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Abstract III 

 

Abstract 

The number of additively manufactured functional parts is increasing, making special quality 

aspects, such as a predictable and reproducible manufacturing process that leads to high-quality 

results, are becoming more and more important. In this context, traceable and digital quality 

management (QM), process-integrated and fast quality assurance (QA), and suitable process 

monitoring are key elements for additive manufacturing (AM). However, the effective imple-

mentation of corresponding quality-relevant aspects is hindered by a lack of process under-

standing and immature networking of the additive process chain, so that innovative technolog-

ical potential in these areas is not recognized. Instead, conventional processes that have been 

established for years and which are generally complex, slow and expensive, are used without 

restriction as the standard without regard to technological innovations. 

Therefore, the aim of this work is to investigate technological innovations in the context of 

process digitization and to develop a digital quality assurance system for additive manufactur-

ing based on specific artificial intelligence (AI) methods and blockchain technology to enable 

more reproducible as well as predictable AM processes and parts. To this end, this cumulative 

work considers the implementation of special quality assurance methods based on AI algo-

rithms, the development of a digitalized quality management system based on blockchain, and 

the conceptual combination of these aspects into a real-time capable digital quality assurance 

system for AM as three main areas of investigation. 

The research investigations show that complex machine learning (ML) algorithms are capable 

of automatically detecting and classifying defects and irregularities based on image and sensor 

data from selected AM processes. Detailed analyses and comparisons of different algorithms 

have also demonstrated the effectiveness of the data-based methods and their suitability as fast, 

non-destructive and process-integrated alternative to conventional QA methods. Further inves-

tigations show that a blockchain-based QM can digitally map the value chain of a complex AM 

process. This also enables a cross-company digital QM of data along the entire supply chain, 

including data from conventional and data-based QA methods. Analyses based on specific eval-

uation criteria have shown that a corresponding digital quality assurance system can fundamen-

tally improve quality in AM. 
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1 Introduction 

1.1 Classification and motivation 

Additive manufacturing (AM) is a modern manufacturing technology that has become increas-

ingly important in recent years. According to Gibson et al [1], the term AM stands for the layer-

by-layer manufacturing process of components from three-dimensional computer-aided design 

(CAD) files. The technology is now widely used in research and industry, as well as by non-

industrial home users, and is often referred to as 3D printing [2]. In the future, AM will make a 

significant contribution to digitalization in manufacturing and thus further increase its ac-

ceptance in the industry, among other things [3]. 

Digitization in itself is changing the business environment of entire corporate divisions at a 

rapid pace, and digital transformation in companies is creating new opportunities to increase 

productivity and value creation through the use of disruptive technologies [4]. The industry is 

even moving to holistically adapt entirely new, digital business models and completely redesign 

products and services [4]. The digital transformation in manufacturing, where processes are 

increasingly automated, connected and facilitated with the help of sensors, data analytics, cloud 

services, blockchain, machine learning (ML) and artificial intelligence (AI), is also changing 

the AM industry [5]. Additive manufacturing, as a versatile, flexible and highly customizable 

manufacturing process that can be used in many areas of industrial production, can benefit 

greatly from this development [3]. 

Despite all the possibilities offered by digitization, the predictable and reproducible production 

of functional parts remains a major challenge. Due to the increasing number of additively man-

ufactured functional parts, special quality aspects are becoming more and more important. 

Traceable and digital quality management (QM), process-integrated and fast quality assurance 

(QA), and suitable process monitoring are important elements in this context. According to 

Tofail et al. [3], the following topics still have great potential for development in this respect: 

• a real-time quality assurance in manufacturing, 

• process monitoring for quality optimization, 

• adaptable in-situ measurement methods, 

• high measurement accuracy and speed as well as 

• an effective data communication with increasing networking. 

With regard to predictable and reproducible production of additively manufactured parts, how-

ever, the situation is currently such that the parts are largely only evaluated after the printing 

process, the processes are also only optimized downstream, measurement accuracies and speeds 
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are severely limited, and in-situ measurements are usually impractical [6–8]. Furthermore, the 

system requirements for effective networking of production plants and processes are often im-

mature, so that, for example, data acquisition, communication and evaluation are inconsistent 

and their potential, especially for quality-relevant aspects, is not recognized. Data-based con-

clusions about the manufacturing process cannot be implemented efficiently in this way, and 

information about the value chain cannot be distributed effectively. Instead, conventional pro-

cesses that have been established for years are used as standard without restriction, regardless 

of technological innovations [9,10]. However, increasing process digitization can, among other 

things, enable digital, traceable and secure standardization, qualification and documentation 

processes. Correct implementation and complete documentation of QM and conventional as 

well as innovative QA procedures across the entire AM value chain can also form the basis for 

digital process and part certification. 

Conventional QA procedures in additive manufacturing processes include visual inspections, 

mechanical tests and CT examinations, as well as many other procedures, which, as already 

explained, are mostly not performed in real time but only after the printing process has been 

completed [11]. These methods are also usually complex, slow, expensive and difficult to inte-

grate into a digitized process chain. However, they are necessary to detect part defects, to enable 

conclusions to be drawn about process irregularities and to improve process understanding. The 

need for innovative, real-time process monitoring solutions with information feedback to the 

production plants exists and is increasingly being met by plant manufacturers, but the data col-

lected is often not further analyzed for errors and irregularities [3]. Often, production data is 

only monitored, possibly stored, but not processed in real time as part of a closed-loop feedback 

system [12]. In addition, there is a lack of understanding of the relevance and meaningfulness 

of the data collected, or of what data is really important, how it should be collected and pro-

cessed, and in what form [13]. 

1.2 Objectives and focus of investigation 

The goal of this dissertation is to develop a digital quality assurance system for additive manu-

facturing based on specific AI methods and blockchain technology to enable better reproduci-

bility and predictability of AM processes and part qualities. To achieve this goal, three main 

areas of investigation are planned. 

• First: the development and implementation of data-based quality assurance proce-

dures based on specialized AI methods such as machine learning and artificial neural 

networks for non-destructive quality evaluation of selected additive manufacturing 

processes. 

A#_CTVL0017163b8a2359b4de5afaa87d63af20213
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• Second: the development and exemplary implementation of a blockchain-based, 

cross-company solution for the digital management of quality-relevant data of the en-

tire AM value chain. 

• Third: the conceptually linking of blockchain-based quality management and data-

based quality assurance to a real-time digital quality assurance system that also ad-

dresses the aspects of effective data storage and documentation. 

1.3 Methodology and structure of the work 

All main areas of investigation have an explorative and experimental focus. Thus, for each 

research focus, relevant fundamentals are first elaborated and, based on this, exemplary imple-

mentation ideas are designed, implemented and analyzed. The scientific publications produced 

in the context of this cumulative dissertation thereby highlight essential aspects for the devel-

opment of a digital quality assurance system for AM: 

Publication [I] 1 

First, an ML-based method for automatic classification of defects and irregularities in powder 

bed images of the selective laser sintering (SLS) process was developed. This method enables 

the quality assessment of individual additively manufactured part layers based on in-situ ac-

quired image data, which ultimately enables non-destructive quality assurance as well as digital 

manufacturing documentation of AM parts. The creation and pre-processing of an SLS image 

dataset as well as the design, implementation, and evaluation of the effectiveness of two differ-

ent ML architectures are also considered in this paper. 

Publication [II] 2 

This is followed by the development of a data analysis for environmental sensor data in the 

fused deposition modeling (FDM) process based on a supervised learning classification ap-

proach. Within the scope of the investigations, datasets were acquired during differently pa-

rameterized printing processes of an AM part, processed according to a new data pre-processing 

methodology for analysis by various state-of-the-art ML algorithms, and the results were eval-

uated. The prediction results of the data-based ML investigations were then compared in a 

                                                           
1 This article was published in Additive Manufacturing, 41, Westphal & Seitz, A machine learning method for 
defect detection and visualization in selective laser sintering based on convolutional neural networks, 101965, 
Open access article under the CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/) license (2021). 
2 This article was published in Additive Manufacturing, 50, Westphal & Seitz, Machine learning for the intelli-
gent analysis of 3D printing conditions using environmental sensor data to support quality assurance, 102535, 
Copyright Elsevier (2022). 

https://creativecommons.org/licenses/by/4.0/
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proof-of-concept with 3D scanning inspections of the real parts to point out the effectiveness 

and speed of analyzing environmental sensor data in the context of QA processes. 

Publication [III] 3 

The digital quality assurance system for AM was conceptualized and experimentally imple-

mented in this paper using an exemplary implementation for the value chain of a metal-based 

FDM process. For this purpose, a digital quality management solution consisting of a web ap-

plication for data collection, a decentralized data storage, a smart contract for automated pro-

cessing of manufacturing events, and an Ethereum blockchain for data documentation was de-

veloped. The solution enables a digital QM with transparent, tamper-proof and traceable docu-

mentation of all quality information across company boundaries along the AM value chain. 

Aspects of data storage and data management of conventional as well as the in [I] and [II] 

developed ML-based QA methods were also considered in the context of an AM part record 

and conceptually extended with respect to future implementations.  

                                                           
3 This article was published in Industrial Information Integration, 35, Westphal et al., Blockchain-based quality 
management for a digital additive manufacturing part record, 100517, Open access article under the CC BY 4.0 
(https://creativecommons.org/licenses/by/4.0/) license (2023). 

https://creativecommons.org/licenses/by/4.0/
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2 State of the art 

In this chapter, the necessary basics as well as the state of the art on the relevant topics of this 

thesis are presented in a structured way. This includes fundamental aspects of additive manu-

facturing as well as methods of quality assurance and process monitoring. Furthermore, the 

basics of blockchain technology and artificial intelligence are considered, which form the cen-

tral approaches for the digital quality assurance system developed in this work. 

2.1 Fundamentals of additive manufacturing 

Basic knowledge of additive manufacturing, considering international terminology, is neces-

sary in order to be able to place the scientific findings of this thesis in the context of AM. All 

research aspects discussed in this thesis refer to or result from the basic principles listed below. 

2.1.1 Technology and process chain 

Additive manufacturing is the generic term for various layer-by-layer manufacturing processes 

for producing geometrically complex parts from digital, three-dimensional (3D) files [1]. The 

technology is becoming increasingly important both in research and in the industrial environ-

ment, transforming itself from a rapid prototyping method to an established manufacturing pro-

cess in industrial production [14]. 

According to Gibson et al. [1], AM technology is based on a variety of developments in differ-

ent technology areas. In particular, advanced computer-aided design for creating 3D part de-

signs, as well as computer-aided manufacturing (CAM) and computer numerical control 

(CNC), are fundamental to the additive manufacturing of complex shapes and structures [15]. 

Modern CAD systems offer comprehensive and efficient solutions for AM designs and also 

have the functionality to generate a generic output format for 3D printing processes. The data 

format is called Standard Tessellation Language (STL) and is currently the standard output 

format for 3D printing used by many AM system vendors [1,15]. 

New developments in the relevant technology areas have already led to countless different AM 

processes, but all of them have a relatively similar process chain. The generic AM process chain 

is shown in Figure 1 and, according to Gibson et al. [1], comprises eight process steps from 

CAD design to use of the printed component: 
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• CAD design: Visualization or design of the part idea with a CAD program on the 

computer and creation of a 3D model. Existing designs can also be digitized as a 3D 

model by reverse engineering with laser or optical scanners. 

• STL conversion and export: Conversion of CAD data into an STL format from 

which AM processes obtain their geometry information. The STL format is a de facto 

standard for processing AM data. During conversion, the 3D digital models are ap-

proximated by triangles that describe the outer surfaces of the model. 

• Data preparation and slicing: Special print preparation software (slicer) is then used 

to convert the STL data into a format that can be read by the 3D printer. In the process, 

the STL files are divided into layers, positioned and aligned in the build space, and 

the material consumption, the travel paths of the 3D printer and any necessary support 

structures are calculated. The print file is then transferred to the production system. 

• Machine preparation and print setup: Before printing, the 3D printer must be set 

up on the hardware side (and possibly also on the software side). This usually in-

cludes, for example, leveling and preparing the print bed, loading the material, and 

possibly configuring additional monitoring solutions.  

• 3D printing: Start of the printing process, which is largely automated and can usually 

be carried out unattended by the system. To ensure a successful printing process, the 

printer and the printing process should still be monitored to ensure that no errors oc-

cur, such as lack of materials, software problems, print aborts, etc. The printing pro-

cess can also be monitored by the operator of the printer. 

• Part removal: Removal of the parts from the build chamber after completion of the 

printing process. This requires plant-specific defined processes in which, for example, 

safety mechanisms have to be unlocked, moving components secured or operating 

temperatures cooled down. 

• Post-processing and finishing of the parts: Post-processing of the printed parts by 

mostly manual work steps such as the removal of support structures or the reworking 

of holes. Furthermore, machining of the part surface and additional finishing may be 

necessary to achieve the desired part quality. 

• Application or use of the printed part: Use of the AM parts. However, there may 

also be other requirements, especially with regard to the quality of the parts. These 

are, for example, mechanical as well as statistical quality control methods, special 

certifications and documentation on production. 
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Figure 1:Process chain in additive manufacturing with eight general process steps (based on [1]).

2.1.2 Process categories

Process categories of additive manufacturing are defined in ISO/ASTM 52900 [16]. The defi-

nitions and terms listed in this document represent the internationally recognized standard and 

provide an overview of the main processes into which most AM systems can be divided. The 

ISO/ASTM 52900 terminology also serves as a standard for this work to enable clear and un-

ambiguous communication. In the industrial environment other process designations are also 

listed, which are often used by machine manufacturers as registered trademarks for their re-

spective manufacturing principle. Table 1 lists the seven main AM process categories according 

to ISO/ASTM 52900 and explains them in detail.

Table 1:AM main process categories according to ISO/ASTM 52900 [16].

Process

category

Definition Material type Related technology

Binder jetting 

(BJT)

AM process in which a liquid 

binder is selectively applied 

to powder materials to cause 

them to bond.

Polymer, Met-

als, Glass, Sand

Binder jetting

Directed en-

ergy deposition 

(DED)

AM process that uses focused 

thermal energy to fuse mate-

rials together during deposi-

tion.

Metals, Poly-

mers, Ceramics

Electron beam AM 

(EBAM), Wire arc 

AM (WAAM)
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Process

category

Definition Material type Related technology

Material extru-

sion (MEX)

AM process in which materi-

als are selectively applied 

through a nozzle or orifice.

Polymers, con-

crete

Fused deposition 

modeling (FDM)

Material jet-

ting (MJT)

AM process in which drops 

of the starting material are 

applied in a targeted manner.

Polymers, met-

als, biomaterial

Multi jet modeling 

(MJM), drop-on-de-

mand (DOD)

Powder bed

fusion (PBF)

AM process in which thermal 

energy selectively melts areas 

of a powder bed.

Polymers, met-

als, ceramics

Electron beam melt-

ing (EBM), selective 

laser sintering (SLS)

and melting (SLM)

Sheet lamina-

tion (SHL)

AM process in which sheets 

of material are joined to form 

a component.

Polymers, met-

als

Laminated object 

manufacturing 

(LOM)

VAT photo-

polymerization

(VPP)

AM process in which liquid 

photopolymer is selectively 

cured in a bath by light-acti-

vated polymerization.

Polymers, ce-

ramics

Stereolithography 

(SLA), digital light 

processing (DLP)

2.1.3 Applications, challenges and trends

Additive manufacturing processes are increasingly used in various industries for technical and 

non-technical applications [17]. In aerospace, AM enables the production of complex parts with 

lightweight yet strong and robust structures to improve fuel efficiency and reduce pollutant 

emissions [17,18]. In medical technology, AM processes contribute to the production of indi-

vidualized, osseointegrative structures with complicated and complex geometries, among other 

things, due to their manufacturing design freedom [19]. AM can also be used to create artificial 

tissues, organs and implants, to produce anatomical models and to reconstruct 3D anatomical 

patient models using medical imaging [19–21]. Additive manufacturing processes can also be 

an important element of part development in the automotive sector. They can shorten the prod-

uct development cycle, lower manufacturing and production costs, and reduce lead times, labor 

and logistics costs [22]. Corresponding processes are used here to produce small batches of 

structural, functional and auxiliary parts such as drive shafts, transmission components and 

tools [22,23]. Specially adapted AM processes can also be used in the construction industry to 

automate manual processes, reduce labor and cut material consumption, among others [24–26].
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Industrial applications of AM technology always attempt to exploit its fundamental strengths 

over conventional, subtractive and formative manufacturing processes. A variety of corre-

sponding advantages and disadvantages of AM technology are described in the literature 

[3,9,27,28]. Core aspects that speak for the use of AM can be summarized as follows: 

• Individualization: Individualization or personalization and economical production 

of small batches from batch size 1. 

• Efficient production: Sustainable use of resources (material, time, energy). Reduc-

tion of waste, assembly and tooling costs through substitution of parts as a result of 

additive design. 

• Production on demand: Fast, on-demand manufacturing. Reduction of development 

times and part costs through rapid prototyping. 

• Optimized part designs: Design freedom and topology optimization. Complex de-

signs integrate special functions, reduce weight and improve mechanical part proper-

ties. 

• Shorter supply chains: Local, decentralized manufacturing. Shortening of supply 

chains, savings in shipping costs and CO2 emissions due to shorter transport routes. 

Despite the aforementioned aspects, a broad acceptance and application of AM in industry is 

currently not given, since many AM processes are not able to guarantee certain manufacturing 

properties (e.g. production speed, accuracy and costs) for certain processes in a predictable and 

reproducible way [22,29]. This means that companies cannot be confident that printed parts 

will have the mechanical properties required for their intended applications. To enable predict-

able and reproducible AM processes, the process variability as well as the sensitivity to process 

variations must be reduced, among other things [22]. In addition, special requirements for QM 

and QA must be met, process understanding and automation must be improved, and uniform 

standards and certifications must be developed [27,29].  

In the future, new AM processes and materials as well as improved simulation, standardization 

and testing methods will lead to better additive part manufacturing [1,22,27]. However, espe-

cially in the course of Industry 4.0 and the increasing digitalization of the manufacturing indus-

try, transformation opportunities will arise for AM to solve special process-specific challenges 

[11,30]. Digitization creates completely new, data-based opportunities to optimize AM pro-

cesses, products and services [3]. Continuous data collection enables, for example, the integra-

tion of customer and experience data into production to create personalized offers [31]. The 

integration of sensors into the AM process enables the early detection of defective or wearing 

production equipment based on data analysis as part of predictive maintenance [32]. In addition, 
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digital technologies based on ML and AI can be used in AM processes to improve the design 

process [33], optimize the manufacturing process, or support aspects of QA. [34]. Digital part 

records based on cryptographic processes can in principle also map documentation, standardi-

zation and certification processes on a blockchain in a tamper-proof, transparent and trustwor-

thy manner, thus enabling digital AM QM [30,35]. 

2.2 Quality in the context of additive manufacturing 

The immature quality of AM processes and products is currently an obstacle to the widespread 

adoption of the technology, but this can be fundamentally countered with effective management 

of AM quality [3,11]. Comprehensive QM is one aspect, as is efficient QA with associated 

quality control (QC). Further aspects are the qualification and certification of AM processes 

and additively manufactured parts as well as the current standardization. In the following, a 

characterization of the individual quality-relevant terms is given. 

2.2.1 Quality management 

All organizational measures for improving process and product quality in a company are sum-

marized under the generic term quality management according to DIN EN ISO 9000. Effective 

QM, especially in AM, requires a range of quality-oriented activities, from quality planning to 

QA and QC to continuous quality improvement [11]. Quality planning establishes product re-

quirements prior to manufacturing, while quality assurance focuses on establishing and validat-

ing control procedures and standards during manufacturing, and quality control verifies com-

pliance with requirements and standards mostly after manufacturing (see Figure 2). Quality 

improvement can then be achieved by using the results and findings of QA and QC to optimize 

future manufacturing processes. QM is not limited to the manufacturing process, but encom-

passes the entire AM value chain from the customer’s initial manufacturing request through the 

development, manufacturing and testing processes and the use of the part to recycling (see also 

Figure 6 in chapter 2.3.2). In the process, technical, operational and management activities are 

recorded to ensure that AM production complies with standards and works continuously to im-

prove quality [11]. This is supported by specific QM methods such as Six-Sigma [11], 8D re-

ports [36], Ishikawa diagrams [37], Quality Function Deployment (QFD) [38], Design of Ex-

periments (DOE) [39], etc. 
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Figure 2:Areas of quality management.

2.2.2 Quality assurance and quality control

QA is a component of QM and, according to DIN EN ISO 9000, comprises all activities aimed 

at creating confidence in order to ensure specified quality requirements. QC, in turn, is a subtask 

of QA and includes observation and inspection activities to fulfil product-oriented quality re-

quirements or quality-relevant characteristics such as geometry, surface, appearance, etc. [34]

Today, special test methods are used in all phases of AM production as part of QA and QC, 

which can basically be divided into destructive and non-destructive test (NDT) methods [6].

NDT methods do not affect the future usability of the part to be tested (e.g. 3D and CT scans, 

ML image analysis), but destructive testing methods do, so that only a limited number of test 

samples are ever tested there and not the final part. Destructive testing (e.g. tensile and com-

pression tests, micrograph analysis) is therefore mostly used to evaluate the mechanical prop-

erties of AM parts, and non-destructive testing is used to examine the finished parts before 

delivery to the customer [6]. Another method of QC for AM is in-situ monitoring (visual, sen-

sory and acoustic process detection) for efficient tracking and control of the printing process 

and print quality [40]. However, the possibility of directly monitoring the printing process in-

situ is not yet very well developed at AM and is therefore the subject of numerous research 

activities [12].

Appendix A provides an overview of destructive test and NDT methods currently used in AM 

and their potential suitability as in-situ or ex-situ monitoring solutions (see Table A-1). More-

over, Wu et al. [41] comprehensively summarize current ML techniques for predicting mechan-

ical, physical and geometrical properties of AM parts as well as ML-based in-situ monitoring 
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solutions for AM processes. Figure 3 illustrates some results of conventional as well as data- 

and ML-based testing methods for additively manufactured parts. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3: Results of various test methods on additively manufactured parts. (a) CT scan for analysis of internal 

part defects.; (b) Laser scan to investigate surface roughness; (c) 3D scan for analysis of part dimensional devia-

tions; (d) Camera-based imaging with supporting ML analysis for fault detection. 

2.2.3 Qualification, certification and standardization 

According to DebRoy et al. [42], in addition to detailed QM, efficient QA and comprehensive 

QC, special qualifications and certifications of AM processes and parts are crucial aspects for 

a successful manufacturing process and increased popularity of the manufacturing technology. 

Qualifications and certifications are ultimately used to demonstrate that a product has passed 

certain performance and quality assurance tests and meets criteria set forth in regulations, spec-

ifications or contracts [43]. 

In this context, qualification is an evaluation process that focuses on the conformity of products 

and their industrial requirements, while certification rather verifies the compliance of the prod-

ucts with the legal requirements [44]. For conventionally manufactured products, qualification 

is often accomplished through the application of recognized norms and standards, as the result-

ing data can then be compared to known data ranges and specifications to ensure that the prod-

ucts meet the manufacturer’s and end user’s requirements [43]. According to Bae et al. [43], 

successful qualification and certification therefore depends heavily on quality in terms of part 

reliability and process repeatability. However, as mentioned above, this cannot be guaranteed 

for many AM processes, also because many standards and specifications of conventional pro-

cesses are not directly transferable to additive manufacturing processes and thus the path to 

successful qualification and certification of AM products is often still unclear [43,44]. For this 

reason, standardization is taking on an increasingly important role in AM by providing a basis 

for consistency in part validation and processing, establishing repeatability, providing guide-

lines for maintenance and repair, and defining uniform terminologies [43,44]. 



State of the art 13 

 

A detailed look at the current standardization situation in additive manufacturing shows that 

various AM-specific standards have already been published. However, these always represent 

only sub-areas of AM. The ISO/ASTM 52900 series and in particular ISO/ASTM 52920 [45], 

which describes the QA requirements for AM, are fundamental in this respect. DIN SPEC 

17071 is also the first fundamental guideline for establishing quality-assured processes in AM 

[46]. Relevant standards or standards in progress have been defined in ISO/ASTM 52920 for 

essential AM aspects, classified according to important sub-areas of the process chain. An over-

view can be found in Table 2. 

Table 2: Standards for the AM process chain according to ISO/ASTM 52920 [45] (a in progress). 

AM aspect Sub-area Standards 

Production 
management 

Quality management ISO 9001, ISO 9100, ISO 13485 

Health & safety     
environment 

ISO 45001, IEC 60079-10-2, HSG103 

Quality assurance ASTM F3091/F3091M, VDI 3405 Sheet 1 

Personnel DIN 35225, ISO 9712 ISO/ASTM 52926-1a, ISO/ASTM 52935a 

Customer 
management 

Terminology ISO/ASTM 52900, ISO 18739, ISO/ASTM 52921 

Risk assessment ISO 31000, ISO/IEC 31010, ISO 14971 

Design guidelines ISO/ASTM 52910, VDI 3405 Sheet 3, ISO/ASTM 52911-1, 
ISO/ASTM 52911-3a, VDI 3405 Sheet 3.5 

Order requirements ISO/ASTM 52901, ISO 17296-3, ISO 129-1, ISO 286-1, ISO 2768-1, 
ISO 1302, ISO 1101, ISO 14405-1 

Data man-
agement 

IT security ISO/IEC 27001 

Data processing ISO/ASTM 52950, ISO/ASTM 52915 

Feedstock 
management 

Material data sheet ASTM F2924, ASTM F3184, VDI 3405 Sheet 2.1, Sheet 2.2, Sheet 
2.4 

Characterization ISO/ASTM 52907, DIN 65122, VDI 3405 Sheet 2.3 

Analysis, Viscosity, 
Flowability, Density, 
Particle size distribu-
tion, Sampling, 
Welding gas 

ISO 11357-1, ISO 11358-1, ISO 1628-1, ISO 4324, ISO 1133, ISO 
4490, ASTM B213, ASTM B964, ISO 1068, ISO 3923-1, -2, ASTM 
B212, ASTM B329, ISO 2591-1, ISO 13320, ISO 4497, ASTM 
B214, ISO 3954, ASTM B215, ISO 14175 

AM process 
qualification 

 ISO/ASTM 52902, ASTM F2971, ISO/ASTM 52904, DIN 35224, 
ISO/ASTM TR 52906a, ISO/ASTM TR 52929a, ISO/ASTM TS 
52930 

Thermal 
post-pro-
cessing 

 ASTM F3301a 

Test meth-
odology 

Guide ASTM F 3122, DIN 65123 

Tolerances ISO 2768-1, ISO 2768-2, ISO 1938-1, DIN 16742 

Hardness, Tensile 
tests, Compression, 
Impact, Analysis, 
Density 

ISO 868, ISO 2039-1, -2, ISO 527-1, -2, ISO 527-4, ASTM D638, 
ISO 6892-1, ASTM E8/E8M, ISO 604, ISO 4506, ISO 179-1, -2, 
ISO 180, ISO 148-1, -2, ISO 7625, ISO 3651-1, ASTM G28B, ISO 
3369 
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The list shows that standards specifically for data analysis and data storage in AM have not yet 

been explicitly published. However, these areas in particular are relevant for future technolo-

gies. Chen et al. [44], for example, propose a digital methodology for qualification, certification 

and standardization in AM. Of particular importance there are data-based digital process mon-

itoring, e.g., through data-driven in-situ inspections or data-based process configurations, and 

digital transformation of AM processes, e.g., through machine learning optimized QC and 

blockchain-based decentralized AM supply chain documentation. Accordingly, the digital 

transformation of AM will proactively minimize errors, reduce human intervention, and im-

prove transparency in documentation, ultimately leading to optimization of all quality-related 

aspects [44]. In order to do this efficiently, uniformly, and comparably, further standardization 

activities are needed in areas such as AI, blockchain, and data processing. 

2.3 Blockchain for quality improvement in additive manufacturing 

The combination of additive manufacturing and blockchain technology can enable a solution 

that maps the entire AM value chain in a digital, transparent, traceable and tamper-proof way, 

contributing to the digital transformation of AM QM [47]. One added value of blockchain tech-

nology is to improve the existing QM in AM in such a way that quality is more in focus, every 

actor in the value creation process is involved in the QM process and quality issues are docu-

mented transparently and effectively [11]. 

In addition to basic knowledge of distributed ledgers, blockchain technology and smart con-

tracts, knowledge of the value and supply chains of additively manufactured parts is also nec-

essary to implement an appropriate solution. Linking these aspects can then lead to a digital 

part record for AM parts. Based on this, a QM architecture can be designed that can also incor-

porate QA and QC data. By integrating modern data analysis methods and ML algorithms, a 

correspondingly transparent real-time evaluation of AM manufacturing data for in-situ NDT 

methods can also be performed. The basic methods and concepts for this are explained in the 

next sections. 

2.3.1 Fundamentals of distributed ledgers, blockchain and smart contracts 

Distributed ledger technology 

Distributed ledger technology (DLT) is generally understood as a decentralized data architec-

ture that enables the storage and distribution of data in a synchronized manner while ensuring 

its integrity through the use of consensus-based validation protocols and cryptographic signa-

tures [48]. In other words, distributed ledgers are basically identical copies of file stores that 
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record transactions, are stored in multiple locations and are verified by a consensus algorithm 

[49]. 

Blockchain 

The best-known form of DLT is blockchain, which is essentially a distributed database archi-

tecture based on cryptographically linked blocks of information, which in turn contain consen-

sus-validated datasets [48,50]. The first known blockchain was released in 2008 as Bitcoin 

blockchain [51]. Another popular variant is the Ethereum blockchain, which was conceived by 

Buterin [49] und Wood [52] in 2014. Ethereum can be seen as an extension of the Bitcoin 

blockchain, which additionally enables, for example, the creation of digital contracts using 

cryptographic methods [49]. For the testing of corresponding smart contracts as well as other 

applications, Ethereum has special test networks. One test network is, for example, the 

Ethereum Ropsten Testnet. 

Cryptographic Hashing 

Individual blocks of a blockchain are linked to each other via cryptographic signatures, so-

called hashes. (see Figure 4). Hash functions generate for each block from the records of arbi-

trary length a characteristic string with a specific length and structure [53]. The character string 

is referred to as a cryptographic checksum or hash value and represents a unique fingerprint for 

each block, which in turn is stored in the subsequent block. In this way, the blocks are chained 

together and unnoticed manipulation of individual blocks is virtually impossible [54,55]. How-

ever, hash functions cannot be equated with encryption in this context because, according to 

Rogaway and Shrimpton [54] as well as Yaga et al. [53], they have the following properties: 

• they are preimage resistant or one-way, i.e. messages can be converted into a hash 

value, but the reverse is no longer computationally possible, 

• they are second preimage resistant or deterministic, which ensures that the same input 

always generates the same output hash, and 

• they are collision resistant, whereby it is not possible to find two different inputs that 

produce the same output hash. 
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Figure 4:Concatenation of information blocks of a blockchain via cryptographic hash functions.

Digital signature

Due to the special properties of a hash, even the smallest changes in the data of a block lead to 

a significantly different hash. This principle is also used for digital signatures to ensure that a 

data record has not been changed after transmission. However, it must be ensured that the sig-

nature cannot be copied and cannot be executed by anyone other than the signature creator [56]. 

For this problem, public key cryptography or asymmetric encryption is used. With this method, 

a public and a private key are created for each network participant. Both keys consist of math-

ematically generated alphanumeric characters of a certain length and are not identical, but de-

pendent on each other [56]. The public key is a publicly accessible information, while the pri-

vate key is an information that is kept secret.

In a blockchain, transactions are authenticated by digital signatures by first creating a signature 

from the sender and then verifying that the signature is valid in a second step [57]. First, the 

hash value of a data record is calculated. Using the sender’s private key, an encrypted digital 

signature is then generated by an algorithm and appended to the end of the data record. To 

verify the signature, the sender’s publicly available public key is then used to decrypt the en-

crypted signature back into a readable hash at the end of the record. In addition, the receiver 

also calculates the hash value of the original data record. If the hash values of the decrypted 

signature and the original data record are identical, nothing has been changed after the data 

transmission. The digital signature process is shown again in detail in the following Figure 5.
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Figure 5:Schematic representation of a digital signature with asymmetric encryption.

Consensus protocol

Signed records or transactions on a blockchain are checked for validity before they are stored. 

This is done by special network participants (also called “miner”). To ensure that transactions 

are verified by network participants in the first place and to determine the order in which trans-

actions are recorded and stored in the blockchain, the existence of a consensus mechanism is 

an essential requirement [58,59]. Special consensus mechanisms or consensus protocols thus 

ensure compliance with certain rules in the blockchain network and set the conditions for user 

participation in the network, which enforces consistency and integrity and ultimately leads to 

tamper resistance and immutability of the stored information [59]. Blockchain consensus pro-

tocols are divided into two distinct classes according to Oyinloye et al. [59]:

• evidence-based consensus protocols such as Proof-of-Work (PoW) [50,55], which re-

quire proof of computational effort by network participants to verify transactions, and

• voting-based consensus protocols such as Proof-of-Stake (PoS) [50,55], which re-

quire participating entities to first share their individual verification results in the net-

work before a final decision is made to verify transactions.

In addition to these main classes, other consensus mechanisms have been established, but there 

is no perfect consensus protocol in distributed systems, since a compromise between con-

sistency, availability, and fault tolerance must always be found [60]. Furthermore, the problem 

of malicious network participants who intentionally undermine the consensus process must also 

be considered [61].
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Smart contracts 

Due to its properties and the implemented basic cryptographic principles, blockchain technol-

ogy offers for the first time a suitable infrastructure for the implementation of smart contracts 

[62]. The concept of smart contracts was published as early as 1994 by Szabo [63] and describes 

them as computer programs with self-checking, self-executing, and tamper-proof properties. 

Appropriate consensus-based programs can then be used to define user-defined rules for own-

ership, transactions, and state transitions so that the entire transaction process can be mapped 

through automated contract execution in a cost-effective, transparent, and secure manner [64]. 

Smart contracts leverage and extend the blockchain technology [53]. According to Yaga et al. 

[53], they are program codes stored on the blockchain that consist of functions and states pro-

vided by cryptographically signed transactions on the blockchain network. Accordingly, users 

of a blockchain network can interact with smart contracts and use them to perform calculations, 

store information, publicly reflect states, and automatically send funds to other network partic-

ipants [53]. The smart contract code can also be used to map transactions with multiple parties 

and to map entire business processes, e.g. for documentation and traceability of supply chains. 

This has the advantage of promoting transparency and trust, saving costs and time, and enabling 

better as well as faster business decisions [53]. 

Smart contracts are often used in so-called decentralized applications (dApps), which provide 

a user-friendly interface for smart contracts. The development of dApps, where certain data and 

processes are stored on a blockchain, is growing more and more [65]. A typical example of a 

dApp is an exchange for cryptocurrencies running on a blockchain network. In the process, the 

usual structure of the decentralized application consists of a frontend (web application) and a 

backend (database or decentralized storage system). It is also possible to interact directly with 

the smart contract via a so-called blockchain explorer (e.g. the web application Etherscan [66]). 

A decentralized storage system is the counterpart to a centralized data storage server and con-

sists of a network of users who all provide cryptographically protected storage for data, creating 

a robust data storage and exchange system for larger amounts of data. An appropriately merged, 

decentralized, and cost-effective storage solution for larger amounts of data is, for example, the 

Interplanetary File System (IPFS) [67]. 

2.3.2 Blockchain-based part record for the additive manufacturing value chain 

For additive manufacturing, blockchain technology with its cryptographic encryption principles 

and automated smart contracts offers new opportunities. These include, for example, data and 

intellectual property protection in 3D printing supply chains [68] and data [69], traceability, 

tamper resistance, and certification of parts and quality-related documents [30,70], as well as 
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increasing process automation and decentralization of manufacturing through direct machine-

to-machine communication [70–72].

Connecting the digitized AM process chain with a blockchain-based infrastructure can, for ex-

ample, enable digital, secure, immutable and transparent AM part documentation and, if neces-

sary, certification, which in turn helps to improve QM, also between different companies [30]. 

A corresponding solution can enable the digital mapping of the entire value chain of an AM 

process, from the initial customer inquiry through development, production, quality inspection 

and use of the part to its recycling (see Figure 6). Basic concept ideas [35,73], partial solutions 

and implementations [30,74] have already been created for this purpose. However, a holistic 

solution or demonstration study for digitally mapping the entire value chain of an AM process 

has not yet been documented. In addition, the increasingly important and very extensive aspect 

of production data acquisition, documentation and real-time evaluation has also been insuffi-

ciently considered in this context. However, in Germany, for example, there are publicly funded 

initiatives that are increasingly addressing the issue [75–77].

Figure 6:Components of QM along the AM value chain (simplified representation).

2.3.3 Connecting blockchain, digital twin and data for real-time quality analytics

Concepts for manufacturing data acquisition and documentation are currently often developed 

in conjunction with a digital twin to derive a form of digital intelligence from digitally accessi-

ble data [78]. In doing so, digital twins provide an accurate digital representation of physical 

elements and help to better understand, analyze and improve a product, service or manufactur-

ing process [78,79]. In AM, digital twins are primarily used to collect data for process simula-

tion, monitoring and control, and to present this data in a form suitable for information retrieval

[79,80].

The connection of digital twin and blockchain technology for secure, traceable recording and 

documentation of manufacturing data has only been considered in isolated cases to date. In this 

regard, Guo et al. [81] developed a framework that enables personalized part production with 

AM based on blockchain and digital twin. Data on the product lifecycle is stored there as a 

digital twin on a blockchain and transmitted authentically to customers and part manufacturers.

Mandolla et al. [82] have developed a digital twin of the entire AM manufacturing chain and 
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stored relevant manufacturing information in it. At the same time, a secure transaction layer for 

the information was created via a blockchain, which secures all data in the digital twin against 

changes by cryptographic hashing. As an extension of the existing solutions, research is in-

creasingly being conducted not only on data acquisition and storage, but also on data processing 

and analysis, e.g., through artificial intelligence and machine learning [79]. In addition, the 

integration of sensor technology for real-time data acquisition is also being investigated [83]. 

Only in this way it is possible to process manufacturing data efficiently and securely, to create 

traceable datasets, and to develop generally accepted AI solutions that can then be used in QA 

and in-situ QC, for example. 

2.4 Quality assurance through data analytics and machine learning 

The analysis of manufacturing data and the use of AI or ML extend the mere collection, storage 

and distribution of information of a digital twin with additional methods for generating intelli-

gence based on data [78]. As digital QA or QC solutions, data analytics and ML algorithms can 

be directly integrated into a digital QM strategy, enabling e.g. automated in-situ monitoring 

applications through appropriate implementations [84,85] and intelligent real-time analyses 

[86,87], that constantly control and optimize themselves by evaluating and integrating ever new 

data. 

Corresponding solutions are based in principle on the extraction of knowledge from data [88]. 

Various methods and technologies are used for this purpose, such as data, text and statistical 

analyses, data visualizations, signal processing and ML. In this context, ML methods in partic-

ular are considered as a form of artificial intelligence because, unlike model-based control, for 

example, they are capable of making own assumptions, re-evaluating and testing themselves, 

and automatically making predictions for future events without reprogramming. This is done 

via computer so quickly that real-time process analyses, data evaluations and reactions are pos-

sible, which then contribute as a supplement or alternative to conventional QA and NDT meth-

ods. The basics for this are described in the following sections. 

2.4.1 Distinction of data analytics, machine learning and artificial intelligence 

Data analytics 

Data analytics is the use of computer systems to analyze large amounts of data to support deci-

sion-making processes [89]. A corresponding data analysis system collects data, analyzes as 

well as extracts information from the data and displays the found knowledge to the user [90]. 

Nowadays, data volumes are very large, composed of different data types and also include 

streaming data [91]. Corresponding amounts of data, referred to as “Big Data”, are usually high-
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dimensional, complex, unstructured, incomplete, noisy or erroneous, and therefore require new 

data analysis concepts, also referred to as “Big Data Analytics”. [90,92]. In big data analytics, 

there are different stages of development from descriptive analytics to predictive analytics to 

prescriptive analytics (see also Figure 7) [93–97]. The individual developmental stages show 

an increasingly higher degree of intelligence and can be described as follows:

• Descriptive Analytics: Summarize data in an appropriate way and report on the past. 

They answer the question “What happened?” and extract information from raw data. 

As an extension of this stage of development, diagnostic analytics are often listed as 

also reporting on the past, but more likely answering the question of why something 

happened and helping to understand relationships between data. Examples are busi-

ness and sales reports.

• Predictive Analytics: Use the results of descriptive analysis as well as special ML 

algorithms and detection techniques to build models to predict the future. They answer 

the question “What will happen in the future and why?”. Predictive analytics help 

identify patterns in historical data and are more accurate the more data there is. Ex-

amples are predictions for process trajectories and error probabilities.

• Prescriptive Analytics: Generate adaptive, automated, and optimal decisions to cre-

ate defined value. They answer the question “What should I do and why?”. Prescrip-

tive analytics provide recommendations based on predictions from predictive analyt-

ics as well as specific constraints and support feedback mechanisms to intelligently 

link data, predictions, recommended actions and results. Examples are recommenda-

tions for process settings and closed-loop systems.

Figure 7:Data analytics development stages.
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Machine learning

ML techniques provide a way to evaluate large amounts of data in near real-time and identify 

complex, non-linear relationships in the data [98]. These correlations can subsequently reveal 

hidden patterns in the data and enable predictions or decisions for future events [99]. For cor-

responding ML methods, the acquisition of large amounts of data is fundamental, since an ML 

algorithm is not explicitly programmed but trained with the acquired data [100]. Human pro-

gramming effort decreases because after a certain point, an ML algorithm learns independently 

of the underlying data and automatically improves its performance through experience and the 

detected correlations in the data [99,101]. Up to this point, however, humans must assist in the 

learning process, e.g., through data analysis and data preparation (feature extraction) [99]. Fi-

gure 8 illustrates the initial ML process using the example of image data.

Figure 8:Information processing in ML with human assistance by feature extraction of relevant image regions in 

powder bed images of the SLS process.

In the application of ML, the focus is on the learning methods that are used to learn from data: 

supervised, unsupervised und reinforcement learning [100,102]. Supervised learning requires 

training with labeled, structured data that has inputs and outputs (e.g., database tables, CSV 

files). Unsupervised learning, on the other hand, does not require labeled data and can also use 

unstructured data with inputs without direct outputs (e.g., images, videos, speech), where the 

goal is to find hidden structures in the inputs. Reinforcement learning enables learning by eval-

uating feedback in the form of reward or punishment to determine the optimal behavior to im-

prove efficiency in a given environment [103]. This involves trying an action in a particular 

state, evaluating the consequences based on rewards or punishments, and determining a new 

state. By repeatedly trying all actions in all states then teaches which actions, as measured by 

reward, are best in the long run [104]. For all learning methods there are different ML algo-

rithms suitable for different problems (see Table 3).
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In ML, the ultimate goal is always to develop models that generalize, i.e., produce good results 

even with unknown data [100]. There are several methods and performance metrics to assess 

and reliably measure the generalization capability of corresponding models. 

Table 3: Learning methods, algorithms and tasks in ML according to [102]. 

Learning 

method 

Model building Tasks Algorithms Refer-

ence 

Supervised 

learning 

Algorithms learn from labelled data 

(task-driven) 

Classification/ 

Regression 

Regression analysis 

Support vector machine 

Decision tree 

Naive Bayes 

Neural networks 

[105] 

[105] 

[105] 

[101] 

[100] 

Unsupervised 

learning 

Algorithms learn from unlabeled data 

(data-driven) 

Clustering/ 

Prediction 

K-means 

Principal component 

analysis 

[105] 

[105] 

Reinforcement 

learning 

Models are based on reward or pen-

alty for actions (environment-driven) 

Decision- 

making 

Q-learning 

R-learning 

TD-learning 

[104] 

[106] 

[107] 

Performance evaluation methods and metrics 

To evaluate the performance of an ML algorithm, two aspects are considered below. First, 

methods to mitigate overfitting and maximize generalization, and the evaluation or measure-

ment of model performance by specific metrics. 

According to Chollet [100], the evaluation of a model always boils down to the splitting of the 

underlying dataset into training, validation and test data. The goal is then first to minimize the 

prediction error of the model on the training data (training loss) [108]. The actual prediction 

accuracy of the model is the prediction error on new (test) data unknown to the model (test 

loss). In order to achieve good model performance, efforts are usually made to minimize train-

ing loss and keep the gap between training and test loss small [108]. If a low training loss is not 

achieved, the model is underfitted, if the distance between training and test loss is too large, the 

model is overfitted [100]. According to Chollet [100], overfitting always occurs in ML models, 

and usually occurs both with new data and with too little data, although advanced methods 

(such as hold-out, K-fold, and iterated K-fold validation) can be used to mitigate overfitting, 

especially with too little data. In addition, especially for more complex ML algorithms such as 

neural networks, special regularization methods are used to prevent overfitting: 
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• Data augmentation: Artificial expansion of the dataset by applying transformations 

to individual data samples in real time [100,109]. 

• Hyperparameter tuning: Iterative optimization of the default settings of an ML al-

gorithm defined by common ML libraries to improve model performance [100,110]. 

• Weight regularization: Reduction of the complexity of the algorithm by specifying 

special boundary conditions with the goal of achieving a more uniform distribution of 

weighting values [100]. 

• Dropout: Random removal (set to zero) of output signals and their connections from 

a neural network during training to prevent overfitting of directly connected neurons 

[100,111]. 

Another very effective method for avoiding overfitting in complex neural networks, especially 

for very small or highly imbalanced datasets, is transfer learning [112]. Transfer learning re-

duces the effort required to create a new classification task by transferring knowledge between 

neural networks of different feature domains [112,113]. Practically, this means that the already 

learned information of a trained neural network with dataset X is used as initial values for train-

ing another neural network with a completely different dataset Y. This method is often used 

when the dataset under investigation does not contain enough training data or when the distri-

bution of the data among the individual classes of the dataset is too unbalanced [113]. Then, a 

neural network is first trained with a large, preferably balanced dataset of relatively easy-to-

obtain data, and the knowledge gained is then transferred to the neural network for the actual 

classification task. For example, a very well-known dataset for transfer learning is the open-

source ImageNet dataset, which consists of more than 15 million images divided into more than 

22000 categories [114]. 

A success evaluation of ML models, or the measurement of model performance, is done using 

a variety of metrics that provide different information about the particular model, e.g., its ability 

to predict mean values, its robustness to outliers, the uncertainty of predictions, etc. [115]. By 

Naser and Alavi [116], performance metrics for the evaluation of regression and classification 

algorithms are subdivided and comprehensively presented with their foundations, recommen-

dations, and limitations in the context of ML model evaluation. 

