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Abstract
The nonlinear optical response of dielectrics under intense laser fields gives rise to vari-
ous important effects ranging from four-wave mixing and solitary wave formation to self-
focussing and self-phase modulation. These well-known processes take place at intensities
low enough to avoid permanent material modification and optical breakdown and can usu-
ally be described accurately by the third-order Kerr response. At higher intensities, addi-
tional contributions to the nonlinear response such as dynamical Bloch oscillations and rec-
ollision effects emerge and have recently been studied in great detail in the context of high-
order harmonic generation. As yet unresolved is the significance of strong-field ionization
and plasma formation for the nonlinear optical response and the resulting optical signals al-
though ionization-induced wave mixing and harmonic emission have been proposed more
than 30 years ago. This thesis describes a systematic analysis that aims at closing this gap.
To this end the role and signatures of ionization-induced nonlinearities in wide bandgap di-
electrics are investigated theoretically via local plasma simulations and ionization-radiation
models and compared to experiments to reveal their nature and their potential for imag-
ing and controlling strong-field ionization down to the sub-cycle time scale. The central
results of this thesis are (i) the identification of the dominance of ionization induced low
order harmonic emission near the damage threshold through the so far overlooked injection
current, (ii) the demonstration of the resulting opportunities for monitoring ultrafast plasma
formation via non-perturbative wave mixing, and (iii) the analysis of the potential of sub-
cycle plasma formation with shaped laser fields for the generation of optically controlled
sub-wavelength structures and gratings in laser material modification.

Kurzzusammenfassung
Die nichtlineare Strahlungsantwort dielektrischer Festkörper auf starke Laserfelder führt
zu verschiedenen wichtigen Effekten, die von Vier-Wellen-Mischung, Solitonenerzeugung
bis hin zur Selbstfokussierung und Selbstphasenmodulation reichen. Diese wohlbekannten
Prozesse laufen bereits bei Intensitäten ab, die niedrig genug sind, um eine dauerhafte Ma-
terialveränderung bzw. einen optischen Zusammenbruch zu vermeiden und lassen sich
üblicherweise vollständig durch die Kerr-Antwort dritter Ordnung beschreiben. Bei höheren
Intensitäten treten weitere Beiträge zur nicht-linearen Antwort auf, wie dynamische Blo-
choszillationen und Rekollisionseffekte, die bereits detailliert im Zusammenhang mit ho-
her Harmonischenerzeugung untersucht wurden. Bisher ungeklärt ist dabei der Einfluss
der Starkfeldionisation und der Plasmaerzeugung auf die nichtlineare optische Antwort und
die daraus resultierenden optischen Signale, obwohl ionisationsinduzierte Wellenmischung
und Harmonischenerzeugung vor bereits 30 Jahren erstmals vorgeschlagen wurden. Diese
Dissertation beschreibt eine systematische Analyse, um diese Lücke zu schließen. Hierzu
werden Rolle und Signaturen von ionisationsinduzierten Nichtlinearitäten in Dielektrika mit
großer Bandlücke theoretisch mittels lokaler Plasmasimulationen und Ionisationsratenmod-
ellen untersucht und mit Experimenten verglichen, um ihr Potential für Abbildung und Kon-
trolle der Starkfeldionisation bis hinunter zur Subzyklenzeitskala aufzuklären. Die zentralen
Ergebnisse dieser Arbeit sind (i) die Identifikation des dominanten Beitrags ionisationsin-
duzierter Harmonischer niedriger Ordnung nahe der Zerstörschwelle anhand des bisher
unberücksichtigten Injektionsstroms, (ii) der Demonstration der sich daraus ergebenden
Möglichkeiten zur Beobachtung ultraschneller Plasmaerzeugung durch nicht-perturbative
Wellenmischung und (iii) die Identifizierung von Potenzialen zur Subzyklenplasmaerzeu-
gung mittels maßgeschneiderter Laserfelder für die Erzeugung optisch kontrollierter Sub-
wellenlängenstrukturen und Gitter für die Lasermaterialbearbeitung.

iv



Contents

Abstract – Kurzzusammenfassung iv

Publications and Conference Contributions ix

List of figures x

List of tables xi

List of Symbols xiii

1 Introduction 1

2 Identification of Tunneling-Induced Low-Order Harmonics 7
2.1 Experimental setup and beam parameters . . . . . . . . . . . . . . . . . 8
2.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Metrology for the effective nonlinear order . . . . . . . . . . . . . . . . 12
2.4 Ionization-induced nonlinearity . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Ensemble derivatives . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Nonlinear current and dipole acceleration . . . . . . . . . . . . 14
2.4.3 Physical picture of relevant nonlinear mechanisms . . . . . . . . 15
2.4.4 Role of the injection current for energy conservation . . . . . . . 16
2.4.5 Numerical analysis of injection and Brunel harmonic contribu-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Local Strong-Field Medium Response 19
3.1 Nonlinear polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Single-color polarization and degeneracy weights . . . . . . . . 20
3.2 Emission of harmonics from nonlinear source terms . . . . . . . . . . . 21

3.2.1 Solution of the nonlinear wave equation for a thin film . . . . . 21
3.2.2 Spectral weights of harmonic far-field response . . . . . . . . . 22
3.2.3 Role of transverse beam profile for spectral amplitudes . . . . . 23

3.3 Two-color wave-mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Parallel polarization scenario . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Degeneracy in self-phase and cross-phase modulation . . . . . 27
3.3.3 Intensity ratio: Parallel versus perpendicular scenario . . . . . . 27
3.3.4 Polarization direction of wave-mixing harmonics . . . . . . . . 28
3.3.5 Circularly polarized harmonics in two color case . . . . . . . . . 29
3.3.6 Intensity ratios between different polarization scenarios . . . . 30

3.4 Scaling analysis of injection and Brunel response . . . . . . . . . . . . . 31
3.4.1 Power-law ansatz for ionization rate . . . . . . . . . . . . . . . . 32
3.4.2 Distinct nonlinear orders of Brunel and injection mechanism . 33
3.4.3 Intensity ratios of Brunel and injection harmonics . . . . . . . . 34
3.4.4 Dominant contribution of the ionization response . . . . . . . . 36

3.5 Temporal signatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

v



vi Contents

3.6 Characteristic phases of local response mechanisms . . . . . . . . . . . 39
3.6.1 Phase of harmonic currents . . . . . . . . . . . . . . . . . . . . . 40
3.6.2 Phase of harmonic fields in thin film scenario . . . . . . . . . . . 40
3.6.3 Effect of Gouy phase in Gaussian beam scenario . . . . . . . . . 41

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Collisional Effects in the Extreme Nonlinear Response 43
4.1 Phase shift of quiver motion and Brunel harmonics . . . . . . . . . . . 43

4.1.1 Drude model – Scenario of constant elastic damping . . . . . . . 44
4.2 Tunneling-induced vs. collisional Brunel harmonics . . . . . . . . . . . 45

4.2.1 Phase of collisional Brunel harmonics in a simple man’s approach 45
4.3 Kinetic model for capturing collisional effects . . . . . . . . . . . . . . . 46

4.3.1 Collision rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Calculation of the velocity distribution . . . . . . . . . . . . . . . 47

4.4 Effect of impact ionization on nonlinear response . . . . . . . . . . . . . 48

5 Reconstruction of the Strong-Field-Driven Plasma Dynamics 51
5.1 Phase retrieval algorithm and convergence . . . . . . . . . . . . . . . . 52
5.2 Optimal conditions for reconstruction . . . . . . . . . . . . . . . . . . . 55

5.2.1 Role of the polarization configuration . . . . . . . . . . . . . . . 55
5.2.2 Role of competing nonlinear mechanisms . . . . . . . . . . . . . 56

5.3 Reconstruction from experimental spectra . . . . . . . . . . . . . . . . . 57

6 FDTD Ionization-Radiation Model 61
6.1 Electromagnetic field propagation via FDTD . . . . . . . . . . . . . . . 61
6.2 Self-consistent polarization, ionization and plasma response . . . . . . 62

6.2.1 Ionization degree . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.2 Nonlinear currents . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.3 Temperature and drift-dependent elastic and inelastic collision

rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2.4 Valance band depletion . . . . . . . . . . . . . . . . . . . . . . . . 66
6.2.5 Temperature and drift update . . . . . . . . . . . . . . . . . . . 66
6.2.6 Bound electron response: Dispersive nonlinear Lorentz model . 70
6.2.7 Unidirectional source – Total-field scattered-field boundary . . . 72
6.2.8 Absorbing boundary condition . . . . . . . . . . . . . . . . . . . 72

6.3 Energy deposition via ionization . . . . . . . . . . . . . . . . . . . . . . 73
6.3.1 Impact of standing waves on the spatio-temporal plasma build-up 74

6.4 Effect of plasma formation on reflection, transmission, and absorption 79
6.4.1 Delay dependence . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4.2 Intensity dependence . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.3 Focal averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



Contents vii

7 Harmonics from Nonlinear Reflection 83
7.1 Amplitude and phase for nonlinear reflection . . . . . . . . . . . . . . . 83

7.1.1 Benchmark of reflected injection and Brunel harmonics . . . . . 85
7.1.2 Signatures of the nonlinear reflection mechanism . . . . . . . . . 86
7.1.3 Longitudinal length-scale of reflection response . . . . . . . . . 88

7.2 Linking reflected harmonics and local current . . . . . . . . . . . . . . 88
7.3 Real space perspective on tunneling injection in periodic potential . . . 91

7.3.1 SiO2 model for quantum mechanical tunneling dynamics . . . . 91
7.3.2 Quantum mechanical strong-field ionization current . . . . . . . 93
7.3.3 Decomposition and analysis of the field-induced current . . . . 96

8 Conclusions and Outlook 98

Appendix 100

A Identification of Tunneling-Induced Low-Order Harmonics 101
A.1 Difference quotient for ensemble derivative . . . . . . . . . . . . . . . . 101

B Local Strong-Field Medium Response 102
B.1 Fields emitted from currents in a thin sheet . . . . . . . . . . . . . . . . 102
B.2 Amplitude and phase of the Hertzian dipole . . . . . . . . . . . . . . . 103
B.3 Harmonic emission in Gaussian beam scenario . . . . . . . . . . . . . . 104
B.4 Calculation of circular pump polarization direction . . . . . . . . . . . 106
B.5 Generalization of intensity ratios for n > 1 mixing signals . . . . . . . 108
B.6 Temporal width and delay dependence of wave-mixing signals . . . . 109

C Collisional Effects in the Extreme Nonlinear Response 112
C.1 Phase of quiver motion according to Drude model . . . . . . . . . . . . 112
C.2 Gabor transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

D Harmonics from Nonlinear Reflection 114
D.1 Reflected harmonics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
D.2 Degeneracy of Brunel emission . . . . . . . . . . . . . . . . . . . . . . . 119
D.3 Computing the band structure in Fourier representation . . . . . . . . 120
D.4 Velocity-Verlet integration of electron and hole trajectories . . . . . . . 122

Bibliography 125

Academic Curriculum Vitae 140

List of Presentations 142

Statement of Authorship 144

Acknowledgement – Danksagung 145



viii



Publications and Conference Contributions

Contributions related to this thesis:

[JLK+20] P. Jürgens, B. Liewehr, B. Kruse, C. Peltz, D. Engel, A. Husakou, T. Wit-
ting, M. Ivanov, M. Vrakking, T. Fennel, and A. Mermillod-Blondin, Ori-
gin of strong-field-induced low-order harmonic generation in amorphous quartz,
Nature Physics 16, 1035–1039 (2020).

[JLK+22a] P. Jürgens, B. Liewehr, B. Kruse, C. Peltz, T. Witting, A. Husakou,
A. Rouzee, M. Ivanov, T. Fennel, M. J. Vrakking and A. Mermillod-
Blondin, Characterization of laser-induced ionization dynamics in solid di-
electrics, ACS Photonics 9, 233–240 (2022).

[JLK+22b] P. Jürgens, B. Liewehr, B. Kruse, C. Peltz, T. Witting, A. Husakou,
A. Rouzeé, M. Ivanov, T. Fennel, M. J. J. Vrakking and A. Mermillod-
Blondin, Reconstruction of Strong-Field-Driven Carrier Generation Dynamics
from Injection Harmonics in Solid Dielectrics, The International Conference
on Ultrafast Phenomena, Tu4A.14 (2022).

[MBJL+19] A. Mermillod-Blondin, P. Jürgens, B. Liewehr, B. Kruse, C. Peltz, T. Wit-
ting, A. Husakou, M. Ivanov, T. Fennel and M. J. Vrakking, Study of plasma
formation in solid dielectrics with the help of low-order harmonic emission, SPIE
LASE Proceedings 10905, 64–69 (2019).

[KLPF20] B. Kruse, B. Liewehr, C. Peltz and T. Fennel, Quantum coherent diffractive
imaging, Journal of Physics: Photonics 2, 024007 (2020).

Further contributions:

[LB19] B. Liewehr and M. Bachmann, Smart polymeric recognition of a hexagonal
monolayer, EPL (Europhysics Letters) 127, 68003 (2019).

[QLK+19] K. Qi, B. Liewehr, T. Koci, B. Pattanasiri, M. J. Williams and M. Bachmann,
Influence of bonded interactions on structural phases of flexible polymers, The
Journal of chemical physics 150, 054904 (2019).

ix

http://dx.doi.org/10.1038/s41567-020-0943-4
http://dx.doi.org/10.1021/acsphotonics.1c01417
http://dx.doi.org/10.1364/UP.2022.Tu4A.14
http://dx.doi.org/10.1364/UP.2022.Tu4A.14
http://dx.doi.org/10.1117/12.2507836
http://dx.doi.org/10.1117/12.2507836
http://dx.doi.org/10.1088/2515-7647/ab83e4
http://dx.doi.org/10.1209/0295-5075/127/68003
http://dx.doi.org/10.1063/1.5081831
http://dx.doi.org/10.1063/1.5081831


List of figures

1.1 Experimental evidence of ionization induced harmonics . . . . . . . . . 4

2.1 Mechanisms of harmonic emission in solids . . . . . . . . . . . . . . . . 7
2.2 Experimental setup for low-order harmonic wave mixing . . . . . . . . 9
2.3 Delay-dependent harmonic spectrum . . . . . . . . . . . . . . . . . . . 10
2.4 Dependence of harmonic wave-mixing signal on crystal orientation . . 11
2.5 Measured effective order of nonlinearity . . . . . . . . . . . . . . . . . . 13
2.6 Physical picture of polarization, Brunel, and injection response . . . . . 15
2.7 Bandgap-dependent lift-off of the effective order of nonlinearity . . . . 18

3.1 Degeneracy of low-order wave-mixing . . . . . . . . . . . . . . . . . . . 21
3.2 Spectral weight coefficients of low-order harmonics . . . . . . . . . . . 23
3.3 Harmonic emission from thin film . . . . . . . . . . . . . . . . . . . . . 24
3.4 Polarization of the n = 1 wave-mixing harmonic in the experiment . . 28
3.5 Intensity ratios as function of nonlinear order . . . . . . . . . . . . . . . 31
3.6 ADK tunneling rate and tunneling exponent vs. driving field . . . . . . 33
3.7 Intensity ratio, injection vs. Brunel response, in the local model . . . . 36
3.8 Pulse duration, and width on delay axis of harmonics . . . . . . . . . . 38
3.9 Phase of local, non-linear currents in pointer diagram . . . . . . . . . . 39
3.10 Phase relation of emitted harmonic fields . . . . . . . . . . . . . . . . . 41

4.1 Phase of Brunel harmonics as function of collision rate . . . . . . . . . . 44
4.2 Elastic and inelastic collision rate as function of electron velocity . . . . 47
4.3 Gabor-transform analysis of dominant harmonic emission mechanisms 49

5.1 Reconstruction error as function of pump intensity . . . . . . . . . . . . 56
5.2 Retrieval of tunnel ionization traces from n = 1 injection signal . . . . . 59

6.1 FDTD update equations for ionization radiation model . . . . . . . . . 63
6.2 Drift and temperature-dependent collision rates . . . . . . . . . . . . . 66
6.3 Energy balance for tunneling-induced plasma formation . . . . . . . . 74
6.4 Spatio-temporal structure of plasma formation . . . . . . . . . . . . . . 75
6.5 Hot and cold avalanching in time trace of inelastic collision rate . . . . 78
6.6 Transmission, reflection, and absorption vs. delay and intensity . . . . 80
6.7 Focal averaged loss of transmission in two-color scenario . . . . . . . . 82

7.1 Harmonic amplitude and phase from different emission geometries . . 84
7.2 Single color reflection benchmark . . . . . . . . . . . . . . . . . . . . . . 86
7.3 Phase of harmonic polarization and field at the front interface . . . . . 88
7.4 Scaling of wave-mixing harmonics in reflection direction . . . . . . . . 89
7.5 Band structure and energy eigenstates of the SiO2 model system . . . . 92
7.6 Strong-field-induced, quantum mechanical current . . . . . . . . . . . . 94
7.7 Spatio-temporal structure and physical significance of intra- and inter-

band contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

x



List of tables

3.1 Box-arrow notation for degeneracy analysis . . . . . . . . . . . . . . . . 27

5.1 Ptychographic retrieval algorithm in pseudo-code . . . . . . . . . . . . 54

6.1 Mean energy per collision and ionization electron . . . . . . . . . . . . 68
6.2 Parameters of the Lorentz-oscillator model for SiO2 and gold . . . . . . 70

7.1 Mechanism-specific harmonic amplitude scaling . . . . . . . . . . . . . 87
7.2 Mechanism-specific phases for different emission geometries . . . . . . 87

Navigation in the Document

References to sections, figures, equations, etc. are compiled as hyperlinks. After fol-
lowing a hyperlink, most PDF viewers allow to return to the previous position in the
document by pressing either the keyboard shortcut [Alt] + [←] or [Alt] + [L].

xi



xii



List of Symbols

Natural constants used in SI units

c – speed of light in vacuum
e – absolute value of electron charge
me – electron mass
~ – reduced Planck constant
ε0 – vacuum permittivity
µ0 – vacuum permeability
kB – Boltzmann constant

Symbols chapter 1 Introduction

γ – Keldysh parameter
ω – carrier wave angular frequency
Eg – band gap energy
nior – index of refraction
Imed – intensity of the laser field transmitted into the medium

Symbols chapter 2 Identification of Tunneling-Induced Low-Order Harmonics

λ – vacuum wave length
τ – pulse width, intensity full-width half-maximum
Ep – pulse energy
n, ` – Two-color harmonic wave mixing order, eq. (2.1)
ωmix
n – angular frequency of wavemixing signal, eq. (2.1)

E – electric field, eq. (2.2)
PL,PNL – linear and nonlinear medium polarization density, eq. (2.2)
t – time, eq. (2.3)
m – order of nonlinear response, eq. (2.2)
µ – substitution for nonlinear order µ = m−1

2 , eq. (2.2)
I||, I⊥ – intensity in parallel and perpendicular two-color field polarization

configuration, eq. (2.4)
χ(3) – third order nonlinear susceptibility
q – carrier charge, eq. (2.5)
n0 – number density of molecules in nonlinear medium, eq. (2.5)
x – charge displacement, eq. (2.5)
N – number of particles, eq. (2.6)
ρ – normalized ionization degree (conduction band occupations),

eq. (2.5)
J – current density, eq. (2.10)

xiii



xiv List of Symbols

uEM – energy density of the electromagnetic field, eq. (2.13)
ρ̇tun – effective tunneling rate, including depletion of valance band,

eq. (2.14)

Symbols chapter 3 Local Strong-Field Medium Response

χ(m) – mth order nonlinear susceptibility, eq. (3.2)
h – harmonic order, eq. (3.5)
D

(m)
h – degeneracy factor of harmonic order h, generated by mth order nonlin-

ear mechanism, eq. (3.5)
dz – medium thickness, along the z-axis (optical axis), eq. (3.6)
nL – linear refractive index, eq. (3.6)
zR – Rayleigh length, eq. (3.8)
w0 – beam waist radius, eq. (3.8)
β – spectral weight coefficient, eq. (3.7)
Γ – tunneling rate, eq. (3.29)
s – tunneling exponent, eq. (3.33)
τ

(m)
out – intensity FWHM pulse duration of harmonics, eq. (3.59)
τ

(m)
delay – width of wave mixing signal with respect to delay axis, eq. (3.59)
φn – temporal phase of n-th order mixing signal, eq. (3.60)
φmech – mechanism specific phase, eq. (3.60)
φmix
n – phase due to wave-mixing, eq. (3.60)
φCE
n – carrier envelope phase of wave-mixing harmonics, eq. (3.61)
φGouy – Gouy phase, eq. (3.62)

Symbols chapter 4 Collisional Effects in the Extreme Nonlinear Response

γ – damping coefficient, eq. (4.1)
σel, σinel – elastic and inelastic cross section, eqs. (4.6), (4.7)
aL, sL – Lotz parameter, eq. (4.7)
γel, γe – elastic collision rate per conduction electron, eq. (4.5)
γinel, γi – inelastic collision rate per cond. el. with neutral molecules, eq. (4.5)
f – electron phase space distribution, eq. (4.8)
v – velocity, eq. (4.8)
F – force, eq. (4.8)

Symbols chapter 5 Reconstruction of the Strong-Field-Driven Plasma Dynamics

σeff – effective conductivity, eq. (5.2)
Ipu – slowly evolving intensity envelope, eq. (5.3)
Iexp(ω, τj) – experimental two-color delay spectrum, eq. (5.4)
F – (fast) Fourier transform, eq. (5.4)



List of Symbols xv

S(t, τ) – time domain source function, eq. (5.6)
RS – residuum of source function, eq. (5.7)
Rρ – residuum of plasma density, eq. (5.17)

Symbols chapter 6 FDTD Ionization-Radiation Model

D – displacement field, eq. (6.3)
H – magnetic field strength, eq. (6.4)
P – polarization (density), eq. (6.3)
M – magnetization (density), eq. (6.4)
∆t – time step, eq. (6.5)
∆z – spatial grid spacing, eq. (6.5)
vd, 〈v〉 – average drift velocity, eq. (6.13)
a, b – parameters of roots in Crank-Nicolson update, eq. (6.9), (6.10)
T – temperature, eq. (6.15)
Ekin – kinetic energy, eq. (6.21)
Etherm – thermal energy, eq. (6.22)
ωk, γk, fk, – resonance frequency, damping coefficient, oscillators strength of kth

oscillator in Lorentz model, eq. (6.39)
ωR, γR – Raman resonance frequency, Raman damping coefficient for rovibra-

tional response in nonlinear Lorentz model, eq. (6.43)
C – Courant number, eq. (6.53)
dAu – thickness of reflective gold coating
〈t〉Γ – first temporal moment with respect to tunneling rate, eq. (6.54)
L – loss in transmission, eq. (6.55) eq. (6.55)

Symbols chapter 7 Harmonics from Nonlinear Reflection

f ref
PNL

– reflection coefficient relative to nonlinear polarization, eq. (7.1)
aInj, aBr – spectral width, eq. (7.4)
` – number of cascaded nonlinear interactions, table 7.1
Φscen

mech,h – harmonic phase factor, tabel 7.2
ncrit – critical plasma density, sect. 7.2
ψ – single electron wave-function, eq. (7.6)
V0 – finite-periodic lattice potential, eq. (7.6)
Vlas – laser potential, eq. (7.6)
En(k) – eigenenergies, band structure, Fig. 7.5
EC – lowest energy of conduction band wrt. the vacuum level, Fig. 7.5
EV – highest energy of valence band wrt. the vacuum level, Fig. 7.5
N – number of considered unit-cells, Fig. 7.5
a – size of unit-cell, Fig. 7.5
k – crystal momentum, eq. (7.7)
vn – group velocity of the electron wave packet in the nth energy band,

eq. (7.7)



xvi List of Symbols

Jel – particle flux of electrons Fig. 7.6
φnκ – windowed wave functions, eq. (7.8)

Subscripts

�ex – existing elements in derivative of ensemble average, eq. (2.6)
�new – new elements in derivative of ensemble average, eq. (2.6)
�pu – pump beam, eq. (2.1)
�pr – probe beam, eq. (2.1)
�h – contribution to the hth harmonic, eq. (3.5)
�n – two-color wave mixing order, eqs. (2.1), (3.16)
�inj – injection, eq. (2.14)
�Br – Brunel, eq. (3.32)
�self – self phase modulation (SPM), table 3.1
�cross – cross phase modulation (XPM), table 3.1
�eff – effective, eq. (5.2)
�exp – experimentally determined, eq. (5.4)
�corr – correction, eq. (5.14)
�rec – reconstructed, eq. (5.17)
�sim,�0,sim– simulated, simulated in single color reference scenario, eq. (5.17)
�sub – sub cycle, eq. (5.19)
�ca – cycle averaged, eq. (5.19)
�free,�f – free, corresponding to free or conduction band electrons, eq. (2.5)
�d – drift, eq. (6.14)
�dof – per degree of freedom, eq. (6.23)
�kin – kinetic, eq. (6.21)
�pot – potential
�EM – electromagnetic
�a – electron partition, table 6.1
�k – kth oscillator in Lorentz model eq. (6.39)
�R – Raman, eq. (6.43)
〈�〉foc – focal averaged quantity,

Superscripts

�(m) – mth order nonlinear response, eq. (2.2)
�̂ – time domain amplitude, eq. (2.3)
�̌ – initially unknown true solution of reconstructed variable, eq. (5.7)
�̃ – including depletion, eq. (6.17)
�|| – parallel polarization direction of pump and probe beam, eq. (2.4), (3.16)
�⊥ – perpendicular polarization direction of pump and probe beam, eq. (2.4),

(3.17)
�◦| – circular pump and linear probe polarization, eq. (3.24)



List of Symbols xvii

�cf – constant field of circular pump beam wrt. linear scenario, sec. 3.3.5
�ci – constant intensity of circular pump beam wrt. linear scenario, sec. 3.3.5
�med – Medium super scripts, med={ vac (vacuum), mat (material) }
�com – center of mass, eq. (6.21)
�ref – reflected, eq. (7.1)
�+ – positive frequency contribution, eq. (3.3)
�− – negative frequency contribution, eq. (3.3)
�∗ – complex conjugate, eq. (B.8)
�t, [...]t – time index for finite-difference time-domain (FDTD) discretization,

eq. (6.13)

Numrical discretization indizes

|tz – discrete integer time index t, and discrete half-integer spatial index z,
for E-field, eq. (6.5)

Mathematical constants and notation

ex – unit vector in x-direction
e – Euler’s number
i – imaginary unit
π – Pi
�! – factorial
LHS,
RHS

– left and right-hand side of equation

c.c. – complex conjugate of RHS



xviii



1. Introduction

With the increasing availability of sources for strong and extremely short laser pulses,
intense laser-matter interaction has become a topic of outstanding interest from both
the applied and the fundamental perspective. For example, the opportunity to re-
solve the temporal evolution of light absorption in dielectrics down to sub-cycle time
scales via attosecond metrology provides unprecedented insights into the ultrafast
reversible and non-reversible nonlinear polarization dynamics and energy transfer
processes that govern the response of electrons to electric field waveforms during an
optical period [1, 2]. Controlling or even switching currents on such time scales may
open routes to overcome clock-rate limitations of today’s electronic devices by orders
of magnitude [3, 4].

Today laser pulses with precisely controlled field waveform have become key
tools for analyzing the field-driven nonlinear polarization response, which has been
demonstrated even for near single-cycle optical pulses [5]. In any case and besides
the contribution of bound electron dynamics to the nonlinear polarization, persistent
electronic excitation up to the generation of a dense electron-hole plasma becomes
increasingly important at high intensities. The waveform dependence of the latter
is of key interest for applications such as controlled material modification through
tailored laser fields because of the different dependence of the elementary processes
like ionization and collisional heating on the laser temporal and spectral characteris-
tics [6]. The idea of using sub-cycle effects to control the generation of free carriers,
e.g. via the sub-cycle modulation of strong-field ionization and its dependence on the
phase of the waveform, may open novel avenues for laser machining schemes.

Besides specific aspects such as the dependence of strong-field ionization on the
atomic ionization potential in gases or the band gap in solid media, the strong sen-
sitivity of the ionization rate on the instantaneous laser field provides a basis for
waveform-controlled plasma formation. However, the exposure of solids to strong
fields is associated with a broad spectrum of response effects [7], reaching from
substantial ionization in the TW/cm2 intensity regime to defect formation [8, 9]
and changes in the refractive index [10], used for fs-laser fabrication of waveg-
uides [11–13] or even plasma ablation, relevant for drilling [6,14] and cutting applica-
tions [15]. Over decades, experiments have been conducted to clarify the underlying
physical processes, ranging from heat diffusion on microsecond time scale to carrier
relaxation on picosecond time scales [16, 17]. One precursor of material damage [18]
that indicates substantial energy deposition almost directly on the time scales of exci-
tation is the optical breakdown, i.e. the abrupt change of optical properties of previ-
ously transparent dielectrics due to instantaneous strong field ionization followed by
an impact ionization avalanche [19–23]. Signatures for this metallization process and
opportunities for the sub-cycle control of the conductivity have been recently inves-
tigated on SiO2 nanoparticles [24]. Although underlying excitation mechanisms are

1
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established [14, 25], their relative contribution as function of time and the full spatio-
temporal resolution of the electronic response from the first ionization event towards
the formation of an electron-hole plasma at critical density remains challenging.

In the focus of this work is the question how ionization-driven nonlinearities affect
the polarization response and how the associated emission of low and high harmon-
ics of the light field can be utilized to characterize the excitation dynamics on attosec-
ond time scales. Conceptually, the nonlinear character of laser-induced ionization
can be described using two different pictures [26, 27]. In the picture of multi-photon
ionization (MPI), several photons are absorbed simultaneously to excite a bound elec-
tron, leading to a strongly nonlinear intensity dependence with a power law scal-
ing that reflects directly the order of the process. The MPI picture naturally predicts
above-threshold ionization with the associated comb in the photoelectron energy dis-
tribution that reflects the absorption of integer multiples of the photon energy [28].
However, because of its origin in the spectral domain, the MPI picture only captures
envelope effects and cannot explain the sub-cycle dependence of the photoionization
process and the energy transfer from the field across a single cycle of the field wave-
form. The tunnel ionization picture, on the other hand, can be understood in the
time domain and assumes the periodic suppression of the potential barrier for ion-
ization due to the field. The tunneling picture can predict the sub-cycle modulation
of ionization and captures the spectral features of the emission due to interference of
various quantum pathways. The sub-cycle evolution arises from the evolving tunnel
probability and automatically creates a strong field dependence. In particular at long
wavelengths, where tunneling dominates1, attosecond bursts of ionizing electrons are
expected at the crest of every half-cycle. In this picture the formation of ATI peaks
is understood by the intercycle interference of subsequently emitted electron wave
packets, corresponding to a double-slit in time, that leads to maxima in the energy
spectrum [29, 30].

Irrespective of the picture, the nonlinearity of strong-field ionization provides a
central basis to harness and control the ultra-fast electron dynamics on sub-cycle
time scales and became fundamental to the research fields today known as attosec-
ond science [31] and extremely nonlinear optics [32, 33]. One of the resulting cen-
tral processes in strong-field science is high-harmonic generation (HHG), which is
well-known from atoms and molecules since decades and can impressively be de-
scribed by the conceptually straightforward 3-step model of ionization, acceleration
and stimulated recombination of electron wave-packets. In particular, the maximum
energy of recolliding electrons could quantitatively explain the energy cut-off in the
spectra of high harmonics and its scaling with field intensity [34, 35]. For the anal-
ysis of high harmonic emission from solids, which was intensely studied only since

1Tunneling dominates over multi-photon ionization for small Keldysh parameters [26],
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about a decade [36–38], it was, therefore, logical to search for similarities with the
gas phase picture, e.g. regarding the cut-off scaling [39, 40]. Interestingly, different
cut-off scaling behaviours as function of intensity were identified in solids, suggest-
ing that additional processes are significant compared to atomic targets. On the other
hand, also indications for similarities with the recollision picture were found in the
analysis of the phase dependence of harmonics from condensed matter systems un-
der two-color fields [41, 42]. Obviously, the physics in condensed matter systems is
more subtle. In addition to interband excitation [43], which is to some extent similar
to the gas phase case, also intraband motion in anharmonic conduction bands [39,40]
known as dynamical Bloch oscillations [44, 45] plays a major role and is absent in
atoms. Ultimately electron-electron and electron-ion scattering in the bulk as well
as plasma effects [46] are more complex than in atoms and are expected to lead to
further nonlinear contributions of the electron response.

Several studies support, that the HHG cut-off from solids can even exceed the
atomic limit due to strong interband couplings [47]. The possibility to generate or
even control the resulting broader spectrum is highly relevant for the technological
development of new broadband light sources [48] with potential for tabletop attosec-
ond laser pulse generation [38]. Furthermore, a higher reproducibility of HHG wave-
forms was reported in solids [49]. Finally, because of the more convenient technolog-
ical implementation of optoelectronics and nanoswitching devices using condensed
matter and nanostructured media, ultrafast science of solids is a field that currently
receives rapidly increasing attention [50, 51]. Since the first experimental observation
of harmonics from bulk solids [39] some of the fundamental concepts known from
gas phase HHG could be generalized to crystalline [41,52] and amorphous [53] solids.
However, the physics of HHG in solid shows several unique characteristics that dif-
fer from atoms and require a specific physical description. Today, a wide range of
computational methods to calculate high harmonic spectra from solids exists [54, 55]
based on the numerical solution of the time-dependent Schrödinger equation [44, 56]
(TDSE), semiconductor Bloch equation (SBE) [57, 58], and time-dependent density
functional theory (TDDFT) [59–61].

Whereas a multitude of experimental and theoretical works has studied the
physics of high harmonic generation in solids, the origin and physics of low harmonic
emission has so far found comparably little attention. One key concept that is linked
directly to strong field ionization dates back to Brunel, who predicted that the sub-
cycle modulation of the electron emission, with two steps per cycle, leads to a strong
temporal modulation of the free electron population that is accelerated by the field.
As a result of this modulation, low-order harmonics are predicted [62, 63]. First ex-
perimental signatures that support the existence of such type of harmonic emission
were reported in the gas phase [64]. Later, also the step-wise plasma density build-
up that underlies Brunels idea was confirmed directly in an attosecond tunneling
experiment in gases based on time-of-flight detection of generated ions [65], and at-
tosecond streaking experiments on surfaces [66]. However, these methods are not
directly applicable to bulk targets in order to verify the presence of a step-wise sub-
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cycle ionization as required for Brunel harmonics. Instead, an all-optical method was
put forward [67] in order to resolve the sub-cycle ionization via ellipticity changes
of the ionizing pulse as a result of the nonlinear absorption. However, so far no ulti-
mate verification of the presence of a step-wise sub-cycle ionization in solids has been
achieved.

