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Summary 

Peatlands are highly valuable terrestrial wetlands characterized by their significant organic mat-

ter content. Despite covering only 3% of the Earth’s land surface, peatlands astonishingly store 

approximately one-third of the global soil carbon. These ecosystems provide essential benefits 

such as carbon sequestration and water regulation and serve as habitats for unique flora and 

fauna. However, human activities, such as drainage, extraction, and land use, have led to peat-

land degradation and carbon mineralization, significantly enhancing climate change. Conse-

quently, restoring peatland ecological functions has become a top priority at both governmental 

and scientific levels. Peat soils are anisotropic and heterogeneous porous media. Understanding 

the physical and hydraulic characteristics of peat and their anisotropic and heterogeneous na-

ture at various spatial scales (cm to km) is crucial, as it not only helps reveal the impacts of 

peatland degradation and rewetting but also guides site-specific management effectively. The 

thesis consists of three experimental investigations, involving different peat soils sampled from 

two inland drained fens, an inland restored (previously drained) fen, an inland pristine bog, 

and a recently rewetted coastal fen in the Federal State of Mecklenburg-Western Pomerania in 

Germany. The specific objectives are as follows: 1) to assess how peatland degradation affects 

spatial heterogeneity of hydro-physical properties in different inland peatlands, 2) to investigate 

the influence of soil anisotropy on water movement and solute transport in a drained and a 

restored peatland (with the same degradation stage), and 3) to explore the potential impacts of 

microtopography and salinity on a rewetted coastal peatland and its adjacent environment. 

Direct measurements of soil properties of peat (e.g., saturated hydraulic conductivity, Ks; soil 

water retention curves) are time-consuming and costly. In this thesis, new pedotransfer func-

tions (PTFs) have been developed to estimate the soil hydro-physical properties of intact and 

degraded peat soils from easily available soil parameters. Macroporosity was highly correlated 

with Ks and van Genuchten (VG) model parameters derived from the soil water retention 

curves, indicating that the inclusion of macroporosity in PTFs significantly improves the pre-

dictions of VG model parameter values, especially for degraded peat soils. Additionally, site het-

erogeneity and small-scale spatial variability of soil properties were analyzed by geostatistical 

models. The hydro-physical properties of peat were weakly to strongly auto-correlated accord-

ing to the nugget/sill ratio. A strong spatial dependence of the soil organic matter (SOM) content 

was found only in highly degraded peat. The results suggested that the spatial distribution pat-

tern of soil properties depended on the considered properties and land management; from this 

we conclude that accurate spatial information should be considered in peatland restoration 

practices. 
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The “hotspot” of biogeochemistry cycles is significantly influenced by the anisotropic and het-

erogeneous properties of peat soils. In both inland drained and restored fens, the difference in 

Ks of peat soil samples taken in two directions confirmed the influence of anisotropy on water 

movement in degraded peat soils (vertical Ksv > horizontal Ksh). The mobile-immobile model of 

solute transport successfully described the experimental breakthrough curve. Pronounced pref-

erential flow occurred in the vertical direction with a higher pore water velocity of the mobile 

zone (vm). The 5% arrival time of bromide mass, as a proxy for the strength of preferential flow, 

was related to Ks and solute transport model parameters and was also orientation-dependent 

and associated with land management, which provided the first evidence of the anisotropic na-

ture of solute transport in peat soils. Additionally, only one vertical sample collected from the 

drained site showed very high phosphate release (~50 mg L–1), which might be related to phos-

phorus accumulation in preferential flow pathways. The results implied that the anisotropic 

structure of peat could facilitate the phosphate transport from drained peatlands under agricul-

tural use to the surrounding environment along the direction of preferential flow. Nevertheless, 

phosphate release was observed from drained peat only, suggesting that the impact of land use 

on phosphate release was more significant than soil anisotropy. 

At a landscape scale, it was found that the heterogeneous properties of peat soils were largely 

impacted by microtopography. In a coastal peatland located on the Baltic Sea coast, SOM content 

and carbon:nitrogen (C:N) ratios were negatively correlated with sampling elevation. These 

three parameters had varying degrees of spatial dependence, among which SOM and C:N of 

topsoil were strongly spatially dependent. According to the soil samples taken at different ele-

vations, nutrient leaching experiments using alternating freshwater and brackish water con-

firmed that low elevation samples released more dissolved organic carbon (DOC) and ammo-

nium (NH4
+) than high elevation samples. This indicated that the low-lying areas of the study 

site were hotspots for compound cycling and release under a rewetting scenario. Moreover, the 

leaching of DOC and NH4
+ responded differently to brackish water and freshwater. Increased 

DOC concentrations were observed when freshwater was reflushed, while transiently increased 

NH4
+ concentrations occurred when brackish water intruded. The results indicated that heavy 

precipitation might lead to the export of DOC to the Baltic Sea, while future sea level rise might 

result in the export of NH4
+ to adjacent water bodies, particularly from low-lying areas. These 

processes could have significant impacts on marine ecosystems. 

This cumulative dissertation underlines the intricate interplay between soil hydro-physical and 

chemical properties and the surrounding environment. A comprehensive understanding of their 

dynamics is required to manage peatlands effectively. Ultimately, these insights contribute to 

the foundational knowledge base for conservation, sustainable use, and restoration of peatland 

ecosystems.
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Zusammenfassung 

Moore sind wertvolle terrestrische Feuchtgebiete, die sich durch ihren hohen Gehalt an organi-

scher Substanz auszeichnen. Obwohl sie nur 3% der Erdoberfläche bedecken, speichern Moore 

erstaunlicherweise ein Drittel des globalen Bodenkohlenstoffs. Diese Ökosysteme erbringen we-

sentliche Leistungen wie die Kohlenstoffsequestrierung und die Wasserregulierung und dienen 

als Lebensraum für eine einzigartige Flora und Fauna. Allerdings haben menschliche Aktivitäten 

wie Entwässerung, Abtorfung und Landnutzung zur Degradation von Mooren geführt, die mit 

der Kohlenstoffmineralierung einhergeht und den Klimawandel verstärkt. Im Ergebnis hat die 

Wiederherstellung der ökologischen Funktionen der Moore oberste Priorität sowohl auf Regie-

rungs- als auch auf wissenschaftlicher Ebene erlangt. Torfböden sind anisotrope und hetero-

gene poröse Medien. Das Verständnis der physikalischen und hydraulischen Eigenschaften von 

Torfböden und ihrer anisotropen und heterogenen Eigenschaften auf verschiedenen räumli-

chen Skala (cm bis km) ist entscheidend, da es nicht nur hilft, die Auswirkungen der Degradie-

rung und Wiedervernässung von Mooren aufzudecken, sondern auch eine effektive standort-

spezifische Bewirtschaftung ermöglicht. Die Dissertation besteht aus drei experimentellen Un-

tersuchungen, die verschiedene Torfböden umfassen, die aus zwei entwässerten Niedermooren, 

einem restaurierten (zuvor entwässerten) Niedermoor, einem unberührten Hochmoor und ei-

nem kürzlich wiedervernässten Küstenmoor im Bundesland Mecklenburg-Vorpommern in 

Deutschland entnommen wurden. Die spezifischen Ziele sind wie folgt: 1) den Einfluss der Bo-

denanisotropie auf den Stofftransport in einem entwässerten und einem restaurierten Nieder-

moor (mit dem gleichen Degradationsgrad) zu untersuchen, 2) die Beeinflussung der Degradie-

rung des Moores auf die räumliche Heterogenität der hydro-physikalischen Eigenschaften in 

verschiedenen Niedermooren zu bewerten, und 3) die potenziellen Auswirkungen von Mikro-

topographie und Salinität auf ein wiedervernässtes Küstenmoor und seine angrenzende Umge-

bung zu erforschen. 

Direkte Messungen von Bodeneigenschaften des Torfs (z.B. gesättigte hydraulische Leitfähig-

keit, Ks; Bodenwasserrtentionskurven) sind zeitaufwändig und kostenintensiv. In dieser Arbeit 

wurden neue Pedotransfer-Funktionen (PTFs) entwickelt, um die bodenphysikalische Eigen-

schaften intakter und degradierter Torfböden anhand leicht verfügbarer Bodenparameter ab-

zuschätzen. Die Makroporosität korrelierte stark mit der Ks und den aus den Bodenwasserr-

tentionskurven abgeleiteten Parametern des van Genuchten Modellparametern, was darauf 

hindeutet, dass die Einbeziehung der Makroporosität in PTFs die Vorhersagen von (Modell-) 

Parameterwerten signifikant verbessert, insbesondere für degradierte Torfböden. Zusätzlich 

wurde die Standortheterogenität und die räumliche Variabilität der Bodeneigenschaften mit-

hilfe geostatistischer Modelle analysiert. Die hydro-physikalischen Eigenschaften der Torfböden 
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waren schwach bis stark autokorreliert gemäß des Nugget/Sill-Verhältnisses. Eine starke räum-

liche Abhängigkeit des Gehalts an organischer Bodensubstanz wurde nur in stark degradiertem 

Torf festgestellt. Dies deutet darauf hin, dass das räumliche Verteilungsmuster der Bodeneigen-

schaften von den betrachteten Eigenschaften und der Landbewirtschaftung abhängt, was wie-

derum für Moorrenaturierungsmaßnahmen von Bedeutung sein kann.  

Der „Hotspot“ des biogeochemischen Kreislaufs wird maßgeblich von den anisotropen und he-

terogenen Eigenschaften der Torfböden beeinflusst. In sowohl drainierten als auch renaturier-

ten Mooren bestätigte der Unterschied in der Ks von Torfbodenproben, die aus zwei Richtungen 

entnommen wurden (vertikal Ksv > horizontal Ksh), den Einfluss der Anisotropie auf die Was-

serbewegung in degradierten Torfböden. Das mobile-immobile Modell des Stofftransports be-

schrieb erfolgreich die experimentellen Durchbruchskurven. In der vertikalen Richtung trat ein 

deutlicher präferenzieller Fluss mit einer höheren Porenwassergeschwindigkeit der mobilen 

Zone (vm) auf. Die Ankunftszeit von 5 % der Bromidmasse, als Proxy für die Stärke des präfe-

renziellen Stofftransports, war mit Ks und den Modellparametern für den Stofftransport ver-

knüpft und war auch richtungsabhängig und mit der Landbewirtschaftung assoziiert, was den 

ersten Nachweis für die anisotrope Natur des Stofftransports in Torfböden lieferte. Nur eine, in 

vertikaler Richtung entnommene Probe, zeigte eine sehr hohe Phosphatfreisetzung (~50 mg L–

1), die möglicherweise mit der Phosphorakkumulation in präferenziellen Fließwegen zusam-

menhing. Dies deutete darauf hin, dass die anisotrope Struktur des Torfes den Transport von 

Phosphat aus landwirtschaftlich genutzten Torfböden in die Umgebung entlang der Richtung 

mit stärkerem präferenziellen Fluss erleichtern könnte. Die Phosphatfreisetzung wurde nur bei 

drainiertem Torf beobachtet, also mit der Landnutzung des Moors einhergeht. 

Auf landschaftlicher Skala wurde festgestellt, dass die heterogenen Eigenschaften von Torfbö-

den in hohem Maße von der Mikrotopographie beeinflusst werden. In einem Küstenmoor an 

der Ostseeküste waren der Gehalt an organischer Bodensubstanz (SOM) und das Kohlenstoff-

Stickstoff-Verhältnis (C:N-Verhältnis) negativ mit der geodätischen Höhe der Probenentnahme 

korreliert. Diese drei Parameter hatten unterschiedliche Grade der räumlichen Abhängigkeit, 

wobei SOM und C:N des Oberbodens stark autokorreliert waren. Unterschungen zur Nährstoff-

auswaschung mit abwechselndem Süß- und Brackwasser belegten, dass Proben aus niedrigeren 

Höhen mehr gelösten organischen Kohlenstoff (DOC) und Ammonium (NH4
+) freisetzten als 

Proben aus höheren Lagen. Dies deutet darauf hin, dass die tiefer gelegenen Gebiete der Unter-

suchungsfläche Hotspots für die Freisetzung von gelösten Verbindungen waren, welches bei 

Wiedervernässungsmaßnahmen berücksichtigt werden sollte. Außerdem reagierte die Freiset-

zung von DOC und NH4
+ unterschiedlich auf Süß- und Brackwasser. Bei erneuter Spülung mit 

Süßwasser wurden erhöhte DOC-Konzentrationen beobachtet, während vorübergehend er-

höhte NH4
+-Konzentrationen auftraten, wenn Brackwasser in die Bodenroben eindrang. Dies 
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lässt vermuten, dass starke Niederschläge zu einem Export von DOC in die Ostsee führen könn-

ten, während der künftige Anstieg des Meeresspiegels einem Export von NH4
+ in Küstengewäs-

ser als Folge haben könnte. Die untersuchten Prozesse können erhebliche Auswirkungen auf 

angrenzende marine Ökosysteme haben. 

Diese kumulative Dissertation betont das komplexe Zusammenspiel zwischen hydro-physikali-

schen und chemischen Bodeneigenschaften und der umgebenden Umwelt, und ein umfassen-

des Verständnis ihrer Dynamik ist erforderlich, um Moore effektiv zu bewirtschaften. Letztend-

lich tragen diese Erkenntnisse zur grundlegenden, aber breiten Wissensbasis für die Konservie-

rung, nachhaltige Nutzung und Wiederherstellung von Moorökosystemen bei. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ZUSAMMENFASSUNG 

XXII 

 

 

 

 

 



CHAPTER 1. GENERAL INTRODUCTION 

1 

 

General Introduction 

Peatland, a distinctive type of wetland, is one of the most valuable natural ecosystems in the 

world, characterized by the accumulation of organic matter that forms peat layers (Charman, 

2009). Peatlands cover only 3% of the global land area, and approximately 80% of them are 

mainly distributed in the Northern Hemisphere’s temperate regions and tropical parts of South 

Asia (Joosten and Clarke, 2002). A wide range of ecological, economic, and social benefits can 

be provided by peatlands, including water filtration and regulation, carbon sequestration and 

storage, habitat for various plant and animal species, growing media, and soil improver (Clarke 

and Rieley, 2019; Harenda et al., 2018). Nevertheless, long-term environmental changes (e.g., 

drainage for agriculture, forest clearance, and peat extraction) and short-term ecological dis-

turbances (e.g., flooding and fire) have historically posed threats to peatlands, leading to their 

degradation and carbon loss. Therefore, the ecological services of peatlands, especially their role 

in mitigating climate change, have attracted increasing attention in this century. Internationally, 

“2013 Supplement to the 2006 IPCC Guidelines” has also offered fresh advice and focused on 

estimating and reporting greenhouse gas emissions and the emission factors from soils in var-

ious wetland types (IPCC, 2014).  

The north-easternmost Federal State in Germany, Mecklenburg-Western Pomerania (MV), bor-

ders the Baltic Sea and has approximately 287,900 hectares of peatlands (Greifswald Moor Cen-

trum, 2019), including coastal peatlands, inland peatland/terrestrialisation mire, transitional 

peatlands, and raised bog, etc., which are classified by geographic locations and hydrogenetic 

peatland/mire types (HGMTs; Succow and Joosten, 2001; Figure 1.1). Over the period 1960 to 

1990, however, most of the peatlands in MV were subjected to drainage for agricultural use, 

leading to the degradation and mineralization of peat. Greifswald Moor Centrum has reported 

that peatlands in MV, which cover about 12.5% of the State’s land, could emit 6-million-ton 

carbon dioxide (CO2) equivalents annually (Hirschelmann et al., 2020). These reports have trig-

gered a growing number of conceptual, operational, and scientific research initiatives in recent 

years, drawing increased attention to peatlands. The restoration of peatlands, which has been 

advocated by peatland scientists led by Hans Joosten, has also received attention from various 

sectors of society (Joosten, 2009). However, developing effective management strategies for 
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peatland ecosystems, both at a global and local scale, is a challenging task due to the diverse 

degrees of site heterogeneity and spatial variability exhibited by environmental variables. 

 
Figure 1.1 The distribution of different peatland types in the Federal State of Mecklenburg-Western Pomerania 

(MV), Germany. In the legend, each type is labeled in German (above) and English (below). (data from LUNG M-

V: https://www.umweltkarten.mv-regierung.de).  

 

This thesis is the terrestrial study part (H2) of the interdisciplinary research project “Bal-

ticTRANSCOAST”, which is oriented towards peatland hydrology, biogeochemistry, and biology 

to focus on the water and matter fluxes on the terrestrial-marine interface along the German 

Baltic Sea coast. This thesis aims to investigate the soil physical and hydraulic properties of 

inland and coastal peatlands in MV, with a focus on the anisotropic and heterogenous nature of 

soil characteristics in peatlands. The findings of this thesis can contribute to developing site-

specific solutions for peatland management and conservation. 

1.1 Wetland and Peatland 

1.1.1 Definition and classification of wetlands and peatlands 

Wetlands, along with oceans and forests, are one of the Earth’s three primary ecosystems, each 

of which is a valuable natural resource and an essential ecological foundation (Whittaker and 

Likens, 1973). As one of the largest carbon reservoirs in the world, wetlands occupy only 5 ~ 

8% of the Earth’s surface, but they store 20 ~ 30% of the carbon in terrestrial ecosystems (Lal 

et al., 2018; Mitsch and Gosselink, 2007). A common feature of all wetlands is that the water 

table (the groundwater level) is relatively close to the ground’s surface, or the surface is covered 

by shallow water for at least part of the year. The fundamental characteristics of wetlands are 
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determined by a combination of factors such as soil type, the salinity of water bodies, and the 

flora and fauna that inhabit the area.  

In the past, agreeing on a single and commonly used wetland definition has proved challenging 

due to the heterogeneity of wetland ecosystems at different scales. Over the years, scientists 

have used various approaches to inventory and classify wetlands and have reached some ac-

ceptable agreements on the definition and classification of wetlands at the national or interna-

tional level. For instance, Cowardin et al. (1979) established one of the most universally used 

wetland categorization systems, detailed in “Classification of Wetlands and Deepwater Habitats 

of the United States”. The five principal wetland types in Cowardin’s system are marine, tidal, 

lacustrine, palustrine, and riverine wetlands, which are classified based on their location in the 

terrain, hydrological regime, and vegetation. Internationally, the most broadly accepted defini-

tion and classification of the wetland is the one provided by the “Convention’s List of Wetlands 

of International Importance” that wetlands can be categorized as marine/coastal wetlands, such 

as mangroves, seagrass formations, salt marshes, etc.; inland wetlands, such as lakes/rivers, 

marshes, peatlands, etc.; and artificial wetlands, such as reservoirs, wastewater treatment 

ponds, etc. (Ramsar, 1971). The global review article by Scott and Jones (1995) highly com-

mended Ramsar’s definition and classification of wetlands. It advocates that more specific re-

gional and national wetland classifications should be compatible with the Ramsar hierarchy. 

Figure 1.2 outlines the main wetland types, including categories and definitions (Adam, 2016; 

Alongi, 2016; Craft, 2022; Joosten et al., 2017; Lindsay, 2018; Parish et al., 2008; Ramsar, 1971; 

Short et al., 2007; Vitt, 2013). 

Peatland systems (mires and peatlands) are distinguished from other wetland types by their net 

organic matter accumulation (peat) through partially decomposed plant residues in humid an-

aerobic environments and microbial action over prolonged periods (IPS, n.d.). However, differ-

ent countries and organizations may have different criteria for defining “peatland”, such as the 

minimum thickness, the organic matter content, and the origin of peat (Craft, 2022). For in-

stance, peat soils are categorized in organic soils (Histosols) and are defined by International 

Peat Society (IPS) as “sedentarily accumulated material consisting of at least 30% (dry mass) of 

dead organic material” with a minimum thickness of 30 cm (IPS, n.d.; Joosten et al., 2017; 

Joosten and Clarke, 2002). However, Histosols are defined by the United States Department of 

Agriculture as having a minimum organic carbon content of 12% and thickness of 40 cm, while 

(undrained) organic soils are, in turn, classified as “hydric soils” (i.e., wetland soils) (USDA, 

1999; USDA and NRCS, 2003). 
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Figure 1.2 The main types of wetlands. (adapted from Joosten et al., 2017; references: Adam, 2016; Alongi, 2016; Craft, 2022; Lindsay, 2018; Parish et al., 2008; Ramsar, 1971; Short et 

al., 2007; Vitt, 2013).  
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Peatland terminology is complex and variable, with different terms starting with “T”, “P”, “M”, 

and “S” used across languages and disciplines, such as “Torf”, “peat”, “peatland” “mire”, 

“Moor”, and “swamp” (Figure 1.3). “Peatlands” and “mires” are sometimes used synony-

mously, but they also have some distinctions (Figure 1.2). The former is a more general concept 

referring to the areas where peat has accumulated with greater than a certain thickness or or-

ganic matter content (e.g., Joosten et al., 2017), while the latter is a more specific term that refers 

to wetland ecosystems, typically dominated by living peat-forming plants (e.g., Sphagnum 

mosses; Parish et al., 2008). 

Peatlands can be classified according to various criteria. Lindsay (2018) provided a detailed 

overview based on existing literature and summarized the main classification systems. These 

include: 1) classification of water source, which distinguishes minerotrophic peatland (fens) 

from ombrotrophic mires (bogs), 2) ecosystem classification approaches, which rely on vegeta-

tion classification or hydromorphological classification (including hydrogenetic typology), and 

3) hierarchical classification, which encompasses six spatial scales: vegetation stand, nanotope, 

microtope, mesotope, macrotope, and supertope. The most common peatland classification is 

based on the water source that influences the water and nutrient chemistry of the peat system 

(Craft, 2022; Joosten and Clarke, 2002; Vitt, 2013). In Germany, this approach to differentiate 

peatland types can date back to Dau (1823) (Du Rietz, 1954). Subsequently, Niedermoor (fen), 

Hochmoor (raised bog), and a mixed type between the two, i.e., Übergangsmoor, were identified 

by Weber (1907) as the three main peatland types in northern Germany. In recent years, Joosten 

et al. (2017) further detailed the various English terms (e.g., mire, marsh, swamp, fen, and bog) 

and the corresponding characteristics of European mires and peatlands. Among these terms, 

bogs refer to the peatlands that depend solely on precipitation for water supply and have low 

nutrient availability and acidity, while fens are influenced by surface water and groundwater, 

which are richer in nutrients and have higher pH, productivity, and biodiversity compared to 

bogs (Craft, 2022; Joosten et al., 2017; Vitt, 2013). 

Peatland science has a long tradition of research that spans across various disciplines and re-

gions (Figure 1.3). The earliest monographs on peat appeared in Europe as early as the middle 

of the 17th century (Phragmites peat, n.d.; Schoock, 1658). Over the next two centuries, peat 

formation and origin were gradually studied by scientists (Degner, 1729; Phragmites peat, n.d.; 

Rennie, 1810). During this period, peat soil was widely used as fuel for heating and biomass 

energy. Since then, numerous scientists, mainly in Europe and North America, began to study 

peatlands in more detail as part of their focus on earth sciences (e.g., Dau, 1823). Meanwhile, 

intensive peatland drainage started for agriculture (Succow and Joosten, 2001). From the 20th 
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Figure 1.3 History of peatland study. 
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century onwards, international wetland and peatland organizations have also played an essen-

tial role in scientific research and communication. With the signing of the “Ramsar Convention” 

in 1971 and the explicit acknowledgement to peatlands in 1996, more research has been devoted 

to the conservation and sustainable use of wetlands and peatlands. Since this century, peatlands 

have been recognized as important factors in climate change mitigation, and peatland scientists 

have advocated for their restoration and rewetting as part of the “Kyoto Protocol” (Joosten, 

2009; Tanneberger et al., 2011). It is, therefore, essential to understand the extent to which 

peatlands have been historically affected by anthropogenic activities to assess the success of 

restoration effectively and efficiently (Schumann and Joosten, 2008). 

1.1.2 Ecological importance of peatlands and peatland degradation 

Peatlands are exceptional habitats, home to a wide range of animal and plant species, and pro-

vide outstanding natural beauty. The naturally accumulated organic layers and incompletely 

decomposed dead plant material of peatlands make them important carbon sinks (Joosten and 

Clarke, 2002; Sjörs, 1980). One-third of the global soil carbon is stored in peatlands; thus, pro-

tecting peatlands through conservation, rewetting, and sustainable use is of worldwide rele-

vance for the ongoing climate change mitigation (Harenda et al., 2018; Joosten et al., 2016; 

Tanneberger et al., 2011). Regarding greenhouse gas emissions, northern peatlands are a dou-

ble-edged sword, i.e., they sequester CO2 but emit methane (CH4), although methane emissions 

and carbon sequestration are currently likely to be negative (net cooling; Frolking et al., 2006). 

Pristine peatlands can also help regulate the water balance of the landscape. Lennartz et al. 

(2021) reported how connected peatlands are involved in the water cycle by storing and cleaning 

water, buffering rainfall, and regulating water quality. They also described how the connection 

between lowland peatlands and upland mineral soils is influenced by the hydraulic conductivity 

of the soils, which determines the water and solute movement and the peatland functions. As 

such, peatlands can act as filters to prevent eutrophication by retaining and removing com-

pounds, diminishing harmful effects on adjacent ecosystems (Parish et al., 2008). Research into 

the buffering function of peatlands has mainly targeted the reduction of sediment and nitro-

gen/phosphorus loads in forest peatlands (Nieminen et al., 2005; Väänänen et al., 2008; Vikman 

et al., 2010). Compared to bogs, fens play a more prominent role in safeguarding water quality 

due to higher nutrient and solute inputs from lateral inflow and surrounding sources. They can 

actively mitigate the downstream water quality by means of denitrification, nutrient assimila-

tion, or sediment trapping, particularly in the presence of nutrient-enriched agricultural runoff 

(Price et al., 2016).  

Peatlands have been increasingly recognized as globally valuable ecosystems. However, peat-

lands in northern Central Europe have been severely disturbed by anthropogenic activities since 
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the last century, as the ecological functions of peatlands have been overlooked in favor of their 

economic benefits (Bragg and Lindsay, 2003). Most peatlands have been artificially drained for 

agriculture, forestry, and extraction for fuel. Overgrazing has also led to heavy trampling of 

peatlands by livestock. Apart from the direct losses and damages, the stable ecosystem, natural 

hydrological, and biogeochemical processes of the peatlands were disrupted by the low water 

table due to the drainage of the peatland. In addition, pollution from other sources, such as 

agricultural runoff and industrial discharges, has further contributed to peatland degradation. 

Joosten et al. (2017) investigated that over 40% of European peatlands have been artificially 

altered by intensive agricultural management (also see Figure1.4). For instance, in the United 

Kingdom (geographically belongs to Europe), historical drainage and subsequent management 

strategies have caused subsidence, degradation, and loss of peatland areas, while peat decom-

position and pedogenic alterations have significantly influenced the physical and hydraulic 

properties of peat soils (Dawson et al., 2010; Kechavarzi et al., 2010).  

 

Figure 1.4 Proportion of degraded peatland area (large map) and proportion of peatland cover (small map) in 

Europe. The maps are based on the product made available by Greifswald Mire Centre with data from the Global 

Peatland Database 2017. (https://www.greifswaldmoor.de/global-peatland-database-en.html). 

 

In Germany, Roßkopf et al. (2015) integrated legacy data, soil borehole databases, and detailed 

information on topography, hydrology, and geology to derive a detailed nationwide dataset on 

organic soils. This dataset revealed that organic soils cover an area of 15,682 km2 (4.4% of 

Germany’s total area) and contain an organic carbon pool of nearly 1.3 Gt (Gigaton). In the 

Federal State of Mecklenburg-Western Pomerania, different hydrogenetic mire types (HGMTs) 
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exhibit varying carbon storage due to stratigraphical distinctions. The three dominant HGMTs, 

namely percolation mire (“Durchströmungsmoor”; terms mentioned in Figure 1.1), terrestrial-

isation mire (“Verlandungsmoor”), and water-rise mire (mainly refers to “Hochmoor”), store 

approximately 430 Mt (Megaton) of organic carbon (Zauft et al., 2010). However, more than 

90% of German peatlands have been degraded (Tanneberger et al., 2021). This includes more 

than 50% of peatlands used for agriculture in the Federal State of Brandenburg, which have 

been found to have a medium or high vulnerability to carbon loss in a specific evaluation of 

peatland carbon loss risk (Fell et al., 2016). 

As environmental awareness grows, today’s most controversial topic of climate change has 

drawn attention to the effects of peatland degradation (Tanneberger et al., 2021). There is no 

doubt that anthropogenic activities have a range of impacts on ecosystems. According to Evans 

et al. (2021), Tiemeyer et al. (2020), and Wilson et al. (2016), the drainage of peatlands results 

in substantial greenhouse gase (GHG) emissions, while managing the water table plays a crucial 

role in mitigating and balancing peatland GHG emissions at both national and international 

levels. Moreover, Glatzel et al. (2004) demonstrated that the alterations in CO2 and CH4 pro-

duction potentials resulting from drainage, vegetation removal, and restoration have substan-

tial implications for carbon cycling in peatlands. When these GHGs are released from degraded 

peat soils into the atmosphere, it directly diminishes the carbon storage capacity of peatlands 

(Waddington et al., 2010). Moreover, the inadequate water content in drained peatlands can 

expose organic-rich soil to the air, leading to mineralization and decomposition of peat. De-

graded peatlands may thus struggle to perform the vital role of water storage and filtration, 

which can lead to ineffective regulators in the water cycle and poor water quality in adjacent 

areas (Lennartz et al., 2021). The continued loss and degradation of peatlands may eventually 

lead to the loss of special species and a decline in biodiversity (Parish et al., 2008). 

1.2 Soil Properties and Processes of Peat 

1.2.1 Soil physics and related studies on peatlands 

The term “degraded peat” in our context refers to instances where peatlands experience a de-

cline in quality due to human activities such as drainage. This process involves fundamental and 

diverse secondary pedogenetic phenomena, including aggregate formation, shrinkage cracks, 

earthification, and moorsh formation, significantly impacting soil properties (Mueller et al., 

2007; Säurich et al., 2019; Zeitz and Velty, 2002). Maintaining good soil quality is essential for 

ecological balance as global climate problems intensify. The main determinants of soil sustain-

ability are soil functions such as stable soil structure, functional soil water movement and solute 

transport, and sustainable access to water and nutrients by plant roots (Chapman et al., 2012; 
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Haj-Amor et al., 2023; Rabot et al., 2018; Schlüter et al., 2020). These are all relevant to soil 

physics, which plays an integral role across various disciplines, including environmental science, 

agronomy, climatology, hydrology, and geo-statistics (Shukla, 2013). As peatlands have received 

more attention in recent years, studies on the hydraulic and physical properties of peat soils 

have contributed significantly to understanding dynamic soil moisture, complex pore structure, 

diverse soil function, correlations among soil properties, and impacts by and on the environ-

ment in peatland ecosystems (Liu and Lennartz, 2019a; McCarter et al., 2020; Mueller et al., 

2007; Oleszczuk and Truba, 2013; Truba and Oleszczuk, 2014; Rezanezhad et al., 2016; Wallor 

et al., 2018; Zeitz and Velty, 2002).  

1.2.1.1 Peat soil physical and hydraulic properties 

Peat soils are a three-phase system, like mineral soils, composed of water, air, and soil particles. 

However, unlike mineral soils, peat soils contain high levels of soil organic matter (SOM). This 

is because peat soils are organic materials formed through the incomplete decomposition of 

plant residues under waterlogged conditions (Grover and Baldock, 2013). In the field of peatland 

ecological science, three key processes—infilling, primary peat formation, and paludification—

act together to shape peat soil formation, involving factors such as plant origin, climate, water 

table and flow, nutrient availability, and the biogeographical distribution of plant species (Rydin 

and Jeglum, 2006). Rydin and Jeglum (2006) described that infilling happens in stagnant water 

areas with constant heavy rainfall, where peat forms beneath plants like reeds, rushes, and 

sedges. Primary peat formation unfolds directly on fresh, wet mineral soil without prior stand-

ing water or sediment deposition.  Paludification refers to peatland growth over previously less 

wet mineral ground, often featuring woody peat and stumps. Upslope paludification occurs as 

peat and the water table rise, affecting nearby uplands. Paludification can also start from pedo-

genic processes (soil development) causing reduced soil permeability and Sphagnum moss in-

vasion. 

