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Abstract

Gravity waves are the main driver of the summer-to-winter-pole circula-
tion in the mesosphere and lower thermosphere. In particular, the gravity
wave driven residual circulation gives rise to the cold summer mesopause
and the warm winter polar stratopause. However, most of the gravity waves
are not resolved in low-resolution global circulation models used for long-
term simulations like climate simulations. But, because of their impact on
the mesosphere lower thermosphere region, they must be parameterized and
conventional parameterizations are based on strong assumptions, namely the
single-column and steady state approximation. In this thesis, we present a
new framework for gravity wave parameterizations, that relaxes the steady
state approximation - the Radiative Transfer gravity wave Parameterization
(RTP). This transient parameterization provides the local energy density
of a wave �eld, from which the wave-mean �ow interactions are calculated.
Results of idealised simulations show that the wave �eld behaves as theoret-
ically expected in di�erent background con�gurations. Online simulations
in a low-resolution global circulation model in January conditions provide
adequate temperature and horizontal wind pro�les. This all takes place in
consideration of the conservation of energy and momentum. With these
features the RTP will improve the circulation in the mesosphere and lower
thermosphere of low-resolution global circulation models.

Zusammenfassung

Schwerewellen sind die treibende Kraft der residuellen Zirkulation vom Som-
merpol zum Winterpol in der Mesosphäre und unteren Thermosphäre. Ins-
besondere führt die schwerewellengetriebene residuelle Zirkulation zu der
kalten Mesopause am Sommerpol und der warmen Stratopause am Winter-
pol. Jedoch sind die meisten Schwerewellen zu klein, um in grob aufgelösten
Zirkulationsmodellen, welche für Langzeitmodellrechnungen wie Klimasimu-
lationen genutzt werden, aufgelöst zu sein. Aber auf Grund ihrer Bedeutung
für die Mesosphäre und untere Thermosphäre müssen sie parametrisiert wer-
den. Konventionelle Parametrisierungen basieren auf starke Vereinfachun-
gen die Säulennäherung und Gleichgewichtszuständen. In dieser Arbeit
präsentieren wir eine neue Schwerewellenparametrisierung, die nicht auf Gle-
ichgewichtszuständen basiert - die Radiative Transfer gravity wave Param-
eterization (RTP). Diese transiente Parametrisierung liefert die lokale En-
ergiedichte eines Wellenfeldes, mit deren Hilfe die Wellegrundstromwechsel-
wirkungen berechnet werden können. Ergebnisse von vereinfachten Simula-
tionen in verschiedenen Grundstromkon�gurationen zeigen, dass das Verhal-
ten des Wellenfeldes theoretischen Vorhersagen entspricht. Simulationen mit
einem grobgliedrigen globalen Zirkulationsmodell unter Januarbedingungen
liefern angemessene Temperatur- und horizontale Windpro�le unter Berück-
sichtigung der Energie- und Impluserhaltung. Mit diesen Eigenschaften wird
die RTP dazu beitragen die Zirkulation in der Mesosphäre und unteren Ther-
mosphäre von grob aufgelösten Zirkulationsmodellen zu verbessern.
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Chapter I

Introduction

The dynamics and thermal structure of the Mesosphere and Lower Ther-

mosphere (MLT) are inevitably connected to the breaking of gravity waves.

These gravity waves are mostly generated in the lower atmosphere by dif-

ferent mechanisms and propagate upward into the MLT region. During

the propagation the gravity waves become dynamically unstable due to

the refraction by the background wind (Doppler shift) and the exponen-

tially decreasing background density. This instability triggers the transition

to turbulence (e.g., Fritts and Alexander 2003). In the saturation theory

of Lindzen (1981), the turbulence is represented by a vertical di�usion co-

e�cient that keeps the gravity wave at the limit of static stability, thereby

giving rise to dissipation of wave energy. Here, the absorption of a gravity

wave at a critical level is a special form of this mechanism. The breakdown

of gravity waves from dynamic or static instability gives rise to the subse-

quent turbulent dissipation of wave energy and wave-mean �ow interactions.

These interactions are known as energy and momentum deposition (e.g.,

Becker and McLandress 2009). The mean-�ow e�ects are crucial to under-

stand the dynamical and thermal structure of the MLT (e.g., Lindzen 1981;

Smith 2012; Garcia and Solomon 1985; McLandress et al. 2006).

In low resolution General Circulation Models (GCM) used for long term

1



2 Chapter I. Introduction

simulations the relevant gravity waves can not be resolved. The typical ef-

fective horizontal resolution of these GCMs corresponds to horizontal wave-

length of about 1000 km (gridpoint resolution of a few hundred kilometers)

while the horizontal wavelengths of small- and medium-scale gravity waves

are about 50 km to 500 km. To take the unresolved gravity waves into ac-

count we need to apply model equations where the gravity wave e�ects are

represented by some parameterization.

Current routinely used gravity wave parameterizations are based on sev-

eral strong assumptions that de�ne the framework of these parameteriza-

tions. These assumptions are the steady-state and single-column approxi-

mations, as well as the representation of the gravity wave �eld by a super-

position or a continuous spectrum of monochromatic wave solutions (e.g.,

Garcia et al. 2007; Hines 1997a; Hines 1997b).

The aim of this thesis is to develop a transient parameterization that

includes the continuous generation of gravity waves in the troposphere, the

vertical propagation into the middle atmosphere, and the dissipation of the

gravity wave �eld due to saturation and due to molecular di�usion above

the mesopause. While the steady-state approximation and the assumption

of monochromatic wave solutions are relaxed, we retain the single-column

approximation for the sake of technical feasibility. On the other hand, our

aim is that the new parameterization includes gravity wave sources that are

continuous functions of height and time. This is made possible by using the

radiative transfer equation of for the gravity wave �eld as a framework (Has-

selmann 1968; Müller and Olbers 1975; Müller and Natarov 2003; Olbers

and Eden 2013; Quinn et al. 2020; Olbers et al. 2023). Furthermore, we will

for this framework derive the precisely energy and momentum conserving set

of equations for the mean �ow and the gravity wave �eld.

In the following sections we review the importance of gravity waves for

the MLT region and the problems of conventional parameterizations used

in community models. An outline of this thesis is given at the end of this



1.1. Gravity waves in the mesosphere and lower thermosphere 3

chapter.

1.1 Gravity waves in the mesosphere and lower ther-

mosphere

The momentum deposition from gravity waves drives the summer-to-winter

pole residual circulation in the MLT region which is known to give rise to the

cold summer mesopause and the warm winter stratopause (Lindzen 1981;

Holton 1983; Smith 2012; Limpasuvan et al. 2012). These gravity waves

are generated in the troposphere and lower stratosphere either by �ow over

orography or non-orographic processes. Non-orographic gravity wave sources

are convection, shear instability of the jet stream, fronts, and spontaneous

emission due to imbalance of the tropospheric and stratospheric jets (Fritts

and Alexander 2003; Plougonven and Zhang 2014).

The turbulent dissipation of gravity waves in the middle atmosphere gives

rise to wave-mean �ow interactions. The summer-to-winter pole residual cir-

culation driven by the momentum deposition from gravity waves becomes

that strong that it causes a reversal of the pole-to-pole temperature gradi-

ent (Lindzen 1981; Holton 1983). Instead of a negative summer-to-winter

pole temperature gradient for the radiatively determined state there is a pos-

itive temperature gradient in the middle atmosphere (e.g., see Becker 2012,

Fig. 1). The polar summer mesopause is colder in the new state and the po-

lar winter stratopause is warmer. In particular, the summer polar mesopause

is the coldest place of the terrestrial atmosphere with temperatures of about

130K on average. The strong pole-to-pole temperature gradient demands a

strong vertical zonal wind gradient to balance the thermal wind relations.

This causes in the end a zonal wind reversal in regions with strong temper-

ature gradients.

Gravity waves also in�uence the stratosphere. For example, gravity waves

help to constrain the polar vortex and contribute to the Semi Annual Oscil-
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lation (Garcia and Sassi 1999) and the Semi-Biannual Oscillation (Baldwin

et al. 2001).

1.2 State-of-the-art gravity-wave parameterizations

The gravity-wave parameterizations that are currently used in community

GCMs rely on strong assumptions (steady-state and single-column) that are

often in contradiction to the e�ective resolutions applied in these models.

As mentioned earlier, a conventional parameterization employs monochro-

matic wave solutions that are obtained with the assumption of a temporally

constant and horizontally uniform background state. The monochromatic

wave solutions are derived from WKB theory to obtain the dependence of

the vertical wavenumber on the background vertical wind pro�le (also known

as Doppler shifting or vertical refraction) (Plumb 1977; Lindzen 1981). The

tunable parameters of these WKB solutions are the horizontal wavelengths,

ground-based horizontal phase speeds, and amplitudes of the gravity waves.

The parameters are often called launch-level parameters, because the param-

eterizations assume that the gravity waves are launched at a certain height

(typically in the troposphere for most GCMs), and that the gravity waves

are absent below that level.

The steady-state and single-columns approximations no longer hold if the

resolved �ow of the GCMs varies horizontally and temporally at the scales of

the parameterized gravity waves. Note in this context that gravity waves in

the real atmosphere appear in wave packets that are localized in space and

time, and that also the generation processes of gravity waves show a high

degree of intermittency (e.g., Geller et al. 2013; Vadas et al. 2018; Suzuki

et al. 2013)

The issues associated with the steady-state approximation can be avoided

with a transient gravity wave scheme that allows for spatially and temporally

continuous generation of gravity waves, as well as as for the propagation of
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gravity wave packets in a spatially and temporally varying background �ow.

The framework for such a description of gravity waves is given by the ra-

diative transfer equation for the wave �eld (Hasselmann 1968; Müller and

Olbers 1975; Olbers and Eden 2013; Muraschko et al. 2015; Bölöni et al.

2016). The �rst transient gravity-wave parameterization for a GCM was

described for Bölöni et al. (2021) and Kim et al. (2021). In that parameter-

ization, wave transience was realized by describing the gravity waves with

the help of ray tracing. The gravity wave sources still had to be represented

by launch-levels parameters, the amplitudes of the generated gravity waves

are vertically integrated over the whole source region and then gravity wave

packet is launched at the uppermost source level. Another attempt by Quinn

et al. (2020) was based on a simpli�ed form of the radiative transfer equa-

tion, showing that this concept can be considered as a feasible alternative

to the ray-tracing approach. Note in this context that using the ray-tracing

equations as a frame work for a gravity-wave scheme in a GCM requires a

permanent mapping between the Lagrangian space of the gravity-wave rays

and the �ow �eld in physical space (Senf 2012; Vadas and Liu 2013).

1.3 Thesis overview

In Chapter II we recapitulate the anelastic primitive equations and the wave-

mean �ow interaction terms in steady state. Furthermore we introduce the

dispersion and polarization relations of hydrostatic, mid-frequency gravity

waves. Additional wave-mean �ow interaction terms that are required in

the transient case are derived at the end of Chapter II. Chapter III presents

the theory of the Radiative Transfer gravity wave Parameterization (RTP).

The radiative transfer equation, which accommodates the generation, prop-

agation, and dissipation of a wave �eld, is the basis. We apply the Gaus-

sian Variational Principle to derive two prognostic equations for the free

parameters of the assumed gravity wave spectrum. Furthermore, we derive

a turbulent vertical di�usion coe�cient based on the saturation hypothesis
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of Lindzen (1981). In Chapter IV we perform one-dimensional, transient

simulations where a single wave packet is generated and propagates through

di�erent idealised vertical pro�les of the background horizontal winds and

temperature until it dissipates. We discuss the consistency of these results

and check them for energy and momentum conservation. Chapter V presents

results when the new RTP is implemented in a GCM run at low resolution

such that the single-column approximation can considered to be valid. These

results are compared to results from the corresponding high-resolution GCM

with resolved gravity waves. Some new insights provided by this compar-

ison are discussed. A summary of the main results of this thesis and an

overview about future tasks regarding applications of the RTP are given in

Chapter VI. The latter include the extension of the RTP such as to include

horizontal and downward propagation of gravity waves, the combination of

orographic and non-orographic gravity waves in one parameterization and

the generation of higher order gravity waves.



Chapter II

Gravity waves and interactions

with the mean-�ow

In this chapter we introduce the fundamental properties of gravity waves and

the full transient wave-mean �ow interaction terms. Section 2.1 summarizes

the dispersion and the polarization relations of gravity waves that ful�ll the

mid-frequency approximation. This approximation is usually made in con-

ventional Gravity wave schemes. We shall apply this approximation as well

when specifying our new transient gravity wave scheme. In the Sections 2.2

and 2.3, we derive the complete set of wave-mean �ow interaction terms

required for momentum and energy conservation in the case of a transient

gravity wave parameterization in the single-column approximation.

2.1 Governing equations of gravity waves

Linear theory describes monochromatic gravity waves as small departures

from a stably strati�ed and horizontally uniform background atmosphere.

The restoring force is the buoyancy, which results from the isentropic dis-

placements of air parcels. Hydrostatic gravity wave solutions can be com-

7
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puted from the Eulerian �uid dynamical equations linearized about a hori-

zontally uniform horizontal �ow using linear perturbation theory. Here we

use the Eulerian equation in the anelastic approximation according

to Becker (2017) in order to eliminate sound waves. As a further approxi-

mation, we neglect the Coriolis force for the gravity waves. This means that

the gravity waves can be described in the x, z-plane, where x is a horizontal

coordinate in direction of horizontal propagation and z is the height above

sea level. Note that this approximation excludes so-called inertia gravity

waves. The resulting linear wave equations can be written as

dtu
∗ = −∂xp̃ (2.1)

dtw
∗ = −∂z p̃+ g

T ∗

Tr
(2.2)

0 = ∂xu
∗ +

(
∂z −

1

H

)
w∗ (2.3)

dt
T ∗

Tr
= −N2

g
w∗ (2.4)

with the total time derivative de�ned as dt = ∂t +U∂x. Here, U is the hori-

zontally uniform mean wind in the x direction. The gravity wave perturba-

tions are denoted with stars and the pressure is scaled with the hydrostatic

reference density p̃ = p∗/ρr(z). The temperature Tr(z) is the hydrostatic ref-

erence temperature. Within the hydrostatic approximation the scale height

H and the squared Brunt-Väisälä frequency are de�ned as

H(z) =
RTr

g
, (2.5)

N2(z) =
g

Tr

(
g

cp
+ ∂zTr

)
, (2.6)

with the speci�c gas constant for dry air R, the gravitational acceleration

g and the speci�c heat capacity of constant pressure for dry air cp. In the

following we drop the explicit notation of the slow altitude dependence of

the scale height and the Brunt-Väisälä frequency. The reference density

ρr(z) can be written in terms of the reference temperature by applying the
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barometric formula

ρr(z) = ρ0 exp

(
−
∫ z

0

g

RTr
dz′
)

= ρ0 exp

(
−
∫ z

0

1

H
dz′
)

(2.7)

with the reference density of the air at surface level ρ0. With the ansatz

X∗ = X0 exp

[
1

2

∫ z

0

1

H
dz′ + i(kx+mz − ωt)

]
(2.8)

for the gravity wave perturbations, the intrinsic frequency ωI = ω−kU , and

the Boussinesq approximation for the waves ρ∗/ρr = −T ∗/Tr, we get from

the set of equations (2.1)-(2.4)

0 = −iωIu
∗ + ikp̃ (2.9)

0 = −iωIw
∗ +

(
im+

1

2H

)
p̃+ g

ρ∗

ρr
(2.10)

0 = iku∗ +

(
im− 1

2H

)
w∗ (2.11)

0 = −iωI
ρ∗

ρr
+

N2

g
w∗, (2.12)

Our sign convention is that the intrinsic frequency is always positive. Then,

the vertical wavenumber m is positive (negative) for upward (downward)

propagation of gravity wave phase lines in a framework moving with the mean

�ow (intrinsic framework). In the same way, the horizontal wavenumber k

is positive (negative) for a wave that propagates in positive (negative) x-

direction in the intrinsic frame work. Note that the vertical group velocity of

a gravity wave is upward when the intrinsic phase propagation is downward.

With this sign convention, the ground-based frequency ω is positive de�nite

as long as the background wind in the direction of k is not faster than the

phase speed ω/k.

The non-trivial solution of the determinant of the equation system (2.9)-

(2.12) yields the dispersion relation for gravity waves that are not a�ected by

the Coriolis force (also known as mid-frequency and high-frequency gravity
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waves):

ω2
I =

k2N2

k2 +m2 + 1
4H2

. (2.13)

Here and in the following we drop the explicit notation of the slow altitude

dependence of the scale height and the Brunt-Väisälä frequency. With the

Boussinesq limit we assume for the vertical wavenumber that |m| > 1/(2H).

For wavenumbers equal or smaller the anelastic dispersion relation would

have unrealistic imaginary branches (Fritts and Alexander 2003; Becker 2019;

Vadas 2013). Waves with smaller absolute vertical wavenumbers are com-

pressible and the anelastic equations can not be applied for them.

Assuming the hydrostatic approximation (∂z p̃ = −gρ̃), the set of equa-

tions (2.9)-(2.12) reduces to

0 = −iωIu
∗ + ikp̃ (2.14)

0 = iku∗ +

(
im− 1

2H

)
w∗ (2.15)

0 = +iωI
1

g

(
im+

1

2H

)
p̃+

N2

g
w∗ (2.16)

and results in the dispersion relation for mid-frequency gravity waves:

ω2
I =

k2N2

m2 + 1
4H2

. (2.17)

The polarisation relations for mid-frequency gravity waves are

w∗ =
ωI

N

m− i
2H

m′ u∗ (2.18)

p∗ = −ρr
N

m′u
∗ (2.19)

ρ∗ =
ρr
g

[
N

m′
1

2H
+ iN

m

m′

]
u∗ (2.20)

with m′ = −
√

m2 + 1
4H2 . For the last polarization relation we assumed that

∂z(N/m′) → 0 due to the slow dependence of the background state on z.
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Ray-tracing equations

The ray equations describes the ray path x⃗ and the refraction of the wavenum-

ber vector k⃗ along the ray (Marks and Eckermann 1995). For gravity waves

with the dispersion relation ω = ω(k⃗, x⃗) the equations are

˙⃗x =
∂ω

∂k⃗
(2.21)

˙⃗
k = −∂ω

∂x⃗
. (2.22)

Here it is assumed that the background and the wave parameter are locally

constant with time. This leads to a constant ground-based frequency along

the ray (ω̇ = 0). Note that ˙⃗x is equal the ground-based group velocity c⃗g.

The dispersion relation of the ground-based frequency of hydrostatic and

mid-frequency gravity waves in single column in the x, z-plane is (see also

Eq. 2.17)

ω = ± kN√
m2 + 1

4H2

+ kU, (2.23)

where we have the plus sign for positive horizontal wavenumbers k and the

minus sign for negative ones. The vertical group velocity is

ż =
∂ω

∂m
= − m

m′2ωI . (2.24)

For the case of zero vertical background wind the intrinsic and the ground-

based vertical group velocities are identical. The refraction of the vertical

wavenumber m is

ṁ = − ∂ω

∂U

∂U

∂z
− ∂ω

∂N

∂N

∂z
=

m′ωI

N
∂zU − ωI

N
∂zN. (2.25)

Here we neglect the vertical variability of the scale height H. This vari-

ability is rather small and neglected for the sake of comprehensibility of the

formulation and the routinely model code. The modulation of the intrinsic
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frequency ωI is

ω̇I = ω̇ − kU̇ = −m

m′
ω2
I

N
∂zU, (2.26)

where we used the assumption of the locally time independent background

(∂tU = 0).

