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Abstract

A profound understanding of warm dense matter (WDM) properties is essential to unraveling

the mysteries of planetary and stellar formation, evolution, and interior structure, as well as

establishing inertial conĄnement fusion as a potential energy source. In the center of attention

is the dynamic behavior of such matter, which can be characterized in terms of material,

transport, and optical properties, e.g., conductivity, opacity, and sound speed. Powerful laser

facilities such as the National Ignition Facility (NIF) are capable of recreating these high-

pressure states in the laboratory. In addition, recent innovations to the spectral resolution

at X-ray free electron laser (XFEL) facilities now enable studying ion dynamics in shock

compression experiments. The computational side of WDM research is faced with the challenge

of leveraging these experimental capabilities. This thesis combines modern machine-learning

approaches with ab initio simulation to overcome some of the challenges and enhance the

interface of simulations and experiments. In the context of scattering experiments, the dynamic

structure factor (DSF) of the ions and electrons is employed to connect the simulations with

scattering experiments on different energy scales.

Neural-network-based potentials are employed to connect the microscopic ion dynamics ob-

served in simulations with material and transport properties in the hydrodynamic limit. Com-

bined with the improved spectral resolution at XFEL facilities, which permits the measurement

of the ionic DSF, this enables the study of material and transport properties at extreme con-

ditions.

Furthermore, the DSF of the electrons is computed from density functional theory molecular

dynamics (DFT-MD) simulations and compared to analytic descriptions that are traditionally

used in WDM scattering experiments. This enables insights into the ionization state and the

electron-ion collision frequency in extreme matter.

Both electron and ion dynamics are simulated in a consistent ab initio framework to analyze an

X-ray Thomson scattering experiment at the NIF. On the basis of these simulations, a Bayesian

analysis of the scattering spectra, accounting for the inĆuence of the intricate experimental

setup on the results, reveals that the experiment reached conditions present in the interior of

red dwarfs.

Finally, electrical conductivity, which is one of the properties of interest in collective scatter-

ing experiments, is studied. The long-standing question of whether electron-electron collisions

are included in the electrical conductivity computed via the Kubo-Greenwood formula is re-

solved. It is shown that, in the ideal plasma limit, the direct current electrical conductivity

only accounts for electron-ion collisions.

The methodological advances presented in this thesis will aid in establishing robust platforms

for studying matter in extreme conditions at modern XFEL and high-powered laser facilities.
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Kurzzusammenfassung

Ein tiefgreifendes Verständnis der Eigenschaften von warmer dichter Materie (WDM) ist uner-

lässlich, um die Geheimnisse der Planeten- und Sternentstehung, der Evolution und der in-

neren Struktur zu lüften und die Trägheitsfusion als potenzielle Energiequelle zu etablieren.

Im Mittelpunkt des Interesses steht das dynamische Verhalten dieser Materie, das anhand von

Material-, Transport- und optischen Eigenschaften wie Leitfähigkeit, Opazität und Schallge-

schwindigkeit charakterisiert werden kann. Leistungsstarke Laseranlagen wie die National Igni-

tion Facility (NIF) sind in der Lage, diese Hochdruckzustände im Labor nachzubilden. Darüber

hinaus ermöglichen die jüngsten Innovationen bei der spektralen AuĆösung von Röntgen-Freie-

Elektronen-Lasern (XFEL) nun die Untersuchung der Ionendynamik in Stoßkompressionsex-

perimenten. Die computergestützte Seite der WDM-Forschung steht vor der Herausforderung,

diese experimentellen Möglichkeiten zu nutzen. In dieser Arbeit werden moderne Ansätze des

maschinellen Lernens mit Ab-Initio-Simulationen kombiniert, um einige der Herausforderungen

zu bewältigen und die Schnittstelle zwischen Simulationen und Experimenten zu verbessern.

Im Zusammenhang mit Streuexperimenten wird der dynamische Strukturfaktor (DSF) der Io-

nen und Elektronen verwendet, um die Simulationen mit Streuexperimenten auf verschiedenen

Energieskalen zu verbinden.

Auf neuronalen Netzen basierende Potenziale werden eingesetzt, um die in Simulationen be-

obachtete mikroskopische Ionendynamik mit Material- und Transporteigenschaften im hydro-

dynamischen Grenzbereich zu verbinden. In Kombination mit der verbesserten spektralen

AuĆösung an XFEL-Anlagen, die die Messung des ionischen DSF erlaubt, ermöglicht dies die

Untersuchung von Material- und Transporteigenschaften unter extremen Bedingungen.

Darüber hinaus wird der DSF der Elektronen aus Simulationen der Dichtefunktionaltheorie mit

Molekulardynamik (DFT-MD) berechnet und mit analytischen Beschreibungen verglichen, die

traditionell in WDM-Streuexperimenten verwendet werden. Dies ermöglicht Einblicke in den

Ionisationszustand und die Elektron-Ionen-Kollisionsfrequenz in extremer Materie.

Sowohl die Elektronen- als auch die Ionendynamik werden in einem konsistenten ab-initio-

Rahmen simuliert, um ein Röntgen-Thomson-Streuungsexperiment am NIF zu analysieren.

Auf der Grundlage dieser Simulationen zeigt eine Bayes’sche Analyse der Streuspektren, die

den EinĆuss des komplizierten Versuchsaufbaus auf die Ergebnisse berücksichtigt, dass das

Experiment Bedingungen im Inneren von Roten Zwergen erreicht hat.

Schließlich wird die elektrische Leitfähigkeit, eine der Eigenschaften, die bei Experimenten

zur kollektiven Streuung von Interesse ist, untersucht. Die seit langem bestehende Frage, ob

Elektron-Elektron-Kollisionen in die mit der Kubo-Greenwood-Formel berechnete elektrische

Leitfähigkeit einbezogen werden, wird geklärt. Es wird gezeigt, dass im idealen Plasmalimit

die elektrische Gleichstromleitfähigkeit nur Elektron-Ionen-Kollisionen berücksichtigt.

Die in dieser Arbeit vorgestellten methodischen Fortschritte werden dazu beitragen, robuste

Plattformen für die Untersuchung von Materie unter extremen Bedingungen an modernen

XFEL- und Hochleistungslaseranlagen zu schaffen.
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1 Introduction

It is often believed that more than 99% of visible matter in the universe is in the plasma
state [1Ű4], where plasma is a state of matter characterized by the presence of separate charged
particles, e.g., ions and electrons. In our solar system, it is even estimated to be over 99.98% [2]
due to the large fraction of mass made up by the Sun. While matter at the core of our Sun
reaches temperatures of up to 1.5 × 107 K [5, 6], many of the most exciting phenomena in
the solar system are determined by more moderate plasmas. Due to the lower temperatures,
the correlations between the charged particles and the quantum mechanical degeneracy play
a signiĄcant role. This state of matter is termed warm dense matter (WDM) and is loosely
deĄned by matter between the condensed matter and ideal plasma regime. Some of the phe-
nomena driven by the behavior of WDM are the geo dynamo that produces the magnetic
Ąeld of Earth [7Ű10], as well as dynamos in other planets [11], e.g., Mars [12], Mercury [13],
Jupiter [14], and Saturn [15]. Additionally, high-pressure chemistry in WDM leads to inter-
esting occurrences in planetary interiors, such as the demixing of hydrogen and helium, which
produces helium rain in the gas giant planets [16Ű18]. Moreover, due to the phase separation
of hydrogen and carbon, diamonds are proposed to form in the interior of Uranus and Nep-
tune [19Ű21]. The gravitational energy released by the sinking diamonds might help explain
the long-standing issue of differing luminosities in these planets [22, 23].

Furthermore, observations beyond our solar system can provide insight into planetary forma-
tion and evolution. In 1995, an exoplanet (51 Pegasi b) orbiting a Sun-like star was detected
for the Ąrst time [24]. Despite being relatively massive (approximately half of Jupiter’s mass),
it was observed to have a close orbit with a duration of less than Ąve days, which called into
question our understanding of planetary formation and evolution [25]. This led to the intro-
duction of a new classiĄcation of planets, called hot Jupiters, which were commonly observed
in subsequent observations of exoplanets by space telescopes, such as Hubble [26] and the
Spitzer space telescope [27]. Additionally, other classes of planets which are very atypical for
our solar system, e.g., super-Earths and mini-Neptunes, have since been discovered, highlight-
ing the variety of exoplanets and the need to look beyond our solar system to understand
planetary formation further. With the James Webb Space Telescope [28] and the European-
Space-Agency-lead PLATO [29] mission coming online, another drastic increase in the number
of observed exoplanets is expected. This will further facilitate the search for habitable planets
and possible life forms inhabiting them, which has become one of the most critical drivers of ex-
oplanetary research and related Ąelds such as astrobiology. To this end, it is vital to understand
how the makeup and behavior of host stars, e.g., their magnetic Ąeld and solar Ćare activity,
impact the habitable zone. For instance, the dynamo of red dwarfs [30] was suggested to affect
the habitability of orbiting planets [31]. Planetary as well as stellar evolution and structure
models rely on equation of state (EOS) data and predictions for transport and material prop-
erties, e.g., thermal and electrical conductivity, diffusion, and viscosity, of WDM. Due to its
strongly correlated nature with non-negligible degeneracy, it is demanding to model theoreti-
cally, requiring computationally expensive many-body simulations. Experimentally, the study
of WDM is also challenging on account of the extreme pressure and temperature required.
Therefore, the research Ąeld of WDM greatly depends on the interplay between simulations
and experiments to accurately describe stellar and planetary matter, which can subsequently
be used in astrophysical modeling. Observations from space missions and telescopes, e.g., the
composition of the outer atmosphere of exoplanets or the gravitational moments, can then
constrain these models.

The emergence of machine learning and artiĄcial intelligence promises to alleviate some of
the computational restrictions in WDM simulations and help interpret experimental data.
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Introduction 2

ArtiĄcial intelligence has brought about many innovations impacting the general public. Over
the last decade, neural-network-based algorithms have beaten humans in popular board games
such as chess and Go [32, 33] and predicted protein folding [34], among other achievements.
The invention of transformers [35] has enabled the creation of large language models [36],
which drive state-of-the-art chatbots and are becoming part of ubiquitous search engines.
Furthermore, machine learning approaches, especially neural networks, are applied widely in
various areas of the natural sciences [34, 37Ű40] and have allowed us to overcome previously
insurmountable numerical limitations. Also, other machine learning methods, such as Bayesian
inference, are applied in astrophysical modeling and observation [39, 41], as well as the analysis
of scattering and diffraction experiments [42Ű45]. Recently, more of these approaches have
started to be used in WDM [46Ű48], enabling the simulation of macroscopic systems at a
signiĄcantly lower computational cost. Additionally, sophisticated many-body techniques from
solid-state theory, such as the real-space Green’s function method [49], the Bethe-Salpeter
equation [50], or density functional theory (DFT), have started to be applied more in WDM [51,
52] over the last decades. In this thesis, DFT coupled with molecular dynamics (DFT-MD) is
the method of choice to describe the strong many-body correlations in WDM.

This thesis concerns the interface of WDM simulations and experiments. It explores how so-
phisticated machine learning techniques can enhance both the simulations and the way they
are used to analyze experimental data. Additionally, it explores how sophisticated many-body
approaches can be related to analytic approaches traditionally used in WDM experiments. Due
to the relevance of experimental studies for computational WDM research, a general charac-
terization of the density-temperature plane and a broad overview of experimental capabilities
to reach different regimes in that plane are presented in the following sections. Some of the
premier diagnostic tools in WDM experiments are discussed with a focus on diffraction and
scattering experiments. In this context, the dynamic structure factor (DSF) and the static
structure factor (SSF) of ions and electrons are introduced. They can be computed from the
microscopic information in the simulations, as detailed in Chapter 2, but also have immense
predictive power for diffraction and scattering experiments. Lastly, at the end of this chapter,
a detailed outline of the computational methods and research in this thesis is presented.

1.1 Characterization of warm dense matter

WDM is a state of matter between condensed matter and plasma physics. It is characterized
by temperatures between 0.1 − 100 eV (1 eV ≈ 11605 K) and densities from solid density up
to very high compression [53]. In the low-temperature regime, quantum mechanical degener-
acy, enforced by the antisymmetry of fermionic wave functions under exchange of quantum
numbers, and strong correlations, mediated via Coulomb interaction, dominate the behavior
of matter. In the condensed matter limit, idealizations, e.g., the description of electrons in a
perfect lattice as Bloch states, can be made due to the long-range order at low temperatures.
Contrarily, in the high-temperature limit of an ideal plasma, the high thermal energy makes
matter homogeneous, and approximations such as the Jellium model are applicable. However,
in the intermediate regime, both quantum mechanical degeneracy and correlations between
charged particles are relevant. To characterize different regimes in the density-temperature
plane, the degeneracy parameter Θ and correlation parameter Γ can be used; see Fig. 1.1. The
degeneracy parameter

Θ =
ETh

EF
=

2mekBT

ℏ2

⎤
1

3π2ne

⎣2/3

(1.1)

is deĄned by the ratio of thermal energy ETh and the Fermi energy EF and measures the
relevance of quantum mechanical degeneracy to the behavior of matter. Here, me is the
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Figure 1.1: Electron density ne and temperature T plane modeled after Refs. [54, 55]. The degeneracy
and correlation parameters characterize the range of conditions; see Eqs. (1.1) and (1.2). The blue-
shaded area indicates the approximate location of WDM. Relevant regions for magnetic conĄnement
fusion (MCF) [56], inertial conĄnement fusion (ICF) [57], relativistic effects [58], and some astrophysical
objects, i.e., Jupiter, the Sun, a brown dwarf (BD), and a white dwarf (WD) core [59Ű61], are indicated.
Density proĄles of the astrophysical objects are converted to ne by assuming a fully ionized hydrogen
plasma.

electron mass, kB is the Boltzmann constant, T is the temperature and ne denotes the average
electron density.

The correlation parameter

Γ =
EC

ETh
=

e2

4πϵ0kBT

⎤
4πne

3

⎣1/3

(1.2)

gives a measure of the importance of correlation effects. Here, the Coulomb energy is denoted
by EC, e is the elementary charge, and ϵ0 is the vacuum permittivity. In WDM, both ideal
plasma theory and solid state approaches that rely on lattice structures are not applicable.
Additionally, the parameters introduced in Eqs. (1.1) and (1.2) are of order 1 in WDM, as can
be seen in Fig. 1.1, which prevents analytic perturbation expansions in a suitable small parame-
ter. Consequently, sophisticated many-body approaches that account for quantum mechanical
effects must be employed. Despite the theoretical challenges, a profound understanding of
matter at WDM conditions is essential for astrophysical modeling, as discussed at the begin-
ning of this chapter. Figure 1.1 demonstrates how several astrophysical objects from our solar
system and beyond intersect the WDM region. Only a few selected objects in this regime are
shown for illustration; a more exhaustive list can be found in Refs. [53, 62, 63]. Additional
practical applications involve the synthesis of novel materials [20, 64, 65] and inertial conĄne-
ment fusion (ICF) as performed at facilities like the National Ignition Facility (NIF) [66, 67],
the OMEGA laser [68] or the Laser Mégajoule (LMJ) [69] among others. In a recent break-
through, successful ignition was achieved at the NIF [70], promising a revolution in commercial
energy generation over the following decades. Figure 1.1 shows the implosion pathway of a
deuterium-tritium capsule towards ignition, which passes through the WDM regime [57]. For
a more thorough characterization of WDM, see Refs. [54, 55, 71Ű73].

One of the most popular choices for simulating WDM is DFT-MD using the Kohn-Sham de-
scription of DFT; see Sec. 2.1. Some popular extensions and variations of this approach are
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orbital-free DFT-MD [74, 75] and time-dependent DFT (TDDFT). The latter can be expressed
in its linear response formulation, termed linear-response TDDFT (LR-TDDFT), which is de-
scribed in Sec. 2.3.1, or its real-time formulation, termed real-time TDDFT (RT-TDDFT) [76Ű
79]. A valuable approach that circumvents some approximations needed in DFT-based methods
is path integral Monte Carlo (PIMC) simulations [80Ű83]. While it is currently restricted to
simulations of low-Z materials, e.g., hydrogen and helium, it provides essential reference data
for the uniform electron gas.

1.2 Warm dense matter experiments

WDM not only poses a substantial theoretical challenge, as discussed in Sec. 1.1 but also
requires careful experimental deliberation. If the conditions present in the interior of massive
astrophysical objects are to be reproduced in the laboratory, many practical limitations must
be considered. Some of the challenges include e.g., sustaining such conditions by an appropriate
containment and the inference of properties of interest in the presence of experimental noise.
The capability to statically or dynamically induce the warm dense matter state, often via
powerful lasers, is required. Furthermore, the ability to extract properties of interest from the
target via, e.g., scattering, diffraction, interferometry, or emission spectra measurements must
be given.

Due to the considerable challenges of studying WDM at pressures above a few 100 GPa, ex-
periments are primarily performed at a few large-scale facilities worldwide. The high densities
reached in these experiments lead to high plasma frequencies, necessitating hard X-rays to
penetrate the sample. Furthermore, the most extreme achievable states can only be produced
transiently, leading to the need for high brilliance in the probe beam. This is the reason for
the prevalence of X-ray free electron lasers (XFELs) in the study of WDM over the tradi-
tional synchrotron X-ray sources [84]. SpeciĄcally, the Linac Coherent Light Source (LCLS)
in Stanford [85, 86] and its current upgrade to the LCLS-II [87], as well as the the Euro-
pean XFEL (EuXFEL) [88], especially the Helmholtz International Beamline for Extreme
Fields (HIBEF) [89] represent the state of the art for XFELs in the world.

The most powerful laser system in the world is available at the NIF within the Discovery Science
program [90, 91], allowing experimental studies up to the Gbar regime. The OMEGA laser
system in Rochester [92] was used heavily in the early development of the WDM Ąeld [93Ű99].
Recently, the capabilities of heavy ion beams, such as at the GSI Helmholtz Centre for Heavy
Ion Research [100] and the planned Facility for Antiproton and Ion Research (FAIR) [21, 101Ű
103], have been used more frequently to create and study WDM.

The facilities listed above represent the facilities relevant to the studies presented in this thesis,
but the list is far from exhaustive. Various additional XFELs [104], high-powered laser and
pulsed power facilities [105Ű107] are available.

1.2.1 Achieving extreme conditions

High temperatures and high densities characterize extreme conditions. The latter can be
achieved via compression, where dynamic compression also induces higher temperatures in
the target. High temperatures without applying mechanical stress can be accomplished by
highly energetic radiation interacting with the target. For a general overview of dynamic
and static compression experiments and more detail on the theory of shock compression, see
Refs. [108, 109]. Here, a short overview of the most prevalent approaches in WDM experiments
is given.
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Dynamic compression
In the simplest case of a rapid (faster than the sound speed) planar shock, it traverses as a
discontinuity in density ρ, pressure P , and energy E through the target, where on one side of
the discontinuity lies the unshocked material (denoted by subscript 0) and on the other side lies
the shocked material (denoted by subscript 1). Using conservation laws of mass, momentum,
and energy, an equation for shock compression, the Hugoniot-Rankine relation [110Ű113]

E1 − E0 =
1
2

(P1 + P0)
⎤

1
ρ0

− 1
ρ1

⎣

(1.3)

can be derived. This equation can be solved with a given EOS, resulting in a locus of states
achievable via shock compression. EOS data based on DFT-MD simulations have been suc-
cessfully used in various applications to shock compression experiments [18, 114, 115].

The shock can be induced into the target via a Ćyer plate accelerated by a gas gun [116Ű118] or
an electromagnetic pulse, e.g., via the Z machine at Sandia [106]. Historically, high explosives
in contact with the target [119Ű121] were also used to produce shocks. Over recent decades,
laser-induced shocks have become popular due to the control over the type of induced shock
via pulse shaping. In these experiments, the laser irradiates an ablator attached to the target’s
surface. The ablator expands outwards and, due to the conservation of momentum, drives a
shock into the target. This type of shock is achieved via a Ćat-top pulse shape with a steep
rise, leading to a compression mediated through the target faster than the sound speed. A
ramp compression, however, is achieved via a slowly rising pulse shape that induces a series
of weak shocks with increasing magnitude. As a result, the target is compressed rapidly
enough to avoid heat Ćow but slowly enough that no shock is induced, leading to a quasi-
isentropic compression [122, 123]. This avoids the steep temperature increase at high pressures
characteristic of the Hugoniot curve, opening up a new region of P -T space for experimental
investigation. Further techniques to investigate various P -T conditions are double shocks [124]
and isentropic releases [125, 126]. The procedure is called direct-drive ablation if the laser
directly irradiates the ablator. Indirect-drive ablation is utilized at the NIF where the lasers
hit a gold hohlraum, creating an X-ray bath which subsequently irradiates the ablator to create
spherical [90] or planar shocks [127].

Static compression
Static compression is mostly achieved through diamond anvil cells (DACs) [128, 129], where
two diamond anvils push on a target from both sides to produce a static high-pressure state.
Although the DAC is capable of reaching pressures comparable to Earth’s core [130], higher
pressures are not attainable with the standard conĄguration. However, new developments over
the past decades, e.g., the dynamic DAC [131], micro-ball nanodiamonds [132], the double-
stage [133, 134] and toroidal anvils [135], have enabled static pressures up to 10 Mbar. Ad-
ditionally, higher temperature states in DACs can be achieved via laser heating [136, 137];
conditions beyond 3 Mbar and 6000 K [138] are not attainable, however. Direct resistive heat-
ing of the sample [139] or the diamond anvils [140] is also employed. Although these approaches
are more controlled, they restrict the accessible P -T even more than laser heating; see Ref. [137]
for a comparison of achievable conditions. In addition, the statically pre-compressed samples
can be shock compressed [141]. DACs enable high-quality measurements due to their static
nature. However, they also have limitations. Pressures above 10 Mbar, attainable in dynamic
compression experiments, cannot currently be reached using static compression. Furthermore,
the interaction of the target material with the diamonds can lead to complications. Some
materials, e.g., hydrogen and helium, diffuse into the diamond [142] and make it brittle.
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Isochoric & isobaric heating
If no compression of the target is required, isochoric [93, 143, 144] and isobaric heating [145]
can be employed. In isochoric heating, energy is transferred to the target via X-ray radiation
or ultrafast protons in a short time relative to the time scale of hydrodynamic expansion. If the
system is then probed before the onset of expansion, the density remains at the initial density
while the temperature is signiĄcantly elevated. In isobaric heating, on the other hand, the
target is heated and allowed to expand to its equilibrium density, given the ambient pressure.
As a result, measurements can be performed over a long time to achieve excellent signal-
to-noise ratios. For an example of this approach, see the experimental setup described in
Sec. 3.6.1. As a drawback, with increasing temperature, only low-density conditions can be
probed, and extreme temperatures cannot be reached because the containment of the target
becomes problematic.

1.2.2 Diagnosing extreme conditions

As discussed in Sec. 1.2.1, creating WDM is challenging, and the most extreme attainable
conditions can only be created transiently. Therefore, suitable diagnostic techniques ought to
be used to resolve the quantities of interest on short time scales. Some general properties of
the EOS can be measured by methods like the velocity interferometer system for any reĆector
(VISAR), which measures the velocity of the shock front [146Ű148] in dynamic shocks, and
through pressure gauges can give access to the pressure of the shocked material. Temperature is
often determined through streaked optical pyrometry (SOP) [149, 150], which uses the emission
of the studied sample to infer its temperature. However, the diagnostic must be calibrated
and is often only reliable from 0.5 eV to 25 eV [151]. Here, the focus is on X-ray Thomson
scattering (XRTS) and diffraction, which enable insight beyond EOS data, e.g., structural
information, electronic conĄguration, and thermodynamic properties; see also Secs. 2.2 and
2.3.

X-ray Thomson scattering & the Chihara decomposition
The scattering of X-ray photons off electrons in a many-particle system is referred to as
XRTS [152, 153]. The photons are characterized by their wave vector k, and their angu-
lar frequency ω, which are connected via ω = c♣k♣, the speed of light being c. Here, the wave
number is given by the absolute value of the wave vector ♣k♣ = k = 2π

λ , where λ is the wave-
length. The quantities corresponding to the incoming photons are denoted by the subscript
1, while the outgoing photons after the scattering process are denoted by the subscript 2. For
scattering under an arbitrary angle θ, a simple geometric consideration of the change in wave
vectors and the use of the law of cosines and the dispersion relation for light results in

∆k = ± 1
ℏc

√︂

(ℏω1)2 + (ℏω2)2 − 2(ℏω1)(ℏω2) cos(θ) , (1.4)

∆k ≈ 2
ℏω1

ℏc
sin

⎤
θ

2

⎣

, given that ℏ♣∆ω♣ = ℏ♣(ω2 − ω1)♣ ≪ ℏω1 (1.5)

for the change in wave vectors ∆k = ♣∆k♣ = ♣k2 − k1♣. Equation (1.5) denotes a common
approximation [71, 94, 97, 98] that is made if the change in frequency (or equivalently energy)
is small compared to the frequency (energy) of the incoming light.

This is a valid approximation for most XRTS studies for WDM. As an example, with a typical
photon energy E = 8 keV at a scattering angle θ = 20◦ and a spectrometer that resolves energy
shifts of up to ±200 eV, the approximate relation in Eq. (1.5) predicts the scattering length
as

k = 1.408+0.021
−0.014 Å−1 , (1.6)
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where the maximum errors are computed from the exact relation in Eq. (1.4) for the maximum
energy shifts. In practice, the uncertainty in the wave number is larger due to the Ąnite opening
angle of the spectrometer. Nevertheless, the transferred momentum at a given scattering angle
is usually assumed to be constant, although a range of different k could be considered via a
convolution. For the scattering process to occur with a given momentum and energy transfer,
the photon must couple to charge density Ćuctuations in the many-particle system, which
are described by the electron-electron DSF (eDSF) See(k, ω). The eDSF encompasses all
electronic Ćuctuations and the Ćuctuations of the ions, described by the ion-ion DSF (iDSF)
Sii(k, ω), which the electrons follow due to their accumulation around the positively charged
ions. Traditionally, the eDSF can be decomposed based on the identiĄcation of bound and free
electrons in a chemical picture as [153Ű155]

Stot
ee (k, ω) = ♣fi(k) + q(k)♣2 Sii(k, ω)

⏞ ⏟⏟ ⏞

ion feature

+ Zf S0
ee(k, ω)

⏞ ⏟⏟ ⏞

plasmon feature

+ Zb

∫︂ ∞

−∞
dω′ Sce(k, ω − ω′)Ss(k, ω′)

⏞ ⏟⏟ ⏞

bound-free feature

.

(1.7)

The Ąrst contribution, termed ion feature, describes the ion dynamics modulated by the ionic
form factor fi(k) and the form factor of loosely bound electrons q(k), which describe how,
on average, the electrons are distributed around the ions. The second contribution is the
plasmon feature describing collective excitations of free or quasi-free electrons, represented
by the eDSF of free electrons S0

ee(k, ω). The last contribution is described as the bound-free
feature and is computed from a convolution of the self-part of the ion dynamics Ss(k, ω) [156]
and the eDSF of the core electrons which describes Raman and Compton-type scattering. The
plasmon and bound-free features are weighted by the number of free electrons Zf and bound
electrons Zb per atom, respectively. These contributions are schematically represented in
Fig. 1.2. Traditionally, each quantity in Eq. (1.7) is described by a combination of analytical
approaches, e.g., the Debye-Hückel theory [157, 158] for q(k) and Sii(k), the random phase
approximation (RPA) [159Ű162] for S0

ee(k, ω), and the impulse approximation [163Ű165] for
the bound-free feature among others.
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Figure 1.2: A schematic of a decomposed XRTS spectrum according to the chemical picture in the
Chihara decomposition Eq. (1.7). The inset zooms in on the ion feature, where ion acoustic or phonon
modes can be observed. Note the energy unit of the inset. The plasmon feature is due to the collective
behavior of free or quasi-free electrons, and the bound-free feature is caused by electronic transitions
from bound to free states.
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In WDM, the separation into bound and free electrons breaks down, and some of the analytical
approaches for the individual constituents of Eq. (1.7) become ill-deĄned. To circumvent this
limitation and enable a uniĄed description solely based on ab initio simulations, a modiĄed
Chihara decomposition

Stot
ee (k, ω) = ♣N(k)♣2 Sii(k, ω)

⏞ ⏟⏟ ⏞

ion feature

+ Z Set(k, ω)
⏞ ⏟⏟ ⏞

electronic transitions
feature

(1.8)

has been suggested [166, 167]. Here, the artiĄcial separation into bound and free contributions
to the form factor is replaced by a total form factor N(k), which can be directly computed
from the total electron density in ab initio frameworks, e.g., DFT or PIMC. The plasmon
and bound-free features are condensed into an eDSF due to electronic transitions Set(k, ω)
because both features arise from electronic transitions in a quantum mechanical many-body
description. This is discussed in more detail in Sec. 3.2.

Given the knowledge about the eDSF of the target, the differential power spectrum per fre-
quency shift ω and solid angle Ω can be written as [168Ű170]

d2P

dωdΩ
=

σT k2

Arad k1

∫︂ ∞

−∞

dω′

2π
G(ω − ω′)

∫︂

V
d3r l(r) See(k, ω′) ni(r) , (1.9)

where σT = 6.65·10−25 cm2 [71] is the Thomson scattering cross section, Arad is the irradiated
area, l(r) is the power density of incoming photons, and ni(r) is the ion density throughout the
target of volume V . The inĆuence of the X-ray source spectrum and the instrumental setup
is encoded in G(ω). For a detailed account of the effect ni(r) and G(ω) have on the scattering
spectrum, see Sec. 3.3 and Ref. [171].

With this description, observed spectra can be analyzed to infer information on the eDSF.
For a target in thermal equilibrium, the electronic temperature can be determined through
the asymmetry of the eDSF according to the detailed balance relation [71]. Furthermore, the
eDSF can provide insight into collective and single-particle phenomena depending on the length
scale probed relative to typical screening lengths, often described by the electronic screening
length λe. The regimes are characterized by the scattering parameter α = 1

λek [71]. In the
collective regime α < 1, the eDSF exposes the macroscopic dielectric function, which is closely
connected to quantities like the electrical conductivity and the absorption coefficient. In the
single-particle regime α ≫ 1, the eDSF can be directly connected to the electron density and
the distribution of electron velocities [172].

Diffraction
While XRTS can probe the dynamics and collective effects in the target, diffraction probes its
average structural composition. The diagnostic relies on the fact that light or neutrons that
scatter from various scattering centers interfere constructively or destructively under certain
scattering angles.

Laue developed a general description for diffraction in lattices [173, 174]. For constructive
interference to occur, the scattered outgoing light rays must form a coherent wave front which
propagates as exp [i(ωt − k2·r + ϕout)]. This outgoing wavefront is produced by scattering of
the incoming light that propagates as exp [i(ωt − k1·r + ϕin)]. The respective phase constants
are given ϕin and ϕout. These two waves can only coexist if they are in phase at all scattering
centers, usually denoted by the lattice positions rlat. This condition is only satisĄed if ∆k·rlat =
2πn, which can be used to identify the transferred wave vector ∆k with the reciprocal lattice
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Figure 1.3: Schematic representation of the structural analysis in a solid (left) and a strongly correlated
liquid (right). Typical iSSFs for solids and liquids are given as a reference in the upper panels. The
long-range order in the correlated liquid is exaggerated here for visualization.

vector G to arrive at the Laue equation

∆k = G , G = hb1 + kb2 + lb3 , h, k, l ∈ N0 (1.10)

with the reciprocal primitive vectors ¶b1, b2, b3♢. In conclusion, constructive interference only
arises for scattering processes that transfer some linear combination of reciprocal lattice vectors
to the lattice.

This consideration is only valid for a perfect lattice at T = 0 K. Vibrational effects due to
relatively low temperatures can be included via the Debye-Waller factor [175Ű178]. However,
the lattice-based description above fails if the temperature is high enough to melt the lattice
structure and break long-range order. In this context, a generalization of Eq. (1.10), the ion-
ion SSF (iSSF) Sii(k) can be used. It provides a measure of the time-averaged accumulation
of scattering sources on a particular length scale given by the wave number k. If they tend to
bunch up on this length scale, a scattering process transferring momentum corresponding to
k to the target tends to interfere constructively, resulting in a peak of the diffraction pattern.
Figure 1.3 shows the contrast between the structural analysis of a solid with a clear lattice
structure and a strongly correlated liquid where a much wider range of wave numbers k results
in constructive interference. A clear deĄnition of this quantity is given in Sec. 2.2.

In the above discussion, light scattering was assumed to occur at the ions. However, this
assumption is only valid in neutron diffraction experiments. In X-ray and electron scattering
experiments, the scattering occurs off the electrons, generally located around the ions. There-
fore, the diffraction is governed by the electron-electron SSF (eSSF), which can be expressed as
the iSSF modulated by an electron form factor. This form factor describes how the electrons,
on average, are distributed around the ions. Due to the strong localization of the electrons,
X-ray and electron diffraction also enable a direct inference of the underlying ionic structure.
An example where this assumption breaks down due to the localization of binding electrons
between the ions is discussed in Sec. 3.6.1.
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1.3 Outline of this thesis

The Ąeld of WDM research is fast-moving and exciting. As mentioned in the previous sec-
tions, a host of new and upgraded research facilities have come online over the past decades,
enabling access to previously unexplored pressure and temperature regimes. With improved
spectral resolution in scattering experiments, it is now possible to resolve dynamics on formerly
unattainable energy scales. Along with these experimental advances, computational capacities
are ever-increasing, and the advent of machine learning algorithms in WDM enables more
advanced and more expansive simulations than ever. Additionally, the capabilities of modern
telescopes, such as the James Webb Space Telescope, reduce the uncertainty in astrophysical
observations, tightening the constraints on planetary and stellar models. This thesis presents
advances in the simulation of WDM and the interpretation of scattering experiments using
these simulations by applying modern machine-learning approaches. The results of this thesis
will aid in measuring important material and transport properties in matter under extreme
conditions at XFEL facilities. Furthermore, the framework for analyzing scattering experi-
ments at the NIF based solely on DFT data presented in this thesis contributes to establishing
a reliable platform for studying the interior of low-mass stars in the laboratory.

This introductory Chapter 1 gives a general characterization of WDM and indicates applica-
tions where accurate knowledge of matter in these extreme states is paramount, e.g., astro-
physical modeling and ICF. Furthermore, an overview of experimental capabilities to achieve
extreme states of matter in the laboratory and how different diagnostic techniques can be used
to gain insight into the structural makeup and dynamics of WDM is presented.

Chapter 2 tackles the theoretical foundations and computational methods relevant to this
thesis. In Sec. 2.1, DFT-MD is introduced, the main simulation method used to produce
the results obtained in this thesis. The theoretical foundation is presented, and some imple-
mentation details are mentioned. Subsequently, the ion dynamics are discussed in Sec. 2.2.
SpeciĄcally, in Sec. 2.2.1, the use of high-dimensional neural network potentials (HDNNP) to
scale up MD simulations to macroscopic scales is discussed and, in Sec. 2.2.2, the framework
used to analyze the ion dynamics, called generalized collective modes (GCM), is introduced.
Section 2.3 is concerned with the electronic dynamics, which are treated in linear response
here. The framework of time-dependent DFT (TDDFT) is employed to derive response func-
tions in Sec. 2.3.1, while the Kubo-Greenwood formula for electrical conductivity within Kubo
theory is presented in Sec. 2.3.2. Finally, a statistical framework for analyzing experimental
observations based on models with many input parameters is explored in Sec. 2.4.

The results of this thesis are summarized in Chapter 3. Dynamics on different energy scales
accessible through DFT-MD simulations are discussed and compared to scattering experi-
ments. First, a systematic approach to the hydrodynamic limit of ion dynamics using ab initio
simulations, as well as an application of this technique to a typical WDM experiment, are pre-
sented in Sec. 3.1. A new deĄnition of ionization degree in WDM and a comparison between
numerical many-body methods and state-of-the-art analytical methods for the description of
electron dynamics in XRTS are given in Sec. 3.2. Section 3.3 combines the study of ion and
electron dynamics to analyze an experiment at the NIF. The electrical conductivity is one
of the central quantities related to electron dynamics. The long-standing question of whether
electron-electron collisions are included in the Kubo-Greenwood formalism of conductivity is
addressed in Sec. 3.4. Finally, results for ongoing analyses of experiments at the LCLS and
GSI are presented in Sec. 3.6. These results are detailed in four Ąrst-author articles, three of
which are published, one of which is submitted, and three co-author publications. Not explic-
itly included in this thesis are nine further co-author publications, which are brieĆy mentioned
in Sec. 3.5. Chapter 4 includes the publications described in Chapter 3 and a summary of the
individual author contributions.



2 Computational methods

An accurate theoretical description of WDM must consider the strong correlations and non-
negligible degeneracy effects that characterize this state of matter, as discussed in Chapter 1.
To this end, the Ąnite-temperature formulation of density functional theory coupled with molec-
ular dynamics (DFT-MD) simulations is utilized in this thesis. This approach will be detailed
in the following section.

The goal is to most efficiently, with the fewest possible approximations, solve the quantum
mechanical problem described by the time-dependent Schrödinger equation [179]

Ĥ Ψn(R, r, t) = iℏ
∂

∂t
Ψn(R, r, t) , (2.1)

with the full wave function Ψn of the nuclei and electrons. Their respective sets of coordinates
are given by R = ¶RI , I = 1, . . . , Nn♢ and r = ¶ri, i = 1, . . . , Ne♢ at time t where Nn and
Ne denote the number of nuclei and electrons, respectively. The full Hamiltonian can be
decomposed as

Ĥ = −
Ne∑︂

i=1

ℏ
2

2me
∇2

i +
e2

8πϵ0

Ne∑︂

i=1

Ne∑︂

j ̸=i

1
♣ri − rj ♣ − e2

4πϵ0

Nn∑︂

I=1

Ne∑︂

i=1

ZI

♣RI − ri♣

−
Nn∑︂

I=1

ℏ
2

2MI
∇2

I +
e2

8πϵ0

Nn∑︂

I=1

Nn∑︂

J ̸=I

ZIZJ

♣RI − RJ ♣ ,

(2.2)

with the mass MI and charge ZI of the nuclei, the elementary charge e, the vacuum permittivity
ϵ0 and the nabla operator ∇. The Ąrst three terms of Eq. (2.2) are the kinetic energy operator
of the electrons T̂ e, and the Coulomb operators describing the interaction among the electrons
Û ee and between the electrons and nuclei V̂ ne. These three terms can be summarized into the
electronic Hamiltonian Ĥe. This only leaves the kinetic energy and the Coulomb interaction
operators of the nuclei, T̂ n and V̂ nn, respectively:

Ĥ = Ĥe + T̂ n + V̂ nn, Ĥe = T̂ e + Û ee + V̂ ne. (2.3)

In the context of DFT, V̂ ne is often replaced by an external potential V̂ ext, which includes
the Coulomb potential between electrons and nuclei and an arbitrary external Ąeld. Here, the
case with no external Ąeld is considered, and V̂ ne is used to highlight this. In the following,
it is discussed how Eq. (2.1) is approximated in the context of DFT-MD simulations. A more
comprehensive account of DFT can be found in Refs. [180Ű190] and a further exploration of
the MD formalism is available in Refs. [186, 189, 191, 192].

2.1 Density functional theory molecular dynamics

Given Ąxed positions of the nuclei R, the solutions Φn(r; R) to the time-independent electronic
Schrödinger equation

Ĥe Φn(r; R) = En(R) Φn(r; R) (2.4)

form a complete basis of the electronic Hilbert space at each point in time with the electronic
eigenenergies En that parametrically depend on R. Therefore, a solution to Eq. (2.1) can be

11
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constructed in this basis as

Ψ(R, r, t) =
∑︂

n

Θn(R, t)Φn(r; R) , (2.5)

where the coefficients Θn(R, t) are to be determined. Inserting this expression in the time-
dependent Schrödinger equation, Eq. (2.1), reveals that the coupling between the electronic
and nuclear system is caused by the kinetic energy operator of the nuclei T̂ n acting on the
solutions to the electronic Schrödinger equation Φn(r; R). If energy shifts of the electronic
states induced by nuclear motion are small compared to typical energy gaps between electronic
states, this coupling can be neglected, resulting in the adiabatic approximation [193]. In this
context, a decoupled time-dependent Schrödinger equation for the nuclei is given by

iℏ
∂

∂t
Θn(R, t) = (T̂ n + V̂ nn + En(R))Θn(R, t) , (2.6)

where a non-coupling term on the right side due to the R-dependence of Φn has been neglected
according to the Born-Oppenheimer approximation [193, 194]. The inclusion of non-adiabatic
effects within DFT-MD simulations has been a topic of research [195Ű198] and even in WDM,
it has been suggested to be relevant near phase transitions [199].

Finally, Eq. (2.6) describes the time evolution of the nuclei, which for all of the conditions in this
thesis, can be regarded as classical particles. Therefore, the classical nuclei approximation [188]
is employed to identify the equation of motion for the mean values of the nuclear positions R
determined through the Ehrenfest theorem [200] with its classical counterpart

MI
d2R(t)

d2t
= −∇I(Vnn + En(R)) . (2.7)

Here, Vnn is the Coulomb potential between the nuclei deĄned in Eqs. (2.2) and (2.3) but
the operator character is dropped. The dependence of the nuclear dynamics on the electrons
enters through the eigenenergies En(R) of the electronic Schrödinger equation (2.4). According
to the Hellmann-Feynman theorem [201, 202], this contribution can be computed from the
expectation value of ∇I Vne in the electronic ground state. To Ąnd this ground state, the
electronic Schrödinger equation (2.4) must be solved.

Finite temperature density functional theory
Directly solving the electronic Schrödinger equation for multiple electrons is numerically in-
tractable due to the exponential scaling of memory demands with the number of electrons for
the wave function Ψ [203]. However, the Hohenberg-Kohn theorems [204] establish that the
electron density ne(r), for which memory demands do not scale with the number of electrons,
can be used to characterize the ground state instead.

The Ąrst Hohenberg-Kohn theorem states that the ground state electron density n0
e(r) uniquely

deĄnes the external potential, which is given by V̂ ne in Eq. (2.3). This can be established by
following a proof by contradiction which assumes two different ground state densities can be
connected to the same external potential, and, as a result of this, one arrives at an erroneous
conclusion [188, 190]. This unique connection further implies that the ground state electron
density n0

e(r) uniquely deĄnes the electronic Hamiltonian Ĥe, whose only external contribution
is V̂ ne, and as a consequence of the Schrödinger equation (2.4), also the electronic ground state
wave function Φ0 and energy E0. Therefore, these quantities can now be written as functionally
dependent on the electron density, i.e., the ground state energy is given by

⟨Φ0[ne]♣ Ĥe ♣Φ0[ne]⟩ = E0[ne] = Te[ne] + Uee[ne] + Vne[ne] , (2.8)
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where the wave function Φ0[ne] represents the ground state wave function of an electronic
system whose ground state electron density is ne(r). The second Hohenberg-Kohn theorem
states that the ground state energy E0 is only achieved for the true ground state electron
density n0

e(r) which can be proven via the variational principle by Ritz [205]:

⟨Φ0[n0
e]♣ Ĥe ♣Φ0[n0

e]⟩ < ⟨Φ0[ñe]♣ Ĥe ♣Φ0[ñe]⟩ ∀ ñe ̸= n0
e . (2.9)

Importantly, the Hamiltonian Ĥe in this inequality is determined by the external potential
Vne[n0

e]. Therefore, the left side gives the real ground state energy, whereas, on the right side,
Ĥe is evaluated in a state which is not its ground state. In conclusion, if a global minimum in
the energy is found by varying ne(r), the electron density at this minimum necessarily is the
ground state electron density and deĄnes all other ground state observables. The theorems
were extended to Ąnite temperatures by Mermin [206], and in the following, the minimum free
energy

F0[ne] = E0[ne] − TSe[ne] (2.10)

at the equilibrium electron density ne will be discussed. Here, T is the electron temperature,
and Se[ne] is the density functional of the electronic entropy.

Kohn-Sham theory
Although the equilibrium free energy is completely deĄned by ne(r), no expressions for Te[ne],
Se[ne], and Uee[ne] exist. To circumvent this problem, the Kohn-Sham (KS) theory [207, 208]
introduces a non-interacting reference system with the density

nref
e (r) =

∞∑︂

i=1

fi♣ϕi(r)♣2 , (2.11)

where fi are the occupation numbers according to the Fermi-Dirac distribution [209, 210] and
ϕi are the single-particle wave functions, called KS orbitals, describing the non-interacting
electrons. In order to compute the free energy in Eq. (2.10), the density functionals are
evaluated in the reference system, and an exchange-correlation (XC) functional FXC[ne] is
introduced that captures all exchange and correlation effects that are lost in the projection
onto the non-interacting system:

F0[ne] = T ref
e [ne] + U ref

ee [ne] + V ref
ne [ne] − TSref

e [ne] + FXC[ne] , (2.12)

with the known contributions in the reference system

T ref
e = ⟨Φref ♣ T̂ e ♣Φref⟩ = − ℏ

2m

∞∑︂

i=1

∫︂

d3r fiϕ
∗
i (r)∇2ϕi(r) ,

U ref
ee = ⟨Φref ♣ Û ee ♣Φref⟩ =

e2

8πϵ0

∞∑︂

i,j=1

∫︂ ∫︂

d3rd3r′ fi♣ϕi(r)♣2 1
♣r − r′♣fj ♣ϕj(r′)♣2 ,

V ref
ne = ⟨Φref ♣ V̂ ne ♣Φref⟩ = − e2

4πϵ0

∞∑︂

i=1

∫︂

d3r fi♣ϕi(r)♣2
Nn∑︂

I=1

ZI

♣r − RI ♣ ,

Sref
e = ⟨Φref ♣ Ŝe ♣Φref⟩ = −kB

∞∑︂

i=1

[fi ln fi + (1 − fi) ln(1 − fi)] .

(2.13)
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Minimizing the free energy with respect to the electron density by performing functional deriva-
tives results in the KS equation for the KS orbitals

⎠

− ℏ
2

2m
∆ + veff(r)

⎜

ϕn(r) = ϵn ϕn(r) , (2.14)

with the effective potential

veff(r) =
e2

4πϵ0

∫︂

d3r′ ne(r′)
♣r − r′♣ − e2

4πϵ0

Nn∑︂

i=1

ZI

♣r − RI ♣ +
δ

δne(r)
FXC[n] . (2.15)

The only unknown term in the effective potential is the XC functional, which, therefore, deter-
mines the Ądelity of the simulation. The different levels of approximations for this quantity can
be ordered according to the rungs of a ladder which was proposed by Perdew et al. [211]. The
lowest rung is the local density approximation (LDA), which, similar to Thomas-Fermi-Dirac
theory [212Ű214], uses homogeneous electron gas expressions for exchange and correlation den-
sities [80, 215, 216] at the local density in each point in space. This can be extended to local
inhomogeneities by also considering the density gradient via an enhancement factor within
the generalized gradient approximation (GGA) [217Ű223]. Higher-order derivatives and local
kinetic energy densities are considered in Meta-GGAs [224Ű226]. The exact Hartree-Fock ex-
change can be included in hybrid functionals [227Ű232]. In this thesis, the GGA by Perdew,
Burke, and Ernzerhof (PBE) [220] is used for most simulations, while the hybrid functional
by Heyd, Scuseria, and Ernzerhof (HSE) [227, 228] is used in some cases where very accurate
band gaps are required [233].

Equations (2.14), (2.15), and (2.11) have to be solved self-consistently since the electronic
density ne(r) enters in the effective potential, Eq. (2.15), and ne(r) is computed from the KS
orbitals, which are the solutions to the KS equation (2.14), which is in turn determined by the
effective potential. Once a self-consistent solution is reached, the equation of motion for the
nuclei, Eq. (2.7), can be solved to move the nuclei. The density functional framework can be
extended to explicitly include a time dependence of the electronic density due to the Runge-
Gross theorem [234]. This time-dependent formulation can be used to numerically propagate
the electron density in time to explicitly simulate the electron dynamics, which is referred to
as RT-TDDFT. Alternatively, in LR-TDDFT, a linear response formalism is applied in this
time-dependent framework. In the context of transport properties, this approach is detailed
in Sec. 2.3.1.