The accumulation of partially decomposed plant material creates a unique pore structure, i.e., a 

complex network of interconnected macropores, mesopores and micropores, contributing to 

the high porosity of peat soils. The high porosity of peat influences soil hydraulic properties, 

including water retention, hydraulic conductivity, as well as the availability and release of nu-

trients (Rezanezhad et al., 2016, 2012). The total porosity of peat can be exceptionally high, up 

to nearly 80 ~ 100 vol% (Liu and Lennartz, 2019a; Paavilainen and Päivänen, 1995; Oleszczuk 

and Truba, 2013). Another distinguishing characteristic of peat soil compared to mineral soil is 

their lower soil bulk density (BD/ρb; 0.01 to 0.76 g cm–3), which can be well described by loga-

rithmic or negative exponential models that show the negative correlation between bulk density 

and the SOM content of peat soils (Crnobrna et al., 2022; Grigal et al., 1989; Liu and Lennartz, 
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2019a). Earlier research on field samples from drained peatlands (peat-moorsh) in Poland in-

dicated significant correlations among soil physical properties, such as a positive correlation 

between saturated water content and total porosity, a negative correlation between saturated 

water content and degree of decomposition, a negative correlation between bulk density and 

total porosity, and a positive correlation between bulk density and degree of decomposition 

(Oleszczuk and Truba, 2013). Moreover, the meta-study conducted by Liu and Lennartz (2019a) 

analyzed data from highly impactful publications on the hydro-physical properties of peat soils 

and further suggested that the bulk density of peat soils is negatively correlated with many soil 

hydro-physical properties (e.g., macroporosity, saturated hydraulic conductivity, and van 

Genuchten model parameters), allowing trends in soil bulk density to indicate the degree of 

peatland degradation and highlighting the importance of soil physics research in peat soils and 

inspiring potential avenues for future investigation. 

The flow of water in peat soils is controlled by their hydraulic and physical properties. A critical 

parameter is the saturated hydraulic conductivity (Ks), which represents the soil’s capacity for 

water conduction under saturated conditions. Darcy’s law is commonly utilized to determine 

the hydraulic conductivity (K) of soils, particularly the Ks in the case of peat soils, through the 

constant-head permeameter test (see Supplemental Figure S3.1 in Supplemental Materials; 

Klute and Dirksen, 1986; Kruse et al., 2008; Liu et al., 2016), as given by Equation (1.1) to (1.2): 

 

𝑄

 𝐴௦
= 𝑞 = – 𝐾௦ ·

∆𝐻 

𝐿
 

(1.1) 

 𝐾௦ =
𝑉௪௧ ·  𝐿

 𝑡 · 𝐴௦ ·  ∆𝐻
 (1.2) 

where Q describes the rate of water flow (cm³ h–1) through a certain cross-section area1 (Acs, 

cm2), q is the water flux (cm h–1), ΔH is the hydraulic head (cm), L is the length of the flow path 

(the length of soil samples; cm). The ratio of ΔH and L is the hydraulic gradient, which presents 

how much the hydraulic head changes over a certain distance along the flow path. Vwater is the 

volume of water (cm³) that flows through a soil sample over a specified period (t, h–1). The range 

of Ks of peat soils can vary considerably depending on serval factors such as peat types, sampling 

depths, measurement method, peat decomposition/degradation degree, soil bulk density, dis-

turbance and microtopography at the spatial scale, as well as pore size distribution and other 

factors at the pore scale (Liu and Lennartz, 2019a; Morris et al., 2022; Rezanezhad et al., 2016).  

 
1 Note: To avoid confusion with abbreviations, in the thesis, Acs is used to represent the “cross-sectional area”, while 

A represents the geostatistical model parameter “range”. 
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Soil water retention curves (SWRCs) can characterize the water holding capacity and pore size 

distribution of peat soil by describing the relationship between soil moisture and soil water 

potential (Mueller et al., 2007). The pF box is usually used for measuring SWRCs in the labora-

tory, which involves placing the saturated soil column samples in a pressure chamber fitted 

with a porous ceramic plate or membrane (Figure 1.5; Richards, 1948). The pF box is subjected 

to increasing suction (pressure head, cm H2O); at each level of suction, the amount of water 

remaining in the soil sample is measured by weighing the soil column samples, which can be 

further converted to a gravimetric water content (the mass of water per unit mass of dry soil; 

w, wt%). The more commonly used volumetric water content (the volume of water per unit 

volume of soil; θ, cm3 cm–3) can be obtained by multiplying the gravimetric water content by 

soil bulk density, allowing the SWRCs to be plotted as soil water content versus different suction 

pressure heads (ψ; cm H2O or in pF unit). The van Genuchten model (VG) model is a well-

known empirical model for describing SWRCs (van Genuchten, 1980), and it is based on the 

following Equation (1.3): 

 
𝜃(ℎ) = 𝜃 +

𝜃௦ − 𝜃

[1 + (𝛼|𝜓|)]
 

(1.3) 

where volumetric water content (θ) at pressure head (h) is defined as the ratio of the volume of 

water to the total volume of the soil (cm3 cm−3), θr and θs are the residual and saturated volu-

metric water contents (cm3 cm−3), respectively. Empirical parameter α (cm−1) expresses the 

inverse of the air entry pressure head and is related to the size of the largest pores in the soil. 

Empirical parameters n and m are associated with the pore size distribution and affect the slope 

of the retention function. Parameter n is a dimensionless shape parameter that controls the 

shape of the SWRCs, while m is related to n through the equation m = 1 - 1/n (van Genuchten, 

1980). These VG model parameters are determined empirically by fitting the VG model to ex-

perimental data, and they can vary widely depending on soil type, structure, and composition. 

In previous studies on peat soils, VG parameters θr and θs were usually fixed at zero and the 

total porosity, respectively (Liu and Lennartz, 2019a; Weiss et al., 1998).  

Naturally intact and less decomposed peatlands are considered to have relatively high α values, 

indicating a lower air entry pressure and drain easily due to the presence of macropores 

(Kechavarzi et al., 2010; Liu and Lennartz, 2019a; Menberu et al., 2021). Nevertheless, hetero-

geneity in peat soils can lead to a complex pore structure consisting of a mixture of macropores, 

mesopores, and micropores, which contributes to a wider distribution of water retention prop-

erties, as reflected in the broader range of n values (Liu and Lennartz, 2019a). Steeper SWRCs 

with relatively large n values occur generally in more pristine peats, particularly with narrower 

pore size distributions (Dettmann and Bechtold, 2016; Liu and Lennartz, 2019a).  
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Figure 1.5 Experimental set up for soil water retention curves. 

 

The impact of macropores on water movement and solute transport has received attention in 

peat soils, where macroporosity is a critical property with significant consequences for prefer-

ential flow (Baird, 1997; Holden, 2009; Ours et al., 1997). However, defining “macropores” can 

be challenging in soil science due to the ambiguity surrounding the pores size threshold (Gimé-

nez and Hirmas, 2016; Luxmoore, 1981; White, 1985). To quantitatively assess the abundance, 

size, and spatial distribution of macropores in soil, various in-situ techniques such as tracing 

and photographic methods can be utilized (Blodau and Moore, 2002; Logsdon et al., 1990). A 

better visualization of water flow and continuous macropores in peat soil can be achieved by 

dyes (e.g., titanium oxide, TiO2; Liu and Lennartz, 2015; Liu et al., 2016). In the laboratory, 

macroporosity can be quantified indirectly by measuring infiltration at different suctions or air 

permeability (Dettmann et al., 2014; Edwards et al., 1993). In addition, if complex pore structure 

(e.g., pore size distribution and pore connectivity) are pursued in laboratory measurements, 

more advanced techniques (e.g., X-ray and 3D image analysis) have also been applied to obtain 

a more accurate and comprehensive assessment of the characteristics of macropores in peat 

soils (Quinton et al., 2009; Rezanezhad et al., 2016, 2010). 

1.2.1.2 Solute transport process of peat soils 

Peat soils, as special porous media, have a dual-porosity structure, i.e., they have open and con-

nected (mobile), dead-ended (immobile), or isolated pores (McCarter et al., 2020; Rezanezhad 

et al., 2016). Advective water flow and solute transport occur mainly in the mobile porosity, 

while the immobile porosity does not contribute to advection, but only to diffusion of solutes 

between the two domains (Figure 1.6; McCarter et al., 2019, 2020). Solute transport through 
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pore networks in peat and their associated soil properties could shed light on the complex hy-

drological and biogeochemical cycles of this unique ecosystem (Gharedaghloo and Price, 2019; 

Liu et al., 2017; McCarter et al., 2019, 2018; Rezanezhad et al., 2016). However, solute transport 

in peat soils is a complex and multifaceted process related to a wide range of soil physical factors, 

including soil structure, pore size distribution, degradation, and hydrological conditions.  

 

Figure 1.6 Simplified conceptual diagram summarizing the structure of undisturbed and degraded fen peat, com-

prised of larger pores (the mobile porosity) and smaller pores (the immobile porosity). (adapted from McCarter et 

al., 2020). 

 

A fundamental approach to investigating solute transport in peat soil is to perform miscible 

displacement experiments using the flow-through reactors (FTRs) technique (see Figure 3.1 in 

Chapter 3 and Figure 4.2 in Chapter 4; Gosch et al., 2019; Kleimeier et al., 2017; Pallud et al., 

2007). In FTRs, undisturbed peat soil columns are prepared with filters and end caps and can 

be supplied with a solution containing conservative tracers (e.g., potassium bromide, KBr; Liu 

et al., 2017) or isotopes (e.g., 18O; Ronkanen and Kløve, 2007). Breakthrough curves (BTCs) can 

be generated by monitoring the solute (tracer) concentration in the outflow at regular intervals, 

and shape and parameters provide insights into solute transport mechanisms, including advec-

tion, dispersion, and nonequilibrium effects (Šimůnek et al., 2003; Šimůnek and Genuchten, 

2008). Different solute transport models, such as classical equilibrium convection-dispersion 

equation (CDE; single porosity model; as given by Equation (1.4)) and physical nonequilibrium 

models (e.g., dual-porosity models: mobile-immobile model, MIM; as given by Equation (1.5) to 

(1.7)), have been calibrated and validated in studies of peat soil using BTCs, aiming to enhance 
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our comprehension of the solute transport mechanisms in peat (Liu et al., 2017; Simhayov et 

al., 2018).  
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where Ce is effluent concentration2, T is dimensionless time, X is space coordinate, v is fluid 

average velocity (L T−1). The retardation factor R is equal to 1 for a solute that does not react 

(Hoag and Price, 1997). D is the dispersion coefficient (L2 T−1), β is the fraction of the mobile soil 

water zone (dimensionless), Dm is the D of the mobile zone, (Dm=D/β; L2 T–1), ω is the mass 

transfer coefficient between the mobile and immobile regions (dimensionless). The Péclet num-

ber Pe expresses the ratio of advection to diffusion (dimensionless), where vm is pore water 

velocity in the mobile zone (L T−1) and L is length unit, typically indicating the spatial coordinate 

associated with the flow direction (L).  

In Liu et al.’s (2017) study, the performance of equilibrium and non-equilibrium models for 

BTCs of fen peat samples with varying SOM content was investigated. However, the single po-

rosity model could describe only 10% of the peat samples (with SOM content > 80%). The rest 

of the samples showed preferential flow behavior with early breakthrough and tailing in the 

BTCs, which were better fitted by a dual-porosity approach (e.g., MIM model). In recent years, 

state-of-the-art applications of scanning electron microscope and X-ray micro-computed to-

mography have enabled the acquisition of high-resolution 3D images of pore structures in peat 

soils, thereby providing a powerful tool for assessing pore networks and various solute 

transport parameters (Gharedaghloo et al., 2018; McCarter et al., 2020). Notably, preferential 

flow pathways in peat soils can lead to preferential transport of pollutants and compounds 

through undecomposed plants, biological pores (e.g., root channels), and other macropores to 

surrounding water bodies or groundwater, which may contribute to aquatic eutrophication 

(Forsmann and Kjaergaard, 2014; Ronkanen and Kløve, 2009). Hence, it is vital to understand 

 
2 Note: To avoid confusion with the abbreviations of spatial statistical parameter “nugget/sill ratio”, the abbrevia-

tions for “the effluent concentration” and “the influent concentration” have been modified in this thesis to Ce and 

Ci, respectively, from the abbreviations (C and C0) used in the corresponding publication of Chapter 3. 
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and model preferential flow in solute transport of peat for predicting and managing its envi-

ronmental impacts. 

1.2.1.3 The impact of peatland degradation on peat soil properties 

The far-reaching effects of peatland degradation through drainage on the overall health and 

function of the ecosystem are manifested in a range of specific changes in soil properties, i.e., 

alterations to soil physical, hydraulic, chemical, biological properties, and biogeochemical cycle 

(Kechavarzi et al., 2010; Liu and Lennartz, 2019a; McCarter et al., 2020; Zeitz and Velty, 2002). 

First and foremost is the change in soil structure. Peat soils become progressively more com-

pacted after drainage, with an increase in the soil bulk density and a pronounced decrease in 

the porosity. A disturbed soil structure makes peatlands more vulnerable to erosion and 

drought. Based on the meta-analysis performed by Liu and Lennartz (2019a), Figure 1.7 sum-

marizes the correlation between the hydro-physical properties of peat soils and peatland deg-

radation, thus enabling this thesis to further investigate the spatial variability of these properties 

in relation to peatland degradation within this context. Moreover, the still ambiguous aspects 

regarding the macroporosity of peat soils, as identified in Liu and Lennartz’s (2019a) study, 

make it worthwhile to supplement new understanding through experimental data (Chapter 2). 

 

Figure 1.7 Statistically significant correlation among peat soil hydraulic and physical properties (Liu and Lennartz, 

2019a). 

 

Chemically, healthy Sphagnum bogs are usually acidic, with pH values ranging from 3.2 to 4.0 

or < 5.5, while the pH of fen peat could be greater than 5.5 (Clymo et al., 1984; Solovey et al., 

2021; Wheeler and Proctor, 2000). As peatlands are degraded, they may become more acidic 

(Maftu’ah et al., 2019). In addition, biogeochemical parameters reveal that peat degradation due 

to anthropogenic activities can lead to carbon loss (Krüger et al., 2015). Meanwhile, the stoichi-

ometry of organic matter also varies with peat degradation (Leifeld et al., 2020). The loss of 
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organic matter further weakens the water and nutrient-holding capacity (Hudson, 1994; Sonon 

et al., 2014). The above changes can threaten the survival of plants and other organisms that 

depend on the unique habitat of the peatland, for instance, by forcing vegetation succession 

away from peat-forming plants and stimulating microbial decomposition (Andersson and Nils-

son, 2001; Evans et al., 2012; Robroek et al., 2009). Thus, studying the soil properties of peat-

lands, particularly hydro-physical properties, is therefore crucial to understanding the complex 

effects of peatland degradation. 

1.2.2 Anisotropic and heterogeneous behavior of peat soil properties 

Peat soils are directionally dependent and non-uniform porous media (Baird et al., 2016; Beck-

with et al., 2003; Gharedaghloo et al., 2018; Kruse et al., 2008; Liu et al., 2016; Morris et al., 

2019). The anisotropy of soil physical properties can be mainly attributed to natural pedogene-

sis, anthropogenic factors and soil degradation (Beckwith et al., 2003; Liu et al., 2016; Peng, 

2011). In the realm of soil hydraulic properties on peat soils, Beckwith and Heathwaite (2003) 

conducted a seminal study that examined the ratio in saturated hydraulic conductivity (Ks) be-

tween horizontal (Ksh) and vertical (Ksv) directions by conducting laboratory experiments on a 

substantial sample size. Due to the orientation and structure of the fibrous composition of peat 

soils, different investigations have confirmed that Ksh may exceed Ksv (Beckwith et al., 2003; 

Cunliffe et al., 2013; Lewis et al., 2012), while on other occasions, Ksh may be less than Ksv (Kruse 

et al., 2008; Liu et al., 2016; Surridge et al., 2005). The research undertaken by these researchers 

represents a pioneering contribution to the anisotropic character of hydraulic property of peat 

soil and potential patterns of water movement in peat soils. Further study is required to fully 

comprehend how anisotropy affects other soil physical processes (i.e., solute transport). 

The disturbance of peatlands due to anthropogenic or climatic factors severely affects peat soil 

properties. In addition to peat soil degradation due to land use of inland peatlands, the effects 

of microtopography and salinity on peat soil properties have also received attention as a result 

of the special geographical location of coastal peatlands, which are frequently subject to storm 

incursions (van Dijk et al., 2016; Gosch et al., 2018; Ahmad et al., 2020). Therefore, investigating 

the spatial heterogeneity of soil properties and developing spatial models are essential for cus-

tomizing and assessing environmental sustainability and evaluating soil quality at different spa-

tial scales (Ahmad et al., 2020; Negassa et al., 2019).  

Geo-statistics is a commonly used tool to analyze the spatial variability of soil properties in soil 

science (Iqbal et al., 2005; Zhang et al., 2020). The semivariogram is a plot of semivariance as 

a mathematical function that can quantify the degree of spatial dependence of a soil property 

by measuring how the semivariance of this property changes as the distance between sampling 
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points increases (Matheron, 1963). The semivariance, γ(h), is calculated as half the average 

squared difference between pairs of observations separated by a specific distance or lag (h), as 

given by Equation (1.8):  

 𝛾(ℎ) =
1

2𝑁(ℎ)
 [𝐴(𝑥)−𝐴(𝑥 + ℎ)]ଶ

ே()

ୀଵ

 (1.8) 

where N(h) is the number of observations pairs, Ai(xi) and Ai(xi+h) are the measured soil prop-

erty at spatial location i and i+h. 

 

Figure 1.8 Typical semivariogram. 

 

Moreover, semivariogram can provide a visual representation of the spatial autocorrelation of 

soil properties, which can be used to model the spatial distribution of these properties across 

the landscape. A typical semivariogram has three main components: the range (A), the sill 

(C0+C), and the nugget (C0; Figure 1.8). The x-axis displays the horizontal distance between 

pairs of observations, while the y-axis represents the semivariance. The degree of similarity 

between observations determines their position on the graph. For instance, the greater the sim-

ilarity between observations, the higher they will be on the graph. The range (A) specifies the 

distance at which spatial dependence ceases to exist, indicating how far apart two sampling 

points become spatially independent. The sill is the maximum semivariance value, representing 

the total variability of the whole data set. The nugget is the semivariance value at zero distance, 

which reflects the variability occurring at distances smaller than the sampling interval or due 

to measurement error. The nugget effect occurs when the semivariogram does not always start 

from zero at zero distance, which can result from the presence of measurement error or random 

variation (Esri., n.d.; Lamorey and Jacobson, 1995). 

The spatial variability of soil properties has been thoroughly investigated in soil science re-

search, with a particular emphasis on SOM, bulk density, and hydraulic conductivity (Biswas 
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and Si, 2009; Bruland and Richardson, 2005; Gallardo, 2003; Sharma et al., 2011; Trangmar et 

al., 1987). In the context of peatlands, studies have mainly focused on the spatial variability of 

SOM (or soil organic carbon, SOC) and soil chemical properties (e.g., soil stoichiometry), with 

limited exploration of the spatial dependence of hydraulic properties and other soil physical 

parameters in only a few studies (Ahmad et al., 2020; Negassa et al., 2022, 2019; Nkheloane et 

al., 2012). In addition, different types of peatlands are distinct ecosystems with unique charac-

teristics and functions. Focusing solely on one type of peatland may not provide a comprehen-

sive understanding of the heterogeneity of peatland and the spatial variability of soil properties. 

Significant changes in the spatial characteristics of soil properties resulting from either natural 

factors or human activities can alter the function of peatlands and affect their ability to provide 

ecosystem services (Negassa et al., 2022; Szumińska et al., 2023). Therefore, understanding the 

spatial patterns of soil properties is crucial for predicting the status of peatlands under different 

environmental conditions and management practices.  

1.2.3 Nutrient and dissolved organic carbon (DOC) release in peatlands 

Peatlands are not only a significant carbon sink, but also a potential source of nutrients, such as 

phosphorus and nitrogen (Hugelius et al., 2020; Schillereff et al., 2021). Drainage and grazing 

can accumulate nutrients in the soil due to natural and/or anthropogenic factors (e.g., the de-

composition of organic matter, commercial fertilizers, and residues of past agricultural vegeta-

tion and animal manure), putting surrounding water bodies at risk of nutrient exposure upon 

rewetting or flooding (Audet et al., 2020). For instance, in inland peatlands, phosphorus is likely 

to be transported primarily through preferential flow pathways and can accumulate in prefer-

ential flow path area (Forsmann and Kjaergaard, 2014; Ronkanen and Kløve, 2009). In coastal 

peatlands, the impact of salinity on nutrient release have received attention (Liu and Lennartz, 

2019b; Pönisch et al., 2023). For instance, ammonium (NH4
+) release is one of the most critical 

processes, since it may act as nutrient for algae and macrophytes, causing eutrophication at 

frequent N-limited conditions in marine systems(Bowen et al., 2020). Salinity has a considera-

ble impact on NH4
+ release from coastal peatland. The concentration of NH4

+ leachate altered 

significantly during alternating fresh-brackish water cycles and could also be impacted by the 

salinity of the first flushing solution and soil texture (van Dijk et al., 2015; Liu and Lennartz, 

2019b). To better understand the mechanism of NH4
+ response to salinity, Servais et al. (2021) 

performed a mesocosms experiment in which NH4
+ concentration increased with rising salinity 

under initial freshwater conditions, while it decreased with an ongoing increasing salinity under 

brackish water. Hence, understanding the nutrient responses to salinity is important for effec-

tive peatland management and protection of aquatic ecosystems. 
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Rewetting of peatlands can recreate carbon sinks (Zerbe et al., 2013), whereas dissolved organic 

carbon (DOC) release from the soil is an important but often ignored carbon loss pathway in 

ecosystems (Guo and Macdonald, 2006; Kindler et al., 2011). DOC is highly responsive to envi-

ronmental changes, such as land use, hydrology, temperature, and geomorphological setting 

(Glatzel et al., 2003; Sheng et al., 2015). In addition, changes in salinity and pH may individually 

or collectively alter trends in soil water DOC concentrations due to shifts in biotic and abiotic 

processes (Chow et al., 2003; Kalbitz et al., 2000; Kreuzburg et al., 2020). For rewetted coastal 

peatlands, projecting the effects of rising salinity on DOC release is challenging as these factors 

may increase or decline DOC concentrations using different mechanisms (Herbert et al., 2015). 

Ardón et al. (2016) demonstrated that DOC concentrations in surface water of a mature and 

restored forested wetland in the coastal plain of North Carolina (USA) significantly dropped 

because of repeated saltwater intrusion (from ~40 to ~18 mg/L). Similarly, Liu and Lennartz 

(2019b) and Yang et al. (2018) also observed that DOC concentrations decreased with high sa-

linity treatment. In contrast, Chambers et al. (2014) discovered that the saltwater inundated 

treatment had significantly higher pore water DOC than that of the control water level treat-

ment in mangrove peat soils. Another nutrient leaching experiment conducted by Gosch et al. 

(2018) on inland marsh peats showed that elevated salinity in water increased DOC release. In 

addition, Weston et al. (2011) investigated that there was no significant difference in pore water 

DOC between saltwater-amended and freshwater-controlled soils in another coastal wetland 

ecosystem. Apparently, the interaction of numerous factors (e.g., soil properties, geographical 

location, vegetation characteristics, atmospheric deposition, etc.) may locally and regionally in-

fluence DOC of surface and pore water (Camino-Serrano et al., 2016; Chambers et al., 2014). It 

is, thus, critical to investigate the response of DOC release to salinity in a specific coastal peat-

land, which is an important assessment of whether a seawater rewetting project can revert 

drained peatlands into carbon sinks. 

Overall, Figure 1.9 provides a simplified bibliometric mapping of the most important studies 

related to Chapter 1. The figure includes five themes: “soil hydraulic and properties”, “solute 

transport”, “spatial variability/anisotropy, heterogeneity”, “impact of salinity”, and “impact of 

land use”. These keywords represent the main aspects of the research interests and focus of this 

thesis. These themes intersect to shape the research background of the three core chapters, 

considering a cross-disciplinary research approach to experimental design, aiming to address 

certain research gaps identified in previous studies and extend the conclusions to the application 

of peatland rewetting.
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Figure 1.9 Simplified bibliometric mapping of the most important studies related to this thesis. (adapted from the searching result of “CONNECTED PAPERS”). 
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1.3 Objectives and Outline of the Thesis 

1.3.1 Objectives 

The general research objective of this thesis is to assess the impact of human activities (i.e., 

drainage and rewetting) on soil hydro-physical properties and the behavior of nutrient release 

in peatlands. To achieve this objective, this study conducted laboratory experiments on soil sam-

ples collected from five different peatlands in the Federal State of Mecklenburg-Western Pom-

erania in Northeastern Germany. The peatlands were selected based on their varying land uses 

and degradation stages, including a natural bog, a restored fen, two drained fens, and a coastal 

fen. By exploring the directional and spatial variations in peat soil hydro-physical properties 

and solute transport processes (i.e., anisotropic and heterogenous behaviors), this research aims 

to provide new insights into land management and ecosystem restoration in peatlands.  

With a sequential exploration of focal points progressing from different inland peatlands to a 

coastal peatland, the overarching research questioin of the is: By assessing the soil physical 

properties and their spatial characteristics, can we gain a better understanding and predict the 

outcomes of rewetting? Following the overarching research questioin, the specific objectives of 

this thesis were formulated as follows: 

1) To assess the extent to which peat degradation affects the spatial heterogeneity of soil 

hydro-physical properties in inland peatlands. 

2) To investigate the influence of the anisotropic nature of peat soil on solute transport in 

inland drained and restored peatlands. 

3) To examine the effect of microtopography on the spatial heterogeneity of soil organic 

matter content and the potential nutrient release in a coastal peatland. In addition, to 

investigate the impact of salinity on nutrient release behavior upon rewetting. 

1.3.2 Outline of the thesis 

This thesis follows a cumulative structure and consists of five chapters, with chapters 2 to 4 

dedicated to addressing the three specific objectives. 

Chapter 1 introduces the background and motivation of this thesis. It begins by introducing the 

definition and classification of wetlands and peatlands and traces the historical development of 

research in this field, highlighting the varying research emphases across different periods. The 

importance of peatland ecological functions is also emphasized, along with examining the neg-

ative impacts of human disturbance on peatland soil. The chapter then concentrates on the hy-

draulic and physical properties of peat soils, which are essential for the assessment of peatland 
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soil quality and health, introducing and explaining several essential parameters. Additionally, 

the chapter focuses on the anisotropic and heterogeneous nature of soil properties, and geosta-

tistical methods for studying spatial heterogeneity are introduced. It is emphasized that under-

standing the spatial characteristics of the hydraulic and physical properties of peat soils is of 

great significance for managing peatlands at small scale. Lastly, this chapter also provides a 

brief overview of the main objectives of the thesis. 

Chapter 2 is an integrative assessment of soil hydro-physical properties of three peatlands in 

different degradation stages and provides a comprehensive description of the effect of peatland 

degradation on spatial heterogeneity of soil properties. It also highlights the importance of 

macroporosity for establishing the pedotransfer function for peat soils. This chapter has been 

published as an original research article entitled “Small-scale spatial variability of hydro-

physical properties of natural and degraded peat soils” in Geoderma (Wang, M., Liu, H., 

Lennartz, B., 2021). 

Chapter 3 focuses on the study of soil physical processes (water movement and solute transport) 

in terms of peat soil samples obtained from horizontal and vertical directions. It represents the 

difference in solute transport behavior between the two directions by using a 5% tracer mass 

arrival time to indicate the strength of preferential flow. This chapter has been published as an 

original research article entitled “Effect of anisotropy on solute transport in degraded fen 

peat soils” in Hydrological Processes (Wang, M., Liu, H., Zak, D., Lennartz, B., 2020). 

Chapter 4 investigates the effects of microtopography on the spatial distribution of soil organic 

matter in a coastal peatland, revealing differences between coastal and inland peatlands due to 

the influence of marine systems. It further examines the impact of salinity on the potential nu-

trient release behavior when rewetting by brackish water and identifies the hotspot areas of 

nutrient release in the study site. This chapter has been submitted as an original manuscript 

entitled “The influence of microtopography on soil carbon accumulation and nutrient re-

lease from a rewetted coastal peatland” to Geoderma and published with minor revision 

(Wang, M., Liu, H., Rezanezhad, F., Zak, D., Lennartz, B., 2023). 

Chapter 5 presents a concluding discussion that integrates the key findings from Chapters 2 to 

4. It begins with an overview that concisely summarizes the main topics covered in Chapters 2 

to 4. The synthesis section emphasizes the importance of soil properties, such as SOM, bulk 

density, water retention, and macroporosity, as indicators of peatland degradation and ecolog-

ical functions. It also sheds light on the crucial factors explored in this thesis concerning the 

successful restoration of peatlands, particularly focusing on the challenges associated with nu-

trient leaching under a rewetting scenario. It further highlights the importance of increased 
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academic and societal attention to peatland restoration for successful outcomes, which is sup-

ported by a bibliometric analysis. Lastly, this chapter acknowledges the limitations and chal-

lenges encountered during the research, providing valuable considerations for further investi-

gations and improvements in peatland conservation and restoration efforts.  

It is important to note that the original publications in Chapters 2 and 3, as well as the submitted 

manuscript in Chapter 4, underwent formatting changes. These adjustments were made only 

to ensure consistency and coherence in the dissertation format, and underlying content of the 

studies remained unchanged. The main adjustments involved are: 1) modifications to abbrevi-

ations, 2) changes to arithmetic symbols, 3) re-numbering and repositioning of figures, tables, 

and equations, and 4) the use of consistent American Standard English spelling and Oxford 

comma.  

In addition to the mentioned adjustments, three more modifications were implemented that 1) 

all references for the individual chapters were consolidated and formatted according to the for-

mat of the journal Geoderma, and they are placed as a unified reference list after Chapter 5; 2) 

the supplemental materials for each chapter were merged and placed after the reference list, 

but they are numbered according to their respective chapters; 3) a graphical abstract was newly 

added to Chapter 2, based on the original published paper. 
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Abstract 

The spatial variability of soil properties plays an important role in water and carbon cycles in 

peatlands. The objectives of this study were to analyze the spatial variation of hydro-physical 

properties of peat soils and to establish pedotransfer functions (PTFs) to estimate the hydraulic 

properties of peat using readily available soil properties. We selected three study sites, each 

representing a different state of peat degradation (natural, degraded and extremely degraded). 

At each site, 72 undisturbed soil cores were collected from 5 m by 5 m grid cells in an area of 35 

m by 40 m. The saturated hydraulic conductivity (Ks), soil water retention curves, total porosity, 

macroporosity (pore diameter > 30 μm), bulk density and soil organic matter content (SOM) 

were determined for all sampling locations. The van Genuchten (VG) model parameters (θs, α, 

and n) were optimized using the RETC software package. A strong positive correlation between 

macroporosity and Ks was observed irrespective of the degradation stage of the peat. However, 

the relationships between macroporosity and Ks differed between the natural and the drained 

peatlands. Adding macroporosity to the PTFs substantially improves the prediction of Ks as well 

as VG parameters. Results show that the soil physical and hydraulic properties (e.g., Ks and VG 

model parameters) exhibit different levels of spatial heterogeneity depending on the peat deg-

radation stage. The geostatistical analysis suggests that the spatial dependence of soil hydro-

physical properties varies depending on the considered property as well as land management 

(e.g., drainage). Bulk density and SOM are spatially dependent, whereas Ks and macroporosity 

are spatially independent if the peat is severely degraded. In conclusion, the peat degradation 

stage plays an important role and should be generally considered in the spatial analysis of peat-

lands. The obtained semivariograms may serve as a basis for 2D and 3D hydrological modeling 

as well as peatland restoration studies.  

