
Institute for Biostatistics and Informatics in Medicine and Ageing Research 

(IBIMA),  

Rostock University Medical Center 

Director: Prof. Dr. Georg Fuellen 

Microarray transcriptomics analysis of Hutchinson-Gilford 

progeria genetic disease and the exploitation of dual RNA-seq 

technology to unveil host-pathogen interaction 

 Inaugural Dissertation 

to obtain the academic degree 
Doctor rerum humanarum (Dr. rer. hum.) 

of Rostock University Medical Center 

Submitted by  
Bioinformatician, Salem Oduro Beffi Sueto 
Born November 2nd 1988,  
in Accra (Ghana) 

Rostock, 24.04.2023 

DOKTORARBEIT 

UNIVERSITÄTSMEDIZIN ROSTOCK 

https://doi.org/10.18453/rosdok_id00004514



 

 

 



 

 

 

 

 

 

 

 

 

 

 

Reviewers: 

Prof. Dr. Georg Fuellen, Universitätsmedizin Rostock (Rostock, Germany), Institut für 

Biostatistik und Informatik in Medizin und Alternsforschung 

Prof. Dr. Micheal Walter, Universitätsmedizin Rostock (Rostock, Germany), Institut für 

Klinische Chemie und Laboratoriumsmedizin 

Prof. Dr. Dirk Repsilber, Örebro University (Örebro, Sweden), Functional Bioinformatics 

(Department of Medical Science) 

 

Date of submission: 24.04.2023 

Date of oral defense: 07.11.2023 

 



 

 

Personal declaration 

I hereby officially declare that I have written this dissertation independently. Any help and 

assistance in creating this work are clearly indicated in the acknowledgments. In addition, I 

affirm that I have cited all publications and other sources used in the preparation of this 

academic work in the appropriate place. I further confirm that my work has been accomplished 

in accordance with the "Rules to ensure good scientific practice and to avoid scientific 

misconduct" of Rostock University Medical Center. 

 

Ich versichere eidesstattlich durch eigenhändige Unterschrift, dass ich die Arbeit selbstständig 

und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Alle Stellen, 

die wörtlich oder sinngemäß aus Veröffentlichungen entnommen sind, habe ich als solche 

kenntlich gemacht. 

Die Arbeit ist noch nicht veröffentlicht und ist in gleicher oder ähnlicher Weise noch nicht als 

Studienleistung zur Anerkennung oder Bewertung vorgelegt worden. Ich weiß, dass bei 

Abgabe einer falschen Versicherung die Prüfung als nicht bestanden zu gelten hat. 

 

Salem Oduro Beffi Sueto 

 



 

 

 

 

 

 

 

 
 

“Do not quench the Spirit. Do not 
despise prophecies, but test everything; hold fast 

what is good.” 
 

1 Thessalonians 5:19-21 
Holy Bible (New International Version) 

 



 

 

Acknowledgements 
The present dissertation is the physical manifestation of the sacrifice of multiple people 
throughout my life. I would like to show my gratitude to each one of them for their support and 
encouragement. 
First of all, I sincerely want to thank Dr. Prof. Georg Fuellen for giving me the opportunity to 
be part of the IBIMA group and for the constant support throughout the years. I would like to 
thank my direct supervisor Israel Barrantes for the constant guidance, vision, and constructive 
criticisms he provided me during my IBIMA experience. 
I would like to express my appreciation to our collaborative partners: Dr. Prof. Bernd 
Kreikemeyer, Nadja Patenge, and Kevin Strey from the Institute for Medical Microbiology, 
Virology, and Hygiene (University of Rostock, Rostock, Germany) for their help and support 
for the human infection study. 
Moreover, I would like to thank our second collaborative partners Prof. Dr. Michael Walter 
and Kathrin Jäger from the Institute of Clinical Chemistry and Laboratory Medicine 
(University of Rostock, Rostock, Germany) for their help in the Progeria study. 
Furthermore, I would like to thank all former and current members of the IBIMA research 
group: Almut Brauer, Yvonne Gladbach, Sarah Fischer, Mohammed Fahmy, Steffen Möller, 
Axel Kowald, Daniel Palmer, Franziska Meiners, and Riccardo Secci. Thank you for creating 
a supportive, collaborative, and constructive work environment. It was my honor to be part of 
the group. 
Special appreciation to all my friends that I made in Rostock for their gentle and constructive 
help throughout my residency in Rostock, Germany. 
Finally, a special thanks to my family and God for giving me this opportunity to aspire toward 
my dreams. 
 



 

 

 

Table of Contents 

Abbreviations ........................................................................................................................ I 
Summary ............................................................................................................................. II 
Zusammenfassung ............................................................................................................. IV 
Chapter 1 - Introduction ...................................................................................................... 1 

1.1. Omics Technology..................................................................................................... 1 
1.2. Transcriptomics ........................................................................................................ 1 
1.3. Microarray platform ................................................................................................ 3 
1.4. RNA sequencing (RNA-Seq) platform ..................................................................... 4 

1.4.1. Data analysis .................................................................................................................................. 4 
1.4.2. Pre-processing ................................................................................................................................ 7 
1.4.3. Alignment and Quantification ......................................................................................................... 8 
1.4.4. Differential Expressed Genes Identification .................................................................................... 9 
1.4.5. Functional analysis ....................................................................................................................... 11 

1.5. Transcriptomics applications discussed in the present thesis ............................... 13 
1.5.1. Diagnostic and disease profiling ................................................................................................... 13 
1.5.2. Drug-induced gene expression database ........................................................................................ 14 
1.5.3. Host-Pathogen interaction ............................................................................................................. 14 

Chapter 2 - Aims and Objectives ........................................................................................ 17 
Chapter 3 - Hutchinson-Gilford Progeria Syndrome ......................................................... 18 

3.1. Introduction ............................................................................................................ 18 
3.2. Aims ........................................................................................................................ 21 
3.3. Methods and Materials ........................................................................................... 21 

3.3.1. Materials: Human fibroblast cell groups ........................................................................................ 21 
3.3.2. Methods: Microarray CEL files analysis ....................................................................................... 21 

3.4. Results ..................................................................................................................... 24 
3.4.1. Bioinformatics CEL analysis ........................................................................................................ 24 
3.4.2. HGPS transcriptomics signature on human fibroblast cells ............................................................ 27 
3.4.3. UV-B light treatment impact on healthy human fibroblast cells ..................................................... 29 
3.4.4. Effect of telomere elongation on HGPS fibroblast cells ................................................................. 31 

3.5. Discussions .............................................................................................................. 33 
3.5.1. Hallmark of HGPS ....................................................................................................................... 33 
3.5.2. Senescence analysis ...................................................................................................................... 35 

3.6. Conclusion ............................................................................................................... 38 
Chapter 4 - Drug repurposing from gene and expression data: A survey of bioinformatics 
tools and databases............................................................................................................. 39 

4.1. Introduction ............................................................................................................ 39 
4.2. Drug repurposing tools ........................................................................................... 39 

4.2.1. Tools with single genes as input.................................................................................................... 41 
4.2.2. Tools with a list of genes as input ................................................................................................. 42 
4.2.3. Tools with gene expression data as input ....................................................................................... 44 
4.2.4. Tools with single gene, gene list, or gene expression as input ........................................................ 46 



 

 

4.3. Conclusion ............................................................................................................... 47 
Chapter 5 - Human epithelial single-infection with Influenza A virus and Streptococcus 
pyogenes ............................................................................................................................. 48 

5.1. Introduction ............................................................................................................ 48 
5.2. Aims ........................................................................................................................ 49 
5.3. Methods and Materials ........................................................................................... 50 

5.3.1. Materials ...................................................................................................................................... 50 
5.4. Results ..................................................................................................................... 53 

5.4.1. Sample summary .......................................................................................................................... 53 
5.4.2. Count table quality control............................................................................................................ 55 
5.4.3. Identification of DEGs.................................................................................................................. 57 
5.4.4. Human epithelial transcriptomics response from GAS M1-AP1 infection ...................................... 57 
5.4.5. Human epithelial transcriptomics response from GAS M49-591 infection ..................................... 58 
5.4.6. Human epithelial transcriptomics response from IAV infection ..................................................... 60 
5.4.7. Drug repurposing analysis ............................................................................................................ 61 

5.5. Discussion ................................................................................................................ 68 
5.5.1. Upregulation of oxidative respiration process among the three infections ...................................... 68 
5.5.2. Differential host responses to GAS and IAV infections ................................................................. 70 
5.5.3. IAV role on secondary bacterial GAS infection ............................................................................. 71 
5.5.4. DR potential on the identification of anti-infective drug against IAV-GAS .................................... 74 

5.6. Conclusion ............................................................................................................... 75 
Chapter 6 – Conclusion...................................................................................................... 76 
Bibliography....................................................................................................................... 77 
Curriculum Vitae ..............................................................................................................116 
 



 

 I 

Abbreviations 

CAGE   Cap Analysis of Gene Expression 
CAM   Cell Adhesion Molecule 
CD   Characteristic Direction 
cDNA   complementary DNA 
ChIP-seq  Chromatin Immune Precipitation Sequencing 
CMAP   Connectivity Map 
DE   Differentially Expressed 
DEG   Differentially Expressed Gene 
DR   Drug repurposing 
ECM   Extracellular Matrix 
ER   Endoplasmic reticulum 
ESTs   Expressed Sequence Tags 
FDR   False Discovery Rate 
FPKM   Fragment Per Kilobase per Million mapped reads 
GAS   Group A Streptococci (Streptococcus pyogenes) 
GAS M1-AP1  S. pyogenes serotype M1 strain AP1 
GAS M49-591  S. pyogenes serotype M49 strain 591 
GEO   Gene Expression Omnibus 
GO   Gene Ontology 
GOA   Gene Ontology Annotation 
GO:BP   Gene Ontology Biological Process 
GO:CC   Gene Ontology Cellular Component 
GO:MF   Gene Ontology Molecular Function 
HGPS   Hutchinson-Gilford Progeria syndrome 
IAV   Influenza A virus 
iNOS   inducible NO Synthase 
LFC   Log2 fold change 
LINCS   Library of Integrated Network-based Cellular Signatures 
LMNA   Lamin A 
MAMs   Membrane-associated mucins 
MDS   Multidimensional Scaling 
MOA   Mechanism Of Action 
PCA   Principal Component Analysis 
RMA   Robust Multi-array Average 
RNA-Seq  RNA sequencing 
RPKM   Reads Per Kilobase per Million mapped reads 
SAGE   Serial Analysis of Gene Expression 
SNP   Single Nucleotide Polymorphism 
TPM   Transcripts per Kilobase Million 
WIPO   World Intellectual Property Organization 
 



 

 II 

Summary 

The transcriptomic analysis provides a snapshot of the entire repertoire of RNA molecules 
(transcripts) exhibited by the cells in a specific biological moment. In the last decade, RNA-
seq and microarray platforms have become the standard platforms due to their ability to capture 
thousands of different transcripts in a single experiment. The present work presents the 
versatility of the two transcriptomic platforms for human healthcare studies. 
The microarray platform was used to analyse the gene expression of fibroblast human cells 
from patients affected by the Hutchinson-Gilford progeria syndrome (HGPS). The disease is 
caused by a single genetic mutation in the LMNA gene that causes several premature ageing 
symptoms in children. The analysis uses fibroblast cells of different sources: fibroblast from 
HGPS patients, fibroblast from healthy people treated with UV-B light, fibroblast from HGPS 
patients treated for telomere elongation, and fibroblast from healthy people as the control 
group. The aim of the study is the transcriptomics profiling of the HGPS, i.e. the identification 
of the significantly expressed genes and their biological regulation; and, its comparison to other 
cell senescence processes such as the UV-B treated cells and the telomere elongated treated 
cells. The results show HGPS affects several genes related to the cell cycle checkpoints, histone 
modification, and telomerase maintenance. The healthy UV-treated cells exhibit genes related 
to the cell cycle regulation during G1/S and G2/S phase transition, and cellular response to 
DNA damage. The effect of telomere elongation on HGPS fibroblast cells affects different 
stages of the transcription-translation process such as the RNA polymerase I, RNA 
polyadenylation, and mRNA 3’-end processing. Furthermore, the analysis shows that HGPS 
and the UV-B treated cells have different senescence profiles. The telomere elongation in 
HGPS does not provide a decisive conclusion on its ability to solve HGPS deficiencies. 
 
An extensive literature review was conducted to identify drug repurposing tools that use gene 
expression data to identify potential drug treatments. The results of the review was then applied 
in the second study of the dissertation to identify potential drugs against bacterial and viral 
infection in human.  
 
The RNA-seq platform was used to unveil the host-pathogen interaction through the use of the 
dual RNA-seq approach. This method permits the simultaneous examination of gene 
expression in two interacting species without a physical separation step during the library 
preparation but a subsequent separation of the reads from each specie in silico with 
bioinformatics tools. In the present work, dual RNA-seq methodology was applied to study the 
interaction between human cells and two S. pyogenes (GAS) bacterial strains (AP1 and NZ131) 
and the Influenza A virus (IAV). The goal of the study is to unveil the mechanisms which 
render IAV-infected patients more susceptible to S. pyogenes, the biological reasons why IAV-
GAS dual-infected patients show severe symptoms when compared to single-infected ones, 
and the identification of potential drug treatment against the two pathogens. The analysis show 
all three pathogens exhibit an up-regulation of ATP production and genes related to 
mitochondria complexes. The S. pyogenes NZ131 infected cells show a higher infection rate 
compared to S. pyogenes AP1. The results also show that IAV infection impacts secondary S. 
pyogenes infection by affecting the stability of the extracellular matrix through cell-cell 
adhesion and down-regulation of several histone genes, known for their extracellular 
antimicrobial properties. At last, drug repurposing analysis identified 40 potential drugs for the 
treatments of an IAV-GAS co-infection in human cells. 
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Zusammenfassung 

Die transkriptomische Analyse liefert eine Momentaufnahme des gesamten Repertoires an 

RNA-Molekülen (Transkripten), die von den Zellen in einem bestimmten biologischen 

Moment gezeigt werden. In den letzten zehn Jahren haben sich RNA-seq- und Microarray-

Plattformen aufgrund ihrer Fähigkeit, Tausende verschiedener Transkripte in einem einzigen 

Experiment zu erfassen, zu Standardplattformen entwickelt. In der vorliegenden Arbeit wird 

die Vielseitigkeit der beiden transkriptomischen Plattformen für Studien im Bereich der 

menschlichen Gesundheit vorgestellt. 

Die Microarray-Plattform wurde verwendet, um die Genexpression von menschlichen 

Fibroblastenzellen von Patienten zu analysieren, die vom Hutchinson-Gilford-Progerie-

Syndrom (HGPS) betroffen sind. Die Krankheit wird durch eine einzige genetische Mutation 

im LMNA-Gen verursacht, die bei Kindern verschiedene Symptome vorzeitiger Alterung 

hervorruft. Für die Analyse werden Fibroblastenzellen unterschiedlicher Herkunft verwendet: 

Fibroblasten von HGPS-Patienten, Fibroblasten von Gesunden, die mit UV-B-Licht behandelt 

wurden, Fibroblasten von HGPS-Patienten, die auf Telomerverlängerung behandelt wurden, 

und Fibroblasten von Gesunden als Kontrollgruppe. Ziel der Studie ist die Erstellung eines 

Transkriptomik-Profils von HGPS, d. h. die Identifizierung der transkribierten Gene und ihrer 

Regulierung, sowie der Vergleich mit anderen Zellseneszenzprozessen, wie z. B. den mit UV-

B behandelten Zellen und der Gruppe der telomerelongierten Zellen. Die Ergebnisse zeigen, 

dass HGPS mehrere Gene beeinflusst, die mit den Kontrollpunkten des Zellzyklus, der 

Histonmodifikation und der Telomerase-Erhaltung zusammenhängen. Die gesunden UV-

behandelten Zellen weisen Gene auf, die mit der Regulierung des Zellzyklus während der 

G1/S- und G2/S-Phasenübergänge und der zellulären Reaktion auf DNA-Schäden 

zusammenhängen. Die Auswirkung der Telomerverlängerung auf HGPS-Fibroblastenzellen 

betrifft verschiedene Stadien des Transkriptions-Translationsprozesses wie die RNA-

Polymerase I, die RNA-Polyadenylierung und die mRNA-3'-Endverarbeitung. Außerdem zeigt 

die Analyse, dass HGPS- und UV-B-behandelte Zellen unterschiedliche Seneszenzprofile 

aufweisen. Die Telomerverlängerung bei HGPS lässt keinen entscheidenden Schluss auf die 

Fähigkeit zu, HGPS-Mängel zu beheben. 

Es wurde eine umfassende Literaturrecherche durchgeführt, um Instrumente für das 

Repurposing von Arzneimitteln zu identifizieren, die Genexpressionsdaten zur Ermittlung 

potenzieller Arzneimittelbehandlungen nutzen. Die Ergebnisse der Überprüfung wurden dann 
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in der zweiten Studie der Dissertation angewandt, um potenzielle Medikamente gegen 

bakterielle und virale Infektionen beim Menschen zu identifizieren. 