2.2 Momentum deposition

In the following we compute the momentum deposition in the general case

where the conventional steady-state assumption for parameterized gravity

waves is relaxed. As will be shown, this leads to an additional term that, to

the best of our knowledge, has not been considered in the literature so far.

For the full transient momentum deposition we need to consider the wave

momentum, which is lost in the anelastic approximation of the horizontal

momentum equation due to neglecting the density perturbation ρ′. To derive

the wave momentum we start with the horizontal momentum equation in a

inviscid compressible atmosphere in the x, z-plane and neglect Coriolis force

∂t (ρu) + ∂x
(
ρu2
)
+ ∂z (ρuw) + ∂xp = 0. (2.27)

The horizontal wind and the density are separated mean �ow variables and

perturbations:

ρ = ρr + ρ′ (2.28)

u = U + u′ (2.29)

w = w′ (2.30)

For the vertical wind we assume that the mean valueW is zero. Inserting the

relations (2.28)-(2.30) into equation (2.27) and averaging over the gravity-

wave scales (denoted by ⟨...⟩) and retaining only second order terms related
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to the gravity wave perturbations leads to

∂tρrU + ∂t⟨ρ′u′⟩

+∂xρrUU + ∂x⟨ρru′u′⟩+ 2∂x⟨ρ′u′U⟩

+∂z⟨ρru′w′⟩+ ∂z⟨ρ′Uw′⟩+ ∂xp = 0

(2.31)

where only the averages over the product of two perturbations are non zero.

After applying the single column approximation we get

∂t (ρrU) = −∂t⟨ρ′u′⟩ − ∂z⟨ρru′w′⟩ − ∂z⟨ρ′Uw′⟩. (2.32)

On the right hand side we have the transient e�ect, which is the tendency

of the wave momentum density MGW = ⟨ρ′u′⟩, the well known gravity wave

drag and another term, which is U times the vertical mass �ux density owing

to gravity waves. The tendency of the wave momentum density is related to

an elastic term which arises from density �uctuations if the Coriolis force is

considered (see eq. 187 in Achatz et al. 2017). This elastic term too can not

be derived from the anelastic theory and is discussed in Achatz et al. (2017)

and Wei et al. (2019).

The wave momentum is only nonzero when the scale height H is con-

sidered in the gravity wave equations. By looking at the polarisation re-

lation (2.20) we can see, that without the scale height the density and the

horizontal wind perturbations have a phase shift of π/2 and so the wave

momentum ⟨ρ′u′⟩ = ⟨ℜ(ρ∗)ℜ(u∗)⟩ is always zero.

Scale analyses reveals that we can neglect the mass �ux density term

rightaway. The estimations are for the scale height 1/(2H) ≈ O
(
10−4m−1

)
,

the Brunt-Väisälä frequency N ≈ O
(
10−2 s−1

)
, the vertical scale z ≈ 2π/m,

the time scale t ≈ 2π/ωI , the gravitational acceleration g ≈ O
(
101ms−2

)
,

and the horizontal wind U ≈ O
(
101ms−1

)
. For gravity waves with ωI ≈
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O
(
10−3 s−1

)
and m ≈ O

(
10−2m−1

)
we get

∂t (ρ
′u′)

∂z (ρru′w′)
≈ O

(
10−3

)
(2.33)

∂z (ρ
′Uw′)

∂z (ρru′w′)
≈ O

(
10−4

)
. (2.34)

The only dominant term is the gravity wave drag and the other two terms

can be neglected. For gravity waves with a vertical wavenumber close to the

inverse scale height (m ≈ O
(
10−4m−1

)
) we get

∂t (ρ
′u′)

∂z (ρru′w′)
≈ O

(
10−1

)
(2.35)

∂z (ρ
′Uw′)

∂z (ρru′w′)
≈ O

(
10−4

)
. (2.36)

Here the wave momentum term is only one order smaller than the drag and

should not be neglected rightaway. The density �ux term otherwise is still

orders of magnitude smaller and can be neglected. The resulting wave-mean

�ow interaction for the horizontal �ow is

(∂tU)GW = − 1

ρr
∂z⟨ρru′w′⟩ − 1

ρr
∂t⟨ρ′u′⟩. (2.37)

For unambiguousness we de�ne the gravity wave drag or classic momentum

deposition as Mdep and the transient wave momentum density tendency as

Mtr:

(∂tU)GW = Mdep +Mtr. (2.38)

The importance of the momentum density term is the largest compressible

gravity waves with large vertical wavelengths. We restrict ourself to anelastic

gravity waves where the in�uence of the momentum density term might be

small, but we keep it to investigate its e�ects.
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2.3 Energy deposition

To derive the wave-mean �ow interaction for the thermodynamic equation we

recapitulate the discussion of Becker (2017). The thermodynamic prognostic

variable used in GCMs is usually the enthalpy per unit mass. This is also

the case for the Kühlungsborn Mechanistic Circulation Model (KMCM) (see

Chap. V). In the anelastic approximation the thermodynamic equation is

cpdtT = −wg

(
1− ρ̃

ρr

)
, (2.39)

where ρ̃ is the deviation of the density from the hydrostatic reference density,

that is ρ = ρr(z) + ρ̃. Equation (2.39) is extended by radiative and latent

heating, turbulent and molecular di�usion of heat, turbulent and molecular

frictional heating, as well as frictional heating to due ion drag. Here we

neglect the radiative and latent heating since these terms are unimportant

for the wave-mean �ow interaction. Then, averaging the enthalpy equation

over gravity-wave scales The average over the gravity wave scales (denoted

by ⟨...⟩). in the single column approximation leads to

cpdtT = − wg

(
1− ρ̃

ρr

)
+ (Kz + ν)(∂zv)

2 +Kh|Sh|2 + v · (Dv)

+ (Kz + ν)⟨(∂zv′)2⟩+Kh⟨|S′
h|2⟩+ ⟨v′ · (Dv′)⟩ − g

Tr
⟨T ′w′⟩.

(2.40)

Here v is the horizontal wind �eld, Kh andKz are the horizontal and vertical

turbulent di�usion coe�cients, which are assumed to be mean-�ow quanti-

ties, and ν is the molecular di�usion coe�cient. The tensor D contains the

damping rates for ion drag (Liu and Yeh 1969) and Sh is the horizontal

strain tensor. The second row on the right hand side of equation (2.40)

represents the frictional heating due to momentum di�usion and ion drag

of the resolved �ow. The last row includes the frictional heating due to the
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unresolved gravity waves and the negative buoyancy production of gravity

wave kinetic energy. Due to the quadratic nature of the frictional heating in

the horizontal velocity �eld, there are contributions from the resolved �ow

and unresolved gravity wave perturbations. The turbulent frictional heating

represents the molecular frictional heating in the real atmosphere. It occurs

as a result from gravity wave breaking and the so-induced forward kinetic

energy cascade. In the thermosphere the molecular viscosity becomes im-

portant and give rise to direct damping of gravity waves (Vadas and Fritts

2005; Vadas 2007; Vadas and Liu 2009). The kinetic energy of the gravity

waves is another prognostic variable and needs to be evaluated additionally.

The prognostic equation for the gravity wave kinetic energy can be written

as (Becker 2017):

∂t
⟨v′2⟩
2

= − ⟨v′w′⟩∂zv − 1

ρr
∂z⟨p′w′⟩+ g

Tr
⟨T ′w′⟩

− (Kz + ν)⟨(∂zv′)2⟩ −Kh⟨|S′
h|2⟩ − ⟨v′ · (Dv′)⟩.

(2.41)

For a conventional steady state gravity wave parameterization the left hand

side is assumed to be zero. This assumption must be relaxed for a transient

gravity wave parameterization. In this general case we can eliminate the

frictional heating and the buoyancy production using

(Kz + ν)⟨(∂zv′)2⟩+Kh⟨|S′
h|2⟩+ ⟨v′ · (Dv′)⟩ − g

Tr
⟨T ′w′⟩ =

− 1

ρr
∂z⟨p′w′⟩ − ⟨v′w′⟩∂zv − ∂t

⟨v′2⟩
2

.

(2.42)

The �rst two terms on the right hand side are the well known energy depo-

sition (Hines 1997a)

Edep = − 1

ρr
∂z⟨p′w′⟩ − ⟨v′w′⟩∂zv (2.43)

with the convergence of vertical pressure �ux and the vertical momentum

�ux times the vertical shear of the horizontal winds. The last term on the
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right hand side is the transient energy density tendency

Etr = −∂t
⟨v′2⟩
2

. (2.44)

With these substitutions the thermodynamic equation (2.40) becomes

cpdtT = − wg

(
1− ρ̃

ρr

)
+ (Kz + ν)(∂zv)

2 +Kh|Sh|2 + v · (Dv)

+ Edep + Etr.

(2.45)

To highlight only the wave-mean �ow interaction in the x, z-plane we can

write:

(cpdtT )GW = Edep + Etr = − 1

ρr
∂z⟨p′w′⟩ − ⟨u′w′⟩∂zU − ∂t

⟨u′u′⟩
2

(2.46)



Chapter III

Radiative Transfer gravity

wave Parameterization

In this chapter the theory of the Radiative Transfer gravity wave Parameter-

ization (RTP) is presented. In the �rst section the radiative transfer equa-

tion is introduced, followed by the introduction of the Desaubies spectrum

as a two-parameter representation of the wave spectrum in Section 3.2. To

achieve prognostic equations for these parameters the Gaussian Variational

Approach (GVA) is applied in Section 3.3. The calculation of the wave-mean

�ow interactions from the prognostic variables of the wave spectrum is part

of Section 3.4. Section 3.7 speci�es the di�erent spectral areas of the wave

�eld included in the RTP and GVA, as well as in the wave-mean �ow inter-

actions. Furthermore we present the di�usion scheme in Section 3.5 and the

general form of the source functions used in this study in Section 3.6.

3.1 Radiative transfer equation of the gravity wave

�eld

In the year 2003 Müller and Natarov proposed an internal gravity wave pa-

rameterization for the ocean, which was based on the radiative transfer equa-

18
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tion for weakly interacting waves in a six dimensional phase space (Müller

and Natarov 2003). However their approach has not been successful. Olbers

and Eden (2013) simpli�ed the radiative transfer equation by assuming a

speci�c spectral form and integrating over all wavenumbers. Furthermore

they assumed horizontal homogeneity, which leads to a partial di�erential

equation for the energy of a vertical propagating oceanic wave �eld and its

dissipation. This simpli�ed model is called IDEMIX and was recently trans-

ferred to the atmosphere (Quinn et al. 2020).

The radiative transfer equation has the form (Müller and Olbers 1975;

Hasselmann 1968)

(
∂t + ˙⃗x∂x⃗ +

˙⃗
k∂

k⃗

)
A(k⃗, x⃗, t) = Sgen + Strans + Sdiss, (3.1)

with the wavenumber vector k⃗ and the position vector x⃗. The change of the

wave action density spectrum A(k⃗, x⃗, t) along wave trajectories is described

on the left hand side, where ˙⃗x is the group velocity and ˙⃗
k the rate of re-

fraction. On the right hand side are terms that give rise to non-conservative

wave propagation. The generation of wave action is described by Sgen, the

transfer of wave action within the spectrum by Strans, and the dissipation

by Sdiss. The wave action density spectrum would not change along wave

group trajectories without these nonconservative terms (Müller and Natarov

2003).

The radiative transfer equation is based on three assumptions (Müller

and Olbers 1975; Müller and Natarov 2003): The �rst one is the random

phase approximation, which says that the phase of waves in the wave �eld is

that much distorted that it is neither necessary nor possible to predict it. The

second one is the well-known WKB approximation, where the wavelength of

the waves is small compared with the scales of the background and where

the wave �eld varies slowly in time to the time scales of the background.

The last one is the weak interaction approximation. The waves are linear

and propagate along their group trajectories. They are only slowly modi�ed
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by dynamical processes.

The wave action density can be expressed in terms of the wave spectral

energy density via the relation A = E/ωI . When using this as the param-

eter of the wave �eld and transforming the three dimensional wavenumber

vector k⃗ to vertical wavenumber, wave frequency and azimuth coordinates

(m,ωI , φ), the radiative transfer equation is transformed into (Quinn et al.

2020; Olbers et al. 2019)

(
∂t +∇ ˙⃗xh + ∂z ż + ∂ωI ω̇I + ∂mṁ+ ∂φφ̇

)
E =

ω̇I

ωI
E −m2DE + S, (3.2)

where x⃗h is the horizontal position vector. Using the single column approx-

imation, equation (3.2) simpli�es to

(∂t + ∂z ż + ∂ωI ω̇I + ∂mṁ) E =
ω̇I

ωI
E −m2DE + S. (3.3)

Equation (3.3) is the base of the RTP for a single wave �eld with a certain

azimuth φ. For wave �elds with di�erent azimuths, apply equation (3.3) for

each azimuth independently. The total spectral energy of the wave �elds is

Etot =
1

n

n∑
i

Ei, (3.4)

where the indices i and n denotes the azimuth and the number of azimuths

respectively.

3.2 Wave �eld spectrum

In analogy to the IDEMIX model (Olbers and Eden 2013; Quinn et al. 2020)

we assume that the spectral energy density can be decomposed in a physical

and a spectral part

E(z, t,m, ωI) = E0(z, t)E(m,ωI), (3.5)
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where we omitted the azimuth dependency. The spectral part can be any

arbitrary function of the vertical wavenumber m and intrinsic frequency ωI .

Following Fritts and VanZandt (1993), we assume in this thesis that the

Desaubies spectrum applies for the spectral part (Desaubies 1976):

A(m) = A0

(
m
m∗

)s
1 +

(
m
m∗

)s+t (3.6)

B(ωI) = B0ω
−p
I (3.7)

where A0 is such that
∫ 0
−∞A(m)dm = 1 and B0 such that

∫ N
f B(ωI)dωI = 1.

The characteristic vertical wavenumber m∗ is the transition number between

the spectral form for large and small wavenumbers (Fritts and VanZandt

1993). We set (p, s, t) = (2, 1, 3) in accordance with observations (Guo et al.

2017). Smith et al. (1987) �tted the wavenumber spectrum to observational

data and found that m∗ ∼ exp(−z/2H), but the data are too variable to

support such a rule of thumb in general. Other studies also found that m∗

is highly variable and does not follow a universal behaviour (VanZandt and

Fritts 1989; Fritts and VanZandt 1993), whereas a universal m−3 power law

is observed for larger vertical wavenumbers (Smith et al. 1987; Fritts and

Alexander 2003). Hence, we de�ne the characteristic vertical wavenumber

m∗ as an altitude and time dependent variable

m∗ = m∗(z, t). (3.8)

Note that the wavenumber m∗ varies slowly in z and t with respect to the

predominant vertical wave length and intrinsic period of the wave �eld. The

result is an altitude and time dependent Desaubies spectrum and the result-

ing spectral energy density is

E(z, t,m, ωI) = E0(z, t)A(m,m∗(z, t))B(ωI) (3.9)
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3.3 Gaussian Variational Principle

We apply the GVA to our problem of the time derivatives of the two param-

eters of the gravity wave �eld These parameters were de�ned as E0(z, t) and

m∗(z, t). To this end we �rst write the spectral energy density as:

E(z, t,m, ωI) = E0(z, t)C(m,m∗(z, t), ωI) (3.10)

with C = A(m,m∗(z, t))B(ωI). For the temporal and spatial partial deriva-

tives we get

∂tE = C∂tE0 + ∂m∗CE0∂tm∗ (3.11)

∂zE = C∂zE0 + ∂m∗CE0∂zm∗ (3.12)

and the radiative transfer equation (Eq. 3.3) becomes

C∂tE0 + żC∂zE0 + ∂m∗CE0∂tm∗ + ż∂m∗CE0∂zm∗ + ∂z żCE0

+∂m (ṁC) E0 + ∂ωI (ω̇IC) E0 =
ω̇I

ωI
CE0 −m2DCE0 + S.

(3.13)

We de�ne the error function χ as:1

χ2(z, t) =

∫∫
C

[
∂tE0 + ż∂zE0 +

∂m∗C

C
E0∂tm∗ + ż

∂m∗C

C
E0∂zm∗ + ∂z żE0

+
1

C
∂m (ṁC) E0 +

1

C
∂ωI (ω̇IC) E0 −

ω̇I

ωI
E0 +m2DE0 −

S
C

]2
dmdωI .

(3.14)

1The de�nition of the error function di�ers from the proposed de�nition in the chapter �The
IDEMIX model: Parameterization of internal gravity waves for circulation models of
ocean and atmosphere� (Olbers et al. 2019, eq. 3.22) to conserve the energy with respect
to the de�nition of the norm of the Desaubies spectrum (see Sec. 3.2). A discussion of
this issue is beyond the scope of this thesis.
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As a result the variation of the error function is

δχ2(z, t) = 2

∫ ∫
C

[
∂tE0 +

∂m∗C

C
E0∂tm∗

+ ż∂zE0 + ż
∂m∗C

C
E0∂zm∗ + ∂z żE0

+
1

C
∂m (ṁC) E0 +

1

C
∂ωI (ω̇IC) E0

− ω̇I

ωI
E0 +m2DE0 −

S
C

]
δ (∂tE0) dmdωI

+2

∫ ∫
∂m∗CE0

[
∂tE0 +

∂m∗C

C
E0∂tm∗

+ ż∂zE0 + ż
∂m∗C

C
E0∂zm∗ + ∂z żE0

+
1

C
∂m (ṁC) E0 +

1

C
∂ωI (ω̇IC) E0

− ω̇I

ωI
E0 +m2DE0 −

S
C

]
δ (∂tm

∗) dmdωI .

(3.15)

The error function reaches its minimum, if the functional derivatives with

respect to the variation parameters become zero

δχ2(z, t)

δ (∂tE0)
= 0 (3.16)

δχ2(z, t)

δ (∂tm∗)
= 0. (3.17)

This leads to the equations∫∫
C

[
∂tE0 + ż∂zE0 +

∂m∗C

C
E0∂tm∗ + ż

∂m∗C

C
E0∂zm∗ + ∂z żE0

+
1

C
∂m (ṁC) E0 +

1

C
∂ωI (ω̇IC) E0

− ω̇I

ωI
E0 +m2DE0 −

S
C

]
dmdωI = 0

(3.18)
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and∫∫
∂m∗C

[
∂tE0 + ż∂zE0 +

∂m∗C

C
E0∂tm∗ + ż

∂m∗C

C
E0∂zm∗ + ∂z żE0

+
1

C
∂m (ṁC) E0 +

1

C
∂ωI (ω̇IC) E0

− ω̇I

ωI
E0 +m2DE0 −

S
C

]
dmdωI = 0.