 

 

 

 

 

 

 

Keywords: peat soil degradation, soil water retention curves, van Genuchten model, pedotrans-
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2.1 Introduction 

Peatlands cover approximately 3% of the Earth’s land surface, but store ~21% of the global soil 

carbon and 10% of global freshwater (Joosten and Clarke, 2002; Leifeld and Menichetti, 2018; 

Limpens et al., 2008). Worldwide, approximately 15% of peatlands have been artificially 

drained mainly for cropland, grazing land, and forestry (Joosten et al., 2012). Land drainage 

damages ecosystem functions of peatlands, transforming them from long-term carbon sinks 

into sources due to the hydrologic alterations (Regan et al., 2019; Young et al., 2017). Peatland 

drainage causes land subsidence as well as organic carbon mineralization leading to changes in 

hydro-physical properties of peat (Kennedy and Price, 2005; Liu et al., 2020a; Morris et al., 

2011; Price, 2003). However, the magnitude of the changes mainly depends on drainage type 

(deep or shallow; Stephens et al., 1984; Wallage and Holden, 2011), drainage history(Liu et al., 

2020a; Pronger et al., 2014), land use (agriculture or forest; Hallema et al., 2015; Minkkinen 

and Laine, 1998), and peat types before drainage (bogs or fens; Hyväluoma et al., 2020; 

Kechavarzi et al., 2010). Compared with mineral soils, knowledge about hydraulic properties of 

peat is limited, particularly for variable saturation conditions (John et al., 2021; Wallor et al., 

2018).  

Peat soils as a porous medium are characterized by a strong heterogeneity and anisotropy 

(Beckwith et al., 2003; Wang et al., 2020), causing an enormous variability of the hydraulic 

properties (e.g., saturated hydraulic conductivity, Ks). For instance, Cunliffe et al. (2013) ob-

served a difference in Ks of three orders of magnitude in blanket peat on a decimeter scale. Lewis 

et al. (2012) determined the Ks of a blanket peat along a 210-meters transect and found that Ks 

ranged from 0.7×10–6 to 1.21×10–4 m s–1 with low Ks at the bog margins. The low-Ks margin 

phenomenon was also observed for raised bogs (Baird et al., 2008). However, such low-Ks mar-

gin was not confirmed in a shallow layer of a Swedish bog (Morris et al., 2015). The spatial 

variance of Ks of bogs is also strongly influenced by plant microhabitat type (hummocks and 

hollows, Baird et al., 2016; Morris et al., 2019). Baird (1997) observed that the Ks of peat (soil 

surface) varied from 8.2×10–5 to 4.3×10–3 m s–1 in one fen peatland. Liu et al. (2016) reported 

that the Ks of fen peat from the same horizon can change more than 2 orders of magnitude. For 

a same peat soil, Ks in vertical and horizontal directions may differ by two to three orders of 

magnitude (Beckwith et al., 2003; Cunliffe et al., 2013; Liu et al., 2016). The anisotropic behavior 

of Ks is related to the layered structure (Gharedaghloo et al., 2018) or to the distribution patterns 

of macropores in the peat (Liu et al., 2016).  

The soil water retention curve is an essential hydraulic property for modeling water flow and 

solute transport under unsaturated conditions. The soil water retention curves (SWRCs) of peat 
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have been studied over the last two decades (John et al., 2021; Liu and Lennartz, 2019a; Schwär-

zel et al., 2006; Wallor et al., 2018; Weiss et al., 1998). In general, the well-known van Genuch-

ten (VG; single domain) model seems suitable to describe the experimentally determined 

SWRCs. However, multi-models (e.g., bimodal or trimodal models) are required to fully describe 

the SWRCs for specific peat types (e.g., living sphagnum; Weber et al., 2017).  

Direct measurements of hydraulic properties such as Ks and SWRCs are time consuming and 

costly (Wösten et al., 2001). Over the last several decades, pedotransfer functions (PTFs) have 

been increasingly employed to estimate the hydraulic parameters of mineral soils from easily 

measured soil properties such as soil organic matter content (SOM), bulk density and soil tex-

ture (Schaap et al., 2001; Vereecken et al., 2010; Wösten et al., 2001). In a few studies, PTFs 

have been developed for peat and organic soils (Liu and Lennartz, 2019a; Morris et al., 2015; 

Wallor et al., 2018; Weiss et al., 1998; Wösten et al., 1999). However, the performance of the 

PTFs for hydraulic properties is relatively low, especially if degraded peat soils are considered 

(Wallor et al., 2018; Liu and Lennartz, 2019a). One possible reason is that the Ks and VG param-

eters of highly degraded peat are less sensitive to readily available soil parameters such as SOM 

and bulk density. Therefore, additional parameters should be considered to be included into 

PTFs to improve their predictions.  

Geostatistics (i.e., kriging and semivariogram) has been proved as an important tool to investi-

gate the spatial variation of soil hydraulic properties (Bevington et al., 2016; Iqbal et al., 2005; 

Nielsen and Wendroth, 2003; Vieira et al., 1981; Zhang et al., 2020). Kriging has been commonly 

considered as the best method to interpolate spatial data using a limited number of measure-

ments. The semivariogram depicting the spatial dependence is the basis of kriging because 

kriging can only be applied if soil properties are spatially dependent. The spatial dependence of 

soil physical, chemical, and hydrological properties has been one focus of soil science over the 

last decades (Biswas and Si, 2009; Sharma et al., 2011; Trangmar et al., 1987; Tsegaye and Hill, 

1998). In previous studies, a spatial dependence of different soil properties such as SOM, bulk 

density, Ks, and VG model parameters has been found for agricultural land, forests, and wet-

lands (Biswas and Si, 2009; Bruland and Richardson, 2005; Gallardo, 2003; Sharma et al., 2011). 

Compared to mineral soils, little information is available on the spatial dependence of soil prop-

erties of peat (Ahmad et al., 2020; Negassa et al., 2019; Tiemeyer et al., 2007) (Supplemental 

Figure S2.1). Proulx-McInnis et al. (2013) observed a strong spatial dependence of peat thick-

ness in a Canadian peatland. Nkheloane et al. (2012)found that the soil organic carbon is 

strongly spatially dependent. Few studies on rewetted peatlands showed that the spatial de-

pendence is strong for soil chemical, biochemical properties, as well as water quality (Negassa 

et al., 2019), but moderate for Ks (Ahmad et al., 2020). The impact of land drainage, known to 
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dramatically changing chemical as well as physical soil properties, on the spatial dependence of 

these properties remains uncovered.  

This study aims at gaining insight into the small-scale spatial variability and dependence of 

hydro-physical properties of peat including bulk density, SOM, Ks, porosity, macroporosity, and 

VG model parameters at natural and drained peatlands. The specific objectives of this study 

were to: 1) establish PTFs to estimate hydraulic properties of peat, 2) to evaluate the spatial 

variability of hydro-physical properties, and 3) to quantify the spatial dependence of hydro-

physical properties of natural and degraded peat.  

2.2 Material and Methods 

2.2.1 Study sites and soil sampling 

One natural peatland (Site 1: Gresenhorst, 54°08’25.2”N, 12°27’10.7”E) and two artificially 

drained peatlands (Site 2: Knesse 54°07’58.2”N, 12°37’30.3”E; Site 3: Pölchow, 54°00’21.7”N, 

12°06’59.5”E) in Mecklenburg-Western Pomerania, Germany were chosen for this study (Fig-

ure 2.1). Site 1 is a natural forest peatland without human disturbance (e.g., land drainage or 

soil extraction), which can be considered as a pristine bog. The two degraded fen peatlands 

experienced their first drainage in the 16th (Site 2) and 13th (Site 3) centuries and were under 

agricultural usage as grassland since the second half of the 20th century. Site 3 shows a higher 

degree of degradation due to a long-term drainage history, causing more loss of soil organic 

matter than that at Site 2. The previous investigation suggests that the topsoil at Site 2 is a 

highly degraded peat with a bulk density ranging from 0.2 to 0.4 g cm–3 (Ahmad et al., 2020; 

Lennartz and Liu, 2019). The topsoil at Site 3 is an extremely degraded peat with a bulk density 

greater than 0.4 g cm–3 (Lennartz and Liu, 2019; Liu and Lennartz, 2015). The green and col-

ourful Sphagnum (S. magellanicum and S. Papillosum) and Sphagnetum magellanici form the 

bog moss at Site 1. Peat rushes (Juncus) and sedges (Cyperaceae) are the main peat forming 

vegetation at Site 2. The peat at study Site 3 has formed from sedge (Cyperaceae) and alder 

(Alnus) and undecomposed woods.  

 
Figure 2.1 Three sampling sites in Mecklenburg-Western Pomerania, Germany. (right pane showing 72 sampling 

points at each site within a 35 m × 40 m plot). 
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From each study site, 72 undisturbed peat cores (5.6 cm in diameter and 4.0 cm in height) were 

collected from 5 m by 5 m grid cells within an area of 35 m × 40 m at a depth of 10 – 20 cm 

(Figure 2.1). All peat cores from two drained peatlands were taken by cutting soil with steel 

cylinders and a sharp knife (Liu and Lennartz, 2019b; Wang et al., 2020). In order to minimize 

the soil compaction during sampling, soil cores from the natural peatland were collected during 

winter when the soil was frozen. After soil sampling, both sides of the peat cores were covered 

with lids, and all cores were placed in freezer boxes and transported back to the laboratory.  

2.2.3 Determination of hydro-physical properties of peat 

Peat cores were saturated slowly using background solution for 7 days from the bottom up-

wards to avoid gas bubbles possibly blocking water flow (Skaggs et al., 2002). The background 

solution (sodium chloride) was prepared according to electrical conductivity (EC) and pH values 

of the groundwater in the field (Site 1: EC = 60 μS cm–1, pH = 4.0; Site 2: EC = 800 μS cm–1, pH 

= 6.5; Site 3: EC = 500 μS cm–1, pH = 6.0). The pH of the background solution was adjusted 

using hydrochloric acid. The saturated hydraulic conductivity (Ks) of all peat cores were deter-

mined by a constant-head upward-flow method (Liu et al., 2016).  

The soil water retention curves (SWRCs) were determined in the laboratory using a pressure 

membrane apparatus at different pressure heads: 0, –10, –30, –60, –100, –200 and –600 cm 

H2O. In addition, volumetric soil water content at pF = 4.2 (–15850 cm H2O) was determined 

for drained peat soils using a membrane apparatus (ceramic suction plates) equipped with a 

compressor unit for pF-value 4.2. For natural peatlands, the groundwater table is always near 

the ground surface. We assume that the chosen range of pressure heads3 (ψ) applied to the 

pristine peat (from 0 to –600 cm H2O) sufficiently reflects conditions how they prevail in natural 

peatlands. The VG model (van Genuchten, 1980; Equation (2.1)) was used to fit the measured 

SWRCs.  

 𝜃(ℎ) = 𝜃 +
𝜃௦ − 𝜃

[1 + (𝛼|𝜓|)]
 (2.1) 

where θ represents the volumetric water content (cm3 cm−3) at pressure head h (– cm), θr is 

the residual water content (cm3 cm−3), θs is the water content at saturation (cm3 cm−3). α, n, 

and m are empirical parameters (m = 1–1/n), where α is related to the inverse of the air entry 

pressure head (cm−1) and n (>1) describes the pore size distribution affecting the slope of the 

retention function. In this study, θr was fixed at zero (Schwärzel et al., 2006); the parameters 

 
3 Note: To avoid confusion with abbreviation of spatial statistical parameters “lag distance”, the abbreviation for 

“(suction) pressure heads” have been modified in this thesis to ψ from the abbreviation (h) used in the correspond-

ing publication of Chapter 2. 
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θs, α, and n were optimized using the RETC software packages (van Genuchten et al., 1991). The 

parameter optimization procedure was recommended by Schwärzel et al. (2006). 

After the determination of SWRCs, the soil samples were dried at 105°C to determine the soil 

dry bulk density. Although a relatively low temperate (50°C to 80°C) was suggested to deter-

mine the bulk density in a few studies (Lewis et al., 2012; Morris et al., 2019), a temperature of 

105°C is commonly used for the determination of the bulk density of peat (Gnatowski et al., 

2010; Kechavarzi et al., 2010; Schindler et al., 2003; Schwärzel et al., 2002). Soil organic matter 

content (SOM) was analyzed by the loss on ignition (LOI) method, burning samples at a tem-

perature of 550°C for 4 hours (ISO 22476-3:2005).  

The definition of macropore is ambiguous in soil science. The minimum equivalent diameter 

for macropores reported in the literature ranges between 30 and 3000 μm (Beven and Ger-

mann, 1982; Cameron and Buchan, 2016; Carter et al., 1994). In this study, we define 

macroporosity as pores with an equivalent cylindrical diameter greater than 30 μm (Cameron 

and Buchan, 2016). The pore size in soils can be estimated from the capillary rise equation (Bear, 

1972; Equation (2.2)): 

 𝑟 =
2𝜎 cos(𝜗)

𝜌𝑔𝐻
 (2.2) 

where r is the pore radius (cm), σ is the surface tension of water (72.7 dyn cm–1), ϑ is the soil 

liquid contact angle (°), ρ is the density of water (1.0 g cm–3), g is the acceleration of gravity 

(980 cm s–2) and H is water pressure head (– cm H2O pressure head). The contact angle was 

reported to vary from 40° and 52° for moderately hydrophobic organic soils and peat (Bach-

mann et al., 2003; Carey et al., 2007; Gharedaghloo and Price, 2019). In this study, we set the 

contact angle to 52° for peat as recommended by Gharedaghloo and Price (2019). Thus, the 

macroporosity (> 30 μm) can be estimated as the difference between total porosity and the 

volumetric water content at around –60 cm H2O pressure head (Schindler et al., 2003; Wallor 

et al., 2018). 

2.2.3 Statistics analysis 

In this study, the data of SOM, bulk density, porosity, macroporosity, and VG parameter n were 

normally distributed. The Ks and α values were log-normally distributed. Therefore, the Ks and 

α values were transformed to common logarithms (log10) before further statistical and geosta-

tistical analyses. Pearson’s correlation coefficients were chosen to evaluate the strength of pos-

sible relationships between all hydro-physical properties and VG model parameters for each 

site. 
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A linear mixed-effect models (LMEMs) analysis was carried out to detect differences among 

sites with respect to hydro-physical properties of peat. The “site” was set as fixed effect while 

the “sampling location” was a random effect. The analysis was performed using R software with 

packages “lme4” and “lmerTest” (R Core Team, 2020). The pairwise comparison of LMEMs was 

performed using package “emmeans”. The level of significance was set to 0.05 for all statistical 

tests. 

The PTFs were derived to estimate the log10Ks and VG parameters (θs, log10α, and n) separately 

using physical properties (macroporosity, bulk density, and SOM). The best model was chosen 

according to a stepwise multiple regression analysis using SAS version 9.4 (SAS Institute Inc., 

2013). Previous studies have used a similar approach to establish according PTFs (e.g., Ve-

reecken et al., 1989; Wösten et al., 1999). 

The spatial variation (semivariance) of soil properties were analyzed with the geostatistical soft-

ware GS+ package (version 10). In spatial statistics, the theoretical semivariance (γ) is a func-

tion of lag distance (h, spacing between samples). The γ is estimated by Equation (2.3) (Nielsen 

and Wendroth, 2003): 

 𝛾(ℎ) =
1

2𝑁(ℎ)
 [𝐴(𝑥)−𝐴(𝑥 + ℎ)]ଶ

ே()

ୀଵ

 (2.3) 

where γ(h) is the semivariance for the interval class h, N(h) is the number of sample pairs sep-

arated by the lag distance. Ai(xi) and Ai(xi+h) are the measured variable at spatial location i and 

i+h. In order to reduce the number of points in the empirical semivariogram, the pairs of loca-

tions are commonly grouped into lag bins based on their distance from one another (Lyon et 

al., 2006; Nielsen and Wendroth, 2003; Robertson, 2008). Semivariance calculations at each 

site were based on the half of maximum lag distance of 25.20 m as suggested by Englund and 

Sparks (1991). Linear, spherical, exponential, and Gaussian models were fitted to the experi-

mental semivariograms in order to obtain the most suitable model as indicated by a high coef-

ficient of determination (R2) and low residual sum of squares (RSS). The chosen model selection 

procedure was recommended by Cambardella et al. (1994) and Gamma Design Software (Rob-

ertson, 2008). 

2.3 Results 

2.3.1 Hydro-physical properties of peat 

Table 2.1 summarizes the hydro-physical properties of the investigated soils. The average value 

of the soil bulk density at sites 1, 2 and 3 were 0.08, 0.34 and 0.54 g cm‒3, respectively (Table 
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2.1). The macroporosity varied accordingly from 1.6 vol% to 62.1 vol%. The Ks of pristine peat 

ranged from 8.5×10–7 to 5.5×10–5 m s–1, while the Ks of degraded peat varied from 7.6×10–8 to 

9.3×10–5 m s–1. In this study, the VG model appropriately described all the tested SWRCs with a 

fitting criterion of R2 > 0.95. The VG parameter α ranged from 0.001 to 1.05 and n varied from 

1.11 to 1.59. For SOM and macroporosity, the coefficient of variation (CV; Table 2.1) was smaller 

for natural than for degraded peatlands. However, the CV for VG model parameters is greater 

for natural than for degraded peatlands. The CV for Ks ranged from approximately 70% to 

150%, with the highest value obtained for Site 2.  

 

Table 2.1 Descriptive statistics of hydro-physical properties of investigated peat soils (N = 72): soil organic matter 

content, SOM; bulk density, BD; total porosity; macroporosity; saturated hydraulic conductivity, Ks; VG parameter, 

α, and VG parameter, n. 

Property 
Study 

site 

Statistical parameter 

Minimum Maximum Meanb 
Standard  

deviation 

Coefficient of variation 

(CV; %) 

SOM 

(wt%) 

1 92.11 99.78 97.73 a 0.98 0.99% 

2 53.61 79.37 69.11 b 4.13 5.93% 

3 10.70 45.08 30.44 c 7.05 23.00% 

BD 

(g cm‒3) 

1 0.05 0.12 0.08 c 0.01 18.31% 

2 0.25 0.49 0.34 b 0.04 13.06% 

3 0.36 0.84 0.54 a 0.10 19.20% 

Total porosity 

(vol%) 

1 84.99 99.95 96.62 a 2.47 2.56% 

2 76.87 90.90 82.79 b 2.79 3.35% 

3 59.74 91.01 79.43 c 5.32 6.70% 

Macroporositya 

(vol%) 

1 21.68 62.06 42.95 a 9.32 21.69% 

2 3.80 16.52 8.30 b 2.84 34.21% 

3 1.55 16.36 9.95 b 3.02 30.37% 

Ks 

(10–5 · m s‒1) 

1 0.0851 5.53 1.28 a 1.14×10–5 89.46% 

2 0.0076 9.27 1.24 b 1.85×10–5 148.83% 

3 0.0779 4.00 1.01 a 7.04×10–5 69.86% 

α 

(cm−1) 

1 0.0532 1.0494 0.1812 a 0.16 88.28% 

2 0.0008 0.0024 0.0012 b 2.98×10–4 25.94% 

3 0.0006 0.0045 0.0014 b 5.54×10–4 41.00% 

n 

1 1.11 1.41 1.23 c 0.07 5.43% 

2 1.35 1.63 1.49 a 0.05 3.65% 

3 1.27 1.59 1.45 b 0.07 4.58% 
a Macroporosity was calculated by the difference between total porosity and volumetric soil water content at –60 cm H2O pres-
sure head. 
b “a”, “b”, and “c” represent the significant difference from pairwise comparison of LMEMs. The significant difference of pa-

rameter “Ks” was determined with log-transformed Ks. 

 

The results from the pairwise comparison of linear mixed-effect models (LMEMs; Supplemental 

Table S2.1 and S2.2) indicated that the macroporosity of the pristine peat is significantly 
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greater than that of degraded peat soils (p < 0.001; Table 2.1 and Supplemental Table S2.2). 

However, there is no significant difference in macroporosity between the two degraded peat 

soils (p = 0.216). The log10Ks of peat at Site 2 is significantly lower than those values from Site 

1 and Site 3 (p < 0.001) but there are no significant differences in log10Ks between Site 1 and Site 

3 (p = 0.866; Supplemental Table S2.2). In this study, the pristine peat has significant higher 

α and lower n values than the degraded peat soils (p < 0.001; Table 2.1), but, there is no signif-

icant difference in the VG model parameter α between the two degraded peat sites (log10α: p = 

0.999). In this study, the visual inspection confirms the general similar shape of the SWRCs for 

the two degraded peat soils (Figure 2.2). The high α and low n values indicate that pristine peat 

has a lower air-entry values and a steeper retention curve at high pressure heads (Figure 2.2). 

The 95% confidence intervals of the dataset for each pressure head and estimated VG model 

parameters are shown in Supplemental Table S2.3 and S2.4.  

 
Figure 2.2 Plot of soil water retention curves (mean ± standard deviation, N = 72) of three study sites; (a) Site 1, 

natural peat; (b) Site 2, degraded peat; (c) Site 3, extremely degraded peat. 

 

 
Figure 2.3 The relationship between (a) saturated hydraulic conductivity Ks (log10Ks) and macroporosity; (b) 

macroporosity and van Genuchten parameter α (log10α); (c) macroporosity and van Genuchten parameter n of 

differently degraded peat. (pink: Site 1; orange: Site 2; blue: Site 3). 

 

A moderate positive relationship was found between log10Ks and macroporosity for all study 

sites (Pearson’s correlation coefficient > 0.55; p < 0.001; Supplemental Table S2.5). The rela-

tionship between macroporosity and log10Ks, however, differed for pristine and degraded peat 

(Figure 2.3a). A moderately positive correlation was found in two degraded peatlands between 
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macroporosity and log10α (Figure 2.3b; Supplemental Table S2.5). In addition, a negative re-

lationship between macroporosity and n was found for degraded peat (Figure 2.3c). Oppos-

ingly, a strong positive correlation between macroporosity and the VG parameter n was ob-

tained for pristine peat (Figure 2.3c; Supplemental Table S2.5; Pearson’s correlation coeffi-

cient of 0.71).  

3.3.2 Pedotransfer functions (PTFs) 

The PTFs for hydraulic parameters (log10Ks, θs, log10α, and n) of natural and degraded peat soils 

were established based on soil physical properties (macroporosity, bulk density, and SOM). The 

best fitted multiple regression models with higher R2 and lower MSE are given in Table 2.2. 

The results show that adding macroporosity to the PTFs substantially improved the prediction. 

For instance, the coefficient of determination increases by 0.2 for log10Ks values if macroporosity 

is considered. The PTFs for log10α and n were acceptable for Site 2 with coefficients of determi-

nation of 0.51 and 0.62, respectively. For natural peatlands, the PTFs perform better for n than 

for log10α. Table 2.2 and Supplemental Table S2.6 reveal a low performance of PTFs for n and 

log10α for extremely degraded peat (Site 3). Figure 2.4 presents the measured and predicted 

values of the hydraulic parameters. A high correlation was observed between measured and 

estimated soil water content with a Lin’s Concordance Correlation Coefficient of 0.96 if the total 

number of samples (1656) is considered (Figure 2.5). 

 
Figure 2.4 Relationship between measured and predicted hydraulic parameters (log10Ks, θs, log10α, and n) for dif-

ferent peat type (pink: Site 1; orange: Site 2; blue: Site 3).
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Table 2.2 Results of the multiple regression analysis in which the hydraulic parameters (log10Ks, θs, log10α, and n) were the dependent variables and the physical properties (macroporosity, 

MP, vol%; bulk density, BD, g cm−3; organic matter content, SOM, wt%) were the explanatory variable. 

Study 

site 
Peat type Parameter Modela4 R2 RSEb DF MSE P value 

Site 1 

(N = 72) 
Natural peat 

Log10Ks –4.632 + 9.236×MP – 64.195 · BD – 8.907 · MP2 + 368.711 · BD2 0.40 0.318 67 0.094 <0.001 

θs 0.767 + 5.610 · BD – 35.390 · BD2 0.11 0.027 69 0.001 0.019 

Log10α –2.611 + 1.868 · MP + 12.994 · BD 0.32 0.210 69 0.042 <0.001 

n 1.301 + 0.280 · MP – 2.365 · BD 0.64 0.041 69 0.002 <0.001 

Site 2 

(N = 72) 
Degraded peat 

Log10Ks –9.816 + 59.825 · MP +3.452 · BD – 232.621 · MP2 0.46 0.608 68 0.349 <0.001 

θs 1.002 – 0.864 · MP – 0.471 · BD 0.78 0.018 69 0.000 <0.001 

Log10α –3.147 · 2.366 · MP 0.51 0.066 70 0.004 <0.001 

n 1.736 – 1.368 · MP – 0.385 · BD 0.62 0.034 69 0.001 <0.001 

Site 3 

(N = 72) 
Extremely degraded peat 

Log10Ks –6.323 + 20.508 · MP – 76.092 · MP2 0.39 0.264 69 0.067 <0.001 

θs 1.094 – 1.678 · BD + 0.014 · SOM + 1.183 · BD2 –0.0002 · SOM2 0.37 0.046 67 0.002 <0.001 

Log10α –3.308 + 2.868 · MP + 0.238 · BD 0.36 0.113 69 0.012 <0.001 

n 1.663 – 1.130 · MP – 0.186 · BD 0.26 0.058 69 0.003 <0.001 

a Abbreviations: MP, macroporosity; BD, bulk density; SOM, soil organic matter content; Ks, saturated hydraulic conductivity; θs, estimated water content at saturation (cm3 cm−3); α and n, empirical 

parameters. 
b Abbreviations: R2, the coefficient of determination; RSE, Residual standard error; DF, Degrees of freedom; MSE, Mean squared error. 

 
4 Note: In the original publication of Chapter 2, the symbol “×” in the formula denotes scalar multiplication, not vector multiplication. Thus, the dot symbol “·” is used in the thesis instead. 
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Figure 2.5 Relationship between measured and pedotransfer functions estimated soil water content for all inves-

tigated pressure heads. 

 

2.3.3 Spatial variability of hydro-physical properties 

Table 2.3 and Figure 2.6 provide an overview of all optimized semivariogram parameters and 

the best-fitted model for hydro-physical properties of peat. The optimized models for auto-sem-

ivariograms differed between hydro-physical properties. For instance, the best model to depict 

the semivariogram of log10α (Site 3) was an exponential model, whereas the Gaussian model 

was suitable for the semivariogram of SOM (Site 3). The semivariogram models were also af-

fected by soil degradation. For instance, the semivariograms of bulk density for the natural (Site 

1) and the extremely degraded peat (Site 3) were best fitted using a linear and Gaussian model, 

respectively. The quality of fit varies among the various parameters and sites. The R2 values of 

fitted models for macroporosity and log10Ks for Site 3 and SOM at Site 1 are <0.1, while R2 of 

other parameters ranged from 0.24 to 0.99 (Table 2.3).  

A nugget to sill (nugget/sill) ratio of <25%, 25–75% and >75% reflects a strong, moderate, and 

weak spatial dependence, respectively (Cambardella et al., 1994). In this study, it was found that 

the SOM content of highly degraded peatlands is strongly spatially dependent according to the 

given classification scheme. The bulk density of all three peatlands falls into the class “moder-

ately spatially dependent”. The kriging analysis and the according 3D map shows that the bulk 

density varies greatly in space for all sites (Supplemental Figure S2.2). The bulk density was 

found to be high at one edge of the investigated plot, and gradually decreases in a certain direc-

tion at all investigated sites (Supplemental Figure S2.2). The range of the spatial dependence 

is, in general, less than 30 m for bulk density (Table 2.3). The porosity and macroporosity are 

only weakly spatially auto-correlated within the observation range.  
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Table 2.3 Semivariogram parameters of the best-fitted model for all hydro-physical properties. 

Study 

site 
Variable Modela 

Nugget 

C0 

Total sill 

C+C0 

 Nugget/sill ratio 

C0/(C+C0)×100% 
Spatial classb Range R2 RSSc 

Site 1 

SOM Lin.  7.81E–01 8.55E–01 91.39 W 25.20 0.086 3.45E–02 

Bulk density Lin. 1.20E–04 2.00E–04 61.13 M 25.20 0.846 6.86E–10 

Porosity Lin. 5.50E–04 6.40E–04 86.00 W 25.20 0.212 1.88E–08 

Macroporosity Lin. 7.07E–03 9.40E–03 75.14 W 32.46 0.290 1.67E–06 

Log10Ks Lin. 1.28E–01 1.63E–01 78.54 W 25.20 0.593 5.24E–04 

Log10α Lin. 4.08E–02 6.83E–02 59.72 M 26.09 0.691 2.29E–04 

 n Lin. 2.72E–03 4.74E–03 57.38 M 25.20 0.760 8.00E–07 

Site 2 

SOM Lin. 1.31E+01 1.62E+01 80.56 W 25.20 0.391 9.61E+00 

Bulk density Lin. 1.15E–03 1.95E–03 59.04 M 25.20 0.766 1.21E–07 

Porosity Lin. 5.70E–04 7.50E–04 75.96 W 25.20 0.506 1.97E–08 

Macroporosity Gau. 4.80E–04 7.87E–04 61.07 M 4.68 0.400 2.67E–08 

Log10Ks Exp. 5.00E–02 7.77E–01 6.43 S 3.44 0.450 6.32E–08 

Log10α Lin. 6.58E–03 9.00E–03 73.11 M 25.20 0.414 5.13E–06 

n Lin. 2.02E–03 2.99E–03 67.56 M 25.20 0.703 2.46E–07 

Site 3 

SOM Gau. 8.70E+00 6.84E+01 12.72 S 36.56 0.995 9.36E+00 

Bulk density Gau. 6.85E–03 1.59E–02 43.08 M 31.47 0.854 9.58E–06 

Porosity Lin. 2.40E–03 2.80E–03 88.51 W 25.20 0.026 2.34E–06 

Macroporosity Lin. 9.28E–04 9.55E–04 97.17 W 16.41 0.059 2.35E–09 

Log10Ks Lin. 1.07E–01 1.11E–01 96.40 W 30.50 0.044 2.42E–04 

Log10α Exp. 1.27E–02 2.06E–02 61.78 M 6.07 0.780 8.25E–06 

n Lin. 3.89E–03 4.62E–03 84.20 W 25.20 0.241 6.14E–07 
a Abbreviations: Lin., Linear model; Gau., Gaussian model; Exp., Exponential model. 
b A nugget/sill ratio of <25%, 25–75% and >75% reflects a strong, moderate, and weak spatial dependence, respectively (Cambardella et al., 1994). 
c Abbreviations: R2, the coefficient of determination; RSS, residual sum of squares. 
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Figure 2.6 Semivariograms (symbols) and fitted model (solid lines) of selected hydro-physical properties 

(macroporosity, log10Ks, log10α, and n) of three study sites. (pink: Site 1; orange: Site 2; blue: Site 3). 

 

A spatial auto-correlation was observed for Ks and Site 2, but this spatial dependence was weak 

at the other sites. At extremely degraded peatlands, the high nugget effect for log10Ks (>95%) 

suggests spatial independence. The ratio of nugget/sill of VG parameters α and n ranged from 

57.38% to 84.20%, indicating that they are weakly to moderately spatially auto-correlated.  