Selecting an appropriate metric to examine and distinguish the performance of different algo-

rithms is an important aspect of ML, as the proper selection of the metric ensures that the train-

ing of algorithms is consistently evaluated against appropriate criteria [117,118]. The results of 

this evaluation are often presented in classification tasks in the form of a special confusion 

matrix (CM) [109]. This matrix contains statistics on actual and predicted classifications and 
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forms the basis on which further metrics for performance evaluation are subsequently derived

(see Figure 9, left) [116]. One way to visually evaluate classification algorithms is to use the 

receiver operator characteristic (ROC) curve [119]. It is widely used to illustrate and compare 

binary classification problems based on complex neural networks (see Figure 9, right)

[115,119,120]. However, ROC curves are not per se a comparable performance indicator [121]. 

This one is only determined by the value of the area under the curve (AUC), which is often used 

to compare the performance of different ML models [121]. The larger the area under the ROC 

curve, the better the algorithm performs. Another visual evaluation method for the performance 

of special convolutional neural network models is the gradient-weighted class activation map-

ping (Grad-CAM) of Selvaraju et al. [122], which provides a heat map for locating and predict-

ing regions of interest in images.

Figure 9:Basic performance evaluations of ML models. left: CM with commonly used metrics, right: Visualiza-

tion of two typical ROC curves and the performance of random guessing.

Artificial neural networks

Artificial neural networks (ANN) are powerful ML algorithms that are ideal for processing 

large amounts of data [123]. They are relatively easy-to-implement computer-based computa-

tional models used for problems such as pattern classification and pattern recognition [124].

The principle of an ANN is to process signals by sending them through a network of artificial 

nodes or neurons that mimic the human brain [125]. Analogous to the synapses of the brain, the 

signals are also transmitted between the artificial neurons via connections and thereby weighted

[125]. This process represents “learning”, whereby weights are amplified or attenuated with 

each signal transmission [126]. In most ANNs, neurons are arranged in a series of layers. For 

example, a network specialized for images has a layer of input nodes that respond to individual 

pixels (e.g., their brightness) [125]. Once activated, these nodes pass on their activation level 
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via the weighted links to other nodes at the next layer, which combine the incoming signals and 

thus may or may not also be activated [125]. This process continues until the signals reach an 

output layer, where the activation pattern gives a concrete answer to what is seen in the image. 

If this response is reported to the network as incorrect, a so-called backpropagation algorithm 

performs a backward adjustment of the weighting of the connections through the layers to im-

prove the result next time [125,126]. In order to use the backpropagation algorithm, the ANN 

must always have some form of supervised learning in addition to unsupervised, since for each 

image there must be a correct answer that can be transmitted to the network in case of incorrect 

statements. The signal processing with weighting and backpropagation is explained again in 

detail for better understanding in appendix B. 

Deep learning 

Conventional ML algorithms have limited ability to process unstructured data in its raw form 

(e.g., images, videos, natural language) [127]. According to LeCun et al. [127], such raw data 

are increasingly processed using advanced state of the art algorithms based on Deep Learning 

(DL). DL here is a new way of looking at learning information from data, focusing on learning 

from successive layers of increasingly complex data representations (see Figure 10) [100]. A 

key aspect of DL, according to LeCun et al. [127], is that a function extractor is no longer 

designed by human developers, but is learned by a learning process from data only. Learning 

with the layer representations is then done as in conventional ML, again with artificial neural 

networks, but with many more layers and thus complexity (the networks are “deeper”) [100]. 

Figure 10 illustrates the information processing in DL using an example of pattern recognition 

in images, where the features in the individual network layers are searched for independently 

from the data. 

Over time, DL architectures of varying complexity have been developed [128]. In principle, 

any architecture can be used for any task, but some variants are better suited for specific data 

such as time series or images [129]. A multilayer perceptron (MLP) is the simplest and most 

original form of DL architectures [130]. One of the most popular DL implementations for mod-

eling spatial and temporal correlations are convolutional neural networks (CNN) [131]. CNN 

implementations are state of the art in image and speech processing [114]. Another commonly 

used DL implementation for Big Data analytics are recurrent neural networks (RNN) such as 

the long short-term memory (LSTM) architectures, which are capable of learning long term 

dependencies in sequential data [132]. Other well-known DL architectures are autoencoders 

and generative adversarial networks (GAN) [128,129]. 
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Figure 10: Information processing in Deep Learning exemplified by a pattern recognition algorithm for defect 

detection in powder bed images of the SLS process (adapted from [125] and the design of Lucy Reading-

Ikkanda).

Artificial intelligence

ML and DL algorithms have proven to be extremely powerful predictive systems and are also 

referred to as artificial intelligence by many institutions, developers, and companies, but this 

does not correspond to the original core idea of AI [133]. Rather, according to McCarty et al. 

[134], the core idea of artificial intelligence is that intelligent human behavior consists of pro-

cesses that can be formalized and reproduced by a machine. Human intelligence is the central 

element on which automation efforts should be based. But today, most researchers want to de-

velop automated systems that perform well in complex problem domains, using all kinds of 

means, not just human-like means [135]. Thus, even today’s ML systems, currently the most 

powerful and profitable forms of artificial intelligence, exhibit a rather limited range of intelli-

gent behavior [133].

For this reason, ML is also considered more of a subfield of AI, based on the concept that 

machines learn even from large amounts of data [96,99,100]. According to Kibria et al. [96], 

ML is more suitable for predictive analysis, while AI goes beyond corresponding predictions 

and offers suggestions with implications for the realization of added value in the context of 

prescriptive analysis, which has already been indicated in Figure 7.
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2.4.2 Machine learning methods for quality assurance in additive manufacturing 

As in many other fields, ML has gradually gained importance in AM too, especially due to the 

high performance of data processing algorithms in tasks such as classification, regression, and 

clustering [136]. ML is increasingly playing a critical role in addressing AM-specific challenges 

such as ensuring predictable, reproducible and high part quality, developing optimized design 

principles, standardization and quality control [137]. ML is therefore already used intensively 

in many AM areas, e.g. to generate high-performance materials and topological designs, to op-

timize process parameters, or to be able to perform error monitoring during the process [136]. 

Accordingly, several scientific reports have already been published on the general use of ML 

in AM [115,136–139]. 

Specific methods for optimizing QA and QC through the use of ML are also being intensively 

investigated, with core aspects increasingly (but not exclusively) divided into manufacturing 

support (defect detection, surface prediction), process improvement (process monitoring, pro-

cess control), and design optimization (design recommendation) [140]. Table 4 clearly summa-

rizes these ML core aspects, the ML-based solution principles behind them, the achievable ben-

efits in terms of QA and QC, and the relevant sources. 

Finally, the listed ML applications alone or in combination do not yet represent fully reliable 

QA and QC methods. They can currently be useful as complementary methods alongside con-

ventional methods such as CT scans, micrograph analyses or mechanical testing to provide 

information on print and part quality already during the printing process, although their effi-

ciency and suitability for industrial AM series production still needs to be evaluated in most 

cases [137,140–142]. Although corresponding ML solutions can in principle enable closed-loop 

strategies for predictable and reproducible quality optimization [143,144], they do not include 

certain quality-relevant aspects such as data management, documentation, or conformity to 

standards and can therefore only be part of a comprehensive quality assurance system for AM. 
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Table 4: ML Methods for better QA and QC in AM. 

ML-aspect and solution principles Advantages for QA and QC Source 

Defect detection: Mostly in the form of DL image anal-

yses of process images captured with cameras during 

printing. ML analyses of sensor process or geometry data 

to detect process irregularities are also used. Some form 

of supervised learning is usually implemented. 

Solutions are usually easy to inte-

grate into the AM process and are 

non-destructive. In-situ analyses are 

also possible and the achievable pre-

diction accuracies are very high. 

[145–

149] 

Surface prediction: ML algorithms are trained using 

process parameters recorded or specified by sensors, and 

the prediction results are correlated with the resulting 

print results. With the print parameters set, a prediction 

can then be made about the surface quality even before 

the printing process. In principle, supervised or unsuper-

vised learning strategies are used for this purpose. 

Better surfaces are possible during 

printing and the selection of good 

process parameters is much faster. 

The predictions are very precise and 

fast. Automated adjustment of pro-

cess parameters is also possible. 

[150–

154] 

Process monitoring and control: For process control, 

certain parameters are monitored and recorded via sen-

sors throughout the manufacturing process and analyzed 

for irregularities in the data sequences by pre-trained ML 

algorithms. The immediate feedback of product quality 

resulting or predicted from these parameters is then di-

rectly used to optimize the process parameters inline as 

automatically as possible (via reinforcement learning). 

Currently, the parameters are often first adjusted offline 

and the settings optimized for the next print. 

The entire process is monitored and 

recorded by sensors. This enables 

real-time data analyses that directly 

detect changes in the printing pro-

cess. In the future, increasing auto-

mation in information processing 

will also enable closed control loops 

that can react directly to irregulari-

ties and optimize printing parame-

ters independently. 

[155–

159] 

Design recommendation: AM machine and material set-

tings are analyzed by ML algorithms to verify the manu-

facturability of a given AM design with the selected pa-

rameters. Based on historical manufacturing and part 

data, the algorithms also automatically enable recommen-

dations for design changes to optimize parts, processes, 

or costs without the need for specific instructions. Super-

vised and unsupervised learning strategies are mostly 

used in the training phases, which are then increasingly 

complemented by reinforcement learning for decision-

making tasks. 

Automated design recommendations 

based on historical data can enable 

AM-compliant designs even for in-

experienced users. In addition, time 

and cost savings are possible. A 

growing database also enables in-

creasingly detailed recommenda-

tions and better parts. Thus, design 

recommendations can be made with-

out human guidance in the future. 

[141,160–

163] 
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2.4.3 Closed-loop quality and process control for additive manufacturing through ma-

chine learning

Closed-loop control systems, also known as feedback control systems, are a form of automation 

system that have one or more feedback loops and attempt to compensate for deviations that 

arise in the system [164]. According to Khosravanian and Aadnøy [165], system design uses a 

controller or algorithm that calculates setpoint deviations via real-time measurements and then 

activates a process to return the system to the fixed setpoint (see Figure 11). However, this 

requires a large amount of data for the decision making [165].

Figure 11: Schematic representation of a closed-loop feedback system.

The integration of ML-based data analytics into AM QA structures can increasingly help im-

plement closed-loop quality and process control systems that combine process knowledge and 

process information in the form of recorded data [144,158]. This is mostly automated within 

the manufacturing process of a company [158]. The use of an ML algorithm then reduces the 

system design effort in principle by replacing the human description of a physical model and 

controller design with the automatic generation of an empirical model by AI and ML, respec-

tively [144]. Nevertheless, training of the ML algorithm with respect to the setpoints and with 

result feedback is necessary to determine a continuously self-optimizing setpoint. Figure 12

schematically shows a corresponding ML-based process control loop.

Figure 12: Schematic representation of an AI- or ML-based closed-loop feedback system.

Various process feedback systems have already been implemented in different AM processes, 

e.g., to detect defects during the FDM manufacturing process [143], to perform corrections 
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during printing [166], or to avoid time and material losses [167]. Rahman et al. [168] have also 

developed a holistic process and data framework for AM that enables knowledge management 

and information feedback in a closed loop system. Within this framework, all AM sub-pro-

cesses are connected to an information system that captures, stores and analyzes the flow of 

data along the process chain and feeds the knowledge gained back to the respective sub-process 

in a feedback loop for process improvement. Liu et al. [158] have developed a similar system 

consisting of four individual feedback loops for specific subprocesses. Razaviarab et al. [143] 

have implemented a special process control by DL image analyses of process images during 

part fabrication. The results of the analyses are used by an intelligent 3D printer to automatically 

change the manufacturing parameters. A general summary of design and implementation meth-

ods for control systems for AM was presented by Fang et al. [169]. Thereby, it was found that 

the integration of feedback loops significantly improves the reliability and repeatability of an 

AM process as well as the mechanical-physical quality of AM parts [169].  
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3 Conception and implementation

This chapter describes the conceptual structure of the digital quality assurance system. In addi-

tion, this chapter also shows exemplary implementations of solution ideas that go beyond the 

theoretical concept ideas and demonstrate the functionality of the digital quality assurance sys-

tem. Within the framework of a cumulative work, an added value for quality management as 

well as quality assurance in additive manufacturing is created via individual scientific publica-

tions, which offers the users of the technology new possibilities for a qualitatively better, faster 

and more efficient part production. Figure 13 provides an overview of the developed concept 

with current structures (gray-black areas) and digital extensions in the form of exemplary im-

plementation solutions (blue-white areas).

Figure 13: Overview of the conceptual design as well as the developed implementations of the digital quality as-

surance system.

Current AM QM increasingly relies on analog processes (e.g., paper-based documentation) and 

conventional QA with complex and expensive methods. This means that QM and QA are not 

carried out efficiently and with the necessary level of detail, which ultimately leads to partially 

suboptimal printing processes and part qualities. In addition, corresponding quality-relevant 

documentation is usually limited to the processes carried out within a single company. How-

ever, since several companies are usually involved in the AM value and supply chain, quality 
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documentation must be consistent across companies and transparent, tamper-proof and tracea-

ble for all participants. 

The aim was therefore to improve this situation through research in order to achieve a more 

predictable and reproducible quality of AM processes and parts. Based on the existing QM and 

QA processes, a concept was developed that incorporates these areas and expands, links and, 

of necessary, optimizes them with digital solutions. In principle, the investigations carried out 

can be divided into two areas with three objectives. On the one hand, in an overarching block-

chain area with a focus on digital QM and the development of a cross-company blockchain-

based AM part record. The specific aim is to create a transparent, tamper-proof and traceable 

decentralized structure that can be mapped digitally, is cross-company, resource-efficient (in 

terms of cost, effort, time) and expandable. On the other hand, into an AI and ML area with the 

analysis of manufacturing data as well as the development and implementation of intelligent 

algorithms to support conventional QA processes in 3D printing. This is intended to enable fast, 

efficient, cloud and data-based alternatives for QA in AM that allow real-time process analyses 

and can be integrated into the higher-level digital QM. Both together then form the basis for a 

coherent, digital AM quality assurance system that builds on existing QM and QA solutions 

and contains all relevant information and data from the AM value chain and the respective 

transaction processes. The digital mapping of all quality-relevant data of a printed part across 

company boundaries in the digital quality assurance system to be developed should ultimately 

enable fast, automated information distribution of the production data analyzed in real time, 

which in turn allows immediate reactions to the printing process to be derived. This will form 

the basis for future closed-loop feedback systems that can achieve better predictability and re-

producibility in AM processes through automated system parameterization. In addition, exist-

ing concepts such as digital twins as well as centralized, cloud-based data analyses can be inte-

grated into the digital quality assurance system and provide solutions specifically for the rapid 

information feedback of the analyzed data to the 3D printers. Ultimately, this will also enable 

users of the technology to significantly improve part quality and reduce scrap and manufactur-

ing costs in 3D printing. For authorities and certification bodies, the quality assurance system 

will also provide the opportunity to offer accelerated digital certification and qualification pro-

cesses. 

Accordingly, the individual scientific publications present exemplary implementation solutions 

that demonstrate the functionality of the individual aspects of the digital quality assurance sys-

tem. Thus, with a smart contract, the concrete value chain of an AM sample process is linked 

via a web application with a decentralized data storage, a blockchain and interfaces for data 
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input and output. This forms the basic framework of the digital, cross-company QM in the form 

of an AM part record. Using special ML algorithms, two effective data-based QA methods are 

also implemented, each in its own publication, which represent digital alternatives or supple-

ments to conventional QA solutions and also enable real-time analysis of large manufacturing 

datasets. The solutions developed also differ in terms of the type of data analyzed (images and 

sensor data), which illustrates the great potential of data-based quality assurance. Complex neu-

ral networks are used to create a comparable analysis basis for image and sensor data. Specially 

adapted algorithms developed for the AM data at hand are first trained with specially created 

datasets and, after the training phase, independently generate compact quality statements about 

the printing process. Only these extracted analysis results, as well as other quality-relevant data 

and a reference to the storage location of the entire datasets, are then transferred to the digital 

part record, saving time, costs and labor. The analysis results are also reported back to the pro-

duction systems as feedback as part of a closed-loop system in order to be able to react to any 

irregularities detected on site and to be able to optimize the printing process. 

Finally, the AM part record can also be used to create a digital certificate for documentation 

and compliance with special boundary conditions and specifications, which is handed over to 

the part users with the physical AM part. Via this certificate, the user can obtain information 

about the quality and production history of his part at any time. In addition, the part user and 

other parties involved can add further data to the AM part record during the use phase of the 

part up to recycling. All parties involved in the manufacturing process have tamper-proof access 

to the value-added data of the part at all times and can in turn use this data to optimize their 

manufacturing processes. The digital quality assurance system thus offers AM a digitized QM 

process with an integration and holistic view of QA, QC and quality documentation across the 

entire value chain of the part and thus new, previously unavailable possibilities. 
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4 Results 

4.1 Development and implementation of data-based quality assurance methods 

for additive manufacturing (from [I] and [II]) 

The publications [I] and [II] contribute significantly to the first research focus of the dissertation 

with the development and implementation of ML algorithms for data-based and non-destructive 

QA processes in AM. In addition, aspects of data collection, data processing, and data analysis 

of both publications can also be partially attributed to the third focus of the thesis, which is the 

conceptual linking of blockchain-based QM and data-based QA to a real-time digital quality 

assurance system. 

4.1.1 Machine learning architectures for image-based defect detection in selective laser 

sintering (from [I]) 

For the development of ML architectures for image analysis, a small dataset of images of the 

powder bed surface of an SLS printing process (see Figure 14) was first created. A uniformly 

distributed powder bed, without irregularities, is desirable for good quality of the printed parts, 

see e. g. Figure 14 (a) and (c). However, various irregularities can occur in the powder bed, 

such as foreign bodies, part edges, powder accumulations and powder trenches, which are col-

lectively referred to as powder bed defects and are shown in Figure 14 (b) and (d). These powder 

bed defects can lead to deficiencies in part quality and part properties, and even up to quality-

related rejects of parts, but this is to be avoided or reduced by ML. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 14: Image examples from the dataset of a SLS print job with: (a) a powder bed without sintered elements 

and irregularities; (b) a powder bed without sintered elements with irregularities; (c) a powder bed with a sin-

tered element without irregularities and (d) a powder bed with a sintered element and irregularities (according to 

[I], CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)). 

After the dataset was created, the SLS powder bed images were preprocessed for analysis with 

the VGG16 CNN as well as the Xception CNN and enhanced by special data augmentation. 

Subsequently, the selected CNN models were integrated into an ML architecture suitable for 



Results 36

the dataset and for defect detection with pre-trained weights of the ImageNet dataset and a 

transfer learning process. (see Figure 15). In three experiments, a performance analysis of the 

VGG16 and Xception architectures was performed with and without neural network pretraining 

and with and without data augmentation of the dataset to find the most effective ML architecture 

configuration with the best results. The results were then presented and summarized in the form 

of confusion matrices. Additional metrics were derived from the CM to evaluate the perfor-

mance of the CNN models, such as accuracy, precision, and recall. ROC curves and associated 

AUC measures are also useful metrics and were obtained, too.

Figure 15: ML architecture of the transfer learning process with the powder bed data (according to [I], CC BY 

4.0 (https://creativecommons.org/licenses/by/4.0/)).

4.1.2 Performance evaluation of an automatic classification method of powder bed de-

fects (from [I])

The best performance was achieved with a test accuracy of 97.7% and a ROC AUC value of 

0.993 with the pre-trained VGG16 architecture without data augmentation (see Table 5, 2nd

experiment). With 95.8% test accuracy and a ROC AUC value of 0.982, the pre-trained VGG16 

architecture with data augmentation achieves only a slightly worse value (Table 5, 1st experi-

ment). However, this is the only configuration in which the Xception architecture also provides 

comparatively good classification, with 89.4% test accuracy and a ROC AUC value of 0.934.

The ROC curves of all model architectures and configurations correlate with these results and 

are shown in Figure 16. The VGG16 architecture shows higher AUC values in the 1st as well 

as in the 2nd experiment. The AUC values of the Xception architecture are lower, which is 
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reflected in flatter ROC curves. This diagram also clearly shows that no classification took 

place in the 3rd experiment and that the ROC curves basically correspond to a random guessing. 

Table 5: Confusion matrices and performance parameters for the examined CNN architectures for the classifica-

tion of powder bed defects at the SLS process for all experiments carried out (according to [I], CC BY 4.0 

(https://creativecommons.org/licenses/by/4.0/)). 

Experi-
ment 

Model Confusion    
Matrix 

Accuracy Precision Recall 
(TPR) 

FPR F1-
Score 

ROC-
AUC 

1st 
VGG16 490 

32 
10 

468 0.958 0.980 0.939 0.021 0.959 0.982 

Xception 459 
65 

41 
435 0.894 0.918 0.876 0.086 0.897 0.934 

2nd 
VGG16 496 

19 
4 

481 0.977 0.992 0.963 0.008 0.977 0.993 

Xception 500 
500 

0 
0 0.500 1.000 0.500 0.500 0.667 0.514 

3rd 
VGG16 180 

165 
320 
335 0.515 0.360 0.522 0.489 0.426 0.525 

Xception 500 
500 

0 
0 0.500 1.000 0.500 0.500 0.667 0.526 

 

  
Figure 16: ROC curves and AUC metrics of the implemented models. The dashed lines represent the ROC curve 

of a completely random classifier and that of a perfect classifier. Plot of the ROC curves of the implemented 

models (left) and zoomed in version of the top part plots (right) (according to [I], CC BY 4.0 (https://crea-

tivecommons.org/licenses/by/4.0/)). 

Finally, for a better visual explanation of the results, a Grad-CAM representation was created 

for selected test images. For this purpose, the activation maps of the pre-trained VGG16 and 

Xception models are presented and highlighted based on the gradients of the last convolutional 

layer. Here, the areas of the image that are most interesting for the algorithms' decision making 

are highlighted in red and the fewer interesting areas are highlighted in blue (see Figure 17). 

Thus, under certain conditions (pre-training and data augmentation), both ML architectures 
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investigated are in principle capable of detecting and localizing irregularities in the powder bed, 

with the VGG16 model architecture performing better overall than the Xception architecture. 

    

 

(VGG16) 

 

(VGG16 Grad-

CAM) 

 

(Xception) 

 

(Xception Grad-

CAM) 
Figure 17: Activation maps for powder bed recordings during the SLS process with visible powder bed defects 

(according to [I], CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)). Defects were detected and local-

ized by the CNN architectures. With the VGG16 model, a more precise localization of the effects could be 

achieved than with the Xception model. 

4.1.3 Machine learning algorithms for sensor-based data classification in fused deposi-

tion modelling (from [II]) 

Complementing the image-based ML defect analysis, a completely different type of data was 

also investigated and thus an intelligent classification of sensor data by ML algorithms was 

developed. For this, the environmental process parameters temperature, humidity, air pressure 

and gas particles, which were recorded via an environmental sensor during several, differently 

parameterized FDM prints, were sequenced according to a newly developed data pre-processing 

strategy (see Figure 18) and pre-classified into different 3D printing conditions. A sensitivity 

analysis was then performed to determine the relevance of each recorded sensor parameter to 

the ML analyses, with atmospheric pressure having the greatest impact on classification. 
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Figure 18: Data preprocessing steps carried out for the ML investigations with the environmental sensor data (ac-

cording to [II], Copyright Elsevier).

The sequenced data from the datasets of each FDM print job were then stored in a larger, un-

balanced dataset (main dataset) and a smaller, balanced dataset (ablation dataset). An unbal-

anced dataset is more likely to reflect the reality of printing, as the printing process is always 

optimized for a good print result and thus more good data sequences are available. A balanced 

dataset provides more detailed insights into the effectiveness of ML analyses. Both datasets 

then served as the basis for data analyses based on a supervised learning classification approach, 

in which individual 3D printing states were classified based on specific features resulting from 

the partially different process parameterization (see Table 6) in the sequenced data runs by 

various state-of-the-art ML algorithms.

Table 6:FDM process characteristics for different 3D printing conditions (see full table in publication [II], Copy-

right Elsevier).

3D printing condition normal_01 defect_01 defect_02 defect_03 defect_04 defect_05

FDM process characteristic optimal
settings

old
filament

new
nozzle

higher
temperature

higher
speed

blocked
nozzle

In the studies, ML models of different complexity were then implemented in a comparable and 

reproducible manner with a uniform process flow and trained with (1st experiment) or without

(2nd experiment) the weighty air pressure parameters. Purely in terms of classification results, 

all the ML algorithms studied perform very well on the larger main dataset, with accuracies 

ranging from 94.7% to 99.9% (see Table 7).

Table 7:Performance metrics for ML algorithms for the classification of sensor data at the FDM process for all 

investigations with the main dataset (the full table can be found in publication [II], Copyright Elsevier).

Experi-
ment

Model Accuracy Macro Avg
Precision

Macro Avg
Recall

Macro
F1-Score

Time
[mm:ss]

1st MLP 0.999 0.999 0.998 0.999 00:20
1D CNN 0.999 0.999 0.999 0.999 09:01
RNN LSTM 0.991 0.986 0.989 0.988 17:23
InceptionTime 0.999 0.999 0.999 0.999 39:16
XceptionTime 0.997 0.997 0.996 0.997 38:03
XCM 0.999 0.999 0.999 0.999 19:15
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2nd MLP 0.947 0.968 0.938 0.952 00:20 
1D CNN 0.952 0.976 0.941 0.958 08:47 
RNN LSTM 0.989 0.985 0.987 0.986 16:39 
InceptionTime 0.953 0.976 0.942 0.959 37:21 
XceptionTime 0.952 0.977 0.941 0.959 37:41 
XCM 0.951 0.975 0.941 0.957 15:01 

 
However, this is not confirmed in the accuracy and loss curves of the training and validation 

data, especially for the second experiment without the air pressure values (see Figure 19). With 

the exception of the XceptionTime algorithm, the validation loss curves are very noisy and no 

longer decrease steadily, but increase again after some time. This is characteristic for overfitting 

and indicates that the algorithms cannot apply the learned information to new, unknown vali-

dation data. Exceptions are the XceptionTime and the RNN algorithm. Both algorithms 

achieved the best results overall with high performance metrics and good robustness against 

overfitting. 

 

 

 

 

 

 

Figure 19: Training and validation loss plots of the used ML algorithms with the main dataset (according to [II], 

Copyright Elsevier). 

The effectiveness of the XceptionTime as well as the RNN algorithm was then validated again 

with the ablation dataset in two experiments, with and without air pressure values, but only the 

XceptionTime algorithm achieved very good classification results with about 97.0% accuracy 

as well as excellent training and validation loss results (see Table 8 and Figure 20). In this way, 

an effective classification of 3D printing condition classes could be enabled. As a further result 

of the investigations, however, it was also found that the computing times of the individual 
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algorithms increase with increasing complexity and that XceptionTime in particular required 

the most computing time. 

Table 8: Performance metrics for the RNN LSTM and XceptionTime algorithm for the classification of sensor 

data at the FDM process for all investigations with the ablation dataset (see full table in publication [II], Copy-

right Elsevier). 

Experi-
ment 

Model Accuracy Macro Avg 
Precision 

Macro Avg 
Recall 

Macro 
F1-Score 

Time 
[mm:ss] 

1st RNN LSTM 0.741 0.750 0.632 0.686 03:41 
XceptionTime 0.972 0.973 0.827 0.894 07:17 

2nd RNN LSTM 0.676 0.683 0.670 0.676 03:16 
XceptionTime 0.969 0.970 0.830 0.895 07:09 

 

 

 

 

Figure 20: Training and validation loss plots of the RNN LSTM (left) and XceptionTime (right) algorithms with 

the ablation dataset (according to [II], Copyright Elsevier). 

4.1.4 Evaluation of a proof of concept data analysis method for classifying 3D printing 

conditions (from [II]) 

In a first proof of concept, the results of the promising XceptionTime data analyses were com-

pared with optical 3D scan part quality investigations. For this purpose, the FDM components 

printed during the individual print jobs were first optically scanned and compared with their 

CAD reference geometry in order to subsequently determine the dimensional deviations result-

ing from the printing process and also to be able to derive the 3D printing condition classes (see 

Figure 21). However, the dimensional deviations in the 3D printing conditions studied are usu-

ally relatively small and difficult to detect visually. 

Yellow and green areas in the 3D scans represent very small to small negative deviations, blue 

areas visualize larger negative deviations compared to the CAD reference and red areas maxi-

mum positive deviations. Gray areas could not be detected by the scanner. The set 3D printing 
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conditions with the associated FDM process properties can be found in Table 6. All 3D scans, 

with the exception of defect_05, look very similar at first glance. Only a closer look reveals 

minor deviations. The "normal_01" print condition forms the reference with optimum print set-

tings and a maximum deviation of +0.10 mm to -0.32 mm. In comparison, the "defect_01" print 

condition has a slightly higher negative deviation of -0.34 mm. The 3D printing conditions 

"defective_02′′ and "defective_03′′ again show slightly higher positive deviations of +0.11 mm 

to "normal_01′′, but are visually indistinguishable from each other. The "defect_04" condition 

deviates slightly more from the optimal conditions, both positively with +0.15 mm and nega-

tively with -0.35 mm. Overall, the differentiation of 3D printed conditions based on the 3D 

optical scans is difficult. The results of ML data analysis of environmental sensor data show a 

more effective alternative in this respect.

(normal_01) (defect_01) (defect_02)

(defect_03) (defect_04) (defect_05)

Figure 21: Dimensional control with an optical 3D light scanner to compare the quality of the printed parts with 

the different printing conditions (according to [II], CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)).

4.2 Blockchain-based additive manufacturing quality management (from [III])

The publication [III] addresses the second research focus of this dissertation, the development 

and exemplary implementation of a blockchain-based, cross-company digital QM for all qual-

ity-relevant data in the AM value chain. In addition, the third research focus of this thesis, the 

conceptual linking of blockchain-based QM and data-based QA to a digital quality assurance 

system, is again addressed in detail.
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4.2.1 Development and implementation of a basic digital quality assurance concept as 

a blockchain-based additive manufacturing part record (from [III]) 

ML analyses of image and sensor data leads to large volumes of data, analysis results and qual-

ity insights that need to be managed securely, traceably and increasingly digitally inside and 

outside of a single company as part of QM and QA. For this purpose, this data must also be set 

in relation to the existing QM as well as the conventional QA in AM and merged with the 

present structure. To this end, a concept was developed (refer also section 3) that digitally maps 

the value chain of the metal FDM process via a dApp based on a smart contract and blockchain-

based as well as decentralized data processing and data storage solutions. The objective here is 

to digitally record the data of all physical and digital manufacturing process steps as part of an 

overarching digital quality assurance system. This quality assurance system was implemented 

as a prototype in the form of a digital AM part record in which all quality-relevant data of an 

additively manufactured part are summarized in a tamper-proof, traceable and transparently 

accessible manner. The manufacturing documentation of the digital AM part record for a me-

tallic FDM part was thereby divided into four processes with the associated data (see Figure 

22). In a development, manufacturing, sintering and control process, quality-relevant data is 

recorded, collected in special documents and stored cryptographically in the decentralized off-

chain storage system IPFS. References to the file storage location, as well as specific manufac-

turing data and events of all participants, are also captured via a smart contract and then stored 

separately as well as automatically on the Ropsten Ethereum testnet blockchain on-chain. Via 

the blockchain explorer Ropsten Etherscan, the current on-chain part data is available to the 

customer or downstream service providers after each manufacturing process. 

The general architecture of the AM part record is based on the value chain of the metal FDM 

process and consists, on the manufacturing side, of the QM and QA of the parties involved in 

the value creation, of a dAapp composed of web application, decentralized storage, blockchain 

and smart contract, of the transport transactions as well as, on the customer side, of the manu-

factured AM part, the transparent access to the quality documentation data via the blockchain 

explorer Ropsten Etherscan as well as the final acceptance decision of the customer (Figure 

23). Within this architecture, all involved actors, applications and processes of the digital AM 

part record, as well as their respective interactions with each other, are digitally linked. 
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Figure 22: Manufacturing processes of a digital, secure and trustworthy AM part record with important parame-

ters to be stored on a blockchain (according to [III], CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/)).

Figure 23: Architecture and process flow for the proposed blockchain-based digital AM part record.

The digital implementation of the developed quality assurance system as an AM part record 

was usefully shown in a demonstration study on a metal FDM process. All system components 
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and processes were successfully tested and evaluated using three sample parts. Ultimately, all 

quality-relevant data of the AM value chain of the parts under consideration were digitally rec-

orded and stored decentrally in individual part records. The references to the decentralized stor-

age locations as well as specific process events were successfully captured via a smart contract 

and automatically stored on the Ropsten Ethereum Blockchain. Via Ropsten Etherscan, this on-

chain information can be retrieved at any time in a transparent, traceable and tamper-proof 

manner by specifying the address of the smart contract. 

In addition, concrete objectives were defined, which could also be almost completely imple-

mented with the digital quality assurance system, to enable an evaluation of the AM part record 

with regard to digital integrity, costs, efficiency, traceability, availability and expandability. It 

was shown that the AM part record enables both digitized part and FDM process documentation 

as well as decentralized storage of conventional quality documentation processes (e.g. paper-

based logs and certificates, etc.) across multiple companies. The costs incurred in the process 

were evaluated and documented in the demonstration study using an example part. Depending 

on the blockchain used as well as the data traffic available there at the time of data storage, 

transaction costs of approximately €17.72 were incurred. The AM part record thus offers an 

economical alternative or relatively low-cost supplement to existing solutions, such as time-

consuming paper-based documentation processes or expensive process management software. 

However, the solution is not yet effective enough, especially for decentralized storage of large 

amounts of data. For this aspect, the AM part record must still be conceptually expanded and 

implemented accordingly in the future. In this context, a concept was first developed that rep-

resents an intelligent evaluation of manufacturing data by means of ML algorithms and only 

stores the results of the analyses decentrally. The actual manufacturing datasets are stored cen-

trally. With regard to traceability, it could be shown once again that a detailed, traceable and 

tamper-proof documentation of the entire value chain and the information flow is possible 

through the AM part record. In addition, this form of quality assurance offers constant and 

location-independent availability of data as well as relatively fast updating of production and 

quality information for all parties involved. Finally, the AM part record also has good expansion 

possibilities. By integrating certification facilities and regulatory authorities into the digital pro-

cess flow, certification processes for AM parts could be simplified or accelerated, for example, 

by providing these parties with digital access to the QA data immediately after decentralized 

storage. 
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4.2.2 Integration of machine learning methods and blockchain technology into a digital 

quality assurance system for additive manufacturing (from [I] - [III]) 

Conventional QA methods (e.g., checklists and reports) have already been considered in the 

development of the AM part record as well as in the printing of sample parts as part of the 

demonstration study. In data-driven QA, e.g. through ML analyses, key elements such as data 

acquisition and data storage have also already been considered. Analogous to the image analysis 

in the SLS process, here images of each individual FDM print layer were captured via a camera, 

and also analogous to the FDM environmental data analysis, in-situ process data were captured 

via an environmental sensor. The data generated in the process very quickly comprises several 

gigabytes of storage capacity, which rules out storage on the blockchain from the outset due to 

storage limits and costs. Decentralized storage of large amounts of data has also been shown in 

the studies to be inefficient and unsustainable due to cryptographic security principles involved 

in frequent digital transmission and duplication of data. Instead, the FDM manufacturing data 

was stored on a central server and only the online address of the records was noted in the AM 

part record. 

Based on this, a more efficient solution was conceptually discussed, which also considers the 

data analysis and the storage of the ML-based analysis results in the AM part record. Here, 

manufacturing data is captured outside the AM part record by the manufacturing company (e.g., 

in a digital twin), stored locally and analyzed by ML algorithms, and only the analysis results 

extracted from the data are then stored decentrally in the part record and shared with other 

stakeholders. This eliminates the need for decentralized storage of large amounts of manufac-

turing data, which significantly improves the efficiency and sustainability of the part record. 

With an adapted data processing structure, corresponding ML analyses can thus also be carried 

out in real time and process irregularities and quality defects can be quickly detected. As part 

of a closed-loop quality control system, the printing process can then be automatically opti-

mized via direct process feedback. To do this, trusted sensors that are constantly connected to 

the Internet must send sensor data in a traceable and near real-time manner to a cloud-based 

database, where it is evaluated directly via automated analysis scripts and pre-trained AI algo-

rithms. The results can then be retrieved in real time and alarms triggered directly when thresh-

olds are exceeded or sensor signals are absent. In turn, these messages must be automatically 

captured via an extended smart contract and stored on-chain on a blockchain. Ultimately, the 

data remains local in the cloud and only the analysis results are stored in the AM component 

file.  
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5 Discussion 

In this chapter, the three main research areas of the thesis are discussed. For this purpose, the 

results from the attached publications are considered and related to the overall objective of the 

dissertation. 

5.1 Development of non-destructive quality assurance methods for additive 

manufacturing processes based on machine learning (from [I] and [II]) 

During the investigations on non-destructive quality assurance with methods of artificial intel-

ligence, findings were obtained in the publications [I] and [II], which on the one hand can be 

assigned to AM as well as especially to the QA of AM processes, but on the other hand also 

provide information on the development of ML algorithms. In section 5.1.1, these aspects are 

subsequently considered based on the findings from [I]. Section 5.1.2 discusses the individual 

findings based on the results from [II]. 

5.1.1 Machine learning for defect detection in selective laser sintering 

The ML-based method for defect detection of powder bed images during selective laser sinter-

ing delivers excellent results, so that it enables in principle a very well-functioning non-destruc-

tive quality assurance of AM parts. From the results of the 1st experiment in Table 5 with algo-

rithm pre-training and data augmentation, it can be concluded that the VGG16 model architec-

ture has better performance than the Xception architecture. Thus, the developed VGG16 CNN 

architecture is more suitable for making predictions about the quality of unseen powder bed 

images. 

The results of each experiment from Table 5 show the influence of pre-training and data aug-

mentation on model performance. The results of the 2nd experiment show that the pre-trained 

VGG16 model without data augmentation even achieves slightly better performance metrics 

than the 1st experiment with data augmentation. This is basically understandable, since the data 

augmentation extends the relatively small image dataset in the 1st experiment by special opera-

tions (image rotation, image mirroring, etc.) and thus has a larger training base with increased 

complexity and lower similarity of the individual images compared to the 2nd experiment, which 

ultimately complicates the image classification for the ML models. According to Chollet [100], 

this is also a desired effect to allow better generalization of the models and to avoid overfitting. 

For the Xception model, it is obvious in the 2nd experiment that no learning effect has occurred 

and the model cannot classify the data without data augmentation. This is due to overfitting, 

which may have occurred because the model learned misleading or irrelevant information for 

classification during training, or because it has a too complex structure to learn from a smaller 
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database. A similar behavior is seen for both ML models in the 3rd experiment, where there was 

no pre-training but again data augmentation. With both model architectures, no learning suc-

cesses could be achieved, which can also be attributed to overfitting, which probably also oc-

curred here due to the too small data basis as well as a too short training time. 

So, in summary, the presented method with data augmentation and a pre-training with the 

ImageNet dataset is beneficial to achieve better classification results and to implement more 

robust models. Data augmentation effectively avoids overfitting by increasing the size of the 

database and the complexity of the data. Pre-training with the weights from the ImageNet da-

taset also saves significant computational effort, since it has already been done there and the 

models can build on it. Furthermore, it could be shown that both investigated CNN model ar-

chitectures can learn features from the image data as described in the literature (see also Figure 

10 as an example) in order to be able to automatically evaluate the quality of the powder bed 

images afterwards. This can provide data-based support for conventional QA of additively man-

ufactured parts, e.g. as a supplement to downstream, non-destructive evaluation of part quality 

or also as in-situ monitoring of the AM process. 

The activation maps created were also used to show how the algorithms identify and locate the 

defects in the powder bed. Figure 17 again shows that the VGG16 model architecture was able 

to identify the defects more accurately than the Xception architecture and is therefore more 

suitable for image analysis for QA in SLS. One reason for the better performance could ulti-

mately be the complexity of the model. The VGG16 model used has a large number of model 

parameters (about 138 million) distributed over relatively few model layers (23), which allows 

a very detailed analysis of the image data [170]. The Xception model comprises significantly 

fewer parameters (approx. 23 million), which are distributed over much more layers (126) 

[171]. Because of this deeper model structure, the Xception model also requires a larger amount 

of data to learn sufficiently. 

Accordingly, the lack of available data was a major problem in the developed ML classification 

of powder bed defects. Usually DL models are trained with several 10000 image data [114]. 

Training CNN with a small dataset of a few 1000 images can easily lead to inaccurate classifi-

cations and affect the generalization ability of the models. The imbalance of the dataset with a 

lack of defect images is also seen as limiting in the studies. The performance of the presented 

models could be increased if more images with visible powder bed defects were available. 

However, to evaluate whether more data actually lead to better and more resource-efficient 

results, further studies should first perform a so-called ablation study [172]. 
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In addition to the lack of data, another difficulty with these studies was the interpretation of the 

visualization results of the CNN models. A deeper understanding of the visual properties of a 

digital image and the individual convolutional operations within the neural networks is required 

to explain the predictions and visualization results in detail. The resulting activation maps were 

included in this context and analyzed in a basic way, but further explanation is needed to un-

derstand why the model emphasizes certain areas of the picture. These interpretation issues 

should be further investigated in the future, especially with larger datasets. 

5.1.2 Machine learning for intelligent data analysis in fused deposition modelling 

In addition to image analysis of SLS powder bed images, a second data-based ML method was 

developed to also use sensor data to support conventional QA processes and to classify them 

intelligently and automatically into special printing condition classes using FDM printing as an 

example. Based on the results of the SLS image analyses, extensive datasets were directly cre-

ated here and an ablation study was performed. 

With the experimental setup for data acquisition, various environmental sensor data such as air 

pressure, humidity, temperature and special gas particles can be recorded directly at the extruder 

during the FDM process and further processed in a simple way. Analysis of the acquired and 

pre-processed data is then possible through a supervised learning classification approach using 

state of the art ML algorithms. Thus, different 3D printing conditions can be characterized and 

used for effective training of ML algorithms. Finally, the trained ML algorithms enable auto-

matic classification of the environmental sensor data into appropriate 3D printing condition 

classes. 

Not all environmental sensor data are equally important for ML analyses in this context. A 

sensitivity analysis carried out showed that AM-relevant process parameters can have different 

significance in the ML context. In particular, barometric air pressure is usually not of great 

importance for the printing process, but it is for the ML analyses. In the studies conducted here, 

it was the most relevant, followed by humidity, temperature, and gas particles. It should be 

noted that the use of an open 3D printing system means that the external environmental influ-

ence on the data is more pronounced and thus changes in environmental conditions can be more 

strongly reflected in the ML analyses than in a closed system. However, the strong relevance 

of barometric air pressure to the ML analyses is ultimately understandable because the patterns 

in this sensor parameter are relatively pronounced and thus dominant. Air pressure is always 

fairly constant, and even small variations or differences in pressure between individual data 

sequences are clearly visible to the algorithms. All other environmental parameters are noisy 

and the patterns in them are less clearly visible. 



Discussion 50 

 

The importance of air pressure is evident in the results of the experiments conducted with and 

without the barometric air pressure data included in the analyses (see Table 7 and Table 8). The 

inclusion of the air pressure values irrelevant for the AM process (1st experiment) initially in-

creases the calculation effort slightly in principle. However, the performance of the ML algo-

rithms without the air pressure data (2nd experiment) is always worse and tends to overfitting. 

Thus, the barometric air pressure parameters basically have a stabilizing influence on the anal-

yses and contribute to a better generalization of the studied ML architecture. This in turn ulti-

mately has a positive effect on the classification of new, unknown data. Therefore, despite a 

somewhat higher resource consumption, it may make sense to collect as many process param-

eters as possible with little effort in order to first investigate their respective relevance for ML 

analyses and their influence on their generalization capability. 

Furthermore, the investigations with the main dataset show that all algorithms classify similarly 

well (see Table 7), whereby simpler algorithms require significantly shorter computing times 

and are therefore more resource-efficient. However, considering the susceptibility to overfitting 

(see Figure 19), only two algorithms, the simpler RNN LSTM and the more complex Xception-

Time, achieve really good results with effective classification. But, this effectiveness could only 

be confirmed for XceptionTime in the ablation study with the smaller ablation dataset (see Ta-

ble 8). This modern algorithm copes with less and at the same time more differentiated data 

much better than the RNN LSTM, where no classification took place and already in the 1st 

experiment (with the stabilizing air pressure values) an overfitting of the training data occurred 

(see Figure 20). In accordance with this finding, the following further conclusions can be de-

rived specifically from the ablation study performed: 

• For effective classification of sensor parameter sequences, larger datasets with as 

many recorded sensor parameters as possible are useful. 

• For small datasets, modern and more complex ML algorithms are more effective than 

simple algorithms in classifying sensor data sequences. 

• With little data and no air pressure values, the XceptionTime algorithm classifies very 

effectively and is also robust against overfitting. 

• XceptionTime also generalizes very well with more complex data and basically al-

lows effective classification of 3D printing conditions with environmental sensor data. 

Overall, the results of the ML analyses can make a productive contribution to QA in AM. The 

trained algorithms can, for example, analyze data in parallel with process monitoring and pro-

vide information relatively quickly about the current and further expected print quality. Fur-

thermore, based on the presented ML analysis method, intelligent online services can be 



Discussion 51 

 

developed in the future that interact with 3D printers connected via the Internet and continu-

ously monitor the printing process as well as automatically optimize it. In addition, the gener-

ated ML results can also serve as a supplement to conventional QA or even replace established 

quality assurance procedures such as optical 3D scans. A 3D scan can usually only be used 

superficially and only after the part has been manufactured, and is also very poor at distinguish-

ing between different printing conditions. ML, on the other hand, is much better suited to clas-

sify printing conditions with special algorithms. Corresponding ML analyses also enable QC 

for external as well as internal part structures and can be performed faster, more precisely, more 

simply and integrated into production. ML data analysis are also non-destructive, relatively 

inexpensive to implement, and enable process-integrated, 100% QC as well as documentation 

in near real-time. 

However, for a corresponding industrial application of the presented methods, improved and 

increasingly automated data processing and data analysis procedures must first be developed. 

In addition, more and more diverse 3D printing data needs to be included in the algorithms' 

database to ensure a more robust classification. Finally, in view of the constantly growing vol-

umes of data, aspects of data management must also be considered. 

5.2 Development of digital quality management for additive manufacturing 

based on blockchain technology (from [III]) 

The management of manufacturing data was considered in the development of the digital qual-

ity assurance system in the publication [III]. In this context, the combination of AM and block-

chain technology for quality improvement was also fundamentally investigated and a block-

chain-based QM for digitally mapping the value chain of a metal FDM process was initially 

designed. In the course of this, all physical and digital data of the individual manufacturing 

process steps, in particular also image and sensor datasets for ML analyses, are also recorded. 