Die RNA-seq-Plattform wurde verwendet, um die Wirt-Pathogen-Interaktion durch den 

Einsatz des dualen RNA-seq-Ansatzes zu enthüllen. Diese Methode ermöglicht die 

gleichzeitige Untersuchung der Genexpression in zwei interagierenden Spezies ohne einen 

physischen Trennungsschritt während der Bibliotheksvorbereitung, sondern eine 

anschließende Trennung der Reads von jeder Spezies in silico mit bioinformatischen Tools. In 

der vorliegenden Arbeit wurde die duale RNA-seq-Methode angewandt, um die Interaktion 

zwischen menschlichen Zellen und zwei S. pyogenes (GAS) Bakterienstämmen (AP1 und 

NZ131) und dem Influenza A Virus (IAV) zu untersuchen. Ziel der Studie ist es, die 

Mechanismen aufzudecken, die IAV-infizierte Patienten anfälliger für S. pyogenes machen, 

die biologischen Gründe zu ermitteln, warum IAV-GAS-doppelinfizierte Patienten im 

Vergleich zu einfach infizierten Patienten schwerere Symptome zeigen, und mögliche 

medikamentöse Behandlungen gegen die beiden Erreger zu identifizieren. Die Analyse zeigt, 

dass alle drei Erreger eine Hochregulierung der ATP-Produktion und der Gene für 

Mitochondrienkomplexe aufweisen. Die mit S. pyogenes NZ131 infizierten Zellen weisen im 

Vergleich zu S. pyogenes AP1 eine höhere Infektionsrate auf. Die Ergebnisse zeigen auch, dass 

eine IAV-Infektion die sekundäre S. pyogenes-Infektion beeinflusst, indem sie die Stabilität 

der extrazellulären Matrix durch Zell-Zell-Adhäsion und die Herunterregulierung mehrerer 

Histon-Gene, die für ihre extrazellulären antimikrobiellen Eigenschaften bekannt sind, 

beeinträchtigt. Schließlich wurden im Rahmen einer Analyse zum Repurposing von 

Arzneimitteln 40 potenzielle Arzneimittel für die Behandlung einer IAV-GAS-Koinfektion in 

menschlichen Zellen ermittelt. 
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Chapter 1 - Introduction 

1.1. Omics Technology 

The last decade has been defined by the development of new scientific branches known 

informally as omics whose names end with the suffix -omics. The term “omics” is a derivation 

of the Greek word “ome” which means “complete”, “all”, or “whole”. The main concept of 

omics studies is a holistic view of all the molecules that make up a cell, tissue, or organism in 

a specific biological sample (Dai and Shen 2022). Omics technologies permit a better 

understanding of the complex system through the integration of all its constituents. These 

advancements in technology and analysis differ from traditional approaches, which are known 

to provide hypothesis-driven data or reductionistic. On the other hand, omics platforms are 

considered hypothesis-generating where the study has no prior hypothesis but all available data 

is attained and its study can suggest a new hypothesis that can be further tested (Iyer 2022). 

The omics platforms can be divided into four main groups: genomics, transcriptomics, 

proteomics, and metabolomics (Iyer 2022). Genomics is the study of the entire genome of an 

organism. The genome is built upon the four nucleotides and its order reveals the information 

encoded in the DNA. One of the main components of the genome is the gene which represents 

a specific unit of DNA that is, in the most simple way, defined to hold the information to 

produce a specific functional unit called protein. The advent of high-throughput sequencing 

platforms has facilitated the analysis of variations between individuals at the genomics level 

for both disease-related mutations and characterizations of different human populations. 

Transcriptomics research studies the transcriptome that involves the entire collection of RNA 

molecules, called transcripts, in a cell or a specific sample. The next-generation RNA 

sequencing (RNA-Seq) technologies give deeper information concerning gene variations and 

their expression in different conditions. The third branch is Proteomics which studies the 

proteome, which describes the whole set of expressed proteins; and the interacting protein 

family networks and biochemical pathways used by the cell, tissue, or at the organism level. 

The last main sub-division is the Metabolomics branch which studies the metabolome 

generated within cells, tissues, or biofluids. 
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The Metabolome is the collection of all the small molecules and their interaction within the 

system under study. The peculiarity of the Metabolome is its position as the final downstream 

product between the biological actors (such as genes and protein) and the environmental factors 

(such as sunlight and food). These qualities translate into a more chemically complex system 

than the other “omes” but it also represents the closest omics technology to the phenotype under 

study. 

1.2. Transcriptomics 

The main goal of transcriptomics analysis is the study of all the RNA transcripts from an 

organism (Lowe et al. 2017). The genetic information of an organism is organized inside the 

genome and expressed through the transcription process. The term “transcriptome” was first 

introduced in the late 1990s (Piétu et al. 1999; Velculescu et al. 1997). The technology has 

improved greatly from the earliest sequencing-based methods such as serial/cap analysis of 

gene expression (SAGE/CAGE), which used the Sanger sequencing platform to produce 

concatenated fragments (Velculescu et al. 1995). These transcripts were then quantified by 

matching the fragments to known genes. Nowadays, the usage of high-throughput sequencing 

platforms has overtaken transcriptomics platforms that rely on the Sanger approach (Lowe et 

al. 2017). There are two main contemporary actors in the field: Microarray (Figure 1.1A) and 

RNA-Seq (Figure 1.1B). 
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Figure 1.1 (A) Microarray. The mature mRNA molecule is subjected to a reverse transcription that results in the formation of double-strand complementary DNA (ds-cDNA) 
molecules. The ds-cDNA is fragmented and labelled with fluorescent molecules. The process is followed by the binding event between the fluorescent ds-cDNA and the 
attached oligos on the microarray surface. The presence and abundance of the transcripts are obtained through a high-resolution image obtained from the intensity of the 
fluorescent molecules. (B) RNA sequencing. The mature mRNA molecules are fragmented into RNA fragments. A reverse transcription step is applied to obtain ds-cDNA 
fragments. The fragments are then sequenced to produce FastQ files. 
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1.3. Microarray platform 

Microarray technology quantifies a predetermined set of gene sequences from the genome 

(Bumgarner 2013). The technology involves the use of short nucleotide oligomers, known as 

“probes”, which are fixed onto a solid substrate (e.g. glass). The generation of probes requires 

prior knowledge of the organism under study. Such knowledge can be acquired in the form of 

annotated genome sequence or the use of expressed sequence tags (ESTs) library to generate 

probes that are specific for one specific gene. The quantification process is achieved by the 

hybridization of fluorescently labelled transcripts (from the biological samples) to the arrayed 

probes. The fluorescent intensity at each probe position on the array specifies the abundance 

for that specific probe sequence. 

Microarray platforms can be classified into two main groups: low-density spotted arrays or 

high-density short probe arrays (Heller 2003). Meanwhile, the presence of the transcripts can 

be registered with single- or dual-channel detection of fluorescent tags. Spotted low-density 

arrays are known to use picolitre drops of purified complementary DNA (cDNA), used as 

probes, and arrayed onto the surface of a glass slide (Auburn et al. 2005). The probes are 

typically longer than those used for high-density but they lack the high resolution of high-

density arrays. Spotted arrays attach different fluorophores onto the transcripts from the test 

and control samples, and the ratio of fluorescent of the gene in the two conditions is used to 

determine a relative measure of abundance (Shalon, Smith, and Brown 1996). On the other 

hand, high-density arrays are based on the single-channel detection approach, and each sample 

is hybridized and detected individually (Lockhart et al. 1996). The Affymetrix GeneChip array 

(Santa Clara, CA) is based on the high-density approach, in which each transcript is quantified 

through the use of short 25-mer probes that collectively represents one gene (Irizarry, Bolstad, 

et al. 2003). 

The final output of microarray data is recorded as high-resolution images that require feature 

detection and spectral analysis. The raw image files have a size of around 750 MB, whereas 

the processed intensities are about 60 MB in size. The image processing must correctly identify 

the features present in the image related to the regular grid and independently assign a 

quantification value to the fluorescence intensity for each feature. Furthermore, any image 

artefacts need to be found and removed from the overall analysis (Petrov and Shams 2004). 

Overall, the microarray technology directly correlates fluorescence intensities to the abundance 

of each sequence present on the array. 
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1.4. RNA sequencing (RNA-Seq) platform 

RNA-Seq platform uses high-throughput sequencing technology to study the entirety of 

sequences, present in a biological sample, without prior knowledge of the organism (Stark, 

Grzelak, and Hadfield 2019). Furthermore, the use of computational methods permits the 

capture and quantify each present transcript in the sample. The length of sequenced nucleotides 

can range from 30 bp to 10,000 bp, based on the applied sequencing method. Nonetheless, most 

studies generate sequences around 100 bp in length (Stark, Grzelak, and Hadfield 2019). The 

deep sampling of the transcriptome during an RNA-Seq sequencing generates several short 

fragments that permit an in silico reconstruction of the original RNA transcript through the use 

of read alignment onto a reference genome or to each other (de novo assembly). The absence 

of prior knowledge of the genome of the organism under study presents additional uses of the 

platform outside the direct quantification of reads such as the identification of unknown 

isoforms and genes; and, the sequencing of specific reads (e.g. ChIP-seq analysis) (Park 2009). 

Since the advent of RNA-Seq in 2006 and 2008 (Bainbridge et al. 2006; Nagalakshmi et al. 

2008), the capability of the platform has steadily improved regarding its throughput, accuracy, 

and read length; and, replacing microarrays as the main platform around the year 2015 (Su et 

al. 2014). The major advantages of RNA-Seq over microarray technologies are the deep 

sampling capability and the lack of prior knowledge constraint. The deep sampling approach 

permits the production of a dynamic range of 5 orders of magnitude of sequenced reads over 

microarray transcriptomes. Moreover, the amount of input RNA is lower for RNA-Seq 

(nanogram quantity) compared to microarrays (microgram quantity). The low quantity input of 

RNA-Seq consents to the study of subcellular structures and single-cell analysis when coupled 

with linear amplification of cDNA. Theoretically, the RNA-Seq technology does not present 

any upper limit of quantification, and the background signal for the typical 100 bp reads is 

quite low in nonrepetitive regions (Ozsolak and Milos 2011). 

1.4.1. Data analysis 

The final output of an RNA-sequencing process is the production of a FastQ file. The file has 

a text-based format and it displays both the biological sequence (mostly nucleotide sequence) 

and its corresponding quality scores. Each sequence is described by a four line-separated fields. 

The first line begins with the “@” symbol followed by a sequence identifier. The second line 

is the ASCII character of the raw sequence letters. The third line begins with the “+” symbol 

and is optionally followed by the same sequence identifier from the first line. The fourth line 

shows the quality score for the sequence in line 2, and it must contain the same number of 
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symbols as letters in the sequence 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2847217/).   

The in silico analysis of the FastQ raw reads is accomplished through several steps (Figure 1.2) 

with the aid of specific tools for each phase (Table 1.1 and Table 1.2). The RNA-seq pipeline 

is a methodology made of multiple steps that introduce human and technical errors that have 

an impact on the overall result (Figure 1.2). It is important to conceive a well-planned 

experimental design that will decrease biases and increase the overall likelihood of fulfilling 

the aim of the study. The first step of the analysis consists of a comprehensive literature search 

for the organism/s under study. The choice of carrying out the study in vivo or in vitro presents 

both advantages and disadvantages. In vitro protocol gives the ability to work in a more 

controlled environment but it also presents a simplified version of what happens in nature. In 

vivo protocol has the advantage of observing the biological process occurring in the right 

biological environment but the presence of different cell types creates a complex system where 

it is difficult to discern the effect of each type during the interaction. Such limitations can be 

overcome with a single-cell RNA-Seq protocol. It is vital to obtain an adequate quantity of 

mRNA molecules to capture the actual representation of the transcriptome. Furthermore, it is 

important to choose the right amount of sequencing depth and the number of replicates. As 

discussed by Liu and colleagues, a higher number of biological replications is a better option 

when compared to the increase of the sequencing reads (Y. Liu, Zhou, and White 2014). 
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Figure 1.2 Typical RNA sequencing pipeline. A) Experimental Setup. The first step of any omics study consists of proper planning of the study by considering the environment 
of the analysis (in vivo or in vitro), the number of replicates for each group, and the sequencing depth necessary to capture the biological diversity. B) Wet-Laboratory. The 
pipeline shows the main steps during the laboratory preparation that results in the sequencing of the mRNA molecules into FastQ data. C) Bioinformatics. The pipeline shows 
the main steps applied for the in silico analysis of the FastQ data. 
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1.4.2. Pre-processing 

The initial step is the pre-processing phase which comprises the complete set of modifications 

of the FastQ raw data (Table 1.1). The FASTQ file format assigns a quality value, PHRED 

score, for each nucleotide present in the sequence (Cock et al. 2009). Throughout the years, 

different PHRED scores have been used; thus, it is important to identify the PHRED version 

and convert it when necessary. The conversion can be achieved by different tools such as 

fastq_quality_converter from the FASTX-toolkit (Hannon Lab 2009) and the FASTQ Groomer 

(Blankenberg et al. 2010). The quality of the reads is described by different parameters such as 

the quality score of the nucleotides throughout the sequence, sequence length variation, 

sequence duplication, contamination, GC content, etc. All of these checkpoints are vital to 

understanding the overall quality of the sequenced reads and finding any kind of error or bias 

which can influence downstream analysis. The purpose of the pre-processing is to discard 

adapter sequences and bases with low sequencing quality reads, to help mapping tools to 

achieve a better read mapping result (Conesa et al. 2016). However, the effectiveness of 

trimmed reads on the accuracy of downstream analysis is still unclear. Del Fabbro et al. 

identified a reduced number of reads mapped to annotated genes when read trimming was 

performed (Del Fabbro et al. 2013). Whereas, Didion et al. found that read trimming resulted 

in more reads mapping to annotated genes (Didion, Martin, and Collins 2017). Liao and Shi 

proved that the trimming process does not improve a mapping process produced by the tool 

Subread and its subsequent quantification (Liao and Shi 2020). Williams et al. discovered that 

the trimming step results in a reduced correlation of RNA-seq data to the microarray data 

(Williams et al. 2016). These contradicting studies showcase that trimming tools do have an 

impact on the mapping rate, accuracy, and speed. However, the effect is not universal but 

specific to the mapping tool itself and the minimum PHRED score used. 
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1.4.3. Alignment and Quantification 

The following phase is the mapping step where the reads are aligned against a reference 

genome or transcriptome (Table 1.1). The tools used during the mapping phase can be divided 

into two main groups: alignment-based and alignment-free tools.  

The alignment-based tools map the reads to a reference genome, such that relative gene 

expression levels can be inferred by the alignments at annotated gene loci (Trapnell et al. 2012); 

and, it produces a BAM file as a result of the mapping process. In the last decade, several 

alignment-based algorithms have been developed to replace traditional aligners such as BLAST 

(Camacho et al. 2009) and BLAT (Kent 2002). The advantage of the new generation aligners 

is the ability to analyse a high amount of sequencing data in a relatively short amount of time. 

Most modern aligners consider intronic regions and allow split-read during the alignment. 

Tools like BWA (H. Li and Durbin 2009), Bowtie2 (Langmead and Salzberg 2012), TopHat2 

(D. Kim et al. 2013), and HISAT2 (D. Kim et al. 2019) are based on Burrows-Wheeler 

transformation methods and use the seed-extend based mapping strategy. Other aligners like 

STAR make use of suffix arrays as the index of the reference (Dobin et al. 2013). Similarly, 

Segemehl utilizes a multi-split-read aligner approach based on an enhanced suffix array. The 

tool is capable of mapping short and it provides a suitable tool when studying circular RNAs 

(Hoffmann et al. 2014). The quality control of the alignment can be checked by the following 

tools: RSeQC (Liguo Wang, Wang, and Li 2012), IGV (J. T. Robinson et al. 2017), Picard 

toolkit (Broad Institute 2019), Qualimap (Okonechnikov, Conesa, and García-Alcalde 2016), 

and SAMtools (H. Li et al. 2009). The tools calculate metrics such as genome coverage and 

the overall mapping quality achieved. The quantification tools (Table 1.1) uses the alignment-

based output files (BAM/SAM) to quantify genes and/or transcript. 

The alignment-free tools can be defined as any method of quantifying RNA sequence without 

the use or production of alignment files (BAM/SAM files) at any point during the algorithm 

application (Zielezinski et al. 2017). Alignment-free tools require a reference transcriptome 

which can be obtained in different ways. First, by a public database such as Ensembl (Yates et 

al. 2020) or the NCBI (Bethesda (MD): National Library of Medicine (US) 1988). Second, 

tools such as RSEM can be used to create a transcriptome by using the genome and its 

annotation (B. Li and Dewey 2011). In case neither genome nor transcriptome is available, the 

pre-processed reads can be used to create a de novo transcriptome by tools such as Trinity 

(Grabherr et al. 2013). Alignment-free tools do not depend on any knowledge of the 

evolutionary history of sequence changes. The speed advantage of alignment-free methods 

(Everaert et al. 2017) and their accuracy level comparable to alignment-based tools (Jin, Wan, 
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and Liu 2017) can be observed in several other fields such as expression profiling (Bray et al. 

2016; Rob Patro et al. 2017); genetic variant calling (Pajuste et al. 2017; Rudewicz et al. 2016; 

Shajii et al. 2016; You Li et al. 2017); de novo genome assembly by long-read sequencing 

platforms (H. Li 2016; Berlin et al. 2015; Warren et al. 2015); phylogenetic reconstruction 

(Gardner, Slezak, and Hall 2015; Ren et al. 2016; Fan et al. 2015); and taxonomic classification 

in metagenomics studies (Wood and Salzberg 2014; Ounit and Lonardi 2016; Ames et al. 2013; 

A. Gupta, Jordan, and Rishishwar 2017; Roosaare et al. 2017). On the other hand, Wu et al 

highlight a clear deficiency of alignment-free for accurate quantification of small and lowly-

expressed RNA quantification (D. C. Wu et al. 2018; Nottingham et al. 2016). Furthermore, 

Wu et al. demonstrated that both alignment strategies give similar results for differential 

expressed genes (DEGs) detection, regardless of the difference during the quantification phase 

(Everaert et al. 2017; Sahraeian et al. 2017). 

1.4.4. Differential Expressed Genes Identification 

The identification of DEGs between two sample groups is one of the most important results 

after an RNA-seq pipeline (Table 1.1). The initial step of the analysis is the normalization 

which removes biases and artefacts caused by the different sequencing depths of the libraries, 

length variations expressed by each isoform of the gene, by-products produced during the 

sequencing, and the tools used during the bioinformatics pipeline (Abrams et al. 2019). The 

normalization can be achieved with different measures such as RPKM (Reads Per Kilobase per 

Million mapped reads), FPKM (Fragment Per Kilobase per Million mapped reads), and TPM 

(Transcripts per Kilobase Million). Several studies have highlighted TPM as the best parameter 

over other normalization methods in host-pathogen publications (Klassert et al. 2017; Riege et 

al. 2017); and, also in benchmark analyses for other application areas (Abrams et al. 2019). 

DEGs tool selection can be quite laborious since each one uses a different normalization and 

statistical approach to find the DEGs. As shown by Costa-Silva et al., the combination of 3 to 

5 tools is the right number to ensure an analysis with lower false positives (Type 1 errors) and 

false negatives (Type 2 errors); and, the combination of DESeq2, edgeR, limma+vomm, 

baySeq, and NOISeq was found to give the best result among all the other tools (Costa-Silva, 

Domingues, and Lopes 2017). 
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Table 1.1 List of tools used during the pre-processing, the mapping, quantification, and differential expressed 
genes during the RNA-seq analysis. 