2.4 Discussion 

2.4.1 Effect of peat degradation on hydro-physical properties 

In this study, Ks of pristine peat (8.5×10–7 to 5.5×10–5 m s–1) is lower than values reported for 

Sphagnum (10–3 to 10–5 m s–1; Boelter, 1968; McCarter and Price, 2014; Price et al., 2008). How-

ever, the Ks of peat decreases substantially with increasing peat decomposition (Letts et al., 

2000; McCarter et al., 2020). The peat at Site 1 is classified as hemic peat with values on the 

von Post scale of H4 – H5 (von Post, 1922). For the hemic peat, the range of Ks is reported to be 

10–7 to 10–4 m s–1 (Irwin, 1968; Letts et al., 2000; Morris et al., 2019). The Ks values of peat at Site 

2 and Site 3 (7.6×10–8 to 9.3×10–5 m s–1) are comparable to previous studies for degraded fens 

(Figure 2.7; 10–8 to 10–5 m s–1; Liu et al., 2016; Kechavarzi et al., 2010; Schwärzel et al., 2006). 
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The values for α and n we found in this study are within the range (although at the lower and 

upper limit) reported by Liu and Lennartz (2019a) and Wallor et al. (2018; Figure 2.7).  

 

 
 
Figure 2.7 The relationship between (a) bulk density and macroporosity; (b) bulk density and log10Ks; (c) bulk 

density and van Genuchten parameter log10α; (d) bulk density and van Genuchten parameter n. The grey cycles 

represent values from Liu and Lennartz (2019a) and the grey plus symbols are derived from Wallor et al. (2018) 

for topsoils (8–23 cm). 

 

The observed low CV for SOM of natural peat matches the outcome of a study reported by 

Bruland and Richardson (2005), who found that the SOM of constructed and restored wetlands 

showed a greater spatial variability than that of a natural wetland. The CV values for log10Ks at 

Site 1 and Site 3 (89% and 70%) are lower than the values reported for fen peat (98%; Baird, 

1997). The high CV (149%) for log10Ks at Site 2 is comparable to values of mineral soils (100% 

to 200%; Warrick and Nielsen, 1980). It is obvious that land use and management of peatlands 

enhance the spatial variability of soil properties, but the influence varies depending on the in-

dividual site. 

Soil bulk density has been used as a proxy for peat decomposition and degradation (Frolking et 

al., 2010; Liu et al., 2020a). In this study, the relation between bulk density and macroporosity 
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as well as log10Ks (Figure 2.7) follow functions reported earlier by Liu and Lennartz (2019a) 

and Liu et al. (2020a). The macroporosity decreases substantially with increasing bulk density 

from 0.01 to approximately 0.2 g cm–3, and then remains almost constant with a further in-

crease in bulk density (Liu and Lennartz, 2019a).  

Although previous studies reported that the log10Ks of bogs is strongly negatively correlated with 

bulk density (Liu and Lennartz, 2019a; Morris et al., 2019; Silins and Rothwell, 1998), only a 

moderate negative correlation (Pearson’s correlation coefficient of 0.42, p < 0.001; Supple-

mental Table S2.5) was observed here (Figure 2.7). It is possible that microhabitats (e.g., roots 

from vegetation/trees/shrub) play an important role in the permeability of peat (Morris et al., 

2019). For both degraded sites, a very weak correlation was found between bulk density and 

log10Ks (Figure 2.7; Supplemental Table S2.5), indicating that the permeability of degraded 

peat is not controlled by degradation processes once a threshold (bulk density > 0.2 g cm–3) has 

been reached. 

2.4.2 Macroporosity, Ks, and VG parameters 

Macropores play a critical role in water flow and solute transport in peat soils (Holden et al., 

2012; McCarter et al., 2020; Rezanezhad et al., 2016). However, the definition of macropore 

varies for peat. Baird (1997) and Holden et al. (2001) quantify the microporous volume and 

macropore flow from tension infiltrometer tests (–3 cm pressure head; pores with equivalent 

diameter > 1 mm). They observed that the macropore flow contributed 21% to 78% of the total 

surface water flow in peatlands. Liu et al. (2016) identified macropores (pore diameter > 0.1 

mm) of peat from dye tracer experiments. Weber et al. (2017), McCarter et al. (2020), and Bran-

ham and Strack (2014) defined the macropore as pores with an equivalent diameter > 300 μm. 

They calculated the macroporosity as the differences between total porosity and water content 

at –10 cm H2O pressure head. For Sphagnum, the microporous volume represents inter-plant 

pores (Weber et al., 2017). However, the reported definitions are mostly for natural or less de-

composed (degraded) peat. For highly and extremely degraded peat (bulk density > 0.2 g cm–

3), the macroporosity is always estimated from the differences between total porosity and volu-

metric water content at –60 cm H2O pressure head (Schwärzel et al., 2002; Schinlder et al., 

2003; Wallor et al., 2018), corresponding to pores with an equivalent diameter > 30 μm (contact 

angle of 52°; Gharedaghloo and Price, 2019). One possible reason for diverging definitions is 

that values of macroporosity (pore diameter > 300 μm) are quite small for highly and extremely 

degraded peat (<1 vol%; Liu et al., 2020a) and are difficult to quantify. 

The functional relations between macroporosity and log10Ks differ between natural and drained 

peatlands, which is possibly linked to the origin and formation of macropores in peat. The 
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Sphagnum peat contains abundance of macropores due to the structure of Sphagnum plant and 

vascular plant roots (McCarter et al., 2020; Weber et al., 2017). The macropores are reported to 

be inter-connected (Quinton et al., 2009). However, the Sphagnum moss can alter the pore 

structure to suit its specific physiological growth (Goetz and Price, 2015), therefore, the pore 

size distribution varies greatly within the broad classification of Sphagnum. The hydraulic con-

ductivity of Sphagnum is controlled by pore hydraulic radius (Quinton et al., 2008; Rezanezhad 

et al., 2010). Peatland drainage causes subsidence and carbon mineralization, which substan-

tially decreases macroporosity and increases the micropore fraction (Silins and Rothwell, 1998; 

Rezanezhad et al., 2010; McCater et al., 2020; Liu et al., 2020a). Meantime, the pore tortuosity 

increases and pore connectivity declines (Rezanezhad et al., 2010). In contrast, the sedge-de-

rived peat is more susceptible to decay than Sphagnum derived peat (Hájek et al., 2011). In 

degraded fen peat (Site 2 and Site 3), the peat forming plant materials (e.g., Sedge) vanishes 

and the number of smaller pores, hence tortuosity, increases due to long-term drainage. In de-

graded peat soils, (secondary) bio-pores (roots and earthworm channels) and cracks are form-

ing the macroporous network (Liu and Lennartz, 2015; Liu et al., 2016). Thus, the geometry of 

the macropores (e.g., pore connectivity, pore throat diameter) differs between pristine and de-

graded peat, which may be the cause for differences in relationships between macroporosity 

and Ks. 

Additionally, VG parameters are likewise affected by macroporosity. Interestingly, the VG pa-

rameter n presented an opposite correlation with macroporosity in degraded and natural peat 

soils in this study. It is possible that in degraded peat soils, a large fraction of small aggregates 

decreases the macroporosity but increases soil water retention, which corresponds to a greater 

n value (Guber et al., 2004). In contrast, the reason for a positive correlation between the 

macroporosity and the VG parameter n of the natural peat is unknown, we, however, assume 

that a more pronounced pore connectivity in pristine peat may have caused interrelations be-

tween macroporosity and the parameter n.  

2.4.3 Pedotransfer functions 

The performance of PTFs for Ks is low when only soil bulk density and SOM considered, espe-

cially for Site 2 and Site 3 (R2 < 0.2; Supplemental Table S2.7). It seems that soil structure, 

known to strongly impact Ks, are insufficiently reflected by bulk density and SOM (Wagner et 

al., 2001), especially in the case of highly degraded peat soils (Liu and Lennartz, 2019a; Wallor 

et al., 2018). A continuous macroporous network (e.g., cracks, earthworm holes or root chan-

nels) may have little impact on soil bulk density and SOM, but may substantially alter Ks (Beven 

and Germann, 1982; Holden, 2009; Liu et al., 2016).  
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We could show that the inclusion of macroporosity into the PTFs substantially improves the 

prediction of Ks (Supplemental Table S2.7). This finding indicates that soil macroporosity is a 

crucial driver of Ks, which has been overlooked in previous peatland studies (Liu and Lennartz, 

2019a; Wallor et al., 2018; Wösten et al., 1999). Recent studies by Zhang et al. (2019) and Zhang 

et al. (2020) similarly indicate that adding macroporosity to PTFs substantially improves the 

prediction of hydraulic conductivity of mineral soils. It should be noted that the models devel-

oped in this study still have a relatively high RSE and low R2 (<0.5). One possible reason for the 

comparable weak performance is that not only macroporosity but also pore connectivity and 

pore throats might have a strong control on water flow in soils (McCater et al., 2020; Liu et al., 

2016; Rezanezhad et al., 2010; Schlüter et al., 2020).  

The performance of PTFs for n is better than for α for pristine peat (Table 2.2). It should be, 

however, noted that the VG parameter α was more sensitive to large macropores (equivalent 

circular diameter of 300 μm) than to the macroporosity as defined in this study (> 30 μm; 

Supplemental Figure S2.3), because the air entry value refers to the minimum matric suction 

at which air starts to enter the largest pores in the soil (Nemati et al., 2002). This finding has 

been well documented in previous studies (Liu and Lennartz, 2019a; Thompson and Wadding-

ton, 2013). The performance of PTFs on VG parameters (α and n) declines with peat degrada-

tion. It is very likely that the mineral fraction of up to 70 wt% in extremely degraded peat plays 

an important role in soil pore size distribution. In future studies, additional information on the 

particle size distribution of the mineral fraction (Wösten et al., 1999) as well as the carbon to 

nitrogen ratio (Morris et al., 2015) shall be scrutinized to possibly improve the prediction power 

of PTFs for hydro-physical properties of peat. 

2.4.3 Spatial dependence of hydro-physical properties 

The nugget is the semivariance at a lag distance of zero, representing the measurement errors 

or microvariability of the variable over smaller distance than the sampling interval (Nielsen and 

Wendroth, 2003). The high nugget/sill ratio for SOM at Site 1 and Site 2 (> 80%), indicate that 

the microvariability of SOM cannot be detected at the scale of the sampling interval (5 m). The 

smallest nugget/sill ratio of SOM and bulk density was observed for Site 3 (extremely degraded 

peatland), indicating that sampling interval is suitable to analyze spatial variability of the two 

variables. The stronger spatial dependence of SOM and bulk density assists in generating a rel-

atively accurate soil map or carbon storage map through kriging for extremely degraded peat-

lands. Recently, Negassa et al. (2019) observed a rather strong spatial dependency of SOM (nug-

get/sill ratio < 1%; topsoil) at a rewetted peatland. Given the fact that the rewetted peatland 

had a same development and drainage history as Site 2 of this study (Ahmad et al., 2021), it 
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seems that the land management (e.g., rewetting) play an important role for the spatial distri-

bution of soil properties. 

The high nugget/sill ratio (> 75%) for Ks at Site 1 and Site 3, reveals that the microheterogeneity 

of Ks in the fields cannot be detected from the sampling interval as chosen in this study. A pure 

nugget effect (nugget/sill ratio > 95%; spatially independent) for Ks and macroporosity at Site 

3 indicate a random distribution pattern (unpredictable) of the two variables (Webster and Ol-

iver, 2001). The random distribution pattern (pure nugget effect) has also been reported for Ks 

of mineral soil at a scale of 6 m (Banton, 1993). It is interesting to note that the nugget/sill ratio 

of macroporosity and Ks are comparable for each individual site. We take this as a hint that the 

spatial distribution pattern of soil structure (e.g., macroporosity) controls the spatial distribu-

tion pattern of Ks.  

For all study sites, the nugget/sill ratio values for VG parameters are mostly less than 75%. This 

finding confirms results of Gnatowski et al. (1996), who studied drained peatlands in Poland 

and came up with nugget/sill ratios for VG parameters ranging from 46.4% to 77.1%. For min-

eral soils, as mentioned by Wang et al. (2015) and Biswas and Si (2009), a moderate or strong 

spatial dependence was found for both VG parameters α and n.  

For mineral soils, the exponential or gaussian model have always been used to describe the 

semivariogram of Ks (Biswas and Si, 2009; Gwenzi et al., 2011; Iqbal et al., 2005; Zhang et al., 

2020). However, we find the semivariograms of log10Ks are depicted well by exponential model 

at Site 2 and linear model at Site 1 and Site 3. The linear model was also chosen to describe the 

semivariograms of log10Ks by Gnatowski et al. (1996) for a drained peatland site.  

2.5 Conclusions 

Soil hydraulic and physical properties were determined on a grid basis for natural and drained 

peatlands. Pedotransfer functions were established to estimate saturated hydraulic conductivity 

and van Genuchten parameters using easily available soil properties. Spatial dependence of soil 

hydro-physical properties was investigated employing geo-statistical models. We found that the 

adding of soil structure information (macroporosity) to pedo-transfer-functions substantially 

improves the prediction of all hydro-physical parameters, especially for degraded peat. How-

ever, additional soil parameters such as the texture of the mineral fraction should be considered 

to even further improve the predictions in future studies. The hydro-physical properties of peat 

soils are weakly to strongly auto-correlated according to the nugget/sill ratio. The SOM content 

of highly degraded peat is strongly spatially dependent in opposite to other tested soil proper-

ties. It is possible that soil management produced, for instance, micro depressions, which con-

served SOM longer than at other locations at the same site. From the data of this study, which 
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was collected at a meter to tens of meter scale, the stage of peat degradation impacts the spatial 

variability significantly. In order to better understand the overall functions of peatlands in hy-

drology and ecology, it is necessary to extend the work to a larger scale to get an in-depth 

knowledge of the hydraulic and physical properties of peatlands. With the so far obtained re-

sults, we are in a better position to more accurately parameterize spatially distributed (for in-

stance 2D) hydrological models for peatlands. In addition, spatial patterns of soil properties may 

play an important role in peatland restoration projects. Thus, it is important in hydrological 

modeling and meta studies of peatland to take these spatial differences of soil properties into 

account as it appears that the human influence (e.g., climate change, cultivation history) could 

significantly alter the inherent properties of the soil at a certain scale.  
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Abstract 

Peat soils are heterogeneous and anisotropic porous media. Compared to mineral soils, there is 

still limited understanding of physical and solute transport properties of fen peat soils. In this 

study, we aimed to explore the effect of soil anisotropy on solute transport in degraded fen peat. 

Undisturbed soil cores, taken in vertical and horizontal direction, were collected from one 

drained and one restored fen peatland both in a comparable state of soil degradation. Saturated 

hydraulic conductivity (Ks) and chemical properties of peat were determined for all soil cores. 

Miscible displacement experiments were conducted under saturated steady state conditions us-

ing potassium bromide as a conservative tracer. The results showed that 1) the Ks in vertical 

direction (Ksv) was significantly higher than that in horizontal direction (Ksh), indicating that Ks 

of degraded fen peat behaves anisotropically; 2) pronounced preferential flow occurred in ver-

tical direction with a higher immobile water fraction and a higher pore water velocity; 3) the 

5% arrival time (a proxy for the strength of preferential flow) was affected by soil anisotropy 

as well as study site. A strong correlation was found between 5% arrival time and dispersivity, 

Ks and mobile water fraction; 4) phosphate release was observed from drained peat only. The 

impact of soil heterogeneity on phosphate leaching was more pronounced than soil anisotropy. 

The soil core with the strongest preferential flow released the highest amount of phosphate. We 

conclude that soil anisotropy is crucial in peatland hydrology, but additional research is required 

to fully understand anisotropic effects on solute transport.  
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3.1 Introduction 

Peatlands cover only 3% of global land area, but store about 10% of global fresh water and play 

a major role in water purification (Rezanezhad et al., 2016; Xu et al., 2018). More than 40% of 

European peatlands have been anthropogenically altered and are degraded because of drainage 

and climate change, losing their ecosystem functions as water storage and water filter (Joosten, 

2009; Lennartz and Liu, 2019). Several studies have been conducted on hydro-physical (Holden 

et al., 2004; Liu and Lennartz, 2019a), and solute transport properties (Liu et al., 2017; McCarter 

et al., 2019), as well as pore water chemistry (Tiemeyer et al., 2017; Zak and Gelbrecht, 2007) 

of degraded peat soils and their significant impact on carbon and nitrogen cycles could be 

demonstrated (Baird et al., 2009; Limpens et al., 2008; Liu et al., 2019). Water flow and solute 

transport in peat soils are controlled by soil physical properties (e.g., soil organic matter content, 

pore structure), but are also affected by pore water chemistry (Kettridge and Binley, 2010; Ours 

et al., 1997).  

Compared with mineral soils, peat has some unique features such as a high organic matter 

content and a low bulk density (Eggelsmann et al., 1993). The total porosity of peat could be as 

high as almost 100 vol% (Paavilainen and Päivänen, 1995). Peat soils exhibit highly heteroge-

neous and anisotropic properties. For instance, the saturated hydraulic conductivity (Ks) may 

range over about two orders of magnitude for a specific peat soil (Cunliffe et al., 2013; Liu and 

Lennartz, 2019a). The anisotropic behavior of Ks has been studied over the last two decades 

(Beckwith et al., 2003; Cunliffe et al., 2013; Gharedaghloo et al., 2018; Kruse et al., 2008; Lewis 

et al., 2012; Liu et al., 2016; Morris et al., 2019; Rosa and Larocque, 2008). Gharedaghloo et al. 

(2018) investigated the pore structure of bogs and found that Ks is isotropic locally at pore-scale, 

but becomes anisotropic after upscaling to core-scale because of the layered structure of the 

peat. Liu et al. (2016) conducted a dye tracer experiment for non-layered fens and the pore 

network indicated that the connected macropores are predominantly vertically or horizontally 

orientated depending on sampling site leading to an anisotropic Ks. In addition, the anisotropic 

nature of peat is highly affected by soil degradation (Liu et al., 2016). In more pristine peat, the 

dominant flow and transport direction depends on the peat forming process and how dying 

plants and decaying plant materials were deposited. With advancing peat degradation, the vol-

ume fraction of macropores and pore connectivity decrease significantly (Liu et al., 2016; Liu 

and Lennartz, 2019a) resulting in a relative isotropic structure of highly degraded peat soils 

(Kechavarzi et al., 2010; Liu et al., 2016). In addition, cracks occur in peat soils in dry summers, 

which may increase macroporosity of peat soils (Holden et al., 2001). 

Tracer techniques provide useful tools to explore water flow and solute transport processes in 

soils (Leibundgut et al., 2009).Various forms of tracers such as isotope 18O (Ronkanen and 
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Kløve, 2007), salt (Baird and Gaffney, 2000; Hoag and Price, 1997; Liu et al., 2017; McCarter et 

al., 2018), fluorescence (Ramirez et al., 2016), and dyes (Liu et al., 2016; Liu and Lennartz, 2015; 

Mooney et al., 1999) have been applied onto peat in the field or laboratory. All tracer experi-

ments verify that preferential flow is a common phenomenon in peat soils. The occurrence of 

preferential flow is in accordance with the dual porosity structure of peat (active porosity and 

dead-end pores; Rezanezhad et al., 2016). Undecomposed plant material (e.g., woody or phrag-

mites structures) as well as biopores such as root channels may serve as preferential flow path-

ways in peat soils (Liu et al., 2016; Liu and Lennartz, 2015; Mooney et al., 1999). Recent studies 

indicated that pronounced preferential flow mainly occurs in highly degraded peat soils (Liu et 

al., 2017). In this study, we define preferential flow as all phenomena where water, solutes and 

colloids move along certain pathway, while bypassing a fraction of soil matrix (Hendrickx and 

Flury, 2001). In other words, the soil contains a fraction of dead-end pores and/or immobile 

water (Liu et al., 2017; Vanderborght and Vereecken, 2007). 

The determination of solute transport properties and the identification of preferential flow also 

depend on the properties of applied tracers. Chloride as well as tritium tracers were retarded in 

less degraded peat soils (Liu et al., 2017; McCarter et al., 2018). The adsorption of chloride onto 

peat was found to be related to its concentration (e.g., >500 mg L–1, McCarter et al., 2018) and 

the soil organic matter content (Sheppard et al., 2009). Although there are several studies on 

solute transport in peat soils (Hoag and Price, 1997; Rezanezhad et al., 2012; Liu et al., 2017; 

McCarter et al., 2018), to our knowledge, there is no discussion on the effect of soil anisotropy 

on solute transport and strength of preferential flow in degraded fen peat soils in the existing 

literature. 

Preferential flow pathways may enhance contaminant (e.g., phosphate) transport to groundwa-

ter leading to eutrophication in adjacent water bodies (Forsmann and Kjaergaard, 2014; Ron-

kanen and Kløve, 2009). Macropores are likely the primary transport pathways for phosphorus 

(P) in soils (Geohring et al., 2001; Simard et al., 2000; Vidon and Cuadra, 2011). Previous studies 

also indicated the P accumulation along macropore flow pathways (Backnäs et al., 2012; Gächter 

et al., 1998; Ronkanen and Kløve, 2009). The P adsorption/desorption behavior was found to 

differ between soil material forming macropores (pore wall material) and the soil matrix (Han-

sen et al., 1999; Jensen et al., 2002). However, little is known about the effect of anisotropic soil 

structure on phosphate leaching in degraded fen peat. In this study, miscible displacement ex-

periments were conducted on horizontally and vertically collected fen peat. The objectives of 

the study were to quantify the effect of peat anisotropy 1) on solute transport properties, 2) the 

preferential flow phenomenon, and 3) on the release of phosphate from degraded fen peat.  
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3.2 Material and Methods 

3.2.1 Study sites and soil sampling 

The two study sites are located at approximately 10 km south of the city of Rostock on either 

side of the Warnow River in Mecklenburg-Western Pomerania in Germany (Site 1, 54°00’ N, 

12°07’ E; Site 2, 54°00’ N, 12°08’ E). The riparian fen peat soils at both sites have been artificially 

drained since the 19th century by ditches, which caused the mineralization of the organic matter 

predominantly of the upper few decimeters of soil horizons. The soil degradation process is 

accompanied by a loss of soil organic matter and an increase in soil bulk density. Both experi-

mental sites have been under agricultural use mainly as grassland. Whereas Site 1 is still subject 

to agricultural use, Site 2 has been restored by blocking ditches and converted into a nature 

reserve (Ministry of the Environment Mecklenburg-Vorpommern, 2003) since the 1990s. The 

dominant botanical species forming the fen peat at both sites are sedge (Cyperaceae) and alder 

(Alnus). The fraction of wood-based material is approximately 30%. For each of the two study 

sites, an area of 8 m × 8 m was selected for sampling. Eight sampling profiles (0.5 m × 0.5 m) 

were randomly chosen within the area and excavated down to a depth of 0.4 m. Two samples 

(one vertical and one horizontal) were taken from each pit at 0.4 to 0.5 m depth. For the hori-

zontal samples, the pit was first deepened down to 0.6 m in order to take the sample exactly 

from the same depth as the vertical sample. 

All 32 undisturbed soil cores (diameter of 8 cm, length of 5 cm) from both sites were collected 

by cutting the soil with a sharp knife in front of cylinder, which was slowly inserted into the soil 

in either horizontal or vertical direction. Cylinders were then removed from the soil by excavat-

ing a large soil block, from which the cylinders were carefully removed (Liu and Lennartz, 

2019b). The soil cores were sealed on both ends with lids and tape before being neatly placed in 

a cool box and transported back to the laboratory. 

3.2.2 Hydro-physical properties 

Before the determination of saturated hydraulic conductivity (Ks), all peat cores were slowly 

saturated upwards from the bottom with tap water; tap water was chosen because its electrical 

conductivity (EC, 650 μS cm–1) is within the range of EC found for groundwater at the study 

sites (EC, 400 to 700 μS cm–1). A previous study on samples from the same sites proved that 

the determination of Ks was not sensitive to water salinity and EC variations (Gosch et al., 2018). 

A constant-head upward-flow method was used to measure Ks in the laboratory at constant 

temperature of approximately 15°C (Supplemental Figure S3.1; Kruse et al., 2008; Liu et al., 

2016). The chosen upward flow method allowed an exact adjustment of the hydraulic head and 

according to flow rates. Low flow rates are desired to avoid internal erosion and gas bubble 



CHAPTER 3. EXPERIMENTAL STUDY 2 

53 

 

entrapment. The Ks values have always been standardized to 10°C employing the equation pro-

vided by Klute (1965; see also Kruse et al., 2008).  

Soil dry bulk density was determined by oven-drying the samples at 105 °C for 24h. After drying, 

the soil mass was related to the volume of the sample cylinder. The organic matter content was 

measured in the laboratory by the loss on ignition (LOI) method (550 °C; ISO 22476-3:2005). 

Soil particle density was determined following standard measurements (ISO 17892-3:2004). 

Total porosity was estimated based on bulk density and particle density. Macroporosity was 

estimated by the differences between total porosity and volumetric water content at –60 cm 

H2O pressure head assuming a contact angle of 0° for degraded fens (equivalent pore diameter 

of 50 μm; Liu and Lennartz, 2019a; Schindler et al., 2003). Recently, a contact angle of 51.7° 

was reported for bogs by Gharedaghloo and Price (2019). In this context5, the macroporosity 

determined by our method corresponds to pores with an equivalent diameter >30 μm. How-

ever, differences in parent plant material as well as mineral content between bogs and fens do 

not allow to directly transfer the observation between peat types. The basic physical properties 

of the investigated peat are shown in Table 3.1. 

 

Table 3.1 Physical properties of the peat soils investigated, mean (standard deviation), N = 8. 

Study 

site 

von 

Post 

SOM  

content 

Bulk  

density 

Particle 

density 

Total  

porosity 

Macro- 

porositya 

Total  

phosphate 

 content 

Redox sensi-

tive phosphate 

content 

– wt% g cm‒3 g cm‒3 vol% vol% mg g–1 mg g–1 

Site 1 H5 81.2 (3.0) 0.19 (0.01) 1.56  87.8 (0.6) 10.16 (0.03) 0.78 (0.06) 0.03 (0.004) 

Site 2 H5 88.1 (0.7) 0.19 (0.01) 1.51  87.4 (0.1) 4.34 (0.01) 0.44 (0.03) 0.01 (0.005) 
a Macroporosity was calculated by the difference between total porosity and volumetric soil water content at –60 cm H2O pres-

sure head. 

 

3.2.3 Miscible displacement experiments and strength of preferential flow 

For each site, 6 soil cores (3 in vertical and 3 in horizontal direction) from 3 soil profiles were 

chosen to conduct the miscible displacement experiments. The chosen soil samples reflect the 

range of observed Ks values. Before the onset of the transport experiment, soil cores were satu-

rated with background water (sodium chloride (NaCl) solution, EC = 500 μS cm–1, pH = 6) 

using a peristaltic pump from bottom to top at a slow and constant flow rate of q = 0.1 cm h–1 

 
5 Note: This sentence was added in this Chapter and did not appear in the corresponding published paper. To 

maintain methodological consistency throughout the thesis, the calculation of macroporosity in peat soils across 

all three experimental chapters followed the same approach. This decision was made due to the inherent ambiguity 

and complexity in defining the equivalent pore diameter for macropores in peat soils. 
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for 7 days to purge gas bubbles that may block flow (Figure 3.1; Skaggs et al., 2002). The back-

ground water was prepared using deionized water (Skaggs et al., 2002) with low gas content 

(2.3 mg O2 L–1; Gosch et al., 2018). Considering the low gas content in the background water, 

the effect of the dissolved gases on the experiment can be ignored. Thereafter, potassium bro-

mide (KBr) tracer (KBr and NaCl solutions, concentration of Br 100 mg L–1, EC=500 μS cm–1, 

pH=6) was applied with a constant flux of q = 0.34 cm h–1 (within the range of observed Ks 

values) for 44 hours, which corresponds to three pore volumes (V/V0; V, outflow volume; V0, 

water-filled pore volume under fully water saturated conditions). Solute solution was collected 

by fraction samplers. 

The experimental set-up is illustrated in Figure 3.1. Porous plates were placed onto both ends 

of the soil cores to ensure a homogenous distribution of the tracer. There is a small space 

above/below the porous plates, which enables mixing and homogenous entrance of the tracer 

into the column. 

 

Figure 3.1 Set-up for miscible displacement experiments in intact peat soil samples. 

 

The obtained bromide breakthrough curves (BTCs) were corrected by subtracting a blank-BTC 

(tracer experiment on the empty set-up), which removed the effect of dead volumes originating 

from tubes, porous plates etc. (Supplemental Figure S3.2; Rajendran et al., 2008; Rezanezhad 

et al., 2012). The corrected BTCs were plotted as relative concentration6 (Ce/Ci; Ce, effluent con-

centration; Ci, influent concentration) against exchanged pore volumes (volume of peat soil core 

occupied by fluid). The well-established mobile-immobile model (MIM) was used to evaluate 

the obtained BTCs (van Genuchten and Wierenga, 1976). In the MIM model, according to the 

 
6 Note: As mentioned in Chatper 1, to avoid confusion with the abbreviations of spatial statistical parameters “nug-

get/sill ratio”, the abbreviations for “the effluent concentration” and “the influent concentration” have been mod-

ified in this thesis to Ce and Ci, respectively, from the abbreviations (C and C0) used in the corresponding publication 

of Chapter 3. 
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pore water flow velocity (v), two pore regions are distinguished: mobile region (vm > 0) and 

immobile region (vim = 0). In its dimensionless form, the solute transport in a dual porosity 

medium can be given as Equations (3.1) to (3.3): 

 𝛽𝑅
𝜕𝐶

𝜕𝑇
+ (1 − 𝛽)𝑅

𝜕𝐶

𝜕𝑇
=

1

𝑃𝑒

𝜕ଶ𝐶

𝜕𝑋ଶ
−

𝜕𝐶

𝜕𝑋
 (3.1) 

 (1 − 𝛽)𝑅
𝜕𝐶

𝜕𝑇
= 𝜔(𝐶 − 𝐶) (3.2) 

 𝑃𝑒 =
𝑣𝐿

𝐷
 (3.3) 

where T is dimensionless time, X is space coordinate, β is the fraction of the mobile soil water 

zone (dimensionless), ω is the mass transfer coefficient between the mobile and immobile re-

gions (dimensionless). R is the retardation factor. The effluent concentration (Ce) was normal-

ized with the influent concentration (Ci). The Péclet number expresses the ratio of advection to 

diffusion, where vm is pore water velocity in the mobile zone, Dm is hydrodynamic dispersion 

coefficient of the mobile zone, (Dm=D/β; L2 T–1). D is hydrodynamic dispersion coefficient for 

the entire sample (Radcliffe and Simunek, 2010; Skaggs et al., 2002; Toride et al., 1999). 

In this study, the MIM model parameters (β, D, and ω) were calibrated using the nonlinear least-

squares parameter optimization program CXTFIT (Toride et al., 1999) with R fixed at 1. The 

parameter v was fixed at the average pore water velocity (0.383 cm h–1). During the optimiza-

tion procedure, the parameters D, β, and ω were initially set to 1.0, 0.5 and 0.2, respectively 

(Toride et al., 1999) and thereafter several estimation trials were conducted with adjusting the 

initial values (van Genuchten et al., 2012). The upper and lower boundaries of the three fitted 

parameter values as obtained from the numerical inverse model are provided in the Supple-

mental Table S3.1. The parameters were eventually chosen based on the highest coefficient of 

determination and lowest mean square error. 

Additionally, the strength of preferential flow was estimated based on the 5% bromide mass 

arrival time, when 5% of the applied bromide has been recovered in the effluent (Knudby and 

Carrera, 2005; Koestel et al., 2013, 2011; Norgaard et al., 2018; Soares et al., 2015). The lower 

the 5% arrival time, the stronger the preferential flow with limited residence time (Koestel et 

al., 2011; Soares et al., 2015). 
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3.2.4 Chemical and statistical analysis 

For all collected effluent samples, bromide concentrations were determined by ion chromatog-

raphy employing a Metrohm 930 Compact IC Flex. Soluble reactive phosphorus concentration 

in the outflowing water from soil cores, in following denoted as soil leachate, was analyzed after 

filtration with syringe filters (0.45 μm pore size) by using the molybdenum blue method (Cary 

IE; Varian, Darmstadt, Germany) according to Murphy and Riley (1962). For the determination 

of total phosphorus (TP), dried peat (60°C, 48 hours) was homogenized in a stainless-steel mill. 