A first study that reports experimental evidence for the presence of ionization-
induced low-order harmonic emission in dielectrics was published by the Baltuška
group [68]. With their setup, the authors could track the time-evolution of the har-
monic signal by sum frequency generation from two beams [69]. Their analysis re-
lies on the idea that ionization is driven by a strong infrared pump pulse while the
nonlinear response is probed with a much weaker time-delayed probe pulse. The re-
sulting delay-dependent wave-mixing signal, which was attributed to the ionization
response, was clearly detected for a linearly polarized pump beam, see Fig. 1.1 a, but
was absent for a circularly polarized pump beam b. The authors interpret these ob-
servations as a verification of harmonic emission due to step-wise ionization in the
linear case and explain the absence of emission with circular polarization with the
missing sub-cycle modulation of the instantaneous laser field. As a result of the lat-
ter, no ionization steps where expected. A similar behavior was found for various
wide bandgap materials such as soda lime silicate, CaF2, and MgF2. These results
directly motivated the question whether the harmonic emission signal can be utilized
to reconstruct the ionization dynamics.

Figure 1.1.: Two color harmonic wave-mixing signals for linear (a) and circular (b) pump
polarization, detected from a 0.5 mm thick fused silica plate. Figure adapted from [69].

The above-described signature, however, is only an indirect indication for har-
monic emission due to step-wise sub-cycle ionization and needs careful analysis. For
example, there may be other possible reasons for the vanishing signal in the circu-
lar polarization case such as the complete drop of the ionization yield when using
a circularly polarized pulse that has the same pulse energy as the linearly polarized
one. Due to the strong dependence of the ionization rate on the peak field strength
this trivial field reduction would effectively stop ionization. If, as will be shown here,
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the circularly polarized pulse is prepared with equal peak field strength, a careful
analysis of the ionization-induced process would predict an increase of the harmonic
yield, contradicting the logic of the original conclusion. In their paper, however,
Mitrovanov et al. do not specify if they have kept the field strength or pulse energy
constant in the comparison of the measurements with linear and circular pump pulse
polarization. Without this knowledge a conclusive interpretation seems impossible,
leaving the question for the physical picture unanswered.

The main goal of this work is to clarify the physical picture and to answer the
question if and how the emitted radiation is related to ionization and if it can be used
to characterize the ultrafast dynamics of ionization. It will be analyzed to which ex-
tent ionization steps can be verified, and how the effect of the emerging ionization
avalanche modifies the ionization dynamics. The latter aspect is particularly impor-
tant for the identification of optimal conditions for reliable reconstruction of the ion-
ization dynamics using the emitted fields arising from wave mixing.

A key idea pursued in this thesis is the analysis of all stages of the ionization
process regarding their impact on the harmonic emission. This explicitly includes the
electron transfer from the bound to the excited (or free) state that one would associate
with the tunneling process itself in strong field ionization in long wavelength fields.
Interestingly, this step was neglected by Brunel but will be shown to even play the
dominant role for specific conditions. In fact, the corresponding injection contribution
to the polarization response was routinely considered in the context of ionization-
induced absorption of gases [70] and solids [1, 71], but so far not considered as a
possible source of harmonics.

For the analysis of relevant mechanisms of harmonic generation, the nonlinear
contributions of injection, Brunel and Kerr effect are first compared by means of a
local analytical model that accounts for the effect of the tunneling rate on the non-
linear medium polarization. Furthermore, secondary processes such as electron scat-
tering from the bulk lattice, impact ionization as well as propagation effects are in-
vestigated, which require different numerical methods. The impact dynamics is cal-
culated using a rate-based kinetic model that resolves the full velocity distribution
of conduction electrons. For the following consideration of propagation effects, the
self-consistent computation of electromagnetic fields with high spatial resolution be-
comes necessary. Background is that the degree of phase matching, that is related
to the coherent superposition of fields emitted at different spatial points, affects the
amplitude of harmonic signals. This spatial accumulation is particularly relevant to
harmonics below the bandgap, which are much less absorbed by the medium than
higher-order harmonics [72, 73]. Besides harmonics, the incident pulse is modified
by propagation effects such as self-phase modulation or self-steepening [74]. Also
the absorption-induced clipping of the driving pulse at a threshold intensity, known
as the lawn-mower effect [67, 75] results in a substantial modification of the driv-
ing pulse. These effects can be in general accounted for by rate equations [23, 76]
and coupled with nonlinear pulse propagation models [77]. Typical carrier-resolved
models for nonlinear pulse propagation include the unidirectional pulse propagation
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equation (UPPE) [78], the forward Maxwell equation (FME) [79], and first-order prop-
agation equation (FOP) [70]. These approaches consider mainly the forward propa-
gating pulse. In our scenario, close to the optical breakdown regime, however, the
evolution of the local plasma density becomes very sensitive to slight changes in the
driving field, consisting of forward but also of reflected field contributions. Due to
the high nonlinearity of ionization, even a small increase in plasma reflectivity can
have a large impact on the energy deposition in the remaining part of the pulse. In
this work, we couple rate equations based on electron drift and temperature to the
explicit calculation of the full electromagnetic field via the finite difference time do-
main (FDTD) method [80–82] and address where ionization takes place as function of
time and which amount of pulse energy is deposited through various mechanisms.
The outline of this work is structured into the following chapters.

In chapter 2 the relevance of ionization-driven generation of low-order harmonics
is demonstrated on the basis of experimental findings where corresponding results
were published in [JLK+20]. Subsequently, a detailed characterization of the nonlin-
ear response is provided based on a local analysis that includes spectral amplitude
ratios and the phase of harmonics emitted by different mechanisms in chapter 3. The
effects of collisions and impact ionization on the phase and temporal structure of
emitted fields are discussed in chapter 4. Here, the determination of impact-specific
signatures is central to allow for the isolation of injection contributions. The lat-
ter are used in chapter 5 to reconstruct the sub-cycle modulated tunnel ionization
rate by means of a ptychographic method, which was first tested on simulated data.
The subsequent application to an experimentally measured harmonic is discussed,
supplementing the main conclusions of our publication [JLK+22a]. Next, the self-
consistent treatment of the nonlinear propagation via rate-coupled finite-difference-
time-domain (FDTD) simulation is discussed in chapter 6. The main use case is the
analysis of ionization dynamics in terms of transiently changing transmittance and
reflectance, with particular emphasis on the observation of ionization hot spots at the
backside of the medium. Due to the complex behavior observed in the transmission
direction, the nonlinear reflection of harmonics is investigated in chapter 7, allowing
for a much-simplified, direct connection between emitted fields and local nonlinear-
ities at the medium interface. For this ideal scenario, we study the full quantum
mechanical current using a numerical solution of the time-dependent Schrödinger
equation and identify tunneling-induced LOHG in the observed quantum trajecto-
ries. Finally, the results of this thesis are merged and considered in their entirety,
in chapter 8, to draw comprehensive conclusions concerning the research objectives
outlined at the outset.



2. Identification of Tunneling-Induced
Low-Order Harmonics

When a solid dielectric medium is irradiated by a sufficiently strong laser field, the
linear response of the medium that determines the refractive index is accompanied
by additional nonlinear contributions. With increasing intensity, several additional
effects become relevant. First, bound electrons show a fully reversible, nonlinear
Kerr-type response to the external field that results in a transient excited state pop-
ulation associated with the so-called virtual [83, 84] conduction band population. At
higher intensities, initially bound electrons are persistently excited to the conduction
band and the electromagnetic response of the medium becomes more complex, as
shown in Fig. 2.1. After ionization in the first step, this real electron population is
accelerated in a nonparabolic conduction band leading to the emission of intraband
harmonics [39, 44, 45] in step 2. Finally, in the third step, electrons emit access energy
upon recombination as interband harmonics [34, 35]. In the following, we show that
in addition to the intraband acceleration and to the interband recombination, both rel-
evant for high harmonic orders, the sub-cycle dynamics of the electron excitation in
step 1 leads to a particularly strong response at low harmonic orders. A corresponding
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Figure 2.1.: Mechanisms of harmonic emission in solids. The three steps of interband excita-
tion, acceleration of electrons and holes along the momentum axis, and recombination consti-
tute each a distinct nonlinear response with characteristic harmonic emission denoted as ion-
ization induced, intraband, and interband recombination harmonics. These highly nonlinear
mechanisms compete with the low-order perturbative Kerr-type response. Figure adapted
from [JLK+20].
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concept was proposed by Brunel, who predicted even for a purely sinusoidal motion
of continuum electrons in gas phase systems that the twice-per-cycle density modu-
lation at the peak of the driving field leads to low-order harmonic emission [62]. He
characterized the spectral fingerprint of this effect by a rapid fall-off with harmonic
order that does not lead to a spectral plateau. Even though consistent signatures
have been observed after the theoretical prediction also in experiments [64, 69, 85],
the highly nonlinear current associated with ultra-short electron injection through
the tunneling-barrier has not been considered so far. Therefore, the clarification of
the relative contribution of injection current compared to Brunel-type and other non-
linearities, including the perturbative Kerr-type response, is of particular interest in
the following sections.

The strategy of our research aims at providing evidence for a dominant injection
current at intensities near the damage threshold. Besides a strong pump beam, we
use an orders of magnitude weaker probe beam to gain time resolution via nonlin-
ear wave-mixing. This allows us to simultaneously detect the temporal signature at
multiple harmonic orders. Furthermore, we utilize the laser polarization degree of
freedom as a second, even more powerful diagnostic tool to expose that the underly-
ing mechanism for low-order harmonic emission is not the density modulation, but
the charge displacement in the excitation step. As a target, we first study amorphous
fused silica (SiO2), an isotropic nonlinear medium that is commonly used in a wide
variety of optical components. We exploit, that this wide bandgap material is trans-
parent for multiple low-order harmonics of our mid-infrared driving laser field. The
long wavelength ensures the tunneling picture to be prevalent over multiphoton ion-
ization in the excitation step.

2.1. Experimental setup and beam parameters

An overview of the experiment is provided in Figure 2.2. The experiment was set
up and conducted by P. Jürgens at the Max Born Institute Berlin in the collaborating
group of Prof. Dr. M. J. J. Vrakking using the following parameters. The subsequent
discussion is closely oriented on the corresponding publication [JLK+20] where fig-
ures are adapted from.

In this experiment low-order harmonics are generated in 500 µm thick amorphous
SiO2 (UV Grade fused silica, Corning 7980) by nonlinear wave mixing between a
strong mid-infrared pump pulse (λpu = 2100 nm, τpu = 140 fs and Ep,pu ≤ 40 µJ) and
a much weaker near-infrared (NIR) probe pulse (λpr = 0.8 µm, τpr = 45 fs and max.
Ep,pr ≤ 250 nJ). Further specifications of the Ti:Sapphire laser system and the optical
parametric amplifier used for pulse generation as well as the spectrometers for vis-
ible and near-infrared range can be found in [JLK+20] and [86]. Note, however, the
incommensurate wavelengths and pulse durations. These parameters were chosen to
spectrally separate wave-mixing signals in the harmonic side bands. A significantly
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2n kpump + kprobe
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k probe
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b

Figure 2.2.: a Two-color pump-probe setup: Linearly polarized pump and probe pulse, fo-
cused by off-axis parabolic (OAP) onto a-SiO2 and c-SiO2 samples. CaF2 lenses (L1, L2) are
used to collimate emitted harmonics, dispersed by CaF2 prism (P1) and UV-grade fused silica
prism (P2) onto an optical-to-ultra violet (VIS/UV) spectrometer. Beam splitters (BS) and di-
electric mirrors (DM) are used for simultaneous analysis of the probe beam on a photodiode
(PD) and near-infrared (NIR) spectrometer. Inset b, spatial separation of sum and difference
frequency signals. Figure adapted from [JLK+20] .

shorter probe pulse was used to improve the time resolution. Furthermore, close-
to-collinear focusing allowed to spatially separate the delay-dependent wave-mixing
from pump-only harmonics (see arrows panel b).

Focusing of the pump pulse was realized with a gold coated off-axis parabolic
(OAP) reflector (see panel a) with a focal length of 50 mm to a spot with a radius of
33 µm (intensity dropped by 1/e2), corresponding to a Rayleigh length of zR = 1.6 mm.
The probe pulse was collimated over a focal length of 300 mm down to a waist radius
of 75 µm, corresponding to a Rayleigh length of 22.4 mm. These parameters provide
that the experiment was conducted under relatively weak focusing conditions. In the
experiment, the target is positioned to optimize the detected signal.

Key parameter, that was varied besides the pump intensity, was the relative field
polarization direction between the linearly polarized pulses. Also, the orientation of
the two samples, i.e. the crystalline c-SiO2 and the amorphous a-SiO2, were varied
with respect to the field polarization direction, as discussed in the following sections.
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2.2. Experimental results

The main observation of this experiment are delay-dependent wave-mixing signals,
located at the sum frequencies of multiple pump photons and a single probe photon,

ωmix
n = 2n ωpu + ωpr, (2.1)

labeled by mixing order n. These wave-mixing harmonics are detected as function
of delay and wavelength, see Fig. 2.3 a. The absence of even-number wave-mixing
photons is attributed to the inversion symmetry of the sample. The lack of difference-
frequencies and harmonics without probe photons is attributed to angular selection
resulting from phase matching. Due to the finite angle αpu-pr = 5◦ between pump and
probe beam, all wave-mixing harmonics are emitted in different directions. This is
seen as follows.

a b

Figure 2.3.: a Delay-dependent harmonic spectrum showing the first four n = 1...4 wave
mixing signals ωn, at 12 TW/ cm2 pump intensity. b Vertical cuts of each signal along the
delay axis (dashed lines in a) show a common delay width τdelay = 63 fs. Colored curves are
shifted for better visibility. Figure adapted from [JLK+20].

Under the weak focusing conditions discussed here, the emission direction of har-
monics is given by the vector sum of pump and additional probe photon (Fig. 2.2 in-
set b). The sign of the wave vector agrees with the sign of the frequency contribution.
The detected wave mixing frequencies indicate that 2n net positive pump photons
need to be considered (orange arrows). All negative pump photons are compensated
by remaining positive pump contributions. The much weaker probe beam (pink ar-
row), on the other hand, contributes only one photon, either with positive or negative
frequency, that leads to emission directions on opposite sides of the optical axis de-
fined by the pump pulse (violet arrows). Furthermore, it is found from the inset that
the emission direction for n = 1...4 is much less affected for sum-frequency genera-
tion (violet arrow pointing upwards) as opposed to difference-frequency generation
(arrow pointing downwards). In the present experiment only signals in the sum-
frequency direction could be simultaneously collimated and analyzed on the detector
stage. In the following, the delay and intensity dependence of these signals is used to
identify the dominant generation mechanism.
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To exclude an ordinary χ(3)-Kerr-type wave-mixing mechanism, that would be
consistent with the frequency of the strongest signal (n = 1), we inspect the temporal
profiles, i.e. the vertical cuts (dashed lines in panel Fig. 2.3 a), in b (dark blue). It
is found that the delay dependence is significantly shorter than what is expected for
a χ(3) response (solid black line in b). This is already one strong argument against
the ordinary Kerr-type mechanism. Comparing also higher harmonic signals n =
2, 3, 4 on a normalized scale (blue, violet, and red), shows that all signals share the
same delay dependence, indicating that all signals are generated by the same non-
perturbative mechanism, of nonlinear order m > 3.

The recombination process can be excluded by examining the photon energy that
corresponds to the wavelength of emitted harmonics. It is noticeable that the pho-
ton energy 2.75 eV of the strongest signal at 450 nm, is significantly smaller than the
bandgap (7.7 eV). Therefore, electron-hole recombination is ruled out for the ob-
served signal.

To examine the role of an intraband mechanism, on the other hand, the experiment
was repeated in crystalline SiO2, where the sample was rotated about the propagation
axis of the pump beam, as indicated in Fig. 2.2 a by a blue arrow. Here a strong ori-
entation dependence, that is expected for intraband harmonics, was observed at low
intensities, see Fig. 2.4 a. However, close to the damage threshold, at 12 TW/ cm2 the
signal is isotropic, c.f. panel b, which is consistent with an ionization-driven mech-
anism. The formation of an electron-hole plasma was confirmed by determining the
maximal loss of transmission to about 6% of the probe beam through the focal vol-
ume, showing that the peak of the plasma build-up is well beyond 150 fs [87]. This in-
dicates that the plasma is indeed plausible for harmonic generation. Finally, as the ab-
sorption coefficient due to real-population transfer remains significantly below unity,
coherent wake emission, known from dense plasmas can be safely excluded, consis-
tent with reports of undercritical plasma buildup in the below-threshold regime [8].
These indications hint at the plasma generation via strong field tunnel ionization be-
ing the source for the observed signal. To further substantiate this conclusion the
nonlinear order of the observed process is examined next.

Figure 2.4.: Harmonic signal (blue) as
function of crystal orientation, shows
in a 4-fold symmetry at 4 TW/cm2

and in b an isotropic response at
12 TW/cm2. Simultaneously mea-
sured second harmonic generation
(gray) is used as reference for the
crystal orientation. Figure adapted
from [JLK+20]
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2.3. Metrology for the effective nonlinear order

To identify the generating mechanism, we present a new metrology for the effective
nonlinear order based on the comparison of the wave mixing signal for two polariza-
tion configurations. Starting point is the assumption that the physical response can
be approximated by a generic mth order nonlinear, instantaneous, local polarization.
For an isotropic medium the latter can be written as

PNL = ε0χ
(m) |E · E|µ E, with µ = m−1

2 . (2.2)

Here the nonlinear susceptibility is so far just a parameter. To determine the effective
order of nonlinearity m we use the specific dependence of the signal yield on the
relative polarization direction of the pump and probe fields,

E =
Êpu

2 eiωput +
Êpr

2 eiωprt + c.c. . (2.3)

Inserting this total field into eq. (2.2) yields a sum of terms that reflect the result-
ing mixing signals. As an important additional prerequisite for a simple analysis, we
utilize that the probe field has a significantly smaller amplitude |Êpr| � |Êpu|. In this
case, we can neglect all terms containing the probe field beyond linear order, as they
are so small. As a result, only mixing signals containing one probe field term remain
(apart from the pump-only mixing terms that we are not interested in). Considering
the resulting mixing signals, i.e. terms linear in probe field, it is easy to see that in the
perpendicular scenario only terms proportional to |Êpu · Êpu|µ Êpr are non-vanishing.
This effectively restricts the probe field to the last field factor of PNL, because all scalar
products with perpendicular pump and probe photon are zero. This restriction is
lifted for the parallel polarization configuration. In the parallel case, the probe field
can enter in any of the m field factors, effectively increasing the polarization ampli-
tude such that the corresponding intensity ratio between observed mixing signals, is
directly related to the nonlinear order,

m =
√
I||
I⊥
. (2.4)

It turns out that this quite brief consideration is key for the identification of the exper-
imental signal. A more formal derivation is provided in chapter 3 to discuss also cir-
cular polarization configurations, examine scaling with harmonic order, and discuss
how the delay dependence of the observed signals can be related to the nonlinear
order m.

Here, the effective nonlinear order is measured, according to eq. (2.4), by repeating
the experiment for both polarization scenarios in amorphous SiO2. A systematic scan
of the effective nonlinear order as function of pump intensity is shown in Fig. 2.5.
While violet data points show at low intensities a nonlinear order of m = 3, that can
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be attributed to the χ(3) response, a steep increase beyond values of 10 is seen close
to the damage threshold. Error bars indicate statistical deviations, corresponding to
maximum intensity fluctuations over 10 shots in each configuration, where the sam-
ple was constantly moved in the transverse direction to supply fresh media. Outliers
beyond 15 TW/ cm2 are attributed to permanent damage of the target, verified by
analysis with an optical microscope. The fact that the transition to high nonlinear
orders m > 10 is seen close to the damage threshold is strong evidence for the ion-
ization response for two reasons. First, damage of the material is a clear indicator
that a high plasma density was formed within one laser shot. Second, for the present
parameter set, about 13 pump photons are needed to overcome the bandgap, giving
a rough estimation for the nonlinear order that is expected. This agrees quite well
with the observation. To examine which mechanism is responsible for the ioniza-
tion mechanism, a simple semi-classical ionization radiation model for the nonlinear
source current is compared to the experimental observation, next.

2.4. Ionization-induced nonlinearity

For the source current J we consider the non-relativistic strong-field limit and specify
the dipole acceleration ∂J

∂t
by a commonly used [70], semi-classical electron transport

model, that governs the effect of the step-wise increase of conduction band popula-
tion, associated with Brunel emission [62], and tunneling-injection. Starting point to
describe ionization-induced harmonics is the polarization due to free charges,

Pfree(t) = n0 ρ q 〈x(t, tb)〉, (2.5)

with molecular density n0, normalized ionization degree (conduction band occupa-
tion) ρ, electron charge q = −e, and the displacement x where the dependence on
birth time tb is accounted for, by averaging over the ensemble of all electron trajecto-
ries. The first time derivative of this is the free current. Since differentiation of av-
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Figure 2.5.: Measured effective order of
nonlinearity (left axis), extracted from in-
tensity ratio parallel versus perpendicular
(right axis) of the n = 1 wave mixing signal
(violet). Prediction of ionization-radiation
model including the Kerr type nonlinear
refractive index, the Brunel and the injec-
tion mechanism shown by solid and dashed
lines. Figure adapted from [JLK+20].
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eraged quantities is an important step for the identification of physical mechanisms
discussed in the following, it is briefly summarized.

2.4.1. Ensemble derivatives

For derivatives of mean values, the ordinary product rule accounts for the fact, that
the number of N ensemble elements (conduction band electrons) can change,

d
dt
(
N〈x〉

)
= N〈∂x

∂t
〉ex. + ∂N

∂t
〈x0〉new (2.6)

which follows directly from the difference quotient (Appendix A.1). In the first term
on the right, the derivative of the displacement x of all elements that are already exist-
ing (ex.) is evaluated and then averaged. The second term corresponds to the average
initial value x0 of new elements, generated at the rate ∂N

∂t
. For higher derivatives, ex-

isting electrons do only contribute in terms where N is fixed,

d2

dt2
(
N〈x〉

)
= N〈∂

2x

∂t2
〉ex. + ∂N

∂t
〈∂x0

∂t
〉new + ∂N

∂t

∂〈x0〉new

∂t
+ ∂2N

∂t2
〈x0〉new. (2.7)

On the right, it is seen that derivatives of N are multiplied with initial conditions of
new elements, indicated by a subscript zero. Here 〈∂x0

∂t
〉new denotes the average initial

velocity. The change of the avg. initial location with time is denoted as ∂〈x0〉new
∂t

in the
third term.

2.4.2. Nonlinear current and dipole acceleration

In the scenario discussed in the eq. (2.5), it is assumed that all electrons at a fixed birth
time, share the same initial conditions. Applying the ensemble derivative eq. (2.6) the
current reads,

J(t) = ∂Pfree

∂t
= qn0

(
ρ〈ẋ(t, tb)〉+ ρ̇x0(t)

)
(2.8)

where 〈ẋ〉 is the average velocity of conducting charge, and x0 is the dipole length
of charge that is separated at the time t. Further differentiation results in the dipole
acceleration, that reads according to eq. (2.7)

∂J
∂t

= ∂2P
∂t2

= qn0

[
ρ〈ẍ〉+ ρ̇v0 + ∂

∂t
(ρ̇x0)

]
, (2.9)

where the last term takes explicitly the time dependence of the tunnel exit x0 ≡ x0(t)
into account. The initial velocity of carriers, born during [t, t + dt], is denoted by v0.
The average acceleration of free charge 〈ẍ〉 is driven by the external field and colli-
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sions,

〈ẍ〉 = qE
me
− 〈ẋ(t, tb)n0σtrans〉 (2.10)

where σtrans is the transport cross section, damping the ballistic current. To determine
an upper limit for the acceleration-driven Brunel response, we now switch off the
effect of damping which will be discussed separately in chapter 4. With this simplifi-
cation, the dipole acceleration is found as,

∂J
∂t

= qn0

[
q

me
Eρ+ v0ρ̇+ ∂

∂t
(x0ρ̇tun)

]
. (2.11)

2.4.3. Physical picture of relevant nonlinear mechanisms

To provide a physical picture of nonlinear effects, relevant in our scenario, we depart
from perturbative harmonic generation that stems from the polarization of bound
states as seen in Fig. 2.6 panel a that is observed for all media. Here the negatively
charged electron cloud in gray (orbital for gases, Wannier wavefunction in solids),
is displaced with respect to the parent ion nonlinearly by a strong driving field. In
solids, this quasi instantaneous Kerr polarization [74] is associated with virtual con-
duction band population [1, 84] that is tightly linked to the presence of the driving
field.

b ca

+−

P −J
Inj

Figure 2.6.: Mechanisms of harmonic generation included in the semi-classical ionization
radiation model: a Polarization (blue) of bound states, electron distribution (gray) shifted
wrt. parent ion in; b dipole acceleration (red) sharply modulated by a step-wise increase of
free carrier density (gray) leading to the emission of Brunel harmonics; c injection current
(yellow) generated by charge displacement in quasi-static tunneling.

A corresponding picture for ionization-induced components is obtained from the
interpretation eq. (2.11). The first term leads to harmonic generation through the
charge acceleration of modulated conduction band population. This emission of so-
called Brunel harmonics is understood as follows. Since the ionization rate is strongly
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field dependent, ρ increases in a step-like manner every half-cycle of the laser field,
shown as gray area in panel b. As a result, the dipole acceleration (red) shows an
abrupt increase in magnitude at the crest of the field, leading to high-frequency con-
tributions.

The next term in eq. (2.11), accounts for multiphoton excess energy that is trans-
ferred to the initial velocity v0. In the scenario considered here, this velocity is negli-
gible due to the low photon energy. Note that the first two terms have already been
considered in the seminal work by Brunel in the context of harmonic generation in
gases [62] and were studied by means of particle-in-cell (PIC) simulations for laser-
induced plasmas by Bauer et al. [63].

There is, however, a third term, which was not considered in the context of har-
monic emission so far. It is due to the current created by charge displacement in
field-driven tunneling. In panel c it is seen that the electron is moved a finite distance
from the bound state to the tunneling exit, located at x0. While this picture applies
directly to atoms, the injection dynamics in solids is in general more complicated [88].
Nevertheless, current contributions equal to this injection current, i.e. parallel to the
driving field are necessary to realize energy transfer from the field to the electron.

2.4.4. Role of the injection current for energy conservation

The important role of the injection current for energy conservation can be understood
by the following consideration. Assuming electrons to curry no kinetic energy after
tunneling, the absorbed power density required to promote electrons at tunneling
rate ρ̇tun across the gap energy Eg, must be balanced by a decrease of energy density
u̇EM < 0 of the electromagnetic field∫

d3x [n0 ρ̇tun(x)Eg + u̇EM(x)] = 0 (2.12)

where the volume integral contains the electron wave packet. According to Maxwell’s
equations, absorption must be realized by a current

−u̇EM = Jinj · E. (2.13)

This notion is commonly used in plasma simulations where the current is determined
from intensity-dependent multi-photon ionization rate eq. [89]. Here, we consider the
long wavelength limit where field-induced tunneling is relevant. The corresponding
injection current Jinj is understood as a charge transfer from the atom towards the
classical tunneling exit,

Jinj = n0 ρ̇tun q x0. (2.14)
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According to Fig. 2.6 a direct relation between the charge displacement and the
bandgap

x0 = Eg

q

E
|E2|

, (2.15)

can be established for an instantaneous, field-driven excitation process. From this
short, semi-classical analysis it becomes clear that the charge transport due to the de-
creasing wave function on the inner side and simultaneously increasing wavefunc-
tion on the outer side of the tunneling barrier is key to fulfill the energy balance in
tunneling-induced electron excitation. Even though considered here for one atom, it
is clear that energy balance must also be fulfilled in a solid, that can be pictured by the
tilt of the real-space energy landscape in the focus region. Albeit the important role
of the injection current for energy conservation and the fact that ultra-short bursts of
the injection current are only emitted during a very short period at the crest of the
field, it was previous to this study not reported as a mechanism for harmonic emis-
sion. In the following, the numerical evaluation of the full ionization current is used
to show that the injection current leads eventually to the strongest contribution and
is responsible for the swift increase in effective nonlinearity.

2.4.5. Numerical analysis of injection and Brunel harmonic
contributions

The nonlinear current eq. (2.11) is solved numerically for the experimental pulse pa-
rameters, using the Asommov–Delone–Krainov (ADK) tunneling rate [90]. As in the
experiment, the intensity ratio of the wave-mixing harmonic is examined. To identify
the relevant contribution, different terms of the nonlinear current are switched on,
see Fig. 2.5.

Good agreement with the experimental data was only found when the injection
contribution was included (compare solid orange line with violett dots). Considering
just the Kerr plus the Brunel contribution, by setting the injection contribution to zero
in the simulation (orange dashed line), shows a significantly smaller increase in the
effective nonlinearity, and the lift-off from the purely perturbative third-order Kerr
response (dashed gray) shifts to higher intensities.

It was verified that this simulation result does not change qualitatively with the
bandgap parameter. In Fig. 2.7 panel a, it is seen that increasing the gap energy just
shifts the lift-off to higher intensities. For the same set of gap energies, it is found
that the emitted relative radiative power of the injection contribution (solid lines in
panel b), is stronger than the Brunel response by at least one order of magnitude
(dashed lines, same color) for all inspected intensities. Further, the lift-off in nonlin-
earity corresponds to the intensity where injection and Kerr response (gray dashed)
become equally strong, seen by the comparison of both panels.
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Figure 2.7.: Bandgap dependent lift-off of the effective nonlinearity a. Radiative power of
Injection and Brunel harmonic, relative to Kerr harmonic b. Colors encode the bandgap pa-
rameter in both panels.

From the agreement between simulation and experiment it is found that the in-
jection mechanism is the dominant contribution to low-order harmonics at high in-
tensities. This result exemplifies that tunneling-induced ionization results in a highly
nonlinear medium response. To understand the high value of nonlinear order beyond
m > 10 and the relative strength between injection and Brunel mechanism we inspect
the role of the tunnel ionization rate in the next chapter.

2.5. Conclusion

In conclusion, the presented metrology, based on repeated low-order harmonic wave-
mixing measurements where only the polarization direction of the weak probe beam
needs to be changed, turned out to be a very robust tool to determine the effective
order of the nonlinear response. The robustness of this technique is due to the pump
intensity that can be kept fixed for each data point such that active focal volume and
the condition of the emerging plasma dynamics remains comparable. Here harmonic
generation from a process of high nonlinearity was observed showing the strongest
response at low harmonic orders. Whereas experimental results allowed to exclude
anharmonic intraband driving and interband recombination, the emergence of the
detected response close to the damage threshold was interpreted as an indicator of an
ionization-driven process. By comparison with a simple numerical, ionization radia-
tion model the detected lift-off signature of the effective nonlinearity was attributed
to the tunneling injection current. This strong-field tunneling injection signal was
found well below the threshold for permanent modification and therefore allows for
the detection of plasma formation prior to severe material damage. The dominance
of the injection contribution will be further examined by a formal scaling analysis of
the local nonlinear response and in particular of ionization-induced nonlinearities in
the following chapter. Furthermore, this will allow to connect the measured order of
nonlinearity with the observed time dependence of harmonics.



3. Local Strong-Field Medium Response

In the previous chapter, the effective nonlinearity extracted from the polarization de-
pendence of the two-color wave mixing was used to characterize the dominant mech-
anism that emits harmonics in our experimental scenario. In the following, we dis-
cuss the effective order of nonlinearity from a general point of view, allowing for a
detailed analysis of the spectral response. A key concept is the degeneracy of wave-
mixing contributions. It explains the relative strength of harmonics and motivates
why the highly-nonlinear ionization-driven response generates particularly strong
fields at low harmonic orders. To understand corresponding spectral weights at the
detector, the coupling between the nonlinear current and the electric far field is ad-
dressed. Here, we focus on the simplest case of thin media, which allows us to pre-
dict distinct intensity scalings with harmonic frequency and driving field for Brunel
and injection harmonics. Further, mechanism-specific properties such as time depen-
dence and the relative phase with respect to the driving field are identified, provid-
ing means to separate signal contributions. Their discussion is motivated on the one
hand by several recent reports where low-order harmonics have been attributed to
the Brunel mechanism [85,91–93], also known for example from terahertz generation
via zeroth order harmonic [94–96] and by the injection mechanism on the other hand,
that has been observed in further recent works, e.g. in EUV high-order wave mix-
ing [97] with potential applications for coherent XUV light sources [98]. Therefore,
we present multiple complementary signatures that allow to disentangle the contri-
butions of the nonlinear mechanisms to the harmonic response for a broad range of
laser and material parameters.

Starting point of this chapter is the nonlinear wave equation of the transverse
electric field,

∇× (∇× E) + 1
c2
∂2E
∂t2

= − 1
ε0 c2

[
∂2PL

∂t2
+ ∂2PNL

∂t2

]
(3.1)

that governs the response of a medium to an incident light field. The source terms on
the right, consisting of the linear and nonlinear polarization PL and PNL, respectively,
include possible current contributions of excited carriers via J = ∂P

∂t
. All polarization

terms are dependent on the local driving field. For simplicity, the medium perme-
ability is assumed to be given by µrµ0 = 1

ε0c2
i.e. the vacuum speed of light c and the

permittivity ε0. Now, we continue to use the general form for the nonlinear polariza-
tion, introduced in sect. 2.3, to develop a simple yet sufficient local model, that allows
for a detailed interpretation of the experimentally observed signatures.

19
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3.1. Nonlinear polarization

For the simplest case of isotropic media, an instantaneous nonlinear response can be
expressed as a power series with respect to the electric field, in terms of the mth order
susceptibility χ(m) and summation index µ = m−1

2 ,

PNL = ε0
∑
µ

χ(m) |E · E|µ E. (3.2)

Based on this ansatz we derive spectral weights for harmonic generation in the single
and multi-color case.

3.1.1. Single-color polarization and degeneracy weights

Using a plane wave ansatz,

E = Ê
2 e

i(ω0t−k0z+φ0)︸ ︷︷ ︸
E+

+ Ê
2 e
−i(ω0t−k0z+φ0)︸ ︷︷ ︸

E−

(3.3)

for the local field (z = φ0 = 0) and picking one term of the sum (3.2), with fixed
order m yields

P(m)
NL (t) = P̂(m)

NL
2

(
eiω0t + e−iω0t

)m
with P̂(m)

NL = 2ε0 ex χ
(m) Êm

2m . (3.4)

The multiplication of bracketed field terms can be carried out explicitly and results in
a spectral decomposition of the polarization

P(m)
NL (t) = P̂(m)

NL
2

m∑
h=1,3,5...

D
(m)
h eihω0t + c.c. , D

(m)
h =

(
m
m+h

2

)
= m!

m+h
2 ! m−h2 !

