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Abstract

Abstract

The optimal utilization of phosphorus (P) has been of particular interest in the productivity of

monogastric farm animals in recent times owing to the non-renewability and rapid depletion of

finite P reserves, as well as the environmental impact of the sub-optimal utilisation of P

attributable to monogastric livestock farming. Efficient P utilization in laying hens and broiler

chickens is crucial for driving several biological and physiological processes ranging from bone

mineralization, cellular energy production (ATP), blood buffering processes, nucleotide

formation, muscle and nerve maintenance, all of which culminate in the optimal growth,

production and welfare of the organism. Since P is retained in plant-based diets as phytate (an

anti-nutritional factor), stepwise enzymatic cleaving is required to release P and enable

intestinal absorption. Because broiler chickens and laying hens have limited production of

endogenous phosphatases required for phytate degradation, conventional farming systems use

feed that is usually supplemented with phytase of microbial origin. However, phytase use is

prohibited under organic farming systems in the European Union. Hence, the need arises to

foster and explore the bird’s innate/intrinsic mechanisms for efficient P utilization, homeostasis

and resource allocation. The studies reported in this project sought to harness and exploit the

bird's inherent P efficiency mechanisms, which span homeostatic endocrinal and transcriptional

determinants recruited at distinctive developmental phases under various P and calcium (Ca)

dietary regimens.

Studies 1 and 2 conducted a holistic transcriptomic profiling on the jejunum of two commercial

layer strains, namely the Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL). Study

1 entails the temporal assessment of holistic transcriptomic profiles across five developmental

time points (weeks 10, 16, 24, 30 and 60 of life) for a total of hundred laying hens (LB: n = 50;

LSL: n= 50). Study 2 considered the assessment of jejunal transcriptomic profiles in response

to the varying dietary Ca and non-phytate P levels (standard vs. reduced) fed to eighty laying

hens (LB: n = 40; LSL: n= 40). Alongside jejunal samples obtained from the two high-yielding

layer strains for RNA sequencing in both studies, blood samples were also collected to estimate

mineral homeostasis dynamics. Results from study 1 markedly distinguished between layers in

the pre-laying and laying phase, as inferred from plasma levels of estradiol, calcitriol, Ca and

triiodothyronine. Moreover, the expression patterns of the jejunal mucosa responded directly to

the changing metabolic profiles at the onset of egg laying activity. Notably, significant changes

in gene expression profiles were observed for pathways such as RANK/RANKL signaling and

cellular senescence. Conclusively, adequate supply during sexual maturity of laying hens is
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crucial given the observed endogenous mechanisms (endocrinal and transcriptional). Hence,

further investigation is needed to unravel precise metabolic requirements for efficiency and

production. In addition, a pronounced strain-specific metabolic pattern that suggests different

Ca, P, and vitamin D requirements of the laying hen strains in defining their distinct phenotypes,

as inferred from the different exhibitions of enriched molecular pathways.

In study 3, broiler chickens were subjected to a dietary P depletion strategy initiated at the

starter phase and maintained throughout the productive lifespan, i.e., grower and finisher. The

responses elicited following the dietary P depletion were investigated via a combination of

intrinsic parameters, including endocrinal, bone parameters, and transcellular intestinal and

renal regulation of P transport. The results revealed a marked response to P depletion at the

earliest developmental phase, showing the most severe response to the depletion compared to

grower and finisher developmental stages. However, with advancing ages, the birds activated

an effective compensatory mechanism, including endocrine control mediated by calcitriol

action, intestinal P uptake, renal P reabsorption and mineral mobilization from the bone. Thus,

the application of dietary P depletion strategies in broiler production should be no earlier than

the grower developmental stage, when mineral stores are established and physiological

adaptation mechanisms can occur in broiler chickens. Using the sample material from the same

animals, study 4 investigated the contributory role of the broiler's gut microbiota to the

homeostatic compensatory mechanism following the dietary P depletion strategy. The

contribution of the gut-microbiota of the jejunum to these compensatory mechanisms was

subtle. Microbial taxa that proliferated under the higher P supply might serve as biomarkers for

discerning excess dietary P supply in broiler farming. Adaptive responses to improve P

efficiency are evident due to the pronounced low levels of phytate in feces after P depletion.

Conclusively, reductions in P supply to broilers are possible, but precise timing, duration, and

magnitude of a P depletion strategy in broiler chickens should be considered for optimized

mineral utilization for production, welfare, and health.
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ZUSAMMENFASSUNG

Die optimale Nutzung von Phosphor (P) ist aufgrund der Nicht-Erneuerbarkeit und der

Erschöpfung der endlichen P-Reserven sowie der Umweltauswirkungen einer suboptimalen P-

Nutzung durch die monogastrische Tierhaltung von aktuellem Interesse. Eine effiziente P-

Verwertung bei Legehennen und Masthühnern ist für die Steuerung verschiedener biologischer

und physiologischer Prozesse von entscheidender Bedeutung, die von der

Knochenmineralisierung über die zelluläre Energieproduktion (ATP), die Blutpufferung, die

Nukleotidsynthese bis hin zum Muskel- und Nervenerhalt reichen und zu optimalem

Wachstum, Produktion und Wohlergehen des Organismus führen. Da P in pflanzlicher Nahrung

als Phytat (ein antinutritiver Faktor) gebunden vorliegt, ist eine schrittweise enzymatische

Spaltung erforderlich, um P freizusetzen und über die Darmschleimhaut absorbieren zu können.

Masthühner und Legehennen können die für den Phytatabbau erforderlichen körpereigenen

Phosphatasen nur in begrenztem Umfang produzieren, was zur Folge hat, dass in

konventionellen Haltungssystemen üblicherweise Phytasen mikrobiellen Ursprungs mit dem

Futter supplementiert werden. Allerdings ist die Verwendung von Phytase im ökologischen

Landbau in der Europäischen Union verboten. Daher besteht der Bedarf, die

angeborenen/intrinsischen Mechanismen für eine effiziente P-Nutzung, Homöostase und

Ressourcenverteilung zu erforschen und gezielt zu fördern. Die im Rahmen dieses Projekts

durchgeführten Studien zielten darauf ab, die Mechanismen der P-Effizienz von Geflügel zu

erforschen. Dies umfasst die Darstellung der endokrinen und transkriptionellen Determinanten

der     P-Homöostase     in     verschiedenen     Entwicklungsphasen unter     Berücksichtigung

verschiedener P- und Kalzium (Ca)-Diätregime.

In den Studien 1 und 2 wurden holistische Transkriptom-Profile des Jejunums von zwei

kommerziellen Legehennenlinien, nämlich Lohmann Brown (LB) und Lohmann Selected

Leghorn (LSL), erstellt. Studie 1 umfasste die Bewertung von Transkriptom-Profilen über fünf

Entwicklungszeitpunkte (10, 16, 24, 30 und 60 Lebenswochen) für insgesamt hundert

Legehennen (LB: n = 50; LSL: n= 50). Studie 2 befasste sich mit der Abbildung von

Transkriptom-Profilen im Jejunum als Reaktion auf unterschiedliche Ca- und mineralische

(non-phytate-P) P-Gehalte in den Futterrationen ("Standard" vs. "reduziert"), die an 80

Legehennen (LB: n = 40; LSL: n = 40) verfüttert wurden. Zusätzlich wurden Blutproben

entnommen, um die Dynamik der Mineralstoffhomöostase abzuschätzen. Die Ergebnisse aus

Studie 1 zeigten einen deutlichen Unterschied zwischen Legehennen in der Vorlege- und

Legephase, wie aus den Plasmaspiegeln von Estradiol, Calcitriol, Ca und Triiodthyronin (T3)

zu schließen ist. Darüber hinaus zeigten die Expressionsmuster der Dünndarmschleimhaut eine
V
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direkte Reaktion auf die sich ändernden Stoffwechselanforderungen und die einhergehende

Mineralversorgung zu Beginn der Legetätigkeit. Insbesondere wurden signifikante

Veränderungen der Genexpressionsprofile für Signalwege wie RANK/RANKL und zelluläre

Seneszenz beobachtet. Eine angemessene Versorgung während der Geschlechtsreife von

Legehennen ist angesichts der beobachteten endogenen (endokrinen und transkriptionellen)

Mechanismen von entscheidender Bedeutung. Daher sind weitere Untersuchungen erforderlich,

um die genauen Stoffwechselbedürfnisse in dieser Lebensphase zu entschlüsseln. Darüber

hinaus wurde aus den Ergebnissen der Studie 2 ein ausgeprägtes linienspezifisches

Stoffwechselmuster abgeleitet, das auf einen unterschiedlichen Ca-, P- und Vitamin-D-Bedarf

der Legehennenlinien LB und LSL hindeutet.

In Studie 3 wurden Masthühner einer zeitlich festgelegten P-Unterversorgung (P-Depletion)

unterzogen. Dies umfasste verschiedene Lebensphasen der Masthühner, inklusive Aufzucht,

Vormast und Endmast. Die durch die veränderte P-Versorgung ausgelösten molekularen

Mechanismen wurden anhand intrinsischer Parameter untersucht. Dies schloss endokrine

Regulatoren, Knochenparameter sowie transzelluläre intestinale und renale P-Transporter ein.

Eine stark reduzierte P-Versorgung während der Aufzuchtphase führte zu gravierenden

Entwicklungsverzögerungen, während in der anschließenden Vormast- und Endmastperiode

eine entsprechend reduzierte P-Versorgung kompensiert werden konnte. Die Masthühner

aktivierten einen wirksamen Kompensationsmechanismus, der die endokrine Kontrolle der

intestinalen P-Aufnahme, die renale P-Rückresorption und die Mineralstoffmobilisierung aus

den Knochen umfasste. Daher sollten Rationen mit stark reduzierter P-Versorgung in der

Masthähnchenproduktion frühestens mit beginnender Vormast erfolgen, wenn die

Mineralstoffspeicher angelegt sind und physiologische Anpassungsmechanismen bei

Masthähnchen wirken können. Unter Verwendung des Probenmaterials derselben Tiere wurde

in Studie 4 untersucht, welchen Beitrag die Dünndarmmikrobiota von Masthähnchen für die

Mineralstoffhomöostase leistet. Der Beitrag der Darmmikrobiota des Jejunums zu diesen

Ausgleichsmechanismen war unauffällig. Dagegen könnten mikrobielle Taxa, die sich unter

einer über die aktuellen Empfehlungen hinausgehenden P-Versorgung vermehrten, als

Biomarker für die Feststellung einer übermäßigen P-Versorgung in der Masthähnchenhaltung

dienen. Intestinale Anpassungsmechanismen zur Verbesserung der P-Effizienz sind aufgrund

der beobachteten ausgeprägten Phytat-P-Mobilisierung des Geflügels offensichtlich. Daraus

folgt, dass Reduzierungen in der P-Versorgung bei Masthühnern möglich sind, jedoch

Zeitpunkt, Dauer als auch Ausmaß im Hinblick auf eine optimale Nährstoffverwertung,

Wohlbefinden und Gesundheit berücksichtigt werden sollten.
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Chapter 1 — Introduction and Literature Review

1 Introduction and Literature Review

1.1 Phosphorus, as a naturally existing element

Phosphorus, a highly-reactive element classified as a non-metal and represented by the symbol

(P), with an atomic number and mass of 15 and 30.97 u, respectively, on the chemical periodic

table [IUPAC, 2022], was discovered by a German alchemist named Hennig Brand in 1669.

Chemically, P exists mainly in two allotropic forms, namely the white (or yellow) waxy, solid,

highly reactive, toxic and non-crystalline (P4) form, and the solid red, less harmful and more

stable form (Pn), which is produced by the combustion of white P [RSC, 2023; NCBI, 2023].

1.1.1 Phosphorus, its origin and global reserve

Natural sources of P are mainly in reserves of rock phosphate, including the apatite phosphate

mineral [RSC, 2023], which is sparsely deposited geologically as igneous or sedimentary rock

origin within a few countries across the continents yet utilized globally across agriculture and

manufacturing industries [Brownlie, 2021; Desmidt, 2015]. Albeit apatite is the most abundant

crystalline phosphate mineral from igneous rocks, serving probably as the primary origin of all

other phosphates (mineral or organic), phosphate rock deposits from sedimentary sources

account for about 70% of the globally mined phosphates utilised commercially [Jasinski, 2022;

El Bamiki, 2021]. Phosphorites or phosphate rock is a term that classifies an ore excavated from

the earth, graded applicable only on adequate P content, which usually is between 4-13%

phosphorus pentoxides; P2O5 [Daneshgar, 2018]. Subsequently, phosphorites are subjected to

an enrichment process termed beneficiation, which entails the purification and purging of the

ore of sand and clay impurities typically associated with sedimentary phosphate, yielding as

high as 30% P2O5 marketable phosphate rock commercially used in several sectors [Sajid,

2022].

As of 2022, Northern Africa collective accounted for the largest global deposition of P, with

Morocco having the highest global rock phosphate reserve, with approximately 50 billion

metric tons, followed by Egypt, Tunisia, Algeria and China, with about 2.8, 2.5, 2.2, and 1.9

billion metric tons, respectively [Statista, 2023a]. China remains the highest global consumer

and producer of rock phosphate with approximately 85 million metric tons, ahead of Morocco,

the United States of America, Russia, and Jordan, which produced approximately 38, 22, 14

and 9.2 million metric tons, respectively [Statista, 2023b]. Recently, a massive deposit of

phosphate rock was discovered in the south-western region of Norway [EURACTIV, 2023].

According to the Norge mining company, the mineral deposit is estimated to hold as much as

70 billion tonnes of the non-renewable resource, which would meet production demands for

2
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fertilizers, solar, electric automobile battery use for the next 50 years [EURACTIV, 2023].

These metrics brings the world’s phosphate rock resources to more than 300 billion metric tons

without any imminent shortages of phosphate rock [Jasinski, 2021]. In addition, the global

production forecast was projected to reach 261 million metric tons by 2024 [Jasinski, 2020]. In

contrast, previous reports suggested that the current use of mined phosphate rock is rapidly

depleting, with a peak P production between 2030 and 2050 and its exhaustion in the next

century, depending on the recycling rate via sewage and agricultural runoff [Cordell and White,

2011]. Thus, based on these assertions, unless novel P recycling techniques are developed, or

more ore deposits are discovered, an erratic supply of P will impede global food security

[Wendling, 2013; Cordell, 2011], considering the continuously increasing human population

and their corresponding demand for food. However, the current exploration potential for

phosphatic rocks, mainly driven by the rising prices and the continental expansion of phosphatic

rock mines, may offset the predicted threat much further into the future [Jasinski, 2023; Pufahl

and Groat, 2017].

1.1.2 Global phosphorus use and allocation

The commercial supply of global rock phosphate is driven chiefly by demands from the

agricultural and non-agricultural sectors, with the former accounting for the more considerable

utility (between 80–90% of the total world demand) [Childers, 2011]. This is utilized

principally in the production of inorganic phosphate fertilizer products such as ammonium

phosphates, superphosphates and pesticides for agronomical purposes, as well as in the

production of animal feed supplements in monogastric animal production [Cisse and Mrabet,

2004].

The non-agricultural utilization of rock phosphates cuts across several sub-sectors, including

construction, e.g., in the production of flame-retardant materials used in insulation, wood

products, and textiles [van der Wielen, 2006], or in medical applications for bone grafts

procedures, and dental implants [Daneshgar, 2018], as well as for industrial purposes in the

production of detergents, safety matches and food additives [Smit, 2009]. With the projected

global population surpassing 9.6 billion by 2050 [UN, 2023], the demand for P mining and

usage will inevitably increase to support agriculture and non-agricultural human activities.

Moreover, there are growing concerns regarding the environmental impact of inefficient usage

and the limited availability of this non-renewable resource.

The farming of monogastric livestock has been identified as a major contributor to this issue

since its production accounts for a significant global yield of the needed animal protein sources

3



Chapter 1 — Introduction and Literature Review

[FAO, 2007]. For example, the production and consumption of broiler meat and pork rank

highest among the farmed animal genetic resources (“the big five”), with approximately 133

million metric tons and 110 million metric tons of annual global output, respectively

[FAOSTAT, 2023], hence, validating the concerns associated with the efficient utilization of P

in monogastric livestock production. However, the limitation on promising alternatives for P,

coupled with the environmental impact of inefficient P use in monogastric animal farming

[Shastak and Rodehutschord, 2015], poses significant challenges leading to fragmented global

cycles and accumulation of P in arable land in several European Union countries and by

extension the world.

1.2 Phosphorus as an indispensable macro-mineral within biological systems

P is a vital macro-mineral within biological systems, as it plays a plethora of crucial roles in

maintaining optimal biological function at both cellular and physiological levels. P is a

significant constituent of several biomolecules, including phospholipids, nucleotides, and ATP,

in cellular energy metabolism [Lovio-Fragoso, 2021].

In humans, P is the second most abundant mineral after Ca, and it is mainly deposited in bones

and teeth in complex forms of hydroxyapatite Ca10(PO4)6(OH)2 [Fukumoto, 2014]. P is essential

for maintaining nerve function, blood buffering processes, and bone mineralisation [Fukumoto,

2014] in vertebrates generally, humans and the domestic fowl inclusive. However, in meat-type

chicken (broilers) and egg-laying hens (layers), the utilization of P is comparatively less

efficient due to its storage as phytate in plant-based feed sources.

1.2.1 Phytate and the utilization of phosphorus in the domestic fowl

Phytate is the salt form of phytic acid, also known as myo-inositol 1,2,3,4,5,6-

hexakisphosphate; (dihydrogen phosphate) InsP6 [IUPAC-IUB, 1978], resulting primarily from

complexes with various metallic cations such as Ca2+, iron (Fe2+), zinc (Zn2+), magnesium

(Mg2+), potassium (K+), and manganese (Mn2+) [Humer, 2014]. The affinity and strength of

InsP6 to form complexes with cations are listed in the following ranking order: Cu2+ > Zn2+ >

Co2+ > Mn2+ > Fe3+ > Ca2+ [Singh, 2008].

Phytic acid is an unstable free acid with six phosphate groups, esterified with hydroxyl groups

of myo-inositol. [Pallauf and Rimbach, 1997]. Phytate is considered an anti-nutritional factor

in monogastric livestock nutrition [Dersjant-Li, 2014], broilers and layers inclusive, because

these animals have limited capacity to utilize phytate bound P due to the inadequate production

of enteral phytase/phosphatases needed to hydrolyze phytate resulting in adverse effects on the

bioavailability of essential dietary minerals as well as increasing the tendency for environmental

4
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P losses [Panagos, 2022; Rama Rao, 1999]. As a result, poultry diets are supplemented

exogenously with phytases of microbial origin to aid in degrading phytate to release P to meet

the bird's metabolic demands.

However, the use of phytase is prohibited in organic farming practices in the European Union

due to regulations disallowing the use of synthetic substances, including enzymes, in organic

farming [Council of the European Union, 2007]. In addition, the limited availability of P in

phytate-bound forms, its increased excretion and the non-renewability of the P in itself [Gilbert,

2009] culminate dire concerns about the sustainability of monogastric livestock production to

meet the nutritional demands for humans in the future. Moreover, the concerns about P

inefficiencies not only impact the birds' development, production, and welfare but also have

significant environmental implications.

1.2.2 The environmental implication of sub-optimal mineral P utilization and efficiency in

domestic fowl farming

Environmental concerns attributable to P inefficiencies from monogastric livestock production

sources stem from P losses to the environment from poultry and pig farming and have been

associated with an hazardous event termed eutrophication. Eutrophication is the excessive plant

and algal bloom due to the increased deposition of growth factors such as sunlight, CO2, and

nutrients such as P required for photosynthesis [Chislock, 2013; Schindler, 2006] (Figure 1).

Figure 1. Schematic representation of the environmental footprint of excess dietary P input in poultry farming.
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The detrimental impact of human activities including the deposition of mineral P to the earth

either through point-source discharges (e.g., phosphate fertilization, organic manures) or non-

point discharges, and its eventual transition into aquatic ecosystems, results in severe

repercussions for the aquatic biodiversity and availability of useable water sources [Carpenter,

1998]. Mainly, because deposited P accelerate rate of eutrophication in aquatic ecosystems than

it would have occurred due to chance or naturally (Figure 1). Non-point eutrophication of the

lakes, rivers, estuaries and coastal oceans has been a recurrent hazard over the years due to the

excessive inputs of P and N [Carpenter, 1998]. On a broader outlook, the advent of climate

change and the increasing global human population threaten the sustainability of global staple

food production for the sustenance of humankind [Naheed, 2023; Kim, 2017]. Thus,

environmental legislations already enacted needs to be strictly implemented with strong

cooperation with the research institutions to re-orientate agro-allied industries, commercial and

subsistence animal producers alike on the perils of the current environmental trends, towards

facilitating the adoption of greener and environment-friendly modus operandi in the various

sectors.

Opportunities to drastically reduce the environmental impact of P from monogastric livestock

farming, particularly the poultry, present themselves in several scientific approaches broadly

categorized into two [Kebreab, 2012], namely: the review of the P levels provided to the poultry

species in ways that focus on fitting the dietary needs to the age-specific need of broilers and

layers [Adeola, 2011; Pomar, 2011].

Secondly, there is a need to improve the poultry stocks to be efficient P and Ca utilizers with

minimal loading of the macro-mineral to the environment. Based on these categories, different

nutritional and animal-inclined strategies have been suggested, e.g., cognizance of the Ca:P

ratios in poultry feed formulation [Zampiga, 2021], the exploitation of early-life

programming/conditioning of the bird [Valable, 2020; Omotoso, 2023], improvement of P use

efficiency (PUE) of the crops used as feed materials [Khanal, 2016], proffering viable

alternative P sources in monogastric livestock nutrition [Oster, 2021], and the administration of

nutritional interventions such as prebiotic supplements to foster proliferation of beneficial

microbiota and possibly phytate degrading microbes within the GIT of the birds [Askelson,

2013].

However, prior to either of the suggested strategies, emphasis on a preliminary characterization

of existing variability within and between populations needs to be harnessed and continuously
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geared towards exploiting the existing intrinsic capabilities of monogastric livestock, broilers

and layers inclusive.

1.3 Fowl-specific physiological P and Ca demand for optimal performance and welfare

Broiler chickens and laying hens possess an immense genetic potential for performance,

welfare, and health, which is only fully realized when the birds are provided with optimal

environmental conditions. One crucial aspect of this is the supply of a comprehensive

nutritional program that prioritizes the availability of essential macro-minerals, such as P and

Ca, meticulously tailored to meet the needs of the birds at specific developmental stages to

ensure the attainment of their maximum potential [Alagawany, 2020].

Broiler chickens and laying hens adopt distinct mechanisms to attain homeostasis for minerals

P and Ca, which is principally dependent on their different physiological demand and adaptive

features over their developmental stages throughout the productive life [Omotoso, 2023; Reyer,

2021a; Omotoso, 2021; Sommerfeld, 2020a]. Layers and broilers share a similar

gastrointestinal tract (GIT) and associative endogenous homeostatic mechanisms crucial for the

absorption of nutrients to define their productive phenotypes, which occurs regardless of the

difference in productive objective for which they are raised.

Moreover, the dietary P and Ca requirements for the meat-type broiler and egg-laying hen are

distinct due to the different physiological and productive lifespans. On the one hand, a high-

yielding layer strain has a productive lifespan of 60 weeks or more from the pullet

developmental stage till the cessation of egg production, requiring less P in their diets but more

dietary Ca [Ahmadi and Rodehutscord, 2012] to meet the metabolic demands for eggshell

calcification. This results in the complex interaction between macro-minerals (P and Ca) to

maintain homeostasis for body growth and bone mineralization processes while simultaneously

compensating for egg production throughout their productive life span [Sommerfeld, 2020b].

On the other hand, the meat-type broiler has a higher sensitivity to P at the expense of Ca to

meet its metabolic needs for physiological growth, which ultimately translates into production

in its relatively shorter productive life span (~8 weeks from the starter to the finisher

developmental stage).

In addition, high dietary Ca concentration in broiler diet significantly reduces P utilization due

to 1 of 3 reasons [Tamim, 2004; Tamim, 2003; Sebastian, 1996]; first is the possible bonding

of phytate with Ca to form Ca-phytate complex which inhibits the absorption of P [Wise, 1983],

secondly, is the competitive interaction of Ca and the enzyme phytase [McGuaig, 1972] and

thirdly, is the increased enteral pH caused by oversupplied Ca, which in turn reduces mineral P
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solubility, and thus, its availability correlating to poorer growth rate [Walk, 2012; Guinotte,

1995; Shafey, 1991]. Furthermore, insight into the mechanisms recruited by broiler chickens

and laying hens to utilize dietary nutrients to attain production potential and sustain health and

welfare encompasses the synergistic association of the small intestine, kidney and bone

modulated by endogenous endocrinal and transcriptional determinants as well as the gut-

microbiota [Matuszewski, 2020; Blau and Collins, 2015] (Figure 2).

1.4 Endocrinal and transcriptional determinants synergy within the gut–renal–bone

complex for mineral homeostasis in the domestic fowl

The maintenance of mineral homeostasis within the domestic fowl is a complex and

multifarious process, which encompasses different determinants including endocrinal

transcriptional and microbial, majorly niched within gut, kidney and bone axis (Figure 2).

1.4.1 Role of the small intestine in mineral P and Ca homeostasis in the domestic fowl

The small intestine is a part of the chickens’ digestive tract situated before the large intestine,

after the stomach. It is partitioned into three distinct parts, including the duodenum, jejunum

and ileum, facilitating the digestion and absorption of ingested dietary nutrients. Following the

immediate post-hatch period, when the chick has transited from its dependence on nourishment

from the embryonic yolk sac to exogenously supplemented diet, the small intestine undergoes

a rapid developmental process compared to the whole-body mass and other organs within the

digestive system, e.g., gizzard [Sklan, 2001; Uni, 1999]. The rapidity in the relative

development of the small intestine, which comprises the increased villus proportion, length,

vascularity, polarity, and crypt depth, is maximum from 4th-day post-hatch in the chicken

[Sklan, 2001; Uni, 1998] in preparedness for optimal absorption and utilization of nutrients

pivotal for growth, development, productivity and general welfare. Regarding the mineral

absorption capacities of the different sections (duodenum, jejunum and ileum) for P of phytate

origin, previous studies have reported on the complex interactions and influence of different

factors, which are either dietary or animal-related [Dersjant-Li, 2014].

In practice, the use of phytate P stored in plant-based feed materials is usually supplemented

with phytases of microbial origin to enhance adequate absorption of the macro-mineral by the

bird. However, the efficacy of phytase in the gut is influenced by different factors, namely, the

animal's age, intestinal pH, dietary Ca:P ratio, resistance to endogenous proteases, temperature,

and species variation [Dersjant-Li, 2014], as well as strain variation within the species

[Sommerfeld, 2020b].
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Intestinal transport
 Optimal trans- and paracellular

transport via e.g., SLC34A2,
claudins respectively

Lymphoid tissue
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e.g., as hydroxyapatite

Diet
P Ca

Parathyroid hormone
 Renal CYP27B1 for hydroxylation

Vit D3

 Modulates medullary bone resorption

Microbiota
 Dietary nutrient metabolism
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 SCFA production
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 Renal transcellular reabsorption via
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Figure 2. Synergistic association of the small intestine with endocrinal, bone, transcriptional and microbiota

determinants to mediate mineral P homeostasis in broiler chickens and laying hens (PTH: parathyroid hormone;

GALT: gut-associated lymphoid tissues; MALT: mucosa-associated lymphoid tissues

Higher total endogenous phytase activity was reported in the duodenal and the proximal jejunal

brush-border membrane (BBM) vesicles of laying hens than those of broilers [Maenz and

Classen, 1998]. More so, a significant within-species difference between two laying hen strains

for the total tract InsP6 degradation was reported elsewhere [Abudabos, 2012]. The dietary Ca:P

ratios have also been shown to influence the resultant absorptive capacity of the duodenum. Hu

et al. (2021) reported an increased duodenal mRNA expression of mineral transporters and

tight-junction protein (claudins), in broiler fed low Ca diets, suggesting that the birds attempted

to fortify their absorption capacity to cope with the mineral deficit, however insuffient it was to

prevent a compromise on growth performance. Recent studies on broiler chickens and turkey

(Meleagris gallopavo), which measured jejunal and ileal mucosal phosphatase activity, phytate

degradation, and nutrient digestibility, reported that phytase supplementation increased jejunal

mucosal phosphatase activity, prececal InsP6 disappearance, and prececal P and Ca digestibility

in both species [Novotny, 2023]. Furthermore, the average mucosal phosphatase activity in the

jejunum was higher in 6-week-old birds than in 3-week-old birds, validating the influence of

age in phytase degradation kinetics in poultry nutrition [Novotny, 2023].
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1.4.2 Role of the kidney in mineral P and Ca homeostasis

The kidney plays a pivotal role in maintaining homeostasis by engaging in a dual function. It

reabsorbs minerals through specialized renal SLC34A1 co-transporters located at the proximal

convoluted tubule brush border membrane (BBM) when these minerals are significantly

depleted. Simultaneously, it aids in the excretion of macro-minerals when plasma/serum levels

surpass the upper threshold, orchestrated by a feedback mechanism mediated by calcitriol and

parathyroid hormone (PTH) [Khundmiri, 2016].

PTH modulates renal functions within the homeostatic axis by increasing Ca re-absorption in

renal tubules, elevating serum Ca levels. Moreover, PTH, often called a “calciostat”, is a

hormone secreted by parathyroid glands, usually when serum Ca levels are low within the

biological system. Additionally, in the kidney PTH mediates the hydroxylation of 25(OH)2D3

(calcidiol), synthesizing the active form of 1,25(OH)2 vit.D3 (calcitriol), which is crucial for

optimal intestinal absorption of P and Ca. [Matuszewski, 2020] (Figure 2).

1.4.3 Role of the medullary bone in mineral P and Ca homeostasis

The bone is a compact calcified tissue comprising all vertebrates' skeletal systems, including

poultry. It comprises approximately 30% organic protein matrix, such as collagen fibres, 60%

inorganic hydroxyapatite crystals, and 10% water [Feng, 2009]. The bone provides vital roles

within the organism, including structural and postural support, facilitates locomotion, protects

vital organs such as the lungs, heart, and liver, regulates mineral homeostasis and serves as a

site for immune cell development [Feng, 2009].

In poultry, precisely the laying hen, the medullary bone, a non-structural specialized type of

bone tissue formed at sexual maturity within the haematopoietic medullary cavities of bone

under the influence of synergistic action of androgenic and oestrogenic hormones, alongside

the maturation of the ovarian follicles [Prondvai and Stein, 2014; Dacke, 1993]. The medullary

bone possesses no mechanical function compared to the cancellous and cortical bone.

Regarding its role in the dynamics of mineral homeostasis, the medullary bone essentially

serves as an endogenous macro-mineral reservoir containing accessible hydroxylapatite crystals

distributed randomly throughout its matrix [Nys and Le Roy, 2018; Ascenzi, 1963], from which

the bird access mineral (Ca) intrinsically for egg-shell calcification processes usually when the

needed mineral is inadequately supplied exogenously through diet [Dacke, 1993]. More so,

during hypocalcemic conditions, a complex PTH-driven homeostatic action on the medullary

bone is activated to elevate serum Ca levels.
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This process involves PTH binding to its receptor (PTH1R) located on bone-forming cells,

osteoblasts, activating the RANK/RANKL pathway. RANKL binds to its receptor (RANK)

located on precursors of bone resorbing cells, the osteoclasts, stimulating them to mature

osteoclasts, thereby resorbing the bone to release Ca for physiological use [Khundmiri, 2016].

Moreover, balanced levels of P are crucial for the bone to drive the apoptotic process of matured

chondrocytes in the epiphyseal regions of the bone. This process results in the cellular

differentiation and re-modelling of bone cells, translating into growth [Penido, 2012]. Hence,

over the developmental period of the bird, sufficiently balanced levels of P and Ca are needed

to drive primary and secondary ossification of soft tissues and their storage in complex forms

of hydroxyapatite [Shao, 2019; Taylor, 2013].

1.5 Mode of mineral transport absorption and re-absorption within the domestic fowl

In the presence of bioavailable minerals, e.g., P and Ca, the birds’ intestinal absorption capacity

of the minerals is dependent on either the transcellular (active) or paracellular (passive)

transport mechanisms [Proszkowiec-Weglarz, 2019; Bar, 2009]. Furthermore, it is noteworthy

that the kidney also plays an active role in the re-absorption of minerals through active transport

mechanisms.

1.5.1 Paracellular (passive) mode of mineral transport

The passive paracellular absorption of P and Ca involves a selective movement of ions through

tight-junction protein (TJP) enabled by passive diffusion. TJP facilitates the restriction or

movement of ions/molecules via its alternatively sealing or pore-forming attributes, which

depend on the concentration gradients across the selective permeability gradients of

intercellular spaces [Marks, 2019; Knöpfel, 2019] (Figure 3). TJPs are specialized membrane

structures located in the apical region of adjacent enterocytes forming intercellular structures

producing proteins such as occludin (OCLD) and Claudin (CLD) [Hoenderop, 2005; Itoh, 1999]

(Figure 3).