The digital quality assurance system was then implemented as a prototype in the form of an 

AM part record, based on the concept of a digital QM (see also section 3, Figure 13), and vali-

dated in a demonstration study on three concrete part examples. In this context, the AM part 

record represents the practically implemented and functional development status of the digital 

quality assurance system, which in principle enables cross-company digital QM of data along 

the entire AM value chain and also includes data from conventional and data-based QA meth-

ods. The definition and implementation of concrete goals, which are to be achieved with the 

new digital quality assurance system and have also been largely achieved so far, show that the 

quality of AM can already be fundamentally increased through the use of the AM part record. 
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Due to the unchangeable storage of all manufacturing-relevant events and protocols on-chain 

on the blockchain or traceable and tamper-proof off-chain in the IPFS, every transaction and 

documentation of the FDM value chain can be digitally tracked and traced. This enables, for 

example, detailed process reproducibility and repeatability, a high degree of certainty with re-

gard to process conformity (to standards, guidelines, customer specifications, etc.) and in-

creased confidence in manufacturing and supply chains (with regard to the raw materials used, 

qualification of the employees deployed, compliance with time specifications, etc.). In addition, 

the data is no longer managed centrally by one party, but decentrally by its respective originator. 

In this way, the originator can determine for himself with whom he shares which data, which 

ultimately makes data manipulation more difficult and also serves data security. Moreover, the 

risk of complete data loss is reduced because if one storage location fails, the data is still avail-

able elsewhere. However, the technological implementation is initially relatively demanding 

and even a good implementation of the solution then still depends on physically correct and 

conscientiously executed processes. Furthermore, the storage of erroneous information in the 

blockchain cannot be automatically prevented, so that these errors are subsequently documented 

in an immutable manner. 

The cost analysis of the entire production documentation according to the functions defined in 

the smart contract shows the cost efficiency of the digital documentation process. The creation 

of a smart contract, the execution of a transaction, and the storage of data on the blockchain 

incur costs in this context. Here, the creation of the smart contract is the most expensive step, 

all other costs are comparatively low. The entire documentation of a metal FDM sample part 

according to the prototypically implemented digital quality assurance system generates an ad-

ditional financial burden for QA processes in the amount of €17.66, which is distributed among 

all parties involved in the manufacturing process and the smart contract. For smaller, low-cost 

parts, this is a major cost point in conjunction with the normal manufacturing effort. For expen-

sive parts with higher unit costs, however, this is less significant, so that the AM part reord 

represents an economical solution for the digital management of quality data here in particular. 

In addition to the pure costs, there are also other aspects to be considered. For example, the use 

of the AM part record enables transparency and security between the individual parties, it re-

duces the coordination and discussion effort through automatically executed transactions, and 

it avoids miscommunication and unnecessary consumption of resources by being able to react 

to changing boundary conditions and errors at an early stage. Ultimately, the solution is only 

implemented as a prototype and still needs to be adapted for a performant function. The use of 

another blockchain network should also be provided for, as the Ropsten test network is only for 
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development purposes. Faster blockchain networks such as Hyperledger [173] or Polygon 

(MATIC) [174] are recommended as alternatives. 

When a smart contract function is executed, the blockchain address of the function caller is 

always stored securely in the blockchain. The function caller can then be tracked at any time 

and is accountable for his actions [175]. This means that all those involved in the value chain 

already have detailed digital documentation of the transaction processes during the manufac-

turing process, which can be used to quickly identify the individual responsibilities in the event 

of irregularities. However, it should be noted that the developed AM part record currently works 

with the publicly available Ropsten Ethereum blockchain and, accordingly, privacy, confiden-

tiality, and trade secret issues must be considered. This is because the information stored on the 

blockchain is cryptographically secured in principle, but in the current concept it can be de-

crypted by a specially programmed function in the smart contract. In this regard, the future use 

of a private blockchain such as Hyperledger or the use of a transparent zero-knowledge proof 

system such as ZK-STARK [176] could contribute to both better data protection and greater 

acceptance of the developed AM part record. 

The transaction processes and all other on-chain data are stored decentrally on the network 

nodes involved in the network. This means that the information is redundantly backed up and 

is still accessible even if a node fails. With the blockchain explorer Etherscan, this data can be 

accessed at any time and from any location via the Internet. The fast update of the data depends 

on the execution of the functions in the smart contract. In principle, digital documentation can 

therefore take place immediately after the physical process has been carried out and can also be 

viewed via Etherscan within a few seconds. This is much more effective than conventional 

procedures, which require agreements to be made, data to be exchanged, partners to be informed 

and, if necessary, authorized to view the data. In addition to data protection aspects and the 

public accessibility of the data, however, it must also be considered that the blockchain network 

is generally not self-governing and that unwanted changes, e.g., through updates, can occur at 

any time. 

Overall, the digital quality assurance system therefore currently covers only specific documen-

tation and storage processes on-chain. However, the system can be extended. For example, reg-

ulatory stakeholder (authorities) or certification bodies can also be integrated into the digital 

quality assurance system. They will then also have transparent, traceable and secure access to 

manufacturing and quality information, on the basis of which part certificates or process quali-

fications can subsequently be issued more quickly and easily. In order to make this possible, 

the AM part record must find sufficient acceptance in the AM industry and be able to represent 
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as many AM processes and procedures as possible in a suitable manner. Furthermore, legal 

foundations for data protection must be clarified and solutions found for the lack of control over 

the blockchain network. 

5.3 Digital quality assurance system consisting of data-based quality assurance 

and digitalized quality management (from [I] - [III]) 

In addition to general acceptance, the functionality and efficiency of the digital quality assur-

ance system are very important to be considered as a serious alternative for industrial AM ap-

plications. Functionally, an attempt was already made during the development of the AM part 

record to enable a combination of blockchain-based QM and data-based QA through ML anal-

yses, and at least to map the data into the AM part record as well. However, this has proven to 

be inadvisable in terms of efficiency, as the resulting data volumes are too large to store effec-

tively and sustainably on- or off-chain. There are also still limitations in the real-time evaluation 

of the decentrally stored data, both in this respect and in general [177]. 

For this reason, a more efficient solution was designed in which data-based QA acts as a link 

between conventional QM or QA and AM part record (see section 3, Figure 13). Thus, in the 

future, an intelligent evaluation of manufacturing data is to be carried out by ML algorithms, 

as has already been demonstrated in principle for image and data analyses in the SLS and FDM 

process. The adaptation and optimization of the algorithms developed in [I] and [II] in combi-

nation with the building of a comprehensive AM training database can enable an intelligent and 

automated evaluation of large amounts of data, extracting from the data of a manufacturing 

process an overall result in terms of part and process quality, which is subsequently stored in 

the AM part record. This eliminates the need for decentralized storage of large amounts of 

manufacturing data, which would greatly improve the efficiency of the AM part record. Large 

amounts of manufacturing data can then be stored locally as part of a digital twin, and stored as 

before with a reference to the storage location in the part record. With powerful AI algorithms, 

automated real-time analysis of AM process data is then already possible during the manufac-

turing process to quickly detect the occurrence of quality defects and process irregularities and 

automatically correct them as part of closed-loop control by optimizing the process parameters. 

In the future, in order to make this local process secure and traceable, the datasets and data 

analytics must also be included in some form in the AM part record. Sensor data can be 

streamed to a cloud and monitored in near real-time via special, trusted sensors that are always 

connected to the internet. In the cloud, the data can then be evaluated directly by automated 

analysis scripts and pre-trained AI algorithms and the results visualized. The exceeding of 

threshold values, the detection of critical part defects or the failure of sensor signals can then 
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trigger an alarm message, which in turn is stored transparently in the AM part record. In prin-

ciple, the large datasets and extensive analysis results remain locally in the cloud and only the 

extracted alarm messages with references to further information are stored on the blockchain in 

the event of irregularities. In this way, production data can be recorded immediately in the 

future based on the adapted digital quality assurance system, evaluated and displayed almost in 

real time based on data, and at the same time documented securely, transparently and digitally. 

5.4 Summary and delimitation 

In this cumulative work, a digital quality assurance system for AM was developed that extends 

existing QM and QA processes with digital solutions based on blockchain technology and ML 

methods. To this end, an overall concept was first developed that combines the general AM 

value chain and the current QM and QA structures with a complementary digital QM and data-

based QA based on ML. The functionality of the digital quality assurance system was then 

demonstrated and evaluated in detail in individual scientific publications through the practical 

implementation of sample solutions. For this purpose, the digital QM was implemented in the 

form of an AM part record based on blockchain technology, which can be used to digitally map 

the AM value chain across company boundaries. In the context of data-based QA, two different 

implementation examples for selected AM processes were presented. Thus, an image-based 

defect detection for the SLS process and a completely different sensor-based print condition 

classification for the FDM process were developed and successfully implemented. The inves-

tigations show that the implemented solutions offer new possibilities for all quality-relevant 

AM aspects, both individually and in the context of the overall system, and contribute to a more 

predictable and reproducible 3D printing process. 

However, the digital quality assurance system is currently limited to the ML solutions and AM 

processes under study. Extensive investigations on possibly more efficient ML approaches as 

well as the implementation on further AM processes are no longer part of this work. Neverthe-

less, the transferability of the digital quality assurance system to other AM procedures is possi-

ble with isolated adaptations. In the developed digital quality assurance system there are cur-

rently also further technological limits in the areas of data processing and data storage, the 

optimization of which outside the implementation examples is also no longer part of this work. 

But even these limits can be overcome in the future through conceptual adjustments. 
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6 Conclusions 

Digital technologies such as blockchain or artificial intelligence (AI) systems have great dis-

ruptive potential to improve the quality of additive manufacturing (AM) and the repeatability 

and reproducibility of AM processes with new methods and procedures. Different machine 

learning (ML) algorithms have already been studied in the literature in this context, but could 

not show detailed implementations as quality assurance processes. A blockchain-based AM 

quality management that digitally maps the entire value chain of an AM process has not even 

been explored yet. 

In this work, a digital quality assurance system for AM is developed based on blockchain-based 

quality management (QM) and data-based quality assurance (QA) through ML analyses. With 

the implementation of data-based QA methods, a blockchain-based QM and the conceptual 

linking of both aspects, three main areas of investigation were addressed in this context.  

In this regard, different ML algorithms for data-based QA were first developed, implemented 

and evaluated with respect to their performance. The suitability of special convolutional neural 

networks (CNN) such as VGG16 for defect detection and image classification in powder bed 

images in selective laser sintering (SLS) has been demonstrated, as well as the effectiveness of 

state-of-the-art ML algorithms such as XceptionTime for the classification of sequenced envi-

ronmental sensor data in fused deposition modeling (FDM). Effective implementations of these 

algorithms may ultimately provide complementary or alternative methods for nondestructive 

in-situ QA. 

Based on this, a digital, cross-company and blockchain-based quality assurance system for AM 

was conceptualized and prototypically implemented as an AM part record for the value chain 

of a metal-based FDM process. For this purpose, a digital QM consisting of a web application 

for data collection, a decentralized data storage, a smart contract for automated processing of 

manufacturing events and an Ethereum Blockchain for data documentation was developed first. 

The solution, declared as an AM part record, thus enables digital QM with transparent, tamper-

proof and traceable documentation of all quality information along the AM value chain based 

on cryptographic principles. The cost-effectiveness of the solution as well as its digital integrity, 

traceability, accessibility and extensibility could be proven in a demonstration study. All these 

aspects ultimately contribute to greater digitization and quality improvement in AM part pro-

duction. Deficits were only identified with regard to the effectiveness of decentralized storage 

of large volumes of production data. 

However, as part of the development and implementation of the AM part record, it has already 

been conceptually investigated how these deficits can be remedied by linking data-based QA 
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and blockchain-based QM to form an adapted digital quality assurance system, in order to en-

able real-time process data analyses and effective data storage and documentation processes in 

the future as well. Through the ML-supported analysis of large amounts of data stored locally 

in a digital twin extracts an overall result of the part and process quality from the data of a 

manufacturing process, which is then stored in the AM part record in a tamper-proof and trace-

able manner. The use of sensors connected to the internet also makes the adapted digital quality 

assurance system even safer and enables automated real-time analyses in principle. 

This is where future research should start in order to implement, analyze and evaluate the de-

signed expansion of the digital quality assurance system. In addition, certification functions 

should be implemented, authorities and certification bodies should be involved via the smart 

contract, and an extension of the AM part record to other AM process chains and process flows 

should be made. Especially in the ML context, the analysis efficiency and performance of fur-

ther algorithms need to be investigated to possibly achieve even better classification and defect 

detection results. It should also be further investigated which data have which influence on the 

AM process in order to better understand the AM process on the one hand and to be able to 

evaluate the ML analysis results in a more differentiated way on the other hand. Moreover, 

further data should be collected and summarized in increasingly complex training datasets to 

continuously optimize the ML algorithms. Finally, the automation of the individual process 

steps such as data acquisition, preparation, analysis, evaluation and presentation are also an 

important research aspect in order to enable comparable and reproducible processes and results. 

In this context, the development and definition of new standardization procedures is particularly 

useful. 
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Appendix A - Test methods in additive manufacturing 

Table A-1 : Test methods of additive manufacturing processes and parts. 

Method Type Description 

Visual inspec-

tion 

non-destructive, 

ex-situ 

Visual inspection is usually carried out with the naked eye, if necessary supported by aids such as magnifying glasses or mirrors, in 

order to check surfaces, external structures and dimensions non-destructively and to draw conclusions about their origin [178]. 

Infrared thermal 

imaging test 

non-destructive, 

in- and ex-situ 

Infrared thermal imaging can be used to non-destructively detect differences in the thermal radiation intensity of shapes and contours 

in AM parts and clearly identify defects compared to the surrounding material [179–181]. 

Penetration test non-destructive, 

ex-situ 

A colored or fluorescent penetrant is applied to the surface of a non-porous AM part, penetrates surface defects by capillary action, 

and can then be non-destructively visualized by the addition of a developer [10,179]. 

Eddy current 

test 

non-destructive, 

ex-situ 

Electromagnetic induction on conductive AM parts induces eddy currents whose changes, e.g. due to surface defects, can be measured 

non-destructively [179,182]. 

Ultrasonic test non-destructive, 

ex-situ 

Ultrasonic waves are transmitted via a transmitter or a laser into a metallic AM part. Inside the part, the sound waves propagate and 

are reflected differently at interfaces (e.g. cracks, melt defects, pores), which in turn can be detected non-destructively [179,183]. 

Computed to-

mography (CT) 

scan 

non-destructive, 

ex-situ 

X-ray computed tomography (CT) can be used to create three-dimensional images of an AM part non-destructively by taking many X-

ray images around a rotational axis and using them to reconstruct a 3D model, for example, to identify internal pores and structural 

irregularities [184,185]. 

Acoustic emis-

sion test 

non-destructive, 

in- und ex-situ 

Acoustic emission sensors can capture acoustic information of the AM process and infer different emission sources (such as cracks, 

pores, specific process parameters, etc.) using different frequency spectra [186,187]. 

3D imaging non-destructive, 

in- und ex-situ 

Using cameras and 3D scanners, the surface topography of AM parts can be digitally reconstructed with sometimes high precision and 

then analyzed on a computer to characterize defects, deviations and geometries relatively quickly [188]. Mostly cameras are used to 

observe the AM process [189]. Other 3D imaging techniques include interferometry, laser triangulation, structured light 3D scanners, 

laser line scanners, and photogrammetry [188,189]. 
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Method Type Description 

Data analytics 

and machine 

learning 

non-destructive, 

in- und ex-situ 

ML and data analysis algorithms are increasingly used for non-destructive defect detection and in-situ monitoring in AM [137]. Vari-

ous 1D data (e.g. spectra), 2D data (e.g. images) and 3D data (e.g. tomography scans) are collected, analyzed and used to train ML 

algorithms, which subsequently lead to an artificial control system and improve the quality of the AM part or, in the case of closed-

loop feedback to the AM machines, also minimize quality problems during the printing process [190,191]. 

Density and po-

rosity measure-

ments 

non-destructive / 

destructive, 

ex-situ 

Knowing the density and porosity of AM components is critical for quality assessment, but there is no preferred standard measurement 

method for this purpose [192]. Commonly used measurement principles include microscopic analysis, CT scans, gravimetric analysis, 

and gas pycnometry. 

Mechanical tests non-destructive / 

destructive, 

ex-situ 

The analysis of the mechanical properties of AM parts forms the basis for comparison with conventionally manufactured parts in order 

to assess the suitability of AM for use [193]. Typical mechanical test methods include hardness testing, tensile and compressive 

strength testing, surface roughness measurement, fracture toughness and fatigue strength analysis. 
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Appendix B - Functionality of neural networks

Artificial neural networks are modeled on the signal transmission between biological neurons 

of the human and animal brain (see Figure B-1, left) [126]. To represent this natural model 

artificially, contiguous layers of artificial neurons are usually represented (Figure B-1, right).

Figure B-1: Multiple interconnected neurons (left) and representation of an artificial neural network (right) ac-

cording to [126].

The model shown in Figure B-1 consists of three layers, each with three artificial neurons or 

nodes. Each node here is connected to other nodes of the previous or following layer to form a 

network. In order to learn, the strength of the connections between the nodes must now be 

adjusted. For this purpose, each connection is first assigned a weighting (see Figure B-2). In 

this regard, a low weight weakens a signal and a high weight strengthens it [126]. It follows 

that not all nodes have to be connected to every other node of each layer, because some weights 

can also become almost zero as the network learns. In concrete terms, this means that these 

signals cannot pass at these points and the network has learned that these signals are not that 

important.

Figure B-2: Weighted neural network related to [126]. The small numbers illustrate the signal progression, e.g. 

W2,3 means the signal goes from node two in one layer to node three in the next layer.
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The learning process for a small neural network is shown in Figure B-3, left. The output values 

X of the next layer is calculated with randomly selected input values I and weights W of a layer 

using matrix multiplication and activation function:

𝑋 = 𝑊 × 𝐼 (1)

(
(𝑖𝑛𝑝𝑢𝑡1 × 𝑤1,1) + (𝑖𝑛𝑝𝑢𝑡2 × 𝑤2,1)

(𝑖𝑛𝑝𝑢𝑡1 × 𝑤1,2) + (𝑖𝑛𝑝𝑢𝑡2 × 𝑤2,2)
) = (

𝑤1,1 𝑤2,1

𝑤1,2 𝑤2,2
) × (

𝑖𝑛𝑝𝑢𝑡_1
𝑖𝑛𝑝𝑢𝑡_2

). (2)

The activation or step function accepts the summed input signals and finally controls the output 

of the output signal, taking a threshold value into account. If the combined input signal is not 

large enough, the threshold function suppresses the output signal from passing through. How-

ever, when the input signal is large enough and reaches the threshold, the artificial neuron fires 

and transmits the output signal [126]. A frequently used activation function is the sigmoid func-

tion, which does not have an abrupt jump but is smoother and thus appears more natural and 

realistic:

𝑦 =
1

(1+ 𝑒−𝑥)
. (3)

The result of the activation function then represents the output of the node. For the nodes of the 

second layer from Figure B-3, right it follows from equations (1) and (2):

𝑋 = (
(1.0 × 0.7) + (0.5 × 0.9)

(1.0 × 0.3) + (0.5 × 0.4)
) = (

1.15
0.5

). (4)

The output signals from each node are then determined from the combined inputs and using the 

sigmoid function of equation (3):

𝑦 = (
0.7595
0.6225

). (5)

These relatively complex calculations can be performed quickly with computers, which means 

that much larger and more complex networks can also be used.

Figure B-3: Basic input, weight and output values of a neural network (left) and a calculation example with ran-

domly selected input values, weights and the calculated outputs (right).
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After the input signal has passed through the neural network, the resulting output signal is com-

pared to a training sample to determine an error or difference e between the determined output 

value o and a known training value t:

𝑒𝑛 = 𝑡𝑛 − 𝑜𝑛. (6)

Based on the error, the neural network must be refined so that the output values obtained are 

closer to the true values, so the network must be constantly trained and optimized. The training 

is done by feeding the output errors back into the network according to the weighted node con-

nections against the output signal calculation. This method is called backpropagation [126].

Figure B-4, left shows the backpropagation of the output errors using a simple neural network.

In Figure B-4, right the previous calculation example is continued, where with known training 

data t, the output layer error e is calculated for each node according to equation (6).

Figure B-4: Backpropagation with output error (left) and continuation of the calculation example with concrete 

calculation values (right).

Then, the backpropagation of the output error eo back to the previous layer is performed. Here, 

the error of each node is first divided proportionally among the weighted connections w accord-

ing to the following equation:

𝑒𝐿𝑛 = 𝑒𝑜𝑛 ×
𝑊1,𝑛

𝑊1,𝑛+𝑊2,𝑛
. (7)

The error of the previous layer eL is then given by the sum of the divided output errors of the 

connections eo. For more complex neural networks, the error backpropagation can again be 

expressed as a matrix multiplication and computed more quickly via a computer code. In the 

following, Figure B-5 only continues the previously considered computational example with a 

simple neural network for a basic understanding.
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Figure B-5: Backpropagation with error calculation based on the calculation example.

The errors of node one of the first layer determined by backpropagation are calculated according 

to equation (7) and summarized as follows:

𝑒𝐿1 = (
0.2405 ×

0.7

0.7 + 0.9

−0.3225 ×
0.9

0.9 + 0.7

) = (
0.105
0.135

). (8)

Subsequently, the sum of the weighted errors for each node and thus the summarized error of 

the respective node for the first layer is formed. For node one this results in:

Σ𝑒𝐿1 = 0.105 + 0.135 = 0.240. (9)

For node two of the first layer, the calculation of eL2 is analogous to equations (8) and (9) with 

the values of eo2 and the weights associated with this node.

Once the errors have been attributed to each layer of the neural network, the weights of the 

network must be updated in order to optimize the output signal generated by the network. For 

this purpose, mathematically the method of gradient descent is used, with which the error of the 

network can be represented and minimized. A well understood explanation of the gradient de-

scent method can be found in [126]. The derivation of a so-called error function for the adjust-

ment of the weights is also described there. This is because in order to improve the neural net-

work, the errors must be reduced by the network adjusting its weights. The calculation of the 

error increase results from the change of the error E depending on the change of the weight wj,k

as follows (detailed derivation in [126]):

𝜕𝐸

𝜕𝑊𝑗,𝑘
= −(𝑡𝑘 − 𝑜𝑘) × 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(Σ𝑗𝑤𝑗,𝑘𝑜𝑗) (1 − 𝑠𝑠𝑖𝑔𝑚𝑜𝑖𝑑(Σ𝑗𝑤𝑗,𝑘𝑜𝑗)) × 𝑜𝑗. (10)

In Figure B-6, the known example is now supplemented by the weight adjustment. If the cal-

culation from equation (10) for updating the weights w1,1 of the first node of the first layer is 

carried out step by step, the following values result:

• The term (𝑡𝑘 − 𝑜𝑘) is the error 𝑒𝑜1 = 0.2405 (see already Figure B-4, right).
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• The sum of the sigmoid function Σ𝑗𝑤𝑗,𝑘𝑜𝑗 gives (0.7 × 1.0) + (0.9 × 0.5) = 0.315.

Substituting into the sigmoid function 1/(1 + 𝑒−0.315) yields the intermediate result 

0.578, which in turn is substituted into the mean expression: 0.578 × (1 − 0.578) =

0.244.

• The last element is the output of the node that is before the weighting, in this case the 

input signal 𝑜𝑗 = 1.0, since the weighting w11 is considered (the error eL is not yet 

considered in the input layer).

Multiplying all three terms results in an error increase of -0.059. In the neural network, the 

updates of the weights are usually multiplied by a so-called learning rate α to better represent 

certain problems and to avoid overshooting of the updates due to bad training examples [126]. 

This ultimately results in the following weight adjustment:

𝑤𝑗,𝑘 𝑛𝑒𝑤 = 𝑤𝑗,𝑘 − 𝛼 ×
𝜕𝐸

𝜕𝑊𝑗,𝑘
. (11)

Thus, for a learning rate of, for example, 0.1, adjusting the weighting w1,1 according to equation

(11) leads to:

𝑤1,1 𝑛𝑒𝑤 = 0.7 − 0.1 × (−0.059) = 0.7059. (11)

The individual weight changes are relatively small, but over hundreds of iterations, stable 

weight configurations eventually result, producing a well-trained neural network that generates 

output signals that match the training examples and predict accordingly realistic outputs even 

for new data without available training examples.

Figure B-6: Back propagation with calculation of error increase and weight adjustment based on the calculation 

example.
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P a rt  d ef e ct s  a n d  irr e g ul ariti e s  t h at  i n fl u e n c e  t h e  p art  q u alit y  i s  a n  e s p e ci all y  l ar g e  pr o bl e m  i n  a d diti v e 

m a n uf a ct uri n g  ( A M)  pr o c e s s e s  s u c h  a s  s el e cti v e  l a s er  si nt eri n g  ( S L S).  D e str u cti v e  a n d  n o n- d e str u cti v e  t e sti n g 

pr o c e d ur e s ar e c u rr e ntl y m o stl y u s e d f or q u alit y c o ntr ol a n d d ef e ct d et e cti o n of A M p art s aft er pr o d u cti o n. I n t hi s 

c o nt e xt, m a c hi n e l e ar ni n g ( M L) al g orit h m s ar e i n cr e a si n gl y b ei n g u s e d t o e n a bl e c o m p ut er- ai d e d d ef e ct d et e c -

ti o n t hr o u g h a ut o m ati c cl a s si fi c ati o n of m a n uf a ct uri n g d at a. C o n v ol uti o n al n e ur al n et w or k s ( C N N) b a s e d o n M L 

m et h o d s ar e wi d el y u s e d f or t hi s t a s k. I n t hi s p a p er, c o m pl e x tr a n sf er l e ar ni n g ( T L) m et h o d s ar e pr e s e nt e d, w hi c h 

e n a bl e  t h e  a ut o m ati c  cl a s si fi c ati o n  of  p o w d er  b e d  d ef e ct s  i n  t h e  S L S  pr o c e s s  u si n g  v er y  s m all  d at a s et s.  T h e 

pr o p o s e d  m et h o d s  u s e  t h e  V G G 1 6  a n d  t h e  X c e pti o n  C N N  m o d el  wit h  pr etr ai n e d  w ei g ht s  fr o m  t h e  I m a g e N et 

d at a s et a s i niti ali z ati o n a n d a n a d a pt e d cl a s si fi er t o cl a s sif y g o o d a n d d ef e cti v e i m a g e d at a r e c or d e d d uri n g p art 

m a n uf a ct uri n g. K n o w n p erf or m a n c e m etri c s w er e d et er mi n e d t o e v al u at e a n d c o m p ar e t h e p erf or m a n c e of t h e 

m o d el s. T h e V G G 1 6 m o d el ar c hit e ct ur e a c hi e v e d t h e b e st r e s ult s f or A c c ur a c y ( 0. 9 5 8), Pr e ci si o n ( 0. 9 3 9), R e c all 

( 0. 9 8 0), F 1- S c or e ( 0. 9 5 9) a n d A U C v al u e ( 0. 9 8 2). T h e s e r e s ult s s h o w t h e eff e cti v e n e s s of d ef e ct d et e cti o n b a s e d 

o n  C N N  a n d  c a n  off er  a n  alt er n ati v e  m et h o d  f or  n o n- d e str u cti v e  q u alit y  a s s ur a n c e  a n d  m a n uf a ct uri n g  d o c u -

m e nt ati o n f or a d diti v el y m a n uf a ct ur e d p art s.   

1. I nt r o d u cti o n 

A s o n e of t h e m o st p o p ul ar a d diti v e m a n uf a ct uri n g ( A M) pr o c e s s e s, 

s el e cti v e l a s er si nt eri n g ( S L S) i s w ell s uit e d f or t h e pr o d u cti o n of i n di -

vi d u al,  c o m pl e x  a n d  t o p ol o g y- o pti mi z e d  p art s  f or  v ari o u s  i n d u stri al 

s e ct or s. Wit h t h e S L S pr o c e s s, p o w d er p arti cl e s ar e l o c all y f u s e d u si n g a 

h e at s o ur c e ( e. g. a l a s er). T h e l a s er si nt eri n g of a d e fi n e d c o nt o ur a n d 

t h e  l a y er  wi s e  r e p etiti o n  of  t h e  si nt eri n g  pr o c e s s  t h e n  cr e at e  a  t hr e e- 

di m e n si o n al ( 3 D) p art. 

T h e S L S pr o c e s s u s u all y pr o c e s s e s p ol y a mi d e s ( P A) s u c h a s P A 1 1 a n d 

P A 1 2, p ol y st yr e n e ( P S), t h er m o pl a sti c el a st o m er s ( T P E), p ol y pr o p yl e n e 

( P P)  a n d  c ert ai n  p ol y c ar b o n at e s  ( P C)  or  v ari ati o n s  t h er e of [ 1 ] .  T h e 

c o n n e cti o n of t h e i n di vi d u al p o w d er p arti cl e s t o o n e a n ot h er t a k e s pl a c e 

t hr o u g h t h er m al i n fl u e n c e, f u si o n a n d s u b s e q u e nt s oli di fi c ati o n of t h e 

m at eri al. T hi s pr o c e s s l e a d s t o hi g h- q u alit y p art pr o p erti e s of t h e l a s er 

si nt er e d  str u ct ur e s  t h at  m e et  t h e  r e q uir e m e nt s  f or  f u n cti o n al  c o m p o -

n e nt s. A c c or di n g t o S c h mi d [ 2 ] , t h er e ar e i n cr e a s e d r e q uir e m e nt s i nt er 

ali a f or:  

• a r e pr o d u ci bl e q u alit y,  

• pr o c e s s s e c urit y a n d  

• t h e a ut o m ati o n of pr o d u cti o n pr o c e s s e s. 

I n or d er t o e st a bli s h it s elf a s a s eri o u s pr o d u cti o n pr o c e s s, q u alit y 

c o ntr ol s a n d q u alit y m a n a g e m e nt m u st b e d e v el o p e d, i m pl e m e nt e d a n d 

o pti mi z e d f or t h e e ntir e S L S pr o c e s s c h ai n i n or d er t o b e a bl e t o c o m p ar e 

t h e m a n uf a ct uri n g pr o c e s s wit h ot h er pr o d u cti o n t e c h ni q u e s i n t er m s of 

q u alit y st a n d ar d s [ 2 ] . T h e q u alit y of t h e p art s m a n uf a ct ur e d b y m e a n s of 

S L S  i s  n ot  o nl y  d et er mi n e d  b y  t h e  f u si o n  of  t h e  p o w d er  p arti cl e s  of 

s u c c e s si v e l a y er s, b ut al s o b y t h e i nt e grit y of t h e p o w d er b e d a n d t h e 

st a bilit y of t h e p o w d er a p pli c ati o n [ 3 ] . A u nif or ml y di stri b ut e d p o w d er 

b e d, wit h o ut irr e g ul ariti e s, i s d e sir a bl e f or a g o o d p art q u alit y, s e e f or 

e x a m pl e Fi g.  1 ( a)  a n d  ( c).  H o w e v er,  v ari o u s  irr e g ul ariti e s  s u c h  a s 

f or ei g n b o di e s, p art e d g e s, p o w d er a c c u m ul ati o n s a n d p o w d er tr e n c h e s, 

c oll e cti v el y r ef err e d t o a s p o w d er b e d d ef e ct s, c a n o c c ur i n t h e p o w d er 

b e d, a s s h o w n i n Fi g. 1 ( b) a n d ( d). T h e s e p o w d er b e d d ef e ct s c a n l e a d t o 

d e fi ci e n ci e s  i n  t h e  p art  q u alit y  a n d  t h e  p art  pr o p erti e s  u p  t o 

q u alit y-r el at e d r ej e ct s of t h e p art s, w hi c h i n t ur n r e s ult s i n c o n si d er a bl e 

*  C orr e s p o n di n g a ut h or. 
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a d diti o n al c o st s, m at eri al w a st e a n d ti e s u p m a c hi n e c a p a cit y [ 3 ] . T hi s 

aff e ct s a c c or di n g t o Xi a o et al. [ 3 ] t h e wi d e s pr e a d a p pli c ati o n of S L S a s a 

pr o flt a bl e  pr o d u cti o n  t e c h ni q u e  i n  w hi c h  c o n st a nt  q u alit y,  r e pr o d u c -

i bilit y  a n d  c o st  a s  w ell  a s  w a st e  r e d u cti o n  ar e  criti c al.  B y  d et e cti n g 

p o w d er b e d d ef e ct s a s e arl y a s p o s si bl e d uri n g t h e pr o d u cti o n pr o c e s s, 

c orr e cti v e  m e a s ur e s  c a n  b e  i niti at e d  i m m e di at el y,  t h er e b y  e n s uri n g 

q u alit y a s w ell a s t h e r e d u cti o n of c o st s, w a st e a n d c a p a cit y utili z ati o n 

[ 3 ] . 

T h e  a p pr o a c h  of  t h e  w or k  pr e s e nt e d  h er e  i s  t o  m o nit or  t h e  S L S 

p o w d er b e d f or si g n s of d ef e ct s u si n g m a c hi n e l e ar ni n g ( M L) m et h o d s. 

F or  t h e s e  c o m pl e x m et h o d s, t h e  r e c or di n g of  l ar g e a m o u nt s of i m a g e 

d at a i s n e c e s s ar y, si n c e a M L al g orit h m i s tr ai n e d u si n g t hi s d at a i n st e a d 

of b ei n g e x pli citl y pr o gr a m m e d [ 4 ] . M L m et h o d s ar e t h e n a p o s si bilit y t o 

e v al u at e t hi s a m o u nt of d at a al m o st i n r e al ti m e a n d t o i d e ntif y c o m pl e x 

n o n-li n e ar r el ati o n s hi p s i n t h e d at a s et s [ 5 ] . C o n v e nti o n al M L t e c h ni q u e s 

ar e, a c c or di n g t o B a u m g artl et al. [ 5 ] , di vi d e d i nt o t h e t hr e e c at e g ori e s 

of s u p er vi s e d, s e mi- s u p er vi s e d a n d u n s u p er vi s e d l e ar ni n g. 

T h e s e  c o n v e nti o n al  M L  t e c h ni q u e s  ar e  o nl y  a bl e  t o  pr o c e s s  u n -

str u ct ur e d d at a i n it s r a w f or m (f or e x a m pl e i m a g e s, n at ur al l a n g u a g e 

et c.)  t o  a  li mit e d  e xt e nt [ 6 ] .  U si n g  m o d er n  st at e- of-t h e- art  M L  al g o-

rit h m s b a s e d o n d e e p l e ar ni n g ( D L), s u c h r a w d at a c a n al s o b e pr o c e s s e d 

a n d  f e at ur e s  e xtr a ct e d  fr o m  it  a ut o m ati c all y [ 6, 7 ] .  F or  t hi s  pr o c e s s, 

c o n v ol uti o n al  n e ur al  n et w or k s  ( C N N)  ar e  al m o st  al w a y s  u s e d  i n  D L, 

b e c a u s e  t h e y  ar e  v er y  eff e cti v e  i n  di s c o v eri n g  c o m pl e x  str u ct ur e s  i n 

l ar g e a m o u nt s of d at a a n d c a n pr o c e s s u n str u ct ur e d d at a s u c h a s c ol or 

i m a g e s [ 4, 6 ] . H o w e v er, t h e k e y a s p e ct of D L i s, a c c or di n g t o L e C u n et al. 

[ 6 ] t h at a f u n cti o n al e xtr a ct or i s n ot d e si g n e d b y h u m a n d e v el o p er s, b ut 

i s l e ar n e d fr o m d at a u si n g a g e n er al l e ar ni n g pr o c e s s. 

I n t hi s w or k c o m pl e x M L al g orit h m s b a s e d o n d e e p l e ar ni n g a n d C N N 

w er e i m pl e m e nt e d. Pr o c e s s i m a g e s w er e r e c or d e d a s r a w d at a d uri n g 

s el e cti v e  l a s er  si nt eri n g  u si n g  a n  i n e x p e n si v e  c a m er a  s et u p  a n d  pr e -

pr o c e s s e d i n a d e fl n e d m a n n er. T h e i m a g e d at a w er e t h e n u s e d t o tr ai n 

t w o  diff er e nt  C N N  ar c hit e ct ur e s  f or  t h e  cl a s si fi c ati o n  of  p o w d er  b e d 

d ef e ct s a n d t h u s t o d e v el o p a n a ut o m ati c m et h o d f or pr o c e s s a s s e s s m e nt 

a n d  d o c u m e nt ati o n.  E st a bli s h e d  e v al u ati o n  m etri c s  s u c h  a s  a c c ur a c y, 

pr e ci si o n, s e n siti vit y a n d F 1- S c or e w er e u s e d t o a s s e s s t h e p erf or m a n c e 

of t h e C N N m o d el s. I n a d diti o n, m etri c s s u c h a s t h e r e c ei v er o p er at or 

c h ar a ct eri sti c ( R O C) c ur v e a s w ell a s t h e ar e a u n d er t h e c ur v e ( A U C) a n d 

h e at  m a p s  w er e  u s e d  t o  e v al u at e  a n d  vi s u ali z e  t h e  r e s ult s  of  t h e  M L 

m o d el s. 

2.  R el at e d w o r k 

M L m et h o d s h a v e alr e a d y b e e n u s e d i n v ari o u s A M pr o c e s s e s a n d 

diff er e nt A M pr o c e d ur e s f or err or d et e cti o n. Xi a o et al. [ 3 ] h a v e d e v el -

o p e d  a  C N N  f or  t h e  d et e cti o n  of  t hr e e  diff er e nt  t y p e s  of  p o w d er  b e d 

d ef e ct s d uri n g s el e cti v e l a s er si nt eri n g. F or t hi s p ur p o s e, i m a g e s of t h e 

p o w d er b e d w er e r e c or d e d wit h a di git al c a m er a a n d a n al y z e d u si n g a 

t w o- st a g e C N N. I n t h e fir st m o d ul e of t h e C N N, t h e l o c ati o n of t h e d ef e ct 

w a s i d e nti fi e d a n d i n t h e s e c o n d m o d ul e, err or m a s k s w er e g e n er at e d f or 

e a c h s p e ci fi c l o c ati o n of t h e err or. C o m p ar e d t o ot h er m et h o d s, t h e a c -

c ur a c y of t h e err or d et e cti o n h a s b e e n si g ni fl c a ntl y i m pr o v e d b y u si n g 

t h e t w o- st a g e C N N m o d el. H o w e v er, t h e d at a s et s h a v e al s o b e e n e s p e-

ci all y pr e c o n fi g ur e d t o a c o n si d er a bl e e xt e nt i n or d er t o si m ul at e s p e ci al 

err or c a s e s. D et ail e d st at e m e nt s o n t h e a c c ur a c y of t h e t w o- st a g e C N N 

wit h r e al m a n uf a ct uri n g d at a s et s ar e n ot gi v e n. 

S ci m e a n d B e ut h [ 8 ] u s e d gr a y s c al e ar e a s fr o m i m a g e s of a n i nt e -

gr at e d c a m er a of a l a s er p o w d er b e d f u si o n ( L P B F) m a c hi n e t o diff er -

e nti at e  b et w e e n  m et al- b a s e d  p o w d er  b e d  irr e g ul arit y  cl a s s e s.  T h e 

cl a s s e s w er e s u b s e q u e ntl y u s e d t o d e v el o p a n M L al g orit h m f or i n- sit u 

pr o c e s s m o nit ori n g a n d t o a n al y z e p o w d er b e d i m a g e s. T h e al g orit h m 

d e s cri b e d  w or k s  i n  pri n ci pl e  f or  t h e  L P B F  pr o c e s s,  b ut  h a s  t o  b e 

i m pr o v e d wit h r e g ar d t o t h e cl a s si fi c ati o n a c c ur a c y. 

G o b ert  et  al. [ 9 ] u s e d  a  hi g h  r e s ol uti o n  di git al  si n gl e-l e n s  r e fl e x 

c a m er a f or l a y er- b y-l a y er i m a gi n g i n or d er t o r e c or d i m a g e s f or a s u -

p er vi s e d  l e ar ni n g  of  d ef e ct s  d uri n g  a  m et al  p o w d er  b e d  f u si o n  ( P B F) 

pr o c e s s. C T s c a n s w er e t h e n u s e d t o a s s e s s t h e r e s ult s of M L d et e cti o n. 

T h e  r e s ulti n g  a c c ur a ci e s  of  t h e  err or  d et e cti o n  al g orit h m s  d uri n g  t h e 

m a n uf a ct uri n g  pr o c e s s  r e a c h e d  v al u e s  of  u p  t o  8 5 %,  b ut  r ef er  e x cl u -

si v el y  t o  t h e  m et al  P B F  pr o c e s s.  I n  a d diti o n,  a  li n e ar  s u p p ort  v e ct or 

m a c hi n e ( S V M) al g orit h m w a s u s e d f or err or d et e cti o n i n st e a d of a C N N. 

B a u m g artl  et  al. [ 5 ] u s e d  a  c o m bi n ati o n  of  t h er m o gr a p hi c  a n d 

off- a xi s i n- sit u i m a gi n g i n a L P B F s y st e m. T h e i m a g e s s er v e d a s a d at a 

s o ur c e f or a D L- b a s e d C N N t o i d e ntif y pri nti n g err or s. T h e m o d el i s w ell 

s uit e d f or t h er m o gr a p hi c i n- sit u d ef e ct d et e cti o n i n L P B F pr o c e s s e s a n d 

a c hi e v e s  a c c ur a ci e s of o v er  9 6 %.  H o w e v er,  t hi s C N N m o d el c a n o nl y 

d et e ct s p att er a n d d el a mi n ati o n d ef e ct s i n m et al L P B F. Ot h er t y p e s of 

d ef e ct s s u c h a s cr a c k s, p or e s a n d u n m elt e d p o w d er, a s w ell a s a d diti o n al 

pr o c e s s e s s u c h a s S L S w er e n ot i n v e sti g at e d. 

I n t h e r e vi e w b y Y a d a v et al. [ 1 0 ] , f urt h er m et h o d s f or a ut o m at e d 

i n- sit u pr o c e s s err or m o nit ori n g a n d d et e cti o n w er e li st e d a n d e x a mi n e d 

wit h  r e g ar d  t o  c urr e nt  pr o gr e s s  i n  t h e  fi el d  of  pr o c e s s  d at a  a n al y si s. 

F urt h er m or e, t h e w or ki n g pri n ci pl e s of t h e m o st c o m m o n i n- sit u s e n s or 

s y st e m s  a n d  c o m m er ci all y  a v ail a bl e  i n- sit u  m o nit ori n g  s ol uti o n s  f or 

m et al L P B F s y st e m s w er e c o n si d er e d. T h e r e vi e w arti cl e s h o w s t h at t h e 

i n- sit u pr o c e s s r e c or di n g i s still at a n e arl y st a g e. M u c h of t h e r e s e ar c h 

c arri e d o ut a ct u all y f o c u s e s o n t h e m et al L P B F a n d t h e d e v el o p m e nt of 

i n- sit u  s e n s or  s y st e m s  t o  b ett er  u n d er st a n d  t hi s  pr o c e s s.  D et ail e d  i n-

v e sti g ati o n s  i nt o  ot h er  P B F  pr o c e s s e s  s u c h  a s  s el e cti v e  l a s er  si nt eri n g 

wit h pl a sti c s a s w ell a s i n v e sti g ati o n s f or err or d et e cti o n i n r e al ti m e f or 

b ot h t h e S L S a n d t h e L P B F pr o c e s s still h a v e t o b e i n v e sti g at e d. 

3.  M at e ri al s a n d m et h o d s 

I n t hi s s e cti o n, t h e e x p eri m e nt al s et u p u s e d i n t hi s r e s e ar c h i s fir st 

d e s cri b e d i n d et ail. Aft er t h at t h e d at a s et u s e d i n t hi s p a p er i s di s c u s s e d. 

T h er e b y  t h e  g e n er ati o n,  e xtr a cti o n  a n d  pr e pr o c e s si n g  of  t h e  d at a  i s 

d e s cri b e d  a s  w ell  a s  s o m e  p erf or m a n c e  i n di c at or s  u s e d  f or  t h e 

Fi g. 1. I m a g e e x a m pl e s fr o m t h e d at a s et of a S L S pri nt j o b wit h: ( a) a p o w d er b e d wit h o ut si nt er e d el e m e nt s a n d irr e g ul ariti e s; ( b) a p o w d er b e d wit h o ut si nt er e d 

el e m e nt s wit h irr e g ul ariti e s; ( c) a p o w d er b e d wit h a si nt er e d el e m e nt wit h o ut irr e g ul ariti e s a n d ( d) a p o w d er b e d wit h a si nt er e d el e m e nt a n d irr e g ul ariti e s. 

Ori gi n al i m a g e s ar e a v ail a bl e i n a p u bli c r e p o sit or y ( htt p s: / / d oi. or g / 1 0. 1 7 6 3 2 / 2 y zj m p 5 2f w. 1 ). ( T h e D OI of t h e d at a s et i s r e s er v e d, b ut n ot a cti v e). 
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classification task plus evaluation and visualization techniques. 
Furthermore, CNN architectures are presented and the approaches and 
architectures used for this work are considered. 

3.1. Experimental setup 

The SLS process was monitored in real time with a high-resolution 
camera and recorded using a simple setup consisting of a high defini
tion (HD) Universal Series Bus (USB) webcam and a single-board com
puter in order to obtain image data of the powder bed. An S2 laser 
sintering system (Sintratec AG, Brugg, Switzerland) was used for selec
tive laser sintering. The laser sintering system has a 10 W diode laser 
with a laser wavelength of 1064 nm and a round powder bed shape with 
an effective printing area of 130 mm in circumference and a maximum 
build height of 360 mm. The build chamber can be heated up to 180 C 
and does not require any operating gas during the entire printing pro
cess. The material used for printing is PA 12, which was printed with a 
layer thickness of 100 m. The laser spot size was 145 m and the scan 
speed 3 m/s. 