Type Tool Reference 

 
Pre-processing 

CutAdapt (M. Martin 2011) 
FASTQ Groomer (Blankenberg et al. 2010) 
FastQ Trimmer (Blankenberg et al. 2010) 
FASTX-Toolkit (Hannon Lab 2009) 
PRINSEQ-lite (Schmieder, Edwards, and Bateman 2011) 
Scythe (Buffalo 2011) 
Sickle (Najoshi and Fass 2011) 
Trim Galore! (Krueger 2016) 
Trimmomatic (Bolger, Lohse, and Usadel 2014) 

Pre-processing  
Quality Control 

FastQC (Andrews S. 2010) 
MultiQC (Ewels, Lundin, and Max 2016) 
FastX-toolkit (Hannon Lab 2009) 
SeqPrep (John 2010) 
PEAR (J. Zhang et al. 2014) 

Mapping 

Bowtie2 (Langmead et al. 2019) 
TopHat2 (D. Kim et al. 2013) 
BWA (H. Li and Durbin 2009) 
ELAND (Cox 2007) 
GLINT (Rahmani et al. 2017) 
GSNAP (T. D. Wu and Nacu 2010) 
Hisat2 (D. Kim et al. 2019) 
Kallisto (Bray et al. 2016) 
Megablast (Morgulis et al. 2008) 
NextGenMap (Sedlazeck, Rescheneder, and Haeseler 2013) 
SOAP2 (R. Li et al. 2009) 
STAR (Dobin et al. 2013) 
Subread (Liao, Smyth, and Shi 2013) 
RSEM (B. Li and Dewey 2011) 
Trinity de novo (Grabherr et al. 2013) 
BBMap (Bushnell et al. 2014) 
BLAST+ (Camacho et al. 2009) 
CD-HIT-EST (W. Li and Godzik 2006) 
Oases (Schulz et al. 2012) 
Salmon (Robert Patro 2020) 
Velvet (Zerbino 2010) 
Cufflinks (Trapnell et al. 2010) 
READemption (Förstner, Vogel, and Sharma 2014) 

Mapping  
Quality Control 

IGV (J. T. Robinson et al. 2017) 
SAMtools (H. Li et al. 2009) 
RSeQC (Liguo Wang, Wang, and Li 2012) 
Picard (Broad Institute 2019) 
Qualimap (Okonechnikov, Conesa, and García-Alcalde 2016) 
RNA-SEQC (Deluca et al. 2012) 

Quantification 

featureCount (Liao, Smyth, and Shi 2014) 
GLINT (Rahmani et al. 2017) 
HTSeq-count (Anders, Pyl, and Huber 2015) 
Lox (Z. Zhang, López-Giráldez, and Townsend 2010) 
READemption (Förstner, Vogel, and Sharma 2014) 
Kallisto (Bray et al. 2016) 
RSEM (B. Li and Dewey 2011) 
Salmon (Robert Patro 2020) 
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Quantification  
Quality Control 

Scotty (Busby et al. 2013a) 

Differential Expressed 
Genes 

baySeq (Hardcastle 2016) 
Cuffdiff (Trapnell et al. 2012) 
DEBrowser (Kucukural et al. 2019) 
DESeq2 (Love, Huber, and Anders 2014) 
EBseq (Leng et al. 2013) 
edgeR (M. D. Robinson, Mccarthy, and Smyth 2010) 
NOISeq (Tarazona et al. 2015) 
Limma+voom (Law et al. 2014) 
SAMseq (J. Li and Tibshirani 2013) 
SARTools (Varet et al. 2016) 
Sleuth (Bray et al. 2016) 
TCC (Sun et al. 2013) 

 

1.4.5. Functional analysis 

The goal of the functional analysis is to extract significant biological information from the list 

of identified DEGs (Table 1.2). 

One of the main analysis is the identification of enriched pathways from the DEGs. Several 

tools have been created to identify biological pathways and other tools to summarise and 

visualize the result (Ackermann and Strimmer 2009). Furthermore, several studies incorporate 

different types of protein analysis (e.g. sub-cellular location), transcription factor binding site 

search, sequence alignment, splicing analysis, hormone discovery, pathogen identification, 

taxonomic analysis, and network creation. 
Table 1.2 List of tools used during the functional analysis at the end of an RNA-seq analysis. 

Functional Analysis Tool Reference 

Enrichment Analysis 

amiGO (Carbon et al. 2009) 
BayGO (Vêncio et al. 2006) 
Blast2GO (Conesa et al. 2005) 
CateGOrizer (Hu et al. 2008) 
DAVID (Dennis et al. 2003) 
Enrichr (Kuleshov et al. 2016) 
FungiFun (Priebe et al. 2011) 
g:Profiler2  (Kolberg et al. 2020) 
GOEAST (Zheng and Wang 2008) 
Goseq (Young et al. 2010) 
GSEA (Subramanian et al. 2005a) 
KOBAS (Xie et al. 2011) 
ROntoTools (C. Voichita, S. Ansari 2020) 
SeqEnrich (Becker et al. 2017) 

Enrichment Analysis & 
Visualisation 

REVIGO (Supek et al. 2011) 
BiNGO (Maere, Heymans, and Kuiper 2005) 
GOATOOLS (Klopfenstein et al. 2018) 
clusterProfiler (G. Yu et al. 2012) 
GOrilla (Eden et al. 2009) 
Cytoscape (Shannon et al. 2003) 
STRING (Szklarczyk et al. 2019) 
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Protein Analysis 

ARGOT2 (Falda et al. 2012) 
BLASTP (Camacho et al. 2009) 
BLASTX (Camacho et al. 2009) 
ConFunc (Wass and Sternberg 2008) 
I-TASSER (Y. Zhang 2008) 
Phyre (Kelley et al. 2015) 
SignalP (Almagro Armenteros et al. 2019) 
TargetP (Emanuelsson et al. 2000) 
TMHMM (Krogh et al. 2001) 
ToppGene (J. Chen et al. 2009) 
WoLF PSORT (Horton et al. 2007) 

Gene Network 
Creation 

BioSankey (Platzer et al. 2018) 
GeneMania (Franz et al. 2018) 
KAAS (Moriya et al. 2007) 
MapMan (Schwacke et al. 2019) 
NetGenerator (Weber et al. 2013) 
WGCNA (Langfelder and Horvath 2008) 

Transcript Factor 
Binding analysis MEME 

(Bailey et al. 2009) 

Alignment analysis 

TOMTOM (S. Gupta et al. 2007) 
CLUSTALW (Thompson, Higgins, and Gibson 1994) 
MUSCLE (R. C. Edgar 2004) 
SPADA (P. Zhou et al. 2013) 
DIAMOND (Buchfink, Xie, and Huson 2014) 
RNAstar (Widmann et al. 2012) 

Pathogen Identification 
Pandora (Colquhoun et al. 2021) 
Pathoscope (Hong et al. 2014) 
RNA CoMPASS (Xu et al. 2014) 

Taxonomic Analysis 
MEGA5 (Tamura et al. 2011) 
MEGAN4 (Huson et al. 2011) 

Statistical Analysis MaAsLin2 (Mallick et al. 2021) 
Splicing Analysis MISO (Katz et al. 2010) 

Hormone discovery HORMONOMETER (Volodarsky et al. 2009) 

Package 

GenePattern2  (Reich et al. 2006) 
Metascape (Y. Zhou et al. 2019) 
MicroScope (Vallenet et al. 2020) 
Useq (Nix, Courdy, and Boucher 2008) 
GATK (McKenna et al. 2010) 
SAMtools (H. Li et al. 2009) 
BLAST+ (Camacho et al. 2009) 
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1.5. Transcriptomics applications discussed in the present thesis 

The last decade has seen an explosion of transcriptomics data and its usage in different research 

fields over traditional methods due to its hypothesis-generating property. These research fields 

include the identification of transcriptional start sites and splicing alterations (Costa et al. 

2013); the cellular response to abiotic changes; the annotation of gene function; the study of 

non-model organisms with non-existing or poorly available genomic resources; and, the study 

of non-coding RNA biological functions (e.g. impact in protein translation, RNA splicing, and 

transcriptional regulation (Noller 2003; Kishore and Stamm 2006; Hüttenhofer, Schattner, and 

Polacek 2005). 

The present dissertation focuses on three transcriptomics areas of research, each discussed in 

their chapter and briefly introduced in this sub-chapter. 

First, the use of the microarray platform to study the transcriptome signature from fibroblast 

cell lines affected by three different senescence conditions: disease-associated single 

nucleotide polymorphisms (SNP) mutation in the LMNA gene that results in Hutchinson-

Gilford Progeria Syndrome (HGPS); telomere elongation on HGPS cells; and, cells treated 

with the UV-B light (Chapter 3 and Sub-Chapter 1.5.1.). 

Second, drug repurposing analysis is a vast research field with great importance for 

pharmaceutical research. The improvement of transcriptomics technologies coupled with 

previous technology and knowledge has brought the development of several tools capable of 

linking genes and their expression data to drugs that are capable of reversing or mimicking the 

input (Chapter 4 and Sub-Chapter 1.5.2.). 

Third, the study of host-pathogen interaction with the RNA-Seq platform is a novel approach 

termed “dual RNA-Seq”, which provides a simultaneous snapshot at the transcriptomics level 

for both organisms. This new methodology was applied to study the interaction between human 

epithelial cells and the Influenza A virus and strains from the Streptococcus pyogenes bacteria 

(Chapter 5 and Sub-Chapter 1.5.3.). 

1.5.1. Diagnostic and disease profiling 

One of the main areas of transcriptomics study is its application to disease-associated caused 

by genetic mutations such as SNP, allele-specific expression, and gene fusions, contributing to 

the understanding of disease causal variants. The transcriptomic data provides the first 

biological instance of the effect of genetic mutations in the genome and generates hypotheses 

that can provide insight into the biology of the disease. One prime example is the Progeria 
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syndrome (discussed in the present dissertation) caused by a single point mutation in the lamin 

A (LMNA) gene that results in a progressive disease that causes children to age rapidly. 

1.5.2. Drug-induced gene expression database 

Drug repurposing analysis is based on the identification of new uses for commercial and/or 

studied drugs. In the last decades, this strategy has been applied with the help of transcriptomics 

data with a new methodology called transcriptomics matching. The methodology consists of 

comparing multiple transcriptomics signatures among each other to identify the ones that have 

similar or reverse the behavior. The matching process relies on signatures present in public 

databases such as the Connectivity Map (cMap) which was established in 2006 by the Broad 

Institute. The project consists of an ensemble of gene expression profiles obtained from testing 

more than 1300 drugs against different human cell lines (J. Lamb et al. 2006). The drug-induced 

gene expression database can be viewed as a simplified proxy for phenotypic screening for a 

large number of compounds and it has been a successful instrument for drug repurposing for 

different disease profiles. The updated installment of the cMap data repository (cMap 3.0) is 

accessible at the US National Institutes of Health Library of Integrated Network-based Cellular 

Signatures (LINCS, https://lincsproject.org/). The new depository includes transcriptional 

signatures produced by tens of thousands of drugs dosed upon hundreds of human cell lines. 

Another advantage of cMap and LINCS is the ability to use their resource alongside other 

public repositories of transcriptomics data, such as the Gene Expression Omnibus (GEO) and 

Array Express, which contain raw gene expression data from hundreds of diseases afflicting 

humanity and tens of animal models used in the research process. Due to these advantages, 

manual curation and dedicated software (Zichen Wang et al. 2016) have been created to 

associate raw signatures from public repositories like GEO to drug-induced databases to find 

novel drug-disease connections and potential drug treatments (as discussed in Chapter 4). 

1.5.3. Host-Pathogen interaction 

The rise of omics technology has resulted in the advancement of established research field 

capabilities, such as genome sequencing, and the development of new research domains like 

RNA-seq platforms. Advancement in genome sequencing is shown in Metagenomics studies 

where genetic material from environmental samples is used to identify the organisms present 

in such samples. The environmental samples can range from soil samples to the human gut 

(Daniel 2005; Qin et al. 2010; Gilbert and Dupont 2010). However, species identification does 

not provide information concerning the interaction between the organisms. Such a goal can 
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only be achieved by studying dynamic processes such as the transcriptome which offers a 

snapshot of the expressed genes from each present organism. 

The RNA-Seq platform has become the standard for transcriptomics study over traditional 

technologies such as the microarray (Lowe et al. 2017). The microarray methodology is 

hindered by a long list of problems like high background noise, availability for only sequenced 

genomes, high cross-hybridization, and an expensive protocol (Shendure 2008; Bumgarner 

2013). All these issues are largely solved by RNA-Seq, with its independence from prior 

knowledge of the genome sequence, minimal background noise during the sequencing step, 

and deeper coverage of the reads (Zhong Wang, Gerstein, and Snyder 2009; Marioni et al. 

2008; Fu et al. 2009). Furthermore, the RNA-Seq platform presents additional protocols that 

can be used to tailor the platform based on the goals of the study. The strand-specific protocol 

provides the ability to accurately quantify gene expression from the organism that presents high 

gene density; overlapped genes; non-coding and antisense transcript; and the presence of 

operons in the genome (Hrdlickova, Toloue, and Tian 2016; Zhao et al. 2015). Additionally, 

the paired-end option presents an ideal system for transcriptome assembly (Corley et al. 2017). 

In conclusion, the high sensitivity of the RNA-Seq platform increases the likelihood of finding 

novel transcripts, alternative splicing events, and transcript borders compared to traditional 

transcript sequencing platforms (Costa-Silva, Domingues, and Lopes 2017). 

Due to RNA-Seq positive traits, the platform has become the prevailing methodology used to 

study the interaction between different organisms. The term "dual RNA-seq" term describes 

studies, where the two interacting organisms are simultaneously subjected to the same RNA-

Seq wet-lab protocol, followed by an in silico separation of the RNA, reads to their specific 

species (Westermann, Gorski, and Vogel 2012) (Figure 1.3). Dual transcriptome studies permit 

a better understanding of the interaction for both species compared to a canonical RNA-seq 

where the library preparation is focused on only one of the species (Frönicke et al. 2018). 
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Figure 1.3 Conventional RNA-Seq versus dual RNA-Seq pipeline. The two pipelines share the same sampling 
methodologies but the dual RNA-Seq analysis does not separate the organisms (collective processing) thus 
creating a library that consists of mRNA molecules from both organisms. The separation of the mRNA molecules 
to their specific species is achieved at the in silico level. 
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Chapter 2 - Aims and Objectives 

The transcriptomics revolution has been an important key for biological research in the last 

decade due to its vast applications and simplicity over traditional methods. The present 

dissertation aims to illustrate the usage of transcriptomics data related to the understanding of 

human healthcare in regard to human genetic disease and human infection processes caused by 

viruses and bacteria; and, the discovery of new applications for approved or investigational 

drugs that are outside of the scope of its original medical purpose. The following chapters are 

centred around the three research fields I worked on for the thesis: 

Chapter 3 focuses on the analysis of microarray data obtained from patients affected by the 

Hutchinson-Gilford Progeria syndrome (HGPS) (Sinha, Ghosh, and Raghunath 2014). HGPS 

is an extremely rare and progressive genetic disease that causes children to age rapidly, starting 

in their first and second years of life. The disease is caused by a single mutation in the LMNA 

gene, which encodes for the nuclear matrix lamin A. The abnormal version of the protein results 

in an unstable mechano-state of the nucleus and the cell itself. This unsteady state appears to 

be the main culprit that promotes the aging symptoms in progeria patients (Sinha, Ghosh, and 

Raghunath 2014). The goal of the study is to identify the transcriptomics imprint of HGPS 

patients compared to healthy normal people; the differences between HGPS senescence state 

and the senescence state caused by UV-B in healthy cells; and, the potential health benefits of 

telomere elongation in progeria cells. 

Chapter 4 provides an overview of the current state of drug repurposing tools that rely on the 

gene, gene list, and expression data as their input. The chapter divides the software based on 

the following parameters: input and output type; sourced database used for the analysis; the 

platform the tool can be used (e.g. webpage); and, a specialized category based on specific 

characteristics of the tool (e.g. statistical methodology). 

Chapter 5 illustrate the use of the RNA-Seq platform to study host-pathogen interaction 

between epithelial human cells and influenza A virus (IAV) and two serotypes of group A 

Streptococcus pyogenes (GAS). The study was conducted to understand the role of IAV 

infection in the increased rate of secondary GAS infection (Herrera, Huber, and Chaussee 

2016). Furthermore, drug repurposing analysis was conducted with the infected transcriptomics 

profile, from the human host, to identify potential drugs capable of aiding the host defence 

against both IAV and GAS pathogens. 
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Chapter 3 - Hutchinson-Gilford Progeria Syndrome 

3.1. Introduction 

The Hutchinson-Gilford progeria syndrome (HGPS) is an autosomal dominant, fatal pediatric 

premature aging disease, without gender or ethnic propensity and with complete penetrance 

(Sinha, Ghosh, and Raghunath 2014). The first portrayal of the disease happened in 1886, by 

Jonathan Hutchinson (Hutchinson 1886), and a second time by his colleague Hastings Gilford 

who coined the condition progeria (premature aged) in 1904 (Gilford and Hutchinson 1897). 

The syndrome has onset in early childhood (around the first year of life) with an estimated 

incidence of 1 in 4 million births, and an average lifespan of 13.5 (Sinha, Ghosh, and 

Raghunath 2014). 

HGPS presents a wide range of symptoms that can vary based on the age of onset and the 

degree of severity; nonetheless, clinical features are consistent and the patients appear very in 

phenotype (Merideth et al. 2008). The patients present birth weight and early postnatal 

development are normal when compared to the healthy population. The disease presents many, 

but not all, clinical features of aging/senescence. Normal aging phenotypes exhibited by HGPS 

patients include alopecia, joint contractures, low bone density, lipoatrophy with limb wasting, 

and global atherosclerosis. On the other hand, symptoms that differ from aging include growth 

failure, skeletal dysplasia, and lack of pubertal development. In absence of strokes, HGPS 

patients show motor and intellectual development is typically normal. Dementia, osteoarthritis, 

and cancer are absent. The efficiency of the immune system is considered normal, as is wound 

healing. The integrity of organs such as the liver, kidney, and gastrointestinal systems remains 

intact. The major cause of morbidity and mortality among HGPS patients are cardiovascular 

disease and cerebrovascular disease (Gordon et al. 2014). 