1.5.2 Transcellular (active) mode of mineral transport

The transcellular transport mechanism of minerals, e.g., P and Ca, is an energy-dependent,

sodium-phosphate co-transporter at the brush border membrane that modulate uptake through

the cell [Eto, 2006] (Figure 3). The synergistic mediation of the transcellular transport

mechanism by endocrinal and transcription factors suggests it to be the birds’ preferential route

for mineral absorption under severe conditions (e.g. dietary mineral restrictions), requiring

rapid P uptake.
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Figure 3. Intestinal phosphate transport detailing: (A) Transcellular sodium-dependent phosphate co-transporters

(NaPi-IIb) present at the luminal surface of brush border membrane at the apical region inwards/downwards

towards the basolateral membrane enabled via cellular energy dispensation via a Na+/K+ ATPase co-transporter,

(B) Paracellular passive diffusional movement of P across the intercellular spaces in the intestine. HPO2-4 as

NaPi2b substrate; H2PO-4 as PiT1/PiT2 substrate [Candeal, 2017].

For example, the adaptive mechanisms exhibited by birds exposed to depleted dietary minerals,

resulting in lower serum P, increased the synthesis of 1,25(OH)2D3 (calcitriol), which in turn

facilitates intestinal uptake of P [Berndt and Kumar, 2009]. This is coupled with the

transcriptional expression of intestinal sodium-dependent phosphate cotransporters (SLC34A2)

alongside renal expression of SLC20A1 and SLC20A2 to facilitate renal re-absorptive processes

[Omotoso, 2023; Marks, 2019].

1.5.2.1 Sodium-dependent phosphate co-transporters in the domestic fowl

The sodium-dependent phosphate co-transporters are generally classified into the solute carrier

family type I, II and III. Four sodium-dependent phosphate co-transporters, including SLC20A1,

SLC20A2, SLC34A1 and SLC34A2, have been identified in the Gallus gallus domesticus based

on current knowledge. Members of the type II transporters include Na+Pi-IIa (SLC34A1),

Na+Pi-IIb (SLC34A2), and Na+Pi-IIc (SLC34A3) [Murer, 2004]. In comparison, the type III

transporter members included the Pi-T1 (SLC20A1) and Pi-T2 (SLC20A2). Moreover, 2 of 3

members of the type II transporter (SLC34) have been identified within the brush border

membrane of the intestinal lumen as well as the kidney, where they facilitate the luminal

transcellular phosphate uptake or renal P re-absorption, respectively [Omotoso, 2023; Marks,
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2010]. Both type II and III members of the solute carrier family exhibit distinct characteristics

relating to the preferences for phosphate valency and its stoichiometric regulation [Marks,

2010]. Regarding the phosphate valency preferences, the type II transporters (SLC34A1,

SLC34A2 and SLC34A3) have an affinity for divalent phosphate (HPO4
2−) [Marks, 2010]. More

so, both SLC34A1 and SLC34A2 are electrogenic and transport sodium/phosphate at a

stoichiometric ratio of 3:1, i.e., 3Na+:HPO4
2 – (Figure 3), while, (SLC34A3) is electroneutral,

preferring a 2:1, i.e., 2Na+:HPO4
2– stoichiometric ratio [Marks, 2010].

In contrast, the type III transporters (SLC20A1 and SLC20A2) have an affinity for monovalent

phosphate (H2PO4
−); they are both electrogenic with a preferred stoichiometric ratio of

sodium/phosphate at 2:1, i.e., 2Na+:H2PO4
– [Marks, 2010]. Moreover, experiments on murine

models previously established that PiT2 (SLC20A2) is present at the renal brush border

membrane (BBM) to enhance the re-absorption [Breusegem, 2009; Villa-Bellosta, 2009], and

PiT1 (SLC20A1) is at the intestinal BBM [Giral, 2009] with the expression of these candidates

influenced by the level of dietary P present within the organismal biosystem [Breusegem, 2009;

Giral, 2009; Villa-Bellosta, 2009]. However, similar tissue-specific expression was identified

in the broiler intestine and kidneys fed varied levels of dietary P [Omotoso, 2023].

Considering the specific physiological P requirement of the laying hen and broilers, other

hormones such as oestradiol might influence the actions of calcitriol and intestinal

sodium/phosphate co-transporter type II (SLC34A2) for P absorption in the laying hen. In layers

and broiler breeder hens, three oestrogenic precursory hormones have been identified, including

oestrone (E1), oestradiol-17β (E2) and oestriol (E3). Of these, oestradiol-17β (E2) is classified

as the primary female reproductive hormone mediating sexual maturation (i.e., the onset of lay)

in the domestic fowl [Hanlon, 2022], indirectly stimulating a deterministic developmental phase

for increased metabolic Ca demand for the egg-shell calcification process. Moreover, studies

on the murine species have identified estrogen’s regulatory roles on Ca absorption and

homeostasis, intestinal NaPi-IIb (SLC34A2) gene expression [Xu, 2003; Guerreiro, 2002], and

its modulation of 1,25(OH)2 vitamin D3 synthesis [Xu, 2003; Van Abel, 2002; Schwartz, 2000].

1.6 Importance of the domestic fowl’s gut microbiota

The gut microbiota represents an active constituent of the gastrointestinal tract (GIT),

containing a complex community of hundreds of diverse microorganisms that are colonized

after hatching and defined by several factors that can be broadly divided into (i) host

characteristics, e.g., bird age, strain, sex, GIT section, and (ii) the environmental factors, e.g.,

husbandry system, feed, geographic location, and biosecurity [Ngunjiri, 2019; Kers, 2018]. In
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fact, the microbiota contributes to the dynamics of complex structural, metabolic and

immunological processes in the gut that define the host's health, welfare and age-appropriate

development [Yu, 2021; Rubio, 2019; Onrust, 2015].

1.6.1 Role of the gut –microbiota in P and Ca homeostasis of the domestic fowl

Concerning the maintenance of homeostasis and efficiently utilizing plant-bound P, the

diversity and functional contribution of the intestinal microbiota is a promising target. The

intestinal microbiota contains specific phosphatase-secreting microbes such as the

Bifidobacteria [Haros, 2005] and isolates of Lactobacillus [Kim, 2007], which are capable of

hydrolyzing phytate and release inorganic P to the host for absorption. Moreover, the dietary

supply of macro-minerals such as P and Ca to the broiler has been reported to modulate the gut

microbiota [Ptak, 2015], thus indicating the microbiota as a potent, functional entity driving

nutrient metabolism [Grice, 2012].

Furthermore, accumulating scientific studies on the chicken microbiome focused on the distal

ileocecal region of the GIT, e.g., the caeca or colon, due to the high diversity of the microbial

community in this GIT section crucial to mediate the final fermentation processes of ingested

P which determines the corresponding levels of P and inositol phosphates excreted to the

environment [Yan, 2017; Witzig, 2015]. However, the homeostasis and metabolism of P are

initiated in the proximal small intestine, specifically, the jejunum, where co-transporter-enabled

P uptake facilitates increased absorption and utilization after enzymatic phytate degradation

[Hurwitz, 1970].

Hence, investigating the enzymatic role of the broiler's jejunal microbiota might be informative.

Moreover, previous studies in pigs provided varied dietary P levels indicated significant

differential abundances of the intestinal microbiota, suggesting the possibility of focused

manipulation of the enteral microbiota through dietary interventions for optimal utilization

enteral P and phytate [Reyer, 2021a].

1.6.2 Immunomodulatory role of the domestic fowl’s gut –microbiota

The enteral microbiota contributes vital roles in maintaining gut health, modulating immune

responses, and aiding in the digestion of feed materials to release nutrients, all culminating in

the optimal performance and welfare of the domestic fowl [Khan, 2020]. The immune

modulatory effects of the gut microbiota depend on the complex probiotic interactions to

produce metabolites from within their diverse community or sourced from the host molecules

or diet [Agus, 2018; Han, 2016]. Microbial metabolites emanating from the host-microbiota

interaction result in the synthesis of short-chain fatty acids (SCFAs), tryptophan metabolites,
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and secondary bile acids (BAs) [Kayama, 2020; Agus, 2018]. The probiotic effect of the

microbiota within the immune response context has been reported to directly and competitively

exclude pathogenic microbes proliferation via different actions of the microbiota or its

interaction with the host intestinal epithelial cells (IECs), including the lowering the luminal

pH in favour of beneficial microbes production, alongside the production of anti-microbial

compounds, e.g. SCFAs and bacteriocins [Rhayat, 2017].

The production of SCFA also aids in the maintenance of energy metabolism crucial for the

production of mucins by goblet cells for the fortification of the luminal epithelia barrier, which

in turn increases the beneficial microbiota adhesion and reduction of pathogenic microbe

adhesion [Broom, 2018]. It is imperative to note that the dysbiosis of gut microbiota can

deleteriously impact the intestinal morphology and activities of chickens, resulting in

heightened permeability and dysfunctional intestinal barrier, ultimately rendering them more

vulnerable to bacterial infections, sepsis, inflammation compromising digestion [Shang, 2018].

In addition, the direct interaction between the microfold cells (M cells) and gut microbiota

within the intestinal tract, enhances the mucosal immune surveillance via mechanisms that aid

in the monitoring the shifts in resident intestinal microbiome [Dillon, 2019]. The intestinal

mucosal sentinel micro fold cells (M cells) are present in the follicle-associated epithelium

(FAE) embedded within the gut-associated lymphoid tissue (GALT). M cells are primarily

composed of the intestinal epithelial and dendritic cells [Bai, 2013]. They play a crucial role in

eliciting immune responses via antigen/pathogen sampling and presentation serving as

gatekeepers within the mucosal immune system [Corr, 2008].

1.7 Research Aims and Objectives

The studies reported in this dissertation comprise two projects clustered based on the fowl-type

used. Project 1 consists of studies 1 and 2 conducted on two strains of laying hens (Lohmann

Brown LB and Lohmann selected leghorn LSL), while Project 2 consists of studies 3 and 4

conducted on broiler chickens. The broad research objectives of studies 1, 2, 3 and 4 are as

follows;

Studies 1 and 2 adopted a holistic jejunal transcriptomic profiling of the LB and LSL hens,

considering the influence of the different production periods (weeks 10, 16, 24, 30 and 60) (1)

and varied dietary minerals, P and Ca (PCa, LPCa, LP, LCa) (2), coupled with the measurement

of hormones and metabolites to approximate the dynamics of mineral homeostasis. The

objective was to gain insights into the molecular mechanisms underlying mineral efficiency for

productivity and physiological processes in layer chickens.
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Research objectives of studies 3 and 4 was to identify the temporal physiological responses of

broiler chickens exhibited through different endogenous adaptive mechanisms, including

endocrinal, transcriptional, osseous and microbial processes, following a depleted dietary P

regimen. The objective rests on the hypothesis that the depletion of dietary P supply and its

timing contribute to endogenous adaptive responses for P efficiency during the productive life

of the broiler and its age-specific requirements.

Collectively, studies 1-4 focused on gaining deeper insights into P utilization, its resource

allocation and efficiency in the Gallus gallus domesticus species by exploring various

endogenous responses elicited by the birds via plasma/serum hormones, metabolites, and bone

mirrored at the transcriptional level as mRNA transcripts. The hypothesis is that phenotypic

and genetic variation exists in the extent to which different regulatory pathways are recruited

in response to the direct effects of dietary and digestive P and Ca availability and the

corresponding indirect effects on microbiota composition to maintain P homeostasis. This

variation could be used to improve utilization of P from various feed sources and reduce

excretion of surplus P.

The specific aims of each study are documented as follows:

 Study 1 aimed to identify differentially expressed genes (DEGs) and molecular

pathways in the jejunum of two-layer strains (LB and LSL) related to development,

growth and the onset of laying, which might contribute to further improvements in

nutrient efficiency and productivity as the hens mature across different productive

stages.

 Study 2 aimed to elucidate the jejunal contribution to the complex regulation of mineral

homeostasis in individual hens at the peak of egg production by identifying strain-

specific transcriptional responses via differentially expressed genes (DEGs) and

enriched molecular pathways in response to the varied dietary P and Ca intake.

 Study 3 aimed to decipher the endogenous adaptive responses for P efficiency during

the productive life of the broiler as well as their age-specific requirements elicited by

the broiler in response to depletion of dietary P supply and its timing. Consequently, the

effects of a variable P supply throughout the entire production phases were evaluated

by measuring growth performance, endocrine control, transcellular P transport, bone
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mineralization, and health aspects in an array of tissues such as blood, jejunum, kidney,

and bone.

 Study 4 aimed to identify the possible synergy of the gut microbiota with the

endogenous mechanisms adopted by the bird to maintain P homeostasis. This entailed

the comprehensive profiling of the jejunal microbiota composition of broilers subjected

to P depletion throughout the grower and finisher stages via high-throughput 16S rRNA

gene amplicon sequencing, coupled with the measurement of the corresponding levels

of total fecal mineral P and Ca and phytate to approximate the unutilized mineral

fractions.
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2 Summary of Publications

In order to characterize the endocrinal and transcriptional determinants of P utilization in laying

hens and broiler chickens, the results of three experimental trials have been published in 4

interlinked studies. The experiments elaborately documented in studies 1 - 4 provide a robust,

in-depth analysis of the transcriptional, endocrinal, and microbial determinants in domestic

fowl, e.g., laying hens and broiler chickens (Figure 4).

Figure 4. Schematic pipeline representation of the interrelatedness of the research interfaces, biological assays,

fowl-type, tissues and treatment effect investigated in experiments reported.

In the first study, samples of jejunum mucosa from the two lines of laying hens were obtained

at five different developmental stages, including weeks 10, 16, 24, 30 and 60, to represent the

pullet, pre-lay, onset of lay, the peak of lay and senescence production time points, respectively.

Samples of jejunum mucosa were used to determine the abundance of transcripts by mRNAseq

in the longitudinal experiment designed to consider the temporal changes between time points

within and between the two-layer strains. Plasma hormones and metabolites of the jejunal

mucosa were measured to approximate the dynamics of mineral P and Ca homeostasis. It was

found that the onset of laying was the most significant time point as several levels of

physiological measurements shifted to ensure mineral utilization to the uterus and laying

performance. At this transitional stage, the differences between the strains were also most

striking, suggesting that both strains cope with altered metabolic needs and adapted nutrient

supply to achieve comparable egg production performance, in part by recruiting different

pathways in the intestinal mucosa.
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In the second study, four diets (recommended vs low Ca and P) were fed to two lines of laying

hens. Samples of jejunal mucosa were used to determine the abundance of transcripts by

mRNAseq in the holistic transcriptomic response to dietary mineral supplements within and

between the two-layer strains. Plasma hormones, metabolites, and the transcriptome of the

jejunal mucosa were measured to approximate the dynamics of mineral P and Ca homeostasis.

The study's findings showed that endogenous mechanisms to maintain mineral homeostasis in

response to variations in the supply of Ca and P were effective in laying hen strains. However,

the LSL and LB birds appeared to adopt different molecular pathways, as shown by circulating

vitamin D levels and strain-specific transcriptome patterns.

The third study evaluated the effects of dietary P depletion on growth performance, endocrine

control, and transcellular P transport and bone mineralisation in various tissues such as serum,

jejunum, kidney, and bone at different developmental phases in the broiler chicken. Dietary P

depletion was introduced at the early developmental phase of life and continued at advanced

growth phases with the expectation that the intrinsic interplay of different tissues would avail

insights into the regulation and dynamics of mineral P homeostasis and efficiency that confers

adaptation and optimal resource allocation on the organism. Based on the study's findings, the

threshold for P deprivation for environmental concerns should be set no earlier than the late

start/early growth phase, as physiological adaptation mechanisms to P deficiency seem more

effective than in the early growth phase.

The fourth study was a continuum of the third, involving the sampling of the broiler chicken

jejunal digesta and faeces at the grower and finisher phases of development as proxies for the

examination of the jejunal microbiota-associated response to the P depletion strategy and the

estimation of corresponding inaccessible levels of mineral P and Ca and undegraded phytate in

the excrement. Expression, mineral intake, and excrement data were integrated and analyzed

by the open-sourced R software (statistics; visualization) to identify operational taxonomic

units, relative abundance and the functional potentials of the microbiota affecting P efficiency

regarding the ages and dietary P group of the broilers. Findings on the mineral P and Ca intake

and corresponding fecal mineral (P, Ca) and phytate levels showed that the diets applied to the

depleted and non-depleted cohorts were effective, with the depleted groups almost maximizing

the phytate degradation. Overall, broilers allotted to the non-depleted group exhibited more

significant relative microbial abundance of taxa than those fed the depleted P. Broiler chickens

assigned to the dietary P depletion groups only showed significant relative abundances for

Facklamia, Lachnospiraceae, and Ruminococcaceae, suggesting that these microbiota make

only a subtle contribution to the birds' adaptive mechanism following P depletion.
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2.1 Study 1 – Jejunal transcriptomic profiling of two-layer strains throughout the entire

production period

Adewunmi Omolade Omotoso, Henry Reyer, Michael Oster, Siriluck Ponsuksili, Nares

Trakooljul, Eduard Muráni, Vera Sommerfeld, Markus Rodehutscord and Klaus Wimmers

Scientific Reports 11:20086 (2021); doi:10.1038/s41598-021-99566-5

Authors’ Contributions: conceptualization, K.W., M.R.; methodology, A.O.O., H.R., M.O.,

N.T.; formal analysis, H.R., M.O., N.T.; investigation, A.O.O., H.R., M.O., S.P., V.S., M.R.,

K.W.; resources, S.P., E.M., K.W.; data curation, H.R., M.O., V.S.; writing-original draft

preparation, A.O.O.; writing-review and editing, A.O.O., H.R., M.O., S.P., N.T., E.M., V.S.,

M.R., K.W.; visualization, A.O.O., H.R., M.O.; supervision, H.R., K.W.; project

administration, V.S., M.R., K.W.; funding acquisition, M.R., K.W. All authors have read and

agreed to the published version of the manuscript.

The jejunum plays crucial roles for the digestion and absorption of nutrients and minerals and

for barrier functions that are essential for a healthy, productive life cycle of farm animals,

including laying hens. Accordingly, knowledge of the molecular pathways that emerge in the

intestine during development, and particularly at the beginning of laying activity, will help to

derive strategies for improving nutrient efficiency in laying hens. In this study, jejunal samples

were obtained from two high-yielding layer strains at five developmental stages (weeks 10, 16,

24, 30 and 60 of life) for RNA-sequencing, alongside the profiling of blood plasma parameters

to approximate the dynamics of mineral homeostasis. The results reflected a marked distinction

between the pre-laying and laying phase as inferred from levels of parathyroid hormone,

triiodothyronine, estradiol, vitamin D, and Ca. Moreover, the expression patterns of the

intestinal mucosa responded directly to the changing metabolic and nutritional profiles at the

beginning of the laying phase in maturing high-yielding strains of laying hens. These comprise

signaling events namely RANK/RANKL signaling and cellular senescence. Taken together, the

timing of sexual maturity of laying hens demands closer examination to unravel metabolic

requirements and associated endogenous mechanisms.
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2.2 Study 2 – Transcriptional responses in jejunum of two-layer chicken strains

following variations in dietary calcium and phosphorus levels

Henry Reyer, Michael Oster, Siriluck Ponsuksili, Nares Trakooljul, Adewunmi Omolade

Omotoso, Muhammad Arslan Iqbal, Eduard Muráni, Vera Sommerfeld, Markus Rodehutscord

and Klaus Wimmers

BMC Genomics 22, 485 (2021). https://doi.org/10.1186/s12864-021-07814-9

Authors‘ Contribution: KW, MR and SP designed the research; HR, MO, SP and KW

supervised the experiment; HR, MO, NT, SP and VS performed the experiments; HR, KW, MO

and SP curated and analyzed the data; HR, AOO, MAI and MO performed statistical data

analysis; AOO, EM, HR, KW, MO, MR and SP participated in the interpretation of the data;

HR drafted the manuscript; HR and MO prepared figures; all authors contributed to the

preparation and editing of the manuscript.

Calcium (Ca) and phosphorus (P) are essential nutrients that are linked to a large array of

biological processes. Disturbances in Ca and P homeostasis in chickens are associated with a

decline in growth and egg laying performance and environmental burden due to excessive P

excretion rates. Improved utilization of minerals in particular of P sources contributes to healthy

growth while preserving the finite resource of mineral P and mitigating environmental

pollution. In the current study, high performance Lohmann Selected Leghorn (LSL) and

Lohmann Brown (LB) hens at peak laying performance were examined to approximate the

consequences of variable dietary Ca and P supply. The experimental design comprised four

dietary groups with standard or reduced levels of either Ca or P or both (n = 10 birds per

treatment group and strain) in order to stimulate intrinsic mechanisms to maintain homeostasis.

Jejunal transcriptome profiles and the systemic endocrine regulation of mineral homeostasis

were assessed (n = 80). Results: Endogenous mechanisms to maintain mineral homeostasis in

response to variations in the supply of Ca and P were effective in both laying hen strains.

However, the LSL and LB appeared to adopt different molecular pathways, as shown by

circulating vitamin D levels and strain-specific transcriptome patterns. Responses in LSL

indicated altered proliferation rates of intestinal cells as well as adaptive responses at the level

of paracellular transport and immunocompetence. Endogenous mechanisms in LB appeared to

involve a restructuring of the epithelium, which may allow adaptation of absorption capacity

via improved micro-anatomical characteristics. Conclusions: The results suggest that LSL and

LB hens may exhibit different Ca, P, and vitamin D requirements, which have been neglected

in the supply recommendations. There is a demand for trial data showing endogenous factors
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of Ca and P homeostatic mechanisms, such as vitamin D, at local and systemic levels in laying

hens.
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2.3 Study 3 – Broiler physiological response to low phosphorus diets at different stages

of production

Adewunmi Omolade Omotoso, Henry Reyer, Michael Oster, Steffen Maak, Siriluck Ponsuksili,

Klaus Wimmers

Poultry Science, 102, 2 (2023) https://doi.org/10.1016/j.psj.2022.102351.

Authors‘ Contribution – conceptualization: H.R., M.O., K.W., methodology: A.O.O., H.R.,

M.O., formal analysis: A.O.O., H.R., M.O., investigation: A.O.O., H.R., M.O., resources:

S.M., S.P., K.W., data curation: A.O.O., H.R., M.O., writing - original draft preparation:

A.O.O., writing - review and editing: A.O.O., H.R., M.O., S.M., S.P., K.W., visualization:

A.O.O., supervision: H.R., M.O., K.W., project administration: K.W., funding acquisition:

K.W.

Phosphorus (P) inclusion in broiler diets needs to meet the physiological demands at a specific

developmental stage to ensure the performance, health, and welfare of the birds and minimize

nutrient losses. Toward a more efficient utilization of P in broiler husbandry, a timed nutritional

conditioning strategy might enhance the endogenous mechanisms of mineral homeostasis and

thus reduce dietary P supply of mineral sources. In this study, following a variable P supply in

the starter phase, the effects of a dietary P depletion of broiler chickens were investigated at

different developmental stages. Physiological adaptation mechanisms were elucidated based on

zootechnical performance, endocrine parameters, regulation of intestinal P transport, bone

characteristics, and health aspects. The results revealed a marked response to P depletion at the

earliest developmental phase, after which indications of effective compensatory mechanisms

were detectable with advancing ages. Potential mechanisms that enable broilers to maintain

mineral homeostasis primarily include endocrine control mediated by calcitriol actions, as well

as intestinal P uptake and mineral mobilization from the bone. Conclusively, the precise timing,

duration, and extent of a P depletion strategy in the broiler chicken might be considered for

optimized nutrient utilization.
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2.4 Study 4 – Jejunal Microbiota of Broilers fed varying Levels of Mineral Phosphorus

Adewunmi Omolade Omotoso, Henry Reyer, Michael Oster, Siriluck Ponsuksili, Klaus

Wimmers

Poultry Science (2023), doi: https://doi.org/10.1016/j.psj.2023.103096

Authors‘ Contribution – conceptualization: H.R., M.O., K.W., methodology: A.O.O., H.R.,

M.O., formal analysis: A.O.O., H.R., M.O., investigation: A.O.O., H.R., M.O., resources: S.P.,

K.W., data curation: A.O.O., H.R., M.O., writing - original draft preparation: A.O.O., writing

- review and editing: A.O.O., H.R., M.O., S.P., K.W., visualization: A.O.O., supervision: H.R.,

M.O., K.W., project administration: K.W., funding acquisition: K.W.

Efforts to achieve sustainable phosphorus (P) inputs in broiler farming which meet the

physiological demand of animals include nutritional intervention strategies that have the

potential to modulate and utilize endogenous and microbiota-associated capacities. A temporal

P conditioning strategy in broiler nutrition is promising as it induces endocrinal and

transcriptional responses to maintain mineral homeostasis. In this context, the current study

aims to evaluate the composition of the jejunal microbiota as a functional entity located at the

main absorption site involved in nutrient metabolism. Starting from a medium or high P supply

in the first weeks of life of broilers, a depletion strategy was applied at growth intervals from d

17-24 and d 25-37 to investigate the consequences on the composition of the jejunal microbiota.

The results on fecal mineral P, calcium (Ca), and phytate contents showed that the diets applied

to the depleted and non-depleted cohorts were effective.

Microbial diversity in jejunum was represented by alpha diversity indices which appeared

unaffected between dietary groups. However, chickens assigned to the dietary P depletion

groups showed significantly higher abundances of Facklamia, Lachnospiraceae, and

Ruminococcaceae compared to non-depleted control groups. Based on current knowledge of

microbial function, these microorganisms make only a minor contribution to the birds' adaptive

mechanism in the jejunum following P depletion.

Microbial taxa such as Brevibacterium, Brachybacterium, and genera of the Staphylococcaceae

family proliferated in a P-enriched environment and might be considered biomarkers for

excessive P supply in commercial broiler chickens.
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2.5 Personal contribution to the experimental studies 1 - 4

I declare that my contribution to each of the experimental studies reported in this project is

elaborately documented as follows.

I conducted the wet laboratory analysis for samples collected in studies 1, 3 and 4 with activities

ranging from:

 Nucleic acids isolation (RNA) from chicken tissue samples including jejunum mucosa

scrapings in study 1, jejunum and kidney samples in study 3 and DNA extraction in the

jejunal digesta in study 4.

 Nucleic acids purification and amplification using the polymerase chain reaction (PCR)

(studies 1, 3 and 4)

 Amplicon quality control measures using spectrophotometry and agarose gel

electrophoresis (studies 1, 3 and 4)

 cDNA synthesis and purification (studies 1 and 3)

 Molecular primers design for candidate genes of interest, e.g., transcellular mineral P

and Ca transporters (study 4)

 Candidate gene expression analysis of transcellular mineral P and Ca transporters using

the real-time quantitative polymerase chain reaction (RT-qPCR) (study 4)

 Flexural bone bending test for strength analysis (study 4)

 Plasma/serum hormones and metabolite analysis using Enzyme-linked immunoassay

techniques (ELISA) and Fuji Dri chemistry, respectively (studies 1 and 3)

I conducted the dry laboratory activities for all studies 1, 2, 3 and 4, which entail;

 Experimental data analysis (transcriptomic and statistical), results interpretation and

manuscript drafting (studies 1, 2, 3, and 4)
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CHAPTER 3
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3 General Discussion

The experiments elaborately documented in studies 1-4 provide a robust, in-depth overview of

the laying hens and broiler chickens' transcriptional, endocrinal, and microbial responses to

varied levels of dietary minerals. Specifically, the studies focused on the responses elicited by

two-layer hen strains over the five productive time points (weeks 10, 16, 24, 30 and 60) in study

1 and those fed diets with varying levels of dietary P and Ca (i.e., Con, LCaP, LCa, LP ) in

study 2. In contrast, study 3 investigated the response of the broiler chickens to depleted levels

of P in an array of tissues involving the jejunum and kidney (transporters) and bone

(morphology). The 4th study reported the jejunal microbiota response to varied dietary P as well

as the resultant fecal output of the minerals and phytate in broiler chickens.

All experiments analyzed endocrinal determinants via either blood plasma/serum, hormones,

and metabolites to approximate the dynamics of mineral homeostasis within both biosystems

as they aimed to achieve mineral homeostasis, efficiency, and resource allocation.

Primarily, transcriptional and microbiomic investigations in studies 1, 2, 3 and 4 focused on

jejunum as the preferred intestinal segment of interest, precisely due to the longer length of the

villi projections in the tissue, which influences significant absorptive function [De Verdal,

2010].

3.1 Endocrinal determinants crucial for the approximation of mineral homeostasis in

laying hens and broiler chickens

The following plasma hormones such as calcidiol, calcitriol, parathyroid hormone (PTH),

triiodothyronine (T3), oestradiol (E2) and metabolites, e.g., calcium (Ca), phosphorus (P),

magnesium (Mg), albumin, alkaline phosphatase (ALP), were analyzed to approximately the

dynamics of mineral P and Ca homeostasis in the LB and LSL hens in studies 1 and 3. In

contrast, the serum levels of the listed hormones and metabolites were accessed in broiler

chickens in study 4, excluding E2, ALP, and Mg.

3.2 Age and diet effect on endocrinal profiles of laying hens and broilers chickens

The blood plasma parameters of LB and LSL hens in studies 1 and 2 were investigated to

approximate the dynamics of mineral homeostasis.

This was accessed via the plasma hormone and metabolite actions exhibited by the hens over

five developmental time points (pullet, grower, onset of lay, peak of lay and senescence) in

study 1. The findings revealed a production-specific response in both the LB and LSL laying

hens with significantly increased levels of Ca, Mg and albumin, while corresponding levels of

P reduced initially with subsequent re-adjustment at the onset of laying (week 24) in both LB

and LSL strains.
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Physiologically, this signals the preparedness of the layers to meet the metabolic demand of Ca

for eggshell calcification processes at the start of egg laying, with the increase in plasma Ca

levels for eggshell calcification necessitating the reduction in plasma P for attain balance

[Pelicia, 2009]. More so, the increased plasma Ca levels at week 24 compared with those of

weeks 10 and 16 and the corresponding lowered plasma P levels reflect intrinsic processes

adopted by the bird to maintain homeostasis between both macro-minerals as mediated by

actions of hormones such as PTH and calcitriol [Sinclair-Black, 2023]. Similarly, endocrinal

profiles in study 3, involving the broiler cohorts fed depleted levels of dietary P across the

starter (days 1-10), grower (days 11-24) and finisher (days 25-37) developmental stages,

showed significantly reduced serum levels of P in chickens fed low P diets with a

correspondingly (numerically) higher serum Ca levels in the same birds compared to those fed

the M and H diets at the day 17. In fact, within biological systems, P and Ca exhibit an

antagonistic stoichiometric relationship usually to maintain homeostasis, i.e., higher levels of P

hamper the surge of Ca and vice versa [Sinclair-Black, 2023]. However, this chemical

phenomenon of P is not restricted to Ca alone but is also observed with other cationic high-

valency minerals such as iron (Fe2+), zinc (Zn2+), magnesium (Mg2+), potassium (K+), and

manganese (Mn2+) [Humer, 2014]. As a result of the high affinity of P to form chemical bond

complexes with other cationic high-valency minerals, absorption of these minerals is inhibited

[Humer, 2014]. Regarding findings in study 1, a surge in plasma Ca levels was observed at

week 24, driven by the need for Ca to meet production demands. However, increased dietary

Ca levels might alternately encumber phytate degradation and mineral digestibility in the gut,

lowering P uptake at the onset of lay [Sommerfeld, 2020a].

In study 3, broiler chickens fed the depleted P diets at the early growth phase showed lowered

serum P concentration with correspondingly surged serum Ca and calcitriol (1,25 (OH)2 vitamin

D3) levels compared to those fed the M and H diets. The continuously elevated calcitriol levels

throughout the development phases suggest the bird’s efforts to meet metabolic P demand and

maintain mineral equilibrium via intestinal P absorption. Plasma calcitriol (1,25 (OH)2 vitamin

D3) concentrations were also pronounced in the LB and LSL hens in study 1, with significantly

higher levels at the onset of lay (week 24) compared to periods preceding the onset of lay (weeks

10 and 16). Contrastingly, plasma concentrations of calcitriol did not differ significantly

between dietary treatments (p > 0.05) in layer cohorts in study 2 but showed high individual

variability, wherein LSL hens have higher plasma calcitriol levels compared to LB hens,

indicating the possibility of better Ca absorption and mineralization than LB hens. More so, it
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has also been observed that LSL hens tend to have higher egg weights than LB hens

[Sommerfeld, 2020b].

Calcitriol (bioactive form of vitamin D) modulates optimal intestinal absorption of minerals;

hence, its surge is evident in both the egg-type fowl at the onset of lay (week 24) when Ca is

needed to meet egg production demands in study 1. A similar observation was found in the

meat-type broiler fed the depleted P diet at day 17 in the study 3, where sufficient levels of P

to meet growth and performance potentials was needed [Berndt and Kumar, 2009]. In addition,

the calciostatic action of PTH was observed in the LB and LSL hens in study 1, revealing

significantly higher plasma levels of the hormones at the onset of lay (week 24) compared to

periods preceding the onset of lay. However, plasma PTH levels were unresponsive to the

varied dietary macro-minerals in LB hens, but significantly higher levels in LSL hens fed the

LCaP diet compared with those fed the Con diet (p = 0.04) were observed in layers reported in

study 2. More so, serum concentrations of PTH remained unaffected by diet at all experimental

stages in the broilers reported in study 3.

