomic implementations, namely a
single (bosonic) mode can contain multiple photons.

Therefore, let us turn to a situation in which two indistinguishable photons are injected
into the optical tripod arrangement. Remarkably, upon sending a second photon into the
tripod, degeneracy increases, that is the tripod system possesses a four-fold degenerate
dark subspace spanned by the two-photon dark states

|D1〉= sin2 θ |2E〉 −
p

2sinθ cosθ |1E1A〉+ cos2 θ |2A〉 ,
|D2〉=

1p
2

sinθ cosθ sinϑ
� |2A〉 − |2E〉
�
+ cosϑ
�

sinθ |1E1W〉 − cosθ |1A1W〉
�

+ sinϑ cos(2θ ) |1E1A〉 ,
|D3〉= cos2 ϑ |2W〉 −

p
2sinϑ cosϑ
�

cosθ |1E1W〉+ |1W1A〉
�

+ sin2 ϑ
�

sin2 θ |2A〉+ cos2 θ |2E〉
�
+
p

2 sinθ cosθ sin2 ϑ |1E1A〉 ,

5The expected fidelity between U and N is defined as [130]

F(U , N ) =
1
K

K∑
k=1

F(U |ψk〉 ,ϱk) =
1
K

K∑
k=1

〈ψk|U†N
� |ψk〉 〈ψk|
�
U |ψk〉 .

Summation is carried out over an ensemble of K input states |ψk〉. The fidelity has an operational
interpretation of how close the desired states U |ψk〉 are to the obtained output ϱk = N

� |ψk〉 〈ψk|
�
.

6In the experiment, photon counts at the output facet of the central mode C were removed from the statistic,
thus correcting part of the diabatic error by post processing.
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|D4〉=
1p
2

sin2 ϑ |2W〉+ sinϑ cosϑ
�

cosθ |1W1E〉+ sinθ |1W1A〉
�

+
1p
2

cos2 ϑ
�

cos2 θ |2E〉+ sin2 θ |2A〉
�
+ sinθ cosθ cos2 ϑ |1E1A〉 −

1p
2
|2C〉 .

With the explicit form of the dark states at hand, determining the connection amounts to a
straight-forward calculation, that leads to

Aθ =




0 −p2 sinϑ 0 0p
2 sinϑ 0 −p2 sinϑ 0

0
p

2 sinϑ 0 0

0 0 0 0


 ,

while Aϑ = 0 again. A quantum holonomy is obtained by driving through a loop C in M .
Evaluating Eq. (3.2) gives

UA(C) =




cos2φC −p2sinφC cosφC sin2φC 0p
2sinφC cosφC cos(2φC) −p2 sinφC cosφC 0

sin2φC

p
2 sinφC cosφC cos2φC 0

0 0 0 1


 , (3.7)

with φC being the same geometric phase factor as in the single-photon case (3.5).
Unlike the propagation of a single photon, here the holonomy reveals a block structure in

which one of the dark states decouples. In Ref. [132], an intuitive explanation for this block
structure was given, referring to the fact that |D4〉 involves photons in central mode similar
to a bright state. It might therefore be prohibited to participate in the adiabatic propagation
even though it has eigenenergy zero. In Sec. 3.5, I give a more rigorous argument by
looking at the adiabatic evolution of bosonic modes, instead of photon-number states.
This will lead to an operator version of the adiabatic theorem [P6] that clarifies the block
structure of the holonomy (3.7).

The two-photon experiments were performed using the same waveguide structure, that
is the tripod arrangement with the coupling design (3.6). The results were reported in
Ref. [P4] as well. As theoretical predictions rely on the assumption of an indistinguishable
photon pair to be prepared as an input, a HOM-dip experiment was performed showing a
visibility of 95 %. Two-photon measurements were realised by combining the single-photon
detectors with fibre beam splitters at the output facet of the tripod. This amounts to
preparing a set of projectors that can distinguish between the number states

|D1(κ0)〉= |2E〉 , |D2(κ0)〉= |1E1W〉 , |D3(κ0)〉= |2W〉 .

Thus, the fidelity can be retrieved from the measurement data, that is F = 99.7%, again
being in excellent agreement with the theoretical predictions [P4].

Note that the energy gap between the dark and bright states is the same as for a single-
photon, i.e., ϵ± = ±

Æ
κ2

E + κ
2
W + κ

2
A. However, for two photons, the bright states themselves
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belong to a two-fold degenerate eigenspace

|B±,1〉=
1p
2

sinθ sinϑ |1W1E〉+ sinθ cosθ cosϑ |2E〉 −
1p
2

cos(2θ ) cosϑ |1E1A〉 ± sinθ |1E1C〉

− 1p
2

sinϑ cosθ |1W1A〉 − sinθ cosθ cosϑ |2A〉 ∓
1p
2

cosθ |1A1C〉 ,

|B±,2〉= sinϑ cosϑ
� |2W〉 − cos2 θ |2E〉 − sin2 θ |2E〉

�
+

cos(2ϑ)p
2

�
cosθ |1W1E〉+ sinθ |1W1A〉

�

−p2sinθ cosθ sinϑ cosϑ |1E1A〉 ±
1p
2

cosϑ |1W1C〉 ∓
1p
2

sinϑ cosθ |1E1C〉

∓ 1p
2

sinθ sinϑ |1A1C〉 .
(3.8)

I denote the two remaining eigenstates of the system as the second-order bright states

|B±2〉=
1
2

sin2 ϑ |2W〉+
1p
2

sinϑ cosϑ
�

cosθ |1W1E〉+ sinθ |1W1A〉
�± 1p

2
sinϑ |1W1C〉

+
1
2

cos2 ϑ
�

cos2 θ |2E〉+ sin2 θ |2A〉
�
+

1p
2

sinθ cosθ sinϑ cosϑ |1E1A〉

+
1p
2

cosϑ
�

cosθ |1E1C〉+ sinθ |1A1C〉
�
+

1
2
|2C〉 ,

as they have nondegenerate eigenenergies ϵ±2 = ±2
Æ
κ2

E + κ
2
W + κ

2
A. When preparing two

photons in the dark subspace, nonadiabatic coupling to these states is strongly suppressed
by an energy gap that is twice as big.

3.1.5 Degeneracy of the photonic star graph

The previous discussion can be viewed as the special case of a star graph Hamiltonian to
which N photons are subjected. In the photonic star graph, shown in Fig. 7. (a), M − 1
bosonic modes couple exclusively to the mode M [P1]. The isodegenerate Hamiltonian of
the system reads

H =
M−1∑
k=1

�
κk âk â†

M + κ
∗
k â†

k âM

�
. (3.9)

For M = 4, one recovers the tripod structure. It is clear that an implementation in terms of
waveguides becomes unfeasible when the number of modes becomes large, as placing more
and more waveguides around a central one will inevitably result in a coupling between the
outer modes [P1].
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(a)

κk

(b)
|e〉

|g1〉 |g2〉 |g3〉
|gM−1〉

Figure 7.: (a) Depiction of the photonic star graph. The kth outer mode (k = 1, . . . , M −1)
interacts solely with the central one via the coupling κk. (b) Term scheme of an atomic
M -pod system in which M − 1 ground states |gk〉 couple to an excited state |e〉.

Consider N photons to be subjected to the star graph. Formally, this corresponds to the
Hamiltonian (3.9) acting on the N -photon Fock layer

FN =
¦
|n1, n2 . . .〉
���
∑M

k=1
nk = N
©

.

Represented in the basis FN , the Hamiltonian defines a matrix H|FN
on a reduced Hilbert

space having dimension
�N+M−1

N

�
= (N+M−1)!

N !(M−1)! , which is the number of possibilities to distribute
N indistinguishable photons on M labelled waveguides [P1].

By diagonalisation of the matrix H|FN
one finds a decomposition of the total Hilbert

space H of the system into orthogonal eigenspaces, viz.

H =H0 ⊕H+ ⊕H− ⊕ · · · ⊕H+N ⊕H−N ,

where H0 is its dark subspace, and H±n is the eigenspace with energy

ϵ±n = ±n
Æ
|κ1|2 + · · ·+ |κM−1|2 = ±nϵ

for n= 1, . . . , N . We observe that higher-order bright states emerge, when more photons
are subjected to the system. The degeneracy d±n of these subspaces depends on the number
of modes M and photons N , but is the same at each point κ ≠ 0 in the coupling space M .
In particular, one can fix κ0 = (0, . . . , 0,κ) such that the Hamiltonian (3.9) reduces to

H(κ0) = κ(âM−1â†
M + â†

M−1âM).

In this simplified setting, counting the number of dark states
∏

j

p
n j!
−1�â†

j

�n j |0〉 in the N
photon case amounts to counting the number of possibilities to distribute N photons onto
the modes â†

j for j = 1, . . . , M − 2. There are
�N+M−3

N

�
ways of distributing all photons over
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these modes. Additionally, having a simultaneous excitation of the modes

1p
2
(â†

M−1 + â†
M),

1p
2
(â†

M−1 − â†
M), (3.10)

produces dark states as well, when applied to the vacuum |0〉. As this involves two photons,
there are
�N−2+M−3

N−2

�
ways to distribute the remaining N −2 photons over the modes â†

j . The
argument continues. Even numbers n of photons are equally distributed to the pair of modes
(3.10), while the remaining N − n are distributed over the modes â†

j for j = 1, . . . , M − 2.
Hence, there are two distinct cases, N odd or even, for which one finds two formulas for
the total number of dark states d0(N , M) = dimH0, that is [P1]

d0(N , M) =





∑ N
2
n=1

�2n+M−3
2n

�
, if N even,

∑ N−1
2

n=0

�2n+1+M−3
2n+1

�
, if N odd.

The proof can be extended to (higher-order) bright states. When counting the number
of bright states with energy ±nϵ, one first has to put n photons in one of the modes (3.10),
and then distribute the rest as if to create a dark state. Thus, for bright states with energy
±nϵ, there are d±n(N , M) = d0(N − n, M) possibilities [P1].

In Fig. 8, the resulting spectral structure is schematically shown for selected values of
N and M . Clearly, the addition of more photons drastically increases the dimensions of
subspaces on which potentially more intriguing (higher-dimensional) holonomies can be
generated. If one considers only a single photon, i.e., N = 1, then the star graph has M − 2
dark states and two nondegenerate bright states. This is mathematically equivalent to the
atomic M -pod scheme from Ref. [117], where M −1 electronic ground states couple to the
electromagnetic field only via a single excited state [Fig. 7. (b)]. Due to the fermionic nature
of electrons, degeneracy can only be increased by providing additional energy levels (i.e.,
increasing M). In contrast, the photonic star graph allows for more degenerate subspaces
by virtue of providing additional photons as well (i.e., increasing N).

In conclusion, it was shown that the star graph arrangement provides the necessary
degeneracy for the generation of quantum holonomies that belong to the group U(d0(N , M)),
when N indistinguishable photons are injected into the setup.
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Figure 8.: Spectral properties of the photonic star graph filled with N photons. The
number of eigenstates (#) is depicted over the energy (in multiples of ϵ) for M = 3, 4, 5 and
N = 1, 2, 3. Additional waveguides lead to an increase in the degeneracy. The degeneracy of
the lowest energy (magnitude-wise) increases the most, while the two highest (magnitude-
wise) eigenenergies are nondegenerate. In comparison, increasing the number of photons
in the system not only increases degeneracy but gives rise to two additional nondegenerate
eigenenergies. Adapted from Ref. [P1].

3.2 The Particle-Number Threshold

We witnessed a remarkable increase in degeneracy of a (bosonic) quantum system upon
subjecting more particles. Naively, one might assume that in this way arbitrarily complicated
unitary transformations can be utilised for the manipulation of photon-number states. This
is not the case. For once, this is clear from intuition as the parameter space M is independent
of the particle number. Hence, a finite supply of physically accessible couplings cannot
allow for the manipulation of arbitrary combinations of photon-number states. Secondly, it
was already shown for the tripod structure (Sec. 3.1.3 and Sec. 3.1.4) that, when moving
from a single photon to two indistinguishable photons, its dark subspace gave rise to a
holonomy (3.7) revealing a submatrix structure. The analysis so far hints at a more general
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question [P3]. What is the number of particles N an experimentalist should subject to a
quantum system in order to generate the most versatile set of quantum holonomies?

To be precise, the terminology most versatile set refers to the holonomy group of highest
dimension. The question of how many different unitaries can be harnessed by driving loops
through M is therefore closely related to computational universality [133], which holds if
Hol(A) = U(d). In this section, quantum holonomies are studied in relation to the number
of particles involved in the evolution. In the following, this issue is motivated through
illustrative examples following Ref. [P3].

3.2.1 Three-waveguide coupler

Consider an array consisting of three waveguides. The outer modes âW and âE experi-
ence coupling to the central mode âC. Within an orthogonal coupled-mode theory the
Hamiltonian of the system reads

H =
∑

k∈{W,E}

�
κk âk â†

C + κ
∗
k â†

k âC

�
. (3.11)

The Hamiltonian is equivalent to the star graph for M = 3.
Suppose a single photon is injected into one of the outer modes (W or E) of the optical

setup, with complex7 couplings κW(z) and κE(z) varying slowly compared to the minimal
energy gap
p|κW|2 + |κE|2. In the adiabatic limit, the photon remains in the dark state

|d〉= sinθ |1W〉 − cosθeiϕ |1E〉 ,
where tanθ = |κE|/|κW| and ϕ = arg(κW). The only nonvanishing component of the
connection is Aϕ = i cos2 θ . The curvature is readily obtained to Fθϕ = sin(2θ). After
traversing a loop C in the (θ ,ϕ) plane, the output state |Ψ(zf)〉 = eiφ(C) |Ψ(z0)〉 accumulates
the geometric phase

φ(C) =

∫∫

D

sin(2θ )dϕdθ , (3.12)

with D being the area enclosed by the loop C .
Subjecting a second (indistinguishable) photon to the setup, leads to the two dark states

|D1〉= sin2 θ |2W〉 −
p

2sinθ cosθeiϕ |1W1E〉+ cos2 θe2iϕ |2E〉 ,
|D2〉=

1p
2

�
sin2 θ |2E〉+ cos2 θe−2iϕ |2W〉 − |2c〉

�
+
p

2sinθ cosθe−iϕ |1W1E〉 .

Consequently, Aϕ is now a matrix-valued quantity. At first glance, one might expect that this
enables the generation of non-Abelian holonomies. However, a calculation of the holonomy

7A complex coupling strength κµ can be engineered using varying detuning [135, 136].
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yields

UA(C) =

�
e2iφ(C) 0

0 e−2iφ(C)

�
. (3.13)

It is immediately clear from the diagonal form of the matrix (3.13) that the holonomy
belongs to an Abelian subgroup of U(2). Hence, even though degeneracy of the system
would render the generation of noncommuting transformations possible, the holonomy
group is still Abelian. Technically speaking, the evaluation of the holonomy group on the
two-photon Fock layer induces a reducible representation of the group Hol(A) = U(1).

3.2.2 Four-mode fully-connected graph

As a second example, showing more intriguing behaviour, consider the four-mode fully-
connected graph depicted in Fig. 9. The graph consists of four bosonic modes each inter-
acting with all other modes in the graph. In terms of waveguides, this means we have to
utilise more than just nearest-neighbour coupling8.

κµ

Figure 9.: A four-mode fully connected
graph, where each side can experience a
different coupling κµ.

Generally, it is not expected that such Hamil-
tonians give rise to a degenerate spectrum when
arbitrary configurations κ ∈M are considered.
This is due to the reason that nondegeneracy
is the generic case, while degeneracy requires
some form of symmetry [1]. Nonetheless, it is
possible to construct specific configurations that
lead to a degenerate subspace [58, 59]. There-
fore, let H0 be a Hamiltonian with some fixed
degeneracy structure. Consider the isospectral
parametrisation

H(κ) = V (κ)H0V †(κ), (3.14)

parameterised over points κ = (θ ,ϕ) in M . For the four-mode system, let H0 = n̂1+ n̂2− n̂4

and

V (θ ,ϕ) = V12(θ1,ϕ1)V23(θ2,ϕ2)V34(θ3,ϕ3)

is our unitary of choice. The unitar operator Vkk+1(θk,ϕk) creates a linear mixing between
the modes k and k+ 1, viz.

Vkk+1â†
kV †

kk+1 = cosθkeiϕk â†
k + sinθk â†

k+1,

Vkk+1â†
k+1V †

kk+1 = cosθke−iϕk â†
k+1 − sinθk â†

k.
(3.15)

8Notice that fully-connected graphs cannot always be implemented using coupled waveguides, because
evanescent hopping between waveguides is inverse proportional to their distance. Hence, couplings
cannot be chosen independently of one another, rendering the implementation of some configurations of
the graph impossible.
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The transformation (3.15) is chosen such that the Hamiltonian H(κ) is still bilinear in the
creation and annihilation operators.

Given a single particle the system possesses one dark state

|d〉= eiϕ3 cosθ3

�
sinθ1 sinθ2 |11〉+ e−iϕ1 cosθ1 sinθ2 |12〉+ e−iϕ2 cosθ2 |13〉

�− sinθ3 |14〉 .
A straight-forward computation of the connection reveals

Aϕ1
= −i cos2 θ1 cos2 θ2 sin2 θ2, Aϕ2

= −i cos2 θ2 cos2 θ3, Aϕ3
= i cos2 θ3,

and Aθk
= 0. The curvature is readily calculated from Eq. (3.4). Its nonvanishing compo-

nents are

Fϕ1θ1
= −2i sinθ1 cosθ1 sin2 θ2 cos2 θ3, Fϕ1θ2

= 2i cos2 θ1 sinθ2 cosθ2 cos2 θ3,

Fϕ1θ2
= −2i cos2 θ1 sin2 θ2 sinθ3 cosθ3, Fϕ2θ2

= −2i sinθ2 cosθ2 cos2 θ3,

Fϕ2θ3
= −2i cos2 θ2 sinθ3 cosθ3, Fϕ3θ3

= 2i sinθ3 cosθ3.

Hence, Abelian holonomies can be harnessed by adiabatically traversing loops in M .
Next, consider the two-particle Fock layer spanned by the number states

|21〉 , |1112〉 , |1113〉 , |1114〉 , |22〉 ,
|1213〉 , |1214〉 , |23〉 , |1314〉 , |24〉 .

The matrix H|F2
supports a three-fold degenerate dark subspace with states |Dk〉, for

k = 1,2,3. Their explicit form can be found in Appendix A.2. The connection on this
subspace is

Aϕ1

��θ2=0

θ1=θ3=
π
4
=

i
2




0 0 0

0 1 ei(ϕ1−ϕ2)

0 e−i(ϕ1−ϕ2) −1


 , Aϕ2

= i cos2 θ2 cos2 θ3



−2 0 0

0 −1 0

0 0 1


 ,

Aϕ3
= i cos2 θ3




2 0 0

0 −1 0

0 0 1


 , Aθ1

= cosθ2




0 0 0

0 0 −ei(ϕ2−ϕ1)

0 ei(ϕ2−ϕ1) 0


 ,

and Aθ2
= Aθ3

= 0. Patiently calculating the curvature

Fϕ1θ1
|κ0
=



−i 0 0

0 i
2 − i

2
p

2

0 − i
2
p

2
− i

2


 , Fϕ1θ2

|κ0
=




i 0 0

0 i
2

ip
2

0 ip
2
− i

2


 , Fϕ2θ1

|κ0
=




0 0 0

0 0 i

0 i 0


 ,

(3.16)
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and its first order covariant derivative

∇ϕ1
Fθ1θ2
|κ0
=




0 0 0

0 i − i
2
p

2

0 − i
2
p

2
−i


 , ∇θ1

Fϕ2θ1
|κ0
=




0 0 0

0 −i 0

0 0 i


 , (3.17)

highlights the non-Abelian nature of the system. For simplicity, the matrices were evaluated
at the point κ0, with ϕk = 0 and θk = π/4, and only the linear-independent contributions
were shown. The matrices (3.16) and (3.17) are the infinitesimal generators of a five-
dimensional matrix (Lie) group. This constitutes a lower bound to the dimension of Hol(A)
[P3]. Nevertheless, the analysis illustrates that subjecting a second particle to the setup
rendered the generation of more intriguing holonomies possible. More precisely, the
two-particle dark states led to a non-Abelian holonomy group Hol(A) ⊂ U(3).

The key observation is that, increasing the number of particles (from one to two) notably
improved our capabilities to generate unitaries on the dark subspace (from Abelian to
non-Abelian holonomies). Intuitively it is clear that the dimension of Hol(A) cannot increase
continually when the particle number becomes bigger, as this would result in arbitrarily
high computational power, while having only a limited supply of physical resources in M .
This leads us to an interesting question [P3]. How far can we increase the dimension of a
holonomy group by subjecting an increasing number of particles to a system? A formal
answer to this question will be given in the next section in terms of the particle-number
threshold of a system.

3.2.3 Particle-number thresholds

The holonomies of a quantum system show a dependence on the particle number N .
Firstly, this is due to the reason that the spectral properties (e.g., degeneracy) of a system
vary when its Hamiltonian H is limited to act on different Fock layers FN . Secondly, it
was noticed that even in the case that degeneracy increases, this does not necessarily
imply a more useful (i.e., higher dimensional) holonomy group. Therefore, it is natural
to ask, what is the particle number N at which one of the holonomy groups {Hol(Al)}l ,
each acting on an eigenspaces Hl of the system, reaches its maximal dimension and is
therefore most suitable for designing a useful set of unitaries. The number of particles
required for this endeavour will be denoted as the particle-number threshold (PNT) Nt [P3].

Definition: Let H be the Hamiltonian of a quantum system in second quantisation that evolves
adiabatically in time. The particle-number threshold Nt denotes the minimum number of
particles necessary for one of the system’s holonomy groups to reach its maximum potential
(maximal dimension) for the generation of holonomies.

The above definition demands for an analysis of the holonomy groups of each eigenspace
Hl (not just the dark subspace), in order to determine dim Hol(Al) for each l. Then, there
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exists a subspace with index l ′ such that for all other l holds

dim Hol(Al ′)≥ dimHol(Al).

In this light, the PNT Nt is the number of particles necessary to populate any state in Hl ′ .

3.2.3.1 Properties of PNTs

The PNT Nt of a (bosonic) quantum system H is, in general, hard to calculate, as it demands
for a calculation of the connection Al for each eigenspace (there might be infinitely many).
Nevertheless, some general properties can still be derived [P3]. Consider a system that
consists of a collection of noninteracting subsystems, i.e., H =

⊗
a Ha. Suppose, the PNT

N (a)t for each subsystem Ha is known and that, Hol
�
A(a)l ′
�

denotes its holonomy group with
maximal dimension. The composite system H then has PNT Nt =

∑
a N (a)t . This becomes

evident when noting that the highest-dimensional holonomy group

Hol(Al ′) =
⊗

a

Hol
�
A(a)l ′
�

is just the tensor product of the holonomy groups Hol
�
A(a)l ′
�

of each individual subsystem.
The holonomy group of the composite system acts on the subspace with energy

∏
a ϵ
(a)
l ′ ,

where ϵ(a)l ′ denotes the eigenenergy of the subspace on which the group Hol
�
A(a)l ′
�

acts.
Next, consider a Hamiltonian with isospectral parametrisation, that is

H(κ) = V (κ)H0V †(κ), (3.18)

with H0 being a Hamiltonian having fixed degeneracy structure {dl}l and eigenstates
{|ψl,a〉}l,a. Suppose there is a sufficiently large parameter space M so that V (κ) is the most
general unitary operator. Adiabatic evolution in the lth eigenspace Hl = {V (κ) |ψl,a〉}dl

a=1
is then governed by a connection

(Al,µ)ab = 〈ψl,b|V †∂µV |ψl,a〉 ,
which is the most general anti-Hermitian matrix. By construction, one has Hol(Al) = U(dl).
For such a general parametrisation, it is indeed the eigenspace with largest degeneracy
dl ′ ≥ dl , that is the one most desirable for the generation of non-Abelian holonomies [P3].
Hence, Nt is the number of particles necessary to populate any state in the most degenerate
eigenspace Hl ′ .

3.2.3.2 PNT of the two-mode nonlinear Kerr-medium

In any realistic scenario, V will most likely not be the most general unitary operator, but
will be limited to some smaller set of physically accessible operations. For concreteness,
consider the two-mode Hamiltonian associated with a nonlinear Kerr medium

H0 = n̂1

�
n̂1 − 1
�
+ n̂2

�
n̂2 − 1
�
.
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Here, the unitary V (α,β ,ξ,ζ) is a product of single and two-mode displacement

Dk(α) = exp
�
αâ†

k −α∗âk

�
,

K(β) = exp
�
β â†

1â2 − β∗â1â†
2

�
,

(3.19)

as well as single and two-mode squeezing

Sk(ξ) = exp
�
ξ(â†

k)
2 − ξ∗â2

k

�
,

M(ζ) = exp
�
ζâ†

1â†
2 − ζ∗â1â2

�
,

(3.20)

respectively [102]. By driving coherent displacement (α,β) and squeezing parameters
(ξ,ζ) through a closed loop in M = C4, holonomies on the eigenspaces of H are obtained.
Pachos and Chountasis showed that this enables arbitrary U(4) transformations over the
zero-eigenvalue eigenspace H0 [137]. At the point (α,β ,ξ,ζ) = 0, the corresponding
eigenstates reduce to

|0102〉 , |1102〉 , |0112〉 , |1112〉 ,
i.e., two photons are necessary to fully occupy the subspace.

An extended study (up to N = 50 photons) of the curvature Fl shows that, even though
further increasing the photon number (N > 2) populates eigenspaces with increased
degeneracy (up to dl = 10 for some l), their holonomy groups do not offer a more useful
holonomy group [P3]. In other words,

dim Hol(Al)≤ dimHol(A0)

holds for all eigenspaces Hl with index l ≤ 352 (see Tab. 1). This was done through
explicit calculation of the curvature Fl,µν and its covariant derivatives up to order three
(these are to large to be displayed here). The computed dimension of the groups {Hol(Al)}l
did not increase further after the first order derivatives, thus giving us reasonable assurance
that the dimension was characterised accurately [P3].

In summary, the subspace H0 (containing at most two-photon states) should be preferred
when the system is utilised for the generation of non-Abelian geometric phases. Therefore,
the PNT of the two-mode Kerr Hamiltonian is Nt = 2. Moreover, it was shown that restricting
the parametrisation of the Hamiltonian (3.18) to unitaries V that can be realised by the
Gaussian operations (3.19) and (3.20), led to many of the system’s eigenspaces having
reducible connections Al . Hence, degeneracy became a quantity of secondary interest. In
Tab. 1 the spectral properties of the two-mode Kerr Hamiltonian H are listed together
with their capacity to generate holonomies on the eigenspaces Hl (for l = 0, . . . , 352).
Subspaces with degeneracy dl ≤ 4 were excluded from Tab. 1, as their holonomy groups
cannot exceed the dimension of Hol(A0) = U(4).
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l ϵl dl ≤ N dim{Fl,µν}µν dimHol(Al)

0 0 4 2 14 16

1 2 4 3 14 16

5 12 5 6 9 9

16 42 6 10 9 9

26 72 6 13 12 12

37 110 6 15 9 9

45 132 6 17 9 9

54 162 6 19 6 6

60 182 6 20 9 9

70 212 6 21 3 3

78 240 6 21 9 9

87 272 6 24 9 9

99 312 5 26 3 3

108 342 6 27 9 9

113 362 6 27 3 3

130 420 5 30 9 9

131 422 6 30 3 3

141 462 8 31 9 9

157 512 6 33 6 6

168 552 10 34 9 9

199 662 6 36 3 3

208 702 6 38 9 9

215 722 6 39 6 6

222 756 6 38 9 9

225 762 6 40 3 3

238 812 10 41 9 9

266 912 6 42 3 3

274 942 8 44 3 3

285 992 6 45 9 9

306 1062 8 47 3 3

320 1112 6 48 3 3

323 1122 6 48 9 9

346 1202 8 50 3 3

349 1212 6 49 3 3

352 1232 8 50 3 3

Table 1.: Holonomy groups of the two-mode nonlinear Kerr medium parameterised by
the Gaussian operations (3.19) and (3.20). The table contains the degeneracy dl of the lth
eigenspace (with energy ϵl). Here, N denotes the number of particles necessary to fully
occupy the corresponding eigenspace Hl . The number of linear-independent curvature
components Fl,µν as well as the dimension of the holonomy group Hol(Al). Covariant
derivatives were calculated up the order of three. Taken from Ref. [P3].

Hello world!
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3.2.3.3 PNTs of coupled harmonic oscillators

Given a collection of coupled harmonic oscillators (i.e., a linear optical system), certain
specialisations arise that can simplify the calculation of a PNT notably. In these systems,
population transfer between different Fock layers FN does not occur, because the total
number of photons is not altered throughout an evolution. From a mathematical viewpoint,
this implies that the system’s Hamiltonian reveals a submatrix structure, i.e.,

H =
⊕
N∈N

H|FN
.

Utilising the spectral resolution H =
∑

l ϵlΠl (Πl denoting the projector onto Hl), the
eigenspaces themselves admit a similar decomposition, viz.

Πl =
⊕
N(l)

Πl |FN(l)
, (3.21)

where summation is carried out over those particle numbers N(l) at which the corresponding
eigenenergy ϵl occurs.

As an example, the Hamiltonian (3.11) of the three-waveguide coupler does not possess
single-particle eigenstates with energy 2

p|κW|2 + |κE|2 (recall Sec. 3.2.1). In other words,
the eigenvalue does not lie in the spectrum of H|F1

, but it is an eigenvalue of the matrix
H|FN

for N ≥ 2. Here, the direct sum in Eq. (3.21) amounts to an infinite series starting
with N(l) = 2, 3, . . . .

If additionally the evolution is assumed to be adiabatic, photon transfer occurs within
each eigenspace separately. Hence, the decomposition (3.21) is inherited to the time-
evolution operator (quantum holonomy) [P3]

UAl
(C) =
⊕
N(l)

UAl
(C)|FN(l)

. (3.22)

Clearly, the connection will always be reducible for such a system, because it is not possible
to generate transformations between different Fock layers. The best one can hope for, is to
find is a highly-degenerate N -particle block in the eigenspace Hl such that the holonomy
UAl
(C)|FN

realises any unitary transformation on the subspace Hl |FN
.

Despite the quantum holonomy (3.22) potentially having an infinite-dimensional matrix
representation, it might still be commuting for different loops in the parameter space M .
For instance, this is the case for the Hamiltonian (3.11) of the three-waveguide coupler.
For a single photon, the matrix H|F1

has only one dark state (see Sec. 3.2.1). Given two
or three photons in the setup, H|F2

and H|F3
both have two dark states. Subjecting four

photons to the system leads to a Hamiltonian matrix H|F4
having three dark states. Even

though degeneracy further increases, the quantum holonomy

UA0
=




UA0
|F1

UA0
|F2

. . .