Numerical implementation
Several commercial and open-source DFT codes exist, Quantum ESPRESSO [235, 236] and
ABINIT [237, 238] being some popular examples. In this thesis, all DFT-MD simulations
are performed with the Vienna ab initio simulation package (VASP) [239Ű242]. Some of the
static DFT simulations that are subsequently analyzed using LR-TDDFT (see Sec. 2.3.1) are
computed with the GPAW code [243Ű246]. Both frameworks employ periodic boundary condi-
tions and can, therefore, take advantage of Bloch’s theorem [247] to represent the KS orbitals
at a given wave vector k by

ϕk,n(r) = uk,n(r) exp(ik·r) ,

uk,n(r) =
1√
Ω

∑︂

G

CG,kn exp(iG·r) ,
(2.16)

where Ω is the box volume and uk,n(r) is a function that exhibits the lattice periodicity and
can be expanded in a basis of plane waves using the reciprocal lattice vectors G. The plane
wave coefficients CG,kn are then varied to Ąnd the equilibrium electron density. Integrals
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over the Ąrst Brillouin zone are replaced by the sum over KS orbitals evaluated at represen-
tative points, e.g., the Baldereschi mean value point [248] or the Monkhorst-Pack sampling
points [249]. Due to numerical limitations, this expansion must be truncated, limiting the spa-
tial resolution. In practice, the reciprocal lattice vectors included in the expansion are given
by the inequality

ℏ
2

2m
♣G + k♣2 < Ecut , (2.17)

which makes the cutoff energy Ecut an important convergence parameter. To reduce the
required spatial resolution, the projector augmented wave method [250] for pseudo-potentials
is employed, which replaces the rapidly oscillating wave function near the cores with non-
oscillating pseudo wave functions which reproduce the same electron density.

The temperature of the nuclei in the MD simulations is controlled by coupling to a heat bath
via the Nosé-Hoover thermostat [251Ű253] or the more advanced Nosé-Hoover chains [254]. The
time propagation of the nuclear positions and velocities according to Eq. (2.7) is usually per-
formed by the Verlet algorithm [255] or the more modern velocity Verlet algorithm [256].

2.2 Ion dynamics

The DFT-MD formalism enables the direct simulation of ion dynamics in WDM with an
ab initio description of the electron density and its interaction with the ions. From the time
propagation prescribed in Eq. (2.7), the ion density in time ni(r, t) and its spatial Fourier
components ni(k, t) can be computed as

ni(r, t) =
Nn∑︂

I=1

δ3(r − RI(t)) , ni(k, t) =
Nn∑︂

I=1

eik·RI(t) . (2.18)

The wave vector k indicates the characteristic length scale and orientation at which spatial
oscillations in the ion density are studied. Analogously, the ion velocities vI(t) are known and,
therefore, the ion current density ji(r, t) and its spatial Fourier components ji(k, t), as well as
its longitudinal and transverse components j

l/t
i (k, t) relative to k can be inferred as

ji(r, t) =
Nn∑︂

I=1

vI(t) δ3(r − RI(t)) , ji(k, t) =
Nn∑︂

I=1

vI(t) eik·RI(t) , (2.19)

jl
i(k, t) =

Nn∑︂

I=1

v
∥
I (t) eik·RI(t) , jt

i (k, t) =
Nn∑︂

I=1

v⊥
I (t) eik·RI(t) . (2.20)

The parallel and perpendicular components of the ion velocities relative to the wave vector k

at each point in time are denoted by v
∥
I (t) and v⊥

I (t), respectively.

The information contained in the trajectories of the ions can be summarized via the autocor-
relation function of ni(k, t), often called the intermediate scattering function

Fii(k, t) :=
1

Nn
⟨ni(k, τ)ni(−k, τ + t)⟩τ = lim

Θ→∞

1
Nn

1
Θ

∫︂ Θ

0
ni(k, τ)ni(−k, τ + t) dτ , (2.21)

which describes the time evolution of ion density oscillations on a characteristic length scale
and orientation given by k. Here, t refers to the correlation time, and τ denotes an absolute
time over which the average is performed. In practice, the simulation duration Θ is Ąnite,
and the integral in the second equality must be truncated at a sufficiently long time for which
convergence can be established.
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Especially for scattering experiments that probe the target in frequency space, see Sec. 1.2.2,
the more useful quantity is the temporal Fourier transform of Eq. (2.21), the ion-ion DSF
(iDSF)

Sii(k, ω) :=
1

2π

∫︂ ∞

−∞
Fii(k, t)eiωtdt = lim

Θ→∞

1
2πNn

1
Θ

\︄
\︄
\︄
\︄
\︄

∫︂ Θ/2

−Θ/2
ni(k, t)eiωtdt

\︄
\︄
\︄
\︄
\︄

2

, (2.22)

where the second equality is due to the Wiener-Khinchin theorem [257, 258]. The angular
frequency ω determines the temporal frequency at which the density oscillations occur.

An important quantity that integrates over all dynamical effects on a given length scale is the
iSSF

Sii(k) :=
∫︂ ∞

−∞
Sii(k, ω)dω = Fii(k, t = 0) =

1
Nn

⟨♣ni(k, τ)♣2⟩τ , (2.23)

which is the time-averaged absolute square of the spatial Fourier components of the ion density
per ion. In that sense, it is a generalization of the Laue condition for diffraction in solids
introduced in Sec. 1.2.2, and can be applied to diffraction measurements in the liquid and solid
state to gain information on structure and ion correlations. It can be easily connected to the
iDSF and the intermediate scattering function as demonstrated in Eq. (2.23).

The notion of the iDSF, which deĄnes the power spectrum of ni(r, τ), can be extended to the
longitudinal and transverse parts of the ion current density j

l/t
i (k, t) and its power spectrum

is deĄned by

J
l/t
ii (k, ω) :=

1
2πNn

1
Θ

\︄
\︄
\︄
\︄
\︄

∫︂ Θ/2

−Θ/2
j

l/t
i (k, t)eiωtdt

\︄
\︄
\︄
\︄
\︄

2

. (2.24)

The longitudinal part of the spectrum contains the same information as the iDSF, as these
quantities are linked via J l

ii(k, ω) = ω2

♣k♣2
Sii(k, ω). The transverse part, however, contains

valuable information about transverse excitations that cannot be gained from the ion density
alone.
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Figure 2.1: Schematic representation of the iSSF Sii(k) for a correlated liquid. The single-particle
regime at large k (green) and the hydrodynamic regime at small k (yellow) are indicated by shaded
areas, and the typical shape of the iDSF in these regimes is shown in the insets. The intermediate
scattering regime, where non-hydrodynamic corrections to the hydrodynamic behavior play a vital role
and no simple analytic description exists, is given in blue.
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In the liquid state, the system becomes isotropic, and the wave vector k can be replaced
by the wave number k. For a general quantity A(k) that depends on the wave vector k, a
wave-number-dependant analogue can be written as

A(k) =
∫︂

R3

1
4π♣k′♣2 A(k′) δ(♣k′♣ − k) d3k′ . (2.25)

In this work, the isotropic versions of Eqs. (2.21)-(2.24) are used unless a solid state is con-
sidered. For these expressions, different analytically tractable limiting cases exist, which are
illustrated in Fig. 2.1 by means of a typical iSSF for a correlated liquid. At short length scales,
k ≫ 1, and short time scales, ω ≫ 1, the ions behave independently of each other and can be
treated within the free particle limit. In this limit, the iDSF and iSSF can be derived from an
uncorrelated liquid that follows the Maxwell-Boltzmann distribution as

lim
k→∞

Sii(k, ω) =

√︄

MIβ

2πk2
exp

⎠

−MIβω2

2k2

⎜

, (2.26)

lim
k→∞

Sii(k) = 1 , (2.27)

where 1/β = kBT and kB is the Boltzmann constant. The second equality holds because, when
the deĄnition of ni(k, t) from Eq. (2.18) is plugged into Eq. (2.23), only the exponentials with
the same ion positions do not average out. The iDSF in this limit is shown in green in the
inset of Fig. 2.1.

Contrarily, in the long-wavelength limit, k ≪ 1, only macroscopic correlations over long dis-
tances and long time scales are relevant. Here, the hydrodynamic Navier-Stokes equations [259Ű
261] can accurately describe the liquid. The iDSF in this hydrodynamic regime is discussed
further in Sec. 2.2.2 (see the left inset in Fig. 2.1). The iSSF at vanishing wave numbers k can
be computed from thermodynamic relations [262] as

lim
k→0

Sii(k) = κT nikBT , (2.28)

where κT is the isothermal compressibility and ni is the average ion density. The intermedi-
ate regime between these limits is dominated by complex interactions on the length scale of
inter-atomic distances where the correlations are strongest. In Sec. 2.2.2, an approach to sys-
tematically extend the hydrodynamic description to higher wave numbers is introduced.

2.2.1 High-dimensional neural network potential

Several schemes for learning the many-body interactions predicted by quantum simulations
have been developed since the Ąrst application of feed-forward neural networks [263] to PIMC
simulations [264]. Some of the most widely used frameworks are Gaussian approximation
potentials (GAP) [265, 266], spectral neighbor analysis potentials (SNAP) [267, 268] and deep
potential MD [269Ű271] among others. In this thesis, the high-dimensional neural network
potential (HDNNP) architecture proposed by Behler and Parinello is adopted [272] to learn
atomic energies and forces from DFT simulations. The trained HDNNP can be used to replace
the term ∇IEn(R) in Eq. (2.7), negating the need to perform the DFT simulation once the
training is completed. This leads to speed increases and the ability to signiĄcantly scale up the
simulation size as most DFT implementations scale as ∝ N3

e , whereas the neural-network-based
MD simulation scales linearly. The combination of HDNNPs with MD simulations is referred
to as NN-MD in this work. The main limitations of the direct application of feed-forward
neural networks to the Cartesian coordinates of the ions are the lack of explicit consideration
of translational invariance and the Ąxed size of the input layer that prevents the scaling to
larger systems.
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Behler and Parinello [272] suggested circumventing this by setting up individual neural net-
works for each atom which learn the atomistic energies and forces from the description of their
local surrounding. To this end, the environment of each atom within a given cutoff radius
Rcut is described by a set of atom-centered symmetry functions (ACSFs) G. A wide variety of
ACSFs exists [273Ű275], but for the fairly simple systems studied in this work, the originally
proposed radial and angular ACSFs [272]

Grad
I =

∑︂

J ̸=I

exp[−η(RIJ − rs)2] fc(RIJ) , (2.29)

Gang
I = 21−ζ

∑︂

J,K ̸=I
J<K

(1 + λ cos θIJK)ζ e−η(R2

IJ
+R2

IK
+R2

JK
) fc(RIJ)fc(RIK)fc(RJK) (2.30)

are used. Here, RIJ = ♣RI − RJ ♣ is the distance between ions I and J , and θIJK is the angle
between the vectors connecting ions I and J and ions K and J . The cutoff function fc ensures
the ACSF smoothly vanishes at the cutoff radius Rcut. By varying the characteristic parameters
η, rs, ζ, and λ, a set of different ACSFs is constructed, which ought to be sufficiently large
and diverse to accurately describe the atomic environment. For a graphical representation of
the effect that these parameters have on the shape of the ACSFs, see Refs. [274, 276]. The
symmetry functions in this work are chosen according to the schemes presented in Refs. [274,
277].

Input
layer

Hidden layers
Output
layer

E

G1

G2

Figure 2.2: A schematic representa-
tion of a fully connected feed-forward
neural network that takes two symme-
try functions G1 and G2 to compute
the energy E (modeled after Ref. [276]).
Bias is omitted for readability.

With a given set of ACSFs, a neural network with a
Ąxed-size input layer can be constructed for each atom.
Figure 2.2 illustrates such a neural network if the envi-
ronment of the atom is described by only two ACSFs.
In practice, signiĄcantly more ACSFs must be chosen to
ensure an accurate description. The weights of the con-
nections between the neurons, given in light orange in
Fig. 2.2, can be adjusted to produce predictions that are
more aligned with the reference data. The number and
size of the hidden layers determine the degree of com-
plexity that the neural network can learn, where training
larger networks is more challenging. In this work, a typ-
ical fully connected feed-forward neural network is used,
and the output is the atomistic energy and the forces,
which can be computed as a derivative of the energy.
In the reference data produced by DFT simulations, the
forces are available for each individual atom, while only one total energy for the entire sim-
ulation box exists. The ab initio reference data is split up into a training set that usually
comprises 80% of the data, and a test set that makes up the remaining 20% of data. Training
is only performed on the training set, while the performance of the HDNNP is evaluated on the
test set. As mentioned, the weights of the HDNNP (strength of connections between neurons
and an additional bias term) are adjusted in order to achieve a better agreement between the
predictions and the reference data. The gradients of the predictions for energies and forces
with respect to the weights can be computed via backpropagation [278]. These gradients can
then be used to minimize a cost function, for example

Γ =
1

NE

NE∑︂

i=1

⎤
Ei,ref − Ei,NN

Nn

⎣2

+ γ
1

NF

NF∑︂

i=1

⎤
Fi,ref − Fi,NN

Nn

⎣2

. (2.31)

The total energies of the reference training conĄguration and the prediction by the neural
network are given by Ei,ref and Ei,NN, respectively, and NE is number of available reference
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energies. The quantities Fi,ref and Fi,NN, and NF are deĄned analogously, but the forces
are available for each atom and in every Cartesian direction. The weighting factor γ can be
adjusted to ensure more accurate predictions for energies or forces. Instead of updating the
weights after each epoch (one full pass through the training data) with standard methods
like gradient descent [279] or the adaptive moment solver [280], in practice, a Kalman Ąlter
approach [281, 282] is often chosen, which adjusts the weights every time a prediction is
compared to reference data.

In this thesis, the numerical implementation of the HDNNP in the n2p2 software package is
used [283Ű285] to learn the forces and energies, and the LAMMPS MD simulation code [286]
drives the NN-MDs. For a general overview of feed-forward neural networks, see Refs. [287Ű
289], and for a thorough discussion of HDNNPs, including newer generations of networks that
also consider long-range electrostatic interactions and non-locality, see Ref. [276].

2.2.2 Generalized collective modes

The generalized collective modes (GCM) approach provides a systematic framework to extend
the hydrodynamic description to include additional non-hydrodynamic structural or thermal
relaxation processes that occur on intermediate length and time scales. In the macroscopic
limit, dynamics of the three conserved hydrodynamic variables, the ion density ni(k, t), the
current density jl

i(k, t) (see Eqs. (2.18) and (2.19)), and the energy density

e(k, t) =
Nn∑︂

I=1

ϵI eik·RI(t) (2.32)

are governed by the Navier-Stokes equations [259Ű261]. It should be noted that the atomistic
energies ϵI in Eq. (2.32) are naturally available in the HDNNPs discussed in Sec. 2.2.1, which
is not the case for DFT-MD simulations. With the use of constitutive relations and the
application of temporal Laplace transforms, a hydrodynamic matrix equation can be set up,
the eigenmodes of which describe the diffusive and propagating modes of the hydrodynamic
model [261]. Within this model, the iDSF can be expressed as [261]

Sii(k, ω) =
Sii(k)

2π

⎦ ⎤
γ − 1

γ

⎣
2DTk2

ω2 + (DTk2)2

+
1
γ

⎠

Γk2

(ω − csk)2 + (Γk2)2
+

Γk2

(ω + csk)2 + (Γk2)2

⎜ ⎢

,

(2.33)

where γ = CP/CV is the heat capacity ratio, DT is the thermal diffusivity, Γ is the sound
attenuation coefficient, and cs is the adiabatic speed of sound.

A simple approach to extending this model beyond the hydrodynamic regime, referred to as
the generalized hydrodynamic model [290, 291], constitutes of introducing k-dependent mate-
rial properties in Eq. (2.33). These quantities can then be determined from Ąts to scattering
experiments at different angles, or MD simulations analyzed at different length scales. This ap-
proach, however, provides no pathway to directly compute the corrections to the hydrodynamic
model and gives no rationale for at which wave numbers non-hydrodynamic modes contribute
noticeably to the iDSF, rendering the hydrodynamic Ąt not suitable. The GCM approach was
Ąrst proposed in Refs. [292Ű294]. It extends the set of three hydrodynamic variables

A(3−mode)(k, t) = ¶ni(k, t), jl
i(k, t), e(k, t)♢ (2.34)
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to include time derivatives of these variables or other non-conserved quantities. In this work,
the Ąrst corrections to the hydrodynamic model in a 5-mode approximation

A(5−mode)(k, t) = ¶ni(k, t), jl
i(k, t), e(k, t), j̇

l
i(k, t), ė(k, t)♢ (2.35)

are considered by additionally including the Ąrst time derivatives of the longitudinal current
density and the energy density. The relation between these variables, which is established by
the Navier-Stokes equations in the hydrodynamic model, is derived via the Memory function
formalism [295Ű297] or the generalized Langevin equation [298, 299]. A Markovian approxima-
tion is applied to higher-order memory functions, which allows us to consider memory effects
and time correlations on intermediate time scales. The result of this procedure, analogous to
the hydrodynamic model, is a matrix equation deĄned by a generalized hydrodynamic matrix.
The eigenvectors Xi and eigenvalues zi of this matrix, again, characterize the collective modes
of the system under investigation. Eigenmodes corresponding to real eigenvalues describe diffu-
sive processes, while a pair of complex conjugate eigenvalues represents a propagating process.
In general, all time correlation functions among the variables in the set under consideration
(see Eqs. (2.34) and (2.35)) can be computed as a sum of the eigenmodes. The time correlation
function for the ion density, introduced as the intermediate scattering function in Eq. (2.21),
can be expressed as

Fii(k, t) =
Nν∑︂

i

Gi
nini

(k) e−zi(k)t , (2.36)

where the weight coefficients Gi
nini

for the time correlation function of the ion density can be
directly computed through the eigenvectors. The sum runs over all Nν eigenmodes. Other
time correlation functions, e.g., the current-current correlation function, can be determined
analogously. The iDSF is given by the temporal Fourier transform of Eq. (2.36). A detailed
account of the GCM approach is presented in Refs. [300, 301], and some applications ranging
from simple Lennard-Jones liquids to complex binary and molecular liquids are detailed in
Refs. [302Ű305]. Some easier-to-implement Ątting schemes based on the GCM approach are
presented in Refs. [306, 307].

The procedure outlined in this section, as well as the correlation functions Eqs. (2.21)-(2.24),
are implemented in the python array programming package NUMPY [308]. The eigenvectors and
eigenvalues of the generalized hydrodynamic matrix are computed through routines from the
SCIPY package [309].

2.3 Electron dynamics

The dynamics of the electrons occur on signiĄcantly shorter time scales than the previously
discussed ion dynamics. Equivalently, excitation energies associated with electronic transi-
tions in scattering experiments are notably higher as discussed in Sec. 1.2.2. Furthermore,
the electron dynamics are not simulated explicitly within in the DFT-MD framework. The
Ąnite temperature DFT formalism determines the average electron density in thermodynamic
equilibrium and performs no explicit time propagation. Therefore, static properties like the
form factor

N(k) = lim
τ→∞

1
τ

∫︂ τ

0
dt

ne(k, t)
ni(k, t)

(2.37)
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can be computed easily because the Fourier components of the equilibrium electron density at
each point in time, ne(r, t), can be computed via

ne(k, t) =
∫︂

R3

d3r ne(r, t)eik·r . (2.38)

The form factor determines how, on average, the electrons are statically distributed around the
ions, and thereby determines how strongly photons couple to the ions in scattering experiments,
see Eq. (1.7) and (1.8).

However, in order to access the electron dynamics, the known equilibrium state can be studied
via response theory. Although non-linear contributions to the response have received attention
recently [310], this thesis only considers the linear response regime, which is sufficient for
typical WDM scattering experiments.

Fundamental quantities relating the response of the system to external perturbations are the
dielectric function ϵ(k, ω), relating the total potential experienced by a test charge to the
external potential, and the density-density response function χ(k, ω), relating a change in
electron density to the external potential. For a non-isotropic periodic system, these quantities
ought to be written in a tensor form [311, 312] and a general relation between them is given
via [313Ű316]

ϵ−1
GG′(k, ω) = δGG′ + V C

GG′(k) χGG′(k, ω) , V C
GG′(k) =

1
ϵ0

e2

♣G + k♣♣G′ + k♣ , (2.39)

where δGG′ is the Kronecker delta and V C
GG′ is the Coulomb potential in Fourier space, often

called the Coulomb kernel. Here, a Bloch representation is assumed (as is suitable because
the DFT codes used in this thesis employ a plane wave basis set), and the subscripts indicate
that the tensors are expanded in the reciprocal lattice vectors G. Equation (2.39) reduces
to a scalar relation for homogeneous plasmas. In general, however, the macroscopic dielectric
function must be computed by

ϵM(k, ω) =
1

ϵ−1
00 (k, ω)

, (2.40)

where a full inversion of the dielectric tensor must be performed, yielding local Ąeld effect (LFE)
due to non-diagonal components. These effects are denoted as crystal LFE (C-LFE) according
to the classiĄcation in Ref. [317] to differentiate these contributions from LFEs due to XC
effects discussed in Sec. 2.3.1. Given the electronic response deĄned by these quantities, the
eDSF can be computed through the Ćuctuation dissipation theorem [318, 319] as

See (k, ω) = − ϵ0ℏk2

πe2ne

Im
]︄
ϵ−1(k, ω)

⌊︄

1 − exp
⎞

−ℏω
kBT

⎡ = − 1
πne

Im [χ(k, ω)]

1 − exp
⎞

−ℏω
kBT

⎡ , (2.41)

where ne is the average electron density. Whether this relation gives the total eDSF Stot
ee , the

eDSF of the free electrons S0
ee, or the eDSF due to electronic transitions Set (see Eqs. (1.7) and

(1.8)) is determined by the dynamics included in the response functions ϵ(k, ω) and χ(k, ω).
If they are derived in a framework that explicitly considers the ionic as well as the electronic
response to the external potential, the total eDSF can be computed. If the response functions
are determined for an electron gas model, S0

ee is achieved. In the LR-TDDFT framework
discussed in Sec. 2.3.1, the response functions are computed from all possible electronic tran-
sitions while the ions are kept stationary. Therefore, this approach yields the eDSF due to
electronic transitions Set which can be combined with the ion dynamics discussed in Sec. 2.2
via the modiĄed Chihara decomposition, Eq. (1.8).
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2.3.1 Linear-response time-dependent density functional theory

A natural approach to simulating the electron dynamics is to extend the description of the time-
independent Schrödinger equation (2.4) discussed in Sec. 2.1 to its time-dependent variant.
The applicability of a density functional approach for the dynamic system is given by the
Hohenberg-Kohn-type Runge-Gross theorem [234]. A real-time propagation of the electron
density within the density functional description is called RT-TDDFT [76Ű79], which brings
about additional complications as the XC functionals ought to be extended to a time-dependent
formulation [320, 321]. Alternatively, the time-dependent DFT framework can be used to
introduce a time-dependent external perturbation which can be treated in linear response [322Ű
324] based on the time-independent unperturbed system discussed in Sec. 2.1. As mentioned
before, the density-density response χ is deĄned by the change of electron density δne due to
a change in the external potential δVext, i.e.,

χ(r, r′, t, t′) =
δne[Vext](r, t)
δVext(r′, t′)

\︄
\︄
\︄
\︄
Vext=Vext[n0

e]

. (2.42)

Here, Vext is given by the Coulomb potential between electrons and ions (Vne in Eq. (2.3)) and
an arbitrary external Ąeld, which can be varied to produce the perturbation. However, the
external potential in DFT cannot be changed independently because the change in Vext leads
to a different electron density ne, which in turn leads to a different effective potential veff ,
see Eq. (2.15). In other words, the effective potential can be written as veff [ne[Vext]]. Since
the KS system describes non-interacting electrons in an effective potential, its density-density
response can be computed by varying the effective potential as

χKS(r, r′, t, t′) =
δne[veff ](r, t)
δveff(r′, t′)

\︄
\︄
\︄
\︄
veff=veff [n0

e]

. (2.43)

Equations (2.42) and (2.43) can then be related to each other by using the chain rule of
functional derivatives for Eq. (2.42) to give

χ(r, r′, t, t′) =
∫︂

d3x

∫︂

dτ
δne(r, t)

δveff(x, τ)
δveff(x, τ)
δVext(r′, t′)

\︄
\︄
\︄
\︄
Vext=Vext[n0

e]

. (2.44)

Now, Eq. (2.43) and the deĄnition of the effective potential, Eq. (2.15), can be plugged into
this expression. This yields a Dyson-like equation, which can be expressed in temporal and
spatial Fourier space as

χGG′(k, ω) =
χKS

GG′(k, ω)
1 −

]︄
V C

GG′(k) + fXC(k, ω)
⌊︄
χKS

GG′(k, ω)
. (2.45)

Here the Coulomb kernel V C
GG′(k) and the XC kernel fXC(k, ω) enter through the functional

derivative of veff in Eq. (2.44), and recover all the correlations which were lost in performing
a response calculation on the mean-Ąeld system as opposed to the fully interacting system.
Setting fXC(k, ω) = 0 achieves a mean Ąeld description on the level of the RPA [159Ű161]. In
contrast, not neglecting the XC kernel introduces LFEs due to exchange-correlation contribu-
tions, denoted exchange-correlation LFEs (XC-LFEs) [317]. A common choice for fXC(k, ω) is
the adiabatic local density approximation (ALDA) [190, 320]. This approximation, however,
has known shortcomings [325] and the formulation of new XC kernels is an active Ąeld of
research [326Ű330].
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The independent-particle density-density response of a KS system can be written as [311, 312,
331, 332]

χKS
GG′(k, ω) =

2
Ω

BZ∑︂

g

wg

∑︂

i,j

f(ϵg,i) − f(ϵg+k,j)
ℏω + ϵg,i − ϵg+k,j + iη

× ⟨ϕg,i♣e−i(k+G)·r♣ϕg+k,j⟩ ⟨ϕg+k,j ♣ei(k+G′)·r♣ϕg,i⟩ .

(2.46)

The indices i and j run over the eigenstates, g denotes the reciprocal vectors in the Brillouin
zone (BZ), and ϕg,i and ϵg,i are the KS wave functions and eigenenergies from Eq. (2.14).
The Fermi-Dirac occupation at a given eigenenergy is described by f(ϵg,i). The normalization
volume is denoted by Ω, and wg is the weighting of each k-point. The inĄnitesimal contribution
η is introduced to avoid the pole. If the XC kernel is set to zero and the homogeneous case is
studied, as is appropriate for WDM (see the appendix of Ref. [167]), Eq. (3.2) can be simpliĄed
to

ϵKS,RPA(k, ω) = 1 − e2

♣k♣2 χKS(k, ω), (2.47)

which represents the macroscopic value and can be used to compute the response of the elec-
trons in XRTS experiments.

In this thesis, the dielectric functions and density-density response functions in the LR-TDDFT
framework are computed with the GPAW code [243Ű246]. Extensive reviews of LR-TDDFT and
TD-TDDFT can be found in Refs. [190, 333, 334].

2.3.2 Electrical conductivity

Numerical computations of electrical conductivity in WDM are usually performed within linear
response theory [335Ű339]. Given the dielectric response of the macroscopic system, computed
through, e.g., the equations derived in the previous section, Eqs. (2.40) and (2.47), the dynamic
electrical conductivity σ(ω) is deĄned by

lim
k→0

ϵ(k, ω) = 1 + i
1

ϵ0ω
σ(ω) . (2.48)

The Ądelity of the conductivity computed through this approach is determined by the XC
functional FXC[ne] in Eq. (2.12), used to compute the KS orbitals and eigenenergies, and the
XC kernel fXC(k, ω) in Eq. (2.45), required to compute the response function.

Alternatively, an expression for σ(ω) [340] can be derived within the statistical framework
developed by Kubo [318]. In fact, a general expression for Onsager coefficients exists, from
which σ(ω) and other quantities such as the thermal electrical conductivity and the Lorenz
number can be determined [340, 341]. In a basis of KS orbitals, the conductivity according to
the Kubo-Greenwood formula [318, 342] is expressed as [343]

Re [σ(ω)] =
2πe2

3ωΩ

BZ∑︂

g

wg

∑︂

i,j

3∑︂

α=1

]︄
f(ϵg,j) − f(ϵg,i)

⌊︄

× ♣ ⟨ϕg,j ♣v̂α♣ϕg,i⟩ ♣2δ(ϵg,i − ϵg,j − ℏω).

(2.49)

Here, α runs over the spatial orientations, and the matrix elements ⟨ϕg,j ♣v̂α♣ϕg,i⟩ can be com-
puted from internal routines of DFT codes which take into consideration the effect of the
projector augmented wave method [344]. For practical purposes, due to the Ąnite inter-band
energy difference, the delta function in Eq. (2.49) ought to be replaced by a Gaussian with a



Computational methods 24

broadening parameter [345]. This parameter is considered a convergence parameter and must
be carefully chosen.

Various other numerical and analytic approaches exist to treat electron dynamics and compute
electrical conductivity. For instance, PIMC, especially in its Ąnite temperature formulation
and with its efficient implementation [81, 346, 347], supplies valuable ab initio results for
the homogeneous electron gas [83, 348Ű351]. It can provide response functions and structure
factors [352Ű355] beyond the XC approximations in DFT. Analytic expression for the direct
current conductivity are available in some limiting cases. In a seminal work, Spitzer and Härm
derived a value for non-degenerate ideal plasma limit [356], while the Ziman theory describes
the fully degenerate limit [357]. To describe the intermediate regime, various interpolation
formulas based on, e.g., a generalized Ziman formula [358, 359], a relaxation time approxima-
tion [360], and a generalized linear response theory approach combined with a virial expansion
of the conductivity [361] have been proposed. A comparison of the Kubo-Greenwood conduc-
tivity in Eq. (2.49) with a virial expansion of the conductivity is presented in Sec. 3.4.

2.4 Bayesian inference

Astrophysical modeling or the analysis of WDM experiments often include vastly complex
models that combine many correlated or uncorrelated input parameters to compute the quan-
tities of interest. Due to the potentially complicated interaction of these input parameters,
strong biases might be introduced by concentrating on a subset of the parameters and keeping
the remainder constant at heuristically (or arbitrarily) set values [43].

In a general scenario, a set of observed data of interest Y = ¶Yn, n = 1, . . . , Nobs♢ is given and
a probability distribution for a set of input parameters Θ = ¶Θn, n = 1, . . . , Npar♢, underlying
a model M(X; Θ) which computes the quantity of interest from independent variables X =
¶Xn, n = 1, . . . , Nind♢ is sought. Here, the number of observations, input parameters, and
independent parameters is given by Nobs, Npar, and Nind, respectively. In the example of an
XRTS experiment, the observations would be the scattering intensity under a scattering angle
at a given frequency shift, where the latter two quantities would represent the independent
variables. The model would be any sensible physical model that can describe the quantities in
Eq. (1.9) for a given scattering angle (or equivalently wave number k) and frequency shift ω.
The input parameters would be a set of parameters describing the target and the experimental
setup. In order to Ąnd the most likely underlying input parameters, Bayes’ theorem [362]

P (Θ♣Y) =
P (Y♣Θ) P (Θ)

P (Y)
(2.50)

can be employed. Here, P (Θ♣Y) is the posterior probability distribution for the parameters
Θ, given that Y was observed, which is the quantity of interest in this section. The prior prob-
ability P (Θ) encompasses the prior knowledge about the input parameters, which is available
before the observations are performed. This information might be due to prior observations
and experimental measurements or general restrictions for sensible values of the parameters.
The general probability of the observations is given by P (Y). This quantity can often not be
practically computed. However, since it does not depend on the input parameters, it can be
neglected during the inference of Θ. The likelihood function P (Y♣Θ) describes the likelihood
that the observations Y were randomly drawn from a given distribution around the true value
computed from the model M based on parameters Θ. A frequent assumption for the spread
of the observations is a normal distribution. However, in some situations, the nature of the
observation can be included here. For example, for the single-photon detectors employed in
Sec. 3.6.2, the distribution of observations around the true value is expected to be a Poisson
distribution.
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Efficient sampling of parameter space
The aim of this consideration is to determine P (Θ♣Y). However, Eq. (2.50) must be evaluated
for every possible value of the vector Θ. The dimension of the parameter space grows linearly
with the number of input parameters to the model M(X; Θ). Even for moderate-size models,
it becomes intractable to sample the full parameter space to determine the posterior probability
P (Θ♣Y).

Θmin

Θmax

P (Θ)

0 2 4 6 8 10
Iteration step

Rejected

Accepted

MCMC sampling P (Θ|Y)

Figure 2.3: A schematic representation
of Markov-Chain Monte-Carlo (MCMC) sam-
pling of a Gaussian distribution, modeled after
Ref. [363].

Therefore, more advanced sampling methods like
importance sampling, or MCMC sampling ought
to be used to avoid the regions of parameter space
where P (Θ♣Y) is low. A MCMC sampler nav-
igates through parameter space according to an
algorithm, and instead of computing the value of
the posterior probability at each point in param-
eter space, the posterior probability is given by
the frequency with which every point in param-
eter space is visited. A schematic representation
of this approach for a one-dimensional parameter
space is given in Fig. 2.3. One of the most promi-
nent MCMC samplers is the Metropolis-Hastings
algorithm [364, 365]. The central quantities in this algorithm are the proposal probability
g(Θ′♣Θ), which determines how new proposal points in parameter space are chosen, and the
acceptance probability A (Θ′♣Θ) of moving to a new point Θ′ in parameter space, given the
current position Θ. The proposal density g(Θ′♣Θ) must be chosen broad enough to ensure
that the parameter space is explored sufficiently but narrow enough to guarantee an appropri-
ate acceptance rate. The acceptance probability in the Metropolis-Hastings algorithm is given
by

A
(︁
Θ′♣Θ

[︄
= min

⎤

1,
P (Y♣Θ′) P (Θ′)
P (Y♣Θ) P (Θ)

g (Θ♣Θ′)
g (Θ′♣Θ)

⎣

. (2.51)

Here, the factor g(Θ♣Θ′)/g(Θ′♣Θ) accounts for biases introduced via asymmetric proposal
distributions. The algorithm can then be performed as follows:

1. Choose initial parameter vector Θ = Θ0.

2. Generate new sample according to g(Θ′♣Θ).

3. Evaluate the acceptance probability A(Θ′♣Θ) via Eq. (2.51).

4. Accept if a random number uniformly drawn from [0, 1] is smaller or equal to A(Θ′♣Θ).
Reject otherwise.

This cycle is performed until convergence in the histogram of sample frequency, shown on the
right in Fig. 2.3, is reached.

Although the Metropolis-Hastings algorithm performs well for moderate-size models, it ex-
hibits shortcomings in very high-dimensional cases, e.g., slow burn-in and low acceptance
rates. In these cases, more modern sampling approaches such as the Sequential Monte Carlo
algorithm [366Ű368] ought to be used. The Sequential Monte Carlo approach is considered an
extension of importance sampling. It produces uncorrelated samples, avoiding being trapped
in local minima, and does not require a burn-in period. The Bayesian inference in this the-
sis is performed within the PyMC3 package [369] and uses the Sequential Monte Carlo algo-
rithm. Although Bayesian analysis has been employed extensively in many Ąelds over the past
decades, only recently has it emerged as a powerful tool in the analysis of WDM scattering and
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diffraction experiments [42Ű45]. Further reading regarding Bayesian statistics and sampling
techniques can be found in Refs. [289, 370, 371].



3 Results

As discussed in Chapter 1, the Ąeld of WDM research relies tremendously on the combination
of sophisticated theoretical studies, experimental investigations of extreme states of matter in
the laboratory, astrophysical observations and accurate modeling of stellar and planetary evo-
lution and interior structure. The close connection of these Ąelds is schematically represented in
Fig. 3.1. This thesis presents advances in the theoretical description of ion and electron dynam-
ics based on DFT-MD simulations. These are driven mainly by adopting advanced machine
learning techniques and sophisticated many-body theory. The central quantities of interest
are electron-electron and ion-ion static and dynamic structure factors (iDSF, eDSF, iSSF &
eSSF). From these, material and transport properties relevant to astrophysical modeling, like
sound speed, ionic thermal conductivity, electrical conductivity, and others, can be deduced.
To ensure sufficient accuracy, the theoretical predictions are compared to experimental data
at ambient conditions and known theoretical limiting cases. Additionally, past XRTS experi-
ments at WDM conditions are reanalyzed using more advanced theoretical methods, and the
analysis of a new experiment at the NIF is presented. Moreover, the relevance of holistically
analyzing experimental results by also considering the experimental setup and free parameters
in the theoretical model within a consistent statistical framework is highlighted. Additional
contributions to several experimental campaigns are brieĆy mentioned, and further theoretical
support for ongoing analyses of experimental campaigns at GSI and the LCLS are presented.
A list of the scientiĄc works to which this author contributed and where the contribution was
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IV: M. Bethkenhagen et al., PRR 2 (2020)

V: M. Schörner et al., submitted (2023)

VI: G. Röpke et al., PRE 104 (2021)

VII: M. French et al., PRE 105 (2022)

VIII: T. Döppner et al., Nature 618 (2023)

IX: J. Lütgert et al., PoP 29 (2022)

X: A. Descamps et al., J. Synch. Rad. 29 (2022)

XI: Z. Chen et al., MRE 6 (2021)
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XIV: M. Frost et al., PRB 101 (2020)

XV: N. Hartley et al., Sci. Rep. 9 (2019)

XVI: D. Kraus et al., PoP 25 (2018)

Figure 3.1: A schematic overview of the interplay between experiments, simulations, astrophysical
modeling, and space missions/telescopes in the context of WDM research. For each Ąeld, a few topics
of interest are given. The areas of WDM experiments and simulations are shown larger than the other
sub-Ąelds to highlight that they are the focus of this thesis. A list of scientiĄc works this author
contributed to is shown at the bottom of the Ągure, and which area of WDM research the respective
works contributed to is indicated in the schematic overview by square brackets.
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made in the Ąeld is shown in Fig. 3.1. This work demonstrates the close interplay of theory
and experiment in WDM research.

3.1 New insights into ion dynamics at extreme conditions

through high-dimensional neural network potentials

[Papers I & II]

As described in Sec. 2.2.1, over the past two decades, the advent of HDNNPs has enabled the
simulation of large-scale systems with ab initio precision. After the Ąrst seminal work on the use
of neural networks for learning interatomic potentials [263], early applications focused on the
simulation of simple molecules [372, 373] and their interaction with metal surfaces [374, 375].
Only recently have these HDNNPs started to be applied in the WDM Ąeld [46, 47] and enabled
new insights and improved resolution for material properties like the iDSF and intermediate
scattering function, which, on a macroscopic scale, could previously only be analyzed for
classical MD simulations [376, 377]. For a detailed account of the progress made in HDNNPs,
see Ref. [276].

In paper I [378] and paper II [379], the neural network architecture proposed by Behler and
Parinello [272] is employed to learn the atomistic energies and forces in aluminum and copper.
Paper I [378] considers a wide range of conditions in aluminum ranging from the liquid metal to
the warm dense regime and explores to which extent the hydrodynamic regime can be reached
and what material properties can be extracted there. The necessary formulas and algorithms
for computing the iSSF Sii(k), as well as the iDSF Sii(k, ω) and intermediate scattering function
Fii(k, t) are presented. The predictions for Sii(k) and Sii(k, ω) are compared to experimental
data at liquid metal conditions by Waseda [380] and Scopigno et al. [381], respectively, showing
good agreement with the diffraction measurement and exhibiting the general trends observed
in the inelastic X-ray scattering experiment. Furthermore, it is veriĄed that the NN-MDs
reproduce the static and dynamic properties computed from DFT-MD in the k range accessible
to both approaches across all considered conditions so that the presented NN-MD results can
be expected to represent ab initio precision.

To systematically study the convergence towards the macroscopic limit and the hydrodynamic
description, valid at large distances and long time scales, the framework of the GCM approach
is used; see Sec. 2.2.2. Additional modes, which go beyond the diffusive heat and the propa-
gating sound mode known from the hydrodynamic model [261], can be accounted for in this
framework. However, these non-hydrodynamic modes vanish in the limit of small k as de-
picted in Fig. 8 of paper I [378], leaving only one diffusive and one propagating mode. As these
modes coincide with the hydrodynamic modes in the limit k → 0, they can be identiĄed as
generalized hydrodynamic modes [291] for Ąnite k as long as non-hydrodynamic modes do not
signiĄcantly contribute to the dynamics. In the hydrodynamic model, the shape of the iDSF
is given by macroscopic material properties, e.g., heat capacity ratio γ, thermal diffusivity DT ,
and adiabatic speed of sound cs. For the generalized hydrodynamic modes, these properties
become k-dependent and only converge toward their macroscopic values when the macroscopic
limit is reached. This convergence is exempliĄed in Fig. 3.2 for one of the conditions covered
in paper I [378], i.e., T = 1 eV and ρ = 2.356 g/cm3. The k-dependent generalized heat capac-
ity ratio γ(k) and the generalized ionic thermal conductivity λ(k), determined through Ątting
Sii(k, ω) and Fii(k, t) to two generalized hydrodynamic modes, are shown with their respective
uncertainties. Both quantities converge to their macroscopic values, which are computed from
thermodynamic derivatives [382] for γ and a Green-Kubo relation [383] for λ; see the dashed
lines in Fig. 3.2. The hydrodynamic limit is reached in the NN-MD simulations, whereas in
the DFT-MD simulation with 125 atoms (not shown here), wave numbers below 0.5 Å−1 are
not attainable. Further conditions of liquid aluminum and other quantities, e.g., the adiabatic
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speed of sound and the sound attenuation coefficient, are studied in detail, and a comprehen-
sive summary of the obtained values is given in paper I [378]. Especially for converting the
thermal diffusivity to the ionic thermal conductivity, it is pointed out that great care must
be taken in partitioning the heat capacity into electronic and ionic contributions. Only the
ionic contribution to the heat capacity should be considered to arrive at the correct value for
λ.
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Figure 3.2: The generalized heat capacity ratio γ(k) (green
Ąlled circles) and generalized ionic thermal conductivity λ(k)
(blue Ąlled circles) depending on the wave number k for
liquid aluminum at T = 1 eV and ρ = 2.356 g/cm3; see
paper I [378] for details. The macroscopic values for the re-
spective quantities are given by the dashed lines, computed
from thermodynamic derivatives (TD) [382] and a Green-
Kubo relation [383]. The shaded areas represent the uncer-
tainty.

The framework presented in pa-
per I [378] for aluminum, in particu-
lar the calculation of iSSFs and iDSFs
from NN-MDs, is applied to a typi-
cal WDM experiment, i.e., a dynamic
shock compression (see Sec. 1.2.1),
for copper in paper II [379]. Ad-
ditionally, the study is extended to
the solid phase of copper. It con-
siders transverse excitations by de-
composing the current-current corre-
lation spectrum Jii(k, ω) into its lon-
gitudinal and transverse parts as de-
scribed in Eq. (2.24). For solid cop-
per, the phonon spectrum along high-
symmetry orientations in reciprocal
space, derived from the peak posi-
tions of the longitudinal and trans-
verse parts of J

l/t
ii (k, ω), is calculated.

It is compared to experimental data
by Nicklow et al. [384] showing ex-
cellent agreement. Furthermore, the
electrical conductivity is computed
via the Kubo-Greenwood formula, Eq. (2.49), with the PBE [220] and HSE [227, 228] func-
tionals, and via LR-TDDFT, Eq. (2.47). The general agreement to absorption measurements
by Henke et al. [385] is good for all approaches. However, the Ąrst dip in conductivity at
approximately 2 eV is underestimated by all theories; see Fig. 3 in paper II [379]. For copper
in the liquid metal regime, the method is benchmarked by comparing the iSSF to neutron
and X-ray diffraction measurements by Waseda and Ohtani [145], and Eder et al. [386], re-
spectively, demonstrating good agreement. Additionally, the accuracy of the iDSF is gauged
by comparing the peak width of the central thermal mode predicted by the NN-MD simula-
tions with experimental Ąndings by Hagen [387], and Eder et al. [386]. It is found that the
de Gennes minimum [388] and the behavior at higher k are reproduced very well. Only at
the smallest wave numbers covered experimentally the NN-MD overestimates the width; see
Sec. IV. of paper II [379] for more discussion.

Given the good agreement with experimental data, the study is extended to higher temper-
atures and pressures where experimental observations are very scarce. DFT-MD simulations
have proven suitable to predict the states reached during shock compression experiments via
the Hugoniot equation (1.3) [18, 114, 115]. Therefore, EOS data up to 60 000 K are com-
puted via DFT-MD simulations and are subsequently used to solve Eq. (1.3) numerically. The
resulting principal Hugoniot curve is shown in the density-pressure and pressure-temperature
plane in Figs. 7 and 8 of paper II [379], respectively. The results are compared to various ex-
perimental data (see Refs. [389Ű396]), and good agreement is found at relatively low pressures,
where the DFT-MD predictions are also comparable to the SESAME EOS table [397]. At
higher pressure (approximately above 800 GPa), the principal Hugoniot curve diverges from
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the SESAME predictions. Unfortunately, the experimental uncertainties in this regime are
too signiĄcant to discriminate between the two approaches. Along the computed principal
Hugoniot curve, the evolution of the ion correlations is studied. Up to the melting point, the
phonon spectrum is studied, and beyond, the iSSF and iDSF are considered and discussed in
detail. The adiabatic speed of sound cs, which is connected to the behavior of the propagating
sound mode in the iDSF as shown in paper I [378], is compared to VISAR observations in
a shock-compression experiment by McCoy et al. [394]. The trends with increasing pressure
are reproduced well, but the simulations slightly underestimate cs. However, the pressure and
density observed in the shock-compression experiment align with the predictions of the simu-
lation, indicating that the observed differences are due to a different temperature which was
not observed by McCoy et al.

In Fig. 3.3, the GCM formalism described in paper I [378] and Sec. 2.2.2 is applied to two
conditions beyond the melting point on the principal Hugoniot curve presented in paper II [379].
The Ąrst condition, shown in the left column, is close to the melting line at P = 3.93 Mbar, and
the second condition, depicted in the right column, is at P = 9.41 Mbar, much farther away
from the melting line with a temperature of 30 000 K. It is remarkable that, since the GCM
formalism requires the knowledge of the energy for each atom (see Sec. 2.2.2), it cannot be

0.00

0.05

0.10

α
,β

[1
/f
s]

P = 3.93 Mbar P = 9.41 Mbar

0.0 0.5 1.0 1.5 2.0

k [Å−1]
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Figure 3.3: The GCM description of the iDSF of shock-compressed copper at P = 3.93 Mbar (left
column) and P = 9.41 Mbar (right column) on the principal Hugoniot curve; see paper II [379] for
the exact conditions. The top row shows the respective decay coefficients α and β of the diffusive
and propagating modes for the three and Ąve-mode approaches. The middle row shows the dispersion
relations for the propagating modes. The bottom row shows the predictions of the three and Ąve-mode
approaches for three different wave numbers (in units Å−1), given by the black numbers, compared to
the full dynamics observed directly from the MD simulation.
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easily applied to DFT-MD simulations because these individual energies are not available due
to the many-body nature of DFT. However, because the HDNNPs learn the energies and forces
for each particle, this information is naturally accessible when performing NN-MD simulations.
For the two conditions along the Hugoniot, the top two rows of Fig. 3.3 display the same analysis
as performed on warm dense aluminum in Fig. 8 of paper I [378]. The decay coefficients of
the diffusive and propagating modes and the dispersion relations for the propagating modes
are computed according to the three and Ąve-mode models; see Sec. 2.2.2. As expected, only
the hydrodynamic modes exhibit non-vanishing decay coefficients in the hydrodynamic limit.
Two additional diffusive modes with Ąnite decay coefficients appear, as was also observed for
aluminum. For P = 3.93 Mbar, these two modes merge at 0.6 Å−1 to create a propagating
mode. In contrast, at the higher pressure, one of the non-hydrodynamic modes merges with
the hydrodynamic diffusive mode to create the new propagating mode. The bottom row
of Fig. 3.3 shows the iDSF computed directly from the NN-MD simulations via Eq. (2.22) in
black compared to the dynamic predictions from the three and Ąve-mode approaches as dashed
lines. For this analysis, the window function discussed in paper I [378] is not applied, which
results in the high statistical Ćuctuations in the iDSF. It is apparent that the three-mode
approach quickly deteriorates at wave numbers above 0.6 Å−1, signiĄcantly underestimating
the mode position of the ion-acoustic mode. Contrarily, the Ąve-mode approach captures its
general position well up to the intermediate wave number regime, indicating that the non-
hydrodynamic corrections play an essential role in this regime. However, for the Hugoniot
state close to the melting line, the magnitude of the ion-acoustic mode is overestimated at
k = 1.26 Å−1. At the same time, the agreement at this wave number is still good for the higher
pressure state. Higher-order non-hydrodynamic corrections have a stronger impact in more
strongly correlated systems because the strong Coulomb interactions on intermediate length
scales are not captured by the hydrodynamic equations. Figure 9 of paper II [379] illustrates the
change in the iSSF along the principal Hugoniot which demonstrates the decrease in strong
correlations with increasing temperature. This observation is relevant for the execution of
meV scattering experiments. The probed wave number can be determined by adjusting the
scattering angle accordingly. In order to measure the iDSF in the hydrodynamic regime, the
contribution of non-hydrodynamic modes must be negligible at the investigated k value.