PTH is often regarded as a hormonal “calciostat” that prevents hypocalcemia, modulating Ca

homeostasis by indirectly mediating osteoclastic bone resorption to mobilize Ca and P, as well

as the renal reabsorption of Ca and excretion of P [Blaine, 2015; Moe, 2008; Urist, 1967],

usually under insufficient diet supplementation. Moreover, the crosstalk between calcitriol and

PTH enables the regulation of systemic Ca and P levels via sophisticated feedback loops in the

organismal biosystem. The increase in PTH in layers in study 1 suggests the efforts by the hens

to maintain appropriate levels of circulating Ca throughout production [Gloux, 2019]. However,

the unperturbed levels of PTH in the broiler cohorts in study 3 might be attributable to the fowl-

specific utility and metabolism of Ca, which is less intense compared to the layer to define

performance [Li, 2017; Pierce, 2009].

Furthermore, temporal profiling of the plasma calcidiol (25(OH)2 Vit D3), the storage form of

vitamin D was significantly lowered from the onset of laying at week 24 in both LB and LSL

hens in study 1, revealing a significantly higher level in the LB hens compared to LSL hens at

senescence (week 60). Notably, calcidiol levels at week 30 were numerically increased in LB

compared to LSL strains (p = 0.051). Hence, it is conceivable that calcidiol produced in the

liver is deposited in the egg yolk as an embryonic reservoir as the hens peak in production [Qin,

1995]. Similarly, in study 2, a marked strain effect was observed in the plasma calcidiol levels,

which differed significantly, with higher levels in LB compared to LSL across all dietary

groups. More so, the significant difference in calcidiol concentrations in response to the diets

was observed in LB layers fed the low P and Ca diet (LCaP) (39.26 ± 3.35 ng/ml) compared to
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those fed LP (39.26 ± 3.35 ng/ml) in LB (p = 0.03) [Reyer, 2021a]. Contrastingly, serum

concentrations of calcidiol were unaffected by diet at all experimental stages in the broiler in

study 3. The observations regarding plasma calcidiol levels in layer experiments in studies 1

and 2 agree with previous experiments that reported LB hens exhibit a higher bone mass and

breaking strength of humeral and tibia bones compared to LSL, whereas bone density remained

unaffected [Habig, 2013; Silversides, 2012]. Albeit the LB and LSL hens shared similarity in

their productive capacity, which directly involves the metabolism, mineralization and turn-over

of Ca, it is evident that the laying hens indeed recruit differing endocrinal, transcriptional and

metabolic routes in response to environmental stimuli to define their distinct phenotypes

[Omotoso, 2021: Reyer, 2021a; Sommerfeld, 2020a; Sommerfeld, 2020b].

Plasma concentrations of oestradiol (E2) were significantly elevated from the onset of laying at

week 24 in both LB and LSL hens in study 1, suggesting the attainment of sexual maturity

logically connotes the start of egg production. Oestradiol, the most potent form of estrogen, is

secreted primarily by the laying hen’s ovaries and is responsible for the overall maturation and

development of the female reproductive system. Regarding laying hen, it regulates process of

yolk protein formation (vitellogenesis) in the oocytes and the activation of yolk precursors in

the liver during sexual maturation [Denslow, 1999]. In addition, it contributes to the formation

of the medullary bone in the laying hen [Dacke, 1993]. Based on this information, it is inferable,

that a strain-specific strategy for maintaining a long-term response to metabolic demands in the

LB hens was observed due to the higher plasma levels of oestradiol, which persisted till

senescence (week 60).

At the onset of lay in study 1, plasma T3 concentrations decreased with a corresponding

increase in the plasma oestradiol levels. Based on the observed increase in the latter, it is

inferable that the laying hens traded off between somatic body development and reproductive

capacity development. This suggests that the hens prioritized reproductive development over

somatic body development at the onset of lay [McNabb, 2017; Sechman, 2009]. However, in

the diet experiment in study 2, plasma T3 concentrations showed no significant difference

between dietary groups. The strain-specific responses observed in the LB < LSL at week 16,

also suggests an adaptive response for body growth relative to production in the LSL, this is

buttressed explicitly by the fact that the LSL hens have lower body weight but a higher egg

weight than LB hens [Sommerfeld, 2020b]. In the broiler experiment reported in study 3, serum

concentration of T3 was significantly reduced in chickens fed the L P diet at the early growth

phase. Indeed, P deprivation, especially in P-sensitive broilers, induces hypothyroidism and

systemic growth reduction at the early stages of development [Parmer, 1987; Jianhua, 2000].
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Conclusively, based on the interaction of the endocrinal profiling in the studies discussed, it is

conceivable that as soon as the external situations, e.g., supply of appropriate/adequate dietary

mineral requirement or the physiological status of the animal (sexual maturation) changes,

intrinsic adaptive endocrinal determinants respond to maintain mineral homeostasis in domestic

fowl. These mechanisms include an immediate short-term regulatory action for absorption or

excretion of minerals mediated by an interplay of different hormones to targeted tissues/organs

through feedback loop mechanisms.

3.3 Age and diet effect on transcriptomic profiles of two laying hen strains

Jejunal transcriptomic profiles between the LB and LSL hens accessed overall developmental

time points (weeks 10, 16, 24, 30 and 60) in study 1 revealed a total of 82 differentially

expressed genes (DEGs) involved in different biological processes, including the formation of

extracellular matrix (COL9A1, CRTAC1, MMRN2), adaptive immunity (CD8A, GBP6, HCK)

and micro- and macronutrient utilization (HFE, SLC27A5) after pathway enrichment analysis.

Similarly, the diet-specific comparisons between LB and LSL laying hens fed either of four

experimental diets (Con, LCaP, LCa and LP) in study 2 revealed 1020 DEGs intersecting all

four diet group comparisons. These DEGs represent the strain-specific differences in jejunal

nutrient utilization, metabolism and immunity. They are involved in biological processes

including ‘metabolism of xenobiotics by cytochrome P450’, ‘glutathione metabolism’,

‘arginine and proline metabolism’, ‘drug metabolism’, and ‘histidine metabolism‘ after

enrichment analysis [Reyer, 2021a].

Indeed, given the observed strain-specific transcript abundance reported in studies 1 and 2,

considerable strain/genetic variability exists between the LB and LSL hens. This observation

have been elaborately documented in previously and recently reported studies. The disparities

in traits exhibited by the LB and LSL hens in response to age effects and environmental factors

such as dietary mineral includes phytate degradation and transcellular mineral P and Ca

absorption [Sommerfeld, 2020b], egg quality [Wistedt, 2019], bone parameters [Khanal, 2019],

temporal distribution and shifts in immune cells towards innate and humoral responses for

immunocompetence [Schmucker, 2021; Hofmann, 2021], and identification of allelic specific

expression and imbalance [Iqbal, 2023].

Recent studies that investigated the immune system (systemic and lymphatic distribution of

leukocyte subsets) of the LB and LSL during adolescence and the egg-laying period reported

an increase in counts of all splenic lymphocyte types considered and γδ T cells in the blood

from weeks 9/10 to 15/16, suggesting a response to novel pathogens encounter at the

adolescence [Schmucker, 2021]. At the transitional phase from the pre-laying production stage
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(weeks 15/16) to the onset of lay (weeks 23/24), a marked decrease in the number of γδ T cells

and cytotoxic T cells (CTL; CD45+/CD4−/TCRγδ−/CD8α+) was observed, remaining low

through the course of the laying period [Schmucker, 2021]. The authors concluded that egg-

laying activity altered the immune system toward a more pronounced humoral and innate

immune response. Overall, it was evident that although there are variations in the immune traits

exhibited by the LB and LSL hen strains, age-related immunological patterns were similar

[Schmucker, 2021].

Comparisons of DEGs within and between each of the two-layer strains across the selected

production stages were highest at the transitional phase between the pre-lay stage (week 16)

and the onset of lay (week 24) in study 1, suggestive of a transcriptional shift and responses in

preparedness for egg production. In study 2, the highest DEGs (4540) between the LB and LSL

hens were observed in hens fed the low P diet, indicative of transcriptional response to reduced

P levels within the layers for adaptation.

The temporal profiling of LB and LSL hen jejunal transcript abundance overall productive

developmental time points in study 1 identified 18 significant profiles, including 10 for LB and

8 LSL hens. Three profiles each (profiles #9, #41 and #18) were further selected to represent

the downstream analysis for identifying enriched molecular pathways. Pathways were

considered significantly activated or inactivated at an IPA-predicted absolute z-score > 2.

Profile #9 consisted of inhibited genes which consistently decreased with advancing productive

period and were reflective of pathways generally associated with mitochondrial energy

transduction and cellular growth processes, namely, “sirtuin pathway”, “mitochondria

dysfunction pathway”, “oxidative phosphorylation pathway”, “JAK/SAT signaling pathway”

expressed in both the LB and LSL hens and “CD27 signaling in lymphocytes pathway” in the

LB hens. Recently, reports on genes with an allelic-specific expression were associated with

these molecular pathways in an RNA-seq based study on discovering genetic variants and

allele-specific expression between the two-layer strains [Iqbal, 2023]. Furthermore, enriched

genes, e.g., SIRT2, SIRT6 and SIRT7 in the sirtuin pathway contribute to cellular energy

metabolism processes, which enable adaptive responses to metabolic and oxidative stress

through metabolic energy dispensation and homeostasis in synergy with the mitochondria

[Nogueiras, 2012; Bosch-Presegué, 2013]. Additionally, the enrichment of mitochondrial

dysfunction and oxidative phosphorylation pathways in profile #9 buttress the mitochondrial

theory of ageing in which the sophisticated roles of cellular energy dispensation and respiration

of the mitochondria diminish with advancing age due to the accumulation of reactive oxygen

species (ROS), thus becoming dysfunctional [Chistiakov, 2014; Harman, 1972]. Hence, this

33



Chapter 3 — General Discussion

suggests the decline in cellular energy-dependent processes (e.g. intestinal cell renewal and

proliferation) in the layers strains as they mature, approaching senescence [Rossiello, 2022;

Lidzbarsky, 2018]. Also identified were inhibited DEGs in the JAK/STAT signaling pathway

in both LB and LSL strains [Omotoso, 2021].

The JAK/STAT pathway is crucial in intestinal epithelial repair and regeneration processes via

the activation of growth factors and cytokines [Truong, 2017]; hence, the inhibition of the

JAK/STAT signaling pathway alongside the oxidative phosphorylation over the developmental

stages (week 10-60) in both hen strains suggests a gradual shift in resource allocation from the

initial modulation of cellular growth processes that maintenance the intestinal epithelium

[Omotoso, 2021]. Previous studies on gut transcriptomic profiling in mouse models identified

aging-associated changes in mRNAs attributable to cell cycle, oxidative stress and apoptosis,

specifically within the intestinal epithelial stem cells (IESCs) [Moorefield, 2017].

The abundance of mRNA transcripts clustered in Profile #41 showed an increasing pattern over

all stages of production, mainly observed in LSL hens. Molecular pathways enriched Profile

#41 included immune-related processes as well as epithelial repair control and regeneration,

e.g., “Leukocyte extravasation signaling pathway," "Regulation of the epithelial-mesenchymal

transition pathway," "NF-B signaling pathway," and "STAT3 pathway." The observed

Leukocytes and NF-B, which are primary regulators of the innate and adaptive immune

response system, suggest an age-related activation of the immune system in the LSL hens

[Reyer, 2021a; Hofmann, 2021]. DEGs clustered in Profile #18 overlapped between the LB and

LSL hens in study 1. It comprised activated mRNA abundances with a sustained increase from

the onset of laying (week 24) to the senescent phase of production (week 60). Molecular

pathways enriched profile #18 includes “RANK signaling in osteoclast pathway”, “senescence

pathway”, and “NGF and HGF signaling pathways”. Hens exhibited strain-specific pathways

with the cardiac hypertrophy signaling pathway in the LB hens and the UVA-induced MAPK

signaling pathway in the LSL hens. Due to the expression pattern of genes in this profile, direct

effects of dietary change or secondary effects of sexual maturity and the nutrient demand with

the onset of lay are conceivable [Drozdowski, 2006].

Interestingly, the RANK signaling has been implicated in the adaptation of the laying hens to

the onset of egg laying, coupled with the endogenous release of Ca to meet production demand

which occurs under the synergistic actions of pro-resorption endocrinal factors such as

calcitriol, PTH and oestradiol, in conjunction with transcriptional modulation of the

RANKL/RANK signaling pathway [Mizoguchi, 2014; Takahashi, 2014; Boyle, 2003;

Carabotti, 2015]. In addition, the RANK signaling is also associated with pro-immune activities
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within the epithelium, specifically via the modulation of differentiated sentinel micro fold cells

(M cells) present in the follicle-associated epithelium (FAE), which covers the gut-associated

lymphoid tissues (GALT) [Knoop, 2011; Knoop, 2009].

Considering the expression pattern of profile #18 for the RANK signaling pathway, it is

inferable that both LB and LSL hen strains exhibited a consistently low expression of pro-bone

resorption DEGs during the pre-lay stages, specifically weeks 10 and 16 [Omotoso, 2021].

However, there was a surge in expression at the onset and peak of egg laying, weeks 24 and 30,

respectively. This surge may have been attributed to the increased metabolic demands during

egg laying. Ultimately, this surge reached a plateau during the post-peak production stage. It

was expected that the HGF and NGF signaling pathways would be activated in both hen breeds,

which suggests a greater degree of gut-brain communication in achieving enteric homeostasis

during the egg-production periods [Carabotti, 2015].

Based on the transcriptional responses observed in study 2, it appears that LB and LSL hens

have distinct mineral requirements. This inference is drawn from the differences in jejunal gene

expression patterns exhibited by each hen. Notably, the LSL hens' response to the LP diet

activated pathways related to "ribosomal protein synthesis" and "regulation of cellular signaling

cascades". Conversely, the LB hens' response to LP diets was contingent on Ca supply [Reyer,

2021a]. More so, the adaptive Ca metabolism actions exhibited by the LSL hens via a plethora

of regulatory genes involved in ‘Ca-ion binding and transport’, ‘Ca release-activated Ca

channels’ might allow better coping mechanisms to Ca depletions than the LB strain [Reyer,

2021a]. The LSL hens have also been reported to have higher eggshell weight compared to the

LB hens, a trait possibly attributable to their corresponding efficient utilization and metabolism

Ca [Sommerfeld, 2020b]. Thus, taken together, it is conceivable to opine that the LB and LSL

hens may have unique dietary needs that should be considered.

Immune-related pathways, such as the 'intestinal immune network for IgA production' (KEGG)

and 'IL-4 signaling' (IPA), were identified in the LSL post DEGs-derived comparisons between

the birds fed the Con and LP diets [Reyer, 2021a]. Similarly, reduced dietary P was reported to

enhance immune parameters such as B cells in the blood and IgA concentrations in bile in both

laying hen strains, with a comparatively higher level in the LSL hens compared LB [Hofmann,

2021]. Furthermore, transcriptomic analyses of dietary treatments in the LB hen strain in study

2 revealed increased expression of genes involved in ‘Focal adhesion’ and ‘GP6 signaling’ in

the LCaP diet compared to LP-fed laying hens [Reyer, 2021a]. The GP6 proteins are central

signaling receptors in collagen formation and function, alongside fibronectins, integrins,

laminins, and tenascins, constituting components of the extracellular matrix (ECM) [Simon-
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Assmann, 1995; Beaulieu, 1997]. In conclusion, the transcriptomic response of the LB and LSL

hens to the experimental diets investigated in study 2 suggests that the birds are capable of

adapting to dietary changes via the recruitment of endogenous mechanisms.

3.4 Intestinal and renal mineral absorption in laying hens and broiler chickens

Jejunal and renal transcellular transport of P was examined in broiler chickens in response to a

depleted dietary P regimen in study 3. Elsewhere, transcriptional investigation into the ileal

transcellular transport of minerals (P and Ca) in laying hens in response to the varied supply of

dietary levels of Ca and P was reported [Sommerfeld, 2020b]. Comparatively, the ileum was

the preferred tissue choice to access insights into the transcellular mineral uptake in

[Sommerfeld, 2020b] due to its extensive retention time of ingested feed compared to those of

the duodenum and jejunum, coupled with the goals of harnessing insights into strain and dietary

factors influencing mechanisms of phytate degradation and its disappearance within the small

intestine of both hen strains.

3.4.1 Ileal transcellular mineral (P, Ca) transport in laying hens

The transcriptional investigation of the ileal transcellular transport of minerals (P and Ca) in

two laying hens strains fed either of the four experimental diets (P+Ca+, P− Ca+, P+Ca−, and

P− Ca−) selected three mineral cotransporters each for P (SLC20A1, SLC20A2, SLC34A2) and

Ca (ATP2B1, CALB1, NCX1), alongside the Gallus gallus GAPDH and ACTB genes for

housekeeping [Sommerfeld, 2020b]. Findings on genes encoding transcellular P transport

(SLC20A1 and SLC34A2) in the ileum of laying hens were higher in the LB hens compared to

LSL (LB > LSL; FC= 1.60 and 1.34, respectively; p ≤ 0.007) [Sommerfeld, 2020b]. Genes

encoding transcellular Ca transport ATP2B1 (p = 0.077) and NCX1 (p = 0.083) had 24% higher

and 25% lower ileal expressions in the LB hens compared to the LSL [Sommerfeld, 2020b].

However, CALB1 expression was higher in LSL fed the P− diet compared to LB hens receiving

the same. More so, the higher dietary P level led to a higher P intake and a higher P excretion.

It is conceivable that the utilization of P might not be influenced by the dietary P level,

considering the complex stoichiometric balance between P and Ca in the laying hen [Sinclair-

Black, 2023]. It also stands to reason that higher levels of Ca in the diet might have led to the

decreased intake and utilization of P, as evidenced by the numerically lower mRNA copy

numbers of SLC34A2 in hens fed diets with higher Ca levels compared to those fed lower levels.

Elsewhere, dietary Ca levels have been reported to impact the ileal phytate P degradation.

Tamin et al. (2004) reported that using two dietary Ca levels (0 or 0.5% of inclusion), 69% and

25.4% degradation of ileal phytate, respectively, was observed without the addition of phytase.

However, on the supplementation of 500 FTU/kg of 3-phytase Aspergillus ficuum or 6-phytase
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Peniophora lycii phytase, the degradation of ileal phytate increased to 79.5% and 76.2% in diets

with no Ca and to 58.9% and 44.9% in diets with 0.5% Ca. In this context, it is inferable that

the lower P intake associated with the general lower feed intake might be due to the higher

dietary Ca concentration. However, it is noteworthy that the P excretion was not affected by

Ca, which implies that, although less P reached the small intestine, the same amount was

excreted, possibly due to excess Ca (Ca+ diet treatment) that might have complexed with P

hampering the absorption, hence, leading to excretion. Conclusively, the gene expression

profiles of transcellular mineral transporters revealed a vivid strain-specific expression in

response to the varying dietary minerals [Sommerfeld, 2020b]

3.4.2 Jejunal and renal transcellular mineral P transport in broiler chickens

Similarly, in order to access the roles of the jejunum and kidney, four transcellular P co-

transporters namely; SLC20A1, SLC20A2, SLC34A1 and SLC34A2, were investigated in the

jejunum and kidneys of broiler chickens at different developmental stages under the different P

diet regimen. During the early growth phase, broilers were fed one of three experimental diets

containing different levels of dietary P (L, M and H). Subsequently, a low dietary P level was

supplied at the grower and finisher stages [Omotoso, 2023]. The application of a P depletion

strategy due to environmental concerns was intended to realize an improved mineral utilization

of the broiler chicken via the optimization of intestinal P absorption, bone retention, and

reabsorption by the kidney. In order to access the roles of the jejunum and kidney in this context,

four transcellular P co-transporters namely; SLC20A1, SLC20A2, SLC34A1 and SLC34A2, were

investigated in the jejunum and kidneys of broiler chickens at different developmental stages

under the different P diet regimen.

Findings on the jejunal and renal mRNA transcript abundance of P co-transporters revealed a

significant difference on day 17, with an increased jejunal expression of SLC34A2 (L>H; FC=

2.27) observed in L-fed broilers compared to those fed the H diet. Similarly, renal SLC20A2

transcripts differed between broilers fed the H diet compared to those fed the L diet (L<H; FC

= 1.96) and those fed the M diet (M<H; FC = 1.99) [Omotoso, 2023]. Renal SLC34A1 mRNA

abundances differed significantly between broilers fed the L and M diet (L>M; FC = 2.04).

Furthermore, renal SLC34A2 mRNA abundance increased (L<H; FC = 1.96) in the animals fed

H compared to those fed the L diet. On days 24 and 37, the expression of jejunal and renal

sodium-phosphate co-transporter remained unaffected between the dietary groups [Omotoso,

2023].

In fact, the gene expression profiling of P transport in broilers fed varied P diets revealed a vivid

tissue-specific (jejunum, SLC34A2 and kidney; SLC34A1) expression. Transcriptionally,
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SLC34A2 plays an essential role in the transcellular P transport mechanism within the intestine

of rodents [Sabbagh, 2009], humans [Xu, 1999] and broiler chickens [Omotoso, 2023].

However, lower mRNA expression of SLC34A2 has been reported in pigs [Wubuli, 2019]. The

jejunal SLC34A2 response to the depleted P strategy suggests that intestinal P availability in the

diets elicited the abundance of sodium/phosphate co-transporters in jejunal cells to maintain

homeostasis and adaptation at the earlier growth phase [Hu, 2018].

Comparatively, the appreciable abundance of SLC34A2 mRNA transcripts in the ileum of

laying hens and the jejunum of broiler chickens [Sommerfeld, 2020b; Omotoso, 2023], validate

its relevance in facilitating transcellular P transport in the intestine of the domestic fowl. Several

studies have highlighted an increased expression of genes encoding transcellular P transport in

the small intestine of both broiler chickens [Proszkowiec-Weglarz, 2019; Hu, 2018; Rousseau,

2016; Li, 2012] and laying hens [Wang, 2022; Sommerfeld, 2020b; Li, 2018] on exposure to

deficient P diets, implicating a transcriptional response to luminal P concentrations in

conjunction with endocrinal factors, such as calcitriol.

In addition, the renal-specific expression of the SLC34A1 gene in the L-fed broilers at day 17

suggests a transcriptional regulatory role in the reabsorption of P at the proximal tubule to

promote P homeostasis. Moreover, a higher abundance of renal type III sodium/phosphate co-

transporters was observed in broilers of the H group compared to L and M (SLC20A2) and M

group (SLC20A1), respectively. Previous studies on murine models identified responses of the

type III sodium/phosphate co-transporters to changes in dietary P contents [Candeal, 2017;

Marks, 2019]. However, their precise contribution to the poultry's P regulation and homeostasis

remains unclear [Marks, 2019].

Indeed, the transcellular pathway seemed to be the preferential intestinal P absorption route

under dietary P restrictions [Marks, 2019]. This is inferable, given the comprehensive

expression and response of the birds through jejunal and renal routes under dietary P deficit

conditions, which severely impacted the birds at the early (day 17) development stages. Hence,

reducing P supply in early life had limited success in conditioning for a mineral prudent

phenotype with high P efficiency in later life [Omotoso, 2023]. As a result, a practical

implementation of a P depletion must meticulously consider the timing, duration, and extent of

the P depletion strategy in broiler chickens. Thus, it is recommended that early-life conditioning

strategies for mineral efficiency (e.g., P depletion) in the broiler should be initiated no earlier

than the early grower phase of development when the birds are more tolerant [Omotoso, 2023].
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3.5 Osteo-physiological response of the domestic fowl to varied dietary minerals

In order to assess the role of the bone in the compensatory homeostatic mechanism explored by

the broiler chickens under the dietary P depletion strategy, osteo-physiological parameters,

including the bone-breaking strength, length, diameter, weight and ash, were analysed. Findings

on the osteo-physiological response of the birds highlighted significant differences in the bone

force (breaking strength), weight, length, diameter, and ash between broilers fed the low P diet

compared to those fed the M and H diet at day 17. Specifically, bone force differed significantly

between broilers fed the depleted P and those fed the recommended at day 24 and between the

recommended and high P groups at day 37. The femora bone diameter differed significantly

between broilers fed the depleted P (MLL) and the MMM and HHH. Values for bone weight,

length, and ash remained unaffected. In this context, it is conceivable that osteo-physiological

responses exhibited by the broiler chickens fed the L diet compared to those fed M and H, was

aggravated by age and the reduced pool of P within the organismal biosystem, hence the

severity in response, which was highest at the earlier developmental phase.

Physiologically, the lowered bone mineralization observed at the earlier developmental phase

might be attributable to either a reduced P availability needed to drive bone ossification

processes [Shao, 2019; Taylor, 2013] or increased bone mobilization processes from the bone

to meet other physiological processes [Li, 2020]. This is inferred from the fact that the bone

accounts for about 80% of total body P [De Groote, 1997], and is stored in the Ca-complex

form of hydroxyapatite Ca10(PO4)6(OH)2, crucial for musculoskeletal development [Penido,

2012].

Broadly, the optimal development of skeletal structure in the domestic fowl is crucial for their

overall productivity and welfare. However, dietary mineral fluctuations such as over- or under-

supply of dietary P and Ca demand of the bird have a significant impact on bone traits [Driver,

2006], leading to fractures and other bone-related abnormalities such as hypophosphatemic

rickets, osteomalacia, osteoporosis. Bone fractures, including keel, femur or tibia, are a

significant welfare problem in laying hens and broiler chicken farming, respectively. In the

laying hens, the incidence of keel fracture is predominant and often associated with the

extensive exogenous resorption of the hens bone for eggshell calcification processes [Toscano,

2020], which, when unreplenished exogenously through diets, increases the brittleness of the

bone resulting in a fracture as the bird interacts with its housing environments, e.g., cages

[Toscano, 2020]. Therefore, research-related efforts towards deciphering precise dietary

mineral balance, stock improvements, housing and environmental enrichment [Rufener, 2020;
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Riber, 2018] and early-life conditioning strategies [Valable, 2018] need to be adopted as

potential preventive strategies for bone fractures in the domestic fowl.

3.6 Response of the broiler's jejunal microbiota to varied dietary P

The experiment reported in study 4 consolidated the previous research presented in study 3,

forming a comprehensive continuum of investigation. The study aimed at identifying the

functional contributory role of the jejunal microbial composition to the compensatory

mechanism for mineral homeostasis and efficiency adopted by broilers subjected to a P

depletion strategy at the early developmental phase. The study commenced with birds fed a

medium or high P supply in the first weeks of life, followed by a depletion strategy applied at

growth intervals from d 17-24 and d 25-37 to investigate the effect on the jejunal microbiota

community. The mineral P and Ca intake and their corresponding fecal levels were also

analysed.

Notably, it was crucial to integrate this research interface because the intestinal microbiota

contains specific phosphatase-secreting microbes such as the Bifidobacteria [Haros, 2005] and

isolates of Lactobacillus [Kim, 2007], which are capable of hydrolyzing phytate and release

inorganic P to the host for absorption. Moreover, the dietary supply of macro-minerals such as

P and Ca to the monogastric species has been reported to modulate the gut microbiota [Ptak,

2015], thus indicating the microbiota as a potent, functional entity involved in nutrient

metabolism [Grice, 2012].

3.6.1 Effect of mineral P and Ca intake on the resultant fecal mineral levels

Broadly, the resultant fecal P levels mirrored the dietary P intake in the depleted, recommended,

and high P feeding groups, suggesting that the feed formulations have been effective. Previous

studies in the broilers [Rama Rao, 2006] have also reported similar complementary

relationships between high dietary minerals intake and their resultant fecal excrement and vice

versa.

Interestingly, at day 24, fecal Ca levels of broilers in the depleted P groups differed significantly

from those in the non-depleted groups (HL>HH). At the same time, total fecal Ca levels were

unaffected by the diets at d 17 and 37. In addition, results from broiler chickens fed reduced

inorganic P showed increased serum calcitriol levels in study 3, alongside increased intestinal

Ca-binding protein levels leading to improved Ca absorption reported elsewhere [Wasserman,

1992; Friedlander, 1977].

Taken together, the analyses revealed evidence of possible increased bone resorption in the

depleted broiler chickens compared with the non-depleted groups. This could indicate increased

mineral mobilization of P from the bone to meet physiological demands in the depleted P group
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and, as a result, impede further absorption and retaining of Ca pool within the organism in

efforts to maintain stoichiometric mineral P and Ca balance, hence the increased excretion of

Ca. Furthermore, a comprehensive review of the current recommendations for total Ca content

in broiler feed formulations concluded that dietary Ca might be overestimated [David, 2023],

affecting P absorption rates [Selle, 2009]. Notably, higher P excretion rates due to mineral P

supplements above recommendations have also been demonstrated in other monogastric

species, such as pigs [Reyer, 2021b], with no added benefit observed for bone mineralization

[Gerlinger, 2021]. Results in this study indicate that broilers fed the high P diet received mineral

fractions that exceeded their metabolic demands for growth or maintenance with no additional

benefit for the measured traits but resulted in unnecessary fecal losses, as reported elsewhere

[Li and Bryden, 2017].

Therefore, a well-tailored depleted/reduced P strategy remains a powerful tool for limiting the

P content of manure under consideration of Ca:nPP ratios [Knowlton, 2004] while

strengthening the bird's P resource allocation and efficiency.

3.6.2 Effect of mineral P and Ca intake on the resultant fecal phytate levels

At d 17, the analysis of fecal phytate revealed a significantly higher level in H animals compared

to M animals. At d 24 and d 37, the P depletion groups ML, HL, MLL, and HLL showed lower

fecal phytate levels compared to the non-depleted groups HH and HHH but did not differ

significantly from groups MM and MMM. The significantly lowered phytate concentrations in

the feces of birds fed medium P than in birds fed high P levels at d 17 and d 24 suggests the

hydrolysis of phosphoric ester forms, mediated by a phytase secreted by the broiler’s enteral

microbiota. The P-depleted groups exhibited a nearly maximal phytate degradation at d 24 and

d 37, further validating the domestic fowl’s intestinal phytate degradation capacity to meet

metabolic P demand [Ingelmann, 2019].

3.6.3 Relative Abundance of broiler chickens jejunal microbiota fed varied P diets

In the current study, the overall microbial diversity represented by alpha diversity indices

revealed no alterations based on dietary P depletion. Based on the microbial dissimilarity

analysis, an age-dependent separation of profiles was observed. Accordingly, previous studies

have reported the apparent effects of age on the microbial community that colonizes the broiler's

GIT [Zhou, 2021; De Cesare, 2019]. Moreover, the dominance of the Lactobacillus, as

highlighted by the taxonomic plot, was consistent with several previously reported studies

[Künzel, 2021; Kers, 2018; Borda-Molina, 2016], where Lactobacillus presence in the gut

accounted for the majority of the microbiota fraction. As a result, Lactobacillus can be referred

to as the “core microbiota” in the present study. The threshold for defining a microbial taxa as
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the core microbiota hinges on the predominant abundance compared other taxa within the

microbial community. For example; Ngunjiri et al. (2019) defined core microbiota taxa in their

study at maximum coverage 75%, Clavijo et al. (2022) at 50% coverage while Roth et al. (2022)

set the detection limit to classify a taxa as a core member at 97% of the total sample number.

Functionally, the abundance of Lactobacillus, a known probiotic in the gut, has been positively

correlated with beneficial functions, influencing the gut in one or several ways, including the

improvement of gut physiology, structure, integrity and function [Khan, 2020], as well as

increased body weight gain in the chicken [Zhang, 2022; Lokapirnasari, 2019]. More so, it is

inferable that the prevalence of Lactobacillus might indicate a low complexity of jejunal

microbiota in broiler chickens. Given the response of the broilers’ jejunal gut microbiota

response to depleted P diets at day 24, it is inferable that the shift in microbiota community

made only a subtle contribution to the birds' adaptive mechanism towards maintaining P

homeostasis but responded more based on the availability or scarcity of the macro-mineral.

Furthermore, a recent study that reported on active core microbiota of two high-yielding layer

strains fed dietary Ca and P 20% lower than recommended indicated that reduced dietary Ca

and P supplementation had a minor effect on the microbiota compared to the strong influence

of the bird’s genetic background [Roth, 2022].

Conversely, at d 37, an incremental shift in the gut of broilers fed the HLL diet compared to

those that received HHH was observed for unclassified genera belonging to families

Lachnospiraceae and Ruminococcaceae. Both Lachnospiraceae and Ruminococcaceae

microbiota families have been reported as beneficial in the human GIT, implicated in the

fermentation of carbohydrates [Duncan, 2007], coupled with the degradation of resistant

polysaccharides, e.g., starch and cellulose, facilitating digestion of plant-based diets [Collier,

2008]. The identified taxa may be of interest in further studies to reshape the microbial

composition for improved nutrient utilization from dietary P sources.