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will remain Abelian, because the N -particle block

UA0
(C)|FN

= diag
�
eiNφ(C), . . . , e−iNφ(C)

�
,

is itself a diagonal matrix [see Eq. (3.13) for N = 2]. Here, φ(C) is the geometric phase
defined in Eq. (3.12). The above analysis illustrates, that increasing the photon number in
the three-waveguide coupler does not increase the holonomy group’s dimension. Similar
arguments hold for the other eigenspaces of the system, and thus a single photon is sufficient
to generate any phase in U(1). One concludes, the PNT of the system is Nt = 1.

3.2.3.4 PNTs of fermionic systems

Until now, all systems considered, were bosonic in nature. Nonetheless, the definition of a
PNT is applicable to any quantum system given in second quantisation. Fermionic modes
are associated with creation and annihilation operators fulfilling canonical anticommutation
relations. Because of this, the most prominent difference to bosonic setups, is that fermions
have to obey the Pauli principle, that is, two fermions cannot occupy the same mode
simultaneously. This drastically reduces the number of possible states in a system and in
particular, the corresponding Fock space is finite dimensional. Therefore, the computing
the PNT of a fermionic system becomes much more manageable in comparison to bosonic
systems.

PNTs can also be calculated for systems comprising both bosonic and fermionic modes.
As a particularly simple example, consider the Jaynes-Cummings Hamiltonian describing
the interaction between an incident light field and a single atomic energy level at resonance.
Within the rotating wave approximation, the Hamiltonian reads [102]

HJC =ωAσ
+σ− +ωcn̂+ κ(â

†σ− + âσ+),

with resonance frequency ωA of the atom, ωc being the frequency of the incident light field,
and κ describing the strength of the light-matter interaction. The atomic ladder operators
σ− = |g〉 〈e| and σ+ = (σ−)† shift an electron from the ground state |g〉 to the excited
state |e〉, and vice versa. The system possesses a nondegenerate spectrum {ϵn±}n∈N with
corresponding eigenstates

|n+〉= sinθ |g, n+ 1〉+ cosθ |e, n〉 ,
|n−〉= cosθ |g, n+ 1〉 − sinθ |e, n〉 ,

where tan(2θ) = 2κ
p

n+ 1/(ωc − ωA) and n being the photon number. This (one-
parameter) form of the eigenstates highlights that the underlying parameter space does
not possess any curvature, i.e., Fn±,θθ = 0 for all photon numbers n ∈ N. Hence, the system
is ineligible for the generation of quantum holonomies, and this is reflected in the PNT, i.e.,
Nt = 0 [P3].
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3.3 Nonadiabatic Geometric Phases

The construction of adiabatic geometric phases can be generalised to the case in which the
underlying subspace, on which the holonomy acts, is not an eigenspace [54]. This allows
one to go beyond the adiabatic regime while keeping the evolution purely geometric. Such
proposals can be advantageous as they drastically shorten the necessary evolution time or
propagation length.

Let therefore H(t) be the Hamiltonian of a quantum system associated with a Hilbert
space H . Consider a finite-dimensional subspace Hψ spanned by a collection of orthonor-
mal states |ψa(t)〉, for a = 1, . . . , d. These do not need to be eigenstates. In order for
the evolution to be independent of any dynamical influences, the mean energy of the
Hamiltonian has to vanish on that subspace, i.e., 〈H(t)〉Hψ

= 0 for all t in an interval [0, T ].
Expressing this condition in terms of the basis {|ψa〉}a yields

〈ψa(t)|H(t)|ψb(t)〉= 0. (3.23)

A state |ηa(t)〉 residing in the subspace Hψ throughout its evolution can be expanded
as |ηa(t)〉 = U(t) |ψa(t)〉. Here, the unitary operator U acts solely on the subspace Hψ.
Next, consider an orthonormal frame of evolving states, i.e., 〈ηa|ηb〉 = δab. By linearity,
one has 〈ηa|∂t |ηb〉 = 0, due to Schrödinger’s equation and condition (3.23). In compliance
with these assumptions, the operator U obeys

(U†∂t U)ab = (At)ba,

with (At)ba = 〈ψa|∂t |ψb〉 being an anti-Hermitian d × d matrix. A formal solution to the
above equation is given by the time-ordered matrix exponential [54]

U(T ) = T̂ exp

∫ T

0

Atdt. (3.24)

Suppose the evolution is such that the subspace Hψ returns to its initial configuration
after the time T . In other words, the evolution is cyclic, that is |ψa(0)〉 = |ψa(T )〉 for
a = 1, . . . , d. Then, the operator (3.24) turns into a quantum holonomy [60], and we
may well write U(T) = UA(C). Here, C denotes the loop taken by the basis {|ψa(t)〉}a
through state space and A= Atdt denotes the nonadiabatic connection [53]. The latter
being a direct generalisation of the (adiabatic) Wilczek-Zee connection [52]. Unlike in
the adiabatic case, here a loop C in state space does not imply a loop in the underlying
parameter space M of the system.

Nevertheless, the nonadiabatic holonomy has similar properties as its adiabatic counter-
part (see Sec. 3.1). A product of loops can be defined, i.e. UA(C2 ◦ C1) = UA(C2)UA(C1). As
one can always traverse a loop C backwards, we have UA(C−1) = U−1

A (C). Remaining on the
same point in Hilbert space corresponds to a quantum holonomy acting as the identity, i.e.,
UA(C0) = 1 with C0 = {|ψa〉}a being time independent. These properties equip the set of
possible holonomies with a group structure, resulting in a holonomy group Hol(A) ⊆ U(d).
A change of the basis |ψg

c 〉 =
∑

a gca |ψa〉 in the subspace Hψ, with g ∈ U(d), preserves
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condition (3.23) as well as cyclicity. On the other hand, the nonadiabatic connection
experiences the gauge transformation Ag

t = gAt g
† − g∂t g

†.

3.3.1 Quantum photonic realisation of a U(2) holonomy

In order to harness nonadiabatic quantum holonomies from systems of coupled waveguides,
the three-waveguide coupler (Fig. 10) is employed. Again, population transfer is mediated
by the evanescent couplings κW(z) and κE(z) towards the central mode C only. Within an
orthogonal coupled-mode theory, the Hamiltonian of the system reads

H(z) =
∑

k∈{W,E}
κk(z)
�
âk â†

C + â†
k âC

�
. (3.25)

As before, the propagation length z acts as the time parameter. Consider a scenario with
only a single photon. Both couplings are designed to change with the same envelope Ω(z),
i.e., the real-valued parametrisation κW(z) = Ω(z) sin(θ/2) and κE(z) = Ω(z) cos(θ/2) is
employed. The states

|d〉= sin(θ/2) |1E〉 − cos(θ/2) |1W〉 ,
|b〉= cos(θ/2) |1E〉+ sin(θ/2) |1W〉 ,

change along the propagation according to (use H |d〉= 0)

|ψ1(z)〉= U(z) |d〉= |d〉 ,
|ψ2(z)〉= eiδ(z)U(z) |b〉= eiδ(z)(cosδ(z) |b〉 − i sinδ(t) |1C〉),

(3.26)

where U(z) = e−i
∫ z

z0
H(z′)dz′ is the time-evolution operator and δ(z) =

∫ z
z0
Ω(z′)dz′. The

reader can easily convince themselves that these states satisfy condition (3.23). Moreover,
it can be readily verified that a pulse Ω(z) with δ(zf) = π ensures that they evolve cyclically
as well. The resulting evolution is given by a quantum holonomy, which does not depend
on any dynamical properties of H such as the eigenenergies or runtime. It is completely
determined by the nonadiabatic connection, which has a single nonvanishing component
(Az)22 = iΩ(z). Evaluating the matrix exponential (3.24), one is left with the holonomy
UA(Cθ ) = diag(1,−1) given at the base point |ψ1(z0)〉 = |d〉 and |ψ2(z0)〉 = |b〉. When
transforming into the photon-number states |1W〉 and |1E〉 (via a change of gauge), one

Figure 10.: Elementary architecture for the generation of nonadiabatic holonomies. The
distances between the outer modes W and E, and the central one C determine the coupling.
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obtains

UA(Cθ ) =

�
cosθ − sinθ

− sinθ − cosθ

�
. (3.27)

It becomes evident that noncommuting holonomies can be engineered by traversing loops
with different θ [60].

In principle, any coupling configuration κk(z)∝ Ω(z) that satisfies δ(zf) = π results in
the same holonomy (3.27) as long as the weight θ remains fixed. For illustration, consider
the one-parameter family of sine-like envelopes

Ωω(z) =
π

∆z
+ K sin
�ωz
∆z

�
,

shown in Fig. 11. (a). Here, ∆z = zf−z0 = 5 cm and K = 0.15 cm−1 controls the strength of
oscillation. For ω = mπ, with m ∈ N0, cyclicity is satisfied accurately, i.e., δ(zf) = π. As ω
deviates from these values, there is a mismatch at the end of the propagation, i.e., the states
|ψa(z)〉 do not return to their initial configuration. Figure 11. (b) shows how this distortion
manifest itself in a decreasing gate fidelity F(UA(Cπ

2
), Uω) for a loop with θ = π/2. Here,

Uω(zf) is the time-evolution operator of the system with envelope Ωω. Note that large
values of ω imply more rapid changes in the position of the outer waveguides W and E.
Inevitably, this leads to a decrease of the fidelity. However, for ω ∈ [0, 4π] (Fig. 11) these
losses are completely negligible. In Fig. 11. (b), one observes a plateau around ω= mπ.
In other words slight distortions of the value of ω only alter the unitary UA(C) marginally.
This is a direct manifestation of the holonomies intrinsic robustness9 towards parametric
noise.

Finally, some comparisons with the adiabatic construction from Sec. 3.1.3 might be
appropriate. In both cases, a U(2) quantum holonomy was realised between the number
states |1W〉 and |1E〉, but only in the nonadiabatic case is it possible to design noncommuting
holonomies [compare Eqs. (3.5) and (3.27)]. The adiabatic construction relied on a loop
in the parameter space of the tripod [Fig. 6. (a)], while the nonadiabatic holonomy (3.27)
is the result of a loop in state space, and couplings (in principle) could even be constant
Ω = π/zf. The absence of light in the central mode is a measure of adiabaticity. Hence, the
adiabatic holonomy, in good approximation, avoids population transfer to the central mode
[128, P4]. In contrast, the nonadiabatic construction made use of the central waveguide as
an ancilla. The ancilla is populated throughout the evolution but is not part of the final
readout.

The experiments were conducted in fused-silica laser-written waveguides [P5]. A first
loop Cπ

4
was designed, resulitng in a unitary transformation

UA(Cπ
4
) =

1p
2

�
1 −1

−1 −1

�
,

9It was shown in Ref. [63] that deviations in the fidelity are suppressed quadratically by the holonomy, i.e.,
F(UA(C), Uω)≈ 1− (∆δ)2/2, where ∆δ describes an imprecision in the cyclicity, that is δ(zf) = π+∆δ.
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Figure 11.: (a) Coupling envelopeΩω =
π
∆z+K sin
�
ωz
∆z

�
with∆z = 5 cm and K = 0.15 cm−1,

as a function of the propagation length z for various values of ω. (b) The expected fidelity
between the holonomy UA(Cπ

2
) and the noncyclic evolution Uω as a function of the oscillation

parameter ω. It was computed for an ensemble of input states |1W〉, |1E〉, and |1C〉. For the
input state |1W〉, ideally transformed into |1E〉, the fidelity is shown as well (dashed line).
For ω= 0, 2π, 4π cyclicity is satisfied accurately.

that creates a superposition between the outer modes. The envelope was designed using
straight waveguides with a sine-like fanning at the beginning and the end of the 10cm
long glass chip, details in Ref. [P5]. Repeated single-photon measurements with input
states |1W〉 and |1E〉 shows that the desired transformation is implemented with a fidelity
F = 99.2%.

Next, the loop Cπ
2

is implemented, using a similar design strategy on a 10 cm photonic
chip. This results in a shift of a photon from the mode W to the mode E and vice versa, viz,

UA(Cπ
2
) =

�
0 −1

−1 0

�
.
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The fidelity between our analytical calculation and the experimental evaluation amounts to
F = 99.1 % In both experiments, photon loss as well as photon counts in the central mode
were heralded, as these correspond to errors in the architecture which one can exclude by
post processing.

3.3.2 Quantum photonic proposal for a U(5) holonomy

Utilising photonic systems for the construction of quantum holonomies has the distinct
advantage that it allows, unlike atomic platforms, for multi-particle occupation of a sin-
gle mode. This was already highlighted for the adiabatic case (Sec. 3.1.4). There, it
resulted in a scaling of degeneracy, thus allowing for the implementation of more intriguing
transformations. Here, I show how similar results hold true for nonadiabatic holonomies.

Consider a scenario in which two indistinguishable photons are subjected to the three-
waveguide coupler. The Hamiltonian (3.25) has then to be evaluated on the two-photon
Fock layer F2 spanned by the states

|1W1C〉 , |1E1C〉 , |2W〉 , |1W1E〉 , |2E〉 , |2C〉 . (3.28)

We are again seeking orthonormal states |ψa(z)〉 for which the condition 〈H(z)〉Hψ
= 0

holds. A careful analysis of the system reveals that there are five of those states. The first
two states are just a copy of the single-photon states (3.26) but with an additional photon
contained in the central mode, viz.

|ψ1(z)〉= â†
C |d〉 ,

|ψ2(z)〉= eiδ(z)
�

cosδ(z)â†
C |b〉 − i

p
2sinδ(t) |2C〉
�
.

The three remaining states have a more complicated form10, that is

|ψ3(z)〉= κ2
W |2E〉+

p
2κWκE |1W1E〉+ κ2

E |2W〉 ,
|ψ4(z)〉= e2iδ
�

cos2δ
�
(κW)

2 |2W〉+
p

2κWκE |1W1E〉+ (κ∗E)2 |2E〉
�

−p2i sinδ cosδ
�
κW |1W1C〉+ κE |1E1C〉

�− sin2δ |2C〉
�
,

|ψ5(z)〉= κWeiδ cosδ
�
κW |1W1E〉+

p
2κE |2E〉
�− iκWeiδ sinδ |1E1C〉

− κEeiδ cosδ
�
κE |1W1E〉+

p
2κW |2W〉
�
+ iκEeiδ sinδ |1W1C〉 .

The above states all satisfy the condition 〈H〉Hψ
= 0, while evolving cyclically with δ(zf) = π

as well, thus rendering the generation of a quantum holonomy possible. It becomes a simple
exercise to determine the connection. Its only nonvanishing components are (Az)22 = iΩ(z)
and (Az)55 = iΩ(z). Subsequently, the quantum holonomy has a matrix representation
UA(Cθ ) = diag(1,−1, 1, 1,−1) with respect to the basis {|ψa(zf)〉}a. In order to highlight the
photonic population transfer that can be achieved by the holonomy, it is useful to transform

10In Sec. 3.5, I will provide an explicit recipe on how to construct these states. For the moment, the reader
might be satisfied with the fact that these states satisfy all conditions for a holonomic evolution.
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into the photon-number basis (3.28) (the state |2C〉 is not part of Hψ at zf)

UA(Cθ ) =




− cosθ sinθ 0 0 0

sinθ cosθ 0 0 0

0 0 cos2 θ sin2 θ 1p
2

sin(2θ )

0 0 sin2 θ cos2 θ − 1p
2

sin(2θ )

0 0 1p
2

sin(2θ ) − 1p
2

sin(2θ ) − cos(2θ )




. (3.29)

The quantum holonomy reveals a block structure belonging to the group U(2)⊕U(3), which
is a proper subgroup of U(5). While the 2× 2 submatrix can create mixing between the
number states |1W1C〉 and |1E1C〉, the lower block acts on the states |2W〉, |1W1E〉, and |2E〉.

3.4 Geometric Aspects of Quantum Holonomies

In quantum field theories, gauge potentials originate from internal symmetries of charge
spaces as well as conservation laws [99], and at first sight it seems surprising that similar
behaviour emerges from the (e.g., adiabatic) evolution of a generic quantum system.

This is due to the reason that all of physics underlies a deep geometric framework that
might be divided loosely in two aspects: a local or infinitesimal aspect, and a global aspect.
Much of the physicists standard lore deals with this perturbative aspect, for which the choice
of local coordinates dismisses much of the beautiful global structure. The study of this
non-perturbative aspect demands for a coordinate-free formulation of the laws of Nature. In
this picture, all the relevant physics is encapsulated in an abstract form of parallel transport
on a principal fibre bundle. Indeed, the notion of a gauge potential cannot even be made
precise without referring to a local connection one-form on this principal fibre bundle.

3.4.1 Parallel transport in the Grassmann manifold

As a review of the full theory of fibre bundles is beyond the scope of this thesis, the general
construction will be illustrated via the parallel transport of a quantum state. Consider
a generic Hamiltonian H(t) acting on an N -dimensional Hilbert space H (N might be
infinite). A time evolution of a d-dimensional subspace Hψ can then be associated with a
curve taken by the projector Πψ(t) onto Hψ. The mapping Πψ→ (|ψa〉)da=1 onto a basis of
Hψ, constitutes a (so-called) section of the bundle

VN ,d
π−→ GN ,d .

This U(d)-principal bundle consists of the base space

GN ,d =
�
Πψ : H →H
��Π2

ψ
= Πψ, Tr{Πψ}= d

	

known as the Grassmann manifold GN ,d , the total space

VN ,d =
�
(|ψa〉)da=1 ∈Hψ × · · · ×Hψ

�� 〈ψb|ψa〉= δab
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|ηa〉

Πψ

Hψ

GN ,d

π

Figure 12.: Parallel transport of a state vector |ηa〉 in the U(d)-principal bundle VN ,d → GN ,d .
A curve Πψ in the Grassmann manifold is lifted horizontally into the Stiefel manifold. At
every point in the base space the tangent vector of the lift is orthogonal to the fibre Hψ

(preimage of π).

called the Stiefel manifold VN ,d , and a (surjective) bundle map π : (|ψa〉)a 7→ Πψ. By
definition, this map is invariant under a (unitary) change of the section, i.e., both (|ψa〉)a
and (g |ψa〉)a are projected onto the same subspace Hψ, for arbitrary g ∈ U(d). The set of
possible orthonormal frames

Hψ =
�
(g |ψa〉)da=1

�� g ∈ U(d)
	

is said to be the (typical) fibre at the point Πψ in GN ,d . It is the preimage of the bundle map
π at the point Πψ.

A section introduces a natural way to lift the curve Πψ(t) from the base space into the
total space of the bundle (Fig. 13). By definition, a curve (|ηa(t)〉)da=1 ∈ VN ,d is known as
the horizontal lift of Πψ(t) ∈ GN ,d if its tangent vector is orthogonal to the fibre at each
point. A natural way to introduce orthogonal directions in this bundle is given through
the inner product11, i.e., 〈ψb|∇t |ηa〉 = 0 for each a = 1, . . . , d. Then the state |ηa(t)〉 is
said to be parallely transported along the curve Πψ(t). The covariant derivative acts on
a quantum state according to ∇t |ηa〉= ∂t |ηa〉+ At |ηa〉, where At is the local connection
one-form of the principal fibre bundle. Expressing the parallely transported state |ηa(t)〉
through the local frame (|ψa(t)〉)a yields

〈ψb|∂t |ψa〉+ 〈ψb|At |ψa〉= 0,

11Because each fibre Hψ constitutes a vector space equipped with an inner product, the triple VN ,d → GN ,d is
also known as a Hermitian vector bundle [121].
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GN ,d

|ηa〉

Πψ

Figure 13.: Parallel transport of a state vector |ηa〉 along a loop Πψ in the Grassmann
manifold GN ,d . At the end of evolution, the horizontal lift |ηa〉 experiences a unitary shift
in the fibre, that is precisely the quantum holonomy.

due to linearity. The connection (At)ba = −〈ψb|∂t |ψa〉 lies in the space of anti-Hermitian
matrices. In a U(d)-principal bundle, a change of the section can always be expressed
through the (unitary) action g ∈ U(d) onto the fibre Hψ.

A transition to the section Πψ 7→ (g |ψa〉)a, manifests itself in the connection as Ag
t =

gAt g
† − g∂t g

†. In this light, a gauge transformation is just a change of the local section.
Notice that the parallel transport condition is equivalent to the disappearance of the
Hamiltonian on the subspace Hψ, i.e., 〈H(t)〉Hψ

= 0. Indeed, this is nothing but the
condition for a purely geometric evolution of a quantum state.

IfΠψ(t) forms a loop in the Grassmann manifold GN ,d , i.e.,Πψ(0) = Πψ(T ), its horizontal
lift |ηa(t)〉 starts and ends in the same fibre (Fig. 13), but is shifted by a quantum holonomy
belonging to the symmetry group U(d). If d = 1, we recover an Abelian (Berry or Anandan)
phase as the holonomy of a U(1)-principal bundle. In this setting, the Grassmann manifold
GN ,1 reduces to the projective Hilbert space containing rank-one projectors [59].

Expressing the Hamiltonian H through local coordinatesκ = (κµ)µ on a smooth manifold
M , a loop in the Grassmann manifold GN ,d is mapped onto a curve in M . Notice that if
Hψ =H0 is the dark subspace of the Hamiltonian H, the parallel transport condition is
equivalent to the adiabatic limit, and cyclicity of the dark states implies a closed loop in M .
The map Φ : κ 7→ Π0(κ) maps points in the manifold M onto dark subspace projectors. A
realistic quantum system is expected to have a smaller control manifold then the entire
Grassmann manifold, i.e., Φ is generally not surjective. Parallel transport then has to be
studied in the so-called pull-back bundle Φ∗VN ,d →M , where the total space is defined as

Φ∗VN ,d =
�
(|ψa(κ)〉)da=1 ∈ VN ,d

��κ ∈M
	
.

For additional details, the reader might refer to Ref. [122].
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3.5 Operator Formulation of Quantum Holonomies

The calculation of adiabatic and nonadiabatic quantum holonomies in systems of coupled
waveguides becomes increasingly difficult when more photons participate in the propaga-
tion. This is due to the fact that the N -photon subspace of an M -mode network supports
(N + M − 1)!/(N !(M − 1)!) different Fock states. In addition, the N -photon eigenstates
of a system generically take a more complicated form as N increases. The explicit form
of the latter has to be known in order to calculate the holonomy on a subspace. Similar
problems arise in the nonadiabatic scenario, where the identification of all multi-photon
states satisfying the condition 〈H〉Hψ

= 0 [see Eq. (3.23)], is at first sight, a daunting task.
The problem can be overcome by referring to an operator formalism for a photon-

number independent treatment of quantum holonomies in bosonic systems [P6]. The
basic idea is to describe the holonomic evolution in the Heisenberg picture, instead of
working in the Schrödinger picture as the literature on geometric phases suggests [138].
This leads to the technical difficulty that conditions such as adiabaticity and cyclicity, must
be translated into the Heisenberg picture. The representation of (Abelian) Berry phases in
an adiabatic Heisenberg picture was developed first in Ref. [139], where it was applied to
the dynamics of a spin-1

2 particle in a magnetic field. The operator framework developed in
Ref. [P6] can be seen as a generalisation of this approach to non-Abelian and nonadiabatic
quantum holonomies. Besides offering a major computational advantage over the standard
formalism, it also provides deeper insight into the emergence of geometric phases in second
quantisation.

3.5.1 Holonomies in the Heisenberg picture

Consider a Hamiltonian H(t) associated with a bosonic quantum system. Suppose prepa-
ration and evolution is such that a quantum state |Ψ(t)〉 resides in the subspace Hψ, on
which the Hamiltonian’s dynamics complete disappear, i.e., 〈H〉Hψ

= 0. This forms a valid
condition for parallel transport of quantum states and in particular, describes adiabatic
holonomies as a special case as well. For concreteness, if Hψ is the dark subspace of
a quantum system, the condition 〈H〉Hψ

= 0 is satisfied whenever the adiabatic limit is
applicable [52]. On the other hand, if Hψ is given by some time-dependent basis for which
the mean energy vanishes, this describes nonadiabatic parallel transport [54].

The reader should note that the above (standard) formalism is naturally based on the
Schrödinger picture, as it revolves around the time-dependent states {|ψa(t)〉}a spanning
the subspace Hψ, e.g., the dark states in an adiabatic setting. While there is no natural
translation of the adiabatic limit into the Heisenberg picture, in order for expectation values
to coincide on the subspace Hψ, any mode âk must evolve according to âk 7→ U†

A(C)âkUA(C),
where UA(C) is the (adiabatic or nonadiabatic) quantum holonomy of the loop C taken
by the subspace Hψ through state space the Grassmann manifold. This implies that the
Heisenberg equations of motion for a purely holonomic evolution read [P6]

〈˙̂ak〉Hψ
= 〈[âk, At(C)]〉Hψ

+ 〈∂t âk〉Hψ
, (3.30)
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which means that the generator of the evolution is now given by a connection At(C) =
U†

A(C)At UA(C) instead of the Hamiltonian [P6]. Once Eq. (3.30) is solved, the parallel
transport of any (analytical) function F(âk, â†

k) can be written down explicitly.

3.5.1.1 Adiabatic propagation through a nonlinear Kerr medium

As a first example, consider the adiabatic propagation through the zero-eigenvalue eigenspace
H0 (spanned by |0〉 and |1〉) of a single-mode Kerr medium [137]

V (α,ξ)H0V †(α,ξ),

with H0 = n̂(n̂− 1) and V (α,ξ) = D(α)S(ξ) describing the combined process of coherent
displacement and single-mode squeezing [cf. Eqs. (3.19) and (3.20)]. The parallel
transport of â(t) is governed by the connection

At = Π0V †(α,ξ)∂tV (α,ξ)Π0,

with Π0 = |0〉 〈0|+ |1〉 〈1| projecting onto the subspace H0. An evaluation of Eq. (3.30)
leads to nonlinear equations of adiabatic motion [P6]

〈˙̂a〉H0
= (α̇∗α− α̇α∗) 〈â〉H0

+ α̇(µ− ν∗) 〈â†â〉H0
− c.c.,

where µ= cosh |ξ| and ν= ei arg(ξ) sinh |ξ|.
The emergence of nonlinear equations of motion is a generic feature of the operator

description of parallel transport, both adiabatic and nonadiabatic. This is due to the
connection A = ΠψdΠψ requiring the computation of subspace projectors Πψ onto Hψ.
In the above example, we had Πψ = VΠ0 and d = ∂t( · )dt. Due to the generally highly
nonlinear form of these projectors in terms of bosonic modes, the computation of quantum
holonomies can be an extremely challenging task in this picture [P6].

3.5.2 Linear quantum optics

The general concepts described thus far can, in principle, be applied to any bosonic system.
In the following, it will be shown that in a linear optical setting, that is the Hamiltonian
H(t) describes a collection of harmonic oscillators [cf. Eq. (2.12)], certain symmetries
arise that offer a deeper insight into the emergence of geometric phases. Consider a system
of M bosonic modes that interact according to such a (bilinear) Hamiltonian. Suppose
further that there is a set of orthonormal modes {Ψ̂†

k(t)}dk=1, whose excitations (action onto
the vacuum state) span a subspace Hψ = {|ψa〉 | a ∈ N} on which the mean energy of
the Hamiltonian H vanishes. In Appendix A.3.1, it is show that the second-quantisation
formulation of the (classical) condition 〈H(t)〉Hψ

= 0 is given as

[Ψ̂ j(t), [H(t), Ψ̂
†
k(t)]] = 0. (3.31)

Indeed, this implies 〈ψa|H |ψb〉= 0 for any state in Hψ, thus ensuring that the evolution
is of purely geometric origin. Consider d orthonormal modes η̂†

k(t), which evolve in the
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presence of H. Hence, they must satisfy the Heisenberg equation of motion. With the
ansatz η̂†

k(t) =
∑

j U jk(t)Ψ̂
†
j (t) and the condition for parallel transport (3.31), this yields

0= [η̂ j, ˙̂η†
k] =

d∑
l=1

U∗l j∂tUlk +
d∑

l,m=1

U∗l jUmk (At)ml , (3.32)

where (At) jk = [Ψ̂k,∂tΨ̂
†
j ] denotes the operator-valued connection. If we now consider a

cyclic evolution of the system, i.e., Ψ̂†
k(0) = Ψ̂

†
k(T ) so that the modes undergo a loop C , the

solution to Eq. (3.32) is a path-ordered integral superoperator [P6]

UC = P̂ exp

∮

C

A.

Now, the time evolution of a mode η̂†
k is given by the mapping η̂†

k(T ) = UC[η̂
†
k(0)].

Strikingly, in this formulation one avoids the usage of projectors onto the relevant
subspace altogether, thereby drastically simplifying the computational effort needed to
determine the geometric evolution. Starting at a point where η̂†

k(0) = â†
k, it becomes

evident that UC can be viewed as the transfer matrix of the linear optical network being
restricted to purely holonomic transfer of light between the bosonic modes. The remaining
M − d modes act either as ancillas for the purely geometric evolution, or create excitations
in an unrelated subspace. The result can be linked to the standard formalism on geometric
phases [52, 54] by noting that UC[â

†
k] = U†

A(C)â
†
kUA(C), with UA(C) = P̂ exp

∮
C

A being the
more familiar form of the holonomy. In contrast to a nonlinear optical setting, here the
projection onto the relevant subspace is incorporated implicitly into the connection, thus
providing an elegant photon-number independent description.

3.5.2.1 Adiabatic propagation through the star graph

Consider M bosonic modes being arranged as a star graph (Fig. 7), i.e. its Hamiltonian
reads

H(z) =
M−1∑
k=1

�
κk(z)âk â†

M + κ
∗
k(z)â

†
k âM

�
,

where the couplings {κk}k act as local coordinates for a parameter space M . The system
has M − 2 (not yet orthonormal) dark modes

D̂†
j (z) = κ j+1(z)â

†
1 − κ1(z)â

†
j+1.

These operators satisfy the quantised eigenvalue problem [H, D̂†
j ] = 0. Moreover, they

obey bosonic commutation relations [D̂j, D̂k] = [D̂
†
j , D̂†

k] = 0 and [D̂j, D̂†
k] = δ jk, after being

orthogonalised. The above considerations make it natural to impose a second-quantisation
version of the adiabatic theorem [P6], to which the proof can be found in Appendix A.3.2.
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Theorem: In the adiabatic limit, any initial preparation η̂a(0) lying in a space spanned by
a collection of (non-)degenerate eigenmodes {Ψ̂ j(t)} j will evolve into a final operator η̂a(T )
residing in this space.

In our case, the initial preparation D̂†
j (z0) has to reside in the linear span of the modes

{D̂†
j (z)}M−2

j=1 throughout the propagation. The dark modes evolve according to the holonomy
UC governed by the adiabatic connection

�
Aµ
�

jk
= [D̂k,∂µD̂†

j ]

that constitutes the operator-valued counterpart of the adiabatic connection [52] (Sec. 3.1).
In Ref. [P6], it was shown that the connection A is irreducible12. Hence, Hol(A)

coincides with the entire unitary group U(M − 2). More specifically, starting the holonomy
at an initial point κ0 = (0, . . . , 0,κ) shows that any transformation UC[D̂

†
k(κ0)] = UC[â

†
k]

can be implemented holonomically by designing a suitable loop in M . This means that,
due to the composition of loops U∏

a Ca
=
∏

a UCa
, any linear optical network can be

made geometrically robust by supporting it with two auxiliary modes âM−1 and âM , while
adiabatically traversing a closed path C in M .

