
Dissertation
Institut für Nachrichtentechnik | Universität Rostock

Information-Theoretic Analysis

of Non-Cooperative and

Cooperative Remote Sensing

Dissertation zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik der Universität Rostock

eingereicht von
Steffen Steiner | geb. am 18.07.1987 in Lüneburg
Datum der Einreichung: 24.03.2023
Datum der Verteidigung: 13.09.2023

Gutachter: Zweitgutachterin:
Volker Kühn Anja Klein
Universität Rostock Technische Universität Darmstadt
Albert-Einstein-Str. 26 Landgraf-Georg-Str. 4
18059 Rostock 64283 Darmstadt



Danksagung

An erster Stelle möchte ich meinem Doktorvater Prof. Dr.-Ing Volker Kühn für die Be-
treuung meiner Arbeit danken. Dazu gehört vor allem die fachliche, wissenschaftliche und
methodische aber auch moralische Unterstützung, die ich während meiner gesamten Zeit
am Institut für Nachrichtentechnik der Universität Rostock genossen habe. Ohne diese
Unterstützung wäre die Anfertigung dieser Promotionsschrift niemals zustande gekom-
men.

Darüber hinaus geht mein Dank an meine Arbeitskollegen, die meine Zeit am Institut für
Nachrichtentechnik in einer familiären Atmosphäre unvergesslich gemacht haben. Insbe-
sondere danke ich meinem Bürokollegen und guten Freund Clemens Konrad-Müller für die
vielen fachlichen und allgemeinen Diskussionen und Ratschläge sowie den Anmerkungen
und Korrekturen für die Erstellung dieser Arbeit und anderen wissenschaftlichen Publika-
tionen. Mein Dank geht ebenso an Dr.-Ing. Henryk Richter für die fachliche Unterstützung
in vielen Bereichen auch Abseits des Themas dieser Arbeit.

Ein besonderer Dank geht auch an Dr.-Ing. Maximilian Stark für die Zusammenarbeit
sowie die vielen fachlichen Diskussionen und Anregungen, speziell im Bereich von Infor-
mation Bottleneck.

Zu guter Letzt danke ich meiner Familie, insbesondere meiner Lebensgefährtin Leonie
Kandler für die stetige Unterstützung und Motivation sowie für den nötigen Freiraum und
die Zeit diese Arbeit anzufertigen.

I

https://doi.org/10.18453/rosdok_id00004450

Dieses Werk ist lizenziert unter einer
Creative Commons Namensnennung 4.0 International Lizenz.



Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich diese Arbeit selbstständig und ohne Benut-
zung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, die wörtlich
oder auch sinngemäß aus Veröffentlichungen entnommen sind, habe ich als solche kennt-
lich gemacht. Ich weiß, dass bei Abgabe einer falschen Versicherung die Prüfung als nicht
bestanden zu gelten hat.

Steffen Steiner, Rostock, 24.03.2023 und 18.10.2023

II



Zusammenfassung

Diese Arbeit untersucht die Optimierung verteilter Kompression in Sensornetzwerken. Da-
bei wird der Spezialfall betrachtet, bei dem einzelne Sensoren verrauschte Beobachtungen
von dem selben Prozess machen und diese über kapazitätsbegrenzte Kanäle an einen ge-
meinsamen Empfänger weiterleiten wollen. Sollte die Kommunikation unter den Sensoren
nicht möglich sein, ist dies unter dem Namen Chief Executive (Estimation) Officer (CEO)
Problem bekannt. Um die Beobachtungen mit möglichst großer Rate fehlerfrei übertragen
zu können, muss jeder Sensor eine lokale Komprimierung vornehmen. Dieses Problem stellt
ein altbekanntes Problem in der Informationstheorie dar, dessen Untersuchung in den letz-
ten Jahren signifikante Ergebnisse erzielt hat. Insbesondere wurde die komplette Region
erreichbarer Übertragungsraten für verschiedene Verteilungen involvierter Zufallsprozes-
se sowie Verzerrungsmaße bestimmt. Darüber hinaus gibt es verschiedene algorithmische
Ansätze, das CEO Problem zu lösen. Die praktische Ausführung dieser Algorithmen kann
allerdings sehr anspruchsvoll bzw. komplex werden. Daher befasst sich diese Arbeit mit
der praktischen Implementierung und Verfeinerung sowie der informationstheoretischen
Analyse solcher Algorithmen. Betrachtet man das CEO Problem mit einem logarithmi-
schen Verzerrungsmaß besteht ein direkter Zusammenhang zu dem sogenannten infor-
mation bottleneck (IB) Prinzip. Dementsprechend wird zur Lösung des CEO Problems
ein gieriger Algorithmus basierend auf diesem Prinzip eingeführt, welcher gleichzeitig in-
dividuelle Ratenbeschränkungen der Weiterleitungskanäle zum gemeinsamen Empfänger
erlaubt. Hierbei werden die Komprimierer/Quantisierer der einzelnen Sensoren nacheinan-
der optimiert, wobei die Abbildungsvorschriften der Quantisierer vorangegangener Senso-
ren, entsprechend des Wyner-Ziv Kodierprinzips, ausgenutzt werden. Dieser algorithmische
Ansatz liefert eine signifikante Verbesserung der Leistungsfähigkeit verglichen mit einer
skalaren und unabhängigen IB Optimierung der einzelnen Sensoren. Allerdings besteht
auch bei diesem algorithmischen Ansatz ein exponentieller Zusammenhang zwischen dem
Speicherbedarf zur Optimierung und der Größe des Sensornetzwerks. Um dieses Problem
zu lösen, wird ein Ansatz verfolgt, bei dem die Abbildungsvorschriften der Quantisierer
vorangegangener Sensoren basierend auf dem IB Prinzip weiter komprimiert werden. Dies
reduziert den Speicherbedarf signifikant, wohingegen der Kompressionsverlust bezüglich
des unkomprimierten Verfahrens gering gehalten wird. Im Falle einer fehlerbehafteten
Übertragung zum gemeinsamen Empfänger, was zwangsläufig bei Verwendung von Codes
mit endlicher Länge auftritt, wird der gierige Optimierungsalgorithmus adaptiert, um eben
diese Fehler zu berücksichtigen.
Verglichen mit dem CEO Szenario mit voller Kooperation, bei dem jedem Sensor die
Messwerte aller Sensoren zur Verfügung stehen und eine koordinierte Kompression durch-
geführt werden kann, verbleibt bei dem bisherigen Algorithmus für das originale, unko-
operierende CEO Problem eine große Lücke bezüglich der Leistungsfähigkeit. Aus die-
sem Grund wird das partiell kooperierende CEO Problem eingeführt, welches das ori-
ginale Problem dahingehend erweitert, dass Sensoren über kapazitätsbegrenzte Kanäle
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zur Laufzeit miteinander kommunizieren können. Dementsprechend kann diese instantane
Seiteninformation, basierend auf dem verwendeten Übertragungsprotokoll, bei der Kom-
pression ausgenutzt werden. Die Optimierung der Kompression einzelner Sensoren erfolgt
wie beim originalen CEO Problem über einen gierigen Algorithmus. Beim sukzessiven
Broadcast-Übertragungsprotokoll kann jeder Sensor die instantane Seiteninformation al-
ler vorher übertragenden Sensoren ausnutzen. Da die Quantisierungsfunktion von der
Größe des Netzwerks abhängt, könnte es bei der Nutzung dieses Übertragungsprotokolls
zu Speicherproblemen kommen. Um dies zu umgehen, beschränkt sich das sequentielle
Punkt-zu-Punkt-Übertragungsprotokoll auf die Kommunikation mit direkten Nachbarn.
Dementsprechend kann lediglich die instantane Seiteninformation des direkten Vorgängers
genutzt werden. Mit Hilfe des Austauschs von instantaner Seiteninformation zwischen Sen-
soren kann die Leistungsfähigkeit gegenüber dem originalen CEO Problem signifikant ver-
bessert werden. Darüber hinaus verbessert der Austausch instantaner Seiteninformation
die Robustheit gegenüber schlechten Wyner-Ziv Kodierungen, welche durch suboptimale
Optimierungsreihenfolgen hervorgerufen werden und deutliche Einbrüche der Leistungsfä-
higkeit beim originalen CEO Problem mit sich bringen können. Da trotz partieller Koope-
ration mit sukzessiver Broadcast oder sequentieller Punkt-zu-Punkt Übertragung im Ver-
gleich zum vollkooperierenden CEO Problem, bezüglich der Leistungsfähigkeit, weiterhin
eine Lücke bleibt, wird das Zweiphasen-Übertragungsprotokoll eingeführt. Dieses separiert
die Kooperation zwischen Sensoren und das Weiterleiten zum gemeinsamen Empfänger in
einzelne Phasen und ermöglicht so, dass Sensoren die maximale instantane Seiteninformati-
on ausnutzen können. Mit Hilfe dieses Übertragungsprotokolls kann die Leistungsfähigkeit
des CEO Szenarios mit voller Kooperation erreicht werden.
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Abstract

This work addresses the optimization of distributed compression in a sensor network.
In particular, distributed sensors measure noisy versions of the same process of interest
and try to forward their measurements over capacity-limited links to a common receiver.
Therefore, each sensor has to locally compress its measurements. If direct communication
among sensors is not possible, this setup is widely known as the Chief Executive (Estima-
tion) Officer (CEO) problem. This problem represents a long-standing problem in infor-
mation theory, and significant progress has been achieved in recent years. In particular,
the region of achievable transmission rates has been completely characterized for specific
probability distributions of involved random processes and distortion measures. Moreover,
algorithmic solutions to solve the CEO problem are principally known. Their practical
implementation, however, can become challenging due to complexity reasons. Therefore,
this work focuses on an implementation point of view to solve this problem as well as an
information-theoretic analysis of the proposed algorithms. Since the CEO problem with
a logarithmic loss distortion measure is closely related to the information bottleneck (IB)
principle, an efficient greedy algorithm based on this principle is introduced to determine
feasible solutions of the CEO problem while fulfilling individual rate constraints of the for-
ward link of each sensor. Applying Wyner-Ziv coding, the compression devices/quantizers
are successively designed, exploiting the quantizer mappings of already designed sensors.
This algorithmic approach leads to a significant performance gain compared to individual
scalar IB optimization of each sensor. However, even this greedy optimization algorithm
results in an exponentially growing memory complexity with the number of sensors in the
network, which is why an IB based approach to compress the exploited quantizer mappings
for Wyner-Ziv coding is introduced. This significantly reduces the memory requirements,
while the loss compared to the uncompressed case can be kept very small. For the case
of erroneous transmission to the common receiver caused, e.g., by finite length codes, the
greedy optimization algorithm is adapted, incorporating residual error probabilities on the
forward channel of each sensor.
The greedy optimization approach still exhibits a significant gap to a fully cooperative
CEO scenario, where each sensor has access to all measurements in the network, and
coordinated compression can be performed. Therefore, this work introduces the partial
cooperative CEO scenario, extending the original CEO problem by allowing sensors to
communicate over capacity-limited inter-sensor links during run-time. Hence, sensors can
exploit instantaneous side-information received from other sensors for compressing their
measurements depending on the specific inter-sensor communication protocol. Inspired
by algorithmic solutions for the original CEO problem, the sensors are optimized in a
greedy manner. The successive broadcast transmission protocol allows each sensor to
exploit instantaneous side-information of all previously transmitting sensors. However,
this introduces memory issues for larger networks since the mapping is dependent on the
network size. In order to solve this, the sequential point-to-point transmission protocol
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restricts the inter-sensor communication such that sensors can only exploit instantaneous
side-information of the direct predecessor. This inter-sensor communication significantly
increases the performance of the CEO scenario. Moreover, exchanging instantaneous side-
information increases the robustness against bad Wyner-Ziv coding strategies caused by a
specific optimization order, which can lead to significant performance losses in the original
CEO problem. Since there still occurs a gap to the fully cooperative CEO scenario, a
two-phase transmission protocol is introduced, separating the cooperation among sensors
and the forwarding to the common receiver. This transmission protocol can reach the
performance of a fully cooperative CEO scenario.
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Chapter 1

Introduction

1.1 Motivation

Distributed sensing plays an important role in many areas, such as smart environments,
cities, or homes, which shall improve safety and comfort. Environmental monitoring sys-
tems, smart manufacturing (Industry 4.0), or systems for driving assistance in cars employ
many sensors and fuse their measurements to infer a signal of interest. In all these sce-
narios, spatially separated devices collect data and forward it to a central processing unit
via capacity-limited communications links. Therefore, sensing, communication, and signal
processing must be jointly optimized to infer the desired information efficiently. Natu-
rally, this provides a huge potential for optimization concerning the quality of service
(QoS) such as power consumption, latency, reliability, or even the throughput of the sys-
tem. This thesis focuses on a more theoretical view and highlights fundamental bounds
for distributed sensing, which serve as a basis for developing practical systems.
A current example of a practical system in mobile radio communications are Cloud Radio
Access Networks (C-RANs). Here the base stations (BSs) are connected via fronthaul
links to a central unit located in the ”cloud” [Che+15]. The main advantage lies in
the fact that baseband processing is not performed at the base stations anymore, but
in the computationally strong central unit allowing joint processing of multiple users.
Therefore, the BSs only operate as radio units (RUs). However, these RUs can still
perform a limited amount of low computationally complex signal processing tasks like
sampling or compression. Due to capacity-limited fronthaul links a previous compression
on the RUs is often required and receives attention in the current literature [Par+14].
Another example is defined by distributed sensor networks forwarding their measurements
via capacity-limited links to a central processing unit. In general, these sensors are quite
cheap and cannot perform complex processing tasks. However, since forward links have
capacity constraints, each sensor needs to perform a data compression before forwarding
it. This setup is commonly known as distributed source coding. In information theory,
distributed source coding has been of interest for decades, and significant progress has been
achieved in the past. A survey on distributed source coding can be found in [GVD06]. The
authors discuss different sensor networks focusing on the separation of source and channel
coding and the question of whether an analog or digital transmission is superior. For lim-
ited communication among sensors, digital processing requires exponentially more sensors
to achieve the same distortion as analog processing. However, for rich communication
among sensors, digital processing works fine.
Considering digital processing only, different assumptions on the sensor architecture can
be found in the literature. Multi-terminal source coding generally considers M correlated
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sources and N decoders being interested in a subset of only m ≤M source signals. For in-
stance, this could be a network containing two sensors. One is measuring the temperature
and the other the pressure. Results for multi-terminal source coding can only be found for
specific probability distributions of the source signal as well as specific distortion measures.
In [HK80], an inner bound on the achievable rate region has been derived, and [CW14]
provide a solution for two encoders under log-loss distortion measure. The quadratic Gaus-
sian multi-terminal source coding problem for two encoders has been solved in [WTV08].
Oohama developed upper and lower bounds for the quadratic Gaussian multi-terminal
source coding problem with correlated source signals in [Ooh08; Ooh12]. However, the
rate region of the general multi-terminal source coding problem is still unknown for more
than two encoders.
This thesis considers a special case of the multi-terminal source coding problem, where
all M sensors are interested in the same source signal. The scenario is widely known
as the Chief Executive (Estimation) Officer (CEO) problem [BZV96]. This simplifying
assumption allows the exact determination of the complete rate region for specific source
distributions and specific distortion measures but arbitrary network sizes. In the context
of C-RANs, this scenario can be regarded as a network with a single user being connected
to multiple RUs. In particular, this thesis focuses on the offline design of compression
devices of each sensor in the network, maximizing the overall spectral efficiency of the
network. Therefore, an information-theoretic approach is pursued. Applying the logarith-
mic loss distortion measure allows a close link between the CEO problem and the so-called
information bottleneck (IB) method [TPB99]. The general optimization algorithm adapts
the Blahut-Arimoto algorithm [Bla72; Ari72] and sequentially optimizes each sensor, ex-
ploiting the quantizer mappings of previously designed sensors by the Wyner-Ziv coding
principle [SK21]. However, this approach results in dimensionality problems, especially for
larger networks. Therefore, the IB principle is applied to compress the quantizer mappings
of previously designed sensors, exploited for Wyner-Ziv coding, allowing the design even
for larger network sizes [Ste+21b; Ste+21a]. Finally, this thesis extends the general CEO
problem allowing each sensor to partially communicate with each other during runtime,
increasing the overall performance of the network even further [SAK22; SK22].

1.2 Structure of Thesis

This thesis is structured as follows: Chapter 2 introduces basic information-theoretic fun-
damentals which are necessary to follow the argumentation within this thesis. Chapter 3
reviews preliminaries on lossy compression, starting with the general rate-distortion theory
and the remote sensing problem. Moreover, this chapter introduces the IB approach as a
basic optimization concept used within this thesis. Afterward, the scalar remote sensing
problem is extended to the distributed case. Here, the CEO problem with a logarithmic
loss distortion measure is defined with different theoretical bounds. This chapter ends
with the definition of the fully cooperative CEO scenario, where each sensor has access to
all measurements in the network. The main contributions of this thesis can be found in
Chapter 4 and Chapter 5 where different algorithmic solutions are introduced to solve the
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non-cooperative CEO scenario and the partially cooperative CEO scenario, respectively.
In particular, Chapter 4 introduces a greedy approach, which sequentially optimizes each
sensor exploiting the statistics of previously designed quantizers using Wyner-Ziv coding.
This approach is further elaborated to allow the optimization of large networks as well
as an incorporation of imperfect forward channels. In Chapter 5, the non-cooperative
CEO scenario is extended to allow partially cooperation among sensors during runtime.
This includes different inter-sensor communication protocols, i.e., the successive broad-
cast transmission protocol, the sequential point-to-point transmission protocol, and the
two-phase transmission protocol. Finally, Chapter 6 summarizes the main contributions
of this thesis.

1.3 Notations

The probability mass function (pmf) of the random variable X , denoted in calligraphic let-
ters, is given by p(X = x), where x is a realization of X drawn from the set X with cardinal-
ity |X|. In order to simplify the notation, this pmf is denoted as p(x) throughout this thesis.
Vectors are denoted in bold letters, y =

[
y1 . . . yM

]T. In this sense, multivariate random
variables are represented by boldface calligraphic letters with Z<m covering the processes
Z1 to Zm−1. A Markov chain X → Y → Z implies that p(x, y, z) = p(z|y)p(y|x)p(x),
where p(y|x) is a conditional pmf. The expectation of a function f(x) with respect to x is
denoted by EX [f(X )]. A univariate Gaussian distribution is given by N (µ, σ2) with mean
µ and variance σ2. Similarly, the complex Gaussian distribution is given by CN (µ, σ2).
The entropy of the discrete random variable X is denoted by H(X ). The mutual infor-
mation between X and Y is given by I(X ;Y). Moreover, divergence measures DKL [·||·]
and DΠ

JS [·||·] denote the Kullback-Leibler divergence and the Jensen-Shannon divergence,
respectively.
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Chapter 2

Fundamentals

This chapter provides the necessary theoretical background in information theory in order
to be able to follow the argumentation and understand the main contributions of this the-
sis. In Section 2.1, general definitions of different probability densities and distributions,
as well as some characteristics and mathematical properties, are given. Section 2.2 covers
information-theoretic measures like entropy and mutual information based on definitions
of Shannon in [Sha48]. Moreover, different ways to compare distributions are introduced
by the Kullback-Leibler divergence and the Jensen-Shannon divergence. Finally, Section
2.3 introduces selected channels, and their capacities are discussed.

2.1 Densities and Probabilities

2.1.1 Continuous Probability Densities

Let X be a continuous random variable with x being a realization of X drawn from an
uncountable set X. The probability density function (pdf) p(x) of X is defined as a non-
negative function which integrates to one [Kol33; GS09; PP02]∫

X
p(x)dx = 1 . (2.1)

The probability Pr(τ1 ≤ x ≤ τ2) of a realization falling within a particular range τ1 ≤ x ≤
τ2 can be determined from p(x) with

Pr(τ1 ≤ x ≤ τ2) =

∫ τ2

τ1

p(x)dx . (2.2)

However, working with continuous random variables requires analytical expressions of the
pdf of a random variable, which might not be known. Therefore, all algorithms within
this thesis work with discrete probability distributions.

2.1.2 Discrete Probability Distributions

The major difference to the continuous case is that a discrete random variable X draws
realizations x from the set X, which has a countable event space. Within this thesis,
all event spaces of discrete random variables have a finite cardinality, e.g., |X| <∞. The
probability of a specific realization x is given by Pr{X = x} ≥ 0. Analog to the continuous
case, the sum over all probabilities is equal to one [Kol33; GS09; PP02]∑

x∈X
Pr{X = x} = 1 . (2.3)
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A pmf Pr{X} of a discrete random variable X is defined by the probabilities of all x ∈ X.
It can be interpreted as a superposition of Dirac impulses located at the realizations x

and weighted with the corresponding probabilities leading to a generalized pdf definition

p(x) =
∑
xk∈X

Pr{X = xk}δ(x− xk) . (2.4)

Therefore, to simplify the notation, the pmf can also be denoted as p(x), similar to the
continuous case. For brevity, the summation over the event space

∑
x∈X will be denoted

by
∑

x.

2.1.3 Joint Probability Distribution

Let X and Y be two discrete random variables, the joint probability distribution p(x, y)

represents the probabilities that the realizations x ∈ X and y ∈ Y are observed together
for all pairs (x, y) ∈ X × Y, where X × Y = {(x, y)|x ∈ X, y ∈ Y} denotes the Cartesian
product. Note the law of total probability states∑

x

∑
y

p(x, y) = 1 . (2.5)

The joint probability distribution p(x, y) can be used to obtain the marginal distributions
by p(x) =

∑
y p(x, y) and p(y) =

∑
x p(x, y). This marginalization is referred to as the

sum rule of probabilities [Bis06]. In general, p(x, y) can not be constructed out of the
marginals p(x) and p(y). For the special case of X and Y being independent random
variables, it is possible to obtain the joint probability distribution by p(x, y) = p(x) · p(y).

2.1.4 Conditional Probability Distribution

Let X and Y be two discrete random variables, the conditional probability distribution
p(y|x) defines the probability of y given the specific value x. In other words, it defines the
probability of an event after observing another event, which is the basic task in estimation
theory. For the conditional probability distribution∑

y

p(y|x) = 1 ∀x ∈ X (2.6)

holds. In addition, the joint probability distribution can be obtained by means of the
conditional probability distribution with

p(y, x) = p(y|x) · p(x) (2.7)

which is referred to as the product rule of probabilities [Bis06].
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2.1.5 Expectation and Variance

Let f(x) define an arbitrary function of a discrete random variable X . The expectation
of f(x) is defined as

EX [f(x)] =
∑
x

f(x)p(x) . (2.8)

With f(x) = x, it defines the average value µx of the function f(x) with respect to the
probability distribution p(x). For joint distributions, the expectation can be calculated as

EX ,Y [f(x, y)] =
∑
x

∑
y

f(x, y)p(x, y) . (2.9)

Note that the subscripts denote the random variable over which the average is deter-
mined. In (2.9), the expectation is calculated with respect to both random variables. For
conditional distributions, the expectation can be determined as

EX|y [f(x)] =
∑
x

f(x)p(x|y) . (2.10)

Finally, the variance of a discrete random variable X can be calculated by

Var(X ) = EX
[
(X − EX [X ])2

]
= EX

[
X 2

]
− EX [X ]2 . (2.11)

2.2 Information Theory

2.2.1 Information and Entropy

Let X be a discrete random variable with pmf p(x), the amount of information belonging
to a specific event x ∈ X is defined as

H(X = x) = − logb p(x) (2.12)

where the base b defines the unit of the information [CT06]. In communications, the
most common base is b = 2 leading to the unit [bit]. The information H(X = x) is a
non-negative and a monotonically decreasing function in p(x) depending on probabilities
only. The more likely a specific event, the less its amount of information. Hence, the
information of a reliable event is zero, while the event with probability zero has infinite
information. The average amount of information defines the entropy H(X ) and is given
by

H(X ) = EX [− log2 p(x)] = −
∑
x

p(x) log2 p(x). (2.13)
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The entropy H(X ) is a measure of uncertainty. Therefore, the maximum entropy is ob-
tained by a uniform distribution of X with p(x) = 1

|X| leading to H(X) = log2 |X|. For a
second random variable Y, the entropy extends to the joint entropy

H(X ,Y) = EX ,Y [− log2 p(x, y)] =
∑
x

∑
y

p(x, y) log2 p(x, y). (2.14)

If X and Y are independent, the joint entropy is achieved by the sum of the individual
entropies H(X ,Y) = H(X ) +H(Y). According to the chain rule for entropies, this joint
entropy can be rewritten as H(X ,Y) = H(X )+H(Y|X ) or as H(X ,Y) = H(Y)+H(X|Y),
where H(Y|X ) defines the conditional entropy of Y given X and H(X|Y) defines the
conditional entropy of X given Y.

H(Y|X ) = EX ,Y [− log2 p(y|x)] = −
∑
x

∑
y

p(x, y) log2 p(y|x) (2.15)

Note that if X and Y are correlated, the conditional entropy is always smaller than the
unconditional entropy H(X|Y) < H(X ) since more information always decreases the un-
certainty about X . However, if X and Y are uncorrelated, the conditional entropy equals
the unconditional entropy H(X|Y) = H(X ), since Y contains no information about X .
In the case of X being a continuous random variable with a pdf p(x) the definition of
entropy can be adapted to

h(X ) = −
∫
S
p(x) log2 p(x)dx (2.16)

where h(X ) is termed the differential entropy and S defines the support of X , i.e. the
set where p(x) > 0. Note that the differential entropy can become negative. Therefore,
an interpretation in the sense of a measure of uncertainty becomes a bit vague. As in
the discrete case, the differential entropy can easily be extended to the multivariate and
conditional case.

Entropy coding: The information-theoretic measure entropy finds application, e.g.,
in lossless data compression. Given a source process X which delivers a sequence x =

{x1, x2, . . . , xn} with n→∞, Shannon’s source coding theorem [Sha48] defines the entropy
H(X ) as the ultimate lower bound for lossless compression, motivating the name entropy
coding. That means representing the whole sequence requires at least nH(X ) bit. A very
efficient and optimal algorithm for this source coding problem is the Huffman coding,
first published in [Huf52]. Applying this coding strategy results in a prefix-free code.
Hence, the bit string representing a particular symbol is never a prefix of the bit string
representing any other symbol.

2.2.2 Mutual Information

Based on [CT06], the mutual information I(X ;Y) is defined as the common information
of the two random variables X and Y. It is a positive and symmetric measure I(X ;Y) =

7
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I(Y;X ) ≥ 0 bit/s/Hz. Naturally, if X and Y are independent the mutual information
becomes zero, i.e. I(X ;Y) = 0 bit/s/Hz.
In the case of X and Y being discrete random variables, it can be calculated as

I(X ;Y) = EX ,Y

[
log2

p(x, y)

p(x) · p(y)

]
︸ ︷︷ ︸

H(X )+H(Y)−H(X ,Y)

= EX ,Y

[
log2

p(x|y)
p(x)

]
︸ ︷︷ ︸

H(X )−H(X|Y)

= EX ,Y

[
log2

p(y|x)
p(y)

]
︸ ︷︷ ︸

H(Y)−H(Y|X )

(2.17)

=
∑
x

∑
y

p(x, y) log2
p(x|y)
p(x)

=
∑
x

∑
y

p(x, y) log2
p(y|x)
p(y)

. (2.18)

The mutual information can be interpreted as the reduction of uncertainty about X by
observing Y expressed by H(X ) − H(X|Y) or the uncertainty remaining about Y when
knowing X expressed by H(Y)−H(Y|X ). For continuous random variables, the entropies
H(·) in (2.17) become differential entropies h(·), which simply results in an exchange of
the sums by integrals in (2.18). Although the differential entropies can become negative,
the interpretation of the mutual information is the same as for discrete random variables.
Note that the unit of the mutual information is [bit/s/Hz] and describes the ratio between
the data rate and the bandwidth. This ratio is also known as the spectral efficiency.
Within this thesis, mutual information and spectral efficiency are used interchangeably.
The conditional mutual information I(X ;Y|Z) describes the common information between
the two random variables X and Y given another random variable Z. It can be defined as

I(X ;Y|Z) = EX ,Y,Z

[
log2

p(x, y|z)
p(x|z) · p(y|z)

]
= EX ,Y,Z

[
log2

p(y|x, z)
p(y|z)

]
. (2.19)

The additional information Z can either increase or decrease the mutual information
I(X ;Y|Z) compared to the unconditioned case I(X ;Y). If Z contains information about
the disturbance in Y, the knowledge of Z increases the conditional mutual information.
However, if Z contains information about the random variable Y, e.g., if X → Y → Z form
a Markov chain, additional information Z will always decrease the mutual information
I(X ;Y|Z) ≤ I(X ;Y).
The mutual information can easily be extended to multivariate random variables. Let X
be a univariate random variable and Y = Y1:M be a multivariate random variable covering
the processes Y1, . . . ,YM . The mutual information between X and Y is defined as

I(X ;Y) = EX ,Y

[
log2

p(x, y1, . . . , yM )

p(x) · p(y1, . . . , yM )

]
. (2.20)

This multivariate mutual information can be decoupled into a sum of conditional mutual
information using the chain rule for mutual information

I(X ;Y) =

M∑
i=1

I(X ;Yi|Y1, . . . ,Yi−1). (2.21)

Note that the order of decoupling, i.e., the order of decoding, can be chosen arbitrarily
and does not affect the overall mutual information.

8
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Data processing inequality: The data processing inequality is a basic theorem in in-
formation theory. Given the Markov chain X → Y → Z, i.e., p(x, y, z) = p(x)p(y|x)p(z|y),
the data processing inequality is given by

I(X ;Y) ≥ I(X ;Z). (2.22)

In other words, without adding new information, the uncertainty about X given the ob-
servation Y can not be further decreased by any processing of Y to Z. Therefore, lost
information can not be recovered without a further source of information.

2.2.3 Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence, also called relative entropy, is a statistical measure
of similarity between two random distributions. Given the two distributions p1(x) and
p2(x) the KL divergence is defined as

DKL [p1||p2] = Ep1(x)

[
logb

p1(x)

p2(x)

]
=

∑
x

p1(x) logb
p1(x)

p2(x)
. (2.23)

The base b defines the unit in which the KL divergence is measured. The KL divergence
represents the expected error assuming the distribution p2(x) while the true distribution
is p1(x). From the above equation, it is easy to conclude that for p1(x) = p2(x), the KL
divergence is zero. In addition, the support of p1(x) must be a subset of the support of
p2(x), which means that if there exists any event x in p1(x) which is not included or zero
in p2(x) the DKL [p1||p2] → ∞, hence it is unbounded. Moreover, it can be shown that
the KL divergence is always non-negative [CT06]. It has to be mentioned that the KL
divergence is not a true distance since it is not symmetric, i.e., DKL [p1||p2] ̸= DKL [p2||p1],
and the triangle inequality is not satisfied. Note that the mutual information I(X ;Y) can
be expressed by a KL divergence between p(x, y) and p(x)p(y) as

I(X ;Y) = DKL [p(x, y)||p(x)p(y)] =
∑
x,y

p(x, y) log2
p(x, y)

p(x)p(y)
. (2.24)

2.2.4 Jensen-Shannon divergence

Since the KL divergence is not symmetric and unbounded, it might be convenient to intro-
duce another statistical distance measure. Based on the previously defined KL divergence
for two probability distributions p1(x) and p2(x) the Jensen-Shannon (JS) divergence
[Lin91] is given by

DΠ
JS [p1||p2] = π1DKL [p1||p̄] + π2DKL [p2||p̄] with p̄ = π1p1 + π2p2 , (2.25)

where Π = {π1, π2}, 0 < π1, π2 < 1 and π1 + π2 = 1. This extension to the KL divergence
has some notable advantages over the original one. While the KL divergence is unbounded,
i.e., it can become infinity, the JS divergence is always bounded to a finite value 0 ≤
DΠ

JS [p1||p2] ≤ logb 2. Again, b defines the unit in which the JS divergence is measured.

9
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+
x

w ∼ N (µ, σ2)

y

Figure 2.1: Schematic representation of an AWGN channel

Moreover, the JS divergence is a symmetric measure, i.e., DΠ
JS [p1||p2] = DΠ

JS [p2||p1]. While
the KL divergence is very sensitive for low probabilities in the second argument p2, the
JS divergence is more robust in this case. However, since the triangle inequality is not
fulfilled, it is still not a true distance.

2.3 Channel Models

2.3.1 Channel Capacity

Casually stated, the channel capacity defines the maximum amount of information that
can be transmitted over a given channel. In his seminal work, ”A Mathematical Theory of
Communication” from 1948, Shannon defined the theoretical bounds for reliable commu-
nication over an arbitrary channel [Sha48]. Given a channel with input X and output Y,
its capacity is defined as the supremum of the mutual information I(X ;Y) with respect
to the input distribution p(x).

C = sup
p(x)

I(X ;Y) (2.26)

2.3.2 Additive White Gaussian Noise Channel

The additive white Gaussian noise (AWGN) channel is one of the most fundamental chan-
nel models used in communications for point-to-point transmission. Let x be the input
of an AWGN channel. The output is given by y = x + w, where w denotes the additive
noise, as shown in Figure 2.1. The name AWGN already implies that w is white and
Gaussian distributed with w ∼ CN (0, σ2

w). The Gaussian distribution is motivated by the
central limit theorem, stating that the superposition of independent disturbances results
in a Gaussian distribution. Moreover, white noise has a constant power spectral density.
A common way to quantify this channel model is the signal-to-noise ratio (SNR) γ = σ2

x
σ2
w

,
where σ2

x and σ2
w denote the signal power and the noise variance, respectively.

Channel Capacity: Given the general definition of the channel capacity in (2.26) and
the definition of the mutual information in (2.17), the capacity for an AWGN channel
can be derived in closed form. Since the mutual information is defined as I(X ;Y) =

h(y) − h(y|x) with p(y|x) being the fixed channel likelihood, it is obvious that h(y) has
to become maximum in order to maximize the mutual information. As this differential
entropy becomes maximal for a Gaussian distribution y ∼ CN (0, σ2

y) being derived by the

10
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Figure 2.2: Capacity and spectral efficiency of an AWGN channel for different digital
modulation schemes

convolution p(y) = p(x)∗p(w) with w ∼ CN (0, σ2
w), it is clear that the capacity is achieved

for x ∼ CN (0, σ2
x).

C = sup
p(x)

I(X ;Y)

= sup
p(x)

h(Y)− h(Y|X )

= log2(πeσ2
y)− log2(πeσ2

w)

= log2(1 +
σ2
x

σ2
w

)

= log2(1 + γ) (2.27)

In the case that x and w are real-valued, i.e., x ∼ N (0, σ2
x) and w ∼ N (0, σ2

w), the capacity
of the AWGN channel is given by

C =
1

2
log2(1 + γ) (2.28)

The channel capacity for an AWGN channel is just dependent on the signal-to-noise ratio
γ = σ2

x
σ2
w

.
Figure 2.2 depicts the channel capacity for a real-valued AWGN channel and a com-
plex AWGN channel as well as the spectral efficiency using different modulation schemes.
The black curve represents the capacity achieved by a Gaussian input distribution p(x).
Naturally, using discrete input distributions for discrete digital modulation schemes, the
spectral efficiency is upper bounded by log2M with M being the modulation order inde-
pendent of σ2

x. For lower SNR values, the spectral efficiency using discrete input values
does not differ from the capacity. For higher-order mappings, the bifurcation point from
the capacity is located at higher SNRs.
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Figure 2.3: Schematic representation of an DMC channel

2.3.3 Discrete Memoryless Channel

In general, a discrete memoryless channel (DMC) is an abstract model where the channel
has a discrete number of inputs connected to a discrete number of outputs. Figure 2.3
shows an example of a DMC for an input X with cardinality of |X| = 4 and an output Y
with cardinality |Y| = 4. Each input is connected to each output with a corresponding
transition probability. The DMC is completely defined by all transition probabilities
p(y|x), which can be stored as a transition matrix P with rows and columns representing
realizations of Y and X , respectively.

Channel Capacity: The capacity of a DMC can be determined using the general def-
inition of the capacity in (2.26) and the definition of the mutual information for discrete
random variables in (2.17). It is easy to see that a symmetric DMC with P = PT , com-
bined with a uniform distributed input with p(x) = 1

|X| results in a uniform distributed
output p(y) = 1

|Y| . Since a uniform distribution maximizes the entropy H(Y), this delivers
the capacity of the DMC. In this case, it can be computed as

C = sup
p(x)

I(X ;Y)

= sup
p(x)

H(Y)−H(Y|X )

= H(Y)−H(r)
= log2(|Y|)−H(r) , (2.29)

where r defines a specific row (or column) of the transition matrix p(y|x) [CT06].