In contrast to the microbes whose abundance increased following the P depletion diet at day 24,

Brachybacterium, Brevibacterium, and genera of the Staphylococcaceae family were observed

to significantly increase in abundances in the jejunum of non-depleted P groups compared to

the depleted, which suggests that these microbial genera rely on a P enriched intestinal

environment to proliferate and possibly their disappearance under P scare enteral milieu. For

example, several species of Brevibacterium were described as phosphate-accumulating

probiotics, which might be more prevalent in high P supply [Anand, 2019]. The results suggest

that the increased proliferation of these mentioned microbial taxa under the high dietary P

supply could be a biomarker for excessive P intake in commercial broiler chickens.
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Furthermore, the current microbial profiles in this study may support the hypothesis that an

increase in mammalian intestinal P levels stimulates microbial short-chain fatty acid (SCFA)

production [Heyer, 2015]. This also agrees with a study in broilers in which low P and low Ca

(P-Ca-) diets resulted in a decrease in SCFA (DL-lactate and acetic acid) in the ileum, and

subsequently, an increase in these parameters was observed after phytase supplementation

[Ptak, 2015]. In addition, a recent study in chickens reported that dietary P deficiency decreased

SCFA production due to reduced cellulose fermentation, which suggests intestinal P content

modulates the abundance of fibrolytic bacteria [Li, 2022].

A firm body of evidence exists that diet is a potent factor driving the gut microbiota's structure,

abundance and diversity. Recently, nutritionists have made an effort to manage and nurture the

benefits of the gut microbiota, including promoting a healthy gut environment via the

applicability of probiotics, prebiotics and synbiotics in monogastric livestock nutrition

[Pourakbari, 2021]. Probiotics are living microorganisms that modulate the composition and

diversity of host gut microbes [Pourakbari, 2021; Martin, 2019], increasing the abundance of

beneficial bacteria such as Lactobacillus, Bifidobacterium. Prebiotics are non-digestible feed

ingredients that selectively stimulate the growth and activity of beneficial bacteria in the gut

[Hill, 2014]. Taken together, pre and probiotics form synbiotics, which aid the collective

beneficial goals of both practices, including improving gut development and immune function

fortification, enabling optimal overall health and performance of the bird. Deeper insights into

the interactions between probiotics, prebiotics, synbiotics and the existing gut microbiota for

phytate degradation and P and Ca resource allocation and efficiency would be of value in

poultry livestock farming.

.

43



Chapter 4 — Conclusion

4 General Conclusion

The laying hens and broiler chicken both exhibited sophisticated interactive network of intrinsic

homeostatic mechanisms to maintain P balance. These mechanisms involve transcriptional

(e.g., differential transcript abundance and molecular pathways enrichment), endocrinal

(hormone and metabolites dynamics) and gut microbial (shift of microbioat composition)

responses accessed in a plethora of tissues/organs such as the jejunum, ileum, kidney and the

bone for mineral P and Ca balance.

The endocrinal and transcriptional responses elicited in the laying hens confirm an age-

dependent, strain-specific response with respect to mineral homeostasis and efficiency. The

longitutinal assessment of endocrinal determinants for mineral homeostasis dynamics in the

laying hens revealed the most conspicuous shift at the transitional phase from the pre-laying

(week 16) to the onset of lay (week 24), chiefly mediated by calcitriol (bioactive form of vitamin

D), and PTH, via a feedback loop mechanism. Notably, the contributory effect of oestradiol

(E2) and triiodothyronine (T3) played a crucial role in the attainment of sexual maturity by the

layers, which is associated with the shift in dietary Ca demand at the onset of egg production,

proving to be the most significant developmental phase in the entire production cycle in the

laying hens.

The transitional phase from the pre-lay (week 16) to the onset of lay (week 24) was the most

important developmental phase of the laying hens, evidenced by the highest number of DEGs,

which modulated different molecular pathways to define their respective strain-specific

phenotypes. Strain-specific metabolic attributes were identified between the LB and LSL hen

strains regarding mineral utilization and phytate degradation. LSL hens exhibited a higher

capacity for phytate degradation, whereas LB hens utilize an active transcellular mineral

transport mechanism. Furthermore, there was noticeable difference in calcium-dependent

performance, with LSL hens producing higher quality eggs in terms of weight, while LB hens

exhibit greater bone mineralization and turnover. These results suggest a distinctive mineral

and vitamin D metabolism, which was further reflected at the transcriptional level. These

findings present promising avenues for further research into mineral efficiency and resource

allocation-related studies for optimal performance and welfare optimisation in the laying hen.

Broiler chickens exhibited a robust response to depleted dietary P levels at various stages of

development via the synergistic interplay of determinants, comprising hormonal as well as

osteophysiological responses evident in the variable calcitriol levels and bone mineralisation

and integrity parameters. Overall, broiler chickens elicited a tissue-specific transcellular
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transporters expression, i.e. jejunal (SLC34A2) and renal (SLC34A1) essential to facilitate

active intestinal absorption and renal re-absorption of P at a most critical growth phase (early)

in response to P depletion. These endogenous responses (endocrinal, transcriptional and bone)

aided the birds in compensating for the dietary P deficit in the early productive life, optimizing

mineral efficiency to facilitate adaptation in the later productive life.

The input of the gut microbiota in the compensatory adaptive mechanism in the broiler chickens

in this study was subtle in groups fed dietary P depletion compared to their non-depleted

cohorts. There are no additional benefits for excess P supplementation in commercial broiler

production, as the dietary P supply, P intake, and fecal P content were parallel. However, the

observation of increased proliferation of microbial taxa in the jejunum of broilers fed the surplus

P diets might present potential microbial biomarkers for excessive P supply in commercial

broiler production.

The use of low mineral P supplementation in poultry nutrition has multiple benefits for the

animal, humans, and the environment. Further research should be conducted with emphasis on

the timing of initiating the depletion, the length of depletion, and age/strain-specific

requirements of the bird to achieve maximal homeostasis for efficiency and reduced

environmental burden of the mineral. To optimize the metabolic and immunological benefits

of the gut microbiota, concise application of pro, pre, and synbiotic techniques to gut health and

functionality is necessary.
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OPEN Jejunal transcriptomic
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The jejunum plays crucial roles for the digestion and absorption of nutrients and minerals and for
barrier functions that are essential for a healthy, productive life cycle of farm animals, including
laying hens. Accordingly, knowledge of the molecular pathways that emerge in the intestine during
development, and particularly at the beginning of laying activity, will help to derive strategies for
improving nutrient eficiency in laying hens. In this study, jejunal samples were obtained from two
high-yielding layer strains at five developmental stages (weeks 10, 16, 24, 30 and 60 of life) for
RNA-sequencing, alongside the profiling of blood plasma parameters to approximate the dynamics
of mineral homeostasis. The results reflected a marked distinction between the pre-laying and
laying phase as inferred from levels of parathyroid hormone, triiodothyronine, estradiol, vitamin D,
and calcium. Moreover, the expression patterns of the intestinal mucosa responded directly to the
changing metabolic and nutritional profiles at the beginning of the laying phase in maturing high-
yielding strains of laying hens. These comprise signaling events namely RANK/RANKL signaling and
cellular senescence. Taken together, the timing of sexual maturity of laying hens demands closer
examination to unravel metabolic requirements and associated endogenous mechanisms.

Laying hens provide an affordable, safe and high-quality animal protein source in the form of eggs required to
meet the nutritional demands of the growing human population which currently stands at 7.7 billion1. The
global annual egg production is estimated at 76 million tonnes2,3, showing a trend of the continuous increase in
the number of layers, achieved mainly by populous countries such as China and India in an attempt to mitigate
food insecurity associated challenges4. The European Union accounts for the second-largest share of world egg
production after China, with an estimated number of over 400 million laying hens. Animals of the Lohmann
Brown (LB) and Lohmann Selected Leghorn (LSL) strains are widely used across husbandry systems5,6. Both
LB and LSL strains have been improved for egg production performance and have been extensively monitored at
the levels of bone quality, egg quality and behaviour7. Their egg production performance is approximately
identical, however, LB and LSL layer strains significantly differ in gene expression profiles of cerebrum, egg qual-ity
parameters (egg and eggshell weights), mineral metabolism (bone-breaking strength, phytate degradation,
trans- and paracellular transport), and immune responsiveness8–12. Importantly, the attainment of sexual maturity
in pullets (~ 18 weeks) through to the onset of laying (~ 24 weeks) represents a significant physiological shift
within the layers’ metabolic demand. More so, this developmental phase encompasses the cumulative inputs and
interconnectivity of different biological factors spanning nutrients and mineral metabolism, neuro-endocrinal
complexes, hepatic, skeletal and the immune systems13–15. The small intestine, specifically the jejunum is tasked
with the vital role of nutrient and mineral absorption (e.g., glucose, calcium, phosphorus), amongst other regula-
tory and crucial functions such as, barrier integrity, immune defense, lipid metabolism and endocrinal functions
all of which ultimately contribute to the overall health and stability in production performance of the hens16,17.
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Furthermore, the developmental transition of the layers from pullets to growers (pre-layers) to layers (onset
of lay), its peak in egg production and the senescence are strongly mediated intrinsically by the temporal expres-
sion of gene transcripts18,19, supported by the dynamics of the endocrine status and their interaction with the
environment to depict these physiological outcomes. Thus, the dietary regimen for layers is adjusted to meet
requirements for the respective production stages, e.g. higher dietary calcium at the onset of laying (3.5–4.5% in
dry matter) compared to grower phase (0.9–1.2% in dry matter) and pre-layer phase (2.0–2.5% in dry matter)20,
albeit this recommendation might be outdated and in need of a scientific re-evaluation9,21.

Transcriptomics, a current genomic appraisal method widely employed in the study of several species popula-
tions, laying hens inclusive, provides relative ease in the detection of differential gene expression. Thus, its use as
a genomic appraisal tool is quite significant. Transcriptomic studies have been conducted with the Lohmann
layers to uncover temporal differential gene expression patterns in oviduct development and defense in pre-laying
and laying hens22. Conversely, transcriptomic insight into the developmental process in laying hens through the
enteral routes (jejunum) continues to be limited. Clearly, intrinsic mechanisms throughout the entire produc-
tion period including the utilization of nutrients should be exploited. The multifaceted function and synergistic
inclusion of the small intestine in various biological complexes are associated with development and maturity in
the laying hens, coupled with the similarities in production and the different adaptive strategies adopted for
mineral homeostasis, immune and bone traits. We hypothesize that knowledge of differentially expressed genes
(DEGs) and molecular pathways related to development, growth and the onset of laying will contribute to further
improvements in nutrient eficiency and productivity.

The present study investigated differentially abundant mRNA transcripts and enriched pathways in the jeju-
num of two-layer strains (LB and LSL). Jejunal samples were collected throughout the entire production period at
weeks 10, 16, 24, 30 and 60 of life for high-throughput RNA sequencing, incorporating blood parameters to
approximate the dynamics of mineral homeostasis.

Results
Blood plasma profiling.     Plasma levels of calcium, magnesium and albumin showed production period-
specific responses, which significantly increased along the developmental phases in both LB and LSL laying hens
(Fig. 1, Table S1). The plasma levels of triiodothyronine (T3) and calcidiol (25OH-vitamin D3) were significantly
lowered while levels of calcitriol (1,25 (OH)2-vitamin D3) and estradiol (E2) were significantly elevated from
the onset of laying at week 24. A significant reduction with subsequent re-adjustment of the inorganic P levels
was observed at the onset of laying at week 24 in both LB and LSL strains. The PTH levels were significantly
increased at week 24 in both LB and LSL strains compared to other time periods. Alkaline phosphatase activity
(ALP) significantly differed between growing and senescent LSL hens, while no significant differences between
consecutive time points was observed in LB hens. Regarding strain differences, levels of triiodothyronine were
found to be significantly higher in LSL strain compared to LB hens at week 16. For ALP, the activity was sig-
nificantly higher at week 10 in the LSL as compared to LB hens. At week 60, estradiol and calcidiol levels were
significantly higher in LB hens compared to LSL hens, while calcitriol was significantly higher in LSL hens
compared to the LB hen strain. Notably, calcidiol levels at week 30 were numerically increased in LB compared to
LSL strains (p=0.051).

Identification of differentially expressed genes (DEGs).     The DEGs were obtained by comparing the
expression of jejunal mRNA from LB and LSL layer strains independently for each of the five production stages.
The integration of the resultant DEGs revealed unique sets of production-stage specific genes found to be dif-
ferentially abundant between both strains (Fig. 2A). In particular, 220 DEGs were identified between LB and LSL
hens at week 10, while 262, 877, 259 and 284 DEGs were identified between the LB and LSL hens at weeks 16, 24,
30 and 60 respectively.

The strain comparison at pre-layer stages (week 10 and 16) revealed a total of 43 and 50 DEGs (Table S2). At
the onset of laying in week 24, a total of 601 unique DEGs were identified, whereas weeks 30 and 60 showed 33
and 52 stage-specific DEGs, respectively, between LB and LSL strains. Interestingly, as the laying hens developed
through the production periods, a total of 82 genes were consistently differentially expressed between both
strains (Table S3). These specific differentially expressed genes over all the developmental stages were molecularly
implicated in the immune modulation (HCK, MTURN, CD8A, GBP6), nucleotide-binding and chromosomal
maintenance (WRAP53, CELF5, MMRN2), barrier integrity/extracellular matrix (TMIGD1, COL9A1, LRFN5,
CRTAC1), and complex lipid synthesis (SLC27A5). Temporal DEGs exhibited within LB and LSL laying hen
strains across the five production stages (Fig. 2B) were also deciphered by the comparison of the jejunal mRNA
expression with the highest number of DEGs between week 16 and 24 (Table S4). The overlap of DEGs analyzed
during this period is 69.5% (3399 genes) between the two strains.

STEM, functional annotation and pathway enrichment analysis.     Considering the 5 production
stages as time series, a total of 13,676 and 13,921 genes were used to analyze the transcriptional patterns in LB
and LSL hens, respectively. The STEM analysis highlighted 10 significant profiles in the LB layers strain and 8
significant profiles in LSL (Fig. 3). Profiles #9 and #41 were selected for detailed analyses due to their linear time-
course expression patterns in relation to the overall experiment. To approximate transcriptional shifts related to
altered metabolic demands at onset of laying, profile #18 was considered for detailed analyses. Genes included in
profile #18 represent a considerable overlap with DEGs identified in the contrast between week 16 and 24 (Sup-
plementary Fig. S1). Moreover, additional DEGs from the week 16 to 24 comparisons are assigned to profiles #9
and #41.
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Figure 1. Plasma parameters referring to endogenous mechanisms to maintain mineral homeostasis with
respect to the selected production stages (weeks 10, 16, 24, 30 and 60) of the LB and LSL laying hens. Values are
displayed as means±SE. Data for inorganic P and calcium were adopted from9. Superscripts indicate statistical
significance (P<0.05) between laying hen strains (capital letters) and production stages (small letters). PTH—
parathyroid hormone; ALP—Alkaline phosphatase.
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Figure 2. Number of DEGs derived from jejunal mucosa related to selected production stages in LB and
LSL laying hens. (A) Venn diagram depicting the differentially expressed genes between LB and LSL for each
production stage (week 10, 16, 24, 30 and 60) as well as their overlaps among different production stages. The
total number of stage-specific DEGs is given in brackets. (B) Comparisons of DEGs within (horizontal) and
between (vertical) each of the two laying hen strains across the selected production stages. Values in red and
black represent numbers of upregulated and downregulated DEGs. LB—Lohmann Brown; LSL—Lohmann
Selected Leghorn.

Selected expression data from the STEM profiles were submitted to IPA for functional annotation analysis
(Fig. 4, Tables S5, S6). Interestingly, genes clustered in profile #9 in the LB (1631 DEGs) and LSL (1994 DEGs)
strains were involved in the mitochondrial energy transduction processes over the production stages, whereas
profile #41 comprised genes enriched in the cell-cycle and mitosis/DNA damage regulation checkpoint prior to
division and differentiation. Profile #18 exhibited enrichment in RANK/RANKL signaling and cellular senes-
cence in LB and LSL layers.

Discussion
The onset of egg production in the laying hen is preceded by a myriad of interconnected biological processes,
which spans the endocrine secretion of hormones and feedback mechanisms among the target organ (ovary)
and other organ systems (jejunum, bone, kidney, liver, parathyroid) to modulate nutrient and mineral utilization
according to changing needs. The physiological shift into the onset of laying is characterized by an intensification of
the calcium metabolism crucial for eggshell calcification23, which is driven exogenously by the adequate supply of
dietary nutrients and endogenously by the osteoclastic resorption of the medullary bone, which serves as a
calcium reservoir14,24,25. Furthermore, alongside calcium, mineral P is equally important owing to its numerous
physiologic functions in skeletal development, blood buffering, mineral metabolism, and energy signaling25,26

which are pivotal for optimal production in the laying hen.

Dynamics of mineral homeostasis throughout the production period.     There was a considerable
increase in plasma calcium levels and a reduction in plasma P levels with the onset of laying in both strains.
This reflects the increase in dietary calcium at week 24 compared to weeks 10 and 16 which hampers intestinal
phytate degradation and mineral digestibility resulting in lower P uptake9. However, PTH was increased at week

Scientific Reports | (2021) 11:20086 | https://doi.org/10.1038/s41598-021-99566-5 4

Vol:.(1234567890)



www.nature.com/scientificreports/

Figure 3. Time-series analysis of production stage-specific jejunal transcripts expressed in LB (A) and LSL
(B). Expression patterns (grey lines) over the five selected production stages at week 10, 16, 24, 30 and 60 were
clustered into profiles. Colors are assigned to only significant profiles (p <0.05) and ordering is based on number
of genes displayed in the lower left corner. The profile number is shown in the upper left corner. Highlighted
profiles #9, #41, and #18 were selected for detailed analyses via IPA.

24 in both LB and LSL strains compared to pre-laying period. Indeed, PTH favors the endocrinal regulation of
calcium homeostasis via activation of osteoclastic bone resorption and renal reabsorption of calcium25,27. Since
the calcium content of the feed may not meet the immediate needs at the beginning of the laying period, an
increase in PTH production triggers the mobilization of bone calcium reserves to match metabolic calcium
requirements. However, intestinal capacity for mineral uptake is known to increase in laying hen at onset of
laying28.

Consequently, at the laying peak (around week 30) a re-increase in plasma P was observed in both LB and
LSL layers, which suggests adapted intestinal fluxes. Interestingly, calcitriol levels were increased from week 24
compared to the pre-laying period. In physiological conditions, increased calcitriol levels prompt decreased
PTH levels29,30. However, in this study, PTH levels from week 30 onwards were still relatively high. This can be
explained by the need to prevent a calcium deficiency due to a competing calcium demand for eggshell
production and the associated fluctuation in calcium23,31–33. These regulations account for dramatic change in
bone metabolism at sexual maturity driven by endocrine secretion. Consequently, triiodothyronine levels were
decreasing while estradiol levels were found to be increased in both laying hen strains to induce egg laying
capacity while terminating somatic growth and development34–36.

Estradiol, a most potent form of estrogen, is secreted principally by the ovaries of the hen and mediates the
overall maturation and development of the female reproductive system. It has a regulatory role in the induction of
vitellogenesis, the activation of yolk precursors in the liver37 and contributes to the formation of the medullary
bone15. In this context, the vitamin D system undergoes dramatic changes, which implicates the regulation of
mineral homeostasis via bone remodeling and resorption. At week 24, calcidiol levels dropped whereas calcitriol
levels increased compared to the pre-laying period in both strains. It is conceivable that the synthesized calcidiol
from liver is deposited in the egg yolk as embryonic reservoir38. However, the calcitriol level in conjunction with
increased estradiol level account for osteoblastic formation of medullary bone during the entire productive
period39 and thus provides a stock of mobilizable calcium. Notably, the consecutive increase on levels of plasma
magnesium might counteract the very high calcium plasma levels and affect on blood viscosity40. The increasing
albumin levels might account for egg production in both laying hen strains.

Regarding the observed strain effects, the levels of triiodothyronine were increased in LSL compared to LB
laying hens at week 16. This might reflect compensatory response to the body growth since LSL hens have lower
body weight compared to LB hens9. Furthermore, at week 60 the hen strains differed in plasma levels of estradiol
(LB > LSL), calcidiol (LB > LSL), and calcitriol (LB < LSL). This reflects different strategies to ensure long-term
metabolic demands. Beside the dietary shifts at the onset of laying, the endocrinal profiles clearly show a physi-
ologic shift that leads to a pre-laying and an egg-laying period engaging a large number of organs including
kidney, liver, bone, ovary, and jejunum.

Longitudinal evaluation of jejunal gene expression throughout the production period.     Tran-
scriptomically, the 82 genes expressed differentially between the LB and LSL hens, consistently over all five
developmental stages (Fig. 2A), are connected to biological processes along immunity (CD8A, GBP6, HCK),
extra cellular matrix formation (COL9A1, CRTAC1, MMRN2), and micro- and macronutrient utilization (HFE,
SLC27A5). Interestingly, the transcript abundance of avidin encoding gene (AVD) is consistently higher in LB
compared to LSL irrespective of production stage, which suggests strain-specific alterations of biotin levels41. It is
conceivable that these strain-specific transcript abundances are due to the observed genetic differences between
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Figure 4. Top 5 canonical pathways predicted from selected STEM profiles in LB and LSL laying hens.
Analyses comprise profiles #9 (consistently lower mRNA abundances with advancing production periods), #41
(consistently higher mRNA abundances with advancing production periods), and #18 (sustained increase in
mRNA abundances from onset of laying). Arrows indicate significantly activated (red) and inhibited (green)
pathways over the time course from week 10 to week 60 referring to the z-score. NHEJ—Non-homologous end
joining.

LB and LSL laying hens that affect immune competence, e.g. resistance to endoparasite infection42,43. Addition-
ally, the analyses of production stage-specific jejunal transcripts identified a number of genes within each strain
that followed specific expression patterns (Fig. 3). The pathway analysis for the profiles #9, #41, and #18 for each
strain over the developmental stages revealed enrichment in pathways, which spans mitochondrial energy trans-
duction, cell-cycle regulation, DNA damage repair mechanisms and RANK/RANKL-induced immune modula-
tion related to physiological growth and maturation (Fig. 4).

Genes assigned to profile #9 were gradually decreasing in expression throughout the production period. This
profile highlighted overlapping pathways that encompass mitochondrial energy transduction and cellular growth
processes in the LB and LSL layer strains, such as the sirtuin pathway, oxidative phosphorylation, mitochondria
dysfunction, and JAK/STAT signaling. Members of the sirtuin family are nicotinamide dinucleotide (NAD+)
dependent deacylases, of which SIRT2, SIRT6 and SIRT7 were enriched in profile #9. They are implicated in
several molecular regulatory process e.g. cellular metabolism, energy metabolism, and cell survival. The sirtuin
pathway enables effective adaptive response to metabolic, oxidative and genotoxic stress through metabolic
homeostasis mechanism by acting as cellular sensors for energy abundance and modulating metabolic processes
in conjunction with the mitochondria44,45.

Mitochondrial dysfunction and oxidative phosphorylation enriched in profile #9 corroborates the mitochon-
drial theory of ageing. Enriched genes represented all five complexes of the mitochondrial electron transport
chain. This is indicative of an overall decline of energy-dependent processes (e.g. intestinal cell renewal and pro-
liferation processes) which were considered optimal at an earlier stage of production, but possibly experienced a
reactive oxidative species (ROS) associated decline over time46,47. ROS play essential roles in proper oxygen sens-
ing, maintenance of cellular redox state, cell signaling and the regulation of cell proliferation and differentiation at
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lower concentrations48–50. However, the long-term accumulation of ROS with advancing age may result in the loss
of the mitochondria integrity, functionality and ultimately dysfunction. Indeed, mitochondria are speculated to
play a key role in delaying or accelerating the aging process especially in tissues with a high demand in energy51.

The JAK/STAT signaling pathway has been reported to modulate the adaptive and innate immune component
of layers’ intestinal mucosal as well as epithelial repair and regeneration, via the activation of growth factors and
cytokines52. In this regard, the transcription factor encoding genes STAT2, STAT3, STAT5A and STAT6 were
enriched in profile #9, indicating the transmission of effects at the level of gene expression represented by this
pathway. The onset of laying in particular has been shown to have effects on the immune system as analyzed in
the blood, spleen, and cecal tonsils of LB and LSL laying hens12. Moreover, corresponding analyses in the same
individuals highlighted regulatory roles of miRNA within the JAK/STAT signaling53. The significant inhibition of
the JAK/STAT signaling pathway and of oxidative phosphorylation over the developmental stages from week 10 to
week 60 in both laying hen strains suggests a gradual shift in resource allocation from the initial modulation of
cellular growth processes to the maintenance of the intestinal epithelium.

Genes allotted to profile #41 showed an increasing trend over the developmental stages whereby in both lay-
ing hen strains these mainly involve different molecular pathways, i.e. pathways related to cell cycle regulation
and cell division in LB and pathways related to immunity and regulation of epithelial repair and regeneration in
LSL. Specifically, pathways related to the innate immune system involving leukocytes and NF-κB, as the main
regulator of innate immune responses, were shown to be activated in LSL with increasing age54. This buttresses
the adaptive responses of the LSL strain via eficiency in paracellular transport and immune competence10. An
overlap in predicted pathways of both hen strains was observed for DNA Double-Strand Break Repair by Non-
Homologous End Joining, as evidenced by the clustered expression patterns of ATM, DCLRE1C, LIG4, MRE11,
PARP1 and XRCC5. This might reflect the accumulating number of senescent gut cells in both layer strains over
the production stages and aging.

The expression profiles of genes assigned to profile #18 showed a considerable and sustained increase in
expression with the beginning of the laying period in week 24. Most of the highlighted pathways based on this
profile, including RANK signaling, senescence pathways, HGF and NGF signaling pathways, overlapped between
the two laying hen strains. Due to the pattern, direct effects of dietary change or secondary effects of sexual
maturity and the nutrient demand with the onset of lay are conceivable55. The direct dietary effects would be
applicable to the enrichment of the cellular senescence pathways, which might occur due to the fourfold increase of
calcium content in the diet and corresponding changes in gastrointestinal pH and microbiota.

Furthermore, RANK signaling has been associated with the gastrointestinal tract through its pro-immune
activities within the epithelium, specifically, via the mediation of the development and differentiation of sentinel M
cells present in the follicle-associated epithelium (FAE) which covers the gut-associated lymphoid tissues
(GALT)56–58. In adaptation to the onset of egg laying, the endogenous release of calcium to meet production
demand occurs under the collaborative actions of endocrinal pro-resorption factors such as calcitriol, PTH and
estradiol, in conjunction with transcriptional modulation of the RANKL/RANK signaling pathway59–62.

The RANK signaling pathway was predicted to be activated in both laying hen strains with an increase in the
expression over the time course from week 10 to week 60, i.e., a steady low expression of pro-bone resorp-tion
DEGs at the pre-lay stages, followed by a surge at the onset and peak of production, possibly due to the
increased metabolic demands during production and, a plateau in the post-peak production stage, which is
reflective of senescence. Additionally, the HGF and NGF signaling pathways were predicted to be activated in
both hen strains, suggesting an increased gut-brain crosstalk for the attainment of enteric homeostasis over the
production periods62.

Materials and methods
Ethical statement. The animal experimentation was performed at the Agricultural Experiment Station of
the University of Hohenheim, Germany, in accordance with relevant guidelines and regulations and approved by
the Animal Welfare Committee of the University of Hohenheim. The experimental protocol is in strict compli-
ance with the German Animal Welfare Legislation and approved by the Regierungspräsidium Tübingen, Ger-
many (Project No.: HOH50/17TE) and in accordance with the ARRIVE guidelines.

Experimental chicken population and sample collection.     Two strains of laying hens were used for
this trial (Fig. 5). As described previously, LB (n=50) and LSL (n=50) laying hens were fed a corn-soybean
based diet with recommended calcium levels9. The feed formulations covered starter, grower, pre-laying (PL),
and laying diets (layer 1, layer 2, layer 3)9. In all formulations, plant-based phytases were minimized and exog-
enous phytases of microbial origin were not included9. Birds were sampled at weeks 10, 16, 24, 30 and 60 of life
to cover relevant periods of the production cycle, i.e. pullets, pre-layer, onset of laying, peak of laying, and
senescence. The sampling comprised ten birds per strain with the progeny of the same ten fathers per strain at
each of the sampling stages. Following stunning, hens were sacrificed by exsanguination at 0900–1200 h. Plasma
samples were prepared from trunk blood in heparin-containing tubes by centrifugation (10 min at 2500×g) and
stored at − 80 °C until analysis. After removal of the gastrointestinal tract, a 2 cm jejunum samples were collected
approximately 3 cm distal to the duodenal loop. The samples were cut open, the mucosa was thoroughly rinsed
with a 0.9% NaCl solution and scraped for each bird over the respective production stages (LB, n=50; LSL,
n= 49). Samples were frozen on dry ice and stored at − 80 °C until RNA extraction.

Measurement of blood parameters.     The levels of albumin, magnesium and alkaline phosphatase activ-ity
were analysed in plasma samples using the Fuji DriChem 4000i commercial assays (FujiFilm, Minato, Japan). The
calcium and phosphorus values of the same samples were determined photometrically as part of the previ-
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Figure 5. Dietary regimen for LB and LSL laying hen strains throughout the entire production period. Jejunal
mucosa scrapings and plasma samples were retrieved at week 10, 16, 24, 30, and 60 to cover relevant production
stages. Asterisks indicate a four-fold increase in the dietary calcium level to address the physiological demands
from the onset of egg production. LB—Lohmann Brown; LSL—Lohmann Selected Leghorn; PL—pre-laying.

ous work9 Hormones were measured in duplicate using commercially available enzyme-linked immunosorbent
assays (ELISA). ELISA kits were used with strict adherence to the manufacturer’s instructions for estradiol (EIA-
2693, DRG, Marburg, Germany), 1,25(OH) vitamin D (AC-62F1, Immunodiagnostic Systems GmbH, Frank-
furt am Main, Germany), triiodothyronine (EIA-4569, DRG, Marburg, Germany), parathyroid hormone (CSB-
E118880Ch, CusaBio, Houston, USA) and 25(OH) vitamin D (EIA-5396, DRG, Marburg, Germany). For data
analysis, a linear model was applied including the production stages, laying hen strains, hen father and slaughter
order with the ‘lm’ function of the ‘stats’ package63. Pairwise comparison of means between experimental groups
was achieved with the Tukey posthoc statistics embedded in ‘stats’ R package. Differences between hen strains
and production stage were considered significant at P< 0.05.

RNA extraction and sequencing. Total RNA was isolated with TRIzol Reagent (Invitrogen, Karlsruhe,
Germany) from all 99 jejunal samples RNA was purified with the RNeasy Mini Spin kit including an addi-
tional DNase digestion (Qiagen, Hilden, Germany). The quantity and quality of final RNA were determined
through spectrophotometry using the NanoDrop ND-2000 (Peqlab, Erlangen, Germany) and Bioanalyzer 2100
devices (Agilent Technologies, Waldbronn, Germany). RNA integrity numbers (RIN) were between 7.0 and 9.6.
Sequencing libraries with a unique index for each sample were generated via stranded mRNA library prepa-
ration kit (Illumina, San Diego, CA, USA). Prior to sequencing, individual libraries were pooled. Paired-end
sequencing was performed on a Illumina HiSeq 2500 device with 2× 101 bp reads. Retrieved raw data were
provided to the EMBL-EBI (www.ebi.ac.uk/arrayexpress) database (E-MTAB-9137).

Processing and analysis of gene expression analysis.     Quality control and preprocessing of raw
sequencing reads was performed using FastQC (version 0.11.7) and Trim Galore (version 0.5.0; https://www.
bioinformatics.babraham.ac.uk/projects/). Low-quality reads (mean Q-score< 20) and short length reads
(< 30 bp) were removed. The resulting reads were mapped to the chicken genome assembly (GRCg6a, Ensembl
release 95) using Hisat2 (version 2.1.0; http://daehwankimlab.github.io/hisat2/). Read counts for each gene
were summarized with HTseq (version 0.11.2)64. The average number of pair-end reads per jejunal sample was
20.0± 2.9 million. The entire dataset was checked for sample outliers using the arrayQualityMetrics package in
R65. Subsequently, differentially expressed genes (DEGs) were retrieved via DESeq2 applying the in-build nor-
malization method66. The count data were initially filtered to remove very low abundant transcripts and retain
observations with 5 or more counts in at least 8 animals of the entire data set. For comparison of the two laying
hen strains within each production stage, a base model to identify DEGs was performed using the DESeq266. In
order to identify DEGs in the contrasts of the production stage within each of the two strains an additional a
statistical model was applied including hen father as a fixed effect. DEGs met the criteria of p-value< 0.01 and
|Log2FC|> 1.5. Q-values were estimated to calculate the false positive rate < 0.0167. Differentially expressed genes
revealed in the contrast of the production stages between both layer strains LB and LSL were visualized using the
InteractiVenn68.