(3.19)

Solving this set of coupled di�erential equations for ∂tE0 and ∂tm
∗, using

the ray equations (2.24) to (2.26) and applying the Desaubies spectrum (see

Sec. 3.2) for the function C (see Eq. 3.10) leads to the �nal prognostic equa-

tions

∂tE0 =+ a0∂zE0 + a1∂zm
∗E0 − aUE0

∂zU

N

+ aNE0
∂zN

N
− aDDE0 + aSS

(3.20)

∂tm
∗ = +b0

∂zE0
E0

+ b1∂zm
∗ − bU

∂zU

N
+ bN

∂zN

N
− bDD + bS

S
E0

. (3.21)

The parameters ai and bi are functions of m∗ and contain integrals over

the wavenumber frequency spectrum. They have the general form

X =

∫∫
f1 dmdωI

∫∫
f2 dmdωI −

∫∫
f3 dmdωI

∫∫
f4 dmdωI∫∫

f5 dmdωI

∫∫
f2 dmdωI +

∫∫
f6 dmdωI

∫∫
f4 dmdωI

(3.22)

with fi = fi(m,m∗, ωI). The speci�cation of the integration intervals are

subject of Section 3.7. The full derivation of the prognostic equations can

be found in the Appendix A. The equations (3.20) and (3.21) are coupled

partial di�erential equations with respect to height z and time t for the

energy volume density E0 and the characteristic vertical wavenumber m∗ of

the height and time dependent wave spectrum. These equations form the

basis of the Radiative Transfer Parameterization. Note that the transient

vertical propagation of wave packets as well as the modulation of the vertical

wavenumber spectrum by the height and time-dependent background state

are described. This makes this parameterization fundamentally di�erent
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from conventional gravity-wave parameterizations where the background is

considered to be constant in time and only steady-state wave solutions are

considered.

3.4 Fluxes, wave momentum density, and wave en-

ergy density

In the following we show how the wave-mean �ow interaction terms can be

calculated from the spectral energy density E(z, t,m, ωI , ϕ). We know for

the energy volume density for waves in x-direction, that

EGW = ρr⟨u′u′⟩. (3.23)

This expression includes the kinetic and the potential energy density, which

are equivalent for mid-frequency gravity waves that are not a�ected by the

Coriolis force, as it is assumed for our parameterization. With X ′ = ℜ(X∗)

and the identity for the ansatz (2.8)

⟨ℜ(X∗)ℜ(X∗)⟩ = 1

2
⟨X∗�X∗⟩ (3.24)

we can write

EGW =
1

2
ρr⟨u∗�u∗⟩. (3.25)

Since the energy density (3.25) is given by the integration over the spectral

energy density2,

EGW =

∫∫
E(z, t,m, ωI) dmdωI , (3.26)

2For more than one azimuth, the result is

EGW =
1

n

n∑
i=1

∫∫
Ei(z, t,m, ωI) dmdωI
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we can write

1

2
ρr⟨u∗�u∗⟩ =

∫∫
E(z, t,m, ωI) dmdωI . (3.27)

Using the polarization relations (2.18)-(2.20), we can write the momentum

�ux F = ρr⟨u′v′⟩, the wave momentum density MGW = ⟨ρ′u′⟩, the pressure

�ux Fp = ⟨p′w′⟩, and again for the sake of completeness the wave energy

density EGW = ρr⟨u′u′⟩ in terms of the spectral energy density E as

F =

∫∫
ESA

ωI

N

m

m′E(z, t,m, ωI) dmdωI (3.28)

MGW =

∫∫
ESA

1

g

N

m′
1

2H
E(z, t,m, ωI) dmdωI (3.29)

Fp = −
∫∫
ESA

ωIm

m′2 E(z, t,m, ωI) dmdωI (3.30)

EGW =

∫∫
ESA

E(z, t,m, ωI) dmdωI . (3.31)

The full derivations of these expressions can be found in Appendix C. The

integration intervals, denoted here as E�ective Spectral Area (ESA), are

subject to the next section. The resulting gravity-wave e�ects in the mean-

�ow equations for horizontal wind and enthalpy (compare also with Eqs. 2.38

and 2.46) are

(∂tU)GW = − 1

ρr
∂zF − 1

ρr
∂tMGW (3.32)

(cpdtTr)GW = − 1

ρr
∂zFp −

1

ρr
F∂zU − 1

ρr

1

2
∂tEGW . (3.33)

These gravity-wave e�ects conserves on one hand the horizontal momentum,

which is the sum of the vertical integrated horizontal momentum of the

background and the gravity-wave momentum, and on the other hand the

energy, which contains the sum of the vertical integrated enthalpy, kinetic

background energy, and the wave energy.
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3.5 Di�usion

The di�usion of gravity waves can be caused by di�erent processes. In this

thesis we restrict ourselves to the turbulent and molecular viscosity and heat

conduction. The di�usion coe�cient of the equations (3.20) and (3.21) is the

sum of the di�usion coe�cients of these two processes

D(z, t) = Dsat(z, t) +Dmol(z, t), (3.34)

where the index sat indicates that we assume that turbulent di�usion arise

due to wave saturation according to Lindzen (1981).

Di�usion by saturation

In the framework of the nondissipative linear theory of gravity waves it is

expected for the amplitude to grow exponentially with height due to decreas-

ing density. Observations, however, reveal that this is not the case, that is,

the wave amplitude becomes saturated (Lindzen 1981; Smith et al. 1987).

Therefore we need a process to prevent the wave amplitude to keep growing

exponentially. Lindzen described the process of wave saturation as a result

of the onset of convective instability. That is, the amplitude of the wave is

prevented to grow beyond the point where the strati�cation becomes stati-

cally unstable. For a dry atmosphere this point is de�ned via the adiabatic

lapse rate Γ:

Γ = − g

cp
= ∂zT. (3.35)

The atmosphere is stable, if ∂zT is greater than the lapse rate. With the

decomposition of the temperature T into a reference temperature and a

temperature perturbation due waves (T = T̄ (z) + T ′(z, t)), equation (3.35)

becomes

− g

cp
= dzT̄ + ∂zT

′. (3.36)
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Using the de�nition of the Brunt-Väisälä frequency (Eq. 2.6), the saturation

condition (3.36) can be written as

0 = N2 + g
∂zT

′

T̄
. (3.37)

The wave buoyancy is b′ = gT ′/T̄ such that (3.37) can also be written as

∂zb
′ +N2 = 0. (3.38)

Hence, the strati�cation is unstable if the local and instantaneous wave buoy-

ancy ful�lls

−∂zb
′ > N2. (3.39)

Lindzen calculated the point of saturation and the corresponding di�u-

sion coe�cient for every monochromatic wave individually. In our new tran-

sient parameterization scheme, we follow the approach that was suggested,

for example, by Becker and McLandress (2009), and compute a single tur-

bulent di�usion coe�cient for the whole gravity-wave �eld. No matter what

spectral part of the wave packet causes the atmosphere to become instable,

the di�usion will act on the whole wave packet. Even when there are two

wave packets with di�erent azimuth directions at the same place. The left

hand side of equation (3.39) combined with the identity (3.24)

⟨∂zb′∂zb′⟩ =
1

2
⟨∂zb∗∂zb∗�⟩. (3.40)

From the ansatz (2.8) we get

⟨∂zb′∂zb′⟩ =
1

2

〈(
m2 +

1

4H2

)
b∗b∗�

〉
. (3.41)

The spectral energy density is

E(z, t,m, ωI , φ) =
1

2

ρr
N2

b∗b∗� (3.42)
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where the averaging over the gravity wave scales is de�ned as

〈
X∗Y ∗�〉 = ∫∫∫ X∗Y ∗� dmdωI dφ. (3.43)

With these relations we get from the saturation condition (3.39) applied to

a single azimuth

1

N2ρr

∫∫ (
m2 +

1

4H2

)
E(z, t,m, ωI) dmdωI > 1. (3.44)

Note that gravity waves can be unstable below this threshold (e.g., Achatz

2005; Fritts and Alexander 2003). To account for the variety in instability

mechanisms in a very simple way, we introduce a tunable parameter α such

that the saturation condition becomes

CE0 =
E0

ρrN2

∫∫ (
m2 +

1

4H2

)
A(m)B(ωI) dmdωI > α2. (3.45)

With the saturation condition (3.45) we assume that all compartments of

the wave packet are subject to constructive interference. The compartments

are in phase and their amplitudes add up to the largest possible convective

instability. This is, however, a rather unlikely scenario. Therefore, we in-

troduce an additional azimuth-independent interference parameter γ with

γ ∈ [0, 1]. An interference parameter of γ = 0 describes completely de-

structive interference, where the waves are that much out of phase that the

total buoyancy amplitude is zero. The other limit of the parameter, γ = 1,

corresponds to completely constructive interference. With this additional

parameter, we can write the saturation condition as

γCE0 = γ
E0

ρrN2

∫∫ (
m2 +

1

4H2

)
A(m)B(ωI) dmdωI > α2. (3.46)

In our new RTP, the di�usion coe�cient is larger than zero if (3.46) is

ful�lled:

Dsat =

 K0

(
γCE0 − α2

)
, γCE0 > α2

0 , else
(3.47)
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where the di�usion coe�cient K0 is another tunable parameter.

If there are wave packets with di�erent azimuths, the contributions to

equation (3.46) from these azimuths add up. This leads to the situation that

there can be saturation even if the saturation condition is not ful�lled for

any of the individual azimuths (see also Hines 1997a; Becker and McLandress

2009). For several discrete azimuths equation (3.46) becomes

γ

n

n∑
i=1

E0,i
ρrN2

∫∫ (
m2 +

1

4H2

)
Ai(m)Bi(ωI) dmdωI > α2 (3.48)

where the azimuths are enumerated by the index i and 1/n normalizes

1/n
∑n

i=1 1 to one. Note that each azimuth has its own spectrum. The

turbulent vertical di�usion coe�cient that results from the contributions

from azimuths considered in the parameterizations can then be written as

Dsat =

 K0

( γ
n

∑n
i=1 CiE0,i − α2

)
, γ
n

∑n
i=1 CiE0,i > α2

0 , else
. (3.49)

Molecular viscosity

Molecular viscosity acts on the small-end of the forward energy cascade where

the energy is eventually dissipated. In gravity wave schemes this process is of-

ten parameterized by some turbulent di�usion (see also Lindzen 1981; Becker

and McLandress 2009), as it is also done in the gravity wave scheme pro-

posed in this thesis. With increasing altitude in the thermosphere, however,

gravity waves are increasingly damped directly by molecular viscosity (see

also Vadas 2007). The reason is that the kinematic molecular viscosity grows

exponentially with altitude because of the decreasing density and the associ-

ated increase of the free path of molecules. To account for this process we add

the kinematic molecular viscosity to the turbulent viscosity (see Eq. 3.34).
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A simple expression for the kinematic molecular is

Dmol =
ρ0
ρ
Kmol. (3.50)

Here, ρ0 and Kmol are the density and kinematic molecular viscosity, respec-

tively, at sea level.

3.6 Source function

The source function of the wave �eld can be any function that is continuous

in space and time, as well as in the spectral domain:

S = S(z, t,m, ωI , φ). (3.51)

Note that unlike to conventional gravity wave scheme, there are no launch

level parameter for a certain altitude and time , and there is not a set of

monochromatic waves which are launched. We separate the source function

into a physical, a spectral, and an azimuthal part

S(z, t,m, ωI , φ) = S(z, t)S(m,ωI)S(φ) (3.52)

We de�ne the spectral part in this thesis to be a Desaubies spectrum

S(m,ωI) = A(m,m∗
S)B(ωI). (3.53)

The parameter m∗
S is the characteristic vertical wavenumber related to the

assumed gravity wave source. This number can depend on time and altitude

in the single-column picture. Note that the wavenumber m∗
S is di�erent from

the characteristic vertical wavenumber m∗(z, t).

The azimuthal part S(φ) can be any function of the azimuths (e.g. the

orientation of the front or the direction of the horizontal wind approaching

a mountain).
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There can be a superposition of di�erent source functions for a single

azimuth

S(z, t,m, ωI) =
∑
j

Sj(z, t,m, ωI), (3.54)

where the di�erent sources are enumerated by the index j.

3.7 Spectral areas

Until this point there was no speci�cation of the integration intervals and

areas spanned in the m,ωI -plane. As will be shown below, there are two

spectral areas necessary for the RTP. The �rst one is the total spectral area,

which is used to specify the prognostic equations. The second one is the

e�ective spectral area, that is used to compute the wave �uxes and, hence,

the resulting wave-mean �ow interactions.

There are certain restrictions to the integration intervals because of the

assumption of mid-frequency waves and due to numerical limitations for the

(characteristic) vertical wavenumber. To make sure that there are only mid-

frequency waves inside of the spectrum, we set the lower and upper limits

for the intrinsic frequency ωI to

ωB = 5f0 (3.55)

and

ωT =
N

5
, (3.56)

respectively, where f0 = 7.3 · 10−5s−1 is a �xed Coriolis frequency, and N

is the local Brunt-Väisälä frequency. The vertical wavenumber m can range

from −∞ to 0 for upward propagating waves. However, a wavenumber of

m = 0 would result in an in�nite vertical wavelength which is not suitable.

We associate the upper limit for the vertical wavenumber (that is, the small-
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est absolute vertical wavenumber) with half of the maximum altitude of the

model Z using

m0 = − 2π

Z/2

1

m
. (3.57)

An in�nite negative vertical wavenumber would cause the integrals of aD and

bD (see Eqs. 3.20 and 3.21) to become in�nite. Numerical test calculations

showed that a su�ciently large lower limit is (see also Quinn et al. 2020)

m1 = − 2π

100

1

m
. (3.58)

These limits m0 and m1 are also the limits for the characteristic vertical

wavenumber m∗.

The upper limit m0 deviates from the Boussinesq limit, which would

require |m| > 1/(2H) (see Sec. 2.1), when the model height Z is larger

than 8πH. Since the largest faction of wave energy is centered around the

characteristic vertical wavenumber m∗, and since m∗ is usually within the

Boussinesq limit, we neglect the Boussinesq limit as a constraint for the entire

spectrum. In other words, we assume that a violation of the Boussinesq limit

by only a small part of the wave spectrum is of minor importance as long

as the characteristic vertical wavenumber m∗ full�ls |m∗| > 1/(2H). A

veri�cation for this approach is presented in Section 4.5, where we inspect

extreme cases for which even m∗ exceeds the Boussinesq limit.

Total spectral area

The total spectral area as de�ned by the limits (3.55)-(3.58) is used for the

computation of the prognostic equations (3.20) and (3.21) and the saturation

condition (3.45). These integration intervals are the same at every altitude

and independent of time. That is, all integrals occurring in (3.20) and (3.21)
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are evaluated according to

X =

ωT∫
ωB

m0∫
m1

f(m,m∗, ωI) dmdωI , (3.59)

where f is an arbitrary function. When applying the GVA (Gaussian Vari-

ational Approach) to the radiative transfer equations, we assume that only

E0(z, t) andm∗(z, t)) can vary in order to �nd the minimum of the error func-

tion. Hence, we implicitly assume that the integration intervals are �xed in

this formalism. As a consequence, it is irrelevant if all waves generated at

the source are preserved at any altitude and time or if they were "removed"

from the spectrum at a lower altitude and earlier time because of a critical

level or other e�ects that remain to be speci�ed.

E�ective spectral area

The E�ective Spectral Area (ESA) is a reduction of the total spectral area.

Similar to ray-tracing, where the path of the wave through the changing

background is traced, we trace the ESA and determine where the ESA is

reduced due to critical layers, re�ection, and e�ects of slow changes of H(z)

and N(z). This is schematically visualised in Figure 3.1 for an idealized and

temporally �xed vertical pro�le of the horizontal wind U(z). There are three

layer (1, 2, and 3). While there is a positive horizontal wind (middle column

in Fig. 3.1) at layer 2, the horizontal wind is zero at layer 1 and 3. The wind

is assumed to be constant in time. The schematic shows the modulation and

reduction of the ESA of two wave packets (left and right column). The wave

packet in the left column is assumed to propagate against the horizontal

wind, while the wave packet in the right column is assumed to propagate

with the wind. At layer 1 there is an initial ESA which is already smaller

than the total spectral area due to processes at lower altitudes. The wave

packet in the left column is Doppler shifted to larger intrinsic frequencies

and smaller absolute vertical wavenumbers (larger vertical wavelengths) at
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layer 2. As a result, every wave parcel of the wave packet that exceeds the

limits (3.56) and/or (3.57) is cropped from the ESA. The remaining wave

m1 m0
B

T

I

Opposite to wind direction

m1 m0
B

T

I

m1 m0
m

B

T

I

0 Umax

1

2

3

La
ye

r

Horizontal wind

m1 m0
B

T

I

In wind direction
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B

T

I

m1 m0
m

B

T

I

Figure 3.1: Erosion of the e�ective spectral area due to Doppler
shifting. In red colors: the e�ective spectral area with intensities ac-
cording to A(m)B(ωI); In gray: the total spectral area; Left panel:
Re�ection. Wave number frequency pairs are omitted due to exceed-
ing the upper frequency limit ωT ; Middle panel: Sketch of the wind
jet; Right panel: Critical layer. Wave number frequency pairs are
omitted due to exceeding the lower frequency limit ωB and/or the
wavenumber limit m1; Bottom: spectral areas below the wind jet at
layer 1; Middle: spectral areas at the peak of the wind jet at layer 2;
Top: spectral areas above the wind jet at layer 3.

spectrum is shifted back to smaller intrinsic frequencies and larger absolute

vertical wavenumbers at layer 3. A comparison of the ESA at layer 3 with the

ESA at layer 1 shows which parts of the wave spectrum at level 1 have been

subject to re�ection. The wave packet in the right column is Doppler shifted

to smaller intrinsic frequencies and larger absolute vertical wavenumbers

(smaller vertical wavelength) at layer 2. As a result, every wave parcel that
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exceeds the limits (3.55) and/or (3.58) is cropped. The reduced wave packet

is shifted back to larger intrinsic frequencies and smaller absolute vertical

wavenumbers (longer vertical wavelengths) at layer 3. From the comparison

of the ESAs at layers 3 and 1 we can identify which parts of the wave packet

have encountered critical layers. For the new gravity wave scheme proposed

in this thesis we consider also e�ects on the ESA that result from the e�ects

of slow changes of H(z) and N(z) with height on the intrinsic frequency and

vertical wavenumber.

In the following we describe the mathematical approach for the reduction

of the ESA. We take advantage of the WKB assumption that the vertical and

temporal variations of the background are slow with respect to the scales of

the waves. This allows us to diagnose the ESA at any time from the surface

layer to the model top3

To calculate the refraction of the vertical wavenumber m and the mod-

ulation of the intrinsic frequency ωI of a spectral element inside the wave

packet we assume that the horizontal wavenumber k is constant along its

path:

k = ±

√
ω2
I

(
m2 + 1

4H2

)
N2

= const (3.60)

This assumption follows from the single-column approximation. Note that

the horizontal wavenumber k is positive (negative) for a wave that propagates

in positive (negative) x-direction in the intrinsic frame work. Our second

assumption is that the ground-based frequency ω is constant along the path

of the wave:

ω = ωI − kU = const (3.61)

This assumption applies when the temporal changes of the background �ow

is very slow compared to the intrinsic period of the wave. Note that we only

invoke this assumption to determine the ESA. The new gravity wave scheme

takes the transience of the background �ow fully into account otherwise.
3A more advanced approach is to follow the path of the wave packet in time and determine
the reduction of the ESA from previous times.
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With the conditions (3.60) and (3.61) we get for the changes of the in-

trinsic frequency and the vertical wavenumber of a given wave parcel:

ωI,a+1 = ωI,a

(
1∓ Ua+1 − Ua

Na

√
m2

a +
1

4H2
a

)
(3.62)

ma+1 = −

√√√√√N2
a+1

N2
a

m2
a +

1
4H2

a(
1∓ Ua+1−Ua

Na

√
m2

a +
1

4H2
a

)2 − 1

4H2
a+1

. (3.63)

The minus (plus) signs correspond to a positive (negative) horizontal wavenum-

ber k, and a and a+ 1 are two adjacent vertical layers.