The above formulation can be linked to the standard formalism on adiabatic holonomies
[P1]. Excitations of the dark modes produce dark states

|Dn〉=
M−2∏
j=1

1p
n j!

�
D̂†

j

�n j |0〉

sharing an adiabatic subspace H0. However, these dark modes are not the only ones
creating new dark states. Additionally, the Hamiltonian gives rise to nondegenerate bright
modes

B̂†
±(z) =

1p
2ϵ

M−1∑
j=1

κ∗j (z)â
†
j ±

1p
2

â†
M ,

12The proof goes as follows. First, concentrate on loops on a submanifold of M : κ1 = κ cosθ sinϑeiϕ,
κ2 = κ sinθ sinϑeiϕ, κ3 = κ cosϑ, while κ4 = · · ·= κM−1 = 0. Accordingly, the dark modes simplify to

D̂†
1 = sinθ â†

1 − cosθ â†
2, D̂†

2 = cosϑ cosθ â†
1 + cosϑ sinθ â†

2 − sinϑeiϕ â†
3, D̂†

3 = â†
4, . . . D̂†

M−2 = â†
M−1.

In this case the connection is readily calculated to

Aθ =

�
0 cosϑ

− cosϑ 0

�
, Aϕ =

�
0 0

0 i sin2 ϑ

�
.

The noncommuting components of the connection allow one to generate any unitary transformation UC
between the modes â†

1 and â†
2 at the base point (θ ,ϑ) = (π/2,0), see Ref. [P6] for additional details.

Because the chosen submanifold was arbitrary, the argument can be repeated for any pair â j and âk of
modes in the star graph, for j, k ̸= M − 2, M − 1. It follows that any unitary (M − 2)× (M − 2) matrix
U∏

a Ca
can be realised by a sequence of two-mode transformations UCa

, cf. Reck et al. [140]. ■
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where ϵ = (
∑

j |κ j|2)1/2. They satisfy the (quantised) eigenvalue problem [H, B̂†
±] = ±ϵB̂†

±.
The time-evolution of the entire system is a composition of holonomies

ei
∫ T

0 ϵ(t)dtU+,C ⊕U0,C ⊕ e−i
∫ T

0 ϵ(t)dtU−,C ,

where the Abelian holonomies U±,C manifest themselves in the bright modes and U0,C acts
on the dark modes.

For photon numbers N ≥ 2, there exist combinations of B̂†
+ and B̂†

− that produce
additional dark states. The entire dark subspace H0 can be generated from combined
excitations of dark and bright modes. More explicitly, any function of the form

F(âk, â†
k) =
∑

n∈NM−1
0

cn1...nM−1

�
D̂†

1

�n1

p
n1!

�
D̂†

2

�n2

p
n2!

. . .

�
B̂†
+B̂†
−
�nM−1

p
nM−1!

,

by construction, produces an eigenstate F(âk, â†
k) |0〉 ∈H0 with energy zero.

For the sake of simplicity, consider the tripod arrangement of bosonic modes, that is
the star graph for M = 4, into which a single photon is injected (i.e., N = 1). Then, one
has the two dark states |d1〉= D̂†

1 |0〉 and |d2〉= D̂†
2 |0〉, whose evolution is determined by

the holonomy U0,C . If one considers two photons in the setup (i.e., N = 2), then there are
three dark states

|D1〉=
1p
2

�
D̂†

1

�2 |0〉 , |D2〉= D̂†
1 D̂†

2 |0〉 , |D3〉=
1p
2

�
D̂†

2

�2 |0〉 .

Moreover, because of [H, B̂†
±] = ±ϵB̂†

±, the positive and negative eigenenergies cancel one
another out in the case of simultaneous excitation of B̂+ and B̂−. Therefore, |D4〉 = B̂†

+B̂†
− |0〉

is another dark state which, however, only attains a (scalar) Berry phase (due to U±,C) while
evolving adiabatically. Thus, despite the fact that {|Dj〉} j span a common eigenspace, |D4〉
evolves separately. This is the origin of block structure in the holonomy (3.7) in which |D4〉
does not couple to the other eigenstates [132, P1, P6]. It can be concluded that demanding
the eigenmodes (rather than the eigenstates) to evolve adiabatically explains (in contrast
to the original formulation of the adiabatic theorem [115]) why there are eigenstates in H0

that do not couple to the other eigenstates in H0. This phenomenon was already observed
in Refs. [132, 134] but remained unexplained until the formal treatment in Ref. [P6].

3.5.2.2 Influence of nonorthogonal modes

So far, our attention was restricted to benchmark systems for which transverse mode overlap
could be neglected. For these linear optical networks, bosonic modes could be identified
easily as the spatial modes associated with each individual waveguide. However, if these
systems are studied in the strong-coupling regime, i.e., the waveguides are fairly close
to each other, the orthogonality condition is no longer valid, as the overlap of transverse
modes becomes relevant. A canonical quantisation of such systems is then carried out
by promoting its normal modes to Hilbert-space operators, rather than the waveguide
modes (see Chapter II). In general, nonorthogonality of transverse modes can be a problem,
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because additional contributions to the off-diagonal elements of a coupling matrix can lift
degeneracy. The latter being a precondition for the generation of adiabatic holonomies.

For the sake of concreteness, the star graph arrangement of bosonic modes will serve as
a sufficient benchmark. Its (classical) coupling matrix reads

K =




0 . . . 0 κ∗1
...

. . .
...

0
.. . κ∗M−1

κ1 . . . κM−1 0




.

Because the modes â = (âk)k have nonnegligible mode overlap, the operator â†Kâ is not
Hermitian anymore and can therefore not act as the Hamiltonian of the system. Following
Sec. 2.2, a Hamiltonian can be constructed with the help of the power matrix

Σ=




1 0 . . . 0 σ∗1
0

...
...

...
. . .

...

0
.. . σ∗M−1

σ1 . . . . . . σM−1 1




.

A transformation between the waveguide and normal modes can be obtained from a
Cholesky factorisation Σ=

�
QT
�∗

Q, where

Q =




1 0 . . . 0 σ1

0
...

...
...

. . .
...

... 1 σM−1

0 . . . . . . 0
p

1− |σ|2




.

Here, σ = (σ j)M−1
j=1 was defined. From the matrix Q one can compute the Hermitian

generator for the evolution of normal modes from Eq. (2.9). One finds

H=




0 . . . 0 sκ∗1
...

. . .
...

0
.. . sκ∗M−1

sκ1 . . . sκM−1 −2s2σ ·κ




,

with a scaling s = 1/
p

1− |σ|2. The Hamiltonian governing the propagation of photons

through the photonic network is given by the Hermitian operator H = b̂
†
Hb̂.



Quantum Holonomies 51

Remarkably, the difference between the Hamiltonian matrix H and the coupling matrix
K is marginal, i.e., up to the onsite energy (H)M M = −2s2σ · κ the matrices only differ
by the scaling s. It follows that the Hamiltonian H has the same dark modes as if the
there were no transverse mode overlap. Since, the operator connection (Aµ) jk = [D̂k,∂µD̂†

j ]
depends only on the structure of dark modes, it has the same form as if overlap were
negligible. Hence, one can generate similar quantum holonomies despite working in the
strong-coupling regime. In this light, the dark subspace can be viewed as a symmetry-
protected subspace that remains unaffected by the nonorthogonality of transverse modes
[P2]. This is a remarkable result as, in general, the deviations from mode-orthogonality
can significantly distort the dynamics of light in a coupled-mode system [95, 96].

It should be noted that there are some limits to this form of robustness. In the above
discussion, next-nearest neighbour coupling was neglected, that is coupling between the
outer modes of the star graph. However, in the regime where transverse mode overlap
becomes relevant, this next-nearest coupling will be become eventually nonnegligible as
propagation times increase. In this case, H would be close to a fully occupied matrix and
degeneracy of the dark subspace would be lifted. Nevertheless, the above result is still
useful. It tells us that we can bring individual waveguides really close to the central mode
M when traversing a parameter loop, because transverse mode overlap does not harm the
geometric phase. However, it should be avoided doing this simultaneously with multiple
outer waveguides, as this would incline next-nearest neighbour coupling beyond the central
mode.

3.5.2.3 Nonadiabatic propagation through the star graph

The construction of adiabatic holonomies can be formulated analogously for the case
where the cyclic evolution is not restricted to just the eigenmodes but to a more general
collection of modes for which dynamical contributions from the Hamiltonian completely
disappear. We return to the linear optical setting, where M bosonic modes are arranged
as a star graph. If it is assumed that all couplings evolve with the same envelope, i.e.,
κk(z)∝ Ω(z), the dark modes become z-independent, viz. Ψ̂ j(z) = D̂j(z) = D̂j(z0) for
j = 1, . . . , M − 2. Moreover, under these assumptions it is always possible to find another
operator B̂† = Ω−1

∑
j κ
∗
j â

†
j (that is not an eigenmode) such that [D̂j, B̂†] = [âM , B̂†] = 0.

The propagation of the operator B̂† along z is computed in the Heisenberg picture, i.e.,
Ψ̂†

M−1(z) = eiδ(z)U†(z)B̂†U(z). This can be given an explicit expression using a series
expansion in powers of H(z) = Ω(z)h, with h being the z-independent part of the star graph
Hamiltonian. One finds

U†B̂†U = B̂† +
∞∑
n=1

(−iδ)n

n!
[h, [h, . . . [h, B̂†]]]︸ ︷︷ ︸

n−times

= B̂† − iδ[h, B̂†] +
(−iδ)2

2
[h, [h, B̂†]]∓ . . . ,

with δ(z) =
∫ z

z0
Ω(z′)dz′, as a formal solution to the Heisenberg equation of motion. Utilising

[h, B̂†] = â†
M and [h, â†

M] = B̂† result in a compact expression for the evolution, that is [P6]

Ψ̂†
M−1(z) = eiδ(z)
�

cosδ(z)B̂† − i sinδ(z)â†
M

�
. (3.33)
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One can check that [Ψ̂ j, Ψ̂k] = [Ψ̂
†
j , Ψ̂

†
k] = 0 and [Ψ̂ j, Ψ̂

†
k] = δ jk. The excitations of the

modes {Ψ̂†
j (z)} j define a subspace Hψ. Next, demand δ(zf) = π to ensure cyclicity, i.e.,

Ψ̂ j(zf) = Ψ̂ j(z0) for j = 1, . . . , M − 1. After verifying that

[Ψ̂ j, [H, Ψ̂†
k]] = 0,

one can check that all conditions for a holonomic evolution are satisfied. The only non-
vanishing component of the connection is (Az)M−1,M−1 = iΩ(z). Hence, the nonadiabatic
quantum holonomy reads

UC = diag(1, . . . ,−1) ∈ U(M − 1).

When replacing the generating operators by the original bosonic modes via a change of
gauge Ψ̂†

k(zf) =
∑

j g jk â†
j (zf), the holonomy transforms according to U g

C = gUC g†. The
unitary U g

C ∈ U(M − 1) gives rise to noncommutative quantum holonomies. By traversing
a sequence of loops in state space any element in the group U(M − 1) can be realised via a
quantum holonomy, i.e., the connection Az is irreducible13.

Similar to the adiabatic scenario, the holonomy U g
C can be viewed as a transfer matrix

describing the unitary mixing of bosonic modes â†
k or, equivalently, the superoperator

U g
C[â

†
k] = U†

A(C)â
†
kUA(C). It follows that, in principle, any linear optical network can be

implemented by means of nonadiabatic holonomies.
For concreteness, return to the three-waveguide coupler (star graph with M = 3) with

coupling κk(z)∝ Ω(z) for k = W, E. While the dark mode D̂† = κEâ†
W − κWâ†

E evolves
trivially along z, i.e., Ψ̂†

1(z) = D̂†, due to [H, D̂†] = 0, the mode B̂† = Ω−1
�
κ∗Wâ†

W + κ
∗
Eâ†

E

�
evolves into Ψ̂†

2(z) given by Eq. (3.33). These modes satisfy the condition for a holonomic
propagation, i.e., the mixing of modes â†

W and â†
E is given by a quantum holonomy. When

13The proof goes as follows. Restrict attention to loops with κ1 = Ω sin (θ/2)e−iϕ, κ2 = −Ω cos (θ/2),
κ3 = 0, . . . ,κM−1 = 0, where (θ ,ϕ) are constant parameter angles determining the unitary of choice. In
this case, the relevant operators are

Ψ̂†
1 = sin(θ/2)e−iϕ â†

2 + cos(θ/2)â†
1, Ψ̂†

2 = â†
3, . . . Ψ̂†

M−2 = â†
M−2, Ψ̂†

M−1 = eiδ
�

cosδB̂† − i sinδâ†
M

�
,

where B̂† = sin(θ/2)eiϕ â†
1− cos(θ/2)â†

2, for the given configuration. Under cyclic evolution δ(zf) = π the
(operator-valued) holonomy becomes

UC =

�
cosθ eiϕ sinθ

e−iϕ sinθ − cosθ

�
.

As was noted in Ref. [60], two consecutive loops allow for the construction of any unitary 2× 2 matrix.
The holonomy group Hol(A) is independent of the chosen submanifold in the coupling space M . Hence,
the U(2) transformations can be applied to any pair of modes (â j , âk) j ̸=k for all j, k = 1, . . . M −1. The fact
that we can construct any element of U(M − 1) in a fully holonomic fashion is now a direct consequence
of the argument by Reck et al. [140]. ■
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two photons are injected into the optical setup, there are three different states

1p
2

�
Ψ̂†

1

�2 |0〉 , Ψ̂†
1Ψ̂

†
2 |0〉 ,

1p
2

�
Ψ̂†

2

�2 |0〉

spanning a subspace Hψ on which a U(3) holonomy can be realised. Interestingly, the
central mode âC of the system itself satisfies [âC, [H, â†

C]] = 0 and evolves according to an
Abelian holonomy â†

C(zf) = eiπâ†
C(z0). Hence, the states â†

CΨ̂
†
1 |0〉 and â†

CΨ̂
†
2 |0〉 span another

subspace Hψ′ on which U(2) transformations can be generated. This is a general feature
of this operator formulation. If there are several modes evolving according to a quantum
holonomy, products of those will generate a product of holonomies. This operator point of
view illuminates the origin of the block structure of the nonadiabatic holonomy (3.29).
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IV | Holonomic Quantum Computation
with Photons

Carefully controlled quantum systems show exotic and counter intuitive behaviour. Based
on this, a novel form of information processing can be conducted. In standard proposals for
quantum computation (QC) the manipulation of qubits is often realised by fast-switching
dynamical interactions governed by external fields. In this picture, the experimentalist
controls a set of on-off Hamiltonians to implement a quantum-gate logic, thus solving a
computational task for which no efficient classical algorithm is known.

An alternative viewpoint to this so-called circuit model is given by geometric and
topological QC [40, 141]. In these nondynamical models information processing can be
based on adiabatic [1], and nonadiabatic quantum holonomies [60] (see Chapter III),
or unusual quantum statistics (e.g., anyonic) [41] emerging from the exotic properties
of topological quantum field theories [142]. These approaches to QC come along with
some unique and surprising fault-tolerance features. In particular, quantum information
processing (QIP) can be conducted on a subspace on which the Hamiltonian vanishes
completely, thus making the output independent of timing errors or fluctuations in the
spectrum. In other words, in these models the computation is completely determined by
some geometric or topological feature of the theory, such as areas and volumes in state
space [59], or Chern numbers [143]. This in turn leads to an intrinsic robustness of the
computation towards local perturbations [144]. Other approaches do not aim at protecting
the individual system, but use sophisticated many-particle interactions to establish an
error-resilient macroscopic structure that resembles the topology of, e.g., a torus [44].

This chapter is mainly concerned with the paradigm of holonomic QC, in which the
manipulation of quantum information is achieved through a sequence of holonomies. The
inherent robustness of a holonomic QC can be combined with most error-correcting codes
including stabiliser [145], concatenated [146], and surface codes [147, 148]. In Sec. 4.1,
well established concepts from quantum information theory will be reviewed. Section 4.2
investigates integrated photonic structures, on which QC can be performed using dual-rail
encoded qubits. I show that the developed architectures allow for the construction of any
linear optical transformation in a geometrically protected way. After these foundations
are established, Sections 4.3 and 4.4 are concerned with more specialised topics, namely
holonomic and measurement-based QC, respectively. When provided with a graph state,
universal holonomic QC can be conducted in a hybrid approach using techniques from
measurement-based QC.
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4.1 Elements of Quantum Information Theory

A computation is a process which solves complex tasks by carrying out a large number
of simple mathematical operations. The solution strategy for a given task is known as an
algorithm. An algorithm is said to be efficient if the number of operations only scales poly-
nomial with the size of the computational problem. As classical systems cannot efficiently
simulate large quantum systems — a widely believed but unproven conjecture1 — quantum
systems themselves might act as the carrier of information, thus enabling algorithmic
shortcuts based on entanglement and coherent superpositions. In the following, I present
the foundations of quantum information theory to the degree as it is relevant to the thesis.

4.1.1 Qubits and their manipulation

Unlike classical information, quantum information can not only be in the computational
basis |0〉ℓ and |1〉ℓ, but in any superposition

|ψ〉= α0 |0〉ℓ +α1 |1〉ℓ .

The normalisation |α0|2+|α1|2 = 1 ensures a probabilistic interpretation of the measurement
output. The state |ψ〉 is said to be a single-qubit state. Extending this notion to a composition
of n quantum systems, each encoding a single qubit, leads to the definition of an n-qubit
state

|ψ〉=
∑

i1,i2...in∈{0,1}
αi1 i2...in |i1i2 . . . in〉ℓ ,

where |i1i2 . . . in〉ℓ = |i1〉ℓ⊗|i2〉ℓ⊗· · ·⊗|in〉ℓ is the usual abbreviation for the tensor product of
binary states. In an information-theoretical language, the state |ψ〉 is called the (quantum)
code word and the space containing all such code words is said to be the (quantum) code,
which will be denoted as C . An important difference between the 2n-dimensional Hilbert
space C and a classical code (containing bit strings of length n) is the possibility for multi-
partite entangled states [4], i.e., the code word |ψ〉 cannot be written as an n-fold tensor
product of single-qubit states. Together with the superposition principle, this potentially
leads to algorithmic speed-ups in comparison to classical information processing [151].

4.1.1.1 Quantum gates

In order to perform QC, an initially prepared state must be manipulated in such a way
that the output resembles the solution of a difficult computational task. The most common
way to do this is by applying (unitary) quantum gates onto the code. Prominent examples

1For example, Ref. [149] reported a quantum advantage achieved on Google’s superconducting quantum
computer. Only recently, an efficient classical algorithm to complete the same task was constructed [150].
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include the single-qubit Pauli gates, which with respect to the canonical basis

|0〉ℓ =
�

1

0

�
, |1〉ℓ =
�

0

1

�
,

take the matrix representation

X =

�
0 1

1 0

�
, Y =

�
0 −i

i 0

�
, Z =

�
1 0

0 −1

�
.

Certainly, X corresponds to a bit-flip operation, similar to the classical NOT operation, while
Y and Z are without any classical counterpart. Other heavily used single-qubit gates are
the Hadamard transformation and π/4-phase rotation

W =
1p
2

�
1 1

1 −1

�
, S =

�
1 0

0 i

�
.

Note that the Hadamard transformation W maps the computational states |0〉ℓ and |1〉ℓ
into the superpositions |±〉 = (|0〉ℓ ± |1〉ℓ)/

p
2. In general, a single qubit gate U belongs to

the unitary group U(2).
Tensor products of single-qubit gates are also known as local operations and by them-

selves these cannot create entanglement [151]. More intriguing multi-qubit operations are
necessary for such an endeavour [152, 153]. For instance, two-qubit controlled gates

CU = |0〉ℓ 〈0|ℓ ⊗ 1+ |1〉ℓ 〈1|ℓ ⊗ U , (4.1)

where U is a single-qubit gate, involve nonlocal interactions. Here, the second (target)
qubit is left unchanged when the first (control) qubit is in the state |0〉ℓ. Conversely, if
the first qubit is in the state |1〉ℓ, the local operation U is applied to the target. These
gates belong to the group U(4) and have a 4× 4 matrix representation with respect to the
two-qubit basis |00〉ℓ, |01〉ℓ, |10〉ℓ, and |11〉ℓ. In general, an n-qubit gate is a member of
the unitary group U(2n). These might also include controlled operations with more than
one target or controller. A quantum algorithm on n qubits then consists of a sequence of
such gates. Typically, when we say that we can realise a specific set of gates, it is assumed
that we are able to apply each of them to any qubits we want.

4.1.1.2 Measurement formalism

Quantum mechanical measurements are not only relevant for the final readout of a QC, but
allow for the manipulation of qubits (beyond unitaries) as well. For our purposes it suffices
to restrict attention to projective measurements. These are defined by a set of Hermitian
positive operators {Πi}i that square to themselves, i.e., Π2

i = Πi, and are orthogonal, that
is ΠiΠ j = 0, for i ̸= j. The operators project a quantum state ϱ onto ΠiϱΠi. The state
after the measurement thus, depends on the measurement result i that is obtained with
probability pi = Tr{Πiϱ}.
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The most basic example of such a measurement distinguishes between the computational
states, i.e., Π0 = |0〉ℓ 〈0|ℓ and Π1 = |1〉ℓ 〈1|ℓ. The probability of the state |ψ〉 = α0 |0〉ℓ +
α1 |1〉ℓ to collapse into |0〉ℓ or |1〉ℓ after measurement, is readily obtained to be |α0|2 and
|α1|2, respectively. Moreover, the computational states are eigenstates of the Pauli-Z matrix.
One has the spectral resolution Z = Π0 − Π1, and the above prescription is said to be
a measurement of the observable Z . Analogously, one can perform a measurement of
the Pauli-X operator. The corresponding projectors are Π+ = |+〉 〈+| and Π− = |−〉 〈−|.
Measurements involving only a single qubit are also known as local measurements and
from an engineering viewpoint, these are easy to implement.

4.1.2 Circuit model

We are now equipped with the tools to introduce a mathematical model of QC. A quantum
computer consists of a Hilbert space C containing the quantum information, a fundamental
gate set {Uk}k comprising the physical architecture from which more intriguing operations
have to be designed, and a final readout in terms of measurement operators {Π j} j [154].
A graphical way of illustrating this procedure can be introduced via circuit diagrams [151],
e.g.,

|0〉ℓ
U3

U5

U9

{0, 1}

|0〉ℓ U7 {0, 1}

|0〉ℓ
U6

{0, 1}

|0〉ℓ U1

U8

{0, 1}

|0〉ℓ
U4

U10 {0, 1}

|0〉ℓ U2 {0, 1}

In such a diagram time flows from left to right and each wire represent a qubit, while blocks
ranging over multiple wires denote the action of multi-qubit gates. The overall unitary
operator transforming input state, here |00 . . . 0〉ℓ, constitutes the quantum algorithm.
Finally, the output state is measured leading to a register of classical bits.

4.1.2.1 Computational universality

When only a rather limited gate set is at ones disposal, it will (supposedly) not be possible
to realise arbitrary quantum algorithms. Given an n-qubit code, ideally one would like to
have a complete set of elementary gates such that any element of the group U(2n) can be
designed as a sequence of those. If this is possible the gate set is said to be universal for
QC [133]. Universality is an important property that needs to be satisfied in order to build
a useful quantum computer2.

2Nevertheless, there are some computational problems for which QC offers advantageous solutions without
having a universal gate set. Prominent examples are boson sampling [155] and quantum annealing [156].
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Several universal sets of quantum gates are known [151]. The simplest one comprises
rotations Rx(ϕ) = e−iϕ2 X and Rz(ϕ) = e−iϕ2 Z around the x and z-axis of the Bloch sphere,
and a maximally entangling two-qubit gate, like the controlled-NOT operation CX . In
contrast, the Pauli gates by themselves are not universal, but only generate the n-qubit Pauli
group Pn consisting of tensor products of Pauli operators. In particular, they cannot create
entanglement as they belong to the class of local operations. Remarkably, even the gate set
{CZ , W, S}, containing the nontrivial two-qubit gate CZ , fails to be universal. Instead, these
gates generate the so-called n-qubit Clifford group N (Pn), which is formally defined as
the normaliser of the Pauli group, i.e.,

∀V ∈N (Pn) : V PV † ∈Pn

for any operator P ∈Pn. Quite clearly, N (Pn) is a proper subgroup of U(2n), e.g., the
single-qubit unitary

p
S does not lie in the Clifford group. Nevertheless, when the Clifford

group is augmented by the gate
p

S, then a complete set of gates is at hand, that enables
universal QC. Strikingly, the quantum dynamics described by the Clifford group N (Pn),
despite containing entangling gates, can be simulated efficiently on a classical computer, a
result known as the Gottesman-Knill theorem [157].

Even though the notion of computational universality is intuitive enough, some formal-
isation of the concept might be appropriate to address potential caveats. Given a set of
gates {Uk}k belonging to the group U(d), the set {Uk}k lies dense in U(d) if any unitary
d × d matrix U can be approximated to arbitrary precision by a (classically computable)
finite sequence, viz.

∀U ∈ U(d) :


U −
∏K

k=1
Uk



≤ ε (4.2)

for arbitrarily small ε > 0. A particular computation U is deemed efficiently implementable
when the length of the sequence K(ε) has a mild (poly-logarithmic) dependence on ε [158].
The notion of universality in terms of dense gate sets is, in a sense, topological in its own,
as one does not need to specify the operator norm in the above definition.

4.2 Linear Optical Quantum Computation

There exist a variety of different physical architectures on which QC can be based. Which
of these platforms will turn out to be the most suitable (i.e., reliable and scalable) for the
design of useful quantum technologies is up to current scientific debate. Whatever the
final implementation might look like, most certainly, the photon will play a key role in its
working mechanism — might it be as a mediator of interaction, a hybrid devise, or even an
all-out optical quantum processor. Therefore, the following pages are dedicated to linear
optical QC [159]. As its name suggests, here unitary quantum gates are implemented using
linear optical elements, such as beam splitters, fibre couplers, photonic waveguides, etc.

A natural starting point for our discussion is the definition of a photonic qubit. This
can be done by using a single photon in a setup with two spatial modes W and E. This is
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known as a dual-rail logic, viz.

|0〉ℓ = â†
W |0〉 , |1〉ℓ = â†

E |0〉 ,
with |0〉= |0W0E〉 being the two-mode vacuum state. In the spirit of this thesis, we might
think of these modes as being implemented in terms of two (fused-silica laser-written)
waveguides. In this situation, the dual rail logic is sometimes referred to as a path encoding
[160], as well. There are of course other forms of encoding, such as photon-number
encoding or continuous-variable QC [161]. The advantage of the dual-rail logic is that,
it is easy to herald for photon loss with this convention, because an ideal (i.e., lossless)
propagation would conserve the overall photon number [162].

The evanescent coupling κ= const. between the two modes applies a linear transfor-
mation to the bosonic operators. After the propagation length ∆z = zf − z0, the latter are
transformed into [102]

�
â†

W(zf)

â†
E(zf)

�
=

�
τ ρ

ρ∗ −τ

��
â†

W(z0)

â†
E(z0)

�
, (4.3)

where τ= cos(|κ|∆z) and ρ = ei arg(κ) sin(|κ|∆z). The unitary in Eq. (4.3) is the transfer
matrix of the two-mode coupler.

Given a collection of M bosonic modes â = (âk)k, any M ×M transfer matrix U can be
implemented as a sequence of two-mode transformations between pairs of modes. This
argument goes back to Reck et al. [140], and is based on a decomposition of U into a
product of unitary 2× 2 matrices. I wish to emphasise that this does not imply (quantum)
computational universality of linear optical networks, as nonlinear optical effects are
necessary to realise controlled unitaries (on the level of qubits). The latter are necessary as
linear optical transformations cannot create an entangled state with respect to the multi-
partite structure defined by the dual-rail encoding3. Nevertheless, linear optical QC is still
believed to outperform classical computation in some tasks, for instance, in the generation
of random numbers [163].

In order to construct a universal paradigm, nonlinear transformations on the modes have
to be added. Harnessing Kerr nonlinearities could, in principle, induce controlled-phase
gates, but third order optical nonlinearities are notoriously small for a field with such a
low intensity as a single photon [164]. However, experimental advances may eventually
overcome this. Alternatively, this can also be done, for instance, via click-counting detectors,
measuring the impinging of a single photon. Unfortunately, these measurement-induced
nonlinearities [28, 29], generally, have a low success rate and scalability of quantum
algorithms, thus becomes quickly unfeasible. In principle, the success rate can be boosted
substantially by teleportation protocols [165], requiring a large number of Bell pairs which
makes the proposal difficult to implement by current technological means. It is due to
these difficulties that most modern proposals for linear optical QC are based on the a-priori
(measurement-induced) preparation of a highly-entangled resource state. Once such a

3Nonetheless, the transformation (4.3) can generate entanglement between the spatial modes, e.g., |1W1E〉 7→� |2W〉 − |2E〉
�
/
p

2 via a Hong-Ou-Mandel interferometer (τ= ρ = 1/2) [102, 164].
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resource state, e.g., a graph state, is prepared, universal (measurement-based) QC [166]
can be realised in terms of linear optical elements and single-photon detectors only (details
in Sec. 4.4). The shift of the main computational expense towards initial state preparation
can, in principle, be dealt with using modern multiplexing methods [167], thus boosting
the maximal number of photons that can be manipulated simultaneously.

4.2.1 Holonomic optics

While integrated photonic waveguides proved to be a reliable tool in the implementation
of linear optical networks, there are still parametric fluctuations as well as dynamical
influences that can harm the interferometric stability of these networks. Moreover, the
transfer matrix in Eq. (4.3) is determined by just one evanescent coupling κ as well as
the overall propagation length ∆z, thus leaving the experimentalist with a rather narrow
design strategy for a specific transformation.

In order to establish more versatile design strategies, it might be advantageous to
incorporate the techniques from Chapter III. A design strategy has to be established relying
solely on holonomies. As linear optical transformations are in general noncommuting, these
phases must be of non-Abelian type. While the standard formalism on quantum holonomies
[58, 60] does not provide any immediate resolution of the issue, the operator formalism
developed in Sec. 3.5 allows for an elegant photon-number independent description of
quantum holonomies [P6]. Attention lies on nonadiabatic holonomies, as these have path-
shortening (diabatic) implementations, thus enabling miniaturisation of the optical setup
to some degree.

Recall the form of the tight-binding Hamiltonian for the three-waveguide coupler

H(z) =
∑

k∈{W,E}

�
κk(z)âk â†

C + κ
∗
k(z)â

†
k âC

�
.

Let κW(z) = Ω(z) sin (θ/2)e−iϕ and κE(z) = −Ω(z) cos (θ/2), where (θ ,ϕ) are constant
parameter angles. In this configuration, the relevant operators are

Ψ̂†
1(t) = sin(θ/2)e−iϕ â†

E + cos(θ/2)â†
W,

Ψ̂†
2(t) = eiδ(z)
�

cosδ(z)B̂† − i sinδ(z)â†
C

�
,

where

B̂† = sin(θ/2)eiϕ â†
W − cos(θ/2)â†

E,

for the given configuration. The corresponding connection is simply (Az)22 = iΩ(z). Under
cyclic evolution δ(zf) = π the (operator-valued) holonomy becomes

UC =

�
cosθ eiϕ sinθ

e−iϕ sinθ − cosθ

�
. (4.4)
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Two subsequent applications of the above transfer matrix allow for the implementation of
any U(2) transformations between the outer modes âW and âE of the system.