3.2 Inelastic electronic dynamic structure factor at extreme

conditions [Papers III & IV]

Since the Ąrst experimental observation of forward scattering in WDM in 2007 [94], the theoret-
ical methods for describing the light-matter interaction and the collective phenomena probed
in forward scattering have improved tremendously. In the early years of this emerging Ąeld,
the RPA was often used to describe the free electrons [95, 398], which neglects all collisions and
includes an average screening mediated through the Coulomb interaction. Due to low exper-
imental signal-to-noise ratios, this approach yielded adequate results at the time. To include
electron-ion (e-i) collisions, the Mermin formalism, which extends the RPA via a dynamic com-
plex collision frequency [399Ű401], was combined with a variety of approximate expressions for
the e-i collisions [402]. This was further improved by computing Ąrst a static [403] and then
a dynamic collision frequency [166] by using the electrical conductivity computed through the
Kubo-Greenwood formula, Eq. (2.49), from DFT simulations. However, because these analytic
approaches lack a notion of bound states, they can only be applied to the free electrons, while
the bound states are traditionally treated within the impulse approximation [163Ű165]. In
WDM, this clear separation into bound and free electrons breaks down due to thermal and
pressure ionization [404] and traditional deĄnitions of the ionization state, which enter in the
Chihara decomposition of the eDSF as a weighting factor (see Eq. (1.7)), predict unreasonable
behavior [405Ű407]. This can be circumvented by considering all electrons within the same
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framework, for example, LR-TDDFT (see Sec. 2.3.1), which has been used more recently in
WDM [52, 65, 408]. Although much more computationally expensive than the analytic descrip-
tions, LR-TDDFT simulations allow us to fully consider many-body and quantum mechanical
correlation and degeneracy effects. Further theories that are capable of describing bound and
free states in WDM are RT-TDDFT [78, 79] and PIMC [80Ű83] among others, which are beyond
the scope of this thesis.

Paper III [167] contains a detailed comparison of the state-of-the-art Mermin-based approach
with the dynamic collision frequency computed from Kubo-Greenwood conductivities and the
LR-TDDFT formalism, while paper IV [404] explores how the electrical conductivity can be
decomposed into contributions from free-free and bound-free transitions, and how this can be
used to give a sensible deĄnition of the ionization state in the WDM regime. The decomposition
of the electrical conductivity is performed by restricting the sums over initial and Ąnal states
in the Kubo-Greenwood formula, Eq. (2.49), to speciĄc sets of states that can be identiĄed
from the density of states (DOS). In the case of carbon, the DOS shows a band of quasi-
bound states to the left of the band gap, which become the well-known 1s states in the limit
of an isolated atom. To the right of the band gap, a conduction band can be observed. In
Fig. 2 of paper IV [404], the severe broadening of the quasi-bound states and closing of the
band gap with increasing density is illustrated. The possible transitions contributing to the
electrical conductivity in this case can be summarized as bound-bound (b-b), bound-free (b-f),
and free-free (f-f) transitions; see Fig. 1 of paper IV [404] for a visualization. The well-known
Thomas-Reiche-Kuhn sum rule [409Ű412] connects the integral over the dynamic electrical
conductivity with the total number of electrons. The idea is now to apply this sum rule to the
individual parts of the decomposed electrical conductivity. The number of electrons associated
with a speciĄc set of transitions can then be related to the decomposed electrical conductivity
via

Zx :=
2meV

πe2Ni

∫︂ ∞

0
dω σx(ω), x = ¶f − f, b − f, b − b♢ . (3.1)

As a consequence, an average ionization state Z f can be connected to the number of electrons
per atom contributing to the free-free conductivity σf−f(ω) via Zf = Zf−f . In contrast, a
traditional approach is to integrate the occupied DOS in the conduction band to deĄne the
number of free electrons [413Ű415]. However, this approach neglects the nature of the quasi-
bound states to the left of the band gap and cannot account for the delocalization of formerly
bound states. The deĄnition in Eq. (3.1) does not suffer from this shortcoming because the
sum rule relies on the completeness of the electronic basis set. Therefore, although the integral
is performed solely over the free-free part of the conductivity, the ionization state also includes
overlap integrals of quasi-bound and free states, which increase as the bound states delocal-
ize. Figure 3.4 shows a comparison of the traditional DOS-based approach to computing the
ionization state (left column) and the sum-rule-based approach of Eq. (3.1) (right column)
for the conditions of isochorically heated (top row) and compressed (bottom row) beryllium
studied in paper III [167]. For the isochorically heated sample at ambient density, the DOS-
based approach yields an ionization state Zf = 2, suggesting no temperature ionization of the
1s electrons at this temperature. Conversely, the sum-rule-based approach predicts a slight
increase in the ionization state due to thermal excitation. However, the shortcomings of the
DOS-based approach become especially apparent for highly compressed beryllium. The ion-
ization state Zf = 2.12 predicted by the DOS-based approach indicates almost no pressure
ionization occurs at more than 20-fold compression. In contrast, the deĄnition from Eq. (3.1)
considers the signiĄcant broadening of the quasi-bound states and the closing of the band gap
and accordingly determines the ionization state as Z f = 2.9. A more comprehensive study
of the sum-rule-based deĄnition of the ionization state for carbon and hydrocarbon and a
thorough comparison to analytical models are presented in paper IV [404].
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Figure 3.4: An illustration of the DOS approach (left column) and the sum-rule-based approach (right
column) to determine the ionization state for beryllium at ρ = 1.8 g/cm3 and T = 12 eV (top row) and
ρ = 40 g/cm3 and T = 50 eV (bottom row). The black lines in the left column depict the DOS per
atom, and the blue and dark orange shaded areas indicate the occupied quasi-bound and free states,
respectively. The colored numbers represent the summed-up occupations per atom for the respective
shaded areas. The solid lines in the right column depict the full electrical conductivity (black) and the
decomposition into contributions from b-f (blue), f-f (dark orange), and b-b (light orange) transitions.
The dashed lines depict the values of Zx in Eq. (3.1) in dependence of the upper limit of the integral,
while the colored numbers specify their converged values.

The dynamic electrical conductivity is intimately connected to the dielectric function, see
Eq. (2.48), which can be used to compute the eDSF, as described by the Ćuctuation-dissipation
theorem in Eq. (2.41). Paper III [167] examines how the decomposition of the electrical conduc-
tivity shown in the right column of Fig. 3.4 can be used to determine an ab initio e-i collision
frequency for the free electrons and how this can be used to compute the eDSF across a range of
wave numbers for fully ionized hydrogen, and isochorically heated and compressed beryllium.
These results are compared to LR-TDDFT simulations, the state-of-the-art ab initio approach
for computing the eDSF. The collision frequency is found as the complex collision frequency
ν(ω), which, when plugged into the Mermin dielectric function ϵMermin, yields the same result
as the dielectric function computed from DFT ϵDFT in the long wavelength limit:

ϵDFT (k = 0, ω) != lim
k→0

ϵMermin (k, ω; ν (ω)) . (3.2)

The thus determined e-i collision frequency, νDFT, is compared to a variety of analytic ap-
proaches [402] for a hydrogen plasma at ρ = 2 g/cm3 and temperatures ranging from T = 5 eV
to T = 100 eV; see Fig. 3 in paper III [167]. In the limit approaching an ideal hydrogen plasma,
T = 100 eV, best agreement is observed with the T-Matrix and Gould-DeWitt approach [416Ű
418], indicating that strong collisions must be included in this regime to reach reliable results.
Additional consideration of electron-electron (e-e) scattering in the Gould-DeWitt scheme re-
sults in worse agreement with νDFT in accordance with the results of paper VI [419] and
paper VII [420], which are discussed in Sec. 3.4.
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Due to the full ionization of the hydrogen plasma, the total electrical conductivity can be
used to determine νDFT, while for beryllium, special care must be taken of the bound states.
Because the Mermin dielectric function is unsuitable to describe bound states, only the f-f
contribution to the electrical conductivity shown in the right column of Fig. 3.4 ought to
be used to compute the e-i collision frequency. The b-f contribution to the eDSF can then be
approximated by the impulse approximation [163Ű165] or by assuming that the b-f contribution
up to intermediate wave numbers can be well approximated by its result from σb-f at k =
0 Å−1. The latter approach has shown good results in aluminum [166] and is also adopted in
paper III [167]. For such a decomposition into b-f and f-f contributions, the correct weighting
factors, traditionally assumed to be the ionization states Zb and Zf , for the b-f and f-f feature
in Eq. (1.7) must be chosen. Figure 5 in paper III [167] illustrates that consistent results with
LR-TDDFT, which does not perform this separation, can be achieved if the ionization states
Zb and Zf are computed according to the sum rule in Eq. (3.1). Therefore, the deĄnition
of ionization state put forward in paper IV [404] not only predicts sensible trends at high
temperatures and densities but also is closely connected to one of the premier diagnostic tools
available in WDM experiments. Lastly, paper III [167] shows that the collective many-body
effects described through the e-i collision frequency or the LR-TDDFT formalism can have
a substantial effect on the inferred plasma conditions in forward scattering experiments. An
experiment by Döppner et al. [398] is reanalyzed and the initially inferred density of 1.17 g/cm3,
found by describing the plasmon through the RPA, is determined to be approximately 35%
lower than the 1.8 g/cm3 extracted using LR-TDDFT. Conversely, good agreement between
LR-TDDFT and the RPA is observed for a backscattering experiment by Kritcher et al. [96],
which mainly probes the single-particle regime.

3.3 Collective X-ray Thomson scattering at the National

Ignition Facility [Paper V]

As mentioned in Chapter 1, the accurate modeling of red dwarfs is vital to the understanding
of their habitable zone [30]. Simulations of their evolution and magnetic activity rely on fairly
simple models for electrical conductivity and opacity. Therefore, it is paramount to perform
more advanced many-particle simulations at the conditions present in the interior of these
stars, and to establish an experimental platform that can reliably achieve these conditions.
Paper V presents the results of the Ąrst forward scattering XRTS experiment at the NIF and
analyzes it based on an ab initio data set for the total eDSF using a Bayesian perspective
that takes the impact of the experimental setup into account. While the results of Sec. 3.1
and Sec. 3.2 are focused on ion and electron dynamics, respectively, the results in paper V
consider both. The iSSF modulated by the form factor ♣N(k)♣2 Sii(k) gives the magnitude of
the ion feature, and the electronic response via the dielectric function represents the inelastic
part (plasmon and b-f feature) of the eDSF Set. This full ab initio description of the eDSF is
combined with an accurate parameterization of the instrument and source function [171] for
the speciĄc experimental setup shown in Fig. 1 of paper V to analyze the collective XRTS
spectra. Due to the close connection of the eDSF to the electrical conductivity outlined in
Sec. 3.2, this analysis enables the inference of electrical conductivity at the extreme conditions
created at the NIF.

As mentioned in Sec. 1.2.1, the NIF, as the most powerful laser facility in the world, has the
unique capability to create matter at the extreme conditions present in the interior of planets
and small stars [105, 421]. For the experiment, 184 beams of the NIF were used to drive the
compression of a beryllium capsule to extreme densities. An intense X-ray bath, created by
irradiating a gold cavity at the center of which the beryllium capsule was located, ablated the
capsule’s outer layer, resulting in a peak inward velocity of 200 km/s. This implosion was
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Figure 3.5: The left panel shows the interpolated inelastic eDSF due to electronic transitions Set for
beryllium at k = 2.36 Å−1 (30◦ scattering angle). The top and bottom left panel show Set at T = 200 eV
and ρ = 20 g/cm3, respectively, for the density and temperature ranges covered in paper V. The right
panel shows the magnitude of the ion feature given by ♣N(k)♣2 Sii(k) for k = 2.36 Å−1 (30◦ scattering
angle) in the top panel and k = 3.48 Å−1 (45◦ scattering angle) in the bottom panel.

observed to stagnate at about 18 ns after the start of the laser drive. For a detailed account of
radiation-hydrodynamic simulations of this implosion, see Ref. [422]. An X-ray source for the
XRTS measurements was created by irradiating a zinc foil with the eight remaining beams of
the NIF. Additionally, the X-rays passed through a copper foil, suppressing the higher energy
zinc He-α line, to create a more narrow spectral function as discussed and parameterized in
Ref. [171]. After scattering off of the stagnating beryllium shell, the photons are collected in
forward direction at 30◦ and 45◦ scattering angles.

The total eDSF is computed within the modiĄed Chihara decomposition, Eq. (1.8), on a
grid spanning from 50 to 200 eV, and 5 to 120 g/cm3, by computing the ion feature and
the inelastic feature separately. Although the iDSF Sii(k, ω) appears in the ion feature in
Eq. (1.8), its spectral width is vastly more narrow than the spectral function of the zinc foil,
and can therefore be replaced by the iSSF Sii(k) and a delta distribution in frequency space.
As discussed in paper I [378], Sii(k) can be computed from the ion positions during the DFT-
MD simulation and the lowest accessible wave number k is given by the simulation box size.
Therefore, between 8 and 128 atoms are used depending on the density to enable access to
low enough wave numbers. The total form factor N(k) can also be computed from snapshots
of the DFT-MD simulations using Eq. (2.37). A two-dimensional cubic interpolation between
the grid points is performed to achieve a Ąner resolution in the density-temperature plane.
The combined quantity ♣N(k)♣2 Sii(k) is shown in the right panel of Fig. 3.5 for k = 2.36 Å−1

(top panel) and k = 3.48 Å−1 (bottom panel), which corresponds to the two scattering angles
recorded during the experiment.

The inelastic contribution to the eDSF can be computed for snapshots of the DFT-MD simula-
tion via LR-TDDFT; see the description in Sec. 3.2 and paper III [167]. Interpolating between
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spectra with shifted spectral weights is notoriously difficult [423]. Therefore, an interpolation
scheme developed explicitly for interpolating spectra that adhere to sum rules [423] is employed
to compute Set on a Ąner density-temperature grid. The result of this interpolation is shown
in the left panel of Fig. 3.5 for T = 200 eV (top panel) and ρ = 20 g/cm3 (bottom panel) at the
wave number corresponding to the 30◦ scattering angle. The shifting of the plasmon feature to
higher energies with increasing density can be observed and, especially at low densities, a peak
at ℏω = 0 eV arises, which has previously not been observed in analytic theories [71, 166, 403].
A similar peak has also recently been observed in PIMC simulations [424]. Due to its increase
at high temperatures and low densities, it is suspected to arise from b-b transitions involving
no energy transfer.

Convolving the simulation data in Fig. 3.5 with the parameterized instrument and source
function from Ref. [171], the scattering spectrum can be modeled with 12 input parameters,
two of which are physical and ten of which are experimental. To analyze the experimental
data with such a high-dimensional parameter space, Bayes’ theorem is employed (see Sec. 2.4,
speciĄcally Eq. (2.50)) to infer the plasma parameters. Including the experimental param-
eters in this analysis avoids the biasing of the results due to arbitrarily Ąxed experimental
parameters. The sequential Monte Carlo algorithm is employed to sample the parameter space
efficiently [367, 368], see Sec. 2.4. The right panel of Fig. 2 in paper V presents the probabil-
ity distribution p(ρ, T ♣Exp.) of the probed mass density and temperature given the observed
experimental spectrum. The results of three separate scattering experiments at two different
scattering angles are in good agreement with each other, demonstrating the reproducibility
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of the experiment. Additionally, the recorded spectra are well reproduced by the posterior
predictions of the probability distribution for the input parameters; see the left panel of Fig. 2
in paper V.

Furthermore, the inelastic response of the electrons is intimately connected to the electrical con-
ductivity, enabling inferences about conductivity from collective scattering experiments. The
direct current conductivity σDC can be computed via the Kubo-Greenwood formula, Eq. (2.49),
on the same snapshots used for the prediction of Set to infer the electrical conductivity present
in the conditions probed during the experiment. A summary of these results in the pressure-
temperature regime of interest and the P −T paths of relevant astrophysical objects are shown
in Fig. 3 of paper V, showing that conductivities up to 8.2+0.8

−0.4 MS/m were observed. To high-
light differences between the presented many-body ab initio conductivities and relaxation time
approximation (RTA) models commonly used in stellar evolution codes [426, 427], the here
presented Kubo-Greenwood conductivities along four isotherms are contrasted with results
from the RTA presented in paper VII [420] in Fig. 3.6. The RTA model requires an ionization
state Zf to compute the conductivity. The upper panel of Fig. 3.6 shows results from the RTA
model with ionization states from the widely used OPAL table [425] and ionization states from
DFT that are obtained according to the approach outlined in Sec. 3.2. The general trends
agree well with the ab initio data. However, especially at the lower temperatures, the analytic
results overestimate the conductivity by more than 100% compared to the ab initio data. To
better illustrate the differences, the ratios of the RTA-based conductivities σRTA and the DFT
conductivities σDFT for both investigated ionization states are displayed in the lower panel of
Fig. 3.6. DFT-based ionization states yield better agreement with the ab initio conductivities
across all considered densities and temperatures, although the deviation remains above 30%
for all conditions.

3.4 Benchmarking density functional theory conductivity in

the ideal-plasma limit [Papers VI & VII]

The electrical conductivity computed from the Kubo-Greenwood formula, Eq. (2.49), was used
extensively in Secs. 3.2 and 3.3, and was also employed in paper II [379]. Paper VI [419] and
paper VII [420] present a more foundational study of the physical processes included in this
approach to computing transport properties and propose an approach to benchmark other
analytic models and numerical calculation in the limit of ideal plasmas.

As discussed in Chapter 1, accurately describing WDM is notoriously difficult due to non-
negligible degeneracy and strong correlations. The best approaches to describing this state of
matter, e.g., DFT-MD, RT-TDDFT or PIMC, account for the many-body nature of WDM
while also considering quantum mechanical effects via the Schrödinger equation. Although
these theories are expected to be best suited to describe WDM, it is paramount to verify
their accuracy. As experimental measurements of transport properties are exceedingly diffi-
cult at these conditions, it is natural to study predictions in known limiting cases, e.g., the
electrical DC conductivity in the low-density limit as presented in the seminal work by Spitzer
and Härm [356]. Further principal checks that can be performed are the satisfaction of the
Kramers-Kronig relations [428, 429] for response functions and various sum rules, as described
in Sec. 3.2.

Paper VI [419] proposes to use a virial expansion obtained from kinetic theory and generalized
linear response theory [54, 430, 431] to study the electrical conductivity in the low-density
limit. The expansion can be performed in terms of the dimensionless parameter Γ/Θ, which
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is proportional to the electron density ne, resulting in

σ =
(kBT )3/2(4πϵ0)2

m
1/2
e e2

1

ρ1̃(T ) ln(Θ/Γ) + ρ2̃(T ) + ρ3̃(T ) (Γ/Θ)1/2 ln(Θ/Γ) + . . .
⏞ ⏟⏟ ⏞

ρ∗

, (3.3)

where Θ and Γ are the degeneracy and coupling parameters; see Eqs. (1.1) and (1.2). This
expression can be found from the virial expansion of the inverse dimensionless electrical
conductivity, i.e., the dimensionless electrical resistivity ρ∗ (see Eq. (4) in paper VI [419]).
The Ąrst virial coefficient ρ1̃(T ) determines the behavior of the DC conductivity in the low-
density limit, whereas the second coefficient ρ2̃(T ) predicts the Ąrst corrections with rising
density. Higher virial coefficients become increasingly important farther away from the low-
density limit. Spitzer and Härm computed the exact value for the Ąrst virial coefficient as
ρ1̃

Spitzer = 0.846 [356]. It is independent of the temperature, although, in general, the virial
coefficients carry a temperature dependence. An analogous result for a Lorentz plasma where
the electrons only interact with the ions via a statically screened Coulomb potential, in that
way neglecting e-e collisions, can be determined as ρ1̃

Lorentz = 0.492 [430, 432, 433].
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Figure 3.7: Second virial coefficient of hydro-
gen, adapted from the supplemental material of pa-
per VI [419] and Ref. [434]. An interpolation for-
mula by Esser, Redmer, and Röpke (ERR) [361] and
Eq. (16) of paper VI [419] are shown as dashed lines,
as well as experimental data from Refs. [435Ű438].

With these known limits, paper VI [419]
introduces a new quantity ρ̃(x, T ) =
ρ∗/ ln [Θ/Γ] and contrasts its low-density be-
havior with various analytical models (see
Refs. [438Ű441]) and numerical calculations
(see Refs. [438, 439]) as a function of x =
1/ ln [Θ/Γ]. Due to the particular choice
of ρ̃(x, T ), it will take on the value of the
Ąrst virial coefficient in the low-density limit.
As x is proportional to the electron den-
sity, the correct limit, i.e., the virial coeffi-
cient by Spitzer and Härm including e-e col-
lisions, ought to be obtained at x = 0 in
the intersection with the y-axis for Figs. 1
and 2 in paper VI [419]. A full discussion
of which analytic approaches satisfy the cor-
rect low-density limit can be found there. In
Fig. 2 of paper VI [419], new DFT-MD results
along with orbital-free DFT-MD simulations
by Lambert et al. [439] and DFT-MD simu-
lations by Desjarlais et al. [438] are presented. The results are obtained by computing the
dynamic electrical conductivity via the Kubo-Greenwood formula, Eq. (2.49), and extending
them to ω → 0 to arrive at the DC conductivity. Subsequently, ρ∗ and ρ̃ can be computed
and displayed as a function of x = 1/ ln [Θ/Γ]. The new results show a clear trend towards the
virial coefficient of the Lorentz plasma, as can be seen from the linear extrapolation shown in
Fig. 2 of paper VI [419]. In stark contrast, the results of Desjarlais et al. tend towards the
quantum Lenard-Balescu (QLB) result by Karakhtanov et al. [440]. However, as discussed in
paper VII [420], this behavior is due to an under-converged DC conductivity with respect to
particle number.

In Eq. (16) of paper VI [419] a temperature dependence of the second virial coefficient ρ2̃(T ),
depicted as the dark blue dashed line in Fig. 3.7, is suggested based on an interpolation between
the known high-temperature limit of the quantum Lenard-Balescu expression [438, 440] and the
Spitzer limit with classical strong collisions at low temperatures in the quasiclassical Wentzel-
Kramers-Brillouin approximation [361, 442Ű445]. The dashed black line indicates the known
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high-temperature QLB limit. Another approximation for ρ2̃(T ) is given by an interpolation
formula due to Esser, Redmer, and Röpke [361], which is shown as the pink dashed line in
Fig 3.7. Additionally, some experimental observations for various elements are presented [435Ű
437], although the only measurements of hydrogen, due to Guenther and Radtke, are given by
the yellow diamonds. The remaining observations were obtained in argon and xenon, for which
the additional ionic charge is not considered in the theoretical description. The signiĄcant
spread of experimental data makes it difficult to gauge the accuracy of the presented theories.
More accurate low-density measurements or accurate Ąrst principal simulation, e.g., PIMC,
are needed to make conclusive judgments.

Although paper VI [419] presents strong indications that e-e scattering is not included in the
Kubo-Greenwood conductivities from DFT simulations, it still relies on a linear extrapola-
tion to the low-density limit and the results are inĆuenced by the extension of the dynamic
electrical conductivity to the DC conductivity, i.e., whether a Drude extrapolation or a linear
extrapolation is used. Paper VII [420] presents a conclusive analysis that shows the lack of
e-e collisions by extending the quantities of interest to other transport properties like the ther-
mopower and the Lorenz number, which are easier to convergence in the low-frequency limit;
see Fig. 3 in paper VII [420]. These properties can be computed from DFT by evaluating
several Onsager coefficients [341], and they show a clear convergence to a constant value in
the near-classical plasma limit. This constant value can, once again, be evaluated according
to Spitzer and Härm, resulting in 0.7033 and 1.6220 for the thermopower and Lorenz number,
respectively, or according to the Lorentz plasma, giving 1.5 and 4.0. Figure 4 of paper VII [420]
contrasts these known limits with DFT results along a path through ρ − T space that most
effectively escapes correlation and degeneracy effects. A clear convergence towards the limits
of the Lorentz plasma can be observed.
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Figure 3.8: Dynamic electrical conductivity of hy-
drogen at ρ = 2 g/cm3 for various temperatures
at 64 (dashed) and 125 (dash-dotted) atoms; see
paper VI [419] for simulation details. The dots at
ℏω = 0 eV denote the inferred DC conductivities.
The solid lines represent predictions according to
the RTA from paper VII [420].

To contrast the many-body description of
DFT with an analytic approach which also
only considers e-i collisions, paper VII [420]
discusses the RTA [446] proposed by Lee and
More [360], but puts forward a different ex-
pression for the statically screened Coulomb
logarithm [343, 447, 448] that describes the
interaction between the electrons and ions.
As expected, the expressions for the ther-
mopower and Lorenz number within this ap-
proach converge to the limits of the Lorentz
plasma in the near-classical limit. Addition-
ally, the RTA can compute dynamic proper-
ties, e.g., the dynamic electrical conductivity
σ(ω). In paper VII [420], it is used to study
the lack of convergence in the conductivity
calculations at ρ = 40 g/cm3 and T = 500 eV
by Desjarlais et al. [438]. DFT calculations
ranging from 128 to 512 atoms are compared
to the RTA result for σ(ω) in Fig. 2 of that publication. At energies above 5 eV, the conductiv-
ity for all atom numbers are in excellent agreement with the RTA result. However, the energy
at which the DFT results diverge from the RTA predictions systematically decreases with the
number of atoms in the simulation. Even at 512 atoms, a 20% higher DC conductivity than
with 256 atoms is observed. The convergence behavior seems to indicate agreement with the
RTA, which predicts a more than 10% higher DC conductivity than the DFT results with
512 atoms. Interestingly, despite the good agreement between DFT and RTA at the extreme
conditions studied by Desjarlais et al., Fig. 3.8 shows systematic deviation for RTA calcula-
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tions of a hydrogen isochor at ρ = 2 g/cm3 studied in paper VI [419]. The RTA overestimates
the low-frequency conductivity and, in fact, seems to agree best with the DFT conductivities
at 25 eV higher temperatures. This might be explained by the fact that the calculations by
Desjarlais et al. [438] are closer to the ideal plasma limit than the conditions considered in
Fig. 3.8, as can be seen from Fig. 2 of paper VI [419].

3.5 Additional publications

The previous sections contain a representative selection of the scientiĄc work performed by
this author and aim to give a comprehensive overview of the contributions to WDM research
enclosed in this thesis. As indicated in Fig. 3.1, nine additional scientiĄc publications are
not explicitly included in this thesis. A short summary of their content and the author’s
contribution is given below.

Section 3.3 details the analysis of forward XRTS at the NIF. In a related campaign, backward
XRTS spectra were collected to study the single-particle regime of the imploding beryllium
capsule. From these observations, it was possible to deduce the onset of pressure-driven K-
shell delocalization, which was reported in paper VIII [449]. For the discussion of the K-
shell delocalization, this author analyzed changes in electron density and DOS upon extreme
compression in several DFT-MD simulations. Many insights gained about delocalization and
the interesting high-pressure behavior of beryllium are currently being prepared for a separate
publication.

In paper IX [61], the experimental setup and theoretical considerations for an opacity measure-
ment of hydrogen at the NIF is presented. DFT and average-atom models are used to study the
contribution of free-free absorption, which is the dominating process in the region of interest,
to the opacity. This author contributed to the comparison of the numerical approaches to the
analytical model and the discussion of relevant processes for the total opacity.

While Sec. 3.1 details computational advances in the simulation of ion dynamics, paper X [450]
concerns the experimental establishment of an meV inelastic scattering setup at the LCLS and
EuXFEL to measure ion dynamics. Measurements on iron and gold recorded at the LCLS are
presented to support the discussion. This author was involved in discussing the feasibility of
simulating and observing the ion dynamics with the given spectral resolution. The ongoing
work detailed in Sec. 3.6.2 represents the combination of the computational and experimental
advances described in Sec. 3.1 and paper X [450].

Paper XI [451] describes the observation of a highly conductive state in warm dense water
at the Free Electron LASer Hamburg (FLASH). This result is derived from transmission
and reĆectivity measurements on a planar liquid water jet. This author was part of the
experimental team and was speciĄcally tasked with the alignment of interferometry on a planar
jet. Furthermore, on-the-Ćy interferometry calculations were performed to gauge the thickness
and homogeneity of the jet.

In order to perform the forward XRTS measurements at the NIF presented in Sec. 3.3, improve-
ments to the spectral width of the X-ray source and a better understanding of the instrument
response function were required. Paper XIII [171] uses a physics-based model to parameterize
the inĆuence of the X-ray backlighter and XRTS setup at the NIF on recorded spectra. It in-
cludes the copper Ąlter that provides improved spectral resolution and models its temperature
dependence. This author contributed to discussions concerning the coupling of this parame-
terization with various scattering codes, as well as ray-tracing codes to model the interaction
with the target.
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A novel high-pressure phase of sodium and potassium is reported in paper XIV [452]. A phase
formed of interpenetrating sodium and potassium diamond lattices is found in powder X-ray
diffraction above 5.9 GPa at a temperature of 295 K. This author computed pressure-volume
curves using DFT, which aligned well with experimental results, and showed dynamic stability
via the phonon spectrum. The electron localization function was also computed, showing
electron localization between nearest-neighbor sodium atoms.

Papers XII [453], XV [454], and XVI [455] are the result of a shock-compression experiment
on polystyrene, polyethylene, and polyethylene terephthalate at the LCLS. They present
EOS data collected on all materials. It was shown that polyethylene does not form diamonds
up to pressures of 200 GPa, contrasting earlier results on polystyrene [64]. A wide variety of
diagnostics was used in this experiment, i.e., X-ray diffraction, XRTS in forward and backward
orientation, small angle X-ray scattering, and VISAR. This author was part of the experimental
team executing the measurements. SpeciĄcally, the tasks included keeping a log book of the
used targets and experimental parameters, remotely aligning the targets in the X-ray beam,
and triggering the laser.

3.6 Ongoing work at high-energy-density facilities

The previous sections present results that have been published or are currently under review.
In this section, additional work is presented, which was performed in preparation and during
ongoing analyses of experiments. XFEL facilities have played a signiĄcant role in the emergence
of the WDM research Ąeld. With the recent upgrade to the LCLS and the full operation
of the HIBEF facility at the EuXFEL ramping up over the past years, new experimental
capabilities open up new avenues to study matter in extreme conditions with unprecedented
accuracy. However, also particle accelerators like the GSI Helmholtz Centre for Heavy Ion
Research [100], and the FAIR facility [21, 101Ű103], which is currently under construction,
offer unique opportunities to create extreme states of matter by bombarding the samples with
particles. In Sec. 3.6.1, current efforts to develop a temperature diagnostic for targets heated
by heavy ion beams at GSI are described. To benchmark the performed simulations, XRTS
predictions are compared to a recent experiment at the EuXFEL, which employed the high
spectral resolution of the new generation of XFELs. In Sec. 3.6.2, calculations of phonons and
iDSFs in a cryogenically cooled argon jet are presented. These simulations are currently used
for the analysis of the Ąrst high-resolution measurements of ion dynamics at LCLS.

3.6.1 GSI facility & European X-ray free electron laser

A single-crystal diamond target is heated by a heavy-ion beam at GSI to observe graphiti-
zation via X-ray diffraction measurements. The X-ray source in this experimental setup is
a titanium foil irradiated by a long-pulse laser to create a backlighter. To infer the temper-
ature of the sample, a temperature diagnostic via XRTS is developed at GSI. Although the
electron temperature at very high temperatures can be determined via the detailed balance
relation, as demonstrated in Sec. 3.2, this is not feasible for the temperatures achieved at GSI.
The up-shifted scattering signal is not detectable due to the strong suppression given by the
detailed balance. Furthermore, temperature inference through the Debye-Waller factor [175Ű
178] for diamond is problematic due to its high Debye temperature [456]. Alternatively, the
temperature in an equilibrated system can be inferred from the iSSF Sii(k) by measuring the
magnitude of the ion feature in Eq. (1.8). Its magnitude is determined by the iSSF and the
form factor. The form factor is unchanged at the relatively low temperatures achieved at this
facility and can, therefore, be approximated by its ambient value. Additionally, at the low
temperatures reached in this experiment, the inelastic contribution to the scattering is not
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affected. Therefore, changes in the magnitude of the ion feature can be directly related to
Sii(k).

To reliably infer the temperature from the measured ion feature, accurate calculations of Sii(k)
at various temperatures ought to be performed. The approach outlined in Sec. 3.1 is adopted
here to achieve DFT-level accuracy at a sufficient simulation box size that affords the required
resolution in reciprocal space. A summary of Sii(k) for Ąve different temperatures, ranging from
ambient temperature to the highest expected temperature, 3000 K, is shown in Fig. 3.9. The
upper panel shows Sii(k) on a log scale over a wide k range. Clear trends with temperatures
are apparent, enabling a reliable temperature inference from measurements of the ion feature.
However, relatively large statistical Ćuctuations can be observed, especially at large k and
higher temperatures. In experiments, due to the Ąnite size of the detector, the scattering
signal is recorded over a range of angles. To model this, an effective iSSF

Seff
ii (k; w) =

1
w

∫︂ k+w/2

k−w/2
Sii(k′) dk′ (3.4)

is introduced, which represents a sliding average over Sii(k) with a given window size w. The
bottom panels of Fig. 3.9 display this quantity with a window size of 0.05 Å−1. The lower left
panel zooms in on the k range between the two Laue peaks surrounding the wave number at
which the XRTS spectrum was recorded. The values at k = 4.447 Å−1, indicated by the vertical
dashed line, are the basis for the temperature diagnostic. The bottom right panel of Fig. 3.9
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Figure 3.9: An overview of the iSSF Sii(k) of diamond for various temperatures and atom numbers
used to infer the temperature in the heated diamond. The upper panel shows Sii(k) on a logarithmic
scale for all considered temperatures with 8000 atoms in the simulation box and indicates the Laue
peaks by the blue shaded areas. The bottom panels show Seff

ii (k; w) from Eq. (3.4) for a window size of
0.05 Å−1. The lower left panel zooms in on the k range of interest for the experiment. The lower right
panel shows the convergence with respect to atom numbers for the simulation at T = 300 K. For all
panels, the vertical dashed line indicates the wave number k = 4.447 Å−1 at which the XRTS spectrum
was recorded.
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shows the convergence behavior with respect to particle number at ambient temperature in the
range of k values considered for the experiment. The smallest particle number, 64 atoms in the
simulation box, represents typical sizes for DFT-MD simulations. SigniĄcant Ćuctuations can
be observed, although all simulations were run for 200 000 time steps. At 1000 atoms, pseudo-
Laue peaks are still observed close to the wave number of interest. Only for 8000 and 27 000
atoms, Seff

ii (k; w) exhibits convergence behavior at k = 4.447 Å−1. Especially for the ambient
temperature, which is used as a reference value to gauge the changes to the ion feature caused
by heating, reducing Ćuctuations and obtaining accurate results is of paramount importance.

The inelastic feature in the XRTS spectrum normalizes the total spectrum to extract an abso-
lute value for the magnitude of the elastic feature. Furthermore, it is also used in a ray-tracing
code that models the experimental setup at GSI. Very accurate XRTS measurements on am-
bient diamond from the EuXFEL were recorded by Voigt et al. [457], which are used here to
test the reliability of the LR-TDDFT calculations for the inelastic feature (see Sec. 3.2). The
experimental data by Voigt et al. [457] and various LR-TDDFT simulations for the inelastic
feature are shown in the left panel of Fig. 3.10. As discussed in Sec. 2.3.1 and the appendix
of paper III [167], LFEs can occur as C-LFEs and XC-LFEs [317]. The left panel of Fig. 3.10
shows predictions including no LFEs (light blue), only C-LFEs (green), and with C-LFEs
and XC-LFEs in the ALDA (yellow). All predictions agree reasonably with the experiment,
although the computation using the ALDA performs worst across the inelastic feature. The
inclusion of C-LFEs improves the description of the feature at 5980 eV. The excitation of the
1s electrons around 5710 eV is not included in the LR-TDDFT simulations because a car-
bon pseudo-potential was employed, which freezes the 1s electrons in the core. However, this
feature was discussed in detail in Ref. [457].

The right panel of Fig. 3.10 shows DFT results for the magnitude of the ion feature Seff
ee (k),

computed from the iSSF Sii(k) and the form factor N(k). The broadening of the diffraction
measurement in this experiment was 0.09 Å−1, and it is included analogously to the deĄnition
in Eq. (3.4). The black diamond indicates the magnitude of the ion feature determined from
the Ąt in the left panel of Fig. 3.10. The agreement is good within the measurement’s error
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Å
−
1

)

(220) (311)

forbidden
(222)Voigt

et al.

Figure 3.10: Analysis of the experiment by Voigt et al. [457] at the EuXFEL. The left panel shows
the measured XRTS spectrum and LR-TDDFT simulations for the inelastic contribution of ambient
diamond that account for C-LFE and XC-LFE at different levels (see Sec. 2.3.1). The magnitude of the
ion feature is a Ąt parameter. The right panel shows the iSSF Sii(k) modulated by the squared form
factor ♣N(k)♣2 of ambient diamond. The magnitude determined via the free Ąt parameter in the left
panel is indicated at the wave number probed during the experiment.
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bars, giving credence to this temperature diagnostic. The forbidden (222) reĆection occurs in
diamond due to the covalent bonds, which create an asymmetric charge distribution around
the atoms [458, 459].

3.6.2 Linac Coherent Light Source

Paper I [378] and paper II [379], discussed in Sec. 3.1, demonstrate the capability to reach the
hydrodynamic regime with DFT precision using state-of-the-art numerical methods. Over the
past years, experimental capabilities have also improved drastically, enabling inelastic scat-
tering measurements with unprecedented spectral resolution at XFEL facilities to measure
phonons or ion acoustic modes. Experimental setups for high-resolution measurements have
been presented at the LCLS [460] and the EuXFEL [461]; see paper X [450]. In the Ąrst appli-
cation of these new capabilities at the EuXFEL, the phonon modes of single-crystal diamond
have been resolved, and the temperature of the diamond was resolved via the detailed balance
relation [462].

At the LCLS, this new experimental setup is employed to study shock-compressed argon.
A cryogenically cooled liquid argon jet [463Ű465] serves as a target to enable high rep-rate
measurements. A high-intensity short-pulse laser irradiates the jet to induce shock compres-
sion, and the jet is subsequently probed by the narrow bandwidth X-rays produced by the
self-seeded beam [466] which is passed through a four-bounce channel-cut (533) single crys-
tal silicon monochromator. From this setup, inelastic X-ray scattering in the meV regime is
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of argon along the high symmetry path Γ − K − X in reciprocal space. The left column depicts results
for ρ = 5 g/cm3, while the right panel shows results for ρ = 3 g/cm3. The upper panels show the phonon
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for values larger than 0.5 Å2/ps. The vertical black dotted line in the upper panels denotes the position
of K in reciprocal space.
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observed at two different scattering angles corresponding to wave numbers of 1.33 Å−1 and
1.98 Å−1. The spectra are recorded as a function of delay time after the peak of the laser pulse,
and using Bayesian inference, see Sec. 2.4, the temperature of the sample is inferred via the
detailed balance relation. For the thus determined temperatures, DFT-MD simulations on a
density grid ranging from 2 g/cm3 to 8 g/cm3 are performed. To ensure a sufficient resolution
in reciprocal space, separate HDNNPs are trained for each temperature, see Sec. 3.1, and the
simulations are scaled up to approximately 23 000 atoms.

Figure 3.11 depicts the longitudinal (l) and transverse (t) current-current correlation spectrum
J

l/t
ii (k, ω) in the high-symmetry orientation Γ − K − X; see Eq. (2.24) for a deĄnition of

J
l/t
ii (k, ω). The left column shows results for the temperatures of interest at ρ = 5 g/cm3,

which represents more than a 2.5-fold compression, while the right column depicts argon at
ρ = 3 g/cm3 for the same temperature. In the bottom panels, J

l/t
ii (k, ω) is depicted for

several wave numbers up to 2 Å−1, while the upper panel shows the corresponding phonon
spectra; see Fig. 1 in paper II [379] for a comparison in copper. As expected for an fcc lattice
along the studied reciprocal orientation, the typical structure of two transverse acoustic and
one longitudinal acoustic mode is observed for all cases where solid argon is present. At
ρ = 5 g/cm3, this is the case for all temperatures, whereas for ρ = 3 g/cm3, melting is detected
at T = 2350 K. Furthermore, at T = 1287 K, a solid structure is still present but signiĄcant
broadening of the phonon modes and slight hardening of the longitudinal mode around 1 Å−1

is noted. The data set displayed in Fig. 3.11 and the additional densities not shown here
represent the foundation for analyzing the Ąrst meV-resolution inelastic scattering experiment
on a liquid target at the LCLS.

3.7 Summary and outlook

This thesis presents several methodological advances in the simulation of ion and electron
dynamics at WDM conditions based on DFT. Especially, for the ion dynmaics and the inter-
pretation of scattering experiments, these advances are driven by modern machine-learning
approaches. The simulation results are benchmarked by well-understood experiments at more
moderate conditions (paper I [378] and paper II [379]) or theoretically known limiting cases
(paper VI [419] and paper VII [420]). A new deĄnition of ionization state and methods based
on DFT are compared to analytic approaches at extreme conditions, and the differences in
inferred plasma parameters in scattering experiments are evaluated (paper III [167] and pa-
per IV [404]). Finally, these simulation methods are used to analyze experiments at some of
the leading experimental facilities in the world (paper V, Sec. 3.6.1 and Sec. 3.6.2).

In paper I [378] and paper II [379], the immense potential of HDNNPs [276] is utilized to scale
up simulations of WDM to reach the macroscopic regime while maintaining ab initio precision.
The GCM framework is adopted to study ion dynamics. It serves as a solid theoretical founda-
tion to perform simple Ąts in the hydrodynamic limit, which allows the extraction of important
material and transport properties, e.g., the thermal ionic conductivity, and to study the oc-
currence of non-hydrodynamic modes at higher wave numbers. As a test case, it is applied to
a wide range of conditions in aluminum and a typical WDM experiment, i.e., a dynamic shock
compression in copper. With the improvements to the spectral resolution at XFEL facilities
like EuXFEL and LCLS, and high rep-rate drive lasers, like the recently commissioned DiPOLE
100-X at the high-energy-density station of the EuXFEL, numerous experimental studies of
ion dynamics in compressed solids and liquids will be performed soon. The work presented in
this thesis will form the theoretical foundation for a joint DFG project between the EuXFEL
and the University of Rostock over the next three years. Furthermore, this author is currently
involved in analyzing the Ąrst meV-resolution inelastic scattering experiment on a liquid target
at the LCLS, as described in Sec. 3.6.2.
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The behavior of the electrons under WDM conditions is studied in paper III [167] and pa-
per IV [404]. A sensible deĄnition of the ionization degree for matter under extreme con-
ditions, which is based on a sum rule for the electrical conductivity, is given and discussed
for the case of warm dense carbon and hydrocarbon. The topic has since been actively dis-
cussed in the community and, especially in the context of average atom models [407, 467, 468],
new sensible deĄnitions of the ionization degree have been introduced and compared to the
results obtained in paper IV [404]. How this ionization state is established in the inelastic
electronic feature of XRTS spectra and how the description of this feature using DFT-based
approaches can be connected to widely used collision-frequency-based description is detailed
in paper III [167]. Further work needs to be performed on determining suitable XC kernels
for LR-TDDFT [326, 327, 355, 469], especially lifting the adiabaticity limitation, which might
allow for the inclusion of e-e collisions. Additionally, the Chihara decomposition relies on a
clear separation of electron and ion dynamics. To what extent the ion dynamics discussed in
Sec. 3.1 inĆuence the electron feature of XRTS remains an open question.

The Ąrst collective scattering measurements recorded at the NIF are presented and analyzed
in paper V. The analysis uses DFT-MD results for the ion and electron dynamics. It describes
the inĆuence of the experimental setup via a physics-based parameterization of the X-ray
source and instrument. This enables the accurate determination of plasma parameters and
the inference of electrical conductivity at the conditions found in the core of a young Proxima
Centauri. The NIF offers a unique capability to create the extreme states of matter present
in the interior of stars, and this will enable new ground-breaking discoveries in laboratory
astrophysics over the coming years, as exempliĄed by the observation of K-shell delocalization
in paper VIII [449]. Additionally, the measurements proposed by paper IX [61] were recently
performed at the NIF. Ongoing analysis of radiography measurements of hydrogen aims to
determine hydrogen’s opacity at the conditions found in the deep interiors of red dwarfs. More-
over, the framework of Bayesian inference described in Sec. 2.4 and used in paper V is currently
being applied to a planetary interior structure model [470] by this author, by comparing its
predictions to observations of the radius, mass, and temperature of exoplanets.

Paper VI [419] and paper VII [420] propose a framework using a virial expansion of the elec-
trical conductivity to inspect analytic and numerical approaches in the near-classical plasma
limit and show that the thermopower and Lorenz number are easier to converge quantities that
can also clearly indicate the presence of e-e collisions. Conclusive evidence of their absence
in the transport properties computed from Onsager coefficients within the DFT formalism
is presented. Currently, ongoing work examines whether e-e collisions are included in more
advanced approaches, such as a Ąnite temperature formulation [471, 472] of the GW approxi-
mation [473, 474]. Furthermore, paper VI [419] studies the virial coefficients of various analytic
approaches that were published in the context of the Charged-Particle Transport Coefficient
Comparison Workshop [441]. This author has contributed DC thermal and electrical conduc-
tivities for aluminum and beryllium at extreme conditions for the next installment of this
workshop to also benchmark analytic approaches farther away from the near-classical plasma
limit.
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Extending ab initio simulations for the ion-ion structure factor of warm dense aluminum

to the hydrodynamic limit using neural network potentials
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We calculate the intermediate scattering function of warm dense aluminum by using density functional theory
molecular dynamics simulations. From this data set, we derive the static and dynamic ion-ion structure factors.
By applying a generalized collective modes model, we can fit the excitation spectra of the ion system and thereby
extract the dispersion for the ion acoustic modes, as well as the decay coefficients for the diffusive and collective
modes. The results are discussed and compared with experimental data if available. We show that computational
limitations prevent sufficient access to the hydrodynamic limit and demonstrate that this can be circumvented
using high-dimensional neural network potentials. We extract the ionic thermal conductivity of aluminum in the
hydrodynamic limit and compare to values computed using a Green-Kubo relation. We highlight the importance
of partitioning the heat capacity into electronic and ionic contributions and only using the ionic contribution to
compute the thermal conductivity of the ions in the hydrodynamic limit.