The syndrome is caused by a de novo mutation in the LMNA gene either within exon 11 (classic 

form) or at the exon 11 intronic border (atypical form) that results in the expression of a 50 

amino-acid deletion version of the LMNA protein (Figure 3.1) (Ullrich and Gordon 2015). The 

shortened mutant version of the LMNA protein (progerin) does not impede its localization to 

the nucleus nor its interaction with the normal LMNA protein, because the necessary 

components for these functions are still present (Sinensky et al. 1994). Nonetheless, the 

deletion does remove the recognition site involved in the dissociation and reassociation of the 

nuclear membrane at each cell division (Sinensky et al. 1994; Kilic et al. 1997). 
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The expression of the LMNA gene is developmentally regulated and displays cell and tissue 

specificity, mostly in differentiated cells including fibroblast, vascular smooth muscle cells, 

and vascular endothelial cells (Machiels et al. 1996; Tilli et al. 2003; McClintock, Gordon, and 

Djabali 2006). The lamin proteins are the main constituents of the nuclear lamina, which 

functions as an interface between the inner membrane of the nuclear envelope and the 

chromatin (Goldman et al. 2004). The structural integrity of the lamina complex has relevant 

importance for the cell in several biological processes such as mitosis, creating and maintaining 

the structural stability of the nuclear scaffold, DNA replication, RNA transcription, 

organization of the nucleus, nuclear pore assembly, chromatin function, cell cycling, and 

apoptosis. Furthermore, HGPS patients show a shortened length of the telomere when 

compared to healthy age-matched people (Decker et al. 2009). 
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Figure 3.1 Biogenesis of lamin A in normal cells and in Hutchinson-Gilford progeria cells. Normal prelamin A process produces a 74 kDa protein obtained from the upstream 
cleavage of the farnesyl-prelamin A. In HGPS cells, a 50-aa deletion in the prelamin A protein (aa 607-658) removes the site of recognition for the second endoproteolytic 
cleavage. Therefore, no mature lamin A is produced, and a farnesylated mutant prelamin A (progerin) accumulates in cells.  
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3.2. Aims 

The understanding of HGPS is mired by different shortcomings such as the use of progeroid 

mouse models that do not produce progerin (Ullrich and Gordon 2015), and the complex role 

of the LMNA protein and the lamina complex in human cell homeostasis. The microarray 

platform was chosen to study the gene expression of human fibroblast cells from HGPS 

patients. The goal of the present study is to have a clearer understanding of the effect of 

progerin; the transcriptomics differences between the senescence process caused by HGPS 

patients and the senescence process caused by UV-B light treatment; and, to analyse the effect 

of telomere elongation in HGPS fibroblast cells. 

3.3. Methods and Materials 

3.3.1. Materials: Human fibroblast cell groups 

The study analyses 24 CEL files obtained from four fibroblast cell line groups, each with six 

biological replicates. The “Control” group was obtained from the healthy population. The 

“HGPS” group was acquired from HGPS patients. The “UV-B” group describes healthy cells 

that have been treated with UV-B light. The last group is the “HGPS-TERT” which describes 

HGPS samples that have undergone telomere elongation. The laboratory experimental work 

was carried by our collaborative partners of the Institute of Clinical Chemistry and Laboratory 

Medicine at the University of Rostock under Professor Michael Walter. 

3.3.2. Methods: Microarray CEL files analysis 

The microarray analysis of the CEL files was carried out in R (Table 3.1). The raw CEL files 

were normalized using the Robust Multi-array Average (RMA) method (Irizarry, Hobbs, et al. 

2003). The normalization process is applied to ensure meaningful statistical analyses and 

inferences from all the samples. The RMA method consists of four steps: background 

correction for each array; quantile normalisation across the array to make all distributions the 

same; probe level intensity calculation through log transformation of the background corrected 

and normalised intensity value; and, probe set summarisation where the intensities of the probe 

values are combined into one.  
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Table 3.1 List of R package used during the CEL microarray analysis. 

R Package Description Reference 
Oligo Pre-processing tools for oligonucleotide arrays (Carvalho and Irizarry 2010) 

Affycoretools Functions for repetitive analyses with Affymetrix 
GeneChips (MacDonald 2022) 

Tidyverse Collection of R packages designed for data science (Wickham et al. 2019) 

Factoextra Multivariate Data Analyses and Elegant Visualization (Alboukadel Kassambara and 
Fabian Mundt 2020) 

hgu133plus2.db Affymetrix Human Genome U133 Plus 2.0 Array 
annotation data (Carlson 2016) 

gProfiler2 Gene list functional enrichment analysis (Raudvere et al. 2019) 
rrvgo Reduce + Visualize GO (Sayols 2020) 
Tidytext Text mining tasks and plot generation. (Silge and Robinson 2016) 
gridExtra Arrange multiple grid-based plots on a page (Auguie 2017) 

Scales Graphical scales map data to aesthetics (Hadley Wickham and Dana 
Seidel 2020) 

Pathview KEGG pathway based data integration and visualization (Luo and Brouwer 2013) 
ggvenn Venn diagram creation (Yan 2021) 

 

After the normalisation step, the principal component analysis (PCA) was conducted to 

increase the readability of the data and to understand the similarity between the samples. The 

PCA plot does show samples from the same group to cluster closer to each other compared to 

other sample groups (Figure 3.2). The gene annotation of the probes was carried out by the 

Affymetrix Human Genome U133 Plus 2.0 Array annotation data (chip hgu133plus2) from the 

Bioconductor package (Carlson 2016). Differentially expressed probes were identified by the 

Limma package (Ritchie et al. 2015); and, Benjamini-Hochberg for multiple comparisons: p-

value < 0.0002 and Log2 Fold Change (LFC) > |0.5| (S. Y. Chen, Feng, and Yi 2017). The 

chosen adjusted p-value threshold was calculated as the lowest value which resulted in a 

number of False Positives that is less than 1 (adjusted p-value * number of DEG < 1). The 

DEGs were identified by the list of annotated differential expressed probes. DEGs with probes 

at opposing fold change values were removed from the DEG list. The g:Profiler tool was used 

to identify the enrichment terms (Raudvere et al. 2019) and the rrvgo R package was used to 

reduce redundant enriched terms (Sayols 2020). Furthermore, the Pathview package (Luo and 

Brouwer 2013) was used to show the expression of the genes in the enriched KEGG pathway. 

The R script used for the CEL microarray analysis can be found at 

https://github.com/SalemSueto-BioInfo/MicroArray_Affymetrix_Analysis. 
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Figure 3.2. Microarray CEL files Bioinformatics pipeline. The CEL raw data is RMA normalised. Followed by the PCA to check the distances of the samples. The 
annotation of the probes is achieved by the Human Genome U133 Plus 2.0 Array annotation data. Then, the DEGs are found by using the limma package (p-value = 5e-06 
and LFC = |0.5|). The enrichment analysis  is achieved by using the g:Profiler tool. The enriched KEGG pathways are visualised with PathView R tool. Meanwhile the GO 
clusters are generated with the rrvgo  and summarised with heatmap plots. 
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3.4. Results 

3.4.1. Bioinformatics CEL analysis 

The normalisation of the raw data by the RMA method was successful resulting in the creation 

of normalised data where the intensities of the probes from different arrays can be compared 

(Figure 3.3A – 3.3B). The PCA of the normalised data shows four distinct clusters, one cluster 

in each quadrant of the PCA area (PCA1 = 24.1% and PCA2 = 11.4%). The identified clusters 

represent replicates from the same fibroblast cell group (Figure 3.3C). The DEGs identification 

was carried out between the healthy control group and the three conditions: HGPS, HGPS-

TERT, and UV-B. The closest group comparison results are Control vs. HGPS and Control vs. 

HGPS-TERT, followed by the Control vs. UV-B one (Figure 3.3D). 

The DEGs analysis results in the identification of 1500 specific DEGs for HGPS; 624 specific 

DEGs for HGPS-TERT disorder treatment; 1413 specific DEGs for the UV-B treatment. 

Furthermore, the three conditions share several DEGs: HGPS and HGPS-TERT have 1226 

DEGs in common; HGPS and UV-B share 341 DEGs; HGPS-TERT and UV-B have in 

common 166 DEGs; and, the three comparisons share 417 DEGs (Figure 3.4). 
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Figure 3.3 CEL files analysis result summary. (A) Raw Data Log intensities. (B) RMA Data Log intensities. (C) 
PCA plot. (D) Cluster dendrogram between the list of DEGs between the 3 group comparisons. 
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Figure 3.4 DEGs identification between the three group comparisons. (A) HGPS condition versus UV-B treatment. (B) HGPS condition versus HGPS-TERT condition. (C) 
UV-B treatment versus HGPS-TERT condition. (D) HGPS condition versus UV-B treatment.
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3.4.2. HGPS transcriptomics signature on human fibroblast cells 

The enrichment analysis of the identified DEGs between the Control and the HGPS group 

samples resulted in the identification of 208 enriched terms for the Gene Ontology: Biological 

Process (GO:BP) class. The terms were grouped based on their function to gain a better 

understanding of the effect of the progerin on human cells (Figure 3.5). The cell-cycle process 

is one of the main functions that is shown in the analysis. The identified terms are related to 

the regulation of G1/S and G2/M cell cycle phase transitions; the cellular response to stress 

caused by DNA damage and its signalling; and DNA replication processes. Furthermore, the 

progerin condition affects different stages of the transcription-translation phases. The analysis 

identified the RNA polymerase I which is the enzyme responsible for the transcription of 

ribosomal RNA (except for 5S rRNA, which is synthesized by RNA polymerase III). 

Moreover, the results show several terms related to rRNA processing and ribosomal small 

subunit biogenesis; and, regulation of the transcription for mRNA and ncRNA classes. The 

results showed several terms related to RNA post-transcriptional regulation and RNA stability. 

The RNA splicing event was identified with different mechanisms such as via spliceosome, 

via transesterification reactions, and via transesterification reactions with bulged adenosine as 

nucleophile. The protein-level regulation is directed towards protein stability and its proteolysis 

through the proteasome-mediated ubiquitin-dependent protein catabolic process. The progerin 

also shows regulatory functions toward organelle organization, cellular component assembly, 

and nucleus organization. The main target of the regulation of organelle is directed towards the 

cellular localisation of the organelles; the intracellular transport (for both RNA and protein) at 

the nucleus, cytoplasmic, and nucleocytoplasmic levels. In particular, the endoplasmic 

reticulum (ER)  and Golgi vesicle transport were identified. The nucleus organisation is 

highlighted with terms like chromosome organisation, telomere maintenance, and histone 

modification
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Figure 3.5 GO:BP enrichment analysis summary for the group comparison between the Healthy Control and 
HGPS. The plot was created with the website version of REVIGO. The semantic space axes in the plot have no 
intrinsic meaning. The Revigo tool uses the Multidimensional Scaling (MDS) methodology to reduce the 
dimensionality of a matrix of the GO terms pairwise sematic similarities. GO terms that are semantically similar 
should cluster closer in the plot. The highlighted GO terms were selected as the most significant ones in the 
clusters or the one with the most specific biological information. The bubble color shows the user-provided p-
value and the size indicates the frequency of the GO term in the GOA database (the bubbles of more general terms 
are larger) (Barrell et al. 2009). 
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3.4.3. UV-B light treatment impact on healthy human fibroblast cells 

The enrichment analysis of the identified DEGs between the Control group and the UV-B 

treatment found 169 enriched terms from the GO:BP class. The terms were grouped together 

based on their biological function to get a better insight into the effect of UV-B light treatment 

on healthy human cells (Figure 3.6). The nuclear and cell division process is one of the focal 

functions that is shown in the analysis. The identified terms are related to the regulation of 

G1/S and G2/M cell cycle phase transition; metaphase plate congression, mitotic spindle 

organization, microtubule cytoskeleton organization involved in mitosis, and mitotic sister 

chromatid segregation. Furthermore, the analysis shows the cellular response to DNA damage 

and nucleosome assembly. The light treatment shows cell response from both external and 

endogenous stimulus. The identified signalling terms are related to intracellular signal 

transduction, enzyme-linked receptor protein signaling pathways such as the ERBB signaling 

pathway, and regulation of the epidermal growth factor receptor signaling pathway. The 

identified translational regulations are directed at protein localization, protein ubiquitination, 

protein modification by small protein conjugation or removal, and peptidyl-serine 

phosphorylation. The UV-B condition affects the regulation of several cellular components 

organization like microtubule cytoskeleton, chromosome, and organelle fission; and, the 

cellular localization for vacuoles during their transport. The chromosome organization is 

highlighted by terms such as protein-DNA complex assembly and nucleosome assembly. 

Furthermore, the analysis shows several terms related to cell death like apoptotic process, 

intrinsic apoptotic signaling pathway, and programmed cell death; and, miscellaneous 

processes like autophagy and macroautophagy; regulation of cell communication; and, blood 

vessel morphogenesis.  
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Figure 3.6 Gene Ontology: Biological Process summary for the Healthy Control versus UV-B treated cells. The 
plot was created with the website version of REVIGO. The semantic space axes in the plot have no intrinsic 
meaning. The Revigo tool uses the Multidimensional Scaling (MDS) methodology to reduce the dimensionality 
of a matrix of the GO terms pairwise sematic similarities. GO terms that are semantically similar should cluster 
closer in the plot. The highlighted GO terms were selected as the most significant ones in the clusters or the one 
with the most specific biological information. The bubble color shows the user-provided p-value and the size 
indicates the frequency of the GO term in the GOA database (the bubbles of more general terms are larger) (Barrell 
et al. 2009). 
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3.4.4. Effect of telomere elongation on HGPS fibroblast cells 

The telomere elongation treatment on the HGPS cell line resulted in the identification of 187 

enriched terms from the GO:BP class (Figure 3.7). The HGPS-TERT condition affects different 

stages of the transcription-translation steps. The transcription regulation is affected at the 

mRNA and rRNA macromolecules synthesis level. In particular, the analysis identified the 

main rRNA gene transcription polymerase, RNA polymerase I. Several posttranscriptional 

regulations of gene expression involve RNA polyadenylation and mRNA 3'-end processing. 

The splicing event was identified by three different methods: via spliceosome, via 

transesterification reactions, and via transesterification reactions with bulged adenosine as 

nucleophile. On the other hand, regulation at the translational level is regulated at protein 

hydroxylation; protein modification by small protein conjugation or removal; peptidyl-lysine 

modification; and, proteolysis. Furthermore, the telomere elongation condition affects the 

overall organization of the cellular organelles and organelle biogenesis. Core affected cellular 

organizations are the cytoskeleton; the transport mechanisms related to ER-Golgi vesicle-

mediated transport, nucleocytoplasmic transport for both RNA and protein, and nuclear 

transport; and, the cellular localization of protein and RNA related to organelle and the nucleus. 

Moreover, the analysis also found biological functions related to the process utilizing 

autophagic mechanism, intracellular signal transduction, ribonucleoprotein complex 

biogenesis, and histone modification. 
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Figure 3.7 Gene Ontology: Biological Process summary for the Healthy Control versus HGPS fibroblast cells 
treated for telomere elongation. The plot was created with the website version of REVIGO. The semantic space 
axes in the plot have no intrinsic meaning. The Revigo tool uses the Multidimensional Scaling (MDS) 
methodology to reduce the dimensionality of a matrix of the GO terms pairwise sematic similarities. GO terms 
that are semantically similar should cluster closer in the plot. The highlighted GO terms were selected as the most 
significant ones in the clusters or the one with the most specific biological information. The bubble color shows 
the user-provided p-value and the size indicates the frequency of the GO term in the GOA database (the bubbles 
of more general terms are larger) (Barrell et al. 2009). 
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3.5. Discussions 

3.5.1. Hallmark of HGPS 

HGPS is known to cause cellular senescence in the affected cells and the expression of the 

progerin protein affects a wide range of cellular processes. The present study displays known 

affected cellular mechanisms and unreported ones (Figure 3.8). 

Genome stability is a complex cellular phenomenon that involves a wide range of biological 

processes. The present study highlights several biological processes such as chromosome 

organization, telomere maintenance, histone modification, and cellular response to DNA 

damage stimulus. As shown by Musich and Zou, genomic instability and DNA damage are one 

of the hallmarks of HGPS (Musich and Zou 2009). The telomere maintenance in HGPS patients 

is shown to be shorter than their age-matched in the healthy population (Decker et al. 2009). 

Furthermore, specific epigenetic modifications are found to be enriched in HGPS patients in 

the lamina-associated domains when compared to the healthy population (Köhler et al. 2020). 

Another trademark of HGPS is cell-cycle alteration. In eukaryotic cells, the cell cycle consists 

of four stages. The G1 stage depicts the period when the cell is metabolically active to prepare 

all the macromolecules necessary for DNA replication and it continuously grows. The second 

stage is called the S phase, during which the DNA replication starts. Followed by the G2 phase, 

during which the cell continues to grow and the cell synthesize several macromolecules needed 

for division. The final stage is called the M (mitosis) phase during which the duplicated 

chromosomes separate into two daughter nuclei and the cytoplasm is divided into two daughter 

cells, each with a full copy of DNA. Our analysis pinpoint the G1/S and the G2/M transitions 

as the phase that is impacted by HGPS. Such behaviour is highlighted by Dechat et al. (Dechat 

et al. 2007). 

Phan et al. showed an elevated protein production in HGPS cells correlated with an increased 

number of cell cycles when compared to the normal cells (Phan, Khalid, and Iben 2019). In our 

study, HGPS shows an alteration of the transcription exhibited by the RNA polymerase I which 

is responsible for the expression of the ribosome RNA genes. The HGPS effect on the 

transcription phase is further expanded during the RNA splicing event with three different 

methods: via spliceosome, via transesterification reactions, and via transesterification reactions 

with bulged adenosine as nucleophile. Moreover, the effect of the syndrome is also shown at 

the protein stability level through the regulation of the translation process and proteasome-

mediated proteolysis. 
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The effect of progerin expression is also detected at the organelle level such as the ER-Golgi. 

As proved by Chen et al., HGPS cells show the Golgi cisternae to be dispersed as opposed to 

the normal ones where the organelle is compact and confined to one side of the cell (Z. J. Chen 

et al. 2014). Our analysis does shed light on vesicle transport as a possible mechanism that is 

altered in HGPS cells. 

The nuclear lamina is known to be an important factor in the transport of macromolecules 

between the nucleus and the cytoplasm. Ferri et al. demonstrated the decreased ability of the 

progerin-constituted lamina complex for macromolecule transport towards and from the 

nucleus; and, a compromised binding ability of transport protein mediators (Ferri, Storti, and 

Bizzarri 2017). The present analysis shows different enriched terms that show the protein and 

the RNA intracellular transport as compromised, as well as their intracellular localization. 

