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Abstract

After a brief historic overview about spatial audio reproduction, the concept of object-based
audio reproduction is explained and the need for spatial audio scenes is stated. Several
existing formats for describing object-based audio scenes are reviewed, with special fo-
cus on the description of movement of scene objects over time. A new scene authoring
format named Audio Scene Description Format (ASDF) is presented. Its description of
movement of scene objects is based on several types of splines, which are thoroughly in-
vestigated, both for position and for rotation. Finally, an open-source ASDF library im-
plementation and two integrations of this library are presented, which make it possible
for everyone to try the ASDF right now.

Zusammenfassung

Nach einem kurzen Abriss über die Geschichte der räumlichen Audiowiedergabe wird das
Konzept der objektbasierten Audiowiedergabe erklärt und die Notwendigkeit von räumli-
chen Audioszenen wird festgestellt. Einige existierende Beschreibungsformate für objekt-
basierte Audioszenen werden betrachtet, mit Hauptaugenmerk auf die Beschreibung der
Bewegung von Szenenobjekten im Zeitverlauf. Ein neues Format für Szenenautoren na-
mens Audio Scene Description Format (ASDF) wird präsentiert. Seine Beschreibung der
Szenenobjektbewegungen fußt auf mehreren Arten von Splines, die gründlich untersucht
werden, sowohl für Position als auch für Rotation. Zu guter Letzt wird die Implemen-
tierung einer quelloffenen ASDF Softwarebibliothek sowie zwei Einbindungen dieser Bi-
bliothek präsentiert, die es ab sofort jedem ermöglichen, das ASDF auszuprobieren.
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It has been found that by artificially causing the
source of sound to move rapidly in space the result
can be highly dramatic and desirable.

(Garity and Hawkins 1941) Introduction

The goal of spatial audio reproduction is to create auditory events for a listener or multiple
listeners, which are perceived as arriving from specific spatial directions. This can be
achieved either with headphones or with arrangements of multiple loudspeakers. Such
technology can be used, for example, for creating spatial music performances, audio plays
or spatial sound tracks for movies.

To set everything into perspective, chapter 1 will give an overview about the historic
development of spatial audio reproduction and present some old and new techniques for
creating spatial audio experiences for an audience. This is also where the term channel-
basedwill be introduced to classify reproduction systemswhere each loudspeaker driving
signal is stored and distributed in its own separate channel. This will be contrasted with
the term object-based, which represents a whole new reproduction paradigm. Instead of
delivering an audio mix which is tied to a fixed loudspeaker setup (or to two headphone
channels), a so-called audio scene comprised of individual sound sources is created which
holds all source signals as well as additional data like source positions and other scene
parameters. Based on such an audio scene, the loudspeaker or headphone signals are
generated in real time for any given reproduction setup.

Chapter 2 will describe some existing file formats to store object-based audio scenes.
The main focus will be on the handling of three-dimensional movements of scene ob-
jects. Most of those formats were not explicitly designed for authoring, and even though
many formats are text-based, their syntaxes make it unnecessarily hard to author scenes
by hand. Most formats do not provide any high-level declarative1 syntax for the description
of smooth movements.

TheAudio SceneDescription Format (ASDF) – a new authoring format for object-based
audio scenes – will be presented in chapter 3. Instead of using spatial relationships as the
main structural element, it uses temporal relationships. Elements of a scene can happen
in parallel or in sequence. By nesting so-called time containers, arbitrary time relationships
can be defined. Both audio clips and the transforms that control their spatial positions and
movements are part of the same timeline. Spatial relations are still very important, but
they are not defined by the top-level file structure. Instead, spatial relationships have to
be explicitly established by referencing other scene objects or transforms via their IDs.

A detailed description of all features of the ASDF is available in appendix a, which also
includes a lot of small examples. The declarative definition of movements of objects in a
scene – including the rotation of objects and groups of objects – is based on splines. An
extensive review of all the relevant types of splines is provided in appendix b. The appen-
dices are an integral part of this thesis and they should not be overlooked. The reasonwhy
those two appendices are not part of the main text is that they are actually self-contained
projects, which are separately available online. Furthermore, they are meant to evolve
beyond being used as part of this thesis. Appendix b not only illustrates the properties
of all the types of splines used in the ASDF, but it also provides tools for investigating
further types and maybe developing new types. It thoroughly derives the fundamentals
of interpolatory polynomial splines in Euclidean space and it applies the samemethods –
as far as possible – to rotation splines. Three-dimensional rotation splines are notoriously
hard to visualize and since this thesis is printed on paper, only sequences of snapshots

1For an explanation of the term declarative see section 2.1.1.
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of rotations can be shown. However, in the online HTML version2, a number of anima-
tions are available that can much better illustrate the behavior of subtly different rotation
splines.

It is an important goal of this thesis to not only define a theoretical file format on paper,
but also to enable its practical usage in order to be able to properly evaluate its capabili-
ties and weaknesses. Therefore, an open-source software library has been implemented,
which is described in chapter 4. This library has also been integrated in a stand-alone
software for spatial audio reproduction, which means that the ASDF is ready to be tried
out by anyone who is interested.
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Chapter1
Spatial Audio From the Beginning

There were soundwaves in the early universe, as can be observed today via baryon acoustic
oscillations1, and since that era there have been – and still are – many places in the universe
which are filled with an elastic medium that allows sound propagation. This chapter will
focus on sound waves in the atmosphere of planet Earth. However, any sound travelling
through any medium that inhabits any three-dimensional space can be considered spatial
sound.

The terms spatial sound and spatial audio can be used interchangeably. Etymologically,
the term audio, which is the first-person singular form of the verb audire – Latin for hear-
ing/listening – implies a sentient being capable of auditory perception (and, strictly speak-
ing, with Latin language skills) actually hearing the sound.

Even before life existed on Earth, its atmosphere (and its oceans as well) must have
carried spatial sound, caused, for example, by storms, meteor strikes or volcanic eruptions
(see figure 1).

no initiator natural occurrence no observer

Figure 1: Spatial sound produced by inanimate processes in a lifeless medium

Animals first evolved and diversified in the oceans, where many of them developed
an auditory sense. When the first animals migrated to land, they adapted their spatial
hearing capabilities to the new atmospheric medium or developed entirely new auditory
mechanisms. The development of hearing – especially spatial hearing – certainly was
(and still is) a very helpful tool for the survival of a species. It can help predators find
prey, but it can also help prey evade predators (see figure 2).

predator attack potential prey

Figure 2: Spatial sound unintentionally produced by a predator

Apart from sound as an accidental by-product of locomotion and bodily functions, an-
imals have developed a wide variety of ways to actively create sounds, serving a multi-
tude of purposes. Spatial sound can help finding a mate, localizing one’s own offspring
in an overcrowded breeding colony and in general with intra- and inter-species commu-
nication. In addition to mammals, several classes of animals are known to be capable
of spatial hearing, like fish (Popper and Fay 1993), birds (Konishi 2003; MacLeod et al.
2006) and even insects (Schmidt and Römer 2011; Yager 1999). A notable exception is the
praying mantis, which has an acoustic sense but only a single ear, making it an auditory cy-
clops which can most likely not differentiate between different angles of sound incidence
(Yager and Hoy 1986).

1https://en.wikipedia.org/wiki/Baryon_acoustic_oscillations

https://en.wikipedia.org/wiki/Baryon_acoustic_oscillations
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Whenever an individual produces sound and another individual (or even the same
one) perceives it in a way that spatial information is conveyed, we can consider it a spatial
audio performance (see figure 3).

performer performance consumer

Figure 3: Spatial audio performance

Like all diagrams in this section, the diagram in figure 3 is simplified. There can be
multiple performers working together, but there can also be multiple performances coa-
lescing into a single experience for a consumer. There can be multiple consumers, often
called an audience (which happens to have the same Latin root as the term audio). There
can be feedback from consumers that influences the performance and consumers may
themselves create spatial sound in form of applause or other audible reactions. The spa-
tial audio performance can of course be part of a multi-sensory performance.

Not only the words performer and consumer, but also the term performance itself are used
very loosely here. The performance could simply be the act of communicating between
two animals, including humans. The auditory and spatial aspect thereof would be cov-
ered by the field of communication acoustics (Blauert 2005; Pulkki and Karjalainen 2015).
Instead of (or in addition to) communication, the goal of the performance could also sim-
ply be entertainment. Whether a performance is artistic or accidental or anything in be-
tween, here we are interested in the spatial audio aspect of it.

Many animals are capable of spatial audio performances, but as far as we know, only
humans can write down instructions for others to perform their ideas (see figure 4).

creator instructions performance consumer

Figure 4: Spatial audio performance based on written instructions

Of course not every detail of the performance can be controlled by written instructions,
and performers will have a lot of leeway in interpreting those instructions. For example,
listening to the performance of an ancient Greek tragedy in an amphitheater was certainly
very much a spatial audio experience, but the control of spatial audio aspects of the per-
formance via written stage directions was limited.

Not only theater, but also traditional musical performances have an inherent spatial
component. An early example for consciously using spatial properties in musical pieces
is the polychoral practice from 16th century Venice, where multiple choirs are instructed
to perform from different places within a venue, most famously in the Basilica San Marco
di Venezia. In modern literature, this is often referred to as cori spezzati, but this term was
probably not used at the time (Bryant 1981; Gembicki 2020).

Some classical and romantic operas and symphonies contain short parts for a separate
group of off-stagemusicians – often positioned outside themain hall – to achieve an effect
of great spatial distance. Some compositions require spatially separated groups of mu-
sicians (like Notturno in D, K. 286 by Wolfgang Amadeus Mozart and Symphony No. 4 by
Charles Ives) or even multiple full orchestras (like Gruppen by Karlheinz Stockhausen).

The performances described so far were originally intended to be performed for an
audience located in the same room as the performers or – in case of open air performances
– in the same outdoor area. With the invention of the telephone around 1860, it became
possible to transmit sound over an electrical wire and listen to it at the far end. This
way, it was possible to listen to an audio performance without being anywhere near the
performers (see figure 5).
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creator instructions performance transmission
via telephone consumer

Figure 5: Transmitted audio performance

The phonograph – invented in 1877 – allowed to store the recording of an audio perfor-
mance (originally in grooves of varying depth on a wax cylinder) and to reproduce it at
a later time (see figure 6).

creator instructions performance phonograph
recording reproduction consumer

Figure 6: Recorded audio performance

Even though those inventions were certainly groundbreaking, the poor sound quality
(compared to today’s standards) and the use of only a single audio channel severely lim-
ited the perception of spatial aspects of the performance. In 1881, Clément Ader presented
his théâtrophone at the International Exposition of Electricity in Paris (Hospitalier 1881). In-
stead of a single transmission channel, it used two telephone mouthpieces mounted on
the left and right side of the stage ofOpéra Garnier, connectedwith two separate telephone
lines to two earpieces (located in a different building in Paris), which allowed listening to
the performances happening on the stage, including some crude spatial perception of the
performers’ positions. The original installation was able to accommodate multiple listen-
ers at once, each one using a separate pair of mouthpieces, telephone lines and earpieces.
A patent2 was granted in 1882. In 1890, the system was established as a commercial ser-
vice which was in operation until 1932.

The théâtrophone had shown the advantages of using two channels instead of one, but
since no amplifiers were available at the time, applications were limited. In the following
decades, further development of microphones, amplifiers and loudspeakers opened up
more possibilities. In 1924, Franklin M. Doolittle was granted a patent3 suggesting the
transmission of left and right audio signals over two separate AM radio channels. Doolit-
tle also made experimental broadcasts from his radio station WPAJ in New Haven, Con-
necticut (Doolittle 1925). In his studio, two microphones with a center-to-center distance
of about 18 cmwere used to pick up sound. The two signals were broadcast over two sep-
arate radio frequencies and listeners had to use separate AM receivers for each frequency.
The distance between microphones was based on the distance between human ears and
broadcasts were mainly intended for headphone reproduction. In a patent4 from the year
1927, Harvey Fletcher and Leon Sivian suggest the use of an artificial head containing two
microphones near the ears to simulate the acoustic scattering of a real human head which
strongly affects spatial perception. Fletcher (1933) describes a realization of this idea in
the form of an acoustic manikin named Oscar.

creator instructions performance two-channel
recording

binaural
reproduction consumer

Figure 7: Binaural recording of a spatial audio performance

2https://worldwide.espacenet.com/patent/search?q=US257453A
3https://worldwide.espacenet.com/patent/search?q=US1513973A
4https://worldwide.espacenet.com/patent/search?q=US1624486A

https://worldwide.espacenet.com/patent/search?q=US257453A
https://worldwide.espacenet.com/patent/search?q=US1513973A
https://worldwide.espacenet.com/patent/search?q=US1624486A
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Just as sound transmissionwas extended to more than one channel, sound recording fol-
lowed suit (see figure 7). Another patent5 by Doolittle – published in 1931 but filed al-
ready in 1921 – describes how two channels can be stored on a phonograph record with
two grooves running side by side. The tonearm would have two needles next to each
other to reproduce the left and right signals. A very similar approach is described in a
1924 patent6 by Harry Wier (also filed in 1921). A 1932 patent7 by W. Bartlett Jones (filed
in 1927) mentions multiple variations of two-channel phonographs, including one using
a recordwith a single groovewith variations in both depth and lateral shift. This was later
known as V/L for vertical/lateral. Alan Dower Blumlein’s UK patent8 from 1933 (filed in
1931) suggests rotating the single groove recording apparatus by 45 degrees, so that the
variations of the two channels still happen at an angle of 90 degrees to each other, but
at 45 degrees relative to the disk surface. This type of record is also known as 45/45. A
few years later, the same 45/45 approach was also proposed in a US patent9 submitted
by Arthur Keller and Irad Rafuse. The 45/45 method is still used in today’s vinyl records,
which are once again quite popular, despite the abundance of modern digital storage me-
dia.

Most of the reproduction systemsmentioned so farweremainly targeted for headphone
listening. The goal was to place two microphones at the same distance as between two
ears to create appropriate phase differences. Ideally, some kind of dummy head was used
to model the acoustic shadow of a real head. Since the two signals are meant to be re-
produced very close to the two ears of a listener, respectively, this method is called bin-
aural reproduction, after the Latin words bis and auris, which mean two times and ear. An
overview of the history of binaural recording technology can be found in (Paul 2009).

The idea of using more than one channel was of course also applied to loudspeaker-
based reproduction. This was especially relevant for movie theaters. Even when com-
mercial movies were still silent (the first feature film with sound – The Jazz Singer – came
out in the year 1927), inventors were already thinking about multi-channel sound for
movies. A patent10 by Edward Amet (filed 1911, granted 1915) describes a device that
uses a mono phonograph recording which is switched (not panned!) between multiple
telephone receivers. Loudspeaker technology was still in its infancy, and apparently tele-
phone receivers were state of the art for sound reproduction. The telephone receivers
would be placed at different positions close to the screen, and the idea was that switch-
ing between them allowed the sound to follow the corresponding actions shown on the
screen, or as it is phrased in the patent text, “By the means shown a picture of a moving
sound-making object may be accompanied in its travel across the screen by its appropri-
ate reproduced sound.” The switching of the signal was meant to be achieved by means
of electrically conducting lines mounted on small insulating plates – individually hand-
crafted for each phonograph record used – touching an electric contact point whichmoves
together with the tonearm of the phonograph.

In a patent11 from 1926, Earl H. Foley suggests using a three-channel recording repro-
duced over loudspeakers at the left and the right and behind the center of the movie
screen. The sound track is to be recorded with three microphones placed across the field
of viewwhen shooting themovie. The goal is again for the sound to follow themovements
of the performers visible on screen.

5https://worldwide.espacenet.com/patent/search?q=US1817177A
6https://worldwide.espacenet.com/patent/search?q=US1508432A
7https://worldwide.espacenet.com/patent/search?q=US1855149A
8https://worldwide.espacenet.com/patent/search?q=GB394325A
9https://worldwide.espacenet.com/patent/search?q=US2114471A

10https://worldwide.espacenet.com/patent/search?q=US1124580A
11https://worldwide.espacenet.com/patent/search?q=US1589139A

https://worldwide.espacenet.com/patent/search?q=US1817177A
https://worldwide.espacenet.com/patent/search?q=US1508432A
https://worldwide.espacenet.com/patent/search?q=US1855149A
https://worldwide.espacenet.com/patent/search?q=GB394325A
https://worldwide.espacenet.com/patent/search?q=US2114471A
https://worldwide.espacenet.com/patent/search?q=US1124580A
https://worldwide.espacenet.com/patent/search?q=US1589139A
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Three channels were also used in 1933, when a performance of the Philadelphia Sym-
phony Orchestra was picked up in the Academy of Music in Philadelphia with three mi-
crophones, transmitted via three telephone lines and reproduced in Constitution Hall in
Washington, D. C., with three loudspeakers. The system and its capability for spatial au-
dio reproduction has been presented in a Symposium on Wire Transmission of Symphonic
Music and its Reproduction in Auditory Perspective. The microphone and loudspeaker setup
that was used in the two halls is shown in (Bedell and Kerney 1934). Steinberg and Snow
(1934) describe additional speech localization experiments that have been conductedwith
three loudspeakers in the auditorium at the Bell Telephone Laboratories connected to three
microphones in a smaller pick-up room. Using only two channels instead of three still
provided good angular localization from a center listening position, albeit with slightly
less accurate depth perception. As the observer moved to one side, however, the vir-
tual source shifted more rapidly toward the nearer loudspeaker than in the three-channel
setup. They conclude that “2-channel reproduction of orchestral music gives good satis-
faction, and the difference between it and 3-channel reproduction for music probably is
less than for speech reproduction or the reproduction of sounds from moving sources.”

A three-channel sound trackwas also used in the first commercial feature-lengthmovie
with stereophonic sound –Walt Disney’s Fantasia –which premiered in the year 1940. The
movie consists of a series of classical music pieces, accompanied by animation sequences
in different styles. One of the segments features none other than Mickey Mouse as the
titular character in Paul Dukas’s Sourcerer’s Apprentice. A narrator gives some explana-
tions in-between the segments, andMickeyMouse has a short conversation with Leopold
Stokowski – the conductor of the sound track – but there is no spoken word during the
music pieces and there are no sound effects. Thismeans that any spatial audio positioning
and movement was only applied to the music, which is not very common nowadays.

Most of the sound trackwas recorded in theAcademy ofMusic in Philadelphia onto eight
tracks of optical film. Six trackswere used for recording different sections of the orchestra,
one track held a mono mix of those first six tracks and one track contained a distant pick-
up of the whole orchestra. These tracks were afterwards mixed in a so-called re-recording
process, resulting in three program audio channels destined for the left, center and right
loudspeakers, respectively. To be able to dynamically distribute a single recorded track
between the three loudspeakers, while at the same time keeping the total power constant,
a device nicknamed “The Panpot” was used. This name is still used today and the whole
process is nowadays called panning.

Optical sound tracks at the time did not have enough dynamic range to faithfully re-
produce the sound of an orchestra. To overcome this, three variable-gain amplifiers were
used, which were controlled by the amplitudes of three sine tones at constant frequencies
of 250, 630 and 1600Hz, respectively. These control tones were generated in the afore-
mentioned re-recording process and were recorded onto a separate channel besides the
three program channels. The four channels were then printed on 35-mm film. When Fan-
tasia was shown in movie theaters, this film was played back in synchrony with a second
film containing the moving images. The channel with the three control tones was fed into
the Tone-Operated Gain-Adjusting Device (TOGAD), which in turn controlled the gain
stages of the three amplifiers. Those amplifiers were of course using vacuum tubes, which
was state of the art at the time. The whole technology was called Fantasound (Garity and
Hawkins 1941).

Modern texts sometimes claim that the TOGAD has also been used for panning and
even for moving sounds around the audience, and some texts mention a relatively large
number of loudspeaker channels. With only three control tones and three input chan-
nels, the panning options would have been very limited, though. Therefore, we can infer
that the control tones were mostly used for increasing the dynamic range. However, in
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addition to the three main loudspeakers behind the projection screen, there were indeed
auxiliary loudspeakers placed in the auditorium. But those were manually switched on
by the projectionist in the last segment of the movie – Ave Maria – and they were fed by
two of the main three sound channels. In some of the installations, the switching was
automated by a mechanical relay system operated by means of notches on the edge of the
film.

The Fantasound system required a lot of equipment that was generally not available at
cinemas. Therefore, the movie was presented as a road-show only at selected cinemas,
where the custom equipment was installed temporarily. Partly because of the large cost
of these installations, Fantasia was not a big commercial success. Another reason for dis-
continuing the project was the involvement of the US in the Second World War.

At the time, the terms stereophonic and binaural were often used interchangeably. How-
ever, Snow (1953) makes a clear distinction between the terms as they are still used today:
binaural recordings are made with two microphones – preferably in an artificial head –
and intended for headphone reproduction, while stereophonic recordings are made with
two or more microphones and intended for reproduction with two or more loudspeakers
“spaced in front of a listening area.” It is important to note that even though two-channel
recordings were – and still are – very common, stereophony is not limited to two channels
at all. The Greek word stereos simply means firm or solid. The term stereophonic was most
likely inspired by stereoscopic images and photographs12, which were all the rage in the
second half of the 19th century.

After the SecondWorldWar, magnetic tapewas rapidly displacing phonograph records
and optical film as a recording medium and in the 1950s, tape recorders were also con-
quering the concert halls. Electronic sounds and natural sounds were recorded on tape,
edited and often electronically modified. Those tapes were then played back during a
concert in a concert hall. For example, the composition Williams Mix by John Cage, com-
posed between 1951 and 1953, was realized on eight heavily spliced mono tapes, which
were played back by eight separate tape machines with eight equidistant loudspeakers
around the audience.

Olivier Messiaen’s composition Timbres-durées was first performed in 1952 from a four-
track tape using four loudspeakers. Two tracks were assigned to the left and right loud-
speakers in front of the audience. Another track was played back over a loudspeaker
behind the audience and one mounted on the ceiling above the audience. Finally, one
special track called cinématique was interactively distributed over all four loudspeakers
using a spatialization device called pupitre d’espace, developed Jacques Poullin. This de-
vice consisted of four rings of 50 cm diameter placed around the conductor, representing
the four loudspeaker positions left, right, above and towards the rear end of the room.
The conductor was holding an electrical coil in his hand and moving this coil with big
gestures between the rings made the sound move between the four loudspeakers (Battier
2015).

Another famous example is the piece Kontakte by Karlheinz Stockhausen (composed
1958–60), in which he used a rotation table on which a loudspeaker was mounted on
and which was manually rotated. The resulting sound was recorded on tape via four
microphones at fixed positions around the table. During a concert, the four-track tape
was played back on four loudspeakers around the audience.

The concept of playing tapes over loudspeakerswas taken to the next level at the Philips
Pavilion on the 1958 BrusselsWorld’s Fair. EdgarVarèse composed a spatialmusic piece as
part of an eight-minutes-long multimedia spectacle called Poème électronique, involving a
wardrobe-sized 3-trackmagnetic tapemachine, 20 amplifiers and 350 loudspeakers (Kalff

12https://en.wikipedia.org/wiki/Stereoscopy

https://en.wikipedia.org/wiki/Stereoscopy
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et al. 1958). The routing of the audio tracks to groups of loudspeakers, as well as the
control of illumination effects, was facilitated by another magnetic tape machine, running
in synchrony with the first. The second tape contained 15 tracks with 12 fixed-frequency
control signals per track. Some of the continuous signals controlled relays to activate
certain loudspeaker groups, others were used to select which of the three audio tracks
to use as input for those groups. A part of the loudspeakers formed five so-called sound
routes along the inside walls of the pavilion, which created the illusion of moving sound
sources. A train of pulses in one of the control signals was used to turn a rotary control to
switch from one loudspeaker to the next. The rate of these pulses – up to 10 per second –
determined the speed of the apparent sound source. In the following years, many more
spatial audio compositions for tape and loudspeakers were created, for example Bohor
(1962) by Iannis Xenakis and HPSCHD (1969) by John Cage.

Visitors of the 1970 World’s Fair in Osaka, Japan, had the opportunity to experience
large-scale spatial music performances in more than one custom-built pavilion on the
same exhibition grounds. The German Pavilionwas a spherical building housing a spher-
ical auditorium. 50 groups of loudspeakers were mounted at different heights, surround-
ing a central listening platform from all directions, including above and below. Compo-
sitions by Stockhausen for live soloists and multichannel tape were performed with live
spatialization. During the performances, the tracks could either be directly routed to fixed
loudspeaker positions or via two custom-built rotation mills which could be used to move
sounds along trajectories of 10 loudspeaker groups each by turning a hand crank (Bates
2015).

Another notable venue at the Osaka Expo in 1970 was the Space Theatre in the so-called
Steel Pavilion of the Japan Iron and Steel Federation, where Iannis Xenakis’ composition
Hibiki-Hana-Ma was performed. A 12-track tape was spatialized along elaborate trajec-
tories according to control commands that were recorded on film. The exact number of
loudspeakers is unclear, butmaybe 264 groups of loudspeakerswere installed in the pavil-
ion, with a total of 800 individual loudspeakers (Paland 2015).

While most of the compositions mentioned above were made without the help of com-
puters (Cage’s HPSCHD being a notable exception), the use of computers became much
more common in the 1970s. The computer-generated signals, however, were still often
recorded on analog tapes to be used for the performances. In 1972, John Chowning com-
posed the piece Turenas, which was to be played on four loudspeakers placed in the cor-
ners of a square. Both the sound synthesis – using the recently discovered FM synthesis –
and the spatialization – using elaborate trajectories based on Lissajous curves – were real-
ized with the same computer program. It was created on a DEC PDP-10 mainframe using
the Music 10 programming environment, which itself was written in a mix of assembly
language and Fortran (Chowning 2011). The method used for spatializing moving sound
sources is described in (Chowning 1971).

The principle of playing back pre-recorded audio tracks and distributing them among
loudspeakers during a concert is shown in figure 8. In some instances, composers pro-
duce a score which is used by other people to create appropriate tapes for performances.
Often, however, the composers would record and edit the tapes themselves. Note that
typically, the composer gives instructions for the recording and editing of the tracks be-
forehand as well as for their spatialization during the concert (which may be automated
or done manually). This differs from classical orchestra recordings (see figure 9), where
the composer only gives instructions for the performance itself.

After spatial audio being successfully used in concert halls and cinemas, it was just a
matter of time that it would also find itsway into private homes. Commercial two-channel
stereo records and the corresponding reproducers were widely available to consumers
since the late 1950s. Later, reproduction systems with four loudspeakers – to be placed
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Figure 8: Tape-based multi-channel audio performance

in the corners of a square, surrounding the listener from all directions in the horizontal
plane – were sold under the name Quadraphony (Woodward 1977). In 1967, Pink Floyd
gave a live concert using a quadraphonic loudspeaker setup controlled by the Azimuth
Co-ordinator13 panning device. Their album The Dark Side of the Moon was released a few
years later in quadraphonic sound. Even though a number of quadraphonic records were
produced and sold in the 1970s, the technology never really took off on the mass market.

Cooper (1970) suggested to extend the horizontal quadraphonic system with a height
dimension by using a tetrahedral microphone and loudspeaker setup. The suggested
setup was quickly superseded by a more systematic approach by Gerzon (1970). This
approach – which was based on spherical harmonics – was generalized to larger numbers
of loudspeakers (Gerzon 1973) and later became known asAmbisonics (Fellgett 1975; Ger-
zon 1975).

The quadraphonic loudspeaker setup – with a loudspeaker in each corner of a square
– was not much used beyond the 1970s. This was probably because the movie industry
did not want to give up the center loudspeaker behind the projection screen, which was
especially useful for a stable perception of the dialogue in thewhole auditorium. Cinemas
were using a different setup for four-channel sound tracks: they used the traditional left/
center/right positions behind the screen, while the fourth channel was providing ambient
sounds from the back wall. Later, a fifth channel was added in order to be able to position
ambient sounds between the left and the right side behind the audience. An additional,
bandwith-restricted channel was used to provide low frequency effects. Variations of this
setupwere used throughout the 1980s. In the early 1990s the loudspeaker layoutwas stan-
dardized by ITU-R as Recommendation BS.77514 – also known as 5.1 surround – which is
still widely used today. In the following years, more setups with more and more loud-
speakers – including loudspeakers at different heights – have been proposed, up to 22.2
surround (Hamasaki, Hatano, et al. 2004; Hamasaki, Hiyama, et al. 2005).

The signals for the different loudspeaker channels are typically obtained by using a
combination of microphone techniques and panning. As an example, figure 9 shows a
typical modern procedure for recording an orchestral performance.

Pairwise panning has been used for many decades with a multitude of panning
devices and panning curves. Modern panning techniques which allow for arbitrary
three-dimensional loudspeaker layouts include Vector Base Amplitude Panning (VBAP)
(Pulkki 1997), Distance-Based Amplitude Panning (DBAP) (Lossius et al. 2009) and All-
Round Ambisonic Panning (AllRAP) (Zotter and Frank 2012).

13https://collections.vam.ac.uk/item/O76817/
14https://www.itu.int/rec/R-REC-BS.775/

https://collections.vam.ac.uk/item/O76817/
https://www.itu.int/rec/R-REC-BS.775/
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Our ability to localize sounds in stereophonic reproduction is based on a psychoacoustic
effect called summing localization (Theile 1980). This is known to work well if the listener
position is at equal distance to each loudspeaker – in a point that’s called sweet spot. How-
ever, it does not work very well at all between the left back and left front loudspeaker nor
between the right front and right back loudspeaker (Theile and Plenge 1977).

To overcome these limitations, an alternative approach – aiming at physically accu-
rate reconstruction of a sound field and therefore termed sound field synthesis – has been
brought forward. It is based on Huygens’ principle15, which has already been discovered
in the 17th century. The idea was maybe first mentioned by Fletcher (1934) who describes
a hall with an acoustically transparent curtain with microphones “scattered uniformly
over it” mounted between the orchestra and the audience. The signals picked up by those
(hypothetical) microphones could then be transmitted to a different hall with a similar
curtain, but with loudspeakers instead of microphones affixed to it. In this thought ex-
periment, the audience in the second hall “should obtain the same effect as those listening
to the original music” if the two halls have the same size, shape and acoustical properties
and – last but not least – the number of microphones and loudspeakers is infinite and
they are infinitesimally small. This fictional setup is brought up again by Snow (1953),
who, instead of using the word curtain, mentions a screen consisting of an extremely large
number of extremely small microphones and a corresponding screen of extremely small
loudspeakers. Talking about reality again, he makes sure to clarify that, when using a
practical setup of two or three loudspeakers, a different hearing mechanism is used by
the brain. Decades later, the principle was mathematically formalized using Rayleigh’s
first integral equation (Berkhout 1988; Berkhout et al. 1993). This finally led – together
with advances in amplifier, loudspeaker and digital signal processing technology – to an
actually realizable system named Wave Field Synthesis (WFS). Still in theory, the screen
of loudspeakers would completely enclose a volume around the listener, but in order to
be built in practice, a single horizontal line of small loudspeakers would be mounted at
ear height around the listening area. Originally, only linear loudspeaker arrays were sup-
ported, but the method has been extended to allow for arbitrary convex loudspeaker lay-
outs – but with all loudspeakers still located in a horizontal plane (Spors, Rabenstein, et
al. 2008).

15https://en.wikipedia.org/wiki/Huygens–Fresnel_principle

https://en.wikipedia.org/wiki/Huygens–Fresnel_principle


12 Chapter 1. Spatial Audio From the Beginning

Because of the large number of loudspeakers, it was not practical to record each loud-
speaker signal on its own channel for later reproduction. This would be called channel-
based reproduction, which is the typical way to store recordings for stereophonic systems
like 5.1, for example. Not only do stereophonic systems have a smaller number of loud-
speaker channels, but they also have standardized loudspeaker layouts, which makes it
possible to reproduce the same channel-based recording on any compatible system. In con-
trast, WFS systems typically not only have many more loudspeakers than stereophonic
systems, but they also have very different – and nearly arbitrary – loudspeaker layouts,
which would mean that a recording for one system would not be able to be played back
on a differentWFS system. This led to a new paradigm for the storage of recordings called
object-based reproduction (Geier, Ahrens, and Spors 2010; Geier, Spors, and Weinzierl
2010; Pereira and Ebrahimi 2002; Tsingos 2018).
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Figure 10: Object-based audio reproduction

The object-based production workflow is depicted schematically in figure 10. Instead
of storing the signals of all loudspeakers, the source signals – or sub-mixes – are stored
together with some data indicating when and from which spatial positions these signals
should be heard by the audience. These source signals together with their associated
spatio-temporal and other information are called scene description. From this scene de-
scription, the loudspeaker signals are then generated in real time during reproduction in
a procedure called rendering. Since the scene description ideally doesn’t contain any in-
formation about the reproduction system, it can be rendered on any system, regardless
of number and layout of loudspeakers. Existing channel-based recordings can still be used
in object-based systems by placing the individual channels at appropriate positions in the
scene description. Theile, Wittek, et al. (2003) call this virtual panning spots. Note that
figure 10 has the exact same structure as figure 8. In a way, object-based reproduction can
be viewed as a modern reincarnation of the tape-based spatial music techniques from the
1950s and 1960s.

In the 1990s, another method for sound field synthesis was developed by extending the
above-mentionedAmbisonics approach. Originally, spherical harmonics of zeroth andfirst
order had been used to create driving signals for four loudspeakers mounted in a three-
dimensional tetrahedral arrangement. This led to a rather low spatial resolution, but by
using higher orders – and a correspondingly larger number of loudspeakers – the accu-
racy of the reproduced sound field could be improved. To distinguish it from the original
approach, this was given the nameHigher-Order Ambisonics (HOA). The original theory
of Ambisonics assumed that the distances to the loudspeakers are very large, leading to
incoming plane wave fronts within the designated listening area. However, the distances
in real loudspeaker setups are much smaller, which causes curved wave fronts and there-
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fore errors in the reproduced sound field. To overcome this, Near-Field-Corrected HOA
(NFC-HOA) has been developed (Daniel 2001, 2003).

For a three-dimensional HOA system of order 𝑁, the number of spherical harmonics
components – i. e. the number of storage channels – is (𝑁 +1)2. For example, a third order
Ambisonics system needs 16 storage channels. For two-dimensional horizontal systems,
only 2𝑁+1 circular harmonics components – and therefore storage channels – are needed.
These component signals – also called B-format – are independent of the targeted loud-
speaker positions. Given a certain loudspeaker setup, the Ambisonics components have
to be decoded at the reproduction site in order to generate the appropriate loudspeaker
driving signals.

Since the loudspeaker signals are created on the fly and not used for storage or trans-
mission, HOA is not considered a channel-based method. However, there seems to be no
consensus on how to call it instead. Spors, Wierstorf, et al. (2013) use the term transform
domain-based, Nicol (2018) and Robinson and Tsingos (2015) use the term sound field-based
and others simply call it HOA-based for the lack of a better term. There are even authors
who for no apparent reason call it scene-based, which is quite misleading since the word
scene is already being heavily used in the context of object-based reproduction and the term
scene-based has already been used earlier for something completely different by Rumsey
(2002).

Storing and/or transmitting Ambisonics component channels is not the only way to use
HOA, though. It can also be used on the reproduction side of an object-based system by
means of real-time Ambisonics amplitude panning (Neukom and Schacher 2008; Zotter
and Frank 2019). This way, high Ambisonics orders can be used without having the need
for storing the Ambisonics component signals. However, this is not advantageous if the
number of simultaneous source signals is larger than the number of Ambisonics compo-
nents for the desired order.

For more information about loudspeaker-based reproduction see (Blauert and Raben-
stein 2012; Spors, Wierstorf, et al. 2013) and for the mathematical fundamentals of sound
field synthesis see (Ahrens 2012).

As mentioned earlier, the history of spatial audio transmission and recording started
towards the end of the 19th century with binaural transmission and reproduction. The
usage of an artificial head with microphones mounted in it has already been described
in the late 1920s. Stereophonic loudspeaker reproduction came later, but it slowly took
over nearly all of the market. Binaural reproduction had a very short-lived renaissance
in the 1970s, where several dummy head recordings were produced and gained some
popularity, but were later quickly forgotten again by the general public.

Another milestone in binaural technology was the measurement of Head-Related
Transfer Functions (HRTFs), which compactly represent the acoustic effect of a listener’s
outer ears, head and torso on an incoming sound, depending on the direction of incidence.
This enabled binaural rendering of object-based audio scenes. By using a head tracker, the
rotation of the listener’s head can be compensated for in real time (Wenzel et al. 1990).
This process is known as dynamic binaural rendering or dynamic binaural synthesis.

Figure 11 shows a potential problem with channel-based techniques: since multiple dif-
ferent standardized loudspeaker setups are in general use, each production has to beman-
ually mixed multiple times – once for each target setup. Automatic up- and down-mixing
methods exist, but they often lead to reduced sound quality (Avendano and Jot 2004;
Faller 2006; Vilkamo et al. 2014; Zielinski et al. 2003). As an alternative, the object-based
approach can be used for system-independent mixing. A scene description is created only
once, and arbitrary channel-basedmixes can be rendered automatically. This approach also
allows binaural monitoring of loudspeaker systems (Geier, Ahrens, and Spors 2009).
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Switching from channel-based to object-based can be seen as moving part of the mixing
process from the producer to the consumer (see figure 12). For example, panning can be
used to create channel-based mixes – which has been done since the late 1930s and is still
done today at a massive scale – but it can also be used for the consumer-side rendering of
an object-based recording. These days – as it has been the case since more than a century
– the movie industry is the biggest driver for commercial spatial audio technology. A
hybrid of channel-based and object-basedmovie sound tracks (Robinson, Mehta, et al. 2012)
have been widely used in cinemas in the last 10 years.





Chapter2
Movement and Time in Existing Formats

The end of the previous chapter has chronicled the emergence of object-based audio repro-
duction systems and their need for scene descriptions. A scene description, in this context,
consists of a detailed description of sound objects, including their source signals, their po-
sitions over time and other information that is needed to reproduce the desired auditory
scene for one or more listeners with any compatible reproduction system. Over time, sev-
eral scene description formats have been proposed. This chapter will present a few of
those formats, with special focus on how they handle the description of movement (of
sound sources and other scene objects) over time. The list of formats shown here is by no
means exhaustive, and only formats are presented where public information is available,
which excludes some proprietary commercial formats.

2.1 Recurring Concepts

The following subsections will describe a few common concepts that are relevant for mul-
tiple formats and that hopefully make it easier to discuss and categorize the individual
formats which will be presented after this section.

2.1.1 Declarative vs. Procedural vs. Sampled Data

These terms are probably best explained by example. Consider the sentence “the sound
of a bumblebee approaches from the far left, circles the head of the listener two times and
then stops abruptly.” This sentence can be seen as a declarative audio scene description.
It is a very high-level description and also very vague and inexact. To make it actually
usable in a real system, more information probably has to be provided. The trajectory of
the bumblebee could be described more exactly by providing a few coordinates and the
times when those should be reached by the bumblebee and maybe its velocity at those
points. The intermediate positions would be interpolated by the renderer according to a
pre-determined mathematical procedure. This would still be considered declarative. De-
scribing the sound itself in a declarativewaymight be harder. The bumblebee sound could
be created by a generic synthesizermodule, and the scene descriptionwould contain stan-
dardized parameters for this synthesizer – most likely changing over time – like selection
of sound generators and filter coefficients.

More realistically, the soundwould be provided by a natural recording of a bumblebee,
stored as a digital signal, which is just a stream of sampled data. The sound could then be
spatialized according to a declarative trajectory as described above. However, the trajec-
tory could just as well be stored as a stream of coordinates, regularly sampled at certain
intervals. This is used in object-based cinema sound systems, where the position data is
typically sampled at 30Hz or more (Riedmiller et al. 2015). Sampled data typically refers
to temporal sampling, but it could also be angular or other spatial sampling, for example,
when storing measured source directivity patterns as part of a scene.
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Some scene description formats allow the usage of a scripting language to generate
arbitrary movements on the fly. This is called procedural, because the actual procedure is
stored as part of the scene description. An important difference to the declarative approach
is that the rendering engine has no knowledge about trajectories or sound synthesis pa-
rameters or any such high-level constructs. It would instead just render the source signal
at whatever position the script generates at any given time. The signal itself could also
be generated by a piece of software that is distributed as part of the scene description, for
example as a software plugin.

Oftentimes the three concepts are mixed, for instance in the X3D format (see sec-
tion 2.3): declarative trajectories can be defined by a small number of control points, ei-
ther with linear or smooth interpolation (PositionInterpolator, SplinePosition-
Interpolator), sampled data is used for the source signals (stored separately as conven-
tional mono audio files), and procedural animations can be realized by means of Script
nodes.

2.1.2 Scene Graph

A scene graph is commonly used in 3D scene descriptions as the top-level structural el-
ement. It is a hierarchical, tree-like representation containing all scene components as
so-called nodes. Those scene components can be part of other nodes which define their
positions and orientations with respect to a local coordinate system. Those nodes can in
turn be part of other nodes with their own local coordinate systems and so on. All nested
containers contribute to the final position and orientation of the scene components. A
change in the position, orientation or scaling of a node affects all its child nodes. For ex-
ample, a car could be modelled as a node in the scene graph with a certain position and
orientation in the virtual world. The car can then consist of multiple sub-nodes like tyres
and seats and doors, which are all defined in the local coordinate system of the car. When
the car node – and therefore its local coordinate system – ismoved in the scene, all its child
nodes move together with it. This is commonly used for visual scene descriptions, but a
scene graph could also be used for audio scenes. In such a case, a car node could define
a local coordinate system containing multiple audio objects for the noise of the tyres and
another audio object with engine noise. This makes for a very clear and well-structured
spatial hierarchy, which can be very useful to define a static 3D model consisting of many
elements which are again comprised of many sub-elements.

On the flip side, the temporal structure of a scene if often obscured. For an example see
the ROUTE node of VRML (section 2.2) which breaks the tree-like hierarchy and connects
events, timers and interpolatorswith the scene properties that are supposed to be changed
over time. Routes, interpolators and other timing nodes are storedwithin the scene graph,
but they are not logically part of the hierarchy. Moving a parent element has no effect on
those timing nodes, which means that they could basically be placed anywhere in the
scene graph without a change in behavior.

An alternative to the scene graph concept is provided by the SMIL format (see sec-
tion 2.11). Instead of using spatial relationships for the main structural organization, it
focuses on temporal relationships with a primary structure called time graph.

2.1.3 Metadata

Many authors use the term metadata to describe spatial data – trajectories, for example –
within a scene description, maybe to distinguish it from audio data. The word metadata
means “data about data” and its use is inappropriate in this case. Actual metadata of an
audio signal could be the date of recording, the used microphone type or other equip-
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ment, a description of the audible sound sources and even their positions at the time of
recording. The intended positions andmovements of sources in a scene description, how-
ever, are simply additional data and not metadata, just like the sound track is not metadata
of a movie.

An audio file can be swapped with another one while the movement of the virtual
sound source remains the same, which confirms that the movement data is not metadata.
A scene description can (and often does) contain actual metadata, though. This could be
– among many other things – the name of the author(s), date of creation and a license
governing the usage and re-distribution of the content.

2.2 Virtual Reality Modeling Language (VRML)

The VRML is a storage format mainly for 3D computer graphics, developed in the early
days of the world wide web. In addition to graphics, it can also describe spatial audio
sources, including moving ones. VRML version 2.0 – also known as VRML971 – became
an ISO standard2 in 1997.

The main structure of a VRML scene is a scene graph, which is built from (possibly
nested) Transform nodes which define nested local coordinate systems. All visible ge-
ometric elements (defined by polygons), as well as light sources, camera views and also
audio objects are added to this scene graph. If the same data is needed repeatedly (e. g.
vertex coordinates), it can be defined once with DEF and used multiple times with USE.

The positions and orientations of all local coordinate systems of the scene graph are
specified statically. Positions are given as triples of Cartesian coordinates and orientations
are given as three numbers representing a normalized rotation vector plus a fourth num-
ber representing the rotation angle in radians. The movement of scene elements can be
achieved in multiple ways. TimeSensor nodes can be defined to change certain proper-
ties of certain scene elements at given times or at regular intervals. Interactive changes can
be triggered based on the virtual position of the viewer by means of ProximitySensor
nodes. Continuous position changes can be realized with PositionInterpolator
nodes, which interpolate linearly between a given sequence of positions and their associ-
ated time values. For continuous orientation changes, the OrientationInterpolator
node uses spherical linear interpolation (Slerp)3 between a sequence of orientations and
their associated time values. The interpolation between two orientations always happens
along the smallest angle, which means that a single rotation step cannot be larger than
180 degrees. If the angle is exactly 180 degrees, the result is explicitly undefined. Prox-
imity sensors can trigger time sensors, which themselves can control the progression of
interpolators. All these nodes have to be connected by ROUTE commands. The following
(abridged) example defines a simple scene showcasing position and orientation interpo-
lation as well as the Sound and AudioClip nodes, which can be used to define sound
sources and their corresponding source signals:

#VRML V2.0 utf8
Viewpoint { position 23.01 16.46 8.282 }
DEF TimeSensor01 TimeSensor {

cycleInterval 5 loop FALSE stopTime 1 }
DEF Transform01 Transform {

translation 0.0759 0 -0.4247
(continues on next page)

1https://www.web3d.org/documents/specifications/14772/V2.0/
2https://www.iso.org/standard/25508.html
3For an explanation of Slerp see section b.3.2 in the appendix.

https://www.web3d.org/documents/specifications/14772/V2.0/
https://www.iso.org/standard/25508.html
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(continued from previous page)
rotation -1 0.004363 -0.004363 -1.571
children [

DEF PosInterp01 PositionInterpolator {
key [ 0, 0.02, ..., 1 ]
keyValue [ 0.0759 0 -0.4247, 0.4856 0 -2.427,
..., 0.0759 0 -0.4247 ] },

DEF OriInterp01 OrientationInterpolator {
key [ 0, 0.02, ..., 1 ]
keyValue [ -1 0.004363 -0.004363 -1.571,
-0.9994 0.02502 -0.02502 -1.571,
..., -1 0.004363 -0.004363 -1.571 ] },

Shape {
appearance Appearance { material Material { ... } }
geometry IndexedFaceSet {
coord Coordinate { point [ 48.67 8.484 -14.88,

48.67 8.484 -16.96, 48.67 7.446 -14.88, ... ] }
coordIndex [ 0, 1, 2, -1, 0, 2, 3, -1, ... ] } }

Shape { ... }
Transform {

translation 1 2.5 -1
children [
Sound {

source DEF Sound01 AudioClip {
url "my-sound.wav" loop TRUE } } ] }

]
ROUTE PosInterp01.value_changed TO Transform01.set_translation
ROUTE TimeSensor01.fraction_changed TO PosInterp01.set_fraction
ROUTE OriInterp01.value_changed TO Transform01.set_rotation
ROUTE TimeSensor01.fraction_changed TO OriInterp01.set_fraction

}
DEF ProxSensor01 ProximitySensor {

enabled TRUE center 47.01 15.92 7.43 size 2.5 2 1.8
}
ROUTE ProxSensor01.enterTime TO TimeSensor01.startTime
ROUTE ProxSensor01.enterTime TO Sound01.startTime
ROUTE ProxSensor01.exitTime TO Sound01.stopTime

In this example, the transform node called Transform01 is moved (i. e. translated) by
the interpolator named PosInterp01. This interpolator is controlled by the time sen-
sor called TimeSensor01 which is in turn triggered by the proximity sensor named
ProxSensor01.

As an alternative to interpolators, Script nodes can be used to provide custom code
– typically implemented in ECMAScript/JavaScript – which allows generating arbitrary
parameter progressions, including the animation of position and orientation. The inputs
and outputs of Script nodes are connected to other nodes by ROUTE commands. The
VRML standard also describes the so-called External Authoring Interface (EAI), which
allows manipulating the scene graph during runtime from external applications.
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2.3 Extensible 3D (X3D)

The successor of the VRML is X3D, which is an ISO standard4 since 2004. It is maintained
by the Web3D Consortium5. The previous version6 of the standard was released in 2013
and the latest version7 is just being released in 2023.

X3D builds on the same concept of a scene graph, and most nodes from VRML are still
available, including Transform, TimeSensor, ProximitySensor, Script, Position-
Interpolator and OrientationInterpolator. There is also a ROUTE element to con-
nect events and DEF and USE attributes to define and re-use elements. There are also sev-
eral new nodes, providing additional features on top of VRML. The SplinePosition-
Interpolator node can be used to create trajectories along Hermite splines, allowing to
specify incoming and outgoing velocity vectors at each control point (see section b.2.4 in
the appendix). If no velocity vectors are specified, the tangents are automatically calcu-
lated to produce Catmull–Rom splines. The X3D standard doesn’t get the equations quite
right, for a correct derivation of the tangents for non-uniform Catmull–Rom splines see
section b.2.8 in the appendix. The SquadOrientationInterpolator can be used to an-
imate orientations with spherical quadrangle interpolation (Squad)8.

X3D has three syntaxes: a new XML-based syntax, the old VRML syntax and a binary
format for efficient storage and transmission. Similar to the EAI in VRML, X3D defines a
Scene Access Interface (SAI) for real-time interaction with external programs. X3D has 4
baseline profiles: Interchange, Interactive, Immersive and Full. The Sound and AudioClip
elements are part of the Immersive profile.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE X3D PUBLIC "ISO//Web3D//DTD X3D 3.0//EN">
<X3D profile="Immersive" version="3.0">

<Scene>
<Viewpoint position="0 0 4"/>
<TimeSensor DEF="Time01" cycleInterval="5" loop="true"/>
<PositionInterpolator DEF="PosInterp01"

key="0 0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96"
keyValue="0 0 0 -2 0 0 0 0 0 2 0 0

0 0 0 0 -2 0 0 0 0 0 2 0
0 0 0 0 0 -2 0 0 0 0 0 2 0 0 0"/>

<Transform DEF="Transform01" rotation="0 1 0 1.57">
<Sound>

<AudioClip loop="true" url="chimes.wav" />
</Sound>

</Transform>
<ROUTE fromNode="Time01" fromField="fraction_changed"

toNode="PosInterp01" toField="set_fraction"/>
<ROUTE fromNode="PosInterp01" fromField="value_changed"

toNode="Transform01" toField="set_translation"/>
</Scene>

</X3D>

Many more examples are available on the web. It is even possible to embed X3D scenes
in HTML5 pages with x3dom9.

4https://www.iso.org/standard/60760.html
5https://www.web3d.org/
6https://www.web3d.org/standards/version/V3.3
7https://www.web3d.org/x3d4
8For an explanation of Squad see section b.3.9 in the appendix.
9https://www.x3dom.org/

https://www.iso.org/standard/60760.html
https://www.web3d.org/
https://www.web3d.org/standards/version/V3.3
https://www.web3d.org/x3d4
https://www.x3dom.org/
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2.4 MPEG-4 AudioBIFS

MPEG-4 Audio is an ISO/IEC standard10 since 1999. A separate part of the standard11,
known as BInary Format for Scenes (BIFS), which deals with the description of scenes,
contains a superset of the functionality provided by VRML. It therefore inherits the scene
graph approach from VRML including the Sound, AudioClip, Viewpoint, Position-
Interpolator and OrientationInterpolator nodes. The set of additional nodes for
spatial audio (for example AudioSource, AudioBuffer, AudioMix, AudioFX) is known
under the name AudioBIFS (Scheirer et al. 1999). However, no new nodes have been
added for describing the movement of sound sources. The additional nodes from X3D
(SplinePositionInterpolator and SquadOrientationInterpolator) are not in-
cluded. Movement of sound sources can be achieved by the same means as in VRML,
using event routing with ROUTE. In addition, “BIFS Animation” commands can be in-
cluded in the BIFS data stream, and nodes in the scene graph can be added and replaced
with “BIFS Update” commands.

Scenes are stored and transmitted using a binary format, but there is also an alternative
textual representation called eXtensibleMPEG-4 Textual (XMT) (Kim,Wood, et al. 2000).
It comes in two flavors: XMT-A has an XML-based syntax similar to X3D (see section 2.3),
and XMT-Ω has a syntax inspired by SMIL (see section 2.11).

A second version of MPEG-4 was published as an amendment to the standard in the
year 2000. The added audio nodes AcousticScene, AcousticMaterial, Directive-
Sound and PerceptualParameters are also known asAdvancedAudioBIFS (Väänänen
and Huopaniemi 2004). These new nodes are used for physical and perceptual modeling
of acoustic environments, but no features regarding sound source movement have been
added.

A third version of AudioBIFS added the nodes AudioChannelConfig, Transform3D-
Audio, WideSound, SurroundingSound and AdvancedAudioBuffer and it changed
the handling of AudioFX nodes (Schmidt and Schröder 2004).

2.5 Audio3D

Audio3D is an XML-based audio scene description format presented by Hoffmann et al.
(2003). It uses a scene graph to define the spatial arrangement. The position of sound
sources and of the listener can be animated with the <Animation> element:

<Source position="-5 0 1" startTime="0" minDistance="0.4" maxDistance="100
↪">

<Animation startTime="0" loop="true" attribute="position">
<VectorKey value="0 5 1" time="5000"/>
<VectorKey value="5 0 1" time="10000"/>
<VectorKey value="0 -5 1" time="15000"/>
<VectorKey value="-5 0 1" time="20000"/>

</Animation>
<Sound input="FILE" loading="STATIC" location="loop1.wav" loop="true"/>

</Source>

The “direction” – presumably a direction vector – can be animated as well:

<Source position="0 0 0" minDistance="1" maxDistance="100"
direction="-1 0 0" insideConeAngle="40" outsideConeAngle="120">

(continues on next page)

10https://www.iso.org/standard/76383.html
11https://www.iso.org/standard/63548.html

https://www.iso.org/standard/76383.html
https://www.iso.org/standard/63548.html
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(continued from previous page)
<Animation attribute="direction" loop="true">

<VectorKey value="0 -1 0" time="5000"/>
<VectorKey value="1 0 0" time="10000"/>
<VectorKey value="0 1 0" time="15000"/>
<VectorKey value="-1 0 0" time="20000"/>

</Animation>
<Sound input="FILE" loading="STATIC" location="testloop.wav" loop="true

↪"/>
</Source>

Not only spatial properties, but also gain values can be animatedwith the same approach:

<Source position="0 5 1.5" minDistance="1" maxDistance="100">
<Sound input="FILE" loading="STATIC" location="loop1.wav" gain="0" loop=

↪"true">
<Animation startTime="0" attribute="gain">

<FloatKey value="100" time="4000"/>
<FloatKey value="100" time="6000"/>
<FloatKey value="0" time="10000"/>

</Animation>
</Sound>

</Source>

The values between key frames are interpolated linearly.

2.6 XML3DAUDIO

Like the name suggests, XML3DAUDIO is an XML-based description format for three-
dimensional audio scenes. It has been proposed and defined in (Potard 2006; Potard and
Burnett 2002, 2004; Potard and Ingham 2003).

Positions of sound sources are specified using left-handed Cartesian coordinates (in
meters). Source orientations can be given with <Rotate>, <Tilt> and <Tumble> (in
degrees). A listener position and orientation can also be specified. The listener’s orienta-
tion can be given with <Azimuth>, <Elevation> and <Roll>. Multiple listeners can be
defined and the point of view can be switched between them.

Dynamic movements of scene objects can be implemented with an “orchestra and
score” approach inspired by the venerable computer music software Csound12. The or-
chestra part contains a list of objects like listeners and sound sources together with some
static attributes. The score part contains lines of score, each one incorporating one of a given
set of opcodes. There are again two parts: an initialization score and a performance score. The
former can for example be used for creating groups of sources. The latter allows for chang-
ing scene parameters dynamically over time, for example translating and rotating sound
sources and listener objects.

Potard (2006, p. 127) provides a single example scene in XML format:

<?xml version="1.0" encoding="UTF-8"?>
<AUDIO_SCENE>

<ORCHESTRA>
<Listener>

<Id>Guillaume</Id>
<Position>

(continues on next page)

12https://csound.com/

https://csound.com/
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(continued from previous page)
<Xl>3</Xl>
<Yl>5</Yl>
<Zl>0</Zl>

</Position>
<Orientation>

<Azimuth>0</Azimuth>
<Elevation>0</Elevation>
<Roll>0</Roll>

</Orientation>
</Listener>
<Source>

<Id>beachfront</Id>
<URL>beachfront.wav</URL>
<Dimensions>

<X>0</X>
<Y>100</Y>
<Z>0</Z>

</Dimensions>
</Source>
<Source>

<Id>seagull</Id>
<URL>http:\\dummyserver.com\seagull-stream.mp3</URL>
<Position>

<X>10</X>
<Y>5</Y>
<Z>10</Z>

</Position>
</Source>
<Recorded_Scene>

<B-format>
<Id>beach-crowd</Id>
<URL>beach-crowd.wxyz</URL>

</B-format>
</Recorded_Scene>

</ORCHESTRA>
<SCORE>

<Performance_Score>
<Line_of_Score>

<start_time>0</start_time>
<Duration>100</Duration>
<Command>play</Command>
<Object>beachfront</Object>
<Object>beach-crowd</Object>
<Parameter>loop</Parameter>

</Line_of_Score>
<Line_of_Score>

<start_time>20</start_time>
<Duration>30</Duration>
<Command>play</Command>
<Object>seagul</Object>

</Line_of_Score>
<Line_of_Score>

<start_time>20</start_time>
<Duration>30</Duration>
<Command>move</Command>

(continues on next page)
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(continued from previous page)
<Object>seagul</Object>
<Parameter>20</Parameter>
<Parameter>10</Parameter>
<Parameter>8</Parameter>

</Line_of_Score>
</Performance_Score>

</SCORE>
</AUDIO_SCENE>

The same example scene – with minor modifications – is also printed in (Potard and Bur-
nett 2004, fig. 5, p. 4). Other than that, no further scenes seem to be publicly available.

The example shows how the “move” opcode can be used to animate the translation of
a sound source by providing target coordinates. Presumably, linear interpolation is used.
According to the aforementioned literature, it is also possible to dynamically control rota-
tions by a 3D rotation vector. However, no example is provided. Other scene parameters
can be dynamically controlled with the ChangeParameter opcode.

Potard and Ingham (2003) mention that “complex trajectories can be described by the
TRAJ opcode and a long list of coordinates.” Sadly, nomore information and no examples
are provided. In the other publications, this opcode is not even mentioned at all.

2.7 Audio Definition Model (ADM)

The ADM is an audio scene description format defined by ITU-R in Recommendation
BS.207613. Its latest edition BS.2076-2 was published in 2019.

The ADM is an XML-based format that’s typically embedded in the <axml> chunk of
BroadcastWave Format (BWF) files, as specified by ITU-R in Recommendation BS.208814.
The <chna> chunk is used to associate the track ID used in the XML description with the
appropriate audio channels from the BWF file.

Positions of sound sources are by default stored using a spherical coordinate system
with azimuth and elevation angles in degrees and distance in relative units. Alter-
natively, Cartesian coordinates can be used with X (to the right), Y (forward) and Z (up)
in relative units. Relative units aremapped to physical unitswith the absoluteDistance
value (inmeters). All coordinates are understood as relative to a fixed listener position. If
the listener’s head rotation is tracked during playback, the headLocked flag can be used
to interpret the given coordinates as relative to the head rotation. Other than that, there
is no way to specify any rotations.

Positions (and other dynamic scene parameters) are assigned to sound sources using
<audioBlockFormat> elements. Each of those elements can only contain one position
value. To define moving sound sources, multiple such elements have to be used. Each
block has to have a start time (rtime) relative to the start time of the parent element and
a duration value in seconds.

Example (simplified excerpt) from annex 2, section 2.3 of the ADM specification:

<audioChannelFormat typeDefinition="Objects">
<audioBlockFormat rtime="00:00:00.00000" duration="00:00:05.00000">

<position coordinate="azimuth">-22.5</position>
<position coordinate="elevation">5.0</position>
<position coordinate="distance">1.0</position>

(continues on next page)

13https://www.itu.int/rec/R-REC-BS.2076/
14https://www.itu.int/rec/R-REC-BS.2088/

https://www.itu.int/rec/R-REC-BS.2076/
https://www.itu.int/rec/R-REC-BS.2088/
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(continued from previous page)
</audioBlockFormat>
<audioBlockFormat rtime="00:00:05.00000" duration="00:00:10.00000">

<position coordinate="azimuth">-24.5</position>
<position coordinate="elevation">6.0</position>
<position coordinate="distance">0.9</position>

</audioBlockFormat>
<audioBlockFormat rtime="00:00:15.00000" duration="00:00:20.00000">

<position coordinate="azimuth">-26.5</position>
<position coordinate="elevation">7.0</position>
<position coordinate="distance">0.8</position>

</audioBlockFormat>
</audioChannelFormat>

By default, the values are interpolated between blocks. This means that at the begin-
ning of a block the previous block’s value is still used and the value specified for the
current block is only reached at the end of the block. This also means that the very
first block has an undefined value. In this case, the ADM specification recommends set-
ting the jumpPosition flag, which applies the given value as a constant to the whole
block. Interpolations can also be limited to a shorter time than the block duration with
the interpolationLength value (in seconds), but this is discouraged by the specifica-
tion. The ADM specification doesn’t mention any further details about the exact type of
interpolation to be used, but the illustrated examples hint at linear interpolation. Experts
at ITU-R are currently working on a revision that will hopefully clarify the situation.

Apart from the positions of sound sources, their physical size can be specified with
width, depth and height (in relative units).

Source signals can be boosted or attenuated by means of the gain value, which is in-
terpreted as a linear value by default. The gainUnit option can be used to switch to
decibels (dB). Gain values are interpolated just like positions, but again, the exact shape
of the interpolation is not specified.

2.8 Spatial Sound Description Interchange Format (SpatDIF)

SpatDIF was first proposed in (Peters, Ferguson, et al. 2007), where it is described as a
stream of Open Sound Control (OSC) messages which can optionally be stored in Sound
Description Interchange Format (SDIF) files. Sound source positions are encoded in a
listener-relative normalized coordinate system. They can be specified either in cartesian
(x, y, z) or spherical (azimuth, elevation, distance) coordinates:

/SpatDIF/source/3/xyz -0.5 0.5 0.0
/SpatDIF/source/3/aed -45.0 0.0 0.0

In (Peters 2008), the coordinate system(s) can be chosen nearly arbitrarily:

/SpatDIF/*/xyz :/def right front top
/SpatDIF/*/xyz :/units meter meter meter
/SpatDIF/source.1/xyz -0.5 0.5 0.0
/SpatDIF/*/aed :/def clockwise
/SpatDIF/*/aed :/units deg deg meter
/SpatDIF/source.2/aed -45.0 0.0 0.707

As addition to a stream of tightly sampled values without any high-level structure, (Pe-
ters, Lossius, et al. 2013) introduces a so-called authoring layer which theoretically allows
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defining complexmovements more compactly. No concrete examples are given, but some
ideas for a trajectory extension can be found on the project’s (archived) Wiki page15.

The paper stresses that “SpatDIF is a syntax rather than a programming interface or file
format” and the examples for file storage are expanded to use XML and YAML (in addi-
tion to the aforementioned OSC and SDIF). An abridged version of one of the example
files16 is provided here in OSC format:

/spatdif/version 0.3
/spatdif/meta/media/1/type file
/spatdif/meta/media/1/location "../audio/hello.wav"
/spatdif/time 0.0
/spatdif/source/1/position 0.0 5.0 0.0
/spatdif/source/1/media/1
/spatdif/source/1/media/1/loop/type repeat
/spatdif/source/1/media/1/gain 1.0
/spatdif/time 0.0087944
/spatdif/source/1/position 0.174 4.996 0.
/spatdif/time 0.0176514
/spatdif/source/1/position 0.349 4.986 0.
/spatdif/time 0.0265303
/spatdif/source/1/position 0.522 4.97 0.

The individual OSCmessages do not carry timestamps, but timemessages can be used to
provide timing information for the immediately following messages. The same example
is also provided in XML format:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<spatdif version="0.3">

<meta>
<ordering>time</ordering>
<media>

<id>1</id>
<type>file</type>
<location>../audio/hello.wav</location>

</media>
</meta>
<time>0.0</time>
<source>

<name>1</name>
<position>0.0 5.0 0.0</position>
<media id="1">

<gain>1.0</gain>
<loop>

<type>repeat</type>
</loop>

</media>
</source>
<time>0.0087944</time>
<source>

<name>1</name>
<position>0.174 4.996 0.0</position>

</source>
<time>0.0176514</time>

(continues on next page)

15https://web.archive.org/web/20220629192742/http://redmine.spatdif.org/projects/
spatdif/wiki/Trajectory_Extension

16https://web.archive.org/web/20220819072708/http://spatdif.org/examples.html

https://web.archive.org/web/20220629192742/http://redmine.spatdif.org/projects/spatdif/wiki/Trajectory_Extension
https://web.archive.org/web/20220629192742/http://redmine.spatdif.org/projects/spatdif/wiki/Trajectory_Extension
https://web.archive.org/web/20220819072708/http://spatdif.org/examples.html
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(continued from previous page)
<source>

<name>1</name>
<position>0.349 4.986 0.0</position>

</source>
<time>0.0265303</time>
<source>

<name>1</name>
<position>0.522 4.97 0.0</position>

</source>
</spatdif>

The initial SpatDIF tools were only able to run on proprietary software. Later, an fully
open source library implementation17 was presented in (Miyama et al. 2013).

Version 0.4 of SpatDIF is presented in (Schacher et al. 2016), which promises “the abil-
ity to define and store continuous trajectories on the authoring layer in a human-readable
way.” Cubic Bézier curves (see section b.2.6 in the appendix) can be used to define tra-
jectories. By default, movement along those trajectories happens with a constant speed,
but easing curves can be specified – either selected from a number of easing functions or
defined by yet another cubic Bézier curve. In the latter case, a nearly arbitrary mapping
between time and position along the curve can be provided, which allows moving sound
sources forwards and backwards along a trajectory. Due to backwards compatibility con-
cerns, SpatDIF v0.4 doesn’t allow transmitting or storing trajectories on their own. A
sampled (discretized) version of each trajectory has to be stored as well. According to
Schacher et al. (2016), “…authoring is expected to be done with software tools that pro-
vide graphical user interfaces; hence there should be little or no need to interact directly
with cubic-bezier parameter values.” Unfortunately, no information about version 0.4
could be found on the (now defunct) SpatDIF website and no example files seem to be
available.

2.9 Spat-SDIF

The Sound Description Interchange Format (SDIF) does not natively support spatializa-
tion, but as suggested in the previous section, it can be extended for storing source posi-
tions and similar data. One way of doing this is by using Spat-SDIF as described in (Bres-
son and Schumacher 2011). One or more control values can be stored in an SDIF frame,
and each of these frames contains its own timestamp. The Spat-SDIF player application18

can generate real-time SpatDIF-compatible OSC messages.

2.10 Toolbox for Acoustic Scene Creation And Rendering
(TASCAR)

TASCAR is a software for creation and rendering of dynamic virtual acoustic environ-
ments, developed for application in hearing aid research and audiology (Grimm et al.
2019). It comes with its own XML-based file format. This is a snippet from the example
file example_vertices.tsc, as shown in the user manual19:

17https://github.com/SpatDIF/SpatDIFLib
18https://github.com/j-bresson/Spat-SDIF-Player
19https://tascar.org/manual.pdf

https://github.com/SpatDIF/SpatDIFLib
https://github.com/j-bresson/Spat-SDIF-Player
https://tascar.org/manual.pdf
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<source name="piano" color="#101077">
<position>

0 -3.2 1.7 1.4
10 3.2 2.7 1.4

</position>
<orientation>0 -24 0 0</orientation>
<sound name="leftside" x="-0.7">

<plugins>
<sndfile name="sounds/jazzclub-piano1.wav" level="75"/>

</plugins>
</sound>
<sound name="rightside" x="0.7">

<plugins>
<sndfile name="sounds/jazzclub-piano2.wav" level="75"/>

</plugins>
</sound>

</source>

Sound sources can have trajectories, which can be defined by specifying coordinate triples,
prepended with the time (in seconds) of their occurrence. Position values between those
times are linearly interpolated. An interpolation mode can be chosen between cartesian
(which is the default) and spherical. Latter mode interpolates in arcs around the origin,
which is probably only useful if the receiver is positioned at the origin, which, admittedly,
is a common case.

Sound sources can also have an orientation, which – unlike in most computer graph-
ics applications – is applied to the source object after the position. The interpolation of
orientations is not explicitly mentioned in the user manual, but according to the current
implementation, the three Euler angles seem to be interpolated separately, which works
for rotations around one of the coordinate axes, but it hopelessly breaks in the general
case, see section b.3.12 of the appendix.

2.11 Synchronized Multimedia Integration Language (SMIL)

The SMIL – which is supposed to be pronounced like “smile” – is a format for temporal
control and synchronization of audio, video, images and text elements and their arrange-
ment on a 2D screen. It is a recommendation20 of the World Wide Web Consortium since
1998; the current version (SMIL 3.0) was released in 2008. In contrast to the formats
mentioned in previous sections, SMIL was never intended for describing 3D scenes, but
extending it to three dimensions has been suggested (Goose et al. 2002; Pihkala and Lokki
2003).

However, the interesting part of this format are not its spatial aspects nor its rather
limited audio capabilities but rather its handling of the timing21 of content elements. Most
notably, it uses so-called time containers as a top-level structure. All elements in a <par>
container are played back in parallel and all elements in a <seq> container are played back
sequentially. These containers can be arbitrarily nested, building up a single hierarchical
structure called time graph. Inside those time containers, media files are linked to the SMIL
file with <img>, <audio>, <text> and similar elements. The following example shows
how the time containers can be used to define a slide show. The background image and
music are played/shown in parallel to slides, which are themselves shown in sequence.