DOI: 10.1103/PhysRevB.105.174310

I. INTRODUCTION

The theoretical description of dense Coulomb systems
poses many challenges. The long-range character of the
Coulomb interaction leads to many-particle effects such as
dynamic screening and self-energy, which modify the effec-
tive interactions and, thereby, also the dispersion relations and
excitation spectra dramatically compared with dilute, weakly
interacting systems. Methods which rely on expansions with
respect to small parameters (e.g., virial, activity, fugacity
expansions) are not applicable. Furthermore, a quantum treat-
ment has to be applied in order to incorporate Heisenberg’s
uncertainty principle and Pauli’s exclusion principle present
in fermionic systems. Such quantum statistical descriptions
have been developed successfully for dense plasmas based
on, e.g., Green’s functions [1,2] and integral equations [3].
Their calculation is, however, complicated since a hierarchy
for the equations of motion or the correlation functions fol-
lows which has to be truncated on an appropriate level, see
Ref. [4].

For the description of warm dense matter (WDM), i.e.,
plasmas at high densities as typical for condensed matter and
temperatures of only few eV, the quantum and correlation
effects are dominant. Interestingly, the interior of planets can
be mapped to the WDM region and corresponding data for
the equation of state and the transport coefficients are crucial
for models of their interior structure (e.g., core and mantle
for rocky planets [5] or core and fluid envelopes of different
composition for giant planets [6,7]), their thermal evolu-
tion (cooling behavior) [8,9] and magnetic field generation
(dynamo action) [10,11]. However, the determination of equa-
tion of state data and, in particular, of transport coefficients of
WDM via shock wave or ramp compression experiments is

complicated so that reliable theoretical predictions are indis-
pensible.

Therefore methods of condensed matter physics were
transferred successfully to this state, located between con-
ventional condensed matter and high-temperature plasmas.
[12] A very efficient method is based on electronic structure
calculations using density functional theory (DFT) for a given
configuration of nuclei. The results are in turn used to compute
the forces on the nuclei via the Hellmann-Feynman theorem
so that they can be propagated in a molecular dynamics (MD)
step. The repeated cycling through this scheme is known as
DFT-MD method, which yields accurate structural properties,
equation of state data, and transport coefficients of WDM, see
Refs. [12,13].

As the DFT-MD calculations describe the evolution of
the system in time, dynamic properties of WDM can also
be computed through space- and time-dependent correlation
functions. In the limit of large length and time scales it is
possible to average out the effects of individual particles,
which leads to the hydrodynamic description. A fundamental
problem in this context are the large scales that must be real-
ized for a standard hydrodynamic description [14] to remain
valid in WDM. One of the most prominent extensions of
this description to higher wave numbers is named generalized
hydrodynamics [15,16], or the more general generalized col-
lective mode (GCM) approach. [17] Many principal studies
on model systems like the Yukawa one-component plasma
[18,19] and the generalized Lennard-Jones system [20] de-
veloped techniques to analyze MD results in this regime.
Early numerical descriptions of real systems used classical
MD simulations with respect to effective quantum potentials
[21,22]. However, it is an open question whether or not the
dynamic properties of a dense, interacting quantum system
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can properly be described by effective two-particle potentials.
This is no limitation in DFT-MD calculations due to their
self-consistent many-body nature.

An orbital-free (OF) formulation of DFT was used to com-
pute the dynamic ion-ion structure factor for warm dense
aluminum [23]. Although no effective pair potentials were
used, the OF approach lacks the explicit formulation with
discrete Kohn-Sham orbitals, which is especially important in
dense systems that differ significantly from a free-electron-
gas-like system and exhibit condensed matter characteristics.
Much more expensive DFT-MD simulations within a full
Kohn-Sham treatment were performed in a previous paper
for liquid and warm dense aluminum [24], which should
emulate the forces on the ions adequately. As a result the
ion-acoustic modes were resolved and their dispersion rela-
tions given. This approach has also been used successfully for
warm dense lithium [25]. Recently, deep potential molecular
dynamics simulations [26] and molecular dynamics simula-
tion employing ion-ion potentials constructed from a neutral
pseudoatom model [27] were used to study the nonequilib-
rium effects of two-temperature warm dense aluminum, which
was shown to be present in laser-shocked aluminum [28].
The latter two methods are computationally significantly less
expensive than DFT-MD simulations and therefore enable
large-scale simulations with more than 100 000 atoms, which
makes the hydrodynamic regime better accessible. We adopt
a similar approach as Ref. [26], in the following called neural
network molecular dynamics (NN-MD), to extend our DFT-
MD simulations to larger scales by using high-dimensional
neural network potentials implemented in the N2P2 software
package, [29–31] which employs Behler-Parrinello symmetry
functions [32].

In the present paper we apply the method presented in
Ref. [24] in order to calculate the dynamic ion-ion structure
factor in warm dense aluminum for a wider range of pa-
rameters (density, temperature), see Sec. II. We give a brief
overview of the error analysis in Sec. III and compare the
static and dynamic structure factor with available experimen-
tal results in Sec. IV. Furthermore, we fit the numerical data
for the dynamic structure factor (DSF) to a generalized hy-
drodynamic model in Sec. V and derive dispersion relations
and the decay coefficients. Here, we compare the capability of
extracting thermodynamic and transport properties, in partic-
ular, the thermal conductvity of the ions, in the hydrodynamic
limit between the NN-MD and the DFT-MD simulations. In
principle, highly resolved measurements of the ion-ion DSF
for WDM states would enable the determination of these
quantities for such extreme condition. Corresponding inelastic
x-ray scattering experiments are planned at free electron laser
facilities like the European XFEL [33,34] or the LCLS in
Stanford [35]. At the end, we give conclusions in Sec. VI.

II. THEORETICAL METHOD

Although DFT-MD allows access to information on both
the electronic and ionic system, all quantities of interest in
this paper can be derived from the ion positions at each point
in time. From this the ion-ion intermediate scattering function

Fii(�k, t ) := 1

N

〈

n
(i)
�k (τ )n(i)

−�k (τ + t )
〉

τ
, (1)

with

〈. . . 〉τ = lim
�→∞

1

�

∫ �

0
. . . dτ (2)

can be determined where n
(i)
�k (t ) = ∑N

i=1 e
−i�k·�ri (t ) is the Fourier

transformed ion number density and �k is the wave vector. The
number of ions is denoted by N and � is the simulation du-
ration, which must approach infinity in the exact relation. We
approximate this limit by sufficiently long simulation times.

The dynamic ion-ion structure factor Sii(�k, ω) is given by
the Fourier transform of the intermediate scattering function

Sii(�k, ω) := 1

2π

∫ ∞

−∞
Fii(�k, t )eiωt dt, (3)

with the angular frequency ω. By virtue of the Wiener-
Khinchin theorem this is equivalent to

Sii(�k, ω) = lim
�→∞

1

2πN�

∣

∣

∣

∣

∫ �/2

−�/2
n
(i)
�k (t )eiωt dt

∣

∣

∣

∣

2

, (4)

which is the formula we employed for the present calcula-
tions. The intermediate scattering function Fii(�k, t ) is then
determined by an inverse Fourier transformation of Sii(�k, ω).
Analogously, the longitudinal and transverse current spectra
can be determined from

Jii,l/t(�k, ω) := lim
�→∞

1

2πN�

∣

∣

∣

∣

∫ �/2

−�/2
j
(i,l/t)
�k (t )eiωt dt

∣

∣

∣

∣

2

, (5)

and

j
(i,l)
�k (t ) =

N
∑

i=1

v
‖
i e

−i�k·�ri (t ), (6)

j
(i,t)
�k (t ) =

N
∑

i=1

v
⊥
i e−i�k·�ri (t ), (7)

where v
‖
i is the component of the velocity which is parallel

to �k, and v
⊥
i is the component which is parallel to a given

�k⊥, which is perpendicular to �k. Velocities are computed from
the ion positions via central finite differences. The shape of
the simulation box determines the wave vectors �k at which
Sii(�k, ω) can be evaluated. Only wave vectors that result in
complete oscillations within the simulation box are allowed
and can be computed from the reciprocal lattice vectors.

The ion dynamics are obtained by performing DFT-
MD simulations with the Vienna ab initio simulation
package (VASP) [36–38]. Within these simulations the Born-
Oppenheimer approximation is used to decouple the ion and
electron dynamics. For the determination of the electron
density the finite temperature DFT approach [39] is used,
employing the generalized gradient approximation of Perdew,
Burke, and Ernzerhof [40] for the exchange correlation func-
tional. At each time step the electron density is determined
self-consistently, which allows the determination of the forces
acting on each ion. The ions are moved classically due to
the Coulomb interactions with the other ions and the elec-
trons by solving Newton’s second law for a given time step
�t . Within the VASP code the electronic wave functions are
expanded into plane waves up to a cutoff energy Ecut and

174310-2

Publications 49



EXTENDING AB INITIO SIMULATIONS FOR … PHYSICAL REVIEW B 105, 174310 (2022)

TABLE I. Overview of the simulation parameters used in this
study: temperature T , mass density ρ, size of time step �t , number
of ions in DFT-MD simulation NDFT

i and number of ions in NN-MD
simulation NNN

i .

T [K] kBT (eV) ρ (g/cm3) �t (fs) NDFT
i NNN

i

1000 0.086 2.356 3.0 125 32 000
5802 0.5 2.356 1.0 125 32 000
5802 0.5 4.712 1.0 125 32 000
11605 1.0 2.356 1.0 125 32 000
11605 1.0 4.712 1.0 125 32 000
58023 5.0 4.712 1.0 125 32 000
58023 5.0 8.1 1.0 125 32 000

projector augmented-wave potentials [41] are used to describe
the ion potential. For aluminum we employ the PAW PBE
Al 04Jan2001 potential, which treats the ten inner electrons
within a frozen core approximation and only considers the
three valence electrons within the DFT framework. We use
a cutoff energy of 700 eV. For the temperature control the
algorithm of Nosé-Hoover [42,43] is used with a mass pa-
rameter corresponding to a temperature oscillation period of
40 time steps. The simulation box for aluminum is spanned
by vectors that correspond to its solid lattice structure: face
centered cubic (fcc). The sampling of the Brillouin zone was
carried out at the Baldereschi mean value point [44]. We have
carefully checked the convergence of our results with regard
to plane wave energy cutoff, length of the time step, number
of particles and Brillouin zone sampling.

In order to enable a larger simulation size, we train a
high-dimensional neural network potential, implemented in
the N2P2 software package [29,30], using the energies and
forces predicted by the DFT-MD simulations. Although these
simulations are performed at finite electron temperature, we
use an extrapolation of the internal energy to its value at
zero electron temperature (provided by VASP [45]) to train the
neural network. This allows us to exclude the contributions
from electronic excitations to the internal energy, and, by
extension, the electronic contributions to the heat capacity
which we compute in Sec. VC. The neural network uses
Behler-Parrinello symmetry functions [32] to describe the
surrounding of each ion and employs a Kalman filter to up-
date the network during the training procedure. We employ
the default neural network configuration with a cutoff radius
ranging from 4 Å for the simulations at 8.1 g/cm3 to 6 Å at
2.356 g/cm3. The surrounding of the ions is described by ten
radial symmetry functions and twelve narrow angular symme-
try functions, with parameters chosen according to Ref. [46].
The neural network potential is then used in conjunction with
the classical molecular dynamics simulation code LAMMPS
[47] to generate the NN-MD simulations. We train a separate
neural network for each condition to ensure the highest ac-
curacy in reproducing the DFT-MD results. The networks are
trained on 10 000 configurations, which are randomly sam-
pled from the 20 000 time steps of the DFT-MD simulation
and additional 5000 time steps at slightly higher and lower
temperature and density. We give the specific parameters used
in the simulations in Table I. For kBT = 0.5 eV and ρ =

4.712 g/cm3, aluminum froze into an fcc lattice, while at all
other conditions it remained a liquid.

III. FITTING PROCEDURE AND ERROR ANALYSIS

A. Fit to generalized collective modes

For the DSF of liquids and plasmas, there exists a well
known limiting case at long wavelength k → 0 and low fre-
quencies ω → 0, the hydrodynamic limit [21]. In this limit,
the DSF consists of a zero-centered Lorentzian peak, which
is called the diffusive mode, and two Lorentzian shaped side
peaks, which are called propagating collective modes, cen-
tered at finite frequencies [14].

The diffusive mode is mainly determined by the thermal
diffusivity, while for the collective modes also the adiabatic
speed of sound and the viscosity of the medium play a role.
This limiting case can be extended to a generalized hydrody-
namic model, in which the general shape of the DSF is kept
the same but the transport coefficients become dependent on
the wave number |�k|. While this approach shows good results
at small wave numbers, [18] especially beyond the first corre-
lation peak, nonhydrodynamic thermal modes and structural
relaxation modes also contribute to the DSF [48]. Theoretical
models for the description of the DSF at a wide range of wave
vectors have been developed, with the generalized collective
mode (GCM) approach being one of the most successful [49].
It extends the set of considered dynamic variables from the
three hydrodynamic variables particle density, energy density,
and momentum density to include their derivatives or other
nonconserved variables, resulting in additional mode con-
tributions to the correlation functions. However, since these
microscopic variables cannot be observed in experiments and
access to the local energy density in ab initio simulations is
restricted, several fitting as well as fit-free methods [48] have
been developed.

In this paper, we adopt the fitting scheme of Wax and Bryk
[50]. Within this scheme the intermediate scattering function
is modeled according to a GCM approach with one propagat-
ing and one diffusive mode

FGCM
ii (�k, t ) = A e−α|t | + (B1 cos(ω0|t |)

+ B2 sin(ω0|t |)) e−β|t |

= A e−α|t | + C cos(ω0|t | + φ) e−β|t |, (8)

with the relation

C =
√

B2
1 + B2

2, φ = arctan
(

−B2

B1

)

, (9)

leading, via the Fourier transform (3), to the DSF

SGCM
ii (�k, ω) = 1

2π

(

2Aα

α2 + ω2
+ B1β

β2 + (ω0 + ω)2

+ B1β

β2 + (ω0 − ω)2
+ B2(ω0 + ω)

β2 + (ω0 + ω)2

+ B2(ω0 − ω)

β2 + (ω0 − ω)2

)

. (10)

The zero-centered Lorentzian in Eq. (10) corresponds to a
diffusive process, while the remaining Lorentzians at finite
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frequencies correspond to propagating processes. These two
modes are not necessarily the hydrodynamic modes, although
they will coincide with them in the limit k → 0. In the
GCM scheme, modes correspond to either real or imaginary
eigenvalues of the generalized hydrodynamic matrix, with
real eigenvalues leading to diffusive modes and imaginary
eigenvalues corresponding to propagating processes. There-
fore, in this fitting scheme, it is assumed that the behavior
of the system can be described by the two (hydrodynamic
or nonhydrodynamic) modes of Eqs. (8) and (10). Similar to
Ref. [50], we find that the inclusion of an additional mode
does not improve the results enough to justify the addition
of further fitting parameters. The parameters A, B1, B2, α, β,
and ω0 are unknown functions of the wave number k, but we
omit the index k for brevity. Following the fitting scheme of
Ref. [50], A, B1, and B2 can be eliminated as independent
parameters by constraining the model function to obey the
zeroth, first, and second frequency moments:

∫ ∞

−∞
Sii(k, ω) dω = Sii(k), (11)

∫ ∞

−∞
Sii(k, ω)ω dω = 0, (12)

∫ ∞

−∞
Sii(k, ω)ω2 dω = −∂2

t Fii(k, t )|t=0. (13)

The first frequency moment is constrained to be zero, there-
fore this model avoids the unphysical cusp in Fii(�k, t ) at t = 0
that is present in the hydrodynamic model. In contrast to
Ref. [50] for the second frequency moment, we do not use
the one component plasma (OCP) value, but the value directly
obtained from the intermediate scattering function Fii(�k, t ) by
finite differences.

For curve fitting we seek to minimize the least-square merit
function of the form:

χ (�k) =
Nd
∑

i=0

wi( f model(i) − f data(i))2, (14)

where f model is a model function one tries to fit to the dataset
f data, Nd is the number of data points and wi is the weight for
the ith data point, which is usually chosen to be the inverse
variance 1/σ 2

f (i). Following the scheme of Ref. [50], the pa-
rameters α, β and ω0 are obtained by fitting Eqs. (8) and (10)
to Fii and Sii obtained from the DFT-MD and NN-MD simula-
tions. The standard deviation of each data point is determined
through the error analysis described in the next section. From
the Jacobian of the fitting problem (14) with respect to the
fitting parameters, it is possible to estimate a standard error
for these parameters. It should be pointed out that this error
merely describes how sensitive the fit to the simulation data is
to small changes in the respective fitting parameter. It includes
no information on the physical validity of the given model
function, which has to be discussed separately.

For fitting we employ a standard Marquardt-Levenberg
fitting algorithm (as implemented in the SCIPY library for
scientific computing in PYTHON [51]) obtaining first the pa-
rameters β and ω0 by fitting to Sii keeping α fixed. Then α is
obtained by fitting to Fii with β and ω0 fixed. This procedure

is then repeated until all parameters converge to an accuracy
of 0.001%.

B. Error analysis

For the estimation of the errors we report the confidence
intervals calculated for a confidence level of 68% (i.e., one
standard deviation). Here, we follow the error estimation of
Welch for the use of the Fast Fourier Transform in power
spectra calculations [52]. A DSF calculated by Eq. (4) has
a standard deviation of σ

S(�k,ω) = S(�k, ω). By splitting the
duration of the simulation into NI intervals and averaging
over all individual power spectra, the standard deviation of
SGCM
ii (�k, ω) is reduced by

√
NI . Because the systems under

investigation are isotropic we report only on quantities de-
pending on the magnitude of the wave vector |�k| and averages
over the Nk wave vectors with magnitude |�k| can be per-
formed. In addition, since the ions are treated classically in our
simulations, we expect the intermediate scattering function
F (�k, t ) to be symmetric and real-valued, corresponding to
a real and symmetric DSF with respect to ω. Therefore an
average of the positive and negative frequency part is taken
which results in a further reduction of the error leading to the
error approximation

σ
Sii(�k,ω) ≈ Sii(�k, ω)√

2NkNI

. (15)

While the number of intervals stays constant during the
analysis, the number of wave vectors corresponding to a given
magnitude increases with |�k|, causing lower relative errors at
larger wave vectors.

In our calculations, we arrive at the intermediate scatter-
ing function via the Fast Fourier Transform from the DSF
Sii(�k, ω). Using quadratic error propagation on the formula-
tion of the fast Fourier transform leads to a constant error

σ
Fii(�k,t ) =

√

∑

j

σ 2
Sii(�k,ω j )

�ω

≈
√

√

√

√

∑

j

Sii(�k, ω j )2

2NkNI

�ω, (16)

where ω j are the discrete frequencies available from the
Fourier transform and �ω is their spacing. Using Eqs. (15)
and (16) for the weight wi in (14) allows us to extract an
estimated error on the fit parameters α, β, ω, and, using error
propagation on the equations given by the sum rules, also for
the remaining parameters.

In order to further reduce noise in the simulation data, a
window function g�k (t ) is applied to the intermediate scattering
function to suppress statistical oscillations at large times t .

IV. RESULTS FOR THE STATIC AND DYNAMIC

STRUCTURE FACTOR

A. The static ion-ion structure factor

To validate the accuracy of our simulation approach, we
compare with experimental x-ray diffraction data [53] avail-
able for small temperatures in Fig. 1.
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FIG. 1. Comparison of DFT-MD calculations and experimental
results [53] for liquid aluminum at 2.356 g/cm3 and T = 1000K.

Very good agreement is found except for values around the
first peak, where a sharp cusp is observed. A similar behavior
has also been observed in earlier MD simulations, which can
be explained by the periodic boundary conditions that induce
additional order. Furthermore, the statistical error in this re-
gion is comparatively large because of the especially large
correlation times that are present there. Additionally, we show
a comparison of the static ion-ion structure factor generated
from the DFT-MD and NN-MD simulations in Fig. 2. It can
be observed that the static structure is reproduced well by
the NN-MD simulations. For the lowest considered temper-
ature T = 1000K, the first correlation peak of the NN-MD
is slightly lower than that of the original DFT-MD simulation.
This is due to the diminishing impact of the periodic boundary
conditions in the larger simulation box of the NN-MD simula-
tions. The agreement for the other liquid conditions not shown
in Fig. 2 is equally good, while the static structure factor of
solid aluminum exhibits a strong particle number dependence.

0 1 2 3 4 5 6 7 8

k [Å−1]
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FIG. 2. Comparison of results for the static ion-ion structure
factor from DFT-MD simulations and NN-MD for liquid aluminum
at various conditions.
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FIG. 3. Comparison of the DSF (top panel) and the intermediate
scattering function (bottom panel) and the fit to the GCM model [de-
scribed in Eqs. (8) and (10)] for a NN-MD simulation of aluminum at
2.356 g/cm3 and T = 1.0 eV. The diffusive and propagating part of
the fit are indicated separately. The curves are shifted by 2.25 eV−1

for the DSF and 0.1 for the intermediate scattering function with
respect to each other for clarity.

B. The dynamic ion-ion structure factor

In Fig. 3, the block averaged DSF for aluminum is com-
pared with the curves obtained by the fitting procedure at
11605 K. Very good agreement between the NN-MD data and
the GCM model is found even at high wave numbers (see
upper panel in Fig. 3), far from the collective region. The
same observations can be made for all other conditions under
investigation in this paper (Table I).

As expected, very good agreement is also found for the
intermediate scattering function (see lower panel in Fig. 3).
However, after the decay of the correlations, Fii(�k, t ) exhibits
statistical fluctuations at long times t . To reduce the effect
of these unphysical fluctuations from the DSF and to reduce
truncation effects we use a window function g�k (t ) that is
defined in terms of a decay time θ�k by

g�k (t ) =
{

1, if |t | < θ�k/2

exp
(

− 16 (|t |−θ�k/2)
2

θ2
�k

)

, if |t | > θ�k/2
. (17)

Sii(�k, ω) is then obtained by Fourier transformation of
g�k (t )Fii(�k, t ). The use of a window function as in Eq. (17)
leaves the intermediate scattering function unchanged at

174310-5

Publications 52



SCHÖRNER, RÜTER, FRENCH, AND REDMER PHYSICAL REVIEW B 105, 174310 (2022)

0.00 0.01 0.02 0.03 0.04 0.05 0.06

h̄ω [eV]

0

1

2

3

4

5

6

7

S
ii
(k
,ω
)
/
h̄
[1
/e
V
]

0.30 — 0.32 [Å−1]
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0.78 — 0.78 [Å−1]
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FIG. 4. DSF Sii(�k, ω) of liquid aluminum at ρ = 2.356 g/cm3

and T = 1000 K. Dashed lines: experimental x-ray scattering results
[54]. Dotted lines: DFT-MD of Alemany et al. [55]. Solid lines:
present NN-MD simulations. The right wave numbers correspond
to the present NN-MD results, while the left ones correspond to
Refs. [54,55]. For clarity, each set of curves is shifted by an offset
of 0.6 eV−1 with respect to the lower one.

times, where statical fluctuations play a minor role, and damps
the statistical fluctuations where they dominate the signal. To
avoid bias in the choice of θ�k , it is determined from the results
of the fitting procedure. We define θ�k as the time after which
the intermediate scattering function has decayed to 0.1% of its
initial value, i.e., we use the θ�k that fulfills

|A|e−αθ�k + |C|e−βθ�k = 0.001Fii(�k, 0) (18)

= 0.001 (|A| + |C|). (19)

Note again that the fitting parameters A, C, α, and β are all
wave number dependent, but the index �k has been omitted.
With this specific choice for the window function there are
still small statistical artifacts visible in the DSF but a more
important feature is that it leaves the height and form of the
peaks practically unchanged.

In Fig. 4, we compare the DSF of liquid aluminum at
1000 K to several measurements of Scopigno et al. [54] and
to earlier DFT-MD simulations [55] that used the LDA for
the exchange-correlation functional. The normalization of the
experimental data could not be determined from the experi-
ment, but has been determined from fitting procedures. We
found that static structure factors from this procedure are,
on average, by a factor 1.52 lower than our NN-MD results
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k = 1.95 Å−1
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FIG. 5. DSF Sii(�k, ω) of warm dense aluminum at different den-
sities and temperatures. For clarity each set of curves is shifted by an
offset with respect to the lower one. The dotted lines represent the
baseline for each set.

and thus in Fig. 4 scaled the data of Scopigno et al. [54]
by this factor. Alemany et al. [55] report on a normalized
DSF Sii(�k, ω)/Sii(�k). Therefore, in Fig. 4, we scaled their data
according to our Sii(�k) for comparison. Since the calculation
of the structure factor can only be carried out on the reciprocal
lattice corresponding to the periodic boundary conditions, the
comparison is done at those wave numbers that are closest
to the ones in the experiment. Good agreement is found be-
tween our simulations and the experiment. Compared to the
experiment the peaks and shoulders are located at slightly
lower frequencies in our simulation and the peaks are more
pronounced. Compared to the ab initio calculation of Ale-
many et al. [55] our simulation uses a larger energy cutoff,
a larger number of ions, a smaller time step and has a longer
simulation time. They used the LDA for the XC contribution,
while we use the GGA by Perdew, Burke, and Ernzerhof [40].
Furthermore, due to numerical limitations at the time, the
previous DFT study was performed with 205 atoms for 850
time steps, which in our experience is far too few to properly
converge the width and height of the side and central peak.

Figure 5 shows the DSF Sii(�k, ω) of warm dense aluminum
at four different conditions for various wave vectors inside
the first Brillouin zone, illustrating its trends with temperature
and density. With increasing densities, a shift of the prop-
agating mode to higher frequencies and a clear separation
from the diffusive mode can be observed. Additionally, the
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FIG. 6. Peak position ωJ of the longitudinal current-current spec-
tral function Jii(k, ω) (top) and the frequency of the ion acoustic
mode ωion (bottom), extracted by fitting to Sii(k, ω), as a function
of the wave number k for aluminum at various temperatures for the
mass density ρ = 2.356 g/cm3. The linear behavior of ωion for small
k, predicted by the hydrodynamic model, is indicated by dashed
lines. The free particle limit of ωJ for large k is depicted by dash-
dotted lines.

higher densities suppress the diffusive mode due to the higher
collision rates. At constant density, a higher temperature leads
to a broadening and a slight shift to higher frequencies of
the propagating mode, indicating a faster sound transport in
heated materials (see Sec VA).

V. MATERIAL PROPERTIES

A. Dispersion relation

The frequency ωion of the ion acoustic waves can be de-
termined from the fitting procedure, giving reliable data in
the long-wavelength regime. A general quantity that does not
rely on fitting is the peak position of the longitudinal current-
current spectrum [see Eq. (5)], which will coincide with the
hydrodynamic behavior for k → 0, see Fig. 6. All investigated
cases exhibit a linear dispersion at small k. At relatively low
temperatures, local maxima in the peak position are observed
followed by a de Gennes minimum [56] located at the position
of the first correlation peak of the static structure factor Sii(�k).
Analogous to the reciprocal space in solids, where the first
Brillouin zone is repeated infinitely beyond its boundaries,
a periodicity, albeit faster decaying, occurs in liquids due to
the near-field order. At length scales characteristic of this
near-field order, described by the first correlation peak, the
dispersion tends back to its value at k = 0, similar to the
dispersion of phonons going to zero at the center of neighbor-
ing Brillouin zones. This minimum becomes less pronounced
for higher temperatures as the near-field order of the system
decreases. Instead, the curves reach an intermediate plateau
and then go over to a positive dispersion. For large k, the peak
position of the longitudinal current-current spectral function

TABLE II. Adiabatic speed of sound cs,HD, extracted from the fit
to the hydrodynamic model in (8) and (10) and adiabatic speed of
sound cs,TD computed from the thermodynamic relation in (22) for
aluminum at given temperatures T and mass densities ρ.

T (K) ρ (g/cm3) cs,HD (km/s) cs,TD (km/s)

1000 2.356 5.087 ± 0.025 4.73 ± 0.12
5802 2.356 6.029 ± 0.016 6.02 ± 0.05
11 600 2.356 6.736 ± 0.018 6.73 ± 0.04
11 600 4.712 11.579 ± 0.024 11.349 ± 0.025
58 020 4.712 13.049 ± 0.017 12.908 ± 0.020
58 020 8.1 17.406 ± 0.017 17.451 ± 0.003

can be described by the classical free particle limit of a non-
interacting system

ωJ (�k) =
√

2

miβ
|�k| (20)

with the ion mass mi and 1/β = kBTi, where kB is the Boltz-
mann constant. This peak at finite frequencies occurs because
the zero-centered Gaussian DSF of a noninteracting system
is multiplied by ω2/k2 to arrive at the longitudinal current-
current spectral function. We suspect the rise of ωion at high
k, where the DSF is close to a perfect Gaussian, is due to
our choice of fit function. Because a Gaussian cannot be
approximated by a Lorentzian, a second contribution at finite
frequency is necessary. This highlights the inadequacy of this
fit function beyond the first correlation peak, and in the fol-
lowing, we will therefore not apply it there.

By fitting

ωion(�k) = cs|�k| (21)

to the small k dispersion relation of ωion extracted from the fit,
the adiabatic velocity of sound cs is determined, see Table II.
The dashed lines in Fig. 7 indicate the linear fit for the liquid
conditions considered in this work. We use the first eight
oscillation frequencies ωion at each condition for the linear
fit. It can be shown that the inclusion of more or less data
points does not significantly impact the extracted value for the
adiabatic velocity of sound. The speed of sound at 1000 K can
be compared to experimental data by using the suggested best
fit from Ref. [57]. For a temperature of 1000 K, one obtains a
speed of sound of 4648 m/s, which is in reasonable agreement
with our value of 5087 m/s. Remarkably, the experimental
speed of sound is not recovered by the x-ray scattering study
of Scopigno et al. on liquid aluminum, [54] either, from which
an adiabatic speed of sound of∼5700m/s can be derived. Ad-
ditionally, following Ref. [58] and the supplemental material
of Ref. [20], we compute the adiabatic speed of sound directly
from the thermodynamic relations

c2s,TD = 1

ρ χS

= γ

ρ χT

, (22)

χT = 1

ρ

(

∂ρ

∂P

)

T

, (23)

with the heat capacity ratio γ = CP/CV , the mass density ρ,
the pressure P and the adiabatic and isothermal compress-
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FIG. 7. Long-wavelength behavior of the oscillation frequency
of the ion acoustic waves ωion as a function of the wave number k

for aluminum at various conditions. The linear behavior for small k,
predicted by the hydrodynamic model, is indicated by dashed lines
and the inferred speed of sound is shown. The extracted peak position
from the underlying DFT-MD simulations are also indicated by the
black symbols. For clarity each set of curves is shifted by an offset of
0.1 eV with respect to the lower one. The dotted lines represent the
baseline for each set.

ibilities χS and χT . In order to evaluate these expressions,
we perform additional simulations at 5% to 10% below and
above the desired density and temperature and evaluate the
derivatives using central finite differences. The results are
summarized in Table II. The agreement between both methods
is good for all conditions that are hotter than 1000 K. At
these conditions, the results for the direct calculation via (22)
deviate less than 5% from the value extracted from the fit
to the GCM model. However, just above the melting line
at 1000 K, the direct calculation results in a prediction for
the adiabatic speed of sound which is ∼10% lower than the
result extracted from the fit. This speed of sound lines up
better with the experimentally observed value, indicating that
the hydrodynamic limit at this condition might require even
smaller wave numbers than accessible in this work.

In Fig. 7, we also indicate the frequencies that we
determined directly from the DFT-MD simulations (black
symbols). Due to the significantly smaller simulation size, the
available wave vectors cover the k axis more sparsely and
the smallest available wave vectors are at least seven times
larger than the smallest wave vectors from the NN-MD. The

dispersion is reproduced well by the NN-MD in all cases. For
the simulations at ρ = 2.356 g/cm3, the lowest five k values
of our DFT-MD results lie within the linear behavior of the
dispersion, while the denser conditions have at most two k

values in the linear regime. Therefore it would be difficult
to justify a linear fit to the available DFT-MD data at these
conditions.

B. Mode contributions

While fitting the DSF with one propagating and one diffu-
sive mode is justified in the hydrodynamic limit, contributions
from additional kinetic modes will become relevant at higher
wave numbers. The GCM framework enables us to include
arbitrary amounts of additional modes. However, the shape
of the DSF is generally not discriminative enough to achieve
reliable results from fitting procedures. Furthermore, statis-
tical noise prohibits us from identifying the onset of small
corrections beyond the hydrodynamic limit. In order to cir-
cumvent this limitation, we adopt the scheme laid out in
Refs. [17,49,59], which uses the memory-function formal-
ism to construct a generalized hydrodynamic matrix on an
extended set of hydrodynamic variables. We employ the five-
mode approach by including the first time derivatives of the
longitudinal current and energy, on top of the three hydro-
dynamic variables. This approach does not rely on fitting to
the DSF and, therefore, does not suffer from the shortcom-
ings mentioned earlier when examining the transition to the
nonhydrodynamic regime. Due to the higher memory storage
demand, we only use 4000 atoms for this analysis.

In Fig. 8, we show the results of the five-mode ap-
proach compared to the three-mode approach, which can only
describe generalized hydrodynamic modes, for the most ex-
treme condition considered in this study at T = 5 eV and
ρ = 8.1 g/cm3. The other conditions show similar trends
regarding the onset of nonhydrodynamic corrections. The top
panel of Fig. 8 shows the decay coefficients of the various
modes. In the low-k limit, only two modes tend toward zero,
which identifies them as the hydrodynamic modes which will
survive on long time scales. The remaining modes are two
quickly decaying diffusive modes, which do not contribute
in the hydrodynamic limit. At ∼0.8 Å−1, the hydrodynamic
and one nonhydrodynamic diffusive mode merge to create an
additional propagating mode, which is the typical behavior
of a damped wave equation (see Fig. 1 in Ref. [17]). The
oscillation frequency of this additional mode is displayed in
the bottom panel of Fig. 8. It follows the same trend as the
hydrodynamic sound wave, but at a significantly lower fre-
quency. It is apparent that these nonhydrodynamic corrections
only occur for wave numbers above 0.5 Å−1, but contribute
significantly above 1 Å−1. For smaller wave numbers, the
three- and five-mode approaches give virtually the same pre-
dictions, giving credence to our fit functions (8) and (10). We,
therefore, conclude that fitting to these functions at small k

will in fact reveal the thermodynamic and transport properties
that describe the hydrodynamic model [14].

C. Ionic transport

As mentioned in Sec. III A, the general diffusive and prop-
agating modes from Eqs. (8) and (10) can be identified as the
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five-mode approach, while black symbols denote the generalized
hydrodynamic modes of the three-mode approach.

well known hydrodynamic modes [21] in the limit of k → 0
and ω → 0. In this limit, the diffusive mode is connected to
the thermal diffusivity DT via α = DT k2 and the propagating
mode becomes symmetric, i.e., B2 vanishes, while β = �k2,
where � is the sound attenuation coefficient. Therefore the
behavior of the decay coefficients in equation (8), which de-
scribe how fast diffusive and collective processes decay with
time, can be connected to well known material properties. As
these coefficients also determine the full width at half max-
imum (FWHM) of the peaks in the DSF [see Eq. (10)], this
allows both experiment and theory to access these properties
of interest, provided that the hydrodynamic regime of wave
numbers is reached.

In Fig. 9, we show the FWHM of the zero-centered diffu-
sive peak in the DSF for the considered liquid conditions. The
FWHM is given by 2α, and α is found by fitting to the DSF
and intermediate scattering function of the NN-MD simula-
tions. The results that were found by fitting to the underlying
DFT-MD simulations are also shown by the black symbols in
Fig. 9. It is apparent that the hydrodynamic regime for this
quantity is reached at lower wave numbers than for the dis-
persion relation in Fig. 7. None of the considered cases have
more than two DFT-MD data points in the region that matches
the indicated limiting behavior. Additionally, the FWHM of
the central mode is sensitive to statistical fluctuations and
requires a large number of time steps in order to reach con-
verged results. Due to computational limitations, we perform
40 000 or fewer time steps for all DFT-MD simulations, while
we perform between 150 000 and 600 000 time steps for the
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FIG. 9. FWHM of the central, diffusive peak of the DSF in
equation (10), which is given by 2α, dependent on the wave number
k. A fit to 2DT k2 is indicated and the best fit result for the thermal
diffusivity DT is given. The extracted FWHM from the underlying
DFT-MD simulations are also indicated by black symbols. For clar-
ity, each set of curves is shifted by an offset with respect to the lower
one. The dotted lines represent the baseline for each set.

NN-MD simulations. The statistical fluctuations induced by
the shorter simulations can be observed in Fig. 9.

Additionally, the lowest available wave numbers corre-
spond to only a few wave vectors. For a cubic simulation
box, only three wave vectors are averaged to compute the
smallest k. For the DFT-MD simulations, only the smallest
k approach the hydrodynamic limit, where only very few k

vectors correspond to each k value, leading to worse statistical
averages compared to the NN-MD simulations.

We follow the approach outlined in Ref. [20] to compute
the thermal conductivity of the ions λii from the thermal
diffusivity DT . We employ the thermodynamic derivatives

Cm,V =
(

∂Um

∂T

)

V

, (24)

Cm,P − Cm,V = Vm T

(

∂P

∂T

)2

V

(

∂Vm

∂P

)

T

(25)

to determine the molar heat capacities at constant volume
Cm,V and at constant pressure Cm,P. The internal energy per
mol is given by Um and the molar volume is Vm. Note that
if Um is taken from the DFT-MD simulations, the molar
heat capacities contain contributions from thermal electronic
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TABLE III. Molar total heat capacity at constant volume Cm,V

and at constant pressure Cm,P computed via thermodynamic deriva-
tives from DFT-MD simulations for various temperatures and
densities. These values include the electronic contribution. The cor-
responding adiabatic coefficient is also given.

T ρ Cm,V Cm,P

(K) (g/cm3) [J/(K mol)] [J/(K mol)] γ

1000 2.356 25.9 ± 1.9 34.2 ± 2.8 1.32 ± 0.04
5802 2.356 24.9 ± 1.0 31.4 ± 1.5 1.263 ± 0.026
11 600 2.356 29 ± 4 38 ± 5 1.30 ± 0.07
11 600 4.712 31.6 ± 3.3 35 ± 4 1.093 ± 0.017
58 020 4.712 44 ± 11 53 ± 15 1.22 ± 0.08
58 020 8.1 44 ± 8 48 ± 10 1.103 ± 0.029

excitations. These contributions can be removed by subtract-
ing the electronic heat capacity via CV,e = T ( ∂Se

∂T
)V , with the

electronic entropy Se. However, removing the contributions
of electronic excitations from the pressure, which influences
Cm,P, is not easily possible. Therefore we compute the heat
capacity from the NN-MD simulations which were consis-
tently trained on DFT-MD energies excluding the electronic
excitation energy. Both procedures yield heat capacities at
constant volume within 5% for the densities and temperatures
considered here. We summarize the heat capacities computed
from the DFT-MD simulations without the subtraction of the
electronic contribution in Table III and the heat capacities
computed from the NN-MD in Table IV.

The thermal conductivity of the ionic subsystem λii can
now be computed via

λ = DT

Cm,P

Vm
, (26)

results are given in Table V. In order to compare the ionic
thermal conductivity extracted from the hydrodynamic limit
to another approach based on the same DFT-MD simula-
tions, we compare with the linear response treatment of the
thermal conductivity as described in Ref. [60]. We have
parametrized radial force fields between the ions with Eq. (6)
from Ref. [60], setting the potential cutoff parameter toC = 6,
which was sufficient to produce converged thermal conductiv-
ities. The generated force fields between the aluminum ions
are purely repulsive. The ionic thermal conductivity λii,GK

was then calculated with the Green-Kubo formula using the

TABLE IV. Molar ionic heat capacity at constant volume
Cm,V and at constant pressure Cm,P computed via thermodynamic
derivatives from NN-MD simulations for various temperatures and
densities. The corresponding adiabatic coefficient is also given.

T ρ Cm,V Cm,P

(K) (g/cm3) [J/(K mol)] [J/(K mol)] γ

1000 2.356 24.62 ± 0.20 31.69 ± 0.29 1.287 ± 0.004
5802 2.356 18.719 ± 0.027 23.64 ± 0.04 1.2631 ± 0.0008
11 600 2.356 17.36 ± 0.09 22.11 ± 0.13 1.274 ± 0.003
11 600 4.712 23.61 ± 0.12 25.92 ± 0.14 1.0976 ± 0.0008
58 020 4.712 17.61 ± 0.15 20.67 ± 0.19 1.1736 ± 0.0027
58 020 8.1 19.83 ± 0.17 21.09 ± 0.18 1.0637 ± 0.0009

TABLE V. The thermal conductivity λii,HD, computed from DT

in Fig. 9 via Eq. (26), and the thermal conductivity λii,GK computed
from the Green-Kubo relation as described in Ref. [60] for aluminum
at given temperatures T and mass densities ρ.

T (K) ρ (g/cm3) λii,HD [W/(m K)] λii,GK [W/(m K)]

1000 2.356 1.12 ± 0.07 0.93 ± 0.10
5802 2.356 1.05 ± 0.03 1.01 ± 0.11
11 600 2.356 1.13 ± 0.04 1.08 ± 0.11
11 600 4.712 2.9 ± 0.4 3.4 ± 0.4
58 020 4.712 3.16 ± 0.09 2.5 ± 0.6
58 020 8.1 6.40 ± 0.25 5 ± 1

ionic trajectories from the DFT-MD simulations as described
in Ref. [60]. Table V contains the results, which are in good
agreement with those derived from the dynamic structure
factor.

For completeness, note that the total thermal conductivity
of liquid metals is usually dominated by the electronic part,
e.g., the experimentally observed value for liquid aluminum
at 1000 K [61] is two orders of magnitude larger than the
value we determined for the ionic thermal conductivity. This
prevents a direct comparison of our calculated ionic thermal
conductivities with experiments.

In Fig. 10, we show the FWHM of the propagating
mode, which appears at the finite excitation frequency in-
dicated in Fig. 6. From fitting to the low-k behavior of the
FWHM, the longitudinal sound attenuation coefficient � can
be determined. The statistical fluctuations in this mode are
significantly smaller than in the diffusive mode, making it
easier to determine where the hydrodynamic regime begins.
Especially at the lowest available density ρ = 2.356 g/cm3,
higher temperatures lead to an extension of the hydrodynamic
regime to higher wave numbers. Due to these smaller statis-
tical fluctuations, the agreement with the significantly shorter
DFT-MD simulations is also better than in the diffusive mode.

VI. CONCLUSIONS

In this work, we gave an extensive overview of the com-
putation of the ionic DSF and intermediate scattering function
and some relevant practical considerations for its application
in the WDM regime. We introduced a simple GCM model
with one diffusive and one propagating mode which can be
matched to the dynamic behavior of liquid aluminum via a
fitting procedure. We showed that liquid aluminum from the
melting line up to the WDM regime can be approximated well
by this simple model across all length scales apart from the
distances corresponding to the first correlation peak in the
static ion-ion structure factor, where the description breaks
down. Good agreement with experimental data for the static
and dynamic ion-ion structure factor was observed for liq-
uid aluminum at 1000 K. We demonstrated how information
about the k and ω dispersion can be extracted from the fitting
procedure and highlighted the convergence to the hydrody-
namic model in the limit of long wave lengths. The inability of
DFT-MD simulations to reach statistically converged results
in the hydrodynamic regime, due to computational limitations,
was demonstrated. This shortcoming can be circumvented by
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FIG. 10. FWHM of the propagating side peaks of the DSF in
equation (10), which is given by 2β, dependent on the wave number
k. A fit to 2�k2 is indicated and the best fit result for the sound
attenuation coefficient � is given. The extracted FWHM from the
underlying DFT-MD simulations are also indicated by black sym-
bols. For clarity each set of curves is shifted by an offset with respect
to the lower one. The dotted lines represent the baseline for each set.

using molecular dynamics simulations powered by a neural
network trained on Behler-Parrinello symmetry functions. We
showed that this procedure can be used to perform simulations
with 32 000 atoms and up to 600 000 time steps. Thus this
enabled us to extract thermal conductivities of the ions in
the hydrodynamic limit and we compared these results with

ionic thermal conductivities computed from a Green-Kubo
relation. Reasonable agreement between the two approaches
was observed for the considered conditions. We emphasize the
importance of using only the ionic heat capacity, as opposed to
the total heat capacity, to compute the ionic thermal conduc-
tivity from the ionic thermal diffusivity. We demonstrated that
additional nonhydrodynamic modes do not contribute in the k

range of interest, by computing a five- and three-mode GCM
model and showing that they converge to the same result in
the hydrodynamic limit.

The approach presented here for warm dense aluminum
can be applied to other single-component materials like iron,
water or hydrogen as relevant in geophysics or planetary
physics. Based on corresponding simulation results for the
dynamic ion-ion structure factor, combining DFT calculations
and neural networks, reasonable predictions for the sound ve-
locity, thermal diffusivity or thermal conductivity can be made
for matter under extreme conditions. Perspectively, these
properties will be probed experimentally using inelastic x-ray
scattering (IXS) experiments at free electron laser facilities.
High-resolution IXS platforms with meV-monochromators
are currently implemented at the European XFEL [33,34] and
the LCLS in Stanford [35]. The corresponding spectra can
then be compared to, e.g., GCM models as outlined here and,
if the resolution of the measured spectra is sufficient, thermal
and transport properties can be extracted from the dynamical
properties of WDM. Such combined efforts would improve
the so far rather scarce data basis for WDM considerably and
thereby enable upgraded models for the interior structure and
thermal evolution of solar and extrasolar planets.
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We investigate shock-compressed copper in the warm dense matter regime by means of density functional
theory molecular dynamics simulations. We use neural-network-driven interatomic potentials to increase the size
of the simulation box and extract thermodynamic properties in the hydrodynamic limit. We show the agreement
of our simulation results with experimental data for solid copper at ambient conditions and liquid copper near
the melting point under ambient pressure. Furthermore, a thorough analysis of the dynamic ion-ion structure
factor in shock-compressed copper is performed and the adiabatic speed of sound is extracted and compared
with experimental data.

DOI: 10.1103/PhysRevB.106.054304

I. INTRODUCTION

Understanding matter in extreme conditions is challenging.
Especially warm dense matter (WDM), which is charac-
terized by temperatures above a few electronvolt (eV) and
solid densities exhibits non-negligible degeneracy and strong
correlations that must be treated in a quantum mechanical
many-body framework [1,2]. Experimentally, due to their high
energy density, these states can only be created transiently,
and therefore, must be probed on short time scales using
intense short-wavelength radiation. Shock-compression ex-
periments are among the premier ways extreme conditions
can be reached in the laboratory. They have been used to
study the high-pressure phase diagram of various geological
materials [3], metals like silver, gold and platinum [4–6], iron
at super-Earth conditions [7], and hydrocarbons [8–10], even
revealing novel phenomena like the formation of diamonds in
the interior of Neptune [11]. In shock and ramp compression
studies, copper itself is often used as a resistivity gauge [12],
and its behavior under extreme conditions has been the tar-
get of several theoretical and experimental studies over the
past decades. The conductivity of expanded liquid copper has
been studied in rapid wire evaporation experiments [13] and
isochoric heating experiments using a closed vessel appara-
tus [14], while the effects of femtosecond irradiation has been
studied using first-principles calculations [15]. Melting curves
over a wide pressure range have been predicted theoretically
and measured [16–20]. Recently, Baty et al. [21] have used
ab initio simulations to study the melting line of copper up to
pressures relevant for shock compression, while accounting
for the experimentally and theoretically predicted metastable
bcc phase [22–25]. Furthermore, a plethora of shock wave
measurements in the Mbar regime are available, although
the uncertainties for measurements beyond 5 Mbar increase
significantly. Notoriously, it is challenging to extract reliable
information on structural or transport properties at these ex-
treme conditions. However, with novel improvements to the

spectral resolution at high-brilliance x-ray free electron laser
facilities, it is now becoming possible to measure the ion
dynamics of transient WDM states through inelastic x-ray
scattering [26–28], as well as structural changes via x-ray
diffraction [8–10]. While a lot of theoretical work regarding
copper has been performed on phase transitions and the en-
ergy transfer from the electrons to ions, we focus, here, on the
ion dynamics that can be accessed in scattering experiments.