. (3.5)

Here the nonlinear polarization amplitude1 P̂(m)
NL shows the same dependence on the

mth power of the field amplitude, Êm, for all harmonic orders h. The single color
degeneracy factor D(m)

h governs the relative amplitude between different harmonics
h and is here given by a binomial coefficient. Visualizing degeneracy coefficients by
Pascal’s triangle in Fig. 3.1, where positive frequency contributions at odd harmonic
orders are shown in blue, it is seen that for the m = 3 polarization, the response at
the fundamental, h = 1, is 3-fold degenerate and thus 3 times larger than the third
harmonic. This is because there are three possible permutations to combine two pos-
itive with one negative photon, as indicated by the box-arrow notation (inset lower
left). For the third harmonic h = 3 the degeneracy is reduced to one, as all photons

1Time domain amplitudes are indicated by a hat over respective symbols throughout this thesis.
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Figure 3.1.: Degeneracy of low-order wave mixing follows the structure of Pascal’s triangle.
The number of odd-order permutations leading to positive harmonic frequency are shown
in blue. For the third harmonic response at the fundamental frequency (m=3, h=1) all three
possible combinations of positive (red arrow up) and negative (red arrow down) photons are
shown in the inset.

must contribute to the positive frequency. This trend of decreasing degeneracy is
confirmed also for higher nonlinear orders, such as m = 5 (see lower blue tiles).

3.2. Emission of harmonics from nonlinear source terms

The previous section provided that the relative strength between different harmonic
contributions of the polarization is understood by degeneracy ratios. To explain the
relative strength between emitted harmonics, it is further necessary to link the lo-
cal response to the detected far field, by solving the inhomogeneous wave equation,
given in eq. (3.1). Goal of this section is to understand that in the simplest case where
phase matching is negligible, emitted harmonics are proportional to the nonlinear
current, i.e. the first derivative of the nonlinear polarization ∂PNL

∂t
. This relationship is

important firstly for the relative phase between local current and detected field and
secondly for the characteristic spectral amplitude fall-off with frequency. The latter
will be considered later when using the injection response for the reconstruction of
the ionization dynamics.

3.2.1. Solution of the nonlinear wave equation for a thin film

For now, we consider the simplest scenario of a nonlinear medium with thickness
dz � λ much less than the wavelength of the incoming plane wave. This reduces the
problem to one dimension. Solving the wave equation with the spatial delta function
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ansatz for the source terms shows that emitted fields are proportional to the negative
current,

Eh(z, t) = − dz
2nL

√
µ0

ε0
Jh (tr) , (3.6)

at the retarded time tr = t− |z|
c

, with linear refractive index nL, as explicitly calculated
in appendix B.1, also see e.g. [63]. Eq. (3.6) is particularly important, as it connects the
amplitude and phase of each harmonic h of the field, to the corresponding harmonic
contributions of the local current. This result is idealized [99], as the infinite size
of the thin film removes any dependence on the propagation distance z such that
the near and far field behavior become the same. We come back to this point when
examining the effect of the focusing geometry, after discussing the implications for
the observable spectral weights.

3.2.2. Spectral weights of harmonic far-field response

We determine the frequency dependence of the spectrum based on the two, previ-
ously discussed building blocks, namely the polarization response eq. (3.4) with de-
generacy eq. (3.5) that we insert into the relation of the harmonic field (3.6). Using the
proportionality of the detected intensity to the squared harmonic field, yields,

I
(m)
out (hω0) ∼ χ(m)2

Im0 ω
2
0︸ ︷︷ ︸

α(m)(I0,ω0)

1
2m

 m
m+h

2

2

h2

︸ ︷︷ ︸
β(m)(h)

, (3.7)

which shows two important properties. First, for a given nonlinear order m all emit-
ted harmonics scale with the same intensity dependence Im0 and grow quadratically
with the driver frequency ω2

0 , summarized in scaling factor α(m). Second, the rela-
tive strength between different harmonic orders is given by the spectral weight β that
comprises the degeneracy weights of the local response via binomial coefficients and
the h2 factor from the scaling with dipole velocity. The spectral weight is shown in
Figure 3.2, as function of harmonic order. Even for high nonlinear orders m, low har-
monics dominate the output signal. In particular, for nonlinear polarization terms
with nonlinearity orders up to m = 13, the third harmonic remains the dominant sig-
nal. This means that for sufficiently large nonlinear susceptibilities and fields, low-
order mixing signals are eventually dominated by the high-order nonlinear polariza-
tion terms. This conclusion is essential for this work and motivates that low-order
mixing signals enable the characterization of the high-order nonlinear response of
the medium subject to strong fields.
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Figure 3.2.: Spectral weight coefficients β of harmonic intensity yield, eq. (3.7), for negligible
phase mismatch (thin film or flat dispersion limit).

3.2.3. Role of transverse beam profile for spectral amplitudes

In the following, we show that this one-dimensional result for the spectral weight
structure (Fig. 3.2) can be directly transferred to the paraxial scenario, present in
the experiment. At first glance, the proportionality of the harmonic field to the lo-
cal dipole velocity seems surprising, when examining the acceleration character of
source terms in eq. (3.1), or comparing to the far field behavior of Hertzian dipole
emitters (Appendix B.2), and has led to many opposing positions in the literature.
Several authors use the dipole acceleration [100–103] due to finite size [104,105] while
also the dipole velocity [106] or the charge displacement of the dipole [34, 107, 108] is
used to predict harmonic spectra. To resolve this issue, Baggesen and Madsen argue
that in the one-dimensional scenario (previously discussed), the build-up of waves
is proportional to the dipole velocity [109, 110]. In a comment on this paper [111],
Perez-Hernandez and Plaja argue that the one-dimensional scenario is not valid, and
the three-dimensional case, leading to the dipole acceleration, must be considered in-
stead, a notion that is also adapted in other works [93]. In the following section, it
is discussed that both arguments are relevant and that beam and detection geometry
have to be considered.

In the relevant three-dimensional case, not the entire film is irradiated, but an
incident Gaussian beam profile is assumed. The profile of the incident beam is in-
dicated in Fig. 3.3 by red lines. The nonlinear polarization of order m > 1 shows a
smaller transverse Gaussian amplitude profile (see gray color gradient). The emitted
harmonic field is predicted by the thin film result, eq. (3.6), but only on length scales
where the polarization gradient is negligible, that means on the surfaces of the film
(shown in gray). This local harmonic field profile Êfilm

h (r) at z = 0 (indicated in blue)
is sufficient to see, that all harmonics are Gaussian beams and share the same reduced
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Figure 3.3.: Incident Gaussian beam (red) with waist w0 (red arrows) drives high order non-
linear polarization in a thin film (gray color gradient), defining the waist of several emitted
harmonic orders (blue arrows and vertical profile) with distinct beam divergence (blue to vi-
olet dotted lines). The entire beam profiles captured by a detector (orange) in the far field
corresponds to emission proportional to dipole velocity. Spectra consistent with dipole accel-
eration (see main text) are only observed on axis (smaller brown detector).

waist w(m)
0 = w0√

m
(blue to violet emission cones2). From the frequency dependence of

the Rayleigh length, however,

zR = π w2
0

λ
= w2

0
2c ω , (3.8)

it is found that the beam width in the far field z � λ ,

w(z) = w0

√
1 +

(
z

zR

)2
, (3.9)

becomes inversely proportional to the harmonic frequency wfar ∼
√
m
ωh

. This finding
that different harmonics show distinct divergence leads to two conclusions.

Emitted fields on axis show spectral fall-off as the dipole acceleration. First, on
axis (r = 0) that is in the center of the detector (brown half-circle), the spectrum in this
Gaussian beam scenario is indeed modified compared to the plane wave discussed
before. Evaluating the analytic Gaussian beam yields that the on-axis far-field grows
with harmonic frequency ωh,

Êfar = Êfilm
h

w2
0

2cz ωh ∼
1
z

∂̂Jh
∂t

, (3.10)

2For a sub wavelength thick film emission in both directions is expected. For clarity, here only for-
ward emission is shown, which dominates for finite targets due to phase matching. Reflected
contributions are discussed in chapter 7.
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for full calculation see Appendix eq. (B.11)–(B.17). Qualitatively, this can be viewed as
an effect of the increasing collimation of harmonics (see dotted lines). Formally, the
linear frequency enhancement of high spectral components has the same structure
as a temporal derivative. Together with the thin film result, eq. (3.6), the origin of
the on-axis spectrum can be linked to the amplitude (indicated by hats in eq. (3.10))
of the dipole acceleration, similar to the far-field result of the Hertzian dipole (Ap-
pendix B.2).

Spectral fall-off of integrated beam profile is consistent with dipole velocity. The
second more important conclusion is that the beam divergence effect considered
above needs to be compared to the size of the detector. As sketched in Fig. 3.3
harmonics (dotted) show less divergence than the driver (red solid line), as long as√
m
h

< 1. This condition is only for the third harmonic not fulfilled when assuming
a representative ionization-induced nonlinearity of order m = 11 (as earlier found
in Fig 2.5). In the present experiment, a collimation lens (L2 in Fig. 2.2) ensures that
the entire beam is captured by the detector. For a corresponding calculation of the
intensity spectrum, it is, therefore, necessary to integrate the squared far-field profile
of the harmonic Gaussian beams,

Êfar(r) = Êfilm
h (r = 0) w0

w(z, ωh)
· e−

(
r

w(z,ωh)

)2

, (3.11)

over the entire transverse plane. In this step, all dependencies on the harmonic fre-
quency cancel (c.f. Appendix (B.18)–(B.23)), showing that the detected yield is simply
proportional to the squared nonlinear current,

I
(m)
out (hω0) ∼

∫ ∞
−∞

2πr dr |Êfar(r)|2 = πw2
0
|Êh|2

2 ∼ |Ĵh|2 = |ω P̂(m)
NL |2. (3.12)

From this section, we conclude that the spectral weight structure, measured on
axis is slightly modified through increasing collimation of high harmonics. When the
full beam profile is captured, however, the paraxial scenario establishes for spectral
amplitude a one-to-one correspondence between harmonic field and negative dipole-
velocity. In the next section, the analysis of the local response is generalized to mul-
tiple colors, that allows to mitigate two essential difficulties, firstly, that an intensity
scan is less straight-forward as the active focal volume changes and secondly that
there is very limited access to intra-pulse or sub-cycle dynamics.

3.3. Two-color wave-mixing

In the two-color scenario, further opportunities to characterize the source of harmonic
generation emerge, as beam polarization and time delay become available for the ex-
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traction of additional information. One important feature in the two-color scenario
is that wave-mixing channels at new frequencies appear and that previously existing
contributions are affected through additional permutations of positive and negative
pump and probe frequency contributions, which have been observed for example in
ultrahigh-order wave-mixing experiments [112]. Here we use a general plane wave
description, that governs the well-known special case of polarization-dependent
cross-phase modulation (XPM), that readily allows to develop a polarization-based
metrology for the effective order of nonlinearity.

3.3.1. Parallel polarization scenario

We depart from the (parallel polarized) two-color plane wave scenario, where the
superposition of four phase terms,

E =
Êpu

2
(
eiωput + e−iωput

)
+

Êpr

2
(
eiωprt + e−iωprt

)
, (3.13)

yields the mth order contribution to the nonlinear polarization

P(m)
NL (t) =

m∑
hpu,hpr

P̂(m)
hpu,hpr

2 D
(m)
hpu,hpr

ei(hpuωpu+hprωpr)t + c.c. . (3.14)

Now the degeneracy factor is described by the multinomial coefficient,

D
(m)
hpu,hpr

=
(

m

N+
pu, N

−
pu, N

+
pr, N

−
pr

)
= m!
N+

pu! N−pu! N+
pr! N−pr!

, (3.15)

where the N describe the number of superimposed pos. and neg. photon terms,
e±iωpu/prt. Since the harmonic order on the left-hand side, is given by the difference of
positive and negative contributions h = N+ − N−, it is clear that in general multiple
channels can form one particular frequency. To avoid unnecessary complication, ex-
amples for low amplitude probe beams are discussed in the following where frequen-
cies of interest, ωmix

n = 2nωpu +ωpr, contain only one probe photon. This simplifies the
degeneracy in the parallel case to

D||n =
(

m

µ+ n, µ− n, 1

)
with µ = m−1

2 . (3.16)

The simplest possible application of this formal result is cross-phase modulation, that
is discussed as an example to illustrate the physical relevance of eq. (3.16). We em-
ploy the same line of argumentation, as for the motivation of the eff. nonlinearity in
chapter 2.
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3.3.2. Degeneracy in self-phase and cross-phase modulation

It is well known that Kerr-induced cross-phase modulation for parallel polarization
is stronger than self-phase modulation [74]. This fact can be directly understood
from the analysis of the degeneracy factors in table 3.1. The number of permutations
of the self-phase modulation term 2E+

puE
−
pu in the single color case (first column),

increases for the parallel cross-phase modulation case, corresponding to E+
puE

−
puE

+
pr

(center column). For weak probe fields, contributions with more probe photons, such
as 2E+

prE
−
pr, become irrelevant and are not included. Next, we compare parallel and

perpendicular cross-phase modulation scenarios that are key to understand the ear-
lier introduced link between effective nonlinearity and intensity ratios.

single color two color

parallel pol. || perpendicular pol. ⊥

Dself =
(

3
2,1

)
= 3 D

||
cross =

(
3

1,1,1

)
= 6 D⊥cross =

(
2

1,1

)
= 2

Table 3.1.: Degeneracy of single color and two color scenario given by permutation number of
positive (up) and negative frequency contributions (down) of pump (red) and probe photons
(blue). Notation corresponds to the inset in Fig. 3.1 .

3.3.3. Intensity ratio: Parallel versus perpendicular scenario

The perpendicular polarization case (third column, table 3.1) shows different degen-
eracy due to the formal structure of the nonlinear coupling. For the considered inver-
sion symmetric, isotropic medium, electric fields are multiplied by scalar products
P(m)

NL ∼ |E · E|µ E (as discussed in eq. (3.2)), which is indicated by grayed boxes in
the symbolic notation. Consequently, all scalar products with perpendicular polar-
ization components must vanish, effectively restricting the probe photon to the last
term and only the number of pump photon permutations (here two: up-down and
down up, see red arrows in the third column) is relevant. This reduces the number of
permutations by 1

m
compared to the parallel case. Notably, this argument applies to

all nonlinear mixing signals with one probe photon ωmix
n ,

D⊥n =
(

m− 1
µ+ n, µ− n

)
. (3.17)
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Dividing eq. (3.16) by eq. (3.17) yields that the order of the mechanism equals the
degeneracy ratio that is effectively accessible through the root of the intensity ratio,

m = D||n
D⊥n

=
√
I ||

I⊥
. (3.18)

A second important finding from the analysis of the parallel versus perpendicular
scenario concerns the polarization direction of the harmonic.

3.3.4. Polarization direction of wave-mixing harmonics

In table 3.1, it is seen that the two-color wave-mixing signal is in the parallel and
the perpendicular scenario polarized along the probe polarization direction (vectorial
component shown in the white box). This theoretical prediction was confirmed in the
experiment, for the perpendicular scenario, by inserting a polarizer into the beam
(between the first lens (L1) and the beam splitter (BS), see Fig. 2.2). Scanning for
different orientations the intensity of the harmonic signal, Fig. 3.4 , it was verified that
the probe (red) and n = 1 harmonic (violet) are both polarized in the same direction,
while the pump (yellow) is perpendicular.

Mathematically, the results of the preceding sections can be summarized by writ-
ing nonlinear polarization contribution to the ωn signal in both scenarios (parallel and
perpendicular polarization) as,

P(m),||/⊥
NL,n = ε0χ

(m)D||/⊥n

Êpu

2

m−1

E+
pr e

i2nωpu + c.c. (3.19)

Figure 3.4.: Experimentally measured signal yield for the perpendicular scenario as function
of polarizer angle. The polarization direction of harmonic wave-mixing signal is oriented
along the probe polarization direction. Figure adapted from [JLK+22a].
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For stronger probe beams the degeneracy analysis predicts for the perpendicular sce-
nario, that the parity (even/odd number) of contained probe photons determines the
polarization (parallel to pump/parallel to probe).

A similar behavior is seen when circular polarization for the pump is considered
next. Switching from linear to circular pump polarization is in the literature proposed
[69] as a cross-check to turn off ionization-induced harmonics. To critically review
this notion, the next goal is to derive an expressions analogous to eq. (3.19) for circular
pump polarization and to examine how the degeneracy and output polarization are
affected.

3.3.5. Circularly polarized harmonics in two color case

Considering a circularly polarized pump field, with equal amplitude Êpu as before,

E◦(t) = Êpu(ex + iey)
eiωput

2︸ ︷︷ ︸
E+
◦

+ Êpu(ex − iey)
e−iωput

2︸ ︷︷ ︸
E−◦

, (3.20)

it is found by simple algebraic calculation3 that no harmonics are generated under
isotropic conditions in the single color case,

|E◦ · E◦|µ E◦ = Êm−1
pu E◦. (3.22)

The RHS of eq. (3.22) only shows a circularly polarized nonlinear contribution gener-
ated at the fundamental frequency, while higher harmonics are absent. Interestingly,
by adding a linearly polarized probe field, the n = ±1 mixing harmonic is revived.
Mathematically, the circular pump photon is projected by the scalar product of the
nonlinear interaction onto the linearly polarized probe, as seen in the second pair of
brackets on the RHS of the harmonic polarization contribution,

P(m),◦,cf
NL,n=1 = ε0χ

(m)D
◦|
n=1

(
E+
◦ E−◦

)m−3
2

(
E+
◦ E+

pr

)
E+
◦ + c.c. . (3.23)

This distinct behavior also results in a structurally different degeneracy factor for a
circularly polarized pump beam,

D
◦|
n=1 = (m− 1) 2

m−3
2 , (3.24)

3Resubstituting the abbreviations defined in (3.20) and verifying that E+
◦ E+
◦ = 0, it is found that only

the combination of forward and counter-rotating terms contribute in a scalar product,

|E◦|2 = E∗◦ ·E◦ = E−◦ E+
◦ + E−◦ E−◦ + E+

◦ E+
◦ + E+

◦ E−◦ = 2E−◦ E+
◦ = Ê2

pu . (3.21)
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which is derived in detail in Appendix B.4. In contrast to the linearly polarized cases,
higher harmonics n > 1 are strongly suppressed, as each net pump photon that is not
in the vectorial component must be paired up by a probe photon. For the next wave
mixing signal, n = 2, already three probe photons are necessary,

P(m),◦,cf
NL,n=2 = ε0χ

(m)D
◦|
n=2

(
E+
◦ E−◦

)m−7
2

(
E+
◦ E+

pr

)2 (
E−◦ E−pr

)
E+
◦ + c.c. , (3.25)

requiring already a nonlinear process of order m ≥ 7. Due to the strong suppression,
we restrict the following analysis to the first wave-mixing harmonic. The superscript
’cf’ indicates that the amplitude of the pump field is kept constant, compared to the
linear scenarios. The alternative case, common in experiments, that the intensity is
kept constant, reduces the pump field by a factor of 1/

√
2 and is denoted with super-

script ’ci’ in the following.

3.3.6. Intensity ratios between different polarization scenarios

Different intensity ratios are calculated from squared local polarization eq. (3.25) and
eq. (3.19), where the perpendicular case is chosen as a reference. To determine the
intensity of the circular cases, both polarization directions of emitted harmonics are
taken into account,

I
||
n=1
I⊥n=1

= m2 , (3.26)

I
◦|,cf
n=1
I⊥n=1

= 22m−5


(
m−1

2 + 1
)
!
(
m−1

2 − 1
)
!

(m− 2)!

2

, (3.27)

I
◦|,ci
n=1
I⊥n=1

= 2m−4


(
m−1

2 + 1
)
!
(
m−1

2 − 1
)
!

(m− 2)!

2

. (3.28)

These intensity ratios are shown in Fig. 3.5 as function of nonlinear order (solid lines)
and agree very well with the reference data (dots), computed from numerically calcu-
lated spectra. This verifies the link between the theoretical degeneracy analysis and
observable ratios.

In terms of the metrology developed here, it is found that the parallel versus per-
pendicular ratio provides the most direct access to the nonlinear order due to the
simple m2 scaling (dashed black line). Strikingly, it is seen that switching to circular
polarization at constant field (cf), see red line, the nonlinear response at n = 1 is even
increased for mechanisms beyond m > 3. Only when keeping the intensity constant
(yellow line), a strong reduction of the harmonic at high nonlinearities is seen.
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Figure 3.5.: Intensity ratio as function of
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pendicular configuration.

3.4. Scaling analysis of injection and Brunel response

Next, we connect the previous formal analysis of intensity ratios with the ionization-
induced nonlinearity (sect. 2.4). To obtain the characteristic scaling dependence of
ionization-induced harmonics on the driving field, the no-depletion limit is consid-
ered, where the relative population of the conduction band ρ < 1 remains well below
unity such that

∂ρ

∂t
= (1− ρ)Γ(|E|), (3.29)

with Γ being the atomic ionization rate, simplifies to,

ρ(t) =
∫ t

t0
dt′ Γ(|E(t′)|). (3.30)

The lower integration limit t0 is just an arbitrary initial time prior to the strong field
interaction. Inserting this into the injection current eq. (2.14) and into the Brunel
dipole acceleration, i.e. the first term of eq. (2.11) yields,

∂JSFI

∂t
= n0Eg

∂

∂t

(
Γ(|E|) E

|E2|

)
, (3.31)

∂JBr

∂t
= q2 n0

m0
E(t)

∫ t

t0
dt′ Γ(|E(t′)|) . (3.32)

Both equations are used to analyze the amplitude scaling behavior of ionization har-
monics4.

4Note that eq. (3.32) strictly applies only to harmonic frequencies. At the fundamental frequency, it is
instrumental to further decompose the RHS into Brunel and free drift contributions that are distinct
by their phase as discussed later in sect. 3.6.
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3.4.1. Power-law ansatz for ionization rate

A recent measurement of the field dependence of optically driven carrier injection
in SiO2, published in [3], showed a power-law scaling dependence on the pulse am-
plitude [88]. To characterize the nonlinearity due to field-induced tunneling in our
scenario, we consider the commonly used ADK rate [90], that is plotted in Fig. 3.6
(red line) for a bandgap of Eg ≡ 7.7 eV. Already for small variations of field strength,
this rate changes by orders of magnitude. Hence, tunneling occurs predominantly at
the crest of a laser cycle. Expanding the rate with a power-law ansatz,

Γ(|E|) = Γ̂
(
|E|
Ê

)s
, (3.33)

around the peak amplitude of the local electric field Ê ≡ max(|E|), with peak rate
Γ̂ ≡ ΓADK(Ê) and fixed tunneling exponent s, retains the characteristic scaling well,
in the relevant time interval of one laser cycle. The tunneling exponent in eq. (3.33)
characterizes the nonlinearity of the tunneling rate. It is well approximated by the
slope of the rate in double logarithmic representation,

s ≈ ∂ ln ΓADK

∂(lnE)

∣∣∣∣∣
E=Ê

= Ê

Γ̂
∂ΓADK

∂E

∣∣∣∣∣
E=Ê

, (3.34)

as indicated in the main panel by tangent lines at two representative points for ex-
pansion (for high-intensity pulse yellow and intermediate-intensity pulse gray).

The magnitude and field-dependence of the exponent s can be further rational-
ized by inspecting a simpler, one-dimensional reference model where instead of the
tilted Coulomb potential (red hatched in inset a) a triangular barrier (green area) is
assumed, with V (x) = U0 − eEx of height U0 in the interval 0 < x < x1 ≡ U0−E0

eE
and

with E0 being the energy of the penetrating electron wavepacket. According to lowest
order WKB-expansion, the tunneling rate can be estimated from the amplitude ratio
of the wavefunction on the outside and the inside of the barrier,

ΓWKB ∼
|ψ(x1)|2
|ψ(0)|2 = e

2i
~

∫ x1
0 dx

√
2m(E0−V (x)) (3.35)

= e−
4
√

2m
3~

(U0−E0)3/2
qE . (3.36)

Substituting this expression for the tunneling rate in eq. (3.34) and identifying U0 −
E0 = Eg with the bandgap, shows explicitly an inverse dependence of the tunneling
exponent on driving amplitude,

sWKB(Ê, Eg) = 4
√

2m
3~e

E
3
2
g

Ê
. (3.37)
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Figure 3.6.: ADK tunneling rate (red) with power-law expansion (tangents at circles) around
representative field maxima of a 5 TW/cm2 (gray) and a 12 TW/cm2 pulse (yellow). Signifi-
cant deviations from expansion are only seen when the tunneling rate is orders of magnitude
below the peak rate. Inset a shows the barrier of the tilted Coulomb potential (red hatched),
together with a simplified triangular model barrier (green area). In inset b, good agreement
between ADK tunneling exponent s (red curve) and WKB exponent sWKB (green curve) as
function of peak field is found.

Comparing this result (green in inset b) with s from the ADK rate (red), good agree-
ment is found, indicating that a decrease in the tunneling exponent, can be under-
stood by the inverse scaling sWKB ∼ 1

Ê
obtained in eq. (3.37). Furthermore, this equa-

tion provides the quantitative prediction for the nonlinear order of the tunneling pro-
cess to be far beyond s > 10 for relevant field strengths. In the following, we use the
tunneling exponent to characterize the ionization-induced nonlinearity of the differ-
ent mechanisms.

3.4.2. Distinct nonlinear orders of Brunel and injection mechanism

We continue to examine the ionization-induced nonlinearities by inserting the power-
law eq. (3.33) into the expression for Brunel and injection current eq. (3.31) and (3.32).

∂JBr

∂t
= q2n0

me

Γ̂
Ês

 t∫
t0

dt′ |E(t′) · E(t′)|s/2
 E(t) . (3.38)

∂Jinj

∂t
= n0 Eg

Γ̂
Ês

∂

∂t

(
|E(t) · E(t)|s/2−1 E(t)

)
, (3.39)
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Apart from differential and integral operators, both equations show on
the RHS a structure that is similar to the mth-order nonlinear polarization
P(m)

NL = ε0χ
(m) |E · E|µ E, discussed in the beginning of this chapter. The identi-

fication of the exponent of the modulus results in a distinct order of nonlinearity for
each mechanism,

mBr = s+ 1, (3.40)
minj = s− 1. (3.41)

At first glance, this result, found with the power-law ansatz, is surprising as both
mechanisms are generated by the same tunneling process.

3.4.3. Intensity ratios of Brunel and injection harmonics

A second feature that distinguishes the two mechanisms from each other is found by
examining the intensity ratios. For this purpose, we explicitly state the n = 1 contri-
butions for parallel, perpendicular, and circular polarization. Applying the combina-
torial analysis as illustrated before in section 3.3, we find for injection,

∂J
||
inj,n=1

∂t
= n0EgΓ̂

Ês

(s− 1)!
( s2)!( s2 − 2)! (2ωpu + ωpr)i

Es−2
pu Epr

2s−2
eiω

mix
n=1t

2 + c.c. (3.42)

∂J⊥inj,n=1

∂t
= n0EgΓ̂

Ês

(s− 2)!
( s2)!( s2 − 2)! (2ωpu + ωpr)i

Es−2
pu Epr

2s−2
eiω

mix
n=1t

2 + c.c. (3.43)

∂J◦inj,n=1

∂t
= n0EgΓ̂

Ês
(s− 2) 2s−4 (2ωpu + ωpr)i

Es−2
pu Epr

2s−2
eiω

mix
n=1t

2 + c.c. (3.44)

such that the intensity ratios read,

I
||
inj,n=1

I⊥inj,n=1
= (s− 1)2, (3.45)

Icirc,cf
inj,n=1

I⊥inj,n=1
= 22s−7


(
s
2

)
!
(
s
2 − 2

)
!

(s− 3)!

2

, (3.46)

Icirc,ci
inj,n=1

I⊥inj,n=1
= 2s−5


(
s
2

)
!
(
s
2 − 2

)
!

(s− 3)!

2

. (3.47)

Substituting in nonlinear order minj = s − 1 (c.f. eq. (3.41)), shows that injection har-
monics follow the same intensity ratios as themth order nonlinear response, eq. (3.26)-
(3.28). In particular, this means that the intensity ratio parallel versus perpendicular
is related to the nonlinear order and that the signal grows for circular pump pulses at
constant field, as discussed in sect. 3.3.6.
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Notably, examining the Brunel mechanism in this way, we find different intensity
ratios because the integral in expression for the Brunel current eq. (3.38) only acts
on the scalar product, leading to frequency-dependent weights of the degeneracy
factors DBr,

∂JBr

∂t
= q2n0Γ̂
meÊs

DBr

iωmix
n

Es
pu Epr

2s
eiω

mix
n t

2 + c.c., (3.48)

with the following polarization dependence,

D
||
Br,n=1 =

ωmix
n=1

2ωpu
s!

( s2 + 1)!( s2 − 1)! +
ωmix
n=1

3ωpu+ωpr
s!

( s2 + 1)!( s2 − 2)! +
ωmix
n=1

ωpu+ωpr
s!

( s2)!( s2 − 1)! , (3.49)

D⊥Br,n=1 =
ωmix
n=1

2ωpr
s!

( s2 + 1)!( s2 − 1)! , (3.50)

D◦Br,n=1 = (s 2s−2) ωmix
n=1

ω1 + ω2
. (3.51)

The resulting intensity ratios also show this frequency dependence

I
||
Br,n=1

I⊥Br,n=1
=

1 +
2( s2 − 1)
3 + ωpr

ωpu

+
2( s2 + 1)
1 + ωpr

ωpu

2

, (3.52)

Icirc,cf
Br,n=1

I⊥Br,n=1
= 22s−3


(
s
2 + 1

)
!
(
s
2 − 1

)
!

(s− 1)!
2

1 + ωpr

ωpu

2

, (3.53)

Icirc,ci
Br,n=1

I⊥Br,n=1
= 2s−3


(
s
2 + 1

)
!
(
s
2 − 1

)
!

(s− 1)!
2

1 + ωpr

ωpu

2

, (3.54)

which is a second distinct feature of the Brunel mechanism. This detailed analysis
resulting in eq. (3.52) explains why the simulation without injection (orange dashed
line in Fig 2.7 a) converges, for high intensities I > 15 TW/cm2, towards less than
half of the effective nonlinear values compared to the simulation that includes injec-
tion. This simulation result was first unexpected, as it was shown in the previous
section 3.4.2 that the Brunel mechanism shows a larger nonlinear order than injec-
tion. The formal finding that the relation between nonlinearity and intensity ratio is
different for the Brunel mechanism is summarized in the following inequality,

mBr > minj =

√√√√I
||
inj,n=1

I⊥inj,n=1
>

√√√√I
||
Br,n=1

I⊥Br,n=1
. (3.55)

Although this deviating behavior seems to complicate the interpretation of measured
intensity ratios, we show in the following that this issue is in fact mitigated by the
dominant contribution of injection harmonics.



36 Local Strong-Field Medium Response

3.4.4. Dominant contribution of the ionization response

Comparing the intensity of injection and Brunel harmonics, it turns out that the in-
jection mechanism is dominant for a wide range of laser and material parameters. In
fact, the medium will be irreversibly damaged, for most solid materials, before the
tunneling-induced Brunel response becomes dominant. To show this, we compute
the intensity ratio between injection eq. (3.42) and Brunel harmonics eq. (3.48),

IInj

IBr
=
DInj

DBr

4me ω
mix
n

2
Eg

q2E2
1

2

=
(2n+

ωpr

ωpu

)2
DInj

DBr

Eg
Up

2

, (3.56)

where we identify in the central term the ratio between bandgap and the pondero-
motive energy Up = q2 E2

1
4m2

eω
2
pu

of a conduction band electron. For the parallel case, this
intensity ratio, eq. (3.56), is shown in Fig. 3.7 a for a broad range of (vacuum) wave-
length and intensities around the damage threshold of SiO2. Here, the pump-probe
frequency ratio ωpr

ωpu
= 2.6 is fixed, ensuring that the harmonic signal of interest is

not spectrally overlapped by other wave-mixing contributions. It is seen that the in-
tensity of injection harmonics exceeds Brunel harmonics by more than one order of
magnitude for a wide range of parameters (green area). Parameters present in our
experiment are marked by a cross. Only in domains where the ponderomotive po-
tential is sufficiently high, the Brunel mechanism shows a stronger contribution (red
area).

In panel b, the intensity ratio is shown vs. bandgap and probe wavelength for
fixed λpu, i.e. fixed ponderomotive potential, providing the relevance of the injection
mechanism for a broad range of wide bandgap materials. We note that the degener-
acy ratio DInj

DBr
(RHS of eq. (3.56)) is fairly constant and plays a minor role in determin-

ing the dominant emission mechanism, as seen in panel c. Here variation in degener-

1000 2000 3000 4000
Pump Wavelength [nm]

5

10

15

20

25

30

35

40

In
te

ns
ity

 [T
W

/c
m

2 ]

1000 2000 3000 4000
Probe Wavelength [nm]

4

5

6

7

8

9

10

Ba
nd

ga
p 

E g
[e

V]

-2

-1

0

1

2

Injection
Injecti

on

Brunel

Brunel

Exp.

Exp.

a b

In
te

n
si

ty
 R

a
ti

o
 L

o
g

1
0

10 15 20 25 30
Tunneling exponent s

0

0.1

0.2

0. 3

0.4

D
eg

en
er

ac
y 

ra
tio

 R
 =

 D
In

j/ D
Br

Degeneracy Injection vs. Brunel

par, n   = 1
par, n= 2
par, n= 3

perp, n= 1
perp, n= 2
perp, n= 3

circ, n   = 1

c

Figure 3.7.: a Intensity ratio of injection vs. Brunel response for parallel configuration and
Eg = 7.7eV, ωpr

ωpu
= 2.6. b The dependence of the intensity ratio is examined for fixed

λpump = 2100 nm and I = 12 TW/cm2. The parameter set of the experiment is indicated.
c Approximately constant degeneracy ratio, between injection and Brunel harmonics for the
parameter range of interest.
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acy ratio DInj

DBr
with respect to polarization configuration (solid / dashed), wave-mixing

order (orange to red), and tunneling exponent (horizontal axis) are found in a narrow
band (gray), that is much smaller than the variation over multiple orders of magni-
tude in panel a and b. We conclude from this analysis that the intensity ratio between
injection and Brunel harmonics is roughly described by the following proportionality,

IInj

IBr
∼

(ωmix
n

ωpu

)2
Eg
Up

2

. (3.57)

The first term on the left shows, that the relative contribution of injection grows with
mixing order n. This argument is further substantiated, by a generalization of the
formal calculation eq. (3.45) - (3.51) in appendix B.5, showing that the intensity ratio
grows, at least for low orders n < s

2 . This result firstly justifies to neglect the Brunel
contribution for low mixing orders in the non-destructive laser regime. Secondly, it
provides that the similarity of the injection ratio I ||Inj/I

⊥
Inj = (s − 1)2 to the ratio of the

perturbative response I ||/I⊥ = m2 also holds for any mixing order n. Hence, we pro-
pose to use the intensity ratio of low orders to classify the nonlinear mechanism. In
the next section, the effect of high nonlinearities on the temporal structure of emitted
harmonics is discussed.