The setup for recording the image data consisted of a simple Plusonic 
HD USB webcam (Allnet GmbH, Gemering, Germany) with a resolution 
of 3 megapixels and a 3.6 mm focal lens as well as a Raspberry Pi 3B‡

(OKdo Technology Limited, London, UK). A 128 GB 3.0 Ultra USB stick 
(SanDisk Corp., Milpitas, US) was used to store the data and a 5.1 V with 
2.5 A power adapter unit (TT Electronics IoT Solutions LTd., Woking, 
UK) was used for the power supply. In addition, a 7-inch Raspberry Pi 
touchscreen (OKdo Technology Limited, London, UK) was used for 
operational control and a standard camera tripod for positioning of the 
webcam. The camera was then mounted on the tripod and positioned as 
well as focused in front of the machine display of the laser sintering 
system. The high-resolution camera built into the S2 system was used to 
monitor the powder bed directly from above in real time and a live 
stream was shown on the system display, which in turn was recorded via 
the webcam. The recordings were made with a resolution of 640 480 
pixels (px), whereby the recorded build area had physical dimensions of 
approx. 250 150 mm. The recordings were processed with self- 
written python programs. The open source programming language py
thon, version 3.7.9 (python software foundation, Fredericksburg, US) 
was used for programming. 

3.2. SLS powder bed dataset 

The dataset used in this work was extracted from video recordings of 
the powder bed surface, which were recorded on an SLS printing system 
with a frame rate of two frames per second during manufacturing. In 
order to obtain individual images of the powder bed surface, the 
recorded Matroska (MKV) video files were broken down into individual 
frames without video compression and with a resolution of 640 480 
px. Every 20th frame has been saved as a JPEG image and compressed or 
cropped to a size of 300 300 px to remove unnecessary information 
and image areas such as time stamps and image resolution 
specifications. 

The dataset generated in this way comprised 9426 powder bed im
ages. Extraneous images were then initially removed from the dataset (e. 
g. images with recording anomalies, images where the powder distri
bution unit of the system was also recorded, images with unfavorable 
light reflections). The remaining images were then manually divided 
into two different classes, OK and DEF, using process knowledge and 
additive expertise. Both classes together result in the adapted dataset 
with 8514 images. All images that showed a uniform powder bed surface 
without defects were classified into the OK class. This class contained 
7808 images. All images on which an uneven powder bed surface with 
defects (cracks, ditches, foreign bodies etc.) could be seen were classi
fied into the DEF class. As a result, 706 images were divided into the DEF 
class. 

The dataset can be downloaded from the following address under a 

creative commons attribution 4.0 international license: https://doi.org/ 
10.17632/2yzjmp52fw.1. 

3.2.1. Class imbalance problem 
In a binary classification problem with data from two classes, a class 

imbalance occurs when one class contains significantly fewer samples 
(minority class) than the other class (majority class) [11,12]. In the 
dataset used here, the two classes OK and DEF also have a different 
number of images. The imbalance ratio (IR) of the dataset can be 
calculated as follows: 

ˆ
j j

j j
(1) 

Liu et al. [13] examined various datasets related to the IR. The IR 
ranges from 1.7 to 24.3 and can, according to Wu et al. [14] also achieve 
values such as 106. The IR of this SLS powder bed dataset is: 

ˆ
j j

j j
ˆ ˆ : (2) 

Compared to the considered datasets examined by Liu et al. [13], an 
IR of 11.06 is not uncommon, but it is already one of the more imbal
anced datasets. 

This data imbalance must always be considered in intelligent clas
sification algorithms. When evaluating the classification results, stan
dard metrics such as accuracy and error rate are used most often, but 
these are unsuitable for class imbalances since the result is dominated by 
the majority class [11,12]. In this way, a data distribution of 1% positive 
examples to 99% negative examples, the accuracy of a classification can 
be 99%, in that the classifier simply evaluates all examples as negative. 
Because of this, special metrics are required to evaluate imbalanced 
classification tasks. In addition, there are also various techniques that 
can be used to deal with imbalanced problems. These are described in 
detail in Section 3.2.2 below. 

3.2.2. Techniques for class imbalanced data 
The imbalance between two classes can be reduced by changing the 

data imbalance or by changing the underlying learning and decision- 
making process of the model to increase sensitivity to the minority 
class [11]. According to Johnson and Khoshgoftaar [11], the methods 
for dealing with class imbalances can accordingly be divided into 
techniques at the data level, methods at the algorithm level and hybrid 
approaches. 

Data level techniques include oversampling, undersampling and 
modifying the data distributions to compensate for the level of imbal
ance [11]. The simplest forms of these methods are random under
sampling (RUS), in which data is randomly removed from the majority 
class and random oversampling (ROS), in which data from the minority 
class is randomly duplicated [15]. In previous experiments it was found 
that RUS led to good results overall and often exceeded ROS [11]. 
Methods at the algorithm level do not change the data distribution. 
Instead, according to Johnson and Khoshgoftaar [11], either the 
learning process is adapted so that the importance of the minority class 
increases, or the decision threshold is shifted so that the tendency to
wards the majority class is reduced. Hybrid approaches combine data 
and algorithm methods in different ways. For example, one approach 
involves first data sampling to reduce the imbalance and then applying a 
shift in the decision threshold to reduce the influence of the majority 
class [11]. 

In this work a combination of RUS and ROS method was used. RUS 
was used to randomly remove data from the OK class and ROS to 
randomly duplicate data from the DEF class. As a result, 5808 images 
were removed from the OK class and 1294 images were added to the DEF 
class by duplicating the existing image data, thus balancing the OK and 
DEF classes. The dataset ultimately used for this work thus contains a 
total of 4000 images. 

E. Westphal and H. Seitz                                                                                                                                                                                                                      

https://doi.org/10.17632/2yzjmp52fw.1
https://doi.org/10.17632/2yzjmp52fw.1


A d diti v e M a n uf a ct uri n g 4 1 ( 2 0 2 1 ) 1 0 1 9 6 5

4

3. 2. 3. I m a g e pr e pr o c essi n g a n d d at a str u ct ur e 

T h e  i m a g e s  of  t h e  S L S  p o w d er  b e d  d at a s et  w er e  cr e at e d  u si n g  a 

si m pl e pr e pr o c e s si n g pr o c e d ur e a c c or di n g t o P a s a et al. [ 1 6 ] pr o c e s s e d 

f urt h er, i n or d er t o o bt ai n o nl y t h e e s p e ci all y i nt er e sti n g i m a g e ar e a wit h 

a s m u c h r el e v a nt i nf or m ati o n a s p o s si bl e. T h e pr e pr o c e s si n g st e p s p er -

f or m e d h er e ar e a s f oll o w s:  

• R e m o v e a n y bl a c k stri p e s fr o m t h e e d g e s of t h e i m a g e s.  

• R e si z e t h e i m a g e s o t h at t h e s m all er e d g e (i n t hi s c a s e) i s 1 8 0 p x l o n g.  

• E xtr a cti o n of a c e nt er e d s q u ar e i m a g e ar e a of 1 8 0 × 1 8 0 p x. 

T h e s e  st e p s  w er e  c arri e d  o ut  a ut o m ati c all y  b y  a  si m pl e,  s elf- 

pr o gr a m m e d  p yt h o n  s cri pt.  A n  e x a m pl e  of  t h e  pr e pr o c e s si n g  pr o c e d -

ur e a n d a pr e pr o c e s s e d i m a g e i s s h o w n i n Fi g. 2 . Wit h t hi s pr o c e d ur e, a n 

att e m pt w a s m a d e t o u s e o nl y r el e v a nt i nf or m ati o n i n t h e i m a g e a n d t o 

o nl y s u p pl y t h e C N N wit h pi x el s of i nt er e st ( pr ef er a bl y n o bl a c k b or d er s, 

si n c e n o u s ef ul i nf or m ati o n f or t h e i nt e n d e d cl a s si fl c ati o n t a s k c a n b e 

e xtr a ct e d  fr o m  it  a n d  t h e  c al c ul ati o n  ti m e s  t a k e  l o n g er). It  s h o ul d  b e 

n ot e d h er e t h at t h e s q u ar e pri nti n g ar e a ( or t h e u s a bl e p o w d er b e d) of 

t h e l a s er si nt eri n g s y st e m i s di s pl a y e d v erti c all y di st ort e d a s a r e s ult of 

t h e i m a g e r e c or di n g (Fi g. 2 ( a), r e d d a s h e d b or d er) a n d t h er ef or e c o ul d 

n ot  b e  c o m pl et el y  c o v er e d  b y  a  s q u ar e  i m a g e  ar e a  ( Fi g.  2 ( a),  bl u e 

b or d er)  wit h o ut  i n cl u di n g  u n d e sir e d  bl a c k  b or d er  ar e a s  i n  t h e  i m a g e 

r e c or di n g.  It i s  i m p ort a nt t o  u n d er st a n d  t h at s q u ar e  i m a g e s  ar e  m or e 

b e n e fl ci al  f or  t h e  M L  m o d el  ar c hit e ct ur e s. Fi g.  2 ( b)  t h u s  s h o w s  a n 

o pti mi z e d  s q u ar e  i m a g e  of  t h e  p o w d er  b e d  pri nti n g  ar e a  of  t h e  l a s er 

si nt eri n g s y st e m. 

T h e  d at a s et  b al a n c e d  wit h  t h e  R U S  a n d  R O S  m et h o d s  c o n si st s  of 

4 0 0 0 i m a g e s, w hi c h ar e a ut o m ati c all y di vi d e d i nt o 2 0 0 0 diff er e nt O K 

a n d 2 0 0 0 p arti all y diff er e nt a n d p arti all y d u pli c at e d D E F i m a g e s u si n g a 

si m pl e, s elf- pr o gr a m m e d p yt h o n s cri pt. T h e d at a str u ct ur e of t hi s d at a -

s et  w a s  f urt h er  s u b di vi d e d  a c c or di n g  t o [ 1 7 ] b y  cr e ati n g  t hr e e  s u b -

gr o u p s, e a c h wit h s e p ar at e dir e ct ori e s f or b ot h cl a s s e s: a tr ai ni n g d at a s et 

wit h  1 0 0 0  a ut o m ati c all y  s el e ct e d  i m a g e s  i n  e a c h  cl a s s,  a  v ali d ati o n 

d at a s et wit h 5 0 0 i m a g e s i n e a c h cl a s s a n d a t e st d at a s et wit h al s o 5 0 0 

i m a g e s i n e a c h cl a s s. T h e 5 0 0 O K i m a g e s e a c h f or t h e v ali d ati o n a n d t e st 

d at a s et  w er e  a g ai n  r a n d o ml y  a n d  a ut o m ati c all y  s el e ct e d  b y  a 

s elf- pr o gr a m m e d p yt h o n s cri pt fr o m t h e 2 0 0 0 O K i m a g e s a n d m o v e d t o 

t h e a p pr o pri at e dir e ct or y. A sli g htl y diff er e nt m et h o d w a s u s e d f or t h e 

5 0 0 D E F i m a g e s of t h e v ali d ati o n a n d t e st d at a s et, a s i s m u st b e e n s ur e d 

t h at  n o  i m a g e  a p p e ar s  t wi c e  i n  t h e  i n di vi d u al  s u b gr o u p s  a n d  s u b -

dir e ct ori e s, ot h er wi s e t h e r e s ult s of t h e cl a s si fi c ati o n c o ul d b e di st ort e d. 

F or t hi s r e a s o n, t h e ori gi n al 7 0 6 i n di vi d u al D E F i m a g e s w er e r a n d o ml y 

a n d  a ut o m ati c all y  di vi d e d  b y  a  p yt h o n  s cri pt  a n d  a c c or di n gl y  3 0 6 

i m a g e s w er e a s si g n e d t o t h e D E F dir e ct or y of t h e tr ai ni n g d at a s et a n d 

2 0 0 D E F i m a g e s e a c h t o t h e D E F dir e ct ori e s of t h e v ali d ati o n a n d t e st 

d at a s et.  A n ot h er  p yt h o n  s cri pt  r a n d o ml y  s el e ct e d  D E F  i m a g e s  i n  t h e 

r e s p e cti v e D E F dir e ct ori e s w er e t h e n a ut o m ati c all y c o pi e d u ntil t h e di -

r e ct ori e s c o nt ai n e d t h e d e fi n e d si z e of 1 0 0 0 D E F tr ai ni n g i m a g e s a n d 

5 0 0 D E F v ali d ati o n a n d t e st i m a g e s e a c h. Fi g. 3 s h o w s a g e n er al fi o w 

c h art f or cr e ati n g t h e d at a str u ct ur e d e s cri b e d. 

T h e  pr e pr o c e s s e d  i m a g e  d at a  fr o m  t h e  i n di vi d u al  s u b gr o u p s  a n d 

dir e ct ori e s of t h e d at a s et w er e t h e n c h e c k e d a g ai n m a n u all y f or c orr e ct 

a s si g n m e nt. I n c orr e ctl y a s si g n e d i m a g e s ( w hi c h w er e o v erl o o k e d d uri n g 

t h e i niti al a s si g n m e nt or f or w hi c h  a cl a s si fi c ati o n w a s u n cl e ar) w er e 

r e m o v e d m a n u all y a n d r e pl a c e d wit h ot h er i m a g e s t h at w er e r a n d o ml y 

s el e ct e d  b y  a n  a d diti o n al  p yt h o n  s cri pt  a c c or di n g  t o  t h e  r e s p e cti v e 

dir e ct or y. 

3. 2. 4.  D at a a u g m e nt ati o n a n d h y p er p ar a m et er t u ni n g 

D at a  a u g m e nt ati o n  w a s  c arri e d  o ut  a s  a  r e g ul at or y  m e c h a ni s m  i n 

or d er  t o  a v oi d  a n  i m m e di at e  o v er fltti n g  of  t h e  m o d el  t o  t h e  tr ai ni n g 

d at a. T hi s w o ul d h a v e a n e g ati v e i m p a ct o n t h e m o d el p erf or m a n c e o n 

n e wl y  vi e w e d  d at a.  Wit h  d at a  a u g m e nt ati o n,  v ari o u s  o p er ati o n s  ar e 

p erf or m e d o n t h e tr ai ni n g d at a s et i n r e al ti m e. T h e s e o p er ati o n s ar e:  

• R e s c ali n g f a ct or of 1 / 2 5 5 f or n or m ali zi n g t h e i m a g e d at a  

• H ori z o nt al fii p of t h e i m a g e s  

• Z o o m r a n g e of i m a g e ar e a 0. 1 5  

• Wi dt h s hift 0. 2 0  

• H ei g ht s hift 0. 2 0  

• S h e ar r at e 0. 1 5  

• Fill m o d e “ n e ar e st ”  

• R a n d o m i m a g e r ot ati o n of ± 2 0 d e gr e e s 

T h e pri n ci pl e s a n d o p er ati o n s of d at a a u g m e nt ati o n ar e d e s cri b e d i n 

d et ail b y S h ort e n a n d K h o s h g oft a ar [ 1 8 ] a n d al s o i n t h e K er a s li br ar y 

[ 1 9 ] .  I n  a d diti o n  t o  t h e  pr e pr o c e s si n g  of  t h e  i m a g e  d at a  a n d  d at a 

a u g m e nt ati o n,  t h e  s etti n g s  of  t h e  h y p er p ar a m et er s  w er e  a n  e s s e nti al 

p art of tr ai ni n g t h e C N N m o d el s. T h e b e st m o d el f or cl a s si fi c ati o n of t h e 

p o w d er  b e d  i m a g e s  w a s  o nl y  a c hi e v e d  aft er  v ari o u s  it er ati o n s  a n d 

c o n fl g ur ati o n s of t h e h y p er p ar a m et er s. T h e h y p er p ar a m et er s of t h e C N N 

m o d el s u s e d i n t hi s w or k ar e li st e d i n T a bl e 1 a n d ar e e x pl ai n e d i n d et ail 

b y H utt er et al. [ 2 0 ] . 

3. 3.  C o n v ol uti o n al n e ur al n et w or k 

Cl a s si c M L a p pr o a c h e s t o i m a g e r e c o g niti o n c o n si st of t w o s e p ar at e 

Fi g. 2. Pr e pr o c e s si n g st e p s t h at w er e a p pli e d t o all i m a g e s of t h e p o w d er b e d d at a s et. ( a ) T h e pr e vi o u sl y cr o p p e d p o w d er b e d i m a g e of t h e si z e 3 0 0 × 3 0 0 p x wit h 

s c h e m ati c all y s h o w n pri nti n g ar e a (r e d) a n d a m a xi m u m r el e v a nt s q u ar e i m a g e ar e a ( bl u e); ( b ) t h e fi n al i m a g e wit h t h e m a xi m u m s q u ar e di m e n si o n s of 1 8 0 × 1 8 0 

p x. ( F or i nt er pr et ati o n of t h e r ef er e n c e s t o c ol o ur i n t hi s fi g ur e l e g e n d, t h e r e a d er i s r ef err e d t o t h e w e b v er si o n of t hi s arti cl e.) 
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steps [4,6]. In the first step, in what is known as feature engineering, an 
attempt is made to extract relevant data structures from the raw image 
data using various algorithms. In the second step, what is known as 
classification, an ML algorithm then attempts to learn a pattern that can 
map the data structures and a target variable. However, these patterns 
must have previously been extracted during feature engineering for 
learning. This approach often leads to unsatisfactory classification re
sults [6]. 

For this reason, CNN have been widely used in recent years to solve 
various complex computer vision problems [16,21,22]. These modern 
ML architectures are also used specifically to monitor and classify 
certain additive manufacturing processes [3,5,8,9]. CNN are based on 
the complex structures of real human brain structures of the visual 
cortex and are one of the latest methods of DL in the field of image 
recognition [5,6,23]. According to Baumgartl et al. [5], the fundamental 
difference between a CNN and a classic ML approach lies in the com
bination of feature engineering and classification. 

3.3.1. Transfer learning 
The training of a CNN model from scratch requires a lot of data to get 

a good predictive model [21]. However, often insufficient data is 
available, which requires complex techniques that can produce accept
able prediction results with less data. Transfer learning (TF) offers such a 
technique. In the case of TF, the features of an already trained CNN 
model are used as initialization for training the CNN used for the actual 
classification. According to Tsiakmaki et al. [24], it is an effective ML 
method to use a CNN model that was previously trained on a very large 
dataset and the features generated in this way as an initialization for a 
new CNN model on a much smaller dataset and reuse it with a different 
purpose. This method is often informative, even if the new classification 
task is significantly different from the one for which the original model 
was trained. 

There are two methods of using TL [4]. On the one hand, you can use 
a previously trained CNN model as a feature extractor for a completely 
different classifier. On the other hand, you can partially use the model 
again and carry out what is commonly known as a fine-tuning (FT). For 
this purpose, the top layers of the previously trained CNN model are 
trained again and optimized in order to better adapt the features 
generated there to the new dataset. 

3.3.2. CNN architectures used in this work 
As previously mentioned, a common and very effective approach for 

DL with small image datasets is to use a pretrained network. In this work 
two different CNN models are used for feature extraction and the results 
are compared. For this purpose, both networks are instantiated with 
pretrained weights and implemented with a new classifier. Before 
training the CNN models with the powder bed data, the individual layers 
of the models are frozen or defined as non-trainable so that the pre
trained weights are not updated again during the new training cycle and 
thus destroy the previously learned features. With this setting, only the 
weights from the layers of the new classifier that were added to the CNN 
models are trained. After the training run, the networks are fine-tuned. 
For this purpose, individual layers of the respective network are again 
defined as trainable and used for feature extraction. These layers are 
then trained again together with the classifier. This re-uses the previ
ously pretrained features of the CNN models to make them more rele
vant to the new problem. Thus, in such an approach, this investigation 
enables a better classification of SLS powder bed images. The CNN 
model architectures presented below enable a production-integrated 
method for the continuous detection of defects in recorded powder 
bed images during selective laser sintering and for classification into 
good and bad production images. The information generated in this way 
can then contribute to the assessment of the manufactured part quality. 
Both CNN models first analyse manually preselected image data using 
special computational operations and learn layer by layer possibly 
interesting image features. These learned features are then used to 
evaluate unknown images and thus enable automatic, intelligent image 
classification. 

A CNN model that is used here for feature extraction is the VGG16 
architecture, which was developed by Simonyan and Zisserman [25] in 
2014. It is a simple and widespread CNN architecture, but which, in 
principle, no longer corresponds to the current state of the art. A more 
modern, state-of-the-art CNN architecture, which was also used here as a 
comparison, is the Xception model designed by Chollet in 2016 [25]. 
Some important details of the pretrained CNN models that are used with 
the additional classifier inserted over both architectures are explained 
below. 

The VGG16 architecture is a pretrained CNN from the Visual Ge
ometry Group (VGG) at Oxford University. The model was developed to 

Fig. 3. General procedure for creating the data structure described from the powder bed dataset.  

Table 1 
CNN hyperparameters.  

Cost function Learning rate (Lr) Optimizer No. Epochs Batch size Lr decay Early stopping 

Binary cross entropy 1 10 3 Adam 1 ˆ 0.9 2 ˆ 0.999 30 64 patience ˆ 5 patience ˆ 20  

E. Westphal and H. Seitz                                                                                                                                                                                                                      
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si g ni fl c a ntl y i n cr e a s e t h e d e pt h of t h e e xi sti n g C N N ar c hit e ct ur e s a n d 

u s e s  1 6  n et w or k  l a y er s  f or  o bj e ct  r e c o g niti o n [ 2 5, 2 6 ] .  A c c or di n g  t o 

Si m o n y a n a n d Zi s s er m a n [ 2 5 ] , 2 2 4 × 2 2 4 p x R G B i m a g e s ar e pr o vi d e d 

a s i n p ut, w hi c h ar e t h e n p a s s e d t hr o u g h a bl o c k of c o n v ol uti o n l a y er s 

wit h a v er y s m all fllt er si z e ( m atri x) of 3 × 3 a n d a c o n v ol uti o n st e p of 1 

p x. Aft er t h e r e s p e cti v e c o n v ol uti o n l a y er s, fi v e M a x- P o oli n g l a y er s wit h 

a 2 × 2 p x wi n d o w a n d a c o n v ol uti o n st e p of 2 p x ar e e m b e d d e d i n or d er 

t o c o m pr e s s t h e s p ati al r e pr e s e nt ati o n of t h e i n p ut d at a [ 2 5 ] . T h e c o n-

v ol uti o n al l a y er bl o c k s ar e f oll o w e d b y t hr e e f ull y c o n n e ct e d l a y er s, of 

w hi c h t h e fir st t w o e a c h h a v e 4 0 9 6 c h a n n el s a n d t h e t hir d i s u s e d f or 

cl a s si fi c ati o n a n d h a s 1 0 0 0 c h a n n el s f or 1 0 0 0 diff er e nt cl a s s e s. A s oft -

m a x l a y er f oll o w e d a s t h e l a st l a y er. Fi g. 4 s h o w s t h e str u ct ur e of t h e 

V G G 1 6 n et w or k ar c hit e ct ur e. 

B a s e d  o n  t h e  V G G 1 6  ar c hit e ct ur e,  t h e  X c e pti o n  C N N  ar c hit e ct ur e 

w a s d e v el o p e d, w hi c h i s s c h e m ati c all y si mil ar i n s o m e ar e a s. X c e pti o n i s 

b a s e d e ntir el y o n t h e a p pr o a c h of t h e d e pt h wi s e s e p ar a bl e c o n v ol uti o n 

( D W S C) l a y er s [ 2 3 ] . T hi s i s a m or e u p-t o- d at e a p pr o a c h t h a n t h e pr e-

vi o u sl y fr e q u e ntl y u s e d s e p ar a bl e c o n v ol uti o n s, w hi c h w er e d e s cri b e d 

b y M a m al et a n d G ar ci a [ 2 7 ] i n 2 0 1 2. Sifr e [ 2 8 ] d e v el o p e d d e pt h wi s e 

s e p ar a bl e  c o n v ol uti o n s  i n  2 0 1 3  at  G o o gl e  I n c.  a n d  li st e d  d et ail e d 

e x p eri m e nt al r e s ult s i n hi s d o ct or al t h e si s. T h e D W S C t h er ef or e n ot o nl y 

d e al s wit h t h e s p ati al di m e n si o n s i n n e ur al n et w or k s, b ut al s o wit h t h e 

d e pt h or t h e n u m b er of c ol or c h a n n el s of a n i n p ut [ 2 8 ] . 

T h e  X c e pti o n  ar c hit e ct ur e  c o n si st s  of  3 6  c o n v ol uti o n  l a y er s  t h at 

e n a bl e  f e at ur e  e xtr a cti o n.  T h e s e  l a y er s  ar e  str u ct ur e d  i n  1 4  m o d ul e s 

( o n e m o d ul e i s r e p e at e d ei g ht ti m e s), all of w hi c h, e x c e pt f or t h e fir st 

a n d t h e l a st m o d ul e, h a v e li n e ar dir e ct c o n n e cti o n s t o o n e a n ot h er. T h e 

D W S C  i s  a  s p ati al  c o n v ol uti o n  t h at  i s  e x e c ut e d  i n d e p e n d e ntl y  of  o n e 

a n ot h er i n p ar all el vi a e a c h i n p ut c h a n n el a n d i s f oll o w e d b y a p oi nt- b y- 

p oi nt 1 × 1 c o n v ol uti o n t h at pr oj e ct s t h e o ut p ut of t h e c h a n n el o nt o a 

n e w  c h a n n el [ 2 3 ] .  A c c or di n g  t o  C h oll et [ 2 3 ] ,  t hi s  r e s ult s  i n  d e e p er 

m o d el s t h at ar e e xtr e m el y ef fl ci e nt. A n ot h er a d v a nt a g e of t hi s n et w or k 

ar c hit e ct ur e i s t h at f e w er o p er ati o n s ar e p erf or m e d, w hi c h m e a n s t h at 

t h e c o m p ut ati o n al c o st s of t h e m o d el i s l o w er. T h e X c e pti o n m o d el h a s 

m a n y m or e p ar a m et er s c o m p ar e d t o t h e V G G 1 6 n et w or k, b ut i s u s u all y 

m or e  ef fi ci e nt  a n d  f a st er [ 2 3 ] .  T h e  g e n er al  str u ct ur e  of  t h e  X c e pti o n 

C N N ar c hit e ct ur e i s s h o w n i n Fi g. 5 . 

B ot h t h e V G G 1 6 a n d t h e X c e pti o n ar c hit e ct ur e s ar e fir st i n st a nti at e d 

wit h  pr etr ai n e d  w ei g ht s  fr o m  t h e  I m a g e N et  d at a s et.  T hi s  d at a s et  i s  a 

v er y l ar g e b e n c h m ar k d at a s et f or t h e d et e cti o n of o bj e ct s [ 2 9, 3 0 ] . T h e 

r e s p e cti v e cl a s si fl c ati o n l a y er s of t h e t w o m o d el s ar e n ot l o a d e d i n or d er 

t o e n a bl e a n ef fi ci e nt f e at ur e e xtr a cti o n. A n e w cl a s si fi er i s i m pl e m e nt e d 

f or t hi s p ur p o s e. F urt h er m or e, t h e l a y er s of t h e C N N m o d el s ar e fr o z e n 

or  m a d e  u ntr ai n a bl e  t o  pr e v e nt  t h e  pr etr ai n e d  w ei g ht s  fr o m  b ei n g 

u p d at e d. T h e n e w cl a s si fi er i s t h e n tr ai n e d wit h t h e p o w d er b e d i m a g e 

d at a. Aft er t hi s fir st tr ai ni n g r u n, d e fi n e d l a y er s of t h e C N N m o d el s ar e 

m a d e  tr ai n a bl e  a g ai n  a n d  u s e d  t o g et h er  wit h  t h e  cl a s si fi er  f or 

fi n e-t u ni n g  a n d  r etr ai ni n g.  T h e  cl a s si fi er  i s  i d e nti c al  f or  all  i n -

v e sti g ati o n s  i n  t hi s w or k  a n d  c o n si st s of  a  f ull y  c o n n e ct e d l a y er  wit h 

1 0 0 0 c h a n n el s, a dr o p o ut l a y er wit h a r et e nti o n r at e of 0. 2 5 a n d a b at c h 

n or m ali z ati o n  o p er ati o n.  Fi n all y,  a n ot h er  f ull y  c o n n e ct e d  l a y er  wit h 

o nl y  o n e  c h a n n el  a n d  a  si g m oi d  a cti v ati o n  f u n cti o n  w a s  pr o vi d e d  t o 

pr e di ct t h e pr o b a bilit y of t h e cl a s s e s or t o p erf or m t h e bi n ar y cl a s si fi -

c ati o n b et w e e n t h e O K a n d D E F cl a s s e s. Fi g. 6 s h o w s a fl o w c h art of t h e 

e ntir e T L pr o c e s s. 

All c al c ul ati o n s w er e c arri e d o ut o n a l o c al w or k st ati o n c o m p ut er, 

w hi c h pr o vi d e s a Wi n d o w s e n vir o n m e nt wit h 3 2  G B R A M a n d a G P U 

N vi di a G e F or c e R T X 2 0 8 0 Ti wit h 1 1 G D D R 6 V R A M. 

3. 4. E x p eri m e nt al t est e x e c uti o n 

Aft er vi d e o fil e s of t h e S L S pr o c e s s w er e r e c or d e d, br o k e n i nt o i n -

di vi d u al fr a m e s a n d cr o p p e d, t h e r e s ulti n g d at a s et w a s cl e a n e d u p a n d 

t h e i m b al a n c e pr o bl e m b et w e e n t h e t w o cl a s s e s w a s fi x e d u si n g diff er e nt 

t e c h ni q u e s. T h e pr o c e s s e d i m a g e s w er e t h e n di vi d e d i nt o a d e fi n e d d at a 

str u ct ur e a n d c h e c k e d a g ai n wit h r e g ar d t o t h eir c orr e ct cl a s si fi c ati o n. 

Aft er  t h e s e  st e p s,  t h e  V G G 1 6  a n d  t h e  X c e pti o n  C N N  m o d el  w er e 

i m pl e m e nt e d  u si n g  t h e  P yt h o n  pr o gr a m mi n g  l a n g u a g e  i n  t h e  d e e p 

l e ar ni n g fr a m e w or k T e n s or Fl o w [ 3 1 ] , w hi c h pr o vi d e s a n i nt erf a c e f or 

pr o gr a m mi n g  M L  al g orit h m s  a n d  a n  i m pl e m e nt ati o n  f or  e x e c uti n g 

t h e m. T e n s or Fl o w al s o i n cl u d e s a d at a pr e pr o c e s si n g t o ol t h at i s a p pli e d 

t o t h e tr ai ni n g a n d v ali d ati o n gr o u p s. Aft er pr e pr o c e s si n g t h e d at a, t h e 

r e s p e cti v e n et w or k a n d a n a d diti o n al cl a s si fi er w er e tr ai n e d o n t h e d at a 

a n d t h e n o pti mi z e d b y fi n e-t u ni n g. T h e s e o pti mi z e d m o d el v ari a nt s w er e 

i n t ur n u s e d t o cl a s sif y t h e t e st d at a a n d c o m p ar e d wit h s uit a bl e e v al-

u ati o n  m etri c s  a n d  vi s u ali z ati o n  m et h o d s.  L a stl y,  h e at  m a p s  w er e 

g e n er at e d t o l o c at e t h e d ef e ct s i n t h e p o w d er b e d i m a g e s u si n g t h e Gr a d 

C A M pr o c e s s. T h e e x p eri m e nt al pr o c e d ur e a n d t h e pr o p o s e d m et h o d -

ol o g y c a n b e s u m m ari z e d a s f oll o w s:  

1.  R e c or di n g a n d pr e pr o c e s si n g of S L S i m a g e d at a.  

2.  I m pl e m e nt ati o n of t h e C N N m o d el s i n T e n s or Fl o w.  

3.  Tr ai n  t h e  r e s p e cti v e  ar c hit e ct ur e  wit h  t h e  tr ai ni n g  a n d  v ali d ati o n 

d at a.  

4.  Fi n e-t u ni n g of t h e t o p n et w or k l a y er s t o i m pr o v e p erf or m a n c e.  

5.  E nt er  t e st  d at a  i nt o  t h e  tr ai n e d  n et w or k  t o  o bt ai n  cl a s si fi c ati o n 

r e s ult s.  

6.  E v al u ati o n  a n d  c o m p ari s o n  of  t h e  cl a s si fi c ati o n  r e s ult s  of  t h e 

n et w or k s. 

7.  U s e Gr a d- C A M t o cr e at e a h e at m a p t o p oi nt t o p o s si bl e d ef e ct l o c a -

ti o n s i n t h e t e st i m a g e d at a. 

3. 5. P erf or m a n c e m e as ur es 

At a cl a s si fi c ati o n t a s k, t h e r e s ult s c a n b e pr e s e nt e d a n d s u m m ari z e d 

i n t h e f or m of a s p e ci al m atri x, t h e c o nf u si o n m atri x ( C M) [ 1 1 ] . T hi s C M 

i s s h o w n i n T a bl e 2 a s a n e x a m pl e. I n t h e c a s e of a bi n ar y cl a s si fi c ati o n, 

t h e C M c o nt ai n s t h e f oll o wi n g i nf or m ati o n:  

• N u m b er  of  e x a m pl e s  t h at  ar e  pr e di ct e d  t o  b e  r e c o g ni z e d  a s  tr u e 

p o siti v e ( T P)  

• N u m b er  of  e x a m pl e s  t h at  ar e  pr e di ct e d  t o  b e  r e c o g ni z e d  a s  tr u e 

n e g ati v e ( T N) 

Fi g. 4. V G G 1 6 C N N m o d el f or t h e d et e cti o n a n d cl a s si fi c ati o n of p o w d er b e d d ef e ct s at t h e S L S.  

E. W est p h al a n d H. S eit z                                                                                                                                                                                                                      
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• N u m b er  of  e x a m pl e s  t h at  ar e  pr e di ct e d  t o  b e  r e c o g ni z e d  a s  f al s e 

p o siti v e s ( F P)  

• N u m b er  of  e x a m pl e s  t h at  ar e  pr e di ct e d  t o  b e  r e c o g ni z e d  a s  f al s e 

n e g ati v e ( F N) 

F urt h er m etri c s f or e v al u ati n g t h e p erf or m a n c e of a C N N m o d el c a n 

t h e n b e d eri v e d fr o m t hi s C M. T h e a c c ur a c y i s t h e m o st fr e q u e ntl y u s e d 

m etri c f or bi n ar y cl a s si fl c ati o n a n d e v al u at e s t h e o v er all eff e cti v e n e s s of 

a  cl a s si fl er  or  i n di c at e s  t h e  pr o p orti o n  of  c orr e ct  pr e di cti o n s.  T h e  a c -

c ur a c y i s f urt h er e x pl ai n e d a n d d e fi n e d b y J o h n s o n a n d K h o s h g oft a ar 

Fi g. 5. X c e pti o n C N N ar c hit e ct ur e f or t h e d et e cti o n a n d cl a s si fi c ati o n of p o w d er b e d d ef e ct s at t h e S L S. ( a) S h o w s t h e g e n er al str u ct ur e of t h e X c e pti o n m o d el; ( b) 

s h o w s t h e d et ail e d ar c hit e ct ur e of t h e ori gi n al X c e pti o n m o d el. A b at c h n or m ali z ati o n o p er ati o n i s p erf or m e d aft er e a c h c o n v ol uti o n a n d e a c h s p ati al c o n v ol uti o n 

bl o c k.  E a c h bl o c k  i s n u m b er e d, t h e  fir st b ei n g t h e k er n el si z e,  t h e s e c o n d  b ei n g t h e n u m b er  of  filt er s i n  t h e p arti c ul ar bl o c k, a n d  t h e l a st b ei n g t h e si z e  of  t h e 

c o n v ol uti o n st e p. 

Fi g. 6. Fl o w c h art of t h e T F wit h t h e p o w d er b e d d at a.  

E. W est p h al a n d H. S eit z                                                                                                                                                                                                                      
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[11] as well as by Branco et al. [32]. Especially when working with an 
imbalanced dataset (but also for balanced datasets), other metrics are 
often used to evaluate performance. The most frequently used are then 
precision, recall (formally also referred to as sensitivity) and the 
F1-Score [11,32]. 

A graph such as the ROC curve and the associated AUC measure are 
other useful metrics for evaluating and visualizing the performance of a 
CNN model in the case of imbalanced data [32,33]. The ROC curve is a 
graphic representation of the true positive rate (TPR) against the false 
positive rate (FPR) for all possible prediction thresholds. In other words, 
it visualizes the trade-off between correctly classified positive examples 
and misclassified negative examples. The terms used for the ROC curve 
and the AUC value are defined and further explained by Johnson and 
Khoshgoftaar and Branco et al. [11,32]. ROC curves, in and of them
selves, do not offer a comparable performance indicator [32]. A corre
sponding value is determined by the AUC. The AUC value is a 
summarizing performance measure for all possible prediction threshold 
values and is, according to Branco et al. [32], often used to compare 
performance between different models. 

In most cases, accuracy and loss or respectively cost functions are 
also recorded to evaluate the performance of the DL [19]. The accuracy 
graph shows the performance of a classification as a percentage. The loss 
graph considers the uncertainties of a forecast based on how much it 
deviates from the actual value. There are several loss functions, not 
expressed as a percentage, that represent the sum of the errors made for 
each data item in training or validation sets. This value should always be 
minimized during training. Both diagrams thus characterize the training 
process and provide initial information about the effectiveness of the 
selected hyperparameters and how they should be changed for more 
efficient training. A commonly used loss function is cross-entropy loss, 
and especially for binary classification tasks (such as the classification of 
OK and DEF SLS powder bed images), binary cross-entropy loss [34,35]. 

In this work, the performance of the CNN models was additionally 
assessed using the gradient-weighted class activation mapping (Grad- 
CAM) method according to Selvaraju et al. [36], which offers a heat map 
for localizing possible powder bed irregularities. Grad-CAM is a tech
nique for the visual description of CNN models, that creates a rough 
localization map, which highlights the areas of interest in the image for 
the prediction. 

4. Results 

4.1. Validation results 

Two experiments (the first with the data augmentation described 
under 3.2.4, the second without) were carried out using the proposed 
method with the pretrained VGG16 and Xception networks and the 
additional classifier. For this purpose, the resulting CNN architectures 
were first trained with the training data and then validated with the 
validation data. The experiments were also set up in two stages. In the 
first step, the pretrained network including the classifier was trained 
with the data and, in a second step, it was optimized through fine-tuning 
and renewed training. 

A third experiment was performed with VGG16 and Xception net
works as well as the additional classifier, which were not trained in 
advance (by ImageNet). For this purpose, the untrained networks 
including the classifier were trained with the balanced data and the 
proposed data augmentation and then optimized through fine-tuning 
and retraining to compare the results with the other experiments. 

In this context, Fig. 7 shows the course of accuracy and loss of all 
three experiments for both the training and the validation data during 
fine-tuning. 

The smoothed curves were presented in the graphs using the expo
nentially weighted moving average (EWMA). The EWMA course is a 
weighted representation of the data points of a time series. There the 
weights decrease exponentially, so that newer data points are weighted 
more heavily than those that are further back in time [37,38]. The 
weighting factor on which the EWMA representations are based is 0.75. 
The two CNN architectures were each trained over 30 epochs and then 
trained again over 30 epochs in the course of fine tuning. 

For the first (1st) experiment with data augmentation, the training 
accuracy of the VGG16 model was then about 91%, that of the Xception 
model approx. 94% (see Fig. 7(a), upper graph). The training loss was 
around 0.24 for the VGG16 architecture and around 0.14 for the Xcep
tion architecture (Fig. 7(a), lower graph). In terms of validation accu
racy, the VGG16 network architecture achieved with approx. 90% better 
results than the Xception architecture with approx. 80% (Fig. 7(b), 
upper graph). With the validation loss, the values of the VGG16 model 
with approx. 0.25 are ultimately also lower than with the Xception 
model with approx. 0.5 (see Fig. 7(b), lower graph). 

For the second (2nd) experiment without data augmentation, the 
training accuracy of the VGG16 model was 100%, that of the Xception 
model was also 100%, but was stopped after 21 epochs due to the 
defined early stopping hyperparameter (see Fig. 7(a), upper graph). The 
training loss for the VGG16 model was almost 0.0 and for the Xception 
model architecture also around 0.0 with a stop in the calculation after 21 
epochs (Fig. 7(a), lower graph). In the validation accuracy, the VGG16 
network architecture without data augmentation achieved with approx. 
98% much better results than the Xception architecture, which was 
stopped after 21 epochs with exactly 50% validation accuracy (Fig. 7(b), 
upper graph). At validation loss, the values of the VGG16 model with 
approx. 0.1 are very much lower than with the Xception model with 
approx. 464 after an early stop at 21 epochs (see Fig. 7(b), lower graph). 

For the third (3rd) experiment with networks that were not previ
ously trained, the training accuracy of the VGG16 model was then about 
51%, that of the Xception model was about 77% (see Fig. 7(a), upper 
graph). The training loss was 0.7 for the VGG16 and about 0.5 for the 
Xception architecture (Fig. 7(a), lower graph). The validation accuracy 
of the VGG16 network architecture was slightly better with 51% than 
with the Xception architecture with approx. 50% (Fig. 7(b), upper 
graph). In the validation loss, the values of the VGG16 model with 
approx. 0.7 are significantly lower than with the Xception model with 
approx. 9.0 (see Fig. 7(b), lower graph). 

4.2. Test results 

As described above, the powder bed dataset contains preselected test 
data consisting of a predefined number of 500 OK and 500 DEF images, 
each selected at random from the total dataset. DEF images were also 
copied randomly during oversampling to achieve the predefined number 
of images. After the training, optimization and validation of the two 
CNN model variants with the training and validation data, the test image 
data were examined with the models. The same data was used for both 
models and all experiments. The results are displayed in Table 3 in the 
form of Confusion Matrix, Precision, Recall (TPR), FPR, F1 Score and 
AUC values. The best results for each parameter are printed in bold. 

To enable a more precise comparison of the two CNN models, the 
respective ROC curves are, according to Johnson et al. [17], a manda
tory part of ML and are also shown in Fig. 8. 

First, the individual experiments are considered. It can be stated that 
the VGG16 model from the 2nd experiment, without data augmentation, 
initially delivers the best results. The accuracy (0.971) and the ROC-AUC 
value (0.993) are better than the accuracy (0.958) and the ROC-AUC 
value (0.982) for the second-best result, which was achieved in the 1st 
experiment using the VGG16 model architecture with data 

Table 2 
Confusion matrix according to Johnson and Khoshgoftaar [11].   

Actual positive Actual negative 

Predicted positive True positive (TP) False positive (FP) 
Predicted negative False negative (FN) True negative (TN)  

E. Westphal and H. Seitz                                                                                                                                                                                                                      
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a u g m e nt ati o n. T h e r e s ult s of t h e 3r d e x p eri m e nt a c hi e v e a c c ur a ci e s of 

a p pr o x.  0. 5  a n d  R O C- A U C  v al u e s  of  a b o ut  0. 5 2  f or  b ot h  m o d el s 

c o n si d er e d. T h e s e r e s ult s ar e t h er ef or e w ell b el o w t h e v al u e s of t h e ot h er 

t w o e x p eri m e nt s. I n t h e f oll o wi n g, t h e r e s ult s of t h e 1 st e x p eri m e nt ar e 

di s c u s s e d i n m or e d et ail, a s t h e s e v al u e s w er e o bt ai n e d u si n g t h e pr e -

vi o u sl y pr o p o s e d m et h o d. 

T h e t e st r e s ult s of t h e 1 st e x p eri m e nt s h o w t h at t h e v al u e s of t h e C M 

a n d t h e p erf or m a n c e m etri c s d eri v e d fr o m it f or t h e V G G 1 6 m o d el ar e 

hi g h er t h a n t h o s e of t h e X c e pti o n m o d el a n d t h u s e n a bl e a b ett er cl a s -

si fl c ati o n of t h e t e st d at a. E s s e nti all y, t h e a c c ur a c y all o w s a flr st dir e ct 

c o m p ari s o n of t h e p erf or m a n c e of t h e m o d el s, w h er e b y t h e V G G 1 6 a c -

c ur a c y  of  0. 9 5 8  i s  w ell  a b o v e  t h e  X c e pti o n  a c c ur a c y  of  0. 8 9 4.  T h e 

Fi g. 7. A c c ur a c y a n d l o s s of t h e u s e d a n d o pti mi z e d C N N m o d el ar c hit e ct ur e s a n d e x p eri m e nt s i n E W M A r e pr e s e nt ati o n s. ( a) s h o w s t h e c o ur s e of a c c ur a c y ( a b o v e) 

a n d l o s s ( b el o w) i n t h e tr ai ni n g d at a. ( b) s h o w s t h e c o ur s e of a c c ur a c y ( a b o v e) a n d l o s s ( b el o w) f or t h e v ali d ati o n d at a. 

T a bl e 3 

C o nf u si o n m atri c e s a n d p erf or m a n c e p ar a m et er s f or t h e e x a mi n e d C N N ar c hit e ct ur e s f or t h e cl a s si fi c ati o n of p o w d er b e d d ef e ct s at t h e S L S pr o c e s s f or all e x p eri m e nt s 

c arri e d o ut.  

E x p eri m e nt  M o d el C o nf u si o n m atri x A c c ur a c y  Pr e ci si o n  R e c all ( T P R)  F P R F 1- S c or e  R O C- A U C 

1 st V G G 1 6  4 9 0  1 0  0. 9 5 8  0. 9 3 9  0. 9 8 0  0. 0 6 4   0. 9 5 9  0. 9 8 2 

3 2  4 6 8 

X c e pti o n  4 5 9  4 1  0. 8 9 4  0. 8 7 6  0. 9 1 8  0. 1 3 0   0. 8 9 7  0. 9 3 4 

6 5  4 3 5 

2 n d V G G 1 6  4 9 6  1 9  0. 9 7 1  0. 9 6 3  0. 9 8 0  0. 0 3 8   0. 9 7 2  0. 9 9 3 

1 0  4 8 1 

X c e pti o n  5 0 0  0  0. 5 0 0  1. 0 0 0  0. 5 0 0  0. 5 0 0   0. 6 6 7  0. 5 1 4 

5 0 0  0 

3r d V G G 1 6  1 8 0  3 2 0  0. 5 1 5  0. 3 6 0  0. 5 2 2  0. 4 8 9   0. 4 2 6  0. 5 2 5 

1 6 5  3 3 5 

X c e pti o n  5 0 0  0  0. 5 0 0  1. 0 0 0  0. 5 0 0  0. 5 0 0   0. 6 6 7  0. 5 2 6 

5 0 0  0 

T h e b e st r e s ult s f or e a c h p ar a m et er ar e pri nt e d i n b ol d. 
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1 0

pr e ci si o n  s h o w s  t h e  c orr e s p o n d e n c e  of  t h e  c orr e ct  cl a s s  wit h  t h e 

c orr e ctl y cl a s si fl e d pr e di cti o n s of t h e m o d el a n d s h o w s a si g ni fl c a ntl y 

b ett er  v al u e  f or  t h e  V G G 1 6  m o d el  wit h  0. 9 3 9  t h a n  f or  t h e  X c e pti o n 

m o d el wit h 0. 8 7 6. T h e r e c all i n di c at e s t h e ef fi ci e n c y of t h e m o d el f or t h e 

cl a s si fi c ati o n  of  t h e  r el e v a nt  cl a s s,  h er e  t h e  D E F  cl a s s  a n d  wit h  t h e 

V G G 1 6 m o d el wit h 0. 9 8 0 it i s a b o v e t h e v al u e of t h e X c e pti o n m o d el 

wit h 0. 9 1 8. I n t hi s e x a mi n ati o n wit h t h e p o w d er b e d i m a g e d at a, t h e 

m o st i m p ort a nt t hi n g i s t o c orr e ctl y i d e ntif y all i m a g e s w h er e d ef e ct s 

a p p e ar ( hi g h r e c all v al u e s). I n t hi s w a y, g o o d c o m p o n e nt q u alit y c a n 

al w a y s b e g u ar a nt e e d. B ut, e x cl u si v e c o n si d er ati o n of t h e r e c all wit h o ut 

c o n si d eri n g t h e pr e ci si o n i s n ot r e c o m m e n d e d. F or e x a m pl e, hi g h pr e -

ci si o n wit h a l o w r e c all r e s ult s i n a v er y pr e ci s e b ut i n c o m pl et e cl a s si -

fi c ati o n. F or t hi s r e a s o n, t h e F 1- S c or e w a s al s o c al c ul at e d. It s p e ci fi e s a 

h ar m o ni c m e a n b et w e e n pr e ci si o n a n d r e c all a n d d e fl n e s h o w pr e ci s el y 

a n d r o b u stl y t h e m o d el s p erf or m o n t h e t e st d at a. I n pri n ci pl e, a hi g h er 

F 1- S c or e m e a n s a m or e p o w erf ul m o d el. A c c or di n gl y, t h e V G G 1 6 m o d el 

wit h a n F 1- S c or e of 0. 9 5 9 all o w s f or a m u c h b ett er a n d m or e eff e cti v e 

cl a s si fi c ati o n of p o w d er b e d i m a g e s t h a n t h e X c e pti o n m o d el wit h a F 1- 

S c or e of 0. 8 9 7. 