20https://www.w3.org/TR/SMIL/
21https://www.w3.org/TR/SMIL/smil-timing.html

https://www.w3.org/TR/SMIL/
https://www.w3.org/TR/SMIL/smil-timing.html
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<?xml version="1.0"?>
<!DOCTYPE smil PUBLIC "-//W3C//DTD SMIL 2.0//EN"

"http://www.w3.org/2001/SMIL20/SMIL20.dtd">
<smil xmlns="http://www.w3.org/2001/SMIL20/Language">

<head>
<meta name="title" content="Example Slideshow"/>
<layout>

<root-layout width="240" height="270"/>
<region id="background" left="0" width="240" top="0" height="270"/>
<region id="images" left="18" width="220" top="6" height="240"/>
<region id="captions" left="19" width="220" top="184" height="85"/>

</layout>
</head>
<body>

<par>
<audio src="background-music.mp3" systemComponent="multiChannelAudio

↪"/>
<seq>

<par dur="8s">
<img region="images" dur="8s" src="title.png"/>
<audio begin="1.2s" src="title-sound.mp3"/>

</par>
<par>

<img region="images" dur="5s" src="image01.png"/>
<text region="captions" dur="5s" src="caption01.txt"/>

</par>
<par>

<img region="images" dur="5s" src="image02.png"/>
<audio begin="2s" src="sound-effect02.mp3"/>

</par>
<!-- some slides omitted for brevity -->
<par>

<img region="images" dur="5s" src="image74.png"/>
<text region="captions" dur="5s" src="caption74.txt"/>

</par>
</seq>
<img region="background" src="background.png" width="240" height=

↪"270"/>
</par>

</body>
</smil>

In this case, there is no need to specify any start times because the start times of the slides
are determined by the duration of the preceding slides. If desired, however, elements can
have a start and end time relative to their parent or sibling elements. Those times can also
be specified relative to the start or end of non-adjacent elements in the time graph and
they can be triggered by user actions, for example mouse clicks. Graphical elements can
be animated along linear or smooth 2D-paths with the animateMotion element.

2.12 Bottom Line

None of the presented 3D audio scene description formats explicitly targets scene author-
ing. All of the text-based formats can of course be created in a plain text editor, but their
syntaxes are not optimized formanual creation. Thedeclarative definition of sourcemove-
ments is often limited to linear interpolation. One counter-example that allows smooth
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interpolation is X3D (see section 2.3). In X3D, time instances can be specified for each
control point, which affects the velocity along the trajectory. However, the resulting speed
between control pointsmight be unexpected. It is not possible to control the shape and the
speed of a trajectory separately and it is not straightforward to define a smooth trajectory
with constant speed. Interpolation between orientations is in most cases not supported,
except for Slerp in VRML (section 2.2) and Squad in X3D. In the latter case, the standard
text is quite vague and it is doubtful whether different implementations agree in their be-
havior – if this feature is implemented at all. The next chapter will present a new format
that tries to overcome these shortcomings.





Chapter3
Development of a Scene Authoring Format:

ASDF

As part of this thesis, the Audio Scene Description Format (ASDF) has been developed.
The first ideas for this format have already been presented by Geier, Ahrens, and Spors
(2008a) and Geier and Spors (2008). One of the goals was – and still is – to define a
single common scene description format that could be used for any number of differ-
ent reproduction methods to be able to conveniently compare them. For an overview of
some of those reproduction methods and the emergence of object-based audio reproduc-
tion see the end of chapter 1. To ensure the smooth exchange of scenes between different
reproduction systems, the ASDF is independent of the rendering algorithm and contains
no implementation-specific or platform-specific data. Scenes can be played back on both
loudspeaker-based and headphone-based systems. Another goal was to provide a rea-
sonably simple means for everyone to create three-dimensional spatial audio scenes and
experiment with them. This is facilitated by the ASDF library implementation described
in chapter 4 and especially by the software integrations described in sections 4.5 and 4.6.

Geier, Spors, andWeinzierl (2010) state that “theASDF aims at being both an authoring
and a storage format at the same time. In absence of a dedicated editing application, scene
authors should still be able to create and edit audio scenes with their favorite text editor.”
This is still true, but recently the focus has shifted even more towards authoring. It is
easy to create a lower-level representation from a high-level description, but it is much
harder – and often lossy – to go into the other direction. The main focus of the ASDF is
to be able to define elaborate sound source trajectories by specifying only a few points in
three-dimensional space. Not only does this need less storage space than densely sampled
movement data, it is also much easier to edit existing trajectories.

The exact syntax of the examples in the aforementioned primordial papers is slightly
different, but most of the basic ideas are already there. The full documentation – includ-
ing many examples – for the current version of the ASDF is available in appendix a. The
ASDF in its current form is focused on describing three-dimensional movements – includ-
ing rotations – to allow experimenting with complex trajectories. Detailed background
about the underlying research into various types of splines can be found in appendix b.
All other features are deliberately minimalistic. For this thesis, the choice was made to
concentrate mainly on one topic – movement over time – and thoroughly investigate po-
sition and rotation splines in considerable depth, instead of developing a fully-featured
scene description format where each feature receives only a superficial treatment.

Section 3.4 shows an incomplete list of missing features that may or may not be im-
plemented in future versions of the format. The goal was not to come up with as many
features as possible, but to define a few basic features and make a working implemen-
tation to be able to thoroughly assess their utility. Geier, Spors, and Weinzierl (2010)
promise that ”a reference implementation will be provided in form of a software library.”
This library is now finally available, and it is described in chapter 4.
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The analysis of existing formats in chapter 2 has shown that most of them use linear
interpolation between the given object positions. A few formats allow specifying (cubic)
splines, but they are complicated to define and hard to use without a separate editor ap-
plication. Control over the speed of objects along trajectories is limited. Interpolation
between different orientations of objects and groups of objects is rarely possible at all,
and if it is, often only spherical linear interpolation (see section b.3.2 in the appendix) is
supported. Only the X3D format (see 2.3) supports smooth interpolation of orientations,
but there is still room for improvements.

The ASDF uses splines to provide trajectories that can be defined by a simple sequence
of points in space. Optionally, the time of the given points can be specified, which in turn
influences the speed along the trajectory. The same approach as for position splines is
also used for orientation splines. Both position and orientation values can be combined
in so-called transforms (see section 3.2).

3.1 Storage Format and Syntax

Since the ASDF is designed to be an authoring format, it is an obvious choice to use text-
based files to store scene descriptions. This way, it is possible to create and edit scenes
with any text editor, without the need for specialized software. This does not include
audio data, though. Audio signals are stored in separate files using common binary audio
formats and they are linked to the text-based scene description via their file name. The
audio files still have to be recorded and editedwith specialized software, but audio editing
applications are widely available.

Originally, the ASDF was planned to become an extension to the SMIL format (Geier,
Ahrens, and Spors 2010; Geier, Spors, and Weinzierl 2010), which was presented in sec-
tion 2.11. This way, it would be possible to use an existing SMIL library to get the timing
and media management for free and only implement the 3D audio aspects. Sadly, the
SMIL format didn’t stand the test of time and nowadays it is not really used anymore and
no usable libraries are available. Instead, the ASDF was developed as a new format from
scratch. Staying in the tradition of SMIL, XML1 was chosen as a storage format, because
it lends itself to representing the potentially deeply nested containers of the time graph.
In recent years, XML-based formats have lost a lot of popularity, often being replaced by
more modern text-based formats like JSON2 or YAML3. However, XML is still uniquely
suited to represent nested containers, each of which carrying additional information in
form of attributes.

For a description of the entire syntax of the ASDF see appendix a.

3.2 Transforms

The focus of this thesis is the movement of sources (and the virtual listener) in three-
dimensional audio scenes. In the ASDF, this movement can be described by means of
transforms. Apart from movement – comprised of translation and rotation of objects –
transforms can also be used to control the volume of the source signals. Transforms can
be static, but – more interestingly – they can also change over time. When defining a
transform with a sequence of positions, a spline4 is created, which is used to smoothly
animate the object position over time. Similarly, splines can be created for orientations

1https://www.w3.org/TR/xml/
2https://www.json.org/
3https://yaml.org/spec/1.2/
4For a definition of the term spline see section b.2.3 in the appendix.

https://www.w3.org/TR/xml/
https://www.json.org/
https://yaml.org/spec/1.2/
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and even for volume changes over time. The coordinate system conventions of ASDF
are explained in section a.2 of the appendix, the syntax for defining transforms is shown
in section a.3.7 and more details about the splines used in the ASDF can be found in
section a.5.

All positions and orientations are generally three-dimensional. However, in simple
cases where movements are limited to the horizontal plane, positions can be specified
as two-dimensional coordinates and rotations can be defined by simple azimuth angles.
The goal is to make it simple to create simple movements, while still making it possible to
create arbitrarily complicated ones. Not only can transforms be applied to sound sources
and to the listener position, but they can also be applied to other transforms. This way,
complex movements can be achieved by combining multiple simpler movements.

A transform can be applied to multiple objects at the same time. Similarly, one object
can be the target of multiple transforms. However, this is not allowed if there is more than
one rotation involved, since the order of rotations would be unspecified, which would
make the resulting orientation ambiguous. If multiple rotations are desired, their order
has to be explicit. This can be done by applying the first transform to the target object,
then applying the second transform to the first one (and the third to the second and so
on, if desired).

Just like audio clips, transforms have a start and an end. They can be placed in the
timeline relative to other transforms and audio clips, as explained in the following section.

3.3 Temporal Structure

Contrary to the majority of formats described in chapter 2, the spatial transforms don’t
make up the primary structure of ASDF files. Instead, the timeline is the central data
structure, which is inspired by the SMIL format (see section 2.11). The timeline is defined
by so-called time containers in the form of <seq> and <par> elements. These containers
can be used to play audio clips one after another or at the same time, respectively. They
can also contain transforms, which can be placed in time relative to audio clips and to
other transforms. Time containers can also contain other time containers and they can be
arbitrarily nested. See section a.3.5 in the appendix for some examples.

The timing of audio clips and of the transforms thatmight affect their spatial trajectories
is independent. A transformmight only affect a part of an audio clip or a whole playlist of
clips. On the other hand, a single audio clip might be affected by a sequence of multiple
transforms. As mentioned in the previous section, transforms can be applied to other
transforms, leading to a combined overall transform. However, the involved transforms
can start and end at different times. Each transform only has an effect while it is active.
This means that when a sound source is moved along a trajectory, it does not stay at the
final position when the trajectory is finished.

It is important that transforms can change over time, but sometimes only static trans-
forms are needed. The ASDF provides a simplified syntax where transform attributes like
pos or rot can be applied directly to audio clips, which means that those transforms are
constant for the whole duration of the clip.

3.4 Out of Scope

This thesis is mostly about describing three-dimensional movements over time, and this is
also the focus of the ASDF. There are many more features that a scene description format
could have – and some of the formats from section 2 do have. The following (incomplete)
list presents some features that could be interesting but were not included in the ASDF in
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order to limit the scope of the project. Some of these features could be considered for a
future version of the format.

Graphics The ASDF is meant for pure audio scenes. There are many applications for
audiovisual scenes, which are typically focused on the visual part. A range of 3D
animation software and game engines are available, many of them already have sup-
port for spatial audio, and if not, it can be added via plugin interfaces. A declarative
authoring format in this area would on the one hand be much more complicated
than an audio-only format, and on the other hand it would probably not provide
any advantage over what is already available in existing software solutions.

Interactivity Currently, the ASDF does not support any interactivity because determin-
istic scenes allow for a much simpler implementation. The whole scene is loaded
into memory and cannot be changed during playback. It might be interesting to
provide “hooks” for defining user interaction, as it is possible in the SMIL format
(see section 2.11), for example.
However, if a lot of interactivity is desired, there might be more straightforward
approaches like using existing game engines, which are centered about interactivity.
A small amount of interactivitywouldprobably still be useful for triggeringdifferent
“parts” of an audio scene. For example, a spatial music composition might combine
a dynamic audio scene with live musicians playing their instruments. In such a case
it would be helpful to be able to synchronize themovements in the audio scene with
the live performances.

Perceptual Parameters In addition to physical parameters, some formats like MPEG-4
(see section 2.4) also support perceptual parameters like source presence, source bril-
liance, room presence and envelopment (Väänänen 2003). Something like this might be
added to a future ASDF version, but for now, it is limited to describing the physical
positions of sound sources and the volume of their source signals.

Room Acoustics/Reverberation The ASDF does not allow the description of physical or
perceptual room properties. The lack of built-in reverberation in a scene can be
compensated by adding additional sound sources containing pre-recorded reverb
signals, be it artificially created or from a real recording.

Scene Scaling It is likely that different reproduction venues have different room sizes.
Sound source positions and trajectories created for a small room might not make
sense in a large room. It would be useful if scenes could automatically be re-scaled
based on the reproduction setup. The ASDF currently doesn’t provide any tools
for this, but some of the formats mentioned in section 2 use relative coordinates to
tackle this problem, and so do object-based cinema systems (Robinson and Tsingos
2015). However, the psychoacoustic consequences of such a scaling are unclear.

Ambisonics sources Ambisonics microphones can be used to make spatial recordings
of ambient sounds. Those recordings can be stored as B-format files. It would be
useful to include such recordings in an object-based scene description, but theASDF
currently does not support that.
Channel-based recordings like 5.1 files can be used as audio clips, but their virtual
loudspeaker positions have to be specified manually.

Trimming Audio Clips Audio clips in the ASDF can only be played to their full length.
They cannot skip parts of the file in the beginning or in the end. Similarly, partial
repetitions are not supported. It might be desirable to allow that, but it would make
the implementation as well as the usage more complicated.

Multiple Listeners The ASDF allows the definition of a single reference, i. e. the position
of a listener. This reference can be animated with transforms just like sound sources.
However, there are other systems which support multiple listener positions at the
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same time. This wouldmake it possible to “cut” between different listener positions
like cutting between camera angles in a movie.

Streaming There are two aspects of streaming that can be considered. On the one hand,
source signals could be provided via audio streams from a network. This is not pos-
sible in the current ASDF, but it could be implemented reasonably easily, if desired.
On the other hand, the whole scene description could be streamed, as it is done,
for example, in MPEG-4 (see section 2.4). This adds a lot of complexity, which ar-
guably isn’t worth the effort. ASDF scenes have to be parsed in their entirety before
playback can start.





Chapter4
Implementation and Integration

of an ASDF Library

The development of the Audio Scene Description Format (ASDF) has been described in
chapter 3 and its full specification and documentation can be found in appendix a. How-
ever, a file format is only useful if there is software available that can load files with that
format. Therefore, a software library1 has been implemented as well, using the Rust2 pro-
gramming language. The following sections describe the implementation of this library.
A library alone is still not enough to listen to audio scenes, it also has to be integrated
into a software that is able to reproduce those audio scenes. The ASDF library has been
integrated in a standalone rendering software (see section 4.5) and in a plugin for a vi-
sual programming language for multimedia (see section 4.6). These integrations use the
C language interface of the ASDF library which makes it easy to integrate with software
written in other languages.

4.1 ASDF Parsing

The ASDF syntax is based on XML. An existing XML parser library3 is used to load ASDF
files. The XML library automatically checks whether a file is well-formed XML, but the
conformance to ASDF syntax is checked manually. Manual validation makes it easier to
provide helpful error messages in case an erroneous ASDF file is provided. It is important
to provide informative and very specific error messages to help scene authors to create
working scenes quickly. For example, the following small scene is well-formed and valid
XML, but it still contains an error:

<asdf version="0.4">
<clip file="non-existing.ogg">

<channel pos="-1.5 3" />
<channel pos="1.5 3" />

</clip>
</asdf>

When trying to load this audio scene – assuming the referenced audio file indeed does
not exist – the ASDF library would provide this error message:

Error: Error loading audio file
---
<asdf version="0.4">

(continues on next page)

1https://github.com/AudioSceneDescriptionFormat/asdf-rust
2https://www.rust-lang.org/
3https://crates.io/crates/xmlparser

https://github.com/AudioSceneDescriptionFormat/asdf-rust
https://www.rust-lang.org/
https://crates.io/crates/xmlparser
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(continued from previous page)
<clip file="non-existing.ogg">

^^^^^^^^^^^^^^^^
---
error details: I/O error
error details: No such file or directory (os error 2)

If the audio file is changed to one that exists, but has only one channel, a different error
will be raised:

Error: Too many <channel> elements: file has only 1 channel(s)
---
<asdf version="0.4">

<clip file="mono-recording.ogg">
<channel pos="-1.5 3" />
<channel pos="1.5 3" />

</clip>
^^^^

---

Showing the affected part of the scene within the error message should help localizing
the cause of the error more quickly, especially in a non-trivial scene that is much larger
than this minimalistic example.

4.2 Audio File Playback

The ASDF library allows playback of WAV, OGG (Vorbis), FLAC and MP3 sound files.
It is not feasible to load all sound files of a scene in their entirety into memory. A scene
might contain many very long files that are supposed to be played at the same time. It is
sufficient to provide the audio data in small blocks. At any time during playback, though,
the appropriate parts of the currently active sound files have to be provided to the render-
ing software within a very short time. Otherwise, the output signal could be interrupted,
leading to audible artifacts. To avoid this, a certain amount of data from all relevant audio
files is buffered, which makes sure that there are no excessive delays when reading and
decoding the files. The buffering happens in a separate threadwhich runs in parallel to the
audio processing, and typically with a lower priority. This parallel processing in multiple
threads is traditionally very error-prone. This was themain reasonwhy the programming
language Rust was chosen to implement the library. Rust allows the implementation of
very efficient programs that are still safe in the presence of multiple threads.

An additional requirement that complicates the implementation is that a user should
be able to seek forward and backward in a scene. It should be possible to jump to any
time within the timeline of a scene. When that happens, playback is stopped, all existing
buffers are discarded, new buffers are filled with the audio data that is to be played back
at the new time instance and finally playback is resumed at the desired point in time.

Different audio files in a scene can have different sampling rates, which could again
be different from the output sampling rate of the reproduction software. In case of a
mismatch, audio data is automatically re-sampled.

4.3 Transforms

As explained in chapter 3.2, so-called transforms are used to define spatial positions of
objects and to change positions and orientations over time. When a sequence of positions
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and/or orientations and/or volumevalues is given in a transform, splines are created based
on the given control values. A separate Rust library4 has been implemented to provide all
necessary types of splines. Within the main ASDF library, all transforms – including their
splines – are created when loading an ASDF file and they are stored for quick retrieval by
the IDs they are applying to.

Whenever the transform of a source (or of the listener) is requested for a given time, it
is checked whether there are any transforms applying to its ID. Only for those transforms
that are active at the given time, it is recursively checked for other transforms applying
to them. Each transform represents a local coordinate system and all those nested trans-
forms are combined into a final transform. If a transform contains both a translation and
a rotation, the rotation is applied first. When multiple transforms apply to the same ID,
only one of them is allowed to have a rotation, because the order of rotations would be
ambiguous. This is checked when loading a scene and an error is raised if there are mul-
tiple rotations at the same level. A transform is not allowed to apply to itself, directly or
indirectly. This is also checked when loading the scene.

4.4 API

The interface of the library, often called Application Programming Interface (API), allows
to choose a scene file to load and to specify a few rendering options like the sampling rate
and block size. After loading the scene, two main types of data are provided: audio sig-
nals of sound sources and their spatial transforms. The spatial transform of the listener’s
position (also called reference) is also available.

Audio data is provided in fixed-size blocks with the given block size and with as many
channels as there are sources in the scene. If a source is not active at a given time, its signal
consists of all zeros. Each audio block is provided immediately, thanks to the buffering
described in section 4.2 above, which enables glitch-free playback.

It is also possible to seek in a scene, in other words, to jump to a different point in time.
In this case, the next audio block is faded out and some empty audio blocks are delivered
during buffering. Once the buffers are filled, the next audio block is faded in and playback
continues at the new scene time.

While the audio data is provided in consecutive blocks, the spatial transform for any
source (or for the reference) can be queried at any desired scene time. Typically, a ren-
dering application will obtain the transforms once per audio block and interpolate or
cross-fade from the previous values to the current values. However, it is possible to query
the values at a higher or a lower rate, if desired. It is theoretically possible to query the
transform values at every audio sample, but this will lead to a high computational load.
The library is providing a transform value for each queried time instance, even if the value
did not change compared to the previous query. If needed, the host application can filter
out repeated values. This is done in the Pure Data external, see section 4.6.

Since the ASDF library is implemented in Rust, it can be easily used in any Rust pro-
gram. However, having only a Rust API would severely limit the possible use cases.
Therefore, C language bindings have been implemented using a widely used tool5 from
the Rust ecosystem. This extends the potential uses of the ASDF library to applications
written in C (see section 4.6), C++ (see section 4.5) and a myriad of other languages.

4https://github.com/AudioSceneDescriptionFormat/asdfspline-rust
5https://github.com/lu-zero/cargo-c

https://github.com/AudioSceneDescriptionFormat/asdfspline-rust
https://github.com/lu-zero/cargo-c
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Figure 1: Help patch of the asdf~ external for Pure Data

4.5 Integration in a Standalone Rendering Application

The development of the ASDF happened in the context of a spatial audio rendering tool
called SoundScape Renderer (SSR)6 (Geier, Ahrens, Möhl, et al. 2007; Geier, Ahrens, and
Spors 2008b; Geier and Spors 2012). The SSRwas co-developedwith JensAhrens and sev-
eral collaborators7. The SSR can be used to render an audio scene with several reproduc-
tion methods, including dynamic binaural rendering, Wave Field Synthesis (WFS) and
Higher-Order Ambisonics (HOA). It is based on an efficient multi-threaded rendering
architecture (Geier, Hohn, et al. 2012) and it can be used both as a standalone application
and as externals for Pure Data8.

As part of the development of the ASDF, the ASDF library has been integrated into the
SSR.At the time ofwriting, binaural rendering is the only three-dimensional reproduction
method, the other rendering methods are limited to the horizontal plane. The default
graphical user interface is also still limited to the horizontal plane, but an experimental
three-dimensional user interface is also available, see section 4.7.

The SSR uses the JACK9 audio server for the handling of audio signals. The audio file
playback of the ASDF library has been integrated with the JACK transport mechanism
using the seek functionality mentioned in section 4.2. This way it is possible to play ASDF
scenes in synchrony with other JACK-enabled applications.

4.6 Integration as an External for Pure Data

The ASDF library implementation contains10 an external for Pure Data11 as a usage ex-
ample for the C interface. Figure 1 shows a screenshot of the external’s help patch. The
number of signal outlets has to be providedwhen creating the external. Only that number
of source signals are provided, even if more sources are defined in the scene. Playback of
the scene can be started and stopped at any time and it is possible to seek to any point in
time in the scene. The transforms of all sources and the listening position are not auto-

6http://spatialaudio.net/ssr/
7https://ssr.readthedocs.io/general.html#contributors
8https://puredata.info/
9https://jackaudio.org/

10https://github.com/AudioSceneDescriptionFormat/asdf-rust/tree/master/pure-data
11https://puredata.info/

http://spatialaudio.net/ssr/
https://ssr.readthedocs.io/general.html#contributors
https://puredata.info/
https://jackaudio.org/
https://github.com/AudioSceneDescriptionFormat/asdf-rust/tree/master/pure-data
https://puredata.info/
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Figure 2: Screenshot of the browser-based 3D GUI prototype

matically provided at themessage outlet, but they can be triggered at any time by sending
a bang message to the external. However, all values that have not changed since the last
request are filtered out.

Given the signals for each source and the corresponding messages with transform up-
dates, any means of spatialization available in Pure Data can be used to auralize a scene.
One possibility are the renderer externals provided by the SSR, see section 4.5. The mes-
sages sent by the ASDF external happen to be compatible with the SSR externals, the two
just have to be connected. Both the ASDF and SSR externals can be installed from Pure
Data’s built-in package manager.

4.7 Visualization

The ASDF is – as its name suggests – an audio-only format with no visual aspects. Nev-
ertheless, it is really helpful for scene authors to see a visual representation of the sound
sources in the audio scene they are creating. The ASDF library itself has no capabilities
for visualization, but to aid the development of the ASDF, a tool for three-dimensional
visualization has been developed for the SoundScape Renderer (see section 4.5). The tool
has been implemented using the WebGL-based JavaScript library three.js12. More specif-
ically, it is based on the three.js editor13. This makes it easy to create a quick prototype
for a three-dimensional user interface that can be displayed with any modern browser.
The communication with the SSR takes place over the WebSocket protocol, which is sup-
ported by all modern browsers. A screenshot of web browser displaying an audio scene
is shown in figure 2.

The visualization is quite basic and there are many desirable features that are missing,
but it is already possible to get an idea about the three-dimensional movements of scene
objects while the scene is playing.

12https://threejs.org/
13https://threejs.org/editor/

https://threejs.org/
https://threejs.org/editor/
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4.8 Example Scenes

Manyminimalistic scenes are available in theASDFdocumentation, see appendix a. Some
larger example scenes are available for download from the ASDF development pages14.

14https://github.com/AudioSceneDescriptionFormat/asdf-example-scenes

https://github.com/AudioSceneDescriptionFormat/asdf-example-scenes


Chapter5
Conclusion and Future Work

The previous chapters have shown the definition of the Audio Scene Description Format
(ASDF), the implementation of a library for loading ASDF files and its integration into
different software for spatial audio reproduction. All involved programs and libraries
are available as open-source software and for free. Everyone can use the ASDF to create
spatial audio scenes and the ASDF library and its integrations can be used to play them
back. The software implementation can also be used as a basis for further experimentation
and to prototype features that are currently not implemented.

There has been no systematic evaluation of the format yet, but everyone is encouraged
to try it out and make their own judgement. As chapter 2 has shown, there are currently
no dedicated authoring formats for spatial audio scenes available. Therefore, no direct
comparison is possible. From the example scenes in appendix a it should be apparent that
the ASDF syntax is more concise and easier to hand-write than any of the other text-based
formats shown in chapter 2. The feature set of the ASDF, however, is very much limited
compared to some of the other formats that were mentioned. The scope of the format is
intentionally chosen to be very narrow. It is focused on the description of movements and
rotation of scene objects over time. This description is based on different types of splines,
which are covered in considerable depth in appendix b. Nearly everything else is out of
scope, as section 3.4 describes.

The implementation of theASDF library covers all features of the format as currently de-
fined, but of course additional functionality could be implemented. One example would
be the recording of movements using a tracking system, followed by a data reduction by
means of some kind of curve fitting, which would allow to create a high-level declarative
description from a low-level stream of sampled data.

The three-dimensional GUI prototype shown in section 4.7 could of course be improved
inmanyways. It would be amassive endeavour, butmaybe an application could be imple-
mented that allows creating and editing trajectories graphically, including the possibility
to animate nested local coordinate systems. This would also need some kind of elaborate
timeline editor to be able to define the relationships between objects in time. It is unlikely
that such an extensive GUI project would be started (and more importantly, would lead
to a usable program). More realistically, some features of the ASDF could probably be
improved in order to simplify the scene authoring process via editing plain text files. The
ASDF has its own issue tracker1 where future features can be discussed.

Appendix b contains a thoroughwrite-up about Euclidean splines and rotation splines,
but it is of course by far not exhaustive, and more material – including more types of
splines – can be added in the future. Some new findings might even lead to changes
in future versions of the ASDF. For example, more and better end conditions could be
brought forward, which could replace the end conditions that are currently used in the
ASDF. There is still a lot of old and new literature that has not been incorporated. Many

1https://github.com/AudioSceneDescriptionFormat/asdf/issues

https://github.com/AudioSceneDescriptionFormat/asdf/issues
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aspects that might be worth considering in the future are already mentioned in the issue
tracker for the splines project2.

The ASDF allows the creation of position trajectories and of orientation trajectories and
it can even handle a combination of both. However, when a scene object or a group of
objects moves along a position trajectory, it does not automatically change its orientation
according to the curvature of the trajectory. This is a feature that might be desirable for
scene authors.

The splines that are currently used in the ASDF guarantee a continuous change of ve-
locity between spline segments, but the acceleration vector – i. e. the second derivative –
is allowed to be discontinuous. It might be interesting to investigate whether choosing a
different type of spline that guarantees continuity of acceleration will have any noticeable
advantages.

Since all the specifications, software and documentation is publicly available, it should
be easy for anyone who is interested to build upon this work.

2https://github.com/AudioSceneDescriptionFormat/splines/issues

https://github.com/AudioSceneDescriptionFormat/splines/issues
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Appendixa
The Audio Scene Description Format

(ASDF)

This appendix contains the current version of the documentation for the ASDF, written by
the author of this thesis. At the time ofwriting, a verbatim copy of this text is also available
online at https://AudioSceneDescriptionFormat.readthedocs.io/. The online
version might be updated in the future, though.

The example scenes shown in this chapter are available (including the referenced audio
files) at https://github.com/AudioSceneDescriptionFormat/asdf/ in the direc-
torydoc/scenes/. All scenes can be opened andplayed backwith the software described
in sections 4.5 and 4.6.

a.1 Introduction

Let’s start simple, with the file minimal.asd:

<asdf version="0.4">
<clip file="audio/ukewave.ogg" pos="1 2" />

</asdf>

This plays the contents of the (mono) audio file audio/ukewave.ogg, coming from a
spatial position of 2 meters in front and 1 meter to the right. For more details on the used
coordinate system, see Position and Orientation (page 51).

If you want to play a file with more than one channel, you can provide positions for each
of the channels, like shown in minimal-multichannel.asd:

<asdf version="0.4">
<clip file="audio/marimba.ogg">

<channel pos="-1 2" />
<channel pos="1 2" />

</clip>
</asdf>

This plays the contents of the (two-channel) audio file audio/marimba.ogg, each chan-
nel coming from its specified position. For further details, see <clip> and <channel>
(page 56).

https://AudioSceneDescriptionFormat.readthedocs.io/
https://github.com/AudioSceneDescriptionFormat/asdf/


50 Appendix a. The Audio Scene Description Format (ASDF)

The examples above use a few shorthand notations to make frequently used scenarios a
bit easier to type. Expanding most of the shortcuts used in the first example above would
lead to the more complicated ASDF syntax shown in minimal-expanded.asd:

<?xml version="1.0"?>
<asdf version="0.4">

<head>
<source id="src1" />

</head>
<body>

<seq>
<clip file="audio/ukewave.ogg">

<channel source="src1" pos="1 2 0" />
</clip>

</seq>
</body>

</asdf>

Please note a few changes to the “minimal” version above:

• An XML declaration1 has been added, which is optional in XML 1.0 (but not in XML
1.1).

• The <head> and <body> (page 52) elements are optional. The <asdf> (page 52)
element (including version number) is always required.

• In the <head> section there is a separate <source> (page 52) element.

• The <body> element implicitly behaves like a <seq> element, see <seq> and <par>
(page 55).

• Even though this is not necessary for a mono <clip>, a <channel> element has
been provided explicitly. It has been associated with the <source> (page 52) that
was defined in <head>.

• The z-component in pos is optional, see <transform> (page 57).

This still uses the shorthand of specifying the position directly in the <channel> ele-
ment. As shown in minimal-expanded-with-explicit-transform.asd, it can be
expanded even further:

<?xml version="1.0"?>
<asdf version="0.4">

<head>
<source id="src1" />

</head>
<body>

<par>
<clip file="audio/ukewave.ogg">

<channel id="channel1" source="src1" />
</clip>
<transform apply-to="channel1" pos="1 2 0" />

</par>
</body>

</asdf>

1 https://www.w3.org/TR/xml/#sec-prolog-dtd

https://www.w3.org/TR/xml/#sec-prolog-dtd
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• Because the <clip> and the <transform> happen at the same time, they are
wrapped in a <par> element, see <seq> and <par> (page 55). Without this <par>
element, the <transform> would only be active after the <clip> is finished (be-
cause the <body> element implicitly behaves like a <seq> element).

• If the clip has only one channel, it doesn’t matter whether the <transform> is ap-
plied to the <clip> or to the <channel>. In this simple case it could be even directly
applied to the <source>.

• The <transform> (page 57) element could be even further expanded to contain the
pos information in a single <o> sub-element.

a.2 Position and Orientation

The ASDF uses a right-handed cartesian coordinate system to specify positions in
three-dimensional space. The x-, y- and z-axis can be thought of as pointing towards east,
north and up, respectively, which is sometimes called an ENU system2. However, contrary
to typical ENU systems, the default orientation in the ASDF is towards north, i.e. along
the positive y-axis!

To understand the motivation for this choice of default orientation, imagine a treasure
map lying on a table in front of you. The north direction typically points towards the top
of the map and the east direction points to the right. On the other hand, if you had a
piece of paper with a mathematical graph on it, the y-axis would point towards the top of
the page and the x-axis would point to the right. Therefore it makes sense that the x-axis
points towards east and the y-axis points northwards, right? Now imagine that you are
sitting at the table with your treasure map in front of you. You will look straight ahead by
default, and this happens to be northwards on themap. Therefore, the default orientation
in the ASDF is towards north, which corresponds to the positive y-axis. To complete the
triple of axes, the z-axis points up to the ceiling (or towards the zenith, if your table is in
open air). Positive z-values are above the table, negative z-values are below the table. The
resulting coordinate system is right-handed, which is convenient.

The coordinate values for positions are given in meters. The third coordinate is optional
and defaults to zero.

As mentioned above, the default orientation (sometimes called view direction) is along
the positive y-axis. To fully specify all three degrees of freedom, the default up direction
is set to the positive z-axis (which should be an unsurprising choice). For specifying
arbitrary rotations relative to this default orientation, up to three Tait–Bryan angles3 can be
specified. The first angle (azimuth) rotates around the z-axis, the second angle (elevation)
around the (previously rotated) x-axis and the third angle (roll) around the (previously
rotated) y-axis.

All angles are given in degrees. The elevation and roll angles are optional, with a default of
zero. The sign of the rotation angles follows the right hand rule4. Rotations are specified
in degrees because that is familiar to most people. However, for any further calculations
in anASDF library, the angles should be immediately converted to quaternions or rotation
matrices, see Implementation Notes (page 70).

2 https://en.wikipedia.org/wiki/Axes_conventions
3 https://en.wikipedia.org/wiki/Euler_angles#Tait–Bryan_angles
4 https://en.wikipedia.org/wiki/Right-hand_rule#Rotations

https://en.wikipedia.org/wiki/Axes_conventions
https://en.wikipedia.org/wiki/Euler_angles#Tait–Bryan_angles
https://en.wikipedia.org/wiki/Right-hand_rule#Rotations


52 Appendix a. The Audio Scene Description Format (ASDF)

Multiple translations/rotations can be nested, which means that all coordinates are lo-
cal with respect to the parent transform. For more details, see Nested <transform>
(page 63).

a.3 Elements

The following sections describe all XML elements that can be used in an ASDF file.

a.3.1 <asdf>

An ASDF file must contain a single top-level <asdf> element with a required version
attribute. Currently, only version="0.4" is supported.

The <asdf> element can optionally contain <head> and <body> (page 52)
sub-elements.

If there is no <body> element, all sub-elements of <asdf> (except an optional <head>
element) are treated as if theywere contained in a <body> element, which in turn behaves
like an implicit<seq> (page 55), see<head> and<body> (page 52). For example, the clips
in implicit-seq.asd are played in sequence:

<asdf version="0.4">
<clip file="audio/xmas.wav" pos="-2.5 0" />
<clip file="audio/ukewave.ogg" pos="2.5 0" />

</asdf>

a.3.2 <head> and <body>

Both <head> and <body> are optional. If there is a <head> element, it must be the first
sub-element of <asdf> (page 52).

The <head> element can contain <source> (page 52) sub-elements and an optional <ref-
erence> (page 54). All elements within <head> exist for the whole duration of the scene.
If they contain transform attributes like pos or rot, those values are static. Additional
<transform> (page 57) elements can be used in the <body> to offset those values dynam-
ically.

The <body> element can contain <seq> and <par> (page 55) elements, as well as <clip>
(page 56) and <transform> (page 57) elements. If the <body> element contains multiple
sub-elements, it acts like an implicit <seq> (page 55) element.

a.3.3 <source>

<source> elements are defined within the <head> element and all sources exist for the
entire duration of the scene.
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a.3.3.1 File Inputs

<clip> and <channel> (page 56) elements can provide audio signals for <source> ele-
ments using the source attribute. If no source attribute is given, an unnamed <source>
is implicitly created.

A <source> can be fed by multiple <clip> elements over time, but only if they don’t
overlap. If the port attribute (see below) is given, no <clip> elements can be assigned.

An implementation may re-use the same unnamed <source> for multiple
non-overlapping <clip> elements, but this is not required.

a.3.3.2 Live Inputs

The port attribute can be used to provide live input signals, for example from micro-
phones, external sound hardware or any software capable of producing audio signals
(and connecting them with the software loading the ASDF scene).

The content of the port attribute isn’t strictly specified and it is up to the reproduction
software to interpret it.

For example, the SSR5 provides an --input-prefix option to which the content of the
port attribute is appended. By default, the prefix is system:capture_ and appending
numbers starting with 1will select the corresponding hardware input channels.

The scene live-sources.asd shows an example of using the first 4 hardware inputs as
sources:

<asdf version="0.4">
<head>

<source port="1" name="live input 1" pos="-1.5 2" />
<source port="2" name="live input 2" pos="-0.5 2" />
<source port="3" name="live input 3" pos="0.5 2" />
<source port="4" name="live input 4" pos="1.5 2" />

</head>
</asdf>

Live sources and sources driven by audio files can bemixed in one scene and<transform>
(page 57) elements can apply to either. See e.g. live-sources-and-file-sources.
asd:

<asdf version="0.4">
<head>

<source port="1" name="live input 1" pos="-1.5 2" />
<source port="2" name="live input 2" pos="-0.5 2" />
<source port="3" name="live input 3" id="three" />
<source port="4" name="live input 4" pos="1.5 2" />

</head>
<body>

<clip file="audio/xmas.wav" pos="0 2.5" />
<!-- Source "three" is only active during this time -->
<transform apply-to="three" pos="0.5 2" dur="1 min" />
<clip file="audio/xmas.wav" pos="0 2.5" />

(continues on next page)

5 http://spatialaudio.net/ssr/

http://spatialaudio.net/ssr/
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(continued from previous page)
</body>

</asdf>

a.3.3.3 Transform Attributes

Any <source> element with an id attribute can be the target of a <transform> (page 57)
(using the apply-to attribute). Like<clip> and<channel> (page 56), <source> can also
use transform attributes like pos, rot etc. as a shortcut, see source-transform.asd:

<asdf version="0.4">
<head>

<source id="src-one" pos="-1 1" />
<source id="src-two" pos="1 1" />

</head>
<clip file="audio/marimba.ogg">

<channel source="src-one" />
<channel source="src-two" />

</clip>
<clip file="audio/marimba.ogg">

<channel source="src-two" />
<channel source="src-one" />

</clip>
</asdf>

a.3.4 <reference>

The so-called reference point is a generalization of a listener point. In a headphone-based re-
production system it corresponds to the position (and orientation) of the listener’s head in
the virtual scene. In a loudspeaker-based system theremight bemultiple listeners, but the
loudspeaker setup should still have a single reference point, which is typically somewhere
in the center of the setup.

The <reference> can be specified explicitly within the <head> element and it can
optionally have static transform attributes like pos and rot, as in the example scene
reference-transform.asd:

<asdf version="0.4">
<head>

<reference pos="-1 1" rot="-45" />
</head>

</asdf>

At most one <reference> element can be specified, and it implicitly has the reserved
ID "reference", which can be used as the target of a <transform> (page 57). If
no <reference> element is given, the reference point can still be transformed using
apply-to="reference", as in implicit-reference.asd:
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<asdf version="0.4">
<par>

<clip file="audio/ukewave.ogg" pos="0 0" />
<transform apply-to="reference">

<o pos="0 -1" />
<o pos="-2 1" />
<o pos="2 1" />
<o pos="closed" />

</transform>
</par>

</asdf>

a.3.5 <seq> and <par>

Both audio clips and <transform> elements are objects that have a certain duration. They
can be placed in the timeline one after another by putting them into a <seq> (whichmeans
sequential) element. To delay an object or to create a pause between two objects, a <wait>
(page 64) element can be inserted into the sequence.

To reproduce two or more clips and/or <transform> elements at the same time, you can
put them into a <par> (which means parallel) element.

<seq> and <par> elements can be arbitrarily nested.

For a simple example, see seq-par.asd:

<asdf version="0.4">
<par>

<clip file="audio/ukewave.ogg" pos="0 2" />
<seq>

<clip file="audio/marimba.ogg">
<channel pos="-1 2" />
<channel pos="1 2" />

</clip>
<clip file="audio/xmas.wav" pos="-1.5 0" />

</seq>
</par>

</asdf>

If there is no <body> element, the main <asdf> (page 52) element implicitly behaves like
a <seq> element, i.e. all contained elements are played in sequence, like in the example
file implicit-seq.asd:

<asdf version="0.4">
<clip file="audio/xmas.wav" pos="-2.5 0" />
<clip file="audio/ukewave.ogg" pos="2.5 0" />

</asdf>

Within a <par> element, the first sub-element determines the duration of the whole
<par> element. Any following sub-elements must not be longer than the first. A useful
pattern is to use a <clip> as first sub-element (which defines the length of the <par>)
and one or more <transform> elements afterwards, which will by default “inherit” the
duration of the <clip>.
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a.3.5.1 repeat

<seq> and <par> elements can be repeated, see Repetition (page 65).

a.3.6 <clip> and <channel>

To load an audio file, a <clip> element can be inserted at the spot in the timeline
where it should be played back. Each <channel> of a multi-channel file can have
its own static transform attributes (pos, rot, etc.), as shown in the example scene
minimal-multichannel.asd:

<asdf version="0.4">
<clip file="audio/marimba.ogg">

<channel pos="-1 2" />
<channel pos="1 2" />

</clip>
</asdf>

If the audio file only has a single channel, an explicit <channel> element is not necessary.
If desired, transform attributes can be applied to the <clip> element itself, see minimal.
asd:

<asdf version="0.4">
<clip file="audio/ukewave.ogg" pos="1 2" />

</asdf>

Volume control is part of the <transform> (page 57) mechanism. A constant volume can
be specifiedwith thevol attribute of<clip> and/or<channel>, a dynamic volume enve-
lope can be applied with a <transform> element that’s running in parallel to the <clip>
– see <seq> and <par> (page 55).

As selecting-channels.asd shows, not all channels of a <clip> have to be used:

<asdf version="0.4">
<par repeat="3">

<seq>
<wait dur="1.18" />
<clip file="audio/marimba.ogg">

<channel pos="-2 2" />
<!-- NB: second channel is unused -->

</clip>
</seq>
<clip file="audio/marimba.ogg">

<channel skip="1" />
<channel pos="2 2" />

</clip>
</par>

</asdf>

Audio clips are always played in full length. Audio files should be trimmed to the desired
length during scene authoring.
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a.3.6.1 repeat

<clip> elements can be repeated, see Repetition (page 65).

a.3.6.2 id

Both <clip> and <channel> elements can be the target of a <transform> (page 57), as
long as they have an id attribute. <transform> and <clip> can have differing begin
and end times. A single <transform> can apply to multiple <clip> and/or <channel>
elements. A <clip> can be transformed by multiple <transform> elements over time.
The <transform> elements can overlap, but only one of them can contain a rotation in
this case (because the order of applying those rotations would be ambiguous).

a.3.6.3 source

If no source attribute is given, a <source> is created implicitly for each channel. The
order of implicit sources is unspecified. An implementationmay re-use an implicit source
for multiple clips (as long as the clips don’t overlap in time), but this is not required.

Individual audio channels can also be explicitly assigned to existing <source> (page 52)
elements, as demonstrated in source-transform.asd:

<asdf version="0.4">
<head>

<source id="src-one" pos="-1 1" />
<source id="src-two" pos="1 1" />

</head>
<clip file="audio/marimba.ogg">

<channel source="src-one" />
<channel source="src-two" />

</clip>
<clip file="audio/marimba.ogg">

<channel source="src-two" />
<channel source="src-one" />

</clip>
</asdf>

This illustrates that different <channel> elements can be assigned to the same <source>.
However, this only works if the channels don’t overlap in time.

a.3.7 <transform>

A constant transform can be simply added to a <clip> element, like the pos attribute in
minimal.asd:

<asdf version="0.4">
<clip file="audio/ukewave.ogg" pos="1 2" />

</asdf>
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Such attributes (pos, rot etc.) can be added to <clip> and <channel> (page 56), as well
as <source> (page 52) and <reference> (page 54).

These attributes can be seen as shorthand notation to avoid using <transform> elements
for such simple cases. Of course, explicit <transform> elements can also be used, as
shown in minimal-expanded-with-explicit-transform.asd:

<?xml version="1.0"?>
<asdf version="0.4">

<head>
<source id="src1" />

</head>
<body>

<par>
<clip file="audio/ukewave.ogg">

<channel id="channel1" source="src1" />
</clip>
<transform apply-to="channel1" pos="1 2 0" />

</par>
</body>

</asdf>

a.3.7.1 apply-to

The required attribute apply-to defines the target(s) for the transform. This is a
space-separated list of IDs of any <source> (page 52), <clip> and <channel> (page 56)
elements, as well as other <transform> elements. The special ID "reference" can be
used to target the <reference> (page 54).

A <transform> element can apply to multiple objects. An object can be the target of
multiple transforms, as long as at most one of them contains a rotation.

a.3.7.2 pos

This is named after position, but technically, the term translationwould be more appropri-
ate. The final position of a sound source – or the <reference> (page 54) – can be the result
of multiple translations (and maybe rotations as well, see below) applied to the default
position (0, 0, 0).

The pos attribute contains a space-separated list of two or three coordinate values (in
meters). If only two values are given, the third one is assumed to be zero. For coordinate
system conventions, see Position and Orientation (page 51).

a.3.7.3 rot

Unlike pos, this is aptly named after rotation. The final orientation of a sound source – or
the <reference> (page 54) – can be the result of multiple rotations, applied to the default
orientation (0, 0, 0).

The rot attribute contains a space-separated list of up to three angles (in degrees) called
azimuth, elevation and roll. Only azimuth is required, the others default to zero if not spec-
ified. For angle conventions, see Position and Orientation (page 51).
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The range of angle values is not limited, but the represented rotations are cyclically repeat-
ing and the number of turns is irrelevant. This means that the angles -90 and 270 both
specify the same rotation. When using a sequence of rotations to define a rotation spline
(see the <o> element below), the smallest possible angular difference between neighbor-
ing rotations is used. For example, an angle of 270 degrees followed by an angle of 0
degrees will lead to a rotation of 90 degrees. An angle of 180 degrees followed by -180
degrees will lead to no rotation at all.

The order of applying translations and rotationsmatters: within a <transform> element,
pos is applied after rot. This means that the target of a <transform> is first rotated
around the (local) origin and then translated to its final position.

a.3.7.4 vol

A (linear) volume change can be specified as a non-negative decimal value. Using vol=
"0" results in silence, vol="0.5" corresponds to an attenuation of about 6 decibels, vol=
"1" doesn’t change the volume and vol="2" corresponds to a boost of about 6 decibels.

a.3.7.5 <o>

A <transform> element can contain zero, one or more <o> elements. Let’s call them
transform nodes. A <transform> with a single <o> element is able to describe a constant
transform. If we specify two transform nodes, we can define a linear movement between
two points. This is shown in two-pos.asd:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 2" />
<o pos="2 2" />

</transform>
</par>

</asdf>

You can also specify two rotations, which leads to a (spherical) linear interpolation be-
tween them. See two-rot.asd:

<asdf version="0.4">
<par>

<clip id="marimba" file="audio/marimba.ogg">
<channel pos="-1 2" />
<channel pos="1 2" />

</clip>
<transform apply-to="marimba">

<o rot="45" />
<o rot="-45" />

</transform>
</par>

</asdf>
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In fact, two nodes are not a special case. As soon as there is more than one node, a spline
is constructed that passes through all the nodes. In the case of two nodes, this leads to
a linear path, but with more than two nodes, curved trajectories can be created, as for
example in minimal-spline.asd:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 -2" />
<o pos="-2 2" />
<o pos="2 2" />
<o pos="2 -2" />

</transform>
</par>

</asdf>

In addition to pos and rot, the vol attribute can also be animated, see transform-vol.
asd:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" pos="0 1.5" />
<transform apply-to="ukulele">

<o vol="0" />
<o vol="1" />
<o vol="0" />
<o vol="1.5" />
<o vol="0" />

</transform>
</par>

</asdf>

Note: This should only be used for relatively slow volume changes, because the ren-
derer might only apply them on a block-by-block basis. If you need fast envelopes,
those should be applied by modifying the audio file in a waveform editor.

a.3.7.5.1 time

By default, sources move with a constant speed along trajectories, but if desired, time val-
ues can be assigned to any node. The speed will be varied such that the source passes
those nodes at the given times. The first node always implicitly has time="0". See
spline-time.asd:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 -2" />
<o pos="-2 2" />
<o pos="2 2" time="5" />
<o pos="2 -2" />

</transform>
(continues on next page)
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(continued from previous page)
</par>

</asdf>

If not specified otherwise, time values are interpreted as seconds. Hours andminutes can
be spelled in HH:MM:SS.sss format (where hours and fractions of seconds are optional)
or using the h and min suffixes. For an example, see spline-time-hh-mm-ss.asd:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 -2" />
<o pos="-2 2" time="0:10" />
<o pos="2 2" time="0.5 min" />
<o pos="2 -2" />

</transform>
</par>

</asdf>

Time values can also be given in percent, where 100% is the total duration of (one repeti-
tion of) the <transform>. See spline-time-percent.asd:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 -2" />
<o pos="-2 2" time="10%" />
<o pos="2 2" time="50%" />
<o pos="2 -2" />

</transform>
</par>

</asdf>

If the <transform> doesn’t have a dur attribute (see below), the last node can have an
explicit time value, but a percentage is not allowed. If unspecified, time="100%" is im-
plied, i.e. the <transform> always ends with the last transform node.

If the time value of a node is not specified, it is deduced from the surrounding nodes.

a.3.7.5.2 speed

In addition to time values, concrete speed values can also be specified. However, not all
speed values are allowed. In order to provide smooth movements, the possible speed
values are limited to a certain range. The speed is given in meters per second.

For an example, see spline-speed.asd:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele">

<o pos="-2 -2" speed="0" />
<o pos="-2 2" />

(continues on next page)
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(continued from previous page)
<o pos="2 2" time="15" speed="0.5" />
<o pos="2 -2" />

</transform>
</par>

</asdf>

a.3.7.5.3 tension/continuity/bias

The ASDF uses Kochanek–Bartels Splines (page 191), which means that the so-called TCB
attributestension, continuity andbias (each ranging from-1.0 to1.0with a default
of 0.0) can be used. These attributes can be applied to individual transform nodes or to
the whole <transform>, as shown in spline-tcb.asd:

<asdf version="0.4">
<par>

<clip file="audio/marimba.ogg">
<channel id="left" />
<channel id="right" />

</clip>
<transform apply-to="left" tension="-0.5">

<o pos="-2 -2" />
<o pos="-2 2" time="33%" />
<o pos="2 2" time="66%" />
<o pos="2 -2" />

</transform>
<transform apply-to="right">

<o pos="-2 -2" />
<o pos="-2 2" bias="-1" time="33%" />
<o pos="2 2" bias="1" time="66%" />
<o pos="2 -2" />

</transform>
</par>

</asdf>

In most cases, specifying TCB values will not be necessary, but they can be useful for
creating straight lines, sharp edges, circles and other Special Shapes (page 67).

TCB attributes can also be used for rot trajectories, leading to Kochanek–Bartels-like Rota-
tion Splines (page 259).

a.3.7.5.4 Mixed Transform Attributes

We have seen that pos, rot and vol trajectories can be created. However, they can also
be combined into a single trajectory.

None of the transform attributes are required, but if one of the attributes is used in any
transformnode, it also has to be specified in the first and last node. In otherwords,missing
values are interpolated but not extrapolated.

The scene mixed-transform-attributes.asd illustrates this in an example trajec-
tory:
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<asdf version="0.4">
<par>

<clip id="marimba" file="audio/marimba.ogg">
<channel pos="-1 0" />
<channel pos="1 0" />

</clip>
<transform apply-to="marimba">

<o pos="0 -2" rot="-20" vol="1" />
<o pos="0 0" time="1s" />
<o vol="1" />
<o rot="0" time="2s" />
<o vol="0" />
<o vol="1" time="65%" />
<o pos="0 2" rot="20" vol="1"/>

</transform>
</par>

</asdf>

a.3.7.6 repeat

<transform> elements can be repeated, see Repetition (page 65).

a.3.7.7 dur

If the last transform node has its time attribute set, this will determine the duration of the
<transform>. Alternatively, the duration of a <transform> can be specified with the
dur attribute, which allows the same syntax as the time attribute of transform nodes. If
there are repetitions, the duration is that of a single repetition. A percentage can be given,
which is relative to the duration of (one repetition of) the parent element.

If no duration is given, and the <transform> is part of a <par> container, the dura-
tion is taken from the <par> container (whose duration might be provided by its first
sub-element). See <seq> and <par> (page 55).

a.3.7.8 Nested <transform>

Any <transform> that has an id attribute can be used as the target of another
<transform>. The transforms can have different begin and end times. They only have
an effect while they are active.

Multiple <transform> elements can target the same object, but at most one of them can
specify a rotation.

An example of nested transforms can be seen in nested-transforms.asd:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" pos="-2 -2" />
<transform id="horizontal-movement" apply-to="ukulele" repeat="10">

<o pos="2 4" />
<o pos="0 2" />

(continues on next page)
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(continued from previous page)
<o pos="2 0" />
<o pos="4 2" />
<o pos="closed" />

</transform>
<transform apply-to="horizontal-movement">

<o rot="0" />
<o rot="0 0 90" />
<o rot="0 0 180" />

</transform>
</par>

</asdf>

The <clip> defines a static position, which is then dynamically translated in the horizon-
tal plane according to the <transform> named horizontal-movement. This horizontal
movement is then transformed again, this time with a dynamic rotation around the roll
axis.

a.3.7.9 Creating Groups With <transform>

There is no dedicated “group” element, but a <transform> with multiple targets in the
apply-to attribute is essentially defining a group. All transform attributes are optional,
allowing us to create a group by using a non-transforming <transform>:

<transform id="my-group" apply-to="target1 target2 my-other-target" />

This group can then in turn be the target of further <transform> elements.

a.3.8 <wait>

This can be used to wait for some time, see e.g. wait.asd:

<asdf version="0.4">
<clip file="audio/xmas.wav" pos="-1.5 1" />
<wait dur="5" />
<clip file="audio/ukewave.ogg" pos="1.5 1" />

</asdf>

a.3.8.1 dur

The wait duration can be given either as a time duration or as a percentage of the par-
ent duration. The same syntax as in the time (page 60) attribute of transform nodes is
supported.



a.4. Repetition 65

a.4 Repetition

<clip> (page 56), <transform> (page 57), <seq> and <par> (page 55) elements can be
repeated using the repeat attribute. Only full repetitions (i.e. integer values) are sup-
ported.

For an example of all elements that support repeat, see repeat.asd:

<asdf version="0.4">
<par repeat="5">

<clip id="ukulele" file="audio/ukewave.ogg" repeat="2" />
<seq repeat="3">

<transform apply-to="ukulele" dur="20%">
<o pos="0 2" />
<o pos="2 0" />
<o pos="0 -2" />
<o pos="-2 0" />
<o pos="closed" />

</transform>
<transform apply-to="ukulele" repeat="4">

<o pos="0 2" />
<o pos="3 2" />
<o pos="-3 2" />
<o pos="closed" />

</transform>
</seq>

</par>
</asdf>

It’s not possible to repeat an element forever, but youmight aswell just use a huge number
of repetitions, as shown in repeat-nearly-indefinitely.asd:

<asdf version="0.4">
<par repeat="999999">

<clip id="ukulele" file="audio/ukewave.ogg" />
<transform apply-to="ukulele" repeat="4">

<o pos="0 2" />
<o pos="2 0" />
<o pos="0 -2" />
<o pos="-2 0" />
<o pos="closed" />

</transform>
</par>

</asdf>

a.5 ASDF Splines

Knowing the details about the splines used in the ASDF is not necessary to create scenes.
However, it might still be interesting to know why the shape and behavior of trajectories
is the way it is.
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A reference implementation of ASDF splines is available at https://github.com/
AudioSceneDescriptionFormat/asdfspline-rust. This library is implemented in
Rust6 and it provides language bindings for C7 and Python8.

We refer to a general definition of splines and their properties (page 101) and to detailed back-
ground information about all the different types of Euclidean splines (page 88) and rotation
splines (page 232) mentioned here, including their mathematical derivation and their in-
dividual properties.

a.5.1 Position Splines

The most obvious type of splines in the ASDF are position splines. The idea is that a scene
author provides a sequence of positions in three-dimensional space and an ASDF library
creates a smooth curve that goes through all of them. The scene author can also provide
the times at which the positions should be reached, as well as – with certain limitations –
the speed at those positions.

The ASDF uses (cubic) Kochanek–Bartels Splines (page 191), which provide three parame-
ters per control point: tension, continuity and bias, which can be abbreviated to TCB. These
TCB parameters allow changing the shape of the resulting curve without changing the
original sequence of positions. The possible values range from -1 to 1, with 0 being the de-
fault. Kochanek–Bartels splines are a superset of the probablymore familiar Catmull–Rom
Splines (page 155). If all TCB values are zero, the two splines are identical.

To be guaranteed to avoid cusps and self-intersections (assuming default TCB values),
Centripetal Parameterization (page 163) is used. This, however, means that the parameter
values cannot be chosen freely anymore. Since we want to be able to specify the times
when certain control points are reached (and to some degree the speed along the trajec-
tory), we cannot directly interpret the parameter value as elapsed time. As a first step,
we re-parameterize the spline to have constant speed, which is also known as Arc-Length
Parameterization (page 229).

Having constant speed trajectories is useful, but only being able to use constant speed
is also quite limiting. Therefore, on top of arc-length parameterization, ASDF splines
are also re-parameterized with a monotone spline (page 231). This means that for each
position in the spline, we can specify the time when this position should be reached.
We can even specify the speed at these positions (as long as the monotonicity of the
re-parameterization spline can be maintained). See the section about <transform>
(page 57) for details.

It might have been tempting to use Bézier Splines (page 134) due to their widespread use
in 2D drawing software. However, finding appropriate drag points in three-dimensional
space is very hard compared to simply defining a sequence of 3D positions. Similarly, it
would be quite cumbersome to explicitly define three-dimensional tangent vectors for use
with Hermite Splines (page 105).

6 https://www.rust-lang.org/
7 https://www.open-std.org/jtc1/sc22/wg14/
8 https://www.python.org/

https://github.com/AudioSceneDescriptionFormat/asdfspline-rust
https://github.com/AudioSceneDescriptionFormat/asdfspline-rust
https://www.rust-lang.org/
https://www.open-std.org/jtc1/sc22/wg14/
https://www.python.org/
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a.5.2 Rotation Splines

When a scene author provides a sequence of orientations for sound sources or groups of
sound sources, the values between the given orientationswill be smoothly interpolated.

The same kind of splines are used as for positions, just modified to work with rotations.
CentripetalKochanek–Bartels-like Rotation Splines (page 259) are used, which are a superset
of Catmull–Rom-Like Rotation Splines (page 256). If specified, the same TCB values apply
to both position and rotation splines. The rotation splines are arc-length parameterized
by default, which means that they have a constant angular speed. Time instances can be
specified for any of the given rotations, which in turn control the changing angular speeds
along the spline. The angular speed cannot be specified explicitly, though. This would
be technically possible, but it is currently not implemented because specifying an angular
speed (for example in degrees per second) seems unintuitive. However, this might be
added in a future ASDF version.

a.5.3 Volume Splines

The volume of the <reference> (page 54), of <source> (page 52) elements and of groups
of sources can be changed over time. Since volume can be applied just as translation
and rotation, it is part of the <transform> (page 57) attributes, which can be applied to
anything that has an id attribute.

Volume values should change smoothly, so they are controlled with splines as well. An
important property of those splines is that theymust not produce interpolated values that
overshoot the given localmaximumvalues, nor should they produce negative values. This
can be ensured by using Piecewise Monotone Interpolation (page 214).

a.6 Special Shapes

There are no pre-defined special shapes in the ASDF. All trajectories use the same under-
lying type of spline – see ASDF Splines (page 65).

a.6.1 Square

Trajectories in the ASDF are smooth curves by default, and a little extra effort is required
to create movements with sharp corners. There are two simple settings to get straight
line segments: tension="1" or continuity="-1". Both options are shown in square.
asd:

<asdf version="0.4">
<par>

<clip file="audio/marimba.ogg">
<channel id="one" />
<channel id="two" />

</clip>
<transform apply-to="one" tension="1">

<o pos="0 2" />
<o pos="-2 0" />

(continues on next page)
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(continued from previous page)
<o pos="0 -2" />
<o pos="2 0" />
<o pos="closed" />

</transform>
<transform apply-to="two" continuity="-1">

<o pos="0 2" />
<o pos="2 0" />
<o pos="0 -2" />
<o pos="-2 0" />
<o pos="closed" />

</transform>
</par>

</asdf>

a.6.2 Circle

Non-rational cubic polynomial curves – which is the type of curve the ASDF uses for
position trajectories – cannot exactly describe circles. But this is no problem, because
circles can be approximated very closely. This can be done by providing the corner points
of a square and using a tension value of about -0.66. However, there is actually a way
to create exact circles: by applying a rotation spline to a translated object. The example
scene circle.asd shows both approaches:

<asdf version="0.4">
<par>

<clip file="audio/marimba.ogg">
<channel id="one" pos="0 2" />
<channel id="two" />

</clip>
<!-- this is a perfect circle: -->
<transform apply-to="one">

<o rot="-10" />
<o rot="-100" />
<o rot="-190" />
<o rot="-280" />
<o rot="closed" />

</transform>
<!-- this is extremely close to a circle: -->
<transform apply-to="two" tension="-0.66">

<o pos="0 2" />
<o pos="2 0" />
<o pos="0 -2" />
<o pos="-2 0" />
<o pos="closed" />

</transform>
</par>

</asdf>

In this example, the center of rotation is the origin. If the center of rotation is supposed to
be somewhere else, it can be moved by applying a new <transform> element with the
desired pos attribute to the <transform> that does the rotation.
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a.6.3 Helix

A helical movement can be created by combining a (repeated) circular movement (using
one of the methods shown above) with a linear movement perpendicular to the plane of
the circle. This is shown in helix.asd:

<asdf version="0.4">
<par>

<clip id="ukulele" file="audio/ukewave.ogg" pos="-2 0" />
<transform id="circular-motion" apply-to="ukulele" repeat="10">

<o rot="0 0 0" />
<o rot="0 0 90" />
<o rot="0 0 180" />
<o rot="0 0 -90" />
<o rot="closed" />

</transform>
<transform id="forward-motion" apply-to="circular-motion">

<o pos="0 -2" />
<o pos="0 2" />

</transform>
</par>

</asdf>

In this example, the <clip> is offset to the left and a rotation spline rotates this offset
multiple times around the roll axis. This circular motion is then translated along the
default view direction. In this case, it doesn’t matter if forward-motion is applied to
circular-motion or directly to ukulele.

a.6.4 Sinusoidal Oscillation

Sinewaves are not directly supported by the ASDF, but they can be approximated to some
degree. By setting speed="0" at the desired maxima and minima, something similar to
sine and cosine oscillations can be created. This is illustrated in sine-wave.asd:

<asdf version="0.4">
<par>

<clip file="audio/marimba.ogg">
<channel id="one" />
<channel id="two" pos="0 2" />

</clip>
<transform id="left-right-motion" apply-to="one two" repeat="2">

<o pos="0 0" />
<o pos="2 0" speed="0" time="25%" />
<o pos="-2 0" speed="0" time="75%" />
<o pos="closed" />

</transform>
<transform id="forward-backward-motion" apply-to="one" repeat="2">

<o pos="0 2" speed="0" />
<o pos="0 -2" speed="0" time="50%" />
<o pos="closed" />

</transform>
</par>

</asdf>
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a.6.5 Lissajous Figures

Once we have sinusoidal oscillations (or at least something similar), we can make Lis-
sajous figures9, as shown in lissajous.asd:

<asdf version="0.4">
<par repeat="2">

<clip id="ukulele" file="audio/ukewave.ogg" vol="0.3" />
<par repeat="3">

<transform id="left-right" apply-to="ukulele">
<o pos="-2 0" speed="0" />
<o pos="2 0" time="50%" speed="0" />
<o pos="closed" />

</transform>
<seq repeat="3">

<transform id="front-back" apply-to="ukulele">
<o pos="0 0" />
<o pos="0 2" time="25%" speed="0" />
<o pos="0 -2" time="75%" speed="0" />
<o pos="closed" />

</transform>
</seq>

</par>
</par>

</asdf>

a.7 Implementation Notes

The information in this section is not needed in order to create audio scenes with the
ASDF.

When implementing an ASDF library, it is recommended to convert all rotation angles as
soon as possible into rotation matrices or quaternions, as the following sections show.

The following section was generated from doc/rotation-matrices.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a.7.1 Converting ASDF Rotations to Rotation Matrices

To rotate objects in an ASDF scene, you can use azimuth, elevation and roll angles (page 58),
for example like this:

<... rot="-30 12.5 5">

The used coordinate system conventions are shown in the section about position and orien-
tation (page 51).

In this section we show how these angles can be converted to rotation matrices10, in order
to practically use those rotations in software.

There isn’t just a single way to choose rotation angles in 3D space, in fact, there are very
many ways to do this, many of them leading to different rotation matrices.

9 https://en.wikipedia.org/wiki/Lissajous_curve
10 https://en.wikipedia.org/wiki/Rotation_matrix

https://en.wikipedia.org/wiki/Lissajous_curve
https://en.wikipedia.org/wiki/Lissajous_curve
https://en.wikipedia.org/wiki/Rotation_matrix
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Here’s a (hopefully somewhat complete) overview about the possible options and the
choices taken by the ASDF:

• Right-handed vs. left-handed coordinate system11: The ASDF uses a right-handed
one.

• Direction of the axes: The ASDF uses the ENU (east, north, up) convention.

• Euler angles vs. Tait–Bryan angles12: The ASDF uses a variation of Tait–Bryan.

• There are many possible conventions13 for the order of angles and which axes they
rotate around: The ASDF conventions are shown in detail below.

• “intrinsic”14 vs. “extrinsic”15 = “local” vs. “global” reference system: This sounds
complicated, but it’s really just about the order of transformations. See below for
details.

• Rotating vectors (= “active” = “alibi”) vs. rotating the coordinate system (=
“passive” = “alias”)16: In the following derivations we consider the active
situation, but a similar derivation can be done for the passive case.
In case you are wondering: the functions sympy.matrices.rot_axis1()17 etc. do the
latter, therefore we cannot use them here (at least not without some further
manipulations).

• Rotation matrices can be derived for pre-multiplication with column vectors vs.
post-multiplication with row vectors18: We are using column vectors here, but (dif-
ferent) matrices could be derived for use with row vectors.

Let’s get started then, shall we?

First we import SymPy19, which is great for doing this kind of symbolic derivations:

[1]: import sympy as sp

We have to define our three input angles. These are often called azimuth/elevation/roll, or
yaw/pitch/roll, or heading/elevation/bank.

Here we just use the greek letters 𝛼, 𝛽 and 𝛾:

[2]: alpha, beta, gamma = sp.symbols('alpha beta gamma')

TheASDFuses anENU(east, north, up) coordinate systemand the reference (“forward”)
direction is north, i.e. along the positive y-axis.

[3]: alpha

[3]: 𝛼

The azimuth angle 𝛼 is:

11 https://en.wikipedia.org/wiki/Coordinate_system
12 https://en.wikipedia.org/wiki/Euler_angles
13 https://en.wikipedia.org/wiki/Axes_conventions
14 https://en.wikipedia.org/wiki/Euler_angles#Conventions_by_intrinsic_rotations
15 https://en.wikipedia.org/wiki/Euler_angles#Conventions_by_extrinsic_rotations
16 https://en.wikipedia.org/wiki/Active_and_passive_transformation
17 https://docs.sympy.org/latest/modules/matrices/matrices.html#sympy.matrices.

dense.rot_axis1
18 https://en.wikipedia.org/wiki/Rotation_matrix#Ambiguities
19 https://www.sympy.org/

https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Euler_angles
https://en.wikipedia.org/wiki/Axes_conventions
https://en.wikipedia.org/wiki/Euler_angles#Conventions_by_intrinsic_rotations
https://en.wikipedia.org/wiki/Euler_angles#Conventions_by_extrinsic_rotations
https://en.wikipedia.org/wiki/Active_and_passive_transformation
https://en.wikipedia.org/wiki/Active_and_passive_transformation
https://docs.sympy.org/latest/modules/matrices/matrices.html#sympy.matrices.dense.rot_axis1
https://en.wikipedia.org/wiki/Rotation_matrix#Ambiguities
https://en.wikipedia.org/wiki/Rotation_matrix#Ambiguities
https://www.sympy.org/
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• zero when pointing north (i.e. along the positive y-axis),

• rotating around the z-axis (which points up)

• positive when rotating towards west (right hand rule20).

[4]: beta

[4]: 𝛽

The elevation angle 𝛽 is:

• zero in the horizontal plane,

• rotating around the local x-axis

• positive when the nose goes up (right hand rule).

[5]: gamma

[5]: 𝛾

The roll angle 𝛾 is:

• zero when the top of the object points to the zenith (which is just the normal “up-
right” orientation),

• rotating around the local y-axis

• positive when the object is leaning towards starboard21 (right hand rule).

The definitions above use the intrinsicway of describing the rotations (i.e. relative to local
coordinate axes).

If you want to use the extrinsic way, you can use the same angles. You just have to choose
the right order of global rotations: First roll, then elevation, then azimuth. We will be using
the extrinsic style below.

Let’s also define the cartesian components of a vector 𝑎:

[6]: a_x, a_y, a_z = sp.symbols('a_x:z')

We will need those only during the derivation, they will not appear in the final equa-
tions.

a.7.1.1 Azimuth: Rotation around the z-Axis

Writing the vector 𝑎 in cylindrical coordinates 𝑟𝑧 (radius), 𝜙𝑧 (angle) and 𝑎𝑧 (height):

[7]: r_z, phi_z = sp.symbols('r_z phi_z')

… we can get its cartesian coordinates like this:

20 https://en.wikipedia.org/wiki/Right-hand_rule
21 https://en.wikipedia.org/wiki/Port_and_starboard

https://en.wikipedia.org/wiki/Right-hand_rule
https://en.wikipedia.org/wiki/Port_and_starboard
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[8]: a = sp.Matrix([
r_z * sp.cos(phi_z),
r_z * sp.sin(phi_z),
a_z,

])
a

[8]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑟𝑧 cos �𝜙𝑧�
𝑟𝑧 sin �𝜙𝑧�

𝑎𝑧

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

We are using column vectors here, that means we are searching for a rotation matrix to
left-multiply this vector in order to get the vector 𝑏.