3.5. Temporal signatures

Harmonics generated from a nonlinear interaction generally show a shorter pulse
duration than the driving pulse that leads to broader spectral signatures. This holds
as well for the two-color case, where in addition also the delay dependence of the
signal is governed by the nonlinear order of the wave-mixing process. In this section,
it is discussed how the nonlinear order is linked to both durations, and how these
observables can be used to characterize the generating process.

Both properties, temporal pulse width τ
(m)
out and delay width τ

(m)
delay of the wave

mixing signal, can be calculated analytically for Gaussian driving pulses, simply by
multiplying respective field contributions. As before we discuss the results for the
observed wave mixing signals ωmix

n that contain one probe photon,

τ
(m)
out =

τpu√
m−1 τpr√
τ2

pu

m−1 + τ 2
pr

=
τpu τpr√

(m− 1)τ 2
pr + τ 2

pu

, (3.58)

τ
(m)
delay =

√
τ2

pu

m−1 + τ 2
pr , (3.59)

while the general calculation is presented in appendix B.6. Here τpu and τpr are
the pulse widths of pump and probe, respectively, defined by the full-width half-
maximum (FWHM) of the intensity envelope on the temporal axis.
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In Fig. 3.8 a the harmonic pulse duration, eq. (3.58), is plotted using the substitu-
tion τ̃pu = τpu√

m−1 . This representation indicates a low sensitivity to the nonlinear order
for short probe pulses, that is seen as follows. For the probe pulse duration in our
scenario of 45 fs (dashed line), the pulse width of harmonics τ (m)

out (color coded) barely
changes as a function τ̃pu. This impedes the extraction of τ̃pu and the corresponding
nonlinear order, that is shown for the pump pulse duration of 140 fs on the upper
horizontal axis. A much improved sensitivity is seen for the delay dependence.

= 63 fs

a b

= 45 fs

Figure 3.8.: Harmonic pulse duration t(m)
out in panel a and delay width τ (m)

delay in panel b are
shown as function of effective length of driving pulses (see main text) and order of nonlin-
earity m. The width of the probe pulse used in the experiment (τpr = 45 fs) is marked by a
dashed line. The delay width extracted from Fig. 2.3 b is shown by the dotted contour.

The delay width, shown in panel b, is more sensitive to the nonlinear order for
short probe pulses, as seen by stronger variations in color along the dashed line. Us-
ing the experimentally delay width, earlier determined in Fig. 2.3 b, (here shown by
dotted contour) the order of nonlinearity is read off (circled intersection). It is found
that the detected harmonics are only consistent with a highly nonlinear process far
beyond Kerr-type wave-mixing m > 3. This analysis underpins the interpretation of
the experimental delay scan Fig. 2.3, which was found as one indicator that excludes
the Kerr-type response and that suggests one common generation mechanism for all
observed wave mixing harmonics n = 1..4 at high intensities.

In conclusion, the characterization of the dominant nonlinear mechanism based
on the delay dependence can be understood to be complementary to the previously
discussed characterization in terms of the effective nonlinearity. Corresponding in-
tensity ratios I||/I⊥ allow for comparable easy quantitative characterization. How-
ever, the measured order is only an effective value, that accounts for one or more
coexisting mechanisms that generate harmonics with different amplitudes. The de-
lay width, on the other hand, allows to disentangle contributions from similarly con-
tributing mechanisms, even at fixed intensity, if their nonlinear order is sufficiently
distinct (for example Kerr-type and injection harmonics in the transition region of the



Local Strong-Field Medium Response 39

eff. nonlinearity, see Fig. 2.5 at I ≈ 10 TW/cm2). We come back to this point when
examining simulated delay spectra in chapter 4. For the remainder of this chapter,
we focus the discussion on the phase of emitted harmonics which we identify as the
fourth property for characterizing nonlinear mechanisms.

3.6. Characteristic phases of local response mechanisms

So far different mechanism-specific properties, such as intensity scaling with driving
field, effective nonlinearity, and temporal widths have been discussed. Furthermore,
our local semiclassical model provides the relative phase between the different non-
linear contributions and the driving field as discussed now.

For intensities well below the damage threshold, electrons in bound states are well
described by the Lorentz-model i.e. a superposition of driven oscillators. The reso-
nance frequencies in this case are usually above the Bandgap of the medium and far
above the excitation frequency of an incoming infrared laser field. The polarization of
bound electrons is therefore in phase with the driving field. Its time derivative, that
is the current of bound electrons, Jbound, is a quarter period ahead of the driving field,
see panel a in Fig. 3.9. Interestingly, once excited into the conduction band, both the
injection and the Brunel mechanism generate contributions to the current of opposite
phase, both distinct from bound and free electrons.

Figure 3.9.: Phase of mechanism-specific currents
are represented by complex phasors of a bound
electron current (blue), b Injection current (yel-
low), c free electron current (gray), d Brunel current
(red). Bound polarization Pbound, tunneling rate
Γ and charge acceleration of free electrons afreeqe
are in phase with the driving laser field Elas (green
dashed).
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During injection, electron wave packets do not change their propagation direction
anymore when the field is strongest, but tunnel a finite distance through the potential
barrier and therefore further increase the charge displacement. Since the tunnel ion-
ization rate follows nearly instantaneously the field in the long wavelength limit, it
can also be interpreted as a modulation of the Ohm conductivity where the injection
current (yellow) oscillates in phase with the incoming field, c.f. panel b. This distin-
guishes the injection current from the ballistic transport of free electrons Jfree (gray)
see panel c, which is used to describe the Brunel mechanism.

For the Brunel mechanism, it is assumed that electrons propagate after excitation
similar to free electrons, unperturbed in the conduction band. Hence, the charge
acceleration afreeqe is in phase with the driving field. Furthermore, it is taken into ac-
count that the conduction band population shows a step-wise increase, that follows
from the time integration of the tunnel-ionization rate. This additional integration
step (second integral in panel d) ensures that the phase of Brunel harmonics is distinct
from all other specific phases a-c mentioned above. In summary, this semiclassical de-
scription explains the phase relation between individual current contributions at the
fundamental frequency. To show that this analysis also applies to higher harmonics,
the phase in sum-frequency mixing is examined.

3.6.1. Phase of harmonic currents

The phase of wave-mixing currents from a single nonlinear interaction (direct har-
monics) shows two contributions,

φn(t) = 2n(ωput+ φpu) + (ωprt+ φpr)︸ ︷︷ ︸
φmix
n (t)

+φmech. (3.60)

The first terms on the right-hand side are directly analog to sum-frequency genera-
tion ωmix

n = 2nωpu + ωpr and are found by calculating powers of E+
pu = Êpu

2 ei(ωput+φpu)

and E+
pr . The previously discussed, mechanism-specific constant phase shift from

Fig. 3.9, here denoted by φmech, is just one additive term in the end. For the instanta-
neous response considered here, it is independent of the harmonic order, because the
phase factors from time domain differentiation (i) and integration (−i) act on the total
nonlinear current, including all harmonic contributions. In conclusion, the pointer
diagram for higher harmonic currents shows identical relative phases as shown in
Fig. 3.9 and just rotates with higher frequency.

3.6.2. Phase of harmonic fields in thin film scenario

To determine the phase of emitted odd harmonic fields we employ the plane wave
result, E ∼ −J, c.f. eq. (3.6), leading to the pointer diagram shown in Fig. 3.10.
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Re

ϕ'ϕ''

Figure 3.10.: Phase relation of emitted
fields, from different mechanisms consid-
ering ballistic, collisionless motion in thin
film (phase-matched) scenario. The de-
pendence of the phase angles φ′, φ′′ is dis-
cussed in the main text.

Due to the half period local phase shift between current and field φloc = π, it is
found that the injection field (yellow) is opposite to the phase of the driving field
reference (green dashed), leading to destructive interference at the fundamental fre-
quency (φ′ = φ′′ = ω0t), which is expected from the discussion of energy conserva-
tion (sect. 2.4.4). Also, the quarter-period delayed phase of fields from the nonlinear
bound polarization (blue arrow) is expected. It is simply analogous to the phase lag
due to linear polarization that leads to a reduction of phase velocity in media.

So far, the phase relation between incident and emitted fields was discussed in
Fig. 3.10 at the fundamental frequency. To extend the analysis to any incommensurate
wave-mixing frequency, we use the concept of the carrier-envelope phase (CEP). The
CEP of all harmonics follows directly from eq. (3.60),

φCE
n = φmix

n (tp) + φmech + φloc, (3.61)

where tp denotes the peak time of harmonics that depends for finite pump-probe
delay on the nonlinear order (Appendix B.6). Therefore, Fig. 3.10 reflects also the
CEPs, if all harmonic field contributions are rotated by φ′′ = φmix

n (tp) (see black ar-
rows). Next, we extend the result for the CEP of harmonics from the plane wave to
the Gaussian focussing scenario.

3.6.3. Effect of Gouy phase in Gaussian beam scenario

Upon propagation from the waist of a Gaussian focus (c.f. Fig. 3.3), fundamental
and harmonic fields acquire a Gouy phase that converges towards π/2 for the e+iωt

component in the far-field [113]. This Gouy phase directly affects the CEP [114] as
the pulse envelope remains unchanged. Summarizing the discussed effects into one
equation, the on-axis CEP in an idealized collinear thin film scenario is given by,

φCE
n,far = φmix

n (tp) + φmech + φloc + φGouy(z) with, φGouy(z) = tan−1
(
z

zR

)
. (3.62)
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Notably, the last two terms, consisting of local phase and Gouy phase, complete the
one-to-one correspondence of amplitude and phase between negative local dipole
acceleration and on-axis far-field (small brown detector Fig. 3.3), resembling the
Hertzian dipole behaviour (Appendix B.2).

3.7. Conclusion

In this chapter, the nonlinear medium response was first discussed based on a generic
reference mechanism to physically interpret the effective order of nonlinearity. From
this analysis, spectral weights of the electromagnetic far-field were extracted, show-
ing that the high-order medium response dominates low-order harmonics for suffi-
ciently strong driving. In particular, the steep, continuous fall-off of spectral weights
with harmonic frequency was found to distinguish ionization-induced high-order
nonlinear response from common HHG, generated by intraband anharmonicities and
interband recombination. Furthermore, it was found that already a single high non-
linear response-order (here given by the tunneling exponent) can emit several low-
order harmonics, that show the same intensity scaling and a uniform temporal struc-
ture. Based on this general analysis, four complementary signatures, specific to the
driving mechanism, were identified. First, the effective nonlinearity, accessible via
yield ratios in different polarization configurations, allows to distinguish the injec-
tion from the Brunel and Kerr-type response at high intensities. Second, the scaling
with driving intensity was found to be strongest for the Bunel response and only
slightly lower for the injection current. Third, the delay dependence, that separates
high and low nonlinear contributions as narrow and broad signals along the delay
axis. And forth, the emitted phase, that is specific to each source, as all analyzed
mechanisms emit harmonics at a different phase. So far the formal analysis, based
on the tunnel ionization rate, provided that the injection contribution dominates at
harmonic frequencies. While impact ionization can not further contribute to the in-
jection current, the following chapter addresses whether collisional ionization can
lead for the present parameters to additional Brunel signatures in low-order wave
mixing spectra.



4. Collisional Effects in the Extreme Nonlinear
Response

In the preceding chapters, the nonlinear optical response from tunneling-induced
plasma formation has been considered. In this chapter, we investigate whether colli-
sions show an observable effect on ionization-induced harmonics. While it is widely
accepted that collisional ionization contributes significantly to plasma formation at
high intensities, the relative strength and its temporal modulation compared to the
tunnel ionization rate is still debated [115]. Recently, Boltzmann-type collision ap-
proaches [116] and rate equation models for the laser-induced breakdown [23] have
been proposed to address this question through the calculation of plasma density
contributions. Here we start from an elastic collision rate to address the effect of
collisions on the phase of nonlinear currents that were discussed above in a local,
collision-less description (sect. 3.6). Next, the role of inelastic collisions is examined
by employing a simple man’s approach, that is in the course of the chapter further
substantiated by a more detailed, kinetic simulation. In particular, the sub-cycle mod-
ulation of impact ionization is of particular interest, that can lead, similar to tunnel
ionization, to a step-wise plasma density build-up. Therefore, our analysis aims at
disentangling tunneling-induced from collision-induced Brunel contributions. Next,
the amplitudes of both Brunel contributions are compared to injection and Kerr-type
harmonics. It is investigated under which conditions impact-induced Brunel har-
monics can compete with the injection contribution and become relevant to low-order
mixing signals. We address this question by employing a kinetic model based on a
rate equation description sampling the electron velocity distribution.

4.1. Phase shift of quiver motion and Brunel harmonics

The local description of Brunel emission [62] was originally proposed for plasma for-
mation in gases, where the comparably large mean-free path of electrons allows for a
ballistic quiver motion. The acceleration of electrons is there in phase with the driv-
ing field. At solid densities, the mean-free path is significantly reduced, such that the
collision rate becomes comparable to the optical driving frequency. Hence, collisions
can have a strong impact on the quiver phase of conduction band electrons. Since the
Brunel mechanism, i.e. density modulation via tunneling is unaffected, it is expected
that the collision-induced shift of the quiver phase is directly imprinted onto Brunel
harmonics. To examine the collisional phase shift as function of elastic collision rate,
we depart from the Drude model.

43
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4.1.1. Drude model – Scenario of constant elastic damping

Within the Drude model, the electron motion is described by the classical equation of
motion, where the location of a test electron x is given by,

ẍ+ γẋ = qE

m
. (4.1)

The damping term in the equation of motion Ffric.
m

= −γv is interpreted as the effect of
collision events, where the drift contribution of the velocity is annihilated by scatter-
ing into a random direction. Elastic collisions turn directed into randomly nondi-
rected motion. Formally, the Drude model corresponds to a driven and damped
harmonic oscillator with vanishing resonance frequency. Here the simplifying as-
sumption is made that the collision rate is fairly independent of the drift velocity.
This results in a phase relation between the steady state solution of dipole excursion
and driving field as shown in Fig. 4.1 (blue solid line) which is well-known [117]
and summarized in Appendix C.1. For small collision rates, free electrons oscillate
a half period out of phase, denoted as the ballistic limit. With increasing damping,
the phase lag decreases towards −π/2, corresponding to the DC limit of the external
driving field, where the conductivity obeys Ohm’s law.
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Figure 4.1.: Phase of tunneling (green) and
collisional Brunel current (red). Phase of
the excursion of conduction band electrons at
driving frequency (blue), according to Drude
model with constant damping rate γ. For cal-
culation see Appendix C.1.

Next, we link this notion to the phase of Brunel harmonics. We use that the tunnel-
ing induced Brunel current is quarter period delayed wrt. the free current (previously
pointed out in Fig. 3.9 c and d). This relative phase between drift and tunneling-
induced Brunel current holds for any finite collision rate. Therefore, J tun

Br shows the
same phase dependence as the free excursion (green dashed line in Fig. 4.1). Formally,
this result can be written as,

φJ tun
Br

(γ) = φΓ + φρ + φv(γ) (4.2)

where the phase difference between field and tunneling rate is set to φΓ = 0 and the
phase of the ionization degree due to time integration is φρ = −π/2 (corresponding
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to the Fourier factor 1
iω

). Lastly, the phase of the Drude drift velocity φv(γ) introduces
a dependence on the elastic collision rate. In the following, the effect of inelastic
collisions on the phase provided by eq. (4.2) is examined.

4.2. Tunneling-induced vs. collisional Brunel harmonics

So far only the tunneling rate was considered as driving nonlinearity that leads
through the sub-cycle modulation of the plasma density ρsub, according to eq. (2.9), to
the emergence of Brunel harmonics,

∂JBr

∂t
= qn0ρsub〈ẍ〉. (4.3)

A similar, twice-per-cycle modulation of the plasma build-up can also be generated
by impact ionization. For sufficiently cold plasmas and high quiver velocities, the
electron kinetic energy can exceed the gap energy of the medium twice per laser cycle
and trigger ionization. Due to the distinct nonlinearity, introduced by the threshold
character of the rate, these collisional Brunel harmonics are expected to show specific
phase and spectral weight structure, that is investigated next.

4.2.1. Phase of collisional Brunel harmonics in a simple man’s
approach

We examine the phase of impact-induced Brunel harmonics, by employing once more
the simplified picture based on the Drude model. To use this model three assump-
tions are made. First, different Brunel contributions are separated such that tunnel
ionization can be disregarded. Second, the elastic collision rate is fairly constant and
larger than the impact rate, i.e. it can be well described by the γ-parameter of the
Drude model. This argument will be further supplemented when discussing specific
cross-sections in the following section. Third, it is assumed that only at high drift
velocity a small fraction of electrons undergoes impact ionization.

From these assumptions, it follows that the drift is essentially the same as before,
but now it defines also the phase of the impact ionization rate φv(γ) = φγimp . Replacing
the ionization term , φΓ → φγimp = φv(γ) in eq. (4.2) yields,

φ
J

imp
Br

= φρ + 2φv(γ), (4.4)

shown by a red dashed line in Fig. 4.1. It is found that at low damping rates, colli-
sional contributions are further delayed by a quarter period with respect to tunnel-
ing contributions, however, for increased damping both converge quickly against the
same limit of −π/2.
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In conclusion, the Drude model provided a distinct signature of tunneling and
impact-induced Brunel harmonics at low collision rates. The analysis poses further-
more the question whether impact ionization under our conditions is sufficiently
strongly modulated such that collisional Brunel harmonics can compete with the am-
plitude of injection harmonics. Addressing this question also requires to take ther-
malization and the depletion of high-velocity states into account. Hence, we consider
next a more detailed numerical model that resolves the full velocity distribution of
electrons and therefore automatically accounts for inverse bremsstrahlung heating
and impact-induced cooling of the plasma.

4.3. Kinetic model for capturing collisional effects

Goal of the following section is to examine the contribution of collisions to the har-
monic response spectrum. We first inspect the properties of a more realistic ansatz
for the collision rates, to motivate a suitable kinetic model for the electron dynamics.

4.3.1. Collision rates

The ansatz of constant damping parameters, discussed so far, is justified to obtain
amplitude and phase information in time domain, that is dominated by the response
at the fundamental frequency. This approach, however, does not contain higher fre-
quency contributions, that are expected for a spectral analysis due to the velocity
dependence of scattering rates. Therefore, a cross-section-based description of the
form,

γ = n0 |v| σ(|v|) (4.5)

is considered that shows already even order frequency components (2ω, 4ω, ...) due to
the absolute modulus of the velocity in the second factor on the RHS. Furthermore,
for elastic collisions the cross-section σ(|v|) varies strongly at small velocities,

σel(|v|) = fσ0 σ0

1 +
(
v
v0

)2 , (4.6)

as seen in Fig. 4.2 (blue curve), where suitable parameters for SiO2 are used, i.e.
σ0 = 30.738 Å2 and v0 = 2.1877 m

µs [118]. An even stronger modulation effect is
expected for inelastic collisions due to a threshold behavior that rejects electrons with
kinetic energy less than the bandgap E < Eg that cannot trigger impact ionization
(see red arrow). Here the Lotz cross-section is commonly used to describe inelastic



Collisional Effects in the Extreme Nonlinear Response 47

collisions [119],

σinel = σLotz = aL sL
ln(E/Eg)
E Eg

, (4.7)

with parameters aL = 450 (eVÅ)2 and sL = 2.1 taken from [118]. The strong de-
pendence on kinetic energy of both rates motivates to further examine the velocity
distribution of electrons when excited by ultra-short pulses. In particular, the model
introduced next allows to clarify the impact of collisional heating and the clipping of
the high energy tail through the inelastic rate on harmonic emission. Since at high
intensity, modifications to the Maxwell-Boltzmann distribution are expected, the full
3D velocity distribution is accounted for in a local model.
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Figure 4.2.: Elastic (blue) and inelastic colli-
sion rate (red) per electron as function of elec-
tron velocity. At the threshold velocity (red ar-
row) the kinetic energy of one electron equals
the band gap.

4.3.2. Calculation of the velocity distribution

Due to a large number of particles in the plasma, the local electron dynamics in
the system is described by a kinetic model. In general, the electron distribution
f(x,v, t) in the classical six-dimensional phase-space is time-dependent and gov-
erned by Boltzmann’s eq.(

∂

∂t
+ v ∇x + F

m
∇v

)
f = ∂f

∂t

∣∣∣∣∣
coll

+ ∂f

∂t

∣∣∣∣∣
ioni

(4.8)

where several approaches to incorporate the effect of the collision integral on the
right-hand side exist [98,120–122]. To expose the effect of collisions and ionization on
the spectral response, we keep our model simple by considering only a local distri-
bution f(v, t), removing any spatial dependence.

The local distribution is sampled on a numerical grid, where a few simplifying
assumptions are made. First, assuming linearly polarized fields in the nonrelativistic
limit F ≈ qE along one direction, the velocity distribution becomes cylindrical sym-
metric. For this effectively two-dimensional distribution, f(v⊥, v||), external driving
by the field and collisions are implemented as follows. To avoid numerical diffusion,
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i.e. deformation of the distribution by field acceleration, an adaptive time step is em-
ployed that shifts electrons along the v|| component parallel to the field by ±1 or zero
velocity bins. Next, elastic and inelastic decay cascade rates are solved to determine
the relative amount of electrons that collided one or more times during one time step.
These collision electrons are redistributed according to a three-dimensional isotropic
distribution. While the absolute velocity of elastically scattered electrons is fixed, the
kinetic energy of electrons triggering impact ionization is reduced according to the
gap energy lost in the ionization event. For simplicity, newly born electrons from
impact and tunnel ionization are initialized with zero velocity. It was verified that
equal splitting of residual kinetic energy onto impinging and liberated electrons from
an inelastic collision does not significantly affect the dynamics. From this velocity
distribution, the mean drift current is analyzed in the following. Here, electrons orig-
inating from tunnel or collisional ionization were propagated in two different distri-
butions, ftun(v⊥, v||) and fcoll(v⊥, v||), to disentangle the corresponding contributions
to Brunel harmonics.

4.4. Effect of impact ionization on nonlinear response

Goal is to understand the temporal and spectral structure of the collisional response,
in particular, to clarify how collisions contribute to the ionization-induced harmonic
spectrum. To study the collisional effect on different wave-mixing orders, we con-
sider the same two-color scenario as before, with a strong pump pulse and weak
probe field. From the electron velocity distribution, the nonlinear response current
is analyzed with a Gabor transform1 that provides time-dependent spectral analysis
of each component of the current. For better comparison, the contributions to the
nonlinear current from different mechanisms are overlapped in Fig. 4.3. This repre-
sentation is selected to expose the dominating mechanisms in the response and reveal
characteristic emission times.

The overall structure of the Gabor spectrum is governed by high-order harmon-
ics and side band signals due to sum and difference frequency mixing around t = 0
where pump and probe pulse are peaked. This time-frequency-map shows more sig-
nals in the side band structure than the experimental spectrum (discussed in sec-
tion 2.2) for two reasons. First, this local model is insensitive to the wavevector direc-
tion and therefore corresponds to collinear wave mixing where positive and negative
probe photons contribute equally. Second, the harmonic yield is shown over sev-
eral orders of magnitude, such that contributions with more than one probe photon
become discernible.

The strongest contribution to the harmonic spectrum is provided by the injec-
tion mechanism (yellow signatures), that dominates the side bands from third har-
monic (HH3) on. The point-symmetric, parabolic shape with respect to frequency

1The Gabor transform used here is given in the Appendix, eq. (C.10).
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Figure 4.3.: The Gabor spectrum of injection (yellow), Kerr (blue), tunneling Brunel (green)
and collisional Brunel harmonics (red), with window width τGabor

FWHM = 50 fs, calculated from
the velocity distribution of tunneling and impact electrons at Ipu = 10.5 TW/cm2, is shown
in a. All other parameters are set as discussed in sect. 2.1. The qualitative origin of the bi-
parabolic structures in the spectrum is illustrated in the schematic superposition of injection
and Kerr-type contributions with exaggerated spectral-to-temporal width ratios for better vis-
ibility in b.

and time axis (clearly visible around HH9) is attributed to the Gaussian shape of the
pump and probe pulse. At lower harmonic orders, in particular at the n = 1 signal
(ω/ωpu = 4.7), symmetric Kerr contributions are seen as blue tips in the rising and
in the trailing edge. This signature is a result of the superposition of injection and
Kerr contributions (see panel b). Kerr harmonics share the same parabolic shape, but
are less spectrally broadened and generate a harmonic response of longer duration,
due to the significantly lower order of nonlinearity, as discussed in section 3.5. Since
the peak amplitude of Kerr harmonics at t = 0 is already below that of injection,
Kerr can only compete in the edges. Additional simulations confirmed that these re-
gions of dominant Kerr contribution (blue tips) shrink with increasing intensity. Here
χ(3) Kerr signals are only visible at the selected frequencies, due to the low order of
nonlinearity. For these direct harmonics, that emerge in a single nonlinear interac-
tion, only three photons are combined. Combinations with more photons, expected
for cascaded 3rd order Kerr interaction require a finite propagation distance and are
therefore not resolved by the local model. This explains that the n = 1 wavemixing
harmonic shows Kerr contributions on the edges, while the n = 2 injection harmonic
at ω/ωpu ≈ 6.7 is essentially background free. Further, it is seen that Kerr signals with
two probe photons, i.e. 2ωpr ± ωpu at the relative frequency ω/ωpu ≈ 4.4, 6.4 are sig-
nificantly suppressed and barely visible.

The third symmetric response is the tunneling induced Brunel contribution that
is only dominant at the fundamental frequency and respective side bands (green).
At higher frequencies, tunneling-induced Brunel harmonics are dominated by the
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injection response in accordance with the discussion in the previous chapter. The
collision-induced Brunel response (red) shows a pronounced temporal asymmetry
with a broad spectral and noisy contribution between t = 0, ..., 200 fs that reaches
from the third harmonic down to the DC component which is attributed to the ther-
mal contribution of impact ionization. Stronger, more defined collisional signatures
are seen in the trailing edge at the fundamental and odd harmonic frequencies. The
largest peak at the fundamental emerges mainly from the free electron drift current.
The effect of cold avalanching, where impact ionization is driven by the ponderomo-
tive quiver-motion of electrons, is seen best at the third harmonic. Higher harmonics
are attributed to the nonlinear dependence of the collision rate on the driving field.
While contributions up to HH9 are discernible, no clear collisional wave mixing con-
tributions are observed. One possible interpretation for this observation is, that the
amplitude of the probe beam in this scenario is too weak compared to collisional
damping to contribute sufficiently to the quiver motion.

In conclusion, the time resolved analysis of the ionization induced response, calcu-
lated from the electron velocity distribution, provided that collision induced Brunel
harmonics contribute significantly in the trailing edge of the driving pulse. This con-
tribution can be distinguished by the asymmetric time structure and is also seen with
smaller contributions at odd harmonics of the strong pump pulse. No significant
collisional contributions are found at the wave mixing frequencies of interest, that
contain one photon from the much weaker probe pulse. While these wave mixing
harmonics are mostly dominated by the tunneling injection current, temporally con-
fined contributions from the third order Kerr response are found for the n = 1 signal.
In the following, we use that the n = 1 signal is not screened by collisional contribu-
tions to reconstruct the tunneling-induced plasma build-up from the detected signal.



5. Reconstruction of the Strong-Field-Driven
Plasma Dynamics

In this chapter, the reconstruction of the strong-field-induced plasma generation is
discussed. Substantial parts of these results were published in [JLK+22a, MBJL+19].
Even though the main mechanism of strong-field tunnel ionization and impact
ionization is known, it is so far experimentally challenging to distinguish respec-
tive contributions, leading to conflicting conclusions about their importance [123]
and [121, 124]. The particular challenge is that both contributions lead to intrapulse
excitation [120]. Available indirect measurements allowed so far to estimate the
prevalence of each mechanism [67, 125]. In particular, transient absorption and re-
flectivity measurements were employed to obtain the cycle-averaged plasma build-
up [126–130]. While the sub-cycle dynamics of carriers in solids became accessible
through attosecond transient absorption and polarization spectroscopy [1, 131–133]
these time-domain methods do not allow to isolate the contribution of SFI to the ion-
ization yield. On the other hand, the existence of a specific optical SFI signature was
reported in the literature [62, 68, 69, 92], associated with the 2ω-modulation of the
plasma density [64, 134]. In the following, we utilize the detected below-bandgap in-
jection response to reconstruct the sub-cycle tunnel ionization dynamics using time
domain ptychography [135, 136].

Basis for the reconstruction of the field-driven ionization, is that the injection con-
tribution of the nonlinear current

Jinj = n0 ρ̇tun Eg
E
|E2|

, (5.1)

earlier introduced in eq. (2.11), becomes dominant at high intensities. From this
equation, the reconstruction of the effective tunnel ionization rate ρ̇tun, based on the
observable far-field intensity spectrum, is now developed. The first key element to
access the temporal dynamics of the process is to employ the delay-dependent two-
color wave-mixing analysis. As before, a weak probe pulse ensures that only signal
contributions linear in the probe field are considered,

Jinj = σeff Epr, (5.2)

which allows the identification of an effective conductivity

σeff(t) = n0 ρ̇tun Eg

|Epu|2
∼ ρ̇tun(t)

Ipu(t) . (5.3)

In the last step, the right-hand side has been simplified, by replacing the oscillatory
squared pump field in the denominator by the cycle averaged, slowly evolving in-
tensity envelope which is justified due to highly nonlinear dependence of ρ̇tun(t). The
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argument is that tunnel ionization only occurs when the field becomes maximal so
that the denominator can be replaced by the slowly evolving amplitude.

Next, the left-hand side of eq. (5.2) is determined from the relation between in-
jection current and measured delay-dependent intensity spectrum. In general, this
link is not trivial. Here we come back to the harmonic emission scenario where the
entire transverse profile is detected (as discussed in sect. 3.2.3). In this case, the in-
tensity is, according to eq. (3.12), proportional to the square of the injection current
I(ω) ∼ |Jinj(ω)|2. Together with eq. (5.2), the measured intensity spectrum in the two
color case is given by,

Iexp(ω, τj) ∼ |F [σeff(t)Epr(t− τj)]|2, (5.4)

where the operator F =
∫∞
−∞ dt e−iωt abbreviates the Fourier transform. In the next

section, the reconstruction of σeff(t) based on the measured intensity spectrum is dis-
cussed.

5.1. Phase retrieval algorithm and convergence

Due to the formal structure of eq. (5.4) that is reminiscent of a phase retrieval problem,
the discussion of our reconstruction method is oriented along ptychographic engines
that are typically used to reconstruct a local 2D field and a transmission mask from
detected far fields. Here we adapt the method to two color pump-probe wave-mixing,
similar to FROG and XFROG methods [137–139] . Goal of the following presentation
is to provide a short pseudo-code that illustrates the key ideas of the algorithm.

Ptychographic iterative engines (PIE) were originally developed [140, 141] to re-
trieve from a set of measured diffraction images Ij(q) the real-space distribution of
incident field E(r) and the transmittance T (r− rj),

Ij(q) ∼ |F [E(r)T (r− rj)]|2. (5.5)

The index j labels small translations of the sample transverse to the field propaga-
tion. This mathematical convolution structure gave rise to the name of the method,
that is derived from greek ptyché—fold and gráphein—writing. For time domain
ptychography [135,136] the spatial coordinates are replaced by time, establishing the
correspondence between eq. (5.4) and (5.5).

To account for the fact that in the experiment no negative frequency mixing com-
ponents are detected, only the positive frequency contributions i.e. complex functions
are considered for the initially unknown conductivity and probe field. This mathe-
matical constraint removes all negative mixing contributions, such as 2nωpu−ωpr, that
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are missing due to the noncollinear setup of the experiment (c.f. sect. 2.2),

Iexp(ω, τj) ∼ |F [σ+
eff(t)E+

pr(t− τj)︸ ︷︷ ︸
S(t,τj)

]|2. (5.6)

Here positive frequency components are indicated by a plus in the superscript (as
previously introduced in eq. (3.3)), however, in the following the formal superscript
and the subscript ”eff” are omitted for brevity.

Next, an update equation for σ is derived by minimizing the error in time domain
between a guess for the source function S(t, τj) on the RHS and initially unknown
true solutions σ̌(ti), Ěpr,

RS =
∑
i

∑
j

|Sij − σ̌i Ěpr
ij |2, (5.7)

where the time is discretized and arguments are abbreviated by indices S(ti, τj)→ Sij .
The extremal condition is fulfilled if the gradient wrt. to all elements of the eff. con-
ductivity, addressed by index `, vanishes,

∂RS

∂σ̌`
= ∂

∂σ̌`

∑
i

∑
j

[
Sij − σ̌i Ěpr

ij

] [
Sij − σ̌i Ěpr

ij

]∗
(5.8)

=
∑
j

Ěpr
`j

[
S`j − σ̌` Ěpr

`j

]∗
= 0. (5.9)

Solving for σ and carrying out this expression for all times t` → t yields,

σ̌(t) =
∑
j Ě
∗
pr(t− τj) S(t, τj)∑
j |Ěpr(t− τj)|2

. (5.10)

This result, obviously requires that the probe field in the sample is known. However,
Maiden and Rodenburg developed an extended version of the algorithm, known as
ePIE [142], where both quantities can be reconstructed on equal footing.