A literature review of the HGPS effect on human cells shows biological processes that were 

not replicated in the present study. The disorder is known to disrupt the nucleo-cytoskeleton 

connections resulting in an impairment of nuclear movement and centrosome orientation in 

fibroblast polarization for migration (Chang et al. 2019). Additionally, multiple signalling 

pathways result in alterations in HGPS cells. Fafián-Labora et al. observed a statistically higher 

concentration of intracellular calcium in HGPS cell lines compared to healthy ones. The 

authors demonstrated the relationship between the calcium signalling pathways and 

mitochondria-associated membranes, apoptosis, and mitochondrial ROS production (Fafián-
labora et al. 2021). The mitochondria disruption was found to be time- and dose-dependent 

caused by a downregulation of mitochondrial oxidative phosphorylation proteins (Rivera-

Torres et al. 2013). Moreover, Hernandez et al. demonstrated the inability of the HGPS cells 

in murine models to produce a viable ECM which is associated with an altered Wnt signalling 

pathway (Hernandez et al. 2010). The Notch signalling pathway is also affected by HGPS and 

it regulates stem cell differentiation during osteogenesis and adipogeneses (Scaffidi and Misteli 

2008). In addition, HGPS cell lines show a downregulated expression of lamin B1 (LMNB1), 

heterochromatin protein 1 α (HP1α), and LAP2α, and loss of nucleoplasmic lamins (Vidak and 

Foisner 2016). 

The present study highlights biological processes that are not present in the literature such as 

the regulation of RNA splicing classes; the regulation of mRNA and ncRNA transcription 

molecules; the processing and biogenesis of rRNA molecules; the organization of organelles; 

and, the assembly of cellular component (Figure 3.8). 
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Figure 3.8 Hallmark of HGPS. The left green section shows the pathways that were identified in the present 
study and already found in the literature. The right orange section shows the biological pathways that are 
known from the literature to affect HGPS but were not identified in the present study. 

 

3.5.2. Senescence analysis 

Cellular senescence is expressed as the state of the cell-cycle arrest prompted by aged or 

damaged cells caused by oncogenic signalling, DNA damage, and telomere loss (Muñoz-Espín 

et al. 2013). Moreover, senescence is employed by the cells in normal development and it is 

necessary for tissue homeostasis (McHugh and Gil 2018). The three conditions in the present 

study do force the cells to enter senescence. The results show the HGPS and the HGPS-TERT 

as the closer groups and followed by the UV-B treatment (Figure 3.3D). Such behaviour is also 

proved by the shared number of DEGs between the groups (Figure 3.4). 

3.5.2.1. Senescence comparison between HGPS and HGPS-TERT 

Telomere shortening is both a hallmark of cellular ageing and HGPS. The hypothesis that 

telomere elongation in HGPS cells can restore some of the ageing symptoms was checked in 

the present study. The literature review shows ambivalent results following telomere 

elongation in human HGPS cells. Bikkul et al. show that telomere elongation results in 

chromosome mislocalization for both normal and HGPS cells (Bikkul et al. 2019). Whereas, 

transient expression of human telomerase in combination with farnesyltransferase inhibitor 

(FTI) lonafarnib could represent an improved novel therapeutic approach for HGPS (Yanhui 

Li et al. 2019). 
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The present study shows that telomere elongation results in reversing the gene expression of 5 

DEGs that are downregulated in HGPS and upregulated in HGPS-TERT; and, 17 DEGs that 

are upregulated in HGPS and downregulated in HGPS-TERT. The remaining 1621 shared 

DEGs do not change expression patterns following telomere elongation (Figure 3.4B). 

Furthermore, 790 DEGs were detected for the HGPS-TERT condition that are normally 

expressed in HGPS. The telomere elongation treatment shows exclusive enriched terms such 

as apoptotic intrinsic pathway signalling; microtubule cytoskeleton involved during the mitosis 

spindle; posttranslational modification like peptidyl-serine and peptidyl-lysine 

phosphorylation; and, autophagy. Whereas, the HGPS presents the following terms that are 

absent in HGPS-TERT such as signal transduction in response to DNA damage; chromosome 

organization for telomere maintenance; assembly of protein-DNA nucleosome; cell cycle 

transition between G1/S and G2/M. The results suggest that telomere elongation resolves 

cellular deficiencies related to the stability of the nucleus and of the chromosome. On the other 

hand, it introduces new abnormalities concerning microtubule-cytoskeleton organization 

during mitosis, apoptotic pathways, and cellular organization of autophagy. The cell-cycle 

process continues to be affected in both conditions but in different phases. HGPS is affected 

during the G1/S transition potentially due to the signalling of DNA damage; and, G2/M 

transition due to abnormal chromosome organization. On the other hand, HGPS-TERT 

negatively affects the cell cycle due to the microtubule-cytoskeleton interaction involved 

during the mitosis spindle. 

3.5.2.2. Senescence comparison between HGPS and UV-B 

The UV-B treatment triggers cell senescence with some shared biological processes with 

HGPS and HGPS-TERT but it also shows a distinct biological imprint that is exclusive to the 

light treatment (Figure 3.9). The UV-B group shows a distinct gene expression as shown by 

the PCA (Figure 3.3C); and, shares 924 DEGs (with both HGPS and HGPS-TERT) which 

represents 39.5% of its total number of DEGs. The UV-B condition expresses 16 specific 

GO:BP clusters related to chromosome segregation; cell death; metaphase plate congression; 

cellular response to a stimulus; negative regulation of intracellular signal transduction; fission 

organelle; vacuolar transport; vasculature development; blood morphogenesis vessel; cell 

division; and, ERBB signalling pathway. The present study shows a different pattern of cell 

senescence caused by the two progeria conditions and the UV-B light treatment proving that 

cellular senescence can be triggered by different mechanisms at different cellular components. 
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Figure 3.9 Senescence comparison analysis between HGPS, HGPS-TERT, and UV-B treatment. 
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3.6. Conclusion 

HGPS is a complex human genetic disease involving different cellular mechanisms ranging 

from telomere maintenance to intracellular transport. The scientific hypothesis that telomere 

elongation treatment can resolve some of HGPS symptoms was checked and the analysis 

resulted in the emergence of new dysregulated pathways that are absent in the original 

condition. Furthermore, the UV-B treatment highlights a cellular senescence state that differs 

from the HGPS process.
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Chapter 4 - Drug repurposing from gene and expression data: A survey of 

bioinformatics tools and databases. 

4.1. Introduction 

Drug repurposing (DR) entails methods to identify new therapeutic uses for existing drugs for 

the treatment of diseases different than their original purposes (Sam and Athri 2019). It is also 

known by different names such as drug repositioning, drug redirection, drug recycling, drug 

re-tasking, drug reprofiling, drug rescuing, and therapeutic switching (Pushpakom et al. 2018; 

Jarada, Rokne, and Alhajj 2020). DR methodologies are complementary to traditional 

approaches for drug discovery due to their ability to select drugs with therapeutic potential in 

a reasonable amount of time and cost and with potentially lower risk of side effects (Sam and 

Athri 2019; Serçinoğlu and Sarica 2019). Choosing a particular computational drug 

repurposing workflow usually depends on the type of input data available, which includes 

genomic data (a single gene or a set of genes), gene expression information (fold changes or p-

values), the chemical structure of a candidate drug molecule, the phenotype of disease in 

question, or a combination of these data (Jarada, Rokne, and Alhajj 2020). The present work 

focus on the identification of tools (standalone, web-based, and R package) capable of using 

human transcriptomic data to identify potential drug treatment for a diverse range of biological 

conditions. 

4.2. Drug repurposing tools 

The identification of drug repurposing tools was achieved through a literature review (Sam and 

Athri 2019; Serçinoğlu and Sarica 2019; Jarada, Rokne, and Alhajj 2020; Pushpakom et al. 

2018; Lotfi Shahreza et al. 2018; Musa et al. 2018) (total of ) and PubMed searches as of March 

2021 using the following query terms: “drug repurposing” (2450 results), “drug repositioning” 

(4101 results), “drug redirection” (4 results), “drug recycling” (9 results), “drug re-tasking” 

(quoted phrase not found in phrase index), “drug reprofiling” (20 results), “drug rescuing” 

(quoted phrase not found in phrase index), and “therapeutic switching” (33 results). The tools 

were then filtered based on the type of input data they require: (i) a single gene; (ii) a list of 

genes; (iii) gene expression data; or a combination of any of these types of data (Figure 4.1).
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Figure 4.1 Drug repurposing tool functional list as identified in the literature. The figure shows all the tools found in the literature review that are functional. The tools are 
divided into the following groups. The “Input” shows all the input options available to the user: the “Single Gene” expresses the usage of a single gene; the “Gene List” 
expresses the ability to use a regular gene list; the “Gene Expression” express the ability to use genes with their expression data such as Fold Change; the “Gene List + Gene 
Expression” means the user can use both gene expression and gene list. The “Output: Ranked Drug” shows whether the output drugs are associated with any statistical or 
measured value. The “Type” shows the system that permits the use of the tool. The “Category” is used to further divide the tools when necessary. The “Tool” shows the name 
of the drug repurposing platform. 
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4.2.1. Tools with single genes as input 

The platforms in this group accept as input a single gene. The output is a drug list that is known 

to bind to the encoding protein, according to the sourced databases, or predicted drugs through 

different methodologies. The tools are all web-based, and they can be further divided based on 

the main topic elaborated by their sourced database. 

Drug-focused resources 

The group has the following members: ChEMBL (Mendez et al. 2019), DrugBank (Wishart et 

al. 2018), and DrugCentral (Ursu et al. 2017). The platforms rely on databases that host drug-

related information such as the drug structure, protein target, drug synonyms, drug effects, 

mechanism of action (MOA), clinical trial, and FDA drug label. A typical gene-input outputs 

a list of known drug-gene interactions. 

Cancer-focused resources 

The group has seven members: CIViC (Griffith et al. 2017), COSMIC (Tate et al. 2019), CTD2 

Dashboard (Aksoy et al. 2017), DRUGSURV (Amelio et al. 2014), GDSC (Yang et al. 2012), 

My Cancer Genome (Jain et al. 2020), and OncoKB (Chakravarty et al. 2017). All the members 

use databases built primarily on cancer cell line data studies. The goal of these platforms is to 

collect and make cancer data accessible to researchers for cancer treatment and further help 

drug repurposing. It is possible to query the platforms with different inputs. A gene-input 

results in an output of a drug list with additional information based on the database source used 

by the direct platform. 

Drug-target interactions 

The platforms are built upon the binding data between small molecules and their protein target; 

and, known interaction between compounds and diseases. The following members output a 

drug list based on known drug-target interaction from their database source: ADReCS-Target 

(Huang et al. 2018), BindingDB (Gilson et al. 2015), BioGrid (Oughtred et al. 2019), CTD 

(Davis et al. 2021), DTC (Tanoli et al. 2018), GtoPdb (IUPHAR/BPS Guide to 

PHARMACOLOGY) (Armstrong et al. 2020), IntAct (Orchard et al. 2014), Open Targets 

(Ochoa et al. 2021), PDBBind (Z. Liu et al. 2017), PDSP Ki (Roth et al. 2000), PharmGKB 

(Whirl-Carrillo et al. 2012), Pharos (Nguyen et al. 2016), SuperTarget (Hecker et al. 2011), 

TTD (Y. Wang et al. 2020), and is IntAct (Orchard et al. 2014). Meanwhile, the following tools 

predict the potential interactions between a compound and the target based on known 

interaction: BalestraWeb (Cobanoglu et al. 2015), ChemProt (Kringelum et al. 2016), 
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gene2drug (Napolitano et al. 2018), and PDID (C. Wang et al. 2016). The DINIES tool can 

output both known interactions and predicted ones (Yamanishi et al. 2014). 

Miscellaneous 

The members from this category are built upon databases created from different sources. The 

ECOdrug webpage shows the potential interactions between drugs and their targets across 

different organisms (Verbruggen et al. 2018). The database covers 640 eukaryotic species, and 

it integrates data from Ensembl (Yates et al. 2020), EggNOG (Huerta-Cepas et al. 2016), and 

InParanoid (Sonnhammer and Östlund 2015). Moreover, the tool can predict drug interactions 

with ortholog genes from different species within an ecosystem. The GeneCards database 

integrates data from around 150 sources including gene and genome variants; protein-related 

information; pathways; cells lines; diseases; omics data (genomic, transcriptomic); clinical 

information; drugs-related information; gene and protein expression; orthologs and paralogs 

information; and, gene ontologies (Safran et al. 2010). The output from a gene input consists 

of several tabs, one of them being the drug tab, which gives a list of drugs with their status, 

mechanism of action, clinical trials, role, and associated diseases. The KEGG is a well-known 

manually curated resource for information about genomes, pathways, diseases, and drugs 

(Kanehisa et al. 2021). KEGG provides information about gene-drug interactions through the 

KEGG DRUG. The last member is the PROMISCUOUS database which includes three types 

of data entities: drug-target binding interactions, drug-centric databases, and drug-side effect 

relations (Gallo et al. 2021). It is possible to query the database by the drug and by the gene. 

The output format for a gene input is a list of drugs, with their pharmacological action. 

4.2.2. Tools with a list of genes as input 

The group relies on two types of sources: gene expressions profile databases such as the CMap 

(J. Lamb et al. 2006), the GEO (R. Edgar, Domrachev, and Lash 2002), and the LINCS project 

(Subramanian et al. 2017); and drug-related information databases, that contain data such as 

protein targets, side effects, interaction type, sources, and references. The members of this 

group are further divided into four categories, depending on the type of input: gene list, ranked 

gene list, lists of up- or down-regulated genes, and simultaneous sets of up- and down-regulated 

genes. On the other hand, the output data depends on the source database. In the case of gene 

expression profile sources, the drug list output is obtained through similarities or concordantly 

expressed genes between the input data and profiles in the database (J. Lamb et al. 2006; 

Campillos et al. 2008; Pilarczyk et al. 2019), while tools that rely on drug-related information 
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databases without expression data provide a list of drugs, based on known drug-target 

interaction information. 

Gene lists as inputs 

The sub-group has two members: DGIdb and STITCH. The DGIdb platform organizes data 

from 30 different sources and offers the possibility to access detailed information concerning 

drugs, genes, drug-gene interactions, and their references in PubMed (Cotto et al. 2018). The 

platform outputs a list of drugs with additional information from the sourced databases. 

Meanwhile, STITCH provides a comprehensive map of drug-protein network interactions, 

together with a diverse range of filters and visualization options (Szklarczyk et al. 2016). 

STITCH also integrates multiple source databases and provides a confidence score for each 

reported interaction. The tool accepts as input a chemical name or a structure, a gene name, or 

a protein sequence, and it outputs a drug-protein network involving the query data. The network 

also displays all the known binding affinity constant values using the edge width of the drug-

protein interaction. 

Ranked gene lists as inputs 

The sole member of this category is ksRepo (Brown et al. 2016). It compares the ranked gene 

list input data to a database of signatures or compound-gene interaction lists; and, it identifies 

drugs with similar expressions to the input. 

Up- or down-regulated genes as inputs 

The sub-group has one sole member: GDA (Caroli et al. 2018). The tool integrates human 

cancer cell lines (from the NCI60 panel and the cancer cell line encyclopedia), drug responses, 

and gene mutation data. It offers four possible usages based on the input: from gene to drug; 

from drug to gene; from gene signature to drug; and, from drug to gene signature. GDA requires 

the user to choose between an up- or down-regulated expression. The output displays a table 

that includes a list of drugs with diverse data such as drug family, MOA, drug score in cancer 

cell lines, p-value, and links to the related literature. 

Up- and down-regulated genes as inputs 

The category includes four members that differ primarily by their data sources. The CLUE 

platform uses the CMap L1000 dataset as its sourced material and the methodology explained 

by Subramanian et al. to identify the drugs that elicit similar patterns of up- and down-

regulation as the input data (Subramanian et al. 2017). DeSigN connects the input data with 

gene profiles associated with cancer cell line drug response data (B. K. B. Lee et al. 2017). The 

source databases are from the Genomics of Drug Sensitivity in Cancer Project (Yang et al. 

2012) and the Cancer Cell Line Encyclopedia (Ghandi et al. 2019). The output is a list of drugs 
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with their gene targets associated with a connectivity score and a p-value. The output drugs are 

identified by the use of the non-parametric Kolmogorov-Smirnov (KS) statistic for a rank-

based pattern-matching approach between the query signatures to the reference database. The 

connectivity score is computed according to Lamb et al. (J. Lamb et al. 2006). The DREIMT 

tool focuses on the identification of drugs capable of regulating the human immune system 

from 70 immune cell subtypes, 4,960 drug profiles, and ~2,600 immune gene expression 

signatures (Troulé et al. 2020). The output is a list of associated drugs with additional 

information concerning their pharmacological status, MOA, association scores, and drug 

approval status. The last platform of the sub-group is LDP3 (a.k.a. Slicr) (Zichen Wang et al. 

2018). It uses the LINCS database as its source and the Characteristic Direction (CD) method 

to connect up- and down-regulated genes to drugs (Subramanian et al. 2017). The CD is a 

multivariate method used to identify differentially expressed genes; and, it tends to give more 

weight to genes that show a low value of fold change but ‘move’ together with a larger group 

of other genes (Duan et al. 2016a; Clark et al. 2014). The output of the platform is a list of 

drugs and gene knockdowns that mimics or reverse the input. 

4.2.3. Tools with gene expression data as input 

The cluster includes tools that require as input a gene list associated with their corresponding 

expression fold-changes, or a numeric value depicting the differentially expressed status, e.g. 

1 for upregulated, -1 for downregulated. This category relies upon large-scale public expression 

databases such as the GEO, the CMap (J. Lamb et al. 2006), and the LINCS (Subramanian et 

al. 2017). These databases provide gene expression patterns induced by drugs, diseases, or 

other environmental factors. Drug repurposing tools exploit this knowledge to find similarities 

between the input data provided by the user, and the gene expression profiles in databases (J. 

Lamb et al. 2006; Campillos et al. 2008; Pilarczyk et al. 2019). In this manner, it is possible to 

identify drugs that can mimic (positive correlation) or reverse (negative correlation) the 

expression patterns from the input data. For the sake of simplicity, we classified these tools 

into two categories: (i) data including the status of differential expression; or (ii) a table of 

genes with their respective expression fold changes. 

Gene list with differentially expressed status as input 

The two tools in this sub-category accept as input a two-column table, with the gene names on 

the first column, and the corresponding differential expressed status (1 for upregulated, -1 

downregulated, and 0 for non-differentially expressed) in the second. The GoPredict tool 

integrates transcriptomic and epigenomic data primarily from breast and ovarian cancer, and 
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signaling pathway information (Louhimo et al. 2016). The output consists of a table with a 

ranked list of drugs, entailing drug names, inhibition score, and a pro-cancer effect score 

(penalty term). The PDOD tool identifies drugs with the potential to reverse the expression of 

the input data (H. Yu et al. 2016). 