To get a representation of the vector 𝑏, let’s rotate 𝑎 by an azimuth angle 𝛼:

[9]: b = sp.Matrix([
r_z * sp.cos(phi_z + alpha),
r_z * sp.sin(phi_z + alpha),
a_z,

])
b

[9]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑟𝑧 cos �𝛼 + 𝜙𝑧�
𝑟𝑧 sin �𝛼 + 𝜙𝑧�

𝑎𝑧

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Note that 𝑎𝑧 is not affected by the rotation.

We can use some trigonometric identities to expand this:

[10]: b = b.expand(trig=True)
b

[10]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−𝑟𝑧 sin (𝛼) sin �𝜙𝑧� + 𝑟𝑧 cos (𝛼) cos �𝜙𝑧�
𝑟𝑧 sin (𝛼) cos �𝜙𝑧� + 𝑟𝑧 sin �𝜙𝑧� cos (𝛼)

𝑎𝑧

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

… and re-write it using the (cartesian) coordinates of vector 𝑎: 𝑎𝑥, 𝑎𝑦 and 𝑎𝑧:

[11]: b = b.subs(list(zip(a, [a_x, a_y, a_z])))
b

[11]: ⎡
⎢⎢⎢⎢⎢⎣

𝑎𝑥 cos (𝛼) − 𝑎𝑦 sin (𝛼)
𝑎𝑥 sin (𝛼) + 𝑎𝑦 cos (𝛼)

𝑎𝑧

⎤
⎥⎥⎥⎥⎥⎦

Remember, we are looking for a rotationmatrix that, when 𝑎 is left-multiplied by it, yields
𝑏.

In other words (or rather symbols):

⎡
⎢⎢⎢⎢⎢⎣

𝑏𝑥
𝑏𝑦
𝑏𝑧

⎤
⎥⎥⎥⎥⎥⎦ = 𝑅𝑧(𝛼)

⎡
⎢⎢⎢⎢⎢⎣

𝑎𝑥
𝑎𝑦
𝑎𝑧

⎤
⎥⎥⎥⎥⎥⎦
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Given the components of 𝑏 shown above, we can simply pick out the matrix elements.

Or we let SymPy do it:

[12]: Rz = sp.Matrix([[line.coeff(var) for var in [a_x, a_y, a_z]]
for line in b])

Rz

[12]: ⎡
⎢⎢⎢⎢⎢⎣

cos (𝛼) − sin (𝛼) 0
sin (𝛼) cos (𝛼) 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎦

That’s it!

Let’s do a little sanity check, rotating the y unit vector (i.e. “looking straight ahead”) by
90 degrees to the left:

[13]: Rz.subs(alpha, sp.pi / 2) * sp.Matrix([0, 1, 0])

[13]: ⎡
⎢⎢⎢⎢⎢⎣

−1
0
0

⎤
⎥⎥⎥⎥⎥⎦

This yields the negative x unit vector, which pointswestwards. That sounds about right!

a.7.1.2 Elevation: Rotation around the (local) x-Axis

Now the same thing, just using a different vector 𝑎.

[14]: r_x, phi_x = sp.symbols('r_x phi_x')
a = sp.Matrix([

a_x,
r_x * sp.cos(phi_x),
r_x * sp.sin(phi_x),

])
a

[14]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑎𝑥
𝑟𝑥 cos �𝜙𝑥�
𝑟𝑥 sin �𝜙𝑥�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Let’s rotate 𝑎 by the elevation angle 𝛽 to get a vector 𝑏:

[15]: b = sp.Matrix([
a_x,
r_x * sp.cos(phi_x + beta),
r_x * sp.sin(phi_x + beta),

])
b

[15]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑎𝑥
𝑟𝑥 cos �𝛽 + 𝜙𝑥�
𝑟𝑥 sin �𝛽 + 𝜙𝑥�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Again, expand using trig identities and substitute 𝑎 back in:
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[16]: b = b.expand(trig=True).subs(list(zip(a, [a_x, a_y, a_z])))
b

[16]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑎𝑥
𝑎𝑦 cos �𝛽� − 𝑎𝑧 sin �𝛽�
𝑎𝑦 sin �𝛽� + 𝑎𝑧 cos �𝛽�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

… and obtain a matrix 𝑅𝑥(𝛽) that transforms 𝑎 into 𝑏:

[17]: Rx = sp.Matrix([[line.coeff(var) for var in [a_x, a_y, a_z]]
for line in b])

Rx

[17]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0
0 cos �𝛽� − sin �𝛽�
0 sin �𝛽� cos �𝛽�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

And again a sanity check, this time using an elevation of 90 degrees:

[18]: Rx.subs(beta, sp.pi / 2) * sp.Matrix([0, 1, 0])

[18]: ⎡
⎢⎢⎢⎢⎢⎣

0
0
1

⎤
⎥⎥⎥⎥⎥⎦

The result is a vector pointing up, which is what we expected, didn’t we?

a.7.1.3 Roll: Rotation around the (local) y-Axis

Doing very similar steps as before:

[19]: r_y, phi_y = sp.symbols('r_y phi_y')
a = sp.Matrix([

r_y * sp.sin(phi_y),
a_y,
r_y * sp.cos(phi_y),

])
a

[19]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑟𝑦 sin �𝜙𝑦�
𝑎𝑦

𝑟𝑦 cos �𝜙𝑦�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[20]: b = sp.Matrix([
r_y * sp.sin(phi_y + gamma),
a_y,
r_y * sp.cos(phi_y + gamma),

])
b

[20]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑟𝑦 sin �𝛾 + 𝜙𝑦�
𝑎𝑦

𝑟𝑦 cos �𝛾 + 𝜙𝑦�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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[21]: b = b.expand(trig=True).subs(list(zip(a, [a_x, a_y, a_z])))
b

[21]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

𝑎𝑥 cos �𝛾� + 𝑎𝑧 sin �𝛾�
𝑎𝑦

−𝑎𝑥 sin �𝛾� + 𝑎𝑧 cos �𝛾�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[22]: Ry = sp.Matrix([[line.coeff(var) for var in [a_x, a_y, a_z]]
for line in b])

Ry

[22]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos �𝛾� 0 sin �𝛾�
0 1 0

− sin �𝛾� 0 cos �𝛾�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Sanity check: Applying a roll angle of 90 degrees to a vector pointing up …

[23]: Ry.subs(gamma, sp.pi / 2) * sp.Matrix([0, 0, 1])

[23]: ⎡
⎢⎢⎢⎢⎢⎣

1
0
0

⎤
⎥⎥⎥⎥⎥⎦

… leads to a vector pointing east. This is what we wanted.

a.7.1.4 Combining all Axes

As mentioned above, we have to choose the right sequence of (global) rotations: first roll,
then elevation, then azimuth.

Note that we start with 𝑅𝑦 (roll) on the right, and then left-apply 𝑅𝑥 (elevation) and then
left-apply 𝑅𝑧 (azimuth).

You should read this from right to left:

[24]: R = Rz * Rx * Ry
R

[24]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− sin (𝛼) sin �𝛽� sin �𝛾� + cos (𝛼) cos �𝛾� − sin (𝛼) cos �𝛽� sin (𝛼) sin �𝛽� cos �𝛾� + sin �𝛾� cos (𝛼)
sin (𝛼) cos �𝛾� + sin �𝛽� sin �𝛾� cos (𝛼) cos (𝛼) cos �𝛽� sin (𝛼) sin �𝛾� − sin �𝛽� cos (𝛼) cos �𝛾�

− sin �𝛾� cos �𝛽� sin �𝛽� cos �𝛽� cos �𝛾�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

That’s it, that’s our rotation matrix!

Copy this to use it with SymPy (you’ll have to import Matrix, sin and cos and define
alpha, beta and gamma):

[25]: print(R)

Matrix([[-sin(alpha)*sin(beta)*sin(gamma) + cos(alpha)*cos(gamma), -
↪sin(alpha)*cos(beta), sin(alpha)*sin(beta)*cos(gamma) +␣
↪sin(gamma)*cos(alpha)], [sin(alpha)*cos(gamma) +␣
↪sin(beta)*sin(gamma)*cos(alpha), cos(alpha)*cos(beta),␣

(continues on next page)
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(continued from previous page)
↪sin(alpha)*sin(gamma) - sin(beta)*cos(alpha)*cos(gamma)], [-
↪sin(gamma)*cos(beta), sin(beta), cos(beta)*cos(gamma)]])

If you want to use it with NumPy, you can copy this (you’ll have to import numpy and
define alpha, beta and gamma):

[26]: from sympy.printing.numpy import NumPyPrinter
print(NumPyPrinter().doprint(R))

numpy.array([[-numpy.sin(alpha)*numpy.sin(beta)*numpy.sin(gamma) + numpy.
↪cos(alpha)*numpy.cos(gamma), -numpy.sin(alpha)*numpy.cos(beta), numpy.
↪sin(alpha)*numpy.sin(beta)*numpy.cos(gamma) + numpy.sin(gamma)*numpy.
↪cos(alpha)], [numpy.sin(alpha)*numpy.cos(gamma) + numpy.sin(beta)*numpy.
↪sin(gamma)*numpy.cos(alpha), numpy.cos(alpha)*numpy.cos(beta), numpy.
↪sin(alpha)*numpy.sin(gamma) - numpy.sin(beta)*numpy.cos(alpha)*numpy.
↪cos(gamma)], [-numpy.sin(gamma)*numpy.cos(beta), numpy.sin(beta), numpy.
↪cos(beta)*numpy.cos(gamma)]])

a.7.1.5 Rotation Matrix to Angles

You may ask: how can we get back from the rotation matrix to our angles?

If you look at the matrix 𝑅 above, you see that one component only depends on one vari-
able. Namely, the component in the last row, middle column:

[27]: R[2, 1]

[27]: sin �𝛽�

Therefore, we can get the value of 𝛽 simply by taking the arc-sine of this matrix element.
In a numeric calculation, this would probably look something like:

beta = asin(R[2, 1])

Note:

The argument of the asin() function has to be in the domain [-1.0; 1.0] (see
https://en.cppreference.com/w/c/numeric/math/asin).

Due to rounding errors, the value might be slightly outside this range, which would
lead to a return value of NaN.

Make sure to handle this case, e.g. by re-normalizing the rotation matrix.

The rest of the matrix components depend on more than one variable, but there are a few
elements that depend only on two variables.

If we divide the top middle component (multiplied by −1) by the one below:

[28]: -R[0, 1] / R[1, 1]

https://en.cppreference.com/w/c/numeric/math/asin
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[28]: sin (𝛼)
cos (𝛼)

… we get an expression that only depends on 𝛼.

We can simplify this expression:

[29]: _.simplify()

[29]: tan (𝛼)

Therefore, to get the angle 𝛼, we only have to calculate −𝑅0,1
𝑅1,1

and take the arc-tangent of
the result.

To get the appropriate quadrant of the result, wewill use the function atan2()22 in numeric
calculations:

alpha = atan2(-R[0, 1], R[1, 1])

We can do a similar thing to get 𝛾:

[30]: -R[2, 0] / R[2, 2]

[30]: sin �𝛾�

cos �𝛾�

[31]: _.simplify()

[31]: tan �𝛾�

Similar to the above, we take the arc-tangent of −𝑅2,0𝑅2,2
to get the angle 𝛾.

gamma = atan2(-R[2, 0], R[2, 2])

a.7.1.5.1 Gimbal Lock

But wait a second, we might have a problem: the dreaded gimbal lock23!

Let’s consider the case where 𝛽 = 90 degrees:

[32]: R1 = R.subs(beta, sp.pi/2)
R1

[32]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− sin (𝛼) sin �𝛾� + cos (𝛼) cos �𝛾� 0 sin (𝛼) cos �𝛾� + sin �𝛾� cos (𝛼)
sin (𝛼) cos �𝛾� + sin �𝛾� cos (𝛼) 0 sin (𝛼) sin �𝛾� − cos (𝛼) cos �𝛾�

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

If we try to calculate 𝛼 and 𝛾 like above, we end up calculating

atan2(0, 0)

Sadly, that is not defined:
22 https://en.wikipedia.org/wiki/Atan2
23 https://en.wikipedia.org/wiki/Gimbal_lock

https://en.wikipedia.org/wiki/Atan2
https://en.wikipedia.org/wiki/Gimbal_lock
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[33]: sp.atan2(0, 0)

[33]: NaN

Note:

If the implementation supports IEEE floating-point arithmetic (IEC 60559), no NaN is
returned (except if one of the inputs is NaN), see https://en.cppreference.com/
w/c/numeric/math/atan2.

In this case, atan2()will return ±0 or ±𝜋 (which is generally not correct).

Depending on your use case, however, thismight be good enough. If not, keep reading
below!

We can try to find alternative equations for 𝛼 and 𝛾 from the hitherto unused matrix ele-
ments (but let’s simplify the matrix first):

[34]: R1 = sp.trigsimp(R1)
R1

[34]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos �𝛼 + 𝛾� 0 sin �𝛼 + 𝛾�
sin �𝛼 + 𝛾� 0 − cos �𝛼 + 𝛾�

0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[35]: sp.simplify(R1[1, 0] / R1[0, 0])

[35]: tan �𝛼 + 𝛾�

[36]: sp.simplify(R1[0, 2] / -R1[1, 2])

[36]: tan �𝛼 + 𝛾�

There is no unique solution to these equations. You can freely choose either 𝛼 or 𝛾 and
use that to calculate the other angle.

A very similar thing happens for 𝛽 = −90 degrees:

[37]: R2 = R.subs(beta, -sp.pi/2)
R2

[37]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

sin (𝛼) sin �𝛾� + cos (𝛼) cos �𝛾� 0 − sin (𝛼) cos �𝛾� + sin �𝛾� cos (𝛼)
sin (𝛼) cos �𝛾� − sin �𝛾� cos (𝛼) 0 sin (𝛼) sin �𝛾� + cos (𝛼) cos �𝛾�

0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[38]: R2 = sp.trigsimp(R2)
R2

[38]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

cos �𝛼 − 𝛾� 0 − sin �𝛼 − 𝛾�
sin �𝛼 − 𝛾� 0 cos �𝛼 − 𝛾�

0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

https://en.cppreference.com/w/c/numeric/math/atan2
https://en.cppreference.com/w/c/numeric/math/atan2
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[39]: sp.simplify(R2[1, 0] / R2[0, 0])

[39]: tan �𝛼 − 𝛾�

[40]: sp.simplify(-R2[0, 2] / R2[1, 2])

[40]: tan �𝛼 − 𝛾�

Again, there is no unique solution. You can freely choose one of the angles and then
calculate the other one.

The easiest way to avoid this whole gimbal lock problem, is simply to never convert rotation
matrices to angles.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation-matrices.ipynb ends here.

The following section was generated from doc/quaternions.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a.7.2 Converting ASDF Rotations to Quaternions

This notebook shows the same thing as the notebook about rotation matrices (page 70), just
using quaternions instead of rotation matrices. For more detailed explanations, have a
look over there.

You might be tempted to use the equations from Wikipedia24, but those use different
conventions for axes and angles! The resulting equations will have a similar structure but
will not be quite identical.

With the code below, any convention can be calculated by adapting

• the pairing of angles with their corresponding axes

• the sign of angles (or direction of axes) according to handedness

• the order of combining the individual axis/angle quaternions

[1]: import sympy as sp

[2]: from sympy.algebras import Quaternion

[3]: alpha, beta, gamma = sp.symbols('alpha beta gamma')

a.7.2.1 Azimuth: Rotation around the z-Axis

[4]: q_z = Quaternion.from_axis_angle((0, 0, 1), alpha)
q_z

[4]: cos �
𝛼
2
� + 0𝑖 + 0𝑗 + sin �

𝛼
2
�𝑘

Example: Rotating the y unit vector (i.e. “looking north”) by 90 degrees to the left:

24 https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#
Euler_angles_(in_3-2-1_sequence)_to_quaternion_conversion

https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Euler_angles_(in_3-2-1_sequence)_to_quaternion_conversion
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[5]: Quaternion.rotate_point((0, 1, 0), q_z.subs(alpha, sp.pi / 2))

[5]: (-1, 0, 0)

As expected, this yields the negative x unit vector, which points westwards.

a.7.2.2 Elevation: Rotation around the (local) x-Axis

[6]: q_x = Quaternion.from_axis_angle((1, 0, 0), beta)
q_x

[6]:
cos �

𝛽
2�
+ sin �

𝛽
2�
𝑖 + 0𝑗 + 0𝑘

Example: Applying 90 degrees of elevation to the y unit vector:

[7]: Quaternion.rotate_point((0, 1, 0), q_x.subs(beta, sp.pi / 2))

[7]: (0, 0, 1)

As expected, this yields a vector pointing up.

a.7.2.3 Roll: Rotation around the (local) y-Axis

[8]: q_y = Quaternion.from_axis_angle((0, 1, 0), gamma)
q_y

[8]: cos �
𝛾
2
� + 0𝑖 + sin �

𝛾
2
�𝑗 + 0𝑘

Example: Applying a roll angle of 90 degrees to a vector pointing up:

[9]: Quaternion.rotate_point((0, 0, 1), q_y.subs(gamma, sp.pi / 2))

[9]: (1, 0, 0)

As expected, this yields a vector pointing east.

a.7.2.4 Combining all Axes

This is easy, we only have to make sure to use the right order. As with rotation matrices,
you should read this from right to left (first roll, then elevation, then azimuth):

[10]: q = q_z * q_x * q_y
q

[10]:
�− sin �

𝛼
2
� sin �

𝛽
2�

sin �
𝛾
2
� + cos �

𝛼
2
� cos �

𝛽
2�

cos �
𝛾
2
�� +

�− sin �
𝛼
2
� sin �

𝛾
2
� cos �

𝛽
2�
+ sin �

𝛽
2�

cos �
𝛼
2
� cos �

𝛾
2
�� 𝑖 +

(continues on next page)
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(continued from previous page)

�sin �
𝛼
2
� sin �

𝛽
2�

cos �
𝛾
2
� + sin �

𝛾
2
� cos �

𝛼
2
� cos �

𝛽
2��

𝑗 +

�sin �
𝛼
2
� cos �

𝛽
2�

cos �
𝛾
2
� + sin �

𝛽
2�

sin �
𝛾
2
� cos �

𝛼
2
�� 𝑘

If you want to copy-paste this:

[11]: print(q)

(-sin(alpha/2)*sin(beta/2)*sin(gamma/2) + cos(alpha/2)*cos(beta/
↪2)*cos(gamma/2)) + (-sin(alpha/2)*sin(gamma/2)*cos(beta/2) + sin(beta/
↪2)*cos(alpha/2)*cos(gamma/2))*i + (sin(alpha/2)*sin(beta/2)*cos(gamma/
↪2) + sin(gamma/2)*cos(alpha/2)*cos(beta/2))*j + (sin(alpha/2)*cos(beta/
↪2)*cos(gamma/2) + sin(beta/2)*sin(gamma/2)*cos(alpha/2))*k

But you should probably pre-calculate the used terms in order to avoid repeated evalua-
tion of the same functions. You could try something like this, for example:

[12]: q.subs([
(sp.sin(alpha/2), sp.symbols('s_alpha')),
(sp.sin(beta/2), sp.symbols('s_beta')),
(sp.sin(gamma/2), sp.symbols('s_gamma')),
(sp.cos(alpha/2), sp.symbols('c_alpha')),
(sp.cos(beta/2), sp.symbols('c_beta')),
(sp.cos(gamma/2), sp.symbols('c_gamma')),

])

[12]: �𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛽𝑠𝛾� + �𝑐𝛼𝑐𝛾𝑠𝛽 − 𝑐𝛽𝑠𝛼𝑠𝛾� 𝑖 + �𝑐𝛼𝑐𝛽𝑠𝛾 + 𝑐𝛾𝑠𝛼𝑠𝛽� 𝑗 + �𝑐𝛼𝑠𝛽𝑠𝛾 + 𝑐𝛽𝑐𝛾𝑠𝛼� 𝑘

[13]: print(_)

(c_alpha*c_beta*c_gamma - s_alpha*s_beta*s_gamma) + (c_alpha*c_gamma*s_
↪beta - c_beta*s_alpha*s_gamma)*i + (c_alpha*c_beta*s_gamma + c_gamma*s_
↪alpha*s_beta)*j + (c_alpha*s_beta*s_gamma + c_beta*c_gamma*s_alpha)*k

a.7.2.5 Quaternion to Rotation Matrix

Just to make sure the result is the same as in the notebook about rotation matrices (page 76),
let’s calculate the rotation matrix from our quaternion.

For some reason, SymPy seems to need two simplification steps for this …

[14]: R = sp.trigsimp(sp.trigsimp(q.to_rotation_matrix()))
R

[14]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− sin (𝛼) sin �𝛽� sin �𝛾� + cos (𝛼) cos �𝛾� − sin (𝛼) cos �𝛽� sin (𝛼) sin �𝛽� cos �𝛾� + sin �𝛾� cos (𝛼)
sin (𝛼) cos �𝛾� + sin �𝛽� sin �𝛾� cos (𝛼) cos (𝛼) cos �𝛽� sin (𝛼) sin �𝛾� − sin �𝛽� cos (𝛼) cos �𝛾�

− sin �𝛾� cos �𝛽� sin �𝛽� cos �𝛽� cos �𝛾�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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a.7.2.6 Quaternion to ASDF rotations

Again, please note that the equations fromWikipedia25 use different conventions for axes
and angles.

We already know how to convert a rotation matrix to ASDF angles, and we know how to
convert a quaternion to a rotation matrix, so let’s try that:

[15]: a, b, c, d = sp.symbols('a:d')

[16]: sp.simplify(sp.Quaternion(a, b, c, d).to_rotation_matrix())

[16]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎2+𝑏2−𝑐2−𝑑2

𝑎2+𝑏2+𝑐2+𝑑2
2(−𝑎𝑑+𝑏𝑐)

𝑎2+𝑏2+𝑐2+𝑑2
2(𝑎𝑐+𝑏𝑑)

𝑎2+𝑏2+𝑐2+𝑑2
2(𝑎𝑑+𝑏𝑐)

𝑎2+𝑏2+𝑐2+𝑑2
𝑎2−𝑏2+𝑐2−𝑑2

𝑎2+𝑏2+𝑐2+𝑑2
2(−𝑎𝑏+𝑐𝑑)

𝑎2+𝑏2+𝑐2+𝑑2
2(−𝑎𝑐+𝑏𝑑)

𝑎2+𝑏2+𝑐2+𝑑2
2(𝑎𝑏+𝑐𝑑)

𝑎2+𝑏2+𝑐2+𝑑2
𝑎2−𝑏2−𝑐2+𝑑2

𝑎2+𝑏2+𝑐2+𝑑2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since we assume a unit quaternion, all the denominators are actually 1.

[17]: Rq = sp.simplify(sp.Quaternion(a, b, c, d).to_rotation_matrix().subs(a**2␣
↪+ b**2 + c**2 + d**2, 1))
Rq

[17]: ⎡
⎢⎢⎢⎢⎢⎣

𝑎2 + 𝑏2 − 𝑐2 − 𝑑2 −2𝑎𝑑 + 2𝑏𝑐 2𝑎𝑐 + 2𝑏𝑑
2𝑎𝑑 + 2𝑏𝑐 𝑎2 − 𝑏2 + 𝑐2 − 𝑑2 −2𝑎𝑏 + 2𝑐𝑑
−2𝑎𝑐 + 2𝑏𝑑 2𝑎𝑏 + 2𝑐𝑑 𝑎2 − 𝑏2 − 𝑐2 + 𝑑2

⎤
⎥⎥⎥⎥⎥⎦

The notebook about rotation matrices (page 77) shows how to obtain 𝛼, 𝛽 and 𝛾 from this
matrix.

We can get 𝛼 from the top middle and the central element:

[18]: sp.atan2(-Rq[0, 1], Rq[1, 1])

[18]: atan2 �2𝑎𝑑 − 2𝑏𝑐, 𝑎2 − 𝑏2 + 𝑐2 − 𝑑2�

[19]: print(_)

atan2(2*a*d - 2*b*c, a**2 - b**2 + c**2 - d**2)

The bottom middle element provides 𝛽:

[20]: sp.asin(Rq[2, 1])

[20]: asin (2𝑎𝑏 + 2𝑐𝑑)

[21]: print(_)

asin(2*a*b + 2*c*d)

25 https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#
Quaternion_to_Euler_angles_(in_3-2-1_sequence)_conversion

https://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles#Quaternion_to_Euler_angles_(in_3-2-1_sequence)_conversion
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Note:

As mentioned in the notebook about rotation matrices (page 77), the argument of the
asin() function has to be in the domain [-1.0; 1.0].

Make sure to handle this case, e.g. by re-normalizing the quaternion.

Finally, 𝛾 can be obtained from the bottom left and right elements:

[22]: sp.atan2(-Rq[2, 0], Rq[2, 2])

[22]: atan2 �2𝑎𝑐 − 2𝑏𝑑, 𝑎2 − 𝑏2 − 𝑐2 + 𝑑2�

[23]: print(_)

atan2(2*a*c - 2*b*d, a**2 - b**2 - c**2 + d**2)

a.7.2.6.1 Gimbal Lock

As shown in the notebook about rotationmatrices (page 78), there is a problemwhen 𝛽 = ±90
degrees.

For 𝛽 = 90 degrees (which means 2𝑎𝑏 + 2𝑐𝑑 = 1), we can obtain a value for 𝛼 + 𝛾:

[24]: sp.atan2(Rq[0, 2], -Rq[1, 2])

[24]: atan2 (2𝑎𝑐 + 2𝑏𝑑, 2𝑎𝑏 − 2𝑐𝑑)

[25]: print(_)

atan2(2*a*c + 2*b*d, 2*a*b - 2*c*d)

If we for example choose this value to be 𝛼, this will result in 𝛾 = 0.

Alternatively, we can use this expression:

[26]: sp.atan2(Rq[1, 0], Rq[0, 0])

[26]: atan2 �2𝑎𝑑 + 2𝑏𝑐, 𝑎2 + 𝑏2 − 𝑐2 − 𝑑2�

[27]: print(_)

atan2(2*a*d + 2*b*c, a**2 + b**2 - c**2 - d**2)

For 𝛽 = −90 degrees (which means 2𝑎𝑏 + 2𝑐𝑑 = −1), we can use the following expression
for 𝛼 + 𝛾:

[28]: sp.atan2(-Rq[0, 2], Rq[1, 2])

[28]: atan2 (−2𝑎𝑐 − 2𝑏𝑑, −2𝑎𝑏 + 2𝑐𝑑)

[29]: print(_)

atan2(-2*a*c - 2*b*d, -2*a*b + 2*c*d)
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Again, if we for example choose this value to be 𝛼, this will result in 𝛾 = 0.

Alternatively, we can use this expression:

[30]: sp.atan2(Rq[1, 0], Rq[0, 0])

[30]: atan2 �2𝑎𝑑 + 2𝑏𝑐, 𝑎2 + 𝑏2 − 𝑐2 − 𝑑2�

[31]: print(_)

atan2(2*a*d + 2*b*c, a**2 + b**2 - c**2 - d**2)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/quaternions.ipynb ends here.





Appendixb
Splines

This appendix contains detailed information about many different types of splines, in-
cluding the ones used in the Audio Scene Description Format (ASDF), as described in
appendix a. The following content is the documentation for the publicly available Python
module splines, written by the author of this thesis. At the time of writing, a verbatim
copy of this text is also available online at https://splines.readthedocs.io/. The
online version might be updated in the future, though.

Apart from being potentially improved over time, it is in fact recommended to read the
online version instead of the printed version, because the online version contains a lot of
animations which could not be included in this print version.

Nearly all of the content of this appendix has been written using Jupyter notebooks
(see https://jupyter.org/), all of which can be downloaded from the sub-directory
doc/ at https://github.com/AudioSceneDescriptionFormat/splines/ for fur-
ther study and experimentation.

b.1 Introduction

This is the documentation for the splines1 module for Python. However, instead of a
Python module with a bit of documentation, this project is mostly documentation, with a
bit of Python module at the side. The goal is not so much to provide a turn-key software
for using splines, but rather to provide the background and mathematical derivations for
fully understanding the presented types of splines and their inter-relations. The Python
module serves mostly for experimenting further with the presented ideas and methods.
Therefore, the implementation is not focused on efficiency.

The documentation consists of two main parts. The first part (page 88) investigates some
polynomial splines in their natural habitat, the Euclidean space. In the unlikely case you are
reading this and don’t know what “spline” means, the first part also contains a definition
of the term (page 101) and a description of some of the common properties of splines. The
second part (page 232) leaves the comfort zone of flat space and tries to apply some of
the approaches from the first part to the curved space of rotations. The Python module is
similarly split into twopartswhoseAPI documentation is available at splines (page 281)
and splines.quaternion (page 287), respectively.

This project was originally inspired by Millington (2009), who concisely lists the basis
matrices (a.k.a. characteristic matrices) of a few common types of splines and also provides

1 https://pypi.org/project/splines/

https://splines.readthedocs.io/
https://jupyter.org/
https://github.com/AudioSceneDescriptionFormat/splines/
https://pypi.org/project/splines/
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matrices that can be used to convert control points between those different types. However,
the derivation of those matrices is not shown. Furthermore, the paper only considers uni-
form curves, where all parameter intervals have a size of 1. One goal of this documenta-
tion is to show the derivation of all equations and matrices. The derivations often utilize
SymPy2 to make them more reproducible and to ease further experimentation. A special
focus is put on non-uniform splines, which seem to have been neglected in some of the
literature and especially in some online resources.

Another focus is the speed along curves. In many applications only the shape (a.k.a. the
image3) of a curve matters. However, sometimes it is important how fast a point travels
along a spline when changing the parameter (which can be interpreted as time). The
“timing” of a spline is not visible in a static line plot (as is often used by default). That’s
why most of the plots in the following sections will instead use dots at regular parameter
intervals, for example 15 dots per second. If a spline already has the desired image but
the wrong timing, this can be fixed by Re-Parameterization (page 229).

A non-goal of this Python module and its documentation is to cover all possible types of
splines. Maybe some additional types will be added in the future, but the list will always
stay incomplete. One of the most glaring omissions for now are B-splines4, which are
mentioned a few times but not properly derived nor implemented. Another family of
splines that is missing are rational splines, and therefore also their most popular member
NURBS5. Spline surfaces are not covered either.

b.2 Polynomial Curves in Euclidean Space

This section is mostly about different types of univariate non-rational polynomial
splines in one-, two- and three-dimensional Euclidean space – for an application in a
four-dimensional space, see the section about 4D quaternion interpolation (page 277).

But before diving into splines (page 101) – and before even defining what they are – we
will discuss a few basics about polynomial curves and a spline-less interpolation method
called Lagrange interpolation (page 92).

Manyof the approaches shown in this sectionwill later be adapted to the context of rotation
splines (page 232).

The following section was generated from doc/euclidean/polynomials.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b.2.1 Parametric Polynomial Curves

The building blocks for polynomial splines are of course polynomials6.

But first things first, let’s import SymPy7 and a few helper functions from helper.py:

[1]: import sympy as sp
sp.init_printing(order='grevlex')
from helper import plot_basis, plot_sympy, grid_lines, plot_spline_2d

2 https://www.sympy.org/
3 https://en.wikipedia.org/wiki/Image_(mathematics)
4 https://en.wikipedia.org/wiki/B-spline
5 https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
6 https://en.wikipedia.org/wiki/Polynomial
7 https://www.sympy.org/

https://www.sympy.org/
https://en.wikipedia.org/wiki/Image_(mathematics)
https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/polynomials.ipynb
https://en.wikipedia.org/wiki/Polynomial
https://www.sympy.org/
helper.py


b.2. Polynomial Curves in Euclidean Space 89

We are mostly interested in univariate splines, i.e. curves with one free parameter, which
are built using polynomials with a single parameter. Here we are calling this parameter
𝑡. You can think about it as time (e.g. in seconds), but it doesn’t have to represent time.

[2]: t = sp.symbols('t')

Polynomials typically consist of multiple terms. Each term contains a basis function, which
itself contains one or more integer powers of 𝑡. The highest power of all terms is called
the degree of the polynomial.

The arguably simplest set of basis functions is themonomial basis, a.k.a. power basis, which
simply consists of all powers of 𝑡 up to the given degree:

[3]: b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
b_monomial

[3]: �𝑡3 𝑡2 𝑡 1�

In this example we are creating polynomials of degree 3, which are also called cubic poly-
nomials.

The ordering of the basis functions is purely a matter of convention, here we are sorting
them in order of descending powers.

These basis functions are multiplied by (constant) coefficients. We are writing the coeffi-
cients with bold symbols, because apart from simple scalars (for one-dimensional func-
tions), these symbols can also represent vectors in two- or three-dimensional space (and
even higher-dimensional spaces).

[4]: coefficients = sp.Matrix(sp.symbols('a:dbm')[::-1])
coefficients

[4]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒅
𝒄
𝒃
𝒂

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can create a polynomial by multiplying the basis functions with the coefficients and
then adding all terms:

[5]: b_monomial.dot(coefficients)

[5]: 𝒅𝑡3 + 𝒄𝑡2 + 𝒃𝑡 + 𝒂

This is a cubic polynomial in its canonical form (because it uses monomial basis func-
tions).

Let’s take a closer look at those basis functions:

[6]: plot_basis(*b_monomial)



90 Appendix b. Splines

0 1t

0

1
we

ig
ht

t3

t2

t
1

It doesn’t look like much, but every conceivable cubic polynomial can be expressed as
exactly one linear combination of those basis functions (i.e. using one specific list of co-
efficients).

An example polynomial that’s not in canonical form …

[7]: example_polynomial = (2 * t - 1)**3 + (t + 1)**2 - 6 * t + 1
example_polynomial

[7]: (2𝑡 − 1)3 + (𝑡 + 1)2 − 6𝑡 + 1

[8]: plot_sympy(example_polynomial, (t, 0, 1))
grid_lines([0, 1], [0, 0.5, 1])

0 1

0.0

0.5

1.0

… can simply be re-written with monomial basis functions:

[9]: example_polynomial.expand()

[9]: 8𝑡3 − 11𝑡2 + 2𝑡 + 1

Any polynomial can be rewritten using any set of basis functions (as long as the degree
of the basis function set matches the degree of the polynomial).
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In later sections we will see more basis functions, for example those that are used forHer-
mite (page 109), Bézier (page 136) and Catmull–Rom (page 165) splines. In those sections
we will also see how to convert between different bases by means of matrix multiplica-
tion.

In the previous example, we used scalar coefficients to create a one-dimensional poly-
nomial. We can use two-dimensional coefficients to create two-dimensional polynomial
curves. Let’s create a little class to try this:

[10]: import numpy as np

class CubicPolynomial:

grid = 0, 1

def __init__(self, d, c, b, a):
self.coeffs = d, c, b, a

def evaluate(self, t):
t = np.expand_dims(t, -1)
return t**[3, 2, 1, 0] @ self.coeffs

Note

The @ operator is used here to do NumPy’s matrix multiplication8.

[11]: poly_2d = CubicPolynomial([-1.5, 5], [1.5, -8.5], [1, 4], [3, 2])

Since this class has the same interface as the splines that will be discussed in later sections,
we can use a spline helper function for plotting:

[12]: plot_spline_2d(poly_2d, dots_per_second=30, chords=False)

3.0 3.2 3.4 3.6 3.8 4.0
2.0

2.1

2.2

2.3

2.4

2.5

2.6

This class can also be used with three and more dimensions. The class splines.Monomial
(page 282) can be used to try this with arbitrary polynomial degree.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/polynomials.ipynb ends here.
8 https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

https://numpy.org/doc/stable/reference/generated/numpy.matmul.html
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/polynomials.ipynb
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The following section was generated from doc/euclidean/lagrange.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b.2.2 Lagrange Interpolation

Before diving into splines, let’s have a look at an arguably simpler interpolation method
using polynomials: Lagrange interpolation9.

This is easy to implement, but as we will see, it has quite severe limitations, which will
motivate us to look into splines later.

[1]: import matplotlib.pyplot as plt
import numpy as np

b.2.2.1 One-dimensional Example

Assume we have 𝑁 time instants 𝑡𝑖, with 0 ≤ 𝑖 < 𝑁…

[2]: ts = -1.5, 0.5, 1.7, 3.5, 4

… and for each time instant we are given an associated value 𝑥𝑖:

[3]: xs = 2, -1, 1.3, 3.14, 1

Our task is now to find a function that yields the given 𝑥𝑖 values for the given times 𝑡𝑖 and
some “reasonable” interpolated values when evaluated at time values in between.

The idea of Lagrange interpolation is to create a separate polynomial ℓ𝑖(𝑡) for each of the
𝑁 given time instants, which will be weighted by the associated 𝑥𝑖. The final interpolation
function is the weighted sum of these 𝑁 polynomials:

𝐿(𝑡) =
𝑁−1
�
𝑖=0

𝑥𝑖ℓ𝑖(𝑡)

In order for this to actually work, the polynomials must fulfill the following require-
ments:

• Each polynomial must yield 1when evaluated at its associated time 𝑡𝑖.

• Each polynomial must yield 0 at all other instances in the set of given times.

To satisfy the second point, let’s create a product with a term for each of the relevant
times and make each of those factors vanish when evaluated at their associated time. For
example, let’s look at the basis for 𝑖 = 3:

[4]: def maybe_polynomial_3(t):
t = np.asarray(t)
return (

(t - (-1.5)) *
(t - 0.5) *
(t - 1.7) *
(t - 4))

9 https://en.wikipedia.org/wiki/Lagrange_polynomial

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/lagrange.ipynb
https://en.wikipedia.org/wiki/Lagrange_polynomial
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[5]: maybe_polynomial_3(ts)

[5]: array([ -0. , 0. , -0. , -13.5, 0. ])

As we can see, this indeed fulfills the second requirement. Note that we were given 5
time instants, but we only need 4 product terms (corresponding to the 4 roots of the
polynomial).

Now, for the first requirement, we can divide each term to yield 1 when evaluated at
𝑡 = 𝑡3 = 3.5 (luckily, this will not violate the second requirement). If each term is 1, the
whole product will also be 1:

[6]: def polynomial_3(t):
t = np.asarray(t)
return (

(t - (-1.5)) / (3.5 - (-1.5)) *
(t - 0.5) / (3.5 - 0.5) *
(t - 1.7) / (3.5 - 1.7) *
(t - 4) / (3.5 - 4))

[7]: polynomial_3(ts)

[7]: array([ 0., -0., 0., 1., -0.])

That’s it!

To get a better idea what’s going on between the given time instances 𝑡𝑖, let’s plot this
polynomial (with a little help from helper.py):

[8]: from helper import grid_lines

[9]: plot_times = np.linspace(ts[0], ts[-1], 100)

[10]: plt.plot(plot_times, polynomial_3(plot_times))
grid_lines(ts, [0, 1])

1.5 0.5 1.7 3.5 4.0

0

1

We can see from its shape that this is a polynomial of degree 4, whichmakes sense because
the product we are using has 4 terms containing one 𝑡 each. We can also see that it has

helper.py
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the value 0 at each of the initially provided time instances 𝑡𝑖, except for 𝑡3 = 3.5, where it
has the value 1.

The above calculation can be easily generalized to be able to get any one of the set of
polynomials defined by an arbitrary list of time instants:

[11]: def lagrange_polynomial(times, i, t):
"""i-th Lagrange polynomial for the given time values, evaluated at t.

↪"""
t = np.asarray(t)
product = np.multiply.reduce
return product([

(t - times[j]) / (times[i] - times[j])
for j in range(len(times))
if i != j

])

Putting this in mathematic notation, Lagrange basis polynomials can be written as

ℓ𝑖(𝑡) =
𝑁−1
�
𝑗=0
𝑖≠𝑗

𝑡 − 𝑡𝑗
𝑡𝑖 − 𝑡𝑗

.

Nowwe can calculate and visualize all 5 basis polynomials for our 5 given time instants:

[12]: polys = np.column_stack(
[lagrange_polynomial(ts, i, plot_times) for i in range(len(ts))])

[13]: plt.plot(plot_times, polys)
grid_lines(ts, [0, 1])
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Finally, the interpolated values 𝐿(𝑡) can be obtained by applying the given 𝑥𝑖 values as
weights to the polynomials ℓ𝑖(𝑡) and summing everything up together:

[14]: weighted_polys = polys * xs

[15]: interpolated = np.sum(weighted_polys, axis=-1)
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[16]: plt.plot(plot_times, weighted_polys)
plt.plot(plot_times, interpolated, color='black', linestyle='dashed')
plt.scatter(ts, xs, color='black')
grid_lines(ts)
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b.2.2.2 Neville’s Algorithm

An alternative way to calculate interpolated values is Neville’s algorithm10. We mention
this algorithmmainly because it is referenced in the derivation of non-uniform Catmull–Rom
splines (page 175) and the description of the Barry–Goldman algorithm (page 181).

Asmain building block, we need a linear interpolation between two values in a given time
interval:

[17]: def lerp(xs, ts, t):
"""Linear intERPolation.

Returns the interpolated value(s) at time(s) *t*,
given two values/vertices *xs* at times *ts*.

The two x-values can be scalars or vectors,
or even higher-dimensional arrays
(as long as the shape of *t* is compatible).

"""
x_begin, x_end = map(np.asarray, xs)
t_begin, t_end = ts
if not np.isscalar(t):

# This allows using an array of *t* values:
t = np.expand_dims(t, axis=-1)

return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_
↪begin)

In each stage of the algorithm, linear interpolation is used to interpolate between adjacent
values, leading to one less value than in the stage before. The new values are used as input
to the next stage and so on. When there is only one value left, this value is the result.
10 https://en.wikipedia.org/wiki/Neville's_algorithm

https://en.wikipedia.org/wiki/Neville's_algorithm
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The only tricky part is to choose the appropriate time interval for each interpolation. In
the first stage, the intervals between the given time values are used. In the second stage,
each time interval is combinedwith the following one, leading to one less time intervals in
total. In the third stage, each time interval is combined with the following two intervals,
and so on until the last stage, where all time intervals are combined into a single large
interval.

Barry and Goldman (1988) show (in figure 2) the cubic case, which looks something like
this:

𝒑0,1,2,3
𝑡3−𝑡
𝑡3−𝑡0

𝑡−𝑡0
𝑡3−𝑡0

𝒑0,1,2 𝒑1,2,3
𝑡2−𝑡
𝑡2−𝑡0

𝑡−𝑡0
𝑡2−𝑡0

𝑡3−𝑡
𝑡3−𝑡1

𝑡−𝑡1
𝑡3−𝑡1

𝒑0,1 𝒑1,2 𝒑2,3
𝑡1−𝑡
𝑡1−𝑡0

𝑡−𝑡0
𝑡1−𝑡0

𝑡2−𝑡
𝑡2−𝑡1

𝑡−𝑡1
𝑡2−𝑡1

𝑡3−𝑡
𝑡3−𝑡2

𝑡−𝑡2
𝑡3−𝑡2

𝒙0 𝒙1 𝒙2 𝒙3

The polynomial 𝒑0,1,2,3(𝑡) at the apex can be evaluated for 𝑡0 ≤ 𝑡 ≤ 𝑡3. For a detailed
explanation of this triangular scheme, see the notebook about the Barry–Goldman algorithm
(page 182). Neville’s algorithm can be implemented for arbitrary degree:

[18]: def neville(xs, ts, t):
"""Lagrange interpolation using Neville's algorithm.

Returns the interpolated value(s) at time(s) *t*,
given the values *xs* at times *ts*.

"""
if len(xs) != len(ts):

raise ValueError('xs and ts must have the same length')
while len(xs) > 1:

step = len(ts) - len(xs) + 1
xs = [

lerp(*args, t)
for args in zip(zip(xs, xs[1:]), zip(ts, ts[step:]))]

return xs[0]

[19]: plt.plot(plot_times, neville(xs, ts, plot_times))
plt.scatter(ts, xs)
grid_lines(ts)
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b.2.2.3 Two-Dimensional Example

Lagrange interpolation can of course also be used in higher-dimensional spaces. To show
this, let’s create a little class:

[20]: class Lagrange:

def __init__(self, vertices, grid):
assert len(vertices) == len(grid)
self.vertices = vertices
self.grid = grid

def evaluate(self, t):
return neville(self.vertices, self.grid, t)

Since this class has the same interface as the splines that will be discussed in the following
sections, we can use a spline helper function from helper.py for plotting:

[21]: from helper import plot_spline_2d

This time, we have a list of two-dimensional vectors and the same list of associated times
as before:

[22]: l1 = Lagrange([(2, -2), (-1, 0), (0.3, 0.5), (3.14, -1), (1, -1)], ts)

[23]: plot_spline_2d(l1)

helper.py
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b.2.2.4 Runge’s Phenomenon

This seems to work to some degree, but as indicated above, Lagrange implementation has
a severe limitation. This limitation gets more apparent when using more vertices, which
leads to a higher-degree polynomial.

[24]: vertices1 = [
(-2, 3),
(1, 1),
(3, -1),
(2, -1),
(2.5, 1.5),
(5, 2),
(6, 1),
(5, 0),
(6.5, -1),
(7, 0),
(6, 3),

]

[25]: l2 = Lagrange(vertices1, range(len(vertices1)))
plot_spline_2d(l2)
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Here we see a severe overshooting effect, most pronounced at the beginning and the end
of the curve. Moving some vertices canmake this evenworse. This effect is called Runge’s
phenomenon11. A possible mitigation for this overshooting is to use so-called Chebyshev
nodes12 as time instances:

[26]: def chebyshev_nodes(a, b, n):
k = np.arange(n) + 1
nodes = np.cos(np.pi * (2 * k - 1) / (2 * n))
return (a + b) / 2 - (b - a) * nodes / 2

[27]: l3 = Lagrange(vertices1, chebyshev_nodes(0, len(vertices1) - 1,␣
↪len(vertices1)))
plot_spline_2d(l3)
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This is definitely better. But it gets worse again when we move a few of the vertices.

[28]: vertices2 = [
(0, -1),

(continues on next page)

11 https://en.wikipedia.org/wiki/Runge's_phenomenon
12 https://en.wikipedia.org/wiki/Chebyshev_nodes

https://en.wikipedia.org/wiki/Runge's_phenomenon
https://en.wikipedia.org/wiki/Runge's_phenomenon
https://en.wikipedia.org/wiki/Chebyshev_nodes
https://en.wikipedia.org/wiki/Chebyshev_nodes
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(continued from previous page)
(1, 1),
(3, -1),
(2.5, 1.5),
(5, 2),
(6, 0.5),
(6, 0),
(4, -1),
(6.5, -1),
(7, 2),
(8, 0),

]

[29]: l4 = Lagrange(vertices2, chebyshev_nodes(0, len(vertices2) - 1,␣
↪len(vertices2)))
plot_spline_2d(l4)
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Long story short, Lagrange interpolation is typically not suitable for drawing curves. For
comparison, and as a teaser for the following sections, let’s use the same vertices to create
a uniform Catmull–Rom spline (page 155):

[30]: import splines

[31]: cr_spline = splines.CatmullRom(vertices2)

[32]: plot_spline_2d(cr_spline)
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And to get an even better fit, we can try a centripetal Catmull–Rom spline (page 163):

[33]: cr_centripetal_spline = splines.CatmullRom(vertices2, alpha=0.5)

[34]: plot_spline_2d(cr_centripetal_spline)
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0
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Note

The class splines.CatmullRom (page 283) uses “natural” end conditions (page 207) by
default.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/lagrange.ipynb ends here.

b.2.3 Splines

The term spline for the mathematical description of a smooth piecewise curve was intro-
duced by Schoenberg (1946), with reference to a drawing tool called spline13.

13 https://en.wiktionary.org/wiki/spline

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/lagrange.ipynb
https://en.wiktionary.org/wiki/spline
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A spline is a simple mechanical device for drawing smooth curves. It is a slen-
der flexible bar made of wood or some other elastic material. The spline is
place[d] on the sheet of graph paper and held in place at various points by
means of certain heavy objects (called “dogs” or “rats”) such as to take the
shape of the curve we wish to draw.

—Schoenberg (1946), page 67

The term is defined in the context ofwhat is nowadays known as natural splines (page 124),
especially cubic natural splines (i.e. of degree 3; i.e. of order 4), which have 𝐶2 continu-
ity.

For 𝑘 = 4 they represent approximately the curves drawn bymeans of a spline
and for this reason we propose to call them spline curves of order 𝑘.

—Schoenberg (1946), page 48

b.2.3.1 Definition

Different authors use different definitions for the term spline, here is ours: splines are com-
posite parametric curves. Splines are typically used for defining curves in one-, two- or
three-dimensional Euclidean space. Such splines will be described in the following sec-
tions. Later, we will also have a look at rotation splines (page 232).

Sometimes it is not obvious whether the term spline refers to the composite curve or to
one of its segments, especially when talking about Bézier splines (page 134). In the rest of
this text we are using the term spline to refer to the entire composite curve.

b.2.3.2 Properties

Different types of splines have different properties. In the following, we list the most
important properties, focusing on the types of splines that will be described inmore detail
in later sections.

piecewise
Arguably themost important property of splines is that they are composed of some-
what independent pieces. This allows using simpler mathematical objects for the
pieces, while still being able to construct a more or less arbitrarily complicated com-
posite curve. For example, as shown in the previous section about Lagrange interpola-
tion (page 92), using a curve with a high polynomial degree can lead to unintended
behavior like Runge’s phenomenon (page 98). This can be avoided by using multiple
polynomial pieces of lower degrees.

parametric
Here we are only talking about univariate curves, i.e. curves with one parameter, i.e.
a single real number, but similar approaches can be used to describe surfaces with
two parameters. We are normally using the symbol 𝑡 for the free parameter. This
parameter can often intuitively be interpreted as time, but it doesn’t have to.

The individual segments of a spline are of course also parametric, and theymayhave
their own parameter ranges (often, but not necessarily, the so-called unit interval
from 0 to 1), which have to be calculated from the appropriate sub-range of the
main spline parameter.
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A spline can also be re-parameterized, see Re-Parameterization (page 229).

The sequence of parameter values at the start and end of segments is sometimes –
e.g. by Gordon and Riesenfeld (1974) – called the knot vector. In the accompanying
Python Module (page 281), however, it is called grid.

non-uniform
The parameter range of a spline can be uniquely separated into the parameter ranges
of its segments. If those sub-ranges all have the same length, the spline is called
uniform.

When a uniform spline has curve segments of very different lengths, the speed along
the curve (assuming that the parameter 𝑡 is interpreted as time) varies strongly. By
using non-uniform parameter intervals, this can be avoided.

continuous
Splines are not necessarily continuous. The segments of a spline might be defined
by discontinuous functions, but formost practical applications it is more common to
use continuous functions. Often, some derivatives of these functions are continuous
as well. If the spline segments are polynomials, they are always continuous, and so
are all their derivatives.

However, even if its segments are continuous, that doesn’t automatically mean that
the whole spline is continuous. The transitions between segments can still be dis-
continuous. But again, in most practical applications the transitions are continuous.
If that’s the case, the spline is said to have 𝐶0 continuity. The spline is called 𝐶1 con-
tinuous if the first derivatives of the two neighboring segments at each transition
are equal and 𝐶2 continuous if also the second derivatives match.

control points
Splines are fully defined by the mathematical functions of their segments and the
corresponding parameter ranges. However, those functions (and their coefficients)
have to be chosen somehow. And that’swhat differentiates different types of splines.

For some applications it is desired to specify a sequence of control points (sometimes
also called vertex/vertices) where the curve is supposed to pass through. Based on
those points, the appropriate functions for the spline segments are constructed. The
Catmull–Rom splines (page 155) and natural splines (page 124) are examples where
segments are derived from such a sequence of control points.

Some splines, most notably Bézier splines (page 134), only pass through some of
their control points and the remaining control points affect the shape of the curve
between those points.

The set of all control points, connected by straight lines, is sometimes called control
polygon.

Some splines have a set of control points where they pass through and additional
values that are not points at all. We call them control values. For example, Hermite
splines (page 105) pass through a set of control points, but they need additional
information about the tangent vectors (i.e. the first derivatives) at the transitions
between segments. For higher-order splines they also need the second and higher
derivatives.
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interpolating
Splines are called interpolating if they pass through all of their aforementioned con-
trol points. If a spline is not interpolating, it is called approximating.

Herewe are almost exclusively talking about interpolating splines. A notable special
case are Bézier splines (page 134), which pass through a sequence of control points,
but between each pair of those interpolated control points there are 𝑑−1 (where 𝑑 is
the degree) additional control points that are only approximated by the curve (and
they can be used to control the shape of the curve).

local control
For some types of splines, when changing a single control value, the shape of the
whole curve changes. These splines are said to have global control. For many appli-
cations, however, it is preferable, when a control value is changed, that the shape of
the curve only changes in the immediate vicinity of that control value. This is called
local control.

additional parameters
Some types of splines have additional parameters, either separately for each ver-
tex, or the same one(s) for all vertices. An example are Kochanek–Bartels splines
(page 191) with their tension, continuity and bias parameters.

polynomial
The curve segments that make up a spline can have an arbitrary mathematical de-
scription. Very often, polynomial curve segments are used, and that’s also what
we will be mostly using here. The polynomials will be defined by their basis func-
tions and corresponding coefficients, as described in the notebook about polynomial
parametric curves (page 88).

The following properties are only relevant for polynomial splines.

degree
The degree of a polynomial spline is the highest degree among its segments. Splines
of degree 3, a.k.a. cubic splines, are very common for drawing smooth curves.
Old-school references by authors like Boor (1978) might use the term order, which
is one more than the degree, which means that cubic splines are of order 4. We will
mostly consider cubic splines, but some of the presented algorithms allow arbitrary
degree, for example De Casteljau’s algorithm (page 136).

non-rational
The splines discussed here are defined by one polynomial per segment. However,
there are also splines whose segments are defined by ratios of polynomials instead.
Those are called rational splines. Rational splines are invariant under perspective
transformations (non-rational splines are only invariant under rotation/scale/trans-
lation), and they can precisely define conic sections (e.g. circles). They are also the
foundation for NURBS14.

b.2.3.3 Types

There are an infinite number of types of splines, only very few of which will be presented
in the following sections. Some of them can create the same curve from different control

14 https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline

https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
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values, like Hermite splines (page 105) and Bézier splines (page 134). Some create differ-
ent curves from the same control values, like Catmull–Rom splines (page 155) and natural
splines (page 124). Some have additional parameters to control the shape of the curve,
like Kochanek–Bartels splines (page 191) with their TCB values.

Some spline types have certain constraints on the transitions between segments, for exam-
ple, natural splines require 𝐶2 continuity. Other splines have no such constraints, like for
example Hermite splines, which allow specifying arbitrary derivatives at their segment
transitions.

Cubic splines cannot be interpolating and have 𝐶2 continuity and local control at the same
time.

type local control continuity interpolating

Catmull–Rom splines (page 155) yes 𝐶1 yes
natural splines (page 124) no 𝐶2 yes
B-splines15 yes 𝐶2 no

Kochanek–Bartels splines with 𝐶 = 0 are in the same category as Catmull–Rom splines
(which are a subset of former).

Fromanypolynomial segment of a certain degree the control values according to anypoly-
nomial spline type (of that same degree) can be computed and vice versa. Thismeans that
different types of polynomial splines can be unambiguously (if using the same parame-
ter intervals) converted between each other as long as the target spline has the same or
weaker constraints. For example, any natural spline can be converted into its correspond-
ing Bézier spline. The reverse is not true. Catmull–Rom splines and natural splines can
generally not be converted between each other because they have mutually incompatible
constraints.

b.2.4 Hermite Splines

Hermite splines16 (named after CharlesHermite17) are the building blocks formany other
types of interpolating polynomial splines, for example natural splines (page 124) and Cat-
mull–Rom splines (page 155).

A Python implementation of (cubic) Hermite splines is available in the splines.CubicHer-
mite (page 283) class.

The following section was generated from doc/euclidean/hermite-properties.ipynb . . . . . . . . . . . . . . . . . . . . . . . . .
b.2.4.1 Properties of Hermite Splines

Hermite splines are interpolating polynomial splines, where for each polynomial segment
the desired value at the start and end is given (obviously!), aswell as the values of a certain
number of derivatives at the start and/or the end.

15 https://en.wikipedia.org/wiki/B-spline
16 https://en.wikipedia.org/wiki/Cubic_Hermite_spline
17 https://en.wikipedia.org/wiki/Charles_Hermite

https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/Cubic_Hermite_spline
https://en.wikipedia.org/wiki/Charles_Hermite
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/hermite-properties.ipynb
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Most commonly, cubic (= degree 3) Hermite splines are used. Cubic polynomials have
4 coefficients to be chosen freely, and those are determined for each segment of a cu-
bic Hermite spline by providing 4 pieces of information: the function value and the first
derivative, both at the beginning and the end of the segment.

Other degrees of Hermite splines are possible (but much rarer), for example quintic (=
degree 5) Hermite splines, which are defined by the second derivatives at the start and
end of each segment, on top of the first derivatives and the function values (6 values in
total).

Hermite splines with even degrees are probably still rarer. For example, quadratic (= de-
gree 2) Hermite splines can be constructed by providing the function values at both be-
ginning and end of each segment, but only one first derivative, either at the beginning
or at the end (leading to 3 values in total). Make sure not to confuse them with quartic
(= degree 4) Hermite splines, which are defined by 5 values per segment: function value
and first derivative at both ends, and one of the second derivatives.

However, cubic Hermite splines are so overwhelmingly common that they are often simply
referred to as Hermite splines. From this point forward, we will only be considering cubic
Hermite splines.

[1]: import splines

[2]: import matplotlib.pyplot as plt
import numpy as np

We import a few helper functions from helper.py:

[3]: from helper import plot_spline_1d, plot_slopes_1d, grid_lines
from helper import plot_spline_2d, plot_tangents_2d

Let’s look at a one-dimensional spline first. Here are some values (to be interpolated) and
a list of associated parameter values (or time instances, if you will).

[4]: values = 2, 4, 3, 3
grid = 5, 7, 8, 10

Since (cubic) Hermite splines ask for the first derivative at the beginning and end of each
segment, we have to come up with a list of slopes (outgoing, incoming, outgoing, incom-
ing, …).

[5]: slopes = 0, 0, -1, 0.5, 1, 3

We are using the splines.CubicHermite (page 283) class to create the spline:

[6]: s1 = splines.CubicHermite(values, slopes, grid=grid)

OK, let’s plot this one-dimensional spline, together with the given values and slopes.

[7]: plot_spline_1d(s1)
plot_slopes_1d(slopes, values, grid)
grid_lines(grid)

helper.py
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Let’s try a two-dimensional curve now (higher dimensions work similarly).

[8]: vertices = [
(0, 0),
(2, 0),
(1, 1),

]

The derivative of a curve is its tangent vector, so here is a list of associated tangent vectors
(outgoing, incoming, outgoing, incoming, …):

[9]: tangents = [
(2, 1),
(0.1, 0.1),
(-0.5, 1),
(1, 0),

]

[10]: s2 = splines.CubicHermite(vertices, tangents)

[11]: fig, ax = plt.subplots()
plot_spline_2d(s2, ax=ax)
plot_tangents_2d(tangents, vertices, ax=ax)
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If no parameter values are given (by means of the grid argument), the splines.CubicHer-
mite (page 283) class creates a uniform spline, i.e. all parameter intervals are automatically
chosen to be 1. We can create a non-uniform spline by providing our own parameter val-
ues:

[12]: grid = 0, 0.5, 3

Using the same vertices and tangents, we can clearly see how the new parameter values
influence the shape and the speed of the curve (the dots are plotted at equal time inter-
vals!):

[13]: s3 = splines.CubicHermite(vertices, tangents, grid=grid)

[14]: plot_spline_2d(s3, ax=ax)
fig

[14]:
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Hermite splines are by default 𝐶0 continuous. If adjacent tangents are chosen to point
into the same direction, the spline becomes 𝐺1 continuous. If on top of having the same
direction, adjacent tangents are chosen to have the same length, that makes the spline 𝐶1
continuous. An example for that are Catmull–Rom splines (page 155). Kochanek–Bartels
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splines (page 191) can also be 𝐶1 continuous, but only if their “continuity” parameter 𝐶 is
zero.

There is one unique choice of all of a cubic Hermite spline’s tangents – given certain end
conditions (page 207) – that leads to continuous second derivatives at all vertices, making
the spline 𝐶2 continuous. This is what natural splines (page 124) are all about.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/hermite-properties.ipynb ends here.

The following section was generated from doc/euclidean/hermite-uniform.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b.2.4.2 Uniform Cubic Hermite Splines

Wederive the basismatrix aswell as the basis polynomials for cubic (= degree 3)Hermite
splines. The derivation for other degrees is left as an exercise for the reader.

In this notebook, we consider uniform spline segments, i.e. the parameter in each segment
varies from 0 to 1. The derivation for non-uniform cubic Hermite splines can be found in a
separate notebook (page 118).

[1]: import sympy as sp
sp.init_printing(order='grevlex')

We load a few tools from utility.py:

[2]: from utility import NamedExpression, NamedMatrix

[3]: t = sp.symbols('t')

Weare considering a single cubic polynomial segment of aHermite spline (which is some-
times called a Ferguson cubic).

To simplify the indices in the following derivation, let’s look at only one specific polyno-
mial segment, let’s say the fifth one. It goes from 𝒙4 to 𝒙5 and it is referred to as 𝒑4(𝑡), where
0 ≤ 𝑡 ≤ 1. The results will be easily generalizable to an arbitrary polynomial segment 𝒑𝑖(𝑡)
from 𝒙𝑖 to 𝒙𝑖+1, where 0 ≤ 𝑡 ≤ 1.

The polynomial has 4 coefficients, 𝒂4 to 𝒅4.

[4]: coefficients = sp.Matrix(sp.symbols('a:dbm4')[::-1])
coefficients

[4]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒅4
𝒄4
𝒃4
𝒂4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Combined with the monomial basis …

[5]: b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
b_monomial

[5]: �𝑡3 𝑡2 𝑡 1�

… the coefficients form an expression for our polynomial segment 𝒑4(𝑡):

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/hermite-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/hermite-uniform.ipynb
utility.py
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[6]: p4 = NamedExpression('pbm4', b_monomial.dot(coefficients))
p4

[6]: 𝒑4 = 𝒅4𝑡3 + 𝒄4𝑡2 + 𝒃4𝑡 + 𝒂4

For more information about polynomials, see Polynomial Parametric Curves (page 88).

Let’s also calculate the first derivative (a.k.a. velocity, a.k.a. tangent vector), while we are
at it:

[7]: pd4 = p4.diff(t)
pd4

[7]: 𝑑
𝑑𝑡
𝒑4 = 3𝒅4𝑡2 + 2𝒄4𝑡 + 𝒃4

To generate a Hermite spline segment, we have to provide the value of the polynomial at
the start and end point of the segment (at times 𝑡 = 0 and 𝑡 = 1, respectively). We also
have to provide the first derivative at those same points.

𝒙4 = 𝒑4�𝑡=0
𝒙5 = 𝒑4�𝑡=1

�̇�4 =
𝑑
𝑑𝑡
𝒑4�

𝑡=0

�̇�5 =
𝑑
𝑑𝑡
𝒑4�

𝑡=1

We call those 4 values the control values of the segment.

Evaluating the polynomial and its derivative at times 0 and 1 leads to 4 expressions for
our 4 control values:

[8]: x4 = p4.evaluated_at(t, 0).with_name('xbm4')
x5 = p4.evaluated_at(t, 1).with_name('xbm5')
xd4 = pd4.evaluated_at(t, 0).with_name('xdotbm4')
xd5 = pd4.evaluated_at(t, 1).with_name('xdotbm5')

[9]: display(x4, x5, xd4, xd5)
𝒙4 = 𝒂4
𝒙5 = 𝒂4 + 𝒃4 + 𝒄4 + 𝒅4
�̇�4 = 𝒃4
�̇�5 = 𝒃4 + 2𝒄4 + 3𝒅4

b.2.4.2.1 Basis Matrix

Given an input vector of control values …
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[10]: control_values_H = NamedMatrix(sp.Matrix([x4.name,
x5.name,
xd4.name,
xd5.name]))

control_values_H.name

[10]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
𝒙5
�̇�4
�̇�5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

…wewant to find away to transform those into the coefficients of our cubic polynomial.

[11]: M_H = NamedMatrix(r'{M_\text{H}}', 4, 4)

[12]: coefficients_H = NamedMatrix(coefficients, M_H.name * control_values_H.
↪name)
coefficients_H

[12]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒅4
𝒄4
𝒃4
𝒂4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑀H

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
𝒙5
�̇�4
�̇�5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This way, we can express our previously unknown coefficients in terms of the given con-
trol values.

However, in order to make it easy to determine the coefficients of the basis matrix𝑀𝐻, we
need the equation the other way around (by left-multiplying by the inverse):

[13]: control_values_H.expr = M_H.name.I * coefficients
control_values_H

[13]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
𝒙5
�̇�4
�̇�5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑀H

−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒅4
𝒄4
𝒃4
𝒂4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can now insert the expressions for the control values that we obtained above …

[14]: substitutions = x4, x5, xd4, xd5

[15]: control_values_H.subs_symbols(*substitutions)

[15]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒂4
𝒂4 + 𝒃4 + 𝒄4 + 𝒅4

𝒃4
𝒃4 + 2𝒄4 + 3𝒅4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑀H

−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒅4
𝒄4
𝒃4
𝒂4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

… and from this equation we can directly read off the matrix coefficients of𝑀𝐻
−1:

[16]: M_H.I = sp.Matrix(
[[expr.coeff(cv) for cv in coefficients]
for expr in control_values_H.subs_symbols(*substitutions).name])

M_H.I



112 Appendix b. Splines

[16]:

𝑀H
−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
1 1 1 1
0 0 1 0
3 2 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The same thing for copy & paste purposes:

[17]: print(_.expr)

Matrix([[0, 0, 0, 1], [1, 1, 1, 1], [0, 0, 1, 0], [3, 2, 1, 0]])

This transforms the coefficients of the polynomial into our control values, but we need it
the other way round, which we can simply get by inverting the matrix:

[18]: M_H

[18]:

𝑀H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Again, for copy & paste:

[19]: print(_.expr)

Matrix([[2, -2, 1, 1], [-3, 3, -2, -1], [0, 0, 1, 0], [1, 0, 0, 0]])

Now we have a new way to write the polynomial 𝒑4(𝑡), given our four control values.
We take those control values, left-multiply them by the Hermite basis matrix𝑀H (which
gives us a columnvector of coefficients), whichwe can then left-multiply by themonomial
basis:

[20]: sp.MatMul(b_monomial, M_H.expr, control_values_H.name)

[20]:

�𝑡3 𝑡2 𝑡 1�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
𝒙5
�̇�4
�̇�5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b.2.4.2.2 Basis Polynomials

However, instead of calculating from right to left, we can also start at the left and mul-
tiply the monomial basis with the Hermite basis matrix 𝑀H, which yields (a row vector
containing) the Hermite basis polynomials:

[21]: b_H = NamedMatrix(r'{b_\text{H}}', b_monomial * M_H.expr)
b_H.factor().T

[21]:

𝑏H
𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(𝑡 − 1)2 ⋅ (2𝑡 + 1)
−𝑡2 ⋅ (2𝑡 − 3)
𝑡 (𝑡 − 1)2

𝑡2 (𝑡 − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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The multiplication of this row vector with the column vector of control values again pro-
duces the polynomial 𝒑4(𝑡).

Let’s plot the basis polynomials with some help from helper.py:

[22]: from helper import plot_basis

[23]: plot_basis(*b_H.expr, labels=sp.symbols('xbm_i xbm_i+1 xdotbm_i xdotbm_i+1
↪'))
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Note that the basis function associated with 𝒙𝑖 has the value 1 at the beginning, while all
others are 0 at that point. For this reason, the linear combination of all basis functions at
𝑡 = 0 simply adds up to the value 𝒙𝑖 (which is exactly what we wanted to happen!).

Similarly, the basis function associated with �̇�𝑖 has a first derivative of +1 at the beginning,
while all others have a first derivative of 0. Therefore, the linear combination of all basis
functions at 𝑡 = 0 turns out to have a first derivative of �̇�𝑖 (what a coincidence!).

While 𝑡 progresses towards 1, both functions must relinquish their influence to the other
two basis functions.

At the end (when 𝑡 = 1), the basis function associated with 𝒙𝑖+1 is the only one that has a
non-zero value. More specifically, it has the value 1. Finally, the basis function associated
with �̇�𝑖+1 is the only one with a non-zero first derivative. In fact, it has a first derivative
of exactly +1 (the function values leading up to that have to be negative because the final
function value has to be 0).

This can be summarized by:

[24]: sp.Matrix([[
b.subs(t, 0),
b.subs(t, 1),
b.diff(t).subs(t, 0),
b.diff(t).subs(t, 1),

] for b in b_H.expr])

helper.py
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[24]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b.2.4.2.3 Example Plot

To quickly check whether the matrix𝑀𝐻 does what we expect, let’s plot an example seg-
ment.

[25]: import numpy as np

If we use the same API as for the other splines, we can reuse the helper functions for
plotting from helper.py.

[26]: from helper import plot_spline_2d, plot_tangents_2d

[27]: class UniformHermiteSegment:

grid = 0, 1

def __init__(self, control_values):
self.coeffs = sp.lambdify([], M_H.expr)() @ control_values

def evaluate(self, t):
t = np.expand_dims(t, -1)
return t**[3, 2, 1, 0] @ self.coeffs

Note

The @ operator is used here to do NumPy’s matrix multiplication18.

[28]: vertices = [0, 0], [5, 1]
tangents = [2, 3], [0, -2]

[29]: s = UniformHermiteSegment([*vertices, *tangents])

[30]: plot_spline_2d(s, chords=False)
plot_tangents_2d(tangents, vertices)

18 https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

helper.py
https://numpy.org/doc/stable/reference/generated/numpy.matmul.html
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b.2.4.2.4 Relation to Bézier Splines

Above, we were using two positions (start and end) and two tangent vectors (at those
same two positions) as control values:

[31]: control_values_H.name

[31]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
𝒙5
�̇�4
�̇�5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

What about using four positions (and no tangent vectors) instead?

Let’s use the point �̃�4 as a “drag point” (connected to 𝒙4) that controls the tangent vector.
Same for �̃�5 (connected to 𝒙5).

And since the tangents looked unwieldily long in the plot above (compared to the effect
they have on the shape of the curve), let’s put the drag points only at a third of the length
of the tangents, shall we?