At any layer with a nonzero source Sz(z) (from the separation S(z, t) =

Sz(z)St(t)) we de�ne the ESA to span a rectangle area (see Fig. 3.1, layer

1) with the limits

ωB ≤ ωb ≤ ωI ≤ ωt ≤ ωT (3.64)

m1 ≤ m11 ≤ m ≤ m00 ≤ m0, (3.65)

where ωb and ωt are the lower and upper intrinsic frequency limits and m11

and m00 the lower and upper vertical wavenumber limits of the generated

wave �eld. For layers between the surface layer and the lowest layer with

a nonzero source Sz(z) the ESA is zero. At any layer with Sz(z) = 0 we

determine the ESA with the equations (3.62) and (3.63) from the ESA of

the layer below.4

Note that the integrals over the ESA at layer a + 1

I =

∫∫
ESA

f(m,m∗, ωI) dmdωI (3.66)

have integration limits which depend on the limits from the previous layer

4When we demand S(z, t) to be nonzero instead of only Sz(z) then we can have the case
where St(t) = 0 and Sz(z) ̸= 0 at a certain time. This would immediately leads to a
vanishing ESA at any layer. For the condition that S(z, t) has to be nonzero we would
need to follow the path of the wave �eld in time.



38 Chapter III. Radiative Transfer gravity wave Parameterization

(e.g., ωI,a+1 = ωI,a+1(ωI,a,ma)). In Appendix B we describe our approxi-

mate numerical method to solve these integrals using �nite elements.



Chapter IV

Idealised simulations

In this chapter we perform di�erent simulations where a single wave packet

is generated and propagates through di�erent idealised vertical pro�les of

horizontal winds and temperature until it dissipates. Parameters of the

wave packet, which are the same for all simulations, idealised wind and

temperature pro�les, and the calculation of energy and momentum budgets

are presented in Section 4.1. The propagation and interaction of a wave

packet in a homogeneous background is shown in Section 4.2. The in�uence

of di�erent wind shears on the propagation of a wave packet is subject to

Section 4.3 and the in�uence of a temperature gradient to Section 4.4. The

�nal Section (4.5) is about two wave packets with opposite horizontal phase

velocities propagating through di�erent wind and temperature pro�les from

the COSPAR International Reference Atmosphere (CIRA-86).

39
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4.1 Simulation environment

All simulations in this chapter are for one single column. The vertical and

temporal resolutions are

∆z = 1000m (4.1)

∆t = 60 s. (4.2)

The altitude range is from zmin = 0 to zmax = 110 km with 111 equidistant

layers. The duration of the simulations is tmax = 2days. The parameters

ρ0, cp, g, and R are:

ρ0 = 1.2
kg

m3
(4.3)

cp = 1005
J

kgK
(4.4)

g = 9.81
m

s2
(4.5)

R = 287
J

kgK
. (4.6)

(4.7)

The coe�cients for the molecular and turbulent di�usion mechanisms are

Kmol = 1.33 · 10−5 m
2

s
(4.8)

K0 = 50
m2

s
(4.9)

α2 = 0.66 (4.10)

γ = 1. (4.11)
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Source function

The source function describes the excitation of a wave packet in the tropo-

sphere. We write

S(z, t,m, ωI) = Sz(z)St(t)A(m,m∗(z, t))B(ωI) (4.12)

with

Sz(z) =


S0
2

(
1 + cos

(
π(z−z0)
∆zS

))
, |z − z0| < ∆zS

0 , else
(4.13)

St(t) =

 sin
(

πt
∆tS

)
, t < 2∆tS

0 , else.
(4.14)

The characteristic vertical wavenumber of the source is set to

m∗
S = − 2π

2000

1

m
, (4.15)

which corresponds to the characteristic vertical wavenumbers that are typical

for the troposphere (VanZandt and Fritts 1989). The other parameters for

the source function are

S0 =
5 · 10−8

|m∗
S |

kg

s3
(4.16)

z0 = 10000m (4.17)

∆zS = 5000m (4.18)

∆tS = 3600 s. (4.19)

The e�ective spectral area in the source region is limited by

5f0 ≤ ωI ≤ N

5
(4.20)

− 2π

100

1

m
≤ m ≤ − 2π

7000

1

m
. (4.21)



42 Chapter IV. Idealised simulations

Horizontal wind pro�les

In this thesis we present simulations with idealised jets or step functions and

more realistic wind pro�les interpolated from CIRA86 data (Fleming et al.

1990). The idealised pro�les are de�ned as

Ustep(z) = U0 + Umax

(
1 + exp

(
−(z − z0)

∆zU

))
(4.22)

Ujet(z) =

 U0 +
Umax

2

(
1 + cos

(
π(z−z0)
∆zU

))
, |z − z0| < ∆zU

U0 , else
.

(4.23)

The �rst function Ustep, a continuous approximation of the Heaviside func-

tion, is de�ned by the main wind velocity U0, the maximum deviation of this

velocity Umax, the position z0 of (U0 + Umax)/2 and the width ∆zU . This

function is used to describe a rapid but continuous change of the horizontal

wind U with altitude. The function Ujet describes a wind jet, with the pa-

rameter U0 for the main velocity, Umax for the largest deviation from U0, z0

for the altitude of the peak velocity U0 +Umax, and 2∆zU for the full depth

of the jet. A positive U corresponds to an eastward horizontal wind. We also

use realistic wind pro�les. These are taken from Fleming et al. (1990) and

are approximated by polynomials for the purpose of our simulations. Such

pro�les will be introduced in the context of the respective simulations.

Temperature pro�les

Our simulations use an idealised step function for the temperature pro�le, or

more realistic temperature pro�les interpolated from CIRA86 data (Fleming

et al. 1990). The idealised pro�le is de�ned as

Tstep(z) = T0 + Tmax

(
1 + exp

(
−(z − z0)

∆zT

))
. (4.24)
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The function Tstep, a continuous approximation of the Heaviside function, is

de�ned by the main temperature T0, the maximum deviation of this tem-

perature Tmax, the position z0 of (T0 + Tmax)/2 and the width ∆zT . This

function is used to describe a rapid but continuous change of the temper-

ature T with altitude. We also use realistic temperature pro�les. These

are taken from Fleming et al. (1990) and are approximated by polynomials

for the purpose of our simulations. Such pro�les will be introduced in the

context of the respective simulations.

Energy and momentum budgets

To validate the conservation of energy and momentum we evaluate the energy

and momentum budgets. The energy budget consists of three compartments,

the enthalpy H = cpρrT of the background �ow, the background kinetic

energy EBG, kin = ρrU
2, and the wave energy EGW . The temporal evolution

of these energies relative to the initial state can be written as

∆H(t) = NE

 zmax∫
0

cpρrT (z, t) dz −
zmax∫
0

cpρrT (z, 0) dz

 (4.25)

∆EGW (t) = NE

 zmax∫
0

EGW (z, t) dz −
zmax∫
0

EGW (z, 0) dz

 (4.26)

∆EBG, kin(t) = NE

 zmax∫
0

ρrU
2(z, t) dz −

zmax∫
0

ρrU
2(z, 0) dz

 , (4.27)

where NE is a normalization factor that is de�ned as

NE = max

(∫
EGW (z, t1) dz −

∫
EGW (z, 0) dz,

. . . ,∫
EGW (z, tn) dz −

∫
EGW (z, 0) dz

)
(4.28)
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for each particular simulation. Here, t1, ldots, tn denote the individual time

steps of a simulation. The relative error of the total energy is then given by

∆Etot(t) = ∆H(t) + ∆EGW (t) + ∆EBG, kin(t). (4.29)

The momentum budget consists of two compartments, namely the wave

momentum MGW and the momentum of the background MBG = ρrU . The

temporal evolution of wave momentum and background momentum relative

to the initial conditions can be written as

∆MGW (t) = NM

 zmmax∫
0

MGW (z, t) dz −
zmax∫
0

MGW (z, 0) dz

 (4.30)

∆MBG(t) = NM

 zmax∫
0

ρrU(z, t) dz −
zmax∫
0

ρrU(z, 0) dz

 , (4.31)

where NM is a normalization factor that is de�ned as

NM = max

(∫
MGW (z, t1) dz −

∫
MGW (z, 0) dz,

. . . ,∫
MGW (z, tn) dz −

∫
MGW (z, 0) dz

)
.

(4.32)

Again, the individual time steps of the simulations are t1, . . . , tn. The change

of total momentum is

∆Mtot(t) = ∆MGW (t) + ∆MBG(t). (4.33)

That is, the momentum is conserved for ∆Mtot(ti) = 0 for i = 1, . . . , n.
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4.2 Wave packets in an isothermal atmosphere at

rest

First we investigate the generation, propagation, and breaking of a wave

packet in a highly idealized background atmosphere with

U(z, 0) = 0 (4.34)

T (z, 0) = 240K. (4.35)

The background can only change with time due to the wave-mean �ow in-

teractions (2.38) and (2.46). For this case we shall assess the conventional

and the correct energy and momentum budgets.

The temporal evolutions of the energy density EGW , the characteristic

vertical wavenumber m∗, and the di�usion coe�cient D can be found in Fig-

ure 4.1, the temporal evolutions of the gravity wave drag Mdep, the wave

momentum density tendency Mtr, and the horizontal wind U in Figure 4.2,

and the temporal evolutions of the energy deposition Edep, the energy den-

sity tendency Etr and the background temperature T in Figure 4.3. In the

following we describe the wave-mean �ow interaction during the generation

of the wave packet, the propagation and dissipation of the wave packet, and

the energy and momentum budgets during the life-time of the wave packet.

Generation of the wave packet

During the �rst two hours, the time of wave generation, wave energy is

taken from the enthalpy via the energy density tendency Etr, which leads

immediately to a cooling of the source region (Fig. 4.3 e and f). After two

hours the heating by the energy density tendency and the cooling by the

energy deposition roughly balance each other and the cold temperature in

the source region prevails (Fig. 4.3 d, e, and f). The colder source region is
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Figure 4.1: Time series of the logarithm of energy density (a), the
characteristic vertical wavenumber (b), and the logarithm of the dif-
fusion coe�cient (c) for the life cycle of a wave packet in the case
of a isothermal background at rest. Panel (d) shows the character-
istic vertical wavenumbers with (black line) and without (gray line)
di�usion at the time t = 1d.

mainly the result of the negative energy deposition in the early stage of the

simulation. This negative energy deposition is due to the vertical transport

of potential energy by the wave packet away from the source region. The

energy density tendency also contributes to the initial cooling in the source

region.

There is also a transformation of horizontal background momentum to

wave momentum during the generation of the waves via the momentum

density tendencyMtr, but the amount of transferred momentum is negligibly

small compared with the amount of momentum transported vertically and

deposited at higher altitudes by the waves (Fig. 4.2 d and e). There is hardly

any contribution of the momentum density tendency to the induced negative
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Figure 4.2: The time series of the gravity wave drag Mdep (a, d),
the wave momentum density tendency Mtr (b, e), and the horizontal
wind di�erence ∆U = U(t) − U(0) (c, f) during the propagation
through a homogeneous background show the contributions of the
momentum deposition and the wave momentum density tendency to
the local wind variations. Top row: Time series for the upper model
region between 30 km and 110 km; Bottom row: Time series for the
lower model region between 0 km and 30 km. The two regions are
separated for a better visualization. Note that the values for the
momentum density tendency are scaled with the factor 1× 103.

winds and therefore negative momentum in the source region (Fig. 4.2 f).

The wind response is mainly caused by the vertical transport of positive

horizontal momentum.

Propagation and dissipation of the wave packet

Speci�cations of the source spectrum allows for the generation of a broad

spectrum of gravity waves with di�erent vertical group velocities. This causes
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the wave packet to spread in the vertical with time, where the fast waves

reach the model top within half a day while the slower waves barely propa-

gate within the time frame of Figure 4.1 a. Using the characteristic vertical

wavenumber m∗ (Fig. 4.1 b), we can estimate the predominant intrinsic ver-

tical group velocity. A wavenumber m∗ close to zero corresponds to waves

with large vertical group velocities while a large absolute value of m∗ corre-

sponds to small vertical group velocities.

The di�usion coe�cient D consists of the time-independent kinematic

molecular viscosity coe�cientDmol, which increases exponentially with height,

and the saturation di�usion coe�cient Dsat (Fig. 4.1 c), which depends on

time and height. There are two reasons why the saturation condition (3.46)

at a certain altitude and time is ful�lled and a nonzero saturation di�usion

coe�cient occurs. Either the energy density is large enough at high altitudes

(e.g., see the �rst day of the simulation in Figure 4.1 a and c) or the absolute

value of the wavenumber m∗ is large (Fig. 4.1 b and c after the �rst day of

the simulation). The di�usion acts on waves with small vertical wave lengths

(large absolute value of the vertical wavenumber m) stronger than on waves

with larger vertical wave length (see Eq. 3.3). This leads to a shifting of

the wavenumber m∗ closer to zero compared with a simulation without any

di�usion (Fig 4.1 d).

While the wave packet propagates through the initially isothermal back-

ground at rest, the waves deposit positive horizontal momentum (taken from

the background at the source level) into the background (the wind variation

caused by the wave momentum tendency Mtr plays only a minor role) and

causes a positive acceleration of the wind (Fig. 4.2 a, b, and c). The wave-

induced wind refracts the following waves to smaller vertical wave lengths.

As a result, these waves become saturated which intensi�es the momentum

depositions and accelerates the wind even further and so forth.

The refraction of the waves by the wave-induced wind and the di�usion

act in opposite direction on the wavenumber m∗. The wave-induced wind
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Figure 4.3: The time series of the energy deposition Edep (a, d), the
energy density tendency Etr (b, e), and the temperature di�erence
∆T = T (t) − T (0) (c, f) during the propagation through a homo-
geneous background show the contributions of the energy deposition
and the energy density tendency to the local temperature variations.
Top row: Time series for the upper model region between 30 km and
110 km; Bottom row: Time series for the lower model region between
0 km and 30 km. The two regions are separated for a better visual-
ization. The value-to-color codes of (a) and (b), and for (d) and (e)
are the same.

refracts the wavenumber m∗ to larger absolute values (Fig. 4.1 d, gray line).

The di�usion acts stronger on these waves and damps them, which pushes

m∗ again closer to zero (Fig. 4.1 d, black line).

As explained in Section 2.3, the wave-mean �ow interactions of gravity

waves consist not only of the acceleration or deceleration of the mean �ow

that result from momentum deposition and the transient term Mtr intro-

duced in this theses (see Eq. 2.38), but also of heating or cooling of the

mean temperature (enthalpy) �eld that result from energy deposition and
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the transient term Etr introduced in this study (see Eq. 2.46). Additionally,

modelers usually apply the vertical di�usion coe�cient from gravity wave

schemes to the mean �ow. These mean-�ow di�usion tendencies are addi-

tional gravity-wave related e�ects on the mean �ow. The upper panels of

Figure 4.3 show that the heating of the temperature �eld in higher altitudes

is a result from the energy deposition and the transient term, where the

energy deposition is the main contributor.

Energy and momentum budgets

To estimate the importance of the new transient wave-mean �ow interaction

terms introduced in this thesis to the conventional approach, we performed

an additional simulation where the tendencies of the momentum and en-

ergy densities were neglected in the mean-�ow equations. The energy and

momentum budgets from both simulations are shown in Figure 4.4.

From the dashed black lines in Figure 4.4 we conclude that neither en-

ergy nor momentum are conserved, whether just the conventional wave-mean

�ow interactions are considered (Fig. 4.4 c and d) or whether also the newly

introduced transient terms (Fig. 4.4 a and b, where the energy loss is roughly

1/1000th of the wave energy, which is not visible in a) are included in the

computations.

When only the conventional wave-mean �ow interaction terms are taken

into account, we get an increase of total energy and total momentum with

increasing wave energy and wave momentum, respectively. The wave energy

and wave momentum come out of nowhere during the generation of the wave

packet.

For the new, transient wave-mean �ow interactions we see that the in-

crease of wave energy and the decrease of mean-�ow enthalpy are of the same

amount during the generation of the wave packet and total energy is con-

served. Hence, during the generation of the waves, enthalpy is converted to



4.2. Wave packets in an isothermal atmosphere at rest 51

02 24 48
1

0

1
New energy budgeta)

02 24 48
1

0

1
New momentum budgetb)

02 24 48
Time (h)

1

0

1
Conv. energy budgetc)

02 24 48
Time (h)

1

0

1
Conv. momentum budgetd)

Figure 4.4: Temporal evolution of vertically integrated energies (a, c)
and momenta (b, d) for the idealized example of a wave packet prop-
agating through a homogeneous background (with zero initial mean
wind). The initial state energies and momenta are subtracted and
the resulting deviations from the initial states are normalized with
the maximum changes of the wave energy and the wave momentum.
Top row: Budgets with the new transient wave-mean �ow interac-
tions. Bottom row: Budgets with the conventional wave-mean �ow
interactions. a) and c): Change of wave energy (blue line), change of
background kinetic energy (red line), change of enthalpy (green line),
and change of total energy (dashed black line); b) and d): change of
wave momentum (blue line), change of background momentum (red
line), and change of total momentum (dashed black line).

wave energy. Similar e�ects are visible by looking at the momentum budgets

in the new, transient case. There, the background momentum is converted

to wave momentum (Fig. 4.4 b).

However, after around six hours, the momentum (and energy) conserva-

tion is somewhat violated when the new transient interactions are included.

The reason is that the di�usion is not strong enough to damp the whole wave
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packet until it reaches the upper layer of the model. This leads to vertical

transport of momentum (and energy) out of the system at the upper model

layer. While the loss of momentum is on the order of the wave momen-

tum (Fig. 4.4 b), the corresponding loss of energy is roughly 1/1000th of the

maximum wave energy (which is not visible in Fig. 4.4 a).

To prevent the loss of energy and momentum at the upper layer the whole

wave packet needs to be strongly damped below the upper layer. In the real

atmosphere the reason for the gravity waves to break in the MLT region are

strong wind variations and shear (e.g., Becker and Vadas 2018, Fig. 13). For

this purpose we applied a strong horizontal wind shear in the upper model

domain for an additional critical layer absorption. The wind Ustep(z) has

the parameter U0 = 0, Umax = 60m/s, zU = 90 km, and ∆zU = 20 km

(see Eq. 4.22). Hence, with this critical layer absorbtion the energy and

momentum are conserved over the whole simulation period for the new,

transient wave-mean �ow interaction terms (Fig. 4.5). The remaining small

numerical error (not visible in Fig. 4.5) can be further reduced by smaller

time steps.

From the energy budget we can see that enthalpy is converted to wave

energy during the generation of the wave packet (Fig. 4.5). When the waves

are breaking, however, the wave is converted to background kinetic energy

and enthalpy. There is a net conversion of enthalpy to background kinetic

energy for this transient wave event. Note that the net energy conversions

in steady state for gravity waves dissipating in the mesosphere are di�er-

ent (e.g., Becker and McLandress 2009). Such di�erences emphasize the

importance of a transient gravity wave scheme in order to improve the simu-

lation of gravity wave events in models (Muraschko et al. 2015; Bölöni et al.

2016; Kim et al. 2021).
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Figure 4.5: Same as Fig. 4.4, but for a simulation with additional
critical layer absorption of gravity waves in the upper model domain
that prevent spurious loss of wave energy and momentum at the
upper model layer (see text for further details).