T h e  R O C  c ur v e s  of  t h e  m o d el  ar c hit e ct ur e s  s h o w n  i n Fi g.  8 w er e 

cr e at e d aft er fi n e-t u ni n g t h e m o d el s of e a c h e x p eri m e nt. F or t hi s p ur -

p o s e, t h e T P R w a s pl ott e d o v er t h e F P R a n d a n A U C v al u e w a s d et er -

mi n e d. T h e m a xi m u m A U C v al u e ( 0. 9 8 2) w a s a c hi e v e d b y t h e V G G 1 6 

C N N  ar c hit e ct ur e.  T h e  X c e pti o n  ar c hit e ct ur e  a c hi e v e d  a  l o w er  A U C 

v al u e ( 0. 9 3 4), w hi c h i s r e fl e ct e d i n a fi att er R O C c ur v e. 

F or  b ett er  vi s u ali z ati o n  a n d  e x pl a n ati o n  of  t h e  t e st  r e s ult s,  a 

gr a di e nt- w ei g ht e d  Cl a s s  A cti v ati o n  M a p pi n g  w a s  cr e at e d  f or  s el e ct e d 

t e st i m a g e s. T h e Gr a d- C A M t e c h n ol o g y i s u s e d t o cr e at e “ vi s u al e x pl a -

n ati o n s ” of  t h e  C N N  m o d el s [ 3 6 ] .  A c c or di n g  t o  S el v ar aj u  et  al. [ 3 6 ] 

c o n v ol uti o n al  l a y er s  r et ai n  n at ur al  s p ati al  i nf or m ati o n  t h at  i s  s u b s e -

q u e ntl y  l o st  i n  f ull y  c o n n e ct e d  l a y er s.  I n  t hi s  w a y,  s e m a nti c, 

cl a s s- s p e ci fi c i m a g e i nf or m ati o n c a n b e s e ar c h e d f or i n t h e c o n v ol uti o n 

l a y er s  ( e. g.  f or  o bj e ct  c o m p o n e nt s  s u c h  a s  e y e s,  e ar s,  cr a c k s  et c.). 

Gr a d- C A M  t h e n  u s e s  t h e  gr a di e nt  i nf or m ati o n  fi o wi n g  i nt o  t h e  fi n al 

c o n v ol uti o n  l a y er  of  t h e  C N N  t o  g e n er at e  i m p ort a n c e  v al u e s  f or  a 

p arti c ul ar pr o p ert y of i nt er e st. 

I n  t hi s  w or k,  t h e  a cti v ati o n  m a p s  of  t h e  V G G 1 6  a n d  t h e  X c e pti o n 

m o d el  w er e pr e s e nt e d a n d  hi g hli g ht e d  u si n g t h e  gr a di e nt s  of t h e  l a st 

c o n v ol uti o n l a y er. T hi s m a d e it p o s si bl e t o l o c at e ar e a s of t h e i m a g e t h at 

ar e of m o st i nt er e st f or t h e C N N n et w or k s t o m a k e d e ci si o n s. T h e ar e a s 

of t h e i m a g e t h at ar e m o st i nt er e sti n g t o t h e C N N ar e hi g hli g ht e d i n r e d 

a n d t h e l e s s i nt er e sti n g i m a g e ar e a s ar e hi g hli g ht e d i n bl u e. I n t h e c a s e of 

a D E F p o w d er b e d i m a g e, t h e vi si bl e d ef e ct s i n t h e p o w d er b e d w er e 

r e c o g ni z e d  b y  b ot h  m o d el  ar c hit e ct ur e s  a n d  a  c orr e ct  pr e di cti o n  w a s 

t h e n m a d e ( s e e Fi g. 9 ). 

I n t h e O K p o w d er b e d i m a g e s, t h e C N N m o d el s p arti all y r e c o g ni z e d 

diff er e nt, i n vi si bl e i m a g e a n o m ali e s, w hi c h t h e n p arti all y i n fi u e n c e d t h e 

pr e di cti o n a c c ur a c y of t h e m o d el s ( s e e Fi g. 1 0 ). 

5.  Di s c u s si o n 

A s  s h o w n  i n  t h e 1 st  e x p eri m e nt  i n T a bl e  3 ,  t h e  m et h o d  d e s cri b e d 

h er e f or d et e cti n g a n d cl a s sif yi n g p o w d er b e d d ef e ct s w or k s v er y w ell 

wit h s el e cti v e l a s er si nt eri n g a n d pr o d u c e s e x c ell e nt r e s ult s. Fr o m t h e s e 

r e s ult s it c a n b e d e d u c e d t h at t h e V G G 1 6 m o d el ar c hit e ct ur e pr o vi d e s 

t h e b e st r e s ult s wit h a n A U C v al u e of 0. 9 8 2, a n F 1- S c or e of 0. 9 5 9 a n d a 

t e st a c c ur a c y of 0. 9 5 8. A s a r e s ult, t h e d e v el o p e d V G G 1 6 C N N ar c hi-

t e ct ur e w a s b e st a bl e t o m a k e pr e di cti o n s a b o ut t h e q u alit y of u n s e e n 

p o w d er b e d i m a g e s. U nf ort u n at el y, t h er e ar e n o c o m p ar ati v e v al u e s i n 

t h e c urr e nt lit er at ur e t o r el at e t h e r e s ult s o bt ai n e d t o f urt h er C N N a n -

al y z e s of p o w d er b e d i m a g e s d uri n g s el e cti v e l a s er si nt eri n g. H o w e v er, 

G o b ert et al. [ 9 ] a n al y z e d C T s c a n s of p o w d er b e d i m a g e s d uri n g t h e 

S L M  pr o c e s s  f or  p o w d er  b e d  d ef e ct s  u si n g  a n  S V M  al g orit h m,  wit h  a 

m a xi m u m a c c ur a c y of 0. 8 5 b ei n g a c hi e v e d. 

T h e 2 n d e x p eri m e nt i n T a bl e 3 s h o w s t h at wit h t h e m et h o d pr o p o s e d 

h er e  a n d  t h e  V G G 1 6  m o d el  wit h o ut  d at a  a u g m e nt ati o n  wit h  a n  A U C 

v al u e of 0. 9 9 3, s o m e w h at b ett er r e s ult s c a n b e a c hi e v e d at fir st gl a n c e. 

T hi s i s b a si c all y c o m pr e h e n si bl e, si n c e t h e d at a a u g m e nt ati o n e xt e n d s 

t h e r el ati v el y s m all d at a s et t hr o u g h s p e ci al o p er ati o n s (i m a g e r ot ati o n, 

i m a g e mirr ori n g et c.) i n or d er t o o bt ai n a l ar g er tr ai ni n g b a s e. F or t h at, 

t h e  c o m pl e xit y  of  t h e  d at a s et  i n cr e a s e s,  t h e  i n di vi d u al  i m a g e s  ar e  n o 

l o n g er  a s  si mil ar  a s  b ef or e  a n d  cl a s si fi c ati o n  i s  m or e  dif fi c ult  f or  t h e 

m o d el. A c c or di n g t o C h oll et [ 4 ] , t hi s i s a d e sir e d eff e ct i n or d er t o e n a bl e 

a b ett er g e n er ali z ati o n of t h e m o d el s a n d t o a v oi d o v er fitti n g. E s p e ci all y 

f or t h e 2 n d e x p eri m e nt i n T a bl e 3 , it c a n b e s e e n fr o m t h e c ur v e s i n Fi g. 7 

( a) f or t h e V G G 1 6 m o d el t h at t h e m a xi m u m v al u e s f or a c c ur a c y a n d l o s s 

w er e alr e a d y r e a c h e d aft er a f e w tr ai ni n g p eri o d s. T hi s m e a n s t h at t h e 

m o d el h a s l e ar n e d p att er n s t h at ar e s p e ci fl c t o t hi s tr ai ni n g d at a a n d c a n 

cl a s sif y t h e m al m o st p erf e ctl y. Si n c e t h e v ali d ati o n a n d t e st d at a ar e v er y 

si mil ar, t h e m o d el w a s al s o a bl e t o a c hi e v e v er y g o o d v al u e s t h er e. I n 

c o ntr a st t o t hi s, i n t h e fir st e x p eri m e nt wit h d at a a u g m e nt ati o n, a l ar g er 

a n d  m or e  c o m pl e x  d at a b a s e  w a s  u s e d  f or  tr ai ni n g,  w hi c h  r e s ult e d  i n 

s o m e w h at p o or er r e s ult s, b ut t h e m o d el s g e n er ali z e b ett er a n d ar e b ett er 

s uit e d f or l ar g er d at a s et s wit h l e s s si mil arit y a m o n g t h e i n di vi d u al i m -

a g e s. F or t h e X c e pti o n m o d el fr o m t h e 2 n d e x p eri m e nt, it i s i m m e di at el y 

a p p ar e nt  t h at  n o  l e ar ni n g  eff e ct  h a s  t a k e n  pl a c e  a n d  t h at  t h e  m o d el 

Fi g. 8. R O C c ur v e s a n d A U C m etri c s of t h e i m pl e m e nt e d m o d el s f o r e v er y t hr e e e x p eri m e nt s. T h e li n e ar d a s h e d li n e s r e pr e s e nt t h e R O C c ur v e of a c o m pl et el y 

r a n d o m cl a s si fi er a n d t h at of a p erf e ct cl a s si fi er. ( a) s h o w s t h e pl ot of t h e R O C c ur v e s of t h e i m pl e m e nt e d m o d el s; ( b) s h o w s a z o o m e d i n v er si o n of t h e t o p p art pl ot. 

E. W est p h al a n d H. S eit z                                                                                                                                                                                                                      



A d diti v e M a n uf a ct uri n g 4 1 ( 2 0 2 1 ) 1 0 1 9 6 5

1 1

c a n n ot cl a s sif y t h e d at a wit h o ut d at a a u g m e nt ati o n. T hi s m e a n s t h at t h e 

m o d el b e h a v e s c o m pl et el y diff er e ntl y t h a n t h e V G G 1 6 m o d el, b ut t hi s i s 

d u e  t o  a n  o v er fltti n g  aft er  c o n si d eri n g  t h e  c ur v e s  fr o m Fi g.  7 .  T h e 

X c e pti o n m o d el m a y h a v e l e ar n e d mi sl e a di n g or irr el e v a nt i nf or m ati o n 

f or cl a s si fl c ati o n d uri n g tr ai ni n g. A si mil ar b e h a vi o ur c a n b e o b s er v e d 

f or t h e X c e pti o n m o d el fr o m t h e 3r d e x p eri m e nt. D at a a u g m e nt ati o n w a s 

c arri e d o ut t h er e, b ut t h e m o d el s w er e n ot tr ai n e d i n a d v a n c e wit h t h e 

I m a g e N et d at a s et. A s a r e s ult, n o l e ar ni n g s u c c e s s e s c o ul d b e d et er mi n e d 

i n t hi s e x p eri m e nt i n t h e 3 0 o b s er v e d e p o c h s eit h er. T h e s a m e a p pli e s 

h er e t o t h e V G G 1 6 m o d el. H o w e v er, b a s e d o n t h e c ur v e s of t h e v ali d a -

ti o n a c c ur a c y a n d t h e v ali d ati o n l o s s i n Fi g. 7 , a n o v er fitti n g c a n al s o b e 

c o n cl u d e d, w hi c h h a s a n e g ati v e eff e ct o n t h e cl a s si fi c ati o n. 

I n s u m m ar y, fr o m t h e i n v e sti g ati o n of all t hr e e e x p eri m e nt s it c a n b e 

d et er mi n e d t h at t h e pr e s e nt e d m et h o d wit h d at a a u g m e nt ati o n a n d wit h 

pr etr ai ni n g wit h I m a g e N et i s a d v a nt a g e o u s i n or d er t o a c hi e v e b ett er 

r e s ult s  a n d  t o  i m pl e m e nt  m or e  r o b u st  m o d el  ar c hit e ct ur e s.  T h e  d at a 

a u g m e nt ati o n  i s  p arti c ul arl y  i m p ort a nt  f or  t h e  g e n er ali z ati o n  of  t h e 

e x a mi n e d  m o d el s  a n d  al s o  a v oi d s  o v er fitti n g.  A  pr eli mi n ar y  tr ai ni n g 

wit h  t h e  w ei g ht s  fr o m  t h e  I m a g e N et  d at a s et  s a v e s  a  c o n si d er a bl e 

a m o u nt of c o m p ut ati o n al eff ort, si n c e t hi s h a s alr e a d y b e e n c arri e d o ut 

t h er e a n d t h e pr o p o s e d m o d el s c a n b e b a s e d o n it. I n a d diti o n, t hi s al s o 

r e d u c e s  t h e  ri s k  of  o v er fitti n g,  si n c e  a  m u c h  l ar g er  d at a b a s e  w a s 

c o n si d er e d w h e n c al c ul ati n g t h e m o d el w ei g ht s. 

T hi s  w or k  al s o  s h o w e d  t h at  b ot h  i n v e sti g at e d  C N N  m o d el 

Fi g. 9. A cti v ati o n m a p s f or p o w d er b e d r e c or di n g s d uri n g t h e S L S pr o c e s s wit h vi si bl e p o w d er b e d d ef e ct s. D ef e ct s w er e d et e ct e d a n d l o c ali z e d b y t h e C N N ar -

c hit e ct ur e s. Wit h t h e V G G 1 6 m o d el, a m or e pr e ci s e l o c ali z ati o n of t h e eff e ct s c o ul d b e a c hi e v e d t h a n wit h t h e X c e pti o n m o d el. ( F or i nt er pr et ati o n of t h e r ef er e n c e s t o 

c ol o ur i n t hi s fl g ur e, t h e r e a d er i s r ef err e d t o t h e w e b v er si o n of t hi s arti cl e.) 

Fi g. 1 0. A cti v ati o n m a p s f or p o w d er b e d r e c or di n g s d uri n g t h e S L S pr o c e s s wit h o ut vi si bl e p o w d er b e d d ef e ct s. I m a g e a n o m ali e s w er e d et e ct e d a n d l o c ali z e d b y t h e 

C N N  ar c hit e ct ur e s.  V ari o u s  a n o m ali e s  w er e  i d e nti fi e d  i n  t h e  V G G 1 6  m o d el  a n d  l o c ali z e d  r el ati v el y  pr e ci s el y.  F or  t h e  X c e pti o n  m o d el,  l ar g er  i m a g e  ar e a s  w er e 

i d e nti fi e d a s a n o m ali e s a n d t h e a ct u al irr e g ul ariti e s i n t h e p o w d er b e d c o ul d t h er ef or e oft e n b e l o c ali z e d l e s s pr e ci s el y. 

E. W est p h al a n d H. S eit z                                                                                                                                                                                                                      



Additive Manufacturing 41 (2021) 101965

12

architectures could learn interesting features from the image data in 
order to be able to then automatically assess the quality of powder bed 
images. In the future, this can support the quality assurance of additively 
manufactured components, e.g. as a supplement to the downstream, 
non-destructive assessment of the part quality, but also for in-situ 
monitoring of the additive manufacturing process. Compared to the 
studies by Xiao et al. [3], real production datasets with real powder bed 
defects were used for this, while no powder bed irregularities were 
artificially introduced. 

The activation maps generated in this work can specifically identify 
and localize powder bed defects. This was also shown in the work by 
Baumgartl et al. [5] for thermographic images during the SLM process, 
where possible delamination defects in the part layers were localized 
and detected through different temperature ranges. In this work, the 
VGG16 model architecture identified the defects more precisely than the 
more modern Xception architecture and is therefore better suited for 
image analysis for quality assurance in selective laser sintering. One 
reason for the better results of the VGG16 model may be that in this 
model a large number of model parameters (approx. 138 million) are 
distributed over relatively few model layers (23) and thus enable a more 
detailed analysis of the individual image data. In the Xception model, for 
example, there are far fewer parameters (about 23 million) that are 
distributed over a large number of layers (126). Another reason, how
ever, is the relatively small amount of data, which can result in the 
Xception model not being able to learn sufficiently due to its complexity. 

The lack of available data is a major problem in the basic classifi
cation of powder bed defects in selective laser sintering. Normally, DL 
models are trained over several thousand image data. Training CNN 
with only a small amount of data can easily lead to an inaccurate clas
sification and can impair the generalization ability of the models. The 
adjusted powder bed dataset contained more than 8500 images, which 
were very unevenly distributed. It contained only 706 images with 
visible defects for the model to learn from. The lack of DEF data is 
therefore the main problem of the approach presented here. The per
formance of the models presented could increase as more DEF image 
data become available. This can first be evaluated with a so-called 
ablation analysis in a way that conserves resources [39]. According to 
Fawcett and Hoos [39], algorithms with many influencing parameters 
are examined with ablation studies to determine which parameters 
contribute most to changes in performance between two configurations 
of the algorithm and which changes in the standard configuration of the 
algorithm actually lead to better performance. For example, if an abla
tion study on a model architecture with less data achieves a performance 
comparable to that of a larger dataset (with the same parameter 
configuration), no significant increases in performance are expected 
from an even larger database. 

Furthermore, the problem of image preprocessing must be consid
ered. By cropping the images to a size of 180 180 pixels, it is not 
possible to capture the entire cylindrical build area of the SLS system 
without capturing undesired black border areas. This should be opti
mized through more suitable camera positioning and better camera 
focus. 

Another difficulty in this investigation was the interpretation of the 
visualization results of the CNN models. A deeper understanding of the 
visual characteristics of a digital image and the individual convolutional 
operations within the neural networks is required in order to be able to 
explain the predictions and visualization results in detail. The resulting 
activation maps were recorded and fundamentally analyzed in this 
context, but further explanations are required in order to understand 
why the model particularly highlights specific areas of the image. These 
interpretation problems may be resolved in the future through larger 
datasets and more detailed research. 

6. Conclusions 

In this paper, we introduce different machine learning architectures 

that can be used to automatically differentiate between good and bad 
powder bed images during selective laser sintering. There, good images 
without visible defects in the powder bed are marked as OK and images 
with visible defects and irregularities as DEF. The investigated methods 
used techniques of transfer learning with pretrained weights of the 
ImageNet dataset, which served as initialization for the VGG16 CNN 
model as well as for the Xception CNN model. Then a new classifier was 
provided consisting of a fully connected layer with 1000 channels, a 
dropout layer with a retention rate of 0.25, a batch normalization 
operation and another fully connected layer with only one channel and a 
sigmoid activation function. The images used were preprocessed in a 
defined manner, divided into classes and reproduced using established 
methods in order to generate a balanced dataset. With transfer learning 
it was then possible to work effectively with the small dataset. The 
VGG16 CNN architecture achieved the best results and clearly out
performed the results of the Xception architecture. With the VGG16 
approach and a special data augmentation, a test accuracy of 0.958 was 
achieved, as well as a precision of 0.939, a recall of 0.980, an F1-Score of 
0.959 and an AUC value of 0.982 for the VGG16 ROC curve. The results 
were visualized with the Grad-CAM method and compared for both 
methods. Both neural network architectures were able to recognize and 
localize powder bed irregularities. 

As regards future work, so-called ablation studies should first be 
carried out in order to evaluate the CNN architectures presented and to 
examine the performance of the models with even smaller datasets. If 
performance results similar to those in this study are achieved, no sig
nificant increases in performance can be expected for these model ar
chitectures, even with larger amounts of data. Otherwise, investigations 
should be carried out on a larger dataset in future work. In particular, 
more DEF image data needs to be included in the examinations and the 
impact on the analyzed results considered. In addition, the effects of 
various data preprocessing steps and methods should be investigated 
and various hyper parameter configurations should be tested to further 
improve the performance of the models. Moreover, further CNN model 
variants and classifiers should be investigated with the powder bed data 
in order to generate even more powerful and faster transfer learning 
variants. Finally, according to the ImageNet dataset, a special dataset 
should be created with various classes and image examples on process 
irregularities and part defects in additive manufacturing, with which the 
respective model architectures can be trained in advance. This should 
significantly increase the effectiveness of CNN models in terms of error 
detection in various additive manufacturing processes. 
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Table 3 
Confusion matrices and performance parameters for the examined CNN architectures for the classification of powder bed defects at the SLS process for all experiments 
carried out.  

Experi-ment Model Confusion Matrix Accuracy Precision Recall (TPR) FPR F1-Score ROC-AUC 

1st VGG16  490 
32  

10 
468  

0.958  0.980  0.939  0.021  0.959  0.982 

Xception  459 
65  

41 
435  

0.894  0.918  0.876  0.086  0.897  0.934 

2nd VGG16  496 
19  

4 
481  

0.977  0.992  0.963  0.008  0.977  0.993 

Xception  500 
500  

0 
0  

0.500  1.000  0.500  0.500  0.667  0.514 

3rd VGG16  180 
165  

320 
335  

0.515  0.360  0.522  0.489  0.426  0.525 

Xception  500 
500  

0 
0  

0.500  1.000  0.500  0.500  0.667  0.526  
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P r o c e s s a n d e n vir o n m e nt al p ar a m et er s t h at i n fi u e n c e m a n uf a ct uri n g pr o c e s s e s a n d r e s ult s ar e of gr e at i m p or -
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of t h e s e p ar a m et er s i s a n i m p ort a nt t a s k of q u alit y a s s ur a n c e ( Q A). F or t hi s p ur p o s e, s e n s or s ar e i n cr e a si n gl y 
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al g orit h m s ar e pr e s e nt e d, w hi c h e n a bl e a s u p er vi s e d l e ar ni n g cl a s si fi c ati o n a p pr o a c h of e n vir o n m e nt al s e n s or 

d at a  (t e m p er at ur e,  h u mi dit y,  air  pr e s s ur e,  g a s  p arti cl e s)  i n  t h e  F D M  pr o c e s s.  F or  t hi s  p ur p o s e,  a  n e w  d at a 

pr e p ar ati o n m et h o d w a s d e v el o p e d w hi c h s e q u e n c e s diff er e nt s e n s or ti m e s eri e s d at a. F D M s e n s or p ar a m et er s of 

v ari o u s  3 D  pri nti n g  c o n diti o n s  w er e  r e c or d e d,  pr e pr o c e s s e d  a c c or di n gl y  a n d  s a v e d  i n  t w o  diff er e ntl y  si z e d 
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pr e s s ur e v al u e s h a v e a st a bili zi n g eff e ct o n t h e a n al y s e s a n d r e d u c e o v er fitti n g. I n t h e f urt h er c o ur s e of t h e i n -

v e sti g ati o n s, t e st s w er e c arri e d o ut o n t h e t w o d at a s et s of diff er e nt si z e s wit h all c o n si d er e d M L al g orit h m s a s 

w ell a s t e st s wit h a n d wit h o ut t h e air pr e s s ur e v al u e s. T h er e, t h e m o d er n X c e pti o n Ti m e ar c hit e ct ur e h a s pr o v e n 

t o b e t h e m o st eff e cti v e a n d r o b u st a g ai n st o v er fitti n g. X c e pti o n Ti m e c a n a c hi e v e e x c ell e nt r e s ult s wit h a mi n -

i m u m of 9 5 % a c c ur a c y wit h b ot h a s m all a n d a l ar g e d at a b a s e. T h e M a cr o F 1- S c or e s ar e al s o al w a y s a b o v e 8 9 % 

a n d  i n di c at e  a  g o o d  cl a s si fl c ati o n  f or  all  3 D  pri nti n g  c o n diti o n s  e x a mi n e d.  T h e  M L  i n v e sti g ati o n s  w er e  t h e n 

c o m p ar e d i n a pr o of of c o n c e pt wit h 3 D s c a n e x a mi n ati o n s e st a bli s h e d i n q u alit y a s s ur a n c e. T h e 3 D s c a n s of t h e 

pri nt e d F D M c o m p o n e nt s c o ul d n ot pr o vi d e a n y cl e ar i nf or m ati o n a b o ut t h e diff er e nt pri nti n g c o n diti o n s a n d 

o nl y t h e c o m p o n e nt s urf a c e c o ul d b e a n al y z e d. T h e M L a n al y s e s, e s p e ci all y wit h t h e X c e pti o n Ti m e ar c hit e ct ur e, 

e n a bl e a n eff e cti v e alt er n ati v e t o q ui c kl y a n d e a sil y diff er e nti at e b et w e e n diff er e nt 3 D pri nti n g c o n diti o n s. T h e 

M L ti m e s eri e s cl a s si fi c ati o n pr e s e nt e d i n t hi s w or k i s a c c or di n gl y w ell s uit e d f or u s e i n a n i n d u stri al e n vir o n m e nt 

a n d, wit h s p e ci al o pti mi z ati o n s, c a n b e eff e cti v el y a p pli e d i n pr a cti c e t o s u p p ort q u alit y a s s ur a n c e i n a d diti v e 

m a n uf a ct uri n g. T hi s q u alit y a s s ur a n c e a p pr o a c h i s c o m pl et el y n e w a n d off er s i m m e n s e p ot e nti al t o i n cr e a s e tr u st 

i n a n d a c c e pt a n c e of a d diti v e m a n uf a ct uri n g pr o c e s s e s.   

1. I nt r o d u cti o n 

A d diti v e m a n uf a ct uri n g ( A M) or 3 D pri nti n g i s a t er m f or t h e l a y er- 

b y-l a y er m a n uf a ct uri n g pr o c e s s of c o m p o n e nt s fr o m t hr e e- di m e n si o n al 

c o m p ut er- ai d e d  d e si g n  ( C A D)  fil e s [ 1 ] .  I n  r e s e ar c h  a n d  i n d u str y,  a s 

w ell a s t o a l ar g e e xt e nt b y n o n-i n d u stri al h o m e u s er s, t h e m et h o d of 

m at eri al e xtr u si o n d e fi n e d i n a c c or d a n c e wit h I S O / A S T M 5 2 9 0 0, w hi c h 

i s al s o k n o w n u n d er t h e br a n d n a m e F u s e d D e p o siti o n M o d eli n g ( F D M), 

i s  oft e n  u s e d.  I n  t h e  F D M  pr o c e s s,  a  fil a m e nt  m at eri al  i s  m elt e d  a n d 

s el e cti v el y a p pli e d t o a pri nt b e d t hr o u g h a n o z zl e, cr e ati n g t h e d e sir e d 
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contour and the three-dimensional (3D) component in layers [2]. 
With the FDM process, various thermoplastics such as polylactide 

(PLA), acrylonitrile butadiene styrene (ABS) and polyamide (PA) can be 
used [2]. Moreover, high-performance plastics such as polyetherimide 
(PEI) and polyetheretherketone (PEEK) can be processed with special 
FDM systems [3]. This means that the process is also of interest for ap
plications in the aerospace and medical technology sectors. However, in 
order to be perceived as a serious production process in these regulated 
industrial sectors, special quality assurance (QA) and quality manage
ment (QM) requirements must be met. 

In AM processes in general and especially in FDM, there are a large 
number of process and environmental parameters that influence both 
the printing process and the printing result and have an impact, for 
example, on geometric, mechanical or surface properties as well as 
process stability [4]. Reliable detection and analysis systems have to be 
developed to characterize these parameters in order to ensure a stable 
AM process with optimal process specifications, process results with 
defined quality requirements as well as a certified QM [5]. 

Machine learning (ML) is increasingly being used to monitor the 
manufacturing process in order to analyze image and process data and to 
derive predictions about the expected component quality [6,7]. With the 
help of cameras and sensors, special process data can initially be 
recorded and monitored on site [8,9]. Using process analyses based on 
artificial intelligence (AI), computer-based learning processes can then 
be performed. These are then trained to evaluate the recorded data or to 
predict future data courses and can thus provide early conclusions about 
the printing process and the component quality. In addition, the 
manufacturing results can also be examined after the printing process by 
means of optical 3D scans and evaluated in terms of their component 
quality [4]. 

In this paper, a supervised learning strategy based on different 
intelligent ML algorithms are developed and compared with regard to 
their performance in order to detect irregularities in environmental 
sensor data in the FDM process. The overriding goal is then to use the 
analysis results to identify various 3D printing condition classes and 
process errors at an early stage and thereby achieve better process 
reliability, repeatability and QA in FDM. The findings are then corre
lated with the results of optical 3D scans of the printed components and 
the effectiveness evaluated with regard to the classification of different 
printing conditions. 

2. Related work 

In the field of AM, ML is already used in a variety of ways and in 
various sub-processes, for instance to monitor processes, evaluate pro
cess images or detect process errors. For example, a prediction method 
for warping in FDM was developed based on thermal time series data 
that was recorded from the print bed via thermocouples and evaluated 
using a K-nearest neighbors algorithm [10]. The prediction method 
works, but the classification accuracy still needs improvement. 
Furthermore, no comparisons with other algorithms were undertaken. 

In another publication, a monitoring solution for the processing of 
ABS using the FDM method was developed, in which environmental 
parameters in the form of volatile organic compounds (VOCs) are 
recorded and analyzed by an intelligent Support Vector Machine (SVM) 
algorithm [11]. The results are then used to predict that a defined 
threshold value for the VOC concentration will be exceeded. However, 
the component quality achieved was not assessed in this way, but the 
exposure to potentially harmful environmental parameters during the 

printing process was monitored. 
An ML methodology based on regression algorithms was developed 

by Charalampous et al. [4] to investigate the dimensional deviations of 
CAD models and the manufactured physical components. For this pur
pose, a database with optical 3D scan data was created in which printed 
components with various printing parameters were stored as a data basis 
for regression analyses and thus different correlations between printing 
parameters and dimensional deviations can be shown. These in
vestigations are limited to the regression algorithms and do not use 
manufacturing process data, but optical evaluations of the printing re
sults after the manufacturing process. This means that internal part areas 
in particular cannot be mapped using this method. 

Wu et al. [8] developed an in situ monitoring of FDM machine 
conditions using acoustic emission data in order to detect normal and 
abnormal system conditions using an SVM algorithm. In another pub
lication, Wu et al. [12] also developed a principal component analysis 
(PCA) with the acoustic data, which significantly reduced the 
complexity of the computation. Acoustic signals have also already been 
examined in a metal-based powder bed fusion (PBF) process with 
complex, efficient and widespread neural network architectures in order 
to enable the printed structures to be classified [13]. All investigations 
recognized that the evaluation of acoustic process data is effective 
identifying different operating states of the systems used, but only one 
specific acoustic parameter was recorded in each case. 

Another application of ML is to analyze process parameter sets of a 
metal PBF process via optical image data in order to find clusters that 
represent a high-quality print result [14]. Such a process was also 
developed for selective laser sintering (SLS) with plastics [7]. There, 
image data were analyzed with complex transfer learning methods so as 
to develop an automatic classification of powder bed defects during the 
SLS process. These ML applications are very complex and require more 
powerful computing hardware, which means that the computing costs 
are relatively high and the analysis times are relatively long. In addition, 
the return of the analysis results for the intelligent optimization of the 
production system is, in principle, more complex than with sensor-based 
approaches. 

Image-based error detection systems based on convolutional neural 
networks (CNN) are already available especially for the FDM process, 
which can analyze the process in real time and detect incorrect printing 
conditions [15,16]. Both investigations are limited to clearly recogniz
able geometry defects that were analyzed using a CNN algorithm. Jin 
et al. [17] have linked a corresponding CNN architecture with a modern 
localization algorithm in order to enable the localization of printing 
defects in addition to the detection of unfavorable printing conditions. 
This optical analysis method is very effective, but does not allow direct 
analysis of the process parameters. 

Further comprehensive studies on quality control and in situ process 
monitoring with one-, two- and three-dimensional data (e.g. sensor, 
image and tomography data) in AM can also be found in the literature, e. 
g. clearly in the publication by Kim et al. [5] and Qi et al. [9] collected as 
well as especially for FDM in the review of Fu et al. [18]. 

Overall, it can thus be stated that various ML methods are used in the 
literature to differentiate between machine and printing conditions in 
AM systems. Among other things, special sensor data are also used, 
which already enable very effective classifications between quality- 
related aspects. However, this work is about the development of a 
strategy and method for evaluating larger amounts of environmental 
sensor data and the efficient classification of this data as a coherent 
process. In addition, the findings are used to support quality assurance 
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a n d c o m p ar e d wit h a n e st a bli s h e d o pti c al s c a n ni n g pr o c e s s. T h e j oi nt 

M L a n al y si s of s e v er al diff er e nt e n vir o n m e nt al p ar a m et er s i n c o m bi n a -

ti o n wit h diff er e nt M L al g orit h m s h a s n ot y et b e e n c arri e d o ut a n d, b a s e d 

o n t h e pr e vi o u s lit er at ur e r e s ult s, r e pr e s e nt s a v er y i nt er e sti n g a p pr o a c h, 

e. g. f or F D M. I n t h e f oll o wi n g, t hi s st u d y d e v el o p s a n d d e s cri b e s a n M L 

a p pr o a c h i n w hi c h f o ur e n vir o n m e nt al s e n s or p ar a m et er s (t e m p er at ur e, 

h u mi dit y, air pr e s s ur e, g a s p arti cl e s) ar e r e c or d e d t o g et h er, e v al u at e d 

u si n g diff er e nt M L al g orit h m s a n d t h e n c o m p ar e d t o o pti c al 3 D s c a n s. 

3.  M at e ri al s a n d m et h o d s 

T h e e x p eri m e nt al s et u p u s e d i n t hi s st u d y, t h e d at a a c q ui siti o n a n d 

t h e  g e n er at e d  d at a s et s  ar e  d e s cri b e d  i n  d et ail  b el o w.  I n  a d diti o n,  t h e 

d at a  pr e pr o c e s si n g,  t h e  M L  al g orit h m s  a n d  fl n all y  t h e  p erf or m a n c e 

m etri c s t h at ar e u s e d ar e e x pl ai n e d. 

3. 1. E x p eri m e nt al str u ct ur e a n d d at a a c q uisiti o n 

T h e F D M pr o c e s s w a s c o n n e ct e d t o a s y st e m c o n si sti n g of a n e n vi -

r o n m e nt al  s e n s or  a n d  a  si n gl e- b o ar d  c o m p ut er  a n d  t h u s  m o nit or e d 

i nli n e. A n i 3 M e g a S l o w- c o st F D M pri nt er ( A n y c u bi c T e c h n ol o g y C o., 

S h e n z h e n,  C hi n a)  w a s  u s e d  f or  pr o d u cti o n.  A  0. 4  m m  n o z zl e  a n d  a 

Fi g.  1. F D M  n o z zl e s  wit h  diff er e nt  d e gr e e s  of  w e ar  a n d  cl o g gi n g  ( w hi c h,  i n 

pri n ci pl e, w er e al s o u s e d f or t h e i n v e sti g ati o n s). L eft: a c o m pl et el y n e w n o z zl e, 

ri g ht: a u s e d n o z zl e wit h o v er 5 0 h of pri nti n g ti m e. 

Fi g. 2. E x p eri m e nt al s et u p of t h e s e n s or a n d pr e p ar ati o n o n t h e F D M pri nt er. ( a) s h o w s t h e s e n s or b o ar d wit h t h e pri nt e d h o u si n g. ( b) s h o w s t h e m o u nti n g n e ar t h e 

pri nt n o z zl e. ( c) vi s u ali z e s t h e fl o w o p e ni n g of t h e h o u si n g. 

Fi g. 3. D at a pr e pr o c e s si n g st e p s c arri e d o ut f or t h e M L i n v e sti g ati o n s.  

Fi g. 4. Vi s u ali z ati o n of f o ur diff er e nt st a n d ar di z e d e n vir o n m e nt al s e n s or p ar a m et er ti m e s eri e s o v er t h e pri nti n g ti m e f or o n e n or m al F D M m a n uf a ct uri n g pr o c e s s.  
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h e at a bl e gl a s s pl at e pri nt b e d w er e u s e d f or pri nti n g. T h e pri nti n g m a -

t eri al w a s P L A+ ( Fil a m e nt w orl d, N e u- Ul m, G er m a n y) wit h a fll a m e nt 

di a m et er of 1. 7 5 m m. A si m pl e g e ar w h e el wit h a b a s e di a m et er of 3 5 

m m a n d a h ei g ht of 3 0 m m w a s c o n str u ct e d a s t h e pri nt o bj e ct. T h e C A D 

pr o gr a m  A ut o d e s k  I n v e nt or  Pr of e s si o n al  2 0 1 9  ( A ut o d e s k  I n c.,  S a n 

R af a el,  U S A)  w a s  u s e d  f or  t h e  d e si g n.  T h e  pri nt e d  g e ar  i s  s h o w n  i n 

S e cti o n 4. 2 i n Fi g. 9 . 

T h e n e c e s s ar y pri nti n g pr o c e s s p ar a m et er s w er e s et u si n g t h e sli ci n g 

s oft w ar e  Ulti m a k er  C ur a  v er si o n  4. 8. 0  ( Uli m a k er  B. V.,  Utr e c ht, 

N et h erl a n d s)  a n d  a d a pt e d  t o  diff er e nt  3 D  pri nti n g  c o n diti o n s.  T h e 

pri nti n g c o n diti o n s r e s ult fr o m t h e s etti n g a n d v ari ati o n of s p e ci al pri nt 

pr o c e s s  p ar a m et er s  t h at  ar e  v er y  r el e v a nt  f or  t h e  pri nt  q u alit y  i n  t h e 

F D M pr o c e s s ( s e e T a bl e 1 ). B a si c all y, a di sti n cti o n i s m a d e b et w e e n o n e 

n or m al  (" n or m al")  a n d  fl v e  diff er e nt,  d e vi ati n g  ( h er e  r ef err e d  t o  a s 

" d ef e ct")  3 D  pri nti n g  c o n diti o n s.  T h e  n or m al  pri nti n g  c o n diti o n 

( n or m al_ 0 1) i s t h e b a si c s etti n g f or t h e i n v e sti g ati o n s a n d i s m a d e u p of 

r e c o m m e n d e d pr o c e s s p ar a m et er s etti n g s f or pri nti n g t e m p er at ur e a n d 

pri nti n g s p e e d (r e c o m m e n d e d b y m at eri al a n d s y st e m m a n uf a ct ur er s) a s 

w ell  a s  fil a m e nt  a n d  n o z zl e  c o n diti o n s  u s u all y  pr e s e nt  i n  pr o d u cti o n 

e n vir o n m e nt s ( w e a s s u m e t h at d u e t o c o nti n u o u s pr o d u cti o n a n d m a -

c hi n e  u s a g e,  t h er e  ar e  al w a y s  r el ati v el y  n e w  fil a m e nt  m at eri al  a n d 

Fi g. 5. B a si c pr o c e s s fi o w of M L a n al y s e s wit h F D M e n vir o n m e nt al s e n s or d at a i n t hi s w or k.  

Fi g. 6. P er m ut ati o n f e at ur e i m p ort a n c e a n al y si s f or t h e e n vir o n m e nt al s e n s or 

p ar a m et er s b a s e d o n t h e m ai n d at a s et. 

Fi g. 7. Tr ai ni n g a n d v ali d ati o n l o s s pl ot s of t h e u s e d M L al g orit h m s wit h t h e m ai n d at a s et.  
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r etr a ct e d, u s e d n o z zl e s). 

I n t er m s of fll a m e nt c o n diti o n, a di sti n cti o n i s m a d e b et w e e n “ n e w ” 

( fll a m e nt t a k e n dir e ctl y fr o m a n u n o p e n e d ori gi n al p a c k a gi n g, o p e n e d 

f or a m a xi m u m of 7 d a y s) a n d “ ol d ” ( fil a m e nt st or e d o p e nl y i n a n or m al 

pr o d u cti o n e n vir o n m e nt f or at l e a st 1 2 m o nt h s). T h e n o z zl e c o n diti o n i s 

di vi d e d b et w e e n “ n e w ” ( u n u s e d u p t o a m a xi m u m of 1 0 m a n uf a ct uri n g 

h o ur s of t h e n o z zl e u s e d) a n d “ u s e d ” ( at l e a st 1 5 m a n uf a ct uri n g h o ur s of 

t h e n o z zl e). T h e b a c k gr o u n d t o t hi s i s, o n t h e o n e h a n d, t h at t h e n o z zl e 

w e ar s o ut c o nti n u o u sl y i n t h e c o ur s e of it s u s e [ 1 9 ] . O n t h e ot h er h a n d, 

w e  al s o  s u s p e ct  t h at it  i s  si m ult a n e o u sl y  cl o g g e d  wit h  b ur nt  fil a m e nt 

p arti cl e s  ( s e e  al s o Fi g.  1 ).  It  i s  t h er ef or e  a s s u m e d  t h at  a  u s e d  n o z zl e 

r el e a s e s m or e g a s p arti cl e s, w hi c h aff e ct s t h e M L a n al y s e s. T h u s, a n e w 

n o z zl e i n F D M r e s ult s i n a diff er e nt 3 D pri nti n g c o n diti o n. H o w e v er, d u e 

t o t h e a s s u m pti o n of c o nti n u o u s pr o d u cti o n, a n e w n o z zl e i s a r el ati v el y 

r ar e a n d u n c o m m o n c o n diti o n a n d i s t h er ef or e c o n si d er e d b el o w a s a 

( d ef e ct) c o n diti o n t h at d e vi at e s fr o m t h e n or m al 3 D pri nti n g c o n diti o n. 

T h e pri nti n g t e m p er at ur e i s m e a s ur e d i n dir e ctl y vi a t h e air t e m p er at ur e. 

It  i s  a s s u m e d  t h at,  f or  e x a m pl e,  t h e  pri nti n g  t e m p er at ur e  r a n g e s  r e c-

o m m e n d e d b y t h e fil a m e nt m a n uf a ct ur er s a n d t e m p er at ur e r a n g e s t h at 

d e vi at e  fr o m  t h e m  c a n  b e  r e c or d e d  r el ati v el y  e a sil y.  K n o wl e d g e  of 

w h et h er  or  n ot  t h e  r e c o m m e n d e d  pri nti n g  t e m p er at ur e  r a n g e s  h a v e 

b e e n a d h er e d t o c a n t h e n b e u s e d b ot h t o c ertif y t h e pri nti n g pr o c e s s 

a n d,  i n  c o m bi n ati o n  wit h  ot h er  s e n s or  p ar a m et er s,  t o  c h ar a ct eri z e 

diff er e nt 3 D pri nti n g c o n diti o n s. 

T h e  d e vi ati o n s  fr o m  t h e  n or m al  st at e  w er e  s et  t o  si m ul at e  irr e g u -

l ariti e s  a n d  pri nti n g  err or s  or  r at h er  t o  e n a bl e  diff er e nt  3 D  pri nti n g 

c o n diti o n s.  T o  d o t hi s,  t h e  fil a m e nt  c o n diti o n w a s  flr st  c h a n g e d  fr o m 

“ n or m al_ 0 1 ′′ b y u si n g a n ol d fil a m e nt. T hi s 3 D pri nti n g c o n diti o n cl a s s i s 

t h e n r ef err e d t o a s " d ef e ct_ 0 1". I n a d diti o n, t h e c o n diti o n of t h e n o z zl e 

w a s c h a n g e d b y u si n g a n e w, u n u s e d n o z zl e f or t h e pri nti n g t e st s. T hi s 

pri nti n g c o n diti o n cl a s s i s c h ar a ct eri z e d a s " d ef e ct_ 0 2". A n ot h er v ari a -

ti o n i s " d ef e ct_ 0 3", i n w hi c h a n e w n o z zl e w a s u s e d a n d a hi g h er pri nti n g 

Fi g. 8. Tr ai ni n g a n d v ali d ati o n l o s s pl ot s of t h e R N N L S T M (l eft) a n d X c e pti o n Ti m e (ri g ht) al g orit h m s wit h t h e a bl ati o n d at a s et.  

Fi g. 9. G e o m etr y s p e ctr u m of t h e d e si g n e d a n d pri nt e d p art s. ( a) C A D d e si g n, ( b) n or m al pri nt e d p art, ( c) pri nt e d p art wit h cl e arl y vi si bl e g e o m etri c d ef e ct s.  

T a bl e 1 

F D M pr o c e s s p ar a m et er s f or diff er e nt 3 D pri nti n g c o n diti o n s.  

Pr o c e s s p ar a m et er  U nit n or m al_ 0 1 d ef e ct_ 0 1 d ef e ct_ 0 2 d ef e ct_ 0 3 d ef e ct_ 0 4 d ef e ct_ 0 5 

“ o pti m al s etti n g s ”  “ ol d fil a m e nt ”  “ n e w N o z zl e ”  “ hi g h er t e m p ”  “ hi g h er s p e e d ”  “ bl o c k e d n o z zl e ” 

N o z zl e – u s e d u s e d n e w n e w n e w u s e d 

Fil a m e nt – n e w ol d n e w n e w n e w ol d 

P ri nt t e m p e r at u r e ◦ C 2 1 0 2 1 0 2 1 0 2 4 0 2 1 0 2 4 0 

P ri nt s p e e d m m / s e c  5 0 5 0 5 0 5 0 1 0 0 5 0  

C o n st a nt p a r a m et e r s o v e r all p ri nti n g c o n diti o n s 

L a y e r t hi c k n e s s m m 0. 2 

I n flll % 1 0 0 

Fil a m e nt fi o w % 1 0 0 

I niti al l a y e r s p e e d m m / s e c  2 5 

B e d t e m p e r at u r e ◦ C 6 0  
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temperature was set. A new nozzle was also installed for "defect_04" and 
the printing speed was increased. "defect_05" is a special condition class, 
as a regular printing error due to a partially blocked nozzle was recorded 
here during the production. All printing process parameters for the 
different printing condition classes are listed in Table 1. Only exemplary 
combinations of the printing process parameters considered were 
examined, as otherwise the production and time expenditure would 
have been too high. This work is also not a 3D printing study, but an ML 
study with special method development, in which the consideration of 
exemplary sample cases is sufficient. 