�̃�4 = 𝒙4 +
�̇�4
3

�̃�5 = 𝒙5 −
�̇�5
3

[32]: control_values_B = NamedMatrix(sp.Matrix([
x4.name,
sp.Symbol('xtildebm4'),
sp.Symbol('xtildebm5'),
x5.name,

]), sp.Matrix([
x4.name,
x4.name + xd4.name / 3,
x5.name - xd5.name / 3,

(continues on next page)
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(continued from previous page)
x5.name,

]))
control_values_B

[32]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
�̃�4
�̃�5
𝒙5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
𝒙4 +

�̇�4
3

𝒙5 −
�̇�5
3

𝒙5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now let’s try to come up with a matrix that transforms our good old Hermite control
values into our new control points.

[33]: M_HtoB = NamedMatrix(r'{M_\text{H$\to$B}}', 4, 4)

[34]: NamedMatrix(control_values_B.name, M_HtoB.name * control_values_H.name)

[34]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
�̃�4
�̃�5
𝒙5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑀H→B

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
𝒙5
�̇�4
�̇�5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can immediately read the matrix coefficients off the previous expression.

[35]: M_HtoB.expr = sp.Matrix([
[expr.coeff(cv) for cv in control_values_H.name]
for expr in control_values_B.expr])

M_HtoB

[35]:

𝑀H→B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 0 1

3 0
0 1 0 −13
0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[36]: print(_.expr)

Matrix([[1, 0, 0, 0], [1, 0, 1/3, 0], [0, 1, 0, -1/3], [0, 1, 0, 0]])

The inverse of this matrix transforms our new control points into Hermite control val-
ues:

[37]: M_BtoH = NamedMatrix(r'{M_\text{B$\to$H}}', M_HtoB.I.expr)
M_BtoH

[37]:

𝑀B→H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 1
−3 3 0 0
0 0 −3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[38]: print(_.expr)

Matrix([[1, 0, 0, 0], [0, 0, 0, 1], [-3, 3, 0, 0], [0, 0, -3, 3]])
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When we combine𝑀𝐻 with this new matrix, we get a matrix which leads us to a new set
of basis polynomials associated with the 4 control points.

[39]: M_B = NamedMatrix(r'{M_\text{B}}', M_H.name * M_BtoH.name)
M_B

[39]: 𝑀B = 𝑀H𝑀B→H

[40]: M_B = M_B.subs_symbols(M_H, M_BtoH).doit()
M_B

[40]:

𝑀B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[41]: b_B = NamedMatrix(r'{b_\text{B}}', b_monomial * M_B.expr)
b_B.T

[41]:

𝑏B
𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑡3 + 3𝑡2 − 3𝑡 + 1
3𝑡3 − 6𝑡2 + 3𝑡
−3𝑡3 + 3𝑡2

𝑡3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[42]: plot_basis(
*b_B.expr,
labels=sp.symbols('xbm_i xtildebm_i xtildebm_i+1 xbm_i+1'))
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Those happen to be the cubic Bernstein polynomials and it turns out that we just invented
Bézier curves! See the section about Bézier splines (page 134) for more information about
them.

We chose the additional control points to be located at 13 of the tangent vector. Let’s quickly
visualize this using the example from above and𝑀H→B:

[43]: points = sp.lambdify([], M_HtoB.expr)() @ [*vertices, *tangents]
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[44]: import matplotlib.pyplot as plt

[45]: plot_spline_2d(s, chords=False)
plot_tangents_2d(tangents, vertices)
plt.scatter(*points.T, marker='X', color='black')
plt.annotate(r'$\quad\tilde{\bf{x}}_0$', points[1])
plt.annotate(r'$\tilde{\bf{x}}_1\quad$', points[2], ha='right');
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/hermite-uniform.ipynb ends here.

The following section was generated from doc/euclidean/hermite-non-uniform.ipynb . . . . . . . . . . . . . . . . . . . . . . . .

b.2.4.3 Non-Uniform Cubic Hermite Splines

We have already derived uniform cubic Hermite splines (page 109), where the parameter 𝑡
ranges from 0 to 1.

When we want to use non-uniform cubic Hermite splines, and therefore arbitrary ranges
from 𝑡𝑖 to 𝑡𝑖+1, we have (at least) two possibilities:

• Do the same derivations as in the uniform case, exceptwhenwe previously evaluated
an expression at the parameter value 𝑡 = 0, we now evaluate it at the value 𝑡 = 𝑡𝑖. Of
course we do the same with 𝑡 = 1 → 𝑡 = 𝑡𝑖+1.

• Re-scale the non-uniform parameter using 𝑡 → 𝑡−𝑡𝑖
𝑡𝑖+1−𝑡𝑖

(which makes the new param-
eter go from 0 to 1) and then simply use the results from the uniform case.

The first approach leads tomore complicated expressions in the basis matrix and the basis
polynomials, but it has the advantage that the parameter value doesn’t have to be re-scaled
each timewhen evaluating the spline for a given parameter (whichmight be slightly more
efficient).

The second approach has the problem that it doesn’t actually work correctly, but we will
see that we can make a slight adjustment to fix that problem (spoiler alert: we will have
to multiply the tangent vectors by Δ𝑖).

The class splines.CubicHermite (page 283) is implemented using the second approach (be-
cause its parent class splines.Monomial (page 282) also uses the re-scaling approach).

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/hermite-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/hermite-non-uniform.ipynb
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We show the second approach here, but the first approach can be carried out very
similarly, with only very few changed steps. The appropriate changes are mentioned
below.

[1]: from pprint import pprint
import sympy as sp
sp.init_printing(order='grevlex')

[2]: from utility import NamedExpression, NamedMatrix

To simplify the indices in the following derivation, we are again looking at the fifth poly-
nomial segment 𝒑4(𝑡) from 𝒙4 to 𝒙5, where 𝑡4 ≤ 𝑡 ≤ 𝑡5. The results will be easily generaliz-
able to an arbitrary polynomial segment 𝒑𝑖(𝑡) from 𝒙𝑖 to 𝒙𝑖+1, where 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1.

[3]: t, t4, t5 = sp.symbols('t t4:6')

[4]: coefficients = sp.Matrix(sp.symbols('a:dbm4')[::-1])
b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
b_monomial.dot(coefficients)

[4]: 𝒅4𝑡3 + 𝒄4𝑡2 + 𝒃4𝑡 + 𝒂4

We use the humble cubic polynomial (with monomial basis) to represent our curve seg-
ment 𝒑4(𝑡), but we re-scale the parameter to map 𝑡4 → 0 and 𝑡5 → 1:

[5]: p4 = NamedExpression('pbm4', _.subs(t, (t - t4) / (t5 - t4)))

If you don’t want to do the re-scaling, simply un-comment the next line!

[6]: #p4 = NamedExpression('pbm4', b_monomial.dot(coefficients))

Either way, this is our polynomial segment …

[7]: p4

[7]:
𝒑4 =

𝒅4 (𝑡 − 𝑡4)
3

(−𝑡4 + 𝑡5)
3 +

𝒄4 (𝑡 − 𝑡4)
2

(−𝑡4 + 𝑡5)
2 +

𝒃4 (𝑡 − 𝑡4)
−𝑡4 + 𝑡5

+ 𝒂4

… and it’s derivative/velocity/tangent vectors:

[8]: pd4 = p4.diff(t)
pd4

[8]: 𝑑
𝑑𝑡
𝒑4 =

3𝒅4 (𝑡 − 𝑡4)
2

(−𝑡4 + 𝑡5)
3 +

𝒄4 ⋅ (2𝑡 − 2𝑡4)
(−𝑡4 + 𝑡5)

2 +
𝒃4

−𝑡4 + 𝑡5

The next steps are very similar to what we did in the uniform case (page 109), except that
we use 𝑡4 and 𝑡5 instead of 0 and 1, respectively.
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[9]: x4 = p4.evaluated_at(t, t4).with_name('xbm4')
x5 = p4.evaluated_at(t, t5).with_name('xbm5')
xd4 = pd4.evaluated_at(t, t4).with_name('xdotbm4')
xd5 = pd4.evaluated_at(t, t5).factor().with_name('xdotbm5')

To simplify things, we define a new symbol Δ4 = 𝑡5 − 𝑡4, representing the duration of the
current segment. However, we only use this for simplifying the display, further calcula-
tions are still carried out with 𝑡𝑖.

[10]: delta = {
t5 - t4: sp.Symbol('Delta4'),

}

[11]: display(x4, x5, xd4.subs(delta), xd5.subs(delta))
𝒙4 = 𝒂4
𝒙5 = 𝒂4 + 𝒃4 + 𝒄4 + 𝒅4

�̇�4 =
𝒃4
Δ4

�̇�5 =
𝒃4 + 2𝒄4 + 3𝒅4

Δ4

b.2.4.3.1 Basis Matrix

In contrast to the uniform case, where the same basis matrix could be used for all seg-
ments, here we need a different matrix for each segment.

[12]: M_H = NamedMatrix(r'{M_{\text{H},4}}', 4, 4)

[13]: control_values_H = NamedMatrix(
sp.Matrix([x4.name, x5.name, xd4.name, xd5.name]),
M_H.name.I * coefficients)

control_values_H

[13]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
𝒙5
�̇�4
�̇�5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑀H,4

−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒅4
𝒄4
𝒃4
𝒂4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[14]: substitutions = x4, x5, xd4, xd5

[15]: control_values_H.subs_symbols(*substitutions).subs(delta)

[15]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒂4
𝒂4 + 𝒃4 + 𝒄4 + 𝒅4

𝒃4
Δ4

𝒃4+2𝒄4+3𝒅4
Δ4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑀H,4

−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒅4
𝒄4
𝒃4
𝒂4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[16]: M_H.I = sp.Matrix([
[expr.expand().coeff(c) for c in coefficients]

(continues on next page)
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(continued from previous page)
for expr in control_values_H.subs_symbols(*substitutions).name])

M_H.I.subs(delta)

[16]:

𝑀H,4
−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
1 1 1 1
0 0 1

Δ4
0

3
Δ4

2
Δ4

1
Δ4

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[17]: pprint(_.expr)

Matrix([
[ 0, 0, 0, 1],
[ 1, 1, 1, 1],
[ 0, 0, 1/Delta4, 0],
[3/Delta4, 2/Delta4, 1/Delta4, 0]])

[18]: M_H.factor().subs(delta)

[18]:

𝑀H,4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 Δ4 Δ4
−3 3 −2Δ4 −Δ4
0 0 Δ4 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[19]: pprint(_.expr)

Matrix([
[ 2, -2, Delta4, Delta4],
[-3, 3, -2*Delta4, -Delta4],
[ 0, 0, Delta4, 0],
[ 1, 0, 0, 0]])

b.2.4.3.2 Basis Polynomials

[20]: b_H = NamedMatrix(r'{b_{\text{H},4}}', b_monomial * M_H.expr)
b_H.factor().subs(delta).simplify().T

[20]:

𝑏H,4
𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(𝑡 − 1)2 ⋅ (2𝑡 + 1)
𝑡2 ⋅ (−2𝑡 + 3)
Δ4𝑡 (𝑡 − 1)

2

Δ4𝑡2 (𝑡 − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Those are the non-uniform (cubic) Hermite basis functions. Not surprisingly, they are dif-
ferent for each segment, because generally the values Δ𝑖 are different in the non-uniform
case.

b.2.4.3.3 Example Plot

To quickly check whether the matrix 𝑀𝐻,4 does what we expect, let’s plot an example
segment.

[21]: import numpy as np
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If we use the same API as for the other splines, we can reuse the helper functions for
plotting from helper.py:

[22]: from helper import plot_spline_2d, plot_tangents_2d

The following code re-scales the parameter with t = (t - begin) / (end -
begin). If you did not re-scale 𝑡 in the derivation above, you’ll have to remove this
line.

[23]: class HermiteSegment:

def __init__(self, control_values, begin, end):
array = sp.lambdify([t4, t5], M_H.expr)(begin, end)
self.coeffs = array @ control_values
self.grid = begin, end

def evaluate(self, t):
t = np.expand_dims(t, -1)
begin, end = self.grid
# If you derived M_H without re-scaling t, remove the following␣

↪line:
t = (t - begin) / (end - begin)
return t**[3, 2, 1, 0] @ self.coeffs

[24]: vertices = [0, 0], [5, 1]
tangents = [2, 3], [0, -2]

We can simulate the uniform case by specifying a parameter range from 0 to 1:

[25]: s1 = HermiteSegment([*vertices, *tangents], 0, 1)

[26]: plot_spline_2d(s1, chords=False)
plot_tangents_2d(tangents, vertices)
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But other ranges should work as well:

helper.py
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[27]: s2 = HermiteSegment([*vertices, *tangents], 2.1, 5.5)

[28]: plot_spline_2d(s2, chords=False)
plot_tangents_2d(tangents, vertices)
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b.2.4.3.4 Utilizing the Uniform Basis Matrix

If you did not re-scale 𝑡 in the beginning of the derivation, you can use the matrix𝑀𝐻,𝑖
to calculate the monomial coefficients of each segment (as shown in the example code
above) and be donewith it. The following simplification only applies if you did re-scale
𝑡.

If you did re-scale 𝑡, the basis matrix and the basis polynomials will look very similar
to the uniform case (page 109), but they are not quite the same. This means that simply
re-scaling the parameter is not enough to correctly use the uniform results for implement-
ing non-uniform Hermite splines.

However, we can see that the only difference is that the components associated with �̇�4
and �̇�5 are simply multiplied by Δ4. That means if we re-scale the parameter andmultiply
the given tangent vectors by Δ𝑖, we can indeed use the uniform workflow.

Just to make sure we are actually telling the truth, let’s check that the control values with
scaled tangent vectors …

[29]: control_values_H_scaled = sp.Matrix([
x4.name,
x5.name,
(t5 - t4) * xd4.name,
(t5 - t4) * xd5.name,

])
control_values_H_scaled.subs(delta)
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[29]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
𝒙5
Δ4�̇�4
Δ4�̇�5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

… really lead to the same result as when using the uniform basis matrix:

[30]: sp.Eq(
sp.simplify(M_H.expr * control_values_H.name),
sp.simplify(sp.Matrix([

[ 2, -2, 1, 1],
[-3, 3, -2, -1],
[ 0, 0, 1, 0],
[ 1, 0, 0, 0],

]) * control_values_H_scaled))

[30]: True

The following line will fail if you did not rescale 𝑡:

[31]: assert _ == True

To make a long story short, to implement a non-uniform cubic Hermite spline segment,
we can simply re-scale the parameter to a range from 0 to 1 (by substituting 𝑡 → 𝑡−𝑡𝑖

𝑡𝑖+1−𝑡𝑖
),

multiply both given tangent vectors by Δ𝑖 = 𝑡𝑖+1 − 𝑡𝑖 and then use the implementation of
the uniform cubic Hermite spline segment.

Another way of looking at this is to consider the uniform polynomial segment 𝒖𝑖(𝑡) and
its tangent vector (i.e. first derivative) 𝒖′𝑖 (𝑡). If we want to know the tangent vector after
substituting 𝑡 → 𝑡−𝑡𝑖

Δ𝑖
, we have to use the chain rule19 (with the inner derivative being

1
Δ𝑖
):

𝑑
𝑑𝑡
𝒖𝑖�

𝑡 − 𝑡𝑖
Δ𝑖

� =
1
Δ𝑖
𝒖′𝑖�

𝑡 − 𝑡𝑖
Δ𝑖

� .

Thismeans the tangent vectors have been shrunk byΔ𝑖! Ifwewant tomaintain the original
lengths of our tangent vectors, we can simply scale them by Δ𝑖 beforehand.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/hermite-non-uniform.ipynb ends here.

b.2.5 Natural Splines

Sometimes simply called (cubic) spline interpolation20, a natural spline is modelled after
a drawing tool called spline21, which is made from a thin piece of elastic material like
wood or metal.

19 https://en.wikipedia.org/wiki/Chain_rule
20 https://en.wikipedia.org/wiki/Spline_interpolation
21 https://en.wiktionary.org/wiki/spline

https://en.wikipedia.org/wiki/Chain_rule
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/hermite-non-uniform.ipynb
https://en.wikipedia.org/wiki/Spline_interpolation
https://en.wiktionary.org/wiki/spline
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APython implementation is available in the class splines.Natural (page 285). Alternatively,
the CubicSpline22 class from SciPy can be used.

The following section was generated from doc/euclidean/natural-properties.ipynb . . . . . . . . . . . . . . . . . . . . . . . . .
b.2.5.1 Properties of Natural Splines

The most important property of (cubic) natural splines is that they are 𝐶2 continuous,
which means that the second derivatives match at the transitions between segments. On
top of that, they are interpolating, which means that the curve passes through the given
control points.

[1]: import splines
import matplotlib.pyplot as plt

[2]: vertices = [
(0, 0),
(1, 1),
(1.5, 1),
(1.5, -0.5),
(3.5, 0),
(3, 1),
(2, 0.5),
(0.5, -0.5),

]

To show an example, we use the class splines.Natural (page 285) and a plotting function
from helper.py:

[3]: from helper import plot_spline_2d

[4]: plot_spline_2d(
splines.Natural(vertices, endconditions='closed'),
chords=False)
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22 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.
CubicSpline.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.CubicSpline.html
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/natural-properties.ipynb
helper.py
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A downside of natural splines is that they don’t provide local control. Changing only a
single control point potentially influences the whole curve.

[5]: modified_vertices = vertices.copy()
modified_vertices[6] = 1, 0.5

[6]: plot_spline_2d(
splines.Natural(vertices, endconditions='closed'),
chords=False)

plot_spline_2d(
splines.Natural(modified_vertices, endconditions='closed'),
chords=False)
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We can see that there are deviations in all segments, not only close to the modified ver-
tex.

For comparison, we can use the same vertices to create a uniform cubicCatmull–Rom spline
(page 155) using the splines.CatmullRom (page 283) class:

[7]: plot_spline_2d(
splines.CatmullRom(vertices, endconditions='closed'),
chords=False)

plot_spline_2d(
splines.CatmullRom(modified_vertices, endconditions='closed'),
chords=False)
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Here we can see that two segments before and two segments after the modified vertex are
affected, but the rest of the segments remain unchanged.

Although this is typically only usedwith Catmull–Rom splines, we can also use centripetal
parameterization (page 163) for a natural spline:

[8]: plot_spline_2d(
splines.Natural(vertices, endconditions='closed'),
chords=False, label='uniform')

plot_spline_2d(
splines.Natural(vertices, endconditions='closed', alpha=0.5),
chords=False, label='centripetal')

plt.legend(numpoints=3);
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/natural-properties.ipynb ends here.

The following section was generated from doc/euclidean/natural-uniform.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b.2.5.2 Uniform Natural Splines

For deriving natural splines, we first look at the uniform case, which means that the pa-
rameter interval in each segment is chosen to be 1.

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/natural-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/natural-uniform.ipynb
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The more general case with arbitrary parameter intervals is derived in a separate notebook
about non-uniform natural splines (page 131).

[1]: import sympy as sp
sp.init_printing(order='grevlex')

We import some helpers from utility.py:

[2]: from utility import NamedExpression, dotproduct

[3]: t = sp.symbols('t')

To get started, let’s look at two neighboring segments: Let’s say the fourth segment, from
𝒙3 to 𝒙4, defined by the polynomial 𝒑3, and the fifth segment, from 𝒙4 to 𝒙5, defined by the
polynomial 𝒑4. In both cases, we use 0 ≤ 𝑡 ≤ 1.

[4]: coefficients3 = sp.symbols('a:dbm3')[::-1]
coefficients4 = sp.symbols('a:dbm4')[::-1]

We apply these coefficients to the monomial basis (page 88) …

[5]: b_monomial = t**3, t**2, t, 1

… to define the two polynomials …

[6]: p3 = NamedExpression('pbm3', dotproduct(b_monomial, coefficients3))
p4 = NamedExpression('pbm4', dotproduct(b_monomial, coefficients4))
display(p3, p4)

𝒑3 = 𝒅3𝑡3 + 𝒄3𝑡2 + 𝒃3𝑡 + 𝒂3
𝒑4 = 𝒅4𝑡3 + 𝒄4𝑡2 + 𝒃4𝑡 + 𝒂4

… and we calculate their first derivatives:

[7]: pd3 = p3.diff(t)
pd4 = p4.diff(t)
display(pd3, pd4)

𝑑
𝑑𝑡
𝒑3 = 3𝒅3𝑡2 + 2𝒄3𝑡 + 𝒃3

𝑑
𝑑𝑡
𝒑4 = 3𝒅4𝑡2 + 2𝒄4𝑡 + 𝒃4

From this, we obtain 8 equations containing the 8 yet unknown coefficients.

[8]: equations = [
p3.evaluated_at(t, 0).with_name('xbm3'),
p3.evaluated_at(t, 1).with_name('xbm4'),
p4.evaluated_at(t, 0).with_name('xbm4'),
p4.evaluated_at(t, 1).with_name('xbm5'),
pd3.evaluated_at(t, 0).with_name('xbmdot3'),
pd3.evaluated_at(t, 1).with_name('xbmdot4'),
pd4.evaluated_at(t, 0).with_name('xbmdot4'),
pd4.evaluated_at(t, 1).with_name('xbmdot5'),

(continues on next page)

utility.py
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(continued from previous page)
]
display(*equations)
𝒙3 = 𝒂3
𝒙4 = 𝒂3 + 𝒃3 + 𝒄3 + 𝒅3
𝒙4 = 𝒂4
𝒙5 = 𝒂4 + 𝒃4 + 𝒄4 + 𝒅4
�̇�3 = 𝒃3
�̇�4 = 𝒃3 + 2𝒄3 + 3𝒅3
�̇�4 = 𝒃4
�̇�5 = 𝒃4 + 2𝒄4 + 3𝒅4

We can solve the system of equations to get an expression for each coefficient:

[9]: coefficients = sp.solve(equations, coefficients3 + coefficients4)
for c, e in coefficients.items():

display(NamedExpression(c, e))
𝒂3 = 𝒙3
𝒂4 = 𝒙4
𝒃3 = �̇�3
𝒃4 = �̇�4
𝒄3 = −3𝒙3 + 3𝒙4 − 2�̇�3 − �̇�4
𝒄4 = −3𝒙4 + 3𝒙5 − 2�̇�4 − �̇�5
𝒅3 = 2𝒙3 − 2𝒙4 + �̇�3 + �̇�4
𝒅4 = 2𝒙4 − 2𝒙5 + �̇�4 + �̇�5

So far, this is the same as we have done in the notebook about uniform Hermite splines
(page 109). In fact, the above constants are the same as in𝑀𝐻!

An additional constraint for natural splines is that the second derivatives are continuous,
so let’s calculate those derivatives …

[10]: pdd3 = pd3.diff(t)
pdd4 = pd4.diff(t)
display(pdd3, pdd4)

𝑑2

𝑑𝑡2
𝒑3 = 6𝒅3𝑡 + 2𝒄3

𝑑2

𝑑𝑡2
𝒑4 = 6𝒅4𝑡 + 2𝒄4

… and set them to be equal at the segment border:

[11]: sp.Eq(pdd3.expr.subs(t, 1), pdd4.expr.subs(t, 0))

[11]: 2𝒄3 + 6𝒅3 = 2𝒄4

Inserting the equations from above leads to this equation:

[12]: _.subs(coefficients).simplify()
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[12]: 3𝒙3 = 3𝒙5 − �̇�3 − 4�̇�4 − �̇�5

We can generalize this expression by renaming index 4 to 𝑖:

�̇�𝑖−1 + 4�̇�𝑖 + �̇�𝑖+1 = 3(𝒙𝑖+1 − 𝒙𝑖−1)

This can be used for each segment – except for the very first and last one – yielding a
matrix with 𝑁 columns and 𝑁 − 2 rows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 4 1 ⋯ 0
1 4 1 ⋮

⋱ ⋱
⋮ 1 4 1
0 ⋯ 1 4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇�0
�̇�1
⋮

�̇�𝑁−2
�̇�𝑁−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3(𝒙2 − 𝒙0)
3(𝒙3 − 𝒙1)

⋮
3(𝒙𝑁−2 − 𝒙𝑁−4)
3(𝒙𝑁−1 − 𝒙𝑁−3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b.2.5.2.1 End Conditions

We need a first and last row for this matrix to be able to fully define a natural spline.
The following subsections show a selection of a few end conditions which can be used to
obtain the missing rows of the matrix. End conditions (except “closed”) can be mixed,
e.g. “clamped” at the beginning and “natural” at the end. The Python class splines.Natural
(page 285) uses “natural” end conditions by default.

Natural Natural end conditions are commonly used for natural splines, which is prob-
ably why they are named that way.

There is a separate notebook about “natural” end conditions (page 207), from which we can
get the uniform case by setting Δ𝑖 = 1:

2�̇�0 + �̇�1 = 3(𝒙1 − 𝒙0)
�̇�𝑁−2 + 2�̇�𝑁−1 = 3(𝒙𝑁−1 − 𝒙𝑁−2)

Adding this to the matrix from above leads to a full 𝑁 ×𝑁matrix:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 1 ⋯ 0
1 4 1 ⋮

1 4 1
⋱ ⋱
1 4 1

⋮ 1 4 1
0 ⋯ 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇�0
�̇�1
⋮

�̇�𝑁−2
�̇�𝑁−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3(𝒙1 − 𝒙0)
3(𝒙2 − 𝒙0)
3(𝒙3 − 𝒙1)

⋮
3(𝒙𝑁−2 − 𝒙𝑁−4)
3(𝒙𝑁−1 − 𝒙𝑁−3)
3(𝒙𝑁−1 − 𝒙𝑁−2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Clamped We can simply provide arbitrarily chosen values 𝐷begin and 𝐷end for the end
tangents. This is called clamped end conditions.

�̇�0 = 𝐷begin

�̇�𝑁−1 = 𝐷end

This leads to a very simple first and last line:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 ⋯ 0
1 4 1 ⋮

1 4 1
⋱ ⋱
1 4 1

⋮ 1 4 1
0 ⋯ 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇�0
�̇�1
⋮

�̇�𝑁−2
�̇�𝑁−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐷begin
3(𝒙2 − 𝒙0)
3(𝒙3 − 𝒙1)

⋮
3(𝒙𝑁−2 − 𝒙𝑁−4)
3(𝒙𝑁−1 − 𝒙𝑁−3)

𝐷end

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Closed We can close the spline by connecting 𝒙𝑁−1 with 𝒙0. This can be realized by
cyclically extending the matrix in both directions:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1 ⋯ 0 1
1 4 1 0 0

1 4 1 ⋮
⋱ ⋱

⋮ 1 4 1
0 0 1 4 1
1 0 ⋯ 1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�̇�0
�̇�1
⋮

�̇�𝑁−2
�̇�𝑁−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3(𝒙1 − 𝒙𝑁−1)
3(𝒙2 − 𝒙0)
3(𝒙3 − 𝒙1)

⋮
3(𝒙𝑁−2 − 𝒙𝑁−4)
3(𝒙𝑁−1 − 𝒙𝑁−3)
3(𝒙0 − 𝒙𝑁−2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b.2.5.2.2 Solving the System of Equations

Thematrices above are tridiagonal and can therefore be solved efficientlywith a tridiagonal
matrix algorithm23. The class splines.Natural (page 285), however, is not very concerned
about efficiency and simply uses NumPy’s linalg.solve()24 function to solve the system of
equations.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/natural-uniform.ipynb ends here.

The following section was generated from doc/euclidean/natural-non-uniform.ipynb . . . . . . . . . . . . . . . . . . . . . . . .
b.2.5.3 Non-Uniform Natural Splines

The derivation is similar to the uniform case (page 127), but this time the parameter inter-
vals can have arbitrary values.

[1]: import sympy as sp
sp.init_printing(order='grevlex')

23 https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
24 https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html

https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
https://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
https://numpy.org/doc/stable/reference/generated/numpy.linalg.solve.html
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/natural-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/natural-non-uniform.ipynb
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[2]: from utility import NamedExpression, dotproduct

[3]: t = sp.symbols('t')

Just like in the uniform case, we are considering two adjacent spline segments, but now
we must allow arbitrary parameter values:

[4]: t3, t4, t5 = sp.symbols('t3:6')

[5]: b_monomial = t**3, t**2, t, 1

[6]: coefficients3 = sp.symbols('a:dbm3')[::-1]
coefficients4 = sp.symbols('a:dbm4')[::-1]

[7]: p3 = NamedExpression(
'pbm3',
dotproduct(b_monomial, coefficients3).subs(t, (t - t3)/(t4 - t3)))

p4 = NamedExpression(
'pbm4',
dotproduct(b_monomial, coefficients4).subs(t, (t - t4)/(t5 - t4)))

display(p3, p4)

𝒑3 =
𝒅3 (𝑡 − 𝑡3)

3

(−𝑡3 + 𝑡4)
3 +

𝒄3 (𝑡 − 𝑡3)
2

(−𝑡3 + 𝑡4)
2 +

𝒃3 (𝑡 − 𝑡3)
−𝑡3 + 𝑡4

+ 𝒂3

𝒑4 =
𝒅4 (𝑡 − 𝑡4)

3

(−𝑡4 + 𝑡5)
3 +

𝒄4 (𝑡 − 𝑡4)
2

(−𝑡4 + 𝑡5)
2 +

𝒃4 (𝑡 − 𝑡4)
−𝑡4 + 𝑡5

+ 𝒂4

[8]: pd3 = p3.diff(t)
pd4 = p4.diff(t)
display(pd3, pd4)

𝑑
𝑑𝑡
𝒑3 =

3𝒅3 (𝑡 − 𝑡3)
2

(−𝑡3 + 𝑡4)
3 +

𝒄3 ⋅ (2𝑡 − 2𝑡3)
(−𝑡3 + 𝑡4)

2 +
𝒃3

−𝑡3 + 𝑡4

𝑑
𝑑𝑡
𝒑4 =

3𝒅4 (𝑡 − 𝑡4)
2

(−𝑡4 + 𝑡5)
3 +

𝒄4 ⋅ (2𝑡 − 2𝑡4)
(−𝑡4 + 𝑡5)

2 +
𝒃4

−𝑡4 + 𝑡5

[9]: equations = [
p3.evaluated_at(t, t3).with_name('xbm3'),
p3.evaluated_at(t, t4).with_name('xbm4'),
p4.evaluated_at(t, t4).with_name('xbm4'),
p4.evaluated_at(t, t5).with_name('xbm5'),
pd3.evaluated_at(t, t3).with_name('xbmdot3'),
pd3.evaluated_at(t, t4).with_name('xbmdot4'),
pd4.evaluated_at(t, t4).with_name('xbmdot4'),
pd4.evaluated_at(t, t5).with_name('xbmdot5'),

]

We introduce a few new symbols to simplify the display, but we keep calculating with
𝑡𝑖:
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[10]: deltas = {
t3: 0,
t4: sp.Symbol('Delta3'),
t5: sp.Symbol('Delta3') + sp.Symbol('Delta4'),

}

[11]: for e in equations:
display(e.subs(deltas))

𝒙3 = 𝒂3
𝒙4 = 𝒂3 + 𝒃3 + 𝒄3 + 𝒅3
𝒙4 = 𝒂4
𝒙5 = 𝒂4 + 𝒃4 + 𝒄4 + 𝒅4

�̇�3 =
𝒃3
Δ3

�̇�4 =
𝒃3
Δ3

+
2𝒄3
Δ3

+
3𝒅3
Δ3

�̇�4 =
𝒃4
Δ4

�̇�5 =
𝒃4
Δ4

+
2𝒄4
Δ4

+
3𝒅4
Δ4

[12]: coefficients = sp.solve(equations, coefficients3 + coefficients4)

[13]: for c, e in coefficients.items():
display(NamedExpression(c, e.factor().subs(deltas).simplify()))

𝒂3 = 𝒙3
𝒂4 = 𝒙4
𝒃3 = Δ3�̇�3
𝒃4 = Δ4�̇�4
𝒄3 = −2Δ3�̇�3 − Δ3�̇�4 − 3𝒙3 + 3𝒙4
𝒄4 = −2Δ4�̇�4 − Δ4�̇�5 − 3𝒙4 + 3𝒙5
𝒅3 = Δ3�̇�3 + Δ3�̇�4 + 2𝒙3 − 2𝒙4
𝒅4 = Δ4�̇�4 + Δ4�̇�5 + 2𝒙4 − 2𝒙5

[14]: pdd3 = pd3.diff(t)
pdd4 = pd4.diff(t)
display(pdd3, pdd4)

𝑑2

𝑑𝑡2
𝒑3 =

3𝒅3 ⋅ (2𝑡 − 2𝑡3)
(−𝑡3 + 𝑡4)

3 +
2𝒄3

(−𝑡3 + 𝑡4)
2

𝑑2

𝑑𝑡2
𝒑4 =

3𝒅4 ⋅ (2𝑡 − 2𝑡4)
(−𝑡4 + 𝑡5)

3 +
2𝒄4

(−𝑡4 + 𝑡5)
2

[15]: sp.Eq(pdd3.expr.subs(t, t4), pdd4.expr.subs(t, t4))

[15]: 3𝒅3 (−2𝑡3 + 2𝑡4)
(−𝑡3 + 𝑡4)

3 +
2𝒄3

(−𝑡3 + 𝑡4)
2 =

2𝒄4
(−𝑡4 + 𝑡5)

2
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[16]: _.subs(coefficients).subs(deltas).simplify()

[16]: 2 (Δ3�̇�3 + 2Δ3�̇�4 + 3𝒙3 − 3𝒙4)
Δ23

=
2 (−2Δ4�̇�4 − Δ4�̇�5 − 3𝒙4 + 3𝒙5)

Δ24

Like in the uniform case, we can generalize by renaming index 4 to 𝑖:

1
Δ𝑖−1

�̇�𝑖−1 + �
2
Δ𝑖−1

+
2
Δ𝑖
� �̇�𝑖 +

1
Δ𝑖
�̇�𝑖+1 =

3(𝒙𝑖 − 𝒙𝑖−1)
Δ𝑖−12

+
3(𝒙𝑖+1 − 𝒙𝑖)

Δ𝑖2

We are not showing the full matrix here, because it would be quite a bit more complicated
and less instructive than in the uniform case.

b.2.5.3.1 End Conditions

Like in the uniform case (page 130), we can come up with a few end conditions in order to
define the missing matrix rows.

The Python class splines.Natural (page 285) uses “natural” end conditions by default.

“Natural” end conditions are derived in a separate notebook (page 207), yielding these ex-
pressions:

2Δ0�̇�0 + Δ0�̇�1 = 3(𝒙1 − 𝒙0)
Δ𝑁−2�̇�𝑁−2 + 2Δ𝑁−2�̇�𝑁−1 = 3(𝒙𝑁−1 − 𝒙𝑁−2)

Other end conditions can be derived as shown in the notebook about uniform “natural” splines
(page 130).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/natural-non-uniform.ipynb ends here.

b.2.6 Bézier Splines

Named after Pierre Bézier25, Bézier curves are defined by means of Bernstein polynomi-
als26 (Farouki 2012), which are named after Sergei Bernstein27. A popular method to
evaluate Bézier curves at given parameter values is De Casteljau’s algorithm (page 136).
A very good online resource with many interactive examples is the website https:
//pomax.github.io/bezierinfo/.

Bézier splines are composed of Bézier curve segments.

A Python implementation is available in the class splines.Bernstein (page 282).

25 https://en.wikipedia.org/wiki/Pierre_Bézier
26 https://en.wikipedia.org/wiki/Bernstein_polynomial
27 https://en.wikipedia.org/wiki/Sergei_Bernstein

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/natural-non-uniform.ipynb
https://en.wikipedia.org/wiki/Pierre_Bézier
https://en.wikipedia.org/wiki/Bernstein_polynomial
https://en.wikipedia.org/wiki/Bernstein_polynomial
https://en.wikipedia.org/wiki/Sergei_Bernstein
https://pomax.github.io/bezierinfo/
https://pomax.github.io/bezierinfo/
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The following section was generated from doc/euclidean/bezier-properties.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . .
b.2.6.1 Properties of Bézier Splines

The terms Bézier spline and Bézier curve are sometimes used interchangeably for two
slightly different things:

1. A curve constructed from a single Bernstein polynomial of degree 𝑑, given a control
polygon consisting of a sequence of 𝑑 + 1 vertices. The first and last vertex lie on the
curve (at its start and end, respectively), while the other vertices in general don’t
(the curve approximates them).

2. A piecewise polynomial curve consisting of multiple segments, each of them con-
structed from a separate Bernstein polynomial. The start and end points of neigh-
boring control polygons typically coincide, leading to 𝐶0 continuity. However, the
overall control polygon can be chosen in a way to achieve 𝐺1 or 𝐶1 (or even higher)
continuity.

We use the term Bézier curve for the former and Bézier spline for the latter. Bézier splines
in the latter sense are well known from their common use in 2D vector graphics software,
where cubic (i.e. degree 3) curve segments are typically used. Each segment has four
control points: The start and end point of the segment (shared with the end and start of
the previous and next segment, respectively) as well as two additional points that control
the shape of the curve segment.

[1]: import matplotlib.pyplot as plt
import numpy as np

[2]: import splines

As an example, we create control points for a Bézier spline consisting of four segments,
having polynomial degrees of 1, 2, 3 and 4.

[3]: control_points = [
[(0, 0), (1, 4)],
[(1, 4), (2, 2), (4, 4)],
[(4, 4), (6, 4), (5, 2), (7, 2)],
[(7, 2), (8, 0), (4, 0), (5, 1), (3, 1)],

]

We are using the class splines.Bernstein (page 282) to construct a Bézier spline from these
control points.

[4]: s = splines.Bernstein(control_points)

[5]: times = np.linspace(s.grid[0], s.grid[-1], 100)

[6]: fig, ax = plt.subplots()
for segment in control_points:

xy = np.transpose(segment)
ax.plot(*xy, '--')
ax.scatter(*xy, color='grey')

ax.plot(*s.evaluate(times).T, 'k.')
ax.axis('equal');

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/bezier-properties.ipynb
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/bezier-properties.ipynb ends here.

The following section was generated from doc/euclidean/bezier-de-casteljau.ipynb . . . . . . . . . . . . . . . . . . . . . . . .

b.2.6.2 De Casteljau’s Algorithm

There are several ways that lead to Bézier curves, one (but only for cubic curves) was al-
ready shown in the notebook about Hermite curves (page 115). In this notebook, we will de-
rive Bézier curves of arbitrary polynomial degree utilizing De Casteljau’s algorithm28.

b.2.6.2.1 Preparations

[1]: %config InlineBackend.print_figure_kwargs = {'bbox_inches': None}
import matplotlib.pyplot as plt
import numpy as np
import sympy as sp
sp.init_printing()

We import a few utilities and helpers from the files utility.py and helper.py.

[2]: from utility import NamedExpression, NamedMatrix
from helper import plot_basis

Let’s prepare a few symbols for later use …

[3]: t, x0, x1, x2, x3, x4 = sp.symbols('t, xbm:5')

… and a helper function for plotting:

[4]: def plot_curve(func, points, dots=30, ax=None):
if ax is None:

ax = plt.gca()
times = np.linspace(0, 1, dots)
ax.plot(*func(points, times).T, '.')
ax.plot(

(continues on next page)

28 https://en.wikipedia.org/wiki/De_Casteljau's_algorithm

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/bezier-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/bezier-de-casteljau.ipynb
https://en.wikipedia.org/wiki/De_Casteljau's_algorithm
utility.py
helper.py
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(continued from previous page)
*np.asarray(points).T,
color='lightgrey',
linestyle=':',
marker='x',
markeredgecolor='black',

)
ax.scatter(*np.asarray(points).T, marker='x', c='black')
ax.set_title(func.__name__ + ' Bézier curve')
ax.axis('equal')

We also need to prepare for the animations we will see below. This is using code from the
file casteljau.py:

[5]: from casteljau import create_animation

def show_casteljau_animation(points, frames=30, interval=200):
ani = create_animation(points, frames=frames, interval=interval)
display({

'text/html': ani.to_jshtml(default_mode='reflect'),
'text/plain': 'Animations can only be shown in HTML output, sorry!

↪',
}, raw=True)
plt.close() # avoid spurious figure display

b.2.6.2.2 Degree 1 (Linear)

After all those preparations, let’s start with the trivial case: A Bézier spline of degree 1 is
just a piecewise linear curve connecting all the control points. There are no “off-curve”
control points that could bend the curve segments.

Assuming that we have two control points, 𝒙0 and 𝒙1, we can set up a linear equation:

𝒑0,1(𝑡) = 𝒙0 + 𝑡(𝒙1 − 𝒙0).

Another way to write the same thing is like this:

𝒑0,1(𝑡) = (1 − 𝑡)𝒙0 + 𝑡𝒙1,

where in both cases 0 ≤ 𝑡 ≤ 1. These linear interpolations are sometimes also called affine
combinations. Since we will be needing quite a few of those linear interpolations, let’s
create a helper function:

[6]: def lerp(one, two):
"""Linear interpolation.

The parameter *t* is expected to be between 0 and 1.

"""
return (1 - t) * one + t * two

Now we can define the equation in SymPy:

casteljau.py
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[7]: p01 = NamedExpression('pbm_0,1', lerp(x0, x1))
p01

[7]: 𝒑0,1 = 𝑡𝒙1 + 𝒙0 ⋅ (1 − 𝑡)

[8]: b1 = [p01.expr.expand().coeff(x.name).factor() for x in (x0, x1)]
b1

[8]: [1 − 𝑡, 𝑡]

Doesn’t look like much, but those are the Bernstein bases29 for degree 1. It doesn’t get
much more interesting if we plot them:

[9]: plot_basis(*b1)

0 1t

0

1

we
ig

ht 1 t
t

If you want to convert this to coefficients for the monomial basis (page 88) [𝑡, 1] instead of
the Bernstein basis functions, you can use this matrix:

[10]: M_B1 = NamedMatrix(
r'{M_\text{B}^{(1)}}',
sp.Matrix([[c.coeff(x) for x in (x0, x1)]

for c in p01.expr.as_poly(t).all_coeffs()]))
M_B1

[10]:
𝑀(1)

B = �
−1 1
1 0�

Applying this matrix leads to the coefficients of the linear equation mentioned in the be-
ginning of this section (𝒑0,1(𝑡) = 𝑡(𝒙1 − 𝒙0) + 𝒙0):

[11]: sp.MatMul(M_B1.expr, sp.Matrix([x0, x1]))

[11]:
�
−1 1
1 0� �

𝒙0
𝒙1�

29 https://en.wikipedia.org/wiki/Bernstein_polynomial

https://en.wikipedia.org/wiki/Bernstein_polynomial
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[12]: _.doit()

[12]:
�
−𝒙0 + 𝒙1
𝒙0 �

In case you ever need that, here’s the inverse:

[13]: M_B1.I

[13]:
�𝑀(1)

B �
−1
= �
0 1
1 1�

Anyhow, let’s calculate points on the curve by using the Bernstein basis functions:

[14]: def linear(points, times):
"""Evaluate linear Bézier curve (given by two points) at given times."

↪""
return np.column_stack(sp.lambdify(t, b1)(times)) @ points

[15]: points = [
(0, 0),
(1, 0.5),

]

[16]: plot_curve(linear, points)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5
linear Bézier curve

[17]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

I know, not very exciting. But it gets better!

b.2.6.2.3 Degree 2 (Quadratic)

Nowwe consider three control points, 𝒙0, 𝒙1 and 𝒙2. We use the linear interpolation of the
first two points from above …
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[18]: p01

[18]: 𝒑0,1 = 𝑡𝒙1 + 𝒙0 ⋅ (1 − 𝑡)

… and we do the same thing for the second and third point:

[19]: p12 = NamedExpression('pbm_1,2', lerp(x1, x2))
p12

[19]: 𝒑1,2 = 𝑡𝒙2 + 𝒙1 ⋅ (1 − 𝑡)

Finally, we make another linear interpolation between those two results:

[20]: p02 = NamedExpression('pbm_0,2', lerp(p01.expr, p12.expr))
p02

[20]: 𝒑0,2 = 𝑡 (𝑡𝒙2 + 𝒙1 ⋅ (1 − 𝑡)) + (1 − 𝑡) (𝑡𝒙1 + 𝒙0 ⋅ (1 − 𝑡))

From this, we can get the Bernstein basis functions of degree 2:

[21]: b2 = [p02.expr.expand().coeff(x.name).factor() for x in (x0, x1, x2)]
b2

[21]: �(𝑡 − 1)2 , −2𝑡 (𝑡 − 1) , 𝑡2�

[22]: plot_basis(*b2)

0 1t

0

1

we
ig

ht

(t 1)2

2t(t 1)
t2

[23]: M_B2 = NamedMatrix(
r'{M_\text{B}^{(2)}}',
sp.Matrix([[c.coeff(x) for x in (x0, x1, x2)]

for c in p02.expr.as_poly(t).all_coeffs()]))
M_B2

[23]:
𝑀(2)

B =

⎡
⎢⎢⎢⎢⎢⎣

1 −2 1
−2 2 0
1 0 0

⎤
⎥⎥⎥⎥⎥⎦
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[24]: M_B2.I

[24]:

�𝑀(2)
B �

−1
=

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1
0 1

2 1
1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

[25]: def quadratic(points, times):
"""Evaluate quadratic Bézier curve (given by three points) at given␣

↪times."""
return np.column_stack(sp.lambdify(t, b2)(times)) @ points

[26]: points = [
(0, 0),
(0.2, 0.5),
(1, -0.3),

]

[27]: plot_curve(quadratic, points)

0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.0

0.2

0.4

quadratic Bézier curve

[28]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

Quadratic Tangent Vectors For somemore insight, let’s look at the first derivative of the
curve (i.e. the tangent vector) …

[29]: v02 = p02.diff(t)

… at the beginning and the end of the curve:

[30]: v02.evaluated_at(t, 0)

[30]: 𝑑
𝑑𝑡
𝒑0,2�

𝑡=0
= −2𝒙0 + 2𝒙1
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[31]: v02.evaluated_at(t, 1)

[31]: 𝑑
𝑑𝑡
𝒑0,2�

𝑡=1
= −2𝒙1 + 2𝒙2

This shows that the tangent vector at the beginning and end of the curve is parallel to the
line from 𝒙0 to 𝒙1 and from 𝒙1 to 𝒙2, respectively. The length of the tangent vectors is twice
the length of those lines.

Youmight have already seen this coming, but it turns out that the last line inDeCasteljau’s
algorithm (𝒑1,2(𝑡) − 𝒑0,1(𝑡) in our case) is exactly half of the tangent vector (at any given
𝑡 ∈ [0, 1]).

[32]: assert (v02.expr - 2 * (p12.expr - p01.expr)).simplify() == 0

In case you are wondering, the factor 2 comes from the degree 2 of our quadratic curve.

b.2.6.2.4 Degree 3 (Cubic)

Let’s now consider four control points, 𝒙0, 𝒙1, 𝒙2 and 𝒙3.

By now, the pattern should be clear: We take the result from the first three points from
above and linearly interpolate it with the result for the three points 𝒙1, 𝒙2 and 𝒙3, which
we will derive in the following.

We still need the combination of 𝒙2 and 𝒙3 …

[33]: p23 = NamedExpression('pbm_2,3', lerp(x2, x3))
p23

[33]: 𝒑2,3 = 𝑡𝒙3 + 𝒙2 ⋅ (1 − 𝑡)

… which we are using to calculate the combination of 𝒙1, 𝒙2 and 𝒙3 …

[34]: p13 = NamedExpression('pbm_1,3', lerp(p12.expr, p23.expr))
p13

[34]: 𝒑1,3 = 𝑡 (𝑡𝒙3 + 𝒙2 ⋅ (1 − 𝑡)) + (1 − 𝑡) (𝑡𝒙2 + 𝒙1 ⋅ (1 − 𝑡))

… which we need for the combination of 𝒙0, 𝒙1, 𝒙2 and 𝒙3:

[35]: p03 = NamedExpression('pbm_0,3', lerp(p02.expr, p13.expr))
p03

[35]: 𝒑0,3 = 𝑡 (𝑡 (𝑡𝒙3 + 𝒙2 ⋅ (1 − 𝑡)) + (1 − 𝑡) (𝑡𝒙2 + 𝒙1 ⋅ (1 − 𝑡))) +
(1 − 𝑡) (𝑡 (𝑡𝒙2 + 𝒙1 ⋅ (1 − 𝑡)) + (1 − 𝑡) (𝑡𝒙1 + 𝒙0 ⋅ (1 − 𝑡)))

This leads to the cubic Bernstein bases:

[36]: b3 = [p03.expr.expand().coeff(x.name).factor() for x in (x0, x1, x2, x3)]
b3

[36]: �− (𝑡 − 1)3 , 3𝑡 (𝑡 − 1)2 , −3𝑡2 (𝑡 − 1) , 𝑡3�

Those are of course the same Bernstein bases as we found in the notebook about Hermite
splines (page 115).
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[37]: plot_basis(*b3)
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[38]: M_B3 = NamedMatrix(
r'{M_\text{B}^{(3)}}',
sp.Matrix([[c.coeff(x) for x in (x0, x1, x2, x3)]

for c in p03.expr.as_poly(t).all_coeffs()]))
M_B3

[38]:

𝑀(3)
B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 3 −3 1
3 −6 3 0
−3 3 0 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[39]: M_B3.I

[39]:

�𝑀(3)
B �

−1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1
0 0 1

3 1
0 1

3
2
3 1

1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[40]: def cubic(points, times):
"""Evaluate cubic Bézier curve (given by four points) at given times."

↪""
return np.column_stack(sp.lambdify(t, b3)(times)) @ points

[41]: points = [
(0, 0.3),
(0.2, 0.5),
(0.1, 0),
(1, 0.2),

]

[42]: plot_curve(cubic, points)
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[43]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

Cubic Tangent Vectors As before, let’s look at the derivative (i.e. the tangent vector) of
the curve …

[44]: v03 = p03.diff(t)

… at the beginning and the end of the curve:

[45]: v03.evaluated_at(t, 0)

[45]: 𝑑
𝑑𝑡
𝒑0,3�

𝑡=0
= −3𝒙0 + 3𝒙1

[46]: v03.evaluated_at(t, 1)

[46]: 𝑑
𝑑𝑡
𝒑0,3�

𝑡=1
= −3𝒙2 + 3𝒙3

This shows that the tangent vector at the beginning and end of the curve is parallel to the
line from 𝒙0 to 𝒙1 and from 𝒙2 to 𝒙3, respectively. The length of the tangent vectors is three
times the length of those lines. This also means that if the begin and end positions 𝒙0 and
𝒙3 as well as the corresponding tangent vectors �̇�0 and �̇�3 are given, it’s easy to calculate
the two missing control points:

𝒙1 = 𝒙0 +
�̇�0
3

𝒙2 = 𝒙3 −
�̇�3
3

This can be used to turn uniformHermite splines into Bézier splines (page 115) and to construct
uniform Catmull–Rom splines using Bézier segments (page 174).
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We can now also see that the last linear segment inDeCasteljau’s algorithm (𝒑1,3(𝑡)−𝒑0,2(𝑡)
in this case) is exactly a third of the tangent vector (at any given 𝑡 ∈ [0, 1]):

[47]: assert (v03.expr - 3 * (p13.expr - p02.expr)).simplify() == 0

Again, the factor 3 comes from the degree 3 of our curve.

Cubic Bézier to Hermite Segments We now know the tangent vectors at the beginning
and the end of the curve, and obviously we know the values of the curve at the beginning
and the end:

[48]: p03.evaluated_at(t, 0)

[48]: 𝒑0,3�𝑡=0 = 𝒙0

[49]: p03.evaluated_at(t, 1)

[49]: 𝒑0,3�𝑡=1 = 𝒙3

With these four pieces of information, we can find a transformation from the four Bézier
control points to the two control points and two tangent vectors of a Hermite spline seg-
ment:

[50]: M_BtoH = NamedMatrix(
r'{M_\text{B$\to$H}}',
sp.Matrix([[expr.coeff(cv) for cv in [x0, x1, x2, x3]]

for expr in [
x0,
x3,
v03.evaluated_at(t, 0).expr,
v03.evaluated_at(t, 1).expr]]))

M_BtoH

[50]:

𝑀B→H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 1
−3 3 0 0
0 0 −3 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

And we can simply invert this if we want to go in the other direction, from Hermite to
Bézier:

[51]: M_BtoH.I.pull_out(sp.S.One / 3)

[51]:

𝑀B→H
−1 =

1
3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0
3 0 1 0
0 3 0 −1
0 3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Of course, those are the samematrices as shown in the notebook about uniform cubic Hermite
splines (page 115).
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b.2.6.2.5 Degree 4 (Quartic)

By now you know the drill, let’s consider five control points, 𝒙0, 𝒙1, 𝒙2, 𝒙3 and 𝒙4, which
lead to more linear interpolations:

[52]: p34 = NamedExpression('pbm_3,4', lerp(x3, x4))
p24 = NamedExpression('pbm_2,4', lerp(p23.expr, p34.expr))
p14 = NamedExpression('pbm_1,4', lerp(p13.expr, p24.expr))
p04 = NamedExpression('pbm_0,4', lerp(p03.expr, p14.expr))

The resulting expression for 𝒑0,4(𝑡) is quite long and unwieldy (and frankly, quite boring
as well), so we are not showing it here.

[53]: #p04

Instead, we are using it immediately to extract the Bernstein bases:

[54]: b4 = [p04.expr.expand().coeff(x.name).factor() for x in (x0, x1, x2, x3,␣
↪x4)]
b4

[54]: �(𝑡 − 1)4 , −4𝑡 (𝑡 − 1)3 , 6𝑡2 (𝑡 − 1)2 , −4𝑡3 (𝑡 − 1) , 𝑡4�

[55]: plot_basis(*b4)
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[56]: M_B4 = NamedMatrix(
'{M_B^{(4)}}',
sp.Matrix([[c.coeff(x) for x in (x0, x1, x2, x3, x4)]

for c in p04.expr.as_poly(t).all_coeffs()]))
M_B4

[56]:

𝑀(4)
𝐵 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −4 6 −4 1
−4 12 −12 4 0
6 −12 6 0 0
−4 4 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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[57]: M_B4.I

[57]:

�𝑀(4)
𝐵 �

−1
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1

4 1
0 0 1

6
1
2 1

0 1
4

1
2

3
4 1

1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[58]: def quartic(points, times):
"""Evaluate quartic Bézier curve (given by five points) at given␣

↪times."""
return np.column_stack(sp.lambdify(t, b4)(times)) @ points

[59]: points = [
(0, 0),
(0.5, 0),
(0.7, 1),
(1, 1.5),
(-1, 1),

]

[60]: plot_curve(quartic, points)
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[61]: show_casteljau_animation(points)

Animations can only be shown in HTML output, sorry!

Quartic Tangent Vectors For completeness’ sake, let’s look at the derivative (i.e. the
tangent vector) of the curve …

[62]: v04 = p04.diff(t)

… at the beginning and the end of the curve:
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[63]: v04.evaluated_at(t, 0)

[63]: 𝑑
𝑑𝑡
𝒑0,4�

𝑡=0
= −4𝒙0 + 4𝒙1

[64]: v04.evaluated_at(t, 1)

[64]: 𝑑
𝑑𝑡
𝒑0,4�

𝑡=1
= −4𝒙3 + 4𝒙4

By now it shouldn’t be surprising that the tangent vector at the beginning and end of the
curve is parallel to the line from 𝒙0 to 𝒙1 and from 𝒙3 to 𝒙4, respectively. The length of
the tangent vectors is four times the length of those lines. The last line in De Casteljau’s
algorithm (𝒑1,4(𝑡) − 𝒑0,3(𝑡) in this case) is exactly a fourth of the tangent vector (at any
given 𝑡 ∈ [0, 1]):

[65]: assert (v04.expr - 4 * (p14.expr - p03.expr)).simplify() == 0

Again, the factor 4 comes from the degree 4 of our curve.

b.2.6.2.6 Arbitrary Degree

We could go on doing this for higher and higher degrees, but this would get more and
more annoying. Luckily, there is a closed formula available to calculate Bernstein polyno-
mials for an arbitrary degree 𝑛 (using the binomial coefficient30 �𝑛𝑖� =

𝑛!
𝑖!(𝑛−𝑖)!):

𝑏𝑖,𝑛(𝑥) = �
𝑛
𝑖 �𝑥

𝑖 (1 − 𝑥)𝑛−𝑖 , 𝑖 = 0, … , 𝑛.

This is used in the Python class splines.Bernstein (page 282).

[66]: show_casteljau_animation([
(0, 0),
(-1, 1),
(-0.5, 2),
(1, 2.5),
(2, 2),
(2, 1.5),
(0.5, 0.5),
(1, -0.5),

])

Animations can only be shown in HTML output, sorry!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/bezier-de-casteljau.ipynb ends here.

The following section was generated from doc/euclidean/bezier-non-uniform.ipynb . . . . . . . . . . . . . . . . . . . . . . . . .

b.2.6.3 Non-Uniform (Cubic) Bézier Splines

Very commonly, Bézier splines are used with a parameter range of 0 ≤ 𝑡 ≤ 1, which has
also been used to derive the basis polynomials and basis matrices in the notebook about De
Casteljau’s algorithm (page 136).
30 https://en.wikipedia.org/wiki/Binomial_coefficient

https://en.wikipedia.org/wiki/Binomial_coefficient
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/bezier-de-casteljau.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/bezier-non-uniform.ipynb
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The parameter range can be re-scaled to any desired parameter range, but since the shape
of a Bézier curve is fully defined by its control polygon, this will not change the shape of
the curve, but only its speed, and therefore its tangent vectors.

To derive equations for non-uniform tangent vectors, let us quickly re-implement De
Casteljau’s algorithm:

[1]: def lerp(one, two, t):
return (1 - t) * one + t * two

[2]: def de_casteljau(points, t):
while len(points) > 1:

points = [lerp(a, b, t) for a, b in zip(points, points[1:])]
return points[0]

[3]: import sympy as sp
sp.init_printing()

We’ll also use our trusty SymPy tools from utility.py:

[4]: from utility import NamedExpression

In this notebook we are only looking at cubic Bézier splines. More specifically, we are
looking at the fifth spline segment, from 𝒙4 to 𝒙5 within a parameter range from 𝑡4 to 𝑡5,
but later we can easily generalize this.

[5]: control_points = sp.symbols('xbm4 xtildebm4^(+) xtildebm5^(-) xbm5')
control_points

[5]: �𝒙4, �̃�
(+)
4 , �̃�(−)5 , 𝒙5�

[6]: t, t4, t5 = sp.symbols('t t4 t5')

As before, we are using De Casteljau’s algorithm, but this time we are re-scaling the pa-
rameter range using the transformation 𝑡 → 𝑡−𝑡𝑖

𝑡𝑖+1−𝑡𝑖
:

[7]: p4 = NamedExpression(
'pbm4',
de_casteljau(control_points, (t - t4) / (t5 - t4)))

b.2.6.3.1 Tangent Vectors

As always, the tangent vectors can be obtained by means of the first derivative:

[8]: pd4 = p4.diff(t)

[9]: pd4.evaluated_at(t, t4)

[9]: 𝑑
𝑑𝑡
𝒑4�

𝑡=𝑡4
= −

3𝒙4
−𝑡4 + 𝑡5

+
3�̃�(+)4
−𝑡4 + 𝑡5

This expression for the outgoing tangent vector at 𝒙4 can be generalized to

utility.py
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�̇�(+)𝑖 =
3 ��̃�(+)𝑖 − 𝒙𝑖�

Δ𝑖
,

where Δ𝑖 = 𝑡𝑖+1 − 𝑡𝑖.

Similarly, the incoming tangent vector at 𝒙5 …

[10]: pd4.evaluated_at(t, t5)

[10]: 𝑑
𝑑𝑡
𝒑4�

𝑡=𝑡5
=

3𝒙5
−𝑡4 + 𝑡5

−
3�̃�(−)5
−𝑡4 + 𝑡5

… can be generalized to

�̇�(−)𝑖 =
3 �𝒙𝑖 − �̃�

(−)
𝑖 �

Δ𝑖−1
.

This is similar to the uniform case (page 144), the tangent vectors are just divided by the
parameter interval.

b.2.6.3.2 Control Points From Tangent Vectors

If the tangent vectors are given in the first place – i.e. when a non-uniform Hermite spline
(page 105) is given, the cubic Bézier control points can be calculated like this:

�̃�(+)𝑖 = 𝒙𝑖 +
Δ𝑖�̇�

(+)
𝑖
3

�̃�(−)𝑖 = 𝒙𝑖 −
Δ𝑖−1�̇�

(−)
𝑖

3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/bezier-non-uniform.ipynb ends here.

The following section was generated from doc/euclidean/quadrangle.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b.2.7 Quadrangle Interpolation

This doesn’t seem to be a very popular type of spline. We aremainlymentioning it because
it is the starting point for interpolating rotations with Spherical Quadrangle Interpolation
(Squad) (page 268).

[1]: import sympy as sp
sp.init_printing(order='grevlex')

As usual, we import some helpers from utility.py and helper.py:

[2]: from utility import NamedExpression, NamedMatrix
from helper import plot_basis

Let’s start – as we have done before – by looking at the fifth segment of a spline, between
𝒙4 and 𝒙5. It will be referred to as 𝒑4(𝑡), where 0 ≤ 𝑡 ≤ 1.

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/bezier-non-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/quadrangle.ipynb
utility.py
helper.py
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[3]: x4, x5 = sp.symbols('xbm4:6')

Boehm (1982) mentions (on page 203) so-called quadrangle points:

[4]: x4bar = sp.symbols('xbarbm4^(+)')
x5bar = sp.symbols('xbarbm5^(-)')
x4bar, x5bar

[4]: ��̄�(+)4 , �̄�(−)5 �

[5]: t = sp.symbols('t')

[6]: def lerp(one, two, t):
"""Linear intERPolation.

The parameter *t* is expected to be between 0 and 1.

"""
return (1 - t) * one + t * two

Boehm (1982) also mentions (on page 210) a peculiar algorithm to construct the spline
segment. In a first step, a linear interpolation between the start and end point is done,
as well as a linear interpolation between the two quadrangle points. The two resulting
points are then interpolated again in a second step. However, the last interpolation does
not happen along a straight line, but along a parabola defined by the expression 2𝑡(1−𝑡):

[7]: p4 = NamedExpression(
'pbm4',
lerp(lerp(x4, x5, t), lerp(x4bar, x5bar, t), 2 * t * (1 - t)))

This leads to a cubic polynomial. The following steps are very similar to what we did for
cubic Bézier curves (page 142).

b.2.7.1 Basis Polynomials

[8]: b = [p4.expr.expand().coeff(x) for x in (x4, x4bar, x5bar, x5)]
b

[8]: �−2𝑡3 + 4𝑡2 − 3𝑡 + 1, 2𝑡3 − 4𝑡2 + 2𝑡, −2𝑡3 + 2𝑡2, 2𝑡3 − 2𝑡2 + 𝑡�

[9]: plot_basis(*b, labels=(x4, x4bar, x5bar, x5))
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b.2.7.2 Basis Matrix

[10]: M_Q = NamedMatrix(
r'{M_\text{Q}}',
sp.Matrix([[c.coeff(x) for x in (x4, x4bar, x5bar, x5)]

for c in p4.as_poly(t).all_coeffs()]))
M_Q

[10]:

𝑀Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 2 −2
−4 4 −2 2
3 −2 0 −1
−1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[11]: M_Q.I

[11]:

𝑀Q
−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1
1
2

1
2 0 −1

0 −12 −1 −1
−1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b.2.7.3 Tangent Vectors

[12]: pd4 = p4.diff(t)

[13]: xd4 = pd4.evaluated_at(t, 0)
xd4

[13]: 𝑑
𝑑𝑡
𝒑4�

𝑡=0
= 2�̄�(+)4 − 3𝒙4 + 𝒙5

[14]: xd5 = pd4.evaluated_at(t, 1)
xd5
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[14]: 𝑑
𝑑𝑡
𝒑4�

𝑡=1
= −2�̄�(−)5 − 𝒙4 + 3𝒙5

This can be generalized to:

�̇�(+)𝑖 = 2�̄�(+)𝑖 − 3𝒙𝑖 + 𝒙𝑖+1
�̇�(−)𝑖 = − �2�̄�(−)𝑖 − 3𝒙𝑖 + 𝒙𝑖−1�

b.2.7.4 Quadrangle to Hermite Control Values

[15]: M_QtoH = NamedMatrix(
r'{M_\text{Q$\to$H}}',
sp.Matrix([[expr.coeff(cv) for cv in [x4, x4bar, x5bar, x5]]

for expr in [
x4,
x5,
xd4.expr,
xd5.expr]]))

M_QtoH

[15]:

𝑀Q→H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 1
−3 2 0 1
−1 0 −2 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[16]: M_QtoH.I.pull_out(sp.S.One / 2)

[16]:

𝑀Q→H
−1 =

1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0
3 −1 1 0
−1 3 0 −1
0 2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

b.2.7.5 Quadrangle to Bézier Control Points

Since we already know the tangent vectors, it is easy to find the Bézier control points, as
we have already shown in the notebook about uniform Hermite splines (page 115).

[17]: x4tilde = NamedExpression('xtildebm4^(+)', x4 + xd4.expr / 3)
x4tilde

[17]:
�̃�(+)4 =

2�̄�(+)4
3

+
𝒙5
3

[18]: x5tilde = NamedExpression('xtildebm5^(-)', x5 - xd5.expr / 3)
x5tilde

[18]:
�̃�(−)5 =

2�̄�(−)5
3

+
𝒙4
3
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[19]: M_QtoB = NamedMatrix(
r'{M_\text{Q$\to$B}}',
sp.Matrix([[expr.coeff(cv) for cv in (x4, x4bar, x5bar, x5)]

for expr in [
x4,
x4tilde.expr,
x5tilde.expr,
x5]]))

M_QtoB.pull_out(sp.S.One / 3)

[19]:

𝑀Q→B =
1
3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 0
0 2 0 1
1 0 2 0
0 0 0 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[20]: M_QtoB.I.pull_out(sp.S.One / 2)

[20]:

𝑀Q→B
−1 =

1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 0 0
0 3 0 −1
−1 0 3 0
0 0 0 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The inverse matrix can be used for converting from Bézier control points to quadrangle
points:

[21]: NamedMatrix(
sp.Matrix([x4, x4bar, x5bar, x5]),
M_QtoB.I.expr * sp.Matrix([x4, x4tilde.name, x5tilde.name, x5]))

[21]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
�̄�(+)4
�̄�(−)5
𝒙5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
−𝒙52 +

3�̃�(+)4
2

−𝒙42 +
3�̃�(−)5
2

𝒙5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can generalize the equations for the outgoing and incoming quadrangle points:

�̄�(+)𝑖 =
3
2
�̃�(+)𝑖 −

1
2
𝒙𝑖+1

�̄�(−)𝑖 =
3
2
�̃�(−)𝑖 −

1
2
𝒙𝑖−1

The two equations are also shown by Boehm (1982) on page 203.

b.2.7.6 Non-Uniform Parameterization

Just like cubic Bézier splines (page 148), the shape of a segment (i.e. the image31) is fully
defined by its four control points. Re-scaling the parameter does not change the shape,
but it changes the speed and therefore the tangent vectors.

31 https://en.wikipedia.org/wiki/Image_(mathematics)

https://en.wikipedia.org/wiki/Image_(mathematics)
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[22]: t4, t5 = sp.symbols('t4:6')

[23]: p4nu = p4.subs(t, (t - t4) / (t5 - t4)).with_name(
r'\boldsymbol{p}_\text{4,non-uniform}')

[24]: pd4nu = p4nu.diff(t)

[25]: pd4nu.evaluated_at(t, t4)

[25]: 𝑑
𝑑𝑡
𝒑4,non-uniform�

𝑡=𝑡4
=

2�̄�(+)4
−𝑡4 + 𝑡5

−
3𝒙4

−𝑡4 + 𝑡5
+

𝒙5
−𝑡4 + 𝑡5

[26]: pd4nu.evaluated_at(t, t5)

[26]: 𝑑
𝑑𝑡
𝒑4,non-uniform�

𝑡=𝑡5
= −

2�̄�(−)5
−𝑡4 + 𝑡5

−
𝒙4

−𝑡4 + 𝑡5
+

3𝒙5
−𝑡4 + 𝑡5

This can be generalized to:

�̇�(+)𝑖,non-uniform =
2�̄�(+)𝑖 − 3𝒙𝑖 + 𝒙𝑖+1

Δ𝑖

�̇�(−)𝑖,non-uniform = −
2�̄�(−)𝑖 − 3𝒙𝑖 + 𝒙𝑖−1

Δ𝑖−1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/quadrangle.ipynb ends here.

b.2.8 Catmull–Rom Splines

What is nowadays known as Catmull–Rom spline is a specific member of a whole family
of splines introduced by Catmull and Rom (1974). That paper only describes uniform
splines, but their definition can be straightforwardly extended to the non-uniform case.

Contrary to popular belief, Overhauser splines – as presented by Overhauser (1968) – are
not the same!

A Python implementation of Catmull–Rom splines is available in the class splines.Catmull-
Rom (page 283).

The following section was generated from doc/euclidean/catmull-rom-properties.ipynb . . . . . . . . . . . . . . . . . . . .
b.2.8.1 Properties of Catmull–Rom Splines

Catmull andRom(1974) present awhole class of splineswith awhole range of properties.
Here we only consider one member of this class which is a cubic polynomial interpolat-
ing spline with 𝐶1 continuity and local support. Nowadays, this specific case is typically
simply referred to as Catmull–Rom spline.

This type of spline is very popular because they are very easy to use. Only a sequence of
control points has to be specified, the corresponding tangents are calculated automatically
from the given points. Using those tangents, the spline can be implemented using cubic

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/quadrangle.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/catmull-rom-properties.ipynb
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Hermite splines (page 105). Alternatively, spline values can be directly calculated with the
Barry–Goldman algorithm (page 181).

To calculate the spline values between two control points, the preceding and the following
control points are needed as well. The tangent vector at any given control point can be
calculated from this control point, its predecessor and its successor. Since Catmull–Rom
splines are 𝐶1 continuous, incoming and outgoing tangent vectors are equal.

The following examples use the Python class splines.CatmullRom (page 283) to create both
uniform and non-uniform splines. Only closed splines are shown, other end conditions
(page 207) can also be used, but they are not specific to this type of spline.