The idea of ePIE is to depart from a guess function for both quantities, that are
solved iteratively by adapting the update eq. (5.10). The set of updates to iterate from
step n to n+ 1,

σn+1(t) = σn(t) + β1
[En

pr(t− τj)]∗ ∆Snj (t)
max(|En

pr(t)|2) , (5.11)

En+1
pr (t− τj) = En

pr(t− τj) + β2
[σn(t)]∗ ∆Snj (t)
max(|σn(t)|2) , (5.12)

shows a few numerical tweaks, that are discussed in the following. In both equations
the feedback parameter β controls, relative to the maximum square of the fixed vari-
able, the robustness, and speed of convergence. For each update of σ(t) and Epr(t)
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one random delay index j(n) is selected. Good convergence is found by picking each
delay once before addressing a particular j a second time, which is in practice real-
ized by two nested iteration loops. The required source wave difference ∆Snj (t) is
determined from a second constraint based on the available input data in frequency
domain. The guess for the source wave at iteration n,

Snj (t) = σn(t) En
pr(t− τj), (5.13)

is corrected, by replacing its spectral amplitudes with the measured intensity distri-
bution

Snj,corr(t) = F−1
[√

Iexp(ω, τj)
F [Snj (t)]
|F [Snj (t)]|

]
, (5.14)

according to eq. (5.6). The difference in the source function is then given by

∆Snj (t) = Snj,corr(t)− Snj (t). (5.15)

Finally, between two iterations, the probe field Epr(t) is stored on a discretized grid.
To apply and remove different delay shifts τj , the Fourier shift theorem,

Epr(t− τm) = F−1
[
F [Epr(t)]e−iωτm

]
, (5.16)

is employed prior to and after the iteration update of both variables as shown in the
Pseudo-code of the algorithm, table 5.1.

loop iteration n=1:N

loop delay m=1:M

shift probe by delay τm Epr(t− τm) = F−1[F [Epr(t)]e−iωτm ].
get time domain sig. S(t, τm) = σsub

inj (t) Epr(t− τm)
get freq. domain sig. S(ω, τm) = F(S(t, τm))
apply intensity constraint Snew(ω, τm) =

√
Iexp(ω, τm) ei �S(ω,τm)

transform to time domain Snew(t, τm) = F−1[Snew(ω, τm)]
get signal difference ∆S(t, τm) = Snew(t, τm)− S(t, τm)
update first pulse σsub

inj,new(t) = σsub
inj (t) + β1

∆S(t,τm)Epr(t−τm)∗

max |Epr(t−τm)|.2

update second pulse Epr,new(t−τm) = Epr(t−τm)+β2
∆S(t,τm)σsub

inj,new(t)∗

max |σsub
inj,new(t)|.2

shift pulse two back Epr,new(t) = F−1[F [E2,new(t− τm)]eiωτm ].
end delay loop

get error estimate R =
∑

`

∑
n

(|S(ω`,τn)|.2−Iexp(ω`,τn))
maxω`,τn |Iexp(ω`,τn)|

end iteration loop

Table 5.1.: Pseudo code of time domain ptychography retrieval algorithm.
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After convergence is reached, the plasma dynamics is calculated from the effective
conductivity by employing eq. (5.3). In the following section optimal conditions for
reconstruction are examined.

5.2. Optimal conditions for reconstruction

In this section, the role of the polarization configuration and the pump intensity is
considered to determine optimal conditions for reconstruction. Two lines of argu-
ments are to be discussed. First, the interpretation of the parallel scenario. And sec-
ond the effect of other nonlinear mechanisms.

5.2.1. Role of the polarization configuration

One basic assumption of the ePIE algorithm is that, according to eq. (5.6), one of
the quantities of interest is delay independent. Interestingly, for the highly non-
linear injection response, this is only the case for the perpendicular configuration,
when the probe photon must enter in the vectorial component of the injection cur-
rent J⊥inj = σeff Epr. In this case, only pump photons can contribute to the ionization
rate (possible even number of probe photons are disregarded due to low probe inten-
sity). Therefore the ionization trace ρ⊥(t) ≈ ρ0(t) stays effectively as in the pump-only
scenario, indicated in the following by a subscript zero.

In the parallel configuration, on the other hand, the probe photon contributes
much stronger to tunnel ionization leading to significant beating in step height of
the trace. In fact, a direct result of the probe-modulated ionization rate is the stronger
harmonic response in the parallel scenario. Hence, both unknowns of the reconstruc-
tion, i.e. eff. conductivity and driving field, become delay-dependent. Even though
this seems to violate the basic assumption of ePIE, it is now discussed why the algo-
rithm is still applicable.

Key argument is, that the injection response at considered low-order mixing sig-
nals is identical for both polarization configurations up to a constant factor I ||(ω, τ) =
m2 I⊥(ω, τ). This means, data from the parallel measurement can be interpreted
as if measured from the perpendicular scenario, where the ionization trace agrees
well with the pump-only scenario. In conclusion, switching to parallel polarization
changes ionization, however, the ePIE continues to retrieve the density of the pump-
only scenario ρ0(t).
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5.2.2. Role of competing nonlinear mechanisms

Depending on laser parameters also other mechanisms such as Kerr- or Brunel re-
sponse [62, 92] can contribute to the wave-mixing signal. Their contribution is detri-
mental to the reconstruction. Especially the contribution of Kerr increases with ab-
solute delay due to the lower nonlinear order as it has been seen already in sect. 4.4.
Due to the higher contrast with respect to Kerr, it is expected that the reconstruction
error is smaller in the parallel scenario. Next, we apply the algorithm to simulated
two-color spectra. We define the error based on the difference between reconstructed
ρrec(t) and simulated reference ionization ρ0,sim(t) of the pump-only scenario,

Rρ(t) =
√

1
T

∫ T

0
[ρrec(t)− ρ0,sim(t)]2 dt. (5.17)

Examining the reconstruction error as function of intensity in Fig. 5.1 (same pulse
parameters as before, see caption) shows for both polarization configurations three
qualitatively different intervals.

The error is highest for low intensities where the emitted signal is dominated by the
Kerr response that is systematically longer than the ionization response. As a re-
sult, the reconstructed ionization trace (thin blue in inset c) shows significantly wider
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Figure 5.1.: Reconstruction error of plasma density as function of pump intensity for numeri-
cal test scenario a. Injection, Brunel and Kerr contributions to the nonlinear current are consid-
ered in parallel (blue) and perpendicular polarization configuration (orange) for a τpu = 140 fs
pulse (inset b), λpu = 2100 nm. Optimal conditions are reached for I ≥ 13 TW/cm2. At this
intensity simulated ρ0,sim(t) (thick blue) and reconstructed ionization ρrec(t) (thick gray) over-
lap (inset c). At lowest intensity, large deviations between simulated and reconstructed time
trace (c.f. thin blue and thin gray in c) are attributed to the Kerr contribution (see main text).
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wings compared to ρ0,sim(t) (thin gray line). With increasing pump intensity this error
decreases, as seen in a. Initially, a slow decrease is observed. This is attributed to an
increase of the tunneling period due to the reduction of the nonlinearity of the tunnel-
ing rate (see Fig. 3.6 b and Fig. 3.8 a). As the intensity increases, the tunneling period
extends towards the duration of the Kerr response that is still longer and dominant.

Once the injection current exceeds the Kerr-type response, the reconstruction er-
ror decreases much faster. First, injection exceeds Kerr only at the center of the pulse
i.e. for delays τ ≈ 0 such that the center of the ionization trace is well reconstructed.
Due to higher injection yield, this happens in the parallel case (blue) at lower intensi-
ties than in the perpendicular case (orange), as seen by the position of the shoulders
(downward triangles). Increasing the intensity further, leads to suppression of the
relative Kerr contribution and improves the reconstruction also in the tails of the ion-
ization trace.

Optimal conditions for reconstruction are reached for parallel polarization above
Ipu ≥ 13 TW/cm2 (blue upward triangle). Here injection becomes dominant for the
relevant delay range. Even though the cycle average of the reconstructed ionization
trace converges correctly, the reconstruction error is seen to saturate for higher inten-
sities due to the unknown sub-cycle phase and sharpness of the ionization steps.

In conclusion, the relative ionization trace can be reconstructed from the delay-
dependent intensity spectrum of the total nonlinear wave mixing response that con-
tains also other nonlinear contributions such as Kerr and Brunel harmonics, for suf-
ficiently high pump intensity. In the next step, the algorithm is applied to exper-
imentally measured delay spectra, obtained close to the damage threshold at peak
intensity of I = 13 TW/cm2.

5.3. Reconstruction from experimental spectra

To link the detected nonlinear response spectrum to the strong-field-induced plasma
formation we first focus only on the strongest wave mixing harmonic, i.e. the n = 1
signal that is in the perpendicular scenario directly related to the 2ωpu-component
of the tunneling rate. Using only this signal, the cycle-averaged component of the
ionization rate can be still inferred as shown now.

The starting point is the effective strong field ionization rate Γ = ∂ρ
∂t

that is phys-
ically governed by the laser-driven tunnel ionization rate and modified by several
effects such as depletion of the valence band and the local field due to plasma reflec-
tion. Central argument of the following discussion is, that the effective strong field
ionization rate is an instantaneous nonlinear function that depends on the modulus
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of the electric field Γ(|E(t)|). Hence, it can be written as even-order harmonic series,

Γ(t) =
∑

h=0,2,4,...

Γ̂(t)
2 Dh e

ihωput︸ ︷︷ ︸
Γ+
h

+c.c. (5.18)

with so far undetermined harmonic weights Dh in full analogy of the general nonlin-
ear polarization (earlier discussed in eq. (3.5)). Important here is that all contributions
are characterized by the same envelope function Γ̂(t) = Γ(Ê(t)). Therefore the time
evolution of the cycle averaged component Γca, i.e. the term with index zero,

Γ(t) = Γ̂(t)D0︸ ︷︷ ︸
Γca

+
 ∑
h=2,4,6,...

Γ̂(t)
2 Dh e

ihωput + c.c.


︸ ︷︷ ︸

Γsub

(5.19)

can be determined from the square bracket, up to a constant factor. The missing
ratio between cycle averaged (ca) and sub-cycle (sub) contribution is obtained from
the fact that the ionization rate is strictly non-negative and vanishes when the field
is zero. Hence Γca must be equal to the envelope of the sub-cycle rate Γsub. In the
following it is used that higher frequency components in the spectrum quickly fall
off (c.f. discussion of spectral weights sect. 3.3) which allows to approximate the
amplitude of the leading term Γca ≈ 2|Γ+

h=2| by the sub-cycle rate. Employing the
proportionality to the conductivity Γ+

h=2 ∼ σ+
h=2(t) Ipu(t) (c.f. eq. (5.3)) yields,

ρsub ∼
∫

dt Re(Γ+
h=2) with Γ+

h=2 ∼ σ+
h=2(t) Ipu(t), (5.20)

ρca ∼
∫

dt |Γ+
h=2|, (5.21)

where σ+
h=2(t) is reconstructed from the experimental time-frequency map of the iso-

lated n = 1 signal,

In=1(ω, τj) ∼
∣∣∣∣∫ dt σ+

h=2(t)E+
pr(t− τj) e−iωt

∣∣∣∣2 . (5.22)

In Fig. 5.2 the delay-resolved experimental spectrum of the n = 1 wave-mixing
signal, recorded at 13 TW/cm2, is depicted in panel a. The delay spectrum retrieved
after 103 iterations of the ptychographic algorithm in panel b shows agreement, indi-
cating that convergence is reached. The sub-cycle conductivity σsub

inj ∼ 2Re(σ+
h=2) de-

termined by the ePIE algorithm is shown in panel c. The resulting sub-cycle compo-
nent of the SFI rate ρ̇sub is displayed together with the cycle-averaged, low-frequency
contribution in panel d. Adding up the fast and the slow component leads to the
total SFI rate plotted in panel e. Integrating the rate over time yields the strong-field
plasma build-up ρSFI that is displayed together with results obtained by numerical
simulations under identical conditions in panel f. The gray band indicates the tem-
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Figure 5.2.: Retrieval of tunnel ionization traces from n = 1 injection signal at 13 TW/cm2.
The measured and retrieved signal of the delay spectrum after 1000 iterations is compared
in panel a and b. Time traces of the effective sub-cycle conductivity c, the time derivatives
of the tunnel ionization degree d, e, and the comparison with the simulation f, g show good
convergence of the method. Figure adapted from [JLK+22a].

poral uncertainty by one cycle, as the retrieval algorithm is insensitive to the global
phase i.e. the carrier-envelope phase of σ+

n=1. Good agreement with the numerically
simulated step-wise plasma density build-up is found around t = 0 (see inset g).

In conclusion, the SFI contribution to the plasma build-up was reconstructed from
an experimentally measured time-resolved low-order wave mixing signal by means
of a numerical reconstruction algorithm. This analysis shows one possible application
of injection harmonics. Whereas the cycle-averaged build-up is accessible through the
temporal signature of an arbitrary wave-mixing order, the sub-cycle plasma dynam-
ics was reconstructed from the n = 1 wave-mixing harmonic. It was shown that this
2ωpu + ωpr signal suffices to characterize both, the cycle-averaged and the 2ωpu mod-
ulated increase of the plasma density. This provides direct evidence for the num-
ber, location, and relative height of ionization steps within the strong driving pulse,
while the timing of ionization bursts is linked to the phase between driving pulse and
emitted harmonics. Lastly, the relative contribution between strong field and impact
ionization is accessible by comparison between the reconstructed and total plasma
evolution that is further discussed based on the spatially resolved simulation in the
next chapter.
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6. FDTD Ionization-Radiation Model

Goal of this chapter is the analysis of the field-induced plasma build-up including
pulse propagation effects. To this end a self-consistent simulation has been devel-
oped that is based on a time-domain description of field propagation and includes
the nonlinear contributions from bound electrons and the emerging plasma. The pre-
sented simulation takes into account forward and backpropagating waves, i.e. ra-
diation in transmission and reflection direction for the fundamental as well as for
the generated harmonic orders. The foundation of this model and starting point of
the discussion are Maxwell’s equations [143]. Their numerical solution by means of
the finite-difference time-domain (FDTD) method [80, 82] is briefly discussed. Next,
we explain the calculation of the free plasma current through a rate ansatz for drift-
and temperature-dependent collision rates [23, 118] and the nonlinear polarization
of bound electrons through a dispersive nonlinear Lorentz model [144, 145]. After
this introduction to our numerical tool, spatially resolved plasma formation is in-
vestigated where we focus on plasma hotspots arising from so-called Lippman in-
terference [146] in standing waves from backward reflection. Thereby, we address
in particular the self-reconfiguration [16, 89, 147] of observed laser-induced plasma
patterns.

6.1. Electromagnetic field propagation via FDTD

The classical electromagnetic field is governed by Maxwell’s equations. Here, the
differential formulation of the curl equations for the macroscopic fields,

∇× E = −∂B
∂t
, (6.1)

∇×H =
(

Jf + ∂D
∂t

)
, (6.2)

is particularly useful to determine the propagating electric field E and magnetic
field B, where intra-molecular to inner atomic field contributions are excluded. In
this formulation the current density of free electrons Jf enters explicitly, while the
medium response of bound electrons is included via auxiliary material fields, i.e. the
displacement field D and the magnetic field strength H, given by the constitutive
relations

D(r, t) = ε0 E(r, t) + P(r, t), (6.3)

H(r, t) = 1
µ0

B(r, t)−M(r, t). (6.4)
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These relations are determined by the electric polarization density P, in the follow-
ing denoted as "polarization" and the magnetization that vanishes for non-magnetic
media, M = 0, considered here. This set of equations (6.1)–(6.4) is now solved nu-
merically.

In the simplest scenario of one-dimensional propagation along the Cartesian z-co-
ordinate, of a linearly x-polarized electric field, Faraday’s law eq. (6.1) simplifies to a
scalar update equation for the magnetic field component,

By|
t+ 1

2z = By|
t− 1

2z −∆t
Ex|tz+ 1

2
− Ex|tz− 1

2

∆z

 (6.5)

where temporal and spatial derivatives are replaced by centered finite difference sten-
cils. These numerical derivatives require, that both fields are evaluated on two tem-
porally and spatially staggered grids. Here t and z behind the vertical bar denote
unitless discretized temporal and spatial indices, separated by ∆t and ∆z, respec-
tively. The corresponding electric field update follows analogously from Ampere’s
law eq. (6.2) after inserting the constitutive material equations (6.3)–(6.4),

Ex|t+1
z+ 1

2
= Ex|tz+ 1

2
− 1
ε0

[
c2

0 ∆t
∆z

(
By|

t+ 1
2

z+1 − By|
t+ 1

2z

)
+ ∆t J t+ 1

2
x +

(
P t+1
x − P t

x

)]
. (6.6)

Expressions for the y-polarized electromagnetic field are calculated accordingly. The
right-hand side indicates, that the medium response is included via the bound non-
linear polarization evaluated at the same time as the electric field, and via the nonlin-
ear drift determined at the time of the magnetic field. Both quantities are evaluated
at the spatial grid point of the electric field. To simplify the notation in the follow-
ing, the time index on medium quantities is written without vertical bar, i.e. in the
super-script of the current Jt+ 1

2 and polarization Pt vector. Starting point for the cal-
culation of the free current density is the relative ionization degree ρt. Next, the full
update cycle to iterate the time index is presented in an overview diagram, before up-
date equations needed for the calculation of the nonlinear current and the nonlinear
polarization from Lorentz oscilator model are introduced.

6.2. Self-consistent polarization, ionization and plasma
response

The algorithm of the ionization radiation model advances all fields and medium
quantities self consistently in iterative cycles. The overall structure of one tempo-
ral iteration, depicted in Fig 6.1 consists, according to the staggered E and B-fields,
of updates at full and half-integer index, shown by the blue and red background,
respectively. In principle, this iterative, cyclic algorithm can be started at any point.
To ensure consistency of indices, we choose to formally start with given electric field
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Et at time index t (upper right corner). All other quantities are given at time indices
before either at t− 1

2 or t− 1.

4.1 Magnetic �ield update 

4.2 Addition of magnetic soft-source

6.2 First order absorbing boundary conditions

5.1 Iteration of 3rd order nonlinear Lorentz model

6.1 Electric �ield update including polarization and free curent  

3.1 Electron temperature update

3.2 Update of electron drift velocity

1.1 Extrapolation of drift and temperature

1.2 Evaluation tunneling and collision rates

1.3 Crank-Nicolson update of ionization degree

2.1 Evaluation and exrapolation of injection current

2.2 Update of Brunel and total free current

6.3 Addition of electric soft-source
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Figure 6.1.: Update equations of the FDTD ionization radiation model for a full time iteration.
The equations are iterated clockwise, with grid updates at integer time index t shown on blue,
and half-integer time index t + 1

2 on red background. The time index of quantities in square
brackets is indicated at the closing bracket. Linear extrapolated quantities are indicated by a
half-circle accent.

First, to determine field-driven ionization, extrapolated values for electron drift
and temperature are used to calculate collision rates, while the tunneling rate can
be directly determined from the given field (step 1.1–1.2). These rates are used to
update the ionization degree (step 1.3). Since this update is pivotal for the nonlinear
response of interest, we will provide further details in the next section. Based on
the ionization degree the injection and Brunel current are readily available (step 2.1–
2.2). Afterwards, a more detailed discussion of the electron ensemble is provided to
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derive update equations for temperature and drift velocity, seen at the lower end of
the update cycle (step 3.1–3.2). Magnetic field updates conclude the calculation at
the half-integer time index (step 4.1–4.2). At full-integer time index, the polarization
of bound electrons is determined by a nonlinear Lorentz model (step 5.1), that is
discussed in a separate section. Based on bound polarization and free current, the
electric field is updated on the entire grid (step 6.1). Finally, boundary conditions and
soft sources for the computational domain (step 6.2 and 6.3) that constitute the end of
one cycle, are discussed.

6.2.1. Ionization degree

The relative ionization degree is driven by the ADK tunneling rate Γtun(|E|) [90] and
the inelastic collision rate per electron γinel , where the currently available conduction
band electron density is included by the prefactor ρ,

∂ρ

∂t
= (1− ρ) [Γtun(|E|) + ρ γinel(|vd|, T )] . (6.7)

The saturation term (1 − ρ) in front of the square bracket, accounts for valence band
depletion. Since we are particularly interested in high-frequency contributions of the
ionization degree, numerical time integration of this nonlinear differential equation
is carried out using the Crank-Nicolson algorithm, that evaluates all quantities at full
timestep t. This particularly stable solver is applicable because the root of the implicit
equation can be analytically determined,

ρt+1 =


ρt+ ∆t

2 ((1−ρt)(Γt
tun+ρtγt

inel)+Γt+1
tun )

1+Γt+1
tun

∆t
2

for: γt+1
inel = 0,

−a
b
− a2

b3
− 2a3

b5
... for: γt+1

inel > 0,
(6.8)

with quadratic coefficients

a =
Γt+1

tun − γt+1
inel + 2

∆t
γt+1

inel
, (6.9)

b = −
2

∆tρ
t + (1− ρt)(Γt

tun + ρt γt
inel) + Γt+1

tun

γt+1
inel

. (6.10)

With this update equation for the ionization degree, the nonlinear current can be
readily calculated.

6.2.2. Nonlinear currents

The different contributions of the nonlinear current, i.e. injection and Brunel currents
are propagated independently to allow for separate analysis. With available field and
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ionization degree, the injection current at the full time step,

Jt
inj = Eg Et

|Et|2
(1− ρt) ΓADK(|Et|), (6.11)

follows from the earlier derived expression (2.14)–(2.15). To extrapolate to the next
half time step, required by the E-field update eq. (6.6), the Adams-Bashforth linear
extrapolation is used,

J̆
t+1/2
inj = 3

2Jt
inj − 1

2Jt−1
inj . (6.12)

The update of the combined Brunel and drift current,

Jt+ 1
2

Br = Jt− 1
2

Br + qn0ρ
t
[
qE
me
− vd((1− ρ)γi + γe)

]t
, (6.13)

follows from the finite difference discretization of eqs. (2.9)–(2.10). The time index
at the closing square bracket denotes that all enclosed quantities are evaluated at
time step t. Next, the calculation of required elastic and inelastic collision rates is
discussed.

6.2.3. Temperature and drift-dependent elastic and inelastic
collision rates

Collision rates are calculated with high spatial resolution, i.e. at every grid point of
the electromagnetic field. To keep the numerical effort under control, the velocity-
dependent single electron collision rates γ1(|v|), (earlier discussed in section 4.3.1)
are parameterized by the electron temperature and average drift. This is done by
assuming a Maxwell-Boltzmann distribution in every time step,

F (v; vd, T ) =
√(

me

2πkBT

)3
e
−me(v−vd)2

2kBT , (6.14)

that is uniformly shifted by the average drift vd in velocity space. Drift and tempera-
ture dependent average collision rates are than given by,

γ(|vd|, T ) =
∫

d3v γ1(|v|) F (v; |vd|, T ). (6.15)

The costly numerical evaluation of the integral is carried out for elastic and inelastic
collision rates prior to the simulation using spherical coordinates,

γ(|vd|, T ) = 2π
∫

dvT
∫

sin θ dθ v2
T F (vT , 0, T ) γ1

(√
(|vd|+ vT cos2 θ)2 + vT sin2 θ

)
, (6.16)

where a sufficiently large parameter interval is stored in a look-up table that is dis-
played in Fig. 6.2. This approach captures the smearing of threshold behavior of the
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Figure 6.2.: Collision rates parameterized by drift velocity and temperature. Panel a shows
line-outs along the Drift velocity axis of the inelastic γinel b and elastic γel c collision rate.

inelastic collision rate, as seen as follows. At low temperatures, the inelastic collision
rate vanishes below the critical drift velocity (panel a red dashed line). The latter
corresponds to the critical kinetic energy needed to surpass the band energy (inter-
section of red dashed line with horizontal axis). This threshold is quickly smeared
out as function of temperature, as seen in panel b. At very high temperatures of
T > 3 × 105 K, the impact ionization rate becomes fairly independent of the drift ve-
locity (see dotted red line in a). The elastic collision rate in panel c shows a similar
qualitative behavior.

6.2.4. Valance band depletion

To take the charge state of the medium into account, collision rates are multiplied
with the ratio of available neutral atoms,

γ̃inel = (1− ρ)γ(neut)
inel (vd, T ), (6.17)

γ̃el = (1− ρ)γ(neut)
el (vd, T ) + ργ(ions)

el (vd, T ). (6.18)

The tildes on the LHS, indicate the inclusion of depletion effects from here on. These
are only relevant for inelastic collisions as we assume that elastic cross sections of
atoms and ions are approximately the same γel ≈ γ(neut)

el (vd, T ) ≈ γ(ions)
el (vd, T ).

6.2.5. Temperature and drift update

Energy and drift velocity updates are calculated by considering energy of continuum
(and conduction band) electrons,

Etot = 1
2m

∑
i

v2
i = 1

2mN〈v2〉, (6.19)

that is decomposed into the kinetic energy of the center of mass (com) and thermal
energy,
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Etot = Ecom
kin + Etherm, (6.20)

Ecom
kin = 1

2mN 〈v〉
2, (6.21)

Etherm = 1
2mN

(
〈v2〉 − 〈v〉2

)
= CV T. (6.22)

Assuming that the velocity is normally distributed, the thermal energy becomes in-
dependent of the drift and remains fixed if the same external force is applied to all
particles. Therefore, the thermal energy of the electron gas is linked to temperature
by the heat capacity.

Depending on the relevant temperature range two models for the heat capacity
are relevant. At high temperatures the non-degenerate (classical) electron gas is con-
sidered. According to the equipartition theorem of classical statistical mechanics,
energy is equally distributed over all accessible degrees of freedom, fdof. This aver-
age energy per degree of freedom determines the thermodynamic temperature,

〈Edof〉 =
〈Eparticle〉
fdof

= 1
2kBT. (6.23)

The resulting heat capacity of an N electron gas,

Ccl.
V = fdof

2 NkB, (6.24)

overestimates the heat capacity of metals at room temperature by about 2 orders of
magnitude, due to Pauli blocking of electrons below the Fermi energy [148] if all
electrons are considered. For low temperatures and high density, i.e. for temperatures
below the Fermi temperature T < TF = Ef

kB
with

EF = ~2

2m0

(
3π2N

V

)2/3

(6.25)

where the mean particle distance is smaller than the thermal wavelength d ≤
√

2π~2

mkBT
,

a quantum mechanical estimate for the heat capacity of the degenerate electron gas is
known as,

C
deg.
V = c

deg.
V N = π2

2 N
k2

BT

Ef
. (6.26)

Since only the free electron subsystem is considered in the following, the classical
heat capacity, eq. (6.24), is used where N/V corresponds to the ionization degree ρ.

The time derivative of the temperature is given, according to eqs. (6.20)–(6.22), by
derivatives of the total and center-of-mass kinetic energy caused by collisions and
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ionization,

∂T

∂t
= 1
cV

(
∂〈E〉
∂t
− ∂〈Ecom

kin 〉
∂t

)
coll.
ioni.

= 1
cV

(
∂〈E〉
∂t
−me 〈v〉

∂〈v〉
∂t

)
coll.
ioni.

. (6.27)

The angled brackets indicate ensemble averages. Hence, all quantities on the RHS,
including cV , are understood as intrinsic quantities per particle. In the following, it
is used that changes in 〈E〉 and 〈v〉 during the infinitesimal time interval dt can be
determined by examining partitions of the electron ensemble [149]. These partitions
consist, as shown in table 6.1, of unperturbed electrons, existing electrons that un-
dergo elastic as well as inelastic collisions and electrons promoted to the conduction
band by electron impact and tunnel ionization.

electron partition a avg. energy 〈Ea〉(t+ dt) avg. vel. 〈va〉(t+ dt) ∂ρa
∂t

unperturbed 〈E〉(t) 〈v〉(t) −(γe + γ̃i)ρ
el. coll. 〈E〉(t) 0 γeρ

inel. coll. 〈E〉(t)− Eg 0 γ̃iρ

born by coll. 0 0 γ̃iρ

born by tunneling 0 0 (1− ρ) Γt

Table 6.1.: Changes in mean energy per electron and drift velocity due to collisions and ion-
ization for each of the five electron partitions a ∈ {unperturbed, elastically colliding imping-
ing electrons, inelastically colliding impinging electrons, electrons born by collisions, elec-
trons born by tunneling }.

The last column of the table accounts for the abundance changes of each partition.
The effective inelastic collision rate γ̃i = (1 − ρ)γneut

i is given by the rate of the neu-
tral system, scaled by the available electron population in the highest valance band.
Although only inelastic collisions and tunnel ionization contribute to the ionization
degree ρ = ρel + ρinel, an abundance change per time interval can also be defined
for elastic collisions ∂ρel

∂t
= γeρ such that a calculation of the ensemble derivatives,

as discussed for the calculation of the injection current in eq. (2.6), becomes directly
applicable. Thus, weighted energy average according to column 2 and 4 of table 6.1
yield the difference quotient for the desired time derivative,

∂〈E〉
∂t

∣∣∣∣∣coll.
ioni.

= lim
∆t,∆ρ→0

〈E〉(ρ−∆ρi−∆ρe)+〈E〉∆ρe+(〈E〉−Eg)∆ρi
ρ+∆ρi+∆ρt − 〈E〉

∆t (6.28)

= lim
∆t,∆ρ→0

− 1
∆t

Eg ∆ρi + 〈E〉(∆ρi + ∆ρt)
ρ+ ∆ρi + ∆ρt

(6.29)

= −1
ρ

(
Eg

∂ρi
∂t

+ 〈E〉
(
∂ρi
∂t

+ ∂ρt
∂t

))
. (6.30)



FDTD Ionization-Radiation Model 69

From eq. (6.30) it is found that the mean energy is reduced due to the ionization
potential (given by the band-gap, first term) and also by dilution of the ensemble with
electrons at rest (inner bracket, second term). The change in average drift velocity is
calculated analogously from column 3 and 4,

∂〈v〉
∂t

∣∣∣∣∣coll.
ioni.

= lim
∆t,∆ρ→0

1
∆t

(
〈v〉(ρ−∆ρi −∆ρe)
ρ+ ∆ρi + ∆ρt

− 〈v〉
)

(6.31)

= lim
∆t,∆ρ→0

〈v〉
ρ

−∆ρi −∆ρe −∆ρi −∆ρt
∆t (6.32)

= −〈v〉
ρ

(
2∂ρi
∂t

+ ∂ρe
∂t

+ ∂ρt
∂t

)
. (6.33)

The impact rate in the last term shows a factor of two, as both impinging and newly
born electrons are assumed to have no drift contribution in the velocity after interac-
tion. Inserting the resulting center-of-mass kinetic energy per particle,

∂〈Ecom
kin 〉
∂t

∣∣∣∣∣coll.
ioni.

= me 〈v〉
∂〈v〉
∂t

∣∣∣∣∣coll.
ioni.

= −〈E
com
kin 〉
ρ

(
4∂ρi
∂t

+ 2∂ρe
∂t

+ 2∂ρt
∂t

)
(6.34)

and the average total energy eq. (6.30) into the expression for temperature derivative
eq. (6.27) yields,

∂T

∂t
= −T

ρ

(
∂ρi
∂t

+ ∂ρt
∂t

)
− Eg
cV ρ

∂ρi
∂t

+ 〈E
com
kin 〉
cV ρ

(
3∂ρi
∂t

+ 2∂ρe
∂t

+ ∂ρt
∂t

)
(6.35)

= −T (γ̃i + 1−ρ
ρ

Γ)− Eg
cV
γ̃i + me〈v〉2

2cV (3γ̃i + 2γe + 1−ρ
ρ

Γ). (6.36)

From this expression, it is found that impact ionization and tunneling lead to cooling,
proportional to existing temperature at equal weights (see first bracket of eq. (6.35))
whereas inverse bremsstrahlung heating from existing drift shows distinct prefactors
for inelastic, elastic collisions, and tunneling (third term). The finite-difference tem-
perature update, needed for the FDTD scheme, is determined by discretizing the LHS
using half-integer time indices t ± 1

2 and evaluating the RHS of eq. (6.36) at integer
time index t. This requires that T , γi, γe, and 〈v〉 are extrapolated by half a time step.

T t+ 1
2 = T t− 1

2 + ∆t
[
−T (γ̃inel + 1−ρ

ρ
Γ)− Eg

cV
γ̃inel + me〈v〉2

2cV (3γ̃inel + 2γel + 1−ρ
ρ

Γ)
]t

(6.37)

Employing the same discretization, the finite difference update for the average drift
vd = 〈v〉 is obtained from the electric field in addition to the ionization-induced loss
of average drift, given by (6.33),

vt+ 1
2

d = vt− 1
2

d + ∆t
[
qE
m
− vd(2(1− ρ)γi + γe + 1−ρ

ρ
Γ)
]t
. (6.38)

Comparing the loss term of the average drift velocity, eq. (6.38) to that of the Brunel
drift current eq. (6.13) two differences are seen. Firstly, it is noticed that the average
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drift velocity includes a factor of 2 for inelastic collisions. This is due to the random-
ization of the velocity direction of the incoming electron and the newly born electron.
The latter is born at rest and does initially not contribute to the current. Secondly,
the same argument applies to electrons excited by tunneling, seen in the last term of
eq. (6.38), that do also not contribute to the current.

6.2.6. Bound electron response: Dispersive nonlinear Lorentz model

The polarization response is calculated from a nonlinear Lorentz model [144]. In each
cell, a set of damped and driven harmonic oscillators with oscillator strength fk is
solved,

P = n0q
∑
k

fkxk with:
∂2xk
∂t2

+ γk
∂xk
∂t

+ ω2
kxk = q

m
E(t), (6.39)

where damping and resonance parameters given in table 6.2 are used to model the
linear response of SiO2 and gold. In the case of the dielectric, the Lorentz model

SiO2
fk ~ωk[ eV] γk[s]

7.54 18.1 0
1.53 10.7 0

5× 10−4 0.12 0

Au
fk ~ωk[ eV] γk[1/fs]

2.04 0 0.08
0.06 0.41 0.37
0.03 0.83 0.52
0.19 2.96 1.32
1.62 4.30 3.79
11.80 13.32 3.37

Table 6.2.: Oscillator strength, resonance energy, and effective collision rate of the Lorentz-
oscillator model, eq. (6.39), for fused silica (SiO2) [144] and gold (Au) [150].

accounts exclusively for the bound electron response, since we have already incorpo-
rated the plasma contribution with a temperature and drift depended model in the
previous sects. 6.2.1–6.2.5. For the metal coating, here gold, the plasma contribution
is included via the first oscillator with vanishing resonance frequency (top row of
right table), which is therefore sometimes denoted as Drude-Lorentz model, typically
used for the response of several metals [150] or even for the plasma and self-trapped
excitonic (STE) response in SiO2 [128]. Identifying the polarization in the equation of
motion eq. (6.39),

∂2Pk

∂t2
+ γk

∂Pk

∂t
+ ω2

kPk = fk
n0q

2

ε0m
ε0E(t), (6.40)

and employing finite differences for the first and second time derivative according to
the full integer index of the driving field Et, yields for the linear part of the polariza-
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tion,

Pt+1
k

(
1 + γk∆t

2

)
= Pt

k

[
2− ω2

k∆t2
]
−Pt−1

k

[
1− γk∆t

2

]
+ fk

n0q
2∆t2
m

Et. (6.41)

For the nonlinear bound polarization of SiO2, an instantaneous third-order contribu-
tion and a delayed component due to stimulated molecular Raman scattering [74],

P(3)(t) = ε0χ
(3)α|E|2 E + ε0χ

(3)(1− α)QE, (6.42)

is added with weight α = 0.7 [144] to the first Lorentz-oscillator. The delayed ro-
vibrational coordinate Q can be also described by a harmonic oscillator,

∂2Q

∂t2
+ 2γR

∂Q

∂t
+ ω2

RQ = ω2
R|E|2 (6.43)

with Raman resonance ωR = 57.7 meV, that is small compared to the optical transi-
tions, and long-lived Raman damping constant γR = 31.25 ps−1. Eq. (6.43) is written
as a set of two first-order differential equations, using the substitution G = dQ/dt,
and is discretized,

Gt+ 1
2 = 1− γR∆t

1 + γR∆tG
t− 1

2 + ω2
R∆t

1 + γR∆t(|E
t|2 −Qt), (6.44)

Qt+1 = Qt + ∆tGt+ 1
2 . (6.45)

These equations conclude the update of the dispersive nonlinear Lorentz model sum-
marized in Fig. 6.1.