4.3 Wave packets in a wind shear

Now we investigate the behaviour of a wave packet propagating into two

di�erent wind jets and the resulting wave-mean �ow interactions. The �rst

wind jet points in the same direction as the horizontal phase speeds of the

wave packet. For this case the wind jet is de�ned to be positive. The

second wind jet points in the opposite direction of the horizontal propagation

direction of the wave packet. This wind jet is de�ned to be negative.

Positive wind jet

When a monochromatic wave with positive horizontal wavenumber prop-

agates into a positive wind jet, the wave encounters a critical layer when
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the jet amplitude is large enough. This is the case when the ground-based

horizontal phase speed is equal the local horizontal wind:

cph − U(z) = 0 (4.36)

with

cph =
ωI

k
+ U0, (4.37)

where U0 and ωI are the horizontal wind and the intrinsic frequency at some

launch level, respectively. The more the local wind becomes comparable to

the ground-based phase velocity, the more the vertical wave length tends to

zero and the vertical group velocity slows down. When (4.36) is ful�lled,

the vertical group velocity becomes zero, the vertical wavenumber diverges,

and the wave stops to propagate vertically any further. Note that since

the vertical gradients of the gravity-wave horizontal wind and temperature

perturbations increase dramatically close to a critical level, any viscosity

will dissipate a monochromatic wave in the idealized linear case. Accord-

ingly, Lindzen (1981) assumed that a critical level leads to the total atten-

uation of a monochromatic wave. We apply this assumption to the spectral

elements of our transient gravity wave scheme that encounter a critical level

(see Sec. 3.7).

To validate our transient gravity wave scheme with regard to the be-

haviour of a wave packet encountering a critical layer, we apply an isother-

mal initial background with a temperature of T (z, 0) = 240K and a positive

wind jet of U(z, 0) = Ujet(z) with U0 = 0, Umax = 20 m
s , z0 = 30 km,

and ∆zU = 10 km (see Eq. 4.23). Furthermore we apply an additional

critical layer absorption in the upper model layers to conserve the energy

and momentum (see Sec. 4.2). This critical layer regime has the param-

eters U(z, 0) = Ustep(z) with U0 = 0, Umax = 60m/s, zU = 90 km, and

∆zU = 20 km (see Eq. 4.22).

When the wave packet propagates into the wind jet, no wave energy

reaches the altitudes above the jet (Fig. 4.6 a and c). The whole wave packet
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is attenuated due to critical layers. The characteristic vertical wavenumber

m∗ tends to large absolute values below the jet maximum (Fig. 4.6 b and d).

Not all spectral elements of the broad spectrum reach a critical layer at the

same time and altitude.
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Figure 4.6: Time series of the logarithm of energy density (a) and
the characteristic vertical wavenumber (b) for the life cycle of a wave
packet in the case of a positive wind jet (indicated by black lines).
Energy densities (c) and characteristic vertical wavenumbers (d) in
the case of a positive wind jet (black line) and in the case of an
isothermal atmosphere at rest (gray line) at the time t = 1d. The
wave packet is absorbed due to critical layers.

As described in Section 3.7, the attenuation of spectral elements due

to critical layers is accounted for in our transient gravity wave scheme via

the removal of these elements if their vertical wavenumber is less than the

lower wavenumber limit m1 (Eq. 3.58). More speci�cally, the characteristic

vertical wavenumber m∗ and the e�ective spectral area are shifted by the

wind (a sketch for the e�ective spectral area can be found on the right hand
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side of Fig. 3.1). All waves that with vertical wavenumbers less than the

limit m1 are omitted. The upward momentum and energy �uxes from these

spectral elements are deposited in into the mean �ow. In fact, there is a

�ux of spectral wave elements (hereafter: spectral �ux) beyond the lower

wavenumber limit m1 from both saturation and attenuation of waves due to

critical layers. The results con�rm that the new RTP can well simulate the

behaviour of spectral elements encountering critical layer.

The wave-mean �ow interactions and the changes of the horizontal wind

and temperature can be found in the Figures 4.7 and 4.8, respectively. The

energy and momentum budgets can be found in Figure 4.9.
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Figure 4.7: Time series of the gravity wave drag Mdep (a), the wave
momentum density tendency Mtr (b), and the horizontal wind dif-
ference ∆U = U(t) − U(0) (c) for the life cycle of a wave packet in
the case of a positive wind jet (indicated by black lines). Note that
the values for the wave momentum density tendency are scaled with
the factor 1× 103. The gravity wave drag is the main contributor of
the mean wind response.

The attenuation of spectral elements by critical layers and saturation

beneath the jet gives rise to acceleration and heating of the background

(Figs. 4.7 c and 4.8 c). The kinetic energy for the accelerated jet is extracted

from the wave energy, which in turn is generated earlier in the simulation

from the conversion of mean-�ow enthalpy as a result of the transient source

function (Fig. 4.9). So there is in total a conversion from enthalpy into
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Figure 4.8: Time series of the energy deposition Edep (a), the
energy density tendency Etr (b), and the temperature di�erence
∆T = T (t) − T (0) (c) for the life cycle of a wave packet in the case
of a positive wind jet (indicated by black lines). The value-to-color
codes of (a) and (b) are the same. The main contributor to the mean
temperature response in the jet region is the energy deposition.

wave energy and then into mean-�ow kinetic energy. These energy conver-

sion are somewhat reminiscent of the energy conversions during an idealized
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Figure 4.9: Temporal evolution of vertically integrated energies (a)
and momenta (b) for the idealized example of a wave packet prop-
agating through a positive wind jet (in an isothermal atmosphere).
The initial state energies and momenta are subtracted and the re-
sulting deviations from the initial states are normalized with the
maximum changes of the wave energy and the wave momentum. a)
Change of wave energy (blue line), change of background kinetic en-
ergy (red line), change of enthalpy (green line), and change of total
energy (dashed black line); b) change of wave momentum (blue line),
change of background momentum (red line), and change of total mo-
mentum (dashed black line).
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baroclinic life cycle (Hoskins and Simmons 1975). Note, however, that no ex-

plicit available potential energy of the mean �ow is involved in our case. The

initial generation of wave energy (potential and kinetic energy of the waves

are generated simultaneously) is induced by our prescribed sources function.

Also note that this energetics for gravity wave generation is distinct from

the energetics proposed in Becker et al. (2022a) for the spontaneous emis-

sion. In that case, wave energy is extracted from the vertical shear of the

quasi-geostrophic mean �ow.

Negative wind jet

Gravity waves can be re�ected when they encounter a wind jet that is op-

posite to their horizontal propagation direction. If the wind jet is strong

enough, the WKB theory predicts for a monochromatic wave that the squared

vertical wavenumber can become zero and change sign, which leads to the

re�ection of the wave (see e.g., Sutherland 2018). For the hydrostatic disper-

sion relation as used in RTP, the intrinsic frequency ωI can become rather

larger than the Brunt-Väisälä frequency N than that the vertical wavenum-

ber m becomes zero (see Eqs. 3.62 and 3.63). From equation (3.62) we

can estimate the wind amplitude, where the intrinsic frequency is equal the

Brunt-Väisälä frequency

|Ua+1| =
N

| −
√
m2

a +
1

4H2 |

(
N

ωI,a
+ 1

)
, (4.38)

when we set ωI,a+1 = N and Ua = 0. ωI,a and ma are the intrinsic frequency

and vertical wavenumber in the source region. We assume that spectral

elements of the wave packet with intrinsic frequencies larger than the Brunt-

Väisälä frequency are subject to re�ection. However, the RTP spectrum has

an upper frequency limit of ωT < N (waves close to N are not mid-frequency

waves).

Similar to our method to account for critical layers we assume in the
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case of wave re�ection that every spectral element which exceeds the up-

per frequency limit is going to be re�ected (see also the left hand side of

Fig. 3.1). These waves are removed from the e�ective spectral area, giving

rise to energy and momentum deposition. This wave-mean �ow interaction

from wave re�ection is part of the new parameterization, because downward

propagating gravity waves are not allowed. In a more comprehensive scheme,

the omitted waves should be subject to a downward propagating branch, but

such an extension is beyond the scope of this thesis.

To investigate the behaviour of our parameterization for a wave packet

encountering a jet opposite to the horizontal direction of wave propagation

we apply an initial background with a constant temperature of T (z, 0) =

240K and a negative wind jet of U(z, 0) = Upeak with U0 = 0, Umax =

−20 m
s , z0 = 30 km, and ∆zU = 10 km (see Eq. 4.23). An additional the

critical layer absorption is applied in the upper model layers to conserve

energy and momentum (see Sec. 4.2). This critical layer regime has the

parameters U(z, 0) = Ustep(z) with U0 = 0, Umax = 60m/s, zU = 90 km,

and ∆zU = 20 km (see Eq. 4.22).

The response of the wave packet to the negative jet can be found in Fig-

ure 4.10. When the wave packet propagates into the jet, the wave energy is

reduced and when the wave packet leaves the jet, the wave packet regains en-

ergy (Fig. 4.10 a and c). Simultaneously the characteristic vertical wavenum-

ber tends to small absolute values in the vicinity of the jet maximum and

tends back to larger absolute values while leaving the jet (Fig. 4.10 b and d).

A smaller absolute value of the vertical wavenumber corresponds to a larger

vertical group velocity ż (see Eq. 2.24). The response of the wavepacket to

the negative jet is, that the vertical group velocity increases with increase

of the jet and the wavepacket is stretched. This leads to the reduction of

energy density until the jet maximum. Above the jet maximum the vertical

group velocity decreases and the wave packet is compressed. This leads to

an increased energy density. However, because wave re�ection has caused

that spectral elements were removed from the e�ective spectral area, the
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Figure 4.10: Time series of the logarithm of energy density (a) and
the characteristic vertical wavenumber (b) for the life cycle of a wave
packet in the case of a negative wind jet (indicated by black lines).
Energy densities (c) and characteristic vertical wavenumbers (d) in
the case of a negative wind jet (black line) and in the case of an
isothermal atmosphere at rest (gray line) at the time t = 1d. The
wave packet is refracted and partly re�ected.

wave energy density above the jet is smaller than that below the jet. This

is further illustrated in Figure 4.10 c which shows the loss of wave energy

compared with the case of a wave packet in an isothermal background at

rest (see also Fig. 4.1).

The conventional and new, transient wave-mean �ow interactions and

the response of the mean wind are shown in Figure 4.11 and wave-mean

�ow interactions and the mean temperature response are shown in Fig-

ure 4.12. The wave packet deposits momentum, while it propagates into

the jet (Fig. 4.11 a). This leads to a deceleration of the jet by the wave

packet (Fig. 4.11 c). Above the jet maximum the opposite happens. The
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Figure 4.11: Time series of the gravity wave drag Mdep (a), the wave
momentum density tendency Mtr (b), and the horizontal wind dif-
ference ∆U = U(t) − U(0) (c) for the life cycle of a wave packet in
the case of a negative wind jet (indicated by black lines). Note that
the values for the momentum density tendency are scaled with the
factor 1× 103.

wave packet takes momentum from the mean wind and the jet is accelerated

by the wave packet. The momentum density tendency does not play a role

here (Fig. 4.11 b).

Similar to the momentum deposition there is a energy deposition, when

the wave packet propagates into the jet (Fig. 4.11 a) and the mean temper-

ature increases (Fig. 4.11 c). When the wave packet leaves the jet, where it

regains its energy, it also takes potential energy from the background. This

leads to an decreased mean temperature in that region. The transient energy

deposition does not contribute to the cooling and heating in the jet region

(Fig. 4.12 b).

From the energy budget (Fig. 4.13) we can see, that in the end there

is a conversion of background kinetic energy to enthalpy. This conversion

takes place in the region where the jet is decelerated. This is consistent

with the fact that a reduced amplitude of the mean wind means a reduced

mean-�ow kinetic energy. In the same region the temperature increases and

so does the enthalpy. Higher up where the jet is accelerated, the wind and

temperature changed are opposite. However, due to the exponential decrease

of density the amount of converted energy is smaller such that background
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Figure 4.12: Time series of the energy deposition Edep (a), the
energy density tendency Etr (b), and the temperature di�erence
∆T = T (t) − T (0) (c) for the life cycle of a wave packet in the case
of a negative wind jet (indicated by black lines). The value-to-color
codes of (a) and (b) are the same.

kinetic energy is converted to enthalpy when integrating over the vertical

model domain.
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Figure 4.13: Temporal evolution of vertically integrated energies (a)
and momenta (b) for the idealized example of a wave packet prop-
agating through a negative wind jet (in an isothermal atmosphere).
The initial state energies and momenta are subtracted and the re-
sulting deviations from the initial states are normalized with the
maximum changes of the wave energy and the wave momentum. a)
Change of wave energy (blue line), change of background kinetic en-
ergy (red line), change of enthalpy (green line), and change of total
energy (dashed black line); b) change of wave momentum (blue line),
change of background momentum (red line), and change of total mo-
mentum (dashed black line).



4.4. Wave packets in a temperature gradient 63

4.4 Wave packets in a temperature gradient

The next initial background condition is a homogeneous wind of U(z, 0) =

0 with the critical layer regime and a vertical temperature gradient. The

temperature pro�le is a step function T (z, 0) = Tstep(z) (see Eq. 4.24) with

T0 = 240K, Tmax = 60K, z0 = 30 km, and ∆zT = 20 km. A vertical

temperature gradient also leads to a vertically varying scale height H and

Brunt-Väisälä frequency N (see Eqs. 2.5 and 2.6).

The results for the energy density and the characteristic vertical wavenum-

ber are shown in Figure 4.14. There is no visible di�erence for the time series

of the energy density or the characteristic vertical wavenumber between the

cases of a temperature gradient and a homogeneous background (Figs. 4.14

and 4.1). Only by looking at the di�erences of the energy densities and

the characteristic vertical wavenumbers of the two cases at the time t = 1d

(black and gray line in Fig. 4.14 c and d) we can discern small di�erences

between these two simulations. An increasing Brunt-Väisälä frequency leads

to a deceleration of the vertical propagation of the wave packet (increase of

|m∗|, decrease of ż), resulting in a larger energy density below 30 km when

compared to the case with isothermal initial condition.

The Figures 4.15 and 4.16 show the the temporal evolution of the wave-

mean �ow interactions terms and the resulting mean wind and temperature

changes. When compared to the former case with an isothermal initial atmo-

sphere at rest (Sec. 4.2, Figs. 4.2 and 4.3), the wave-mean �ow interactions

in layers of larger buoyancy frequencies (dashed lines in Figs. 4.15 and 4.16)

results in stronger mean-�ow responses beneath the maximum of N and

weaker responses above the maximum.

The change of the Brunt-Väisälä frequency N with altitude together with

the single column approximation (constant horizontal wavenumber k) and

the dispersion relation (Eq. 2.17) implies a vertical refraction of the wave

packet that is independent from the background wind. More speci�cally,
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Figure 4.14: Time series of the logarithm of energy density (a) and
the characteristic vertical wavenumber (b) for the life cycle of a wave
packet for the case of a positive initial vertical temperature gradient
(indicated by solid black lines) and zero initial mean �ow. The dashed
black lines indicate the Brunt-Väisälä frequency. Energy densities (c)
and characteristic vertical wavenumbers (d) for the case of a positive
initial vertical temperature gradient and zero initial mean �ow (black
line) and for the case of an isothermal atmosphere at rest (gray line)
at the time t = 1d.

according to the dispersion relation (Eq. 3.63), an increase of N2 with alti-

tude results in a corresponding increase of (m2 + 1
4H2 )ω

2
I . As long as any

wave-induced changes of the mean wind are negligible, ωI does not change.

Hence, m2 has to assume larger values, which is visible as an increase of

the absolute characteristic vertical wavenumber m∗ in Figure 4.14 b and d.

The whole spectrum is shifted to smaller wave lengths and a spectral �ux

over the lower wavenumber limit m1 arises. Similar to the positive wind

jet case (see Sec. 4.3, Figs. 4.7 and 4.8) this causes the deposition of en-

ergy and momentum in the altitude regime where ∂zN > 0. At higher
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Figure 4.15: Time series of the gravity wave drag Mdep (a), the wave
momentum density tendency Mtr (b), and the horizontal wind dif-
ference ∆U = U(t) − U(0) (c) for the life cycle of a wave packet in
the case of a positive temperature gradient (indicated by solid black
lines). The dashed black lines indicate the Brunt-Väisälä frequency.
Note that the values for the momentum density tendency are scaled
with the factor 1× 103.

altitudes where N decreases with z, the characteristic vertical wavenumber

and, hence, the whole spectrum, is shifted toward smaller absolute vertical

wavenumbers (larger wave lengths). As a result, the spectral �ux ceases and

the wave-mean �ow interactions are weaker than below the maximum of N .
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Figure 4.16: Time series of the energy deposition Edep (a), the
energy density tendency Etr (b), and the temperature di�erence
∆T = T (t) − T (0) (c) for the life cycle of a wave packet in the case
of a positive temperature gradient (indicated by solid black lines).
The dashed black lines indicate the Brunt-Väisälä frequency. The
value-to-color codes of (a) and (b) are the same.



66 Chapter IV. Idealised simulations

If the N2 decreases further with altitude, then there is a point where

the product
(
m2 + 1

4H2

)
ω2
I can not decrease anymore unless the vertical

wavenumber m2 becomes negative. This is the point where the wave is

re�ected. We simulated such a case by using an initial temperature pro�le

that has negative vertical gradient in the stratosphere (see Fig. 4.17, we

used T0 = 300K and Tmax = −60K with respect to Eq. 4.4)). The results
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Figure 4.17: Time series of the horizontal wind di�erence ∆U =
U(t)−U(0) (a) and temperature di�erence ∆T = T (t)−T (0) (b) for
the life cycle of a wave packet in the case of a negative temperature
gradient (indicated by solid black lines). The dashed black lines
indicate the Brunt-Väisälä frequency.

from this simulation show that the wave-mean �ow interaction caused by our

method to account for wave re�ection (see Sec. 4.3) are comparatively small.

In summary, the in�uence of temperature variations on the wave packet is of

minor importance compared with the in�uence of a horizontal wind shear.

4.5 Wave packets in realistic temperature and wind

pro�les

In this section we present and discuss simulation results for the propagation

of two wave packets with horizontal intrinsic phase velocities in opposite

directions. One wave packet has positive intrinsic horizontal phase velocities

and the other one negative (hereafter: eastward and westward waves). These
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wave packets propagate through but do not interact with January mean

pro�les of zonal wind and temperature at 60◦S and 60◦N taken from CIRA86

data (see Sec. 4.1). The di�usion coe�cient Dsat is calculated from the

superposition of both wave packets and is the same for both (see Eq. 3.49).

The interference parameter is set to γ = 0.2. Note that for this current

formulation of the RTP with two horizontal azimuths, the relation between

the intrinsic phase velocity and the horizontal wind needs to be considered in

the Equations (3.20) and (3.21), as well as for the calculation of the e�ective

spectral area for each azimuth (Sec. 3.7).

The simulations presented in the following are o�ine simulations, that is,

wave-mean �ow interactions are not taken into account, and the background

wind and temperature pro�les are �xed. We test the RTP for two background

wind and temperature pro�les that corresponds to the zonal-mean state at

60◦S and at 60◦N, respectively, during January. We compare the results with

the expected behaviour according to �gure 5 c in Becker (2012).