Gene clustering using short time-series expression miner (STEM). STEM, a java application suit-
able for the analysis of longitudinal gene expression data69, was employed to gain insight into the temporal
expression of genes via the comparison, clustering and visualization of expression patterns and their associated
genes over the 5 production stages in the LB and LSL layer strains. Therefore, count-based data was transformed to
regularized log values over all production stages for the two-layer strains. The median of individual values was
generated per production stage and strain and submitted for the STEM analysis. The STEM clustering method
was adopted with filtering threshold at a false discovery rate (FDR)< 0.0570.
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Functional annotation and pathway enrichment analysis of DEGs. Initially, the online tool
g:profiler was used to convert the chicken Ensembl IDs to human orthologue gene symbols (https://biit.cs.ut.
ee/gprofiler/orth)71. Ingenuity Pathway Analysis (IPA, Qiagen Redwood City, www.qiagen.com/ingenuity) was
used to further derive biological interpretation of the resultant profiles from STEM. Temporal differentially
expressed genes clustered per profile, along with their corresponding base-mean values, gene symbols and fold
changes for the entire production period (week 10 vs. week 60) were submitted to IPA for the identification of
canonical pathways based on the Ingenuity® Knowledge Base. Human orthologous gene symbols for 12,047
(LB) and 12,214 (LSL) chicken transcripts were considered in IPA analysis. Canonical pathway significance was
tested at an adjusted P-value (Benjamini-Hochberg)< 0.05. Pathways were considered significantly activated or
inactivated at an IPA-predicted absolute z-score> 2. Cancer-related pathways were excluded from the results
derived from IPA.

Conclusions
The onset of egg production, its peak, and senescence involve a cascade of several biological complexes, which
are characterized by the interrelatedness of diet and physiological transition mediated by endocrinal regulation
and transcript expression at each production stage. The attainment of sexual maturity in laying hens and its
associated shift in dietary calcium intake at onset of egg production proves to be the most crucial developmental
stage in the entire production cycle as proven by the conspicuous shifts in blood plasma metabolites levels. In
particular, the high calcium requirement from the start of the laying required subtle coordination between PTH
and the vitamin D system from week 24, which seems crucial to ameliorate production. Thus, the transcriptomic
investigation of the jejunum from LB and LSL laying hens revealed several signaling pathways substantiating the
complexity and importance of the jejunum in its contribution to the overall health and maintenance for optimum
production across the entire developmental period in the layers. The study shows that both strains cope with
changes in metabolic demands to reach comparable egg production performance by partially recruiting differ-
ent pathways. The strains differ in pathways related to immunity, barrier and age-related tissue and cell integrity
during all production periods, which could be due to genetic differences between the strains and deserve further
investigation. However, insights into the host-microbiota interaction, specifically its influence on the gut-brain
complex will further strengthen the knowledge and facilitate the management to improve mineral utilization
and egg production.

Data availability
The raw data were deposited in the EMBL-EBI (www.ebi.ac.uk/arrayexpress) database under accession number
E-MTAB-9137.
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Abstract

Background: Calcium (Ca) and phosphorus (P) are essential nutrients that are linked to a large array of biological
processes. Disturbances in Ca and P homeostasis in chickens are associated with a decline in growth and egg
laying performance and environmental burden due to excessive P excretion rates. Improved utilization of minerals
in particular of P sources contributes to healthy growth while preserving the finite resource of mineral P and
mitigating environmental pollution. In the current study, high performance Lohmann Selected Leghorn (LSL) and
Lohmann Brown (LB) hens at peak laying performance were examined to approximate the consequences of
variable dietary Ca and P supply. The experimental design comprised four dietary groups with standard or reduced
levels of either Ca or P or both (n = 10 birds per treatment group and strain) in order to stimulate intrinsic
mechanisms to maintain homeostasis. Jejunal transcriptome profiles and the systemic endocrine regulation of
mineral homeostasis were assessed (n = 80).
Results: Endogenous mechanisms to maintain mineral homeostasis in response to variations in the supply of Ca
and P were effective in both laying hen strains. However, the LSL and LB appeared to adopt different molecular
pathways, as shown by circulating vitamin D levels and strain-specific transcriptome patterns. Responses in LSL
indicated altered proliferation rates of intestinal cells as well as adaptive responses at the level of paracellular
transport and immunocompetence. Endogenous mechanisms in LB appeared to involve a restructuring of the
epithelium, which may allow adaptation of absorption capacity via improved micro-anatomical characteristics.
Conclusions: The results suggest that LSL and LB hens may exhibit different Ca, P, and vitamin D requirements,
which have so far been neglected in the supply recommendations. There is a demand for trial data showing the
mechanisms of endogenous factors of Ca and P homeostasis, such as vitamin D, at local and systemic levels in
laying hens.
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Background
Sufficient dietary supply of calcium (Ca) and phosphorus
(P) is essential for all vertebrates to ensure various bio-
logical processes including bone formation, blood clot-
ting, cell proliferation and energy metabolism. In avian
species, the egg laying phase in general and high laying
rates in particular generate extra demands on mineral
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homeostasis and nutrient flows. The continous process
of eggshell formation and yolk production during the
laying period requires high amounts of dietary Ca [1]. In
fact, Ca accounts for 40 % of the eggshell weight in the
form of CaCO3. The sources of Ca and P for laying hens
are derived from mineral supplements and plant-derived
compounds. However, depending on the feedstuff com-
ponents, up to 80 % of P occurs in the form of inositol
phosphates with a considerable variation in their abun-
dance [2, 3], which are available for intestinal absorption
only following enzymatic cleavage [4]. Therefore, phy-
tases of microbial origin are added to the feed to in-
crease the intestinal availability [5]. In addition, diets of
highly productive laying hen strains are supplemented
with high-quality inorganic phosphates to meet required
levels of dietary available P or nonphytate P. The ineffi-
cient use of P makes monogastric animal species signifi-
cant P excretors and thus a major source of P input into
the environment [6]. To reduce the environmental im-

and duodenum are considered to be the primary sites of
P absorption in the gastrointestinal tract [12]. Vitamin
D3 controls Ca and P homeostasis through direct ac-
tions on the intestine, kidney, and bones and through
feedback inhibition of PTH production in the parathy-
roid. These actions are mainly mediated by binding of
the activated vitamin D receptor to vitamin D response
elements (VDRE) in the promoter regions of various tar-
get genes [13]. Regarding laying hens, it has been shown
that Ca and P utilization are strongly dependent on vita-
min D [14]. FGF23, which is derived from osteoblasts
and osteocytes, affects serum concentrations of P and
PTH, as well as renal P transporter expression and the
formation of active vitamin D in the kidney [15].

The laying performance of commercial laying hens is
exceptionally high and requires high dietary standards,
especially with regard to mineral supply. Two important
representative layer strains are Lohmann Selected Leg-
horn (LSL) and Lohmann Brown (LB) with a similar lay-

pact of animal production and to preserve the valuable ing performance over the production period [16].
natural resources of P, measures on digestibility and nu-
trient utilization are needed to increase the use of plant
P taking into account management strategies and
animal-based approaches.

In vertebrates, mechanisms of P homeostasis are
largely conserved and closely linked to Ca metabolism.
In particular the dietary Ca/P ratio has to meet physio-
logical ranges and has a strong impact on health and
performance data [7]. Due to the stoichiometric equilib-
rium of Ca and P and the tight regulation of the Ca/P
ratio in serum and body fluids, measures to maintain
mineral homeostasis during the laying period will affect
both minerals. This includes absorption, storage and ex-
cretion processes at the level of gastrointestinal tract,
bone, and kidney, which are strictly controlled by a
number of known and as yet unknown regulators, trans-
porters and endocrine and paracrine signals. Key regula-
tors are the parathyroid hormone (PTH), the active form

Nevertheless, there are distinct differences between the
two strains in terms of body weight and immunity as
well as in bone metabolism and phytate degradation
[17–19]. The current study is based on a previous ex-
perimental trial using high performing laying hens of
these distinct genetic origins (LSL and LB) to investigate
the dietary impact of variable Ca and P supply [19]. This
study extends the previous investigations by assessing an
endocrine and metabolic pattern in plasma as well as
molecular transcriptional responses at the level of the
small intestine obtained by RNA sequencing. Specific-
ally, the proximal part of the jejunum, as the main site
of mineral absorption, is the focus of the study. This ap-
proach aims to elucidate the jejunal contribution to the
complex regulation of mineral homeostasis in individuals
at peak performance. It is hypothesized that diets low in
P and/or Ca trigger phenotypic and molecular adapta-
tions in laying hens to orchestrate e.g. mineral absorp-

of vitamin D3 (calcitriol), calcitonin and fibroblast tion     and     storage     in     order     to     maintain     mineral
growth factor 23 (FGF23). PTH is synthesized by the homeostasis. Strain-specific transcriptional responses
parathyroid glands and its secretion depends largely on can identify genotype-environment interactions to be in-
the Ca concentration in serum, which is sensed by the corporated into strategies for targeted resource
Ca-sensing receptor (CASR) [8]. Downstream functions management.
of PTH comprise the short-term and sustained activa-
tion of molecular pathways that are involved in main-
taining serum Ca levels mainly via improved bone

Results
Average body weight differed significantly between

resorption and renal Ca reabsorption, while enhancing
renal P excretion [9]. Moreover, PTH receptors have
been detected in the duodenum of chickens where they
mediate a direct effect on intestinal Ca transport and in-
fluence P absorption processes [10]. In general, intestinal
Ca and P absorption is achieved via para- and trans-
cellular transport processes, which are responsive to
dietary mineral supply [11]. In particular, the jejunum

strains but not between diet groups within strain. The
dietary groups comprised the control group (Con) and
groups with diets low in Ca and P (LCaP), low in Ca
(LCa), and low in P (LP). The average body weights
(LSmeans) at slaughter (week 31) for LSL were 1648 g
(Con), 1683 g (LCaP), 1641 g (LCa), and 1599 g (LP)
[19]. The corresponding body weights (LSmeans) of LB
animals were 1784 g (Con), 1809 g (LCaP), 1929 g
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(LCa), and 1838 g (LP). Statistical analysis of zootechni-
cal data of these birds was performed by Sommerfeld

The comparison of expression profiles of LSL and LB
in the four experimental diets by the base model showed

et al. 2020 [19] and revealed that body weight was sig- considerable differences between laying hen strains
nificantly higher in LCa hens of the LB strain compared
to Con animals. Plasma levels of albumin, magnesium,
T3 and activity of alkaline phosphatase were not signifi-
cantly different between treatments (p > 0.05, Fig. 1). For
vitamin D, levels of the storage form calcidiol were sig-
nificantly higher in LB compared to LSL across all diet-
ary groups (p ≤ 0.03). Moreover, significant differences in
calcidiol concentrations were observed for LCaP
(39.26 ± 3.35 ng/ml) compared to LP (39.26 ± 3.35 ng/
ml) in LB (p = 0.03). Plasma concentrations of the active
form, 1,25(OH) vitamin D (calcitriol), showed a high in-
dividual variability and did not differ significantly between
treatments (p > 0.05). While PTH levels were not affected
by diet in LB hens, it was significantly higher under the
LCaP diet than the Con diet in LSL hens (p = 0.04).

(Fig. 2, Additional file 1). For the Con diet, the compari-
son between strains revealed 2426 differentially
expressed genes (DEGs; p < 0.01, padj < 0.029). For the
LCaP diet, 1911 DEGs (p < 0.01, padj < 0.041) were iden-
tified between LSL and LB. The diets reduced in either
Ca or P resulted in a number of 2680 (p < 0.01, padj <
0.028) and 4540 DEGs (p < 0.01, padj < 0.012) between
strains, respectively. The intersection of the strain com-
parisons for all four dietary groups revealed 1020 genes,
which are considered to represent the strain-specific dif-
ferences in jejunal nutrient utilization and metabolism.
Interestingly, all 1020 DEGs showed a consistent expres-
sion pattern in terms of their mRNA abundances over
all four diets, with 527 upregulated (LSL > LB) and 493
downregulated (LSL < LB) genes. This information was

Fig. 1 Plasma parameters referring to mineral homeostasis and growth of LSL and LB laying hens fed a standard control diet (Con), reduced Ca
and P levels (LCaP), reduced Ca levels (LCa) or reduced P levels (LP). Values are displayed as mean ± SE. Data for inorganic P and Ca were taken
from [17]. Superscripts indicate statistical significance (p < 0.05) between hen strains as capital letters or within strains between dietary groups as
small letters
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subjected to pathway enrichment analysis using the
KEGG database, highlighting those genes out of the
1020 that accumulate in certain pathways (Fig. 3).

Fig. 2 Venn diagram of differentially expressed genes identified in
diet-specific comparisons between LSL and LB laying hens fed a
standard control diet (Con), reduced Ca and P content (LCaP),
reduced Ca content (LCa) or reduced P content (LP). The 1020 DEGs
that are present in all dietary comparisons represent the laying hen
strain-specific transcriptional patterns in the jejunum

Enriched pathways considering the significance thresh-
old (padj < 0.05) include ‘metabolism of xenobiotics by
cytochrome P450’, ‘glutathione metabolism’, ‘arginine
and proline metabolism’, ‘drug metabolism’, and ‘histi-
dine metabolism‘ (Fig. 3).

After filtering, 13,123 and 12,703 genes were included
in the analysis for contrasting diets within LSL and LB,
respectively. The variable selection approach based on
gene expression data revealed no clear separation of all
four groups within a hen strain (Fig. 4). However, in LSL
the LP group is partly separated from the Con group in
the first component, which explained 17 % of the vari-
ance. Samples of the LCa and LCaP groups largely over-
lapped. For LB, the LP group was found to be separated
to some extent from the LCaP group when the first
component was considered. Moreover, these two dietary
groups were partly distinct from Con and LCa, which
largely overlap on the two components. Correspond-
ingly, the differential gene expression analysis revealed a
considerable number of DEGs exclusively for the Con –

Fig. 3 KEGG pathway analysis of 1020 genes found to be consistently differentially expressed between LSL and LB strains covering all four dietary
comparisons. The size of the pathway term represents the term p-value. Terms indicated by an asterisk were considered significant (Benjamini-
Hochberg adjusted p-value < 0.05)
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Fig. 4 Principal component analysis of the LSL (A) and LB (B) laying hens fed a standard control diet (Con), reduced Ca and P levels (LCaP),
reduced Ca levels (LCa) or reduced P levels (LP). The plots represent the first two components, which are derived from a variable selection
approach (sPLS-DA) based on jejunal gene expression profiles

LP contrast in LSL and the LCaP –  LP contrast in LB
(Additional file 1). For Con –  LP, 503 DEGs were de-
tected in LSL. For LB, the contrast between LCaP and
LP revealed the highest number of DEG with in total
568 genes. The comparison of expression profiles of
other groups within each strain revealed in only minor
alterations at the transcriptional level (Additional file 1).

Based on the DEGs identified in reasonable numbers
for the contrasts Con-LP in the LSL strain and LCaP-LP
in the LB strain, biological pathway analyses were per-
formed using the KEGG database (Figs. 5 and 6). For the
contrast between Con and LP in LSL, the ‘ribosome’
pathway was found to be enriched (padj < 0.05; Fig. 5).
Three pathways including ‘intestinal immune network

Fig. 5 KEGG pathway analysis of genes found to be differentially expressed between Con and LP hens of the LSL strain. The size of the pathway
designation represents the p-value. Terms indicated by an asterisk were considered significant (Benjamini-Hochberg adjusted p-value < 0.05)
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for IgA production’ (padj = 0.05), ‘ubiquitin mediated
proteolysis’ (padj = 0.06) and ‘ErbB signaling pathway’
(padj = 0.10) tended to be significantly enriched (Fig. 5).
DEGs contributing to the ‘ribosome’ pathways were en-
tirely upregulated in the LP group compared to control
animals (LP > Con), whereas for ‘ubiquitin mediated pro-
teolysis’ the majority of genes were lower abundant in
LP chicken compared to Con animals. Thematically

‘regulation of actin cytoskeleton’ are summarized in
Fig. 6. For IPA, the DEGs were found to be significantly
enriched in nine canonical pathways (Table 1). Among
these, the ‘GP6 signaling pathway’ and the ‘Apelin Liver
Signaling Pathway’ were predicted to be activated in the
LCaP group compared to the LP group. Overall, the re-
sults point to an involvement of DEGs in pathways of
inflammation, cell adhesion, and extracellular matrix

overlapping pathways were identified using IPA formation.
(Table 1). Predicted activation state (z-score) of these
pathways revealed a significant activation of ‘EIF2 signal-
ing’ (z-score = -3.0) in the LP chickens compared to
Con, whereas for the ‘regulation of eIF4 and p70S6K sig-
naling’ and ‘mTOR signaling’ a trend for inhibition of
this pathways was observed in the LP group (z-scores =
1.89). In addition, an enrichment of genes in ‘IL-4
signaling’ and ‘glucocorticoid receptor signaling’ was
identified.

For the comparison of LCaP and LP groups in LB
chickens, ‘focal adhesion’ was found to be the most
enriched pathway with 22 involved genes (Fig. 6). The
majority of DEGs in this pathway were found to be more
abundant in the LCaP than in LP group. In general,
most of the DEGs were more abundant in the LCaP
chickens compared to LP animals. Other enriched path-
ways and corresponding DEGs including ‘cell adhesion
molecules’, ‘extracellular matrix interactions’, and

Discussion
For many decades, the Ca and P requirements of laying
hens have been an important research subject to ensure
laying performance [20, 21], it receives additional atten-
tion due to the intention to preserve mineral resources
in animal-based food production [22]. The complex dy-
namics of Ca and P metabolism impede the precise as-
sessment of the dietary Ca and P supply in respect to
genetics and age [23, 24]. Current dietary recommenda-
tions for laying hens range between 32 and 44 g/kg for
Ca and between 1.5 and 4.5 g/kg for non-phytate P, de-
pending on age [25]. Interestingly, the requirements for
Ca and P of LSL and LB strains are currently assumed
identical, although there are significant differences be-
tween the strains regarding traits related to mineral
utilization. The LB hens have been reported to exhibit a
higher bone mass and a higher breaking strength of

Fig. 6 KEGG pathway analysis of genes found to be differentially expressed between LCaP and LP hens of the LB strain. The size of the pathway
designation represents the p-value. Terms indicated by an asterisk were considered significant (Benjamini-Hochberg adjusted p-value < 0.05)
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Table 1 Canonical pathways enriched by DEGs comparing Con and LP groups of LSL laying hens and LCaP and LP of LB laying
hens
Canonical pathways

Lohmann Selected Leghorn (LSL): Con vs. LP

EIF2 Signaling

Regulation of eIF4 and p70S6K Signaling

mTOR Signaling

IL-4 Signaling

Glucocorticoid Receptor Signaling

Lohmann Brown (LB): LCaP vs. LP

Agranulocyte Adhesion and Diapedesis

Granulocyte Adhesion and Diapedesis

GP6 Signaling Pathway

Axonal Guidance Signaling

Inhibition of Matrix Metalloproteases

Apelin Liver Signaling Pathway

Intrinsic Prothrombin Activation Pathway

Inhibition of Angiogenesis by TSP1

Leukocyte Extravasation Signaling

padj-value

< 0.001

< 0.001

0.005

0.013

0.034

< 0.001

< 0.001

< 0.001

< 0.001

< 0.001

0.002

0.014

0.029

0.044

z-score*

3.00

-1.89

-1.89

3.77

-1.13

2.45

1.34

0.00

1.90

Molecules

AKT1,ATF3,EIF3K,FAU,KRAS,PAIP1,PIK3C2A,PIK3CG,
RPL10A,RPL11,RPL12,RPL13,RPL21,RPL22,RPL23,RPL27A,
RPL3,RPL30,RPL31,RPL32,RPL34,RPL35,RPL36,RPLP0,
RPLP1,RPS10,RPS11,RPS15,RPS16,RPS17,RPS19,RPS20,
RPS23,RPS3,RPS4X,RPS6,UBA52,XIAP

AKT1,EIF3K,EIF4EBP2,FAU,KRAS,MTOR,PAIP1,PIK3C2A,
PIK3CG,RPS10,RPS11,RPS15,RPS16,RPS17,RPS19,
RPS20,RPS23,RPS3,RPS4X,RPS6,RPS6KB1

AKT1,EIF3K,FAU,KRAS,MTOR,PIK3C2A,PIK3CG,PRR5L,
RPS10,RPS11,RPS15,RPS16,RPS17,RPS19,RPS20,RPS23,
RPS3,RPS4X,RPS6,RPS6KB1

AKT1,JAK2,KRAS,MTOR,NFAT5,NFATC3,NR3C2,
PIK3C2A,PIK3CG,RPS6KB1,SOCS1

AKT1,BAG1,GTF2A1,GTF2H1,JAK2,KAT2B,KRAS,MAPK9,
MED14,NCOA2,NFAT5,NFATC3,NR3C2,PIK3C2A,PIK3CG,
POLR2E,POLR2L,PPP3CA,TAF4,TGFB1,YWHAH

ACTA2,CCL23,CD34,CDH5,CLDN10,CLDN2,CXCL12,
CXCL14,FN1,JAM3,MMP10,MMP11,MMP17,MMP2,
MMP9,MYH11,MYL4,MYL9,PODXL,PPBP,TNFRSF1A

CCL23,CDH5,CLDN10,CLDN2,CXCL12,CXCL14,JAM3,
MMP10,MMP11,MMP17,MMP2,MMP9,PPBP,SDC2,
SDC3,THY1,TNFRSF1A

COL13A1,COL16A1,COL18A1,COL1A1,COL1A2,COL3A1,
COL4A1,COL4A2,COL4A6,COL5A1,COL5A2,COL6A1,
COL6A2,COL6A3,LAMA1,LAMB1,LAMB3,NOX1

ADAM19,ADAMTS1,ADAMTS13,ADAMTS9,BMP4,BMP6,
CFL2,CXCL12,ECEL1,EFNB1,EPHB2,FZD6,GNB1L,HHIP,
LINGO1,MMP10,MMP11,MMP17,MMP2,MMP9,MYL4,
MYL9,NRP2,NTN3,NTN4,PDGFD,PLCD3,PLXND1,PTCH2,
RASD2,SDC2,SEMA3F,TUBA4A,UNC5B,UNC5C,WNT2B,
WNT4

HSPG2,MMP10,MMP11,MMP17,MMP2,MMP9,SDC2,
TFPI2,TIMP2

COL18A1,COL1A1,COL1A2,COL3A1,IRS1,PDGFRB

COL18A1,COL1A1,COL1A2,COL3A1,PROS1

CD36,HSPG2,MMP9,NOS3,SDC2,THBS1

ACTA2,CDH5,CLDN10,CLDN2,CXCL12,CYBB,JAM3,MMP10,
MMP11,MMP17,MMP2,MMP9,NOX1,THY1,TIMP2

* z-score: pathways with an absolute z-score ≥ 2 were considered significant. Positive and negative values indicate activation (in LSL: LP > Con; in LB: LCaP > LP)
and inhibition (in LSL: LP < Con; in LB: LCaP < P)

humeral and tibia bones compared to LSL, whereas bone
density was unaffected [17, 26]. However, Khanal et al.
observed that with high Ca content in the pre-lay diet,
LSL had higher femur mineral density, ash content and
breaking strength at the onset of the laying period com-
pared to LB [27]. They concluded that LSL hens have a
higher capacity than LB hens to accumulate excess feed
Ca in the bones. Obviously, the utilization of micronutri-
ents in LSL and LB hens is based on strain-specific so-
phisticated metabolic routes, a fact which has been
demonstrated for e.g. lysine [28]. Results of the current
layer hen trial suggest similar conclusions for Ca and P.

Although the analyses demonstrated unaffected plasma
Ca and P levels between the strains [19], a clear and
marked strain-specific effect was observed for plasma
calcidiol (LB > LSL). The difference in the vitamin D sys-
tem is found exclusively at the level of the respective
storage form and is not reflected at the level of the active
calcitriol. Due to the required hydroxylation process for
the synthesis of calcidiol, this indicates the liver as an
important target tissue to initiate local and systemic
responses to maintain mineral homeostasis.

The study implies different mineral requirements in
LSL and LB, which is substantiated by the fact that
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differences in gene expression patterns of jejunum were
identified in different contrasts between the two strains.
While low P supply in LSL induced considerable tran-
scriptional responses compared to Con, hens of the LB
strain showed marked differences under low P supply
depending on the Ca supply. LSL were reported to have
an increased demand and utilization of Ca resulting in
eggs with higher eggshell weights compared to LB [29].
Moreover, the regulation of several genes and their
products associated with the ‘Ca-ion binding and trans-
port’ and ‘Ca release-activated Ca channels’ establish this
pattern in LSL. These adaptive actions of the Ca metab-
olism might enable LSL to cope better with moderate
dietary Ca restrictions than LB hens. However, it needs
to be considered that nutritional recommendations for
the two strains are identical, while the optimum might
be better matched for one than for the other.

For the two strains studied, the dietary reduction of
Ca and/or P was reflected to varying degrees in the gene
expression patterns in the gut. For the LSL strain, mar-
ginal differences were observed for the group compari-
sons Con vs. LCaP and Con vs. LCa, whereas the
reduction of dietary P supply resulted in considerable
changes in intestinal gene expression compared to the
control. These findings suggest that the animals investi-
gated were generally able to adapt to the dietary changes
by endogenous mechanisms. This was also reflected in
plasma levels and performance traits, which were found
to be mostly inconspicuous compared to Con, although
body weight was significantly increased in hens of the
LB strain submitted to a low Ca [19]. Merely increased
plasma PTH levels in the LCaP group compared to Con
point to active adaptation mechanisms to maintain Ca
and P homeostasis. Indeed, PTH is an important regula-
tor of osteoclast activity and may mediate intensified
bone resorption in the LCaP group of LSL hens in order
to mobilize additional Ca and P [30].

For LSL, the dominant dietary treatment in terms of
identified intestinal DEGs was the lowered P diet (LP
group) in comparison to Con. The integration of func-
tional annotations of corresponding DEGs showed that
the main pathways initiated by LP treatment include

Effects of the diet composition on proliferation of intes-
tinal cells are described for several nutritional compo-
nents including non-starch polysaccharides, short chain
fatty acids, and vitamins [33]. Non-starch polysaccha-
rides affect viscosity of digesta in the intestine and in-
duce renewal of the epithelium due to delayed nutrient
absorption. Moreover, there are also effects of dietary
mineral supplements including Ca and P described to
affect intestinal cell proliferation in rodents [34].

Among the differentially abundant genes, a number of
transcripts encoding for transport proteins were ob-
tained. These comprised anion transmembrane trans-
porters (SLC4A4, SLC4A8, and SLC35B3) as well as
some molecules involved in mineral homeostasis such as
ATP2C1 and CASK . ATP2C1 regulates Ca concentra-
tions in cytosol and plays an important role for protein
synthesis in the endoplasmic reticulum [35]. CASK en-
codes for a Ca/calmodulin dependent serine protein kin-
ase mediating intracellular effects downstream of plasma
membrane Ca pumps [36]. No effects on the most com-
mon transcellular Ca and P transporters were identified
between LP and Con animals of LSL. However, para-
cellular transport processes might be affected through
changes in TJP1 and ADAM10 expression. Both genes
affect cell-to-cell adhesion and influence the mobility of
molecules in the paracellular area [37, 38]. Conse-
quently, the lower abundance of TJP1 in LP compared
to Con might increase the selective permeability for ions
but conversely might also increase the risk of transfer-
ring intestinal microbes, toxins, and antigens into tissues
[39]. In fact, intestinal signaling pathways related to the
immune response, in particular ‘intestinal immune net-
work for IgA production’ (KEGG) and ‘IL-4 signaling’
(IPA), were considered influenced in the comparison of
Con and LP through the functional enrichment analysis.
IgA production relies on antibodies that are produced
on the basis of bacterial antigens and that aim to coun-
teract toxins and pathogenic microbes at the contact
surface between host and intestinal microbiota [40]. In
chickens identified to be more resistant to Salmonella
infections, it was found that the pathway of IgA produc-
tion was activated compared to more susceptible indi-

ribosomal protein synthesis and the regulation of cellular viduals [41]. However, any change in the dietary
signaling cascades. In accordance, the protein biosyn-
thesis pathway was recently found to be affected in the
intestinal epithelium of Japanese quail with divergent P
utilization efficiency [31]. In this quail study, high P
utilization efficiency was ascribed to an accelerated cell
proliferation in the intestine. The current list of DEGs
further revealed an impairment of the mTOR signaling
pathway, which has important functions in cell prolifera-
tion, differentiation, growth, and metabolism [32]. These
differences are mainly driven by the differential abun-
dance of ribosomal proteins and ubiquitin proteins.

composition, even changes in individual minerals, drives
alterations of the intestinal microbial community and re-
quires an adaptation of the host’s defence mechanisms
[42, 43].

In LB hens, the plasma calcidiol levels were higher
compared to LSL hens. Moreover, higher calcidiol levels
were found in LB hens fed LP compared to LCaP diets.
Plasma levels of calcidiol reflect the vitamin D status,
which is affected by long-term feed supply and individ-
ual vitamin D metabolism (e.g. hepatic hydroxylation
processes, renal clearance), since under current housing
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conditions UV-mediated endogenous vitamin D synthe-
sis is not present in laying hens [44]. Thus, LB hens fed
the LCaP diet might use a higher proportion of the avail-
able vitamin D to counteract mineral shortage and main-

Conclusions
Differences between LSL and LB hens, which are present
in genetic and morphological aspects, are also reflected
in the transcriptional profile of the jejunum. Accord-

tain mineral homeostasis. The analyses of dietary ingly, the response to varying levels of dietary Ca and P
treatments in the LB strain revealed increased expression
of genes involved in ‘GP6 signaling’ and ‘Focal adhesion’
in LCaP compared to LP fed laying hens. A considerable
number of DEGs encoding collagens and matrix metal-
loproteinases (MMP) have been identified. Indeed, the
GP6 proteins are major signaling receptors in collagen
formation and function, which together with integrins,
tenascins, fibronectins and laminins constitute the main
components of the extracellular matrix (ECM) [45, 46].
The MMP are a family of zinc-dependent proteinases

concentrations differs in the two laying hen strains. LSL
hens might be more prone to effects of varying dietary
mineral supply on intestinal cell proliferation rate, while
adaptive responses occur at the level of the paracellular
transport and immune competence. The endogenous
mechanisms in LB hens might involve the formation of
extracellular matrix for compensatory improvement of
the absorptive capacity. The results of the current study
indicate that LSL and LB laying hens have different min-
eral and vitamin D requirements owing to different tran-

that are secreted to the extracellular space or localized scriptome, which potentially might be exploited to
to the cell surface in a premature state. Once activated,
MMP are collectively able to cleave all components of
the ECM [47]. Focal adhesions constitute a large macro-
molecular assembly of proteins namely vinculin, talin,
paxillin, zyxin, and α-actinin that associate with integrins
in order to facilitate the anchorage of the cell and the
ECM but also to support cell migration [48, 49]. The re-
cruited cellular components that form a focal adhesion
remain anchored to the ECM to allow sequential cell mi-

reduce mineral resources. In terms of environmental
protection and poultry management, there is both a
need and a possibility to further specify the requirements
for dietary Ca, P, and vitamin D supply in LSL and LB
laying hen strains.

Methods
Birds and diets
The animal trial was conducted at the Agricultural Ex-

gration, which is of particular importance for intestinal periment Station of the University of Hohenheim,
enterocytes and immune cells [50]. Indeed, the DEGs
assigned to both agranulocyte and granulocyte adhesion

Germany, and was approved by the Regierungspräsidium
Tübingen, Germany (HOH50/17TE). Procedures were in

pathways are responsible for facilitating the migration of
immunocompetent cells in the intestinal endothelium.

accordance with the German Animal Welfare
Legislation.

Taken together, the results obtained for the comparison
of LCaP with LP diets in LB hens point to a number of
DEGs encoding collagens and MMPs that might have an
impact on ECM formation. Apparently, the amounts of
dietary Ca and P have to be considered to trigger struc-
tural changes in the intestinal epithelium. In fact, a pre-
vious jejunal transcriptome study in broilers linked the
increased expression of genes encoding for collagen and
ECM to increased villus length for improved nutrient
uptake and energy utilization [51]. Results in the present
study suggest therefore a vulnerability of LB hens for in-
adequate Ca intake. Further analysis of the microanat-

The trial is based on two modern strains of laying hens
supplied with variable Ca and P levels [19]. In particular,
for each of the strains Lohmann Selected Leghorn (LSL,
n = 40) and Lohmann Brown (LB, n = 40; Lohmann Tier-
zucht GmbH, Cuxhaven, Germany), four dietary groups
(n = 10 per group) with varying Ca levels and non-
phytate P levels (standard vs. reduced) were formulated
as described previously [19]. In brief, except for Ca and
P levels the composition of the corn-soybean based diets
met current recommendations [54]. Differences in Ca
and P levels were achieved by varying levels of mineral
monocalcium phosphate and limestone. The analyzed

omy in laying hens are required to map potential Ca and total P levels of the control diet (Con) were
phenotypic adaptations related to the maintenance of
mineral homeostasis. A limitation of the study is that al-
though the sampling times of the current study were
standardised and largely controlled, the calcium require-
ment of egg-laying hens, which is hormonally regulated,
varies considerably depending on oviposition and the
circadian cycle [52]. To some extent, this could also in-
fluence gene expression patterns in the gastrointestinal
tract, as the demands on the entire organism shift due to
the higher calcium requirement for eggshell calcification
processes [53].