The TP content of peat was determined as SRP after an acid digestion procedure (circa 10 mg 

dry sample + 2 mL 10 M H2SO4 + 4 mL 30% H2O2 + 20 mL deionized water at 160°C for 2 h). 

TP of sites 1 and 2 was 0.78 mg g–1 and 0.44 mg g–1, respectively (N = 8, 40–50 cm depth). To 

determine the amount of P, which can be mobilized under anoxic conditions by redox processes, 

10 g of fresh (i.e., wet) peat were extracted with a 0.11 M bicarbonate-dithionite solution in 

accordance with Zak et al. (2008). The dissolved P in the filtered extract solution (syringe filters; 

0.45 μm pore size) was analyzed with ICP-OES (Inductively coupled plasma - optical emission 

spectrometry).  

A t-test was used to test the differences in Ks (as log10 Ks) of peat between horizontal and vertical 

directions and the differences in total phosphate between sites. The effect of sites and sampling 

direction on 5% arrival time was tested using a general linear model. All the statistical analyses 

were performed using R (R Core Team, 2015) and the level of significance was set to 0.05.  

3.3 Results and Discussion 

3.3.1 The anisotropy of saturated hydraulic conductivity 

The obtained Ks values of the investigated peat soils ranged over two orders of magnitude from 

0.06 to 15.01 cm h–1, which is within the previous reported range of values from 0.6 to 71.8 cm 

h–1 (Kruse et al., 2008; Liu and Lennartz, 2019a) of fen peat. The Ks values differed significantly 

between the two sites (p<0.001) although the peat of both sites is in a comparable degradation 

stage (e.g., bulk density, von Post humification and organic matter content are within the same 

range). The geometric mean value of Ks of peat at Site 1 is 2.25 cm h–1, which is significantly 

higher than that of the peat from Site 2 (geometric mean of Ks = 0.23 cm h–1). The observed 

differences in Ks are most likely related to the macroporosity (equivalent pore diameter of 

>50μm; Schindler et al., 2003), which was found to be 0.13 ± 0.03 vol% (mean ± standard 

deviation) for Site 1 and 0.05 ± 0.01 vol% for Site 2 (Table 3.1). The finding indicates that the 

Ks of degraded peat is more sensitive to macroporosity rather than bulk density and von Post 

humification. The latter two properties did not differ between both sites (Table 3.1).  
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Figure 3.2 Boxplot of saturated hydraulic conductivity (Ks, cm h–1) of peat soils in horizontal and vertical directions 

at Site 1 and Site 2. 

At both sites, significant differences were observed in Ks between vertical (Ksv) and horizontal 

(Ksh) flow directions (p < 0.01), indicating that Ks is anisotropic in the case of the two investi-

gated sites (Figure 3.2). The anisotropy ratio (log10(Ksh/Ksv)); Beckwith et al., 2003; Liu et al., 

2016) of sites 1 and 2 are –0.80 and –0.41, respectively, suggesting that Ksv was higher than Ksh. 

Previous studies on peat soils have reported that Ksh could be greater than Ksv (Beckwith et al., 

2003; Lewis et al., 2012; Cunliffe et al., 2013), whereas the opposite results (Ksv > Ksh) were also 

obtained (Kruse et al., 2008; Liu et al., 2016; Surridge et al., 2005). The anisotropy ratio found 

in this study is within the earlier reported range of values from –1.1 to 2.4 (Beckwith et al., 2003; 

Kruse et al., 2008; Liu et al., 2016). The hydraulic anisotropy of peat soils is related to the ori-

entation of undecomposed plant materials (Chason and Siegel, 1986; Liu et al., 2016; Surridge 

et al., 2005). At both investigated sites, undecomposed wood branches (alder) were predomi-

nantly vertically orientated (Liu et al., 2016; Liu and Lennartz, 2015), facilitating water move-

ment in vertical direction.  

3.3.2 Breakthrough curves 

The measured and corrected BTCs are presented in Figure 3.3. For all the soil cores, the recov-

ery of the applied tracer was greater than 95%, which is indicative for a negligible bromide 

adsorption (Kleimeier et al., 2014). All BTCs exhibited an early breakthrough with relative con-

centrations Ce/Ci of 0.5 occurring at less than one pore volume. Four BTCs of vertically collected 

peat samples (S1V2, S2V3, S2V1, and S2V3) had a much earlier breakthrough and a longer tail-

ing than the other eight BTCs, indicating a strong preferential flow (Liu et al., 2017; Rezanezhad 

et al., 2012).  
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Figure 3.3 Corrected bromide breakthrough curves plotted as relative concentrations (Ce/Ci) against number of 

pore volumes: (a) Site 1; (b) Site 2. The solid lines show the mobile and immobile model (MIM). 

 

In this study, both the CDE model (only D was fitted; Supplemental Table S3.2) and the MIM 

model (D, β, and ω were fitted) were employed to describe the measured BTCs (Table 3.2). The 

MIM model adequately described all BTCs with a higher fitting criterion of R2 > 0.99 and smaller 

mean square error than those obtained with the CDE model (Supplemental Table S3.3), alt-

hough for two BTCs the R2 was above 0.99 using the CDE model. For most of the BTCs, the 

errors between simulated and observed values are normally distributed (Supplemental Figure 

S3.3 and Table S3.4). The corrected Akaike information criterion (AICc; Burnham and Ander-

son, 2002); Supplemental Table S3.3) suggests that the MIM model did not over-fit the BTCs. 

The calibrated soil transport parameters of the MIM model, 95% confidence limits and the co-

variance matrix for fitted parameters of each sample are shown in Table 3.2 and Table 3.3 and 

Supplemental Table S3.5, respectively.  

 

Table 3.2 Values of calibrated parameters from mobile-immobile model. 

Study 

sites 

Direction of 

Samples 

 
Column 

βa ω vm Dm λ R2 MSE 

 – – (cm h–1) (cm2 h–1) (cm) – – 

Site 1 

Horizontal 

 S1H1 0.83 0.00b 0.46 1.25 2.69 0.995 0.0008 

 S1H2 0.94 0.00 0.41 1.36 3.34 0.995 0.0006 

 S1H3 0.88 0.00 0.43 1.62 3.73 0.997 0.0004 

Vertical 

 S1V1 0.88 0.00 0.44 1.13 2.59 0.996 0.0006 

 S1V2 0.48 1.69 0.80 3.30 4.10 0.993 0.0008 

 S1V3 0.56 1.55 0.69 4.59 6.69 0.995 0.0005 

Site 2 

Horizontal 

 S2H1 0.86 0.02 0.44 0.35 0.78 0.995 0.0009 

 S2H2 0.82 0.01 0.47 0.61 1.29 0.996 0.0007 

 S2H3 0.86 0.01 0.44 0.53 1.20 0.998 0.0004 

Vertical 

 S2V1 0.83 0.03 0.46 1.92 4.15 0.986 0.0017 

 S2V2 0.87 0.00 0.44 0.73 1.65 0.991 0.0014 

 S2V3 0.52 0.14 0.74 2.52 3.42 0.982 0.0025 
a Abbreviations: β, mobile water fraction; ω, mass transfer coefficient; vm, pore water velocity in mobile region; Dm, dispersion 

coefficient in mobile region; λ, dispersivity; R2, the coefficient of determination; MSE, mean squared error. 
b The value of mass transfer coefficient with 0.00 means <1.00e–07. 
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Table 3.3 Upper and lower boundaries of the 95% confidence limits for fitted parameters (D, β, and ω) in mobile 

and immobile models. 

Column 

D a 

(cm2 h–1) 
 β  ω 

lower upper  lower upper  lower upper 

S1H1 0.83 1.23  0.77 0.88  0.10e–06 0.10e–06 

S1H2 1.04 1.52  0.87 1.01  0.10e–06 0.10e–06 

S1H3 1.23 1.64  0.83 0.93  0.10e–06 0.10e–06 

S1V1 0.83 1.16  0.83 0.93  0.10e–06 0.10e–06 

S1V2 1.07 2.07  0.33 0.62  0.50 2.90 

S1V3 2.02 3.11  0.41 0.70  0.24 2.85 

S2H1 0.22 0.38  0.82 0.91  0.00 0.07 

S2H2 0.40 0.60  0.78 0.94  0.00 0.03 

S2H3 0.40 0.53  0.83 0.89  0.00 0.03 

S2V1 0.58 2.60  0.57 1.00  0.00 0.19 

S2V2 0.46 0.81  0.80 0.93  0.10e–06 0.10e–06 

S2V3 0.20 2.43  0.31 0.73  0.00 0.30 
a  Abbreviations: D, dispersion coefficient; β, mobile water fraction; ω, mass transfer coefficient. 

 

The covariance matrix suggests that the transport parameters were not highly correlated in the 

majority of the samples. The calibrated Dm ranged from 0.34 to 4.59 cm2 h–1 with a dispersivity 

(λ) ranging from 0.78 to 6.69 cm. The β value ranged from 0.48 to 0.94, indicating the presence 

of immobile water and preferential flow. The ω parameter was found to vary from 0 to 1.70. 

The ranges of all the optimized parameters (D, β, and ω) are within the span reported by Liu et 

al. (2017) for fen peat. The β values we found here generally smaller than those reported by 

Simhayov et al. (2018), who estimated that the values of β was almost equal to one but with a 

great variance. One possible reason for the differences in parameter values may be that the fen 

peat soils in their study were less degraded (bulk density of 0.12 g cm−3) compared to soils in 

this study (bulk density of 0.20 g cm−3). Larger variability of optimized parameters (e.g., β and 

vm) were observed for vertical samples, which is consistent with the results from Liu et al. 

(2017). In their study, transport properties (vertically collected) varied considerably as deter-

mined on samples collected from one depth. However, in our study here the variability of D, β, 

and ω for the horizontal samples are generally smaller than those reported by Liu et al. (2017) 

for highly degraded peat soils. The variability of calibrated parameter values is always greater 

for the vertical transport situation, which suggests that the spatial heterogeneity is greater in 

vertical direction than in horizontal direction. We take that as a hint that preferential flow is 

more likely to occur in vertical direction because of enhanced soil structure heterogeneity. In 

future studies, a range of velocities should be adjusted in flow-through experiments to derive 

definite conclusions. 
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In general, samples that were taken in vertical direction had a lower β, but higher vm, ω, and 

Dm values than those of horizontal samples. Differences in solute transport properties between 

horizontal and vertical samples are more important than effects that are related to sampling 

sites. As mentioned above, four vertical samples from both sites (cores S1V2, S1V3, S2V1 and 

S2V3; Table 3.1) exhibit a pronounced preferential flow. The average value of β, as an indicator 

of the amount of mobile water, of these four soil cores was 0.60 ± 0.16 (mean ± standard devi-

ation), which was significantly lower (stronger preferential transport) than that for the other 

eight soil with 0.87 ± 0.04 (p<0.001). As a consequence, these four vertical cores had a signifi-

cantly higher pore water velocity of the mobile zone (vm = v/β) than other soil cores (p < 0.001). 

The immobile water fraction of the mentioned four vertical cores was approximately 0.36 cm3 

cm–3; this soil water volume is not participating in the convective transport of bromide.  

For most soil cores, a low mass transfer coefficient (ω ≈ 0) was observed. In the MIM model, a 

small ω value (≈ 0) indicates that the immobile soil water region does not participate in 

transport and is not accessible for solutes (Radcliffe and Simunek, 2010). However, almost all β 

values are less than 0.9, which indicates that the tested peat soil is a dual porosity medium. 

Minor immobile water fractions (β > 0.9) may result from isolated pores or unavoidable exper-

imental and calculation errors.  

3.3.3 Strength of preferential flow 

The 5% arrival time of bromide mass ranged from 6.15 to 10.28 hours. Significant differences 

in 5% arrival time were observed between sites (p = 0.0095; general linear model) and between 

soil sampling directions (p = 0.024). A significantly lower 5% bromide mass arrival time was 

observed for the samples from drained site (average of 7.58 hours) than those from the restored 

site (average of 9.46 hours). Moreover, a later 5% bromide mass arrival time was observed for 

horizontal samples (9.29 hours) than for vertical samples (7.75 hours). Thus, the strength of 

preferential flow is orientation-dependent and associated with land management. Given that no 

significant differences were observed in soil physical properties between sites and between ori-

entations (e.g., bulk density or von post humification), the 5% tracer mass arrival time or pref-

erential flow respectively, is not predictable using physical properties of peat only. 

The 5% arrival time has a strong negative linear relationship with dispersivity (R2 = 0.83, p < 

0.001; Figure 3.4a), moderate positive linear relationship with β (R2 = 0.39, p < 0.05; Figure 

3.4b) and moderate negative linear relationship with log10Ks (R2 = 0.51, p < 0.01; Figure 3.4c). 

These relationships generally point out that the assumption of the MIM is correct and that high 

dispersivity values and a large fraction of immobile water are in accordance with pronounced 

preferential transport situations.  
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Figure 3.4 The correlation between 5% arrival time and (a) dispersivity (λ); (b) the fraction of mobile region (β); 

(c) saturated hydraulic conductivity (log10Ks). 

 

The dispersivity may affect the values of 5% arrival time, however, it is hard to distinguish the 

effect of dispersivity on 5% arrival time when preferential flow occurs. For instance, in several 

soil cores (e.g., S1V2, S1V3, and S2V3), the larger immobile water fraction suggests that pro-

nounced preferential flow occurred although the soil dispersivity is high. Previous studies (e.g., 

Koestel et al., 2011; Soares et al., 2015) have proved that 5% arrival time is the best indicator 

for the strength of preferential flow when preferential flow occurred. In this study, the corrected 

BTCs indicate that (strong/weak) preferential flow occurred in all soil cores. Therefore, the 5% 

arrival time was used to evaluate the BTCs. The results obtained here for peat soils for the first 

time are in consistence with observations made for mineral soils (Paradelo et al., 2013; Shaw et 

al., 2000; Soares et al., 2015; Vervoort et al., 1999). The occurrence of significant preferential 

flow in samples, which exhibit higher Ks and lower β values, suggests that a few macropores 

are active in solute transport and these macropores are, likewise, ensuring the water conduct-

ance under statured condition (Gonçalves et al., 2001). 

Overall, solute transport in peat soils was affected by the anisotropic structure of peat. The effect 

of soil anisotropy on solute transport properties is not as clear as on Ks. The greater variability 

of the transport parameters and the lower 5% arrival time of vertical samples suggest that 

preferential flow is more likely to occur in vertical directions. It is more likely to encounter 

preferential transport situations in locations where Ks is high. In cases where Ks values are 

greater in horizontal than in vertical direction (Beckwith et al., 2003; Lewis et al., 2012), pref-

erential flow can, likewise, be stronger in horizontal direction.  

3.3.4 Phosphate leaching 

Fertilization and ongoing soil organic matter mineralization of drained peatland results in a 

high TP content of the investigated peat soils (Table 3.1). This is also reflected in a high P release 
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rate from artificially drained peat soils. For most soil cores from the drained site, a high phos-

phate concentration (approximately 2 mg P L−1; Figure 3.5) was observed in the leachate. The 

high P leaching concentrations are in consistent with recent studies by Parvage et al. (2015) and 

Riddle et al. (2018), who observed a range of phosphate concentrations in the effluent from 0.36 

to 10.3 mg P L–1 for organic soils. For the studied fen peat, the redox sensitive P accounts for 

only less than 4% of total P, which is a small fraction if compared to values reported in other 

studies (>15%; Forsmann and Kjaergaard, 2014). We assume that other more loosely-bound P 

fractions (e.g., water-extractable P) dominated the released P of 3 to 18 mg during the relatively 

short experimental period of 3 days. The observed P concentrations in leachate from the drained 

and degraded peatland were 1000 times higher than the suggested threshold concentration of 

P (0.01 mg L–1) to avoid eutrophication of surface waters. The strong preferential flow in vertical 

direction may enhance P release to surface or ground water. 

 

Figure 3.5 Effluent phosphate concentrations of peat soils in horizontal and vertical directions from drained peat-

land (Site 1). 

 

There was no significant difference in the amount of released P between samples from the ver-

tical and horizontal direction. A negative but statistically not significant correlation was ob-

served between the mass of released P and 5% arrival time (Pearson’s correlation coefficient of 

0.76; p = 0.07). The very high P release rate as observed for one sample may be related to the 

P accumulation in preferential flow pathways. In cases where P content is high in the topsoil 

because of agricultural usage, it may be transported and enriched along preferential pathways 

(Backnäs et al., 2012; Gächter et al., 1998; Ronkanen and Kløve, 2009) and the preferential 

transport tracks enhanced P leaching (Backnäs et al., 2012; Fuchs et al., 2009; Gächter et al., 

1998). In summary, the findings of this study provide evidence that solute transport and the 
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release of P are mainly related to soil heterogeneity and the effect of anisotropy needs more 

detailed consideration. 

3.4 Conclusions 

The effects of soil anisotropy on water flow and solute transport in degraded fen peat soils were 

explored. We assume that the more abundant vertically orientated macropores lead to a signif-

icantly higher Ks in the vertical than in the horizontal direction, whereas the solute transport 

properties as derived from breakthrough curves (BTCs) are moderately affected by soil anisot-

ropy. The 5% arrival time as the indicator for the strength of preferential flow is influenced by 

soil anisotropy as well as the site management (drained versus restored). It is likely that the 

macroporous structure that facilitates water conductance also (rapidly) conveys dissolved com-

pounds. The great variance of leached amount of phosphate indicates that phosphate transport 

is more determined by soil heterogeneity than anisotropy. In this study the solute transport 

behavior was investigated on samples that were either taken in horizontal or vertical direction. 

Both sample groups have their own heterogeneity, which may have overwritten the anisotropy 

effect. In future studies, an approach should be developed that allows for transport tests in var-

ious directions on the same sample. It should be likewise noted that soil anisotropy as well as 

preferential flow and compound release are scale-dependent and related to the degree of water 

saturation.  
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Abstract 

Coastal peatlands have been frequently blocked from the sea and artificially drained for agricul-

ture. With an increasing awareness of ecosystem functions, several of these coastal peatlands 

have been rewetted through dike removal, allowing sea water flooding. In this study, we inves-

tigated a recently rewetted peatland on the Baltic Sea coast with the aim to characterize the 

prevailing soils/sediments with respect to organic matter accumulation and the potential re-

lease of nutrients upon seawater flooding. Eighty disturbed soil samples were collected from 

two depths at different elevations (–0.90 to 0.97 m compared to sea level) and analyzed for soil 

organic matter (SOM) content and carbon:nitrogen (C:N) ratio. Additionally, nine undisturbed 

soil cores were collected from three distinct elevation groups and used in leaching experiments 

with alternating freshwater and Baltic Sea water. The results demonstrated a moderate to 

strong spatial dependence of surface elevation, SOM content, and C:N ratio. SOM content and 

C:N ratio were strongly negatively correlated with elevation, indicating that organic matter min-

eralization was restricted in low lying areas. The results also showed that the soils at low eleva-

tions release more dissolved organic carbon (DOC) and ammonium (NH4
+) than soils at high 

elevations. For soils at low elevations, higher DOC concentrations were observed when flushing 

with freshwater, whereas higher NH4
+ concentrations were found when flushing with brackish 

water. Recorded NH4
+ concentrations in organic-rich peat reached 14.82 ± 9.25 mg L–1, exceed-

ing Baltic seawater (e.g., 0.03 mg L–1) by two orders of magnitude. A potential sea level rise may 

increase the export of NH4
+ from low-lying and rewetted peat soils to the sea, impacting adja-

cent marine ecosystems. Overall, in coastal peatlands, geochemical processes (e.g., C and N cy-

cling and release) are closely linked to microtopography and related patterns of organic matter 

content of the soil and sediments. 

 

 

 

 

 

 

 

 

 

 

 

Keywords: microtopography, coastal peatland, dissolved organic carbon, ammonium, soil 
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4.1 Introduction 

Coastal wetlands as “blue carbon” reservoirs only comprise 15% of the global natural wetland 

area but contribute substantially to global carbon sequestration (Davidson et al., 2018, 2019). 

The importance of soil properties and carbon pool has been acknowledged in the process of 

stabilizing and bolstering the coastal wetland ecosystem (Berkowitz et al., 2018), because the 

belowground soil carbon pool contains 50%–90% of the blue carbon stored in the various types 

of coastal wetlands (Howard et al., 2017). However, coastal wetlands have also been seriously 

disturbed by diking or drainage for industrial and agricultural purposes (Lemly et al., 2000; 

Newton et al., 2012). These anthropogenic activities have resulted in global as well as regional 

loss or degradation of coastal wetlands, thereby threatening water quality, emitting significant 

amounts of greenhouse gases (e.g., carbon dioxide, CO2) and reducing soil carbon accumulation 

(DeLaune and White, 2012; Zhao et al., 2016). Hence, more attention to minimizing greenhouse 

gas emission has heightened the need for wetland restoration and maintaining ecological safety 

(Zou et al., 2022).  

Soil organic matter (SOM) and its stoichiometry, e.g., the carbon:nitrogen (C:N) ratio, are used 

to estimate C and N stocks in soils, and in particular the C:N ratios are commonly used as a 

proxy of soil quality and/or greenhouse gas emission (e.g., Yao et al., 2022). They also affect soil 

physical, hydrological, chemical, and biological properties, such as water retention capacity, cat-

ion exchange capacity (CEC), nutrient cycling, and pollutant absorption (Fließbach and Mäder, 

2000; Klemedtsson et al., 2005; Ramos et al., 2018; Wattel-Koekkoek et al., 2001). It is unam-

biguous that inland mires as natural growing peatlands are characterized by high SOM content 

(> 30% of dry mass), low bulk density, large porosity and a high C:N ratio (Leifeld et al., 2020; 

Liu and Lennartz, 2019a; Rezanezhad et al., 2016), and changes in these parameters can provide 

insight into the peat degradation processes (Leifeld et al., 2020; Liu et al., 2019; Wallor et al., 

2018; Wang et al., 2021) Nevertheless, coastal peatlands (e.g., marshes and salt marshes), a 

subcategory of coastal wetlands, contain a considerable mineral fraction of sediment (Prato-

longo et al., 2018). These so-called “peat” soils are occasionally also described as organogenic 

sediments formed primarily by freshwater plants growing in terrestrial ecosystems (peatlands) 

or marine systems with a high mineral content (Waller and Kirby, 2021). Research into soil 

properties in coastal wetlands including the peatlands is a complex task due to the high spatial 

heterogeneity formed by both marine and terrestrial processes. 

The spatial distribution of the SOM content and the C:N ratio in different soil types has been 

effectively detected by geostatistical analysis and is now well established, as indicated by nu-

merous studies undertaken at regional and ecosystem scale (Kumar et al., 2012; Mabit and Ber-
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nard, 2010; Negassa et al., 2022; Watt and Palmer, 2012; Zhang et al., 2016). The above-men-

tioned studies have demonstrated that both SOM and C:N are pronouncedly spatially heteroge-

neous, being influenced by long-term (> 100–1000 years) predominant factors like topography, 

soil texture, hydrological regime, and natural vegetation and by short-term ecological disturb-

ances such as land management in recent decades. In coastal wetlands, microtopography (i.e., 

elevation), functioning as a crucial element of promoting ecosystem functions, has been found 

to be significantly associated with soil properties (Ahmad et al., 2020; Diamond et al., 2021; 

Osland et al., 2018; Saintilan and Rogers, 2013). For instance, a strong negative correlation be-

tween elevation and SOM was observed for a coastal wetland in Germany (Ahmad et al., 2020). 

However, in some other studies, the relation between elevation and organic C stock was positive 

or neutral because of other driving factors, e.g., geomorphic setting and plant productivity 

(Hayes et al., 2017; Osland et al., 2018).  

Regarding the influence of rewetting on both inland and coastal peatlands, numerous studies 

have focused on greenhouse gas emissions (Günther et al., 2020; Hahn et al., 2015; Liu et al., 

2020b; Pönisch et al., 2023), microbial activities (Weil et al., 2020; Zak et al., 2019), soil param-

eters (Ahmad et al., 2020; Gosch et al., 2018), and the growth of vegetation (Batistel et al., 2022; 

Schwieger et al., 2022). However, only few studies exist investigating the effect on water quality 

of organic-rich coastal ecosystem (e.g., coastal peatland) following rewetting with either salt or 

freshwater (Ardón et al., 2013; Liu and Lennartz, 2019b; Pönisch et al., 2023). It has been shown 

that the dissolved organic carbon (DOC) and ammonium (NH4
+) release are critical processes 

to consider when rewetting coastal peatlands, where both can contribute positively and nega-

tively to ecosystem services and are highly responsive to environmental changes (Audet et al., 

2020; Bowen et al., 2020; Sheng et al., 2015; Tobias and Neubauer, 2009; Zerbe et al., 2013). It 

is challenging to project the effects of alternating salinity on DOC and NH4
+ release as changes 

in water level, salinity or pH may individually or collectively alter trends in soil water DOC and 

NH4
+ concentrations (Chow et al., 2003; Kalbitz et al., 2000; Kreuzburg et al., 2020; Liu and 

Lennartz, 2019b; van Dijk et al., 2015). However, the potential nutrient leaching from rewetted 

coastal peatlands that are substantially impacted by microtopography remains unknown. 

In this study, we investigated a recently rewetted peatland located on the Baltic Sea coast, aim-

ing to characterize the prevailing soils/sediments with respect to carbon accumulation and the 

potential release of DOC and NH4
+ upon rewetting with brackish water. The specific objectives 

of this study are to: 1) investigate the relationship between SOM and microtopography (i.e., 

elevation), 2) estimate the potential release of DOC and NH4
+ upon rewetting with either brack-

ish water or fresh water in areas with different elevations, and 3) evaluate the effect of microto-

pography on nutrient release. 
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4.2 Materials and Methods 

4.2.1 Study sites and soil sampling 

The “Polder Drammendorf” coastal fen peatland (54°22’23.4”N, 13°14’27.2”E) is located on the 

Rügen Island, Germany, situated 12 km from the center of Stralsund City in the Federal State of 

Mecklenburg-Western Pomerania (Figure 4.1). The study area covers approximately 14.6 ha, 

and the surface elevation ranges from approximately –1.2 m to 1.2 m relative to sea level. His-

torically, the area was created as a landscaped habitat on the coast, including watered areas, 

alternating wet-dry salt marshes, brackish reeds, and peatlands (Levermann, 2019). From 1962, 

the entire area has been protected from Baltic Sea floods by dikes, and a drainage system was 

developed. The areas were primarily used as agricultural land and grazing pasture for more 

than fifty years (Levermann, 2019). At the low-lying area, the groundwater level was close to 

the surface of the land (LUNG, 2006; Supplemental Figure S4.1). As a part of the coastal land-

scape transformation project “Renaturation Polder Drammendorf”, the site was rewetted in 

winter of 2019 by removing the dikes and it is now completely flooded by Baltic Sea water.  

 

 
Figure 4.1 Location of the coastal peatland study site on the Rügen Island in Germany and the peat soil sampling 

areas. The undisturbed peat cores were collected from nine locations with three elevation group (Red dots: Group 

A; Yellow dots: Group B; Blue dots: Group C) and disturbed peat samples (black and colored dots) were collected 

from topsoil (10–15 cm depth) and subsoil (40–45 cm depth). 

 

To conduct this study, a random sampling design was employed, resulting in the marking of 40 

sampling locations within the study site. For accurate measurements, a microtopographic sur-

vey was carried out at each marked location, utilizing Real Time Kinematic (RTK) GPS technol-

ogy (Leica GS14 GSM) to obtain precise surface elevation measurements. Subsequently, a total 

of 80 disturbed soil samples were collected from two different depths at each of the marked 
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locations. These soil samples were analyzed to investigate spatial heterogeneity and determine 

essential soil properties, such as SOM content and C:N ratios (Figure 4.1; 40 samples from 10–

15 cm depth and the remaining from 40–45 cm depth). During the same sampling time, a total 

of 18 undisturbed soil cores were collected from 9 of 40 locations to determine soil hydraulic 

and physical properties. These soil cores (in Plexiglas rings of 5 cm length, 4.2 cm inside diam-

eter and 5 cm outside diameter) were divided into three elevation groups based on surface ele-

vation analysis (Figure 4.1; red dots: Group A, yellow dots: Group B; blue dots: Group C; topsoil 

sampling depth 10–15 cm, subsoil sampling depth 40–45 cm). From the 18 undisturbed soil 

cores, 9 of them were selected for nutrient leaching experiment (Figure 4.2) that considered 

sampling elevations with significant differences (Group A: elevation > 0.6 m, 10–15 cm depth; 

Group B: –0.1 < elevation < 0.1 m, 10–15 cm depth; Group C: elevation < –0.60 m, 40–45 cm 

depth). All collected soil samples were covered by lids and transported to the laboratory in a 

cool container.  

 
Figure 4.2 Schematic diagram of the flow-through reactor set-up for the leaching experiment. The experiment 

was conducted under three phases: GW1: groundwater; BW: Baltic seawater; GW2: groundwater (GW1 and GW2 

are identical). 

 

4.2.2 Nutrient leaching experiment  

A flow-through reactor set-up (Figure 4.2) was used for a nutrient leaching experiment to 

measure the release of DOC and NH4
+ from the undisturbed soil under environmental condi-

tions (for more details about the flow-through reactor the readers are referred to Gosch et al., 

2019; Kleimeier et al., 2017; Pallud et al., 2007). The reactor contained an undisturbed soil core 

with its Plexiglas ring. Positioned above and beneath the soil column are the 1 μm pore size glass 

fiber filters. The reactor is effectively sealed using polyvinyl chloride (PVC) plates and O-rings, 

secured tightly with stainless steel screws. A total of nine soil columns were divided into three 

rounds of leaching experiments, with three reactors being operated simultaneously in each 

round. The reactors were connected to a peristaltic pump via tubing with an inner diameter of 
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1.5 mm. The input solutions of artificial groundwater (GW) and brackish water (BW) were al-

ternately supplied from the bottom to the top of the reactor column with a constant flux of 0.29 

cm h–1 imposed by the peristaltic pump. Groundwater was mimicked by a sodium chloride 

(NaCl) solution made from demineralized water adjusted to an electrical conductivity (EC) of 

2.55 mS cm–1, a pH value of 4.7 and a low oxygen level of 2.3 mg O2 L–1, corresponding to the 

field groundwater chemical conditions. The brackish water was obtained from the Baltic Sea 

and its EC, pH and sodium (Na+), chloride (Cl–), sulfate (SO4
2–), DOC, and NH4

+ concentrations 

were 13.89 mS cm–1, 4.5, 2282 mg L–1, 4332 mg L–1, 556.8 mg L–1, 5.14 mg L–1, 0.037 mg L–1, 

respectively (Metrohm 930 Compact IC Flex; Herisau, Switzerland).  

The soil columns were flushed first with GW for approximately 36 hours (phase: GW1) and then 

by BW for around 108 hours (phase: BW). The same GW flushing was repeated in the subse-

quent 36 hours (phase: GW2). Outflow samples were collected every 6 hours by a fraction col-

lector and were analyzed for concentrations of DOC and NH4
+. After filtering the outflow sam-

ples through a pre-washed cellulose mixed esters membrane (pore size: 0.45 μm), the DOC and 

NH4
+ concentrations were measured using DIMATOC® 2000 (Dimatec Analysentechnik 

GmbH, Essen, Germany) and CFA Analysis (Continuous Flow Analyzer), respectively. In a sep-

arate supplementary leaching experiment, the average concentration of total iron released from 

a low elevation soil sample (SOM content of 85.7 wt%) were measured by Landwirtschaftliche 

Untersuchungs- und Forschungsanstalt of LMS Agrarberatung GmbH (LUFA Rostock) with 

concentration of 1.28 ± 0.24 mg L–1 and 1.84 ± 0.74 mg L–1 in GW1 and BW phases, respectively 

(using the standard DIN EN ISO 11885 (E 22): 2009-09).  