The environmental sensor data was recorded using a Bosch BME680 
environmental sensor (Bosch Sensortec GmbH, Reutlingen, Germany), 
which was already installed on a development board (SIMAC Electronics 
GmbH, Neukirchen.Vluyn, Germany) and a Raspberry Pi 3B‡ (OKdo 
Technology Ltd., London, UK). A 128 GB USB stick (SanDisk Corp., 
Milpitas, US) was used for data storage. The technical data of the sensor 
with the specifications of the individual measured variables are defined 
in [20] and listed in Table 2. In addition, a self-developed and 
3D-printed sensor housing made of PLA‡ was designed to accommodate 
the sensor board and mount it on the printing extruder in such a way that 
all sensor parameters can be measured as close as possible to the fila
ment extrusion (see Fig. 2). For this purpose, the sensor was placed next 
to the printer nozzle in the air flow of the component cooling. In order to 
protect the sensor from excessive high temperatures and soiling by 
plastic threads, it was installed facing away from the nozzle and pro
vided with a flow opening. 

The Raspberry Pi serves as a voltage source and for data transmission 
with the environmental sensor. The data transfer was provided via Inter- 
Integrated Circuit (I2C), with the Raspberry Pi acting as the master of the 
I2C communication. Concerning the hardware, the connection is 
implemented via copper cables with DuPont connectors, which are fixed 
with strain relief to ensure reliable communication. 

For the interaction between the single board computer and the 
environmental sensor, a computer program was written with the pro
gramming language Python Version 2.7.16 (python software founda
tion, Fredericksburg, US). In addition, a special BME680 software 
library (Pimoroni Ltd., Sheffield, UK) was implemented in order to be 
able to use predefined functions for I2C communication, sensor config
uration as well as measuring and reading out the data. This was then 
used to set oversampling values for the temperature, air pressure and 
humidity recording and to define the temperature and heating duration 
of the gas particle measurement. The basic values from the BME680 li
brary were used as the starting point for the sensor configuration. The 
resulting python program saves the detected data during the measure
ments in a comma-separated values file (CSV file). 

For further processing of the recorded environmental sensor data, a 
web server was installed on the Raspberry Pi which enables internet 
access to the CSV files via an internet protocol (IP) address and a web 
browser. Using the Secure File Transfer Protocol (SFTP) it is then 
possible to transfer encrypted data between the Raspberry Pi and an 
external computer. The open-source program FileZilla version 3.53 
(FileZilla-Project.org, Cologne, Germany) was used to the securely 
transfer the CSV sensor files. 

3.2. Environmental sensor datasets 

In this work, two datasets are used for supervised learning. A larger 
dataset with labeled data and an unbalanced structure (approx. three 
times more data of the "normal" 3D printing condition class are recorded 
than for the other printing condition classes) for the main investigations 
(main dataset) and a smaller dataset with labeled data and a balanced 
structure (all printing condition classes have the same number of data) 
for a subsequent ablation study (ablation dataset). According to Bie
denkapp et al. [21], the ablation study aims to examine the influence of 
certain parameter meanings or analysis conditions (in this case the size 
of the dataset and the distribution of the data) on the changes in per
formance of the ML algorithms. 

The datasets used in this work are composed of the environmental 
sensor parameters recorded by the environmental sensor during the 
additive manufacturing process on an FDM printer. During the process, 
constant current time stamps of the environmental sensor values as well 
as the environmental sensor parameters temperature at the sensor, hu
midity, air pressure and resistance of the gas particles were detected 
with a recording rate of 2 Hz. We initially assume that each of the 
environmental sensor parameters recorded has sufficient influence on 
the printing process, which can then be recorded by the ML algorithms. 
Since we initially have no system knowledge about the influence of the 
respective parameters on the ML analyses, we do not categorically 
exclude any parameters from the investigations in advance. Moreover, 
the effort required to record all the environmental parameters examined 
here is low. However, as part of the scope of the investigations, a feature 
importance analysis was also carried out to determine the relevance of 
the individual sensor parameters for the ML analyses. 

All data of a manufacturing process were then written to a CSV file. 
The main dataset generated in this way consists of 19 individual CSV 
files with the recorded environmental sensor data for each production 
process. This results in 19 physically printed components, with ten 
components being manufactured with the process parameter configu
ration "normal_01" and three components each with the configurations 
"defect_01", "defect_02" and "defect_03". The ablation dataset is smaller 
with a total of six CSV files and only contains one CSV file each for the 
process parameter configuration "normal_01", "defect_01", "defect_02", 
"defect_03", "defect_04" and "defect_05". 

3.2.1. Data preprocessing and data structure 
For the planned investigations in this paper, the data must be pre

processed. To do this, they are first detected during the manufacturing 
process and saved in a CSV file. The data files are then manually cropped 
to remove the start and end data values. Accordingly, the exact time of 
the start of printing of the first printing layer and the exact end time of 
the last printing layer were recorded for each production process. All 
values before and after were deleted from the CSV file. In addition, the 
first two minutes of the production process were also deleted, since, at 
this point, there was not yet a stable and consistent printing process in 
place. This results in CSV files with exactly 20000 value pairs for the 
main dataset, which represent a stable production process of approxi
mately 2 h 48 min. For the ablation dataset, CSV files with 12000 value 
pairs were created, which represent a production process of approxi
mately 1 h 40 min. Then, using a python script, the cropped data records 
are automatically divided into sequences with exactly 500 consecutive 
value pairs and a title line for the column names. This results in 40 se
quences for the main dataset and 24 for the ablation dataset. The se
quences are then manually divided into the respective 3D printing 
condition classes of "normal" and "defect" and assigned a corresponding 
binary identifier. The classified and marked data are then merged to 
form a new overall dataset. After this step, the main dataset comprises 
380000 pairs of sensor values and the ablation dataset 72000, which are 
then analyzed by ML algorithms for special features. The individual 
preprocessing steps are listed in Fig. 3 below. 

For the classification and training of the ML algorithms, this results 

Table 2 
Bosch BME680 environmental sensor parameter specifications [20].  

Parameter Temperature Humidity Air pressure Gas particle 
resistance 

Operation 
range 

-40 85 C 0 100% r. 
H. 

300 1100 
hPa 

50 300000

Accuracy 1 C 3% r.H. 0.6 hPa 2 5% 
Resolution 0.01 C 0.008% r.H. 0.18 Pa 0.08% 
Noise 0.005 C 0.01% r.H. 1.4 Pa 1.5%  

E. Westphal and H. Seitz                                                                                                                                                                                                                      



Additive Manufacturing 50 (2022) 102535

7

in a data structure based on individual manufacturing process data, each 
of which is subdivided into time-dependent sequences with always 500 
successive pairs of sensor values and one line of text. The sequences are 
then marked and merged to form larger datasets. The manufacturing 
process data, the data structure of the resulting datasets and the indi
vidual sequences are accessible online in a data repository: https://doi. 
org/10.17632/pprxj2yfby.1. 

3.2.2. Data distribution and hyperparameter settings 
The main dataset and the ablation dataset each have a different data 

distribution. The main dataset is created with a data imbalance and the 
ablation dataset with a data balance. A (binary) data imbalance occurs 
when one class contains significantly more values than another class 
[22]. Accordingly, a data balance characterizes a uniform data distri
bution over the classes to be classified. However, the main dataset 
generated here does not exhibit a binary imbalance problem because it 
contains more than two different classes. This problem is, according to 
Tanha et al. [23] described as a multi-class imbalance. In this case, the 
dataset is imbalanced if the number of values in a class is significantly 
above or below the number of the individual remaining classes [23,24]. 
In the main dataset, the class with the normal values is more than 
three times as extensive as the remaining defect classes. Within the 
ablation dataset, all classes are evenly distributed and have the same 
number of sensor values. The data distribution must therefore be taken 
into account when evaluating the investigations, as there are different 
techniques for balanced and imbalanced problems [24]. The evaluation 
techniques used in this work are described below in Section 3.5.1. 

So-called hyperparameters are used to vary certain settings in ML 
algorithms. For the training of the ML algorithms investigated in this 
research, suitable hyperparameters were determined in preliminary 
tests and then held constant throughout all investigations. The hyper
parameter settings used are listed below in Table 3 and are described by 
Hutter et al. [25] in detail. 

3.3. Artificial intelligence and machine learning 

AI is defined as the automation of intellectual tasks normally per
formed by humans [26]. ML takes a relatively new approach to AI 
development, in which computer algorithms perform analyses, which in 
turn enable computer programs to automatically improve themselves 
through experience [26,27]. Correspondingly, according to Chollet 
[26], a ML system is trained rather than explicitly programmed. A lot of 
data for a task to be examined is then considered by the ML system and 
analyzed in terms of a statistical structure, which then enables the sys
tem to develop rules for automating the task at hand. In the process, ML 
is used, for example, to identify objects in images, to convert speech into 
text or to make predictions from data. All these applications increasingly 
make use of a special class of techniques, which in turn are referred to as 
deep learning (DL) and are a sub-area of ML [28]. In this context, DL is a 
new way of looking at learning information from data, with a focus on 
learning from successive layers of increasingly important data repre
sentations [26]. Learning with these layer representations takes place 
using models that are referred to as artificial neural networks [26]. 
These neural networks are relatively easy to implement, computer-based 
computational models that were inspired by the neurosciences and are 
used for a variety of problems such as pattern classification and pattern 
recognition [29]. Artificial neural networks are one of the most powerful 
ML methods and are extremely suitable for processing large amounts of 

data [30]. 
A multilayer perceptron (MLP) is the simplest and most original form 

for DL architectures and is also referred to as a fully-connected (FC) 
network which consists of a linear stack of completely connected 
network layers, since every neuron in one layer is connected to every 
neuron in a next layer [31]. Because of this property, the number of 
network parameters (such as neurons with their adapted weightings and 
the respective threshold value) can become very high and tend to have 
redundancies. Another disadvantage is that spatial information is not 
considered, e.g. each time stamp has its own weighting, whereby the 
time information is lost and the time series elements are treated inde
pendently of each other [31]. 

One of the most popular DL implementations for modeling spatial 
and temporal correlations is the convolutional neural network (CNN) 
[32]. CNN implementations are state-of-the-art in image and speech 
processing [33]. However, it is also possible to use it to evaluate 
time-correlated measured values of time series signals. [34]. In this 
context, a convolution can be viewed as a filter that is applied and 
shifted over the time series, whereby the filter has only one dimension 
(time) instead of two dimensions as with images (width and height) 
[31]. The classification of activities or peculiarities in the time series is 
then based on the extraction of special distinguishing features in the 
one-dimensional time series, which are recorded by sensors [35]. There, 
it is important, on the one hand to have strongly correlated, temporally 
close measured values [32] and, on the other hand, appropriately 
designed feature representations of sensor data and suitable classifiers 
[35]. 

Another frequently used DL implementation for the analysis of large 
amounts of data is recurrent neural networks (RNN), which are capable 
of learning long-term dependencies in sequential data [36]. A modern 
RNN architecture with very good performance, inter alia when evalu
ating raw time series data, is the long short-term memory (LSTM) ar
chitecture [37,38]. The LSTM architecture has a very good learning 
capability and corresponds to the state-of-the-art in several areas, both 
practically and theoretically [39]. 

Other modern DL implementations for time series analyses are partly 
based on known network architectures that are already successfully used 
in image analyses. These include, among others, InceptionTime [40] and 
XceptionTime [41]. New models for extracting information from time 
series based on compact convolutional neural network elements are also 
being developed. This includes in particular the eXplainable Convolu
tional neural network for Multivariate time series classification archi
tecture (XCM) [42]. All of these modern networks have a very deep and 
complex structure, which enable high accuracy, good generalization and 
scalability, but also require more computing power and possibly 
computing time. 

3.4. Machine learning structures used in these investigations 

In this work, different ML models were used to detect specific ac
tivities in sequenced environmental sensor data. Fig. 4 shows excerpts of 
the recorded and standardized environmental sensor parameters of a 
normal FDM printing process, which are then analyzed by the archi
tectures described below. In this process, all examinations were under
taken using a local workstation computer with a Windows 10 
environment, a Nvidia GeForce RTX 2080 Ti GPU with 11 GDDR6 VRAM 
and an Intel Core i7 9700k CPU with 3.6 GHz, 8 cores and 32 GB RAM. 

All ML algorithms used were implemented with the open-source DL 
package tsai [43] in python version 3.7.7. This means that current 
state-of-the-art time series classification models based on scientific 
publications are utilized, which can be applied in a comparable and 
reproducible manner. The basic process flow from the input of the sensor 
data to the output of the classification results is the same for all imple
mented algorithms and is shown in Fig. 5. 

A simple MLP was used as the first ML architecture for the in
vestigations. The basic structure of the MLP developed in this work is 

Table 3 
Hyperparameter settings for all ML algorithms used in this work.  

Cost Function Learning 
rate (Lr) 

Optimizer No. 
Epochs 

Batch 
size 

Lr Decay 

Categorical 
cross entropy 

1 10 3 Adam  20  64 patience 
ˆ 5  
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b a s e d o n t h e ar c hit e ct ur e d e v el o p e d a n d pr o p o s e d b y W a n g et al. [ 4 4 ] . 

T h er e, t h e n et w or k c o n si st s of t hr e e l a y er s, all of w hi c h ar e c o m pl et el y 

i nt er c o n n e ct e d. T h e n a r el ati v el y si m pl e 1 D C N N w a s u s e d. T h e ar c hi-

t e ct ur e w a s a g ai n d e v el o p e d b y W a n g et al. [ 4 4 ] . B y t h at, t h e 1 D C N N 

h a s a v er y c o m p a ct str u ct ur e wit h t hr e e c o n v ol uti o n bl o c k s c o n si sti n g of 

a c o n v ol uti o n, a b at c h n or m ali z ati o n a n d a R e L U a cti v ati o n l a y er. T h e 

b at c h  n or m ali z ati o n  a c c el er at e s  t h e  c o n v er g e n c e  s p e e d  a n d  h el p s  t o 

i m pr o v e t h e g e n er ali z ati o n of t h e n et w or k a n d t o a v oi d o v er fltti n g. T h e 

f e at ur e s of e a c h cl a s si fl c ati o n c at e g or y e xtr a ct e d fr o m t h e c o n v ol uti o n 

bl o c k s ar e t h e n v e ct ori z e d b y a gl o b al a v er a g e p o oli n g o p er ati o n ( G A P) 

[ 4 5 ] a n d tr a n sf err e d t o t h e o ut p ut l a y er wit h a s oft m a x cl a s si fi er. Wit h 

G A P, t h e cl a s si fi c ati o n of t h e n et w or k i s e a si er t o i nt er pr et a n d l e s s pr o n e 

t o o v er fitti n g t h a n t h e F C l a y er s ot h er wi s e c o m m o nl y u s e d [ 4 5 ] . A t hir d 

n e ur al  n et w or k  ar c hit e ct ur e  i s  b a s e d  o n  a n  L S T M  ar c hit e ct ur e  i n 

a c c or d a n c e wit h H o c hr eit er a n d S c h mi d h u b er [ 3 7 ] . T h e m o d el c o n si st s 

of t hr e e L S T M l a y er s wit h a n i n p ut u nit, a n o ut p ut u nit a n d a c ell bl o c k, 

w hi c h c a n b e t h o u g ht of a s a c o m pl e x m e m or y c ell t h at r e g ul at e s t h e 

fi o w  of  i nf or m ati o n  a n d  c a n  r u n  t hr o u g h  s e v er al  ti m e  st e p s  wit h o ut 

l o si n g t h e i nf or m ati o n a n d w ei g hti n g s r e c or d e d i n t h e pr o c e s s [ 3 6 ] . T h e 

L S T M g e n er ali z e s w ell f or m a n y pr o bl e m s, w hi c h i s g o o d f or a v oi di n g 

o v er fltti n g a n d al s o r e s ult s i n m or e st a bl e r u n s a n d f a st er l e ar ni n g ti m e s 

t h a n ot h er al g orit h m s [ 3 7 ] . 

T h e I n c e pti o n Ti m e, X c e pti o n Ti m e a n d X C M ar c hit e ct ur e s w er e u s e d 

t o c o m p ar e t h e m o d el s d e s cri b e d b ef or e wit h t h e s e r e c e nt st at e- of-t h e- 

art  D L  i m pl e m e nt ati o n s.  I n c e pti o n Ti m e  g e n er ali z e s  w ell  t o  r e al  d at a -

s et s, r e d u c e s t h e di m e n si o n alit y of t h e ti m e s eri e s a s w ell a s t h e m o d el 

c o m pl e xit y, w h er e b y o v er fitti n g c a n b e r e d u c e d wit h a s uf fi ci e ntl y l ar g e 

n u m b er  of  tr ai ni n g  d at a [ 4 0 ] .  X c e pti o n Ti m e  i s  v er y  r o b u st  a g ai n st 

t e m p or al i nt err u pti o n s i n t h e i n p ut a n d i n d e p e n d e nt fr o m t h e l e n gt h of 

t h e i n p ut. I n a d diti o n, t h e u s e of t h e d e pt h wi s e s e p ar a bl e c o n v ol uti o n s 

m a k e s it f ar l e s s c o m pl e x a n d l e s s pr o n e t o o v er fltti n g [ 4 1 ] . T h e X C M 

ar c hit e ct ur e e xtr a ct s i nf or m ati o n dir e ctl y fr o m t h e i n p ut d at a ( wit h 1 D 

a n d 2 D filt er s) a n d t h u s e n a bl e s g o o d g e n er ali z ati o n t o b ot h s m all a n d 

l ar g e d at a s et s wit h littl e s u s c e pti bilit y t o o v er fitti n g [ 4 2 ] . 

3. 5. P erf or m a n c e m e as ur es 

T hr e e a s p e ct s ar e a n al y z e d i n t hi s st u d y. O n e i s t h e s e n siti vit y of t h e 

e n vir o n m e nt al s e n s or p ar a m et er s i n t h e M L e x a mi n ati o n s. A n ot h er i s t h e 

p erf or m a n c e of t h e d e v el o p e d M L al g orit h m s a n d t h e l a st i s t h e c o m -

p ari s o n of t h e r e c or di n g of t h e p art q u alit y wit h t h e pri nt e d t e st p art s. I n 

or d er t o e x a mi n e t h e s e n siti vit y of t h e s e n s or p ar a m et er s, a p er m ut ati o n 

f e at ur e i m p ort a n c e a n al y si s i s c arri e d o ut. T o e v al u at e t h e al g orit h m s, 

s p e ci fi c  p erf or m a n c e  m etri c s  ar e  u s e d  t o  pr e s e nt  a n d  s u m m ari z e  t h e 

r e s ult s. T o e v al u at e t h e p art q u alit y, a n o pti c al 3 D m e a s ur e m e nt of t h e 

c o m p o n e nt s i s c arri e d o ut wit h a 3 D s c a n n er t o e n a bl e a q u alit y c o m-

p ari s o n b et w e e n t h e diff er e nt 3 D pri nti n g c o n diti o n cl a s s e s. 

3. 5. 1.  N e ur al n et w or k e v al u ati o n m etri cs 

T h e s el e cti o n of a s uit a bl e m etri c f or e x a mi ni n g a n d diff er e nti ati n g 

t h e  p erf or m a n c e  of  diff er e nt  cl a s si fi c ati o n  al g orit h m s  i s  a n  i m p ort a nt 

a s p e ct i n M L, b e c a u s e t h e c orr e ct s el e cti o n of t h e m etri c e n s ur e s t h at t h e 

cl a s si fi c ati o n tr ai ni n g of t h e al g orit h m s i s u nif or ml y e v al u at e d a c c or d -

i n g t o s uit a bl e crit eri a [ 4 6, 4 7 ] . T h er e ar e b al a n c e d a n d u n b al a n c e d r e-

c or d s i n t h e d at a o n w hi c h t h e cl a s si fi c ati o n t a s k s ar e b a s e d. T h e m ai n 

d at a s et r e s ult s i n a n u n b al a n c e d d at a s et wit h a m ulti- cl a s s pr o bl e m. F or 

t h e i n v e sti g ati o n s of t h e a bl ati o n d at a s et, a b al a n c e d d at a s et w a s cr e at e d 

i n w hi c h e a c h cl a s s i s e q u all y li k el y. F or cl a s si fi c ati o n t a s k s, t h e r e s ult s 

c a n still b e di s pl a y e d i n a s p e ci fi c c o nf u si o n m atri x ( C M) [ 4 8 ] . T h e C M i s 

a cr o s st a b t h at r e c or d s t h e n u m b er of s p e ci fi c c a s e s b et w e e n t h e pr e s e nt 

cl a s s e s a n d b et w e e n t w o crit eri a ( pr e di ct e d a n d a ct u all y o c c urr e d) [ 4 7 ] . 

A b a si c e x a m pl e f or t h e C M of t h e i n v e sti g ati o n s c arri e d o ut i n t hi s w or k 

i s gi v e n i n T a bl e 4 . T h e m o st i m p ort a nt ar e t h e Tr u e P o siti v e ( T P) v al u e s, 

w hi c h r e pr e s e nt t h e c orr e ctl y cl a s si fl e d s e q u e n c e s. Tr u e N e g ati v e ( T N) 

v al u e s ar e all ot h er, i n c orr e ctl y cl a s si fi e d s e q u e n c e s. F al s e P o siti v e ( F P) 

a n d F al s e N e g ati v e ( F N) v al u e s ar e t h e s u m m e d, mi s cl a s si fi e d el e m e nt s 

i n  t h e  c ol u m n s  a n d  r o w s.  T h e y  ar e  al s o  r el e v a nt  f or  c al c ul ati n g  t h e 

p erf or m a n c e m etri c s. 

It s h o ul d b e n ot e d t h at t h er e i s a m ulti- cl a s s cl a s si fi c ati o n f or b ot h 

g e n er at e d d at a s et s a n d c orr e s p o n di n gl y a d a pt e d c al c ul ati o n b a s e s ar e t o 

b e  u s e d.  F or  t hi s  r e a s o n,  A c c ur a c y,  M a cr o  A v er a g e  Pr e ci si o n,  M a cr o 

A v er a g e  R e c all  a n d  M a cr o  F 1- S c or e  w er e  u s e d  f or  t h e  i n v e sti g ati o n s 

c arri e d o ut i n t hi s w or k. T h e s e m etri c s ar e d e fi n e d b el o w a n d e x pl ai n e d 

i n d et ail b y S o k ol o v a a n d L a p al m e [ 4 9 ] a s w ell a s Gr a n di ni et al. [ 4 7 ] : 

A c c ur a c y =
T P + T N

T P + T N + F P + F N
( 1)  

M a cr o  A v er a g e  Pr e cisi o n =

∑ K
k = 1

T P k

T P k ∗ F P k

K
( 2)  

M a cr o  A v er a g e  R e c all =

∑ K
k = 1

T P k

T P k ∗ F N k

K
( 3) 

T a bl e 4 

Pri n ci p al C M s c h e m e f or t h e e x a mi n ati o n s i n t hi s w or k. T h e r e d b or d er c h ar a ct eri z e s t h e C M f or e x a mi n ati o n s wit h t h e m ai n d at a s et a n d t h e bl u e b or d er c h ar a ct eri z e s 

t h e e x a mi n ati o n s wit h t h e a bl ati o n d at a s et.  

Pr e di ct e d cl ass

Cl ass es n or m al _ 0 1 d ef e ct _ 0 1 d ef e ct _ 0 2 d ef e ct _ 0 3 d ef e ct _ 0 4 d ef e ct _ 0 5 t ot al

Tr
ue

 c
la

ss

n or m al _ 0 1 T P T N T N T N T N T N F N

d ef e ct _ 0 1 T N T P T N T N T N T N F N

d ef e ct _ 0 2 T N T N T P T N T N T N F N

d ef e ct _ 0 3 T N T N T N T P T N T N F N

d ef e ct _ 0 4 T N T N T N T N T P T N F N

d ef e ct _ 0 5 T N T N T N T N T N T P F N

t ot al F P F P F P F P F P F P

M a cr o  F 1 − S c or e = 2 ∗ (
M a cr o  A v er a g e  Pr e cisi o n ∗ M a cr o  A v er a g e  R e c all

M a cr o  A v er a g e  Pr e cisi o n − 1 + M a cr o  A v er a g e  R e c all − 1
) ( 4)   
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To find out more information about the sensitivity of the environ
mental sensor parameters to the ML algorithms, a permutation feature 
analysis is performed. This feature importance measurement was 
introduced by Breiman [50] especially for random forests. In principle, 
the increase in the prediction error of the respective model is determined 
after individual values of a feature have been swapped [50]. The 
importance of a feature is measured accordingly, with a feature being 
important when the model error increases (the characteristic is impor
tant for a good classification) and unimportant when it decreases (the 
characteristic leaves the model error unchanged and is of limited rele
vance for the classification). This is a common way of measuringthe 
sensitivity of input characteristics in ML. 

3.5.2. 3D Scan for part quality measurement 
In order to enable an optical quality comparison between the 

different 3D printing condition classes, a dimensional check was carried 
out on the printed components with a 3D light scanner with ATOS Core 
Sensor (GOM GmbH, Braunschweig, Germany). This method has been 
used in previous publications to compare the impacts of printing 

parameters on the respective dimensional deviations of the printed parts 
[4]. The optical scanning system used has a camera resolution of 
2448 2050 pixels at a frame rate of 7 Hz and 5 million measuring 
points per scan. The system is therefore suitable for capturing details and 
even the smallest geometrical deviations in the printed components. For 
the overall result, several individual scans were performed to reproduce 
the surface topography of the components as completely as possible. 
GOMscan software (GOM GmbH, Braunschweig, Germany) was then 
used to convert the individual point clouds into complete scan views. 
Surface comparison measurements were made between the printed 
components and the designed CAD reference models to evaluate the 
effects of the various 3D printing condition classes and to make quali
tative statements about the print quality. The surface comparisons then 
provide a colored representation of the inspected surface areas, which 
show their deviations from the CAD reference model. 

4. Results 

4.1. Permutation feature importance analysis 

The sensitivity analysis of the sensor parameters was carried out with 

Table 5 
Performance metrics for ML algorithms for the classification of sensor data at the FDM process for all investigations with the main dataset.  

Experiment Model Confusion Matrix Accuracy MacroAvg Precision MacroAvg Recall Macro F1-Score Time [mm:ss] 

1st MLP  793 
0 
0 
0  

2 
236 
0 
0  

0 
0 
240 
0  

0 
0 
0 
239  

0.999  0.999  0.998  0.999 00:20 

1D CNN  795 
0 
0 
0  

0 
235 
0 
0  

0 
1 
240 
0  

0 
0 
0 
239  

0.999  0.999  0.999  0.999 09:01 

RNN LSTM  795 
0 
0 
4  

0 
231 
0 
0  

0 
5 
236 
0  

0 
0 
4 
235  

0.991  0.986  0.989  0.988 17:23 

Inception 
Time  

795 
0 
0 
0  

0 
235 
0 
0  

0 
1 
240 
0  

0 
0 
0 
239  

0.999  0.999  0.999  0.999 39:16 

Xception 
Time  

793 
0 
0 
0  

0 
235 
0 
0  

0 
1 
239 
0  

2 
0 
1 
239  

0.997  0.997  0.996  0.997 38:03 

XCM  795 
0 
0 
0  

0 
236 
0 
0  

0 
0 
240 
1  

0 
0 
0 
238  

0.999  0.999  0.999  0.999 19:15 

2nd MLP  725 
2 
4 
0  

0 
234 
0 
0  

70 
0 
235 
3  

0 
0 
1 
236  

0.947  0.968  0.938  0.952 00:20 

1D CNN  724 
0 
0 
0  

0 
235 
0 
0  

71 
1 
239 
0  

0 
0 
1 
239  

0.952  0.976  0.941  0.958 08:47 

RNN LSTM  793 
1 
0 
4  

2 
231 
0 
0  

0 
4 
235 
0  

0 
0 
5 
235  

0.989  0.985  0.987  0.986 16:39 

Inception 
Time  

726 
0 
0 
0  

0 
235 
0 
0  

69 
1 
239 
0  

0 
0 
1 
239  

0.953  0.976  0.942  0.959 37:21 

Xception 
Time  

722 
0 
0 
0  

0 
236 
0 
0  

71 
0 
240 
0  

2 
0 
0 
239  

0.952  0.977  0.941  0.959 37:41 

XCM  724 
1 
1 
0  

0 
235 
0 
0  

71 
0 
238 
0  

0 
0 
1 
239  

0.951  0.975  0.941  0.957 15:01  
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the larger main dataset. The four recorded values of temperature, hu
midity, air pressure and gas particles were declared as features. The 
result is a representation of the relative importance of the individual 
environmental sensor parameters for the analysis and is shown in Fig. 6. 

The feature importance analysis shows a clear gradation of the 
relevance of the individual sensor parameters for the ML analyses. The 
air pressure has the greatest influence, followed by the humidity, the 
temperature and the gas particles, which are least relevant for the 
classifications. This order is unexpected and also illogical from the point 
of view of AM, since barometric air pressure is usually not a relevant 
influencing variable for the printing process. In the ML context, how
ever, this feature is much more important, which in turn is under
standable, since even minor changes in air pressure are clearly 
noticeable in the generally relatively constant air pressure curves and 
generate a fairly easy to analyze and quite meaningful pattern of the 
feature. This feature then superimposes all other features and is 
weighted more heavily by the algorithms. 

Since the context of AM is of great interest in this work, experiments 
with and without air pressure are conducted as a result of the feature 
importance analysis. By that, this characterizes on the one hand the real 
influence of the air pressure on the ML analyses and, on the other hand, 
examines the performance of the algorithms without the air pressure 
parameters that are irrelevant for 3D printing. 

4.2. Time series classification results 

Using the described ML architectures and the recorded environ
mental sensor data, two examinations were carried out; a classification 
of data structures on the main dataset and a classification of the data on 
the ablation dataset as part of an ablation study and to validate the re
sults. Two experiments were carried out again for each examination; one 
experiment with all recorded environmental sensor data (temperature, 
humidity, air pressure, gas particles) and a second experiment without 
the air pressure values. 

In the process, all algorithms were first trained with 80% of the data 
from the datasets and then validated with the remaining 20%. This is an 
established method to, for example, detect overfitting. The results and 
relevant performance metrics of the examinations for the main dataset 
are listed in Table 5 below. In addition, Fig. 7 shows the accuracy and 
loss curve of the examinations for the training and validation data of all 

ML architectures with the main dataset. 
All ML algorithms perform very well with the main dataset, with 

efficient classification of the individual 3D printing condition classes 
(see Table 5). The accuracies of the 1st experiment are always over 99%. 
Only very few sequences are classified incorrectly by the algorithms, 
which means that all other metrics consistently achieve very good values 
of at least 98%. If one also considers the training and validation losses 
from Fig. 7, the results can at least be confirmed for the training data. In 
the 1st experiment, the training loss gradually decreases in all models 
and reaches very low values of almost 0. This suggests that all algorithms 
found a relatively good fit for the training data in the course of the 
training. The validation loss also gradually decreases to very low values 
for all models after four epochs at the latest and remains there. As a 
result, the ML architectures also perform very well on unknown data, 
which is ultimately also mapped in the CM (see Table 5). It is also 
noticeable that the algorithms have longer computing times with 
increasing complexity. 

In the 2nd experiment, in which the air pressure values were not 
included in the analyses, the performance values were consistently 
lower. The accuracies here are only about 95%, only the RNN LSTM 
performs a little better with approximately 98%. However, the classifi
cation of the sequences is still very effective overall. With all algorithms, 
with the exception of the RNN, the greatest uncertainty is clearly in the 
distinction between the states "normal_01" and "defect_02", which can be 
seen in Table 5 about the CM values. Both states are actually compa
rable, but differ in the state of the nozzle. Since the air pressure is not 
considered in the 2nd experiment, the differences can in principle only 
be detected via the gas particles. Since this parameter is least relevant 
for the ML algorithms according to the feature importance analysis, it is 
likely that many sequences of both classes are the same for the algo
rithms and are classified incorrectly. 

The loss plots from Fig. 7, however, provide somewhat more differ
entiated insights into the effectiveness of the individual algorithms. 
While the training loss of all models continue to run as expected and 
gradually decrease, the validation losses no longer behave as expected. 
For all algorithms, they do not achieve as low values as with the training 
data and, with the exception of XceptionTime, are relatively noisy. At 
the MLP, there is no decrease of the validation loss, and with the 1D 
CNN, InceptionTime and XCM, the values for the validation loss peak 
after just a few epochs and then begin to increase again. This is 

Table 6 
Performance metrics for the RNN LSTM and XceptionTime algorithm for the classification of sensor data at the FDM process for all investigations with the ablation 
dataset.  

Experiment Model Confusion Matrix Accuracy MacroAvg Precision MacroAvg Recall Macro F1-Score Time [mm:ss] 

1st RNN LSTM  45 
0 
2 
0 
5 
4  

0 
46 
4 
0 
0 
0  

0 
0 
16 
22 
0 
0  

0 
0 
0 
23 
0 
0  

0 
0 
28 
5 
40 
0  

0 
0 
0 
0 
5 
45  

0.741  0.750  0.632  0.686 03:41 

Xception 
Time  

44 
0 
0 
0 
6 
0  

0 
460 
0 
0 
0  

0 
0 
49 
0 
0 
0  

0 
0 
1 
50 
0 
0  

0 
0 
0 
0 
44 
0  

1 
0 
0 
0 
0 
49  

0.972  0.973  0.827  0.894 07:17 

2nd RNN LSTM  40 
0 
0 
0 
8 
0  

0 
41 
0 
0 
0 
0  

0 
5 
19 
0 
0 
0  

0 
0 
0 
7 
0 
0  

0 
0 
31 
43 
40 
0  

5 
0 
0 
0 
2 
49  

0.676  0.683  0.670  0.676 03:16 

Xception 
Time  

45 
0 
0 
0 
7 
1  

0 
46 
0 
0 
0 
0  

0 
0 
49 
0 
0 
0  

0 
0 
1 
50 
0 
0  

0 
0 
0 
0 
43 
0  

0 
0 
0 
0 
0 
48  

0.969  0.970  0.830  0.895 07:09  
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A d diti v e M a n uf a ct uri n g 5 0 ( 2 0 2 2 ) 1 0 2 5 3 5

1 1

c h ar a ct eri sti c f or o v er fltti n g a n d i n di c at e s t h at t h e s e al g orit h m s a d a pt 

t o o m u c h t o t h e s p e ci fl c p att er n s of t h e tr ai ni n g d at a. A s a r e s ult, t h e 

al g orit h m s i niti all y d o n ot g e n er ali z e t h e i nf or m ati o n t h at h a s alr e a d y 

b e e n l e ar n e d t o t h e n e w, a s y et u n k n o w n v ali d ati o n d at a. T h e n e v er -

t h el e s s q uit e g o o d p erf or m a n c e v al u e s ar e pr o b a bl y d u e t o t h e str o n g 

si mil arit y of t h e tr ai ni n g a n d v ali d ati o n d at a. T h e v ali d ati o n l o s s c o ur s e s 

fr o m  t h e  R N N  a n d  t h e  X c e pti o n Ti m e  al g orit h m  s h o w s  n o  o b vi o u s 

o v er fitti n g.  T h e  c o m p uti n g  ti m e s  al s o  i n cr e a s e  wit h  t h e  i n cr e a si n g 

c o m pl e xit y  of  t h e  al g orit h m s  i n  t hi s  e x p eri m e nt,  b ut  ar e  i n  pri n ci pl e 

s o m e w h at s h ort er t h a n i n t h e 1 st e x p eri m e nt, w hi c h c a n b e attri b ut e d t o 

t h e l a c k of air pr e s s ur e d at a. 

T h e  e x a mi n ati o n s  wit h  t h e  a bl ati o n  d at a s et  ar e  b a s e d  o n  a  m u c h 

s m all er  d at a b a s e  t h a n  wit h  t h e  m ai n  d at a s et.  T hi s  f u n d a m e nt all y  i n -

cr e a s e s t h e ri s k of o v er fitti n g. F or t hi s r e a s o n, o nl y t h e R N N L S T M a n d 

t h e X c e pti o n Ti m e al g orit h m ar e u s e d f or f urt h er i n v e sti g ati o n s, a s t h e y 

pr o v e d t o b e t h e m o st r e si st a nt t o o v er fitti n g i n t h e fir st e x p eri m e nt wit h 

t h e  m ai n  d at a s et.  T h e  r e s ult s  of  t h e  e x a mi n ati o n s  wit h  t h e  a bl ati o n 

d at a s et  ar e  li st e d  f or  t h e  p erf or m a n c e  m etri c s  i n T a bl e  6 a n d  f or  t h e 

c o ur s e s of tr ai ni n g a n d v ali d ati o n l o s s i n Fi g. 8 . 

F or  t h e  a bl ati o n  d at a s et,  t h e  p erf or m a n c e  b et w e e n  t h e  t w o  al g o -

rit h m s u s e d i s v er y diff er e nt. I n t h e 1 st e x p eri m e nt wit h t h e air pr e s s ur e 

d at a, t h e R N N L S T M ar c hit e ct ur e o nl y h a s a n a c c ur a c y of a p pr o xi m at el y 

7 4 % a n d i n t h e 2 n d e x p eri m e nt wit h o ut t h e air pr e s s ur e v al u e s, it i s e v e n 

a  sli g htl y  l o w er  v al u e  of  a p pr o xi m at el y  6 8 %.  B ut  i n  vi e w  of  t h e  C M 

v al u e s,  t h er e  i s  still  a  b a si c all y  f u n cti o ni n g  cl a s si fl c ati o n,  at  l e a st  b e -

t w e e n s p e ci al cl a s s e s. If t h e M a cr o F 1 s c or e i s al s o i n cl u d e d, w hi c h o nl y 

a c hi e v e d v al u e s of j u st u n d er 6 8 – 6 9 % f or b ot h e x p eri m e nt s, it c a n ul -

ti m at el y  b e  c o n cl u d e d  t h at  t h e  R N N  L S T M  al g orit h m  pr e di ct s  s o m e 

cl a s s e s  p o orl y  wit h  littl e  d at a  a n d  t h er ef or e  d o e s  n ot  w or k  r eli a bl y 

o v er all. L o o ki n g at t h e l o s s pr o fil e s fr o m Fi g. 8 , o n e e x pl a n ati o n f or t h e 

p o or p erf or m a n c e, a m o n g ot h er t hi n g s, i s o v er fitti n g. W hil e t h e tr ai ni n g 

l o s s i n t h e 1 st e x p eri m e nt gr a d u all y d e cr e a s e a n d t h u s s h o w s a g o o d flt 

f or t h e tr ai ni n g d at a, a p e a k i s r e a c h e d i n t h e v ali d ati o n d at a aft er ni n e 

e p o c h s,  aft er  w hi c h  t h e  l o s s  v al u e s  ri s e  a g ai n  a n d  b ef or e  st a g n ati n g. 

O v er fitti n g o c c ur s. I n t h e 2 n d e x p eri m e nt, t h e l o s s c o ur s e s f or b ot h t h e 

tr ai ni n g  a n d  t h e  v ali d ati o n  d at a  ar e  si mil ar.  I n  a d diti o n,  t h e y  d o  n ot 

r e a c h  a s  l o w  v al u e s  a s  i n  t h e  1 st  e x p eri m e nt  a n d  alr e a d y  i n di c at e 

o v er fitti n g i n t h e tr ai ni n g d at a. 

T h e X c e pti o n Ti m e al g orit h m s h o w s g o o d t o v er y g o o d v al u e s i n all 

ar e a s  i n  b ot h  t h e  1 st  a n d  2 n d  e x p eri m e nt s.  T h e  a c c ur a ci e s  h er e  ar e 

ar o u n d 9 7 % a n d t h e M a cr o F 1 s c or e s of ar o u n d 9 0 % i n di c at e a g o o d 

cl a s si fi c ati o n  f or  all cl a s s e s.  E v e n m or e  r e m ar k a bl e,  h o w e v er,  ar e  t h e 

l o s s c o ur s e s fr o m Fi g. 8 . Tr ai ni n g a n d v ali d ati o n l o s s c o ur s e s d e cr e a s e 

s u c c e s si v el y i n b ot h e x p eri m e nt s, r e a c h a p pr o xi m at el y t h e s a m e mi ni -

m u m v al u e s, ar e n ot v er y n oi s y a n d s h o w n o o v er fitti n g. T hi s i s o pti m al 

b e h a vi or a n d i nt er e sti n g i n t h at it w a s n ot pr e vi o u sl y a c hi e v e d wit h s u c h 

cl arit y b y a n y al g orit h m i n t h e l ar g e m ai n d at a s et. 

4. 3. P art q u alit y r es ults 

I n a d diti o n t o t h e m a n uf a ct uri n g p ar a m et er d at a a n d t h e M L al g o-

rit h m s, t h e m a n uf a ct uri n g r e s ult s w er e al s o e x a mi n e d i n m or e d et ail. 

F or  t hi s  p ur p o s e,  t h e  g e o m etri c  s p e ctr u m  of  t h e  pri nt e d  p art s  i s  fir st 

a n al y z e d,  fr o m  t h e  C A D  r ef er e n c e  g e o m etr y  u s e d  ( Fi g.  9 ,  l eft)  t o  a 

r el ati v el y pr e ci s el y pri nt e d p art ( Fi g. 9 , mi d dl e) t o a g e n er at e d p art wit h 

cl e arl y r e c o g ni z a bl e g e o m etri c d ef e ct s ( Fi g. 9 , ri g ht). 

T hi s i s f oll o w e d b y a q u alit y c o m p ari s o n wit h a n o pti c al 3 D s c a n f or 

t hr e e c o m p o n e nt s of e v er y 3 D pri nti n g c o n diti o n cl a s s. T h e r e s ult s of o n e 

a n al y z e d c o m p o n e nt of e a c h of t h e diff er e nt 3 D pri nti n g c o n diti o n s ar e 

s h o w n i n Fi g. 1 0 . T hi s s h o ul d r e pr e s e nt a fir st pr o of of c o n c e pt, wit h 

Fi g. 1 0. Di m e n si o n al c o ntr ol wit h a n o pti c al 3 D li g ht s c a n n er t o c o m p ar e t h e q u alit y of t h e pri nt e d p art s wit h t h e diff er e nt pri nti n g c o n diti o n s.  
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which it is shown that ML analyses enable an effective alternative to 
optical 3D scan examinations. 

In the quality comparison generated in this work, the dimensional 
deviations between the specified CAD reference data and the generated 
part geometries are shown in color. The color representation is also 
associated with a numerical indication of the dimensional deviations in 
mm. Yellow and green areas correspond to very small to smaller de
viations between the examined areas, blue areas visualize larger nega
tive differences and red areas characterize maximum positive area 
differences. The quality comparisons between the 3D scans of the 
components printed with the individual 3D printing condition classes 
are all quite similar except for defect_0500. At first, there is no clearly 
visible difference that can be seen. However, on taking a closer look at 
the legends of the 3D scan images, smaller gradations can be seen. The 
printing condition "normal_01" forms the reference with the optimal 
print settings and maximum deviations of ‡ 0.10 mm to 0.32 mm. In 
comparison, the printing condition "defect_01" shows slightly higher 
negative deviations of 0.34 mm. The 3D printing conditions 
defect_0200 and defect_0300 again show slightly higher positive de

viations of ‡ 0.11 mm to normal_0100, but are visually indistinguishable 
from one another. The condition "defect_04" deviates a little more from 
the optimal conditions, both positive with ‡ 0.15 mm and negative with 

0.35 mm. Overall, however, the differentiation of the 3D printing 
conditions based on the optical 3D scans remains difficult. Only the 
condition "defect_05" can already be clearly recognized optically, since 
on the one hand the maximum deviations of ‡ 0.25 mm and 0.60 mm 
are clearly above the optimal conditions and on the other hand a large 
part of the component area was not captured by the 3D scan and is 
therefore shown in gray in the quality comparison images. 

5. Discussion 

A large number of findings relating to various aspects of the inves
tigation were generated from the research work previously carried out. 

5.1. Findings related to additive manufacturing 

With the proposed test setup, different environmental sensor data 
can be recorded and further processed in a simple manner during the AM 
process. The analysis of the detected and preprocessed data with state- 
of-the-art ML algorithms is then possible with a supervised learning 
approach. In this way, different 3D printing conditions that occur in 
reality can be labeled and used for effective algorithm training, which 
ultimately also enables automatic and intelligent classification of 3D 
printing condition classes by the ML algorithms. Not all recorded envi
ronmental sensor parameters are equally important for the ML analyses. 
The sensitivity analysis carried out showed that AM-relevant process 
parameters can have different relevance in the ML context. The baro
metric air pressure in particular is usually not of great importance for the 
printing process, but it is for the ML analyses. It is most relevant to the 
investigations carried out, followed by humidity, temperature and gas 
particles. It should be noted, however, that by using an open 3D printing 
system, the external environmental influence on the data turned out to 
be stronger and so changes in the environment of the printer might be 
included in the ML analyses to a greater extent than with a closed sys
tem. However, it can already be clearly seen here that differences in the 
printing temperature result in very well differentiable data (see CM in 
Table 5 and Table 6). The print status "defect_03" (higher temperature) 
was almost always detected without any doubt. 

5.2. Findings related to machine learning 

The strong relevance of the air pressure for the ML analyses is un
derstandable, since the patterns present in this sensor parameter are 
relatively clearly recognizable and thus dominant. The air pressure is 
always fairly constant and even small fluctuations or pressure 

differences between different data sequences are clearly visible. The 
other environmental parameters are noisy and patterns are less clearly 
recognizable. The importance of the air pressure becomes clear in the 
experiments carried out with and without air pressure data from Table 5 
and Fig. 7 included in the analyses. The inclusion of the air pressure 
values, which are irrelevant for the AM process, initially increases the 
computational costs slightly. However, the performance of the ML al
gorithms is always worse without the air pressure data and tends more to 
overfitting. The air pressure parameters therefore basically have a sta
bilizing influence on the analyses and contribute to a better general
ization of the examined ML architectures, which in turn is positive for 
the classification of new, unknown data. It can therefore make sense to 
record as many process parameters as possible, despite a slightly higher 
resource consumption, provided that the effort involved is low, in order 
to first examine their respective relevance for ML analyses and their 
effects on the generalization. Furthermore, it can be seen that older and 
at the same time simpler algorithms perform similarly to modern, more 
complex algorithms. However, the simpler algorithms require signifi
cantly shorter computing times and are therefore more resource- 
efficient. If the susceptibility to overfitting is considered, both the 
simpler RNN LSTM and the more complex XceptionTime architecture 
achieve the best results with an effective classification for the larger 
main dataset. 