The dynamic structure factor (DSF) is vital for accurately
describing the dynamics of matter under extreme condi-
tions. There has been a lot of work on the DSF in the
context of molecular dynamics (MD) simulations, ranging
from the direct observation from ion trajectories [29,30] to
fits to analytical expressions [31–33]. Large-scale classical
simulations have been employed to reach the hydrodynamic
regime [34–36] and to study structural properties and propa-
gation in glasses and disordered solids via the disperison of
the longitudinal and transverse DSF [37–39]. Furthermore,
MD simulations have been coupled to density functional the-
ory [40,41] (DFT-MD) to reach ab initio accuracy in the
description of the DSF [42]. This allows us to probe the
ion dynamics of dynamically compressed targets, requiring
sophisticated many-body simulations, that take into account
the quantum mechanical nature of WDM states, to compare
with the experimental observations. These DFT-MD simula-
tions have proven successful at describing the principal shock
Hugoniot [43–45] and the ion-ion DSF of various materi-
als [46–49]. Recently, the use of neural network potentials has
emerged, combining the benefits of the large-scale classical
simulations with the ab initio accuracy of the forces in DFT.
Several studies have shown the application of this technique
to the DSF [36,50,51] and studied the extent of the hydrody-
namic regime and the accessibility of various transport and
thermodynamic properties.

Here, we apply these state-of-the-art methods to shock-
compressed copper at experimentally reachable conditions
and we make predictions for experimentally observable
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quantities like the static and dynamic ion-ion structure factor.
First, we benchmark our results against experimental results
for solid and liquid copper, and then compute the principal
Hugoniot curve and study the change of the ion dynamics.
A brief summary of the relevant equations and the details of
the simulation methods are given in Sec. II. In Sec. III, we
determine the phonon spectrum of solid copper at ambient
conditions from the ion-ion DSF and compute the dynamic
electrical conductivity. For liquid copper at ambient pressure
near the melting point, we compute the static and dynamic
structure factor and compare to experimental results, see
Sec. IV. Subsequently, we compute the principal Hugoniot
curve in Sec. V and compare to shock compression exper-
iments, and experimental and theoretical predictions for the
melting line. Finally, in Sec. VI, we study the evolution of
the static and dynamic ion-ion structure factor during shock
compression and extract the adiabatic speed of sound, which
we compare to recent measurements by McCoy et al. [52].

II. THEORETICAL METHOD

Through DFT-MD simulations, we gain access to the time-
dependent ion positions �ri(t ) and velocities �vi(t ). By virtue
of the Wiener-Khinchin theorem [53,54], the dynamic ion-ion
structure factor

Sii(�k, ω) =
1

2πN

∫ ∞

−∞

dt 〈n�k (τ ) n−�k (τ + t )〉τ eiωt , (1)

which contains all information on the dynamics of the ion
system, can be defined. Here N is the number of ions in the
system, �k is the wave vector, ω is the frequency, and the spatial
Fourier component of the ion density n(�r, t ) is given as

n�k (t ) =

∫

R3
d3r n(�r, t ) ei�k·�r =

N
∑

i=1

ei�k·�ri (t ), (2)

n(�r, t ) =

N
∑

i=1

δ3(�r − �ri(t )), (3)

with the time-dependent ion positions �ri(t ). In Eq. (1), τ

denotes an absolute time relative to the time delay t . The
ensemble average, denoted by subscript τ , is taken to be the
sample average for independent configurations with different
values of τ but the same value of t .

According to the hydrodynamic model [33], the dispersion
of the collective side peak of Sii(�k, ω), called the sound mode
in the hydrodynamic limit, is connected to the adiabatic speed
of sound cs via

ωsound(�k) = cs|�k| . (4)

The position of the sound mode ωsound can be extracted from
the DSF via a fitting scheme (for details, see Refs. [46,47,51]).

The dispersion of the longitudinal current-current correla-
tion spectrum J (�k, ω), which is closely related to the DSF via

J (�k, ω) =
ω2

k2
Sii(�k, ω), (5)

defines the apparent sound speed cl.
The long-wavelength limit of the static ion-ion structure

factor, which is defined as the frequency integrated ion-ion

DSF Sii(k) =
∫ ∞

−∞ Sii(k, ω) dω, can also be determined from

lim
k→0

Sii(k) = κT nikBT (6)

via thermodynamic relations [55]. Here, ni is the ion density,
T is the temperature and κT is the isothermal compressibility
which is also accessible via the thermodynamic relation

κT = −
1

V

(

∂V

∂P

)

T

, (7)

where V is the volume of the simulation box and P is the
pressure.

In order to analyze shock compression experiments, we
employ the Hugoniot equation [56–59]

ε1 − ε0 =
1

2
(P1 + P0)(V0 − V1), (8)

εa =
Ea

ma

, a = 0, 1, (9)

which can be derived from the conservation of energy E ,
momentum p, and mass m at a propagating shock front. Here,
the subscript 0 indicates the conditions of the unshocked ma-
terial while subscript 1 indicates the conditions of the shocked
material.

The DFT-MD simulations in this work were per-
formed within the Vienna ab initio Simulation Package
(VASP) [60–62]. The electron density at each time step
is computed according to the finite-temperature DFT ap-
proach [63], using the generalized gradient approximation of
Perdew, Burke and Ernzerhof (PBE) [64] for the exchange
correlation functional (XC functional). The MD is carried
out using the Born-Oppenheimer approximation by solving
Newton’s equations of motion for the ion positions. The forces
are determined by the electronic charge density, where the
electrons always remain in an instantaneous, thermal equili-
bration defined by the ion positions.

Within VASP the Kohn-Sham orbitals are expanded in a
plane wave basis set up to a cutoff energy Ecut, which we
set at 800 eV. For the ion potential of copper a projector
augmented-wave potential [65] is used (PAW PBE Cu GW
19May2006), which treats the outer 11 electrons explicitly
in the DFT framework, with the remaining electrons frozen
in the core. For temperature control, the algorithm of Nosé-
Hoover [66,67] is used with a mass parameter corresponding
to a temperature oscillation period of 40 time steps. To allow
for melting and freezing along the principal Hugoniot curve,
the simulation box for copper is spanned by lattice vectors of
the face-centered cubic (fcc) structure. For the simulations at
ambient pressure, 125 copper atoms were used, while for all
conditions along the Hugoniot curve 64 copper atoms were
placed in the simulation box. The sampling of the Brillouin
zone was carried out at the Baldereschi mean-value point [68]
for all DFT-MD simulations. For the conductivity calcula-
tions, at least ten uncorrelated snapshots are taken from the
DFT-MD simulation and reevaluated using a more accurate
energy convergence criterion and a 2 x 2 x 2 Monkhorst-
Pack grid [69]. Additionally, these snapshots were evaluated
using the hybrid XC functional of Heyd, Scuseria and
Enzerhof (HSE) [70,71]. For these calculations, however, only
the Baldereschi mean-value point was considered due to the
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higher computational demand of HSE calculations. The elec-
trical conductivity is computed from these simulations via
the Kubo-Greenwood fomula [72,73], using the eigenstates
and eigenenergies of the Kohn-Sham orbitals (for details,
see Ref. [74]). We employ a complex shift of 0.1 in the
Kramers-Kronig transformation. We have carefully checked
the convergence of our results with regard to plane wave
energy cutoff, length of the time step, number of particles and
Brillouin zone sampling. Additionally, we compute electronic
transport properties using time-dependent DFT (TD-DFT) in
the linear response regime [75], which is based on the linear
density-density response of the electronic system to an exter-
nal, time-dependent perturbation.

Furthermore, we train high-dimensional neural net-
work(NN) interatomic potentials to reproduce the DFT forces
and energies, enabling us to perform neural-network-driven
molecular dynamics (NN-MD) simulations with up to 32 000
copper atoms. Separate neural network potentials are trained
for each condition due to the large temperature range covered
in this study. Each neural network is trained on at least 4000
configurations randomly sampled from DFT-MD simulations
that span at least 40 000 time steps. These simulations include
a long (at least 20 000 time steps) simulation at the desired
conditions and shorter (at least 5000 time steps) simulations
at slightly higher and lower density and temperature than the
considered conditions. The higher particle number improves
the resolution of the phonon dispersion in the solid due to the
larger number of available wave vectors, and it enables access
to the hydrodynamic limit in the liquid regime. We use the
implementation in the n2p2 software package [76–78], which
employs Behler-Parrinello symmetry functions to describe the
environment of each copper atom and subsequently passes
these symmetry functions to the input layer of the neural net-
work. A Kalman filter is used to adjust the weights and biases
of the neural network during training. We use two hidden
layers with 40 nodes each, and set the cutoff radius between
6 Å at ambient conditions and 4 Å at the highest pressure
condition along the Hugoniot. The environment of each atom
is described by 13 radial symmetry functions and 12 narrow
angular symmetry functions chosen according to the scheme
described in Ref. [79]. The remaining parameters are set to
their default values. The trained potential is subsequently
used in conjunction with the LAMMPS molecular dynamics
simulation code [80] to produce the MD simulations. The tem-
perature in the NN-MD simulations is also controlled using a
Nosé-Hoover thermostat.

III. RESULTS FOR SOLID COPPER AT

AMBIENT CONDITIONS

First, we test our simulations against known results for
ambient solid copper at the density ρ = 8.94 g/cm3 and tem-
perature T = 303 K. While the DSF described in Eq. (1) can
be averaged over all wave vectors with equal magnitude in
liquid and warm dense copper, the orientation of �k relative
to the crystallographic axes is relevant in the solid phase. In
Fig. 1, we show the phonon dispersion of solid copper at am-
bient conditions along a high-symmetry path through the first
Brillouin zone. The phonon positions are determined from the
transverse and longitudinal current-current correlation spec-
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FIG. 1. The phonon dispersion of solid copper at ρ = 8.94
g/cm3 and T = 303 K extracted from the longitudinal and transverse
current-current correlation spectrum. The x axis is scaled by the lat-
tice constant a of ambient copper. Experimental data from Nicklow
et al. is given as a reference [82].

trum Jt(k, ω) and Jl(k, ω) (see Ref. [51] for details) of the
NN-MD simulations by the peak finding routine find_peaks

implemented in the SciPy library for scientific computing in
python [81]. This analysis of phonon modes is fully dynamic
and does not require a harmonic or quasiharmonic oscillator
model.

The observed agreement with experimental data by Nick-
low et al. [82] is very good, indicating that the lattice
dynamics in solid copper are well described by our simula-
tions. We show an example of the transverse and longitudinal
current-current correlation spectrum along the high-symmetry
path 
 − K − X in Fig. 2. The contributions due to lon-
gitudinal density oscillations are colored green and the the
correlation spectrum of transverse currents is colored red.

Furthermore, we investigate the dynamic electrical conduc-
tivity using the Kubo-Greenwood formula [72,73]. Results for
PBE and HSE calculations are shown in Fig. 3 compared to
an experimental result by Henke et al. [83] and predictions
from TD-DFT linear response calculations. Experimentally,
Henke et al. measured the absorption coefficient α(ω) of
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FIG. 2. The current-current correlation spectrum of solid copper
at ρ = 8.94 g/cm3 and T = 303 K along the high-symmetry path

 − K − X . The transverse part is colored red, while the longitudinal
part is colored green.
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FIG. 3. Dynamic electrical conductivity of solid copper at am-
bient conditions computed from a DFT simulation with 125 atoms
using the Kubo-Greenwood formula and results of TD-DFT linear
response calculations with four atoms and the adiabatic local density
approximation. The black line indicates results achieved with the
PBE XC functional, while the grey line represents results using the
HSE XC functional. Measurements of Henke et al. [83] are given as
reference.

ambient copper which can be translated to the real part
of the dynamic electrical conductivity by Kramers-Kronig
relations. We also compute the dynamic electrical conduc-
tivity using linear response TD-DFT. Here, we compute the
density-density response function due to an external perturba-
tion potential within a simulation cell containing four atoms.
The effect of electron-electron interactions is incorporated
using the random-phase approximation, which accounts for
local-field effects from the Coulomb interaction but neglects
exchange-correlation. From the response function, transport
properties, such as the electrical conductivity or the DSF,
are extracted by aid of the fluctuation-dissipation theorem.
TD-DFT has been used to compute XRTS spectra using both
the real-time [84] and linear response formalisms [85]. The
agreement in Fig. 3 is good, while the theoretical models
predict a significantly lower conductivity at ≈2 eV. Also, the
measurements are lower than the theory predictions at ≈7 eV
and the feature at ≈25 eV, which is observed by theory and
experiment, occurs at lower frequencies in the simulations.
This shift corresponds to shifted energy states relative to the
continuum of states. The DFT-MD simulation predicts the
energy states responsible for the observed feature at higher en-
ergies than the experiment indicates. This underestimation of
energy gaps is a well known problem of DFT with commonly
used XC functionals like PBE [64]. Better agreement with
experimental observations can be achieved using the hybrid
functional HSE [70,71] as shown, e.g., for aluminum [86].
However, in this case, the HSE calculations overestimate the
position of the feature, shifting it to ≈28 eV.

IV. RESULTS FOR LIQUID COPPER

AT AMBIENT PRESSURE

As another test of the method we perform simulations of
liquid copper at ρ = 7.69 g/cm3 and T = 1773 K in order to
compare to experimental data by Waseda and Ohtani [87] who
performed x-ray diffraction experiments at these conditions.
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FIG. 4. Static structure factor of liquid copper at ρ = 7.69 g/cm3

and T = 1773 K computed from a DFT-MD simulation with 125
atoms and a NN-MD simulation with 32 000 atoms. Two experi-
mental results from x-ray diffraction (Waseda and Ohtani [87]) and
neutron diffraction (Eder et al. [88]) are shown as reference. The
right inset zooms in on the long-wavelength behavior and shows the
k → 0 prediction by DFT-MD and an experimental result of liquid
copper near the melting point by Filippov [91]. The top inset zooms
in on the behavior around the first correlation peak.

We additionally compare to neutron diffraction data by Eder
et al. [88]. The atomic form factor must be regarded if the ion
dynamics are to be extracted from x-ray scattering. Waseda
and Ohtani used form factors computed from relativistic
Dirac-Slater wave functions [89] with anomalous dispersion
corrections [90], while for neutron diffraction merely the mul-
tiple scattering in the sample must be accounted for [88].
Figure 4 shows static ion structure factors calculated from a
DFT-MD simulation with 125 atoms and a NN-MD simula-
tion with 32 000 atoms.

The static structure factors inferred from Waseda and
Ohtani (T = 1773 K) and from the diffraction experiments
of Eder et al. (T = 1883 K) are displayed for comparison.
The general agreement is good while there are noticeable
differences in the first correlation peak at around 3 Å−1 and
for the low-k limit, displayed in the insets of Fig. 4. The first
correlation peak is characterized by the length scale at which
the minimum of the interatomic potential occurs. Here, longer
simulations lead to better statistics, which better resolves the
dynamics in this area, leading to a lowering of the peaks.
Additionally, smaller simulation boxes artificially enhance
the near-field order that is induced by the minimum of the
interatomic potential. Experimentally, it is influenced by
the angular resolution of the detector and spectral width of the
light/neutron source. Remarkably, the first correlation peak
of Eder et al. lies higher than that of Waseda and Ohtani,
although higher temperatures generally lead to diminishing
correlations, corresponding to a lower correlation peak.

The low-k limit is of interest because the value for k →
0 can be determined by the isothermal compressibility via
Eq. (6) which is accessible through DFT-MD simulations via
Eq. (7). We perform additional simulations at 5% higher and
lower densities in order to evaluate the derivative. The limit
determined this way is indicated by the black diamond in the
inset, while the violet asterisk is determined from inserting
an experimental compressibility (inferred from the speed of
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FIG. 5. Peak position of the ion acoustic mode taken from the
DSF and from the longitudinal current-current correlation Jl(k, ω)
[see Eq. (5)] dependent on the k value. For wave numbers below the
first correlation peak results from the NN-MD simulation are shown,
while all other results are taken from the DFT-MD simulation. A
best linear fit for the low k limit of the ion acoustic mode of the
DSF is indicated and the corresponding adiabatic speed of sound is
presented. The inset shows a comparison between DFT-MD and NN-
MD results for small k.

sound) [91] into Eq. (6). Eder et al. artificially extended their
structure factor for k values smaller than 0.5 Å−1 to match
the value computed from the compressibility near the melting
point by Filippov et al. [91], also used for the violet asterisk,
and a density determined by Cahill and Kirshenbaum [92]. It
approaches a higher value than the two indicated limits due
to the higher temperature of the experiment [see Eq. (6)].
The DFT-MD simulation with 125 atoms allows access to
k values down to 0.57 Å−1, which indicates that the trend
of Sii(k) agrees qualitatively with the known limit at k → 0,
while no definite conclusion on the agreement can be made
without further investigation with more atoms. With the larger
NN-MD simulations, it is apparent that Sii(k) also agrees
quantitively with the limit computed through (6). For wave
vectors k between 0.8 Å−1 and 2.5 Å−1, observations differ
between Eder et al. and Waseda and Ohtani. The DFT-MD
simulations agree well with the former while the latter is
significantly lower in that region (see inset in the lower right
corner of Fig. 4). A reason for this difference could be the
form factor which must be additionally considered for x-ray
diffraction experiments.

Furthermore, we compute the DSF Sii(k, ω) and the
closely related longitudinal current-current correlation spec-
trum Jl(k, ω). We extract various properties of the different
contributing modes by fitting to a generalized collective
modes approach [93,94] with one diffusive and one propagat-
ing mode, see Ref. [51] for details. Figure 5 shows the peak
positions of the ion acoustic mode extracted from the DSF as
a function of the wave vector k. This can be considered as the
dispersion relation of the ion acoustic mode. Also shown in
this figure are the peak positions of the longitudinal current
correlation given by Eq. (5) which describes collective exci-
tations via currents [95] and determines the apparent speed
of sound cl [96]. The DSF, on the other hand, can be used to
extract the adiabatic speed of sound cs in the hydrodynamic
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FIG. 6. Peak width of the thermal mode of the ion-ion DSF
dependent on the k value. Experimental results from Hagen et al. [98]
and data calculated from experimentally determined static ion struc-
ture factors by Eder et al. [88] are given as comparison. The inset
shows a comparison between the results of the DFT-MD (125 atoms)
and NN-MD (32 000 atoms) simulations in the region where experi-
mental data is available.

limit [33]. Both of these quantities are indicated in Fig. 5,
as well as the free-particle limit of a noninteracting classical
system. In this limit, the peak position of Jl is determined by
the noncollective mode which is described by

ωJ (�k) =

√

2

miβ
|�k|, (10)

see Ref. [97]. The different physical regimes that correspond
to low- and high-k values were discussed in detail recently in
Ref. [51] for warm dense aluminum. As the ions behave like
free particles in the high-k limit, their dispersion is described
by the free-particle limit, as can be seen from Fig. 5.

Another feature that can be extracted from the DSF is the
width of the diffusive thermal mode represented in Fig. 6. It
corresponds to the random thermal movement of the ions and
its shape is connected to how much energy can be coupled to
this mode. The wider the peak, the higher the energy transfer
to an individual ion can be. The magnitude of the peak is
determined by the static structure factor which accounts for
how many ions are present on the length scale defined by k.
Therefore, the width and the height of the peak determine
the energy that can be transferred to the thermal mode. In
Fig. 6, the widths for DFT-MD simulations with 125 atoms
and NN-MD simulations with 32 000 atoms are shown and
compared to an experimental result from inelastic neutron
scattering by Hagen et al. [98] and a result inferred from
neutron scattering by Eder et al. [88]. While the former rep-
resents a direct measurement, the results by Eder et al. are
calculated from the static structure factor in Fig. 4. They use
a simple model [99] with one free parameter to artificially
introduce the dynamics. The ab initio DFT-MD approach
describes the dynamics in a more consistent way than the
model chosen by Eder et al. Since their static structure factor
agreed well with DFT-MD simulations (see Fig. 4), the ob-
served deviations are attributed to the artificially introduced
dynamics.

054304-5

Publications 65



MAXIMILIAN SCHÖRNER et al. PHYSICAL REVIEW B 106, 054304 (2022)

11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5

100

200

300

400

500

P
[G

P
a]

DFT-MD

SESAME 3333

Mitchell et al.

Altshuler et al.

McQueen et al.

12 14 16 18 20

ρ [g/cm3]

0

250

500

750

1000

1250

1500

1750

P
[G

P
a]

T=1700K

T=1450K T=1856K

T=7700K

T=7310K

T=60000K

T=58022K

T=73108KMcCoy et al.

Glushak et al.

Kormer et al.

Altshuler et al. (high P )

Mitchell et al. (high P )

1.13
2.12
3.04
3.93
5.06

6.76

9.41

17.99

P
[M

b
ar
]

FIG. 7. Lower panel: Hugoniot curve for copper in the P-ρ
plane inferred from isotherms calculated using DFT-MD (black) and
isotherms from the SESAME 3333 table [100] (grey). The tempera-
tures for some data points are annotated. High pressure experimental
values by McCoy et al. [52], Glushak et al. [101], Kormer et al. [102],
Altshuler et al. [103], and Mitchell et al. [104] are shown. The
dotted horizontal lines indicate the conditions we choose for further
investigation. More information on the conditions is given in Table I.
Upper panel: Zoomed in view of the low pressure range, where
experimental data by Mitchell et al. [105], Altshuler et al. [106], and
McQueen et al. [107] are shown.

V. THE PRINCIPAL HUGONIOT CURVE

The Hugoniot equation (8) is dependent on pressure P,
density ρ, and specific internal energy ε. For a given temper-
ature, the equation of state (EOS) defines the values for P,
ρ, and ε that satisfy the Hugoniot equation. We compute 16
isotherms ranging from 1700 K upto 60 000 K, with four to
five different densities per isotherm.

The pressure and internal energy are interpolated using
cubic splines, and Eq. (8) is solved numerically to give the
principal Hugoniot curve depicted in Fig. 7. The EOS data
along the principal Hugoniot curve is listed in Table I. As a
comparison, we compute the principal Hugoniot curve from
the standard SESAME 3333 EOS table [100]. Figure 7 illus-
trates the results obtained from DFT-MD isotherms and from
SESAME isotherms in the pressure-density plane. Experi-
mentally, the Hugoniot curve of copper in the pressure-density
plane has been constrained well for pressures up to 4 Mbar
(see Fig. 7). For higher pressures, the spread of experimental
results is significantly larger [52] and experimental uncertain-
ties increase.

The SESAME EOS predicts consistently higher tempera-
tures during the compression process. While the temperature
difference at ≈1 Mbar at roughly similar conditions is
≈150 K, the difference becomes ≈3200 K around 6.7 Mbar.

TABLE I. Conditions for compressed copper predicted from
DFT-MD isotherms.

P (GPa) T (K) ρ (g/cm3) u (kJ/g)

113 1700 12.193 −3.9774
162 3000 12.959 −2.8628
212 4600 13.583 −1.6052
237 5400 13.862 −0.9597
264 6300 14.134 −0.2339
289 7200 14.373 0.4534
304 7700 14.499 0.8458
352 8200 14.793 2.1275
393 9500 15.095 3.3089
436 10900 15.373 4.5471
476 12400 15.617 5.7083
506 13500 15.805 6.6302
586 16600 16.249 9.1182
676 20000 16.694 11.8969
941 30000 17.792 20.5124
1799 60000 20.220 50.4514

While the deviation in the pressure-density plane is small and
difficult to assess experimentally, the temperature difference is
significant and could be used to test the respective EOS. The
agreement in Fig. 7 is best between 2.5 and 3.5 Mbar which
is the region in which both EOS predict the melting point as
can be seen in Fig. 8.

Experimental results by Mitchell et al. [105], Altshuler
et al. [106], and McQueen et al. [107] are indicated in the
upper panel of Fig. 7 and show better agreement with the
SESAME data while the DFT-MD Hugoniot lies slightly
higher in the pressure-density-plane. The lower panel of Fig. 7
shows the available high-pressure Hugoniot compression data
by McCoy et al. [52], Glushak et al. [101], Kormer et al. [102],
Altshuler et al. [103], and Mitchell et al. [104]. In this regime,
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FIG. 8. Hugoniot curve for copper in the T -P-plane inferred
from isotherms calculated using DFT-MD (black) and isotherms
from the SESAME 3333 table (grey). Melting lines determined by
Wu et al. [18], Moriarty et al. [19], and Belonoshko et al. [20] using
different variations of MD simulations as well as experimental results
by Hayes et al. [17] are indicated.
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FIG. 9. DFT-MD results of the static structure factor of liquid
copper along the Hugoniot curve. In the inset the low k behavior is
shown on a log scale and the NN-MD results are shown for wave
numbers that are not accessible to the DFT-MD results. The limits
for k → 0 are also indicated [see Eq. (6)]. Further information on
the conditions is given in Fig. 7 and Table I.

both EOS studied here are compatible with the experimental
data due to their large experimental uncertainties. The only
exception is the high-pressure point by Mitchell et al. around
1500 GPa, which agrees with neither of the theoretical predic-
tions.

In the temperature-pressure plane, the melting point along
the Hugoniot is easily identifiable by a kink which is due to
the latent heat needed for the phase transition. From the inset
in Fig. 8, the melting point as predicted by SESAME lies
between 2.3 and 3 Mbar, and the melting point predicted by
DFT-MD calculations lies between 3 and 3.5 Mbar. While the
MD simulations by Wu et al. [18] and Moriarty et al. [19],
as well as experiments by Hayes et al. [17] agree roughly
with the SESAME results, the two-phase MD simulations by
Belonoshko et al. [20] display a trend that tends towards the
melting point predicted by DFT-MD simulations. However,
their calculations did not cover the pressure range in question.
A recent study by Baty et al. [21] considers the melting line
for the fcc structure of copper, as well as the melting line
of the experimentally observed bcc phase, which lies above
the fcc melting point along the Hugoniot. For the subsequent
examination of the material along the principal Hugoniot
curve, the conditions indicated by horizontal dashed lines in
the upper panel of Fig. 7 were used to perform extended
simulations.

VI. ION DYNAMICS OF SHOCK-COMPRESSED COPPER

The static ion structure factors in the liquid phase are
displayed in Fig. 9. The correlation peaks exhibit a shift
to higher-k values for increasing density. Shifts for constant
pressure differences along the Hugoniot are expected to be-
come smaller, as the density ρ is a convex function of the
pressure P (as seen in Fig. 7). A smoothing and lowering of
the correlation peaks is also observable due to the lowering
of the coupling parameter, caused by a combination of higher
temperatures, higher densities and ionization. The limits for
k → 0 are also indicated by diamonds in the inset of Fig. 9.
The limits are computed via the compressibility using Eqs. (7)
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FIG. 10. Phonon dispersion of solid copper along the principal
Hugoniot curve along high-symmetry direction in the Brillouin zone.
The x axis is normalized by the lattice constant a to make the
results at different densities comparable. Further information on the
conditions is given in Fig. 7 and Table I.

and (6), analogous to Sec. IV. The lowest wave number avail-
able through the DFT-MD simulations is 0.9 Å−1, observed
for the lowest density at 15.095 g/cm3, due to the small
simulation boxes with 64 atoms.

In order to test the computed limits, we perform NN-
MD simulations with 32 000 atoms, enabling access to wave
numbers down to 0.1 Å−1. The static structure factor at the
additionally accessible wave numbers is given by the dashed
lines in the inset of Fig. 9, demonstrating good agreement
with the DFT-MD data and the thermodynamically deter-
mined limit. The determined compressibilities will be used to
compute the adiabatic speed of sound in the following.

We study three points along the principal Hugoniot curve,
where we expect solid conditions of copper according to Fig. 7
and Fig. 8. The phonon dispersion of copper for ambient
conditions and the Hugoniot conditions at 1.13, 2.12, and
3.04 Mbar are shown in Fig. 10. While we only show the peak
position here, a systematic broadening of the phonon modes is
also observed, as expected due to the increasing temperature.
Furthermore, a systematic hardening for most of the phonon
branches and orientations can be observed. Along the 
 − L

direction, we observe a strong hardening of the longitudinal
mode, while the transverse branch hardens significantly less
than along the other shown orientations.

Once the copper melts, the effect of further compression on
the ion acoustic mode can be investigated. Figure 11 shows the
change of the dynamic ion structure factor at different k values
along the Hugoniot computed from the NN-MD simulations.

Since the simulations are performed at different densities,
but with the same number of atoms, the size of the simu-
lation box varies which leads to slightly different k values
in each case. However, the large-scale NN-MD simulations
with 32 000 atoms permit access to a dense k grid in the
considered range. Therefore, the k values at all conditions
are within 1% of the numbers given in Fig. 11. A similar
study on aluminum [51] has shown that increased temperature
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1.05 Å−1
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FIG. 11. DSF of liquid copper along the principal Hugoniot
curve computed from the NN-MD simulations. The curves are
shifted by 0.35 fs with respect to the next lower k value for read-
ability. Further information on the conditions is given in Fig. 7 and
Table I.

leads to a more pronounced ion acoustic mode, but does not
shift it to higher ω. This effect is, therefore, attributed to the
density increase along the principal Hugoniot curve. The more
pronounced ion acoustic mode, as well as the generally ele-
vated course of Sii(k, ω) for higher temperatures is in accord
with the observation in Fig. 9 that the static structure factor
Sii(k) is greater at high temperatures than at low temperatures
for k values smaller than 2.8 Å−1.

The adiabatic speed of sound can be computed from the
thermodynamic relation

cs =

√

γ

κT ρ
, (11)

with the isothermal compressibilities κT computed in Fig. 9.
The upper panel of Fig. 12 shows the linear trends computed
from Eq. (11), as well as the disperison of the ion acoustic
mode taken from the DSF shown in Fig. 11. It is apparent that
the observed peak positions converge to the linear behavior
for all conditions, while for the more extreme conditions,
the hydrodynamic regime is reached at smaller k values. The
bottom panel of Fig. 11 shows the peak position of the longitu-
dinal current-current correlation spectrum across a wide range
of wave numbers. The free-particle limit of a noninteracting
system [see Eq. (10)] is given as a reference. The disperison
above 10 Å−1 for all conditions is well approximated by this
limiting behavior.
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FIG. 12. The upper panel shows the peak position of the ion
acoustic mode ωion taken from the DSF’s in Fig. 11 dependent on
the k value and a linear dispersion computed from Eq. (11). The
corresponding adiabatic speeds of sound are presented. The lower
panel shows the dispersion of the longitudinal current-current cor-
relation spectrum Jl extracted from the NN-MD simulations and the
free-particle behavior. For readability, the curves in the upper panel
are shifted by 0.2 Å−1 to the right with respect to the next lower
pressure condition.

The adiabatic speed of sound is also accessible during
shock wave experiments via VISAR measurements [108,109],
where the time it takes the shock wave to travel through
the target is recorded. First measurements of the speed of
sound in copper for this pressure region were observed by
McCoy et al. [52] during a shock compression experiment.
The inferred pressure-density conditions, amongst others, are
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FIG. 13. Adiabatic speed of sound computed from the thermody-
namic relation (11) compared to experimental VISAR measurements
by McCoy et al. [52] for shock-compressed copper.
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FIG. 14. Validation sets of the NN potentials for energies and

forces computed by DFT. As a reference, the black dashed lines show
perfect correspondence between the NN potential and DFT.

shown in Fig. 7 and agree within error bars with our simu-
lations. In Fig. 13, we show the experimentally determined
adiabatic speed of sound compared to the values computed
through Eq. (11). All of the simulation data points lie slightly
below the experimentally observed results. As the principal
Hugoniot becomes steeper in the P − ρ plane, the adiabatic
speed of sound appears to flatten out towards higher pressures.
Unfortunately, the experimental data does not extend to these
pressure to verify this trend.

VII. CONCLUSION

In this work, we performed an extensive analysis of shock-
compressed copper using DFT-MD simulations and MD
simulations driven by high-dimensional neural network po-
tentials. By analyzing the ion-ion structure factor, we showed
that our DFT-MD simulations are able to accurately describe
the phonon spectrum of solid copper. Likewise, our analysis
of the dynamic electrical conductivity in terms of the Kubo-
Greenwood formula and linear response TD-DFT yielded
close agreement with existing experimental data. Further-
more, we computed the static and dynamic ion-ion structure
factor of liquid copper near the melting line. The agreement
with diffraction data was observed to be excellent and the
width of the thermal mode agreed well with experiments at
wave numbers around the first correlation peak.

The Hugoniot curve was computed from several isotherms
up to 60 000 K and 18 Mbar and compared to predictions by
the SESAME EOS. Good agreement in the pressure-density
plane was achieved between DFT-MD, SESAME and experi-
ments upto 4 Mbar. Differences in the temperature between

DFT-MD and SESAME along the Hugoniot were identi-
fied, and the resulting shift of the melting point to higher
pressures was highlighted. We observed the hardening of
phonon spectra in the solid regime of the Hugoniot com-
pression and, analogously, studied the shift of ion acoustic
modes to higher excitation energies. Phonon hardening is cur-
rently lively debated and recent work has shown that phonons
can be resolved at free electron laser facilities [26–28,110],
enabling future direct observations of phonon hardening in
shock compression experiments. We found the adiabatic speed
of sound along the Hugoniot to be slightly underestimated by
DFT-MD relative to recent experimental results. We provided
ab initio predictions for the evolution of phonon and ion
acoustic modes during shock compression of copper, as well
as adiabatic speeds of sound for pressures beyond those pre-
viously reached by McCoy et al. [52]. We hope this inspires
further high-pressure shock compression studies, coupled
with high resolution x-ray scattering to resolve the ion dy-
namics of copper under these conditions.
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APPENDIX: VALIDATION SETS OF NN POTENTIALS

We show the validation sets of forces and energies com-
puted via DFT for all the conditions treated in this work in
Fig. 14. Perfect predictions by the NN potential, correspond-
ing to the straight lines ENN = EDFT and FNN = FDFT, are
indicated by the black dashed lines. Here, EDFT and FDFT are
the energies and forces computed through DFT, where FDFT

can be any cartesian component of the force vector. Analo-
gously, ENN and FNN are the energies and forces predicted by
the NN potential.
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We study ab initio approaches for calculating x-ray Thomson scattering spectra from density functional theory
molecular dynamics simulations based on a modified Chihara formula that expresses the inelastic contribution
in terms of the dielectric function. We study the electronic dynamic structure factor computed from the Mermin
dielectric function using an ab initio electron-ion collision frequency in comparison to computations using a
linear-response time-dependent density functional theory (LR-TDDFT) framework for hydrogen and beryllium
and investigate the dispersion of free-free and bound-free contributions to the scattering signal. A separate
treatment of these contributions, where only the free-free part follows the Mermin dispersion, shows good
agreement with LR-TDDFT results for ambient-density beryllium, but breaks down for highly compressed
matter where the bound states become pressure ionized. LR-TDDFT is used to reanalyze x-ray Thomson
scattering experiments on beryllium demonstrating strong deviations from the plasma conditions inferred with
traditional analytic models at small scattering angles.

DOI: 10.1103/PhysRevE.107.065207

I. INTRODUCTION

X-ray Thomson scattering (XRTS) has been one of the
premier diagnostic tools for warm dense matter (WDM) ex-
periments, enabling measurements of the electron density,
temperature, and ionization state [1–3]. The states reached
in these experiments are characterized by temperatures of a
few electron volts (eV) and around solid densities, which
constitutes strongly correlated plasmas with non-negligible
degeneracy. This prevents the application of ideal plasma the-
ory for the analysis of these experiments, and rather requires
a quantum mechanical treatment in a many-body framework.
Knowledge of equation of state data as well as thermal and
electrical transport properties for warm dense hydrogen and
beryllium is essential for modeling astrophysical objects [4,5]
and inertial confinement fusion [6], where hydrogen is used
as fuel while beryllium often serves as ablator material [7,8].
Furthermore, hydrogen and beryllium are excellent test cases
for new theoretical approaches. The analytical behavior in
many limiting cases for fully ionized hydrogen plasmas are
known and beryllium can be used to test the treatment of
bound states in a simple low-Z material. WDM is typically
opaque in the optical regime, as the light frequency is smaller
than the plasma frequency ωpl of these plasmas. Therefore, it
is indispensable to have diagnostic tools at experiments that

*maximilian.schoerner@uni-rostock.de

are well understood, both experimentally and theoretically.
XRTS has proven to overcome many of the experimental
challenges of probing WDM. The high-energy x-ray photons
can penetrate dense plasmas, and since the advent of free-
electron lasers (FELs), rep-rated x-ray sources with sufficient
brilliance for probing short-lived transient states are available
in addition to laser-plasma sources which only allow a limited
number of experiments and require complex sample assem-
blies. New FEL techniques like self-seeding [9,10] have also
resulted in much narrower bandwidths of the x-ray source,
enabling the measurement of phonons and ion acoustic modes
[11,12] and a better resolution of density and temperature-
sensitive regions in the XRTS spectrum.

Due to the steadily improving quality of collected spectra,
it is vital to have accurate theoretical modeling of the scatter-
ing. While in the past, the resolution of XRTS spectra often
did not allow for discrimination between different theoretical
approaches, now, fitting experimental spectra to theoretical
models has allowed predictions of electron temperature and
density to within a few percent uncertainty [13–15]. As a
result, the fidelity of the theoretical model used is now the
limiting factor in determining the correct plasma parame-
ters in experiments that employ XRTS as a diagnostic tool.
Most approaches rely on the semiclassical Chihara decompo-
sition [16,17] of the spectrum into three distinct contributions
which originates from distinguishing between free and bound
electrons in a chemical picture. An analogous fully quantum-
mechanical description has also been proposed [18]. The
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standard approach for modeling XRTS spectra in the Chi-
hara description is a combination of theories to describe each
component individually [19]. The ion dynamics are usually
described by the hypernetted-chain approximation with dif-
ferent expressions for the interaction potential while the form
factors are described by a screened hydrogenic approximation
to the wave functions [20] and the Debye-Hückel approxima-
tion for the screening cloud. The plasmon can be described by
the random phase approximation (RPA) or the Mermin dielec-
tric function in order to also include electron-ion collisions
which can also be approximated to different degrees [21].
Further electron correlations can be accounted for by local
field corrections [22]. Contributions that are related to bound-
free transitions are treated within the impulse approximation
[23] which is sometimes modified by the ionization potential
depression and normalized according to different sum rules.

In recent years, this approach has been partially re-
placed by ab initio descriptions like density functional theory
molecular dynamics (DFT-MD) simulations and real-time or
linear-response time-dependent DFT (RT/LR-TDDFT) com-
putations. Witte et al. successfully used electron-ion collision
frequencies determined by DFT to accurately model the
plasmon of an aluminum plasma [24]. This approach was
subsequently compared to LR-TDDFT and other theoretical
models by Ramakrishna et al. for ambient and extreme con-
ditions in aluminum [25] and carbon [26], which was then
used to discern miscibility in an XRTS experiment [13]. Mo
et al. also used LR-TDDFT to study isochorically heated
aluminum [27]. Baczewski et al. went beyond the Chihara
decomposition by simulating the real-time propagation of the
electronic density using RT-TDDFT [28]. Path integral Monte
Carlo simulations have delivered approximation-free results
for the uniform electron gas [29] and hydrogen plasmas [30],
but are currently unable to describe heavier elements.

The capability of DFT-MD to compute ion dynamics and
the form factors was already demonstrated and tested in previ-
ous publications [31–33]. Therefore, in this work, we focus on
the inelastic contribution to the scattering spectrum, i.e., the
plasmon and bound-free contribution. Although the ab initio

approaches offer a better description of the many-body na-
ture involved in the scattering process, they incur substantial
computational cost and take a long time to perform, which
is especially troubling if the conditions reached in an experi-
ment cannot easily be constrained. Therefore, the much faster
analytic approach of using the Mermin dielectric function is
still widely used in the field of WDM research [14,34,35]. To
test the validity of the Mermin description, we connect the
DFT and Mermin approach in the macroscopic limit (k → 0)
by introducing an ab initio electron-ion collision frequency,
as first described in Ref. [24], and examine differences of the
predicted scattering spectra at finite scattering angles.

In Secs. II A and II B, we give an overview of the theoreti-
cal foundation for computing the electronic dynamic structure
factor from the Mermin dielectric function with a dynamic
complex collision frequency and apply this framework to
extract a DFT-based collision frequency. In Sec. II C, a short
summary and the relevant equations for LR-TDDFT is given.
In Sec. II D we give the details of the simulation method.
We compute DFT-based collision frequencies for a hydrogen
plasma and compare them to several analytic approaches in

Sec. III and we study the impact of these collision frequen-
cies on dynamic structure factors (DSFs) for hydrogen and
beryllium plasmas in Secs. IV A, IV B, and IV C. In Sec. V,
we apply the full ab initio description of LR-TDDFT to inter-
pret XRTS experiments on beryllium, which were previously
analyzed using analytic approaches. We evaluate the impact
on the inferred plasma parameters for XRTS experiments at
small and large scattering angles, showing good agreement in
the backscattering and significant deviations in the forward
scattering.

II. THEORETICAL BACKGROUND

A. Dynamic structure factor

The electronic DSF [1]

Stot
ee (�k, ω) = 1

2πNe

∫ ∞

−∞
dt

〈

ne
�k (τ )ne

−�k (τ + t )
〉

τ
eiωt (1)

is the central quantity representing the spatially resolved
power spectrum of an electronic system, describing its dy-
namics at given temporal and spatial periodicities given by
the frequency ω and the wave vector �k, respectively. The
number of considered electrons is Ne and the spatial Fourier
components of the electron density are given by ne

�k . The time
is described by t and τ , where 〈· · · 〉τ describes a time average
over τ . Experimentally, Stot

ee (�k, ω) can be used to identify how
strong a photon will couple to density fluctuations at a given
energy transfer and scattering angle [1]. In this work we will
use a slight modification of the common decomposition of
Eq. (1) introduced by Chihara [16,17]:

Stot
ee (�k, ω) = | fi(�k) + q(�k)|2Sii(�k, ω)

+ Zf S
0
ee(�k, ω) + ZbSbf (�k, ω)

︸ ︷︷ ︸

ZSet (�k,ω)

. (2)

The first term refers to the elastic response of the electrons
which follow the ion motion described by the ion-ion struc-
ture factor Sii(�k, ω). Here, fi(�k) describes the contribution
of tightly bound electrons and q(�k) represents the loosely
bound screening cloud around the ions. The second term,
called the electron feature, arises from the collective behavior
of the free electrons in the system undergoing transitions to
different free-electron states. The number of free electrons
per atom is labeled Zf and their DSF is denoted by S0

ee(�k, ω).
The last term in Eq. (2) is the bound-free contribution. In
the original work, Chihara clearly separates free and bound
electrons and describes this term as a convolution of the DSF
of the core electrons with the self-part of the ionic DSF [17].
We treat the bound-free contribution on the same footing as
the free-electron contribution and introduce the bound-free
DSF Sbf (�k, ω) and the number of bound electrons per atom
Zb. Both the free-electron and bound-free contributions arise
due to inelastic transitions of the electrons and can, therefore,
be combined into one DSF Set(�k, ω) that accounts for all
electronic transitions. This avoids the artificial separation into
bound and free electrons for both the charge state Z and the
DSF. According to the fluctuation-dissipation theorem [36],
this combined DSF can be related to the dielectric response
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described by the dielectric function ε(�k, ω) via

Set(�k, ω) = − ε0h̄�k2

πe2ne

Im[ε−1(�k, ω)]

1 − exp
(−h̄ω

kBTe

) . (3)

The vacuum permittivity is denoted by ε0, the reduced Planck
constant is h̄, and e is the elementary charge. The electron
density is given by ne, the electron temperature is Te, and the
Boltzmann constant is kB. At which conditions the separa-
tion into free and bound-free parts in Eq. (2) is justified and
yields the same results as the combined approach discussed in
Secs. IV B and IV C.

B. Dielectric function with electron-ion collisions

The dielectric function ε(�k, ω) is a central material prop-
erty that is connected to other material properties, like the
electrical conductivity σ (ω) in the long-wavelength limit or
the DSF via the fluctuation-dissipation theorem from Eq. (3).
One of the first approaches that produced collective features
of the electron system, such as plasmons, is the Lindhard
dielectric function [37]

εRPA(�k, ω)

= lim
η→0

[

1− 2e2

ε0k2

∫
d3q

(2π )3

f �q−�k/2 − f �q+�k/2

h̄(ω + iη) + E�q−�k/2 − E�q+�k/2

]

,

(4)

which accounts for electric field screening in the RPA. The
arguments �k and ω are the wave vector and the angular fre-
quency, respectively. E�q and f �q are the kinetic energy and
the Fermi occupation of an electron with wave vector �q in
the unperturbed free-electron gas. The small imaginary con-
tribution to the frequency η is introduced to avoid the pole in
the integration and approaches zero thereafter. However, for
degenerate, strongly correlated systems, electron-ion interac-
tions, which are neglected in Eq. (4), have to be accounted for
in order to accurately describe the dielectric function.

It was shown that electron-ion collisions can be included
via a dynamic collision frequency ν(ω) in the framework of
the Mermin dielectric function [38–41]

εMermin[�k, ω; ν(ω)]

= 1 +
(

1 + i ν(ω)
ω

)

(εRPA[�k, ω + iν(ω)] − 1)

1 + i ν(ω)
ω

εRPA[�k,ω+iν(ω)]−1

εRPA (�k,0)−1

. (5)

This collision frequency is defined as the difference to the
RPA in the macroscopic limit due to the interaction of elec-
trons and ions [21]. Further correlations between the electrons
can be included via local field corrections by going beyond the
RPA and replacing εRPA in Eq. (5) by the dielectric function
of the one-component plasma [22,42,43]. Extensive work has
been performed on the evaluation of different analytic colli-
sion frequencies and local field corrections [21,22,44], as well
as first attempts to incorporate ab initio results to determine
collision frequencies [45].

We present the derivation of the RPA dielectric function
in the presence of a dynamic complex collision frequency
in Appendix A. Equations (5), (A7), and (A8) are the basis
for calculating the Mermin dielectric function for a given

FIG. 1. Schematic work flow for determining the dynamic colli-
sion frequency and k-dependent dielectric function via DFT.

dynamic collision frequency ν(ω). In the following, because
we are dealing with isotropic systems, we will only consider
the magnitude of wave vector �k and drop the vector notation.

One of the most prominent approximations for the collision
frequency is the Born collision frequency [21], the combina-
tion of which with the Mermin dielectric function in Eq. (5)
is called the Born-Mermin approximation. It is widely used in
the analysis of XRTS spectra in the WDM field. We give the
exact equations used in this work in Appendix B. However,
complex many-particle effects, as they are considered in ab

initio simulations, cannot be accounted for by this approach.
In Fig. 1, we show the schematic procedure to compute a

DFT-based collision frequency from an electrical conductiv-
ity in the optical limit. In essence, we construct a complex
collision frequency for which the Mermin dielectric function
coincides with the ab initio dielectric function in the optical
limit. As input, the temperature and electron density of the
plasma are needed for the Mermin dielectric function and
the real part of the electrical conductivity is needed from
the simulation. According to the Kubo-Greenwood formula
[46,47] the conductivity is

Re [σ (k = 0, ω)]

= 2πe2

3ω	

∑

�g
w�g

N
∑

j=1

N
∑

i=1

3
∑

α=1

[ f (ε j,�g) − f (εi,�g)]|

× 〈ψ j,�g|v̂α|ψi,�g〉|2δ(εi,�g − ε j,�g − h̄ω). (6)

The indices i and j run over the eigenstates, α runs over the
spatial orientations, and �g denotes the reciprocal vectors in the
Brillouin zone where the wave functions ψi,�g are evaluated.
The Fermi-Dirac occupation at a given eigenenergy ε j,�g is
described by f (ε j,�g) and v̂α is the velocity operator in the
direction α. The normalization volume is denoted by 	 and
w�g is the weighting of each k point. We translate the electrical
conductivity to the imaginary dielectric function via

Im [ε(k = 0, ω)] = 1

ε0ω
Re [σ (k = 0, ω)] (7)
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and use the Kramers-Kronig transformation to compute the
corresponding real part, leading to a complex dielectric func-
tion εDFT(k = 0, ω). If we require an equivalence between the
DFT result and the Mermin dielectric function in the optical
limit

εDFT(k = 0, ω)
!= lim

k→0
εMermin(k, ω; ν(ω)), (8)

the real and imaginary parts must be equal simultaneously.
This can be achieved by adjusting the real and imaginary
parts of the dynamic collision frequency which feeds into
the Mermin dielectric function, leading to a two-dimensional
optimization problem. The result of this optimization is a
collision frequency νDFT(ω) for which the analytic Mermin
dielectric function yields the same results as DFT in the
macroscopic limit. Because there is no notion of bound states
in the theoretical framework of the Mermin dielectric func-
tion, the electrical conductivity must only originate from free
or quasi-free states. For this purpose, the conductivity in
Eq. (6) can be split into different contributions (see Ref. [48]
for details).