39.5 g/kg dry matter (DM) and 5.3 g/kg DM. The treat-
ment groups were supplied with diets low in Ca and P
(LCaP), low in Ca (LCa), and low in P (LP). The re-
trieved dietary Ca and P contents were 34.4 g/kg DM
and 4.7 g/kg DM for LCaP, 35.1 g/kg DM and 5.3 g/kg
DM for LCa, and 40.3 g/kg DM and 4.7 g/kg DM for LP
diets, respectively. The feed was formulated to minimize
plant based phytases and no additional phytases of mi-
crobial origin were added. For each of the two strains
LSL and LB, the four diet groups consisted of 10 birds
each, with the progeny of the same 10 fathers in each of
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the groups. Birds were group-housed in pens for the first
26 weeks and then were rehoused individually into me-
tabolism unity cages in a randomized complete block de-
sign, which resulted in 10 replicates per strain and diet.
The feeding trial lasted 21 days in metabolism units in
which each bird was fed individually. Chickens were
phenotyped for zootechnical and physiological parame-
ters as described elsewhere [19]. At the age of 31 weeks,
the hens were stunned and subsequently slaughtered by
exsanguination Prior to slaughter, each bird was sub-
jected to a two-hour feed withdrawal period, followed by
a one-hour re-feeding period. Sampling started at 9 am,
with twenty birds slaughtered at 15-minute intervals on
each of four consecutive days, with the order of slaugh-
ter recorded. Trunk blood was collected in heparin-
containing tubes and centrifuged to obtain plasma sam-

Waldbronn, Germany). RNA integrity numbers were be-
tween 7.1 and 9.4. Sequencing libraries were prepared
with the stranded mRNA library preparation kit (Illu-
mina, San Diego, CA, USA). Sample-specific, tagged li-
braries (n = 80) were pooled and sequenced on the
Illumina HiSeq 2500 in a paired-end setup with 2 ×
101 bp reads. The corresponding raw data were depos-
ited in the EMBL-EBI (https://www.ebi.ac.uk) database
under accession number E-MTAB-9109.

Sequencing data processing and gene expression analysis
Initially, raw sequencing reads were checked for quality
and preprocessed using FastQC (version 0.11.7) and
Trim Galore (version 0.5.0; https://www.bioinformatics.
babraham.ac.uk/projects/). Reads with low quality (mean
Q-score < 20) and short length (< 30 bp) were filtered

ples (10 min at 2500 × g). Samples were stored at -80 °C out. Remaining reads were mapped to the current
until analysis of plasma parameters. Approximately 3 cm
distal to the duodenal loop, a jejunum sample of 2 cm in
length was collected from each bird.The mucosa was
rinsed with 0.9 % NaCl solution and then scraped off

chicken genome assembley (GRCg6a, Ensembl release
95) using Hisat2 (version 2.1.0; http://daehwankimlab.
github.io/hisat2/). Gene-specific read counts were ex-
tracted with HTseq (version 0.11.2; https://htseq.

with a scalpel. Samples were frozen on dry ice and readthedocs.io/en/master/). Differentially expressed
stored at -80 °C upon RNA extraction.

Measurement of blood parameters
The plasma samples collected at slaughter were analysed
to measure the levels of albumin, magnesium and alka-
line phosphatase activity using commercial assays via the
Fuji DriChem 4000i according to manufacturer’s instruc-
tions (FujiFilm, Minato, Japan). Hormone measurements
were performed in duplicate with commercially available
enzyme-linked immunosorbent assays (ELISA). Corre-
sponing kits were processed according to manufacturer’s
instructions for parathyroid hormone (CSB-E118880Ch,
CusaBio, Houston, USA), triiodothyronine (EIA-4569,
DRG, Marburg, Germany), 25(OH) vitamin D (EIA-
5396, DRG), and 1,25(OH) vitamin D (AC-62F1, Immu-

genes (DEG) between the experimental groups were ob-
tained using DESeq2 (DOI: https://doi.org/10.18129/B9.
bioc.DESeq2). Initially, outlier detection approaches, in-
cluding the distance between individual data sets, the
distribution of signal intensities and the quality and
quantity of the individual data were assessed using the
arrayQualityMetrics R package (DOI: https://doi.org/10.
18129/B9.bioc.arrayQualityMetrics). One sample (from
LB LCaP group) was excluded from analysis due to low
sequencing depth (Additional file 2). The count data
were filtered to retain only genes with observations of 5
or more counts in at least 10 animals. Firstly, a base
model to identify DEGs between the two laying hen
strains within each dietary group was performed. Sec-
ondly, a statistical model was designed to reveal DEGs in

nodiagnostic Systems GmbH, Frankfurt am Main,       the contrasts of diets within each of the two strains. This
Germany). For statistical analysis of the mentioned      model included hen father as fixed effect to account for
blood parameters and hormones, a linear model was ap-
plied including dietary group, laying hen strain, hen
father and slaughter order (R language, version 3.6.2,
package stats). Differences were considered significant at
P ≤ 0.05.

RNA extraction and sequencing
Total RNA was extracted from all 80 jejunal samples
using TRIzol Reagent (Invitrogen, Karlsruhe, Germany)
according to the manufacturer’s protocol. Subsequently,
mRNA was extracted using the Rneasy Mini Spin kit in-
cluding an additional Dnase digestion (Qiagen). The
quantity and quality of final mRNA was determinded
using NanoDrop ND-2000 (Peqlab, Erlangen, Germany)
and Bioanalyzer 2100 devices (Agilent Technologies,

genetic relationship of animals. Genes were considered
as significantly differentially expressed meeting the cri-
teria of p-value < 0.01 and Benjamini-Hochberg adjusted
p-value < 0.15. Normalized count data was further used
to select the most important genes to distinguish be-
tween dietary groups using the sparse Partial Least
Squares discriminant analysis (sPLS-DA) function of the
mixOmics R package [55]. The variable selection ap-
proach considered the first two components with 50 var-
iables each. The differentiation of groups was presented
in a scatter plot. KEGG pathway enrichment analysis of
the identified DEGs was performed using Cytoscape
software (version 3.6.1) with the ClueGO plugin (version
2.5.1). The Clue GO plug-in generates functionally clus-
tered KEGG annotation Networks for a list of DEGs.

https://www.ebi.ac.uk
https://www.bioinformatics.babraham.ac.uk/projects/
https://www.bioinformatics.babraham.ac.uk/projects/
http://daehwankimlab.github.io/hisat2/
http://daehwankimlab.github.io/hisat2/
https://htseq.readthedocs.io/en/master/
https://htseq.readthedocs.io/en/master/
https://doi.org/10.18129/B9.bioc.DESeq2
https://doi.org/10.18129/B9.bioc.DESeq2
https://doi.org/10.18129/B9.bioc.arrayQualityMetrics
https://doi.org/10.18129/B9.bioc.arrayQualityMetrics
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The p-values were calculated by right-sided hypergeo-
metric tests and Benjamini-Hochberg adjustment was
used for multiple testing correction. KEGG pathways
with an adjusted p-value < 0.05 and comprising at least
five DEGs were considered significant.
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A B S T R A C T Phosphorus (P) inclusion in broiler diets
needs to meet the physiological demands at a specific
developmental stage to ensure the performance, health,
and welfare of the birds and minimize nutrient losses.
Toward a more efficient utilization of P  in broiler hus-
bandry, a timed nutritional conditioning strategy might
enhance the endogenous mechanisms of mineral homeo-
stasis and thus reduce dietary P  supply of mineral sour-
ces. In this study, following a variable P  supply in the
starter phase, the effects of a dietary P  depletion of
broiler chickens were investigated at different develop-
mental stages. Physiological adaptation mechanisms
were elucidated based on zootechnical performance,

endocrine parameters, regulation of intestinal P  trans-
port, bone characteristics, and health aspects. The
results revealed a marked response to P  depletion at the
earliest developmental phase, after which indications of
effective compensatory mechanism were detectable with
advancing ages. Potential mechanisms that enable
broilers to maintain mineral homeostasis primarily
include endocrine control mediated by calcitriol actions,
as well as intestinal P  uptake and mineral mobilization
from the bone. Conclusively, the precise timing, dura-
tion, and extent of a P  depletion strategy in the broiler
chicken might be considered for optimized nutrient
utilization.

K e y  words: broiler chicken, dietary mineral depletion, mineral homeostasis, nutritional conditioning, vitamin D
metabolism

2023 Poultry Science 102:102351
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INTRODUCTION

The comprehensive realization of the genetic potential
of broiler chickens requires the provision of optimal envi-
ronmental conditions, which prioritizes a well-founded
nutritional regimen specifically with regard to mineral
supply, including phosphorus (P) and calcium (Ca).
The inclusion of P  as a dietary macromineral in broiler
farming is essential to drive various physiological pro-
cesses. These comprise bone mineralization and integ-
rity, acid-base balance, phospholipid and nucleotide
formation, nerve function and cellular energy metabo-
lism ( A T P ) ,  which are critical to the sustenance of
growth, productivity and overall welfare of the bird
(Proszkowiec-Weglarz and Angel, 2013).

In practice, the amount of the bioavailable P  in
plant-based diets fed to broilers usually is insufficient,

 2022 The Authors. Published by Elsevier Inc. on behalf of Poultry
Science Association Inc. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
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mainly due to the limited or lacking production of
endogenous mucosal phosphatases required to facilitate
intestinal P  release. Therefore, inorganic P  sources and
exogenous phytases are obligatory to compensate for
the low rate of digestible P  obtained from cereals and
other plant-based feed (Singh, 2008; Dersjant-Li et al.,
2015). Nutritional strategies regarding broiler dietary
P  need to avoid, on the one hand, excessive P  supple-
mentation resulting in increased P  excretion with the
risk of environmental pollution and, on the other hand,
avoid undersupply, which might negatively impact
development, performance and health (Campbell et al.,
2017; Tay-Zar et al., 2019). Hence, P  supplementation
in broiler diets needs to consider the birds’ physiologi-
cal demands at a specific developmental stage. In fact,
adequate P  supply in early development is critical for
bone mineralization and body growth, prompting the
need for high dietary mineral intake in the early stages
(Rama Rao et al., 2003; Coto et al., 2008). During the
maturation of the bird, the supply of P  and adminis-
tered phytase levels make an important contribution to
the maintenance of physiological processes, including
muscle differentiation, lipid metabolism and immune

1
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functions (Li et al., 2016; Schmeisser et al., 2017; Nari
et al., 2020).

Therefore, life-time responses to nutritional condition-
ing for P  efficiency in the broiler and its age-specific
demand have shown that broilers fed depleted P  at the
starter phase manifested adaptive mechanisms of main-
taining P  homeostasis to support adequate bone miner-
alization and the modulation of other physiological
attributes. The nutritional studies conducted by Yan
et al. (2005), in which broilers were subjected to P  deple-
tion from d 19 of life, showed efficient P  utilization and
unchanged weight development in depleted birds com-
pared to controls throughout their life-time, but com-
pensatory actions at the bone level. Furthermore, in an
experimental design on broiler chickens with P  depletion
and P  repletion, there was an effect on zootechnical
traits during P  depletion, which was compensated dur-
ing P  repletion, suggesting a capacity to compensate for
an initial depleted mineral status in broiler chickens
(Letourneau-Montminy et al., 2008). As for the pre-
sumed mechanism, depleted P  levels have been reported
to stimulate the expression of genes encoding the trans-
cellular P  transport in the intestine to drive rapid recov-
ery and equilibrium for the limited mineral supply (Yan
et al., 2007; Proszkowiec-Weglarz and Angel, 2013;
Lederer, 2014).

Endocrinal regulators such as parathyroid hormone
( P T H )  and calcitriol (1,25(OH)2 vitamin D3) act on
respective responsive organs, including the intestine,
kidney and bone to maintain mineral homeostasis (Berg-
witz and Juppner, 2010; Proszkowiec-Weglarz and
Angel, 2013). PTH prevents hypocalcaemia and acts on
bone to mobilize Ca and P  and reduces high serum P  lev-
els by promoting renal P  excretion (Blaine et al., 2014).
Moreover, PTH acts on calcitriol regulation, which in
turn increases mineral absorption in the small intestine
and reduces PTH expression in the parathyroid glands
(Demay et al., 1992; Brenza et al., 1998). Thus, the
interaction of PTH and calcitriol enables the regulation
of systemic Ca and P  levels via sophisticated feedback
loops in the organismal biosystem. Due to variable die-
tary P  supply, the broiler executes compensatory mecha-
nisms by regulating serum calcitriol levels and
transcellular P  transport in the small intestine via vari-
able abundances of sodium/phosphate co-transporters
(Rousseau et al., 2016; Hu et al., 2018). The P  retention
and body reserves play a critical role in the timing and
success of maintaining mineral homeostasis. The
broiler’s compensatory adaptation to variable P-supply,
which incorporates hormonal, transcriptional and bone
interactions, must be examined over all developmental
stages (starter, grower, and finisher) to achieve eco-
nomic growth rates with lower P  supply in diets.

We hypothesize that the depletion of dietary P  supply
and its timing contribute to endogenous adaptive
responses for P  efficiency during the productive life of
the broiler and its age-specific requirements. Compre-
hensive phenotyping which commences immediately
post-hatch until market weight with P  supply below,
equal to or above current recommendations in the

starter phase and its subsequent reduction within the
groups in grower and finisher phases will identify limits
and opportunities for the efficient use of mineral P  in
broiler chicken farming. The objective of the present
study was to evaluate the effects of a variable P  supply
throughout the entire production phases via measure-
ments for growth performance, endocrine control, trans-
cellular P  transport, bone mineralization, and health
aspects in an array of tissues such as blood, jejunum,
kidney, and bone.

M A T E R I A L S  AND METHODS

Ethical Statement

The study was approved by the Scientific Committee
of the Research Institute of Farm Animal Biology
(FBN), and the experimental setup was generally
licensed by the ethics committee of the state Mecklen-
burg-Western Pomerania, Germany (LALLF MV
7221.3-1-051/16).

Broiler Chickens, Housing, Experimental
Diets, and Design

The study was conducted at a poultry research facility
and comprised Ross 308 broiler hatchlings of both sexes
(n =  165). Hatchlings with an average body weight of
41.2 g were obtained from WIMEX Agrarprodukte
GmbH (Regenstauf, Germany) and were raised on wood
shavings as litter material in pens of 3.8 m2 per dietary
group. At any phase, the animal density in pens was
below 25 kg/m2, which assured that the current organic
standards for broiler space requirements were fulfilled.
Each pen was equipped with nipple drinkers and feeders
for unrestricted access to water and feed. Lighting and
temperature followed recommendations throughout
starter (d 1−10; duration: 20 h; intensity: 20 lux; tem-
perature: 30−35°C), grower (d 11−24; duration: 17 h;
intensity: 20 lux; temperature: 30−35°C), and finisher
phases (d 25−37; duration: 17 h; intensity: 20 lux; tem-
perature: 30−35°C) (Aviagen, 2018). Broiler chickens
have been subjected to an oral vaccination against New-
castle Disease at d 9 of life. Broilers were distributed in a
completely randomized design where birds received a
wheat-corn-soybean meal-based diet without phytase
supplementation to minimize exogenous phytase activ-
ity. Diets were formulated without the addition of non-
starch polysaccharide enzymes. All diets were fed in pel-
leted form and were formulated according to nutrient
recommendations (GfE, 1999) except for P  (Tables 1
and 2). This resulted in 3 dietary groups with recom-
mended (M; according to Ross, 2014), lower (L; 50%), or
higher (H; +50%) amounts of non-phytate P  (n P P )  fed
during the starter developmental stage. The level of
soluble phosphorus was quantified in the eluate. Phytase
activity was analyzed spectrophotometrically with an
LOD of 180 FTU/kg (EN ISO 30024). Birds were ran-
domly assigned to 1 of 3 dietary groups of 55 animals
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Table 1. Composition of the experimental diets for broiler chickens at starter, grower, and finisher phases.

Starter (d 1−10) Grower (d 11−24) Finisher (d 25−37)

Ingredient Unit 50% nPP 100% nPP +50% nPP 50% nPP 100% nPP +50% nPP 50% nPP 100% nPP +50% nPP

Wheat % 30.0 30.0 30.0 32.0 32.0 32.0 33.5 33.5 33.5
Soybean meal (44% CP) % 26.0 26.0 26.0 27.0 27.0 27.0 24.0 24.0 24.0
Corn, pre-treated1                                                       % 19.4 19.4 19.4 21.0 21.0 21.0 24.0 24.0 24.0
Soybean concentrate (64% CP) % 11.0 11.0 11.0                  6.5                6.5                6.5                5.0                5.0                5.0
Soybean oil %              5.4                  5.4                  5.4                  6.3                6.3                6.3                6.3                6.3                6.3
Calcium carbonate %              1.69                1.16                0.63                1.37              0.94              0.48              1.28              0.87              0.40
Cellulose powder %              1.24                0.60                -                     1.10              0.50               -                   1.10              0.60               -
Corn starch, pre-gelatinized % 1.1072 1.1172 1.0472 0.6573 0.7173 0.6273 0.8674 0.8374 0.8874
Brewer’s dried yeast % 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Vitamin & trace element premix2               % 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Monocalcium phosphate, (23% P) % 0.44 1.60 2.80 0.33 1.30 2.35 0.27 1.21 2.23
Salt, NaCl % 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43 0.43
Choline Cl (50%) % 0.39 0.39 0.39 0.37 0.37 0.37 0.35 0.35 0.35
DL-Methionine % 0.35 0.35 0.35 0.34 0.34 0.34 0.29 0.29 0.29
Calcium propionate % 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Lysine HCl % 0.21 0.21 0.21 0.21 0.21 0.21 0.22 0.22 0.22
Manganese sulphate (33% Mn) % 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028
Zinc sulphate (36% Zn) % 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
Copper sulphate (24% Cu) % 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
Vitamin D3 (500.000 IU/g) % 0.00078 0.00078 0.00078 0.0007 0.0007 0.0007 0.0006 0.0006 0.0006
Threonine %               -                     -                     - 0.05 0.05 0.05 0.05 0.05 0.05
ME                                                       kcal/kg 2,988              2,988              2,988              3,059            3,059            3,059            3,107            3,107            3,107
Sum % 100 100 100 100 100 100 100 100 100
Calcium %              1.04                1.04                1.04                0.90              0.90              0.90              0.84              0.84              0.84
Phosphorus, total                                    %              0.51                0.78                1.05                0.47              0.69              0.93              0.44              0.65              0.88
Phosphorus, nPP3                                                       %              0.26                0.52                0.78                0.23              0.45              0.68              0.21              0.42              0.64

1Corn, pre-treated −  hydrothermal treatment.
2Vitamin & trace element premix (SNIFF Spezialdiaten GmbH, Soest, Germany) provided per kg of feed: vitamin A (retinyl acetate), 15.000 IE; vita-min

D3 (cholecalciferol), 1.100 IE; vitamin E (all-rac-alpha-tocopheryl acetate), 100 mg; vitamin K3 (menadione), 7 mg; Fe (as FeSO4), 100 mg; Zn (as ZnSO4),
50 mg; Mn (as MnSO4), 30 mg; Cu (as CuSO4), 5 mg; Se (as Na2SeO3), 0.1 mg; I (as Ca(IO3)2), 2.0 mg.

3nPP, non-phytate phosphorus.

each (Figure 1). For the grower stage at d 11, a subset of
sex-balanced broiler chickens were transferred into single
cages (45 cm £  45 cm £  45 cm) equipped with nipple
drinkers and feeders to record individual feed intake and
body weight (Figure 1). Animals in the cages had visual
contact with their conspecifics. The assignment to the
respective dietary group, that is, M or H, was maintained
to ensure adaptation to the new housing environment
and grower feed. From d 17, broiler chickens kept in pens
as well as those in cages were subjected to a dietary P
depletion. Thus, broiler chickens were offered lowered die-
tary P  levels in grower (ML, HL) and finisher phases

(MLL, HLL) compared to the starter phase (Figure 1).
Accordingly, the experimental design also included non-
depleted control groups for the respective stages, that is,
MM and HH for grower and MMM and HHH for finisher
phases. Animals in pens were kept until d 24, whereas
those in individual cages were kept until d 37. Due to
high losses among the chickens that received the L diet in
the starter phase, the trial was continued only with ani-
mals of the M and H groups (details are presented in the
results section). Individual body weight of broiler chick-
ens was recorded on d 10, d 17, d 24, and d 37 of life to
capture the respective developmental phases.

Table 2. Wet-chemical analysis of the broiler chicken diets (g/kg as fed basis).

Starter (d 1−10) Grower (d 11−24) Finisher (d 25−37)

Ingredient

Dry matter
Crude protein
Crude ash
Crude fat
Sucrose
Total starch
Calcium
Phosphorus, total
Phosphorus, soluble
Magnesium
Potassium
Sodium
ME
Phytase activity2

Unit

g/kg
g/kg
g/kg
g/kg
g/kg
g/kg
g/kg
g/kg
g/kg
g/kg
g/kg
g/kg

kcal/kg
FTU/kg

50% nPP1

908
243

59
55
50.7

347
10
4.7
2.5
2.1
9.7
1.8

2,892
211

100% nPP

907
248

63
63
51.5

347
9.8
7.2
3.7
2
9.8
1.7

2,988
<180

+50% nPP

909
243
65
61
52.2

354
9.9
9.5
4.9
2
9.9
1.8

2,988
314

50% nPP

903
225
55
48
53.8

365
8.7
4.3
2.5
1.8
9.0
1.8

2,844
267

100% nPP

904
217
59
48
52.5

363
9.1
6.4
3.5
1.9
9.2
2.1

2,820
218

+50% nPP

904
221
62
58
52.2

362
9.2
8.6
4.6
1.9
9.3
2

2,892
<180

50% nPP

905
201
50
68
53

397
7.9
4
2.2
1.8
8.5
1.7

3,059
267

100% nPP

903
203
53
68
52.4

393
8.1
6.1
3.4
1.7
8.5
1.8

3,035
194

+50% nPP

902
198

57
68
53.3

399
8.4
8.1
4.4
1.7
8.5
1.8

3,035
199

1nPP, non-phytate phosphorus.
2Phytase activity was analyzed spectrophotometrically with an LOD of 180 FTU/kg (EN ISO 30024).



4 OMOTOSO ET AL.

F i g u r e  1. Experimental design. Broiler chickens received 1 of 3 experimental diets containing lower (L), medium (M), or higher (H) levels of die-tary
P  /  non-phytate P  (nPP) between d 1 and 17. Following an initial dietary assessment during the starter phase, a depletion strategy using a low dietary
P  level was applied during the grower (ML vs. MM; HL vs. HH) and finisher stages (MLL vs. MMM; HLL vs. HHH). The feeding trial included (i)
animals housed in pens until d 24 and (ii) animals housed in individual cages until d 37. A subset of broiler chickens (n =  6−8) were sam-pled on d 17,
24, and 37 to obtain blood, jejunum, kidney, and bone samples as indicated by orange rectangles.

Serum and Tissue Sample Collection

A total of 83 broiler chickens were sampled at the 3
sampling stages, that is, d 17 (n =  24 from pens), d 24
(n =  32 from pens), d 37 (n =  27 from cages) as outlined
in Figure 1. Sampling comprised 4 birds per sex per die-
tary group at the grower sampling stages (d 17, d 24)
and at least 3 birds per sex per dietary group at the fin-
isher sampling stage (d 37). At the respective growth
stages, birds were randomly selected, anaesthetized by
electrical stunning, and slaughtered between 09h00 and
12h00. Trunk blood was collected in anticoagulant-free
tubes and allowed to clot for 20 min. Serum was pre-
pared by centrifugation at 3500 £  g for 15 min. Serum
samples were stored at 80°C until further analysis.
Furthermore, sections of jejunal tissue (»3 cm in length)
were collected proximal to the Meckel’s Diverticulum.
Jejunal samples were rinsed with a 0.9% NaCl solution,
snap-frozen in liquid nitrogen and stored at 80°C until
RNA extraction. Moreover, the right kidneys were sam-
pled, snap-frozen in liquid nitrogen and stored at 80°C
until RNA extraction. Finally, the right femurs of the
birds were collected and stored at 0°C until further
analysis.

Serum Minerals and Hormones
Measurement

Serum samples were analyzed to determine calcium,
inorganic P, and albumin levels using commercial assays
for the Fuji DriChem 4000i device according to the manu-
facturer’s instructions (FujiFilm, Minato, Japan). In addi-
tion, hormone measurements were prepared in duplicate
and measured using commercially available enzyme-linked
immunosorbent assay ( E L I S A )  kits. Corresponding kits
for ELISA were processed according to the manufacturer’s
instructions for PTH (CSB-E11880Ch, CUSABIO,

Houston, TX), triiodothyronine (EIA-4569, DRG, Mar-
burg, Germany), calcidiol (EIA-5396, DRG), and calci-
triol (IDS-AC-62F1, Immunodiagnostic Systems,
Frankfurt am Main, Germany). The raw data was proc-
essed according to 4-parameter logistic curve analysis.

Bone Breaking Strength and Ash

Femur samples were thawed overnight at room tem-
perature. Individual bones were weighed, and the length,
width, and maximum diameter (epiphysis) of the femur
samples were measured to ascertain linear bone growth.
The bone-breaking strength (force) was estimated at the
calculated midpoint (50% of length) using a 3-point
bending/flexural test device (WINOPAL Forschungsbe-
darf, Elze, Germany). The proximal and distal epiphyses
of individual femur was placed horizontally on the 2 sup-
porting anvils of the bending test device. Relative to the
length of the femurs an adjusted diaphyseal free span
(fulcrum point) ranging between 2.0 and 3.0 cm was set.
The vertical loading anvil with a capacity of 50 kg was
then applied to the mid-diaphysis of each bone at a
speed of 2 mm/s until the bone failed. A computerized
monitor recorded the load-displacement curve illustrat-
ing the estimated fracture load. Moreover, the ash per-
centage of femora was analyzed. Separated diaphyseal
regions of the femur from the prior bending test were
homogenized with a high-speed grinder. Approximately
1.5 g of homogenized samples were transferred in tripli-
cates to pre-heated and weighed porcelain crucibles for
incineration at 600°C for 7 h in the muffle furnace. After-
wards, samples were left overnight at 105°C in the dry-
ing cabinet. Samples were charred on the Bunsen burner
and incinerated for 7 h in the muffle furnace at 600°C.
The resultant material was cooled at room temperature.
After adding a few drops of 30% hydrogen peroxide
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Table 3. List of genes encoding annotated sodium/phosphate co-transporters in broiler chickens.

Gene symbol

SLC20A1
SLC20A2
SLC34A1
SLC34A2

Aliases

GLVR1, PiT-1
GLVR-2, Ram-1, PiT-2
NaPi-2a, NPT2a, NaPi-IIa
NaPi-2b, NPT2b, NAPi-IIb

Ensembl ID

ENSGALG00000013740
ENSGALG00000038336
ENSGALG00000003075
ENSGALG00000014372

Gene name

Solute carrier family 20 member 1
Solute carrier family 20 member 2
Solute carrier family 34 member 1
Solute carrier family 34 member 2

(H2O2), samples were transferred to the drying cabinet
(105°C for 1 h). Samples were returned to the muffle fur-
nace for incineration at 600°C for 10 min. Afterward,
bone ash was allowed to cool in the desiccator for
approximately 30 min followed by final weight measure-
ment on a precision scale. The bone ash percentage was
calculated (ash% =  final weight /  initial weight £  100).

RNA Isolation, Purification, and cDNA
Synthesis

Prior to RNA extraction, snap-frozen jejunal, and
renal samples were transferred into a sterile ceramic
mortal placed in a liquid nitrogen bath and pulverized
with a pestle to homogenize. Subsequently, total RNA
was isolated from the pulverized samples using TRI
Reagent with adherence to the manufacturer’s guide-
lines (Sigma-Aldrich, Taufkirchen, Germany). DNase I
was used for DNA digestion followed by purification
with column-based NucleoSpin RNA II-Kit (Macherey-
Nagel, Duren, Germany). RNA concentration was deter-
mined using the NanoDrop ND-2000 spectrophotometer
(Thermo Fisher Scientific, Dreieich, Germany). Further
integrity test was done by visualization via agarose gel
electrophoresis. The presence of genomic DNA contami-
nation was checked by polymerase chain reaction
( P C R )  amplification of the chicken GAPDH gene using
an intron-spanning primer set (forward primer: 5’-
AGTCGGAGTCAACGGATTTG -30; reverse primer:
50 -CTGCCCATTTGATGTTGCTG- 30). Subse-
quently, cDNA was synthesized using 1,500 ng of RNA,
together with random primers (Promega, Mannheim,
Germany), oligo d(T) nucleotides, and RNAsin plus

(Promega), in the presence of SuperScript III Reverse
Transcriptase (Invitrogen, Karlsruhe, Germany) accord-
ing to the manufacturer’s instructions. The cDNA sam-
ples were diluted with Aqua dest. to a final volume of
200 mL and stored at 20°C. Further verification for the
absence of genomic DNA in the synthesized cDNA was
conducted with another PCR for chicken GAPDH
employing SupraTherm Taq DNA polymerase (Gene-
Craft, Munster, Germany).

Quantitative Real-Time P C R

To assess the contribution of transcellular P  trans-
porters in the kidney and intestine, gene expression of
solute carrier family 20 and solute carrier family 34
members were analyzed. Presently, there are 4 known
candidate genes encoding chicken transcellular P  trans-
porters (Table 3), namely; solute carrier family 20 mem-
ber 1 (SLC20A1) ,  solute carrier family 20 member 2
(SLC20A2) ,  solute carrier family 34 member 1
(SLC34A1) ,  and solute carrier family 34 member 2
(SLC34A2) .  Gene expression analysis was conducted
using these 4 genes alongside b-actin ( A C T B )  as a
housekeeping gene, to quantify the transcript abundance
via real-time PCR assay. The gene-specific primers, cor-
responding annealing temperatures, and resulting frag-
ment lengths are stated in Table 4. Individual cDNA
samples were analyzed in duplicate on the LightCycler
480 System (Roche, Mannheim, Germany). Reactions
were performed in a final volume of 12 mL comprising
Light Cycler 480 SYBR Green I Master mix (Roche)
and gene-specific primers. The temperature profiles
included an initial denaturation step at 95°C for 5 min,
followed by 45 cycles comprising denaturation at 95°C

Table 4. Gene-specific primers used for mRNA expression analysis via RT-qPCR.1

Gene symbol

SLC20A1

SLC20A2

SLC34A1

SLC34A2

ACTB*

Primer sequence (5’-30)

FOR: CTCTCGTCGTCTGGTTCTTTG
REV: CTTCTCCATCAGCGGACTTTC
FOR: TGCTGCTACCATTGCTATTAACG
REV: TTCTCTTCATCCAGGGGCATAC
FOR: CTTTTGCTGGTGCTACAGTGC
REV: CGTGATGATTTTCAGCAGGTC
FOR: CTGATCTTGCCATCGGTCTC
REV: TCCAGCCAGCCAAGTAAAAG
FOR: CCTCTTCCAGCCATCTTTCTT
REV: TAGAGCCTCCAATCCAGACA

Melting temperature (°C)

60
60
60
60
61
61
60
60
60
60

Amplicon length (bp)

95

161

167

170

254

Abbreviations: ACTB, beta-actin; FOR, Forward; REV, Reverse; SLC20A1, solute carrier family 20 member 1; SLC20A2, solute carrier family 20
member 2; SLC34A1, solute carrier family 34 member 1; SLC34A2, solute carrier family 34 member 2.

1Primers used for the expression analysis were designed using the Primer-BLAST software on the NCBI platform (https://www.ncbi.nlm.nih.gov/
tools/primer-blast/).

*Housekeeping gene.

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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for 10 s, annealing at the specific temperature for 15 s,
and extension/fluorescence acquisition at 72°C for 25 s.
The quality and specificity of amplified products were
assessed by the melting curve analysis. For all assays,
threshold cycles were converted to copy numbers of
respective transcripts using standard curves generated
by amplifying serial dilutions of the corresponding PCR
standard (107 to 101 copies). Transcript copy numbers
were factorial normalized based on ACTB expression
values and log2 transformed prior to further analysis.