This effectiveness could only be confirmed for XceptionTime in the 
ablation study with the smaller ablation dataset (see Table 6). This 
modern algorithm copes much better with less and at the same time 
more differentiated data than the RNN LSTM, where no effective clas
sification has taken place and overfitting has already occurred in the 1st 
experiment and there already in the training data (see Fig. 8). The 
following findings can thus be drawn specifically from the ablation 
study:  

More data is better for an effective time series classification. 
Modern and more complex ML algorithms for time series classifica
tion perform better than simpler ones with smaller databases. 
With little data and even without the air pressure values, Xception
Time is very effective and robust against overfitting.  
XceptionTime generalizes better with more differentiated data and 
basically enables an effective classification of 3D printing conditions 
with environmental sensor data. 

5.3. Findings related to quality assurance 

The results of the ML analyses can make a productive contribution to 
quality assurance in AM. The trained algorithms can, for example, 
analyze data in the respective printer software in parallel with process 
monitoring and provide information on the current print quality rela
tively quickly. Furthermore, based on the presented ML analyses, 
intelligent online services could be developed which interact with 3D 
printers connected via the internet and continuously monitor the 
printing process. In addition, the generated results can serve as a sup
plement to conventional quality assurance or replace established quality 
assurance procedures such as optical 3D scans. The 3D scan can only be 
used superficially and after the component has been manufactured and 
is only very poorly suited to differentiating between different printing 
conditions. ML, on the other hand, is much better suited to differenti
ating the printing conditions with effective algorithms, as it can perform 
quality control for all external and internal component structures faster, 
more precisely, more easily and, above all, production-integrated. It is 
also non-destructive, can be implemented relatively cheaply and can 
also enable process-integrated, one hundred percent quality control and 
documentation in almost real time. For a corresponding industrial 
application of the presented methods, however, improved, increasingly 
automated processes must be developed. In addition, more and more 
diverse data must be added to the database of the algorithms to ensure 
even more robust classification. 

E. Westphal and H. Seitz                                                                                                                                                                                                                      
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6. Conclusions 

In this work we present different simple and more complex state-of- 
the-art machine learning (ML) algorithms for an intelligent classification 
of manufacturing data, which was recorded during the Fused Deposition 
Modeling (FDM) process. For this purpose, the environmental process 
parameters temperature, humidity, air pressure and gas particles are 
recorded by an environmental sensor, sequenced and pre-classified for 
training the intelligent algorithms. A sensitivity analysis regarding the 
relevance of the parameters was also carried out. The air pressure is the 
most important parameter in the ML context and has the greatest in
fluence on the analyses. The sequenced data were then stored into a 
larger unbalanced and a smaller balanced dataset. The datasets then 
served as the basis for data analyses using the deep learning techniques 
as well as for two experiments with and without the weighty air pressure 
parameters. The RNN LSTM and XceptionTime architecture obtained the 
most effective results overall, achieving high performance metrics and 
good robustness against overfitting with the large, unbalanced dataset. 
The results were then validated in an ablation study using the smaller, 
balanced dataset. The XceptionTime model performed best, with Ac
curacy (0.969) and Macro F1-Score (0.895) as well as good robustness 
against overfitting even on the 2nd experiment without the important 
air pressure values. In this way, an effective classification of 3D printing 
condition classes could be achieved. In a first proof of concept, the re
sults of the data analyses were also compared with optical 3D scan 
component quality investigations. For this purpose, the printed FDM 
component samples were optically scanned and compared with a 
reference geometry in order to determine the dimensional deviations. 
However, the dimensional deviations for the various 3D printing con
dition classes examined in this work are usually very small and difficult 
to determine optically. The ML data analysis of the environmental 
parameter data of the FDM process has proven to be more effective, 
faster and more cost-effective in order to identify differences between 
the various 3D printing conditions. Based on all results, the modern 
XceptionTime architecture is the most effective and at the same time 
most suitable for a future real-time evaluation of FDM manufacturing 
data. It also enables an effective, inexpensive alternative to non- 
destructive quality assurance with optical 3D scans and can also 
enable process-integrated one hundred percent quality control. 

In the future, the data analyses should be extended to include addi
tional process parameters (e.g. acceleration and sound parameters) in 
order to achieve even more precise and stable analysis results. Another 
future task is to be able to perform data detection, preprocessing and 
analysis even more automatically and inline during the production 
process and to feed the results back to the production system in real 
time. A semi supervised learning approach with pretrained ML algo
rithms could be suitable for achieving automated, intelligent and self- 
optimizing quality assurance with ML. This approach could automati
cally divide new data into the trained classes and provide quality 
assurance with a continuously growing database for decision-making. 
This is of particular interest for the industrial use of ML algorithms, as 
this could implement an artificial intelligence for quality assurance of 
the printing process that does not need to be explicitly programmed or 
regularly optimized. The structure of the data preprocessing should also 
be optimized, e.g. improved data sequencing can contribute to simpli
fied analyses and better results. Additional investigations with a larger 
database can also contribute to better classification results and new 
dropout and weight regularization operations can reduce overfitting. 
The inclusion of different manufacturing data in the database is also 
important in the future. A combination of the knowledge of the 3D 
printing conditions and the actual resulting component quality could 
also be beneficial for optimizing the classification results. For this pur
pose, the training database would have to be continuously adapted after 
the printing processes. Especially when comparing the ML analyses with 
the optical 3D scans, the proof of concept presented here must addi
tionally be validated and the results evaluated in the future. For this 

purpose, for example, a freeform part can be used, other manufacturing 
parameters can be selected or a completely different additive 
manufacturing process can be utilized. 
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Y a n g et al. [ 4 ] , t h e e xi sti n g st at u s q u o of A M Q M i n p arti c ul ar s h o ul d b e 
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2 Data security risks in the digital process chain are minimized by 
enabling data immutability and protecting sensitive manufacturing 
information from manipulation.  

3 Intellectual property risks and constraints can be managed.  
4 Transparency in the AM supply chain is increased and more trusting 

relationships are created between the individual transaction 
partners. 

If these aspects are specially adapted to the QM of AM processes, 
digital, secure, unchangeable and transparent part documentation can 
be made possible, for example. Kl �ockner et al. [8] have already devel
oped the basic idea of mapping the life cycle of a printed part on a 
blockchain, including all relevant actors and work processes. In the 
concept developed for this purpose, in addition to the actors involved in 
the physical flow of parts (OEMs, material suppliers, printing and lo
gistics service providers, customers), the actors involved in the flow of 
information (external data generators, certification and regulatory au
thorities, financial service providers) are also considered in a 3D print
ing value chain. 

This work builds on the previously mentioned, so far rather theo
retical considerations about the combination of AM and blockchain 
technology for quality improvement. The main focus is on the devel
opment of a blockchain-based quality assurance concept for mapping an 
AM value chain in the form of a digital part record. Specifically, a 
concept solution consisting of a web application and a smart contract is 
being developed, which includes relevant aspects of AM QM as well as 
documentation of manufacturing and QA data of the AM printing pro
cess for subsequent machine learning (ML) analyses. A corresponding 
integration of ML analyses in real time is then analyzed within the 
concept and discussed as a necessary extension. The specific goal of this 
work lies in the elaboration of the QA concept as well as in the imple
mentation and evaluation of a corresponding prototypical solution using 
an AM example process. Furthermore, the research question was pur
sued, which advantages the prototypical solution enables compared to 
current systems and processes. Metal-based material extrusion (MEX) is 
defined in ISO/ASTM 52,900 and also known under the brand name 
Fused Deposition Modeling (FDM). MEX was chosen as an example 
process, since additional post-processing steps (e.g. debinding, sinter
ing) in this AM process result in traceable production and part docu
mentation as well as QA across various stakeholders. For this reason, the 
use of a blockchain-based QM solution seems particularly useful, espe
cially in a production network of several production companies that are 
connected via a supply chain. 

2. Related work 

Various research work on the use of blockchain in additive 
manufacturing has already been carried out and some of the first 
blockchain solutions have also been implemented. Kl �ockner et al. [8] 
conducted an investigation on the use of blockchain in AM to evaluate 
the possibilities for business model innovations. Among other things, 
they have developed and described a detailed concept of a blockchain 
platform for the AM value chain. However, this concept was not 
implemented for the application and examined for practical feasibility. 

Alkhader et al. [3] designed a blockchain-based solution for the 
traceability of additively manufactured products based on Ethereum 
smart contracts and demonstrated the implementation in a simple form. 
The solution guarantees secure and trustworthy supply chain manage
ment between the network participants involved and automated 
execution of transactions via smart contracts. Furthermore, the decen
tralized storage solution InterPlanetary File System (IPFS) is integrated 
to store and distribute design files, device data and product specifica
tions [3]. However, the solution was not tested in a specific application 
in practical use and does not have a functional interface for interaction 
between the users of the solution and the Ethereum blockchain in the 
background. The digital mapping of the value chain of a specific AM 

process to support QM was not considered in this work either. 
A 3D printing platform for spare parts management based on 

blockchain technology was developed by Zhang et al. [9]. The proto
typical system developed in the process enables the coordination of 
spare parts suppliers and the identification of their production standards 
in order to be able to quickly qualify suitable suppliers. Furthermore, 
on-chain and off-chain storage solutions have been implemented to 
ensure data sharing while respecting property rights, and a product 
traceability solution has been developed to ensure the safety and 
transparency of spare parts. However, there is no comprehensive 
documentation along the AM process and a digital QM based on the 
prototype system has also not been implemented. 

Mandolla et al. [10] have examined an additive metal manufacturing 
process of a component using the example of the aircraft industry and 
designed a digital twin for manufacturing using a blockchain solution. A 
simplified blockchain model was developed to show how a digital twin 
of the AM manufacturing chain can be technically implemented in the 
aviation industry. However, the entire blockchain concept developed in 
the work was not put into practice, only the area of part design was 
considered in more detail. 

A conceptual application of blockchain technology to manage 
product information in the AM development process was presented by 
Papakostas et al. [11]. In the concept study, a network is designed in 
which network participants interact with a blockchain agent via trans
actions. This demonstrates product lifecycle management that enables 
data exchange between network participants through a low-cost mech
anism, creates greater transparency of all transactions, enables better 
traceability of operations and greater traceability of decisions. The 
concept is evaluated based on a general AM application scenario and 
implemented in a dedicated development environment. However, the 
paper by Papakostas et al. [11] only conceptualizes the implementation 
and does not describe it in detail. In addition, the presented use case is 
not very detailed, thus, for example process-specific pre- and 
post-processing steps were not sufficiently considered. Furthermore, 
blockchain functionalities were implemented separately in the form of 
an unspecified private blockchain. 

Bonnard et al. [12] proposed and elaborated an object-oriented 
model for developing a digital AM process chain. Thereby, process pa
rameters from product development to post-processing and validation 
are recorded and modelled in an object-oriented manner. Data stored in 
this way is useful for combining application and database development 
and enables a unified data model. In addition, the abstraction, inheri
tance and encapsulation of quality-relevant process data is supported. 
However, it is not a blockchain-based solution, which means that certain 
security and trust aspects, among others, have not been considered. 

Guo et al. [13] designed a framework that includes personalized part 
production using AM techniques based on digital twins and blockchain. 
Product lifecycle information such as design, manufacturing and service 
data is stored as digital twin data in a blockchain. The blockchain then 
enables the authentic transfer of the digital twin data between customers 
and part manufacturers. However, the paper does not present an 
exemplary solution based on practical implementations, and the trace
ability and accessibility of the digital twin data between different pro
cess stakeholders remains unclear. 

Zhang et al. [14] have written a review of digital twins in AM. 
Accordingly, digital twins are very helpful to better understand, analyze 
and improve a product, service or manufacturing process. In AM, digital 
twins are used primarily to collect data for process simulation, moni
toring, and control, and to present this data in a form suitable for in
formation retrieval. This is also used in the work of Witherell [15] to 
better understand the AM process and, for example, to derive acceptance 
criteria for AM components from digital twins. For the efficient use of a 
digital twin, there is still a considerable need for research on suitable 
hardware, databases, machine learning, data analysis and the interac
tion of all components with each other [14]. In addition, the integration 
of sensors for real-time data acquisition will also be required in the 
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future [15]. In both studies, however, the focus is currently increasingly 
on quality analyses that take place within a company and are summa
rized, visualized and evaluated in a digital twin. The traceability and 
accessibility of the digital twin data or the exchange of data across 
company boundaries, for example to track supply chains, remains open. 
Here, blockchain can be a useful addition to the concept of the digital 
twin. 

Further studies specifically on QM in AM have been conducted by Yi 
et al. [16] and Schmid and Levy [17]. Both publications examine various 
aspects of QM as well as QA in additive manufacturing and also consider 
the costs incurred by these processes. General strategic approaches and 
concepts for specific AM QM are also developed. However, these also 
focus more on the AM production process within a company and address 
less the necessary exchange of QM data between different companies. 
Accordingly, the developed QM concepts are rather unsuitable for 
cross-company QM, which is, however, necessary e.g. for the tracking of 
supply chains. Here, blockchain can be a suitable solution to specifically 
enable a secure, transparent and traceable data exchange between 
different companies. 

A comprehensive review on qualification and certification for metal- 
based AM has been prepared by Chen et al. [18]. There will be a sum
mary of the current state of standardization and challenges in qualifi
cation and certification of metal AM components, as well as an outlook 
on future research topics such as establishing trust and security in AM 
using blockchain technology. 

Another review on the general use of blockchain in supply chain 
management was done by Chang et al. [19]. By analyzing various recent 
publications, product traceability was cited as the most important cri
terion for using blockchain in supply chain management. In addition, 
there is a general steadily growing interest in blockchain technology, 
especially in healthcare and government, but also specifically for supply 
chain management. In these areas, there are also strong links between 
Internet-of-Things (IoT) data and blockchain technology. According to 
Chang et al. [19], future research activities should also focus more on 
this area. 

Specific studies on the use of blockchain in supply chain manage
ment have been conducted by Gürpinar et al. [20] and Dietrich et al. 
[21]. The studies show that blockchain projects in agriculture and food 
supply chains are most commonly implemented in industry, followed by 
production, pharmaceuticals, and healthcare [20,21]. The most com
mon use cases are tracking and tracing, open information access and 
fraud prevention [20]. With regard to supply chain management, a 
trustworthy supplier relationship is an important goal here, as is order 
fulfillment that is as automated as possible and transparent customer 
service management. In this regard, a holistic architecture based on 
smart contracts could be an important milestone in making the prop
erties of blockchain technology accessible to complex production net
works and supply chains [21]. 

3. Materials and methods 

This research paper describes the design and development of a digital 
part record for mapping the value chain of a concrete AM process. This 
solution is intended to effectively support QM and QA to produce better 
AM parts. To this end, the following section first describes the metal- 
based FDM process used, defines quality-related AM processes, and de
termines the Ethereum blockchain and the necessary evaluation criteria 
for the solution. The envisaged boundary conditions, solution strategies 
and development tools are also considered in more detail. 

3.1. Metal-based fused deposition modeling process chain 

This work utilizes an FDM process that uses a metal-filled polymer 
filament in combination with special debinding and sintering steps to 
create an all-metal part. The processing of metal filaments in the FDM 
process is becoming increasingly important and enables cost-effective 

additive manufacturing of functional parts with simple desktop FDM 
printers [22 24]. 

Accordingly, for the research conducted in this paper, a Makerbot 
Method X (Makerbot Industries, Brooklyn, USA) desktop 3D printer is 
used for fabrication. The material used was Ultrafuse 316l stainless steel 
composite metal filament (BASF, Heidelberg, Germany) with a metal 
particle content of 80 wt% and a filament diameter of 1.75 mm. In 
addition, a special experimental extruder (LABS Gen2, Makerbot In
dustries) with a 0.4 mm nozzle was used for printing. 

Various AM print objects were designed using the computer aided 
design (CAD) program Autodesk Inventor Professional 2019 (Autodesk 
Inc., San Rafael, USA) and prepared for the printing process using the 
slicing software Makerbot Print version 4.10.1.2056 (Makerbot In
dustries). The manufacturing process steps for metal FDM printing are 
clearly shown below in Fig. 1. All QM-relevant data on the print jobs 
performed as part of this work are stored in detail in a public data re
pository [25]. 

The manufacturing process begins with the creation of a CAD design 
of the part to be printed. This design is then transferred in what is known 
as the Standard Tessellation Language (STL) file format to the slicing 
software, where special process-relevant settings for the printing pa
rameters, material and part positioning are made and the file is divided 
into layers. A machine-readable print file is then created and transferred 
to the 3D printer. The printer then creates the 3D part layer by layer, 
which is initially called ‘green part . When the green part is printed, the 
filament consisting of metal particles and polymer material partially 
melts, with the polymer portion serving as a binder to bring the solid 
metal particles into a defined shape. The green parts are then subjected 
to a debinding process externally at a service provider, which removes 
most of the polymer binder. The resulting parts are subsequently very 
porous and are referred to as ‘brown parts . The brown parts are then 
sintered in the final step under vacuum or hydrogen to burn out the 
remaining binder content as well as to fuse the metal particles into a 
dense form. After this step, dense metallic parts result, which can be 
subjected to a final quality control. 

3.2. AM quality-related processes 

In the context of this work, various systems and processes for 
ensuring and improving part and process quality in AM are considered. 
First, a quality management system based on DIN EN ISO 9001 is 
considered, in which requirements and measures for improving process, 
product and work quality are defined. In the following, this is under
stood to mean all quality-relevant processes before, during and after 
component production. Part of these measures recorded in the QM 
system is referred to specifically as quality assurance in the further 
course and represents a further process for quality improvement. In this 
context, QA primarily contributes to ensuring and controlling defined 
quality requirements within a single company. This mainly involves 
processes for improving part quality during the printing process, e.g. 
through innovative data and ML analyses, but also conventional statis
tical process controls or six sigma methods to ensure product or process 
quality. Furthermore, according to Chen et al. [18], the terms qualifi
cation and certification are relevant to quality. The aspects defined as 
particularly critical - design, material, printing process, post-processing 
and inspection - are recorded in great detail so that processes and parts 
can be qualified and certified if necessary. For this, cross-company QM is 
important, where quality-relevant data of the entire supply chain can be 
efficiently tracked between different companies, e.g. via an 8D report to 
ensure the product quality of a filament supplier or to accurately 
document delivery processes. However, a correspondingly necessary 
data transfer between the companies is complex. Since initially un
known companies do not trust each other without further ado, secure, 
transparent and traceable documentation of the QM data is necessary. 
Here, blockchain can deliver significant added value for both QM and 
certification processes. For QM within a single company, these 

E. Westphal et al.                                                                                                                                                                                                                               



J o ur n al of I n d ustri al I nf or m ati o n I nt e gr ati o n 3 5 ( 2 0 2 3 ) 1 0 0 5 1 7

4

r e q uir e m e nt s ar e n ot a s c o m pl e x a n d d at a tr a n sf er i s u s u all y si m pl er. F or 

t hi s r e a s o n, t h e u s e of bl o c k c h ai n- b a s e d Q M i s of li mit e d b e n e flt t h er e 

a n d i s n ot t h e m ai n f o c u s of t hi s w or k. 

I n S e cti o n 4 , a Q A c o n c e pt f or t h e m et al F D M pr o c e s s i s d e si g n e d t h at 

eff e cti v el y c o m bi n e s Q M a n d Q A a n d di git all y m a p s t h e m i nt o a n A M 

p art r e c or d. T h e n e w A M p art r e c or d i s i nt e n d e d t o f u n d a m e nt all y i n -

cr e a s e q u alit y i n A M. T h e i m pl e m e nt ati o n of c o n cr et e g o al s t o b e a c h -

i e v e d  wit h  t h e  n e w  Q A  c o n c e pt  e n a bl e s  a n  e v al u ati o n  of  t h e  q u alit y 

i m pr o v e m e nt  c o m p ar e d  t o  c o n v e nti o n al  s ol uti o n s.  T h e  g o al s  t o  b e 

a c hi e v e d  ar e  d e fl n e d  b el o w  b ot h  o n  t h e  b a si s  of  g e n er al  e v al u ati o n 

crit eri a f o u n d i n ot h er s ci e nti fi c p u bli c ati o n s [ 3 ,2 6 ] a n d o n t h e b a si s of 

s p e ci fi c all y s elf- d e fi n e d a s p e ct s: 

• Di git al i nt e g rit y: Di giti z e d d o c u m e nt ati o n a n d d e c e ntr ali z e d st or -

a g e  of  c o n v e nti o n al  q u alit y  d o c u m e nt ati o n  pr o c e s s e s  of  t h e  F D M 

pr o c e s s, s u c h a s p a p er- b a s e d pr e p ar ati o n pr ot o c ol s, m at eri al c ertif -

i c at e s, o p er at or r e c or d s, et c. a cr o s s s e v er al c o m p a ni e s.  

• C o st s: A n e c o n o mi c al alt er n ati v e t o c urr e nt s ol uti o n s.  

• Ef fi ci e n c y: C o m p a ct d o c u m e nt ati o n of l ar g e a m o u nt s of d at a, s u c h 

a s t h e m a n uf a ct uri n g d at a of a pri nt j o b, or ef fl ci e nt d o c u m e nt ati o n 

of M L- b a s e d e v al u ati o n r e s ult s of pri nti n g d at a.  

• A c c o u nt a bilit y: H oli sti c,  d et ail e d,  tr a c e a bl e  a n d  t a m p er- pr o of 

d o c u m e nt ati o n of t h e e ntir e v al u e c h ai n a n d i nf or m ati o n fi o w. 

• A v ail a bilit y: A  s ol uti o n  f or  c o n st a nt,  l o c ati o n-i n d e p e n d e nt  a v ail -

a bilit y a n d ti m el y u p d ati n g of m a n uf a ct uri n g a n d q u alit y i nf or m a -

ti o n f or all p arti e s i n v ol v e d.  

• E x p a n d a bilit y: A w a y t o si m plif y a n d s p e e d u p t h e c erti fi c ati o n of 

A M p art s. 

3. 3.  Distri b ut e d l e d g ers, bl o c k c h ai n a n d Et h er e u m 

T hi s  s e cti o n  d e fl n e s  a n d  e x pl ai n s  i m p ort a nt  t er m s  r el at e d  t o  D L T, 

bl o c k c h ai n, a n d Et h er e u m t h at c o ntri b ut e t o a b ett er u n d er st a n di n g of 

t hi s w or k. T a bl e 1 pr o vi d e s a n o v er vi e w of t h e t er m s r el e v a nt i n t hi s 

c o nt e xt. 

Di stri b ut e d l e d g er s ar e e s s e nti all y i d e nti c al c o pi e s of fil e s t h at r e c or d 

tr a n s a cti o n s,  ar e  st or e d  i n  m ulti pl e  l o c ati o n s,  a n d  ar e  v eri fi e d  b y  a 

c o n s e n s u s  al g orit h m [ 3 0 ] .  A  p o p ul ar  D L T  i s  bl o c k c h ai n,  w h er e  t h e 

di stri b ut e d l e d g er i s or g a ni z e d a s a c h ai n of i nf or m ati o n bl o c k s a n d e a c h 

bl o c k  i s  li n k e d  t o  t h e  pr e vi o u s  bl o c k  vi a  a  cr y pt o gr a p hi c  r ef er e n c e 

( h a s h). T h er e b y, e a c h h a s h i s u ni q u e a n d c a n b e c h e c k e d a ut o m ati c all y, 

w hi c h  m e a n s  t h at  all  r e c or d e d  bl o c k s  c a n  n o  l o n g er  b e  c h a n g e d  or 

m a ni p ul at e d  u n n oti c e d [ 3 3 ] .  If  t h e  c o nt e nt  of  a  bl o c k  w er e  t o  b e 

c h a n g e d, t h e h a s h w o ul d al s o c h a n g e a n d n o l o n g er m at c h t h e li n k e d 

h a s h  of  t h e  pr e vi o u s  bl o c k.  T hi s  m a k e s  it  p o s si bl e  t o  q ui c kl y  d et e ct 

m a ni p ul ati o n s a n d c h a n g e s t o t h e bl o c k c h ai n i nf or m ati o n. 

T h e  fir st  k n o w n  bl o c k c h ai n  w a s  r el e a s e d  i n  2 0 0 8  a s  t h e  Bit c oi n 

bl o c k c h ai n [ 3 1 ] .  H o w e v er,  t hi s  w or k  i s  b uilt  o n  t h e  d e c e ntr ali z e d 

Et h er e u m bl o c k c h ai n, w hi c h w a s c o n c ei v e d i n 2 0 1 4 b y B ut eri n [ 3 0 ] a n d 

W o o d [ 3 4 ] . Et h er e u m i s b a s e d o n t h e c o n c e pt of t h e Bit c oi n bl o c k c h ai n 

a n d c a n b e s e e n a s a n e xt e n si o n t h at pri m aril y e n a bl e s t h e cr e ati o n of 

di git al  c o ntr a ct s  wit h  t h e  h el p  of  cr y pt o gr a p h y  [ 3 0 ,3 5 ].  T hr o u g h 

a p pr o pri at e c o n s e n s u s- e n a bl e d a p pli c ati o n s k n o w n a s s m art c o ntr a ct s, 

c u st o m r ul e s f or o w n er s hi p, tr a n s a cti o n s, a n d st at e tr a n siti o n s c a n b e 

d e fi n e d t o tr a n sf or m t h e e ntir e tr a n s a cti o n pr o c e s s t hr o u g h a ut o m at e d 

c o ntr a ct e x e c uti o n i n a c o st- eff e cti v e, tr a n s p ar e nt, a n d s e c ur e m a n n er 

[ 3 6 ] . T h e Et h er e u m bl o c k c h ai n w a s c h o s e n f or t hi s w or k b a s e d o n t h e s e 

c h ar a ct eri sti c s,  a m o n g  ot h er s.  I n  a d diti o n,  Et h er e u m  i s  a  f ull y d e c e n -

tr ali z e d, p u bli c p er mi s si o nl e s s bl o c k c h ai n i n w hi c h a v er y l ar g e n u m b er 

of p arti ci p a nt s c a n r e a d, writ e a n d v ali d at e i nf or m ati o n [ 3 7 ] . T hi s h a s 

t h e  a d v a nt a g e  t h at  Et h er e u m- b a s e d  s ol uti o n s  c a n  b e  u s e d  b y  s m all er 

c o m p a ni e s wit h o nl y f e w p ot e nti al n et w or k p arti ci p a nt s. M or e o v er, i n 

a d diti o n t o t h e Et h er e u m m ai n n et, t h er e ar e al s o s e v er al t e st n et w or k s 

t h at  c a n  b e  u s e d  t o  e x p eri m e nt  i niti all y  a n d  si m ul at e  w ell  t h e  r e al 

d e pl o y m e nt of s ol uti o n s a n d s m art c o ntr a ct s [ 2 7 ] . H o w e v er, it s h o ul d b e 

n ot e d  t h at  tr a n s a cti o n  c o st s  ar e  i n c urr e d  w h e n  u si n g  t h e  Et h er e u m 

m ai n n et  a n d  t h e  p erf or m a n c e  of  t h e  fr a m e w or k  i s  li mit e d  b y  t h e s e 

s o m eti m e s hi g h c o st s a n d l o n g tr a n s a cti o n ti m e s d u e t o hi g h n et w or k 

l o a d [ 3 8 ] . H o w e v er, a c c or di n g t o Al m e s h al et al. [ 3 7 ] , t h e s e c o st s ar e 

n ot  criti c al  f a ct or s  f or  c o m p a ni e s,  a s  w ell  a s  f or  t hi s  w or k,  w h e n 

Fi g. 1. M et al- b a s e d F D M pr o c e s si n g st e p s.  

T a bl e 1 

Bl o c k c h ai n-r el at e d t er m s r el e v a nt t o t hi s p a p er.  

T er m E x pl a n ati o n 

Di stri b ut e d l e d g er 

t e c h n ol o g y ( D L T) 

S y st e m f or di git all y st ori n g a n d s y n c hr o ni zi n g m ulti pl e 

i d e nti c al c o pi e s of d at a i n diff er e nt l o c ati o n s. 

Bl o c k c h ai n I m pl e m e nt ati o n of a D L T i n t h e f or m of a 

cr y pt o gr a p hi c all y li n k e d c h ai n of i nf or m ati o n bl o c k s. 

H a s h Cr y pt o gr a p hi c r e pr e s e nt ati o n of d at a ori gi n all y 

i nt e n d e d t o b e st or e d o n a bl o c k c h ai n. 

Et h er e u m Bl o c k c h ai n wit h i nt e gr at e d pr o gr a m mi n g l a n g u a g e 

t h at all o w s f or s m art c o ntr a ct s a n d d e c e ntr ali z e d 

a p pli c ati o n s. 

Et h er e u m R o p st e n T e st n et  Pr o of- of- W or k b a s e d Et h er e u m Bl o c k c h ai n f or t e sti n g 

t o si m ul at e o w n a p pli c ati o n s wit h o ut u si n g r e al 

cr y pt o c urr e n c y [ 2 7 ] . 

C o n s e n s u s St at u s i n di stri b ut e d d at a pr o c e s si n g i n w hi c h all 

p arti ci p a nt s i n a n et w or k h a v e a gr e e d o n t h e s a m e d at a 

v al u e s [ 2 8 ] . 

S m art c o ntr a ct C o m p ut er pr o gr a m s t h at di git all y e x e c ut e a n d s e c ur e 

pr o c e s s e s a n d u s er i n p ut s i n a n a ut o m at e d m a n n er o v er 

c o m p ut er n et w or k s [ 2 9 ] . 

S oli dit y O bj e ct- ori e nt e d, t uri n g- c o m pl et e pr o gr a m mi n g 

l a n g u a g e f or i m pl e m e nti n g Et h er e u m s m art c o ntr a ct s. 

Cr y pt o c urr e n c y Di git al c urr e n c y b a s e d o n a di stri b ut e d l e d g er t o r e c or d 

a n d pr o v e o w n er s hi p r el ati o n s. Cr y pt o c urr e n ci e s ar e 

st or e d i n cr y pt o w all et s s u c h a s M et a m a s k. 

Et h er ( E T H) I ntri n si c c urr e n c y of t h e Et h er e u m bl o c k c h ai n, u s e d t o 

p ur c h a s e c o m p uti n g p o w er o n t h e n et w or k. 

G a s F e e t o b e p ai d f or p erf or mi n g c al c ul ati o n st e p s of a 

s m art c o ntr a ct t o a v oi d err or s a n d i n fi nit e l o o p s [ 3 0 ] . 

d A p p A d e c e ntr ali z e d a p pli c ati o n wit h c o d e a n d d at a st or e d 

o n a di stri b ut e d l e d g er. 

P e er-t o- P e er ( P 2 P) 

n et w or k 

N et w or k i n w hi c h n o d e s c a n e x c h a n g e d at a dir e ctl y 

wit h ot h er n o d e s wit h o ut h a vi n g t o i n v ol v e a t hir d 

p art y [ 3 1 ] . 

I P F S A d e c e ntr ali z e d s y st e m f or t a m p er- pr o of st ori n g a n d 

tr a n s p ar e nt a c c e s s t o l ar g e a m o u nt s of d at a s u c h a s 

fil e s, i m a g e s a n d vi d e o s. 

O n- c h ai n st or a g e St or a g e of i nf or m ati o n o n t h e bl o c k c h ai n it s elf wit h 

a c c e s si bilit y f or all n et w or k p arti ci p a nt s [ 3 2 ] . 

Off- c h ai n st or a g e St or a g e of l ar g e a m o u nt s of d at a o ut si d e of t h e 

bl o c k c h ai n wit h o ut i m m e di at e a c c e s si bilit y f or ot h er 

p arti ci p a nt s i n a bl o c k c h ai n n et w or k [ 3 2 ] .  
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c h o o si n g t h e Et h er e u m bl o c k c h ai n. 

T o  e x e c ut e a s m art c o ntr a ct, s o- c all e d ‘ g a s ’ i s c o n s u m e d, w hi c h i s 

r e q uir e d i n t h e Et h er e u m n et w or k t o e x e c ut e c o m p ut ati o n al st e p s i n t h e 

c o ntr a ct c o d e a n d t o k e e p t h e n et w or k f u n cti o n al a g ai n st pr o gr a m mi n g 

err or s a n d h a c k er att a c k s [ 3 9 ] . Et h er e u m s m art c o ntr a ct s ar e writt e n i n 

a pr o gr a m mi n g l a n g u a g e s u c h a s S oli dit y a n d c o m pil e d i nt o r e a d a bl e 

m a c hi n e  c o d e  u si n g  a  c o m pil er.  I n  t hi s  w or k,  S oli dit y  a n d  t h e  o p e n 

s o ur c e pr o gr a m R e mi x I D E v er si o n 0. 2 2. 2 (r e mi x- pr oj e ct. or g) w er e u s e d 

t o pr o gr a m t h e s m art c o ntr a ct. R e mi x i s a w e b a p pli c ati o n t h at h el p s 

writ e s m art c o ntr a ct s a n d v erif y t h eir f u n cti o n alit y. T o i nt er a ct wit h t h e 

R o p st e n Et h er e u m n et w or k vi a t h e s m art c o ntr a ct a n d t o m a n a g e t h e 

i n di vi d u al u s er a c c o u nt s, M et a m a s k v er si o n 9. 3. 0 ( C o n s e n S y s S oft w ar e 

I n c.,  N e w  Y or k  Cit y,  U S A)  i s  al s o  u s e d  i n  t hi s  w or k.  M et a m a s k  i s  a n 

o p e n- s o ur c e  cr y pt o  w all et  t h at  al s o  e n a bl e s  c o n v e ni e nt  c o n n e cti o n  of 

s m art c o ntr a ct s,  cr y pt o a c c o u nt s  a n d bl o c k c h ai n n et w or k s. M et a m a s k 

al s o pr o vi d e s u s er s wit h a s e c ur e i nt erf a c e t o p erf or m bl o c k c h ai n- b a s e d 

tr a n s a cti o n s. 

T h e b e st- k n o w n a p pli c ati o n of a bl o c k c h ai n i s c urr e ntl y di git al c ur -

r e n ci e s,  ot h er wi s e  k n o w n  a s  cr y pt o c urr e n ci e s [ 4 0 ] .  I n  a d diti o n,  t h e 

d e v el o p m e nt of d e c e ntr ali z e d a p pli c ati o n s ( d A p p s) i s gr o wi n g str o n gl y 

a s a n ot h er u s e c a s e of D L T [ 4 1 ] . d A p p s ar e s oft w ar e a p pli c ati o n s w h o s e 

d at a  a n d  pr o c e s s e s  ar e  st or e d  i n  a  bl o c k c h ai n.  D e c e ntr ali z e d  st or a g e 

s y st e m s r e pr e s e nt a n ot h er a p pli c ati o n. T h e s e ar e t h e c o u nt er p art t o a 

c e ntr ali z e d  d at a  st or a g e  s er v er  a n d  c o n si st  of  a  p e er-t o- p e er  ( P 2 P) 

n et w or k of u s er s, e a c h st ori n g o nl y a p orti o n of t h e t ot al d at a, cr e ati n g a 

r o b u st  d at a  st or a g e  a n d  s h ari n g  s y st e m  f or  l ar g er  d at a s et s [ 4 2 ] .  A n 

a p pr o pri at e d e c e ntr ali z e d, l o w- c o st off- c h ai n st or a g e s ol uti o n f or l ar g er 

d at a v ol u m e s i s, f or e x a m pl e, t h e I nt er Pl a n et ar y Fil e S y st e m [ 4 3 ] . Ot h er 

p o s si bl e u s e s of bl o c k c h ai n s ar e li st e d i n t h e w or k of N utt a h et al. [ 4 4 ] . 

T h er e,  v ari o u s t e c h n ol o gi e s ar e  e x pl ai n e d t h at c a n b e c o m bi n e d  wit h 

bl o c k c h ai n t e c h n ol o g y, s u c h a s e d g e c o m p uti n g, cl o u d m a n uf a ct uri n g 

a n d  s u p pl y  c h ai n  m a n a g e m e nt.  A c c or di n g  t o  Al m e s h al  et  al. [ 3 7 ] , 

bl o c k c h ai n will t h u s  al s o di sr u pt e ntir e i n d u stri e s s u c h a s h e alt h c ar e, 

i n s ur a n c e  a s  w ell  a s  l o gi sti c s.  E s p e ci all y  i n  l o gi sti c s  i n  s u p pl y  c h ai n 

m a n a g e m e nt, tr a c ki n g s y st e m s c a n b e d e v el o p e d i n c o m bi n ati o n wit h 

bl o c k c h ai n t e c h n ol o g y t o e n a bl e r e al-ti m e tr a c e a bilit y of pr o d u ct s a n d 

s e c ur e i nf or m ati o n st or a g e a n d di stri b uti o n, w hi c h i s alr e a d y u s e d i n t h e 

f o o d i n d u str y [ 4 5 ] a n d m e di c al t e c h n ol o g y [ 4 6 ] , f or e x a m pl e. H o w e v er, 

a c c or di n g  t o  N utt a h  et  al. [ 4 4 ] ,  i n  t er m s  of  s ol uti o n  i m pl e m e nt ati o n, 

bl o c k c h ai n t e c h n ol o g y i s still i n t h e i ntr o d u ct or y p h a s e of it s d e v el o p -

m e nt a n d i s c urr e ntl y b ei n g f u n d a m e nt all y di s c u s s e d m ai nl y i n t h e a c -

a d e mi c  lit er at ur e,  w hil e  p ur el y  bl o c k c h ai n- b a s e d  s ol uti o n s  ar e  still 

li mit e d at t h e i n d u stri al l e v el. I n st e a d, h y bri d s ol uti o n a p pr o a c h e s t h at 

c o m bi n e di stri b ut e d st or a g e s er vi c e s a n d bl o c k c h ai n- b a s e d t e c h n ol o gi e s 

ar e i n cr e a si n gl y e m er gi n g i n t h e i n d u stri al s e ct or [ 4 7 ] . 

T h e s a m e a p pr o a c h i s al s o f oll o w e d i n t hi s w or k. F or t hi s p ur p o s e, a 

c o m bi n e d a p pli c ati o n of bl o c k c h ai n, s m art c o ntr a ct a n d d e c e ntr ali z e d 

st or a g e s ol uti o n i n t h e f or m of a d A p p i s s h o w n i n Fi g. 2 . I n t h e flr st st e p, 

d at a i s tr a n sf err e d t o t h e d e c e ntr ali z e d d at a st or a g e s y st e m I P F S v er si o n 

0. 1 2. 1  ( Pr ot o c ol  L a b s,  S a n  Fr a n ci s c o,  U S)  vi a  a  w e b  i nt erf a c e  pr o -

gr a m m e d wit h t h e o p e n s o ur c e pr o gr a m mi n g l a n g u a g e P yt h o n v er si o n 

3. 7. 9  ( p yt h o n  s oft w ar e  f o u n d ati o n,  Fr e d eri c k s b ur g,  U S).  T h e  w e b 

a p pli c ati o n d at a i s e nt er e d b y u s er s vi a a fr o nt e n d i nt erf a c e a n d st or e d i n 

a c e ntr al M y S Q L d at a b a s e, w hi c h s er v e s a s a b a c k e n d s ol uti o n f or t h e 

w e b i nt erf a c e a p pli c ati o n. Fr o m t h e M y S Q L d at a b a s e, all e nt er e d d at a 

a n d i nf or m ati o n of a p art i s e x p ort e d t o g et h er vi a t h e w e b a p pli c ati o n i n 

t h e f or m of a J S O N fll e a n d st or e d t a m p er- pr o of i n a p art f ol d er i n a 

d e c e ntr ali z e d st or a g e n et w or k. Ot h er r el e v a nt d at a c a n t h e n b e st or e d 

b ot h i n t h e c e ntr al d at a b a s e a s w ell a s i n t h e d e c e ntr ali z e d st or a g e s p a c e, 

e. g. d e si g n fil e s, sli c er d at a a n d q u alit y d o c u m e nt s. B ot h t h e c e ntr ali z e d 

a n d d e c e ntr ali z e d st or a g e s ol uti o n s ar e n e c e s s ar y, o n t h e o n e h a n d t o b e 

a bl e  t o  q ui c kl y  vi e w  all  p art  d at a  wit hi n  a  c o m p a n y  vi a  t h e  c e ntr al 

M y S Q L st or a g e, a n d o n t h e ot h er h a n d t o b e a bl e t o e x c h a n g e p art d at a 

b et w e e n diff er e nt c o m p a ni e s i n t h e s u p pl y c h ai n i n a tr u st w ort h y a n d 

s e c ur e d e c e ntr ali z e d m a n n er [ 4 4 ] . I n t h e s e c o n d st e p, i nt er a cti o n s wit h a 

s m art c o ntr a ct ar e p erf or m e d b y st ori n g r ef er e n c e s t o t h e l o c ati o n of t h e 

d e c e ntr all y st or e d d at a a n d ot h er i nf or m ati o n i n t h e s m art c o ntr a ct vi a 

t h e w e b i nt erf a c e. T h e r ef er e n c e s ar e b a s e d o n t h e cr y pt o gr a p hi c h a s h of 

t h e  st or e d  c o nt e nt.  T hi s  e n s ur e s  t h at  a n y  s u b s e q u e nt  c h a n g e  t o  t h e 

st or e d c o nt e nt r e s ult s i n a n e w h a s h, m a ki n g c h a n g e s tr a n s p ar e nt a n d 

tr a n s a cti o n s m or e s e c ur e. T h e s m art c o ntr a ct i s t h e n e x e c ut e d. T h e t hir d 

st e p  i n v ol v e s  a ut o m at e d  st or a g e  of  t h e  e v e nt  a n d  tr a n s a cti o n  d at a 

( g e n er all y t h e st or a g e of t h e h a s h v al u e s) o n t h e bl o c k c h ai n, b ef or e t h e 

f o urt h  st e p  e n a bl e s  t h e  q u er y  of  t hi s  d at a  fr o m  t h e  bl o c k c h ai n  a n d 

vi s u ali z ati o n of t h e st or e d d at a vi a a w e b- b a s e d bl o c k c h ai n e x pl or er. 

4.  Q u alit y a s s u r a n c e c o n c e pt d e v el o p m e nt 

I n t h e f oll o wi n g, a bl o c k c h ai n- b a s e d Q M i n t h e f or m of a di git al A M 

p art r e c or d f or t h e m et al F D M pr o c e s s i s d e v el o p e d. F or t hi s p ur p o s e, t h e 

g e n er ali z e d  ar c hit e ct ur e  of  t h e  c o n c e pt  i s  fir st  pr e s e nt e d,  t h e  i m pl e -

m e nt ati o n  of  t h e  s ol uti o n  i n  t h e  f or m  of  a  d e m o n str ati o n  st u d y  i s 

d e s cri b e d a n d t h e v ali d ati o n i s s h o w n. 

4. 1.  G e n er ali z e d ar c hit e ct ur e f or a di git al, s e c ur e a n d tr ust w ort h y A M 

p art r e c or d 

T h e  g e n er ali z e d  ar c hit e ct ur e  pr e s e nt e d  h er e  c o n si d er s  t h e  v al u e 

c h ai n of t h e m et al- b a s e d F D M pr o c e s s i n c o m bi n ati o n wit h a d A p p b a s e d 

o n a s m art c o ntr a ct a n d bl o c k c h ai n- b a s e d a s w ell a s d e c e ntr ali z e d d at a 

pr o c e s si n g  a n d  d at a  st or a g e  s ol uti o n s.  T h e  ai m  of  t h e  ar c hit e ct ur e 

d e v el o p e d  i s  t o  di git all y  r e c or d  t h e  d at a  of  all  p h y si c al  a n d  di git al 

m a n uf a ct uri n g pr o c e s s st e p s a s p art of a c o m pr e h e n si v e Q A c o n c e pt, t o 

m a p d at a i n p ut s w e b- b a s e d i n t h e A M p art r e c or d, t o st or e t h e m s e c ur el y 

a n d  t o  m a k e  t h e  r e s ult s  tr a n s p ar e ntl y  a c c e s si bl e.  Att e nti o n  i s  al w a y s 

p ai d t o t h e i m m ut a bilit y a n d a c c o u nt a bilit y of t h e p u bli s h e d i nf or m a -

ti o n, s o t h at aft er t h e i m pl e m e nt ati o n of t hi s ar c hit e ct ur e, t h e A M v al u e 

c h ai n i s a v ail a bl e i n t h e f or m of a tr u st w ort h y, di git al p art r e c or d f or 

e a c h  m a n uf a ct ur e d  p art. Fi g.  3 pr o vi d e s  a n  o v er vi e w  of  t h e 

m a n uf a ct uri n g  pr o c e s s e s  d o c u m e nt e d  i n  t h e  Q A  c o n c e pt,  r ef err e d  t o 

b el o w a s t h e di git al A M p art r e c or d. 

T h e m a n uf a ct uri n g d o c u m e nt ati o n of t h e di git al A M p art r e c or d f or a 

m et alli c F D M p art i s c o m p o s e d of f o ur pr o c e s s e s a n d t h e a s s o ci at e d d at a 

Fi g. 2. Bl o c k c h ai n a p pli c ati o n i n t h e f or m of a d A p p.  
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entries, which are subsequently stored in the part record in the form of 
exported MySQL database entries as JSON files or documented reports, 
sensor data and CAD files: 

4.1.1. Development process 
In this process, project-related data, construction-, design- and 

slicing files are captured and stored in the central MySQL database as 
well as tamper-proof off-chain via the IPFS decentralized storage system. 
The printing material with the corresponding manufacturing process 
and e.g. the production of the printer, which are also part of the value 
chain, are not considered here to simplify the concept. The part name 
and the reference to the location of the files in the IPFS (known as a CID 
string, which is composed of the cryptographic hash of the files stored in 
the IPFS) are then stored in a smart contract and saved on-chain on the 
blockchain. In this architecture, the public Ropsten Ethereum testnet 
blockchain is specifically used. 

4.1.2. Manufacturing process 
Takes place physically after the development process, but the process 

data is stored together with the data from the development process. 
Here, relevant data on the material used, the machine, the QA of the 
manufacturing process and the post-processing are documented cen
trally in the MySQL database and decentrally off-chain in the IPFS. 
Moreover, the data for shipping to any service provider or subcontractor 
as well as the Ethereum addresses of the respective participants are 
tracked directly via a smart contract and stored as transactions on-chain 
in the Ethereum testnet. 