Given a collection of M modes the transfer holonomy UC can be applied to any pair
of modes (âi, â j) j ̸=k for all j, k = 1, . . . M , provided a sufficient number of (central) ancilla
modes is at hand, such that population transfer between the modes j and k can be mediated
in a fully geometric fashion. The fact that we can construct any unitary transformation (on
the modes) is now a direct consequence of the argument by Reck et al. [140]. Figure 14
illustrates the mapping from a directional coupler to the three-waveguide coupler, that
replaces the (standard) transfer matrix in Eq. (4.3) (depending on κ∆z) with the holonomic
transfer matrix from (4.4) (depending on δ(zf) = π). Applying this replacement onto an
entire multi-mode network as sketched in Fig. 14 (b), results in a linear optical network,
that depends only on the path C taken by the bosonic operators, i.e., â(zf) = â(C).

4.3 Holonomic Quantum Computation

The circuit model of QC offers a straight-forward way to realise QIP in terms of switching
on and off local Hamiltonians in an appropriate manner. However, other computational
models exist. These models can differ from the circuit model not only in their theoretical
make-up, but in terms of the necessary resources as well. In this section, the paradigm
of holonomic QC [1, 60] is presented. In their seminal paper [1], Zanardi and Rasetti
proposed this novel scheme for the manipulation of quantum information, in which the
entire quantum-gate logic is built from holonomies.

4.3.1 Adiabatic holonomic gates

Given a quantum system H with d-fold degenerate eigenspace C = {|ψa〉}da=1, a holonomic
gate UA(C) = P̂ exp

∮
C

A is realised by designing an adiabatic loop C in a parameter space
M . Here, the adiabatic connection (Aµ)ab = 〈ψb|∂µ|ψa〉 is computed from the eigenstates
|ψa〉. Overall dynamical phases can be neglected, because these are irrelevant to any
computational task. A quantum algorithm

∏
i UA(Ci) on this subspace can be implemented

by composing a sequence of loops
∏

i Ci. In this context, irreducibility of the connection A

(a) (b)

Figure 14.: (a) Any linear optical two-mode transformation can be realised holonomically
by replacing the directional coupler with a three-waveguide coupler in cyclic configuration.
(b) Construction of a multi-mode network solely based on holonomies.
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is intrinsically linked to the notion of computational universality. Precisely speaking, if the
considered eigenspace has an underlying (physical) multi-partite structure, i.e., C =

�
C2
�⊗n

,
then C might be viewed as an n-qubit quantum code with d = 2n. In this case, having an
irreducible connection allows for the realisation of any quantum algorithm by adiabatic
holonomies [1]. More formally, the holonomy group Hol(A) lies dense in U(2n).

Single-qubit holonomic gates can be realised using the tripod formation of bosonic
modes [Fig. 6. (a)]. Considering only a single photon in the propagation, the Hamiltonian
of the system reads

H =
∑

k∈{W,E,A}

�
κk |1C〉 〈1k|+ κ∗k |1k〉 〈1C|

�
,

where summation runs over the outer modes. At the initial configuration κ0 = (0,0,κ)
the two dark states of the system take a particular simple form, that is |D1(κ0)〉 = |1W〉,
|D2(κ0)〉 = |1E〉. These define the computational states |0〉ℓ and |1〉ℓ, respectively. Here,
any loop C starts and ends at the base point κ0. While the holonomy group Hol(A) is
independent of the chosen base point [59], a clever choice of the initial configuration κ0

simplifies state preparation to some extend.
With the purpose of constructing specific gates, consider the parametrisation κW =

κ cosθ sinϑeiϕ, κE = κ sinθ sinϑeiϕ, and κA = κ cosϑ, where θ ∈ [0,π] and ϑ,ϕ ∈ [0, 2π).
The components of the connection are computed to (Aϑ = 0)

Aθ =

�
0 cosϑ

− cosϑ 0

�
, Aϕ =

�
0 0

0 i sin2 ϑ

�
.

Due to the complex coupling strength κW, we have a non-Abelian gauge potential at our
disposal, i.e., [Aθ , Aϕ] ̸= 0. Path ordering can be satisfied by traversing a plaquette □ along
the coordinate lines. For concreteness, let

□ : (θ0,ϑ0,ϕ0)→ (θ1,ϑ0,ϕ0)→ (θ1,ϑ0,ϕ1)→ (θ1,ϑ1,ϕ1)
→ (θ0,ϑ1,ϕ1)→ (θ0,ϑ1,ϕ0)→ (θ0,ϑ0,ϕ0).

A direct integration along the Wilson lines of □ yields the holonomy as a path-ordered
product

UA(□) = exp

�∫ ϕ0

ϕ1

Aϕ
��
ϑ1

dϕ

�
exp

�∫ θ0

θ1

Aθ
��
ϑ1

dθ

�
exp

�∫ ϕ1

ϕ0

Aϕ
��
ϑ0

dϕ

�
exp

�∫ θ1

θ0

Aθ
��
ϑ0

dθ

�
,

=

�
1 0

0 e−i sin2 ϑ1∆ϕ

��
cosφ1 − sinφ1

sinφ1 cosφ1

��
1 0

0 ei sin2 ϑ0∆ϕ

��
cosφ0 sinφ0

− sinφ0 cosφ0

�
,

where the second equality can be verified by inserting the definitions ∆ϕ = ϕ1 −ϕ0 and
φi = cosϑi(θ1−θ0) for i = 0, 1. The holonomic gate UA(□) yields the resolution of a unitary
2× 2 matrix. Hence, any element in the group U(2) can be implemented by traversing a
suitable plaquette.
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4.3.1.1 Adiabatic holonomic QC on subsystems

So far, the encoded information was to be prepared in only one of the system’s eigenspaces.
In the discussion of the tripod structure, the dark subspace was the eigenspace of choice,
while our study of PNTs suggests to chose the subspace which possesses the highest-
dimensional holonomy group. In any case, the chosen eigenspace ideally possesses a
natural multi-partite structure, so that a quantum code can be defined. Since there is no
guarantee that one can decompose an eigenspace Hl into a product of single-qubit Hilbert
spaces in any physically relevant way [169], one has to come up with a consistent labeling
of logical qubits. This problem, sometimes referred to as the complexity issue [58, 59], must
be addressed in order to enable efficient holonomic QC.

One possible remedy to this predicament might be to use the natural multi-partite
structure induced by the Hamiltonian, i.e., labelling qubits with respect to the spatial modes
of a system. As obvious this solution might seem at first sight, it leads to a rather subtle issue,
namely the generated holonomies may not act as a proper quantum gate solely within one
of the eigenspaces, but rather on a logical quantum code C ⊂H . A series of holonomies
in different eigenspaces might then be needed to produce the desired transformation on
the level of qubits. Nevertheless, because one can (hopefully) generate any transformation
on each of the respective eigenspaces, it may be well possible, if the eigenspaces are large
enough, to generate any linear optical computation within the code [P1].

Let us clarify the above statements using a generic example. In the following, I will show
how the tripod arrangement, given two indistinguishable photons, serves as a sufficient
setup for the implementation of two-qubit states. For that, recall the form of the first-
order bright states |B±,1〉 , |B±,2〉 ∈ H± given in the parametrisation (3.8). At the point
κ= (0,0,κ), these simplify to

|B±,1(κ0)〉=
1p
2
(|1W1A〉 ± |1W1C〉), |B±,2(κ0)〉=

1p
2
(|1E1A〉 ± |1E1C〉).

Logical qubits are then defined with respect to the spatial mode structure of the waveguide
network, using a dual rail encoding

|00〉ℓ = |1W1A〉 , |01〉ℓ = |1W1C〉 , |10〉ℓ = |1E1A〉 , |11〉ℓ = |1E1C〉 . (4.5)

With this definition at hand, any two-qubit state |ψ〉 lies completely in the code C =
H+ ⊕H−. The composite holonomy acting on the code reads

U(φC ,ω) = eiωUA+(C)⊕ e−iωUA−(C).

Because the code C extends over more than one eigenspace, dynamical phases ω(zf) =∫ zf

z0
ϵ(z)dz can no longer be removed. Furthermore,

UA±(C) =

�
cosφC − sinφC

sinφC cosφC

�
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are the holonomies acting on the product states |B±,1(κ0)〉 = |0〉ℓ ⊗ |±〉 and |B±,2(κ0)〉 =
|1〉ℓ⊗ |±〉, respectively. Here, φC =

∮
C

sinϑdϑ is a purely geometric phase. In the computa-
tional basis (4.5), the composite holonomy can be written as a tensor product

U(φC ,ω) =W (φC)⊗ V (ω),

of the single-qubit gates

W (φC) =

�
cosφC − sinφC

sinφC cosφC

�
, V (ω) =

�
cosω −i sinω

−i sinω cosω

�
.

In circuit notation, the tripod realises the architecture

W (φ)

V (ω)

on the code. Indeed, any gate in the group U(2)⊗U(2) can be designed in this way. As the
tripod formation corresponds to a linear optical network, it could have been anticipated
that no entangling operations are encountered. Note that the computation is not entirely
geometric in nature, because the dynamical phaseω contributes to the composite holonomy.
At least on the formal level, these can be shifted onto a separate qubit, while the remaining
qubit is transformed by a holonomic gate [170].

4.3.2 Nonadiabatic gates

A networking of adiabatic holonomies demands exceedingly large photonic chips, because
adiabaticity has to be ensured for each gate in the network. An alternative, path-shortening,
paradigm relies on a quantum-gate logic built from nonadiabatic quantum holonomies
[60]. Elementary gates are designed in terms of holonomies UA(C) = T̂ exp

∫ T
0

Atdt, with
the nonadiabatic connection (At)ba = 〈ψa|∂t |ψb〉 governing the evolution. Recall that the
states |ψa(t)〉 are independent of the Hamiltonian’s dynamics, i.e., 〈ψa|H|ψb〉 = 0. The
code C is spanned by these states at their initial configuration, i.e., C = {|ψa(0)〉}a. In
order to ensure a proper read-out of qubits at the end of the computation, the states have to
evolve cyclically, i.e., |ψa(0)〉= |ψa(T )〉 for a = 1, . . . d. Moreover, it is desirable for C to
possess a multi-partite structure that allows for the interpretation of UA(C) as a multi-qubit
gate, thus rendering efficient QIP possible.

The construction of single-qubit holonomic gates is possible utilising the three-waveguide
coupler. When only a single photon is subjected to the optical setup, the Hamiltonian takes
the form

H =
∑

k∈{W,E}

�
κk |1C〉 〈1k|+ κ∗k |1k〉 〈1C|

�
, (4.6)
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where complex couplings κE(z) = Ω(z) sin(θ/2)e−iϕ and κW(z) = −Ω(z) cos(θ/2) induce
population transfer from the outer modes to the central one and vice versa. This is similar
to the construction in Sec. 4.2.1. The nonadiabatic quantum holonomy reads

UA(Cθ ,ϕ) =

�
cosθ eiϕ sinθ

e−iϕ sinθ − cosθ

�
. (4.7)

Defining the computational basis |0〉ℓ = |1W〉 and |1〉ℓ = |1E〉, the unitary matrix UA(Cθ ,ϕ)
acts as a single-qubit gate. The implementation of two subsequent loops allows one to
construct any single-qubit gate by holonomic means [60]. The state |1C〉 participates in the
evolution as an ancilla but is not part of the read-out. Due to cyclicity δ(zf) = π, the code
C = {|0〉ℓ , |1〉ℓ} is mapped onto itself and a proper read-out of logical states is possible in
terms of single-photon detectors at the end facet of the waveguides E and W.

There are some important differences between the adiabatic construction from the previ-
ous section and the nonadiabatic realisation presented here. The obvious first, nonadiabatic
holonomic QC is not restricted to an adiabatic subspace, therefore diabatic contributions
do not harm the quantum gate to be implemented. Secondly, in the adiabatic scenario
the cyclic evolution of the dark states can be mapped onto a parameter loop in M . This
correspondence breaks down in the nonadiabatic case, where, the couplings {κk}k play a
more passive role and can even be constant, e.g., Ω= π/zf.

The fact that any coupling scheme with δ(zf) = π realises the same holonomic gate
gives the experimentalist a useful design freedom for the optical network. The resilience of
nonadiabatic holonomic gates towards different sources of parametric noise was studied in
Ref. [63] in the context of an atomic three-level system. An improved super-robust version
was proposed and analysed in Ref. [171]. Due to the mathematical equivalence with the
coupled-mode Hamiltonian (4.6), most of their findings are applicable to the photonic
setup as well. In the following, an error analysis for sequences of holonomic gates is given
based on the results from Ref. [P7].

4.3.2.1 Transition errors

A loop C has to be designed by corresponding coupling pulses κW(z) and κE(z). The
choice of (parameter) angles θ and ϕ in Eq. (4.7) fixes the gate, while any envelope
Ω(z) with δ(zf) = π ensures cyclicity. However, even though the gate (4.7) is purely
geometric in its make up, a sequence of those does not need to be. This has its origin
in the transition error between two subsequent gates. In order to illustrate this point,
suppose one first designs the loop C 5π

2 ,π resulting in a bit flip U(C 5π
2 ,π) = −X . Then, a

second loop Cπ,0 is engineered, applying the phase shift U(Cπ,0) = −Z . There is still a
freedom of choice in the coupling configuration, namely the envelope Ω(z). Fig. 15 shows
two different types of coupling that would ideally realise a bit flip X followed by a Z gate.
However, in Fig. 15. (a) the constant coupling configuration demands for a smooth (e.g.
sine-like) transition between the two gates. This transition is not geometrically robust and
distorts cyclicity of the overall evolution, i.e., the photonic wave function leaks out of the
computational subspace C . In contrast, Fig. 15. (b) overcomes this issue using Gaussian
pulses for each segment. Hence, the transition error can be avoided nearly perfectly, by
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Figure 15.: Couplings κW and κE for the sequential implementation of the gate ZX as
a function of the propagation length z. Each envelope function is designed to satisfy∫ zg

0
Ω(z)dz ≈ π per gate. (a) Constant coupling segments for the implementation of each

gate with Ω = π/zg and zg = 4.95cm. There is a transition length ∆z = 0.1cm after the
first gate has been applied, leading to a mismatch with the computational subspace C .
The transition is designed smoothly in terms of a sine-like geometry. (b) Gaussian-shaped
coupling pulses ΩX (z) =

p
π/2 exp[−(z−zg/2)2/2], with zg = 7.5 cm, and ΩZ = ΩX (z−zg),

ensuring a smooth transition between the two parameter variations. Adapted from Ref. [P6].

ensuring a smooth transition. However, the mitigation of transition errors between the
gates came at a cost [P7]. Due to the Gaussian transition between the loops C 5π

2 ,π and Cπ,0,
one is forced to increase the coupling strengths and extend the propagation length for each
gate substantially, because one still needs to pick up δ(zf) = π per gate. This might lead into
a strong coupling regime or demand for a magnification of the experimental setup. This in
turn limits miniaturisation or increases the time the qubits will be subjected to a decohering
environment, thus introducing new errors. Ideally, one would like to use particular simple
and resource-saving coupling schemes while avoiding transition errors as well. A remedy to
this predicament will be given in Sec. 4.4.1, where holonomic computations are supported
with a highly-entangled resource state, thus realising operations in parallel, instead of
applying them in sequence [P7].

4.3.2.2 Errors due to bending losses

Gate errors manifesting in the propagated output state ϱ(z) may not only originate from
deviations in cyclicity as well as photon loss into the environment due to the bending of
waveguides (see Chapter II). Our measure of quality will be the fidelity

F(|ψ〉 ,ϱ) = 〈ψ(zf)|ϱ(zf)|ψ(zf)〉
between the ideal output state |ψ(zf)〉 = ZX |ψ(z0)〉 and the propagated state ϱ(zf) =
N (|ψ(z0)〉 〈ψ(z0)|) obtained from a noisy evolution N of the input state |ψ(z0)〉. The
photon loss in the kth waveguide will be modelled in terms of a loss rate γk(z) [109].
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Figure 16.: Propagation of the state |0〉ℓ = |1W〉 through the lossy architecture given in
terms of the probability distribution pk(z) for the photon being in the kth site (k =W, C,E)
as a function of the propagation length z. (a) Probability distribution for constant coupling
segments, connected by a sine-like step [Fig. 15. (a)]. (b) Probability distribution for
Gaussian coupling pulses [Fig. 15. (b)]. The plots are obtained from a numerical solution
of Eq. (2.15) for the parameters K1 = 0.5cm−1, K2 = 0.042cm−1, K3 = 23.9cm−1, and
K4 = 0.1µm−1.

Figure 16 shows the probability distribution obtained from a noisy propagation of the
input state |ψ(z0)〉 = |0〉ℓ, for the coupling configurations from Fig. 15. (a) and (b), obtained
from a numerical solution of the Master equation (2.15) (see Chapter II). Both coupling
configurations (ideally) realise the gates UA(C 5π

2 ,π) = −X and UA(Cπ,0) = −Z sequentially.
Ideally, the input |0〉ℓ would evolve into−|1〉ℓ after traversing one of the optical networks (a)
or (b). Figure 16. (a) shows the two-loop implementation of the holonomic transformation
U = UA(Cπ,0)UA(C 5π

2 ,π) using straight waveguides for each gate that are connected via a
sine-like transition segment leading to a mismatch with the computational subspace as well
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as introducing strong scattering into the surrounding medium. The average gate fidelity

F(U , N ) =
1
3

∑
k

F(U |ψk〉 ,ϱk), ϱk = N (|ψk〉 〈ψk|),

for an ensemble of input states |ψk〉 ∈ {|0〉ℓ , |1〉ℓ , |1C〉} is F (a) = 93.11 %. Next, Fig. 16. (b)
shows the propagation with Gaussian-shaped coupling pulses. Due to the increased prop-
agation length, the transition between the two gates is smooth and does not require an
additional transition segment. Hence, photon loss is only due to the bending of waveguides.
This amounts to a gate fidelity of F (b) = 99.69%.

4.3.2.3 Holonomic coin-flip game

In order to further address the networking of holonomic gates, a simple quantum algorithm
is considered in the following, that is the quantum coin-flip game [172]. Starting point
of the game is a single qubit (quantum coin) prepared in the state |0〉ℓ (e.g., head). Now
both participants — Alice and Bob — secretly write down their respective operations to
be applied to the qubit before measurement. Alice wins the game if the qubit remains in
the state |0〉ℓ after all operations were carried out. Bob achieves victory if the output is in
the state |1〉ℓ. The game proceeds as follows: Alice will perform a first operation, then Bob
applies his operation (without any knowledge of Alice’s gate), finally Alice applies a third
operation (without any knowledge of Bob’s gate).

If Alice and Bob are both restricted to using classical operations, i.e., the identity 1
and the NOT-operation X , none of them can get an advantage over the other. Making the
correct decision in such a scenario, thus amounts to guessing which of the two operations
the adversary applied, i.e., there is a 50% chance of guessing correctly. However, if Alice
is equipped with the power of quantum mechanics, that is any element of U(2) is at her
disposal, then she can employ a game-theory optimal strategy guaranteeing her a win. She
does so by choosing her first operation to be the Hadamard transform W . In the game, this
results in the state (|0〉ℓ + |1〉ℓ)/

p
2. This is an eigenstate of Bob’s classical gate set {1, X },

and thus he cannot alter the state. Independent of what Bob’s choice was, Alice will apply
the Hadamard gate W again. The quantum coin returns to the state |0〉ℓ, thus winning
Alice the game.

A photonic realisation of the above algorithm relies on the manipulation of a dual-rail
encoded qubit |0〉ℓ = |1W〉 and |1〉ℓ = |1E〉 resembling the quantum coin. Now there are
two possible scenarios in the game; Bob either applies the identity 1 or he flips the qubit
via X . The corresponding circuit diagrams are

|0〉ℓ W 1 W 0

and

|0〉ℓ W X W 0

respectively. The holonomic implementation of the coin-flip game is based on the three-
waveguide coupler. The corresponding loops that have to be designed for the two scenarios
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are

UA(Cπ
4 ,0)1UA(Cπ

4 ,0) =W1W

and

UA(Cπ
4 ,0)UA(Cπ

2 ,0)UA(Cπ
4 ,0) =W XW,

respectively. Experimental realisation of both scenarios was done in terms of fused-silica
waveguides on a chip of length 10 cm. Repeated iteration of the game revealed that Alice’s
chance of winning was measured to be above 99 % in both cases.

Coupling configurations for the different loops were chosen such that transition er-
rors became manageable. Absorption and bending losses can be handled by means of
heralded single-photon measurements. Main obstacle to longer game sequences are inho-
mogeneities in the material limiting scalability of the individual gate. Additional details on
the experiments will be published in Ref. [P5].

Concluding the analysis of experimental data, I come to the conclusion that nonadiabatic
holonomies appear to be the more promising platform for the design of future quantum
technologies. Even though gate fidelities were not too different compared to an adiabatic
implementation, the path-shortening realisation is crucial for a potential networking of holo-
nomic transformations. While adiabatic gates are limited to a regime where diabetic effects
become imperceptible, for nonadiabatic holonomic gates designed via a constant envelope
function Ω, one has δ(zf) = Ωzf. This means, in the nonadiabatic case, miniaturisation is
only limited by the implementable coupling strength that can be realised.

4.4 Measurement-Based Quantum Computation

In this section, we look at another alternative model for QC. Around the turn of the
millennium Briegel and Raussendorf developed a framework for the manipulation of
quantum information that is not based on a networking of quantum gates [173, 174].
Instead, encoded information is transformed by a sequence of local measurements. These,
generally, non-reversible transformations must be chosen in a sensible way so that the
output state can be viewed as the result of a unitary evolution. This approach to the
processing of qubits is known as measurement-based QC [166]. The starting point and
initial resource of measurement-based QC is a highly-entangled state, dubbed the graph
state [175].

To be more precise, consider a graph G with qubits at its vertices that are prepared
either as encoded information |ψ〉= α0 |0〉ℓ +α1 |1〉ℓ or in the state |+〉. The edges of the
graph correspond to connecting the two qubits via a controlled-Z operation,

|ΨG〉=
∏
(i, j)

CZi j

�⊗
k

|ψ〉k
⊗

k

|+〉k
�

with indices (i, j) running over the set of edges of the graph G. In Fig. 17 the construction
is illustrated. Specifically, if the underlying graph has the structure of a lattice as in
Fig. 17. (a), the state |ΨG〉 is known as a cluster state [173]. After performing a sequence
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(a) (b)

Figure 17.: Examples of graph states |ΨG〉 associated with a graph G. Vertices of the
graph denote prepared qubits. A hollow vertex indicates a qubit that is part of the encoded
information. Edges connecting the vertices refer to a controlled-Z operation between the
respective qubits. (a) A specific type of graph state known as a cluster state, in which qubits
are arranged in a lattice. (b) A more general type of graph state.

of local measurements on |ΨG〉, the remainder of the graph state can be viewed as the final
output of a QC.

The most simple example that demonstrates the principles of measurement-based QC
consists of two qubits |ψ〉 and |+〉 being connected by a single controlled-Z gate. For
nonvanishing amplitudes α0 and α1 this provides an entangled state

|Ψ◦−•〉= α0 |0〉ℓ ⊗ |+〉+α1 |1〉ℓ ⊗ |−〉 .

Performing a projective measurement on the first qubit in the basis |±ϕ〉 = (|0〉ℓ±eiϕ |1〉ℓ)/
p

2,
results in the second qubit being transformed into

|ψ(m)out 〉= X mWRz(ϕ) |ψ〉 .
Notice that the output state depends explicitly on the obtained measurement outcome
m ∈ {0,1}, that is if the first qubit was in the state |0〉ℓ or |1〉ℓ. We thus identify X m as
a by-product operator of the (probabilistic) computation. As the measurement outcome
m is known, its action onto the state can be removed after the computation by classical
post processing, i.e., a relabelling of the logical states |0〉ℓ into |1〉ℓ and vice versa. For
practical purposes, it is often convenient to interpret the adaptive measurement as being
implemented by a single-qubit gate U(ϕ) = eiϕ/2Rz(ϕ)W acting on the graph state, followed
by a Pauli-Z measurement. The corresponding circuit reads

|ψ〉 • U(ϕ) m

|0〉ℓ W • |ψ(m)out 〉
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with the dashed vertical line separating the graph state preparation from the local mea-
surements.

The previous example can be readily extended so that it allows for the simulation of
any single-qubit gate. Therefore, a chain of four qubits has to be prepared

|Ψ◦−•−•−•〉= CZ12CZ23CZ34

� |ψ〉 ⊗ |+〉⊗3
�
.

Here, the first qubit is considered as an encoded input |ψ〉. Performing a sequence of
measurements {|±ϕi

〉 〈±ϕi
|}i on the first three qubits, i = 1, 2, 3, results in the fourth qubit

being teleported onto the state

|ψ(m)out 〉= X m3WRz(ϕ3)X
m2WRz(ϕ2)X

m1WRz(ϕ1) |ψ〉 ,
= X m3 Zm2 X m1WRz

�
(−1)m2ϕ3

�
Rx

�
(−1)m1ϕ2

�
Rz(ϕ1) |ψ〉 ,

(4.8)

where the commutation relations

Rz(ϕi)X = XRz(−ϕi), Rx(ϕi)Z = ZRx(−ϕi),

and W X = ZW were used. We observe that, a conditioning of the parameter angles
ϕ′2 = (−1)m1ϕ2 and ϕ′3 = (−1)m2ϕ3 is necessary to obtain the desired output state deter-
ministically. The quantum circuit diagram of this procedure is just a concatenation of the
previous diagram

|ψ〉 • U(ϕ1) m1

|0〉ℓ W • • U(ϕ′2) m2

|0〉ℓ W • • U(ϕ′3) m3

|0〉ℓ W • |ψ(m)out 〉

including a (classical) conditioning of the gates that act on qubit two and three. By adjusting
the measurement angles ϕi any desired single-qubit operation can be applied to the input
|ψ〉. The by-product operator in Eq. (4.8) can be removed via post processing.

It remains to show that the measurement-based approach allows for the construction of
entangling two-qubit operations, necessary for universality. Starting from the four-qubit
graph state

|Ψ◦−•−•−◦〉= CZ12CZ23CZ34

� |ψ〉 ⊗ |+〉⊗2 ⊗ |ψ〉 �,
we obtain the output state

|ψ(m)out 〉= Zm2 ⊗ Zm1CZ
� |ψ〉 ⊗ |ψ〉 �
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via a Pauli-X measurement of qubit two and three. The corresponding circuit reads

|ψ〉 •
|0〉ℓ W • • W m1

|0〉ℓ W • • W m2

|ψ〉 •

The above examples demonstrate that it is generally possible to perform universal QC by
connecting individual qubits using entangling gates followed by local measurements. A two-
dimensional graph state is necessary for this endeavour, because one needs to support the
construction for the CZ operation with single-qubit operations [175]. Measurement-based
QC is desirable over a circuit architecture whenever the preparation of a graph state and
single-qubit measurements are physically easier to implement than the successive realisation
and application of fragile entangling quantum gates. Originally, measurement-based QC
was envisaged to be implemented in terms of optical lattices consisting of ultra-cold atoms
[176, 177]. Within this setting, preparation of the graph state is carried out by turning on
(two-local) Ising interactions that connect neighbouring qubits. Nevertheless, quantum
optics has excelled to become the primary contestant for measurement-based QC [178, 179],
and a measurement-based Deutsch algorithm has already been realised in experiment [180].
One of the reasons for this development is that after the laborious preparation of the graph
state, one is rewarded with a particular simple realisation of local measurements solely in
terms of linear optical elements.

4.4.1 Concatenation of gate simulations

The occurrence of random by-product operators is an ever present feature of measurement-
based QC. In the following, the treatment of these will be formalised [173, 175]. Given
a graph state |ΨG〉 on which local measurements have been performed, the output state
of the computation can be written as |ψout〉 =

∏
k UΣk

Uk |ψ〉. Here, Uk are individual
unitary operations induced by each measurement and UΣk

are their respective by-product
operators originating from the random measurement outcome. Commuting the by-product
operators to the left, so that they can be dealt with at the end of the computation, results
in |ψout〉 = UΣ

∏
k U ′k |ψ〉. The modified unitaries U ′k can depend on the measurement

results associated with previous operations, and UΣ is the total by-product operator lying
in the Pauli group Pn. The latter can be dealt with by means of classical post-processing
[173]. Note that if Uk lies in the Clifford group N (Pn), then we have U ′k = Uk. In
order to deterministically use non-Clifford operations, one has to condition the adaptive
measurement on previous outcomes, within runtime of the algorithm, thus introducing a
notion of temporal complexity into measurement-based QC [173]. As an example, recall
Eq. (4.8) in which the individual by-product operators UΣk

= X mk were commuted to the
left, resulting in the overall by-product operator UΣ = X m3 Zm2 X m1 . Generally, the unitary
operations Uk = Rk(ϕk) do not lie in the Clifford group, and thus had to be adapted on
previous measurements, i.e., ϕ′k = (−1)mk−1ϕk for k = 2, 3.
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4.4.2 Holonomic manipulation of graph states

Besides each coming along with a number of desirable fault-tolerance features, practical
implementations of holonomic QC and measurement-based QC will still suffer from errors.
For instance, an approach based on a networking of nonadiabatic holonomies suffers from
transition errors between subsequent loops (cf. Sec. 4.3.2.1), thus implementing a slightly
distorted gate. Moreover, long propagation times will inevitably increase decoherence (e.g.,
photon loss) until interaction with the environment becomes dominant. On the other hand,
in a measurement-based QC operations can be applied in parallel, but the computation is
harmed by imprecisions in the measurement setup, thus projecting on a slightly erroneous
output state.

In the following, I will devise a hybrid approach between holonomic QC and measurement-
based QC [P7]. The key idea is to perform the adaptive measurements in a rotated basis
that is obtained by means of a nonadiabatic holonomy. Due to the entanglement of the
underlying graph state, gate operations in holonomic QC can be carried out in parallel.
One therefore does not need to design holonomic gates sequentially avoiding transition
errors all together.

In this combined model, individual qubits in a graph state |ΨG〉 undergo simultaneous
loops Ck, for k = 1, . . . , K. Thus, the graph state is manipulated by a sequence of local
(single-qubit) unitaries resulting in the state

K∏
k=1

UA(Ck) |ΨG〉 ,

In the final step of the model, local measurements in the computational (Pauli-Z) basis are
performed on the qubits k = 1, . . . , K. Each measurement leads to the remainder of the
graph state accumulating a by-product operator UΣk

. The circuit diagram of the hybrid
approach reads

UA(C1) m1

...