Next, the energy that is reversibly and irreversibly transferred to the polarization
degree is briefly discussed, that will be used as benchmark quantity in the results sec-
tion of this chapter. The Lorentz oscillators store kinetic and potential energy density
according to

ukin = mn0
2

∑
k

fk

∣∣∣∣∣∂xk
∂t

∣∣∣∣∣
2

= m

2n0q2

∑
k

1
fk

∣∣∣∂Pk
∂t

∣∣∣2 , (6.46)

upot = mn0
2

∑
k

fk|ωkxk|2 = m

2n0q2

∑
k

|ωkPk|2
fk

. (6.47)

Most of the potential energy of the oscillators is usually included in the field energy
density given by uEM = 1

2 [ED + BH]. A much smaller contribution, ũpot = upot− 1
2EP

and the kinetic part ukin are not included in uEM. Both ũpot and ukin have the same
amplitude.

The irreversible energy transfer, due to finite damping of the electronic response
in gold is obtained by integrating the loss power Ploss = Ffr

∂x
∂t

over time. Inserting
the friction force from eq. (6.39) and multiplying with the number density yields the
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dissipated energy density,

uloss =
∫

dtmn0
∑
k

fkγk

∣∣∣∣∣∂xk
∂t

∣∣∣∣∣
2

=
∫

dt m

n0q2

∑
k

γk
fk

∣∣∣∂Pk
∂t

∣∣∣2 . (6.48)

In the final section of the model description, boundaries and sources for the electro-
magnetic grid are discussed.

6.2.7. Unidirectional source – Total-field scattered-field boundary

A soft source for the electric and magnetic field is used to couple a right propagating
laser pulse into the simulation grid, also known as total-field scattered-field (TFSF)
boundary [82]. With this approach, the energy that is coupled onto the grid equals the
energy of the source pulse, as long as there is no other right traveling wave present
at the location of the source. This condition is ensured by combining the soft source
together with an absorbing boundary condition. At the half integer position index
zsrc− 1

2 , the source wave of the electric field, defined by Esrc(t), is added to the already
updated field,

E ′x|t+1
zsrc− 1

2
= Ex|t+1

zsrc− 1
2

+ c∆t
∆z Esrc((t + 1)∆t). (6.49)

A ∆z
2 -step to the right, the magnetic field is updated at zsrc,

B′y|
t+ 1

2zsrc = By|
t+ 1

2zsrc + ∆t
∆z Esrc((t + 1)∆t+ ∆t

4 + ∆z
4c ). (6.50)

The time argument of the magnetic source is shifted by two terms that account for the
spatio-temporal staggering of magnetic and electric grid.

6.2.8. Absorbing boundary condition

For one-dimensional grids, so-called perfect absorbing boundary conditions,

E| t+1
1
2

= E| t−N+1
3
2

, (6.51)

are usually employed, that require to adjust the time step ∆t = ∆z
Nc

such that N tem-
poral steps are needed to propagate the wave one spatial step. In this study, it was
more practical to adjust time and spatial step independently. Hence, both ends of the
numerical grid are terminated by first-order boundary conditions [82],

E| t+1
1
2

= E| t3
2

+ c∆t−∆z
c∆t+ ∆z (E| t+1

3
2
− E| t1

2
). (6.52)
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Other suitable choices are Mur-boundary [151] or perfectly matched layers [152,153].
In the remainder of this chapter, results exhibiting the distribution of energy and
the plasma dynamics are presented that allow to address the effect of the spatially
confined plasma build up on nonlinear optical properties.

6.3. Energy deposition via ionization

To assess the quality of the discussed model and to reveal the relevant time scales of
the excitation dynamics in the irradiated medium, the energy balance of the simula-
tion is considered first. A thin SiO2 target, irradiated by a close-to-threshold intense
laser pulse (see Fig. 6.3) is simulated for three different pulse lengths (parameters see
caption). The rear side of the target is gold coated, to enhance the effect of reflected
fields, which is discussed in detail in the next section. Panel a–c shows a bench-
mark for the energy conservation. The temporally integrated intensity emitted by
the laser source is shown by the envelope (thick black line). Energy coupled from
the electromagnetic field to different electronic degrees of freedom and eventually
to the surrounding boundary conditions is represented by colored areas. The fact,
that all areas together match the outer envelope, confirms energy conservation and
numerical convergence of the simulation method. The time step of ∆t = 10−17 s and
∆z = 10−9 m are chosen to fulfill the Courant-criterion1 and simultaneously to resolve
high temporal oscillations in the field due to high harmonics beyond order h > 20 as
well as high spatial oscillations of the plasma density. Next, the displayed time evo-
lution of the energy balance is further analyzed to start the discussion of the plasma
formation.

For the shortest driving pulse (20 fs), most of the pulse energy is transmitted
through the front interface and coupled to the electromagnetic field in the medium
(blue area). Upon rear side reflection (t ≈ 50 fs) a considerable fraction of pulse energy
(> 10%) is absorbed by the tunneling injection current (green area). Field-induced
tunneling is quickly followed by strong impact ionization, seen by fast increase of the
pink area. Less than a quarter of the total energy remains in the thermal motion of
electrons (red). Approximately the same amount of energy leaves the sample through
the front interface (khaki). Comparison with the 80 fs pulse shows firstly the reduced
relative contribution of tunneling injection to absorption. Secondly, impact ioniza-
tion already sets in once the pulse center reaches the front interface (t = 0). This trend
continues for the largest considered pulse duration of 140 fs, where a long-lasting

1Stability of the numerical grid is ensured if the Courant-Friedrichs-Lewy number, that describes the
propagation length of the field per time step relative to the maximum spacing of grid points, is less
than unity,

C = c ∆t√
∆x2 + ∆y2 + ∆z2

< 1. (6.53)

For simulations in less than 3 dimensions, the sum is restricted to present grid spacings.
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Figure 6.3.: Energy balance of tunneling-induced plasma formation in a thin 10 µm SiO2 slab
with a 20 nm thin gold coating for pump pulse durations of 20 fs a, 80 fs b and 140 fs c at peak
intensity of I = 12 TW/cm2. The normalized intensity envelope is shown on top of each
panel, that corresponds to the pulse fluence (thick black envelope) in a–c . One-dimensional
simulation setup sketched in d.

impact ionization avalanche (pink) is triggered once the rising edge of the pulse en-
ters the medium (t < 0). From this result we conclude, that the injection current is
particularly relevant for the energy balance of short pulses, while energy absorption
of longer pulses is stronger affected by impact ionization. Finally, a negligible rela-
tive contribution of energy transfer to the quiver motion of electrons (purple and dark
blue) and heating of the reflective coating (gold) is found for all three scenarios. Next,
to understand the feedback of the emerging plasma and to localize the interaction, the
spatio-temporal structure of tunneling and impact ionization is examined.

6.3.1. Impact of standing waves on the spatio-temporal plasma
build-up

In the previous sections, the full one-dimensional numerical model for solving self-
consistently the dispersive field propagation and the local plasma formation and
plasma response has been described. As a first application of this model, the role
of transient standing wave fields for the plasma generation will be investigated. To
this end the ionization of an extended SiO2 slab (dSiO2 � λ) is studied. To emphasize
reflection-induced standing wave effects, the target is back-coated with a thin, highly
reflective gold film (dAu � λ). As before, we consider a field intensity that is near the
damage threshold to drive substantial ionization.

Figure 6.4 compares the detailed spatio-temporal evolution of the propagating
laser field and the sub-cycle ionization dynamics along the optical axis for three
representative pulse durations. The displayed examples have been selected to high-
light the relevant dynamical stages of the ionization process and different regimes for
structured plasma formation.

The top row illustrates the case for a short pulse (a). In this case, the pulse is short
enough to propagate inside the target for a certain distance without any interference
with reflected parts of the pulse (see panel b). In this first phase, continuous traces in
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Figure 6.4.: Tunneling induced plasma formation in a 10 µm SiO2 slab with a 20 nm thin gold
coating. From left to right it is shown the normalized incident laser intensity, total electric
field, tunneling rate, inelastic collision rate, and total relative ionization for pulse widths of
20 fs (a–e), 80 fs (f–j) and 140 fs (k–o), at 12 TW/cm2. Insets indicate temporal shifts of the
tunneling rate p, r wrt. inelastic collision rate q, s in the magnified region marked in h and i
for 80 fs. Similarly, the second set of insets t–w applies to m and n.

the tunnel ionization probability (panel c) are predicted and remain sharply locked to
the most intense half cycles of the pulse (up to t ≈ 35 fs). The resulting free carriers
generated in the respective region of the target undergo both, ponderomotive mo-
tion and collisional heating, resulting in a mixture of cold and hot avalanching. The
presence of cold avalanching is signified by the sub-cycle modulation of the impact
ionization rate (panel d) while a cycle-averaged baseline is attributed to the thermal
(hot) avalanching. This aspect will be discussed in more detail later.

The next important dynamical stage begins with the arrival of the leading pulse
edge at the coated back surface around t = 40 fs. The interference with the reflected
pulse induces a strongly enhanced and spatially structured standing wave field (c.f.
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panel b), that is predicted to leave a clear spatial and sub-cycle temporal fingerprint
in the tunnel ionization rate (c). The resulting spatial modulation of free carriers
remains visible in the subsequent collisional ionization dynamics (d). After the re-
flection of the pulse, a much weaker ionization trace (now again with a continuous
shape) is generated by the backpropagating pulse (see, e.g. in panel d) that, however,
is insignificant for the total final ionization level for this short pulse case.

As a result of the interaction, the total ionization is dominated by the regular lat-
tice of ionization sheets near the back side of the target (e). Due to the highly non-
linear tunnel ionization, the spatial hot spot structure of the standing wave field is
transferred with high contrast to the spatial population profile of the free carriers (e).
The short pulse duration for this example is associated with a standing wave field
that induces three pronounced ionization layers at the back, with the highest plasma
density in the layer just below the reflecting interface.

With increasing pulse duration (see middle row), the extension of the ionization
grating grows (see panel j) and eventually reaches up to the front surface for the
considered model scenario. For the selected pulse parameters, the reflection of the
leading pulse edge results in an extended standing wave field that persists in the
time window t = −20..20 fs (panel g). Note that only in the rear part the field is
dominated by the standing wave component, which is associated with nearly equal
amplitude of the incoming and reflected fields. In the remainder of the target, the in-
coming field remains substantially stronger, as seen by the tilt of the spatio-temporal
hot spots (panel g and h). Nevertheless, the hot spot character of the field is pro-
nounced enough to generate a high-contrast plasma sheet lattice in the whole target
with comparable population in the plasma density peaks (panels i and j).

The time evolution of the impact ionization displays two interesting features.
First, in the front region of the target, a superposition of the continuous and strongly
modulated ionization is seen. Second, in the falling edge of the pulse, a spatial shift
of the layer structure within the ionization rate is found (c.f. t > 40 fs in panel i). This
shift in the impact ionization rate can be attributed again to standing wave effects
at the emerging plasma sheets. When reaching sufficient plasma density, the plasma
layers act as mirrors that induce a reflection. Each reflection produces a new standing
wave field with a field node at the conductive plasma sheets and a field hot spot at
a distance of a quarter wavelength. Hence, the transiently generated plasma mirror
grating results in a shift of the hot spots to location where the primary standing wave
field showed nodes. This hot spot migration explains the shifted feature observed
in the ionization rate profile, but so far does not fundamentally change or destroy
the plasma layer structure (panel j). As a consequence, however, it is seen that the
emergence of the plasma mirror shields the rear side of the sample such that further
ionization is mainly found in the front region once plasma reflection becomes signifi-
cant (panel j). Both features, i.e. the tilted structures in the ionization rate at the front
as well as the hot spot migration due to transient plasma mirror formation are also
found at further increased pulse duration (lower row). Here, the ionization in the
front region becomes so strong, that a plasma mirror emerges already near the pulse
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peak (t ≈ 0). The strong plasma mirror grating leads to even more pronounced mi-
grated hot spots that appear as well in the ionization rate (panel l and n). Eventually,
the first few plasma mirror sheets limit the penetration of the pulse into the target
substantially such that a plasma grating with highest ionization degree near the front
surface is produced for the long pulse case (panel o).

So far, the analysis of the three representative scenarios has shown that the dura-
tion of the driving pulse plays an important role in the ionization dynamics and the
standing-wave induced plasma profile. While short and moderately long pulses gen-
erate plasma layers at the back and in the interior of the target, longer pulses trigger
the formation of a plasma mirror grating with increasingly localized ionization near
the front interface and significantly increased reflectivity.

As the next step, the detailed evolution of ionization and its relation to standing
wave features is analyzed in selected spatial regions. As was already pointed out
above, the standing wave field in the rear region displays an almost spatially fixed
hot spot profile that oscillates only in time (Fig 6.4 b, g, l). In contrast, the standing
wave features in the front region show a remaining spatial movement of the hot spots
that was attributed to the stronger forward propagating wave component in this area
(panels g, l). The detailed impact of these different hot spot profiles on ionization is
illustrated in the zoomed plots of the tunnel and impact ionization rates (insets t - w
in Fig. 6.4). In general, the more roundish (rear) and tilted (front) hot spots are di-
rectly translated to the tunnel ionization rate, reflecting its direct dependence on the
instantaneous electric field (p, r and t, v). The impact ionization rate also displays the
respective hot spot features, but with reduced contrast and a systematically delayed
response (panels q, s, u, w) when compared to the features in the tunnel ionization
rate. This is attributed to the required buildup time of kinetic and thermal energy
after ionization prior to new collisional ionization events. The delay in the observed
features in the impact ionization rate is somewhat below a quarter field period. The
latter would be the expected delay for the peak kinetic energy for fully ballistic (pon-
deromotive) motion. The observed reduced delay is attributed to a collision-induced
phase shift (see also discussion in section 4.1).

The detailed temporal structure and sub-cycle modulation of the impact ioniza-
tion rate for short and long pulses deserves additional attention. Corresponding time
traces of the tunneling and impact ionization rates are displayed in Fig. 6.5 for se-
lected spatial regions as marked in panels a and d, by red and cyan rectangles. Com-
pared to the sharply modulated tunneling rate, that is quenched twice per optical cy-
cle (panel c), the sub-cycle modulation of the inelastic collision rate is less pronounced
and fades over time (panel b). In addition, a smooth, cycle-independent contribution
emerges in the impact ionization (violet dashed line). Qualitatively, these two contri-
butions are attributed to the cold and hot avalanching. While the former is confined
to the high intensity region of the pulse, the latter displays a longer decay phase that
extends over the trailing edge of the pulse. This cycle-independent contribution of the
rate is attributed to the high temperature part of the electron distribution. Compar-
ing the modulation amplitude (gray arrow) to the thermal contribution (violet arrow)
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Figure 6.5.: Temporal line-outs of inelastic collision rate, marked in a and d, are shown in
b and e, respectively. Contributions to cold avalanching, amplified by rear side reflection
and plasma mirror (gray arrows), and hot avalanching (violet) from thermal contribution are
indicated. Tunneling rates from the same region are shown in c and f for comparison.

allows to estimate the rate ratio of both impact ionization processes. In panel b, the
strong thermal contribution grows quickly in the weakly modulated rising edge and
exhibits a much longer decay time in the end.

Line-outs for the long-pulse scenario seen in panel d and e confirm this general
trend. Furthermore, the inelastic rate shows in this case at the front (red line in
panel e) three distinct features. First, the highest peak in the ionization rate is caused
by the standing wave from rear side reflection. The second peak, forming a shoul-
der, is clearly attributed to the standing wave, induced by the plasma mirror. This
signature is missing when inspecting the inelastic rate a few micrometer down the
optical axis (cyan line in panel d and e). However, the third signature, the long-
lasting, weakly modulated thermal tail is observable at both positions (cyan and red
line, panel e).

The relatively strong thermal contribution in all cases can be partially attributed
to the simplicity of the model. Here an equilibrated Maxwell-Boltzmann distribu-
tion was assumed in each time step, only parameterized by temperature and drift
velocity. It is expected that a fully resolved velocity distribution shows a faster de-
population of high velocity states. Hence, the thermal contribution, predicted by this
computationally much cheaper model, can be understood as an upper estimate.

In conclusion, the analysis of the plasma formation revealed four distinct dynam-
ical phases, consisting of (i) free propagation, (ii) rear-side standing wave formation,
(iii) emergence of a reflective plasma grating, and (iv) the generation of a secondary
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standing wave resulting in front side-ionization and hot-spot migration. The rela-
tive contribution of these phases to the plasma dynamics was found to depend on
the pulse width. While the plasma formation was initiated by tunnel ionization, the
impact ionization contributed most electrons in all cases. The time dependence of
the inelastic ionization rate revealed that hot avalanching is accompanied by pon-
deromotive (cold) contributions of comparable magnitude in the falling edge of pure
forward propagation and in the stationary standing waves. In the following section,
the impact of discussed processes on experimentally accessible observables such as
absorption, reflection, and transmission is investigated.

6.4. Effect of plasma formation on reflection,
transmission, and absorption

Time-resolved plasma diagnostics is typically realized in experiments by measur-
ing the pump-probe-delay dependence of reflection R, transmission T , and absorp-
tion A [87, 128, 154] where weak probe intensity ensures that the plasma formation
depends exclusively on the reproducible pump pulse. In the following, simulated
delay scans for I = 12 TW/cm2 on a pristine SiO2 target are used to relate character-
istic signatures in the delay dependence of the three observables to the temporal fea-
tures of tunneling and impact ionization rate. Starting the discussion for fixed pulse
parameters (see section 2.1), the strong correlations: (i) transmission—tunneling, (ii)
absorption—bulk-impact ionization, and (iii) reflection—front-surface-ionization are
discussed. In a second step, the effect of beam profiles and focal averaging is exam-
ined.

6.4.1. Delay dependence

In Fig. 6.6 the probe transmission is found to signal well the onset of the plasma
formation as seen by comparison of the solid blue line (panel a) to the rising flank
of the bulk averaged tunnel ionization rate, Γbulk (thick green line in panel b). The
inflection point of Tprobe is found at the maximum Γbulk. In the lower panel, both
bulk-averaged tunneling and impact rate (thick red) are shown on normalized scale
together with front surface rates (darker thin lines). Only ionization at the front sur-
face (0 < z < 0.5 µm) exhibits extended dynamics in the falling edge of the driving
pulse, in accordance with the discussion in the previous section. The fact that Γfront is
peaked at the falling flank is a result of the plasma reflection that enhances the field.
Around the same time, at t ≈ 40 fs, the averaged bulk inelastic collision rate γbulk

shows a maximum, that can be correlated with the peak in the absorption (dotted
blue). The interpretation that the absorption peak signals the maximum inelastic col-
lisions is in particular underpinned by the energy balance (Fig. 6.3), confirming that
most energy is absorbed by impact ionization.
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Figure 6.6.: Transmittance T , reflectance R, and absorption A of the probe, as function of
probe delay a and pump intensity c are shown next to time series of normalized ionization
rates at the front and in the bulk (see legend) b. Form ionization time traces, mean ioniza-
tion times, and maximum ionization rates are extracted and displayed in d, e, respectively.
Beam parameters from section 2.1 are used for an uncoated 10 µm SiO2 sample, panel a and
b recorded at I = 12 TW/cm2.

The third observable, the inflection point of the probe reflection (dot-dashed in
panel a), is further delayed by about ≈ 70 fs wrt. the drop in transmittance and is
only seen once the front side ionization is further increased by inelastic collisions
(thin dark red). Over a period of more than 150 fs the plasma density is still increased
even though the pump intensity dropped by more than one half. The impact ioniza-
tion avalanche, characterized by weaker temporal modulation, continues to run for
a longer time, in particular at the front surface. The resulting late increase in front
side reflectivity also explains the drop in absorption seen for τ ≈ 100 fs (blue dot-
ted). From Fig. 6.6 a and b the interpretation of the observables in terms of ionization
rates has been motivated for one parameter set. In the following, it is shown that this
correspondence holds also at other pump intensities.

6.4.2. Intensity dependence

The first central finding is, that changing the intensity leads mainly to temporal shifts
in the peak position of the rates. These shifts can explain that the intensity depen-
dence of observables R, T and A in panel c is similar to the delay dependence ex-
amined before in panel a. To discuss how intensity affects the dynamics, the first
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temporal moments of tunneling and impact ionization rates,

〈t〉Γ =
∫

dz
∫
tΓ(z, t) dt∫

dz
∫

dtΓ(z, t) , (6.54)

are examined in panel d. Increasing the intensity, shifts bulk tunneling monotonously
to earlier times. Depending on intensity this has two different reasons. At high in-
tensities, for I ≥ Icrit = 12 TW/cm2 this is caused by quenching, as seen by peak
positions on rising flank indicated i.e. 〈t〉Γbulk < 0 in panel d. For I < Icrit, on the other
hand, no quenching is observed. Here the negative gradient ∂〈t〉Γbulk

∂I
is attributed to

the longer time that is required to form the spatially smaller standing wave at the
rear interface. This finding for lower intensity interval is consistent with instanta-
neous tunneling at the surface, seen as constant peak time at the maximum of the
impinging driving pulse (see green dashed line, panel d). In both intensity intervals
also impact ionization shows distinct behavior.

At low intensities impact ionization shifts together with the tunneling rate. The
delay is decreased as tunneling supplies a higher electron density for cold avalanch-
ing, which quickly decays with the trailing edge of the laser pulse. A swift change
towards much more extended hot-avalanching is seen, beyond the critical intensity
I > Icrit. In particular, the front surface impact ionization extends to later times as
more energy is supplied by the driving pulse.

In conclusion, the detailed analysis shows at early time and low-intensity simi-
lar behavior in all three observable due to the dilute plasma. This correspondence
remains as the intensity growth leads to a shift in ionization to earlier times, and
simultaneous increase in maximum rates. Finally, the late increase of reflectivity sig-
nals for the delay- and the intensity scan a continued growth of front side ionization.
This exemplary analysis shows, how the 1D simulation is used to relate experimen-
tally accessible fluences from delay and intensity scans to the ionization dynamics.
These calculated results correspond to ideal experimental conditions where the waist
of the probe beam is sufficiently small, to irradiate a homogeneous transverse plasma
density. In the setup discussed earlier, however, the waist of both beams is of simi-
lar order of magnitude. Therefore, the impact of the radial intensity profile on focal
averaging is investigated next.

6.4.3. Focal averaging

In the weak focusing limit, paraxial beam propagation allows to estimate the trans-
verse intensity profile by integrating the intensity-dependent observable. In the
present experiment, the loss in transmission L = 1 − T was detected, for Gaussian
pump and probe beams with waists of wpu

0 = 33 µm and w
pr
0 = 75 µm. Using these

parameters, contributions for each intensity are weighted by the occupied area of the
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beam mode. The focal averaged relative loss in probe transmission than reads,

〈Lpr〉foc (I) =
∫
r Lpr(Ipu(r)) Ipr(r)dr∫

r Ipr(r) dr , (6.55)

where I corresponds to the maximum on-axis pump intensity. According to Fig. 6.7
the focal averaged loss in probe transmission (dashed blue) is significantly reduced
compared to a flat beam profile (solid blue).
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Figure 6.7.: Loss of transmission of pump (red) and
probe pulse (blue), for flat-profile (solid) and focal av-
eraged Gaussian profile (dashed).

This result is in good agreement with a recent experiment that reports a relative
loss in transmission by the plasma of 5−6% at 11 TW/cm2 [87], indicated by the green
cross. The loss in pump transmission (red) is less affected by focal averaging due to
the smaller beam waist. To further reduce averaging effects and to detect the steep
increase seen in the solid lines, a reduced waist ratio wpr

0 /w
pu
0 well below unity seems

instrumental in future measurements.

6.5. Conclusion

In this chapter, the Lorentz model was extended by a temperature and drift depen-
dent plasma model for self-consistent pulse propagation within the FDTD method.
Examining the energy balance of the simulation, the dominant role of collisions in
the absorption of long pulses was contrasted by the increasing relative significance of
the injection current for the absorption of few-cycle pulses. Furthermore, our simu-
lation allowed for the detailed analysis of the spatio-temporal structure of emerging
plasma. In particular, the feedback of the emerging plasma mirror was examined
that leads to a spatial shift of impact ionization hot spots by a quarter wavelength
opposite to the propagation direction. Furthermore, from the time dependence of the
inelastic ionization rate it was found that hot avalanching and cold impact ionization
contribute with comparable magnitude during pure forward propagation and in sta-
tionary standing wave regions. Finally, good agreement with experimental plasma
diagnostics was confirmed, when comparing focal averaged calculations of the trans-
mittance with delay-dependent measurements.



7. Harmonics from Nonlinear Reflection

The structure of below-band-gap harmonic spectra from bulk generally depends on
the medium dispersion and therefore on phase-matching conditions [74]. In particu-
lar, cross-phase modulation, generated by any nonlinear mechanism, can disturb the
spectral weight structure discussed in sect. 3.2.2 in transmission direction. Therefore,
we investigate harmonics in the reflection direction which offer two strong advan-
tages. First, harmonics propagate after front-side reflection in vacuum and there-
fore essentially dispersion free towards the detector. Second, reflected harmonics are
locally fixed to the interfaces as phase matching prohibits large bulk contributions.
Furthermore, it is shown in the following that the carrier-envelope phase is sensitive
whether harmonics stem from the interface with bulk properties or from a thin layer
of modified (e.g. stronger) nonlinear response. These arguments provide that com-
paring reflected and transmitted below-bandgap harmonics allows to systematically
turn on and off the influence of propagation effects. One disadvantage of the reflec-
tion scenario is that harmonics reflected from the front interface show a comparably
low amplitude, in particular for under-critical plasma densities. Nevertheless, in two
recent works, harmonics in reflection direction were successfully detected. In the first
case, Vampa et al. [155] compared the angle dependence of several low harmonic or-
ders to the generalized Fresnel coefficient for nonlinear scenarios predicted by Bloem-
bergen and Pershan [156]. In the second work by Hui et al. [157], reflected radiation
was used to determine the attosecond reflectivity and extract the time-resolved den-
sity of excited carriers at the interface. The authors report a remarkably high agree-
ment between a local model and extracted quantities. From both works, it can be
concluded that reflected fields from the front interface are well explained by the local
models, which we further explore next.

7.1. Amplitude and phase for nonlinear reflection

So far the amplitude scaling of harmonics, relevant for the correct reconstruction
ansatz, was discussed for transmitted fields in sect. 3.2, where a dependence on de-
tection geometry was found. Here we discuss how the emission geometry also de-
termines the amplitude and phase of emitted harmonics. As before we consider a
one-dimensional plane wave description, that can be directly related to the harmonic
yield from Gaussian beam profiles (see sect. 3.2.3). Fig. 7.1 a–c summarizes the effec-
tive relation between local response and spectral amplitude and phase.

83
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a b c dPoint-like dipole Thin film Bulk build-up Bulk reflection

Figure 7.1.: Far-field phase and amplitude of harmonics generated in different emission ge-
ometries. Point-like sources a show dipole-acceleration type emission −J̇+

h , thin film and
phase matched bulk dipole-velocity like−J+

h and bulk reflection show dipole-like−P+
h emis-

sion.

For a point-like emitter (panel a), the far-field is proportional to the negative dipole
acceleration (c.f. Appendix B.2). Increasing the transverse size of the emitter to a thin
foil (panel b), the far field becomes proportional to the negative dipole velocity (ear-
lier discussed in eq. (3.6) and Appendix B.1), effectively removing a temporal deriva-
tive from the far field dependence. Hence, the spectral weight acquires an inverse
frequency factor and is delayed in phase by a quarter period. Considering as emis-
sion geometry a bulk medium with negligible phase mismatch (panel c), the forward
harmonic signal is coherently amplified, such that the far-field dependence remains
proportional to the retarded negative dipole velocity. In the following of this chapter,
we focus on the reflection scenario (panel d) where harmonics are generated from a
thin surface region of bulk medium, exhibiting effectively dipole-type emission, and
therefore a distinct spectral fingerprint than the thin film reflection.

In this context, the term "effectively" is used to indicate that the amplitude and
phase of harmonics, match those of the negative dipole density. It is important to
recognize that this discussion does not concern the physical origin of the radiated
fields. Radiated fields are generated by accelerated charges—a charge in constant,
non-relativistic motion does not emit radiation.

The full relation between reflected harmonic field and local, time-dependent po-
larization is derived from the nonlinear wave eq. and the continuity equations at the
interface (Appendix D) and reads,

Eref
harm(t) = −1

2ε0nior(1 + nior)︸ ︷︷ ︸
f ref
PNL

PNL(tr) (7.1)

where PNL(tr) contains the bound polarization plus the time-integrated free current,
evaluated at the retarded time. The linear index of refraction is denoted by nior. All
coefficients are summarized into the nonlinear reflection factor and f ref

PNL
.
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7.1.1. Benchmark of reflected injection and Brunel harmonics

Next, we utilize the nonlinear reflection eq. (7.1) to determine separate analytic ex-
pressions for ionization-induced injection and Brunel spectra, based on the tunnel-
ing expansion. This prediction is used for a benchmark comparison with our self-
consistent simulation introduced in chapter 6 to verify on the one hand the formal
description and to validate on the other hand that low-order harmonics are correctly
propagated on the numerical grid.

First, the polarization in the reflection relation, eq. (7.1), is replaced by the time
integral of the injection current

Eref
inj = f ref

PNL

∫
dtJinj with, (7.2)

Jinj = n0
Eg E
|E|2

(1− ρ(t)) Γ(|E|) ≈ n0EgΓ̂
Ês

|E|s−2E. (7.3)

Here the injection current from eq. (2.14) has been inserted. To calculate the spectrum,
we transform the Gaussian pulse to the frequency domain, where the time integral in
eq. (7.2) turns into the inverse frequency factor 1

iω
. Furthermore, we utilize that the

|E|s−2E term can be written as harmonic series, where the tunneling exponent s is
extracted as before from the ADK rate eq. (3.34),

Eref
Inj (ω) = f ref

PNL

√
π

aInj

ĴInj

2
∑

odd h

D
(s−1)
h

iω
e
−
(
ω−ωh
2aInj

)2

, with,
ĴInj = 2n0 Eg Γ̂

2s−1Ê
,

aInj =
√
s− 1

√
2 ln 2

tInts
FWHM

.

(7.4)

The degeneracy weights D(m)
h and current amplitude ĴInj follow, analogous to the

polarization series eq. (3.5). The spectral width parameter aInj is determined from the
harmonic pulse duration, eq. (3.58).

In Fig. 7.2 a, the analytic reflected injection spectrum, i.e. the absolute value of
eq. (7.4), (yellow dashed) agrees well with the fast-Fourier-transformed reflected
fields from the ionization-radiation FDTD simulation (green), recorded a few mi-
crometers in front of the medium. For this benchmark, all other nonlinear effects
besides the injection response are switched off. Spectra in this figure are not normal-
ized and agree on absolute scale. This agreement confirms on the one hand the valid-
ity of the derived harmonic series including approximations made for the tunneling
expansion. On the other hand, agreement up to the h ≤ 13 injection harmonic shows
that fields are correctly propagated by the algorithm. Furthermore, the calculation
confirms, that amplitude scaling of reflected injection harmonics is characterized by
|EInj,h(ω)| ∼ 1

ω
DInj,h.
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Figure 7.2.: Single color reflection bench-
mark. Calculated spectra of injection (yel-
low) and Brunel harmonics (red) in reflec-
tion direction show excellent agreement
with the simulation of isolated nonlinear
response using the ionization radiation
model introduced in chapter 6 (green).
The spectra confirm the characteristic am-
plitude fall-off |Eref

Inj,h(ω)| ∼ 1
ω DInj,h and

|Eref
Br,h(ω)| ∼ 1

ω2 DBr,h .

Similar good agreement is found when comparing the isolated Brunel response
from the simulation (green) in panel b with the modulus of the formal solution,

Eref
Br (ω) = f ref

PNL

√
π

aBr

ˆ̇JBr

2
∑

odd h

DBr,h

(iω)2 e
−
(
ω−ωh
2aBr

)2

with,
ˆ̇JBr = 2 q2n0Γ̂Ê

2s+1 me iω0

aBr =
√
s+ 1

√
2 ln 2

tInts
FWHM

,
(7.5)

shown by the red dashed line. The expression for the degeneracy weight of the
Brunel mechanism is slightly more involved than for the injection current as shown
in appendix D.2. In this case, the numerical result validates the spectrum up to
h ≤ 11. Comparing the width of harmonics in both spectra, it is seen that Brunel
harmonics are more spectrally broadened, which is a result of the increased nonlin-
earity mBr = minj + 2 (see sect. 3.4.2). Moreover, the characteristic amplitude fall-off
|Eref

Br,h(ω)| ∼ 1
ω2 DBr,h is confirmed.

7.1.2. Signatures of the nonlinear reflection mechanism

An overview for the distinct amplitude fall-offs in the different scenarios is provided
in table 7.1. Here the relevant emission geometries are given in the center and right
column and the different emission mechanisms are listed row-wise. For clarity, the
general relation between emitted field and local charge dynamics for the thin film,
from eq. (3.6) as well as for bulk reflection from eq. (7.1) is given in the first row.

For the Kerr-type emission also the multiple interaction with the third-order non-
linearity is accounted for, which can also lead to a response beyond the third har-
monic. Here the integer ` denotes the number of repeated, so-called cascaded, inter-
actions with the third-order nonlinearity. As the cascaded response is exponentially
suppressed with harmonic order, it is here only considered for the low-order Kerr-
type mechanism, while for the high-order ionization-induced nonlinearity the direct
response (single interaction) turns out to be dominant. We come back to this par-
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Amplitude scaling E(ω)
Thin film (Ch. 3)
Phase matched medium Bulk reflection

field—charge-
carrier relation

|E(ω)| ∼ |J(ω)| |Eref(ω)| ∼ |P (ω)|

Kerr-type |EKerr,h(ω)| ∼ ω D
(m),`
h z` |Eref

Kerr,h(ω)| ∼ D
(m),`
h

Injection |EInj,h(ω)| ∼ DInj,h z |Eref
Inj,h(ω)| ∼ 1

ω
DInj,h

Brunel |EBr,h(ω)| ∼ 1
ω
DBr,h z |Eref

Br,h(ω)| ∼ 1
ω2 DBr,h

Table 7.1.: Harmonic amplitude scaling Eh(ω) for `-times cascaded Kerr, direct injection and
direct Brunel harmonics from thin film, phase-matched bulk along propagation distance z,
and the bulk-reflected scenario. In the case of Kerr-type harmonics, ` denotes the number of
nonlinear interactions.