[1]: import matplotlib.pyplot as plt
import numpy as np
np.set_printoptions(precision=4)

Apart from the splines (page 281) module …

[2]: import splines

… we also import a few helper functions from helper.py:

[3]: from helper import plot_spline_2d, plot_tangent_2d

Let’s choose a few points for an example:

[4]: points1 = [
(-1, -0.5),
(0, 2.3),
(1, 1),
(4, 1.3),
(3.8, -0.2),
(2.5, 0.1),

]

Without specifying any time values, we get a uniform spline:

[5]: s1 = splines.CatmullRom(points1, endconditions='closed')

[6]: fig, ax = plt.subplots()
plot_spline_2d(s1, ax=ax)

helper.py


b.2. Polynomial Curves in Euclidean Space 157
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b.2.8.1.1 Tangent Vectors

In the uniform case, the tangent vectors at any given control point are parallel to the line
connecting the preceding point and the following point. The tangent vector has the same
orientation as that line but only half its length. In other (more mathematical) words:

�̇�𝑖 =
𝒙𝑖+1 − 𝒙𝑖−1

2

This is illustrated for two control points in the following plot:

[7]: for idx, color in zip([2, 5], ['purple', 'hotpink']):
plot_tangent_2d(

s1.evaluate(s1.grid[idx], 1),
s1.evaluate(s1.grid[idx]), color=color, ax=ax)

ax.plot(
*s1.evaluate([s1.grid[idx - 1], s1.grid[idx + 1]]).T,
'--', color=color, linewidth=2)

fig

[7]:

1 0 1 2 3 4

0.5

0.0

0.5

1.0

1.5

2.0
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We can see here that each tangent vector is parallel to and has half the length of the line
connecting the preceding and the following vertex, just as promised.

However, this will not be true anymore if we are using non-uniform time instances:

[8]: times2 = 0, 1, 2.2, 3, 4, 4.5, 6

[9]: s2 = splines.CatmullRom(points1, grid=times2, endconditions='closed')

[10]: plot_spline_2d(s2, ax=ax)
for idx, color in zip([2, 5], ['green', 'crimson']):

plot_tangent_2d(
s2.evaluate(s2.grid[idx], 1),
s2.evaluate(s2.grid[idx]), color=color, ax=ax)

fig

[10]:
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In the non-uniform case, the equation for the tangent vector gets quite a bit more compli-
cated:

�̇�𝑖 =
(𝑡𝑖+1 − 𝑡𝑖)2(𝒙𝑖 − 𝒙𝑖−1) + (𝑡𝑖 − 𝑡𝑖−1)2(𝒙𝑖+1 − 𝒙𝑖)

(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖 − 𝑡𝑖−1)(𝑡𝑖+1 − 𝑡𝑖−1)

The derivation of this equation is shown in a separate notebook (page 177).

Equivalently, this can be written as:

�̇�𝑖 =
(𝑡𝑖+1 − 𝑡𝑖)(𝒙𝑖 − 𝒙𝑖−1)
(𝑡𝑖 − 𝑡𝑖−1)(𝑡𝑖+1 − 𝑡𝑖−1)

+
(𝑡𝑖 − 𝑡𝑖−1)(𝒙𝑖+1 − 𝒙𝑖)
(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖+1 − 𝑡𝑖−1)

Also equivalently, with 𝒗𝑖 =
𝒙𝑖+1−𝒙𝑖
𝑡𝑖+1−𝑡𝑖

, it can be written as:

�̇�𝑖 =
(𝑡𝑖+1 − 𝑡𝑖)𝒗𝑖−1 + (𝑡𝑖 − 𝑡𝑖−1)𝒗𝑖

(𝑡𝑖+1 − 𝑡𝑖−1)
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b.2.8.1.2 Wrong Tangent Vectors

Some sources provide a simpler equation which is different from the tangent vector of a
Catmull–Rom spline (except in the uniform case):

�̇�𝑖
?=
𝒗𝑖−1 + 𝒗𝑖

2
=
1
2 �
𝒙𝑖 − 𝒙𝑖−1
𝑡𝑖 − 𝑡𝑖−1

+
𝒙𝑖+1 − 𝒙𝑖
𝑡𝑖+1 − 𝑡𝑖

�

[11]: class MeanVelocity(splines.CatmullRom):

@staticmethod
def _calculate_tangent(points, times):

x_1, x0, x1 = np.asarray(points)
t_1, t0, t1 = times
v_1 = (x0 - x_1) / (t0 - t_1)
v0 = (x1 - x0) / (t1 - t0)
return (v_1 + v0) / 2

Until April 2023, Wikipedia32 showed yet a simpler equation. They mentioned that “this
assumes uniform parameter spacing”, but since 𝑡𝑖−1 and 𝑡𝑖+1 appeared in the equation, it
might be tempting to use it for the non-uniform case as well. We’ll see below how that
turns out.

The authors of the page don’t seem to have been quite sure about this equation, because
it has changed over time. This was shown until mid-202133:

�̇�𝑖
?=
𝒙𝑖+1 − 𝒙𝑖−1
𝑡𝑖+1 − 𝑡𝑖−1

[12]: class Wikipedia1(splines.CatmullRom):

@staticmethod
def _calculate_tangent(points, times):

x_1, _, x1 = np.asarray(points)
t_1, _, t1 = times
return (x1 - x_1) / (t1 - t_1)

And this slight variation was shown since then34 until April 2023:

�̇�𝑖
?=
1
2
𝒙𝑖+1 − 𝒙𝑖−1
𝑡𝑖+1 − 𝑡𝑖−1

[13]: class Wikipedia2(splines.CatmullRom):

@staticmethod
def _calculate_tangent(points, times):

x_1, _, x1 = np.asarray(points)
t_1, _, t1 = times
return (1/2) * (x1 - x_1) / (t1 - t_1)

32 https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Catmull–Rom_spline
33 https://web.archive.org/web/20210420082245/https://en.wikipedia.org/wiki/Cubic_

Hermite_spline#Catmull–Rom_spline
34 https://web.archive.org/web/20210727071020/https://en.wikipedia.org/wiki/Cubic_

Hermite_spline#Catmull–Rom_spline

https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Catmull–Rom_spline
https://web.archive.org/web/20210420082245/https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Catmull–Rom_spline
https://web.archive.org/web/20210727071020/https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Catmull–Rom_spline
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The first one is correct in the uniform case (which the Wikipedia page assumes), but not
in the general non-uniform case, as we’ll see in a moment.

The second one is obviously wrong in the case where all intervals are of length 1 (i.e.
𝑡𝑖+1 − 𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 = 1):

𝒙𝑖+1 − 𝒙𝑖−1
4

≠
𝒙𝑖+1 − 𝒙𝑖−1

2
= �̇�𝑖

Since April 2023, the page is showing the correct equation for the uniform case35.

The X3D standard (version 3.3)36 even suggests to use different incoming and outgoing
tangents, which destroys 𝐶1 continuity!

�̇�(+)𝑖
?=
(𝑡𝑖 − 𝑡𝑖−1)(𝒙𝑖+1 − 𝒙𝑖−1)

𝑡𝑖+1 − 𝑡𝑖−1

�̇�(−)𝑖
?=
(𝑡𝑖+1 − 𝑡𝑖)(𝒙𝑖+1 − 𝒙𝑖−1)

𝑡𝑖+1 − 𝑡𝑖−1

[14]: class X3D(splines.KochanekBartels):
# We derive from KochanekBartels because the
# incoming and outgoing tangents are different:
@staticmethod
def _calculate_tangents(points, times, _ignored):

x_1, _, x1 = np.asarray(points)
t_1, t0, t1 = times
incoming = (t1 - t0) * (x1 - x_1) / (t1 - t_1)
outgoing = (t0 - t_1) * (x1 - x_1) / (t1 - t_1)
return incoming, outgoing

To illustrate the different choices of tangent vectors, we use the vertex data from Lee
(1989), figure 6:

[15]: points3 = [
(0, 0),
(10, 25),
(10, 24),
(11, 24.5),
(33, 25),

]

Deciding between “right” and “wrong” tangent vectors is surprisingly hard, becausemost
of the options look somewhat reasonable in most cases. However, we can try to use quite
extreme vertex positions andwe can use centripetal parameterization (see below) and check
if its guaranteed properties hold for different choices of tangent vectors.

35 https://web.archive.org/web/20230411124304/https://en.wikipedia.org/wiki/Cubic_
Hermite_spline

36 https://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/
interp.html#HermiteSplineInterpolation

https://web.archive.org/web/20230411124304/https://en.wikipedia.org/wiki/Cubic_Hermite_spline
https://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/interp.html#HermiteSplineInterpolation
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[16]: def plot_spline(cls, linestyle='-', **args):
# alpha=0.5 => centripetal parameterization
spline = cls(points3, alpha=0.5)
plot_spline_2d(

spline, label=cls.__name__, chords=False,
marker=None, linestyle=linestyle, **args)

[17]: plot_spline(MeanVelocity, linestyle=':')
plot_spline(X3D, linestyle='-.')
plot_spline(Wikipedia1)
plot_spline(Wikipedia2, linestyle='--')
plot_spline(splines.CatmullRom, linewidth=3)
plt.axis([9, 13, 23.9, 25.6])
plt.legend();

9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0

24.00
24.25
24.50
24.75
25.00
25.25
25.50 MeanVelocity

X3D
Wikipedia1
Wikipedia2
CatmullRom

As we can immediately see, the tangents from X3D are utterly wrong and the first one
fromWikipedia is also quite obviously broken. The other two don’t look too bad, but they
slightly overshoot, and according to Yuksel et al. (2011) that is something that centripetal
Catmull–Rom splines are guaranteed not to do.

Again, to be fair to the Wikipedia article’s authors, they mentioned that uniform parame-
ter spacing is assumed, so their equation is not supposed to be used in this non-uniform
context. The equation has been changed in the meantime to avoid confusion.

b.2.8.1.3 Cusps and Self-Intersections

Uniform parametrization typically works very well if the (Euclidean) distances between
consecutive vertices are all similar. However, if the distances are very different, the shape
of the spline often turns out to be unexpected. Most notably, in extreme cases there might
be even cusps or self-intersections within a spline segment.

[18]: def plot_catmull_rom(*args, **kwargs):
plot_spline_2d(splines.CatmullRom(*args, endconditions='closed',␣

↪**kwargs))

[19]: points4 = [
(0, 0),

(continues on next page)
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(continued from previous page)
(0, 0.5),
(1.5, 1.5),
(1.6, 1.5),
(3, 0.2),
(3, 0),

]

[20]: plot_catmull_rom(points4)
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We can try to compensate this by manually selecting some non-uniform time instances:

[21]: times4 = 0, 0.2, 0.9, 1, 3, 3.3, 4.5

[22]: plot_catmull_rom(points4, times4)

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.5

0.0

0.5

1.0

1.5

Time values can be chosen by trial and error, but there are also ways to choose the time
values automatically, as shown in the following sections.
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b.2.8.1.4 Chordal Parameterization

One way to go about this is to measure the (Euclidean) distances between consecutive
vertices (i.e. the chordal lengths) and simply use those distances as time intervals:

[23]: distances = np.linalg.norm(np.diff(points4 + points4[:1], axis=0), axis=1)
distances

[23]: array([0.5 , 1.8028, 0.1 , 1.9105, 0.2 , 3. ])

[24]: times5 = np.concatenate([[0], np.cumsum(distances)])
times5

[24]: array([0. , 0.5 , 2.3028, 2.4028, 4.3133, 4.5133, 7.5133])

[25]: plot_catmull_rom(points4, times5)
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1.5

This makes the speed along the spline nearly constant, but the distance between the curve
and its longer chords can become quite huge.

b.2.8.1.5 Centripetal Parameterization

As a variation of the previous method, the square roots of the chordal lengths can be used
to define the time intervals (Lee 1989).

[26]: times6 = np.concatenate([[0], np.cumsum(np.sqrt(distances))])
times6

[26]: array([0. , 0.7071, 2.0498, 2.366 , 3.7482, 4.1954, 5.9275])

[27]: plot_catmull_rom(points4, times6)
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The curve takes its course much closer to the chords, but its speed is obviously far from
constant.

Centripetal parameterization has the very nice property that it guarantees no cusps and
no self-intersections, as shown by Yuksel et al. (2011). The curve is also guaranteed to
never “move away” from the successive vertex:

When centripetal parameterization is used with Catmull–Rom splines to de-
fine a path curve, the direction of motion for the object following this path will
always be towards the next key-frame position.

—Yuksel et al. (2011), Section 7.2: “Path Curves”

b.2.8.1.6 Parameterized Parameterization

It turns out that the previous two parameterization schemes are just two special cases of
a more general scheme for obtaining time intervals between control points:

𝑡𝑖+1 = 𝑡𝑖 + |𝒙𝑖+1 − 𝒙𝑖|𝛼, with 0 ≤ 𝛼 ≤ 1.

In the Python class splines.CatmullRom (page 283), the parameter alpha can be speci-
fied.

[28]: def plot_alpha(alpha, label):
s = splines.CatmullRom(points4, alpha=alpha, endconditions='closed')
plot_spline_2d(s, label=label)

[29]: plot_alpha(0, r'$\alpha = 0$ (uniform)')
plot_alpha(0.5, r'$\alpha = 0.5$ (centripetal)')
plot_alpha(0.75, r'$\alpha = 0.75$')
plot_alpha(1, r'$\alpha = 1$ (chordal)')
plt.legend(loc='center', numpoints=3);
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As can be seen here – and as Yuksel et al. (2011) demonstrate to be generally true – the
uniform curve is farthest away from short chords and closest to long chords. The chordal
curve behaves contrarily: closest to short chords and awkwardly far from long chords. The
centripetal curve is closer to the uniform curve for long chords and closer to the chordal
curve for short chords, providing a very good compromise.

Any value between 0 and 1 can be chosen for 𝛼, but 𝛼 = 1
2 (i.e. centripetal parame-

terization) stands out because it is the only one of them that guarantees no cusps and
self-intersections:

In this paper we prove that, for cubic Catmull–Rom curves, centripetal param-
eterization is the only parameterization in this family that guarantees that the
curves do not form cusps or self-intersections within curve segments.

—Yuksel et al. (2011), abstract

[…] we mathematically prove that centripetal parameterization of Cat-
mull–Rom curves guarantees that the curve segments cannot form cusps or
local self-intersections, while such undesired features can be formed with all
other possible parameterizations within this class.

—Yuksel et al. (2011), Section 1: “Introduction”

Cusps and self-intersections are very common with Catmull–Rom curves for
most parameterization choices. In fact, as wewill show here, the only parame-
terization choice that guarantees no cusps and self-intersections within curve
segments is centripetal parameterization.

—Yuksel et al. (2011), Section 3: “Cusps and Self-Intersections”
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/catmull-rom-properties.ipynb ends here.

The following section was generated from doc/euclidean/catmull-rom-uniform.ipynb . . . . . . . . . . . . . . . . . . . . . . . .
b.2.8.2 Uniform Catmull–Rom Splines

Catmull and Rom (1974) presented a class of splines which can be described mathemat-
ically, in its most generic form, with what is referred to as equation (1):

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/catmull-rom-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/catmull-rom-uniform.ipynb
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𝐹(𝑠) =
∑𝑥𝑖(𝑠)𝑤𝑖(𝑠)
∑𝑤𝑖(𝑠)

,

where the part 𝑤𝑖(𝑠)/∑𝑤𝑖(𝑠) is called blending functions.

Since the blending functions presented above are, as of now, completely arbi-
trarywe impose some constraints in order tomake them easier to use. We shall
deal only with blending functions that are zero outside of some given inter-
val. Also we require that∑𝑤𝑖(𝑠) does not vanish for any 𝑠. We shall normalize
𝑤𝑖(𝑠) so that∑𝑤𝑖(𝑠) = 1 for all 𝑠.

—Catmull and Rom (1974), section 3, “Blending Functions”

The components of the equation are further constrained to produce an interpolating func-
tion:

Consider the following case: Let 𝑥𝑖(𝑠) be any function interpolating the points
𝑝𝑖 through 𝑝𝑖+𝑘 and let 𝑤𝑖(𝑠) be zero outside (𝑠𝑖−1, 𝑠𝑖+𝑘+1). The function 𝐹(𝑠)
defined in equation (1) will thus be an interpolating function. Intuitively, this
says that if all of the functions that have an effect at a point, pass through the
point, then the average of the functions will pass through the point.

—Catmull and Rom (1974), section 2: “The Model”

Typo Alert

The typo “𝑝𝑖 through 𝑠𝑖+𝑘” has been fixed in the quote above.

A polynomial of degree 𝑘 that pass[e]s through 𝑘 + 1 points will be used as
𝑥(𝑠). In general it will not pass through the other points. If the width of the
interval in which 𝑤𝑖(𝑠) is non zero is less than or equal to 𝑘 + 2 then 𝑥𝑖(𝑠) will
not affect 𝐹(𝑠) outside the interpolation interval. This means that 𝐹(𝑠) will be
an interpolating function. On the other hand if the width of 𝑤𝑖(𝑠) is greater
than 𝑘 + 2 then 𝑥𝑖(𝑠) will have an effect on the curve outside the interpolation
interval. 𝐹(𝑠)will then be an approximating function.

—Catmull and Rom (1974), section 2: “The Model”

After limiting the scope of the paper to interpolating splines, it is further reduced to uniform
splines:

[…] in the parametric space we can, without loss of generality, place 𝑠𝑗 = 𝑗.

—Catmull and Rom (1974), section 2: “The Model”

Whether or not generality is lost, this means that the rest of the paper doesn’t give any
hints on how to construct non-uniform splines. For those who are interested nevertheless,
we show how to do that in the notebook about non-uniform Catmull–Rom splines (page 175)
and once again in the notebook about the Barry–Goldman algorithm (page 181).

After the aforementioned constraints and the definition of the term cardinal function …

Cardinal function: a function that is 1 at some knot, 0 at all other knots and
can be anything in between the other knots. It satisfies 𝐹𝑖(𝑠𝑗) = 𝛿𝑖𝑗.

—Catmull and Rom (1974), section 1: “Introduction”
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… the gratuitously generic equation (1) is made a bit more concrete:

If in equation (1) we assume 𝑥𝑖(𝑠) to be polynomials of degree 𝑘 then this equa-
tion can be reduced to a much simpler form:

𝐹(𝑠) = �
𝑗
𝑝𝑗𝐶𝑗𝑘(𝑠)

where the 𝐶𝑗𝑘(𝑠) are cardinal blending functions and 𝑗 is the knot to which the
cardinal function and the point belong and each 𝐶𝑗𝑘(𝑠) is a shifted version of
𝐶0,𝑘(𝑠). 𝐶0,𝑘(𝑠) is a function of both the degree 𝑘 of the polynomials and the
blending functions 𝑤(𝑠):

𝐶0,𝑘(𝑠) =
𝑘
�
𝑖=0
�

𝑖
�
𝑗=𝑖−𝑘
𝑗≠0

�
𝑠
𝑗
+ 1� �𝑤(𝑠 + 𝑖)

In essence we see that for a polynomial case our cardinal functions are a blend
of Lagrange polynomials. When calculating 𝐶0,𝑘(𝑠), 𝑤(𝑠) should be centered
about 𝑘2 .

—Catmull and Rom (1974), section 4: “Calculating Cardinal Functions”

This looks like something we can work with, even though the blending function 𝑤(𝑠) is
still not defined.

[1]: import sympy as sp

We use 𝑡 instead of 𝑠:

[2]: t = sp.symbols('t')

[3]: i, j, k = sp.symbols('i j k', integer=True)

[4]: w = sp.Function('w')

[5]: C0k = sp.Sum(
sp.Product(

sp.Piecewise((1, sp.Eq(j, 0)), ((t / j) + 1, True)),
(j, i - k, i)) * w(t + i),

(i, 0, k))
C0k

[5]: 𝑘
�
𝑖=0
𝑤(𝑖 + 𝑡)

𝑖
�
𝑗=𝑖−𝑘

⎧⎪⎪⎨
⎪⎪⎩
1 for 𝑗 = 0
1 + 𝑡

𝑗 otherwise

b.2.8.2.1 Blending Functions

Catmull and Rom (1974) leave the choice of blending function to the reader. They show
two plots (figure 1 and figure 3) for a custom blending function stitched together from
two Bézier curves, but they don’t show the cardinal function nor an actual spline created
from it.
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The only other concrete suggestion is to use B-spline basis functions as blending func-
tions. A quadratic B-spline basis function is shown in figure 2 and both cardinal functions
and example curves are shown that utilize both quadratic and cubic B-spline basis func-
tions (figures 4 through 7). No mathematical description of B-spline basis functions is
given, instead they refer to Gordon and Riesenfeld (1974). That paper provides a pair of
equations (3.1 and 3.2) that can be used to recursively construct B-spline basis functions.
Simplified to the uniform case, this leads to the base case (i.e. degree zero) …

[6]: B0 = sp.Piecewise((0, t < i), (1, t < i + 1), (0, True))
B0

[6]: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for 𝑖 > 𝑡
1 for 𝑡 < 𝑖 + 1
0 otherwise

… which can be used to obtain the linear (i.e. degree one) basis functions:

[7]: B1 = (t - i) * B0 + (i + 2 - t) * B0.subs(i, i + 1)

We can use one of them (where 𝑖 = 0) as blending function:

[8]: w1 = B1.subs(i, 0)

With some helper functions from helper.pywe can plot this.

[9]: from helper import plot_sympy, grid_lines

[10]: plot_sympy(w1, (t, -0.2, 2.2))
grid_lines([0, 1, 2], [0, 1])

0 1 2
0

1

The quadratic (i.e. degree two) basis functions can be obtained like this:

[11]: B2 = (t - i) / 2 * B1 + (i + 3 - t) / 2 * B1.subs(i, i + 1)

For our further calculations, we use the function with 𝑖 = −1 as blending function:

[12]: w2 = B2.subs(i, -1)

helper.py
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[13]: plot_sympy(w2, (t, -1.2, 2.2))
grid_lines([-1, 0, 1, 2], [0, 1])

1 0 1 2
0

1

This should be the same function as shown by Catmull and Rom (1974) in figure 2.

b.2.8.2.2 Cardinal Functions

The first example curve in the paper (figure 5) is a cubic curve, constructed using a cardi-
nal function with 𝑘 = 1 (i.e. using linear Lagrange interpolation) and a quadratic B-spline
basis function (as shown above) as blending function.

With the information so far, we can construct the cardinal function 𝐶0,1(𝑡), using our
quadratic B-spline blending function w2 (which is, as required, centered about 𝑘2):

[14]: C01 = C0k.subs(k, 1).replace(w, lambda x: w2.subs(t, x)).doit().simplify()
C01

[14]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 𝑡 < −2
(𝑡+1)(𝑡+2)2

2 for 𝑡 < −1

−3𝑡
3

2 − 5𝑡2

2 + 1 for 𝑡 < 0
3𝑡3

2 − 5𝑡2

2 + 1 for 𝑡 < 1
(1−𝑡)(𝑡−2)2

2 for 𝑡 < 2
0 otherwise

[15]: plot_sympy(C01, (t, -2.2, 2.2))
grid_lines(range(-2, 3), [0, 1])
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2 1 0 1 2

0

1

This should be the same function as shown by Catmull and Rom (1974) in figure 4.

The paper does not show that, butwe can also try to flip the respective degrees of Lagrange
interpolation and B-spline blending. In other words, we can set 𝑘 = 2 to construct the
cardinal function 𝐶0,2(𝑡), this time using the linear B-spline blending function w1 (which
is also centered about 𝑘2) leading to a total degree of 3:

[16]: C02 = C0k.subs(k, 2).replace(w, lambda x: w1.subs(t, x)).doit().simplify()

And as it turns out, this is exactly the same thing!

[17]: assert C01 == C02

By the way, we come to the same conclusion in our notebook about the Barry–Goldman algo-
rithm (page 181), which means that this is also true in the non-uniform case.

Many authors nowadays, when using the term Catmull–Rom spline, mean the cubic spline
created using exactly this cardinal function.

As we have seen, this can be equivalently understood either as three linear interpola-
tions (more exactly: one interpolation and two extrapolations) followed by quadratic
B-spline blending or as two overlapping quadratic Lagrange interpolations followed by
linear blending. The two equivalent approaches are illustrated by means of animations in
the notebook about non-uniform Catmull–Rom splines (page 180).

b.2.8.2.3 Example Plot

[18]: import matplotlib.pyplot as plt
import numpy as np

To quickly check how a spline segment would look like when using the cardinal function
we just derived, let’s define a few points …

[19]: vertices = np.array([
(-0.1, -0.5),
(0, 0),
(1, 0),

(continues on next page)
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(continued from previous page)
(0.5, 1),

])

… and plot 𝐹(𝑡) (or 𝐹(𝑠), as it has been called originally):

[20]: plt.scatter(*np.array([
sum([vertices[i] * C01.subs(t, s - i + 1) for i in range(4)])
for s in np.linspace(0, 1, 20)]).T)

plt.plot(*vertices.T, 'x:g');

0.0 0.2 0.4 0.6 0.8 1.0
0.50

0.25

0.00

0.25

0.50

0.75

1.00

For calculating more than one segment, and also for creating non-uniform Catmull–Rom
splines, the class splines.CatmullRom (page 283) can be used. For more plots, see the note-
book about properties of Catmull–Rom splines (page 155).

b.2.8.2.4 Basis Polynomials

The piecewise expression for the cardinal function is a bit unwieldy to work with, so let’s
bring it into a form we already know how to deal with.

We are splitting the piecewise expression into four separate pieces, each one to be eval-
uated at 0 ≤ 𝑡 ≤ 1. We are also reversing the order of the pieces, to match our intended
control point order:

[21]: b_CR = sp.Matrix([
expr.subs(t, t + cond.args[1] - 1)
for expr, cond in C01.args[1:-1][::-1]]).T

b_CR.T

[21]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 𝑡(𝑡−1)
2

2
3𝑡3

2 − 5𝑡2

2 + 1

−3(𝑡−1)
3

2 − 5(𝑡−1)2

2 + 1
𝑡2(𝑡−1)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[22]: from helper import plot_basis
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[23]: plot_basis(*b_CR, labels=sp.symbols('xbm_i-1 xbm_i xbm_i+1 xbm_i+2'))

0 1t

0

1
we

ig
ht

xi 1
xi

xi + 1
xi + 2

For the following sections, we are using a few tools from utility.py:

[24]: from utility import NamedExpression, NamedMatrix

b.2.8.2.5 Basis Matrix

[25]: b_monomial = sp.Matrix([t**3, t**2, t, 1]).T
M_CR = NamedMatrix(r'{M_\text{CR}}', 4, 4)
control_points = sp.Matrix(sp.symbols('xbm3:7'))

As usual, we look at the fifth polynomial segment 𝒑4(𝑡) (from 𝒙4 to 𝒙5), where 0 ≤ 𝑡 ≤ 1.
Later, we will be able to generalize this to an arbitrary polynomial segment 𝒑𝑖(𝑡) (from 𝒙𝑖
to 𝒙𝑖+1), where 0 ≤ 𝑡 ≤ 1.

[26]: p4 = NamedExpression('pbm4', b_monomial * M_CR.name * control_points)
p4

[26]:

𝒑4 = �𝑡3 𝑡2 𝑡 1�𝑀CR

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙3
𝒙4
𝒙5
𝒙6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

From the basis polynomials and the control points, we can already calculate 𝒑4(𝑡)…

[27]: p4.expr = b_CR.dot(control_points).expand().collect(t)
p4

[27]:
𝒑4 = 𝑡3 �−

𝒙3
2
+
3𝒙4
2
−
3𝒙5
2
+
𝒙6
2 �

+ 𝑡2 �𝒙3 −
5𝒙4
2
+ 2𝒙5 −

𝒙6
2 �

+ 𝑡 �−
𝒙3
2
+
𝒙5
2
� + 𝒙4

… and with a little bit of squinting, we can directly read off the coefficients of the basis
matrix:

utility.py
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[28]: M_CR.expr = sp.Matrix([
[b.get(m, 0) for b in [

p4.expr.expand().coeff(cv).collect(t, evaluate=False)
for cv in control_points]]

for m in b_monomial])
M_CR.pull_out(sp.S.Half)

[28]:

𝑀CR =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 3 −3 1
2 −5 4 −1
−1 0 1 0
0 2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Catmull and Rom (1974) show this matrix in section 6.

In case you want to copy&paste it, here’s a plain text version:

[29]: print(_.expr)

(1/2)*Matrix([
[-1, 3, -3, 1],
[ 2, -5, 4, -1],
[-1, 0, 1, 0],
[ 0, 2, 0, 0]])

And, in case somebody needs it, its inverse looks like this:

[30]: M_CR.I

[30]:

𝑀CR
−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 1
0 0 0 1
1 1 1 1
6 4 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[31]: print(_.expr)

Matrix([[1, 1, -1, 1], [0, 0, 0, 1], [1, 1, 1, 1], [6, 4, 2, 1]])

b.2.8.2.6 Tangent Vectors

To get the tangent vectors, we simply have to take the first derivative …

[32]: pd4 = p4.diff(t)

… and evaluate it at the beginning and the end of the segment:

[33]: start_tangent = pd4.evaluated_at(t, 0)
start_tangent

[33]: 𝑑
𝑑𝑡
𝒑4�

𝑡=0
= −

𝒙3
2
+
𝒙5
2

[34]: end_tangent = pd4.evaluated_at(t, 1)
end_tangent

[34]: 𝑑
𝑑𝑡
𝒑4�

𝑡=1
= −

𝒙4
2
+
𝒙6
2
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These two expressions can be generalized to – as already shown in the notebook about Cat-
mull–Rom properties (page 157):

�̇�𝑖 =
𝒙𝑖+1 − 𝒙𝑖−1

2

b.2.8.2.7 Using Bézier Segments

The above equation for the tangent vectors can be used to construct Hermite splines
(page 105) or, after dividing them by 3, to obtain the control points for cubic Bézier spline
segments (page 144):

�̃�(+)𝑖 = 𝒙𝑖 +
�̇�𝑖
3
= 𝒙𝑖 +

𝒙𝑖+1 − 𝒙𝑖−1
6

�̃�(−)𝑖 = 𝒙𝑖 −
�̇�𝑖
3
= 𝒙𝑖 −

𝒙𝑖+1 − 𝒙𝑖−1
6

[35]: x4, x5 = control_points[1:3]

[36]: x4tilde = x4 + start_tangent.expr / 3
x4tilde

[36]: −
𝒙3
6
+ 𝒙4 +

𝒙5
6

[37]: x5tilde = x5 - end_tangent.expr / 3
x5tilde

[37]: 𝒙4
6
+ 𝒙5 −

𝒙6
6

b.2.8.2.8 Using Quadrangle Interpolation

Remember the notebook about quadrangle interpolation (page 150)? It showed us how to
calculate the quadrangle points given the Bézier control points:

�̄�(+)𝑖 =
3
2
�̃�(+)𝑖 −

1
2
𝒙𝑖+1

�̄�(−)𝑖 =
3
2
�̃�(−)𝑖 −

1
2
𝒙𝑖−1

[38]: x4bar = 3 * x4tilde / 2 - x5 / 2
x4bar

[38]: −
𝒙3
4
+
3𝒙4
2
−
𝒙5
4

[39]: x5bar = 3 * x5tilde / 2 - x4 / 2
x5bar
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[39]: −
𝒙4
4
+
3𝒙5
2
−
𝒙6
4

Generalizing these expressions and juggling the terms around a bit, we get

�̄�(+)𝑖 = �̄�(−)𝑖 = 𝒙𝑖 −
(𝒙𝑖+1 − 𝒙𝑖) + (𝒙𝑖−1 − 𝒙𝑖)

4
.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/catmull-rom-uniform.ipynb ends here.

The following section was generated from doc/euclidean/catmull-rom-non-uniform.ipynb . . . . . . . . . . . . . . . . . . .
b.2.8.3 Non-Uniform Catmull–Rom Splines

Catmull and Rom (1974) describe only the uniform case (page 165), but it is straightfor-
ward to extend their method to non-uniform splines.

The method creates three linear interpolations (and extrapolations) between neighboring
pairs of the four relevant control points and then blends the three resulting points with a
quadratic B-spline basis function.

As we have seen in the notebook about uniform Catmull–Rom splines (page 169) and as we
will again see in the notebook about the Barry–Goldman algorithm (page 184), the respec-
tive degrees can be swapped. This means that equivalently, two (overlapping) quadratic
Lagrange interpolations can be used, followed by linearly blending the two resulting
points.

Since the latter is both easier to implement and easier to wrap one’s head around, we’ll
use it in the following derivations.

We will derive the tangent vectors (page 177) at the segment boundaries, which will later
serve as a starting point for deriving non-uniform Kochanek–Bartels splines (page 201). See
the notebook about the Barry–Goldman algorithm (page 181) for an alternative (but closely
related) derivation.

[1]: import sympy as sp
sp.init_printing()

As usual, we look at the fifth polynomial segment 𝒑4(𝑡) from 𝒙4 to 𝒙5, where 𝑡4 ≤ 𝑡 ≤ 𝑡5.
Later, we will generalize this to an arbitrary polynomial segment 𝒑𝑖(𝑡) from 𝒙𝑖 to 𝒙𝑖+1,
where 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1.

[2]: x3, x4, x5, x6 = sp.symbols('xbm3:7')

[3]: t, t3, t4, t5, t6 = sp.symbols('t t3:7')

We use some tools from utility.py:

[4]: from utility import NamedExpression, NamedMatrix

As shown in the notebook about Lagrange interpolation (page 92), it can be implemented
using Neville’s algorithm:

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/catmull-rom-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/catmull-rom-non-uniform.ipynb
utility.py
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[5]: def lerp(xs, ts, t):
"""Linear interpolation.

Returns the interpolated value at time *t*,
given the two values *xs* at times *ts*.

"""
x_begin, x_end = xs
t_begin, t_end = ts
return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_

↪begin)

[6]: def neville(xs, ts, t):
"""Lagrange interpolation using Neville's algorithm.

Returns the interpolated value at time *t*,
given the values *xs* at times *ts*.

"""
if len(xs) != len(ts):

raise ValueError('xs and ts must have the same length')
while len(xs) > 1:

step = len(ts) - len(xs) + 1
xs = [

lerp(*args, t)
for args in zip(zip(xs, xs[1:]), zip(ts, ts[step:]))]

return xs[0]

Alternatively, sympy.interpolate()37 could be used.

We use two overlapping quadratic Lagrange interpolations followed by linear blending:

[7]: p4 = NamedExpression(
'pbm4',
lerp([

neville([x3, x4, x5], [t3, t4, t5], t),
neville([x4, x5, x6], [t4, t5, t6], t),

], [t4, t5], t))

Note

Since the two invocations of Neville’s algorithm overlap, some values that are used by
both are unnecessarily computed by both. It would be more efficient to calculate each
of these values only once.

The Barry–Goldman algorithm (page 181) avoids this repeated computation.

But here, since we are using symbolic expressions, this doesn’t really matter because
the redundant expressions should be simplified away by SymPy.

37 https://docs.sympy.org/latest/modules/polys/reference.html#sympy.polys.
polyfuncs.interpolate

https://docs.sympy.org/latest/modules/polys/reference.html#sympy.polys.polyfuncs.interpolate
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The following expressions can be simplified by introducing a few new symbols Δ𝑖:

[8]: delta3, delta4, delta5 = sp.symbols('Delta3:6')
deltas = {

t4 - t3: delta3,
t5 - t4: delta4,
t6 - t5: delta5,
t5 - t3: delta3 + delta4,
t6 - t4: delta4 + delta5,
t6 - t3: delta3 + delta4 + delta5,
# A few special cases that SymPy has a hard time resolving:
t4 + t4 - t3: t4 + delta3,
t6 + t6 - t3: t6 + delta3 + delta4 + delta5,

}

b.2.8.3.1 Tangent Vectors

To get the tangent vectors at the control points, we just have to take the first derivative
…

[9]: pd4 = p4.diff(t)

… and evaluate it at 𝑡4 and 𝑡5:

[10]: start_tangent = pd4.evaluated_at(t, t4)
start_tangent.subs(deltas).simplify()

[10]: 𝑑
𝑑𝑡
𝒑4�

𝑡=𝑡4
=
−Δ23𝒙4 + Δ23𝒙5 − Δ24𝒙3 + Δ24𝒙4

Δ3Δ4 (Δ3 + Δ4)

[11]: end_tangent = pd4.evaluated_at(t, t5)
end_tangent.subs(deltas).simplify()

[11]: 𝑑
𝑑𝑡
𝒑4�

𝑡=𝑡5
=
Δ24 (−𝒙5 + 𝒙6) + Δ25 (−𝒙4 + 𝒙5)

Δ4Δ5 (Δ4 + Δ5)

Both results lead to the same general expression (which is expected, since the incoming
and outgoing tangents are supposed to be equal):

�̇�𝑖 =
(𝑡𝑖+1 − 𝑡𝑖)2(𝒙𝑖 − 𝒙𝑖−1) + (𝑡𝑖 − 𝑡𝑖−1)2(𝒙𝑖+1 − 𝒙𝑖)

(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖 − 𝑡𝑖−1)(𝑡𝑖+1 − 𝑡𝑖−1)

=
Δ𝑖2(𝒙𝑖 − 𝒙𝑖−1) + Δ𝑖−12(𝒙𝑖+1 − 𝒙𝑖)

Δ𝑖Δ𝑖−1(Δ𝑖 + Δ𝑖−1)

Equivalently, this can be written as:

�̇�𝑖 =
(𝑡𝑖+1 − 𝑡𝑖)(𝒙𝑖 − 𝒙𝑖−1)
(𝑡𝑖 − 𝑡𝑖−1)(𝑡𝑖+1 − 𝑡𝑖−1)

+
(𝑡𝑖 − 𝑡𝑖−1)(𝒙𝑖+1 − 𝒙𝑖)
(𝑡𝑖+1 − 𝑡𝑖)(𝑡𝑖+1 − 𝑡𝑖−1)

=
Δ𝑖(𝒙𝑖 − 𝒙𝑖−1)

Δ𝑖−1(Δ𝑖 + Δ𝑖−1)
+
Δ𝑖−1(𝒙𝑖+1 − 𝒙𝑖)
Δ𝑖(Δ𝑖 + Δ𝑖−1)
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An alternative (but very similar) way to derive these tangent vectors is shown in the note-
book about the Barry–Goldman algorithm (page 189).

And there is yet another way to calculate the tangents, without even needing to obtain
a cubic polynomial and its derivative: Since we are using a linear blend of two quadratic
polynomials, we know that at the beginning (𝑡 = 𝑡4) only the first quadratic polynomial
has an influence and at the end (𝑡 = 𝑡5) only the second quadratic polynomial is relevant.
Therefore, to determine the tangent vector at the beginning of the segment, it is sufficient
to get the derivative of the first quadratic polynomial.

[12]: first_quadratic = neville([x3, x4, x5], [t3, t4, t5], t)

[13]: sp.degree(first_quadratic, t)

[13]: 2

[14]: first_quadratic.diff(t).subs(t, t4)

[14]: (−𝑡3+𝑡4)(−𝒙4+𝒙5)
−𝑡4+𝑡5

+ (−𝑡4+𝑡5)(−𝒙3+𝒙4)
−𝑡3+𝑡4

−𝑡3 + 𝑡5

This can be written as (which is sometimes called the standard three-point difference for-
mula):

�̇�𝑖 =
Δ𝑖𝒗𝑖−1 + Δ𝑖−1𝒗𝑖
Δ𝑖−1 + Δ𝑖

,

with Δ𝑖 = 𝑡𝑖+1 − 𝑡𝑖 and 𝒗𝑖 =
𝒙𝑖+1−𝒙𝑖
Δ𝑖

.

Boor (1978) calls this piecewise cubic Bessel interpolation, and it has also been called Bessel
tangent method, Overhauser method and Bessel–Overhauser splines.

Note

Even though this formula is commonly associated with the name Overhauser, it does
not describe the tangents of Overhauser splines as presented by Overhauser (1968).

Long story short, it’s the same as we had above:

[15]: assert sp.simplify(_ - start_tangent.expr) == 0

The first derivative of the second quadratic polynomial can be used to get the tangent
vector at the end of the segment.

[16]: second_quadratic = neville([x4, x5, x6], [t4, t5, t6], t)
second_quadratic.diff(t).subs(t, t5)

[16]: (−𝑡4+𝑡5)(−𝒙5+𝒙6)
−𝑡5+𝑡6

+ (−𝑡5+𝑡6)(−𝒙4+𝒙5)
−𝑡4+𝑡5

−𝑡4 + 𝑡6

[17]: assert sp.simplify(_ - end_tangent.expr) == 0
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You might encounter yet another way to write the equation for �̇�4 (e.g. at https:
//stackoverflow.com/a/23980479/) …

[18]: (x4 - x3) / (t4 - t3) - (x5 - x3) / (t5 - t3) + (x5 - x4) / (t5 - t4)

[18]: −𝒙4 + 𝒙5
−𝑡4 + 𝑡5

−
−𝒙3 + 𝒙5
−𝑡3 + 𝑡5

+
−𝒙3 + 𝒙4
−𝑡3 + 𝑡4

… but again, this is equivalent to the equation shown above:

[19]: assert sp.simplify(_ - start_tangent.expr) == 0

b.2.8.3.2 Using Non-Uniform Bézier Segments

Similar to the uniform case (page 174), the above equation for the tangent vectors can be
used to construct non-uniform Hermite splines (page 105) or, after multiplying them with
the appropriate parameter interval and dividing them by 3, to obtain the two additional
control points for non-uniform cubic Bézier spline segments (page 150):

�̃�(+)𝑖 = 𝒙𝑖 +
Δ𝑖�̇�𝑖
3

= 𝒙𝑖 +
Δ𝑖
3
Δ𝑖𝒗𝑖−1 + Δ𝑖−1𝒗𝑖
Δ𝑖−1 + Δ𝑖

= 𝒙𝑖 +
Δ𝑖2(𝒙𝑖 − 𝒙𝑖−1)

3Δ𝑖−1(Δ𝑖 + Δ𝑖−1)
+
Δ𝑖−1(𝒙𝑖+1 − 𝒙𝑖)
3(Δ𝑖 + Δ𝑖−1)

�̃�(−)𝑖 = 𝒙𝑖 −
Δ𝑖−1�̇�𝑖
3

= 𝒙𝑖 −
Δ𝑖−1
3

Δ𝑖𝒗𝑖−1 + Δ𝑖−1𝒗𝑖
Δ𝑖−1 + Δ𝑖

= 𝒙𝑖 −
Δ𝑖(𝒙𝑖 − 𝒙𝑖−1)
3(Δ𝑖 + Δ𝑖−1)

−
Δ𝑖−12(𝒙𝑖+1 − 𝒙𝑖)
3Δ𝑖(Δ𝑖 + Δ𝑖−1)

This is again using Δ𝑖 = 𝑡𝑖+1 − 𝑡𝑖 and 𝒗𝑖 =
𝒙𝑖+1−𝒙𝑖
Δ𝑖

.

[20]: x4tilde = x4 + (t5 - t4) * start_tangent.expr / 3

[21]: x5tilde = x5 - (t5 - t4) * end_tangent.expr / 3

b.2.8.3.3 Using Non-Uniform Quadrangle Interpolation

Just like in the uniform case (page 174), we calculate the quadrangle points from the Bézier
control points, as shown in the notebook about quadrangle interpolation (page 150):

�̄�(+)𝑖 =
3
2
�̃�(+)𝑖 −

1
2
𝒙𝑖+1

�̄�(−)𝑖 =
3
2
�̃�(−)𝑖 −

1
2
𝒙𝑖−1

https://stackoverflow.com/a/23980479/
https://stackoverflow.com/a/23980479/
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[22]: x4bar = 3 * x4tilde / 2 - x5 / 2

[23]: terms4 = sp.collect(x4bar.expand(), [x3, x4, x5], evaluate=False)

Some manual rewriting leads to this expression:

[24]: sp.factor(terms4[x4] + terms4[x5] + terms4[x3]) * x4 - (
sp.factor(-terms4[x5]) * (x5 - x4) +
sp.factor(-terms4[x3]) * (x3 - x4))

[24]:
𝒙4 −

(𝑡4 − 𝑡5) (−𝒙4 + 𝒙5)
2 (𝑡3 − 𝑡5)

−
(𝑡4 − 𝑡5)

2 (𝒙3 − 𝒙4)
2 (𝑡3 − 𝑡4) (𝑡3 − 𝑡5)

We should make sure that our re-written expression is actually the same as the one we
started from:

[25]: assert sp.simplify(_ - x4bar) == 0

Now the same for the incoming quadrangle point:

[26]: x5bar = 3 * x5tilde / 2 - x4 / 2

[27]: terms5 = sp.collect(x5bar.expand(), [x4, x5, x6], evaluate=False)

[28]: sp.factor(terms5[x5] + terms5[x6] + terms5[x4]) * x5 - (
sp.factor(-terms5[x6]) * (x6 - x5) +
sp.factor(-terms5[x4]) * (x4 - x5))

[28]:
𝒙5 −

(𝑡4 − 𝑡5)
2 (−𝒙5 + 𝒙6)

2 (𝑡4 − 𝑡6) (𝑡5 − 𝑡6)
−
(𝑡4 − 𝑡5) (𝒙4 − 𝒙5)

2 (𝑡4 − 𝑡6)

[29]: assert sp.simplify(_ - x5bar) == 0

The above expressions can be generalized to (as always with Δ𝑖 = 𝑡𝑖+1 − 𝑡𝑖):

�̄�(+)𝑖 = 𝒙𝑖 −
Δ𝑖

2(Δ𝑖−1 + Δ𝑖)
�(𝒙𝑖+1 − 𝒙𝑖) +

Δ𝑖
Δ𝑖−1

(𝒙𝑖−1 − 𝒙𝑖)�

�̄�(−)𝑖 = 𝒙𝑖 −
Δ𝑖−1

2(Δ𝑖−1 + Δ𝑖)
�
Δ𝑖−1
Δ𝑖

(𝒙𝑖+1 − 𝒙𝑖) + (𝒙𝑖−1 − 𝒙𝑖)�

b.2.8.3.4 Animation

To illustrate what two quadratic Lagrange interpolations followed by linear blending
might look like, we can generate an animation by means of the file catmull_rom.py,
with some help from helper.py:

[30]: from catmull_rom import animation_2_1, animation_1_2
from helper import show_animation

catmull_rom.py
helper.py
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[31]: vertices = [
(1, 0),
(0.5, 1),
(6, 2),
(5, 0),

]

[32]: times = [
0,
1,
6,
8,

]

[33]: show_animation(animation_2_1(vertices, times))

Animations can only be shown in HTML output, sorry!

In the beginning of this notebook, we claimed that two quadratic interpolations followed
by linear blending are easier to understand. To prove this, let’s have a look at what three
linear interpolations (and extrapolations) followed by quadratic B-spline blending would
look like:

[34]: show_animation(animation_1_2(vertices, times))

Animations can only be shown in HTML output, sorry!

Would you agree that this is less straightforward?

If you would rather replace the quadratic B-spline basis function with a bunch of linear
interpolations (usingDe Boor’s algorithm), take a look at the notebook about the Barry–Gold-
man algorithm (page 190).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/catmull-rom-non-uniform.ipynb ends here.

The following section was generated from doc/euclidean/catmull-rom-barry-goldman.ipynb . . . . . . . . . . . . . . . .
b.2.8.4 Barry–Goldman Algorithm

The Barry–Goldman algorithm – named after Barry and Goldman (1988) – can be used to
calculate values of non-uniform Catmull–Rom splines (page 175). We have also applied this
algorithm to rotation splines (page 264).

Catmull and Rom (1974) describe “a class of local interpolating splines” and Barry and
Goldman (1988) describe “a recursive evaluation algorithm for a class of Catmull–Rom
splines”, by which theymean a sub-class of the original class, which only contains splines
generated from a combination of Lagrange interpolation (page 92) and B-spline blending:

In particular, they observed that certain choices led to interpolatory curves.
Although Catmull and Rom discussed a more general case, we will restrict
our attention to an important class of Catmull–Rom splines obtained by com-
bining B-spline basis functions and Lagrange interpolating polynomials. […]
They are piecewise polynomial, have local support, are invariant under affine
transformations, and have certain differentiability and interpolatory proper-
ties.

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/catmull-rom-non-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/catmull-rom-barry-goldman.ipynb
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—Barry and Goldman (1988), section 1: “Introduction”

The algorithm can be set up to construct curves of arbitrary degree (given enough vertices
and their parameter values), but here we only take a look at the cubic case (using four
vertices), which seems to be what most people mean by the term Catmull–Rom splines.

The algorithm is a combination of two sub-algorithms:

The Catmull–Rom evaluation algorithm is constructed by combining the de
Boor algorithm for evaluating B-spline curves with Neville’s algorithm for
evaluating Lagrange polynomials.

—Barry and Goldman (1988), abstract

Combining the two will lead to a multi-stage algorithm, where each stage consists of only
linear interpolations (and extrapolations).

We will use the algorithm here to derive an expression for the tangent vectors (page 189),
which will show that the algorithm indeed generates non-uniform Catmull–Rom splines
(page 177).

b.2.8.4.1 Triangular Schemes

Barry andGoldman (1988) illustrate the presented algorithms using triangular evaluation
patterns, which we will use here in a very similar form.

As an example, let’s look at the most basic building block: linear interpolation between
two given points (in this case 𝒙4 and 𝒙5 with corresponding parameter values 𝑡4 and 𝑡5,
respectively):

𝒑4,5
𝑡5−𝑡
𝑡5−𝑡4

𝑡−𝑡4
𝑡5−𝑡4

𝒙4 𝒙5

The values at the base of the triangle are known, and the triangular scheme shows how
the value at the apex can be calculated from them.

In this example, to obtain the linear polynomial 𝒑4,5 one has to add 𝒙4, weighted by the
factor shown next to it ( 𝑡5−𝑡

𝑡5−𝑡4
), and 𝒙5, weighted by the factor next to it ( 𝑡−𝑡4

𝑡5−𝑡4
).

The parameter 𝑡 can be chosen arbitrarily, but in this example we are mostly interested
in the range 𝑡4 ≤ 𝑡 ≤ 𝑡5. If the parameter value is outside this range, the process is more
appropriately called extrapolation instead of interpolation. Since we will need linear in-
terpolation (and extrapolation) quite a few times, let’s define a helper function:

[1]: def lerp(xs, ts, t):
"""Linear interpolation.

Returns the interpolated value at time *t*,
given the two values *xs* at times *ts*.

"""
x_begin, x_end = xs
t_begin, t_end = ts
return (x_begin * (t_end - t) + x_end * (t - t_begin)) / (t_end - t_

↪begin)
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b.2.8.4.2 Neville’s Algorithm

We have already seen this algorithm in our notebook about Lagrange interpolation (page 95),
where we have shown the triangular scheme for the cubic case – which is also shown by
Barry and Goldman (1988) in figure 2. In the quadratic case, it looks like this:

𝒑3,4,5
𝑡5−𝑡
𝑡5−𝑡3

𝑡−𝑡3
𝑡5−𝑡3

𝒑3,4 𝒑4,5
𝑡4−𝑡
𝑡4−𝑡3

𝑡−𝑡3
𝑡4−𝑡3

𝑡5−𝑡
𝑡5−𝑡4

𝑡−𝑡4
𝑡5−𝑡4

𝒙3 𝒙4 𝒙5

[2]: import matplotlib.pyplot as plt
import numpy as np

Let’s try to plot this for three points:

[3]: points = np.array([
(0, 0),
(0.5, 2),
(3, 0),

])

In the following example plots we show the uniform case (with 𝑡3 = 3, 𝑡4 = 4 and 𝑡5 = 5),
but don’t worry, the algorithmworks just as well for arbitrary non-uniform time values.

[4]: plot_times = np.linspace(4, 5, 30)

[5]: plt.scatter(*np.array([
lerp(

[lerp(points[:2], [3, 4], t), lerp(points[1:], [4, 5], t)],
[3, 5], t)

for t in plot_times]).T)
plt.plot(*points.T, 'x:g')
plt.axis('equal');

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0
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Note that the quadratic curve is defined by three points but we are only evaluating it
between two of them (for 4 ≤ 𝑡 ≤ 5).

b.2.8.4.3 De Boor’s Algorithm

This algorithm (Boor 1972) can be used to calculate B-spline basis functions.

The quadratic case looks like this:

𝒑3,4,5
𝑡5−𝑡
𝑡5−𝑡4

𝑡−𝑡4
𝑡5−𝑡4

𝒑3,4 𝒑4,5
𝑡5−𝑡
𝑡5−𝑡3

𝑡−𝑡3
𝑡5−𝑡3

𝑡6−𝑡
𝑡6−𝑡4

𝑡−𝑡4
𝑡6−𝑡4

𝒙3 𝒙4 𝒙5

The cubic case is shown by Barry and Goldman (1988) in figure 1.

[6]: plt.scatter(*np.array([
lerp(

[lerp(points[:2], [3, 5], t), lerp(points[1:], [4, 6], t)],
[4, 5], t)

for t in plot_times]).T)
plt.plot(*points.T, 'x:g')
plt.axis('equal');

0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

b.2.8.4.4 Combining Both Algorithms

Catmull and Rom (1974) show (in figure 5) an example where linear interpolation is
followed by quadratic B-spline blending to create a cubic curve.

We can re-create this example with the building blocks from above:

• At the base of the triangle, we put four known vertices.

• Consecutive pairs of these vertices form three linear interpolations (and ex-
trapolations), resulting in three interpolated (and extrapolated) values.
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• On top of these three values, we arrange a quadratic instance of de Boor’s algorithm
(as shown above).

This culminates in the final value of the spline (given an appropriate parameter value 𝑡)
at the apex of the triangle, which looks like this:

𝒑3,4,5,6
𝑡5−𝑡
𝑡5−𝑡4

𝑡−𝑡4
𝑡5−𝑡4

𝒑3,4,5 𝒑4,5,6
𝑡5−𝑡
𝑡5−𝑡3

𝑡−𝑡3
𝑡5−𝑡3

𝑡6−𝑡
𝑡6−𝑡4

𝑡−𝑡4
𝑡6−𝑡4

𝒑3,4 𝒑4,5 𝒑5,6
𝑡4−𝑡
𝑡4−𝑡3

𝑡−𝑡3
𝑡4−𝑡3

𝑡5−𝑡
𝑡5−𝑡4

𝑡−𝑡4
𝑡5−𝑡4

𝑡6−𝑡
𝑡6−𝑡5

𝑡−𝑡5
𝑡6−𝑡5

𝒙3 𝒙4 𝒙5 𝒙6

Here we are considering the fifth spline segment 𝒑3,4,5,6(𝑡) (represented at the apex of
the triangle) from 𝒙4 to 𝒙5 (to be found at the base of the triangle) which corresponds to
the parameter range 𝑡4 ≤ 𝑡 ≤ 𝑡5. To calculate the values in this segment, we also need
to know the preceding control point 𝒙3 (at the bottom left) and the following control
point 𝒙6 (at the bottom right). But not only their positions are relevant, we also need the
corresponding parameter values 𝑡3 and 𝑡6, respectively.

This same triangular scheme is also shown by Yuksel et al. (2011) in figure 3, except that
here we shifted the indices by +3.

Another way to construct a cubic curve with this algorithmwould be to swap the degrees
of interpolation and blending, in other words:

• Instead of three linear interpolations (and extrapolations), apply two overlapping
quadratic Lagrange interpolations usingNeville’s algorithm (as shown above) to 𝒙3,
𝒙4, 𝒙5 and 𝒙4, 𝒙5, 𝒙6, respectively. Note that the interpolation of 𝒙4 and 𝒙5 appears in
both triangles but has to be calculated only once – see also figures 3 and 4 by Barry
and Goldman (1988).

• This will occupy the lower two stages of the triangle, yielding two interpolated val-
ues.

• Those two values are then linearly blended in the final stage.

Readers of the notebook about uniform Catmull–Rom splines (page 165) may already suspect
that, for others it might be a revelation: both ways lead to exactly the same triangular
scheme and therefore they are equivalent!

The same scheme, but only for the uniform case, is also shown by Barry and Goldman
(1988) in figure 7, and they casually mention the equivalent cases (with 𝑚 being the de-
gree of Lagrange interpolation and 𝑛 being the degree of the B-spline basis functions):

Note too from Figure 7 that the case 𝑛 = 1, 𝑚 = 2 […] is identical to the case
𝑛 = 2, 𝑚 = 1 […]

—Barry and Goldman (1988), section 3: “Examples”

Not an Overhauser Spline

Equally casually, they mention:
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Finally, the particular case here is also an Overhauser spline (Overhauser
1968).

—Barry and Goldman (1988), section 3: “Examples”

This is not true. Overhauser splines – as described by Overhauser (1968) – don’t
provide a choice of parameter values. The parameter values are determined by the
Euclidean distances between control points, similar, but not quite identical to chordal
parameterization (page 163). Calculating a value of a Catmull–Rom spline doesn’t in-
volve calculating any distances.

For completeness’ sake, there are two more combinations that lead to cubic splines, but
they have their limitations:

• Cubic Lagrange interpolation, followed by no blending at all, which leads to a cubic
spline that’s not 𝐶1 continuous (only 𝐶0), as shown by Barry and Goldman (1988)
in figure 8.

• No interpolation at all, followed by cubic B-spline blending, which leads to an ap-
proximating spline (instead of an interpolating spline), as shown by Barry and
Goldman (1988) in figure 5.

Note

Here we are using the time instances of the Lagrange interpolation also as B-spline
knots. Barry and Goldman (1988) show a more generic formulation of the algorithm
with separate parameters 𝑠𝑖 and 𝑡𝑖 in equation (9).

b.2.8.4.5 Step by Step

The triangular figure above looks more complicated than it really is. It’s just a bunch of
linear interpolations and extrapolations.

Let’s go through the figure above, piece by piece.

[7]: import sympy as sp

[8]: t = sp.symbols('t')

[9]: x3, x4, x5, x6 = sp.symbols('xbm3:7')

[10]: t3, t4, t5, t6 = sp.symbols('t3:7')

We use some custom SymPy-based tools from utility.py:

[11]: from utility import NamedExpression, NamedMatrix

utility.py
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First Stage In the center of the bottom row, there is a straightforward linear interpolation
from 𝒙4 to 𝒙5 within the interval from 𝑡4 to 𝑡5.

[12]: p45 = NamedExpression('pbm_4,5', lerp([x4, x5], [t4, t5], t))
p45

[12]:
𝒑4,5 =

𝒙4 (−𝑡 + 𝑡5) + 𝒙5 (𝑡 − 𝑡4)
−𝑡4 + 𝑡5

Obviously, this starts at:

[13]: p45.evaluated_at(t, t4)

[13]: 𝒑4,5�𝑡=𝑡4
= 𝒙4

… and ends at:

[14]: p45.evaluated_at(t, t5)

[14]: 𝒑4,5�𝑡=𝑡5
= 𝒙5

The bottom left of the triangle looks very similar, with a linear interpolation from 𝒙3 to 𝒙4
within the interval from 𝑡3 to 𝑡4.

[15]: p34 = NamedExpression('pbm_3,4', lerp([x3, x4], [t3, t4], t))
p34

[15]:
𝒑3,4 =

𝒙3 (−𝑡 + 𝑡4) + 𝒙4 (𝑡 − 𝑡3)
−𝑡3 + 𝑡4

However, that’s not the parameter range we are interested in! We are interested in the
range from 𝑡4 to 𝑡5. Therefore, this is not actually an interpolation between 𝒙3 and 𝒙4, but
rather a linear extrapolation starting at 𝒙4 …

[16]: p34.evaluated_at(t, t4)

[16]: 𝒑3,4�𝑡=𝑡4
= 𝒙4

… and ending at some extrapolated point beyond 𝒙4:

[17]: p34.evaluated_at(t, t5)

[17]:
𝒑3,4�𝑡=𝑡5

=
𝒙3 (𝑡4 − 𝑡5) + 𝒙4 (−𝑡3 + 𝑡5)

−𝑡3 + 𝑡4

Similarly, at the bottom right of the triangle there isn’t a linear interpolation from 𝒙5 to 𝒙6,
but rather a linear extrapolation that just reaches 𝒙5 at the end of the parameter interval
(i.e. at 𝑡 = 𝑡5).

[18]: p56 = NamedExpression('pbm_5,6', lerp([x5, x6], [t5, t6], t))
p56

[18]:
𝒑5,6 =

𝒙5 (−𝑡 + 𝑡6) + 𝒙6 (𝑡 − 𝑡5)
−𝑡5 + 𝑡6



188 Appendix b. Splines

[19]: p56.evaluated_at(t, t4)

[19]:
𝒑5,6�𝑡=𝑡4

=
𝒙5 (−𝑡4 + 𝑡6) + 𝒙6 (𝑡4 − 𝑡5)

−𝑡5 + 𝑡6

[20]: p56.evaluated_at(t, t5)

[20]: 𝒑5,6�𝑡=𝑡5
= 𝒙5

Second Stage The second stage of the algorithm involves linear interpolations of the
results of the previous stage.

[21]: p345 = NamedExpression('pbm_3,4,5', lerp([p34.name, p45.name], [t3, t5],␣
↪t))
p345

[21]:
𝒑3,4,5 =

𝒑3,4 (−𝑡 + 𝑡5) + 𝒑4,5 (𝑡 − 𝑡3)
−𝑡3 + 𝑡5

[22]: p456 = NamedExpression('pbm_4,5,6', lerp([p45.name, p56.name], [t4, t6],␣
↪t))
p456

[22]:
𝒑4,5,6 =

𝒑4,5 (−𝑡 + 𝑡6) + 𝒑5,6 (𝑡 − 𝑡4)
−𝑡4 + 𝑡6

Those interpolations are defined over a parameter range from 𝑡3 to 𝑡5 and from 𝑡4 to 𝑡6,
respectively. In each case, we are only interested in a sub-range, namely from 𝑡4 to 𝑡5.

These are the start and end points at 𝑡4 and 𝑡5:

[23]: p345.evaluated_at(t, t4, symbols=[p34, p45])

[23]:
𝒑3,4,5�𝑡=𝑡4

=
𝒑3,4�𝑡=𝑡4

(−𝑡4 + 𝑡5) + 𝒑4,5�𝑡=𝑡4
(−𝑡3 + 𝑡4)

−𝑡3 + 𝑡5

[24]: p345.evaluated_at(t, t5, symbols=[p34, p45])

[24]: 𝒑3,4,5�𝑡=𝑡5
= 𝒑4,5�𝑡=𝑡5

[25]: p456.evaluated_at(t, t4, symbols=[p45, p56])

[25]: 𝒑4,5,6�𝑡=𝑡4
= 𝒑4,5�𝑡=𝑡4

[26]: p456.evaluated_at(t, t5, symbols=[p45, p56])

[26]:
𝒑4,5,6�𝑡=𝑡5

=
𝒑4,5�𝑡=𝑡5

(−𝑡5 + 𝑡6) + 𝒑5,6�𝑡=𝑡5
(−𝑡4 + 𝑡5)

−𝑡4 + 𝑡6

Third Stage The last step is quite simple:



b.2. Polynomial Curves in Euclidean Space 189

[27]: p3456 = NamedExpression(
'pbm_3,4,5,6',
lerp([p345.name, p456.name], [t4, t5], t))

p3456

[27]:
𝒑3,4,5,6 =

𝒑3,4,5 (−𝑡 + 𝑡5) + 𝒑4,5,6 (𝑡 − 𝑡4)
−𝑡4 + 𝑡5

This time, the interpolation interval is exactly the one we are interested in.

To get the final result, we just have to combine all the above expressions:

[28]: p3456 = p3456.subs_symbols(p345, p456, p34, p45, p56).simplify()

This expression is quite unwieldy, so let’s not even look at it.

[29]: #p3456

Apart from checking whether it’s really cubic …

[30]: sp.degree(p3456.expr, t)

[30]: 3

… and whether it’s really interpolating …

[31]: p3456.evaluated_at(t, t4).simplify()

[31]: 𝒑3,4,5,6�𝑡=𝑡4
= 𝒙4

[32]: p3456.evaluated_at(t, t5).simplify()

[32]: 𝒑3,4,5,6�𝑡=𝑡5
= 𝒙5

… the only thing left to do is to check its …

b.2.8.4.6 Tangent Vectors

To get the tangent vectors at the control points, we just have to take the first derivative
…

[33]: pd3456 = p3456.diff(t)

… and evaluate it at 𝑡4 and 𝑡5:

[34]: pd3456.evaluated_at(t, t4).simplify().simplify()

[34]: 𝑑
𝑑𝑡
𝒑3,4,5,6�

𝑡=𝑡4
=
(𝑡3 − 𝑡4)

2 (𝒙4 − 𝒙5) + (𝑡4 − 𝑡5)
2 (𝒙3 − 𝒙4)

(𝑡3 − 𝑡4) (𝑡3 − 𝑡5) (𝑡4 − 𝑡5)

[35]: pd3456.evaluated_at(t, t5).simplify()

[35]: 𝑑
𝑑𝑡
𝒑3,4,5,6�

𝑡=𝑡5
=
(𝑡4 − 𝑡5)

2 (𝒙5 − 𝒙6) + (𝑡5 − 𝑡6)
2 (𝒙4 − 𝒙5)

(𝑡4 − 𝑡5) (𝑡4 − 𝑡6) (𝑡5 − 𝑡6)
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If all went well, this should be identical to the result in the notebook about non-uniform Cat-
mull–Rom splines (page 177). As we have mentioned there, it isn’t even necessary to cal-
culate the last interpolation to get the tangent vectors. At the beginning of the interval
(𝑡 = 𝑡4), only the first quadratic polynomial 𝒑3,4,5(𝑡) contributes to the final result, while
the other one has a weight of zero. At the end of the interval (𝑡 = 𝑡5), only 𝒑4,5,6(𝑡) is
relevant. Therefore, we can simply take their tangent vectors at 𝑡4 and 𝑡5, respectively, and
we get the same result:

[36]: p345.subs_symbols(p34, p45).diff(t).evaluated_at(t, t4).simplify()

[36]: 𝑑
𝑑𝑡
𝒑3,4,5�

𝑡=𝑡4
=
(𝑡3 − 𝑡4)

2 (𝒙4 − 𝒙5) + (𝑡4 − 𝑡5)
2 (𝒙3 − 𝒙4)

(𝑡3 − 𝑡4) (𝑡3 − 𝑡5) (𝑡4 − 𝑡5)

[37]: p456.subs_symbols(p45, p56).diff(t).evaluated_at(t, t5).simplify()

[37]: 𝑑
𝑑𝑡
𝒑4,5,6�

𝑡=𝑡5
=
(𝑡4 − 𝑡5)

2 (𝒙5 − 𝒙6) + (𝑡5 − 𝑡6)
2 (𝒙4 − 𝒙5)

(𝑡4 − 𝑡5) (𝑡4 − 𝑡6) (𝑡5 − 𝑡6)

b.2.8.4.7 Animation

The linear interpolations (and extrapolations) of this algorithm can be shown graphically.
By means of the file barry_goldman.py – and with the help of helper.py – we can
show an animation of the algorithm:

[38]: from barry_goldman import animation
from helper import show_animation

[39]: vertices = [
(1, 0),
(0.5, 1),
(6, 2),
(5, 0),

]

[40]: times = [
0,
1,
6,
8,

]

[41]: show_animation(animation(vertices, times))

Animations can only be shown in HTML output, sorry!

If this doesn’t look very intuitive to you, you are not alone. For a different (and prob-
ably more straightforward) point of view, have a look at the notebook about non-uniform
Catmull–Rom splines (page 180).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/catmull-rom-barry-goldman.ipynb ends here.

barry_goldman.py
helper.py
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/catmull-rom-barry-goldman.ipynb
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b.2.9 Kochanek–Bartels Splines

Kochanek–Bartels splines (a.k.a. TCB splines) are named after Kochanek and Bartels
(1984).

A Python implementation is available in the class splines.KochanekBartels (page 284).

The following section was generated from doc/euclidean/kochanek-bartels-properties.ipynb . . . . . . . . . . . . .
b.2.9.1 Properties of Kochanek–Bartels Splines

Kochanek–Bartels splines are interpolating cubic polynomial splines, with three
user-defined parameters per vertex (of course they can also be chosen to be the same
three values for the whole spline), which can be used to change the shape and velocity of
the spline.

These three parameters are called 𝑇 for tension, 𝐶 for continuity and 𝐵 for bias. With the
default values of 𝐶 = 0 and 𝐵 = 0, a Kochanek–Bartels spline is identical to a cardinal
spline. If the tension parameter also has its default value 𝑇 = 0, it is also identical to a
Catmull–Rom spline (page 155).

[1]: import splines
from helper import plot_spline_2d

Let’s use a bespoke plotting function from kochanek_bartels.py to illustrate the TCB
parameters:

[2]: from kochanek_bartels import plot_tcb

b.2.9.1.1 Tension

[3]: plot_tcb((0.5, 0, 0), (1, 0, 0), (-0.5, 0, 0), (-1, 0, 0))

3 2 1 0 1 2 3
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0.5

0.0
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1.5

T = 0.5
T = 1

T = -0.5
T = -1

b.2.9.1.2 Continuity

[4]: plot_tcb((0, -0.5, 0), (0, -1, 0), (0, 0.5, 0), (0, 1, 0))

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/kochanek-bartels-properties.ipynb
kochanek_bartels.py
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C = 0.5
C = 1

Note that the cases 𝑇 = 1 and 𝐶 = −1 have a very similar shape (a.k.a. image38), but they
have a different timing (and therefore different velocities):

[5]: plot_tcb((1, 0, 0), (0, -1, 0), (0.5, 0, 0), (0, -0.5, 0))

3 2 1 0 1 2 3
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0.0
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T = 1
C = -1

T = 0.5
C = -0.5

A value of 𝐶 = −1 on adjacent vertices leads to linear segments with piecewise constant
speeds:

[6]: vertices1 = [(0, 0), (1, 1), (0, 2), (3, 2), (4, 1), (3, 0)]
s1a = splines.KochanekBartels(vertices1, tcb=(0, -1, 0), endconditions=
↪'closed')
plot_spline_2d(s1a, chords=False)

38 https://en.wikipedia.org/wiki/Image_(mathematics)

https://en.wikipedia.org/wiki/Image_(mathematics)
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A value of 𝑇 = 1 will lead to linear segments as well, but the speed will fluctuate in each
segment, coming to a complete halt at each control point:

[7]: s1b = splines.KochanekBartels(vertices1, tcb=(1, 0, 0), endconditions=
↪'closed')
plot_spline_2d(s1b, chords=False)
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0.0

0.5

1.0
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b.2.9.1.3 Bias

This could also be called overshoot (if 𝐵 > 0) and undershoot (if 𝐵 < 0):

[8]: plot_tcb((0, 0, 0.5), (0, 0, 1), (0, 0, -0.5), (0, 0, -1))
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Bias −1 followed by +1 can be used to achieve linear segments between two control
points:

[9]: vertices2 = [(0, 0), (1.5, 0), (1, 1), (0, 0.5)]
tcb2 = [(0, 0, -1), (0, 0, 1), (0, 0, -1), (0, 0, 1)]
s2 = splines.KochanekBartels(vertices2, tcb=tcb2, endconditions='closed')
plot_spline_2d(s2, chords=False)
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A sequence of 𝐵 = −1, 𝐶 = −1 and 𝐵 = +1 can be used to get two adjacent linear seg-
ments:

[10]: vertices3 = [(0, 0), (1, 0), (0, 0.5)]
tcb3 = [(0, 0, -1), (0, -1, 0), (0, 0, 1)]
s3 = splines.KochanekBartels(vertices3, tcb=tcb3, endconditions='closed')
plot_spline_2d(s3, chords=False)
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b.2.9.1.4 Combinations

Of course, multiple parameters can be combined:

[11]: plot_tcb((1, -1, 0), (-1, 1, 0), (-1, -1, 0), (1, 1, 0))
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[12]: plot_tcb((1, 0, 1), (-1, 0, 1), (0, -1, 1), (0, 1, -1))
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/kochanek-bartels-properties.ipynb ends here.