2.4 Discussion

This chapter introduced the necessary theoretical background in information theory. Gen-
eral definitions of probability densities and distributions, as well as some properties and
characteristics, have been defined. Afterward, Shannon’s basic definitions like entropy
and mutual information were discussed, followed by definitions of Kullback-Leibler diver-
gence and Jensen-Shannon divergence. Finally, basic channel models used in this thesis

12
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have been introduced. With this background information, the reader has the necessary
knowledge to understand the preliminaries on lossy compression in the next chapter.
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Chapter 3

Preliminaries on Lossy Compression

This chapter introduces basic concepts of lossy data compression. Starting with the scalar
case, Section 3.1 revisits Shannon’s famous rate-distortion theory [Sha48; Sha59]. Lossy
compression with some side-information is defined by the Wyner-Ziv coding principle
[Wyn78; WZ76] in Section 3.2. The rate-distortion theory for clean sources is extended
to noisy sources, defining the remote sensing problem in Section 3.3. In Section 3.4,
the IB principle [TPB99] is defined, as well as some connections to the remote source
coding problem. Moreover, the iterative IB algorithm is introduced as an algorithmic
approach to solve the IB problem. Section 3.5 considers a special case of the IB approach
for erroneous channels between encoder and receiver based on the work of Winkelbauer
in [Win14; WMB13]. The scalar remote sensing scenario is extended to the distributed
case in Section 3.6. Subsection 3.6.1 defines the non-cooperative remote sensing scenario,
where the communication among sensors is not possible. This is widely known as the CEO
problem. The general system model is introduced, as well as theoretical bounds for the
rate region. A lower bound for algorithms introduced in Chapter 4 is given as independent
IB optimization. Finally, Subsection 3.6.2 introduces the fully cooperative remote sensing
scenario and an algorithmic approach to solve it. The results of this scenario deal as an
upper bound for algorithms introduced in subsequent chapters.

3.1 Rate-Distortion Theory

As described in Section 2.2, the lower bound for lossless compression is the entropy. Com-
pressing below this bound yields an inevitable loss of information. The general idea of
rate-distortion theory goes back to the work of Shannon [Sha48; Sha59]. It defines the
theoretical foundations for this lossy data compression. The first group working on this
topic after Shannon’s seminal publications studied at Moscow University, including A. N.
Kolmogorov. They made contributions on a topic called ϵ-entropy, today known as the
rate-distortion theory [Kol56]. Later in the seventies, amongst others, the group around T.
Berger [Ber71][Ber75], the group around R. M. Gray [Gra90], and the group around A.D.
Wyner contributed to the rate-distortion theory with [WZ71] defining theoretical bounds
on the rate-distortion function where they considered stationary sources with memory.

encoder decoder ŷnyn

2nR

Figure 3.1: Schematic illustration of lossy compression [EK11]
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encoder

p(zn|yn) BERMyn
2nR

zn

Figure 3.2: Encoding process for lossy source coding

Later work considers the rate-distortion problem with side-information [WW75; WZ76;
Wyn78].
For more background information on the historical development of the rate-distortion
theory, the reader might refer to the overview paper of T. Berger [BG98], which provides
a detailed description of the main progression of different research groups in this topic
for the last sixty years. In addition, the survey of J. C. Kieffer [Kie93] provides a good
overview concerning source coding with a fidelity criterion.
A general model for the rate-distortion setup is given in Figure 3.1. The encoding process
is a function

fn : Yn → {1, 2, . . . , 2nR} (3.1)

which represents the source sequence yn = [y[1], ..., y[n]]T of length n using nR bits. The
encoded bits shall be transmitted over a perfect channel to a decoder. Equivalently, the
decoding process is a function

gn : {1, 2, . . . , 2nR} → Ŷn (3.2)

which tries to reconstruct the source sequence. The average distortion between yn and
the reconstructed values ŷn is defined by

EYn,Ŷn

[
d̃
n
(yn, ŷn)

]
= EYn,Ŷn

[
1

n

n∑
i=1

d̃(yi, yî)

]
(3.3)

with d̃ : Y × Ŷ → R+ defining an arbitrary distortion measure. In general, a trade-
off between the average distortion and a particular compression measured by the mutual
information I(Yn; Ŷn

) has to be determined. The optimization problem can be defined as

R(D) = min
p(yn̂|yn):EYn,Ŷn [ 1n

∑n
i=1 d̃(yi,yî)]≤D

I(Yn; Ŷn
) , (3.4)

which tries to find a mapping p(ŷn|yn) that minimizes the mutual information I(Yn; Ŷn
),

i.e., it maximizes the compression, while the average distortion remains below a certain
tolerated threshold D. The encoder in Figure 3.1 can be further defined as in Figure 3.2.
It contains a compression step realized by a vector quantizer p(zn|yn) and a transforma-
tion into a bit stream. This bit stream transformation also incorporates a rate-matching
mechanism depending on the type of quantizer mapping in order to ensure a length of
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nR bits. It is termed binary encoding with rate-matching (BERM). The vector quantizer
is defined by the mapping p(zn|yn) which compresses the sequence yn to zn. The mu-
tual information I(Yn;Zn) is named compression rate and is often interpreted as the rate
with which the information is transmitted. However, this only holds for the special case,
where the mapping p(zn|yn) is deterministic. In this case, the compression rate equals
the entropy of the quantizer output zn, i.e., I(Yn;Zn) = H(Zn) = nR holds. There-
fore, the BERM block only contains lossless entropy coding. For stochastic mappings
the compression rate is given by I(Yn;Zn) = H(Zn) − H(Zn|Yn) with H(Zn|Yn) > 0.
Hence, I(Yn;Zn) + H(Zn|Yn) = H(Zn) = nR requiring a second compression step of
the quantizer output zn to mitigate the influence of H(Zn|Yn). In practice, this second
compression can be done by random linear binning, so-called hashing, using, e.g., a linear
encoder [EK11]. Note that within this thesis, the focus only lies on optimizing the first
compression part, i.e., the quantizer.
If we assume the variables in yn to be uncorrelated, a symbol-wise compression can be
applied without any loss compared to the vector compression. For a symbol-wise com-
pression, the optimization problem can be rewritten as

R(D) = min
p(ŷ|y):EY,Ŷ [d̃(y,ŷ)]≤D

I(Y; Ŷ) , (3.5)

which tries to find a mapping p(ŷ|y) that minimizes the mutual information I(Y; Ŷ).
Hence, it maximizes the compression while the average distortion remains below a certain
tolerated threshold D. In the following, the vector notation will be omitted, and only
symbol-wise compression is considered.

3.1.1 Rate-Distortion Function and Distortion-Rate Function

Since the reconstruction function gn in (3.2) is bijective for ϵ-typical sequences[EK11], the
mutual information I(Y; Ŷ) equals I(Y;Z) with Z being the compression random variable.
Therefore, the rate-distortion function in (3.5) can be rewritten to

R(D) = min
p(z|y):EY,Z [d̃(y,z)]≤D

I(Y;Z) . (3.6)

This rate-distortion function defines the maximum achievable compression, i.e., the min-
imum of the compression rate I(Y;Z) for a given average distortion EY,Z

[
d̃(y, z)

]
≤ D.

The optimization is done with respect to the mapping p(z|y), where d̃ : Y × Z → R+ and
|Z| ≤ |Y|. The mapping p(z|y) describes a quantization, i.e., compression of the random
variable Y to Z, and can be of a stochastic or a deterministic nature. This mapping
has to be adapted in order to minimize the compression rate I(Y;Z) while not exceeding
a maximum tolerated average distortion D. Naturally, larger values of D imply that a
stronger compression can be applied. As an extreme case, all elements of Y are mapped
to just a single element of Z which leads to the maximum compression and lowest com-
pression rate I(Y;Z) = 0. The other extreme case is achieved if |Y| = |Z|. In this case,
the compression rate can become I(Y;Z) = H(Y), if a one-to-one mapping is applied.The
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distortion d̃(y, z) can be measured by different means. It measures the “distance” between
the random variable Y and its new representation Z. Some examples are the Hamming
distance d̃(y, z) = dH(y, ŷ(z)) or the squared Euclidean distance d̃(y, z) = |ŷ(z) − y|2,
whose expectation results in the mean squared error (MSE). Note, that since z is in gen-
eral only a categorical variable like a cluster index, these measures require ŷ(z) to be a
physical representation of z. However, there are also distortion measures like the logarith-
mic loss function d̃(y, z) = − log p(y|z), which is based on statistics and does not require
physical representations ŷ(z). Unfortunately, it is not obvious a priori which distortion
measure is the one to apply since the definition is application-specific. Due to convenient
mathematical properties, the squared Euclidean distance is often used in the context of
Gaussian distributions. However, if physical representations are unavailable, it might be
preferable to use a purely statistical measure like the logarithmic loss function.
The minimization problem in (3.6) can be reformulated using the method of Lagrangian
multipliers

LRD[p(z|y)] = I(Y;Z) + β EY,Z

[
d̃(y, z)

]
. (3.7)

The Lagrange multiplier β can be interpreted as a trade-off parameter between the com-
pression rate and the average distortion. For β = 0, the focus solely lies on minimizing
the compression rate, whereas β →∞ focuses only on minimizing the average distortion.
Figure 3.3 shows the rate-distortion function R(D) for a Gaussian source y ∼ N (0, 1) and
the squared Euclidean distance distortion measure d̃(y, z) = |ŷ(z) − y|2. The blue curve
represents the case where the average distortion equals the maximum tolerated average
distortion D, i.e., EY,Z

[
d̃(y, z)

]
= D. The region above the curve is defined as the achiev-

able region where EY,Z

[
d̃(y, z)

]
< D or I(Y;Z) > R(D) holds. Each point in this region

represents a specific trade-off between the compression rate and the average distortion. In
contrast, the region below the curve can not be achieved, since here the compression rate
would yield an average distortion EY,Z

[
d̃(y, z)

]
> D. The different points of R(D) are

achieved by varying the trade-off parameter β.
If instead of the average distortion D, a target compression rate R is given, the distortion-
rate function D(R) can be applied. It defines the minimal achievable average distortion
EY,Z

[
d̃(y, z)

]
for a given compression rate I(Y;Z) ≤ R

D(R) = min
p(z|y): I(Y;Z)≤R

EY,Z

[
d̃(y, z)

]
. (3.8)

Using the method of Lagrangian multipliers (3.8) can be formulated to

LDR[p(z|y)] = EY,Z

[
d̃(y, z)

]
+ βI(Y;Z), (3.9)

which has to be minimized. In this case, β = 0 focuses solely on minimizing the average
distortion, whereas β →∞ focuses only on minimizing the compression rate.
Obviously, the choice of the distortion measure is essential for rate-distortion theory. More
precisely, since d̃(y, z) is part of the optimization problem in (3.6) and (3.8) this choice
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Figure 3.3: Rate-distortion function R(D) for a Gaussian source y ∼ N (0, 1) and squared
Euclidean distance distortion measure d̃(y, z) = |ŷ(z) − y|2 showing achievable and non-
achievable regions [CT06]
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Figure 3.4: Illustration of the convex optimization process applying the Blahut-Arimoto
algorithm in R2 [CT06; Slo02]

influences its mathematical structure, i.e., whether it is convex or not. If the mapping
p(z|y) is not part of d̃(y, z), the optimization problem is convex [CT06]. This is important
since minimizing over a convex function results in the global optimum rather than just a
local optimum if it is not convex.

3.1.2 Blahut-Arimoto Algorithm

The Lagrangian in (3.9) can be minimized by calculating the derivative with respect to
the mapping p(z|y) and equating it to zero, yielding the implicit update equation for the
mapping p(z|y) [CT06]

p(z|y) = p(z) · e−
1
β
·d̃(y,z)∑

z p(z) · e
− 1

β
·d̃(y,z)

. (3.10)
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Figure 3.5: Wyner-Ziv system model - source coding with side-information

Due to p(z) =
∑

y p(z|y)p(y), equation (3.10) is an implicit equation. In general, this
can only be solved by iterative algorithms. One of them is the Blahut-Arimoto algorithm
[Ari72; Bla72]. The Blahut-Arimoto algorithm splits the original optimization into two
alternating minimization steps. In one step, p(z|y) is optimized while being treated in-
dependent of a fixed p(z). Respectively, in the next step, p(z) is optimized while being
treated independent of a fixed p(z|y).

D(R) = min
p(z)

min
p(z|y): I(Y;Z)≤R

EY,Z

[
d̃(y, z)

]
= min

p(z)
min

p(z|y): I(Y;Z)≤R

∑
y

p(y)
∑
z

p(z|y)d̃(y, z) (3.11)

In particular, the alternating steps result in the following procedure: Given a random
initialization for p(z), calculate p(z|y) with equation (3.10). Then update the marginal
distribution with the updated p(z|y) by

p(z) =
∑
y

p(z|y)p(y). (3.12)

Repeating this procedure till a certain stopping criterion is fulfilled will solve the original
optimization problem. As already mentioned in Subsection 3.1.1, whether this algorithm
finds a local or a global optimum depends on the used distortion measure d̃(y, z).
Figure 3.4 illustrates the optimization process of the Blahut-Arimoto algorithm in R2

minimizing the Euclidean distance between the two convex sets A and B. Starting with
an arbitrary point a1 ∈ A, it chooses a point b1 ∈ B with the smallest distance to a1. By
fixing this point, the algorithm finds a point a2 ∈ A, which has the smallest distance to b1.
This process is repeated and converges to the global optimum since the minimized function
is convex [CT84]. This also holds for the case of A and B being convex sets of probability
distributions and the KL divergence being the function to be minimized [Slo02].

3.2 Wyner-Ziv Coding

An extension of the general rate-distortion problem where the decoder has access to side-
information about the source has first been analyzed in [Wyn78; WZ76]. The Wyner-Ziv
(WZ) system model is given in Figure 3.5. The difference to the original rate-distortion
problem is that the decoder has additional side-information about y via the signal z̃.
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Figure 3.6: General remote sensing setup - encoder compresses noisy signal to forward it
over a channel with capacity C to a receiver

Again, the basic idea is to design a mapping p(z|y) for the encoder in order to find the
lowest rate R, such that there is an encoder-decoder pair which satisfies EY,Z

[
d̃(y, z)

]
≤

D. The optimization problem can be formulated as

RWZ(D) = min
p(z|y):EY,Z [d̃(y,z)]≤D

[
I(Y;Z)− I(Z; Z̃)

]
. (3.13)

Due to the Markov chain Z̃ → Y → Z this optimization problem can be rewritten as

RWZ(D) = min
p(z|y):EY,Z [d̃(y,z)]≤D

I(Y;Z|Z̃) (3.14)

which allows a nice interpretation. Basically, Wyner-Ziv coding tries to minimize the mu-
tual information between Y and Z given the statistics of Z̃. In other words, it tries to
maximize the compression given Z̃ while an average distortion shall not exceed a max-
imum distortion D. Hence, the compression can exploit that the decoder knows the
side-information Z̃, meaning that less information has to be compressed. This Wyner-Ziv
coding principle finds application, e.g., in areas like resource-constrained wireless multi-
media sensor networks [Xio+10] or in video compression systems [AZG02].

3.3 Remote Sensing (Noisy Source Coding)

Remote sensing (RS) or noisy source coding mainly describes the rate-distortion theory
for a setup with additional noise, also named as indirect rate-distortion problem [DT62;
Sak68; WZ70; Wit80; EG88]. The general remote sensing scenario is depicted in Figure
3.6. It consists of a remote measuring device, i.e., a sensor, trying to observe a physical
quantity x and forwarding it to a distant receiver. The measurement process can be
modeled as a memoryless channel (MC) described by the transition probabilities p(y|x).
As a very simple example, the measurement process could be modeled as AWGN, where
the physical quantity x is corrupted by normally distributed noise w from various sources.
Therefore, the sensor can only observe noisy versions y of the signal of interest x, such
that y = x + w with w denoting the measurement noise. This also motivates the name
noisy source coding. The sensor has to compress its measurements y in order to not exceed
a maximum compression rate R to be able to forward them over a link with capacity C,
i.e., R ≤ C.
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Again, the encoder in Figure 3.6 can be realized as a quantizer with a mapping p(z|y)
and a further binary encoding with a rate-matching step. In contrast to the original
rate-distortion theory, the distortion d̃(x, z) is now measured between x and z. However,
the compression is still measured between y and z. The optimization problem for the
rate-distortion function RRS(D) and the distortion-rate function DRS(R) to optimize the
quantizer mapping p(z|y) becomes

RRS(D) = min
p(z|y):EX ,Z [d̃(x,z)]≤D

I(Y;Z)⇔ DRS(R) = min
p(z|y): I(Y;Z)≤R

EX ,Z

[
d̃(x, z)

]
.

(3.15)

The following derivations will focus on the DRS(R) function only. Using the method of
Lagrangian multipliers, the above equation can be rewritten as

LRS [p(z|y)] = EX ,Z

[
d̃(x, z)

]
+ βI(Y;Z), (3.16)

which has to be minimized. The solution becomes [Ber71]

p(z|y) = p(z) · e−
1
β
·
∑

x p(x|y)·d̃(x,z)∑
z p(z) · e

− 1
β
·
∑

x p(x|y)·d̃(x,z)
. (3.17)

A comparison of the update equation in (3.17) with the one in (3.10) illuminates the
similarity of both expressions. The main difference comes from the conditional expectation
of the distance measure with respect to the relevant signal, which can be interpreted as
the conditional mean

d(y, z)=̂ EX|y

[
d̃(x, z)

]
=

∑
x

p(x|y) · d̃(x, z) . (3.18)

In order to solve the above equation, the iterative Blahut-Arimoto algorithm [Ari72; Bla72]
can be applied using the slightly different average distance measure d(y, z). Again, if d(y, z)
is independent of p(z|y), the optimization problem is convex, and the Blahut-Arimoto
algorithm finds the global optimum. Otherwise, it converges to a local optimum.

3.4 The Information Bottleneck Method

The IB method is a clustering framework pairing concepts from machine learning and
information theory first introduced by Tishby et al. [TPB99; Slo02; GNT03]. Generally
speaking, it is a special case of the remote sensing problem, which also tries to find
a trade-off between a compression rate and an average distortion. The connection to
the rate-distortion problem is analyzed in [HT07] considering various different distortion
measures and their properties. They showed that the IB method is a rate-distortion
problem where the Kullback-Leibler divergence is used as a distortion measure. The IB
framework finds application in various different fields like pattern recognition, e.g., for
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document clustering [ST00], the controversial analysis of neural networks [TZ15; Sax+19],
in neuroscience [Sch+01] or in communications, which will be the main focus here.
In particular, a rich set of IB applications can be found using mutual-information-based
signal processing [Bau+18]. This is a framework that tries to replace conventional arith-
metical operations using lookup tables designed by means of the IB method. This can
decrease the computational complexity and memory requirements, which makes it very
interesting for mobile and low-energy devices. Examples are the analog-to-digital conver-
sion for channels with memory in [Zei10] or the design [Lew+18] and decoding of regular
low density parity check (LDPC) codes using IB-optimized lookup tables [LB15; LSB16b;
LSB17; LB18; Sta+19; Sta+20a; Sta+20b]. This approach has been extended to irregular
LDPC codes in [SLB18b; SLB18a]. Since lookup tables can be quite large and occupy
a significant chip area, the authors introduced a strategy to represent these lookup ta-
bles in a more efficient way using neural networks in [SLB20]. Other applications deal
with channel estimation [Lew+17; KK17a], compressed sensing detectors [FK19] and polar
codes [SSB18; SSB19]. In [MSK22], the authors utilize the IB principle to approximate
the computation of intermediate quantities within the fast Fourier transform (FFT) for
orthogonal frequency division multiplexing (OFDM) systems. In this way, the FFT relies
only on quantization indices of IB-optimized lookup tables. The IB framework has been
extended to distributed clustering of a common relevant mutual information as well. In
[Zei12], cooperative Quantize-and-Forward relaying schemes have been optimized using
the IB method. Furthermore, the IB method has been applied in the design of quantiz-
ers for compress and forward relay networks [KK17c; KK17b]. An alternating algorithm
based on the IB framework was introduced in [CK16a; CK16b] to deal with individual rate
constraints in cloud radio access networks. This alternating approach has been adapted
for distributed sensor networks in [SK19]. However, it turns out that the solution only fo-
cuses on the individual rate constraints of each sensor and does not fulfill the corresponding
sum-rates. Furthermore, distributed sensor networks with imperfect forward links have
been optimized in [Win14; WMB13; Has+20]. The IB approach has recently been applied
in order to define a semantic communication system design in [BBD22]. There, the au-
thors modeled the semantic aspect as a hidden random variable and applied a data-driven
approach with neural networks to design the encoder. This encoder shall maximize the
mutual information between the semantic random variable and a received signal vector.
In the literature, there exist several algorithms to solve the IB optimization problem
[TPB99; Slo02; ST99], the iterative IB algorithm, the sequential IB algorithm, an ag-
glomerative IB algorithm, a deterministic annealing-like algorithm, the double maxima
algorithm [MA16] or the KL-means algorithm [Kur17], just to mention some examples.
The underlying mathematical theory of a deterministic annealing-like algorithm has been
intensively studied in [GPD12]. In [Kur17], the author shows that the iterative IB and
the KL-means algorithm are algorithmically equivalent for the special case when the fo-
cus solely lies on preserving relevant information. In [HWD18c], the equivalence of the
double maxima and the KL-means algorithm is proved for the case of perfect forward
channels, i.e., no residual error probabilities. A further but different deterministic IB
algorithm has been introduced in [SS17]. By introducing a second ”trade-off” parame-
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ter α, the authors ensured the optimized mapping to be deterministic. An overview of
these algorithms is given in [HWD17] while their asymptotic performance is compared in
[Has+17]. In [Che+03], the authors introduced an IB approach for the case where the
relevant signal and the observation are jointly multivariate Gaussian distributed. They
derived an analytical algorithm to reduce the dimensions of the observations by means of
the IB framework resulting in continuous Gaussian distributed compression variables. A
parametric version of the iterative IB algorithm has been introduced in [SLB19] requiring
the relevant signal to be a Gaussian mixture as well as p(y|x) to be Gaussian distributed.
Note that the compressed variable, in this case, is discrete, compared to [Che+03]. The
parametric IB approach can reduce the computational complexity since the KL divergence
can be calculated analytically. In [HWD18b], the author utilizes the graph-based affinity
propagation algorithm [FD07] to apply an information bottleneck clustering approach and
compared corresponding results to the KL-means algorithm. They showed that the affinity
propagation algorithm is an efficient way to do the clustering and is competitive to exist-
ing approaches. A multivariate extension of the IB approach is given in [Slo02; SFT06].
This approach has been adapted in [HWD19] to develop a novel design framework for the
multivariate IB variant in order to find a trade-off between a relevant mutual information
and compression sum-rate.
In [Ale+16], the authors introduce a variational approximation of the information bottle-
neck method, allowing them to parameterize the IB model using a neural network. This
variational IB approach has been applied for unsupervised clustering in [UAZ20b]. An
overview on the general IB method, including the variational approximation, is given in
[ZES20]. In addition, this tutorial paper considers some useful connections to general
coding problems, like remote source coding, information combining, or common recon-
struction.

3.4.1 The Optimization Problem

In principle, the general IB setup is a special case of the remote sensing setup as depicted
in Figure 3.6. A sensor tries to measure the relevant signal x. Its noisy observation y

needs to be compressed, e.g., to forward it over capacity-limited links, while preserving
as much information as possible about the original signal x. In the context of random
processes, this problem can also be formulated as follows: Given a random variable X ,
its noisy observation Y and the compressed version Z forming a Markov chain X →
Y → Z, the IB method aims to optimize the compression or quantization described
by the mapping p(z|y). The optimization problem can be defined as minimizing the
compression rate I(Y;Z) while the relevant mutual information I(X ;Z) ≥ D̃ does not
fall below a certain average distortion D̃. Equivalently, it can be described as maximizing
the relevant mutual information I(X ;Z) such that the compression rate I(Y;Z) ≤ R does
not exceed a predefined rate R, e.g., to not exceed a subsequent link capacity C. This
holds since p(x̂n|x) and p(zn|x) are identical for ϵ-typical sequences. The maximization
or minimization is done with respect to the mapping p(z|y). Naturally, |Z| < |Y| holds
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because Z is a compressed version of Y. Formally, the optimization problem for the
RIB(D̃) and the D̃IB(R) can be stated as

RIB(D̃) = min
p(z|y):I(X ;Z)≥D̃

I(Y;Z)⇔ D̃IB(R) = max
p(z|y): I(Y;Z)≤R

I(X ;Z). (3.19)

The following derivations will focus on the D̃IB(R) function only. According to [Slo02],
the optimization problem can be formulated using the method of Lagrangian multipliers

LIB[p(z|y)] = max
p(z|y)

I(X ;Z)− βI(Y;Z). (3.20)

Similar to the general rate-distortion theory, the Lagrange multiplier β in (3.20) can be
interpreted as a trade-off parameter between preserving relevant information and compres-
sion. In the extreme case where β = 0, the focus solely lies on maximizing the relevant
mutual information I(X ;Z). In [Zei12], the author shows that, in this case, the optimiza-
tion is a convex maximization problem that has an optimal solution that is deterministic.
In the other extreme case for β → ∞, the focus lies on compression only. In this case,
all elements of y will be mapped on the same output cluster z. For the general case, due
to I(X ;Z) = H(X )−H(X|Z) and the fact, that H(X ) does not depend on the mapping
p(z|y), (3.20) can be reformulated as

LIB[p(z|y)] = min
p(z|y)

H(X|Z) + βI(Y;Z) (3.21)

allowing the direct comparison of remote sensing in (3.16) and the IB method in (3.21). It
reveals that the IB method is a special formulation of the remote sensing problem. Since
H(X|Z) = EX ,Z [− log p(x|z)] it becomes obvious that the IB method is equivalent to
remote sensing using the logarithmic loss function d̃(x, z) = − log p(x|z) as a distortion
measure. In this case, distortion minimization means maximization of the relevant mutual
information I(X ;Z). It has to be mentioned that since the distortion d̃(x, z) = − log p(x|z)
is a function of the mapping p(z|y), the IB optimization problem is a non-convex opti-
mization problem. In particular, it is neither convex nor concave [KY14].

3.4.2 Iterative Information Bottleneck Algorithm

The iterative IB algorithm is a standard approach to solve the previously defined IB
problem and has been introduced in [Slo02]. The optimization problem in (3.20) can be
solved by equating the derivative of the functional LIB[p(z|y)] with respect to the mapping
p(z|y) to zero. Rearranging the resulting equation in order to have an expression for the
desired mapping delivers the implicit update rule

p(z|y) = p(z) · e−
1
β
·d(y,z)∑

z p(z) · e
− 1

β
·d(y,z)

(3.22)
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Figure 3.7: Illustration of the IB optimization problem over three convex sets applying
the iterative IB algorithm [Slo02]

with d(y, z) representing a statistical distance obtained by choosing the logarithmic loss
distortion measure d̃(x, z) = − log p(x|z)

d(y, z) = EX|y

[
log 1

p(x|z)

]
= EX|y

[
log p(x|y)

p(x|z)

]
+ EX|y

[
log 1

p(x|y)

]
(3.23)

= DKL [p(x|y)∥p(x|z)] + const . (3.24)

Since the second term in (3.23) does not depend on the mapping p(z|y), it becomes a
constant term in (3.24) and can be incorporated into the Lagrange multiplier of the update
equation (3.22). Therefore, for the statistical distance d(y, z), only the KL divergence
remains.

d(y, z) := DKL [p(x|y)∥p(x|z)] (3.25)

This KL divergence can be interpreted as the information loss about X by representing
the relevant information X by Z instead of Y. It has to be emphasised that (3.22)
is an implicit solution for the mapping p(z|y) since p(x|z) =

∑
y

1
p(z)p(z|y)p(y, x) with

p(z) =
∑

y p(z|y)p(y) also depends on the desired mapping. It can be observed that
the IB approach is solely based on probability distributions. Therefore, z ∈ Z is just a
cluster index, i.e., a categorical variable on a nominal scale, and needs not to be a physical
representation of x or y. This allows the application of the IB method in non-technical
areas where physical representatives are not available or not meaningful, e.g., in text
clustering applications.
The implicit equation in (3.22) can be solved by an iterative approach based on the pre-
viously described Blahut-Arimoto algorithm in Section 3.1.2. The trick is to sequentially
update p(z|y), p(z), and p(x|z) while treating them as independent of each other. If β > 0,
the resulting quantizer mapping is stochastic in general, i.e., p(z|y) ∈ [0, 1]. However, for
the special case of β = 0, the iterative IB algorithm returns a deterministic mapping,
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Algorithm 1: Stochastic Iterative IB algorithm [Slo02]
input : p(x, y), pinit(z|y), β > 0, ϵ
output : p(z|y) ∈ [0, 1]

1 begin
initialization:

p(z|y)(0) ← pinit(z|y),
l← 1

2 p(x) =
∑

y p(x, y)

3 p(y) =
∑

x p(x, y)
4 p(x|y) = p(x, y)/p(y)

5 do
6 // calculate statistical distance d(y, z) (3.25)
7 p(z)(l) =

∑
y p(z|y)(l−1)p(y)

8 p(x|z)(l) = 1
p(z)(l)

∑
y p(z|y)(l−1)p(x, y)

9 DKL(y, z)(l) =
∑

x p(x|y) log p(x|y)
p(x|z)(l)

10 d(y, z)(l) = β−1DKL(y, z)(l) − log p(z)(l)
11 // update quantizer

12 p(z|y)(l) = e−d(y,z)(l)∑
z p(z)

(l)e−d(y,z)(l)

13 l← l + 1

14 while DΠ
JS[ p

(l)(z|y) || p(l−1)(z|y) ] > ϵ

i.e., p(z|y) ∈ {0, 1}. This is very convenient from an implementation point of view since
a deterministic mapping p(z|y) can be implemented by simple lookup tables. It has to
be mentioned that the implementation of the iterative IB algorithm assumes Y to be a
discrete random variable. Hence, it generally requires a previous discretization of y with
an appropriately large resolution.
Figure 3.7 illustrates the IB optimization over three convex sets using the iterative IB
algorithm. In each step, two convex sets are kept fixed while optimizing the third one,
such that the overall IB functional of (3.20) is minimized.
For the stochastic case, when β > 0, the complete iterative IB algorithm is given in Algo-
rithm 1. For a specific β, an input distribution p(x, y) and an initial mapping pinit(z|y),
the quantizer mapping p(z|y) is iteratively updated until a specific convergence criterion is
fulfilled. First, the statistical distance measure (3.25) is calculated, which is then used to
update the quantizer mapping. The JS divergence with weights of Π = {0.5, 0.5} between
successive quantizer mappings can be used as a convergence criterion. If this is smaller
than or equal to a predefined accuracy ϵ, the algorithm stops and returns the optimized
quantizer mapping p(z|y).
For the deterministic case, when β = 0, the sum in the denominator of the update equation
(3.22) is dominated by the smallest KL divergence. Hence, for each sample y, the mapping
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Algorithm 2: Deterministic Iterative IB algorithm
input : p(x, y), pinit(z|y), ϵ
output : p(z|y) ∈ {0, 1}

1 begin
initialization:

p(z|y)(0) ← pinit(z|y),
l← 1

2 p(x) =
∑

y p(x, y)

3 p(y) =
∑

x p(x, y)
4 p(x|y) = p(x, y)/p(y)

5 do
6 // calculate KL Divergence DKL(y, z) (3.25)
7 p(z)(l) =

∑
y p(z|y)(l−1)p(y)

8 p(x|z)(l) = 1
p(z)(l)

∑
y p(z|y)(l−1)p(x, y)

9 DKL(y, z)(l) =
∑

x p(x|y) log p(x|y)
p(x|z)(l)

10 // find minimum of DKL(y, z) for all samples yi ∈ Y
11 for yi ∈ Y do
12 z∗(yi)

(l) = arg min
z

DKL(y, z)(l)

13 // update quantizer for specific yi
14 p(z∗(yi)

(l)|yi)(l) = 1

15 l← l + 1

16 while DJS[ p
(l)(z|y) || p(l−1)(z|y) ] > ϵ

p(z|y) tends to zero for all z except for the one with the smallest KL divergence. Only
this value tends to one, leading to

z∗(y) = arg min
z

DKL [p(x|y)∥p(x|z)] , (3.26)

and the update equation

p(z|y) =

1 for z(y) = z∗(y)

0 else.
(3.27)

Since in the deterministic case, the focus solely lies on preserving relevant information and
β = 0 has a fixed value, the compression is defined by choosing an appropriate cardinality
|Z|. The deterministic iterative IB algorithm is given in Algorithm 2. The difference to
the stochastic case lies in the update procedure of the mapping p(z|y), which only requires
the minimum search.
The IB framework is often analyzed using the relevance-compression plane. Here, the com-
pression rate I(Y;Z) is depicted versus the relevant mutual information I(X ;Z) showing
how much distortion is introduced for a specific compression. Figure 3.8 depicts this
relevance-compression plane after optimizing the quantizer mapping p(z|y) using the it-
erative IB algorithm. For different cardinalities |Z| and a 4-ASK relevant signal with
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Figure 3.8: Relevance-Compression plane using the iterative IB algorithm for different
cardinalities |Z|, |X| = 4, |Y| = 256, SNR γ = 6 dB

|X| = 4, the Lagrange multiplier has been adapted in order to obtain different relevance-
compression curves. By decreasing β, the trade-off focuses more on the preservation of
relevant information, leading to higher relevant mutual information and higher compres-
sion rates, i.e., less compression. The most upper point of each curve is obtained by
choosing β = 0. The curves saturate on different relevant mutual information due to the
limited cardinality |Z|. Naturally, lower cardinalities saturate earlier.
Figure 3.9 shows a comparison of the stochastic and deterministic iterative IB algorithm.
The solid curve represents the stochastic case, achieved by using the iterative IB algo-
rithm for varying values of β with a fixed output cardinality of |Z| = 16. The square
marks represent the results achieved with the deterministic iterative IB algorithm using
β = 0. The different points result from varying the number of output clusters |Z| from
1 to 8. Both algorithms are performed for ASK relevant signals with different cardinal-
ities and different SNRs γ. In general, the performance of the stochastic iterative IB is
slightly superior to the deterministic iterative IB. This confirms the statement of [Slo02]
that stochastic mappings usually perform better since the global optimum is stochastic in
general. However, the difference becomes smaller when the optimization point lies in the
area where the curve saturates. Finally, it can be observed that the deterministic itera-
tive IB algorithm produces approximately equally distributed output clusters, at least for
lower SNRs or higher relevant signal cardinalities. This can be confirmed by looking at
the compression rates I(Y;Z) = H(Z). It has to be mentioned that both algorithms only
obtain local optima, and therefore each solution depends on the initial mapping.