UA(CM) mM

/ |ψ(m)out 〉

|ΨG〉

Clearly, this is a form of measurement-based QC, in which the projective measurements

UA(Ck) |m〉ℓ 〈m|ℓ U†
A(Ck)

with m ∈ {0, 1}, were obtained from holonomies UA(Ck) acting on the kth qubit. Under the
assumption of noiseless Pauli-Z measurements and an accurately prepared graph state |ΨG〉,
the final output is completely determined by the loops C1, . . . , CK . Therefore, this specific
graph state computation inherits the fault-tolerance features and intrinsic robustness of
holonomic QC. The circuit diagram depicts a situation in which all operations are applied
simultaneously. Similar to the standard formalism on measurement-based QC, holonomic
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non-Clifford operations UA(Ck) demand for a conditioning on previous measurements in
order to make the entire paradigm deterministic. In this picture, the temporal complexity,
i.e., the number of non-Clifford operations to be utilised in a computation, might be
interpreted as a minimal path length of the loops C1, . . . , CK , in order to allow conditioning
on previous measurements.

For completeness, even though quantum holonomies are a rather special type of unitaries,
the above paradigm still allows for universal measurement-based QC. This can be seen
most easily, by considering the holonomic gates (4.7), harnessed from the three-waveguide
coupler. Consider four such couplers, in each of which, a single photon is injected. The
four photons shall be entangled to each other such that they are described by the graph
state |Ψ◦−•−•−•〉, where qubits are defined through a path encoding, i.e., |0〉ℓ = |1W〉 and
|1〉ℓ = |1E〉. If an individual qubit in the graph state traverses a loop Cπ

4 ,ϕk
= Cϕk

with θ =
π/4 before being measured in the computational basis, this corresponds to a measurement
in the rotated basis |+−ϕk

〉= UA(Cϕk
) |0〉ℓ and |−ϕk

〉= −UA(Cϕk
) |1〉ℓ, where

UA(Cϕk
) =

1p
2

�
1 eiϕk

e−iϕk −1

�
.

Any single-qubit unitary can be applied to the encoded state |ψ〉 by adaptive measurements
on the first three qubits

UA(Cϕ1
) m1

UA(Cϕ2
) m2

UA(Cϕ3
) m3

Note that the conditioning of later measurements on previous ones can, in principle, always
be accounted for by adjusting the envelope Ωk(z) for the holonomy UA(Cϕk

). A nontrivial
two-qubit gate CZ can be implemented by first preparing the graph state |Ψ◦−•−•−◦〉, and
then measuring qubits two and three in the Pauli-X basis (similar to Sec. 4.4). The
corresponding circuit reads

UA(C0) m1

UA(C0) m2

In summary, standard results on measurement-based QC were utilised to conclude that
universal photonic QC is possible, when an array of multiple three-waveguide couplers
is provided with a highly entangled resource state. This can be done, using nonadiabatic
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holonomies, by employing a dual-rail encoding for pairs of modes into which a single
photon is injected.

4.4.2.1 Parallelisation vs. composition

In order to point out advantages of performing QC in this hybrid model, a comparison
to the standard circuit implementation — based on a sequence of holonomies — will be
conducted [P7].

If one follows the hybrid approach, single-qubit holonomic gates X and Z can be applied
in parallel using a chain of three qubits. The graph state for this case reads

|Ψ◦−•−•〉= CZ12CZ23

� |ψ〉 ⊗ |+〉⊗2
�

Performing simultaneous measurements on the first two qubits with angles ϕ1 = ϕ2 = π,
the third qubit transforms to UΣZX |ψ〉 with UΣ = (−1)m1 X m2 Zm1 being the associated
by-product operator. The circuit diagram associated with this measurement scheme reads

U(Cπ) m1

U(Cπ) m2

UΣZX |ψ〉
This corresponds to a total of 9 waveguides, as for every (dual-rail encoded) qubit there is
a central ancilla mode mediating the coupling. In the above computation, conditioning on
previous measurements is obsolete, because the gate ZX to be realised, lies in the Clifford
group.

The local unitaries that manipulated the qubits before measurement are designed again
by nonadiabatic holonomies with constant Ω = π/zf. Due to the straight waveguide
design, bending losses do not occur, unlike in the two-loop scenario discussed in Sec.
4.3.2.2. Furthermore, because gate operations are applied in parallel, transition segments
between the gates that would distort cyclicity (see Sec. 4.3.2.1) are obsolete. Hence, the
gate fidelity in this case amounts to F = 100%. This shows clearly that nonadiabatic
holonomic QC can profit from the parallelisation of gate operations, making it robust
towards transition errors and bending losses, while keeping the optical network scalable.
Conversely, nonadiabatic holonomic QC is known to be robust towards parametric and
timing errors [63]. Moreover, the holonomic implementation gives the experimentalist a
freedom of design for the photonic network that might be helpful in achieving an effective
conditioning of non-Clifford operations. Therefore, I forecast a fruitful symbiosis between
measurement-based QC and holonomic QC that could potentially lead to more reliable
quantum information processors [P7].
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Topology is the study of the spatial properties of objects that are preserved under continuous
deformations. In physical systems such invariants manifest themselves in global degrees of
freedom. For instance, the statistics of non-Abelian anyons in effectively (2+1)-dimensional
models only depend on the number and order of braids the quasi-particles underwent
before their fusion [168, 181]. This braiding is often expressible as the holonomy of a
suitable (anyonic) connection [58]. Therefore one can think about the braiding of anyons
as a specific realisation of a geometric phase that possesses maximal topological content.
This further hints at the existence of a continuous route from holonomic to topological
QC [57]. Signatures of quantised phases have already been measured in superconductors
[182, 183] originating from the fractional quantum Hall effect. A braiding of (Ising) anyons
has been realised experimentally in integrated photonic waveguides [129, 184, 185], but
these implementations fail to be universal [186]. Design strategies are often based on
the preparation of pairs of so-called Majorana fermions [187, 188]. It turns out that,
beyond their desirable fault-tolerance features, anyonic statistics can be linked to new
quantum algorithms that differ substantially from the more familiar search algorithms [6]
and cryptographic protocols [10].

Knot theory, a subarea of topology, is concerned with the topological equivalence of
knots [189]. Quantities that characterise knots (modulo continuous deformations), such as
the seminal Jones polynomial [190], are known as knot invariants. These polynomials are
of interest whenever strand-like structures emerge. For instance, Jones polynomials were
first connected to topological quantum field theories by Witten [42]. Since then, they have
been linked to various areas of research, such as the study of DNA ring molecules [191],
topological entanglement [192], and statistical physics [193]. However, distinguishing
knots in terms of the Jones polynomial demands for a diagrammatic unravelling of the
strands. This becomes quickly unfeasible when the number of crossings in a knot increases.
Because the evolution of anyons depends only on the braiding of their world lines, the final
measurement statistic behaves similar to a knot invariant. Determining Jones polynomials
is a BQP-complete problem [194], and doing so through anyonic evolutions outperforms
any known classical algorithm [195].

The chapter contains an introduction to Jones polynomials in Sec. 5.1. Particular
emphasis is given on the representation of knots in terms of (unitary) braids. In Sec. 5.2,
the role of Jones polynomials in topological quantum field theories is briefly elucidated.
In Sec. 5.3, I devise a measurement-based version of the Hadamard test suitable for an
all-out photonic estimation of Jones polynomials. In the spirit of this thesis, nonadiabatic
holonomies will be employed to carry out the algorithm in a fully geometric fashion.
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move I move II move III

Figure 18.: Continuous deformations of strands expressed by the three Reidemeister
moves. Move I removes twisting of a strand. Move II separates strands that lie on top of
each other. Move III shifts a strand under a crossing.

5.1 The Jones Polynomial Algorithm

Knot theory is a subject concerned with the equivalence of knots up to smooth deformations,
such as shifting, bending, or twisting of their strands [189]. A quantity that distinguishes
knots that differ beyond these so-called ambient isotopies is known as a knot invariant. To
be more precise, given an image (embedding into the plane) of a knot, a knot invariant
does not change under the three Reidemeister moves shown in Fig. 18, as these do not cut
into the knot.

A first step towards the construction of a knot invariant is the translation of images
of knots into a mathematical quantity that is consistent with the Reidemeister moves.
A first candidate to achieve this is the Kauffman bracket 〈K〉 of a knot K. Under the
Kauffman bracket crossings in the knot are evaluated according to the Skein relations
introduced in Fig. 19. This introduces avoided crossings finally resulting in a weighted
sum of multiple unknots. Additionally, let 〈⃝〉 = 1 for the bracket of the unknot⃝,
as well as 〈⃝⊔ K〉 = d 〈K〉 for any disjoint union with a knot K. Here, d is a complex
number yet to be determined. Therefore, let⃝⃝ be two overlapping strands. The second
Reidemeister move implies that these can be separated, i.e., 〈⃝⃝〉= 〈⃝⃝〉. Moreover,
〈⃝⃝〉= d 〈⃝〉. Applying the Skein relations to 〈⃝⃝〉, demands that

〈⃝⃝〉− 〈⃝⃝〉= d + A2 + A−2 = 0.

Hence, d = −A2 − A−2. With the above set of rules at hand, any knot can be unraveled into
a series of unknots with different coefficients, thus resulting in a polynomial in A∈ C.

As an elementary example, consider the twisted representations of the unknot⃝ shown
in Fig. 20. While the Kauffman bracket of the second knot coincides with the one of the

Figure 19.: Skein relations to resolve crossings in a knot. The knots build from the avoided
crossings are weighted with complex numbers A and A−1, respectively.
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Figure 20.: Kauffman brackets of braided representations of the unknot⃝. The upper
and lower knot can be deformed into⃝ by applying the Reidemeister move I and II,
respectively.

unknot, i.e., 〈⃝〉 = 1 (as one would like from a proper knot invariant), the one of the
first knot does not. Hence, the Kauffman bracket fails to be a knot invariant. This could
have been expected as it is only invariant under the Reidemeister moves II and III but not
move I. This can be directly observed by applying the Skein relations to move I. Specifically,
resolving the crossing in move I gives an additional factor of (−A)3 for which a proper knot
invariant has to compensate.

In order to construct a polynomial that is invariant under all three Reidemeister moves,
a correction to the Kauffman bracket in terms of the writhe w(K) is necessary. As illustrated
in Fig. 21. (a), the writhe gives an orientation to the strands of a knot, and according to
this orientation every crossing contributes with positive or negative sign. For example, the
Hopf link KHL shown in Fig. 21. (b) is equipped with a positive orientation, thus having a
writhe of w(KHL) = 2. Finally, the Jones polynomial of a knot K can be defined [190]

VK(A) = (−A3)−w(K) 〈K〉 . (5.1)

If two knots K and K ′ are topologically equivalent, then their corresponding Jones poly-
nomials coincide, i.e., VK(A) = VK ′(A). In contrast, if VK(A) ̸= VK ′(A), then one has the
case of two knots that differ beyond ambient isotopies, i.e., it follows K ̸= K ′. It should
be emphasised that this construction does not give a one-to-one correspondence between
knots and polynomial, as for instance, two nonequivalent knots can have the same Jones
polynomial. A knot invariant that gives distinct values for each knot is said to be a complete
knot invariant [189]. While Jones polynomials are not complete, complete knot invariants

(a) (b)

+1 −1

Figure 21.: (a) Convention for the contribution to the writhe from each crossing. (b) Knot
diagram of the Hopf link with positive orientation.
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exist such as the knot complement. Table 2 summarises the relation between knots and
their Jones polynomials [40].

Knots Jones polynomial

K = K ′ ⇒ VA(K) = VA(K ′)

K ̸= K ′ ⇐ VA(K) ̸= VA(K ′)

Table 2.: Relation between knots and their Jones polynomials. Inspired by Ref. [40].

The writhe is simple to calculate, scaling only linear with the number of crossings
n. As such, the complexity of computing the Jones polynomial is mainly due to the
Kauffman bracket. The recursive relationship dictated by the Skein relations demands
for the evaluation of 2n diagrams giving rise to an exponential increase in computational
expense.

5.1.1 Knots from braids

In order to give more structure to a knot it is natural to view the latter as being generated
from a sequence of elementary braids bi, for i = 1, . . . , s− 1, that are then glued together.
Here, s is the number of strands from which the knot is constructed. These braids, together
with their inverses, form a group known as the s-strand Artin braid group Bs [196]. The
action of bi and b−1

i onto the strands is illustrated in Fig. 22. Due to their diagrammatic
origin, these elementary braids satisfy the Yang-Baxter equations [40]

for i ̸= j ± 1 : bi b j = b j bi, bi bi+1 bi = bi+1 bi bi+1, bi b
−1
i = b−1

i bi = e. (5.2)

In the third equation, e denotes the identity element in Bs that is associated with leaving
the strands unbraided. Figure 23 illustrates the above relations through their diagrammatic
form.

Figure 22.: Diagrammatic representation of the elementary braid bi and its inverse b−1
i

acting on a collection of s strands.



Braids and the Jones Polynomial 81

Figure 23.: Diagrammatic relations corresponding to the Yang-Baxter equations (5.2),
satisfied by all bi in the s-strand braid group Bs.

The loose ends of a braid word b in Bs can be connected to each other in a variety of
ways, thus resulting in a knot. Given a braid word

b =
∏

l

bkl
il

, il ∈ {1, . . . , s− 1}, kl ∈ {−1,1},

the corresponding braid closure is denoted as b. In this picture, the writhe of a knot is
just w(b) =
∑

l kl . Figures 24. (a) and (b) depict the trace and plat closure of a knot,
respectively. Notice that any knot can be constructed (always in multiple ways) from the
closure of a product of elementary braids, a result known as Alexander’s theorem [197].

5.1.2 The Temperley-Lieb algebra

For many practical calculations it is advantageous to have a matrix representation ρ of the
s-strand braid group Bs. The matrices ρ(bi) then conserve the Yang-Baxter equations (5.2),
thus handing us an algebraic description of a knot. A particular useful representation maps
elements in Bs onto complex matrices with the help of the Temperley-Lieb algebra TLs

[40]. The latter is generated from elements Ei with i = 1, . . . , s− 1, that satisfy

for i ̸= j ± 1 : Ei E j = E j Ei, Ei Ei+1Ei = Ei, E2
i = dEi. (5.3)

(a) (b)

Figure 24.: Diagrammatic representation of braid closures. (a) Trace closure of the braid
word b1 b2 b1. (b) Plat closure of the braid word b2 b−1

1 b−1
3 b2. Adapted from Ref. [P7].
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With these generators at our disposal, the matrix representation of an elementary braid bi

is defined as

ρ(bi) = A1+ A−1Ei, ρ(b−1
i ) = A−11+ AEi. (5.4)

The reader can readily convince themselves, using the relations (5.3), that the matrices
ρ(bi) satisfy the Yang-Baxter equations (5.2), thus revealing the necessity of the Temperley-
Lieb algebra to be established first. The representation of a more general braid word
b =
∏

l bkl
il

is then just given by the matrix product ρ(b) =
∏

l ρ(b
kl
il
).

5.1.3 Algebraic calculation of the Jones polynomial

Given a representation ρ of the s-strand braid group Bs, the Jones polynomial VK(A)
of a knot K = b can be obtained from an evaluation of the matrix trace Tr{ρ(b)} [40,
181]. The explicit relation between these two quantities depends on the specific form
of the representation ρ as well as the closure. While there are, in principle, many such
representations, in this work I will only be concerned with those that are unitary, i.e.,
ρ†(bi)ρ(bi) = 1 for all i = 1, . . . , s − 1. This implies that Ei is a Hermitian matrix and
|A| = 1, as can be verified from Eq. (5.4). For example, a unitary representation for the
three-strand braid group (s = 3) was derived in Ref. [198]. There, the generators of the
Temperley-Lieb algebra were given as

E1 =

�
d 0

0 0

�
, E2 =

�
d−1

p
1− d−2

p
1− d−2 d − d−1

�
.

For A= eiθ with

θ ∈ [0,π/6]⊔ [π/3, 2π/3]⊔ [5π/6, 7π/6]⊔ [4π/3,5π/3]⊔ [11π/6, 2π]

the matrices

ρ(b1) =

�
−A−3 0

0 A

�
, ρ(b2) =

�
A+ A−1d−1 A−1

p
1− d−2

A−1
p

1− d−2 A+ A−1
�
d − d−1
�
�

, (5.5)

are the generators of a unitary representation of the group B3. For the given representation,
the Kauffman bracket of a trace closure b can be calculated in terms of a matrix trace
[198, 199]

〈b〉= Tr{ρ(b)}+ Aw(b)(d2 − 2), (5.6)

In particular, the identity element ρ(e) = 1 leads to 〈e〉 = d2, which is consistent with a
diagrammatic calculation of 〈⃝⃝⃝〉.

Unitary representations of the s-strand braid group Bs for s ≥ 3, can be obtained
explicitly by means of the AJL (Aharonov-Jones-Landau) algorithm [181, 200] but (in its
original formulation) only allows for an evaluation of the Jones polynomial for isolated
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(a)
(b)

Figure 25.: Diagrammatic representation of knots. Arrows indicate orientation of each
strand. (a) Knot diagram of the Hopf link generated from the braid word b1 b1. (b) Knot
diagram of the Borromean rings being the trace closure of the braid word b1 b−1

2 b1 b−1
2 b1 b−1

2 .

values of θ . An extension of this algorithm to continuous values of θ was presented by
Kauffman and Lomonaco in Ref. [201]. For the interested reader, I outline their procedure
and give a representation of the four-strand braid group B4 in Appendix A.4.

5.1.4 Jones polynomials of knots on three strands

For the purpose of illustration, I demonstrate the algebraic calculation of the Jones poly-
nomial on two benchmark examples, the Hopf link and the Borromean rings shown in
Fig. 25. (a) and (b), respectively.

The Hopf link KHL resembles two interlocked rings and can be constructed on two
strands only, via a closure of the braid word b = b1 b1. Its unitary representation evaluates
to Tr{ρ(b)}= A2 + A−6. The Kauffman bracket (5.6) evaluates to

〈b〉= d−1
�
A2 + A−2 + A6 + A−6

�
= −A4 − A−4.

where w(b) = 2 was used. The additional factor d−1 occurs, due to an additional strand in
B3 that is not part of the Hopf link and therefore has to be removed. This yields the Jones
polynomial of the Hopf link

VKHL
(A) = −A−2 − A−10.

This result is in agreement with a diagrammatic calculation of the Jones polynomial using
the Skein relations.

As a second example, consider a knot that can be constructed on three strands. The
so-called Borromean rings KBR are obtained from a (trace) closure of the braid word
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b = b1 b−1
2 b1 b−1

2 b1 b−1
2 . Its matrix representation (5.4) is computed to

ρ(b) =




2A4 − A8 + 2A12 − A16 + A20 − 1

A12 + A16
−(A

4 − 1)2(A8 + 1)
p

1+ A4 + A8

A10 + A14

(A4 − 1)2(A8 + 1)
p

1+ A4 + A8

A6 + A10

1− A4 + 2A8 − A12 + 2A16 − A20

A4 + A8


 . (5.7)

Inserting the result into Eq. (5.6), while noting that w(b) = 0 gives the corresponding
Jones polynomial

VKBR
(A) = −A12 − A−12 + 3A8 + 3A−8 − 2A4 − 2A−4 + 4.

This is in agreement with the results of a graphical calculation in terms of the Skein relations.
The latter would demand for an evaluation of 26 = 64 diagrams.

5.2 Jones Polynomials in Topological Quantum Field Theory

Up to this date, quantum field theory is still the most renowned tool to describe elemen-
tary particle and high-energy physics. It is the backbone of the Standard Model which
successfully explains the electromagnetic, the weak, and the strong interaction [114].
Experimental testing verifies its predictions to a high degree of accuracy [202]. As these
are all gauge theories, their equations of motion are derived from an action principle of
the form δS[A] = 0. Variational calculus is carried out with respect to the gauge potential
A(xµ) that depends on the coordinates xµ = (t, x , y, z) on the spacetime M . Here, the
action

S[A] =

∫

M

L(Aµ,∂νAµ)dxµ

is expressed through a suitable Lagrangian L, determining the forces at work. This construc-
tion ensures that the corresponding Euler-Lagrange equations are invariant under a change
of gauge. For instance, the Lagrangian of the electromagnetic field LEM =

1
2(ϵ0|E|2−µ−1

0 |B|2)
leads to Maxwell’s equations in vacuum. Here, the fields can be expressed using the vec-
tor potential A, viz. E = −∂t A and B = ∇ × A. It turns out that the requirement of
gauge invariance strongly limits the possible Lagrangian, describing a physical theory in a
(3+ 1)-dimensional spacetime.

Strikingly, if one considers a (2+1)-dimensional spacetime, there are novel Lagrangians
that describe a physical theory, due to the simplified setting. Witten pointed out that the
Lagrangian [142]

LCS(Aµ,∂νAµ) =
m
2
ϵµνσAµ∂νAσ, (5.8)
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creation braiding fusion

〈ψ| B |ψ〉

Figure 26.: Anyonic evolution of a state |ψ〉 in a (2+1)-dimensional spacetime. Time
flows from the left to the right. Initially, pairs of anyons are created from the vacuum. As
time goes by, these undergo an exchange interaction due to a braiding B of their world
lines. Fusion of the anyons results in a knot being formed.

with ϵµνσ being the (totally anti-symmetric) Levi-Civita symbol, leads to the Chern-Simons
action SCS[A], which is invariant under a change of gauge1 Aω

µ
= Aµ + ∂µω. Here, ω(xµ) is

a smooth function of the spacetime coordinates xµ = (t, x , y). In Eq. (5.8), the constant
m is given in units of mass. Hence, the equations of motion induced by LCS give rise to
massive electromagnetic fields (or massive photons) [203].

It should be emphasised that the theory described by the Lagrangian LCS is fundamentally
different from the physics encountered in a (3+1)-dimensional spacetime. Specifically, LCS

does not depend on the local geometry of the underlying spacetime2. In other words, the
interaction between particles (e.g., the charges) does not depend on their relative position.
Remarkably, such exotic behaviour can be realised in experiment by designing quantum
mechanical systems whose configuration is confined to a quasi (2+1)-dimensional structure.
For example, measuring the Hall effect using strong magnetic fields at low temperatures, the
Brownian motion of electrons becomes negligible compared to the incident Lorentz force.
Thus, the system behaves according to its dynamics confined to a two-dimensional space. As
a result, the measured Hall resistivity becomes a topological invariant given by the winding
number of the electric current, see e.g., [40]. Another implementation uses non-Abelian
braiding of light, rendered possible by injecting coherent states into topologically guided
modes in specially fabricated photonic waveguide arrays [184, 185]. Roughly speaking, the
paraxial propagation of light effectively eliminates one spatial dimension from the analysis
via the relation z = c t. This makes integrated photonic waveguides a promising platform
for the simulation of anyons [204].

The aforementioned (Abelian) Chern-Simons theory is a special case of a topological
quantum field theory [142]. The latter describes processes in which the amplitude of a
wave function only depends on the topology of a particle’s world line. The situation is

1This can be shown explicitly using integration by parts for the action SCS[Aω], where the functions Aµ(xµ)
and ω(xµ) vanish at the boundary of the spacetime [40].

2In contrast, the Lagrangian of the electromagnetic interaction in 3+1 dimensions involves inner products,
e.g., |E|2 = gµνEµEν, thus depending on the metric tensor gµν of the spacetime.
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analysed in Fig. 26, where pairs of anyons are created from the vacuum, then (potentially)
non-Abelian braiding of their world lines results in a unitary transformation B on the state,
final fusion of the anyons concludes the evolution. Due, to the topological nature of the
process, the expectation value 〈ψ|B|ψ〉 only depends on the sequence of elementary braids,
contained in the unitary operator B. It is therefore related to the Wilson loop W∏

i Ci
, with

Ci being a spacetime loop formed by a pair of anyons (from vacuum excitation to final
fusion) [40]. The holonomy associated with the Wilson loop is of rather special type as it is
determined by the anyons statistic, thus depending only on the topology of the loops {Ci}i
instead of continuous quantities, such as the enclosed area.

By construction, expectation values must be unaffected by smooth deformations of the
anyon’s world line. It follows that 〈ψ|B|ψ〉 is invariant under the three Reidemeister moves
(Fig. 18), thus carrying information about the knot K formed by the fusion of anyons. The
latter amounts to a plat closure of the braid word B. Remarkably, having an anyonic system
at our disposal, the Jones polynomial can be extracted from [200]

VK(A) = (−A3)−w(B)d s−1 〈ψ|B|ψ〉 .
From the above equation it is immediately clear, that if the anyons are not braided, but
only change their relative position to each other, one has B = 1, resulting in V⃝···⃝ = d s−1.
This is indeed the Jones polynomial one would obtain from a diagrammatic calculation
〈⃝· · ·⃝〉= d s−1 for a collection of s unknots.

In conclusion, anyons can be used to compute the Jones polynomial of a knot. The
complexity of implementing the braid word B is linear in the number of crossings, thus
outperforming a graphical calculation of the associated Jones polynomial (Sec. 5.1),
which had an exponential scaling. Conversely, knowing the Jones polynomial of a knot is
equivalent to the prediction of amplitudes in a topological quantum field theory. In the
following, an alternative quantum algorithm is provided that relies on the preparation
of unitary gates satisfying the Yang-Baxter equations. Even though these systems are not
anyonic in nature, they still incorporate the algebraic relations (5.2) of the braid group.

5.3 Quantum Calculation of Knot Invariants

Previously, it was noticed that the computational expense of determining the Jones polyno-
mial (5.1) rises exponentially with the number of crossings when evaluating diagrams in the
Kauffman bracket of a knot (Fig. 27, right). This makes it simply unfeasible to unravel large
knots on a classical computer. As an example, the Gordian knot (Fig. 27, left) contains 65
crossings, which would result in the conversion of 265 diagrams into a polynomial. On the
other hand, we already saw in the last section that a computation of the Jones polynomial is
equivalent (up to linear expense) to the evaluation of a unitary transformation. A quantum
algorithm that estimates the trace of a (unitary) D× D matrix ρ(b) is the Hadamard test
[200, 199].
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Figure 27.: (Left) Diagrammatic representation of the Gordian knot containing 65 crossings.
(Right) Number of diagrams in the evaluation of the Kauffman bracket 〈K〉 of a knot K as a
function of its crossings n.

5.3.1 Hadamard test

One first prepares a work qubit in the state |0〉ℓ while the remaining n qubits (for D = 2n)
are initialised in some state |Φ j〉. The set {|Φ j〉}Dj=1 shall form an orthonormal basis for the
D-dimensional subspace on which the gate ρ(b) acts, so it can be used to evaluate a matrix
trace. Second, the input state |0〉ℓ ⊗ |Φ j〉 is send into the quantum circuit

|0〉ℓ W • W m

|Φ j〉 ρ(b)

where the controlled braiding Cρ(b) is managed by the work qubit, which in turn is finally
measured in the computational basis. Repeating the Hadamard test until a sufficient
statistic of measurement outcomes m ∈ {0, 1} is obtained, then provides Re 〈Φ j|ρ(b) |Φ j〉,
to satisfactory precision. Analogously, Im 〈Φ j|ρ(b) |Φ j〉 can be obtained from a difference
of probability distributions, utilising the circuit

|0〉ℓ W S • W m

|Φ j〉 ρ(b)
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to be implemented. When the computational procedure is reiterated for all states |Φ j〉, the
quantity Tr{ρ(b)} can be determined to arbitrary precision. In conclusion, the presented
circuits give rise to an efficient way to compute the Jones polynomial, because the number
of qubits log D depends only on the dimension of ρ and is independent of the number of
crossings [40]. Taking into account that, in most practical situations, the controlled braiding
will be engineered as a sequence Cρ(b) =

∏
l Cρ
�
bkl

il

�
, the number of gate operations still

scales linearly with the number of crossings.

5.3.1.1 Hadamard test for the three-strand representation

For the moment, concentrate on three-stranded knots. Recalling the unitary representation
(5.5), one observes that the Hadamard test reduces to a circuit involving two qubits. In Ref.
[205], this representation was put to use in an NMR quantum calculation of several Jones
polynomials. For our purposes, it is more advantageous to resolve the controlled-unitary
Cρ(b) via the circuit identity [151]

• •
�

1 0

0 eiϑ1

�

Rz

�
ϑ4−ϑ2

2

�
W • Rx

�− ϑ4+ϑ2
2

�
R y

�
ϑ3
2

� • R y

�− ϑ3
2

�
Rx(ϑ2) W

where

ρ(b) = eiϑ1Rz(ϑ2)R y(ϑ3)Rz(ϑ4) (5.9)

can be composed into a general single-qubit gate. Appendix A.5.1 contains a proof of this
circuit identity. The angles {ϑ j} j will depend on the given braid word b.
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Figure 28.: Bloch sphere angles ϑ j with j = 2,3,4 for the controlled braiding with ρ(b)
of the Borromean rings. The graphic was obtained by solving Eq. (5.9) for 22 equidistant
values of θ in the interval [0,π/6].
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For example, the decomposition for the Hopf link is (recall A= eiθ)

ρ(b1)ρ(b1) = e−2iθRz(0)R y(0)Rz(8θ ).

Moreover, the matrix representation of the Borromean rings, given in Eq. (5.7), belongs
to the special unitary group SU(2). Hence, ϑ1 = 0, while Fig. 28 shows how the resolu-
tion (5.9), determined by the remaining parameters ϑ2, ϑ3, and ϑ4, changes as a function
of the parameter θ . This in turn fixes the quantum circuit for the Hadamard test.

5.3.2 Measurement-based Hadamard test

When seeking a physical implementation of the Hadamard test, the main computational
expense lies in the realisation of the controlled braiding operation Cρ(b). This becomes
particularly problematic when devising an implementation relying solely on photons. En-
tangling photonic qubits during propagation is exceedingly difficult when the controlled
braiding is comprised of many such operations. In Sec. 4.4, measurement-based QC was
introduced as an alternative paradigm evading such technological hurdles.

Here, I present a measurement-based version of the Hadamard test for knots formed
on three strands. The above circuit decomposition is particularly useful in adjusting the
measurement pattern once the decomposition (5.9) of a braid word is known. Figure 29
shows the measurement-based realisation of the Hadamard test for knots on three strands
starting from a 4× 13 lattice of qubits. In Appendix A.5.2, it is shown that the graph state
computation in Fig. 29. (b) coincides with the conventional Hadamard test. In Appendix
A.5.3, the overall by-product operators for the Hadamard test is derived as well. Note that
the graph state shown in Fig. 29. (b) is not the simplest one possible, but can be viewed
as being obtained from the cluster state, shown in Fig. 29. (a). The redundant qubits are
removed from the cluster by Pauli-Z measurements such that the above circuit is directly
written into the cluster [176]. The given measurement pattern, even though being not the
most resource-efficient (qubit-saving), has the advantage of being easily translated into
the desired Hadamard test, once the decomposition (5.9) is known. It is therefore more
flexible and can be readily adjusted if the Jones polynomial of a different knot becomes of
interest.