Statistical Data Analysis

The experimental design comprised 3 dietary P
groups (L, M and H), with a subsequent dietary P  deple-
tion (ML, HL, MLL, HLL) and their controls (MM, HH,
MMM, HHH) across the 3 distinct developmental stages
(starter, grower, finisher) between 2 sexes of Ross 308
broilers raised under 2 housing conditions (individual
cages, pens). The body weight and feed intake for the
broiler chickens at the respective growth stages were
measured and used to determine the body weight gain
and feed conversion ratio ( F C R ) .  Traits were analyzed
within each phase using the linear model:
g ij =  m +  mi +  nj +  bW +  eij, where g ij are the measure-
ments of the response variable (i.e., zootechnical traits,
bone traits, serum traits and gene expression), m repre-
sents the overall mean, mi represents effect of the dietary
P  group, nj represents sex effect, bW is the linear effect of
the covariates individual body weight or femur weights
as stated in the result section and eij represents the resid-
ual error. Mortality rates per diet group per phase were
analyzed for association via Fisher’s Exact Test. Analy-
ses were performed using the R package stats and
lmerTest (R core team, 2019; package; Kuznetsova
et al., 2017). The pairwise comparison of means between
dietary groups was achieved with the embedded Tukey
post-hoc test. Differences were considered as statistically
significant at P  ≤  0.05.

R E S U L T S

In this study, the effects of dietary P  depletion were
investigated at 3 developmental stages throughout the
productive life span, starting with a variable P  supply
immediately after hatching. The feeding regimen
included P  supply below, at, or above current recom-
mendations early in life and subsequent P  reduction
within these groups. Responses of broilers were ascer-
tained via performance, serum metabolites, bone param-
eters, and mRNA expression of transcellular sodium/
phosphate co-transporters.

Zootechnical Parameters

Based on an average body weight of 41.2 g at d 1, the
dietary treatments within the starter phase resulted in a
body weight of 204 §  3 g (L; n =  62; mean §  SE), 311 §
4 g (M; n =  60), and 312 §  4 g (H; n =  59) at d 10, which
is statistically significant in the comparison between L
and both M and H groups. Data for chickens kept in
individual cages from day 10 onwards is presented in
Table 5. At the early grower phase (d 10−17), L fed
broiler chickens kept in cages showed significantly
reduced body weight, feed intake, weight gain, and FCR
compared to other dietary groups (Table 5). For body
weights at d 17, similar results were obtained from birds
kept in pens regarding group L (n =  29; 354 §  14 g), M
(n =  35; 748 §  11 g), and H (n =  35; 769 §  13 g). The L
group showed a significantly increased mortality in the
phase from d 1 to 17 (31%) compared to M (5%) and H
groups (7%). With advancing development, that is, the
grower phase (d 17−24), feed intake, and mortality
revealed no significant differences between the dietary
groups for individual cages (Table 5) and pens for
groups ML (n =  13; 1,308 §  21 g), HL (n =  13; 1,333 §
41 g), MM (n =  15; 1,266 §  30 g), and HH (n =  14;
1,352 §  46 g). Body weight and body weight gain signifi-
cantly differed between the depleted P  diet and control
groups (Table 5). In addition, chickens of the ML group

Table 5. Body weight, feed intake, body weight gain and feed conversion ratio (FCR) of broiler chickens housed in individual cages and
fed divergent amounts of dietary P  throughout experimental phases. All values are displayed as mean §  SE.

Phase Diet (n)

d 10  L (n =  16)
M (n =  16)
H (n =  16)

d 10−17  L (n =  10)
M (n =  16)
H (n =  16)

d 17−24                           ML (n =  8)
HL (n =  8)

MM (n =  7)
HH (n =  8)

d 24−37                        MLL (n =  7)
HLL (n =  6)

MMM (n =  6)
HHH (n =  8)

Body weight (g)

226 §  4b

335 §  6a

332 §  4a

377 §  15b

613 §  14a

629 §  18a

1093 §  41b

1136 §  52a b

1201 §  52a b

1252 §  55a

2171 §  145
2159 §  199
2450 §  188
2632 §  94

Feed intake (g)

229 §  14b

406 §  18a

396 §  16a

646 §  39
627 §  27
670 §  30
687 §  36

1858 §  158
1852 §  271
2021 §  210
2244 §  79

Body weight gain (g)

147 §  17b

278 §  13a

298 §  17a

480 §  23c

528 §  25bc

586 §  33a b

601 §  38a

1086 §  71b

1177 §  115a b

1254 §  68a b

1436 §  39a

FCR (g/g)

1.73 §  0.19a

1.49 §  0.08a b

1.35 §  0.03b

1.35 §  0.07a

1.19 §  0.02b

1.15 §  0.02b

1.15 §  0.02b

1.80 §  0.12
1.94 §  0.13
1.69 §  0.08
1.63 §  0.03

Abbreviations: H, high P  diet; HH, high-high P  diet; HL, high-low P  diet; HLL, high-low-low P  diet; HHH, high-high-high P  diet; L, low P  diet; M,
medium P diet; ML, medium-low P  diet; MM, medium-medium P diet; MLL, medium-low-low P  diet; MMM, medium-medium-medium P  diet.

a-cColumn-wise disparity of superscripts indicates statistical significance (P <  0.05) between dietary P  groups within phase.
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revealed significantly higher FCR than the other groups.
Finally, at the finisher phase (d 24−37), zootechnical
data such as body weight, feed intake, FCR, and mortal-
ity were unaltered between dietary groups (Table 5).

Serum Mineral and Hormone Measurements

On d 17, L fed broiler chickens showed significantly
reduced serum levels of P  and triiodothyronine (T3) and
significantly increased levels of albumin and calcitriol
compared to those fed M and H diets (Figure 2). On d
24, significant differences were observed in serum levels
of P, calcium, albumin, and calcitriol (Figure 3). The P
depleted groups (ML, HL) showed reduced serum P  lev-
els but increased levels of calcium, albumin, and calci-
triol compared with the control groups (MM, HH). On d
37, serum calcitriol levels differed significantly between
P depleted groups (MLL, HLL) and animals fed MMM,
but not compared to broilers fed HHH (Figure 4). Con-
centrations of calcidiol and PTH were unaffected by diet
at all experimental stages.

Bone Trait Measurement

On d 17, L fed broiler chicken significantly differed for
bone traits (force, weight, diameter, and ash) compared
to those fed M and H diets (Table 6). On d 24, signifi-
cant differences were observed in the bone fracture load
of broilers fed the P  depleted groups (ML, HL) and those
fed MM. Analyses of other bone traits such as bone
weight, length, diameter, and ash analyses showed no
diet-dependent differences. On d 37, broiler chickens fed
depleted P  (MLL, HLL) significantly differed from those
fed the MMM and HHH diet for breaking force. Femora
bone diameter differed significantly between broilers fed
the depleted P  (MLL), and broilers fed the MMM and
HHH. Values for bone weight, length, and ash remained
unaffected.

Temporal Gene Expression of Jejunal and
Renal Transcellular Phosphorus
Transporters

On d 17, divergent P  diets elicited significant differen-
ces in jejunal and renal mRNA expressions of sodium/
phosphate co-transporters in the birds (Table 7). Specifi-
cally, increased jejunal expression of SLC34A2 (L>H;
FC= 2.27) was observed in L fed broilers compared to
those that received an H diet. In addition, renal mRNA
expression of SLC20A1 significantly increased (M<H;
FC =  3.61) in broilers fed the H diet compared to the M
diet. Likewise, renal SLC20A2 transcripts differed
between broilers fed the H diet compared to those fed
the L diet (L<H; FC =  1.96) and those fed M diets
(M<H; FC =  1.99). Renal SLC34A1 mRNA abundances
differed significantly between broilers fed the L and M
diet (L>M; FC =  2.04). Furthermore, renal SLC34A2
mRNA abundance increased (L<H; FC =  1.96) in the
animals fed H compared to those fed the L diet. A

tissue-specific expression was observed for both sodium/
phosphate co-transporter II genes, with SLC34A2 pre-
dominantly expressed in the jejunum and SLC34A1 in
the kidney. On d 24 and 37, jejunal and renal sodium/
phosphate co-transporters expression were unaffected
between the dietary groups.

DISCUSSION

Efficient nutrient utilization in broiler chickens needs
to account for endogenous responses to variable P  sup-
ply to benefit from enhanced P  absorption in the intes-
tine, P  retention in the bone, and P  reabsorption by the
kidney. The age-appropriate provision of dietary P  is
particularly relevant in the early growth phase, when a
sufficient amount of dietary P  is necessary to meet phys-
iological needs for health and tissue integrity (Bara-
daran et al., 2021). At the same time, excess dietary P
must be prevented due to environmental burden, which
has led to the development of feeding strategies tailored
to meet age-specific requirements (Abbasi et al., 2019).
In the current study, broilers fed the L diet during the
early growth phase (d 1−17) had lower body weight and
feed intake, while weight gain and FCR increased,
accompanied by an increased mortality compared to
broilers fed the M or H diets. This suggests that it is
only possible to a limited extent to condition a thrifty
phenotype with high P  efficiency in later life by reducing
P supply in early life. This observation contrasts with
previous studies that reported broilers raised on dietary
nPP levels as low as 0.25% and 1.0% calcium on d 1 to
21 could thrive without microbial phytase supplementa-
tion, although weight reductions of up to 15% were
observed (Waldroup et al., 2000). It was also reported
that dietary P  depletion at early and late developmental
stages can be applied to reduce P  excretion, whereby die-
tary Ca intake has been shown to be a significant influ-
encing factor (Rousseau et al., 2016). However, the
dietary mineral composition applied to birds of the L
group in our study (0.26% nPP, 1.04% Ca; Table 1)
proved to be insufficient in the early growth phase. The
inconsistent observations regarding the potential for P
reduction between the studies might be due to the differ-
ences in dietary formulations and the interplay of feed
components, including varying Ca:P ratios and the level
and degradation of plant-based phytase (Sommerfeld
et al., 2018). In addition, strain-specific metabolic
requirements are also conceivable. In fact, a genetic con-
tribution to P  utilization has been shown in chickens
and other species, including pigs and quails (Reyer
et al., 2019; Vollmar et al., 2020). In addition, the
decreased feed intake in broiler chickens raised on the L
starter diet may indicate a humoral control of feeding
behaviour, although in vertebrates the mechanisms for
sensing P  by integrating signals from different tissues
are still largely unclear (Michigami et al., 2018).

A low P  diet impacted bone traits of broilers chickens
during each phase, including bone fracture load, weight,
length, diameter, and ash, compared to the chickens in
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F i g u r e  2. Serum parameters of broiler chickens fed divergent amounts of dietary P  until 17 d of life. Values are displayed as means § SE. Superscripts indicate statistical significance (P <  0.05) between
the dietary groups. PTH, parathyroid hormone; L, low P  diet (n =  8); M - medium P  diet (n =  8); H, high P  diet (n =  8).
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F i g u r e  3. Serum parameters of broiler chickens fed divergent amounts of dietary P  until 24 d of life. Values are displayed as means § SE. Super-
scripts indicate statistical significance (P <  0.05) between the dietary groups. PTH, parathyroid hormone; ML, medium-low P  diet (n =  8); MM,
medium-medium P  diet (n =  8); HL, high-low P  diet (n =  8); HH, high-high P  diet (n =  8).

the M and H diet groups. The lowered bone mineraliza-
tion indicates a reduced P  availability to drive ossifica-
tion (Taylor et al., 2013; Shao et al., 2019) or an
increased mobilization of bone retained minerals to meet
growth and other physiological processes (Li et al.,
2020). Although the bone parameters obtained are in a
comparable range to recent reports (Suzer et al., 2019;
Eusemann et al., 2022), no conclusive statement on opti-
mal mineralization in broilers can be concluded from
these values. In the current study, broilers showed femo-
ral sensitivity to P  depletion, as P  serves as a significant
component of the bone due to its deposition in the com-
plex form of hydroxyapatite (Ca5(PO4)3(OH) and is
essential for the musculoskeletal development. Reduced
feed intake of the L diets compared to M and H diets at
d 17 certainly limited the available P  pool within the
birds resulting in age-inappropriate skeletal develop-
ment. However, a previous study reported that broiler
chickens fed depleted P  diets at the grower phase

showed similar consequences for bone traits, but also
exhibited an increased propensity for bone mineraliza-
tion processes when mineral deficiencies were replen-
ished later in life (Valable et al., 2018).

Serum P  concentrations of broilers fed the L diets
until d 17 were lowest compared to broilers that received
the M and H diets. This was further triggered due to the
reduction in the broilers’ feed intake. Contrastingly,
serum calcitriol (active vitamin D) levels were highest in
broilers fed the L diet compared to broilers fed the M
and H diet. Calcitriol plays a pivotal role in the broiler’s
homeostatic regulation of P  by mediating increased
intestinal absorption, usually under the conditions of
nutritional mineral deficit to attain equilibrium (Berndt
and Kumar, 2009). Hence, vitamin D metabolism is
essential for adaptation throughout the feeding phases
studied to ensure P  homeostasis. However, the physio-
logical effect of the endogenous responses to the L diet in
the early phase is clearly limited, as broiler chickens

F i g u r e  4. Serum parameters of broiler chickens fed divergent amounts of dietary P  until 37 d of life. Values are displayed as means § SE. Super-
scripts indicate statistical significance (P <  0.05) between the dietary groups. PTH, parathyroid hormone; MLL - medium-low-low P  diet (n =  7);
MMM, medium-medium-medium P  diet (n =  6); HLL, high-low-low P  diet (n =  6); HHH, high-high-high P  diet (n =  8).
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Table 6. Femoral bone traits of broiler chickens fed divergent amounts of dietary P  throughout experimental phases. All values are dis-
played as mean §  SE.

Day of sampling

d 17

d 24

d 37

Diet (n)

L (n =  8)
M (n =  6)
H (n =  7)

ML (n=8)
HL (n =  8)

MM (n =  6)
HH (n =  7)

MLL (n =  7)
HLL (n =  6)

MMM (n =  5)
HHH (n =  7)

yFracture load (N)

30.9 §  4.23a

231.1 §  13.19b

211.3 §  9.91b

199.7 §  7.73ac

214.7 §  13.17c

293.4 §  42.60b

253.3 §  22.34abc

192.8 §  16.79a b

176.7 §  15.28b

259.2 §  43.06c

261.3 §  11.39c

Weight (g)

1.9 §  0.09a

3.9 §  0.27b

3.8 §  0.21b

6.8 §  0.32
6.8 §  0.32
6.7 §  0.45
6.5 §  0.51

10.5 §  0.98a b

9.8 §  0.60a

11.3 §  1.46a b

11.8 §  0.74b

zLength (cm)

4.0 §  0.08a

5.2 §  0.11b

5.2 §  0.07b

6.4 §  0.05
6.3 §  0.08
6.3 §  0.08
6.2 §  0.14
7.5 §  0.20
7.3 §  0.16
7.3 §  0.19
7.6 §  0.13

zDiameter (cm)

0.5 §  0.02a

0.6 §  0.02b

0.7 §  0.02b

0.8 §  0.01
0.8 §  0.03
0.8 §  0.03
0.8 §  0.04
0.9 §  0.04a

0.9 §  0.02a b

1.1 §  0.09b

1.1 §  0.04b

zAsh (%)

7.1 §  0.24a

15.2 §  0.60b

16.1 §  0.64b

18.4 §  2.05
18.0 §  1.64
17.2 §  1.38
20.8 §  1.09
16.1 §  0.79
16.1 §  0.85
18.5 §  1.59
17.6 §  0.81

Abbreviations: H, high P  diet; HH, high-high P  diet; HL, high-low P  diet; HLL, high-low-low P  diet; HHH, high-high-high P  diet; L, low P  diet; M,
medium P diet; ML, medium-low P  diet; MM, medium-medium P diet; MLL, medium-low-low P  diet; MMM, medium-medium-medium P  diet.

yBody weight factored as covariate.
zFemoral weight factored as covariate.
a-cColumn-wise disparity of superscripts indicates statistical significance (p<0.05) between dietary P  groups within phase.

showed higher serum albumin and lower serum triiodo-
thyronine (T3) concentrations compared to broilers fed
the M and H diets. Albumin plays a physiological role in
maintaining colloidal osmotic pressure and acts as a
marker for renal integrity. Serum levels indicate a severe
malnourishment of broilers fed the L diet, suggesting
dehydration as well as catabolic metabolism due to the
reduction in feed intake (Wadden et al., 1990). In fact, P
deprivation has been reported to induce hypothyroid-
ism, and therefore, systemic growth reduction, especially
at the early stages of development in the broiler chicken
(Parmer et al., 1987; Jianhua et al., 2000). The skeleton
represents a target tissue for T3, which contributes to
the regulation of bone turnover (Williams, 2013).
Decreased T3 levels are associated with fracture risk and
may be related to impaired bone resorption and forma-
tion via reduced osteoblast differentiation and function

(Vestergaard et al., 2005; Tuchendler and Bolanowski,
2014). Studies in murine bone cells revealed that a
higher T3 concentration increased bone resorption and
made the osteoblasts more sensitive to the actions of
PTH (Schmid et al., 1986). Hence, higher serum calcium
levels coupled with high levels of T3 are probably due to
the interactive effects of T3 on bone resorption and
recruitment of osteoblasts in response to PTH.

Significant differences were observed in serum concen-
trations of P  and Ca between the depleted P  groups
(ML, HL) and controls (MM, HH) at d 24, indicative of
the birds’ attempt to achieve mineral homeostasis for
both micronutrients with advancing age. Broadly,
broilers from the grower phase onwards (d 18−37)
exhibited the capacity to tolerate the effects of dietary P
for zootechnical properties (Waldroup et al., 2000; Bar
et al., 2003). In this context, endocrine control

Table 7. Gene expression levels of sodium/phosphate co-transporters expressed in jejunum and kidney of broiler chickens fed divergent
amounts of dietary P  throughout experimental phases. Transcript copy numbers were presented as log2 values (mean §  SE).

Day of sampling

d 17

d 24

d 37

Tissue

Jejunum

Kidney

Jejunum

Kidney

Jejunum

Kidney

Diet (n)

L (n =  8)
M (n =  8)
H (n =  8)
L (n =  8)

M (n =  8)
H (n =  8)

ML (n =  8)
HL (n =  8)

MM (n =  8)
HH (n =  8)
ML (n =  8)
HL (n =  8)

MM (n =  8)
HH (n =  8)

MLL (n =  7)
HLL (n =  6)

MMM (n =  6)
HHH (n =  8)
MLL (n =  7)
HLL (n =  6)

MMM (n =  6)
HHH (n =  8)

SLC20A1

13.8 §  0.44
14.2 §  0.45
14.0 §  0.39
13.4 §  0.48a b

12.0 §  0.41a

13.9 §  0.21b

12.2 §  0.97
9.9 §  1.93

10.7 §  1.45
11.3 §  1.02
13.5 §  0.43
15.3 §  1.34
13.5 §  0.90
12.6 §  0.94
13.3 §  1.09
13.0 §  0.74
13.4 §  0.91
13.2 §  0.65
14.0 §  0.58
14.5 §  1.38
14.8 §  0.26
15.8 §  0.86

SLC20A2

14.4 §  0.56
13.9 §  0.61
13.8 §  0.59
14.4 §  0.23a

14.4 §  0.25a

15.4 §  0.20b

12.4 §  0.22
11.8 §  0.40
11.8 §  0.20
12.1 §  0.22
13.4 §  0.45
15.9 §  1.46
13.7 §  1.16
13.7 §  0.17
13.1 §  0.54
11.7 §  0.99
12.2 §  0.98
12.6 §  0.47
14.7 §  0.90
14.9 §  1.18
14.3 §  0.27
15.0 §  0.95

SLC34A1

8.4 §  0.91
7.0 §  0.81
5.8 §  0.56

21.2 §  0.26a

20.2 §  0.29b

20.4 §  0.19a b

5.8 §  0.59
7.3 §  0.28
5.6 §  0.62
3.9 §  1.25

20.1 §  0.69
23.9 §  1.31
19.3 §  2.33
20.5 §  0.44
8.5 §  0.77

11.2 §  0.84
9.8 §  0.78
8.3 §  0.87

22.0 §  1.04
21.5 §  1.05
19.4 §  1.05
20.8 §  0.32

SLC34A2

17.7 §  0.30a

17.0 §  0.36a b

16.5 §  0.25b

8.2 §  0.20a

8.5 §  0.29a b

9.1 §  0.23b

16.6 §  0.37
15.9 §  0.49
16.0 §  0.31
16.1 §  0.24

7.6 §  0.65
10.0 §  1.46

9.3 §  1.21
7.5 §  0.28

16.1 §  0.82
15.5 §  0.41
14.3 §  0.92
16.0 §  0.82

9.8 §  1.30
8.9 §  1.07
8.2 §  0.46
9.0 §  0.96

Abbreviations: H, high P  diet; HH, high-high P  diet; HL, high-low P  diet; HLL, high-low-low P  diet; HHH, high-high-high P  diet; L, low P  diet; M,
medium P diet; ML, medium-low P  diet; MM, medium-medium P diet; MLL, medium-low-low P  diet; MMM, medium-medium-medium P  diet.

a-bColumn-wise disparity of superscripts indicates statistical significance (P <  0.05) between dietary P  groups within tissue within phase.



€

MINERAL BALANCE ACROSS PRODUCTIVE LIFE SPAN 11

mechanisms represent the adaptive response to address
reductions of P  supply. Notably, the effect of the serum
calcitriol remained elevated in L diet broilers throughout
the entire developmental phase, indicating subtle effects
such as the continued endocrine mediation of intestinal
absorption and renal reabsorption of P  (Li et al., 2021).

Dietary effects on other serum metabolites (P, Ca,
albumin, calcidiol, PTH, and T3) were not present in the
depleted P  groups and controls at d 37. However,
broilers fed L diets at the grower and finisher phases
showed effects on bone traits compared to the broilers
fed the control and H diets. Although bone fracture load
was reduced at d 24, that is after only 1 week on an L
diet, the results indicate intact tissue development and
absence of pathophysiologic abnormalities. The broiler
chickens fed high P  diets across developmental phases
showed no merits for zootechnical, endocrine, or bone
traits compared with birds fed recommended and
depleted P  levels. It must be noted that numerical differ-
ences in the respective traits exist between the experi-
mental groups, which require the validation of the
results with a larger sample size. In view of the current
results, providing safety margins for dietary P  supply do
not reveal beneficial outcomes for the bird, but rather
exacerbates environmental impacts further associated
with the scarcity of P  resources (Campbell et al., 2017).
This observation is in line with previous findings focus-
ing on high P  bioavailability (Gautier et al., 2018).

The jejunum has been reported as the primary site of
intestinal P  absorption in the broiler (Hurwitz and Bar,
1970). Notably, intestinal P  absorption in the broiler
occurs via paracellular (passive) and transcellular (active)
transport mechanisms. Whereas the former involves the
selective molecule diffusion or inhibition through alterna-
tive sealing or pore-forming characteristics via the tight-
junction protein permeability gradients, for example,
claudins (Marks, 2019). The latter entails the recruitment
of sodium/phosphate dependent co-transporters located
at the brush border membrane (Eto et al., 2006). The
transcellular pathway is thought to be the preferential
intestinal P  absorption route under dietary P  restrictions
(Marks, 2019). The expression of jejunal SLC34A2 in
response to the diet in the current study suggests that
intestinal P  availability in the diets affected the abun-
dance of sodium/phosphate co-transporters in jejunal
cells to maintain homeostasis and adaptation at the ear-
lier growth phase (Hu et al., 2018). In fact, several studies
highlighted an increased expression of genes encoding
transcellular P  transport in the small intestine of both
broiler chickens and laying hens on exposure to deficient
P  diets, implicating a cellular response to luminal P  con-
centrations via endocrinal factors, for example, calcitriol
(Rousseau et al., 2016; Hu et al., 2018; Knopfel et al.,
2019; Proszkowiec-Weglarz et al., 2019; Sommerfeld
et al., 2020). In addition, the expression of the SLC34A1
gene in the kidney of L fed broilers indicated its contribu-
tory regulatory role, including reabsorption of P  at the
proximal tubule to achieve P  homeostasis. The renal type
III Na+-P co-transporters were more abundant in broilers
of the H group compared to L and M (SLC20A2) and M

group (SLC20A1), respectively. Previous studies on
murine models identified responses of the type III Na+-P
co-transporters to changes in dietary P  contents (Candeal
et al., 2017; Marks, 2019). Albeit the type III Na+-P co-
transporters were expressed in response to P  levels within
the organism’s biosystem, suggesting possible transmem-
brane transport and intracellular utilization, their precise
functional potential for P  regulation remains unclear
(Marks, 2019).

Genes encoding sodium/phosphate co-transporters in
the jejunum and kidney remained unaffected throughout
the grower and finisher phase (d 18−37), in contrast to
observable responses at the endocrine and bone level.
This observation suggests that broilers use other com-
pensatory mechanisms to achieve P  efficiency in addi-
tion to subtle changes in active transcellular P  transport
in the gut and kidney. In other studies, a low-P diet has
not consistently been shown to increase mRNA abun-
dance of transcellular P  transporters (Just et al., 2018;
Reyer et al., 2021). This could indicate complementary
paracellular P  transport, post-transcriptional modifica-
tions, or miRNA-mediated regulation mechanisms.
However, it also broadly informs the broilers’ capacity
to cope with the P  nutrient challenge, for example,
depletion, through synergistic interactions of endocrinal
and genetic factors towards zootechnical performance
and bone traits. Adequate P  supply in the early growth
phase is thus the basis for long-term physiological P  effi-
ciency in the finisher phase (Valable et al., 2020; Bara-
daran et al., 2021).

In summary, broiler chickens showed physiological
responses to different dietary P  levels at different develop-
mental stages, as shown by the interplay between serum P
and Ca levels, endocrine responses in terms of calcidiol,
calcitriol, PTH, and triiodothyronine levels, bone
strength and mineralization, and jejunal and renal P
transporter gene expressions to maintain P  homeostasis
for production and welfare. Based on these results, the
threshold for P  deprivation for environmental concerns
should be set no earlier than the late start/early growth
phase, as physiological adaptation mechanisms to P  defi-
ciency seem more effective than in the early growth phase.
In this study, a one-third reduction in P  intake in the
early growth phase up to d 17 resulted in severe develop-
mental abnormalities that could not be tolerated and
compensated. Consequently, nutritional strategies such
as the efficient application of phytases and targeted P
reduction in the late rearing or early finishing phase are
conceivable. The feeding management might be in accor-
dance to the MLL group, as broilers at this age show
higher tolerance and faster compensation capacity with-
out compromising production as well as health traits by
the adaptation mechanisms investigated in this study.
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A B S T R A C T Efforts to achieve sustainable phosphorus
(P) inputs in broiler farming which meet the physiological
demand of animals include nutritional intervention strate-
gies that have the potential to modulate and utilize
endogenous and microbiota-associated capacities. A tem-
poral P  conditioning strategy in broiler nutrition is prom-
ising as it induces endocrinal and transcriptional
responses to maintain mineral homeostasis. In this con-
text, the current study aims to evaluate the composition of
the jejunal microbiota as a functional entity located at the
main absorption site involved in nutrient metabolism.
Starting from a medium or high P  supply in the first
weeks of life of broilers, a depletion strategy was applied
at growth intervals from d 17 to 24 and d 25 to 37 to
investigate the consequences on the composition of the
jejunal microbiota. The results on fecal mineral P,

calcium (Ca), and phytate contents showed that the diets
applied to the depleted and non-depleted cohorts were
effective. Microbial diversity in jejunum was represented
by alpha diversity indices which appeared unaffected
between dietary groups. However, chickens assigned to
the dietary P  depletion groups showed significantly higher
abundances of Facklamia, Lachnospiraceae, and Rumino-
coccaceae compared to non-depleted control groups.
Based on current knowledge of microbial function, these
microorganisms make only a minor contribution to the
birds’ adaptive mechanism in the jejunum following P
depletion. Microbial taxa such as Brevibacterium, Bra-
chybacterium, and genera of the Staphylococcaceae family
proliferated in a P-enriched environment and might be
considered biomarkers for excessive P  supply in commer-
cial broiler chickens.

K e y  words: phosphorus excretion, intestinal microbiota, mineral supply, mineral homeostasis, nutritional
conditioning

2023 Poultry Science 102:103096
https://doi.org/10.1016/j.psj.2023.103096

INTRODUCTION

Dietary phosphorous (P) is essential to all life forms
owing to its multifaceted functions within the organis-
mal biosystem. In the broiler, the significance of P  as a
mineral constituent of the diet has been established due
to its pivotal role in physiological processes relating to
the bird’s growth and productivity when efficiently
utilized. In plant-based diets, P  is stored as the salt form
of phytic acid [myo-inositol 1,2,3,4,5,6-hexakisphosphate;
InsP6], also referred to as phytate. However, broilers
have limited capacity to utilize phytate-P due to inade-
quate production of enteral phytase/phosphatases
needed to hydrolyze phytate (Rama Rao et al., 1999),
accounting for environmental P  losses (Panagos et al.,
2022). On conventional farms, both mineral P  and
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phytases of microbial origin are supplemented to diets.
The latter is used to enzymatically degrade phytate and
release inorganic P, a practice prohibited in organic
livestock production (Council of the European Union,
2007). However, apart from such exogenous routes
regarding the enteric bioavailability of various P-sources,
the broiler chicken has demonstrated the capacity to
efficiently allocate P  resources through endogenous
mechanisms involving mineral deposition in the bone,
mediated by endocrinal and transcriptional control and
adaptation in the intestine and kidney (Shao et al.,
2018; Omotoso et al., 2023).

With regard to the efficient utilization of plant-bound
P, the diversity and functional contribution of the intes-
tinal microbiota is also an interesting target. The micro-
biota represents a dynamic constituent of the
gastrointestinal tract ( G I T )  that colonizes after hatch-
ing and is defined by several factors that can be broadly
divided into i) host characteristics, for example, bird
age, strain, sex, GIT section, and ii) the environmental
factors, for example, husbandry system, feed, geographic
location, and biosecurity (Kers et al., 2018; Ngunjiri
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et al., 2019). Interestingly, colonization cascades have
been described in which intestinal pioneer colonizers
could shape the subsequent microbiota composition of
individual birds (Rubio, 2019). In fact, the microbiota is
acknowledged to contribute to the dynamics of complex
structural, metabolic and immunological processes that
define the host’s health, welfare and age-appropriate
development (Rubio et al., 2014).

The intestinal microbiota contains specific phospha-
tase-secreting microbes such as the Bifidobacteria
(Haros et al., 2005) and isolates of Lactobacillus (Kim et
al., 2007), which are capable of hydrolyzing phytate and
release inorganic P  to the host for absorption. Moreover,
the dietary supply of macrominerals such as P  and cal-
cium to the monogastric species has been reported to
modulate the gut microbiota (Ptak et al., 2015; Reyer et
al., 2021), thus, indicating the microbiota as a potent,
functional entity involved in nutrient metabolism (Grice
and Segre, 2012).

Furthermore, accumulating scientific studies on the
chicken microbiota focused on the distal ileocecal region
of the GIT, for example, the caeca or colon, due to the
high diversity of the microbial community in this GIT
section crucial to mediate the hydrolysis of phytate
which determines the corresponding levels of P  and ino-
sitol phosphates excreted to the environment (Witzig et
al., 2015; Yan et al., 2017). However, the homeostasis
and metabolism of P  are initiated in the proximal small
intestine, specifically, the jejunum, where active and
passive transport processes enable P  uptake and thus
facilitate increased absorption and utilization after enzy-
matic phytate degradation (Hurwitz and Bar, 1970).
Hence, investigating the broiler’s jejunal microbiota
composition under different dietary P  supply might be
informative.

Additionally, due to P  loss concerns, recent studies
which investigated the broiler’s physiological adaptation
to moderate dietary P  reductions initiated at the early
growth phase highlighted the bird’s capacity to incorpo-
rate different intrinsic compensatory mechanisms to
define nutrient efficiency with maturity (Valable et al.,
2018; Baradaran et al., 2021). Endogenous mechanisms
observed include the synergy between endocrinal regula-
tors (e.g., calcitriol), gene expression (e.g., SLC34A2),
and the contribution of intrinsic organismal P  reservoirs
such as the bone.

Physiologically, calcitriol (1,25(OH)2     vitamin D)
mediates transcellular P  uptake in the intestine via
its receptor ( V D R )  which acts on the promoter of
the sodium-dependent P  transporter to stimulate its
expression. The bone facilitated P  homeostasis due to
its remodeling attributes (e.g., dynamics of mineral P
storage and resorption), by enabling effective P
resource allocation and adaptation in response to the
reduced dietary P  intake (Hu et al., 2018; Li et al.,
2020). Moreover, previous studies in pigs fed variable
dietary P  levels showed significantly differential
abundances of the intestinal microbial genera, sug-
gesting the possibility of targeted manipulation of the
microbial community in the intestine by feeding

interventions for an improved intestinal phytate utili-
zation (Reyer et al., 2021).

Therefore, we hypothesized that the jejunal micro-
biota of broilers fed varying dietary P  levels from the
early grower until finisher phase synergizes with the
endogenous mechanisms adopted by the bird to main-
tain P  homeostasis. The objective of the present study
was to evaluate the jejunal microbiota composition of
broilers subjected to P  depletion throughout the grower
and finisher stages. Additionally, corresponding meas-
urements of total fecal P, calcium, and phytate were
conducted to approximate the unutilized fractions.

M A T E R I A L S  AND METHODS

Ethical Statement

The animal experimental setup was approved by the
Scientific Committee of the Research Institute for Farm
Animal Biology ( F B N )  and licensed by the animal wel-
fare and ethics committee of the state Mecklenburg-
Western Pomerania, Germany (LALLF 7221.3-1-051/
16).