Measurement SNR Mismatch: The last simulation revealed that the IB method
maximizes the relevant mutual information I(X ;Z) while still maintaining a desired com-
pression rate I(Y;Z). However, the question arises of how robust this approach is against
measurement SNR mismatches, as the signal-to-noise ratio γ might not be known in ad-
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Figure 3.9: Relevance-Compression plane comparing stochastic iterative IB and the de-
terministic iterative IB algorithm for different |X|, |Y| = 512 and SNR γ={6,15} dB

vance or does change over time. Therefore, this paragraph considers the case where the
optimization SNR does not match the actual application SNR. To be more specific, given
a fixed application measurement signal-to-noise ratio γapp with a corresponding channel
likelihood p(y|x), a quantizer p̃(z|y) optimized for a different SNR γopt with p̃(y|x) is
applied. The resulting relevant mutual information is given as

Ĩ(X ;Z) = EX ,Z

[
log2

p̃(z|x)
p̃(z)

]
(3.28)

while the resulting compression rate is given as

Ĩ(Y;Z) = EY,Z

[
log2

p̃(z|y)
p̃(z)

]
. (3.29)

Note that the required pmfs can be obtained by

p̃(z, x) =
∑
y

p̃(z|y)p(y|x)p(x) (3.30)

and

p̃(z) =
∑
x

p̃(z, x) . (3.31)
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Figure 3.10: Relevant mutual information in the case of measurement SNR mismatch
using the IB method with |X| = 4, |Y| = 512 and |Z| = 4

Figure 3.10 illustrates four scenarios, each for a different rate constraint C. These rate
constraints are chosen to match different levels of compression in order to forward the
information of a 4-ASK relevant signal to the receiver. Hence, C = 0.5 bit/s/Hz represents
a strict rate constraint requiring a strong compression, while C = 2.0 bit/s/Hz is a loose
rate constraint. The overall relevant mutual information Ĩ(X ;Z) is depicted versus the
optimization SNR γopt for different application SNRs γapp. Naturally, in all plots, the
overall relevant mutual information Ĩ(X ;Z) is larger for a larger application SNR γapp.
The general expectation is that the maximum of each curve occurs at γopt = γapp. In
the case of a rate constraint of C = 2.0 bit/s/Hz, it can be observed that a measurement
channel mismatch has not a big impact. Here, the overall relevant mutual information has
a large plateau where the mismatch does not decrease the performance. Therefore, for
larger target rates or even no rate constraints, the measurement channel mismatch is not a
problem. For C = 1.5 bit/s/Hz, there still exists a large plateau in which the mismatch has
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Figure 3.11: Compression rate in the case of measurement SNR mismatch using the IB
method with |X| = 4, |Y| = 512 and |Z| = 4

no influence. However, the influence of a measurement channel mismatch slightly increases,
especially for larger application SNRs. Here, it can be observed that the maximum lies
on the optimization point, while a mismatch can lead to a slight performance loss in
relevant mutual information Ĩ(X ;Z). This effect increases for stricter rate constraints. For
C = 1.0 bit/s/Hz, the maximum still lies very close to the optimization point. However, the
plateau observed for larger rate constraints is no longer apparent. Here, the measurement
channel mismatch has a much higher impact on the overall performance. If the channel
capacity is very low, i.e., C = 0.5 bit/s/Hz, it can be observed that for γapp = {1, 3, 5} dB,
the maxima no longer match the optimization point.
To understand this behavior, the compression rates have to be analyzed as well. The
measurement channel mismatch can also lead to exceeding the required compression rate.
Therefore, Figure 3.11 illustrates the compression rate Ĩ(Y;Z) for the same setups as
in Figure 3.10. The black dashed lines represent the capacity bound C. Starting with
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C = 2.0 bit/s/Hz, it becomes obvious that, in this case, no real problem occurs regard-
ing the compression rates Ĩ(Y;Z). Here, the capacity C = 2.0 bit/s/Hz is fulfilled for
all simulated application SNRs. This confirms the observations from Figure 3.10 that
measurement SNR mismatch has a low impact on larger channel capacities. For all other
depicted capacities C = {0.5, 1.0, 1.5} bit/s/Hz, the measurement SNR mismatch signifi-
cantly affects the compression rates. The case where Ĩ(Y;Z) falls below the capacity C

is uncritical. However, this does not hold if the resulting compression rate is larger than
the capacity Ĩ(Y;Z) > C since the rate constraint is violated. This effect seems to occur
mainly for low application SNRs γapp when the optimization has been performed for a
larger optimization SNR γopt. If the optimization SNR γopt is better than the application
SNR γapp the true channel likelihood p(y|x) is broader than p̃(y|x) leading to an increase
in compression rate Ĩ(Y;Z). This overshoot of Ĩ(Y;Z) over the capacity C might be the
reason why the maximum in Figure 3.10 is not exactly on the optimization point γopt.
In conclusion, it can be stated that for loose rate constraints, the measurement SNR mis-
match has not a big impact. However, for stricter rate constraints, when the measurements
have to be stronger compressed, the impact increases, leading to possible losses when ap-
plying a quantizer for a wrong SNR. Moreover, measurement SNR mismatch can result in
exceeding the channel capacity C, making reliable communication impossible. Therefore,
for lower target capacities C, it becomes more important to match the optimization SNR.
Hence, if the application SNR is unknown during the optimization or changes significantly
over time, the above simulations suggest two possible strategies to deal with possible mis-
matches. First, a compression rate back-off could be considered during the optimization.
In this case, the optimization has to be performed for a lower rate constraint than the
actual capacity C, such that the overshoot does not violate this rate constraint. However,
it might be hard to define the required back-off in advance. A second approach is to opti-
mize for a low SNR. In this case, it is very likely that even if the measurement channel has
a significant mismatch, the compression rate is still lower than the rate constraint C. It
has to be mentioned that both approaches result in a loss of relevant mutual information.

3.5 Channel-Aware Information Bottleneck Approach

The original IB approach assumes error-free transmission over a rate-limited forward chan-
nel using a capacity-achieving coding scheme. In practical approaches, there always re-
main residual errors due to finite-length codes. Consequently, the quantizers designed
with the previously described algorithms might no longer be optimal in practical systems.
In [Win14; WMB13] the author proposed the Channel Aware Information Bottleneck
(CAIB) algorithm, i.e., an IB based algorithm, which takes into account the residual error
probabilities modeled as a DMC. This setup can be considered as a special case of the
remote sensing setup and can be modeled as depicted in Figure 3.12. The CAIB algorithm
has been investigated for vector compression in [Has+20] and compared to other IB al-
gorithms in [HWD17; Has+17]. The graph-based affinity propagation algorithm already
applied for the original IB setup in [HWD18b] has been extended for the channel-aware
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Figure 3.12: Schematic illustration of the CAIB setup modelling residual error probabilities
as a DMC

case in [HWD18a]. In [MWD19], the authors applied this CAIB for a single user C-RAN
system.
As mentioned above, the residual error probabilities can be modeled as a DMC with a
specific transition probability p(z̃|z). Within this thesis, it is assumed that the number
of inputs and outputs of the DMC is identical, i.e., |Z| = |Z̃|. Since we do not assume an
error-free transmission, the impact of the channel has to be taken into account. Hence, the
relevant mutual information can be defined as I(X ; Z̃). With a given statistic of the DMC,
the compression rate is specified implicitly. Therefore, the focus solely lies on maximizing
the relevant mutual information leading to the optimization problem

p(z|y)∗ = arg max
p(z|y)

I(X ; Z̃) . (3.32)

In [Win14], the author showed that since (3.32) is a convex maximization problem with
respect to the mapping p(z|y), the optimal mapping is deterministic, i.e., p(z|y)∗ ∈ {0, 1}.
Following the derivations in [Win14], with I(X ; Z̃) = I(X ;Y) − I(X ;Y|Z̃) and the fact
that I(X ;Y) is independent of the mapping p(z|y), the optimization problem in (3.32) can
be reformulated to

p(z|y)∗ = arg min
p(z|y)

I(X ;Y|Z̃) . (3.33)

Note, that I(X ;Y|Z̃) is minimized if Z̃ contains information about Y and therefore also
about X . This confirms that (3.32) and (3.33) are equivalent regarding the optimization
of p(z|y). Using the definition of the KL divergence, the mutual information in (3.33) can
be decomposed to

I(X ;Y|Z̃) =
∑
y

p(y)
∑
z

p(z|y)
∑
z̃

p(z̃|z)DKL [p(x|y)∥p(x|z̃)]︸ ︷︷ ︸
C(y,z)

=
∑
y

p(y)
∑
z

p(z|y)C(y, z) (3.34)
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Algorithm 3: Channel-Aware IB algorithm [Win14]
input : p(x, y), p(z̃|z), pinit(z|y), β, ϵ
output : p(z|y) ∈ {0, 1}

1 begin
initialization:

p(z|y)(0) ← pinit(z|y),
l← 1

2 p(x|y) = p(x, y)/
∑

x p(y)
3 do
4 // calculate KL Divergence DKL(y, z)

5 p(x, y, z̃)(l) =
∑

z p(z̃|z)p(z|y)(l−1)p(x, y)

6 p(x|z̃)(l) =
∑

y p(x, y, z̃)
(l)/

∑
y,x p(x, y, z̃)

(l)

7 DKL(y, z)(l) =
∑

x p(x|y) log p(x|y)
p(x|z̃)(l)

8 // calculate C(y, z) and find cluster
9 C(y, z)(l) =

∑
z̃ p(z̃|z)DKL(y, z)(l)

10 for yi ∈ Y do
11 z∗(yi)

(l) = arg min
z

C(yi, z)
(l)

12 // update quantizer for specific yi
13 p(z∗(yi)

(l)|yi)(l) = 1

14 l← l + 1

15 while DΠ
JS[ p

(l)(z|y) || p(l−1)(z|y) ] > ϵ

Due to the non-negativity of the KL divergence, the mutual information I(X ; Z̃) is mini-
mized by minimizing the function C(y, z) for each value y ∈ Y. Thus, the optimal cluster
z∗ for a specific y can be determined by

z∗(y) = arg min
z

C(y, z) ∀y ∈ Y. (3.35)

A pseudo-code of the CAIB algorithm is given in Algorithm 3.
Figure 3.13 illustrates the performance of the CAIB algorithm. It depicts the relevant
mutual information I(X ; Z̃) for different measurement signal-to-noise ratios γ. The DMC
is modeled as a symmetric matrix |Z|×|Z̃| with |Z| = |Z̃|, defined by a reliability parameter
ϵ. For each symbol, the probability of a correct transmission is given as 1− ϵ, whereas all
other transitions have the probability ϵ

N−1 . The relevant signal is chosen to be a 4-ASK
signal, while other cardinalities are chosen to |Y| = 64 and |Z| = 8. As an initial mapping,
a maximum output entropy quantizer is applied.
The gray-shaded area represents the non-achievable region, since I(X ;Y) ≥ I(X ; Z̃) due
to the data processing inequality. The dashed-dotted line represents the performance for
a perfect transmission channel. Here, the original IB with β = 0 has been performed
without residual error probabilities modeled by a DMC. The solid and dashed lines show
the performance of the CAIB and the original IB for a DMC with a specific ϵ. It becomes
obvious that a forward channel with a higher average error probability results in a lower
overall performance, independent of the measurement SNR. However, the performance of
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Figure 3.13: Relevant mutual information I(X ; Z̃) for different measurement signal-to-
noise ratios and an artificially modeled DMC comparing the Channel-Aware Information
Bottleneck to the original IB approach; |X| = 4, |Y| = 64, |Z| = 8

the CAIB is superior to the performance of the original IB algorithm, especially for DMCs
with larger ϵ corresponding to larger average error probabilities.
Figure 3.14 illustrates the result for the same simulation but with a different model for
the DMC. The |Z| = 8 output clusters are directly mapped on 8-ASK symbols such that
neighboring cluster correspond to neighboring symbols. The 8-ASK symbols are assumed
to be equally probable, resulting in decision boundaries for a hard decision centered in
the middle between adjacent symbols. The forward channel assumes to be an AWGN
channel with a specific SNR γFC. This SNR is chosen such that it results in the same
DMC capacity as for the previous simulation with the DMC modeled by the reliability
parameter ϵ. It can be observed that the gap between the CAIB approach and the original
IB approach is slightly smaller than for the previous setup. In addition, the overall loss
introduced by the DMC is smaller than in Figure 3.13. This can be explained by the
different error probabilities given in the DMC matrix p(z̃|z). In Figure 3.14, neighboring
symbols are mixed up more likely, while others are not. This causes a minor information
loss compared to the artificial DMC of Figure 3.13.

Measurement Channel Mismatch: Similar to the original IB case, the question arises
of how robust the CAIB algorithm performs when measurement SNR assumptions do not
hold. Therefore, the same analysis as in Figure 3.10 is performed, but for the CAIB
algorithm. In particular, given a fixed application measurement SNR γapp with p(y|x), a
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Figure 3.14: Relevant mutual information I(X ; Z̃) for different measurement signal-to-
noise ratios and an AWGN modeled DMC comparing the Channel-Aware Information
Bottleneck to the original IB approach; |X| = 4, |Y| = 64, |Z| = 8

quantizer p̃(z|y) optimized for a different SNR γopt with p̃(y|x) is applied. In this case,
the resulting relevant mutual information can be determined by

Ĩ(X ; Z̃) = EX ,Z̃

[
log2

p̃(z̃|x)
p̃(z̃)

]
(3.36)

with

p̃(z̃, x) =
∑
y

∑
z

p(z̃|z)p̃(z|y)p(y|x)p(x) (3.37)

and

p̃(z̃) =
∑
x

p̃(z̃, x) . (3.38)

Figure 3.15 illustrates the relevant mutual information Ĩ(X ; Z̃) versus the optimization
SNR γopt for different application SNRs and different forward channels. Similar to Fig-
ure 3.14, the forward channel is described by a specific SNR γFC. Note that γFC → ∞
corresponds to a perfect forward channel with p̄e = 0, i.e., it does not introduce any
errors. In this case, the main difference to Figure 3.10 is that the CAIB algorithm per-
forms a deterministic mapping, and no rate constraint defined by a capacity C has to
be matched. Hence, it performs a deterministic iterative IB algorithm with β = 0. It
can be observed that for γFC →∞, the CAIB algorithm is quite robust against measure-
ment channel mismatches. For most application SNRs, the relevant mutual information is
nearly constant over a wide range. When introducing an erroneous forward channel with
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Figure 3.15: Measurement channel mismatch applying the CAIB algorithm with |X| = 4,
|Y| = 512, |Z| = 8

γFC = {15.85, 11.55, 7.81} dB, it can be observed that the relevant mutual information
Ĩ(X ; Z̃) is still constant over a wide range. However, for γFC = 15.85 dB and an appli-
cation SNR of γapp = 9 dB, the loss introduced by a low optimization SNR is increased
compared to the error-free case. By increasing the average error probability, i.e., reducing
the capacity of the DMC, in the two lower plots, this effect seems to be reduced. However,
this might be caused by the lower overall relevant information. Hence, the loss is not as
pronounced as for higher overall relevant information. In conclusion, it can be stated that
the CAIB is quite robust against measurement channel mismatch. Only for the case of
γopt << γapp a loss is introduced. This can be explained by the narrow application pmf
p(y|x) being represented by only a few clusters since the optimization has been performed
for a much broader pmf.
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Ĩ
(X

;Z̃
)

γFC
app = 0 dB γFC

app = 5 dB γFC
app = 10 dB γFC

app = 15 dB γFC
app = 20 dB

6 8 10 12 14

0.5

1

1.5

γ = 12 dB

6 8 10 12 14

0.4

0.6

0.8

1

1.2

γ = 8 dB

γFC
opt

Ĩ
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Figure 3.16: Forward channel mismatch applying the CAIB algorithm with |X| = 4,
|Y| = 512, |Z| = 8

Forward Channel Mismatch: In the case of the CAIB algorithm, not only the mea-
surement mismatch is of interest, but also a mismatch of the forward channel p(z̃|z).
Similar to Figure 3.14, the forward channel is defined by a specific SNR γFC. A quan-
tizer p̃(z|y) optimized for a specific optimization SNR γFC

opt defining p̃(z̃|z) is applied for a
different application SNR γFC

app defining p(z̃|z). The relevant mutual information can be
determined as before.
Figure 3.16 illustrates the relevant mutual information Ĩ(X ; Z̃) versus the optimization
SNR γFC

opt for different application SNRs γFC
app. The different plots correspond to different

measurement SNRs γ = {15, 12, 8, 5} dB. It can be observed that for a large measurement
SNR, the forward channel mismatch has a very low influence. Here, the relevant mutual
information is nearly constant over a wide range of γFC

opt. When reducing the measurement
SNR, the influence of the mismatch increases. It can be observed that the maximum is
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Figure 3.17: System model for the non-cooperative remote sensing problem

always located on the point where the optimization SNR matches the application SNR
γFC

opt = γFC
app.

3.6 Distributed Remote Sensing

3.6.1 Non-Cooperative Remote Sensing - The CEO Problem

System Model: The scalar remote sensing problem can be extended to the distributed
case, as depicted in Figure 3.17. Here, M distributed sensors measure noisy versions of
the same signal x generated by the process of interest X , in the following referred to
as the relevant signal. It has to be mentioned that the communication among sensors
is not possible in this system model defining the non-cooperative remote sensing. Since
the sensors are independent of each other, the sensing process can be described by M

statistically independent MCs. A very simple example of this abstract sensing process is
that zero-mean additive white Gaussian measurement noise disturbs the measurements
ym = x + wm. In this case p(ym|x) would be defined by the measurement SNR given by
γm = σ2

x
σ2
wm

, with σ2
x, σ2

wm
denoting signal and noise variances, respectively. Equivalent to

the scalar case, each sensor has to compress its measurements ym in order to be able to
forward them without any further loss over individual capacity-limited links to a common
receiver. These links to the common receiver are referred to as forward links. The encoding
process contains a scalar quantization defined by the mapping p(zm|ym) and a subsequent
BERM step, depending on p(zm|ym) ∈ {0, 1} being deterministic or p(zm|ym) ∈ [0, 1] being
stochastic. Therefore, the actual index, which is transmitted to the common receiver, is
a compressed version of zm. The system model, given in Figure 3.17 with a specific
encoder from Figure 3.18, forms the Markov property illustrated in Figure 3.19. It becomes
obvious, that given X all variables in Z and Y are conditionally independent such that

p(z, y, x) = p(x)
M∏

m=1

p(zm|ym)p(ym|x) (3.39)
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Figure 3.19: Illustration of the Markov property of the CEO system model

holds. Finding the rate region for this non-cooperative distributed sensing scenario is
generally known as the CEO problem.

The CEO Problem: The CEO problem was originally proposed by T. Berger et al. in
[BZV96]. Here, different so-called agents observe the same process of interest. Note that
each agent just has a limited view on this process, which is why their observations are only
independent subjective interpretations of it. The agents aim to forward their observations
to a central entity, the CEO. However, the CEO has limited resources and cannot process
all observations of each agent, which is why the agents have to compress their observations
in order to be as informative as possible about the process of interest. The CEO itself tries
to reconstruct the process of interest out of the compressed observations of all agents.
There exists a wide range of investigations concerning the CEO problem in the literature
of the last decades. It has been considered for different relevant signals and different dis-
tortion measures. For the general case, the CEO rate region is still unknown. The original
paper of T. Berger et al. [BZV96] investigated the error rate performance for a discrete
source with the Hamming distance as a distortion measure and exhibited an inevitable loss
due to non-cooperating sensors. In [EG18], for arbitrary distortion measures, a scaling law
on the sum-rate distortion function has been derived. Thus, in a network with M sensors,
the distortion scales with 1/M for analog transmission but only with 1/ log(M) for dig-
ital transmission. Moreover, many investigations exist for the quadratic Gaussian CEO
problem, considering jointly Gaussian signals and the MSE distortion measure [Ooh98;
VB97; Jun+04; PTR04; Ooh05; WTV08]. More precisely, in [Ooh98] Y. Oohama et al.
analytically derived an asymptotic version of the sum-rate distortion function when the
number of agents, also called encoders, goes to infinity. In [VB97], the authors investigated
the influence of cooperating and non-cooperating encoders on the distortion measure. It
turns out that the MSE distortion asymptotically decreases with the reciprocal sum-rate
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R for non-cooperating encoders. In contrast, it decays exponentially, i.e., with 2−2R for
cooperating encoders. The non-asymptotic case was first investigated in [Jun+04]. The
authors derived an upper bound on the sum-rate distortion function and showed that it
is tight when each encoder has the same measurement SNR. In [PTR04], [Ooh05] and
[WTV08] the authors characterized the complete rate region for the quadratic Gaussian
CEO problem.
A multivariate version of the Gaussian CEO problem has been investigated amongst others
in [UAZ18; UAZ20a; WC12; CW11; XW16]. In particular, the vector Gaussian CEO prob-
lem using a logarithmic loss distortion measure has been analyzed in [UAZ18; UAZ20a],
where the authors provide a complete characterization of the rate region for their sce-
nario. In [CW11] and [WC12] the authors derived an outer bound of the rate region for
the general vector Gaussian CEO problem and the general L-terminal vector Gaussian
CEO problem, respectively. Moreover, they showed that this outer bound matches with
the Berger-Tung inner bound in specific regions. In [XW16], the authors provide a com-
plete characterization of the rate region of the vector Gaussian CEO problem using a trace
distortion measure.
In addition, many investigations exist for the CEO problem with an arbitrary discrete
source distribution and the logarithmic loss distortion measure. In [CW14], Courtade
and Weissman completely characterize the rate region for this setup. However, they only
provide a theoretical definition of this rate region. More practical algorithmic solutions
have been proposed in [EZ18; UAZ17]. The authors introduced a Blahut-Arimoto-like
algorithm, which sequentially optimizes the mappings of the distributed devices. However,
in [EZ18], they focused on the sum-rate distortion measure only, which does not allow
individual rate adjustments. In [UAZ17], the authors proposed an algorithmic approach
to finding the complete rate region for the two encoder case. Here, they reduce the
complexity by splitting the original rate region into two simpler regions. These simpler
regions can be efficiently calculated and used to reconstruct the original one. The approach
of [EZ18] has been extended in [HWD20] to optimize a single user equipment (UE) C-
RAN system and deal with individual rate adjustments of the fronthaul links. A different
algorithmic approach has been proposed in [CK16a; CK16b]. Here, the authors considered
a C-RAN system with multiple UEs and developed an alternating approach to optimize the
quantizers of each radio access point (RAP) incorporating individual fronthaul capacities.
Therefore, they introduced an alternating information bottleneck algorithm combined with
an alternating bi-section search. A data-driven approach to solving the CEO problem
based on machine learning with neural networks is introduced in [AZ21; ZA20]. Here,
the authors consider the case of the relevant distribution to be unknown for optimization.
Finally, an overview of existing IB variants and applications, as well as the distributed
CEO scenario, is given in [ZES20].
In general, finding analytical solutions is often not possible since the numerical compu-
tation of the rate region quickly becomes challenging due to the exponentially growing
complexity in the number of sensors. Therefore, most results restrict to just a few sensors
for their simulations or the sum-rate constraint only. Moreover, many of these algorithmic
solutions determine the rate region for a given distortion. In practical systems, however, it
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is often of interest to minimize the distortion for given rate constraints. Although these ap-
proaches are equivalent considering the theoretical characterization of the rate-distortion
region, they differ in their algorithmic design. This thesis concentrates on the latter case.

Theoretical Bounds and Rate-Distortion Region: The main focus in the literature
concerning the CEO problem is to find the complete rate region. However, this region is
generally hard to determine, as it is only defined for particular distortion measures and
relevant signal distributions. The definition of the rate region generally tries to find the
rates for a specific target distortion. As stated above, the theoretical characterization
of the rate-distortion region is equivalent if one is looking for the minimum distortion
given certain rate tuples or the reverse. The whole characterization results in a set of
simultaneously achievable tuples of rates and distortion. As this thesis considers the CEO
problem with a logarithmic loss distortion measure, it is worthwhile to have a short look
at the theoretical definition of the rate-distortion region of [CW14].
The rate-distortion region for the CEO problem R∗

CEO is defined as the set of all rate-
distortion tuples (R1, . . . , RM , D) being achievable. In order to define this region, they
introduce an inner bound for the CEO rate-distortion region, which turns out to be a
special case of the Berger-Tung Inner Bound [Ber71], first proposed by T. Berger and S.
Y. Tung, respectively. The inner bound for the rate-distortion region with M sensors is
given as

I(YS;ZS|ZS,Q) ≤
∑
m∈S

Cm ∀ S ⊆ {1, 2, . . . ,M} (3.40)

H(X|Z,Q) ≤ D. (3.41)

It is defined for any distribution p(x, y, z, q) = p(q)p(x)·
∏M

m=1 p(zm|ym, q)·p(ym|x). Equa-
tion (3.40) defines the rate constraints with S being a subset of all sensors and S containing
all sensors, not in S. These rate constraints must hold for any subset S ⊆ {1, 2, . . . ,M}.
It becomes obvious that the number of rate constraints increases exponentially with the
number of sensors. The parameter Cm represents the individual rate constraint of a specific
sensor m. Equation (3.41) defines the distortion constraint. The parameter D represents
the maximum permitted distortion introduced by compression. In both equations (3.40)
and (3.41), the parameter Q is a time-sharing parameter defining the time allocated for
different coding strategies. In this way, a rate region can be obtained by convex combi-
nation of all extreme points resulting from specific coding strategies. This inner bound
defines a subset of the complete rate-distortion region Ri

CEO ⊆ R∗
CEO. Therefore, all rate-

distortion tuples defined by this inner bound are achievable, i.e., they provide feasible
solutions. However, it has to be emphasized that the inner bound does not provide the
complete rate-distortion region.
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Based on this inner bound, T. A. Courtade and T. Weissman proposed a corresponding
outer bound Ro

CEO for the CEO rate region [CW14], which is defined as[∑
m∈S

I(Ym;Zm|X ,Q) +H(X|ZS,Q)−D

]+
≤

∑
m∈S

Cm ∀ S ⊆ {1, 2, . . . ,M}

(3.42)

H(X|Z,Q) ≤ D (3.43)

with [·]+ = max(0, ·). This outer bound is again defined for any distribution p(x, y, z, q) =
p(q)p(x) ·

∏M
m=1 p(zm|ym, q) · p(ym|x). By definition, this outer bound is a superset of the

original rate-distortion region Ro
CEO ⊇ R∗

CEO. Therefore, not all points of the outer bound
lie inside the rate-distortion region R∗

CEO, i.e., not all points represent feasible solutions.
However, the authors showed that each extreme point of the outer bound is dominated
by a point in the inner bound. That means that for each extreme point of the outer
bound with a rate-distortion tuple (R1, . . . , RM , D) ∈ Ro

CEO, there exists a point in the
inner bound with a corresponding rate-distortion tuple (R̃1, . . . , RM̃ , D̃) ∈ Ri

CEO for which
R̃m ≤ Rm ∀m and D̃ ≤ D holds. More precisely, let PD be the polytope defined by the rate
constraints of the outer bound in (3.42). They showed that each extreme point of PD is
dominated by a point in the inner bound Ri

CEO that has at most the distortion D. In other
words, for a specific extreme point with a rate-distortion tuple (R1, . . . , RM , D) ∈ Ro

CEO
there exists a point in the inner bound Ri

CEO, which achieves the same distortion with
lower rates. Thus, they conclude that the outer bound is a subset of the inner bound
Ro

CEO ⊆ Ri
CEO. Finally, if additionally Ri

CEO ⊆ R∗
CEO and Ro

CEO ⊇ R∗
CEO holds, the inner

and the outer bound must match and define the complete rate-distortion region.
However, it has to be emphasized that this is a theoretical description of the CEO rate-
distortion region for the given setup. Although the authors in [CW14] showed that each
extreme point of the outer bound is dominated by a point in the inner bound, it is not
obvious how to obtain this specific point. In other words, an algorithm based on the outer
bound will still find solutions that might not lie inside the rate region, although there
might exist a dominating point in the inner bound.

Suboptimal Independent Optimization Approach: Considering the non-cooperative
distributed sensing scenario in Figure 3.17 with an encoder given in Figure 3.18, the easi-
est way to optimize the quantizer of each sensor is to use a scalar IB method previously
defined in Section 3.4. In this way, one optimization problem has to be solved for each
sensor

L
(1)
IB = I(X ;Z1)− β1I(Y1;Z1)

...

L
(M)
IB = I(X ;ZM )− βMI(YM ;ZM ).
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Figure 3.20: System model for the fully cooperative remote sensing scenario modeled by
a centralized compression approach

For the m-th sensor, the parameter βm has to be adjusted in order to fulfill the given rate
constraint I(Ym;Zm) < Cm. The optimization approach for sensor m can be solved by
taking the derivative w.r.t. the mapping p(zm|ym) and equating it to zero. This results
in the update equation of the scalar IB method given in Section 3.4. Applying a Blahut-
Arimoto algorithm leads to local optimal solutions for each independent optimization.
However, the independently designed scalar quantizers do not exploit the fact that each
sensor measures the same relevant signal, i.e., no Wyner-Ziv coding is applied. Therefore,
this approach only serves as a lower bound for the performance of the proposed algorithms
in the next chapters.

3.6.2 Fully Cooperative Remote Sensing

System Model: The fully cooperative Chief Executive Officer (fcCEO) scenario is an
extension of the original CEO scenario. Each sensor observes its own measurement ym of
the same relevant signal x. This uncompressed measurement can be forwarded directly to
all other sensors via perfect inter-sensor links. The exchange of measurements is performed
in a distinct cooperation phase resulting in all sensors having access to all measurements.
After this phase, the sensors can locally encode the measurements, i.e., they generate a
common compression index fulfilling the sum-rate constraint Csum =

∑M
m=1Cm. There-

fore, it is assumed that each sensor has access to all forward channel conditions of all other
sensors. The compression index z is split into M parts, taking into consideration the link
capacities Cm. In a forwarding phase, each sensor transmits its corresponding part to the
common receiver. Hence, the encoding process contains two distinct phases, a cooperation
phase in which sensors exchange uncompressed measurements and a forwarding phase in
which all sensors forward a part of the compressed observations in a coordinated way to
the common receiver.

A Centralized Information Bottleneck Approach: The fcCEO scenario can be
modeled as depicted in Figure 3.20. Here, a single device in a central position performs
the compression. Therefore, it has access to all observations y = [y1 . . . yM ]T. The central
encoder illustrated in Figure 3.21 includes a quantization with the mapping p(z|y) and
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central encoder

p(z|y) BERMy z

Figure 3.21: Encoder for the fully cooperative remote sensing problem

a binary encoding step with rate-matching, depending on whether p(z|y) is deterministic
or stochastic. By choosing the number of output clusters as |Z| =

∏M
m=1 |Zm| and the

single link capacity from the central quantizer to the receiver as Csum =
∑M

m=1Cm this
centralized model in Figure 3.20 is equivalent to the case of having M distributed sensors.
However, it allows a much easier optimization approach, as only a single quantizer has to
be optimized. Applying the IB principle, the central quantizer can be designed in order to
compress the vector y onto a cluster index z using the mapping p(z|y), which motivates
the name Centralized Information Bottleneck (CIB) for the algorithmic approach to find
solutions in a fcCEO scenario. The optimization problem can be formulated as

LCIB [p(z|y)] = max
p(z|y)

I(X ;Z)− βI(Y ;Z) . (3.44)

Taking the derivative w.r.t. the mapping p(z|y) and equating it to zero results in the
update equation

p(z|y) = p(z) · e−
1
β
·d(y,z)∑

z p(z) · e
− 1

β
·d(y,z)

(3.45)

with d(y, z) representing the KL divergence

d(y, z) = DKL [p(x|y)∥p(x|z)] . (3.46)

Applying a Blahut-Arimoto algorithm, this approach can be solved, resulting in local
optimal solutions.
In the case where the measurement processes of Figure 3.20 are modeled as additive noise,
the centralized quantizer can be reduced to a simple scalar quantizer with the mapping
p(z|ȳ). Maximum ratio combining of all inputs ym delivers a scalar sufficient statistics

ȳ =
M∑

m=1

γm · ym

of the desired relevant signal x with an overall SNR γ =
∑

m γm. The scalar quantizer can
be designed by a standard IB algorithm. Note that reducing (3.44) to a scalar optimization
problem is very convenient from an implementation point of view.
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3.7 Discussion

The basic concepts of lossy data compression have been introduced in this chapter. The
original work of Shannon in [Sha48; Sha59] finds a trade-off between an average distor-
tion and a compression. It has been extended for lossy compression with side-information
applying the Wyner-Ziv coding principle [Wyn78; WZ76]. The original rate-distortion
problem has been extended to noisy sources being the basis for the IB principle, which
finds a trade-off between a relevant information and a compression rate. Several connec-
tions between the IB problem and the noisy source coding problem have been discussed.
The iterative IB algorithm was given as an algorithmic approach to solve this problem.
This algorithm is based on the Blahut-Arimoto algorithm defined in [Bla72; Ari72]. More-
over, a special case of the iterative IB algorithm has been introduced, resulting in deter-
ministic mappings. The performance of the IB approach has been discussed, considering
the relevant compression curve for stochastic and deterministic mappings. Moreover, the
measurement SNR mismatch for different forward channel capacities has been analyzed.
It turned out that for larger capacities of the forward channel, the measurement SNR
mismatch has not a big impact. Decreasing the capacity increases this impact leading
to possible losses when operating a quantizer on a wrong SNR. In addition, this mis-
match can result in exceeding the forward channel capacity. The general IB principle has
been extended to the case of erroneous forward channels [Win14]. It has been shown that
incorporating the forward channel in the optimization problem can increase the overall per-
formance of the system. Moreover, the CAIB algorithm is quite robust to measurement
and forward channel mismatches. The scalar remote sensing scenario has been extended
to the distributed case introducing the non-cooperative CEO scenario. The suboptimal
independent optimization approach simply optimizes each sensor by applying the scalar
IB principle. Here, no Wyner-Ziv coding is applied. Since all sensors observe noisy ver-
sions of the same relevant signal, this approach is highly suboptimal. Finally, the fully
cooperative remote sensing scenario has been introduced. Moreover, to find the solution
for this scenario, a centralized approach containing a single compression device in a central
position has been considered. After receiving all measurements in a cooperation phase, it
forwards the compressed measurements in the forwarding phase to the common receiver.
This centralized approach is beneficial since maximum ratio combining can be applied to
reduce the fully cooperative scenario to a scalar IB optimization problem, significantly
reducing computational complexity.
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Algorithmic Solutions for Non-Cooperative Dis-
tributed Remote Sensing
Subsection 3.6.1 introduced the general CEO problem as well as a suboptimal independent
optimization approach based on the IB method. For the same non-cooperative CEO sce-
nario, this chapter introduces an algorithmic solution exploiting Wyner-Ziv coding, which
outperforms the independent IB optimization. Derivations and results of this chapter
are published in [Ste+21a; Ste+21b]. Inspired by the work of Courtade and Weismann
[CW14], Section 4.1 introduces a greedy optimization approach assuming a specific op-
timization order. Consequently, this approach allows the formulation of one optimiza-
tion problem for each sensor exploiting the statistics of previously optimized sensors by
Wyner-Ziv coding. In Section 4.2, the Greedy Distributed Information Bottleneck (GDIB)
algorithm is introduced as an algorithmic approach for an offline optimization of each sen-
sor, allowing individual rate adjustments for each forward link. The performance and
robustness of this algorithm are investigated for different scenarios. Since the optimiza-
tion process of the GDIB algorithm depends on the network size, it suffers from the curse
of dimensionality in larger networks. In order to allow the optimization even for larger net-
works, a reduced-memory complexity GDIB algorithm is introduced in Section 4.3 using a
sequential compression scheme. Naturally, it is analyzed, in which case this compression
leads to performance degradation. Finally, Section 4.4 introduces an algorithmic approach
that adapts the original GDIB algorithm to deal with imperfect forward channels.

4.1 A Greedy Distributed Information Bottleneck Approach

This section introduces a greedy optimization approach proposed in [Ste+21b; SK21],
which can be applied to find feasible solutions of the non-cooperative CEO scenario. The
optimization approach is based on the inner bound of the CEO rate region, defined in
(3.40) and (3.41). Therefore, the solutions do not represent the complete rate region of
the CEO problem but represent regions that may be strictly smaller.
The distortion constraint of the inner bound of the CEO rate region in (3.41) can be
reformulated using the relevant mutual information I(X ;Z|Q), since the expectation of
the logarithmic loss function is H(X|Z,Q) = H(X|Q) − I(X ;Z|Q) and H(X|Q) does
not depend on the mapping p(zm|ym, q). In this way, the optimization problem resembles
the IB optimization problem and can be formulated as

max
P

I(X ;Z|Q) s.t. I(YS;ZS|ZS,Q) ≤
∑
m∈S

Cm

∀ S ⊆ {1, 2, . . . ,M} , S = {1, 2, . . . ,M} \ S. (4.1)
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Here, the goal is to maximize the relevant mutual information I(X ;Z|Q) while simul-
taneously fulfilling the rate constraints defined in (3.40). In equation (4.1), the set
P =

{
p(z1|y1, q), · · · , p(zM |yM , q)

}
represents the set of all quantizer mappings. In or-

der to simplify the algorithmic approach to find the extreme points of the solution space
of (4.1), it can be exploited that this functional is a supermodular [Fuj05] set-function
w.r.t. the set S.

Supermodularity: On a finite set V, a set-function s : 2V → R 1 is supermodular if for
all A,B ⊆ V

s(A) + s(B) ≤ s(A ∩ B) + s(A ∪ B) (4.2)

holds. Modular, in this sense, means that subsets A and B of V represent parts of a
complex system and compositions of those modules expressed by union or intersection as
well. Super indicates that if measuring these sets with s(·), the sum of the compositions
(i.e., the right-hand side) is larger than the sum of the modules A and B themselves.
In (4.1), the compression rates I(YS;ZS|ZS,Q) are set-functions w.r.t. the set S. Since
the relevant information I(X ;Z|Q) does not depend on S and is constant in this regard,
it can be omitted for showing the supermodularity. Applying the general definition for
supermodular functions in (4.2) on the compression rates I(YS;ZS|ZS,Q) it can be shown
that for A,B ⊆ S

s(A) + s(B) = I(YA;ZA|ZA,Q) + I(YB;ZB|ZB,Q)

≤ I(YA∪B;ZA∪B|ZA∪B,Q) + I(YA∩B;ZA∩B|ZA∩B,Q)

= s(A ∪ B) + s(A ∩ B) (4.3)

holds. The proof for this originates from [CW14] and is given in Appendix A in more
detail.