The following section was generated from doc/euclidean/kochanek-bartels-uniform.ipynb . . . . . . . . . . . . . . . . .

b.2.9.2 Uniform Kochanek–Bartels Splines

As a starting point, remember the tangent vectors of uniform Catmull–Rom splines (page 157)
– see also equation 3 of the paper by Kochanek and Bartels (1984):

�̇�𝑖 =
𝒙𝑖+1 − 𝒙𝑖−1

2
,

which can be re-written as

�̇�𝑖 =
(𝒙𝑖 − 𝒙𝑖−1) + (𝒙𝑖+1 − 𝒙𝑖)

2
.

b.2.9.2.1 Parameters

Deriving TCB splines is all about inserting the parameters 𝑇, 𝐶 and 𝐵 into this equation.

Tension Kochanek and Bartels (1984) show the usage of 𝑇 in equation 4:

�̇�𝑖 = (1 − 𝑇𝑖)
(𝒙𝑖 − 𝒙𝑖−1) + (𝒙𝑖+1 − 𝒙𝑖)

2

Continuity Up to now, the goal was to have a continuous first derivative at the control
points, i.e. the incoming and outgoing tangent vectors were identical:

�̇�𝑖 = �̇�
(−)
𝑖 = �̇�(+)𝑖

This also happens to be the requirement for a spline to be 𝐶1 continuous.

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/kochanek-bartels-properties.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/kochanek-bartels-uniform.ipynb
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The continuity parameter 𝐶 allows us to break this continuity if we so desire, leading to
different incoming and outgoing tangent vectors – see equations 5 and 6 in the paper by
Kochanek and Bartels (1984):

�̇�(−)𝑖 =
(1 − 𝐶𝑖)(𝒙𝑖 − 𝒙𝑖−1) + (1 + 𝐶𝑖)(𝒙𝑖+1 − 𝒙𝑖)

2

�̇�(+)𝑖 =
(1 + 𝐶𝑖)(𝒙𝑖 − 𝒙𝑖−1) + (1 − 𝐶𝑖)(𝒙𝑖+1 − 𝒙𝑖)

2

Bias Kochanek and Bartels (1984) show the usage of 𝐵 in equation 7:

�̇�𝑖 =
(1 + 𝐵𝑖)(𝒙𝑖 − 𝒙𝑖−1) + (1 − 𝐵𝑖)(𝒙𝑖+1 − 𝒙𝑖)

2

All Three Combined To get the tangent vectors of a TCB spline, the three equations can
be combined – see equations 8 and 9 in the paper by (Kochanek and Bartels 1984):

�̇�(+)𝑖 =
(1 − 𝑇𝑖)(1 + 𝐶𝑖)(1 + 𝐵𝑖)(𝒙𝑖 − 𝒙𝑖−1) + (1 − 𝑇𝑖)(1 − 𝐶𝑖)(1 − 𝐵𝑖)(𝒙𝑖+1 − 𝒙𝑖)

2

�̇�(−)𝑖 =
(1 − 𝑇𝑖)(1 − 𝐶𝑖)(1 + 𝐵𝑖)(𝒙𝑖 − 𝒙𝑖−1) + (1 − 𝑇𝑖)(1 + 𝐶𝑖)(1 − 𝐵𝑖)(𝒙𝑖+1 − 𝒙𝑖)

2

Note

There is an error in equation (6.11) from Millington (2009). All subscripts of 𝑥 are
wrong, most likely copy-pasted from the preceding equation.

To simplify the results we will get later, we introduce the following shorthands (Milling-
ton 2009):

𝑎𝑖 = (1 − 𝑇𝑖)(1 + 𝐶𝑖)(1 + 𝐵𝑖),
𝑏𝑖 = (1 − 𝑇𝑖)(1 − 𝐶𝑖)(1 − 𝐵𝑖),
𝑐𝑖 = (1 − 𝑇𝑖)(1 − 𝐶𝑖)(1 + 𝐵𝑖),
𝑑𝑖 = (1 − 𝑇𝑖)(1 + 𝐶𝑖)(1 − 𝐵𝑖),

which lead to the simplified equations

�̇�(+)𝑖 =
𝑎𝑖(𝒙𝑖 − 𝒙𝑖−1) + 𝑏𝑖(𝒙𝑖+1 − 𝒙𝑖)

2

�̇�(−)𝑖 =
𝑐𝑖(𝒙𝑖 − 𝒙𝑖−𝑖) + 𝑑𝑖(𝒙𝑖+1 − 𝒙𝑖)

2
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b.2.9.2.2 Calculation

The above tangent vectors are sufficient to implement Kochanek–Bartels splines via Her-
mite splines (page 105). In the rest of this notebook we are deriving the basis matrix and
the basis polynomials for comparison with other spline types.

[1]: import sympy as sp
sp.init_printing()

As in previous notebooks, we are using some SymPy helper classes from utility.py:

[2]: from utility import NamedExpression, NamedMatrix

And again, we are looking at the fifth spline segment from 𝒙4 to 𝒙5 (which can easily be
generalized to arbitrary segments).

[3]: x3, x4, x5, x6 = sp.symbols('xbm3:7')

[4]: control_values_KB = sp.Matrix([x3, x4, x5, x6])
control_values_KB

[4]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙3
𝒙4
𝒙5
𝒙6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We need three additional parameters per vertex: 𝑇, 𝐶 and 𝐵. In our calculation, however,
only the parameters belonging to 𝒙4 and 𝒙5 are relevant:

[5]: T4, T5 = sp.symbols('T4 T5')
C4, C5 = sp.symbols('C4 C5')
B4, B5 = sp.symbols('B4 B5')

Using the shorthands mentioned above …

[6]: a4 = NamedExpression('a4', (1 - T4) * (1 + C4) * (1 + B4))
b4 = NamedExpression('b4', (1 - T4) * (1 - C4) * (1 - B4))
c5 = NamedExpression('c5', (1 - T5) * (1 - C5) * (1 + B5))
d5 = NamedExpression('d5', (1 - T5) * (1 + C5) * (1 - B5))
display(a4, b4, c5, d5)

𝑎4 = (1 − 𝑇4) (𝐵4 + 1) (𝐶4 + 1)
𝑏4 = (1 − 𝐵4) (1 − 𝐶4) (1 − 𝑇4)
𝑐5 = (1 − 𝐶5) (1 − 𝑇5) (𝐵5 + 1)
𝑑5 = (1 − 𝐵5) (1 − 𝑇5) (𝐶5 + 1)

… we can define the tangent vectors:

[7]: xd4 = NamedExpression(
'xdotbm4^(+)',
sp.S.Half * (a4.name * (x4 - x3) + b4.name * (x5 - x4)))

xd5 = NamedExpression(
'xdotbm5^(-)',
sp.S.Half * (c5.name * (x5 - x4) + d5.name * (x6 - x5)))

display(xd4, xd5)

utility.py
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�̇�(+)4 =
𝑎4 (−𝒙3 + 𝒙4)

2
+
𝑏4 (−𝒙4 + 𝒙5)

2

�̇�(−)5 =
𝑐5 (−𝒙4 + 𝒙5)

2
+
𝑑5 (−𝒙5 + 𝒙6)

2

[8]: display(xd4.subs_symbols(a4, b4))
display(xd5.subs_symbols(c5, d5))

�̇�(+)4 =
(1 − 𝐵4) (1 − 𝐶4) (1 − 𝑇4) (−𝒙4 + 𝒙5)

2
+
(1 − 𝑇4) (𝐵4 + 1) (𝐶4 + 1) (−𝒙3 + 𝒙4)

2

�̇�(−)5 =
(1 − 𝐵5) (1 − 𝑇5) (𝐶5 + 1) (−𝒙5 + 𝒙6)

2
+
(1 − 𝐶5) (1 − 𝑇5) (𝐵5 + 1) (−𝒙4 + 𝒙5)

2

Basis Matrix Let’s try to find a transformation from the control values defined above to
Hermite control values:

[9]: control_values_H = sp.Matrix([x4, x5, xd4.name, xd5.name])
M_KBtoH = NamedMatrix(r'{M_{\text{KB$,4\to$H}}}', 4, 4)
NamedMatrix(control_values_H, M_KBtoH.name * control_values_KB)

[9]: ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙4
𝒙5
�̇�(+)4
�̇�(−)5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 𝑀KB, 4 →H

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝒙3
𝒙4
𝒙5
𝒙6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If we substitute the above definitions of �̇�4 and �̇�5, we can obtain the matrix elements:

[10]: M_KBtoH.expr = sp.Matrix([
[expr.coeff(cv) for cv in control_values_KB]
for expr in control_values_H.subs([xd4.args, xd5.args]).expand()])

M_KBtoH.pull_out(sp.S.Half)

[10]:

𝑀KB, 4 →H =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2 0 0
0 0 2 0
−𝑎4 𝑎4 − 𝑏4 𝑏4 0
0 −𝑐5 𝑐5 − 𝑑5 𝑑5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Once we have a way to get Hermite control values, we can use the Hermite basis matrix
from the notebook about uniform cubic Hermite splines (page 110) …

[11]: M_H = NamedMatrix(
r'{M_\text{H}}',
sp.Matrix([[ 2, -2, 1, 1],

[-3, 3, -2, -1],
[ 0, 0, 1, 0],
[ 1, 0, 0, 0]]))

M_H

[11]:

𝑀H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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… to calculate the basis matrix for Kochanek–Bartels splines:

[12]: M_KB = NamedMatrix(r'{M_{\text{KB},4}}', M_H.name * M_KBtoH.name)
M_KB

[12]: 𝑀KB,4 = 𝑀H𝑀KB, 4 →H

[13]: M_KB = M_KB.subs_symbols(M_H, M_KBtoH).doit()
M_KB.pull_out(sp.S.Half)

[13]:

𝑀KB,4 =
1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝑎4 𝑎4 − 𝑏4 − 𝑐5 + 4 𝑏4 + 𝑐5 − 𝑑5 − 4 𝑑5
2𝑎4 −2𝑎4 + 2𝑏4 + 𝑐5 − 6 −2𝑏4 − 𝑐5 + 𝑑5 + 6 −𝑑5
−𝑎4 𝑎4 − 𝑏4 𝑏4 0
0 2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

And for completeness’ sake, its inverse looks like this:

[14]: M_KB.I

[14]:

𝑀KB,4
−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑏4
𝑎4

𝑏4
𝑎4

𝑏4−2
𝑎4

1
0 0 0 1
1 1 1 1

−𝑐5+𝑑5+6
𝑑5

−𝑐5+𝑑5+4
𝑑5

−𝑐5+𝑑5+2
𝑑5

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Basis Polynomials

[15]: t = sp.symbols('t')

Multiplication with the monomial basis (page 88) leads to the basis functions:

[16]: b_KB = NamedMatrix(
r'{b_{\text{KB},4}}',
sp.Matrix([t**3, t**2, t, 1]).T * M_KB.expr)

b_KB.T.pull_out(sp.S.Half)

[16]:

𝑏KB,4
𝑇 =

1
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑎4𝑡 �−𝑡2 + 2𝑡 − 1�
𝑡3 (𝑎4 − 𝑏4 − 𝑐5 + 4) + 𝑡2 (−2𝑎4 + 2𝑏4 + 𝑐5 − 6) + 𝑡 (𝑎4 − 𝑏4) + 2

𝑡 �𝑏4 + 𝑡2 (𝑏4 + 𝑐5 − 𝑑5 − 4) + 𝑡 (−2𝑏4 − 𝑐5 + 𝑑5 + 6)�
𝑑5𝑡2 (𝑡 − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

To be able to plot the basis functions, let’s substitute 𝑎4, 𝑏4, 𝑐5 and 𝑑5 back in:

[17]: b_KB = b_KB.subs_symbols(a4, b4, c5, d5).simplify()

Let’s use a helper function from helper.py:

[18]: from helper import plot_basis

[19]: labels = sp.symbols('xbm_i-1 xbm_i xbm_i+1 xbm_i+2')

To be able to plot the basis functions, we have to choose some concrete TCB values.

helper.py
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[20]: plot_basis(
*b_KB.expr.subs({T4: 0, T5: 0, C4: 0, C5: 1, B4: 0, B5: 0}),
labels=labels)
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ht
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xi + 1
xi + 2

[21]: plot_basis(
*b_KB.expr.subs({T4: 0, T5: 0, C4: 0, C5: -0.5, B4: 0, B5: 0}),
labels=labels)
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ht

xi 1
xi

xi + 1
xi + 2

Setting all TCB values to zero leads to the basis polynomials of uniform Catmull–Rom splines
(page 171).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/kochanek-bartels-uniform.ipynb ends here.

The following section was generated from doc/euclidean/kochanek-bartels-non-uniform.ipynb . . . . . . . . . . . .
b.2.9.3 Non-Uniform Kochanek–Bartels Splines

Kochanek and Bartels (1984) mainly talk about uniform splines. Only in section 4 – “Ad-
justments for Parameter Step Size” – do they briefly mention the non-uniform case and
provide equations for “adjusted tangent vectors”:

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/kochanek-bartels-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/kochanek-bartels-non-uniform.ipynb
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The formulas […] assume an equal time spacing of key frames, implying an
equal number of inbetweens within each key interval. A problem can exist
if the animator requests a different number of inbetweens for adjacent inter-
vals. […] If the same parametric derivative is used for both splines at 𝑃𝑖, these
different step sizes will cause a discontinuity in the speed of motion. What is
required, if this discontinuity is not intentional, is a means of making a local
adjustment to the interval separating successive frames before and after the
key frame so that the speed of entry matches the speed of exit. This can be
accomplished by adjusting the specification of the tangent vector at the key
frame based on the number of inbetweens in the adjacent intervals. […] Once
the tangent vectors have been found for an equal number of inbetweens in
the adjacent intervals, the adjustment required for different numbers of inbe-
tweens (𝑁𝑖−1 frames between 𝑃𝑖−1 and 𝑃𝑖 followed by 𝑁𝑖 frames between 𝑃𝑖
and 𝑃𝑖+1) can be made by weighting the tangent vectors appropriately:

adjusted 𝐷𝐷𝑖 = 𝐷𝐷𝑖
2𝑁𝑖−1

𝑁𝑖−1 + 𝑁𝑖

adjusted 𝐷𝑆𝑖 = 𝐷𝑆𝑖
2𝑁𝑖

𝑁𝑖−1 + 𝑁𝑖

—Kochanek and Bartels (1984), section 4

In their notation, 𝐷𝑆𝑖 is the source derivative (i.e. the incoming tangent vector) at point
𝑃𝑖, and 𝐷𝐷𝑖 is the destination derivative (i.e. the outgoing tangent vector). The point 𝑃𝑖
corresponds to 𝒙𝑖 in our notation.

To be able to play aroundwith that, let’s implement it in a function. It turns out that for the
way we will be using this function, we have to use the reciprocal value of the adjustment
mentioned in the paper:

[1]: def kochanek_bartels_tangents(xs, ns):
"""Adjusted tangent vectors according to Kochanek & Bartels."""
x_1, _, x1 = xs
N_1, N0 = ns
uniform = (x1 - x_1) / 2
# NB: the K&B paper uses reciprocal weighting factors:
incoming = uniform * (N_1 + N0) / (2 * N0)
outgoing = uniform * (N_1 + N0) / (2 * N_1)
return incoming, outgoing

We can see that the uniform tangents are re-scaled but their direction is unchanged.

This is a hint that – although the paper claims to be using Catmull–Rom splines – we’ll
get different results than in the notebook about Catmull–Rom splines (page 157).

[2]: import numpy as np
import matplotlib.pyplot as plt

We’ll need the Hermite basis matrix that we derived in the notebook about uniform Hermite
splines (page 110) and which is also shown by Kochanek and Bartels (1984) in equation
2:
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[3]: hermite_matrix = np.array([
[ 2, -2, 1, 1],
[-3, 3, -2, -1],
[ 0, 0, 1, 0],
[ 1, 0, 0, 0]])

Since the paper uses a different (implicit) re-scaling of parameter values (based on the
numbers of inbetweens), we cannot use the classes from the splines (page 281) module and
have to re-implement everything from scratch:

[4]: def pseudo_catmull_rom(xs, ns):
"""Closed Catmull-Rom spline according to Kochanek & Bartels."""
xs = np.asarray(xs)
L = len(xs)
assert L >= 2
assert L == len(ns)
tangents = [

tangent
for i in range(L)
for tangent in kochanek_bartels_tangents(

[xs[i], xs[(i + 1) % L], xs[(i + 2) % L]],
[ns[i], ns[(i + 1) % L]])

]
# Move last (outgoing) tangent to the beginning:
tangents = tangents[-1:] + tangents[:-1]
ts = [

np.linspace(0, 1, n + 1, endpoint=False).reshape(-1, 1)
for n in ns]

return np.concatenate([
t**[3, 2, 1, 0] @ hermite_matrix @ [xs[i], xs[(i + 1) % L], v0,␣

↪v1]
for i, (t, v0, v1)
in enumerate(zip(ts, tangents[::2], tangents[1::2]))])

Note

The @ operator is used here to do NumPy’s matrix multiplication39.

Let’s plot an example:

[5]: vertices1 = [
(0, 0),
(1, 1),
(2, 0),

]
inbetweens1 = [

5,
20,
15,

]

39 https://numpy.org/doc/stable/reference/generated/numpy.matmul.html

https://numpy.org/doc/stable/reference/generated/numpy.matmul.html
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[6]: plt.scatter(*pseudo_catmull_rom(vertices1, inbetweens1).T, marker='.')
plt.scatter(*np.array(vertices1).T, marker='x', color='k')
plt.axis('equal');
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0.6

0.8

1.0

This doesn’t look too bad, let’s plot the same thing with splines.CatmullRom (page 283) for
comparison.

[7]: from splines import CatmullRom

In oder to be able to compare the results, we have to convert the discrete numbers of
inbetweens into re-scaled parameter values:

[8]: def inbetweens2times(inbetweens):
return np.cumsum([0, *(n + 1 for n in inbetweens)])

[9]: times1 = inbetweens2times(inbetweens1)

Now we have everything to create a non-uniform Catmull–Rom spline …

[10]: cr_spline1 = CatmullRom(vertices1, times1, endconditions='closed')

… and with a helper function from helper.py…

[11]: from helper import plot_spline_2d

…we can plot it for direct comparisonwith the one suggested by Kochanek and Bartels:

[12]: plt.plot(
*pseudo_catmull_rom(vertices1, inbetweens1).T,
marker='.', linestyle='', label='K&B')

plot_spline_2d(cr_spline1, dots_per_second=1, label='ours')
plt.legend(numpoints=3);

helper.py
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Here we can clearly see that not only the lengths of the tangent vectors but also their
directions have been adjusted according to the neighboring parameter intervals.

Let’s look at a different example:

[13]: vertices2 = [
(0, 0),
(0, 0.5),
(4.5, 1.5),
(5, 1),
(2, -1),
(1.5, -1),

]
inbetweens2 = [

2,
15,
3,
12,
2,
10,

]

[14]: times2 = inbetweens2times(inbetweens2)

[15]: cr_spline2 = CatmullRom(vertices2, times2, endconditions='closed')

[16]: plt.plot(
*pseudo_catmull_rom(vertices2, inbetweens2).T,
marker='.', linestyle='', label='K&B')

plot_spline_2d(cr_spline2, dots_per_second=1, label='ours')
plt.legend(numpoints=3);
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This should illustrate the shortcomings of the tangent vectors suggested by Kochanek and
Bartels.

Instead of sticking with their suggestion, we use the correct expression for tangent vectors
of non-uniform Catmull–Rom splines (page 177):

�̇�𝑖,Catmull–Rom =
(𝑡𝑖+1 − 𝑡𝑖) 𝒗𝑖−1 + (𝑡𝑖 − 𝑡𝑖−1) 𝒗𝑖

𝑡𝑖+1 − 𝑡𝑖−1
,

where 𝒗𝑖 =
𝒙𝑖+1−𝒙𝑖
𝑡𝑖+1−𝑡𝑖

.

To this equation, we can simply add the TCB parameters like we did in the notebook about
uniform Kochanek–Bartels splines (page 197), leading to the following equations for the in-
coming tangent �̇�(−)𝑖 and the outgoing tangent �̇�(+)𝑖 at vertex 𝒙𝑖:

𝑎𝑖 = (1 − 𝑇𝑖)(1 + 𝐶𝑖)(1 + 𝐵𝑖)
𝑏𝑖 = (1 − 𝑇𝑖)(1 − 𝐶𝑖)(1 − 𝐵𝑖)
𝑐𝑖 = (1 − 𝑇𝑖)(1 − 𝐶𝑖)(1 + 𝐵𝑖)
𝑑𝑖 = (1 − 𝑇𝑖)(1 + 𝐶𝑖)(1 − 𝐵𝑖)

�̇�(+)𝑖 =
𝑎𝑖(𝑡𝑖+1 − 𝑡𝑖) 𝒗𝑖−1 + 𝑏𝑖(𝑡𝑖 − 𝑡𝑖−1) 𝒗𝑖

𝑡𝑖+1 − 𝑡𝑖−1

�̇�(−)𝑖 =
𝑐𝑖(𝑡𝑖+1 − 𝑡𝑖) 𝒗𝑖−1 + 𝑑𝑖(𝑡𝑖 − 𝑡𝑖−1) 𝒗𝑖

𝑡𝑖+1 − 𝑡𝑖−1

These equations are used in the implementation of the class splines.KochanekBartels
(page 284).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/kochanek-bartels-non-uniform.ipynb ends here.

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/kochanek-bartels-non-uniform.ipynb
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b.2.10 End Conditions

Most spline types that are defined by a sequence of control points to be interpolated need
some additional information to be able to draw their segments at the beginning and at
the end. For example, cubic Catmull–Rom splines (page 155) need four consecutive control
points to define the segment between the middle two. For the very first and last segment,
the fourth control point is missing. Another example are natural splines (page 124), which
would require to solve an underdetermined system of equations when only the control
points are given.

There are many ways to provide this missing information, here we will mention only a
few of them.

clamped
This means providing a fixed tangent (i.e. first derivative) at the beginning and end
of a cubic spline. For higher degree splines, additional derivatives have to be be
specified.

natural
For a cubic spline, this means setting the second derivative at the beginning and
end of the spline to zero and calculating the first derivative from that constraint, see
Natural End Conditions (page 207).

closed
This problem can also be solved by simply not having a begin and an end. When
reaching the last control point, the spline can just continue at the first control point.
For non-uniform splines an additional parameter interval has to be specified for the
segment that’s inserted between the end and the beginning.

Formost splines in the splines module (page 281), clamped, natural and closed end conditions
are available via the endconditions argument. Except for closed, the end conditions can
differ between the beginning and end of the spline.

Additional information is available for end conditions of natural splines (page 130) andmono-
tone end conditions (page 224).

The following section was generated from doc/euclidean/end-conditions-natural.ipynb . . . . . . . . . . . . . . . . . . . .
b.2.10.1 Natural End Conditions

For the first and last segment, we assume that the inner tangent is known. To find the
outer tangent according to natural end conditions, the second derivative is set to 0 at the
beginning and end of the curve.

We are looking only at the non-uniform case here, it’s easy to get to the uniform case by
setting Δ𝑖 = 1.

Natural end conditions are naturally a good fit for natural splines (page 130). And in
case you were wondering, natural end conditions are sometimes also called “relaxed”
end conditions.

[1]: import sympy as sp
sp.init_printing(order='grevlex')

As usual, we are getting some help from utility.py:

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/end-conditions-natural.ipynb
utility.py
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[2]: from utility import NamedExpression

[3]: t = sp.symbols('t')

b.2.10.1.1 Begin

We are starting with the first polynomial segment 𝒑0(𝑡), with 𝑡0 ≤ 𝑡 ≤ 𝑡1.

[4]: t0, t1 = sp.symbols('t:2')

The coefficients …

[5]: a0, b0, c0, d0 = sp.symbols('a:dbm0')

… multiplied with the monomial basis (page 88) give us the uniform polynomial …

[6]: d0 * t**3 + c0 * t**2 + b0 * t + a0

[6]: 𝒅0𝑡3 + 𝒄0𝑡2 + 𝒃0𝑡 + 𝒂0

… which we re-scale to the desired parameter range:

[7]: p0 = NamedExpression('pbm0', _.subs(t, (t - t0) / (t1 - t0)))
p0

[7]:
𝒑0 =

𝒅0 (𝑡 − 𝑡0)
3

(−𝑡0 + 𝑡1)
3 +

𝒄0 (𝑡 − 𝑡0)
2

(−𝑡0 + 𝑡1)
2 +

𝒃0 (𝑡 − 𝑡0)
−𝑡0 + 𝑡1

+ 𝒂0

We need the first derivative (a.k.a. velocity, a.k.a. tangent vector):

[8]: pd0 = p0.diff(t)
pd0

[8]: 𝑑
𝑑𝑡
𝒑0 =

3𝒅0 (𝑡 − 𝑡0)
2

(−𝑡0 + 𝑡1)
3 +

𝒄0 ⋅ (2𝑡 − 2𝑡0)
(−𝑡0 + 𝑡1)

2 +
𝒃0

−𝑡0 + 𝑡1

Similar to the notebook about non-uniform Hermite splines (page 118), we are interested in
the function values and first derivatives at the control points:

𝒙0 = 𝒑0(𝑡0)
𝒙1 = 𝒑0(𝑡1)
�̇�0 = 𝒑′0(𝑡0)
�̇�1 = 𝒑′0(𝑡1)

[9]: equations_begin = [
p0.evaluated_at(t, t0).with_name('xbm0'),
p0.evaluated_at(t, t1).with_name('xbm1'),
pd0.evaluated_at(t, t0).with_name('xdotbm0'),
pd0.evaluated_at(t, t1).with_name('xdotbm1'),

]
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To get simpler equations, we are substituting Δ0 = 𝑡1−𝑡0. Note that this is only for display
purposes, the calculations are still done with 𝑡𝑖.

[10]: delta_begin = [
(t0, 0),
(t1, sp.Symbol('Delta0')),

]

[11]: for e in equations_begin:
display(e.subs(delta_begin))

𝒙0 = 𝒂0
𝒙1 = 𝒂0 + 𝒃0 + 𝒄0 + 𝒅0

�̇�0 =
𝒃0
Δ0

�̇�1 =
𝒃0
Δ0

+
2𝒄0
Δ0

+
3𝒅0
Δ0

[12]: coefficients_begin = sp.solve(equations_begin, [a0, b0, c0, d0])

[13]: for c, e in coefficients_begin.items():
display(NamedExpression(c, e.subs(delta_begin)))

𝒂0 = 𝒙0
𝒃0 = Δ0�̇�0
𝒄0 = −2Δ0�̇�0 − Δ0�̇�1 − 3𝒙0 + 3𝒙1
𝒅0 = Δ0�̇�0 + Δ0�̇�1 + 2𝒙0 − 2𝒙1

The second derivative (a.k.a. acceleration) …

[14]: pdd0 = pd0.diff(t)
pdd0

[14]: 𝑑2

𝑑𝑡2
𝒑0 =

3𝒅0 ⋅ (2𝑡 − 2𝑡0)
(−𝑡0 + 𝑡1)

3 +
2𝒄0

(−𝑡0 + 𝑡1)
2

… at the beginning of the curve (𝑡 = 𝑡0) …

[15]: pdd0.evaluated_at(t, t0)

[15]: 𝑑2

𝑑𝑡2
𝒑0�

𝑡=𝑡0

=
2𝒄0

(−𝑡0 + 𝑡1)
2

… is set to zero …

[16]: sp.Eq(_.expr, 0).subs(coefficients_begin)

[16]: 2 ⋅ (2𝑡0�̇�0 − 2𝑡1�̇�0 + 𝑡0�̇�1 − 𝑡1�̇�1 − 3𝒙0 + 3𝒙1)
(−𝑡0 + 𝑡1)

2 = 0

… leading to an expression for the initial tangent vector:
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[17]: xd0 = NamedExpression.solve(_, 'xdotbm0')
xd0.subs(delta_begin)

[17]: �̇�0 = −
Δ0�̇�1 + 3𝒙0 − 3𝒙1

2Δ0

This can also be written as

�̇�0 =
3 (𝒙1 − 𝒙0)
2Δ0

−
�̇�1
2
.

b.2.10.1.2 End

If a spline has𝑁 vertices, it has𝑁−1polynomial segments and the last polynomial segment
is 𝒑𝑁−2(𝑡), with 𝑡𝑁−2 ≤ 𝑡 ≤ 𝑡𝑁−1. To simplify the notation a bit, let’s assume we have
𝑁 = 10 vertices, which makes 𝒑8 the last polynomial segment. The following steps are
very similar to the above derivation of the start conditions.

[18]: a8, b8, c8, d8 = sp.symbols('a:dbm8')

[19]: t8, t9 = sp.symbols('t8:10')

[20]: d8 * t**3 + c8 * t**2 + b8 * t + a8

[20]: 𝒅8𝑡3 + 𝒄8𝑡2 + 𝒃8𝑡 + 𝒂8

[21]: p8 = NamedExpression('pbm8', _.subs(t, (t - t8) / (t9 - t8)))
p8

[21]:
𝒑8 =

𝒅8 (𝑡 − 𝑡8)
3

(−𝑡8 + 𝑡9)
3 +

𝒄8 (𝑡 − 𝑡8)
2

(−𝑡8 + 𝑡9)
2 +

𝒃8 (𝑡 − 𝑡8)
−𝑡8 + 𝑡9

+ 𝒂8

[22]: pd8 = p8.diff(t)
pd8

[22]: 𝑑
𝑑𝑡
𝒑8 =

3𝒅8 (𝑡 − 𝑡8)
2

(−𝑡8 + 𝑡9)
3 +

𝒄8 ⋅ (2𝑡 − 2𝑡8)
(−𝑡8 + 𝑡9)

2 +
𝒃8

−𝑡8 + 𝑡9

𝒙𝑁−2 = 𝒑𝑁−2(𝑡𝑁−2)
𝒙𝑁−1 = 𝒑𝑁−2(𝑡𝑁−1)
�̇�𝑁−2 = 𝒑′𝑁−2(𝑡𝑁−2)
�̇�𝑁−1 = 𝒑′𝑁−2(𝑡𝑁−1)

[23]: equations_end = [
p8.evaluated_at(t, t8).with_name('xbm8'),
p8.evaluated_at(t, t9).with_name('xbm9'),
pd8.evaluated_at(t, t8).with_name('xdotbm8'),
pd8.evaluated_at(t, t9).with_name('xdotbm9'),

]
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We define Δ8 = 𝑡9 − 𝑡8:

[24]: delta_end = [
(t8, 0),
(t9, sp.Symbol('Delta8')),

]

[25]: for e in equations_end:
display(e.subs(delta_end))

𝒙8 = 𝒂8
𝒙9 = 𝒂8 + 𝒃8 + 𝒄8 + 𝒅8

�̇�8 =
𝒃8
Δ8

�̇�9 =
𝒃8
Δ8

+
2𝒄8
Δ8

+
3𝒅8
Δ8

[26]: coefficients_end = sp.solve(equations_end, [a8, b8, c8, d8])

[27]: for c, e in coefficients_end.items():
display(NamedExpression(c, e.subs(delta_end)))

𝒂8 = 𝒙8
𝒃8 = Δ8�̇�8
𝒄8 = −2Δ8�̇�8 − Δ8�̇�9 − 3𝒙8 + 3𝒙9
𝒅8 = Δ8�̇�8 + Δ8�̇�9 + 2𝒙8 − 2𝒙9

This time, the second derivative …

[28]: pdd8 = pd8.diff(t)
pdd8

[28]: 𝑑2

𝑑𝑡2
𝒑8 =

3𝒅8 ⋅ (2𝑡 − 2𝑡8)
(−𝑡8 + 𝑡9)

3 +
2𝒄8

(−𝑡8 + 𝑡9)
2

… at the end of the last segment (𝑡 = 𝑡9) …

[29]: pdd8.evaluated_at(t, t9)

[29]: 𝑑2

𝑑𝑡2
𝒑8�

𝑡=𝑡9

=
3𝒅8 (−2𝑡8 + 2𝑡9)
(−𝑡8 + 𝑡9)

3 +
2𝒄8

(−𝑡8 + 𝑡9)
2

… is set to zero …

[30]: sp.Eq(_.expr, 0).subs(coefficients_end)

[30]: 3 (−2𝑡8 + 2𝑡9) (−𝑡8�̇�8 + 𝑡9�̇�8 − 𝑡8�̇�9 + 𝑡9�̇�9 + 2𝒙8 − 2𝒙9)
(−𝑡8 + 𝑡9)

3 +

2 ⋅ (2𝑡8�̇�8 − 2𝑡9�̇�8 + 𝑡8�̇�9 − 𝑡9�̇�9 − 3𝒙8 + 3𝒙9)
(−𝑡8 + 𝑡9)

2 = 0

… leading to an expression for the final tangent vector:
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[31]: xd9 = NamedExpression.solve(_, 'xdotbm9')
xd9.subs(delta_end)

[31]: �̇�9 = −
Δ8�̇�8 + 3𝒙8 − 3𝒙9

2Δ8

Luckily, that’s symmetric to the result we got above.

The equation can be generalized to

�̇�𝑁−1 =
3 (𝒙𝑁−1 − 𝒙𝑁−2)

2Δ𝑁−2
−
�̇�𝑁−2
2
.

b.2.10.1.3 Example

Weare showing a one-dimensional examplewhere 3 time/value pairs are given. The slope
for the middle value is given, the begin and end slopes are calculated using the “natural”
end conditions as calculated above.

[32]: values = 2, 2, 1
times = 0, 4, 5
slope = 2

We are using a few helper functions from helper.py for plotting:

[33]: from helper import plot_sympy, grid_lines

[34]: x0, x1 = sp.symbols('xbm0:2')
x8, x9 = sp.symbols('xbm8:10')
xd1 = sp.symbols('xdotbm1')
xd8 = sp.symbols('xdotbm8')

[35]: begin = p0.subs(coefficients_begin).subs_symbols(xd0).subs({
t0: times[0],
t1: times[1],
x0: values[0],
x1: values[1],
xd1: slope,

}).with_name(r'p_\text{begin}')
end = p8.subs(coefficients_end).subs_symbols(xd9).subs({

t8: times[1],
t9: times[2],
x8: values[1],
x9: values[2],
xd8: slope,

}).with_name(r'p_\text{end}')

[36]: plot_sympy(
(begin.expr, (t, times[0], times[1])),
(end.expr, (t, times[1], times[2])))

grid_lines(times, [1, 2])

helper.py


b.2. Polynomial Curves in Euclidean Space 213

0 4 5

1

2

[37]: begin.diff(t).evaluated_at(t, times[0])

[37]: 𝑑
𝑑𝑡
𝑝begin�

𝑡=0
= −1

[38]: end.diff(t).evaluated_at(t, times[-1])

[38]: 𝑑
𝑑𝑡
𝑝end�

𝑡=5
= −

5
2

b.2.10.1.4 Bézier Control Points

Up to nowwe have assumed that we know one of the tangent vectors andwant to find the
other tangent vector in order to construct a Hermite spline (page 105). What if we want to
construct a Bézier spline (page 134) instead?

If the inner Bézier control points �̃�(−)1 and �̃�(+)𝑁−2 are given, we can insert the equations for
the tangent vectors from the notebook about non-uniform Bézier splines (page 149) into our
tangent vector equations from above and solve them for the outer control points �̃�(+)0 and
�̃�(−)𝑁−1, respectively.

[39]: xtilde0, xtilde1 = sp.symbols('xtildebm0^(+) xtildebm1^(-)')

[40]: NamedExpression.solve(xd0.subs({
xd0.name: 3 * (xtilde0 - x0) / (t1 - t0),
xd1: 3 * (x1 - xtilde1) / (t1 - t0),

}), xtilde0)

[40]:
�̃�(+)0 =

𝒙0
2
+
�̃�(−)1
2

[41]: xtilde8, xtilde9 = sp.symbols('xtildebm8^(+) xtildebm9^(-)')

[42]: NamedExpression.solve(xd9.subs({
xd8: 3 * (xtilde8 - x8) / (t9 - t8),

(continues on next page)
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(continued from previous page)
xd9.name: 3 * (x9 - xtilde9) / (t9 - t8),

}), xtilde9)

[42]:
�̃�(−)9 =

𝒙9
2
+
�̃�(+)8
2

Note that all Δ𝑖 cancel each other out (as well as the inner vertices 𝒙1 and 𝒙𝑁−2) and we
get very simple equations for the “natural” end conditions:

�̃�(+)0 =
𝒙0 + �̃�

(−)
1

2

�̃�(−)𝑁−1 =
𝒙𝑁−1 + �̃�

(+)
𝑁−2

2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/end-conditions-natural.ipynb ends here.

The following section was generated from doc/euclidean/piecewise-monotone.ipynb . . . . . . . . . . . . . . . . . . . . . . . . .
b.2.11 Piecewise Monotone Interpolation

When interpolating a sequence of one-dimensional data points, it is sometimes desirable
to limit the interpolant between any two adjacent data points to amonotone function. This
makes sure that there are no overshoots beyond the given data points. In other words, if
the data points are within certain bounds, all interpolated data will also be within those
same bounds. It follows that if all data points are non-negative, interpolated data will
be non-negative as well. Furthermore, this makes sure that monotone data leads to a
monotone interpolant – see also Monotone Interpolation (page 222) below.

A Python implementation of one-dimensional piecewise monotone cubic splines is avail-
able in the class splines.PiecewiseMonotoneCubic (page 285).

The SciPy package provides a similar tool with the pchip_interpolate()40 function and
the PchipInterpolator41 class (see below for more details).

The 3D animation software Blender42 provides an Auto Clamped43 property for creating
piecewise monotone animation cuves.

b.2.11.1 Examples

[1]: import matplotlib.pyplot as plt
import numpy as np

[2]: import splines

40 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_
interpolate.html

41 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.
PchipInterpolator.html

42 https://www.blender.org
43 https://docs.blender.org/manual/en/dev/editors/graph_editor/fcurves/properties.

html#editors-graph-fcurves-settings-handles

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/end-conditions-natural.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/piecewise-monotone.ipynb
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
https://www.blender.org
https://docs.blender.org/manual/en/dev/editors/graph_editor/fcurves/properties.html#editors-graph-fcurves-settings-handles
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We use a few helper functions from helper.py for plotting:

[3]: from helper import plot_spline_1d, grid_lines

[4]: values = 0, 3, 3, 7
times = 0, 3, 8, 10, 11

Let’s compare a piecewise monotone spline with a Catmull–Rom spline (page 155) and a
natural spline (page 124):

[5]: plot_spline_1d(
splines.PiecewiseMonotoneCubic(values, times, closed=True),
label='piecewise monotone')

plot_spline_1d(
splines.CatmullRom(values, times, endconditions='closed'),
label='Catmull–Rom', linestyle='--')

plot_spline_1d(
splines.Natural(values, times, endconditions='closed'),
label='natural spline', linestyle='-.')

plt.legend()
grid_lines(times)

0 3 8 10 11

2

0

2

4

6

8 piecewise monotone
Catmull Rom
natural spline

[6]: def plot_piecewise_monotone(*args, **kwargs):
s = splines.PiecewiseMonotoneCubic(*args, **kwargs)
plot_spline_1d(s)
grid_lines(s.grid)

[7]: plot_piecewise_monotone([0, 1, 3, 2, 1])

helper.py
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b.2.11.1.1 Providing Slopes

By default, appropriate slopes are calculated automatically. However, those slopes can be
overridden if desired. Specifying None falls back to the auto-generated default.

[8]: plot_piecewise_monotone([0, 1, 3, 2, 1], slopes=[None, 0, None, -3, -1.5])

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Slopes that would lead to non-monotone segments are prohibited:

[9]: try:
plot_piecewise_monotone([0, 1, 3, 2, 1], slopes=[None, 4, None, None,␣

↪None])
except Exception as e:

print(e)
assert 'too steep' in str(e)

else:
assert False

Slope too steep: 4
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b.2.11.2 Generating and Modifying the Slopes at Segment Boundaries

In this paper we derive necessary and sufficient conditions for a cubic to be
monotone in an interval. These conditions are then used to develop an algo-
rithm which constructs a C 1 monotone piecewise cubic interpolant to mono-
tone data. The curve produced contains no extraneous “bumps” or “wiggles”,
which makes it more readily acceptable to scientists and engineers.

—Fritsch and Carlson (1980), section 1

Fritsch and Carlson (1980) derive necessary and sufficient conditions for a cubic curve
segment to be monotone, based on the slopes of the secant lines (i.e. the piecewise lin-
ear interpolant) and their endpoint derivatives. Furthermore, they provide a two-step
algorithm to generate piecewise monotone cubics:

1. calculate initial tangents (with whatever method)

2. tweak the ones that don’t fulfill the monotonicity conditions

For the first step, they suggest using the standard three-point difference, which we have al-
ready seen in the tangent vectors of non-uniform Catmull–Rom splines (page 177) and which
is implemented in the class splines.CatmullRom (page 283).

To implement Step 1 we have found the standard three-point difference for-
mula to be satisfactory for 𝑑2, 𝑑3,⋯, 𝑑𝑛−1.

—Fritsch and Carlson (1980), section 4

This is what de Boor [(Boor 1978), p. 53] calls cubic Bessel interpolation, in
which the interior derivatives are set using the standard three point difference
formula.

—Fritsch and Carlson (1980), section 5

In the 2001 edition of the book by Boor (1978), piecewise cubic Bessel interpolation is
defined on page 42.

For the following equations, we define the slope of the secant lines as

𝑆𝑖 =
𝑥𝑖+1 − 𝑥𝑖
𝑡𝑖+1 − 𝑡𝑖

.

We use 𝑥𝑖 to represent the given data points and and 𝑡𝑖 to represent the corresponding
parameter values. The slope at those values is represented by �̇�𝑖.

Note

In the literature, the parameter values are often represented by 𝑥𝑖, so try not to be
confused!
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Based on Fritsch and Carlson (1980), Dougherty et al. (1989) provide (in equation 4.2)
an algorithm for modifying the initial slopes to ensure monotonicity. Adapted to our
notation, it looks like this:

�̇�𝑖 ←

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min(max(0, �̇�𝑖), 3min(|𝑆𝑖−1|, |𝑆𝑖|)), 𝜎𝑖 > 0,
max(min(0, �̇�𝑖), −3min(|𝑆𝑖−1|, |𝑆𝑖|)), 𝜎𝑖 < 0,
0, 𝜎𝑖 = 0,

where 𝜎𝑖 = sgn(𝑆𝑖) if 𝑆𝑖𝑆𝑖−1 > 0 and 𝜎𝑖 = 0 otherwise.

This algorithm is implemented in the class splines.PiecewiseMonotoneCubic (page 285).

b.2.11.3 PCHIP/PCHIM

Adifferent approach for obtaining slopes that ensuremonotonicity is described by Fritsch
and Butland (1984), equation (5):

𝐺(𝑆1, 𝑆2, ℎ1, ℎ2) =

⎧⎪⎪⎨
⎪⎪⎩

𝑆1𝑆2
𝛼𝑆2+(1−𝛼)𝑆1

if 𝑆1𝑆2 > 0,
0 otherwise,

where

𝛼 =
1
3 �
1 +

ℎ2
ℎ1 + ℎ2

� =
ℎ1 + 2ℎ2
3(ℎ1 + ℎ2)

.

The function𝐺 can be used to calculate the slopes at segment boundaries, given the slopes
𝑆𝑖 of the neighboring secant lines and the neighboring parameter intervals ℎ𝑖 = 𝑡𝑖+1 − 𝑡𝑖.

Let’s define this using SymPy44 for later reference:

[10]: import sympy as sp

[11]: h1, h2 = sp.symbols('h1:3')
S1, S2 = sp.symbols('S1:3')

[12]: alpha = (h1 + 2 * h2) / (3 * (h1 + h2))
G1 = (S1 * S2) / (alpha * S2 + (1 - alpha) * S1)

This has been implemented in a Fortran45 package described by Fritsch (1982), who has
coined the acronym PCHIP, originally meaning Piecewise Cubic Hermite Interpolation Pack-
age.

It features software to produce a monotone and “visually pleasing” inter-
polant to monotone data.

—Fritsch (1982)

44 https://www.sympy.org/
45 https://en.wikipedia.org/wiki/Fortran

https://www.sympy.org/
https://en.wikipedia.org/wiki/Fortran
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The package containsmany Fortran subroutines, but the one that’s relevant here is PCHIM,
which is short for Piecewise Cubic Hermite Interpolation to Monotone data.

The source code (including some later modifications) is available online46. This is the
code snippet responsible for calculating the slopes:

C
C USE BRODLIE MODIFICATION OF BUTLAND FORMULA.
C

45 CONTINUE
HSUMT3 = HSUM+HSUM+HSUM
W1 = (HSUM + H1)/HSUMT3
W2 = (HSUM + H2)/HSUMT3
DMAX = MAX( ABS(DEL1), ABS(DEL2) )
DMIN = MIN( ABS(DEL1), ABS(DEL2) )
DRAT1 = DEL1/DMAX
DRAT2 = DEL2/DMAX
D(1,I) = DMIN/(W1*DRAT1 + W2*DRAT2)

This looks different from the function 𝐺 defined above, but if we transform the Fortran
code into math …

[13]: HSUM = h1 + h2

[14]: W1 = (HSUM + h1) / (3 * HSUM)
W2 = (HSUM + h2) / (3 * HSUM)

… and use separate expressions depending on which of the neighboring secant slopes is
larger …

[15]: G2 = S1 / (W1 * S1 / S2 + W2 * S2 / S2)
G3 = S2 / (W1 * S1 / S1 + W2 * S2 / S1)

… we see that the two cases are mathematically equivalent …

[16]: assert sp.simplify(G2 - G3) == 0

… and that they are in fact also equivalent to the aforementioned equation from Fritsch
and Butland (1984):

[17]: assert sp.simplify(G1 - G2) == 0

Presumably, the Fortran code uses the larger one of the pair of secant slopes in the de-
nominator in order to reduce numerical errors if one of the slopes is very close to zero.

Yet another variation of this theme is shown by Moler (2004), section 3.4, which defines
the slope 𝑑𝑘 as a weighted harmonic mean of the two neighboring secant slopes:

𝑤1 + 𝑤2
𝑑𝑘

=
𝑤1
𝛿𝑘−1

+
𝑤2
𝛿𝑘
,

with 𝑤1 = 2ℎ𝑘 + ℎ𝑘−1 and 𝑤2 = ℎ𝑘 + 2ℎ𝑘−1. Using the notation from above, 𝑑𝑘 = �̇�𝑘 and
𝛿𝑘 = 𝑆𝑘.

46 https://netlib.org/slatec/pchip/dpchim.f

https://netlib.org/slatec/pchip/dpchim.f
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Again, when defining this using SymPy …

[18]: w1 = 2 * h2 + h1
w2 = h2 + 2 * h1

[19]: G4 = (w1 + w2) / (w1 / S1 + w2 / S2)

… we can see that it is actually equivalent to the previous equations:

[20]: assert sp.simplify(G4 - G1) == 0

The PCHIM algorithm, which is nowadays known by the less self-explanatory name
PCHIP, is available in the SciPy package in form of the pchip_interpolate()47 function
and the PchipInterpolator48 class.

[21]: from scipy.interpolate import PchipInterpolator

b.2.11.4 More Examples

To illustrate the differences between the two approaches mentioned above, let’s plot a
few examples. Both methods are piecewise monotone, but their exact shape is slightly
different. Decide for yourself which one is more “visually pleasing”!

[22]: def compare_pchip(values, times):
plot_times = np.linspace(times[0], times[-1], 100)
plt.plot(

plot_times,
PchipInterpolator(times, values)(plot_times),
label='PCHIP', linestyle='--')

plt.plot(
plot_times,
splines.PiecewiseMonotoneCubic(values, times).evaluate(plot_

↪times),
label='PiecewiseMonotoneCubic', linestyle='-.')

plt.legend()
grid_lines(times)

[23]: compare_pchip([0, 0, 1.5, 4, 4], [-1, 0, 1, 8, 9])

47 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_
interpolate.html

48 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.
PchipInterpolator.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.pchip_interpolate.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
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[24]: compare_pchip([0, 0, 1.5, 4, 4], [-1, 0, 6, 8, 9])

1 0 6 8 9
0

1

2

3

4 PCHIP
PiecewiseMonotoneCubic

There is even a slight difference in the uniform case:

[25]: compare_pchip([0, 0, 3.3, 4, 4], [-1, 0, 1, 2, 3])
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[26]: compare_pchip([0, 0, 0.7, 4, 4], [-1, 0, 1, 2, 3])
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For differences at the beginning and the end of the curve, see the section about end conditions
(page 224).

b.2.11.5 Monotone Interpolation

When using the aforementioned piecewise monotone algorithms with monotone data,
the entire interpolant will be monotone.

The class splines.MonotoneCubic (page 285) works verymuch the same as splines.Piecewise-
MonotoneCubic (page 285), except that it only allows monotone data values.

Since the resulting interpolation function ismonotone, it can be inverted. Given a function
value, the method .get_time() (page 286) can be used to find the associated parameter
value.

[27]: s = splines.MonotoneCubic([0, 2, 2, 6, 6], grid=[0, 2, 3, 6, 8])
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[28]: probes = 1, 3, 5

[29]: fig, ax = plt.subplots()
plot_spline_1d(s)
ax.scatter(s.get_time(probes), probes)
grid_lines(s.grid)
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If the solution is not unique (i.e. on plateaus), the return value is None:

[30]: assert s.get_time(2) is None

Closed curves are obviously not possible:

[31]: try:
splines.MonotoneCubic([0, 2, 2, 6, 6], closed=True)

except Exception as e:
print(e)
assert 'closed' in str(e)

else:
assert False

The "closed" argument is not allowed

However, in some situations it might be useful to automatically infer the same slope at
the beginning and end of the spline. This can be achieved with the cyclic flag.

[32]: s = splines.MonotoneCubic([0, 1, 5])

[33]: s_cyclic = splines.MonotoneCubic([0, 1, 5], cyclic=True)

[34]: plot_spline_1d(s, label='not cyclic')
plot_spline_1d(s_cyclic, label='cyclic')
grid_lines(s.grid)
plt.legend();
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The cyclic flag is only allowed if the first and last slope is None:

[35]: try:
splines.MonotoneCubic([0, 1, 5], slopes=[1, None, None], cyclic=True)

except Exception as e:
print(e)
assert 'cyclic' in str(e)

else:
assert False

If "cyclic", the first and last slope must be None

b.2.11.6 End Conditions

The usual end conditions (page 207) don’t necessarily lead to amonotone interpolant, there-
fore we need to come up with custom end conditions that preserve monotonicity.

For the end derivatives, the noncentered three point difference formula may
be used, although it is sometimes necessary tomodify 𝑑1 and/or 𝑑𝑛 if the signs
are not appropriate. In these cases we have obtained better results setting 𝑑1
or 𝑑𝑛 equal to zero, rather than equal to the slope of the secant line.

—Fritsch and Carlson (1980), section 4

Fritsch and Carlson (1980) recommend using the noncentered three point difference formula,
however, they fail to mention what that actually is. Luckily, we can have a look at the
code49:

C
C SET D(1) VIA NON-CENTERED THREE-POINT FORMULA, ADJUSTED TO BE
C SHAPE-PRESERVING.
C

HSUM = H1 + H2
W1 = (H1 + HSUM)/HSUM
W2 = -H1/HSUM

(continues on next page)

49 https://netlib.org/slatec/pchip/dpchim.f

https://netlib.org/slatec/pchip/dpchim.f
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(continued from previous page)
D(1,1) = W1*DEL1 + W2*DEL2
IF ( PCHST(D(1,1),DEL1) .LE. ZERO) THEN

D(1,1) = ZERO
ELSE IF ( PCHST(DEL1,DEL2) .LT. ZERO) THEN

C NEED DO THIS CHECK ONLY IF MONOTONICITY SWITCHES.
DMAX = THREE*DEL1
IF (ABS(D(1,1)) .GT. ABS(DMAX)) D(1,1) = DMAX

ENDIF

The function PCHST is a simple sign test:

PCHST = SIGN(ONE,ARG1) * SIGN(ONE,ARG2)
IF ((ARG1.EQ.ZERO) .OR. (ARG2.EQ.ZERO)) PCHST = ZERO

This implementation seems to be used by “modern” PCHIP/PCHIM implementations as
well.

This defines the pchip slopes at interior breakpoints, but the slopes 𝑑1 and
𝑑𝑛 at either end of the data interval are determined by a slightly different,
one-sided analysis. The details are in pchiptx.m.

—Moler (2004), section 3.4

In section 3.6, Moler (2004) shows the implementation of pchiptx.m:

function d = pchipend(h1,h2,del1,del2)
% Noncentered, shape-preserving, three-point formula.

d = ((2*h1+h2)*del1 - h1*del2)/(h1+h2);
if sign(d) ~= sign(del1)

d = 0;
elseif (sign(del1)~=sign(del2))&(abs(d)>abs(3*del1))

d = 3*del1;
end

Apparently, this is the same as the above Fortran implementation.

The class scipy.interpolate.PchipInterpolator50 uses the same implementation (ported to
Python)51.

This implementation ensures monotonicity, but it might seem a bit strange that for calcu-
lating the first slope, the second slope is not directly taken into account.

Another awkward property is that for calculating the inner slopes, only the immediately
neighboring secant slopes and time intervals are considered, while for calculating the
initial andfinal slopes, both the neighboring segment and the one next to it are considered.
This makes the curve less locally controlled at the ends compared to the middle.

[36]: def plot_pchip(values, grid, **kwargs):
pchip = PchipInterpolator(grid, values)
times = np.linspace(grid[0], grid[-1], 100)
plt.plot(times, pchip(times), **kwargs)

(continues on next page)

50 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.
PchipInterpolator.html

51 https://github.com/scipy/scipy/blob/v1.6.1/scipy/interpolate/_cubic.py#L237-L250

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PchipInterpolator.html
https://github.com/scipy/scipy/blob/v1.6.1/scipy/interpolate/_cubic.py#L237-L250
https://github.com/scipy/scipy/blob/v1.6.1/scipy/interpolate/_cubic.py#L237-L250
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(continued from previous page)
plt.scatter(grid, pchip(grid))
grid_lines(grid)

[37]: plot_pchip([0, 1, 0], [0, 1, 2])
plot_pchip([0, 1, 1], [0, 1, 2], linestyle='--')
grid_lines([0, 1, 2])

0 1 2
0.0

0.2

0.4

0.6

0.8

1.0

[38]: plot_pchip([0, 1, 0], [0, 1, 4])
plot_pchip([0, 1, 0], [0, 1, 1.5], linestyle='--')
grid_lines([0, 1, 1.5, 4])
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In both of the above examples, the very left slope depends on properties of the very right
segment.

The slope at 𝑡 = 1 is clearly zero in both cases and apart from that fact, the shape of the
curve at 𝑡 > 1 should, arguably, not have any influence on the slope at 𝑡 = 0.

To provide an alternative to this behavior, the class splines.PiecewiseMonotoneCubic
(page 285) uses end conditions that depend on the slope at 𝑡 = 1, but not explicitly on the
shape of the curve at 𝑡 > 1:
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[39]: plot_piecewise_monotone([0, 1, 0], grid=[0, 1, 1.5])
plot_piecewise_monotone([0, 1, 0], grid=[0, 1, 4])
grid_lines([0, 1, 1.5, 4])
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The initial and final slopes of splines.PiecewiseMonotoneCubic (page 285) are implemented
like this:

[40]: def monotone_end_condition(inner_slope, secant_slope):
if secant_slope < 0:

return -monotone_end_condition(-inner_slope, -secant_slope)
assert 0 <= inner_slope <= 3 * secant_slope
if inner_slope <= secant_slope:

return 3 * secant_slope - 2 * inner_slope
else:

return (3 * secant_slope - inner_slope) / 2

b.2.11.7 Even More Examples

The following example plots show different slopes at the beginning and end due to dif-
ferent end conditions.

[41]: compare_pchip([1, 2, 1], [1, 3.5, 5])
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[42]: compare_pchip([1, 2, 3.5, 4, 3], [1, 1.5, 4, 5, 6])
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[43]: compare_pchip([1, 2, 1.9, 1], [1, 3, 4, 6])
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/piecewise-monotone.ipynb ends here.

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/piecewise-monotone.ipynb
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The following section was generated from doc/euclidean/re-parameterization.ipynb . . . . . . . . . . . . . . . . . . . . . . . .

b.2.12 Re-Parameterization

As we have seen previously – for example with Hermite splines (page 121) and Cat-
mull–Rom splines (page 164) – changing the relative amount of time (ormore generally, the
relative size of the parameter interval) per spline segment leads to different curve shapes.
Given the same underlying polynomials, we cannot simply re-scale the parameter values
without affecting the shape of the curve.

However, sometimes we want to keep the shape (or more accurately, the image52) of a
curve intact and only change its timing.

This can be done by introducing a function that maps from a new set of parameter values
to the parameter values of the original spline.

b.2.12.1 Arc-Length Parameterization

Instead of using a curve 𝒙(𝑡) with a free parameter 𝑡 (which we often interpret as time),
it is sometimes useful to have a curve 𝒙arc(𝑠) with the same image but where the param-
eter 𝑠 represents the distance travelled since the beginning of the curve. The length of a
piece of curve is called arc length53 and therefore 𝒙arc(𝑠) is called arc-length parameterized.
Sometimes, this is also called “natural” parameterization – not to be confusedwith natural
splines (page 124) and natural end conditions (page 207).

An interesting (and slightly confusing) thing to do now, is to use 𝒙arc(𝑠) with time as a
parameter. Note that the speed along a curve is calculated as distance per time interval
(𝑣 = 𝑑𝑠

𝑑𝑡), but if time and distance are the same (𝑠 ≡ 𝑡), we get a constant speed 𝑣 = 𝑑𝑠
𝑑𝑠 = 1.

In other words, the tangent vector of an arc-length parameterized curve always has unit
length.

To turn an existing curve 𝒙(𝑡) into its arc-length parameterized counterpart 𝒙arc(𝑠), we need
the parameter 𝑡 as function of travelled distance 𝑠, i.e. 𝑡(𝑠):

𝒙arc(𝑠) = 𝒙(𝑡(𝑠))

Sadly, we don’t know 𝑡(𝑠), but we can find 𝑠(𝑡) and then try to find the inverse function.

Let’s look at the tangent vector 𝑑
𝑑𝜏𝒙(𝜏) (i.e. the velocity) at every infinitesimally small time

interval 𝑑𝜏. The length travelled along the curve in that time interval is the length of the
tangent vector � 𝑑𝑑𝜏𝒙(𝜏)� (i.e. the speed)multiplied by the time interval 𝑑𝜏. Adding all these
small pieces from 𝑡0 to 𝑡 results in the arc length

𝑠(𝑡) =
𝑡

�
𝑡0

�
𝑑
𝑑𝜏
𝒙(𝜏)� 𝑑𝜏.

52 https://en.wikipedia.org/wiki/Image_(mathematics)
53 https://en.wikipedia.org/wiki/Arc_length

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/re-parameterization.ipynb
https://en.wikipedia.org/wiki/Image_(mathematics)
https://en.wikipedia.org/wiki/Arc_length


230 Appendix b. Splines

This looks straightforward enough, but it turns out that this integral cannot be solved
analytically if 𝒙(𝑡) is cubic (or of higher degree). The reason for that is the Abel–Ruffini
theorem54.

We’ll have to use numerical integration55 instead.

Finally, we need to invert this function. In other words, given an arc length 𝑠, we have
to provide a way to obtain the corresponding 𝑡. This can be reduced to a root finding
problem, which can be solved with different numerical methods, for example with the
bisection method56.

Arc-length re-parameterization is implemented in the Python class splines.Unit-
SpeedAdapter (page 286). This is using scipy.integrate.quad()57 for numerical integration
and scipy.optimize.bisect()58 for root finding.

Let’s show an example spline using the vertices from the section about centripetal parame-
terization (page 163):

[1]: points4 = [
(0, 0),
(0, 0.5),
(1.5, 1.5),
(1.6, 1.5),
(3, 0.2),
(3, 0),

]

[2]: import splines
from helper import plot_spline_2d

First we create a centripetal Catmull–Rom spline …

[3]: s1 = splines.CatmullRom(points4, alpha=0.5, endconditions='closed')

… which we then convert to an arc-length parameterized spline:

[4]: s2 = splines.UnitSpeedAdapter(s1)

[5]: %%time
plot_spline_2d(s1, dots_per_second=10)

CPU times: user 19.4 ms, sys: 0 ns, total: 19.4 ms
Wall time: 19.2 ms

54 https://en.wikipedia.org/wiki/Abel–Ruffini_theorem
55 https://en.wikipedia.org/wiki/Numerical_integration
56 https://en.wikipedia.org/wiki/Bisection_method
57 https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
58 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.bisect.html

https://en.wikipedia.org/wiki/Abel–Ruffini_theorem
https://en.wikipedia.org/wiki/Abel–Ruffini_theorem
https://en.wikipedia.org/wiki/Numerical_integration
https://en.wikipedia.org/wiki/Bisection_method
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.bisect.html
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Evaluating the arc-length parameterized spline takes quite a bit longer:

[6]: %%time
plot_spline_2d(s2, dots_per_second=10)

CPU times: user 1.89 s, sys: 32.2 ms, total: 1.92 s
Wall time: 1.88 s
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We are plotting 10 dots per second, and we can count about 10 dots per unit of distance,
which confirms that the spline has a speed of 1.

b.2.12.2 Spline-Based Re-Parameterization

We can choose any function to map a new parameter to old parameter values. Since we
are already talking about splines, we might as well use a one-dimensional spline. To rule
out backwards movement along the original spline, we should use use a monotone spline
(page 222) as implemented, for example, in the class splines.MonotoneCubic (page 285).

A tool for re-parameterizing an existing spline is available in the class splines.NewGri-
dAdapter (page 286).
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This is especially useful when applied to an already arc-length parameterized spline, be-
cause then the slope of the parameter re-mapping function directly corresponds to the
speed along the spline.

Not all new parameter values have to be explicitly given. If unspecified, they are interpo-
lated from the surrounding values.

For closed curves it might be useful to have the same slope at the beginning and the end
of the spline. This can be achieved by using cyclic=True.

[7]: new_grid = [-1, -0.5, None, None, 2, None, 3]
s3 = splines.NewGridAdapter(s2, new_grid, cyclic=True)
s3.grid

[7]: [-1, -0.5, 1.0334250405837568, 1.0992464899992576, 2, 2.0730953134961054,␣
↪3]

[8]: %%time
plot_spline_2d(s3, dots_per_second=10)

CPU times: user 990 ms, sys: 92.9 ms, total: 1.08 s
Wall time: 962 ms
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/euclidean/re-parameterization.ipynb ends here.

b.3 Rotation Splines

There aremanyways to implement rotation splines. Herewe use unit quaternions to repre-
sent rotations. First, we’ll show what quaternions are, and how their subset of unit quater-
nions can be used to handle rotations. Based on a special formof linear interpolation called
Slerp (page 240), we then use several algorithms that we have seen in the section about Eu-
clidean splines (page 88) – which all utilize linear interpolations (and extrapolations) – to
implement rotation splines. In the end of this section, we present a few methods which
are not based on Slerp, but it will turn out that they all have severe limitations.

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/euclidean/re-parameterization.ipynb
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The following section was generated from doc/rotation/quaternions.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b.3.1 Quaternions

We are interested in unit quaternions (see below), because they are a very useful repre-
sentation of rotations. But before we go into that, we should probably mention what a
quaternion59 is. We don’t need all the details, we just need to know a few facts (without
burdening ourselves too much with mathematical rigor):

• Quaternions live in the four-dimensional Euclidean space ℝ4. Each quaternion has
exactly one corresponding element of ℝ4 and vice versa.

• Unlike elements of ℝ4, quaternions support a special kind of quaternion multiplica-
tion.

• Quaternion multiplication is weird. The order of operands matters (i.e. multiplica-
tion is noncommutative60).

A Python implementation is available in the class splines.quaternion.Quaternion
(page 287).

b.3.1.1 Quaternion Representations

There are multiple equivalent ways to represent quaternions. Their original algebraic
representation is

𝑞 = 𝑤 + 𝑥i + 𝑦j + 𝑧k,

where i2 = j2 = k2 = ijk = −1. It is important to note that the order in which the basic
quaternions i, j and k are multiplied matters: ij = k, ji = −k (i.e. their multiplication is
anticommutative61). The information given so far should be sufficient to derive quater-
nion multiplication, but let’s not do that right now. Quaternions can also be represented
as pairs containing a scalar and a 3D vector:

𝑞 = (𝑤, �⃗�) = (𝑤, (𝑥, 𝑦, 𝑧))

Sometimes, the scalar and vector parts are also called “real” and “imaginary” parts, re-
spectively. The four components can also be displayed as simple 4-tuples, which can be
interpreted as coordinates of the four-dimensional Euclidean space ℝ4:

𝑞 = (𝑤, 𝑥, 𝑦, 𝑧) or 𝑞 = (𝑥, 𝑦, 𝑧, 𝑤)

The order of components can be chosen arbitrarily. In mathematical textbooks, the or-
der (𝑤, 𝑥, 𝑦, 𝑧) is often preferred (and sometimes written as (𝑎, 𝑏, 𝑐, 𝑑)). In numerical soft-
ware implementations, however, the order (𝑥, 𝑦, 𝑧, 𝑤) is more common (probably because
it is memory-compatible with 3D vectors (𝑥, 𝑦, 𝑧)). In the Python class splines.quater-
nion.Quaternion (page 287), these representations are available via the attributes scalar
(page 287), vector (page 287), wxyz (page 288) and xyzw (page 288).

59 https://en.wikipedia.org/wiki/Quaternion
60 https://en.wikipedia.org/wiki/Noncommutative
61 https://en.wikipedia.org/wiki/Anticommutative_property

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/quaternions.ipynb
https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Noncommutative
https://en.wikipedia.org/wiki/Anticommutative_property
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There are even more ways to represent quaterions, for example as 2x2 complex matrices
or as 4x4 real matrices (McDonald 2010).

b.3.1.2 Unit Quaternions

Quite simply, unit quaternions are the set of all quaternions whose distance to the origin
(0, (0, 0, 0)) equals 1. In ℝ3, all elements with unit distance from the origin form the unit
sphere (a.k.a. 𝑆2), which is a two-dimensional curved space. Since quaternions inhabitℝ4,
the unit quaternions form the unit hypersphere (a.k.a. 𝑆3), which is a three-dimensional
curved space.

One important unit quaternion is (1, (0, 0, 0)), sometimes written as 1, which corresponds
to the real number 1.

A Python implementation of unit quaternions is available in the class splines.quater-
nion.UnitQuaternion (page 288).

b.3.1.3 Unit Quaternions as Rotations

Given a (normalized) rotation axis �⃗� and a rotation angle 𝛼 (in radians), we can create a
corresponding quaternion (which will have unit length):

𝑞 = �cos
𝛼
2
, �⃗� sin

𝛼
2
�

Unit quaternions are a double cover over the rotation group (a.k.a. SO(3)62), which means
that each rotation can be associated with two distinct quaternions. More specifically, the
antipodal points 𝑞 and −𝑞 represent the same rotation – see Negation (page 239) below.

More details can be found on Wikipedia63.

To get a bit of intuition, let’s plot a few quaternion rotations (with the help of helper.
py).

[1]: from helper import angles2quat, plot_rotation

The quaternion 1 represents “no rotation at all”.

[2]: identity = angles2quat(0, 0, 0)
identity

[2]: UnitQuaternion(scalar=1.0, vector=(0.0, 0.0, 0.0))

[3]: a = angles2quat(90, 0, 0)
b = angles2quat(0, 35, 0)
c = angles2quat(0, 0, 45)

62 https://en.wikipedia.org/wiki/3D_rotation_group
63 https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation

https://en.wikipedia.org/wiki/3D_rotation_group
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
helper.py
helper.py
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[4]: plot_rotation({
'identity = 1': identity,
'$a$': a,
'$b$': b,
'$c$': c,

});

identity = 1 a b c

b.3.1.4 Axes Conventions

When converting between rotation angles (see Euler/Tait–Bryan angles64) and unit
quaternions, we can freely choose from amultitude of axes conventions65. Herewe choose
a (global) coordinate systemwhere the x-axis points towards the right margin of the page
and the y-axis points towards the top of the page. We are using a right-handed coordinate
system, which leaves the z-axis pointing out of the page, towards the reader. The helper
function angles2quat() takes three angles (in degrees) which are applied in this or-
der:

• azimuth: rotation around the (global) z-axis

• elevation: rotation around the (previously rotated local) x-axis

• roll: rotation around the (previously rotated local) y-axis

This is equivalent to applying the angles in the opposite order, but using a global frame
of reference for each rotation.