Gene list with fold change data as input  

This category has six members divided into two web platforms: CDA and MANTRA; and, four 

R packages: Cogena, DrInsight, DrugDiseaseNet, and EMUDRA.  

The CDA web tool performs expression pattern matching between signaling pathways 

components and drug-induced expression patterns (J. H. Lee et al. 2012). The CDA first 

identifies the signaling pathways through gene set enrichment analysis on the input gene 

expression data and then finds drugs affecting these pathways. The output is a table of single 

and combinatorial drugs, that are ranked according to the number of affected pathways. The 

MANTRA web tool exploits the CMap database to identify similar gene expression profiles 

between multiple drugs through gene set enrichment analysis (Carrella et al. 2014) 

(Subramanian et al. 2005b). MANTRA also allows the user to upload their own drug-induced 

gene expression profiles from microarray analyses. The output is a network where the nodes 

represent the drugs and the edges stand for the distances between the compounds, calculated 

through GSEA-based similarity between drugs. 

The Cogena R package uses the CMap dataset to identify potential therapeutic drugs (Jia et al. 

2016). First, Cogena finds co-expressed gene sets in the input data through various clustering 

methods and then carries out pathway enrichment analysis for each co-expressed gene cluster 

using the hypergeometric test. The drug repurposing analysis is achieved by selecting the top 

100 from both up- and down-regulated genes for each drug-induced gene expression data from 

the CMap; and, identifying the gene sets they affect. A hypergeometric test is conducted to find 

a possible relationship between the co-expressed gene clusters and the CMap gene sets. Finally, 

the identified drugs are ordered based on the overlap between the respective gene sets. 

DrInsight uses the CMap database as the source for drug perturbations (Chan et al. 2019). 

DrInsight measures the concordance between the input data and the CMap drug profile data for 

each gene. For this, DrInsight searches for gene sets with similar expression patterns to the 

input data (concordantly expressed genes), and this circumvents the necessity for a subjective 

selection of the query signatures, such as using fold changes or p-values. The output consists 

of a list of drugs, ranked by their statistical significance (p-values and false discovery rates). 

The DrugDiseaseNet tool uses several publicly available drug-perturbation databases (CMap, 

GEO, LINCS) together with databases linking genes to diseases from the Lung Genomics 
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Research Consortium to create drug-disease networks (Peyvandipour et al. 2018). The system 

provides a list of ranked drugs including their therapeutic repurposing scores. These scores are 

calculated from the correlation coefficients between their gene perturbation signature, and 

range from –1 (opposite perturbation signatures) to 1 (similar perturbations, i.e. the drug may 

cause the same effects). The last tool is called EMUDRA and it integrates four different 

methodologies (X. Zhou et al. 2018). The expression-weighted cosine method reduces the 

influence of the uninformative expression changes caused by lowly expressed genes (X. Zhou 

et al. 2018). The nonparametric KS statistic identifies relationships between gene sets and drug-

induced gene expression profiles (J. Lamb et al. 2006). The weighted signed statistic, used in 

the sscMap tool, separates up- and down-regulated genes in disease signature and drug-induced 

signature and then calculates the normalized score for rankings of disease and drug signatures 

(S.-D. Zhang and Gant 2009). Last, the eXtreme method consists of four statistics that measure 

the correlation scores between disease signature and the top- and down-regulated genes in drug-

induced treatment by using the sum, cosine similarity, Pearson correlation, and Spearman 

correlation measures (Cheng and Yang 2013). EMUDRA uses the CMap and the LINCS 

databases as sources, and the output consists of a list of drugs ranked by a score calculated 

through the integration of the four methodologies. 

4.2.4. Tools with single gene, gene list, or gene expression as input 

The group has three platforms: DeepCodex, iLINCS, and L1000CDS2. The tools rely on both 

gene expression profile databases and drug-related databases. The output is a list of drugs 

where a positive correlation means that the drugs are potentially able to mimic the input gene 

signature; and, a negative one indicates that the drugs can revert the expression patterns from 

the input data. 

The DeepCodex website uses the drug-induced gene signature profiles from the LINCS data 

set. The tool exploits the advantages of deep neural networks to create an embedding that 

substantially denoises the expression data, making replicates of the same compound more 

similar and accurately predicting pharmacological similarities between drugs (Donner, 

Kazmierczak, and Fortney 2018). The iLINCS web platform integrates drug-induced gene 

expression datasets (e.g. LINCS) with different omics data resources. It performs pathway 

analysis, functional network analysis, drug repurposing analysis, drug-induced gene 

expression, and upstream regulatory network analysis (Pilarczyk et al. 2022). In conclusion, 

the L1000CDS2 website focuses on the integration of the CMap database with L1000FWD, a 

web application that provides interactive visualization of over 16,000 drug and small-molecule-
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induced gene expression signatures (Duan et al. 2016a). It provides either the fifty most 

positively (mimic) or negatively (reverse) correlated drugs to the input data, according to the 

input configuration choices by the user. 

4.3. Conclusion 

The present literature review summarizes the vast diversity of tools used for drug repurposing 

analysis that use transcriptomics data as input. The heterogeneity of these platforms reveals the 

profound changes in drug development approach: from single gene targets to network-based 

approaches. Nevertheless, improvement can still be achieved by merging all the different 

public databases with drug-related information; increasing the coverage of the CMap (J. Lamb 

et al. 2006) and the LINCS  project (Subramanian et al. 2017) by adding new drug perturbations 

and new human cell lines; and, a platform that integrates all the different statistical approaches 

would likely increase the likelihood of identifying relevant therapeutic drugs.
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Chapter 5 - Human epithelial single-infection with Influenza A virus and 

Streptococcus pyogenes 

5.1. Introduction 

Influenza A virus (IAV) and Streptococcus pyogenes (group A streptococci, GAS), are major 

human healthcare issues worldwide (R. A. Lamb 2008; Reglinski and Sriskandan 2015). IAV 

is the sole member of the genus Alphainfluenzavirus of the viral Orthomyxoviridae family. 

The members of the family present a segmented, negative-sense, and single-strand RNA 

segments. IAV strains are known to cause influenza in birds and some mammals such as pigs, 

horses, and humans. The virus causes the flu, a contagious respiratory disease, that infects the 

nose, throat, and lungs. Normal clinical symptoms of the flu are a rapid rise in temperature, 

limp ache, tiredness, general faintness, headache, and dry cough. The high incidence of the 

virus is characterized by seasonal epidemics in both hemispheres each year and the occurrence 

(recurrence) of IAV subtype pandemics throughout the years. Seasonal epidemics result in 

approximately 500,000 human death per year worldwide (Fauci 2006). However, influenza 

pandemics are more severe as shown by the Spanish Flu of 1918 (subtype H1N1) with 40 

million deaths; the Asian influenza of 1957 (H2N2) with 1-2 million deaths; and, the Hong 

Kong Flu of 1968 (H2N3) with 0.75-1 million deaths (R. A. Lamb 2008). Meanwhile, GAS is 

a species of Gram-positive, aerotolerant, and mostly extracellular bacterial pathogen from the 

genus Streptococcus (Reglinski and Sriskandan 2015). GAS is categorized according to the 

Lancefield classification system which is a serotype grouping based on the presence of the 

emm protein (also known as M proteins), on the bacterial cell wall. The emm proteins coat the 

GAS species and are essential components for bacterial virulence, necessary for the bacterial 

evasion of the antiphagocytic functions of the host (Reglinski and Sriskandan 2015). GAS 

species are known members of the commensal human microbiota present in the skin and upper 

respiratory tract. Nonetheless, the species is an important global human pathogen due to its 

ability to cause a wide spectrum of clinical infections (pharyngitis, acute rheumatic fever, 

scarlet fever); and, the diverse strategies used by the bacterial to elude the host defence 

mechanisms (Reglinski and Sriskandan 2015).
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The impact of the two pathogens is observed not only at the single infection level but also 

during IAV-GAS co-infections where the increased mortality rate is associated with a 

secondary GAS presence (Zakikhany et al. 2011; Okamoto et al. 2003); and, an exacerbation 

of the clinical symptoms for patients infected by both pathogens (Chaussee et al. 2011). To 

gain insight into the interaction between IAV and GAS during an IAV-GAS co-infection, we 

conducted a transcriptomics analysis of both host-pathogen during the human mono-infections 

by IAV and two GAS strains: AP1 serotype M1 (GAS M1-AP1) and serotype 591 (GAS M49-

591). The human epithelial pharynx cell line (Detroit 562) was chosen as the host cells. The 

epithelial pharynx cells were selected due to their role as the first line of defence against 

infection and due to it being a tissue target for both pathogens (Günther and Seyfert 2018; R. 

A. Lamb 2008; Reglinski and Sriskandan 2015). The IAV subtype H1N1 was chosen due to 

its endemic nature towards humans and its causative nature during different human pandemics 

like the Spanish flu of 1918 (R. A. Lamb 2008). The GAS species was selected over other 

streptococcal species due to the lack of a vaccine therapy clinically available against GAS. 

Thus, IAV vaccination is the sole method of preventing these IAV-GAS co-infection (Steer et 

al. 2016). The GAS M1 serotype was chosen due to its association with almost all clinical 

manifestations of GAS infection (Metzgar and Zampolli 2011) and its association with severe 

streptococcal infections (D. R. Martin and Single 1993; Musser et al. 1993); whereas, the GAS 

M49 serotype roughly accounts for 50% of GAS isolates worldwide (Bessen and Lizano 2010). 

5.2. Aims 

In the present study, we exploited the advantages of transcriptomics data to study the infection 

processes between the human host and three pathogens in a single-infection approach, as 

elucidated in a typical dual RNA-Seq pipeline. The identification of host DEGs (control group 

versus infected group) in each infection will be used to achieve the following goals. First, to 

identify the effect each pathogen has on the human host. Second, to gain insight onto the 

differences between the two GAS serotypes, M1 and M49. Third, to identify the biological 

mechanisms used by IAV to promote secondary GAS infection. Fourth, the usage of host DEGs 

to find potential drugs that can aid the defence response of the human host cells against an 

IAV-GAS co-infection. The search for new potential drugs will be conducted through the DR 

analysis. The DR analysis is the process of finding new clinical uses for approved and/or 

investigational drugs that are outside its original research purpose (Pushpakom et al. 2018). 

The new strategy provides several advantages over traditional methodologies. First, the risk of 
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failure is lower due to its usage of already pre- or clinically tested drugs. Second, the time 

frame for drug development is virtually reduced to none thanks to the accumulation of 

knowledge regarding its preclinical testing and process of development. Third, the cost is 

minimal depending on the amount of knowledge and testing done on the specific drug. There 

are several approaches used for DR. This study uses the signature matching methodology 

where the signature (e.g. gene expression) of an event is compared against the collection of 

drug-induced signatures. 

5.3. Methods and Materials 

5.3.1. Materials 

5.3.1.1. List of cells 

The study involved the use of Detroit 562 cells as human host cells. The host cell line is isolated 

from the pharynx of a female, Caucasian, pharyngeal cancer patient. The chosen GAS 

serotypes are GAS M1 (strain AP1) and GAS M49 (strain 591). Meanwhile, the IAV strain is 

A/Bavaria/74/2009 (H1N1). The laboratory experimental work was carried by our 

collaborative partners of the Institute for Medical Microbiology, Virology, and Hygiene at the 

University of Rostock under Professor Bernd Kreikemeyer. 

5.3.1.2. Infection of Detroit 562 cells with GAS 

The infection was conducted during an overnight culture of GAS M1-AP1 or GAS M49-591. 

Human cells and bacteria were incubated for 2 h at 37 °C, 5 % CO2 with a multiplicity of 

infection of 100. The cells were collected followed by library preparation (not shown). 

5.3.1.3. Infection of Detroit 562 cells with IAV 

Detroit 562 cells were seeded into 24-well plates and grown to confluence. Then, the IAV cells 

were added. Human cells and viruses were co-incubated for 48 h at 37 °C, 5 % CO2. After 

incubation, supernatants, and pellets were collected and followed by the library preparation 

(not shown). 
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5.3.2. Methods 

5.3.2.1. Transcriptomics Data Analysis 

The reads were sequenced at Chronix Biomedicals on Illumina NextSeq 500 platform, as 

strand-specific (reverse-stranded) with single-end 75 bp reads (~30M reads per sample). The 

raw reads were trimmed with Trimmomatic version 0.39 (Bolger, Lohse, and Usadel 2014). 

Before and after trimming, the read quality of the FastQ files was checked with FastQC version 

0.11.8 (Andrews S. 2010) and MultiQC version 1.2 (Ewels, Lundin, and Max 2016). Trimmed 

reads were mapped against the host genome with STAR version 2.7.1a (Dobin and Gingeras 

2015). Then, the un-mapped host reads were aligned against the corresponding pathogen 

genome with STAR version 2.7.1a (Dobin and Gingeras 2015). GRCh38 and GRCh38.95 were 

used as the human reference genome and its annotation, respectively. On the other hand, 

ASM99376v1 (GenBank: GCA_000993765.1), ASM1812v1 (GenBank: GCA_000018125.1), 

and ViralMultiSegProj15622 (GenBank: GCA_000865085.1) reference genomes were used 

for GAS M1-AP1, GAS M49-591 and IAV, respectively. The gene count tables were prepared 

with the HTSeq-count version 0.6. tool (Anders, Pyl, and Huber 2015). The Scotty tool (Busby 

et al. 2013b) was used to measure the transcription depth and the coverage of the gene (p-

value=0.05 and Fold Change=2) of the generated count tables. DEGs identification was 

achieved using DESeq2 version 1.24.0 tool (adjusted p-value < 0.0005) (Love, Huber, and 

Anders 2014). The adjusted p-value threshold of 0.0005 was chosen because it results in a 

number of false positives that is less than 1 in all three group comparisons (adjusted p-value * 

number of DEG < 1). Enrichment analysis was carried out with g:Profiler version 

e105_eg52_p16_e84549f (p-value=0.05) (Raudvere et al. 2019). The enriched terms were 

summarised and visualised with the use of REVIGO (Supek et al. 2011) or rrvgo R package 

(Sayols 2020) (Figure 5.1A). The scripts are available at https://github.com/SalemSueto-

BioInfo/Dual_RNAseq_Hsapiens_Spyogenes_IAV. 

5.3.2.2. Drug repurposing analysis 

The following platforms were selected for DR analysis: L1000CDS2 (Duan et al. 2016b) and 

Dr Insight version 0.1.1 (Chan et al. 2019). The tools use different statistical approaches to 

identify potential anti-infection drugs from drug-perturbed gene expression profile datasets: 

LINCS for L1000CDS2 and CMAP for Dr Insight (Musa et al. 2018). The list of DEGs from 

each infection process was used as input for both platforms. The reverse mode of the 
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L1000CDS2 platform was used to find the top 50 drugs capable of reversing the input data. As 

described by Duan et al, the rank product of the drugs was calculated between the IAV infection 

rank and the two GAS serotypes infection (Duan et al. 2016b). The rank product was used to 

identify drugs with the potential of assisting the host cells against the co-infection of IAV and 

GAS serotypes. Thus, the analysis filter and ranks for drugs that are present in both viral and 

bacterial infections under study (IAV and S. pyogenes M1; and, IAV and S. pyogenes M49). 

The drug results from the Dr Insight platform were filtered with a p-value < 0.05. The identified 

drugs were then characterised for their marketed status; their species target through the use of 

biological assays from the PubChem website (S. Kim et al. 2021); and, a drug-gene interaction 

network was constructed with Stitch version 5.0 (Szklarczyk et al. 2016) between the lists of 

DEGs and the identified drug (Figure 5.1B). The DR scripts are available at 

https://github.com/SalemSueto-BioInfo/Dual_RNAseq_Hsapiens_Spyogenes_IAV. 
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Figure 5.1 (A) Dual RNA-seq Analysis. The figure shows the pipeline used for the analysis of the transcriptomics data. The name of the analysis step is written on top and in 
parenthesis the name of the tool used. (B) Drug Repurposing Analysis. The pipeline shows the step used during the DR analysis with the usage of the two platforms: 
L10000CDS2 and Dr Insight. 
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5.4. Results 

5.4.1. Sample summary 

The twelve sequencing runs delivered an average of 32 million raw reads per sample. After 

trimming, an average of 99.74% was retained from each sample. Trimmed reads were mapped 

to the reference genomes and an average of 95%, 0.27%, 4.02%, and 0.06% of the total raw 

reads were attributed to the human host, GAS M1-AP1, GAS M49-591, and IAV, respectively. 

The gene quantification phase for infected samples showed the host at an average of 26%; GAS 

M1-AP1 at 0.02%; GAS M49-591 at 0.04%; and, IAV at 0.01% of the total raw reads (Table 

5.1). The analysis shows that samples of the same group cluster together (Figure 5.2). 

Furthermore, the Control group and the GAS M1-AP1 infected samples are the closest groups; 

followed by the GAS M49-591 infected samples; and, the most isolated group is the IAV-

infected samples. 

Figure 5.2 PCA of the gene expression of the twelve samples. 
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Table 5.1 Mapping statistics of the RNA sequencing libraries. 