4.2.3 Measurement of soil properties 

Loss on ignition (LOI) method (ISO (2247)6–3:2005) was used to estimate the SOM content of 

all soil samples, involving burning of the samples at 550 °C for 4 hours. The C and N concen-

tration of the soil samples was quantified by a Carbon/Nitrogen/Sulfur-Analyzer (Elementar 

PyroCube, Langenselbold, Germany) and C:N ratios were calculated. Soil water retention curves 

(SWRCs) and other selected soil hydro-physical properties such as total porosity, macroporos-

ity, and dry bulk density were determined using the method reported of Wang et al. (2021). The 

van Genuchten (VG) model parameters, such as water content at saturation (θs), α, and n, were 

optimized using the RETC software packages (van Genuchten et al., 1991). Particle size distri-

butions of soil samples from two sampling elevation groups A and B were measured by LUFA 

Rostock after pre-treatment of the samples to remove organic matter and salts (using the stand-

ard DIN ISO 11277:2002-08; Table 4.1).  
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Table 4.1 Practical size distribution of collected from different sampling elevation groups (A: loamy sand; B: sandy 

loam). 

Elevation 

group 

Soil 

depth 

(cm) 

Sampling  

elevation 

(m) 

SOMa  

(wt %) 

Practical size distribution (mineral as 100%, wt %) 

Sand 
Sand 

Silt 
Silt Clay 

Cb  M  F  C M  F  

A 

(High) 
10–15 0.81±0.18 5.93±3.71 4.13 37.23 40.26 81.62 8.36 3.21 2.08 13.65 4.73 

B 

(Middle) 
10–15 –0.02±0.04 21.05±3.05 4.29 21.66 42.83 68.78 14.15 5.73 2.83 22.71 8.51 

C 

(Low) 
40–45 –0.69±0.01 87.63±3.95 - - - - - - - - - 

a Abbreviations: SOM, soil organic matter content. The presence of high SOM in Group C is insufficient for measuring particle 

size distribution. 
b Abbreviations: C, Coarse; M, Medium; F, Fine. 

 

4.2.4 Statistical and geostatistical analysis 

Descriptive statistics (mean, minimum, maximum, standard deviation, and coefficient of vari-

ance), regression analyses and Pearson correlation analyses were conducted using SAS software 

(Version 9.4) and the R package “stats” and “corrplot” (R Core Team, 2020) to evaluate the 

impact of elevation changes on the SOM content and C:N ratio. The significance of differences 

for the investigated parameters of soil core samples (e.g., selected soil properties and the total 

amount of released nutrients) among three sampling elevation groups was implemented by 

ANOVA test, and then the Tukey-Kramer procedure (Tukey-HSD) was applied for post-hoc 

analysis in SAS. T-tests were used to determine the significance of the difference between the 

selected hydro-physical properties of the topsoil and subsoil samples. 

The spatial variation (semivariance) of the parameters was estimated by semivariogram models 

with GS+ (Version 10; Gamma Design Software). The theoretical semivariance (γ) of normal 

distributed data was constructed by Equation (4.1) (Nielsen and Wendroth, 2003): 

 𝛾(ℎ) =
1

2𝑁(ℎ)
 [𝐴(𝑥)−𝐴(𝑥 + ℎ)]ଶ

ே()

ୀଵ

 (4.1) 

where h is the spacing between sample xi and sample xi+h, N(h) is the number of sample pairs 

separated by the lag distance. Ai(xi) and Ai(xi+h) are the measured variable at spatial location i 

and i+h. The active lag distance is set by default as half of the sample distance (347.1 m). The 

best semivariogram model was selected based on the highest coefficient of determination (R2) 

and the smallest residual sum of squares (RSS). Semivariogram models are described by three 

key parameters: range (A), the sill (C0+C), and the nugget effect (C0). The range corresponds 
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to the distance at which the model tends to level off, while the sill represents the variance value 

attained at that range. The nugget effect refers to a non-zero variance observed at extremely 

close separation distances (Lamorey and Jacobson, 1995). Investigated soil properties were con-

sidered to be strongly, moderately and weakly spatially dependent when the ratio of nugget to 

sill C0/(C0+C) were <0.25, between 0.25 and 0.75, and >0.75, respectively (Cambardella et al., 

1994). 

A kriged estimate map for elevation and soil properties (SOM content and C:N ratio) were plot-

ted using the ordinary kriging method with Equations (4.2) to (4.3) (Isaaks and Srivastava, 

1989; Yao et al., 2013): 

 
𝑍∗(𝑥) =  𝜆



ୀଵ
𝑍(𝑥) 

(4.2) 

 
𝜆 =

1/𝑑
ଶ

∑ 1/𝑑
ଶ

ୀଵ

 
(4.3) 

where Z∗(x0) is the predicted value at the unsampled point x0, Z(xi) is the observed value at the 

sampled point xi, λi is the weighting coefficient from xi to x0, j is the number of the closest 

sampled points within the neighborhood searching and di is the distance between the unsam-

pled point and the sampled point. In this study, the ordinary kriging method was calculated 

using geostatistical analyst tool in ArcGIS (Version 10.5). 

4.3 Results 

4.3.1 Geostatistical analysis 

The values of surface elevation, sampling elevation, the SOM content, and the C:N ratio of soil 

samples are summarized in Table 4.2. Soil sampling was performed over an elevation range 

from –0.90 m to 0.97 m. The topsoil samples exhibited a range of SOM contents from 1.7 wt% 

to 49.2 wt% and a C:N ratio from 9.6 to 17.0. Similarly, the subsoil samples showed a range of 

SOM content from 1.3 wt% to 91.0 wt% and a C:N ratio from 2.8 to 20.4. The values of the 

coefficient of variation (CV) of the C:N ratio of both topsoil and subsoil horizons (< 25%) indi-

cated the low variability of the C:N ratio. The CV of the SOM content was much higher, especially 

for the subsoil (> 65%), indicating a strong variability of organic matter accumulation.  

 

 



CHAPTER 4. EXPERIMENTAL STUDY 3 

75 

 

Table 4.2 The values of surface elevation, sampling elevation, the SOM content, and the C:N ratio of peat samples 

with their descriptive statistics. 

Variablea Soil depth N Minimum Maximum Mean 
Standard 

deviation 

Coefficient 

of variation 

(CV; %)b 

Surface elevation 

(m) 
- 40 –0.50 1.07 –0.11 0.39 -- 

Sampling elevation 

(m) 

Topsoil  

(10–15 cm) 
40 –0.60 0.97 –0.21 0.39 -- 

Subsoil  

(40–45 cm) 
40 –0.90 0.67 –0.51 0.39 -- 

SOM content 

(wt%) 

Topsoil  

(10–15 cm) 
40 1.65 49.19 28.71 12.50 43.53 

Subsoil  

(40–45 cm) 
40 1.34 91.03 45.87 31.30 68.23 

C:N ratio 

(-) 

Topsoil  

(10–15 cm) 
40 9.59 16.96 14.36 1.61 11.22 

Subsoil  

(40–45 cm) 
40 2.77 20.44 15.27 3.37 22.05 

a Abbreviations: SOM, soil organic matter; C:N ratio: the mass of carbon to the mass of nitrogen ratio. 
b The CV will be negative, when the mean of the data is negative, which usually means that the CV is misleading. Introduction 
to SAS. UCLA: Statistical Consulting Group. From https://stats.oarc.ucla.edu/sas/modules/introduction-to-the-features-of-

sas/ (accessed on August 22, 2021). 

 

Table 4.3 and Figure 4.3 summarize the geostatistical parameters and the semivariogram 

models of surface elevation, the SOM content, and the C:N ratio. Different models were selected 

as best fits for the different parameters, including exponential (SOM content of both top and 

subsoils) and Gaussian (surface elevation) models. The exponential model was the best fit for 

the semivariogram of C:N ratio of topsoil, whereas the linear model was the best fit for the C:N 

ratio of subsoil. At the study site, the surface elevation exhibited a moderate level of spatial 

dependence within a spatial autocorrelation range of 185.3 m. The nugget/sill ratio of the SOM 

content in the top and subsoil layers were 5% and 36%, respectively, suggesting a strongly or 

moderately spatial dependence of SOM distribution. In contrast, the C:N ratio demonstrated a 

very different spatial dependence between the two soil horizons. The magnitude of the range of 

the SOM content and the C:N ratio also showed a significant difference between topsoil and 

subsoil (p < 0.05). The SOM content was spatially dependent within a range of 72.9 m for topsoil 

and 486.3 m for subsoil, whereas the C:N ratio had a spatial autocorrelation range of 46.0 m 

for topsoil and 329.1 m for subsoil. The high nugget/sill ratio of 80% revealed that the C:N ratio 

in the deeper layer had less spatial heterogeneity, and the fit of its semivariance model was 

particularly weak (R2 = 0.047). 
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Table 4.3 Semivariogram model parameters for surface elevation, SOM content, and C:N ratio for the topsoil and 

subsoil samples. 

Parametera Modelb 
Nugget 

C0 

Sill 

C0+C 

C0/C0+C 

(%) 

Spatial 

dependence 

Range 

(A; m) 
R2 RSSc 

Surface  

elevation 
Gau. 0.0613 0.133 46.229 Moderate 185.300 0.628 0.003 

SOM 

 topsoil 
Exp. 8.000 157.700 5.073 Strong 72.900 0.394 9629 

SOM 

 subsoil 
Exp. 528.000 1462.000 36.115 Moderate 486.300 0.557 127704 

C:N 

topsoil 
Exp. 0.302 2.368 12.753 Strong 46.000 0.284 3.02 

C:N  

subsoil 
Lin. 7.285 8.989 81.043 Weak 329.100 0.047 48.3 

a Abbreviations: SOM, soil organic matter content; C:N: the mass of carbon to the mass of nitrogen ratio. 
b Abbreviations: Gau, Gaussian model; Exp: exponential model; Lin, linear model. 
c Abbreviations : R2, the coefficient of determination; RSS, residual sum of squares. 

 

 
Figure 4.3 Semivariogram models showing the spatial dependence of surface elevation, soil organic matter content 

(SOM), and the mass of carbon to the mass of nitrogen ratio (C:N) of the topsoil and subsoil samples. 

 

A computed kriging map of predicted surface elevation at the study site shows higher elevations 

in the northern and western areas (along the coast) than in the center and southeastern areas 

(Figure 4.4a). Thus, a surface elevation gradient was apparent across the study site. The spatial 

distribution of the SOM content and the C:N ratio are likewise presented in kriging maps in 

Figure 4.4(b-e). The highest SOM content and C:N ratio were observed in the low-lying center, 

southern, and eastern areas of the study site, whereas the lowest values were distributed in the 
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northern area. Compared to the subsoil, the gradients of the SOM content and the C:N ratio in 

the topsoil were more variable (Figure 4.4b and 4.4d).  

 
Figure 4.4 Kriged maps of surface elevation, soil organic matter (SOM) content, and the mass of carbon to the 

mass of nitrogen (C:N) ratio of the topsoil and subsoil samples. 

 

4.3.2 Soil hydro-physical properties 

The SOM content and the C:N ratio of both topsoil and subsoil samples were negatively corre-

lated with the sampling location elevations (Figure 4.5). Regression analysis showed that the 

relationship between SOM content and sampling elevation was well modeled by exponential 

functions (R2 > 0.50), while the C:N ratio was linearly correlated with sampling elevation (R2 > 
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0.45). When considering the sampling elevations of all samples individually, the Pearson corre-

lation coefficients showed significant associations between sampling elevation and the SOM 

content (r = –0.64, p < 0.0001), as well as the C:N ratio (r = –0.70, p < 0.0001) (Supplemental 

Figure S4.2). In both topsoil and subsoil samples, strong positive correlations between the SOM 

content and the C:N ratio were observed (topsoil: r = 0.82, subsoil: r = 0.70; both p < 0.0001).  

 
Figure 4.5 Best fit relationship between (a) elevation and soil organic matter (SOM) content; (b) elevation and the 

mass of carbon to the mass of nitrogen (C:N) ratio for all top and subsoil samples. 

 

The hydraulic and physical properties of the selected soil cores are listed in Table 4.4. The bulk 

density of the samples from high and middle elevation (Groups A and B) were greater than 1 

and 0.5, respectively, which was associated with a low SOM content and a high mineral content 

(Table 4.1). The SWRCs for the samples collected at three different elevations were presented 

in Figure S4.37. The water retention capacity was observed to vary across different elevation 

groups, with the water content at saturation condition following the order of Group C > Group 

B > Group A (see also Supplementary Table S4.1). The values of VG model parameter α were 

all close to 1 cm–1 in Group C, while the other two groups demonstrated a wide range of values. 

The values of the model parameter n ranged from 1.031 to 1.087 (Supplemental Table S4.1 and 

Figure S4.3).  

The well-known correlation between SOM content and bulk density, saturated hydraulic con-

ductivity (Ks) and macroporosity in peatlands was also confirmed in this study (Supplemental 

Figure S4.4; Liu and Lennartz, 2019a; Wang et al., 2021). In addition, bulk density rose with 

increasing elevation with a Pearson correlation coefficient of 0.836 (p < 0.0001), and total po-

rosity as well as VG model parameter θs decreased with increasing elevation with Pearson cor-

 
7 Note: This figure appears in the results section of the main text of the published paper. 
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relation coefficients of –0.812 and –0.811 (p < 0.0001), respectively. Contrastingly, macroporos-

ity and the VG model parameter α were slightly negatively correlated with elevation, with Pear-

son correlation coefficients of –0.586 (p = 0.011) and –0.453 (p = 0.059), respectively (Supple-

mental Figure S4.5). The results of the ANOVA and post-hoc tests showed significant differ-

ences in sampling elevation between each pair of groups for both horizons (p < 0.0001). Signif-

icant differences were also found for SOM content, bulk density, total porosity, C:N ratio and 

VG model parameter θs among all three groups; however, not all the pairwise comparisons 

between groups showed significant differences (Supplemental Figure S4.6). The t-test results 

showed that only the difference in bulk density was statistically detectable between the two 

sampling depths of Group A (p = 0.038), as well as in Group C, the differences in bulk density 

and its related variables (SOM content and total porosity) were statistically noticeable between 

the two depths (p <= 0.01). However, in Group B, there were no significant differences between 

the two depths for any of the investigated soil physical parameters. 

 

Table 4.4 The hydraulic and physical properties of collected peat cores from three sampling elevation groups. 

Elevation group No. 

Surface 

elevation 

(m) 

Sampling 

elevation 

(m) 

Soil propertiesa 

Ks
 

(×10–4, 

m s–1) 

Total  

porosity 

(vol%) 

Macro- 

porosity 

(vol%) 

SOM  

(wt%) 

C:N 

Ratio 

(-) 

Bulk  

density 

(g cm–3) 

A 

(high) 
 

Topsoil 

1 0.72 0.62 2.5 46.9 10.7 6.0 12.3 1.4 

2 1.07 0.84 1.3 40.5 7.1 2.2 9.6 1.4 

3 0.94 0.97 1.0 52.5 4.1 9.6 12.2 1.2 

Subsoil 

1 0.72 0.32 0.3 34.0 5.9 2.6 10.6 1.7 

2 1.07 0.54 2.4 38.8 10.5 2.0 9.1 1.6 

3 0.94 0.67 0.2 40.7 5.1 2.7 8.5 1.6 

B 

(middle) 
 

Topsoil 

1 0.11 –0.07 0.6 56.6 9.1 18.2 13.6 1.1 

2 0.09 –0.01 1.7 62.5 8.6 20.7 14.5 0.9 

3 0.03 0.01 0.1 66.9 3.5 24.3 15.6 0.8 

Subsoil 

1 0.11 –0.37 0.5 44.5 3.3 14.7 14.2 1.3 

2 0.09 –0.31 2.3 67.6 13.9 25.0 14.6 0.7 

3 0.03 –0.30 0.7 75.9 14.7 30.0 16.8 0.5 

C 

(low) 
 

Topsoil 

1 –0.28 –0.40 0.4 73.7 13.9 49.2 16.6 0.6 

2 –0.29 –0.39 0.6 69.2 17.0 30.3 15.8 0.7 

3 –0.30 –0.38 0.5 68.4 15.0 27.5 14.1 0.7 

Subsoil 

1 –0.28 –0.70 0.6 83.6 20.5 90.3 18.8 0.3 

2 –0.29 –0.69 0.2 81.2 9.4 89.5 18.5 0.3 

3 –0.30 –0.68 0.5 78.3 12.7 83.1 16.4 0.3 

a Abbreviations: Ks, saturated hydraulic conductivity; SOM, soil organic matter content; C:N ratio: the mass of carbon to the 

mass of nitrogen ratio. 
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4.3.3 Effect of elevation and salinity on DOC and NH4
+ release 

The soil types of the samples selected for the leaching test differed related to the elevation at 

which they were collected. The high elevation samples from Group A were primarily (loamy) 

sand with around 6% of SOM, the middle elevations samples from Group B were basically 

(sandy) loam with about 20% of SOM (Table 4.1), and samples from Group C at low elevations 

were predominantly fen peat with up to 90% of SOM (Table 4.4). The intrusion of brackish 

water caused a significant decrease in the pH of the leachate of soil cores from different eleva-

tions (Supplemental Figure S4.7). As the EC value of the background solution declined again 

to 4.25 mS cm–1, the pH of the leachate increased considerably. The pH values of the leachates 

from the samples in the highest elevation Group A (ranged from 5.0 to 7.1) was generally higher 

than that of samples in the middle elevation Group B (range from 4.2 to 5.0) and the low eleva-

tion Group C (range from 3.9 to 5.5). EC responded differently to the intrusion of brackish water 

in the samples from the different elevation groups. Thus, the EC values in the leachates from 

Group B started to rise as soon as brackish water intruded, while they increased more slowly in 

Group C. 

The concentration and amount of DOC released during the fresh-brackish water cycle are 

shown in Figure 4.6. Obviously, the water salinity in the GW and BW flushing solutions affected 

the leaching behavior of DOC. In Groups A and B, the impact of salinity on the leached DOC 

concentration was slightly detectable in the GW2 time phase. The DOC concentration in Group 

C was, however, very high at the beginning of the flush (GW1: 140 ~ 240 mg L–1). DOC decreased 

significantly with leaching time and further dropped significantly to 25 ~ 55 mg L–1 with the 

addition of brackish water before an equilibrium was reached (BW; at about 60 hours; Figure 

4.6a). However, the concentration of leached DOC increased sharply once salinity declined 

(GW2). In Groups A and C, the average amount leached per 36 hours was lower in the BW 

phase than during GW1 and GW2 (Figure 4.6b). The results of the ANOVA and post-hoc tests 

showed that the total amount of DOC released in Group C was significantly higher than in 

Groups A and B, but no significant difference appeared between Groups A and B (p < 0.05; 

Figure 4.6c). These results highlight that soil at low elevation acts as a hotspot of DOC release 

from the study site. During the entire process, the colored dissolved organic matter (CDOM) of 

all leachates was visually observed to change from dark to light and then dark again after the 

freshwater application (Supplemental Figure S4.8). Pearson correlation analysis indicated that 

the total DOC released was significantly correlated with various soil properties. It showed a 

negative correlation with sampling elevation and soil bulk density, but a positive correlation 

with SOM content, C:N ratio, total porosity, and macroporosity (Supplemental Figure S4.9). 
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Figure 4.6 Leaching behavior of dissolved organic carbon (DOC); (a) Variation of DOC concentration over time 

during alternating freshwater and brackish water states for 9 soil core samples from 3 sampling elevation groups; 

(b) the amount of leached DOC for 36-hour intervals; (c) differences in ANOVA and post-hoc results of the total 

amount of leached DOC among three sampling elevation groups. (same GW solution was used for the GW1 and 

GW2 time phases; significant differences among the groups are indicated by the letters “a” and “b”). 

 

 

 
Figure 4.7 Leaching behavior of ammonium (NH4

+); (a) Variation of NH4
+ concentration over time during alter-

nating freshwater and brackish water for 9 soil core samples from 3 sampling elevation groups; (b) the amount of 

leached NH4
+ for 36-hour intervals; (c) differences in ANOVA and post-hoc results of the total amount of leached 

NH4
+ among three sampling elevation groups. (same GW solution was used for GW1 and GW2 time phases; sig-

nificant differences among the groups are indicated by the letters “a” and “b”). 

 

The variation of NH4
+ concentrations with salinity fluctuations did not differ noticeably in 

Groups A and B (Figure 4.7), while the effect of salinity on NH4
+ concentrations was clearly 

observed in the samples from Group C. Notably, the initial NH4
+ concentration (GW1) in Group 

C (10.08 ~ 47.64 mg L–1) was one order of magnitude higher than in the other two groups (0.00 

~ 3.58 mg L–1). During GW1, the released NH4
+ concentrations started to decrease relative to 

initial concentration, and with the switch from fresh to brackish water, the samples exhibited 

an abrupt increase in NH4
+ concentrations, followed by a continued gradual decrease during 

BW. Once the samples were flushed by freshwater again (GW2), the NH4
+ concentrations either 

fluctuated or continued to decline. Due to the very high initial concentration of leached NH4
+ in 

Group C, the average release per 36 hours in the BW phase was not substantially higher than 
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in GW1 and GW2, but the release concentrations obviously rebounded during the salt flushing 

(Figure 4.7a and b). Likewise, the statistical tests indicated that the total amount of NH4
+ 

leached from Group C was significantly different from those of Groups A and B, whereas there 

was no difference between Groups A and B (Figure 4.7c). Pearson correlation analysis revealed 

that the total amount of released NH4
+ was negatively correlated with sampling elevation and 

soil bulk density, and positively correlated with SOM and total porosity (p < 0.05; Supplemental 

Figure S4.9). 

4.4 Discussion 

4.4.1 Small-scale spatial variability of soil/sediment properties 

The CV values of topsoil and subsoil differed for both the SOM content and the C:N ratio, indi-

cating a greater variability in values for subsoil than topsoil (Table 4.2). In this study, unlike 

previous research utilizing gaussian, spherical, and stable models for rewetted peatland (Ahmad 

et al., 2020; Negassa et al., 2019 and 2022), the spatial variation of the SOM was effectively 

represented by the exponential model. We assume that differences in the selection of the best 

model may be attributed to the distinct characteristics of individual study site and the investi-

gated scale. The strength of spatial correlation for given variables was well indicated by the 

nugget/sill ratio (Cambardella et al., 1994; Iqbal et al., 2005). At the site of this study, the surface 

elevation was only moderately spatially dependent as the nugget/sill ratio ranged between 25% 

and 75%. In another coastal wetland in Germany, a stronger spatial dependence was observed 

with a nugget/sill ratio of 13% (Ahmad et al., 2020). The Kriging map gives an overview of the 

spatial distribution and prediction of surface elevation, which exhibited a pronounced spatial 

gradient from sea to land (Figure 4.4). Although the spatial distribution of these parameters 

was relatively more homogeneous in the subsoil than in the topsoil, both the SOM content and 

the C:N ratio of the topsoil samples were strongly spatially correlated with a low nugget/sill 

ratio (5.1% and 12.8%, respectively), and the spatial dependence was apparent at short ranges 

(Table 4.3). However, this finding differs from that of Ahmad et al. (2020), who found only a 

moderate spatial dependence of the SOM content of topsoil (at 10–15 cm depth).  

Previous studies of inland peatlands have demonstrated a strong spatial dependence of the SOM 

content in highly degraded peatlands (nugget/sill = 12.72%) and rewetted peatlands (nug-

get/sill = 0.22%), while in a moderately degraded peatland, the spatial dependence of the SOM 

content was found to be weak or even absent (Negassa et al., 2019; Wang et al., 2021). In these 

inland peatlands, the spatial dependence of soil properties is influenced by the degree of peat-

land degradation and hydrological management (Negassa et al., 2022; Negassa et al., 2019; 

Wang et al., 2021). Coastal peatlands are, however, unique in that they are terrestrial habitats 
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that have a significant influence on and are influenced by marine environments. The strong 

spatial dependency of the topsoil SOM content with the C:N ratio is attributed to an intimate 

connection between the mineral sediment fraction and distance to the sea (Table 4.1 and Figure 

4.1). Previous studies have also found that intrinsic factors (e.g., parent material/mineralogy) 

may significantly influence the spatial dependence of soil properties (Brady and Weil, 2000; 

Saleh, 2018). Therefore, spatial variability as influenced by soil texture must also be considered 

for coastal mires and peatlands because of a potential mineral sediment input during flooding 

events (Ahmad et al., 2020; Waller and Kirby, 2021).  

4.4.2 Microtopography impacts the distribution and accumulation of organic matter 

Microtopography influences a multitude of fundamental processes of coastal wetlands or peat-

lands. Our findings revealed that organic matter distribution and accumulation in coastal peat-

lands were influenced by microtopography (i.e., the gradient in elevation), as an effect of the 

mineral sediment fraction and local hydrological situation. Low-lying peatlands are considered 

as organic matter-accumulating ecosystems. Both the SOM content and the C:N ratio were sig-

nificantly negatively correlated with soil sampling elevations, as shown by the plotted models 

of regression analysis (Figure 4.5) and the kriging map (Figure 4.4). The kriging map predicts 

that the SOM values of the subsoil are highest in the southeastern area of the study site (low 

elevations) and decrease towards the dikes (high elevations). The high organic matter accumu-

lation at low elevations is linked to a perennial groundwater table close to the soil surface. Lind-

say and Andersen (2016) observed that local depressions can create wetter and thus more an-

aerobic conditions. Both field and laboratory experiments have demonstrated that the carbon 

mineralization rate may decline in anaerobic environments, which allows for the accumulation 

of organic matter (Ahmad et al., 2020; Blodau et al., 2004). Brust’s (2019) research showed a 

relationship between the C:N ratio of organic nitrogen and its respective mineralization and 

immobilization rates. As the C:N ratio increases from 5 to 20, mineralization rates decrease 

gradually until an equilibrium between mineralization and immobilization is reached, whereas, 

for C:N ratios ranging from 30 to >50, the immobilization rates exhibit an increasing trend. In 

our study, the C:N ratios of the samples taken at the low elevations from the center and south-

eastern area are concentrated between approximately 15 and 20, indicating an equilibrium state 

between organic matter mineralization and immobilization. In comparison, areas with much 

lower C:N ratios along the coast and at high elevations were predominantly influenced by ma-

rine sedimentation. 

Compared to the coastal fen peatland in this study, Whittle and Gallego-Sala (2016) drew a 

different conclusion in their study on bog peatland. The authors found that carbon accumulation 

increased with rising elevation in the range of 2–6 m and then decreased between 6–16 m. The 
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relevant reason for this observation is the effect of salinity on the vegetation communities of a 

growing bog, so carbon accumulation is lower in areas frequently affected by salinity. At our 

study site, it is apparent that the water table and sampling location have a greater impact on 

peat formation than salinity, since the Baltic Sea water is much less saline (~0.7 % of average 

salinity) than ocean water in general (~3.5%; Salinity, n.d.). Unlike inland peatlands, the main 

reason for the low SOM content at high elevations in the studied coastal peatland is the high 

percentage of sand (Table 4.1). Waller and Kirby (2021) suggested that SOM content is a crucial 

parameter to be precisely evaluated in coastal peatlands due to the influence of both marine and 

terrestrial environments. In this context, it is important to consider coastal “peat” as “organic 

sediment with a significant mineral fraction”. Furthermore, the growth of organic-rich peat is 

bound to low-lying areas and influenced by the groundwater level and topography (Vis et al., 

2015; Waller and Kirby, 2021). Despite the potential for sediment to be transported and depos-

ited in low-lying areas because of wind-induced water level changes and storm surges along the 

Baltic Sea coast (Jurasinski et al., 2018), our study revealed a contrasting pattern. Considering 

the hydrological conditions of our study site, it is plausible to assume that vegetation was absent 

at lower elevations due to the high water table and that, conversely, (surviving) vegetation act-

ing as sediment traps at higher elevations could promote sediment accumulation in these areas 

(Kretz et al., 2021). 

Overall, microtopography is controlled by a variety of factors (e.g., sediment supply, local hy-

drological variability, storm activity, and plant traits), and also responds to sea level rise and 

extreme weather events (flooding). In our study, we simulated the microtopography of a coastal 

peatland by measuring surface elevation at random locations. Our findings indicate that re-

search on coastal peatlands is accompanied by a higher degree of uncertainty, primarily due to 

the influence of diverse microtopographical factors, in contrast to investigations conducted in 

inland peatlands. It should be noted that the elevations of soil samples collected in this study 

may not fully reflect the microtopographical factors of the original locations due to sampling 

artifacts introduced during the removal of soils (conducted to soil property measurements). 

Moreover, considering the constrained number of elevation measurement points achieved 

through the RTK method, future studies may benefit from integrating more sophisticated meth-

ods and techniques. Approaches such as light detection and ranging (LiDAR) survey or Struc-

ture-from-Motion and Multi-View-Stereo (SfM-MVS) using photos captured from unmanned 

aerial vehicles (UAVs) could significantly improve the accuracy of capturing and representing 

microtopographical effects in peatland ecosystems. These advanced techniques offer promising 

avenues to enhance the precision and comprehensiveness of data collection, leading to a more 
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in-depth understanding of peatland dynamics and processes (Mercer and Westbrook, 2016; Mi-

nasny et al., 2019). In this context, high resolution elevation maps can help to visually assess the 

possible effect of rewetting and soil carbon dynamics in coastal peatland restoration projects. 

4.4.3 SOM content and hydro-physical properties 

In inland peatlands, previous meta or experimental studies have explored the soil hydraulic-

physical properties of peat with different types and degrees of degradation (Liu and Lennartz, 

2019a; Rezanezhad et al., 2016; Wallor et al., 2018; Wang et al., 2021). Low bulk density (e.g., < 

0.76 g cm–3), high organic matter content (e.g., 83.2 ± 15.1 wt%) and high total porosity (e.g., 

71 ~ 95.1 vol%) are well-known as unique characteristics of inland peat soils (Liu and Lennartz, 

2019a; Rezanezhad et al., 2016). Our study indicates that the influence of additional environ-

mental factors (e.g., soil texture), driven by microtopography, also needs to be considered when 

estimating soil hydro-physical properties in coastal peatlands. In this study, soil bulk density, 

total porosity, macroporosity, and VG model parameters had a pronounced to moderate corre-

lation with sampling elevation. Apparently, the value of bulk density from the samples at high 

and middle elevations (Group A and B) reflected the circumstance that the low SOM content 

was affected by a high mineral (sand) content and not mainly by peat soil degradation. The 

values of Ks and VG model parameters (α and n) remained within the range reported by Liu 

and Lennartz (2019a) and Wallor et al. (2018) and were close to the range of natural peat soils 

reported by Wang et al. (2021). However, the estimated saturated water content (θs) of the 

samples from Group A (0.34 to 0.52 cm3 cm–3) was much lower than that of Groups B and C as 

well as in inland peat soils, indicating a weak water retention capacity of soils in high elevation 

areas (Supplementary Figures S4.3 and S4.5).  

The SOM content is an essential indicator of soil quality due to its influence on physical, chem-

ical, and biological soil functions (Haynes, 2005), while alterations in soil properties, in turn, 

have an impact on SOM accumulation (Lal, 2011). In addition to the studies of the close linkage 

between bulk density and SOM content, there have also been several investigations correlating 

VG model parameters with SOM content, bulk density, macroporosity, and soil particle size 

distribution in both mineral and organic soils (Sonneveld et al., 2003; Wang et al., 2021; Zhang 

et al., 2019). The finding that the VG model parameter θs correlates with the sampling elevation 

was further validated by the analysis conducted in the present study (Supplemental Figure 

S4.5). Thus, the interaction among microtopography, SOM content, and soil hydro-physical 

properties further emphasizes the importance of microtopography on soil/sediment properties. 