A Greedy optimization structure: The supermodularity can be exploited in order to
create an optimization structure. According to [McC05], a greedy algorithm can be applied
to find the extreme points of the solution space of a supermodular function. Following the
argumentation in [CW14], the rate constraints

I(YS;ZS|ZS,Q) ≤
∑
m∈S

Cm

of the inner bound in (3.40) define the solution space described by the polytope PD. For
two sets Sj ⊆ {1, . . . ,M} and Sj−1 ⊂ Sj with Sj \ Sj−1 = {j} and their complements
Sj = {1, . . . ,M} \ Sj and Sj−1 = {1, . . . ,M} \ Sj−1, it can be seen that

I(YSj ;ZSj |ZSj ,Q)− I(YSj−1 ;ZSj−1 |ZSj−1
,Q) ≥ 0 (4.4)

1The notation 2V represents the power set including all subsets of V.
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holds, since the additional element j in Sj compared to Sj−1 can only increase the com-
pression rate I(YSj ;ZSj |ZSj ,Q). Combining (3.40) with (4.4) delivers

I(YSj ;ZSj |ZSj ,Q)− I(YSj−1 ;ZSj−1 |ZSj−1
,Q) ≤

∑
m∈Sj

Cm −
∑

m∈Sj−1

Cm

EYSj ,Z,Q

[
log2

p(zSj |ySj , zSj , q)
p(zSj |zSj , q)

]
− EYSj−1

,Z,Q

[
log2

p(zSj−1 |ySj−1 , zSj−1
, q)

p(zSj−1 |zSj−1
, q)

]
≤ Cj

EYSj ,Z,Q

[
log2

p(zSj |ySj , q)
p(zSj |zSj , q)

]
− EYSj−1

,Z,Q

[
log2

p(zSj−1 |ySj−1 , q)
p(zSj−1 |zSj−1

, q)

]
≤ Cj (4.5)

EYSj ,Z,Q

[
log2

Πi∈Sjp(zi|yi, q)
p(zSj |zSj , q)

]
− EYSj−1

,Z,Q

[
log2

Πi∈Sj−1p(zi|yi, q)
p(zSj−1 |zSj−1

, q)

]
≤ Cj (4.6)

EYSj ,Z,Q

[
log2

Πi∈Sjp(zi|yi, q)
p(zSj |zSj , q)

p(zSj−1 |zSj−1
, q)

Πi∈Sj−1p(zi|yi, q)

]
≤ Cj

EYj ,Z,Q

[
log2

p(zj |yj , q)p(zSj−1 |zSj−1
, q)

p(zSj |zSj , q)

]
≤ Cj

EYj ,Zj ,ZSj
,Q

[
log2

p(zj |yj , q)
p(zj |zSj , q)

]
≤ Cj

EYj ,Zj ,ZSj
,Q

[
log2

p(zj |yj , zSj , q)
p(zj |zSj , q)

]
≤ Cj (4.7)

I(Yj ;Zj |ZSj ,Q) ≤ Cj . (4.8)

Equation (4.5) holds due to the Markov property given in (3.39). Moreover, this Markov
property ensures that different z ∈ Sj are independent given ySj and different z ∈ Sj−1 are
independent given ySj−1 resulting in (4.6). Finally, the Markov property in (3.39) allows
to extend the pmf p(zj |yj , q) to p(zj |yj , zSj , q) resulting in equation (4.7). The left part
of (4.8) can be interpreted as the maximum rate Rj with which sensor j can transmit
information, resulting in

Rj = I(Yj ;Zj |ZSj ,Q) . (4.9)

In order to examine an optimization structure, an example with three sensors is considered
resulting in three compression rates, one for each sensor.

Sj = {1} Sj−1 = {} j = 1 R1 = I(Y1;Z1|Z2,Z3,Q)

Sj = {1, 2} Sj−1 = {1} j = 2 R2 = I(Y2;Z2|Z3,Q)

Sj = {1, 2, 3} Sj−1 = {1, 2} j = 3 R3 = I(Y3;Z3|Q) (4.10)

Observing the three rates in (4.10) suggests a greedy optimization in reverse order, i.e.,
starting with the third sensor and optimizing the first sensor at last. In this way, sen-
sors being currently optimized can exploit the quantizer mappings of previously designed
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sensors by Wyner-Ziv coding. However, for the same three-sensor scenario, the emerging
rates could look quite different depending on the sets Sj and Sj−1.

Sj = {1} Sj−1 = {} j = 1 R1 = I(Y1;Z1|Z2,Z3,Q)

Sj = {1, 3, 2} Sj−1 = {1, 3} j = 2 R2 = I(Y2;Z2|Q)

Sj = {1, 3} Sj−1 = {1} j = 3 R3 = I(Y3;Z3|Z2Q) (4.11)

The rates in (4.11) suggest an optimization order starting with the second sensor, followed
by the third sensor, and optimizing the first sensor at last. Note that each optimization
order results in a different extreme point of the solution space PD. In order to find all
extreme points of PD, all M ! different optimization orders have to be considered. In
addition, it is generally not known in advance which extreme point of PD is the best. Ex-
ploiting this greedy optimization structure, the optimization problem for any optimization
order2 π1 ≺ π2 ≺ · · · ≺ πM can be reformulated to

max
P

I(X ;Z|Q) s.t. I(Yπm ;Zπm |ZS̃<m
,Q) ≤ Cπm

∀m ∈ {1, 2, . . . ,M} (4.12)

with πm representing the m-th position in the optimization order and the set S̃<m cor-
responding to S̃<m = {π1, . . . , πm−1}.3 For notational simplicity, all following equations
will assume a natural optimization order and omit other permutations. The complete
convex hull of the solution space can be determined by convex combination [BV04; HL04]
of all extreme points using time-sharing with parameter Q, which is illustrated for a two-
sensor scenario in Subsection 4.2.2. However, this thesis does not focus on characterizing
the complete rate region but on optimal solutions located in the extreme points. There-
fore, the time-sharing parameter is omitted in the following equations. The optimization
problem in (4.12) can be solved by the method of Lagrangian multipliers resulting in

LGDIB = I(X ;Z)−
M∑

m=1

βm · I(Ym;Zm|Z<m) . (4.13)

Applying the chain rule of mutual information to I(X ;Z), the optimization approach
becomes

LGDIB =
M∑

m=1

I(X ;Zm|Z<m)− βm · I(Ym;Zm|Z<m) . (4.14)

2The notation π1 ≺ π2 ≺ · · · ≺ πM indicates that the sensor on position π1 is optimized first, followed
by the sensor on position π2. The last sensor optimized is the sensor on position πM .

3Example: 3 sensors with optimization order π1 = 2 ≺ π2 = 3 ≺ π3 = 1 leading to S̃<1 = {}, S̃<2 = {2}
and S̃<3 = {2, 3}. The compression rates result in I(Y2;Z2|Q), I(Y3;Z3|Z2,Q) and I(Y1;Z1|Z2,Z3,Q),
respectively.
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It is obvious that by pursuing the greedy optimization approach, equation (4.14) can be
decomposed into M optimization problems

L
(1)
GDIB = I(X ;Z1)− β1I(Y1;Z1) (4.15a)

...

L
(M)
GDIB = I(X ;ZM |Z<M )− βMI(YM ;ZM |Z<M ) . (4.15b)

Equations (4.15a) to (4.15b) emphasize the greedy optimization structure. To be more
specific, the first sensor is optimized by maximizing (4.15a), which resembles the original
scalar IB optimization. Subsequent sensors are optimized by exploiting the quantizer map-
pings of all previously designed sensors by applying the Wyner-Ziv coding principle. In
this way, all quantizers are jointly optimized in a successive way. Note that no information
has to be exchanged during run-time. This greedy approach assumes that the common
decoder has already received information from previous sensors such that only the remain-
ing part has to be forwarded. As in the original IB method, the Lagrange multipliers βm

serve as a trade-off parameter between the preservation of relevant information and com-
pression. Each βm has to be adjusted such that the rate constraint I(Ym;Zm|Z<m) ≤ Cm

is fulfilled.

4.2 An Algorithmic Solution

This section introduces an algorithmic solution to solve the optimization problems given
in (4.15a) to (4.15b). These objectives can be solved by equating the derivative w.r.t. the
mapping p(zm|ym) to zero. This results in the update equation for sensor m

p(zm|ym) =
e−dβm (ym,zm)∑
zm

e−dβm (ym,zm)
(4.16)

with the exponent dβm(ym, zm) given as

dβm(ym, zm) := EZ<m|ym

[
1

βm
·

DKL [p(x|ym, z<m)∥p(x|z≤m)]− log p(zm|z<m)

]
. (4.17)

Note that update equation in (4.16) is an implicit equation, since p(zm|z<m) and p(x|z≤m)

also depend on the mapping p(zm|ym). As in the original IB method, (4.16) can be solved
using an extension of the Blahut-Arimoto algorithm. A detailed derivation of this solution
is given in Appendix B.
The extended Blahut-Arimoto algorithm that solves the optimization problem for sensor
m and a specific βm is given in Algorithm 4. Lines 2 and 3 calculate required pmfs,
which do not depend on zm and so do not change in the loop. In lines 6 and 7, the joint
pmf p(z≤m, ym, x) is calculated, which is the basis of all subsequent equations. Using this
pmf, the KL divergence DKL(ym, z≤m) and the statistical distance measure dβm(zm, ym)
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Algorithm 4: Extended Blahut-Arimoto algorithm
input : m, p(ym, x), pinit(zm|ym), p(z<m|x), βm, ϵ
output : p(zm|ym) ∈ [0, 1]

1 begin
initialization:

p(zm|ym)(0) ← pinit(zm|ym),
l← 1

2 p(z<m, ym, x) = p(z<m|x)p(ym, x)
3 p(x|z<m, ym) = p(z<m, ym, x)/

∑
x p(z<m, ym, x)

4 p(z<m|ym) =
∑

x p(z<m, ym, x)/
∑

x p(ym, x)
5 do
6 // calculate p(z≤m, ym, x)

7 p(z≤m, ym, x)(l) = p(z<m, ym, x)p(zm|ym)(l−1)

8 // KL divergence DKL(ym, z≤m) of (4.17)
9 p(x|z≤m)(l) =

∑
ym

p(z≤m, ym, x)(l)/
∑

ym,x p(z≤m, ym, x)(l)

10 DKL(ym, z≤m)(l) =
∑

x p(x|z<m, ym) · log p(x|z<m,ym)

p(x|z≤m)(l)

11 // distance dβm(zm, ym) (4.17)
12 p(zm|z<m)(l) =

∑
ym,x p(z≤m, ym, x)(l)/

∑
ym,x p(z<m, ym, x)

13 dβm(zm, ym)(l) =
∑

z<m
p(z<m|ym) ·

[
1
βm

DKL(ym, z≤m)(l)− log p(zm|z<m)(l)
]

14 // update quantizer p(zm|ym)

15 p(zm|ym)(l) = 1∑
z e

−dβm
(zm,ym)(l)

e−dβm (zm,ym)(l)

16 l← l + 1

17 while DJS[ p
(l)(zm|ym) || p(l−1)(zm|ym) ] > ϵ

can be calculated in lines 8-10 and 11-13, respectively. Using dβm(zm, ym) the quantizer
mapping p(zm|ym) can be updated. This procedure is done until a convergence criterion
is fulfilled, e.g., the JS divergence between successive quantizer mappings does not change
significantly anymore. In particular, DJS[ p

(l)(zm|ym) || p(l−1)(zm|ym) ] ≤ ϵ shall be smaller
than or equal to a predefined accuracy parameter ϵ.
A flowchart of the overall GDIB algorithm is given in Figure 4.1. The previously described
extended Blahut-Arimoto algorithm is performed in the block ”ext. BA algorithm”. More
precisely, it computes (4.16) with (4.17) for a specific sensor m and a specific βm. Note that
the extended Blahut-Arimoto algorithm itself contains a loop, which iteratively optimizes
the quantizer mapping p(zm|ym) of sensor m. Since the compression rate I(Ym;Zm|Z<m)

is a monotonic increasing function in βm the rate-fulfilling Lagrange multiplier βm can be
determined using a bisection search, such that I(Ym;Zm|Z<m) ≤ Cm. This is performed
in the ”loop to adjust β”. Of course, all this has to be done for all sensors in the ”loop over
sensors”. Once all quantizers are optimized, the algorithm ends. In general, this procedure
needs to be done for all permutations of the optimization order, which is not considered
in Figure 4.1.
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Start

m ← 1
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End

True

False

True

False

Figure 4.1: Flowchart of the overall GDIB algorithm

4.2.1 Simulation Setup

In the following subsections, the performance of the proposed GDIB algorithm is inves-
tigated in different non-cooperative CEO scenarios. The relevant signal is corrupted by
additive white Gaussian measurement noise at each sensor defined by the SNR γm. In
order to be able to perform the optimization with the GDIB algorithm, the measurements
are uniformly pre-quantized with |Ym| = 64 bins. The optimization algorithm is initial-
ized by a uniform quantization. This initialization results in coherent output clusters and
generally leads to a good performance.
There are two types of scenarios that are investigated, symmetric and asymmetric sce-
narios. Symmetric, in this case, indicates that each sensor has the same SNR, |Zm|, and
capacity constraints Cm. Whereas, this is not the case for asymmetric scenarios. The
advantage of symmetric scenarios is that the optimization order does not play any role.
Therefore, it is not necessary to perform the GDIB optimization for all possible optimiza-
tion orders. This highly reduces the computational complexity.

4.2.2 Achievable Rate Tuples

Applying the GDIB algorithm for a symmetric M = 2 sensor scenario, the achievable rate
tuples can be illustrated, as given in Figure 4.2. The rate tuples (R1, R2) are depicted
for specific distortions, i.e., for specific relevant mutual information I(X ;Z). Note that
the rate tuples either correspond to (I(Y1;Z1), I(Y2;Z2|Z1)) or (I(Y1;Z1|Z2), I(Y2;Z2))

depending on the optimization order. Time-sharing between both optimization orders
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Figure 4.2: Achievable rate tuples for different relevant mutual information using the
GDIB algorithm in a symmetric scenario with two sensors, |X| = 4, |Zm| = 4 and SNRs
γm = 8 dB

delivers the convex regions depicted in Figure 4.2. The relevant signal is taken from a
uniformly distributed 4-ASK alphabet while the SNRs are chosen to be γm = 8 dB.
The different colored regions correspond to particular thresholds for the relevant infor-
mation I(X ;Z) ≥ {0.75, 1, 1.25, 1.5}. Note that on the left border of a specific region,
equality to the threshold holds. For low values of I(X ;Z) ≲ 1.15, the relevant information
can be achieved by a single sensor only. Here, the rate of one sensor can become zero,
while I(X ;Z) is completely provided by the other sensor. Larger relevant information
requires both sensors to contribute.

4.2.3 Contribution of Wyner-Ziv coding

The GDIB approach applies the Wyner-Ziv coding principle by exploiting the mappings of
previously designed quantizers. In this sense, the compression of a sensor can be optimized,
assuming that the common receiver has already received information from the previous
sensors. In other words, a current sensor only needs to transmit data that the receiver has
not seen so far. To analyze this behavior, Figure 4.3 illustrates the relevance compression
plane for a symmetric two-sensor scenario with a signal-to-noise ratio of γm = 8 dB and
a 4-ASK relevant signal. In particular, the amount of information the second sensor can
contribute is depicted for different optimizations of the first sensor. The black dashed
line represents the relevance compression curve for the first sensor obtained by varying
β1, i.e., it depicts I(X ;Z1) vs. I(Y1;Z1). The colored curves represent the contribution
of the second sensor I(X ;Z2|Z1) vs. I(Y2;Z2|Z1), after optimizing the first one with
specific values for β1. The corresponding points (I(X ;Z1), I(Y1;Z1)) are represented by
the colored squared markers on the black dashed curve. Note that the overall performance
of the network generally results from the sum of both sensors, which is not depicted here.
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Figure 4.3: Contribution of the second sensor applying the GDIB algorithm in a symmetric
scenario with two sensors, |X| = 4, |Zm| = 4 and SNRs γm = 8 dB

It can be observed that if the first sensor has a good forward channel and therefore is able
to transmit a large amount of information, the amount the second sensor can contribute
is quite low. Hence, the higher the colored squared marker on the relevant compression
curve of the first sensor, the lower the slope and the maximum of I(X ;Z2|Z1) of the second
sensor. Decreasing the performance of the first sensor results in a gain in performance of
the second sensor. The red case represents the special case where the first sensor cannot
transmit any information. In this case, the second sensor performs as if no first sensor
is available. The red curve lies on top of the black dashed one. This shows that in this
symmetric scenario, the individual performance of both sensors is also symmetric.

4.2.4 Influence of Sum-Rate

Figure 4.4 illustrates the relevant mutual information versus the sum-rate for a symmet-
ric scenario with M = 5 sensors. The sum-rate Csum =

∑M
m=1Cm is fixed to a value

independent of M . Consequently, the available capacity of each forward link becomes
Cm = Csum

M . This represents a scenario where all M sensors equally share a common
medium in an orthogonal way and a round-robin fashion. The relevant signal is taken
from a uniformly distributed 4-ASK alphabet. The green curve represents the result for
a fcCEO scenario defined in Subsection 3.6.2 whereas the black curve represents the in-
dependent scalar IB optimization as defined in Subsection 3.6.1. The gray-shaded area
represents the non-achievable region, since I(X ;Z) is always smaller or equal to I(X ;Y).
As expected, the fcCEO scenario performs best and approaches I(X ;Y) for larger sum-
rates. It serves as an upper bound for the distributed sensing scenario. For a sum-rate of
Csum ≥ 10 bit/s/Hz independent scalar IB optimization achieves the same relevant infor-
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Figure 4.4: Relevant mutual information vs. sum capacity for a symmetric scenario with
M = 5 sensors, |X| = 4, SNRs γm ∈ {3, 8} dB and |Zm| = 4

mation as the GDIB approach. Naturally, this is caused by the fact that the performance
of the GDIB approach saturates. In this area, no compression with stochastic mappings
p(zm|ym) at the sensors is required. In the area of smaller sum-rates, the GDIB approach
outperforms the independent scalar IB approach. The asymptotic loss of non-cooperative
versus fully-cooperative distributed compression can be observed by the gap between the
fcCEO scenario and the GDIB approach for very large sum-rates.

4.2.5 Influence of the Network Size

In this subsection, the influence of the network size on the performance of the GDIB
algorithm is investigated. First, a symmetric scenario where all sensors share the same
medium in an orthogonal way and a round-robin fashion is considered, i.e., the sum-rate
Csum is fixed and equally distributed on all sensors Cm = Csum

M . Consequently, the larger
the network is, the smaller the individual link capacity of each sensor. Second, a symmetric
scenario where each sensor has an independent link is considered. In this case, the sum-
rate increases for larger networks Csum =

∑M
m=1Cm while the individual link capacity is

the same for all sensors.

Fixed Sum-Rate: Figures 4.5 and 4.6 illustrate the influence of the network size onto
the relevant mutual information I(X ;Z) for sum-rates Csum = 2.5 bit/s/Hz and Csum =

4.0 bit/s/Hz, respectively. The relevant signal is taken from a uniformly distributed 4-
ASK alphabet. The relevant mutual information I(X ;Z) cannot exceed I(X ;Y) due to
the data-processing inequality. Hence, the gray-colored area represents the non-achievable
region.
The black curves represent an independent scalar IB optimization, as introduced in Sub-
section 3.6.1. For higher SNRs γm = 8 dB, this approach loses relevant information with
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Figure 4.7: Relevant mutual information vs. number of sensors for fixed individual link
capacity Cm = 0.5 bit/s/Hz and |X| = 4, |Zm| = 4

an increasing number of sensors. More precisely, increasing the number of sensors leads
to smaller individual link capacities. Therefore, each sensor has to perform a stronger
compression. It turns out that it is beneficial to use fewer sensors with higher compression
rates. For lower SNRs of γm = 3 dB, this degradation is not as pronounced for γm = 8 dB.
The red curves represent the GDIB approach. It becomes obvious that an increasing
number of sensors does not lead to degradation but rather to an increase of relevant
mutual information I(X ;Z). Therefore, using the GDIB algorithm for joint optimization
of distributed quantizers leads to a significant gain compared to independent scalar IB
optimization.
The green curve represents the result for a fcCEO scenario introduced in Subsection 3.6.2.
Naturally, it clearly outperforms both other approaches. Of course, for larger network
sizes, its performance is bounded by I(X ;Y). The gap between the fcCEO scenario and
the GDIB approach illustrates the limitation of non-cooperative distributed quantization,
where no communication among the sensors is allowed. Comparing Figure 4.5 with Figure
4.6 reveals that for different sum-rates, the previously described effects are qualitatively
similar.

Increasing Sum-Rate: So far, a fixed sum-rate Csum distributed on all sensors has been
considered. In the following, each sensor contributes a fixed link capacity Cm to the overall
sum-rate Csum =

∑M
m=1Cm. Therefore, an increasing number of sensors will automatically

increase the sum-rate Csum. Figure 4.7 illustrates the influence of the network size onto
the relevant mutual information I(X ;Z) when each sensor contributes a link capacity of
Cm = 0.5 bit/s/Hz to the sum-rate. Again, the relevant signal is taken from a uniformly
distributed 4-ASK alphabet. The gray-shaded area represents the non-achievable region
since I(X ;Y) cannot be exceeded. The black curve represents the independent scalar IB
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Figure 4.8: Relevant mutual information vs. number of sensors for fixed individual link
capacity Cm = 1 bit/s/Hz and |X| = 4, |Zm| = 4

optimization from Subsection 3.6.1 while the red curve represents the GDIB approach.
The green curve represents the performance of a fcCEO scenario. Since each additional
sensor increases the available sum-rate, the overall performance of all approaches benefits
from larger networks. Similar to the case with a fixed sum-rate, the GDIB approach
outperforms independent scalar IB optimization since it exploits the Wyner-Ziv coding
principle. This performance gap increases for larger network sizes due to increasing sum-
rates. However, the gap to the fcCEO scenario observed for a fixed sum-rate in Figure 4.5
and 4.6 also occurs in Figure 4.7.
Figure 4.8 shows the performance for the same simulation but with a larger individual
link capacity of Cm = 1.0 bit/s/Hz. It can be observed that these larger individual link
capacities generally produce qualitatively the same result as in Figure 4.7. The main
difference is a better overall performance being closer to the upper bound I(X ;Y) in
Figure 4.8.

4.2.6 Influence of the Relevant Signal

Gaussian Relevant Signal: Figure 4.9 illustrates the relevant mutual information ver-
sus the sum-rate for the same scenario as in Figure 4.4 but for a Gaussian relevant signal
x pre-quantized with |X| = 64 equidistant bins. Again, the green curve represents the
fcCEO scenario defined in Subsection 3.6.2 whereas the black curve represents the in-
dependent scalar IB optimization defined in Subsection 3.6.1. In general, the Gaussian
relevant signal does not change the quality of the result. The main difference is the amount
of information available in the system, i.e., I(X ;Y) increases compared to a 4-ASK signal.
Although more information is available, the performance of the GDIB approach is nearly
the same as in Figure 4.4. Therefore, the gap to the fcCEO scenario increases, especially

59



Chapter 4: Algorithmic Solutions for Non-Cooperative Distributed Remote Sensing

0 2 4 6 8 10 12
0

0.5

1

1.5

2
I(X ;Y)

γm = 3 dB

sum capacity Csum

I
(X

;Z
)

IB fcCEO GDIB

Figure 4.9: Relevant mutual information vs. sum capacity for a symmetric scenario with
M = 5 sensors, SNRs γm = 3 dB, |Zm| = 4 and a Gaussian relevant signal x with |X| = 64

for larger sum-rates. However, the GDIB approach still outperforms independent scalar
IB optimization.
Figure 4.10 illustrates the influence of the network size onto the relevant mutual infor-
mation I(X ;Z) for a Gaussian relevant signal x pre-quantized with |X| = 64 bins. The
simulation is done for sum-rates of Csum = {2.5, 4.0} bit/s/Hz and an SNR γm = 3 dB.
Independent of the sum-rate, the GDIB algorithm outperforms independent scalar IB de-
signed quantizers, which is shown in black. This can again be explained by the GDIB
algorithm exploiting the mappings of previously designed quantizers. However, the sim-
ulation results reveal a large gap to the fcCEO scenario, where each sensor has access to
all measurements in the network. In general, the result resembles the ones obtained for
a 4-ASK relevant signal in Figure 4.5 and 4.6. Thus, from Figure 4.9 and 4.10, it can
be concluded that the GDIB algorithm can also be applied for pre-quantized continuous
relevant signals.

Discrete Relevant Signals: Figure 4.11 illustrates the influence of the network size
onto the relevant mutual information I(X ;Z) with a sum-rate of Csum = 4.0 bit/s/Hz
for different relevant signals. All curves illustrate the performance using the GDIB al-
gorithm. The relevant signal is taken from a uniformly distributed ASK alphabet where
the cardinality |X| determines the modulation order. The output cardinality is chosen
to be |Zm| = 8 for all modulation schemes. In general, apart from the 2-ASK curve for
γm = 8 dB, the curves look qualitatively the same. In all cases, the relevant mutual infor-
mation I(X ;Z) increases for larger network sizes. This confirms that the GDIB algorithm
can be applied for arbitrary input cardinalities |X|. Naturally, the relevant mutual infor-
mation I(X ;Z) in the case of a 2-ASK relevant signal is limited to one bit/s/Hz. Hence,
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for γ = 8 dB, two sensors are sufficient to nearly reach this cap. This is different for
higher-order modulation schemes. In the case of γ = 8 dB, there occurs a gap between the
4-ASK and the 8-ASK or 16-ASK. This can be explained by the fact that I(X ;Y) is larger
for higher-order modulation schemes in this SNR domain. However, the gain in relevant
information becomes smaller for higher-order modulation schemes resulting in nearly no
gain comparing the 8-ASK with the 16-ASK. Naturally, this could change for larger SNRs
or more sensors. Note that the gain is generally limited due to the rate constraints of
Csum = 4.0 bit/s/Hz. For a signal-to-noise ratio of γm = 3 dB, there is no difference
between the 4-ASK, 8-ASK, and the 16-ASK. This is caused by the fact that in this SNR
domain, the 4-ASK, 8-ASK, and 16-ASK contain nearly the same information I(X ;Y).
Summarizing, it can be stated that the GDIB algorithm can be applied for arbitrary dis-
crete probability distributions. Since all considered input distributions deliver qualitatively
the same results, it is sufficient to restrict on lower-order relevant signals, which results in
lower memory requirements during simulations. This is why most of the following results
are only obtained for a 4-ASK relevant signal.

4.2.7 Influence of Optimization Order for Asymmetric Scenarios

The influence of the Wyner-Ziv coding strategy needs to be investigated. Therefore, the
performance of the GDIB algorithm using different optimization orders to optimize the
sensors is analyzed. Naturally, for this investigation, it is not meaningful to consider
symmetric scenarios, as they would provide the same solution for each optimization order.
Hence, two different asymmetric scenarios with M = 4 sensors are examined. The first
scenario combines sensors with bad SNRs γm with low link capacities Cm. Therefore, good
sensors also have good forward channel conditions, and bad sensors also have bad forward
channel conditions. The second scenario, however, combines sensors with bad SNRs with
high link capacities. Therefore, good sensors have very poor forward channel conditions,
while bad sensors have very good forward channel conditions.
Figure 4.12 illustrates the performance of the GDIB algorithm, i.e., the relevant informa-
tion after GDIB optimization for M = 4 sensors and all permutations of the optimization
order. The blue bars represent the first scenario, while the red bars represent the second
scenario. Considering the first scenario, it seems that the Wyner-Ziv coding strategy,
i.e., the optimization order, does not have a big impact on the performance of the GDIB
algorithm. However, the second scenario shows that the different optimization orders can
highly influence the performance of the GDIB algorithm in asymmetric scenarios. In gen-
eral, it can be observed that the performance of the second scenario is worse than the
performance of the first one. This can be expected since, in the second scenario, accurate
measurements have to be strongly compressed, while unreliable measurements can only
contribute little to the overall performance, even if the corresponding link capacities are
high. Considering the different permutations within the second scenario, no clear con-
clusion about the optimal Wyner-Ziv coding strategy can be drawn. However, a good
solution can be expected when starting the optimization with the best forward channel
conditions, i.e., the lowest compression.
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4.2.8 Robustness of the GDIB Algorithm

So far, all simulations have modeled the additive measurement noise as white and Gaussian
distributed. This is a natural choice in communications for channel noise due to the
Central Limit Theorem. For measurement noise, this might not be an obvious decision.
However, white and Gaussian distributed noise minimizes the capacity of a point-to-point
additive noise channel, i.e., it minimizes the mutual information I(X ;Ym). This means
that choosing white and Gaussian distributed noise represents the worst case also for
measurement noise.
Regarding the robustness of the proposed optimization algorithms, the measurement noise
is a crucial factor since it directly influences the joint probability p(x, ym) = p(x)p(ym|x).
This subsection investigates the influence of the signal-to-noise ratio γm on the optimiza-
tion approach. In particular, how robust the optimization reacts on wrong assumptions
regarding the noise power σ2

wm
. This can either be caused by not knowing the signal-to-

noise ratio perfectly in advance or by changing over time.
As the GDIB approach maximizes the relevant mutual information I(X ;Z) while still
maintaining a desired compression rate I(Ym;Zm|Z<m) ≤ Cm the question arises, how a
measurement SNR mismatch influences this behavior. Therefore, similar to the scalar case
in Section 3.4, the optimization SNR does not match the actual application SNR. Given
a fixed application measurement signal-to-noise ratio γapp

m with a corresponding channel
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likelihood p(ym|x), a quantizer p̃(zm|ym) optimized for a different γopt with p̃(ym|x) is
applied. The resulting relevant mutual information is given as

Ĩ(X ;Z) = EX ,Z

[
log2

p̃(z|x)
p̃(z)

]
(4.18)

with

p̃(z|x) =
M∏

m=1

p̃(zm|x) (4.19)

with

p̃(zm|x) =
∑
ym

p̃(zm|ym)p(ym|x) (4.20)

and

p̃(z) =
∑
x

p̃(z|x)p(x) . (4.21)

The resulting compression rate for a specific sensor m can be calculated by

Ĩ(Ym;Zm|Z<m) = EY,Z≤m

[
log2

p̃(zm|ym)

p̃(zm|z<m)

]
(4.22)

with

p̃(z≤m) =
∑
x

p(x)

m∏
i=1

p̃(zi|x) (4.23)

and

p̃(zm|z<m) =
p̃(z≤m)∑
zm

p̃(z≤m)
. (4.24)

The left diagram of Figure 4.13 illustrates the relevant mutual information Ĩ(X ;Z) versus
the optimization signal-to-noise ratio γopt

m for different application SNRs γapp
m . The simu-

lation is done for a network of M = 5 sensors and a 4-ASK relevant signal. The sum-rate
is chosen to be Csum = 2.5 bit/s/Hz which is equally distributed on each forward link
Cm = Csum

M = 0.5 bit/s/Hz. Therefore, each sensor needs to perform a strong compres-
sion to match the rate constraints. The other cardinalities are defined as |Ym| = 512 and
|Zm| = 4. Naturally, a larger application SNR γapp

m results in an overall better performance
with larger relevant mutual information Ĩ(X ;Z). Similar to the scalar case, the general
expectation on these curves is that the maximum of a curve for a specific γopt

m should lie on
the position of γopt

m = γapp
m . However, this behavior can not be observed in Figure 4.13. It

seems that larger relevant mutual information correlates with a larger optimization SNR
independent of the application SNR. To understand this behavior, the compression rates
depicted in the right diagrams of Figure 4.13 have to be analyzed. Here, each diagram
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Figure 4.13: Measurement channel mismatch applying the GDIB algorithm for M = 5
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M ,
|X| = 4, |Ym| = 512 and |Zm| = 4

represents the compression rates Ĩ(Ym;Zm|Z<m) versus the optimization SNR γopt
m of all

sensors m = 1, . . . ,m = 5 for a specific application SNR γapp
m . The black dashed line shows

the capacity bound Cm, which defines the maximum allowed compression rate. Naturally,
for γapp

m = γopt
m the rate constraints are perfectly matched, i.e., Ĩ(Ym;Zm|Z<m) ≈ Cm.

However, if γopt
m ̸= γapp

m this does not hold anymore. In particular, if γopt
m < γapp

m the com-
pression rate falls below the rate constraint Ĩ(Ym;Zm|Z<m) < Cm while for γopt

m > γapp
m

the compression rate exceeds the rate constraint Ĩ(Ym;Zm|Z<m) > Cm. In fact, for a
low optimization SNR γopt

m the measurement channel likelihood p̃(ym|x) is assumed to be
broad while for a good γopt

m it is assumed to be slim. If the optimization SNR γopt
m is better

than the application SNR γapp
m the true channel likelihood p(ym|x) is broader than p̃(ym|x)

leading to an increase in compression rate Ĩ(Ym;Zm|Z<m). The observed effect becomes
more significant for late sensors in the optimization chain. This behavior explains why
the maximum of the relevant mutual information Ĩ(X ;Z) in the left diagram of Figure
4.13 is shifted to the right, especially for lower application SNRs.
Figure 4.14 illustrates results for the same simulation, but for a sum-rate of Csum =

5 bit/s/Hz. Therefore, the individual rate constraints increase to Cm = 1 bit/s/Hz result-
ing in a weaker compression. Considering the left diagram, it becomes obvious that the
shifted maxima observed in Figure 4.13 are still noticeable. However, this effect is not as
pronounced as before. Considering the right diagram, again, it can be observed that if
γopt
m > γapp

m the compression rate of each sensor exceeds the individual capacity constraint
Ĩ(Ym;Zm|Z<m) > Cm.
Figure 4.15 illustrates results for the same simulation, but for a sum-rate of Csum =

7.5 bit/s/Hz, leading to individual rate constraints of Cm = 1.5 bit/s/Hz. The left diagram
reveals that in this case, the measurement SNR mismatch has a much lower impact on
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Figure 4.14: Measurement channel mismatch applying the GDIB algorithm for M = 5
sensors with Csum = 5.0 bit/s/Hz equally distributed on each forward link Cm = Csum

M ,
|X| = 4, |Ym| = 512 and |Zm| = 4

the relevant mutual information Ĩ(X ;Z) than for lower sum-rates. It can be observed
that Ĩ(X ;Z) is constant in a wide range, especially for lower application SNRs. For
larger application SNRs, this range becomes a bit smaller. However, considering the right
diagram reveals that for lower application SNRs like γapp

m = {0, 3} dB, the compression
rates are not fulfilled.
Finally, Figure 4.16 illustrates results for a sum-rate of Csum = 10.0 bit/s/Hz, i.e., Cm =

2.0 bit/s/Hz. Since the relevant signal is modeled as a 4-ASK signal, these rate constraints
are very loose restrictions. Similar to Figure 4.15 with a sum-rate of Csum = 7.5 bit/s/Hz
the measurement signal-to-noise ratio mismatch has a very low impact on the relevant
mutual information Ĩ(X ;Z). In contrast to lower sum-rates, for Csum = 10.0 bit/s/Hz,
the rate constraints are not violated anymore.
Summarizing, it can be stated that in the considered scenario the measurement SNR
mismatch has a higher impact on stricter rate constraints. In these cases, the individual
rate constraints are violated if the optimization SNR is larger than the application SNR
γopt
m > γapp

m . In order to cope with this behavior, two possible strategies can be pursued,
similar to the scalar case in Section 3.4. First, a compression back-off could be considered
during the optimization, ensuring that the rate constraint is fulfilled in any case. Therefore,
the optimization needs to be performed for a lower rate constraint than the actual Cm.
The drawback of this strategy is that the required back-off is hard to determine in advance.
The second approach is more straightforward as it suggests an optimization for a lower
SNR. In this case, it is very likely that even if the measurement channel has a significant
mismatch, the compression rate is still lower than the rate constraint Cm. However, both
approaches result in a loss of relevant mutual information.
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Figure 4.15: Measurement channel mismatch applying the GDIB algorithm for M = 5
sensors with Csum = 7.5 bit/s/Hz equally distributed on each forward link Cm = Csum

M ,
|X| = 4, |Ym| = 512 and |Zm| = 4
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Figure 4.16: Measurement channel mismatch applying the GDIB algorithm for M = 5
sensors with Csum = 10.0 bit/s/Hz equally distributed on each forward link Cm = Csum

M ,
|X| = 4, |Ym| = 512 and |Zm| = 4
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4.2.9 Greedy Distributed Information Bottleneck Algorithm for Deter-
ministic Mappings

The original GDIB algorithm produces stochastic mappings p(zm|ym). However, stochastic
quantization is challenging from an implementation point of view. Therefore, it might
be preferable to design deterministic quantizers instead. Following the derivation for the
scalar deterministic iterative IB approach in Section 3.4, a similar approach can be pursued
for the distributed case. This means with the choice of βm = 0, the utility functions
in (4.15a) - (4.15b) focus only on the preservation of relevant information. Moreover,
the second term in the statistical distance (4.17) can be neglected, and the sum in the
denominator of the update equation (4.16) is dominated by the smallest KL divergence.
Hence, for each sample, ym, the conditional probabilities p(zm|ym) tend to zero for all zm
except for the one with the smallest KL divergence, which tends to be one. With

z∗m = arg min
zm

EZ<m|ym

[
DKL [p(x|ym, z<m)∥p(x|z≤m)]

]
, (4.25)

the update equation becomes

p(zm|ym) =

1 for zm = z∗m

0 else
(4.26)

and provides a deterministic mapping. Since the original GDIB algorithm adjusts the
compression rates by varying βm, in the deterministic case, the compression needs to be
adjusted by choosing an appropriate cardinality |Zm|. Within this thesis, this variation of
the GDIB approach is named deterministic GDIB. In Section 3.4, it was shown that the
scalar deterministic iterative IB approach produces equally distributed output clusters.
Naturally, this is the same for the deterministic GDIB approach when optimizing the
first sensor. However, for later sensors, this might not necessarily hold anymore since the
optimization exploits the mappings of previously designed quantizers. Therefore, |Zm| does
not directly determine the compression rate to log2 |Zm| for m > 1 but to H(Zm). The
adapted flowchart for the deterministic GDIB approach is given in Figure 4.17. Basically,
the main difference to the original GDIB approach lies in the bisection search, which is
performed in the ”loop to adjust |Zm|”, which now adjusts the cardinality of Zm of the
specific sensor. The extended Blahut-Arimoto algorithm including (4.25) and (4.26) is
given in Algorithm 5.