The sign of the rotation angles always follows the right-hand rule66.

b.3.1.5 Quaternion Multiplication

As mentioned above, quaternion multiplication (sometimes called Hamilton product) is
noncommutative, i.e. the order of operands matters. When using unit quaternions to
represent rotations, quaternion multiplication can be used to apply rotations to other ro-
tations. Given a rotation 𝑞0, we can apply another rotation 𝑞1 by left-multiplication: 𝑞1𝑞0.
In other words, applying a rotation of 𝑞0 followed by a rotation of 𝑞1 is equivalent to ap-
plying a single rotation 𝑞1𝑞0. Note that 𝑞1 represents a rotation in the global frame of
reference.

When dealing with local frames of reference, the order of multiplications has to be re-
versed. Given a rotation 𝑞2, which describes a new local coordinate system, we can apply

64 https://en.wikipedia.org/wiki/Euler_angles
65 https://en.wikipedia.org/wiki/Axes_conventions
66 https://en.wikipedia.org/wiki/Right-hand_rule#Rotations

https://en.wikipedia.org/wiki/Euler_angles
https://en.wikipedia.org/wiki/Axes_conventions
https://en.wikipedia.org/wiki/Right-hand_rule#Rotations
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a local rotation 𝑞3 (relative to this new coordinate system) by right-multiplication: 𝑞2𝑞3.
In other words, applying a rotation of 𝑞2 followed by a rotation of 𝑞3 (relative to the local
coordinate system defined by 𝑞2) is equivalent to applying a single rotation 𝑞2𝑞3.

In general, changing the order of rotations changes the resulting rotation:

𝑞𝑚𝑞𝑛 ≠ 𝑞𝑛𝑞𝑚

[5]: plot_rotation({'$ab$': a * b, '$ba$': b * a});

ab ba

However, there is an exception when all rotation axes are the same, in which case the
rotation angles can simply be added (in arbitrary order, of course).

The quaternion 1 = (1, (0, 0, 0)) is the identity element with regards to quaternion multi-
plication. A multiplication with this (on either side) leads to an unchanged rotation.

Even though quaternion multiplication is non-commutative, it is still associative67, which
means that if there are multiple multiplications in a row, they can be grouped arbitrarily,
leading to the same overall result:

(𝑞1𝑞2)𝑞3 = 𝑞1(𝑞2𝑞3)

[6]: plot_rotation({'$(bc)a$': (b * c) * a, '$b(ca)$': b * (c * a)});

(bc)a b(ca)

b.3.1.6 Inverse

The multiplicative inverse of a quaternion is written as 𝑞−1. When talking about rotations,
this operation leads to a new rotation with the same rotation axis but with negated angle
(or equivalently, the same angle with a flipped rotation axis).
67 https://en.wikipedia.org/wiki/Associative_property

https://en.wikipedia.org/wiki/Associative_property
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[7]: plot_rotation({'$b$': b, '$b^{-1}$': b.inverse()});

b b 1

By multiplying a rotation with its inverse, the original rotation can be undone: 𝑞𝑞−1 =
𝑞−1𝑞 = 1. Since both operands have the same rotation axis, the order doesn’t matter in this
case.

For unit quaternions, the inverse 𝑞−1 equals the conjugate 𝑞. The conjugate of a quaternion
is constructed by negating its vector part (and keeping its scalar part unchanged). This
can be achieved by negating the rotation axis �⃗�. Alternatively, we can negate the rotation
angle, since sin(−𝜙) = − sin(𝜙) (antisymmetric) and cos(−𝜙) = cos(𝜙) (symmetric).

𝑞 = �𝑤, −�⃗�� = �cos
𝛼
2
, −�⃗� sin

𝛼
2
� = �cos

−𝛼
2
, �⃗� sin

−𝛼
2
�

b.3.1.7 Relative Rotation (Global Frame of Reference)

Given two rotations 𝑞0 and 𝑞1, we can try to find a third rotation 𝑞0,1 that rotates 𝑞0 into 𝑞1.
Since we are considering the global frame of reference, 𝑞0,1 must be left-multiplied with
𝑞0:

𝑞0,1𝑞0 = 𝑞1

Now we can right-multiply both sides with 𝑞0−1:

𝑞0,1𝑞0𝑞0−1 = 𝑞1𝑞0−1

𝑞0𝑞0−1 cancels out and we get:

𝑞0,1 = 𝑞1𝑞0−1

b.3.1.8 Relative Rotation (Local Frame of Reference)

If 𝑞0,1 is supposed to be a rotation in the local frame of 𝑞0, we have to change the order of
multiplication:

𝑞0𝑞0,1 = 𝑞1

Now we can left-multiply both sides with 𝑞0−1:
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𝑞0−1𝑞0𝑞0,1 = 𝑞0−1𝑞1

𝑞0−1𝑞0 cancels out and we get:

𝑞0,1 = 𝑞0−1𝑞1

b.3.1.9 Exponentiation

Raising a unit quaternion to an integer power simply means applying the same rotation
multiple times:

[8]: plot_rotation({
'$a^0 = 1$': a**0,
'$a^1 = a$': a**1,
'$a^2 = aa$': a**2,
'$a^3 = aaa$': a**3,

});

a0 = 1 a1 = a a2 = aa a3 = aaa

It shouldn’t come as a surprise that 𝑞0 = 1 and 𝑞1 = 𝑞.

Using an exponent of −1 is equivalent to taking the inverse – see above (page 236). Nega-
tive integer exponents apply the inverse rotation multiple times. Non-integer exponents
lead to partial rotations, with the exponent 𝑘 being proportional to the rotation angle. The
rotation axis �⃗� is unchanged by exponentiation.

𝑞𝑘 = �cos
𝑘𝛼
2
, �⃗� sin

𝑘𝛼
2 �

[9]: plot_rotation({
'$a^1 = a$': a**1,
'$a^{0.5}$': a**0.5,
'$a^0 = 1$': a**0,
'$a^{-0.5}$': a**-0.5,

});
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a1 = a a0.5 a0 = 1 a 0.5

b.3.1.10 Negation

A quaternion can be negated by negating all 4 of its components. This corresponds to
flipping its orientation in 4D space (but keeping its direction and length). For unit quater-
nions, this means selecting the diametrically opposite (antipodal) point on the unit hy-
persphere.

Due to the double cover property mentioned above, negating a unit quaternion doesn’t
change the rotation it is representing.

[10]: plot_rotation({'$c$': c, '$-c$': -c});

c c

One way to negate the scalar part of a unit quaternion is to add 𝜋 to the argument of the
cosine function, since cos(𝜙 + 𝜋) = − cos(𝜙). Because only half of the rotation appears in
the argument of the cosine, we have to add 2𝜋 to the rotation angle 𝛼, which brings us
back to the original rotation. Adding 2𝜋 to the rotation angle also negates the vector part
of the unit quaternion (since sin(𝜙 + 𝜋) = − sin(𝜙)), assuming the rotation axis �⃗� stays
unchanged.

−𝑞 = �−𝑤, −�⃗�� = �cos
𝛼 + 2𝜋
2

, �⃗� sin
𝛼 + 2𝜋
2 �

b.3.1.11 Canonicalization

When we are given multiple rotations and we want to represent them as quaternions,
we have to take care of the ambiguity caused by the double cover property – see Slerp
Visualization (page 241) for an example of this ambiguity.
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One way to do that is to make sure that in a sequence of rotations (which we want to use
as the control points of a spline, for example), the angle (in 4D space) between neigh-
boring quaternions is at most 90 degrees (which corresponds to a 180 degree rotation
in 3D space). For any pair of quaternions where this is not the case, one of the quater-
nions can simply be negated. The function splines.quaternion.canonicalized() (page 289)
can be used to create an iterator of canonicalized quaternions from an iterable of arbitrary
quaternions.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/quaternions.ipynb ends here.

The following section was generated from doc/rotation/slerp.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b.3.2 Spherical Linear Interpolation (Slerp)

The term “Slerp” for “spherical linear interpolation” (a.k.a. “great arc in-betweening”)
has been coined by Shoemake (1985), section 3.3. It describes an interpolation (with con-
stant angular velocity) along the shortest path (a.k.a. geodesic) on the unit hypersphere
between two quaternions 𝑞1 and 𝑞2. It is defined as:

Slerp(𝑞1, 𝑞2; 𝑢) = 𝑞1 �𝑞1−1𝑞2�
𝑢

The parameter 𝑢 moves from 0 (where the expression simplifies to 𝑞1) to 1 (where the
expression simplifies to 𝑞2).

The Wikipedia article for Slerp68 provides four equivalent ways to describe the same
thing:

Slerp(𝑞0, 𝑞1; 𝑡) = 𝑞0 �𝑞0−1𝑞1�
𝑡

= 𝑞1 �𝑞1−1𝑞0�
1−𝑡

= �𝑞0𝑞1−1�
1−𝑡

𝑞1

= �𝑞1𝑞0−1�
𝑡
𝑞0

Shoemake (1985) also provides an alternative formulation (attributed to Glenn Davis):

Slerp(𝑞1, 𝑞2; 𝑢) =
sin(1 − 𝑢)𝜃

sin𝜃
𝑞1 +

sin 𝑢𝜃
sin𝜃

𝑞2,

where the dot product 𝑞1 ⋅ 𝑞2 = cos𝜃.

Latter equation works for unit-length elements of any arbitrary-dimensional inner product
space (i.e. a vector space that also has an inner product), while the preceding equations
only work for quaternions.

The Slerp function for quaternions is quite easy to implement …

[1]: def slerp(one, two, t):
"""Spherical Linear intERPolation."""
return (two * one.inverse())**t * one

68 https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/quaternions.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/slerp.ipynb
https://en.wikipedia.org/wiki/Slerp#Quaternion_Slerp
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…but for your convenience an implementation is also provided in splines.quaternion.slerp()
(page 289).

b.3.2.1 Derivation

Before looking at the general case Slerp(𝑞0, 𝑞1; 𝑡), which interpolates from 𝑞0 to 𝑞1, let’s
look at the much simpler case of interpolating from the identity 1 to some unit quaternion
𝑞.

1 = (1, (0, 0, 0))

𝑞 = �cos
𝛼
2
, �⃗� sin

𝛼
2
�

To move along the great arc from 1 to 𝑞, we simply have to change the angle from 0 to 𝛼
while the rotation axis �⃗� stays unchanged.

Slerp(1, 𝑞; 𝑡) = �cos
𝛼𝑡
2
, �⃗� sin

𝛼𝑡
2
� = 𝑞𝑡, where 0 ≤ 𝑡 ≤ 1

To generalize this to the great arc from 𝑞0 to 𝑞1, we can start with 𝑞0 and left-multiply an
appropriate Slerp using the relative rotation (global frame) (page 237) 𝑞0,1:

Slerp(𝑞0, 𝑞1; 𝑡) = Slerp(1, 𝑞0,1; 𝑡) 𝑞0

Inserting 𝑞0,1 = 𝑞1𝑞0−1, we get:

Slerp(𝑞0, 𝑞1; 𝑡) = �𝑞1𝑞0−1�
𝑡
𝑞0

Alternatively, we can start with 𝑞0 and right-multiply an appropriate Slerp using the rela-
tive rotation (local frame) (page 237) 𝑞0,1 = 𝑞0−1𝑞1:

Slerp(𝑞0, 𝑞1; 𝑡) = 𝑞0 Slerp(1, 𝑞0,1; 𝑡) = 𝑞0 �𝑞0−1𝑞1�
𝑡

We can also start with 𝑞1, swap 𝑞0 and 𝑞1 in the relative rotation and invert the parameter
by using 1 − 𝑡, leading to the two further alternatives mentioned above.

b.3.2.2 Visualization

First, let’s import NumPy69 …

[2]: import numpy as np

… and a few helper functions from helper.py:

69 https://numpy.org/

https://numpy.org/
helper.py
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[3]: from helper import angles2quat, animate_rotations, display_animation

We can now define two example quaternions:

[4]: q1 = angles2quat(45, -20, -60)
q2 = angles2quat(-45, 20, 30)

Just out of curiosity, let’s use the method rotation_to() (page 289) to calculate the angle
between the two quaternions:

[5]: np.degrees(q1.rotation_to(q2).angle)

[5]: 123.9513586527906

If this angle is smaller than 180 degrees, we know that we will get the smallest difference
in rotation. If it is larger than 180 degrees, we can negate the second quaternion to get a
smaller rotation – see canonicalization (page 239).

[6]: ani_times = np.linspace(0, 1, 50)

We show both the original target quaternion and its antipodal point in this animation:

[7]: ani = animate_rotations({
'slerp(q1, q2)': slerp(q1, q2, ani_times),
'slerp(q1, -q2)': slerp(q1, -q2, ani_times),

})

[8]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Let’s create some still images as well:

[9]: from helper import plot_rotations

[10]: plot_times = np.linspace(0, 1, 9)

[11]: plot_rotations({
'slerp(q1, q2)': slerp(q1, q2, plot_times),
'slerp(q1, -q2)': slerp(q1, -q2, plot_times),

}, figsize=(8, 3))
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slerp(q1, q2)

slerp(q1, -q2)

slerp(q1, q2) and slerp(q1, -q2) move along the same great circle, albeit in dif-
ferent directions. In total, they cover half the circumference of that great circle, which
means a rotation angle of 360 degrees. Note that q2 and -q2 represent the same rotation
(because of the double cover property).

b.3.2.3 Piecewise Slerp

The classPiecewiseSlerp (page 290) provides a rotation spline that consists of Slerp sections
between the given quaternions.

[12]: from splines.quaternion import PiecewiseSlerp

[13]: s = PiecewiseSlerp([
angles2quat(0, 0, 0),
angles2quat(90, 0, 0),
angles2quat(90, 90, 0),
angles2quat(90, 90, 90),

], grid=[0, 1, 2, 3, 6], closed=True)

[14]: ani = animate_rotations({
'piecewise Slerp': s.evaluate(np.linspace(s.grid[0], s.grid[-1],␣

↪100)),
})

[15]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Each section has its own constant angular velocity.

b.3.2.4 Slerp vs. Nlerp

While Slerp interpolates along a great arc between two quaternions, it is also possible to
interpolate along a straight line (in four-dimensional quaternion space) between those
two quaternions. The resulting interpolant is not part of the unit hypersphere, i.e. the
interpolated values are not unit quaternions. However, they can be normalized to become
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unit quaternions. This is called “normalized linear interpolation”, in short Nlerp. The
resulting interpolant travels through the same quaternions as Slerp does, but it doesn’t
do it with constant angular velocity.

[16]: from splines.quaternion import Quaternion

[17]: def lerp(one, two, t):
"""Linear intERPolation."""
one = np.asarray(one)
two = np.asarray(two)
return (1 - t) * one + t * two

[18]: def nlerp(one, two, t):
"""Normalized Linear intERPolation.

Linear interpolation in 4D quaternion space,
normalizing the result.

"""
if not np.isscalar(t):

# If t is a list, return a list of unit quaternions
return [nlerp(one, two, t) for t in t]

*vector, scalar = lerp(one.xyzw, two.xyzw, t)
return Quaternion(scalar, vector).normalized()

As a first example, we try an angle below 180 degrees …

[19]: q1 = angles2quat(-60, 10, -10)
q2 = angles2quat(80, -35, -110)

[20]: np.degrees(q1.rotation_to(q2).angle)

[20]: 174.5768498146622

… which we can also quickly check by means of the dot product:

[21]: assert q1.dot(q2) > 0

[22]: ani_times = np.linspace(0, 1, 50)

[23]: ani = animate_rotations({
'Slerp': slerp(q1, q2, ani_times),
'Nlerp': nlerp(q1, q2, ani_times),

})

[24]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Again, we plot some still images:

[25]: plot_rotations({
'Slerp': slerp(q1, q2, plot_times),
'Nlerp': nlerp(q1, q2, plot_times),

}, figsize=(8, 3))
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Slerp

Nlerp

The start and end values are (by definition) the same, themiddle one is also the same (due
to symmetry). And in between, there are very slight differences. Since the differences are
barely visible, we can try a more extreme example:

[26]: q3 = angles2quat(-170, 0, 45)
q4 = angles2quat(120, -90, -45)

[27]: np.degrees(q3.rotation_to(q4).angle)

[27]: 268.27205892764954

Please note that this is a rotation by an angle of far more than 180 degrees!

[28]: assert q3.dot(q4) < 0

[29]: ani = animate_rotations({
'Slerp': slerp(q3, q4, ani_times),
'Nlerp': nlerp(q3, q4, ani_times),

})

[30]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

[31]: plot_rotations({
'Slerp': slerp(q3, q4, plot_times),
'Nlerp': nlerp(q3, q4, plot_times),

}, figsize=(8, 3))
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Slerp

Nlerp

Now the difference is clearly visible, but depending on the application you might want to
limit your rotations to ±180 degrees anyway, so this might not be relevant.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/slerp.ipynb ends here.

The following section was generated from doc/rotation/de-casteljau.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b.3.3 De Casteljau’s AlgorithmWith Slerp

Shoemake (1985), who famously introduced quaternions to the field of computer graph-
ics, suggests to apply a variant of De Casteljau’s Algorithm (page 136) to a unit quaternion
control polygon, using Slerp (page 240) instead of linear interpolations.

[1]: def slerp(one, two, t):
"""Spherical Linear intERPolation."""
return (two * one.inverse())**t * one

We’ll also need NumPy and a few helpers from helper.py:

[2]: import numpy as np
from helper import angles2quat, plot_rotation, plot_rotations
from helper import animate_rotations, display_animation

b.3.3.1 “Cubic”

Shoemake (1985) only talks about the “cubic” case, consisting of three nested applications
of Slerp. Since this is done in a curved space, the resulting curve is of course not simply
a polynomial of degree 3, but something quite a bit more involved. Therefore, we use the
term “cubic” in quotes. Shoemake doesn’t talk about the “degree” of the curves at all,
they are only called “spherical Bézier curves”.

[3]: def cubic_de_casteljau(q0, q1, q2, q3, t):
"""De Casteljau's algorithm of "degree" 3 using Slerp."""
if not np.isscalar(t):

# If t is a list, return a list of unit quaternions
return [cubic_de_casteljau(q0, q1, q2, q3, t) for t in t]

slerp_0_1 = slerp(q0, q1, t)
slerp_1_2 = slerp(q1, q2, t)

(continues on next page)

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/slerp.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/de-casteljau.ipynb
helper.py


b.3. Rotation Splines 247

(continued from previous page)
slerp_2_3 = slerp(q2, q3, t)
return slerp(

slerp(slerp_0_1, slerp_1_2, t),
slerp(slerp_1_2, slerp_2_3, t),
t,

)

To illustrate this, let’s define 4 unit quaternions that we can use as control points:

[4]: q0 = angles2quat(45, 0, 0)
q1 = angles2quat(0, -40, 0)
q2 = angles2quat(0, 70, 0)
q3 = angles2quat(-45, 0, 0)

[5]: plot_rotation({'q0': q0, 'q1': q1, 'q2': q2, 'q3': q3});

q0 q1 q2 q3

[6]: plot_rotations(
cubic_de_casteljau(q0, q1, q2, q3, np.linspace(0, 1, 9)),
figsize=(8, 1))

We can see that the curve starts with the first rotation and ends with the last one. The two
middle control quaternions q1 and q2 influence the shape of the rotation curve but they
are not part of the interpolant themselves.

[7]: ani = animate_rotations(
cubic_de_casteljau(q0, q1, q2, q3, np.linspace(0, 1, 100)))

[8]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

b.3.3.2 Arbitrary “Degree”

The class splines.quaternion.DeCasteljau (page 290) allows arbitrary numbers of unit
quaternions per segment and therefore arbitrary “degrees”:
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[9]: from splines.quaternion import DeCasteljau

[10]: s = DeCasteljau([
[

angles2quat(0, 0, 0),
angles2quat(90, 0, 0),

],
[

angles2quat(90, 0, 0),
angles2quat(0, 0, 0),
angles2quat(0, 90, 0),

],
[

angles2quat(0, 90, 0),
angles2quat(0, 0, 0),
angles2quat(-90, 0, 0),
angles2quat(-90, 90, 0),

],
], grid=[0, 1, 3, 6])

[11]: ani = animate_rotations(s.evaluate(np.linspace(s.grid[0], s.grid[-1],␣
↪100)))

[12]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

b.3.3.3 Constant Angular Speed

Is there a way to construct a curve parameterized by arc length? This would
be very useful.

—Shoemake (1985), section 6: “Questions”

Remember arc-length parameterization of Euclidean splines (page 229)? We used the class
splines.UnitSpeedAdapter (page 286) which happens to be implemented in a way that it is
also usable for rotation splines, how convenient! The only requirement is that the second
derivative of the wrapped spline yields an angular velocity vector, which is nothing else
than the instantaneous rotation axis scaled by the angular speed.

[13]: from splines import UnitSpeedAdapter

[14]: s1 = DeCasteljau([[
angles2quat(90, 0, 0),
angles2quat(0, -45, 90),
angles2quat(0, 0, 0),
angles2quat(180, 0, 180),

]])

[15]: s2 = UnitSpeedAdapter(s1)
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[16]: ani = animate_rotations({
'non-constant speed': s1.evaluate(

np.linspace(s1.grid[0], s1.grid[-1], 100)),
'constant speed': s2.evaluate(

np.linspace(s2.grid[0], s2.grid[-1], 100)),
})

[17]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

b.3.3.4 Joining Curves

Until now, we have assumed that four control quaternions are given for each “cubic” seg-
ment.

If a list of quaternions is given, which is supposed to be interpolated, the intermediate
control quaternions can be computed from neighboring quaternions as shown in the note-
book about uniform Catmull–Rom-like quaternion splines (page 249).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/de-casteljau.ipynb ends here.

The following section was generated from doc/rotation/catmull-rom-uniform.ipynb . . . . . . . . . . . . . . . . . . . . . . . . .
b.3.4 Uniform Catmull–Rom-Like Quaternion Splines

We have seen how to use De Casteljau’s algorithm with Slerp (page 246) to create “cubic”
Bézier-like quaternion curve segments. However, if we only have a sequence of rotations
to be interpolated and no additional Bézier control quaternions are provided, it would be
great if we could compute the missing control quaternions automatically from neighbor-
ing quaternions.

In the notebook about (uniform) Euclidean Catmull–Rom splines (page 174) we have already
seen how this can be done for splines in Euclidean space:

�̃�(+)𝑖 = 𝒙𝑖 +
�̇�𝑖
3

�̃�(−)𝑖 = 𝒙𝑖 −
�̇�𝑖
3

Note that the velocity vectors �̇�𝑖 live in the same Euclidean space as the position vectors
𝒙𝑖. We can simply add a fraction of a velocity to a position and we get a new position in
return.

Applying this to rotations is unfortunately not very straightforward. When unit quater-
nions are moving along the the unit hypersphere, their velocity vectors are tangential to
that hypersphere, whichmeans that the velocity vectors are generally not unit quaternions
themselves. Furthermore, adding a (non-zero length) tangent vector to a unit quaternion
never leads to a unit quaternion as a result.

Instead of using tangent vectors, we can introduce a (yet unknown) relative quaternion (in
the global frame of reference) (page 237) 𝑞𝑖,offset:

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/de-casteljau.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/catmull-rom-uniform.ipynb
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�̃�(+)𝑖 = 𝑞𝑖,offset
1
3 𝑞𝑖

�̃�(−)𝑖 = 𝑞𝑖,offset
− 13 𝑞𝑖

When trying to obtain 𝑞𝑖,offset, the problem is that there are many equivalent ways to write
the equation for tangent vectors in Euclidean space …

�̇�𝑖 =
𝒙𝑖+1 − 𝒙𝑖−1

2
=
(𝒙𝑖 − 𝒙𝑖−1) + (𝒙𝑖+1 − 𝒙𝑖)

2
=
𝒙𝑖 − 𝒙𝑖−1

2
+
𝒙𝑖+1 − 𝒙𝑖

2

… but “translating” them to quaternions will lead to different results!

For the following experiments, let’s define three quaternions using the angles2quat()
function from helper.py:

[1]: from helper import angles2quat

[2]: q3 = angles2quat(0, 0, 0)
q4 = angles2quat(0, 45, -10)
q5 = angles2quat(90, 0, -90)

b.3.4.1 Relative Rotations

As a first attempt, we can try to “translate” the equation …

�̇�𝑖 =
𝒙𝑖+1 − 𝒙𝑖−1

2

… to unit quaternions like this:

𝑞𝑖,offset
?= �𝑞𝑖+1𝑞𝑖−1−1�

1
2

[3]: offset_a = q3.rotation_to(q5)**(1/2)

We’ll see later whether that’s reasonable or not.

For the next few examples, we define the relative rotations (page 237) associated with the
the incoming and the outgoing chord:

𝑞in = 𝑞𝑖𝑞𝑖−1−1

𝑞out = 𝑞𝑖+1𝑞𝑖−1

[4]: q_in = q3.rotation_to(q4)
q_out = q4.rotation_to(q5)

helper.py
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The next equation …

�̇�𝑖 =
(𝒙𝑖 − 𝒙𝑖−1) + (𝒙𝑖+1 − 𝒙𝑖)

2

… can be “translated” to unit quaternions like this:

𝑞𝑖,offset
?= �𝑞out𝑞in�

1
2

[5]: offset_b = (q_out * q_in)**(1/2)

We can see that this is actually equivalent to the previous one:

[6]: max(map(abs, (offset_b - offset_a).xyzw))

[6]: 1.1102230246251565e-16

In the Euclidean case, the order doesn’t matter, but in the quaternion case …

𝑞𝑖,offset
?= �𝑞in𝑞out�

1
2

[7]: offset_c = (q_in * q_out)**(1/2)

… there is a (quite large!) difference:

[8]: max(map(abs, (offset_b - offset_c).xyzw))

[8]: 0.2563304531880035

Based on the equation …

�̇�𝑖 =
𝒙𝑖 − 𝒙𝑖−1

2
+
𝒙𝑖+1 − 𝒙𝑖

2

… we can try another pair of equations …

𝑞𝑖,offset
?= �𝑞out

1
2 𝑞in

1
2 �

[9]: offset_d = (q_out**(1/2) * q_in**(1/2))

𝑞𝑖,offset
?= �𝑞in

1
2 𝑞out

1
2 �

[10]: offset_e = (q_in**(1/6) * q_out**(1/6))

… but they are also non-symmetric:

[11]: max(map(abs, (offset_e - offset_d).xyzw))
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[11]: 0.20225984693486293

Let’s try a slightly more involved variant, where the order of 𝑞in and 𝑞out can actually be
reversed:

𝑞𝑖,offset
?= �𝑞out𝑞in−1�

1
2 𝑞in = �𝑞in𝑞out−1�

1
2 𝑞out

[12]: offset_f = (q_out * q_in**-1)**(1/2) * q_in

[13]: offset_g = (q_in * q_out**-1)**(1/2) * q_out

[14]: max(map(abs, (offset_g - offset_f).xyzw))

[14]: 1.1102230246251565e-16

It is nice to have symmetric behavior, but the curvature of the unit hypersphere still causes
an error. We can check that by scaling down the components before the calculation (lead-
ing to a smaller curvature) and scaling up the result:

𝑞𝑖,offset
?=

⎛
⎜⎜⎜⎜⎜⎝�𝑞out

1
10 𝑞in

− 1
10 �

1
2
𝑞in

1
10

⎞
⎟⎟⎟⎟⎟⎠

10

=

⎛
⎜⎜⎜⎜⎜⎝�𝑞in

1
10 𝑞out

− 1
10 �

1
2
𝑞out

1
10

⎞
⎟⎟⎟⎟⎟⎠

10

[15]: offset_h = ((q_out**(1/10) * q_in**(-1/10))**(1/2) * q_in**(1/10))**10

[16]: offset_i = ((q_in**(1/10) * q_out**(-1/10))**(1/2) * q_out**(1/10))**10

[17]: max(map(abs, (offset_h - offset_i).xyzw))

[17]: 2.1094237467877974e-15

[18]: offset_j = ((q_out**(1/100) * q_in**(-1/100))**(1/2) * q_in**(1/100))**100

[19]: offset_k = ((q_in**(1/100) * q_out**(-1/100))**(1/2) * q_out**(1/
↪100))**100

[20]: max(map(abs, (offset_j - offset_k).xyzw))

[20]: 1.4277468096679513e-13

If we choose a larger scaling factor, the the error caused by curvature becomes smaller
(as we will see in the next section). However, the numerical error gets bigger. We cannot
scale down the components arbitrarily, but there is a different mathematical tool that we
can use, which boils down to the same thing, as we’ll see in the next section.

b.3.4.2 Tangent Space

The logarithmic map operation transforms a unit quaternion into a vector that’s a member
of the tangent space at the identity quaternion (a.k.a. 1). In this tangent space – which
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is a flat, three-dimensional Euclidean space – we can add and scale components without
worrying about curvature. Using the exponential map operation, the result can be projected
back onto the unit hypersphere. This way, we can take the equation for the tangent vector
in Euclidean space …

�̇�𝑖 =
(𝒙𝑖 − 𝒙𝑖−1) + (𝒙𝑖+1 − 𝒙𝑖)

2

… and “translate” it into unit quaternions …

𝑞𝑖,offset
?= exp �

ln(𝑞in) + ln(𝑞out)
2 �

[21]: from splines.quaternion import UnitQuaternion

[22]: offset_l = UnitQuaternion.exp_map((q_in.log_map() + q_out.log_map()) / 2)

This approach is implemented in the splines.quaternion.CatmullRom (page 291) class.

Let’s compare this to the variants from the previous section:

[23]: max(map(abs, (offset_l - offset_f).xyzw))

[23]: 0.01742323752655639

[24]: max(map(abs, (offset_l - offset_h).xyzw))

[24]: 0.000167758442754129

[25]: max(map(abs, (offset_l - offset_j).xyzw))

[25]: 1.6769343111344703e-06

Increasing the scaling factor from the previous section will get us closer and closer, but
only until the numerical errors eventually take over.

b.3.4.3 Example

After all those more or less successful experiments, let’s show an example with actual
rotations.

[26]: def offset(q_1, q0, q1):
q_in = q0 * q_1.inverse()
q_out = q1 * q0.inverse()
return UnitQuaternion.exp_map((q_in.log_map() + q_out.log_map()) / 2)

We’ll use theDeCasteljau (page 290) class to create a Bézier-like curve from the given con-
trol points, using canonicalized() (page 289) to avoid angles greater than 180 degrees.

[27]: from splines.quaternion import DeCasteljau, canonicalized

Also, some helper functions from helper.pywill come in handy.

helper.py
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[28]: from helper import animate_rotations, display_animation

We don’t want to worry about end conditions here, so let’s create a closed curve.

[29]: def create_closed_curve(rotations):
rotations = list(canonicalized(rotations + rotations[:2]))
control_points = []
for q_1, q0, q1 in zip(rotations, rotations[1:], rotations[2:]):

q_offset = offset(q_1, q0, q1)
control_points.extend([

q_offset**(-1/3) * q0,
q0,
q0,
q_offset**(1/3) * q0])

control_points = control_points[-2:] + control_points[:-2]
segments = list(zip(*[iter(control_points)] * 4))
return DeCasteljau(segments)

[30]: rotations = [
angles2quat(0, 0, 180),
angles2quat(0, 45, 90),
angles2quat(90, 45, 0),
angles2quat(90, 90, -90),
angles2quat(180, 0, -180),
angles2quat(-90, -45, 180),

]

[31]: s = create_closed_curve(rotations)

[32]: import numpy as np

[33]: times = np.linspace(0, len(rotations), 200, endpoint=False)

[34]: ani = animate_rotations(s.evaluate(times))

[35]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

b.3.4.4 Shoemake’s Approach

In section 4.2, Shoemake (1985) provides two function definitions:

Double(𝑝, 𝑞) = 2(𝑝 ⋅ 𝑞)𝑞 − 𝑝

Bisect(𝑝, 𝑞) =
𝑝 + 𝑞
‖𝑝 + 𝑞‖

[36]: def double(p, q):
return 2 * p.dot(q) * q - p
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[37]: def bisect(p, q):
return (p + q).normalized()

Given three successive key quaternions 𝑞𝑛−1, 𝑞𝑛 and 𝑞𝑛+1, these functions are used to com-
pute control quaternions 𝑏𝑛 (controlling the incoming tangent of 𝑞𝑛) and 𝑎𝑛 (controlling
the outgoing tangent of 𝑞𝑛):

𝑎𝑛 = Bisect(Double(𝑞𝑛−1, 𝑞𝑛), 𝑞𝑛+1)
𝑏𝑛 = Double(𝑎𝑛, 𝑞𝑛)

It is unclear where these equations come from, we only get a little hint:

For the numerically knowledgeable, this construction approximates the
derivative at points of a sampled function by averaging the central differences
of the sample sequence.

—Shoemake (1985), footnote on page 249

[38]: def shoemake_control_quaternions(q_1, q0, q1):
"""Shoemake's control quaternions.

Given three key quaternions, return the control quaternions
preceding and following the middle one.

Actually, the great arc distance of the returned quaternions to q0
still has to be reduced to 1/3 of the distance
to get the proper control quaternions (see the note below).

"""
a = bisect(double(q_1, q0), q1)
b = double(a, q0).normalized()
return b, a

Normalization of 𝑏𝑛 is not explicitly mentioned in the paper, but even though the results
have a length very close to 1.0, we still have to call normalized() to turn theQuaternion
(page 287) result into a UnitQuaternion (page 288).

[39]: b, a = shoemake_control_quaternions(q3, q4, q5)

The results are close (but by far not identical) to the tangent space approach from above:

[40]: max(map(abs, (a - offset_l * q4).xyzw))

[40]: 0.013831724198409168

[41]: max(map(abs, (b - offset_l.inverse() * q4).xyzw))

[41]: 0.018852903209093046

Note

Shoemake’s result has to be scaled by 1
3 , just as we did with 𝑞𝑖,offset above:
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A simple check proves the curve touches 𝑞𝑛 and 𝑞𝑛+1 at its ends. A rather
challenging differentiation shows it is tangent there to the segments deter-
mined by 𝑎𝑛 and 𝑏𝑛+1. However, as with Bézier’s original curve, the magni-
tude of the tangent is three times that of the segment itself. That is, we are
spinning three times faster than spherical interpolation along the arc. For-
tunately we can correct the speed by merely truncating the end segments
to one third their original length, so that 𝑎𝑛 is closer to 𝑞𝑛 and 𝑏𝑛+1 closer to
𝑞𝑛+1.

—Shoemake (1985), section 4.4: “Tangents revisited”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/catmull-rom-uniform.ipynb ends here.

The following section was generated from doc/rotation/catmull-rom-non-uniform.ipynb . . . . . . . . . . . . . . . . . . . .

b.3.5 Non-Uniform Catmull–Rom-Like Rotation Splines

What is the best way to allow varying intervals between sequence points in
parameter space?

—Shoemake (1985), section 6: “Questions”

In the uniform case (page 249) we have used De Casteljau’s algorithm with Slerp (page 246)
to create a “cubic” rotation spline. To extend this to the non-uniform case, we can
transform the parameter 𝑡 → 𝑡−𝑡𝑖

𝑡𝑖+1−𝑡𝑖
for each spline segment – as shown in the notebook

about non-uniform Euclidean Bézier splines (page 148). This is implemented in the class
splines.quaternion.DeCasteljau (page 290).

Assuming the control points at the start and the end of each segment are given (from a
sequence of quaternions to be interpolated), we’ll also need away to calculate themissing
two control points. For inspiration, we can have a look at the notebook about non-uniform
(Euclidean) Catmull–Rom splines (page 179) which provides these equations:

𝒗𝑖 =
𝒙𝑖+1 − 𝒙𝑖
𝑡𝑖+1 − 𝑡𝑖

�̇�𝑖 =
(𝑡𝑖+1 − 𝑡𝑖) 𝒗𝑖−1 + (𝑡𝑖 − 𝑡𝑖−1) 𝒗𝑖

𝑡𝑖+1 − 𝑡𝑖−1

�̃�(+)𝑖 = 𝒙𝑖 +
(𝑡𝑖+1 − 𝑡𝑖) �̇�𝑖

3

�̃�(−)𝑖 = 𝒙𝑖 −
(𝑡𝑖 − 𝑡𝑖−1) �̇�𝑖

3

With the relative rotation (page 237) 𝛿𝑖 = 𝑞𝑖+1𝑞𝑖−1 we can try to “translate” this to quater-
nions (using some vector operations in the tangent space):

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/catmull-rom-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/catmull-rom-non-uniform.ipynb
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𝜌𝑖 =
ln(𝛿𝑖)
𝑡𝑖+1 − 𝑡𝑖

�⃗�𝑖 =
(𝑡𝑖+1 − 𝑡𝑖) 𝜌𝑖−1 + (𝑡𝑖 − 𝑡𝑖−1) 𝜌𝑖

𝑡𝑖+1 − 𝑡𝑖−1

�̃�(+)𝑖
?= exp �

𝑡𝑖+1 − 𝑡𝑖
3

�⃗�𝑖� 𝑞𝑖

�̃�(−)𝑖
?= exp �

𝑡𝑖 − 𝑡𝑖−1
3

�⃗�𝑖�
−1
𝑞𝑖,

where 𝜌𝑖 is the angular velocity along the great arc from 𝑞𝑖 to 𝑞𝑖+1 within the parameter
interval from 𝑡𝑖 to 𝑡𝑖+1 and �⃗�𝑖 is the angular velocity of the Catmull–Rom-like quaternion
curve at the control point 𝑞𝑖 (which is reached at parameter value 𝑡𝑖). Finally, �̃�

(−)
𝑖 and �̃�(+)𝑖

are the Bézier-like control quaternions before and after 𝑞𝑖, respectively.

[1]: from splines.quaternion import UnitQuaternion

def cr_control_quaternions(qs, ts):
q_1, q0, q1 = qs
t_1, t0, t1 = ts
rho_in = q_1.rotation_to(q0).log_map() / (t0 - t_1)
rho_out = q0.rotation_to(q1).log_map() / (t1 - t0)
w0 = ((t1 - t0) * rho_in + (t0 - t_1) * rho_out) / (t1 - t_1)
return [

UnitQuaternion.exp_map(-w0 * (t0 - t_1) / 3) * q0,
UnitQuaternion.exp_map(w0 * (t1 - t0) / 3) * q0,

]

This approach is also implemented in the class splines.quaternion.CatmullRom
(page 291).

To illustrate this, let’s load NumPy, a few helpers from helper.py and splines.quater-
nion.canonicalized() (page 289).

[2]: import numpy as np
np.set_printoptions(precision=4)
from helper import angles2quat, animate_rotations, display_animation
from splines.quaternion import canonicalized

The following function can create a closed spline using the above method to calculate
control quaternions.

[3]: from splines.quaternion import DeCasteljau

def catmull_rom_curve(rotations, grid):
"""Create a closed Catmull-Rom-like quaternion curve."""
assert len(rotations) + 1 == len(grid)
rotations = rotations[-1:] + rotations + rotations[:2]
# Avoid angles of more than 180 degrees (including the added␣

↪rotations):
rotations = list(canonicalized(rotations))
first_interval = grid[1] - grid[0]
last_interval = grid[-1] - grid[-2]

(continues on next page)

helper.py
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(continued from previous page)
extended_grid = [grid[0] - last_interval, *grid, grid[-1] + first_

↪interval]
control_points = []
for qs, ts in zip(

zip(rotations, rotations[1:], rotations[2:]),
zip(extended_grid, extended_grid[1:], extended_grid[2:])):

q_before, q_after = cr_control_quaternions(qs, ts)
control_points.extend([q_before, qs[1], qs[1], q_after])

control_points = control_points[2:-2]
segments = list(zip(*[iter(control_points)] * 4))
return DeCasteljau(segments, grid)

To try this out, we need a few example quaternions and time instances:

[4]: rotations1 = [
angles2quat(0, 0, 180),
angles2quat(0, 45, 90),
angles2quat(90, 45, 0),
angles2quat(90, 90, -90),
angles2quat(180, 0, -180),
angles2quat(-90, -45, 180),

]

[5]: grid1 = 0, 0.5, 2, 5, 6, 7, 9

[6]: cr = catmull_rom_curve(rotations1, grid1)

[7]: def evaluate(spline, frames=200):
times = np.linspace(

spline.grid[0], spline.grid[-1], frames, endpoint=False)
return spline.evaluate(times)

[8]: ani = animate_rotations(evaluate(cr))

[9]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

b.3.5.1 Parameterization

Instead of choosing arbitrary time intervals between control quaternions (via the grid ar-
gument), we can calculate time intervals based on the control quaternions themselves.

[10]: rotations2 = [
angles2quat(90, 0, -45),
angles2quat(179, 0, 0),
angles2quat(181, 0, 0),
angles2quat(270, 0, -45),
angles2quat(0, 90, 90),

]
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Wehave seen uniformparameterization already in the previous notebook (page 249), where
each parameter interval is set to 1:

[11]: uniform = catmull_rom_curve(rotations2, grid=range(len(rotations2) + 1))

For chordal parameterization of Euclidean splines (page 163), we used the Euclidean distance
as basis for calculating the time intervals. For rotation splines, it makes more sense to use
rotation angles, which are proportional to the lengths of the great arcs between control
quaternions:

[12]: angles = np.array([
a.rotation_to(b).angle
for a, b in zip(rotations2, rotations2[1:] + rotations2[:1])])

angles

[12]: array([1.7027, 0.0349, 1.7027, 2.5936, 1.7178])

The values are probably easier to understand when we show them in degrees:

[13]: np.degrees(angles)

[13]: array([ 97.5592, 2. , 97.5592, 148.6003, 98.4211])

[14]: chordal_grid = np.concatenate([[0], np.cumsum(angles)])

[15]: chordal = catmull_rom_curve(rotations2, grid=chordal_grid)

For centripetal parameterization of Euclidean splines (page 163), we used the square root of
the Euclidean distances, here we use the square root of the rotation angles:

[16]: centripetal_grid = np.concatenate([[0], np.cumsum(np.sqrt(angles))])

[17]: centripetal = catmull_rom_curve(rotations2, grid=centripetal_grid)

[18]: ani = animate_rotations({
'uniform': evaluate(uniform),
'centripetal': evaluate(centripetal),
'chordal': evaluate(chordal),

})

[19]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

The class splines.quaternion.CatmullRom (page 291) provides a parameter alpha that
allows arbitrary parameterization between uniform and chordal – see also parameterized
parameterization of Euclidean splines (page 164).
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/catmull-rom-non-uniform.ipynb ends here.

The following section was generated from doc/rotation/kochanek-bartels.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b.3.6 Kochanek–Bartels-like Rotation Splines

RememberKochanek–Bartels splines in Euclidean space (page 191)? We can try to “translate”
those to quaternions by usingDe Casteljau’s algorithm with Slerp (page 246). We only need

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/catmull-rom-non-uniform.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/kochanek-bartels.ipynb
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a way to create the appropriate incoming and outgoing control quaternions, similarly to
what we did to create Catmull–Rom-like rotation splines (page 256).

We are only considering the more general non-uniform case here. The uniform case can be
obtained by simply using time instances 𝑡𝑖 with a step size of 1.

In the notebook about non-uniform Euclidean Kochanek–Bartels splines (page 201) we showed
the following equations for the incoming tangent vector �̇�(−)𝑖 and the outgoing tangent
vector �̇�(+)𝑖 at vertex 𝒙𝑖 (which corresponds to the parameter value 𝑡𝑖):

𝑎𝑖 = (1 − 𝑇𝑖)(1 + 𝐶𝑖)(1 + 𝐵𝑖)
𝑏𝑖 = (1 − 𝑇𝑖)(1 − 𝐶𝑖)(1 − 𝐵𝑖)
𝑐𝑖 = (1 − 𝑇𝑖)(1 − 𝐶𝑖)(1 + 𝐵𝑖)
𝑑𝑖 = (1 − 𝑇𝑖)(1 + 𝐶𝑖)(1 − 𝐵𝑖)

�̇�(+)𝑖 =
𝑎𝑖(𝑡𝑖+1 − 𝑡𝑖) 𝒗𝑖−1 + 𝑏𝑖(𝑡𝑖 − 𝑡𝑖−1) 𝒗𝑖

𝑡𝑖+1 − 𝑡𝑖−1

�̇�(−)𝑖 =
𝑐𝑖(𝑡𝑖+1 − 𝑡𝑖) 𝒗𝑖−1 + 𝑑𝑖(𝑡𝑖 − 𝑡𝑖−1) 𝒗𝑖

𝑡𝑖+1 − 𝑡𝑖−1
,

where 𝒗𝑖 =
𝒙𝑖+1−𝒙𝑖
𝑡𝑖+1−𝑡𝑖

.

Given those tangent vectors, we know the equations for the incoming control value �̃�(−)𝑖
and the outgoing control value �̃�(+)𝑖 from the notebook about non-uniform Euclidean Cat-
mull–Rom splines (page 179):

�̃�(+)𝑖 = 𝒙𝑖 +
(𝑡𝑖+1 − 𝑡𝑖)

3
�̇�(+)𝑖

�̃�(−)𝑖 = 𝒙𝑖 −
(𝑡𝑖 − 𝑡𝑖−1)

3
�̇�(−)𝑖

We can try to “translate” those equations to quaternions (using some vector operations
in the tangent space):

𝜌𝑖 =
ln(𝛿𝑖)
𝑡𝑖+1 − 𝑡𝑖

�⃗�(+)𝑖 =
𝑎𝑖(𝑡𝑖+1 − 𝑡𝑖) 𝜌𝑖−1 + 𝑏𝑖(𝑡𝑖 − 𝑡𝑖−1) 𝜌𝑖

𝑡𝑖+1 − 𝑡𝑖−1

�⃗�(−)𝑖 =
𝑐𝑖(𝑡𝑖+1 − 𝑡𝑖) 𝜌𝑖−1 + 𝑑𝑖(𝑡𝑖 − 𝑡𝑖−1) 𝜌𝑖

𝑡𝑖+1 − 𝑡𝑖−1

�̃�(+)𝑖
?= exp �

𝑡𝑖+1 − 𝑡𝑖
3

�⃗�(+)𝑖 � 𝑞𝑖

�̃�(−)𝑖
?= exp �

𝑡𝑖 − 𝑡𝑖−1
3

�⃗�(−)𝑖 �
−1
𝑞𝑖,
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where 𝛿𝑖 = 𝑞𝑖+1𝑞𝑖−1 is the relative rotation (page 237) from 𝑞𝑖 to 𝑞𝑖+1, 𝜌𝑖 is the angular velocity
along the great arc from 𝑞𝑖 to 𝑞𝑖+1 within the parameter interval from 𝑡𝑖 to 𝑡𝑖+1, �⃗�

(−)
𝑖 is the

incoming angular velocity of the Kochanek–Bartels-like quaternion curve at the control
point 𝑞𝑖 (which is reached at parameter value 𝑡𝑖) and �⃗�

(+)
𝑖 is the outgoing angular velocity.

Finally, �̃�(−)𝑖 and �̃�(+)𝑖 are the control quaternions before and after 𝑞𝑖, respectively.

A Python implementation of these equations is available in the class splines.quater-
nion.KochanekBartels (page 290).

[1]: from splines.quaternion import KochanekBartels

b.3.6.1 Examples

This is all a bit abstract, so let’s try a few of those TCB values to see their influence on the
rotation spline.

For comparison, you can have a look at the examples for Euclidean Kochanek–Bartels splines
(page 191).

As so often, we import NumPy and a few helpers from helper.py:

[2]: import numpy as np
from helper import angles2quat, animate_rotations, display_animation

Let’s define a few example rotations …

[3]: rotations = [
angles2quat(0, 0, 0),
angles2quat(90, 0, -45),
angles2quat(-45, 45, -90),
angles2quat(135, -35, 90),
angles2quat(90, 0, 0),

]

… and a helper function that allows us to try out different TCB values:

[4]: def show_tcb(tcb):
"""Show an animation of rotations with the given TCB values."""
if not isinstance(tcb, dict):

tcb = {'': tcb}
result = {}
for name, tcb in tcb.items():

s = KochanekBartels(
rotations,
alpha=0.5,
endconditions='closed',
tcb=tcb,

)
times = np.linspace(s.grid[0], s.grid[-1], 100, endpoint=False)
result[name] = s.evaluate(times)

display_animation(animate_rotations(result))

When using the default TCB values, a Catmull–Rom-like spline is generated:

helper.py
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[5]: show_tcb([0, 0, 0])

Animations can only be shown in HTML output, sorry!

We can vary tension (T) …

[6]: show_tcb({
'T = 1': [1, 0, 0],
'T = 0.5': [0.5, 0, 0],
'T = -0.5': [-0.5, 0, 0],
'T = -1': [-1, 0, 0],

})

Animations can only be shown in HTML output, sorry!

… continuity (C) …

[7]: show_tcb({
'C = -1': [0, -1, 0],
'C = -0.5': [0, -0.5, 0],
'C = 0.5': [0, 0.5, 0],
'C = 1': [0, 1, 0],

})

Animations can only be shown in HTML output, sorry!

… and bias (B):

[8]: show_tcb({
'B = 1': [0, 0, 1],
'B = 0.5': [0, 0, 0.5],
'B = -0.5': [0, 0, -0.5],
'B = -1': [0, 0, -1],

})

Animations can only be shown in HTML output, sorry!

Using the largest tension value (𝑇 = 1) produces the same rotations as using the smallest
continuity value (𝐶 = −1). However, the timing is different. With large tension values,
rotation slows down close to the control points. With small continuity, angular velocity
varies less.

[9]: show_tcb({
'T = 1': [1, 0, 0],
'C = -1': [0, -1, 0],

})

Animations can only be shown in HTML output, sorry!

Just like in the Euclidean case, 𝐵 = −1 followed by 𝐵 = 1 can be used to create linear – i.e.
Slerp (page 240) – segments.

[10]: show_tcb({
'Catmull–Rom': [0, 0, 0],
'2 linear segments': [

(0, 0, 1),
(0, 0, 0),

(continues on next page)
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(continued from previous page)
(0, 0, -1),
(0, 0, 1),
(0, 0, -1),

],
'C = -1': [0, -1, 0],

})

Animations can only be shown in HTML output, sorry!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/kochanek-bartels.ipynb ends here.

The following section was generated from doc/rotation/end-conditions-natural.ipynb . . . . . . . . . . . . . . . . . . . . .

b.3.7 “Natural” End Conditions

In the notebook about “natural” end conditions for Euclidean splines (page 213) we have de-
rived the following equations for calculating the second and penultimate control points
of cubic Bézier splines:

�̃�(+)0 =
𝒙0 + �̃�

(−)
1

2

�̃�(−)𝑁−1 =
𝒙𝑁−1 + �̃�

(+)
𝑁−2

2

These equations can be “translated” to quaternions like this:

�̃�(+)0 = ��̃�(−)1 𝑞0−1�
1
2 𝑞0

�̃�(−)𝑁−1 = ��̃�
(+)
𝑁−2𝑞𝑁−1−1�

1
2 𝑞𝑁−1

When considering that the control polygon starts with the quaternions
�𝑞0, �̃�

(+)
0 , �̃�(−)1 , 𝑞1, �̃�

(+)
1 , … � and ends with �… , 𝑞𝑁−2, �̃�

(+)
𝑁−2, �̃�

(−)
𝑁−1, 𝑞𝑁−1�, we can see that

the equations are symmetrical. The resulting control quaternion is calculated as the
rotation half-way between the first and third control quaternion, counting either from
the beginning (𝑞0) or the end (𝑞𝑁−1) of the spline.

[1]: def natural_end_condition(first, third):
"""Return second control quaternion given the first and third.

This also works when counting from the end of the spline.

"""
return first.rotation_to(third)**(1 / 2) * first

b.3.7.1 Examples

Let’s first import NumPy, a few helpers from helper.py and the class splines.quater-
nion.DeCasteljau (page 290):

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/kochanek-bartels.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/end-conditions-natural.ipynb
helper.py
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[2]: import numpy as np
from helper import angles2quat, animate_rotations, display_animation
from splines.quaternion import DeCasteljau

Furthermore, let’s define a helper function for evaluating a single spline segment:

[3]: def calculate_rotations(control_quaternions):
times = np.linspace(0, 1, 50)
return DeCasteljau(

segments=[control_quaternions],
).evaluate(times)

[4]: q0 = angles2quat(45, 0, 0)
q1 = angles2quat(-45, 0, 0)

[5]: q1_control = angles2quat(-45, 0, -90)

[6]: ani = animate_rotations({
'natural begin': calculate_rotations(

[q0, natural_end_condition(q0, q1_control), q1_control, q1]),
})

[7]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

[8]: q0_control = angles2quat(45, 0, 90)

[9]: ani = animate_rotations({
'natural end': calculate_rotations(

[q0, q0_control, natural_end_condition(q1, q0_control), q1]),
})

[10]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/end-conditions-natural.ipynb ends here.

The following section was generated from doc/rotation/barry-goldman.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b.3.8 Barry–Goldman AlgorithmWith Slerp

We can try to use the Barry–Goldman algorithm for non-uniform Euclidean Catmull–Rom
splines (page 181) using Slerp (page 240) instead of linear interpolations, just as we have
done with De Casteljau’s algorithm (page 246).

[1]: def slerp(one, two, t):
"""Spherical Linear intERPolation."""
return (two * one.inverse())**t * one

[2]: def barry_goldman(rotations, times, t):
"""Calculate a spline segment with the Barry-Goldman algorithm.

(continues on next page)

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/end-conditions-natural.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/barry-goldman.ipynb
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(continued from previous page)

Four quaternions and the corresponding four time values
have to be specified. The resulting spline segment is located
between the second and third quaternion. The given time *t*
must be between the second and third time value.

"""
q0, q1, q2, q3 = rotations
t0, t1, t2, t3 = times
return slerp(

slerp(
slerp(q0, q1, (t - t0) / (t1 - t0)),
slerp(q1, q2, (t - t1) / (t2 - t1)),
(t - t0) / (t2 - t0)),

slerp(
slerp(q1, q2, (t - t1) / (t2 - t1)),
slerp(q2, q3, (t - t2) / (t3 - t2)),
(t - t1) / (t3 - t1)),

(t - t1) / (t2 - t1))

To illustrate this, let’s import NumPy and a few helpers from helper.py:

[3]: import numpy as np
from helper import angles2quat, plot_rotation, plot_rotations
from helper import animate_rotations, display_animation

[4]: q0 = angles2quat(45, 0, 0)
q1 = angles2quat(0, -40, 0)
q2 = angles2quat(0, 70, 0)
q3 = angles2quat(-45, 0, 0)

[5]: t0 = 0
t1 = 1
t2 = 5
t3 = 8

[6]: plot_rotation({'q0': q0, 'q1': q1, 'q2': q2, 'q3': q3});

q0 q1 q2 q3

[7]: plot_rotations([
barry_goldman([q0, q1, q2, q3], [t0, t1, t2, t3], t)
for t in np.linspace(t1, t2, 9)

], figsize=(8, 1))

helper.py
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[8]: ani = animate_rotations([
barry_goldman([q0, q1, q2, q3], [t0, t1, t2, t3], t)
for t in np.linspace(t1, t2, 50)

])

[9]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

For the next example, we use the class splines.quaternion.BarryGoldman (page 291):

[10]: from splines.quaternion import BarryGoldman

[11]: rotations = [
angles2quat(0, 0, 180),
angles2quat(0, 45, 90),
angles2quat(90, 45, 0),
angles2quat(90, 90, -90),
angles2quat(180, 0, -180),
angles2quat(-90, -45, 180),

]

[12]: bg1 = BarryGoldman(rotations, alpha=0.5)

For comparison, we also create a Catmull–Rom-like quaternion spline (page 256) using the
class splines.quaternion.CatmullRom (page 291):

[13]: from splines.quaternion import CatmullRom

[14]: cr1 = CatmullRom(rotations, alpha=0.5, endconditions='closed')

[15]: def evaluate(spline, frames=200):
times = np.linspace(

spline.grid[0], spline.grid[-1], frames, endpoint=False)
return spline.evaluate(times)

[16]: ani = animate_rotations({
'Barry–Goldman': evaluate(bg1),
'Catmull–Rom-like': evaluate(cr1),

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Don’t worry if you don’t see any difference, the two are indeed extremely similar:
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[17]: max(max(map(abs, q.xyzw)) for q in (evaluate(bg1) - evaluate(cr1)))

[17]: 0.00266944746615122

However, when different time values are chosen, the difference between the two can be-
come significantly bigger.

[18]: grid = 0, 0.5, 1, 5, 6, 7, 10

[19]: bg2 = BarryGoldman(rotations, grid)
cr2 = CatmullRom(rotations, grid, endconditions='closed')

[20]: ani = animate_rotations({
'Barry–Goldman': evaluate(bg2),
'Catmull–Rom-like': evaluate(cr2),

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

b.3.8.1 Constant Angular Speed

A big advantage of De Casteljau’s algorithm is that when evaluating a spline at a given
parameter value, it directly provides the corresponding tangent vector. When using
the Barry–Goldman algorithm, the tangent vector has to be calculated separately, which
makes re-parameterization for constant angular speed very inefficient.

[21]: class BarryGoldmanWithDerivative(BarryGoldman):

delta_t = 0.000001

def evaluate(self, t, n=0):
"""Evaluate quaternion or angular velocity."""
if not np.isscalar(t):

return np.array([self.evaluate(t, n) for t in t])
if n == 0:

return super().evaluate(t)
elif n == 1:

# NB: We move the interval around because
# we cannot access times before and after
# the first and last time, respectively.
fraction = (t - self.grid[0]) / (self.grid[-1] - self.grid[0])
before = super().evaluate(t - fraction * self.delta_t)
after = super().evaluate(t + (1 - fraction) * self.delta_t)
# NB: Double angle
return (after * before.inverse()).log_map() * 2 / self.delta_t

else:
raise ValueError('Unsupported n: {!r}'.format(n))

[22]: from splines import UnitSpeedAdapter

[23]: bg3 = UnitSpeedAdapter(BarryGoldmanWithDerivative(rotations, alpha=0.5))
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Warning

Evaluating this spline takes a long time!

[24]: %%time
bg3_evaluated = evaluate(bg3)

CPU times: user 58.5 s, sys: 4.27 ms, total: 58.5 s
Wall time: 58.5 s

[25]: ani = animate_rotations({
'non-constant speed': evaluate(bg1),
'constant speed': bg3_evaluated,

})

[26]: display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/barry-goldman.ipynb ends here.

The following section was generated from doc/rotation/squad.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

b.3.9 Spherical Quadrangle Interpolation (Squad)

The Squad method was introduced by Shoemake (1987). For a long time, his paper was
not available online, but thanks to the nice folks at the ComputerHistoryMuseum70 (who
only suggested a completely voluntary donation71), it is now available as PDF file72 on
their website73.

The main argument for using Squad over De Casteljaus’s algorithm with Slerp (page 246) is
computational efficiency:

Boehm (1982), in comparing different geometric controls for cubic polynomial
segments, describes an evaluation method using “quadrangle points” which
requires only 3 Lerps, half the number needed for the Bézier method adapted
in Shoemake (1985).

—Shoemake (1987)

Given the start and end points 𝑝 and 𝑞 of a curve segment and the so-called quadrangle
points 𝑎 and 𝑏, Shoemake provides an equation for Squad:

The interpretation of this algorithm is simple: 𝑝 and 𝑞 form one side of a
quadrilateral, 𝑎 and 𝑏 the opposite side; the sides may be non-parallel and
non-coplanar. The two inner Lerps find points on those sides, then the outer
Lerpfinds a point in between. Essentially, a simple parabola drawnon a square
is subjected to an arbitrary bi-linearwarp, which converts it to a cubic. Translit-
erated into Slerps, Boehm’s algorithm gives a spherical curve,

Squad(𝑝, 𝑎, 𝑏, 𝑞; 𝛼) = Slerp(Slerp(𝑝, 𝑞; 𝛼), slerp(𝑎, 𝑏; 𝛼); 2(1 − 𝛼)𝛼)
70 https://computerhistory.org/
71 https://chm.secure.nonprofitsoapbox.com/donate
72 https://archive.computerhistory.org/resources/access/text/2023/06/

102724883-05-10-acc.pdf
73 https://www.computerhistory.org/collections/catalog/102724883

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/barry-goldman.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/squad.ipynb
https://computerhistory.org/
https://chm.secure.nonprofitsoapbox.com/donate
https://archive.computerhistory.org/resources/access/text/2023/06/102724883-05-10-acc.pdf
https://www.computerhistory.org/collections/catalog/102724883
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—Shoemake (1987)

Shoemake also derives equations for the quadrangle points, which involves differentiation
of Squad and assuming tangent vectors similar to uniform Euclidean Catmull–Rom splines
(page 157).

Given a series of quaternions 𝑞𝑛, use of Squad requires filling in values 𝑎𝑛 and
𝑏𝑛 on both sides of the interpolation points, so that each “cubic” segment is
traced out by Squad(𝑞𝑛, 𝑎𝑛, 𝑏𝑛+1, 𝑞𝑛+1; 𝛼) […] the values for 𝑎𝑛 and 𝑏𝑛 are given
by

𝑎𝑛 = 𝑏𝑛 = 𝑞𝑛 exp
⎛
⎜⎜⎜⎜⎝−

ln �𝑞−1𝑛 𝑞𝑛+1� + ln �𝑞−1𝑛 𝑞𝑛−1�
4

⎞
⎟⎟⎟⎟⎠

—Shoemake (1987)

Note

Allegedly, the proof of continuity of tangents by Shoemake (1987) is flawed. Kim,
Kim, et al. (1996) and Dam et al. (1998) provide new proofs, in case somebody wants
to look that up.

The equation for the inner quadrangle points uses relative rotations in the local frame of ref-
erence (page 237) defined by 𝑞𝑖. Since we have mainly used rotations in the global frame
of reference so far, we can also rewrite this equation to the equivalent form (changing the
index 𝑛 to 𝑖while we are at it)

𝑎𝑖 = 𝑏𝑖 = exp

⎛
⎜⎜⎜⎜⎝−

ln �𝑞𝑖+1𝑞−1𝑖 � + ln �𝑞𝑖−1𝑞−1𝑖 �
4

⎞
⎟⎟⎟⎟⎠ 𝑞𝑖.

We can try to get some intuition by looking at the Euclidean case. Euclidean quadran-
gle interpolation is shown in a separate notebook (page 150) and we know how to calcu-
late outgoing and incoming quadrangle points for uniform Euclidean Catmull–Rom splines
(page 174):

�̄�(+)𝑖 = �̄�(−)𝑖 = 𝒙𝑖 −
(𝒙𝑖+1 − 𝒙𝑖) + (𝒙𝑖−1 − 𝒙𝑖)

4
.

With a bit of squinting, we can see that this is analogous to the quaternion equation shown
above.

To show an example, we import splines.quaternion.Squad (page 291) and a few helper func-
tions from helper.py…

[1]: from splines.quaternion import Squad
from helper import angles2quat, animate_rotations, display_animation

… we define a sequence of rotations …

helper.py
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[2]: rotations = [
angles2quat(0, 0, 0),
angles2quat(90, 0, -45),
angles2quat(-45, 45, -90),
angles2quat(135, -35, 90),
angles2quat(90, 0, 0),

]

… and create a Squad object:

[3]: sq = Squad(rotations)

For comparison, we use splines.quaternion.CatmullRom (page 291) with the same sequence
of rotations:

[4]: from splines.quaternion import CatmullRom

[5]: cr = CatmullRom(rotations, endconditions='closed')

[6]: import numpy as np

[7]: def evaluate(spline, frames=200):
times = np.linspace(

spline.grid[0], spline.grid[-1], frames, endpoint=False)
return spline.evaluate(times)

[8]: ani = animate_rotations({
'Squad': evaluate(sq),
'Catmull–Rom-like': evaluate(cr),

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

As you can see, the two splines are nearly identical, but not quite:

[9]: max(max(map(abs, q.xyzw)) for q in (evaluate(sq) - evaluate(cr)))

[9]: 0.04640377605179979

b.3.9.1 Non-Uniform Parameterization

Shoemake (1987) uses uniform parameter intervals and doesn’t talk about the
non-uniform case at all. But we can try! In the notebook about non-uniform Euclidean Cat-
mull–Rom splines (page 179) we have seen the equations for the Euclidean quadrangle
points (with Δ𝑖 = 𝑡𝑖+1 − 𝑡𝑖):

�̄�(+)𝑖 = 𝒙𝑖 −
Δ𝑖

2(Δ𝑖−1 + Δ𝑖)
�(𝒙𝑖+1 − 𝒙𝑖) +

Δ𝑖
Δ𝑖−1

(𝒙𝑖−1 − 𝒙𝑖)�

�̄�(−)𝑖 = 𝒙𝑖 −
Δ𝑖−1

2(Δ𝑖−1 + Δ𝑖)
�
Δ𝑖−1
Δ𝑖

(𝒙𝑖+1 − 𝒙𝑖) + (𝒙𝑖−1 − 𝒙𝑖)�
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This can be “translated” to unit quaternions:

�̄�(+)𝑖 = exp �−
Δ𝑖

2(Δ𝑖−1 + Δ𝑖)
�ln �𝑞𝑖+1𝑞−1𝑖 � +

Δ𝑖
Δ𝑖−1

ln �𝑞𝑖−1𝑞−1𝑖 ��� 𝑞𝑖

�̄�(−)𝑖 = exp �−
Δ𝑖−1

2(Δ𝑖−1 + Δ𝑖)
�
Δ𝑖−1
Δ𝑖

ln �𝑞𝑖+1𝑞−1𝑖 � + ln �𝑞𝑖−1𝑞−1𝑖 ��� 𝑞𝑖

These two equations are implemented in splines.quaternion.Squad (page 291).

Being able to use non-uniform time values means that we can create a centripetal Squad
spline:

[10]: sq2 = Squad(rotations, alpha=0.5)

[11]: cr2 = CatmullRom(rotations, alpha=0.5, endconditions='closed')

[12]: ani = animate_rotations({
'Squad': evaluate(sq2),
'Catmull–Rom-like': evaluate(cr2),

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

The two movements are still very close.

[13]: max(max(map(abs, q.xyzw)) for q in (evaluate(sq2) - evaluate(cr2)))

[13]: 0.05019343803811403

Let’s try some random non-uniform parameter values:

[14]: times = 0, 0.75, 1.6, 2, 3.5, 4

[15]: sq3 = Squad(rotations, times)

[16]: cr3 = CatmullRom(rotations, times, endconditions='closed')

[17]: ani = animate_rotations({
'Squad': evaluate(sq3),
'Catmull–Rom-like': evaluate(cr3),

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Now the two movements have some obvious differences.

[18]: max(max(map(abs, q.xyzw)) for q in (evaluate(sq3) - evaluate(cr3)))

[18]: 0.42509139916677563
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With more uneven time values, the behavior of the Squad curve becomes more and more
erratic. The reason for this might be the fact that the quadrangle control points are in
general much further away from the curve than the Bézier control points. To check this,
let’s show the angle between adjacent control points in each segment, starting with the
Bézier control points of our Catmull–Rom-like spline:

[19]: %precision 1
[[np.degrees(q1.rotation_to(q2).angle) for q1, q2 in zip(s, s[1:])]
for s in cr3.segments]

[19]: [[17.0, 106.3, 19.9],
[22.5, 107.3, 91.0],
[42.8, 83.2, 44.9],
[168.4, 209.5, 68.6],
[22.9, 57.2, 11.3]]

An angle of 180 degree would mean a quarter of a great circle around the unit hyper-
sphere.

Let’s now compare that to the quadrangle control points:

[20]: [[np.degrees(q1.rotation_to(q2).angle) for q1, q2 in zip(s, s[1:])]
for s in sq3.segments]

[20]: [[67.6, 206.7, 48.6],
[62.4, 205.0, 108.4],
[24.0, 209.4, 17.9],
[251.1, 259.1, 103.9],
[11.5, 130.6, 30.1]]

The angles are clearly much larger here.

With even more extreme time values, the control quaternions might even “wrap around”
the unit hypersphere, leading to completely wrong movement between the given se-
quence of rotations. This will at some point also happen with the CatmullRom class,
but with Squad it will happen much earlier.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/squad.ipynb ends here.

The following section was generated from doc/rotation/cumulative-form.ipynb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
b.3.10 Cumulative Form

The basic idea, as proposed by Kim, Kim, et al. (1995) is the following:

Instead of representing a curve as a sum of basis functions weighted by its control point’s
position vectors 𝑝𝑖 – as it’s for example done with Bézier splines (page 134) – they suggest
to use the relative difference vectors Δ𝑝𝑖 between successive control points.

These relative difference vectors can then be “translated” to local rotations (replacing ad-
ditions with multiplications), leading to a form of rotation splines.

b.3.10.1 Piecewise Slerp

As an example, they define a piecewise linear curve

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/squad.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/cumulative-form.ipynb
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𝑝(𝑡) = 𝑝0 +
𝑛
�
𝑖=1
𝛼𝑖(𝑡)Δ𝑝𝑖,

where

Δ𝑝𝑖 = 𝑝𝑖 − 𝑝𝑖−1

𝛼𝑖(𝑡) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 𝑡 < 𝑖 − 1
𝑡 − 𝑖 + 1 𝑖 − 1 ≤ 𝑡 < 𝑖
1 𝑡 ≥ 𝑖.

[1]: def alpha(i, t):
if t < i - 1:

return 0
elif t >= i:

return 1
else:

return t - i + 1

Note

There is an off-by-one error in the paper’s definition of 𝛼𝑖(𝑡):

𝛼𝑖(𝑡) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 𝑡 < 𝑖
𝑡 − 𝑖 𝑖 ≤ 𝑡 < 𝑖 + 1
1 𝑡 ≥ 𝑖 + 1.

This assumes that 𝑖 starts with 0, but it actually starts with 1.

This “cumulative form” can be “translated” to a rotation spline by replacing additionwith
multiplication and the relative difference vectors by relative (i.e. local) rotations (repre-
sented by unit quaternions):

𝑞(𝑡) = 𝑞0
𝑛
�
𝑖=1

exp(𝜔𝑖𝛼𝑖(𝑡)),

where

𝜔𝑖 = log �𝑞−1𝑖−1𝑞𝑖� .