In the spirit of this thesis, the graph state computation in Fig. 29 is envisaged to be carried
out by applying quantum holonomies to the individual qubits in the graph, followed by a
measurement in the computational basis. The photonic realisation of this setup would be
conducted as follows. First, 52 indistinguishable photons are entangled into a 4×13 cluster
state |ΨG〉 by means of some highly nonlinear process. Next, each photon is sent into a three-
waveguide coupler, e.g., by using fibre beam splitters. Unnecessary qubits are removed via
single-photon detectors (Pauli-Z measurements). The remaining 26 correlated photons have
to undergo measurement in a rotated basis. Therefore, the couplings κW(z),κE(z)∝ Ω(z)
are chosen such that each qubit in |ΨG〉 undergoes a holonomic single-qubit transformation
UA(Cϕ), i.e.,
∫ zf

z0
Ω(z)dz = π. The loop Cϕ followed by a Pauli-Z measurement in terms of

single-photon detectors then realises a measurement in the basis UA(Cϕ) |0〉ℓ and UA(Cϕ) |1〉ℓ.
The parameter ϕ in each gate, has to be adjusted according to the specific braiding.
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(b)

(a)

Figure 29.: Measurement-based execution of the Hadamard test with controlled braiding
Cρ(b) (a) Preparation of a cluster state consisting of 4 × 13 qubits. Redundant qubits
are removed from the cluster via a Pauli-Z measurement denoted with the symbol •. (b)
Rotations into the suitable bases are carried out by single-loop holonomies UA(Cϕk

). The
symbol ⊕ denotes a measurement in the Pauli-X basis. Qubits labelled with ⊘ or ⊘are
measured in the ϕ = ±π/2 basis, respectively. Finally, qubits marked with ⊗ are measured
in one of the Bloch sphere angles (5.9). The graph state computation estimates the real
part of Tr{ρ(b)} from the measurement statistic of the work qubit. Vertical dashed lines
separate the graph state into a sequence of simulated single-qubit and two-qubit operations
(see Appendix A.5.2).
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This thesis revolves around the realisation of quantum holonomies by means of integrated
photonic waveguides. Based on a quantisation of the electromagnetic field in an array
of coupled waveguides, a tight-binding theory for the paraxial propagation of light was
devised (Chapter II). Propagation of light in strongly coupled waveguides was described
within a nonorthogonal coupled-mode theory. It was shown how specific arrangements of
the bosonic modes, such as the star graph, allowed for the generation of, both adiabatic and
nonadiabatic, holonomies (Chapter III). The results of an experimental collaboration were
briefly discussed. This included the first quantum photonic realisation of a U(3) holonomy,
by utilising two-photon interference in an adiabatic propagation [P4], as well as an all-
out holonomic implementation of the quantum-optical coin-flip game using nonadiabatic
holonomic gates [P5]. I came to the conclusion that an implementation in terms of
nonadiabatic holonomies is more promising. The reasons for this are the following: Firstly,
nonadiabatic holonomies provide a path-shortening realisation and can be implemented in a
planar array of waveguides. Secondly, in an all-out photonic setting there is no ground state
protection against loss that would incline us to prefer an adiabatic implementation. Such a
protection against decay is more relevant to atomic and trapped-ion platforms. Moreover,
relations between quantum holonomies and several contributing factors were highlighted,
including degeneracy of subspaces and the number of photons involved in the propagation.
We witnessed that an increase in degeneracy, due to more photons being involved [P1],
does not necessarily result in a more versatile (i.e., higher-dimensional) holonomy group.
The particle-number threshold (PNT) of a quantum system was introduced to assess this
observation. The PNT gives the number of photons necessary to fully harness the holonomy
group of highest dimension [P3]. In addition, a unified operator framework for quantum
holonomies was devised [P6]. Within this framework, it was shown that the propagation of
light in the star graph (i.e., the tripod) arrangement remains unaffected by distortions from
transverse mode overlaps [P2], thus providing an additional symmetry-based protection.
Furthermore, the formalism allowed me to prove that any linear optical transformation can
be implemented using holonomies only. These findings were put to use in a novel form
of measurement-based QC that solely relied on holonomic gates to transform parts of the
graph state before measurements are applied (Chapter IV). Utilising holonomic operations
in a measurement-based setting led to a fruitful symbiosis between the two paradigms,
i.e., gate operations can be applied in parallel (avoiding transition and bending errors)
and local measurements are designed in an error-resilient style [P7]. It turned out that,
performing measurement-based QC by purely geometric means is no restriction at all, as it
enabled an efficient estimation of the Jones polynomials of elementary knots (Chapter V).
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6.1 Outlook

The proposals devised in this thesis enable a novel form of photonic QIP. Hopefully, the
design freedom and robustness, inherent in a holonomic implementation of photonic
waveguides, can be utilised in improved design strategies for reliable quantum technologies.
What reliable means might depend crucially on the given physical context, the commercial
demand, the time at our disposal, and the computational problem which is to be solved. An
informal definition of what constitutes reliable and scalable QIP might be inherited from
classical computer science and engineering [206].

Computer engineering is the art and science of translating user requirements we do not fully
understand; into hardware and software we cannot precisely analyze; to operate in environ-
ments we cannot accurately predict; all in such a way that the society at large is given no
reason to suspect the extent of our ignorance.

Adapted from Ralph Caplan’s By Design: Why there are no locks on the bathroom
doors in the Hotel Louis XIV and other object lessons (Fairchild Books, New York, 2004).

Certainly, QIP is far from reaching this goal and has to be considered in its early technological
stages, striving for proof-of-principle demonstrations [149, 207] that verify a possible
quantum advantage [208, 209]. Nevertheless, a good amount of enthusiasm surrounds
current research on QIP and QC, based mainly on two factors. Firstly, quantum-error
correction is, in principle, possible. And secondly, the existence of a threshold theorem
for QC. The latter states that, if error rates are low enough, and sufficient overhead in
qubits can be provided, arbitrarily long QC can be achieved [206]. The route towards
fault-tolerant large-scale QC has to be paved by either increasing the error threshold (by
developing improved codes) or designing highly reliable architectures for QIP.

The thesis at hand, hopes to reinforce the optimism surrounding the field of QC by
devising novel schemes for a more adaptable manipulation of photonic qubits and showing
how these can be utilised for the implementation of holonomic quantum algorithms. In the
following, I present a number of unexplored issues that are close to the subject at hand but
have not been addressed so far.

Scalability of holonomic networks — In photonic waveguides, quantum holonomies
offer only a protection against parametric noise. However, primary sources of errors are
inhomogeneities in the material and photon loss, thus limiting scalability of the architecture.
The antidote to this issue is the usage of path-shortening realisations of holonomic gates.
Exploring alternative platforms, such as lithium-niobate or silicon-on insulator waveguides,
might be crucial for the fabrication of miniaturised holonomic chips, because fused-silica
waveguides lack the sufficient scalability due to their weak-refractive index contrast. On
the theoretical side, studying more general cyclicity conditions for the three-waveguide
coupler [210] as well as ultra-fast holonomies [211] might be a fruitful endeavour. This
should not be to difficult, as proposals for atomic systems usually can be directly translated
into a tight-binding Hamiltonian.



Summary and Conclusion 93

Nonadiabatic topological phases — Another aspect of photonic holonomies that might
be worth investigating, is the transition to topological QC. While this is well understood in
an adiabatic setting [129, 184, 212], there are no comparative references on nonadiabatic
holonomic gates of topological origin, i.e., the holonomy depends only on a topologi-
cal invariant of the system. A promising starting point of such an investigation is the
three-waveguide coupler. Its geometric phase might become topological given additional
constraints on its configurations or by providing ancilla modes that allow to discretise steps
in the holonomic evolution.

SU(d,d)-valued operator holonomy — Section 3.5 contained the derivation of a
holonomic Heisenberg picture. For a collection of coupled oscillators, this led to a holo-
nomic version of the transfer matrix in linear optics. The operator holonomy UC realised
a U(d) transformation between the spatial modes of a network. An ambitious student of
mathematical physics might try to extend this notion to include nonlinear optical effects,
e.g., Bogoljubov transformations â† 7→W [â]+U[â†], where the pair (W , U) belongs to the
symmetry group SU(d, d). An intuitive starting point for such an endeavour is the parallel
transport condition [η̂a, ˙̂η†

b] = 0 for an evolving mode η̂†
b =
∑

a

�
WbaΨ̂a +UbaΨ̂

†
a

�
.

Particle-number thresholds — In Sec. 3.2, I introduced the concept of a particle-
number threshold (PNT), which is the minimal number of particles necessary to harness
the highest-dimensional holonomy group of a quantum system. PNTs give rise to a number
of theoretical questions that might be explored in future works. For instance: Are there
quantum systems not possessing a PNT? That would imply the dimension of a holonomy
group increases further and further upon subjecting more particles to the system. I expect
such peculiar behaviour only in the case of infinitely many modes coupling to one another,
as a finite-dimensional parameter space should never enable infinite computational re-
sources. A more rigorous argument might be pursued in a future work. There is also a
lack of analytical tools to compute PNTs. While this is a manageable task for fermionic
systems (where Fock spaces are finite-dimensional), it becomes a challenging issue for
bosonic systems, where there is no bound on the particle number.
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A | Supplementary Results

This part of the appendix contains various theorems and calculations that support the
results presented in the thesis.

A.1 Coupling and Overlap between Cylindrical Waveguides

In the following, the coupling strength, the mode overlap, and the self-coupling between
two adjacent waveguides are computed. These quantities were plotted as a function of
their spatial separation in Fig. 3. (a) (see Chapter II). For simplicity, focus lies on cylindrical
step-index waveguides of radius R with a weak refractive-index contrast ∆n j compared to
the host material n0.

Consider a scenario in which each waveguide is assumed to be identical and supports
only its first transverse mode w j(r⊥). Furthermore, recall that a transverse mode w j(r⊥)
of a single waveguide satisfies its own Helmholtz equation

�
∇2
⊥ +

ω2

c2

�
n0 +∆n j(r )
�2 − β2
�

w j(r⊥) = 0, (A.1)

where ∆n j(r ) equals nI ≪ 1 inside the waveguide, that is |r⊥| ≤ R, and 0 outside the
waveguide, that is |r⊥|> R. When switching to cylindrical coordinates (r,ϕ, z), with origin
at the waveguide core, it becomes evident that a solution to Eq. (A.1) must be 2π-periodic
with respect to ϕ. Hence, w j(r⊥) = w j(r)e−imϕ with m accounting for higher order modes.
As we are only interested in the fundamental mode we set m= 0. Subsequently Eq. (A.1)
becomes

∂ 2
r w j(r) +

1
r
∂r w j(r) + k2

t w j(r) = 0, for r ≤ R,

∂ 2
r w j(r) +

1
r
∂r w j(r)− γ2w j(r) = 0, for r > R,

(A.2)

with r = |r⊥|. In Eq. (A.2), I introduced the parameters

k2
t = (n0 + nI)

2/λ̄2 − β2,

γ2 = β2 − n2
0/λ̄

2.
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The exact solution to Eq. (A.2) has the compact form [93]

w j(r⊥) =

¨
J0(ktr)/J0(ktR), if r ≤ R (core),

K0(γr)/K0(γR), if r > R (bulk),

where J0 is the zeroth order Bessel function of first kind and K0 is the zeroth order, modified
Bessel function of second kind. The normalisation of Bessel functions ensures continuity at
the boundary of the waveguide. A suitable choice of kt and γ further ensures differentiability
of w j at r = R. Without going into further detail the latter one can be determined graphically
from the boundary condition

ktR
∂ktRJ0(ktR)

J0(ktR)
= γR

∂γRK0(γR)

K0(γR)
,

by searching for intersections between the left- and right-hand side of the above equations.
For details the reader might refer to Ref. [93].

Once the fundamental mode is explicitly known, one can calculate the coupling and
overlap between adjacent waveguides. Assuming an identical fabrication process for each
waveguide, the transverse mode of an adjacent waveguide is simply

w j+1(x , y) = w j(x +δ, y) (A.3)

where I chose a Cartesian frame with the jth waveguide being at the origin. In Eq. (A.3),
it was assumed, without the loss of generality, that the position of each waveguide differs
by a displacement δ in x-direction. Utilising Eq. (A.3) the coupling and mode overlaps
(2.7) between two waveguides becomes

κ j j+1(δ) =
1
λ̄

∫

S∆n j

nIw
∗
j(x , y)w j(x +δ, y)dxdy,

σ j j+1(δ) =

∫

S∞

w∗j(x , y)w j(x +δ, y)dxdy,

ν j(δ) =
1
λ̄

∫

S∆n j+1(δ)

nI|w j(x , y)|2dxdy,

with S∆n j
being the part of transverse plane on which∆n j is nonvanishing. For two properly

normalised modes, i.e., σ j j = 1, the coupling, self-coupling and overlap of transverse modes
could be obtained as an interpolating function (shown in Fig. 3). In Fig. 30, the transverse
mode fields of two waveguides are plotted in the (x , y)-plane. One can clearly observe an
overlap, thus verifying the nonorthogonal nature of these fields.
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Figure 30.: Density plot of fundamental mode fields of two adjacent waveguides (blue
circles) of radius R = 4.8µm with a bulk index n0 = 1.452 and a weak contrast nI =
6.53 · 10−4 for each waveguide. The wavelength of the injected light beam considered,
is λ = 633nm. The separation between the waveguides (measured from the center) is
δ = 16µm. The overall field is given in relative units such that each mode is normalised.

Space this out!
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A.2 Dark States of the Four-Mode Fully-Connected Graph

In this appendix, the two-particle dark states of the four-mode fully-connected graph (3.14)
are listed. These are the zero-eigenvalue eigenstates of the Hamiltonian matrix H|F2

. Their
explicit form is [P3]

|D1〉=
1p
2

�
eiϕ3 sinθ1 sinθ2 cosθ3â†

1 + ei(ϕ3−ϕ1) cosθ1 sinθ2 cosθ3â†
2

+ ei(ϕ3−ϕ2) cosθ2 cosθ3â†
3 − sinθ3â†

4

�2 |0〉 ,
|D2〉=
�

sinθ1 sinθ2 sinθ3â†
1 + e−iϕ1 cosθ1 sinθ2 sinθ3â†

2 + e−iϕ2 cosθ2 sinθ3â†
3 + e−iϕ3 cosθ3â†

4

�

× �eiϕ1 cosθ1â†
1 − sinθ1â†

2

� |0〉 ,
|D3〉=
�

sinθ1 sinθ2 sinθ3â†
1 + e−iϕ1 cosθ1 sinθ2 sinθ3â†

2 + e−iϕ2 cosθ2 sinθ3â†
3 + e−iϕ3 cosθ3â†

4

�

× �eiϕ1 sinθ1 cosθ2â†
1 + ei(ϕ2−ϕ1) cosθ1 cosθ2â†

2

� |0〉 ,
where the parameter angles (θk,ϕk) are defined in Eq. (3.15). In Sec. 3.2, these were used
to calculate the local curvature of the system and its first-order derivative [see Eq. (3.16)].
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A.3 Details on the Operator Formulation of Quantum Holonomies

In the following, a parallel transport condition for bosonic modes is derived that applies to
any collection of coupled harmonic oscillators (i.e., linear optical networks). Furthermore,
I provide a proof of the strong adiabatic theorem.

A.3.1 Mode quantisation under geometric constraints

The following quantisation procedure is similar to the one in Ref. [P6]. Given a collection
of M classical modes that interact according to a linear optical network. The vector of
amplitudes α transforms according to α(T ) = Uα(0), where T is the propagation time. As
the transformation of modes must be unitary, the transfer matrix can be written as

U(T ) = T̂ei
∫ T

0 K(t)dt ,

where K is a Hermitian M×M matrix. Its components can be written as (K) jk = κ jk+βkδ jk,
where κ jk = κ∗k j and βk ∈ R. By construction, α(t) is a solution to ∂tα= iKα. Hence, κ jk

can be interpreted as a coupling between the modes j and k. Furthermore, βk might be
viewed as a propagation constant.

Suppose one has a system with d < M orthonormal modes Ψ j(t) =
�
c jk(t)
�

k
satisfying

the condition for a holonomic evolution, i.e., the relation [54, P6]

(Ψ∗j )
TKΨk =

M∑
l,m=1

c∗jl ckm(K)lm = 0 (A.4)

holds for all j, k = 1, . . . , d.
A (field) quantisation is carried out by promoting the amplitudes to Hilbert space

operators â†
k, viz. Ψk 7→ Ψ̂†

k =
∑

j c jk â†
k. The Hamiltonian H of the theory is obtained via a

comparison between the Heisenberg equation of motion ∂t â
†
k = i[H, â†

k] and ∂t â
† = iKâ†.

This leads to

H(t) =
M∑

j<k

κ jk(t)â j â
†
k + κ

∗
jk(t)â

†
j âk +

M∑
j=1

β j(t)â
†
j â j.

On the level of bosonic modes, Eq. (A.4) is equivalent to the parallel transport condition
[Ψ̂ j, [H, Ψ̂†

k]] = 0. Using bosonic commutation relations, one arrives at

[Ψ̂ j, [H, Ψ̂†
k]] =
∑
l,m

c∗jl ckm

�∑
n<p

�
κnp[âl , [ânâ†

p, â†
m]] + κ

∗
np[âl , [â

†
nâp, â†

m]]
�
+
∑

n

βn[âl[â
†
nân, â†

m]]
�
,

=
∑
l,m

c∗jl ckm

�∑
n<p

�
κnpδl pδnm + κ

∗
npδlnδpm

�
+ βlδlm

�
,

=
∑
l,m

c∗jl ckm

�
κlm + βlδlm

�
,

(A.5)
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thus verifying the assertion.
In order to show that the quantisation leaves us with photon-number states that evolve

in a purely holonomic fashion, one expects that any state |ψn〉 lying in the subspace

Hψ =
¦∏d

j=1

Æ
n j!
−1�
Ψ̂†

j

�n j |0〉
���n ∈ Nd

0

©

satisfies the condition 〈ψn|H|ψm〉 = 0 for all n, m ∈ Nd
0 . This can be shown as follows.

First, note that if both sequences differ in their total photon number,
∑

j(n) j ̸=
∑

j(m) j,
then 〈ψn|H|ψm〉= 0 follows immediately, because the photon number in a linear optical
network is not altered throughout the evolution. Second, the claim can be readily verified
for the case of a single photon

〈ψn|H|ψm〉= 〈0| Ψ̂kHΨ̂†
j |0〉= 〈0| [Ψ̂k, [H, Ψ̂†

j ] |0〉= 0,

where H |0〉 = 0 was utilised. This is nothing but the initially assumed condition for parallel
transport. Moving to a scenario involving two photons, one notes that

〈0| Ψ̂ jΨ̂kHΨ̂†
l Ψ̂

†
m |0〉= 〈0| [Ψ̂ jΨ̂k, [H, Ψ̂†

l Ψ̂
†
m]] |0〉 .

Moreover, a direct computation reveals that

〈0| [Ψ̂ jΨ̂k, [H, Ψ̂†
l Ψ̂

†
m]] |0〉= 〈0| Ψ̂ j

�
Ψ̂k, [H, Ψ̂†

l ]Ψ̂
†
m + Ψ̂

†
l [H, Ψ̂†

m]
� |0〉 ,

= δkm 〈0| Ψ̂ jHΨ̂
†
l |0〉+δkl 〈0| Ψ̂ jHΨ̂

†
m |0〉= 0.

Here, I made use of the bosonic commutation relations [Ψ̂ j, Ψ̂
†
k] = δ jk, while remembering

that 〈0| Ψ̂kHΨ̂†
j |0〉 = 0 for all j, k = 1, . . . , d. The argument can be continued for higher

photon numbers, i.e., the remainder of the proof follows by induction [213].

A.3.2 Proof of the strong adiabatic theorem

Even though the adiabatic propagation of photon-number states, subject to a bilinear
Hamiltonian H(t), does not violate the original formulation of the adiabatic theorem [115],
it has become clear that a stronger version can be formulated [P6], that is

Theorem: In the adiabatic limit, any initial preparation η̂(0) lying in a space spanned by a
collection of (non-)degenerate eigenmodes {Ψ̂mk(t)}k will evolve into a final operator η̂(T)
residing in this space.

The proof follows Ref. [P6]. Consider H(t) to be the quantum system of interest, giving
rise to (possibly) degenerate eigenmodes Ψ̂n j(t)with eigenvalue ϵn(t), i.e., [H, Ψ̂†

n j] = ϵnΨ̂
†
n j

at every instant. I make the ansatz

η̂†(t) =
∑
n, j

cn j(t)Ψ̂
†
n j(t), (A.6)
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for the most general bosonic mode of the time-dependent system. When comparing the
explicit time-derivative of Eq. (A.6) with the Heisenberg equation of motion ˙̂η† = i[H, η̂†] =
i
∑

n, j ϵnΨ̂
†
n j, one arrives at

∑
n, j

�
ċn j(t)Ψ̂

†
n j(t) + cn j(t)∂tΨ̂

†
n j(t)
�
= 0, (A.7)

where I made use of the Heisenberg equation for the eigenmodes ˙̂Ψ†
n j = iϵnΨ̂

†
n j + ∂tΨ̂

†
n j.

Concentrate on the the mth eigenenergy with d-fold degenerate eigenmodes {Ψ̂mk(t)}dk=1,
and act onto Eq. (A.7) with [Ψ̂mk, · ]. Using the commutation relations [Ψ̂mk, Ψ̂†

n j] = δmnδk j

yields

ċmk = −
∑
n, j

cn j[Ψ̂mk,∂tΨ̂
†
n j]. (A.8)

Next, we apply ∂t to the quantised eigenvalue problem which yields

[Ḣ, Ψ̂†
n j] + [H,∂tΨ̂

†
n j] = ϵ̇nΨ̂

†
n j + ϵn∂tΨ̂

†
n j,

where it was noticed that ∂t H = Ḣ. Contracting this result with Ψ̂mk for m ̸= n leaves one
with

ϵn[Ψ̂mk,∂tΨ̂
†
n j] = [Ψ̂mk, [Ḣ, Ψ̂†

n j]] + [Ψ̂mk, [H,∂tΨ̂
†
n j]]. (A.9)

Using the Jacobi identity one can show that [Ψ̂mk, [H,∂tΨ̂
†
n j]] = ϵm[Ψ̂mk,∂tΨ̂

†
n j]. It follows

that Eq. (A.9) can be given in the compact form

[Ψ̂mk,∂tΨ̂
†
n j] =

[Ψ̂mk, [Ḣ, Ψ̂†
n j]]

ϵn − ϵm
.

Inserting the above result into Eq. (A.8) one obtains

ċmk = −
∑

j

cmj

�
A (m)t

�
jk
−
∑
n̸=m

∑
j

cn j

[Ψ̂mk, [Ḣ, Ψ̂†
n j]]

ϵn − ϵm
, (A.10)

with the d × d matrix A (m) being the local connection one-form for adiabatic parallel
transport. Its components were defined as

�
A (m)t

�
jk
= [Ψ̂mk,∂tΨ̂

†
mj].

An evolution is said to be adiabatic if the Hamiltonian H changes slowly enough over
time t ∈ [0, T], such that its explicit time-dependence can be neglected in the evolution
governed by Eq. (A.10). This is clearly the case when

max
0≤t≤T



[Ψ̂mk, [Ḣ, Ψ̂†
n j]]


≪ min

0≤t≤T

��ϵn − ϵm

�� (A.11)

giving a validity condition for the adiabatic propagation. On the left-hand side of Eq.
(A.11), we maximise with respect to the induced operator norm. We further observe that
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in this adiabatic limit the evolution of the components cmk(t) is governed by the system
of first-order differential equations ċ = At c, with c = (cmk)dk=1. In this limit, it becomes
evident that the dynamical equations for cmk and cnk decouple for m ̸= n. This means that
any initial mode η̂†(0) will evolve according to η̂†(T ) = T̂e

∫ T
0 At dtη̂†(0), lying in the span of

eigenmodes {Ψ̂mk(T )}k. ■
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1 2 3 r − 2 r − 1

Figure 31.: Depiction of the graph Gr consisting of r − 1 nodes and r − 2 edges.

A.4 Unitary Representation of the Four-Strand Braid Group

Here, I review the improved version of the AJL-algorithm from Ref. [201]. This allows
for the evaluation of Jones polynomials VK(A) for continuous values of A. Moreover, the
algorithm enables the construction of matrix representations of the Artin braid group Bs

for s ≥ 3.
Let Gr be a chain consisting of r − 1 nodes and r − 2 edges. The graph is depicted in

Fig. 31. A path p consisting of s = r − 2 steps (more generally, r ≥ s+ 2) on the graph can
be expressed as a bit string of length s, with 0 denoting a step to the left and 1 a step to the
right. These paths can be used to label an orthonormal basis {|p〉}p. The generators E j of
the Temperley-Lieb algebra TLs can be calculated from their action onto these vectors, viz.

E j |p〉=





0, for p⌊ j, j+1⌋ = 00,

λl−1
λl
|p〉+
p
λl−1λl+1

λl
|p... j−1⌋10p⌊ j+2...〉 , for p⌊ j, j+1⌋ = 01,

λl+1
λl
|p〉+
p
λl−1λl+1

λl
|p... j−1⌋01p⌊ j+2...〉 , for p⌊ j, j+1⌋ = 10,

0, for p⌊ j, j+1⌋ = 11.

(A.12)

Here, p... j−1⌋ denotes the first j − 1 entries of the bit string p. Likewise, p⌊ j+2... denotes the
subpath from j + 2 to s and p⌊ j, j+1⌋ denotes the two bits at position j and j + 1. Moreover,
λl(p) = sin(l(p)θ) with l(p) being the endpoint of the subpath p... j−1⌋ in Gr . Once these
generators are known, the elementary braids in Bs can be written as [recall Eq. (5.4)]

ρ(b j) = A1+ A−1E j. (A.13)

A braid word b ∈Bs that consists of sequences of these elementary braids then amounts to
a matrix product.

In order to evaluate the Jones polynomial of a Knot formed under a trace closure of the
braid word b, the Markov trace [181]

TrM{ρ(b)}=
1
N

∑
p

λl(p) 〈p|ρ(b)|p〉

has to be employed. Here, N =
∑

p λl(p). Once the Markov trace is known, the Jones
polynomial can be obtained from [181]

VK(A) = (−A3)−w(b)d s−1TrM{ρ(b)}.
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For the purpose of illustration, suppose we want to calculate the Jones polynomial of the
Stevedore knot KS shown in Fig. 32. The Stevedore knot can be constructed on four strands.
It is the closure of the braid word b = b−1

1 b2 b−1
1 b3 b−1

2 b3 b2. An algebraic calculation of
VKS
(A) demands for a unitary representation of B4. Therefore, let s = 4 and r = 6. One

can easily write down the possible paths on G6, these are shown in Fig. 32 (from top to
bottom) and read

|1010〉 , |1100〉 , |1011〉 , |1101〉 , |1110〉 , |1111〉 .
Making use of Eq. (A.12), the generators of TL4 can be given explicitly, viz.

E1 =




d 0 0 0 0 0

0 0 0 0 0 0

0 0 d 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




, E2 =




d−1
p

d2−1
d 0 0 0 0p

d2−1
d

d2−1
d 0 0 0 0

0 0 d−1
p

d2−1
d 0 0

0 0
p

d2−1
d

d2−1
d 0 0

0 0 0 0 0 0

0 0 0 0 0 0




,

and

E3 =




d 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 d
d2−1

d
p

d2−2
d2−1 0

0 0 0 d
p

d2−2
d2−1

d(d2−2)
d2−1 0

0 0 0 0 0 0




,

where d = −A2 − A−2 as usual. With these generators at hand, one can compute the
matrix representation of the Stevedore knot. In contrast to the algorithm by Kauffman and
Lomanco [199] [where we had A= exp(iθ )], Eq. (A.13) gives a unitary representation for
A= ieiθ , with θ ∈ [0,π/r]. Evaluation of the Markov trace TrM{ρ(b)} for the Stevedore
knot leads to the Jones polynomial

VKS
(A) = A−16 − A−12 + A8 + A−8 − A4 − 2A−4 + 2.
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G6

Figure 32.: (Left) Diagrammatic representation of the Stevedore knot. The knot is
constructed on four strands as the (trace) closure of the braid word b−1

1 b2 b−1
1 b3 b−1

2 b3 b2.
(Right) Possible paths p on the graph G6.

Space this out!
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A.5 Details on the Holonomic Manipulation of Graph States

This part of the appendix contains supplementary material supporting the results of Chap-
ter V. First, I provide a circuit decomposition for arbitrary two-qubit controlled operations.
Secondly, the working mechanism of the measurement-based Hadamard test is verified.
Thirdly, the overall by-product operator for the (measurement-based) Hadamard test is
derived.

A.5.1 Circuit identity for controlled unitaries

Consider the controlled operation |0〉ℓ 〈0|ℓ⊗1+|1〉ℓ 〈1|ℓ⊗ρ(b), with an arbitrary single-qubit
gate

ρ(b) = eiϑ1Rz(ϑ2)R y(ϑ3)Rz(ϑ4).

Its quantum circuit reads

•
ρ(b)

Here, I show that the above circuit can be decomposed into

• •
�

1 0

0 eiϑ1

�

Rz

�
ϑ4−ϑ2

2

�
W • Rx

�− ϑ4+ϑ2
2

�
R y

�
ϑ3
2

� • R y

�− ϑ3
2

�
Rx(ϑ2) W

The proof goes as follows. If the control qubit is in the state |0〉ℓ the circuit transforms
the target qubit according to

WRx(ϑ2)R y

�
ϑ3

2
− ϑ3

2

�
Rx

�
−ϑ4 + ϑ2

2

�
WRz

�
ϑ4 − ϑ2

2

�

=WRx

�
ϑ2 − ϑ4

2

�
WRz

�
ϑ4 − ϑ2

2

�
= 1,

where I made use of Rk(ϑ+ϑ′) = Rk(ϑ)Rk(ϑ′) for k = x , y, z, as well as Rz(ϑ) =WRx(ϑ)W .
In contrast, if the control qubit is in the state |1〉ℓ the target qubit will experience two
additional Z gates throughout the circuit, viz.