    Detroit 562 + Pathogen Detroit 562 Pathogen 

Sample Species Raw (Million) Trimmed (Million) 
Mapped 

(Million) 
Count (Million) 

Mapped 

(Million) 
Count (Million) 

Mapped 

(Million) 

Count 

(Thousand) 

Sample 01 Detroit 562 29.51 (100%) 29.45 (99.81%) 28.86 (97.81%) 9.47 (32.10%) 28.86 (97.81%) 9.47 (32.10%) 0.00 (0.00%) 0 (0%) 

Sample 02 Detroit 562 34.06 (100%) 34.00 (99.82%) 33.38 (98.01%) 10.79 (31.66%) 33.38 (98.01%) 10.79 (31.66%) 0.00 (0.00%) 0 (0%) 

Sample 03 Detroit 562 34.86 (100%) 34.78 (99.78%) 34.23 (98.19%) 8.85 (25.38%) 34.23 (98.19%) 8.85 (25.38%) 0.00 (0.00%) 0 (0%) 

Sample 04 Detroit 562 + GAS M1 32.18 (100%) 32.11 (99.79%) 31.61 (98.23%) 10.07 (31.30%) 31.53 (97.99%) 10.07 (31.29%) 0.08 (0.24%) 5.40 (0.02%) 

Sample 05 Detroit 562 + GAS M1 31.43 (100%) 31.36 (99.78%) 30.76 (97.87%) 11.23 (35.74%) 30.66 (97.54%) 11.23 (35.72%) 0.11 (0.34%) 5.76 (0.02%) 

Sample 06 Detroit 562 + GAS M1 33.36 (100%) 33.25 (99.67%) 32.79 (98.29%) 6.56 (19.66%) 32.71 (98.04%) 6.55 (19.64%) 0.08 (0.24%) 6.06 (0.02%) 

Sample 07 Detroit 562 + GAS M49 34.23 (100%) 34.12 (99.67%) 33.35 (97.43%) 5.99 (17.51%) 32.62 (95.28%) 5.98 (17.48%) 0.73 (2.15%) 9.28 (0.03%) 

Sample 08 Detroit 562 + GAS M49 31.87 (100%) 31.78 (99.72%) 30.67 (96.22%) 7.50 (23.55%) 29.81 (93.54%) 7.49 (23.51%) 0.86 (2.68%) 10.57 (0.03%) 

Sample 09 Detroit 562 + GAS M49 33.22 (100%) 33.13 (99.75%) 31.70 (95.44%) 10.29 (30.98%) 29.30 (88.19%) 10.27 (30.93%) 2.41 (7.24%) 16.97 (0.05%) 

Sample 10 Detroit 562 + IAV 30.01 (100%) 29.91 (99.66%) 28.85 (96.12%) 7.40 (24.64%) 28.83 (96.06%) 7.39 (24.63%) 0.02 (0.059%) 2.64 (0.01%) 

Sample 11 Detroit 562 + IAV 28.05 (100%) 27.97 (99.71%) 26.59 (94.79%) 9.65 (34.39%) 26.58 (94.73%) 9.65 (34.39%) 0.02 (0.06%) 2.26 (0.01%) 

Sample 12 Detroit 562 + IAV 35.22 (100%) 35.12 (99.70%) 34.07 (96.72%) 7.14 (20.29%) 34.05 (96.67%) 7.14 (20.28%) 0.02 (0.05%) 2.26 (0.01%) 

Average 

Detroit 562 32.81 (100 %) 32.74 (99.80 %) 32.16 (98 %) 9.7 (29.71 %) 32.16 (98 %) 9.47 (29.71 %) 0 (0 %) 0 (0 %) 

Detroit 562 + GAS M1 32.32 (100%) 32.24 (99.75 %) 31.72 (98.13 %) 9.29 (28.9 %) 31.63 (97.86 %) 9.28 (28.88 %) 0.09 (0.27 %) 5.7 (0.02 %) 

Detroit 562 + GAS M49 33.11 (100 %) 33.01 (99.71 %) 31.91 (96.36 %) 7.93 (24.01 %) 30.58 (92.34 %) 7.91 (23.97 %) 1.33 (4.02 %) 12.28 (0.04 %) 

Detroit 562 + IAV 31.09 (100 %) 31 (99.69 %) 29.84 (95.88 %) 8.06 (26.44 %) 29.82 (95.82 %) 8.06 (26.43 %) 0.02 (0.06 %) 2.39 (0.01 %) 
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5.4.2. Count table quality control 

The Scotty tool was specifically created for RNA-seq data analysis (Busby et al. 2013b). It 

allows researchers to select the right number of biological replicates and read depth to 

maximise the statistical power for the identification of gene diversity in a sample and DEGs 

among two sample groups. The tool uses as input data the gene count table obtained for the 

human host and the three pathogens. The optimization is achieved by excluding configurations 

that necessitate a high number of replicates; high cost due to excessive read depths; and, 

configurations where measurements bias is present for a substantial number of genes. The 

present study focused on the following three plots: rarefaction curves, Power Optimization, 

and Poisson Noise. 

The Power Optimization plot calculates the probability of the count table to identify all DEGs 

between two groups. The proportion of DEGs from the three infections that could be detected 

with a 2-fold change (p< 0.05) was in the range of 61.04% to 72.87%. Therefore, potentially 

28%-39% of DEGs could not be detected with our approach.  

The Poisson Noise plot measures the variance in RNA-seq data that occurs due to each specific 

RNA being selected at random among the total RNA data and counted. The variance is relative 

to the total count for genes with higher values being related to low counts compared to high 

counts. For example, the difference in expression for a gene counted with five reads versus ten 

reads is fundamentally less certain than a gene measured with 500 versus 1000 reads, even 

though both cases show a 2X fold change. The results show the values to be between 77.94% 

and 86.41% for the three group comparisons. Thus, our dataset has a 14%-22% of the genes 

with relatively high uncertainty due to its low read counts, particularly the ones below ~10 

reads (Figure 5.3B). 

The gene quantification was determined for both the human host and the three pathogens. 

Nonetheless, the pathogen reads do not provide a satisfying representation of the bacterial reads 

as shown by the lack of a plateau phase in the rarefaction curves (Figure 5.3A). Thus, the 

downstream analysis will be solely focused on the host expression data. 
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Figure 5.3 Scotty analysis. (A) Rarefaction curves. The rarefaction curves showcase the human host reads and the two GAS strains; whereas, the rarefaction curves of IAV are 
not present due to the inability to build the curves with a low number of genes.  (B) Poisson Noise – Power Optimization plot. The Power plot and the Poisson noise plot were 
analysed at 2X Fold Change and p<0.05. The working conditions of our experimental setup are 3 replicates with an average of 8.74M of reads aligned to genes per replicate. 
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5.4.3. Identification of DEGs 

The identification of host DEGs for the three infections shows infection-specific DEGs and 

shared ones (Figure 5.4). The IAV infection shows 2169 DEGs that are specific; the GAS M1-

AP1 infection process has 7 specific DEGs; and, the GAS M49-591 infection presents 722 

specific DEGs. The shared genes are the following: 641 DEGs are shared among IAV and GAS 

M49-591 infection; 5 DEGs are in common between IAV and GAS M1-AP1; 21 DEGs are 

shared among the two GAS strains; and, 12 DEGs are in common among all three pathogens. 
Figure 5.4 DEGs identification and comparison among the three infection process. 

 

5.4.4. Human epithelial transcriptomics response from GAS M1-AP1 infection 

The infection process caused by GAS M1-AP1 identifies 45 host DEGs. The enrichment 

analysis of these genes results in the identification of 18 enriched terms for the GO:BP class. 

The terms can be grouped into one main group: oxidative respiration (Figure 5.5). The group 

is characterized by terms such as “mitochondrial respiratory chain complex I assembly”, 

“mitochondrial electron transport, NADH to ubiquinone”, and “energy coupled proton 

transmembrane transport, against electrochemical gradient”.  
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Figure 5.5 Enrichment analysis for GO:BP from human single-infection by GAS M1-AP1. 

 

5.4.5. Human epithelial transcriptomics response from GAS M49-591 infection 

The infection caused by GAS M49-591 identified 1396 human DEGs that resulted in 224 

enriched terms for the GO:BP class. The terms were clustered based on their function (Figure 

5.6). One of the main functions is the regulation of signal transduction. This function shows 

the following terms: “transmembrane receptor protein tyrosine kinase signaling pathway” and 

“cytoplasmic pattern recognition receptor signaling pathway”. These terms suggest a binding 

event between a human transmembrane protein to an extracellular ligand that results in the 

regulation of downstream processes such as gene transcription. The regulation of gene 

expression is shown to be relevant with terms like “positive regulation of transcription by RNA 

polymerase II” and “regulation of gene silencing”. The analysis also shows that DNA 

replication is affected alongside chromosome organization with terms like “chromatin 

assembly or disassembly”, “DNA packaging”, “telomere organization”, and “double-strand 

break repair via break-induced replication”. Several cell differentiation processes were found. 

One such process is cell differentiation for epithelial and keratinocyte cells; differentiation into 

haematopoietic immune system cells; and, regulation of gliogenesis. The regulation of cell 

stress is highlighted by terms related to the regulation of endoplasmic reticulum unfolded 

protein response and the regulation of apoptotic signaling pathway in response to endoplasmic 

reticulum stress. The host shows terms related to blood vessel development terms like “vascular 

endothelial growth factor production”, “angiogenesis”,  and “tube morphogenesis”. Another 
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regulated function is cell migration where terms like “regulation of cellular component 

movement” and “movement of cell or subcellular component” suggests a novel organization 

of the organelle position. Furthermore, the analysis shows several terms related to the host 

response to elements such as cytokine, hypoxia, and virus. The term “cell-cell adhesion” was 

also identified as one of the main grouped terms. 
Figure 5.6 Enrichment analysis for GO:BP from human single-infection caused by GAS M49-591. The plot was 
created with the website version of REVIGO. The semantic space axes in the plot have no intrinsic meaning. The 
Revigo tool uses the Multidimensional Scaling (MDS) methodology to reduce the dimensionality of a matrix of 
the GO terms pairwise sematic similarities. GO terms that are semantically similar should cluster closer in the 
plot. The highlighted GO terms were selected as the most significant ones in the clusters or the one with the most 
specific biological information. The bubble color shows the user-provided p-value and the size indicates the 
frequency of the GO term in the GOA database (the bubbles of more general terms are larger) (Barrell et al. 2009). 
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5.4.6. Human epithelial transcriptomics response from IAV infection 

The infection caused by IAV identified 2827 human DEGs that resulted in 133 enriched terms 

for the GO:BP class (Figure 5.7). One of the main identified cellular processes is related to the 

cell cycle and DNA replication. The cluster shows terms like “DNA replication initiation”, 

“mitotic nuclear division”, and “sister chromatid segregation”. The second main group 

describes chromosome organization with terms like “chromatin remodelling”, “telomere 

organization”, “DNA packaging”, and “DNA geometric change”. Another cluster related to the 

chromosome organization process is the DNA repair system with terms like “double-strand 

break repair via homologous recombination”, “double-strand break repair via break-induced 

replication”, and “recombinational repair”. Furthermore, the IAV infection shows cell 

differentiation for epithelial and keratinocyte cells; regulation of ribosome biogenesis; 

regulation of gene transcription with terms like “regulation of gene silencing” and 

“transcription by RNA polymerase I”; and, the term “regeneration” referred to as repair of 

damaged cells or tissue. 
Figure 5.7 Enrichment analysis for GO:BP from human single-infection caused by IAV. The plot was created 
with the website version of REVIGO. The semantic space axes in the plot have no intrinsic meaning. The Revigo 
tool uses the Multidimensional Scaling (MDS) methodology to reduce the dimensionality of a matrix of the GO 
terms pairwise sematic similarities. GO terms that are semantically similar should cluster closer in the plot. The 
highlighted GO terms were selected as the most significant ones in the clusters or the one with the most specific 
biological information. The bubble color shows the user-provided p-value and the size indicates the frequency of 
the GO term in the GOA database (the bubbles of more general terms are larger) (Barrell et al. 2009). 
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5.4.7. Drug repurposing analysis 

Two DR platforms (L1000CDS2 and DrInsight) were used in our analysis to identify potential 

drugs that can aid the host defence during the infection. The platforms use as input a list of 

DEGs or their expression (e.g. fold change). Thus, for each platform, we had three lists of drugs 

related to the three infections. Each platform identifies the drugs with a different methodology; 

therefore, the selection of potential IAV-GAS anti-infective drugs was tailored based on which 

platform the drug was first found. The L1000CDS2 web tool accepts as input a list of genes or 

their expression. In our analysis, we used the expression data of the DEGs from the three 

infections, separately. The web tool uses the CD method to identify drugs (top 50) capable of 

reversing the gene expression of the input data; and, the rank product methodology (product 

between the same drug in two distant outputs) was applied to find drugs that are common 

between IAV and each GAS infection (Duan et al. 2016b). Meanwhile, Dr Insight is an R 

package and it measures the concordance (e.g. inverse association) between the input data and 

the drug-perturbated data from the CMAP database (Chan et al. 2019). 

L1000CDS2 platforms identified 3 drugs potentially suitable to treat S. pyogenes M1 and IAV; 

whereas, 18 drugs were identified as a suitable treatment for S. pyogenes M49 and IAV; and, 

Dr Insight found 3 potential drugs (Table 5.2). 
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Table 5.2 List of drugs identified through the use of DR strategy. 

DR Platform Infection Drug Broad molecule ID Trade Names PubChem BioAssay STITCH Rank product p-value FDR Pharmaceutical Usage 

L1000CDS2 

IAV  
&  

GAS M1 

528116.cdx BRD-K49371609 N. A. Present N. A. 369 

N. A. N. A. 

N. A. 

GSK-690693 BRD-A87137733 N. A. Present GSK-690693 748 Anti-cancer 

AZD-5438 BRD-K72414522 N. A. Present AZD-5438 1716 Anti-cancer 

IAV  
&  

GAS M49 

BRD-U74615290 BRD-U74615290 N. A. N. A. N. A. 5 N. A. 

NCGC00012272-02 BRD-K07668032 N. A. Present AC1MM8JC 12 Pre-mRNA splicing 
enzymes inhibitor 

nifedipine BRD-A30977374 Adalat - 
Procardia Present nifedipine 18 high blood pressure 

NCGC00183235-01 BRD-K30443205 N. A. Present AGN-PC-071I9C 22 N. A. 

PKCbeta inhibitor BRD-K89687904 N. A. Present PKCbeta inhibitor 31 degenerative brain 
disease 

Kenpaullone BRD-K37312348 N. A. Present Kenpaullone 56 Anti-cancer 

BRD-K74980345 BRD-K74980345 N. A. Present N. A. 63 Pre-mRNA splicing 
enzymes inhibitor 

BRD-K43913647 BRD-K43913647 N. A. Present N. A. 143 Anti-cancer 

BRD-K56024573 BRD-K56024573 N. A. Present N. A. 182 N. A. 

BRD-K57037351 BRD-K57037351 N. A. Present N. A. 200 N. A. 

BRD-K91370081 BRD-K91370081 Anisomycin - 
Flagecidin Present N. A. 270 Anti-microbial 

CHIR-99021 BRD-K16189898 N. A. Present CHIR99021 288 enzyme GSK-3 
inhibitor 

KIN001-043 BRD-K44100512 N. A. N. A. N. A. 300 N. A. 

Emetine  
Dihydrochloride  
Hydrate (74) 

BRD-K01976263 Emetine Present Emetine 399 Anti-protozoal 

AG-14361 BRD-K00615600 N. A. Present AG14361 714 Anti-cancer 

BRD-K78189262 BRD-K78189262 N. A. Present N. A. 799 N. A. 

THZ-2-98-01 BRD-U41416256 N. A. N. A. N. A. 1376 N. A. 

NCGC00183232-01 BRD-K80126354 N. A. Present AGN-PC-071I9B 2200 N. A. 
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Dr Insight 
GAS M1 

LY-294002 BRD-K27305650 N. A. Present LY294002 
hydrochloride 

N. A. 

2.62E-05 0.09398182 Anti hepatitis C virus 

Sirolimus 
BRD-K84937637 

Rapamycin Present rapamycin 5.88E-05 0.10543595 

organ transplant 
rejection 

BRD-K89626439 organ transplant 
rejection 

IAV Estradiol BRD-K18910433 Oestradiol Present estradiol 9.28E-05 0.33280894 hormone therapy 
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The PubChem BioAssay permits the identification of the list of species that have been tested 

with the drug in question (Figure 5.8). The heatmap shows Homo sapiens to be subjected to all 

identified drugs except for the PKCbeta inhibitor. Three IAV species (641809, 162536, 

382835) and one S. pyogenes species (1314) were found to be tested by the following drugs: 

AG-14361, BRD-K43913647, Emetine, NCGC00012272-02, BRD-K57037351, 

NCGC00183235-01, BRD-K56024573, NCGC00183232-01, BRD-K78189262, BRD-

K91370081, nifedipine, estradiol, and kenpaullone. BRD-K91370081 is the only drug that was 

found to be tested for both IAV (162536) and S. pyogenes (1314) species. 3 drugs do not have 

any BioAssay present: BRD-U74615290, KIN001-043, and THZ-2-98-01. The remaining 21 

drugs have been tested on different families of both bacteria and viruses. 

The Stitch web tool was used to identify the drug-gene interaction between the 24 identified 

drugs and the DEGs found from the three infection conditions (Figure 5.9A). The Stitch score 

is the integration of multiple types of evidence combined into one numerical score and it 

provides a level of confidence for the interaction (from 0 to 1). The analysis shows no 

interaction between the identified drugs and the exclusive DEGs from the GAS M1 and GAS 

M1 – IAV exclusive groups. The GAS M49 infection-specific DEGs group showed Rapamycin 

with the highest score (0.989) and Estradiol with the highest number of interactions (22). The 

IAV infection-exclusive DEGs showed the highest score with Rapamycin (0.992) and the 

highest number of interactions with Estradiol (25). For the DEGs exclusive to both GAS 

serotypes infection groups, Estradiol has both the highest score and the highest number of 

interactions at 0.987 and 4, respectively. For the DEGs shared by both GAS serotype M49 and 

IAV infection groups, Estradiol has the highest number of interactions (25), whereas 

Rapamycin has the highest score at 0.992. From the group of DEGs common to all three 

infections, only the MT-CO1 DEG and the Estradiol drug interaction were found. 

The analysis of the WIPO patent and the pharmaceutical usage of the 24 identified drugs 

resulted in the formation of 4 groups (Figure 5.9B). The following 9 drugs were found to have 

no WIPO patent: BRD-U74615290, BRD-K74980345, BRD-K56024573, BRD-K57037351, 

BRD-K78189262, KIN001-043, NCGC00183232-01, NCGC00183235-01, and THZ-2-98-01. 