Performance Analysis Considering the Sum-Rate Only: Figure 4.18 illustrates
the relevance compression curve, i.e., the vector compression rate I(Y ;Z) versus the rel-
evant mutual information I(X ;Z) for the original GDIB and the deterministic GDIB
solution. Here, a symmetric scenario with M = 3 sensors, a relevant 4-ASK signal, and
measurement SNRs γm = 8 dB is considered. The red curve represents the original GDIB
solution, where the output cardinality |Zm| = 16 is fixed for all sensors, and the com-
pression rate is adjusted by varying βm. The blue marks represent the deterministic case,
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Figure 4.17: Flowchart of the deterministic GDIB algorithm
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Figure 4.18: Compression-Relevance curve for M = 3, |X| = 4, |Ym| = 64 and γm = 8 dB;
for stochastic GDIB: |Zm| = 16
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Algorithm 5: Extended Blahut-Arimoto algorithm for the deterministic GDIB
algorithm

input : m, p(ym, x), pinit(zm|ym), p(z<m|x), ϵ
output : p(zm|ym) ∈ {0, 1}

1 begin
initialization:

p(zm|ym)(0) ← pinit(zm|ym),
l← 1

2 p(z<m, ym, x) = p(z<m|x)p(ym, x)
3 p(x|z<m, ym) = p(z<m, ym, x)/

∑
x p(z<m, ym, x)

4 p(z<m|ym) =
∑

x p(z<m, ym, x)/
∑

x p(ym, x)
5 do
6 // calculate p(z≤m, ym, x)

7 p(z≤m, ym, x)(l) = p(z<m, ym, x)p(zm|ym)(l−1)

8 // KL divergence DKL(ym, z≤m) of (4.17)
9 p(x|z≤m)(l) =

∑
ym

p(z≤m, ym, x)(l)/
∑

ym,x p(z≤m, ym, x)(l)

10 DKL(ym, z≤m)(l) =
∑

x p(x|z<m, ym) · log p(x|z<m,ym)

p(x|z≤m)(l)

11 // find minimum of DKL(ym, z≤m) for all samples ymi ∈ Ym

12 for ymi ∈ Ym do
13 z∗m(ymi)

(l) = arg min
zm

∑
z<m

p(z<m|ym)DKL(ym, z≤m)(l)

14 // update quantizer for specific ymi

15 p(z∗m(ymi)
(l)|ymi)

(l) = 1

16 l← l + 1

17 while DJS[ p
(l)(zm|ym) || p(l−1)(zm|ym) ] > ϵ

where βm = 0 for all sensors, and the compression rate is adjusted by varying the cardi-
nality of Zm. In particular, |Zm| is linearly increased from |Zm| = 1 to |Zm| = 12. To
simplify the analysis, just the sum-rate is considered. Hence, βm = β and |Zm| = |Z| hold
for all sensors. In this way, the overall performance is not influenced by individual rate
constraints. For this simulation, no bisection search is needed. Therefore, the individual
compression rates of each sensor might differ, comparing the stochastic with the deter-
ministic case. Figure 4.18 reveals that the solution of the deterministic GDIB solution is
very close to the stochastic one, especially for larger compression rates. The difference
confirms the result for the scalar case in Section 3.4 as well as the statement in [Slo02]
that stochastic mappings usually perform better than deterministic mappings since the
global optimum is stochastic in general.

Performance for Individual Link Capacities: Figure 4.19 illustrates a comparison of
the original GDIB resulting in stochastic mappings and the deterministic GDIB for a setup
with individual link capacities Cm. Therefore, a symmetric scenario of M = 5 sensors,
γm = 6 dB, and link capacities of Cm = Csum

M has been analyzed. The relevant information
is chosen to be a 4-ASK signal. The left diagram of Figure 4.19 shows the relevant mutual
information I(X ;Z) versus different sum-rates Csum. In red, the performance of the
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Figure 4.19: Comparison of original GDIB and deterministic GDIB with individual link
capacities Cm = Csum

M for different sum-rates; M = 5, |X| = 4, |Ym| = 64 and γm = 6 dB;
for stochastic GDIB: |Zm| = 16

original GDIB is shown, while the performance of the deterministic approach is depicted
in blue. The individual compression rates for the different sum-rates are adjusted using
the bisection search. In the case of the original GDIB, βm is varied for a fixed cardinality
|Zm| = 16. For the deterministic case, βm = 0 holds and the compression rate is adjusted
by changing |Zm|. Note that only integer values can be used to adjust the cardinality,
which may result in compression rates falling below the individual link capacity Cm. It
becomes obvious that the performance of the original GDIB approach outperforms the
deterministic GDIB approach, especially for lower sum-rates. This could be expected since
the performance of stochastic mappings is better than that of deterministic mappings.
Having a closer look at the deterministic GDIB approach, it can be observed that for
Csum < 5 bit/s/Hz, the deterministic approach fails completely. Since the sum capacity is
equally distributed on the different links, the individual link capacity is Cm < 1 bit/s/Hz
in this area. As already pointed out in the scalar scenario in Section 3.4, the first sensor
produces mappings with equally distributed output clusters. Since two output clusters
represent the lowest possible compression rate for I(Y1;Z1) > 0 bit/s/Hz the minimum
achievable compression rate is I(Y1;Z1) = H(Z1) = 1 bit/s/Hz. Everything below causes
the algorithm to choose just one output cluster, leading to zero relevant mutual information
I(Y1;Z1) = 0. Moreover, if the first sensor cannot preserve any information, the second
sensor would treat the first one as not existing. Hence the second sensor experiences the
same problem leading to a complete network failure.
The right diagram in Figure 4.19 illustrates compression rates I(Ym;Zm|Z<m) for each
sensor in the network for the same simulation. The top diagram represents the original
GDIB approach, while the bottom diagram represents the deterministic GDIB approach.
The round markers show the individual link capacity for each sensor Cm. Comparing
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the two approaches reveals the difference in performance. The original GDIB approach
always hits the target compression rate with all sensors. Only for large sum-rates the last
sensors in the optimization chain cannot provide enough new information to exhaust the
link capacity Cm. All information about the relevant signal x has already been sent by
previous sensors. Naturally, this might change for different relevant signals or SNRs. On
the contrary, the deterministic approach does not exactly hit the compression rate since
the cardinality |Zm| can only be adjusted in integer steps. If the first sensor has a large
gap to the capacity C1, subsequent sensors can perform better. It seems as if they try to
compensate the loss of the first sensor. If, however, the first sensor almost hits the capacity
C1, later sensors have larger gaps to the target rates. Moreover, this is directly linked to
the relevant information as well. This gap to the capacity Cm leads to the performance
loss in relevant mutual information I(X ;Z) shown in the left diagram in Figure 4.19.
Moreover, the solid blue curve in the right diagram confirms the fact that the first sensor
produces equally distributed output clusters.

4.3 Reduced-Memory Complexity GDIB Algorithm

Basically, the previously defined GDIB algorithm can be applied for distributed setups of
any network size. However, as the algorithm exploits the mappings of previously designed
quantizers, the dimensionality of the pmfs in the statistical distance measure dβm(ym, zm)

in (4.17) used to update the quantizer mappings in (4.16) are dependent on the network
size. More precisely, by increasing the network size, the dimensionality of the involved
vector Z<m increases. Therefore, a linear increase of the network size leads to an exponen-
tial increase in the number of elements in the representing data structure of the involved
pmfs. To give a short example, considering a network of M = 10 sensors with cardinalities
|X| = 4, |Ym| = 64 and |Zm| = 8 ∀m, when optimizing the last sensor the tuple (yM , z<M )

already comprise 64 ·89 ≈ 8.59 ·109 elements. In order to store the pmf p(x|yM , z<M ) with
8 byte for double precision, it requires 256 GiB4. The given example emphasizes that the
GDIB algorithm will definitely run into memory problems for larger network sizes.
In order to ensure feasibility even for larger networks, an approach to compress the high
dimensional Z<m onto a single dimensional Z∗

<m of appropriate cardinality |Z∗
<m| is in-

troduced in [Ste+21b; Ste+21a]. Since Z∗
<m shall be as informative as possible about the

relevant signal X , the IB method can be applied for compression. However, since there are
no restrictions on the compression rate, the trade-off parameter can be chosen as β = 0 in
order to focus only on the preservation of relevant information. The optimization problem
for compressing Z<m can be formulated as

LC [p(z
∗|z)] = max

p(z∗|z)
I(X ;Z∗). (4.27)

41 GiB = 1024 MiB, 1 MiB = 1024 KiB, 1 KiB = 1024 byte
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Figure 4.20: (a) sequential compression of z<6 for sensor 6 (b) one-step compression

The resulting compressed Z∗
<m shall be as informative about the relevant signal X as

the multidimensional Z<m. Therefore, they can be exchanged in the definition of the
statistical distance dβm(ym, zm) in (4.17), leading to a compressed version

dc
βm

(ym, zm) := EZ∗
<m|ym

[
1

βm
·

DKL [p(x|ym, z∗<m)∥p(x|zm, z∗<m)]− log p(zm|z∗<m)

]
. (4.28)

It becomes obvious that in this modified definition of the statistical distance dc
βm

(ym, zm)

no multivariate vector Z<m occurs anymore. Therefore, storing these pmfs in appropriate
data structures requires much less memory than in (4.17).
Using this modified definition of the statistical distance in (4.28) a reduced-memory com-
plexity version of the extended Blahut-Arimoto algorithm to optimize a specific quantizer
m for a specific βm is given in Algorithm 6. The compression of Z<m can be performed in
advance of this algorithm. This compression delivers the input pmf p(z∗<m, x). Two differ-
ent compression schemes will be discussed in the next subsections. The KL divergence in
(4.28) is determined in lines 8 to 10 by means of the joint pmf p(z∗<m, zm, ym, x) calculated
in lines 6 and 7. The statistical distance dc

βm
(zm, ym) computed in lines 11 to 13 is used to

update the quantizer mapping p(zm|ym). As in the original GDIB algorithm, the reduced-
memory complexity version of the Blahut-Arimoto-like algorithm in Algorithm 6 stops
when a certain stopping criterion is fulfilled. Applying this reduced-memory complexity
version of the Blahut-Arimoto algorithm in the GDIB algorithm of Figure 4.1 defines the
reduced-memory complexity GDIB algorithm.

4.3.1 Sequential Compression Scheme

As already mentioned, the compression of z<m to z∗<m is performed using the IB method.
In particular, to overcome the curse of dimensionality, a sequential compression scheme can
be performed. Here, z<m is compressed in a sequential way using a tree-based structure.
To achieve this, the compression is always performed for two variables at a time. A
graphical tool to illustrate this are IB graphs [LSB16a]. Here, the trapezoid represents
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Algorithm 6: Extended Blahut-Arimoto Algorithm with Reduced-Memory
Complexity

input : m, p(ym, x), pinit(zm|ym), βm, ϵ,
p(z∗<m, x)

output : p(zm|ym) ∈ [0, 1]
1 begin

initialization:
p(zm|ym)(0) ← pinit(zm|ym),
l← 1

2 p(z∗<m, ym, x) = p(z∗<m, x)p(ym, x)/p(x)
3 p(x|z∗<m, ym) = p(z∗<m, ym, x)/

∑
x p(z

∗
<m, ym, x)

4 p(z∗<m|ym) =
∑

x p(z
∗
<m, ym, x)/p(ym)

5 do
6 // calculate p(z∗<m, zm, ym, x)

7 p(z∗<m, zm, ym, x)(l) = p(z∗<m, ym, x)p(zm|ym)(l−1)

8 // KL divergence DKL(ym, zm, z∗<m) of (4.28)
9 p(x|z∗<m, zm)(l) =

∑
ym

p(z∗<m, zm, ym, x)(l)/
∑

ym,x p(z
∗
<m, zm, ym, x)(l)

10 DKL(ym, zm, z∗<m)(l) =
∑

x p(x|z∗<m, ym) · log p(x|z∗<m,ym)

p(x|z∗<m,zm)(l)

11 // distance dc
βm

(zm, ym) (4.28)
12 p(zm|z∗<m)(l) =

∑
ym,x p(z

∗
<m, zm, ym, x)(l)/

∑
ym,x p(z

∗
<m, ym, x)

13 dc
βm

(zm, ym)(l) =∑
z∗<m

p(z∗<m|ym) ·
[

1
βm

DKL(ym, zm, z∗<m)(l) − log p(zm|z∗<m)(l)
]

14 // update quantizer p(zm|ym)

15 p(zm|ym)(l) = 1∑
z e

−dc
βm

(zm,ym)(l)
e−dc

βm
(zm,ym)(l)

16 l← l + 1

17 while DJS[ p
(l)(zm|ym) || p(l−1)(zm|ym) ] > ϵ

the IB compression. The relevant random variable is written inside the trapezoid. Since
IB graphs are closely related to factor graphs, they denote the involved random variables
as variable nodes expressed by circles.
An example is given in Figure 4.20a considering a network of 6 sensors. When optimizing
the last sensor, the indexes z1, . . . , z5 shall be compressed to z∗<6. The compression starts
with z1 and z2, compressing them to z∗<3. The corresponding algorithm for the first
compression step is given in Algorithm 7. Its output z∗<3 serves as an input for a subsequent
joint IB compression with z3. Algorithm 8 represents the compression for all sensors
3 ≤ m ≤ M . This procedure can be repeated for all remaining variables, leading to the
tree-based structure.

4.3.2 One-Step Compression Scheme

The one-step compression scheme serves as a benchmark for the sequential compression
scheme introduced in the previous subsection. Here, the compression is performed in a
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Algorithm 7: Sequential Compression of z<3 for sensor m = 3

input : m, p(z1|x), p(z2|x), p(x)
output : p(z∗<3, x)

1 begin
2 p(z<3, x) = p(z1|x)p(z2|x)p(x)
3 p(z∗<3, x)← IB(p(z<3, x), β = 0)

Algorithm 8: Sequential Compression of z<m for sensor m > 3

input : m, p(z∗<m−1|x), p(zm−1|x), p(x)
output : p(z∗<m, x)

1 begin
2 p(z∗<m−1, zm−1, x) = p(z∗<m−1|x)p(zm−1|x)p(x)
3 p(z∗<m, x)← IB(p(z∗<m−1, zm−1, x), β = 0)

single step, mapping z<m directly onto z∗<m. An example is given in Figure 4.20b. The
corresponding algorithm for the one-step compression scheme is given in Algorithm 9.
First, the joint pmf p(z<m, x) has to be determined in line 2, which deals as an input
parameter for the IB algorithm, used in line 3 to perform the compression. Note that
the joint pmf p(z<m, x) still depends on the number of sensors in the network. Therefore,
this one-step compression scheme does not solve the curse of dimensionality and becomes
infeasible for larger networks.

4.3.3 Analysis of Compression Schemes

Figure 4.21 analyzes the evolution of the compressed version Z∗
≤n within the sequential

optimization scheme of Figure 4.20a. Therefore, it illustrates the mutual information
I(X ;Z∗

≤n) versus the sequential compression steps n when optimizing the last sensor in a
network of size M = 10. Here, n represents a step, i.e., a single run of Algorithm 7 or Algo-
rithm 8 in order to compress Z<10 to Z∗

<10. The mutual information I(X ;Z∗
≤n) represents

the amount of information the compressed version Z∗
≤n has about the relevant information

X . The dotted lines show the case where the Z<10 is not compressed at all (NC). The
solid lines represent the case where the one-step compression scheme (OC) is used for
compression. Naturally, these cases do not depend on the compression step n, which is
why they occur as horizontal lines. Finally, the dashed lines represent the case where the
sequential compression scheme (SC) is applied. The gap between the uncompressed case
and the one-step compression scheme can be interpreted as the general compression loss.
Naturally, by increasing the cardinality |Z∗|, this loss becomes smaller. In the considered
scenario, this loss disappears completely for a cardinality of |Z∗| = 64, which is much lower
than |Z<10|9 = 218 of the uncompressed case. Using the sequential compression scheme,
the amount of information Z∗ has about X increases with each additional step, i.e., with
each additional sensor contributing information about X . However, if the cardinality |Z∗|
is too low, I(X ;Z∗

≤n) saturates early, and a significant gap between the one-step compres-
sion scheme and the sequential compression scheme remains. This gap can be explained

75



Chapter 4: Algorithmic Solutions for Non-Cooperative Distributed Remote Sensing

Algorithm 9: One-Step Compression
input : m, p(zν |x) ∀ν < m, p(x)
output : p(z∗<m, x)

1 begin
2 p(z<m, x) = p(z1|x) · . . . · p(zm−1|x)p(x)
3 p(z∗<m, x)← IB(p(z<m, x), β = 0)
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Figure 4.21: Evolution of the compressed version Z∗
≤n versus sequential compression

steps considering the last sensor; symmetric scenario: M = 10 sensors, sum-rate
Csum = 2.5 bit/s/Hz and Cm = Csum

M , SNRs γm = 8 dB, |X| = 4, |Ym| = 64 and |Zm| = 4;
Not Compressed (NC), One-Step Compression (OC), Sequential Compression (SC)

by an accumulation of compression losses. By increasing the cardinality |Z∗|, this loss
decreases, and the sequential compression scheme can perform as good as the one-step
compression scheme. Moreover, the memory requirements are reduced significantly when
compressing Z<10 to Z∗

<10, see Figure 4.23.

4.3.4 Performance of Reduced-Memory Complexity GDIB

The overall performance of the GDIB algorithm when using the described compression
schemes is analyzed in Figure 4.22. Here, the relevant mutual information I(X ;Z) is
depicted versus the number of sensors in the network after optimizing each sensor. In this
scenario, the sensors share the channel in an orthogonal way and a round-robin fashion,
i.e., the sum-rate Csum is equally distributed over all sensors Cm = Csum

M . The black dot-
ted line represents the case of the original GDIB algorithm without using the described
compression schemes, which is already discussed in Subsection 4.2.5. The solid lines repre-
sent the reduced-memory complexity GDIB algorithm applying the one-step compression
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Figure 4.22: Relevant mutual information versus number of sensors; symmetric scenario,
sum-rate Csum = 2.5 bit/s/Hz and Cm = Csum

M , SNRs γm = 8 dB, |X| = 4, |Ym| = 64 and
|Zm| = 4; One-Step Compression (OC), Sequential Compression (SC)

scheme. The general loss due to compression can be observed by the gap to the uncom-
pressed case. Since the sensors share the same channel and the individual link capacity is
equally distributed over all sensors, a larger network leads to a stronger compression. In
this case, more information in Z∗

<m about X is required to preserve the relevant mutual
information. However, if this is not available, due to compression with low cardinality |Z∗|,
the overall performance degrades for larger network sizes. As expected, the loss to the
uncompressed case decreases using larger cardinalities |Z∗|. Of course, a general statement
about the required cardinality |Z∗| is not meaningful since it depends, i.a., on the network
size. However, in the considered setup, a cardinality of |Z∗| = 64 is sufficient to remove
the general compression loss completely and perform as good as in the uncompressed case.
The dashed lines represent the reduced-memory complexity GDIB algorithm applying the
sequential compression scheme. The introduced accumulation of compression losses of the
sequential compression scheme results in a performance degradation compared to the case
of a one-step compression. However, by increasing the cardinality |Z∗|, this loss can become
negligible. In particular, for |Z∗| = 64, it disappears completely in the considered setup.
In this case, the sequential compression scheme not only performs as good as the one-
step compression scheme but also approaches the performance of the uncompressed case.
Hence, using an appropriate cardinality |Z∗| can reduce the required memory requirement
and still approach the performance of the original GDIB algorithm.
In order to highlight the advantage of the reduced-memory complexity GDIB algorithm,
the memory requirements to store the single pmf p(x|y12, z∗<12) used in the calculation
of the KL divergence when optimizing the last sensor in a network of M = 12 sensors
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z∗<m memory to store p(x|y12, z∗<12)

uncompressed 8 GiB
|Z∗| = 2 4 KiB
|Z∗| = 4 8 KiB
|Z∗| = 8 16 KiB
|Z∗| = 12 24 KiB
|Z∗| = 64 128 KiB

Figure 4.23: Memory requirements to store p(x|y12, z∗<12) in a network of M = 12 sensors
when optimizing the last one
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Figure 4.24: Relevant mutual information versus SNR γm in dB for symmetric scenario and
sum-rate Csum = 2.5 bit/s/Hz, M = 7, |Ym| = 64 and |Zm| = 4; One-Step Compression
(OC), Sequential Compression (SC)

are given in Figure 4.23. Using 8 byte for double precision with cardinalities |X| = 4,
|Ym| = 64 and |Zm| = 4 it requires 4 ·64 ·411 ·8 byte = 8 GiB to store p(x|yM , z<M ) in the
uncompressed case, since for |Z<12| = 411 = 4194304 holds. Moreover, an increasing cardi-
nality |Zm| would lead to an exponential increase of the memory requirements. Applying
the introduced sequential compression scheme reduces these memory requirements signif-
icantly. Using a cardinality |Z∗| = 64 to approach the performance of the uncompressed
case, it needs only 4 · 64 · 64 · 8 byte = 128 kiB for storing p(x|yM , z∗<M ).
Figure 4.24 depicts the relevant mutual information I(X ;Z) versus the measurement SNRs
γm in dB. In this simulation, a network size of M = 7 and the quoted cardinalities have
been considered. As before, the sensors share the channel in an orthogonal way and a
round-robin fashion, i.e., the sum-rate Csum = 2.5 bit/s/Hz is equally distributed over all
sensors Cm = Csum

M . The original GDIB approach is depicted by the black dotted curve.
Again, this represents the upper bound. The solid lines represent the reduced-memory
complexity GDIB approach using the one-step compression scheme. The dashed lines
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Figure 4.25: Compression loss ∆I(X ;Z) versus |Z∗|; Symmetric scenario with M = 12,
sum-rate Csum = 2.5 bit/s/Hz, SNRs γm = 8 dB, |X| = {2, 4, 8}, |Ym| = 64 and |Zm| = 4;
One-Step Compression (OC), Sequential Compression (SC)

represent the sequential compression scheme. Both approaches are given for different car-
dinalities |Z∗|. Naturally, by increasing the SNR, the overall relevant information I(X ;Z)

also increases. Moreover, the loss between the sequential compression scheme and the one-
step compression, which shows the accumulated loss due to multiple compression steps,
increases for larger SNRs. It can be observed that for larger cardinalities |Z∗|, the general
difference between compression and no compression becomes smaller. In general, higher
measurement SNRs require a larger cardinality |Z∗|.
Finally, Figure 4.25 shows the loss in relevant mutual information ∆I(X ;Z) = I(X ;Z)−
Ic(X ;Z) introduced by the different compression schemes versus cardinalities |Z∗|. The
considered scenario is a network with M = 12 sensors, measurement SNR γm = 8 dB,
and the quoted cardinalities. Again, the sensors share the channel in an orthogonal way
and a round-robin fashion, i.e., the sum-rate Csum = 2.5 bit/s/Hz is equally distributed
over all sensors Cm = Csum

M . The simulation is done for different alphabets of the relevant
signal X . As before, the solid lines represent the one-step compression (OC) scheme,
while the dashed lines represent the sequential compression (SC) scheme. In the case
of a 2-ASK, the compression of z<m to z∗<m does not introduce any error, independent
of the compression scheme or the cardinality |Z∗|. For a 4-ASK and an 8-ASK, the
error becomes more pronounced. As expected by reviewing the previous results, the error
for the sequential compression scheme is larger than the one introduced by the one-step
compression scheme. However, with increasing cardinality |Z∗|, this difference becomes
smaller. Moreover, the general loss introduced by compression decreases as well. The
considered scenario does not underline the difference between the modulation schemes
4-ASK and 8-ASK. Of course, this might be totally different using a different scenario,
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e.g., a higher sum-rate or cardinality |Zm|, which would directly lead to an increase in
the achievable relevant information. In this case, the difference between the modulation
schemes might be more pronounced.

4.4 Distributed Channel Aware Information Bottleneck
Algorithm

A Channel-Aware Optimization Approach: This section considers a variation of
the CEO problem with a logarithmic loss distortion measure where the assumption of
perfect transmission over links with specific capacities does not hold anymore. In fact,
in real transmission systems with finite-length coding schemes, there will always remain
a residual error probability. This setup has already been analyzed in [MA16], where the
authors introduced a double max algorithm that aims to maximize the overall relevant
mutual information between the relevant signal and the output of all forward channels.
In [HWD18d], the authors compared the CAIB approach of [Win14; WMB13] with the
double max algorithm in [MA16] and proved their algorithmic equivalence at least for a
single sensor and erroneous forward channels. A distributed variant of the CAIB approach
has already been proposed in [HWD21] where the authors extend their vector CAIB algo-
rithm proposed in [Has+20] to the multi-terminal case with and without side-information.
Moreover, they provided a mathematical analysis of the convergence of the algorithm.
This section adapts the previously described GDIB approach defined in Section 4.1 to
incorporate a non-perfect forward channel from the sensors to the common receiver. The
residual error probability of the forward channel can be modeled by a DMC with a specific
transition matrix p(z̃m|zm). Therefore, the forward channel has to be taken into account
in the optimization process. The general system model can still be illustrated as in Figure
3.17 but with DMCs as forward channels instead of simple capacities Cm. In fact, it is an
extension of the scalar Channel-Aware Information Bottleneck Approach of Section 3.5 to
the distributed case. The relevant mutual information I(X ; Z̃m) for a specific sensor m is
measured between the relevant variable X and the output of the forward channel Z̃m. As
the statistic of the DMC is given with cardinalities |Zm| and |Z̃m|, the compression rate
is specified implicitly. Therefore, the focus solely lies on maximizing the relevant mutual
information. Inspired by the greedy optimization approach derived in Section 4.1, the
optimization problem for each sensor m becomes

p(z1|y1)∗ = arg max
p(z1|y1)

I(X ; Z̃1) (4.29a)

...
p(zM |yM )∗ = arg max

p(zM |yM )

I(X ; Z̃M |Z̃<M ) . (4.29b)
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Algorithmic solution: The derivation of an algorithmic solution follows similar steps
as in the scalar case. For a specific sensor m, the objective becomes

p(zm|ym)∗ = arg max
p(zm|ym)

I(X ; Z̃m|Z̃<m) . (4.30)

With

I(X ;Zm, Z̃m|Z̃<m) = I(X ;Zm|Z̃<m) + I(X ; Z̃m|Z̃<m,Zm)︸ ︷︷ ︸
=0

= I(X ; Z̃m|Z̃<m) + I(X ;Zm|Z̃≤m) (4.31)

the relevant mutual information in (4.30) can be rewritten to

I(X ; Z̃m|Z̃<m) = I(X ;Zm|Z̃<m)− I(X ;Zm|Z̃≤m)

= I(X ;Ym|Z̃<m)− I(X ;Ym|Z̃<m,Zm)

− I(X ;Ym|Z̃≤m) + I(X ;Ym|Z̃≤m,Zm)

=
(a)

I(X ;Ym|Z̃<m)− I(X ;Ym|Z̃≤m) . (4.32)

Equation (a) holds, since the mutual information I(X ;Ym|Z̃<m,Zm) and I(X ;Ym|Z̃≤m,Zm)

are identical due to the Markov property. Since only the last term in (4.32) depends on
the mapping p(zm|ym) the optimization problem in (4.30) becomes

p(zm|ym)∗ = arg min
p(zm|ym)

I(X ;Ym|Z̃≤m) . (4.33)

The mutual information in (4.33) can now be calculated as

I(X ;Ym|Z̃≤m) = EX ,Ym,Z̃≤m

[
log2

p(x|ym, z̃<m)

p(x|z̃≤m)

]
=
(a)

∑
ym

p(ym)
∑
z̃≤m

p(z̃≤m|ym)
∑
x

p(x|ym, z̃<m) log2
p(x|ym, z̃<m)

p(x|z̃≤m)

=
(b)

∑
ym

p(ym)
∑
z̃≤m

∑
y<m

p(z̃≤m|y≤m)p(y<m|ym)DKL [p(x|ym, z̃<m)∥p(x|z̃≤m)]

=
(c)

∑
ym

p(ym)
∑
z̃m

p(z̃m|ym)
∑
z̃<m

∑
y<m

p(z̃<m|y<m)p(y<m|ym)DKL [·∥·]

=
∑
ym

p(ym)
∑
zm

p(zm|ym)∑
z̃m

p(z̃m|zm)
∑
z̃<m

∑
y<m

p(z̃<m|y<m)p(y<m|ym)DKL [·∥·]

=
∑
ym

p(ym)
∑
zm

p(zm|ym)Cm(ym, zm) (4.34)
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where Cm(ym, zm) is defined as

Cm(ym, zm) :=
∑
z̃m

p(z̃m|zm)
∑
z̃<m

∑
y<m

p(z̃<m|y<m)p(y<m|ym)DKL [·∥·] . (4.35)

In (4.34) equation (a), p(x|ym, z̃<m) reveals from the Markov property, since the dimension
of z̃m can be skipped. Expending p(z̃≤m|ym) by y<m reveals equation (b). Factorizing
p(z̃≤m|y≤m) =

∏m
i=1 p(z̃i|yi) and decoupling the sum over z̃m leads to equation (c). The

term Cm(ym, zm) is non-negative and the mutual information in (4.33) is minimized if
Cm(ym, zm) is minimized for each value of ym. Hence, for each value ym the optimal index
zm can be found by

z∗m(ym) = arg min
zm

C(ym, zm) . (4.36)

Having a closer look at the definition of Cm(ym, zm) in (4.35) it becomes obvious that
p(y<m|ym) depends on the number of sensors in the network and might cause memory
problems for larger networks. This is even more pronounced since the observation ym

usually needs to be pre-quantized by an appropriate number of clusters which is generally
quite large.
The Algorithm 10 describes the pseudo-code for the Channel Aware Greedy Distributed
Information Bottleneck (CA-GDIB) approach for a specific sensor m. It implements basi-
cally a slight modification of the scalar CAIB algorithm described in Section 3.5. Naturally,
in order to optimize the complete network, the optimization process has to be done for
all sensors. The optimization of a specific sensor m requires knowledge of the quantizer
mappings as well as the DMC transition matrices of previously designed sensors. As a
result, the algorithm provides a deterministic mapping p(zm|ym) for sensor m.

Performance for Different Measurement SNRs: Figure 4.26 illustrates the overall
performance of the CA-GDIB algorithm compared to the original GDIB algorithm for a
network size of M = 5 sensors. The DMCs are modeled as symmetric matrices |Zm|×|Z̃m|
with |Zm| = |Z̃m|. For each symbol, the probability of a correct transmission is given as
1−ϵ, whereas all other transitions have the probability ϵ

N−1 . The relevant signal is chosen
to be a 4-ASK signal. As mentioned before, the CA-GDIB algorithm needs to store the
pmf p(y<m|ym), which depends on the number of sensors in the network. Naturally, this
may cause memory problems for larger networks. Therefore, the observations are pre-
quantized with a low cardinality of |Ym| = 32. The output cardinalities are chosen to
|Zm| = 8. The optimization algorithms are initialized with a uniform quantization. Note
that the trade-off parameter for the original GDIB algorithm is chosen to βm = 0 in order
to be able to compare the CA-GDIB algorithm to the original GDIB algorithm. In this
case, both result in deterministic mappings.
As a performance measure, the overall relevant mutual information I(X ; Z̃) is depicted
for different measurement signal-to-noise ratios γm. The gray-shaded area illustrates the
non-achievable region since I(X ;Y) ≥ I(X ; Z̃) holds due to the data processing inequality.
The black dashed-dotted line represents the mutual information I(X ;Z) achieved by the
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Algorithm 10: Distributed Channel Aware GDIB algorithm
input : p(x, yi), p(z̃i|zi), p(z̃i|zi)∀i ≤ m

pinit(zm|ym), βm, ϵ
output : p(zm|ym) ∈ {0, 1}

1 begin
initialization:

p(zm|ym)(0) ← pinit(zm|ym),
l← 1

2 p(z̃<m|x) =
∏m−1

i=1

∑
yi

∑
zi
p(z̃i|zi)p(zi|yi)p(yi|x)

3 p(z̃<m, ym, x) = p(z̃<m|x)p(ym, x)
4 p(x|z̃<m, ym) = p(z̃<m, ym, x)/

∑
x p(z̃<m, ym, x)

5 p(z̃<m|y<m) =
∏m−1

i=1

∑
zi
p(z̃i|zi)p(zi|yi)

6 p(y≤m) =
∑

x p(x)
∏m

i=1 p(yi|x)
7 p(y<m|ym) = p(y≤m)/p(ym)
8 p(z̃<m|ym) =

∑
y<m

p(z̃<m|y<m)p(y<m|ym)

9 do
10 p(z̃m, x)(l) =

∑
zm

∑
ym

p(z̃m|zm)p(zm|ym)(l−1)p(ym, x)

11 p(z̃≤m, x)(l) = p(z̃<m|x)p(z̃m, x)(l)

12 // calculate KL divergence DKL(ym, z̃≤m)

13 p(x|z̃≤m)(l) = p(z̃≤m, x)(l)/
∑

x p(z̃≤m, x)(l)

14 DKL(ym, z̃≤m)(l) =
∑

x p(x|z̃<m, ym) · log p(x|z̃<m,ym)

p(x|z̃≤m)(l)

15 // calculate C(ym, zm)

16 C(ym, zm)(l) =
∑

z̃m
p(z̃m|zm)

∑
z̃<m

p(z̃<m|ym) ·DKL(ym, z̃≤m)(l)

17 // find minimum of C(ym, zm) for all samples ymi ∈ Ym

18 for ymi ∈ Ym do
19 z∗m(ymi)

(l) = arg min
zm

C(ymi , zm)(l)

20 // update quantizer for specific ymi

21 p(z∗m(ymi)
(l)|ymi)

(l) = 1

22 l← l + 1

23 while DJS[ p
(l)(zm|ym) || p(l−1)(zm|ym) ] > ϵ

GDIB algorithm without the influence of the DMC. In a network of M = 5 sensors and
an output cardinality of |Zm| = 8, this mutual information is very close to I(X ;Y). The
solid lines represent the performance of the CA-GDIB algorithm. The dashed lines show
the mutual information I(X ; Z̃) applying the resulting quantizers of the original GDIB
algorithm in a network with a residual error probability. It becomes obvious that the CA-
GDIB algorithm outperforms the GDIB algorithm, especially for DMCs with larger error
probabilities. Naturally, this is caused by the fact that the CA-GDIB algorithm considers
the DMCs within the optimization process. For smaller error probabilities and larger
measurement signal-to-noise ratios, there occurs nearly no gap between the performance
of the CA-GDIB algorithm and the GDIB algorithm. Moreover, for ϵ = 0.1 and an SNR
of γm > 13 dB the performance approaches the I(X ;Y) limit. Hence, the DMC has no
influence anymore. Comparing Figure 4.26 to the results of the scalar case in Figure 3.13 it
can be observed that gap between I(X ; Z̃) and I(X ;Z) is much smaller in the distributed
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Figure 4.26: Relevant mutual information I(X ; Z̃) for different measurement signal-to-
noise ratios and an artificially modeled DMC comparing the CA-GDIB algorithm to the
GDIB approach for a network size of M = 5; |X| = 4, |Ym| = 32, |Zm| = 8

case, especially in higher SNR ranges. This shows that in a network of M = 5 sensors,
the negative effect introduced by the DMC is partially compensated by the network size.