Figure 2 shows the convergence of the Mermin dielectric
function and DSF to the DFT result in the optical limit for a
beryllium plasma at ρ = 5 g/cm3 and T = 100 eV. Due to
the presence of bound states in beryllium at these conditions,
only the electrical conductivity due to free electrons can be
used as an input to the workflow depicted in Fig. 1 and all
quantities in Fig. 2 are free-electron contributions. The DFT
results for the dielectric function εDFT(k, ω) and the connected
DSF SDFT(k, ω) are only available at k = 0 and are shown
as a constant reference for the various k depicted in Fig. 2.
In both panels, it is apparent that, with the correct collision
frequency νDFT(ω), the Mermin result converges to the op-
tical limit described by DFT. In practice, the limit k → 0 is
reached at wave numbers that correspond to length scales that
are significantly larger than any characteristic length scales
of the studied system. For beryllium at these conditions, the
convergence is reached for wave numbers smaller or equal to
10−4 Å−1 as depicted in Fig. 2. The dielectric functions in
the upper panel are connected to the DSF in the lower panel
by Eq. (3). However, it is apparent that the dynamic dielec-
tric function in the upper panel of Fig. 2 is more sensitive
to changes in the wave number than the DSF shown in the
bottom panel, which is dominated by the pole in ε−1(k, ω).

C. Linear-response time-dependent density functional theory

In the framework of LR-TDDFT the density response of
the noninteracting homogeneous Kohn-Sham system can be
evaluated at a finite momentum transfer as [49,50]

χKS(�k, ω) = 1

	

∑

�g,i, j

f (εi,�g) − f (ε
j,�g+�k )

ω + εi,�g − ε
j,�g+�k + iη

× 〈ψi,�g|e−i�k�r |ψ
j,�g+�k〉〈ψi,�g|ei�k�r |ψ

j,�g+�k〉. (9)

The quantities in this equation are defined analogously to the
Kubo-Greenwood formula in Eq. (6). This response function
can be related to the full density response χ via a Dyson
equation [49], with different levels of approximation for the
exchange-correlation kernel fXC. A closed expression can be
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FIG. 2. The top panel shows the free-electron part of the dielec-
tric function ε(k, ω) in a beryllium plasma at ρ = 5 g/cm3 and T =
100 eV. The DFT results are given at k = 0, where the solid lines
are the real part and the dash-dotted lines are the imaginary part.
The Mermin dielectric function from Eq. (5) is calculated with the
DFT collision frequency νDFT. The colors represent different values
for k, while the real and imaginary parts are given by the circles
and crosses, respectively. The bottom panel shows the free-electron
DSF S0

ee(k, ω) computed from DFT (solid lines) at k = 0 and from
the Mermin dielectric function (circles) at various k. The DSFs are
scaled to the same magnitude and the dielectric function and DSFs
are shifted by 75 and 0.5 arb. units, respectively, with respect to the
next lowest wave number for readability.

written as

χ (�k, ω) = χKS(�k, ω)

1 − [v(�k) + fXC(�k, ω)]χKS(�k, ω)
, (10)

where v(�k) is the Fourier transform of the Coulomb potential.
The exchange-correlation kernel in Eq. (10) is closely con-
nected to the local field corrections mentioned in Sec. II B
[42,51,52]. The level of the RPA is achieved for fXC = 0, for
which the dielectric function can be computed as

εRPA
KS (�k, ω) = 1 − 4π

|�k|2
χKS(�k, ω). (11)

In this framework, the electron-ion coupling is considered, on
the one hand, through the snapshots taken from the DFT-MD
simulation, which effectively account for static screening via
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the static ion-ion structure factor, and on the other hand,
through the Kohn-Sham orbitals ψi,�g in Eq. (9), which are
the result of a DFT calculation that considers the Coulomb
interaction between the electrons and ions.

Because the Mermin dielectric function accounts for elec-
tron interactions on the level of the RPA, we set fXC = 0
and use Eq. (11) in Secs. IV A, IV B, and IV C to facilitate
comparisons. In Sec. V, we use the adiabatic local density
approximation [49,53].

D. Computational details

All DFT-MD simulations for this work were performed
with the Vienna ab initio simulation package (VASP) [54–56].
The electronic and ionic parts are decoupled by the Born-
Oppenheimer approximation and, for fixed ion positions,
the electronic problem is solved in the finite-temperature
DFT approach [57]. In VASP, the electronic wave functions
are expanded in a plane-wave basis set up to an energy
cutoff Ecut. After the electronic ground state density is de-
termined self-consistently at every time step, the forces on
the ions via Coulomb interactions with other ions and the
electron cloud are computed and the ions are moved accord-
ing to Newton’s second law. The temperature control in the
MD simulation is performed via the Nosé-Hoover algorithm
[58,59] with a mass parameter corresponding to a temperature
oscillation period of 40 time steps. All simulations are per-
formed using the exchange-correlation functional of Perdew,
Burke, and Ernzerhof (PBE) [60]. For beryllium, we use the
PAW_PBE Be_sv_GW 31Mar2010 potential with an energy
cutoff of 800 eV for all simulations apart from the compressed
case in Sec. IV C for which we use a Coulomb potential with
a cutoff of 10 000 eV. For further details on the hydrogen
simulation parameters, see Ref. [61].

The dynamic electrical conductivity, which is the input
for the scheme presented in Fig. 1, was computed from the
eigenfunctions and eigenenergies of separate DFT cycles with
a more precise energy convergence criterion via the Kubo-
Greenwood formula (6). These simulations were performed
on at least five snapshots taken at equidistant time steps from
the DFT-MD simulation. The scheme described in Sec. II B
was implemented using the NUMPY software package [62] for
arrays to store the dynamic properties and for the evaluation
of simple numerical integration. More elaborate integrals,
such as in Eqs. (A7) and (A8), were evaluated using Gaus-
sian quadrature from the SCIPY software package [63]. The
Kramers-Kronig transformation between the real and imagi-
nary parts of the dynamic dielectric function and the electrical
conductivity was performed according to Maclaurin’s formula
from Ref. [64].

The LR-TDDFT calculations were performed in the
GPAW code [50,65–67]. The same snapshots as for the
Kubo-Greenwood calculations were used and a 2 × 2 × 2
or 4 × 4 × 4 Monkhorst-Pack grid [68] was employed for
calculations of k-dependent dielectric functions. For the con-
sidered conditions, already the Baldereschi mean value point
[69] yields converged optical conductivities for the Kubo-
Greenwood calculations. For hydrogen, the dielectric function
was computed with a plane-wave energy cutoff of at least
50 eV, while for beryllium at least 250 eV were used.
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FIG. 3. The real part of the dynamic collision frequency of hy-
drogen plasmas at ρ = 2 g/cm3 for temperatures ranging from 5 to
100 eV. The DFT and LR-TDDFT collision frequencies determined
via Eq. (8) from their respective electrical conductivities are shown
in black and pink, respectively. The LB collision frequency is shown
in blue with crosses and the T -matrix approach is shown in yellow
with plus symbols. The GDW collision frequencies with and without
electron-electron collisions are depicted in red as a dotted line and as
a solid line with filled circles, respectively.

III. DYNAMIC COLLISION FREQUENCY

The workflow presented in Fig. 1 results in a complex
dynamic collision frequency νDFT(ω). To study how this
collision frequency compares to different levels of analytic
approximations, we determine the real part of νDFT for a
hydrogen isochore at ρ = 2 g/cm3 from 5 to 100 eV (see
Ref. [61] for numerical details). This temperature range was
chosen to illustrate the transition from the WDM regime to
the ideal plasma regime. In Fig. 3 we compare these collision
frequencies to the Lenard-Balescu (LB) collision frequency,
the T -matrix (TM) approach, and the Gould-DeWitt (GDW)
approach. The LB approach goes beyond the Born collision
frequency by including dynamic screening, while the TM
approach accounts for strong binary collisions by summing up
ladder diagrams in the perturbation expansion [70]. The GDW
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scheme combines the dynamic screening of the LB approach
with the strong collisions of the TM treatment and should, in
principle, give the most accurate results. For further details
on the analytic approaches, see Refs. [21,70–73]. The afore-
mentioned approaches solely describe electron-ion collisions,
but electron-electron (e-e) collisions can be included by mod-
ulating the collision frequency with a renormalization factor
[21]. The GDW collision frequency including e-e collisions is
also indicated in Fig. 3 by the red dotted lines. It is apparent
that although the DFT predictions agree well with the TM
and GDW approaches at high temperatures, it deviates sig-
nificantly at lower temperatures where complex many-body
and quantum effects contribute strongly. At T = 100 eV, the
collision frequency is dominated by strong collisions between
ions and electrons. However, the inclusion of e-e collisions
via the renormalization factor leads to worse agreement with
the DFT results, which is in agreement with recent observa-
tions that the Kubo-Greenwood formula applied to DFT lacks
e-e collisions [61,74]. Furthermore, we apply the workflow
presented in Fig. 1 to the electrical conductivity in the optical
limit computed by LR-TDDFT to extract a collision frequency
which we show as the pink dashed lines in Fig. 3. At all tem-
peratures, its behavior is very similar to the Kubo-Greenwood
results, which indicates that electron-electron collisions are
also not included in this description of transport properties.
It is remarkable that at high frequencies the LR-TDDFT colli-
sion frequency lies significantly below the Kubo-Greenwood
results for all considered temperatures. In our tests, this could
not be attributed to a lack of convergence in the number of
bands or cutoff energy.

IV. DYNAMIC STRUCTURE FACTOR

A. Hydrogen

Given a dynamic collision frequency ν(ω), Eqs. (3) and (5)
can be used to compute the electronic DSF See(k, ω) where
the k dependence only enters through the Mermin dielectric
function. The LR-TDDFT approach allows direct access to the
dielectric function at finite k by computing transition matrix
elements between Kohn-Sham states at different k points [50].
In Fig. 4, we show the electronic DSF of a hydrogen plasma
at ρ = 2 g/cm3 and T = 50 eV (lower panel) and T = 5 eV
(upper panel). The direct computations through LR-TDDFT
are shown as solid lines, while we also present DSFs com-
puted via the Mermin dielectric function in conjunction with
the DFT and GDW collision frequencies shown in Fig. 3 as
dashed and dash-dotted lines, respectively. Additionally, we
show the results from the Mermin dielectric function with the
Born collision frequency [see Eq. (B1)], which constitutes
the often used Born-Mermin approach, as dotted lines. At
the lowest wave number shown in Fig. 4, k = 0.67 Å−1, we
are considering the collective behavior where collisions are
important, as can be seen from the dimensionless scattering
parameter α (see Ref. [1] for definition), which is 4.17 and
2.84 for T = 5 and T = 50 eV, respectively.

As expected for a fully ionized hydrogen plasma, the
k dependence encoded by the Mermin dielectric function
agrees well with the direct computation via LR-TDDFT
for all considered collision frequencies at both conditions.
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FIG. 4. The inelastic electronic DSF Set (k, ω) of a hydrogen
plasma at ρ = 2 g/cm3 and T = 5 eV (upper panel) and T = 50 eV
(lower panel) from k = 0.67 to k = 2.40 Å−1. The solid line denotes
the direct computation from LR-TDDFT at the respective wave num-
bers, while the other lines denote DSFs computed from the Mermin
dielectric function with the DFT collision frequency (dashed lines),
the GDW collision frequency including electron-electron collisions
(dash-dotted lines), and the Born collision frequency (dotted lines).
The DSFs are shifted by 0.5 arb. units with respect to the next lowest
wave number for readability.

However, at T = 5 eV, the damping of the plasmon predicted
by LR-TDDFT can only be captured with the DFT collision
frequency, especially at small k. The Born collision frequency
leads to a vast overestimation of the plasmon magnitude for
k below 2.4 Å−1 and also the GDW approach with renor-
malization overestimates the magnitude by a factor of 2 for
k below 1.15 Å−1. With increasing wave numbers, the colli-
sions become less significant, and the DSFs for all collision
frequencies start to converge to the same result. At T = 50 eV,
the collisions play a smaller role, which is demonstrated by
the largely identical predictions from all collision frequencies
for k above 1.15 Å−1. It is notable that although the inclusion
of electron-electron collisions leads to significant discrepan-
cies between the dynamic collision frequencies in Fig. 3,
these differences cannot be observed in the DSF, given the
numerical noise. In the LR-TDDFT data, a small additional
contribution at h̄ω = 0 eV appears, which has also recently
been seen in path-integral Monte Carlo simulations [75]. This
bump is not included in the Mermin formalism and appears
more pronounced at higher temperatures and lower densities
(also see Secs. IV B and IV C), leading us to propose that
it is connected to bound-bound transitions without energy
transfer.
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FIG. 5. The inelastic electronic DSF Set (k, ω) of a beryllium
plasma at ρ = 1.8 g/cm3 and T = 12 eV for various k values on a
logarithmic scale. The solid lines are direct computations at the given
k using LR-TDDFT. The dash-dotted and the dashed lines denote
DSFs computed from the Mermin dielectric function with the full
DFT collision frequency, determined from the electrical conductivity
including bound-free transitions, and the free-free collision fre-
quency, determined from the electrical conductivity including only
free-free transitions, respectively. The dotted lines denote the DSF
computed directly from the bound-free conductivity at k = 0 Å−1.

B. Isochorically heated beryllium

To investigate the impact of tightly bound states on the
presented procedure, we study a beryllium plasma at ρ =
1.8 g/cm3 and T = 12 eV, for which the approach of Ref. [48]
predicts a charge state Z = 2.1. The bound 1s states are
energetically clearly separated from the free electrons. The
collision frequency can either be determined from the full dy-
namic electrical conductivity that includes the transitions from
the bound 1s states to the conduction band, or from the free-
free electrical conductivity by restricting the transition matrix
elements in Eq. (6) to transitions originating and ending in
the conduction band (for details on this decomposition, see
Ref. [48]). In the latter case, only the free-free contribution to
the DSF is considered within the Mermin dielectric function,
while the bound-free contribution must be approximated by
its behavior at k → 0. In Fig. 5, we show the comparison
of these two approaches to the direct computation of the
electronic DSF using LR-TDDFT. At the lowest wave number
k = 0.49 Å−1, shown in the upper panel, all approaches agree
well, as expected due to the construction of the collision fre-
quency which requires equivalence in the limit of small k [see
Eq. (8)]. The separation of the conductivity into a free-free
and a bound-free contribution allows us to clearly identify
the different terms of the Chihara formula (2) in the DSF.

The dotted line represents the bound-free contribution, which
agrees exactly with the LR-TDDFT data above ∼90 eV, and
the dashed line represents the free-free contribution (plas-
mon), which matches the LR-TDDFT results below ∼90 eV.
Remarkably, the prefactors Zf and Zb in Eq. (2) which give
the respective weighting of these two features come out of
the definition of the charge state described in Ref. [48] and
agree virtually exactly with the direct computation including
all transitions in LR-TDDFT.

At k = 1.47 Å−1 in the middle panel of Fig. 5, the de-
viation of the approach using the full collision frequency
to the other approaches becomes apparent. The bound-free
dominated DSF above ∼90 eV is still well approximated by
both the full collision frequency and the bound-free feature at
k → 0. Below ∼90 eV, however, the approach using the full
collision frequency, denoted by the dash-dotted line, deviates
strongly (note the logarithmic scale) from the LR-TDDFT
result. The free-free feature computed solely from the col-
lision frequency based on free-free transitions, denoted by
the dashed line, still agrees very well with the LR-TDDFT
calculation in this energy regime.

The bottom panel of Fig. 5, showing the DSF at k =
3.42 Å−1, highlights the complete breakdown of the approach
using the full collision frequency. While the DSF is still de-
scribed adequately above ∼90 eV, its shape is very different
from the LR-TDDFT result below that energy. On the other
hand, the separate description of free-free and bound-free
contributions again describes the DSF accurately compared
to the LR-TDDFT data. However, the approximation of the
bound-free feature by its k → 0 limit starts to deteriorate
at this wave number. At the highest energy shift shown in
Fig. 5, this approximation underestimates the LR-TDDFT
value by a factor of almost 2. Additionally, at the onset of
the bound-free feature around 100 eV, it overestimates the
DSF compared to the LR-TDDFT as can be seen in Fig. 6
which shows the DSF on a linear scale. The fast deterio-
ration beyond the k → 0 limit of the approach using the
full collision frequency is expected because the framework
of the Mermin dielectric function, which encodes the k de-
pendence, does not include the existence of bound states.
Therefore, any such states that are artificially introduced via
the collision frequency cannot be handled correctly in the k

dependence.
Furthermore, in Fig. 6, we show the DSFs computed from

the Mermin dielectric function with Born collision frequen-
cies for a plasma with a charge state Z = 2 and Z = 4. The
position of the plasmon peak for Z = 2 agrees well with
the DFT spectra, while the position of the Z = 4 plasma is
consistently at too high energies, as expected due to the higher
free-electron density. However, at low k, the dampening of the
plasmon peak due to the Born collision frequency is too low
compared to the DFT data, similar as observed for hydrogen
in Fig. 4. At the higher wave numbers, the plasmon-peak
position of the DFT results agrees well with the Mermin
function using the Born collision frequency at Z = 2, clearly
indicating that the bound 1s states do not contribute to this
feature. The inset in Fig. 6 shows the density of states (DOS)
of the beryllium plasma, which shows a clear separation be-
tween the narrow 1s band, which is fully occupied, and the
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FIG. 6. The inelastic electronic DSF Set (k, ω) of a beryllium
plasma at ρ = 1.8 g/cm3 and T = 12 eV for various k values. The
solid lines are direct computations at the given k using LR-TDDFT,
while the dotted and dash-dotted lines denote DSFs computed from
the Mermin dielectric function with the Born collision frequency for
a plasma with a charge state of Z = 2 and Z = 4, respectively. The
dashed lines represent the sum of the DSF computed through the
Mermin dielectric function using the free-free collision frequency
and the bound-free DSF at k = 0 Å−1. The DSFs are shifted by 0.5
arb. units with respect to the next lowest wave number for readability.
In the inset, the solid line shows the density of states, while the
shaded area denotes the occupied density of states.

conduction band. This clear distinction is the reason why the
separate treatment of free-free and bound-free contributions
is successful. The bound-free feature does not exhibit a strong
k dependence up to high k values [23,76], and the plasmon
occurs energetically separated in the DSF.

C. Compressed beryllium

With increasing density and temperature the notion of
bound states becomes ill-defined in WDM. The inset in Fig. 7
shows the DOS of a beryllium plasma at T = 50 eV and
ρ = 40 g/cm3, which demonstrates the closing of the band
gap compared to the inset in Fig. 6. Furthermore, the for-
mer 1s states broaden significantly into a band and the DOS
converges towards the

√
E behavior of a free-electron gas.

Because the band gap is still clearly identifiable, the separate
treatment of bound-free and free-free contributions to the
DSF presented in the previous section can also be applied to
these conditions. Figure 7 shows the results of this separate
treatment, as well as the direct computation using LR-TDDFT
and the DSF from the Mermin dielectric function using the
full collision frequency. While the separate treatment of

FIG. 7. The inelastic electronic DSF Set (k, ω) of a beryllium
plasma at ρ = 40 g/cm3 and T = 50 eV for various k values. The
solid lines are direct computations at the given k using LR-TDDFT,
while the dashed lines represent the sum of the DSF computed
through the Mermin dielectric function using the free-free collision
frequency and the bound-free DSF at k = 0 Å−1. The dotted lines
denote the DSF computed through the Mermin dielectric function
with the full collision frequency. The DSFs are shifted by 0.5 arb.
units with respect to the next lowest wave number for readability. In
the inset, the solid line shows the density of states, while the shaded
area denotes the occupied density of states.

bound-free and free-free contributions yields excellent results
for the near-ambient density case in Fig. 5, it poorly ap-
proximates the LR-TDDFT results in strongly compressed
beryllium shown in Fig. 7. The plasmon peak at k = 1.37 Å−1

is severely underdamped due to the missing bound-free tran-
sitions in the collision frequency, which occur in the same
energy range as the free-free transitions at these conditions.
The use of the Born collision frequency in lieu of the free-free
DFT collision frequency leads to an increase of the plasmon-
peak magnitude by a factor of 2 (not shown in Fig. 7).
The broader peak arising around ∼130 eV for k = 4.12 and
k = 6.87 Å−1 is due to the insufficient approximation of
the bound-free feature by its value at k = 0 Å−1. As can
be seen from the LR-TDDFT data, the bound-free features
merge with the free-free feature to form one homogeneous
feature. At these conditions, using the full collision frequency
in the Mermin dielectric function gives better results, which
is expected as the former 1s states lose their bound charac-
ter due to the higher compression and higher temperature.
For all considered wave numbers, this approach yields good
agreement with the LR-TDDFT data above ∼200 eV, and
approximates the trends below that energy fairly well. Solely
at ∼100 eV this approach predicts a feature that is not visible
in the LR-TDDFT results across the considered k range.
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FIG. 8. The lower panel shows the scattering intensity of an
isochorically heated beryllium target at T = 18 eV from Ref. [77].
The colors of the solid lines encode different densities used in the
LR-TDDFT simulations. The dotted lines denote the inelastic contri-
butions. The upper panel shows the χ 2 deviation depending on the
density used in the simulation where the colored dots correspond to
the spectra shown in the lower panel and the black curve is achieved
by interpolating to 40 evenly spaced densities between these spectra.

V. APPLICATION TO EXPERIMENTS

We reanalyze previous XRTS experiments by Döppner
et al. [77] and Kritcher et al. [78] using LR-TDDFT to
evaluate the influence of advanced methods on the initially
inferred plasma parameters. In general, temperature and den-
sity of the target must be considered simultaneously. However,
since Döppner et al. used detailed balance in their forward-
scattering experiment to determine the temperature as T =
18 eV, we use this value and vary the density to find the
best agreement with the experimental data. To justify this
approach we show the results of a recently suggested model-
free temperature diagnostic [79] in Appendix C. For the other
experiment, we include the temperature in the analysis.

Firstly, in Fig. 8, we show simulated XRTS spectra with
densities ranging from 1.0 to 2.2 g/cm3 at T = 18 eV to-
gether with the forward XRTS spectrum recorded by Döppner
et al. [77], which was collected at the Omega laser facility
at the Laboratory for Laser Energetics at the University of
Rochester. The experiment probed a scattering vector of ap-
proximately k = 1 Å−1, enabling access to collective behavior
of the plasma. In the original analysis of the experiment a
density of 1.17 g/cm3 was determined by Döppner et al.

[77]. The electron feature was treated on the level of the RPA
without including electron-ion collisions and the ionization
was assumed to be Zf = 2.3. We compute the electron feature
for various densities from LR-TDDFT while including local
field corrections via the adiabatic local density approximation
[49,53]. The magnitude of the ion feature is left as a free
parameter in the χ2 minimization. Although none of the com-
puted spectra capture the plasmon at 2930 eV perfectly, the
spectrum at ρ = 1.8 g/cm3 yields a 5% lower χ2 deviation
than any of the other considered densities. The ionization
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FIG. 9. Scattering intensity of imploding beryllium shells from
Ref. [78]. The upper panel shows the experimental data at a delay t =
3.1 ± 0.1 ns and the posterior prediction for the elastic and inelastic
contributions based on LR-TDDFT simulations. The thin lines are
100 spectra computed from parameters randomly sampled from the
posterior probability distribution. The shaded areas show the region
below the average posterior predictions. The lower panel shows the
reduced posterior probability distribution in the density parameter ρ

where the dark shaded area under the curve indicates the 80% highest
posterior density interval.

state at this density is Z = 2.14, determined via the Thomas-
Reiche-Kuhn sum rule [48], which is approximately 7% lower
than the value used by Döppner et al. [77]. Furthermore, the
originally determined density is approximately 35% smaller
than the here computed density. The remaining disagreement
in the shape of the plasmon could be explained by uncertainty
in the instrument function or, potentially, local field correc-
tions caused by a more sophisticated exchange-correlation
kernel. However, the general spectral position of the plasmon
is captured well by our fit and the difference in inferred
density highlights the importance of considering many-body
physics in the collective scattering regime.

For the experiment by Kritcher et al. [78], the temperature
cannot reliably be inferred from the detailed balance relation
and the temperature must, therefore, be included in the analy-
sis. Furthermore, the instrument and source functions were not
available and must be modeled explicitly in the analysis. To
analyze the experiments, we simulate spectra on a sufficiently
large temperature and density grid and interpolate between
them [80] to model arbitrary ρ-T combinations in this range.
Due to the high number of parameters involved in this sort
of analysis, we employ Bayesian inference [81] implemented
in the PYMC3 software package [82] and use the sequential
Monte Carlo algorithm [83,84] for sampling the parameter
space. In Fig. 9, we consider the backward XRTS experiment
at k = 8.42 Å−1 on imploding beryllium shells by Kritcher
et al. [78], which was also performed at the Omega laser
facility. To analyze the experiment, we simulate spectra on
a grid ranging from 2 to 32 g/cm3 and from 0.1 to 25 eV.
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No instrument or source function was supplied in Ref. [78].
We, therefore, use the parametrization of a zinc source given
in Ref. [14] and include all the parameters of the instrument
response function in the Bayesian analysis. We also replace
the Gaussian describing the source broadening by a skewed
Gaussian to account for the asymmetry observed in the ion
feature. Thus, ten parameters determine the shape of the spec-
trum, including the physical parameters describing the density
and temperature of the sample and the magnitude of the ion
feature, and seven parameters describing the experimental
setup. The upper panel of Fig. 9 shows an XRTS spectrum
collected from an imploding beryllium shell at a delay of
t = 3.1 ± 0.1 ns and the posterior prediction for the elastic
and inelastic contribution to the simulated scattering spec-
trum. The posterior predictions are obtained by sampling
parameters according to the posterior probability distribution
and using these parameters to simulate the spectrum. The
agreement between the simulated spectrum and the experi-
mental data is excellent. The bottom panel of Fig. 9 shows
the reduced posterior probability distribution in the density
parameter ρ, which is the full probability distribution inte-
grated over all other parameters. The inferred density ρ =
7.9+1.0

−0.8 g/cm3 corresponds to the maximum a posteriori prob-
ability and the uncertainties are determined from the 80%
highest posterior density interval. With an assumed ionization
state Z = 2, the original analysis by Kritcher et al. [78] re-
sulted in estimates of ρ = 8.23 ± 2.24 g/cm3 and T = 14 ±
3 eV. The density, which is the most sensitive plasma param-
eter with respect to the Compton feature at these conditions,
agrees very well with our current study. However, Kritcher
et al. also used a temperature-dependent model for the ion
feature, while we keep the ion feature as a free parameter.
Therefore, the inferred temperature is mainly determined from
the relative magnitude of the ion feature and the Compton
feature. Because the shape of the Compton feature is not very
sensitive to the temperature at these conditions, we cannot
reliably determine the electron temperature.

VI. CONCLUSION

In this work, we presented the theoretical basis for com-
putation of DSFs using the Mermin dielectric function with
a dynamic complex collision frequency and showed how this
framework can be used to extract collision frequencies from
DFT simulations. We compared these collision frequencies
to several analytic approaches for hydrogen plasmas at ρ =
2 g/cm3 and, for temperatures approaching the ideal plasma
limit, found good agreement with models that incorporate
strong collisions. Furthermore, we studied how different colli-
sion frequencies impact the DSF calculated from the Mermin
dielectric function and compared these results to the direct
computation of the DSF at the given wave numbers using
LR-TDDFT. For hydrogen, we find good agreement for all
collision frequencies at high k, while at small k, especially the
frequently used Born approximation leads to underdamped
plasmon peaks. For beryllium, we showed that a separate
treatment of free-free and bound-free contributions to the

DSF yields excellent agreement with the LR-TDDFT for
near-ambient densities up to moderate wave numbers (k =
3.42 Å−1), while it disagrees significantly for highly com-
pressed beryllium because bound-free transitions interact with
the free-free transitions to dampen the plasmon. Therefore,
in order to get accurate DSFs over a wide range of wave
numbers in extreme conditions, it is imperative to employ
ab initio approaches like LR-TDDFT or path integral Monte
Carlo simulations. Analytic approaches that are based on
electron-ion collision frequencies should only be used for
the free-free part if free and bound states are clearly sepa-
rated, and even at these conditions standard descriptions like
the Born collision frequency significantly underdampen the
plasmon in the collective regime. We applied LR-TDDFT to
XRTS experiments on beryllium and found significant dif-
ferences of roughly 35% in inferred density for small k for
Döppner et al. [77] and found good agreement with analyt-
ical approaches for backscattering with large k for Kritcher
et al. [78].
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APPENDIX A: DERIVATION OF REAL AND IMAGINARY

PARTS OF RPA DIELECTRIC FUNCTION

The collision frequency is generally a complex number

ν(ω) = ν1(ω) + iν2(ω), (A1)

meaning that its imaginary part acts as a shift of the frequency
that enters into εRPA in Eq. (5) and its real part takes on the
role of the artificial damping η that was introduced in Eq. (4).
However, in this case, the damping is not set to zero after the
integration.

Now, we will split Eq. (4) into its real and imaginary parts
and consider the modulation of the input frequency ω by the
complex frequency from Eq. (A1) where the argument of ν is
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dropped for readability:

Re[εRPA(�k, ω + iν)] = 1 − 2e2

ε0k2

∫
d3q

(2π )3

( f �q−�k/2 − f �q+�k/2)(h̄ω̃ − [E�q+�k/2 − E�q−�k/2])

(h̄ω̃ − [E�q+�k/2 − E�q−�k/2])2 + h̄2ν2
1

, (A2)

Im[εRPA(�k, ω + iν)] = 2e2

ε0k2

∫
d3q

(2π )3
h̄ν1

f �q−�k/2 − f �q+�k/2

(h̄ω̃ − [E�q+�k/2 − E�q−�k/2])2 + h̄2ν2
1

. (A3)

The shifted frequency ω̃ = ω − ν2 is introduced here.
These integrals are performed across the entire momentum space and can therefore be shifted by an arbitrary vector �y because

for an integral of a function G(�x), which goes to 0 as |�x| → ∞, it holds that
∫

R3
d3x G(�x) =

∫

R3
d3x G(�x − �y), with |�y| < ∞. (A4)

Therefore, we can separate the integrand in Eqs. (A2) and (A3) into two summands with the Fermi occupation of the up- and
down-shifted momentum, respectively. We further use Eq. (A4) to shift the momenta in the argument of the Fermi occupation to
�q in order to get f �q as a common prefactor for both summands. The momenta in the subscripts of the energy have to be shifted
accordingly. This gives

Re[εRPA(�k, ω + i ν)] = 1 − 2e2

ε0k2
2π

∫ ∞

0

dq

(2π )3
q2 fq

me

h̄2k

∫ 1

−1
dz

(

κ − 1
2 (k + 2qz)

[

κ − 1
2 (k + 2qz)

]2 + �2
− κ − 1

2 (−k + 2qz)
[

κ − 1
2 (−k + 2qz)

]2 + �2

)

(A5)

for the real part and

Im[εRPA(�k, ω + i ν)] = 4π
e2

ε0k2

∫ ∞

0

dq

(2π )3

ν1m2
e

h̄3k2
q2 fq

∫ 1

−1
dz

(

1
[

κ − 1
2 (k + 2qz)

]2 + �2
− 1

[

κ − 1
2 (−k + 2qz)

]2 + �2

)

(A6)

for the imaginary part. Here, �k was fixed in the q3 direction and z = cos θ where θ is the angle between �q and �k. The shorthands
κ = ω̃me

h̄k
and � = meν1

h̄k
with the electron mass me are introduced. The Fermi occupation can be pulled out of the angle integration

as it only depends on the magnitude of the momentum. The integral over the angle can be performed analytically in Eqs. (A5)
and (A6), giving

Re[εRPA(�k, ω + iν)] = 1 + 2π
mee2

ε0h̄2k3

∫ ∞

0

dq

(2π )3
q fq ln

(

�2 +
(

κ − k
2 − q

)2)(
�2 +

(

κ + k
2 + q

)2)

(

�2 +
(

κ − k
2 + q

)2)(
�2 +

(

κ + k
2 − q

)2) (A7)

for the real part, and

Im[εRPA(�k, ω + iν)]

= −4π
mee2

ε0h̄2k3

∫ ∞

0

dq

(2π )3
q fq

×
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arctan
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κ − k
2 − q

�

)

+ arctan

(
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2 + q

�

)

− arctan

(
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2 + q

�

)

− arctan

(

κ + k
2 − q

�

)]

(A8)

for the imaginary part of the RPA dielectric function modu-
lated by a complex frequency. The remaining integration over
q has to be performed numerically.

APPENDIX B: EXPRESSIONS FOR THE BORN

COLLISION FREQUENCY

One of the most prominent approximations for the collision
frequency is the Born collision frequency [21]

νBorn(ω) = − i
ε0ni	

2

6π2e2neme

∫ ∞

0
dq q6V 2

ei (q)Sii(q)
1

ω

× [εRPA(q, ω) − εRPA(q, 0)], (B1)

with the ion density ni, the electron density ne, and the nor-
malization volume 	. There are different approximations for
the electron-ion potential Vei and the static structure factor Sii.
The potential can be approximated by the screened Coulomb
potential with the Debye-Hückel or Thomas-Fermi screening
parameter depending on the density and temperature regime
considered.

Approaches to the structure factor range from the assump-
tion of a homogeneous electron gas [Sii(q) = 1] or analytic
models like the Debye-Hückel theory to more sophisticated
methods like the hypernetted-chain equation or MD simula-
tions. Here, we use the potential

Vei(q) = V Coulomb
ei (q)

εRPA(q, 0)
= − eeei

ε0	

1

q2 εRPA(q, 0)
(B2)

and the static structure factor we calculate from our DFT-
MD simulations. Equation (B1) is computed by directly
calculating its real part and subsequently performing the
Kramers-Kronig [85,86] transformation to arrive at the imag-
inary part.

APPENDIX C: TEMPERATURE DETERMINATION

VIA LAPLACE TRANSFORM

We employ the recently proposed temperature diagnostic
based on a two-sided Laplace transform [79] to infer the
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FIG. 10. The left panel shows the scattering intensity and the in-
strument function from Ref. [77]. The right panel shows the inferred
electron temperature according to Ref. [79].

temperature from experiment performed by Döppner et al.

The left panel of Fig. 10 shows the scattering data and the
instrument function, while the right panel shows the inferred
temperature according to the procedure described in Ref. [79].
The x axis denotes the energy up to which the two-sided
Laplace transform is performed. A convergence is observed
beyond 40 eV and the electron temperature is determined
to be 19 ± 1.5 eV. This value agrees within error bars with
the electron temperature of 18 eV, originally determined by
Döppner et al. We, therefore, exclude the electron temperature
from the fitting procedure for this experiment.

APPENDIX D: CRYSTAL LOCAL FIELD EFFECTS

The expression for LR-TDDFT in Eq. (9) is only valid
for homogeneous systems. For a heterogeneous system, the
formula is expressed in a basis of reciprocal lattice vectors
[87,88]. To get macroscopic information on the dielectric
function, the dielectric matrix in the basis of reciprocal lat-
tice vectors must be inverted leading to additional local field
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FIG. 11. The upper and lower panels show the DSFs computed
from LR-TDDFT shown in Figs. 6 and 7, respectively. The solid lines
denote the results without inclusion of CLFE, while the dotted lines
represent calculations including CLFE.

effects. These contributions are referred to as crystal local
field effects (CLFEs) [89] which are not connected to the
local field corrections discussed in Secs. II B and II C. In
Fig. 11, we show the DSFs without CLFEs from Secs. IV B
and IV C compared to the corresponding results with CLFEs.
It is apparent that these effects are negligible in the regime
considered in this work.
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A realistic description of partially ionized matter in extreme thermodynamic states is critical to model the
interior and evolution of the multiplicity of high-density astrophysical objects. Current predictions of its essential
property, the ionization degree, rely widely on analytical approximations that have been challenged recently
by a series of experiments. Here, we propose an ab initio approach to calculate the ionization degree directly
from the dynamic electrical conductivity using the Thomas-Reiche-Kuhn sum rule. This density functional
theory framework captures genuinely the condensed-matter nature and quantum effects typical for strongly
correlated plasmas. We demonstrate this capability for carbon and hydrocarbon, which most notably serve as
ablator materials in inertial confinement fusion experiments aiming at recreating stellar conditions. We find
a significantly higher carbon ionization degree than predicted by commonly used models, yet validating the
qualitative behavior of the average atom model PURGATORIO. Additionally, we find the carbon ionization state to
remain unchanged in the environment of fully ionized hydrogen. Our results will not only serve as benchmark
for traditional models, but more importantly provide an experimentally accessible quantity in the form of the
electrical conductivity.

DOI: 10.1103/PhysRevResearch.2.023260

I. INTRODUCTION

Modeling the internal structure and thermal evolution of
low-mass stars, brown dwarfs, and massive giant planets
requires accurate equation-of-state data and even more im-
portantly reliable transport properties of warm dense matter
[1,2]. For example, the interplay of convective and radiative
transport in low-mass stars is reflected by key plasma quan-
tities such as opacity, electrical conductivity, and absorption
coefficients. All those properties can be directly linked to the
ionization degree, which is defined as the ratio between the
number of free electrons and the sum of all electrons.

The ionization degree can be obtained directly from the
Saha equations for the limiting case of the low-density plasma
in thermodynamic equilibrium. In this framework, the cor-
responding ionization energies are defined as the difference
between the ground-state energy and its continuum of free
states. Generally, the ionization energies crucially depend on

Published by the American Physical Society under the terms of the

Creative Commons Attribution 4.0 International license. Further

distribution of this work must maintain attribution to the author(s)

and the published article’s title, journal citation, and DOI.

the temperature and density of a plasma. For example, an
increase of the density results in a lowering of the ionization
energies with respect to their well-known values for isolated
atoms due to correlation effects such as screening of the
Coulomb interaction, self-energy, strong ion-ion interactions,
and Pauli blocking [3,4]. This effect is known as ionization
potential depression (IPD) and is inherent to any theory
aiming at predicting the ionization degree, which has been
subject of many-particle physics for decades [4–7]. For in-
stance, the simple Debye-Hückel theory for static screening
has been combined with the ion sphere model by Ecker and
Kröll (EK) [8] and later improved by Stewart and Pyatt (SP)
[9]. The predictions of both models differ considerably for
high-density plasmas as encountered in the deep interior of
astrophysical objects, which are characterized by pressures up
to the gigabar range and temperatures of several eV to keV.

Matter under such extreme conditions is notoriously chal-
lenging to produce and probe. However, great advances in
x-ray techniques have been made over the last decade and
have been implemented at high-power laser facilities and
free electron lasers (FELs), which are now available for the
experimental study of high-density plasmas. For instance, the
ionization state of isochorically heated solid aluminum was
extracted at temperatures in the range 10–100 eV by measur-
ing the K edge threshold at the Linac Coherent Light Source
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(LCLS) [10–12]. Additionally, the ionization of hot dense
aluminum plasmas in the range 1–10 g/cm3 and 500–700 eV
was determined using the ORION laser [13]. Experiments
performed at the Omega laser facility and National Ignition
Facility compressed hydrocarbon (CH) up to 100 Mbar, and
obtained the ionization state via x-ray Thomson scattering
(XRTS) [14,15]. The same technique was applied at the LCLS
to measure the IPD in carbon plasma [16]. Furthermore, the
total intensity of plasma emission in Al and Fe driven by
narrow-bandwidth x-ray pulses across a range of wavelengths
was utilized to determine the IPD [17]. Generally, the results
of those experiments indicate that rather simple models in-
cluding IPD based on the EK or SP approaches fail to describe
the ionization degree correctly [7].

Therefore, novel theoretical concepts for the prediction
of the ionization degree are imperatively required and first
improvements have been made. For example, a two-step
Hartree-Fock-Slater (HFS) approach has been proposed re-
cently [18]. It is a combined atomic-solid-plasma model that
permits ionization potential depression studies also for single
and multiple core hole states [19], or the dynamic ion-ion
structure factor [20]. The latter approach has been generalized
to include Pauli blocking effects which are important at high
densities [21]. Another route is to characterize ionization by
applying molecular dynamics simulations for the ions in com-
bination with electronic structure calculations using density
functional theory (DFT-MD) [22–24], which is especially well
suited for dense plasmas. So far, all DFT-MD works relied
widely on the density of states (DOS), which was used to
analyze the evolution of the ionization degree with density
and temperature [22–24]. However, none of these works pro-
vided a consistent picture of the ionization degree resolving
the recent discussion on IPD in high-density plasmas (see
Refs. [21,23,25], the comment of Iglesias and Sterne [26], and
the reply by Hu [27]). This debate is fundamentally related to
the question of how to define the ionization degree properly
for warm dense matter, which is characterized by densities
beyond the applicability range of the Saha equations and its
underlying chemical picture.

In this work, we meet this challenge by calculating the
ionization degree directly from an experimentally accessible
quantity: the dynamic electrical conductivity. This DFT-MD
method takes into account the electronic and ionic corre-
lations in a self-consistent way and, in particular, reflects
essential features of high-density plasmas such as the ex-
istence of energy bands instead of sharp atomic levels and
their occupation according to Fermi-Dirac statistics. In con-
trast to a definition relying entirely on the DOS, our ap-
proach is based on the Thomas-Reiche-Kuhn (TRK) sum
rule and the evaluation of electronic transitions originat-
ing solely from electrons within the conduction band. This
method, which has, to our knowledge, never been used be-
fore, is a step toward precisely modeling matter at high
energy densities as occurring, e.g., in inertially confined
fusion experiments [28] or in low-mass stars [1], brown
dwarfs, and massive giant planets [2]. Carbon and CH are
chosen as exemplary materials relevant to the afore-mentioned
applications.

II. METHODS

A. Deriving ionization from the dynamic

conductivity and the sum rule

The dynamic electrical conductivity, also referred to as
optical conductivity, is calculated from the Kubo-Greenwood
formula,

σ tot(ω) =
2πe2

3V ω

∑
kνμ

( fkν − fkμ)|〈kν| v̂ |kμ〉|2

× δ(Ekμ − Ekν − h̄ω), (1)

which can be derived from linear response theory [29–32].
In the above equation, the transition matrix elements
| 〈kν| v̂ |kμ〉 |2 with the velocity operator v̂ are the key com-
ponents. They reflect the transition probability between the
initial eigenstate associated with band ν and the final eigen-
state in band μ at a particular k point in the Brillouin zone
of the simulation box of volume V . For a given frequency ω,
only states with a positive difference between eigenenergies
Ekμ and Ekν contribute to the conductivity. The occupation
of initial and final states is weighted with the Fermi-Dirac
function fkν = [exp((Ekν − μe)/kBT ) + 1]−1, whereas T and
μe denote the temperature and the chemical potential of the
electrons, respectively. Additionally, e and h̄ represent the
elementary charge and the reduced Planck constant in Eq. (1).

The resulting dynamical electrical conductivity has to
fulfill the well-known TRK sum rule for dipole transitions
[33–37],

Z tot =
N tot
e

Ni
=

2meV

πe2Ni

∫ ∞

0
dω σ tot(ω). (2)

It yields the ratio between the total number of electrons, N tot
e ,

and the number of ionic centers in the system, Ni, and estab-
lishes an important convergence criterion for the numerical
computation of the dynamic electrical conductivity. For the
examples chosen in this work, we require charge state values
of Z tot = 6 for carbon and Z tot = 7 for CH in order to fulfill
the TRK sum rule exactly. The number of ionic centers is in
both cases Ni = NC = NCH = 32.

Our approach separates the dynamic electrical conductivity
σ tot into three individual parts based on the different nature
of electronic transitions in the energy spectrum. Hence, the
transition matrix elements for a given k point of the sum in
Eq. (1) are divided into contributions attributed to intraband
transitions in the conduction (c-c) and valence (v-v) bands
as well as interband transitions between the valence and
conduction bands (v-c):

σ tot(ω) = σ c-c(ω) + σ v-c(ω) + σ v-v(ω), (3)

whereas each contribution x = {c-c, v-c, v-v} is required to
fulfill the partial TRK sum rule,

Zx ≡
2meV

πe2Ni

∫ ∞

0
dω σ x(ω). (4)

The individual conductivity contributions can be simply iden-
tified by choosing an energy within the energy gap between
the valence and conduction bands, which is chosen naturally
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as the center of the gap between the states of interest. For
our carbon and CH examples, the gap is always chosen
between the clearly identifiable 1s valence and the continuum
as conduction states, which already comprise the 2s and 2p

states at the considered conditions.
The electrons effectively contributing to the conductivity in

the conduction band are the free electrons N free
e , so that we can

identify σ x(ω) = σ c-c(ω) in Eq. (4) and define the ionization
state as

Z free =
N free
e

Ni
≡ Zc-c, (5)

which we propose as a new and suitable measure for this
quantity in high-density plasmas.

Finally, we calculate the ionization degree,

α =
Z free

Z tot
=

N free
e

N tot
e

, (6)

which is consequently defined as the ratio between the num-
ber of free and total charge carriers per number of ionic
centers, Ni.

B. Computational details

The DFT-MD simulations for carbon and CH were per-
formed with the Vienna Ab initio Simulation Package (VASP)
[38–40]. We considered densities between 20 and 400 g/cm3

at a temperature of 100 eV resulting in a pressure range
between 0.8 and 65 Gbar. These conditions correspond to a
maximum compression ratio of more than 100 and, thus, it
was crucial to treat all electrons explicitly using the Coulomb
potential with a cutoff energy of 15 keV. We considered 32
carbon atoms up to 150 g/cm3 and 64 carbon atoms for
the three highest densities starting at 200 g/cm3. For the
CH calculations, we added 32 and 64 hydrogen atoms to
the respective pure carbon simulations. Additionally, a large
number of bands, i.e., typically 800–5000 bands, was required
to describe the 192 electrons for carbon and respectively
the 224 electrons for CH adequately at the high temperature
considered here. Each DFT-MD simulation was run for at least
20 000 time steps with a step size of 50 as for carbon and 10 as
for CH in order to reflect the ion dynamics properly. A Nosé-
Hoover thermostat [41] was used to control the ion tempera-
ture, the Brillouin zone was evaluated at the Baldereschi mean
value point [42], and we employed the exchange-correlation
(XC) functional of Perdew, Burke, and Ernzerhof (PBE) [43].

The electrical conductivity was determined from an aver-
age over 20 snapshots taken from the DFT-MD simulation
per condition, and a Monkhorst-Pack 2 × 2 × 2 grid was
used to evaluate the Kubo-Greenwood formula, Eq. (1). We
performed extensive convergence tests of the DFT-MD simu-
lations with respect to the energy cutoff, number of bands, k

point sets, and the number of atoms. Furthermore, we tested
the influence of the XC functional used in the DFT cycles
by carrying out additional calculations with the local density
approximation (LDA) and strongly constrained and appro-
priately normed (SCAN) [44] functionals. All parameters
were chosen such that the TRK sum rule is always fulfilled
within 2%, which depends most significantly on the number
of explicitly considered bands.
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FIG. 1. Electrical conductivity (solid lines) and TRK sum rule
values (dashed lines) for a carbon simulation snapshot at 50 g/cm3

and T = 100 eV. The different colors indicate the total value and the
individual components of both quantities according to Eqs. (3) and
(4). The final TRK sum rule values are given as colored numbers.