The variability of soil hydro-physical properties in coastal peatlands has evidently implications 

for their restoration management. Thus, detailed information on soil physical patterns driven 

by microtopography must be obtained and considered prior restoration. 
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4.4.4 Microtopography and salinity impacts on pH, DOC, and NH4
+ leaching 

The pH values of leachates were lower (3.2 to 4.8) when the soil cores were flushed with brack-

ish water than with freshwater (4.9 to 6.5). As reported in previous studies, if NaCl is introduced 

in high concentrations to raise water salinity, the Na+ ions may replace the H+ ions, lowering 

the pH of the effluent (Chambers et al., 2011; Gosch et al., 2019; Liu and Lennartz, 2019b; 

Tiemeyer et al., 2017). An increase in water salinity (e.g., EC) from 0.1 to 1.0 mS cm−1 has been 

reported to result in a decrease in pH from 5.5 to 3.5 (Tiemeyer et al., 2017). Additionally, Liu 

and Lennartz (2019b) and Chambers et al. (2011) pointed out that the low pH might be a result 

of high SO4
2- levels, which is consistent with the findings of this study. 

High SOM accumulation in low-lying spots resulted in high DOC release rates in Group C sam-

ples in the early leaching stages (Figure 4.6a). Even in the same elevation group (Group C), 

spatial variability caused differences in DOC concentrations. Over the experimental period, the 

significant difference in the total DOC amount between Group C and the other two higher ele-

vation groups suggests that the leaching behavior of DOC can be influenced by microtopogra-

phy. Apparently, micro-topographically driven processes created high SOM in low-lying areas, 

forming a distinct pool of dissolved organic matter that can become major hotspots for DOC 

release. Our study also showed that soil bulk density was negatively correlated with DOC release 

(Supplemental Figure S4.9). However, our results appear to contradict those of Liu et al. 

(2019), who found higher bulk density in peat samples was related to higher DOC pore water 

concentrations. It should be noted that Liu et al. (2019) mainly compared peat samples with a 

gradient in bulk density created by land management and degradation stages, while our coastal 

peatland study included different soil types with a higher bulk density produced by mineral 

sediment fractions.  

In addition, the leaching behavior of DOC in our study responded significantly to salinity 

changes (Figure 4.6). Chow et al. (2003) conducted a soil incubation experiment and revealed 

that increasing salinity reduced the DOC concentration; the same conclusion was drawn in the 

study by Liu and Lennartz (2019b). van Dijk et al. (2015) suggested that an enhanced salinity 

may reduce the desorption capacity of sediments due to the higher ionic strength in seawater 

than in wetland sediments. Meanwhile, as salinity increases, iron (Fe) and aluminum (Al) spe-

cies are more receptive to forming hydroxides, and DOC may co-precipitate with hydroxides to 

form flocculation (Nierop et al., 2002). The soil Fe content of our study site seems to support 

the conclusion that DOC concentrations decrease under high salinity conditions. Thus, the res-

toration of coastal peatlands by rewetting with seawater will likely limit DOC leaching into the 

adjacent aquatic system. Nevertheless, higher DOC concentrations (> 200 mg L−1) were ob-

served again in the leachate of Group C when the freshwater replaced brackish water (GW2 
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phase). These high concentrations of released DOC from coastal peats are consistent with the 

findings in recent study undertaken by Liu and Lennartz (2019b), who observed DOC concen-

trations between 10 to 280 mg L−1 in effluent from the German Baltic coast during alternating 

inflow of seawater and freshwater. The result suggests that the release process of DOC is re-

versible, and considerable quantities of DOC might be released from rewetted sites to the ma-

rine ecosystem with low-saline groundwater or storm events with high precipitation (Liu and 

Lennartz, 2019b; Kreuzburg et al., 2020).  

Since the Baltic Sea is a semi-enclosed brackish sea, the allochthonous (e.g., terrestrial) input of 

DOC has been estimated to constitute as much as two-thirds of the total DOC input (Deutsch et 

al., 2012; Gustafsson et al., 2014; Lønborg et al., 2020). The leaching experiment in this study 

clearly demonstrated the occurrence of visible CDOM under low salinity conditions, while the 

turbidity was relatively low at high salinity conditions (Supplemental Figure S4.8). In several 

previous studies, increasing salinity has been proved to significantly decrease the CDOM ab-

sorption coefficient of light at various wavelengths (e.g., a350 in Branco and Kremer, 2005; 

g440 in Harvey et al., 2015); and the existence of a positive correlation between DOC concen-

tration and CDOM absorption coefficient is widely recognized (Ferrari et al., 1996; Fichot and 

Benner, 2011). Thus, the darkening of water caused by high concentrations of DOC reduces the 

amount of light passing through the water. However, the implications of this for the waters 

surrounding coastal peatlands are diverse. Water containing large amounts of CDOM have a 

preferential filtering effect on the light required for photosynthesis, and underwater light avail-

ability as an essential factor in the growth and abundance of primary producers in shallow water 

bodies is diminished (Nelson and Siegel, 2002). On the other hand, sunlight promotes the deg-

radation of dissolved organic matter in marine ecosystems in a complex series of photochemical 

processes, which further converts CDOM into smaller organic compounds, carbon gases (e.g., 

carbon monoxide (CO) and CO2), and nutrients (e.g., NH4
+) (Lønborg et al., 2020; Moran and 

Zepp, 1997). As a result, heavy precipitation, and potential submarine groundwater discharge 

in the low-lying areas of study site are expected to result in considerable DOC leaching, eventu-

ally leading to carbon loss and adverse effects on aquatic organisms (Xenopoulos et al., 2021).  

The NH4
+ release behavior varied greatly among the different soil samples (Figure 4.7). The 

initial concentrations of NH4
+ in Group C were significantly higher than in Groups A and B. The 

most considerable amount of NH4
+ was also released by the soil cores from the low elevation 

group (Figure 4.7c). In other words, the low-lying areas of the study site could be considered 

hotspots of NH4
+ release. NH4

+ is frequently adsorbed to organo-mineral complexes and dif-

fuses slightly in soil (Zheng et al., 2021). The soil/sediment from the high elevation locations 

(Groups A and B) contains a comparably low amount of organic matter and is, thus, more likely 
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to release nutrients because of a low holding capacity for nutrients and moisture (Hudson, 1994; 

Sonon et al., 2014).  

Changes in the NH4
+ concentration were observed under seawater-impacted conditions. In our 

study, more NH4
+ was suddenly leached at the switching from fresh to brackish water. This 

phenomenon was observed not only for all the samples of Group C but also for individual sam-

ples from Groups A and B. The same findings were obtained by Liu and Lennartz (2019b), who 

found that the addition of seawater caused a rapid and substantial increase in the NH4
+ concen-

tration in the leachate. A possible explanation of this is that the Na+ supplied by seawater com-

petes with NH4
+ for binding sites, causing NH4

+ desorption from soil particles (Baldwin et al., 

2006). A high SOM content can significantly increase the cation exchange capacity (CEC; Ramos 

et al., 2018). When seawater with high concentrations of Na+ flush into organic-rich soils (e.g., 

Group C), large amounts of NH4
+ are released due to cation exchange (Liu and Lennartz, 2019b). 

In a recent field study conducted by Pönisch et al. (2023) at the same study site, following the 

rewetting of the peatland, a rapid and significant increase in NH4
+ concentration was observed 

in the surface water of the recently flooded area, reaching levels as high as approximately 1.80 

mg L–1 (equivalent to ~100 μmol L–1). Concurrently, the NH4
+ concentration in the surface water 

of the inner bay, located in front of the removed dike, exhibited corresponding changes and was 

significantly higher than that of the central Kubitzer Bodden. Remarkably, earlier studies have 

shown that NH4
+ concentrations in the Baltic Sea ranged from 0 to 0.36 mg L–1 (e.g., 0.03 mg 

L–1, equivalent to 1.5 μmol L–1 in 2019 observed by Naumann et al., 2020; 0.36 mg L–1, equivalent 

to 20 μmol L–1 recorded by Berg et al., 2015), but the initial and peak concentrations of NH4
+ 

leached by peat samples from low elevation in our study ranged from 6.56 to 47.64 mg L–1, 

which are two orders of magnitude higher than the level in the Baltic Sea water used in our 

leaching experiments (0.037 mg L–1). This suggests that the risk of nutrient leaching at low 

elevations is exceptionally high when removing dikes for rewetting purposes and that the salt 

intrusion in coastal peatlands may provoke eutrophication of aquatic habitats, which poses a 

severe threat to the marine ecosystem (Pönisch et al., 2023). 

The distribution of SOM driven by microtopography and its associated soil physical properties 

(e.g., bulk density and total porosity) may influence the release of DOC and NH4
+, also because 

organic matter plays the most important role in the nutrient storage capacity (Sonon et al., 

2014; Weil and Magdoff, 2004). Overall, microtopography plays an essential role in rewetting 

coastal wetlands (especially peatlands) compared to inland peatlands due to the large spatial 

heterogeneity that is influenced by marine-terrestrial interactions, which also introduces un-

certainty in the evaluation of rewetting outcomes.  
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4.5 Conclusions 

Restoration of peatlands is regarded a fundamental action to mitigate climate change and help 

achieve sustainable development goals. In this context, this study provides support for the ap-

plicability of rewetting of coastal peatlands where the distribution of carbon and the potential 

of nutrient release are a function of microtopography.  

The soil hydro-physical properties of coastal peatlands differ from those of inland peatlands as 

the low organic matter content in high elevation areas is not caused by degradation of peat soil 

but rather by the impact of the marine environment (i.e., mineral sediment). In addition, our 

study showed that alternating salinity affected DOC and NH4
+ release from the soil and that the 

release was also influenced by microtopography, i.e., low elevation areas are hotspots of poten-

tial nutrient release. As peatlands are progressively submerged due to rewetting practices or sea 

level rise, coastal wetland systems gradually expand inland. Through elevated salinity of surface 

waters, low-lying areas have the potential to continue to accumulate carbon over time. How-

ever, the reversible process can cause a pronounced release of DOC with decreasing salinity, 

where high CDOM concentrations alter the watercolor and thereby, possibly limiting the pho-

tosynthesis in aquatic systems. Notably, enhanced salinity may cause low-lying areas with or-

ganic-rich soils/sediments to become major and direct exporters of NH4
+ from land to adjacent 

waters. The high microtopography-driven spatial heterogeneity suggests that not all locations 

provide the same level of ecosystem services or show the same responses. Therefore, site-spe-

cific microtopography may contribute to the identification of success indicators for rewetting 

(e.g., organic matter and water quality) to better monitor carbon sequestration and assess con-

servation effectiveness. 
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Concluding Discussion 

5.1 Overview 

In recent years, there has been a growing recognition of the importance of conserving and sus-

tainably managing peatlands, driven by their significant ecological value and the urgent need to 

address climate change. Peatland degradation caused by drainage and agricultural practices is 

acknowledged to pose a significant threat to the climate, in particular leading to considerable 

greenhouse gas emissions (Günther et al., 2020; Hahn et al., 2015; Liu et al., 2019). To address 

this issue, the restoration of drained peatlands through the implementation of rewetting 

measures has been widely promoted (Cris et al., 2014; Joosten, 2009; Tanneberger et al., 2021). 

This thesis asserts that, to effectively implement these measures and evaluate their effective-

ness, a comprehensive understanding of the soil hydro-physical properties of peatlands as a 

fundamental approach is essential. It allows us to ascertain the condition of peatland ecosystems 

in response to human activities, such as drainage and rewetting.  

The specific objectives proposed in Chapter 1.3.1 have been effectively accomplished. Figure 5.1 

provides a comprehensive overview of the key results and serves as a condensed representation 

of the main contributions of this thesis. The results from Chapter 2 confirmed that peatland 

degradation influenced the spatial variability of soil hydro-physical properties. For instance, the 

spatial dependence of the SOM content became stronger with increasing peatland degradation, 

underscoring the importance of incorporating spatial information to characterize the impact of 

land management on peatland functioning. The results further suggested that using spatial data 

can significantly enhance the assessment of peatland conservation status and restoration prior-

ities (Manton et al., 2021). Additionally, this chapter emphasized the importance of considering 

soil structure, particularly macroporosity, in predicting hydro-physical parameters of peat soils, 

especially in degraded peatlands. These findings highlighted the importance of leveraging soil 

properties and their spatial information for making well-informed decisions in peatland con-

servation and restoration endeavors. 
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Figure 5.1 Integrated summary that visually and textually summarizes the main findings from chapter 2, 3, and 4 

of this thesis. 

 

Peat soils are anisotropic and heterogeneous porous media, where these characteristics influ-

ence water movement and solute transport. Chapter 3 demonstrated that the strength of pref-

erential flow, which indicated the behavior of solute transport, displayed moderately higher in 

the vertical samples than in the horizontal samples. Indeed, the effects of heterogeneity on peat-

lands were more pronounced than those of anisotropy, as evidenced by the leaching behavior 

of phosphate in the drained site. As former agricultural land, degraded peatlands store large 

amounts of nutrients provided by farming activities. We concluded that the anisotropic nature 

of water movement and solute transport in peat soils could allow the transport and enrichment 

of phosphate along stronger preferential pathways (Backnäs et al., 2012; Gächter et al., 1998). 

Thereby, its impact on the surrounding water bodies should be given attention in peatland res-

toration practices (Zak et al., 2010).  

The rewetting of peatlands has been carried out progressively in the Federal State of Mecklen-

burg-Western Pomerania (MV) in Germany. To simulate a post-rewetting scenario, soil column 

experiments were conducted with samples from a recently rewetted German coastal peatland 

(Supplemental Figure S5.1), which was the focus of Chapter 4. Considering the specific influ-

ence from the Baltic Sea, the site was studied as a distinct ecosystem, separated from inland 
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peatlands. The analysis of the soil physical properties (including particle size distributions) and 

RTK-GPS measurements showed that high elevation samples had low SOM content and high 

bulk density. This was mainly due to a greater proportion of mineral soils influenced by mi-

crotopography, rather than the typical degradation patterns observed in inland peatlands. Fur-

thermore, the study revealed that a significant spatial heterogeneity in the distribution of po-

tentially released DOC and NH4
+, with low-lying areas acting as hotspots. However, the influ-

ence of salinity on the release behavior of different compounds posed additional challenges for 

the rewetting of coastal peatlands. These findings, therefore, emphasized the need to consider 

spatial heterogeneity, topographic factors, and coastal-land interactions when assessing the eco-

logical functions of coastal peatlands and their responses to management practices (Ahmad et 

al., 2020; Pönisch et al., 2023).  

5.2 Synthesis 

5.2.1 Soil hydro-physical properties as indicators of peatland degradation and ecological 

functionality 

The implications of soil physical properties for peatland restoration by rewetting are significant, 

influencing key aspects of the rewetting process and overall peatland ecosystem health. These 

properties serve as indicators not only for assessing the degradation of peatlands but also for 

evaluating the ecological functionality after rewetting. Soil physical properties, such as bulk 

density and porosity, reflect the water retention capacity and soil structure of peatlands. As 

indicators of peatland degradation, changes in these properties can signal the negative impact 

of human activities, such as drainage, on the stability of peatland ecosystem. Post-rewetting, 

monitoring these indicators becomes crucial to measure the success of restoration efforts. The 

ability of soil to retain water and maintain a healthy structure directly influences the re-estab-

lishment of native vegetation, nutrient cycling, and microbial communities. Therefore, recog-

nizing these soil properties as dual indicators offers a comprehensive approach to understand-

ing the dynamics of peatland ecosystems across different stages, from degradation assessment 

to post-rewetting ecological functionality.  

5.2.1.1 SOM content and bulk density 

The study of soil hydro-physical properties of peat soil can provide important information about 

the health and degradation of peatland ecosystems (Gabriel et al., 2018). Soil bulk density and 

the SOM stoichiometry are key indicators of peat soil quality that can be used to assess the extent 

of peatland degradation (Leifeld et al., 2020; Liu and Lennartz, 2019a). The high SOM content 

of natural peatlands undoubtedly plays an important role in the ecological function of peat soils, 

contributing to high carbon storage, good soil water retention capacity, and cation exchange 
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capacity (Sonon et al., 2014). This thesis demonstrated that the degradation and mineralization 

of peatlands result in a decrease in the SOM content and an increase in bulk density, as evi-

denced by the experimental data presented in Figure 5.2, which was consistent with previous 

research findings (Liu and Lennartz, 2019a). Apparently, in the discussion of Chapter 4, coastal 

“peat” should be considered to some extent as “organic sediment with significant mineral con-

tent”. Thus, it can be inferred that considering both bulk density and the SOM content (includ-

ing C:N ratio) simultaneously, rather than focusing solely on either one, allows for a more com-

prehensive assessment of peatland degradation or mineralization levels due to the inherent eco-

logical variations among and within peatland ecosystems (Figure 5.2). In addition to these two 

parameters, the study by Sienkiewicz et al. (2019) concluded that the ratio of dissolved organic 

carbon to soil organic carbon (DOC/SOC ratio) could better represent the intensity of peat soil 

mineralization, as the loss of carbon (C) and nitrogen (N) in peat SOM occurs independently. 

However, the experimental design employed in this thesis may not substantiate this perspective. 

 

Figure 5.2 The correlation between bulk density (g cm–3) and soil organic matter content (SOM, wt%) of all sam-

ples from Chapter 2 and 4 in this thesis. 

 

5.2.1.2 Soil water content and macroporosity 

Soil water content and soil structural information are other important indicators of peatland 

degradation. The water storage capacity of peatlands is influenced by their unique soil structure 

(Rezanezhad et al., 2016). Water content reflects the hydrological conditions of the peatland, 

where waterlogged anaerobic conditions due to high water levels are critical to peat formation 

as well as organic matter accumulation (Peatlands.org., n.d.). In turn, fluctuating water levels 

in peatlands inhibit Sphagnum growth and accelerate decomposition through fungal prolifera-

tion, thereby reducing the carbon sequestration potential of peatlands (Kim et al., 2021). Figure 

5.3a showed that peatland degradation stages were closely linked to soil water content (or total 
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porosity). Compared to the degraded peatland, the inland pristine peatland investigated in this 

thesis exhibited a markedly higher macroporosity (Figure 5.3b), suggesting that changes in soil 

structure affected by peatland degradation can be significantly reflected by macroporosity.  

 

Figure 5.3 The relationship between soil organic matter content (SOM, wt%) and a) estimated soil water content 

at saturation (θs, cm3 cm–3); b) macroporosity (vol%) of all samples from Chapter 2 and 4 in this thesis. 

 

Study on macroporosity is essential in peatlands because the large natural macropores in peat-

lands (e.g., soil pipes in the English bogs) serve as a potential pathway for transporting sub-

stances among terrestrial, aquatic, and atmospheric systems (Dinsmore et al., 2011; Holden et 

al., 2012). Based on the variation in the origin and formation of macropores in peat, influenced 

by the type of peat/soil, different relationships were observed between macropores and other 

hydro-physical properties in the studied peatlands (Figure 5.4 and Supplemental Figure S5.2). 

The macroporosity values of inland peat soils (bulk density < 0.8 g cm–3) were within the range 

reported in Liu and Lennartz (2019a), while no significant correlation between macroporosity 

and bulk density was observed for soils sampled from the coastal peatland, especially for bulk 

density > 1.0 g cm–3 (Figure 5.4). Although Chapter 2 demonstrated the strong correlations 

between macroporosity and hydraulic properties, showing that incorporating macroporosity 

into pedotransfer functions can enhance the prediction of time-consuming hydraulic properties 

of inland peat soils using easily measurable parameters, the same approach might not be appli-

cable for coastal peat soils. Similarly, the completely different correlations between macroporos-

ity and VG model parameters illustrated that the study of coastal peatlands could not be directly 

extrapolated from environmental models of other single peatland types (Supplemental Figure 

S5.2b and c). In addition, compared to the “soil” of inland degraded fen and coastal fen, the 

natural peatland studied in this thesis was primarily formed by the growth of Sphagnum, and 

thus, their plant and vascular root structure contributed to their abundant macropores 

(McCarter et al., 2020; Weber et al., 2017). However, the high macroporosity observed in natu-

ral peatlands did not necessarily have higher Ks than in other study sites (Supplemental Figure 
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S5.2a). One possible reason for this is that multiple factors influence Ks, including soil depth, 

bulk density, the degree of peat humification, microtopography, peatland trophic type, and local 

climate conditions (Morris et al., 2022). Even if only pore structure is considered, the impact of 

factors such as pore connectivity on water movement should be taken into account (Ghareda-

ghloo et al., 2018; McCarter et al., 2020).  

 

Figure 5.4 The relationship between soil bulk density (g cm–3) and macroporosity (vol%). Colored symbols rep-

resent the data of this thesis, while grey symbols represent values in the study of Liu and Lennartz (2019a).  

 

Clearly, anthropogenic disturbance can lead to the collapse of peat soil structure and the loss of 

macropores, resulting in a decreased capacity to support vegetation and other ecosystem func-

tions, and may also result in the loss of carbon stored in gaseous form (Chambers et al., 2019; 

Dinsmore et al., 2011; Kleimeier et al., 2017; Liu et al., 2016). A recent study reported that the 

hydrological regime and peat soil structure are not always fully restored, even after a decade of 

restoration efforts (Loisel and Gallego-Sala, 2022). In a case of restored Sphagnum bogs in Can-

ada, Gauthier et al. (2018, 2022) proposed a possible reason that the hydrological connectivity 

was limited by the capillary barrier resulting from markedly different pore size distribution in 

degraded remnant cutover peat and regenerated Sphagnum moss. Based on their laboratory 

and field experiments, they suggested that mechanical compression could be a solution to the 

capillary barrier in the restored moss layer, although it would increase the bulk density and 

reduce the proportion of macropores. Their results proved an increased soil water retention 

and a higher average soil moisture content in compressed restored sites, ultimately facilitating 

the restoration of ecohydrological function in regenerated Sphagnum moss. It can therefore be 

assumed that by monitoring changes in water content and pore stucture, peatland restoration 

practitioners can assess the effectiveness of their restoration interventions and make informed 

decisions about future management strategies.  



CHAPTER 5. CONCLUDING DISCUSSION 

97 

 

5.2.2 Important factors involved in this thesis on successful peatland restoration 

Rewetting and effective management play crucial roles in peatland ecosystem restoration, of-

fering multifaceted and essential implications. The restorative potential of rewetting extends to 

reviving ecological functions and mitigating GHG emissions in degraded peatlands (Evans et al., 

2021; Tiemeyer et al., 2020; Wilson et al., 2016). Through rewetting, there is a likelihood of 

enhancing hydrological buffer function and potentially restoring a more favorable soil structure, 

which contributing to the mitigation of water table fluctuations and supporting the revival of 

native vegetation and promoting biodiversity (Ahmad et al., 2020). Moreover, the management 

of rewetted peatlands becomes instrumental in maintaining and enhancing these positive ef-

fects. In recent years, paludiculture cultivation, focusing on crops adapted to wetland conditions, 

has become a hot topic in the land use of rewetted peatlands (Tanneberger et al., 2022). Its 

crucial role in preventing the recurrence of degradation and ensuring the long-term sustaina-

bility of restored peatlands cannot be overstated. However, from a research perspective, re-

wetted peatlands still face some challenges that require ongoing attention and in-depth investi-

gation. 

5.2.2.1 Challenges of rewetting peatland  

The peatland restoration process is intricate and involves numerous ecological, hydrological, 

and biogeochemical factors (Liu et al., 2020b; Monteverde et al., 2022). One of the primary 

challenges in evaluating the success of peatland restoration initiatives is the inherent heteroge-

neity of peatland ecosystems, which can affect the performance of different indicators employed 

to measure peatland characteristics and restoration success (e.g., soil properties, local hydrol-

ogy, and vegetation). However, not a lot of attention has been paid to this topic (Supplemental 

Figure S5.3). 

Considering all forms of soil heterogeneity, including spatial heterogeneity (e.g., spatial varia-

bility of soil properties) and more specifical soil textural heterogeneity (i.e., variations in soil 

type; McBratney and Minasny, 2007), is essential when planning a restoration practice in the 

field. The geostatistical analysis in Chapters 2 and 4 revealed differences in the autocorrelation 

of soil properties among different investigated peatland types. For instance, the spatially de-

pendent range of the SOM content in the natural peatland was shorter than in the highly de-

graded peatland, indicating a more uniform distribution of the SOM content across the land-

scape than the highly degraded peatland (Figure 5.5). The spatial characteristics of the SOM 

content in inland peatlands, thus, can be inferred to assess the extent and severity of peatland 

degradation and restoration potential. Moreover, the coastal peatland studied showed the 
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strongest spatial autocorrelation in SOM of all sites due to the influence of factors such as mi-

crotopographic patterns and marine inputs (e.g., the mineral sediment fraction). A comprehen-

sive analysis of the spatial variation of SOM in highly heterogeneous peatland ecosystems, along 

with independent measurements, can enhance the understanding of carbon dynamics under 

rewetting scenarios. 

 

Figure 5.5 Semivarioagram parameters of the soil organic matter content (SOM) from Chapter 2 and 4. Links: 

level of spatial dependence (evaluated by nugget/sill ration of); right: range. 

 

In addition, the spatial variability of the SOM content in peatlands can impact the effectiveness 

of rewetting efforts and pose certain environmental risks, such as the appearance of nutrient 

release “hotspots” (Chapter 4; Supplemental Figure S5.4). Long-term agricultural used peat-

lands can become “hotspots” for phosphate leaching when a rewetting project is applied to the 

site, which may lead to the eutrophication of groundwater and pose additional environmental 

risks to the peatland ecosystem (Tiemeyer et al., 2007; Zak et al., 2018). During the rewetting 

of a coastal peatland, low-lying areas with high SOM content are likely to remain “hotspots” for 

compounds (e.g., NH4
+) release and can export to adjacent marine systems (Pönisch et al., 

2023). Meanwhile, seawater-rewetted areas that are potentially exposed to freshwater condi-

tions (e.g., storm, precipitation, and submarine groundwater discharge) have the possibility to 

lead to an increased DOC release from peatlands to waterbodies (Liu and Lennartz, 2019b). 

On a global scale, boreal peatlands are the major contributors (~58%) of DOC export to surface 

waters (Rosset et al., 2022). Therefore, the dynamics of DOC concentrations should be taken 

into account in peatland restoration practices (Glatzel et al., 2003). Meanwhile, CDOM resulting 

from DOC release can increase turbidity and reduce transmissivity in the water, thereby im-

pacting aquatic plant and animal communities (Branco and Kremer, 2005; Harvey et al., 2015; 

Lønborg et al., 2020; Moran and Zepp, 1997). Kreyling et al. (2021) pointed out that rewetted 

peatlands must be considered to be new ecosystems with potentially different functions. Thus, 
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when rewetting is approached as an effective way to recover the carbon sink function, side ef-

fects in this new ecosystem, such as high nutrient and DOC loss to adjacent aquatic systems due 

to altered soil characteristics and salinity changes in the wetted area, as well as salinity change-

induced fluctuations in nutrient release, must be considered in order to better assess the poten-

tial impacts on the adjacent water quality. 

5.2.2.2 The attention towards restoring peatland ecosystems 

The restoration of peatlands, particularly through peatland rewetting, has received significant 

attention from the research community in recent years along with concerns about peatland 

degradation (Figure S5.3). To provide a better concluding discussion on the attention towards 

peatland restoration within the context of soil science, a bibliographic search was conducted in 

the Web of Science database (https://www.webofscience.com) on March 9, 2023, using the key-

words “Peatland” AND “Soil properties” AND “Restoration” OR “Rewetting” in the “All field” 

category. This search yielded only a total of 108 articles. The earliest literature appeared in 2002 

(1 article), and from 2015 onwards, the number of studies has notably increased, peaking at 20 

articles per year in 2020 and 2022 (Figure 5.6a). An analysis of the geographic distribution of 

studies on the relevant topics revealed that Canada, Germany, and the United States were 

among the top three countries (Figure 5.6b). For instance, in Germany, comprehensive inter-

disciplinary studies have been conducted on degraded and rewetted peatlands to develop scien-

tific principles for the sustainable and gentle management of these ecosystems, particularly 

through research projects, such as “BalticTRANSCOAST” and “WETSCAPES” (Jurasinski et al., 

2020, 2018).  

 

Figure 5.6 Results of (a) publication years; (b) countries/regions from the bliographic search in Web of Science 

database.  

 

In addition to scientific aspects, successful peatland restoration requires engagement from mul-

tiple stakeholders, including policymakers, landowners, and local communities. For instance, 

the State Office for the Environment, Nature Conservation and Geology of the Federal State of 
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MV in Germany continuously disseminates information regarding the conservation and resto-

ration of peatlands in the state, including an overview of the legal framework, goals, and 

measures related to peatland conservation and management, as well as examples of successful 

peatland restoration projects within the state. Additionally, raising public awareness can play a 

crucial role in promoting active participation among these stakeholders, facilitating the imple-

mentation of effective restoration practices, and ensuring the long-term success of peatland 

ecosystems. 

Back to the scientific aspect, a bibliometric analysis8 of these 108 articles was performed using 

VOSviewer Software (Apori et al., 2022; van Eck and Waltman, 2010), with a minimum co-

occurrence threshold set at 6 (Figure 5.7). 

 

Figure 5.7 Bibliometric analysis maps (co-occurrence network of keywords); (a) overlay visualization; (b) network 

visualization in 3 clusters. 

 
8 Note: The analytical methods used in this section were based on the approach described in Apori et al. (2022).  
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Overlay visualization analysis depicted a positive scenario in which the research priorities of 

peat soils have gradually shifted from examining soil (hydro-physical and chemical) properties 

to delving into the impact of rewetting on the environment over the last five years (Figure 

5.7a). The emerging areas of interest also encompassed the challenges associated with re-

wetting peatlands, such as water quality (i.e., keywords regarding different compounds and 

groundwater). The co-occurrence network of keywords identified three clusters, representing 

“hot” research focuses of the “soil properties” and “peatland restoration/rewetting” themes 

(Figure 5.7b and Supplemental Table S5.1). Network visualization analysis showed that cluster 

3 (“land management”), which includes some methods of peatland restoration (e.g., rewetting 

and revegetation), was closely linked to the other 2 clusters. It is also a good representation of 

the soil science community’s approach to peatland restoration that takes full account of ecolog-

ical, environmental, and applied aspects, and will guide more research involving these topics.  

In particular, the keyword “water table” in the first cluster (“soil hydrology”) can be a “bridge 

node” connecting different clusters and research communities (Supplemental Figure S5.5). By 

restoring proper water levels, the peatland rewetting process can reactivate vital processes such 

as peat accumulation, sphagnum growth, and nutrient cycling, which are essential for main-

taining the unique biodiversity, carbon sequestration capacity, and hydrological regulation of 

peatlands. The integration of water table monitoring and management into peatland restoration 

efforts is, therefore, imperative to ensure these ecosystems’ long-term success and resilience in 

the face of environmental challenges (Ahmad et al., 2021). 

5.3 Limitations and Outlook 

This thesis examined the soil physical properties of peatlands, achieving the proposed research 

objectives and providing valuable insights. It highlighted the ecological importance of peatlands 

and the risks associated with peatland degradation and discussed the role of soil physical prop-

erties in peatland degradation and ecosystem functions, as well as the factors that are essential 

for successful restoration of peatlands. The experimental sections offered guidance and tools for 

assessing and monitoring the condition and functionality of peatlands, including analysis of soil 

properties, mapping, and evaluation methods. The outcome and conclusions may contribute to 

advancing peatland research and provide practical support for sustainable peatland manage-

ment and restoration. 