Performance for Different Network Sizes: Figure 4.27 compares the performance
of the CA-GDIB algorithm with the original GDIB algorithm for a varying network size.
Therefore, the relevant mutual information I(X ; Z̃) is depicted versus the number of
sensors in the network M . As before, the DMCs are modeled as symmetric matrices
|Zm| × |Z̃m| with |Zm| = |Z̃m|. Again, the relevant signal is modeled as a 4-ASK signal.
In order to be able to compare the CA-GDIB algorithm to the original GDIB algorithm,
the trade-off parameter for the GDIB algorithm has to be chosen to βm = 0 to achieve
deterministic mappings. The simulations are done for an SNR of γm = {3, 8, 12, 15} dB.
In all plots, in Figure 4.27, the gray-shaded area illustrates the non-achievable region due
to the data processing inequality. Additionally, the mutual information I(X ;Z) achieved
by the original GDIB algorithm without the influence of the DMC is depicted by the black
dashed-dotted line. Naturally, it is very close to the optimum I(X ;Y), especially for larger
network sizes and higher signal-to-noise ratios. The solid line represents the performance of
the CA-GDIB algorithm, while the dashed line represents the performance of the original
GDIB algorithm. In all plots, it can be observed that the CA-GDIB algorithm outperforms
the original GDIB algorithm, especially for DMCs with larger error probabilities. This
observation is nearly independent of the network size and is caused by the fact that the
CA-GDIB algorithm incorporates the statistics of the DMC into the optimization problem.
Only for DMCs with lower error probabilities and larger networks the performance of the
original GDIB algorithm approaches the performance of the CA-GDIB algorithm. In this
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Figure 4.27: Relevant mutual information I(X ; Z̃) for network sizes and an artificially
modeled DMC comparing the CA-GDIB algorithm to the GDIB approach; |X| = 4, |Ym| =
32, |Zm| = 8

case, the DMC has either not a big impact due to larger network sizes or the CA-GDIB
algorithm cannot benefit much from incorporating the statistics of the DMC into the
optimization problem due to low error probabilities.

Measurement Channel Mismatch: Similar to the scalar case in Section 3.5, it has
to be analyzed how robust the CA-GDIB algorithm performs for erroneous measurement
SNR assumptions. Therefore, a mapping p̃(zm|ym) is designed for each sensor with the CA-
GDIB algorithm using an optimization SNR γopt

m with p̃(ym|x). Afterwards, the mapping
p̃(zm|ym) is applied for a different application SNR γapp

m with p(ym|x). The resulting
relevant mutual information can be determined by

Ĩ(X ; Z̃) = EX ,Z̃

[
log2

p̃(z̃|x)
p̃(z̃)

]
(4.37)
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Figure 4.28: Measurement channel mismtach applying the CA-GDIB algorithm with |X| =
4, |Ym| = 512, |Zm| = 8 and a network with M = 3 sensors

with

p̃(z̃, x) = p(x) ·ΠM
m=1

∑
ym

∑
zm

p(z̃m|zm)p̃(zm|ym)p(ym|x) (4.38)

and

p̃(z̃) =
∑
x

p̃(z̃, x) . (4.39)

Figure 4.28 illustrates the relevant mutual information Ĩ(X ; Z̃) versus the optimization
SNR γopt

m for different application SNRs γapp
m in a symmetric scenario with M = 3 sensors.

The different plots show the results for different forward channels p(z̃m|zm) obtained for
a specific ϵFC

m . The case ϵFC
m = 0 illustrates the performance of the CA-GDIB algorithm

for a perfect forward channel introducing no errors. It can be observed that the relevant
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Figure 4.29: Forward channel mismatch applying the CA-GDIB algorithm with |X| = 4,
|Ym| = 512, |Zm| = 8 and a network with M = 3 sensors

mutual information is nearly constant for all application SNRs and for all forward chan-
nels. Therefore, it can be concluded that the CA-GDIB algorithm is quite robust against
measurement channel mismatches. Comparing the results in Figure 4.28 to the results of
the scalar case in Figure 3.15, it becomes obvious that the distributed algorithm is even
more robust in these investigated cases.

Forward Channel Mismatch: In order to investigate the robustness of the CA-GDIB
against a forward channel mismatch the quantizers p̃(zm|ym) optimized for forward chan-
nels p̃(z̃m|zm) defined by ϵFC,opt

m are applied for different application forward channels
p(z̃m|zm) defined by ϵFC,app

m .
Figure 4.29 illustrates the relevant mutual information Ĩ(X ; Z̃) versus the parameter
ϵFC,opt
m . The simulation is done for a symmetric scenario with M = 3 sensors, for dif-

ferent ϵFC,app
m and different measurement SNRs γm. It can be observed that for a large
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measurement SNR of γm = 15 dB, the mismatch has no influence on the relevant mutual
information within the investigated range. For each application forward channel p(z̃m|zm),
the curve is constant. Decreasing the measurement SNR increases the sensitivity on a for-
ward channel mismatch. Although there still occurs a larger plateau where the CA-GDIB
algorithm works fine despite a forward channel mismatch, the relevant mutual information
Ĩ(X ; Z̃) decreases when the forward channel differs too much. However, it can be observed
that the maximum is always on the position of ϵFC,opt

m = ϵFC,app
m .

4.5 Discussion

This chapter introduced algorithmic approaches for solving the non-cooperative CEO sce-
nario. In particular, a greedy algorithm based on the information bottleneck approach is
derived, allowing an offline optimization of each sensor while not exceeding individual for-
ward link capacities [SK21; Ste+21b]. This GDIB algorithm sequentially optimizes each
sensor in the network applying the Wyner-Ziv coding principle by exploiting the map-
pings of previously designed quantizers. In order to fulfill the individual rate constraints
of each forward link, a simple bi-section search can be applied. It has been shown that
the GDIB optimization can be applied for different relevant signal distributions as long
as being discrete or pre-quantized. The GDIB algorithm outperforms independent scalar
IB-optimized quantizers in different scenarios. More precisely, it benefits from a growing
number of sensors in the network with an increasing or fixed sum-rate. In the case of
an increasing sum-rate, the performance of the GDIB algorithm increases much faster
than for scalar independent IB optimization. In the case of a fixed sum-rate, the scalar
independent IB optimization might even lose performance since the sum-rate is equally
distributed on each forward link, while the GDIB performance increases. However, there
still occurs a large gap to the fully cooperative CEO scenario. In addition, it turned out
that the performance of the GDIB algorithm highly depends on the Wyner-Ziv coding
strategy, i.e., different optimization orders result in different spectral efficiencies. As a
rule of thumb, it might be beneficial to start the optimization with the sensors belong-
ing to the largest forward link capacity. Similar to the scalar IB approach, the GDIB
algorithm is quite robust against measurement SNR mismatches for higher forward link
capacities, while it has a higher impact on lower forward link capacities. Here, a mismatch
can cause the individual rate constraints to be violated if the application SNR is lower
than the optimization SNR. Two approaches are suggested to deal with this behavior.
Either a rate back-off could be incorporated in the optimization to ensure the overshoot is
still below the actual rate constraint. Or the optimization could be performed for a lower
optimization SNR since the overshoot only occurs if the application SNR is lower than
the optimization SNR. However, both approaches result in a loss in performance. The
GDIB algorithm can be slightly modified to result in deterministic mappings by setting
the trade-off parameter to zero. Similar to the scalar IB approach, in this case, the focus
solely lies on the preservation of relevant information, while the compression can be ad-
justed by varying the output cardinality. However, it has been shown that this variation
results in quite coarse compression rate steps, which may result in performance losses.
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Since the complexity of the GDIB algorithm depends on the number of sensors in the net-
work, the GDIB algorithm suffers from the curse of dimensionality, leading to infeasible
optimizations for larger networks. Therefore, a reduced-memory complexity GDIB algo-
rithm has been introduced ensuring feasibility even for larger networks [Ste+21a; Ste+21b]
by compressing Z<m to Z∗

<m. It has been shown that the introduced compression schemes
may result in a loss in performance compared to the uncompressed case. This can be caused
by the IB compression itself or by an accumulation of compression losses due to the se-
quential compression scheme. However, choosing an appropriate cardinality of Z∗

<m can
remove this loss completely. It has been demonstrated that the sequential compression
scheme significantly reduces the memory requirements during the optimization process.
Finally, the GDIB algorithm has been modified to incorporate imperfect erroneous forward
links. This extension is based on the approach of Winkelbauer in [Win14; WMB13] while
still maintaining the greedy optimization structure. This CA-GDIB algorithm has been
shown to outperform the original GDIB algorithm for a scenario with a residual error
probability on forward links. Moreover, it turned out that the CA-GDIB algorithm is
quite robust against measurement and forward channel mismatches.
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Chapter 5

Distributed Remote Sensing with Partial Cooper-
ation

The original CEO scenario described in Subsection 3.6.1 does not allow the communication
among sensors. Although the quantizers of the sensors are jointly designed applying
the Wyner-Ziv coding principle in Section 4.1, they are not allowed to exchange any
information during run-time. In Chapter 4, the analysis of the non-cooperative GDIB
approach revealed that there is a significant gap in relevant mutual information between a
fully cooperative CEO scenario and the original non-cooperative CEO scenario. Therefore,
this chapter focuses on the question of whether this gap can be closed or at least decreased
by allowing the exchange of a certain amount of information among the sensors. The
derivations and results were published in [SAK22; SK22]. Section 5.1 introduces the
general model, allowing the exchange of information during run-time. Section 5.2 and
5.3 introduce specific protocols defining the way of exchanging this side-information. In
particular, Section 5.2 introduces the successive broadcast transmission protocol while
Section 5.3 introduces a sequential point-to-point transmission protocol. Finally, Section
5.4 introduces a more theoretical two-phase transmission protocol with artificially created
instantaneous side-information.

5.1 Partially Cooperative CEO Scenario

In contrast to the original non-cooperative CEO scenario, this system has rarely been
investigated in the current literature. Therefore, the complete rate region and upper or
lower bounds are still unknown for this scenario. Most works consider jointly Gaussian
signals as they allow an analytical treatment. In [PRT04], the authors showed that coop-
eration among sensors can reduce the compression sum-rate, except for Gaussian relevant
variables and an MSE distortion measure. Draper and Wornell considered estimation
problems under communication constraints in [DW04]. They propose coding strategies
for sensor networks with a specific tree-based structure. Applying the Wyner-Ziv coding
principle, solutions for general trees are developed while specific results are given for se-
rial and parallel networks. In [Sim09], the author considered a two-sensor system with
a Gaussian source. Simeone investigated two different transmission scenarios. The first
consists of orthogonal but rate-limited links between sensors and the common receiver.
The second scenario is the Gaussian multiple access channel (MAC). In both cases, co-
operation between sensors via rate-limited inter-sensor links leads to substantial gains in
terms of the compression sum-rate. In [PSW09], the authors investigated a simple three-
node network consisting of an encoder, a helper, and a decoder. It was shown that the
provided information by the helper to the encoder is limited by the information given to
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the decoder. Any further information does not increase the performance. In [VRP19], the
authors introduced a two-way collaborative information bottleneck approach where two
sensors observe dependent components and aim to extract information about hidden vari-
ables while being able to exchange limited information. For this setup, they characterized
the complexity-relevance region. Moreover, they introduced a collaborative distributed
information bottleneck approach for a two-sensor scenario in [VVP17; VRP19]. In par-
ticular, two sensors observe information and forward it to a third node which tries to
learn the relevant information of a hidden process. Again, both sensors can cooperate
with each other. For this setup, they introduced inner and outer bounds as well as some
characterization of the complexity-relevance region.
The basic idea to improve the performance of the non-cooperative CEO scenario is to
allow a limited exchange of information among the sensors via rate-limited inter-sensor
links. As this information is exchanged during run-time, it is stated as instantaneous
side-information. Moreover, since the exchange is limited due to rate-limited inter-sensor
links, the cooperation is done partially defining the partially cooperative Chief Executive
Officer (pcCEO) scenario. Naturally, the non-cooperative CEO problem represents an
extreme case of the pcCEO scenario with zero rate inter-sensor links. The rate-limitation
of the links requires the sensors to compress the instantaneous side-information before
forwarding it to other sensors. In general, it is assumed that the capacities of the inter-
sensor links are larger than the compression rates of the instantaneous side-information
sm. Within this thesis, only deterministic mappings are considered for the compression of
this instantaneous side-information. This can be motivated by the fact that deterministic
mappings do not require further lossy compression. Moreover, it allows interpreting the
resulting side-information sm as indices which help to determine a particular mapping
ym → sm and ym → zm from a list of mappings designed offline in advance. Consequently,
the compression rates for the instantaneous side-information can only be adjusted by
changing the cardinalities |Sm|. Therefore, the inter-sensor links are modeled as bit pipes
being able to reliably transmit a specific number of bits.
Following the argumentation of Section 4.1 to derive a formal approach to solve the non-
cooperative CEO problem, it becomes obvious that it is hard to define this for the pcCEO
problem. To be more precise, the solution for the non-cooperative CEO problem is based
on the corresponding inner bound of the rate region given in (3.40). Naturally, this inner
bound cannot be applied for partially cooperating sensors since the Markovian structure
of the non-cooperative CEO problem in (3.39) does not hold anymore. To the author’s
knowledge, tight bounds on the rate region are not available for the cooperative case.
Therefore, a heuristic approach based on the greedy optimization structure of the GDIB
algorithm will be applied to solve the pcCEO scenario, which is not proved to be optimal
since the supermodularity of the compression rates of the following optimization problems
might not necessarily be fulfilled. Nevertheless, the numerical evaluation of the found
solutions demonstrates their usefulness.
In the following, three different inter-sensor communication protocols for exchanging in-
stantaneous side-information are investigated: successive broadcasting, sequential point-
to-point exchange, and a two-phase transmission. The two-phase transmission protocol
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separates the exchange of instantaneous side-information sm and the forwarding of a com-
pressed version of zm to the common receiver into two distinct phases. The forwarding
to the common receiver starts after the exchange among sensors has been completed, and
all sensors have approximately the same amount of side-information. The other two pro-
tocols perform the exchange of instantaneous side-information and the forwarding to the
common receiver on orthogonal resources. However, they do not separate these operations
into distinct phases.

5.2 Successive Broadcast Transmission Protocol

The system model using the successive broadcast transmission protocol is given in Figure
5.1. As for the non-cooperative case, each sensor observes a noisy version ym of the same
relevant signal x and tries to forward it over capacity-limited links to a common receiver.
Therefore, each sensor has to compress the measurements using a specific encoding process.
Additionally, each sensor can broadcast instantaneous side-information sm to all subse-
quent sensors. Although a broadcast operation is applied to distribute sm, the different
sensors do not have the same amount of side-information due to a specific optimization
order. This is different to the fcCEO scenario, where the exchange of side-information
is performed in a distinct phase. Figure 5.2 illustrates the dependencies among involved
random variables using a Markov model. It can be observed that the random variables
Zm are coupled via the instantaneous side-information S<m. Therefore, given the random
variable X , different Zm are not independent anymore. This dependence has to be taken
into account within the optimization problem and leads to the mathematical structure

p(x, y, z, s) =
M∏

m=1

p(zm|ym, s<m)p(sm|ym, s<m)p(ym|x)p(x). (5.1)

Sensor m has access to the instantaneous side-information of all previously designed quan-
tizers s<m and can exploit them during its own encoding process. The encoding process of
a specific sensor m is depicted in Figure 5.3. Exploiting the instantaneous side-information
of all previously designed quantizers, sensor m compresses its observation ym together with
s<m to zm. This compression can be described by the mapping p(zm|ym, s<m) ∈ [0, 1]. As
the mapping is generally stochastic, similar to the original CEO problem, a binary encod-
ing and rate-matching step, termed BERM, is required allowing lossless transmission to
the common receiver. Additionally, sensor m produces its instantaneous side-information
sm using the mapping p(sm|ym, s<m) ∈ {0, 1}, which shall be deterministic. Both com-
pression steps can be interpreted as a data fusion of the observation and the received
instantaneous side-information delivering the corresponding output. Naturally, the com-
pression shall be optimized in order to preserve as much information as possible about the
relevant signal x, motivating the application of the IB principle. This can be illustrated
by means of IB graphs in Figure 5.4.
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Figure 5.1: System model for the pcCEO scenario using the successive broadcast trans-
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Figure 5.4: Graphical illustration of IB fusion of two inputs to determine instantaneous
side-information sm (a) and the quantizer sensor output zm (b) for the successive broadcast
transmission protocol

5.2.1 Generation of Broadcast Side-Information

Inspired by the general GDIB algorithm introduced in Chapter 4, the optimization ap-
proach to generate the instantaneous side-information using the broadcast transmission
protocol for sensor 1 to M − 1 is performed in a greedy manner.

L
(1)
BC-SIDE = I(X ;S1)− βI(Y1;S1)

...

L
(M−1)
BC-SIDE = I(X ;SM−1|S<M−1)− βI(YM−1;SM−1|S<M−1)

The optimization problem of the first sensor equals individual scalar IB optimization with-
out any side-information. Subsequent sensors combine the instantaneous side-information
of all previously transmitting sensors s<m with its observation ym. Both the relevant
mutual information as well as the compression rate of sensor m are conditioned on S<m.
This is motivated since broadcasting instantaneous side-information ensures all successive
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sensors to have access to all indices s<m allowing the application of Wyner-Ziv coding for
generating sm. For a specific sensor m, the optimization problem is given as

L
(m)
BC-SIDE[p(sm|ym, s<m)] = I(X ;Sm|S<m)− βmI(Ym;Sm|S<m) . (5.2)

Algorithmic Solution

The optimization problem given in (5.2) can be solved by taking the derivative w.r.t.
the mapping p(sm|ym, s<m) and equating it to zero. This results in the implicit update
equation

p(sm|ym, s<m) =
e−dβm (ym,sm,s<m)∑
sm

e−dβm (ym,sm,s<m)
(5.3)

with

dβm(ym, sm, s<m) :=
1

βm
DKL [p(x|ym, s<m)∥p(x|s≤m)]

− log p(sm|s<m) . (5.4)

Since p(x|s≤m) and p(sm|s<m) are both depending on the mapping p(sm|ym, s<m) this
update equation is implicit and can be solved by an extension of the Blahut-Arimoto
algorithm. A detailed derivation of the above solution and the involved pmfs is given in
Appendix C.
Since the mapping p(sm|ym, s<m) ∈ {0, 1} is assumed to be deterministic, βm = 0 is
chosen. Following the argumentation in Subsection 3.4.2, the logarithm term in (5.4) can
be neglected since the compression rate has no influence anymore. Moreover, the sum in
the denominator of the update equation (5.3) is dominated by the smallest KL divergence.
Therefore, for each sample ym and s<m, the mapping p(sm|ym, s<m) tends to zero for all
sm except for the one with the smallest KL divergence, which tends to one. This leads to

s∗m(ym, s<m) = arg min
sm

DKL [p(x|ym, s<m)∥p(x|s≤m)] (5.5)

and the update equation

p(sm|ym, s<m) =

1 for sm(ym, s<m) = s∗m(ym, s<m)

0 else .
(5.6)

The extended Blahut-Arimoto algorithm to obtain the instantaneous side-information in
the broadcast case for sensor m and βm = 0 is given in Algorithm 11. The pmf p(s<m|x) is
given as an input and has already been calculated recursively during the optimization of
previous sensors. Lines 2 and 3 calculate some required pmfs which do not depend on the
sensor currently being optimized. Lines 5 to 8 calculate the KL divergence of (5.4) as well
as the required pmfs. In lines 9 to 14, the minimum of this KL divergence is determined,
which defines the position of the ones in the mapping p(sm|ym, s<m). As in the original
GDIB algorithm, the optimization is done until subsequent quantizer mappings do not
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Algorithm 11: Extended Blahut-Arimoto algorithm to obtain instantaneous
side-information for the successive broadcasting protocol

input : m, pinit(sm|ym, s<m), p(ym, x), ϵ
recursively calculated inputs from previous sensor optimizations:
p(s<m|x)

output : p(sm|ym, s<m) ∈ {0, 1}, p(s≤m|x)
1 begin

initialization:
p(sm|ym, s<m)(0) ← pinit(sm|ym, s<m),
l← 1

2 p(ym, s<m, x) = p(ym|x)p(s<m|x)p(x)
3 p(x|ym, s<m) = p(ym, s<m, x)/

∑
x p(ym, s<m, x)

4 do
5 // KL-Divergence DKL(ym, s≤m) of (5.4)
6 p(s≤m|x)(l) =

∑
ym

p(sm|ym, s<m)(l−1)p(ym|x)p(s<m|x)
7 p(x|s≤m)(l) = p(s≤m|x)(l)p(x)/

∑
x p(s≤m|x)(l)p(x)

8 DKL(ym, s≤m)(l) =
∑

x p(x|ym, s<m) · log p(x|ym,s<m)
p(x|s≤m)

9 // find minimum of DKL(ym, s≤m) for all samples ym ∈ Ym and
s<m ∈ S<m

10 for yi ∈ Ym do
11 for sj ∈ S<m do
12 s∗m(yi, sj)(l) = arg min

sm
DKL(ym, s≤m)(l)

13 // update quantizer for specific yi and sj
14 p(s∗m(yi, sj)(l)|yi, sj)(l) = 1

15 l← l + 1

16 while DJS[ p
(l)(sm|ym, s<m) || p(l−1)(sm|ym, s<m) ] > ϵ

17 // update p(s≤m|x) serving as an input for the successive sensor
18 p(s≤m|x) =

∑
ym

p(sm|ym, s<m)p(ym|x)p(s<m|x)

change significantly anymore. After that, the mapping p(s≤m|x) has to be updated to be
used as an input for subsequent sensors.

Evolution of Instantaneous Side-Information Available at Sensors: Figure 5.5
illustrates the amount of instantaneous side-information available at the different sensors
in the network. Therefore, a network of size M = 6 is considered using the broadcast
transmission protocol. The relevant mutual side-information I(X ;S≤m) is depicted versus
the sensor index m for different cardinalities |Sm| and different SNRs γm. The relevant
signal is chosen to be a 4-ASK signal. It can be observed that the resolution and the
quality of instantaneous side-information available at sensor m increases with growing m.
Naturally, the amount of information a sensor can contribute to I(X ;S≤m) decreases with
each additional sensor. This general behavior is independent of the cardinality |Sm| or the
SNR. The largest gain can be observed between the cardinalities |Sm| = 2 and |Sm| = 4

since one bit is not enough to represent a 4-ASK signal with |X| = 4. Therefore, increasing
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Figure 5.5: Evolution of side-information I(X ;S≤m) for sensor m in a network with M = 6
sensors and different cardinalities |Sm| for the successive broadcasting protocol; |X| = 4,
|Ym| = 64

the cardinality to |Sm| = 8 only results in a smaller gain. Note that this highly depends
on the relevant signal X and can not be generalized. It has to be mentioned that even if
the instantaneous side-information only contains a single bit, i.e., |Sm| = 2, the relevant
mutual information I(X ;S≤m) can become larger than 1 bit/s/Hz for later sensors. This
is caused by S≤m including the instantaneous side-information of all previous sensors such
that |S≤m| = |Sm|m if |Sm| is equal for all sensors.

5.2.2 Generate Information Forwarded to the Common Receiver

The instantaneous side-information designed in the previous subsection can now be ex-
ploited in an optimization approach to maximize the relevant mutual information I(X ;Z)

while still fulfilling the individual rate constraints of each sensor. Therefore, the original
GDIB algorithm is modified, defining the Greedy Distributed Information Bottleneck-
Broadcast Side-Information (GDIB-BC) algorithm. Considering the encoding process de-
picted in Figure 5.3, the quantizer which produces the output zm fuses ym and s<m to a
single output zm. The optimization problem can be defined as

L
(1)
GDIB-BC = I(X ;Z1)− β1I(Y1;Z1)

...

L
(M)
GDIB-BC = I(X ;ZM |Z<M )− βMI(YM ,S<M ;ZM |Z<M ).

Naturally, the first sensor has no side-information at all, and the optimization problem
reduces to the scalar IB problem. Subsequent sensors exploit both the quantizer mappings
of all previously designed sensors by Wyner-Ziv coding as well the instantaneous side-
information received via broadcasting of all previous sensors. These optimization problems
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are very similar to the original GDIB approach. The main difference lies in the definition
of the compression rate I(Ym,S<m;Zm|Z<m) which emerges from the combination of the
observation ym and the instantaneous side-information s<m. The optimization problem of
sensor m becomes

L
(m)
GDIB-BC[p(zm|ym, s<m)] = I(X ;Zm|Z<m)− βmI(Ym,S<m;Zm|Z<m) . (5.7)

Algorithmic Solution

The optimization problem given in (5.7) can be solved by taking the derivative w.r.t. the
mapping p(zm|ym, s<m) and equating it to zero, leading to an implicit update equation

p(zm|ym, s<m) =
e−dβm (ym,zm,s<m)∑
zm

e−dβm (ym,zm,s<m)
(5.8)

with

dβm(ym, zm, s<m)

:= EZ<m|ym,s<m

[
1

βm
DKL [p(x|ym, s<m, z<m)∥p(x|z≤m)]− log p(zm|z<m)

]
. (5.9)

Since p(zm|z<m) and p(x|z≤m) are dependent on the desired mapping p(zm|ym, s<m), (5.8)
is an implicit equation. Using a Blahut-Arimoto-like algorithm, this implicit update equa-
tion can be solved, resulting in local optima. A detailed derivation of the above solution as
well as a way to calculate the required pmfs taking into account the statistical dependencies
from (5.1) is given in Appendix D.
The modified Blahut-Arimoto algorithm to design the quantizer of sensor m for a specific
βm is given in Algorithm 12. The input pmf p(ym−1, s<m−1, z<m−1, x) has been calculated
during the optimization of previous sensors. Of course, this simplifies for the first sensor
since it has no predecessor. Lines 2 to 4 determine required pmfs, which do not depend on
the sensor currently being optimized. The KL divergence in (5.9) is determined in lines 6
to 9. The whole statistical distance of (5.9) is calculated in lines 10 to 13. It is used to
update the quantizer mapping p(zm|ym, s<m) of sensor m. This procedure is repeated until
no significant changes in the quantizer mapping occur anymore. The algorithm returns
the optimized mapping p(zm|ym, s<m) as well as the pmf p(ym, s<m, z<m, x) which is used
as an input for the successive sensor.
The flowchart, which describes the original GDIB algorithm in Figure 4.1, is also valid for
partially cooperating sensors using the broadcast transmission protocol. The difference is
mainly the extended Blahut-Arimoto algorithm. Hence, Algorithm 12 has to be performed
for each sensor. In order to find the rate fulfilling parameter βm, which determines the
compression rate at sensor m, a bisection search can be applied. Note that in the case of
broadcasting sensors, the compression rate is calculated as I(Ym,S<m;Zm|Z<m). Similar
to the original GDIB algorithm, the optimization has to be performed for all possible per-
mutations of the optimization order. Note that in contrast to the original GDIB algorithm,
the GDIB-BC does not necessarily find extreme points of the solution space corresponding
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Algorithm 12: Extended Blahut-Arimoto algorithm for the successive broad-
casting protocol

input : m, pinit(zm|ym, s<m), p(yi, x), p(si|yi, s<i) ∀i ≤ m,βm, ϵ

recursively calculated input from previous sensor optimizations:
p(ym−1, s<m−1, z<m−1, x)

output : p(zm|ym, s<m) ∈ [0, 1], p(ym, s<m, z<m, x)
1 begin

initialization:
p(zm|ym, s<m)(0) ← pinit(zm|ym, s<m),
l← 1

2 p(ym, s<m, z<m, x) =
∑

ym−1
p(zm−1|ym−1, s<m−1)p(sm−1|ym−1, s<m−1) ·

p(ym|x)p(ym−1, s<m−1, z<m−1, x)
3 p(x|ym, s<m, z<m) = p(ym, s<m, z<m, x)/

∑
x p(ym, s<m, z<m, x)

4 p(z<m|ym, s<m) =
∑

x p(ym, s<m, z<m, x)/
∑

x

∑
z<m

p(ym, s<m, z<m, x)

5 do

6 // KL-Divergence DKL(ym, s<m, z≤m) of (5.9)
7 p(z≤m, x)(l) =

∑
s<m

∑
ym

p(zm|ym, s<m)(l−1)p(ym, s<m, z<m, x)

8 p(x|z≤m)(l) = p(z≤m, x)(l)/
∑

x p(z≤m, x)(l)

9 DKL(ym, s<m, z≤m)(l) =
∑

x p(x|ym, s<m, z<m) · log p(x|ym,s<m,z<m)

p(x|z≤m)(l)

10 // distance dβm(ym, zm, s<m) (5.9)
11 p(z≤m)(l) =

∑
x p(z≤m, x)(l)

12 p(zm|z<m)(l) = p(z≤m)(l)/
∑

zm
p(z≤m)(l)

13 dβm(zm, ym, s<m)(l) =∑
z<m

p(z<m|ym, s<m) ·
[

1
βm

DKL(ym, s<m, z≤m)(l) − log p(zm|z<m)(l)
]

14 // update quantizer p(zm|ym, s<m)

15 p(zm|ym, s<m)(l) = 1∑
z e

−dβm
(ym,zm,s<m)(l)

e−dβm (ym,zm,s<m)(l)

16 l← l + 1

17 while DJS[ p
(l)(zm|ym, s<m) || p(l−1)(zm|ym, s<m) ] > ϵ

to different optimization orders. Therefore, solutions found for specific optimization orders
might not be optimal. Considering the involved pmfs in the above optimization approach,
it becomes obvious that the optimization might suffer from the curse of dimensionality for
larger networks since they grow exponentially with the network size.

Influence of Network Size: Figures 5.6 and 5.7 illustrate the overall performance
of the pcCEO scenario using the successive broadcasting protocol for different network
sizes. Therefore, the relevant mutual information I(X ;Z) is depicted versus the number
of sensors M in the network. According to the data-processing inequality, the absolute
maximum can be defined by I(X ;Z) ≤ I(X ;Y). Hence, the gray-shaded area represents
the non-achievable region. For this simulation, the same scenario as in Figure 4.5 and 4.6
is considered, i.e., a scenario where all sensors share the same channel to the common re-
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Figure 5.6: Relevant mutual information I(X ;Z) versus the network size for a fixed sum-
rate of Csum = 2.5 bit/s/Hz and Cm = Csum

M using the successive broadcasting protocol
with different cardinalities |Sm|; |X| = 4, |Ym| = 64, |Zm| = 4
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Figure 5.7: Relevant mutual information I(X ;Z) versus the network size for a fixed sum-
rate of Csum = 4 bit/s/Hz and Cm = Csum

M using the successive broadcasting protocol with
different cardinalities |Sm|; |X| = 4, |Ym| = 64, |Zm| = 4

ceiver in an orthogonal way and a round-robin fashion. The sum-rate is equally distributed
among all forward links from the sensors to the common receiver Csum =

∑M
m=1Cm with

Cm = Csum
M . The performance of the pcCEO scenario is compared to the non-cooperative

CEO scenario where no communication among sensors is possible and the fcCEO scenario
of Subsection 3.6.2. These curves represent the lower and upper bounds, respectively.
Note that a detailed performance analysis of the non-cooperative CEO scenario is given in
Section 4.2. It can be observed that by increasing the number of sensors in the network,
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the performance, i.e., the overall relevant information I(X ;Z), also increases. In general,
allowing the sensors to communicate via inter-sensor links using the successive broad-
casting protocol increases the overall performance compared to the non-cooperative CEO
scenario. This holds independent of the cardinality of the instantaneous side-information
|Sm| and can be explained by sensors being able to exploit the information s<m has about
the relevant variable x. Naturally, the amount of information s<m has about x increases
for larger network sizes. Therefore, the difference to the non-cooperative CEO scenario
increases. Moreover, increasing the cardinality |Sm| also improves I(X ;S≤m), as observed
in Figure 5.5, which is why the overall performance benefits from larger cardinalities. How-
ever, it can be observed that there remains a gap to the fcCEO scenario, which is even
more pronounced in smaller networks or lower SNRs. This gap is caused by the successive
nature of the applied transmission protocol and the fact that there are no distinct phases
for exchanging instantaneous side-information and forwarding information to the common
receiver. In particular, due to the specific optimization order, the quality of s<m differs
for different sensors in the network. To be more precise, the amount of information s<m

has about the relevant variable x increases gradually for each additional sensor, see Figure
5.5. This means that later sensors can benefit more from exploiting the instantaneous
side-information s<m than first sensors. As described earlier, the successive broadcasting
protocol might suffer from the curse of dimensionality. On the one hand, this can be a
problem during the optimization since pmfs like p(ym, s<m, z<m, x) can become very large.
On the other hand, each sensor has to store the mapping p(zm|ym, s<m) to apply the com-
pression during run-time. Since this mapping also depends on the network size, sensors
might run into memory issues. Note that this numerical problem is the reason why there
is no result for |Sm| = 8 and a network size of M = 6 in Figure 5.6 and 5.7 since storing
a single instance of p(ym, s<m, z<m, x) requires 2024 GiB1.

5.3 Sequential Point-To-Point Protocol

Since broadcasting instantaneous side-information suffers from the curse of dimensionality
for larger networks, a successive point-to-point transmission protocol is introduced. The
system model is given in Figure 5.8. In general, the setup is very similar to the one for
broadcasting instantaneous side-information. Each sensor observes a noisy version ym of
the same relevant signal x. Now, each sensor m has to compress its measurement ym

in order to fulfill the individual rate constraint Cm when forwarding the measurements
to the common receiver. The difference to the broadcast case is that the instantaneous
side-information of sensor m is only forwarded to the direct successor m+ 1, establishing
a sequential chain from the first to the last sensor. The dependencies among the random
variables are illustrated in Figure 5.9 using a Markov model. It is easy to see that the
independence of different Zm given X does not hold anymore, as it does for the original

11 GiB = 1024 MiB, 1 MiB = 1024 KiB, 1 KiB = 1024 byte
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Figure 5.8: System model for the pcCEO scenario using the sequential point-to-point
transmission protocol

CEO problem. The different Zm are coupled via the instantaneous side-information Sm.
This leads to the mathematical structure

p(x, y, z, s) =
M∏

m=1

p(zm|ym, sm−1)p(sm|ym, sm−1)p(ym|x)p(x). (5.10)

The encoding process of a specific sensor m is depicted in Figure 5.10. Each sensor
exploits the received instantaneous side-information sm−1. The generation of zm to be
forwarded to the common receiver and the output sm to be forwarded to the subsequent
sensor are generally independent operations. As both outputs shall be as informative as
possible about the relevant signal x, the quantizer mappings p(sm|ym, sm−1) ∈ {0, 1} and
p(zm|ym, sm−1) ∈ [0, 1] can be designed using the IB principle. Figure 5.11 illustrates this
by means of IB graphs. Both quantizers fuse the two inputs ym and sm−1 to a single output
while preserving as much information as possible about the relevant signal x. Since the
mapping p(zm|ym, sm−1) is of a stochastic nature, a binary encoding and rate-matching
step is required in order to forward a compressed version of zm to the common receiver.
This further encoding is denoted as BERM in Figure 5.10.

5.3.1 Generation of Point-To-Point Side-Information

Similar to the broadcast case, the design of p(sm|ym, sm−1) is inspired by the general
GDIB algorithm. The instantaneous side-information of the previous sensor sm−1 can be
exploited to improve the information sm has about x. The optimization approach to gener-
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Figure 5.10: Encoding process for the sequential point-to-point transmission protocol
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Figure 5.11: Graphical illustration of IB fusion of two inputs to determine instantaneous
side-information sm (a) and the quantizer sensor output zm (b) for the sequential point-
to-point transmission protocol

ate the instantaneous side-information applying the sequential point-to-point transmission
protocol can be defined as

L
(1)
PTP-SIDE = I(X ;S1)− βI(Y1;S1)

...

L
(M−1)
PTP-SIDE = I(X ;SM−1)− βI(YM−1,SM−2;SM−1) .