III. RESULTS

A. Dynamic electrical conductivity and sum rule

In the following, we demonstrate our method for an ex-
emplary single snapshot of a carbon plasma at 50 g/cm3 and
100 eV. In Fig. 1, the total dynamic electrical conductivity
obtained with the Kubo-Greenwood approach is shown as a
solid black line. The curve spans three orders of magnitude
over the entire considered energy range and exhibits a pro-
nounced local maximum at about 250 eV, which results from
the strong v-c conductivity contribution as becomes apparent
upon breaking up the total conductivity into its individual
contributions associated with c-c, v-c, and v-v transitions
according to Eq. (3). While the c-c contribution dominates the
total conductivity at energies below 225 eV, the v-c contribu-
tion shows a pronounced threshold behavior at about 175 eV
and starts to prevail at energies above 225 eV. At the same
time, the v-v transition contribution is almost negligible and
can be associated with hopping processes. These can occur as
a result of the partial filling of the 1s states at the extreme
densities and temperatures investigated here. This behavior
is contrary to the known 0 K concept for solids, where the
v-v conductivity has to be zero, since the full occupation of
the 1s states leads to a vanishing transition probability due to
selection rules.

Evaluation of the TRK sum rule for the total conductivity
according to Eq. (2) yields a value of 5.91, which agrees with
the exact sum rule value of 6 within 2%. The same procedure
applied to the v-c contribution results in a value of 1.23,
which makes up about 21% of the total sum rule at these
conditions. Additionally, the sum rule for the v-v transitions
yields a value less than 0.01, which translates to about 0.2%
of the total value, and contributes the most at low energies.
Finally, the largest total sum rule contribution of the remaining
79% is attributed to the sum rule value applied to the c-c
conductivity contribution. The resulting c-c value is 4.67 and
will be identified as the ionization state later in this work. Note
that all sum rule values given in the following sections are
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FIG. 2. Density of states of (a) carbon and (b) CH for different
densities at T = 100 eV. The pink areas indicate states in the 1s

valence band, while states in the conduction band are colored in grey.
The black arrows show exemplarily at 50 g/cm3 the regions associ-
ated with intraband (v-v, c-c) and interband (v-c) transitions. The
dashed lines serve as a guide to the eye for the valence-conduction
gap.

corrected by a factor Zexact/Z tot that accounts for the numerical
uncertainty.

B. Density of states

In Fig. 2, we show our results for the DOS for carbon and
CH for all considered densities at 100 eV. Each DOS shows
a pronounced valence band corresponding to the 1s states at
small energies and the continuum of conduction states at high
energies. Note that all energies are plotted with respect to the
chemical potential μe.

For both materials, we observe the valence bands to
broaden and shift towards smaller energies with increasing
density. At the same time, the edge of the conduction states
moves as well towards smaller energies and the gap between
valence and conduction bands narrows with rising density.
However, the gap never completely vanishes for the consid-
ered conditions and can be still clearly identified at the highest
considered density of 400 g/cm3.

The center of the gap between valence and conduction
bands serves as input for our method to calculate the different
conductivity contributions. In principle, any energy in the gap
can be used to separate valence from conduction states. In this
work, the gap was determined for every snapshot individually
via the smallest energy difference between a state in the
valence band and one in the conduction state. This approach is
formally equivalent to the highest occupied molecular orbital–
lowest unoccupied molecular orbital method, which is applied
at T = 0 K to obtain the energy difference between highest
occupied and lowest unoccupied molecular orbital.

C. Conductivity-based ionization

In Fig. 3 we present our DFT-MD results for the ionization
state of dense carbon for a temperature of 100 eV as a function
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FIG. 3. Ionization state of carbon, Z free, derived from DFT-MD
simulations (orange line) according to Eq. (5) compared to predic-
tions of PURGATORIO (red line), OPAL (green solid line) [5], ATMOIC

(green dashed line) [45], and Beth-Uhlenbeck (BU) calculations
(black lines) [21]. The BU results incorporate the two different
IPD models by Ecker and Kröll (EK) and Stewart and Pyatt (SP),
respectively, and the solid line additionally takes into account Pauli
blocking effects.

of density compared to ionization models that are commonly
used for modeling astrophysical or inertial confinement fusion
(ICF) capsule implosions.

For the lowest densities considered here, the predictions
for the carbon ionization state of PURGATORIO [46], ATOMIC

[45], OPAL [5], and the different Beth-Uhlenbeck (BU) models
[21] agree qualitatively and predict a decreasing ionization
state with increasing density. However, two classes of models
can be identified for the high-density regime. On one hand,
OPAL and both BU models without Pauli blocking generally
continue that trend at densities above 10 g/cm3. Among the
three models, OPAL predicts the smallest ionization state and
converges towards a constant value of 4. The BU curve includ-
ing IPD based on the SP model gives slightly higher ionization
states, but leads to no essential change in the general behavior
compared to the BU approach using the EK description in-
stead. On the other hand, the second class of curves, namely,
PURGATORIO, ATOMIC, the BU model including Pauli block-
ing, as well as our DFT-MD results, is characterized by a steep
rise at high densities, which is associated with pressure ioniza-
tion expected under those conditions [47]. However, the slope
and onset of this rise in ionization state vary vastly depending
on the approach. The steepest slopes are predicted by ATOMIC

and the BU model including Pauli blocking, which in contrast
to the other two BU models includes electron degeneracy.
While ATMOIC suggests the onset of the increase at about 300
g/cm3, the BU model including Pauli blocking predicts this
effect at a density an order of magnitude lower. The DFT-MD
results confirm the increase, but the slope of our DFT-MD
curve is not as steep. Furthermore, our calculations capture
the slope of the average atom model PURGATORIO, which
evaluates the effective charge at the Wigner-Seitz radius [46].
However, our ab initio calculations yield systematically about
0.5 higher ionization states than PURGATORIO, indicating that
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FIG. 4. Ionization degree α of pure carbon (blue line), CH (solid
orange line), and carbon in CH assuming hydrogen to be fully ionized
(dashed orange line).

this effective one-particle model is not capturing all important
correlation effects treated via our many-body method.

The ionization degree derived according to Eq. (6) is shown
as a function of pressure for carbon and CH as solid lines in
Fig. 4. For both materials, we find a steady increase of the
ionization degree in the range of 0.76 to 0.96. Both curves
have a very similar slope, while CH yields slightly higher
ionization degrees than carbon. Additionally, we plot the ion-
ization degree of the carbon in CH as a dashed curve, which
agrees remarkably well with the values found for pure carbon
indicating that the ionization degree of carbon is not changed
by adding hydrogen. Note that this curve was calculated under
the assumption that all hydrogen atoms are fully ionized.
This assumption was tested for pure hydrogen at 80 g/cm3,
where we find an ionization degree of 1.00 as a result of
the conductivity showing only a c-c contribution and of the
vanished gap in the DOS.

IV. CONCLUSION

Our presented method to derive the ionization state and
ionization degree entirely from ab initio simulations by ap-
plying the exact TRK sum rule for the dynamic electrical
conductivity is entirely self-consistent. This approach natu-
rally takes into account the electronic and ionic correlations;
in particular, it reflects essential features of high-density plas-
mas such as the existence of energy bands instead of sharp

atomic levels and their occupation according to Fermi-Dirac
statistics. Our DFT-MD results for the carbon ionization state
predict a gradually increasing pressure ionization and strongly
disagree with commonly used models such as BU [21], OPAL
[5], and ATOMIC [45] in high-density plasmas, yet we confirm
the slope of the average atom model PURGATORIO [46]. This
indicates that the degeneracy and many-body effects con-
tained in our DFT-MD treatment are crucial to incorporate in
any description of the ionization degree and that assumptions
based on atomic physics are not valid to treat the ionization
balance in high-density plasmas properly. Our conductivity-
based method directly exploits knowledge of possible elec-
tronic transitions taking into account the nature of the wave
functions of different states, which cannot be captured by
a method that solely relies on the evaluation of the density
of states, and additionally provides an experimentally acces-
sible quantity. Hence, the presented data will be useful for
analyzing and predicting conditions in inertial confinement
fusion experiments using, e.g., the National Ignition Facility.
In particular, these data will guide the understanding of XRTS
spectra (see Refs. [48,49]).

Finally, the conditions considered in this work are typically
found in high-density astrophysical objects. For instance, den-
sities of 100 g/cm3 and temperatures of 100 eV are expected
in the interior of M dwarf stars with a mass of 0.1M� (in units
of the solar mass). Our results for the ionization degree of car-
bon and CH can be directly used as input for interior structure
models, whose underlying radiation transport models and the
nuclear reaction rates crucially rely on ionization models and
opacities.
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Red dwarf stars constitute about 76% of all main sequence stars in the solar neighborhood and
are considered to be viable hosts for habitable exoplanets. Understanding the evolution of these
stars and predicting the composition and interior structure in their later evolutionary stages is
essential for estimating their habitable zone, i.e., the range of orbits where water is liquid on the
surface of potential planets at about atmospheric pressure. Hence, precise equation of state data
and conductivities for red dwarf interior conditions, that are governed by pressures of several Gbar
(1 Gbar = 1 billion atmospheres) and temperatures of hundreds of eV (i.e. well exceeding millions
of Kelvin), are needed. For this purpose, we have performed the first X-ray scattering experiments
in forward scattering geometry at the National Ignition Facility (NIF) which probe the collective
behavior of the electrons, exposing dielectric properties via the collisional damping of the plasmon.
The spectra are analyzed using a scattering model solely based on DFT simulations, resulting in
pressures above 1 Gbar. The inferred electrical conductivity is approximately 50% smaller than
predicted by standard analytic approaches for the extreme conditions in the deep interior of red
dwarfs.

INTRODUCTION

Red dwarf stars (spectral type M) form the low-mass

end of the main sequence and possess unique properties

compared to all other stars on the main sequence making

them well-suited candidates for hosting habitable plan-

ets. Stellar models indicate that stars withM < 0.25M
⊙
,

where M
⊙

is the Solar mass, are fully convective for a

long time of their hydrogen burning period so that they

can accumulate a large helium fraction in their interior.

Full convection may also explain magnetic fields of sev-

eral thousand Gauss (kG) which are the highest of all

stars1. By comparison, the Sun’s magnetic field appears

rather quiet as its field strength is less than one Gauss

in the photosphere. The strong magnetic activity of M

stars is connected with frequent flares which modulate

the luminosity of the star considerably. Furthermore,

stars with M < 0.2M
⊙

will never pass through the red

giant phase, contrary to all other main sequence stars.

M stars have smaller radii than Sun-like stars which fa-

cilitate the observation of transiting extrasolar planets,

in particular in the habitable zone of the star2.

The study of matter at the extreme densities and tem-

peratures in the central region of stars in the laboratory is

challenging. For instance, our nearest neighbor red dwarf

Proxima Centauri is characterized by a mass of 0.122 M
⊙

and a surface temperature of 3050 K (∼ 0.26 eV). At its

core, predicted densities exceed 100 g/cm3 and temper-

atures reach beyond 3 × 106 K (∼ 259 eV)5. Over the

past two decades, experimental high-energy density fa-

cilities such as high-power lasers6 and pulsed power ac-

celerators7 were commissioned which drive matter to un-

precedented high densities and temperatures character-

istic of conditions in the deep interior of massive giant

planets, brown dwarfs, and even stars. Recent studies

have shown the capability to reach these conditions8–11.

This development enables a new kind of laboratory as-

trophysics12 by directly testing theoretical predictions for

the equation of state (EOS), ionization degree, electrical

and thermal conductivity, and opacity for such extreme

states of matter. Especially transport properties, such as

electrical conductivity and opacity, have a crucial impact

on interior, evolution and dynamo models of stellar ob-

jects. Still fairly simple relaxation time approximations

are commonly used in these models13,14. For low-mass

stars, the uncertainty in radiative opacities has a signifi-

cant impact on predictions of luminosity and the central

hydrogen exhaustion time15. It is vital to study transport

properties at these extreme conditions by more sophisti-

cated numerical methods and experimentally verify the

results. In particular, using the National Ignition Facility

(NIF) at the Lawrence Livermore National Laboratory
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FIG. 1. Schematic of the experiment and examples of raw data. A Side view of the hohlraum target: 184 laser beams
symmetrically implode a 1.9-mm-diameter beryllium capsule mounted with two carbon fiber stalks at the center of the hohlraum,
for details see Ref.3. The X-ray source for probing is driven by 8 laser beams shown in red, combined in groups of 4 beams
each. B Cut through of the target model illustrating the geometry of the X-ray Thomson scattering (XRTS) measurement: 8
laser beams heat a zinc foil to create 9 keV zinc He-α emission. These X-rays are passing through a Cu foil, which reduces the
spectral width of the instrument function by a factor of about two4. C The effect of the Cu foil on the collected scattering
signal. The fully processed spectrum is indicated in white. D An illustration of the drive laser timing relative to the probe
beam and the evolution of Hohlraum radiation temperature.

(LLNL), as the most powerful laser facility worldwide,

matter has been compressed to Gbar pressures and tem-

peratures beyond 106 K16. This is achieved by 192 laser

beamlines that deliver up to 2 MJ laser energy in pulses

of up to 20 ns duration6,17. These unique capabilities

combined with high-resolution X-ray diagnostic meth-

ods and the growing application of sophisticated analysis

techniques like machine learning and Bayesian methods

have enabled major advances on various fronts of extreme

matter research9,10,17,18.

Due to the short-lived transient nature of the states

created in the laboratory, diagnostics that temporally re-

solve the plasma evolution on pico to nanosecond time

scales must be used. X-ray Thomson scattering (XRTS)

generated by highly brilliant X-ray sources has proven

well-suited for this endeavor, especially with recent im-

provements in the spectral resolution4,19,20. As opposed

to scattering experiments in back-scattering geometry11,

which probe the single-particle regime, collective XRTS

has been used as diagnostic to derive EOS data, the ion-

ization state, and the electrical conductivity.20–23

These experimental advances require the development

of a robust framework for analyzing the scattering data,

that self-consistently infers the physical processes encap-

sulated in the scattering spectra, in concert with an ac-

count of the influence of the experimental geometry and

the X-ray source spectrum. Traditionally, different an-

alytical approaches with various input parameters are

combined to compute the ionic and electronic contri-

butions to the XRTS signal. In such an approach, the

plasma conditions of the target are inferred by a χ2 opti-

mization, which is performed on a subset of these input

parameters, while the experimental setup is typically not

included in this optimization. In this paper, we take

the evaluation of the scattering data to a new level by

considering the variations of instrument and source func-

tions when exploring the full parameter space within

a Bayesian statistical analysis by using Markov Chain

Monte Carlo (MCMC) sampling. Furthermore, our phys-

ical model for the compressed target is entirely based on

an ab initio data set – no assumptions on, e.g., the ion-

ization degree of the plasma and the form factors of the

bound electrons are made. The inelastic contribution to

the XRTS spectrum is computed directly from the dielec-

tric response of the compressed target, which is closely

related to its electrical conductivity.

EXPERIMENTAL SETUP AT THE NIF

Here we present the results from the first forward scat-

tering XRTS measurements at the NIF. The schematic

of the experiments is shown in Figure 1. Details of the

experimental setup and of the diagnostic configuration

can be found in Refs.3,24 and in the supplementary ma-

terial. In brief, we used 184 beams of the NIF to drive

a Be capsule implosion to compress beryllium shells to

extreme mass densities as they stagnate at the center of

a cylindrical gold radiation cavity (hohlraum). The laser

hohlraum drive with a total of 0.8 MJ at 351 nm wave-

length was converted to an intense X-ray bath with a

peak radiation temperature of 235 eV that ablated the

outer layer of the beryllium capsule such that the shell

is accelerated inwards to a peak velocity of 200 km/s.

Stagnation of the implosion was observed at about 18 ns

after the start of the laser drive by X-ray radiography
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TABLE I. Summary of the experimental parameters, i.e., the scattering angle, the timing t given relative to the time of peak
X-ray emission t0, and plasma conditions inferred from the scattering spectra. The density ρ and temperature T are given by
the MAP and HPDI of their posterior probability, and the charge state Z, the elastic to inelastic ratio Iel/Iinel and the direct
current electrical conductivity σDC are given by the posterior prediction of the density and temperature distribution.

# Angle [◦] t [ns] ρ [g/cm3] T [eV] Z Iel/Iinel σDC [MS/m]

1 30 1.02 20+4
−4 123+19

−10 3.32+0.13
−0.07 2.07± 0.18 7.1+1.5

−0.7

2 45 1.13 19+3
−2 149+5

−10 3.46+0.05
−0.07 1.05± 0.05 8.2+0.8

−0.4

3 45 1.07 17.4+1.8
−1.2 143+8

−9 3.48+0.05
−0.06 1.02± 0.05 7.7+0.3

−0.3

and X-ray emission from the hot spot formed at the cen-

ter of the shell. We use the time of maximum X-ray hot

spot emission, t0, as a time fiducial of each implosion

and reference all probe times with respect to t0. The

XRTS spectra are recorded at 0.8 - 1.2 ns after t0 when

the highest compression is expected as the rebounding

shock wave is sweeping up the infalling shell material3.

Radiation-hydrodynamic simulations predict up to 30-

fold compression of the beryllium shell at temperatures

on the order of 200 eV3, which translates into gigabar

pressures.

The eight remaining NIF laser beams heat a zinc foil

outside of the hohlraum to generate a powerful X-ray

probe at 9.0 keV from He-like zinc ions. Scattering ex-

periments in forward geometry require a narrower spec-

tral resolution compared to typical back-scattering ex-

periments due to the lower excitation energies. In order

to increase spectral resolution of the XRTS measurement,

we utilize a novel concept to reduce the spectral width of

the X-ray source. A 16 µm copper foil is placed between

the Zn foil and the imploding Be capsule to suppress the

higher energy Zn He-α line4. As the Cu foil heats up

with time, its transmission characteristics change. We

use two parameters, the foil temperature and the Cu K-

edge position, to model the time dependent X-ray source

spectrum4. The probe X-rays, upon collimation, scatter

off of the stagnating Be shell, and are collected in for-

ward direction at an angle determined by the hohlraum

target geometry by a high efficiency Bragg crystal X-ray

spectrometer with two channels of cylindrically curved

HOPG coatings25.

Here we present results of three implosion experiments:

one collected an XRTS spectrum at a 30◦ scattering an-

gle, and two collected XRTS spectra at 45◦. All experi-

ments used similar probe timings relative to t0 compared

to the detector integration time of 230 ps, see Table I.

AB INITIO SIMULATIONS AND MAPPING TO
XRTS SPECTRA

Extensive ab initio molecular dynamics simulations

based on density functional theory (DFT-MD) have been

performed for the analysis of the scattering data. The en-

tire XRTS spectrum was calculated from the correspond-

ing electronic structure which determines the contribu-

tions of bound-bound (bb), bound-free (bf), and free-free

(ff) transitions26,27. Note that the only physical input

parameters are the mass density and temperature of the

probed material, which directly translate to the electrical

response to a perturbing photon as well as the electrical

conductivity in the framework of DFT. No further tun-

ing parameters are introduced to aid with the fitting to

experimental observations and every contribution is com-

puted in the same physical framework giving us the exact

control over which approximations enter our calculations.

The spectrally and angularly resolved scattered inten-

sity I for XRTS can be described by the electron-electron

dynamic structure factor (DSF) See(k, ω) via

d2I

dωdΩ
∝

∫
∞

−∞

dω′ G(ω − ω′)See(k, ω
′), (1)

where ω is the frequency shift, Ω is the solid angle and k

denotes the wave number. The influences of the instru-

mental setup and the X-ray source are encoded in the

function G(ω).

The ab initio XRTS spectra are computed using a mod-

ified Chihara decomposition23 on a density and temper-

ature grid ranging from T = 50 eV to T = 200 eV, and

ρ = 5 g/cm3 to ρ = 120 g/cm3, which is subsequently in-

terpolated to a fine 200× 200 grid using an interpolation

scheme for spectra adhering to constant sum rules28.

To model the scattering intensity in Eq. (1), we employ

a model that takes two physical parameters, the tempera-

ture and mass density of the plasma, and ten parameters

describing the source and instrument functions (see the

supplementary material for details). Including the vari-

ance of the experimental data as a random variable, the

model accounts for 13 parameters which determine the

shape of the final spectrum.

Recent studies29,30 have shown the instability of tradi-

tional χ2 optimization approaches to deducing the phys-

ical parameters from an experimental observation and

highlighted the importance of holistically examining the

parameter space in a probabilistic framework. Therefore,

we generally adopt the approach of Ref.29 and choose a

different likelihood function that is better suited to our

study.

A Bayesian perspective on the probability that a cer-

tain set of parameters lead to the experimental observa-
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FIG. 2. Summary of the experimental results and predictions. A The experimental spectra collected at a 45◦ scattering angle
are shown together with the mean model predictions produced by the posterior distributions of the input parameters computed
through the MCMC sampling. Also shown in gray are 100 spectra randomly sampled from the posterior distribution of the
parameters. B Same as A but for a 30◦ scattering angle.
C The probability distribution of input parameters is represented on a subspace of the full parameter space, spanned by the
temperature T and the mass density ρ. The blue color code describes the measurements taken at 30◦ (cf. B), while the orange
(cf. A) and green (cf. supplementary material) color codes describe the measurements of two separate experiments at 45◦. The
contour lines are given relative to the maximum probability density in this subspace at 20%, 50%, and 80%. The probability
distributions of the individual input parameters are given on the marginal plots. The MAP is located at the respective peaks
of the distributions in the marginal plots.

tion can be expressed as

P (Θ|Exp.) =
P (Exp.|Θ)P (Θ)

P (Exp.)
, (2)

where Θ is the set of parameters, that in our case in-

cludes the physical parameters of the probed plasma as

well as the parameters of the source and instrument func-

tion. The likelihood of observing the experimental re-

sult P (Exp.) is independent of the input parameters and

therefore remains a constant. Prior knowledge about

physical or experimental parameters can be encoded in

the prior P (Θ). The likelihood P (Exp.|Θ) quantifies

how likely the experimental result would be observed if

the given set of parameters in fact described the under-

lying physics.

Due to the high dimensionality of the parameter space,

it is inefficient to sample it indiscriminately. Therefore,

we use a sequential Monte Carlo algorithm31,32 to per-

form MCMC sampling of the posterior probability distri-

bution P (Θ|Exp.).
To the best of our knowledge, the method outlined

above represents the first evaluation of NIF scattering

spectra based solely on ab initio data and Bayesian anal-

ysis so that plasma parameters like ionization state, den-

sity, and temperature are derived in a consistent statis-

tical framework.

PLASMA PARAMETER INFERENCE

We perform the MCMC sampling on the three spectra

listed in Tab. I and present the measured and calculated

spectra as well as the posterior distributions of the phys-

ical input parameters in Fig. 2. The analysis produces a

13-dimensional probability distribution in the input pa-

rameter space, which is reduced to the mass density and

temperature dimension by integrating over all possible

values in the remaining dimension. For this presenta-

tion, we perform a Gaussian kernel density estimation in

the density-temperature plane on the samples collected

during the MCMC sampling. Evaluating the scattering

model on the parameter space according to the full prob-

ability distribution results in posterior predictions for the

scattering spectra which can be compared to the experi-

mental data. For both, the 30◦ and 45◦ scattering angles,

the agreement between measured spectra and predictions
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in Fig. 2 A and B is excellent. Furthermore, the agree-

ment for an additional spectrum recorded at 45◦ in a

separate experiment is similar to the results in Fig. 2 B,

demonstrating the reproducibility of our results. The

spectra are composed of the elastic and inelastic contri-

bution, the latter of which is computed from the dielec-

tric function (see supplementary materials) and domi-

nates the spectrum below 8850 eV and above 9050 eV.

This intimate connection to the dielectric function can be

used to infer the electrical conductivity. We restrict the

Bayesian inference to the energy ranges between 8500 eV

and 9300 eV for the 45◦ scattering angle, and 8680 eV

and 9300 eV for the 30◦ scattering angle and we scale

the theoretical predictions to the same amplitude as the

experimental data. Due to the inclusion of the experi-

mental parameters in the model calculations the projec-

tion onto the density-temperature plane integrates over

all possible experimental configuration, reducing biases

introduced by the experimental setup.

All spectra are recorded at least 1 ns after peak X-ray

emission, for which radiation hydrodynamics simulations

predict fairly homogeneous conditions due to the stagna-

tion shock breaking out into the underdense remaining

Be ablator material3. The inferred mass density for all

three experiments agrees well within the determined un-

certainties. The temperature inference is mostly driven

by the detailed balance relation, which is more appar-

ent in broad scattering signals. Therefore, the 45◦ scat-

tering measurements result in narrower probability dis-

tributions in the temperature dimension. Although the

principal result of our analysis is the full probability dis-

tribution, point estimates and their uncertainties can be

defined by the maximum a posteriori probability (MAP)

and the most narrow credible interval of the distribution,

called the highest posterior density interval (HPDI).

In Fig. 3 A we compare the conditions reached in our

experiments (inset, enlarged in Fig. 3 B with the prin-

cipal Hugoniot curve of Ding et al.
33 (dashed light blue

line) and P -T profiles of typical astrophysical objects.

We reached conditions above 1 Gbar and temperatures

between 120 and 150 eV, which places our observations

on the right hand side of the principal Hugoniot curve

due to the high compression achieved in the experiments.

Most interestingly, the core conditions of Proxima Cen-

tauri when arriving on the zero-age main sequence line

(ZAMS; which we computed using the stellar evolution

toolkit MESA14,34–37 for an age of 4.6 × 106 a) coin-

cide with the conditions probed in our NIF campaign.

Furthermore, more massive and therefore hotter M stars

like Lalande 21185 (computed using MESA) also lie in

the range of the experimental data. The experimental

setup as realized in this NIF campaign evidently is able

to probe conditions relevant for M stars, ranging from

those in young low-mass ones like Proxima Centauri up

those in older and more massive representatives like La-

lande 21185.

Figure 3 B zooms in on the pressure-temperature

regime probed in the experiment and shows a color coded
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FIG. 3. A Typical P -T profile for Jupiter (green)38, Gliese
229B (brown dwarf; dark blue)39, a young Proxima Centauri
(red dwarf; dark orange), and Lalande 21185 (red dwarf; yel-
low) as well as the principal Hugoniot for beryllium (dashed
light blue) according to Ding et al.33. The colored numbers
denote the fractions of the object radii at the edges of the
covered P − T range. B A comparison of the pressure P and
the temperature T reached during the experiment, extracted
from Fig. 2. The symbols are located at the MAP and the
error bars indicate the 80% highest posterior density interval
around the MAP. The direct current electrical conductivity
σDC predicted by DFT-MD is given by different shades of
gray in the pressure-temperature plane. For comparison, the
profile of a young Proxima Centauri at age 4.6 × 106 a and
Lalande 21185 at age 5 × 109 a, calculated using the stellar
evolution toolkit MESA,14,34–37 are shown.

background that denotes the DFT-based electrical con-

ductivities which are consistent with the observed spec-

tra. For the experimental data, we show the MAP esti-

mate and HPDI for the pressure and temperature. The

conductivity can then be inferred from the color coded

background covered by the experimental observations.

The highest conductivity state of 8.2+0.8
−0.4 MS/m was ob-

served under a 45◦ scattering angle for the latest probe

timing, indicating that even higher conductivity states

could be reached at a later time. For more information

on the individual data sets, refer to Tab. I.

Note that stellar evolution codes like MESA rely on a

mix of equation of state tables in various pressure and

temperature regimes.40–44 Due to the lack of experimen-
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tal data in the region probed during this experiment, it

is vital to establish experimental capabilities to repro-

ducibly reach these conditions. The accurate description

of material properties in the interior of stars on the ZAMS

influences our understanding of stellar evolution during

the hydrogen burning phase along the main sequence. In

particular, the simultaneous determination of EOS data

and conductivities as in our study enables testing dy-

namo models in order to understand the high magnetic

fields generated in the interior of fully convective M stars

like Proxima Centauri and their violent flare activity45.

In our experiments, the electrical conductivity of beryl-

lium plasma was inferred from collective XRTS based on

ab initio DFT-MD data in the range 6.6−9.0 MS/m; see

color code in Fig. 3 B. This corresponds to roughly half

the conductivity value predicted by a recently published

relaxation time approximation (RTA)46 with ionization

states from the widely used OPAL table47,48, which is

representative of typical analytic models used in stellar

evolution codes. The difference is partly due to the im-

proved description of ionization in DFT27 compared to

OPAL47,48, and partly due to the missing ion correlations

and the many-body description of electron-ion scattering

in the RTA (see supplementary material for details).

CONCLUSION

For the first time, inelastic plasmon scattering in for-

ward scattering geometry has been successfully demon-

strated at the NIF. The inferred plasma parameters

demonstrate that our experiments reach conditions

present in young M stars and massive Red Dwarfs on

the main sequence, demonstrating that these conditions

can be produced reliably in the laboratory. The XRTS

spectra were analyzed based on ab initio DFT-MD calcu-

lations within a framework of Bayesian inference which

also takes into account the impact of the experimental

setup on the probed conditions, resulting in a robust de-

termination of the temperature-density data with a reli-

able uncertainty measure. Due to the collective nature

of the scattering process, the analysis of the collisionally

damped plasmon signal allows the derivation of electrical

conductivities for such extreme states, which is especially

relevant for the study of the magnetic dynamo effect in

red dwarfs, which was suggested to impact the habitabil-

ity of surrounding planets49.
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Witte, and T. Döppner, Review of Scientific Instruments
89, 10G111 (2018), https://doi.org/10.1063/1.5037073.

4 M. J. MacDonald, A. M. Saunders, B. Bachmann,
M. Bethkenhagen, L. Divol, M. D. Doyle, L. B. Fletcher,
S. H. Glenzer, D. Kraus, O. L. Landen, H. J. LeFevre, S. R.
Klein, P. Neumayer, R. Redmer, M. Schörner, N. Whiting,
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T. Döppner, L. Divol, M. Hohenberger, L. B. Hopkins,
S. Le Pape, N. B. Meezan, A. Pak, P. K. Patel, R. Tom-
masini, S. J. Ali, P. A. Amendt, L. J. Atherton, B. Bach-
mann, D. Bailey, L. R. Benedetti, R. Betti, S. D. Bhan-
darkar, J. Biener, R. M. Bionta, N. W. Birge, E. J. Bond,
D. K. Bradley, T. Braun, T. M. Briggs, M. W. Bruhn, P. M.
Celliers, B. Chang, T. Chapman, H. Chen, C. Choate,
A. R. Christopherson, J. W. Crippen, E. L. Dewald, T. R.
Dittrich, M. J. Edwards, W. A. Farmer, J. E. Field, D. Fit-
tinghoff, J. A. Frenje, J. A. Gaffney, M. G. Johnson, S. H.
Glenzer, G. P. Grim, S. Haan, K. D. Hahn, G. N. Hall,
B. A. Hammel, J. Harte, E. Hartouni, J. E. Heebner, V. J.
Hernandez, H. Herrmann, M. C. Herrmann, D. E. Hinkel,
D. D. Ho, J. P. Holder, W. W. Hsing, H. Huang, K. D.
Humbird, N. Izumi, L. C. Jarrott, J. Jeet, O. Jones, G. D.
Kerbel, S. M. Kerr, S. F. Khan, J. Kilkenny, Y. Kim,
H. Geppert-Kleinrath, V. Geppert-Kleinrath, C. Kong,
J. M. Koning, M. K. G. Kruse, J. J. Kroll, B. Kustowski,

O. L. Landen, S. Langer, D. Larson, N. C. Lemos, J. D.
Lindl, T. Ma, M. J. MacDonald, B. J. MacGowan, A. J.
Mackinnon, S. A. MacLaren, A. G. MacPhee, M. M. Mari-
nak, D. A. Mariscal, E. V. Marley, L. Masse, K. Meaney,
P. A. Michel, M. Millot, J. L. Milovich, J. D. Moody,
A. S. Moore, J. W. Morton, T. Murphy, K. Newman, J.-
M. G. Di Nicola, A. Nikroo, R. Nora, M. V. Patel, L. J.
Pelz, J. L. Peterson, Y. Ping, B. B. Pollock, M. Ratledge,
N. G. Rice, H. Rinderknecht, M. Rosen, M. S. Rubery,
J. D. Salmonson, J. Sater, S. Schiaffino, D. J. Schlossberg,
M. B. Schneider, C. R. Schroeder, H. A. Scott, S. M. Sepke,
K. Sequoia, M. W. Sherlock, S. Shin, V. A. Smalyuk, B. K.
Spears, P. T. Springer, M. Stadermann, S. Stoupin, D. J.
Strozzi, L. J. Suter, C. A. Thomas, R. P. J. Town, C. Tros-
seille, E. R. Tubman, P. L. Volegov, K. Widmann, C. Wild,
C. H. Wilde, B. M. Van Wonterghem, D. T. Woods, B. N.
Woodworth, M. Yamaguchi, S. T. Yang, and G. B. Zim-
merman, Nature Physics 18, 251 (2022).

17 A. L. Kritcher, D. C. Swift, T. Döppner, B. Bachmann,
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The low-density limit of the electrical conductivity σ (n, T ) of hydrogen as the simplest ionic plasma is
presented as a function of the temperature T and mass density n in the form of a virial expansion of the resistivity.
Quantum statistical methods yield exact values for the lowest virial coefficients which serve as a benchmark
for analytical approaches to the electrical conductivity as well as for numerical results obtained from density
functional theory–based molecular dynamics simulations (DFT-MD) or path-integral Monte Carlo simulations.
While these simulations are well suited to calculate σ (n, T ) in a wide range of density and temperature, in
particular, for the warm dense matter region, they become computationally expensive in the low-density limit,
and virial expansions can be utilized to balance this drawback. We present new results of DFT-MD simulations
in that regime and discuss the account of electron-electron collisions by comparison with the virial expansion.

DOI: 10.1103/PhysRevE.104.045204

I. INTRODUCTION

Besides the equation of state and the optical properties,
the direct-current electrical conductivity σ is a fundamen-
tal characteristic of plasmas which is relevant in various
fields. Examples for technical applications range from the
quenching gas in high-power circuit breakers [1], which
acts as an efficient dielectric medium, to fusion plasmas
produced via magnetic [2] or inertial confinement [3]. The
electrical conductivity is indispensible for verification of the
insulator-to-metal transition in warm dense hydrogen [4]. In
geophysics, the electrical conductivity determines the proper-
ties of the outer liquid core and of the ionosphere, i.e., the
entire magnetic field of Earth from the dynamo region [5]
up to the magnetosphere [6]. Similarly, the electrical con-
ductivity in the convection zone of giant planets [7], brown
dwarfs [8], and stars [9] determines the action of the dynamo
that produces their magnetic field. Investigation of the electri-
cal conductivity of charged particle systems is, therefore, an
emerging field of quantum statistics. In this work we provide
exact benchmarks for this fundamental transport property.

Theoretical approaches to calculate the electrical conduc-
tivity of plasmas have been performed first within kinetic
theory [10]. In a seminal paper [11], Spitzer and Härm
determined σ of the fully ionized plasma solving a Fokker-
Planck equation. However, to calculate σ (n, T ) in a wide
region of temperature T and mass density n, a quantum

*gerd.roepke@uni-rostock.de
†maximilian.schoerner@uni-rostock.de
‡ronald.redmer@uni-rostock.de
§mandy.bethkenhagen@ens-lyon.fr

statistical many-particle theory is needed which describes
screening, correlations, and degeneracy effects in a systematic
approach. In a very general way, according to the fluctuation-
dissipation theorem, the conductivity is expressed in terms of
equilibrium correlation functions. Kubo’s fundamental ap-
proach [12] relates the electrical conductivity to the current-
current correlation function. For the relation between gen-
eralized linear response theory [13–15] and kinetic theory,
see [16] and references therein. The evaluation of the corre-
sponding equilibrium correlation functions can be performed
using different methods:

(i) Analytical expressions are derived, e.g., by using ther-
modynamic Green’s functions. Perturbation theory allows
partial summations using diagram techniques which lead to
sound results in a wide range of T and n. However, as is
characteristic for perturbative approaches, exact results can be
found only in some limiting cases.

(ii) This drawback is removed by numerical ab initio

simulations of the correlation functions applicable for ar-
bitrary interaction strength and degeneracy. Using density
functional theory (DFT) for the electron system and molecular
dynamics (MD) for the ion system (see [12] and [17–20]),
single-electron states are calculated solving the Kohn-Sham
equations for a given configuration of ions. The total energy
is given by the kinetic energy of a noninteracting refer-
ence system, the classical electron-electron interaction, and
an exchange-correlation energy which contains all unknown
contributions in certain approximation. One of the shortcom-
ings of this approach is that the many-particle interaction is
replaced by this mean-field potential.

(iii) In principle, an exact evaluation of the equilibrium
correlation functions is possible by using path-integral Monte
Carlo simulations (see [21–23] and references therein). The
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shortcomings of this approach are the rather small number of
particles (a few tens), the sign problem for fermions, and the
computational challenges of calculating path integrals accu-
rately.

These approaches and other closely related methods have
been used to calculate σ (n, T ) in a wide parameter range, and
numerous results have been published; for a recent review see
Ref. [24]. Also recently, a comparative study [25] considering
different approaches has been published which revealed large
differences of calculated conductivities.

In the present study, we demonstrate that the virial expan-
sion of the inverse conductivity serves as an exact benchmark
for theoretical approaches so that the accuracy and consis-
tency of results for the conductivity [25] can be checked. In
particular, we apply this framework to analytical approaches,
DFT-MD results, and experimental data for hydrogen, which
was chosen for simplicity. In the course of this discussion, we
present new DFT-MD data to extend the previously available
conductivity data [27,38] in the density-temperature region of
interest. The virial expansion of ρ = 1/σ suggested in this
work is a prerequisite to work out interpolation formulas for
the conductivity. It can be used in a wide range of T and n,
analogously to the Gell-Mann–Brueckner result for the virial
expansion of the plasma equation of state (see [26]). Finally,
the benchmark capability of the virial expansion as discussed
in this work may serve as a criterion to check the accuracy of
numerical approaches like DFT-MD simulations to evaluate
the conductivity.

II. VIRIAL EXPANSION OF THE INVERSE

CONDUCTIVITY

Charge-neutral hydrogen plasma (ion charge Z = 1) at
thermodynamic equilibrium is characterized by the temper-
ature T and the mass density n, or the total particle number
densities of electrons n̂e, which equals that of the ions n̂ion.
Instead, dimensionless parameters can be introduced: the
plasma parameter

� =
e2

4πε0kBT

(

4π

3
n̂e

)1/3

, (1)

which characterizes the ratio of potential to kinetic en-
ergy in the nondegenerate case, and the electron degeneracy
parameter

� =
2mekBT

h̄2 (3π2n̂e)−2/3. (2)

The dc conductivity σ (n, T ) is usually related to a dimension-
less function σ ∗(n, T ) according to

σ (n, T ) =
(kBT )3/2(4πε0)2

m
1/2
e e2

σ ∗(n, T )

=
32405.4

� m

(

kBT

eV

)3/2

σ ∗(n, T ). (3)

In this work, we consider both σ and σ ∗ as a function of the
density n at a fixed temperature T . In the low-density limit,
the following virial expansion for the inverse conductivity
ρ∗(n, T ) = 1/σ ∗(n, T ) was obtained from kinetic theory and

generalized linear response theory [13–15]:

ρ∗(n, T ) = ρ1(T ) ln
1

n
+ ρ2(T ) + ρ3(T ) n1/2 ln

1

n
+ · · · .

(4)
In contrast to a simple expansion in powers of n, the

occurrence of terms with ln n and n1/2 ln n is due to the
long-range character of the Coulomb interaction. To describe
the collisions between the charged particles, an integral over
the Coulomb interaction occurs which gives the so-called
Coulomb logarithm, where screening of the Coulomb in-
teraction is taken into account. Typically, such a Coulomb
logarithm arises in the correlation functions within the gen-
eralized linear response theory [13–15].

By convention, virial expansions consider the dependence
of physical quantities on the density n, for instance, a power
series expansion. However, the density n has a dimension, and
for ρ∗ not to be dependent on units, the virial coefficients
ρi also have, in general, a dimension. In particular, the term
ρ1 ln(1/n) needs a compensating term ρ1 ln(A), where A has
the dimension of density, as a contribution to ρ2 so that ρ∗ re-
mains dimensionless. Usually relations like (4) are given after
fixing the units in which the physical quantities are measured,
but it is also convenient to introduce dimensionless variables.
For motivation, we consider the Born approximation for the
Coulomb logarithm.

Within static (Debye) screening of the Coulomb interaction
to avoid the divergence owing to distant collisions, the Born
approximation of the Coulomb logarithm leads to the result
(see [13–15])

∫

∞

0

x
(

x + κ2
Debye

)2 e−h̄2x/(8mekBT )dx

= ln

(

�

�

)

− 0.962 203 + O

[

�

�
ln

(

�

�

)]

. (5)

The Debye screening parameter in the low-density (nondegen-
erate) limit reads

κ2
Debye = 2n̂e

e2

ε0kBT
(6)

so that the integral depends only on the parameter

h̄2κ2
Debye

8mekBT
=

(

2

3π2

)1/3
�

�
. (7)

We focus on the first and second terms on the right-hand
side of Eq. (5), which is sufficient in order to derive the first
[ρ1(T )] and second [ρ2(T )] virial coefficients of the virial
expansion, (4). Further contributions are of higher order in
density; for �/� � 0.01 they contribute to the integral in
Eq. (5) by less than 1%.

In the virial expansion, (4), the logarithm can be trans-
formed by introducing the dimensionless parameter

�

�
=

2m

h̄2

(kBT )2

n̂e

4πε0

e2
(36π5)−1/3 (8)

[see Eq. (5)], and we find a modified expression [note that
T ∝ 1/(�2�)]:

ρ∗(n, T ) = ρ̃1(T ) ln

(

�

�

)

+ ρ̃2(T ) + · · · . (9)
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To find the relation between ρ̃i and ρi we replace in Eq. (9)
the variables �,� with n̂e, T according to Eq. (8) so that

ρ∗
= ρ̃1(T ) ln

1

n̂e

+ ρ̃1(T ) ln

(

2m

h̄2 (kBT )2 4πε0

e2
(36π5)−1/3

)

+ ρ̃2(T ) + · · · . (10)

Comparing with Eq. (4) we find ρ̃1 = ρ1 and

ρ̃2 = ρ2 + ρ1 ln
[

2π (6π )2/3a3
B/T 2

Ryd

]

, (11)

where aB is the Bohr radius and TRyd = kBT/13.6 eV is the
temperature measured in Rydberg units.

A highlight of plasma transport theory is that the exact
value of the first virial coefficient is known for Coulomb
systems from the seminal paper of Spitzer and Härm [11],

ρ1 = ρ̃1 = ρ
Spitzer
1 = 0.846, (12)

which does not depend on T . Note that Eq. (12) takes into
account the contribution of the electron-electron (e-e) interac-
tion. In contrast, for the Lorentz plasma model where the e-e

collisions are neglected so that only the electron-ion interac-
tion is considered, the first virial coefficient amounts to

ρLorentz
1 =

1
16 (2π3)1/2

= 0.492 126. (13)

Although e-e collisions do not contribute to a change in
the total momentum of the electrons because of momentum
conservation, the distribution in momentum space is changed
(“reshaping”) so that higher moments of the electron momen-
tum distribution are not conserved. The indirect influence of
e-e collisions on the dc conductivity is clearly seen in gener-
alized linear response theory where these higher moments are
considered (see [15]).

For the second virial coefficient ρ2(T ) or ρ̃2(T ), no exact
value is known. It depends on the treatment of many-particle
effects, in particular, screening of the Coulomb potential.
Within a quantum statistical approach, the static (Debye)
screening by electrons and ions [see Eq. (5)] should be
replaced by a dynamical one. For hydrogen plasma as consid-
ered here, the Born approximation for the collision integral is
justified at high temperatures TRyd � 1. Considering screen-
ing in the random-phase approximation leads to the quantum
Lenard-Balescu (QLB) expression. Thus, at very high temper-
atures where the dynamically screened Born approximation
becomes valid, we obtain the QLB result (see [27–29]),

lim
T →∞

ρ̃2(T ) = ρ̃
QLB
2 = 0.4917. (14)

With decreasing T , strong binary collisions (represented
by ladder diagrams) become important and have to be treated
beyond the Born approximation when calculating the second
virial coefficient ρ̃2(T ). According to Spitzer and Härm [11],
the classical treatment of strong collisions with a statically
screened potential gives for ρ∗

= 1/σ ∗ the result

ρ∗

Sp = 0.846 ln
[

3
2�−3

]

. (15)

Interpolation formulas have been proposed connecting the
high-temperature limit ρ̃

QLB
2 with the low-temperature Spitzer

limit. Instead, performing the sum of ladder diagrams with

the dynamically screened Coulomb potential, Gould and
DeWitt [30] and Williams and DeWitt [31] proposed approx-
imations where the lowest order of a ladder sum with respect
to a statically screened potential, the Born approximation, is
replaced by the Lenard-Balescu result, which accounts for
dynamic screening. An improved version was proposed in
Refs. [14] and [32] by introducing an effective screening pa-
rameter κeff such that the Born approximation coincides with
the Lenard-Balescu result (see also [13–15,34]). Based on a
T-matrix calculation in the quasiclassical (Wentzel-Kramers-
Brillouin; WKB) approximation [35,36], the expression
(temperature is given in eV: TeV = kBT/eV)

ρ̃2(TeV) ≈ 0.4917 + 0.846 ln

[

1 + 8.492/TeV

1 + 25.83/TeV + 167.2/T 2
eV

]

(16)

can be considered a simple interpolation which connects the
QLB result with the Spitzer limit in the WKB approximation.
However, the exact analytical form of the temperature depen-
dence of the second virial coefficient ρ̃2(T ) remains an open
problem.

Thus, the available exact results for the virial expan-
sion, (9), of the resistivity of hydrogen plasma are as follows:

(i) the value of the first virial coefficient is ρ̃1 = 0.846;
(ii) the second virial coefficient has the high-temperature

limit limT →∞ ρ̃2(T ) = 0.4917; and
(iii) the second virial coefficient is temperature dependent,

and a promising functional form is given by Eq. (16).

III. VIRIAL COEFFICIENTS FROM

ANALYTICAL APPROACHES

To extract the first and second virial coefficients from cal-
culated or measured dc conductivities, we plot the expression

ρ̃(x, T ) =
ρ∗

ln(�/�)
=

32 405.4

σ (n, T )(� m)
(TeV)3/2 1

ln(�/�)

(17)

as a function of x = 1/ ln(�/�) and T in Fig. 1, which is
denoted the virial plot. According to Eq. (4), the behavior of
any isotherm (fixed T ) near n → 0 is linear,

ρ̃(x, T ) = ρ̃1(T ) + ρ̃2(T )x + · · · , (18)

with ρ̃1(T ) as the value at x = 0 and ρ̃2(T ) as the slope of
the isotherm. As discussed above in the context of the Born
approximation, (5), for x > 1/ ln(100) = 0.217 the contribu-
tions of higher-order virial coefficients have to be taken into
account. In addition, at fixed T , in the low-density region
where � � 1, the plasma is in the classical limit, and effects
of degeneracy are obtained from higher-order virial coeffi-
cients.