The paper uses above notation, but this could equivalently be written as

𝑞(𝑡) = 𝑞0
𝑛
�
𝑖=1

�𝑞−1𝑖−1𝑞𝑖�
𝛼𝑖(𝑡) .
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[2]: import numpy as np

Let’s import a few helper functions from helper.py:

[3]: from helper import angles2quat, animate_rotations, display_animation

[4]: from splines.quaternion import UnitQuaternion

[5]: # NB: math.prod() since Python 3.8
product = np.multiply.reduce

[6]: def piecewise_slerp(qs, t):
return qs[0] * product([

(qs[i - 1].inverse() * qs[i])**alpha(i, t)
for i in range(1, len(qs))])

[7]: qs = [
angles2quat(0, 0, 0),
angles2quat(90, 0, 0),
angles2quat(90, 90, 0),
angles2quat(90, 90, 90),

]

[8]: times = np.linspace(0, len(qs) - 1, 100)

[9]: ani = animate_rotations([piecewise_slerp(qs, t) for t in times])

[10]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

b.3.10.2 Cumulative Bézier/Bernstein Curve

After the piecewise Slerp, Kim, Kim and Shin (1995) show (in section 5.1) how to create
a cumulative form inspired by Bézier splines, i.e. using Bernstein polynomials.

They start with the well-known equation for Bézier splines:

𝑝(𝑡) =
𝑛
�
𝑖=0
𝑝𝑖𝛽𝑖,𝑛(𝑡),

where 𝛽𝑖,𝑛(𝑡) are Bernstein basis functions as shown in the notebook about Bézier splines
(page 148).

They re-formulate this into a cumulative form:

𝑝(𝑡) = 𝑝0 ̃𝛽0,𝑛(𝑡) +
𝑛
�
𝑖=1
Δ𝑝𝑖 ̃𝛽𝑖,𝑛(𝑡),

where the cumulative Bernstein basis functions are given by

helper.py
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̃𝛽𝑖,𝑛(𝑡) =
𝑛
�
𝑗=𝑖
𝛽𝑗,𝑛(𝑡).

We can get the Bernstein basis polynomials via the function splines.Bernstein.basis()
(page 283) …

[11]: from splines import Bernstein

… and create a simple helper function to sum them up:

[12]: from itertools import accumulate

[13]: def cumulative_bases(degree, t):
return list(accumulate(Bernstein.basis(degree, t)[::-1]))[::-1]

Finally, they “translate” this into a rotation spline using quaternions, like before:

𝑞(𝑡) = 𝑞0
𝑛
�
𝑖=1

exp �𝜔𝑖 ̃𝛽𝑖,𝑛(𝑡)� ,

where

𝜔𝑖 = log(𝑞−1𝑖−1𝑞𝑖).

Again, they use above notation in the paper, but this could equivalently be written as

𝑞(𝑡) = 𝑞0
𝑛
�
𝑖=1

�𝑞−1𝑖−1𝑞𝑖�
̃𝛽𝑖,𝑛(𝑡) .

[14]: def cumulative_bezier(qs, t):
degree = len(qs) - 1
bases = cumulative_bases(degree, t)
assert np.isclose(bases[0], 1)
return qs[0] * product([

(qs[i - 1].inverse() * qs[i])**bases[i]
for i in range(1, len(qs))

])

[15]: times = np.linspace(0, 1, 100)

[16]: rotations = [cumulative_bezier(qs, t) for t in times]

[17]: ani = animate_rotations(rotations)

[18]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!



276 Appendix b. Splines

b.3.10.3 Comparison with De Casteljau’s Algorithm

This Bézier quaternion curve has a different shape from the Bézier quaternion
curve of Shoemake (1985).

—Kim, Kim, et al. (1995), section 5.1

The method described by Shoemake (1985) is shown in a separate notebook (page 246). An
implementation is available in the class splines.quaternion.DeCasteljau (page 290):

[19]: from splines.quaternion import DeCasteljau

[20]: times = np.linspace(0, 1, 100)

[21]: control_polygon = [
angles2quat(90, 0, 0),
angles2quat(0, -45, 90),
angles2quat(0, 0, 0),
angles2quat(180, 0, 180),

]

[22]: cumulative_rotations = [
cumulative_bezier(control_polygon, t)
for t in times

]

[23]: cumulative_rotations_reversed = [
cumulative_bezier(control_polygon[::-1], t)
for t in times

][::-1]

[24]: casteljau_rotations = DeCasteljau([control_polygon]).evaluate(times)

[25]: ani = animate_rotations({
'De Casteljau': casteljau_rotations,
'Cumulative': cumulative_rotations,
'Cumulative reversed': cumulative_rotations_reversed,

})

[26]: display_animation(ani, default_mode='reflect')

Animations can only be shown in HTML output, sorry!

Applying the same method on the reversed list of control points and then time-reversing
the resulting sequence of rotations leads to an equal (except for rounding errors) sequence
of rotations when using De Casteljau’s algorithm:

[27]: casteljau_rotations_reversed = DeCasteljau([control_polygon[::-1]]).
↪evaluate(times)[::-1]

[28]: for one, two in zip(casteljau_rotations, casteljau_rotations_reversed):
assert np.isclose(one.scalar, two.scalar)
assert np.isclose(one.vector[0], two.vector[0])

(continues on next page)
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(continued from previous page)
assert np.isclose(one.vector[1], two.vector[1])
assert np.isclose(one.vector[2], two.vector[2])

However, doing the same thing with the “cumulative form” can lead to a significantly
different sequence, as can be seen in the above animation.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/cumulative-form.ipynb ends here.

The following section was generated from doc/rotation/naive-4d-interpolation.ipynb . . . . . . . . . . . . . . . . . . . . .
b.3.11 Naive 4D Quaternion Interpolation

This method for interpolating rotations is normally not recommended. But it might still
be interesting to try it out …

Since quaternions form a vector space (albeit a four-dimensional one), all methods for
Euclidean splines (page 88) can be applied. However, even though rotations can be rep-
resented by unit quaternions, which are a subset of all quaternions, this subset is not a
Euclidean space. All unit quaternions form the unit hypersphere 𝑆3 (which is a curved
space), and each point on this hypersphere uniquely corresponds to a rotation.

When we convert our desired rotation “control points” to quaternions and naively in-
terpolate in 4D quaternion space, the interpolated quaternions are in general not unit
quaternions, i.e. they are not part of the unit hypersphere and they don’t correspond to
a rotation. In order to force them onto the unit hypersphere, we can normalize them,
though, which projects them onto the unit hypersphere.

Note that this is a very crude form of interpolation and itmight result in unexpected curve
shapes. Especially the temporal behavior might be undesired.

If, for some application, more speed is essential, non-spherical quaternion
splines will undoubtedly be faster than angle interpolation, while still free of
axis bias and gimbal lock.

—Shoemake (1985), section 5.4

Abandoning the unit sphere, one could work with the four-dimensional Eu-
clidean space of arbitrary quaternions. How do standard interpolation meth-
ods applied there behave when mapped back to matrices? Note that we
now have little guidance in picking the inverse image for a matrix, and that
cusp-free R4 paths do not always project to cusp-free 𝑆3 paths.

—Shoemake (1985), section 6

[1]: import numpy as np

[2]: import splines

[3]: from splines.quaternion import Quaternion

As always, we use a few helper functions from helper.py:

[4]: from helper import angles2quat, animate_rotations, display_animation

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/cumulative-form.ipynb
https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/naive-4d-interpolation.ipynb
helper.py
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[5]: rotations = [
angles2quat(0, 0, 0),
angles2quat(0, 0, 45),
angles2quat(90, 90, 0),
angles2quat(180, 0, 90),

]

Weuse xyzw coordinate order here (because it is more common), but since the 4D coordi-
nates are independent, we could as well use wxyz order (or any order, for that matter)
with identical results (apart from rounding errors).

However, for illustrating the non-normalized case, we rely on the implicit conversion from
xyzw coordinates in the function animate_rotations().

[6]: rotations_xyzw = [q.xyzw for q in rotations]

As an examplewe use splines.CatmullRom (page 283) here, but any Euclidean spline could
be used.

[7]: s = splines.CatmullRom(rotations_xyzw, endconditions='closed')

[8]: times = np.linspace(s.grid[0], s.grid[-1], 100)

[9]: interpolated_xyzw = s.evaluate(times)

[10]: normalized = [
Quaternion(w, (x, y, z)).normalized()
for x, y, z, w in interpolated_xyzw]

For comparison, we also create a splines.quaternion.CatmullRom (page 291) instance:

[11]: spherical_cr = splines.quaternion.CatmullRom(rotations, endconditions=
↪'closed')

[12]: ani = animate_rotations({
'normalized 4D interp.': normalized,
'spherical interp.': spherical_cr.evaluate(times),

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

In case you are wondering what would happen if you forget to normalize the results, let’s
also show the non-normalized data:

[13]: ani = animate_rotations({
'normalized': normalized,
'not normalized': interpolated_xyzw,

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!
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Obviously, the non-normalized values are not pure rotations.

To get a different temporal behavior, let’s try using centripetal parameterization (page 163).
Note that this guarantees the absence of cusps and self-intersections in the 4D curve, but
this guarantee doesn’t extend to the projection onto the unit hypersphere.

[14]: s2 = splines.CatmullRom(rotations_xyzw, alpha=0.5, endconditions='closed')

[15]: times2 = np.linspace(s2.grid[0], s2.grid[-1], len(times))

[16]: normalized2 = [
Quaternion(w, (x, y, z)).normalized()
for x, y, z, w in s2.evaluate(times2)]

[17]: ani = animate_rotations({
'uniform': normalized,
'centripetal': normalized2,

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

Let’s also try arc-length parameterization with the UnitSpeedAdapter (page 286):

[18]: s3 = splines.UnitSpeedAdapter(s2)
times3 = np.linspace(s3.grid[0], s3.grid[-1], len(times))

[19]: normalized3 = [
Quaternion(w, (x, y, z)).normalized()
for x, y, z, w in s3.evaluate(times3)]

The arc-length parameterized spline has a constant speed in 4D quaternion space, but
that doesn’t mean it has a constant angular speed!

For comparison, we also create a rotation spline with constant angular speed:

[20]: s4 = splines.UnitSpeedAdapter(
splines.quaternion.CatmullRom(

rotations, alpha=0.5, endconditions='closed'))
times4 = np.linspace(s4.grid[0], s4.grid[-1], len(times))

[21]: ani = animate_rotations({
'const. 4D speed': normalized3,
'const. angular speed': s4.evaluate(times4),

})
display_animation(ani, default_mode='loop')

Animations can only be shown in HTML output, sorry!

The difference is subtle, but it is definitely visible. More extreme examples can certainly
be found.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/naive-4d-interpolation.ipynb ends here.

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/naive-4d-interpolation.ipynb
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The following section was generated from doc/rotation/naive-euler-angles-interpolation.ipynb . . . . . . . .

b.3.12 Naive Interpolation of Euler Angles

This method for interpolating 3D rotations is not recommended at all!

Since 3D rotations can be represented by a list of three angles, it might be tempting to
simply interpolate those angles independently.

Let’s try it and see what happens, shall we?

[1]: import numpy as np

[2]: import splines

As always, we use a few helper functions from helper.py:

[3]: from helper import angles2quat, animate_rotations, display_animation

We are using splines.CatmullRom (page 283) to interpolate the Euler angles independently
and splines.quaternion.CatmullRom (page 291) to interpolate the associated quaternions for
comparison:

[4]: def plot_interpolated_angles(angles):
s1 = splines.CatmullRom(angles, endconditions='closed')
times = np.linspace(s1.grid[0], s1.grid[-1], 100)
s2 = splines.quaternion.CatmullRom(

[angles2quat(azi, ele, roll) for azi, ele, roll in angles],
endconditions='closed')

ani = animate_rotations({
'Euler angles': [angles2quat(*abc) for abc in s1.evaluate(times)],
'quaternions': s2.evaluate(times),

})
display_animation(ani, default_mode='loop')

[5]: plot_interpolated_angles([
(0, 0, 0),
(45, 0, 0),
(90, 45, 0),
(90, 90, 0),
(180, 0, 90),

])

Animations can only be shown in HTML output, sorry!

There is clearly a difference between the two, but the Euler angles don’t look that bad.

Let’s try another example:

[6]: plot_interpolated_angles([
(-175, 0, 0),
(175, 0, 0),

])

Animations can only be shown in HTML output, sorry!

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/naive-euler-angles-interpolation.ipynb
helper.py
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Here we see that the naive interpolation isn’t aware that the azimuth angle is supposed
to wrap around at 180 degrees.

This could be fixed with a less naive implementation, but there are also unfixable prob-
lems, as this example shows:

[7]: plot_interpolated_angles([
(45, 45, 0),
(45, 90, 0),
(-135, 45, 180),

])

Animations can only be shown in HTML output, sorry!

Even though all involved rotations are supposed to happen around a single rotation axis,
The Euler angles interpolation is all over the place.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . doc/rotation/naive-euler-angles-interpolation.ipynb ends here.

b.4 Python Module

splines (page 281) Piecewise polynomial curves (in Eu-
clidean space).

splines.quaternion (page 287) Quaternions and unit-quaternion splines.

b.4.1 splines

Piecewise polynomial curves (in Euclidean space).

Submodules

quaternion (page 287) Quaternions and unit-quaternion
splines.

Classes

https://github.com/AudioSceneDescriptionFormat/splines/blob/064313c/doc/rotation/naive-euler-angles-interpolation.ipynb
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Bernstein (page 282) Piecewise Bézier curve using Bernstein
basis.

CatmullRom (page 283) Catmull--Rom spline.
CubicHermite (page 283) Cubic Hermite curve.
KochanekBartels (page 284) Kochanek--Bartels spline.
Monomial (page 282) Piecewise polynomial curve usingmono-

mial basis.
MonotoneCubic (page 285) Monotone cubic curve.
Natural (page 285) Natural spline.
NewGridAdapter (page 286) Re-parameterize a spline with new grid

values.
PiecewiseMonotoneCubic (page 285) Piecewise monotone cubic curve.
UnitSpeedAdapter (page 286) Re-parameterize a spline to have a con-

stant speed of 1.

class splines.Monomial(segments, grid=None)
Bases: object

Piecewise polynomial curve using monomial basis.

See Parametric Polynomial Curves (page 88).

Coefficients can have an arbitrary number of dimensions. An arbitrary polynomial
degree 𝑑 can be used by specifying 𝑑 + 1 coefficients per segment. The 𝑖-th segment
is evaluated using

𝒑𝑖(𝑡) =
𝑑
�
𝑘=0

𝒂𝑖,𝑘 �
𝑡 − 𝑡𝑖
𝑡𝑖+1 − 𝑡𝑖

�
𝑘

for 𝑡𝑖 ≤ 𝑡 < 𝑡𝑖+1.

This is similar to scipy.interpolate.PPoly74, which states:

High-order polynomials in the power basis can be numerically unstable.
Precision problems can start to appear for orders larger than 20-30.

This shouldn’t be a problem, since most commonly splines of degree 3 (i.e. cubic
splines) are used.

Parameters

• segments – Sequence of polynomial segments. Each segment 𝒂𝑖
contains coefficients for the monomial basis (in order of decreas-
ing degree). Different segments can have different polynomial
degrees.

• grid (optional) – Sequence of parameter values 𝑡𝑖 correspond-
ing to segment boundaries. Must be strictly increasing. If not
specified, a uniform grid is used (0, 1, 2, 3, …).

evaluate(t, n=0)
Get value (or n-th derivative) at given parameter value(s) t.

74 https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.
html#scipy.interpolate.PPoly

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.PPoly.html#scipy.interpolate.PPoly
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class splines.Bernstein(segments, grid=None)
Bases: object

Piecewise Bézier curve using Bernstein basis.

See Bézier Splines (page 134).

Parameters

• segments – Sequence of segments, each one consisting of mul-
tiple Bézier control points. Different segments can have different
numbers of control points (and therefore different polynomial de-
grees).

• grid (optional) – Sequence of parameter values corresponding
to segment boundaries. Must be strictly increasing. If not speci-
fied, a uniform grid is used (0, 1, 2, 3, …).

static basis(degree, t)
Bernstein basis polynomials of given degree, evaluated at t.

Returns a list of values corresponding to 𝑖 = 0,… , 𝑛, given the degree 𝑛, using

𝑏𝑖,𝑛(𝑡) = �
𝑛
𝑖 �𝑡

𝑖 (1 − 𝑡)𝑛−𝑖 ,

with the binomial coefficient �𝑛𝑖� =
𝑛!

𝑖!(𝑛−𝑖)! .

evaluate(t, n=0)
Get value at the given parameter value(s) t.

Only n=0 is currently supported.

class splines.CubicHermite(vertices, tangents, grid=None)
Bases: Monomial (page 282)

Cubic Hermite curve.

See Hermite Splines (page 105).

Parameters

• vertices – Sequence of vertices.

• tangents – Sequence of tangent vectors (two per segment: out-
going and incoming).

• grid (optional) – Sequence of parameter values. Must be
strictly increasing. If not specified, a uniform grid is used (0, 1,
2, 3, …).

matrix = array([[ 2, -2, 1, 1], [-3, 3, -2, -1], [ 0, 0, 1, 0],
[ 1, 0, 0, 0]])



284 Appendix b. Splines

class splines.CatmullRom(vertices, grid=None, *, alpha=None,
endconditions=’natural’)

Bases: CubicHermite (page 283)

Catmull–Rom spline.

This class implements one specificmember of the family of splines described byCat-
mull and Rom (1974), which is commonly known as Catmull–Rom spline: The cubic
spline that can be constructed by linear Lagrange interpolation (and extrapolation)
followed by quadratic B-spline blending, or equivalently, quadratic Lagrange inter-
polation followed by linear B-spline blending.

The implementation used in this class, however, does nothing of that sort. It simply
calculates the appropriate tangent vectors at the control points and instantiates a
CubicHermite (page 283) spline.

See Catmull--Rom Splines (page 155).

Parameters

• vertices – Sequence of vertices.

• grid (optional) – Sequence of parameter values. Must be
strictly increasing. If not specified, a uniform grid is used (0, 1,
2, 3, …).

• alpha (optional) – See Parameterized Parameterization
(page 164).

• endconditions (optional) – Start/end conditions. Can be
'closed', 'natural' or a pair of tangent vectors (a.k.a.
“clamped”). If 'closed', the first vertex is re-used as last ver-
tex and an additional grid value has to be specified.

class splines.KochanekBartels(vertices, grid=None, *, tcb=(0, 0, 0), alpha=None,
endconditions=’natural’)

Bases: CubicHermite (page 283)

Kochanek–Bartels spline.

See Kochanek--Bartels Splines (page 191).

Parameters

• vertices – Sequence of vertices.

• grid (optional) – Sequence of parameter values. Must be
strictly increasing. If not specified, a uniform grid is used (0, 1,
2, 3, …).

• tcb (optional) – Sequence of tension, continuity and bias triples.
TCB values can only be given for the interior vertices.

• alpha (optional) – See Parameterized Parameterization
(page 164).
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• endconditions (optional) – Start/end conditions. Can be
'closed', 'natural' or a pair of tangent vectors (a.k.a.
“clamped”). If 'closed', the first vertex is re-used as last ver-
tex and an additional grid value has to be specified.

class splines.Natural(vertices, grid=None, *, alpha=None, endconditions=’natural’)
Bases: CubicHermite (page 283)

Natural spline.

See Natural Splines (page 124).

Parameters

• vertices – Sequence of vertices.

• grid (optional) – Sequence of parameter values. Must be
strictly increasing. If not specified, a uniform grid is used (0, 1,
2, 3, …).

• alpha (optional) – See Parameterized Parameterization
(page 164).

• endconditions (optional) – Start/end conditions. Can be
'closed', 'natural' or a pair of tangent vectors (a.k.a.
“clamped”). If 'closed', the first vertex is re-used as last ver-
tex and an additional grid value has to be specified.

class splines.PiecewiseMonotoneCubic(values, grid=None, slopes=None, *,
alpha=None, closed=False)

Bases: CatmullRom (page 283)

Piecewise monotone cubic curve.

See Piecewise Monotone Interpolation (page 214).

This only works for one-dimensional values.

For undefined slopes, _calculate_tangent() is called on the base class.

Parameters

• values – Sequence of values to be interpolated.

• grid (optional) – Sequence of parameter values. Must be
strictly increasing. If not specified, a uniform grid is used (0, 1,
2, 3, …).

• slopes (optional) – Sequence of slopes or None if slope should
be computed from neighboring values. An error is raised if a seg-
ment would become non-monotone with a given slope.
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class splines.MonotoneCubic(values, grid=None, slopes=None, *, alpha=None,
cyclic=False, **kwargs)

Bases: PiecewiseMonotoneCubic (page 285)

Monotone cubic curve.

This takes the same arguments as PiecewiseMonotoneCubic (page 285) (except
closed is replaced by cyclic), but it raises an error if the given values are not
montone.

See Monotone Interpolation (page 222).

get_time(value)
Get the time instance for the given value.

If the solution is not unique (i.e. if there is a plateau), None is returned.

class splines.UnitSpeedAdapter(curve)
Bases: object

Re-parameterize a spline to have a constant speed of 1.

For splines in Euclidean space this amounts to Arc-Length Parameterization
(page 229).

However, this class is implemented in a way that also allows using rotation splines,
whichwill be re-parameterized to have aConstant Angular Speed (page 248) of 1. For
this towork, the second derivative of curvemust yield an angular velocity vector. See
splines.quaternion.DeCasteljau (page 290) for an example of a compatible
rotation spline.

The parameter s represents the cumulative arc-length or the cumulative rotation
angle, respectively.

evaluate(s)
Get value at the given parameter value(s) s.

class splines.NewGridAdapter(curve, new_grid=1, cyclic=False)
Bases: object

Re-parameterize a spline with new grid values.

This can be used for both Euclidean splines and rotation splines.

Parameters

• curve – A spline.

• new_grid (optional) – If a single number is given, the new pa-
rameter will range from 0 to that number. Otherwise, a sequence
of numbers has to be given, one for each grid value. Instead of a
value, None can be specified to choose a value automatically. The
first and last value cannot be None.

• cyclic (optional) – If True, the slope of the
re-parameterization function (but not necessarily the speed
of the final spline!) will be the same at the beginning and end of
the spline.
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evaluate(u)
Get value at the given parameter value(s) u.

b.4.2 splines.quaternion

Quaternions and unit-quaternion splines.

Functions

canonicalized (page 289) Iterator adapter to ensureminimal angles
between quaternions.

slerp (page 289) Spherical Linear intERPolation.

Classes

BarryGoldman (page 291) Rotation spline using the
Barry--Goldman algorithm with
slerp() (page 289).

CatmullRom (page 291) Catmull--Rom-like rotation spline.
DeCasteljau (page 290) Rotation spline usingDeCasteljau’s algo-

rithm with slerp() (page 289).
KochanekBartels (page 290) Kochanek--Bartels-like rotation spline.
PiecewiseSlerp (page 290) Piecewise Slerp.
Quaternion (page 287) A very simple quaternion class.
Squad (page 291) Spherical Quadrangle Interpolation.
UnitQuaternion (page 288) Unit quaternion.

class splines.quaternion.Quaternion(scalar, vector)
Bases: object

A very simple quaternion class.

This is the base class for the more relevant class UnitQuaternion (page 288).

See the notebook about quaternions (page 233).

property scalar
The scalar part (a.k.a. real part) of the quaternion.

property vector
The vector part (a.k.a. imaginary part) of the quaternion.

conjugate()
Return quaternion with same scalar (page 287) part, negated vector
(page 287) part.
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normalized()
Return quaternion with same 4D direction but unit norm (page 288).

dot(other)
Dot product of two quaternions.

This is the four-dimensional dot product, yielding a scalar result. This opera-
tion is commutative.

Note that this is different from the quaternionmultiplication (q1 * q2), which
produces another quaternion (and is noncommutative).

property norm
Length of the quaternion in 4D space.

property xyzw
Components of the quaternion, scalar (page 287) last.

property wxyz
Components of the quaternion, scalar (page 287) first.

class splines.quaternion.UnitQuaternion
Bases: Quaternion (page 287)

Unit quaternion.

See the section about unit quaternions (page 234).

classmethod from_axis_angle(axis, angle)
Create a unit quaternion from a rotation axis (page 289) and angle
(page 289).

Parameters

• axis – Three-component rotation axis. This will be normalized.

• angle – Rotation angle in radians.

classmethod from_unit_xyzw(xyzw)
Create a unit quaternion from another unit quaternion.

Parameters
xyzw – Components of a unit quaternion (scalar last). This will
not be normalized, it must already have unit length.

inverse()
Multiplicative inverse.

For unit quaternions, this is the same as conjugate() (page 287).

classmethod exp_map(value)
Exponential map from 𝑅3 to unit quaternions.

The exponential map operation transforms a three-dimensional vector that’s a
member of the tangent space at the identity quaternion into a unit quaternion.

This is the inverse operation to log_map() (page 289).
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Parameters
value (3-tuple) – Element of the tangent space at the quaternion
identity.

log_map()
Logarithmic map from unit quaternions to 𝑅3.

The logarithmic map operation transforms a unit quaternion into a
three-dimensional vector that’s a member of the tangent space at the
identity quaternion.

This is the inverse operation to exp_map() (page 288).

Returns
Corresponding three-element vector in the tangent space at the
quaternion identity.

property axis
The (normalized) rotation axis.

property angle
The rotation angle in radians.

rotation_to(other)
Rotation required to rotate self into other.

See Relative Rotation (Global Frame of Reference) (page 237).

Parameters
other (UnitQuaternion) – Target rotation.

Returns
Relative rotation – as UnitQuaternion.

rotate_vector(v)
Apply rotation to a 3D vector.

Parameters
v (3-tuple) – A vector in 𝑅3.

Returns
The rotated vector.

splines.quaternion.slerp(one, two, t)
Spherical Linear intERPolation.

See Spherical Linear Interpolation (Slerp) (page 240).

Parameters

• one (UnitQuaternion) – Start rotation.

• two (UnitQuaternion) – End rotation.

• t – Parameter value(s) between 0 and 1.
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splines.quaternion.canonicalized(quaternions)
Iterator adapter to ensure minimal angles between quaternions.

See Canonicalization (page 239).

class splines.quaternion.PiecewiseSlerp(quaternions, *, grid=None,
closed=False)

Bases: object

Piecewise Slerp.

See Piecewise Slerp (page 243).

Parameters

• quaternions – Sequence of rotations to be interpolated. The
quaternions will be canonicalized() (page 289).

• grid (optional) – Sequence of parameter values. Must be
strictly increasing. Must have the same length as quaternions, ex-
cept when closed is True, where it must be one element longer. If
not specified, a uniform grid is used (0, 1, 2, 3, …).

• closed (optional) – If True, the first quaternion is repeated at
the end.

evaluate(t, n=0)
Get value at the given parameter value(s) t.

Only n=0 is currently supported.

class splines.quaternion.DeCasteljau(segments, grid=None)
Bases: object

Rotation spline using De Casteljau’s algorithm with slerp() (page 289).

See the corresponding notebook (page 246) for details.

Parameters

• segments – Sequence of segments, each one consisting of mul-
tiple control quaternions. Different segments can have different
numbers of control points.

• grid (optional) – Sequence of parameter values corresponding
to segment boundaries. Must be strictly increasing. If not speci-
fied, a uniform grid is used (0, 1, 2, 3, …).

evaluate(t, n=0)
Get value or angular velocity at given parameter value(s).

Parameters

• t – Parameter value(s).

• n ({0, 1}, optional) – Use 0 for calculating the value (a
quaternion), 1 for the angular velocity (a three-element vector).
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class splines.quaternion.KochanekBartels(quaternions, grid=None, *, tcb=(0, 0,
0), alpha=None,
endconditions=’natural’)

Bases: DeCasteljau (page 290)

Kochanek–Bartels-like rotation spline.

See the corresponding notebook (page 259) for details.

Parameters

• quaternions – Sequence of rotations to be interpolated. The
quaternions will be canonicalized() (page 289).

• grid (optional) – Sequence of parameter values. Must be
strictly increasing. If not specified, a uniform grid is used (0, 1,
2, 3, …).

• tcb (optional) – Sequence of tension, continuity and bias triples.
TCB values can only be given for the interior quaternions. If only
two quaternions are given, TCB values are ignored.

• alpha (optional) – See Parameterized Parameterization
(page 164).

• endconditions (optional) – Start/end conditions. Can be
'closed' or 'natural'. If 'closed', the first rotation is
re-used as last rotation and an additional grid value has to be spec-
ified.

class splines.quaternion.CatmullRom(quaternions, grid=None, *, alpha=None,
endconditions=’natural’)

Bases: KochanekBartels (page 290)

Catmull–Rom-like rotation spline.

This is just KochanekBartels (page 290) without TCB values.

See Uniform Catmull--Rom-Like Quaternion Splines (page 249) and Non-Uniform
Catmull--Rom-Like Rotation Splines (page 256).

class splines.quaternion.BarryGoldman(quaternions, grid=None, *, alpha=None)
Bases: object

Rotation spline using the Barry–Goldman algorithm with slerp() (page 289).

Always closed (for now).

See Barry--Goldman Algorithm With Slerp (page 264).

evaluate(t)
Get value at the given parameter value(s) t.
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class splines.quaternion.Squad(quaternions, grid=None, *, alpha=None)
Bases: object

Spherical Quadrangle Interpolation.

Always closed (for now).

See Spherical Quadrangle Interpolation (Squad) (page 268).

evaluate(t)
Get value at the given parameter value(s) t.



References

Ahrens, J. (2012). Analytic Methods of Sound Field Synthesis. Springer. doi: 10.1007/978-
3-642-25743-8 (cit. on p. 13).

Avendano, C. and J.-M. Jot (2004). “A Frequency-Domain Approach toMultichannel Up-
mix.” In: Journal of the Audio Engineering Society 52.7, pp. 740–749 (cit. on p. 13).

Barry, P. J. and R. N. Goldman (1988). “A Recursive Evaluation Algorithm for a Class
of Catmull–Rom Splines.” In: 15th Annual Conference on Computer Graphics and Interac-
tive Techniques. ACM SIGGRAPH, pp. 199–204. doi: 10.1145/54852.378511 (cit. on
pp. 96, 181–186).

Bates, E. (2015). “Before and After Kontakte: Developments and Changes in Stock-
hausen’s Approach to Spatial Music in the 1960s and 1970s.” In: Compositions for Audible
Space. Ed. by M. Brech and R. Paland. transcript Verlag, pp. 177–192. doi: 10.1515/
9783839430767-011 (cit. on p. 9).

Battier, M. (2015). “Recent Discoveries in the Spatial Thought of EarlyMusique concrète.”
In: Compositions for Audible Space. Ed. by M. Brech and R. Paland. transcript Verlag,
pp. 123–136. doi: 10.1515/9783839430767-007 (cit. on p. 8).

Bedell, E. H. and I. Kerney (1934). “Auditory perspective—System adaptation.” In: Elec-
trical Engineering 53.1, pp. 216–219. doi: 10.1109/EE.1934.6540389 (cit. on p. 7).

Berkhout, A. J. (1988). “A Holographic Approach to Acoustic Control.” In: Journal of the
Audio Engineering Society 36.12, pp. 977–995 (cit. on p. 11).

Berkhout, A. J., D. De Vries, and P. Vogel (1993). “Acoustic Control byWave Field Synthe-
sis.” In: Journal of the Acoustical Society of America 93.5, pp. 2764–2778 (cit. on p. 11).

Blauert, J., ed. (2005). Communication Acoustics. Springer. doi: 10.1007/b139075 (cit. on
p. 4).

Blauert, J. and R. Rabenstein (2012). “Providing Surround Sound with Loudspeakers: A
Synopsis of Current Methods.” In: Archives of Acoustics 37.1, pp. 5–18 (cit. on p. 13).

Boehm, W. (1982). “On cubics: A survey.” In: Computer Graphics and Image Processing 19.3,
pp. 201–226. doi: 10.1016/0146-664X(82)90009-0 (cit. on pp. 151, 154, 268).

Boor, C. de (1972). “On calculating with B-splines.” In: Journal of Approximation Theory 6.1,
pp. 50–62. doi: 10.1016/0021-9045(72)90080-9 (cit. on p. 184).

Boor, C. de (1978). A Practical Guide to Splines. Springer. isbn: 978-0-387-95366-3 (cit. on
pp. 104, 178, 217).

Bresson, J. and M. Schumacher (2011). “Representation and Interchange of Sound Spa-
tialization Data for Compositional Applications.” In: International Computer Music Con-
ference (cit. on p. 28).

Bryant, D. (1981). “The ‘cori spezzati’ of St Mark’s: myth and reality.” In: Early Music His-
tory 1, pp. 165–186. doi: 10.1017/S0261127900000280 (cit. on p. 4).

Catmull, E. and R. Rom (1974). “A Class of Local Interpolating Splines.” In: Computer
Aided Geometric Design. Ed. by R. E. Barnhill and R. F. Riesenfeld. Academic Press,
pp. 317–326. doi: 10.1016/B978-0-12-079050-0.50020-5 (cit. on pp. 155, 165–167,
169, 170, 173, 175, 181, 184, 284).

Chowning, J. M. (1971). “The Simulation of Moving Sound Sources.” In: Journal of the
Audio Engineering Society 19.1, pp. 2–6 (cit. on p. 9).

Chowning, J. M. (2011). “Turenas: the realization of a dream.” In: 17es Journées d’Informa-
tique Musicale, Saint-Etienne, France (cit. on p. 9).

https://doi.org/10.1007/978-3-642-25743-8
https://doi.org/10.1007/978-3-642-25743-8
https://doi.org/10.1145/54852.378511
https://doi.org/10.1515/9783839430767-011
https://doi.org/10.1515/9783839430767-011
https://doi.org/10.1515/9783839430767-007
https://doi.org/10.1109/EE.1934.6540389
https://doi.org/10.1007/b139075
https://doi.org/10.1016/0146-664X(82)90009-0
https://doi.org/10.1016/0021-9045(72)90080-9
https://doi.org/10.1017/S0261127900000280
https://doi.org/10.1016/B978-0-12-079050-0.50020-5


294 References

Cooper, G. (1970). “Tetrahedral Ambiophony – Part One.” In: Studio Sound 12.6, pp. 233–
234 (cit. on p. 10).

Dam, E. B., M. Koch, and M. Lillholm (1998). Quaternions, Interpolation and Anima-
tion. Technical Report DIKU-TR-98/5. Department of Computer Science, University of
Copenhagen (cit. on p. 269).

Daniel, J. (2001). “Représentation de champs acoustiques, application à la transmission
et à la reproduction de scènes sonores complexes dans un contexte multimédia.” PhD
thesis. Université Pierre et Marie Curie (Paris VI) (cit. on p. 13).

Daniel, J. (2003). “Spatial sound encoding including near field effect: Introducing distance
coding filters and a viable, new Ambisonic format.” In: 23rd International Conference of
the Audio Engineering Society (cit. on p. 13).

Doolittle, F.M. (1925). “Binaural Broadcasting.” In: ElectricalWorld 85.17, pp. 867–870 (cit.
on p. 5).

Dougherty, R. L., A. S. Edelman, and J.M.Hyman (1989). “Nonnegativity‑,monotonicity‑,
or convexity-preserving cubic and quintic Hermite interpolation.” In: Mathematics of
Computation 52.186, pp. 471–494. doi: 10.1090/S0025-5718-1989-0962209-1 (cit.
on p. 218).

Faller, C. (2006). “Multiple-Loudspeaker Playback of Stereo Signals.” In: Journal of the
Audio Engineering Society 54.11, pp. 1051–1064 (cit. on p. 13).

Farouki, R. T. (2012). “The Bernstein polynomial basis: A centennial retrospective.” In:
Computer Aided Geometric Design 29.6, pp. 379–419. doi: 10.1016/j.cagd.2012.03.
001 (cit. on p. 134).

Fellgett, P. (1975). “Ambisonics. Part one: General System Description.” In: Studio Sound
17.8, pp. 20–22, 40 (cit. on p. 10).

Fletcher, H. (1933). “An Acoustic Illusion Telephonically Achieved.” In: Bell Laboratories
Record 11.10, pp. 286–289 (cit. on p. 5).

Fletcher, H. (1934). “Auditory Perspective—Basic Requirements.” In: Electrical Engineer-
ing 53.1, pp. 9–11. doi: 10.1109/EE.1934.6540356 (cit. on p. 11).

Fritsch, F. N. (1982). Piecewise Cubic Hermite Interpolation Package (Final Specifications).
Technical Report UCID-30194. USA: Lawrence LivermoreNational Laboratory. doi: 10.
2172/6838406 (cit. on p. 218).

Fritsch, F. N. and J. Butland (1984). “A Method for Constructing Local Monotone Piece-
wise Cubic Interpolants.” In: SIAM Journal on Scientific and Statistical Computing 5.2,
pp. 300–304. doi: 10.1137/0905021 (cit. on pp. 218, 219).

Fritsch, F. N. and R. E. Carlson (1980). “Monotone Piecewise Cubic Interpolation.” In:
SIAM Journal on Numerical Analysis 17.2, pp. 238–246. doi: 10.1137/0717021 (cit. on
pp. 217, 218, 224).

Garity, W. E. and J. N. A. Hawkins (1941). “Fantasound.” In: Journal of the Society of Motion
Picture Engineers 37.8, pp. 127–146. doi: 10.5594/J12890 (cit. on pp. 1, 7).

Geier, M., J. Ahrens, A. Möhl, S. Spors, J. Loh, and K. Bredies (2007). “The SoundScape
Renderer: A Versatile Software Framework for Spatial Audio Reproduction.” In: WFS
Symposium Ilmenau. Deutsche Gesellschaft für Akustik (DEGA) (cit. on p. 42).

Geier, M., J. Ahrens, and S. Spors (2008a). “ASDF: Ein XML Format zur Beschreibung von
virtuellen 3D Audioszenen.” In: 34. Jahrestagung der Deutschen Gesellschaft für Akustik
(cit. on p. 33).

Geier, M., J. Ahrens, and S. Spors (2008b). “The SoundScape Renderer: A Unified Spatial
Audio Reproduction Framework for Arbitrary Rendering Methods.” In: 124th Conven-
tion of the Audio Engineering Society (cit. on p. 42).

Geier, M., J. Ahrens, and S. Spors (2009). “Binaural Monitoring of Massive Multichannel
Sound Reproduction Systems using Model-Based Rendering.” In: NAG/DAGA Interna-
tional Conference on Acoustics (cit. on p. 13).

https://doi.org/10.1090/S0025-5718-1989-0962209-1
https://doi.org/10.1016/j.cagd.2012.03.001
https://doi.org/10.1016/j.cagd.2012.03.001
https://doi.org/10.1109/EE.1934.6540356
https://doi.org/10.2172/6838406
https://doi.org/10.2172/6838406
https://doi.org/10.1137/0905021
https://doi.org/10.1137/0717021
https://doi.org/10.5594/J12890


295

Geier, M., J. Ahrens, and S. Spors (2010). “Object-based Audio Reproduction and the Au-
dio Scene Description Format.” In: Organised Sound 15.3, pp. 219–227 (cit. on pp. 12,
34).

Geier, M., T. Hohn, and S. Spors (2012). “An Open-Source C++ Framework for Multi-
threaded Realtime Multichannel Audio Applications.” In: Linux Audio Conference (cit.
on p. 42).

Geier, M. and S. Spors (2008). “ASDF: Audio Scene Description Format.” In: International
Computer Music Conference (cit. on p. 33).

Geier, M. and S. Spors (2012). “Spatial Audio Reproduction with the SoundScape Ren-
derer.” In: 27th Tonmeistertagung – VDT International Convention (cit. on p. 42).

Geier, M., S. Spors, and S.Weinzierl (2010). “The Future of Audio Reproduction: Technol-
ogy – Formats – Applications.” In: Adaptive Multimedia Retrieval. Identifying, Summariz-
ing, and Recommending Image and Music. Ed. by M. Detyniecki, U. Leiner, and A. Nürn-
berger. Vol. 5811. LNCS. Springer, pp. 1–17. doi: 10.1007/978-3-642-14758-6_1
(cit. on pp. 12, 33, 34).

Gembicki, B. (2020). “TheMemory ofMeaning: Polychorality inVenice and theCori Spez-
zatiMeme.” In: Sounding the Past. Brepols Publishers, pp. 257–271. doi: 10.1484/M.EM-
EB.5.122016 (cit. on p. 4).

Gerzon, M. A. (1970). “The Principles of Quadraphonic Recording – Part Two.” In: Studio
Sound 12.9, pp. 380–384 (cit. on p. 10).

Gerzon, M. A. (1973). “Periphony: With-height Sound Reproduction.” In: Journal of the
Audio Engineering Society 21.1, pp. 2–10 (cit. on p. 10).

Gerzon, M. A. (1975). “Ambisonics. Part two: Studio techniques.” In: Studio Sound 17.8,
pp. 24–26, 28, 30 (cit. on p. 10).

Goose, S., S. Kodlahalli, W. Pechter, and R. Hjelsvold (2002). “Streaming Speech3: A
Framework for Generating and Streaming 3D Text-To-Speech and Audio Presentations
to Wireless PDAs as Specified Using Extensions to SMIL.” In: International Conference
on World Wide Web. Association for Computing Machinery, pp. 37–44. doi: 10.1145/
511446.511452 (cit. on p. 29).

Gordon, W. J. and R. F. Riesenfeld (1974). “B-spline Curves and Surfaces.” In: Computer
Aided Geometric Design. Academic Press, pp. 95–126. doi: 10 . 1016 / B978 - 0 - 12 -
079050-0.50011-4 (cit. on pp. 103, 168).

Grimm, G., J. Luberadzka, and V. Hohmann (2019). “A Toolbox for Rendering Virtual
Acoustic Environments in the Context of Audiology.” In: Acta Acustica united with Acus-
tica 105.3, pp. 566–578. doi: 10.3813/AAA.919337 (cit. on p. 28).

Hamasaki, K., W. Hatano, K. Hiyama, S. Komiyama, and H. Okubo (2004). “5.1 and 22.2
Multichannel Sound Productions Using an Integrated Surround Sound Panning Sys-
tem.” In: 117th Convention of the Audio Engineering Society (cit. on p. 10).

Hamasaki, K., K.Hiyama, andR.Okumura (2005). “The 22.2Multichannel Sound System
and Its Application.” In: 118th Convention of the Audio Engineering Society (cit. on p. 10).

Hoffmann, H., R. Dachselt, and K. Meissner (2003). “An Independent Declarative 3D
Audio Format on the Basis of XML.” In: International Conference on Auditory Display (cit.
on p. 22).

Hospitalier, É. (1881). “Les auditions téléphoniques théatrales – Système Clément Ader.”
In: L’Électricien 1.12, pp. 572–579 (cit. on p. 5).

Kalff, L. C., W. Tak, and S. L. de Bruin (1958). “The ‘Electronic Poem’ Performed in the
Philips Pavilion at the 1958 BrusselsWorld Fair.” In: Philips Technical Review 20.2, pp. 37–
84 (cit. on p. 8).

Kim, M., S. Wood, and L.-T. Cheok (2000). “Extensible MPEG-4 textual format (XMT).”
In: ACM Workshops on Multimedia, pp. 71–74. doi: 10.1145/357744.357763 (cit. on
p. 22).

https://doi.org/10.1007/978-3-642-14758-6_1
https://doi.org/10.1484/M.EM-EB.5.122016
https://doi.org/10.1484/M.EM-EB.5.122016
https://doi.org/10.1145/511446.511452
https://doi.org/10.1145/511446.511452
https://doi.org/10.1016/B978-0-12-079050-0.50011-4
https://doi.org/10.1016/B978-0-12-079050-0.50011-4
https://doi.org/10.3813/AAA.919337
https://doi.org/10.1145/357744.357763


296 References

Kim, M.-J., M.-S. Kim, and S. Y. Shin (1995). “A General Construction Scheme for Unit
Quaternion Curves with Simple High Order Derivatives.” In: SIGGRAPH: Computer
graphics and interactive techniques, pp. 369–376. doi: 10.1145/218380.218486 (cit.
on pp. 272, 276).

Kim,M.-J., M.-S. Kim, and S. Y. Shin (1996). “ACompact Differential Formula for the First
Derivative of a Unit Quaternion Curve.” In: The Journal of Visualization and Computer
Animation 7.1, pp. 43–57. doi: 10.1002/(SICI)1099-1778(199601)7:1<43::AID-
VIS136>3.0.CO;2-T (cit. on p. 269).

Kochanek, D. H. U. and R. H. Bartels (1984). “Interpolating Splines with Local Tension,
Continuity, and Bias Control.” In: 11th Annual Conference on Computer Graphics and Inter-
active Techniques. ACM SIGGRAPH, pp. 33–41. doi: 10.1145/800031.808575 (cit. on
pp. 191, 196, 197, 201, 202).

Konishi, M. (2003). “Coding of Auditory Space.” In: Annual Review of Neuroscience 26.1,
pp. 31–55. doi: 10.1146/annurev.neuro.26.041002.131123 (cit. on p. 3).

Lee, E. T. Y. (1989). “Choosing nodes in parametric curve interpolation.” In: Computer-
Aided Design 21.6, pp. 363–370. doi: 10 . 1016 / 0010 - 4485(89 ) 90003 - 1 (cit. on
pp. 160, 163).

Lossius, T., P. Baltazar, and T. de la Hogue (2009). “DBAP – Distance-Based Amplitude
Panning.” In: International Computer Music Conference (cit. on p. 10).

MacLeod, K. M., D. Soares, and C. E. Carr (2006). “Interaural Timing Difference Circuits
in the Auditory Brainstem of the Emu (Dromaius novaehollandiae).” In: Journal of Com-
parative Neurology 495.2, pp. 185–201. doi: 10.1002/cne.20862 (cit. on p. 3).

McDonald, J. (2010). “TeachingQuaternions is not Complex.” In:Computer Graphics Forum
29.8, pp. 2447–2455. doi: 10.1111/j.1467-8659.2010.01756.x (cit. on p. 234).

Millington, I. (2009). Matrices and Conversions for Uniform Parametric Curves. url: https:
//web.archive.org/web/20160305083440/http://therndguy.com (cit. on
pp. 87, 197).

Miyama, C., J. C. Schacher, and N. Peters (2013). “SpatDIF Library – Implementing the
Spatial Sound Descriptor Interchange Format.” In: Journal of the Japanese Society for Sonic
Arts 5.3, pp. 1–5 (cit. on p. 28).

Moler, C. B. (2004). Numerical Computing with MATLAB. Society for Industrial and Ap-
plied Mathematics. isbn: 978-0-89871-660-3 (cit. on pp. 219, 225).

Neukom,M. and J. C. Schacher (2008). “Ambisonics equivalent panning.” In: International
Computer Music Conference (cit. on p. 13).

Nicol, R. (2018). “Sound Field.” In: Immersive Sound: The Art and Science of Binaural and
Multi-Channel Audio. Ed. by A. Roginska and P. Geluso. Taylor & Francis, pp. 276–310
(cit. on p. 13).

Overhauser, A. W. (1968). Analytic Definition of Curves and Surfaces by Parabolic Blending.
Technical Report SL 68-40. Dearborn,Michigan: Scientific Laboratory, FordMotor Com-
pany (cit. on pp. 155, 178, 186).

Paland, R. (2015). “‘... every movement is possible’: Spatial Composition in Iannis Xe-
nakis’s Hibiki-Hana-Ma.” In: Compositions for Audible Space. Ed. by M. Brech and R. Pa-
land. transcript Verlag, pp. 305–321. doi: 10.1515/9783839430767-019 (cit. on p. 9).

Paul, S. (2009). “Binaural Recording Technology: AHistorical Review and Possible Future
Developments.” In: Acta Acustica united with Acustica 95.5, pp. 767–788. doi: 10.3813/
AAA.918208 (cit. on p. 6).

Pereira, F. C. and T. Ebrahimi (2002). The MPEG-4 Book. Prentice Hall PTR. 550 pp. isbn:
978-0-13-061621-0 (cit. on p. 12).

Peters, N. (2008). “Proposing SpatDIF – The Spatial Sound Description Interchange For-
mat.” In: International Computer Music Conference (cit. on p. 26).

https://doi.org/10.1145/218380.218486
https://doi.org/10.1002/(SICI)1099-1778(199601)7:1<43::AID-VIS136>3.0.CO;2-T
https://doi.org/10.1002/(SICI)1099-1778(199601)7:1<43::AID-VIS136>3.0.CO;2-T
https://doi.org/10.1145/800031.808575
https://doi.org/10.1146/annurev.neuro.26.041002.131123
https://doi.org/10.1016/0010-4485(89)90003-1
https://doi.org/10.1002/cne.20862
https://doi.org/10.1111/j.1467-8659.2010.01756.x
https://web.archive.org/web/20160305083440/http://therndguy.com
https://web.archive.org/web/20160305083440/http://therndguy.com
https://doi.org/10.1515/9783839430767-019
https://doi.org/10.3813/AAA.918208
https://doi.org/10.3813/AAA.918208


297

Peters, N., S. Ferguson, and S. McAdams (2007). “Towards a Spatial Sound Description
Interchange Format (SpatDIF).” In: Canadian Acoustics 35.3, pp. 64–65 (cit. on p. 26).

Peters, N., T. Lossius, and J. C. Schacher (2013). “The Spatial Sound Description Inter-
change Format: Principles, Specification, and Examples.” In: Computer Music Journal
37.1, pp. 11–22. doi: 10.1162/COMJ_a_00167 (cit. on p. 26).

Pihkala, K. and T. Lokki (2003). “Extending SMIL with 3D Audio.” In: International Con-
ference on Auditory Display (cit. on p. 29).

Popper, A. N. and R. R. Fay (1993). “Sound Detection and Processing by Fish: Critical
Review and Major Research Questions.” In: Brain, Behavior and Evolution 41.1, pp. 14–
38. doi: 10.1159/000113821 (cit. on p. 3).

Potard, G. (2006). “3D-Audio Object Oriented Coding.” Dissertation. University of Wol-
longong (cit. on p. 23).

Potard, G. and I. Burnett (2002). “Using XML Schemas to Create and Encode Interac-
tive 3-D Audio Scenes for Multimedia and Virtual Reality Applications.” In:Distributed
Communities on the Web Workshop (cit. on p. 23).

Potard, G. and I. Burnett (2004). “An XML-based 3D audio scene metadata scheme.” In:
25th International Conference of the Audio Engineering Society (cit. on pp. 23, 25).

Potard, G. and S. Ingham (2003). “Encoding 3D sound scenes and music in XML.” In:
International Computer Music Conference (cit. on pp. 23, 25).

Pulkki, V. (1997). “Virtual Sound Source Positioning using Vector Base Amplitude Pan-
ning.” In: Journal of the Audio Engineering Society 45.6, pp. 456–466 (cit. on p. 10).

Pulkki, V. and M. Karjalainen (2015). Communication Acoustics: An Introduction to Speech,
Audio and Psychoacoustics. John Wiley & Sons. isbn: 978-1-118-86654-2 (cit. on p. 4).

Riedmiller, J., S. Mehta, N. Tsingos, and P. Boon (2015). “Immersive and Personalized
Audio: A Practical System for Enabling Interchange, Distribution, andDelivery ofNext-
Generation Audio Experiences.” In: SMPTEMotion Imaging Journal 124.5, pp. 1–23. doi:
10.5594/j18578 (cit. on p. 17).

Robinson, C. Q., S. Mehta, and N. Tsingos (2012). “Scalable Format and Tools to Extend
the Possibilities of Cinema Audio.” In: SMPTE Motion Imaging Journal 121.8, pp. 63–69.
doi: 10.5594/j18248XY (cit. on p. 15).

Robinson, C. Q. and N. Tsingos (2015). “Cinematic Sound Scene Description and Render-
ing Control.” In: SMPTEMotion Imaging Journal 124.8, pp. 47–53. doi: 10.5594/j18640
(cit. on pp. 13, 36).

Rumsey, F. (2002). “Spatial Quality Evaluation for Reproduced Sound: Terminology,
Meaning, and a Scene-based Paradigm.” In: Journal of the Audio Engineering Society 50.9,
pp. 651–666 (cit. on p. 13).

Schacher, J. C., N. Peters, T. Lossius, and C. Miyama (2016). “Authoring Spatial Music
with SpatDIF Version 0.4.” In: Sound & Music Computing Conference (cit. on p. 28).

Scheirer, E. D., R. Väänänen, and J. Huopaniemi (1999). “AudioBIFS: Describing Audio
Scenes with theMPEG-4Multimedia Standard.” In: IEEE Transactions onMultimedia 1.3,
pp. 237–250 (cit. on p. 22).

Schmidt, A. K. D. and H. Römer (2011). “Solutions to the Cocktail Party Problem in In-
sects: Selective Filters, Spatial Release fromMasking andGainControl in Tropical Crick-
ets.” In: PLoS ONE 6.12. doi: 10.1371/journal.pone.0028593 (cit. on p. 3).

Schmidt, J. and E. F. Schröder (2004). “New and Advanced Features for Audio Presenta-
tion in the MPEG-4 Standard.” In: 116th Convention of the Audio Engineering Society (cit.
on p. 22).

Schoenberg, I. J. (1946). “Contributions to the problem of approximation of equidistant
data by analytic functions. Part A.–On the problem of smoothing or graduation. A
first class of analytic approximation formulae.” In: Quarterly of Applied Mathematics 4.1,
pp. 45–99. doi: 10.1090/qam/15914 (cit. on pp. 101, 102).

https://doi.org/10.1162/COMJ_a_00167
https://doi.org/10.1159/000113821
https://doi.org/10.5594/j18578
https://doi.org/10.5594/j18248XY
https://doi.org/10.5594/j18640
https://doi.org/10.1371/journal.pone.0028593
https://doi.org/10.1090/qam/15914


298 References

Schütz, R. (2010). “Numerical Modelling of Shotcrete for Tunnelling.” Ph.D. Thesis. Im-
perial College London (cit. on p. 48).

Shoemake, K. (1985). “Animating Rotation with Quaternion Curves.” In: SIGGRAPH
Computer Graphics 19.3, pp. 245–254. doi: 10.1145/325165.325242 (cit. on pp. 240,
246, 248, 254–256, 268, 276, 277).

Shoemake, K. (1987). “QuaternionCalculus and Fast Animation.” In:Computer Animation:
3D Motion Specification and Control. ACM SIGGRAPH course notes 10, pp. 101–121 (cit.
on pp. 268–270).

Snow, W. B. (1953). “Basic Principles of Stereophonic Sound.” In: Journal of the Society of
Motion Picture and Television Engineers 61.5, pp. 567–589. doi: 10.5594/J00963 (cit. on
pp. 8, 11).

Spors, S., R. Rabenstein, and J. Ahrens (2008). “The Theory of Wave Field Synthesis re-
visited.” In: 124th Convention of the Audio Engineering Society (cit. on p. 11).

Spors, S., H. Wierstorf, A. Raake, F. Melchior, M. Frank, and F. Zotter (2013). “Spatial
Sound With Loudspeakers and Its Perception: A Review of the Current State.” In: Pro-
ceedings of the IEEE 101.9, pp. 1920–1938. doi: 10.1109/JPROC.2013.2264784 (cit. on
p. 13).

Steinberg, J. C. andW. B. Snow (1934). “Auditory perspective—Physical factors.” In: Elec-
trical Engineering 53.1, pp. 12–17. doi: 10.1109/EE.1934.6540357 (cit. on p. 7).

Theile, G. (1980). “Über die Lokalisation im überlagerten Schallfeld.” Dissertation. Tech-
nische Universität Berlin (cit. on p. 11).

Theile, G. and G. Plenge (1977). “Localization of Lateral Phantom Sources.” In: Journal of
the Audio Engineering Society 25.4, pp. 196–200 (cit. on p. 11).

Theile, G., H. Wittek, and M. Reisinger (2003). “Potential Wavefield Synthesis Applica-
tions in the Multichannel Stereophonic World.” In: 24th International Conference of the
Audio Engineering Society, pp. 43–57 (cit. on p. 12).

Tsingos,N. (2018). “Object-BasedAudio.” In: Immersive Sound: TheArt and Science of Binau-
ral andMulti-Channel Audio. Ed. byA. Roginska andP.Geluso. Taylor&Francis, pp. 244–
275 (cit. on p. 12).

Väänänen, R. (2003). “Parametrization, Auralization, and Authoring of Room Acoustics
for Virtual Reality Applications.” Dissertation. Helsinki University of Technology (cit.
on p. 36).

Väänänen, R. and J. Huopaniemi (2004). “Advanced AudioBIFS: Virtual Acoustics Mod-
eling in MPEG-4 Scene Description.” In: IEEE Transactions on Multimedia 6.5, pp. 661–
675 (cit. on p. 22).

Vilkamo, J., A. Kuntz, and S. Füg (2014). “Reduction of Spectral Artifacts in Multichan-
nel Downmixing with Adaptive Phase Alignment.” In: Journal of the Audio Engineering
Society 62.7, pp. 516–526 (cit. on p. 13).

Wenzel, E. M., S. S. Fisher, P. K. Stone, and S. H. Foster (1990). “A System for Three-
dimensional Acoustic ”Visualization” in a Virtual Environment Workstation.” In: 1st
IEEE Conference on Visualization, pp. 329–337 (cit. on p. 13).

Woodward, J. G. (1977). “Quadraphony–A Review.” In: Journal of the Audio Engineering
Society 25.10, pp. 843–854 (cit. on p. 10).

Yager, D. D. (1999). “Structure, Development, and Evolution of Insect Auditory Systems.”
In: Microscopy Research and Technique 47.6, pp. 380–400. doi: 10.1002/(SICI)1097-
0029(19991215)47:6<380::AID-JEMT3>3.0.CO;2-P (cit. on p. 3).

Yager, D. D. and R. R. Hoy (1986). “The Cyclopean Ear: A New Sense for the Praying
Mantis.” In: Science 231.4739, pp. 727–729. doi: 10.1126/science.3945806 (cit. on
p. 3).

https://doi.org/10.1145/325165.325242
https://doi.org/10.5594/J00963
https://doi.org/10.1109/JPROC.2013.2264784
https://doi.org/10.1109/EE.1934.6540357
https://doi.org/10.1002/(SICI)1097-0029(19991215)47:6<380::AID-JEMT3>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1097-0029(19991215)47:6<380::AID-JEMT3>3.0.CO;2-P
https://doi.org/10.1126/science.3945806


299

Yuksel, C., S. Schaefer, and J. Keyser (2011). “Parameterization and applications of Cat-
mull–Rom curves.” In: Computer-Aided Design 43.7, pp. 747–755. doi: 10.1016/j.cad.
2010.08.008 (cit. on pp. 161, 164, 165, 185).

Zielinski, S. K., F. Rumsey, and S. Bech (2003). “Effects of Down-Mix Algorithms onQual-
ity of Surround Sound.” In: Journal of the Audio Engineering Society 51.9, pp. 780–798 (cit.
on p. 13).

Zotter, F. andM. Frank (2012). “All-RoundAmbisonic Panning andDecoding.” In: Journal
of the Audio Engineering Society 60.10, pp. 807–820 (cit. on p. 10).

Zotter, F. and M. Frank (2019). Ambisonics: A Practical 3D Audio Theory for Recording, Stu-
dio Production, Sound Reinforcement, and Virtual Reality. Vol. 19. Cham: Springer Interna-
tional Publishing. doi: 10.1007/978-3-030-17207-7 (cit. on p. 13).

https://doi.org/10.1016/j.cad.2010.08.008
https://doi.org/10.1016/j.cad.2010.08.008
https://doi.org/10.1007/978-3-030-17207-7

	Introduction
	Acknowledgements

	1 Spatial Audio From the Beginning
	2 Movement and Time in Existing Formats
	2.1 Recurring Concepts
	2.1.1 Declarative vs. Procedural vs. Sampled Data
	2.1.2 Scene Graph
	2.1.3 Metadata

	2.2 Virtual Reality Modeling Language (VRML)
	2.3 Extensible 3D (X3D)
	2.4 MPEG-4 AudioBIFS
	2.5 Audio3D
	2.6 XML3DAUDIO
	2.7 Audio Definition Model (ADM)
	2.8 Spatial Sound Description Interchange Format (SpatDIF)
	2.9 Spat-SDIF
	2.10 Toolbox for Acoustic Scene Creation And Rendering (TASCAR)
	2.11 Synchronized Multimedia Integration Language (SMIL)
	2.12 Bottom Line

	3 Development of a Scene Authoring Format: ASDF
	3.1 Storage Format and Syntax
	3.2 Transforms
	3.3 Temporal Structure
	3.4 Out of Scope

	4 Implementation and Integration of an ASDF Library
	4.1 ASDF Parsing
	4.2 Audio File Playback
	4.3 Transforms
	4.4 API
	4.5 Integration in a Standalone Rendering Application
	4.6 Integration as an External for Pure Data
	4.7 Visualization
	4.8 Example Scenes

	5 Conclusion and Future Work
	Appendix A The Audio Scene Description Format (ASDF)
	A.1 Introduction
	A.2 Position and Orientation
	A.3 Elements
	A.3.1 <asdf>
	A.3.2 <head> and <body>
	A.3.3 <source>
	A.3.3.1 File Inputs
	A.3.3.2 Live Inputs
	A.3.3.3 Transform Attributes

	A.3.4 <reference>
	A.3.5 <seq> and <par>
	A.3.5.1 repeat

	A.3.6 <clip> and <channel>
	A.3.6.1 repeat
	A.3.6.2 id
	A.3.6.3 source

	A.3.7 <transform>
	A.3.7.1 apply-to
	A.3.7.2 pos
	A.3.7.3 rot
	A.3.7.4 vol
	A.3.7.5 <o>
	A.3.7.5.1 time
	A.3.7.5.2 speed
	A.3.7.5.3 tension/continuity/bias
	A.3.7.5.4 Mixed Transform Attributes

	A.3.7.6 repeat
	A.3.7.7 dur
	A.3.7.8 Nested <transform>
	A.3.7.9 Creating Groups With <transform>

	A.3.8 <wait>
	A.3.8.1 dur


	A.4 Repetition
	A.5 ASDF Splines
	A.5.1 Position Splines
	A.5.2 Rotation Splines
	A.5.3 Volume Splines

	A.6 Special Shapes
	A.6.1 Square
	A.6.2 Circle
	A.6.3 Helix
	A.6.4 Sinusoidal Oscillation
	A.6.5 Lissajous Figures

	A.7 Implementation Notes
	A.7.1 Converting ASDF Rotations to Rotation Matrices
	A.7.1.1 Azimuth: Rotation around the z-Axis
	A.7.1.2 Elevation: Rotation around the (local) x-Axis
	A.7.1.3 Roll: Rotation around the (local) y-Axis
	A.7.1.4 Combining all Axes
	A.7.1.5 Rotation Matrix to Angles
	A.7.1.5.1 Gimbal Lock


	A.7.2 Converting ASDF Rotations to Quaternions
	A.7.2.1 Azimuth: Rotation around the z-Axis
	A.7.2.2 Elevation: Rotation around the (local) x-Axis
	A.7.2.3 Roll: Rotation around the (local) y-Axis
	A.7.2.4 Combining all Axes
	A.7.2.5 Quaternion to Rotation Matrix
	A.7.2.6 Quaternion to ASDF rotations
	A.7.2.6.1 Gimbal Lock




	Appendix B Splines
	B.1 Introduction
	B.2 Polynomial Curves in Euclidean Space
	B.2.1 Parametric Polynomial Curves
	B.2.2 Lagrange Interpolation
	B.2.2.1 One-dimensional Example
	B.2.2.2 Neville’s Algorithm
	B.2.2.3 Two-Dimensional Example
	B.2.2.4 Runge’s Phenomenon

	B.2.3 Splines
	B.2.3.1 Definition
	B.2.3.2 Properties
	B.2.3.3 Types

	B.2.4 Hermite Splines
	B.2.4.1 Properties of Hermite Splines
	B.2.4.2 Uniform Cubic Hermite Splines
	B.2.4.2.1 Basis Matrix
	B.2.4.2.2 Basis Polynomials
	B.2.4.2.3 Example Plot
	B.2.4.2.4 Relation to Bézier Splines

	B.2.4.3 Non-Uniform Cubic Hermite Splines
	B.2.4.3.1 Basis Matrix
	B.2.4.3.2 Basis Polynomials
	B.2.4.3.3 Example Plot
	B.2.4.3.4 Utilizing the Uniform Basis Matrix


	B.2.5 Natural Splines
	B.2.5.1 Properties of Natural Splines
	B.2.5.2 Uniform Natural Splines
	B.2.5.2.1 End Conditions
	B.2.5.2.2 Solving the System of Equations

	B.2.5.3 Non-Uniform Natural Splines
	B.2.5.3.1 End Conditions


	B.2.6 Bézier Splines
	B.2.6.1 Properties of Bézier Splines
	B.2.6.2 De Casteljau’s Algorithm
	B.2.6.2.1 Preparations
	B.2.6.2.2 Degree 1 (Linear)
	B.2.6.2.3 Degree 2 (Quadratic)
	B.2.6.2.4 Degree 3 (Cubic)
	B.2.6.2.5 Degree 4 (Quartic)
	B.2.6.2.6 Arbitrary Degree

	B.2.6.3 Non-Uniform (Cubic) Bézier Splines
	B.2.6.3.1 Tangent Vectors
	B.2.6.3.2 Control Points From Tangent Vectors


	B.2.7 Quadrangle Interpolation
	B.2.7.1 Basis Polynomials
	B.2.7.2 Basis Matrix
	B.2.7.3 Tangent Vectors
	B.2.7.4 Quadrangle to Hermite Control Values
	B.2.7.5 Quadrangle to Bézier Control Points
	B.2.7.6 Non-Uniform Parameterization

	B.2.8 Catmull–Rom Splines
	B.2.8.1 Properties of Catmull–Rom Splines
	B.2.8.1.1 Tangent Vectors
	B.2.8.1.2 Wrong Tangent Vectors
	B.2.8.1.3 Cusps and Self-Intersections
	B.2.8.1.4 Chordal Parameterization
	B.2.8.1.5 Centripetal Parameterization
	B.2.8.1.6 Parameterized Parameterization

	B.2.8.2 Uniform Catmull–Rom Splines
	B.2.8.2.1 Blending Functions
	B.2.8.2.2 Cardinal Functions
	B.2.8.2.3 Example Plot
	B.2.8.2.4 Basis Polynomials
	B.2.8.2.5 Basis Matrix
	B.2.8.2.6 Tangent Vectors
	B.2.8.2.7 Using Bézier Segments
	B.2.8.2.8 Using Quadrangle Interpolation

	B.2.8.3 Non-Uniform Catmull–Rom Splines
	B.2.8.3.1 Tangent Vectors
	B.2.8.3.2 Using Non-Uniform Bézier Segments
	B.2.8.3.3 Using Non-Uniform Quadrangle Interpolation
	B.2.8.3.4 Animation

	B.2.8.4 Barry–Goldman Algorithm
	B.2.8.4.1 Triangular Schemes
	B.2.8.4.2 Neville’s Algorithm
	B.2.8.4.3 De Boor’s Algorithm
	B.2.8.4.4 Combining Both Algorithms
	B.2.8.4.5 Step by Step
	B.2.8.4.6 Tangent Vectors
	B.2.8.4.7 Animation


	B.2.9 Kochanek–Bartels Splines
	B.2.9.1 Properties of Kochanek–Bartels Splines
	B.2.9.1.1 Tension
	B.2.9.1.2 Continuity
	B.2.9.1.3 Bias
	B.2.9.1.4 Combinations

	B.2.9.2 Uniform Kochanek–Bartels Splines
	B.2.9.2.1 Parameters
	B.2.9.2.2 Calculation

	B.2.9.3 Non-Uniform Kochanek–Bartels Splines

	B.2.10 End Conditions
	B.2.10.1 Natural End Conditions
	B.2.10.1.1 Begin
	B.2.10.1.2 End
	B.2.10.1.3 Example
	B.2.10.1.4 Bézier Control Points


	B.2.11 Piecewise Monotone Interpolation
	B.2.11.1 Examples
	B.2.11.1.1 Providing Slopes

	B.2.11.2 Generating and Modifying the Slopes at Segment Boundaries
	B.2.11.3 PCHIP/PCHIM
	B.2.11.4 More Examples
	B.2.11.5 Monotone Interpolation
	B.2.11.6 End Conditions
	B.2.11.7 Even More Examples

	B.2.12 Re-Parameterization
	B.2.12.1 Arc-Length Parameterization
	B.2.12.2 Spline-Based Re-Parameterization


	B.3 Rotation Splines
	B.3.1 Quaternions
	B.3.1.1 Quaternion Representations
	B.3.1.2 Unit Quaternions
	B.3.1.3 Unit Quaternions as Rotations
	B.3.1.4 Axes Conventions
	B.3.1.5 Quaternion Multiplication
	B.3.1.6 Inverse
	B.3.1.7 Relative Rotation (Global Frame of Reference)
	B.3.1.8 Relative Rotation (Local Frame of Reference)
	B.3.1.9 Exponentiation
	B.3.1.10 Negation
	B.3.1.11 Canonicalization

	B.3.2 Spherical Linear Interpolation (Slerp)
	B.3.2.1 Derivation
	B.3.2.2 Visualization
	B.3.2.3 Piecewise Slerp
	B.3.2.4 Slerp vs. Nlerp

	B.3.3 De Casteljau’s Algorithm With Slerp
	B.3.3.1 “Cubic”
	B.3.3.2 Arbitrary “Degree”
	B.3.3.3 Constant Angular Speed
	B.3.3.4 Joining Curves

	B.3.4 Uniform Catmull–Rom-Like Quaternion Splines
	B.3.4.1 Relative Rotations
	B.3.4.2 Tangent Space
	B.3.4.3 Example
	B.3.4.4 Shoemake’s Approach

	B.3.5 Non-Uniform Catmull–Rom-Like Rotation Splines
	B.3.5.1 Parameterization

	B.3.6 Kochanek–Bartels-like Rotation Splines
	B.3.6.1 Examples

	B.3.7 “Natural” End Conditions
	B.3.7.1 Examples

	B.3.8 Barry–Goldman Algorithm With Slerp
	B.3.8.1 Constant Angular Speed

	B.3.9 Spherical Quadrangle Interpolation (Squad)
	B.3.9.1 Non-Uniform Parameterization

	B.3.10 Cumulative Form
	B.3.10.1 Piecewise Slerp
	B.3.10.2 Cumulative Bézier/Bernstein Curve
	B.3.10.3 Comparison with De Casteljau’s Algorithm

	B.3.11 Naive 4D Quaternion Interpolation
	B.3.12 Naive Interpolation of Euler Angles

	B.4 Python Module
	B.4.1 splines
	B.4.2 splines.quaternion


	References