The first sensor only applies the standard scalar IB method. Subsequent sensors use the
instantaneous side-information of the previous sensor sm−1 as an additional input for the
IB method. In this way, the instantaneous side-information sm increases its information
about the relevant variable with each further sensor. In contrast to the broadcast case, the
relevant mutual information is not conditioned on S<m because sensor m has only access
to sm−1 and not to indices of any other sensor. Therefore, Wyner-Ziv coding cannot be
applied here. For sensor m, the optimization problem becomes

L
(m)
PTP-SIDE[p(sm|ym, sm−1)] = I(X ;Sm)− βmI(Ym,Sm−1;Sm) . (5.11)

Algorithmic Solution

The optimization problem given in (5.11) can be solved by taking the derivative w.r.t. the
mapping p(sm|ym, sm−1) and equating it to zero. Similar to the general IB method, this
results in an implicit update equation for sensor m

p(sm|ym, sm−1) =
e−dβm (ym,sm,sm−1)∑
sm

e−dβm (ym,sm,sm−1)
(5.12)

with

dβm(ym, sm, sm−1) :=
1

βm
·DKL [p(x|ym, sm−1)∥p(x|sm)]− log p(sm) . (5.13)

Since p(x|sm) and p(sm) are both dependent on the mapping p(sm|ym, sm−1), equation
(5.12) is an implicit update equation, which can be solved by an extension of the Blahut-
Arimoto algorithm. A detailed derivation of this solution is given in Appendix E.
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Algorithm 13: Extended Blahut-Arimoto algorithm to obtain side-information
for the sequential point-to-point transmission protocol

input : m, pinit(sm|ym, sm−1), p(ym, x), p(sm−1|x), ϵ
output : p(sm|ym, sm−1) ∈ 0, 1

1 begin
initialization:

p(sm|ym, sm−1)
(0) ← pinit(sm|ym, sm−1),

l← 1

2 p(sm−1, ym, x) = p(sm−1|x)p(ym|x)p(x)
3 p(x|sm−1, ym) = p(sm−1, ym, x)/

∑
x p(sm−1, ym, x)

4 do
5 // KL-Divergence DKL(ym, sm−1, sm) of (5.13)
6 p(sm, x)(l) =

∑
sm−1

∑
ym

p(sm|ym, sm−1)
(l−1)p(sm−1, ym, x)

7 p(x|sm)(l) = p(sm, x)(l)/
∑

x p(sm, x)(l)

8 DKL(ym, sm−1, sm)(l) =
∑

x p(x|sm−1, ym) · log p(x|sm−1,ym)

p(x|sm)(l)

9 // find minimum of DKL(ym, sm−1, sm) for all samples ym ∈ Ym and
sm−1 ∈ Sm−1

10 for yi ∈ Ym do
11 for sj ∈ Sm−1 do
12 s∗m(yi, sj)

(l) = arg min
sm

DKL(ym, sm−1, sm)(l)

13 // update quantizer for specific yi and sj
14 p(s∗m(yi, sj)

(l)|yi, sj)(l) = 1

15 l← l + 1

16 while DJS[ p
(l)(sm|ym, sm−1) || p(l−1)(sm|ym, sm−1) ] > ϵ

Similar to the broadcast case, the mapping p(sm|ym, sm−1) is supposed to be deterministic
using βm = 0. Therefore, the above update equation simplifies to

s∗m(ym, sm−1) = arg min
sm

DKL [p(x|ym, sm−1)∥p(x|sm)] (5.14)

with the update equation

p(sm|ym, sm−1) =

1 for sm(ym, sm−1) = s∗m(ym, sm−1)

0 else.
(5.15)

The extended Blahut-Arimoto algorithm is given in Algorithm 13. This algorithm is
very similar to the one for obtaining broadcast side-information. The major difference
lies in the available instantaneous side-information sm−1 instead of s<m, which leads to
slightly different pmfs. However, this difference leads to a significant reduction in memory
requirements during the optimization.

Evolution of Side-Information Available at Sensors: Figure 5.12 illustrates the
evolution of the instantaneous side-information running from sensor to sensor. Therefore,
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Figure 5.12: Evolution of side-information I(X ;Sm) for sensor m in a network with M =
6 sensors for different cardinalities |Sm| for the sequential point-to-point transmission
protocol; |X| = 4, |Ym| = 64

the solid lines illustrate the relevant mutual side-information I(X ;Sm) at a specific sensor
m in a network of size M = 6 applying the sequential point-to-point protocol for different
cardinalities |Sm|. It can be observed that in both SNRs γm = {8, 3}, the relevant mutual
information I(X ;Sm) increases while passing through the network. This shows the effect
that the instantaneous side-information sm becomes more and more informative about the
relevant signal x for each additional sensor. Naturally, for larger cardinalities |Sm|, more
information about the relevant signal x can be preserved, leading to larger I(X ;Sm). The
main difference to the broadcast case is that the instantaneous side-information provided
to sensor m is represented by a single highly compressed index sm−1 with cardinality
|Sm−1|. While the resolution |S<m| of the available instantaneous side-information s<m

increases with m for the successive broadcasting transmission protocol, it remains the
same for the sequential point-to-point protocol. Accordingly, a larger cardinality |Sm|
is required to not introduce additional compression losses. For comparison, the dotted
lines represent the results of the broadcast case given in Figure 5.5. In particular, they
illustrate I(X ;S≤m) incorporating the instantaneous side-information s<m of all previous
sensors. It can be observed that the broadcast case gains much more relevant mutual side-
information than the sequential point-to-point transmission. However, by choosing the
cardinality |Sm| large enough, the difference between the broadcast and the point-to-point
transmission becomes negligible.

5.3.2 Generate Information Forwarded to the Common Receiver

Extending the GDIB approach for the pcCEO scenario using the sequential point-to-
point transmission protocol defines the Greedy Distributed Information Bottleneck-Point-
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to-Point Side-Information (GDIB-PTP) approach. By incorporating the instantaneous
side-information sm, the optimization approach can be defined as

L
(1)
GDIB-PTP = I(X ;Z1)− β1I(Y1;Z1)

...

L
(M)
GDIB-PTP = I(X ;ZM |Z<M )− βMI(YM ,SM−1;ZM |Z<M ).

The main difference to the original GDIB optimization of Subsection 4.2 lies in the com-
pression rate I(Ym,Sm−1;Zm|Z<m) which emerges from the combination of the instanta-
neous side-information of the previous sensor sm−1 and the observation ym of sensor m.
It becomes obvious that the first sensor is optimized by a scalar IB approach, exploiting
no side-information at all. Subsequent sensors are optimized applying Wyner-Ziv coding
similar to the original GDIB optimization, as well as the instantaneous side-information
sm−1 from the previous sensor. Hence, for sensor m, the optimization problem becomes

L
(m)
GDIB-PTP[p(zm|ym, sm−1)] = I(X ;Zm|Z<m)− βmI(Ym,Sm−1;Zm|Z<m) . (5.16)

Algorithmic Solution

The optimization problem given in (5.16) can be solved by taking the derivative w.r.t.
the mapping p(zm|ym, sm−1) and equating it to zero. This results in the implicit update
equation for sensor m

p(zm|ym, sm−1) =
e−dβm (ym,zm,sm−1)∑
zm

e−dβm (ym,zm,sm−1)
(5.17)

with

dβm(ym, zm, sm−1) := EZ<m|ym,sm−1

[
1

βm
·

DKL [p(x|ym, sm−1, z<m)∥p(x|z≤m)]− log p(zm|z<m)

]
. (5.18)

Since p(x|z≤m) and p(zm|z<m) depend on the mapping p(zm|ym, sm−1), (5.17) is an implicit
equation. Using an extension of the Blahut-Arimoto algorithm, this update equation can
be solved, resulting in local optimal solutions. A detailed derivation of the above solution
and the involved pmfs is given in Appendix F.
The extended Blahut-Arimoto algorithm solving the given optimization problem for sensor
m and a specific βm is given in Algorithm 14. The instantaneous side-information is given
as p(si|yi, si−1) ∀i ≤ m. Moreover, for the optimization, the mapping p(yi, x) ∀i ≤ m is
not only required for the current sensor m, but for all previously designed quantizers. As
explained in Appendix F the required pmfs for this algorithm can be computed recursively.
Therefore, when optimizing sensor m, these pmfs are considered as input variables. In
particular, p(zi|yi, si−1), p(si|z≤i, x) ∀i < m and p(z<m−1, x) are already computed during
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Figure 5.13: Relevant mutual information I(X ;Z) versus the network size for a fixed sum-
rate of Csum = 2.5 bit/s/Hz and Cm = Csum

M for the sequential point-to-point transmission
protocol with different cardinalities |Sm|; |X| = 4, |Ym| = 64, |Zm| = 4

the optimization of previous sensors and are used as input variables for optimizing the
current sensor m.
Similar to the broadcast case, the flowchart, which describes the original GDIB algorithm
in Figure 4.1 is also valid for partially cooperating sensors using the sequential point-
to-point transmission protocol. The difference is mainly the extended Blahut-Arimoto
algorithm. Moreover, the compression rate used to find the rate fulfilling parameter βm in
the bisection search is calculated as I(Ym,Sm−1;Zm|Z<m), as given in (5.16). As already
pointed out, solutions might not be optimal since the algorithm does not necessarily find
extreme points of the solution space.
Note that in contrast to the broadcast case, the mapping and the required pmfs used
within the optimization are only dependent on the instantaneous side-information of the
previous sensor. This reduces the required memory complexity significantly. Moreover, as
described in Section 4.3, the dependency on z<m can also be relaxed by compressing all
z<m to a scalar z∗<m removing the dependency on the network size completely.

Performance Analysis for different Network Sizes: Figure 5.13 and 5.14 illustrate
the overall performance of the pcCEO scenario applying the sequential point-to-point
transmission protocol. Therefore, the same symmetric scenario as for the broadcast case
is considered, where all sensors share the same channel in an orthogonal way and in a
round-robin fashion. The forward channel to the common receiver has a fixed sum-rate
Csum =

∑M
m=1Cm which is equally distributed on each sensor Cm = Csum

M . The rele-
vant signal is chosen to be a 4-ASK signal. The upper and lower bound are depicted in
black, representing a fcCEO scenario and a non-cooperative CEO scenario. In general, the
curves are very similar to those for broadcasting instantaneous side-information in Figure
5.6 and 5.7. It can be observed that the relevant mutual information I(X ;Z) increases
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Algorithm 14: Extended Blahut-Arimoto algorithm for the sequential point-to-
point transmission protocol

input : m, pinit(zm|ym, sm−1), p(yi, x), p(si|yi, si−1) ∀i ≤ m,βm, ϵ

recursively calculated inputs from previous sensor optimizations:
p(zi|yi, si−1), p(si|z≤i, x) ∀i < m, p(z<m−1, x)

output : p(zm|ym, sm−1) ∈ [0, 1], p(z<m, x),p(sm|z≤m, x)
1 begin

initialization:
p(zm|ym, sm−1)

(0) ← pinit(zm|ym, sm−1),
l← 1

2 p(zm−1, sm−1|x, z<m−1) =
∑

sm−2
p(sm−2|z≤m−2, x) ·∑

ym−1
p(zm−1|ym−1, sm−2)p(sm−1|ym−1, sm−2)p(ym−1|x)

3 p(z<m−1, ym, x) = p(z<m−1, x)p(ym|x)
4 p(ym, sm−1, z<m, x) = p(zm−1, sm−1|x, z<m−1)p(z<m−1, ym, x)
5 p(x|ym, sm−1, z<m) = p(ym, sm−1, z<m, x)/

∑
x p(ym, sm−1, z<m, x)

6 p(z<m|ym, sm−1) =
∑

x p(ym, sm−1, z<m, x)
∑

x

∑
z<m

p(ym, sm−1, z<m, x)

7 do

8 // KL-Divergence DKL(ym, sm−1, z≤m) of (5.18)
9 p(z≤m, x)(l) =

∑
sm−1

p(zm−1, sm−1|x, z<m−1) ·∑
ym

p(zm|ym, sm−1)
(l−1)p(z<m−1, ym, x)

10 p(x|z≤m)(l) = p(z≤m, x)(l)/
∑

x p(z≤m, x)(l)

11 DKL(ym, sm−1, z≤m)(l) =
∑

x p(x|ym, sm−1, z<m) · log p(x|ym,sm−1,z<m)

p(x|z≤m)(l)

12 // distance dβm(ym, zm, sm−1) (5.18)
13 p(z≤m)(l) =

∑
x p(z≤m, x)(l)

14 p(zm|z<m)(l) = p(z≤m)(l)/
∑

zm
p(z≤m)(l)

15 dβm(zm, ym, sm−1)
(l) =∑

z<m
p(z<m|ym, sm−1) ·

[
1
βm

DKL(ym, sm−1, z≤m)(l) − log p(zm|z<m)(l)
]

16 // update quantizer p(zm|ym, sm−1)

17 p(zm|ym, sm−1)
(l) = 1∑

z e
−dβm

(ym,zm,sm−1)
(l) e

−dβm (ym,zm,sm−1)(l)

18 l← l + 1

19 while DJS[ p
(l)(zm|ym, sm−1) || p(l−1)(zm|ym, sm−1) ] > ϵ

20 // calculate p(sm|z≤m, x) and p(z<m, x) for recursive input of
successive sensor

21 p(z<m, x) =
∑

zm
p(z≤m, x)

22 p(ym, x, zm) = p(ym, x)
∑

sm−1
p(zm|ym, sm−1)p(sm−1|x)

23 p(ym|x, zm) = p(ym, x, zm)/
∑

ym
p(ym, x, zm)

24 p(sm|z≤m, x) =
∑

sm−1
p(sm−1|z≤m−1, x)

∑
ym

p(ym|x, zm)p(sm|ym, sm−1)
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Figure 5.14: Relevant mutual information I(X ;Z) versus the network size for a fixed sum-
rate of Csum = 4 bit/s/Hz and Cm = Csum

M for the sequential point-to-point transmission
protocol with different cardinalities |Sm|; |X| = 4, |Ym| = 64, |Zm| = 4

for larger networks. This is independent of the SNR or the sum-rate Csum and still occurs
without exchanging instantaneous side-information. However, exchanging instantaneous
side-information increases the performance compared to the non-cooperative case, even if
just a single bit is exchanged, i.e., |Sm| = 2. However, the instantaneous side-information
with cardinality |Sm| = 2 can improve the performance just a little bit since small cardi-
nalities |Sm| requires a strong compression with massive losses. Although Sm gets more
reliable for each additional sensor in the network, the information it contains about X
saturates early due to the accumulated loss of multiple compression steps. Increment-
ing the cardinality |Sm| leads to significant gains compared to the non-cooperative CEO
scenario. However, similar to the broadcast case, there still remains a gap to the fcCEO
scenario even for large |Sm|. Again, this can be explained by the successive communication
strategy, since sensors at the beginning of the optimization chain can only exploit no or
little instantaneous side-information, and the fact that cooperation with other sensors and
forwarding to the common receiver is not separated.

Performance Analysis for different Sum-Rates: Figure 5.15 analyzes the perfor-
mance of the pcCEO scenario applying the sequential point-to-point transmission protocol
for different sum-rates. Therefore, the relevant mutual information I(X ;Z) is depicted
versus different sum-rates Csum =

∑M
m=1Cm for a symmetric scenario with M = 5 sen-

sors. The sum-rate is equally distributed on each forward link to the common receiver,
i.e., Cm = Csum

M which is why larger sum-rates correlate with higher individual link capaci-
ties. The relevant signal is chosen to be a 4-ASK signal. Again, the non-cooperative CEO
scenario serves as a lower bound, while the fcCEO scenario serves as an upper bound.
In general, increasing the sum-rate leads to a larger overall performance up to a certain
level. It can be observed that a cardinality of |Sm| = 2 only leads to a small gain in
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Figure 5.15: Relevant mutual information I(X ;Z) versus sum-rate Csum with Cm = Csum
M

using the sequential point-to-point transmission protocol with different cardinalities |Sm|;
|X| = 4, |Ym| = 64, |Zm| = 4

performance. This can be explained by the incremental compression loss when represent-
ing the instantaneous side-information with only one bit. Increasing the cardinality |Sm|,
the improvement compared to the non-cooperative CEO scenario gets more and more sig-
nificant. In general, the gain of cooperation is largest for lower sum-rates. Comparing
the results to the upper bound illuminates the loss due to limited available instantaneous
side-information at early transmitting sensors.

Performance Analysis in an Asymmetric Scenario: The analysis of the original
GDIB algorithm in asymmetric non-cooperative CEO scenarios revealed that this algo-
rithm is very sensitive to the optimization order, i.e., the Wyner-Ziv coding strategy. The
question arises if partial cooperation among sensors can improve the robustness against
bad Wyner-Ziv coding strategies. In order to compare the results to the non-cooperative
CEO scenario, the same two asymmetric setups are investigated as in Figure 4.12. Sce-
nario 1 considers the case where sensors with bad measurement SNRs γm have low link
capacities Cm while sensors with good measurement SNRs γm have high link capacities
Cm. Scenario 2 considers the opposite case where sensors with bad SNRs have high link
capacities and vice versa. The relevant signal x is chosen to be a 4-ASK signal.
Figure 5.16 illustrates the relevant mutual information I(X ;Z) for all M ! sensor permu-
tations, i.e., all different Wyner-Ziv coding strategies for a network of M = 4 sensors. The
dots show the results of the non-cooperative CEO scenario as already discussed in Figure
4.12. The results for the pcCEO scenario using the sequential point-to-point transmission
protocol are depicted as bars. Scenario 1 is depicted in blue, whereas Scenario 2 is depicted
in red.
Comparing the overall performance of the two different approaches in general, it is obvious
that the relevant information I(X ;Z) is larger in the pcCEO scenario compared to the
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Figure 5.16: Relevant mutual information for an asymmetric scenario with M = 4 sensors,
SNRs γm = [2, 4, 6, 8] dB and |X| = 4, |Ym| = 64, |Zm| = 4 using the sequential point-to-
point transmission protocol with |Sm| = 8

non-cooperative CEO scenario. Indeed, this can be explained by each sensor exploiting
the instantaneous side-information of the previous sensor. Regarding Scenario 1, only
minor differences in the relevant mutual information I(X ;Z) can be observed between
the different optimization orders. Hence, in the case where good sensors are paired with
good measurement SNRs, the Wyner-Ziv coding strategy does not have a big impact in
the pcCEO scenario as well as in the non-cooperative CEO scenario.
In general, the performance for Scenario 2 is worse than for Scenario 1, again for both the
non-cooperative CEO scenario and the pcCEO scenario. Here, accurate measurements
have to be strongly compressed in order to be able to forward them to the common
receiver. In contrast, unreliable measurements can not contribute much to the overall
performance, although they can be forwarded to the common receiver at high rates. It
becomes very apparent that the performance difference between different optimization
orders is much smaller in the pcCEO scenario compared to the non-cooperative CEO
scenario. This can be explained by sensors being able to forward their good measurements
to the neighboring sensor, although they might have a bad forward channel to the common
receiver. The following sensor can then exploit the instantaneous side-information created
by these good measurements. Therefore, exchanging instantaneous side-information can
improve the robustness against bad optimization orders.

Influence of the Relevant Signal: Figure 5.17 illustrates the relevant mutual infor-
mation I(X ;Z) versus the network size in a symmetric scenario for a Gaussian relevant
signal sampled with |X| = 64 equidistant bins. As before, all sensors share the same for-
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Figure 5.17: Relevant mutual information I(X ;Z) versus the network size for a fixed
sum-rate of Csum ∈ {2.5, 4} bit/s/Hz, γm = 3 dB and Cm = Csum

M for the sequential point-
to-point transmission protocol with different cardinalities |Sm| and a Gaussian relevant
signal x; |X| = 64, |Ym| = 64, |Zm| = 4

ward channel with a sum-rate of Csum ∈ {2.5, 4} in an orthogonal way and a round-robin
fashion. The measurement SNR is chosen to be γm = 3 dB. It can be observed that the
results are qualitatively the same as for a 4-ASK signal. Generally, instantaneous side-
information improves the overall performance. Moreover, representing this instantaneous
side-information with more bits results in a larger overall improvement. However, as ob-
served in Figure 5.12, the amount of information a sensor can contribute to I(X ;Sm) gets
smaller for each additional sensor. Therefore, the gain of larger |Sm| shrinks, and there
still remains a gap to the fcCEO scenario, even for |Sm| = 32.
Figure 5.18 illustrates the relevant mutual information I(X ;Z) versus different sum-rates
in a symmetric scenario for a Gaussian relevant signal with |X| = 64 bins. Therefore,
I(X ;Z) is depicted versus different sum-rates Csum =

∑M
m=1Cm for a scenario with M = 5

sensors. The signal-to-noise ratio is chosen to be γm = 3 dB. As before, the sum-rate is
equally distributed on each forward link to the common receiver, i.e., Cm = Csum

M which
is why larger sum-rates correlate with higher individual link capacities. The general per-
formance is very similar to the performance for a 4-ASK relevant signal. With increasing
sum-rates, the overall performance increases, independent of the cardinality |Sm|. Similar
to previous simulations, a higher cardinality |Sm| also results in a larger relevant mutual
information I(X ;Z). However, there still remains a gap to the fcCEO scenario.
These results indicate that the GDIB-PTP algorithm can also be applied for pre-quantized
continuous distributions of the relevant signal.

113



Chapter 5: Distributed Remote Sensing with Partial Cooperation

1 2 3 4 5 6

0.5

1

1.5

2 I(X ;Y)

γm = 3 dB

fcCEO
CEO

sum capacity Csum

I
(X

;Z
)

|Sm| = 2 |Sm| = 4 |Sm| = 8 |Sm| = 16 |Sm| = 32

Figure 5.18: Relevant mutual information I(X ;Z) versus sum-rate Csum in a network of
M = 5 sensors with Cm = Csum

M using the sequential point-to-point transmission protocol
with different cardinalities |Sm| and a Gaussian relevant signal with |X| = 64; |Ym| = 128,
|Zm| = 4

5.4 Two-Phase Transmission Protocol with Artificial Side-
Information

The analysis of the last two transmission protocols revealed that partial cooperation among
sensors improves the overall performance compared to the non-cooperative CEO scenario.
However, there still remains a gap to the fcCEO scenario. This gap results from the
successive exchange of instantaneous side-information and the fact that this instantaneous
side-information needs to be quantized in order to be exchanged among sensors. Therefore,
the available amount of side-information differs for each sensor in the network. This
leads to early sensors having no or little instantaneous side-information to exploit. In
order to overcome this, a third transmission protocol consisting of two distinct phases
is considered, including the cooperation phase and the transmission phase. Inspired by
the fcCEO scenario, the first cooperation phase is used to exchange instantaneous side-
information between all sensors until each sensor has approximately the same amount of
side-information. The second transmission phase is used to forward the information to
the common receiver in the usual way. The difference to the fcCEO scenario is that only
compressed versions of the observations can be exchanged during the cooperation phase.
For simplicity, it can be assumed that each sensor obtains the same instantaneous side-
information represented by s∗. This shall hold independent of its position in the opti-
mization chain.2 Within the following investigations, the extrinsic information transfer
(EXIT) chart philosophy [Bri01] can be pursued, where extrinsic information is artificially

2Strictly speaking, this only holds for symmetric scenarios. This is why no asymmetric scenarios are
considered for this communication protocol.
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created to analyze the information exchange between decoders in concatenated coding
schemes. In the context of the pcCEO scenario using the two-phase transmission proto-
col, the artificial side-information can be interpreted as extrinsic information about the
relevant signal x. This extrinsic information can be generated by adding AWGN to x.
In this way, the amount of information can be adapted by varying the noise variance to
obtain a specific SNR γextr. Equivalently, a desired mutual information I(X ;S∗) can be
adjusted. In order to obtain general conclusions, it is assumed that γextr can be cho-
sen independently from the measurement SNRs at the sensors. Artificially creating the
side-information implies an important simplification of the Markovian structure, which is
necessary to solve the following optimization problem. To be more specific, since s∗ is cre-
ated artificially, it is assumed to be independent of the indexes ym given the relevant signal
x, i.e., p(ym, s∗|x) = p(ym|x)p(s∗|x) holds. Therefore, the Markovian structure equals the
one of the non-cooperative CEO problem. This indicates that in contrast to the first
two communication protocols, the supermodularity holds for the two-phase transmission
protocol as it also does for the non-cooperative CEO scenario and the fcCEO scenario.
Therefore, a greedy optimization structure is optimal, i.e., it finds the extreme points in
the solution space. This model leads to the modified optimization problem

L
(1)
GDIB-TP = I(X ;Z1)− β1I(Y1,S∗;Z1) (5.19a)

...

L
(M)
GDIB-TP = I(X ;ZM |Z<M )− βMI(YM ,S∗;ZM |Z<M ). (5.19b)

The optimization problem for sensor m can be solved using the same strategy as described
in Section 5.2 and 5.3 leading to the implicit update equation

p(zm|ym, s∗) =
e−dβm (ym,zm,s∗)∑
zm

e−dβm (ym,zm,s∗)
(5.20)

with

dβm(ym, zm, s∗) := EZ<m|ym,s∗

[
1

βm
·

DKL [p(x|ym, s∗, z<m)∥p(x|z≤m)]− log p(zm|z<m)

]
. (5.21)

Equivalent to the other communication protocols, the update equation in (5.20) can be
solved using a Blahut-Arimoto-like algorithm.

Performance of Two-Phase Transmission: In order to investigate the performance
of the two-phase transmission protocol, the previous experiment of Figure 5.6 and Figure
5.13 using the successive broadcasting protocol and the sequential point-to-point trans-
mission protocol will also be investigated applying the two-phase transmission protocol.
Therefore, Figure 5.19 illustrates the relevant mutual information I(X ;Z) versus the net-
work size for a fixed sum-rate of Csum = 2.5 bit/s/Hz and Cm = Csum

M . The extrinsic
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Figure 5.19: Relevant mutual information I(X ;Z) versus the network size for a fixed
sum-rate of Csum = 2.5 bit/s/Hz and Cm = Csum

M using a two-phase transmission protocol
for artificially decoupled extrinsic information with different γext; γm = 8 dB, |X| = 4,
|Ym| = 64, |Zm| = 4, |S∗| = 512

information is chosen independent of the measurement SNR. Hence, γext needs not to be
the same as γm. The cardinality of the extrinsic information is chosen as |S∗| = 512 to
not introduce significant compression losses. The black dashed line represents the upper
bound, i.e., the fcCEO scenario. The curve for γextr = γm = 8 dB represents the case
where each sensor forwards instantaneous side-information with the same quality as its
measurement. Therefore, γm equals γextr. It can be observed that the same performance
as for the fcCEO scenario is achieved. This demonstrates that by applying appropriate
cooperation among sensors, the remaining gap to the fcCEO scenario can be closed. De-
creasing the SNR of the extrinsic information γext or equivalently I(X ;S∗) leads to a lower
overall performance I(X ;Z).

Influence of Extrinsic Information: Figure 5.20 illustrates the influence of extrinsic
information applying the two-phase transmission protocol. Inspired by EXIT charts, the
relevant mutual information I(X ;Z) is depicted versus the extrinsic mutual information
I(X ;S∗) for different network sizes. Again, all sensors share the same channel in an or-
thogonal way and a round-robin fashion with a fixed sum-rate of Csum = 2.5 bit/s/Hz
and Cm = Csum

M . In the case of I(X ;S∗) = 0 where no extrinsic information is provided
to the sensors, the same performance as in the non-cooperative CEO scenario can be
achieved. Increasing the extrinsic information improves the overall relevant mutual in-
formation I(X ;Z). Since the relevant signal is chosen to be a 4-ASK signal, the overall
maximum is 2 bit/s/Hz.
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I(X ;S∗) for different network sizes and a fixed sum-rate of Csum = 2.5 bit/s/Hz and
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5.5 Discussion

In order to close the gap between the non-cooperative CEO scenario and the fully co-
operative CEO scenario, this chapter introduced the pcCEO scenario, allowing partial
cooperation among sensors in the network via rate-limited inter-sensor links. In particu-
lar, sensors are allowed to exchange some instantaneous side-information during run-time.
Therefore, the GDIB algorithm has been extended for three different inter-sensor com-
munication protocols: successive broadcasting, sequential point-to-point communication,
and a two-phase transmission protocol. The successive broadcasting and the sequential
point-to-point communication protocols do not separate the forwarding of instantaneous
side-information and the forwarding of compressed information to the common receiver
in distinct phases. Thus, both protocols can only exploit instantaneous side-information
of previous sensors in the optimization chain. More precisely, the successive broadcasting
protocol exploits the instantaneous side-information of all previous sensors. It turned out
that in this way, the pcCEO scenario significantly outperforms the original CEO scenario,
which does not allow cooperation among sensors. However, since the successive broadcast-
ing protocol suffers from the curse of dimensionality for larger networks, the sequential
point-to-point protocol has been introduced. Here, the instantaneous side-information is
only forwarded to the next sensor in the optimization chain. By choosing an appropriate
cardinality, the instantaneous side-information can contain the same amount of informa-
tion about the relevant signal as in the broadcast case. Therefore, the overall performance
is very similar to the performance of the successive broadcasting protocol. In addition, it
can be observed that the pcCEO scenario shows a larger robustness to suboptimal Wyner-
Ziv coding strategies in asymmetric scenarios. Naturally, this can be explained by sensors
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being able to forward their good measurements to the neighboring sensor, although they
might have a bad forward channel to the common receiver. However, for both transmis-
sion protocols, there still remains a performance gap to the fcCEO scenario. In order
to close this gap, a third transmission protocol has been introduced, which separates the
cooperation among sensors and the actual forwarding to the common receiver in distinct
phases, as is the case in the fcCEO scenario. This allows each sensor to have access to the
maximum available side-information. This communication protocol has been investigated
pursuing the EXIT chart philosophy by interpreting the instantaneous side-information
as extrinsic information available at each sensor. It turned out that the separation of
cooperation and forwarding phase can close the gap to the fcCEO scenario. Although no
formal conclusion about the optimality of the pcCEO scenario can be drawn, the closeness
to the fcCEO scenario in the investigated simulations reveals that solutions found by the
proposed greedy algorithms are at least close to optimal.
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Conclusion

This thesis considers a special case of the multi-terminal source coding problem, where
all terminals, i.e., sensors, are interested in the same source signal while trying to forward
their noisy measurements to a common receiver via rate-limited forward links. Therefore,
each sensor has to locally compress its measurements. This scenario is widely known as
the CEO problem [BZV96] and has been investigated for many different scenarios and
model assumptions in the current literature. Most of the research is interested in finding
the rate region from a theoretical point of view, which means trying to find the rates
for a specific target distortion. This thesis, however, considers the problem in a different
way, i.e., it tries to minimize the distortion for specific target rates. In particular, it
provides an algorithmical perspective on this problem. Although evolving from a different
field, the CEO problem with a logarithmic loss distortion measure is closely related to the
information bottleneck principle. Therefore, this thesis applies the IB principle to design
algorithmic approaches allowing the optimization of the compression device of each sensor,
such that the distortion is minimized while not exceeding individual rate constraints.
Chapter 2 and 3 provide necessary theoretical background information to understand the
main contributions of this thesis. Therefore, information-theoretic fundamentals, as well
as basics on general source coding with lossy compression, have been discussed. The
main focus here lies on the introduction of the information bottleneck principle as well as
some properties and algorithmic approaches to solve it. Afterward, the non-cooperative
distributed remote source coding problem, also known as the CEO problem, with a log-
arithmic loss distortion measure is introduced. In addition, the fully cooperative CEO
scenario is described, assuming that each sensor has access to all measurements in the
network.
The main contribution of this thesis can be found in Chapter 4 and 5. The GDIB algo-
rithm has been introduced in the first part of Chapter 4 as an iterative algorithm, which
sequentially designs the quantizer of each sensor applying the Wyner-Ziv coding principle
by exploiting the statistics of previously designed quantizers [SK21; Ste+21b]. In this
way, this algorithm maximizes the relevant mutual information while not exceeding the
individual forward link capacities of each sensor. In contrast to approaches based on the
sum-rate constraint, this allows the design even for asymmetric scenarios, where sensors
have different link capacities and measurement SNRs. It has been shown that the GDIB
algorithm outperforms individual scalar IB optimization for each sensor. In asymmetric
scenarios, the GDIB algorithm is very sensitive to different Wyner-Ziv coding strategies,
i.e., different optimization orders. However, a good solution can be expected by starting
the optimization with the sensor belonging to the best forward link. It has been shown that
the GDIB algorithm is quite robust against measurement SNR mismatch for good forward
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links. In bad forward links, measurement SNR mismatch can cause the rate constraints to
be violated. In order to prevent that, a compression rate back-off can be included, or the
optimization can be performed for a low SNR. By setting the trade-off parameter to zero,
a slightly modified variant of the GDIB algorithm results in deterministic mappings, which
might be interesting for a practical implementation. However, since the compression can
only be adjusted in coarse steps by changing the output cardinality, these deterministic
mappings may cause performance losses. Since the memory complexity of the GDIB algo-
rithm depends on the number of sensors in the network, it might be infeasible for larger
networks. The second part of Chapter 4 introduced a reduced-memory complexity version
of the GDIB algorithm allowing the optimization even for larger network sizes [Ste+21a;
Ste+21b]. Therefore, the IB principle is applied in a sequential compression scheme to
compress the mappings of previously designed quantizers to a single index while preserving
information about the relevant signal. It has been shown that the performance loss due
to the additional IB compression can be negligible by choosing appropriate cardinalities.
Moreover, this sequential compression scheme significantly reduces the memory complex-
ity. In the last part of Chapter 4, the GDIB algorithm has been adapted to incorporate
imperfect erroneous forward links based on the approach in [Win14; WMB13]. This CA-
GDIB algorithm has been shown to outperform the original GDIB algorithm for a scenario
with a residual error probability on the forward links.
Chapter 4 demonstrated that although applying Wyner-Ziv coding with the GDIB al-
gorithm, there remains a large gap between the non-cooperative CEO scenario and the
fcCEO scenario where each sensor has access to all measurements. Therefore, Chap-
ter 5 introduces the pcCEO scenario, allowing partial cooperation among sensors in the
network during run-time via rate-limited inter-sensor links [SAK22; SK22]. The GDIB
algorithm has been extended for three different inter-sensor communication protocols:
successive broadcasting, sequential point-to-point communication, and a two-phase trans-
mission protocol. In the successive broadcasting protocol, sensors are allowed to forward
instantaneous side-information to all subsequent sensors. Since cooperation among sensors
and forwarding to the common receiver is not performed in distinct phases, each sensor can
only exploit the instantaneous side-information of all previous sensors in the optimization
chain. It has been shown that this can significantly increase the performance compared to
the non-cooperative CEO scenario. However, since this transmission protocol suffers from
the curse of dimensionality, the sequential point-to-point protocol has been introduced as
an alternative approach. Here, the instantaneous side-information can only be forwarded
to the next sensor within the optimization chain. It has been shown that the performance
of this transmission protocol nearly equals the performance of the successive broadcasting
protocol if the output cardinality of the instantaneous side-information is chosen appropri-
ately. Moreover, the exchange of instantaneous side-information during run-time increases
the robustness against bad Wyner-Ziv coding strategies since good measurements can be
forwarded to the neighboring sensor even if the forward channel to the common receiver is
bad. However, there still occurs a performance gap to the fcCEO scenario. Therefore, the
two-phase transmission protocol has been introduced, separating the cooperation among
sensors and the transmission to the common receiver in distinct phases. In this case, each
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sensor has access to the maximum available side-information. It has been shown that, in
this case, the performance of the fcCEO scenario can be achieved.
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Appendix A

Proof for Supermodularity of I(YS;ZS|ZS,Q)

On a finite set V a function s : 2V → R is supermodular if for all A,B ⊆ V

s(A) + s(B) ≤ s(A ∩ B) + s(A ∪ B) (A.1)

holds. Following the proof given in [CW14], the general definition for supermodular func-
tions can be applied on the compression rates I(YS;ZS|ZS,Q) such that for A,B ⊆ S

s(A) + s(B) = I(YA;ZA|ZA,Q) + I(YB;ZB|ZB,Q)

=
(a)

H(ZA|ZA,Q)−H(ZA|YA,Q) +H(ZB|ZB,Q)−H(ZB|YB,Q)

=
(b)

H(ZA|ZA,Q) +H(ZB|ZB,Q)

−H(ZA∪B|YA∪B,Q)−H(ZA∩B|YA∩B,Q)

=
(c)

H(ZA\B|ZA,Q) +H(ZA∩B|ZA∩B)

+H(ZB|ZB,Q)−H(ZA∪B|YA∪B,Q)−H(ZA∩B|YA∩B,Q)

=
(d)

H(ZA\B|ZA,Q) +H(ZB|ZB,Q)−H(ZA∪B|YA∪B,Q)

+ I(YA∩B;ZA∩B|ZA∩B,Q)

≤
(e)

H(ZA\B|ZA∪B,Q) +H(ZB|ZB,Q)−H(ZA∪B|YA∪B,Q)

+ I(YA∩B;ZA∩B|ZA∩B,Q)

=
(f)

I(YA∪B;ZA∪B|ZA∪B,Q) + I(YA∩B;ZA∩B|ZA∩B,Q)

= s(A ∪ B) + s(A ∩ B) (A.2)

holds. Note that (a),(d), and (f) hold due to the Markov property given in (3.39). More-
over, different Zm are conditionally independent given Ym and Q. Reordering different
mappings p(zm|ym) results in (b). In (c), the chain rule of mutual information is applied.
Finally, conditioning reduces the entropy leading to (e).
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Appendix B

Derivation of the GDIB Algorithm

As stated in Subsection 4.1 the optimization problem of the GDIB algorithm for sensor
m is given as

LGDIB =

M∑
m=1

I(X ;Zm|Z<m)− βm · I(Ym;Zm|Z<m)

By pursuing a greedy optimization approach, this formulation can be decomposed into M

optimization problems:

L
(1)
GDIB = I(X ;Z1)− β1I(Y1;Z1)

...

L
(M)
GDIB = I(X ;ZM |Z<M )− βMI(YM ;ZM |Z<M ).

The particular utility function for sensor m is given by

L
(m)
GDIB[p(zm|ym)] = I(X ;Zm|Z<m)− βmI(Ym;Zm|Z<m) , (B.2)

which can be solved by taking the derivative w.r.t. the mapping p(zm|ym) and equating it
to zero. Note that the mapping p(zm|ym) obviously influences both terms, I(X ;Zm|Z<m)

and I(Ym;Zm|Z<m). In the following, the derivatives of both mutual information are
given.

B.1 Derivative of I(X ;Zm|Z<m)

The relevant mutual information in (B.2) can be rewritten such that the desired mapping
occurs explicitly.