WRx(ϑ2)R y

�
−ϑ3

2

�
ZR y

�
ϑ3

2

�
Rx

�
−ϑ4 + ϑ2

2

�
ZWRz

�
ϑ4 − ϑ2

2

�

= Rz(ϑ2)WR y(−ϑ3)Rx

�
ϑ4 + ϑ2

2

�
WRz

�
ϑ4 − ϑ2

2

�
= Rz(ϑ2)R y(ϑ3)Rz(ϑ4).
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In the above equation, the relations R y(ϑ) = WR y(−ϑ)W = ZR y(−ϑ)Z and ZRx(ϑ) =
Rx(−ϑ)Z were utilised. Summarising the calculation and recalling that the control qubit
experiences a phase gate shows that the circuit implements the controlled unitary

|0〉ℓ 〈0|ℓ ⊗ 1+ |1〉ℓ 〈1|ℓ ⊗ρ(b) =
�
ei
ϑ1
2 Rz(ϑ1)⊗WRx(ϑ2)R y

�
−ϑ3

2

��
CZ

×
�
1⊗ R y

�
ϑ3

2

�
Rx

�
−ϑ4 + ϑ2

2

��
CZ
�
1⊗WRz

�
ϑ4 − ϑ2

2

��

(A.14)

thus proving the assertion. The circuit decomposition was utilised in Sec. 5.3.1 to allow
for an efficient implementation of the Hadamard test. ■

A.5.2 Measurement pattern for the Hadamard test

Next, we show that the Hadamard test is equivalently realised by the measurement pattern
from Fig. 29. Attention is restricted to the estimation of Re 〈Φ j|ρ(b)|Φ j〉. The imaginary
part can be obtained similarly. The measurements are applied in accordance with the
simulated gate time, i.e. following Fig. 29 from the left to the right. In order to ensure
clarity, I proceed in steps each discussing the simulation of an elementary gate (dashed
lines in Fig. 29), while keeping track of the respective by-product operators. The unitary
sequence realised by the setup is (ignoring an overall phase eiϑ1/2)

UΣ8
(1⊗W )UΣ7

[1⊗WRz(ϑ2)]UΣ6

�
WRz(ϑ1)⊗WRz

�π
2

�
Rx

�
(−1)n10+1ϑ3

2

�
Rz

�
−π

2

��

× UΣ5
CZUΣ4

�
W ⊗WRx

�π
2

�
Rz

�
ϑ3

2

��
UΣ3

�
W ⊗WRz

�
−π

2

�
Rx

�
(−1)n3+1ϑ4 + ϑ2

2

��

× UΣ2
CZUΣ1

�
W ⊗WRz

�
ϑ4 − ϑ2

2

��
,

(A.15)

where computational segments are separated by the respective by-product operators

UΣ1
= X m1 ⊗ X n1 , UΣ3

= X m5 Zm4 X m3 ⊗ X n5 Y n4 X n3 ,

UΣ2
= Zm2 ⊗ Zn2 , UΣ4

= X m8 Zm7 X m6 ⊗ X n8 Zn7 Y n6 ,

UΣ5
= Zm9 ⊗ Zn9 , UΣ6

= X m10 ⊗ X n12 Zn11 X n10 ,

UΣ7
= 1⊗ X n13 , UΣ8

= 1⊗ X n14 .

In the above, Y gates emerged due to the commutation relations Rz(±π/2)X = ±Y Rz(±π/2)
and Rx(±π/2)Z = ∓Y Rx(±π/2). Let us assume for the moment that after a computation all
24 measurement outcomes were ideal, i.e. m j = 0 and nk = 0 for all j, k. The conditioning
of non-Clifford operations in Eq. (A.15) then becomes obsolete and the above by-product
operators reduce to the identity. What remains is a matter of straight-forward algebra to
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verify that Eq. (A.15) can be summarised to

(W ⊗ 1)� |0〉ℓ 〈0|ℓ ⊗ 1+ |1〉ℓ 〈1|ℓ ⊗ρ(b)
�
(W ⊗ 1). (A.16)

When provided with the input state |0〉ℓ⊗ |Φ j〉 and a subsequent (Pauli-Z) measurement of
the control qubit, the entire computation (A.16) coincides with the Hadamard test.

A.5.3 Post-processing for the Hadamard test

In this part of the appendix, I compute the overall by-product operator of the measurement-
based QC (A.15). The propagation relations

CZ(1⊗ X ) = (Z ⊗ X )CZ , CZ(X ⊗ 1) = (X ⊗ Z)CZ ,

CZ(1⊗ Z) = (1⊗ Z)CZ , CZ(Z ⊗ 1) = (Z ⊗ 1)CZ ,
(A.17)

are particularly useful to carry through with the calculation.
This is done segment by segment (according to the dashed lines in Fig. 29) to make

the calculation more traceable. Starting with the first by-product operator UΣ1
, we obtain

the forward propagated unitary ŨΣ1
= X m1 Zn1 ⊗ Zm1 X n1 from the relation CZUΣ1

= ŨΣ1
CZ .

Next, the new by-product UΣ2
ŨΣ1
= X m1 Zn1+m2 ⊗ X n1 Zm1+n2 (we neglect overall phases ±1,

±i) must be propagated through the second segment. This yields

W ⊗WRz

�
−π

2

�
Rx

�
(−1)n3+1ϑ4 + ϑ2

2

�
UΣ2

ŨΣ1

= ŨΣ2
W ⊗WRz

�
−π

2

�
Rx

�
(−1)n3+1+m1+n2

ϑ4 + ϑ2

2

�
,

where ŨΣ2
= X n1+m2 Zm1 ⊗ X m1+n2 Y n1 . Propagating the operator

UΣ3
ŨΣ2
= X n1+m2+m3+m5 Zm1+m4 ⊗ X m1+n2+n3+n5 Y n1+n4

through the third segment

W ⊗WRx

�π
2

�
Rz

�
ϑ3

2

�
UΣ3

ŨΣ2
= ŨΣ3

W ⊗WRx

�π
2

�
Rz

�
(−1)b2

ϑ

2

�

gives the intermediate result ŨΣ3
= X m1+m4 Z a2 ⊗ X n1+n4 Z b2+n1+n4 . Here, I introduced the

shorthand a2 = n1 + m2 + m3 + m5 and b2 = m1 + n1 + n2 + n3 + n4 + n5. In the above
calculation we made already use of the fact that Y ∝ X Z ∝ ZX when ignoring overall
phase factors of ±1, ±i. Furthermore, we notice that the occurrence of powers of 2n j or
2mk can always be set to zero, because the Pauli operators square to the identity. Next, one
propagates

UΣ4
ŨΣ3
= X c2 Z a3 ⊗ X d2 Z b3
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through the two-qubit operation, which results in

CZUΣ4
ŨΣ3
= X c2 Z d2+a3 ⊗ X d2 Z c2+b3CZ = ŨΣ4

CZ .

In the above, I defined

c2 = m1 +m4 +m6 +m8,

d2 = n1 + n4 + n6 + n8,

a3 = n1 +m2 +m3 +m5 +m7,

b3 = m1 + n2 + n3 +m5.

Together with the by-product from the fifth segment we find that

UΣ5
ŨΣ4
= X c2 Z f1 ⊗ X d2 Z f2

has to be commuted past

WRz(ϑ1)⊗WRz

�π
2

�
Rx

�
(−1)n10+1ϑ3

2

�
Rz

�
−π

2

�
UΣ5

ŨΣ4

= ŨΣ5
WRz

�
(−1)c2ϑ1

�⊗WRz

�π
2

�
Rx

�
(−1)n10+d2+ f2+1ϑ3

2

�
Rz

�
−π

2

�
,

with the forward-propagated operator

ŨΣ5
= X f1 Z c2 ⊗ X d2+ f2 Y d2 ∼ X f1 Z c2 ⊗ X f2 Z d2 .

Commuting UΣ6
ŨΣ5
= X f1+m10 Z c2 ⊗ X f2+n10+n12 Z d2+n11 through the sixth segment leads to

1⊗WRz(ϑ2)UΣ6
ŨΣ5
= X f1+m10 Z c2 ⊗ Z f2+n10+n12 X d2+n11WRz

�
(−1) f2+n10+n12ϑ2

�
,

= ŨΣ6
1⊗WRz

�
(−1) f2+n10+n12ϑ2

�
.

Finally, propagating the by-product operator

UΣ7
ŨΣ6
= X g1 Z c2 ⊗ X g2 Z g3

with

g1 = f1 +m10 = m2 +m3 +m5 +m7 +m9 +m10 + n4 + n6 + n8,

g2 = d2 + n11 + n13 = n1 + n4 + n6 + n8 + n11 + n13,

g3 = f2 + n10 + n12 = n2 + n3 + n9 + n10 + n12 +m4 +m5 +m6 +m8,

past the last segment yields

UΣ = UΣ8
X g1 Z c2 ⊗ X g3 Z g2 = X g1 Z c2 ⊗ X g3+n14 Z g2

which is total by-product operator of the Hadamard test. The measurement angles in
Eq. (A.15) have to be conditioned on previous measurements according to the following
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replacements

ϑ1→ (−1)c2ϑ1,

ϑ2→ (−1) f2+n10+n12ϑ2,

ϑ3→ (−1)b2ϑ3,

(−1)n10+1ϑ3→ (−1)n10+d2+ f2+1ϑ3,

(−1)n3+1(ϑ2 + ϑ4)→ (−1)n3+1+b1(ϑ2 + ϑ4).
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We combine measurement-based quantum computation (MBQC) with nonadiabatic holonomic
quantum computation (HQC). The key idea is to perform the adaptive measurements in a rotated
basis that is obtained by means of a non-Abelian geometric phase. Due to the entanglement of the
underlying graph state, gate operations in HQC can be carried out in parallel. One therefore does
not need to design holonomic gates sequentially which would introduce longer evolution times as
well as transition errors. We benchmark the superiority and robustness of this hybrid approach by
comparing it with the sequential implementation of holonomic gates within an integrated quantum
optical setting. Finally, our �ndings are utilised for a quantum calculation of the Jones polynomial.
Our results indicate that MBQC and HQC can pro�t from one another in terms of their error
resilience, thus improving scalability of the underlying architecture.

I. INTRODUCTION

Quantum information processing relies on devices that
can exploit the laws of quantum theory to a high degree
of accuracy. Computers that utilise these principles are
generally believed to outperform classical computers [1�
3]. There are several di�erent models on which quantum
computation (QC) can be based. The most common of
these is the circuit model [4]. Analogously to the circuit
model of classical information processing, here the ma-
nipulation of an initial input state is done in terms of
a sequence of (unitary) gates. An alternative model is
measurement-based QC (MBQC) [5�7] in which a highly
entangled quantum state (a graph state) has to be pre-
pared as an initial resource. Then the computation is
carried out by projective measurements that remove part
of the graph. The remainder of the graph state is the an-
swer to the computational problem. Physical implemen-
tations of MBQC are already possible using supercon-
ducting qubits [8], and might soon be realised in optical
lattices as well [9, 10]. However, the primary contestant
for MBQC is linear optics supported by nondeterministic
gates [11�13] or nonlinearities [14, 15]. A third model on
which QC can be implemented is holonomic QC (HQC9,
both adiabatic [16] and nonadiabatic [17]. In this model,
the computation is carried out through the cyclic [18�
20], or noncyclic [21], evolution of a subspace in which
the encoded information resides. Currently, platforms for
the experimental realisation of nonadiabatic HQC range
from superconducting qubits [22, 23], liquid NMR [24],
and trapped ions [25].
Even though the listed models are all computationally

equivalent, i.e. they all allow for universal QC and can
be translated into one another, they generally each come
with di�erent technological demands for implementation
and have distinct fault-tolerance features. For example,
MBQC can be topologically protected by designing a

∗ stefan.scheel@uni-rostock.de

three-dimensional cluster state [26, 27] (i.e. a graph state
that corresponds to a lattice of qubits). Removing some
regions of the cluster by Pauli-Z measurements gives the
remaining cluster a nontrivial topology that can deal with
probabilistic gate errors and imperfect preparation of the
cluster state [28]. Moreover, in such measurement-based
schemes, classical registers, necessary for read-out, can
also be assumed to be completely noiseless [29]. In con-
trast, HQC only depends on the geometry of the path
the encoded subspace takes through Hilbert space giv-
ing HQC paradigms an inherent robustness towards local
perturbations as well as being agnostic towards dynam-
ical contributions from the underlying physical architec-
ture, e.g. eigenenergies or runtime [30, 31]. Computa-
tional models might even be compatible. For instance, in
Refs. [32, 33] cluster state computations were considered
where the adaptive measurement pattern was replaced
by adiabatic deformations of a Hamiltonian who has the
cluster state as its ground state. This combination of
MBQC and adiabatic HQC can be helpful in increasing
the feasibility of adiabatic schemes and can even be made
fully topological [34]. More generally, combining com-
putational paradigms with the goal of harvesting their
error-resilience properties is a promising, and maybe even
necessary, endeavour as the current limitations on QC
are set by the threshold theorem [35, 36]. Even with
quantum error-correcting codes, it is still necessary to
boost gate �delities by a substantial margin. Hence, pas-
sive error correction schemes of combined computational
models might be the �rm footing on which a large-scale
quantum computer can be build.

In the present work, we show how MBQC can be com-
bined with nonadiabatic HQC. We do so by performing
the adaptive measurements in a rotated basis which is ob-
tained by means of a non-Abelian geometric phase (quan-
tum holonomies). It turns out that due to the entangle-
ment of the graph state, the gate operations in HQC can
be parallelised so that the necessary resources di�er no-
tably from a standard HQC proposal. Moreover, due to
this parallelisation, paths in Hilbert space do not need
to be traversed sequentially, thus improving scalability
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of HQC as well as avoiding transition errors that stem
from connection segments between subsequent gates. Af-
ter showing universality of the combined approach, we
study these bene�cial e�ects on the example of a three-
level Hamiltonian.

We illustrate our �ndings on the example of integrated
photonic waveguides [37, 38]. A substantial boost in gate
�delity, due to the combination of MBQC and nonadia-
batic HQC, is reported. More precisely, the linear optical
structures under investigation avoid bending of waveg-
uides which would lead to photon scattering into the en-
vironment. Recently, Refs. [39�41] reported on the ex-
perimental realisations of similar architectures in terms
of fused-silica laser-written waveguides from which (adi-
abatic) holonomic gates were constructed.

In order to illustrate that this joint approach is prac-
tical for the implementation of quantum algorithms, we
present an explicit construction for the quantum calcula-
tion of the Jones polynomial [42] which is an important
quantity in topology characterising a knot up to smooth
deformations, e.g. bending, twisting, and shifting. It
plays an important role in anyonic quantum information
[43] and topological quantum �eld theories [44]. Knowing
the Jones polynomial can be useful in various areas of sta-
tistical physics, applied technologies and medicine, where
complex strand-like structures emerge [45, 46]. From the
point of view of classical computation, the Jones poly-
nomial, as well as most knot invariants, have an expo-
nential rise in computational expense when the number
of crossings in a knot increases [47, 48]. However, the
quantum algorithm presented in Ref. [49] estimates the
Jones polynomial with polynomial expense. In Ref. [50]
experimental NMR quantum calculations of the Jones
polynomial were presented. In contrast, this article con-
tains the �rst quantum optical setup that allows for an
equivalent quantum simulation in terms of currently ex-
isting technologies.

The structure of the article is as follows. Section II
is dedicated to a review of models of QC. In particular,
we present the fundamentals of MBQC and nonadiabatic
HQC to the extent as it is relevant to this work. In
Sec. III we combine these models and construct a univer-
sal gate set that only depends on the geometry of loops
associated with any HQC proposal. We also use this sec-
tion to investigate its error-resilience properties in terms
of a benchmark Hamiltonian relevant to integrated quan-
tum optics. The combined model is then put to test in
Sec. IV on the example of a quantum algorithm that es-
timates the Jones polynomial. Finally, Sec. V contains
a summary of our results as well as some concluding re-
marks. In Appendix A we provide additional details on
the open-system dynamics of integrated photonic waveg-
uides, in particular with regards to bending losses. Ap-
pendix B derives the measurement-based realisation of
the Hadamard test as well as the explicit form of the
relevant by-product operators.

II. MODELS OF QUANTUM COMPUTATION

In the standard picture of quantum information pro-
cessing, an initially prepared quantum state consist-
ing of multiple qubits, is transformed by a cascade of
fast switching on-and-o� interactions or driving exter-
nal �elds. The set of unitary operators {Uk}k induced
by such manipulations acts on the input state |ψ〉 in se-
quential order realising the quantum algorithm. There-
fore, each Uk can be viewed as a gate acting on a few
or many qubits of the entire system. Prominent exam-
ples for these basic building blocks are the Pauli gates
X = σx, Y = σy, and Z = σz acting on a single qubit.
Universal quantum computation can be achieved by sup-
porting arbitrary single-qubit operations with a nontriv-
ial two-qubit operation, e.g. a controlled-Z gate CZ. In
general, the �nal output state

∏
k Uk |ψ〉 is then subject

to a quantum mechanical measurement performing the
read-out. Throughout the article, we shall only be con-
cerned with projective measurements.

In the following we will investigate two alternative
models of QC, namely MBQC [6, 7] and nonadiabatic
HQC [17]. Both of these models, in principle, allow for
universal quantum computation and are therefore com-
putationally equivalent to the circuit model.

A. Measurement-based quantum computation

MBQC [5, 28] is a model for quantum information pro-
cessing in which a highly entangled graph state |ΨG〉 is
prepared as an initial resource for the algorithm. To
be more precise, consider a graph G with qubits at its
vertices that are prepared either as encoded informa-
tion |ψ〉 = α0 |0〉 + α1 |1〉 (αj ∈ C) or in the state

|+〉 = (|0〉+ |1〉)/
√
2. The edges of the graph correspond

to connecting the two qubits via a controlled-Z opera-
tion, |ΨG〉 =

∏
(i,j) CZij(

⊗
k |ψ〉k

⊗
k |+〉k), with indices

(i, j) running over the set of edges of the graph G. After
performing a sequence of single-qubit measurements on
|ΨG〉, the remainder |ψout〉 =

∏
k UΣkUk |ψ〉 of the graph

state can be viewed as the �nal output of the quantum
computation. Commuting the by-product operators so
that they can be dealt with at the end of the computation
results in |ψout〉 = UΣ

∏
k U
′
k |ψ〉. Here, we introduced

modi�ed unitaries U ′k that depend on the measurement
results of previously implemented operations, and UΣ is
the total by-product operator lying in the Pauli group,
and thus can be dealt with by means of classical post-
processing. Note that, if Uk lies in the Cli�ord group,
then we have U ′k = Uk. In order to deterministically use
non-Cli�ord operations, we have to condition the adap-
tive measurement on previous outcomes, within runtime
of the algorithm, thus introducing a notion of temporal
complexity into MBQC [7].



3

B. Nonadiabatic holonomic quantum computation

We now turn to another approach to QC. This time the
computation will neither be implemented by measure-
ment (as in the cluster state model) nor by any dynamical
interaction (as in the circuit model). HQC is an all-out
geometric approach to QC in which a geometric quantity,
the holonomy, plays the role of the unitary gate [16, 17].
It is computationally equivalent to the circuit model, but
comes along with some desirable fault-tolerance features.
The starting point of this computational paradigm is a

time-dependent Hamiltonian H(t). Consider a collection
of states {|ζk(t)〉}k that span an N -dimensional subspace
C (t) of the Hilbert space H (t) of the entire system. The
evolution of these states shall be of purely geometric na-
ture in the sense that, at every instance in time,

〈ζj(t)|H(t)|ζk(t)〉 = 0 (1)

holds for all j, k = 1, . . . , N . Under this constraint, the
time-evolution operator becomes (we set ~ = 1) [17, 20]

U(T ) = T e
∫ T
0

Atdt, (2)

where
(
At

)
kj

= 〈ζj |∂t|ζk〉 is known as the nonadiabatic

connection [20] and T denotes time ordering. The con-
nection At mediates parallel transport of an initial state
|ψ(0)〉 ∈ C (0) along a path C through the Hilbert space
H taken by the states {|ζk(t)〉}k. If we further assume C
to be a loop, i.e. each state |ζk(t)〉 evolves cyclically, then
C (0) = C (T ) de�nes a computational subspace on which
the unitary (2) acts as a gate. In particular, if there
is an underlying multi-partite structure with N = 2n,
then C (0) might be viewed as an n-qubit quantum code
to which we return at the end of the loop C(t). After
traversing the loop, the �nal state |ψ(T )〉 = U(T ) |ψ(0)〉
di�ers from the input by the unitary (2) known as a quan-
tum holonomy. Indeed, U is a quantity of the given loop,
agnostic towards parametric and timing errors [30], and
we may as well write U = U(C). It was shown in Ref. [17]
that, in general, two noncommuting loops are necessary
to perform universal quantum computation on the rele-
vant subspace.
For the purpose of illustration, consider the following

benchmark Hamiltonian of a three-level system

H(t) =
∑

i=0,1

κi(t) |a〉 〈i|+ κ∗i (t) |i〉 〈a| , (3)

where κi (for i = 0, 1) denotes the time-varying cou-
pling strength between the logical state |i〉 and an aux-
iliary state |a〉. We consider a scenario in which both
couplings change with the same envelope, here κ0(t) =
Ω(t) sin(θ/2)e−iϕ and κ1(t) = −Ω(t) cos(θ/2). The time
evolution of the states |d〉 = κ0 |1〉 − κ1 |0〉 and |b〉 =
κ∗0 |0〉+ κ∗1 |1〉 reads
|ζ1(t)〉 = U(t) |d〉 = |d〉 ,
|ζ2(t)〉 = eiδ(t)U(t) |b〉 = eiδ(t)

(
cos δ(t) |b〉 − i sin δ(t) |a〉

)
,

(4)

where U(t) = e−i
∫ t
0
H(τ)dτ is the time-evolution operator

and δ(t) =
∫ t

0
Ω(τ)dτ . The states (4) span a subspace C

on which dynamical e�ects do not contribute, i.e. condi-
tion (1) is satis�ed at every instance in time. Hence, the
overall evolution on this subspace does not depend on any
dynamical properties of H such as eigenenergies or run-
time. If we choose a pulse Ω(t) such that δ(T ) = π, the
states (4) evolve cyclically. Then C (0) = C (T ) forms
a single-qubit space spanned by the logical states |0〉
and |1〉. The purely geometric gates that can be de-
signed in this way, are determined from the nonadia-
batic connection, with the single nonvanishing compo-
nent (At)22 = iΩ(t). The cyclic evolution of the system
implements the time-ordered unitary U(C) = diag(1,−1)
according to Eq. (2). When transforming into the com-
putational basis, we obtain

U(C) =

[
cos θ eiϕ sin θ

e−iϕ sin θ − cos θ

]
, (5)

which is a universal single-qubit gate, i.e. any element in
the unitary group U(2) can be written as U(C2)U(C1),
where a sequence of two loops C1 and C2 has to be engi-
neered [17].

1. Transition errors

A loop C in Hilbert space has to be designed by cor-
responding coupling pulses κ0(t) and κ1(t). The choice
of (parameter) angles θ and ϕ in Eq. (5) �xes the gate,
while any envelope Ω(t) with δ(T ) = π will ensure cyclic-
ity. The geometric robustness of such a gate towards
di�erent sources of errors was studied in Ref. [30], while
an improved super-robust version was proposed and anal-
ysed in Ref. [31]. However, even though these investiga-
tions show that the gate (5) is geometrically protected,
a sequence of those need not to be. This has its origin in
the transition error between two subsequent gates U(C1)
and U(C2). In order to illustrate this point, suppose C1 is
a loop with (θ1, ϕ1) = (5π/2, π) so that U(C1) = −X re-
alises a bit �ip and a second noncommuting loop C2 has
(θ2, ϕ2) = (π, 0) yielding the phase shift U(C2) = −Z.
There is still a freedom of choice in the coupling con�g-
uration, namely the envelope Ω(t). Figure 1 shows two
di�erent types of coupling that would ideally realise a bit
�ip X followed by a Z gate. However, in Fig. 1. (a) the
constant coupling con�guration demands for a smooth
(e.g. sine-like) transition between the two gates. This
transition is not geometrically robust and distorts cyclic-
ity of the overall evolution, i.e. the evolution leaves the
computational subspace C (T ). In contrast, Fig. 1. (b)
overcomes this issue using Gaussian pulses for each seg-
ment. Hence, the transition error can be avoided nearly
perfectly, while also ensuring a smooth transition. A sim-
ilar con�guration was used, for instance, in Ref. [22]
for the experimental realisation of two subsequent nona-
diabatic gates for the manipulation of superconducting
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qubits. On the other hand, we observe that the mitiga-
tion of transition and parameter errors between the gates
came at a cost. Due to the Gaussian transition between
the loops C1 and C2, one is forced to increase the cou-
pling strengths as well as to extend the evolution time for
each gate substantially, because we still need to pick up
δ(Tg) = π as the area under the integral. In some physi-
cal setups, this might lead into a strong coupling regime
or demand for a magni�cation of the experimental setups.
This might in turn limit miniaturisation or increase the
time the system will be subjected to the environment,
thus introducing new errors. Ideally, one would like to
have the best of both worlds, i.e. using particularly sim-
ple and resource-saving coupling schemes while avoiding
transition errors as well.
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FIG. 1. Coupling parameters κ0 (black, solid plot) and κ1

(gray, dashed plot) for the sequential implementation of the
gate ZX as a function of dimensionless time t. Each en-
velope function is designed to satisfy

∫ Tg

0
Ω(t)dt ≈ π per

gate, thus corresponding to a cyclic evolution of C (t). (a)
Constant coupling segments for the implementation of each
gate with Ω = π/Tg and Tg = 4.95. There is a tran-
sition time of ∆t = 0.1 after the �rst gate has been ap-
plied, leading to a mismatch with the computational sub-
space C (Tg). The transition is designed smoothly in terms
of a sine-like function. (b) Gaussian-shaped coupling pulses
ΩX(t) =

√
π/2 exp[−(t − Tg/2)2/2], with Tg = 7.5, and

ΩZ = ΩX(t − Tg), ensuring a smooth transition (without an
additional segment) between the two parameter variations.

III. COMBINING MBQC AND

NONADIABATIC HQC

In this section, we present a combined approach to QC
utilising ingredients of MBQC and HQC paradigms, as
well as analysing its advantages over existing schemes.
In our combined model, parts of an initially prepared
(n + M)-qubit graph state |ΨG〉 undergo simultaneous
loops Ck, for k = 1, . . . ,M in the Hilbert space H of the
entire system. After traversing these loops, the graph
state is manipulated by a sequence of local (single-qubit)
unitaries resulting in the state

∏
k Uσ(k)(Ck) |ΨG〉, where

σ(k) picks out the qubit on which the corresponding op-
eration Uσ(k) acts. Because of the composability of loops,
C = C1 ◦ · · · ◦ CM is associated with a single loop real-
ising the entire transformation. In the �nal step of the
model, single-qubit measurements in the computational
(Pauli-Z) basis are performed on the qubits σ(k), for
k = 1, . . . ,M , leading to some overall by-product opera-
tor UΣ. The remaining n-qubit state is associated with
the output of the computational paradigm. The corre-
sponding circuit reads

U(C1) m1

.̇..
U(CM ) mM

/ UΣ |ψout〉

|ΨG〉

One can clearly observe that this is a form of MBQC, in
which the projective measurements

{U(Ck) |i〉σ(k) 〈i|σ(k) U(Ck)
†}i=0,1

were obtained from local holonomies U(Ck). Under the
assumption of noiseless Pauli-Z measurements and an ac-
curately prepared graph state |ΨG〉, the �nal output is
completely determined by the composite loop C. There-
fore, this speci�c graph state computation inherits the
fault-tolerance features and intrinsic robustness of HQC.
So far, we discussed the situation in which all operations
are applied simultaneously. Similar to the standard for-
malism on MBQC, non-Cli�ord operations demand for
a conditioning of holonomic operations in order to make
the entire paradigm deterministic. In this picture, the
temporal complexity, i.e. the number of non-Cli�ord op-
erations to be utilised in a computation, might be inter-
preted as a minimal path length of the composite loop
C = C1 ◦ · · · ◦CM in order to allow conditioning on pre-
vious measurements.
In order to prove that this combined model is still uni-

versal, we make use of the benchmark system (3) studied
in the previous section. The system Hamiltonian pro-
vides us with a universal set of holonomic single-qubit
gates obtained from (5) and can therefore be used to
perform local rotations on qubits that allow for the mea-
surement in an arbitrary basis. This su�ces to enable
universal quantum computation on any number of qubits
when provided with a graph state. In this way, MBQC
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can pro�t from a holonomic implementation leading to
increased �delity of local unitaries due to parametric ro-
bustness. Interestingly, also the converse is true. HQC
can bene�t from a measurement-based implementation of
a quantum algorithm as well. This is due to the fact, that
in the measurement-based model the computation can be
parallelised by performing measurements on a collection
of qubits of the graph state.
Let us clarify the issue for the case of single-qubit gates.

First of all, it is possible to transform from the compu-
tational basis |0〉 and |1〉 into the states

1√
2

(
|0〉+ eiϕ |1〉

)
,

1√
2

(
|0〉 − eiϕ |1〉

)
,

respectively, by means of the holonomy (5). This is
achieved by traversing a loop Cπ

2
with θ = π/2, so that

the gate U(Cπ
2
) is applied before the qubit reaches the

measurement in the computational basis. It is then pos-
sible to construct any single qubit gate on a chain of four
qubits

|ΨG〉 = CZ12CZ23CZ34

(
|ψ〉 ⊗ |+〉⊗3

)
,

by performing three such measurements on the �rst three
qubits. The input state |ψ〉 is then teleported to the
fourth one being accompanied by the unitary

Xm3WRz(ϕ3)X
m2WRz(ϕ2)X

m1WRz(ϕ1)

= UΣWRz((−1)m2ϕ3)Rx((−1)m1ϕ2)Rz(ϕ1),
(6)

where UΣ = Xm3Zm2Xm1 is the total by-product op-

erator and Rk(ϕ) = e−iϕ/2σk denotes rotation around
the kth axis of the Bloch sphere with k ∈ {x, y, z}.
The computation can be made completely determinis-
tic by performing the measurements conditionally, i.e.
ϕ2 → (−1)m1ϕ2, and ϕ3 → (−1)m2ϕ3. In any practical
situation the conditioning can be achieved by choosing
the function Ω(t) for each holonomy in an appropriate
manner. Remarkably, it is not necessary to implement
gates sequentially, but rather in parallel, due to the en-
tanglement which was provided as a resource for the com-
putation by the graph state. It follows that transition
errors between subsequent loops do not enter the quan-
tum computation in this combined approach. Notably, in
the combined approach, we do need to design the three
noncommuting loops {Ck}k to construct arbitrary single-
qubit rotations, instead of the usual two noncommuting
loops demanded in a standard HQC proposal [16, 17].
For completeness, note that, the holonomy (5) allows

to design nontrivial two-qubit operations as well, when
provided with the graph state

|ΨG〉 = CZ12CZ23CZ34

(
|ψ〉 ⊗ |+〉⊗2 ⊗ |ψ〉

)
.

For instance, if the second and third qubit prepared in
the state |+〉 both undergo the loop Cπ

4
restricted to

(θ, ϕ) = (π/4, 0), resulting in the holonomic rotation
U(Cπ

4
) =W , and followed by a subsequent measurement

in the computational basis, this will perform a CZ opera-
tion (up to by-product operators) leaving us with the out-
put state Zm2 ⊗Zm1CZ |ψ〉 ⊗ |ψ〉. In summary, we have
shown that universal holonomic quantum computation
can be performed by exclusively referring to single-qubit
measurements when provided with a highly entangled re-
source state. The problem of transition errors between
sequentially occurring gates is removed due to the paral-
lelisation of the computation by means of entanglement.