In the summer hemisphere we expect from Becker (2012) that the west-

ward gravity waves are �ltered in the lower stratosphere and that the east-

ward gravity waves propagate to the upper mesosphere where they dissipate

and deposit momentum. The resulting wave-mean �ow interactions of the

RTP simulation in 60◦S January zonal-mean background wind and temper-

ature pro�les are shown in Figure 4.18. The westward wave packet encoun-

ters critical layers already in the westward stratospheric jet and provides a

negligible amount of deposited energy and momentum. The eastward wave

packet propagates through the westward stratospheric jet into the MLT re-

gion. There the waves become saturated above 75 km altitude and reach

their critical layers around an altitude of 90 km. They provide a temporarily

momentum deposition of around 300m/s/d and energy deposition of around

5K/d. These results are in agreement with the expected behaviour.

In the winter hemisphere we expect from Becker (2012) that the east-

ward gravity waves are �ltered in the lower stratosphere and that the west-
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Figure 4.18: Time series of the wave-mean �ow interaction (∂tU)GW

(gravity wave drag plus wave momentum density tendency (see
Eq. 2.38) of the westward (a) and the eastward (c) wave packet, and
time series of wave-mean �ow interaction (cpdtT )GW (energy deposi-
tion plus wave energy density tendency, see Eq. 2.46) of the westward
(d) and the eastward (f) wave packet for a background wind and tem-
perature pro�le that corresponds to the zonal-mean state at 60◦S dur-
ing January. The middle column shows the zonal wind and the time
averaged wave-mean �ow interaction (∂tU)GW (b) and the temper-
ature and the time averaged wave-mean �ow interaction (cpdtT )GW

(e). The time averages are de�ned as X = 1
tmax

tmax∫
0

X(t) dt, where

tmax = 2days.

ward gravity waves propagate to the upper mesosphere where they dissipate

and deposit momentum. The resulting wave-mean �ow interactions of the

RTP simulation in 60◦N January zonal-mean background wind and temper-

ature pro�les are shown in Figure 4.19. We can see that only the westward

waves contribute to the wave-mean �ow interactions in the MLT region.

The eastward wave packet encounters critical layers in the troposphere and
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Figure 4.19: Time series of the wave-mean �ow interaction (∂tU)GW

(gravity wave drag plus wave momentum density tendency (see
Eq. 2.38) of the westward (a) and the eastward (c) wave packet,
and time series of wave-mean �ow interaction (cpdtT )GW (energy
deposition plus wave energy density tendency, see Eq. 2.46) of the
westward (d) and the eastward (f) wave packet for a background
wind and temperature pro�le that corresponds to the zonal-mean
state at 60◦N during January. The middle column shows the zonal
wind and the time averaged wave-mean �ow interaction (∂tU)GW

(b) and the temperature and the time averaged wave-mean �ow in-
teraction (cpdtT )GW (e). The time averages are de�ned as X =

1
tmax

tmax∫
0

X(t) dt, where tmax = 2days.

stratosphere and provides only a negligible amount of deposited energy and

momentum per unit mass. The westward wave packet propagates through

the eastward jet into the MLT. These waves become saturated above 60 km

altitude and reach their critical layers around an altitude of about 90 km.

The deeper distribution of energy and momentum deposition compared with

60◦S is accompanied by smaller magnitudes of the energy and momentum
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deposition per unit mass, reaching maximum values of up to around 1K/d

and −75m/s/d, respectively. Such a di�erence between winter and sum-

mer conditions is as expected (e.g., Lindzen 1981; Becker and Schmitz 2003;

Becker 2012) and the new RTP reproduces this behaviour.

Note, however, that we simulated only two wave packets without feed-

back on the background �ow. Furthermore there is no realistic generation

mechanisms of gravity waves (orographic or non-orographic) and the simula-

tion is too short to provide an average picture that could be compared to the

climatologies for summer and winter as simulated by a GCM (either with

parameterized or resolved gravity waves). Nevertheless, these o�ine results

show that the RTP is able to provide reasonable altitudes and magnitudes of

energy and momentum deposition. Results that illustrate the performance of

the RTP when implemented in a GCM will be presented in the next chapter.

On the characteristic vertical wavenumber and the Boussinesq

limit

In Section 3.7 we de�ned the upper limit m0 of the vertical wavenumber

spectrum. This limit may violate the Boussinesq approximation for the

gravity waves as was assumed in Section 2.1. We argued that a violation

of the Boussinesq approximation by only a small part of the wave spectrum

is of minor importance as long as the characteristic vertical wavenumber

m∗ full�ls |m∗| > 1/(2H). Here we test this condition for the previous

two o�ine simulations by looking for regions where the ratio |m∗|/( 1
2H ) is

smaller than one. The results are shown in the Figures 4.20 and 4.21. The

ratio |m∗|/( 1
2H ) for the two simulations is nearly everywhere larger than

two. There is a small region for all wave packets within the �rst hours of

the simulations and altitudes above 60 km where the absolute characteristic

vertical wavenumber m∗ is smaller than the inverse scale height. However,

since these altitudes are characterized by nearly zero energy density early in

both simulations, the characteristic vertical wavenumber contains no relevant
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Figure 4.20: Time series of the ratio |m∗|/( 1
2H ) for the westward (a)

and eastward (b) wave packet for a background wind and tempera-
ture pro�le that corresponds to the zonal-mean state at 60◦S during
January. The contours show values of 2, 5, and 10.

information. When energy and momentum deposition become signi�cant at

later times, m∗ is at least �ve times larger than 1/(2H). Note that in regimes

where the gravity waves dissipate from saturation (damping by turbulent

vertical di�usion), the characteristic vertical wavenumber tends to be closer

to 1/(2H) (e.g., see Fig 4.20 b above 75 km). In summary, the assumption

that |m∗| > 1/(2H) for tropospheric gravity waves applies reasonably well

in our test simulations with the new RTP.
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Figure 4.21: Time series of the ratio |m∗|/( 1
2H ) for the westward (a)

and eastward (b) wave packet for a background wind and tempera-
ture pro�le that corresponds to the zonal-mean state at 60◦N during
January. The contours show values of 2, 5, and 10.



Chapter V

Simulation results using a

general circulation model

In this chapter we perform a simulation with a GCM for 90 days with a fully

implemented RTP. The used GCM is the Kühlungsborn Mechanistic Circu-

lation Model (KMCM). The enthalpy equation of the model is completed

by the conventional plus the transient energy deposition. The transient mo-

mentum deposition term is neglected due to its minor role in the wave-mean

�ow interaction (see Sec. 4.2). Therefore, only the conventional momen-

tum deposition (gravity wave drag) from the RTP is added to the horizontal

momentum equation of the GCM. The initial condition is an atmosphere

without e�ects of parameterized gravity waves in the mid of December. Af-

ter a spin-up time of a few days, e�ects of the parameterized gravity waves

become visible. In the following we analyze model results from the �rst of

January on.

A short description of KMCM and the simulation environment of the

RTP can be found in Section 5.1. In Section 5.2, we will show and discuss

monthly means of zonally averaged �elds and wave-mean �ow interactions.

We will compare this model output with corresponding results from a gravity

72
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wave resolving simulation. Section 5.3 deals with the behaviour of the param-

eterized gravity wave drag during a Sudden Stratospheric Warming (SSW)

that develops spontaneously in the February of the simulation. These results

are compared with the dynamics during a SSW simulated with the gravity

wave resolving model. The last Section (5.4) addresses the additional highly

transient and localized heating of the background by the energy density ten-

dency due to gravity wave breaking triggered by thermal tides in the MLT

region.

The aim of this chapter is to show that the RTP works reasonably well

when implemented in a GCM. Furthermore, we shall illustrate instances

where the transience of the new scheme is essential to describe certain dy-

namics features in agreement with the gravity wave resolving model results.

5.1 Model descriptions

The KMCM is a free running GCM with a standard spectral dynamical

core. It has a terrain-following vertical coordinate and a staggered vertical

grid (Simmons and Burridge 1981). For our simulations with the new RTP,

the triangular spectral truncation is at a horizontal wavenumber 32, which

corresponds to a horizontal grid spacing of around 450 km and a shortest

resolved horizontal wavelength of λk ∼ 1350 km. We apply 80 full verti-

cal layers from about 100m above the surface up to p = 1.3 × 10−6 hPa

(z ∼ 175 km) with a vertical spacing of ∆z ∼ 1 km in the troposphere and

∆z ∼ 2 km in the MLT region. The horizontal grid contains 48 Gaussian

latitudes and 96 equidistant longitudes. Relevant components of an atmo-

spheric climate model are represented in a simpli�ed but explicit manner:

radiative transfer, water vapor transport, large-scale condensation, moist

convection, full surface energy budget with a slap ocean, macroturbulent

and molecular horizontal and vertical di�usion, and ion drag. Further de-

tail of the current version of the KMCM can be found in Becker (2017) and

references therein.



74 Chapter V. Simulation results using a general circulation model

The RTP has been implemented in the KMCM such that gravity wave

computations are performed at every model grid point. We apply four az-

imuthal directions with φ1 = 0 for eastward, φ2 = π for westward, φ3 = π/2

for northward, and φ4 = 3π/2 for southward intrinsic horizontal propagation

of the parameterized gravity waves. At each point of the KMCM horizontal

grid the prognostic variables E0(z, t, φi) and m∗(z, t, φi), and the wave-mean

�ow interactions are calculated by summing up the contribution from the

di�erent azimuths:

(∂tU)GW = − 1

4
∂z (cos(φ1)F (φ1) + cos(φ2)F (φ2)) (5.1)

(∂tV )GW = − 1

4
∂z (sin(φ3)F (φ3) + sin(φ4)F (φ4)) (5.2)

(cpdtT )GW = − 1

4

4∑
i=1

∂zFp(φi)

− 1

4
(cos(φ1)F (φ1) + cos(φ2)F (φ2)) ∂zU

− 1

4
(sin(φ3)F (φ3) + sin(φ4)F (φ4)) ∂zV

− 1

8

4∑
i=1

∂tEGW (φi),

(5.3)

where the factor 1/4 normalizes the sum over the four azimuths.

The spectral limits of the gravity wave spectrum are set to

m1 = − 2π

100

1

m
(5.4)

m0 = − 2π

12000

1

m
(5.5)

for the vertical wavenumbers, and

ωB =

 5f, f > f0

5f0, else
(5.6)

ωT =
N

5
. (5.7)
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for the intrinsic frequency. Here f is the Coriolis parameter and the buoyancy

frequency N is taken from KMCM. The frequency spectrum is limited to a

minimum value of 7.3×1 0−5 s−1 to prevent the generation of gravity waves

with nearly zero vertical group velocities in the tropics. The parameters for

the di�usion induced by saturation (see Sec. 3.5) are set to K0 = 50m2/s,

α2 = 0.66, and γ = 0.2. The molecular viscosity coe�cient Kmol is taken

from the KMCM and is computed using the method described in Becker and

Vadas (2020, their Appendix A).

As source functions we only take into account the generation of non-

orographic waves in the troposphere. The non-orographic generation mech-

anisms are fronts, jets, convection, and a constant background generation.

Orographic gravity waves are currently not considered in our RTP. The ef-

fective spectral area in the source region has the limits

m1 ≤m ≤ − 2π

8000

1

m
(5.8)

ωB ≤ωI ≤ ωT (5.9)

which are applied in a horizontally uniform fashion for the sake of simplic-

ity. From Section 3.6 we know that we can decompose the source function

S(z, t,m, ωI , φ) into a physical part S(z, t), a spectral part S(m,ωI), and an

azimuthal part S(φ). The spectral part is also horizontally uniform with a

constant characteristic vertical source wavenumber of

m∗
S = − 2π

4000

1

m
. (5.10)

The physical and azimuthal parts depend on the generation mechanisms and

therefore also on the horizontal (azimuthal) direction. The explicit physical

and azimuthal source functions can be found in Appendix D. Here we only

describe the types of source functions. They all have in common, that they

are only nonzero in the troposphere between p = 950 hPa and p = 120 hPa

(z < 15 km) and are zero at higher altitudes. The source function Sconst
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for the constant background generation is time-independent, but latitude-

dependent with maxima around 60◦N and 60◦S. To parameterize the gen-

eration of gravity waves by fronts we apply a combination of the methods

used by Charron and Manzini (2002) and Mirzaei et al. (2014). The source

function Sfront is nonzero, when the frontogenesis function Ff (see App. B3,

Eq. D6) exceeds a threshold of 1× 10−1K/(100 kmh). This source function

depends on the horizontal direction of the front and on the amplitude of the

frontogenesis function. For gravity waves generated by jets and moist convec-

tion we apply the corresponding methods proposed by Mirzaei et al. (2014).

Gravity waves are generated in jet exit regions when the wind parameter uc

(see App. D, Eq. D12) is larger than the threshold of 3.5m/s. The amplitude

of the source function Sjet depends on the amplitude of the wind parameter

uc and the horizontal directions of the geostrophic �ow. Finally, when the

heating by moist convection Qc exceeds a threshold of 2× 10−1K/h, gravity

waves are generated uniformly in all azimuthal directions with the amplitude

of the source function Sconv depending on the moist convective heating Qc.

The complete source function from these processes is a sum of the source

functions of the individual generation mechanisms:

S(z, t,m, ωI , φ) = S(m,ωI) (Sjet(z, t, φ) + Sfront(z, t, φ)

+ Sconv(z, t, φ) + Sconst(z, t, φ))
(5.11)

5.2 Monthly averaged zonal means

Model output from the KMCM has been averaged over the whole January of

our simulation and over all longitudes, resulting into monthly zonal means

of the zonal wind and temperature, as well as of the momentum deposition

(Eq. (3.32)) and energy deposition (Eq. (3.33)) from the parameterized grav-

ity waves. These model results will be compared to corresponding results

obtained with the HIgh Altitude Mechanistic general Circulation Model (HI-

AMCM) (Becker and Vadas 2020; Becker et al. 2022a; Becker et al. 2022b).
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The HIAMCM is a further development of the KMCM and extends far into

the thermosphere. The most important property of the HIAMCM in our

context is that gravity waves are not parameterized but simulated explicitly,

which is subject to the e�ective resolution of the model. According to Becker

et al. (2022a), the HIAMCM reliably resolves gravity waves down to hori-

zontal wavelengths of about 200 km. Here we use output from the HIAMCM

nudged to MERRA-2 reanalysis for the December 2016 to February 2017

period. Our 30 day average from the HIAMCM is from 22 December 2016

to 21 January 2017. This period was characterized by a relatively strong

polar vortex.

The resolved gravity wave drag from the HIAMCM is computed as the

convergence of the vertical momentum �ux from the T256 model output mi-

nus the corresponding momentum �ux convergence when spectrally truncat-

ing the model output at T32. This di�erence between the two corresponds to

the drag from gravity waves having horizontal wavelengths between 156 km

(the smallest resolved waves in T256) and 1350 km (the smallest resolved

waves in T32). We can estimate the largest horizontal wavelength from the

KMCM simulation from the wavenumber and frequency limits of the RTP.

The largest horizontal wavelength is around 1000 km, which is comparable

to the largest wavelength we get from the HIAMCM simulation. We do not

have the energy deposition from the gravity wave resolved simulation, so a

comparison is not possible.

The zonal mean winds and the zonal gravity wave drag are shown in

Figure 5.1. The mean temperatures and the thermal wave-mean �ow in-

teractions (energy deposition plus energy density tendency) can be found

in Figure 5.2. We can see that there is a good agreement in the summer

hemisphere (southern hemisphere) of the parameterized and resolved grav-

ity wave drag, as well as their e�ects on the zonal-mean zonal wind and

temperature. The region of signi�cant gravity wave drag is in the latitudi-

nal region between 90◦S and 30◦S around the mesopause (p ∼ 0.001 hPa)

(Fig. 5.1). The maximum of the parameterized gravity wave drag is larger,
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Figure 5.1: Zonally and monthly averaged zonal wind (colors) and
zonal gravity-wave drag (contours for ±20, 40, 60, 80, 100m/s/d) for
the KMCM with T32 spectral resolution and the new RTP (a), and
the HIAMCM with T256 spectral resolution and explicit simulation
of gravity waves (b). See text for further details.

but can be adjusted with the tunable parameters in the RTP. The parame-

terized gravity wave drag causes the wind reversal above the mesopause like

in the high-resolution simulation. The summer polar mesopause region is

characterized by temperatures below 140K (Fig. 5.2). This substantial devi-

ation from the radiatively determined state is mainly caused by the gravity

wave driven summer-to-winter pole residual circulation and the resulting adi-

abatic cooling beneath the summer polar mesopause. The energy deposition

around the mesopause has amplitudes of a few K/d and acts as a direct heat-

ing against the adiabatic cooling. The fact that energy deposition (which

largely corresponds to turbulent frictional heating) needs to be taken into

account in models to simulate the cold summer mesopause along with re-

alistic gravity wave drag and gravity wave amplitudes was �rst emphasized

by Lübken (1997).

In the winter hemisphere the situation is di�erent. Our T32 simula-

tion with the new RTP exhibits a strong polar vortex that extends into the

mesopause region (Fig. 5.1 a). This pattern is not very realistic and di�ers

from the HIAMCM results, where the polar vortex weakens with increas-

ing altitude from the lower mesosphere on such that an additional wind

maximum develops in the subtropical upper mesosphere at about 30◦N and
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Figure 5.2: Zonally and monthly averaged temperature (colors) for
the KMCM with T32 spectral resolution and the new RTP (a), and
the HIAMCM with T256 spectral resolution and explicit simulation
of gravity waves (b). The contours in (a) shows the energy deposi-
tion plus the energy density tendency from the RTP (contours for
1, 2, 3, 4, 5K/d). See text for further details.

0.005 hPa. There is poor agreement between the parameterized and the re-

solved gravity wave drag in the winter middle atmosphere. While in the grav-

ity wave resolving simulation the westward gravity wave drag is strongest in

the lower mesosphere at 60◦N and extends to higher altitudes towards lower

latitudes, it is located close to the pole above the mesopause in the T32

simulations with parameterized gravity waves. Also the temperature pat-

terns in the winter middle atmosphere di�er signi�cantly (Fig. 5.2). The

warm winter stratopause of the gravity wave resolving simulation can not be

reproduced with the current con�guration of the new RTP.

These di�erences in the winter hemisphere are a consequence of missing

generation mechanisms for the parameterized gravity waves. More speci�-

cally, there are no orographic gravity waves in the KMCM simulation. On

the other hand, it is very well known that orographic gravity waves have a

high impact on the circulation of the entire winter middle atmosphere (e.g.,

McLandress et al. 2013). A simulation with parameterized orographic grav-

ity waves that were generated over the Rocky Mountains, the Himalayas,

and eastern Siberia by McLandress and McFarlane (1993) showed that these

orographic waves break in the stratosphere/lower mesosphere and give rise
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to a much weaker zonal �ow in the winter middle atmosphere. Orographic

gravity waves further contribute to separate the stratospheric polar night

jet from the tropospheric jet in the subtropics, to reduce the magnitude of

the tropospheric jet, and to enhance the westward wind shear in the sub-

tropical upper troposphere (Alexander et al. 2010). All these e�ects a�ect

the propagation and instability of the non-orographic gravity waves (partic-

ularly those from jets and fronts) such that these gravity waves deposit their

momentum and energy at lower altitudes in the mesosphere. The overall

result is a much weaker polar vortex and with a di�erent pattern than what

would be the case without orographic gravity waves. We simulated such an

hypothetical state without orographic gravity waves with the current version

of the T32 KMCM. Indeed our GCM with the new RTP is equipped with a

parameterization of just non-orographic gravity waves but misses the e�ects

of orographic gravity waves (Fig. 5.1 a).