The next group includes 7 drugs with known WIPO patents with no found pharmaceutical use: 

528116.cdx, AG-14361, AZD-5438, BRD-K43913647, GSK-690693, NCGC00012272-02, 

and PKCbeta inhibitor. The 6 drug members of the third group have WIPO (World Intellectual 

Property Organization) patents and have pharmaceutical use but no known antibiotic 

properties. Nifedipine is used as a calcium channel blocker used to treat hypertension and 

angina pectoris (Drugbank 2022). Kenpaullone has a role as a geroprotector, a tau-protein 
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kinase inhibitor, a cardioprotective agent, and a cyclin-dependent kinase inhibitor (Tocris 

2022c). CHIR-99021 is known as a tau-protein kinase inhibitor (Tocris 2022b). LY-294002 is 

an inhibitor of phosphatidylinositol 3-kinase (PI3K) and the bromodomain and extra-terminal 

family of proteins, with potential antineoplastic activity (Tocris 2022d). Therapeutic Estradiol 

is a synthetic form of estradiol, a steroid sex hormone vital to the maintenance of fertility and 

secondary sexual characteristics in females (PubChem 2022). Rapamycin (sirolimus) is a 

macrolide compound, firstly discovered in Streptomyces hygroscopicus, and used to prevent 

organ transplant rejection, treat a rare lung disease called lymphangioleiomyomatosis, and treat 

perivascular epithelioid cell tumor (Tocris 2022e). The last group has 2 drug members: BRD-

K91370081 (Anisomycin) and Emetine.  The drugs have WIPO patents and they have known 

antibiotics use against bacterial and/or virus species in the pharmaceutical market. BRD-

K91370081 (also known as Anisomycin or Flagecidin) is an antibiotic, first discovered in 

Streptomyces griseolus, which inhibits protein biosynthesis in eukaryotic (Tocris 2022a). The 

Emetine drug is a pyridoisoquinoline and it has wide pharmaceutical usage such as 

antiprotozoal, antiviral, antimalarial, protein synthesis inhibitor, anticoronaviral, antiamoebic, 

and emetic. Furthermore, Emetine is known to inhibit SARS-CoV2, Zika, and Ebola virus 

replication (PubChem 2021; Tocris 2020).
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Figure 5.8 PubChem BioAssay Heatmap – Dendrogram clustering  – The figure shows the species target (Y axis) for the identified drugs (X axis), from the drug repurposing 
analysis, as obtained from the list of bioassays present in the PubChem. Additionally, a dendrogram clustering is highlighted for both the species and the drugs. 
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Figure 5.9 (A) Drug Repurposing identification pipeline. The identified DEGs were used as input data for the two DR platforms. The filtering of the drugs was carried out as 
follows. The rank product of the drugs from the L1000CDS2 was calculated between the IAV against the two GAS infections; and, the selection was carried out for the ones 
that are present in both viral and bacterial infections. The drug selection from the DrInsight R-tool was carried out for the one with an p-value < 0.05. The identified drugs were 
then divided into several groups based on their patented status and their possible pharmaceutical use. (B) Drug-Protein interaction network (Stitch). The drug-protein interaction 
network was created with the STITCH web application between the lists of DEGs and the identified drugs during the DR analysis. The Venn diagram shows the number of 
DEGs from the three infections. The tables show the list of drug that interacts with that specific infection group, the number of interactions between the drug and the DEGs, 
and the confidence score (maximum and minimum) for such interaction. The score rank from 0 to 1, with 1 as the highest value. 
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5.5. Discussion 

5.5.1. Upregulation of oxidative respiration process among the three infections 

The analysis shows 12 DEGs that are shared among all three infections (Figure 5.4). The 

enrichment analysis of the 12-shared-DEGs shows enriched terms related to oxidative 

phosphorylation and with GO:CC terms located in the mitochondrial respiratory chain 

complexes I and III (Figure 5.10). All identified enriched terms are based on the four 

mitochondrial DEGs (MT-ND4L, MT-ND4, MT-CO1, and MT-CYB). The four DEGs are 

upregulated under all three infections. The following DEGs are known to have a direct 

connection to bacterial and/or viral infections. The KLF6 gene was upregulated following all 

three infections and encodes a DNA-binding transcription factor. The gene is known to be 

activated by IAV to bind to the inducible NO synthase (iNOS) promoter, leading to iNOS 

transcription which is a key factor for apoptosis (Mgbemena et al. 2012). The SLC30A1 gene 

was downregulated under all three infection conditions. It encodes a member of the solute 

carrier family and regulates the transport of zinc. There is no known association between  

SLC30A1 and IAV infection. However, the gene is known to exert a negative effect on human 

cell survival during vesicular stomatitis virus infection (Moskovskich et al. 2019).
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Figure 5.10 Oxidative phosphorylation KEGG pathway. The plot shows the mitochondrial complexes that regulate ATP production during oxidative phosphorylation. The Log 
Fold Change (-7 to +7) of the proteins in the mitochondrial complexes is shown starting from IAV, GAS M1-AP1, and GAS M49-591 infections. 

 
 



Chapter 5 – Human epithelial single-infection with Influenza A virus and Streptococcus 
pyogenes 

 70 

5.5.2. Differential host responses to GAS and IAV infections 

In this study, pharyngeal epithelial cells were infected with IAV, GAS M1-AP1, and GAS 

M49-591. The results of the study show the three pathogens engaged differently with the 

human host cells.  

The 48 hours-post-infection with IAV was chosen as a time point for sampling to provide time 

for viral infection yet keep the host cells intact to capture the host transcriptional response to 

the infection. The viral infection did not result in noticeable cell death and cell death marker 

expression was negatively affected (data not shown). Moreover, a diminished concentration of 

pro-inflammatory cytokines IL-6 and IL-8 was observed in cell culture supernatants (data not 

shown) and a reduced expression of the IL-6 gene (ENSG00000136244) was also discovered 

in the RNA-Seq analysis (LFC = -2.15). Taking the abundance of count reads of viral 

transcripts into consideration, it can be concluded that virus production was still in process at 

the time point of sampling. This behavior is supported by the presence of enriched terms such 

as DNA damage and DNA damage response which have been previously reported as 

consequences following IAV infection (N. Li et al. 2015). 

Infection with GAS M1-AP1 and GAS M49-591 revealed serotype-specific differences. 

Adherence of serotype M49 to host cells was twice as high compared to serotype M1 (data not 

shown). Such behavior has been shown by previous studies that streptococcal adherence to 

host cells is dependent on the infection model, the serotype, and the strain under investigation 

(Ryan and Juncosa 2016) (Berkower et al. 1999). 

Infection with either GAS serotype resulted in decreased IL-8 concentration (data not shown). 

This observation can be ascribed to the activity of GAS virulence factor SpyCEP (or ScpC), an 

IL-8-degrading protease (Zinkernagel et al. 2008). Infection with serotype M49-591 caused an 

increase in IL-1β concentration. Also, an elevated expression of IL1B (ENSG00000125538) 

was observed in the RNA-seq analysis (LFC of 2.4). Previous studies attribute a critical 

defensive role to IL-1β during GAS infection (Hsu et al. 2011; LaRock and Nizet 2015). 

Marked cell death was observed only after infection with GAS M49-591 (data not shown). The 

concept of pathogenic bacteria protecting their host cells from cell death has already been 

described for Neisseria gonorrhoeae (Binnicker, Williams, and Apicella 2003), Neisseria 

meningitidis (Massari et al. 2003), Chlamydia pneumoniae (Fischer et al. 2001), and 

Helicobacter pylori (Shirin et al. 2000). In the present study, enrichment analyses from 

infections with GAS M1-AP1 did not indicate cell death-related activity. However, GAS has 
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been reported to cause cell death in several epithelial cell lines, including Detroit 562 cells 

(Agarwal et al. 2012). 

GAS is known to elicit unfolded protein response and ER stress in host cells (Baruch et al. 

2014); and, prolonged ER stress leads to apoptotic cell death (Adams et al. 2019; M. Wang and 

Kaufman 2016). These biological processes were shown during GAS M49-591 infection with 

the identification of terms like "regulation of endoplasmic reticulum unfolded protein 

response" (GO:1900101), "response to endoplasmic reticulum stress" (GO:0034976), "cell 

death" (GO:0008219) and "apoptotic process" (GO:0006915). The present study shows GAS 

M49-591 infection displayed significant upregulation in gene expression of IRE1 (Adams et 

al. 2019), JNK1, MAPK14, TRAF2, PERK, CHOP, and GADD34. These findings suggest an 

apoptotic death modality involving ER stress. 

5.5.3. IAV role on secondary bacterial GAS infection 

As described previously, IAV is capable of enhancing a secondary infection of GAS. Though 

the processes underlying this link are not fully understood, there are known mechanisms that 

IAV promotes that end up benefitting a secondary bacterial infection. 

5.5.3.1. IAV infection effect on cell-cell adhesion and extracellular matrix stability 

Several studies, in vitro and in vivo, have shown the ability of IAV to disrupt the epithelial cell 

tight junctions and thereby favouring subsequent infections by Streptococci (Short et al. 2016; 

Nita-Lazar et al. 2015). The enrichment analysis of Detroit 562 cell DEGs following IAV 

infection revealed several enriched terms related to cell differentiation into epithelial cells and 

epithelium development (Figure 5.11). 

The GO:BP term “biological adhesion” (GO:0022610) describes all the different types of 

attachment between cell-cell and cell-substrate such as the extracellular matrix. The present 

study identified 326 DEGs (status of differentially expressed from at least one infection 

process) that are part of the GO term. As classified by Zhong et al, a subset of 74 DEGs was 

classified as a cell adhesion molecule (CAM) and annotated into 5 groups: ag (primary roles 

in axonal guidance), fa (primary involvement in focal adhesions), i (information predominant 

CAM), m (primary involvement in interactions with cell-matrix), and tj (primary involvement 

in tight junctions); whereas, 252 DEGs were not classified as CAM by Zhong and colleagues 

(Zhong et al. 2015). 

Among the CAM group, several members of the desmosome were found to be differentially 

upregulated only during the IAV infection: DSG2 (CAM class fa, LFC=1), DSC2 (CAM class 
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fa, LFC=2.6), PKP2 (CAM class fa, LFC=-1.7), DSP (CAM class tj, LFC=2.6), and JUP (CAM 

class tj, LFC=1.2). The desmosome, known as a macula adherent, is a specialized intercellular 

junction found in animal cells designed for cell-cell adhesion. The desmosome can be divided 

into three sections: the extracellular core region, the outer dense plaque, and the inner dense 

plaque (Delva, Tucker, and Kowalczyk 2009). The desmoplakin (e.g. DSP) proteins connect 

the keratin intermediate filaments, present in the inner dense plaque, to the plakoglobin (e.g. 

JUP) within the outer dense plaque. Two desmoplakin proteins are connected through their 

interaction with the plakophilins (e.g. PKP2). The desmogleins (e.g. DSG2) and desmocollins 

(e.g. DSC2) are transmembrane proteins present in the extracellular core region. The two 

transmembrane proteins interact with the plakoglobins. The loss of any member of the 

desmosome complex will result in a compromised complex and a disruption in the cell-cell 

physical interaction.  

The DSG2 protein had been identified as the primary receptor used by adenovirus (H. Wang 

et al. 2011). Initially, the adenovirus binds to DSG2 and initiates intracellular signalling that 

concludes with the cleavage of the extracellular domain of the gene, thus eliminating the DSG2 

homodimers between epithelial cells (H. Wang et al. 2015). Direct interaction between IAV 

and the two transmembrane proteins of the desmosomes (DSG2 and DSC2) has not been 

identified in the literature. Nonetheless, the upregulation of the desmosomes genes expression 

during IAV infection might be the attempt of the host to stabilize the cell-cell interaction after 

the disruption of the extracellular matrix. An in vitro experiment is needed to test this 

hypothesis. 

In contrast, the upregulation of DSP and PKP2 have different outcomes. Several studies have 

established the importance of the interaction between the bacterial OmpA gene and DSP host 

desmosomal proteins for an efficient bacterial invasion (Confer and Ayalew 2013; Schweppe 

et al. 2015). An upregulated DSP gene would increase the efficiency of secondary GAS 

infection. Moreover, Wang et al. showed the restriction of IAV replication by a binding 

competition between the host gene PKP2 and the viral protein PB2 for PB1 binding. The 

competition limited the polymerase activity and reduced the rate of viral replication (Lingyan 

Wang et al. 2017). Thus, the downregulation of PKP2 results in a positive factor for IAV 

infection. 

In addition, the GAS M1-AP1 and IAV infections shared the membrane-associated mucins 

(MAM) gene, MUC16, among their list of DEGs. MUC16 is upregulated in IAV influenza 

(LFC=3.24); whereas, it is downregulated during GAS M1-AP1 infection (LFC=-0.85). The 



Chapter 5 – Human epithelial single-infection with Influenza A virus and Streptococcus 
pyogenes 

 73 

MAMs act as a physical barrier against bacterial infection and their shredding by S. 

pneumoniae enzymes increases the likelihood of bacterial infection (Govindarajan et al. 2012). 
Figure 5.11 Biological Adhesion expression. Biological adhesion of human host genes during the three infections. 
The GO:0022610 term was used to identify all genes that are part of the biological adhesion between cells. Then, 
the differential expressed human genes were selected and analysed. 74 DEGs from all infection processes were 
found to be part of the cell adhesion molecules genes as discussed by Zhong et al., 2016. The identified groups 
are ag (primary roles in axonal guidance), fa (primary involvement in focal adhesions), I (information predominant 
CAM), m (primarily involved in interactions with cell-matrix), and tj (primary involvement in tight junctions). 
Meanwhile, 252 DEGs from all infections were not found to be CAM genes as discussed by Zhong et al., 2016. 

 

5.5.3.2. IAV infection effect on extracellular histone presence 

Histones are evolutionary basic conserved proteins in all eukaryotic cells. They are known for 

their ability to bind double-strand DNA and to regulate their organization and gene expression. 

However, the histones are also present in the cell cytoplasm and extracellular fluids where they 

function as antimicrobial and promote inflammatory response (Hoeksema et al. 2016). GAS is 

susceptible to the bacteria-killing function of all histones; and, the bacteria protect themselves 

by the acquisition and activation of plasminogen which degrades all classes of histones 

(Nitzsche et al. 2016). The transcriptomics analysis from the IAV infection results in the 

identification of 46 differential expressed (DE) histone genes. The DE histone genes are 

members of each of the five classes of histone. Furthermore, 45 of the DE histone genes results 

to be downregulated with H1-0 gene (ENSG00000189060) being the sole member to be 

upregulated. The GAS M1-AP1 shows one DE histone gene (ENSG00000275126 - H4C13) to 

be downregulated. Whereas, GAS M49-591 infection shares 36 downregulated DE histone 
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genes with the IAV infection; whereas, the downregulated H2AZ2 gene (ENSG00000105968) 

and the upregulated H1-10 (ENSG00000184897) are only present for GAS M49-591 (Figure 

5.12. The present study shows the ability of the IAV to create an environment of low 

concentration of histone proteins following its infection of human epithelial cells. Such an 

environment permits a favourable subsequent infection of GAS strains due to the diminished 

anti-microbial activity present in the cytoplasm and extracellular environment. 
Figure 5.12 – Histone DEGs Analysis. The table shows the list of histone genes found in the complete list of genes 
from human reference and their gene expression in the three infections. The following histone genes were not 
found in the reference: H2BW4P, CENPA, and H3-7. The “Gene” and “Symbol” columns provide the gene 
Ensembl ID and the gene symbol, respectively. The "Histone Class" column indicates the histone family that the 
gene is part of. The columns under the "Log Fold Change" column umbrella define the DEG status and the LFC 
of the histone gene related to the infection (red cell for downregulated, blue cell for upregulated, and grey cell for 
non-differential-expressed.

 
 

5.5.4. DR potential on the identification of anti-infective drug against IAV-GAS 

The following platforms were selected for DR analysis: L1000CDS2 (Duan et al. 2016b) and 

Dr Insight version 0.1.1 (Chan et al. 2019). The tools use different statistical approaches to 

identify potential anti-infection drugs from drug-perturbed gene expression profile datasets: 
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LINCS for L1000CDS2 and CMAP for Dr Insight (Musa et al. 2018). The list of DEGs from 

each infection process was used as input for both platforms. The reverse mode of the 

L1000CDS2 platform was used to find the top 50 drugs capable of reversing the input data. As 

described by Duan et al, the rank product of the drugs was calculated between the IAV infection 

rank and the two GAS serotypes infection (Duan et al. 2016b). The rank product was used to 

identify drugs with the potential of assisting the host cells against the co-infection of IAV and 

GAS serotypes. Thus, the analysis filter and ranks for drugs that are present in both viral and 

bacterial infections under study (IAV and S. pyogenes M1; and, IAV and S. pyogenes M49). 

The drug results from the Dr Insight platform were filtered with a p-value < 0.05. The identified 

drugs were then analyzed or their marketed status; their species target through the use of 

biological assays from the PubChem website (S. Kim et al. 2021); and, a drug-gene interaction 

network was constructed with Stitch version 5.0 (Szklarczyk et al. 2016) between the lists of 

DEGs and the identified drug (Figure 5.9B). The DR scripts are available at 

https://github.com/SalemSueto-BioInfo/Dual_RNAseq_Hsapiens_Spyogenes_IAV. 

5.6. Conclusion 

The present study focus on the infection processes of two M serotypes from GAS and IAV; 
and, the identification of potential drugs capable of assisting the human host against both 
pathogens. The three infections showed several differences from each other. These 
dissimilarities were observed at the transcriptomics level; the rate of the human host cell death; 
the level of secreted cytokine in the supernatant; and, the strain-specific adherence of GAS to 
the human host cells. The goal of using the dual RNA-seq technique to study both host and 
pathogen simultaneously during the infection was not achieved due to the low gene count 
observed for the pathogens, as observed by the rarefaction curves from the Scotty tool. 
Therefore, the infection and the DR analysis were studied from the human host perspective. 
The transcriptomics data provides several indications about the impact of IAV on the secondary 
GAS infection through its effects on the integrity of cell-cell interaction and the 
downregulation of histone proteins. The study concludes with the identification of 40 potential 
drug treatments for either or both pathogens. The identification of several drugs with known 
anti-influenza and anti-GAS infection shows the potential of DR platforms for the treatment of 
infectious disease.
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Chapter 6 – Conclusion 

The aim of the present dissertation was the application of transcriptomics data to study two 
main biological processes: HGPS and the host-pathogen interaction between human and GAS 
and IAV. The microarray platform was used to study the effect of the single mutation in the 
LMNA gene that causes the HGPS disease in human. The disease is known to produce a mutant 
version of the LMNA protein that has a significant effect on the stability of the entire cellular 
mechanical structure starting from the nuclear lamina. The study identified known biological 
processes such as the organization of the nucleus and cell cycle transition; and, unknown ones 
like the regulation of mRNA and ncRNA transcription. Furthermore, the study does show 
differences at the transcription level for cellular senescence process caused by HGPS, UV-B 
light, and telomere elongation. The application of the RNA-seq technology was used to study 
the host-pathogen interaction study. The analysis highlights the IAV pathogen to have an 
impact on secondary bacterial infection by GAS by affecting the integrity of the extracellular 
matrix between epithelial cells; and, the down-regulation of histone genes transcription. 
Moreover, the drug repurposing analysis from the human gene expression identified 24 
potential drugs including drugs with known anti-infective properties such as Anisomycin, 
Emetine, and LY-294002. 
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