Harmonic phase Φscen
mech

Thin film (Ch. 3)
Phase matched bulk Bulk reflection

field—charge-
carrier relation

− J+
h (0, tr)e−iωht − P+

h (0, tr)e−iωht

Kerr-type (−i)` (−1)`

Injection −1 +i
Brunel +1 −i

Table 7.2.: Mechanism-specific harmonic phases of the complex positive frequency compo-
nent E+

h for different emission geometries. In this notation, a positive phase factor Φscen
mech > 0

corresponds to a shift of field crests to earlier times.

ticular point when comparing transmitted and reflected harmonics for a two-color
scenario, where the relevant nonlinearities act concurrently.

To complement the comparison of similarly strong mechanisms, also the charac-
teristic phases are extracted from eqs. (7.1)-(7.5) and summarized in table 7.2 below. It
is seen that bulk reflection is a quarter period delayed with respect to thin film emis-
sion and in particular with respect to thin film reflection (c.f. center to right column).
These characteristic phases can be used to identify the mechanism and to determine
the spatial origin of harmonic emission. For instance, the phase of cascaded Kerr-type
harmonics is for the bulk reflection scenario always distinct from injection or Brunel
harmonics. This distinguishes bulk reflection from the thin film result, where two
interactions with the third-order nonlinearity (` = 2, typically found in the spectrum
at the 5th harmonic or the n = 2 wave-mixing signal) result in the same phase factor
as the injection response (see center column of table 7.2).
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7.1.3. Longitudinal length-scale of reflection response

Next, as a representative example for the spatial resolution gained by the distinct
harmonic phase between thin film and phase-matched bulk reflection (center vs. right
column), we examine the length scale for the transition of the harmonic phase in
the simplest scenario i.e. the direct χ(3) response at the bulk interface. In forward
direction, the Kerr-type third harmonic is a quarter period delayed (center column,
` = 1 in table 7.2) wrt. the driving reference. In reflection direction, however, it is half
a period out of phase. This transition of the phase is examined using our simulation
as function of propagation distance in Fig. 7.3.

0 1 2
Opt. axis z [µm]

-1

-0.5

0

Ph
as

e 
[

]

P3 (z)

E3 (z)
Figure 7.3.: Phase of harmonic polarization and field as
function of propagation depth at the front interface. Ini-
tially in phase with the driving field, the third harmonic
polarization (blue) quickly accumulates a phase delay of
a quarter period. The third harmonic field (black) is ini-
tially half a period out of phase and converges toward
the same quarter-period phase delay.

At low intensity where the Kerr contribution is dominant, the phase of the third
harmonic field (black line), shows as function of propagation depth two limiting cases
that are consistent with the above discussion. It is found that the phase of ∠E3ω(z) =
−π at the front interface z = 0, converges rapidly, i.e. within sub wavelength distance
(λ = 2100 nm) to the phase delay expected for bulk. The phase of the third harmonic
polarization (blue line) shows convergence behavior on similar length scale. Zero
phase delay of the polarization at the interface (z = 0) indicates its instantaneous
dependence on the fundamental field. The convergence to a quarter-period phase
delay is attributed to the contribution of the linear polarization driven by the third
harmonic field.

This finding leads to the important conclusion that the thickness of the nonlinear
medium determines the phase of reflected harmonics, which is particularly useful if
the nonlinear response from the surface is stronger [158]. Once the mechanism of
nonlinear response is determined, for example by the previously discussed spectral
fingerprint of the amplitude scaling, the phase can be used to determine if the radia-
tion originated from the interface and if so from which thickness.

7.2. Linking reflected harmonics and local current

In the previous section the tight relation between local response and nonlinearly re-
flected fields was established, that explains amplitude and phase properties of the



Harmonics from Nonlinear Reflection 89

harmonic radiation response. Next we show that these reflected harmonics are robust
against propagation effects and remain sensitive to the local dynamics even at high
intensities where plasma formation already affects the transmitted field. We apply
the formal concepts to our wave-mixing scenario and examine the harmonic scaling
from a macroscopic SiO2 slab in Fig. 7.4 a, that is obtained from calculated spectra
in forward b and reflected direction c, using our 1D self-consistent simulation. The
setup is sketched in inset e with incident, right-propagating driving pulse (red) and
reflected left-propagating harmonic (purple).
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Figure 7.4.: Scaling of wave-mixing harmonics in reflection direction, normalized to lowest
intensity a in reflection direction (solid) and transmission direction (dot-dashed). This scaling
is obtained from calculated spectra in perpendicular pump-probe configuration, recorded be-
hind b and in front of a 50 µm SiO2 sample c, shown for two representative pump intensities
10 TW/cm2 (gray) and 17 TW/cm2 (black). To extract only the harmonic field reflected from
the front side, a temporal filter is applied. Panel d shows the eff. nonlinearity of reflected har-
monics (solid) and the corresponding local current at the front surface of the target (dotted).
For pulse parameters, see Sect. 2.1.

To reveal the intensity scaling of the n = 1..4 low-order wave-mixing signal at
ωmix

sig = 2nωpu + ωpr wrt. the pump intensity, the yield of each harmonic in panel a,
is normalized to the lowest data point. The strongest signal (i.e. n = 1) shows in
transmission (dashed blue) and in reflection direction (solid blue) perturbative scal-
ing of the yield Yn=1 ∼ I2 (c.f. gray reference line). The perturbative scaling of higher
wave-mixing harmonics exhibits, as expected, the characteristic I2n dependence (see
orange, yellow and purple curves on top of gray reference line), that stems here from
the interaction of 2n pump photons and one probe photon in the cascaded χ(3) pro-
cess. This shows that the thin surface layer, where reflected harmonics are generated,
suffices to generate cascaded nonlinear response. In the following we focus on the
lift-off from the perturbative, Kerr-type, scaling that signifies the plasma response.
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We start by examining the transmitted harmonic signal detected behind the target
(dot-dashed line, panel a). The drop at about 12 TW/ cm2 (all dot-dashed curves) indi-
cates that in this perpendicular configuration, the saturation effect due to the plasma
mirror sets in, before ionization harmonics surpass the Kerr contribution. This in-
terpretation is supported by the structure of the harmonic spectrum in b. At high
intensities, the transmitted spectrum is heavily distorted (c.f. black line) compared
to spectra obtained below the threshold (gray). Further, transmitted harmonics show
stronger attenuation for low orders (n < 3), which is consistent with the frequency
dependence of the critical plasma density ncrit = ε0mω

2/e2.

The intensity scaling of reflected harmonics (solid lines in panel a), however, show
eventually a steep lift-off of comparable slope for all wave mixing orders. It is seen
that this swift increase occurs for higher n already at lower intensities. We attribute
this to the steeper amplitude decay of the cascaded Kerr harmonics compared to
the spectral weights of the injection response. This apparently reduced signal back-
ground with increasing wave mixing order can be interpreted as improved sensitivity
to the injection signal. Furthermore, the fact that the lift-off of the n = 1 signal is only
seen when transmitted fields are already quenched, is one indicator, that ionization
harmonics in reflection direction are robust against the emerging high plasma density.
This finding is consistent with the clearer spectral structure of reflected harmonics at
high intensities, (compare black lines in panel b and c). In order to show that the
harmonic signal can be directly linked to the local response, the effective nonlinear-
ity (i.e. the intensity ratio parallel versus perpendicular, introduced in sect. 2.3), is
analyzed next.

In Fig. 7.4 d the eff. nonlinearity of reflected harmonics (solid lines) is now shown
on linear intensity axis. The n = 1 harmonic (solid blue) follows the behavior already
seen in the experiment (c.f. sect. 2.3). In accordance with the previous discussion,
high wave-mixing harmonics show an earlier increase in the effective nonlinearity.
The n = 2 mixing harmonic (orange line) departs from a nonlinearity of 5 due to
cascardation at small intensities, the position of the lift-off agrees with that seen in
panel a. For n = 2, 3, 4 the expected decline in nonlinearity that indicates the de-
creasing slope of the tunneling rate (c.f. discussion of fig. 3.6) is observed. The good
agreement with the corresponding amplitude ratio of the local source current (dot-
ted), that was recorded in the simulation on the front surface of the medium, confirms
the direct relation between interface harmonics and local response.

To summarize, the comparison of transmitted and reflected harmonics using our
fully self-consistent FDTD-ionization-radiation model, revealed two advantages of
the reflection scenario. First, the absence of phase matching and absorption for re-
flected harmonics allowed to observe the undisturbed spectral weights, resulting in
an effective nonlinearity that agrees with the local current at the surface at several
wave-mixing orders. Second, reflected harmonics are found to be robust against high
plasma densities. Both advantages are in particular instrumental to study the relative
phase between ionization-induced harmonics. Hence, the reflection scenario consti-
tutes an ideal platform to identify nonlinear mechanisms at the interface based on ef-
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fective order and carrier-envelop phase of emitted harmonics. In particular, reflected
fields are promising to the study injection mechanism beyond the semi-classical pre-
diction. To provide an outlook, we qualitatively examine the excitation dynamics
based on a quantum dynamical calculation next.

7.3. Real space perspective on tunneling injection in
periodic potential

Our semi-classical model (introduced in sect. 2.4.2) predicted short pulses of current
through the effective potential barrier, with temporal width much shorter than one
half-cycle of the laser field (c.f. eq. (3.39)). However, the full electron trajectory in
space can not be described in this simplified model as it is classically forbidden. In-
stead the full quantum calculation of the current becomes necessary. Goal in the
following is to identify the injection current also in the full quantum dynamics and
to determine the role of the periodic potential for the dynamics of liberated tunnel
electrons.

7.3.1. SiO2 model for quantum mechanical tunneling dynamics

As a model system for SiO2 we consider a finite, one dimensional chain, where the
external laser field is focused tightly onto the center. To facilitate the analysis in real-
space and to follow the trajectory of the tunneling electron wave-packet, we consider
a focus far beyond the diffraction limit that drives ionization only in the center well of
the lattice. For the finite periodic part of the lattice, a cosine-shaped pseudo-potential
is adopted, where parameters are adjusted, to capture the relevant properties of the
SiO2 band structure, with lower edge of the conduction band at EC = −1.3 eV be-
low the vacuum level [159] and a band gap of Eg = 7.7 eV corresponding to the
sample used in the earlier experiment1, resulting in a upper valance band edge at
EV = −9.0 eV.

The potential, the band structure, and field free eigenstates, computed from imag-
inary time propagation [161], are shown in Fig. 7.5. The first two states from each
band are shown in panel a and inset b-d, indicating the characteristic shape of |ψ|2(x)
of tightly bound valence states (blue), conduction states (light red) and continuum
states (dark red). Each valence band contains N = 21 states, one for each well of
the potential shown below in panel e. The same energy scale is used in panel f that
shows the free-dispersion parabola (dark red) and the band structure of the finite pe-
riodic potential. All bands in the full Brillouin zone are computed by solving the TISE
eigenvalue problem in k-space (Appendix D.3). This independent calculation is used

1Possible reasons for varying gap-values for amorphous SiO2 were earlier reported in [160].
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to benchmark our eigenstates. For their comparison the Fourier transformed abso-
lute square of the eigenstates can be examined [162]. They are plotted in panel g-i
on logarithmic color-scale at their corresponding eigenenergies. Excellent agreement
with the TISE results (dashed overlays in first Brillouin zone) confirm convergence of
ground states by imaginary-time propagation [161].

Next, the 2N states from the two completely filled valance bands are used as initial
conditions to simulate the laser-driven tunneling dynamics by solving the TDSE

i~
∂ψ

∂t
=
[
− ~2

2me

∇2 + V0(x) + Vlas(x, t)
]
ψ(x, t) (7.6)

numerically. Physically, it is expected that already at small field strength, the valance
band electron density, initially centered around potential minima (inset c, d), is dis-
placed. This displacement, however, can due to Pauli-blocking only be realized by in-
stantaneous (virtual) population of higher lying conduction states (red lines, panel f)
that are immediately depopulated once the electron density returns to the equilibrium
position. For persistent (real) population due to tunneling from the upper edge of the
valence band into the lower edge of the conduction band, subsequent acceleration of
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Figure 7.5.: Bandstructure, eff. potential, and energy eigenstates of our SiO2 model system
used for numerical solution of the TDSE. Panel a shows the lowest two energy eigenstates
|ψ(x)|2 of the two valance bands (blue), the lowest conduction band (pink), and free contin-
uum states (dark red), shifted for visibility and magnified in inset b-d. The eff. real space
potential V0, constructed from a cosine with N = 21 wells is shown in e (black), next to the
corresponding band structure En(k) in f that is compared (dashed lines in panel g-i) with
Fourier transformed energy eigenstates |ψ(k)|2 (color coded), see main text.
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conduction electrons along the crystal momentum axis according to the acceleration
theorem in dipole approximation,

k(t) = k0 + qe
~

t∫
−∞

E(x(t′), t′) dt′, with vn(k) = 1
~
∂En(k)
∂k

(7.7)

being the group velocity of the wave packet, is expected. The higher curvature of the
conduction band En(k), compared to the free dispersion parabola (panel f), indicates
a reduced effective mass of electrons in accordance with ab initio calculations of the
real system [159].

7.3.2. Quantum mechanical strong-field ionization current

In the following the total current from all electrons that initially fully occupy both
valance bands (VB), is examined for three representative intensities. In Fig. 7.6 a the
spatial profile of the total current density is shown as function of space and time.
Electrons are injected into the conduction band (CB) seen as diagonal stripes pointing
outwards, that become more pronounced with increasing intensity (see titles). Cur-
rents due to virtual population are localized at the focal region x ≈ 0 and seen best at
lowest intensity (alternating colored spots in a). The effective lattice plus laser poten-
tial at the crest of the field is shown for the corresponding intensity of 16 TW/cm2 in
inset b by a black line (gray lines for 25, 50 TW/cm2, respectively).

To examine different contributions to the current, the excitation dynamics of elec-
trons from the upper VB is further analyzed using the window operator method, in
the panels below. Panel c shows the energy-resolved population of electrons over
time. Here virtual excitation that is in phase with the cw-laser field, is seen as blue
peaks in the conduction and lower valance band. In the lowest band at least the same
amount of probability density is transferred to higher states (not shown), as orthog-
onality of all states is preserved by the Hermitian interaction Hamiltonian. Hence,
the Pauli exclusion principle remains automatically fulfilled by the TDSE. From the
excitation dynamics in c, the energy windows corresponding to the VB and CB are
selected to isolate respective electron dynamics.

The corresponding electron density in the CB is shown in panel d, where the out-
going trajectories show a clear modulation by the potential (inset e), which can be
attributed to a hopping from one potential well to the next. These straight hopping
trajectories in the field-free region indicate an approximately constant group velocity
of the electron wave packet. At the interface only a small fraction of electrons with
high kinetic energy is transmitted into the vacuum, as most electrons remain at the
lower edge of the VB and therefore below the free dispersion curve (c.f. Fig. 7.5 f).
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Figure 7.6.: The strong-field-induced, quantum mechanical particle current, Jel(x) =
~
me

Im {ψ∗∇ψ}, is shown as function of space and time in panel a (color coded in arb. u.),
together with the eff. potential (black inset b) at the crest of the tightly focused field (spatial
envelope green). The energy and time resolved occupation dynamics of electrons from the
upper valance band in c, is used to extract the real-space probability of conduction band pop-
ulation in d, where hopping trajectories are magnified in inset e. Intraband currents from the
upper VB and the lowest CB are shown in f, g and compared with trajectories from eq. (7.7)
(green). Panel h-w display corresponding results for higher intensities (see titles). Cuts of the
CB current along dashed lines in n are shown in inset o vs. time and in inset p vs. frequency.

Interestingly, the intraband particle-current,

Jintra
CB = ~

me

N∑
κ=1

∑
n∈CB

Im{φ∗nκ∇φnκ} , (7.8)

calculated by summing the flux over all windowed wave functions φnκ with energy
index of the window operator n and initial eigenstate index κ exhibits a different be-
havior, see Fig. 7.6 g. This conduction band contribution of the intraband current
does neither show virtual excitation nor the clear hopping modulation from before.
Instead, a uniform particle flux is seen, that is partially reflected at the interface, lead-
ing to a sign flip (changed color) and back-propagation towards the center of the lat-
tice. In the VB (panel f), similar straight trajectories are seen but with reversed colors.
Although the first trajectory points to the right, red color indicates an electron flux to
the left. It is deduced that this representation of the VB particle current reveals the
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trajectory of holes, which is consistent with absent flux into free-space. This real space
analysis thus represents a concrete example for the hole dynamics according to the
physical "empty seat" picture. Pictorially speaking, valence electrons move from one
side into the hole so that the hole moves in the opposite direction. This explains the
initial opposite real space acceleration of electrons and holes. The smaller hole velocity
(higher slope in f and g) is attributed to the higher effective hole mass around the top
of the VB. For this extreme focusing case, this leads to holes being spatio-temporally
overlapped only with conduction electrons from later laser cycles.

The interpretation of the quantum mechanical current given so far is supported
by the good agreement with semiclassical trajectories (see green lines), using the in-
tegration of the acceleration theorem eq. (7.7) by means of the velocity Verlet method
(Appendix D.4). This calculation shows at the same time that in reciprocal space
unoccupied states2 move according to the "bubble within a stream" picture. The elec-
trons and the vacant states are accelerated immediately after the tunneling according
to eq. (7.7) in the same direction along the k-axis, so that the vacancy resembles a
bubble which is carried along by a flowing fluid (valence electrons). Because of the
highly confined focus in our scenario, the conduction electron can leave the focal re-
gion faster due to the lower effective mass, while the crystal momentum of the hole is
further modified. Finally, the superposition of electron and hole trajectories (g and f)
can explain the interference spots seen in the total current in panel a from the second
emitted electron burst on. This notion is further supported, by inspecting the same
scenario at higher intensities.

With increasing intensity, the total current density grows, as seen from the sec-
ond and third column of panels, i.e. h-p and q-w. In particular in h and q electrons
now show increased transmission and reduced internal reflection at the medium in-
terface, as they are accelerated to higher energies, c.f. j, s. For the highest shown
intensity, electrons are accumulated at the lower and upper edge of the first conduc-
tion band (red maxima in panel s) that leads to the separation of the wave packet as
seen in inset u and panel w. Comparison of the latter with the total current q, shows
good agreement of the electron trajectories. However, the total current density shows
additional features. From the second field cycle on, i.e. for t > 10 fs, spotted current
densities are seen on the opposite side of the focus (red dots, panel q). Due to the
matching sign, we attribute these to the hole dynamics (panel v) where interference
spots can be attributed to interband effects, including recombination of electrons with
holes which will be further examined in the following sect. 7.3.3.

The main finding from this TDSE simulation is, that the intraband current of the
lowest conduction band shows for intensities I . 25 TW/cm2, a single wave packet,
that is injected during a short time interval at the crests of the field-cycle and prop-
agates afterwards essentially undisturbed through the crystal lattice. It is the time

2An unoccupied valence state is characterized by the absence of mass and charge. It is distinguished
from a hole quasi-particle, often simply denoted as "hole", that carries a net positive charge +e
and is used to describe the collective effect of all remaining valence band electrons [163]. As we
propagated all electrons explicitly, we did not employ the hole particle concept in calculations.
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Figure 7.7.: Spatio-temporal structure of intra-, a-c, and interband contributions, i-k, of the
field-induced particle current (same color scale) in SiO2, with rescaled ext. force, qeE in b,
are obtained for I = 25 TW/cm2 from the window operator method. The sum of these con-
tributions, seen in l, agrees well with the particle current directly obtained from the wave-
functions d. The same section is magnified in each image for detailed analysis (main text).

structure of this current that can give rise to LOHG, as discussed earlier in sect. 2.4.
To confirm this also in this quantum simulation, representative cuts of the current
at fixed location (panel n, gray dashed lines), are extracted, see inset o. The current
injected into the conduction band (red line) shows the expected nonlinear depen-
dence on the driving field (black line). Here good agreement with Em where the
order of nonlinearity m = 11 is evident (dashed line). The Fourier transform (inset p)
clearly reveals the low-order harmonic spectrum of the current. We note, that the
corresponding total dipole acceleration, that is the microscopic source of any emitted
radiation, is localized at the starting point of the wave packet trajectory, i.e. at the
tunneling exits in the laser focus (here x ≈ 0).

7.3.3. Decomposition and analysis of the field-induced current

So far we identified the strong-field injection current from the temporal structure of
the intraband current in the conduction band. Next, we compare the relative con-
tributions and the spatial structure of intra- and interband currents to expose the
underlying physical mechanisms.

To this end, we focus more closely on the I = 25 TW/cm2 scenario, where the
intraband particle currents (previously seen in Fig. 7.6 m, n) are now shown on the
same color scale in Fig. 7.7 a, b to emphasize the relative importance. For temporal
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reference, the x-component of the external driving force, qE, is shown in b by a green
line as function of time (vertical axis in units of half laser periods for all panels). The
current from the first two panels is superimposed in c that shows already the main
features from the total current extracted directly from the wave functions (panel d).
To better compare the temporal structure insets e-h magnify the same time interval
as marked in b. It is seen that tunneling injection contributions are emitted close to
the crest of the field (inset f). From inset h it is found that additional, fine modulated
features appear prior and after the main electron trace, which can be attributed to the
interband current seen in i, j, respectively. Both VB and CB interband contributions,

Jinter
CB = ~

me

N∑
κ=1

∑
n∈CB

∑
n′ /∈n

Im{φ∗n′κ∇φnκ}, (7.9)

show a strong spatial modulation, that forms upon superposition fine striped diag-
onal traces of alternating positive and negative flux (panel k and inset o). It is con-
firmed that adding inter- and intraband contributions, calculated from the window
operator, (panel c, k) to the total flux (l) closely resembles the directly computed quan-
tum mechanical current (panel d).

From this decomposition it is concluded that intra- and interband contributions
show several complementary physical features. The intra CB current corresponds
closely to the predicted semi-classical electron trajectories, where the tunneling pic-
ture can explain the nonlinear dependence on the instantaneous field that is im-
printed on the temporal envelope of the current trace (inset f). Real interband polar-
ization (fine striped trajectories) on the other hand, are far less temporally confined,
and are therefore consistent with the multi-photon picture. The weak initial modula-
tion, seen in k (half period above dashed lines), lag by about a quarter period behind
previously discussed traces and seems to wash out into more evenly distributed spots
from the fourth half-cycle on. Outside the focusing region interband contributions are
spatio-temporally correlated with the abundance of holes, seen best from the leading
edges marked by dashed lines in panel a and k, being consistent with electron-hole
recombination. Furthermore, in l, p it is seen that the fine temporal modulation of
the interband current oscillates more rapidly where it is overlapped by the injected
intraband current. Hence, we find that multiple physical effects are possibly needed
to describe the more delicate structure of the interband contribution.

In conclusion, the full quantum mechanical calculation supports the use of the
semiclassical model of injection current plus drift to account for the ionization-
induced nonlinear intra-conductionband response. Comparing the tunneling current
obtained from our quantum-mechanical pseudo-potential calculation with experi-
mental measurements of the nonlinear reflection response, will perspectively allow
to identify the limitations and possible refinements to better capture the underlying
physics of LOHG and therefore improve the local model for nonlinear pulse propa-
gation.



8. Conclusions and Outlook

The central goal of this thesis was to explore the significance of strong-field ion-
ization and plasma formation on the nonlinear optical response of dielectric solids.
Here, the role of ionization-induced nonlinearities for low-order harmonic emission
and nonlinear pulse propagation was addressed through analytical calculations, self-
consistent numerical field propagation, local semi-classical and quantum mechanical
models, and the comparison with experimental measurements of our partners. The
key results of this dissertation comprise the identification of the injection current as
the dominant mechanism for ionization induced low order harmonic emission, the
demonstration of non-perturbative wave mixing as a robust diagnostic tool to moni-
tor ultrafast plasma formation, and the reconstruction of sub-cycle plasma formation
with tailored laser pulses in scenarios of sub-wavelength laser material modification.

The main conclusion from the first part of this study is based on our semi-classical
ionization-radiation model that shows that the injection current provides a major con-
tribution to the low-order harmonic spectrum in crystalline and amorphous SiO2
as typical representatives for wide band-gap dielectric materials. From the semi-
classical description of tunnel ionization we determined the effective order of non-
linearity as a characteristic observable. Its major advantage is its accessibility via
the mere comparison of intensities in parallel and cross-polarized two-color driving
without the requirement of intensity scans. The good agreement between experimen-
tal measurements and the prediction of the local model reflects the robustness of this
metrology with respect to propagation effects and ultimately allowed us to use injec-
tion signals for the reconstruction of the sub-cycle tunneling dynamics.

An important prerequisite for reconstructing the tunneling dynamics was to clar-
ify the role of electron impact ionization and elastic collisions with the lattice for
ionization-induced harmonic wave mixing. Solving the Boltzmann equation for a
local electron velocity distribution subject to the intense two-color laser field showed
that collision-induced harmonic contributions appear only at low-order odd harmon-
ics, with a distinct asymmetric temporal signature in the trailing edge of the radia-
tion response. The analysis of the temporal structure of the harmonic wave-mixing
has further demonstrated that Kerr components are the dominant contribution to the
nonlinear response only in the pulse edges. Applying our reconstruction algorithm
systematically to simulated data showed at which intensity level the Kerr term be-
come negligible and thus need not be included in the reconstruction process. This has
further facilitated the accurate reconstruction of the SFI contribution to the plasma
from experimentally measured time-resolved low-order wave mixing signals, rein-
forcing the validity of our approach. Therefore, we see application potential of this
method for online diagnosis of laser micromachining.

As the next logical step, we investigated the effects of nonlinear pulse propaga-
tion, including electron scattering from the bulk lattice and impact ionization on the
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plasma formation. To address the high sensitivity of the system to the electric field
in the optical breakdown regime, a self-consistent electromagnetic field simulation
based on a dispersive nonlinear Lorentz model for the finite-difference-time-domain
(FDTD) method was implemented. It was further extended by coupled rate equations
for the collision and ionization dynamics which inherently includes any reflected field
contributions from interfaces or the plasma itself. Examining the energy balance of
the simulation, the dominant role of collisions in the absorption of long pulses was
contrasted by the increasing relative significance of the injection current for the ab-
sorption of few-cycle pulses. Furthermore, our simulation allowed for the detailed
analysis of the spatio-temporal structure of the emerging plasma. In particular, the
feedback of the emerging plasma mirror was examined and shown to lead to a spatial
shift of field and plasma hot spots as well as in the impact ionization rate by a quarter
wavelength opposite to the propagation direction. These results demonstrate new
opportunities to control plasma formation with shaped laser fields in order to from
sub-wavelength structures and gratings.

Lastly, to further refine our understanding of the plasma-induced radiation, we
proposed harmonic emission from the front interface as a scenario to experimentally
exclude propagation effects from the local ionization response. This approach cir-
cumvents the usual challenge that the ionization response itself leads to nonlinear
pulse propagation, which is even imprinted on weak probe fields via nonlinear wave-
mixing. Following this idea, we compared the transmitted and reflected harmonic
fields by means of our self-consistent simulation and extracted distinct amplitude
and phase characteristics of the interface response that are specific to the thickness of
the reflecting nonlinear layer. The absence of propagation effects in the reflection sce-
nario will in particular help to better separate the injection response from harmonics
generated by conduction band anharmonicities or electron-hole recombination, for
example, to determine conditions where these mechanisms become important.

Perspectively, we see two relevant directions to further improve the description
of the nonlinear medium response. One route, broadly considered in the literature,
is to incorporate the quantum-mechanical nature of the local response, e.g. [88, 164]
and [KLPF20]. So far, the quantum mechanical analysis within this research field
was mainly concentrated on harmonic generation at high orders where, for exam-
ple, details of ultrafast electron dynamics could be related to material-specific intra-
and interband effects. In this work, however, we focused the analysis of our TDSE
simulation on low harmonic orders and identified the injection contribution as one
part of the intra-conduction-band current that is generally important for the absorp-
tion of short driving pulses. This suggests that a more detailed understanding of
the non-classical behavior of electrons and holes may provide routes to refine the de-
scription of the local nonlinear response by effective models. The second route, con-
cerning the effect of propagation and distribution of the driving field on low-order
harmonic emission, is much less considered in the literature. Here, our FDTD simu-
lation, extended by local models for the fully-reversible medium response, collisions
and ionization, provided an efficient means for the self-consistent treatment of the
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complex field-induced plasma formation. Conducting full three-dimensional simu-
lations with this tool will prospectively allow to capture the focusing of the incident
field and the evolution of the plasma geometry at interfaces and in the bulk volume.
To ultimately combine both directions requires experimentally accessible benchmark
scenarios for advanced simulation models. Here, the simultaneous analysis of trans-
mitted and reflected fields from the interfaces where the nonlinear radiation response
can be studied with and without propagation effects at fixed irradiation conditions,
presents a promising scenario.



A. Identification of Tunneling-Induced
Low-Order Harmonics

A.1. Difference quotient for ensemble derivative

Formally, the product rule for an ensemble derivative follows from the difference
quotient, where the definition of the arithmetic mean, 〈x〉 = 1

N

∑N
i=1 xi is used,

d
dtN 〈x〉 = lim

∆t→0

N(t+ ∆t)〈x〉(t + ∆t) − N(t)〈x〉(t)
∆t (A.1)

= lim
∆t→0

∑
ex. i

xi(t+ ∆t) + ∑
new i

xi(t+ ∆t) − ∑
ex. i

xi(t)

∆t (A.2)

= lim
∆t→0

∑
ex. i

xi(t+ ∆t)− ∑
ex. i

x(t)

∆t +

∑
new i

xi(t+ ∆t)

∆t (A.3)

= lim
∆t→0

∑
ex. i

∆xi
∆t + ∆N〈x0〉new

∆t (A.4)

= N〈∂x
∂t
〉ex. + ∂N

∂t
〈x0〉new. (A.5)

As in the main text, the sum is decomposed into elements existing (ex.) at time t and
ensemble elements generated in the interval [t, t + ∆t] (new). The formal result (A.5)
is used in eq. (2.6).
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B. Local Strong-Field Medium Response

B.1. Fields emitted from currents in a thin sheet

We start from the inhomogenous wave equation, here written with a source current
for the complex positive frequency part (defined in eq. (3.3)),

∂2

∂z2 E+(z, t)− n2

c2
∂2

∂t2
E+(z, t) = 1

c2ε0

∂

∂t
J+(z, t), (B.1)

that is restricted to a thin sheet, with thickness dz less than the driving wavelength,
and pointing along one Cartesian axis,

J+(z, t) =

 ex Ĵ2 e
iωt if 0 < z < dz < λ = cω

2π ,

0 otherwise.
(B.2)

Outside of the foil, waves propagate away from the surface. Due to symmetry, the
differential equation is fulfilled by the following plane waves,

E+
x (z, t) =

 AR e
iω(t−niorz

c
) for z ≥ dz ,

AL e
iω(t+niorz

c
) for z ≤ 0 .

(B.3)

To determine the complex amplitude coefficients AL and AR, describing the wave left
and right of the foil, the differential equation is solved in the medium by integrating
the inhomogeneous wave equation along the optical axis

∂E+
x

∂z

∣∣∣∣∣
z=dz
− ∂E+

x

∂z

∣∣∣∣∣
z=0
− n2

ior

c2
∂2

∂t2

∫ dz

0
E+
x (z, t)dz =

∫ dz

0
dz 1

c2ε0

∂

∂t
J+
x (z, t) . (B.4)

Here the integral on the left is much smaller than the integral on the right, which is
seen as follows. We approximate the field under the integral by its maximumEx(z) ≤
max(Ex(z)). Further, we assume a finite electrical current I in the foil, such that the
homogeneous current density is given by Jx = I

dzLy
, with Ly being the macroscopic

size of the foil,

∂E+
x

∂z

∣∣∣∣∣
z=dz
− ∂E+

x

∂z

∣∣∣∣∣
z=0
− dz max

z

(
n2

ior

c2
∂2

∂t2
E+
x (z, t)

)
= 1
c2ε0

∂

∂t

I+

Lz
. (B.5)

While the right-hand side is fully given by macroscopic quantities, the third term on
the left can be made arbitrarily small by decreasing the thickness. Into the remaining
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first and second term of eq. (B.4) we inset the ansatz for the field (B.3) and obtain,

− iωn
c

(AR + AL)eiω(t−niorz
c

) = dz
c2ε0

∂

∂t
Jx

+(z, t). (B.6)

Setting z = 0 and recognizing the symmetry of the system, coefficients on the left and
on the right are found to be equal, AR = AL, which allows to determine the complex
field,

E+
x (z, t) = AR e

iω(t− |z|
c

) = − dz
2niorcε0

Ĵ
2 e

iω(t− |z|
c

). (B.7)

Here, the current needs to be evaluated at the retarded time tr = t− |z|
c

. To determine
the real-valued field, the complex conjugate is added,

Ex(z, t) = E+
x + (E+

x )∗ = − dz
2nior

√
µ0

ε0
Jx (tr) . (B.8)

The square root term is known as the vacuum impedance. From this result, it is con-
cluded that for sufficiently thin media, the harmonics’ amplitude and phase are given
by the negative current density in both directions, as further examined in eq. (3.6) in
the main text and also used in the discussion of Fig. 7.1.