4.1.3. Sinter process 
In this work, sintering is carried out externally by a specialized ser

vice provider. Following the development and manufacturing docu
mentation, the debinding and sintering process data is recorded off- 
chain in the IPFS and a CID string is stored on-chain in the smart con
tract. Prior to this, the arrival and acceptance of the parts delivered to 
the sintering service provider and, following the sintering process 
documentation, the return shipment to the part manufacturer are also 

recorded via the smart contract on-chain. 

4.1.4. Control process 
After the parts have been returned by the sintering service provider, 

a final inspection is carried out by the part manufacturer. For this pur
pose, quality-relevant data is documented off-chain and the resulting 
CID string is stored on-chain for localization of the data. Shipping data, 
as well as data on the delivery of parts and the customer s acceptance or 
rejection of the entire order, are also tracked via the smart contract on- 
chain. 

According to this concept architecture, information as well as files 
related to the manufacturing process are thus continuously stored off- 
chain and at the same time references to the files, transactions, and 
parties involved are transparently documented on-chain via the Ether
eum Ropsten testnet. The data from off-chain and on-chain storage 
together then result in the AM part record. To represent such basic 
system architectures in a simplified way, the Unified Modeling Language 
(UML) is often used [48]. There, according to G �orski [48], special 
attention must be paid to the exchange of information between different 
systems, since business processes (such as supply chain processes in this 
case) often cross company boundaries and still require cooperation be
tween companies (or stakeholders). A very popular and recognized 
model for software architectures is the "4 � 1 architectural view model 
by Kruchten [49], which includes a logical, a process, a physical as well 
as a development view of the software architecture. In recent years, 
however, Internet technologies have evolved rapidly, and increasingly 
decentralized (blockchain) solutions have emerged [50]. For this reason, 
the more sophisticated "1 � 5 model of architectural views was 
designed by G �orski [48], which considers the design of an IT system 
taking into account the collaboration with distributed systems. The 
model includes six different views of the software architecture, which 
also describe the exchange of information between the individual sys
tems. Furthermore, the "1 � 5 model introduces additional UML lan
guage semantics to visualize the architecture of an IT system in terms of 
business processes [48,50]. In the following, the development view ac
cording to Kruchten [49] with certain extensions in a UML component 

Fig. 3. Manufacturing processes of a digital, secure and trustworthy AM part record with important parameters to be stored in a blockchain.  
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diagram as well as the logical view according to G �orski [48] are 
considered in more detail, in which the functions of the software system 
specified in the applications are represented and explained via a UML 
communication and sequence diagram in addition to the component 
diagram. Moreover, the consideration also takes into account new re
sults on the development of distributed information systems defined by 
Aviv et al. [51] in terms of 16 architectural properties (AP). 

The basic component architecture and process flow for implementing 
digital manufacturing documentation are shown in the UML component 
diagram in Fig. 4. The diagram shows the main components of the AM 
part record and their relationships or interfaces to each other. 

The presented architecture includes all involved stakeholders, IT 
applications and processes of the conceptualized digital AM part record 
as well as their interactions with each other. In a distributed environ
ment, a manufacturer interacts with a shipper, a sintering service pro
vider, and a customer. In this process, physically manufactured parts are 
exchanged and, in parallel, digital manufacturing documentation is 
carried out, which has two main tasks: on the one hand, the digital 
recording of quality data and documents and, on the other hand, the 
transparent, tamper-proof and traceable storage of these assets. To 
realize this, a digital part record was designed, consisting of the 
following subsystems: Web application to collect and process quality 
data, centralized MySQL database for in-house storage and provision of 
data, decentralized IPFS storage for distributed storage and publication 
of data, smart contract and Ropsten Ethereum Blockchain for automated 
distribution of data references, and a Blockchain explorer for tracking 
and visualisation of data references. The resulting system architecture 
includes some basic blockchain APs such as P2P connectivity, ledger 
infrastructure, consensus algorithm, smart contracts, and the Ethereum 
Virtual Machine as a state machine. 

When a new part is produced at the manufacturer, all quality- 
relevant data and documents are digitally recorded in parallel. The 
manufacturer logs into a web application and can enter data during 
production through the application s user interface (UI) and store it in a 
central MySQL database. Finally, via the UI and the MySQL database, 
the complete manufacturing documentation can be collected and 

exported with storage references. This export data consists of JSON, 
image and document files and is then uploaded to the IPFS decentralized 
storage system via a special IPFS client application as off-chain data. 
There, the data or the part folder with all part-specific data receives a 
unique and cryptographically secured reference in the decentralized 
network, the CID string. The manufacturer then connects to the Ropsten 
Ethereum blockchain and its crypto wallet via a browser as well as 
Metamask. The Remix IDE is then used to invoke the smart contract, 
which queries data to be stored via programmed transactions, triggers 
events, and automatically stores the data and execution logs on the 
blockchain. The data, now referred to as on-chain data, is then broad
casted across the blockchain network according to the underlying APs 
and can be read via the blockchain explorer Etherscan. The Etherscan 
website can also be accessed via a browser. With a verified and pub
lished smart contract on Etherscan, all transactions as well as the on- 
chain data are then readable. The CIDs stored as on-chain data can ul
timately also be used to retrieve the off-chain data stored in the IPFS. To 
better illustrate the communication between and the flow within the 
described system components of the AM part record architecture, a UML 
communication diagram is given in Fig. 5. 

4.2. Demonstration study of the proposed digital AM part record 
architecture 

This section describes how the previously designed AM part record is 
implemented in the form of a demonstration study. Fig. 6 illustrates the 
interaction of the individual participants in the production process 
within the smart contract in great detail in a UML sequence diagram. 
The smart contract process can be roughly divided into seven phases: 

4.2.1. Manufacturing sequence 
The manufacturing sequence includes both the development and the 

manufacturing process, since in this concept both processes are carried 
out by the manufacturer. However, the QM documentation with the AM 
part record only starts after the part production with the common 
storage of all relevant quality data in the IPFS. The IPFS CID, which is the 

Fig. 4. UML component diagram for the proposed blockchain-based digital AM part record.  
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hashed reference to the quality data, is then stored on the blockchain 
along with other development and manufacturing information about the 
smart contract. Finally, a request to ship the parts to the sintering service 
provider is stored via the smart contract. 

4.2.2. Shipment to sinterer sequence 
The submitted shipping request is accepted by a shipping service 

provider. The shipper then takes over the parts and transports them to 
the sintering service provider. Once the shipment has been handed over, 
the shipper stores corresponding information in the smart contract. After 
receiving the parts, the sintering service provider also stores the infor
mation about the receipt of the shipment in the smart contract. 

4.2.3. Sintering sequence 
After debinding and sintering of the parts, the sinterer stores all 

quality-relevant data (e.g. date, sintering parameters, quality reports) 
back in the IPFS. For this purpose, the folder already created by the 
manufacturer is reused in IPFS. The reference of the folder is trans
parently accessible to the sintering service provider. If data in the IPFS is 
changed, the CID also changes. Accordingly, an updated CID of the 
originally created folder is documented by the sinterer in the smart 
contract. This allowed change of the CID can be transparently tracked 
via the Etherscan history. Furthermore, the sinterer also stores a new 
request to send the parts back to the manufacturer. 

4.2.4. Shipment back to manufacturer sequence 
The shipping request is in turn accepted and executed by the shipper. 

After the shipment is handed over to the manufacturer, the shipper again 
stores information in the smart contract, and the same applies to the 
receipt of the shipment from the manufacturer. 

4.2.5. Quality control sequence 
The manufacturer then performs a final quality control and checks all 

quality documents. A quality report is then created and saved in the IPFS 
folder that has already been created. The CID, which is updated again, is 
stored via the smart contract and a delivery request for the parts to the 
customer is stored. 

4.2.6. Delivery to customer sequence 
The delivery order is accepted by the shipper, the parts are taken 

over and delivered. The delivery is documented in the smart contract. 
The customer also documents the receipt of the order via the smart 
contract. 

4.2.7. Customer decision sequence 
The customer checks the parts as well as the quality documentation 

of the AM part record and decides on their acceptance or rejection. 
Access to the information and data of the AM part record takes place via 
Etherscan and can in principle already be tracked from part production 
onwards, provided that the customer is notified of the address of the 
smart contract at an early stage. 

Finally, this process ensures that all transactions are stored and can 
be viewed and verified by all parties involved. This ultimately leads to 
better quality and more confidence in the parts, as well as the supply 

Fig. 5. UML communication diagram for the digital AM part record components.  
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chain and the supply chain participants. The smart contract is necessary 
to define clear actions and events to be fulfilled without discussions and 
room for interpretation. It reacts flexibly and immediately to inputs, 
without manual intervention, and thus enables an automated execution 
process, e.g. for the acquisition of data inputs, their storage in the 
network and their distribution to all participants. This avoids discon
nected data silos and the parties involved still retain their data sover
eignty due to access rights programmed in the smart contract. This 
reduces the coordination effort and saves a lot of time. The smart con
tract is also necessary to determine who can read what information 
under what conditions after decentralized storage on the blockchain. 

4.3. Testing and validation of the implemented AM part record 

To evaluate the functionalities of the developed QA system, real 
manufacturing processes are run through in the demonstration study 
and the data and transactions are recorded via the AM part record. All 
developed applications and processes (web application, decentralized 
storage, smart contract, data access via Etherscan) were tested and 
validated in the process. The parties involved in the production sce
narios and their Ethereum addresses as well as the address of the smart 
contract are listed in Table 2. The most important tests are explained 
below. 

More detailed documentation of the AM part record as well as the 
developed program codes, the additively manufactured parts and the 
performed functional tests are provided in a public data repository [25]. 

First, the part manufacturer logs into the developed web application 
and creates a part record for a new part (see Fig. 7). All relevant quality 
information is stored digitally. In addition, quality documents are 
created during production and the corresponding file and document 
names are inserted into the web application as a reference. Finally, a 
summary of all information is extracted via the web application in the 
form of a JSON file. All documents and descriptions relevant to this sub- 
process are available in detail and digitally in the public repository. 

All created documents as well as the JSON file with the collected 
information about the part production are then uploaded to a part folder 
in the decentralized storage system IPFS (see Fig. 8). Each part folder is 
linked to its own CID string, which is used to access the folder in the IPFS 
and to access the data stored off-chain. 

Subsequently, CID and further manufacturing information are stored 
on-chain via the Remix IDE and the developed smart contract. For this 
purpose, the different accounts of the process participants are simulated 
via Metamask. Each participant account is created in Metamask and the 
respective generated Ropsten Ethereum address is written to the smart 
contract. Using the order creation function programmed with Solidity, 
the part name, CID, and participant accounts are stored via the smart 
contract on-chain in the Ropsten Ethereum blockchain. Fig. 9 shows an 
example of the successful execution of the ‘createOrder function and the 
creation and storage of the transaction on the blockchain. 

The ‘createOrder function is executed by the manufacturer who 
creates a new part record with the input of the partID and the IPFS_CID 
in the smart contract. The transaction takes place from the Ethereum 
address of the manufacturer to the address of the smart contract. In 
addition, the logs show that an event was successfully executed (green 
icon in the upper left corner of Fig. 9) and the job creation as well as 
indexing of a new part was completed. According to the sequence 

diagram presented earlier, all other functions of the smart contract can 
also be successfully invoked, the required information inserted, and the 
data stored on the blockchain. 

In parallel to the production documentation, the data stored on- 
chain can be continuously viewed via the blockchain explorer Ropsten 
Etherscan. To access the documentation, the first step is to paste the 
address of the smart contract into the blockchain explorer. After the 
smart contract is invoked, the program code must be verified and pub
lished in Etherscan, whereupon a data query to the corresponding 
indexed parts is possible and the associated information stored on-chain 
can be read (Fig. 10). 

4.4. Testing the download functionality of the decentrally stored quality 
files 

After the on-chain data has been read out via Etherscan using the 
smart contract, the part quality data can be retrieved online via a 
browser using the CIDs. Table 3 below lists the CIDs that lead to three 
part records with their corresponding documentation files. 

To access the contents of the IPFS, the following web address must be 
entered in the address bar of the browser: https://ipfs.io/ipfs/CID. 

The part record with all the folders and files it contains is then visible 
via the browser (see Fig. 11). The files in the folders can be downloaded 
individually with a right mouse click and "Save link as " and saved 
locally (see Fig. 12). Entire folders are currently not downloadable at 
once. 

5. Discussion and evaluation of the implemented AM part record 

The following section examines whether the objectives listed in 
Section 3.2 (digital integrity, costs, efficiency, accountability, avail
ability, expandability) can be achieved with the new QA concept or 
whether they have already been achieved with the prototype imple
mentation of the AM part record. Furthermore, any particular disad
vantages or aspects that require special attention during implementation 
are also discussed. 

5.1. Digital integrity 

One goal of the proposed blockchain-based QA architecture is to 
digitally track and document all transactions and conventional quality 
documentation processes of the FDM process. The traceability of the 
value chain as well as the ownership of the produced parts during 
manufacturing is also striven for. This is ensured by the AM blockchain 
solution, as all events and protocols are stored immutably on-chain on 
the blockchain or traceably and tamper-proof off-chain in the IPFS. 
Thus, every transaction and documentation within the FDM value chain 
is digitally traceable and can also be traced. Moreover, the proposed AM 
blockchain architecture, with its applications, processes, and partici
pants, in principle forms a decentralized distributed system that offers 
several key advantages over the current mostly centralized solutions for 
digital data transfer between companies. While centralized QM data 
belongs only to the party that also operates the central storage, the data 
of a decentralized distributed system belongs to the respective origina
tors of the data. They can always access their data and manage the au
thorizations for access and use of the data themselves. Using the AM 
Blockchain, each participant can make its QM data accessible to the 
other parties via IPFS, smart contract and Etherscan in a tamper-proof, 
transparent as well as traceable manner, which ultimately increases 
trust among each other. QM data is also stored more securely in prin
ciple in the decentralized distributed system than in centralized systems. 
A central server can fail or be attacked, resulting in downtime or data 
loss. The data distributed in a decentralized manner via IPFS and 
Ethereum is stored in multiple locations as a copy and is also efficiently 
protected against manipulation via the blockchain network by special 
consensus mechanisms. If a network participant fails, the data in the 

Table 2 
Ropsten Ethereum addresses of the participants of the AM part record.  

Paricipant Ropsten ethereum address 

AMChain smart contract 0x34A253F8E74460F264A902E305990Df65FA6C5Ce 
Manufacturer 0xebdc7eAdBCc95aa5911A571cC589B0A42119D5dD 
Shipper 0xA4084Fc2FeCBC4E20BaA2b5FA9Af3f5C72906536 
Sinterer 0xadbe1C35f796C709A800DeF7A2e08ec34A2C139E 
Customer 0x5c6743508a15829E7bcb0484AFEfB07f88BA6Ce5  
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n et w or k i s still a v ail a bl e a n d p o s si bl e d at a m a ni p ul ati o n b y a n et w or k 

p arti ci p a nt i s al s o q ui c kl y d et e ct e d a n d i s ol at e d b y ot h er p arti ci p a nt s. 

It  s h o ul d  b e  m e nti o n e d  t h at  t h e  t e c h n ol o gi c al  i m pl e m e nt ati o n  i s, 

h o w e v er,  i niti all y  d e m a n di n g  a n d  r e q uir e s  g o o d  i m pl e m e nt ati o n  i n 

or d er  t o  r u n  ef fl ci e ntl y  di git all y.  T h e  d e v el o p e d  s ol uti o n  d e p e n d s  t o 

s o m e  e xt e nt  o n  a  c o n s ci e nti o u s  a n d  c orr e ct  e x e c uti o n.  O nl y  w h e n 

q u alit y i s pr o p erl y d o c u m e nt e d p h y si c all y c a n it al s o b e pr o p erl y m a p -

p e d di git all y. I n a d diti o n, t h e st or a g e of i n c orr e ct i nf or m ati o n o n t h e 

bl o c k c h ai n  c a n n ot  b e  a ut o m ati c all y  pr e v e nt e d,  s o  t h at  err or s  c a n  b e 

d o c u m e nt e d i m m ut a bl y [ 5 2 ] . 

5. 2.  C ost a n al ysis 

A n ot h er  g o al  of  t h e  A M  bl o c k c h ai n  ar c hit e ct ur e  i s  t o  e n a bl e  a n 

e c o n o mi c al  alt er n ati v e  t o  c urr e ntl y  u s e d  s ol uti o n s  a n d  pr o c e s s e s.  F or 

t hi s  p ur p o s e, a  c o st a n al y si s  of  t h e  s m art c o ntr a ct  c o d e  a n d  t h e  i n di -

vi d u al f u n cti o n c all s i s flr st p erf or m e d. E v er y cr e ati o n of a s m art c o n -

tr a ct,  e v er y  e x e c uti o n  of  a  tr a n s a cti o n,  a n d  e v er y  d at a  st or a g e  i n 

Et h er e u m i n c ur s a c o st [ 5 3 ] . 

T a bl e 4 s h o w s t h e tr a n s a cti o n c o st s of t h e i n di vi d u al f u n cti o n s of t h e 

d e v el o p e d s m art c o ntr a ct i n t h e c o nt e xt of t h e d e m o n str ati o n st u d y i n 

E T H o n t h e R o p st e n t e st n et a s w ell a s t h e p ot e nti al c o st s c o n v ert e d i nt o a 

fi at  c urr e n c y  ( € ).  A  g a s  pri c e  b et w e e n  2. 5  a n d  2. 9  G W EI  ( b a s e d  o n 

Et h er s c a n)  r e s ult e d  a n d  t h e  c o n v er si o n  r at e  fr o m  E T H  t o € a s  of 

0 6. 0 5. 2 0 2 2 ( G o o gl e fi n a n c e) w a s u s e d. T h e g a s pri c e i s v er y v ol atil e a n d 

c a n m or e t h a n d o u bl e wit hi n a v er y s h ort p eri o d of ti m e, w hi c h i n t ur n 

h a s a str o n g i m p a ct o n t h e c o st of di git al d o c u m e nt ati o n. T h er ef or e, t h e 

c o st a n al y si s p erf or m e d i s o nl y a s n a p s h ot. 

T h e f u n cti o n t o cr e at e t h e c o ntr a ct o n t h e bl o c k c h ai n h a s t h e hi g h e st 

c o st, w hi c h c a n b e j u sti fi e d wit h t h e st a n d ar d cr e ati o n c o st s i n Et h er e u m 

[ 3 4 ] .  All  ot h er  f u n cti o n s  c a u s e  si g ni fi c a ntl y  l o w er  c o st s,  si n c e  o nl y 

e v e nt s ar e tr a n s mitt e d or o nl y a f e w b yt e s of m e m or y ar e r e q uir e d. T h e 

c o m pl et e  q u alit y  d o c u m e nt ati o n  of  a n  F D M- pri nt e d  m et al  p art  at  a n 

e xt er n al si nt eri n g s er vi c e pr o vi d er vi a t h e A M p art r e c or d a c c or di n gl y 

c o st s a p pr o xi m at el y € 1 7. 6 6, d e p e n di n g o n t h e c urr e nt E T H pri c e. T h e s e 

c o st s w o ul d b e a d diti o n al f or e a c h c o m p o n e nt a s p art of t h e Q A pr o c e s s 

( e a c h  p art y  i n v ol v e d  b e ar s  a  c ert ai n  s h ar e  of  t h e  c o st s).  F or  s m all er, 

l o w- c o st  p art s,  t hi s  a m o u nt  i s  v er y  hi g h  i n  a d diti o n  t o  t h e  n or m al 

m a n uf a ct uri n g  c o st s,  b ut  f or  m or e  e x p e n si v e  p art s  wit h  hi g h er  u nit 

c o st s, it i s n ot a s si g ni fl c a nt. 

I n  a d diti o n  t o  t h e  fi n a n ci al  a s p e ct,  h o w e v er,  ot h er  t o pi c s  s u c h  a s 

pr o c e s s-r el at e d s a vi n g s p ot e nti al m u st al s o b e i n cl u d e d i n a pr o fit a bilit y 

a n al y si s. H er e, t h e A M p art r e c or d c a n pr o vi d e m or e tr u st b et w e e n t h e 

i n di vi d u al p arti e s, pri m aril y d u e t o a ut o m ati o n, tr a n s p ar e n c y, s e c urit y 

a n d tr a c e a bilit y, a n d t h u s, f or e x a m pl e, r e d u c e t h e n e e d f or c o or di n ati o n 

a n d di s c u s si o n, a v oi d mi s c o m m u ni c ati o n a n d u n d e sir a bl e d e v el o p m e nt s 

at a n e arl y st a g e, a n d r e a ct q ui c kl y t o c h a n gi n g b o u n d ar y c o n diti o n s. 

T h e  r e s ulti n g  c o st  s a vi n g s  m u st  b e  s et  a g ai n st  t h e  a d diti o n al 

Fi g. 7. U s er i nt erf a c e of t h e d e v el o p e d w e b a p pli c ati o n f or cr e ati n g n e w p art r e c or d s.  

Fi g. 8. I P F S u s er i nt erf a c e f or d e c e ntr ali z e d st or a g e of all m a n uf a ct uri n g d at a i n p art-r el at e d f ol d er s.  
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d o c u m e nt ati o n c o st s, a n d it m u st b e d et er mi n e d i n a d v a n c e f or e a c h p art 

a s  t o  w h et h er  c orr e s p o n di n gl y  el a b or at e  di git al  d o c u m e nt ati o n  i s 

n e c e s s ar y. I n g e n er al, it c a n t h u s b e st at e d t h at t h e Q A c o n c e pt d e v el -

o p e d  i s  f u n d a m e nt all y  e c o n o mi c al  ( wit h  a  r el ati v el y  l o w  g a s  pri c e  of 

a b o ut 2. 5 G W EI) a n d, wit h i n cr e a si n g p art r e q uir e m e nt s a n d c o st s, i s 

al s o b e c o mi n g i n cr e a si n gl y e c o n o mi c al d e s pit e t h e r e s ulti n g tr a n s a cti o n 

c o st s.  T hi s  o nl y  a p pli e s  t o  t h e  R o p st e n  t e st n et  st u di e d  i n  t hi s  w or k; 

si g ni fl c a ntl y hi g h er a n d r e al c o st s w o ul d c urr e ntl y o c c ur o n t h e Et h er -

e u m M ai n n et ( R o p st e n E T H h a s n o r e al m o n et ar y v al u e, it e xi st s o nl y f or 

t e sti n g p ur p o s e s) [ 3 8 ] . Hi g h er utili z ati o n of t h e R o p st e n t e st n et w or k 

a n d diff er e nt d a y s of t h e w e e k a n d ti m e s of d a y c a n al s o l e a d t o si g nif -

i c a ntl y hi g h er c o st s. H o w e v er, t h e u s e of t h e Et h er e u m M ai n n et i s n ot 

e v e n  n e c e s s ar y  f or  t h e  c urr e nt  s ol uti o n,  a s  n o  dir e ct  p a y m e nt  tr a n s -

a cti o n s ( wit h r e al m o n e y) ar e pr o c e s s e d b et w e e n t h e p arti e s i n v ol v e d. 

S h o ul d t hi s f u n cti o n alit y b e i m pl e m e nt e d i n t h e f ut ur e, t h e u s e of a m or e 

e c o n o mi c al a n d f a st er s ol uti o n li k e H y p erl e d g er [ 5 4 ] or a n Et h er e u m 

si d e c h ai n s u c h a s P ol y g o n ( M A TI C) [ 5 5 ] w o ul d b e r e c o m m e n d e d. 

5. 3. Ef fl ci e n c y 

T h e c o m p a ct a n d ef fi ci e nt d o c u m e nt ati o n of m a n uf a ct uri n g d at a i s 

al s o b ei n g i n v e sti g at e d a s p art of t h e Q A c o n c e pt. Fir st of all, it s h o ul d b e 

n ot e d t h at t h e a c c u m ul ati n g pr o d u cti o n d at a, c o n si sti n g of s e n s or v al u e s 

f or pr o c e s s p ar a m et er s a n d i m a g e s of t h e pri nt r e s ult, c a n b e e xt e n si v e 

( s e v er al gi g a b yt e s) a n d t h u s o n- c h ai n st or a g e o n t h e bl o c k c h ai n i s n ot 

s uit a bl e or n ot p o s si bl e, si n c e o n t h e o n e h a n d t h er e ar e f u n d a m e nt al 

st or a g e li mit s a n d o n t h e ot h er h a n d t h e st or a g e c o st s ar e v er y hi g h [ 3 4 , 

3 8 ,5 6 ]. F or t hi s r e a s o n, t h e st or a g e of l ar g e a m o u nt s of d at a off- c h ai n i n 

t h e I P F S w a s c o n si d er e d. T hi s pr o c e d ur e i s p o s si bl e i n pri n ci pl e, b ut it i s 

n ot  v er y  ef fi ci e nt,  si n c e  s u c h  l ar g e  a m o u nt s  of  d at a  ar e  fr e q u e ntl y 

tr a n s mitt e d a n d st or e d s e v er al ti m e s i n a d e c e ntr ali z e d m a n n er. U n d er 

t h e A M bl o c k c h ai n ar c hit e ct ur e d e v el o p e d, t h e F D M m a n uf a ct uri n g d at a 

w a s i n st e a d st or e d o nl y l o c all y o n a c e ntr al s er v er a n d t h e l o c ati o n w a s 

n ot e d i n t h e p art r e c or d. 

A  m or e  ef fi ci e nt  s ol uti o n,  b ut  n ot  y et  i m pl e m e nt e d  i n  t h e  c urr e nt 

c o n c e pt, i s t h e i nt elli g e nt e v al u ati o n of m a n uf a ct uri n g d at a u si n g M L 

al g orit h m s.  I n  pr e vi o u s  p u bli c ati o n s,  c orr e s p o n di n g  s ol uti o n s  h a v e 

alr e a d y b e e n d e m o n str at e d i n pri n ci pl e f or i m a g e [ 5 7 – 5 9 ] a n d s e n s or 

d at a a n al y s e s [ 6 0 – 6 2 ] . A d a pti n g t h e al g orit h m s d e v el o p e d t h er e, a s w ell 

a s  b uil di n g  a  d e di c at e d  m et al  F D M  d at a b a s e,  c a n  e n a bl e  i nt elli g e nt 

e v al u ati o n of l ar g e a m o u nt s of d at a a n d e xtr a ct a n o v er all p art q u alit y 

r e s ult, w hi c h i s t h e n st or e d o n- or off- c h ai n. T hi s eli mi n at e s t h e n e e d f or 

d e c e ntr ali z e d  st or a g e  of  l ar g e  a m o u nt s  of  m a n uf a ct uri n g  d at a,  w hi c h 

w o ul d gr e atl y i m pr o v e t h e ef fi ci e n c y of t h e A M p art r e c or d. I n a d diti o n, 

p o w erf ul AI al g orit h m s c a n al s o e n a bl e a ut o m at e d r e al-ti m e a n al y si s of 

A M  pr o c e s s  d at a  s o  t h at,  f or  e x a m pl e,  q u alit y  d ef e ct s  a n d  pr o c e s s  ir -

r e g ul ariti e s  c a n  b e  q ui c kl y  i d e nti fl e d  a n d  i m m e di at el y  c orr e ct e d.  T o 

e n a bl e t hi s s e c ur el y a n d ef fi ci e ntl y, d at a s et s a n d d at a a n al yti c s will al s o 

b e c o n si d er e d i n t h e A M Bl o c k c h ai n c o n c e pt i n t h e f ut ur e. F or e x a m pl e, 

o n e c o ul d u s e s p e ci al, tr u st e d s e n s or s t h at ar e c o n st a ntl y c o n n e ct e d t o 

t h e I nt er n et a n d t h u s str e a m s e n s or d at a t o a cl o u d- b a s e d d at a b a s e i n 

n e ar r e al ti m e. I n t h e cl o u d, t h e d at a c a n t h e n b e dir e ctl y a n al y z e d b y 

a ut o m at e d a n al y si s s cri pt s a n d pr e-tr ai n e d AI al g orit h m s, a n d t h e r e s ult s 

vi s u ali z e d li v e. T h e e x c e e di n g of t hr e s h ol d v al u e s or t h e f ail ur e of s e n s or 

si g n al s  c a n  t h e n  al s o  b e  st or e d  dir e ctl y  a n d  tr a n s p ar e ntl y  vi a  al ar m 

m e s s a g e s o n t h e bl o c k c h ai n. H o w e v er, t h e l ar g e d at a s et s a n d a n al y si s 

r e s ult s r e m ai n st or e d l o c all y i n t h e cl o u d i n pri n ci pl e, b ut c a n al s o b e 

st or e d d e c e ntr all y i n t h e I P F S d e p e n di n g o n t h e s e c urit y st a n d ar d. O nl y 

t h e r ef er e n c e t o t h e st or a g e l o c ati o n i s st or e d o n t h e bl o c k c h ai n. I n t hi s 

w a y, f ut ur e pr o d u cti o n d at a c a n b e r e c or d e d, e v al u at e d a n d di s pl a y e d 

i m m e di at el y,  a n d  at  t h e  s a m e  ti m e  d o c u m e nt e d  s e c ur el y  a n d  tr a n s-

p ar e ntl y. N e v ert h el e s s, r e al-ti m e e v al u ati o n of m a n uf a ct uri n g d at a a n d 

d e c e ntr ali z e d st or a g e of l ar g e v ol u m e s of s e n s or d at a ar e c urr e ntl y still a 

li mit ati o n [ 6 3 ] . T hi s i s al s o n ot i m pl e m e nt e d i n t h e c urr e nt Q A c o n c e pt, 

b ut  t h e  g e n er ali z e d  ar c hit e ct ur e  of  t h e  A M  p art  r e c or d  c a n  still  b e 

e xt e n d e d i n t hi s r e s p e ct. 

5. 4.  A c c o u nt a bilit y 

B y e x e c uti n g a f u n cti o n i n t h e s m art c o ntr a ct, t h e Et h er e u m a d dr e s s 

of t h e e x e c ut or i s al w a y s st or e d s e c ur el y o n t h e bl o c k c h ai n. T h u s, t h e 

f u n cti o n c all er c a n b e tr a c e d at a n y ti m e a n d i s a c c o u nt a bl e f or hi s a c-

ti o n s [ 6 4 ] . F or e x a m pl e, i n t h e F D M m et al v al u e c h ai n, t h e m a n uf a ct ur er 

i s a c c o u nt a bl e f or e a c h p art h e pr o d u c e s or d o c u m e nt ati o n h e cr e at e s, 

a n d t h e s hi p p er i s a c c o u nt a bl e f or e a c h d eli v er y o p er ati o n h e p erf or m s. 

I n t h e e n d, all p arti e s i n v ol v e d i n t h e p art r e c or d h a v e a d et ail e d di git al 

d o c u m e nt ati o n  a v ail a bl e,  w hi c h  c a n  b e  u s e d  t o  q ui c kl y  i d e ntif y 

a c c o u nt a bilit y o bli g ati o n s i n t h e e v e nt of a n y irr e g ul ariti e s. 

Fi g. 9. L o g d et ail s of t h e s u c c e s sf ul e x e c uti o n of “ cr e at e Or d er ” s m art c o ntr a ct f u n cti o n.  
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H o w e v er, si n c e t h e d e v el o p e d A M bl o c k c h ai n ar c hit e ct ur e w or k e d 

wit h  t h e  p u bli cl y  a v ail a bl e  R o p st e n  Et h er e u m  bl o c k c h ai n,  t h er e  ar e 

pri v a c y,  c o n fl d e nti alit y  a n d tr a d e  s e cr et s i s s u e s t o  c o n si d er h er e. T h e 

i nf or m ati o n  st or e d o n- c h ai n i s  cr y pt o gr a p hi c all y s e c ur e d i n pri n ci pl e, 

b ut i n t h e c urr e nt c o n c e pt it c a n b e r e a d o ut i n d e cr y pt e d f or m vi a a 

v eri fl e d  a n d  p u bli s h e d  s m art  c o ntr a ct  c o d e  u si n g  a  s p e ci all y  pr o -

gr a m m e d f u n cti o n. F or t hi s r e a s o n, t h e d e v el o p m e nt of a s ol uti o n b a s e d 

o n  a  pri v at e  bl o c k c h ai n  s u c h  a s  H y p erl e d g er [ 5 4 ] or  t h e  u s e  of  a 

tr a n s p ar e nt  z er o- k n o wl e d g e  pr o of  s y st e m  li k e  Z K- S T A R K [ 6 5 ] c o ul d 

c o ntri b ut e t o  gr e at er a d o pti o n a n d  e v e n b ett er  d at a pr ot e cti o n i n t h e 

f ut ur e. 

5. 5.  A v ail a bilit y 

A bl o c k c h ai n st or e s all i nf or m ati o n d e c e ntr all y o n t h e p arti ci p ati n g 

n et w or k n o d e s. T hi s m e a n s t h at all i nf or m ati o n i s still a c c e s si bl e t o all 

p arti ci p a nt s e v e n if a n o d e f ail s. Vi a t h e bl o c k c h ai n e x pl or er Et h er s c a n, 

c urr e nt d at a c a n b e a c c e s s e d p u bli cl y at a n y ti m e a n d fr o m a n y l o c ati o n 

wit h a n e xi sti n g i nt er n et c o n n e cti o n. R a pi d u p d ati n g of t h e i nf or m ati o n 

d e p e n d s  o n  t h e  e x e c uti o n  of  t h e  f u n cti o n s  i n  t h e  s m art  c o ntr a ct.  I n 

pri n ci pl e, t h e di git al d o c u m e nt ati o n c a n al s o b e e x e c ut e d i m m e di at el y 

aft er e x e c uti o n of t h e p h y si c al pr o c e s s a n d, m or e o v er, t h e e x e c uti o n c a n 

b e  vi e w e d  wit hi n  a  f e w  s e c o n d s  vi a  Et h er s c a n.  T hi s  i s  m u c h  m or e 

eff e cti v e t h a n c o n v e nti o n al pr o c e d ur e s, w h er e a gr e e m e nt s fir st h a v e t o 

T a bl e 3 

Vi a R o p st e n Et h er e u m a n d I P F S p u bli s h e d A M p art r e c or d s a n d a s s o ci at e d CI D s.  

P art r e c or d CI D 

I D 1_ L F M– 0 1 2 2 – 1 0 0 – 0 0 1 Q m d F z U D m R s M N M R Zj A mr D W X cti S Hri C b Y A a p N 9 g U 4 1 h hr ot 

I D 2_ L F M– 0 1 2 2 – 2 0 0 – 0 5 6 Q m Y y Xf 1 W J b U Z dt N c g u P V Q D B L k U 8 Z c Y b H u d 7i p U a k p H N 8 L Z 

I D 3_ L F M– 0 1 2 2 – 2 0 0 – 1 6 6 Q m c w w w K C P 7 V a c wj e R c q 7 1 G d Ni y z N c o N 5 b G 5 Z a Mr F 1 C o J M 2  

Fi g. 1 1. R et ri e v al of t h e d at a st or e d d e c e ntr all y i n t h e I P F S vi a a w e b br o w s er.  

Fi g. 1 2. R etri e v al a n d l o c al st or a g e of i n di vi d u al fil e s vi a t h e w e b br o w s er.  
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be made, data exchanged, partners informed and, if necessary, autho
rized to inspect the data. 

It should be noted, however, that the network is not managed 
independently and that technology and program code can change at any 
time (e.g. through updates), so that accessibility is no longer given for 
solutions that have already been implemented. 

5.6. Expandability 

The QA concept presented currently only covers special documen
tation and storage processes. The concept is also suitable for certain 
extensions to implement further features to support quality processes or 
to enable procedures based on them. Regulatory stakeholders (author
ities) or certification bodies, for example, can also be integrated into the 
QA concept and can also be given access to the part record. In this way, 
these stakeholders also gain transparent, traceable and secure access to 
manufacturing and quality information, on the basis of which part cer
tificates and process qualifications can subsequently be issued more 
quickly and easily. 

However, for this to happen, the AM Blockchain architecture must 
find sufficient acceptance in the AM industry and, if possible, be able to 
map all AM processes in a suitable manner. Furthermore, the legal basis 
for data protection must be clarified and solutions or regulations for the 
lack of control over the blockchain network used must be developed. 

5.6.1. Expandability to other AM process flows 
In this work, only 1 AM process with a specific process flow was 

considered. However, it is relatively easy to adapt the concept and 
programming to changing process flows. For example, a process without 
an external sintering service provider or the processing of other mate
rials with different pre- and postprocessing steps can also be mapped. 

5.6.2. Expandability to other AM process chains 
Furthermore, the AM part record in the presented form is in principle 

also suitable for other AM processes with differently complex process 
chains. For example, to map a powder bed fusion-based AM process, the 
basic architecture of the AM part record can be retained, only additional 
parameters would need to be stored in the web application and adjust
ments made to the smart contract. 

5.7. General impact of the AM part record solution on stakeholders 

The use of the digital AM part record has different effects on the 
individual participants. From service provider to end customer, a 

complex QM is created across the entire value chain of an AM part and 
beyond company boundaries, to which everyone involved has access or 
the opportunity to participate in a targeted manner.  

� Manufacturer: Manufacturers can map each product digitally and 
document it decentrally. All QM documents are transparently 
accessible to business partners at all times and stored in a virtually 
tamper-proof manner. In particular, this will simplify communica
tion, avoid legal disputes, and enable the traceability of quality ex
penditures. However, this results in additional effort and costs for the 
documentation as well as for the implementation of the solution, 
which is still technically quite demanding. There are currently no 
regulatory requirements for such additional effort.  

� Shipper: The shipper can provide traceable and tamper-proof digital 
documentation of its activities. The data is stored decentrally, mak
ing it virtually impossible to change the information at a later date. 
In addition, the qualitative condition of the goods before and after 
delivery is precisely documented, which leads to greater trust be
tween the parties involved. The actual shipping process flows can be 
adopted for the most part, only an additional financial outlay has to 
be considered. Especially for delivery service providers, the pre
sented solution can therefore offer improved and easy-to-integrate 
documentation processes. 

� Sinterer: For the sintering service provider, the situation is compa
rable to that of the manufacturer. The sinterer can document his 
services digitally and thus reliably show what was done when and 
how. In addition, the transparent flow of information provides him 
with precise data about the processing status of the parts. This allows 
him to clock in and prepare his process steps at an early stage. 
Overall, this also results in increased effort for the sintering service 
provider in terms of documentation, correct implementation of the 
part record solution and additional documentation costs.  

� Customer: The customer has the greatest advantages from using the 
AM part record. Thanks to the transparent and tamper-proof docu
mentation of the entire manufacturing and delivery process, he can 
track the processing status of his part, which materials, settings and 
processes were used and how the quality turned out in each case. 
Thus, the customer can obtain information about his part at any time 
and can react immediately in the event of errors or defects (e.g. by 
making a complaint or remanufacturing). There are no direct costs 
for the customer, but the additional effort for quality documentation 
can be reflected in higher quotation prices. 

Table 4 
Transaction costs of the smart contract functions in the demonstration study for the Ropsten Ethereum network (1 Eth equals 2.555 according to Google finance, as of 
06.05.2022).  

Function name Function caller Transaction costs [ETH] Gas price [GWEI] Costs [ ] 

DeployContract Manufacturer 0.004734 2.879 11.95 
CreateOrder Manufacturer 0.000669 2.933 1.69 
RequestShippingSintererOrder Manufacturer 0.000109 2.808 0.28 
AcceptShippingSintererOrder Shipper 0.000107 2.746 0.27 
CompleteShippingSintererOrder Shipper 0.000105 2.699 0.27 
ReceivedShippingSintererOrder Sinterer 0.000106 2.723 0.27 
SinterOrder Sinterer 0.000144 2.713 0.36 
RequestReshippingManufacturerOrder Sinterer 0.000101 2.595 0.26 
AcceptReshippingManufacturerOrder Shipper 0.000099 2.551 0.25 
CompleteReshippingManufacturerOrder Shipper 0.000098 2.527 0.25 
ReceivedReshippingManufacturerOrder Manufacturer 0.000097 2.510 0.24 
CheckOrder Manufacturer 0.000133 2.508 0.34 
RequestDeliveryCustomerOrder Manufacturer 0.000098 2.504 0.25 
AcceptDeliveryCustomerOrder Shipper 0.000097 2.504 0.24 
CompleteDeliveryCustomerOrder Shipper 0.000097 2.502 0.24 
ReceivedDeliveryCustomerOrder Customer 0.000098 2.502 0.25 
AcceptOrder Customer 0.000098 2.501 0.25 
DeclineOrder Customer 
Total 0.00699 17.66  
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5.8. Comparison of the AM part record with other solutions for quality 
documentation in additive manufacturing 

In the following, the AM part record is compared with other solutions 
already used for manufacturing and quality documentation of additively 
manufactured parts. Table 5 provides an overview of the results of the 
analysis. The analysis criteria are based on the evaluation criteria from 
Section 3.2 as well as on the investigations to this conducted previously. 

In terms of digital integrity, only the AM part record presented here 
can be rated as good, as it is the only one capable of enabling digital and 
decentralized storage of data compared to the other solutions. ERP and 
DMS are also digital solutions, but do not allow decentralized storage 
without special extensions. Paper-based documentation is not digital, as 
the quality documents there are usually only physically available in file 
folders. Also from a cost perspective, the AM part record in its current 
form represents an economical alternative with relatively low costs to 
the other solutions. Documentation in paper form, on the other hand, is 
associated with a high level of manual and personnel effort as well as 
storage costs. An ERP system is relatively cost-intensive to purchase and 
support. Only in the case of the DMS are the costs moderate, since a 
simple DMS is not very expensive to purchase and the support effort is 
normally also relatively low. However, the DMS is only used to manage 
documents and not large datasets or ML analyses, so the efficiency of this 
solution can be classified as rather bad. The situation is similar with 
paper documentation. There, too, large amounts of data or analyses 
cannot be documented efficiently. But, this can be done very well using 
the AM part record architecture, possibly in combination with ML an
alyses. Only an ERP system can keep up with this, as these systems can 
also record and process all the data that arises. The disadvantage here is 
that these systems are usually used within a company and therefore 
there are no interfaces to the outside world and access from outside is 
not possible, which leads to poor accountability and availability. A DMS 
system usually behaves very similarly in these aspects and is therefore 
also to be evaluated like the ERP. In the case of paper documents, the 
situation is also considered bad because access to the physical docu
ments is only possible in the place where they are stored, and therefore 
the documents can only be exchanged physically. In terms of expand
ability, both the AM part record and the ERP system offer good oppor
tunities to help simplify and accelerate certification processes, for 
example. Paper documentation is the current standard, which is rela
tively time consuming and slow. A DMS is also to be rated as bad in this 
context, as not all necessary information such as datasets and analyses 
can be provided via it. 

6. Conclusions 

This work investigates the combination of AM and blockchain 
technology to improve quality assurance. In this context, a blockchain- 
based QM for the digital mapping of the value chain in the metal- 
based MEX process was designed and prototypically implemented as 

AM part record. Individual manufacturing processes within the FDM 
value chain were analysed with regard to quality-relevant process pa
rameters and documented in the context of real manufacturing jobs. 
Furthermore, a dApp was developed that stores all quality-relevant 
manufacturing events and protocols in an unalterable and tamper- 
proof manner according to cryptographic principles via a specially 
programmed web application, the decentralized storage solution IPFS 
and a special smart contract in the Ropsten ethereum blockchain. Via the 
blockchain explorer Ropsten Etherscan, the recorded events and the 
references of the stored data are subsequently accessible to all parties 
involved. 

Moreover, this paper shows in a demonstration study that the pre
sented QA concept in the form of a digital part record can be usefully 
applied to additively manufactured parts and thus lead to an improve
ment in quality. In particular, the digital documentation and traceability 
of transactions and documents within the value chain can be ensured. In 
this way, events and protocols in the AM part record are stored immu
tably on-chain on the blockchain and traceably as well as tamper-proof 
off-chain in the IPFS. In addition, the AM part record architecture was 
shown to be cost-effective both in terms of transaction costs for 
executing the various functions of the smart contract and in terms of the 
overall solution. Moreover, further analyses have shown that the 
developed architecture offers great advantages and potentials in terms 
of accountability, availability and expandability. Only in terms of 
effectiveness do the studies identify deficits in the decentralized storage 
of large amounts of manufacturing data. To solve this problem, ML- 
based manufacturing data analytics were considered, which in the 
future will perform an evaluation of the data during manufacturing and 
eventually extract an overall result on part quality, which will then be 
securely documented on the blockchain. Overall, the proposed archi
tecture results in an additional documentation effort during the additive 
manufacturing process. But this additional effort is relatively low 
because the documentation processes and documents are usually 
already available and thus only need to be digitized and stored via the 
AM part record. In this context, the effects of the AM part record on the 
individual stakeholders were also evaluated. According to this, delivery 
service providers and end customers in particular can increasingly 
benefit from transparent and tamper-proof documentation processes. 
Furthermore, manufacturers and their suppliers will also benefit from a 
correspondingly traceable and secure mapping of the value chain, even 
if the additional efforts associated with additional costs are not yet 
required by the regulatory authorities. 

In the future, the QA concept and the prototypical AM part record 
can be expanded to include special functionalities such as ML data an
alyses and certification solutions. Special concept supplements must be 
developed and software extensions programmed for this purpose. 
Extensibility to other AM process flows and AM process chains should 
also be the focus of future developments to enable broad acceptance of 
the concept. In addition, other participants such as authorities and 
certification bodies should be integrated into the smart contract as part 
of a part certification solution. Also, an automatic control should be 
provided that checks when the CID changes and shows exactly what has 
been changed. Furthermore, it will also be necessary to implement abort 
criteria in the event of faulty or defective parts in the manufacturing 
process in order to map physical processes more accurately in the AM 
part record and, if necessary, save resources by making decisions at an 
early stage (e.g. if a part is rejected due to a faulty printing or sintering 
process). Fundamental scientific research must also be conducted on the 
availability of blockchain networks and on data protection regulations 
in order to improve the acceptance and security of corresponding digi
tally documented part records. In a practical context, further techno
logical developments related to software functionality, design and user 
experience also need to be targeted. 

Table 5 
Comparison between AM part record and other solutions for quality documen
tation of AM parts.  

Criteria Paper-based 
documentation 

Enterprise 
resource 
planning 
(ERP) 
software 

Document 
management 
software 
(DMS) 

AM part 
record 
architecture 

Digital 
integrity 

bad bad bad good 

Costs high high moderate low 
Efficiency bad good bad good 
Accountability bad bad bad good 
Availability bad bad bad good 
Expandability bad good bad good  
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