Experimental Birds, Management, and Diets

The feeding trial refers to a larger experiment involv-
ing previously reported performance data (Omotoso et
al., 2023). The experiment was conducted at the poultry
research facility of the FBN. In this study, a total of
n =  110 Ross 308 broiler hatchlings of both sexes
obtained from WIMEX Agrarprodukte GmbH was used
(Regenstauf, Germany). In brief, birds were raised on
wood shavings as litter material in pens of 3.8 m2 with a
stocking density below 25 kg/m2, which meets current
organic standards for broiler spacing requirements. Each
pen was equipped with feeders and nipple drinkers for
unrestricted access to feed and water. Birds were ran-
domly allotted to 2 dietary groups comprising 55 ani-
mals each housed in 1 pen per treatment. From the
grower stage at d 11, a total of 39 birds per group
remained in the respective pens, while a subset of
sex-balanced broiler chickens (n =  16 per dietary group)
were transferred into individual metabolic units
(45 cm £  45 cm £  45 cm) equipped with feeders and
nipple drinkers to enable access to feed and water. The
metabolic units were designed to ensure the birds’ visual
contact with their conspecifics and guarantee to record
individual bird’s zootechnical parameters including feed
intake. The dietary regimen comprised starter (d 1−10),
grower (d 11−24), and finisher diets (d 25−37). The
wheat-corn-soybean meal-based diet was formulated
without the addition of nonstarch polysaccharide
enzymes or phytase. The fed diets for starter, grower,
and finishers were pelleted and formulated according to
the nutrient recommendations of the Gesellschaft fur
Ernahrungsphysiologie (GFE, 1999) except for P  (Sup-
plemental Table 1). The experimental diets contained
either recommended (M; 100% according to Ross, 2014)
or higher (H; +50%) amounts of nonphytate P  (n P P )
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in the respective grower and finisher feeds. From d 17,
half of the broilers in cages were subjected to dietary P
depletion (50%), wherein chickens were offered low-
ered dietary P  levels in the grower stage (i.e., ML, HL)
and finisher phases (MLL, HLL). Accordingly, the
experimental design also included the non-depleted (rec-
ommended and high) groups for the respective stages,
that is, MM and HH for grower and MMM and HHH for
the finisher phases, respectively. As previously published
(Omotoso et al., 2023), the analyzed values for crude
protein ( C P )  in grower diets (L: 225 g/kg; M: 217 g/kg;
H: 221 g/kg) and finisher diets (L: 201 g/kg; M: 203 g /
kg; H: 198 g/kg) as well as metabolizable energy (M E )
in grower diets (L: 2,844 kcal/kg; M: 2,820 kcal/kg; H:
2,892 kcal/kg) and finisher diets (L: 3,059 kcal/kg; M:
3,035 kcal/kg; H: 3,035 kcal/kg) were comparable.

Jejunal Digesta and Fecal Sample Collection

A total of n =  75 broilers were considered in this study
with an emphasis on d 17, d 24, and d 37. For jejunal
digesta collection at d 17 (n =  16 from pens), d 24
(n =  32 from pens), and d 37 (n =  27 from single cages),
birds were anesthetized by electrical stunning and
slaughtered by exsanguination. Whole jejunum tissue
(approx. 5 cm) was collected proximal to the Merkel’s
diverticulum and cut lengthwise to sample the intestinal
digesta gently with a spatula. Digesta were snap-frozen
in liquid nitrogen and stored at 80°C until DNA isola-
tion. Additionally, deposited fecal samples from a period
of 4 h were collected from birds housed in single cages at
d 17, d 24, and d 37. Fecal samples were stored at 20°C
until further analysis.

DNA Isolation, 16S rRNA Gene Amplicon
Sequencing and Bioinformatics Analysis

Microbial DNA was isolated from the broiler digesta
samples using the DNeasy PowerLyzer PowerSoil Kit
(QIAGEN, Hilden, Germany) according to the manufac-
turer’s guidelines. The samples were incubated at 70°C
and 95°C for 10 min each before bead-beating with Pre-
cellys 24 homogenizer (PEQLab Biotechnology GmbH,
Darmstadt, Germany). DNA concentration was deter-
mined using the NanoDrop ND-2000 spectrophotometer
(Thermo Fisher Scientific, Dreieich, Germany).
Amplicons of the 16S rRNA gene were synthesized in
duplicates using primers specific to the V4 (515F:
GTGCCAGCMGCCGCGGTAA and 806R: GGAC-
TACHVGGGTWTCTAAT)      hypervariable region
alongside adapters and barcodes (Hugerth et al., 2014).
The polymerase chain reaction was performed with the
GoTaq G2 Hot Start Master Mix (Promega, Walldorf,
Germany), with temperature, timing, and cycle regimen
set as follows: initial denaturation step at 95°C for
2 min, 35 cycles, denaturation at 95°C for 30 s, annealing
at 50°C for 60 s and 72°C for 90 s, and a final extension
at 72°C for 10 min. Amplicons were prepared in dupli-
cates, combined, purified, and normalized using a

SequalPrep normalization plate (Thermo Fisher Scien-
tific, Darmstadt, Germany). Afterward, libraries were
sequenced on a HiSeq 2500 instrument (Illumina, San
Diego, CA). After demultiplexing, raw data were
analyzed with the mothur software (version 1.44.1)
(Schloss et al., 2009). The Silva reference database
(release 138) was employed for the global alignment of
the 22,942,877 sequence reads, after which annotated
operational taxonomic units (O T Us )  were retrieved at
97% sequence identity.

Fecal Mineral Content and Phytate
Measurement

The freeze-dried fecal samples were weighed, milled,
and digested via microwave treatment to solve the ana-
lytes and obtain an effective yield. Total P  and calcium
(Ca) content was ascertained via inductively coupled
plasma-optical emission spectroscopy ( I C P - O E S )
(UEA Consulting Ltd., Norwich, UK).

For phytate quantification, a total of 100 mg of fecal
samples were added to 500 mL deionized water and
homogenized on ice. After a centrifugation step for
20 min at 10,000 rpm at 4°C, the supernatant was stored
at 20°C and used for further analyses. The fecal phytate
content was analyzed in a microplate format via a colori-
metric assay (orb707384, Biorbyt, Cambridge, UK).

Statistical Data Analysis

The broiler chicken’s daily P  and Ca intake was calcu-
lated based on feed intake and the corresponding dietary
composition for the respective periods as presented pre-
viously (Omotoso et al., 2023). These parameters and
fecal P, Ca, and phytate were analyzed at each phase
using a linear model: g ij =  m +  di +  sj +  eij, where g ij are
the measurements of the response variable (i.e., zootech-
nical traits, fecal minerals), m represents the overall
mean, di represents effect of the dietary P  group, sj rep-
resents sex effect, and eij represents the residual error.
Analyses were performed using the R package stats and
lmerTest (Kuznetsova et al., 2017; R Core Team, 2023).
The pairwise comparison of means between dietary
groups was achieved with the embedded Tukey post hoc
test. Microbial alpha diversity parameters including the
Shannon diversity index, inverse Simpson index, and
species richness using the abundance-based coverage
estimator ( A C E )  were analyzed to ascertain the jejunal
microbiota richness, evenness, and diversity in response
to the dietary P  using vegan package v2.5-7 and phylo-
seq v1.42.0 embedded in R (R Core Team, 2023).
Furthermore, the non-metric multidimensional scaling
( N M D S )  ordination was visualized based on the Bray-
Curtis dissimilarities and the similarities were checked
with the analysis of similarities ( A N O S I M )  approach
in vegan package v2.5-7 embedded in R (R Core Team,
2023). The relative abundance of the microbiota was
visualized using taxa plot at the genus level employing
the R software (R Core Team, 2023). Differences were
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considered as statistically significant at P  ≤  0.05. After
subsampling the 16S data for each sample to 96,873
reads, dietary effects on microbial abundance were
assessed at the genus level for samples collected at d 24
and d 37 using Wald test statistics embedded within
the DESeq2 in R platform (DOI:10.18129/B9.bioc.
DESeq2). At least 30 counts in more than 6 individuals
were used as filtering criteria at the genera level. Genera
with a Benjamini-Hochberg-adjusted P  value <0.05
were considered as statistically significant.

R E S U L T S

The current study investigated the role of the broiler’s
jejunal microbiota in adapting and contributing to
maintain the host’s nutrient efficiency following a P
depletion strategy.

Mineral Intake of Total Phosphorus and
Calcium

The early grower developmental phase (d 10−17)
revealed significant differences between the dietary intake
of P  between the M and H groups, indicating that the feed
formulations were effective (Table 1). Following the dietary
P  depletion (d 17−24), significantly lower levels were
observed for P intake in the depleted groups (ML, HL) com-
pared to non-depleted groups (i.e., recommended, MM and
high, HH). Moreover, total P  intake was higher in HH ani-
mals compared to MM animals. The total Ca intake was
significantly reduced in HL compared to HH animals. At d
25 to 37, total P  intake was significantly reduced in the
depleted groups (MLL, HLL) compared to the respective
non-depleted animals (MHH, HHH). Moreover, total P and
calcium intake were higher in HHH animals compared to
MMM animals at this growth phase (d 25−37).

Fecal Content of Total Inorganic Phosphorus
and Calcium

At d 17, the analysis of total mineral P  in fecal sam-
ples revealed a significantly higher level in H (n =  16;

Table 1. Total phosphorus (P) and calcium (Ca) intake of
broilers raised in individual metabolic units and fed divergent
amounts of dietary P  throughout the developmental phases. Val-
ues are displayed as mean §  SEM.

Phase Diet (n) Total P  intake (mg/d) Ca intake (mg/d)

D 10−17       M (n =  16)                        418 §  18b                                      568 §  25
H (n =  16)                        537 §  21a                                      560 §  22

D 17−24 ML (n =  8) 397 §  24c                                     803 §  49a b

HL (n =  8) 385 §  17c                                     779 §  34b

MM (n =  7) 612 §  28b                                      870 §  39a b

HH (n =  8) 844 §  45a                                      903 §  48a

D 24−37  MLL (n =  7) 572 §  49c                                  1129 §  96b

HLL (n =  6) 570 §  83c                                  1125 §  164b

MMM (n =  6) 948 §  99b                                  1295 §  131b

HHH (n =  8)                  1398 §  49a                                  1450 §  51a

a,b,cIndicate significant differences between groups (P <  0.05); L, low P
diet; M, medium P  diet; H, high P  diet. Consecutive letters indicate the
dietary treatment in experimental periods.

25.87 §  0.75 g) animals compared to M (n =  16; 15.63 §
0.52 g) animals (Figure 1A). At d 24 and d 37, the P
depletion groups ML (n =  8; 7.55 §  0.35 g), HL (n =  8;
8.67 §  0.41 g), MLL (n =  7; 8.13 §  1.24 g), and HLL
(n =  6; 8.76 §  0.78 g) showed reduced fecal P  levels com-
pared to the respective non-depleted groups MM (n =  7;
16.86 §  1.02 g), HH (n =  8; 23.75 §  0.55 g), MMM
(n =  6; 18.40 §  0.96 g), and HHH (n =  8; 28.78 §  1.23
g). Additionally, the comparison of the non-depleted
groups revealed significantly higher levels of fecal P  in
HH and HHH compared to MM and MMM (Figure 1A).
The Ca levels in the broilers’ feces differed significantly
at d 24 with higher levels in the depleted HL group
(n =  8; 26.85 §  1.03 g) compared to the corresponding
non-depleted HH group (n =  8; 21.44 §  0.85 g)
(Figure 1B). Total fecal Ca levels were unaffected by the
diets at d 17 and 37 (Figure 1B). At d 17, the analysis of
fecal phytate revealed a significantly higher level in H
(n =  14; 10.36 §  0.96 mmol/g) animals compared to M
(n =  13; 3.16 §  0.48 mmol/g) animals (Figure 1C). At d
24 and d 37, the P  depletion groups ML (n =  7; 1.09 §
0.27 mmol/g), HL (n =  6; 0.64 §  0.29 mmol/g), MLL
(n =  7; 1.96 §  0.76 mmol/g), and HLL (n =  6; 2.07 §
0.67 mmol/g) showed lower fecal phytate levels com-
pared to the non-depleted groups HH (n =  8; 12.61 §
1.68 mmol/g) and HHH (n =  8; 9.19 §  1.36 mmol/g),
but did not differ significantly from groups MM (n =  6;
4.24 §  1.72 mmol/g) and MMM (n =  6; 4.92 §  1.96
mmol/g). Additionally, the comparison of the non-
depleted groups revealed significantly higher levels of
fecal phytate in HH compared to MM at d 24
(Figure 1C).

Alpha Diversity Indices of Jejunal Microbiota

To ascertain the response of the jejunal microbiota to
the varied P  levels fed to the broiler chickens at the
grower and finisher developmental phases, alpha diver-
sity indices which account for the distribution or abun-
dance of OTUs within the population were calculated.
Shannon, inverse Simpson, and ACE indices revealed no
significant differences between the P  dietary groups at d
24 and d 37 (Figure 2A and B).

Composition of Jejunal Microbiota

The non-metric dimensional scaling ordination was
used to access the compositional and structural
variation of broiler chicken jejunal microbiota. The
NMDS analysis revealed an age-based clustering of the
jejunal microbial communities (ANOSIM, r2 =  0.238,
P  =  0.001) with no corresponding influence of the varied
P diets within age (P >  0.05, Figure 3).

Relative Abundance of Jejunal Microbiota

Regarding the relative abundance of microbiota in the
broilers’ jejunum fed varied P  diets, visualization using
a taxaplot at the genera level identified the Lactobacillus
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F i g u r e  1. Fecal content of total inorganic phosphorus (A), calcium (B), and phytate (C) of broilers fed varied levels of dietary P  at d 17, d 24, and
d 37 of life; L, low P  diet; M, medium P  diet; H, high P  diet: Consecutive letters indicate the dietary treatment in each experimental periods.
a,b,cIndicate significant differences between groups (P <  0.05).

of the phylum Firmicutes as the most predominant
genus (Figure 4). Further comparisons of relative abun-
dance at genus level between dietary groups revealed 16
and 4 significantly differentially abundant taxa at d 24
and at d 37, respectively (Table 2). At d 24, significantly
increased relative abundance of the genera Facklamia
(HL>HH) was observed in jejunum of broilers fed
depleted P  diets compared to non-depleted birds. The
relative abundances of genera that decreased in the low-P
diets compared to the non-depleted diets included
Anaerocolumna (HL<HH), Blautia (HL<HH), Brachy-
bacterium (ML<MM; HL<HH), Brevibacterium
(HL<HH;       ML<MM),       Candidatus       arthromitus
(HL<HH), Fusicatenibacter (HL<HH), Jeotgalicoccus
(ML<MM), Lachnoclostridium (HL<HH), Monoglobus
(HL<HH), unclassified genera of Staphylococcaceace
(HL<HH), and Staphylococcus (HL<HH; ML<MM). At
d 37, a significant differential relative abundance
between the depleted and non-depleted P  groups was

observed in the genera Romboutsia (MLL<MMM), while
unclassified genera of Lachnospiraceae (HLL>HHH) and
Ruminococcaceae (HLL>HHH) increased in the broilers
fed depleted compared to those fed the non-depleted P
diets (Table 2). For comparisons of MM and HH diets at d
24, jejunal microbes were observed to be increased in
broilers fed the high P  diet, including Blautia (HH>MM),
Candidatus arthromitus (HH>MM), Eisenbergiella
(HH>MM), unclassified genera of Enterobacteriaceae
(HH>MM), Monoglobus (HH>MM), and unclassified gen-
era of Selenomonadaceae (HH>MM). In contrast,
decreased abundances were found for unclassified genera of
Staphylococcaceae (MM>HH) and        Aerococcus
(MM>HH). At d 37, a decrease in the differential abun-
dance of microbes was observed between the MMM and
HHH diets in Escherichia-Shigella (MMM>HHH) and
Romboutsia (MMM>HHH). The abundance of Escheri-
chia-Shigella suggests the possibility of a recent infection
episode in individuals of the MMM group.
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F i g u r e  2. Boxplots showing the alpha diversity of the jejunal microbiota of broilers chickens fed varying amounts of phosphorus (P) at d 24 (A)
and d 37 (B). Data based on 16S sequencing were used to calculate the Shannon index, inverse Simpson index and species richness using ACE. ACE,
abundance-based coverage estimator; L, low P  diet; M, medium P  diet; H, high P  diet. Consecutive letters indicate the dietary treatment in each
experimental period.

DISCUSSION

To mitigate the immediate concerns associated with
the environmental loading of P  from broiler husbandry
(Maguire et al., 2005), studies have investigated effects

F i g u r e  3. Nonmetric dimensional scaling (NMDS) ordination
showing the compositional variation of jejunal microbiota in broilers
fed divergent phosphorus (P) diets. Animals were sampled at d 24 (ML,
HL, MM, HH) and at d 37 (MLL, HLL, MMM, HHH). L, low P  diet; M,
medium P  diet; H, high P  diet. Consecutive letters indicate the
dietary treatment in each experimental period.

of moderate dietary P  depletion initiated at an earlier
growth phase and subsequently repleted with advancing
ages for mineral efficiency (Valable et al., 2018; Bara-
daran et al., 2021). Indeed, our recent analyses on the
physiological response of modern high-performance
broiler lines challenged with depleted P  diets revealed
intrinsic mechanisms, spanning hormones, bone traits,
as well as intestinal and renal P  transporters to maintain
P  turnover (Omotoso et al., 2023). Subsequently, the
resultant fecal P  levels mirrored the dietary P  intake in
the depleted, recommended, and high P  feeding groups.
A previous study found that broilers fed a balanced Ca:
nPP ratio of 2:1 (i.e., 6 g/kg and 3 g/kg DM) had the
lowest fecal P  excretion, while higher nPP levels at a
ratio of 1.33:1 (i.e., 6.0 g/kg and 4.5 g/kg DM) resulted in
increased fecal P  content (Rama Rao et al., 2006). It was
observed in the current study that the birds fed the HL
diet had higher levels of fecal Ca at d 24 in compari-son to
the non-depleted cohorts. Nevertheless, previous findings
on broiler chickens fed reduced inorganic P  showed
increased calcitriol in the blood and intestinal Ca-
binding protein levels leading to improved Ca
absorption (Friedlander et al., 1977; Wasserman et al.,
1992). In fact, serum Ca levels were elevated in both ML
and HL compared with the non-depleted groups (Omo-
toso et al., 2023). In parallel, the analyses revealed evi-
dence of increased bone resorption in the depleted
broiler chickens compared with the non-depleted groups.
This could indicate increased mineral mobilization to
balance P  requirements as a consequence of the applied
depletion strategy, with excess Ca being excreted
accordingly. Comprehensive studies concluded that
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F i g u r e  4. Taxonomic plot showing the 10 predominant relative abundance of the microbial genera in jejunal digesta of broilers fed divergent
phosphorus (P) diets. Animals were sampled at d 24 (ML, HL, MM, HH) and at d 37 (MLL, HLL, MMM, HHH). L, low P  diet; M, medium P  diet; H,
high P  diet. Consecutive letters indicate the dietary treatment in each of the experimental periods.

current recommendations for total Ca content in broiler
feed formulations might be overestimated (David et al.,
2023), affecting P  absorption rates (Selle et al., 2009). In
the current study, the resultant fecal P  levels were signif-
icantly higher in the broilers fed the high P  diets than
those fed recommended P  levels throughout the grower
and finisher periods. Higher P  excretion rates due to

mineral P  supplements above recommendations have
also been demonstrated in other monogastric species
such as pigs (Reyer et al., 2021), with no added benefit
observed for bone mineralization (Gerlinger et al.,
2021). Thus, the results indicate that broilers fed the
high P  diet received mineral fractions that exceeded
their metabolic demands for growth or maintenance

Table 2. Relative abundances of genera in the jejunal digesta collected from broilers fed varied levels of dietary phosphorus (P) at the
grower and finisher developmental stages. Listed genera differed significantly (Benjamini-Hochberg-adjusted P  <  0.05) between dietary
groups, with the log2 fold-change expression in a given comparison. Data are presented as mean §  SEM.

D 24 Relative abundance of jejunal microbiota within the dietary P  groups (%)

Genera                                                   ML HL MM HH

Contrast

Fold change (log2) Adjusted P  value

Aerococcus
Anaerocolumna
Blautia

Brachybacterium

Brevibacterium

Candidatus arthromitus

Eisenbergiella
Enterobacteriaceae (uncl.)
Facklamia

Fusicatenibacter
Jeotgalicoccus

Lachnoclostridium
Monoglobus

Selenomonadaceae (uncl.)
Staphylococcaceae (uncl.)

Staphylococcus

0.6 §  0.360
0.02 §  0.014
0.09 §  0.047

0.02 §  0.008

0.003§ 0.001

0.02 §  0.015

0.02 §  0.010
0.03 §  0.019
0.04 §  0.021

0.05 §  0.031
0.05 §  0.023

0.02 §  0.008
0.04 §  0.018

0.01 §  0.007
0.002 §  0.001

0.44 §  0.266

0.12 §  0.027
0.003 §  0.002
0.03 §  0.008

0.01 §  0.005

0.002 §  0.001

0.01 §  0.003

0.02 §  0.017
0.07 §  0.028
0.05 §  0.016

0.01 §  0.005
0.03 §  0.014

0.01 §  0.006
0.01 §  0.004

0.03 §  0.015
0.002 §  0.001

0.22 §  0.064

2.04 §  1.068
0.03 §  0.016
0.11 §  0.087

0.95 §  0.522

0.04 §  0.026

0.01 §  0.007

0.01 §  0.003
0.02 §  0.007
0.19 §  0.082

0.02 §  0.014
0.5 §  0.204

0.03 §  0.008
0.02 §  0.012

0.001 §  0.001
0.26 §  0.150

3.3 §  1.872

0.15 §  0.082
0.18 §  0.073
0.22 §  0.120

0.7 §  0.302

0.12 §  0.070

0.14 §  0.047

0.04 §  0.022
0.34 §  0.273

0.004 §  0.002

0.11 §  0.056
0.03 §  0.017

0.09 §  0.029
0.17 §  0.074

0.03 §  0.030
0.02 §  0.010

4.83 §  2.538

MM>HH (3.77) <0.001
HH>HL (5.55) <0.001
HH>HL (3.06)                          0.010
HH>MM (3.29)                        0.008
HH>HL (5.62) <0.001
MM>ML (5.55) <0.001
HH>HL (4.90) <0.001
MM>ML (3.90)                        0.028
HH>HL (5.49)                          0.001
HH>MM (3.46)                        0.009
HH>MM (3.20)                        0.044
HH>MM (4.07)                        0.001
HL>HH (3.37)                          0.017
MM>HH (5.28)                        0.001
HH>HL (3.31)                          0.017
MM>HH (3.97)                        0.008
MM>ML (3.32)                        0.044
HH>HL (2.83)                          0.007
HH>HL (3.51)                          0.008
HH>MM (3.10)                        0.027
HH>MM (4.01)                        0.008
HH>HL (3.87)                          0.009
MM>HH (3.83)                        0.008
MM>ML (6.78) <0.001
HH>HL (4.46) <0.001
MM>ML (2.93)                        0.039

D 37 Relative abundance of jejunal microbiota within the dietary P  groups (%) Contrast

Genera

Escherichia-Shigella
Lachnospiraceae (uncl.)
Romboutsia

Ruminococcaceae (uncl.)

MLL
0.61 §  0.185
1.87 §  1.673
0.04 §  0.017

0.34 §  0.303

HLL
0.28 §  0.092
2.55 §  1.890
0.11 §  0.102

0.53 §  0.446

MMM
3.81 §  3.658
0.91 §  0.522
1.86 §  1.789

0.10 §  0.067

HHH
0.12 §  0.035
0.18 §  0.051
0.04 §  0.015

0.03 §  0.014

Fold change (log2)
MMM>HHH (4.94)
HLL>HHH (3.86)
MMM>HHH (5.70)
MMM>MLL (5.45)
HLL>HHH (4.44)

Adjusted P  value

0.001
0.010
0.002
0.010
0.010

L, low P  diet; M, medium P diet; H, high P  diet. Consecutive letters indicate the dietary treatment in each experimental period.
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with no additional benefit for the measured traits but
resulted in unnecessary fecal losses as reported elsewhere
(Rodehutscord et al., 2012; Li et al., 2017).

The gut microbiota has been associated with crucial
homeostatic and metabolic processes, which entail, for
example, the hydrolysis of phytate in the broiler’s GIT,
culminating in the host’s productivity and welfare
(Rinttila and Apajalahti, 2013; Li et al., 2016). In the
current study, the overall microbial diversity repre-
sented by alpha diversity indices revealed no alterations
based on dietary P  depletion. Based on the microbial
dissimilarity analysis, an age-dependent separation of
profiles was observed. In accordance, previous studies
have reported clear effects of age on the microbial com-
munity that colonizes the broiler’s GIT (De Cesare et
al., 2019; Zhou et al., 2021). Furthermore, the domi-
nance of the Lactobacillus in the current study was con-
sistent with several previously reported studies (Borda-
Molina et al., 2016; Kers et al., 2018; Kunzel et al.,
2021), where Lactobacillus presence in the gut accounted
for up to 99% of the microbiota fraction. Functionally,
the abundance of Lactobacillus in the gut has been posi-
tively correlated with beneficial functions, including
improved gut physiology and increased body weight
gain in the chicken (Lokapirnasari et al., 2019; Zhang et
al., 2022). More so, it is inferable that the prevalence of
Lactobacillus might indicate a low complexity of jejunal
microbiota in broiler chickens.

The analysis of microbial abundances, particularly the
fact that hardly any genera increase in abundance fol-
lowing a P  depletion, suggests that shifts in the jejunal
microbiota make only a minor contribution to maintain-
ing P  homeostasis in broilers. Nevertheless, it remains
conceivable that transcriptional changes of the abun-
dant microbiota are affecting mineral metabolism, which
would need to be tested by metatranscriptomic
approaches.

The phytate profile reported in the current work
serves as proxy for intestinal microbiota activity.
Results show significantly lowered concentrations in
birds fed medium P  than in birds fed high P  levels at d
17 and d 24, indicating hydrolysis of phosphoric ester
forms mediated by a phytase that, based on current
knowledge, is likely secreted by the intestinal microbiota
in broiler chickens. Indeed, phytase activity of micro-
biota has been mainly observed in the lower part of the
intestinal tract such as the caecum (Dersjant-Li et al.,
2015). The observed shifts in fecal phytate content
matches previous studies (Shastak et al., 2014) and sug-
gests efficiency mechanisms already at early age. Results
further suggest that birds fed currently recommended P
levels (M diets) mobilize P  from plant sources. The P-
depleted groups exhibited a nearly maximal degradation
of phytate at d 24 and d 37, providing evidence for intes-
tinal dephosphorylation of phytate to meet metabolic
demands. However, to what extent the P  mobilized from
intestinal phytate is available to the host or the micro-
biota remains further clarification. According to previ-
ous work, P  mobilization from intestinal inositol
phosphates can be assumed to be incomplete as lower

phosphoric ester forms, that is, the degradation products
of phytate, are present in feces at varying amounts
(Gautier et al., 2018). A study in piglets identified
microbial taxa that were positively or negatively corre-
lated to intestinal P  levels in terms of proliferation
(Reyer et al., 2021). In the current study, exclusively the
genus Facklamia exhibited an increased abundance in
the broiler cohort fed the HL compared to HH diets at d
24. The abundance of Facklamia was previously
reported to be related with housing and litter manage-
ment, that is, with higher abundances in fresh litter com-
pared to reused litter material (Wang et al., 2016; Song
et al., 2022). The information on its role in relation to
nutrient metabolism in the broiler is absent. For certain
species of Facklamia, enzymatic profiles revealed activ-
ity for alkaline phosphatases, while acid phosphatase
activities were not observed (Lawson et al., 1999). At d
37, an incremental shift in the gut of broilers fed the
HLL diet compared to those that received HHH was
observed for unclassified genera belonging to families
Lachnospiraceae and Ruminococcaceae. Broadly, both
the Lachnospiraceae and Ruminococcaceae microbiota
families are categorized as beneficial in the human GIT
and have been implicated in the fermentation of carbo-
hydrates (Duncan et al., 2007), coupled with the degra-
dation of resistant polysaccharides, for example, starch
and cellulose, facilitating digestion of plant-based diets
(Collier et al., 2008). The identified taxa may be of inter-
est in further studies to reshape the microbial composi-
tion for improved nutrient utilization from dietary P
sources.

In contrast to the microbes whose abundance
increased after the P  depletion diet, Brachybacterium,
Brevibacterium, and genera of the Staphylococcaceae
family showed significantly lower abundances in the
jejunum, which was consistently observed in both P
depletion groups compared to the respective non-
depleted controls on d 24. Apparently, these microbial
families rely on an intestinal milieu with higher available
P  content, implying overgrowth of these taxa when P
resources are scarce. In this context, an increased intesti-
nal abundance of Brachybacterium has been reported
from patients with disturbed mineral balance based on
chronic kidney disease (Vaziri et al., 2013). Several spe-
cies of Brevibacterium were described as phosphate-
accumulating probiotics, which might be more prevalent
in high P  supply (Anand et al., 2019). Indeed, some taxa
show a dominant growth pattern whereby the microbial
community structures are subject to dynamics in their
composition with corresponding effects on the ability to
respond to abiotic and biotic factors (Niccum et al.,
2020). The results suggest that the increased prolifera-
tion of these mentioned microbial taxa due to high P
supply could be considered a biomarker of excessive P
intake in commercial broiler chickens.

At the same time, several other taxa were shown here
to be generally responsive to the divergent P  supply in
the different diets. The microbial profiles may support
the current hypothesis that an increase in intestinal P
levels in mammals stimulates microbial short-chain fatty
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acid ( S C F A )  production (Heyer et al., 2015). This is
consistent with a study in broilers in which a decrease in
SCFA, DL-lactate, and acetic acid in the ileum was
observed following low P  and low Ca diets and subse-
quently, an increase in these parameters was observed
after phytase supplementation (Ptak et al., 2015). This
agrees with in vitro studies on the fermentation activity
of rumen bacteria, which identified an association
between depleted P  levels and a reduction in SCFA and
bacterial ATP production (Komisarczuk et al., 1987).
Moreover, a recent study in chickens reported that die-
tary P  deficiency resulted in decreased SCFA production
due to reduced cellulose fermentation, suggesting that
intestinal P  content modulates the abundance of fibro-
lytic bacteria (Li et al., 2022).

A body of literature supports some of the observed
genera in the context of intestinal SCFA production and
P utilization in poultry. Among such taxa are the Blau-
tia, Anaerocolumna, Candidatus arthromitus, and
unclassified genera of Selenomonadaceae, observed to
increase significantly in broilers fed the high P  diet. The
Blautia, an anaerobic bacteria specie which clusters into
the Clostridium XIVa group, became of particular inter-
est in human microbiomics since the knowledge of its
ability to synthesize SCFA (Blaak et al., 2020; Nishi-
waki et al., 2022). Similarly, Anaerocolumna, a major
taxonomic microbial group in the gut, is reported to
mediate the fermentation of complex polysaccharides
and degrading highly lignified diets in polygastrics (Sha-
bana et al., 2020). Furthermore, a previous study in pig-
lets reported that the intestinal abundance of
Selenomonadaceae genera negatively correlated with P
intake, serum P  levels and degradation of phytate as
well as inositol-5 phosphate in distal parts of the gastro-
intestinal tract (Reyer et al., 2021). A study on quail
(Cortunix japonica) reported a positive correlation
between the abundance of genera Candidatus arthromi-
tus and performance and P  utilization traits (Vollmar et
al., 2020). However, following a contrasting observation
in the current broiler study, wherein Candidatus arthro-
mitus was more abundant in the high P  group, it is not
yet clear whether the abundance of this taxon depends
on dietary P  levels or the abundance of Candidatus
arthromitus improves intestinal P  mobilization. It
should be noted that due to taxonomic reclassifications,
sequences assigned to Candidatus Arthromitus in verte-
brates should be considered as Candidatus Savagella
(Thompson et al., 2012).

CONCLUSIONS

In summary, the study showed that P  intake, fecal P,
and fecal phytate contents are parallel, that is, the P-
depleted cohorts excreted less P  compared to the non-
depleted feeding groups and vice versa. The improved
phytate degradation in P-depleted broilers efficiently
mobilizes phosphorus from plant feed components,
which is also largely observed in the groups fed the cur-
rently recommended P  supply, while higher P-fed groups

excrete substantial amounts of unutilized phytate. How-
ever, in addition to the distinct mechanisms for
improved P  utilization, the analysis of the jejunal micro-
biota shows only a minor shift in microbial taxa between
the P-depleted and non-depleted groups. Furthermore,
some microbial taxa proliferated in a P-enriched envi-
ronment and might be considered as biomarkers of
excessive P  supply in commercial broiler chicken as well
as significant SCFA producers. The microbial composi-
tion in jejunum made only a minor contribution to the
birds’ compensatory mechanism for adaptation follow-
ing P  depletion.
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