In Fig. 1 three cases for the first virial coefficient ρ1 are
shown on the axis of the ordinate (see also [13–15]):

(i) the first virial coefficient ρ
Spitzer
1 for the account of e-e

collisions according to kinetic theory (KT; Spitzer),
(ii) for the neglect of e-e collisions ρLorentz

1 as known from
the Brooks-Herring approach for the Lorentz plasma model
(BH; Lorentz), and
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FIG. 1. Analytical results for the reduced resistivity
ρ̃(x, T ), (17), of hydrogen plasma as a function of x = 1/ ln(�/�).
Data for kBT = 2000 eV are taken from Ref. [25] (Clérouin,
Copeland); lines are guides for the eye. Data for n = 10 g/cm3

are taken from Ref. [38] (Hubbard, Lee-More, Ichimaru).
Lenard-Balescu results of Karakhtanov [28] as well as QLB
results [27] including the e-e interaction (dashed line) and without
it (only e-i; dot-dashed line) are also shown. The values ρ

Spitzer
1 ,

ρLorentz
1 , and ρZiman

1 are defined in the text. The data for the graphs are
given in the Supplemental Material [39].

(iii)

ρZiman
1 =

2
3 (2π )1/2

= 1.671 09 (19)

for the force-force correlation function as known from the
Ziman theory (FF; Ziman). In addition, the second virial co-
efficient ρ̃LB

2 of the Lenard-Balescu approximation, (14), is
shown as the dashed black line, which is expected to be correct
in the high-temperature limit.

Two QLB calculations of Desjarlais et al. [27] are shown in
Fig. 1 (see also [39]). The line including e-e collisions obeys
the same asymptote (x → 0) as that of Karakhtanov [28].
With increasing x = 1/ ln(�/�), small deviations from the
linear behavior are seen. The line for calculations without
e-e collisions (Lorentz plasma) points to the corresponding
asymptote given by ρLorentz

1 .
Recently, the transport properties of hydrogen plasma were

compiled in Ref. [25]. For a grid of lattice points in the n-T
plane (considering n = 0.1, 1, 10, and 100 g/cm3 and TeV =

0.2, 2, 20, 200, and 2000) the results of different approaches
were given. Large deviations were obtained, which indicate
not only unavoidable numerical uncertainties but also deficits
in some of the theoretical approaches. Their consistency can
be checked via the virial expansion as benchmark. As an
example, we show data of Clérouin et al. and of Copeland
for the isotherm TeV = 2000 taken from Ref. [25] in Fig. 1.

Extrapolating to x = 1/ ln(�/�) → 0, these high-
temperature isotherms already show significant differences.
The data of Clérouin et al. point to the correct Spitzer limit
ρ

Spitzer
1 , including e-e collisions, but have a rather steep

slope. This may be caused by the approximations in treating
dynamical screening and the ionic structure factor, in contrast
to a strict QLB calculation. The data of Copeland clearly
point to the limit ρLorentz

1 of the Lorentz model, i.e., this

approach does not include e-e collisions and fails to describe
the conductivity of hydrogen plasma correctly.

Also shown in Fig. 1 are analytical results for the dc con-
ductivity of hydrogen plasma presented by Lambert et al. [38]
at the lowest density, n = 10 g/cm3. The data denoted by
Hubbard [40] are close to the data of Clérouin et al. discussed
above. The asymptote is the correct benchmark ρ

Spitzer
1 , but

the slope is rather large. The data of Lee and More [41]
are closer to the QLB calculations. In contrast to Copeland,
who also claims to use the Lee-More approach, possibly the
e-e collisions are added so that the extrapolation to x → 0
is near to the correct benchmark ρ

Spitzer
1 . Because of the ap-

proximations in evaluating the Coulomb logarithm, deviations
from the QLB result are seen. The kink in the Lee-More and
Hubbard data shown in Fig. 1 is due to switching the minimum
impact parameter in the Coulomb logarithm from the classical
distance of closest approach to the quantum thermal wave
length (cf. Ref. [24]).

Ichimaru and Tanaka [42] derived an analytical expression
for the conductivity which was improved in [43] by adding
a tanh term to the Coulomb logarithm. The latter expression
has also been used in Ref. [38]; the isochore n = 10 g/cm3

is shown in Fig. 1. The approach is based on a single Sonine
polynomial approximation where the effect of e-e collisions
is not taken into account. The empirical fit by Kitamura and
Ichimaru [43] approximates the conductivity for degenerate
plasmas (see also Fig. 9 in Ref. [38]). However, in the low-
density limit this approach fails to describe the conductivity
approaching ρZiman

1 at x = 0.

IV. VIRIAL REPRESENTATION

OF DFT-MD SIMULATIONS

DFT-MD simulations are of great interest, since they do not
suffer from the restrictions of perturbation theory as is typical
for analytical results and can be confronted directly with the
virial expansion. In addition, with the virial expansion the
results can be extrapolated to the low-density region where
DFT-MD simulations become infeasible.

In this work, we present new DFT-MD results for the elec-
trical conductivity of hydrogen obtained from an evaluation of
the Kubo-Greenwood formula [12,17,45,46]. The 125-atom
simulations were performed with the Vienna Ab initio Simula-
tion Package (VASP) [49–51] using the exchange-correlation
functional of Perdew, Burke, and Ernzerhof (PBE) [52] and
the provided Coulomb potential for hydrogen. The time steps
were chosen between 0.2 and 0.1 fs and the simulations
ran for at least 4000 time steps. The ion temperature was
controlled with a Nosé-Hoover thermostat [53]. For all sim-
ulations, the reciprocal space was sampled at the Baldereschi
mean value point [54]. Special attention has been paid to
convergence with respect to the particle number. Additional
details of the simulations are given in the Supplemental Ma-
terial and the results are listed in Table I.

Our DFT-MD results are plotted in Fig. 2 and show
a general increase with an increasing x = 1/ ln(�/�). In
comparison, the virial plot contains previous DFT-MD con-
ductivity data [27,38], which were translated into our ρ̃

framework. The first set of previous DFT-MD calculations has
been published by Lambert et al. [38] and was also used by
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TABLE I. Virial representation of the dc conductivity σ and of
ρ̃(x, T ) with x = 1/ ln(�/�): the values for σ and ρ̃ result from our
own DFT-MD simulations (this work; number of atoms, 125). Only
positive values for x = 1/ ln(�/�), i.e., �/� > 1, are considered.

n kBT σ

(g/cm3) (eV) � � 1/ ln(�/�) (MS/m) ρ̃(x, T )

2 50 0.49275 1.2172 1.1059 7.170 1.767
2 75 0.3285 1.8257 0.58302 11.44 1.073
2 100 0.24637 2.4343 0.43657 15.26 0.9269
3 100 0.28203 1.8577 0.53047 16.85 1.020
3 150 0.18802 2.7866 0.37092 25.67 0.8603
4 150 0.20694 2.3003 0.41522 27.39 0.9026

Starrett [47]. Results for ρ̃ for the lowest values of x > 0 at
three different densities are given in Fig. 2. Inspecting Fig. 2,
values for 10 g/cm3 at 200 eV and for 160 g/cm3 at 800 eV
are close together; i.e., we see a dominant dependence on
x, and no additional density or temperature effect is seen.
They are also close to the Lee-More approach including e-e

collisions so that they are not in conflict with the correct
benchmark (KT, Spitzer). Calculations are based on a for-
mulation of the Kubo-Greenwood method for average atom
models neglecting the ion structure factor [48] so that these
QMD values are possibly also influenced by approximations
and, therefore, deviate slightly from other calculations. How-
ever, the parameter values x are too large to estimate the virial
expansion.

The second set of previous DFT-MD simulations for hy-
drogen plasma in the low-x region was given by Desjarlais
et al. [27] (see Fig. 2). For a density of 40 g/cm3, three
temperatures, TeV = 500, 700, and 900, were considered.

0.0 0.2 0.4 0.6 0.8

1/ ln[Θ/Γ]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

ρ̃
(x
,T

)

< 1%
corrections

Karakhtanov

Spitzer

Lorentz

Lambert

Desjarlais

This work

Linear extrapolation

Experiment

FIG. 2. Reduced resistivity ρ̃(x, T ), (17), for hydrogen plasma
as a function of x = 1/ ln(�/�): QMD simulations of Lambert
et al. [38] (the orange line points to the value for n = 80 g/cm3,
kBT = 300 eV), DFT-MD simulations of Desjarlais et al. [27] and
of this work, experimental values of Günther and Radtke [44],
and Lenard-Balescu results of Karakhtanov [28]. ρSpitzer

1 = 0.846 and
ρLorentz

1 = 0.492 are defined in the text. The shaded area indicates the
region where corrections to the linear behavior of the virial expansion
amount to less than 1%. The dashed red line represents a linear
extrapolation of our results based on a linear fit to our three leftmost
results. Data are given in the Supplemental Material [39].

The reduced resistivity ρ̃1(x, T ) approaches the benchmark
obtained from the QLB calculations. However, the linear ex-
trapolation to ρ

Spitzer
1 at x = 0 is not seen in these data.

Interestingly, the results for ρ̃ of the different DFT-MD
simulations do not follow approximately a single curve as
expected from the high-temperature limit of the virial expan-
sion. The values of Lambert et al. are significantly higher
than ours but the slope is almost the same. While we employ
the generalized gradient approximated exchange-correlation
energy of PBE [52], Lambert et al. used the local density ap-
proximation. They used orbital-free MD in order to simulate
the system and obtain various snapshots for each density-
pressure point. Subsequently, these snapshots were evaluated
via the Kubo-Greenwood formula using the Kohn-Sham code
ABINIT, which is equivalent to the VASP implementation
we used. The DFT-MD simulations by Desjarlais et al. [27]
are close to our results, but the slope of the virial plot is
quite different. DFT-MD simulations are usually performed at
high densities where the electrons are degenerate so that e-e

collisions can be neglected. In the low-density region (x < 1)
considered here, we could improve the accuracy by studying
the convergence of the DFT-MD results, in particular, with
respect to the particle number and cutoff energy, using high-
performance computing facilities.

A long-discussed problem in this context is the question
whether or not e-e collisions are taken into account within the
DFT-MD formalism. For example, in Ref. [37] it was pointed
out that a mean-field approach is not able to describe two-
particle correlations, in particular, e-e collisions. However, e-e

interaction is taken into account by the exchange-correlation
energy as shown in Ref. [27] by comparing DFT-MD data for
the electrical conductivity to QLB results. The calculations
of Desjarlais et al. [27] for n = 40 g/cm3 and our present
ones for n = 2 g/cm3 were computationally demanding but
are still not very close to x = 0 so that extrapolation to the
limit x = 0 is not very precise. However, the corresponding
slopes are quite different: while the present DFT-MD data
favor ρLorentz

1 as asymptote at x = 0, those in Ref. [27] seem
to point to the Spitzer value, Eq. (12). Thus, our results do
not solve the lively debate about whether or not DFT-MD
simulations include the effect of e-e collisions on the conduc-
tivity. We conclude that further DFT-MD simulations must be
performed for still higher temperatures and/or lower densities
in order to approach the limit x → 0 so that the value for ρ1

can be derived more accurately. Such simulations, e.g., for
densities below 1 g/cm3, are computationally very challeng-
ing using the Kohn-Sham DFT-MD method so that alternative
schemas like stochastic DFT [57] and the spectral quadrature
method [58] have to be applied for this purpose.

We would like to mention that in the case of thermal
conductivity it has been shown that the contribution of e-e col-
lisions is not taken into account in DFT-MD simulations [27]
and gives an additional term. A profound discussion on the
mechanism of e-e collisions has been given recently by Shaf-
fer and Starrett [24]. They argued that the precise nature of
the incomplete account of e-e scattering may be resolved by
methods going beyond the Kubo-Greenwood approximation
such as time-dependent DFT and GW corrections. Consid-
ering a quantum Landau-Fokker-Planck kinetic theory, their
main issue is that scattering between particles in a plasma
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should be described not by the Coulomb interaction but by the
potential of mean force. Obviously, if part of the interaction
is already taken into account by introducing quasiparticles
and mean-field effects, the corresponding contributions must
be removed from the Coulomb interaction for e-e scatter-
ing to avoid double-counting. Comparing with QMD results,
Shaffer and Starrett [24] point out that their findings support
the conclusions in Ref. [27] that the Kubo-Greenwood QMD
calculations contain the indirect electron-electron reshaping
effect relevant to both the electrical and the thermal conduc-
tivity, but they do not contain the direct scattering effect which
further reduces the thermal conductivity.

V. EXPERIMENTS

Ultimately, the virial expansion, (9), has to be checked
experimentally but accurate data on the conductivity of
hydrogen plasma in the low-density limit and/or at high tem-
peratures are scarce. Accurate conductivity data for dense
hydrogen plasma were derived by Günther and Radtke [44]
and are shown in the virial plot (Fig. 2). They are close to the
benchmark data of the virial expansion. Note that systematic
errors are connected with the analysis of such experiments.
For instance, the occurrence of bound states requires a realis-
tic treatment of the plasma composition and of the influence
of neutrals on the mobility of electrons. Alternatively, conduc-
tivity measurements in highly compressed rare gas plasmas
have been performed by Ivanov et al. [55] and Popovic
et al. [36,56], but the interaction of the electrons with the ions
deviates from the pure Coulomb potential owing to the cloud
of bound electrons. The corresponding virial plot is close to
the data for hydrogen plasma (see [39]) but requires a more
detailed discussion with respect to the role of bound electrons.

VI. CONCLUSIONS

We propose an exact virial expansion, (9), for the plasma
conductivity to analyze the consistency of theoretical ap-
proaches. For instance, several analytical calculations of the
dc conductivity σ (T, n) presented in Ref. [25] miss this

strict requirement and fail to give accurate results. Results of
DFT-MD simulations are presently considered to be the most
reliable, and future path-integral Monte Carlo simulations can
be tested by benchmarking with the virial expansion, (9), for
x → 0. Note that these ab initio simulations become com-
putationally challenging in the low-density region, but the
virial expansion allows the extrapolation into this region. The
construction of interpolation formulas is possible (see [36]) if
the limiting behavior for n → 0 and further data in the region
of higher densities not accessible for analytical calculations
are known.

An outstanding problem that could potentially be ad-
dressed by applying the virial expansion of the conductivity
is the question whether or not the e-e collisions are rigor-
ously taken into account. Despite the work presented in [24]
and [27], there is no final proof whether the Kubo-Greenwood
QMD calculations with the standard approximations for the
exchange-correlation energy functional give the exact value
for the plasma conductivity in the low-density limit. A
Green’s function approach may solve this problem but this
has not been performed yet. Therefore, we suggest applying
our benchmark criterion to future large data sets of Kubo-
Greenwood QMD calculations to investigate the contribution
of e-e collisions in the low-density limit.

The approach described here is applicable also to other
transport properties such as thermal conductivity, ther-
mopower, viscosity, and diffusion coefficients. Of interest is
also the extension of the virial expansion to elements other
than hydrogen, where different ions may be formed and the
electron-ion interaction is no longer purely Coulombic.
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We investigate the thermopower and Lorenz number of hydrogen with Kohn-Sham density functional theory
(DFT) across the plasma plane toward the near-classical limit, i.e., weakly degenerate and weakly coupled states.
Our results are in concordance with certain limiting values for the Lorentz plasma, a model system which only
considers electron-ion scattering. Thereby, we clearly show that the widely used method of calculating transport
properties via the Kubo-Greenwood (KG) formalism does not capture electron-electron scattering processes. Our
discussion also addresses the inadequateness of assuming a Drude-like frequency behavior for the conductivity
of nondegenerate plasmas by revisiting the relaxation time approximation within kinetic theory.

DOI: 10.1103/PhysRevE.105.065204

I. INTRODUCTION

Besides the equation of state and the optical properties,
the transport coefficients are important quantities to charac-
terize the state of metals and plasmas. The electrical and
thermal conductivity, σ (n, T ) and λ(n, T ), as well as the ther-
mopower α(n, T ) and Lorenz number (named after Ludvig V.
Lorenz [1]) L(n, T ) depend in general on the particle density
n and temperature T but have well-known values for fully
degenerate plasmas according to the Ziman theory [2] and
in the nondegenerate limit as derived in the seminal work of
Spitzer and Härm [3].

Solving fundamental geo- and astrophysical questions on
structure, evolution, and magnetic field generation in stars and
planets relies on accurate knowledge of σ and λ of stellar and
planetary matter [4–9]. The experimental determination of
transport properties for plasmas and metals at such high tem-
peratures is very challenging, and a large part of the research
in the field is carried out via theoretical and computational
methods [10].

The computation of transport coefficients is possible via
kinetic theory [11–15], which was introduced originally for
low-density systems. Calculations for dense plasmas have to
address fundamental problems, e.g., dynamical screening and
strong collisions between electrons and ions, the influence
of the ionic structure during the collisions (dynamic ion-ion
structure factor), and partial ionization (bound states) [16–18].
The fluctuation-dissipation theorem [19] and a Hamiltonian-
based linear response description [20] have been invented to
relate transport coefficients to equilibrium correlation func-
tions. A generalized linear response theory [21,22] makes
this approach practically more applicable, for instance for the
evaluation of the equilibrium correlation functions by pertur-
bation theory and establishing the link to kinetic theory [23].
Alternatively, density functional theory (DFT) can be applied

to calculate transport coefficients via the Kubo-Greenwood
(KG) formalism [20,24,25]. DFT-MD simulations, which
combine the quantum treatment of electrons via density func-
tional theory with the molecular-dynamical (MD) solution of
the ionic motion, allow us to treat strongly coupled Coulomb
systems beyond perturbation theory, e.g., dense nonideal plas-
mas up to condensed matter densities, the so-called warm
dense matter. The effectiveness of the KG approach, which
uses the Kohn-Sham orbitals and energies from DFT, has been
demonstrated in particular for dense plasmas and warm dense
matter [26–35].

Although the DFT-based approach to calculate transport
coefficients in dense plasmas via the KG formalism is very
successful, a fundamental question is still open: whether
or not the influence of electron-electron (e-e) collisions is
properly included. While e-e correlations are accounted for
by the exchange-correlation energy functional in some ap-
proximation to obtain optimal electronic orbitals, it is not
clear whether the exact calculation of e-e collisions can be
performed within a single-particle description without the
explicit treatment of two-particle Coulomb interactions. This
problem has received increasing attention recently [36–39]
and can be checked best in the low-density and high-
temperature region of hydrogen plasmas, where exchange and
correlation energies become irrelevant and exact results for the
transport coefficients are available from the Spitzer theory [3].
Unfortunately, this is just the region where Kohn-Sham-DFT
becomes computationally demanding because high temper-
atures and low densities require huge simulation cells and
a large number of bands, so that it is very challenging to
converge the calculations. For instance, Desjarlais et al. [37]
applied a Drude-like fit to the very low-frequency behavior
of the transport coefficients. From these extrapolated values,
it was concluded that the electrical conductivity agreed with
quantum Lenard-Balescu (QLB) [40–43] results that include
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e-e scattering, whereas the thermal conductivity was too high
by a factor of about two. While these results ruled out for
the first time explict e-e scattering in the DFT calculations,
the agreement with the QLB results suggested that a reduc-
tion in the electrical conductivity analogous to that found in
Spitzer theory due to e-e interactions was present. Shaffer and
Starrett [38] supported this argument in their discussion. In
contrast, a recent analysis of DFT-MD data within a virial
expansion of the electrical conductivity [39] hinted toward e-e
collisions not being correctly accounted for at any level.

Here we re-examine the DFT calculations from Ref. [37]
and show that they were, unfortunately, not sufficiently con-
verged and that the agreement with QLB results that included
e-e scattering [37] was accidental. Although our computa-
tional capabilities to converge DFT transport properties at the
conditions chosen by Desjarlais et al. [37] are still insufficient,
we give a clear answer to the question, whether or not e-e
scattering is correctly included in the KG formalism, via an
alternative route which utilizes the thermopower and Lorenz
number calculated at less extreme plasma conditions. Related
to the DFT calculations, we also address the inadequacy of
assuming a Drude-like frequency dependence in nondegen-
erate plasmas in a special section about the relaxation time
approximation.

In short, this paper shows the first fully converged and
convincing results that a DFT-based evaluation of the KG for-
mula does not include exact contributions from e-e collisions.
To make this inference, we have performed extensive DFT
calculations for hydrogen plasma along a special path across
the density-temperature plane. We find that the asymptotic
behavior of the calculated transport coefficients converges
clearly to the values of the Lorentz plasma, which is a model
system (named after Hendrik A. Lorentz [11,44]) without

e-e collisions, where only the electron-ion (e-i) interactions
are considered, usually described by an effective (screened)
potential.

II. PLASMA PARAMETERS

The state of a hydrogen plasma can be generally character-
ized with two dimensionless parameters [45] that depend on
electron density ne and temperature T . The first is the coupling
parameter, which relates the average Coulomb interaction en-
ergy to the thermal energy,

� =
e2

4πε0kBT

(

4πne

3

)1/3

, (1)

where e is the elementary charge, ε0 is the vacuum permittiv-
ity, and kB is Boltzmann’s constant. Second, the degeneracy
parameter describes the importance of quantum effects (de-
generacy, Pauli blocking, etc.) and is given by

� =
8πε0kBT

e2aB

(

1

3π2ne

)2/3

, (2)

where aB is the Bohr radius.
A path perpendicular to the � = 1 and � = 1 lines, which

rise on geometric average with a power of T ∼ n1/2
e in the
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FIG. 1. Density-temperature plane of H plasma with the relevant
lines: � = 1, � = 1, and �8�7 = 1. Blue circles indicate the condi-
tions chosen for our calculations.

plasma plane, can be defined as follows:

T =
(

4

9π

)14/3( 3

4π

)2( 2

aB

)7
e2

4πε0kBn2
e

, (3)

or equivalently by �8�7 = 1. We may call this path an escape
route from correlation and quantum effects because it repre-
sents the shortest route from the highly degenerate (� � 1)
and strongly coupled (� � 1) region to the nondegenerate
(� � 1) and weakly coupled (� � 1) conditions, anchored
at � = � = 1; see Fig. 1.

Following this route allows us to efficiently reach con-
ditions for which certain limiting laws for the transport
coefficients of plasmas are known. Our main DFT calculations
were run along this path between 15 000 K and 1.46 g/cm3

up to 400 000 K and 0.2826 g/cm3 and closely approached
characteristic limiting cases at both ends.

III. RELAXATION TIME APPROXIMATION

Before discussing our DFT calculations, we describe a
simpler and well understood approach to calculate electronic
transport properties of plasmas, which will be used for various
comparisons. This model considers a Lorentz plasma, where
electrons scatter only at ions via a statically screened Coulomb
potential and all particles are uncorrelated. It is derived by
solving the Boltzmann equation within the relaxation time
approximation (RTA) [11], which was done, e.g., by Lee and
More [46] and can be evaluated for arbitrary degeneracy.

When assuming frequency-dependent perturbations
∼ exp(iωt ) by an electrical field E(ω) and a temperature
gradient ∇T (ω) at constant pressure, the following
nonequilibrium distribution function for the plasma electrons
is derived:

f (v) = f0 +
τ

1 + iωτ

∂ f0

∂E
v ·

[

eE +
(

E − he

T

)

∇T

]

, (4)

where he is the enthalpy per electron, v the velocity, τ =
τ (E ) the relaxation time, and f0(E ) is the Fermi distribution
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function:

f0(E ) =
1

z−1 exp(E/kBT ) + 1
. (5)

The Fermi function depends on the kinetic energy E =
mev2/2 and fugacity z = exp(μe/kBT ), where me is the mass
and μe is the chemical potential of the electrons.

A. Zero-frequency limit

After calculating the expectation values of electrical cur-
rent j and generalized heat current j′Q at ω = 0,

j = −
2em3

e

(2π h̄)3

∫

d3v v f (v), (6)

j′Q =
2m3

e

(2π h̄)3

∫

d3v v

(

mev2

2
− he

)

f (v), (7)

the following set of Onsager coefficients is obtained, which
can be written as integrals over the energy:

Kn =
−8(−e)2−n

3π1/2meλ3
e (kBT )3/2

∫ ∞

0
dE En+3/2τ (E )

∂ f0

∂E
, (8)

where λe = h̄
√

2π/mekBT is the thermal wavelength. When
assuming only e-i scattering at a screened Coulomb potential,
the relaxation time in first Born approximation reads [47–49]

τ (E ) =
27/2πε2

0m1/2
e

niZ
2
i e4

E3/2

ln �(E )
, (9)

where ni and Zi = 1 are density and charge state of the
ions, respectively. Due to its weak energy dependence, the
Coulomb logarithm ln �(E ) may be pulled out of the inte-
gration and later evaluated at a mean value, which then leads
to the following expression:

Kn =
25ε2

0me(kBT )3

3π h̄3niZ
2
i e2

(

kBT

−e

)n
�n+4Fn+2(z)

ln �(z)
, (10)

where the Fermi integrals are defined as

Fj (z) =
1

� j+1

∫ ∞

0
dx

x j

z−1 exp(x) + 1
, (11)

with Euler’s gamma function � j+1.
Here we deviate from the original Lee-More model and

use the following formula for the statically screened Coulomb
logarithm [48–50]:

ln � =
1

2

[

ln(1 + b) −
b

1 + b

]

, (12)

with the following argument:

b(z) =
8meẼ (z)

h̄2κ2
e (z)

=
6me(kBT )2ε0λ

3
e

h̄2e2

F1/2(z)

F 2
−1/2(z)

. (13)

The equation above follows from the screening parameter of
a Lorentz plasma [17]:

κ2
e (z) =

2e2

ε0λ3
ekBT

F−1/2(z), (14)

and from calculating the mean energy of the scattering elec-
trons as

Ẽ (z) =
∫

dE E1/2E
∂ f0

∂E
∫

dE E1/2 ∂ f0

∂E

=
3

2
kBT

F1/2(z)

F−1/2(z)
, (15)

which gives Ẽ = 3kBT/2 in the nondegenerate limit and Ẽ =
EF , which is the Fermi energy, for complete degeneracy.

In summary, all transport coefficients of interest can be
calculated within this RTA model by evaluating a set of six
Fermi integrals and using an inversion formula for the fugac-
ity, see, e.g., Ref. [18]. In particular, the electrical conductivity
is given by

σ = K0 =
26ε2

0me(kBT )3

π h̄3niZ
2
i e2

F2(z)

ln �(z)
. (16)

With the ideal enthalpy per electron,

he =
5

2
kBT

F3/2(z)

F1/2(z)
, (17)

the thermopower coefficient can be written as

a = −
e

kB

αe =
−eK1

kBT K0
−

he

kBT
= 4

F3(z)

F2(z)
−

5

2

F3/2(z)

F1/2(z)
. (18)

Finally, the Lorenz number is

L =
( e

kBT

)2
(

K2

K0
−

K2
1

K2
0

)

= 20
F4(z)

F2(z)
− 16

F 2
3 (z)

F 2
2 (z)

. (19)

Here the Wiedemann-Franz law, L = π2/3, follows directly
from the Sommerfeld expansion of Fermi integrals. Expres-
sions for the nondegenerate limits are easily obtained, since
all Fj (z) ≈ z = neλ

3
e/2 there, e.g., we immediately find the

numbers a = 1.5 and L = 4.

B. Frequency-dependent coefficients

The frequency-dependent coefficients are derived in the
same way as Eq. (8). Their real parts then read

Kn(ω) =
−8(−e)2−n

3π1/2meλ3
e (kBT )3/2

∫ ∞

0
dE

En+3/2τ (E )

1 + ω2τ 2(E )

∂ f0

∂E
.

(20)
An analytical integration shows that the coefficient

K0(ω) = σ (ω) fulfills the sum rule [37],

2me

πe2

∫ ∞

0
dω σ (ω) =

2

λ3
e

F1/2(z) = ne, (21)

for any relaxation time τ (E ) if the thermodynamics of the
electron gas is ideal.

Equation (20) can be integrated numerically using the
relaxation time (9). To remain fully consistent with the pre-
vious subsection, we keep the Coulomb logarithm constant
here, too. Note that a Drude behavior of the coefficients
Kn(ω) ∼ (1 + ω2τ 2)−1 is found only in the fully degenerate
limit, where τ = τ (EF ). For weakly degenerate electrons, the
∼E3/2 proportionality of the relaxation time generates signif-
icantly different frequency dependencies of the Kn(ω).
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IV. DFT CALCULATIONS

We use a combination of density functional theory
(DFT) [51,52] and molecular dynamics (MD) to simu-
late the ion dynamics in our H plasma using the VASP
code [53–55], generating ionic configurations for subsequent
calculations of transport coefficients. In these DFT-MD sim-
ulations, we treat exchange and correlation effects with the
Perdew, Burke, Ernzerhof (PBE) approximation [56] and use
a PAW pseudopotential (labeled PAW H_h_GW) [57,58] with
a plane-wave energy cutoff of 1200 eV and the Baldereschi
mean-value point [59]. We simulate either 64, 128, or
256 atoms for several 1000 time steps with a length of 0.1 fs
at constant temperatures regulated with a Nosé-Hoover ther-
mostat [60,61]. This is done for temperatures between 15 000
and 75 000 K. The pair correlation functions indicate that the
ionic structures become increasingly uncorrelated as temper-
ature rises and density decreases; see Appendix A for more
details. We therefore use the same ionic configurations from
the DFT-MD simulations made at 75 000 K for all calcula-
tions of transport coefficients at higher temperatures and only
rescale the box sizes to have them match the required smaller
densities. This simplification may introduce inaccuracies in
the region of intermediate coupling. Nevertheless, it warrants
the emergence of configurations of uncorrelated, distant ions
toward sufficiently low density and, thus, achieve consistency
with the assumptions made in the derivation of the Lorentz
and Spitzer limiting values we aim to compare with.

The electronic transport coefficients are then calculated
with static DFT calculations using 5–10 ionic configura-
tions from each DFT-MD run and sufficiently large k-point
sets [59,62] to reach convergence. Here we exclusively use the
bare Coulomb potential with a cutoff energy of 2000 eV for
the electron-ion interactions. The necessary number of bands
was determined for each individual density and temperature
with systematic convergence tests. It increases drastically with
the temperature along the �8�7 = 1 line. For example, 120
bands per atom were found to be sufficient at 300 000 K
(� = 0.52 and � = 2.1). The following expressions for the
frequency-dependent Onsager coefficients [25] are evaluated:

Ln(ω) =
2π (−e)2−n

3V ω

∑

kνμ

|〈kν|v̂|kμ〉|2( fkν − fkμ)

×
(Ekμ + Ekν

2
− he

)n

δ(Ekμ − Ekν − h̄ω), (22)

where ω is the frequency, V the volume of the simulation
box, Ekμ and fkμ are the energy eigenvalue and Fermi occu-
pation number of the Bloch state |kμ〉 calculated from DFT,
and 〈kν|v̂|kμ〉 are matrix elements with the velocity operator
taken from the optical routines of VASP [63]. The enthalpy
per electron he = μe + T se is calculated from the chemical
potential μe and entropy per electron se that are derived
self-consistently in the DFT. Due to the discrete spectrum of
eigenvalues caused by the periodic boundary conditions of the
simulation box, it is necessary to broaden the delta function
to a small, finite width, which is done here with a Gaussian
function.

The static electrical conductivity is the limit of L0(ω)
at zero frequency, also known as the Kubo-Greenwood

formula [20,24]:

σ = lim
ω→0

L0(ω), (23)

while the thermal conductivity can be calculated via

λ =
1

T
lim
ω→0

(

L2(ω) −
L2

1 (ω)

L0(ω)

)

. (24)

In addition, we can directly obtain the thermopower coeffi-
cient:

a = −
e

kB

α = −
e

kBT
lim
ω→0

L1(ω)

L0(ω)
, (25)

and the Lorenz number:

L =
( e

kBT

)2
lim
ω→0

[

L2(ω)

L0(ω)
−

L2
1 (ω)

L2
0 (ω)

]

. (26)

The corresponding phenomenological equations read [64]:

j = L0E −
L1

T
∇T = σE − σα∇T, (27)

j′Q = L1E −
L2

T
∇T = T σαE − (λ − T σα2)∇T . (28)

Note that the coefficients Kn used in the RTA model in Sec. III
differ from the coefficients Ln of the KG formalism by terms
proportional to he/e:

L0 = K0, (29)

L1 = K1 +
he

e
K0, (30)

L2 = K2 +
2he

e
K1 +

h2
e

e2
K0. (31)

Because Eqs. (23)–(26) cannot be evaluated directly at ω = 0,
extracting their converged DC limits is challenging, especially
at high temperatures due to the large number of partially oc-
cupied bands that contribute to the summations in the small-ω
region. Especially, having a higher index n in the coefficients
Ln results in stronger weighting of summands with higher
eigenenergies Ekν . This causes the quantities from Eqs. (23)–
(26) to show different convergence behaviors at small ω. For
all numerical values presented here, we have ensured that
sufficient convergence has been reached to guarantee unbiased
extrapolations (here using linear functions) to obtain the DC
numbers.

The quantities most challenging to converge at high T are
the thermal conductivity (24) and the electrical conductiv-
ity (23), because they approach their ordinates with a very
steep slope. These calculations require very large particle
numbers to resolve the low-frequency region sufficiently well
to guarantee precise extrapolations to the DC limit. Desjarlais
et al. [37] assumed that the conductivity shows Drude-
like frequency dependence at low frequency and performed
extrapolations to ω = 0 accordingly. A global Drude-like fre-
quency dependence requires that the dynamics of all electrons
contributing to the conductivity is determined by a single
relaxation time τ [50]. This case holds approximately for
degenerate electrons (� � 1), where Pauli blocking allows
scattering processes only for electrons near the Fermi level.
But in general, the relaxation time depends on the velocity v
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FIG. 2. Frequency-dependent electrical conductivity of hydro-
gen at 40 g/cm3 and 500 eV from DFT in comparison with the
results from RTA, Eq. (20). Thin dashed lines indicate extrapolations
with Drude functions, σ = σ0/(1 + ω2τ 2), fitted to the DFT data at
frequency ranges between 0.5 and 2 eV. For comparison a Drude
function scaled to match the zero-frequency value of the RTA and,
simultaneously, fulfill the sum rule (21) is also shown.

of the incident electron, e.g., assuming electron-ion scatter-
ing in first Born approximation as in Eq. (9), we have τ ∼
v

3/ ln �(v). Thus, the frequency dependence of the conduc-
tivity cannot be expected to globally match with a Drude-like
form at high temperatures and this, in turn, will add uncer-
tainty when employing low-frequency extrapolations to the
DC limit. The following section illustrates this problem in
more detail by re-examining an example from the work of
Desjarlais et al. [37] who investigated hydrogen at very high
density and temperature.

V. RE-EXAMINATION OF CALCULATIONS FROM

DESJARLAIS ET AL. (2017)

We have independently revisited the DFT calculations by
Desjarlais et al. [37] at kBT = 500 eV and 40 g/cm3 (� =
0.13) by performing new DFT-MD simulations with 128, 256,
and 512 hydrogen atoms. The simulations were run with a
time step of 0.003 fs, 25 bands per atom, and a plane-wave
cutoff energy of 5000 eV. The electrical conductivity was then
calculated from several ionic configurations with 30 bands
per atom and a plane-wave cutoff energy of 8000 eV. The
Baldereschi k point [59] was used in all calculations. Results
are displayed in Fig. 2.

It is clearly seen that the DFT conductivities are missing
essential contributions at low frequency the fewer particles
are considered, thus, even the calculations with 512 atoms
are likely still underconverged. At sufficiently high frequency,
all DFT results merge with the RTA curve, which is derived
independently from the DFT and whose shape is determined
by the energy dependence of the relaxation time (9). This con-
vinces us to conclude that, at these weakly coupled conditions,
the RTA indicates the correct zero-frequency limit that DFT
would produce if convergence could be reached.

Both the RTA and Drude models have a quadratic de-
pendence on frequency for very low frequency, but have

differing higher-order dependence. The Drude-like extrapola-
tion to zero frequency will introduce inaccuracy in the zero
frequency limit, relative to the RTA functional form, when
convergence with respect to particle number is insufficient. In
Ref. [37], the zero-frequency limit was derived from simula-
tions with 256 atoms, the limit of what was computationally
feasible at the time. The zero frequency limit was obtained
through an extrapolation with a Drude function fitted to data
between ∼0.5 and 1 eV. These circumstances lead to an un-
derestimation of the electrical conductivity and, consequently,
to a qualitatively different interpretation of results because
of an accidental concordance with Lenard-Balescu calcula-
tions. Given that the other two conditions from Ref. [37]
at 700 and 900 eV are even more challenging to converge,
those results for the electrical and thermal conductivity would
also be expected to be unconverged with respect to particle
number.

Our present inability to converge the DC electrical con-
ductivity at kBT = 500 eV and 40 g/cm3 requires us to seek
alternative options to solve our scientific question. The first
adjustment is reducing the density and temperature to less
extreme conditions by following the escape route �8�7 = 1.
Second, instead of founding our reasoning on the electrical
and thermal conductivity we will utilize the thermopower and
Lorenz number instead. These quantities require less extreme
particle numbers for the determination of their DC values as
is explained in the next section.

VI. THERMOPOWER AND LORENZ NUMBER ALONG

THE ESCAPE ROUTE

While the considerations explained in the preceding
section, in principle, also apply to the thermopower coeffi-
cient (25) and the Lorenz number (26), these quantities are
a lot less prone to the convergence issues discussed. This
is likely explained by Eqs. (25) and (26) being ratios of
Onsager coefficients (22) by definition, which results in a
partial compensation of the leading terms that determine the
slopes in the Ln at small frequencies. Consequently, these
functions approach their ordinates much less steeply. Their
DC values can be found much more easily by standard means
of comparing results obtained with different particle numbers
and extrapolating the physically relevant section of the curves
across the regions of artificial drops (in Ln) or divergences (in
certain ratios of different Ln) close to ω = 0; see Fig. 3 for an
example.

The numbers L and a are shown in Fig. 4 for con-
ditions along the �8�7 = 1 line. Concordance of DFT
results with known limits for � � 1 (L = π2/3 and a = 0),
which are not susceptible to e-e scattering mechanisms
due to Pauli blocking [11,65], had been established in the
past [25,27].

However, in the opposite limit, Fig. 4 clearly shows that
the DFT calculations do not approach the Spitzer results, but
instead the Lorentz plasma values (e-i scattering only), which
are substantially higher; see also Table I. Thus, we conclude
that e-e collisions are not accounted for in DFT when follow-
ing the KG formalism, i.e., by computing electronic transport
coefficients from Eqs. (22).
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FIG. 3. Lorenz number and thermopower coefficient from our
DFT calculations at 200 000 K and 0.3997 g/cm3 (� = 0.84 and
� = 1.23) for different particle numbers and their linear extrapola-
tions (bold lines) to the DC limits.

VII. FURTHER DISCUSSION

The reason why e-e scattering is absent in DFT transport
properties is that the Kohn-Sham interaction operator,

vKS ({ri}) =
∑

i

[

−
∑

I

e2ZI

4πε0|ri − RI |

+
e2

4πε0

∫

d3r′ ne(r′)

|ri − r′|
+ vxc,i(ri )

]

, (32)

where r′ is a position vector and ri and RI , respectively, are
electronic and ionic position coordinates, has the same single-
particle structure (separable into additive single-electron
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FIG. 4. Thermopower coefficient (red) and Lorenz number
(black) from DFT (full) and RTA (dashed) along the �8�7 = 1 line.

TABLE I. Values for the transport coefficients for hydrogen
plasma according to the Spitzer theory [3,49] accounting for e-i and
e-e scattering compared with the values from the KG formalism
(DFT) at � = 0.52 and � = 2.1.

Quantity Lorentz (e-i) Spitzer (e-i and e-e) DFT-MD

a 1.5 0.7033 1.51 ± 0.03
L 4.0 1.6220 3.94 ± 0.2

terms) as the interaction operator for adiabatic e-i scattering:

vei({ri}) = −
∑

i,I

e2ZI

4πε0|ri − RI |
, (33)

but with the additional Hartree and exchange-correlation
terms. To achieve the correct Spitzer results in a Hamiltonian-
based formalism, which is possible within generalized linear
response theory [21,22], e-e scattering has to be included
directly via the fundamental two-particle interaction operator
(not separable into additive single-electron terms):

vee({ri}) =
∑

i< j

e2

4πε0|ri − r j |
. (34)

Such a treatment leads to mathematical structures that are
significantly different from the compact set of Onsager co-
efficients (22) in the KG formalism [66,67]. The mean-field
Hartree potential in DFT,

vH ({ri}) =
∑

i

e2

4πε0

∫

d3r′ ne(r′)

|ri − r′|
, (35)

which becomes merely a global constant in a homogeneous
electron gas at very high T , is unable to reintroduce e-e colli-
sion effects in the electronic transport coefficients. The same
applies to the exchange-correlation potential

∑

i vxc,i(ri ),
which vanishes ∼T −1/2 according to the Debye-Hückel
limiting laws [17] in a real plasma. Within the PBE approx-
imation [56], which is used in our practical work, it reduces
to a constant energy shift according the local density approx-
imation [68,69] for a homogeneous electron gas at very high
T and, thus, does not influence the velocity matrix elements
either.

Electron-electron collisions, when taken into account ex-
plicitly in the theoretical description via kinetic theory [3]
or generalized linear response theory [21–23], reshape the
nonequilibrium momentum distribution of electrons [3].
Whether or not e-e collisions have a particular effect on the
electronic heat current that is separable from the reshaping of
the distribution function as suggested in Ref. [37] remains to
be shown.

For additional comparison, Fig. 5 contains results from
kinetic theory within the RTA from Sec. III. This model
describes a Lorentz plasma of noninteracting electrons scat-
tering randomly at ions with small momentum transfer (weak
collisions). It is not able to capture the important influences of
strong collisions, electronic correlations, and ionic structure
present in DFT, which explains the deviations to the DFT
conductivity. Because of the more difficult convergence of
DFT conductivities compared to thermopower and Lorenz
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FIG. 5. Electrical conductivity from DFT, RTA, and the virial
expansion with and without e-e collisions [39] as indicated in the
legend along the �8�7 = 1 line.

number, we cannot yet achieve an overlap between DFT and
RTA data toward the nondegenerate limit.

To illustrate the influence of e-e scattering on the electrical
conductivity, we also compare with results recently derived
from the virial expansion in terms of �/�, which holds for
�/� � 1 and � � 1, according to Ref. [39] (formulas are
given in the Appendix B). The virial expansion accounts for
dynamical screening effects and strong collisions and, prob-
ably due to the latter [70], approaches the DFT results better
than the RTA model. The virial expansion can be elaborated
for both Lorentz and Spitzer plasmas. In the latter case, the
conductivity of the hydrogen plasma is smaller by a factor of
0.58 in the large-� limit [3,39].

On the one hand, the lack of e-e collisions may be a reason
why DFT results have not yet been brought in accordance with
conductivity models for dense, partially ionized plasmas more
complex than fully ionized hydrogen [49]. On the other hand,
DFT has certainly achieved great success in describing the
electrical and thermal conductivity of liquid and solid metals
like lithium [71], molybdenum [29], aluminum [26,34], and,
with a caveat due to yet incomplete description of magnetism,
also iron [28,35]. In light of our present findings, this im-
plies that e-e scattering is of minor relevance at conditions
in materials at geophysically relevant temperatures of few
1000 degrees K. This must not be confused with correlations

between electrons, which certainly are important there and can
approximately be captured by DFT.

Note that combining DFT with dynamical mean-field the-
ory (DMFT) [72–75] allows for the introduction of additional
electronic correlation effects beyond that of DFT, which
also affect the electronic transport properties. However, these
correlations are introduced artificially via localized repul-
sive interactions of certain electronic orbitals as offered by
the Hubbard model and depend on external parameters that
require additional constraints. Whether the DFT + DMFT
method is potentially able to describe scattering between un-
correlated electrons via a proper Coulomb interaction ∼1/r is
doubtful and has yet to be examined by an effort similar to
ours, i.e., by benchmarking against the known limiting values
for Spitzer and Lorentz plasmas.

While it is not obvious how e-e collisions can consis-
tently be included into DFT approaches, a way to overcome
these difficulties has been discussed in Ref. [37]. Within the
generalized linear response theory [22,23,50,67], transport co-
efficients are expressed by higher-order correlation functions.
Evaluating these with perturbation theory leads to renormal-
ization factors that account for e-e collisions in relation to the
Lorentz plasma model and depend on the degeneracy of the
electron gas [36]. In the nondegenerate Spitzer limit [3], these
renormalization factors are 0.5816 for L0, 0.2727 for L1, and
0.1970 for L2. Directly related to them are the renormaliza-
tion factors 0.4689 for a and 0.4055 for L; see also Table I.
For strongly degenerate plasmas, all of these renormalization
factors converge to 1.

Time-dependent DFT [76] seems an unlikely candidate for
the introduction of e-e scattering because it is, like static DFT,
a description of independent quasiparticles in an effective
mean-field potential. It may, however, be able to describe ef-
fects from dynamical screening that are not included in static
DFT calculations.

An alternative approach beyond DFT may be future de-
velopment of quantum Monte Carlo techniques [77], which,
however, require much higher computational effort than DFT.
This applies especially to materials with multielectron atoms
in realistic stoichiometry that many practical applications of
WDM require, e.g., hydrogen-helium mixtures in Jupiter and
Saturn [5,7,8] or iron-silicon-oxygen mixtures in Earth [78].
So far, quantitative predictions of transport properties of such
systems can be made only with DFT-based methods.

VIII. CONCLUSION

In conclusion, we have resolved that electronic transport
properties derived from DFT do not account for e-e collision
effects. At present, DFT-MD simulations represent the most
efficient and an indispensable approach to describe various
properties of both condensed and warm dense matter. We have
outlined directions for future developments to consistently
include electron-electron collisions, including a promising
combination of DFT with generalized linear response the-
ory [21,22]. Our discussion indicates that such future efforts
to develop transport theory [10] further can greatly benefit
from systematic investigations of the Lorenz number and

thermopower. Likewise, advancing experimental methods to
determine thermopower and Lorenz number of warm dense
matter will provide additional constraints to the theoretical
methods aside from the Spitzer limiting values that the princi-
pal discussion of this article is tied to.
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APPENDIX A: PAIR CORRELATION FUNCTION

The pair correlation function illustrated in Fig. 6 shows that
protons are uncorrelated at 75 000 K and 0.6527 g/cm3 and
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FIG. 6. Protonic pair correlation function from a DFT-MD simu-
lation with 64 hydrogen atoms at 75 000 K and 0.6527 g/cm3 (black
line). Fit to a function g(r) = exp[−r0 exp(−κr)/r], where the fit
parameters were determined as r0 = 2.259 Å and κ = 3.77/Å (red
line).

are only subject to repulsive interactions at small distances r.
A quantitative check of this observation is possible by fitting
the pair correlation function to the expression [13]:

g(r) = exp [−V (r)/kBT ], (A1)

which applies for uncorrelated particles interacting via a radial
pair potential V (r). The red line in Fig. 6 is the result of
such a fit if a screened Coulomb potential for proton-proton
interaction is assumed:

V (r) ∼
exp(−κr)

r
. (A2)

Using the same configurations of uncorrelated ions also at
lower densities and higher temperatures by scaling the box

TABLE II. First and second virial coefficients for the conductiv-
ity of fully ionized hydrogen plasma with and without e-e scattering
from Ref. [39].

Coefficient Lorentz (e-i) Spitzer (e-i and e-e)

ρ1 (2π 3)1/2/16 0.846
ρ2 1.0 0.4917

size increases the distance between all ions further. This is
sufficient to bring our system closer to the physical situation
assumed in the derivation of the relevant high-T limiting cases
for the transport properties, i.e., resistivity through uncorre-
lated collision events of electrons at individual scatterers [3].

APPENDIX B: VIRIAL EXPANSION FOR

THE CONDUCTIVITY

Here we give the low-density limit of the electrical conduc-
tivity according to the virial expansion by Röpke et al. [39],
which reads

σ [S/m] =
32405.4 T

3/2
eV

ρ1 ln(�/�) + ρ2 + O[(�/�)1/2 ln (�/�)]
,

(B1)
with the virial coefficients as given in Table II. The virial
expansion is valid for �/� � 1 and � � 1. For the plasma
parameter � we have along the escape route 1/� = �7/8. The
temperature TeV = kBT/eV in units of eV follows as

TeV = 14.7761
1

�2�
. (B2)

Altogether, the virial expansion for σ along the escape route
is given by

σ [MS/m] =
1.84059 �9/8

15
8 ρ1 ln(�) + ρ2 + O(�−15/16 ln �)

. (B3)
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