5.3 Gravity waves and sudden stratospheric warm-

ings

A Sudden Stratospheric Warming (SSW) is a temporary increase of the

stratospheric temperature by typically several 10K. A SSW occurs in three

out of four northern hemisphere winters, but barely in the southern hemi-

sphere winters. The �rst SSW was observed in 1952 over Berlin (Scherhag

1952), and in September 2002 the �rst SSW was observed in the southern

hemisphere (Krüger et al. 2005). SSWs occur when the polar vortex is dis-

rupted by planetary waves such that the vortex breaks down and the zonal-

mean eastward winds before the warming turn into weakly westward winds

at middle and high latitudes for about several days or longer. The warm-

ing of the polar stratosphere is caused by the residual descent of air masses.

This downwelling is caused by the intensi�ed residual circulation in the upper

stratosphere which is driven by the large planetary Rossby wave amplitudes
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that also cause the disruption of the vortex. A stratospheric warming is

usually accompanied by a cooling of the mesosphere (Labitzke 1972). With

changing winds in the stratosphere, the westward propagating gravity waves

no longer break in the mesosphere but a lower altitudes. Instead, eastward

gravity waves propagate into the mesosphere during the wind reversal, in

analogy to the summer mesosphere. This leads to an anomalous equator-

ward residual �ow, which is balanced by a reduced residual downwelling (or

even upwelling) over the polar cap and therefore results in the mesospheric

cooling (Holton 1983). An overview of the state-of-the-art knowledge about

SSWs can be found in the review of Baldwin et al. (2021).

We inspected the simulations with the KMCM (gravity waves param-

eterized with the RTP) and the HIAMCM (resolved gravity waves) from

Section 5.2 with regard to the dynamics of simulated SSWs. A SSW took

place in each simulation. By de�ning the wind reversal at p = 1hPa as the

starting point of the SSW and setting the model time to day zero, we can

qualitatively compare the zonal gravity wave drag during the SSWs. The

time series of the zonal-mean zonal mean winds and the zonal gravity wave

drags are shown in Figure 5.3. In both simulations the wind reversal from

eastward to westward winds causes a reversal of the zonal gravity wave drag

from westward to eastward. At the end of each SSW a new polar vortex

is established and the direction of the gravity wave drag changes back to

westward. During the wind reversal, the eastward gravity wave drag is in

both cases located at the upper part of the westward wind region. Because

the polar night jet before and after the SSW is much stronger and extends

to higher altitudes in the KMCM simulation, also the westward gravity wave

drag during these periods is located at higher altitudes when compare to the

HIAMCM. By looking at the gravity wave drag in Figure 5.3 a we can see

that it takes roughly two days after the decline of the westward gravity wave

drag for the eastward gravity wave drag to evolve, and even about 10 more

days to reach its maximum. This is presumably because after the sudden

wind reversal in the stratosphere and mesosphere, the eastward gravity waves
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Figure 5.3: Temporal evolution of the zonal-mean zonal wind and
the eastward gravity wave drag, averaged from 50◦N-70◦N during
a sudden stratospheric warming as simulated by the free-running
KMCM with the new RTP (a) and the gravity wave-resolving HI-
AMCM nudged to MERRA-2 reanalysis during January and Febru-
ary 2017 (b). The zonal wind is shown by colors and the gravity
wave drag is shown by black contours (for ±5, 10, 15, 20, . . . m/s/d).

need some time to propagate into the upper mesosphere. This is di�erent

from the recovery phase of the polar vortex in Figure 5.3 a, which is charac-

terized by a smoother transition from westward to eastward �ow such that

the gravity wave drag in the upper mesosphere changes more synchronously

with (and opposite to) the wind direction in the stratopause region and

lower mesosphere. The SSW simulated by the HIAMCM shows di�erent

features regarding the wind reversal, the location of the maximum westward

and eastward gravity wave drag from (presumably) primary gravity waves,

and the gravity wave drag in the lower thermosphere which is eastward and

presumably results from secondary gravity waves (e.g., Becker et al. 2022b).

Nevertheless, the overall behavior of the KMCM below the mesospause is

dynamically consistent and comparable to the HIAMCM.

In summary, the RTP reproduces the expected behaviour of gravity waves

during a SSW in a dynamically consistent fashion. Di�erences to the HI-

AMCM simulation are mainly due to the fact that the self-induced SSW

in the free-running KMCM develops from an unrealistically strong polar

vortex (see the above discussion about missing orographic gravity waves
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in our current KMCM version). Furthermore, the SSW simulated in the

nudged HIAMCM is an event with a vortex displacement. Such events usu-

ally show dynamical features that are di�erent from the more regular SSW

events where the vortex is split into two fragments. A closer inspection of

the KMCM data revealed that the KMCM with the RTP simulated such a

split-vortex event.

5.4 Gravity waves and thermal tides

The impact of gravity waves on the amplitudes and phases of thermal tides

and the impact of thermal tides on the refraction and breaking of gravity

waves have been subject to many studies during the last decades. Thermal

tides are forced mainly by the daily cycle of the absorption of solar insolation

by water vapor and clouds in the troposphere and by ozone in the strato-

sphere. Another forcing process is the daily cycle of cumulus convection in

the tropics (Grieger et al. 2004; Achatz et al. 2008). When the thermal tides

propagate into the MLT region, they cause regular and signi�cant variations

of winds and temperature. This is illustrated in Figure 5.4 c in terms of the

zonal wind variations in the northern winter MLT from the KMCM simula-

tion with the new RTP. The question of how thermal tides a�ect the gravity

wave drag in the zonal mean has been discussed controversially in the liter-

ature. One result is that in the summer hemisphere, the zonal gravity wave

drag from a conventional parameterization (single column and steady-state

approximations) is shifted to higher altitudes and, hence, exerts a larger forc-

ing per unit mass (Miyahara and Wu 1989). Another study found quite the

opposite result, namely that the drag of resolved waves in the summer hemi-

sphere is shifted to lower altitudes and smaller forcing per unit mass (Becker

2017). The modulation of thermal tides regarding their amplitudes and

phases by gravity waves has been the topic of many model studies (e.g., Senf

and Achatz 2011; Ortland and Alexander 2006), but a consensus on how
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the waves modulate the tides has not been reached yet. The question ap-

pears to be further complicated by the fact that the modulation of the tides

by gravity waves is highly sensitive to the details of the gravity wave spec-

trum (Ortland and Alexander 2006). Furthermore, the comparison of the

simulated tidal modulation using conventional gravity wave parameteriza-

tions with the simulated tidal modulation using three-dimensional, transient

ray-tracing reveals signi�cantly di�erent results regarding the gravity wave

e�ects on the amplitudes and phases of the tides (Senf and Achatz 2011).

We inspect the interaction of the parameterized gravity waves with the

thermal tides in the KMCM simulation by plotting the conventional energy

deposition and the new energy density tendency over the temperature devi-

ation from the daily mean temperature (Fig. 5.4 a and b), and the zonal and

meridional gravity wave drag over the zonal and meridional winds, respec-

tively (Fig. 5.4 c and d). More speci�cally, at the location 57◦N and 180◦E

on day 44 of the simulation we can infer a clear semi-diurnal tidal pattern in

the zonal and meridional winds. These patterns are typical for the current

KMCM simulation up to the SSW discussed in the previous section. From

Figure 5.4 a we can see that the conventional energy deposition is in phase

with the positive temperature deviation. There is no such pattern visible

for the energy density tendency in panel b. By comparing Figure 5.4 a with

Figure 5.4 c we see that the energy deposition is in phase with the variation

of the zonal wave drag in higher altitudes. The westward gravity wave drag

coincides with the reversal of the zonal wind from eastward to westwards

winds above about 0.001 hPa, thereby reinforcing the zonal wind tendency

associated with the tide. A similar pattern can be inferred for the meridional

gravity wave drag and the meridional wind.

From Section 4.4 we know that temperature variations have a minor im-

pact on the propagation and dissipation of the parameterized gravity waves.

Therefore we conclude that the energy deposition does not arise from the

tidal structure in the temperature but from the tidal structure in the zonal

and meridional winds. Indeed, the energy deposition is roughly in phase
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with the westward gravity wave drag as mentioned above. The westward

gravity wave drag arises from the breaking of westward gravity waves due to

saturation (and critical layers) which is induced by the tidal wind changing

from strongly eastward to weakly westward. This so-induced westward grav-

ity wave drag propagates downward in time with the phase of the tide (like

for gravity waves, downward phase propagation of the tides is equivalent to

Figure 5.4: Temporal evolution of the daily temperature varia-
tions in colours and the energy deposition in contours (a), the
daily temperature variations in colours and the energy density ten-
dency in contours (b), the zonal background wind in colours and
zonal gravity wave drag in contours (c), and the meridional back-
ground wind in colours and meridional gravity wave drag in contours
(d) during a single day as simulated by the free-running KMCM
with the new RTP. The intervals of the black contours for the dif-
ferent panels are 5, 10, 15, 20, 25K/d for (a), ±1, 2, 3K/d for (b),
−100,−200,−300, . . .m/s/day for (c), and 30, 60, 90, . . .m/s/day for

(d). The daily average is de�ned as T = 1
24 h

24 h∫
0

T (t) dt.
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upward group propagation). A similar result can be found for the north-

ward gravity wave drag and the northward wind phase of the tide. A gravity

wave drag from eastward and southward propagating gravity waves cannot

be found in Figure 5.4. Such gravity waves are �ltered at lower altitudes.

In summary, the results of the interaction of the parameterized gravity

waves with tides agrees with the results in Becker (2017). The tidal wind

variations trigger the gravity wave drag; therefore, the zonal-mean gravity

wave drag has to be located at lower altitudes than would be the case without

the tidal wind variations being considered in the background �ow for the

gravity waves. Note that we neglect the time-dependency of the background

�ow in the RTP which would lead to a modulation of the ground-based

gravity-wave frequencies (Senf and Achatz 2011). A further investigation of

the feed back of the gravity wave drag on the tides is beyond the scope of

this thesis and subject to future investigations.
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Conclusions

In this thesis we developed a new, transient gravity wave parameterization for

the application in general circulation models of the atmosphere. This param-

eterization is based on the radiative transfer equation for the gravity-wave

�eld. As a major and common simpli�cation we applied the single-column

approximation. To solve the radiative transfer equation we assumed the De-

saubies spectrum with two free parameters, and we then applied the Gaussian

Variational Principle to derive two prognostic equations for these parame-

ters, one prognostic equation is for the integrated energy density of the wave

�eld in physical space, and a second prognostic equation for the characteristic

vertical wavenumber of the Desaubies spectrum. We introduced the concept

of the e�ective spectral area. This area includes all spectral elements that

are part of the wave �eld at a certain altitude and time. All other spectral

elements that are part of the total spectral area have been attenuated at

lower altitudes and earlier in time, and have thereby caused wave-mean �ow

interaction. In this thesis we derived the complete set of wave-mean �ow

interaction terms that apply in the transient case. These terms include the

usual momentum and energy deposition, as well as additional forcing and

heating terms that are related to the transient changes of momentum and

energy of the wave �eld. The new, complete set of transient wave-mean �ow

87
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interaction terms ensures that the whole system of mean �ow and wave �eld

is energy and momentum conserving. By testing the new, transient Radia-

tive Transfer Parameterization (RTP) in idealised simulations we were able

to show that the system is indeed energy and momentum conserving.

We introduced and validated new methods to account for re�ection and

critical layers within the RTP. Both methods result in reductions of the

e�ective spectral area as a result of re�ection and critical layers. While the

wave-mean �ow interaction caused by critical layers is physically consistent,

the reduction of the spectral area due to re�ection accounts for the fact that

our formulation of the RTP excludes the downward propagation of waves. We

furthermore showed that vertical temperature gradients play only a minor

role for the refraction that leads to dissipation, critical layer �ltering, or

re�ection of gravity waves as compared to wind shears.

The RTP was implemented into a low-resolution version of the KMCM.

The comparison of the monthly averaged zonal means of zonal wind and tem-

perature during January with the results from a high-resolution, gravity-wave

resolving HIAMCM simulation reveals good agreement in the MLT region

of the summer hemisphere (cold mesopause and wind reversal), but large

di�erences in the winter MLT region. The latter result mainly from the

missing parameterization of orographic gravity waves when using the RTP

in its present form. On the other hand, the simulation of a self-induced SSW

using the KMCM with the RTP showed that the reversal from westward to

eastward gravity wave drag in the winter mesosphere and the the overall

temporal evolution of the SSW are reasonably well reproduced. Further-

more, we inspected the instantaneous variations of the local wave-mean �ow

interactions that are triggered by the semi-diurnal tide in the winter upper

mesosphere at middle latitudes. Results showed that the resulting zonal-

mean gravity wave drag is located at lower altitudes than it would be the

case without the tidal wind variations being considered in the background

�ow for the gravity waves.
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Overall, our idealized simulations and GCM applications show that the

RTP is a powerful gravity wave parameterization in single column approxi-

mation. It accommodates di�erent generation mechanisms in a single frame-

work, takes the time needed for the vertical propagation of wave packets into

account, and simulates the gravity wave drag in the MLT region that drives

the summer-to-winter-pole meridional circulation.

The RTP can be further improved to include gravity waves from oro-

graphic sources, as well as secondary gravity waves. Particularly orographic

gravity waves are essential to simulate a realistic circulation in the winter

hemisphere, as was discussed in the previous chapter. Furthermore, sec-

ondary gravity waves are likely important in the winter upper mesopause

region (e.g., Becker and Vadas 2018; Harvey et al. 2022). Such further de-

velopments of the RTP are necessary for routinely using the new scheme in

GCMs. In addition, the single-column approximation should be dropped to

take also horizontal propagation into account (Senf and Achatz 2011; Sato

et al. 2012).

Source functions for the generation of orographic gravity waves from �eld

variables resolved by a GCM are well known (e.g., McFarlane 1987). What

might pose a di�culty when de�ning an orographic gravity-wave source

function in the context of the new RTP is the narrow vertical wavenum-

ber spectrum of orographic gravity waves. The vertical wavenumber of any

monochromatic orographic gravity wave is proportional to the ratio of the

Brunt-Väisälä frequency and the horizontal wind that �ows over the orogra-

phy, that is, m ∼ N/U . We can set the characteristic vertical wavenumber

to m∗ ∼ N/U when applying the Desaubies spectrum to orographic grav-

ity waves and start with a narrow e�ective spectral area when applying

an orographic source function in the RTP at the lowest atmospheric model

level. The question arises whether the so generated gravity wave �eld merges

well enough with the broad vertical wavenumber spectrum of non-orographic

gravity waves generated higher up in the free troposphere, or whether these

two wave �elds are too distinct to be well represented in a single framework.
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If the latter is the case, then we would need additional prognostic equations

for orographic gravity waves, but we could still use a common saturation con-

dition for all gravity waves. Regarding possible source functions of higher-

order gravity waves, we expect to face the same di�culties as for orographic

gravity waves, namely the question whether the vertical wavenumber spec-

trum of the primary gravity waves merges well enough with the wavenumber

spectrum of the secondary gravity waves.

The lateral propagation of gravity waves is potentially important for

the spatial distribution of the wave �eld (Sato et al. 2012). Furthermore,

o�ine simulations using three-dimensional ray-tracing models showed that

the three-dimensional propagation has a strong impact on the momentum

�uxes (Senf and Achatz 2011). Thus, a relaxation of the single-column ap-

proximation is advisable. An intermediate step from the single-column ap-

proximation to the three-dimensional propagation of wave packets is the

two-dimensional propagation of wave packets, e.g., lateral in the direction

of the horizontal wave vector of the gravity wave �eld for a speci�c az-

imuth and vertical propagation. This would require the refraction of the

horizontal wavenumber (similar to the refraction of the vertical wavenum-

ber in this thesis), but not a change of the horizontal propagation direction.

Therefore we would need to relax the assumption of a constant horizontal

wavenumber that was made in this thesis implicit with applying the single-

column-approximation. Such a scheme with the partial relaxation of the

single-column approximation and partially allowing for horizontal refraction

would result in a gravity wave parameterization with three prognostic equa-

tions per azimuth, namely for the integrated energy density, the character-

istic vertical wavenumber, and a characteristic horizontal wavenumber if we

de�ne a horizontal wavenumber spectrum with a characteristic horizontal

wavenumber similar to the vertical wavenumber spectrum. A varying char-

acteristic horizontal wavenumber would also require a new ansatz for the

ESA, where a constant horizontal wavenumber in the Lagrangian sense was

assumed in this thesis. The two-dimensional propagation would allow the
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model to horizontally exchange gravity wave energy (and momentum and

potential energy �ux as well). However, even with these complications we

would still not account for the meridional propagation of gravity waves that

contribute to the zonal drag at higher latitudes as was suggested by Sato et

al. (2012). For a fully three-dimensional and transient gravity wave scheme

based on the RTE, the complete horizontal refraction would need to be ac-

counted for. Such a method may be developed in the future based on the

experiences with a two-dimensional RTP discussed above.

We used the KMCM to develop and test the new parameterization. The

KMCM has an easily comprehensible model code in comparison to compre-

hensive community models. Nevertheless, the new RTP should also work

successfully when implemented into a comprehensive community model, like

the UA-ICON climate model. As discussed above, this would require to add

orographic gravity waves. The RTP is expected to accommodate also sec-

ondary gravity waves after some further development work. This all o�ers a

new pathway to substantially improved parameterizations of gravity waves in

middle atmosphere community climate models as compared to conventional

methods.
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Appendix A

Gaussian Variational Principle

In the following the steps between the equations∫∫
C
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∂tE0 + ż∂zE0 +

∂m∗C

C
E0∂tm∗ + ż
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C
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+
1

C
∂m (ṁC) E0 +

1

C
∂ωI (ω̇IC) E0 −

ω̇I

ωI
E0 +m2DE0 −

S
C

]
dmdωI = 0

(A1)
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∂m∗C
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(A2)

and the �nal prognostic equations

∂tE0 = a0∂zE0 + a1∂zm
∗E0 − aUE0
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are shown. We start with de�ning some integrals

IE01 =

∫ ∫
C dmdωI (A5)

IE02 =

∫ ∫
∂m∗C dmdωI (A6)

Im∗1 =

∫ ∫
∂m∗C dmdωI (A7)

Im∗2 =

∫ ∫
∂m∗C∂m∗C

C
dmdωI (A8)

and solve (A1) and (A2) for ∂tE0 and ∂tm
∗ respectively
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We can rewrite the group velocity and and refraction and frequency mod-

ulation terms with the ray equations from Section 2.1. The vertical group

velocity is

ż = − m

m′2ωI (A11)

with m′ = −
√

m2 + 1/(4H2). Because of the scale height H(z) the vertical

group velocity is altitude dependent, but this term negligible small.