However, there are still some limitations that cannot be ignored. For instance, in Chapter 2 the 

spatial dependence of SOM was strongly influenced by the degree of peatland degradation. How-

ever, the effect of this on other hydraulic and physical properties was not very significant. A 

possible reason for this is the small spatial scale or limited sample size, which may affect the 
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validity of the study results. On the one hand, although the measurement and analysis in Chap-

ter 2 involved several types of peatlands that are typical in northeastern Germany, more data 

and factors from a larger scale (e.g., national or global scale) are needed for analysis in order to 

develop more accurate models. Morris et al. (2022) demonstrated that their models could pro-

vide more accurate predictions of Ks of peat soils than in Chapter 2, because they accounted for 

some continuous and categorical predictors (e.g., peatland trophic type, local surface microform, 

and climatic condition) that were overlooked by this thesis. On the other hand, it should be 

noted that spatial heterogeneity means that the effects of variables may differ in different sites 

or contexts, which may limit the generalizability of quantitative research results in different 

sites or contexts. Therefore, independent analysis of important variables is necessary for differ-

ent study sites, especially inland and coastal peatlands.  

In terms of the study design and methodology, the individual objectives and environmental 

constraints across the three studies led to differences in sampling depth and studied nutrients, 

potentially impacting result comparability and the overall coherence of the research. Addition-

ally, reliance on traditional geostatistical methods in data analysis, such as semivariogram func-

tions and Kriging interpolation, may be considered a limitation. The omission of more modern 

techniques, like digital elevation models (DEMs), in data visualization, could impact the depth 

of spatial analysis. Integrating advanced methods, including DEMs, is crucial for comprehensive 

spatial analysis in future peatland research. Furthermore, it is important to acknowledge an-

other limitation associated with the linear mixed modeling analysis of spatially dependent data. 

The application of linear regression to non-independent samples suffers from theoretical short-

comings due to the presence of spatial autocorrelation, which poses a challenge in drawing re-

liable conclusions from the data. This limitation is reflected in the fitting accuracy of pedotrans-

fer functions, which may not achieve the desired level of precision in predicting soil properties. 

Addressing this theoretical concern would require exploring alternative statistical approaches 

capable of handling spatially dependent data more effectively in future studies. 

This thesis opens up several avenues for further research. One recommendation would be to 

conduct long-term experimental observations in rewetted peatlands to assess the dynamics of 

hydro-physical properties and their implication on peatland hydrology influenced by both ma-

rine and terrestrial systems on related ecosystems. In the field of macropore research, meas-

urements of soil liquid contact angle should be conducted on intact and degraded peat soils to 

determine soil structure, including pore size distribution derived from soil water retention 

curves. Furthermore, attention should be given to the (peat) soil shrinkage characteristics. An-

other proposal is to investigate the correlation between greenhouse gas-related microbial activ-

ities and indicative soil properties of peatland degradation to reveal the mechanism of soil struc-

ture affecting greenhouse gas emissions (e.g., methane production and ablution) and to provide 



CHAPTER 5. CONCLUDING DISCUSSION 

103 

 

a more accurate and comprehensive reference for peatland management and protection. In ad-

dition, the inclusion of isotope labeling techniques in laboratory soil column experiments can 

more accurately explore the interaction between peat soil structure and biogeochemical cycles. 

Future research can certainly explore the use of novel techniques, such as remote sensing and 

machine learning to analyze the spatial variability of soil properties in peatlands. Lastly, it is 

essential to broaden our focus beyond rewetting as the sole method for restoring drained peat-

lands. As part of the restoration process, further investigation should be conducted on revege-

tation (e.g., establishing growing Sphagnum moss; Glatzel and Rochefort, 2017). Specifically, 

the interactions between this approach and environmental responses need to be explored, tak-

ing into consideration soil physics aspects, such as pore structure. 

Overall, the study of soil physics in peat soils is fundamental to the exploration of the structure, 

function, and composition of peatland ecosystems. A clear picture of peat soil hydraulic and 

physical properties and processes, thus, has important scientific significance and practical value, 

which is essential for the conservation and restoration of peatlands, as well as evaluating their 

response and contribution to global climate change.  
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Figure S2.1 Numbers of publications per year found from a SCOPUS database search combining the search terms 

“Soil” and “Semivariogram” or “Variogram”; “Peat” and “Semivariogram” or “Variogram”. The results also indicate 

Geoderma published the highest number of articles on this topic. 
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Figure S2.2 Kriging interpolation map of estimated bulk density for three study sites. 

 
 

 

 
 

 

 

Figure S2.3 The relationship between Log10α and macroporosity at Site 1 (natural peat). Macroporosity is calcu-

lated by the difference between total porosity and water content at –10 cm H2O pressure head. 
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Table S2.1 Summary of linear mixed-effect model (LMEM) fit by REML in “R” Software with “lme4” and “lmerTest” package. (fixed effect: “site”; random effect: “sampling location”). 

Parametera 
Criterion at  

convergence 

Fixed effect (“site”)   Random effect (“location”) 

 Estimate SEc DF t-value Pr(>|t|)d Groups Name Variance SD 

SOM 

(wt%) 
1279.6 

(Intercept) 97.7300 0.5598 209.92 174.58 <0.0001 ***  location (Intercept) 1.932 1.390 

siteSite2 –28.6190 0.7570 142.00 –37.80 <0.0001 ***  Residual  20.632 4.542 

siteSite3 –67.2921 0.7570 142.00 –88.89 <0.0001 ***  Number of obs: 216, groups: location, 72 

BD 

(g cm‒3) 
–543.8 

(Intercept) 0.0752 0.0077 211.60 9.726 <0.0001 ***  location (Intercept) 0.0002 0.0157 

siteSite2 0.2623 0.0106 142.00 24.709 <0.0001 ***  Residual  0.0041 0.0637 

siteSite3 0.4675 0.0106 142.00 44.029 <0.0001 ***  Number of obs: 216, groups: location, 72 

Total  

porosity 

(vol%) 

–782.9 

(Intercept) 0.9662 0.0044 209.88 218.57 <0.0001 ***  location (Intercept) 0.0001 0.0110 

siteSite2 –0.1383 0.0060 142.00 –23.14 <0.0001 ***  Residual  0.0013 0.0359 

siteSite3 –0.1718 0.0060 142.00 –28.75 <0.0001 ***  Number of obs: 216, groups: location, 72 

Macro- 

Porosityb 

(vol%) 

–589.2 

(Intercept) 0.4295 0.0069 213.00 61.90 <0.0001 ***  location (Intercept) 0.0000 0.0000 

siteSite2 –0.3465 0.0098 213.00 –35.31 <0.0001 ***  Residual  0.0035 0.0589 

siteSite3 –0.3300 0.0098 213.00 –33.63 <0.0001 ***  Number of obs: 216, groups: location, 72 

Log10Ks 367.6 

(Intercept) –5.0573 0.0656 212.65 –77.08 <0.0001 ***  location (Intercept) 0.0089 0.0942 

siteSite2 –0.4158 0.0915 142.00 –4.55 <0.0001 ***  Residual  0.3011 0.5487 

siteSite3 –0.0467 0.0915 142.00 –0.51 0.6110  Number of obs: 216, groups: location, 72 

α 

(cm−1) 
–397.5 

(Intercept) 0.1812 0.0109 213.00 16.65 <0.0001 ***  location (Intercept) 1.685e–05 0.0041 

siteSite2 –0.1801 0.0154 142.00 –11.71 <0.0001 ***  Residual  8.512e–03 0.0923 

siteSite3 –0.1798 0.0154 142.00 –11.70 <0.0001 ***  Number of obs: 216, groups: location, 72 

n –562.6 

(Intercept) 1.2440 0.0074 207.10 167.22 <0.0001 ***  location (Intercept) 0.0005 0.0218 

siteSite2 0.2492 0.0099 142.00 25.24 <0.0001 ***  Residual  0.0035 0.0592 

siteSite3 0.2058 0.0099 142.00 20.85 <0.0001 ***  Number of obs: 216, groups: location, 72 
a Abbreviations: SOM, soil organic matter content; BD, bulk density; Ks, saturated hydraulic conductivity; θs, estimated water content at saturation (cm3 cm−3); α and n, empirical parameters. 
b The linear mixed-effect models of “macroporosity” result in singular fits, which indicated that the random effects are very small. 
c Abbreviations: SE, standard error; SD, standard deviation; DF, degrees of freedom. 
d Significance codes: 0, “***”; 0.001, “**”; 0.01, “*”. 
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Table S2.2 Summary of pairwise comparison of linear mixed-effect models (LMEMs) in “R” Soft-ware with “em-

mean” package. Tukey method for comparing a family of 3 estimates for p-value adjustment. 

Parametera 

Pairwise difference of “Site” 

Pairwise Estimate 
Standard  

error 
DFb t-ratio p-valuec 

SOM 

(wt%) 

Site 1 – Site 2 28.600 0.757 142 37.804 <0.0001*** 

Site 1 – Site 3 67.300 0.757 142 88.889 <0.0001*** 

Site 2 – Site 3 38.700 0.757 142 51.058 <0.0001*** 

BD 

(g cm‒3) 

Site 1 – Site 2 –0.262 0.011 142 –24.709 <0.0001*** 

Site 1 – Site 3 –0.467 0.011 142 –44.029 <0.0001*** 

Site 2 – Site 3 –0.205 0.011 142 –19.320 <0.0001*** 

Total porosity 

(vol%) 

Site 1 – Site 2 0.138 0.006 142 23.138 <0.0001*** 

Site 1 – Site 3 0.172 0.006 142 28.751 <0.0001*** 

Site 2 – Site 3 0.034 0.006 142 5.613 <0.0001*** 

Macroporosity 

(vol%) 

Site 1 – Site 2 0.347 0.010 142 35.310 <0.0001*** 

Site 1 – Site 3 0.330 0.010 142 33.629 <0.0001*** 

Site 2 – Site 3 –0.017 0.010 142 –1.680 0.2163 

Log10Ks 

Site 1 – Site 2 0.035 0.217 142 0.159 <0.0001*** 

Site 1 – Site 3 0.268 0.217 142 1.237 0.8664 

Site 2 – Site 3 0.234 0.217 142 1.078 0.0003*** 

α 

(cm−1) 

Site 1 – Site 2 0.180 0.015 142 11.709 <0.0001*** 

Site 1 – Site 3 0.180 0.015 142 11.696 <0.0001*** 

Site 2 – Site 3 –0.0002 0.015 142 –0.013 0.9999 

n 

Site 1 – Site 2 –0.249 0.010 142 –25.241 <0.0001*** 

Site 1 – Site 3 –0.206 0.010 142 –20.848 <0.0001*** 

Site 2 – Site 3 0.043 0.010 142 4.394 0.0001*** 
a Abbreviations: SOM, soil organic matter content; BD, bulk density; Ks, saturated hydraulic conductivity; α and n, empirical 

parameters. 
b Abbreviation: DF, degrees of freedom. 
c Significance codes: 0, “***”; 0.001, “**”; 0.01, “*”. 
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Table S2.3 Mean, standard deviation and 95% confidence intervals of water contents at different pressure heads 

in the soil water retention curves (SWRCs). (Site 1: natural peatland; Site 2: degraded peatland; Site 3: extremely 

degraded peatland). 

Pressure head  

(–cm H2O) 
Site Mean 

Standard  

deviation 

95% confidence intervals 

Lower limit Upper limit 

At saturation 

1 0.97 0.02 0.960 0.972 

2 0.83 0.03 0.821 0.835 

3 0.80 0.06 0.785 0.812 

10 

1 0.87 0.07 0.852 0.884 

2 0.79 0.04 0.779 0.798 

3 0.75 0.06 0.736 0.764 

30 

1 0.69 0.09 0.670 0.709 

2 0.77 0.04 0.762 0.781 

3 0.72 0.06 0.710 0.737 

60 

1 0.54 0.10 0.515 0.559 

2 0.74 0.04 0.736 0.754 

3 0.70 0.06 0.684 0.712 

100 

1 0.47 0.09 0.452 0.493 

2 0.72 0.04 0.714 0.733 

3 0.68 0.06 0.663 0.691 

200 

1 0.44 0.08 0.418 0.455 

2 0.71 0.04 0.702 0.720 

3 0.66 0.06 0.649 0.677 

600 

1 0.42 0.08 0.399 0.435 

2 0.69 0.04 0.679 0.697 

3 0.65 0.06 0.634 0.662 

15850 

1 - - - - 

2 0.18 0.01 0.181 0.185 

3 0.19 0.01 0.184 0.189 

 

 

 
Table S2.4 Mean, standard deviation and 95% confidence intervals of van Genuchten model parameters. (Site 1: 

natural peatland; Site 2: degraded peatland; Site 3: extremely degraded peatland). 

Parametera Site Mean 
Standard  

deviation 

95% confidence intervals 

Lower limit Upper limit 

θs 

(cm3 cm−3) 

1 0.98 0.03 0.976 0.989 

2 0.77 0.04 0.763 0.780 

3 0.74 0.06 0.725 0.751 

α 

(cm−1) 

1 0.18 0.16 0.144 0.218 

2 1.15×10–3 2.98×10–4 1.08×10–3 1.22×10–3 

3 1.35×10–3 5.54×10–4 1.22×10–3 1.48×10–3 

n 

1 1.24 0.07 1.230 1.260 

2 1.49 0.05 1.480 1.510 

3 1.45 0.07 1.430 1.460 
a Abbreviations: θs, estimated water content at saturation (cm3 cm−3); α and n, empirical parameters. 
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Table S2.5 Pearson correlation coefficient between different hydro-physical properties of three study sites (site 1: natural peatland; site 2: degraded peatland; site 3: highly degraded 

peatland).  
 

SOMa BD 
Total  

porosity 

Macro- 

porosity 
Log10K

s
 θs Log10α n 

SOM  - 
       

BD Site 1 

Site 2 

Site 3 

–0.121b 

–0.792*** 

–0.861*** 

- 
      

Total  

Porosity 

Site 1 

Site 2 

Site 3 

–0.040 

0.665*** 

0.528***  

–0.004 

–0.788*** 

–0.821***  

- 
     

Macro- 

porosity 

Site 1 

Site 2 

Site 3 

0.046 

–0.171 

0.204  

–.678*** 

0.033 

–0.336*  

0.045 

–0.205 

0.218  

- 
    

Log10K
s
 Site 1 

Site 2 

Site 3 

0.018 

–0.255 

0.182  

–0.424** 

0.244* 

–0.237*  

–0.073 

–0.477*** 

0.128  

0.581*** 

0.573*** 

0.553***  

-  
  

θs Site 1 

Site 2 

Site 3 

0.007 

0.573*** 

0.484***  

–0.107 

–0.584*** 

–0.676***  

0.941*** 

0.852*** 

0.840***  

0.070 

–0.679*** 

–0.003  

–0.063 

–0.678*** 

0.068  

- 
  

Log10α Site 1 

Site 2 

Site 3 

–0.123 

–0.113 

–0.046  

0.245 

–0.021 

0.032  

–0.232* 

–0.045 

–0.168  

0.208 

0.715*** 

0.575***  

0.182 

0.159 

0.350  

–0.469*** 

–0.364* 

–0.385  

- 
 

n Site 1 

Site 2 

Site 3 

0.098 

0.435** 

0.152  

–0.745*** 

–0.337* 

–0.236*  

0.078 

0.381** 

0.434**  

0.714*** 

–0.722*** 

–0.431**  

0.458*** 

–0.327* 

–0.246*  

0.289* 

0.629*** 

0.666***  

–0.476*** 

–0.820*** 

–0.884***  

- 

a Abbreviations: SOM, soil organic matter content; BD, bulk density; Ks, saturated hydraulic conductivity; θs, estimated water content at saturation (cm3 cm−3); α and n, empirical parameters. 
b Significance codes: 0, “***”; 0.001, “**”; 0.01, “*”. 
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Table S2.6 Summary of the multiple regression models fitted to the hydraulic parameters. 

Study site Peat type Parameters Descriptora Coefficient Standard error t-value Significanceb 

Site 1 Natural peat 

Log10Ks 

MP 

BD 

MP2 

BD2 

9.236 

–64.195 

–8.907 

368.711 

3.519 

29.286 

4.366 

172.292 

2.624 

–2.192 

–2.040 

2.140 

<0.001*** 

0.010* 

0.032* 

0.036* 

θs 
BD 

BD2 

5.611 

–35.390 

2.140 

12.928 

2.622 

–2.737 

0.011* 

0.007** 

Log10α 
MP 

BD 

1.868 

12.994 

0.364 

2.458 

5.126 

5.289 

<0.001*** 

<0.001*** 

n 
MP 

BD 

0.280 

–2.364 

0.072 

0.483 

3.905 

–4.897 

<0.001*** 

<0.001*** 

Site 2 Degraded peat 

Log10Ks 

MP 

BD 

MP2 

59.825 

3.452 

–232.621 

13.228 

1.638 

69.026 

4.523 

2.107 

–3.370 

<0.001*** 

0.039* 

0.001** 

θs 
MP 

BD 

–0.864 

–0.471 

0.075 

0.048 

–11.587 

–9.874 

<0.001*** 

<0.001*** 

Log10α MP 2.366 0.276 8.562 <0.001*** 

n 
MP 

BD 

–1.368 

–0.385 

0.143 

0.091 

–9.587 

–4.222 

<0.001*** 

<0.001*** 

Site 3 Extremely degraded peat 

Log10Ks 
MP 

MP2 

20.508 

–76.092 

4.776 

24.74 

4.294 

–3.075 

<0.001*** 

0.003** 

θs 

BD 

SOM 

BD2 

SOM2 

–1.678 

0.014 

1.183 

–0.0002 

0.614 

0.006 

0.497 

0.0001 

–2.732 

2.252 

2.380 

–2.112 

0.008** 

0.028* 

0.020* 

0.038* 

Log10α 
MP 

BD 

2.868 

0.238 

0.461 

0.134 

6.221 

1.771 

<0.001*** 

0.081. 

n 
MP 

BD 

–1.130 

–0.186 

0.237 

0.069 

–4.771 

–2.702 

<0.001*** 

0.009** 
a Abbreviations: MP, macroporosity; BD, bulk density; SOM, soil organic matter content; Ks, saturated hydraulic conductivity; θs, estimated water content at saturation (cm3 cm−3); α and n, empirical 

parameters. 
b Significance codes: 0, “***”; 0.001, “**”; 0.01, “*”; 0.05, “·”. 
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Table S2.7 Comparison of fitted multiple regression model with the predictor “macroporosity (MP)” and without “macroporosity”. 

Study 

site 
Peat type Parameter 

Predictor with macroporositya (MP)  Predictor without macroporosity (MP) 

R2 RSEb P value AIC  R2 RSE P value AIC 

Site 1 

(N=72) 
Natural peat 

Log10Ks 0.40 0.318 <0.001 –160.22  0.23 0.355 <0.001 –146.41 

θs 0.11 0.027 0.019 –519.74  0.11 0.027 0.019 –519.74 

Log10α 0.32 0.210 <0.001 –221.52  0.23 0.229 0.003 –206.72 

n 0.64 0.041 <0.001 –455.78  0.56 0.045 <0.001 –443.41 

Site 2 

(N=72) 
Degraded peat 

Log10Ks 0.46 0.608 <0.001 –67.73  0.07 0.790 0.025 –32.05 

θs 0.78 0.018 <0.001 –576.87  0.37 0.030 <0.001 –502.72 

Log10α 0.51 0.066 <0.001 –389.17  0.14 0.089 0.019 –344.02 

n 0.62 0.034 <0.001 –483.51  0.19 0.049 <0.001 –430.96 

Site 3 

(N=72) 

Extremely de-

graded peat 

Log10Ks 0.39 0.264 <0.001 –331.68  0.14 0.319 0.0356 –159.81 

θs 0.37 0.046 <0.001 –437.91  0.37 0.046 <0.001 –437.91 

Log10α 0.36 0.113 <0.001 –311.68  0.10 0.135 0.111 –283.58 

n 0.26 0.058 <0.001 –407.62  0.16 0.063 0.020 –393.92 

a Macroporosity was calculated by the difference between total porosity and volumetric soil water content at –60 cm H2O pressure head. 
b Abbreviations: R2, the coefficient of determination; RSE, Residual standard error; AIC, Akaike information criterion. 
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Figure S3.1 Set up for saturated hydraulic conductivity measurement. 

 

 

 
 

 
Figure S3.2 Bromide breakthrough curves (e.g., column S1V3) where corrected data are fitted using the two-

region non-equilibrium transport model in CXTFIT. 

 

 



SUPPLEMENTAL MATERIALS 

131 

 

 

 
 

Figure S3.3 Plot of the error (observed – fitted) against pore volume from mobile-immobile model. 

 

 

 
 

 
Table S3.1 Upper and lower boundaries of fitted parameters (D, β, and ω) in the numerical inverse model. 

D a 

 (cm2 h–1) 

 
β 

 
ω 

lower upper  lower upper  lower upper 

0.01 100  0.01 0.99  0.10e–07 100 
a Abbreviations: D, dispersion coefficient; β, mobile water fraction; ω, mass transfer coefficient. 

 

 
Table S3.2 Values of optimized parameters from CDE model (only parameter D was fitted). 

Column 
Da 

(cm2 h–1) 
R2 MSE 

S1H1 1.45 0.984 0.0020 

S1H2 1.41 0.994 0.0007 

S1H3 1.76 0.994 0.0007 

S1V1 1.19 0.989 0.0014 

S1V2 2.46 0.982 0.0018 

S1V3 3.41 0.989 0.0011 

S2H1 0.49 0.981 0.0031 

S2H2 0.82 0.978 0.0031 

S2H3 0.67 0.986 0.0020 

S2V1 2.24 0.983 0.0019 

S2V2 0.88 0.981 0.0024 

S2V3 4.11 0.972 0.0035 
a Abbreviations: D, dispersion coefficient; R2, the coefficient of determination; MSE, mean squared error. 
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Table S3.3 The R square (R2) for regression of observed vs fitted value and corrected Akaike information criterion 

(AICc) of convection-dispersion equation (CDE) model and mobile-immobile (MIM) model. 

Column 
CDE  MIM 

R2 AICc MSE  R2 AICc MSE 

S1H1 0.984 –153.63 0.0020  0.995 –175.89 0.0008 

S1H2 0.994 –180.04 0.0007  0.995 –180.19 0.0006 

S1H3 0.994 –179.68 0.0007  0.997 –195.18 0.0004 

S1V1 0.989 –156.47 0.0014  0.996 –176.54 0.0006 

S1V2 0.982 –156.22 0.0018  0.993 –174.39 0.0008 

S1V3 0.989 –147.00 0.0011  0.995 –184.90 0.0005 

S2H1 0.981 –120.45 0.0031  0.995 –143.34 0.0009 

S2H2 0.978 –119.95 0.0031  0.996 –149.81 0.0007 

S2H3 0.986 –129.76 0.0020  0.998 –161.79 0.0004 

S2V1 0.983 –129.81 0.0019  0.986 –129.83 0.0017 

S2V2 0.981 –119.22 0.0024  0.991 –128.90 0.0014 

S2V3 0.972 –117.80 0.0035  0.982 –122.59 0.0025 
a Abbreviations: R2, the coefficient of determination; MSE, mean squared error. 

 

 

𝐴𝐼𝐶 = 𝑁𝑙𝑛 ൬
𝑆𝑆𝐸

𝑁
൰ + 2𝑘 +

2𝑘(𝑘 + 1)

𝑁 − 𝑘 − 1
 

where N is the number of the observed data for each BTC; SSE is the sum of squared error between observed and 

predicted values; k is the number of estimated parameters. 

 

 

 

 

 
 

Table S3.4 Tests of Normality (Shapiro-Wilk) of variable “Error (observed – fitted)” from the UNIVARIATE Pro-

cedure of SAS. 

Column Statistic N 
P Value  

(Pr<W) 

S1H1 0.942 25 0.163 

S1H2 0.922 25 0.056 

S1H3 0.949 25 0.235 

S1V1 0.957 24 0.384 

S1V2 0.977 25 0.815 

S1V3 0.955 25 0.326 

S2H1 0.969 21 0.707 

S2H2 0.986 21 0.983 

S2H3 0.924 21 0.104 

S2V1 0.927 21 0.120 

S2V2 0.976 20 0.881 

S2V3 0.903 21 0.040 
a Abbreviations: N, number of data points used in the test. 
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Table S3.5 The covariance matrix for fitted parameters of each sample. 

Column  
D 

 (cm2 h–1) 
β ω 

S1H1 

Da 1   

β 0.767 1  

ω –0.578 –0.437 1 

S1H2 

D 1   

β 0.815 1  

ω –0.636 –0.494 1 

S1H3 

D 1   

β 0.831 1  

ω –0.623 –0.507 1 

S1V1 

D 1   

β 0.764 1  

ω –0.562 –0.400 1 

S1V2 

D 1   

β 0.527 1  

ω 0.566 –0.306 1 

S1V3 

D 1   

β 0.327 1  

ω 0.528 –0.537 1 

S2H1 

D 1   

β 0.749 1  

ω –0.690 –0.606 1 

S2H2 

D 1   

β 0.704 1  

ω –0.619 –0.429 1 

S2H3 

D 1   

β 0.717 1  

ω –0.646 0.485 1 

S2V1 

D 1   

β 0.964 1  

ω –0.870 –0.883 1 

S2V2 

D 1   

β 0.706 1  

ω –0.567 –0.334 1 

S2V3 

D 1   

β 0.956 1  

ω –0.799 –0.855 1 
a Abbreviations: D, dispersion coefficient; β, mobile water fraction; ω, mass transfer coefficient. 
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Figure S4.1 The local hydrological regime of the coastal peatland study site. (based on data from LUNG 2006, 

Kartenportal Umwelt Mecklenburg-Vorpommern, Landesamt für Umwelt, Naturschutz und Geologie, 

https://www.umweltkarten.mv-regierung.de). 

 

 

 
Figure S4.2 Pearson correlation coefficients among elevations, soil organic matter content (SOM) and carbon:ni-

trogen ratio (C:N) of disturbed soil samples; (a) N = 80 for all samples; (b) N = 40 for top and subsoil horizon. 
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Figure S4.3 Soil water retention curves for eighteen undisturbed soil core samples from three different sampling 

elevation groups; (a) Group A; (b) Group B; (c) Group C. 
 

 

 

 

 
 

Figure S4.4 Correlation between (a) soil organic matter (SOM) content (wt%) and bulk density (g cm–3); (b) 

macroporosity (vol%) and log-transformed saturated hydraulic conductivity (Log10Ks). 
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Figure S4.5 Correlation between sampling elevation and selected soil hydro-physical properties (N = 18); (a) soil 

organic matter content (SOM, wt%); (b) bulk density; (c) carbon:nitrogen ratio (C:N); (d) total porosity (vol%); 

(e) macroporosity (vol%); (f) log-transformed saturated hydraulic conductivity (Log10Ks); (g) van Genuchten (VG) 

model parameter θs; (h) log-transformed VG model parameter α; (i) VG model parameter n. 
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Figure S4.6 ANOVA tests of selected soil hydro-physical properties between different elevation groups at two 

sampling horizons (N = 3); (a) sampling elevation (m); (b) soil organic matter content (SOM, wt%); (c) bulk 

density; (d) total porosity (vol%); (e) macroporosity (vol%);( f) carbon:nitrogen ratio (C:N); (g) van Genuchten 

(VG) model parameter θs; (h) log-transformed VG model parameter α; (i) VG model parameter n. 
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Figure S4.7 Variation of (a) electrical conductivity (EC); (b) pH over time during alternating freshwater and brack-

ish water. (same GW solution was used for GW1 and GW2 time phases). 

 

 

 

 
 

 
 

 

 

 
 

Figure S4.8 Visualization of leachate color of samples from sampling elevation group C. 
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Figure S4.9 Pearson correlation coefficient among total amount of released nutrient and selected soil properties; 

(a) the total amount of DOC; (b) the total amount of NH4
+. (significance codes: <0.001, “***”; <0.01, “**”; <0.05, 

“*”; <0.1, “·”). 
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Table S4.1 Summary of van Genuchten (VG) model parameters of undisturbed soil core samples. 

Elevation 

group 

Soil 

horizon 
No. 

VG model parametersa 

R2 SSDb 𝜃௦ 
(cm3 cm−3) 

α n 

A  

Topsoil 

1 0.467 0.990 1.059 0.994 8.64E–05 

2 0.405 0.713 1.051 0.998 1.86E–05 

3 0.525 0.176 1.034 0.988 4.89E–05 

Subsoil 

1 0.340 0.507 1.056 0.997 1.86E–05 

2 0.388 0.616 1.087 0.999 1.15E–05 

3 0.407 0.484 1.039 0.997 1.39E–05 

B  

Topsoil 

1 0.561 0.990 1.037 0.959 3.86E–04 

2 0.622 0.990 1.032 0.988 1.11E–04 

3 0.669 0.070 1.033 0.989 4.32E–05 

Subsoil 

1 0.444 0.073 1.041 0.978 6.07E–05 

2 0.671 0.990 1.051 0.985 3.39E–04 

3 0.755 0.990 1.050 0.991 2.45E–04 

C  

Topsoil 

1 0.733 0.990 1.048 0.981 2.15E–03 

2 0.684 0.990 1.058 0.967 1.00E–03 

3 0.681 0.990 1.056 0.993 1.93E–04 

Subsoil 

1 0.825 0.990 1.058 0.959 1.88E–03 

2 0.810 0.990 1.031 0.989 1.54E–04 

3 0.784 0.974 1.043 0.980 4.88E–04 

a Abbreviations: θs, estimated water content at saturation (cm3 cm−3); α and n, empirical parameters. 
b Abbreviations: R2, the coefficient of determination; SSD, sum of the squared deviations. 
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Supplemental Materials to Chapter 5 

 

 
Figure S5.1 The “wayback” images of the coastal study site visually presents the spatial changes over time. The 

figure was generated by using an ArcGIS license from the Technical University of Civil Engineering Bucharest (Prof. 

Ana Cornelia Badea, EU-CONEXUS PhD Campus) and produced from the website: https://liv-

ingatlas.arcgis.com/wayback/#active=57965&ext=13.22126,54.36619,13.26117,54.37899&s-

lected=46399,32645&animationSpeed=1.5. 

 

 

 

Figure S5.2 The relationship between (a) saturated hydraulic conductivity Ks (log10Ks) and macroporosity; (b) 

macroporosity and van Genuchten (VG) model parameter α (log10α); (c) macroporosity and VG model parameter 

n of differently degraded peat (pink: inland natural bog; orange: inland degraded fen; blue: inland highly degraded 

fen; grey: coastal fen). 
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Figure S5.3 Numbers of publications per year found from a Web of Science database search combining the differ-

ent search terms. 

 

 

 

Figure S5.4 Total amount of compound release (DOC and NH4
+) from samples with different soil organic matter 

content (SOM, wt%) during entire leaching phases. (data from Chapter 4). 
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Figure S5.5 Network visualization from bibliometric analysis with highlighted keyword “water table”. 

 

 

 

Table S5.1 Summary of 3 clusters in bibliometric analysis that express different research focus in the “soil properties” and “peatland restoration/rewetting” themes. 

Cluster  Items  Keywordsa 

Cluster 1 

 

17 

 “decomposition”, “depth”, “field”, “growth”, “hydraulic conductivity”, “hydrophysical property”, “implication”, “natural peat-

land”, “northern peatland”, “peatland restoration”, “soil moisture”, “sphagnum”, “sphagnum moss”, “surface”, “water”, “wa-

ter retention”, “water table” 

Cluster 2 
 

17 
 

“abundance”, “climate”, “climate change”, “community composition”, “diversity”, “emission”, “groundwater”, “interaction”, 

“landscape”, “model”, “nitrogen”, “organic carbon”, “peatlands”, “phosphorus”, “relationship”, “soil property”, “variation” 

Cluster 3 
 

14 
 

“biodiversity”, “characteristic”, “chemical property”, “co2”, “forest”, “hydrology”, “land use”, “organic matter”, “peat extrac-

tion”, “peat property”, “peatland ecosystem”, “revegetation”, “rewetting”, “tree” 

a The keywords are consistent with the presentation in the figure, all in lowercase letters and without any font formatting (such as italics, capitalization, or specific chemical nomenclature). 
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