A. Integrated quantum optics

In order to quantify the advantages of our combined
approach over standard implementations of MBQC, we
will compare the single-loop realisation utilising the
graph state, with a standard two-loop scheme found in
the circuit model. For concreteness, we will study the
realisation within a linear optical setting. The elemen-
tary architecture consists of two spatial modes, which
couple solely via a third central mode. The tight-binding
Hamiltonian of the system reads

H =
∑

i=0,1

κiaia
†
aux

+ κ∗i a
†
iaaux, (7)

where a†k and ak are the bosonic creation and annihilation
operators for the kth mode, respectively (k = 0, 1, aux).
There are many optical devices that might allow for the
implementation of such a system, e.g. beam splitters
and phase shifters [51, 52] or integrated photonic waveg-
uides [53, 54]. In this work, interest lies on the latter
implementation. Figure 2 shows the particular example
of fused-silica laser-written waveguides that resemble the
spatial modes. In such a setting, the propagation length
z = ct (c being the vacuum speed of light) plays a similar
role as the time parameter, due to the paraxial nature of
the problem. When a single photon is injected into one
of the outer modes one can label a computational ba-
sis in a dual-rail encoding that is, a photon in mode 0

corresponds to the logical state |0〉 = a†0 |0〉 while a pho-
ton in mode 1 is interpreted as |1〉 = a†1 |0〉, with |0〉
denoting the three-mode vacuum. This labelling of log-
ical states is nothing other than the dual-rail encoding.
De�ning |a〉 = a†aux |0〉, the quantum optical Hamilto-
nian (7) coincides with the three-level system (3). Note
that the ancilla mode aaux is only excited while traversing
the loop in Hilbert space that gives the �nal holonomy.
Due to cyclicity, the code is mapped onto itself, and a
proper read-out of logical states is possible in terms of
single-photon detectors.
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0
aux
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FIG. 2. Elementary architecture for the generation of nona-
diabatic holonomic single-qubit gates. The varying distances
between the outer modes a0 and a1 to the central one aaux
depend on the coupling con�guration κ0(z) and κ1(z) that
implement the desired gate.

In order to illustrate the realisation of holonomic gates,
we consider the bit-�ip operation −X followed by a phase
�ip −Z. In the setting under investigation, gate errors
manifesting in the propagated output state Λ (density op-
erator) may originate from deviations in cyclicity as well
as photon loss into the environment due to the bending
of waveguides [55, 56]. Our measure of quality will be
the (expected) �delity F (U |ψ〉 ,Λ) = 〈ψ|U†ΛU |ψ〉 be-
tween the ideal output state U |ψ〉 = ZX |ψ〉 and the
propagated state Λ = N (|ψ〉 〈ψ|) obtained from a noisy
evolutionN of the input state |ψ〉. The photon loss in the
kth waveguide will be modelled in terms of a Markovian
dissipator γk(z) [57]. Details on the validity of this ap-
proach and the evaluation of bending losses can be found
in Appendix. A.

Figure 3 shows the probability distribution obtained
from a noisy propagation of the input state |0〉, where
we utilised the sequential coupling con�gurations from
Fig. 1 (a) and (b). Ideally, the input |0〉 would evolve
into − |1〉 after traversing one of the optical networks
(a) or (b). Figure 3 (a) shows the two-loop implementa-
tion of the holonomic gate U using straight waveguides
for each gate that are connected via a sine-like transi-
tion segment leading to a mismatch with the computa-
tional subspace as well as introducing strong scattering
into the surrounding medium. The average gate �delity
F (U,N ) =

∑
k wkF (U |ψk〉 ,Λk) for an equal distribu-

tion (wk = 1/3) of the states |0〉, |1〉 and |a〉 is found to
be F (a) = 93.11%. Next, Fig. 3. (b) shows the propaga-
tion with Gaussian-shaped coupling pulses. Due to the
increased propagation length, the transition between the
two gates is smooth and does not require an additional
transition segment. Hence, scattering is only due to the
bending of waveguides. This amounts to a gate �delity
of F (b) = 99.69%. In contrast, if one follows the com-
bined approach put forward in Sec. III, the two holonomic
gates can be parallelised using a chain of three qubits as
an initial graph state, i.e. |ΨG〉 = CZ12CZ23 |ψ〉 |+〉 |+〉.
Performing simultaneous measurements on the �rst two
qubits with angles ϕ1 = ϕ2 = π, the third qubit trans-
forms to UΣZX |ψ〉 with UΣ = (−1)m1Xm2Zm1 being
the associated by-product operator. The circuit diagram

associated with this measurement scheme reads

U(Cπ
2 ,π) m1

U(Cπ
2 ,π) m2

UΣZX |ψ〉
|ΨG〉

This corresponds to a total of 9 waveguides as for ev-
ery qubit there is a central ancilla mode mediating the
coupling. The fact that no conditioning of the computa-
tion is needed stems from the fact that the benchmark
example U = ZX lies in the Cli�ord group.
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FIG. 3. Propagation of the state |ψ(0)〉 = |0〉 through the
lossy architecture given in terms of the probability distribu-
tion pk(z) for the photon being in the kth site (k = 0, 1, aux)
or being lossed pvac as a function of the propagation length z.
(a) Probability distribution for constant coupling segments,
connected by a sine-like step [Fig. 1. (a)]. (b) Probability
distribution for Gaussian coupling pulses [Fig. 1. (b)].

The local unitaries that manipulate the qubits to be
measured are designed again by nonadiabatic holonomies
with constant Ω = π/Tg. Due to the straight waveguide
design, no scattering losses occur in contrast to the two-
loop scenario in Fig. 3 (b). Furthermore, because gate
operations are parallelised, there are no transition seg-
ments needed that would distort cyclicity as in Fig. 3 (a).
Hence, the expected gate �delity in this case amounts to
F = 100%. This shows clearly that nonadiabatic HQC
can pro�t from the parallelisation of gate operations,
making it robust towards transition errors and bending
losses, while keeping the optical network scalable. Con-
versely, nonadiabatic HQC is known to be robust towards
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parametric and timing errors, see e.g. [30]. We therefore
propose a fruitful symbiosis between MBQC and HQC
that could potentially lead to more reliable quantum in-
formation processors due to improved gate �delities.

IV. QUANTUM COMPUTATION OF THE

JONES POLYNOMIAL

Knot theory, a subarea of topology, is a subject con-
cerned with the equivalence of knots up to smooth de-
formations, such as shifting, bending, or twisting of their
strands, also known as the Reidemeister moves [58]. A
quantity that distinguishes knots that di�er beyond these
ambient isotopies is known as a knot invariant.

The �rst step towards a knot invariant is the Kau�man
bracket 〈K〉 of a knot K. Under the Kau�man bracket,
crossings in the knot are evaluated according to the Skein
relations shown in Fig. 4. Moreover, we set 〈©〉 = 1
with © being the unknot and 〈© tK〉 = d 〈K〉, where
d = −A2−A−2. With these set of rules at hand any knot
can be unravelled into a series of unknots with di�erent
coe�cients, thus resulting in a polynomial in A ∈ C.

FIG. 4. Skein relations to resolve crossings in a knot. The
knots build from the avoided crossings are weighted with com-
plex numbers A and A−1, respectively.

In order to construct a polynomial that is invariant
under smooth deformations, a correction to the Kau�-
man bracket in terms of the writhe w(K) is necessary
[58], which gives an orientation to the strands of a knot,
and accordingly every crossing contributes with positive
or negative sign. Finally, one can introduce the Jones
polynomial [42] of a knot K as

VK(A) = (−A3)−w(K) 〈K〉 . (8)

If two knotsK andK ′ are equal, then their corresponding
Jones polynomials are equivalent, i.e. VK(A) = VK′(A).
In contrast, if VK(A) 6= VK′(A), then the two knots dif-
fer beyond ambient isotopies, i.e. it follows K 6= K ′.
Finally, note that the Jones polynomial does not consti-
tute a bijection, as two nonequivalent knots can have the
same Jones polynomial. The writhe is simple to calcu-
late, scaling only linear with the number of crossings N .
As such, the complexity of computing the Jones polyno-
mial is mainly due to the Kau�man bracket polynomial.
The recursive relationship dictated by the Skein relations
(Fig. 4) demands for the evaluation of 2N diagrams giving
rise to an exponential increase in computational e�ort.

A. Knots from braids

In order to structure the set of all knots, it is natural
to view the latter as being generated from a sequence of
elementary braids bi, for i = 1, . . . , s − 1, that are glued
together. Here, s is the number of strands from which
the knot is constructed. These braids, together with their
inverses, form the s-strand braid group Bs [59]. The ac-
tion of bi onto the strands is illustrated in Fig. 5. If the
braided strands are closed, the result is a knot. Indeed,
any knot can be constructed (in multiple ways) from a
sequence of elementary braids [60]. Moreover, these ele-
mentary braids satisfy the Yang-Baxter equations [61, 62]

bibj = bjbi, for i 6= j ± 1,

bibi+1bi = bi+1bibi+1,

bib
−1
i = b−1i bi = e,

(9)

with e being the identity element in Bs that is associated
with not braiding the strands at all. Any knot K can be
constructed from a general braid word b =

∏
l b

kl
il

with
il ∈ {1, . . . , s − 1} and kl ∈ {−1, 1}. By that we mean
that under a closure b of the braid b we obtain the desired
knot up to ambient isotopies. From this point of view,
the writhe of the knot is just w(b) =

∑
l kl.

(a) (b)

FIG. 5. Diagrammatic representation of elementary braiding.
The braid bi introduces a crossing between strands i and i+1.
(a) Trace closure of the braid word b1b2b1. (b) Plat closure of
the braid word b2b−1

1 b−1
3 b2.

B. Unitary representation of the braid group

A particularly useful representation ρ maps elements
in Bs onto complex D ×D-matrices with the help of the
Temperley-Lieb algebra TLs [63]. The latter is generated
from elements Ei with i = 1, . . . , s− 1 that satisfy

EiEj = EjEi, for i 6= j ± 1,

EiEi±1Ei = Ei,

E2
i = dEi.



8

With these generators, the matrix representation of an
elementary braid bi is given as

ρ(bi) = AI +A−1Ei,

ρ(b−1i ) = A−1I +AEi.
(10)

The representation of a more general braid word b =∏
l b

kl
il
is then the product ρ(b) =

∏
l ρ(b

kl
il
). Once such a

representation is known, the Jones polynomial VK(A) of
a knot K = b can be obtained from an evaluation of the
matrix trace Tr{ρ(b)} [43, 63]. The explicit connection
between these two quantities depends on the chosen ρ.
While there are, in principle, many such representations,
in this work we are only concerned with those that are
unitary, i.e. ρ†(bi)ρ(bi) = I for all i = 1, . . . , s−1. In this
case, we have |A| = 1 and Ei being Hermitian, as can be
seen from Eqs. (10). For example, a unitary representa-
tion for the three-strand braid group (s = 3), that was
derived in Ref. [65], is

E1 =

[
d 0
0 0

]
, E2 =

[
d−1

√
1− d−2√

1− d−2 d− d−1

]
. (11)

Indeed, for A = eiθ with

θ ∈[0, π/6] t [π/3, 2π/3] t [5π/6, 7π/6]

t [4π/3, 5π/3] t [11π/6, 2π]

the matrices (10) form a unitary representation of B3.
For the given representation the Kau�man bracket can
then be calculated in terms of a matrix trace [65]

〈b〉 = Tr{ρ(b)}+Aw(b)(d2 − 2). (12)

Unitary representations of the general s-strand braid
group Bs can be obtained explicitly by means of the AJL
(Aharonov-Jones-Landau) algorithm [49, 64] but which
(in its original formulation) only allows for an evaluation
of the Jones polynomial for isolated values of A. An ex-
tension of this algorithm to continuous values of A was
presented by Kau�man and Lomonaco in Ref. [66].

C. A Quantum algorithm for the Jones polynomial

on three-strand braids

The computational e�ort of determining the Jones
polynomial (8) rises exponentially with the number of
crossings when evaluating diagrams in the Kau�man
bracket of a knot. This makes it unfeasible to unravel
large knots on a classical computer. On the other hand,
we already noted that a computation of the Jones polyno-
mial is equivalent (up to linear expense) to the evaluation

of the matrix trace with respect to some representation
ρ. A quantum algorithm that estimates the trace of a
(unitary) D × D-matrix ρ(b) is the so-called Hadamard
test [49]. First, one prepares a work qubit in the state
|0〉 while the remaining n qubits (for D = 2n) are ini-
tialised in some state |Φj〉. The set {|Φj〉}Dj=1 shall form
an orthonormal basis for the D-dimensional subspace on
which the gate ρ(b) acts, so it can be used to evaluate
a matrix trace. Second, the input state |0〉 ⊗ |Φj〉 is fed
into the quantum circuit

|0〉 W • W m

|Φj〉 / ρ(b)

where the work qubit acts as the control for the two-
qubit gate |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ ρ(b). Repeating the
Hadamard test until a su�cient statistics of measure-
ment outcomes m ∈ {0, 1} of the work qubit is obtained,
then provides Re 〈Φj | ρ(b) |Φj〉. Analogously, we obtain
Im 〈Φj | ρ(b) |Φj〉 from the di�erence of probability distri-
butions, which requires the circuit

|0〉 W S • W i

|Φj〉 / ρ(b)

to be implemented. Here, a phase gate S = |0〉 〈0| −
i |1〉 〈1| was inserted to obtain the imaginary part of the
trace. When the computational procedure is reiterated
for all states |Φj〉, the quantity Tr{ρ(b)} can be deter-
mined. In conclusion, the presented circuits give rise to
an e�cient way to compute the Jones polynomial (8),
because the number of qubits logD depends only on the
dimension of ρ and is independent of the number of cross-
ings [63].

1. Holonomic measurement pattern

We are left with the task of implementing the
Hadamard test in terms of a graph state computation
that only utilises single-loop holonomies. For simplicity,
we will only be concerned with closures of three-strand
braids. Recalling the unitary representation (10) with
generators (11), we observe that the Hadamard test re-
duces to a circuit involving two qubits. It is then ad-
vantageous to resolve the controlled-unitary |0〉 〈0| ⊗ I +
|1〉 〈1| ⊗ ρ(b) via the circuit identity
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• •
[
1 0
0 eiϑ1

]

Rz

(
ϑ4−ϑ2

2

)
W • Rx

(
− ϑ4+ϑ2

2

)
Ry

(
ϑ3

2

)
• Ry

(
− ϑ3

2

)
Rx(ϑ2) W

(13)

where

ρ(b) = eiϑ1Rz(ϑ2)Ry(ϑ3)Rz(ϑ4) (14)

must be satis�ed. Appendix B contains a proof of this
equivalence. The angles {ϑj}j will depend on the given
braid word b. Using the above resolution of the controlled
braiding, the measurement pattern implementing the en-
tire Hadamard test is given in Fig. 6. In Appendix B we
provide a step-by-step calculation verifying this result as
well as deriving the forward-propagated by-product op-
erators for the algorithm under study. Note that the
shown graph state for this computation is not the sim-

plest one possible, but can be viewed as being obtained
from the cluster state of a 4×13 lattice of qubits. The re-
dundant qubits are removed from the cluster by Pauli-Z
measurements such that the above circuit is directly writ-
ten into the cluster [5]. The given measurement pattern,
even though being not the most resource-e�cient (qubit-
saving), has the advantage of being easily translated into
the desired Hadamard test, once the decomposition (14)
is known. It is therefore more �exible and can be read-
ily adjusted if the Jones polynomial of a di�erent knot
becomes of interest.

FIG. 6. Holonomic measurement-based realisation of the Hadamard test with controlled braiding |0〉 〈0| ⊗ I + |1〉 〈1| ⊗ ρ(b).
Rotations into the suitable bases are carried out by single-loop holonomies. The diamond-shaped boxes denote the output.
Upwards arrows denote measurements in the Pauli-X basis. The horizontal arrows → and ← correspond to measurements
with ϕ = π/2 and ϕ = −π/2, respectively. The remaining arrows are related to measurements associated with non-Cli�ord
operations determined by the parameters {ϑj}j for j = 1, 2, 3, 4. The second qubit in the upper graph is measured in Pauli-X
(Pauli-Y ) basis in order to estimate the real (imaginary) part of Tr{ρ(b)} from the measurement statistic of the work qubit,
i.e. the upper output qubit is measured in the Pauli-Z basis. Vertical dashed lines separate the graph state into a sequence of
simulated single-qubit and two-qubit operations.

2. Hopf link

As a �rst example, we selected the Hopf link shown in
Fig. 7. This knot can be constructed on two strands by
a closure of the braid word b = b1b1. Its unitary repre-
sentation evaluates to Tr{ρ(b)} = A2 + A−6. We choose
a convention such that w(b) = 2 (Fig. 7) for this knot.
Inserting this into Eq. (12) yields the Jones polynomial
of the Hopf link

VHL(A) = −A−2 −A−10.

The trace of ρ(b) = e−2iθRz(0)Ry(0)Rz(8θ) can be ob-
tained similarly from the holonomic graph state compu-
tation in Fig. 6 by adjusting the angles {ϑj}j in the mea-
surement scheme.
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FIG. 7. Knot diagram of the Hopf link generated from the
braid word b1b1. Arrows indicate orientation of each strand.

3. The Borromean rings

As our second example, we choose a knot constructed
on three strands. The so-called Borromean rings are de-
picted in Fig. 8, and its generating braid word reads
b = b1b

−1
2 b1b

−1
2 b1b

−1
2 . An explicit calculation of the cor-

responding matrix representation (10) leads us to the uni-
tary matrix

ρ(b) =

[
2A4−A8+2A12−A16+A20−1

A12+A16 − (A4−1)2(A8+1)
√
1+A4+A8

A10+A14

(A4−1)2(A8+1)
√
1+A4+A8

A6+A10
1−A4+2A8−A12+2A16−A20

A4+A8

]
.

Inserting the result into Eq. (12), while noting that
w(b) = 0, gives the corresponding Jones polynomial (8)

VBR(A) = −A12−A−12+3A8+3A−8− 2A4− 2A−4+4.

FIG. 8. Knot diagram of the Borromean rings generated from
the braid word b1b−1

2 b1b
−1
2 b1b

−1
2 . Arrows indicate orientation

of each strand.

While a graphical calculation in terms of the Skein rela-
tions (Fig. 4) would demand for an evaluation of 26 = 64
diagrams, the Hadamard test in Fig. 6 is independent
of the number of crossings in a knot. We only have to
adjust the measurement pattern according to the braid
word b associated with the Borromean rings. Because
det(ρ(b1)) = −A−2 and det(ρ(b−12 )) = −A2 it follows
that det(ρ(b)) = 1, and hence ϑ1 = 0 in the decompo-
sition (14), i.e. ρ(b) ∈ SU(2). Figure 9 shows how the
resolution (14), determined by the remaining parameters

ϑ2, ϑ3, and ϑ4, depends on the angle θ. This in turn �xes
the measurement basis in Fig. 6.

π
36

π
18

π
12

π
9

−π
−π

2

0

π
2

π

3π
2

θ

ϑ2
ϑ3
ϑ4

FIG. 9. Measurement angles for the graph state computa-
tion in Fig. 6 simulating the Hadamard test with controlled
braiding ρ(b) for the Borromean rings. The graphic was ob-
tained by solving Eq. (14) for 22 equidistant values of θ in the
interval [0, π/6].

V. CONCLUSIONS

In this article we combined measurement-bases quan-
tum computation (MBQC) and nonadiabatic holonomic
quantum computation (HQC) to obtain an improved, er-
ror resilient, model of quantum computation (QC). We
have shown how both approaches pro�t from each other
in a symbiotic way. On the one hand, the stability of
a graph state computation is improved due to perform-
ing measurements in a rotated basis that were obtained
by using geometric phases (holonomies). On the other
hand, HQC pro�ts from the fact that the entanglement
of the graph state allows to parallelise holonomic gates
instead of executing them sequentially. This realisation
of QC avoids transition errors between holonomic gates
and allows for a resource-e�cient way of performing QC.
We investigated the joint approach on an explicit bench-
mark Hamiltonian and its implementation via tools from
integrated quantum optics. Our study revealed an in-
creased gate �delity when compared with the standard
formulation of nonadiabatic HQC, thus verifying that the
combined model has richer fault-tolerance features. Fi-
nally, we illustrated that in our geometric formulation of
the theory, that MBQC does not lose any of its practi-
cality, by studying a quantum algorithm that estimates
the Jones polynomial in a computationally e�cient man-
ner. We believe that current implementations of MBQC,
in particular those that rely on linear optics, can bene�t
from our proposal, possibly moving one step closer to the
desired notion of scalable quantum computation.
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Appendix A: Propagation through lossy optics

When a quantum state of light |ψ(z)〉 is injected into
the three-waveguide coupler discussed in Sec. III A, its
propagation is not only subject to the coupled-mode
Hamiltonian (7), but also experiences Markovian loss γk
in the kth mode (k = 0, 1, aux). Here, we are interested
in the loss of a single photon, e.g. due to scattering into
the environment or absorption. Hence, we can safely em-
ploy the Born approximating, that is the state of the en-
vironment (ambient medium) is not altered throughout
the evolution. In addition we assume that the scattered
photons are irrevocably lost, which allows us to treat γk
as Markovian dissipators. Under these assumption the
propagated state Λ(z) evolves according to the Marko-
vian Master equation [57]

∂zΛ = i[Λ, H]+
∑

k

γk
(
2akΛa

†
k−a

†
kakΛ−Λa†kak

)
. (A1)

Here, we are mainly interested in photon loss due to a
bending of waveguides. Following the heuristic approach
from Ref. [67], this type of loss depends on the Gaussian
radius of curvature

rk(z) =

(
1 +

[
∂z∆xk(z)

]2) 2
3

|∂2z∆xk(z)|
,

where ∆xk(z) is the position of the kth waveguide (mea-
sured from the center). The loss rate is then [55]

γk(z) = K1e
−K2rk(z),

with material parameters K1 = 0.5 cm−1 and K2 =
0.042 cm−1. The propagated state Λ(z) was obtained by
numerical solution of the system of �rst-order di�erential
equations

∂zΛvv = 2γ0Λ00 + 2γ1Λ11,

∂zΛ00 = −2 Im
(
κ0Λ0a

)
− 2γ0Λ00,

∂zΛ10 = i
(
κ0Λ1a − κ1Λ

∗
0a

)
− (γ0 + γ1)Λ10,

∂zΛ11 = −2 Im
(
κ1Λ1a

)
− 2γ1Λ11,

∂zΛ0a = i
(
κ0(Λ00 − Λaa) + κ1Λ

∗
10

)
− γ0Λ0a,

∂zΛ1a = i
(
κ1(Λ11 − Λaa) + κ0Λ10

)
− γ1Λ1a,

∂zΛaa = 2 Im
(
κ0Λ0a + κ1Λ1a

)
,

(A2)

which is the matrix representation of Eq. (A1) with re-
spect to the Fock basis

|0〉 , a†0 |0〉 , a†1 |0〉 , and a†aux |0〉 .

Note that the central waveguide is lossless as the position
of the central mode is not altered throughout the prop-
agation, i.e. γaux(z) = 0. The system of equations (A2)
was solved for the two coupling con�gurations shown in
Fig. 1. In order to translate the couplings κk(z) into the

distances ∆xk(z) we made use of an exponential curve
κk(z) = K3e

−K4∆xk(z) with material parameters set to
K3 = 23.9 cm−1 and K4 = 0.1µm−1. Finally, the propa-
gated state Λ(z) was used to calculate the �delities given
in Sec. IIIA.

Appendix B: Measurement-based realisation of the

Hadamard test

Here we provide details on the realisation of the
Hadamard test by means of a graph state computation.
First, we show that the controlled unitary |0〉 〈0| ⊗ I +
|1〉 〈1| ⊗ U , with an arbitrary single-qubit gate U =
eiϑ1Rz(ϑ2)Ry(ϑ3)Rz(ϑ4), is implemented exactly by the
circuit (13) introduced in subsection IVC. There, U =
ρ(b) with b being the braid word generating a knot (under
braid closure) whose Jones polynomial is to be estimated.
If the control qubit is in the state |0〉 the circuit trans-
forms the target qubit according to

WRx(ϑ2)Ry

(ϑ3
2

− ϑ3
2

)
Rx

(
− ϑ4 + ϑ2

2

)
WRz

(ϑ4 − ϑ2
2

)

=WRx

(ϑ2 − ϑ4
2

)
WRz

(ϑ4 − ϑ2
2

)
= I,

where we made use of Rk(ϑ + ϑ′) = Rk(ϑ)Rk(ϑ
′) for

k = x, y, z, as well as Rz(ϑ) = WRx(ϑ)W to arrive at
the last equality. In contrast, if the control qubit is in the
state |1〉 the target qubit will experience two additional
Z gates throughout the circuit, viz.

WRx(ϑ2)Ry

(
− ϑ3

2

)
ZRy

(ϑ3
2

)

×Rx

(
− ϑ4 + ϑ2

2

)
ZWRz

(ϑ4 − ϑ2
2

)

= Rz(ϑ2)WRy(−ϑ3)Rx

(ϑ4 + ϑ2
2

)
WRz

(ϑ4 − ϑ2
2

)
,

= Rz(ϑ2)Ry(ϑ3)Rz(ϑ4).

In the above equation we utilised Ry(ϑ) =
WRy(−ϑ)W = ZRy(−ϑ)Z and ZRk(ϑ) = Rk(ϑ)Z
for k = x, y. Summarising the calculation and recalling
that the control qubit experiences a phase gate shows
that the circuit implements the controlled unitary

|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ U =
[
ei
ϑ1
2 Rz(ϑ1)⊗WRx(ϑ2)Ry

(
− ϑ3

2

)]
CZ×

[
I ⊗Ry

(ϑ3
2

)
Rx

(
− ϑ4 + ϑ2

2

)]
CZ
[
I ⊗WRz

(ϑ4 − ϑ2
2

)]

(B1)

thus proving the assertion.
Next, we show that the Hadamard test is equivalently

realised by the measurement pattern from Fig. 6. We
apply the measurements in accordance with the simu-
lated gate time, i.e. following Fig. 6 from the left to the
right. In order to ensure clarity, we proceed in steps each
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discussing the simulation of an elementary gate (dashed
lines in Fig. 6), while keeping track of the respective by-

product operators. The unitary sequence realised by the

setup is (ignoring the phase ei
ϑ1
2 )

UΣ8I ⊗WUΣ7I ⊗WRz(ϑ2)UΣ6WRz(ϑ1)⊗WRz

(π
2

)
Rx

(
(−1)n10+1ϑ3

2

)
Rz

(
− π

2

)
UΣ5CZ

× UΣ4
W ⊗WRx

(π
2

)
Rz

(ϑ3
2

)
UΣ3

W ⊗WRz

(
− π

2

)
Rx

(
(−1)n3+1ϑ4 + ϑ2

2

)
UΣ2

CZUΣ1
W ⊗WRz

(ϑ4 − ϑ2
2

)
,

(B2)

where computational segments are separated by the re-
spective by-product operators

UΣ1 = Xm1 ⊗Xn1 ,

UΣ2
= Zm2 ⊗ Zn2 ,

UΣ3
= Xm5Zm4Xm3 ⊗Xn5Y n4Xn3 ,

UΣ4
= Xm8Zm7Xm6 ⊗Xn8Zn7Y n6 ,

UΣ5
= Zm9 ⊗ Zn9 ,

UΣ6
= Xm10 ⊗Xn12Zn11Xn10 ,

UΣ7 = I ⊗Xn13 ,

UΣ8 = I ⊗Xn14 .

In the above, Y gates emerged due to the com-
mutation relations Rz(±π/2)X = ±Y Rz(±π/2) and
Rx(±π/2)Z = ∓Y Rx(±π/2). Let us assume for the mo-
ment that after a computation all 24 measurement out-
comes were ideal, i.e. mj = 0 and nk = 0 for all j, k.
The conditioning of non-Cli�ord operations in Eq. (B2)
then becomes obsolete and the above by-product opera-
tors reduce to the identity. What remains is a matter of
straight-forward algebra to verify that (B2) can be sum-
marised to

(W ⊗ I)(|0〉 〈0| ⊗ I + |1〉 〈1| ⊗ U)(W ⊗ I). (B3)

When the two-qubit unitary (B3) induced by the graph
state computation acts on the state |0〉⊗|Φj〉 and a subse-
quent (Pauli-Z) measurement on the work qubit is per-
formed, the entire paradigm coincides with the circuit
diagram of the Hadamard test.

1. Post-processing

In order to ensure a deterministic execution of the
Hadamard test, we have to bring the expression (B2) into
a form, where all by-product operators were commuted
to the left (propagated forward). The total by-product
operator UΣ will still be a tensor product of spurious
Pauli operators that can be dealt with after the compu-
tation. As the overall unitary contains Bloch-sphere ro-
tations around some general angle ϑk, not all operations
in (B2) belong to the Cli�ord group. Hence, propagating
the UΣi through the implemented unitaries results in an
unavoidable conditioning of later measurements on the
previous ones. We do so segment by segment to make

the calculation more traceable. Starting with the �rst
by-product operator UΣ1

, we obtain the forward propa-

gated unitary ŨΣ1
= Xm1Zn1 ⊗ Zm1Xn1 from the rela-

tion CZUΣ1
= ŨΣ1

CZ using

CZ(I ⊗X) = (Z ⊗X)CZ, CZ(X ⊗ I) = (X ⊗ Z)CZ.

In the next step, the operator

UΣ2
ŨΣ1

= Xm1Zn1+m2 ⊗Xn1Zm1+n2 (B4)

must be propagated through the third segment (ending
at UΣ3

). Using standard commutation relations we �nd

ŨΣ2 = Xn1+m2Zm1 ⊗Xm1+n1+n2Zn1

(up to a global phase ±1 or ±i). Note that, commut-
ing Zm1+n2 from Eq. (B4) past the x-rotation led to a
conditioning on the measurement outcome m1 + n2, viz.

(−1)n3+1ϑ4 + ϑ2
2

→ (−1)m1+n2+n3+1ϑ4 + ϑ2
2

.

Next, one propagates the operator

UΣ3
ŨΣ2

= Xn1+m2+m3+m5Zm1+m4⊗Xm1+
∑5
i=1 niZn1+n4

past the fourth segment (ending at UΣ4
). This procedures

carries on until all operators are on the most left-hand
side of (B2). Finally we arrive at

UΣ = Xγ4Zγ3 ⊗Xγ2Zγ1 (B5)

for the overall by-product operator associated with the
entire Hadamard test. The measurements amount to a
syndrome

γ1 = n1 + n4 + n6 + n8 + n11 + n13,

γ2 = n2 + n3 + n9 + n10 + n12 + n14 +m4 +m5 +m6 +m8,

γ3 = m1 +m4 +m6 +m8,

γ4 = n4 + n6 + n8 +m2 +m3 +m5 +m7 +m9 +m10.

While we carried through with this calculation, the non-
Cli�ord operations obtained a conditioning on some of
the previous measurement outcomes, and thus the mea-
surement pattern in Fig. 6 must be adjusted according
to the following replacements in Eq. (B2)

ϑ1 → (−1)γ3ϑ1,

ϑ2 → (−1)γ2ϑ2,

ϑ3 → (−1)m1+
∑5
i=1 niϑ3,

(−1)n10+1ϑ3 → (−1)γ5+n10+1ϑ3,
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where γ5 = n1 + n2 + n3 + n4 + n6 + n8 + n9 + m4 +
m5 + m6 + m8. This mapping conditions the relevant

measurements in order to perform the Hadamard test in
a fully deterministic fashion. A classical post-processing
will correct the action of the operator (B5).
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