The refraction term for the frequency ∼ ∂ωI (ω̇IB(ωI)) vanishes. With

the frequency spectrum from Section 3.2

B(ωI) = B0ω
−2
I (A12)

and the frequency modulation

ω̇I = −m
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ω2
I

N
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we can see that

∂ωI (ω̇IB(ωI)) = 0. (A14)

The wavenumber refraction term ∼ ∂m (ṁA(m,m∗)) becomes
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by applying the partial derivative of the Desaubies spectrum from Section 3.2
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and the ray equation
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Furthermore we get
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The resulting prognostic equations (A9) and (A10) are
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1
m

(
1− 3

(
m
m∗

)4)
1 +

(
m
m∗

)4 ωI

N
dmdωI · ∂zN

−
∫ ∫

(−CIm∗1 + ∂m∗CIE01)×

−×
1

4H2

(
1− 3

(
m
m∗

)4)
+ 2m2

(
1−

(
m
m∗

)4)
m′m

(
1 +

(
m
m∗

)4) ωI

N
dmdωI · ∂zU

−
∫ ∫

(−CIm∗1 + ∂m∗CIE01)
m

m′
ωI

N
dmdωI · ∂zU

−
∫ ∫

(−CIm∗1 + ∂m∗CIE01)m
2D dmdωI

+

∫ ∫
(−CIm∗1 + ∂m∗CIE01)

1

C
S dmdωI

1

E0

]
.

(A20)

We can rewrite (A19) and (A20) as

∂tE0 =
1

A1B2 −A2B1
[+ (A3B2 −B3A2) ∂zE0 +(A4B2 −B4A2) ∂zm

∗E0

− (A5B2 −B5A2) E0
∂zU

N
− (A6B2 −B6A2) E0

∂zU

N

+(A7B2 −B7A2) E0
∂zN

N

− (A8B2 −B8A2)DE0 +(A9B2 −B9A2)S]

(A21)
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and

∂tm
∗ =

1

A1B2 −A2B1

[
+(−A3B1 +B3A1)

∂zE0
E0

+(−A4B1 +B4A1) ∂zm
∗

− (−A5B1 +B5A1)
∂zU

N
− (−A6B1 +B6A1)

∂zU

N

+(−A7B1 +B7A1)
∂zN

N

− (−A8B1 +B8A1)D +(−A9B1 +B9A1)
S
E0

]
(A22)

with respect to the following de�nitions

A1 = IωI1

∫
A(m,m∗) dm (A23)

A2 = IωI1

∫
∂m∗A(m,m∗) dm (A24)

A3 = IωI2

∫
A(m,m∗)

m

m′2 dm (A25)

A4 = IωI2

∫
∂m∗A(m,m∗)

m

m′2 dm (A26)

A5 = IωI2

∫
A(m,m∗)

m

m′ dm (A27)

A6 = IωI2

∫
A(m,m∗)

1
4H2

(
1−3( m

m∗ )
4
)
+2m2

(
1−( m

m∗ )
4
)

m′m
(
1+( m

m∗ )
4
) dm (A28)

A7 = IωI2

∫
A(m,m∗)

1
m

(
1− 3

(
m
m∗

)4)
1 +

(
m
m∗

)4 dm (A29)

A8 = IωI1

∫
A(m,m∗)m2 dm (A30)

A9 = IωI1

∫
A(m,m∗

S) dm (A31)
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B1 = IωI1

∫
∂m∗A(m,m∗) dm (A32)

B2 = IωI1

∫
(∂m∗A(m,m∗))2

A(m,m∗)
dm (A33)

B3 = IωI2

∫
∂m∗A(m,m∗)

m

m′2 dm (A34)

B4 = IωI2

∫
(∂m∗A(m,m∗))2

A(m,m∗)

m

m′2 dm (A35)

B5 = IωI2

∫
∂m∗A(m,m∗)

m

m′ dm (A36)

B6 = IωI2

∫
∂m∗A(m,m∗)

1
4H2

(
1−3( m

m∗ )
4
)
+2m2

(
1−( m

m∗ )
4
)

m′m
(
1+( m

m∗ )
4
) dm (A37)

B7 = IωI2

∫
∂m∗A(m,m∗)

1
m

(
1− 3

(
m
m∗

)4)
1 +

(
m
m∗

)4 dm (A38)

B8 = IωI1

∫
∂m∗A(m,m∗)m2 dm (A39)

B9 = IωI1

∫
∂m∗A(m,m∗)

A(m,m∗)
A(m,m∗

S) dm (A40)

(A41)

and

IωI1 =

∫
B(ωI) dωI (A42)

IωI2 =

∫
B(ωI)ωI dωI . (A43)

With the substitutions

ai =
AiB2 −BiA2

A1B2 −A2B1
(A44)

bi =
−AiB1 +BiA1

A1B2 −A2B1
(A45)

we get

∂tE0 =+ a3∂zE0 + a4∂zm
∗E0 − a5E0

∂zU

N
− a6E0

∂zU

N

+ a7E0
∂zN

N
− a8DE0 + a9S

(A46)
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and

∂tm
∗ =+ b3

∂zE0
E0

+ b4∂zm
∗ − b5

∂zU

N

− b6
∂zU

N
+ b7

∂zN

N
− b8D + b9

S
E0

.

(A47)

After renaming the coe�cients and combining a5 and a6 (aU = a5 + a6),

and b5 and b6 (bU = b5 + b6) we arrived at the �nal expressions mentioned

in Section 3.3

∂tE0 =+ a0∂zE0 + a1∂zm
∗E0 − aUE0

∂zU

N

+ aNE0
∂zN

N
− aDDE0 + aSS

(A48)

and

∂tm
∗ = +b0

∂zE0
E0

+ b1∂zm
∗ − bU

∂zU

N
+ bN

∂zN

N
− bDD + bS

S
E0

. (A49)



Appendix B

Discretization of the e�ective

spectral area

To achieve the numerical solution we need to take several steps. The �rst step

is to �lter out every vertical wavenumber from the last source layer i which

would exceed the integration limits (3.57) and (3.58) of the wavenumber

integration (see Sec. 3.7) at the layer j. The remaining wavenumbers are

within

m1 ≤ mj ≤ m0. (B1)

Therefore we need to calculate the di�erence of U between the layers i and j

∆Uj = Uj − Ui. (B2)

Then we use equation (3.63)

mj,i = −

√√√√√N2
i

N2
j

m2
j +

1
4H2

j

1± ∆Uj

Nj

√
m2

j +
1

4H2
j

− 1

4H2
i

(B3)

to get (together with mj = m0) the wavenumbers mj,i,0 which will exactly

reach the limit m0 at layer j and for mj = m1 the wavenumber mj,i,1. The

110
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wavenumbers mj,i,0 and mj,i,1 can become positive or complex. Then they

are set to the values of the previous layer j − 1 (e.g., mj,i,1 = mj−1,i,1). For

the limit mj = m1 there is another case possible, where the frequencies ωb

and ωt are the same for wavenumbers These cut wavenumbermc is calculated

with

mc(i) =


−
√(

ωt
ωb

− 1
)2 N2

i
(∆Uj)2

− 1
4H2

i
, ∆Uj < 0

−
√(

ωb
ωt

− 1
)2 N2

i
(∆Uj)2

− 1
4H2

i
, ∆Uj > 0

. (B4)

If this cut wavenumber ful�ls mc(i) > mj,i,1, then

mj,i,1 = mc(i). (B5)

Now we need to make sure to not bring back wavenumbers, which are already

�ltered out in the previous layer j − 1

mj,i,0 =

 mj,i−1,0, mj,i,0 > mj,i−1,0

mj,i,0, mj,i,0 < mj,i−1,0

(B6)

and

mj,i,1 =

 mj,i−1,1, mj,i,1 < mj,i−1,1

mj,i,1, mj,i,1 > mj,i−1,1

. (B7)

A spectrum in the limits (mj,i,1,mj,i,0) starting at the layer i will not exceed

the general boundaries for the vertical wavenumber at the layer j. If the

source spectrum [m11,m00] (e.g.,see Eq. 4.21) is inside of [mj,i,1,mj,i,0] the

we get

mj,i,1 = m11 (B8)

mj,i,0 = m00 (B9)

A sketch of the di�erent wavenumber boundaries [mj,i,1,mj,i,0] for di�erent

layers j form a source layer i is shown in Figure B1.

The second step is to discretize the wavenumber spectrum as well as the
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m1 m0
m

i

j-1
j
j+1

Layer

mj, i, 0mj, i, 1

Figure B1: Sketch of the background dependency of the vertical
wavenumber limits. Only waves in the set of [mj,i,1,mj,i,0] can reach
the layer j from the source layer i without exceeding the general
boundaries at any layer between i and j.

frequency spectrum at layer i. The continuous wavenumber spectrum m =

[mj,i,1,mj,i,0] of layer j will be discretized in dependence of the characteristic

vertical wavenumber m∗
j . For k = [0, n− 1] ∈ N:

mj,k =


mj,i,0, k = 0

−

√
m∗(j)2 tan

[
− 1

n−2

(
tan−1

(
m2

j,i,0

m∗2
j

)
− tan−1

(
m2

j,i,1

m∗2
j

))
+ tan−1

(
m2

j,k−1

m∗2
j

)]
, k > 1

(B10)

with n nodes. This method leads to areas of the same size between two

nodes (see Fig. B2). We start from the uppermost source layer i with a

unique discretized wavenumber spectrum for each layer j. With that we

make sure, that we retain all nodes up to layer j and that we represent the

region of high energy density inside the spectrum around m∗
j properly.

For the frequency limits we need the upper limit ωT and the lower limit

ωB for spectrum at layer j. The frequency ωI(i) depends on the wavenumber

and frequency from the previous layer (see Eq. 3.62), so we have an upper

and lower frequency limit for each mj,k

ωt,j,k = ωt (B11)

ωb,j,k = ωb. (B12)
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mj, n mj, k + 1 mj, k mj, k 1 mj, 0
m

0

A(m
,m

*)

Ak Ak 1

Figure B2: Sketch of the discretized vertical wavenumber spectrum
in dependence of m∗

j

mj, i, 1 mj, i, 0
m

B

T

I

mj, i, 1 mj, i, 0
m

B

T

Figure B3: Left: the discretized spectral area at layer i; right: the
discretize spectral area at layer j, in light gray the actual spectral
area

The result is a spectrum, which is discretized into n−1 rectangles (see Fig. B3).

Third:

We calculate the change of mj,k, ωb,j,k, and ωt,j,k from layer j to layer j +1:

We use the equations (3.62) and (3.63)

ωb/t,j+1,k = ωb/t,j,k

(
1∓ Uj+1 − Uj

Nj

√
m2

j,k +
1

4H2
j

)
(B13)

mj+1,k = −

√√√√√√N2
j+1

N2
j

m2
j,k +

1
4H2

j(
1∓ Uj+1−Uj

Nj

√
m2

j,k +
1

4H2
j

)2 − 1

4H2
j+1

(B14)
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with the additional conditions

ωB ≤ ωb,j,k ≤ ωT (B15)

ωB ≤ ωt,j,k ≤ ωT (B16)

to �lter out frequencies which are re�ected (ωI > ωT ) or are sttenuated due

to a critical layer (ωI < ωB).

Final step:

We solve the double integrals (they have an analytic solution)

Ik =

ωt∫
ωb

mk−1∫
mk

f(m,m∗, ωI) dmdωI (B17)

with

ωb =

 ωb(k − 1), ωb(k − 1) > ωb(k)

ωb(k), else
(B18)

and

ωt =

 ωt(k − 1), ωt(k − 1) < ωt(k)

ωt(k), else
. (B19)

These conditions make sure that we stay within the spectral limits (see right

panel of Fig. B3). The solution for the integral over the remaining spectrum

is

I =
n−1∑
k=1

Ik. (B20)



Appendix C

Derivation of the �uxes, and

the wave momentum density

In the following, we present the derivations of the vertical momentum �ux

ρr⟨u′w′⟩, the wave momentum density ⟨ρ′u′⟩, and the vertical pressure �ux

ρr⟨p′w′⟩:

ρr⟨u′w′⟩ = ρr⟨ℜ(u∗)ℜ(w∗)⟩

(⟨ℜ(X∗
1 )ℜ(X∗

2 )⟩ =
1

4
⟨X∗

1X
∗�
2 +X∗�

1 X∗
2 ⟩)

=
1

4
ρr⟨u∗w∗� + u∗�w∗⟩

(eq. 2.18)

=
1

2
ρr⟨

ωI

N

m

m′u
∗�u∗⟩

(
1

2
ρr⟨f(m,ωI)u

∗u∗�⟩) =
∫∫

f(m,ωI)E(z, t,m, ωI) dmdωI

=

∫∫
ωI

N

m

m′E(z, t,m, ωI) dmdωI

(C1)
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⟨ρ′u′⟩ = ⟨ℜ(ρ∗)ℜ(u∗)⟩

(⟨ℜ(X∗
1 )ℜ(X∗

2 )⟩ =
1

4
⟨X∗

1X
∗�
2 +X∗�

1 X∗
2 ⟩)

=
1

4
⟨ρ∗u∗� + ρ∗�u∗⟩

(eq. 2.20)

=
1

2

ρr
g
⟨N
m′

1

2H
u∗�u∗⟩

(
1

2
ρr⟨f(m,ωI)u

∗u∗�⟩) =
∫∫

f(m,ωI)E(z, t,m, ωI) dmdωI

=
1

g

∫∫
N

m′
1

2H
E(z, t,m, ωI) dmdωI

(C2)

⟨p′w′⟩ = ⟨ℜ(p∗)ℜ(w∗)⟩

(⟨ℜ(X∗
1 )ℜ(X∗

2 )⟩ =
1

4
⟨X∗

1X
∗�
2 +X∗�

1 X∗
2 ⟩)

=
1

4
⟨p∗w∗� + p∗�w∗⟩

(eqs. 2.18 and 2.19)

= −1

2
ρr⟨

ωIm

m′2 u∗�u∗⟩

(
1

2
ρr⟨f(m,ωI)u

∗u∗�⟩) =
∫∫

f(m,ωI)E(z, t,m, ωI) dmdωI

= −
∫∫

ωIm

m′2 E(z, t,m, ωI) dmdωI

(C3)



Appendix D

Source functions

In the following, the source functions for the generation of non-orographic

gravity waves applied in the GCM simulations presented in Chapter V are

introduced. The following �eld variables (and if needed their derivatives)

are assumed to be known (and in practice are taken from the GCM): the

temperature T , the horizontal winds U and V , the pressure p and the surface

pressure p00, the Coriolis frequency f , the geopotential Φ, and the moist-

convective heating Qc.

Constant background generation

The constant background generation source function describes a weak gen-

eration of gravity waves of unspeci�ed origin

Sconst(z, t, φ) =

 SconstS0 sin(ϕ)ϕ, 120 hPa < p < 950 hPa

0, else
(D1)
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with the parameters

S0 = 4× 10−1 kg

ms2
(D2)

Sconst = 1× 1

86400
s−1. (D3)

The energy parameter S0 de�nes how much gravity wave energy is generated

during the time 1/Sconst where Sconst is a generation rate. With the current

setting, a gravity wave energy density of 4 × 10−1 kg/(ms2) is generated

within one day.

Generation by convection

To construct a source function for the generation of gravity waves by moist

convection we apply the method of Mirzaei et al. (2014). The usual approach

is that latent heating acts as a forcing function (Alexander et al. 2004). The

source function for the generation of gravity waves by convection is

Sconv(z, t, φ) =

 ρSconvQ
2
c

(
1

∂zΘ0

Lh
Lz

)2
, Qc > Qth

0, else
(D4)

at altitudes corresponding to 120 hPa < p < 950 hPa with the threshold

set to Qth = 5 × 10−5K/s or in other units Qth = 2 × 10−1K/h. We

use Lh/Lz = 100 as suggested by Mirzaei et al. (2014) and Amiramjadi et

al. (2020) for the aspect ratio of the convective zone. The vertical potential

temperature gradient is set to ∂zΘ0 = 3.1× 10−3K/m. The generation rate

is assumed to be

Sconv = 4× 10−2 1

86400
s−1. (D5)

Note that convective cells in the real atmosphere are on a horizontal scale

of a few kilometers which even high resolution models can not resolve. The
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convective heating Qc is a parameter averaged on the spatial and tempo-

ral scale of the GCM. The parameter describes the convective activity in a

certain region.

Generation by fronts

To parameterize the generation of gravity waves by fronts we apply a source

function that is a combination of the generation functions from Charron and

Manzini (2002) and Mirzaei et al. (2014). Isothermal compression by wind

deformation and convergence lead to frontogenesis, where large horizontal

temperature gradients generate gravity waves. Since low resolution models

usually do not resolve fronts, the frontogenesis function (Miller 1948; Hoskins

1982) is applied. This function indicates when fronts would occur in the case

of su�ciently high resolution (Charron and Manzini 2002). The frontogenesis

function is (e.g., Mirzaei et al. 2014)

Ff = −

(
(∂xΘ)2 + (∂yΘ)2

)
(∂xU + ∂yV )

2
√
(∂xΘ)2 + (∂yΘ)2

−

(
(∂xΘ)2 − (∂yΘ)2

)
(∂xU − ∂yV )

2
√
(∂xΘ)2 + (∂yΘ)2

− ∂xΘ∂yΘ(∂yU + ∂xV )√
(∂xΘ)2 + (∂yΘ)2

(D6)

with the potential temperature

Θ = T

(
p00
p

)R/cp

, (D7)

where p00 is the mean surface pressure at sea level. Gravity waves are gener-

ated in the cross-front directions φfront and φfront+π (Charron and Manzini
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2002). The azimuth angle is

φfront = tan−1

(
cos(ϕ)

∂yΘ

∂xΘ

)
. (D8)

The source functions for waves in zonal directions are

Sfront(z, t, φ1,2) =

 SfrontρF
2
f cos2(φfront)

(
gLz

Θ0f2

)2
, Ff > Fth

0, else
(D9)

and for waves in meridional directions

Sfront(z, t, φ3,4) =

 SfrontρF
2
f sin2(φfront)

(
gLz

Θ0f2

)2
, Ff > Fth

0, else

(D10)

with the threshold set to Fth = 2.7 × 10−10K/(ms) or in other units Fth =

1 × 10−1K/(100 kmh). The azimuths of the gravity waves are indicated

by φi with φ1 for eastward, φ2 for westward, φ3 for northward, and φ4 for

southward direction. The generation rate is set to

Sfront = 2× 10−1 1

86400
s−1 (D11)

Furthermore, we use the reference potential temperature Θ0 = 300K and

the vertical scale of the fronts Lz = 2000m from Mirzaei et al. (2014).

Generation by jets

To construct a source function for jet generated gravity waves we apply the

methods of Zülicke and Peters (2008) and Mirzaei et al. (2014). Important

for jet-generated gravity waves are the exit regions of jet streaks (Koch and

Dorian 1988). The Lagrangian wind speed deceleration

fuc = f
UagVg − UgVag√

U2
g + V 2

g

, (D12)
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with the geostrophic winds

Ug = − ∂yΦ

f
(D13)

Vg =
∂xΦ

f
, (D14)

where Φ is the geopotential, and the ageostrophic winds

Uag = U − Ug (D15)

Vag = V − Vg, (D16)

are used to diagnose �ow imbalances in jet exit regions (Zülicke and Peters

2008). The energy of the generated gravity waves is proportional to the

squared cross-stream ageostrophic wind uc if a certain wind threshold uth is

exceeded (Mirzaei et al. 2014). The source function for jet generated gravity

is

Sjet(z, t, φ) =

 Sjetρu
2
c
cos2(φ)U2+sin2(φ)V 2

U2+V 2 , uc > uth

0, else
(D17)

at altitudes corresponding to 120 hPa < p < 950 hPa and with the threshold

set to uth = 3.5m/s. The additional free parameter (beside the threshold)

is the generation rate which is set to

Sjet = 16× 10−2 1

86400
s−1. (D18)
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