I(X ;Zm|Z<m) = EX ,Z≤m

[
log p(zm|x, z<m)

p(zm|z<m)

]
=

∑
zm

∑
ym

p(zm|ym) ·
∑
x

∑
z<m

p(x, ym, z<m) · log
∑
a∈Ym

p(zm|a)p(a|z<m, x)

−
∑
zm

∑
ym

p(zm|ym) ·
∑
z<m

p(ym, z<m) · log
∑
a∈Ym

p(zm|a)p(a|z<m) (B.3)
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Chapter B: Derivation of the GDIB Algorithm

The derivative of (B.3) delivers

∂I(X ;Zm|Z<m)

∂p(zm|ym)
=

∑
x

∑
z<m

p(x, ym, z<m) · log p(zm|x, z<m)

+
∑
x

∑
z<m

[∑
ym

p(zm|ym) · p(x, ym, z<m)

]
︸ ︷︷ ︸

=p(zm,x,z<m)

·p(ym|x, z<m)

p(zm|x, z<m)

−
∑
z<m

p(ym, z<m) · log p(zm|z<m)

−
∑
z<m

[∑
ym

p(zm|ym) · p(ym, z<m)

]
︸ ︷︷ ︸

=p(zm,z<m)

·p(ym|z<m)

p(zm|z<m)

=
∑
x

∑
z<m

p(x, ym, z<m) log p(zm|x, z<m)−
∑
z<m

p(ym, z<m) log p(zm|z<m)

=
∑
z<m

p(ym, z<m) ·
∑
x

p(x|ym, z<m) · log p(zm|x, z<m)

p(zm|z<m)
. (B.4)

Exploiting Bayes’ theorem, the argument of the logarithmic function can be rewritten to

p(zm|x, z<m)

p(zm|z<m)
=

p(x|z≤m)

p(x|z<m)
=

p(x|z≤m)

p(x|ym, z<m)
· p(x|ym, z<m)

p(x|z<m)
. (B.5)

The last ratio in (B.5) can be dropped because it does not depend on p(zm|ym) and
its contribution can be incorporated into the Lagrange multiplier βm. The insertion of
the first ratio into (B.4) yields the contribution of the derivative of the relevant mutual
information

∂I(X ;Zm|Z<m)

∂p(zm|ym)
→ −

∑
z<m

p(ym, z<m) ·
∑
x

p(x|ym, z<m) · log p(x|ym, z<m)

p(x|z≤m)

= −
∑
z<m

p(ym, z<m) ·DKL [p(x|ym, z<m)∥p(x|z≤m)] . (B.6)

B.2 Derivative of I(Ym;Zm|Z<m)

With the definition of the conditional compression rate

I(Ym;Zm|Z<m) = EYm,Z≤m

[
log p(zm|ym)

p(zm|z<m)

]
=

∑
zm

∑
ym

p(zm|ym)p(ym) log p(zm|ym)

−
∑
zm

∑
ym

p(zm|ym)
∑
z<m

p(ym, z<m) log
∑
a∈Ym

p(zm|a)p(a|z<m) , (B.7)
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its derivative becomes

∂I(Ym;Zm|Z<m)

∂p(zm|ym)
= p(ym) log p(zm|ym) + p(ym)

p(zm|ym)

p(zm|ym)

−
∑
z<m

p(ym, z<m) log p(zm|z<m)

−
∑
z<m

[∑
ym

p(zm|ym)p(ym, z<m)

]
︸ ︷︷ ︸

=p(z≤m)

p(ym|z<m)

p(zm|z<m)

= p(ym) log p(zm|ym)−
∑
z<m

p(ym, z<m) log p(zm|z<m)

=
∑
z<m

p(ym, z<m) log p(zm|ym)

p(zm|z<m)
. (B.8)

B.3 Fusion of Derived Parts

Combining the result in (B.6) and (B.8) delivers the complete derivative

−
∑
z<m

p(ym, z<m) ·DKL [p(x|ym, z<m)∥p(x|z≤m)]

− βmp(ym) log p(zm|ym) + βm
∑
z<m

p(ym, z<m) · log p(zm|z<m) = 0 . (B.9)

Following the idea of Blahut and Arimoto [CT06], p(x|z) and p(zm|z<m) are assumed to be
independent of p(zm|ym). With this trick, (B.9) can be resolved w.r.t. the desired mapping
of sensor m leading to the implicit solution

p(zm|ym) =
e−dβm (ym,zm)∑
zm

e−dβm (ym,zm)
(B.10)

with

dβm(ym, zm) :=
∑
z<m

p(z<m|ym)

[
1

βm
DKL [p(x|ym, z<m)∥p(x|z≤m)]− log p(zm|z<m)

]
= EZ<m|ym

[
1

βm
DKL [p(x|ym, z<m)∥p(x|z≤m)]− log p(zm|z<m)

]
. (B.11)

B.4 Calculating required pmfs

This section covers the calculation of the required pmfs for the previously described algo-
rithm. The first term in the KL divergence in (B.11) is calculated by

p(x|ym, z<m) =
p(x, ym, z<m)∑
x p(x, ym, z<m)

(B.12)
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where p(x, ym, z<m) is determined by

p(x, ym, z<m) = p(ym|x)p(z<m|x)p(x) . (B.13)

In (B.13) the pmf p(ym|x) is given as the measurement channel while p(z<m|x) is already
calculated by the previous sensor with

p(z≤m|x) =
∑
y≤m

Πm
i=1p(zi|yi)p(yi|x) (B.14)

where p(zi|yi) is the quantizer mapping of a specific sensor i in the product. The second
term in the KL divergence in (B.11) is calculated by

p(x|z≤m) =
p(z≤m|x)p(x)∑
x p(z≤m|x)p(x)

. (B.15)

The argument of the logarithm in (B.11) is determined as

p(zm|z<m) =

∑
x p(z≤m|x)p(x)∑

zm

∑
x p(z≤m|x)p(x)

. (B.16)

Finally, the pmf to calculate the conditional expectation in (B.11) is given as

p(z<m|ym) =

∑
x p(x, ym, z<m)∑
x p(ym|x)p(x)

(B.17)

where p(x, ym, z<m) is already calculated in (B.13). Note that all the above equations
simplify when optimizing the first sensor to the scalar IB equations given in Section 3.4.
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Derivation of an IB-Based Algorithm to Generate
Broadcasting Side-Information

As stated in Section 5.2.1, the optimization problem for sensor m to obtain the instanta-
neous side-information in a network applying the successive broadcasting protocol is given
as

L
(m)
BC-SIDE[p(sm|ym, s<m)] = I(X ;Sm|S<m)− βmI(Ym;Sm|S<m) , (C.1)

which can be solved by taking the derivative w.r.t. the mapping p(sm|ym, s<m) and equat-
ing it to zero. In the following, the derivatives of both mutual information are given.

C.1 Derivative of I(X ;Sm|S<m)

The relevant mutual information in (C.1) can be rewritten such that the desired mapping
occurs explicitly.

I(X ;Sm|S<m) = EX ,Sm,S<m

[
log p(sm|x, s<m)

p(sm|s<m)

]
=

∑
sm

∑
x

∑
ym

∑
s<m

p(sm|ym, s<m)p(ym, s<m, x)

· log
∑
a∈Ym

p(sm|a, s<m)p(a|s<m, x)

−
∑
sm

∑
x

∑
ym

∑
s<m

p(sm|ym, s<m)p(ym, s<m, x)

· log
∑
a∈Ym

p(sm|a, s<m)p(a|s<m) (C.2)
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The derivative of (C.2) delivers

∂I(X ;Sm|S<m)

∂p(sm|ym, s<m)
=

∑
x

p(x, ym, s<m) · log p(sm|x, s<m)

+
∑
x

[∑
ym

p(sm|ym, s<m) · p(x, ym, s<m)

]
︸ ︷︷ ︸

=p(sm,s<m,x)

·p(ym|x, s<m)

p(sm|x, s<m)

−
∑
x

p(x, ym, s<m) · log p(sm|s<m)

−
∑
x

[∑
ym

p(sm|ym, s<m) · p(x, ym, s<m)

]
︸ ︷︷ ︸

=p(sm,s<m,x)

·p(ym|s<m)

p(sm|s<m)

=
∑
x

p(x, ym, s<m) · log p(sm|x, s<m)

p(sm|s<m)

= p(ym, s<m)
∑
x

p(x|ym, s<m) log p(sm|x, s<m)

p(sm|s<m)
. (C.3)

Exploiting Bayes’ theorem, the argument of the logarithmic function can be rewritten to

p(sm|x, s<m)

p(sm|s<m)
=

p(x|s≤m)

p(x|s<m)
=

p(x|s≤m)

p(x|ym, s<m)
· p(x|ym, s<m)

p(x|s<m)
. (C.4)

The last ratio in (C.4) can be dropped because it does not depend on p(sm|ym, s<m) and
its contribution can be incorporated into the Lagrange multiplier βm. The insertion of
the first ratio into (C.3) yields the contribution of the derivative of the relevant mutual
information

∂I(X ;Sm|S<m)

∂p(sm|ym, s<m)
→ −p(ym, s<m)

∑
x

p(x|ym, s<m) log p(x|ym, s<m)

p(x|s≤m)

= −p(ym, s<m) ·DKL [p(x|ym, s<m)∥p(x|s≤m)] . (C.5)

C.2 Derivative of I(Ym;Sm|S<m)

With the definition of the conditional compression rate

I(Ym;Sm|S<m) = EYm,Sm,S<m

[
log p(sm|ym, s<m)

p(sm|s<m)

]
=

∑
sm

∑
s<m

∑
ym

p(sm|ym, s<m)p(ym, s<m) log p(sm|ym, s<m)

−
∑
sm

∑
s<m

∑
ym

p(sm|ym, s<m)p(ym, s<m) log
∑
a∈Ym

p(sm|a, s<m)p(a|s<m) , (C.6)
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its derivative becomes

∂I(Ym;Sm|S<m)

∂p(sm|ym, s<m)
= p(ym, s<m) log p(sm|ym, s<m) + p(ym, s<m)

p(sm|ym, s<m)

p(sm|ym, s<m)

− p(ym, s<m) log p(sm|s<m)

−

[∑
ym

p(sm|ym, s<m)p(ym, s<m)

]
︸ ︷︷ ︸

=p(sm,s<m)

p(ym|s<m)

p(sm|s<m)

= p(ym, s<m) log p(sm|ym, s<m)− p(ym, s<m) log p(sm|s<m)

= p(ym, s<m) log p(sm|ym, s<m)

p(sm|s<m)
. (C.7)

C.3 Fusion of Derived Parts

Combining the result in (C.5) and (C.7) delivers the complete derivative

− p(ym, s<m) ·DKL [p(x|ym, s<m)∥p(x|s≤m)]

− βmp(ym, s<m) log p(sm|ym, s<m) + βmp(ym, s<m) · log p(sm|s<m) = 0 . (C.8)

Following the idea of Blahut and Arimoto [CT06], p(x|s≤m) and p(sm|s<m) are assumed to
be independent of p(sm|ym, s<m). With this trick, (C.8) can be resolved w.r.t. the desired
mapping of sensor m leading to the implicit solution

p(sm|ym, s<m) =
e−dβm (ym,sm,s<m)∑
sm

e−dβm (ym,sm,s<m)
(C.9)

with

dβm(ym, sm, s<m) :=
1

βm
DKL [p(x|ym, s<m)∥p(x|s≤m)]− log p(sm|s<m) . (C.10)

C.4 Calculating required pmfs

This section covers the calculation of the required pmfs for the previously described algo-
rithm. The first term in the KL divergence in (C.10) is calculated by

p(x|ym, s<m) =
p(ym|x)p(s<m|x)p(x)

p(ym, s<m)
(C.11)

where p(ym|x) is given as the measuring channel and p(s<m|x) is calculated recursively by
the previous sensor by

p(s≤m|x) =
∑
ym

p(sm|ym, s<m)p(ym|x)p(s<m|x) . (C.12)

In (C.12) the pmf p(sm|ym, s<m) denotes the current mapping of the instantaneous side-
information and p(s<m|x) is a recursive term, which can already be computed by the
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previous sensor m− 1. The pmf p(ym, s<m) in the denominator of equation (C.11) can be
calculated as

p(ym, s<m) =
∑
x

p(ym|x)p(s<m|x)p(x) . (C.13)

The second term of the KL divergence in (C.10) can be calculated as

p(x|s≤m) =
p(s≤m|x)p(x)∑
x p(s≤m|x)p(x)

(C.14)

where p(s≤m|x) is already calculated in (C.12). Finally, the term in the argument of the
logarithm in (C.10) can be calculated as

p(sm|s<m) =

∑
x p(s≤m|x)p(x)∑

x

∑
sm

p(s≤m|x)p(x)
. (C.15)

Note that all the above equations simplify when optimizing the first sensor to the scalar
IB equations given in Section 3.4.
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Derivation of a GDIB Algorithm for Cooperating
Sensors Applying the Successive Broadcasting Pro-
tocol

For extending the GDIB algorithm in order to allow the sensors to exchange instantaneous
side-information with the successive broadcasting protocol, the optimization problem given
in Subsection 5.2.2

L
(m)
GDIB-BC[p(zm|ym, s<m)] = I(X ;Zm|Z<m)− βmI(Ym,S<m;Zm|Z<m) (D.1)

has to be solved by taking the derivative w.r.t. the mapping p(zm|ym, s<m) and equating
it to zero. In the following, the derivatives of both mutual information are given.

D.1 Derivative of I(X ;Zm|Z<m)

The relevant mutual information in (D.1) can be rewritten such that the desired mapping
occurs explicitly.

I(X ;Zm|Z<m) = EX ,Zm,Z<m

[
log p(zm|x, z<m)

p(zm|z<m)

]
=

∑
zm

∑
z<m

∑
x

∑
ym

∑
s<m

p(zm|ym, s<m)p(ym, s<m, z<m, x)

· log
∑
a∈Ym

∑
b∈S<m

p(zm|a, b)p(a, b|z<m, x)

−
∑
zm

∑
z<m

∑
x

∑
ym

∑
s<m

p(zm|ym, s<m)p(ym, s<m, z<m, x)

· log
∑
a∈Ym

∑
b∈S<m

p(zm|a, b)p(a, b|z<m) (D.2)
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The derivative of (D.2) delivers

∂I(X ;Zm|Z<m)

∂p(zm|ym, s<m)
=

∑
x

∑
z<m

p(ym, s<m, z<m, x) · log p(zm|x, z<m)

+
∑
x

∑
z<m

[∑
s<m

∑
ym

p(zm|ym, s<m) · p(ym, s<m, z<m, x)

]
︸ ︷︷ ︸

=p(zm,z<m,x)

·p(ym, s<m|x, z<m)

p(zm|x, z<m)

−
∑
x

∑
z<m

p(ym, s<m, z<m, x) · log p(zm|z<m)

−
∑
x

∑
z<m

[∑
s<m

∑
ym

p(zm|ym, s<m) · p(ym, s<m, z<m, x)

]
︸ ︷︷ ︸

=p(zm,z<m,x)

·p(ym, s<m|z<m)

p(zm|z<m)

=
∑
x

∑
z<m

p(ym, s<m, z<m, x) · log p(zm|x, z<m)

p(zm|z<m)

=
∑
z<m

p(ym, s<m, z<m)
∑
x

p(x|ym, s<m, z<m) log p(zm|x, z<m)

p(zm|z<m)
. (D.3)

Exploiting Bayes’ theorem, the argument of the logarithmic function can be rewritten to

p(zm|x, z<m)

p(zm|z<m)
=

p(x|z≤m)

p(x|z<m)
=

p(x|z≤m)

p(x|ym, s<m, z<m)
· p(x|ym, s<m, z<m)

p(x|z<m)
. (D.4)

The last ratio in (D.4) can be dropped because it does not depend on p(zm|ym, s<m) and
its contribution can be incorporated into the Lagrange multiplier βm. The insertion of
the first ratio into (D.3) yields the contribution of the derivative of the relevant mutual
information

∂I(X ;Zm|Z<m)

∂p(zm|ym, s<m)
→ −

∑
z<m

p(ym, s<m, z<m)
∑
x

p(x|ym, s<m, z<m) log p(x|ym, s<m, z<m)

p(x|z≤m)

= −
∑
z<m

p(ym, s<m, z<m) ·DKL [p(x|ym, s<m, z<m)∥p(x|z≤m)] . (D.5)

D.2 Derivative of I(Ym,S<m;Zm|Z<m)

With the definition of the conditional compression rate

I(Ym,S<m;Zm|Z<m) = EYm,Zm,Z<m,S<m

[
log p(zm|ym, s<m, z<m)

p(zm|z<m)

]
=

∑
zm

∑
z<m

∑
s<m

∑
ym

p(zm|ym, s<m)p(ym, s<m, z<m) log p(zm|ym, s<m)

−
∑
zm

∑
z<m

∑
s<m

∑
ym

p(zm|ym, s<m)p(ym, s<m, z<m) log
∑
a∈Ym

∑
b∈S<m

p(zm|a, b)p(a, b|z<m)

(D.6)
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its derivative becomes

∂I(Ym,S<m;Zm|Z<m)

∂p(zm|ym, s<m)

=
∑
z<m

p(ym, s<m, z<m) log p(zm|ym, s<m)

+
∑
z<m

p(ym, s<m, z<m)
p(zm|ym, s<m)

p(zm|ym, s<m)

−
∑
z<m

p(ym, s<m, z<m) log p(zm|z<m)

−
∑
z<m

[∑
ym

∑
s<m

p(zm|ym, s<m)p(ym, s<m, z<m)

]
︸ ︷︷ ︸

=p(zm,z<m)

p(ym, s<m|z<m)

p(zm|z<m)

=
∑
z<m

p(ym, s<m, z<m) log p(zm|ym, s<m)

−
∑
z<m

p(ym, s<m, z<m) log p(zm|z<m)

=
∑
z<m

p(ym, s<m, z<m) log p(zm|ym, s<m)

p(zm|z<m)
. (D.7)

D.3 Fusion of Derived Parts

Combining the result in (D.5) and (D.7) delivers the complete derivative

−
∑
z<m

p(ym, s<m, z<m) ·DKL [p(x|ym, s<m, z<m)∥p(x|z≤m)]

− βm
∑
z<m

p(ym, s<m, z<m) log p(zm|ym, s<m)

+ βm
∑
z<m

p(ym, s<m, z<m) · log p(zm|z<m) = 0 . (D.8)

Following the idea of Blahut and Arimoto [CT06], p(x|z≤m) and p(zm|z<m) are assumed to
be independent of p(zm|ym, s<m). With this trick, (D.8) can be resolved w.r.t. the desired
mapping of sensor m leading to the implicit solution

p(zm|ym, s<m) =
e−dβm (ym,zm,s<m)∑
zm

e−dβm (ym,zm,s<m)
(D.9)

with

dβm(ym, zm, s<m)

:=
∑
z<m

p(z<m|ym, s<m)

[
1

βm
DKL [p(x|ym, s<m, z<m)∥p(x|z≤m)]− log p(zm|z<m)

]
= EZ<m|ym,s<m

[
1

βm
DKL [p(x|ym, s<m, z<m)∥p(x|z≤m)]− log p(zm|z<m)

]
. (D.10)
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D.4 Calculating required pmfs

This section covers the calculation of the required pmfs for the previously described algo-
rithm. The first term in the KL divergence in (D.10) is calculated by

p(x|ym, s<m, z<m) =
p(x, ym, s<m, z<m)∑
x p(x, ym, s<m, z<m)

(D.11)

where p(x, ym, s<m, z<m) is determined recursively as

p(x, ym, s<m, z<m) =
∑
ym−1

p(zm−1|ym−1, s<m−1)p(sm−1|ym−1, s<m−1)p(ym|x)

p(x, ym−1, s<m−1, z<m−1) . (D.12)

In (D.12) the pmf p(zm−1|ym−1, s<m−1) is given as the quantizer mapping of the pre-
vious sensor while p(sm−1|ym−1, s<m−1) is given as the mapping for the instantaneous
side-information of the previous sensor. The recursive pmf p(x, ym−1, s<m−1, z<m−1) can
already be calculated by previous sensors. The second term in the KL divergence in (D.10)
is calculated by

p(x|z≤m) =
p(z≤m, x)∑
x p(z≤m, x)

(D.13)

where p(z≤m, x) can be calculated by

p(z≤m, x) =
∑
s<m

∑
ym

p(zm|ym, s<m)p(x, ym, s<m, z<m) (D.14)

with p(zm|ym, s<m) being the quantizer mapping of the current sensor and p(x, ym, s<m, z<m)

being already calculated in (D.12). The argument of the logarithm in (D.10) can be derived
as

p(zm|z<m) =

∑
x p(z≤m, x)∑

zm

∑
x p(z≤m, x)

. (D.15)

Finally, the pmf to calculate the conditional expectation in (D.10) is determined as

p(z<m|ym, s<m) =

∑
x p(x, ym, s<m, z<m)∑

z<m

∑
x p(x, ym, s<m, z<m)

. (D.16)

Note that all the above equations simplify when optimizing the first sensor to the scalar
IB equations given in Section 3.4.
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Derivation of an IB-Based Algorithm to Generate
Point-To-Point Side-Information

As stated in Subsection 5.3.1, the optimization problem for sensor m to generate the in-
stantaneous side-information in a network with cooperating sensors applying the sequential
point-to-point protocol is given as

L
(m)
PTP-SIDE[p(sm|ym, sm−1)] = I(X ;Sm)− βmI(Ym,Sm−1;Sm) , (E.1)

which can be solved by taking the derivative w.r.t. the mapping p(sm|ym, sm−1) and equat-
ing it to zero. In the following, the derivatives of both mutual information are given.

E.1 Derivative of I(X ;Sm)

The relevant mutual information in (E.1) can be rewritten such that the desired mapping
occurs explicitly.

I(X ;Sm) = EX ,Sm

[
log p(sm|x)

p(sm)

]
=

∑
sm

∑
x

∑
ym

∑
sm−1

p(sm|ym, sm−1)p(ym, sm−1, x)

· log
∑
a∈Ym

∑
b∈Sm−1

p(sm|a, b)p(a, b|x)

−
∑
sm

∑
x

∑
ym

∑
sm−1

p(sm|ym, sm−1)p(ym, sm−1, x)

· log
∑
a∈Ym

∑
b∈Sm−1

p(sm|a, b)p(a, b) (E.2)
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The derivative of (E.2) delivers

∂I(X ;Sm)

∂p(sm|ym, sm−1)
=

∑
x

p(x, ym, sm−1) · log p(sm|x)

+
∑
x

∑
sm−1

∑
ym

p(sm|ym, sm−1) · p(x, ym, sm−1)


︸ ︷︷ ︸

=p(sm,x)

·p(ym, sm−1|x)
p(sm|x)

−
∑
x

p(x, ym, sm−1) · log p(sm)

−
∑
x

∑
sm−1

∑
ym

p(sm|ym, sm−1) · p(x, ym, sm−1)


︸ ︷︷ ︸

=p(sm,x)

·p(ym, sm−1)

p(sm)

=
∑
x

p(x, ym, sm−1) · log p(sm|x)
p(sm)

= p(ym, sm−1)
∑
x

p(x|ym, sm−1) log p(sm|x)
p(sm)

. (E.3)

Exploiting Bayes’ theorem, the argument of the logarithmic function can be rewritten to

p(sm|x)
p(sm)

=
p(x|sm)

p(x)
=

p(x|sm)

p(x|ym, sm−1)
· p(x|ym, sm−1)

p(x)
. (E.4)

The last ratio in (E.4) can be dropped because it does not depend on p(sm|ym, sm−1) and
its contribution can be incorporated into the Lagrange multiplier βm. The insertion of
the first ratio into (E.3) yields the contribution of the derivative of the relevant mutual
information

∂I(X ;Sm)

∂p(sm|ym, sm−1)
→ −p(ym, sm−1)

∑
x

p(x|ym, sm−1) log p(x|ym, sm−1)

p(x|sm)

= −p(ym, sm−1) ·DKL [p(x|ym, sm−1)∥p(x|sm−1)] . (E.5)

E.2 Derivative of I(Ym,Sm−1;Sm)

With the definition of the conditional compression rate

I(Ym,Sm−1;Sm) = EYm,Sm,Sm−1

[
log p(sm|ym, sm−1)

p(sm)

]
=

∑
sm

∑
sm−1

∑
ym

p(sm|ym, sm−1)p(ym, sm−1) log p(sm|ym, sm−1)

−
∑
sm

∑
sm−1

∑
ym

p(sm|ym, sm−1)p(ym, sm−1) log
∑
a∈Ym

∑
b∈Sm−1

p(sm|a, b)p(a, b) , (E.6)
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its derivative becomes

∂I(Ym;Sm−1;Sm)

∂p(sm|ym, sm−1)
= p(ym, sm−1) log p(sm|ym, sm−1) + p(ym, sm−1)

p(sm|ym, sm−1)

p(sm|ym, sm−1)

− p(ym, sm−1) log p(sm)

−

∑
ym

∑
sm−1

p(sm|ym, sm−1)p(ym, sm−1)


︸ ︷︷ ︸

=p(sm)

p(ym, sm−1)

p(sm)

= p(ym, sm−1) log p(sm|ym, sm−1)− p(ym, sm−1) log p(sm)

= p(ym, sm−1) log p(sm|ym, sm−1)

p(sm)
. (E.7)

E.3 Fusion of Derived Parts

Combining the result in (E.5) and (E.7) delivers the complete derivative

− p(ym, sm−1) ·DKL [p(x|ym, sm−1)∥p(x|sm)]

− βmp(ym, sm−1) log p(sm|ym, sm−1) + βmp(ym, sm−1) · log p(sm) = 0 . (E.8)

Following the idea of Blahut and Arimoto [CT06], p(x|sm) and p(sm) are assumed to be
independent of p(sm|ym, sm−1). With this trick, (E.8) can be resolved w.r.t. the desired
mapping of sensor m leading to the implicit solution

p(sm|ym, sm−1) =
e−dβm (ym,sm,sm−1)∑
sm

e−dβm (ym,sm,sm−1)
(E.9)

with

dβm(ym, sm, sm−1) :=
1

βm
DKL [p(x|ym, sm−1)∥p(x|sm)]− log p(sm) . (E.10)

E.4 Calculating required pmfs

This section covers the calculation of the required pmfs for the previously described algo-
rithm. The first term in the KL divergence in (E.10) is calculated by

p(x|ym, sm−1) =
p(ym|x)p(sm−1|x)p(x)∑
x p(ym|x)p(sm−1|x)p(x)

(E.11)

where p(ym|x) is given as the measuring channel, p(sm−1|x) has already been calculated
recursively by the previous sensor with

p(sm|x) =
∑
ym

∑
sm−1

p(sm|ym, sm−1)p(ym|x)p(sm−1|x) . (E.12)
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In (E.12) the pmf p(sm|ym, sm−1) represents the quantizer mapping of the current sensor
and p(sm−1|x) can be determined recursively by previous sensors. The second term in the
KL divergence in (E.10) is calculated by

p(x|sm) =
p(sm|x)p(x)∑
x p(sm|x)p(x)

(E.13)

where p(sm|x) is already calculated in (E.12). Finally, the argument in the logarithm in
(E.10) can be determined as

p(sm) =
∑
x

p(sm|x)p(x) (E.14)

Note that all the above equations simplify when optimizing the first sensor to the scalar
IB equations given in Section 3.4.
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Appendix F

Derivation of a GDIB Algorithm for Cooperating
Sensors Applying the Sequential Point-To-Point Pro-
tocol

For extending the GDIB algorithm in order to allow the sensors to sequentially commu-
nicate with each other, the optimization problem for sensor m given in Subsection 5.3.2

L
(m)
GDIB-PTP[p(zm|ym, sm−1)] = I(X ;Zm|Z<m)− βmI(Ym,Sm−1;Zm|Z<m) (F.1)

has to be solved by taking the derivative w.r.t. the mapping p(zm|ym, sm−1) and equating
it to zero. In the following, the derivatives of both mutual information are given.

F.1 Derivative of I(X ;Zm|Z<m)

The relevant mutual information in (F.1) can be rewritten such that the desired mapping
occurs explicitly.

I(X ;Zm|Z<m) = EX ,Zm,Z<m

[
log p(zm|x, z<m)

p(zm|z<m)

]
=

∑
zm

∑
z<m

∑
x

∑
ym

∑
sm−1

p(zm|ym, sm−1)p(ym, sm−1, z<m, x)

· log
∑
a∈Ym

∑
b∈Sm−1

p(zm|a, b)p(a, b|z<m, x)

−
∑
zm

∑
z<m

∑
x

∑
ym

∑
sm−1

p(zm|ym, sm−1)p(ym, sm−1, z<m, x)

· log
∑
a∈Ym

∑
b∈Sm−1

p(zm|a, b)p(a, b|z<m) (F.2)
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The derivative of (F.2) delivers

∂I(X ;Zm|Z<m)

∂p(zm|ym, sm−1)
=

∑
x

∑
z<m

p(ym, sm−1, z<m, x) · log p(zm|x, z<m)

+
∑
x

∑
z<m

∑
sm−1

∑
ym

p(zm|ym, sm−1) · p(ym, sm−1, z<m, x)


︸ ︷︷ ︸

=p(zm,z<m,x)

·p(ym, sm−1|x, z<m)

p(zm|x, z<m)

−
∑
x

∑
z<m

p(ym, sm−1, z<m, x) · log p(zm|z<m)

−
∑
x

∑
z<m

∑
sm−1

∑
ym

p(zm|ym, sm−1) · p(ym, sm−1, z<m, x)


︸ ︷︷ ︸

=p(zm,z<m,x)

·p(ym, sm−1|z<m)

p(zm|z<m)

=
∑
x

∑
z<m

p(ym, sm−1, z<m, x) · log p(zm|x, z<m)

p(zm|z<m)

=
∑
z<m

p(ym, sm−1, z<m)
∑
x

p(x|ym, sm−1, z<m) log p(zm|x, z<m)

p(zm|z<m)
. (F.3)

Exploiting Bayes’ theorem, the argument of the logarithmic function can be rewritten to

p(zm|x, z<m)

p(zm|z<m)
=

p(x|z≤m)

p(x|z<m)
=

p(x|z≤m)

p(x|ym, sm−1, z<m)
· p(x|ym, sm−1, z<m)

p(x|z<m)
. (F.4)

The last ratio in (F.4) can be dropped because it does not depend on p(zm|ym, sm−1) and
its contribution can be incorporated into the Lagrange multiplier βm. The insertion of
the first ratio into (F.3) yields the contribution of the derivative of the relevant mutual
information

∂I(X ;Zm|Z<m)

∂p(zm|ym, sm−1)
→ −

∑
z<m

p(ym, sm−1, z<m)
∑
x

p(x|ym, sm−1, z<m) log p(x|ym, sm−1, z<m)

p(x|z≤m)

= −
∑
z<m

p(ym, sm−1, z<m) ·DKL [p(x|ym, sm−1, z<m)∥p(x|z≤m)] . (F.5)

F.2 Derivative of I(Ym,Sm−1;Zm|Z<m)

With the definition of the conditional compression rate

I(Ym,Sm−1;Zm|Z<m) = EYm,Zm,Z<m,Sm−1

[
log p(zm|ym, sm−1, z<m)

p(zm|z<m)

]
=

∑
zm

∑
z<m

∑
sm−1

∑
ym

p(zm|ym, sm−1)p(ym, sm−1, z<m) log p(zm|ym, sm−1)

−
∑
zm

∑
z<m

∑
sm−1

∑
ym

p(zm|ym, sm−1)p(ym, sm−1, z<m) log
∑
a∈Ym

∑
b∈Sm−1

p(zm|a, b)p(a, b|z<m)

(F.6)
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its derivative becomes

∂I(Ym,Sm−1;Zm|Z<m)

∂p(zm|ym, sm−1)

=
∑
z<m

p(ym, sm−1, z<m) log p(zm|ym, sm−1)

+
∑
z<m

p(ym, sm−1, z<m)
p(zm|ym, sm−1)

p(zm|ym, sm−1)

−
∑
z<m

p(ym, sm−1, z<m) log p(zm|z<m)

−
∑
z<m

∑
ym

∑
sm−1

p(zm|ym, sm−1)p(ym, sm−1, z<m)


︸ ︷︷ ︸

=p(zm,z<m)

p(ym, sm−1|z<m)

p(zm|z<m)

=
∑
z<m

p(ym, sm−1, z<m) log p(zm|ym, sm−1)

−
∑
z<m

p(ym, sm−1, z<m) log p(zm|z<m)

=
∑
z<m

p(ym, sm−1, z<m) log p(zm|ym, sm−1)

p(zm|z<m)
. (F.7)

F.3 Fusion of Derived Parts

Combining the result in (F.5) and (F.7) delivers the complete derivative

−
∑
z<m

p(ym, sm−1, z<m) ·DKL [p(x|ym, sm−1, z<m)∥p(x|z≤m)]

− βm
∑
z<m

p(ym, sm−1, z<m) log p(zm|ym, sm−1)

+ βm
∑
z<m

p(ym, sm−1, z<m) · log p(zm|z<m) = 0 . (F.8)

Following the idea of Blahut and Arimoto [CT06], p(x|z≤m) and p(zm|z<m) are assumed
to be independent of p(zm|ym, sm−1). With this trick, (F.8) can be resolved w.r.t. the
desired mapping of sensor m leading to the implicit solution

p(zm|ym, sm−1) =
e−dβm (ym,zm,sm−1)∑
zm

e−dβm (ym,zm,sm−1)
(F.9)

with

dβm(ym, zm, sm−1)

:=
∑
z<m

p(z<m|ym, sm−1)

[
1

βm
DKL [p(x|ym, sm−1, z<m)∥p(x|z≤m)]− log p(zm|z<m)

]
= EZ<m|ym,sm−1

[
1

βm
DKL [p(x|ym, sm−1, z<m)∥p(x|z≤m)]− log p(zm|z<m)

]
. (F.10)
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F.4 Calculating required pmfs

This section covers the calculation of the required pmfs for the previously described algo-
rithm. The first term in the KL divergence in (F.10) is calculated by

p(x|ym, sm−1, z<m) =
p(x, ym, sm−1, z<m)∑
x p(x, ym, sm−1, z<m)

(F.11)

with

p(x, ym, sm−1, z<m) = p(zm−1, sm−1|x, z<m−1)p(x, ym, z<m−1) . (F.12)

The first term on the right hand side in (F.12) can be calculated by

p(zm−1, sm−1|x, z<m−1) =
∑
ym−1

∑
sm−2

p(zm−1|ym−1, sm−2)p(sm−1|ym−1, sm−2)p(ym−1|x)

· p(sm−2|x, z<m−1) (F.13)

where p(zm−1|ym−1, sm−2) is given as the mapping of previously designed quantizers,
p(sm−1|ym−1, sm−2) is given as the predefined mapping of instantaneous side-information
(see Appendix E) and p(ym−1|x) is given as the measurement channel for the previous
sensor. The term p(sm−2|x, z<m−1) can already be calculated by previous sensors (in this
case, the pre-predecessor) in a recursive way

p(sm|x, z<m) =
∑
ym

∑
sm−1

p(sm|ym, sm−1)p(ym|x, zm)p(sm−1|x, z<m−1) (F.14)

where

p(ym|x, zm) =
p(ym, x, zm)∑
ym

p(ym, x, zm)
(F.15)

with

p(ym, x, zm) =
∑
sm−1

p(zm|ym, sm−1)p(ym|x)p(sm−1|x)p(x) . (F.16)

The second term on the right hand side in (F.12) can be calculated by

p(x, ym, z<m−1) = p(ym|x)p(z<m−1, x) . (F.17)

The last term in (F.17) can again be already calculated by previous sensors (in this case,
the pre-predecessor) by

p(z≤m, x) =
∑
ym

∑
sm−1

p(zm|ym, sm−1)p(zm−1, sm−1|x, z<m−1)p(x, ym, z<m−1) (F.18)
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where p(zm−1, sm−1|x, z<m−1) is already calculated in (F.13) and p(x, ym, z<m−1) is already
determined in (F.17). The second term in the KL divergence in (F.10) is computed by

p(x|z≤m) =
p(z≤m, x)∑
x p(z≤m, x)

(F.19)

where p(z≤m, x) is already calculated in (F.18). The term in the logarithm in (F.10) can
be determined as

p(zm|z<m) =

∑
x p(z≤m, x)∑

x

∑
zm

p(z≤m, x)
. (F.20)

Finally, the required pmf to calculate the conditional expectation in (F.10) can be deter-
mined by

p(z<m|ym, sm−1) =

∑
x p(x, ym, sm−1, z<m)∑

x

∑
z<m

p(x, ym, sm−1, z<m)
(F.21)

in which p(x, ym, sm−1, z<m) has already been calculated in (F.12).
Note that all the above equations simplify when optimizing the first sensor to the scalar
IB equations given in Section 3.4. Moreover, when optimizing the second sensor, there is
no pre-predecessor m− 2 and its impact on the above equations can be omitted.
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