B.2. Amplitude and phase of the Hertzian dipole

It is well known that the radiation emitted by each frequency component of a dipole
p+(t) = p0e

iωt, is given by the Hertzian dipole field [143],

E+(r, t) = ei(ωt−ω
c
r)

4πε0εr

[
(3er(er · p0)− p0)

( 1
r3 + iω

c

1
r2

)
− (er × p0)× er

(
iω

c

)2 1
r

]
(B.9)

with near-, intermediate- and far-field contributions on the RHS, scaling with 1
r3 ,

1
r2

and 1
r
, respectively. It is clear that without acceleration of charge, no fields are emitted

at all. However, only the far-field contribution shows with the (iω)2 term a one-to-
one correspondence of spectral amplitude fall-off and phase with the local, negative
dipole acceleration. The intermediate field corresponds with (iω) to the dipole veloc-
ity and the near-field to the dipole itself. This characteristic property of the Hertizan
dipole is used as a reference for the discussion in sect. 3.2.3 and sect. 3.6.3.
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B.3. Harmonic emission in Gaussian beam scenario

The spectral weight structure of harmonics emitted from a Gaussian beam is investi-
gated. It is shown that the dipole-velocity-like scaling holds as long as the full beam
profile is captured by the detector. This fact might be at first glance surprising as
the source of emission, can be thought of as a superposition of Hertzian dipoles with
known ω2 dependence in the far field. We find that the geometric effect discussed in
the following is essential to understand how the far field term of the Hertzian dipole
that scales as ω2 is reduced to ω. We depart from the amplitude E0 of one harmonic
that is given at the beam waist by the thin film result (B.7),

E0 = E+
h = dz

2niorcε0

Ĵh
2 e

iω(t− |z|
c

), (B.10)

= dz
2niorcε0

iωP̂h
2 eiω(t− |z|

c
). (B.11)

Axial field amplitude The first goal is to relate the field amplitude on the optical
axis to the amplitude of the local polarization, P̂ , using Gaussian beams,

E(r, z, ω) = E0(ω) w0

w(z, ω) · e
−( r

w(z))
2

· e−ik
r2

2R(z) · e−i(kz−ζ(z)). (B.12)

The beam width radius,

w(z, ω) = w0

√
1 +

(
z

zR

)2
, (B.13)

with Rayleigh length,

zR(ω) = π · w2
0

λ
= w2

0ω

2c , (B.14)

is close to the origin, i.e. for small z, independent of frequency

w(z) ≈ w0 . (B.15)

Inserting eqs. (B.15), (B.11) into (B.12) it is found that in the near field, the amplitude
on the beam axis scales as the dipole velocity, i.e. E(0, z < zR) ∼ ωP̂h.

The situation is different in the far field, z � zR, where the beam-width radius is
inversely proportional to the Rayleigh length,

w(z) ≈ w0
z

zR
= 2zc
w0ω

. (B.16)
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Inserting this expression into eq. (B.12), the on-axis amplitude (r = 0) reads,

|E(0, z � zR, ω)| = |Efar(0, z, ω)| = E0
w0

w(z) ≈ E0
zR
z

= E0
w2

0ω

2cz . (B.17)

This equation provides the distinct, dipole-acceleration-like scaling of the on-axis far-
field, E(0, z � zR) ∼ ω2P̂h. Physically this is because high frequencies are more
collimated due to a higher Rayleigh length, as discussed in the main text at eq. (3.10)
and shown in Fig. 3.3.

Transverse integrated field amplitude Next, the Gaussian beam eq. (B.12) and the
far-field width radius eq. (B.16) are used to understand why the integrated far-field
yield (intensity integrated over detector area) scales like the dipole velocity. In our
scenario a collimation lense in front of the detector (L2 in Fig. 2.2) ensures that the full
radial beam profile is captured. This simplifies the integration limits in the transverse
direction, that are set to ±∞ for mathematical convenience. Applying the Gaussian
integral,

∫ ∞
−∞

dx
∫ ∞
−∞

dy e−
x2+y2

w(z)2 = πw(z)2, (B.18)

to the beam amplitude profile,

|E(r, z � zR, ω)| = E0(ω) w0

w(z, ω) · e
−( r

w(z))
2

, (B.19)

yields the integrated field amplitude,∫ ∞
−∞

dx
∫ ∞
−∞

dy |E(r, z)| = E0 π w0 w(z) . (B.20)

The far-field at the detector follows by inserting eq. (B.16) for w(z),∫ ∞
−∞

dx
∫ ∞
−∞

dy |E(r, z � zR)| = E0 π
2cz
ω

(B.21)

Here the ω in the denominator cancels the ω-factor from the thin film result when sub-
stituting the eq. (B.11) for E0. This shows that the integrated field amplitude scales
with the dipole (excursion length). Furthermore, it is seen that the integrated field
amplitude grows with distance. This is expected as the detected power must be inde-
pendent of the detector distance as shown in the next step where we determine the
corresponding relation harmonic yield and local current.



106 Local Strong-Field Medium Response

Scaling of detected harmonic yield Employing the Gaussian integral to the
squared field connects the detected harmonic yield Y (ω),

Y (ω) ∼
∫ ∞
−∞

dx
∫ ∞
−∞

dy |E(r, z � zR)|2 = πw2
0
|E0(ω)|2

2 , (B.22)

with the amplitude at the beam waist |E0(ω)|. Because the field at the waist is pro-
portional to the current E0 ∼ J the detected yield scales as

Y ∼ E2
0 ∼ J2. (B.23)

It is concluded from eq. (B.22) that beam propagation does not change the spectrum
of the integrated yield. Therefore, the measured harmonic spectrum is identical to
the spectrum at the beam waist where the signal is generated. This result is used
to determine the proportionality factor between the intensity in the 1D plane wave
scenario and in the (transverse integrated) Gaussian beam scenario, as discussed in
eq. (3.12) of the main text.

B.4. Calculation of circular pump polarization direction

Degeneracy of n = 1 signal in circular-linear configuration

From the constraints discussed in eq. (3.21), it follows that one positive circular pump
photon must be in the vectorial component (last box where no scalar product is
taken). Another positive pump photon is paired with the probe. Remaining posi-
tive pump photons must be matched with a negative pump in the remaining scalar
products. In total there are Nsc = m−1

2 scalar products.

D
◦|
n=1 =

(
Nsc

1

)
P [E+

◦ E+
pr]

(
P [E+

◦ E−◦ ]
)Nsc−1

(B.24)

The permutationP of two distinct fields yields in each case a factor of 2. The binomial
coefficient in the front accounts for the fact that the first scalar product permutes with
all others. Resubstituting the number of scalar products yields

D
◦|
n=1 = Nsc 2Nsc = (m− 1) 2

m−3
2 , (B.25)

which is the result used in eq. (3.24). The m-th order polarization for the n = 1 signal
than reads,

P(m),circ,cf
NL,n=1 = ε0χ

(m)D
◦|
n=1

(
E+
◦ E−◦

)Nsc−1 (
E+
◦ E+

pr

)
E+
◦ + c.c. . (B.26)
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Inserting positive and negative frequency contributions E+
pr = Êpr

2 e
iωprt, c.f. eq. (3.13),

simplifies the expression,

P(m),circ,cf
NL,n=1 = ε0χ

(m)D
◦|
n=1

Ê2
pu

2

Nsc−1
ÊpuÊpr

4 E+
◦ e

i(ωpu+ωpr)t + c.c. (B.27)

= ε0χ
(m)m− 1

4 Êm−1
pu Êpr

ex + iey
2 ei(2ωpu+ωpr)t + c.c. (B.28)

This relation is used to calculate intensity ratios (3.27) – (3.28).

B.4.1. Intensity ratio: Circular versus Perpendicular

To calculate intensity ratios, the perpendicular polarization configuration,

P(m),⊥
NL,n=1 = ε0χ

(m)D⊥n=1

Êpu

2

m−1

E+
pr e

i2ωpu + c.c. (B.29)

is chosen as a reference. The numerator of the intensity ratio at constant field ampli-
tude (cf) follows by taking both polarization directions of the circular polarization,
eq. (B.28), into account,

Icirc,cf
n=1
I⊥n=1

=
|P(m),circ,cf

NL,n=1 |2

|P(m),⊥
NL,n=1|2

=
2
(
m−1

4

)2

(
(m−1)! 21−m

(m−1
2 +1)!(m−1

2 −1)!

)2 = 22m−5


(
m−1

2 + 1
)
!
(
m−1

2 − 1
)
!

(m− 2)!

2

.

(B.30)

For the scenario of constant pump intensity (ci) when switching from linear to circular
polarization, the RHS of eq. (B.28) has to be multiplied by the factor 1/

√
2m−1

. The
intensity ratio then reads,

Icirc,ci
n=1
I⊥n=1

=2m−4


(
m−1

2 + 1
)
!
(
m−1

2 − 1
)
!

(m− 2)!

2

. (B.31)

Comparison with the numerical calculation shows excellent agreement (main text
Fig. 3.5), verifying the degeneracy analysis. The results in eqs. (B.30) and (B.31) are
discussed in section 3.3.6.
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B.5. Generalization of intensity ratios for n > 1 mixing
signals

We depart from the full formal expressions, used to prepare Fig. 3.7,

I
||
Inj,n=1

I
||
Br,n=1

=

 2
s

(
2 + ωpr

ωpu

)
1

( s2 +1)( s2−1) + 2
(3+ ωpr

ωpu
)( s2 +1) + 2

(1+ ωpr
ωpu

)( s2−1)

Eg
Up


2

, (B.32)

I⊥Inj,n=1

I⊥Br,n=1
=
[
(2 +

ωpr

ωpu
)
(1

2 + 2
s
− 3

2s− 2

)
Eg
Up

]2

, (B.33)

I◦Inj,n=1

I◦Br,n=1
=
[

1− 2
s

4

(
ω2

pr

ω2
pu

+
3ωpr

ωpu
+ 2

)
Eg
Up

]2

. (B.34)

where degeneracy factors from the previous section have been inserted. According
to the false color plot, this set of equations, (B.32)-(B.34), provides that injection is the
dominant contribution for lowest order (n = 1) wave mixing. Next, we show that
for higher orders n, the ratio even increases, which ultimately allows us to drastically
simplify the interpretation of the measured intensity ratio.

Generalization of intensity ratio to n > 1 For higher signal orders n > 1 the num-
ber of absorbed pump photons with e+iωput increases, whereas the number of e−iωput

terms decreases. Combinatorial analysis shows that the denominator of the degener-
acy factor is modified,

∂J⊥inj,n

∂t
= n0EgΓ̂

Ês

(s− 2)!
( s2 − 1 + n)!( s2 − 1− n)! iωsig,1

Es−2
pu Epr

2s−2
eiωsig,1t

2 + c.c. (B.35)

∂J⊥Br,n

∂t
= q2n0Γ̂
meÊs

ωsig,1

2ω1
s!

( s2 + n)!( s2 − n)!
1

iωsig,1

Es
pu Epr

2s
eiωsig,1t

2 + c.c. (B.36)

such that the generalized intensity ratio illustrates, that the relative contribution of
injection grows roughly quadratically with harmonic order n

I⊥Inj,n

I⊥Br,n
=
[(
n+ ω2

ω1

)(
1 + 1

s
− 4n− 1
s(s− 1)

)
Eg
Up

]2

. (B.37)

Note, that the negative term in the second bracket is 4n−1
s(s−1) � 1 negligible for low-

order harmonics. Also for the parallel configuration we find a dominant contribution
for injection for low order signals n < s

2 ,
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D
||
Inj,n = (s− 1)!

( s2 + n− 1)!( s2 − n− 1)! , (B.38)

D
||
Br,n =

ωsig,1

2nω1
s!

( s2 + n)!( s2 − n)! +
ωsig,1

(2n+1)ω1+ω2
s!

( s2 + n)!( s2 − n− 1)! +
ωsig,1

(2n−1)ω1+ω2
s!

( s2 + n− 1)!( s2 − n)! , (B.39)

I
||
Inj,n

I
||
Br,n

=

 2
s

(
2n+ ω2

ω1

)
1

n( s2 +n)( s2−n) + 2
(2n+1+ω2

ω1
)( s2 +n) + 2

(2n−1+ω2
ω1

)( s2−n)

Eg
Up


2

. (B.40)

For circular pump polarization, such an analysis is not relevant, because wave-mixing
with a single probe photon simply vanishes for n > 1. These arguments are used in
the discussion of Fig. 3.7.

B.6. Temporal width and delay dependence of
wave-mixing signals

The shape of the output signals in a delay-dependent pump-probe spectrum is under-
stood in terms of the temporal field envelope of both incident pulses. The duration
of the output signal as well as its width on the delay axis are determined next.

Multiplication of two Gaussians Two Gaussian pulses are considered with inten-
sity full-width-half-maximum envelope τ1 and τ2 separated by the delay τ . For an
output wave-mixing signal that is generated byN1 = N+

1 +N−1 photons from the first,
and by N2 = N+

2 +N−2 photons from the second pulse, the output envelope reads,

Êout(t) ∼
(
Ê1(t)

)N1 (
Ê2(t)

)N2 ∼
(
e
−2 ln(2) t2

(τ1)2

)N1 (
e
−2 ln(2)

(t−τ)2

(τ2)2

)N2

. (B.41)

To determine the temporal width of the output signal, it is sufficient to compute its
time constant and neglect all prefactors. Introducing the suitable substitution a =√

2N1 ln(2)
τ1

, b =
√

2N2 ln(2)
τ2

, we find,

Êout(t) ∼ e−(at)2
e−(b(t−τ))2 = exp{−a2t2 − b2t2 + 2b2τt− b2τ 2}, (B.42)

= exp{− (a2 + b2)︸ ︷︷ ︸
c2

(t2 − 2 b
2τ

c2︸︷︷︸
τ̃

+τ̃ 2 − τ̃ 2 + b2τ 2

c2 )}, (B.43)

= e−(c(t−τ̃))2︸ ︷︷ ︸
G(t,τ̃)

e−c
2(τ τ̃−τ̃2)︸ ︷︷ ︸
Aout(τ)

. (B.44)
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Eq. (B.44) shows, firstly, that the output field has again a Gaussian time envelope
G(t, τ̃) peaked at t̃ = b2

c2
τ = τ2

1
τ2
1 +τ2

2
τ and secondly, a delay-dependent term for the

harmonic amplitude Aout(τ).

Identifying the width of the harmonic pulse The time constant of the output field
c2 = a2 +b2 is determined by re-substituting the temporal width of the input field and
the number of photons each field contributes,

τout =
√

2 ln(2)
c2 = 1√

N1
(τ1)2 + N2

(τ2)2

. (B.45)

Thus the duration of the signal does not depend on delay. However, the amplitude of
output signal Aout, given by the second part of Eq. (B.44), shows a dependence on τ .
This amplitude has also a Gaussian shape, but now in the delay domain, and can be
measured in a delay scan. The width of the signal on the delay axis is determined by
similarly from eq. (B.44) and (B.43),

Aout(τ) = e−c
2(τ τ̃−τ̃2) = e

−(b2− b4
a2+b2

)τ2
= exp {−

(
a2b2

a2 + b2

)
︸ ︷︷ ︸

d2

τ 2} = e−(dτ)2
. (B.46)

In the last term on the RHS the time constant d =
√

2 ln(2)
τdelay

is identified. Here τdelay

denotes width on the delay axis, whereas τ is the delay between the two pulses, c.f.
eq. (B.41).

Identification of the delay dependence The delay width also follows from re-
substitution

τdelay =

√
2 ln(2)
d

=

√√√√2 ln(2) a
2 + b2

(ab)2 =
√

(τ1)2

N1
+ (τ2)2

N2
. (B.47)

Relation to effective order Note that all four widths are connected by the following
relation that may allow for a consistency check,

d2 = a2b2

c2 ⇒ τ1 τ2

τout τdelay
=
√
N1N2. (B.48)

If it is ensured that there is only one probe photon (N2 = 1), the width on the delay
axis Eq. (B.47) as well as the temporal duration of the output Eq. (B.45) are directly
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connected to the effective order (m = N1 +N2),

τ
(m)
delay =

√
(τ1)2

m− 1 + (τ2)2 , (B.49)

τ
(m)
out = τ1 τ2√

(m− 1)(τ2)2 + (τ1)2
. (B.50)

This result, eq. (B.49) -(B.50), is further examined in section 3.5 of the main text.



C. Collisional Effects in the Extreme
Nonlinear Response

C.1. Phase of quiver motion according to Drude model

The well-known phase relation of the Drude model system [117] is summarized start-
ing from, the equation of motion, eq. (4.1),

v̇ + γv = qE

m
, (C.1)

with collision rate γ = 1
τ

and collision time τ corresponds to a driven harmonic oscil-
lator with vanishing resonance frequency,

ẍ+ γẋ+ ω2
0x = Ê

m
eiωt. (C.2)

A harmonic ansatz x = x̂eiωt yields the widely known dipole excursion

x(t) = qÊ/m

ω2
0 − ω2 + iγω

eiωt , (C.3)

= qÊ/m

(ω2
0 − ω2)2 + (γω)2 (ω2

0 − ω2 − iγω) eiωt = x̂ ei(ωt+φ) , (C.4)

x̂(ω) = qÊ/m√
(ω2

0 − ω2)2 + (γω)2
, (C.5)

and the dipole phase

tanφ = −γω
ω2

0 − ω2 , (C.6)

φ = atan2(−γω, ω2
0 − ω2) . (C.7)

The dipole phase is always non-positive −π ≤ φ ≤ 0 indicating that the dipole lags
behind the driver depending on driving frequency and damping coefficient. For the
vanishing resonance case, ω0 = 0, relevant to the Drude model, the phase lag grows
with damping,

φ = atan2(−γ,−ω). (C.8)

The function atan2 is the arcus tangent that takes the signs of both catheti in the
argument into account. This dipole phase is shown as a solid blue line in Fig. 4.1.
For the discussion of the Brunel response the phase of the dipole velocity, that runs a
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quarter period ahead,

φv = atan2(−γ,−ω) + π

2 , (C.9)

is used in eq. (4.2) and eq. (4.4).

C.2. Gabor transform

The Gabor transform [165] is a short-time Fourier transform,

G(ω, τ) =
∫

dt f(t) e−iωt e
−4 ln(2)

(
t−τ

τGabor
FWHM

)2

, (C.10)

where time resolution is obtained from the Gaussian window function of width
τGabor

FWHM, seen in the last term. The Gabor transform is employed for the time-resolved
spectral analysis shown in Fig. 4.3.



D. Harmonics from Nonlinear Reflection

We start the derivation of the reflected harmonic with the nonlinear wave equa-
tion (3.1), repeated here for convenience,

∇× (∇× E) + 1
c2
∂2E
∂t2

= − 1
ε0 c2

[
∂2PL

∂t2
+ ∂2PNL

∂t2

]
. (D.1)

This equation is simplified by writing the linear polarization contribution as reduced
phase velocity cmed = c

nior
= µ0ε0εr(ωh) where the dielectric function is evaluated at

the harmonic frequency ωh of interest,

∇× (∇× Eh) + µ0ε0εr(ωh)
∂2Eh

∂t2
= −µ0

∂2PNL,h

∂t2
. (D.2)

The solution of this differential equation is given by the superposition of a homoge-
neous and an inhomogeneous solution, as given in [156] and detailed below.

Homogeneous solution The trivial solution to the homogeneous equation, where
the source term on the right of eq. (D.2) is set to zero, is given by plane wave,

ET
h,hom = eT ÊT

h expi(kTh r− ωht). (D.3)

Here the label T indicates that the homogeneous wave has been written down for
the transmitted wave. The same equation holds for the reflected wave (R), with
wavevector kRh instead of medium wavevector kTh . The inhomogeneous solution, that
co-propagates with the driving field E through the medium has formally a similar
structure but modified amplitude, polarization, and wave vector.

Inhomogeneous solution Assuming a general mth order nonlinear polarization
source,

P(m)
NL,h(r, t) = P̂NL,h eP expi(kP r− ωht), (D.4)

with wave vector kP , polarization vector eP , and a polarization amplitude for exam-
ple given by P̂NL = ε0 χ

(m)Êm
1 , one particular solution for the transmitted harmonic

field that fulfills eq. (D.1) is given by,

ET
h,inh = −

P̂NL
ε0

(
ωh
c

)2

(kTh )2 − (kP )2

[
ep −

kP (kPeP )
(kTh )2

]
expi(kP r− ωht), (D.5)

as verified in the following.
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Verification of the inhomogeneous solution First, the double curl of the wave
equation is simplified and acted on the inhomogeneous solution. Expressing rot rot
by grad div minus Laplace operator,

∇× (∇× E) = ∇(∇E)−∆E, (D.6)

one finds for the separate terms,

∇(∇ET
h,inh) = −kP (kPET

h,inh), (D.7)

∆ET
h,inh = −|kP |2ET

h,inh, (D.8)
∂2Eh,inh

∂t2
= −ω2

hET
h,inh, (D.9)

∂2PNL,h

∂t2
= −ω2

hPNL,h. (D.10)

Before inserting the above terms into the wave equation (D.2), the common factor on
both sides of the equation,

P̂NL,h

ε0

(
ωh
c

)2
expi(kP r− ωht), (D.11)

seen on the RHS and in the electric field eq. (D.5), is divided out. After inserting the
remaining terms into the wave equation, the denominator (kTh )2 − (kP )2 is put on the
RHS of the equation, leading to

kP
(

kP
[
ep −

kP (kPep)
(kTh )2

])
− (kP )2

[
ep −

kP (kPep)
(kTh )2

]
(D.12)

+ ε(ωh)
c2 (ωh)2︸ ︷︷ ︸

(kT
h

)2

[
ep −

kP (kPep)
(kTh )2

]
= ep

[
(kTh )2 − (kP )2

]
.

(D.13)

To show that this equation is indeed fulfilled, brackets are solved and terms are kept
in place. It is verified that all terms are of unit wavenumber squared. Finally, terms
are labels to aid comparison,

kP (kPep)︸ ︷︷ ︸
T1

−kP
(kP )2(kPep)

(kTh )2︸ ︷︷ ︸
T2

−(kP )2ep︸ ︷︷ ︸
T3

+ kP
(kP )2(kPep)

(kTh )2︸ ︷︷ ︸
−T2

+ (kTh )2ep︸ ︷︷ ︸
T4

−kP (kPep)︸ ︷︷ ︸
−T1

= ep(kTh )2︸ ︷︷ ︸
T4

−ep(kP )2︸ ︷︷ ︸
T3

. (D.14)

It is seen that term one to term four (labeled as T1, ..., T4) cancel on both sides, verify-
ing the inhomogeneous solution eq. (D.5).
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D.1. Reflected harmonics

Interface conditions To determine the amplitude of the reflected and the transmit-
ted wave, the interface conditions [143] that follow from Maxwell’s equations using
stokes law,

∇× E = −∂B
∂t

→
∮
∂A

E d` = −
∫
A

∂B
∂t

dA. (D.15)

are applied. Shrinking the distance between the boundary and the interface to zero,
the integral on the right vanishes. On the LHS, the tangential components from both
sides of the interface remain, proving their equality Etan

1 = Etan
2 . This can be written

as a cross-product with the interface normal,

n× (E1 − E2) = 0, (D.16)
n× (H1 −H2) = 0. (D.17)

The continuity of the tangential components of the H-field, eq. (D.17), follows analo-
gously from Ampere’s law. The continuity of normal components, on the other hand,
is derived from the divergence equations, where integration over a cylindrical vol-
ume and application of Gauss theorem yields,

∇D = ρ →
∮
V

DdA =
∫
ρ dV. (D.18)

Shrinking the radius to zero yields the continuity of the displacement that is normal to
the interface Dperp

1 = D
perp
2 . This can be written as a scalar product with the interface

normal,

n(D1 −D2) = 0, (D.19)
n(B1 −B2) = 0. (D.20)

Next, we consider the simplest case, that transmitted and reflected harmonics only
have non-vanishing polarization components that are tangential to the interface. This
configuration is also called s-polarization (s→ German senkrecht) which is perpen-
dicular to the plane spanned by the incident and surface normal.

Continuity of tangential components Consequently, also the polarization of the
medium has only a tangential vector component. We exploit the continuity of tan-
gential field components (D.16), that provides the reflected wave (medium 1), given
by the free-space solution, E1 = ER

hom is equal to the transmitted wave (medium
2), that is given by the superposition of homogeneous and inhomogeneous solution,
E2 = ET

hom +ET
inh. Dropping common prefactors and exploiting that in the inhomoge-
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neous solution the kP contribution is perpendicular to the polarization, yields,

ÊR
h = ÊT

h −
P̂NL,h
ε0

(
ωh
c

)2

(kTh )2 − (kP )2 , (D.21)

using ck = ω and n2 = εr, yields,

ÊR
h = ÊT

h −
P̂NL,h
ε0

εr(ωh)− εr(ω1) . (D.22)

Eq. (D.22) still contains two unknowns the reflected ÊR
h and transmitted harmonic

amplitude ÊT
h . They are related next by the second continuity equation.

Exploiting the continuity of the magnetizing field To eliminate the transmitted
field from eq. D.22, the continuity of the magnetizing field H is considered next,

n× (H1 −H2) = 0. (D.23)

The amplitude of the magnetizing field is related to the electric field via the medium
speed of light in the following way,

H = µ0µrB, (D.24)

B = 1
ω1

k× E. (D.25)

Here, µr = 1 which holds for most materials in optics. Hence we find H ∼ k×E and
insert into eq. (D.23),

n× (k1 × E1 − k2 × E2) = 0, (D.26)

we notice that the magnitude of the wave vector is usually different on both sides (1
and 2) of the interface. Carrying out the double cross product, we exploit that the
electric field is tangential, i.e. perpendicular to the surface normal,(

k1 (nE1)︸ ︷︷ ︸
0

−E1(nk1)
)
−
(

k2 (nE2)︸ ︷︷ ︸
0

−E2(nk2)
)

= 0. (D.27)

The scalar product yields the cosine of the angle of incidence. The magnitude of the
wave vector is proportional to the index of refraction i.e. the square root of the relative
permittivity, |k| = niorω

c
= √εr niorω

c
. If the projection of the wavevectors on the surface

normal points in the same direction,

√
εr,1 E1 cos θ1 = √εr,2 E2 cos θ2 , (D.28)
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otherwise, a minus sign needs to be introduced on the LHS,

−√εr,1 E1 cos θ1 = √εr,2 E2 cos θ2 . (D.29)

Inserting the vacuum and the medium fields, i.e. E1 = ER
hom and E2 = ET

hom + ET
inh

yields,

−ÊR cos θR =
√
εr(ωh) cos θT ÊT −

√
εr(ω1) cos θS PNL,h/ε0

εr(ωh)− εr(ω1) . (D.30)

Here, the source wave sees a different refractive index, than the transmitted har-
monic. For this reason, the angle of propagation of the transmitted harmonic θT and
the source wave θS can be different in general.

Amplitude of reflected wave To determine the amplitude of the reflected wave,
the amplitude of the transmitted wave in eq. (D.30) is eliminated by inserting the
intermediate result eq. (D.22),

−ÊR cos θR =
√
εr(ωh) cos θT

[
ÊR + PNL,h/ε0

εr(ωh)− εr(ω1)

]
−
√
εr(ω1) cos θS PNL,h/ε0

εr(ωh)− εr(ω1) .

(D.31)

Factoring out the reflected field and terms proportional to the nonlinear polarization,

−ÊR
[
cos θR +

√
εr(ωh) cos θT

]
=
[√

εr(ωh) cos θT −
√
εr(ω1) cos θS

]
PNL,h/ε0

εr(ωh)− εr(ω1) ,

(D.32)

yields the reflected amplitude,

ÊR =

√
εr(ωh) cos θT −

√
εr(ω1) cos θS

cos θR +
√
εr(ωh) cos θT

−PNL,h/ε0

εr(ωh)− εr(ω1) . (D.33)

Case of normal incidence In the case of normal incidence, all cosine terms become
unity, such that the reflected amplitude simplifies according to the third binomial
formula to,

ÊR =

√
εr(ωh)−

√
εr(ω1)

1 +
√
εr(ωh)

−PNL,h/ε0

εr(ωh)− εr(ω1) (D.34)

= −PNL,h/ε0

[1 +
√
εr(ωh)][

√
εr(ωh) +

√
εr(ω1)]

. (D.35)
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This relation is further simplified for a flat dispersion, i.e.
√
εr(ω1) =

√
εr(ω2) = nior,

ÊR = −PNL,h/ε0

2nior(1 + nior)
, (D.36)

which used in eq. (7.1).

D.2. Degeneracy of Brunel emission

In this section, the degeneracy weights of Brunel harmonics are calculated, which
consist, in the single color case, of two components. To see this, we chose as a start-
ing point the Brunel dipole acceleration in the no-depletion limit of the plane wave
scenario, see eq. (3.38), that is repeated here for convenience

∂JBr

∂t
= q2n0

me

Γ̂
Ês

E(t)
t∫

t0

dt′ |E(t′)|s . (D.37)

Here the function under the integral can be represented by an even order harmonic
series, similar to the derivation of the mth order nonlinear polarization in eq. (3.5).

∂JBr

∂t
= q2n0

me

Γ̂
2s E

t∫
t0

s∑
h=0,2,4...

D
(s)
h eihω0t + c.c. , D

(s)
h =

(
s
s+h

2

)
. (D.38)

The time integral turns into an inverse frequency weight of each term up to the h = 0
term. This DC contribution to the integral IDC is only relevant for the response at the
fundamental frequency and is disregarded in the following.

∂JBr

∂t
= q2n0

me

Γ̂
2s (E+ + E−)

 s∑
h=2,4,6...

D
(s)
h

iω0
eihω0t + IDC

+ c.c. (D.39)

Finally, writing the field factor in front of the sum as a superposition of positive and
negative frequency contribution, shows that the frequencies in the series are once
shifted up and once shifted down. Combining the different paths leading to the same
harmonic yields,

∂JBr

∂t
= ex

m∑
h=1,3,5...

DBr,h
ˆ̇JBr
2 e

ihω0t + c.c. , (D.40)



120 Harmonics from Nonlinear Reflection

with degeneracy weight,

DBr,h = D−h
h− 1 + D+

h

h+ 1 with, D±h =
(

s
s±1+h

2

)
for h > 1 , (D.41)

and amplitude of the dipole acceleration,

ˆ̇JBr = 2 q2n0Γ̂Ê
2s+1 me iω0

. (D.42)

In summary, the two possible channels contributing to one harmonic are weighted
differently as seen in eq. (D.41). These separated channels are due to the integral
acting only on one part of the E-field dependence in the initial eq. (D.37), while one
field term remains outside the integral. Hence, the formal structure of the Brunel
response makes the degeneracy factor less simple compared to that of the injection
mechanism.

D.3. Computing the band structure in Fourier
representation

For a precise calculation of the band structure imaginary time-step propagation in
coordinate space can be time-consuming, as the convergence against the different
states can be challenging for several reasons.

Here we also use an alternative method, namely by expanding the wavefunction
in a Fourier series and solving Fourier coefficients self consistently for different bands
n through a single matrix inversion [148]. Starting point of this approach is an expan-
sion of an arbitrary superposition state ψ(x) and lattice periodic potential V (x) in
Fourier coefficients,

ψ(x) =
∑
k

Ck e
ikr, (D.43)

V (x) =
∑
G

VG e
iGx, with: G ∈ 2π

a
{0,±1,±2, ...} . (D.44)

So far there are no restrictions on k as we allow ψ to take any form. However, the
potential V (x) = V (x+ a) is assumed to be lattice periodic. Hence, it is expanded
into Fourier terms at reciprocal lattice points G. Inserting eq. (D.43), (D.44) into the
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TISE yields a set of equations that connect Fourier coefficients of different indices k,

Eψ(x) =
[
−1

2∇
2 + V (x)

]
ψ(x), (D.45)

E
∑
k

Ck e
ikx =

∑
k

[
k2

2 +
∑
G

VG e
iGx

]
Ck e

ikx. (D.46)

In this equation, the Fourier term with reciprocal lattice vector is removed by index
substitution k′ = G+ k,∑

k

VG Ck e
i(G+k)x =

∑
k′−G

VG Ck′−G e
ik′x =

∑
k′
VG Ck′−G e

ik′x. (D.47)

In the last step, the starting point of the index was changed as it runs over infinitely
many terms. Dropping the prime, k′ → k, we reinsert this result in eq. (D.46),

0 =
∑
k

eikx
[(
k2

2 − E
)
Ck +

∑
G

VGCk−G

]
. (D.48)

If the square bracket is zero, the equation is fulfilled. In order to determine the Ck we
rearrange the bracketed term into the form of an eigenvalue equation,

k2

2 Cn,k +
∑
G

VGCn,k−G = En,k Cn,k (D.49)

Here we have introduced additional indices E → En,k and Ck → Cn,k as the eq. (D.49)
has generally more than one solution. This equation couples multipleC with different
k index. For the case of a cosine-shaped Mathieu potential, this equation becomes
particularly simple as this potential contains only three Fourier coefficients,

VG−1 = −V0

2 VG0 = −V0, VG1 = −V0

2 . (D.50)

Using these coefficients, the left-hand side of eq. (D.49) reduces to a band matrix,

. . . . . . . . .

VG−1 Ṽ−1 VG1

VG−1 Ṽ0 VG1

VG−1 Ṽ1 VG1

. . . . . . . . .


︸ ︷︷ ︸

¯̄Vk



...
Cn,k−G−1

Cn,k−G0

Cn,k−G1
...


︸ ︷︷ ︸

Cn,k

= En,k Cn,k . (D.51)
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The k dependence of the band matrix ¯̄Vk is contained in the diagonal elements ṼN =
V0 + (k−GN )2

2 . In principle, this matrix is of infinite dimension. However, it turns out
that only ten rows are needed to converge the eigenenergies of the lowest band E1,k.
For additional bands, additional pairs has to be appended at the top and the bottom
of this matrix equation. Considering 19 rows of the form of eq. (D.51) is sufficient to
converge E1,k, ..., E10,k inside the first Brillouin zone. Numerically, this can be done
with Coleski or QR decomposition that is built into the eig() function of Matlab.
The corresponding Bloch wave is given by the eigenvectors Cn,k as,

ψn,k(x) =
∑
G

Cn,k−G e
i(k−G)x . (D.52)

In the main text, in sect. 7.3.1 this very fast, auxiliary method is used to compare
the band structure with relaxed eigenstates obtained from Numerov boosted Crank-
Nicolson imaginary time propagation that utilizes the Sherman-Morrison-Woodbury
formula for the periodic boundary conditions [166].

D.4. Velocity-Verlet integration of electron and hole
trajectories

To compute semi-classical electron trajectories, we discretize the acceleration theo-
rem (7.7) according to the velocity-Verlet integration scheme around the integer time
index t,

k̇t = q

~
Ex(xt, t) (D.53)

at = 1
~

∂2En
∂k2

∣∣∣∣∣
kt
k̇t (D.54)

xt+1 = xt + vt∆t+ 1
2a

t∆t2 (D.55)

kt+1 = kt + q

~
Ex(xt, t) + Ex(xt+1, t+ ∆t)

2 ∆t (D.56)

vt+1 = 1
~

∂En
∂k

∣∣∣∣∣
kt

(D.57)

with q = −e being the charge of the electron, En the k-dependent eigenenergy and Ex
the x-component of the linearly polarized electric field.

We use that states obey same dynamics in the single-active electron picture regard-
less whether they are occupied or unoccupied, which is a direct consequence of the
linearity of the one-electron TDSE. Hence, vacancies follow the same equation of mo-
tion as electrons above. In accordance with this argument, the same physical result
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for x(t) is found for positively charged hole particles q = +e, that carry by convention
Eh(k) = −Ee(k) the negative electron energy [148].

The semiclassical trajectories for holes in the valence band and electrons in the
conduction band, determined from numerical integration of the equations (D.53)–
(D.57), are shown by green lines in Fig. 7.6.
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